(* Content-type: application/vnd.wolfram.mathematica *) (*** Wolfram Notebook File ***) (* http://www.wolfram.com/nb *) (* CreatedBy='Mathematica 14.1' *) (*CacheID: 234*) (* Internal cache information: NotebookFileLineBreakTest NotebookFileLineBreakTest NotebookDataPosition[ 158, 7] NotebookDataLength[ 6705808, 130486] NotebookOptionsPosition[ 6632420, 129232] NotebookOutlinePosition[ 6632993, 129255] CellTagsIndexPosition[ 6632923, 129250] WindowFrame->Normal*) (* Beginning of Notebook Content *) Notebook[{ Cell[CellGroupData[{ Cell["Icosidodecahedron", "Title", CellTags->"A4",ExpressionUUID->"e46cf2b9-b1ca-4ec9-8105-d756c78a7602"], Cell[CellGroupData[{ Cell["Author", "Subsection",ExpressionUUID->"82c04112-9dc8-404b-b29d-0f40ff08cf61"], Cell["\<\ Eric W. Weisstein November 16, 2024\ \>", "Text",ExpressionUUID->"3a341ba1-66b3-4423-91b2-af820a672b10"], Cell[TextData[{ "This notebook downloaded from ", ButtonBox["http://mathworld.wolfram.com/notebooks/Polyhedra/\ Icosidodecahedron.nb", BaseStyle->"Hyperlink", ButtonData:>{ URL["http://mathworld.wolfram.com/notebooks/Polyhedra/Icosidodecahedron.\ nb"], None}], "." }], "Text",ExpressionUUID->"04ad537b-7497-4eb5-8357-ee5cd11ac93c"], Cell[TextData[{ "For more information, see Eric's ", StyleBox["MathWorld", FontSlant->"Italic"], " entry ", ButtonBox["http://mathworld.wolfram.com/Icosidodecahedron.html", BaseStyle->"Hyperlink", ButtonData:>{ URL["http://mathworld.wolfram.com/Icosidodecahedron.html"], None}], "." }], "Text",ExpressionUUID->"a78d2c22-bc37-4563-b8e7-4bb71c935a3a"], Cell["\<\ \[Copyright]2024 Wolfram Research, Inc. except for portions noted otherwise\ \>", "Text",ExpressionUUID->"001bab07-d4ca-4b36-8d99-e81dd1f694f8"] }, Open ]], Cell[CellGroupData[{ Cell["Figure", "Section",ExpressionUUID->"e4504123-650b-4736-b3b5-44c814a3d8f8"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"With", "[", RowBox[{ RowBox[{"{", RowBox[{"pname", "=", "\"\\""}], "}"}], ",", "\[IndentingNewLine]", RowBox[{"GraphicsRow", "[", RowBox[{ RowBox[{"{", "\[IndentingNewLine]", RowBox[{ RowBox[{"Graphics3D", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"Opacity", "[", ".8", "]"}], ",", RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}]}], "}"}], ",", RowBox[{"Boxed", "\[Rule]", "False"}]}], "]"}], ",", "\[IndentingNewLine]", RowBox[{"Graphics3D", "[", RowBox[{ RowBox[{"{", RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}], "}"}], ",", RowBox[{"Boxed", "\[Rule]", "False"}]}], "]"}], ",", "\[IndentingNewLine]", RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}]}], "\[IndentingNewLine]", "}"}], ",", RowBox[{"ImageSize", "\[Rule]", "700"}]}], "]"}]}], "]"}]], "Input", CellLabel->"In[14]:=",ExpressionUUID->"5e846fe8-dddd-4d43-a409-06230edcd326"], Cell[BoxData[ GraphicsBox[{{}, {InsetBox[ Graphics3DBox[ {Opacity[0.8], PolyhedronBox[ NCache[{{0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), 0}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {-(1 + 2 5^Rational[-1, 2])^ Rational[1, 2], 0, Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {(1 + 2 5^Rational[-1, 2])^Rational[1, 2], 0, (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, {(Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2], 0, -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2], 0}, { Root[1 - 5 #^2 + 5 #^4& , 1, 0], 0, (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}}, {{0, -1.618033988749895, 0}, { 0, 1.618033988749895, 0}, { 0.2628655560595668, -0.8090169943749475, -1.3763819204711736`}, { 0.2628655560595668, 0.8090169943749475, -1.3763819204711736`}, { 0.42532540417601994`, -1.3090169943749475`, 0.85065080835204}, { 0.42532540417601994`, 1.3090169943749475`, 0.85065080835204}, { 0.6881909602355868, -0.5, 1.3763819204711736`}, {0.6881909602355868, 0.5, 1.3763819204711736`}, { 1.1135163644116066`, -0.8090169943749475, -0.85065080835204}, { 1.1135163644116066`, 0.8090169943749475, -0.85065080835204}, {-1.3763819204711736`, 0, -0.85065080835204}, {-0.6881909602355868, -0.5, \ -1.3763819204711736`}, {-0.6881909602355868, 0.5, -1.3763819204711736`}, { 1.3763819204711736`, 0, 0.85065080835204}, { 0.9510565162951535, -1.3090169943749475`, 0}, { 0.9510565162951535, 1.3090169943749475`, 0}, { 0.85065080835204, 0, -1.3763819204711736`}, {-0.9510565162951535, \ -1.3090169943749475`, 0}, {-0.9510565162951535, 1.3090169943749475`, 0}, {-1.5388417685876268`, -0.5, 0}, {-1.5388417685876268`, 0.5, 0}, {1.5388417685876268`, -0.5, 0}, { 1.5388417685876268`, 0.5, 0}, {-0.85065080835204, 0, 1.3763819204711736`}, {-1.1135163644116066`, -0.8090169943749475, 0.85065080835204}, {-1.1135163644116066`, 0.8090169943749475, 0.85065080835204}, {-0.42532540417602, -1.3090169943749475`, \ -0.85065080835204}, {-0.42532540417602, 1.3090169943749475`, -0.85065080835204}, {-0.2628655560595668, \ -0.8090169943749475, 1.3763819204711736`}, {-0.2628655560595668, 0.8090169943749475, 1.3763819204711736`}}], {{30, 24, 29, 7, 8}, { 26, 24, 30}, {25, 29, 24}, {5, 7, 29}, {14, 8, 7}, {6, 30, 8}, {16, 2, 6}, {19, 21, 26}, {20, 18, 25}, {1, 15, 5}, {22, 23, 14}, {2, 19, 26, 30, 6}, {21, 20, 25, 24, 26}, {18, 1, 5, 29, 25}, {15, 22, 14, 7, 5}, {23, 16, 6, 8, 14}, {12, 13, 4, 17, 3}, {3, 17, 9}, {17, 4, 10}, {4, 13, 28}, {13, 12, 11}, {12, 3, 27}, {27, 1, 18}, {9, 22, 15}, {10, 16, 23}, {28, 19, 2}, {11, 20, 21}, {27, 3, 9, 15, 1}, {9, 17, 10, 23, 22}, {10, 4, 28, 2, 16}, {28, 13, 11, 21, 19}, {11, 12, 27, 18, 20}}]}, Boxed->False], {194.51488421296364, -190.05}, ImageScaled[{0.5, 0.5}], {360, 362}, BaseStyle->{Graphics3DBoxOptions -> {SphericalRegion -> False}}, ContentSelectable->True], InsetBox[ Graphics3DBox[{ Line3DBox[ NCache[{{ 0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}}, {{ 0, -1.618033988749895, 0}, { 0.42532540417601994`, -1.3090169943749475`, 0.85065080835204}}]], Line3DBox[ NCache[{{ 0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}}, {{ 0, -1.618033988749895, 0}, { 0.9510565162951535, -1.3090169943749475`, 0}}]], Line3DBox[ NCache[{{0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}}, {{ 0, -1.618033988749895, 0}, {-0.9510565162951535, -1.3090169943749475`, 0}}]], Line3DBox[ NCache[{{0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}}, {{ 0, -1.618033988749895, 0}, {-0.42532540417602, -1.3090169943749475`, \ -0.85065080835204}}]], Line3DBox[ NCache[{{ 0, Rational[1, 2] (1 + 5^Rational[1, 2]), 0}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}}, {{ 0, 1.618033988749895, 0}, {0.42532540417601994`, 1.3090169943749475`, 0.85065080835204}}]], Line3DBox[ NCache[{{ 0, Rational[1, 2] (1 + 5^Rational[1, 2]), 0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}}, {{ 0, 1.618033988749895, 0}, { 0.9510565162951535, 1.3090169943749475`, 0}}]], Line3DBox[ NCache[{{0, Rational[1, 2] (1 + 5^Rational[1, 2]), 0}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}}, {{ 0, 1.618033988749895, 0}, {-0.9510565162951535, 1.3090169943749475`, 0}}]], Line3DBox[ NCache[{{0, Rational[1, 2] (1 + 5^Rational[1, 2]), 0}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}}, {{ 0, 1.618033988749895, 0}, {-0.42532540417602, 1.3090169943749475`, -0.85065080835204}}]], Line3DBox[ NCache[{{(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}}, {{ 0.2628655560595668, -0.8090169943749475, -1.3763819204711736`}, { 1.1135163644116066`, -0.8090169943749475, -0.85065080835204}}]], Line3DBox[ NCache[{{(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}}, {{ 0.2628655560595668, -0.8090169943749475, -1.3763819204711736`}, \ {-0.6881909602355868, -0.5, -1.3763819204711736`}}]], Line3DBox[ NCache[{{(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2], 0, -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}}, {{ 0.2628655560595668, -0.8090169943749475, -1.3763819204711736`}, { 0.85065080835204, 0, -1.3763819204711736`}}]], Line3DBox[ NCache[{{(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}}, {{ 0.2628655560595668, -0.8090169943749475, -1.3763819204711736`}, \ {-0.42532540417602, -1.3090169943749475`, -0.85065080835204}}]], Line3DBox[ NCache[{{(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}}, {{0.2628655560595668, 0.8090169943749475, -1.3763819204711736`}, {1.1135163644116066`, 0.8090169943749475, -0.85065080835204}}]], Line3DBox[ NCache[{{(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}}, {{ 0.2628655560595668, 0.8090169943749475, -1.3763819204711736`}, {-0.6881909602355868, 0.5, -1.3763819204711736`}}]], Line3DBox[ NCache[{{(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2], 0, -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}}, {{ 0.2628655560595668, 0.8090169943749475, -1.3763819204711736`}, { 0.85065080835204, 0, -1.3763819204711736`}}]], Line3DBox[ NCache[{{(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}}, {{0.2628655560595668, 0.8090169943749475, -1.3763819204711736`}, {-0.42532540417602, 1.3090169943749475`, -0.85065080835204}}]], Line3DBox[ NCache[{{(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}}, {{ 0.42532540417601994`, -1.3090169943749475`, 0.85065080835204}, { 0.6881909602355868, -0.5, 1.3763819204711736`}}]], Line3DBox[ NCache[{{(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}}, {{ 0.42532540417601994`, -1.3090169943749475`, 0.85065080835204}, { 0.9510565162951535, -1.3090169943749475`, 0}}]], Line3DBox[ NCache[{{(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}}, {{0.42532540417601994`, -1.3090169943749475`, 0.85065080835204}, {-0.2628655560595668, -0.8090169943749475, 1.3763819204711736`}}]], Line3DBox[ NCache[{{(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}}, {{ 0.42532540417601994`, 1.3090169943749475`, 0.85065080835204}, { 0.6881909602355868, 0.5, 1.3763819204711736`}}]], Line3DBox[ NCache[{{(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}}, {{0.42532540417601994`, 1.3090169943749475`, 0.85065080835204}, { 0.9510565162951535, 1.3090169943749475`, 0}}]], Line3DBox[ NCache[{{(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}}, {{0.42532540417601994`, 1.3090169943749475`, 0.85065080835204}, {-0.2628655560595668, 0.8090169943749475, 1.3763819204711736`}}]], Line3DBox[ NCache[{{(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], Rational[-1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}}, {{ 0.6881909602355868, -0.5, 1.3763819204711736`}, {0.6881909602355868, 0.5, 1.3763819204711736`}}]], Line3DBox[ NCache[{{(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], Rational[-1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(1 + 2 5^Rational[-1, 2])^Rational[1, 2], 0, (Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}}, {{ 0.6881909602355868, -0.5, 1.3763819204711736`}, { 1.3763819204711736`, 0, 0.85065080835204}}]], Line3DBox[ NCache[{{(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], Rational[-1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}}, {{0.6881909602355868, -0.5, 1.3763819204711736`}, {-0.2628655560595668, -0.8090169943749475, 1.3763819204711736`}}]], Line3DBox[ NCache[{{(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(1 + 2 5^Rational[-1, 2])^Rational[1, 2], 0, (Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}}, {{ 0.6881909602355868, 0.5, 1.3763819204711736`}, { 1.3763819204711736`, 0, 0.85065080835204}}]], Line3DBox[ NCache[{{(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}}, {{0.6881909602355868, 0.5, 1.3763819204711736`}, {-0.2628655560595668, 0.8090169943749475, 1.3763819204711736`}}]], Line3DBox[ NCache[{{(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}}, {{ 1.1135163644116066`, -0.8090169943749475, -0.85065080835204}, { 0.9510565162951535, -1.3090169943749475`, 0}}]], Line3DBox[ NCache[{{(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2], 0, -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}}, {{ 1.1135163644116066`, -0.8090169943749475, -0.85065080835204}, { 0.85065080835204, 0, -1.3763819204711736`}}]], Line3DBox[ NCache[{{(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}}, {{ 1.1135163644116066`, -0.8090169943749475, -0.85065080835204}, { 1.5388417685876268`, -0.5, 0}}]], Line3DBox[ NCache[{{(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}}, {{1.1135163644116066`, 0.8090169943749475, -0.85065080835204}, { 0.9510565162951535, 1.3090169943749475`, 0}}]], Line3DBox[ NCache[{{(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2], 0, -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}}, {{ 1.1135163644116066`, 0.8090169943749475, -0.85065080835204}, { 0.85065080835204, 0, -1.3763819204711736`}}]], Line3DBox[ NCache[{{(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2], 0}}, {{1.1135163644116066`, 0.8090169943749475, -0.85065080835204}, { 1.5388417685876268`, 0.5, 0}}]], Line3DBox[ NCache[{{-(1 + 2 5^Rational[-1, 2])^Rational[1, 2], 0, Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}}, {{-1.3763819204711736`, 0, -0.85065080835204}, {-0.6881909602355868, -0.5, \ -1.3763819204711736`}}]], Line3DBox[ NCache[{{-(1 + 2 5^Rational[-1, 2])^Rational[1, 2], 0, Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}}, {{-1.3763819204711736`, 0, -0.85065080835204}, {-0.6881909602355868, 0.5, -1.3763819204711736`}}]], Line3DBox[ NCache[{{-(1 + 2 5^Rational[-1, 2])^Rational[1, 2], 0, Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}}, {{-1.3763819204711736`, 0, -0.85065080835204}, {-1.5388417685876268`, -0.5, 0}}]], Line3DBox[ NCache[{{-(1 + 2 5^Rational[-1, 2])^Rational[1, 2], 0, Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2], 0}}, {{-1.3763819204711736`, 0, -0.85065080835204}, {-1.5388417685876268`, 0.5, 0}}]], Line3DBox[ NCache[{{ Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], -(1 + 2 5^Rational[-1, 2])^ Rational[ 1, 2]}}, {{-0.6881909602355868, -0.5, -1.3763819204711736`}, \ {-0.6881909602355868, 0.5, -1.3763819204711736`}}]], Line3DBox[ NCache[{{ Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}}, {{-0.6881909602355868, -0.5, -1.3763819204711736`}, \ {-0.42532540417602, -1.3090169943749475`, -0.85065080835204}}]], Line3DBox[ NCache[{{ Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}}, {{-0.6881909602355868, 0.5, -1.3763819204711736`}, {-0.42532540417602, 1.3090169943749475`, -0.85065080835204}}]], Line3DBox[ NCache[{{(1 + 2 5^Rational[-1, 2])^Rational[1, 2], 0, (Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}}, {{ 1.3763819204711736`, 0, 0.85065080835204}, { 1.5388417685876268`, -0.5, 0}}]], Line3DBox[ NCache[{{(1 + 2 5^Rational[-1, 2])^Rational[1, 2], 0, (Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2], 0}}, {{1.3763819204711736`, 0, 0.85065080835204}, { 1.5388417685876268`, 0.5, 0}}]], Line3DBox[ NCache[{{(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}}, {{ 0.9510565162951535, -1.3090169943749475`, 0}, { 1.5388417685876268`, -0.5, 0}}]], Line3DBox[ NCache[{{(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2], 0}}, {{0.9510565162951535, 1.3090169943749475`, 0}, { 1.5388417685876268`, 0.5, 0}}]], Line3DBox[ NCache[{{ Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}}, {{-0.9510565162951535, -1.3090169943749475`, 0}, {-1.5388417685876268`, -0.5, 0}}]], Line3DBox[ NCache[{{ Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}}, {{-0.9510565162951535, -1.3090169943749475`, 0}, {-1.1135163644116066`, -0.8090169943749475, 0.85065080835204}}]], Line3DBox[ NCache[{{ Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}}, {{-0.9510565162951535, -1.3090169943749475`, 0}, {-0.42532540417602, -1.3090169943749475`, \ -0.85065080835204}}]], Line3DBox[ NCache[{{ Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2], 0}}, {{-0.9510565162951535, 1.3090169943749475`, 0}, {-1.5388417685876268`, 0.5, 0}}]], Line3DBox[ NCache[{{ Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}}, {{-0.9510565162951535, 1.3090169943749475`, 0}, {-1.1135163644116066`, 0.8090169943749475, 0.85065080835204}}]], Line3DBox[ NCache[{{ Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}}, {{-0.9510565162951535, 1.3090169943749475`, 0}, {-0.42532540417602, 1.3090169943749475`, -0.85065080835204}}]], Line3DBox[ NCache[{{ Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2], 0}}, {{-1.5388417685876268`, -0.5, 0}, {-1.5388417685876268`, 0.5, 0}}]], Line3DBox[ NCache[{{ Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}}, {{-1.5388417685876268`, -0.5, 0}, {-1.1135163644116066`, -0.8090169943749475, 0.85065080835204}}]], Line3DBox[ NCache[{{ Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2], 0}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}}, {{-1.5388417685876268`, 0.5, 0}, {-1.1135163644116066`, 0.8090169943749475, 0.85065080835204}}]], Line3DBox[ NCache[{{ Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2], 0}}, {{1.5388417685876268`, -0.5, 0}, { 1.5388417685876268`, 0.5, 0}}]], Line3DBox[ NCache[{{ Root[1 - 5 #^2 + 5 #^4& , 1, 0], 0, (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}}, {{-0.85065080835204, 0, 1.3763819204711736`}, {-1.1135163644116066`, -0.8090169943749475, 0.85065080835204}}]], Line3DBox[ NCache[{{ Root[1 - 5 #^2 + 5 #^4& , 1, 0], 0, (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}}, {{-0.85065080835204, 0, 1.3763819204711736`}, {-1.1135163644116066`, 0.8090169943749475, 0.85065080835204}}]], Line3DBox[ NCache[{{ Root[1 - 5 #^2 + 5 #^4& , 1, 0], 0, (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}}, {{-0.85065080835204, 0, 1.3763819204711736`}, {-0.2628655560595668, -0.8090169943749475, 1.3763819204711736`}}]], Line3DBox[ NCache[{{ Root[1 - 5 #^2 + 5 #^4& , 1, 0], 0, (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}}, {{-0.85065080835204, 0, 1.3763819204711736`}, {-0.2628655560595668, 0.8090169943749475, 1.3763819204711736`}}]], Line3DBox[ NCache[{{ Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}}, {{-1.1135163644116066`, -0.8090169943749475, 0.85065080835204}, {-0.2628655560595668, -0.8090169943749475, 1.3763819204711736`}}]], Line3DBox[ NCache[{{ Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}}, {{-1.1135163644116066`, 0.8090169943749475, 0.85065080835204}, {-0.2628655560595668, 0.8090169943749475, 1.3763819204711736`}}]]}, Boxed->False], {583.5446526388909, -190.05}, ImageScaled[{0.5, 0.5}], {360, 362}, BaseStyle->{Graphics3DBoxOptions -> {SphericalRegion -> False}}, ContentSelectable->True], InsetBox[ GraphicsBox[ {RGBColor[1, 1, 0.85], EdgeForm[GrayLevel[0]], GraphicsComplexBox[ NCache[{{ 0, Rational[1, 4] (-1 + 2 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2])}, { Rational[ 1, 4] (17 - 7 5^Rational[1, 2] + (390 - 174 5^Rational[1, 2])^Rational[1, 2])^ Rational[1, 2], Rational[1, 8] (3 + 3 5^Rational[1, 2] + (150 + 66 5^Rational[1, 2])^ Rational[1, 2])}, { Rational[1, 4] (10 - 2 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (-2 + 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2])}, { Rational[ 1, 2] (2/(10 - 5^Rational[1, 2] - (15 (5 - 2 5^Rational[1, 2]))^ Rational[1, 2]))^Rational[-1, 2], Rational[1, 2] (1 + 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2])}, { Rational[ 1, 4] (7 + 5^Rational[1, 2] + (6 (5 + 5^Rational[1, 2]))^Rational[1, 2])^ Rational[1, 2], Rational[1, 8] (-3 + 3 5^Rational[1, 2] + (30 (5 + 5^Rational[1, 2]))^ Rational[1, 2])}, { Rational[ 1, 2] (7 - 2 5^Rational[1, 2] + 2 (15 - 6 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (1 + 2 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2])}, { Rational[ 1, 4] (17 + 5^Rational[1, 2] + (30 (5 - 5^Rational[1, 2]))^Rational[1, 2])^ Rational[1, 2], Rational[-5, 8] + Rational[3, 8] 5^Rational[1, 2] + Rational[1, 4] (Rational[3, 2] (5 - 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[ 1, 2] (Rational[5, 2] (4 - 5^ Rational[1, 2] + (15 - 6 5^Rational[1, 2])^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (3 + 3 5^Rational[1, 2] + 2 (15 + 6 5^Rational[1, 2])^Rational[1, 2])}, { Rational[ 1, 4] (47 - 5^ Rational[1, 2] + (1230 - 534 5^Rational[1, 2])^Rational[1, 2])^ Rational[1, 2], Rational[1, 8] (5 + 5 5^Rational[1, 2] + (150 + 66 5^Rational[1, 2])^ Rational[1, 2])}, { Rational[ 1, 2] (7 + 5^Rational[1, 2] + (6 (5 + 5^Rational[1, 2]))^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (-1 + 2 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2])}, { Rational[ 1, 2] (7 + 5^Rational[1, 2] + (6 (5 + 5^Rational[1, 2]))^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 2 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2])}, { Rational[ 1, 4] (23 + 7 5^Rational[1, 2] + (750 + 330 5^Rational[1, 2])^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (-1 + 3 5^Rational[1, 2] + (30 - 6 5^Rational[1, 2])^Rational[1, 2])}, { Rational[ 1, 4] (23 + 7 5^Rational[1, 2] + (750 + 330 5^Rational[1, 2])^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (5 + 5 5^Rational[1, 2] + (150 + 66 5^Rational[1, 2])^ Rational[1, 2])}, { Rational[ 1, 2] (Rational[1, 2] (20 + 5^Rational[1, 2] + (375 + 30 5^Rational[1, 2])^Rational[1, 2]))^ Rational[1, 2], 0}, { Rational[ 1, 4] (37 + 11 5^Rational[1, 2] + (870 + 366 5^Rational[1, 2])^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (-1 + 5^Rational[1, 2] + (6 (5 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[ 1, 2] (8 + Rational[7, 2] 5^Rational[1, 2] + Rational[1, 2] (3 (85 + 38 5^Rational[1, 2]))^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 3 5^Rational[1, 2] + 2 (15 + 6 5^Rational[1, 2])^Rational[1, 2])}, { Rational[ 1, 4] (38 + 14 5^Rational[1, 2] + 4 (150 + 66 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2], Rational[1, 4] ( 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2])}, { Rational[ 1, 4] (38 + 14 5^Rational[1, 2] + 4 (150 + 66 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (2 + 3 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2])}, { Rational[ 1, 2] (Rational[3, 2] (10 + 3 5^Rational[1, 2] + (75 + 30 5^Rational[1, 2])^ Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (-1 + 5^Rational[1, 2])}, {(Rational[17, 4] + 5^Rational[1, 2] + Rational[1, 2] (75 + 30 5^Rational[1, 2])^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (1 + 2 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2])}, { Rational[ 1, 4] (5 (13 + 5 5^Rational[1, 2] + (150 + 66 5^Rational[1, 2])^ Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (7 + 7 5^Rational[1, 2] + (150 + 66 5^Rational[1, 2])^ Rational[1, 2])}, { Rational[ 1, 4] (62 + 26 5^Rational[1, 2] + 4 (6 (65 + 29 5^Rational[1, 2]))^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (4 + 3 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2])}, { Rational[ 1, 4] (73 + 23 5^Rational[1, 2] + 3 (870 + 366 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (1 + 3 5^Rational[1, 2] + (6 (5 + 5^Rational[1, 2]))^ Rational[1, 2])}, { Rational[ 1, 4] (73 + 23 5^Rational[1, 2] + 3 (870 + 366 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (3 + 5 5^Rational[1, 2] + (30 (5 + 5^Rational[1, 2]))^ Rational[1, 2])}, { Rational[ 1, 2] (Rational[3, 2] (12 + 5 5^Rational[1, 2] + (3 (85 + 38 5^Rational[1, 2]))^ Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2])}, { Rational[ 1, 4] (97 + 25 5^Rational[1, 2] + (6 (1745 + 659 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (1 + 5 5^Rational[1, 2] + (30 - 6 5^Rational[1, 2])^Rational[1, 2])}, { Rational[ 1, 4] (85 + 37 5^Rational[1, 2] + (30 (445 + 199 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (9 + 5 5^Rational[1, 2] + (150 + 66 5^Rational[1, 2])^ Rational[1, 2])}, {(Rational[61, 8] + Rational[17, 8] 5^Rational[1, 2] + (75 + 30 5^Rational[1, 2])^ Rational[1, 2])^Rational[1, 2], Rational[1, 4] (2 + 3 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2])}, { Rational[ 1, 4] (115 + 43 5^Rational[1, 2] + (30 (745 + 331 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (-3 + 5 5^Rational[1, 2] + (30 - 6 5^Rational[1, 2])^Rational[1, 2])}, { Rational[ 1, 4] (115 + 43 5^Rational[1, 2] + (30 (745 + 331 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (5 + 5 5^Rational[1, 2] + (30 - 6 5^Rational[1, 2])^Rational[1, 2])}, { Rational[ 1, 2] (Rational[3, 2] (22 + 9 5^Rational[1, 2] + (795 + 354 5^Rational[1, 2])^ Rational[1, 2]))^Rational[1, 2], Rational[1, 2] (1 + 5^Rational[1, 2])}, {(Rational[133, 16] + Rational[59, 16] 5^Rational[1, 2] + Rational[ 1, 2] (Rational[17475, 32] + Rational[7815, 32] 5^Rational[1, 2])^Rational[1, 2])^ Rational[1, 2], Rational[1, 8] (5 + 7 5^Rational[1, 2] + (30 (5 + 5^Rational[1, 2]))^ Rational[1, 2])}, {(Rational[19, 2] + Rational[7, 2] 5^Rational[1, 2] + (6 (25 + 11 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 2 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2])}, { Rational[ 1, 2] (Rational[79, 2] + Rational[35, 2] 5^Rational[1, 2] + (6 (445 + 199 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 4] (-1 + 2 5^Rational[1, 2] - (15 - 6 5^Rational[1, 2])^Rational[1, 2])}, { Rational[ 1, 2] (Rational[79, 2] + Rational[35, 2] 5^Rational[1, 2] + (6 (445 + 199 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 4] (2 + 3 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2])}, { Rational[ 1, 2] (43 + Rational[37, 2] 5^Rational[1, 2] + Rational[1, 2] (3 (4745 + 2122 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 3 5^Rational[1, 2] + 2 (15 + 6 5^Rational[1, 2])^Rational[1, 2])}, { Rational[ 1, 4] (193 + 73 5^Rational[1, 2] + 19 (150 + 66 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (3 + 3 5^Rational[1, 2] + (30 - 6 5^Rational[1, 2])^ Rational[1, 2])}, {(Rational[47, 4] + 5 5^Rational[1, 2] + (3 (85 + 38 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[3, 4] 5^Rational[1, 2] + Rational[-1, 4] (3 (5 - 2 5^Rational[1, 2]))^Rational[1, 2]}, {( Rational[47, 4] + 5 5^Rational[1, 2] + (3 (85 + 38 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 4] (1 + 2 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2])}, { Rational[ 1, 4] (217 + 95 5^Rational[1, 2] + (75750 + 33870 5^Rational[1, 2])^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (-1 + 5 5^Rational[1, 2] - (6 (5 + 5^Rational[1, 2]))^ Rational[1, 2])}, { Rational[ 1, 4] (217 + 95 5^Rational[1, 2] + (75750 + 33870 5^Rational[1, 2])^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (3 + 5 5^Rational[1, 2] + (30 (5 + 5^Rational[1, 2]))^ Rational[1, 2])}, { Rational[ 1, 2] (55 + Rational[49, 2] 5^Rational[1, 2] + Rational[1, 2] (15 (1525 + 682 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 4] (1 + 3 5^Rational[1, 2] + 2 (15 + 6 5^Rational[1, 2])^Rational[1, 2])}, { Rational[ 1, 2] (55 + Rational[49, 2] 5^Rational[1, 2] + Rational[1, 2] (15 (1525 + 682 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 4] (5 + 3 5^Rational[1, 2] + 2 (15 + 6 5^Rational[1, 2])^Rational[1, 2])}, { Rational[ 1, 4] (233 + 97 5^Rational[1, 2] + (6 (16705 + 7459 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (1 + 5 5^Rational[1, 2] + (30 - 6 5^Rational[1, 2])^Rational[1, 2])}, { Rational[ 1, 4] (257 + 103 5^Rational[1, 2] + (6 (18545 + 8269 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (5 + 7 5^Rational[1, 2] + (30 (5 + 5^Rational[1, 2]))^ Rational[1, 2])}, {(Rational[145, 8] + Rational[61, 8] 5^Rational[1, 2] + (Rational[15, 2] (65 + 29 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 4] (-1 + 2 5^Rational[1, 2] - (15 - 6 5^Rational[1, 2])^ Rational[1, 2])}, {(Rational[145, 8] + Rational[61, 8] 5^Rational[1, 2] + (Rational[15, 2] (65 + 29 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 4] (2 + 3 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2])}, { Rational[ 1, 4] (287 + 127 5^Rational[1, 2] + (149070 + 66666 5^Rational[1, 2])^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (-3 + 5 5^Rational[1, 2] + (30 - 6 5^Rational[1, 2])^Rational[1, 2])}, { Rational[ 1, 4] (287 + 127 5^Rational[1, 2] + (149070 + 66666 5^Rational[1, 2])^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (5 + 5 5^Rational[1, 2] + (30 - 6 5^Rational[1, 2])^Rational[1, 2])}, { Rational[ 1, 2] (77 + Rational[61, 2] 5^Rational[1, 2] + Rational[5, 2] (1635 + 726 5^Rational[1, 2])^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 3 5^Rational[1, 2] + 2 (15 + 6 5^Rational[1, 2])^Rational[1, 2])}, { Rational[ 1, 4] (328 + 146 5^Rational[1, 2] + 6 (4575 + 2046 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (1 + 5^Rational[1, 2])}, {(Rational[85, 4] + Rational[37, 4] 5^Rational[1, 2] + Rational[ 1, 2] (Rational[6675, 2] + Rational[2985, 2] 5^Rational[1, 2])^ Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 2 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2])}, { Rational[ 1, 4] (377 + 151 5^Rational[1, 2] + (194550 + 86334 5^Rational[1, 2])^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (3 + 5 5^Rational[1, 2] + (30 (5 + 5^Rational[1, 2]))^ Rational[1, 2])}, { Rational[ 1, 4] (368 + 158 5^Rational[1, 2] + 30 (3 (85 + 38 5^Rational[1, 2]))^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2])}, { Rational[ 1, 4] (368 + 158 5^Rational[1, 2] + 30 (3 (85 + 38 5^Rational[1, 2]))^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (1 + 3 5^Rational[1, 2] + 2 (15 + 6 5^Rational[1, 2])^Rational[1, 2])}, { Rational[ 1, 4] (413 + 181 5^Rational[1, 2] + (6 (41465 + 18539 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (3 + 3 5^Rational[1, 2] + (30 - 6 5^Rational[1, 2])^Rational[1, 2])}, { Rational[ 1, 2] (103 + 46 5^Rational[1, 2] + 2 (4575 + 2046 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (1 + 2 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2])}, { Rational[ 1, 4] (427 + 181 5^Rational[1, 2] + (6 (53125 + 23729 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (1 + 7 5^Rational[1, 2] + (30 (5 + 5^Rational[1, 2]))^ Rational[1, 2])}}, {{0, 2.2007100527513543`}, { 0.37987356147471385`, 3.369840659110212}, {0.5877852522924731, 1.3916930583764067`}, {0.786610204550514, 4.283386116752814}, { 0.9945218953682734, 2.305238516019007}, {1.123018386952108, 2.7007100527513543`}, {1.3309300777698674`, 0.7225624520175483}, { 1.374395456842987, 5.09240311112776}, {1.7811320999187874`, 4.17885765348516}, {1.9890437907365468`, 2.2007100527513543`}, { 1.9890437907365468`, 3.2007100527513543`}, {2.196955481554306, 1.2225624520175482`}, {2.196955481554306, 4.17885765348516}, { 2.325451973138141, 0}, {2.5333636639559, 0.9781476007338057}, { 2.6036921246301064`, 5.09240311112776}, {2.9401003070317, 1.8916930583764067`}, {2.9401003070317, 3.509727047126302}, { 3.2765084894332945`, 0.30901699437494745`}, {3.527885559324173, 2.7007100527513543`}, {3.59821401999838, 4.987874647860107}, { 3.8061257108161386`, 4.009727047126302}, {3.9346222023999737`, 1.7871645951087531`}, {3.9346222023999737`, 3.6142555103939547`}, { 4.142533893217733, 0.8090169943749475}, {4.271030384801567, 2.0315794463924957`}, {4.549270536293533, 4.67885765348516}, { 4.929144097768247, 3.509727047126302}, {5.137055788586006, 1.5315794463924957`}, {5.137055788586006, 2.5315794463924957`}, { 5.543792431661807, 1.618033988749895}, {5.751704122479566, 4.423272504768902}, {5.8802006140634, 3.2007100527513543`}, { 6.158440765555366, 0.5534318456586902}, {6.158440765555366, 3.509727047126302}, {6.49484894795696, 5.09240311112776}, { 6.538314327030079, 1.7225624520175482`}, {6.746226017847839, 1.3624488400336376`}, {6.746226017847839, 2.7007100527513543`}, { 7.152962660923639, 0.44890338239103666`}, {7.152962660923639, 3.6142555103939547`}, {7.360874351741399, 4.59240311112776}, { 7.360874351741399, 5.59240311112776}, {7.489370843325234, 2.0315794463924957`}, {7.740747913216112, 4.423272504768902}, { 8.147484556291912, 0.5534318456586902}, {8.147484556291912, 3.509727047126302}, {8.355396247109672, 1.5315794463924957`}, { 8.355396247109672, 2.5315794463924957`}, {8.483892738693507, 5.09240311112776}, {8.762132890185473, 1.618033988749895}, { 9.098541072587066, 3.2007100527513543`}, {9.142006451660187, 3.6142555103939547`}, {9.349918142477947, 0.8090169943749475}, { 9.349918142477947, 4.59240311112776}, {9.756654785553746, 1.7225624520175482`}, {9.964566476371505, 2.7007100527513543`}, { 10.09306296795534, 3.923272504768902}}], PolygonBox[{{17, 20, 18, 11, 10}, {6, 10, 11}, {4, 2, 6, 11, 9}, {8, 4, 9}, {12, 17, 10}, {3, 7, 12, 10, 5}, {1, 3, 5}, {23, 20, 17}, { 19, 25, 23, 17, 15}, {14, 19, 15}, {24, 18, 20}, {30, 28, 24, 20, 26}, {29, 30, 26}, {13, 11, 18}, {21, 16, 13, 18, 22}, {27, 21, 22}, {41, 39, 44, 49, 47}, {52, 47, 49}, {56, 57, 52, 49, 51}, {54, 56, 51}, {45, 41, 47}, {55, 50, 45, 47, 53}, {58, 55, 53}, {35, 39, 41}, {36, 32, 35, 41, 42}, {43, 36, 42}, {37, 44, 39}, {30, 31, 37, 39, 33}, {28, 30, 33}, {48, 49, 44}, {40, 46, 48, 44, 38}, {34, 40, 38}}]]}, DisplayFunction->Identity, ImagePadding->{{0., 0.}, {0., 0.}}], {1013.1697895833638, -190.05}, ImageScaled[{0.5, 0.5}], {441.1907370370911, 362}, BaseStyle->{Graphics3DBoxOptions -> {SphericalRegion -> False}}]}, {}}, ImageSize->700, PlotRange->{{0, 1248.2800423148728`}, {-380.1, 0}}, PlotRangePadding->{6, 5}]], "Output", CellLabel->"Out[14]=",ExpressionUUID->"adbd83e7-2aca-47f3-a7df-44be56895404"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["Examples", "Section",ExpressionUUID->"e2f07934-c67d-45ce-8406-eb23efd1c1ab"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"FirstCase", "[", RowBox[{ RowBox[{"Import", "[", RowBox[{ "\"\\"", ",", "\"\\""}], "]"}], ",", RowBox[{ RowBox[{"{", RowBox[{"32", ",", "n_"}], "}"}], "\[RuleDelayed]", "n"}]}], "]"}]], "Input", CellLabel-> "In[247]:=",ExpressionUUID->"2ca5c698-3ca2-4af5-b0ca-ae849b5b51be"], Cell[BoxData[ RowBox[{"Missing", "[", "\<\"NotFound\"\>", "]"}]], "Output", CellLabel-> "Out[247]=",ExpressionUUID->"1be87942-a1aa-40c1-b8c1-061ce923429a"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"GraphData", "[", RowBox[{"\"\\"", ",", "32"}], "]"}]], "Input", CellLabel-> "In[248]:=",ExpressionUUID->"616493f9-e546-42a3-a6b0-3699f469f002"], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"\<\"Antiprism\"\>", ",", "16"}], "}"}], ",", "\<\"ChamferedCubicalGraph\"\>", ",", RowBox[{"{", RowBox[{"\<\"Fullerene\"\>", ",", RowBox[{"{", RowBox[{"32", ",", "1"}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{"\<\"Fullerene\"\>", ",", RowBox[{"{", RowBox[{"32", ",", "2"}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{"\<\"Fullerene\"\>", ",", RowBox[{"{", RowBox[{"32", ",", "3"}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{"\<\"Fullerene\"\>", ",", RowBox[{"{", RowBox[{"32", ",", "4"}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{"\<\"Fullerene\"\>", ",", RowBox[{"{", RowBox[{"32", ",", "5"}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{"\<\"Fullerene\"\>", ",", RowBox[{"{", RowBox[{"32", ",", "6"}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{"\<\"GeneralizedPetersen\"\>", ",", RowBox[{"{", RowBox[{"16", ",", "2"}], "}"}]}], "}"}], ",", "\<\"HexagonAugmentedTruncatedOctahedralGraph\"\>", ",", RowBox[{"{", RowBox[{"\<\"JohnsonSkeleton\"\>", ",", "67"}], "}"}], ",", "\<\"PentakisDodecahedralGraph\"\>", ",", RowBox[{"{", RowBox[{"\<\"Prism\"\>", ",", "16"}], "}"}], ",", RowBox[{"{", RowBox[{"\<\"Quartic\"\>", ",", RowBox[{"{", RowBox[{"32", ",", "1"}], "}"}]}], "}"}], ",", "\<\"RhombicTriacontahedralGraph\"\>", ",", RowBox[{"{", RowBox[{"\<\"StackedPrism\"\>", ",", RowBox[{"{", RowBox[{"8", ",", "4"}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{"\<\"Trapezohedron\"\>", ",", "15"}], "}"}], ",", "\<\"TriakisIcosahedralGraph\"\>"}], "}"}]], "Output", CellLabel-> "Out[248]=",ExpressionUUID->"b0b7b793-00bc-4eba-89cc-75bc3ac0d883"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Length", "[", "%", "]"}]], "Input", CellLabel-> "In[249]:=",ExpressionUUID->"02393ba3-c1d8-4fbd-8c2a-4e821c48bfd2"], Cell[BoxData["18"], "Output", CellLabel-> "Out[249]=",ExpressionUUID->"1ba6a67c-a7ce-4325-836b-2f522203365a"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"TextGrid", "[", RowBox[{ RowBox[{"Sort", "[", RowBox[{ RowBox[{ RowBox[{"PolyhedronData", "[", RowBox[{"#", ",", RowBox[{"{", RowBox[{ "\"\\"", ",", "\"\\"", ",", "\"\\"", ",", "\"\<#\>\""}], "}"}]}], "]"}], "&"}], "/@", RowBox[{"PolyhedronData", "[", RowBox[{"\"\\"", ",", "32"}], "]"}]}], "]"}], ",", RowBox[{"Dividers", "\[Rule]", "All"}], ",", RowBox[{"Alignment", "\[Rule]", RowBox[{"{", RowBox[{"{", RowBox[{ RowBox[{"{", "Decimal", "}"}], ",", "Left"}], "}"}], "}"}]}]}], "]"}]], "Input", CellLabel-> "In[250]:=",ExpressionUUID->"4c551eee-c0c1-4103-8e77-ab67f2179cf2"], Cell[BoxData[ TagBox[GridBox[{ {"32", "25", "55", Cell[ "GyroelongatedPentagonalCupola",ExpressionUUID-> "0d8fcc8b-e211-4be7-8e51-1386fa16b34c"]}, {"32", "25", "55", RowBox[{"{", RowBox[{"\<\"Antiprism\"\>", ",", RowBox[{"{", RowBox[{"5", ",", "2"}], "}"}]}], "}"}]}, {"32", "30", "60", Cell[ "ElongatedPentagonalGyrobicupola",ExpressionUUID-> "3eb7d330-3592-4bf5-9465-7722fd61a71d"]}, {"32", "30", "60", Cell[ "ElongatedPentagonalOrthobicupola",ExpressionUUID-> "cd1d8805-85d9-4653-9eec-d8bad0e5e802"]}, {"32", "30", "60", Cell[ "Icosidodecahedron",ExpressionUUID-> "75e3827a-42db-42a4-8d8c-d514114261cd"]}, {"32", "30", "60", Cell[ "PentagonalOrthobirotunda",ExpressionUUID-> "842a6840-e98b-43bf-8c15-fcfe3fa42bac"]}, {"32", "45", "75", Cell[ "TridiminishedRhombicosidodecahedron",ExpressionUUID-> "0a966aec-edb7-42fb-a25b-46247eded8f2"]}, {"32", "60", "90", Cell[ "TruncatedDodecahedron",ExpressionUUID-> "dc7ae44d-f147-49a2-9b0d-24617d97589c"]}, {"32", "60", "90", Cell[ "TruncatedIcosahedron",ExpressionUUID-> "d562dcc1-1711-40e4-8a0f-bc354276e1ac"]} }, AutoDelete->False, GridBoxAlignment->{"Columns" -> {{Decimal}, Left}}, GridBoxDividers->{"Columns" -> {{True}}, "Rows" -> {{True}}}, GridBoxItemSize->{"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "TextGrid"]], "Output", CellLabel-> "Out[250]=",ExpressionUUID->"822a807c-3fb7-4ade-a475-a2ee7d2c7732"] }, Open ]], Cell[BoxData[ RowBox[{"<<", "MathWorld`Polyhedra`"}]], "Input", CellLabel-> "In[242]:=",ExpressionUUID->"34c1f85c-421c-4ffb-bb84-b2bcfdb65f91"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"icosahedra", "=", RowBox[{"Union", "[", "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"PolyhedronData", "[", RowBox[{"#", ",", "\"\\""}], "]"}], ",", RowBox[{"Graphics3D", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"Opacity", "[", ".3", "]"}], ",", RowBox[{"PolyhedronData", "[", RowBox[{"#", ",", "\"\\""}], "]"}]}], "}"}], ",", RowBox[{"Boxed", "\[Rule]", "False"}]}], "]"}]}], "}"}], "&"}], "/@", RowBox[{"PolyhedronData", "[", RowBox[{"\"\\"", ",", "32"}], "]"}]}], ",", "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"{", RowBox[{"#", ",", RowBox[{"Graphics3D", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"Opacity", "[", ".3", "]"}], ",", "#2"}], "}"}], ",", RowBox[{"Boxed", "\[Rule]", "False"}]}], "]"}]}], "}"}], "&"}], "@@@", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"\"\\"", ",", RowBox[{"Dipyramid", "[", RowBox[{"16", ",", "3", ",", "1"}], "]"}]}], "}"}], ",", RowBox[{"{", RowBox[{"\"\\"", ",", RowBox[{"RegularRightPyramid", "[", RowBox[{"31", ",", "0", ",", "3", ",", "1"}], "]"}]}], "}"}], ",", RowBox[{"{", RowBox[{"\"\\"", ",", RowBox[{"RegularRightPrism", "[", "16", "]"}]}], "}"}]}], "}"}]}]}], "]"}]}]], "Input", CellLabel-> "In[253]:=",ExpressionUUID->"3c480a21-1f16-44a5-bbe0-952f246055a8"], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"\<\"(5,2)\[Hyphen]polygrammic antiprism\"\>", ",", Graphics3DBox[ {Opacity[0.3], PolyhedronBox[ NCache[{{(1 + 2 5^Rational[-1, 2])^Rational[1, 2], 0, Rational[-1, 2] (2 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (2 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), Rational[-1, 2] (2 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (10 + 22 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), Rational[-1, 2] (2 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (10 + 22 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), Rational[-1, 2] (2 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (2 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), Rational[-1, 2] (2 + 5^Rational[1, 2])^Rational[1, 2]}, {(1 + 2 5^Rational[-1, 2])^Rational[1, 2], 0, Rational[1, 2] (2 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (2 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), Rational[1, 2] (2 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (10 + 22 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), Rational[1, 2] (2 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (10 + 22 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), Rational[1, 2] (2 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (2 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), Rational[1, 2] (2 + 5^Rational[1, 2])^Rational[1, 2]}, { Root[1 - 5 #^2 + 5 #^4& , 2, 0], 0, Rational[-1, 2] (2 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], Rational[-1, 2] (2 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (1 - 5^Rational[1, 2]), Rational[-1, 2] (2 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (-1 + 5^Rational[1, 2]), Rational[-1, 2] (2 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], Rational[-1, 2] (2 + 5^Rational[1, 2])^Rational[1, 2]}, { Root[1 - 5 #^2 + 5 #^4& , 2, 0], 0, Rational[1, 2] (2 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], Rational[1, 2] (2 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (1 - 5^Rational[1, 2]), Rational[1, 2] (2 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (-1 + 5^Rational[1, 2]), Rational[1, 2] (2 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], Rational[1, 2] (2 + 5^Rational[1, 2])^Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], 0, 0}, { Rational[-1, 4] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-2 - 5^Rational[1, 2]), 0}, {(Rational[13, 32] + Rational[29, 32] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 8] (-3 - 5^Rational[1, 2]), 0}, {(Rational[13, 32] + Rational[29, 32] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 8] (3 + 5^Rational[1, 2]), 0}, { Rational[-1, 4] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (2 + 5^Rational[1, 2]), 0}}, {{ 1.3763819204711736`, 0, -1.0290855136357462`}, { 0.42532540417601994`, 1.3090169943749475`, -1.0290855136357462`}, {-1.1135163644116066`, 0.8090169943749475, -1.0290855136357462`}, {-1.1135163644116066`, \ -0.8090169943749475, -1.0290855136357462`}, { 0.42532540417601994`, -1.3090169943749475`, -1.0290855136357462`}, { 1.3763819204711736`, 0, 1.0290855136357462`}, {0.42532540417601994`, 1.3090169943749475`, 1.0290855136357462`}, {-1.1135163644116066`, 0.8090169943749475, 1.0290855136357462`}, {-1.1135163644116066`, -0.8090169943749475, 1.0290855136357462`}, {0.42532540417601994`, -1.3090169943749475`, 1.0290855136357462`}, {-0.5257311121191336, 0, -1.0290855136357462`}, {-0.16245984811645317`, -0.5, \ -1.0290855136357462`}, { 0.42532540417602, -0.30901699437494745`, -1.0290855136357462`}, { 0.42532540417602, 0.30901699437494745`, -1.0290855136357462`}, {-0.16245984811645317`, 0.5, -1.0290855136357462`}, {-0.5257311121191336, 0, 1.0290855136357462`}, {-0.16245984811645317`, -0.5, 1.0290855136357462`}, {0.42532540417602, -0.30901699437494745`, 1.0290855136357462`}, {0.42532540417602, 0.30901699437494745`, 1.0290855136357462`}, {-0.16245984811645317`, 0.5, 1.0290855136357462`}, {-1.1135163644116066`, 0, 0}, {-0.3440954801177934, -1.0590169943749475`, 0}, { 0.9008536623235968, -0.6545084971874737, 0}, { 0.9008536623235968, 0.6545084971874737, 0}, {-0.3440954801177934, 1.0590169943749475`, 0}}], {{1, 24, 23}, {2, 24, 14}, {3, 21, 25}, {4, 22, 21}, {10, 22, 23}, {11, 4, 21}, {11, 21, 3}, {12, 5, 22}, {12, 22, 4}, {13, 1, 23}, {14, 24, 1}, {15, 3, 25}, {15, 25, 2}, {17, 9, 22}, {21, 8, 25}, {21, 9, 16}, {21, 16, 8}, {21, 22, 9}, {22, 10, 17}, {23, 5, 13}, {23, 6, 18}, {23, 18, 10}, {23, 22, 5}, {24, 6, 23}, {24, 7, 19}, {24, 19, 6}, {25, 7, 24}, {25, 8, 20}, {25, 20, 7}, {25, 24, 2}, {6, 19, 7, 20, 8, 16, 9, 17, 10, 18}, {13, 5, 12, 4, 11, 3, 15, 2, 14, 1}}]}, Boxed->False]}], "}"}], ",", RowBox[{"{", RowBox[{"\<\"elongated pentagonal gyrobicupola\"\>", ",", Graphics3DBox[ {Opacity[0.3], PolyhedronBox[ NCache[{{ 0, Rational[1, 2] (-1 - 5^Rational[1, 2]), Rational[-1, 2]}, { 0, Rational[1, 2] (-1 - 5^Rational[1, 2]), Rational[1, 2]}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), Rational[-1, 2]}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), Rational[ 1, 2]}, {-(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], Rational[-1, 2], Rational[1, 10] ( 5 + (10 (5 - 5^Rational[1, 2]))^Rational[1, 2])}, {-( Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 2], Rational[1, 10] ( 5 + (10 (5 - 5^Rational[1, 2]))^Rational[1, 2])}, {( Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], Rational[1, 10] (-5 - (10 (5 - 5^Rational[1, 2]))^ Rational[1, 2])}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 2], Rational[1, 10] (-5 - (10 (5 - 5^Rational[1, 2]))^ Rational[1, 2])}, {-(Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], 0, Rational[1, 10] (-5 - (10 (5 - 5^Rational[1, 2]))^ Rational[1, 2])}, {(Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], 0, Rational[1, 10] ( 5 + (10 (5 - 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), Rational[1, 10] (-5 - (10 (5 - 5^Rational[1, 2]))^ Rational[1, 2])}, { Rational[-1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), Rational[1, 10] (-5 - (10 (5 - 5^Rational[1, 2]))^ Rational[1, 2])}, { Rational[1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), Rational[1, 10] ( 5 + (10 (5 - 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), Rational[1, 10] ( 5 + (10 (5 - 5^Rational[1, 2]))^Rational[1, 2])}, {-( Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), Rational[-1, 2]}, {-(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), Rational[ 1, 2]}, {-(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), Rational[-1, 2]}, {-(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), Rational[ 1, 2]}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), Rational[-1, 2]}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), Rational[ 1, 2]}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), Rational[-1, 2]}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), Rational[ 1, 2]}, {-(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 2], Rational[-1, 2]}, {-(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 2], Rational[ 1, 2]}, {-(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 2], Rational[-1, 2]}, {-(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 2], Rational[ 1, 2]}, {(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 2], Rational[-1, 2]}, {(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], Rational[ 1, 2]}, {(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 2], Rational[-1, 2]}, {(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2], Rational[1, 2]}}, {{0, -1.618033988749895, -0.5}, { 0, -1.618033988749895, 0.5}, {0, 1.618033988749895, -0.5}, { 0, 1.618033988749895, 0.5}, {-0.6881909602355868, -0.5, 1.0257311121191337`}, {-0.6881909602355868, 0.5, 1.0257311121191337`}, { 0.6881909602355868, -0.5, -1.0257311121191337`}, { 0.6881909602355868, 0.5, -1.0257311121191337`}, {-0.8506508083520399, 0, -1.0257311121191337`}, { 0.8506508083520399, 0, 1.0257311121191337`}, {-0.2628655560595668, -0.8090169943749475, \ -1.0257311121191337`}, {-0.2628655560595668, 0.8090169943749475, -1.0257311121191337`}, { 0.2628655560595668, -0.8090169943749475, 1.0257311121191337`}, { 0.2628655560595668, 0.8090169943749475, 1.0257311121191337`}, {-0.9510565162951535, -1.3090169943749475`, \ -0.5}, {-0.9510565162951535, -1.3090169943749475`, 0.5}, {-0.9510565162951535, 1.3090169943749475`, -0.5}, {-0.9510565162951535, 1.3090169943749475`, 0.5}, { 0.9510565162951535, -1.3090169943749475`, -0.5}, { 0.9510565162951535, -1.3090169943749475`, 0.5}, {0.9510565162951535, 1.3090169943749475`, -0.5}, {0.9510565162951535, 1.3090169943749475`, 0.5}, {-1.5388417685876268`, -0.5, -0.5}, {-1.5388417685876268`, \ -0.5, 0.5}, {-1.5388417685876268`, 0.5, -0.5}, {-1.5388417685876268`, 0.5, 0.5}, {1.5388417685876268`, -0.5, -0.5}, {1.5388417685876268`, -0.5, 0.5}, {1.5388417685876268`, 0.5, -0.5}, {1.5388417685876268`, 0.5, 0.5}}], {{14, 6, 5, 13, 10}, {6, 14, 4, 18}, {5, 6, 26, 24}, {13, 5, 16, 2}, {10, 13, 20, 28}, {14, 10, 30, 22}, {22, 4, 14}, {18, 26, 6}, {24, 16, 5}, {2, 20, 13}, {28, 30, 10}, {7, 11, 9, 12, 8}, {3, 21, 8, 12}, {25, 17, 12, 9}, {15, 23, 9, 11}, {19, 1, 11, 7}, {29, 27, 7, 8}, {8, 21, 29}, {12, 17, 3}, {9, 23, 25}, {11, 1, 15}, {7, 27, 19}, {21, 3, 4, 22}, {3, 17, 18, 4}, {17, 25, 26, 18}, {25, 23, 24, 26}, {23, 15, 16, 24}, {15, 1, 2, 16}, {1, 19, 20, 2}, {19, 27, 28, 20}, {27, 29, 30, 28}, {29, 21, 22, 30}}]}, Boxed->False]}], "}"}], ",", RowBox[{"{", RowBox[{"\<\"elongated pentagonal orthobicupola\"\>", ",", Graphics3DBox[ {Opacity[0.3], PolyhedronBox[ NCache[{{ 0, Rational[1, 2] (-1 - 5^Rational[1, 2]), Rational[-1, 2]}, { 0, Rational[1, 2] (-1 - 5^Rational[1, 2]), Rational[1, 2]}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), Rational[-1, 2]}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), Rational[ 1, 2]}, {(Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], 0, Rational[1, 10] (-5 - (10 (5 - 5^Rational[1, 2]))^ Rational[1, 2])}, {(Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], 0, Rational[1, 10] ( 5 + (10 (5 - 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), Rational[1, 10] (-5 - (10 (5 - 5^Rational[1, 2]))^ Rational[1, 2])}, { Rational[1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), Rational[1, 10] ( 5 + (10 (5 - 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), Rational[1, 10] (-5 - (10 (5 - 5^Rational[1, 2]))^ Rational[1, 2])}, { Rational[1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), Rational[1, 10] ( 5 + (10 (5 - 5^Rational[1, 2]))^Rational[1, 2])}, {-( Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), Rational[-1, 2]}, {-(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), Rational[ 1, 2]}, {-(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), Rational[-1, 2]}, {-(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), Rational[ 1, 2]}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), Rational[-1, 2]}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), Rational[ 1, 2]}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), Rational[-1, 2]}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), Rational[ 1, 2]}, {-(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], Rational[-1, 2], Rational[1, 10] (-5 - (10 (5 - 5^Rational[1, 2]))^ Rational[1, 2])}, {-(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], Rational[1, 10] ( 5 + (10 (5 - 5^Rational[1, 2]))^Rational[1, 2])}, {-( Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 2], Rational[1, 10] (-5 - (10 (5 - 5^Rational[1, 2]))^ Rational[1, 2])}, {-(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 2], Rational[1, 10] ( 5 + (10 (5 - 5^Rational[1, 2]))^Rational[1, 2])}, {-( Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], Rational[-1, 2]}, {-(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 2], Rational[ 1, 2]}, {-(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 2], Rational[-1, 2]}, {-(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 2], Rational[ 1, 2]}, {(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 2], Rational[-1, 2]}, {(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], Rational[ 1, 2]}, {(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 2], Rational[-1, 2]}, {(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2], Rational[1, 2]}}, {{0, -1.618033988749895, -0.5}, { 0, -1.618033988749895, 0.5}, {0, 1.618033988749895, -0.5}, { 0, 1.618033988749895, 0.5}, { 0.8506508083520399, 0, -1.0257311121191337`}, { 0.8506508083520399, 0, 1.0257311121191337`}, { 0.2628655560595668, -0.8090169943749475, -1.0257311121191337`}, { 0.2628655560595668, -0.8090169943749475, 1.0257311121191337`}, { 0.2628655560595668, 0.8090169943749475, -1.0257311121191337`}, { 0.2628655560595668, 0.8090169943749475, 1.0257311121191337`}, {-0.9510565162951535, -1.3090169943749475`, \ -0.5}, {-0.9510565162951535, -1.3090169943749475`, 0.5}, {-0.9510565162951535, 1.3090169943749475`, -0.5}, {-0.9510565162951535, 1.3090169943749475`, 0.5}, { 0.9510565162951535, -1.3090169943749475`, -0.5}, { 0.9510565162951535, -1.3090169943749475`, 0.5}, {0.9510565162951535, 1.3090169943749475`, -0.5}, {0.9510565162951535, 1.3090169943749475`, 0.5}, {-0.6881909602355868, -0.5, -1.0257311121191337`}, \ {-0.6881909602355868, -0.5, 1.0257311121191337`}, {-0.6881909602355868, 0.5, -1.0257311121191337`}, {-0.6881909602355868, 0.5, 1.0257311121191337`}, {-1.5388417685876268`, -0.5, -0.5}, \ {-1.5388417685876268`, -0.5, 0.5}, {-1.5388417685876268`, 0.5, -0.5}, {-1.5388417685876268`, 0.5, 0.5}, { 1.5388417685876268`, -0.5, -0.5}, {1.5388417685876268`, -0.5, 0.5}, {1.5388417685876268`, 0.5, -0.5}, {1.5388417685876268`, 0.5, 0.5}}], {{22, 10, 4, 14}, {20, 22, 26, 24}, {8, 20, 12, 2}, {6, 8, 16, 28}, {10, 6, 30, 18}, {18, 4, 10}, {14, 26, 22}, {24, 12, 20}, { 2, 16, 8}, {28, 30, 6}, {10, 22, 20, 8, 6}, {13, 3, 9, 21}, {23, 25, 21, 19}, {1, 11, 19, 7}, {27, 15, 7, 5}, {17, 29, 5, 9}, {9, 3, 17}, {21, 25, 13}, {19, 11, 23}, {7, 15, 1}, {5, 29, 27}, {5, 7, 19, 21, 9}, {17, 3, 4, 18}, {3, 13, 14, 4}, {13, 25, 26, 14}, {25, 23, 24, 26}, {23, 11, 12, 24}, {11, 1, 2, 12}, {1, 15, 16, 2}, {15, 27, 28, 16}, {27, 29, 30, 28}, {29, 17, 18, 30}}]}, Boxed->False]}], "}"}], ",", RowBox[{"{", RowBox[{"\<\"gyroelongated pentagonal cupola\"\>", ",", Graphics3DBox[ {Opacity[0.3], PolyhedronBox[ NCache[{{0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), 0}, { Rational[1, 2] (-1 - 5^Rational[1, 2]), 0, Root[ 1 + 2 #^2 - 11 #^4 + 8 #^6 + #^8& , 1, 0]}, { Root[1 - 5 #^2 + 5 #^4& , 4, 0], 0, Root[ 1 - 5 #^2 + 5 #^4& , 3, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 3, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 3, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 3, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 3, 0]}, { Rational[1, 2] (1 + 5^Rational[1, 2]), 0, Root[ 1 + 2 #^2 - 11 #^4 + 8 #^6 + #^8& , 1, 0]}, { Root[5 - 20 #^2 + 16 #^4& , 1, 0], Rational[1, 4] (-3 - 5^Rational[1, 2]), 0}, { Root[5 - 20 #^2 + 16 #^4& , 1, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, { Root[5 - 20 #^2 + 16 #^4& , 4, 0], Rational[1, 4] (-3 - 5^Rational[1, 2]), 0}, { Root[5 - 20 #^2 + 16 #^4& , 4, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, { Root[1 - 40 #^2 + 80 #^4& , 1, 0], Rational[-1, 2], Root[ 1 - 5 #^2 + 5 #^4& , 3, 0]}, { Root[1 - 40 #^2 + 80 #^4& , 1, 0], Rational[1, 2], Root[ 1 - 5 #^2 + 5 #^4& , 3, 0]}, { Rational[-1, 2], Root[5 - 40 #^2 + 16 #^4& , 1, 0], Root[ 1 + 2 #^2 - 11 #^4 + 8 #^6 + #^8& , 1, 0]}, { Rational[-1, 2], Root[5 - 40 #^2 + 16 #^4& , 4, 0], Root[ 1 + 2 #^2 - 11 #^4 + 8 #^6 + #^8& , 1, 0]}, { Rational[1, 2], Root[5 - 40 #^2 + 16 #^4& , 1, 0], Root[ 1 + 2 #^2 - 11 #^4 + 8 #^6 + #^8& , 1, 0]}, { Rational[1, 2], Root[5 - 40 #^2 + 16 #^4& , 4, 0], Root[ 1 + 2 #^2 - 11 #^4 + 8 #^6 + #^8& , 1, 0]}, { Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[ 5 - 20 #^2 + 16 #^4& , 1, 0], Root[ 1 + 2 #^2 - 11 #^4 + 8 #^6 + #^8& , 1, 0]}, { Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[ 5 - 20 #^2 + 16 #^4& , 4, 0], Root[ 1 + 2 #^2 - 11 #^4 + 8 #^6 + #^8& , 1, 0]}, { Rational[1, 4] (3 + 5^Rational[1, 2]), Root[ 5 - 20 #^2 + 16 #^4& , 1, 0], Root[ 1 + 2 #^2 - 11 #^4 + 8 #^6 + #^8& , 1, 0]}, { Rational[1, 4] (3 + 5^Rational[1, 2]), Root[ 5 - 20 #^2 + 16 #^4& , 4, 0], Root[ 1 + 2 #^2 - 11 #^4 + 8 #^6 + #^8& , 1, 0]}, { Root[5 - 40 #^2 + 16 #^4& , 1, 0], Rational[-1, 2], 0}, { Root[5 - 40 #^2 + 16 #^4& , 1, 0], Rational[1, 2], 0}, { Root[5 - 40 #^2 + 16 #^4& , 4, 0], Rational[-1, 2], 0}, { Root[5 - 40 #^2 + 16 #^4& , 4, 0], Rational[1, 2], 0}}, {{ 0, -1.618033988749895, 0}, { 0, 1.618033988749895, 0}, {-1.618033988749895, 0, -0.8623970038594589}, { 0.8506508083520399, 0, 0.5257311121191336}, { 0.2628655560595668, -0.8090169943749475, 0.5257311121191336}, { 0.2628655560595668, 0.8090169943749475, 0.5257311121191336}, { 1.618033988749895, 0, -0.8623970038594589}, {-0.9510565162951535, \ -1.3090169943749475`, 0}, {-0.9510565162951535, 1.3090169943749475`, 0}, { 0.9510565162951535, -1.3090169943749475`, 0}, { 0.9510565162951535, 1.3090169943749475`, 0}, {-0.6881909602355868, -0.5, 0.5257311121191336}, {-0.6881909602355868, 0.5, 0.5257311121191336}, {-0.5, -1.5388417685876266`, \ -0.8623970038594589}, {-0.5, 1.5388417685876268`, -0.8623970038594589}, { 0.5, -1.5388417685876266`, -0.8623970038594589}, {0.5, 1.5388417685876268`, -0.8623970038594589}, {-1.3090169943749475`, \ -0.9510565162951535, -0.8623970038594589}, {-1.3090169943749475`, 0.9510565162951535, -0.8623970038594589}, { 1.3090169943749475`, -0.9510565162951535, -0.8623970038594589}, { 1.3090169943749475`, 0.9510565162951535, -0.8623970038594589}, {-1.5388417685876266`, \ -0.5, 0}, {-1.5388417685876266`, 0.5, 0}, {1.5388417685876268`, -0.5, 0}, { 1.5388417685876268`, 0.5, 0}}], {{19, 15, 17, 21, 7, 20, 16, 14, 18, 3}, {3, 18, 22}, {18, 14, 8}, {14, 16, 1}, {16, 20, 10}, {20, 7, 24}, {7, 21, 25}, {21, 17, 11}, {17, 15, 2}, {15, 19, 9}, {19, 3, 23}, {18, 8, 22}, {14, 1, 8}, {16, 10, 1}, {20, 24, 10}, {7, 25, 24}, {21, 11, 25}, {17, 2, 11}, {15, 9, 2}, {19, 23, 9}, {3, 22, 23}, {6, 13, 12, 5, 4}, {13, 6, 2, 9}, {12, 13, 23, 22}, {5, 12, 8, 1}, {4, 5, 10, 24}, {6, 4, 25, 11}, {11, 2, 6}, {9, 23, 13}, {22, 8, 12}, {1, 10, 5}, {24, 25, 4}}]}, Boxed->False]}], "}"}], ",", RowBox[{"{", RowBox[{"\<\"hexakaidecagonal dipyramid\"\>", ",", Graphics3DBox[ {Opacity[0.3], PolyhedronBox[ NCache[{{Sin[Rational[1, 16] Pi], -Cos[Rational[1, 16] Pi], 0}, { Sin[Rational[3, 16] Pi], -Cos[Rational[3, 16] Pi], 0}, { Cos[Rational[3, 16] Pi], -Sin[Rational[3, 16] Pi], 0}, { Cos[Rational[1, 16] Pi], -Sin[Rational[1, 16] Pi], 0}, { Cos[Rational[1, 16] Pi], Sin[Rational[1, 16] Pi], 0}, { Cos[Rational[3, 16] Pi], Sin[Rational[3, 16] Pi], 0}, { Sin[Rational[3, 16] Pi], Cos[Rational[3, 16] Pi], 0}, { Sin[Rational[1, 16] Pi], Cos[Rational[1, 16] Pi], 0}, {- Sin[Rational[1, 16] Pi], Cos[Rational[1, 16] Pi], 0}, {- Sin[Rational[3, 16] Pi], Cos[Rational[3, 16] Pi], 0}, {- Cos[Rational[3, 16] Pi], Sin[Rational[3, 16] Pi], 0}, {- Cos[Rational[1, 16] Pi], Sin[Rational[1, 16] Pi], 0}, {- Cos[Rational[1, 16] Pi], -Sin[Rational[1, 16] Pi], 0}, {- Cos[Rational[3, 16] Pi], -Sin[Rational[3, 16] Pi], 0}, {- Sin[Rational[3, 16] Pi], -Cos[Rational[3, 16] Pi], 0}, {- Sin[Rational[1, 16] Pi], -Cos[Rational[1, 16] Pi], 0}, {0, 0, -3}, {0, 0, 3}}, {{ 0.19509032201612825`, -0.9807852804032304, 0}, { 0.5555702330196022, -0.8314696123025452, 0}, { 0.8314696123025452, -0.5555702330196022, 0}, { 0.9807852804032304, -0.19509032201612825`, 0}, { 0.9807852804032304, 0.19509032201612825`, 0}, { 0.8314696123025452, 0.5555702330196022, 0}, { 0.5555702330196022, 0.8314696123025452, 0}, { 0.19509032201612825`, 0.9807852804032304, 0}, {-0.19509032201612825`, 0.9807852804032304, 0}, {-0.5555702330196022, 0.8314696123025452, 0}, {-0.8314696123025452, 0.5555702330196022, 0}, {-0.9807852804032304, 0.19509032201612825`, 0}, {-0.9807852804032304, -0.19509032201612825`, 0}, {-0.8314696123025452, -0.5555702330196022, 0}, {-0.5555702330196022, -0.8314696123025452, 0}, {-0.19509032201612825`, -0.9807852804032304, 0}, {0, 0, -3}, { 0, 0, 3}}], {{11, 17, 12}, {11, 10, 17}, {18, 11, 12}, {10, 11, 18}, {17, 9, 8}, {10, 9, 17}, {9, 18, 8}, {9, 10, 18}, {17, 5, 4}, {6, 5, 17}, {5, 18, 4}, {5, 6, 18}, {7, 17, 8}, {7, 6, 17}, {18, 7, 8}, { 6, 7, 18}, {18, 3, 4}, {2, 3, 18}, {3, 17, 4}, {3, 2, 17}, {16, 1, 18}, {1, 2, 18}, {1, 16, 17}, {2, 1, 17}, {13, 18, 12}, {13, 14, 18}, {17, 13, 12}, {14, 13, 17}, {15, 16, 18}, {14, 15, 18}, {16, 15, 17}, {15, 14, 17}}]}, Boxed->False]}], "}"}], ",", RowBox[{"{", RowBox[{"\<\"hexakaidecagonal prism\"\>", ",", Graphics3DBox[ {Opacity[0.3], PolyhedronBox[ NCache[{{ Rational[1, 2] Csc[Rational[1, 16] Pi], 0, Rational[ 1, 2]}, {(Rational[1, 2] Cos[Rational[1, 8] Pi]) Csc[Rational[1, 16] Pi], (Rational[1, 2] Csc[Rational[1, 16] Pi]) Sin[Rational[1, 8] Pi], Rational[ 1, 2]}, {(Rational[1, 2] 2^Rational[-1, 2]) Csc[Rational[1, 16] Pi], (Rational[1, 2] 2^Rational[-1, 2]) Csc[Rational[1, 16] Pi], Rational[ 1, 2]}, {(Rational[1, 2] Csc[Rational[1, 16] Pi]) Sin[Rational[1, 8] Pi], (Rational[1, 2] Cos[Rational[1, 8] Pi]) Csc[Rational[1, 16] Pi], Rational[1, 2]}, { 0, Rational[1, 2] Csc[Rational[1, 16] Pi], Rational[ 1, 2]}, {(Rational[-1, 2] Csc[Rational[1, 16] Pi]) Sin[Rational[1, 8] Pi], (Rational[1, 2] Cos[Rational[1, 8] Pi]) Csc[Rational[1, 16] Pi], Rational[ 1, 2]}, {(Rational[-1, 2] 2^Rational[-1, 2]) Csc[Rational[1, 16] Pi], (Rational[1, 2] 2^Rational[-1, 2]) Csc[Rational[1, 16] Pi], Rational[ 1, 2]}, {(Rational[-1, 2] Cos[Rational[1, 8] Pi]) Csc[Rational[1, 16] Pi], (Rational[1, 2] Csc[Rational[1, 16] Pi]) Sin[Rational[1, 8] Pi], Rational[1, 2]}, { Rational[-1, 2] Csc[Rational[1, 16] Pi], 0, Rational[ 1, 2]}, {(Rational[-1, 2] Cos[Rational[1, 8] Pi]) Csc[Rational[1, 16] Pi], (Rational[-1, 2] Csc[Rational[1, 16] Pi]) Sin[Rational[1, 8] Pi], Rational[ 1, 2]}, {(Rational[-1, 2] 2^Rational[-1, 2]) Csc[Rational[1, 16] Pi], (Rational[-1, 2] 2^Rational[-1, 2]) Csc[Rational[1, 16] Pi], Rational[ 1, 2]}, {(Rational[-1, 2] Csc[Rational[1, 16] Pi]) Sin[Rational[1, 8] Pi], (Rational[-1, 2] Cos[Rational[1, 8] Pi]) Csc[Rational[1, 16] Pi], Rational[1, 2]}, { 0, Rational[-1, 2] Csc[Rational[1, 16] Pi], Rational[ 1, 2]}, {(Rational[1, 2] Csc[Rational[1, 16] Pi]) Sin[Rational[1, 8] Pi], (Rational[-1, 2] Cos[Rational[1, 8] Pi]) Csc[Rational[1, 16] Pi], Rational[ 1, 2]}, {(Rational[1, 2] 2^Rational[-1, 2]) Csc[Rational[1, 16] Pi], (Rational[-1, 2] 2^Rational[-1, 2]) Csc[Rational[1, 16] Pi], Rational[ 1, 2]}, {(Rational[1, 2] Cos[Rational[1, 8] Pi]) Csc[Rational[1, 16] Pi], (Rational[-1, 2] Csc[Rational[1, 16] Pi]) Sin[Rational[1, 8] Pi], Rational[1, 2]}, { Rational[1, 2] Csc[Rational[1, 16] Pi], 0, Rational[-1, 2]}, {(Rational[1, 2] Cos[Rational[1, 8] Pi]) Csc[Rational[1, 16] Pi], (Rational[1, 2] Csc[Rational[1, 16] Pi]) Sin[Rational[1, 8] Pi], Rational[-1, 2]}, {(Rational[1, 2] 2^Rational[-1, 2]) Csc[Rational[1, 16] Pi], (Rational[1, 2] 2^Rational[-1, 2]) Csc[Rational[1, 16] Pi], Rational[-1, 2]}, {(Rational[1, 2] Csc[Rational[1, 16] Pi]) Sin[Rational[1, 8] Pi], (Rational[1, 2] Cos[Rational[1, 8] Pi]) Csc[Rational[1, 16] Pi], Rational[-1, 2]}, { 0, Rational[1, 2] Csc[Rational[1, 16] Pi], Rational[-1, 2]}, {(Rational[-1, 2] Csc[Rational[1, 16] Pi]) Sin[Rational[1, 8] Pi], (Rational[1, 2] Cos[Rational[1, 8] Pi]) Csc[Rational[1, 16] Pi], Rational[-1, 2]}, {(Rational[-1, 2] 2^Rational[-1, 2]) Csc[Rational[1, 16] Pi], (Rational[1, 2] 2^Rational[-1, 2]) Csc[Rational[1, 16] Pi], Rational[-1, 2]}, {(Rational[-1, 2] Cos[Rational[1, 8] Pi]) Csc[Rational[1, 16] Pi], (Rational[1, 2] Csc[Rational[1, 16] Pi]) Sin[Rational[1, 8] Pi], Rational[-1, 2]}, { Rational[-1, 2] Csc[Rational[1, 16] Pi], 0, Rational[-1, 2]}, {(Rational[-1, 2] Cos[Rational[1, 8] Pi]) Csc[Rational[1, 16] Pi], (Rational[-1, 2] Csc[Rational[1, 16] Pi]) Sin[Rational[1, 8] Pi], Rational[-1, 2]}, {(Rational[-1, 2] 2^Rational[-1, 2]) Csc[Rational[1, 16] Pi], (Rational[-1, 2] 2^Rational[-1, 2]) Csc[Rational[1, 16] Pi], Rational[-1, 2]}, {(Rational[-1, 2] Csc[Rational[1, 16] Pi]) Sin[Rational[1, 8] Pi], (Rational[-1, 2] Cos[Rational[1, 8] Pi]) Csc[Rational[1, 16] Pi], Rational[-1, 2]}, { 0, Rational[-1, 2] Csc[Rational[1, 16] Pi], Rational[-1, 2]}, {(Rational[1, 2] Csc[Rational[1, 16] Pi]) Sin[Rational[1, 8] Pi], (Rational[-1, 2] Cos[Rational[1, 8] Pi]) Csc[Rational[1, 16] Pi], Rational[-1, 2]}, {(Rational[1, 2] 2^Rational[-1, 2]) Csc[Rational[1, 16] Pi], (Rational[-1, 2] 2^Rational[-1, 2]) Csc[Rational[1, 16] Pi], Rational[-1, 2]}, {(Rational[1, 2] Cos[Rational[1, 8] Pi]) Csc[Rational[1, 16] Pi], (Rational[-1, 2] Csc[Rational[1, 16] Pi]) Sin[Rational[1, 8] Pi], Rational[-1, 2]}}, {{ 2.5629154477415064`, 0, 0.5}, {2.367825125725378, 0.9807852804032305, 0.5}, {1.8122548927057756`, 1.8122548927057756`, 0.5}, {0.9807852804032305, 2.367825125725378, 0.5}, { 0, 2.5629154477415064`, 0.5}, {-0.9807852804032305, 2.367825125725378, 0.5}, {-1.8122548927057756`, 1.8122548927057756`, 0.5}, {-2.367825125725378, 0.9807852804032305, 0.5}, {-2.5629154477415064`, 0, 0.5}, {-2.367825125725378, -0.9807852804032305, 0.5}, {-1.8122548927057756`, -1.8122548927057756`, 0.5}, {-0.9807852804032305, -2.367825125725378, 0.5}, { 0, -2.5629154477415064`, 0.5}, { 0.9807852804032305, -2.367825125725378, 0.5}, { 1.8122548927057756`, -1.8122548927057756`, 0.5}, { 2.367825125725378, -0.9807852804032305, 0.5}, { 2.5629154477415064`, 0, -0.5}, {2.367825125725378, 0.9807852804032305, -0.5}, {1.8122548927057756`, 1.8122548927057756`, -0.5}, {0.9807852804032305, 2.367825125725378, -0.5}, { 0, 2.5629154477415064`, -0.5}, {-0.9807852804032305, 2.367825125725378, -0.5}, {-1.8122548927057756`, 1.8122548927057756`, -0.5}, {-2.367825125725378, 0.9807852804032305, -0.5}, {-2.5629154477415064`, 0, -0.5}, {-2.367825125725378, -0.9807852804032305, -0.5}, \ {-1.8122548927057756`, -1.8122548927057756`, -0.5}, {-0.9807852804032305, \ -2.367825125725378, -0.5}, {0, -2.5629154477415064`, -0.5}, { 0.9807852804032305, -2.367825125725378, -0.5}, { 1.8122548927057756`, -1.8122548927057756`, -0.5}, { 2.367825125725378, -0.9807852804032305, -0.5}}], {{15, 14, 30, 31}, {12, 11, 27, 28}, {11, 10, 26, 27}, {10, 9, 25, 26}, {9, 10, 11, 12, 13, 14, 15, 16, 1, 2, 3, 4, 5, 6, 7, 8}, {2, 1, 17, 18}, {1, 16, 32, 17}, {16, 15, 31, 32}, {30, 14, 13, 29}, {13, 12, 28, 29}, {5, 4, 20, 21}, {8, 7, 23, 24}, {25, 9, 8, 24}, {4, 3, 19, 20}, {3, 2, 18, 19}, {28, 27, 26, 25, 24, 23, 22, 21, 20, 19, 18, 17, 32, 31, 30, 29}, {7, 6, 22, 23}, {6, 5, 21, 22}}]}, Boxed->False]}], "}"}], ",", RowBox[{"{", RowBox[{"\<\"icosidodecahedron\"\>", ",", Graphics3DBox[ {Opacity[0.3], PolyhedronBox[ NCache[{{0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), 0}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {-(1 + 2 5^Rational[-1, 2])^ Rational[1, 2], 0, Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {(1 + 2 5^Rational[-1, 2])^Rational[1, 2], 0, (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, {(Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2], 0, -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2], 0}, { Root[1 - 5 #^2 + 5 #^4& , 1, 0], 0, (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}}, {{0, -1.618033988749895, 0}, { 0, 1.618033988749895, 0}, { 0.2628655560595668, -0.8090169943749475, -1.3763819204711736`}, { 0.2628655560595668, 0.8090169943749475, -1.3763819204711736`}, { 0.42532540417601994`, -1.3090169943749475`, 0.85065080835204}, { 0.42532540417601994`, 1.3090169943749475`, 0.85065080835204}, { 0.6881909602355868, -0.5, 1.3763819204711736`}, {0.6881909602355868, 0.5, 1.3763819204711736`}, { 1.1135163644116066`, -0.8090169943749475, -0.85065080835204}, { 1.1135163644116066`, 0.8090169943749475, -0.85065080835204}, {-1.3763819204711736`, 0, -0.85065080835204}, {-0.6881909602355868, -0.5, \ -1.3763819204711736`}, {-0.6881909602355868, 0.5, -1.3763819204711736`}, { 1.3763819204711736`, 0, 0.85065080835204}, { 0.9510565162951535, -1.3090169943749475`, 0}, { 0.9510565162951535, 1.3090169943749475`, 0}, { 0.85065080835204, 0, -1.3763819204711736`}, {-0.9510565162951535, \ -1.3090169943749475`, 0}, {-0.9510565162951535, 1.3090169943749475`, 0}, {-1.5388417685876268`, -0.5, 0}, {-1.5388417685876268`, 0.5, 0}, {1.5388417685876268`, -0.5, 0}, { 1.5388417685876268`, 0.5, 0}, {-0.85065080835204, 0, 1.3763819204711736`}, {-1.1135163644116066`, -0.8090169943749475, 0.85065080835204}, {-1.1135163644116066`, 0.8090169943749475, 0.85065080835204}, {-0.42532540417602, -1.3090169943749475`, \ -0.85065080835204}, {-0.42532540417602, 1.3090169943749475`, -0.85065080835204}, {-0.2628655560595668, \ -0.8090169943749475, 1.3763819204711736`}, {-0.2628655560595668, 0.8090169943749475, 1.3763819204711736`}}], {{30, 24, 29, 7, 8}, { 26, 24, 30}, {25, 29, 24}, {5, 7, 29}, {14, 8, 7}, {6, 30, 8}, {16, 2, 6}, {19, 21, 26}, {20, 18, 25}, {1, 15, 5}, {22, 23, 14}, {2, 19, 26, 30, 6}, {21, 20, 25, 24, 26}, {18, 1, 5, 29, 25}, {15, 22, 14, 7, 5}, {23, 16, 6, 8, 14}, {12, 13, 4, 17, 3}, {3, 17, 9}, {17, 4, 10}, {4, 13, 28}, {13, 12, 11}, {12, 3, 27}, {27, 1, 18}, {9, 22, 15}, {10, 16, 23}, {28, 19, 2}, {11, 20, 21}, {27, 3, 9, 15, 1}, {9, 17, 10, 23, 22}, {10, 4, 28, 2, 16}, {28, 13, 11, 21, 19}, {11, 12, 27, 18, 20}}]}, Boxed->False]}], "}"}], ",", RowBox[{"{", RowBox[{"\<\"pentagonal orthobirotunda\"\>", ",", Graphics3DBox[ {Opacity[0.3], PolyhedronBox[ NCache[{{0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), 0}, {-(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), 0}, {-(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), 0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, {-(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 2], 0}, {-(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 2], 0}, {(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 2], 0}, {(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 2], 0}, {(Rational[1, 5] (5 + 2 5^Rational[1, 2]))^Rational[1, 2], 0, -(Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 5] (5 + 2 5^Rational[1, 2]))^ Rational[1, 2], 0, (Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^ Rational[1, 2]), -(Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {( Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), (Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), -(Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {( Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), (Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[ 1, 2]}, {-(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-1 - 5^ Rational[1, 2]), -(Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2]}, {-(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), (Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[ 1, 2]}, {-(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), -(Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2]}, {-(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), (Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[ 1, 2]}, {-(Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], 0, -(Rational[1, 5] (5 + 2 5^Rational[1, 2]))^ Rational[1, 2]}, {-(Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], 0, (Rational[1, 5] (5 + 2 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (-1 - 5^ Rational[1, 2]), -(Rational[1, 5] (5 + 2 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), ( Rational[1, 5] (5 + 2 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), -(Rational[1, 5] (5 + 2 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), ( Rational[1, 5] (5 + 2 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], -(Rational[1, 5] (5 + 2 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], (Rational[1, 5] (5 + 2 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], -(Rational[1, 5] (5 + 2 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], (Rational[1, 5] (5 + 2 5^Rational[1, 2]))^ Rational[1, 2]}}, {{0, -1.618033988749895, 0}, { 0, 1.618033988749895, 0}, {-0.9510565162951535, -1.3090169943749475`, 0}, {-0.9510565162951535, 1.3090169943749475`, 0}, { 0.9510565162951535, -1.3090169943749475`, 0}, { 0.9510565162951535, 1.3090169943749475`, 0}, {-1.5388417685876268`, -0.5, 0}, {-1.5388417685876268`, 0.5, 0}, {1.5388417685876268`, -0.5, 0}, { 1.5388417685876268`, 0.5, 0}, { 1.3763819204711736`, 0, -0.8506508083520399}, { 1.3763819204711736`, 0, 0.8506508083520399}, { 0.42532540417601994`, -1.3090169943749475`, -0.8506508083520399}, { 0.42532540417601994`, -1.3090169943749475`, 0.8506508083520399}, { 0.42532540417601994`, 1.3090169943749475`, -0.8506508083520399}, { 0.42532540417601994`, 1.3090169943749475`, 0.8506508083520399}, {-1.1135163644116066`, -0.8090169943749475, \ -0.8506508083520399}, {-1.1135163644116066`, -0.8090169943749475, 0.8506508083520399}, {-1.1135163644116066`, 0.8090169943749475, -0.8506508083520399}, {-1.1135163644116066`, 0.8090169943749475, 0.8506508083520399}, {-0.8506508083520399, 0, -1.3763819204711736`}, {-0.8506508083520399, 0, 1.3763819204711736`}, {-0.2628655560595668, -0.8090169943749475, \ -1.3763819204711736`}, {-0.2628655560595668, -0.8090169943749475, 1.3763819204711736`}, {-0.2628655560595668, 0.8090169943749475, -1.3763819204711736`}, {-0.2628655560595668, 0.8090169943749475, 1.3763819204711736`}, { 0.6881909602355868, -0.5, -1.3763819204711736`}, { 0.6881909602355868, -0.5, 1.3763819204711736`}, {0.6881909602355868, 0.5, -1.3763819204711736`}, {0.6881909602355868, 0.5, 1.3763819204711736`}}], {{26, 22, 24, 28, 30}, {20, 22, 26}, {18, 24, 22}, {14, 28, 24}, {12, 30, 28}, {16, 26, 30}, {6, 2, 16}, {4, 8, 20}, {7, 3, 18}, {1, 5, 14}, {9, 10, 12}, {2, 4, 20, 26, 16}, {8, 7, 18, 22, 20}, {3, 1, 14, 24, 18}, {5, 9, 12, 28, 14}, {10, 6, 16, 30, 12}, {29, 27, 23, 21, 25}, {25, 21, 19}, {21, 23, 17}, {23, 27, 13}, {27, 29, 11}, {29, 25, 15}, {15, 2, 6}, {19, 8, 4}, {17, 3, 7}, {13, 5, 1}, {11, 10, 9}, {15, 25, 19, 4, 2}, {19, 21, 17, 7, 8}, {17, 23, 13, 1, 3}, {13, 27, 11, 9, 5}, {11, 29, 15, 6, 10}}]}, Boxed->False]}], "}"}], ",", RowBox[{"{", RowBox[{"\<\"triaconta\[Hyphen]digonal pyramid\"\>", ",", Graphics3DBox[ {Opacity[0.3], PolyhedronBox[ NCache[{{Sin[Rational[1, 31] Pi], -Cos[Rational[1, 31] Pi], 0}, { Sin[Rational[3, 31] Pi], -Cos[Rational[3, 31] Pi], 0}, { Sin[Rational[5, 31] Pi], -Cos[Rational[5, 31] Pi], 0}, { Sin[Rational[7, 31] Pi], -Cos[Rational[7, 31] Pi], 0}, { Cos[Rational[13, 62] Pi], -Sin[Rational[13, 62] Pi], 0}, { Cos[Rational[9, 62] Pi], -Sin[Rational[9, 62] Pi], 0}, { Cos[Rational[5, 62] Pi], -Sin[Rational[5, 62] Pi], 0}, { Cos[Rational[1, 62] Pi], -Sin[Rational[1, 62] Pi], 0}, { Cos[Rational[3, 62] Pi], Sin[Rational[3, 62] Pi], 0}, { Cos[Rational[7, 62] Pi], Sin[Rational[7, 62] Pi], 0}, { Cos[Rational[11, 62] Pi], Sin[Rational[11, 62] Pi], 0}, { Cos[Rational[15, 62] Pi], Sin[Rational[15, 62] Pi], 0}, { Sin[Rational[6, 31] Pi], Cos[Rational[6, 31] Pi], 0}, { Sin[Rational[4, 31] Pi], Cos[Rational[4, 31] Pi], 0}, { Sin[Rational[2, 31] Pi], Cos[Rational[2, 31] Pi], 0}, {0, 1, 0}, {-Sin[Rational[2, 31] Pi], Cos[Rational[2, 31] Pi], 0}, {- Sin[Rational[4, 31] Pi], Cos[Rational[4, 31] Pi], 0}, {- Sin[Rational[6, 31] Pi], Cos[Rational[6, 31] Pi], 0}, {- Cos[Rational[15, 62] Pi], Sin[Rational[15, 62] Pi], 0}, {- Cos[Rational[11, 62] Pi], Sin[Rational[11, 62] Pi], 0}, {- Cos[Rational[7, 62] Pi], Sin[Rational[7, 62] Pi], 0}, {- Cos[Rational[3, 62] Pi], Sin[Rational[3, 62] Pi], 0}, {- Cos[Rational[1, 62] Pi], -Sin[Rational[1, 62] Pi], 0}, {- Cos[Rational[5, 62] Pi], -Sin[Rational[5, 62] Pi], 0}, {- Cos[Rational[9, 62] Pi], -Sin[Rational[9, 62] Pi], 0}, {- Cos[Rational[13, 62] Pi], -Sin[Rational[13, 62] Pi], 0}, {- Sin[Rational[7, 31] Pi], -Cos[Rational[7, 31] Pi], 0}, {- Sin[Rational[5, 31] Pi], -Cos[Rational[5, 31] Pi], 0}, {- Sin[Rational[3, 31] Pi], -Cos[Rational[3, 31] Pi], 0}, {- Sin[Rational[1, 31] Pi], -Cos[Rational[1, 31] Pi], 0}, {0, 0, 3}}, {{0.10116832198743217`, -0.9948693233918952, 0}, { 0.29936312297335793`, -0.9541392564000488, 0}, { 0.48530196253108104`, -0.8743466161445821, 0}, { 0.6513724827222223, -0.758758122692791, 0}, { 0.7907757369376985, -0.6121059825476628, 0}, { 0.8978045395707417, -0.44039415155763434`, 0}, { 0.9680771188662043, -0.25065253225872053`, 0}, { 0.9987165071710528, -0.05064916883871271, 0}, { 0.9884683243281114, 0.15142777750457667`, 0}, { 0.9377521321470804, 0.3473052528448203, 0}, { 0.8486442574947509, 0.5289640103269625, 0}, { 0.72479278722912, 0.6889669190756865, 0}, { 0.5712682150947923, 0.8207634412072763, 0}, { 0.39435585511331855`, 0.9189578116202306, 0}, { 0.20129852008866006`, 0.9795299412524945, 0}, {0, 1, 0}, {-0.20129852008866006`, 0.9795299412524945, 0}, {-0.39435585511331855`, 0.9189578116202306, 0}, {-0.5712682150947923, 0.8207634412072763, 0}, {-0.72479278722912, 0.6889669190756865, 0}, {-0.8486442574947509, 0.5289640103269625, 0}, {-0.9377521321470804, 0.3473052528448203, 0}, {-0.9884683243281114, 0.15142777750457667`, 0}, {-0.9987165071710528, -0.05064916883871271, 0}, {-0.9680771188662043, -0.25065253225872053`, 0}, {-0.8978045395707417, -0.44039415155763434`, 0}, {-0.7907757369376985, -0.6121059825476628, 0}, {-0.6513724827222223, -0.758758122692791, 0}, {-0.48530196253108104`, -0.8743466161445821, 0}, {-0.29936312297335793`, -0.9541392564000488, 0}, {-0.10116832198743217`, -0.9948693233918952, 0}, {0, 0, 3}}], {{3, 4, 32}, {32, 23, 24}, {22, 23, 32}, {20, 21, 32}, {21, 22, 32}, {17, 32, 16}, {17, 18, 32}, {19, 20, 32}, {18, 19, 32}, {9, 32, 8}, {9, 10, 32}, {11, 12, 32}, {10, 11, 32}, {32, 15, 16}, {14, 15, 32}, {12, 13, 32}, {13, 14, 32}, {25, 32, 24}, {25, 26, 32}, {27, 28, 32}, {26, 27, 32}, {31, 1, 32}, {30, 31, 32}, {28, 29, 32}, {29, 30, 32}, {32, 7, 8}, {6, 7, 32}, {4, 5, 32}, {5, 6, 32}, {1, 2, 32}, {2, 3, 32}, {28, 27, 26, 25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 31, 30, 29}}]}, Boxed->False]}], "}"}], ",", RowBox[{"{", RowBox[{"\<\"tridiminished rhombicosidodecahedron\"\>", ",", Graphics3DBox[ {Opacity[0.3], PolyhedronBox[ NCache[{{ Rational[-1, 2], Rational[1, 2] 3^Rational[-1, 2], (Rational[-1, 2] 3^Rational[-1, 2]) (3 + 2 5^Rational[1, 2])}, { Rational[-1, 2], (Rational[-1, 2] 3^Rational[-1, 2]) (2 + 5^Rational[1, 2]), (Rational[7, 4] + Rational[2, 3] 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2], (Rational[3, 4] + Rational[1, 3] 5^Rational[1, 2])^ Rational[1, 2], (Rational[-1, 2] 3^Rational[-1, 2]) (4 + 5^Rational[1, 2])}, { Rational[-1, 2], Rational[-1, 2] 3^Rational[-1, 2], Rational[1, 2] (Rational[29, 3] + 4 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[-1, 2], (Rational[-1, 2] 3^Rational[-1, 2]) (4 + 5^Rational[1, 2]), (Rational[-1, 2] 3^Rational[-1, 2]) (2 + 5^Rational[1, 2])}, { Rational[-1, 2], Rational[5, 3]^Rational[1, 2] + Rational[1, 2] 3^Rational[1, 2], Rational[1, 2] 3^Rational[-1, 2]}, { Rational[-1, 2], (Rational[7, 4] + Rational[2, 3] 5^Rational[1, 2])^ Rational[1, 2], (Rational[3, 4] + Rational[1, 3] 5^Rational[1, 2])^ Rational[1, 2]}, { 0, -3^Rational[-1, 2], Rational[-1, 2] (Rational[29, 3] + 4 5^Rational[1, 2])^ Rational[1, 2]}, { 0, (Rational[2, 3] (3 + 5^Rational[1, 2]))^ Rational[1, 2], (Rational[-1, 2] 3^Rational[-1, 2]) (2 + 5^Rational[1, 2])}, { 0, 3^Rational[-1, 2], Rational[5, 3]^Rational[1, 2] + Rational[1, 2] 3^Rational[1, 2]}, { Rational[1, 2], Rational[1, 2] 3^Rational[-1, 2], (Rational[-1, 2] 3^Rational[-1, 2]) (3 + 2 5^Rational[1, 2])}, { Rational[ 1, 2], (Rational[-1, 2] 3^Rational[-1, 2]) (2 + 5^Rational[1, 2]), (Rational[7, 4] + Rational[2, 3] 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2], (Rational[3, 4] + Rational[1, 3] 5^Rational[1, 2])^ Rational[1, 2], (Rational[-1, 2] 3^Rational[-1, 2]) (4 + 5^Rational[1, 2])}, { Rational[1, 2], Rational[-1, 2] 3^Rational[-1, 2], Rational[1, 2] (Rational[29, 3] + 4 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[ 1, 2], (Rational[-1, 2] 3^Rational[-1, 2]) (4 + 5^Rational[1, 2]), (Rational[-1, 2] 3^Rational[-1, 2]) (2 + 5^Rational[1, 2])}, { Rational[1, 2], Rational[5, 3]^Rational[1, 2] + Rational[1, 2] 3^Rational[1, 2], Rational[1, 2] 3^Rational[-1, 2]}, { Rational[1, 2], (Rational[7, 4] + Rational[2, 3] 5^Rational[1, 2])^ Rational[1, 2], (Rational[3, 4] + Rational[1, 3] 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[1, 4] (-5 - 5^Rational[1, 2]), Rational[1, 2] (Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2], -(Rational[3, 4] + Rational[1, 3] 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (-5 - 5^Rational[1, 2]), Rational[-1, 2] (Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2], (Rational[3, 4] + Rational[1, 3] 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (-1 - 5^Rational[1, 2]), Rational[-1, 2] (Rational[5, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2], -(Rational[7, 4] + Rational[2, 3] 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (-1 - 5^Rational[1, 2]), (Rational[47, 24] + Rational[7, 8] 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] Rational[5, 3]^Rational[1, 2]}, { Rational[1, 4] (-1 - 5^Rational[1, 2]), Rational[1, 2] (Rational[5, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2], (Rational[7, 4] + Rational[2, 3] 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (-1 - 5^ Rational[1, 2]), -(Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2], -(Rational[3, 4] + Rational[1, 3] 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (-1 - 5^Rational[1, 2]), 2 (3^Rational[-1, 2]/(-3 + 5^Rational[1, 2])), Rational[1, 2] 3^Rational[-1, 2]}, {-1 + Rational[-1, 2] 5^Rational[1, 2], Rational[-1, 2] 3^Rational[-1, 2], Rational[-1, 2] Rational[5, 3]^Rational[1, 2]}, {-1 + Rational[-1, 2] 5^Rational[1, 2], Rational[-1, 2] Rational[5, 3]^Rational[1, 2], Rational[1, 2] 3^Rational[-1, 2]}, {(-3 + 5^Rational[1, 2])^(-1), Rational[-1, 2] (Rational[5, 6] (7 + 3 5^Rational[1, 2]))^ Rational[1, 2], Rational[-1, 2] Rational[5, 3]^Rational[1, 2]}, {(-3 + 5^Rational[1, 2])^(-1), Root[1 - 36 #^2 + 144 #^4& , 2, 0], (Rational[-1, 2] 3^Rational[-1, 2]) (4 + 5^Rational[1, 2])}, {(-3 + 5^Rational[1, 2])^(-1), (Rational[-1, 4] 3^Rational[-1, 2]) (7 + 5^Rational[1, 2]), (Rational[3, 4] + Rational[1, 3] 5^Rational[1, 2])^ Rational[1, 2]}, {(-3 + 5^Rational[1, 2])^(-1), (Rational[1, 4] 3^Rational[-1, 2]) (7 + 5^Rational[1, 2]), (Rational[-1, 2] 3^Rational[-1, 2]) (2 + 5^Rational[1, 2])}, {(-3 + 5^Rational[1, 2])^(-1), Root[ 1 - 36 #^2 + 144 #^4& , 3, 0], (Rational[7, 4] + Rational[2, 3] 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (1 + 5^Rational[1, 2]), Rational[-1, 2] (Rational[5, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2], -(Rational[7, 4] + Rational[2, 3] 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (1 + 5^Rational[1, 2]), (Rational[47, 24] + Rational[7, 8] 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] Rational[5, 3]^Rational[1, 2]}, { Rational[1, 4] (1 + 5^Rational[1, 2]), Rational[1, 2] (Rational[5, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2], (Rational[7, 4] + Rational[2, 3] 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (1 + 5^Rational[1, 2]), -(Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2], -(Rational[3, 4] + Rational[1, 3] 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (1 + 5^Rational[1, 2]), 2 (3^Rational[-1, 2]/(-3 + 5^Rational[1, 2])), Rational[1, 2] 3^Rational[-1, 2]}, { Rational[1, 2] (2 + 5^Rational[1, 2]), Rational[-1, 2] 3^Rational[-1, 2], Rational[-1, 2] Rational[5, 3]^Rational[1, 2]}, { Rational[1, 2] (2 + 5^Rational[1, 2]), Rational[-1, 2] Rational[5, 3]^Rational[1, 2], Rational[1, 2] 3^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2]), Rational[-1, 2] (Rational[5, 6] (7 + 3 5^Rational[1, 2]))^ Rational[1, 2], Rational[-1, 2] Rational[5, 3]^Rational[1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2]), Root[ 1 - 36 #^2 + 144 #^4& , 2, 0], (Rational[-1, 2] 3^Rational[-1, 2]) (4 + 5^Rational[1, 2])}, { Rational[1, 4] (3 + 5^Rational[1, 2]), (Rational[-1, 4] 3^Rational[-1, 2]) (7 + 5^Rational[1, 2]), (Rational[3, 4] + Rational[1, 3] 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2]), (Rational[1, 4] 3^Rational[-1, 2]) (7 + 5^Rational[1, 2]), (Rational[-1, 2] 3^Rational[-1, 2]) (2 + 5^Rational[1, 2])}, { Rational[1, 4] (3 + 5^Rational[1, 2]), Root[ 1 - 36 #^2 + 144 #^4& , 3, 0], (Rational[7, 4] + Rational[2, 3] 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (5 + 5^Rational[1, 2]), Rational[1, 2] (Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2], -(Rational[3, 4] + Rational[1, 3] 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (5 + 5^Rational[1, 2]), Rational[-1, 2] (Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2], (Rational[3, 4] + Rational[1, 3] 5^Rational[1, 2])^Rational[1, 2]}}, {{-0.5, 0.2886751345948129, -2.1570198525202446`}, {-0.5, \ -1.2228474935575289`, 1.8001977627471544`}, {-0.5, 1.2228474935575286`, -1.8001977627471546`}, {-0.5, \ -0.2886751345948129, 2.157019852520244}, {-0.5, -1.8001977627471546`, \ -1.2228474935575289`}, {-0.5, 2.157019852520244, 0.2886751345948129}, {-0.5, 1.8001977627471544`, 1.2228474935575286`}, { 0, -0.5773502691896258, -2.157019852520244}, { 0, 1.8683447179254313`, -1.2228474935575289`}, { 0, 0.5773502691896258, 2.157019852520244}, {0.5, 0.2886751345948129, -2.1570198525202446`}, { 0.5, -1.2228474935575289`, 1.8001977627471544`}, {0.5, 1.2228474935575286`, -1.8001977627471546`}, { 0.5, -0.2886751345948129, 2.157019852520244}, { 0.5, -1.8001977627471546`, -1.2228474935575289`}, {0.5, 2.157019852520244, 0.2886751345948129}, {0.5, 1.8001977627471544`, 1.2228474935575286`}, {-1.8090169943749475`, 0.46708617948135783`, -1.2228474935575286`}, {-1.8090169943749475`, \ -0.46708617948135783`, 1.2228474935575286`}, {-0.8090169943749475, -1.0444364486709836`, \ -1.8001977627471544`}, {-0.8090169943749475, 1.9786088076336994`, -0.6454972243679028}, {-0.8090169943749475, 1.0444364486709836`, 1.8001977627471544`}, {-1.618033988749895, -0.9341723589627157, \ -1.2228474935575286`}, {-1.618033988749895, -1.511522628152342, 0.2886751345948129}, {-2.118033988749895, -0.2886751345948129, \ -0.6454972243679028}, {-2.118033988749895, -0.6454972243679028, 0.2886751345948129}, {-1.3090169943749477`, -1.6899336730388865`, \ -0.6454972243679028}, {-1.3090169943749477`, -0.17841104488654497`, \ -1.8001977627471546`}, {-1.3090169943749477`, -1.3331115832657967`, 1.2228474935575286`}, {-1.3090169943749477`, 1.3331115832657967`, -1.2228474935575289`}, {-1.3090169943749477`, 0.17841104488654497`, 1.8001977627471544`}, { 0.8090169943749475, -1.0444364486709836`, -1.8001977627471544`}, { 0.8090169943749475, 1.9786088076336994`, -0.6454972243679028}, { 0.8090169943749475, 1.0444364486709836`, 1.8001977627471544`}, { 1.618033988749895, -0.9341723589627157, -1.2228474935575286`}, { 1.618033988749895, -1.511522628152342, 0.2886751345948129}, { 2.118033988749895, -0.2886751345948129, -0.6454972243679028}, { 2.118033988749895, -0.6454972243679028, 0.2886751345948129}, { 1.3090169943749475`, -1.6899336730388865`, -0.6454972243679028}, { 1.3090169943749475`, -0.17841104488654497`, -1.8001977627471546`}, { 1.3090169943749475`, -1.3331115832657967`, 1.2228474935575286`}, { 1.3090169943749475`, 1.3331115832657967`, -1.2228474935575289`}, { 1.3090169943749475`, 0.17841104488654497`, 1.8001977627471544`}, { 1.8090169943749475`, 0.46708617948135783`, -1.2228474935575286`}, { 1.8090169943749475`, -0.46708617948135783`, 1.2228474935575286`}}], {{1, 11, 8}, {3, 9, 13}, {4, 14, 10}, {20, 23, 28}, {32, 40, 35}, {1, 3, 13, 11}, {1, 8, 20, 28}, {2, 12, 14, 4}, {3, 30, 21, 9}, {4, 10, 22, 31}, {5, 27, 23, 20}, {6, 7, 17, 16}, {8, 11, 40, 32}, {9, 33, 42, 13}, {10, 14, 43, 34}, {15, 32, 35, 39}, {18, 28, 23, 25}, {19, 26, 24, 29}, {35, 40, 44, 37}, {36, 38, 45, 41}, {1, 28, 18, 30, 3}, {2, 4, 31, 19, 29}, {5, 20, 8, 32, 15}, {6, 16, 33, 9, 21}, {7, 22, 10, 34, 17}, {11, 13, 42, 44, 40}, { 12, 41, 45, 43, 14}, {23, 27, 24, 26, 25}, {35, 37, 38, 36, 39}, {2, 29, 24, 27, 5, 15, 39, 36, 41, 12}, {6, 21, 30, 18, 25, 26, 19, 31, 22, 7}, {16, 17, 34, 43, 45, 38, 37, 44, 42, 33}}]}, Boxed->False]}], "}"}], ",", RowBox[{"{", RowBox[{"\<\"truncated dodecahedron\"\>", ",", Graphics3DBox[ {Opacity[0.3], PolyhedronBox[ NCache[{{ 0, Rational[1, 2] (-1 - 5^Rational[1, 2]), (Rational[25, 8] + Rational[11, 8] 5^Rational[1, 2])^Rational[1, 2]}, { 0, Rational[1, 2] (-1 - 5^Rational[1, 2]), Root[ 5 - 100 #^2 + 16 #^4& , 1, 0]}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), (Rational[25, 8] + Rational[11, 8] 5^Rational[1, 2])^Rational[1, 2]}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), Root[ 5 - 100 #^2 + 16 #^4& , 1, 0]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-5 - 3 5^Rational[1, 2]), Root[ 1 - 20 #^2 + 80 #^4& , 3, 0]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (5 + 3 5^Rational[1, 2]), Root[ 1 - 20 #^2 + 80 #^4& , 3, 0]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], -1 + Rational[-1, 2] 5^Rational[1, 2], (Rational[17, 8] + Rational[31, 8] 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 2] (2 + 5^Rational[1, 2]), (Rational[17, 8] + Rational[31, 8] 5^Rational[-1, 2])^ Rational[1, 2]}, {(-2) (1 + 2 5^Rational[-1, 2])^Rational[1, 2], 0, Root[1 - 100 #^2 + 80 #^4& , 1, 0]}, { Rational[-3, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], -1 + Rational[-1, 2] 5^Rational[1, 2], Root[ 1 - 20 #^2 + 80 #^4& , 3, 0]}, { Rational[-3, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 2] (2 + 5^Rational[1, 2]), Root[ 1 - 20 #^2 + 80 #^4& , 3, 0]}, {-(1 + 2 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 2] (-3 - 5^Rational[1, 2]), Root[ 1 - 20 #^2 + 80 #^4& , 2, 0]}, {-(1 + 2 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 2] (3 + 5^Rational[1, 2]), Root[ 1 - 20 #^2 + 80 #^4& , 2, 0]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], -1 + Rational[-1, 2] 5^Rational[1, 2], -(Rational[17, 8] + Rational[31, 8] 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 2] (2 + 5^Rational[1, 2]), -(Rational[17, 8] + Rational[31, 8] 5^Rational[-1, 2])^Rational[1, 2]}, {(1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 2] (-3 - 5^Rational[1, 2]), Root[ 1 - 20 #^2 + 80 #^4& , 3, 0]}, {(1 + 2 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 2] (3 + 5^Rational[1, 2]), Root[ 1 - 20 #^2 + 80 #^4& , 3, 0]}, { 2 (1 + 2 5^Rational[-1, 2])^Rational[1, 2], 0, (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[13, 8] + Rational[29, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^ Rational[1, 2]), -(Rational[17, 8] + Rational[31, 8] 5^Rational[-1, 2])^Rational[1, 2]}, {( Rational[13, 8] + Rational[29, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), -(Rational[17, 8] + Rational[31, 8] 5^Rational[-1, 2])^Rational[1, 2]}, {( Rational[9, 4] + Rational[9, 2] 5^Rational[-1, 2])^ Rational[1, 2], -1 + Rational[-1, 2] 5^Rational[1, 2], Root[ 1 - 20 #^2 + 80 #^4& , 2, 0]}, {(Rational[9, 4] + Rational[9, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 2] (2 + 5^Rational[1, 2]), Root[ 1 - 20 #^2 + 80 #^4& , 2, 0]}, {(Rational[5, 2] + Rational[11, 2] 5^Rational[-1, 2])^Rational[1, 2], 0, (Rational[17, 8] + Rational[31, 8] 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[5, 2] + Rational[11, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 2] (-1 - 5^Rational[1, 2]), Root[ 1 - 100 #^2 + 80 #^4& , 1, 0]}, {(Rational[5, 2] + Rational[11, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 2] (1 + 5^Rational[1, 2]), Root[ 1 - 100 #^2 + 80 #^4& , 1, 0]}, {-(Rational[29, 8] + Rational[61, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[ 1 - 20 #^2 + 80 #^4& , 3, 0]}, {-(Rational[29, 8] + Rational[61, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), Root[ 1 - 20 #^2 + 80 #^4& , 3, 0]}, {(Rational[29, 8] + Rational[61, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[ 1 - 20 #^2 + 80 #^4& , 2, 0]}, {(Rational[29, 8] + Rational[61, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), Root[ 1 - 20 #^2 + 80 #^4& , 2, 0]}, {(Rational[17, 4] + Rational[19, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], Root[ 1 - 20 #^2 + 80 #^4& , 3, 0]}, {(Rational[17, 4] + Rational[19, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 2], Root[1 - 20 #^2 + 80 #^4& , 3, 0]}, { Rational[-1, 2] (17 + 38 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], Root[1 - 20 #^2 + 80 #^4& , 2, 0]}, { Rational[-1, 2] (17 + 38 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 2], Root[ 1 - 20 #^2 + 80 #^4& , 2, 0]}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), (Rational[25, 8] + Rational[11, 8] 5^Rational[1, 2])^ Rational[1, 2]}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[ 5 - 100 #^2 + 16 #^4& , 1, 0]}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), (Rational[25, 8] + Rational[11, 8] 5^Rational[1, 2])^ Rational[1, 2]}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), Root[ 5 - 100 #^2 + 16 #^4& , 1, 0]}, {( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 2] (-3 - 5^Rational[1, 2]), (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 2] (3 + 5^Rational[1, 2]), (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), (Rational[25, 8] + Rational[11, 8] 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[ 5 - 100 #^2 + 16 #^4& , 1, 0]}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), (Rational[25, 8] + Rational[11, 8] 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), Root[ 5 - 100 #^2 + 16 #^4& , 1, 0]}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], (Rational[25, 8] + Rational[11, 8] 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], Root[5 - 100 #^2 + 16 #^4& , 1, 0]}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2], (Rational[25, 8] + Rational[11, 8] 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2], Root[5 - 100 #^2 + 16 #^4& , 1, 0]}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], (Rational[25, 8] + Rational[11, 8] 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], Root[5 - 100 #^2 + 16 #^4& , 1, 0]}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2], (Rational[25, 8] + Rational[11, 8] 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2], Root[5 - 100 #^2 + 16 #^4& , 1, 0]}, { Root[1 - 25 #^2 + 5 #^4& , 1, 0], 0, -(Rational[17, 8] + Rational[31, 8] 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 25 #^2 + 5 #^4& , 1, 0], Rational[1, 2] (-1 - 5^Rational[1, 2]), (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2]}, { Root[1 - 25 #^2 + 5 #^4& , 1, 0], Rational[1, 2] (1 + 5^Rational[1, 2]), (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2]}, { Root[1 - 5 #^2 + 5 #^4& , 1, 0], Rational[1, 2] (-3 - 5^Rational[1, 2]), Root[ 1 - 100 #^2 + 80 #^4& , 1, 0]}, { Root[1 - 5 #^2 + 5 #^4& , 1, 0], Rational[1, 2] (3 + 5^Rational[1, 2]), Root[ 1 - 100 #^2 + 80 #^4& , 1, 0]}, { Root[1 - 260 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-3 - 5^Rational[1, 2]), (Rational[17, 8] + Rational[31, 8] 5^Rational[-1, 2])^Rational[1, 2]}, { Root[1 - 260 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), (Rational[17, 8] + Rational[31, 8] 5^Rational[-1, 2])^Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-5 - 3 5^Rational[1, 2]), Root[ 1 - 20 #^2 + 80 #^4& , 2, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (5 + 3 5^Rational[1, 2]), Root[ 1 - 20 #^2 + 80 #^4& , 2, 0]}}, {{ 0, -1.618033988749895, 2.48989828488278}, { 0, -1.618033988749895, -2.48989828488278}, { 0, 1.618033988749895, 2.48989828488278}, { 0, 1.618033988749895, -2.48989828488278}, { 0.42532540417601994`, -2.9270509831248424`, 0.2628655560595668}, { 0.42532540417601994`, 2.9270509831248424`, 0.2628655560595668}, { 0.6881909602355868, -2.118033988749895, 1.9641671727636467`}, { 0.6881909602355868, 2.118033988749895, 1.9641671727636467`}, {-2.752763840942347, 0, -1.1135163644116066`}, {-2.0645728807067605`, \ -2.118033988749895, 0.2628655560595668}, {-2.0645728807067605`, 2.118033988749895, 0.2628655560595668}, {-1.3763819204711736`, -2.618033988749895, \ -0.2628655560595668}, {-1.3763819204711736`, 2.618033988749895, -0.2628655560595668}, {-0.6881909602355868, \ -2.118033988749895, -1.9641671727636467`}, {-0.6881909602355868, 2.118033988749895, -1.9641671727636467`}, { 1.3763819204711736`, -2.618033988749895, 0.2628655560595668}, { 1.3763819204711736`, 2.618033988749895, 0.2628655560595668}, { 2.752763840942347, 0, 1.1135163644116066`}, { 1.8017073246471935`, -1.3090169943749475`, -1.9641671727636467`}, { 1.8017073246471935`, 1.3090169943749475`, -1.9641671727636467`}, { 2.0645728807067605`, -2.118033988749895, -0.2628655560595668}, { 2.0645728807067605`, 2.118033988749895, -0.2628655560595668}, { 2.2270327288232132`, 0, 1.9641671727636467`}, { 2.2270327288232132`, -1.618033988749895, -1.1135163644116066`}, { 2.2270327288232132`, 1.618033988749895, -1.1135163644116066`}, {-2.6523581329992334`, \ -1.3090169943749475`, 0.2628655560595668}, {-2.6523581329992334`, 1.3090169943749475`, 0.2628655560595668}, { 2.6523581329992334`, -1.3090169943749475`, -0.2628655560595668}, { 2.6523581329992334`, 1.3090169943749475`, -0.2628655560595668}, { 2.9152236890588, -0.5, 0.2628655560595668}, {2.9152236890588, 0.5, 0.2628655560595668}, {-2.9152236890588, -0.5, -0.2628655560595668}, \ {-2.9152236890588, 0.5, -0.2628655560595668}, { 0.9510565162951535, -1.3090169943749475`, 2.48989828488278}, { 0.9510565162951535, -1.3090169943749475`, -2.48989828488278}, { 0.9510565162951535, 1.3090169943749475`, 2.48989828488278}, { 0.9510565162951535, 1.3090169943749475`, -2.48989828488278}, { 0.85065080835204, -2.618033988749895, 1.1135163644116066`}, { 0.85065080835204, 2.618033988749895, 1.1135163644116066`}, {-0.9510565162951535, -1.3090169943749475`, 2.48989828488278}, {-0.9510565162951535, -1.3090169943749475`, \ -2.48989828488278}, {-0.9510565162951535, 1.3090169943749475`, 2.48989828488278}, {-0.9510565162951535, 1.3090169943749475`, -2.48989828488278}, {-1.5388417685876268`, \ -0.5, 2.48989828488278}, {-1.5388417685876268`, -0.5, -2.48989828488278}, \ {-1.5388417685876268`, 0.5, 2.48989828488278}, {-1.5388417685876268`, 0.5, -2.48989828488278}, {1.5388417685876268`, -0.5, 2.48989828488278}, {1.5388417685876268`, -0.5, -2.48989828488278}, { 1.5388417685876268`, 0.5, 2.48989828488278}, {1.5388417685876268`, 0.5, -2.48989828488278}, {-2.2270327288232132`, 0, -1.9641671727636467`}, {-2.2270327288232132`, \ -1.618033988749895, 1.1135163644116066`}, {-2.2270327288232132`, 1.618033988749895, 1.1135163644116066`}, {-0.85065080835204, -2.618033988749895, \ -1.1135163644116066`}, {-0.85065080835204, 2.618033988749895, -1.1135163644116066`}, {-1.8017073246471935`, \ -1.3090169943749475`, 1.9641671727636467`}, {-1.8017073246471935`, 1.3090169943749475`, 1.9641671727636467`}, {-0.42532540417602, -2.9270509831248424`, \ -0.2628655560595668}, {-0.42532540417602, 2.9270509831248424`, -0.2628655560595668}}], {{3, 42, 46, 44, 40, 1, 34, 48, 50, 36}, {47, 43, 4, 37, 51, 49, 35, 2, 41, 45}, {2, 35, 19, 24, 21, 16, 5, 59, 55, 14}, {49, 51, 20, 25, 29, 31, 30, 28, 24, 19}, {37, 4, 15, 56, 60, 6, 17, 22, 25, 20}, {43, 47, 52, 9, 33, 27, 11, 13, 56, 15}, {45, 41, 14, 55, 12, 10, 26, 32, 9, 52}, {6, 60, 13, 11, 54, 58, 42, 3, 8, 39}, {27, 33, 32, 26, 53, 57, 44, 46, 58, 54}, {10, 12, 59, 5, 38, 7, 1, 40, 57, 53}, {16, 21, 28, 30, 18, 23, 48, 34, 7, 38}, {31, 29, 22, 17, 39, 8, 36, 50, 23, 18}, {9, 32, 33}, {18, 30, 31}, {47, 45, 52}, {50, 48, 23}, {10, 53, 26}, {27, 54, 11}, {21, 24, 28}, {29, 25, 22}, {40, 44, 57}, {58, 46, 42}, {35, 49, 19}, {20, 51, 37}, {12, 55, 59}, {60, 56, 13}, {41, 2, 14}, {15, 4, 43}, {34, 1, 7}, {8, 3, 36}, {38, 5, 16}, {17, 6, 39}}]}, Boxed->False]}], "}"}], ",", RowBox[{"{", RowBox[{"\<\"truncated icosahedron\"\>", ",", Graphics3DBox[ {Opacity[0.3], PolyhedronBox[ NCache[{{ Rational[-1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2], -1 + Rational[-1, 2] 5^Rational[1, 2], (Rational[9, 8] + Rational[9, 8] 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 2] (2 + 5^Rational[1, 2]), (Rational[9, 8] + Rational[9, 8] 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2], -1 + Rational[-1, 2] 5^Rational[1, 2], Rational[-3, 2] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 2] (2 + 5^Rational[1, 2]), Rational[-3, 2] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[-1, 4] (2 - 2 5^Rational[-1, 2])^Rational[1, 2], (1 - 5^ Rational[1, 2])^(-1), -(Rational[25, 8] + Rational[41, 8] 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 4] (2 - 2 5^Rational[-1, 2])^Rational[1, 2], Rational[-3, 4] (1 + 5^Rational[1, 2]), Root[ 1 - 20 #^2 + 80 #^4& , 1, 0]}, { Rational[-1, 4] (2 - 2 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), -(Rational[25, 8] + Rational[41, 8] 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 4] (2 - 2 5^Rational[-1, 2])^Rational[1, 2], Rational[3, 4] (1 + 5^Rational[1, 2]), Root[ 1 - 20 #^2 + 80 #^4& , 1, 0]}, { Rational[1, 4] (2 - 2 5^Rational[-1, 2])^Rational[1, 2], (1 - 5^ Rational[1, 2])^(-1), (Rational[25, 8] + Rational[41, 8] 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[1, 4] (2 - 2 5^Rational[-1, 2])^Rational[1, 2], Rational[-3, 4] (1 + 5^Rational[1, 2]), (Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[1, 4] (2 - 2 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), (Rational[25, 8] + Rational[41, 8] 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[1, 4] (2 - 2 5^Rational[-1, 2])^Rational[1, 2], Rational[3, 4] (1 + 5^Rational[1, 2]), (Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], -(Rational[25, 8] + Rational[41, 8] 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], -(Rational[25, 8] + Rational[41, 8] 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[5, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], -1 + Rational[-1, 2] 5^Rational[1, 2], (Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[5, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 2] (2 + 5^Rational[1, 2]), (Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-3, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], (Rational[9, 8] + Rational[9, 8] 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-3, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], (Rational[9, 8] + Rational[9, 8] 5^Rational[-1, 2])^ Rational[1, 2]}, {-(1 + 2 5^Rational[-1, 2])^Rational[1, 2], -1, Rational[1, 4] (26 + 58 5^Rational[-1, 2])^ Rational[1, 2]}, {-(1 + 2 5^Rational[-1, 2])^Rational[1, 2], 1, Rational[1, 4] (26 + 58 5^Rational[-1, 2])^ Rational[1, 2]}, {-(1 + 2 5^Rational[-1, 2])^ Rational[1, 2], (-2)/(-1 + 5^Rational[1, 2]), Rational[-3, 2] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {-(1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 2] (1 + 5^Rational[1, 2]), Rational[-3, 2] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], (Rational[25, 8] + Rational[41, 8] 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], (Rational[25, 8] + Rational[41, 8] 5^Rational[-1, 2])^ Rational[1, 2]}, {(1 + 2 5^Rational[-1, 2])^Rational[1, 2], -1, Root[1 - 260 #^2 + 80 #^4& , 1, 0]}, {(1 + 2 5^Rational[-1, 2])^ Rational[1, 2], 1, Root[ 1 - 260 #^2 + 80 #^4& , 1, 0]}, {(1 + 2 5^Rational[-1, 2])^ Rational[1, 2], (-2)/(-1 + 5^Rational[1, 2]), (Rational[9, 8] + Rational[9, 8] 5^Rational[-1, 2])^ Rational[1, 2]}, {(1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 2] (1 + 5^Rational[1, 2]), (Rational[9, 8] + Rational[9, 8] 5^Rational[-1, 2])^ Rational[1, 2]}, {-(2 + 2 5^Rational[-1, 2])^Rational[1, 2], 0, Root[1 - 260 #^2 + 80 #^4& , 1, 0]}, {(2 + 2 5^Rational[-1, 2])^ Rational[1, 2], 0, Rational[1, 4] (26 + 58 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (5 + 2 5^Rational[-1, 2])^Rational[1, 2], -1 + Rational[-1, 2] 5^Rational[1, 2], Root[ 1 - 20 #^2 + 80 #^4& , 1, 0]}, { Rational[-1, 2] (5 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 2] (2 + 5^Rational[1, 2]), Root[ 1 - 20 #^2 + 80 #^4& , 1, 0]}, {-(Rational[17, 8] + Rational[31, 8] 5^Rational[-1, 2])^ Rational[1, 2], (1 - 5^Rational[1, 2])^(-1), Rational[-3, 2] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {-(Rational[17, 8] + Rational[31, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), Rational[-3, 2] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[9, 4] + Rational[9, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], Rational[-3, 2] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[9, 4] + Rational[9, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 2], Rational[-3, 2] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[5, 2] + Rational[11, 2] 5^Rational[-1, 2])^Rational[1, 2], -1, Root[ 1 - 20 #^2 + 80 #^4& , 1, 0]}, {(Rational[5, 2] + Rational[11, 2] 5^Rational[-1, 2])^Rational[1, 2], 1, Root[ 1 - 20 #^2 + 80 #^4& , 1, 0]}, {(Rational[13, 4] + Rational[11, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], (Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[13, 4] + Rational[11, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], (Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^ Rational[1, 2]}, { Rational[-1, 4] (10 + 22 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-5 - 5^Rational[1, 2]), (Rational[9, 8] + Rational[9, 8] 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 4] (10 + 22 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (5 + 5^Rational[1, 2]), (Rational[9, 8] + Rational[9, 8] 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[1, 4] (10 + 22 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-5 - 5^Rational[1, 2]), Rational[-3, 2] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 4] (10 + 22 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (5 + 5^Rational[1, 2]), Rational[-3, 2] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[-1, 2] (13 + 22 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], Root[1 - 20 #^2 + 80 #^4& , 1, 0]}, { Rational[-1, 2] (13 + 22 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 2], Root[1 - 20 #^2 + 80 #^4& , 1, 0]}, { Rational[-1, 4] (26 + 38 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-5 - 5^Rational[1, 2]), (Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 4] (26 + 38 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (5 + 5^Rational[1, 2]), (Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[1, 4] (26 + 38 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-5 - 5^Rational[1, 2]), Root[ 1 - 20 #^2 + 80 #^4& , 1, 0]}, { Rational[1, 4] (26 + 38 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (5 + 5^Rational[1, 2]), Root[ 1 - 20 #^2 + 80 #^4& , 1, 0]}, { Rational[1, 4] (34 + 62 5^Rational[-1, 2])^Rational[1, 2], (1 - 5^ Rational[1, 2])^(-1), (Rational[9, 8] + Rational[9, 8] 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[1, 4] (34 + 62 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), (Rational[9, 8] + Rational[9, 8] 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2], 0, (Rational[25, 8] + Rational[41, 8] 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 25 #^2 + 5 #^4& , 1, 0], -1, (Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2]}, { Root[1 - 25 #^2 + 5 #^4& , 1, 0], 1, (Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 5 #^2 + 5 #^4& , 1, 0], 0, -(Rational[25, 8] + Rational[41, 8] 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 5 #^2 + 5 #^4& , 2, 0], (-2)/(-1 + 5^Rational[1, 2]), Root[ 1 - 260 #^2 + 80 #^4& , 1, 0]}, { Root[1 - 5 #^2 + 5 #^4& , 2, 0], Rational[1, 2] (1 + 5^Rational[1, 2]), Root[ 1 - 260 #^2 + 80 #^4& , 1, 0]}, { Root[1 - 5 #^2 + 5 #^4& , 3, 0], (-2)/(-1 + 5^Rational[1, 2]), Rational[1, 4] (26 + 58 5^Rational[-1, 2])^Rational[1, 2]}, { Root[1 - 5 #^2 + 5 #^4& , 3, 0], Rational[1, 2] (1 + 5^Rational[1, 2]), Rational[1, 4] (26 + 58 5^Rational[-1, 2])^ Rational[1, 2]}}, {{-0.16245984811645317`, -2.118033988749895, 1.2759762125280598`}, {-0.16245984811645317`, 2.118033988749895, 1.2759762125280598`}, { 0.16245984811645317`, -2.118033988749895, -1.27597621252806}, { 0.16245984811645317`, 2.118033988749895, -1.27597621252806}, {-0.2628655560595668, \ -0.8090169943749473, -2.327438436766327}, {-0.2628655560595668, \ -2.4270509831248424`, -0.42532540417602}, {-0.2628655560595668, 0.8090169943749475, -2.327438436766327}, {-0.2628655560595668, 2.4270509831248424`, -0.42532540417602}, { 0.2628655560595668, -0.8090169943749473, 2.327438436766327}, { 0.2628655560595668, -2.4270509831248424`, 0.42532540417601994`}, { 0.2628655560595668, 0.8090169943749475, 2.327438436766327}, { 0.2628655560595668, 2.4270509831248424`, 0.42532540417601994`}, { 0.6881909602355868, -0.5, -2.327438436766327}, {0.6881909602355868, 0.5, -2.327438436766327}, {1.2139220723547204`, -2.118033988749895, 0.42532540417601994`}, {1.2139220723547204`, 2.118033988749895, 0.42532540417601994`}, {-2.0645728807067605`, -0.5, 1.2759762125280598`}, {-2.0645728807067605`, 0.5, 1.2759762125280598`}, {-1.3763819204711736`, -1, 1.8017073246471935`}, {-1.3763819204711736`, 1, 1.8017073246471935`}, {-1.3763819204711736`, -1.6180339887498947`, \ -1.27597621252806}, {-1.3763819204711736`, 1.618033988749895, -1.27597621252806}, {-0.6881909602355868, -0.5, 2.327438436766327}, {-0.6881909602355868, 0.5, 2.327438436766327}, { 1.3763819204711736`, -1, -1.8017073246471935`}, { 1.3763819204711736`, 1, -1.8017073246471935`}, { 1.3763819204711736`, -1.6180339887498947`, 1.2759762125280598`}, { 1.3763819204711736`, 1.618033988749895, 1.2759762125280598`}, {-1.7013016167040798`, 0, -1.8017073246471935`}, { 1.7013016167040798`, 0, 1.8017073246471935`}, {-1.2139220723547204`, -2.118033988749895, \ -0.42532540417602}, {-1.2139220723547204`, 2.118033988749895, -0.42532540417602}, {-1.9641671727636467`, \ -0.8090169943749473, -1.27597621252806}, {-1.9641671727636467`, 0.8090169943749475, -1.27597621252806}, { 2.0645728807067605`, -0.5, -1.27597621252806}, {2.0645728807067605`, 0.5, -1.27597621252806}, { 2.2270327288232132`, -1, -0.42532540417602}, { 2.2270327288232132`, 1, -0.42532540417602}, { 2.3894925769396664`, -0.5, 0.42532540417601994`}, { 2.3894925769396664`, 0.5, 0.42532540417601994`}, {-1.1135163644116066`, -1.8090169943749475`, 1.2759762125280598`}, {-1.1135163644116066`, 1.8090169943749475`, 1.2759762125280598`}, { 1.1135163644116066`, -1.8090169943749475`, -1.27597621252806}, { 1.1135163644116066`, 1.8090169943749475`, -1.27597621252806}, {-2.3894925769396664`, \ -0.5, -0.42532540417602}, {-2.3894925769396664`, 0.5, -0.42532540417602}, {-1.6392474765307403`, \ -1.8090169943749475`, 0.42532540417601994`}, {-1.6392474765307403`, 1.8090169943749475`, 0.42532540417601994`}, { 1.6392474765307403`, -1.8090169943749475`, -0.42532540417602}, { 1.6392474765307403`, 1.8090169943749475`, -0.42532540417602}, { 1.9641671727636467`, -0.8090169943749473, 1.2759762125280598`}, { 1.9641671727636467`, 0.8090169943749475, 1.2759762125280598`}, { 0.85065080835204, 0, 2.327438436766327}, {-2.2270327288232132`, -1, 0.42532540417601994`}, {-2.2270327288232132`, 1, 0.42532540417601994`}, {-0.85065080835204, 0, -2.327438436766327}, {-0.5257311121191336, \ -1.6180339887498947`, -1.8017073246471935`}, {-0.5257311121191336, 1.618033988749895, -1.8017073246471935`}, { 0.5257311121191336, -1.6180339887498947`, 1.8017073246471935`}, { 0.5257311121191336, 1.618033988749895, 1.8017073246471935`}}], {{53, 11, 24, 23, 9}, {51, 39, 40, 52, 30}, {60, 28, 16, 12, 2}, {20, 42, 48, 55, 18}, {19, 17, 54, 47, 41}, {1, 10, 15, 27, 59}, {36, 26, 44, 50, 38}, {4, 58, 22, 32, 8}, {34, 29, 33, 45, 46}, {21, 57, 3, 6, 31}, {37, 49, 43, 25, 35}, {13, 5, 56, 7, 14}, {9, 59, 27, 51, 30, 53}, {53, 30, 52, 28, 60, 11}, {11, 60, 2, 42, 20, 24}, {24, 20, 18, 17, 19, 23}, {23, 19, 41, 1, 59, 9}, {13, 25, 43, 3, 57, 5}, {5, 57, 21, 33, 29, 56}, {56, 29, 34, 22, 58, 7}, {7, 58, 4, 44, 26, 14}, { 14, 26, 36, 35, 25, 13}, {40, 38, 50, 16, 28, 52}, {16, 50, 44, 4, 8, 12}, {12, 8, 32, 48, 42, 2}, {48, 32, 22, 34, 46, 55}, {55, 46, 45, 54, 17, 18}, {54, 45, 33, 21, 31, 47}, {47, 31, 6, 10, 1, 41}, {10, 6, 3, 43, 49, 15}, {15, 49, 37, 39, 51, 27}, {39, 37, 35, 36, 38, 40}}]}, Boxed->False]}], "}"}]}], "}"}]], "Output", CellLabel-> "Out[253]=",ExpressionUUID->"8f5523bf-6752-438e-8224-5a8c86aca79b"] }, Closed]] }, Closed]], Cell[CellGroupData[{ Cell["Graphics", "Section",ExpressionUUID->"e572f70f-7f2e-4e82-a4a0-13b500613e57"], Cell[TextData[{ "bug(", ButtonBox["422923", BaseStyle->"Hyperlink", ButtonData->{ URL["https://bugs.wolfram.com/show?number=422923"], None}, ButtonNote->"https://bugs.wolfram.com/show?number=422923"], "): GraphicsRow/GraphicsGrid cut off plot label text" }], "Text",ExpressionUUID->"a51b367b-d6f4-4772-8506-b431037de6ed"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"700", "/", "5."}]], "Input", CellLabel-> "In[245]:=",ExpressionUUID->"462f0d25-37eb-4b6f-bcfd-5775382f52c3"], Cell[BoxData["140.`"], "Output", CellLabel-> "Out[245]=",ExpressionUUID->"29825037-05ff-4eca-b4df-a6d1c05f148d"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"GraphicsGrid", "[", RowBox[{ RowBox[{"Partition", "[", RowBox[{ RowBox[{ RowBox[{ RowBox[{"Show", "[", RowBox[{"#2", ",", RowBox[{"PlotLabel", "\[Rule]", RowBox[{"TextCell", "[", RowBox[{ RowBox[{"Style", "[", RowBox[{"#1", ",", RowBox[{"FontSlant", "\[Rule]", "Italic"}], ",", RowBox[{"FontColor", "\[Rule]", "Black"}], ",", RowBox[{"FontFamily", "->", "\"\\""}]}], "]"}], ",", RowBox[{"TextAlignment", "\[Rule]", "Center"}], ",", RowBox[{"Hyphenation", "\[Rule]", "True"}], ",", RowBox[{"PageWidth", "\[Rule]", "140"}]}], "]"}]}], ",", RowBox[{"Boxed", "\[Rule]", "False"}]}], "]"}], "&"}], "@@@", "icosahedra"}], ",", RowBox[{"UpTo", "[", "5", "]"}]}], "]"}], ",", RowBox[{"Alignment", "\[Rule]", "Top"}], ",", RowBox[{"Dividers", "\[Rule]", "All"}], ",", RowBox[{"ImageSize", "\[Rule]", "700"}]}], "]"}]], "Input", CellLabel-> "In[254]:=",ExpressionUUID->"3d33c9c4-888e-42eb-abaf-be80738f4f0b"], Cell[BoxData[ GraphicsBox[{{}, {{InsetBox[ Graphics3DBox[ {Opacity[0.3], PolyhedronBox[ NCache[{{(1 + 2 5^Rational[-1, 2])^Rational[1, 2], 0, Rational[-1, 2] (2 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (2 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), Rational[-1, 2] (2 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (10 + 22 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), Rational[-1, 2] (2 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (10 + 22 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), Rational[-1, 2] (2 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (2 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), Rational[-1, 2] (2 + 5^Rational[1, 2])^Rational[1, 2]}, {(1 + 2 5^Rational[-1, 2])^Rational[1, 2], 0, Rational[1, 2] (2 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (2 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), Rational[1, 2] (2 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (10 + 22 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), Rational[1, 2] (2 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (10 + 22 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), Rational[1, 2] (2 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (2 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), Rational[1, 2] (2 + 5^Rational[1, 2])^Rational[1, 2]}, { Root[1 - 5 #^2 + 5 #^4& , 2, 0], 0, Rational[-1, 2] (2 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], Rational[-1, 2] (2 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (1 - 5^Rational[1, 2]), Rational[-1, 2] (2 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (-1 + 5^Rational[1, 2]), Rational[-1, 2] (2 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], Rational[-1, 2] (2 + 5^Rational[1, 2])^Rational[1, 2]}, { Root[1 - 5 #^2 + 5 #^4& , 2, 0], 0, Rational[1, 2] (2 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], Rational[1, 2] (2 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (1 - 5^Rational[1, 2]), Rational[1, 2] (2 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (-1 + 5^Rational[1, 2]), Rational[1, 2] (2 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], Rational[1, 2] (2 + 5^Rational[1, 2])^Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], 0, 0}, { Rational[-1, 4] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-2 - 5^Rational[1, 2]), 0}, {(Rational[13, 32] + Rational[29, 32] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 8] (-3 - 5^Rational[1, 2]), 0}, {(Rational[13, 32] + Rational[29, 32] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 8] (3 + 5^Rational[1, 2]), 0}, { Rational[-1, 4] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (2 + 5^Rational[1, 2]), 0}}, {{ 1.3763819204711736`, 0, -1.0290855136357462`}, { 0.42532540417601994`, 1.3090169943749475`, -1.0290855136357462`}, {-1.1135163644116066`, 0.8090169943749475, -1.0290855136357462`}, {-1.1135163644116066`, \ -0.8090169943749475, -1.0290855136357462`}, { 0.42532540417601994`, -1.3090169943749475`, -1.0290855136357462`}, \ {1.3763819204711736`, 0, 1.0290855136357462`}, {0.42532540417601994`, 1.3090169943749475`, 1.0290855136357462`}, {-1.1135163644116066`, 0.8090169943749475, 1.0290855136357462`}, {-1.1135163644116066`, -0.8090169943749475, 1.0290855136357462`}, {0.42532540417601994`, -1.3090169943749475`, 1.0290855136357462`}, {-0.5257311121191336, 0, -1.0290855136357462`}, {-0.16245984811645317`, -0.5, \ -1.0290855136357462`}, { 0.42532540417602, -0.30901699437494745`, -1.0290855136357462`}, { 0.42532540417602, 0.30901699437494745`, -1.0290855136357462`}, \ {-0.16245984811645317`, 0.5, -1.0290855136357462`}, {-0.5257311121191336, 0, 1.0290855136357462`}, {-0.16245984811645317`, -0.5, 1.0290855136357462`}, {0.42532540417602, -0.30901699437494745`, 1.0290855136357462`}, {0.42532540417602, 0.30901699437494745`, 1.0290855136357462`}, {-0.16245984811645317`, 0.5, 1.0290855136357462`}, {-1.1135163644116066`, 0, 0}, {-0.3440954801177934, -1.0590169943749475`, 0}, { 0.9008536623235968, -0.6545084971874737, 0}, { 0.9008536623235968, 0.6545084971874737, 0}, {-0.3440954801177934, 1.0590169943749475`, 0}}], {{1, 24, 23}, {2, 24, 14}, {3, 21, 25}, {4, 22, 21}, {10, 22, 23}, {11, 4, 21}, {11, 21, 3}, {12, 5, 22}, {12, 22, 4}, {13, 1, 23}, {14, 24, 1}, {15, 3, 25}, {15, 25, 2}, {17, 9, 22}, {21, 8, 25}, {21, 9, 16}, {21, 16, 8}, {21, 22, 9}, {22, 10, 17}, {23, 5, 13}, {23, 6, 18}, {23, 18, 10}, {23, 22, 5}, {24, 6, 23}, {24, 7, 19}, {24, 19, 6}, {25, 7, 24}, {25, 8, 20}, {25, 20, 7}, {25, 24, 2}, {6, 19, 7, 20, 8, 16, 9, 17, 10, 18}, {13, 5, 12, 4, 11, 3, 15, 2, 14, 1}}]}, Boxed->False, PlotLabel->FormBox[ InterpretationBox[ Cell[ BoxData[ FormBox[ StyleBox[ "\"(5,2)\[Hyphen]polygrammic antiprism\"", FontSlant -> Italic, FontColor -> GrayLevel[0], FontFamily -> "Times", StripOnInput -> False], TraditionalForm]], TextAlignment -> Center, Hyphenation -> True, PageWidth -> 140], TextCell[ Style[ "(5,2)\[Hyphen]polygrammic antiprism", FontSlant -> Italic, FontColor -> GrayLevel[0], FontFamily -> "Times"], TextAlignment -> Center, Hyphenation -> True, PageWidth -> 140]], TraditionalForm]], {195., -16.2}, ImageScaled[{0.5, 1}], {360, 369}, BaseStyle->{Graphics3DBoxOptions -> {SphericalRegion -> False}}, ContentSelectable->True], InsetBox[ Graphics3DBox[ {Opacity[0.3], PolyhedronBox[ NCache[{{ 0, Rational[1, 2] (-1 - 5^Rational[1, 2]), Rational[-1, 2]}, { 0, Rational[1, 2] (-1 - 5^Rational[1, 2]), Rational[1, 2]}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), Rational[-1, 2]}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), Rational[ 1, 2]}, {-(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], Rational[-1, 2], Rational[1, 10] ( 5 + (10 (5 - 5^Rational[1, 2]))^Rational[1, 2])}, {-( Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 2], Rational[1, 10] ( 5 + (10 (5 - 5^Rational[1, 2]))^Rational[1, 2])}, {( Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], Rational[-1, 2], Rational[1, 10] (-5 - (10 (5 - 5^Rational[1, 2]))^ Rational[1, 2])}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 2], Rational[1, 10] (-5 - (10 (5 - 5^Rational[1, 2]))^ Rational[1, 2])}, {-(Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], 0, Rational[1, 10] (-5 - (10 (5 - 5^Rational[1, 2]))^ Rational[1, 2])}, {(Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], 0, Rational[1, 10] ( 5 + (10 (5 - 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), Rational[1, 10] (-5 - (10 (5 - 5^Rational[1, 2]))^ Rational[1, 2])}, { Rational[-1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), Rational[1, 10] (-5 - (10 (5 - 5^Rational[1, 2]))^ Rational[1, 2])}, { Rational[1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), Rational[1, 10] ( 5 + (10 (5 - 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), Rational[1, 10] ( 5 + (10 (5 - 5^Rational[1, 2]))^Rational[1, 2])}, {-( Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), Rational[-1, 2]}, {-(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), Rational[ 1, 2]}, {-(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), Rational[-1, 2]}, {-(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), Rational[ 1, 2]}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), Rational[-1, 2]}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), Rational[ 1, 2]}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), Rational[-1, 2]}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), Rational[ 1, 2]}, {-(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 2], Rational[-1, 2]}, {-(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 2], Rational[ 1, 2]}, {-(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 2], Rational[-1, 2]}, {-(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 2], Rational[ 1, 2]}, {(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 2], Rational[-1, 2]}, {(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], Rational[ 1, 2]}, {(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 2], Rational[-1, 2]}, {(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2], Rational[1, 2]}}, {{0, -1.618033988749895, -0.5}, { 0, -1.618033988749895, 0.5}, {0, 1.618033988749895, -0.5}, { 0, 1.618033988749895, 0.5}, {-0.6881909602355868, -0.5, 1.0257311121191337`}, {-0.6881909602355868, 0.5, 1.0257311121191337`}, { 0.6881909602355868, -0.5, -1.0257311121191337`}, { 0.6881909602355868, 0.5, -1.0257311121191337`}, {-0.8506508083520399, 0, -1.0257311121191337`}, { 0.8506508083520399, 0, 1.0257311121191337`}, {-0.2628655560595668, -0.8090169943749475, \ -1.0257311121191337`}, {-0.2628655560595668, 0.8090169943749475, -1.0257311121191337`}, { 0.2628655560595668, -0.8090169943749475, 1.0257311121191337`}, { 0.2628655560595668, 0.8090169943749475, 1.0257311121191337`}, {-0.9510565162951535, -1.3090169943749475`, \ -0.5}, {-0.9510565162951535, -1.3090169943749475`, 0.5}, {-0.9510565162951535, 1.3090169943749475`, -0.5}, {-0.9510565162951535, 1.3090169943749475`, 0.5}, { 0.9510565162951535, -1.3090169943749475`, -0.5}, { 0.9510565162951535, -1.3090169943749475`, 0.5}, { 0.9510565162951535, 1.3090169943749475`, -0.5}, { 0.9510565162951535, 1.3090169943749475`, 0.5}, {-1.5388417685876268`, -0.5, -0.5}, {-1.5388417685876268`, \ -0.5, 0.5}, {-1.5388417685876268`, 0.5, -0.5}, {-1.5388417685876268`, 0.5, 0.5}, {1.5388417685876268`, -0.5, -0.5}, { 1.5388417685876268`, -0.5, 0.5}, {1.5388417685876268`, 0.5, -0.5}, {1.5388417685876268`, 0.5, 0.5}}], {{14, 6, 5, 13, 10}, {6, 14, 4, 18}, {5, 6, 26, 24}, {13, 5, 16, 2}, {10, 13, 20, 28}, {14, 10, 30, 22}, {22, 4, 14}, {18, 26, 6}, {24, 16, 5}, {2, 20, 13}, {28, 30, 10}, {7, 11, 9, 12, 8}, {3, 21, 8, 12}, {25, 17, 12, 9}, {15, 23, 9, 11}, {19, 1, 11, 7}, {29, 27, 7, 8}, {8, 21, 29}, {12, 17, 3}, {9, 23, 25}, {11, 1, 15}, {7, 27, 19}, {21, 3, 4, 22}, {3, 17, 18, 4}, {17, 25, 26, 18}, {25, 23, 24, 26}, {23, 15, 16, 24}, {15, 1, 2, 16}, {1, 19, 20, 2}, {19, 27, 28, 20}, {27, 29, 30, 28}, {29, 21, 22, 30}}]}, Boxed->False, PlotLabel->FormBox[ InterpretationBox[ Cell[ BoxData[ FormBox[ StyleBox[ "\"elongated pentagonal gyrobicupola\"", FontSlant -> Italic, FontColor -> GrayLevel[0], FontFamily -> "Times", StripOnInput -> False], TraditionalForm]], TextAlignment -> Center, Hyphenation -> True, PageWidth -> 140], TextCell[ Style[ "elongated pentagonal gyrobicupola", FontSlant -> Italic, FontColor -> GrayLevel[0], FontFamily -> "Times"], TextAlignment -> Center, Hyphenation -> True, PageWidth -> 140]], TraditionalForm]], {585., -16.2}, ImageScaled[{0.5, 1}], {360, 395}, BaseStyle->{Graphics3DBoxOptions -> {SphericalRegion -> False}}, ContentSelectable->True], InsetBox[ Graphics3DBox[ {Opacity[0.3], PolyhedronBox[ NCache[{{ 0, Rational[1, 2] (-1 - 5^Rational[1, 2]), Rational[-1, 2]}, { 0, Rational[1, 2] (-1 - 5^Rational[1, 2]), Rational[1, 2]}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), Rational[-1, 2]}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), Rational[ 1, 2]}, {(Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], 0, Rational[1, 10] (-5 - (10 (5 - 5^Rational[1, 2]))^ Rational[1, 2])}, {(Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], 0, Rational[1, 10] ( 5 + (10 (5 - 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), Rational[1, 10] (-5 - (10 (5 - 5^Rational[1, 2]))^ Rational[1, 2])}, { Rational[1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), Rational[1, 10] ( 5 + (10 (5 - 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), Rational[1, 10] (-5 - (10 (5 - 5^Rational[1, 2]))^ Rational[1, 2])}, { Rational[1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), Rational[1, 10] ( 5 + (10 (5 - 5^Rational[1, 2]))^Rational[1, 2])}, {-( Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), Rational[-1, 2]}, {-(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), Rational[ 1, 2]}, {-(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), Rational[-1, 2]}, {-(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), Rational[ 1, 2]}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), Rational[-1, 2]}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), Rational[ 1, 2]}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), Rational[-1, 2]}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), Rational[ 1, 2]}, {-(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], Rational[-1, 2], Rational[1, 10] (-5 - (10 (5 - 5^Rational[1, 2]))^ Rational[1, 2])}, {-(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], Rational[1, 10] ( 5 + (10 (5 - 5^Rational[1, 2]))^Rational[1, 2])}, {-( Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 2], Rational[1, 10] (-5 - (10 (5 - 5^Rational[1, 2]))^ Rational[1, 2])}, {-(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], Rational[1, 10] ( 5 + (10 (5 - 5^Rational[1, 2]))^Rational[1, 2])}, {-( Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 2], Rational[-1, 2]}, {-(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 2], Rational[ 1, 2]}, {-(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 2], Rational[-1, 2]}, {-(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 2], Rational[ 1, 2]}, {(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 2], Rational[-1, 2]}, {(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], Rational[ 1, 2]}, {(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 2], Rational[-1, 2]}, {(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2], Rational[1, 2]}}, {{0, -1.618033988749895, -0.5}, { 0, -1.618033988749895, 0.5}, {0, 1.618033988749895, -0.5}, { 0, 1.618033988749895, 0.5}, { 0.8506508083520399, 0, -1.0257311121191337`}, { 0.8506508083520399, 0, 1.0257311121191337`}, { 0.2628655560595668, -0.8090169943749475, -1.0257311121191337`}, { 0.2628655560595668, -0.8090169943749475, 1.0257311121191337`}, { 0.2628655560595668, 0.8090169943749475, -1.0257311121191337`}, { 0.2628655560595668, 0.8090169943749475, 1.0257311121191337`}, {-0.9510565162951535, -1.3090169943749475`, \ -0.5}, {-0.9510565162951535, -1.3090169943749475`, 0.5}, {-0.9510565162951535, 1.3090169943749475`, -0.5}, {-0.9510565162951535, 1.3090169943749475`, 0.5}, { 0.9510565162951535, -1.3090169943749475`, -0.5}, { 0.9510565162951535, -1.3090169943749475`, 0.5}, { 0.9510565162951535, 1.3090169943749475`, -0.5}, { 0.9510565162951535, 1.3090169943749475`, 0.5}, {-0.6881909602355868, -0.5, -1.0257311121191337`}, \ {-0.6881909602355868, -0.5, 1.0257311121191337`}, {-0.6881909602355868, 0.5, -1.0257311121191337`}, {-0.6881909602355868, 0.5, 1.0257311121191337`}, {-1.5388417685876268`, -0.5, -0.5}, \ {-1.5388417685876268`, -0.5, 0.5}, {-1.5388417685876268`, 0.5, -0.5}, {-1.5388417685876268`, 0.5, 0.5}, { 1.5388417685876268`, -0.5, -0.5}, {1.5388417685876268`, -0.5, 0.5}, {1.5388417685876268`, 0.5, -0.5}, {1.5388417685876268`, 0.5, 0.5}}], {{22, 10, 4, 14}, {20, 22, 26, 24}, {8, 20, 12, 2}, {6, 8, 16, 28}, {10, 6, 30, 18}, {18, 4, 10}, {14, 26, 22}, {24, 12, 20}, { 2, 16, 8}, {28, 30, 6}, {10, 22, 20, 8, 6}, {13, 3, 9, 21}, {23, 25, 21, 19}, {1, 11, 19, 7}, {27, 15, 7, 5}, {17, 29, 5, 9}, {9, 3, 17}, {21, 25, 13}, {19, 11, 23}, {7, 15, 1}, {5, 29, 27}, {5, 7, 19, 21, 9}, {17, 3, 4, 18}, {3, 13, 14, 4}, {13, 25, 26, 14}, {25, 23, 24, 26}, {23, 11, 12, 24}, {11, 1, 2, 12}, {1, 15, 16, 2}, {15, 27, 28, 16}, {27, 29, 30, 28}, {29, 17, 18, 30}}]}, Boxed->False, PlotLabel->FormBox[ InterpretationBox[ Cell[ BoxData[ FormBox[ StyleBox[ "\"elongated pentagonal orthobicupola\"", FontSlant -> Italic, FontColor -> GrayLevel[0], FontFamily -> "Times", StripOnInput -> False], TraditionalForm]], TextAlignment -> Center, Hyphenation -> True, PageWidth -> 140], TextCell[ Style[ "elongated pentagonal orthobicupola", FontSlant -> Italic, FontColor -> GrayLevel[0], FontFamily -> "Times"], TextAlignment -> Center, Hyphenation -> True, PageWidth -> 140]], TraditionalForm]], {975., -16.2}, ImageScaled[{0.5, 1}], {360, 395}, BaseStyle->{Graphics3DBoxOptions -> {SphericalRegion -> False}}, ContentSelectable->True], InsetBox[ Graphics3DBox[ {Opacity[0.3], PolyhedronBox[ NCache[{{0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), 0}, { Rational[1, 2] (-1 - 5^Rational[1, 2]), 0, Root[ 1 + 2 #^2 - 11 #^4 + 8 #^6 + #^8& , 1, 0]}, { Root[1 - 5 #^2 + 5 #^4& , 4, 0], 0, Root[ 1 - 5 #^2 + 5 #^4& , 3, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 3, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 3, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 3, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 3, 0]}, { Rational[1, 2] (1 + 5^Rational[1, 2]), 0, Root[ 1 + 2 #^2 - 11 #^4 + 8 #^6 + #^8& , 1, 0]}, { Root[5 - 20 #^2 + 16 #^4& , 1, 0], Rational[1, 4] (-3 - 5^Rational[1, 2]), 0}, { Root[5 - 20 #^2 + 16 #^4& , 1, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, { Root[5 - 20 #^2 + 16 #^4& , 4, 0], Rational[1, 4] (-3 - 5^Rational[1, 2]), 0}, { Root[5 - 20 #^2 + 16 #^4& , 4, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, { Root[1 - 40 #^2 + 80 #^4& , 1, 0], Rational[-1, 2], Root[ 1 - 5 #^2 + 5 #^4& , 3, 0]}, { Root[1 - 40 #^2 + 80 #^4& , 1, 0], Rational[1, 2], Root[ 1 - 5 #^2 + 5 #^4& , 3, 0]}, { Rational[-1, 2], Root[5 - 40 #^2 + 16 #^4& , 1, 0], Root[ 1 + 2 #^2 - 11 #^4 + 8 #^6 + #^8& , 1, 0]}, { Rational[-1, 2], Root[5 - 40 #^2 + 16 #^4& , 4, 0], Root[ 1 + 2 #^2 - 11 #^4 + 8 #^6 + #^8& , 1, 0]}, { Rational[1, 2], Root[5 - 40 #^2 + 16 #^4& , 1, 0], Root[ 1 + 2 #^2 - 11 #^4 + 8 #^6 + #^8& , 1, 0]}, { Rational[1, 2], Root[5 - 40 #^2 + 16 #^4& , 4, 0], Root[ 1 + 2 #^2 - 11 #^4 + 8 #^6 + #^8& , 1, 0]}, { Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[ 5 - 20 #^2 + 16 #^4& , 1, 0], Root[ 1 + 2 #^2 - 11 #^4 + 8 #^6 + #^8& , 1, 0]}, { Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[ 5 - 20 #^2 + 16 #^4& , 4, 0], Root[ 1 + 2 #^2 - 11 #^4 + 8 #^6 + #^8& , 1, 0]}, { Rational[1, 4] (3 + 5^Rational[1, 2]), Root[ 5 - 20 #^2 + 16 #^4& , 1, 0], Root[ 1 + 2 #^2 - 11 #^4 + 8 #^6 + #^8& , 1, 0]}, { Rational[1, 4] (3 + 5^Rational[1, 2]), Root[ 5 - 20 #^2 + 16 #^4& , 4, 0], Root[ 1 + 2 #^2 - 11 #^4 + 8 #^6 + #^8& , 1, 0]}, { Root[5 - 40 #^2 + 16 #^4& , 1, 0], Rational[-1, 2], 0}, { Root[5 - 40 #^2 + 16 #^4& , 1, 0], Rational[1, 2], 0}, { Root[5 - 40 #^2 + 16 #^4& , 4, 0], Rational[-1, 2], 0}, { Root[5 - 40 #^2 + 16 #^4& , 4, 0], Rational[1, 2], 0}}, {{ 0, -1.618033988749895, 0}, { 0, 1.618033988749895, 0}, {-1.618033988749895, 0, -0.8623970038594589}, { 0.8506508083520399, 0, 0.5257311121191336}, { 0.2628655560595668, -0.8090169943749475, 0.5257311121191336}, { 0.2628655560595668, 0.8090169943749475, 0.5257311121191336}, { 1.618033988749895, 0, -0.8623970038594589}, {-0.9510565162951535, \ -1.3090169943749475`, 0}, {-0.9510565162951535, 1.3090169943749475`, 0}, { 0.9510565162951535, -1.3090169943749475`, 0}, { 0.9510565162951535, 1.3090169943749475`, 0}, {-0.6881909602355868, -0.5, 0.5257311121191336}, {-0.6881909602355868, 0.5, 0.5257311121191336}, {-0.5, -1.5388417685876266`, \ -0.8623970038594589}, {-0.5, 1.5388417685876268`, -0.8623970038594589}, { 0.5, -1.5388417685876266`, -0.8623970038594589}, {0.5, 1.5388417685876268`, -0.8623970038594589}, {-1.3090169943749475`, \ -0.9510565162951535, -0.8623970038594589}, {-1.3090169943749475`, 0.9510565162951535, -0.8623970038594589}, { 1.3090169943749475`, -0.9510565162951535, -0.8623970038594589}, { 1.3090169943749475`, 0.9510565162951535, -0.8623970038594589}, {-1.5388417685876266`, \ -0.5, 0}, {-1.5388417685876266`, 0.5, 0}, {1.5388417685876268`, -0.5, 0}, { 1.5388417685876268`, 0.5, 0}}], {{19, 15, 17, 21, 7, 20, 16, 14, 18, 3}, {3, 18, 22}, {18, 14, 8}, {14, 16, 1}, {16, 20, 10}, {20, 7, 24}, {7, 21, 25}, {21, 17, 11}, {17, 15, 2}, {15, 19, 9}, {19, 3, 23}, {18, 8, 22}, {14, 1, 8}, {16, 10, 1}, {20, 24, 10}, {7, 25, 24}, {21, 11, 25}, {17, 2, 11}, {15, 9, 2}, {19, 23, 9}, {3, 22, 23}, {6, 13, 12, 5, 4}, {13, 6, 2, 9}, {12, 13, 23, 22}, {5, 12, 8, 1}, {4, 5, 10, 24}, {6, 4, 25, 11}, {11, 2, 6}, {9, 23, 13}, {22, 8, 12}, {1, 10, 5}, {24, 25, 4}}]}, Boxed->False, PlotLabel->FormBox[ InterpretationBox[ Cell[ BoxData[ FormBox[ StyleBox[ "\"gyroelongated pentagonal cupola\"", FontSlant -> Italic, FontColor -> GrayLevel[0], FontFamily -> "Times", StripOnInput -> False], TraditionalForm]], TextAlignment -> Center, Hyphenation -> True, PageWidth -> 140], TextCell[ Style[ "gyroelongated pentagonal cupola", FontSlant -> Italic, FontColor -> GrayLevel[0], FontFamily -> "Times"], TextAlignment -> Center, Hyphenation -> True, PageWidth -> 140]], TraditionalForm]], {1365., -16.2}, ImageScaled[{0.5, 1}], {360, 384}, BaseStyle->{Graphics3DBoxOptions -> {SphericalRegion -> False}}, ContentSelectable->True], InsetBox[ Graphics3DBox[ {Opacity[0.3], PolyhedronBox[ NCache[{{Sin[Rational[1, 16] Pi], -Cos[Rational[1, 16] Pi], 0}, { Sin[Rational[3, 16] Pi], -Cos[Rational[3, 16] Pi], 0}, { Cos[Rational[3, 16] Pi], -Sin[Rational[3, 16] Pi], 0}, { Cos[Rational[1, 16] Pi], -Sin[Rational[1, 16] Pi], 0}, { Cos[Rational[1, 16] Pi], Sin[Rational[1, 16] Pi], 0}, { Cos[Rational[3, 16] Pi], Sin[Rational[3, 16] Pi], 0}, { Sin[Rational[3, 16] Pi], Cos[Rational[3, 16] Pi], 0}, { Sin[Rational[1, 16] Pi], Cos[Rational[1, 16] Pi], 0}, {- Sin[Rational[1, 16] Pi], Cos[Rational[1, 16] Pi], 0}, {- Sin[Rational[3, 16] Pi], Cos[Rational[3, 16] Pi], 0}, {- Cos[Rational[3, 16] Pi], Sin[Rational[3, 16] Pi], 0}, {- Cos[Rational[1, 16] Pi], Sin[Rational[1, 16] Pi], 0}, {- Cos[Rational[1, 16] Pi], -Sin[Rational[1, 16] Pi], 0}, {- Cos[Rational[3, 16] Pi], -Sin[Rational[3, 16] Pi], 0}, {- Sin[Rational[3, 16] Pi], -Cos[Rational[3, 16] Pi], 0}, {- Sin[Rational[1, 16] Pi], -Cos[Rational[1, 16] Pi], 0}, {0, 0, -3}, {0, 0, 3}}, {{ 0.19509032201612825`, -0.9807852804032304, 0}, { 0.5555702330196022, -0.8314696123025452, 0}, { 0.8314696123025452, -0.5555702330196022, 0}, { 0.9807852804032304, -0.19509032201612825`, 0}, { 0.9807852804032304, 0.19509032201612825`, 0}, { 0.8314696123025452, 0.5555702330196022, 0}, { 0.5555702330196022, 0.8314696123025452, 0}, { 0.19509032201612825`, 0.9807852804032304, 0}, {-0.19509032201612825`, 0.9807852804032304, 0}, {-0.5555702330196022, 0.8314696123025452, 0}, {-0.8314696123025452, 0.5555702330196022, 0}, {-0.9807852804032304, 0.19509032201612825`, 0}, {-0.9807852804032304, -0.19509032201612825`, 0}, {-0.8314696123025452, -0.5555702330196022, 0}, {-0.5555702330196022, -0.8314696123025452, 0}, {-0.19509032201612825`, -0.9807852804032304, 0}, {0, 0, -3}, { 0, 0, 3}}], {{11, 17, 12}, {11, 10, 17}, {18, 11, 12}, {10, 11, 18}, {17, 9, 8}, {10, 9, 17}, {9, 18, 8}, {9, 10, 18}, {17, 5, 4}, { 6, 5, 17}, {5, 18, 4}, {5, 6, 18}, {7, 17, 8}, {7, 6, 17}, {18, 7, 8}, {6, 7, 18}, {18, 3, 4}, {2, 3, 18}, {3, 17, 4}, {3, 2, 17}, {16, 1, 18}, {1, 2, 18}, {1, 16, 17}, {2, 1, 17}, {13, 18, 12}, {13, 14, 18}, {17, 13, 12}, {14, 13, 17}, {15, 16, 18}, {14, 15, 18}, {16, 15, 17}, {15, 14, 17}}]}, Boxed->False, PlotLabel->FormBox[ InterpretationBox[ Cell[ BoxData[ FormBox[ StyleBox[ "\"hexakaidecagonal dipyramid\"", FontSlant -> Italic, FontColor -> GrayLevel[0], FontFamily -> "Times", StripOnInput -> False], TraditionalForm]], TextAlignment -> Center, Hyphenation -> True, PageWidth -> 140], TextCell[ Style[ "hexakaidecagonal dipyramid", FontSlant -> Italic, FontColor -> GrayLevel[0], FontFamily -> "Times"], TextAlignment -> Center, Hyphenation -> True, PageWidth -> 140]], TraditionalForm]], {1755., -16.2}, ImageScaled[{0.5, 1}], {154, 432}, BaseStyle->{Graphics3DBoxOptions -> {SphericalRegion -> False}}, ContentSelectable->True]}, {InsetBox[ Graphics3DBox[ {Opacity[0.3], PolyhedronBox[ NCache[{{ Rational[1, 2] Csc[Rational[1, 16] Pi], 0, Rational[ 1, 2]}, {(Rational[1, 2] Cos[Rational[1, 8] Pi]) Csc[Rational[1, 16] Pi], (Rational[1, 2] Csc[Rational[1, 16] Pi]) Sin[Rational[1, 8] Pi], Rational[ 1, 2]}, {(Rational[1, 2] 2^Rational[-1, 2]) Csc[Rational[1, 16] Pi], (Rational[1, 2] 2^Rational[-1, 2]) Csc[Rational[1, 16] Pi], Rational[ 1, 2]}, {(Rational[1, 2] Csc[Rational[1, 16] Pi]) Sin[Rational[1, 8] Pi], (Rational[1, 2] Cos[Rational[1, 8] Pi]) Csc[Rational[1, 16] Pi], Rational[1, 2]}, { 0, Rational[1, 2] Csc[Rational[1, 16] Pi], Rational[ 1, 2]}, {(Rational[-1, 2] Csc[Rational[1, 16] Pi]) Sin[Rational[1, 8] Pi], (Rational[1, 2] Cos[Rational[1, 8] Pi]) Csc[Rational[1, 16] Pi], Rational[ 1, 2]}, {(Rational[-1, 2] 2^Rational[-1, 2]) Csc[Rational[1, 16] Pi], (Rational[1, 2] 2^Rational[-1, 2]) Csc[Rational[1, 16] Pi], Rational[ 1, 2]}, {(Rational[-1, 2] Cos[Rational[1, 8] Pi]) Csc[Rational[1, 16] Pi], (Rational[1, 2] Csc[Rational[1, 16] Pi]) Sin[Rational[1, 8] Pi], Rational[1, 2]}, { Rational[-1, 2] Csc[Rational[1, 16] Pi], 0, Rational[ 1, 2]}, {(Rational[-1, 2] Cos[Rational[1, 8] Pi]) Csc[Rational[1, 16] Pi], (Rational[-1, 2] Csc[Rational[1, 16] Pi]) Sin[Rational[1, 8] Pi], Rational[ 1, 2]}, {(Rational[-1, 2] 2^Rational[-1, 2]) Csc[Rational[1, 16] Pi], (Rational[-1, 2] 2^Rational[-1, 2]) Csc[Rational[1, 16] Pi], Rational[ 1, 2]}, {(Rational[-1, 2] Csc[Rational[1, 16] Pi]) Sin[Rational[1, 8] Pi], (Rational[-1, 2] Cos[Rational[1, 8] Pi]) Csc[Rational[1, 16] Pi], Rational[1, 2]}, { 0, Rational[-1, 2] Csc[Rational[1, 16] Pi], Rational[ 1, 2]}, {(Rational[1, 2] Csc[Rational[1, 16] Pi]) Sin[Rational[1, 8] Pi], (Rational[-1, 2] Cos[Rational[1, 8] Pi]) Csc[Rational[1, 16] Pi], Rational[ 1, 2]}, {(Rational[1, 2] 2^Rational[-1, 2]) Csc[Rational[1, 16] Pi], (Rational[-1, 2] 2^Rational[-1, 2]) Csc[Rational[1, 16] Pi], Rational[ 1, 2]}, {(Rational[1, 2] Cos[Rational[1, 8] Pi]) Csc[Rational[1, 16] Pi], (Rational[-1, 2] Csc[Rational[1, 16] Pi]) Sin[Rational[1, 8] Pi], Rational[1, 2]}, { Rational[1, 2] Csc[Rational[1, 16] Pi], 0, Rational[-1, 2]}, {(Rational[1, 2] Cos[Rational[1, 8] Pi]) Csc[Rational[1, 16] Pi], (Rational[1, 2] Csc[Rational[1, 16] Pi]) Sin[Rational[1, 8] Pi], Rational[-1, 2]}, {(Rational[1, 2] 2^Rational[-1, 2]) Csc[Rational[1, 16] Pi], (Rational[1, 2] 2^Rational[-1, 2]) Csc[Rational[1, 16] Pi], Rational[-1, 2]}, {(Rational[1, 2] Csc[Rational[1, 16] Pi]) Sin[Rational[1, 8] Pi], (Rational[1, 2] Cos[Rational[1, 8] Pi]) Csc[Rational[1, 16] Pi], Rational[-1, 2]}, { 0, Rational[1, 2] Csc[Rational[1, 16] Pi], Rational[-1, 2]}, {(Rational[-1, 2] Csc[Rational[1, 16] Pi]) Sin[Rational[1, 8] Pi], (Rational[1, 2] Cos[Rational[1, 8] Pi]) Csc[Rational[1, 16] Pi], Rational[-1, 2]}, {(Rational[-1, 2] 2^Rational[-1, 2]) Csc[Rational[1, 16] Pi], (Rational[1, 2] 2^Rational[-1, 2]) Csc[Rational[1, 16] Pi], Rational[-1, 2]}, {(Rational[-1, 2] Cos[Rational[1, 8] Pi]) Csc[Rational[1, 16] Pi], (Rational[1, 2] Csc[Rational[1, 16] Pi]) Sin[Rational[1, 8] Pi], Rational[-1, 2]}, { Rational[-1, 2] Csc[Rational[1, 16] Pi], 0, Rational[-1, 2]}, {(Rational[-1, 2] Cos[Rational[1, 8] Pi]) Csc[Rational[1, 16] Pi], (Rational[-1, 2] Csc[Rational[1, 16] Pi]) Sin[Rational[1, 8] Pi], Rational[-1, 2]}, {(Rational[-1, 2] 2^Rational[-1, 2]) Csc[Rational[1, 16] Pi], (Rational[-1, 2] 2^Rational[-1, 2]) Csc[Rational[1, 16] Pi], Rational[-1, 2]}, {(Rational[-1, 2] Csc[Rational[1, 16] Pi]) Sin[Rational[1, 8] Pi], (Rational[-1, 2] Cos[Rational[1, 8] Pi]) Csc[Rational[1, 16] Pi], Rational[-1, 2]}, { 0, Rational[-1, 2] Csc[Rational[1, 16] Pi], Rational[-1, 2]}, {(Rational[1, 2] Csc[Rational[1, 16] Pi]) Sin[Rational[1, 8] Pi], (Rational[-1, 2] Cos[Rational[1, 8] Pi]) Csc[Rational[1, 16] Pi], Rational[-1, 2]}, {(Rational[1, 2] 2^Rational[-1, 2]) Csc[Rational[1, 16] Pi], (Rational[-1, 2] 2^Rational[-1, 2]) Csc[Rational[1, 16] Pi], Rational[-1, 2]}, {(Rational[1, 2] Cos[Rational[1, 8] Pi]) Csc[Rational[1, 16] Pi], (Rational[-1, 2] Csc[Rational[1, 16] Pi]) Sin[Rational[1, 8] Pi], Rational[-1, 2]}}, {{ 2.5629154477415064`, 0, 0.5}, {2.367825125725378, 0.9807852804032305, 0.5}, {1.8122548927057756`, 1.8122548927057756`, 0.5}, {0.9807852804032305, 2.367825125725378, 0.5}, {0, 2.5629154477415064`, 0.5}, {-0.9807852804032305, 2.367825125725378, 0.5}, {-1.8122548927057756`, 1.8122548927057756`, 0.5}, {-2.367825125725378, 0.9807852804032305, 0.5}, {-2.5629154477415064`, 0, 0.5}, {-2.367825125725378, -0.9807852804032305, 0.5}, {-1.8122548927057756`, -1.8122548927057756`, 0.5}, {-0.9807852804032305, -2.367825125725378, 0.5}, { 0, -2.5629154477415064`, 0.5}, { 0.9807852804032305, -2.367825125725378, 0.5}, { 1.8122548927057756`, -1.8122548927057756`, 0.5}, { 2.367825125725378, -0.9807852804032305, 0.5}, { 2.5629154477415064`, 0, -0.5}, {2.367825125725378, 0.9807852804032305, -0.5}, {1.8122548927057756`, 1.8122548927057756`, -0.5}, {0.9807852804032305, 2.367825125725378, -0.5}, { 0, 2.5629154477415064`, -0.5}, {-0.9807852804032305, 2.367825125725378, -0.5}, {-1.8122548927057756`, 1.8122548927057756`, -0.5}, {-2.367825125725378, 0.9807852804032305, -0.5}, {-2.5629154477415064`, 0, -0.5}, {-2.367825125725378, -0.9807852804032305, -0.5}, \ {-1.8122548927057756`, -1.8122548927057756`, -0.5}, {-0.9807852804032305, \ -2.367825125725378, -0.5}, {0, -2.5629154477415064`, -0.5}, { 0.9807852804032305, -2.367825125725378, -0.5}, { 1.8122548927057756`, -1.8122548927057756`, -0.5}, { 2.367825125725378, -0.9807852804032305, -0.5}}], {{15, 14, 30, 31}, {12, 11, 27, 28}, {11, 10, 26, 27}, {10, 9, 25, 26}, {9, 10, 11, 12, 13, 14, 15, 16, 1, 2, 3, 4, 5, 6, 7, 8}, {2, 1, 17, 18}, {1, 16, 32, 17}, {16, 15, 31, 32}, {30, 14, 13, 29}, {13, 12, 28, 29}, {5, 4, 20, 21}, {8, 7, 23, 24}, {25, 9, 8, 24}, {4, 3, 19, 20}, {3, 2, 18, 19}, {28, 27, 26, 25, 24, 23, 22, 21, 20, 19, 18, 17, 32, 31, 30, 29}, {7, 6, 22, 23}, {6, 5, 21, 22}}]}, Boxed->False, PlotLabel->FormBox[ InterpretationBox[ Cell[ BoxData[ FormBox[ StyleBox[ "\"hexakaidecagonal prism\"", FontSlant -> Italic, FontColor -> GrayLevel[0], FontFamily -> "Times", StripOnInput -> False], TraditionalForm]], TextAlignment -> Center, Hyphenation -> True, PageWidth -> 140], TextCell[ Style[ "hexakaidecagonal prism", FontSlant -> Italic, FontColor -> GrayLevel[0], FontFamily -> "Times"], TextAlignment -> Center, Hyphenation -> True, PageWidth -> 140]], TraditionalForm]], {195., -480.59999999999997}, ImageScaled[{0.5, 1}], {360, 347}, BaseStyle->{Graphics3DBoxOptions -> {SphericalRegion -> False}}, ContentSelectable->True], InsetBox[ Graphics3DBox[ {Opacity[0.3], PolyhedronBox[ NCache[{{0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), 0}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-1 - 5^ Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {( Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {-(1 + 2 5^Rational[-1, 2])^ Rational[1, 2], 0, Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {(1 + 2 5^Rational[-1, 2])^Rational[1, 2], 0, (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, {(Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2], 0, -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2], 0}, { Root[1 - 5 #^2 + 5 #^4& , 1, 0], 0, (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}}, {{0, -1.618033988749895, 0}, { 0, 1.618033988749895, 0}, { 0.2628655560595668, -0.8090169943749475, -1.3763819204711736`}, { 0.2628655560595668, 0.8090169943749475, -1.3763819204711736`}, { 0.42532540417601994`, -1.3090169943749475`, 0.85065080835204}, { 0.42532540417601994`, 1.3090169943749475`, 0.85065080835204}, { 0.6881909602355868, -0.5, 1.3763819204711736`}, { 0.6881909602355868, 0.5, 1.3763819204711736`}, { 1.1135163644116066`, -0.8090169943749475, -0.85065080835204}, { 1.1135163644116066`, 0.8090169943749475, -0.85065080835204}, {-1.3763819204711736`, 0, -0.85065080835204}, {-0.6881909602355868, -0.5, \ -1.3763819204711736`}, {-0.6881909602355868, 0.5, -1.3763819204711736`}, { 1.3763819204711736`, 0, 0.85065080835204}, { 0.9510565162951535, -1.3090169943749475`, 0}, { 0.9510565162951535, 1.3090169943749475`, 0}, { 0.85065080835204, 0, -1.3763819204711736`}, {-0.9510565162951535, \ -1.3090169943749475`, 0}, {-0.9510565162951535, 1.3090169943749475`, 0}, {-1.5388417685876268`, -0.5, 0}, {-1.5388417685876268`, 0.5, 0}, {1.5388417685876268`, -0.5, 0}, { 1.5388417685876268`, 0.5, 0}, {-0.85065080835204, 0, 1.3763819204711736`}, {-1.1135163644116066`, -0.8090169943749475, 0.85065080835204}, {-1.1135163644116066`, 0.8090169943749475, 0.85065080835204}, {-0.42532540417602, -1.3090169943749475`, \ -0.85065080835204}, {-0.42532540417602, 1.3090169943749475`, -0.85065080835204}, {-0.2628655560595668, \ -0.8090169943749475, 1.3763819204711736`}, {-0.2628655560595668, 0.8090169943749475, 1.3763819204711736`}}], {{30, 24, 29, 7, 8}, { 26, 24, 30}, {25, 29, 24}, {5, 7, 29}, {14, 8, 7}, {6, 30, 8}, {16, 2, 6}, {19, 21, 26}, {20, 18, 25}, {1, 15, 5}, {22, 23, 14}, {2, 19, 26, 30, 6}, {21, 20, 25, 24, 26}, {18, 1, 5, 29, 25}, {15, 22, 14, 7, 5}, {23, 16, 6, 8, 14}, {12, 13, 4, 17, 3}, {3, 17, 9}, {17, 4, 10}, {4, 13, 28}, {13, 12, 11}, {12, 3, 27}, {27, 1, 18}, {9, 22, 15}, {10, 16, 23}, {28, 19, 2}, {11, 20, 21}, {27, 3, 9, 15, 1}, {9, 17, 10, 23, 22}, {10, 4, 28, 2, 16}, {28, 13, 11, 21, 19}, {11, 12, 27, 18, 20}}]}, Boxed->False, PlotLabel->FormBox[ InterpretationBox[ Cell[ BoxData[ FormBox[ StyleBox[ "\"icosidodecahedron\"", FontSlant -> Italic, FontColor -> GrayLevel[0], FontFamily -> "Times", StripOnInput -> False], TraditionalForm]], TextAlignment -> Center, Hyphenation -> True, PageWidth -> 140], TextCell[ Style[ "icosidodecahedron", FontSlant -> Italic, FontColor -> GrayLevel[0], FontFamily -> "Times"], TextAlignment -> Center, Hyphenation -> True, PageWidth -> 140]], TraditionalForm]], {585., -480.59999999999997}, ImageScaled[{0.5, 1}], {360, 379}, BaseStyle->{Graphics3DBoxOptions -> {SphericalRegion -> False}}, ContentSelectable->True], InsetBox[ Graphics3DBox[ {Opacity[0.3], PolyhedronBox[ NCache[{{0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), 0}, {-(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), 0}, {-(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), 0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, {-(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 2], 0}, {-(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 2], 0}, {(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 2], 0}, {(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 2], 0}, {(Rational[1, 5] (5 + 2 5^Rational[1, 2]))^Rational[1, 2], 0, -(Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 5] (5 + 2 5^Rational[1, 2]))^ Rational[1, 2], 0, (Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^ Rational[1, 2]), -(Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {( Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), (Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), -(Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {( Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), (Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[ 1, 2]}, {-(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-1 - 5^ Rational[1, 2]), -(Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2]}, {-(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), (Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[ 1, 2]}, {-(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), -(Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2]}, {-(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), (Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[ 1, 2]}, {-(Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], 0, -(Rational[1, 5] (5 + 2 5^Rational[1, 2]))^ Rational[1, 2]}, {-(Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], 0, (Rational[1, 5] (5 + 2 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (-1 - 5^ Rational[1, 2]), -(Rational[1, 5] (5 + 2 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), ( Rational[1, 5] (5 + 2 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), -(Rational[1, 5] (5 + 2 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), ( Rational[1, 5] (5 + 2 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], -(Rational[1, 5] (5 + 2 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], (Rational[1, 5] (5 + 2 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], -(Rational[1, 5] (5 + 2 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], (Rational[1, 5] (5 + 2 5^Rational[1, 2]))^ Rational[1, 2]}}, {{0, -1.618033988749895, 0}, { 0, 1.618033988749895, 0}, {-0.9510565162951535, -1.3090169943749475`, 0}, {-0.9510565162951535, 1.3090169943749475`, 0}, { 0.9510565162951535, -1.3090169943749475`, 0}, { 0.9510565162951535, 1.3090169943749475`, 0}, {-1.5388417685876268`, -0.5, 0}, {-1.5388417685876268`, 0.5, 0}, {1.5388417685876268`, -0.5, 0}, { 1.5388417685876268`, 0.5, 0}, { 1.3763819204711736`, 0, -0.8506508083520399}, { 1.3763819204711736`, 0, 0.8506508083520399}, { 0.42532540417601994`, -1.3090169943749475`, -0.8506508083520399}, { 0.42532540417601994`, -1.3090169943749475`, 0.8506508083520399}, { 0.42532540417601994`, 1.3090169943749475`, -0.8506508083520399}, { 0.42532540417601994`, 1.3090169943749475`, 0.8506508083520399}, {-1.1135163644116066`, -0.8090169943749475, \ -0.8506508083520399}, {-1.1135163644116066`, -0.8090169943749475, 0.8506508083520399}, {-1.1135163644116066`, 0.8090169943749475, -0.8506508083520399}, {-1.1135163644116066`, 0.8090169943749475, 0.8506508083520399}, {-0.8506508083520399, 0, -1.3763819204711736`}, {-0.8506508083520399, 0, 1.3763819204711736`}, {-0.2628655560595668, -0.8090169943749475, \ -1.3763819204711736`}, {-0.2628655560595668, -0.8090169943749475, 1.3763819204711736`}, {-0.2628655560595668, 0.8090169943749475, -1.3763819204711736`}, {-0.2628655560595668, 0.8090169943749475, 1.3763819204711736`}, { 0.6881909602355868, -0.5, -1.3763819204711736`}, { 0.6881909602355868, -0.5, 1.3763819204711736`}, { 0.6881909602355868, 0.5, -1.3763819204711736`}, { 0.6881909602355868, 0.5, 1.3763819204711736`}}], {{26, 22, 24, 28, 30}, {20, 22, 26}, {18, 24, 22}, {14, 28, 24}, {12, 30, 28}, {16, 26, 30}, {6, 2, 16}, {4, 8, 20}, {7, 3, 18}, {1, 5, 14}, {9, 10, 12}, {2, 4, 20, 26, 16}, {8, 7, 18, 22, 20}, {3, 1, 14, 24, 18}, {5, 9, 12, 28, 14}, {10, 6, 16, 30, 12}, {29, 27, 23, 21, 25}, {25, 21, 19}, {21, 23, 17}, {23, 27, 13}, {27, 29, 11}, {29, 25, 15}, {15, 2, 6}, {19, 8, 4}, {17, 3, 7}, {13, 5, 1}, {11, 10, 9}, {15, 25, 19, 4, 2}, {19, 21, 17, 7, 8}, {17, 23, 13, 1, 3}, {13, 27, 11, 9, 5}, {11, 29, 15, 6, 10}}]}, Boxed->False, PlotLabel->FormBox[ InterpretationBox[ Cell[ BoxData[ FormBox[ StyleBox[ "\"pentagonal orthobirotunda\"", FontSlant -> Italic, FontColor -> GrayLevel[0], FontFamily -> "Times", StripOnInput -> False], TraditionalForm]], TextAlignment -> Center, Hyphenation -> True, PageWidth -> 140], TextCell[ Style[ "pentagonal orthobirotunda", FontSlant -> Italic, FontColor -> GrayLevel[0], FontFamily -> "Times"], TextAlignment -> Center, Hyphenation -> True, PageWidth -> 140]], TraditionalForm]], {975., -480.59999999999997}, ImageScaled[{0.5, 1}], {360, 379}, BaseStyle->{Graphics3DBoxOptions -> {SphericalRegion -> False}}, ContentSelectable->True], InsetBox[ Graphics3DBox[ {Opacity[0.3], PolyhedronBox[ NCache[{{Sin[Rational[1, 31] Pi], -Cos[Rational[1, 31] Pi], 0}, { Sin[Rational[3, 31] Pi], -Cos[Rational[3, 31] Pi], 0}, { Sin[Rational[5, 31] Pi], -Cos[Rational[5, 31] Pi], 0}, { Sin[Rational[7, 31] Pi], -Cos[Rational[7, 31] Pi], 0}, { Cos[Rational[13, 62] Pi], -Sin[Rational[13, 62] Pi], 0}, { Cos[Rational[9, 62] Pi], -Sin[Rational[9, 62] Pi], 0}, { Cos[Rational[5, 62] Pi], -Sin[Rational[5, 62] Pi], 0}, { Cos[Rational[1, 62] Pi], -Sin[Rational[1, 62] Pi], 0}, { Cos[Rational[3, 62] Pi], Sin[Rational[3, 62] Pi], 0}, { Cos[Rational[7, 62] Pi], Sin[Rational[7, 62] Pi], 0}, { Cos[Rational[11, 62] Pi], Sin[Rational[11, 62] Pi], 0}, { Cos[Rational[15, 62] Pi], Sin[Rational[15, 62] Pi], 0}, { Sin[Rational[6, 31] Pi], Cos[Rational[6, 31] Pi], 0}, { Sin[Rational[4, 31] Pi], Cos[Rational[4, 31] Pi], 0}, { Sin[Rational[2, 31] Pi], Cos[Rational[2, 31] Pi], 0}, {0, 1, 0}, {-Sin[Rational[2, 31] Pi], Cos[Rational[2, 31] Pi], 0}, {- Sin[Rational[4, 31] Pi], Cos[Rational[4, 31] Pi], 0}, {- Sin[Rational[6, 31] Pi], Cos[Rational[6, 31] Pi], 0}, {- Cos[Rational[15, 62] Pi], Sin[Rational[15, 62] Pi], 0}, {- Cos[Rational[11, 62] Pi], Sin[Rational[11, 62] Pi], 0}, {- Cos[Rational[7, 62] Pi], Sin[Rational[7, 62] Pi], 0}, {- Cos[Rational[3, 62] Pi], Sin[Rational[3, 62] Pi], 0}, {- Cos[Rational[1, 62] Pi], -Sin[Rational[1, 62] Pi], 0}, {- Cos[Rational[5, 62] Pi], -Sin[Rational[5, 62] Pi], 0}, {- Cos[Rational[9, 62] Pi], -Sin[Rational[9, 62] Pi], 0}, {- Cos[Rational[13, 62] Pi], -Sin[Rational[13, 62] Pi], 0}, {- Sin[Rational[7, 31] Pi], -Cos[Rational[7, 31] Pi], 0}, {- Sin[Rational[5, 31] Pi], -Cos[Rational[5, 31] Pi], 0}, {- Sin[Rational[3, 31] Pi], -Cos[Rational[3, 31] Pi], 0}, {- Sin[Rational[1, 31] Pi], -Cos[Rational[1, 31] Pi], 0}, {0, 0, 3}}, {{0.10116832198743217`, -0.9948693233918952, 0}, { 0.29936312297335793`, -0.9541392564000488, 0}, { 0.48530196253108104`, -0.8743466161445821, 0}, { 0.6513724827222223, -0.758758122692791, 0}, { 0.7907757369376985, -0.6121059825476628, 0}, { 0.8978045395707417, -0.44039415155763434`, 0}, { 0.9680771188662043, -0.25065253225872053`, 0}, { 0.9987165071710528, -0.05064916883871271, 0}, { 0.9884683243281114, 0.15142777750457667`, 0}, { 0.9377521321470804, 0.3473052528448203, 0}, { 0.8486442574947509, 0.5289640103269625, 0}, { 0.72479278722912, 0.6889669190756865, 0}, { 0.5712682150947923, 0.8207634412072763, 0}, { 0.39435585511331855`, 0.9189578116202306, 0}, { 0.20129852008866006`, 0.9795299412524945, 0}, {0, 1, 0}, {-0.20129852008866006`, 0.9795299412524945, 0}, {-0.39435585511331855`, 0.9189578116202306, 0}, {-0.5712682150947923, 0.8207634412072763, 0}, {-0.72479278722912, 0.6889669190756865, 0}, {-0.8486442574947509, 0.5289640103269625, 0}, {-0.9377521321470804, 0.3473052528448203, 0}, {-0.9884683243281114, 0.15142777750457667`, 0}, {-0.9987165071710528, -0.05064916883871271, 0}, {-0.9680771188662043, -0.25065253225872053`, 0}, {-0.8978045395707417, -0.44039415155763434`, 0}, {-0.7907757369376985, -0.6121059825476628, 0}, {-0.6513724827222223, -0.758758122692791, 0}, {-0.48530196253108104`, -0.8743466161445821, 0}, {-0.29936312297335793`, -0.9541392564000488, 0}, {-0.10116832198743217`, -0.9948693233918952, 0}, {0, 0, 3}}], {{3, 4, 32}, {32, 23, 24}, {22, 23, 32}, {20, 21, 32}, {21, 22, 32}, {17, 32, 16}, {17, 18, 32}, {19, 20, 32}, {18, 19, 32}, {9, 32, 8}, {9, 10, 32}, {11, 12, 32}, {10, 11, 32}, {32, 15, 16}, {14, 15, 32}, {12, 13, 32}, {13, 14, 32}, {25, 32, 24}, {25, 26, 32}, { 27, 28, 32}, {26, 27, 32}, {31, 1, 32}, {30, 31, 32}, {28, 29, 32}, {29, 30, 32}, {32, 7, 8}, {6, 7, 32}, {4, 5, 32}, {5, 6, 32}, { 1, 2, 32}, {2, 3, 32}, {28, 27, 26, 25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 31, 30, 29}}]}, Boxed->False, PlotLabel->FormBox[ InterpretationBox[ Cell[ BoxData[ FormBox[ StyleBox[ "\"triaconta\[Hyphen]digonal pyramid\"", FontSlant -> Italic, FontColor -> GrayLevel[0], FontFamily -> "Times", StripOnInput -> False], TraditionalForm]], TextAlignment -> Center, Hyphenation -> True, PageWidth -> 140], TextCell[ Style[ "triaconta\[Hyphen]digonal pyramid", FontSlant -> Italic, FontColor -> GrayLevel[0], FontFamily -> "Times"], TextAlignment -> Center, Hyphenation -> True, PageWidth -> 140]], TraditionalForm]], {1365., -480.59999999999997}, ImageScaled[{0.5, 1}], {252, 432}, BaseStyle->{Graphics3DBoxOptions -> {SphericalRegion -> False}}, ContentSelectable->True], InsetBox[ Graphics3DBox[ {Opacity[0.3], PolyhedronBox[ NCache[{{ Rational[-1, 2], Rational[1, 2] 3^Rational[-1, 2], (Rational[-1, 2] 3^Rational[-1, 2]) (3 + 2 5^Rational[1, 2])}, { Rational[-1, 2], (Rational[-1, 2] 3^Rational[-1, 2]) (2 + 5^Rational[1, 2]), (Rational[7, 4] + Rational[2, 3] 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2], (Rational[3, 4] + Rational[1, 3] 5^Rational[1, 2])^ Rational[1, 2], (Rational[-1, 2] 3^Rational[-1, 2]) (4 + 5^Rational[1, 2])}, { Rational[-1, 2], Rational[-1, 2] 3^Rational[-1, 2], Rational[1, 2] (Rational[29, 3] + 4 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[-1, 2], (Rational[-1, 2] 3^Rational[-1, 2]) (4 + 5^Rational[1, 2]), (Rational[-1, 2] 3^Rational[-1, 2]) (2 + 5^Rational[1, 2])}, { Rational[-1, 2], Rational[5, 3]^Rational[1, 2] + Rational[1, 2] 3^Rational[1, 2], Rational[1, 2] 3^Rational[-1, 2]}, { Rational[-1, 2], (Rational[7, 4] + Rational[2, 3] 5^Rational[1, 2])^ Rational[1, 2], (Rational[3, 4] + Rational[1, 3] 5^Rational[1, 2])^Rational[1, 2]}, { 0, -3^Rational[-1, 2], Rational[-1, 2] (Rational[29, 3] + 4 5^Rational[1, 2])^ Rational[1, 2]}, { 0, (Rational[2, 3] (3 + 5^Rational[1, 2]))^ Rational[1, 2], (Rational[-1, 2] 3^Rational[-1, 2]) (2 + 5^Rational[1, 2])}, { 0, 3^Rational[-1, 2], Rational[5, 3]^Rational[1, 2] + Rational[1, 2] 3^Rational[1, 2]}, { Rational[1, 2], Rational[1, 2] 3^Rational[-1, 2], (Rational[-1, 2] 3^Rational[-1, 2]) (3 + 2 5^Rational[1, 2])}, { Rational[ 1, 2], (Rational[-1, 2] 3^Rational[-1, 2]) (2 + 5^Rational[1, 2]), (Rational[7, 4] + Rational[2, 3] 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2], (Rational[3, 4] + Rational[1, 3] 5^Rational[1, 2])^ Rational[1, 2], (Rational[-1, 2] 3^Rational[-1, 2]) (4 + 5^Rational[1, 2])}, { Rational[1, 2], Rational[-1, 2] 3^Rational[-1, 2], Rational[1, 2] (Rational[29, 3] + 4 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[ 1, 2], (Rational[-1, 2] 3^Rational[-1, 2]) (4 + 5^Rational[1, 2]), (Rational[-1, 2] 3^Rational[-1, 2]) (2 + 5^Rational[1, 2])}, { Rational[1, 2], Rational[5, 3]^Rational[1, 2] + Rational[1, 2] 3^Rational[1, 2], Rational[1, 2] 3^Rational[-1, 2]}, { Rational[1, 2], (Rational[7, 4] + Rational[2, 3] 5^Rational[1, 2])^ Rational[1, 2], (Rational[3, 4] + Rational[1, 3] 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (-5 - 5^Rational[1, 2]), Rational[1, 2] (Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2], -(Rational[3, 4] + Rational[1, 3] 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (-5 - 5^Rational[1, 2]), Rational[-1, 2] (Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2], (Rational[3, 4] + Rational[1, 3] 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (-1 - 5^Rational[1, 2]), Rational[-1, 2] (Rational[5, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2], -(Rational[7, 4] + Rational[2, 3] 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (-1 - 5^Rational[1, 2]), (Rational[47, 24] + Rational[7, 8] 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] Rational[5, 3]^Rational[1, 2]}, { Rational[1, 4] (-1 - 5^Rational[1, 2]), Rational[1, 2] (Rational[5, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2], (Rational[7, 4] + Rational[2, 3] 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (-1 - 5^ Rational[1, 2]), -(Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2], -(Rational[3, 4] + Rational[1, 3] 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (-1 - 5^Rational[1, 2]), 2 (3^Rational[-1, 2]/(-3 + 5^Rational[1, 2])), Rational[1, 2] 3^Rational[-1, 2]}, {-1 + Rational[-1, 2] 5^Rational[1, 2], Rational[-1, 2] 3^Rational[-1, 2], Rational[-1, 2] Rational[5, 3]^Rational[1, 2]}, {-1 + Rational[-1, 2] 5^Rational[1, 2], Rational[-1, 2] Rational[5, 3]^Rational[1, 2], Rational[1, 2] 3^Rational[-1, 2]}, {(-3 + 5^Rational[1, 2])^(-1), Rational[-1, 2] (Rational[5, 6] (7 + 3 5^Rational[1, 2]))^ Rational[1, 2], Rational[-1, 2] Rational[5, 3]^Rational[1, 2]}, {(-3 + 5^Rational[1, 2])^(-1), Root[1 - 36 #^2 + 144 #^4& , 2, 0], (Rational[-1, 2] 3^Rational[-1, 2]) (4 + 5^Rational[1, 2])}, {(-3 + 5^Rational[1, 2])^(-1), (Rational[-1, 4] 3^Rational[-1, 2]) (7 + 5^Rational[1, 2]), (Rational[3, 4] + Rational[1, 3] 5^Rational[1, 2])^ Rational[1, 2]}, {(-3 + 5^Rational[1, 2])^(-1), (Rational[1, 4] 3^Rational[-1, 2]) (7 + 5^Rational[1, 2]), (Rational[-1, 2] 3^Rational[-1, 2]) (2 + 5^Rational[1, 2])}, {(-3 + 5^Rational[1, 2])^(-1), Root[ 1 - 36 #^2 + 144 #^4& , 3, 0], (Rational[7, 4] + Rational[2, 3] 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (1 + 5^Rational[1, 2]), Rational[-1, 2] (Rational[5, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2], -(Rational[7, 4] + Rational[2, 3] 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (1 + 5^Rational[1, 2]), (Rational[47, 24] + Rational[7, 8] 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] Rational[5, 3]^Rational[1, 2]}, { Rational[1, 4] (1 + 5^Rational[1, 2]), Rational[1, 2] (Rational[5, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2], (Rational[7, 4] + Rational[2, 3] 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (1 + 5^Rational[1, 2]), -(Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2], -(Rational[3, 4] + Rational[1, 3] 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (1 + 5^Rational[1, 2]), 2 (3^Rational[-1, 2]/(-3 + 5^Rational[1, 2])), Rational[1, 2] 3^Rational[-1, 2]}, { Rational[1, 2] (2 + 5^Rational[1, 2]), Rational[-1, 2] 3^Rational[-1, 2], Rational[-1, 2] Rational[5, 3]^Rational[1, 2]}, { Rational[1, 2] (2 + 5^Rational[1, 2]), Rational[-1, 2] Rational[5, 3]^Rational[1, 2], Rational[1, 2] 3^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2]), Rational[-1, 2] (Rational[5, 6] (7 + 3 5^Rational[1, 2]))^ Rational[1, 2], Rational[-1, 2] Rational[5, 3]^Rational[1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2]), Root[ 1 - 36 #^2 + 144 #^4& , 2, 0], (Rational[-1, 2] 3^Rational[-1, 2]) (4 + 5^Rational[1, 2])}, { Rational[1, 4] (3 + 5^Rational[1, 2]), (Rational[-1, 4] 3^Rational[-1, 2]) (7 + 5^Rational[1, 2]), (Rational[3, 4] + Rational[1, 3] 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2]), (Rational[1, 4] 3^Rational[-1, 2]) (7 + 5^Rational[1, 2]), (Rational[-1, 2] 3^Rational[-1, 2]) (2 + 5^Rational[1, 2])}, { Rational[1, 4] (3 + 5^Rational[1, 2]), Root[ 1 - 36 #^2 + 144 #^4& , 3, 0], (Rational[7, 4] + Rational[2, 3] 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (5 + 5^Rational[1, 2]), Rational[1, 2] (Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2], -(Rational[3, 4] + Rational[1, 3] 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (5 + 5^Rational[1, 2]), Rational[-1, 2] (Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2], (Rational[3, 4] + Rational[1, 3] 5^Rational[1, 2])^Rational[1, 2]}}, {{-0.5, 0.2886751345948129, -2.1570198525202446`}, {-0.5, \ -1.2228474935575289`, 1.8001977627471544`}, {-0.5, 1.2228474935575286`, -1.8001977627471546`}, {-0.5, \ -0.2886751345948129, 2.157019852520244}, {-0.5, -1.8001977627471546`, \ -1.2228474935575289`}, {-0.5, 2.157019852520244, 0.2886751345948129}, {-0.5, 1.8001977627471544`, 1.2228474935575286`}, { 0, -0.5773502691896258, -2.157019852520244}, { 0, 1.8683447179254313`, -1.2228474935575289`}, { 0, 0.5773502691896258, 2.157019852520244}, {0.5, 0.2886751345948129, -2.1570198525202446`}, { 0.5, -1.2228474935575289`, 1.8001977627471544`}, {0.5, 1.2228474935575286`, -1.8001977627471546`}, { 0.5, -0.2886751345948129, 2.157019852520244}, { 0.5, -1.8001977627471546`, -1.2228474935575289`}, {0.5, 2.157019852520244, 0.2886751345948129}, {0.5, 1.8001977627471544`, 1.2228474935575286`}, {-1.8090169943749475`, 0.46708617948135783`, -1.2228474935575286`}, \ {-1.8090169943749475`, -0.46708617948135783`, 1.2228474935575286`}, {-0.8090169943749475, -1.0444364486709836`, \ -1.8001977627471544`}, {-0.8090169943749475, 1.9786088076336994`, -0.6454972243679028}, {-0.8090169943749475, 1.0444364486709836`, 1.8001977627471544`}, {-1.618033988749895, -0.9341723589627157, \ -1.2228474935575286`}, {-1.618033988749895, -1.511522628152342, 0.2886751345948129}, {-2.118033988749895, -0.2886751345948129, \ -0.6454972243679028}, {-2.118033988749895, -0.6454972243679028, 0.2886751345948129}, {-1.3090169943749477`, -1.6899336730388865`, \ -0.6454972243679028}, {-1.3090169943749477`, -0.17841104488654497`, \ -1.8001977627471546`}, {-1.3090169943749477`, -1.3331115832657967`, 1.2228474935575286`}, {-1.3090169943749477`, 1.3331115832657967`, -1.2228474935575289`}, {-1.3090169943749477`, 0.17841104488654497`, 1.8001977627471544`}, { 0.8090169943749475, -1.0444364486709836`, -1.8001977627471544`}, { 0.8090169943749475, 1.9786088076336994`, -0.6454972243679028}, { 0.8090169943749475, 1.0444364486709836`, 1.8001977627471544`}, { 1.618033988749895, -0.9341723589627157, -1.2228474935575286`}, { 1.618033988749895, -1.511522628152342, 0.2886751345948129}, { 2.118033988749895, -0.2886751345948129, -0.6454972243679028}, { 2.118033988749895, -0.6454972243679028, 0.2886751345948129}, { 1.3090169943749475`, -1.6899336730388865`, -0.6454972243679028}, { 1.3090169943749475`, -0.17841104488654497`, -1.8001977627471546`}, \ {1.3090169943749475`, -1.3331115832657967`, 1.2228474935575286`}, { 1.3090169943749475`, 1.3331115832657967`, -1.2228474935575289`}, { 1.3090169943749475`, 0.17841104488654497`, 1.8001977627471544`}, { 1.8090169943749475`, 0.46708617948135783`, -1.2228474935575286`}, { 1.8090169943749475`, -0.46708617948135783`, 1.2228474935575286`}}], {{1, 11, 8}, {3, 9, 13}, {4, 14, 10}, {20, 23, 28}, {32, 40, 35}, {1, 3, 13, 11}, {1, 8, 20, 28}, {2, 12, 14, 4}, {3, 30, 21, 9}, {4, 10, 22, 31}, {5, 27, 23, 20}, {6, 7, 17, 16}, {8, 11, 40, 32}, {9, 33, 42, 13}, {10, 14, 43, 34}, {15, 32, 35, 39}, {18, 28, 23, 25}, {19, 26, 24, 29}, {35, 40, 44, 37}, {36, 38, 45, 41}, {1, 28, 18, 30, 3}, {2, 4, 31, 19, 29}, {5, 20, 8, 32, 15}, {6, 16, 33, 9, 21}, {7, 22, 10, 34, 17}, {11, 13, 42, 44, 40}, {12, 41, 45, 43, 14}, {23, 27, 24, 26, 25}, {35, 37, 38, 36, 39}, {2, 29, 24, 27, 5, 15, 39, 36, 41, 12}, {6, 21, 30, 18, 25, 26, 19, 31, 22, 7}, {16, 17, 34, 43, 45, 38, 37, 44, 42, 33}}]}, Boxed->False, PlotLabel->FormBox[ InterpretationBox[ Cell[ BoxData[ FormBox[ StyleBox[ "\"tridiminished rhombicosidodecahedron\"", FontSlant -> Italic, FontColor -> GrayLevel[0], FontFamily -> "Times", StripOnInput -> False], TraditionalForm]], TextAlignment -> Center, Hyphenation -> True, PageWidth -> 140], TextCell[ Style[ "tridiminished rhombicosidodecahedron", FontSlant -> Italic, FontColor -> GrayLevel[0], FontFamily -> "Times"], TextAlignment -> Center, Hyphenation -> True, PageWidth -> 140]], TraditionalForm]], {1755., -480.59999999999997}, ImageScaled[{0.5, 1}], {360, 395}, BaseStyle->{Graphics3DBoxOptions -> {SphericalRegion -> False}}, ContentSelectable->True]}, {InsetBox[ Graphics3DBox[ {Opacity[0.3], PolyhedronBox[ NCache[{{ 0, Rational[1, 2] (-1 - 5^Rational[1, 2]), (Rational[25, 8] + Rational[11, 8] 5^Rational[1, 2])^Rational[1, 2]}, { 0, Rational[1, 2] (-1 - 5^Rational[1, 2]), Root[ 5 - 100 #^2 + 16 #^4& , 1, 0]}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), (Rational[25, 8] + Rational[11, 8] 5^Rational[1, 2])^Rational[1, 2]}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), Root[ 5 - 100 #^2 + 16 #^4& , 1, 0]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-5 - 3 5^Rational[1, 2]), Root[ 1 - 20 #^2 + 80 #^4& , 3, 0]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (5 + 3 5^Rational[1, 2]), Root[ 1 - 20 #^2 + 80 #^4& , 3, 0]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], -1 + Rational[-1, 2] 5^Rational[1, 2], (Rational[17, 8] + Rational[31, 8] 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 2] (2 + 5^Rational[1, 2]), (Rational[17, 8] + Rational[31, 8] 5^Rational[-1, 2])^ Rational[1, 2]}, {(-2) (1 + 2 5^Rational[-1, 2])^Rational[1, 2], 0, Root[1 - 100 #^2 + 80 #^4& , 1, 0]}, { Rational[-3, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], -1 + Rational[-1, 2] 5^Rational[1, 2], Root[ 1 - 20 #^2 + 80 #^4& , 3, 0]}, { Rational[-3, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 2] (2 + 5^Rational[1, 2]), Root[ 1 - 20 #^2 + 80 #^4& , 3, 0]}, {-(1 + 2 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 2] (-3 - 5^Rational[1, 2]), Root[ 1 - 20 #^2 + 80 #^4& , 2, 0]}, {-(1 + 2 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 2] (3 + 5^Rational[1, 2]), Root[ 1 - 20 #^2 + 80 #^4& , 2, 0]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], -1 + Rational[-1, 2] 5^Rational[1, 2], -(Rational[17, 8] + Rational[31, 8] 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 2] (2 + 5^Rational[1, 2]), -(Rational[17, 8] + Rational[31, 8] 5^Rational[-1, 2])^Rational[1, 2]}, {(1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 2] (-3 - 5^Rational[1, 2]), Root[ 1 - 20 #^2 + 80 #^4& , 3, 0]}, {(1 + 2 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 2] (3 + 5^Rational[1, 2]), Root[ 1 - 20 #^2 + 80 #^4& , 3, 0]}, { 2 (1 + 2 5^Rational[-1, 2])^Rational[1, 2], 0, (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[13, 8] + Rational[29, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^ Rational[1, 2]), -(Rational[17, 8] + Rational[31, 8] 5^Rational[-1, 2])^Rational[1, 2]}, {( Rational[13, 8] + Rational[29, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), -(Rational[17, 8] + Rational[31, 8] 5^Rational[-1, 2])^Rational[1, 2]}, {( Rational[9, 4] + Rational[9, 2] 5^Rational[-1, 2])^ Rational[1, 2], -1 + Rational[-1, 2] 5^Rational[1, 2], Root[ 1 - 20 #^2 + 80 #^4& , 2, 0]}, {(Rational[9, 4] + Rational[9, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 2] (2 + 5^Rational[1, 2]), Root[ 1 - 20 #^2 + 80 #^4& , 2, 0]}, {(Rational[5, 2] + Rational[11, 2] 5^Rational[-1, 2])^Rational[1, 2], 0, (Rational[17, 8] + Rational[31, 8] 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[5, 2] + Rational[11, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 2] (-1 - 5^Rational[1, 2]), Root[ 1 - 100 #^2 + 80 #^4& , 1, 0]}, {(Rational[5, 2] + Rational[11, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 2] (1 + 5^Rational[1, 2]), Root[ 1 - 100 #^2 + 80 #^4& , 1, 0]}, {-(Rational[29, 8] + Rational[61, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[ 1 - 20 #^2 + 80 #^4& , 3, 0]}, {-(Rational[29, 8] + Rational[61, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), Root[ 1 - 20 #^2 + 80 #^4& , 3, 0]}, {(Rational[29, 8] + Rational[61, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[ 1 - 20 #^2 + 80 #^4& , 2, 0]}, {(Rational[29, 8] + Rational[61, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), Root[ 1 - 20 #^2 + 80 #^4& , 2, 0]}, {(Rational[17, 4] + Rational[19, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], Root[ 1 - 20 #^2 + 80 #^4& , 3, 0]}, {(Rational[17, 4] + Rational[19, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], Root[1 - 20 #^2 + 80 #^4& , 3, 0]}, { Rational[-1, 2] (17 + 38 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], Root[1 - 20 #^2 + 80 #^4& , 2, 0]}, { Rational[-1, 2] (17 + 38 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 2], Root[ 1 - 20 #^2 + 80 #^4& , 2, 0]}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), (Rational[25, 8] + Rational[11, 8] 5^Rational[1, 2])^ Rational[1, 2]}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[ 5 - 100 #^2 + 16 #^4& , 1, 0]}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), (Rational[25, 8] + Rational[11, 8] 5^Rational[1, 2])^ Rational[1, 2]}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), Root[ 5 - 100 #^2 + 16 #^4& , 1, 0]}, {( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 2] (-3 - 5^Rational[1, 2]), (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 2] (3 + 5^Rational[1, 2]), (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), (Rational[25, 8] + Rational[11, 8] 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[ 5 - 100 #^2 + 16 #^4& , 1, 0]}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), (Rational[25, 8] + Rational[11, 8] 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), Root[ 5 - 100 #^2 + 16 #^4& , 1, 0]}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], (Rational[25, 8] + Rational[11, 8] 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], Root[5 - 100 #^2 + 16 #^4& , 1, 0]}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2], (Rational[25, 8] + Rational[11, 8] 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2], Root[5 - 100 #^2 + 16 #^4& , 1, 0]}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], (Rational[25, 8] + Rational[11, 8] 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], Root[5 - 100 #^2 + 16 #^4& , 1, 0]}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2], (Rational[25, 8] + Rational[11, 8] 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2], Root[5 - 100 #^2 + 16 #^4& , 1, 0]}, { Root[1 - 25 #^2 + 5 #^4& , 1, 0], 0, -(Rational[17, 8] + Rational[31, 8] 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 25 #^2 + 5 #^4& , 1, 0], Rational[1, 2] (-1 - 5^Rational[1, 2]), (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2]}, { Root[1 - 25 #^2 + 5 #^4& , 1, 0], Rational[1, 2] (1 + 5^Rational[1, 2]), (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2]}, { Root[1 - 5 #^2 + 5 #^4& , 1, 0], Rational[1, 2] (-3 - 5^Rational[1, 2]), Root[ 1 - 100 #^2 + 80 #^4& , 1, 0]}, { Root[1 - 5 #^2 + 5 #^4& , 1, 0], Rational[1, 2] (3 + 5^Rational[1, 2]), Root[ 1 - 100 #^2 + 80 #^4& , 1, 0]}, { Root[1 - 260 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-3 - 5^Rational[1, 2]), (Rational[17, 8] + Rational[31, 8] 5^Rational[-1, 2])^Rational[1, 2]}, { Root[1 - 260 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), (Rational[17, 8] + Rational[31, 8] 5^Rational[-1, 2])^Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-5 - 3 5^Rational[1, 2]), Root[ 1 - 20 #^2 + 80 #^4& , 2, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (5 + 3 5^Rational[1, 2]), Root[ 1 - 20 #^2 + 80 #^4& , 2, 0]}}, {{ 0, -1.618033988749895, 2.48989828488278}, { 0, -1.618033988749895, -2.48989828488278}, { 0, 1.618033988749895, 2.48989828488278}, { 0, 1.618033988749895, -2.48989828488278}, { 0.42532540417601994`, -2.9270509831248424`, 0.2628655560595668}, { 0.42532540417601994`, 2.9270509831248424`, 0.2628655560595668}, { 0.6881909602355868, -2.118033988749895, 1.9641671727636467`}, { 0.6881909602355868, 2.118033988749895, 1.9641671727636467`}, {-2.752763840942347, 0, -1.1135163644116066`}, {-2.0645728807067605`, \ -2.118033988749895, 0.2628655560595668}, {-2.0645728807067605`, 2.118033988749895, 0.2628655560595668}, {-1.3763819204711736`, -2.618033988749895, \ -0.2628655560595668}, {-1.3763819204711736`, 2.618033988749895, -0.2628655560595668}, {-0.6881909602355868, \ -2.118033988749895, -1.9641671727636467`}, {-0.6881909602355868, 2.118033988749895, -1.9641671727636467`}, { 1.3763819204711736`, -2.618033988749895, 0.2628655560595668}, { 1.3763819204711736`, 2.618033988749895, 0.2628655560595668}, { 2.752763840942347, 0, 1.1135163644116066`}, { 1.8017073246471935`, -1.3090169943749475`, -1.9641671727636467`}, { 1.8017073246471935`, 1.3090169943749475`, -1.9641671727636467`}, { 2.0645728807067605`, -2.118033988749895, -0.2628655560595668}, { 2.0645728807067605`, 2.118033988749895, -0.2628655560595668}, { 2.2270327288232132`, 0, 1.9641671727636467`}, { 2.2270327288232132`, -1.618033988749895, -1.1135163644116066`}, { 2.2270327288232132`, 1.618033988749895, -1.1135163644116066`}, {-2.6523581329992334`, \ -1.3090169943749475`, 0.2628655560595668}, {-2.6523581329992334`, 1.3090169943749475`, 0.2628655560595668}, { 2.6523581329992334`, -1.3090169943749475`, -0.2628655560595668}, { 2.6523581329992334`, 1.3090169943749475`, -0.2628655560595668}, { 2.9152236890588, -0.5, 0.2628655560595668}, {2.9152236890588, 0.5, 0.2628655560595668}, {-2.9152236890588, -0.5, \ -0.2628655560595668}, {-2.9152236890588, 0.5, -0.2628655560595668}, { 0.9510565162951535, -1.3090169943749475`, 2.48989828488278}, { 0.9510565162951535, -1.3090169943749475`, -2.48989828488278}, { 0.9510565162951535, 1.3090169943749475`, 2.48989828488278}, { 0.9510565162951535, 1.3090169943749475`, -2.48989828488278}, { 0.85065080835204, -2.618033988749895, 1.1135163644116066`}, { 0.85065080835204, 2.618033988749895, 1.1135163644116066`}, {-0.9510565162951535, -1.3090169943749475`, 2.48989828488278}, {-0.9510565162951535, -1.3090169943749475`, \ -2.48989828488278}, {-0.9510565162951535, 1.3090169943749475`, 2.48989828488278}, {-0.9510565162951535, 1.3090169943749475`, -2.48989828488278}, {-1.5388417685876268`, \ -0.5, 2.48989828488278}, {-1.5388417685876268`, -0.5, -2.48989828488278}, \ {-1.5388417685876268`, 0.5, 2.48989828488278}, {-1.5388417685876268`, 0.5, -2.48989828488278}, {1.5388417685876268`, -0.5, 2.48989828488278}, { 1.5388417685876268`, -0.5, -2.48989828488278}, { 1.5388417685876268`, 0.5, 2.48989828488278}, {1.5388417685876268`, 0.5, -2.48989828488278}, {-2.2270327288232132`, 0, -1.9641671727636467`}, {-2.2270327288232132`, \ -1.618033988749895, 1.1135163644116066`}, {-2.2270327288232132`, 1.618033988749895, 1.1135163644116066`}, {-0.85065080835204, -2.618033988749895, \ -1.1135163644116066`}, {-0.85065080835204, 2.618033988749895, -1.1135163644116066`}, {-1.8017073246471935`, \ -1.3090169943749475`, 1.9641671727636467`}, {-1.8017073246471935`, 1.3090169943749475`, 1.9641671727636467`}, {-0.42532540417602, -2.9270509831248424`, \ -0.2628655560595668}, {-0.42532540417602, 2.9270509831248424`, -0.2628655560595668}}], {{3, 42, 46, 44, 40, 1, 34, 48, 50, 36}, {47, 43, 4, 37, 51, 49, 35, 2, 41, 45}, {2, 35, 19, 24, 21, 16, 5, 59, 55, 14}, {49, 51, 20, 25, 29, 31, 30, 28, 24, 19}, {37, 4, 15, 56, 60, 6, 17, 22, 25, 20}, {43, 47, 52, 9, 33, 27, 11, 13, 56, 15}, {45, 41, 14, 55, 12, 10, 26, 32, 9, 52}, {6, 60, 13, 11, 54, 58, 42, 3, 8, 39}, {27, 33, 32, 26, 53, 57, 44, 46, 58, 54}, {10, 12, 59, 5, 38, 7, 1, 40, 57, 53}, {16, 21, 28, 30, 18, 23, 48, 34, 7, 38}, {31, 29, 22, 17, 39, 8, 36, 50, 23, 18}, {9, 32, 33}, {18, 30, 31}, {47, 45, 52}, {50, 48, 23}, {10, 53, 26}, { 27, 54, 11}, {21, 24, 28}, {29, 25, 22}, {40, 44, 57}, {58, 46, 42}, {35, 49, 19}, {20, 51, 37}, {12, 55, 59}, {60, 56, 13}, {41, 2, 14}, {15, 4, 43}, {34, 1, 7}, {8, 3, 36}, {38, 5, 16}, {17, 6, 39}}]}, Boxed->False, PlotLabel->FormBox[ InterpretationBox[ Cell[ BoxData[ FormBox[ StyleBox[ "\"truncated dodecahedron\"", FontSlant -> Italic, FontColor -> GrayLevel[0], FontFamily -> "Times", StripOnInput -> False], TraditionalForm]], TextAlignment -> Center, Hyphenation -> True, PageWidth -> 140], TextCell[ Style[ "truncated dodecahedron", FontSlant -> Italic, FontColor -> GrayLevel[0], FontFamily -> "Times"], TextAlignment -> Center, Hyphenation -> True, PageWidth -> 140]], TraditionalForm]], {195., -945.}, ImageScaled[{0.5, 1}], {360, 379}, BaseStyle->{Graphics3DBoxOptions -> {SphericalRegion -> False}}, ContentSelectable->True], InsetBox[ Graphics3DBox[ {Opacity[0.3], PolyhedronBox[ NCache[{{ Rational[-1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2], -1 + Rational[-1, 2] 5^Rational[1, 2], (Rational[9, 8] + Rational[9, 8] 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 2] (2 + 5^Rational[1, 2]), (Rational[9, 8] + Rational[9, 8] 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2], -1 + Rational[-1, 2] 5^Rational[1, 2], Rational[-3, 2] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 2] (2 + 5^Rational[1, 2]), Rational[-3, 2] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[-1, 4] (2 - 2 5^Rational[-1, 2])^Rational[1, 2], (1 - 5^ Rational[1, 2])^(-1), -(Rational[25, 8] + Rational[41, 8] 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 4] (2 - 2 5^Rational[-1, 2])^Rational[1, 2], Rational[-3, 4] (1 + 5^Rational[1, 2]), Root[ 1 - 20 #^2 + 80 #^4& , 1, 0]}, { Rational[-1, 4] (2 - 2 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), -(Rational[25, 8] + Rational[41, 8] 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 4] (2 - 2 5^Rational[-1, 2])^Rational[1, 2], Rational[3, 4] (1 + 5^Rational[1, 2]), Root[ 1 - 20 #^2 + 80 #^4& , 1, 0]}, { Rational[1, 4] (2 - 2 5^Rational[-1, 2])^Rational[1, 2], (1 - 5^ Rational[1, 2])^(-1), (Rational[25, 8] + Rational[41, 8] 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[1, 4] (2 - 2 5^Rational[-1, 2])^Rational[1, 2], Rational[-3, 4] (1 + 5^Rational[1, 2]), (Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[1, 4] (2 - 2 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), (Rational[25, 8] + Rational[41, 8] 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[1, 4] (2 - 2 5^Rational[-1, 2])^Rational[1, 2], Rational[3, 4] (1 + 5^Rational[1, 2]), (Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], -(Rational[25, 8] + Rational[41, 8] 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], -(Rational[25, 8] + Rational[41, 8] 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[5, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], -1 + Rational[-1, 2] 5^Rational[1, 2], (Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[5, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 2] (2 + 5^Rational[1, 2]), (Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-3, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], (Rational[9, 8] + Rational[9, 8] 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-3, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], (Rational[9, 8] + Rational[9, 8] 5^Rational[-1, 2])^ Rational[1, 2]}, {-(1 + 2 5^Rational[-1, 2])^Rational[1, 2], -1, Rational[1, 4] (26 + 58 5^Rational[-1, 2])^ Rational[1, 2]}, {-(1 + 2 5^Rational[-1, 2])^Rational[1, 2], 1, Rational[1, 4] (26 + 58 5^Rational[-1, 2])^ Rational[1, 2]}, {-(1 + 2 5^Rational[-1, 2])^ Rational[1, 2], (-2)/(-1 + 5^Rational[1, 2]), Rational[-3, 2] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {-(1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 2] (1 + 5^Rational[1, 2]), Rational[-3, 2] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], (Rational[25, 8] + Rational[41, 8] 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], (Rational[25, 8] + Rational[41, 8] 5^Rational[-1, 2])^ Rational[1, 2]}, {(1 + 2 5^Rational[-1, 2])^Rational[1, 2], -1, Root[1 - 260 #^2 + 80 #^4& , 1, 0]}, {(1 + 2 5^Rational[-1, 2])^ Rational[1, 2], 1, Root[ 1 - 260 #^2 + 80 #^4& , 1, 0]}, {(1 + 2 5^Rational[-1, 2])^ Rational[1, 2], (-2)/(-1 + 5^Rational[1, 2]), (Rational[9, 8] + Rational[9, 8] 5^Rational[-1, 2])^ Rational[1, 2]}, {(1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 2] (1 + 5^Rational[1, 2]), (Rational[9, 8] + Rational[9, 8] 5^Rational[-1, 2])^ Rational[1, 2]}, {-(2 + 2 5^Rational[-1, 2])^Rational[1, 2], 0, Root[1 - 260 #^2 + 80 #^4& , 1, 0]}, {(2 + 2 5^Rational[-1, 2])^ Rational[1, 2], 0, Rational[1, 4] (26 + 58 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (5 + 2 5^Rational[-1, 2])^Rational[1, 2], -1 + Rational[-1, 2] 5^Rational[1, 2], Root[ 1 - 20 #^2 + 80 #^4& , 1, 0]}, { Rational[-1, 2] (5 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 2] (2 + 5^Rational[1, 2]), Root[ 1 - 20 #^2 + 80 #^4& , 1, 0]}, {-(Rational[17, 8] + Rational[31, 8] 5^Rational[-1, 2])^ Rational[1, 2], (1 - 5^Rational[1, 2])^(-1), Rational[-3, 2] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {-(Rational[17, 8] + Rational[31, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), Rational[-3, 2] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[9, 4] + Rational[9, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], Rational[-3, 2] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[9, 4] + Rational[9, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 2], Rational[-3, 2] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[5, 2] + Rational[11, 2] 5^Rational[-1, 2])^Rational[1, 2], -1, Root[ 1 - 20 #^2 + 80 #^4& , 1, 0]}, {(Rational[5, 2] + Rational[11, 2] 5^Rational[-1, 2])^Rational[1, 2], 1, Root[ 1 - 20 #^2 + 80 #^4& , 1, 0]}, {(Rational[13, 4] + Rational[11, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], (Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[13, 4] + Rational[11, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], (Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^ Rational[1, 2]}, { Rational[-1, 4] (10 + 22 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-5 - 5^Rational[1, 2]), (Rational[9, 8] + Rational[9, 8] 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 4] (10 + 22 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (5 + 5^Rational[1, 2]), (Rational[9, 8] + Rational[9, 8] 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[1, 4] (10 + 22 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-5 - 5^Rational[1, 2]), Rational[-3, 2] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 4] (10 + 22 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (5 + 5^Rational[1, 2]), Rational[-3, 2] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[-1, 2] (13 + 22 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], Root[1 - 20 #^2 + 80 #^4& , 1, 0]}, { Rational[-1, 2] (13 + 22 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 2], Root[1 - 20 #^2 + 80 #^4& , 1, 0]}, { Rational[-1, 4] (26 + 38 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-5 - 5^Rational[1, 2]), (Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 4] (26 + 38 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (5 + 5^Rational[1, 2]), (Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[1, 4] (26 + 38 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-5 - 5^Rational[1, 2]), Root[ 1 - 20 #^2 + 80 #^4& , 1, 0]}, { Rational[1, 4] (26 + 38 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (5 + 5^Rational[1, 2]), Root[ 1 - 20 #^2 + 80 #^4& , 1, 0]}, { Rational[1, 4] (34 + 62 5^Rational[-1, 2])^Rational[1, 2], (1 - 5^ Rational[1, 2])^(-1), (Rational[9, 8] + Rational[9, 8] 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[1, 4] (34 + 62 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), (Rational[9, 8] + Rational[9, 8] 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2], 0, (Rational[25, 8] + Rational[41, 8] 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 25 #^2 + 5 #^4& , 1, 0], -1, (Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2]}, { Root[1 - 25 #^2 + 5 #^4& , 1, 0], 1, (Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 5 #^2 + 5 #^4& , 1, 0], 0, -(Rational[25, 8] + Rational[41, 8] 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 5 #^2 + 5 #^4& , 2, 0], (-2)/(-1 + 5^Rational[1, 2]), Root[1 - 260 #^2 + 80 #^4& , 1, 0]}, { Root[1 - 5 #^2 + 5 #^4& , 2, 0], Rational[1, 2] (1 + 5^Rational[1, 2]), Root[ 1 - 260 #^2 + 80 #^4& , 1, 0]}, { Root[1 - 5 #^2 + 5 #^4& , 3, 0], (-2)/(-1 + 5^Rational[1, 2]), Rational[1, 4] (26 + 58 5^Rational[-1, 2])^Rational[1, 2]}, { Root[1 - 5 #^2 + 5 #^4& , 3, 0], Rational[1, 2] (1 + 5^Rational[1, 2]), Rational[1, 4] (26 + 58 5^Rational[-1, 2])^ Rational[1, 2]}}, {{-0.16245984811645317`, -2.118033988749895, 1.2759762125280598`}, {-0.16245984811645317`, 2.118033988749895, 1.2759762125280598`}, { 0.16245984811645317`, -2.118033988749895, -1.27597621252806}, { 0.16245984811645317`, 2.118033988749895, -1.27597621252806}, {-0.2628655560595668, \ -0.8090169943749473, -2.327438436766327}, {-0.2628655560595668, \ -2.4270509831248424`, -0.42532540417602}, {-0.2628655560595668, 0.8090169943749475, -2.327438436766327}, {-0.2628655560595668, 2.4270509831248424`, -0.42532540417602}, { 0.2628655560595668, -0.8090169943749473, 2.327438436766327}, { 0.2628655560595668, -2.4270509831248424`, 0.42532540417601994`}, { 0.2628655560595668, 0.8090169943749475, 2.327438436766327}, { 0.2628655560595668, 2.4270509831248424`, 0.42532540417601994`}, { 0.6881909602355868, -0.5, -2.327438436766327}, {0.6881909602355868, 0.5, -2.327438436766327}, { 1.2139220723547204`, -2.118033988749895, 0.42532540417601994`}, { 1.2139220723547204`, 2.118033988749895, 0.42532540417601994`}, {-2.0645728807067605`, -0.5, 1.2759762125280598`}, {-2.0645728807067605`, 0.5, 1.2759762125280598`}, {-1.3763819204711736`, -1, 1.8017073246471935`}, {-1.3763819204711736`, 1, 1.8017073246471935`}, {-1.3763819204711736`, \ -1.6180339887498947`, -1.27597621252806}, {-1.3763819204711736`, 1.618033988749895, -1.27597621252806}, {-0.6881909602355868, -0.5, 2.327438436766327}, {-0.6881909602355868, 0.5, 2.327438436766327}, { 1.3763819204711736`, -1, -1.8017073246471935`}, { 1.3763819204711736`, 1, -1.8017073246471935`}, { 1.3763819204711736`, -1.6180339887498947`, 1.2759762125280598`}, { 1.3763819204711736`, 1.618033988749895, 1.2759762125280598`}, {-1.7013016167040798`, 0, -1.8017073246471935`}, { 1.7013016167040798`, 0, 1.8017073246471935`}, {-1.2139220723547204`, -2.118033988749895, \ -0.42532540417602}, {-1.2139220723547204`, 2.118033988749895, -0.42532540417602}, {-1.9641671727636467`, \ -0.8090169943749473, -1.27597621252806}, {-1.9641671727636467`, 0.8090169943749475, -1.27597621252806}, { 2.0645728807067605`, -0.5, -1.27597621252806}, { 2.0645728807067605`, 0.5, -1.27597621252806}, { 2.2270327288232132`, -1, -0.42532540417602}, { 2.2270327288232132`, 1, -0.42532540417602}, { 2.3894925769396664`, -0.5, 0.42532540417601994`}, { 2.3894925769396664`, 0.5, 0.42532540417601994`}, {-1.1135163644116066`, -1.8090169943749475`, 1.2759762125280598`}, {-1.1135163644116066`, 1.8090169943749475`, 1.2759762125280598`}, { 1.1135163644116066`, -1.8090169943749475`, -1.27597621252806}, { 1.1135163644116066`, 1.8090169943749475`, -1.27597621252806}, {-2.3894925769396664`, \ -0.5, -0.42532540417602}, {-2.3894925769396664`, 0.5, -0.42532540417602}, {-1.6392474765307403`, \ -1.8090169943749475`, 0.42532540417601994`}, {-1.6392474765307403`, 1.8090169943749475`, 0.42532540417601994`}, { 1.6392474765307403`, -1.8090169943749475`, -0.42532540417602}, { 1.6392474765307403`, 1.8090169943749475`, -0.42532540417602}, { 1.9641671727636467`, -0.8090169943749473, 1.2759762125280598`}, { 1.9641671727636467`, 0.8090169943749475, 1.2759762125280598`}, { 0.85065080835204, 0, 2.327438436766327}, {-2.2270327288232132`, -1, 0.42532540417601994`}, {-2.2270327288232132`, 1, 0.42532540417601994`}, {-0.85065080835204, 0, -2.327438436766327}, {-0.5257311121191336, \ -1.6180339887498947`, -1.8017073246471935`}, {-0.5257311121191336, 1.618033988749895, -1.8017073246471935`}, { 0.5257311121191336, -1.6180339887498947`, 1.8017073246471935`}, { 0.5257311121191336, 1.618033988749895, 1.8017073246471935`}}], {{ 53, 11, 24, 23, 9}, {51, 39, 40, 52, 30}, {60, 28, 16, 12, 2}, {20, 42, 48, 55, 18}, {19, 17, 54, 47, 41}, {1, 10, 15, 27, 59}, {36, 26, 44, 50, 38}, {4, 58, 22, 32, 8}, {34, 29, 33, 45, 46}, {21, 57, 3, 6, 31}, {37, 49, 43, 25, 35}, {13, 5, 56, 7, 14}, {9, 59, 27, 51, 30, 53}, {53, 30, 52, 28, 60, 11}, {11, 60, 2, 42, 20, 24}, {24, 20, 18, 17, 19, 23}, {23, 19, 41, 1, 59, 9}, {13, 25, 43, 3, 57, 5}, { 5, 57, 21, 33, 29, 56}, {56, 29, 34, 22, 58, 7}, {7, 58, 4, 44, 26, 14}, {14, 26, 36, 35, 25, 13}, {40, 38, 50, 16, 28, 52}, {16, 50, 44, 4, 8, 12}, {12, 8, 32, 48, 42, 2}, {48, 32, 22, 34, 46, 55}, { 55, 46, 45, 54, 17, 18}, {54, 45, 33, 21, 31, 47}, {47, 31, 6, 10, 1, 41}, {10, 6, 3, 43, 49, 15}, {15, 49, 37, 39, 51, 27}, {39, 37, 35, 36, 38, 40}}]}, Boxed->False, PlotLabel->FormBox[ InterpretationBox[ Cell[ BoxData[ FormBox[ StyleBox[ "\"truncated icosahedron\"", FontSlant -> Italic, FontColor -> GrayLevel[0], FontFamily -> "Times", StripOnInput -> False], TraditionalForm]], TextAlignment -> Center, Hyphenation -> True, PageWidth -> 140], TextCell[ Style[ "truncated icosahedron", FontSlant -> Italic, FontColor -> GrayLevel[0], FontFamily -> "Times"], TextAlignment -> Center, Hyphenation -> True, PageWidth -> 140]], TraditionalForm]], {585., -945.}, ImageScaled[{0.5, 1}], {360, 379}, BaseStyle->{Graphics3DBoxOptions -> {SphericalRegion -> False}}, ContentSelectable->True], TagBox[ InsetBox["", {975., -945.}, {Center, Top}, {360., 431.9999999999998}, BaseStyle->{Graphics3DBoxOptions -> {SphericalRegion -> False}}], "InsetString"], TagBox[ InsetBox["", {1365., -945.}, {Center, Top}, {360., 431.9999999999998}, BaseStyle->{Graphics3DBoxOptions -> {SphericalRegion -> False}}], "InsetString"], TagBox[ InsetBox["", {1755., -945.}, {Center, Top}, {360., 431.9999999999998}, BaseStyle->{Graphics3DBoxOptions -> {SphericalRegion -> False}}], "InsetString"]}}, StyleBox[{{}, {LineBox[{{0, 0}, {0, -464.4}}], LineBox[{{0, -464.4}, {0, -928.8}}], LineBox[{{0, -928.8}, {0, -1393.1999999999998`}}], LineBox[{{390., 0}, {390., -464.4}}], LineBox[{{390., -464.4}, {390., -928.8}}], LineBox[{{390., -928.8}, {390., -1393.1999999999998`}}], LineBox[{{780., 0}, {780., -464.4}}], LineBox[{{780., -464.4}, {780., -928.8}}], LineBox[{{780., -928.8}, {780., -1393.1999999999998`}}], LineBox[{{1170., 0}, {1170., -464.4}}], LineBox[{{1170., -464.4}, {1170., -928.8}}], LineBox[{{1170., -928.8}, {1170., -1393.1999999999998`}}], LineBox[{{1560., 0}, {1560., -464.4}}], LineBox[{{1560., -464.4}, {1560., -928.8}}], LineBox[{{1560., -928.8}, {1560., -1393.1999999999998`}}], LineBox[{{1950., 0}, {1950., -464.4}}], LineBox[{{1950., -464.4}, {1950., -928.8}}], LineBox[{{1950., -928.8}, {1950., -1393.1999999999998`}}], LineBox[{{0, 0}, {390., 0}}], LineBox[{{390., 0}, {780., 0}}], LineBox[{{780., 0}, {1170., 0}}], LineBox[{{1170., 0}, {1560., 0}}], LineBox[{{1560., 0}, {1950., 0}}], LineBox[{{0, -464.4}, {390., -464.4}}], LineBox[{{390., -464.4}, {780., -464.4}}], LineBox[{{780., -464.4}, {1170., -464.4}}], LineBox[{{1170., -464.4}, {1560., -464.4}}], LineBox[{{1560., -464.4}, {1950., -464.4}}], LineBox[{{0, -928.8}, {390., -928.8}}], LineBox[{{390., -928.8}, {780., -928.8}}], LineBox[{{780., -928.8}, {1170., -928.8}}], LineBox[{{1170., -928.8}, {1560., -928.8}}], LineBox[{{1560., -928.8}, {1950., -928.8}}], LineBox[{{0, -1393.1999999999998`}, {390., -1393.1999999999998`}}], LineBox[{{390., -1393.1999999999998`}, {780., -1393.1999999999998`}}], LineBox[{{780., -1393.1999999999998`}, {1170., -1393.1999999999998`}}], LineBox[{{1170., -1393.1999999999998`}, {1560., -1393.1999999999998`}}], LineBox[{{1560., -1393.1999999999998`}, { 1950., -1393.1999999999998`}}]}}, Antialiasing->False]}, ImageSize->700, PlotRangePadding->{6, 5}]], "Output", CellLabel-> "Out[254]=",ExpressionUUID->"b7a73a26-3214-4e84-accc-068d9ca45362"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Solid", "Section",ExpressionUUID->"a7b66a1d-c4aa-4058-ab51-2fd0fec4571b"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"PolyhedronData", "[", RowBox[{"\"\\"", ",", "\"\\""}], "]"}]], "Input", CellLabel-> "In[135]:=",ExpressionUUID->"dc1b7202-8d84-4554-a739-08f7ebfbdab3"], Cell[BoxData["\<\"C5\"\>"], "Output", CellLabel-> "Out[135]=",ExpressionUUID->"15a927e8-e454-4fe7-b8c2-406c7de308c0"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"PolyhedronData", "[", RowBox[{"\"\\"", ",", "\"\\""}], "]"}]], "Input", CellLabel-> "In[134]:=",ExpressionUUID->"2ada47e3-cdde-47b1-91da-7187e71fbd5f"], Cell[BoxData[ RowBox[{"{", RowBox[{"\<\"C3\"\>", ",", "\<\"C5\"\>"}], "}"}]], "Output", CellLabel-> "Out[134]=",ExpressionUUID->"742499ea-2158-457c-a982-45b60832871e"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{"Show", "[", RowBox[{ RowBox[{"PolyhedronData", "[", RowBox[{"{", RowBox[{"\"\\"", ",", "#"}], "}"}], "]"}], ",", RowBox[{"Boxed", "\[Rule]", "False"}]}], "]"}], "&"}], "/@", RowBox[{"PolyhedronData", "[", RowBox[{"\"\\"", ",", "\"\\""}], "]"}]}]], "Input", CellLabel-> "In[136]:=",ExpressionUUID->"69493d31-68ce-4937-9a62-7e36927c11c8"], Cell[BoxData[ RowBox[{"{", RowBox[{ Graphics3DBox[ GraphicsComplex3DBox[ NCache[{{(Rational[1, 6] (7 + 3 5^Rational[1, 2]))^Rational[1, 2], 0, -3^Rational[-1, 2]}, { Root[1 - 21 #^2 + 9 #^4& , 1, 0], 0, 3^Rational[-1, 2]}, { Rational[1, 2] 3^Rational[-1, 2], Rational[-1, 2], Root[ 1 - 21 #^2 + 9 #^4& , 1, 0]}, {-(Rational[3, 4] + Rational[1, 3] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 2], -(Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 2] (Rational[3, 2] (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), 0}, { Rational[-1, 2] (Rational[5, 6] (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), ( Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[7, 24] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 3^ Rational[-1, 2]}, { Root[1 - 36 #^2 + 144 #^4& , 2, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), ( Rational[1, 6] (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 2] 3^Rational[-1, 2], Rational[1, 2], Root[ 1 - 21 #^2 + 9 #^4& , 1, 0]}, {-(Rational[3, 4] + Rational[1, 3] 5^Rational[1, 2])^ Rational[1, 2], Rational[ 1, 2], -(Rational[1, 6] (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { 0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, { Root[1 - 36 #^2 + 144 #^4& , 3, 0], Rational[1, 4] (-3 - 5^ Rational[1, 2]), -(Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, {-(Rational[7, 24] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), -3^Rational[-1, 2]}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), 0}, { Rational[1, 2] (Rational[5, 6] (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), -(Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[-1, 2] (Rational[3, 2] (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), 0}, {-3^Rational[-1, 2], 0, Root[1 - 21 #^2 + 9 #^4& , 1, 0]}, { Rational[1, 2] (Rational[3, 2] (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), 0}, { Rational[-1, 2] (Rational[5, 6] (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), ( Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[7, 24] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), 3^ Rational[-1, 2]}, { Root[1 - 36 #^2 + 144 #^4& , 2, 0], Rational[1, 4] (-3 - 5^Rational[1, 2]), ( Rational[1, 6] (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 36 #^2 + 144 #^4& , 3, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), -(Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, {-(Rational[7, 24] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), -3^Rational[-1, 2]}, { 3^Rational[-1, 2], 0, (Rational[1, 6] (7 + 3 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[3, 4] + Rational[1, 3] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 2], (Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[-1, 2] 3^Rational[-1, 2], Rational[-1, 2], (Rational[1, 6] (7 + 3 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 2] (Rational[5, 6] (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (-1 - 5^ Rational[1, 2]), -(Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[-1, 2] (Rational[3, 2] (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), 0}, {(Rational[3, 4] + Rational[1, 3] 5^Rational[1, 2])^ Rational[1, 2], Rational[ 1, 2], (Rational[1, 6] (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 2] 3^Rational[-1, 2], Rational[ 1, 2], (Rational[1, 6] (7 + 3 5^Rational[1, 2]))^Rational[1, 2]}}, {{ 1.5115226281523415`, 0, -0.5773502691896258}, {-1.5115226281523415`, 0, 0.5773502691896258}, { 0.2886751345948129, -0.5, -1.5115226281523415`}, \ {-1.2228474935575286`, -0.5, -0.9341723589627157}, { 1.4012585384440737`, 0.8090169943749475, 0}, {-1.0444364486709836`, 0.8090169943749475, 0.9341723589627157}, {0.7557613140761708, 1.3090169943749475`, 0.5773502691896258}, {-0.17841104488654497`, 1.3090169943749475`, 0.9341723589627157}, {0.2886751345948129, 0.5, -1.5115226281523415`}, {-1.2228474935575286`, 0.5, -0.9341723589627157}, {0, -1.618033988749895, 0}, { 0.17841104488654497`, -1.3090169943749475`, -0.9341723589627157}, \ {-0.7557613140761708, -1.3090169943749475`, -0.5773502691896258}, { 0, 1.618033988749895, 0}, {1.0444364486709836`, 0.8090169943749475, -0.9341723589627157}, {-1.4012585384440737`, 0.8090169943749475, 0}, {-0.5773502691896258, 0, -1.5115226281523415`}, { 1.4012585384440737`, -0.8090169943749475, 0}, {-1.0444364486709836`, -0.8090169943749475, 0.9341723589627157}, { 0.7557613140761708, -1.3090169943749475`, 0.5773502691896258}, {-0.17841104488654497`, -1.3090169943749475`, 0.9341723589627157}, {0.17841104488654497`, 1.3090169943749475`, -0.9341723589627157}, {-0.7557613140761708, 1.3090169943749475`, -0.5773502691896258}, { 0.5773502691896258, 0, 1.5115226281523415`}, { 1.2228474935575286`, -0.5, 0.9341723589627157}, {-0.2886751345948129, -0.5, 1.5115226281523415`}, { 1.0444364486709836`, -0.8090169943749475, -0.9341723589627157}, \ {-1.4012585384440737`, -0.8090169943749475, 0}, {1.2228474935575286`, 0.5, 0.9341723589627157}, {-0.2886751345948129, 0.5, 1.5115226281523415`}}], Polygon3DBox[{{30, 24, 29, 7, 8}, {26, 24, 30}, {25, 29, 24}, {5, 7, 29}, {14, 8, 7}, {6, 30, 8}, {16, 2, 6}, {19, 21, 26}, {20, 18, 25}, { 1, 15, 5}, {22, 23, 14}, {2, 19, 26, 30, 6}, {21, 20, 25, 24, 26}, {18, 1, 5, 29, 25}, {15, 22, 14, 7, 5}, {23, 16, 6, 8, 14}, {12, 13, 4, 17, 3}, {3, 17, 9}, {17, 4, 10}, {4, 13, 28}, {13, 12, 11}, {12, 3, 27}, { 27, 1, 18}, {9, 22, 15}, {10, 16, 23}, {28, 19, 2}, {11, 20, 21}, {27, 3, 9, 15, 1}, {9, 17, 10, 23, 22}, {10, 4, 28, 2, 16}, {28, 13, 11, 21, 19}, {11, 12, 27, 18, 20}}]], Boxed->False], ",", Graphics3DBox[ GraphicsComplex3DBox[ NCache[{{0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), 0}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], Rational[-1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {-(1 + 2 5^Rational[-1, 2])^ Rational[1, 2], 0, Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {(1 + 2 5^Rational[-1, 2])^Rational[1, 2], 0, (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, {(Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2], 0, -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2], 0}, {Root[1 - 5 #^2 + 5 #^4& , 1, 0], 0, (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}}, {{0, -1.618033988749895, 0}, { 0, 1.618033988749895, 0}, { 0.2628655560595668, -0.8090169943749475, -1.3763819204711736`}, { 0.2628655560595668, 0.8090169943749475, -1.3763819204711736`}, { 0.42532540417601994`, -1.3090169943749475`, 0.85065080835204}, { 0.42532540417601994`, 1.3090169943749475`, 0.85065080835204}, { 0.6881909602355868, -0.5, 1.3763819204711736`}, {0.6881909602355868, 0.5, 1.3763819204711736`}, { 1.1135163644116066`, -0.8090169943749475, -0.85065080835204}, { 1.1135163644116066`, 0.8090169943749475, -0.85065080835204}, {-1.3763819204711736`, 0, -0.85065080835204}, {-0.6881909602355868, -0.5, \ -1.3763819204711736`}, {-0.6881909602355868, 0.5, -1.3763819204711736`}, { 1.3763819204711736`, 0, 0.85065080835204}, { 0.9510565162951535, -1.3090169943749475`, 0}, { 0.9510565162951535, 1.3090169943749475`, 0}, { 0.85065080835204, 0, -1.3763819204711736`}, {-0.9510565162951535, -1.3090169943749475`, 0}, {-0.9510565162951535, 1.3090169943749475`, 0}, {-1.5388417685876268`, -0.5, 0}, {-1.5388417685876268`, 0.5, 0}, { 1.5388417685876268`, -0.5, 0}, { 1.5388417685876268`, 0.5, 0}, {-0.85065080835204, 0, 1.3763819204711736`}, {-1.1135163644116066`, -0.8090169943749475, 0.85065080835204}, {-1.1135163644116066`, 0.8090169943749475, 0.85065080835204}, {-0.42532540417602, -1.3090169943749475`, \ -0.85065080835204}, {-0.42532540417602, 1.3090169943749475`, -0.85065080835204}, {-0.2628655560595668, \ -0.8090169943749475, 1.3763819204711736`}, {-0.2628655560595668, 0.8090169943749475, 1.3763819204711736`}}], Polygon3DBox[{{30, 24, 29, 7, 8}, {26, 24, 30}, {25, 29, 24}, {5, 7, 29}, {14, 8, 7}, {6, 30, 8}, {16, 2, 6}, {19, 21, 26}, {20, 18, 25}, { 1, 15, 5}, {22, 23, 14}, {2, 19, 26, 30, 6}, {21, 20, 25, 24, 26}, {18, 1, 5, 29, 25}, {15, 22, 14, 7, 5}, {23, 16, 6, 8, 14}, {12, 13, 4, 17, 3}, {3, 17, 9}, {17, 4, 10}, {4, 13, 28}, {13, 12, 11}, {12, 3, 27}, { 27, 1, 18}, {9, 22, 15}, {10, 16, 23}, {28, 19, 2}, {11, 20, 21}, {27, 3, 9, 15, 1}, {9, 17, 10, 23, 22}, {10, 4, 28, 2, 16}, {28, 13, 11, 21, 19}, {11, 12, 27, 18, 20}}]], Boxed->False]}], "}"}]], "Output", CellLabel-> "Out[136]=",ExpressionUUID->"f5c7da97-fc62-48dd-b8c2-0ffa3e5f182c"] }, Open ]], Cell[CellGroupData[{ Cell["Solid and Dual", "Subsection",ExpressionUUID->"eeb82da7-5991-4e71-924f-5e42db30d8b5"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"GraphicsRow", "[", RowBox[{ RowBox[{ RowBox[{"PolyhedronData", "[", RowBox[{"\"\\"", ",", "#"}], "]"}], "&"}], "/@", RowBox[{"{", RowBox[{ "\"\\"", ",", "\"\\"", ",", "\"\\""}], "}"}]}], "]"}]], "Input", CellLabel->"In[4]:=",ExpressionUUID->"099241ee-899e-4c01-a967-c1e3a35ae92f"], Cell[BoxData[ GraphicsBox[{{}, {InsetBox[ Graphics3DBox[ GraphicsComplex3DBox[ NCache[{{0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), 0}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {-(1 + 2 5^Rational[-1, 2])^ Rational[1, 2], 0, Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {(1 + 2 5^Rational[-1, 2])^Rational[1, 2], 0, (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, {(Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2], 0, -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2], 0}, { Root[1 - 5 #^2 + 5 #^4& , 1, 0], 0, (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}}, {{0, -1.618033988749895, 0}, { 0, 1.618033988749895, 0}, { 0.2628655560595668, -0.8090169943749475, -1.3763819204711736`}, { 0.2628655560595668, 0.8090169943749475, -1.3763819204711736`}, { 0.42532540417601994`, -1.3090169943749475`, 0.85065080835204}, { 0.42532540417601994`, 1.3090169943749475`, 0.85065080835204}, { 0.6881909602355868, -0.5, 1.3763819204711736`}, {0.6881909602355868, 0.5, 1.3763819204711736`}, { 1.1135163644116066`, -0.8090169943749475, -0.85065080835204}, { 1.1135163644116066`, 0.8090169943749475, -0.85065080835204}, {-1.3763819204711736`, 0, -0.85065080835204}, {-0.6881909602355868, -0.5, \ -1.3763819204711736`}, {-0.6881909602355868, 0.5, -1.3763819204711736`}, { 1.3763819204711736`, 0, 0.85065080835204}, { 0.9510565162951535, -1.3090169943749475`, 0}, { 0.9510565162951535, 1.3090169943749475`, 0}, { 0.85065080835204, 0, -1.3763819204711736`}, {-0.9510565162951535, \ -1.3090169943749475`, 0}, {-0.9510565162951535, 1.3090169943749475`, 0}, {-1.5388417685876268`, -0.5, 0}, {-1.5388417685876268`, 0.5, 0}, {1.5388417685876268`, -0.5, 0}, { 1.5388417685876268`, 0.5, 0}, {-0.85065080835204, 0, 1.3763819204711736`}, {-1.1135163644116066`, -0.8090169943749475, 0.85065080835204}, {-1.1135163644116066`, 0.8090169943749475, 0.85065080835204}, {-0.42532540417602, -1.3090169943749475`, \ -0.85065080835204}, {-0.42532540417602, 1.3090169943749475`, -0.85065080835204}, {-0.2628655560595668, \ -0.8090169943749475, 1.3763819204711736`}, {-0.2628655560595668, 0.8090169943749475, 1.3763819204711736`}}], Polygon3DBox[{{30, 24, 29, 7, 8}, {26, 24, 30}, {25, 29, 24}, {5, 7, 29}, {14, 8, 7}, {6, 30, 8}, {16, 2, 6}, {19, 21, 26}, {20, 18, 25}, {1, 15, 5}, {22, 23, 14}, {2, 19, 26, 30, 6}, {21, 20, 25, 24, 26}, {18, 1, 5, 29, 25}, {15, 22, 14, 7, 5}, {23, 16, 6, 8, 14}, {12, 13, 4, 17, 3}, {3, 17, 9}, {17, 4, 10}, {4, 13, 28}, {13, 12, 11}, { 12, 3, 27}, {27, 1, 18}, {9, 22, 15}, {10, 16, 23}, {28, 19, 2}, {11, 20, 21}, {27, 3, 9, 15, 1}, {9, 17, 10, 23, 22}, {10, 4, 28, 2, 16}, {28, 13, 11, 21, 19}, {11, 12, 27, 18, 20}}]]], {193.5, -217.35}, ImageScaled[{0.5, 0.5}], {360, 414}, ContentSelectable->True], InsetBox[ Graphics3DBox[ GraphicsComplex3DBox[ NCache[{{ 0, 0, (Rational[1, 8] (-1 - 5^Rational[1, 2])) ( Rational[5, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { 0, 0, (Rational[1, 8] (1 + 5^Rational[1, 2])) ( Rational[5, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, {( Rational[1, 8] (5 - 5^Rational[1, 2])) ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (Rational[5, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0], ( Rational[1, 8] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]) (5 + 3 5^Rational[1, 2])}, {( Rational[1, 8] (5 - 5^Rational[1, 2])) ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (5 + 5^Rational[1, 2]), ( Rational[1, 8] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]) (5 + 3 5^Rational[1, 2])}, { Rational[1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], 0, (Rational[1, 8] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]) (5 + 3 5^Rational[1, 2])}, {( Rational[1, 8] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]) (5 + 3 5^Rational[1, 2]), ( Rational[1, 4] (Rational[5, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0], (Rational[1, 8] 10^Rational[-1, 2]) (5 + 5^Rational[1, 2])^Rational[3, 2]}, {( Rational[1, 8] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]) (5 + 3 5^Rational[1, 2]), ( Rational[1, 4] (Rational[5, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0], ( Rational[1, 8] (-5 + 5^Rational[1, 2])) ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, {( Rational[1, 8] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]) (5 + 3 5^Rational[1, 2]), Rational[1, 8] (5 + 5^Rational[1, 2]), (Rational[1, 8] 10^Rational[-1, 2]) (5 + 5^Rational[1, 2])^Rational[3, 2]}, {( Rational[1, 8] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]) (5 + 3 5^Rational[1, 2]), Rational[1, 8] (5 + 5^Rational[1, 2]), ( Rational[1, 8] (-5 + 5^Rational[1, 2])) ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], 0, ( Rational[1, 8] (-5 - 3 5^Rational[1, 2])) ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 4] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[-1, 4] ((Rational[5, 2] (1 + 2 5^Rational[-1, 2])) (5 + 5^Rational[1, 2]))^Rational[1, 2], (Rational[1, 8] 10^Rational[-1, 2]) (5 + 5^Rational[1, 2])^Rational[3, 2]}, { Rational[-1, 4] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[-1, 4] ((Rational[5, 2] (1 + 2 5^Rational[-1, 2])) (5 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] (-5 + 5^Rational[1, 2])) ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 4] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[ 1, 4] ((Rational[5, 2] (1 + 2 5^Rational[-1, 2])) (5 + 5^Rational[1, 2]))^Rational[1, 2], (Rational[1, 8] 10^Rational[-1, 2]) (5 + 5^Rational[1, 2])^Rational[3, 2]}, { Rational[-1, 4] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[ 1, 4] ((Rational[5, 2] (1 + 2 5^Rational[-1, 2])) (5 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] (-5 + 5^Rational[1, 2])) ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 4] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[-1, 4] ((Rational[5, 2] (1 + 2 5^Rational[-1, 2])) (5 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] (5 - 5^Rational[1, 2])) ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 4] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[-1, 4] ((Rational[5, 2] (1 + 2 5^Rational[-1, 2])) (5 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] (-5 - 5^Rational[1, 2])) ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 4] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[ 1, 4] ((Rational[5, 2] (1 + 2 5^Rational[-1, 2])) (5 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] (5 - 5^Rational[1, 2])) ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 4] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[ 1, 4] ((Rational[5, 2] (1 + 2 5^Rational[-1, 2])) (5 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] (-5 - 5^Rational[1, 2])) ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, {( Rational[1, 4] (-1 - 5^Rational[-1, 2])) ( Rational[5, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2], 0, (Rational[1, 8] 10^Rational[-1, 2]) (5 + 5^Rational[1, 2])^ Rational[3, 2]}, {( Rational[1, 4] (-1 - 5^Rational[-1, 2])) ( Rational[5, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2], 0, (Rational[1, 8] (-5 + 5^Rational[1, 2])) ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, {( Rational[1, 8] (-5 - 5^Rational[1, 2])) ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (Rational[5, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 2, 0], ( Rational[1, 8] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]) (5 + 3 5^Rational[1, 2])}, {( Rational[1, 8] (-5 - 5^Rational[1, 2])) ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] 5^Rational[1, 2], ( Rational[1, 8] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]) (5 + 3 5^Rational[1, 2])}, {(Rational[1, 8] 10^Rational[-1, 2]) (5 + 5^Rational[1, 2])^Rational[3, 2], ( Rational[1, 4] (Rational[5, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 2, 0], ( Rational[1, 8] (-5 - 3 5^Rational[1, 2])) ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, {( Rational[1, 8] 10^Rational[-1, 2]) (5 + 5^Rational[1, 2])^ Rational[3, 2], Rational[1, 4] 5^Rational[1, 2], ( Rational[1, 8] (-5 - 3 5^Rational[1, 2])) ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, {( Rational[1, 4] (1 + 5^Rational[-1, 2])) ( Rational[5, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2], 0, (Rational[1, 8] (5 - 5^Rational[1, 2])) ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, {( Rational[1, 4] (1 + 5^Rational[-1, 2])) ( Rational[5, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2], 0, (Rational[1, 8] (-5 - 5^Rational[1, 2])) ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, {( Rational[1, 8] (-5 - 3 5^Rational[1, 2])) ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (Rational[5, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0], ( Rational[1, 8] (5 - 5^Rational[1, 2])) ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, {( Rational[1, 8] (-5 - 3 5^Rational[1, 2])) ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (Rational[5, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0], ( Rational[1, 8] (-5 - 5^Rational[1, 2])) ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, {( Rational[1, 8] (-5 - 3 5^Rational[1, 2])) ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (5 + 5^Rational[1, 2]), ( Rational[1, 8] (5 - 5^Rational[1, 2])) ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, {( Rational[1, 8] (-5 - 3 5^Rational[1, 2])) ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (5 + 5^Rational[1, 2]), ( Rational[1, 8] (-5 - 5^Rational[1, 2])) ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, {( Rational[1, 8] (-5 + 5^Rational[1, 2])) ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (Rational[5, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0], ( Rational[1, 8] (-5 - 3 5^Rational[1, 2])) ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, {( Rational[1, 8] (-5 + 5^Rational[1, 2])) ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (5 + 5^Rational[1, 2]), ( Rational[1, 8] (-5 - 3 5^Rational[1, 2])) ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}}, {{ 0, 0, -1.7204774005889671`}, {0, 0, 1.7204774005889671`}, { 0.29389262614623657`, -0.9045084971874738, 1.2449491424413903`}, { 0.29389262614623657`, 0.9045084971874737, 1.2449491424413903`}, { 0.9510565162951535, 0, 1.2449491424413903`}, { 1.2449491424413903`, -0.9045084971874738, 0.7694208842938134}, { 1.2449491424413903`, -0.9045084971874738, -0.29389262614623657`}, { 1.2449491424413903`, 0.9045084971874737, 0.7694208842938134}, { 1.2449491424413903`, 0.9045084971874737, -0.29389262614623657`}, {-0.9510565162951535, 0, -1.2449491424413903`}, {-0.47552825814757677`, \ -1.4635254915624212`, 0.7694208842938134}, {-0.47552825814757677`, -1.4635254915624212`, \ -0.29389262614623657`}, {-0.47552825814757677`, 1.4635254915624212`, 0.7694208842938134}, {-0.47552825814757677`, 1.4635254915624212`, -0.29389262614623657`}, { 0.47552825814757677`, -1.4635254915624212`, 0.29389262614623657`}, { 0.47552825814757677`, -1.4635254915624212`, -0.7694208842938134}, { 0.47552825814757677`, 1.4635254915624212`, 0.29389262614623657`}, { 0.47552825814757677`, 1.4635254915624212`, -0.7694208842938134}, {-1.5388417685876268`, 0, 0.7694208842938134}, {-1.5388417685876268`, 0, -0.29389262614623657`}, {-0.7694208842938134, \ -0.5590169943749475, 1.2449491424413903`}, {-0.7694208842938134, 0.5590169943749475, 1.2449491424413903`}, { 0.7694208842938134, -0.5590169943749475, -1.2449491424413903`}, { 0.7694208842938134, 0.5590169943749475, -1.2449491424413903`}, { 1.5388417685876268`, 0, 0.29389262614623657`}, { 1.5388417685876268`, 0, -0.7694208842938134}, {-1.2449491424413903`, -0.9045084971874738, 0.29389262614623657`}, {-1.2449491424413903`, -0.9045084971874738, \ -0.7694208842938134}, {-1.2449491424413903`, 0.9045084971874737, 0.29389262614623657`}, {-1.2449491424413903`, 0.9045084971874737, -0.7694208842938134}, {-0.29389262614623657`, \ -0.9045084971874738, -1.2449491424413903`}, {-0.29389262614623657`, 0.9045084971874737, -1.2449491424413903`}}], Polygon3DBox[{{16, 15, 11, 12}, {14, 13, 17, 18}, {10, 28, 20, 30}, {8, 5, 6, 25}, {12, 28, 31, 16}, {32, 30, 14, 18}, {6, 3, 11, 15}, {8, 17, 13, 4}, {11, 21, 19, 27}, {13, 29, 19, 22}, {7, 16, 23, 26}, {24, 18, 9, 26}, {12, 11, 27, 28}, {30, 29, 13, 14}, {7, 6, 15, 16}, {18, 17, 8, 9}, {2, 22, 19, 21}, {23, 1, 24, 26}, {3, 2, 21, 11}, {4, 13, 22, 2}, {16, 31, 1, 23}, {1, 32, 18, 24}, {31, 28, 10, 1}, {10, 30, 32, 1}, {6, 5, 2, 3}, {8, 4, 2, 5}, {28, 27, 19, 20}, {20, 19, 29, 30}, {26, 25, 6, 7}, {9, 8, 25, 26}}]]], {580.5, -217.35}, ImageScaled[{0.5, 0.5}], {360, 414}, ContentSelectable->True], InsetBox[ Graphics3DBox[ GraphicsComplex3DBox[ NCache[{{0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), 0}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {-(1 + 2 5^Rational[-1, 2])^ Rational[1, 2], 0, Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {(1 + 2 5^Rational[-1, 2])^Rational[1, 2], 0, (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, {(Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2], 0, -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2], 0}, { Root[1 - 5 #^2 + 5 #^4& , 1, 0], 0, (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { 0, 0, (Rational[1, 8] (-1 - 5^Rational[1, 2])) ( Rational[5, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { 0, 0, (Rational[1, 8] (1 + 5^Rational[1, 2])) ( Rational[5, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, {( Rational[1, 8] (5 - 5^Rational[1, 2])) ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (Rational[5, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0], ( Rational[1, 8] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]) (5 + 3 5^Rational[1, 2])}, {( Rational[1, 8] (5 - 5^Rational[1, 2])) ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (5 + 5^Rational[1, 2]), ( Rational[1, 8] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]) (5 + 3 5^Rational[1, 2])}, { Rational[1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], 0, (Rational[1, 8] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]) (5 + 3 5^Rational[1, 2])}, {( Rational[1, 8] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]) (5 + 3 5^Rational[1, 2]), ( Rational[1, 4] (Rational[5, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0], (Rational[1, 8] 10^Rational[-1, 2]) (5 + 5^Rational[1, 2])^Rational[3, 2]}, {( Rational[1, 8] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]) (5 + 3 5^Rational[1, 2]), ( Rational[1, 4] (Rational[5, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0], ( Rational[1, 8] (-5 + 5^Rational[1, 2])) ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, {( Rational[1, 8] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]) (5 + 3 5^Rational[1, 2]), Rational[1, 8] (5 + 5^Rational[1, 2]), (Rational[1, 8] 10^Rational[-1, 2]) (5 + 5^Rational[1, 2])^Rational[3, 2]}, {( Rational[1, 8] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]) (5 + 3 5^Rational[1, 2]), Rational[1, 8] (5 + 5^Rational[1, 2]), ( Rational[1, 8] (-5 + 5^Rational[1, 2])) ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], 0, (Rational[1, 8] (-5 - 3 5^Rational[1, 2])) ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 4] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[-1, 4] ((Rational[5, 2] (1 + 2 5^Rational[-1, 2])) (5 + 5^Rational[1, 2]))^Rational[1, 2], (Rational[1, 8] 10^Rational[-1, 2]) (5 + 5^Rational[1, 2])^Rational[3, 2]}, { Rational[-1, 4] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[-1, 4] ((Rational[5, 2] (1 + 2 5^Rational[-1, 2])) (5 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] (-5 + 5^Rational[1, 2])) ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 4] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[ 1, 4] ((Rational[5, 2] (1 + 2 5^Rational[-1, 2])) (5 + 5^Rational[1, 2]))^Rational[1, 2], (Rational[1, 8] 10^Rational[-1, 2]) (5 + 5^Rational[1, 2])^Rational[3, 2]}, { Rational[-1, 4] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[ 1, 4] ((Rational[5, 2] (1 + 2 5^Rational[-1, 2])) (5 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] (-5 + 5^Rational[1, 2])) ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 4] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[-1, 4] ((Rational[5, 2] (1 + 2 5^Rational[-1, 2])) (5 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] (5 - 5^Rational[1, 2])) ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 4] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[-1, 4] ((Rational[5, 2] (1 + 2 5^Rational[-1, 2])) (5 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] (-5 - 5^Rational[1, 2])) ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 4] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[ 1, 4] ((Rational[5, 2] (1 + 2 5^Rational[-1, 2])) (5 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] (5 - 5^Rational[1, 2])) ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 4] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[ 1, 4] ((Rational[5, 2] (1 + 2 5^Rational[-1, 2])) (5 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 8] (-5 - 5^Rational[1, 2])) ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, {( Rational[1, 4] (-1 - 5^Rational[-1, 2])) ( Rational[5, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2], 0, (Rational[1, 8] 10^Rational[-1, 2]) (5 + 5^Rational[1, 2])^ Rational[3, 2]}, {( Rational[1, 4] (-1 - 5^Rational[-1, 2])) ( Rational[5, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2], 0, (Rational[1, 8] (-5 + 5^Rational[1, 2])) ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, {( Rational[1, 8] (-5 - 5^Rational[1, 2])) ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (Rational[5, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 2, 0], ( Rational[1, 8] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]) (5 + 3 5^Rational[1, 2])}, {( Rational[1, 8] (-5 - 5^Rational[1, 2])) ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] 5^Rational[1, 2], ( Rational[1, 8] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]) (5 + 3 5^Rational[1, 2])}, {(Rational[1, 8] 10^Rational[-1, 2]) (5 + 5^Rational[1, 2])^Rational[3, 2], ( Rational[1, 4] (Rational[5, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 2, 0], ( Rational[1, 8] (-5 - 3 5^Rational[1, 2])) ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, {( Rational[1, 8] 10^Rational[-1, 2]) (5 + 5^Rational[1, 2])^ Rational[3, 2], Rational[1, 4] 5^Rational[1, 2], ( Rational[1, 8] (-5 - 3 5^Rational[1, 2])) ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, {( Rational[1, 4] (1 + 5^Rational[-1, 2])) ( Rational[5, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2], 0, (Rational[1, 8] (5 - 5^Rational[1, 2])) ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, {( Rational[1, 4] (1 + 5^Rational[-1, 2])) ( Rational[5, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2], 0, (Rational[1, 8] (-5 - 5^Rational[1, 2])) ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, {( Rational[1, 8] (-5 - 3 5^Rational[1, 2])) ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (Rational[5, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0], ( Rational[1, 8] (5 - 5^Rational[1, 2])) ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, {( Rational[1, 8] (-5 - 3 5^Rational[1, 2])) ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (Rational[5, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0], ( Rational[1, 8] (-5 - 5^Rational[1, 2])) ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, {( Rational[1, 8] (-5 - 3 5^Rational[1, 2])) ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (5 + 5^Rational[1, 2]), ( Rational[1, 8] (5 - 5^Rational[1, 2])) ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, {( Rational[1, 8] (-5 - 3 5^Rational[1, 2])) ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (5 + 5^Rational[1, 2]), ( Rational[1, 8] (-5 - 5^Rational[1, 2])) ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, {( Rational[1, 8] (-5 + 5^Rational[1, 2])) ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2], ( Rational[1, 4] (Rational[5, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0], ( Rational[1, 8] (-5 - 3 5^Rational[1, 2])) ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, {( Rational[1, 8] (-5 + 5^Rational[1, 2])) ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (5 + 5^Rational[1, 2]), ( Rational[1, 8] (-5 - 3 5^Rational[1, 2])) ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}}, {{ 0, -1.618033988749895, 0}, {0, 1.618033988749895, 0}, { 0.2628655560595668, -0.8090169943749475, -1.3763819204711736`}, { 0.2628655560595668, 0.8090169943749475, -1.3763819204711736`}, { 0.42532540417601994`, -1.3090169943749475`, 0.85065080835204}, { 0.42532540417601994`, 1.3090169943749475`, 0.85065080835204}, { 0.6881909602355868, -0.5, 1.3763819204711736`}, {0.6881909602355868, 0.5, 1.3763819204711736`}, { 1.1135163644116066`, -0.8090169943749475, -0.85065080835204}, { 1.1135163644116066`, 0.8090169943749475, -0.85065080835204}, {-1.3763819204711736`, 0, -0.85065080835204}, {-0.6881909602355868, -0.5, \ -1.3763819204711736`}, {-0.6881909602355868, 0.5, -1.3763819204711736`}, { 1.3763819204711736`, 0, 0.85065080835204}, { 0.9510565162951535, -1.3090169943749475`, 0}, { 0.9510565162951535, 1.3090169943749475`, 0}, { 0.85065080835204, 0, -1.3763819204711736`}, {-0.9510565162951535, \ -1.3090169943749475`, 0}, {-0.9510565162951535, 1.3090169943749475`, 0}, {-1.5388417685876268`, -0.5, 0}, {-1.5388417685876268`, 0.5, 0}, {1.5388417685876268`, -0.5, 0}, { 1.5388417685876268`, 0.5, 0}, {-0.85065080835204, 0, 1.3763819204711736`}, {-1.1135163644116066`, -0.8090169943749475, 0.85065080835204}, {-1.1135163644116066`, 0.8090169943749475, 0.85065080835204}, {-0.42532540417602, -1.3090169943749475`, \ -0.85065080835204}, {-0.42532540417602, 1.3090169943749475`, -0.85065080835204}, {-0.2628655560595668, \ -0.8090169943749475, 1.3763819204711736`}, {-0.2628655560595668, 0.8090169943749475, 1.3763819204711736`}, { 0, 0, -1.7204774005889671`}, {0, 0, 1.7204774005889671`}, { 0.29389262614623657`, -0.9045084971874738, 1.2449491424413903`}, { 0.29389262614623657`, 0.9045084971874737, 1.2449491424413903`}, { 0.9510565162951535, 0, 1.2449491424413903`}, { 1.2449491424413903`, -0.9045084971874738, 0.7694208842938134}, { 1.2449491424413903`, -0.9045084971874738, -0.29389262614623657`}, { 1.2449491424413903`, 0.9045084971874737, 0.7694208842938134}, { 1.2449491424413903`, 0.9045084971874737, -0.29389262614623657`}, {-0.9510565162951535, 0, -1.2449491424413903`}, {-0.47552825814757677`, \ -1.4635254915624212`, 0.7694208842938134}, {-0.47552825814757677`, -1.4635254915624212`, \ -0.29389262614623657`}, {-0.47552825814757677`, 1.4635254915624212`, 0.7694208842938134}, {-0.47552825814757677`, 1.4635254915624212`, -0.29389262614623657`}, { 0.47552825814757677`, -1.4635254915624212`, 0.29389262614623657`}, { 0.47552825814757677`, -1.4635254915624212`, -0.7694208842938134}, { 0.47552825814757677`, 1.4635254915624212`, 0.29389262614623657`}, { 0.47552825814757677`, 1.4635254915624212`, -0.7694208842938134}, {-1.5388417685876268`, 0, 0.7694208842938134}, {-1.5388417685876268`, 0, -0.29389262614623657`}, {-0.7694208842938134, \ -0.5590169943749475, 1.2449491424413903`}, {-0.7694208842938134, 0.5590169943749475, 1.2449491424413903`}, { 0.7694208842938134, -0.5590169943749475, -1.2449491424413903`}, { 0.7694208842938134, 0.5590169943749475, -1.2449491424413903`}, { 1.5388417685876268`, 0, 0.29389262614623657`}, { 1.5388417685876268`, 0, -0.7694208842938134}, {-1.2449491424413903`, -0.9045084971874738, 0.29389262614623657`}, {-1.2449491424413903`, -0.9045084971874738, \ -0.7694208842938134}, {-1.2449491424413903`, 0.9045084971874737, 0.29389262614623657`}, {-1.2449491424413903`, 0.9045084971874737, -0.7694208842938134}, {-0.29389262614623657`, \ -0.9045084971874738, -1.2449491424413903`}, {-0.29389262614623657`, 0.9045084971874737, -1.2449491424413903`}}], { Polygon3DBox[{{30, 24, 29, 7, 8}, {26, 24, 30}, {25, 29, 24}, {5, 7, 29}, {14, 8, 7}, {6, 30, 8}, {16, 2, 6}, {19, 21, 26}, {20, 18, 25}, {1, 15, 5}, {22, 23, 14}, {2, 19, 26, 30, 6}, {21, 20, 25, 24, 26}, {18, 1, 5, 29, 25}, {15, 22, 14, 7, 5}, {23, 16, 6, 8, 14}, { 12, 13, 4, 17, 3}, {3, 17, 9}, {17, 4, 10}, {4, 13, 28}, {13, 12, 11}, {12, 3, 27}, {27, 1, 18}, {9, 22, 15}, {10, 16, 23}, {28, 19, 2}, {11, 20, 21}, {27, 3, 9, 15, 1}, {9, 17, 10, 23, 22}, {10, 4, 28, 2, 16}, {28, 13, 11, 21, 19}, {11, 12, 27, 18, 20}}], Polygon3DBox[{{46, 45, 41, 42}, {44, 43, 47, 48}, {40, 58, 50, 60}, { 38, 35, 36, 55}, {42, 58, 61, 46}, {62, 60, 44, 48}, {36, 33, 41, 45}, {38, 47, 43, 34}, {41, 51, 49, 57}, {43, 59, 49, 52}, {37, 46, 53, 56}, {54, 48, 39, 56}, {42, 41, 57, 58}, {60, 59, 43, 44}, {37, 36, 45, 46}, {48, 47, 38, 39}, {32, 52, 49, 51}, {53, 31, 54, 56}, { 33, 32, 51, 41}, {34, 43, 52, 32}, {46, 61, 31, 53}, {31, 62, 48, 54}, {61, 58, 40, 31}, {40, 60, 62, 31}, {36, 35, 32, 33}, {38, 34, 32, 35}, {58, 57, 49, 50}, {50, 49, 59, 60}, {56, 55, 36, 37}, {39, 38, 55, 56}}]}]], {967.5, -217.35}, ImageScaled[{0.5, 0.5}], {360, 414}, ContentSelectable->True]}, {}}, ImageSize->{ UpTo[600], Automatic}, PlotRange->{{0, 1161.}, {-434.7, 0}}, PlotRangePadding->{6, 5}]], "Output", CellLabel->"Out[4]=",ExpressionUUID->"8b4a64f5-73c2-4176-9dd4-fc20522771fb"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["UniformPolyhedron", "Subsection",ExpressionUUID->"cc5c501f-db93-4161-90a1-d9b7abae74eb"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"uniform", "=", RowBox[{"UniformPolyhedron", "[", RowBox[{"stdname", "=", "\"\\""}], "]"}]}]], "Input", CellLabel-> "In[216]:=",ExpressionUUID->"1706e831-9427-4cf6-b3b2-060975bd532f"], Cell[BoxData[ InterpretationBox[ RowBox[{ TagBox["Polyhedron", "SummaryHead"], "[", DynamicModuleBox[{Typeset`open$$ = False, Typeset`embedState$$ = "Ready", Typeset`spolyhedron$$ = Quiet[ Polyhedron[{{0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), 0}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], Rational[-1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {-(1 + 2 5^Rational[-1, 2])^ Rational[1, 2], 0, Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {(1 + 2 5^Rational[-1, 2])^Rational[1, 2], 0, (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, {(Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2], 0, -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2], 0}, { Root[1 - 5 #^2 + 5 #^4& , 1, 0], 0, (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}}, {{30, 24, 29, 7, 8}, {26, 24, 30}, {25, 29, 24}, {5, 7, 29}, {14, 8, 7}, {6, 30, 8}, {16, 2, 6}, {19, 21, 26}, {20, 18, 25} , {1, 15, 5}, {22, 23, 14}, {2, 19, 26, 30, 6}, {21, 20, 25, 24, 26}, { 18, 1, 5, 29, 25}, {15, 22, 14, 7, 5}, {23, 16, 6, 8, 14}, {12, 13, 4, 17, 3}, {3, 17, 9}, {17, 4, 10}, {4, 13, 28}, {13, 12, 11}, {12, 3, 27}, {27, 1, 18}, {9, 22, 15}, {10, 16, 23}, {28, 19, 2}, {11, 20, 21}, {27, 3, 9, 15, 1}, {9, 17, 10, 23, 22}, {10, 4, 28, 2, 16}, {28, 13, 11, 21, 19}, {11, 12, 27, 18, 20}}]]}, TemplateBox[{ PaneSelectorBox[{False -> GridBox[{{ PaneBox[ ButtonBox[ DynamicBox[ FEPrivate`FrontEndResource["FEBitmaps", "SummaryBoxOpener"]], ButtonFunction :> (Typeset`open$$ = True), Appearance -> None, BaseStyle -> {}, Evaluator -> Automatic, Method -> "Preemptive"], Alignment -> {Center, Center}, ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], Graphics3DBox[{ Directive[ Hue[0.58, 0.4, 1], Opacity[0.5], EdgeForm[ GrayLevel[1]]], PolyhedronBox[ NCache[{{0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), 0}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-1 - 5^ Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {-(1 + 2 5^Rational[-1, 2])^ Rational[1, 2], 0, Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {(1 + 2 5^Rational[-1, 2])^Rational[1, 2], 0, (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, {(Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2], 0, -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, {Rational[-1, 2] ( Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2], 0}, { Root[1 - 5 #^2 + 5 #^4& , 1, 0], 0, (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}}, {{ 0, -1.618033988749895, 0}, {0, 1.618033988749895, 0}, { 0.2628655560595668, -0.8090169943749475, \ -1.3763819204711736`}, {0.2628655560595668, 0.8090169943749475, -1.3763819204711736`}, { 0.42532540417601994`, -1.3090169943749475`, 0.85065080835204}, {0.42532540417601994`, 1.3090169943749475`, 0.85065080835204}, { 0.6881909602355868, -0.5, 1.3763819204711736`}, { 0.6881909602355868, 0.5, 1.3763819204711736`}, { 1.1135163644116066`, -0.8090169943749475, \ -0.85065080835204}, {1.1135163644116066`, 0.8090169943749475, -0.85065080835204}, \ {-1.3763819204711736`, 0, -0.85065080835204}, {-0.6881909602355868, -0.5, \ -1.3763819204711736`}, {-0.6881909602355868, 0.5, -1.3763819204711736`}, { 1.3763819204711736`, 0, 0.85065080835204}, { 0.9510565162951535, -1.3090169943749475`, 0}, { 0.9510565162951535, 1.3090169943749475`, 0}, { 0.85065080835204, 0, -1.3763819204711736`}, {-0.9510565162951535, \ -1.3090169943749475`, 0}, {-0.9510565162951535, 1.3090169943749475`, 0}, {-1.5388417685876268`, -0.5, 0}, {-1.5388417685876268`, 0.5, 0}, {1.5388417685876268`, -0.5, 0}, { 1.5388417685876268`, 0.5, 0}, {-0.85065080835204, 0, 1.3763819204711736`}, {-1.1135163644116066`, \ -0.8090169943749475, 0.85065080835204}, {-1.1135163644116066`, 0.8090169943749475, 0.85065080835204}, {-0.42532540417602, -1.3090169943749475`, \ -0.85065080835204}, {-0.42532540417602, 1.3090169943749475`, -0.85065080835204}, \ {-0.2628655560595668, -0.8090169943749475, 1.3763819204711736`}, {-0.2628655560595668, 0.8090169943749475, 1.3763819204711736`}}], {{30, 24, 29, 7, 8}, {26, 24, 30}, {25, 29, 24}, {5, 7, 29}, {14, 8, 7}, {6, 30, 8}, {16, 2, 6}, {19, 21, 26}, {20, 18, 25}, {1, 15, 5}, { 22, 23, 14}, {2, 19, 26, 30, 6}, {21, 20, 25, 24, 26}, {18, 1, 5, 29, 25}, {15, 22, 14, 7, 5}, {23, 16, 6, 8, 14}, {12, 13, 4, 17, 3}, {3, 17, 9}, {17, 4, 10}, {4, 13, 28}, {13, 12, 11}, {12, 3, 27}, {27, 1, 18}, {9, 22, 15}, {10, 16, 23}, {28, 19, 2}, {11, 20, 21}, {27, 3, 9, 15, 1}, {9, 17, 10, 23, 22}, {10, 4, 28, 2, 16}, {28, 13, 11, 21, 19}, {11, 12, 27, 18, 20}}]}, ImageSize -> Dynamic[{5.25, 3.5} (CurrentValue["FontCapHeight"]/ AbsoluteCurrentValue[Magnification])], Boxed -> False, Lighting -> {{"Ambient", RGBColor[0.4, 0.45, 0.5]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{2, 0, 2}]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{2, 2, 2}]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{0, 2, 2}]}}, Method -> {"ShrinkWrap" -> True}], GridBox[{{ RowBox[{ TagBox["\"Number of points: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["30", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Number of faces: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["32", "SummaryItem"]}]}}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> {"Columns" -> {{2}}, "Rows" -> {{Automatic}}}, BaseStyle -> { ShowStringCharacters -> False, NumberMarks -> False, PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, BaselinePosition -> {1, 1}], True -> GridBox[{{ PaneBox[ ButtonBox[ DynamicBox[ FEPrivate`FrontEndResource["FEBitmaps", "SummaryBoxCloser"]], ButtonFunction :> (Typeset`open$$ = False), Appearance -> None, BaseStyle -> {}, Evaluator -> Automatic, Method -> "Preemptive"], Alignment -> {Center, Center}, ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], Graphics3DBox[{ Directive[ Hue[0.58, 0.4, 1], Opacity[0.5], EdgeForm[ GrayLevel[1]]], PolyhedronBox[ NCache[{{0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), 0}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-1 - 5^ Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {-(1 + 2 5^Rational[-1, 2])^ Rational[1, 2], 0, Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {(1 + 2 5^Rational[-1, 2])^Rational[1, 2], 0, (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, {(Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2], 0, -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, {Rational[-1, 2] ( Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2], 0}, { Root[1 - 5 #^2 + 5 #^4& , 1, 0], 0, (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}}, {{ 0, -1.618033988749895, 0}, {0, 1.618033988749895, 0}, { 0.2628655560595668, -0.8090169943749475, \ -1.3763819204711736`}, {0.2628655560595668, 0.8090169943749475, -1.3763819204711736`}, { 0.42532540417601994`, -1.3090169943749475`, 0.85065080835204}, {0.42532540417601994`, 1.3090169943749475`, 0.85065080835204}, { 0.6881909602355868, -0.5, 1.3763819204711736`}, { 0.6881909602355868, 0.5, 1.3763819204711736`}, { 1.1135163644116066`, -0.8090169943749475, \ -0.85065080835204}, {1.1135163644116066`, 0.8090169943749475, -0.85065080835204}, \ {-1.3763819204711736`, 0, -0.85065080835204}, {-0.6881909602355868, -0.5, \ -1.3763819204711736`}, {-0.6881909602355868, 0.5, -1.3763819204711736`}, { 1.3763819204711736`, 0, 0.85065080835204}, { 0.9510565162951535, -1.3090169943749475`, 0}, { 0.9510565162951535, 1.3090169943749475`, 0}, { 0.85065080835204, 0, -1.3763819204711736`}, {-0.9510565162951535, \ -1.3090169943749475`, 0}, {-0.9510565162951535, 1.3090169943749475`, 0}, {-1.5388417685876268`, -0.5, 0}, {-1.5388417685876268`, 0.5, 0}, {1.5388417685876268`, -0.5, 0}, { 1.5388417685876268`, 0.5, 0}, {-0.85065080835204, 0, 1.3763819204711736`}, {-1.1135163644116066`, \ -0.8090169943749475, 0.85065080835204}, {-1.1135163644116066`, 0.8090169943749475, 0.85065080835204}, {-0.42532540417602, -1.3090169943749475`, \ -0.85065080835204}, {-0.42532540417602, 1.3090169943749475`, -0.85065080835204}, \ {-0.2628655560595668, -0.8090169943749475, 1.3763819204711736`}, {-0.2628655560595668, 0.8090169943749475, 1.3763819204711736`}}], {{30, 24, 29, 7, 8}, {26, 24, 30}, {25, 29, 24}, {5, 7, 29}, {14, 8, 7}, {6, 30, 8}, {16, 2, 6}, {19, 21, 26}, {20, 18, 25}, {1, 15, 5}, { 22, 23, 14}, {2, 19, 26, 30, 6}, {21, 20, 25, 24, 26}, {18, 1, 5, 29, 25}, {15, 22, 14, 7, 5}, {23, 16, 6, 8, 14}, {12, 13, 4, 17, 3}, {3, 17, 9}, {17, 4, 10}, {4, 13, 28}, {13, 12, 11}, {12, 3, 27}, {27, 1, 18}, {9, 22, 15}, {10, 16, 23}, {28, 19, 2}, {11, 20, 21}, {27, 3, 9, 15, 1}, {9, 17, 10, 23, 22}, {10, 4, 28, 2, 16}, {28, 13, 11, 21, 19}, {11, 12, 27, 18, 20}}]}, ImageSize -> Dynamic[{5.25, 3.5} (CurrentValue["FontCapHeight"]/ AbsoluteCurrentValue[Magnification])], Boxed -> False, Lighting -> {{"Ambient", RGBColor[0.4, 0.45, 0.5]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{2, 0, 2}]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{2, 2, 2}]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{0, 2, 2}]}}, Method -> {"ShrinkWrap" -> True}], GridBox[{{ RowBox[{ TagBox["\"Number of points: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["30", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Number of faces: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["32", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Embedding dimension: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["3", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Type: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Quiet[ Apply[Region`PolyhedronDump`polyhedronType, Region`PolyhedronDump`computeType[ Typeset`spolyhedron$$]]], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}, { RowBox[{ TagBox["\"Bounds: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Region`PolyhedronDump`iRegionBounds[ Typeset`spolyhedron$$], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}, { RowBox[{ TagBox["\"Volume: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Region`PolyhedronDump`iVolume[Typeset`spolyhedron$$], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> {"Columns" -> {{2}}, "Rows" -> {{Automatic}}}, BaseStyle -> { ShowStringCharacters -> False, NumberMarks -> False, PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, BaselinePosition -> {1, 1}]}, Dynamic[Typeset`open$$], ImageSize -> Automatic]}, "SummaryPanel"], DynamicModuleValues:>{}], "]"}], Polyhedron[{{0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), 0}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], Rational[-1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {-(1 + 2 5^Rational[-1, 2])^Rational[1, 2], 0, Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {(1 + 2 5^Rational[-1, 2])^Rational[1, 2], 0, (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, {(Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2], 0, -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2], 0}, { Root[1 - 5 #^2 + 5 #^4& , 1, 0], 0, (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}}, {{30, 24, 29, 7, 8}, {26, 24, 30}, {25, 29, 24}, {5, 7, 29}, {14, 8, 7}, {6, 30, 8}, {16, 2, 6}, {19, 21, 26}, {20, 18, 25}, {1, 15, 5}, {22, 23, 14}, {2, 19, 26, 30, 6}, {21, 20, 25, 24, 26}, {18, 1, 5, 29, 25}, {15, 22, 14, 7, 5}, {23, 16, 6, 8, 14}, {12, 13, 4, 17, 3}, {3, 17, 9}, {17, 4, 10}, {4, 13, 28}, {13, 12, 11}, {12, 3, 27}, {27, 1, 18}, {9, 22, 15}, {10, 16, 23}, {28, 19, 2}, {11, 20, 21}, {27, 3, 9, 15, 1}, {9, 17, 10, 23, 22}, {10, 4, 28, 2, 16}, {28, 13, 11, 21, 19}, {11, 12, 27, 18, 20}}], Editable->False, SelectWithContents->True, Selectable->False]], "Output", CellLabel-> "Out[216]=",ExpressionUUID->"4c1b6b03-a17b-48e8-b2d8-d63b74d4fbf6"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"PolyhedronFaceTally", "[", "uniform", "]"}]], "Input", CellLabel-> "In[217]:=",ExpressionUUID->"940836b8-2fa4-4258-8876-04f5380e36c8"], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"{", "5", "}"}], ",", "12"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", "3", "}"}], ",", "20"}], "}"}]}], "}"}]], "Output", CellLabel-> "Out[217]=",ExpressionUUID->"256dc911-993a-46e9-be49-a7f29d062d61"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"indices", "=", RowBox[{"UniformPolyhedronIndex", "[", "stdname", "]"}]}]], "Input", CellLabel-> "In[218]:=",ExpressionUUID->"5f3c6cb9-8323-41b5-b161-7a49adde4386"], Cell[BoxData[ RowBox[{"\[LeftAssociation]", RowBox[{ RowBox[{"\<\"Coxeter\"\>", "\[Rule]", "28"}], ",", RowBox[{"\<\"Kaleido\"\>", "\[Rule]", "29"}], ",", RowBox[{"\<\"Maeder\"\>", "\[Rule]", "24"}], ",", RowBox[{"\<\"Wenninger\"\>", "\[Rule]", "12"}]}], "\[RightAssociation]"}]], "Output", CellLabel-> "Out[218]=",ExpressionUUID->"571d6f2b-e0b9-459f-ad76-43d6a744695e"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"UniformPolyhedron", "/@", RowBox[{"{", "\[IndentingNewLine]", RowBox[{"stdname", ",", "\[IndentingNewLine]", RowBox[{"Lookup", "[", RowBox[{"indices", ",", "\"\\""}], "]"}], ",", "\[IndentingNewLine]", RowBox[{"Sequence", "@@", RowBox[{"(", RowBox[{ RowBox[{"List", "@@@", RowBox[{"Normal", "[", "indices", "]"}]}], "/.", RowBox[{"\"\\"", "\[Rule]", "\"\\""}]}], ")"}]}]}], "\[IndentingNewLine]", "}"}]}]], "Input", CellLabel-> "In[219]:=",ExpressionUUID->"2235ea0f-056d-41b2-b65f-4f8f13f3c4a2"], Cell[BoxData[ RowBox[{"{", RowBox[{ InterpretationBox[ RowBox[{ TagBox["Polyhedron", "SummaryHead"], "[", DynamicModuleBox[{Typeset`open$$ = False, Typeset`embedState$$ = "Ready", Typeset`spolyhedron$$ = Quiet[ Polyhedron[{{0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), 0}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {-(1 + 2 5^Rational[-1, 2])^ Rational[1, 2], 0, Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {(1 + 2 5^Rational[-1, 2])^Rational[1, 2], 0, (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, {(Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2], 0, -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2], 0}, { Root[1 - 5 #^2 + 5 #^4& , 1, 0], 0, (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}}, {{30, 24, 29, 7, 8}, {26, 24, 30}, {25, 29, 24}, { 5, 7, 29}, {14, 8, 7}, {6, 30, 8}, {16, 2, 6}, {19, 21, 26}, {20, 18, 25}, {1, 15, 5}, {22, 23, 14}, {2, 19, 26, 30, 6}, {21, 20, 25, 24, 26}, {18, 1, 5, 29, 25}, {15, 22, 14, 7, 5}, {23, 16, 6, 8, 14}, {12, 13, 4, 17, 3}, {3, 17, 9}, {17, 4, 10}, {4, 13, 28}, {13, 12, 11}, { 12, 3, 27}, {27, 1, 18}, {9, 22, 15}, {10, 16, 23}, {28, 19, 2}, {11, 20, 21}, {27, 3, 9, 15, 1}, {9, 17, 10, 23, 22}, {10, 4, 28, 2, 16}, {28, 13, 11, 21, 19}, {11, 12, 27, 18, 20}}]]}, TemplateBox[{ PaneSelectorBox[{False -> GridBox[{{ PaneBox[ ButtonBox[ DynamicBox[ FEPrivate`FrontEndResource["FEBitmaps", "SummaryBoxOpener"]], ButtonFunction :> (Typeset`open$$ = True), Appearance -> None, BaseStyle -> {}, Evaluator -> Automatic, Method -> "Preemptive"], Alignment -> {Center, Center}, ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], Graphics3DBox[{ Directive[ Hue[0.58, 0.4, 1], Opacity[0.5], EdgeForm[ GrayLevel[1]]], PolyhedronBox[ NCache[{{0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), 0}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-1 - 5^ Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {-(1 + 2 5^Rational[-1, 2])^ Rational[1, 2], 0, Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {(1 + 2 5^Rational[-1, 2])^Rational[1, 2], 0, (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, {(Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2], 0, -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, {Rational[-1, 2] ( Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2], 0}, { Root[1 - 5 #^2 + 5 #^4& , 1, 0], 0, (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}}, {{ 0, -1.618033988749895, 0}, {0, 1.618033988749895, 0}, { 0.2628655560595668, -0.8090169943749475, \ -1.3763819204711736`}, {0.2628655560595668, 0.8090169943749475, -1.3763819204711736`}, { 0.42532540417601994`, -1.3090169943749475`, 0.85065080835204}, {0.42532540417601994`, 1.3090169943749475`, 0.85065080835204}, { 0.6881909602355868, -0.5, 1.3763819204711736`}, { 0.6881909602355868, 0.5, 1.3763819204711736`}, { 1.1135163644116066`, -0.8090169943749475, \ -0.85065080835204}, {1.1135163644116066`, 0.8090169943749475, -0.85065080835204}, \ {-1.3763819204711736`, 0, -0.85065080835204}, {-0.6881909602355868, -0.5, \ -1.3763819204711736`}, {-0.6881909602355868, 0.5, -1.3763819204711736`}, { 1.3763819204711736`, 0, 0.85065080835204}, { 0.9510565162951535, -1.3090169943749475`, 0}, { 0.9510565162951535, 1.3090169943749475`, 0}, { 0.85065080835204, 0, -1.3763819204711736`}, {-0.9510565162951535, \ -1.3090169943749475`, 0}, {-0.9510565162951535, 1.3090169943749475`, 0}, {-1.5388417685876268`, -0.5, 0}, {-1.5388417685876268`, 0.5, 0}, { 1.5388417685876268`, -0.5, 0}, { 1.5388417685876268`, 0.5, 0}, {-0.85065080835204, 0, 1.3763819204711736`}, {-1.1135163644116066`, \ -0.8090169943749475, 0.85065080835204}, {-1.1135163644116066`, 0.8090169943749475, 0.85065080835204}, {-0.42532540417602, \ -1.3090169943749475`, -0.85065080835204}, {-0.42532540417602, 1.3090169943749475`, -0.85065080835204}, \ {-0.2628655560595668, -0.8090169943749475, 1.3763819204711736`}, {-0.2628655560595668, 0.8090169943749475, 1.3763819204711736`}}], {{30, 24, 29, 7, 8}, {26, 24, 30}, {25, 29, 24}, {5, 7, 29}, {14, 8, 7}, { 6, 30, 8}, {16, 2, 6}, {19, 21, 26}, {20, 18, 25}, {1, 15, 5}, {22, 23, 14}, {2, 19, 26, 30, 6}, {21, 20, 25, 24, 26}, {18, 1, 5, 29, 25}, {15, 22, 14, 7, 5}, {23, 16, 6, 8, 14}, {12, 13, 4, 17, 3}, {3, 17, 9}, {17, 4, 10}, {4, 13, 28}, {13, 12, 11}, {12, 3, 27}, {27, 1, 18}, {9, 22, 15}, { 10, 16, 23}, {28, 19, 2}, {11, 20, 21}, {27, 3, 9, 15, 1}, { 9, 17, 10, 23, 22}, {10, 4, 28, 2, 16}, {28, 13, 11, 21, 19}, {11, 12, 27, 18, 20}}]}, ImageSize -> Dynamic[{5.25, 3.5} (CurrentValue["FontCapHeight"]/ AbsoluteCurrentValue[Magnification])], Boxed -> False, Lighting -> {{"Ambient", RGBColor[0.4, 0.45, 0.5]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{2, 0, 2}]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{2, 2, 2}]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{0, 2, 2}]}}, Method -> {"ShrinkWrap" -> True}], GridBox[{{ RowBox[{ TagBox["\"Number of points: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["30", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Number of faces: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["32", "SummaryItem"]}]}}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> { "Columns" -> {{2}}, "Rows" -> {{Automatic}}}, BaseStyle -> { ShowStringCharacters -> False, NumberMarks -> False, PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, BaselinePosition -> {1, 1}], True -> GridBox[{{ PaneBox[ ButtonBox[ DynamicBox[ FEPrivate`FrontEndResource["FEBitmaps", "SummaryBoxCloser"]], ButtonFunction :> (Typeset`open$$ = False), Appearance -> None, BaseStyle -> {}, Evaluator -> Automatic, Method -> "Preemptive"], Alignment -> {Center, Center}, ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], Graphics3DBox[{ Directive[ Hue[0.58, 0.4, 1], Opacity[0.5], EdgeForm[ GrayLevel[1]]], PolyhedronBox[ NCache[{{0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), 0}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-1 - 5^ Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {-(1 + 2 5^Rational[-1, 2])^ Rational[1, 2], 0, Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {(1 + 2 5^Rational[-1, 2])^Rational[1, 2], 0, (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, {(Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2], 0, -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, {Rational[-1, 2] (5 + 2 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 2], 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2], 0}, { Root[1 - 5 #^2 + 5 #^4& , 1, 0], 0, (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}}, {{ 0, -1.618033988749895, 0}, {0, 1.618033988749895, 0}, { 0.2628655560595668, -0.8090169943749475, \ -1.3763819204711736`}, {0.2628655560595668, 0.8090169943749475, -1.3763819204711736`}, { 0.42532540417601994`, -1.3090169943749475`, 0.85065080835204}, {0.42532540417601994`, 1.3090169943749475`, 0.85065080835204}, { 0.6881909602355868, -0.5, 1.3763819204711736`}, { 0.6881909602355868, 0.5, 1.3763819204711736`}, { 1.1135163644116066`, -0.8090169943749475, \ -0.85065080835204}, {1.1135163644116066`, 0.8090169943749475, -0.85065080835204}, \ {-1.3763819204711736`, 0, -0.85065080835204}, {-0.6881909602355868, -0.5, \ -1.3763819204711736`}, {-0.6881909602355868, 0.5, -1.3763819204711736`}, { 1.3763819204711736`, 0, 0.85065080835204}, { 0.9510565162951535, -1.3090169943749475`, 0}, { 0.9510565162951535, 1.3090169943749475`, 0}, { 0.85065080835204, 0, -1.3763819204711736`}, {-0.9510565162951535, \ -1.3090169943749475`, 0}, {-0.9510565162951535, 1.3090169943749475`, 0}, {-1.5388417685876268`, -0.5, 0}, {-1.5388417685876268`, 0.5, 0}, { 1.5388417685876268`, -0.5, 0}, { 1.5388417685876268`, 0.5, 0}, {-0.85065080835204, 0, 1.3763819204711736`}, {-1.1135163644116066`, \ -0.8090169943749475, 0.85065080835204}, {-1.1135163644116066`, 0.8090169943749475, 0.85065080835204}, {-0.42532540417602, \ -1.3090169943749475`, -0.85065080835204}, {-0.42532540417602, 1.3090169943749475`, -0.85065080835204}, \ {-0.2628655560595668, -0.8090169943749475, 1.3763819204711736`}, {-0.2628655560595668, 0.8090169943749475, 1.3763819204711736`}}], {{30, 24, 29, 7, 8}, {26, 24, 30}, {25, 29, 24}, {5, 7, 29}, {14, 8, 7}, { 6, 30, 8}, {16, 2, 6}, {19, 21, 26}, {20, 18, 25}, {1, 15, 5}, {22, 23, 14}, {2, 19, 26, 30, 6}, {21, 20, 25, 24, 26}, {18, 1, 5, 29, 25}, {15, 22, 14, 7, 5}, {23, 16, 6, 8, 14}, {12, 13, 4, 17, 3}, {3, 17, 9}, {17, 4, 10}, {4, 13, 28}, {13, 12, 11}, {12, 3, 27}, {27, 1, 18}, {9, 22, 15}, { 10, 16, 23}, {28, 19, 2}, {11, 20, 21}, {27, 3, 9, 15, 1}, { 9, 17, 10, 23, 22}, {10, 4, 28, 2, 16}, {28, 13, 11, 21, 19}, {11, 12, 27, 18, 20}}]}, ImageSize -> Dynamic[{5.25, 3.5} (CurrentValue["FontCapHeight"]/ AbsoluteCurrentValue[Magnification])], Boxed -> False, Lighting -> {{"Ambient", RGBColor[0.4, 0.45, 0.5]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{2, 0, 2}]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{2, 2, 2}]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{0, 2, 2}]}}, Method -> {"ShrinkWrap" -> True}], GridBox[{{ RowBox[{ TagBox["\"Number of points: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["30", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Number of faces: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["32", "SummaryItem"]}]}, { RowBox[{ TagBox[ "\"Embedding dimension: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["3", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Type: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Quiet[ Apply[Region`PolyhedronDump`polyhedronType, Region`PolyhedronDump`computeType[ Typeset`spolyhedron$$]]], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}, { RowBox[{ TagBox["\"Bounds: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Region`PolyhedronDump`iRegionBounds[ Typeset`spolyhedron$$], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}, { RowBox[{ TagBox["\"Volume: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Region`PolyhedronDump`iVolume[Typeset`spolyhedron$$], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> { "Columns" -> {{2}}, "Rows" -> {{Automatic}}}, BaseStyle -> { ShowStringCharacters -> False, NumberMarks -> False, PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, BaselinePosition -> {1, 1}]}, Dynamic[Typeset`open$$], ImageSize -> Automatic]}, "SummaryPanel"], DynamicModuleValues:>{}], "]"}], Polyhedron[{{0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), 0}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], Rational[-1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {-(1 + 2 5^Rational[-1, 2])^ Rational[1, 2], 0, Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {(1 + 2 5^Rational[-1, 2])^Rational[1, 2], 0, (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, {(Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2], 0, -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2], 0}, { Root[1 - 5 #^2 + 5 #^4& , 1, 0], 0, (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}}, {{30, 24, 29, 7, 8}, {26, 24, 30}, {25, 29, 24}, {5, 7, 29}, {14, 8, 7}, {6, 30, 8}, {16, 2, 6}, {19, 21, 26}, {20, 18, 25}, {1, 15, 5}, {22, 23, 14}, {2, 19, 26, 30, 6}, {21, 20, 25, 24, 26}, {18, 1, 5, 29, 25}, {15, 22, 14, 7, 5}, {23, 16, 6, 8, 14}, {12, 13, 4, 17, 3}, {3, 17, 9}, {17, 4, 10}, {4, 13, 28}, {13, 12, 11}, {12, 3, 27}, {27, 1, 18}, {9, 22, 15}, {10, 16, 23}, {28, 19, 2}, {11, 20, 21}, {27, 3, 9, 15, 1}, {9, 17, 10, 23, 22}, {10, 4, 28, 2, 16}, {28, 13, 11, 21, 19}, {11, 12, 27, 18, 20}}], Editable->False, SelectWithContents->True, Selectable->False], ",", InterpretationBox[ RowBox[{ TagBox["Polyhedron", "SummaryHead"], "[", DynamicModuleBox[{Typeset`open$$ = False, Typeset`embedState$$ = "Ready", Typeset`spolyhedron$$ = Quiet[ Polyhedron[{{0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), 0}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {-(1 + 2 5^Rational[-1, 2])^ Rational[1, 2], 0, Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {(1 + 2 5^Rational[-1, 2])^Rational[1, 2], 0, (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, {(Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2], 0, -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2], 0}, { Root[1 - 5 #^2 + 5 #^4& , 1, 0], 0, (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}}, {{30, 24, 29, 7, 8}, {26, 24, 30}, {25, 29, 24}, { 5, 7, 29}, {14, 8, 7}, {6, 30, 8}, {16, 2, 6}, {19, 21, 26}, {20, 18, 25}, {1, 15, 5}, {22, 23, 14}, {2, 19, 26, 30, 6}, {21, 20, 25, 24, 26}, {18, 1, 5, 29, 25}, {15, 22, 14, 7, 5}, {23, 16, 6, 8, 14}, {12, 13, 4, 17, 3}, {3, 17, 9}, {17, 4, 10}, {4, 13, 28}, {13, 12, 11}, { 12, 3, 27}, {27, 1, 18}, {9, 22, 15}, {10, 16, 23}, {28, 19, 2}, {11, 20, 21}, {27, 3, 9, 15, 1}, {9, 17, 10, 23, 22}, {10, 4, 28, 2, 16}, {28, 13, 11, 21, 19}, {11, 12, 27, 18, 20}}]]}, TemplateBox[{ PaneSelectorBox[{False -> GridBox[{{ PaneBox[ ButtonBox[ DynamicBox[ FEPrivate`FrontEndResource["FEBitmaps", "SummaryBoxOpener"]], ButtonFunction :> (Typeset`open$$ = True), Appearance -> None, BaseStyle -> {}, Evaluator -> Automatic, Method -> "Preemptive"], Alignment -> {Center, Center}, ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], Graphics3DBox[{ Directive[ Hue[0.58, 0.4, 1], Opacity[0.5], EdgeForm[ GrayLevel[1]]], PolyhedronBox[ NCache[{{0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), 0}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-1 - 5^ Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {-(1 + 2 5^Rational[-1, 2])^ Rational[1, 2], 0, Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {(1 + 2 5^Rational[-1, 2])^Rational[1, 2], 0, (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, {(Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2], 0, -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, {Rational[-1, 2] ( Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2], 0}, { Root[1 - 5 #^2 + 5 #^4& , 1, 0], 0, (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}}, {{ 0, -1.618033988749895, 0}, {0, 1.618033988749895, 0}, { 0.2628655560595668, -0.8090169943749475, \ -1.3763819204711736`}, {0.2628655560595668, 0.8090169943749475, -1.3763819204711736`}, { 0.42532540417601994`, -1.3090169943749475`, 0.85065080835204}, {0.42532540417601994`, 1.3090169943749475`, 0.85065080835204}, { 0.6881909602355868, -0.5, 1.3763819204711736`}, { 0.6881909602355868, 0.5, 1.3763819204711736`}, { 1.1135163644116066`, -0.8090169943749475, \ -0.85065080835204}, {1.1135163644116066`, 0.8090169943749475, -0.85065080835204}, \ {-1.3763819204711736`, 0, -0.85065080835204}, {-0.6881909602355868, -0.5, \ -1.3763819204711736`}, {-0.6881909602355868, 0.5, -1.3763819204711736`}, { 1.3763819204711736`, 0, 0.85065080835204}, { 0.9510565162951535, -1.3090169943749475`, 0}, { 0.9510565162951535, 1.3090169943749475`, 0}, { 0.85065080835204, 0, -1.3763819204711736`}, {-0.9510565162951535, \ -1.3090169943749475`, 0}, {-0.9510565162951535, 1.3090169943749475`, 0}, {-1.5388417685876268`, -0.5, 0}, {-1.5388417685876268`, 0.5, 0}, { 1.5388417685876268`, -0.5, 0}, { 1.5388417685876268`, 0.5, 0}, {-0.85065080835204, 0, 1.3763819204711736`}, {-1.1135163644116066`, \ -0.8090169943749475, 0.85065080835204}, {-1.1135163644116066`, 0.8090169943749475, 0.85065080835204}, {-0.42532540417602, \ -1.3090169943749475`, -0.85065080835204}, {-0.42532540417602, 1.3090169943749475`, -0.85065080835204}, \ {-0.2628655560595668, -0.8090169943749475, 1.3763819204711736`}, {-0.2628655560595668, 0.8090169943749475, 1.3763819204711736`}}], {{30, 24, 29, 7, 8}, {26, 24, 30}, {25, 29, 24}, {5, 7, 29}, {14, 8, 7}, { 6, 30, 8}, {16, 2, 6}, {19, 21, 26}, {20, 18, 25}, {1, 15, 5}, {22, 23, 14}, {2, 19, 26, 30, 6}, {21, 20, 25, 24, 26}, {18, 1, 5, 29, 25}, {15, 22, 14, 7, 5}, {23, 16, 6, 8, 14}, {12, 13, 4, 17, 3}, {3, 17, 9}, {17, 4, 10}, {4, 13, 28}, {13, 12, 11}, {12, 3, 27}, {27, 1, 18}, {9, 22, 15}, { 10, 16, 23}, {28, 19, 2}, {11, 20, 21}, {27, 3, 9, 15, 1}, { 9, 17, 10, 23, 22}, {10, 4, 28, 2, 16}, {28, 13, 11, 21, 19}, {11, 12, 27, 18, 20}}]}, ImageSize -> Dynamic[{5.25, 3.5} (CurrentValue["FontCapHeight"]/ AbsoluteCurrentValue[Magnification])], Boxed -> False, Lighting -> {{"Ambient", RGBColor[0.4, 0.45, 0.5]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{2, 0, 2}]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{2, 2, 2}]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{0, 2, 2}]}}, Method -> {"ShrinkWrap" -> True}], GridBox[{{ RowBox[{ TagBox["\"Number of points: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["30", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Number of faces: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["32", "SummaryItem"]}]}}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> { "Columns" -> {{2}}, "Rows" -> {{Automatic}}}, BaseStyle -> { ShowStringCharacters -> False, NumberMarks -> False, PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, BaselinePosition -> {1, 1}], True -> GridBox[{{ PaneBox[ ButtonBox[ DynamicBox[ FEPrivate`FrontEndResource["FEBitmaps", "SummaryBoxCloser"]], ButtonFunction :> (Typeset`open$$ = False), Appearance -> None, BaseStyle -> {}, Evaluator -> Automatic, Method -> "Preemptive"], Alignment -> {Center, Center}, ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], Graphics3DBox[{ Directive[ Hue[0.58, 0.4, 1], Opacity[0.5], EdgeForm[ GrayLevel[1]]], PolyhedronBox[ NCache[{{0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), 0}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-1 - 5^ Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {-(1 + 2 5^Rational[-1, 2])^ Rational[1, 2], 0, Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {(1 + 2 5^Rational[-1, 2])^Rational[1, 2], 0, (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, {(Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2], 0, -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, {Rational[-1, 2] ( Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2], 0}, { Root[1 - 5 #^2 + 5 #^4& , 1, 0], 0, (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}}, {{ 0, -1.618033988749895, 0}, {0, 1.618033988749895, 0}, { 0.2628655560595668, -0.8090169943749475, \ -1.3763819204711736`}, {0.2628655560595668, 0.8090169943749475, -1.3763819204711736`}, { 0.42532540417601994`, -1.3090169943749475`, 0.85065080835204}, {0.42532540417601994`, 1.3090169943749475`, 0.85065080835204}, { 0.6881909602355868, -0.5, 1.3763819204711736`}, { 0.6881909602355868, 0.5, 1.3763819204711736`}, { 1.1135163644116066`, -0.8090169943749475, \ -0.85065080835204}, {1.1135163644116066`, 0.8090169943749475, -0.85065080835204}, \ {-1.3763819204711736`, 0, -0.85065080835204}, {-0.6881909602355868, -0.5, \ -1.3763819204711736`}, {-0.6881909602355868, 0.5, -1.3763819204711736`}, { 1.3763819204711736`, 0, 0.85065080835204}, { 0.9510565162951535, -1.3090169943749475`, 0}, { 0.9510565162951535, 1.3090169943749475`, 0}, { 0.85065080835204, 0, -1.3763819204711736`}, {-0.9510565162951535, \ -1.3090169943749475`, 0}, {-0.9510565162951535, 1.3090169943749475`, 0}, {-1.5388417685876268`, -0.5, 0}, {-1.5388417685876268`, 0.5, 0}, { 1.5388417685876268`, -0.5, 0}, { 1.5388417685876268`, 0.5, 0}, {-0.85065080835204, 0, 1.3763819204711736`}, {-1.1135163644116066`, \ -0.8090169943749475, 0.85065080835204}, {-1.1135163644116066`, 0.8090169943749475, 0.85065080835204}, {-0.42532540417602, \ -1.3090169943749475`, -0.85065080835204}, {-0.42532540417602, 1.3090169943749475`, -0.85065080835204}, \ {-0.2628655560595668, -0.8090169943749475, 1.3763819204711736`}, {-0.2628655560595668, 0.8090169943749475, 1.3763819204711736`}}], {{30, 24, 29, 7, 8}, {26, 24, 30}, {25, 29, 24}, {5, 7, 29}, {14, 8, 7}, { 6, 30, 8}, {16, 2, 6}, {19, 21, 26}, {20, 18, 25}, {1, 15, 5}, {22, 23, 14}, {2, 19, 26, 30, 6}, {21, 20, 25, 24, 26}, {18, 1, 5, 29, 25}, {15, 22, 14, 7, 5}, {23, 16, 6, 8, 14}, {12, 13, 4, 17, 3}, {3, 17, 9}, {17, 4, 10}, {4, 13, 28}, {13, 12, 11}, {12, 3, 27}, {27, 1, 18}, {9, 22, 15}, { 10, 16, 23}, {28, 19, 2}, {11, 20, 21}, {27, 3, 9, 15, 1}, { 9, 17, 10, 23, 22}, {10, 4, 28, 2, 16}, {28, 13, 11, 21, 19}, {11, 12, 27, 18, 20}}]}, ImageSize -> Dynamic[{5.25, 3.5} (CurrentValue["FontCapHeight"]/ AbsoluteCurrentValue[Magnification])], Boxed -> False, Lighting -> {{"Ambient", RGBColor[0.4, 0.45, 0.5]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{2, 0, 2}]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{2, 2, 2}]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{0, 2, 2}]}}, Method -> {"ShrinkWrap" -> True}], GridBox[{{ RowBox[{ TagBox["\"Number of points: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["30", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Number of faces: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["32", "SummaryItem"]}]}, { RowBox[{ TagBox[ "\"Embedding dimension: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["3", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Type: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Quiet[ Apply[Region`PolyhedronDump`polyhedronType, Region`PolyhedronDump`computeType[ Typeset`spolyhedron$$]]], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}, { RowBox[{ TagBox["\"Bounds: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Region`PolyhedronDump`iRegionBounds[ Typeset`spolyhedron$$], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}, { RowBox[{ TagBox["\"Volume: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Region`PolyhedronDump`iVolume[Typeset`spolyhedron$$], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> { "Columns" -> {{2}}, "Rows" -> {{Automatic}}}, BaseStyle -> { ShowStringCharacters -> False, NumberMarks -> False, PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, BaselinePosition -> {1, 1}]}, Dynamic[Typeset`open$$], ImageSize -> Automatic]}, "SummaryPanel"], DynamicModuleValues:>{}], "]"}], Polyhedron[{{0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), 0}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], Rational[-1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {-(1 + 2 5^Rational[-1, 2])^ Rational[1, 2], 0, Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {(1 + 2 5^Rational[-1, 2])^Rational[1, 2], 0, (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, {(Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2], 0, -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2], 0}, { Root[1 - 5 #^2 + 5 #^4& , 1, 0], 0, (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}}, {{30, 24, 29, 7, 8}, {26, 24, 30}, {25, 29, 24}, {5, 7, 29}, {14, 8, 7}, {6, 30, 8}, {16, 2, 6}, {19, 21, 26}, {20, 18, 25}, {1, 15, 5}, {22, 23, 14}, {2, 19, 26, 30, 6}, {21, 20, 25, 24, 26}, {18, 1, 5, 29, 25}, {15, 22, 14, 7, 5}, {23, 16, 6, 8, 14}, {12, 13, 4, 17, 3}, {3, 17, 9}, {17, 4, 10}, {4, 13, 28}, {13, 12, 11}, {12, 3, 27}, {27, 1, 18}, {9, 22, 15}, {10, 16, 23}, {28, 19, 2}, {11, 20, 21}, {27, 3, 9, 15, 1}, {9, 17, 10, 23, 22}, {10, 4, 28, 2, 16}, {28, 13, 11, 21, 19}, {11, 12, 27, 18, 20}}], Editable->False, SelectWithContents->True, Selectable->False], ",", InterpretationBox[ RowBox[{ TagBox["Polyhedron", "SummaryHead"], "[", DynamicModuleBox[{Typeset`open$$ = False, Typeset`embedState$$ = "Ready", Typeset`spolyhedron$$ = Quiet[ Polyhedron[{{0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), 0}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {-(1 + 2 5^Rational[-1, 2])^ Rational[1, 2], 0, Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {(1 + 2 5^Rational[-1, 2])^Rational[1, 2], 0, (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, {(Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2], 0, -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2], 0}, { Root[1 - 5 #^2 + 5 #^4& , 1, 0], 0, (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}}, {{30, 24, 29, 7, 8}, {26, 24, 30}, {25, 29, 24}, { 5, 7, 29}, {14, 8, 7}, {6, 30, 8}, {16, 2, 6}, {19, 21, 26}, {20, 18, 25}, {1, 15, 5}, {22, 23, 14}, {2, 19, 26, 30, 6}, {21, 20, 25, 24, 26}, {18, 1, 5, 29, 25}, {15, 22, 14, 7, 5}, {23, 16, 6, 8, 14}, {12, 13, 4, 17, 3}, {3, 17, 9}, {17, 4, 10}, {4, 13, 28}, {13, 12, 11}, { 12, 3, 27}, {27, 1, 18}, {9, 22, 15}, {10, 16, 23}, {28, 19, 2}, {11, 20, 21}, {27, 3, 9, 15, 1}, {9, 17, 10, 23, 22}, {10, 4, 28, 2, 16}, {28, 13, 11, 21, 19}, {11, 12, 27, 18, 20}}]]}, TemplateBox[{ PaneSelectorBox[{False -> GridBox[{{ PaneBox[ ButtonBox[ DynamicBox[ FEPrivate`FrontEndResource["FEBitmaps", "SummaryBoxOpener"]], ButtonFunction :> (Typeset`open$$ = True), Appearance -> None, BaseStyle -> {}, Evaluator -> Automatic, Method -> "Preemptive"], Alignment -> {Center, Center}, ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], Graphics3DBox[{ Directive[ Hue[0.58, 0.4, 1], Opacity[0.5], EdgeForm[ GrayLevel[1]]], PolyhedronBox[ NCache[{{0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), 0}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-1 - 5^ Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {-(1 + 2 5^Rational[-1, 2])^ Rational[1, 2], 0, Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {(1 + 2 5^Rational[-1, 2])^Rational[1, 2], 0, (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, {(Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2], 0, -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, {Rational[-1, 2] ( Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2], 0}, { Root[1 - 5 #^2 + 5 #^4& , 1, 0], 0, (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}}, {{ 0, -1.618033988749895, 0}, {0, 1.618033988749895, 0}, { 0.2628655560595668, -0.8090169943749475, \ -1.3763819204711736`}, {0.2628655560595668, 0.8090169943749475, -1.3763819204711736`}, { 0.42532540417601994`, -1.3090169943749475`, 0.85065080835204}, {0.42532540417601994`, 1.3090169943749475`, 0.85065080835204}, { 0.6881909602355868, -0.5, 1.3763819204711736`}, { 0.6881909602355868, 0.5, 1.3763819204711736`}, { 1.1135163644116066`, -0.8090169943749475, \ -0.85065080835204}, {1.1135163644116066`, 0.8090169943749475, -0.85065080835204}, \ {-1.3763819204711736`, 0, -0.85065080835204}, {-0.6881909602355868, -0.5, \ -1.3763819204711736`}, {-0.6881909602355868, 0.5, -1.3763819204711736`}, { 1.3763819204711736`, 0, 0.85065080835204}, { 0.9510565162951535, -1.3090169943749475`, 0}, { 0.9510565162951535, 1.3090169943749475`, 0}, { 0.85065080835204, 0, -1.3763819204711736`}, {-0.9510565162951535, \ -1.3090169943749475`, 0}, {-0.9510565162951535, 1.3090169943749475`, 0}, {-1.5388417685876268`, -0.5, 0}, {-1.5388417685876268`, 0.5, 0}, { 1.5388417685876268`, -0.5, 0}, { 1.5388417685876268`, 0.5, 0}, {-0.85065080835204, 0, 1.3763819204711736`}, {-1.1135163644116066`, \ -0.8090169943749475, 0.85065080835204}, {-1.1135163644116066`, 0.8090169943749475, 0.85065080835204}, {-0.42532540417602, \ -1.3090169943749475`, -0.85065080835204}, {-0.42532540417602, 1.3090169943749475`, -0.85065080835204}, \ {-0.2628655560595668, -0.8090169943749475, 1.3763819204711736`}, {-0.2628655560595668, 0.8090169943749475, 1.3763819204711736`}}], {{30, 24, 29, 7, 8}, {26, 24, 30}, {25, 29, 24}, {5, 7, 29}, {14, 8, 7}, { 6, 30, 8}, {16, 2, 6}, {19, 21, 26}, {20, 18, 25}, {1, 15, 5}, {22, 23, 14}, {2, 19, 26, 30, 6}, {21, 20, 25, 24, 26}, {18, 1, 5, 29, 25}, {15, 22, 14, 7, 5}, {23, 16, 6, 8, 14}, {12, 13, 4, 17, 3}, {3, 17, 9}, {17, 4, 10}, {4, 13, 28}, {13, 12, 11}, {12, 3, 27}, {27, 1, 18}, {9, 22, 15}, { 10, 16, 23}, {28, 19, 2}, {11, 20, 21}, {27, 3, 9, 15, 1}, { 9, 17, 10, 23, 22}, {10, 4, 28, 2, 16}, {28, 13, 11, 21, 19}, {11, 12, 27, 18, 20}}]}, ImageSize -> Dynamic[{5.25, 3.5} (CurrentValue["FontCapHeight"]/ AbsoluteCurrentValue[Magnification])], Boxed -> False, Lighting -> {{"Ambient", RGBColor[0.4, 0.45, 0.5]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{2, 0, 2}]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{2, 2, 2}]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{0, 2, 2}]}}, Method -> {"ShrinkWrap" -> True}], GridBox[{{ RowBox[{ TagBox["\"Number of points: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["30", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Number of faces: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["32", "SummaryItem"]}]}}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> { "Columns" -> {{2}}, "Rows" -> {{Automatic}}}, BaseStyle -> { ShowStringCharacters -> False, NumberMarks -> False, PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, BaselinePosition -> {1, 1}], True -> GridBox[{{ PaneBox[ ButtonBox[ DynamicBox[ FEPrivate`FrontEndResource["FEBitmaps", "SummaryBoxCloser"]], ButtonFunction :> (Typeset`open$$ = False), Appearance -> None, BaseStyle -> {}, Evaluator -> Automatic, Method -> "Preemptive"], Alignment -> {Center, Center}, ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], Graphics3DBox[{ Directive[ Hue[0.58, 0.4, 1], Opacity[0.5], EdgeForm[ GrayLevel[1]]], PolyhedronBox[ NCache[{{0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), 0}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-1 - 5^ Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {-(1 + 2 5^Rational[-1, 2])^ Rational[1, 2], 0, Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {(1 + 2 5^Rational[-1, 2])^Rational[1, 2], 0, (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, {(Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2], 0, -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, {Rational[-1, 2] ( Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2], 0}, { Root[1 - 5 #^2 + 5 #^4& , 1, 0], 0, (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}}, {{ 0, -1.618033988749895, 0}, {0, 1.618033988749895, 0}, { 0.2628655560595668, -0.8090169943749475, \ -1.3763819204711736`}, {0.2628655560595668, 0.8090169943749475, -1.3763819204711736`}, { 0.42532540417601994`, -1.3090169943749475`, 0.85065080835204}, {0.42532540417601994`, 1.3090169943749475`, 0.85065080835204}, { 0.6881909602355868, -0.5, 1.3763819204711736`}, { 0.6881909602355868, 0.5, 1.3763819204711736`}, { 1.1135163644116066`, -0.8090169943749475, \ -0.85065080835204}, {1.1135163644116066`, 0.8090169943749475, -0.85065080835204}, \ {-1.3763819204711736`, 0, -0.85065080835204}, {-0.6881909602355868, -0.5, \ -1.3763819204711736`}, {-0.6881909602355868, 0.5, -1.3763819204711736`}, { 1.3763819204711736`, 0, 0.85065080835204}, { 0.9510565162951535, -1.3090169943749475`, 0}, { 0.9510565162951535, 1.3090169943749475`, 0}, { 0.85065080835204, 0, -1.3763819204711736`}, {-0.9510565162951535, \ -1.3090169943749475`, 0}, {-0.9510565162951535, 1.3090169943749475`, 0}, {-1.5388417685876268`, -0.5, 0}, {-1.5388417685876268`, 0.5, 0}, { 1.5388417685876268`, -0.5, 0}, { 1.5388417685876268`, 0.5, 0}, {-0.85065080835204, 0, 1.3763819204711736`}, {-1.1135163644116066`, \ -0.8090169943749475, 0.85065080835204}, {-1.1135163644116066`, 0.8090169943749475, 0.85065080835204}, {-0.42532540417602, \ -1.3090169943749475`, -0.85065080835204}, {-0.42532540417602, 1.3090169943749475`, -0.85065080835204}, \ {-0.2628655560595668, -0.8090169943749475, 1.3763819204711736`}, {-0.2628655560595668, 0.8090169943749475, 1.3763819204711736`}}], {{30, 24, 29, 7, 8}, {26, 24, 30}, {25, 29, 24}, {5, 7, 29}, {14, 8, 7}, { 6, 30, 8}, {16, 2, 6}, {19, 21, 26}, {20, 18, 25}, {1, 15, 5}, {22, 23, 14}, {2, 19, 26, 30, 6}, {21, 20, 25, 24, 26}, {18, 1, 5, 29, 25}, {15, 22, 14, 7, 5}, {23, 16, 6, 8, 14}, {12, 13, 4, 17, 3}, {3, 17, 9}, {17, 4, 10}, {4, 13, 28}, {13, 12, 11}, {12, 3, 27}, {27, 1, 18}, {9, 22, 15}, { 10, 16, 23}, {28, 19, 2}, {11, 20, 21}, {27, 3, 9, 15, 1}, { 9, 17, 10, 23, 22}, {10, 4, 28, 2, 16}, {28, 13, 11, 21, 19}, {11, 12, 27, 18, 20}}]}, ImageSize -> Dynamic[{5.25, 3.5} (CurrentValue["FontCapHeight"]/ AbsoluteCurrentValue[Magnification])], Boxed -> False, Lighting -> {{"Ambient", RGBColor[0.4, 0.45, 0.5]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{2, 0, 2}]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{2, 2, 2}]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{0, 2, 2}]}}, Method -> {"ShrinkWrap" -> True}], GridBox[{{ RowBox[{ TagBox["\"Number of points: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["30", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Number of faces: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["32", "SummaryItem"]}]}, { RowBox[{ TagBox[ "\"Embedding dimension: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["3", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Type: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Quiet[ Apply[Region`PolyhedronDump`polyhedronType, Region`PolyhedronDump`computeType[ Typeset`spolyhedron$$]]], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}, { RowBox[{ TagBox["\"Bounds: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Region`PolyhedronDump`iRegionBounds[ Typeset`spolyhedron$$], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}, { RowBox[{ TagBox["\"Volume: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Region`PolyhedronDump`iVolume[Typeset`spolyhedron$$], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> { "Columns" -> {{2}}, "Rows" -> {{Automatic}}}, BaseStyle -> { ShowStringCharacters -> False, NumberMarks -> False, PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, BaselinePosition -> {1, 1}]}, Dynamic[Typeset`open$$], ImageSize -> Automatic]}, "SummaryPanel"], DynamicModuleValues:>{}], "]"}], Polyhedron[{{0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), 0}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], Rational[-1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {-(1 + 2 5^Rational[-1, 2])^ Rational[1, 2], 0, Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {(1 + 2 5^Rational[-1, 2])^Rational[1, 2], 0, (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, {(Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2], 0, -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2], 0}, { Root[1 - 5 #^2 + 5 #^4& , 1, 0], 0, (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}}, {{30, 24, 29, 7, 8}, {26, 24, 30}, {25, 29, 24}, {5, 7, 29}, {14, 8, 7}, {6, 30, 8}, {16, 2, 6}, {19, 21, 26}, {20, 18, 25}, {1, 15, 5}, {22, 23, 14}, {2, 19, 26, 30, 6}, {21, 20, 25, 24, 26}, {18, 1, 5, 29, 25}, {15, 22, 14, 7, 5}, {23, 16, 6, 8, 14}, {12, 13, 4, 17, 3}, {3, 17, 9}, {17, 4, 10}, {4, 13, 28}, {13, 12, 11}, {12, 3, 27}, {27, 1, 18}, {9, 22, 15}, {10, 16, 23}, {28, 19, 2}, {11, 20, 21}, {27, 3, 9, 15, 1}, {9, 17, 10, 23, 22}, {10, 4, 28, 2, 16}, {28, 13, 11, 21, 19}, {11, 12, 27, 18, 20}}], Editable->False, SelectWithContents->True, Selectable->False], ",", InterpretationBox[ RowBox[{ TagBox["Polyhedron", "SummaryHead"], "[", DynamicModuleBox[{Typeset`open$$ = False, Typeset`embedState$$ = "Ready", Typeset`spolyhedron$$ = Quiet[ Polyhedron[{{0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), 0}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {-(1 + 2 5^Rational[-1, 2])^ Rational[1, 2], 0, Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {(1 + 2 5^Rational[-1, 2])^Rational[1, 2], 0, (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, {(Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2], 0, -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2], 0}, { Root[1 - 5 #^2 + 5 #^4& , 1, 0], 0, (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}}, {{30, 24, 29, 7, 8}, {26, 24, 30}, {25, 29, 24}, { 5, 7, 29}, {14, 8, 7}, {6, 30, 8}, {16, 2, 6}, {19, 21, 26}, {20, 18, 25}, {1, 15, 5}, {22, 23, 14}, {2, 19, 26, 30, 6}, {21, 20, 25, 24, 26}, {18, 1, 5, 29, 25}, {15, 22, 14, 7, 5}, {23, 16, 6, 8, 14}, {12, 13, 4, 17, 3}, {3, 17, 9}, {17, 4, 10}, {4, 13, 28}, {13, 12, 11}, { 12, 3, 27}, {27, 1, 18}, {9, 22, 15}, {10, 16, 23}, {28, 19, 2}, {11, 20, 21}, {27, 3, 9, 15, 1}, {9, 17, 10, 23, 22}, {10, 4, 28, 2, 16}, {28, 13, 11, 21, 19}, {11, 12, 27, 18, 20}}]]}, TemplateBox[{ PaneSelectorBox[{False -> GridBox[{{ PaneBox[ ButtonBox[ DynamicBox[ FEPrivate`FrontEndResource["FEBitmaps", "SummaryBoxOpener"]], ButtonFunction :> (Typeset`open$$ = True), Appearance -> None, BaseStyle -> {}, Evaluator -> Automatic, Method -> "Preemptive"], Alignment -> {Center, Center}, ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], Graphics3DBox[{ Directive[ Hue[0.58, 0.4, 1], Opacity[0.5], EdgeForm[ GrayLevel[1]]], PolyhedronBox[ NCache[{{0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), 0}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-1 - 5^ Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {-(1 + 2 5^Rational[-1, 2])^ Rational[1, 2], 0, Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {(1 + 2 5^Rational[-1, 2])^Rational[1, 2], 0, (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, {(Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2], 0, -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, {Rational[-1, 2] ( Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2], 0}, { Root[1 - 5 #^2 + 5 #^4& , 1, 0], 0, (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}}, {{ 0, -1.618033988749895, 0}, {0, 1.618033988749895, 0}, { 0.2628655560595668, -0.8090169943749475, \ -1.3763819204711736`}, {0.2628655560595668, 0.8090169943749475, -1.3763819204711736`}, { 0.42532540417601994`, -1.3090169943749475`, 0.85065080835204}, {0.42532540417601994`, 1.3090169943749475`, 0.85065080835204}, { 0.6881909602355868, -0.5, 1.3763819204711736`}, { 0.6881909602355868, 0.5, 1.3763819204711736`}, { 1.1135163644116066`, -0.8090169943749475, \ -0.85065080835204}, {1.1135163644116066`, 0.8090169943749475, -0.85065080835204}, \ {-1.3763819204711736`, 0, -0.85065080835204}, {-0.6881909602355868, -0.5, \ -1.3763819204711736`}, {-0.6881909602355868, 0.5, -1.3763819204711736`}, { 1.3763819204711736`, 0, 0.85065080835204}, { 0.9510565162951535, -1.3090169943749475`, 0}, { 0.9510565162951535, 1.3090169943749475`, 0}, { 0.85065080835204, 0, -1.3763819204711736`}, {-0.9510565162951535, \ -1.3090169943749475`, 0}, {-0.9510565162951535, 1.3090169943749475`, 0}, {-1.5388417685876268`, -0.5, 0}, {-1.5388417685876268`, 0.5, 0}, { 1.5388417685876268`, -0.5, 0}, { 1.5388417685876268`, 0.5, 0}, {-0.85065080835204, 0, 1.3763819204711736`}, {-1.1135163644116066`, \ -0.8090169943749475, 0.85065080835204}, {-1.1135163644116066`, 0.8090169943749475, 0.85065080835204}, {-0.42532540417602, \ -1.3090169943749475`, -0.85065080835204}, {-0.42532540417602, 1.3090169943749475`, -0.85065080835204}, \ {-0.2628655560595668, -0.8090169943749475, 1.3763819204711736`}, {-0.2628655560595668, 0.8090169943749475, 1.3763819204711736`}}], {{30, 24, 29, 7, 8}, {26, 24, 30}, {25, 29, 24}, {5, 7, 29}, {14, 8, 7}, { 6, 30, 8}, {16, 2, 6}, {19, 21, 26}, {20, 18, 25}, {1, 15, 5}, {22, 23, 14}, {2, 19, 26, 30, 6}, {21, 20, 25, 24, 26}, {18, 1, 5, 29, 25}, {15, 22, 14, 7, 5}, {23, 16, 6, 8, 14}, {12, 13, 4, 17, 3}, {3, 17, 9}, {17, 4, 10}, {4, 13, 28}, {13, 12, 11}, {12, 3, 27}, {27, 1, 18}, {9, 22, 15}, { 10, 16, 23}, {28, 19, 2}, {11, 20, 21}, {27, 3, 9, 15, 1}, { 9, 17, 10, 23, 22}, {10, 4, 28, 2, 16}, {28, 13, 11, 21, 19}, {11, 12, 27, 18, 20}}]}, ImageSize -> Dynamic[{5.25, 3.5} (CurrentValue["FontCapHeight"]/ AbsoluteCurrentValue[Magnification])], Boxed -> False, Lighting -> {{"Ambient", RGBColor[0.4, 0.45, 0.5]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{2, 0, 2}]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{2, 2, 2}]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{0, 2, 2}]}}, Method -> {"ShrinkWrap" -> True}], GridBox[{{ RowBox[{ TagBox["\"Number of points: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["30", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Number of faces: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["32", "SummaryItem"]}]}}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> { "Columns" -> {{2}}, "Rows" -> {{Automatic}}}, BaseStyle -> { ShowStringCharacters -> False, NumberMarks -> False, PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, BaselinePosition -> {1, 1}], True -> GridBox[{{ PaneBox[ ButtonBox[ DynamicBox[ FEPrivate`FrontEndResource["FEBitmaps", "SummaryBoxCloser"]], ButtonFunction :> (Typeset`open$$ = False), Appearance -> None, BaseStyle -> {}, Evaluator -> Automatic, Method -> "Preemptive"], Alignment -> {Center, Center}, ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], Graphics3DBox[{ Directive[ Hue[0.58, 0.4, 1], Opacity[0.5], EdgeForm[ GrayLevel[1]]], PolyhedronBox[ NCache[{{0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), 0}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-1 - 5^ Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {-(1 + 2 5^Rational[-1, 2])^ Rational[1, 2], 0, Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {(1 + 2 5^Rational[-1, 2])^Rational[1, 2], 0, (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, {(Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2], 0, -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, {Rational[-1, 2] ( Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2], 0}, { Root[1 - 5 #^2 + 5 #^4& , 1, 0], 0, (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}}, {{ 0, -1.618033988749895, 0}, {0, 1.618033988749895, 0}, { 0.2628655560595668, -0.8090169943749475, \ -1.3763819204711736`}, {0.2628655560595668, 0.8090169943749475, -1.3763819204711736`}, { 0.42532540417601994`, -1.3090169943749475`, 0.85065080835204}, {0.42532540417601994`, 1.3090169943749475`, 0.85065080835204}, { 0.6881909602355868, -0.5, 1.3763819204711736`}, { 0.6881909602355868, 0.5, 1.3763819204711736`}, { 1.1135163644116066`, -0.8090169943749475, \ -0.85065080835204}, {1.1135163644116066`, 0.8090169943749475, -0.85065080835204}, \ {-1.3763819204711736`, 0, -0.85065080835204}, {-0.6881909602355868, -0.5, \ -1.3763819204711736`}, {-0.6881909602355868, 0.5, -1.3763819204711736`}, { 1.3763819204711736`, 0, 0.85065080835204}, { 0.9510565162951535, -1.3090169943749475`, 0}, { 0.9510565162951535, 1.3090169943749475`, 0}, { 0.85065080835204, 0, -1.3763819204711736`}, {-0.9510565162951535, \ -1.3090169943749475`, 0}, {-0.9510565162951535, 1.3090169943749475`, 0}, {-1.5388417685876268`, -0.5, 0}, {-1.5388417685876268`, 0.5, 0}, { 1.5388417685876268`, -0.5, 0}, { 1.5388417685876268`, 0.5, 0}, {-0.85065080835204, 0, 1.3763819204711736`}, {-1.1135163644116066`, \ -0.8090169943749475, 0.85065080835204}, {-1.1135163644116066`, 0.8090169943749475, 0.85065080835204}, {-0.42532540417602, \ -1.3090169943749475`, -0.85065080835204}, {-0.42532540417602, 1.3090169943749475`, -0.85065080835204}, \ {-0.2628655560595668, -0.8090169943749475, 1.3763819204711736`}, {-0.2628655560595668, 0.8090169943749475, 1.3763819204711736`}}], {{30, 24, 29, 7, 8}, {26, 24, 30}, {25, 29, 24}, {5, 7, 29}, {14, 8, 7}, { 6, 30, 8}, {16, 2, 6}, {19, 21, 26}, {20, 18, 25}, {1, 15, 5}, {22, 23, 14}, {2, 19, 26, 30, 6}, {21, 20, 25, 24, 26}, {18, 1, 5, 29, 25}, {15, 22, 14, 7, 5}, {23, 16, 6, 8, 14}, {12, 13, 4, 17, 3}, {3, 17, 9}, {17, 4, 10}, {4, 13, 28}, {13, 12, 11}, {12, 3, 27}, {27, 1, 18}, {9, 22, 15}, { 10, 16, 23}, {28, 19, 2}, {11, 20, 21}, {27, 3, 9, 15, 1}, { 9, 17, 10, 23, 22}, {10, 4, 28, 2, 16}, {28, 13, 11, 21, 19}, {11, 12, 27, 18, 20}}]}, ImageSize -> Dynamic[{5.25, 3.5} (CurrentValue["FontCapHeight"]/ AbsoluteCurrentValue[Magnification])], Boxed -> False, Lighting -> {{"Ambient", RGBColor[0.4, 0.45, 0.5]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{2, 0, 2}]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{2, 2, 2}]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{0, 2, 2}]}}, Method -> {"ShrinkWrap" -> True}], GridBox[{{ RowBox[{ TagBox["\"Number of points: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["30", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Number of faces: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["32", "SummaryItem"]}]}, { RowBox[{ TagBox[ "\"Embedding dimension: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["3", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Type: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Quiet[ Apply[Region`PolyhedronDump`polyhedronType, Region`PolyhedronDump`computeType[ Typeset`spolyhedron$$]]], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}, { RowBox[{ TagBox["\"Bounds: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Region`PolyhedronDump`iRegionBounds[ Typeset`spolyhedron$$], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}, { RowBox[{ TagBox["\"Volume: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Region`PolyhedronDump`iVolume[Typeset`spolyhedron$$], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> { "Columns" -> {{2}}, "Rows" -> {{Automatic}}}, BaseStyle -> { ShowStringCharacters -> False, NumberMarks -> False, PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, BaselinePosition -> {1, 1}]}, Dynamic[Typeset`open$$], ImageSize -> Automatic]}, "SummaryPanel"], DynamicModuleValues:>{}], "]"}], Polyhedron[{{0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), 0}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], Rational[-1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {-(1 + 2 5^Rational[-1, 2])^ Rational[1, 2], 0, Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {(1 + 2 5^Rational[-1, 2])^Rational[1, 2], 0, (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, {(Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2], 0, -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2], 0}, { Root[1 - 5 #^2 + 5 #^4& , 1, 0], 0, (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}}, {{30, 24, 29, 7, 8}, {26, 24, 30}, {25, 29, 24}, {5, 7, 29}, {14, 8, 7}, {6, 30, 8}, {16, 2, 6}, {19, 21, 26}, {20, 18, 25}, {1, 15, 5}, {22, 23, 14}, {2, 19, 26, 30, 6}, {21, 20, 25, 24, 26}, {18, 1, 5, 29, 25}, {15, 22, 14, 7, 5}, {23, 16, 6, 8, 14}, {12, 13, 4, 17, 3}, {3, 17, 9}, {17, 4, 10}, {4, 13, 28}, {13, 12, 11}, {12, 3, 27}, {27, 1, 18}, {9, 22, 15}, {10, 16, 23}, {28, 19, 2}, {11, 20, 21}, {27, 3, 9, 15, 1}, {9, 17, 10, 23, 22}, {10, 4, 28, 2, 16}, {28, 13, 11, 21, 19}, {11, 12, 27, 18, 20}}], Editable->False, SelectWithContents->True, Selectable->False], ",", InterpretationBox[ RowBox[{ TagBox["Polyhedron", "SummaryHead"], "[", DynamicModuleBox[{Typeset`open$$ = False, Typeset`embedState$$ = "Ready", Typeset`spolyhedron$$ = Quiet[ Polyhedron[{{0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), 0}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {-(1 + 2 5^Rational[-1, 2])^ Rational[1, 2], 0, Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {(1 + 2 5^Rational[-1, 2])^Rational[1, 2], 0, (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, {(Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2], 0, -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2], 0}, { Root[1 - 5 #^2 + 5 #^4& , 1, 0], 0, (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}}, {{30, 24, 29, 7, 8}, {26, 24, 30}, {25, 29, 24}, { 5, 7, 29}, {14, 8, 7}, {6, 30, 8}, {16, 2, 6}, {19, 21, 26}, {20, 18, 25}, {1, 15, 5}, {22, 23, 14}, {2, 19, 26, 30, 6}, {21, 20, 25, 24, 26}, {18, 1, 5, 29, 25}, {15, 22, 14, 7, 5}, {23, 16, 6, 8, 14}, {12, 13, 4, 17, 3}, {3, 17, 9}, {17, 4, 10}, {4, 13, 28}, {13, 12, 11}, { 12, 3, 27}, {27, 1, 18}, {9, 22, 15}, {10, 16, 23}, {28, 19, 2}, {11, 20, 21}, {27, 3, 9, 15, 1}, {9, 17, 10, 23, 22}, {10, 4, 28, 2, 16}, {28, 13, 11, 21, 19}, {11, 12, 27, 18, 20}}]]}, TemplateBox[{ PaneSelectorBox[{False -> GridBox[{{ PaneBox[ ButtonBox[ DynamicBox[ FEPrivate`FrontEndResource["FEBitmaps", "SummaryBoxOpener"]], ButtonFunction :> (Typeset`open$$ = True), Appearance -> None, BaseStyle -> {}, Evaluator -> Automatic, Method -> "Preemptive"], Alignment -> {Center, Center}, ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], Graphics3DBox[{ Directive[ Hue[0.58, 0.4, 1], Opacity[0.5], EdgeForm[ GrayLevel[1]]], PolyhedronBox[ NCache[{{0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), 0}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-1 - 5^ Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {-(1 + 2 5^Rational[-1, 2])^ Rational[1, 2], 0, Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {(1 + 2 5^Rational[-1, 2])^Rational[1, 2], 0, (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, {(Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2], 0, -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, {Rational[-1, 2] ( Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2], 0}, { Root[1 - 5 #^2 + 5 #^4& , 1, 0], 0, (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}}, {{ 0, -1.618033988749895, 0}, {0, 1.618033988749895, 0}, { 0.2628655560595668, -0.8090169943749475, \ -1.3763819204711736`}, {0.2628655560595668, 0.8090169943749475, -1.3763819204711736`}, { 0.42532540417601994`, -1.3090169943749475`, 0.85065080835204}, {0.42532540417601994`, 1.3090169943749475`, 0.85065080835204}, { 0.6881909602355868, -0.5, 1.3763819204711736`}, { 0.6881909602355868, 0.5, 1.3763819204711736`}, { 1.1135163644116066`, -0.8090169943749475, \ -0.85065080835204}, {1.1135163644116066`, 0.8090169943749475, -0.85065080835204}, \ {-1.3763819204711736`, 0, -0.85065080835204}, {-0.6881909602355868, -0.5, \ -1.3763819204711736`}, {-0.6881909602355868, 0.5, -1.3763819204711736`}, { 1.3763819204711736`, 0, 0.85065080835204}, { 0.9510565162951535, -1.3090169943749475`, 0}, { 0.9510565162951535, 1.3090169943749475`, 0}, { 0.85065080835204, 0, -1.3763819204711736`}, {-0.9510565162951535, \ -1.3090169943749475`, 0}, {-0.9510565162951535, 1.3090169943749475`, 0}, {-1.5388417685876268`, -0.5, 0}, {-1.5388417685876268`, 0.5, 0}, { 1.5388417685876268`, -0.5, 0}, { 1.5388417685876268`, 0.5, 0}, {-0.85065080835204, 0, 1.3763819204711736`}, {-1.1135163644116066`, \ -0.8090169943749475, 0.85065080835204}, {-1.1135163644116066`, 0.8090169943749475, 0.85065080835204}, {-0.42532540417602, \ -1.3090169943749475`, -0.85065080835204}, {-0.42532540417602, 1.3090169943749475`, -0.85065080835204}, \ {-0.2628655560595668, -0.8090169943749475, 1.3763819204711736`}, {-0.2628655560595668, 0.8090169943749475, 1.3763819204711736`}}], {{30, 24, 29, 7, 8}, {26, 24, 30}, {25, 29, 24}, {5, 7, 29}, {14, 8, 7}, { 6, 30, 8}, {16, 2, 6}, {19, 21, 26}, {20, 18, 25}, {1, 15, 5}, {22, 23, 14}, {2, 19, 26, 30, 6}, {21, 20, 25, 24, 26}, {18, 1, 5, 29, 25}, {15, 22, 14, 7, 5}, {23, 16, 6, 8, 14}, {12, 13, 4, 17, 3}, {3, 17, 9}, {17, 4, 10}, {4, 13, 28}, {13, 12, 11}, {12, 3, 27}, {27, 1, 18}, {9, 22, 15}, { 10, 16, 23}, {28, 19, 2}, {11, 20, 21}, {27, 3, 9, 15, 1}, { 9, 17, 10, 23, 22}, {10, 4, 28, 2, 16}, {28, 13, 11, 21, 19}, {11, 12, 27, 18, 20}}]}, ImageSize -> Dynamic[{5.25, 3.5} (CurrentValue["FontCapHeight"]/ AbsoluteCurrentValue[Magnification])], Boxed -> False, Lighting -> {{"Ambient", RGBColor[0.4, 0.45, 0.5]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{2, 0, 2}]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{2, 2, 2}]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{0, 2, 2}]}}, Method -> {"ShrinkWrap" -> True}], GridBox[{{ RowBox[{ TagBox["\"Number of points: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["30", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Number of faces: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["32", "SummaryItem"]}]}}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> { "Columns" -> {{2}}, "Rows" -> {{Automatic}}}, BaseStyle -> { ShowStringCharacters -> False, NumberMarks -> False, PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, BaselinePosition -> {1, 1}], True -> GridBox[{{ PaneBox[ ButtonBox[ DynamicBox[ FEPrivate`FrontEndResource["FEBitmaps", "SummaryBoxCloser"]], ButtonFunction :> (Typeset`open$$ = False), Appearance -> None, BaseStyle -> {}, Evaluator -> Automatic, Method -> "Preemptive"], Alignment -> {Center, Center}, ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], Graphics3DBox[{ Directive[ Hue[0.58, 0.4, 1], Opacity[0.5], EdgeForm[ GrayLevel[1]]], PolyhedronBox[ NCache[{{0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), 0}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-1 - 5^ Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {-(1 + 2 5^Rational[-1, 2])^ Rational[1, 2], 0, Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {(1 + 2 5^Rational[-1, 2])^Rational[1, 2], 0, (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, {(Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2], 0, -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, {Rational[-1, 2] ( Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2], 0}, { Root[1 - 5 #^2 + 5 #^4& , 1, 0], 0, (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}}, {{ 0, -1.618033988749895, 0}, {0, 1.618033988749895, 0}, { 0.2628655560595668, -0.8090169943749475, \ -1.3763819204711736`}, {0.2628655560595668, 0.8090169943749475, -1.3763819204711736`}, { 0.42532540417601994`, -1.3090169943749475`, 0.85065080835204}, {0.42532540417601994`, 1.3090169943749475`, 0.85065080835204}, { 0.6881909602355868, -0.5, 1.3763819204711736`}, { 0.6881909602355868, 0.5, 1.3763819204711736`}, { 1.1135163644116066`, -0.8090169943749475, \ -0.85065080835204}, {1.1135163644116066`, 0.8090169943749475, -0.85065080835204}, \ {-1.3763819204711736`, 0, -0.85065080835204}, {-0.6881909602355868, -0.5, \ -1.3763819204711736`}, {-0.6881909602355868, 0.5, -1.3763819204711736`}, { 1.3763819204711736`, 0, 0.85065080835204}, { 0.9510565162951535, -1.3090169943749475`, 0}, { 0.9510565162951535, 1.3090169943749475`, 0}, { 0.85065080835204, 0, -1.3763819204711736`}, {-0.9510565162951535, \ -1.3090169943749475`, 0}, {-0.9510565162951535, 1.3090169943749475`, 0}, {-1.5388417685876268`, -0.5, 0}, {-1.5388417685876268`, 0.5, 0}, { 1.5388417685876268`, -0.5, 0}, { 1.5388417685876268`, 0.5, 0}, {-0.85065080835204, 0, 1.3763819204711736`}, {-1.1135163644116066`, \ -0.8090169943749475, 0.85065080835204}, {-1.1135163644116066`, 0.8090169943749475, 0.85065080835204}, {-0.42532540417602, \ -1.3090169943749475`, -0.85065080835204}, {-0.42532540417602, 1.3090169943749475`, -0.85065080835204}, \ {-0.2628655560595668, -0.8090169943749475, 1.3763819204711736`}, {-0.2628655560595668, 0.8090169943749475, 1.3763819204711736`}}], {{30, 24, 29, 7, 8}, {26, 24, 30}, {25, 29, 24}, {5, 7, 29}, {14, 8, 7}, { 6, 30, 8}, {16, 2, 6}, {19, 21, 26}, {20, 18, 25}, {1, 15, 5}, {22, 23, 14}, {2, 19, 26, 30, 6}, {21, 20, 25, 24, 26}, {18, 1, 5, 29, 25}, {15, 22, 14, 7, 5}, {23, 16, 6, 8, 14}, {12, 13, 4, 17, 3}, {3, 17, 9}, {17, 4, 10}, {4, 13, 28}, {13, 12, 11}, {12, 3, 27}, {27, 1, 18}, {9, 22, 15}, { 10, 16, 23}, {28, 19, 2}, {11, 20, 21}, {27, 3, 9, 15, 1}, { 9, 17, 10, 23, 22}, {10, 4, 28, 2, 16}, {28, 13, 11, 21, 19}, {11, 12, 27, 18, 20}}]}, ImageSize -> Dynamic[{5.25, 3.5} (CurrentValue["FontCapHeight"]/ AbsoluteCurrentValue[Magnification])], Boxed -> False, Lighting -> {{"Ambient", RGBColor[0.4, 0.45, 0.5]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{2, 0, 2}]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{2, 2, 2}]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{0, 2, 2}]}}, Method -> {"ShrinkWrap" -> True}], GridBox[{{ RowBox[{ TagBox["\"Number of points: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["30", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Number of faces: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["32", "SummaryItem"]}]}, { RowBox[{ TagBox[ "\"Embedding dimension: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["3", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Type: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Quiet[ Apply[Region`PolyhedronDump`polyhedronType, Region`PolyhedronDump`computeType[ Typeset`spolyhedron$$]]], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}, { RowBox[{ TagBox["\"Bounds: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Region`PolyhedronDump`iRegionBounds[ Typeset`spolyhedron$$], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}, { RowBox[{ TagBox["\"Volume: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Region`PolyhedronDump`iVolume[Typeset`spolyhedron$$], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> { "Columns" -> {{2}}, "Rows" -> {{Automatic}}}, BaseStyle -> { ShowStringCharacters -> False, NumberMarks -> False, PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, BaselinePosition -> {1, 1}]}, Dynamic[Typeset`open$$], ImageSize -> Automatic]}, "SummaryPanel"], DynamicModuleValues:>{}], "]"}], Polyhedron[{{0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), 0}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], Rational[-1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {-(1 + 2 5^Rational[-1, 2])^ Rational[1, 2], 0, Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {(1 + 2 5^Rational[-1, 2])^Rational[1, 2], 0, (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, {(Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2], 0, -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2], 0}, { Root[1 - 5 #^2 + 5 #^4& , 1, 0], 0, (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}}, {{30, 24, 29, 7, 8}, {26, 24, 30}, {25, 29, 24}, {5, 7, 29}, {14, 8, 7}, {6, 30, 8}, {16, 2, 6}, {19, 21, 26}, {20, 18, 25}, {1, 15, 5}, {22, 23, 14}, {2, 19, 26, 30, 6}, {21, 20, 25, 24, 26}, {18, 1, 5, 29, 25}, {15, 22, 14, 7, 5}, {23, 16, 6, 8, 14}, {12, 13, 4, 17, 3}, {3, 17, 9}, {17, 4, 10}, {4, 13, 28}, {13, 12, 11}, {12, 3, 27}, {27, 1, 18}, {9, 22, 15}, {10, 16, 23}, {28, 19, 2}, {11, 20, 21}, {27, 3, 9, 15, 1}, {9, 17, 10, 23, 22}, {10, 4, 28, 2, 16}, {28, 13, 11, 21, 19}, {11, 12, 27, 18, 20}}], Editable->False, SelectWithContents->True, Selectable->False], ",", InterpretationBox[ RowBox[{ TagBox["Polyhedron", "SummaryHead"], "[", DynamicModuleBox[{Typeset`open$$ = False, Typeset`embedState$$ = "Ready", Typeset`spolyhedron$$ = Quiet[ Polyhedron[{{0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), 0}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {-(1 + 2 5^Rational[-1, 2])^ Rational[1, 2], 0, Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {(1 + 2 5^Rational[-1, 2])^Rational[1, 2], 0, (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, {(Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2], 0, -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2], 0}, { Root[1 - 5 #^2 + 5 #^4& , 1, 0], 0, (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}}, {{30, 24, 29, 7, 8}, {26, 24, 30}, {25, 29, 24}, { 5, 7, 29}, {14, 8, 7}, {6, 30, 8}, {16, 2, 6}, {19, 21, 26}, {20, 18, 25}, {1, 15, 5}, {22, 23, 14}, {2, 19, 26, 30, 6}, {21, 20, 25, 24, 26}, {18, 1, 5, 29, 25}, {15, 22, 14, 7, 5}, {23, 16, 6, 8, 14}, {12, 13, 4, 17, 3}, {3, 17, 9}, {17, 4, 10}, {4, 13, 28}, {13, 12, 11}, { 12, 3, 27}, {27, 1, 18}, {9, 22, 15}, {10, 16, 23}, {28, 19, 2}, {11, 20, 21}, {27, 3, 9, 15, 1}, {9, 17, 10, 23, 22}, {10, 4, 28, 2, 16}, {28, 13, 11, 21, 19}, {11, 12, 27, 18, 20}}]]}, TemplateBox[{ PaneSelectorBox[{False -> GridBox[{{ PaneBox[ ButtonBox[ DynamicBox[ FEPrivate`FrontEndResource["FEBitmaps", "SummaryBoxOpener"]], ButtonFunction :> (Typeset`open$$ = True), Appearance -> None, BaseStyle -> {}, Evaluator -> Automatic, Method -> "Preemptive"], Alignment -> {Center, Center}, ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], Graphics3DBox[{ Directive[ Hue[0.58, 0.4, 1], Opacity[0.5], EdgeForm[ GrayLevel[1]]], PolyhedronBox[ NCache[{{0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), 0}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-1 - 5^ Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {-(1 + 2 5^Rational[-1, 2])^ Rational[1, 2], 0, Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {(1 + 2 5^Rational[-1, 2])^Rational[1, 2], 0, (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, {(Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2], 0, -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, {Rational[-1, 2] ( Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2], 0}, { Root[1 - 5 #^2 + 5 #^4& , 1, 0], 0, (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}}, {{ 0, -1.618033988749895, 0}, {0, 1.618033988749895, 0}, { 0.2628655560595668, -0.8090169943749475, \ -1.3763819204711736`}, {0.2628655560595668, 0.8090169943749475, -1.3763819204711736`}, { 0.42532540417601994`, -1.3090169943749475`, 0.85065080835204}, {0.42532540417601994`, 1.3090169943749475`, 0.85065080835204}, { 0.6881909602355868, -0.5, 1.3763819204711736`}, { 0.6881909602355868, 0.5, 1.3763819204711736`}, { 1.1135163644116066`, -0.8090169943749475, \ -0.85065080835204}, {1.1135163644116066`, 0.8090169943749475, -0.85065080835204}, \ {-1.3763819204711736`, 0, -0.85065080835204}, {-0.6881909602355868, -0.5, \ -1.3763819204711736`}, {-0.6881909602355868, 0.5, -1.3763819204711736`}, { 1.3763819204711736`, 0, 0.85065080835204}, { 0.9510565162951535, -1.3090169943749475`, 0}, { 0.9510565162951535, 1.3090169943749475`, 0}, { 0.85065080835204, 0, -1.3763819204711736`}, {-0.9510565162951535, \ -1.3090169943749475`, 0}, {-0.9510565162951535, 1.3090169943749475`, 0}, {-1.5388417685876268`, -0.5, 0}, {-1.5388417685876268`, 0.5, 0}, { 1.5388417685876268`, -0.5, 0}, { 1.5388417685876268`, 0.5, 0}, {-0.85065080835204, 0, 1.3763819204711736`}, {-1.1135163644116066`, \ -0.8090169943749475, 0.85065080835204}, {-1.1135163644116066`, 0.8090169943749475, 0.85065080835204}, {-0.42532540417602, \ -1.3090169943749475`, -0.85065080835204}, {-0.42532540417602, 1.3090169943749475`, -0.85065080835204}, \ {-0.2628655560595668, -0.8090169943749475, 1.3763819204711736`}, {-0.2628655560595668, 0.8090169943749475, 1.3763819204711736`}}], {{30, 24, 29, 7, 8}, {26, 24, 30}, {25, 29, 24}, {5, 7, 29}, {14, 8, 7}, { 6, 30, 8}, {16, 2, 6}, {19, 21, 26}, {20, 18, 25}, {1, 15, 5}, {22, 23, 14}, {2, 19, 26, 30, 6}, {21, 20, 25, 24, 26}, {18, 1, 5, 29, 25}, {15, 22, 14, 7, 5}, {23, 16, 6, 8, 14}, {12, 13, 4, 17, 3}, {3, 17, 9}, {17, 4, 10}, {4, 13, 28}, {13, 12, 11}, {12, 3, 27}, {27, 1, 18}, {9, 22, 15}, { 10, 16, 23}, {28, 19, 2}, {11, 20, 21}, {27, 3, 9, 15, 1}, { 9, 17, 10, 23, 22}, {10, 4, 28, 2, 16}, {28, 13, 11, 21, 19}, {11, 12, 27, 18, 20}}]}, ImageSize -> Dynamic[{5.25, 3.5} (CurrentValue["FontCapHeight"]/ AbsoluteCurrentValue[Magnification])], Boxed -> False, Lighting -> {{"Ambient", RGBColor[0.4, 0.45, 0.5]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{2, 0, 2}]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{2, 2, 2}]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{0, 2, 2}]}}, Method -> {"ShrinkWrap" -> True}], GridBox[{{ RowBox[{ TagBox["\"Number of points: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["30", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Number of faces: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["32", "SummaryItem"]}]}}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> { "Columns" -> {{2}}, "Rows" -> {{Automatic}}}, BaseStyle -> { ShowStringCharacters -> False, NumberMarks -> False, PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, BaselinePosition -> {1, 1}], True -> GridBox[{{ PaneBox[ ButtonBox[ DynamicBox[ FEPrivate`FrontEndResource["FEBitmaps", "SummaryBoxCloser"]], ButtonFunction :> (Typeset`open$$ = False), Appearance -> None, BaseStyle -> {}, Evaluator -> Automatic, Method -> "Preemptive"], Alignment -> {Center, Center}, ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], Graphics3DBox[{ Directive[ Hue[0.58, 0.4, 1], Opacity[0.5], EdgeForm[ GrayLevel[1]]], PolyhedronBox[ NCache[{{0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), 0}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-1 - 5^ Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {-(1 + 2 5^Rational[-1, 2])^ Rational[1, 2], 0, Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {(1 + 2 5^Rational[-1, 2])^Rational[1, 2], 0, (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, {(Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2], 0, -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, {Rational[-1, 2] ( Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2], 0}, { Root[1 - 5 #^2 + 5 #^4& , 1, 0], 0, (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}}, {{ 0, -1.618033988749895, 0}, {0, 1.618033988749895, 0}, { 0.2628655560595668, -0.8090169943749475, \ -1.3763819204711736`}, {0.2628655560595668, 0.8090169943749475, -1.3763819204711736`}, { 0.42532540417601994`, -1.3090169943749475`, 0.85065080835204}, {0.42532540417601994`, 1.3090169943749475`, 0.85065080835204}, { 0.6881909602355868, -0.5, 1.3763819204711736`}, { 0.6881909602355868, 0.5, 1.3763819204711736`}, { 1.1135163644116066`, -0.8090169943749475, \ -0.85065080835204}, {1.1135163644116066`, 0.8090169943749475, -0.85065080835204}, \ {-1.3763819204711736`, 0, -0.85065080835204}, {-0.6881909602355868, -0.5, \ -1.3763819204711736`}, {-0.6881909602355868, 0.5, -1.3763819204711736`}, { 1.3763819204711736`, 0, 0.85065080835204}, { 0.9510565162951535, -1.3090169943749475`, 0}, { 0.9510565162951535, 1.3090169943749475`, 0}, { 0.85065080835204, 0, -1.3763819204711736`}, {-0.9510565162951535, \ -1.3090169943749475`, 0}, {-0.9510565162951535, 1.3090169943749475`, 0}, {-1.5388417685876268`, -0.5, 0}, {-1.5388417685876268`, 0.5, 0}, { 1.5388417685876268`, -0.5, 0}, { 1.5388417685876268`, 0.5, 0}, {-0.85065080835204, 0, 1.3763819204711736`}, {-1.1135163644116066`, \ -0.8090169943749475, 0.85065080835204}, {-1.1135163644116066`, 0.8090169943749475, 0.85065080835204}, {-0.42532540417602, \ -1.3090169943749475`, -0.85065080835204}, {-0.42532540417602, 1.3090169943749475`, -0.85065080835204}, \ {-0.2628655560595668, -0.8090169943749475, 1.3763819204711736`}, {-0.2628655560595668, 0.8090169943749475, 1.3763819204711736`}}], {{30, 24, 29, 7, 8}, {26, 24, 30}, {25, 29, 24}, {5, 7, 29}, {14, 8, 7}, { 6, 30, 8}, {16, 2, 6}, {19, 21, 26}, {20, 18, 25}, {1, 15, 5}, {22, 23, 14}, {2, 19, 26, 30, 6}, {21, 20, 25, 24, 26}, {18, 1, 5, 29, 25}, {15, 22, 14, 7, 5}, {23, 16, 6, 8, 14}, {12, 13, 4, 17, 3}, {3, 17, 9}, {17, 4, 10}, {4, 13, 28}, {13, 12, 11}, {12, 3, 27}, {27, 1, 18}, {9, 22, 15}, { 10, 16, 23}, {28, 19, 2}, {11, 20, 21}, {27, 3, 9, 15, 1}, { 9, 17, 10, 23, 22}, {10, 4, 28, 2, 16}, {28, 13, 11, 21, 19}, {11, 12, 27, 18, 20}}]}, ImageSize -> Dynamic[{5.25, 3.5} (CurrentValue["FontCapHeight"]/ AbsoluteCurrentValue[Magnification])], Boxed -> False, Lighting -> {{"Ambient", RGBColor[0.4, 0.45, 0.5]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{2, 0, 2}]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{2, 2, 2}]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{0, 2, 2}]}}, Method -> {"ShrinkWrap" -> True}], GridBox[{{ RowBox[{ TagBox["\"Number of points: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["30", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Number of faces: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["32", "SummaryItem"]}]}, { RowBox[{ TagBox[ "\"Embedding dimension: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["3", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Type: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Quiet[ Apply[Region`PolyhedronDump`polyhedronType, Region`PolyhedronDump`computeType[ Typeset`spolyhedron$$]]], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}, { RowBox[{ TagBox["\"Bounds: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Region`PolyhedronDump`iRegionBounds[ Typeset`spolyhedron$$], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}, { RowBox[{ TagBox["\"Volume: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Region`PolyhedronDump`iVolume[Typeset`spolyhedron$$], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> { "Columns" -> {{2}}, "Rows" -> {{Automatic}}}, BaseStyle -> { ShowStringCharacters -> False, NumberMarks -> False, PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, BaselinePosition -> {1, 1}]}, Dynamic[Typeset`open$$], ImageSize -> Automatic]}, "SummaryPanel"], DynamicModuleValues:>{}], "]"}], Polyhedron[{{0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), 0}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], Rational[-1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {-(1 + 2 5^Rational[-1, 2])^ Rational[1, 2], 0, Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {(1 + 2 5^Rational[-1, 2])^Rational[1, 2], 0, (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, {(Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2], 0, -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2], 0}, { Root[1 - 5 #^2 + 5 #^4& , 1, 0], 0, (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}}, {{30, 24, 29, 7, 8}, {26, 24, 30}, {25, 29, 24}, {5, 7, 29}, {14, 8, 7}, {6, 30, 8}, {16, 2, 6}, {19, 21, 26}, {20, 18, 25}, {1, 15, 5}, {22, 23, 14}, {2, 19, 26, 30, 6}, {21, 20, 25, 24, 26}, {18, 1, 5, 29, 25}, {15, 22, 14, 7, 5}, {23, 16, 6, 8, 14}, {12, 13, 4, 17, 3}, {3, 17, 9}, {17, 4, 10}, {4, 13, 28}, {13, 12, 11}, {12, 3, 27}, {27, 1, 18}, {9, 22, 15}, {10, 16, 23}, {28, 19, 2}, {11, 20, 21}, {27, 3, 9, 15, 1}, {9, 17, 10, 23, 22}, {10, 4, 28, 2, 16}, {28, 13, 11, 21, 19}, {11, 12, 27, 18, 20}}], Editable->False, SelectWithContents->True, Selectable->False]}], "}"}]], "Output", CellLabel-> "Out[219]=",ExpressionUUID->"a21551f1-aa3c-4c07-a9b6-30315202cf4f"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"SameQ", "@@", "%"}]], "Input", CellLabel-> "In[220]:=",ExpressionUUID->"57de1605-0f8d-48a5-83b5-108393605ba6"], Cell[BoxData["True"], "Output", CellLabel-> "Out[220]=",ExpressionUUID->"8256c042-6053-45d1-8985-ff5d30ec0e46"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Graphics3D", "/@", RowBox[{"(", RowBox[{"polys", "=", RowBox[{ RowBox[{ RowBox[{"Polygon", "[", RowBox[{ RowBox[{"uniform", "[", RowBox[{"[", "1", "]"}], "]"}], ",", "#"}], "]"}], "&"}], "/@", RowBox[{"uniform", "[", RowBox[{"[", "2", "]"}], "]"}]}]}], ")"}]}]], "Input", CellLabel-> "In[221]:=",ExpressionUUID->"4f19c805-c25b-426d-883e-e3e0d4d4dd4b"], Cell[BoxData[ RowBox[{"{", RowBox[{ Graphics3DBox[ Polygon3DBox[ NCache[{{0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), 0}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], Rational[-1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {-(1 + 2 5^Rational[-1, 2])^ Rational[1, 2], 0, Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {(1 + 2 5^Rational[-1, 2])^Rational[1, 2], 0, (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, {(Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2], 0, -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2], 0}, {Root[1 - 5 #^2 + 5 #^4& , 1, 0], 0, (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}}, {{0, -1.618033988749895, 0}, { 0, 1.618033988749895, 0}, { 0.2628655560595668, -0.8090169943749475, -1.3763819204711736`}, { 0.2628655560595668, 0.8090169943749475, -1.3763819204711736`}, { 0.42532540417601994`, -1.3090169943749475`, 0.85065080835204}, { 0.42532540417601994`, 1.3090169943749475`, 0.85065080835204}, { 0.6881909602355868, -0.5, 1.3763819204711736`}, {0.6881909602355868, 0.5, 1.3763819204711736`}, { 1.1135163644116066`, -0.8090169943749475, -0.85065080835204}, { 1.1135163644116066`, 0.8090169943749475, -0.85065080835204}, {-1.3763819204711736`, 0, -0.85065080835204}, {-0.6881909602355868, -0.5, \ -1.3763819204711736`}, {-0.6881909602355868, 0.5, -1.3763819204711736`}, { 1.3763819204711736`, 0, 0.85065080835204}, { 0.9510565162951535, -1.3090169943749475`, 0}, { 0.9510565162951535, 1.3090169943749475`, 0}, { 0.85065080835204, 0, -1.3763819204711736`}, {-0.9510565162951535, -1.3090169943749475`, 0}, {-0.9510565162951535, 1.3090169943749475`, 0}, {-1.5388417685876268`, -0.5, 0}, {-1.5388417685876268`, 0.5, 0}, { 1.5388417685876268`, -0.5, 0}, { 1.5388417685876268`, 0.5, 0}, {-0.85065080835204, 0, 1.3763819204711736`}, {-1.1135163644116066`, -0.8090169943749475, 0.85065080835204}, {-1.1135163644116066`, 0.8090169943749475, 0.85065080835204}, {-0.42532540417602, -1.3090169943749475`, \ -0.85065080835204}, {-0.42532540417602, 1.3090169943749475`, -0.85065080835204}, {-0.2628655560595668, \ -0.8090169943749475, 1.3763819204711736`}, {-0.2628655560595668, 0.8090169943749475, 1.3763819204711736`}}], {30, 24, 29, 7, 8}]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), 0}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], Rational[-1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {-(1 + 2 5^Rational[-1, 2])^ Rational[1, 2], 0, Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {(1 + 2 5^Rational[-1, 2])^Rational[1, 2], 0, (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, {(Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2], 0, -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2], 0}, {Root[1 - 5 #^2 + 5 #^4& , 1, 0], 0, (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}}, {{0, -1.618033988749895, 0}, { 0, 1.618033988749895, 0}, { 0.2628655560595668, -0.8090169943749475, -1.3763819204711736`}, { 0.2628655560595668, 0.8090169943749475, -1.3763819204711736`}, { 0.42532540417601994`, -1.3090169943749475`, 0.85065080835204}, { 0.42532540417601994`, 1.3090169943749475`, 0.85065080835204}, { 0.6881909602355868, -0.5, 1.3763819204711736`}, {0.6881909602355868, 0.5, 1.3763819204711736`}, { 1.1135163644116066`, -0.8090169943749475, -0.85065080835204}, { 1.1135163644116066`, 0.8090169943749475, -0.85065080835204}, {-1.3763819204711736`, 0, -0.85065080835204}, {-0.6881909602355868, -0.5, \ -1.3763819204711736`}, {-0.6881909602355868, 0.5, -1.3763819204711736`}, { 1.3763819204711736`, 0, 0.85065080835204}, { 0.9510565162951535, -1.3090169943749475`, 0}, { 0.9510565162951535, 1.3090169943749475`, 0}, { 0.85065080835204, 0, -1.3763819204711736`}, {-0.9510565162951535, -1.3090169943749475`, 0}, {-0.9510565162951535, 1.3090169943749475`, 0}, {-1.5388417685876268`, -0.5, 0}, {-1.5388417685876268`, 0.5, 0}, { 1.5388417685876268`, -0.5, 0}, { 1.5388417685876268`, 0.5, 0}, {-0.85065080835204, 0, 1.3763819204711736`}, {-1.1135163644116066`, -0.8090169943749475, 0.85065080835204}, {-1.1135163644116066`, 0.8090169943749475, 0.85065080835204}, {-0.42532540417602, -1.3090169943749475`, \ -0.85065080835204}, {-0.42532540417602, 1.3090169943749475`, -0.85065080835204}, {-0.2628655560595668, \ -0.8090169943749475, 1.3763819204711736`}, {-0.2628655560595668, 0.8090169943749475, 1.3763819204711736`}}], {26, 24, 30}]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), 0}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], Rational[-1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {-(1 + 2 5^Rational[-1, 2])^ Rational[1, 2], 0, Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {(1 + 2 5^Rational[-1, 2])^Rational[1, 2], 0, (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, {(Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2], 0, -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2], 0}, {Root[1 - 5 #^2 + 5 #^4& , 1, 0], 0, (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}}, {{0, -1.618033988749895, 0}, { 0, 1.618033988749895, 0}, { 0.2628655560595668, -0.8090169943749475, -1.3763819204711736`}, { 0.2628655560595668, 0.8090169943749475, -1.3763819204711736`}, { 0.42532540417601994`, -1.3090169943749475`, 0.85065080835204}, { 0.42532540417601994`, 1.3090169943749475`, 0.85065080835204}, { 0.6881909602355868, -0.5, 1.3763819204711736`}, {0.6881909602355868, 0.5, 1.3763819204711736`}, { 1.1135163644116066`, -0.8090169943749475, -0.85065080835204}, { 1.1135163644116066`, 0.8090169943749475, -0.85065080835204}, {-1.3763819204711736`, 0, -0.85065080835204}, {-0.6881909602355868, -0.5, \ -1.3763819204711736`}, {-0.6881909602355868, 0.5, -1.3763819204711736`}, { 1.3763819204711736`, 0, 0.85065080835204}, { 0.9510565162951535, -1.3090169943749475`, 0}, { 0.9510565162951535, 1.3090169943749475`, 0}, { 0.85065080835204, 0, -1.3763819204711736`}, {-0.9510565162951535, -1.3090169943749475`, 0}, {-0.9510565162951535, 1.3090169943749475`, 0}, {-1.5388417685876268`, -0.5, 0}, {-1.5388417685876268`, 0.5, 0}, { 1.5388417685876268`, -0.5, 0}, { 1.5388417685876268`, 0.5, 0}, {-0.85065080835204, 0, 1.3763819204711736`}, {-1.1135163644116066`, -0.8090169943749475, 0.85065080835204}, {-1.1135163644116066`, 0.8090169943749475, 0.85065080835204}, {-0.42532540417602, -1.3090169943749475`, \ -0.85065080835204}, {-0.42532540417602, 1.3090169943749475`, -0.85065080835204}, {-0.2628655560595668, \ -0.8090169943749475, 1.3763819204711736`}, {-0.2628655560595668, 0.8090169943749475, 1.3763819204711736`}}], {25, 29, 24}]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), 0}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], Rational[-1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {-(1 + 2 5^Rational[-1, 2])^ Rational[1, 2], 0, Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {(1 + 2 5^Rational[-1, 2])^Rational[1, 2], 0, (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, {(Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2], 0, -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2], 0}, {Root[1 - 5 #^2 + 5 #^4& , 1, 0], 0, (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}}, {{0, -1.618033988749895, 0}, { 0, 1.618033988749895, 0}, { 0.2628655560595668, -0.8090169943749475, -1.3763819204711736`}, { 0.2628655560595668, 0.8090169943749475, -1.3763819204711736`}, { 0.42532540417601994`, -1.3090169943749475`, 0.85065080835204}, { 0.42532540417601994`, 1.3090169943749475`, 0.85065080835204}, { 0.6881909602355868, -0.5, 1.3763819204711736`}, {0.6881909602355868, 0.5, 1.3763819204711736`}, { 1.1135163644116066`, -0.8090169943749475, -0.85065080835204}, { 1.1135163644116066`, 0.8090169943749475, -0.85065080835204}, {-1.3763819204711736`, 0, -0.85065080835204}, {-0.6881909602355868, -0.5, \ -1.3763819204711736`}, {-0.6881909602355868, 0.5, -1.3763819204711736`}, { 1.3763819204711736`, 0, 0.85065080835204}, { 0.9510565162951535, -1.3090169943749475`, 0}, { 0.9510565162951535, 1.3090169943749475`, 0}, { 0.85065080835204, 0, -1.3763819204711736`}, {-0.9510565162951535, -1.3090169943749475`, 0}, {-0.9510565162951535, 1.3090169943749475`, 0}, {-1.5388417685876268`, -0.5, 0}, {-1.5388417685876268`, 0.5, 0}, { 1.5388417685876268`, -0.5, 0}, { 1.5388417685876268`, 0.5, 0}, {-0.85065080835204, 0, 1.3763819204711736`}, {-1.1135163644116066`, -0.8090169943749475, 0.85065080835204}, {-1.1135163644116066`, 0.8090169943749475, 0.85065080835204}, {-0.42532540417602, -1.3090169943749475`, \ -0.85065080835204}, {-0.42532540417602, 1.3090169943749475`, -0.85065080835204}, {-0.2628655560595668, \ -0.8090169943749475, 1.3763819204711736`}, {-0.2628655560595668, 0.8090169943749475, 1.3763819204711736`}}], {5, 7, 29}]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), 0}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], Rational[-1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {-(1 + 2 5^Rational[-1, 2])^ Rational[1, 2], 0, Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {(1 + 2 5^Rational[-1, 2])^Rational[1, 2], 0, (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, {(Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2], 0, -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2], 0}, {Root[1 - 5 #^2 + 5 #^4& , 1, 0], 0, (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}}, {{0, -1.618033988749895, 0}, { 0, 1.618033988749895, 0}, { 0.2628655560595668, -0.8090169943749475, -1.3763819204711736`}, { 0.2628655560595668, 0.8090169943749475, -1.3763819204711736`}, { 0.42532540417601994`, -1.3090169943749475`, 0.85065080835204}, { 0.42532540417601994`, 1.3090169943749475`, 0.85065080835204}, { 0.6881909602355868, -0.5, 1.3763819204711736`}, {0.6881909602355868, 0.5, 1.3763819204711736`}, { 1.1135163644116066`, -0.8090169943749475, -0.85065080835204}, { 1.1135163644116066`, 0.8090169943749475, -0.85065080835204}, {-1.3763819204711736`, 0, -0.85065080835204}, {-0.6881909602355868, -0.5, \ -1.3763819204711736`}, {-0.6881909602355868, 0.5, -1.3763819204711736`}, { 1.3763819204711736`, 0, 0.85065080835204}, { 0.9510565162951535, -1.3090169943749475`, 0}, { 0.9510565162951535, 1.3090169943749475`, 0}, { 0.85065080835204, 0, -1.3763819204711736`}, {-0.9510565162951535, -1.3090169943749475`, 0}, {-0.9510565162951535, 1.3090169943749475`, 0}, {-1.5388417685876268`, -0.5, 0}, {-1.5388417685876268`, 0.5, 0}, { 1.5388417685876268`, -0.5, 0}, { 1.5388417685876268`, 0.5, 0}, {-0.85065080835204, 0, 1.3763819204711736`}, {-1.1135163644116066`, -0.8090169943749475, 0.85065080835204}, {-1.1135163644116066`, 0.8090169943749475, 0.85065080835204}, {-0.42532540417602, -1.3090169943749475`, \ -0.85065080835204}, {-0.42532540417602, 1.3090169943749475`, -0.85065080835204}, {-0.2628655560595668, \ -0.8090169943749475, 1.3763819204711736`}, {-0.2628655560595668, 0.8090169943749475, 1.3763819204711736`}}], {14, 8, 7}]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), 0}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], Rational[-1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {-(1 + 2 5^Rational[-1, 2])^ Rational[1, 2], 0, Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {(1 + 2 5^Rational[-1, 2])^Rational[1, 2], 0, (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, {(Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2], 0, -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2], 0}, {Root[1 - 5 #^2 + 5 #^4& , 1, 0], 0, (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}}, {{0, -1.618033988749895, 0}, { 0, 1.618033988749895, 0}, { 0.2628655560595668, -0.8090169943749475, -1.3763819204711736`}, { 0.2628655560595668, 0.8090169943749475, -1.3763819204711736`}, { 0.42532540417601994`, -1.3090169943749475`, 0.85065080835204}, { 0.42532540417601994`, 1.3090169943749475`, 0.85065080835204}, { 0.6881909602355868, -0.5, 1.3763819204711736`}, {0.6881909602355868, 0.5, 1.3763819204711736`}, { 1.1135163644116066`, -0.8090169943749475, -0.85065080835204}, { 1.1135163644116066`, 0.8090169943749475, -0.85065080835204}, {-1.3763819204711736`, 0, -0.85065080835204}, {-0.6881909602355868, -0.5, \ -1.3763819204711736`}, {-0.6881909602355868, 0.5, -1.3763819204711736`}, { 1.3763819204711736`, 0, 0.85065080835204}, { 0.9510565162951535, -1.3090169943749475`, 0}, { 0.9510565162951535, 1.3090169943749475`, 0}, { 0.85065080835204, 0, -1.3763819204711736`}, {-0.9510565162951535, -1.3090169943749475`, 0}, {-0.9510565162951535, 1.3090169943749475`, 0}, {-1.5388417685876268`, -0.5, 0}, {-1.5388417685876268`, 0.5, 0}, { 1.5388417685876268`, -0.5, 0}, { 1.5388417685876268`, 0.5, 0}, {-0.85065080835204, 0, 1.3763819204711736`}, {-1.1135163644116066`, -0.8090169943749475, 0.85065080835204}, {-1.1135163644116066`, 0.8090169943749475, 0.85065080835204}, {-0.42532540417602, -1.3090169943749475`, \ -0.85065080835204}, {-0.42532540417602, 1.3090169943749475`, -0.85065080835204}, {-0.2628655560595668, \ -0.8090169943749475, 1.3763819204711736`}, {-0.2628655560595668, 0.8090169943749475, 1.3763819204711736`}}], {6, 30, 8}]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), 0}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], Rational[-1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {-(1 + 2 5^Rational[-1, 2])^ Rational[1, 2], 0, Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {(1 + 2 5^Rational[-1, 2])^Rational[1, 2], 0, (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, {(Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2], 0, -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2], 0}, {Root[1 - 5 #^2 + 5 #^4& , 1, 0], 0, (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}}, {{0, -1.618033988749895, 0}, { 0, 1.618033988749895, 0}, { 0.2628655560595668, -0.8090169943749475, -1.3763819204711736`}, { 0.2628655560595668, 0.8090169943749475, -1.3763819204711736`}, { 0.42532540417601994`, -1.3090169943749475`, 0.85065080835204}, { 0.42532540417601994`, 1.3090169943749475`, 0.85065080835204}, { 0.6881909602355868, -0.5, 1.3763819204711736`}, {0.6881909602355868, 0.5, 1.3763819204711736`}, { 1.1135163644116066`, -0.8090169943749475, -0.85065080835204}, { 1.1135163644116066`, 0.8090169943749475, -0.85065080835204}, {-1.3763819204711736`, 0, -0.85065080835204}, {-0.6881909602355868, -0.5, \ -1.3763819204711736`}, {-0.6881909602355868, 0.5, -1.3763819204711736`}, { 1.3763819204711736`, 0, 0.85065080835204}, { 0.9510565162951535, -1.3090169943749475`, 0}, { 0.9510565162951535, 1.3090169943749475`, 0}, { 0.85065080835204, 0, -1.3763819204711736`}, {-0.9510565162951535, -1.3090169943749475`, 0}, {-0.9510565162951535, 1.3090169943749475`, 0}, {-1.5388417685876268`, -0.5, 0}, {-1.5388417685876268`, 0.5, 0}, { 1.5388417685876268`, -0.5, 0}, { 1.5388417685876268`, 0.5, 0}, {-0.85065080835204, 0, 1.3763819204711736`}, {-1.1135163644116066`, -0.8090169943749475, 0.85065080835204}, {-1.1135163644116066`, 0.8090169943749475, 0.85065080835204}, {-0.42532540417602, -1.3090169943749475`, \ -0.85065080835204}, {-0.42532540417602, 1.3090169943749475`, -0.85065080835204}, {-0.2628655560595668, \ -0.8090169943749475, 1.3763819204711736`}, {-0.2628655560595668, 0.8090169943749475, 1.3763819204711736`}}], {16, 2, 6}]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), 0}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], Rational[-1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {-(1 + 2 5^Rational[-1, 2])^ Rational[1, 2], 0, Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {(1 + 2 5^Rational[-1, 2])^Rational[1, 2], 0, (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, {(Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2], 0, -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2], 0}, {Root[1 - 5 #^2 + 5 #^4& , 1, 0], 0, (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}}, {{0, -1.618033988749895, 0}, { 0, 1.618033988749895, 0}, { 0.2628655560595668, -0.8090169943749475, -1.3763819204711736`}, { 0.2628655560595668, 0.8090169943749475, -1.3763819204711736`}, { 0.42532540417601994`, -1.3090169943749475`, 0.85065080835204}, { 0.42532540417601994`, 1.3090169943749475`, 0.85065080835204}, { 0.6881909602355868, -0.5, 1.3763819204711736`}, {0.6881909602355868, 0.5, 1.3763819204711736`}, { 1.1135163644116066`, -0.8090169943749475, -0.85065080835204}, { 1.1135163644116066`, 0.8090169943749475, -0.85065080835204}, {-1.3763819204711736`, 0, -0.85065080835204}, {-0.6881909602355868, -0.5, \ -1.3763819204711736`}, {-0.6881909602355868, 0.5, -1.3763819204711736`}, { 1.3763819204711736`, 0, 0.85065080835204}, { 0.9510565162951535, -1.3090169943749475`, 0}, { 0.9510565162951535, 1.3090169943749475`, 0}, { 0.85065080835204, 0, -1.3763819204711736`}, {-0.9510565162951535, -1.3090169943749475`, 0}, {-0.9510565162951535, 1.3090169943749475`, 0}, {-1.5388417685876268`, -0.5, 0}, {-1.5388417685876268`, 0.5, 0}, { 1.5388417685876268`, -0.5, 0}, { 1.5388417685876268`, 0.5, 0}, {-0.85065080835204, 0, 1.3763819204711736`}, {-1.1135163644116066`, -0.8090169943749475, 0.85065080835204}, {-1.1135163644116066`, 0.8090169943749475, 0.85065080835204}, {-0.42532540417602, -1.3090169943749475`, \ -0.85065080835204}, {-0.42532540417602, 1.3090169943749475`, -0.85065080835204}, {-0.2628655560595668, \ -0.8090169943749475, 1.3763819204711736`}, {-0.2628655560595668, 0.8090169943749475, 1.3763819204711736`}}], {19, 21, 26}]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), 0}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], Rational[-1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {-(1 + 2 5^Rational[-1, 2])^ Rational[1, 2], 0, Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {(1 + 2 5^Rational[-1, 2])^Rational[1, 2], 0, (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, {(Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2], 0, -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2], 0}, {Root[1 - 5 #^2 + 5 #^4& , 1, 0], 0, (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}}, {{0, -1.618033988749895, 0}, { 0, 1.618033988749895, 0}, { 0.2628655560595668, -0.8090169943749475, -1.3763819204711736`}, { 0.2628655560595668, 0.8090169943749475, -1.3763819204711736`}, { 0.42532540417601994`, -1.3090169943749475`, 0.85065080835204}, { 0.42532540417601994`, 1.3090169943749475`, 0.85065080835204}, { 0.6881909602355868, -0.5, 1.3763819204711736`}, {0.6881909602355868, 0.5, 1.3763819204711736`}, { 1.1135163644116066`, -0.8090169943749475, -0.85065080835204}, { 1.1135163644116066`, 0.8090169943749475, -0.85065080835204}, {-1.3763819204711736`, 0, -0.85065080835204}, {-0.6881909602355868, -0.5, \ -1.3763819204711736`}, {-0.6881909602355868, 0.5, -1.3763819204711736`}, { 1.3763819204711736`, 0, 0.85065080835204}, { 0.9510565162951535, -1.3090169943749475`, 0}, { 0.9510565162951535, 1.3090169943749475`, 0}, { 0.85065080835204, 0, -1.3763819204711736`}, {-0.9510565162951535, -1.3090169943749475`, 0}, {-0.9510565162951535, 1.3090169943749475`, 0}, {-1.5388417685876268`, -0.5, 0}, {-1.5388417685876268`, 0.5, 0}, { 1.5388417685876268`, -0.5, 0}, { 1.5388417685876268`, 0.5, 0}, {-0.85065080835204, 0, 1.3763819204711736`}, {-1.1135163644116066`, -0.8090169943749475, 0.85065080835204}, {-1.1135163644116066`, 0.8090169943749475, 0.85065080835204}, {-0.42532540417602, -1.3090169943749475`, \ -0.85065080835204}, {-0.42532540417602, 1.3090169943749475`, -0.85065080835204}, {-0.2628655560595668, \ -0.8090169943749475, 1.3763819204711736`}, {-0.2628655560595668, 0.8090169943749475, 1.3763819204711736`}}], {20, 18, 25}]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), 0}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], Rational[-1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {-(1 + 2 5^Rational[-1, 2])^ Rational[1, 2], 0, Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {(1 + 2 5^Rational[-1, 2])^Rational[1, 2], 0, (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, {(Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2], 0, -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2], 0}, {Root[1 - 5 #^2 + 5 #^4& , 1, 0], 0, (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}}, {{0, -1.618033988749895, 0}, { 0, 1.618033988749895, 0}, { 0.2628655560595668, -0.8090169943749475, -1.3763819204711736`}, { 0.2628655560595668, 0.8090169943749475, -1.3763819204711736`}, { 0.42532540417601994`, -1.3090169943749475`, 0.85065080835204}, { 0.42532540417601994`, 1.3090169943749475`, 0.85065080835204}, { 0.6881909602355868, -0.5, 1.3763819204711736`}, {0.6881909602355868, 0.5, 1.3763819204711736`}, { 1.1135163644116066`, -0.8090169943749475, -0.85065080835204}, { 1.1135163644116066`, 0.8090169943749475, -0.85065080835204}, {-1.3763819204711736`, 0, -0.85065080835204}, {-0.6881909602355868, -0.5, \ -1.3763819204711736`}, {-0.6881909602355868, 0.5, -1.3763819204711736`}, { 1.3763819204711736`, 0, 0.85065080835204}, { 0.9510565162951535, -1.3090169943749475`, 0}, { 0.9510565162951535, 1.3090169943749475`, 0}, { 0.85065080835204, 0, -1.3763819204711736`}, {-0.9510565162951535, -1.3090169943749475`, 0}, {-0.9510565162951535, 1.3090169943749475`, 0}, {-1.5388417685876268`, -0.5, 0}, {-1.5388417685876268`, 0.5, 0}, { 1.5388417685876268`, -0.5, 0}, { 1.5388417685876268`, 0.5, 0}, {-0.85065080835204, 0, 1.3763819204711736`}, {-1.1135163644116066`, -0.8090169943749475, 0.85065080835204}, {-1.1135163644116066`, 0.8090169943749475, 0.85065080835204}, {-0.42532540417602, -1.3090169943749475`, \ -0.85065080835204}, {-0.42532540417602, 1.3090169943749475`, -0.85065080835204}, {-0.2628655560595668, \ -0.8090169943749475, 1.3763819204711736`}, {-0.2628655560595668, 0.8090169943749475, 1.3763819204711736`}}], {1, 15, 5}]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), 0}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], Rational[-1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {-(1 + 2 5^Rational[-1, 2])^ Rational[1, 2], 0, Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {(1 + 2 5^Rational[-1, 2])^Rational[1, 2], 0, (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, {(Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2], 0, -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2], 0}, {Root[1 - 5 #^2 + 5 #^4& , 1, 0], 0, (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}}, {{0, -1.618033988749895, 0}, { 0, 1.618033988749895, 0}, { 0.2628655560595668, -0.8090169943749475, -1.3763819204711736`}, { 0.2628655560595668, 0.8090169943749475, -1.3763819204711736`}, { 0.42532540417601994`, -1.3090169943749475`, 0.85065080835204}, { 0.42532540417601994`, 1.3090169943749475`, 0.85065080835204}, { 0.6881909602355868, -0.5, 1.3763819204711736`}, {0.6881909602355868, 0.5, 1.3763819204711736`}, { 1.1135163644116066`, -0.8090169943749475, -0.85065080835204}, { 1.1135163644116066`, 0.8090169943749475, -0.85065080835204}, {-1.3763819204711736`, 0, -0.85065080835204}, {-0.6881909602355868, -0.5, \ -1.3763819204711736`}, {-0.6881909602355868, 0.5, -1.3763819204711736`}, { 1.3763819204711736`, 0, 0.85065080835204}, { 0.9510565162951535, -1.3090169943749475`, 0}, { 0.9510565162951535, 1.3090169943749475`, 0}, { 0.85065080835204, 0, -1.3763819204711736`}, {-0.9510565162951535, -1.3090169943749475`, 0}, {-0.9510565162951535, 1.3090169943749475`, 0}, {-1.5388417685876268`, -0.5, 0}, {-1.5388417685876268`, 0.5, 0}, { 1.5388417685876268`, -0.5, 0}, { 1.5388417685876268`, 0.5, 0}, {-0.85065080835204, 0, 1.3763819204711736`}, {-1.1135163644116066`, -0.8090169943749475, 0.85065080835204}, {-1.1135163644116066`, 0.8090169943749475, 0.85065080835204}, {-0.42532540417602, -1.3090169943749475`, \ -0.85065080835204}, {-0.42532540417602, 1.3090169943749475`, -0.85065080835204}, {-0.2628655560595668, \ -0.8090169943749475, 1.3763819204711736`}, {-0.2628655560595668, 0.8090169943749475, 1.3763819204711736`}}], {22, 23, 14}]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), 0}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], Rational[-1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {-(1 + 2 5^Rational[-1, 2])^ Rational[1, 2], 0, Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {(1 + 2 5^Rational[-1, 2])^Rational[1, 2], 0, (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, {(Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2], 0, -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2], 0}, {Root[1 - 5 #^2 + 5 #^4& , 1, 0], 0, (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}}, {{0, -1.618033988749895, 0}, { 0, 1.618033988749895, 0}, { 0.2628655560595668, -0.8090169943749475, -1.3763819204711736`}, { 0.2628655560595668, 0.8090169943749475, -1.3763819204711736`}, { 0.42532540417601994`, -1.3090169943749475`, 0.85065080835204}, { 0.42532540417601994`, 1.3090169943749475`, 0.85065080835204}, { 0.6881909602355868, -0.5, 1.3763819204711736`}, {0.6881909602355868, 0.5, 1.3763819204711736`}, { 1.1135163644116066`, -0.8090169943749475, -0.85065080835204}, { 1.1135163644116066`, 0.8090169943749475, -0.85065080835204}, {-1.3763819204711736`, 0, -0.85065080835204}, {-0.6881909602355868, -0.5, \ -1.3763819204711736`}, {-0.6881909602355868, 0.5, -1.3763819204711736`}, { 1.3763819204711736`, 0, 0.85065080835204}, { 0.9510565162951535, -1.3090169943749475`, 0}, { 0.9510565162951535, 1.3090169943749475`, 0}, { 0.85065080835204, 0, -1.3763819204711736`}, {-0.9510565162951535, -1.3090169943749475`, 0}, {-0.9510565162951535, 1.3090169943749475`, 0}, {-1.5388417685876268`, -0.5, 0}, {-1.5388417685876268`, 0.5, 0}, { 1.5388417685876268`, -0.5, 0}, { 1.5388417685876268`, 0.5, 0}, {-0.85065080835204, 0, 1.3763819204711736`}, {-1.1135163644116066`, -0.8090169943749475, 0.85065080835204}, {-1.1135163644116066`, 0.8090169943749475, 0.85065080835204}, {-0.42532540417602, -1.3090169943749475`, \ -0.85065080835204}, {-0.42532540417602, 1.3090169943749475`, -0.85065080835204}, {-0.2628655560595668, \ -0.8090169943749475, 1.3763819204711736`}, {-0.2628655560595668, 0.8090169943749475, 1.3763819204711736`}}], {2, 19, 26, 30, 6}]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), 0}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], Rational[-1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {-(1 + 2 5^Rational[-1, 2])^ Rational[1, 2], 0, Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {(1 + 2 5^Rational[-1, 2])^Rational[1, 2], 0, (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, {(Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2], 0, -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2], 0}, {Root[1 - 5 #^2 + 5 #^4& , 1, 0], 0, (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}}, {{0, -1.618033988749895, 0}, { 0, 1.618033988749895, 0}, { 0.2628655560595668, -0.8090169943749475, -1.3763819204711736`}, { 0.2628655560595668, 0.8090169943749475, -1.3763819204711736`}, { 0.42532540417601994`, -1.3090169943749475`, 0.85065080835204}, { 0.42532540417601994`, 1.3090169943749475`, 0.85065080835204}, { 0.6881909602355868, -0.5, 1.3763819204711736`}, {0.6881909602355868, 0.5, 1.3763819204711736`}, { 1.1135163644116066`, -0.8090169943749475, -0.85065080835204}, { 1.1135163644116066`, 0.8090169943749475, -0.85065080835204}, {-1.3763819204711736`, 0, -0.85065080835204}, {-0.6881909602355868, -0.5, \ -1.3763819204711736`}, {-0.6881909602355868, 0.5, -1.3763819204711736`}, { 1.3763819204711736`, 0, 0.85065080835204}, { 0.9510565162951535, -1.3090169943749475`, 0}, { 0.9510565162951535, 1.3090169943749475`, 0}, { 0.85065080835204, 0, -1.3763819204711736`}, {-0.9510565162951535, -1.3090169943749475`, 0}, {-0.9510565162951535, 1.3090169943749475`, 0}, {-1.5388417685876268`, -0.5, 0}, {-1.5388417685876268`, 0.5, 0}, { 1.5388417685876268`, -0.5, 0}, { 1.5388417685876268`, 0.5, 0}, {-0.85065080835204, 0, 1.3763819204711736`}, {-1.1135163644116066`, -0.8090169943749475, 0.85065080835204}, {-1.1135163644116066`, 0.8090169943749475, 0.85065080835204}, {-0.42532540417602, -1.3090169943749475`, \ -0.85065080835204}, {-0.42532540417602, 1.3090169943749475`, -0.85065080835204}, {-0.2628655560595668, \ -0.8090169943749475, 1.3763819204711736`}, {-0.2628655560595668, 0.8090169943749475, 1.3763819204711736`}}], {21, 20, 25, 24, 26}]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), 0}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], Rational[-1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {-(1 + 2 5^Rational[-1, 2])^ Rational[1, 2], 0, Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {(1 + 2 5^Rational[-1, 2])^Rational[1, 2], 0, (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, {(Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2], 0, -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2], 0}, {Root[1 - 5 #^2 + 5 #^4& , 1, 0], 0, (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}}, {{0, -1.618033988749895, 0}, { 0, 1.618033988749895, 0}, { 0.2628655560595668, -0.8090169943749475, -1.3763819204711736`}, { 0.2628655560595668, 0.8090169943749475, -1.3763819204711736`}, { 0.42532540417601994`, -1.3090169943749475`, 0.85065080835204}, { 0.42532540417601994`, 1.3090169943749475`, 0.85065080835204}, { 0.6881909602355868, -0.5, 1.3763819204711736`}, {0.6881909602355868, 0.5, 1.3763819204711736`}, { 1.1135163644116066`, -0.8090169943749475, -0.85065080835204}, { 1.1135163644116066`, 0.8090169943749475, -0.85065080835204}, {-1.3763819204711736`, 0, -0.85065080835204}, {-0.6881909602355868, -0.5, \ -1.3763819204711736`}, {-0.6881909602355868, 0.5, -1.3763819204711736`}, { 1.3763819204711736`, 0, 0.85065080835204}, { 0.9510565162951535, -1.3090169943749475`, 0}, { 0.9510565162951535, 1.3090169943749475`, 0}, { 0.85065080835204, 0, -1.3763819204711736`}, {-0.9510565162951535, -1.3090169943749475`, 0}, {-0.9510565162951535, 1.3090169943749475`, 0}, {-1.5388417685876268`, -0.5, 0}, {-1.5388417685876268`, 0.5, 0}, { 1.5388417685876268`, -0.5, 0}, { 1.5388417685876268`, 0.5, 0}, {-0.85065080835204, 0, 1.3763819204711736`}, {-1.1135163644116066`, -0.8090169943749475, 0.85065080835204}, {-1.1135163644116066`, 0.8090169943749475, 0.85065080835204}, {-0.42532540417602, -1.3090169943749475`, \ -0.85065080835204}, {-0.42532540417602, 1.3090169943749475`, -0.85065080835204}, {-0.2628655560595668, \ -0.8090169943749475, 1.3763819204711736`}, {-0.2628655560595668, 0.8090169943749475, 1.3763819204711736`}}], {18, 1, 5, 29, 25}]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), 0}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], Rational[-1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {-(1 + 2 5^Rational[-1, 2])^ Rational[1, 2], 0, Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {(1 + 2 5^Rational[-1, 2])^Rational[1, 2], 0, (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, {(Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2], 0, -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2], 0}, {Root[1 - 5 #^2 + 5 #^4& , 1, 0], 0, (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}}, {{0, -1.618033988749895, 0}, { 0, 1.618033988749895, 0}, { 0.2628655560595668, -0.8090169943749475, -1.3763819204711736`}, { 0.2628655560595668, 0.8090169943749475, -1.3763819204711736`}, { 0.42532540417601994`, -1.3090169943749475`, 0.85065080835204}, { 0.42532540417601994`, 1.3090169943749475`, 0.85065080835204}, { 0.6881909602355868, -0.5, 1.3763819204711736`}, {0.6881909602355868, 0.5, 1.3763819204711736`}, { 1.1135163644116066`, -0.8090169943749475, -0.85065080835204}, { 1.1135163644116066`, 0.8090169943749475, -0.85065080835204}, {-1.3763819204711736`, 0, -0.85065080835204}, {-0.6881909602355868, -0.5, \ -1.3763819204711736`}, {-0.6881909602355868, 0.5, -1.3763819204711736`}, { 1.3763819204711736`, 0, 0.85065080835204}, { 0.9510565162951535, -1.3090169943749475`, 0}, { 0.9510565162951535, 1.3090169943749475`, 0}, { 0.85065080835204, 0, -1.3763819204711736`}, {-0.9510565162951535, -1.3090169943749475`, 0}, {-0.9510565162951535, 1.3090169943749475`, 0}, {-1.5388417685876268`, -0.5, 0}, {-1.5388417685876268`, 0.5, 0}, { 1.5388417685876268`, -0.5, 0}, { 1.5388417685876268`, 0.5, 0}, {-0.85065080835204, 0, 1.3763819204711736`}, {-1.1135163644116066`, -0.8090169943749475, 0.85065080835204}, {-1.1135163644116066`, 0.8090169943749475, 0.85065080835204}, {-0.42532540417602, -1.3090169943749475`, \ -0.85065080835204}, {-0.42532540417602, 1.3090169943749475`, -0.85065080835204}, {-0.2628655560595668, \ -0.8090169943749475, 1.3763819204711736`}, {-0.2628655560595668, 0.8090169943749475, 1.3763819204711736`}}], {15, 22, 14, 7, 5}]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), 0}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], Rational[-1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {-(1 + 2 5^Rational[-1, 2])^ Rational[1, 2], 0, Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {(1 + 2 5^Rational[-1, 2])^Rational[1, 2], 0, (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, {(Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2], 0, -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2], 0}, {Root[1 - 5 #^2 + 5 #^4& , 1, 0], 0, (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}}, {{0, -1.618033988749895, 0}, { 0, 1.618033988749895, 0}, { 0.2628655560595668, -0.8090169943749475, -1.3763819204711736`}, { 0.2628655560595668, 0.8090169943749475, -1.3763819204711736`}, { 0.42532540417601994`, -1.3090169943749475`, 0.85065080835204}, { 0.42532540417601994`, 1.3090169943749475`, 0.85065080835204}, { 0.6881909602355868, -0.5, 1.3763819204711736`}, {0.6881909602355868, 0.5, 1.3763819204711736`}, { 1.1135163644116066`, -0.8090169943749475, -0.85065080835204}, { 1.1135163644116066`, 0.8090169943749475, -0.85065080835204}, {-1.3763819204711736`, 0, -0.85065080835204}, {-0.6881909602355868, -0.5, \ -1.3763819204711736`}, {-0.6881909602355868, 0.5, -1.3763819204711736`}, { 1.3763819204711736`, 0, 0.85065080835204}, { 0.9510565162951535, -1.3090169943749475`, 0}, { 0.9510565162951535, 1.3090169943749475`, 0}, { 0.85065080835204, 0, -1.3763819204711736`}, {-0.9510565162951535, -1.3090169943749475`, 0}, {-0.9510565162951535, 1.3090169943749475`, 0}, {-1.5388417685876268`, -0.5, 0}, {-1.5388417685876268`, 0.5, 0}, { 1.5388417685876268`, -0.5, 0}, { 1.5388417685876268`, 0.5, 0}, {-0.85065080835204, 0, 1.3763819204711736`}, {-1.1135163644116066`, -0.8090169943749475, 0.85065080835204}, {-1.1135163644116066`, 0.8090169943749475, 0.85065080835204}, {-0.42532540417602, -1.3090169943749475`, \ -0.85065080835204}, {-0.42532540417602, 1.3090169943749475`, -0.85065080835204}, {-0.2628655560595668, \ -0.8090169943749475, 1.3763819204711736`}, {-0.2628655560595668, 0.8090169943749475, 1.3763819204711736`}}], {23, 16, 6, 8, 14}]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), 0}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], Rational[-1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {-(1 + 2 5^Rational[-1, 2])^ Rational[1, 2], 0, Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {(1 + 2 5^Rational[-1, 2])^Rational[1, 2], 0, (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, {(Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2], 0, -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2], 0}, {Root[1 - 5 #^2 + 5 #^4& , 1, 0], 0, (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}}, {{0, -1.618033988749895, 0}, { 0, 1.618033988749895, 0}, { 0.2628655560595668, -0.8090169943749475, -1.3763819204711736`}, { 0.2628655560595668, 0.8090169943749475, -1.3763819204711736`}, { 0.42532540417601994`, -1.3090169943749475`, 0.85065080835204}, { 0.42532540417601994`, 1.3090169943749475`, 0.85065080835204}, { 0.6881909602355868, -0.5, 1.3763819204711736`}, {0.6881909602355868, 0.5, 1.3763819204711736`}, { 1.1135163644116066`, -0.8090169943749475, -0.85065080835204}, { 1.1135163644116066`, 0.8090169943749475, -0.85065080835204}, {-1.3763819204711736`, 0, -0.85065080835204}, {-0.6881909602355868, -0.5, \ -1.3763819204711736`}, {-0.6881909602355868, 0.5, -1.3763819204711736`}, { 1.3763819204711736`, 0, 0.85065080835204}, { 0.9510565162951535, -1.3090169943749475`, 0}, { 0.9510565162951535, 1.3090169943749475`, 0}, { 0.85065080835204, 0, -1.3763819204711736`}, {-0.9510565162951535, -1.3090169943749475`, 0}, {-0.9510565162951535, 1.3090169943749475`, 0}, {-1.5388417685876268`, -0.5, 0}, {-1.5388417685876268`, 0.5, 0}, { 1.5388417685876268`, -0.5, 0}, { 1.5388417685876268`, 0.5, 0}, {-0.85065080835204, 0, 1.3763819204711736`}, {-1.1135163644116066`, -0.8090169943749475, 0.85065080835204}, {-1.1135163644116066`, 0.8090169943749475, 0.85065080835204}, {-0.42532540417602, -1.3090169943749475`, \ -0.85065080835204}, {-0.42532540417602, 1.3090169943749475`, -0.85065080835204}, {-0.2628655560595668, \ -0.8090169943749475, 1.3763819204711736`}, {-0.2628655560595668, 0.8090169943749475, 1.3763819204711736`}}], {12, 13, 4, 17, 3}]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), 0}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], Rational[-1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {-(1 + 2 5^Rational[-1, 2])^ Rational[1, 2], 0, Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {(1 + 2 5^Rational[-1, 2])^Rational[1, 2], 0, (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, {(Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2], 0, -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2], 0}, {Root[1 - 5 #^2 + 5 #^4& , 1, 0], 0, (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}}, {{0, -1.618033988749895, 0}, { 0, 1.618033988749895, 0}, { 0.2628655560595668, -0.8090169943749475, -1.3763819204711736`}, { 0.2628655560595668, 0.8090169943749475, -1.3763819204711736`}, { 0.42532540417601994`, -1.3090169943749475`, 0.85065080835204}, { 0.42532540417601994`, 1.3090169943749475`, 0.85065080835204}, { 0.6881909602355868, -0.5, 1.3763819204711736`}, {0.6881909602355868, 0.5, 1.3763819204711736`}, { 1.1135163644116066`, -0.8090169943749475, -0.85065080835204}, { 1.1135163644116066`, 0.8090169943749475, -0.85065080835204}, {-1.3763819204711736`, 0, -0.85065080835204}, {-0.6881909602355868, -0.5, \ -1.3763819204711736`}, {-0.6881909602355868, 0.5, -1.3763819204711736`}, { 1.3763819204711736`, 0, 0.85065080835204}, { 0.9510565162951535, -1.3090169943749475`, 0}, { 0.9510565162951535, 1.3090169943749475`, 0}, { 0.85065080835204, 0, -1.3763819204711736`}, {-0.9510565162951535, -1.3090169943749475`, 0}, {-0.9510565162951535, 1.3090169943749475`, 0}, {-1.5388417685876268`, -0.5, 0}, {-1.5388417685876268`, 0.5, 0}, { 1.5388417685876268`, -0.5, 0}, { 1.5388417685876268`, 0.5, 0}, {-0.85065080835204, 0, 1.3763819204711736`}, {-1.1135163644116066`, -0.8090169943749475, 0.85065080835204}, {-1.1135163644116066`, 0.8090169943749475, 0.85065080835204}, {-0.42532540417602, -1.3090169943749475`, \ -0.85065080835204}, {-0.42532540417602, 1.3090169943749475`, -0.85065080835204}, {-0.2628655560595668, \ -0.8090169943749475, 1.3763819204711736`}, {-0.2628655560595668, 0.8090169943749475, 1.3763819204711736`}}], {3, 17, 9}]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), 0}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], Rational[-1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {-(1 + 2 5^Rational[-1, 2])^ Rational[1, 2], 0, Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {(1 + 2 5^Rational[-1, 2])^Rational[1, 2], 0, (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, {(Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2], 0, -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2], 0}, {Root[1 - 5 #^2 + 5 #^4& , 1, 0], 0, (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}}, {{0, -1.618033988749895, 0}, { 0, 1.618033988749895, 0}, { 0.2628655560595668, -0.8090169943749475, -1.3763819204711736`}, { 0.2628655560595668, 0.8090169943749475, -1.3763819204711736`}, { 0.42532540417601994`, -1.3090169943749475`, 0.85065080835204}, { 0.42532540417601994`, 1.3090169943749475`, 0.85065080835204}, { 0.6881909602355868, -0.5, 1.3763819204711736`}, {0.6881909602355868, 0.5, 1.3763819204711736`}, { 1.1135163644116066`, -0.8090169943749475, -0.85065080835204}, { 1.1135163644116066`, 0.8090169943749475, -0.85065080835204}, {-1.3763819204711736`, 0, -0.85065080835204}, {-0.6881909602355868, -0.5, \ -1.3763819204711736`}, {-0.6881909602355868, 0.5, -1.3763819204711736`}, { 1.3763819204711736`, 0, 0.85065080835204}, { 0.9510565162951535, -1.3090169943749475`, 0}, { 0.9510565162951535, 1.3090169943749475`, 0}, { 0.85065080835204, 0, -1.3763819204711736`}, {-0.9510565162951535, -1.3090169943749475`, 0}, {-0.9510565162951535, 1.3090169943749475`, 0}, {-1.5388417685876268`, -0.5, 0}, {-1.5388417685876268`, 0.5, 0}, { 1.5388417685876268`, -0.5, 0}, { 1.5388417685876268`, 0.5, 0}, {-0.85065080835204, 0, 1.3763819204711736`}, {-1.1135163644116066`, -0.8090169943749475, 0.85065080835204}, {-1.1135163644116066`, 0.8090169943749475, 0.85065080835204}, {-0.42532540417602, -1.3090169943749475`, \ -0.85065080835204}, {-0.42532540417602, 1.3090169943749475`, -0.85065080835204}, {-0.2628655560595668, \ -0.8090169943749475, 1.3763819204711736`}, {-0.2628655560595668, 0.8090169943749475, 1.3763819204711736`}}], {17, 4, 10}]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), 0}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], Rational[-1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {-(1 + 2 5^Rational[-1, 2])^ Rational[1, 2], 0, Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {(1 + 2 5^Rational[-1, 2])^Rational[1, 2], 0, (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, {(Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2], 0, -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2], 0}, {Root[1 - 5 #^2 + 5 #^4& , 1, 0], 0, (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}}, {{0, -1.618033988749895, 0}, { 0, 1.618033988749895, 0}, { 0.2628655560595668, -0.8090169943749475, -1.3763819204711736`}, { 0.2628655560595668, 0.8090169943749475, -1.3763819204711736`}, { 0.42532540417601994`, -1.3090169943749475`, 0.85065080835204}, { 0.42532540417601994`, 1.3090169943749475`, 0.85065080835204}, { 0.6881909602355868, -0.5, 1.3763819204711736`}, {0.6881909602355868, 0.5, 1.3763819204711736`}, { 1.1135163644116066`, -0.8090169943749475, -0.85065080835204}, { 1.1135163644116066`, 0.8090169943749475, -0.85065080835204}, {-1.3763819204711736`, 0, -0.85065080835204}, {-0.6881909602355868, -0.5, \ -1.3763819204711736`}, {-0.6881909602355868, 0.5, -1.3763819204711736`}, { 1.3763819204711736`, 0, 0.85065080835204}, { 0.9510565162951535, -1.3090169943749475`, 0}, { 0.9510565162951535, 1.3090169943749475`, 0}, { 0.85065080835204, 0, -1.3763819204711736`}, {-0.9510565162951535, -1.3090169943749475`, 0}, {-0.9510565162951535, 1.3090169943749475`, 0}, {-1.5388417685876268`, -0.5, 0}, {-1.5388417685876268`, 0.5, 0}, { 1.5388417685876268`, -0.5, 0}, { 1.5388417685876268`, 0.5, 0}, {-0.85065080835204, 0, 1.3763819204711736`}, {-1.1135163644116066`, -0.8090169943749475, 0.85065080835204}, {-1.1135163644116066`, 0.8090169943749475, 0.85065080835204}, {-0.42532540417602, -1.3090169943749475`, \ -0.85065080835204}, {-0.42532540417602, 1.3090169943749475`, -0.85065080835204}, {-0.2628655560595668, \ -0.8090169943749475, 1.3763819204711736`}, {-0.2628655560595668, 0.8090169943749475, 1.3763819204711736`}}], {4, 13, 28}]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), 0}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], Rational[-1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {-(1 + 2 5^Rational[-1, 2])^ Rational[1, 2], 0, Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {(1 + 2 5^Rational[-1, 2])^Rational[1, 2], 0, (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, {(Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2], 0, -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2], 0}, {Root[1 - 5 #^2 + 5 #^4& , 1, 0], 0, (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}}, {{0, -1.618033988749895, 0}, { 0, 1.618033988749895, 0}, { 0.2628655560595668, -0.8090169943749475, -1.3763819204711736`}, { 0.2628655560595668, 0.8090169943749475, -1.3763819204711736`}, { 0.42532540417601994`, -1.3090169943749475`, 0.85065080835204}, { 0.42532540417601994`, 1.3090169943749475`, 0.85065080835204}, { 0.6881909602355868, -0.5, 1.3763819204711736`}, {0.6881909602355868, 0.5, 1.3763819204711736`}, { 1.1135163644116066`, -0.8090169943749475, -0.85065080835204}, { 1.1135163644116066`, 0.8090169943749475, -0.85065080835204}, {-1.3763819204711736`, 0, -0.85065080835204}, {-0.6881909602355868, -0.5, \ -1.3763819204711736`}, {-0.6881909602355868, 0.5, -1.3763819204711736`}, { 1.3763819204711736`, 0, 0.85065080835204}, { 0.9510565162951535, -1.3090169943749475`, 0}, { 0.9510565162951535, 1.3090169943749475`, 0}, { 0.85065080835204, 0, -1.3763819204711736`}, {-0.9510565162951535, -1.3090169943749475`, 0}, {-0.9510565162951535, 1.3090169943749475`, 0}, {-1.5388417685876268`, -0.5, 0}, {-1.5388417685876268`, 0.5, 0}, { 1.5388417685876268`, -0.5, 0}, { 1.5388417685876268`, 0.5, 0}, {-0.85065080835204, 0, 1.3763819204711736`}, {-1.1135163644116066`, -0.8090169943749475, 0.85065080835204}, {-1.1135163644116066`, 0.8090169943749475, 0.85065080835204}, {-0.42532540417602, -1.3090169943749475`, \ -0.85065080835204}, {-0.42532540417602, 1.3090169943749475`, -0.85065080835204}, {-0.2628655560595668, \ -0.8090169943749475, 1.3763819204711736`}, {-0.2628655560595668, 0.8090169943749475, 1.3763819204711736`}}], {13, 12, 11}]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), 0}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], Rational[-1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {-(1 + 2 5^Rational[-1, 2])^ Rational[1, 2], 0, Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {(1 + 2 5^Rational[-1, 2])^Rational[1, 2], 0, (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, {(Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2], 0, -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2], 0}, {Root[1 - 5 #^2 + 5 #^4& , 1, 0], 0, (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}}, {{0, -1.618033988749895, 0}, { 0, 1.618033988749895, 0}, { 0.2628655560595668, -0.8090169943749475, -1.3763819204711736`}, { 0.2628655560595668, 0.8090169943749475, -1.3763819204711736`}, { 0.42532540417601994`, -1.3090169943749475`, 0.85065080835204}, { 0.42532540417601994`, 1.3090169943749475`, 0.85065080835204}, { 0.6881909602355868, -0.5, 1.3763819204711736`}, {0.6881909602355868, 0.5, 1.3763819204711736`}, { 1.1135163644116066`, -0.8090169943749475, -0.85065080835204}, { 1.1135163644116066`, 0.8090169943749475, -0.85065080835204}, {-1.3763819204711736`, 0, -0.85065080835204}, {-0.6881909602355868, -0.5, \ -1.3763819204711736`}, {-0.6881909602355868, 0.5, -1.3763819204711736`}, { 1.3763819204711736`, 0, 0.85065080835204}, { 0.9510565162951535, -1.3090169943749475`, 0}, { 0.9510565162951535, 1.3090169943749475`, 0}, { 0.85065080835204, 0, -1.3763819204711736`}, {-0.9510565162951535, -1.3090169943749475`, 0}, {-0.9510565162951535, 1.3090169943749475`, 0}, {-1.5388417685876268`, -0.5, 0}, {-1.5388417685876268`, 0.5, 0}, { 1.5388417685876268`, -0.5, 0}, { 1.5388417685876268`, 0.5, 0}, {-0.85065080835204, 0, 1.3763819204711736`}, {-1.1135163644116066`, -0.8090169943749475, 0.85065080835204}, {-1.1135163644116066`, 0.8090169943749475, 0.85065080835204}, {-0.42532540417602, -1.3090169943749475`, \ -0.85065080835204}, {-0.42532540417602, 1.3090169943749475`, -0.85065080835204}, {-0.2628655560595668, \ -0.8090169943749475, 1.3763819204711736`}, {-0.2628655560595668, 0.8090169943749475, 1.3763819204711736`}}], {12, 3, 27}]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), 0}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], Rational[-1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {-(1 + 2 5^Rational[-1, 2])^ Rational[1, 2], 0, Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {(1 + 2 5^Rational[-1, 2])^Rational[1, 2], 0, (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, {(Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2], 0, -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2], 0}, {Root[1 - 5 #^2 + 5 #^4& , 1, 0], 0, (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}}, {{0, -1.618033988749895, 0}, { 0, 1.618033988749895, 0}, { 0.2628655560595668, -0.8090169943749475, -1.3763819204711736`}, { 0.2628655560595668, 0.8090169943749475, -1.3763819204711736`}, { 0.42532540417601994`, -1.3090169943749475`, 0.85065080835204}, { 0.42532540417601994`, 1.3090169943749475`, 0.85065080835204}, { 0.6881909602355868, -0.5, 1.3763819204711736`}, {0.6881909602355868, 0.5, 1.3763819204711736`}, { 1.1135163644116066`, -0.8090169943749475, -0.85065080835204}, { 1.1135163644116066`, 0.8090169943749475, -0.85065080835204}, {-1.3763819204711736`, 0, -0.85065080835204}, {-0.6881909602355868, -0.5, \ -1.3763819204711736`}, {-0.6881909602355868, 0.5, -1.3763819204711736`}, { 1.3763819204711736`, 0, 0.85065080835204}, { 0.9510565162951535, -1.3090169943749475`, 0}, { 0.9510565162951535, 1.3090169943749475`, 0}, { 0.85065080835204, 0, -1.3763819204711736`}, {-0.9510565162951535, -1.3090169943749475`, 0}, {-0.9510565162951535, 1.3090169943749475`, 0}, {-1.5388417685876268`, -0.5, 0}, {-1.5388417685876268`, 0.5, 0}, { 1.5388417685876268`, -0.5, 0}, { 1.5388417685876268`, 0.5, 0}, {-0.85065080835204, 0, 1.3763819204711736`}, {-1.1135163644116066`, -0.8090169943749475, 0.85065080835204}, {-1.1135163644116066`, 0.8090169943749475, 0.85065080835204}, {-0.42532540417602, -1.3090169943749475`, \ -0.85065080835204}, {-0.42532540417602, 1.3090169943749475`, -0.85065080835204}, {-0.2628655560595668, \ -0.8090169943749475, 1.3763819204711736`}, {-0.2628655560595668, 0.8090169943749475, 1.3763819204711736`}}], {27, 1, 18}]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), 0}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], Rational[-1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {-(1 + 2 5^Rational[-1, 2])^ Rational[1, 2], 0, Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {(1 + 2 5^Rational[-1, 2])^Rational[1, 2], 0, (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, {(Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2], 0, -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2], 0}, {Root[1 - 5 #^2 + 5 #^4& , 1, 0], 0, (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}}, {{0, -1.618033988749895, 0}, { 0, 1.618033988749895, 0}, { 0.2628655560595668, -0.8090169943749475, -1.3763819204711736`}, { 0.2628655560595668, 0.8090169943749475, -1.3763819204711736`}, { 0.42532540417601994`, -1.3090169943749475`, 0.85065080835204}, { 0.42532540417601994`, 1.3090169943749475`, 0.85065080835204}, { 0.6881909602355868, -0.5, 1.3763819204711736`}, {0.6881909602355868, 0.5, 1.3763819204711736`}, { 1.1135163644116066`, -0.8090169943749475, -0.85065080835204}, { 1.1135163644116066`, 0.8090169943749475, -0.85065080835204}, {-1.3763819204711736`, 0, -0.85065080835204}, {-0.6881909602355868, -0.5, \ -1.3763819204711736`}, {-0.6881909602355868, 0.5, -1.3763819204711736`}, { 1.3763819204711736`, 0, 0.85065080835204}, { 0.9510565162951535, -1.3090169943749475`, 0}, { 0.9510565162951535, 1.3090169943749475`, 0}, { 0.85065080835204, 0, -1.3763819204711736`}, {-0.9510565162951535, -1.3090169943749475`, 0}, {-0.9510565162951535, 1.3090169943749475`, 0}, {-1.5388417685876268`, -0.5, 0}, {-1.5388417685876268`, 0.5, 0}, { 1.5388417685876268`, -0.5, 0}, { 1.5388417685876268`, 0.5, 0}, {-0.85065080835204, 0, 1.3763819204711736`}, {-1.1135163644116066`, -0.8090169943749475, 0.85065080835204}, {-1.1135163644116066`, 0.8090169943749475, 0.85065080835204}, {-0.42532540417602, -1.3090169943749475`, \ -0.85065080835204}, {-0.42532540417602, 1.3090169943749475`, -0.85065080835204}, {-0.2628655560595668, \ -0.8090169943749475, 1.3763819204711736`}, {-0.2628655560595668, 0.8090169943749475, 1.3763819204711736`}}], {9, 22, 15}]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), 0}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], Rational[-1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {-(1 + 2 5^Rational[-1, 2])^ Rational[1, 2], 0, Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {(1 + 2 5^Rational[-1, 2])^Rational[1, 2], 0, (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, {(Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2], 0, -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2], 0}, {Root[1 - 5 #^2 + 5 #^4& , 1, 0], 0, (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}}, {{0, -1.618033988749895, 0}, { 0, 1.618033988749895, 0}, { 0.2628655560595668, -0.8090169943749475, -1.3763819204711736`}, { 0.2628655560595668, 0.8090169943749475, -1.3763819204711736`}, { 0.42532540417601994`, -1.3090169943749475`, 0.85065080835204}, { 0.42532540417601994`, 1.3090169943749475`, 0.85065080835204}, { 0.6881909602355868, -0.5, 1.3763819204711736`}, {0.6881909602355868, 0.5, 1.3763819204711736`}, { 1.1135163644116066`, -0.8090169943749475, -0.85065080835204}, { 1.1135163644116066`, 0.8090169943749475, -0.85065080835204}, {-1.3763819204711736`, 0, -0.85065080835204}, {-0.6881909602355868, -0.5, \ -1.3763819204711736`}, {-0.6881909602355868, 0.5, -1.3763819204711736`}, { 1.3763819204711736`, 0, 0.85065080835204}, { 0.9510565162951535, -1.3090169943749475`, 0}, { 0.9510565162951535, 1.3090169943749475`, 0}, { 0.85065080835204, 0, -1.3763819204711736`}, {-0.9510565162951535, -1.3090169943749475`, 0}, {-0.9510565162951535, 1.3090169943749475`, 0}, {-1.5388417685876268`, -0.5, 0}, {-1.5388417685876268`, 0.5, 0}, { 1.5388417685876268`, -0.5, 0}, { 1.5388417685876268`, 0.5, 0}, {-0.85065080835204, 0, 1.3763819204711736`}, {-1.1135163644116066`, -0.8090169943749475, 0.85065080835204}, {-1.1135163644116066`, 0.8090169943749475, 0.85065080835204}, {-0.42532540417602, -1.3090169943749475`, \ -0.85065080835204}, {-0.42532540417602, 1.3090169943749475`, -0.85065080835204}, {-0.2628655560595668, \ -0.8090169943749475, 1.3763819204711736`}, {-0.2628655560595668, 0.8090169943749475, 1.3763819204711736`}}], {10, 16, 23}]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), 0}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], Rational[-1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {-(1 + 2 5^Rational[-1, 2])^ Rational[1, 2], 0, Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {(1 + 2 5^Rational[-1, 2])^Rational[1, 2], 0, (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, {(Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2], 0, -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2], 0}, {Root[1 - 5 #^2 + 5 #^4& , 1, 0], 0, (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}}, {{0, -1.618033988749895, 0}, { 0, 1.618033988749895, 0}, { 0.2628655560595668, -0.8090169943749475, -1.3763819204711736`}, { 0.2628655560595668, 0.8090169943749475, -1.3763819204711736`}, { 0.42532540417601994`, -1.3090169943749475`, 0.85065080835204}, { 0.42532540417601994`, 1.3090169943749475`, 0.85065080835204}, { 0.6881909602355868, -0.5, 1.3763819204711736`}, {0.6881909602355868, 0.5, 1.3763819204711736`}, { 1.1135163644116066`, -0.8090169943749475, -0.85065080835204}, { 1.1135163644116066`, 0.8090169943749475, -0.85065080835204}, {-1.3763819204711736`, 0, -0.85065080835204}, {-0.6881909602355868, -0.5, \ -1.3763819204711736`}, {-0.6881909602355868, 0.5, -1.3763819204711736`}, { 1.3763819204711736`, 0, 0.85065080835204}, { 0.9510565162951535, -1.3090169943749475`, 0}, { 0.9510565162951535, 1.3090169943749475`, 0}, { 0.85065080835204, 0, -1.3763819204711736`}, {-0.9510565162951535, -1.3090169943749475`, 0}, {-0.9510565162951535, 1.3090169943749475`, 0}, {-1.5388417685876268`, -0.5, 0}, {-1.5388417685876268`, 0.5, 0}, { 1.5388417685876268`, -0.5, 0}, { 1.5388417685876268`, 0.5, 0}, {-0.85065080835204, 0, 1.3763819204711736`}, {-1.1135163644116066`, -0.8090169943749475, 0.85065080835204}, {-1.1135163644116066`, 0.8090169943749475, 0.85065080835204}, {-0.42532540417602, -1.3090169943749475`, \ -0.85065080835204}, {-0.42532540417602, 1.3090169943749475`, -0.85065080835204}, {-0.2628655560595668, \ -0.8090169943749475, 1.3763819204711736`}, {-0.2628655560595668, 0.8090169943749475, 1.3763819204711736`}}], {28, 19, 2}]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), 0}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], Rational[-1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {-(1 + 2 5^Rational[-1, 2])^ Rational[1, 2], 0, Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {(1 + 2 5^Rational[-1, 2])^Rational[1, 2], 0, (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, {(Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2], 0, -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2], 0}, {Root[1 - 5 #^2 + 5 #^4& , 1, 0], 0, (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}}, {{0, -1.618033988749895, 0}, { 0, 1.618033988749895, 0}, { 0.2628655560595668, -0.8090169943749475, -1.3763819204711736`}, { 0.2628655560595668, 0.8090169943749475, -1.3763819204711736`}, { 0.42532540417601994`, -1.3090169943749475`, 0.85065080835204}, { 0.42532540417601994`, 1.3090169943749475`, 0.85065080835204}, { 0.6881909602355868, -0.5, 1.3763819204711736`}, {0.6881909602355868, 0.5, 1.3763819204711736`}, { 1.1135163644116066`, -0.8090169943749475, -0.85065080835204}, { 1.1135163644116066`, 0.8090169943749475, -0.85065080835204}, {-1.3763819204711736`, 0, -0.85065080835204}, {-0.6881909602355868, -0.5, \ -1.3763819204711736`}, {-0.6881909602355868, 0.5, -1.3763819204711736`}, { 1.3763819204711736`, 0, 0.85065080835204}, { 0.9510565162951535, -1.3090169943749475`, 0}, { 0.9510565162951535, 1.3090169943749475`, 0}, { 0.85065080835204, 0, -1.3763819204711736`}, {-0.9510565162951535, -1.3090169943749475`, 0}, {-0.9510565162951535, 1.3090169943749475`, 0}, {-1.5388417685876268`, -0.5, 0}, {-1.5388417685876268`, 0.5, 0}, { 1.5388417685876268`, -0.5, 0}, { 1.5388417685876268`, 0.5, 0}, {-0.85065080835204, 0, 1.3763819204711736`}, {-1.1135163644116066`, -0.8090169943749475, 0.85065080835204}, {-1.1135163644116066`, 0.8090169943749475, 0.85065080835204}, {-0.42532540417602, -1.3090169943749475`, \ -0.85065080835204}, {-0.42532540417602, 1.3090169943749475`, -0.85065080835204}, {-0.2628655560595668, \ -0.8090169943749475, 1.3763819204711736`}, {-0.2628655560595668, 0.8090169943749475, 1.3763819204711736`}}], {11, 20, 21}]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), 0}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], Rational[-1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {-(1 + 2 5^Rational[-1, 2])^ Rational[1, 2], 0, Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {(1 + 2 5^Rational[-1, 2])^Rational[1, 2], 0, (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, {(Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2], 0, -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2], 0}, {Root[1 - 5 #^2 + 5 #^4& , 1, 0], 0, (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}}, {{0, -1.618033988749895, 0}, { 0, 1.618033988749895, 0}, { 0.2628655560595668, -0.8090169943749475, -1.3763819204711736`}, { 0.2628655560595668, 0.8090169943749475, -1.3763819204711736`}, { 0.42532540417601994`, -1.3090169943749475`, 0.85065080835204}, { 0.42532540417601994`, 1.3090169943749475`, 0.85065080835204}, { 0.6881909602355868, -0.5, 1.3763819204711736`}, {0.6881909602355868, 0.5, 1.3763819204711736`}, { 1.1135163644116066`, -0.8090169943749475, -0.85065080835204}, { 1.1135163644116066`, 0.8090169943749475, -0.85065080835204}, {-1.3763819204711736`, 0, -0.85065080835204}, {-0.6881909602355868, -0.5, \ -1.3763819204711736`}, {-0.6881909602355868, 0.5, -1.3763819204711736`}, { 1.3763819204711736`, 0, 0.85065080835204}, { 0.9510565162951535, -1.3090169943749475`, 0}, { 0.9510565162951535, 1.3090169943749475`, 0}, { 0.85065080835204, 0, -1.3763819204711736`}, {-0.9510565162951535, -1.3090169943749475`, 0}, {-0.9510565162951535, 1.3090169943749475`, 0}, {-1.5388417685876268`, -0.5, 0}, {-1.5388417685876268`, 0.5, 0}, { 1.5388417685876268`, -0.5, 0}, { 1.5388417685876268`, 0.5, 0}, {-0.85065080835204, 0, 1.3763819204711736`}, {-1.1135163644116066`, -0.8090169943749475, 0.85065080835204}, {-1.1135163644116066`, 0.8090169943749475, 0.85065080835204}, {-0.42532540417602, -1.3090169943749475`, \ -0.85065080835204}, {-0.42532540417602, 1.3090169943749475`, -0.85065080835204}, {-0.2628655560595668, \ -0.8090169943749475, 1.3763819204711736`}, {-0.2628655560595668, 0.8090169943749475, 1.3763819204711736`}}], {27, 3, 9, 15, 1}]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), 0}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], Rational[-1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {-(1 + 2 5^Rational[-1, 2])^ Rational[1, 2], 0, Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {(1 + 2 5^Rational[-1, 2])^Rational[1, 2], 0, (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, {(Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2], 0, -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2], 0}, {Root[1 - 5 #^2 + 5 #^4& , 1, 0], 0, (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}}, {{0, -1.618033988749895, 0}, { 0, 1.618033988749895, 0}, { 0.2628655560595668, -0.8090169943749475, -1.3763819204711736`}, { 0.2628655560595668, 0.8090169943749475, -1.3763819204711736`}, { 0.42532540417601994`, -1.3090169943749475`, 0.85065080835204}, { 0.42532540417601994`, 1.3090169943749475`, 0.85065080835204}, { 0.6881909602355868, -0.5, 1.3763819204711736`}, {0.6881909602355868, 0.5, 1.3763819204711736`}, { 1.1135163644116066`, -0.8090169943749475, -0.85065080835204}, { 1.1135163644116066`, 0.8090169943749475, -0.85065080835204}, {-1.3763819204711736`, 0, -0.85065080835204}, {-0.6881909602355868, -0.5, \ -1.3763819204711736`}, {-0.6881909602355868, 0.5, -1.3763819204711736`}, { 1.3763819204711736`, 0, 0.85065080835204}, { 0.9510565162951535, -1.3090169943749475`, 0}, { 0.9510565162951535, 1.3090169943749475`, 0}, { 0.85065080835204, 0, -1.3763819204711736`}, {-0.9510565162951535, -1.3090169943749475`, 0}, {-0.9510565162951535, 1.3090169943749475`, 0}, {-1.5388417685876268`, -0.5, 0}, {-1.5388417685876268`, 0.5, 0}, { 1.5388417685876268`, -0.5, 0}, { 1.5388417685876268`, 0.5, 0}, {-0.85065080835204, 0, 1.3763819204711736`}, {-1.1135163644116066`, -0.8090169943749475, 0.85065080835204}, {-1.1135163644116066`, 0.8090169943749475, 0.85065080835204}, {-0.42532540417602, -1.3090169943749475`, \ -0.85065080835204}, {-0.42532540417602, 1.3090169943749475`, -0.85065080835204}, {-0.2628655560595668, \ -0.8090169943749475, 1.3763819204711736`}, {-0.2628655560595668, 0.8090169943749475, 1.3763819204711736`}}], {9, 17, 10, 23, 22}]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), 0}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], Rational[-1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {-(1 + 2 5^Rational[-1, 2])^ Rational[1, 2], 0, Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {(1 + 2 5^Rational[-1, 2])^Rational[1, 2], 0, (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, {(Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2], 0, -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2], 0}, {Root[1 - 5 #^2 + 5 #^4& , 1, 0], 0, (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}}, {{0, -1.618033988749895, 0}, { 0, 1.618033988749895, 0}, { 0.2628655560595668, -0.8090169943749475, -1.3763819204711736`}, { 0.2628655560595668, 0.8090169943749475, -1.3763819204711736`}, { 0.42532540417601994`, -1.3090169943749475`, 0.85065080835204}, { 0.42532540417601994`, 1.3090169943749475`, 0.85065080835204}, { 0.6881909602355868, -0.5, 1.3763819204711736`}, {0.6881909602355868, 0.5, 1.3763819204711736`}, { 1.1135163644116066`, -0.8090169943749475, -0.85065080835204}, { 1.1135163644116066`, 0.8090169943749475, -0.85065080835204}, {-1.3763819204711736`, 0, -0.85065080835204}, {-0.6881909602355868, -0.5, \ -1.3763819204711736`}, {-0.6881909602355868, 0.5, -1.3763819204711736`}, { 1.3763819204711736`, 0, 0.85065080835204}, { 0.9510565162951535, -1.3090169943749475`, 0}, { 0.9510565162951535, 1.3090169943749475`, 0}, { 0.85065080835204, 0, -1.3763819204711736`}, {-0.9510565162951535, -1.3090169943749475`, 0}, {-0.9510565162951535, 1.3090169943749475`, 0}, {-1.5388417685876268`, -0.5, 0}, {-1.5388417685876268`, 0.5, 0}, { 1.5388417685876268`, -0.5, 0}, { 1.5388417685876268`, 0.5, 0}, {-0.85065080835204, 0, 1.3763819204711736`}, {-1.1135163644116066`, -0.8090169943749475, 0.85065080835204}, {-1.1135163644116066`, 0.8090169943749475, 0.85065080835204}, {-0.42532540417602, -1.3090169943749475`, \ -0.85065080835204}, {-0.42532540417602, 1.3090169943749475`, -0.85065080835204}, {-0.2628655560595668, \ -0.8090169943749475, 1.3763819204711736`}, {-0.2628655560595668, 0.8090169943749475, 1.3763819204711736`}}], {10, 4, 28, 2, 16}]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), 0}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], Rational[-1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {-(1 + 2 5^Rational[-1, 2])^ Rational[1, 2], 0, Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {(1 + 2 5^Rational[-1, 2])^Rational[1, 2], 0, (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, {(Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2], 0, -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2], 0}, {Root[1 - 5 #^2 + 5 #^4& , 1, 0], 0, (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}}, {{0, -1.618033988749895, 0}, { 0, 1.618033988749895, 0}, { 0.2628655560595668, -0.8090169943749475, -1.3763819204711736`}, { 0.2628655560595668, 0.8090169943749475, -1.3763819204711736`}, { 0.42532540417601994`, -1.3090169943749475`, 0.85065080835204}, { 0.42532540417601994`, 1.3090169943749475`, 0.85065080835204}, { 0.6881909602355868, -0.5, 1.3763819204711736`}, {0.6881909602355868, 0.5, 1.3763819204711736`}, { 1.1135163644116066`, -0.8090169943749475, -0.85065080835204}, { 1.1135163644116066`, 0.8090169943749475, -0.85065080835204}, {-1.3763819204711736`, 0, -0.85065080835204}, {-0.6881909602355868, -0.5, \ -1.3763819204711736`}, {-0.6881909602355868, 0.5, -1.3763819204711736`}, { 1.3763819204711736`, 0, 0.85065080835204}, { 0.9510565162951535, -1.3090169943749475`, 0}, { 0.9510565162951535, 1.3090169943749475`, 0}, { 0.85065080835204, 0, -1.3763819204711736`}, {-0.9510565162951535, -1.3090169943749475`, 0}, {-0.9510565162951535, 1.3090169943749475`, 0}, {-1.5388417685876268`, -0.5, 0}, {-1.5388417685876268`, 0.5, 0}, { 1.5388417685876268`, -0.5, 0}, { 1.5388417685876268`, 0.5, 0}, {-0.85065080835204, 0, 1.3763819204711736`}, {-1.1135163644116066`, -0.8090169943749475, 0.85065080835204}, {-1.1135163644116066`, 0.8090169943749475, 0.85065080835204}, {-0.42532540417602, -1.3090169943749475`, \ -0.85065080835204}, {-0.42532540417602, 1.3090169943749475`, -0.85065080835204}, {-0.2628655560595668, \ -0.8090169943749475, 1.3763819204711736`}, {-0.2628655560595668, 0.8090169943749475, 1.3763819204711736`}}], {28, 13, 11, 21, 19}]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), 0}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], Rational[-1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {-(1 + 2 5^Rational[-1, 2])^ Rational[1, 2], 0, Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {(1 + 2 5^Rational[-1, 2])^Rational[1, 2], 0, (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, {(Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2], 0, -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2], 0}, {Root[1 - 5 #^2 + 5 #^4& , 1, 0], 0, (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}}, {{0, -1.618033988749895, 0}, { 0, 1.618033988749895, 0}, { 0.2628655560595668, -0.8090169943749475, -1.3763819204711736`}, { 0.2628655560595668, 0.8090169943749475, -1.3763819204711736`}, { 0.42532540417601994`, -1.3090169943749475`, 0.85065080835204}, { 0.42532540417601994`, 1.3090169943749475`, 0.85065080835204}, { 0.6881909602355868, -0.5, 1.3763819204711736`}, {0.6881909602355868, 0.5, 1.3763819204711736`}, { 1.1135163644116066`, -0.8090169943749475, -0.85065080835204}, { 1.1135163644116066`, 0.8090169943749475, -0.85065080835204}, {-1.3763819204711736`, 0, -0.85065080835204}, {-0.6881909602355868, -0.5, \ -1.3763819204711736`}, {-0.6881909602355868, 0.5, -1.3763819204711736`}, { 1.3763819204711736`, 0, 0.85065080835204}, { 0.9510565162951535, -1.3090169943749475`, 0}, { 0.9510565162951535, 1.3090169943749475`, 0}, { 0.85065080835204, 0, -1.3763819204711736`}, {-0.9510565162951535, -1.3090169943749475`, 0}, {-0.9510565162951535, 1.3090169943749475`, 0}, {-1.5388417685876268`, -0.5, 0}, {-1.5388417685876268`, 0.5, 0}, { 1.5388417685876268`, -0.5, 0}, { 1.5388417685876268`, 0.5, 0}, {-0.85065080835204, 0, 1.3763819204711736`}, {-1.1135163644116066`, -0.8090169943749475, 0.85065080835204}, {-1.1135163644116066`, 0.8090169943749475, 0.85065080835204}, {-0.42532540417602, -1.3090169943749475`, \ -0.85065080835204}, {-0.42532540417602, 1.3090169943749475`, -0.85065080835204}, {-0.2628655560595668, \ -0.8090169943749475, 1.3763819204711736`}, {-0.2628655560595668, 0.8090169943749475, 1.3763819204711736`}}], {11, 12, 27, 18, 20}]]}], "}"}]], "Output", CellLabel-> "Out[221]=",ExpressionUUID->"80b92c83-31b2-4382-b33d-e29837bc1ed9"] }, Closed]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{"Graphics3D", "[", RowBox[{"#", ",", RowBox[{"Boxed", "\[Rule]", "False"}]}], "]"}], "&"}], "/@", RowBox[{"{", RowBox[{"uniform", ",", "polys"}], "}"}]}]], "Input", CellLabel-> "In[222]:=",ExpressionUUID->"ccaa3b2a-be6d-46aa-9ef4-e2e1312046db"], Cell[BoxData[ RowBox[{"{", RowBox[{ Graphics3DBox[ PolyhedronBox[ NCache[{{0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), 0}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], Rational[-1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {-(1 + 2 5^Rational[-1, 2])^ Rational[1, 2], 0, Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {(1 + 2 5^Rational[-1, 2])^Rational[1, 2], 0, (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, {(Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2], 0, -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2], 0}, {Root[1 - 5 #^2 + 5 #^4& , 1, 0], 0, (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}}, {{0, -1.618033988749895, 0}, { 0, 1.618033988749895, 0}, { 0.2628655560595668, -0.8090169943749475, -1.3763819204711736`}, { 0.2628655560595668, 0.8090169943749475, -1.3763819204711736`}, { 0.42532540417601994`, -1.3090169943749475`, 0.85065080835204}, { 0.42532540417601994`, 1.3090169943749475`, 0.85065080835204}, { 0.6881909602355868, -0.5, 1.3763819204711736`}, {0.6881909602355868, 0.5, 1.3763819204711736`}, { 1.1135163644116066`, -0.8090169943749475, -0.85065080835204}, { 1.1135163644116066`, 0.8090169943749475, -0.85065080835204}, {-1.3763819204711736`, 0, -0.85065080835204}, {-0.6881909602355868, -0.5, \ -1.3763819204711736`}, {-0.6881909602355868, 0.5, -1.3763819204711736`}, { 1.3763819204711736`, 0, 0.85065080835204}, { 0.9510565162951535, -1.3090169943749475`, 0}, { 0.9510565162951535, 1.3090169943749475`, 0}, { 0.85065080835204, 0, -1.3763819204711736`}, {-0.9510565162951535, -1.3090169943749475`, 0}, {-0.9510565162951535, 1.3090169943749475`, 0}, {-1.5388417685876268`, -0.5, 0}, {-1.5388417685876268`, 0.5, 0}, { 1.5388417685876268`, -0.5, 0}, { 1.5388417685876268`, 0.5, 0}, {-0.85065080835204, 0, 1.3763819204711736`}, {-1.1135163644116066`, -0.8090169943749475, 0.85065080835204}, {-1.1135163644116066`, 0.8090169943749475, 0.85065080835204}, {-0.42532540417602, -1.3090169943749475`, \ -0.85065080835204}, {-0.42532540417602, 1.3090169943749475`, -0.85065080835204}, {-0.2628655560595668, \ -0.8090169943749475, 1.3763819204711736`}, {-0.2628655560595668, 0.8090169943749475, 1.3763819204711736`}}], {{30, 24, 29, 7, 8}, {26, 24, 30}, {25, 29, 24}, {5, 7, 29}, {14, 8, 7}, {6, 30, 8}, {16, 2, 6}, { 19, 21, 26}, {20, 18, 25}, {1, 15, 5}, {22, 23, 14}, {2, 19, 26, 30, 6}, {21, 20, 25, 24, 26}, {18, 1, 5, 29, 25}, {15, 22, 14, 7, 5}, {23, 16, 6, 8, 14}, {12, 13, 4, 17, 3}, {3, 17, 9}, {17, 4, 10}, {4, 13, 28}, {13, 12, 11}, {12, 3, 27}, {27, 1, 18}, {9, 22, 15}, {10, 16, 23}, {28, 19, 2}, {11, 20, 21}, {27, 3, 9, 15, 1}, {9, 17, 10, 23, 22}, {10, 4, 28, 2, 16}, {28, 13, 11, 21, 19}, {11, 12, 27, 18, 20}}], Boxed->False], ",", Graphics3DBox[{ Polygon3DBox[ NCache[{{0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), 0}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {-(1 + 2 5^Rational[-1, 2])^ Rational[1, 2], 0, Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {(1 + 2 5^Rational[-1, 2])^Rational[1, 2], 0, (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, {(Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2], 0, -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2], 0}, { Root[1 - 5 #^2 + 5 #^4& , 1, 0], 0, (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}}, {{0, -1.618033988749895, 0}, { 0, 1.618033988749895, 0}, { 0.2628655560595668, -0.8090169943749475, -1.3763819204711736`}, { 0.2628655560595668, 0.8090169943749475, -1.3763819204711736`}, { 0.42532540417601994`, -1.3090169943749475`, 0.85065080835204}, { 0.42532540417601994`, 1.3090169943749475`, 0.85065080835204}, { 0.6881909602355868, -0.5, 1.3763819204711736`}, {0.6881909602355868, 0.5, 1.3763819204711736`}, { 1.1135163644116066`, -0.8090169943749475, -0.85065080835204}, { 1.1135163644116066`, 0.8090169943749475, -0.85065080835204}, {-1.3763819204711736`, 0, -0.85065080835204}, {-0.6881909602355868, -0.5, \ -1.3763819204711736`}, {-0.6881909602355868, 0.5, -1.3763819204711736`}, { 1.3763819204711736`, 0, 0.85065080835204}, { 0.9510565162951535, -1.3090169943749475`, 0}, { 0.9510565162951535, 1.3090169943749475`, 0}, { 0.85065080835204, 0, -1.3763819204711736`}, {-0.9510565162951535, -1.3090169943749475`, 0}, {-0.9510565162951535, 1.3090169943749475`, 0}, {-1.5388417685876268`, -0.5, 0}, {-1.5388417685876268`, 0.5, 0}, {1.5388417685876268`, -0.5, 0}, { 1.5388417685876268`, 0.5, 0}, {-0.85065080835204, 0, 1.3763819204711736`}, {-1.1135163644116066`, -0.8090169943749475, 0.85065080835204}, {-1.1135163644116066`, 0.8090169943749475, 0.85065080835204}, {-0.42532540417602, -1.3090169943749475`, \ -0.85065080835204}, {-0.42532540417602, 1.3090169943749475`, -0.85065080835204}, {-0.2628655560595668, \ -0.8090169943749475, 1.3763819204711736`}, {-0.2628655560595668, 0.8090169943749475, 1.3763819204711736`}}], {30, 24, 29, 7, 8}], Polygon3DBox[ NCache[{{0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), 0}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {-(1 + 2 5^Rational[-1, 2])^ Rational[1, 2], 0, Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {(1 + 2 5^Rational[-1, 2])^Rational[1, 2], 0, (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, {(Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2], 0, -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2], 0}, { Root[1 - 5 #^2 + 5 #^4& , 1, 0], 0, (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}}, {{0, -1.618033988749895, 0}, { 0, 1.618033988749895, 0}, { 0.2628655560595668, -0.8090169943749475, -1.3763819204711736`}, { 0.2628655560595668, 0.8090169943749475, -1.3763819204711736`}, { 0.42532540417601994`, -1.3090169943749475`, 0.85065080835204}, { 0.42532540417601994`, 1.3090169943749475`, 0.85065080835204}, { 0.6881909602355868, -0.5, 1.3763819204711736`}, {0.6881909602355868, 0.5, 1.3763819204711736`}, { 1.1135163644116066`, -0.8090169943749475, -0.85065080835204}, { 1.1135163644116066`, 0.8090169943749475, -0.85065080835204}, {-1.3763819204711736`, 0, -0.85065080835204}, {-0.6881909602355868, -0.5, \ -1.3763819204711736`}, {-0.6881909602355868, 0.5, -1.3763819204711736`}, { 1.3763819204711736`, 0, 0.85065080835204}, { 0.9510565162951535, -1.3090169943749475`, 0}, { 0.9510565162951535, 1.3090169943749475`, 0}, { 0.85065080835204, 0, -1.3763819204711736`}, {-0.9510565162951535, -1.3090169943749475`, 0}, {-0.9510565162951535, 1.3090169943749475`, 0}, {-1.5388417685876268`, -0.5, 0}, {-1.5388417685876268`, 0.5, 0}, {1.5388417685876268`, -0.5, 0}, { 1.5388417685876268`, 0.5, 0}, {-0.85065080835204, 0, 1.3763819204711736`}, {-1.1135163644116066`, -0.8090169943749475, 0.85065080835204}, {-1.1135163644116066`, 0.8090169943749475, 0.85065080835204}, {-0.42532540417602, -1.3090169943749475`, \ -0.85065080835204}, {-0.42532540417602, 1.3090169943749475`, -0.85065080835204}, {-0.2628655560595668, \ -0.8090169943749475, 1.3763819204711736`}, {-0.2628655560595668, 0.8090169943749475, 1.3763819204711736`}}], {26, 24, 30}], Polygon3DBox[ NCache[{{0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), 0}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {-(1 + 2 5^Rational[-1, 2])^ Rational[1, 2], 0, Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {(1 + 2 5^Rational[-1, 2])^Rational[1, 2], 0, (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, {(Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2], 0, -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2], 0}, { Root[1 - 5 #^2 + 5 #^4& , 1, 0], 0, (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}}, {{0, -1.618033988749895, 0}, { 0, 1.618033988749895, 0}, { 0.2628655560595668, -0.8090169943749475, -1.3763819204711736`}, { 0.2628655560595668, 0.8090169943749475, -1.3763819204711736`}, { 0.42532540417601994`, -1.3090169943749475`, 0.85065080835204}, { 0.42532540417601994`, 1.3090169943749475`, 0.85065080835204}, { 0.6881909602355868, -0.5, 1.3763819204711736`}, {0.6881909602355868, 0.5, 1.3763819204711736`}, { 1.1135163644116066`, -0.8090169943749475, -0.85065080835204}, { 1.1135163644116066`, 0.8090169943749475, -0.85065080835204}, {-1.3763819204711736`, 0, -0.85065080835204}, {-0.6881909602355868, -0.5, \ -1.3763819204711736`}, {-0.6881909602355868, 0.5, -1.3763819204711736`}, { 1.3763819204711736`, 0, 0.85065080835204}, { 0.9510565162951535, -1.3090169943749475`, 0}, { 0.9510565162951535, 1.3090169943749475`, 0}, { 0.85065080835204, 0, -1.3763819204711736`}, {-0.9510565162951535, -1.3090169943749475`, 0}, {-0.9510565162951535, 1.3090169943749475`, 0}, {-1.5388417685876268`, -0.5, 0}, {-1.5388417685876268`, 0.5, 0}, {1.5388417685876268`, -0.5, 0}, { 1.5388417685876268`, 0.5, 0}, {-0.85065080835204, 0, 1.3763819204711736`}, {-1.1135163644116066`, -0.8090169943749475, 0.85065080835204}, {-1.1135163644116066`, 0.8090169943749475, 0.85065080835204}, {-0.42532540417602, -1.3090169943749475`, \ -0.85065080835204}, {-0.42532540417602, 1.3090169943749475`, -0.85065080835204}, {-0.2628655560595668, \ -0.8090169943749475, 1.3763819204711736`}, {-0.2628655560595668, 0.8090169943749475, 1.3763819204711736`}}], {25, 29, 24}], Polygon3DBox[ NCache[{{0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), 0}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {-(1 + 2 5^Rational[-1, 2])^ Rational[1, 2], 0, Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {(1 + 2 5^Rational[-1, 2])^Rational[1, 2], 0, (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, {(Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2], 0, -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2], 0}, { Root[1 - 5 #^2 + 5 #^4& , 1, 0], 0, (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}}, {{0, -1.618033988749895, 0}, { 0, 1.618033988749895, 0}, { 0.2628655560595668, -0.8090169943749475, -1.3763819204711736`}, { 0.2628655560595668, 0.8090169943749475, -1.3763819204711736`}, { 0.42532540417601994`, -1.3090169943749475`, 0.85065080835204}, { 0.42532540417601994`, 1.3090169943749475`, 0.85065080835204}, { 0.6881909602355868, -0.5, 1.3763819204711736`}, {0.6881909602355868, 0.5, 1.3763819204711736`}, { 1.1135163644116066`, -0.8090169943749475, -0.85065080835204}, { 1.1135163644116066`, 0.8090169943749475, -0.85065080835204}, {-1.3763819204711736`, 0, -0.85065080835204}, {-0.6881909602355868, -0.5, \ -1.3763819204711736`}, {-0.6881909602355868, 0.5, -1.3763819204711736`}, { 1.3763819204711736`, 0, 0.85065080835204}, { 0.9510565162951535, -1.3090169943749475`, 0}, { 0.9510565162951535, 1.3090169943749475`, 0}, { 0.85065080835204, 0, -1.3763819204711736`}, {-0.9510565162951535, -1.3090169943749475`, 0}, {-0.9510565162951535, 1.3090169943749475`, 0}, {-1.5388417685876268`, -0.5, 0}, {-1.5388417685876268`, 0.5, 0}, {1.5388417685876268`, -0.5, 0}, { 1.5388417685876268`, 0.5, 0}, {-0.85065080835204, 0, 1.3763819204711736`}, {-1.1135163644116066`, -0.8090169943749475, 0.85065080835204}, {-1.1135163644116066`, 0.8090169943749475, 0.85065080835204}, {-0.42532540417602, -1.3090169943749475`, \ -0.85065080835204}, {-0.42532540417602, 1.3090169943749475`, -0.85065080835204}, {-0.2628655560595668, \ -0.8090169943749475, 1.3763819204711736`}, {-0.2628655560595668, 0.8090169943749475, 1.3763819204711736`}}], {5, 7, 29}], Polygon3DBox[ NCache[{{0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), 0}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {-(1 + 2 5^Rational[-1, 2])^ Rational[1, 2], 0, Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {(1 + 2 5^Rational[-1, 2])^Rational[1, 2], 0, (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, {(Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2], 0, -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2], 0}, { Root[1 - 5 #^2 + 5 #^4& , 1, 0], 0, (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}}, {{0, -1.618033988749895, 0}, { 0, 1.618033988749895, 0}, { 0.2628655560595668, -0.8090169943749475, -1.3763819204711736`}, { 0.2628655560595668, 0.8090169943749475, -1.3763819204711736`}, { 0.42532540417601994`, -1.3090169943749475`, 0.85065080835204}, { 0.42532540417601994`, 1.3090169943749475`, 0.85065080835204}, { 0.6881909602355868, -0.5, 1.3763819204711736`}, {0.6881909602355868, 0.5, 1.3763819204711736`}, { 1.1135163644116066`, -0.8090169943749475, -0.85065080835204}, { 1.1135163644116066`, 0.8090169943749475, -0.85065080835204}, {-1.3763819204711736`, 0, -0.85065080835204}, {-0.6881909602355868, -0.5, \ -1.3763819204711736`}, {-0.6881909602355868, 0.5, -1.3763819204711736`}, { 1.3763819204711736`, 0, 0.85065080835204}, { 0.9510565162951535, -1.3090169943749475`, 0}, { 0.9510565162951535, 1.3090169943749475`, 0}, { 0.85065080835204, 0, -1.3763819204711736`}, {-0.9510565162951535, -1.3090169943749475`, 0}, {-0.9510565162951535, 1.3090169943749475`, 0}, {-1.5388417685876268`, -0.5, 0}, {-1.5388417685876268`, 0.5, 0}, {1.5388417685876268`, -0.5, 0}, { 1.5388417685876268`, 0.5, 0}, {-0.85065080835204, 0, 1.3763819204711736`}, {-1.1135163644116066`, -0.8090169943749475, 0.85065080835204}, {-1.1135163644116066`, 0.8090169943749475, 0.85065080835204}, {-0.42532540417602, -1.3090169943749475`, \ -0.85065080835204}, {-0.42532540417602, 1.3090169943749475`, -0.85065080835204}, {-0.2628655560595668, \ -0.8090169943749475, 1.3763819204711736`}, {-0.2628655560595668, 0.8090169943749475, 1.3763819204711736`}}], {14, 8, 7}], Polygon3DBox[ NCache[{{0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), 0}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {-(1 + 2 5^Rational[-1, 2])^ Rational[1, 2], 0, Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {(1 + 2 5^Rational[-1, 2])^Rational[1, 2], 0, (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, {(Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2], 0, -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2], 0}, { Root[1 - 5 #^2 + 5 #^4& , 1, 0], 0, (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}}, {{0, -1.618033988749895, 0}, { 0, 1.618033988749895, 0}, { 0.2628655560595668, -0.8090169943749475, -1.3763819204711736`}, { 0.2628655560595668, 0.8090169943749475, -1.3763819204711736`}, { 0.42532540417601994`, -1.3090169943749475`, 0.85065080835204}, { 0.42532540417601994`, 1.3090169943749475`, 0.85065080835204}, { 0.6881909602355868, -0.5, 1.3763819204711736`}, {0.6881909602355868, 0.5, 1.3763819204711736`}, { 1.1135163644116066`, -0.8090169943749475, -0.85065080835204}, { 1.1135163644116066`, 0.8090169943749475, -0.85065080835204}, {-1.3763819204711736`, 0, -0.85065080835204}, {-0.6881909602355868, -0.5, \ -1.3763819204711736`}, {-0.6881909602355868, 0.5, -1.3763819204711736`}, { 1.3763819204711736`, 0, 0.85065080835204}, { 0.9510565162951535, -1.3090169943749475`, 0}, { 0.9510565162951535, 1.3090169943749475`, 0}, { 0.85065080835204, 0, -1.3763819204711736`}, {-0.9510565162951535, -1.3090169943749475`, 0}, {-0.9510565162951535, 1.3090169943749475`, 0}, {-1.5388417685876268`, -0.5, 0}, {-1.5388417685876268`, 0.5, 0}, {1.5388417685876268`, -0.5, 0}, { 1.5388417685876268`, 0.5, 0}, {-0.85065080835204, 0, 1.3763819204711736`}, {-1.1135163644116066`, -0.8090169943749475, 0.85065080835204}, {-1.1135163644116066`, 0.8090169943749475, 0.85065080835204}, {-0.42532540417602, -1.3090169943749475`, \ -0.85065080835204}, {-0.42532540417602, 1.3090169943749475`, -0.85065080835204}, {-0.2628655560595668, \ -0.8090169943749475, 1.3763819204711736`}, {-0.2628655560595668, 0.8090169943749475, 1.3763819204711736`}}], {6, 30, 8}], Polygon3DBox[ NCache[{{0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), 0}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {-(1 + 2 5^Rational[-1, 2])^ Rational[1, 2], 0, Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {(1 + 2 5^Rational[-1, 2])^Rational[1, 2], 0, (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, {(Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2], 0, -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2], 0}, { Root[1 - 5 #^2 + 5 #^4& , 1, 0], 0, (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}}, {{0, -1.618033988749895, 0}, { 0, 1.618033988749895, 0}, { 0.2628655560595668, -0.8090169943749475, -1.3763819204711736`}, { 0.2628655560595668, 0.8090169943749475, -1.3763819204711736`}, { 0.42532540417601994`, -1.3090169943749475`, 0.85065080835204}, { 0.42532540417601994`, 1.3090169943749475`, 0.85065080835204}, { 0.6881909602355868, -0.5, 1.3763819204711736`}, {0.6881909602355868, 0.5, 1.3763819204711736`}, { 1.1135163644116066`, -0.8090169943749475, -0.85065080835204}, { 1.1135163644116066`, 0.8090169943749475, -0.85065080835204}, {-1.3763819204711736`, 0, -0.85065080835204}, {-0.6881909602355868, -0.5, \ -1.3763819204711736`}, {-0.6881909602355868, 0.5, -1.3763819204711736`}, { 1.3763819204711736`, 0, 0.85065080835204}, { 0.9510565162951535, -1.3090169943749475`, 0}, { 0.9510565162951535, 1.3090169943749475`, 0}, { 0.85065080835204, 0, -1.3763819204711736`}, {-0.9510565162951535, -1.3090169943749475`, 0}, {-0.9510565162951535, 1.3090169943749475`, 0}, {-1.5388417685876268`, -0.5, 0}, {-1.5388417685876268`, 0.5, 0}, {1.5388417685876268`, -0.5, 0}, { 1.5388417685876268`, 0.5, 0}, {-0.85065080835204, 0, 1.3763819204711736`}, {-1.1135163644116066`, -0.8090169943749475, 0.85065080835204}, {-1.1135163644116066`, 0.8090169943749475, 0.85065080835204}, {-0.42532540417602, -1.3090169943749475`, \ -0.85065080835204}, {-0.42532540417602, 1.3090169943749475`, -0.85065080835204}, {-0.2628655560595668, \ -0.8090169943749475, 1.3763819204711736`}, {-0.2628655560595668, 0.8090169943749475, 1.3763819204711736`}}], {16, 2, 6}], Polygon3DBox[ NCache[{{0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), 0}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {-(1 + 2 5^Rational[-1, 2])^ Rational[1, 2], 0, Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {(1 + 2 5^Rational[-1, 2])^Rational[1, 2], 0, (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, {(Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2], 0, -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2], 0}, { Root[1 - 5 #^2 + 5 #^4& , 1, 0], 0, (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}}, {{0, -1.618033988749895, 0}, { 0, 1.618033988749895, 0}, { 0.2628655560595668, -0.8090169943749475, -1.3763819204711736`}, { 0.2628655560595668, 0.8090169943749475, -1.3763819204711736`}, { 0.42532540417601994`, -1.3090169943749475`, 0.85065080835204}, { 0.42532540417601994`, 1.3090169943749475`, 0.85065080835204}, { 0.6881909602355868, -0.5, 1.3763819204711736`}, {0.6881909602355868, 0.5, 1.3763819204711736`}, { 1.1135163644116066`, -0.8090169943749475, -0.85065080835204}, { 1.1135163644116066`, 0.8090169943749475, -0.85065080835204}, {-1.3763819204711736`, 0, -0.85065080835204}, {-0.6881909602355868, -0.5, \ -1.3763819204711736`}, {-0.6881909602355868, 0.5, -1.3763819204711736`}, { 1.3763819204711736`, 0, 0.85065080835204}, { 0.9510565162951535, -1.3090169943749475`, 0}, { 0.9510565162951535, 1.3090169943749475`, 0}, { 0.85065080835204, 0, -1.3763819204711736`}, {-0.9510565162951535, -1.3090169943749475`, 0}, {-0.9510565162951535, 1.3090169943749475`, 0}, {-1.5388417685876268`, -0.5, 0}, {-1.5388417685876268`, 0.5, 0}, {1.5388417685876268`, -0.5, 0}, { 1.5388417685876268`, 0.5, 0}, {-0.85065080835204, 0, 1.3763819204711736`}, {-1.1135163644116066`, -0.8090169943749475, 0.85065080835204}, {-1.1135163644116066`, 0.8090169943749475, 0.85065080835204}, {-0.42532540417602, -1.3090169943749475`, \ -0.85065080835204}, {-0.42532540417602, 1.3090169943749475`, -0.85065080835204}, {-0.2628655560595668, \ -0.8090169943749475, 1.3763819204711736`}, {-0.2628655560595668, 0.8090169943749475, 1.3763819204711736`}}], {19, 21, 26}], Polygon3DBox[ NCache[{{0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), 0}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {-(1 + 2 5^Rational[-1, 2])^ Rational[1, 2], 0, Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {(1 + 2 5^Rational[-1, 2])^Rational[1, 2], 0, (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, {(Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2], 0, -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2], 0}, { Root[1 - 5 #^2 + 5 #^4& , 1, 0], 0, (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}}, {{0, -1.618033988749895, 0}, { 0, 1.618033988749895, 0}, { 0.2628655560595668, -0.8090169943749475, -1.3763819204711736`}, { 0.2628655560595668, 0.8090169943749475, -1.3763819204711736`}, { 0.42532540417601994`, -1.3090169943749475`, 0.85065080835204}, { 0.42532540417601994`, 1.3090169943749475`, 0.85065080835204}, { 0.6881909602355868, -0.5, 1.3763819204711736`}, {0.6881909602355868, 0.5, 1.3763819204711736`}, { 1.1135163644116066`, -0.8090169943749475, -0.85065080835204}, { 1.1135163644116066`, 0.8090169943749475, -0.85065080835204}, {-1.3763819204711736`, 0, -0.85065080835204}, {-0.6881909602355868, -0.5, \ -1.3763819204711736`}, {-0.6881909602355868, 0.5, -1.3763819204711736`}, { 1.3763819204711736`, 0, 0.85065080835204}, { 0.9510565162951535, -1.3090169943749475`, 0}, { 0.9510565162951535, 1.3090169943749475`, 0}, { 0.85065080835204, 0, -1.3763819204711736`}, {-0.9510565162951535, -1.3090169943749475`, 0}, {-0.9510565162951535, 1.3090169943749475`, 0}, {-1.5388417685876268`, -0.5, 0}, {-1.5388417685876268`, 0.5, 0}, {1.5388417685876268`, -0.5, 0}, { 1.5388417685876268`, 0.5, 0}, {-0.85065080835204, 0, 1.3763819204711736`}, {-1.1135163644116066`, -0.8090169943749475, 0.85065080835204}, {-1.1135163644116066`, 0.8090169943749475, 0.85065080835204}, {-0.42532540417602, -1.3090169943749475`, \ -0.85065080835204}, {-0.42532540417602, 1.3090169943749475`, -0.85065080835204}, {-0.2628655560595668, \ -0.8090169943749475, 1.3763819204711736`}, {-0.2628655560595668, 0.8090169943749475, 1.3763819204711736`}}], {20, 18, 25}], Polygon3DBox[ NCache[{{0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), 0}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {-(1 + 2 5^Rational[-1, 2])^ Rational[1, 2], 0, Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {(1 + 2 5^Rational[-1, 2])^Rational[1, 2], 0, (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, {(Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2], 0, -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2], 0}, { Root[1 - 5 #^2 + 5 #^4& , 1, 0], 0, (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}}, {{0, -1.618033988749895, 0}, { 0, 1.618033988749895, 0}, { 0.2628655560595668, -0.8090169943749475, -1.3763819204711736`}, { 0.2628655560595668, 0.8090169943749475, -1.3763819204711736`}, { 0.42532540417601994`, -1.3090169943749475`, 0.85065080835204}, { 0.42532540417601994`, 1.3090169943749475`, 0.85065080835204}, { 0.6881909602355868, -0.5, 1.3763819204711736`}, {0.6881909602355868, 0.5, 1.3763819204711736`}, { 1.1135163644116066`, -0.8090169943749475, -0.85065080835204}, { 1.1135163644116066`, 0.8090169943749475, -0.85065080835204}, {-1.3763819204711736`, 0, -0.85065080835204}, {-0.6881909602355868, -0.5, \ -1.3763819204711736`}, {-0.6881909602355868, 0.5, -1.3763819204711736`}, { 1.3763819204711736`, 0, 0.85065080835204}, { 0.9510565162951535, -1.3090169943749475`, 0}, { 0.9510565162951535, 1.3090169943749475`, 0}, { 0.85065080835204, 0, -1.3763819204711736`}, {-0.9510565162951535, -1.3090169943749475`, 0}, {-0.9510565162951535, 1.3090169943749475`, 0}, {-1.5388417685876268`, -0.5, 0}, {-1.5388417685876268`, 0.5, 0}, {1.5388417685876268`, -0.5, 0}, { 1.5388417685876268`, 0.5, 0}, {-0.85065080835204, 0, 1.3763819204711736`}, {-1.1135163644116066`, -0.8090169943749475, 0.85065080835204}, {-1.1135163644116066`, 0.8090169943749475, 0.85065080835204}, {-0.42532540417602, -1.3090169943749475`, \ -0.85065080835204}, {-0.42532540417602, 1.3090169943749475`, -0.85065080835204}, {-0.2628655560595668, \ -0.8090169943749475, 1.3763819204711736`}, {-0.2628655560595668, 0.8090169943749475, 1.3763819204711736`}}], {1, 15, 5}], Polygon3DBox[ NCache[{{0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), 0}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {-(1 + 2 5^Rational[-1, 2])^ Rational[1, 2], 0, Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {(1 + 2 5^Rational[-1, 2])^Rational[1, 2], 0, (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, {(Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2], 0, -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2], 0}, { Root[1 - 5 #^2 + 5 #^4& , 1, 0], 0, (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}}, {{0, -1.618033988749895, 0}, { 0, 1.618033988749895, 0}, { 0.2628655560595668, -0.8090169943749475, -1.3763819204711736`}, { 0.2628655560595668, 0.8090169943749475, -1.3763819204711736`}, { 0.42532540417601994`, -1.3090169943749475`, 0.85065080835204}, { 0.42532540417601994`, 1.3090169943749475`, 0.85065080835204}, { 0.6881909602355868, -0.5, 1.3763819204711736`}, {0.6881909602355868, 0.5, 1.3763819204711736`}, { 1.1135163644116066`, -0.8090169943749475, -0.85065080835204}, { 1.1135163644116066`, 0.8090169943749475, -0.85065080835204}, {-1.3763819204711736`, 0, -0.85065080835204}, {-0.6881909602355868, -0.5, \ -1.3763819204711736`}, {-0.6881909602355868, 0.5, -1.3763819204711736`}, { 1.3763819204711736`, 0, 0.85065080835204}, { 0.9510565162951535, -1.3090169943749475`, 0}, { 0.9510565162951535, 1.3090169943749475`, 0}, { 0.85065080835204, 0, -1.3763819204711736`}, {-0.9510565162951535, -1.3090169943749475`, 0}, {-0.9510565162951535, 1.3090169943749475`, 0}, {-1.5388417685876268`, -0.5, 0}, {-1.5388417685876268`, 0.5, 0}, {1.5388417685876268`, -0.5, 0}, { 1.5388417685876268`, 0.5, 0}, {-0.85065080835204, 0, 1.3763819204711736`}, {-1.1135163644116066`, -0.8090169943749475, 0.85065080835204}, {-1.1135163644116066`, 0.8090169943749475, 0.85065080835204}, {-0.42532540417602, -1.3090169943749475`, \ -0.85065080835204}, {-0.42532540417602, 1.3090169943749475`, -0.85065080835204}, {-0.2628655560595668, \ -0.8090169943749475, 1.3763819204711736`}, {-0.2628655560595668, 0.8090169943749475, 1.3763819204711736`}}], {22, 23, 14}], Polygon3DBox[ NCache[{{0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), 0}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {-(1 + 2 5^Rational[-1, 2])^ Rational[1, 2], 0, Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {(1 + 2 5^Rational[-1, 2])^Rational[1, 2], 0, (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, {(Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2], 0, -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2], 0}, { Root[1 - 5 #^2 + 5 #^4& , 1, 0], 0, (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}}, {{0, -1.618033988749895, 0}, { 0, 1.618033988749895, 0}, { 0.2628655560595668, -0.8090169943749475, -1.3763819204711736`}, { 0.2628655560595668, 0.8090169943749475, -1.3763819204711736`}, { 0.42532540417601994`, -1.3090169943749475`, 0.85065080835204}, { 0.42532540417601994`, 1.3090169943749475`, 0.85065080835204}, { 0.6881909602355868, -0.5, 1.3763819204711736`}, {0.6881909602355868, 0.5, 1.3763819204711736`}, { 1.1135163644116066`, -0.8090169943749475, -0.85065080835204}, { 1.1135163644116066`, 0.8090169943749475, -0.85065080835204}, {-1.3763819204711736`, 0, -0.85065080835204}, {-0.6881909602355868, -0.5, \ -1.3763819204711736`}, {-0.6881909602355868, 0.5, -1.3763819204711736`}, { 1.3763819204711736`, 0, 0.85065080835204}, { 0.9510565162951535, -1.3090169943749475`, 0}, { 0.9510565162951535, 1.3090169943749475`, 0}, { 0.85065080835204, 0, -1.3763819204711736`}, {-0.9510565162951535, -1.3090169943749475`, 0}, {-0.9510565162951535, 1.3090169943749475`, 0}, {-1.5388417685876268`, -0.5, 0}, {-1.5388417685876268`, 0.5, 0}, {1.5388417685876268`, -0.5, 0}, { 1.5388417685876268`, 0.5, 0}, {-0.85065080835204, 0, 1.3763819204711736`}, {-1.1135163644116066`, -0.8090169943749475, 0.85065080835204}, {-1.1135163644116066`, 0.8090169943749475, 0.85065080835204}, {-0.42532540417602, -1.3090169943749475`, \ -0.85065080835204}, {-0.42532540417602, 1.3090169943749475`, -0.85065080835204}, {-0.2628655560595668, \ -0.8090169943749475, 1.3763819204711736`}, {-0.2628655560595668, 0.8090169943749475, 1.3763819204711736`}}], {2, 19, 26, 30, 6}], Polygon3DBox[ NCache[{{0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), 0}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {-(1 + 2 5^Rational[-1, 2])^ Rational[1, 2], 0, Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {(1 + 2 5^Rational[-1, 2])^Rational[1, 2], 0, (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, {(Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2], 0, -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2], 0}, { Root[1 - 5 #^2 + 5 #^4& , 1, 0], 0, (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}}, {{0, -1.618033988749895, 0}, { 0, 1.618033988749895, 0}, { 0.2628655560595668, -0.8090169943749475, -1.3763819204711736`}, { 0.2628655560595668, 0.8090169943749475, -1.3763819204711736`}, { 0.42532540417601994`, -1.3090169943749475`, 0.85065080835204}, { 0.42532540417601994`, 1.3090169943749475`, 0.85065080835204}, { 0.6881909602355868, -0.5, 1.3763819204711736`}, {0.6881909602355868, 0.5, 1.3763819204711736`}, { 1.1135163644116066`, -0.8090169943749475, -0.85065080835204}, { 1.1135163644116066`, 0.8090169943749475, -0.85065080835204}, {-1.3763819204711736`, 0, -0.85065080835204}, {-0.6881909602355868, -0.5, \ -1.3763819204711736`}, {-0.6881909602355868, 0.5, -1.3763819204711736`}, { 1.3763819204711736`, 0, 0.85065080835204}, { 0.9510565162951535, -1.3090169943749475`, 0}, { 0.9510565162951535, 1.3090169943749475`, 0}, { 0.85065080835204, 0, -1.3763819204711736`}, {-0.9510565162951535, -1.3090169943749475`, 0}, {-0.9510565162951535, 1.3090169943749475`, 0}, {-1.5388417685876268`, -0.5, 0}, {-1.5388417685876268`, 0.5, 0}, {1.5388417685876268`, -0.5, 0}, { 1.5388417685876268`, 0.5, 0}, {-0.85065080835204, 0, 1.3763819204711736`}, {-1.1135163644116066`, -0.8090169943749475, 0.85065080835204}, {-1.1135163644116066`, 0.8090169943749475, 0.85065080835204}, {-0.42532540417602, -1.3090169943749475`, \ -0.85065080835204}, {-0.42532540417602, 1.3090169943749475`, -0.85065080835204}, {-0.2628655560595668, \ -0.8090169943749475, 1.3763819204711736`}, {-0.2628655560595668, 0.8090169943749475, 1.3763819204711736`}}], {21, 20, 25, 24, 26}], Polygon3DBox[ NCache[{{0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), 0}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {-(1 + 2 5^Rational[-1, 2])^ Rational[1, 2], 0, Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {(1 + 2 5^Rational[-1, 2])^Rational[1, 2], 0, (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, {(Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2], 0, -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2], 0}, { Root[1 - 5 #^2 + 5 #^4& , 1, 0], 0, (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}}, {{0, -1.618033988749895, 0}, { 0, 1.618033988749895, 0}, { 0.2628655560595668, -0.8090169943749475, -1.3763819204711736`}, { 0.2628655560595668, 0.8090169943749475, -1.3763819204711736`}, { 0.42532540417601994`, -1.3090169943749475`, 0.85065080835204}, { 0.42532540417601994`, 1.3090169943749475`, 0.85065080835204}, { 0.6881909602355868, -0.5, 1.3763819204711736`}, {0.6881909602355868, 0.5, 1.3763819204711736`}, { 1.1135163644116066`, -0.8090169943749475, -0.85065080835204}, { 1.1135163644116066`, 0.8090169943749475, -0.85065080835204}, {-1.3763819204711736`, 0, -0.85065080835204}, {-0.6881909602355868, -0.5, \ -1.3763819204711736`}, {-0.6881909602355868, 0.5, -1.3763819204711736`}, { 1.3763819204711736`, 0, 0.85065080835204}, { 0.9510565162951535, -1.3090169943749475`, 0}, { 0.9510565162951535, 1.3090169943749475`, 0}, { 0.85065080835204, 0, -1.3763819204711736`}, {-0.9510565162951535, -1.3090169943749475`, 0}, {-0.9510565162951535, 1.3090169943749475`, 0}, {-1.5388417685876268`, -0.5, 0}, {-1.5388417685876268`, 0.5, 0}, {1.5388417685876268`, -0.5, 0}, { 1.5388417685876268`, 0.5, 0}, {-0.85065080835204, 0, 1.3763819204711736`}, {-1.1135163644116066`, -0.8090169943749475, 0.85065080835204}, {-1.1135163644116066`, 0.8090169943749475, 0.85065080835204}, {-0.42532540417602, -1.3090169943749475`, \ -0.85065080835204}, {-0.42532540417602, 1.3090169943749475`, -0.85065080835204}, {-0.2628655560595668, \ -0.8090169943749475, 1.3763819204711736`}, {-0.2628655560595668, 0.8090169943749475, 1.3763819204711736`}}], {18, 1, 5, 29, 25}], Polygon3DBox[ NCache[{{0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), 0}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {-(1 + 2 5^Rational[-1, 2])^ Rational[1, 2], 0, Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {(1 + 2 5^Rational[-1, 2])^Rational[1, 2], 0, (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, {(Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2], 0, -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2], 0}, { Root[1 - 5 #^2 + 5 #^4& , 1, 0], 0, (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}}, {{0, -1.618033988749895, 0}, { 0, 1.618033988749895, 0}, { 0.2628655560595668, -0.8090169943749475, -1.3763819204711736`}, { 0.2628655560595668, 0.8090169943749475, -1.3763819204711736`}, { 0.42532540417601994`, -1.3090169943749475`, 0.85065080835204}, { 0.42532540417601994`, 1.3090169943749475`, 0.85065080835204}, { 0.6881909602355868, -0.5, 1.3763819204711736`}, {0.6881909602355868, 0.5, 1.3763819204711736`}, { 1.1135163644116066`, -0.8090169943749475, -0.85065080835204}, { 1.1135163644116066`, 0.8090169943749475, -0.85065080835204}, {-1.3763819204711736`, 0, -0.85065080835204}, {-0.6881909602355868, -0.5, \ -1.3763819204711736`}, {-0.6881909602355868, 0.5, -1.3763819204711736`}, { 1.3763819204711736`, 0, 0.85065080835204}, { 0.9510565162951535, -1.3090169943749475`, 0}, { 0.9510565162951535, 1.3090169943749475`, 0}, { 0.85065080835204, 0, -1.3763819204711736`}, {-0.9510565162951535, -1.3090169943749475`, 0}, {-0.9510565162951535, 1.3090169943749475`, 0}, {-1.5388417685876268`, -0.5, 0}, {-1.5388417685876268`, 0.5, 0}, {1.5388417685876268`, -0.5, 0}, { 1.5388417685876268`, 0.5, 0}, {-0.85065080835204, 0, 1.3763819204711736`}, {-1.1135163644116066`, -0.8090169943749475, 0.85065080835204}, {-1.1135163644116066`, 0.8090169943749475, 0.85065080835204}, {-0.42532540417602, -1.3090169943749475`, \ -0.85065080835204}, {-0.42532540417602, 1.3090169943749475`, -0.85065080835204}, {-0.2628655560595668, \ -0.8090169943749475, 1.3763819204711736`}, {-0.2628655560595668, 0.8090169943749475, 1.3763819204711736`}}], {15, 22, 14, 7, 5}], Polygon3DBox[ NCache[{{0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), 0}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {-(1 + 2 5^Rational[-1, 2])^ Rational[1, 2], 0, Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {(1 + 2 5^Rational[-1, 2])^Rational[1, 2], 0, (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, {(Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2], 0, -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2], 0}, { Root[1 - 5 #^2 + 5 #^4& , 1, 0], 0, (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}}, {{0, -1.618033988749895, 0}, { 0, 1.618033988749895, 0}, { 0.2628655560595668, -0.8090169943749475, -1.3763819204711736`}, { 0.2628655560595668, 0.8090169943749475, -1.3763819204711736`}, { 0.42532540417601994`, -1.3090169943749475`, 0.85065080835204}, { 0.42532540417601994`, 1.3090169943749475`, 0.85065080835204}, { 0.6881909602355868, -0.5, 1.3763819204711736`}, {0.6881909602355868, 0.5, 1.3763819204711736`}, { 1.1135163644116066`, -0.8090169943749475, -0.85065080835204}, { 1.1135163644116066`, 0.8090169943749475, -0.85065080835204}, {-1.3763819204711736`, 0, -0.85065080835204}, {-0.6881909602355868, -0.5, \ -1.3763819204711736`}, {-0.6881909602355868, 0.5, -1.3763819204711736`}, { 1.3763819204711736`, 0, 0.85065080835204}, { 0.9510565162951535, -1.3090169943749475`, 0}, { 0.9510565162951535, 1.3090169943749475`, 0}, { 0.85065080835204, 0, -1.3763819204711736`}, {-0.9510565162951535, -1.3090169943749475`, 0}, {-0.9510565162951535, 1.3090169943749475`, 0}, {-1.5388417685876268`, -0.5, 0}, {-1.5388417685876268`, 0.5, 0}, {1.5388417685876268`, -0.5, 0}, { 1.5388417685876268`, 0.5, 0}, {-0.85065080835204, 0, 1.3763819204711736`}, {-1.1135163644116066`, -0.8090169943749475, 0.85065080835204}, {-1.1135163644116066`, 0.8090169943749475, 0.85065080835204}, {-0.42532540417602, -1.3090169943749475`, \ -0.85065080835204}, {-0.42532540417602, 1.3090169943749475`, -0.85065080835204}, {-0.2628655560595668, \ -0.8090169943749475, 1.3763819204711736`}, {-0.2628655560595668, 0.8090169943749475, 1.3763819204711736`}}], {23, 16, 6, 8, 14}], Polygon3DBox[ NCache[{{0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), 0}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {-(1 + 2 5^Rational[-1, 2])^ Rational[1, 2], 0, Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {(1 + 2 5^Rational[-1, 2])^Rational[1, 2], 0, (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, {(Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2], 0, -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2], 0}, { Root[1 - 5 #^2 + 5 #^4& , 1, 0], 0, (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}}, {{0, -1.618033988749895, 0}, { 0, 1.618033988749895, 0}, { 0.2628655560595668, -0.8090169943749475, -1.3763819204711736`}, { 0.2628655560595668, 0.8090169943749475, -1.3763819204711736`}, { 0.42532540417601994`, -1.3090169943749475`, 0.85065080835204}, { 0.42532540417601994`, 1.3090169943749475`, 0.85065080835204}, { 0.6881909602355868, -0.5, 1.3763819204711736`}, {0.6881909602355868, 0.5, 1.3763819204711736`}, { 1.1135163644116066`, -0.8090169943749475, -0.85065080835204}, { 1.1135163644116066`, 0.8090169943749475, -0.85065080835204}, {-1.3763819204711736`, 0, -0.85065080835204}, {-0.6881909602355868, -0.5, \ -1.3763819204711736`}, {-0.6881909602355868, 0.5, -1.3763819204711736`}, { 1.3763819204711736`, 0, 0.85065080835204}, { 0.9510565162951535, -1.3090169943749475`, 0}, { 0.9510565162951535, 1.3090169943749475`, 0}, { 0.85065080835204, 0, -1.3763819204711736`}, {-0.9510565162951535, -1.3090169943749475`, 0}, {-0.9510565162951535, 1.3090169943749475`, 0}, {-1.5388417685876268`, -0.5, 0}, {-1.5388417685876268`, 0.5, 0}, {1.5388417685876268`, -0.5, 0}, { 1.5388417685876268`, 0.5, 0}, {-0.85065080835204, 0, 1.3763819204711736`}, {-1.1135163644116066`, -0.8090169943749475, 0.85065080835204}, {-1.1135163644116066`, 0.8090169943749475, 0.85065080835204}, {-0.42532540417602, -1.3090169943749475`, \ -0.85065080835204}, {-0.42532540417602, 1.3090169943749475`, -0.85065080835204}, {-0.2628655560595668, \ -0.8090169943749475, 1.3763819204711736`}, {-0.2628655560595668, 0.8090169943749475, 1.3763819204711736`}}], {12, 13, 4, 17, 3}], Polygon3DBox[ NCache[{{0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), 0}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {-(1 + 2 5^Rational[-1, 2])^ Rational[1, 2], 0, Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {(1 + 2 5^Rational[-1, 2])^Rational[1, 2], 0, (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, {(Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2], 0, -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2], 0}, { Root[1 - 5 #^2 + 5 #^4& , 1, 0], 0, (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}}, {{0, -1.618033988749895, 0}, { 0, 1.618033988749895, 0}, { 0.2628655560595668, -0.8090169943749475, -1.3763819204711736`}, { 0.2628655560595668, 0.8090169943749475, -1.3763819204711736`}, { 0.42532540417601994`, -1.3090169943749475`, 0.85065080835204}, { 0.42532540417601994`, 1.3090169943749475`, 0.85065080835204}, { 0.6881909602355868, -0.5, 1.3763819204711736`}, {0.6881909602355868, 0.5, 1.3763819204711736`}, { 1.1135163644116066`, -0.8090169943749475, -0.85065080835204}, { 1.1135163644116066`, 0.8090169943749475, -0.85065080835204}, {-1.3763819204711736`, 0, -0.85065080835204}, {-0.6881909602355868, -0.5, \ -1.3763819204711736`}, {-0.6881909602355868, 0.5, -1.3763819204711736`}, { 1.3763819204711736`, 0, 0.85065080835204}, { 0.9510565162951535, -1.3090169943749475`, 0}, { 0.9510565162951535, 1.3090169943749475`, 0}, { 0.85065080835204, 0, -1.3763819204711736`}, {-0.9510565162951535, -1.3090169943749475`, 0}, {-0.9510565162951535, 1.3090169943749475`, 0}, {-1.5388417685876268`, -0.5, 0}, {-1.5388417685876268`, 0.5, 0}, {1.5388417685876268`, -0.5, 0}, { 1.5388417685876268`, 0.5, 0}, {-0.85065080835204, 0, 1.3763819204711736`}, {-1.1135163644116066`, -0.8090169943749475, 0.85065080835204}, {-1.1135163644116066`, 0.8090169943749475, 0.85065080835204}, {-0.42532540417602, -1.3090169943749475`, \ -0.85065080835204}, {-0.42532540417602, 1.3090169943749475`, -0.85065080835204}, {-0.2628655560595668, \ -0.8090169943749475, 1.3763819204711736`}, {-0.2628655560595668, 0.8090169943749475, 1.3763819204711736`}}], {3, 17, 9}], Polygon3DBox[ NCache[{{0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), 0}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {-(1 + 2 5^Rational[-1, 2])^ Rational[1, 2], 0, Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {(1 + 2 5^Rational[-1, 2])^Rational[1, 2], 0, (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, {(Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2], 0, -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2], 0}, { Root[1 - 5 #^2 + 5 #^4& , 1, 0], 0, (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}}, {{0, -1.618033988749895, 0}, { 0, 1.618033988749895, 0}, { 0.2628655560595668, -0.8090169943749475, -1.3763819204711736`}, { 0.2628655560595668, 0.8090169943749475, -1.3763819204711736`}, { 0.42532540417601994`, -1.3090169943749475`, 0.85065080835204}, { 0.42532540417601994`, 1.3090169943749475`, 0.85065080835204}, { 0.6881909602355868, -0.5, 1.3763819204711736`}, {0.6881909602355868, 0.5, 1.3763819204711736`}, { 1.1135163644116066`, -0.8090169943749475, -0.85065080835204}, { 1.1135163644116066`, 0.8090169943749475, -0.85065080835204}, {-1.3763819204711736`, 0, -0.85065080835204}, {-0.6881909602355868, -0.5, \ -1.3763819204711736`}, {-0.6881909602355868, 0.5, -1.3763819204711736`}, { 1.3763819204711736`, 0, 0.85065080835204}, { 0.9510565162951535, -1.3090169943749475`, 0}, { 0.9510565162951535, 1.3090169943749475`, 0}, { 0.85065080835204, 0, -1.3763819204711736`}, {-0.9510565162951535, -1.3090169943749475`, 0}, {-0.9510565162951535, 1.3090169943749475`, 0}, {-1.5388417685876268`, -0.5, 0}, {-1.5388417685876268`, 0.5, 0}, {1.5388417685876268`, -0.5, 0}, { 1.5388417685876268`, 0.5, 0}, {-0.85065080835204, 0, 1.3763819204711736`}, {-1.1135163644116066`, -0.8090169943749475, 0.85065080835204}, {-1.1135163644116066`, 0.8090169943749475, 0.85065080835204}, {-0.42532540417602, -1.3090169943749475`, \ -0.85065080835204}, {-0.42532540417602, 1.3090169943749475`, -0.85065080835204}, {-0.2628655560595668, \ -0.8090169943749475, 1.3763819204711736`}, {-0.2628655560595668, 0.8090169943749475, 1.3763819204711736`}}], {17, 4, 10}], Polygon3DBox[ NCache[{{0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), 0}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {-(1 + 2 5^Rational[-1, 2])^ Rational[1, 2], 0, Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {(1 + 2 5^Rational[-1, 2])^Rational[1, 2], 0, (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, {(Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2], 0, -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2], 0}, { Root[1 - 5 #^2 + 5 #^4& , 1, 0], 0, (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}}, {{0, -1.618033988749895, 0}, { 0, 1.618033988749895, 0}, { 0.2628655560595668, -0.8090169943749475, -1.3763819204711736`}, { 0.2628655560595668, 0.8090169943749475, -1.3763819204711736`}, { 0.42532540417601994`, -1.3090169943749475`, 0.85065080835204}, { 0.42532540417601994`, 1.3090169943749475`, 0.85065080835204}, { 0.6881909602355868, -0.5, 1.3763819204711736`}, {0.6881909602355868, 0.5, 1.3763819204711736`}, { 1.1135163644116066`, -0.8090169943749475, -0.85065080835204}, { 1.1135163644116066`, 0.8090169943749475, -0.85065080835204}, {-1.3763819204711736`, 0, -0.85065080835204}, {-0.6881909602355868, -0.5, \ -1.3763819204711736`}, {-0.6881909602355868, 0.5, -1.3763819204711736`}, { 1.3763819204711736`, 0, 0.85065080835204}, { 0.9510565162951535, -1.3090169943749475`, 0}, { 0.9510565162951535, 1.3090169943749475`, 0}, { 0.85065080835204, 0, -1.3763819204711736`}, {-0.9510565162951535, -1.3090169943749475`, 0}, {-0.9510565162951535, 1.3090169943749475`, 0}, {-1.5388417685876268`, -0.5, 0}, {-1.5388417685876268`, 0.5, 0}, {1.5388417685876268`, -0.5, 0}, { 1.5388417685876268`, 0.5, 0}, {-0.85065080835204, 0, 1.3763819204711736`}, {-1.1135163644116066`, -0.8090169943749475, 0.85065080835204}, {-1.1135163644116066`, 0.8090169943749475, 0.85065080835204}, {-0.42532540417602, -1.3090169943749475`, \ -0.85065080835204}, {-0.42532540417602, 1.3090169943749475`, -0.85065080835204}, {-0.2628655560595668, \ -0.8090169943749475, 1.3763819204711736`}, {-0.2628655560595668, 0.8090169943749475, 1.3763819204711736`}}], {4, 13, 28}], Polygon3DBox[ NCache[{{0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), 0}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {-(1 + 2 5^Rational[-1, 2])^ Rational[1, 2], 0, Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {(1 + 2 5^Rational[-1, 2])^Rational[1, 2], 0, (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, {(Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2], 0, -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2], 0}, { Root[1 - 5 #^2 + 5 #^4& , 1, 0], 0, (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}}, {{0, -1.618033988749895, 0}, { 0, 1.618033988749895, 0}, { 0.2628655560595668, -0.8090169943749475, -1.3763819204711736`}, { 0.2628655560595668, 0.8090169943749475, -1.3763819204711736`}, { 0.42532540417601994`, -1.3090169943749475`, 0.85065080835204}, { 0.42532540417601994`, 1.3090169943749475`, 0.85065080835204}, { 0.6881909602355868, -0.5, 1.3763819204711736`}, {0.6881909602355868, 0.5, 1.3763819204711736`}, { 1.1135163644116066`, -0.8090169943749475, -0.85065080835204}, { 1.1135163644116066`, 0.8090169943749475, -0.85065080835204}, {-1.3763819204711736`, 0, -0.85065080835204}, {-0.6881909602355868, -0.5, \ -1.3763819204711736`}, {-0.6881909602355868, 0.5, -1.3763819204711736`}, { 1.3763819204711736`, 0, 0.85065080835204}, { 0.9510565162951535, -1.3090169943749475`, 0}, { 0.9510565162951535, 1.3090169943749475`, 0}, { 0.85065080835204, 0, -1.3763819204711736`}, {-0.9510565162951535, -1.3090169943749475`, 0}, {-0.9510565162951535, 1.3090169943749475`, 0}, {-1.5388417685876268`, -0.5, 0}, {-1.5388417685876268`, 0.5, 0}, {1.5388417685876268`, -0.5, 0}, { 1.5388417685876268`, 0.5, 0}, {-0.85065080835204, 0, 1.3763819204711736`}, {-1.1135163644116066`, -0.8090169943749475, 0.85065080835204}, {-1.1135163644116066`, 0.8090169943749475, 0.85065080835204}, {-0.42532540417602, -1.3090169943749475`, \ -0.85065080835204}, {-0.42532540417602, 1.3090169943749475`, -0.85065080835204}, {-0.2628655560595668, \ -0.8090169943749475, 1.3763819204711736`}, {-0.2628655560595668, 0.8090169943749475, 1.3763819204711736`}}], {13, 12, 11}], Polygon3DBox[ NCache[{{0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), 0}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {-(1 + 2 5^Rational[-1, 2])^ Rational[1, 2], 0, Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {(1 + 2 5^Rational[-1, 2])^Rational[1, 2], 0, (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, {(Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2], 0, -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2], 0}, { Root[1 - 5 #^2 + 5 #^4& , 1, 0], 0, (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}}, {{0, -1.618033988749895, 0}, { 0, 1.618033988749895, 0}, { 0.2628655560595668, -0.8090169943749475, -1.3763819204711736`}, { 0.2628655560595668, 0.8090169943749475, -1.3763819204711736`}, { 0.42532540417601994`, -1.3090169943749475`, 0.85065080835204}, { 0.42532540417601994`, 1.3090169943749475`, 0.85065080835204}, { 0.6881909602355868, -0.5, 1.3763819204711736`}, {0.6881909602355868, 0.5, 1.3763819204711736`}, { 1.1135163644116066`, -0.8090169943749475, -0.85065080835204}, { 1.1135163644116066`, 0.8090169943749475, -0.85065080835204}, {-1.3763819204711736`, 0, -0.85065080835204}, {-0.6881909602355868, -0.5, \ -1.3763819204711736`}, {-0.6881909602355868, 0.5, -1.3763819204711736`}, { 1.3763819204711736`, 0, 0.85065080835204}, { 0.9510565162951535, -1.3090169943749475`, 0}, { 0.9510565162951535, 1.3090169943749475`, 0}, { 0.85065080835204, 0, -1.3763819204711736`}, {-0.9510565162951535, -1.3090169943749475`, 0}, {-0.9510565162951535, 1.3090169943749475`, 0}, {-1.5388417685876268`, -0.5, 0}, {-1.5388417685876268`, 0.5, 0}, {1.5388417685876268`, -0.5, 0}, { 1.5388417685876268`, 0.5, 0}, {-0.85065080835204, 0, 1.3763819204711736`}, {-1.1135163644116066`, -0.8090169943749475, 0.85065080835204}, {-1.1135163644116066`, 0.8090169943749475, 0.85065080835204}, {-0.42532540417602, -1.3090169943749475`, \ -0.85065080835204}, {-0.42532540417602, 1.3090169943749475`, -0.85065080835204}, {-0.2628655560595668, \ -0.8090169943749475, 1.3763819204711736`}, {-0.2628655560595668, 0.8090169943749475, 1.3763819204711736`}}], {12, 3, 27}], Polygon3DBox[ NCache[{{0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), 0}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {-(1 + 2 5^Rational[-1, 2])^ Rational[1, 2], 0, Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {(1 + 2 5^Rational[-1, 2])^Rational[1, 2], 0, (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, {(Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2], 0, -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2], 0}, { Root[1 - 5 #^2 + 5 #^4& , 1, 0], 0, (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}}, {{0, -1.618033988749895, 0}, { 0, 1.618033988749895, 0}, { 0.2628655560595668, -0.8090169943749475, -1.3763819204711736`}, { 0.2628655560595668, 0.8090169943749475, -1.3763819204711736`}, { 0.42532540417601994`, -1.3090169943749475`, 0.85065080835204}, { 0.42532540417601994`, 1.3090169943749475`, 0.85065080835204}, { 0.6881909602355868, -0.5, 1.3763819204711736`}, {0.6881909602355868, 0.5, 1.3763819204711736`}, { 1.1135163644116066`, -0.8090169943749475, -0.85065080835204}, { 1.1135163644116066`, 0.8090169943749475, -0.85065080835204}, {-1.3763819204711736`, 0, -0.85065080835204}, {-0.6881909602355868, -0.5, \ -1.3763819204711736`}, {-0.6881909602355868, 0.5, -1.3763819204711736`}, { 1.3763819204711736`, 0, 0.85065080835204}, { 0.9510565162951535, -1.3090169943749475`, 0}, { 0.9510565162951535, 1.3090169943749475`, 0}, { 0.85065080835204, 0, -1.3763819204711736`}, {-0.9510565162951535, -1.3090169943749475`, 0}, {-0.9510565162951535, 1.3090169943749475`, 0}, {-1.5388417685876268`, -0.5, 0}, {-1.5388417685876268`, 0.5, 0}, {1.5388417685876268`, -0.5, 0}, { 1.5388417685876268`, 0.5, 0}, {-0.85065080835204, 0, 1.3763819204711736`}, {-1.1135163644116066`, -0.8090169943749475, 0.85065080835204}, {-1.1135163644116066`, 0.8090169943749475, 0.85065080835204}, {-0.42532540417602, -1.3090169943749475`, \ -0.85065080835204}, {-0.42532540417602, 1.3090169943749475`, -0.85065080835204}, {-0.2628655560595668, \ -0.8090169943749475, 1.3763819204711736`}, {-0.2628655560595668, 0.8090169943749475, 1.3763819204711736`}}], {27, 1, 18}], Polygon3DBox[ NCache[{{0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), 0}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {-(1 + 2 5^Rational[-1, 2])^ Rational[1, 2], 0, Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {(1 + 2 5^Rational[-1, 2])^Rational[1, 2], 0, (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, {(Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2], 0, -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2], 0}, { Root[1 - 5 #^2 + 5 #^4& , 1, 0], 0, (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}}, {{0, -1.618033988749895, 0}, { 0, 1.618033988749895, 0}, { 0.2628655560595668, -0.8090169943749475, -1.3763819204711736`}, { 0.2628655560595668, 0.8090169943749475, -1.3763819204711736`}, { 0.42532540417601994`, -1.3090169943749475`, 0.85065080835204}, { 0.42532540417601994`, 1.3090169943749475`, 0.85065080835204}, { 0.6881909602355868, -0.5, 1.3763819204711736`}, {0.6881909602355868, 0.5, 1.3763819204711736`}, { 1.1135163644116066`, -0.8090169943749475, -0.85065080835204}, { 1.1135163644116066`, 0.8090169943749475, -0.85065080835204}, {-1.3763819204711736`, 0, -0.85065080835204}, {-0.6881909602355868, -0.5, \ -1.3763819204711736`}, {-0.6881909602355868, 0.5, -1.3763819204711736`}, { 1.3763819204711736`, 0, 0.85065080835204}, { 0.9510565162951535, -1.3090169943749475`, 0}, { 0.9510565162951535, 1.3090169943749475`, 0}, { 0.85065080835204, 0, -1.3763819204711736`}, {-0.9510565162951535, -1.3090169943749475`, 0}, {-0.9510565162951535, 1.3090169943749475`, 0}, {-1.5388417685876268`, -0.5, 0}, {-1.5388417685876268`, 0.5, 0}, {1.5388417685876268`, -0.5, 0}, { 1.5388417685876268`, 0.5, 0}, {-0.85065080835204, 0, 1.3763819204711736`}, {-1.1135163644116066`, -0.8090169943749475, 0.85065080835204}, {-1.1135163644116066`, 0.8090169943749475, 0.85065080835204}, {-0.42532540417602, -1.3090169943749475`, \ -0.85065080835204}, {-0.42532540417602, 1.3090169943749475`, -0.85065080835204}, {-0.2628655560595668, \ -0.8090169943749475, 1.3763819204711736`}, {-0.2628655560595668, 0.8090169943749475, 1.3763819204711736`}}], {9, 22, 15}], Polygon3DBox[ NCache[{{0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), 0}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {-(1 + 2 5^Rational[-1, 2])^ Rational[1, 2], 0, Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {(1 + 2 5^Rational[-1, 2])^Rational[1, 2], 0, (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, {(Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2], 0, -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2], 0}, { Root[1 - 5 #^2 + 5 #^4& , 1, 0], 0, (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}}, {{0, -1.618033988749895, 0}, { 0, 1.618033988749895, 0}, { 0.2628655560595668, -0.8090169943749475, -1.3763819204711736`}, { 0.2628655560595668, 0.8090169943749475, -1.3763819204711736`}, { 0.42532540417601994`, -1.3090169943749475`, 0.85065080835204}, { 0.42532540417601994`, 1.3090169943749475`, 0.85065080835204}, { 0.6881909602355868, -0.5, 1.3763819204711736`}, {0.6881909602355868, 0.5, 1.3763819204711736`}, { 1.1135163644116066`, -0.8090169943749475, -0.85065080835204}, { 1.1135163644116066`, 0.8090169943749475, -0.85065080835204}, {-1.3763819204711736`, 0, -0.85065080835204}, {-0.6881909602355868, -0.5, \ -1.3763819204711736`}, {-0.6881909602355868, 0.5, -1.3763819204711736`}, { 1.3763819204711736`, 0, 0.85065080835204}, { 0.9510565162951535, -1.3090169943749475`, 0}, { 0.9510565162951535, 1.3090169943749475`, 0}, { 0.85065080835204, 0, -1.3763819204711736`}, {-0.9510565162951535, -1.3090169943749475`, 0}, {-0.9510565162951535, 1.3090169943749475`, 0}, {-1.5388417685876268`, -0.5, 0}, {-1.5388417685876268`, 0.5, 0}, {1.5388417685876268`, -0.5, 0}, { 1.5388417685876268`, 0.5, 0}, {-0.85065080835204, 0, 1.3763819204711736`}, {-1.1135163644116066`, -0.8090169943749475, 0.85065080835204}, {-1.1135163644116066`, 0.8090169943749475, 0.85065080835204}, {-0.42532540417602, -1.3090169943749475`, \ -0.85065080835204}, {-0.42532540417602, 1.3090169943749475`, -0.85065080835204}, {-0.2628655560595668, \ -0.8090169943749475, 1.3763819204711736`}, {-0.2628655560595668, 0.8090169943749475, 1.3763819204711736`}}], {10, 16, 23}], Polygon3DBox[ NCache[{{0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), 0}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {-(1 + 2 5^Rational[-1, 2])^ Rational[1, 2], 0, Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {(1 + 2 5^Rational[-1, 2])^Rational[1, 2], 0, (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, {(Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2], 0, -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2], 0}, { Root[1 - 5 #^2 + 5 #^4& , 1, 0], 0, (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}}, {{0, -1.618033988749895, 0}, { 0, 1.618033988749895, 0}, { 0.2628655560595668, -0.8090169943749475, -1.3763819204711736`}, { 0.2628655560595668, 0.8090169943749475, -1.3763819204711736`}, { 0.42532540417601994`, -1.3090169943749475`, 0.85065080835204}, { 0.42532540417601994`, 1.3090169943749475`, 0.85065080835204}, { 0.6881909602355868, -0.5, 1.3763819204711736`}, {0.6881909602355868, 0.5, 1.3763819204711736`}, { 1.1135163644116066`, -0.8090169943749475, -0.85065080835204}, { 1.1135163644116066`, 0.8090169943749475, -0.85065080835204}, {-1.3763819204711736`, 0, -0.85065080835204}, {-0.6881909602355868, -0.5, \ -1.3763819204711736`}, {-0.6881909602355868, 0.5, -1.3763819204711736`}, { 1.3763819204711736`, 0, 0.85065080835204}, { 0.9510565162951535, -1.3090169943749475`, 0}, { 0.9510565162951535, 1.3090169943749475`, 0}, { 0.85065080835204, 0, -1.3763819204711736`}, {-0.9510565162951535, -1.3090169943749475`, 0}, {-0.9510565162951535, 1.3090169943749475`, 0}, {-1.5388417685876268`, -0.5, 0}, {-1.5388417685876268`, 0.5, 0}, {1.5388417685876268`, -0.5, 0}, { 1.5388417685876268`, 0.5, 0}, {-0.85065080835204, 0, 1.3763819204711736`}, {-1.1135163644116066`, -0.8090169943749475, 0.85065080835204}, {-1.1135163644116066`, 0.8090169943749475, 0.85065080835204}, {-0.42532540417602, -1.3090169943749475`, \ -0.85065080835204}, {-0.42532540417602, 1.3090169943749475`, -0.85065080835204}, {-0.2628655560595668, \ -0.8090169943749475, 1.3763819204711736`}, {-0.2628655560595668, 0.8090169943749475, 1.3763819204711736`}}], {28, 19, 2}], Polygon3DBox[ NCache[{{0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), 0}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {-(1 + 2 5^Rational[-1, 2])^ Rational[1, 2], 0, Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {(1 + 2 5^Rational[-1, 2])^Rational[1, 2], 0, (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, {(Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2], 0, -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2], 0}, { Root[1 - 5 #^2 + 5 #^4& , 1, 0], 0, (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}}, {{0, -1.618033988749895, 0}, { 0, 1.618033988749895, 0}, { 0.2628655560595668, -0.8090169943749475, -1.3763819204711736`}, { 0.2628655560595668, 0.8090169943749475, -1.3763819204711736`}, { 0.42532540417601994`, -1.3090169943749475`, 0.85065080835204}, { 0.42532540417601994`, 1.3090169943749475`, 0.85065080835204}, { 0.6881909602355868, -0.5, 1.3763819204711736`}, {0.6881909602355868, 0.5, 1.3763819204711736`}, { 1.1135163644116066`, -0.8090169943749475, -0.85065080835204}, { 1.1135163644116066`, 0.8090169943749475, -0.85065080835204}, {-1.3763819204711736`, 0, -0.85065080835204}, {-0.6881909602355868, -0.5, \ -1.3763819204711736`}, {-0.6881909602355868, 0.5, -1.3763819204711736`}, { 1.3763819204711736`, 0, 0.85065080835204}, { 0.9510565162951535, -1.3090169943749475`, 0}, { 0.9510565162951535, 1.3090169943749475`, 0}, { 0.85065080835204, 0, -1.3763819204711736`}, {-0.9510565162951535, -1.3090169943749475`, 0}, {-0.9510565162951535, 1.3090169943749475`, 0}, {-1.5388417685876268`, -0.5, 0}, {-1.5388417685876268`, 0.5, 0}, {1.5388417685876268`, -0.5, 0}, { 1.5388417685876268`, 0.5, 0}, {-0.85065080835204, 0, 1.3763819204711736`}, {-1.1135163644116066`, -0.8090169943749475, 0.85065080835204}, {-1.1135163644116066`, 0.8090169943749475, 0.85065080835204}, {-0.42532540417602, -1.3090169943749475`, \ -0.85065080835204}, {-0.42532540417602, 1.3090169943749475`, -0.85065080835204}, {-0.2628655560595668, \ -0.8090169943749475, 1.3763819204711736`}, {-0.2628655560595668, 0.8090169943749475, 1.3763819204711736`}}], {11, 20, 21}], Polygon3DBox[ NCache[{{0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), 0}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {-(1 + 2 5^Rational[-1, 2])^ Rational[1, 2], 0, Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {(1 + 2 5^Rational[-1, 2])^Rational[1, 2], 0, (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, {(Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2], 0, -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2], 0}, { Root[1 - 5 #^2 + 5 #^4& , 1, 0], 0, (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}}, {{0, -1.618033988749895, 0}, { 0, 1.618033988749895, 0}, { 0.2628655560595668, -0.8090169943749475, -1.3763819204711736`}, { 0.2628655560595668, 0.8090169943749475, -1.3763819204711736`}, { 0.42532540417601994`, -1.3090169943749475`, 0.85065080835204}, { 0.42532540417601994`, 1.3090169943749475`, 0.85065080835204}, { 0.6881909602355868, -0.5, 1.3763819204711736`}, {0.6881909602355868, 0.5, 1.3763819204711736`}, { 1.1135163644116066`, -0.8090169943749475, -0.85065080835204}, { 1.1135163644116066`, 0.8090169943749475, -0.85065080835204}, {-1.3763819204711736`, 0, -0.85065080835204}, {-0.6881909602355868, -0.5, \ -1.3763819204711736`}, {-0.6881909602355868, 0.5, -1.3763819204711736`}, { 1.3763819204711736`, 0, 0.85065080835204}, { 0.9510565162951535, -1.3090169943749475`, 0}, { 0.9510565162951535, 1.3090169943749475`, 0}, { 0.85065080835204, 0, -1.3763819204711736`}, {-0.9510565162951535, -1.3090169943749475`, 0}, {-0.9510565162951535, 1.3090169943749475`, 0}, {-1.5388417685876268`, -0.5, 0}, {-1.5388417685876268`, 0.5, 0}, {1.5388417685876268`, -0.5, 0}, { 1.5388417685876268`, 0.5, 0}, {-0.85065080835204, 0, 1.3763819204711736`}, {-1.1135163644116066`, -0.8090169943749475, 0.85065080835204}, {-1.1135163644116066`, 0.8090169943749475, 0.85065080835204}, {-0.42532540417602, -1.3090169943749475`, \ -0.85065080835204}, {-0.42532540417602, 1.3090169943749475`, -0.85065080835204}, {-0.2628655560595668, \ -0.8090169943749475, 1.3763819204711736`}, {-0.2628655560595668, 0.8090169943749475, 1.3763819204711736`}}], {27, 3, 9, 15, 1}], Polygon3DBox[ NCache[{{0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), 0}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {-(1 + 2 5^Rational[-1, 2])^ Rational[1, 2], 0, Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {(1 + 2 5^Rational[-1, 2])^Rational[1, 2], 0, (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, {(Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2], 0, -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2], 0}, { Root[1 - 5 #^2 + 5 #^4& , 1, 0], 0, (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}}, {{0, -1.618033988749895, 0}, { 0, 1.618033988749895, 0}, { 0.2628655560595668, -0.8090169943749475, -1.3763819204711736`}, { 0.2628655560595668, 0.8090169943749475, -1.3763819204711736`}, { 0.42532540417601994`, -1.3090169943749475`, 0.85065080835204}, { 0.42532540417601994`, 1.3090169943749475`, 0.85065080835204}, { 0.6881909602355868, -0.5, 1.3763819204711736`}, {0.6881909602355868, 0.5, 1.3763819204711736`}, { 1.1135163644116066`, -0.8090169943749475, -0.85065080835204}, { 1.1135163644116066`, 0.8090169943749475, -0.85065080835204}, {-1.3763819204711736`, 0, -0.85065080835204}, {-0.6881909602355868, -0.5, \ -1.3763819204711736`}, {-0.6881909602355868, 0.5, -1.3763819204711736`}, { 1.3763819204711736`, 0, 0.85065080835204}, { 0.9510565162951535, -1.3090169943749475`, 0}, { 0.9510565162951535, 1.3090169943749475`, 0}, { 0.85065080835204, 0, -1.3763819204711736`}, {-0.9510565162951535, -1.3090169943749475`, 0}, {-0.9510565162951535, 1.3090169943749475`, 0}, {-1.5388417685876268`, -0.5, 0}, {-1.5388417685876268`, 0.5, 0}, {1.5388417685876268`, -0.5, 0}, { 1.5388417685876268`, 0.5, 0}, {-0.85065080835204, 0, 1.3763819204711736`}, {-1.1135163644116066`, -0.8090169943749475, 0.85065080835204}, {-1.1135163644116066`, 0.8090169943749475, 0.85065080835204}, {-0.42532540417602, -1.3090169943749475`, \ -0.85065080835204}, {-0.42532540417602, 1.3090169943749475`, -0.85065080835204}, {-0.2628655560595668, \ -0.8090169943749475, 1.3763819204711736`}, {-0.2628655560595668, 0.8090169943749475, 1.3763819204711736`}}], {9, 17, 10, 23, 22}], Polygon3DBox[ NCache[{{0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), 0}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {-(1 + 2 5^Rational[-1, 2])^ Rational[1, 2], 0, Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {(1 + 2 5^Rational[-1, 2])^Rational[1, 2], 0, (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, {(Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2], 0, -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2], 0}, { Root[1 - 5 #^2 + 5 #^4& , 1, 0], 0, (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}}, {{0, -1.618033988749895, 0}, { 0, 1.618033988749895, 0}, { 0.2628655560595668, -0.8090169943749475, -1.3763819204711736`}, { 0.2628655560595668, 0.8090169943749475, -1.3763819204711736`}, { 0.42532540417601994`, -1.3090169943749475`, 0.85065080835204}, { 0.42532540417601994`, 1.3090169943749475`, 0.85065080835204}, { 0.6881909602355868, -0.5, 1.3763819204711736`}, {0.6881909602355868, 0.5, 1.3763819204711736`}, { 1.1135163644116066`, -0.8090169943749475, -0.85065080835204}, { 1.1135163644116066`, 0.8090169943749475, -0.85065080835204}, {-1.3763819204711736`, 0, -0.85065080835204}, {-0.6881909602355868, -0.5, \ -1.3763819204711736`}, {-0.6881909602355868, 0.5, -1.3763819204711736`}, { 1.3763819204711736`, 0, 0.85065080835204}, { 0.9510565162951535, -1.3090169943749475`, 0}, { 0.9510565162951535, 1.3090169943749475`, 0}, { 0.85065080835204, 0, -1.3763819204711736`}, {-0.9510565162951535, -1.3090169943749475`, 0}, {-0.9510565162951535, 1.3090169943749475`, 0}, {-1.5388417685876268`, -0.5, 0}, {-1.5388417685876268`, 0.5, 0}, {1.5388417685876268`, -0.5, 0}, { 1.5388417685876268`, 0.5, 0}, {-0.85065080835204, 0, 1.3763819204711736`}, {-1.1135163644116066`, -0.8090169943749475, 0.85065080835204}, {-1.1135163644116066`, 0.8090169943749475, 0.85065080835204}, {-0.42532540417602, -1.3090169943749475`, \ -0.85065080835204}, {-0.42532540417602, 1.3090169943749475`, -0.85065080835204}, {-0.2628655560595668, \ -0.8090169943749475, 1.3763819204711736`}, {-0.2628655560595668, 0.8090169943749475, 1.3763819204711736`}}], {10, 4, 28, 2, 16}], Polygon3DBox[ NCache[{{0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), 0}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {-(1 + 2 5^Rational[-1, 2])^ Rational[1, 2], 0, Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {(1 + 2 5^Rational[-1, 2])^Rational[1, 2], 0, (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, {(Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2], 0, -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2], 0}, { Root[1 - 5 #^2 + 5 #^4& , 1, 0], 0, (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}}, {{0, -1.618033988749895, 0}, { 0, 1.618033988749895, 0}, { 0.2628655560595668, -0.8090169943749475, -1.3763819204711736`}, { 0.2628655560595668, 0.8090169943749475, -1.3763819204711736`}, { 0.42532540417601994`, -1.3090169943749475`, 0.85065080835204}, { 0.42532540417601994`, 1.3090169943749475`, 0.85065080835204}, { 0.6881909602355868, -0.5, 1.3763819204711736`}, {0.6881909602355868, 0.5, 1.3763819204711736`}, { 1.1135163644116066`, -0.8090169943749475, -0.85065080835204}, { 1.1135163644116066`, 0.8090169943749475, -0.85065080835204}, {-1.3763819204711736`, 0, -0.85065080835204}, {-0.6881909602355868, -0.5, \ -1.3763819204711736`}, {-0.6881909602355868, 0.5, -1.3763819204711736`}, { 1.3763819204711736`, 0, 0.85065080835204}, { 0.9510565162951535, -1.3090169943749475`, 0}, { 0.9510565162951535, 1.3090169943749475`, 0}, { 0.85065080835204, 0, -1.3763819204711736`}, {-0.9510565162951535, -1.3090169943749475`, 0}, {-0.9510565162951535, 1.3090169943749475`, 0}, {-1.5388417685876268`, -0.5, 0}, {-1.5388417685876268`, 0.5, 0}, {1.5388417685876268`, -0.5, 0}, { 1.5388417685876268`, 0.5, 0}, {-0.85065080835204, 0, 1.3763819204711736`}, {-1.1135163644116066`, -0.8090169943749475, 0.85065080835204}, {-1.1135163644116066`, 0.8090169943749475, 0.85065080835204}, {-0.42532540417602, -1.3090169943749475`, \ -0.85065080835204}, {-0.42532540417602, 1.3090169943749475`, -0.85065080835204}, {-0.2628655560595668, \ -0.8090169943749475, 1.3763819204711736`}, {-0.2628655560595668, 0.8090169943749475, 1.3763819204711736`}}], {28, 13, 11, 21, 19}], Polygon3DBox[ NCache[{{0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), 0}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {-(1 + 2 5^Rational[-1, 2])^ Rational[1, 2], 0, Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {(1 + 2 5^Rational[-1, 2])^Rational[1, 2], 0, (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, {(Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2], 0, -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2], 0}, { Root[1 - 5 #^2 + 5 #^4& , 1, 0], 0, (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}}, {{0, -1.618033988749895, 0}, { 0, 1.618033988749895, 0}, { 0.2628655560595668, -0.8090169943749475, -1.3763819204711736`}, { 0.2628655560595668, 0.8090169943749475, -1.3763819204711736`}, { 0.42532540417601994`, -1.3090169943749475`, 0.85065080835204}, { 0.42532540417601994`, 1.3090169943749475`, 0.85065080835204}, { 0.6881909602355868, -0.5, 1.3763819204711736`}, {0.6881909602355868, 0.5, 1.3763819204711736`}, { 1.1135163644116066`, -0.8090169943749475, -0.85065080835204}, { 1.1135163644116066`, 0.8090169943749475, -0.85065080835204}, {-1.3763819204711736`, 0, -0.85065080835204}, {-0.6881909602355868, -0.5, \ -1.3763819204711736`}, {-0.6881909602355868, 0.5, -1.3763819204711736`}, { 1.3763819204711736`, 0, 0.85065080835204}, { 0.9510565162951535, -1.3090169943749475`, 0}, { 0.9510565162951535, 1.3090169943749475`, 0}, { 0.85065080835204, 0, -1.3763819204711736`}, {-0.9510565162951535, -1.3090169943749475`, 0}, {-0.9510565162951535, 1.3090169943749475`, 0}, {-1.5388417685876268`, -0.5, 0}, {-1.5388417685876268`, 0.5, 0}, {1.5388417685876268`, -0.5, 0}, { 1.5388417685876268`, 0.5, 0}, {-0.85065080835204, 0, 1.3763819204711736`}, {-1.1135163644116066`, -0.8090169943749475, 0.85065080835204}, {-1.1135163644116066`, 0.8090169943749475, 0.85065080835204}, {-0.42532540417602, -1.3090169943749475`, \ -0.85065080835204}, {-0.42532540417602, 1.3090169943749475`, -0.85065080835204}, {-0.2628655560595668, \ -0.8090169943749475, 1.3763819204711736`}, {-0.2628655560595668, 0.8090169943749475, 1.3763819204711736`}}], {11, 12, 27, 18, 20}]}, Boxed->False]}], "}"}]], "Output", CellLabel-> "Out[222]=",ExpressionUUID->"a40105a1-27cf-400f-9f27-901931eb2b99"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["Bulatov", "Subsection",ExpressionUUID->"268bddb8-9cc8-4d20-8892-f3c650420981"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"BulatovUniformName", "[", RowBox[{"UniformPolyhedronIndex", "[", RowBox[{"stdname", ",", "\"\\""}], "]"}], "]"}]], "Input", CellLabel-> "In[223]:=",ExpressionUUID->"ffc0ac3c-0b13-49f6-a87b-e28bdedea3cb"], Cell[BoxData["\<\"icosidodecahedron\"\>"], "Output", CellLabel-> "Out[223]=",ExpressionUUID->"5d657577-bd12-465f-8508-2086ca49da19"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"BulatovUniformGraphics3D", "[", RowBox[{ RowBox[{"UniformPolyhedronIndex", "[", RowBox[{"stdname", ",", "\"\\""}], "]"}], ",", RowBox[{"Boxed", "\[Rule]", "False"}]}], "]"}]], "Input", CellLabel-> "In[224]:=",ExpressionUUID->"eeb960fe-8c78-42f5-9c72-9db2def1c21b"], Cell[BoxData[ Graphics3DBox[{ {RGBColor[0.8, 0.31, 0.28], Polygon3DBox[CompressedData[" 1:eJxTTMoPSmViYGCQA2JmIBYLez5vPfMlm6f/QeC9PYx/B8y/v3/Sl+mzyx+/ tDd7qW/+/tjl/afQxD0g4vbvIOL2hMRh5kD5+6Og6mD2QfXtZwCDBzB9+2H6 0M3rhMrD7IPpm43mDqj59mj2wc2JQtMPs3c2mjzU/v1LoPJCqO6Fuu/9flg4 MqABmDhMHbo8VBzmfnh4wPy9Fi0cYeLfofrQzVuCGg5wd0pDaVj45UDl66D0 HTR/qkD9zwnVtwQ1XmDhBhOHhdd+tPCCq5uNaq+9NGq87UcLb/ttqO7YP1t7 Ydvslm97vqOE96c9AGkorDM= "], {3, 2, 1}]}, {RGBColor[0.27, 0.79, 0.42], Polygon3DBox[CompressedData[" 1:eJxTTMoPSmViYGCQA2JmIBYLez5vPfMlm6f/QeC9PYx/B8y/v3/Sl+mzyx+/ tDd7qW/+/tjl/afQxD0g4vbvIOL2hMRh5kD5+6Og6mD2QfXtZwCDBzB9+2H6 0M3rhMrD7IPpm43mDqj59mj2wc2JQtMPs3c2mjzU/v1LoPJCqO6Fuu/9flg4 MqABmDhMHbo8VBzmfnh4wPy9Fi0cYeLfofrQzVuCGg5wd0pDaVj45UDl66D0 HTR/qkD9zwnVtwQ1XmDhBhOHhdd+tPCCq5uNaq+9NGq87UcLb/ttqO7YP1t7 Ydvslm97vqOE96c9AGkorDM= "], {4, 11, 8, 3, 1}]}, {RGBColor[0.8, 0.31, 0.28], Polygon3DBox[CompressedData[" 1:eJxTTMoPSmViYGCQA2JmIBYLez5vPfMlm6f/QeC9PYx/B8y/v3/Sl+mzyx+/ tDd7qW/+/tjl/afQxD0g4vbvIOL2hMRh5kD5+6Og6mD2QfXtZwCDBzB9+2H6 0M3rhMrD7IPpm43mDqj59mj2wc2JQtMPs3c2mjzU/v1LoPJCqO6Fuu/9flg4 MqABmDhMHbo8VBzmfnh4wPy9Fi0cYeLfofrQzVuCGg5wd0pDaVj45UDl66D0 HTR/qkD9zwnVtwQ1XmDhBhOHhdd+tPCCq5uNaq+9NGq87UcLb/ttqO7YP1t7 Ydvslm97vqOE96c9AGkorDM= "], {5, 4, 1}]}, {RGBColor[0.27, 0.79, 0.42], Polygon3DBox[CompressedData[" 1:eJxTTMoPSmViYGCQA2JmIBYLez5vPfMlm6f/QeC9PYx/B8y/v3/Sl+mzyx+/ tDd7qW/+/tjl/afQxD0g4vbvIOL2hMRh5kD5+6Og6mD2QfXtZwCDBzB9+2H6 0M3rhMrD7IPpm43mDqj59mj2wc2JQtMPs3c2mjzU/v1LoPJCqO6Fuu/9flg4 MqABmDhMHbo8VBzmfnh4wPy9Fi0cYeLfofrQzVuCGg5wd0pDaVj45UDl66D0 HTR/qkD9zwnVtwQ1XmDhBhOHhdd+tPCCq5uNaq+9NGq87UcLb/ttqO7YP1t7 Ydvslm97vqOE96c9AGkorDM= "], {1, 2, 7, 12, 5}]}, {RGBColor[0.8, 0.31, 0.28], Polygon3DBox[CompressedData[" 1:eJxTTMoPSmViYGCQA2JmIBYLez5vPfMlm6f/QeC9PYx/B8y/v3/Sl+mzyx+/ tDd7qW/+/tjl/afQxD0g4vbvIOL2hMRh5kD5+6Og6mD2QfXtZwCDBzB9+2H6 0M3rhMrD7IPpm43mDqj59mj2wc2JQtMPs3c2mjzU/v1LoPJCqO6Fuu/9flg4 MqABmDhMHbo8VBzmfnh4wPy9Fi0cYeLfofrQzVuCGg5wd0pDaVj45UDl66D0 HTR/qkD9zwnVtwQ1XmDhBhOHhdd+tPCCq5uNaq+9NGq87UcLb/ttqO7YP1t7 Ydvslm97vqOE96c9AGkorDM= "], {2, 6, 7}]}, {RGBColor[0.27, 0.79, 0.42], Polygon3DBox[CompressedData[" 1:eJxTTMoPSmViYGCQA2JmIBYLez5vPfMlm6f/QeC9PYx/B8y/v3/Sl+mzyx+/ tDd7qW/+/tjl/afQxD0g4vbvIOL2hMRh5kD5+6Og6mD2QfXtZwCDBzB9+2H6 0M3rhMrD7IPpm43mDqj59mj2wc2JQtMPs3c2mjzU/v1LoPJCqO6Fuu/9flg4 MqABmDhMHbo8VBzmfnh4wPy9Fi0cYeLfofrQzVuCGg5wd0pDaVj45UDl66D0 HTR/qkD9zwnVtwQ1XmDhBhOHhdd+tPCCq5uNaq+9NGq87UcLb/ttqO7YP1t7 Ydvslm97vqOE96c9AGkorDM= "], {2, 3, 9, 15, 6}]}, {RGBColor[0.8, 0.31, 0.28], Polygon3DBox[CompressedData[" 1:eJxTTMoPSmViYGCQA2JmIBYLez5vPfMlm6f/QeC9PYx/B8y/v3/Sl+mzyx+/ tDd7qW/+/tjl/afQxD0g4vbvIOL2hMRh5kD5+6Og6mD2QfXtZwCDBzB9+2H6 0M3rhMrD7IPpm43mDqj59mj2wc2JQtMPs3c2mjzU/v1LoPJCqO6Fuu/9flg4 MqABmDhMHbo8VBzmfnh4wPy9Fi0cYeLfofrQzVuCGg5wd0pDaVj45UDl66D0 HTR/qkD9zwnVtwQ1XmDhBhOHhdd+tPCCq5uNaq+9NGq87UcLb/ttqO7YP1t7 Ydvslm97vqOE96c9AGkorDM= "], {3, 8, 9}]}, {RGBColor[0.8, 0.31, 0.28], Polygon3DBox[CompressedData[" 1:eJxTTMoPSmViYGCQA2JmIBYLez5vPfMlm6f/QeC9PYx/B8y/v3/Sl+mzyx+/ tDd7qW/+/tjl/afQxD0g4vbvIOL2hMRh5kD5+6Og6mD2QfXtZwCDBzB9+2H6 0M3rhMrD7IPpm43mDqj59mj2wc2JQtMPs3c2mjzU/v1LoPJCqO6Fuu/9flg4 MqABmDhMHbo8VBzmfnh4wPy9Fi0cYeLfofrQzVuCGg5wd0pDaVj45UDl66D0 HTR/qkD9zwnVtwQ1XmDhBhOHhdd+tPCCq5uNaq+9NGq87UcLb/ttqO7YP1t7 Ydvslm97vqOE96c9AGkorDM= "], {4, 10, 11}]}, {RGBColor[0.27, 0.79, 0.42], Polygon3DBox[CompressedData[" 1:eJxTTMoPSmViYGCQA2JmIBYLez5vPfMlm6f/QeC9PYx/B8y/v3/Sl+mzyx+/ tDd7qW/+/tjl/afQxD0g4vbvIOL2hMRh5kD5+6Og6mD2QfXtZwCDBzB9+2H6 0M3rhMrD7IPpm43mDqj59mj2wc2JQtMPs3c2mjzU/v1LoPJCqO6Fuu/9flg4 MqABmDhMHbo8VBzmfnh4wPy9Fi0cYeLfofrQzVuCGg5wd0pDaVj45UDl66D0 HTR/qkD9zwnVtwQ1XmDhBhOHhdd+tPCCq5uNaq+9NGq87UcLb/ttqO7YP1t7 Ydvslm97vqOE96c9AGkorDM= "], {4, 5, 13, 20, 10}]}, {RGBColor[0.8, 0.31, 0.28], Polygon3DBox[CompressedData[" 1:eJxTTMoPSmViYGCQA2JmIBYLez5vPfMlm6f/QeC9PYx/B8y/v3/Sl+mzyx+/ tDd7qW/+/tjl/afQxD0g4vbvIOL2hMRh5kD5+6Og6mD2QfXtZwCDBzB9+2H6 0M3rhMrD7IPpm43mDqj59mj2wc2JQtMPs3c2mjzU/v1LoPJCqO6Fuu/9flg4 MqABmDhMHbo8VBzmfnh4wPy9Fi0cYeLfofrQzVuCGg5wd0pDaVj45UDl66D0 HTR/qkD9zwnVtwQ1XmDhBhOHhdd+tPCCq5uNaq+9NGq87UcLb/ttqO7YP1t7 Ydvslm97vqOE96c9AGkorDM= "], {5, 12, 13}]}, {RGBColor[0.27, 0.79, 0.42], Polygon3DBox[CompressedData[" 1:eJxTTMoPSmViYGCQA2JmIBYLez5vPfMlm6f/QeC9PYx/B8y/v3/Sl+mzyx+/ tDd7qW/+/tjl/afQxD0g4vbvIOL2hMRh5kD5+6Og6mD2QfXtZwCDBzB9+2H6 0M3rhMrD7IPpm43mDqj59mj2wc2JQtMPs3c2mjzU/v1LoPJCqO6Fuu/9flg4 MqABmDhMHbo8VBzmfnh4wPy9Fi0cYeLfofrQzVuCGg5wd0pDaVj45UDl66D0 HTR/qkD9zwnVtwQ1XmDhBhOHhdd+tPCCq5uNaq+9NGq87UcLb/ttqO7YP1t7 Ydvslm97vqOE96c9AGkorDM= "], {14, 23, 16, 7, 6}]}, {RGBColor[0.8, 0.31, 0.28], Polygon3DBox[CompressedData[" 1:eJxTTMoPSmViYGCQA2JmIBYLez5vPfMlm6f/QeC9PYx/B8y/v3/Sl+mzyx+/ tDd7qW/+/tjl/afQxD0g4vbvIOL2hMRh5kD5+6Og6mD2QfXtZwCDBzB9+2H6 0M3rhMrD7IPpm43mDqj59mj2wc2JQtMPs3c2mjzU/v1LoPJCqO6Fuu/9flg4 MqABmDhMHbo8VBzmfnh4wPy9Fi0cYeLfofrQzVuCGg5wd0pDaVj45UDl66D0 HTR/qkD9zwnVtwQ1XmDhBhOHhdd+tPCCq5uNaq+9NGq87UcLb/ttqO7YP1t7 Ydvslm97vqOE96c9AGkorDM= "], {15, 14, 6}]}, {RGBColor[0.8, 0.31, 0.28], Polygon3DBox[CompressedData[" 1:eJxTTMoPSmViYGCQA2JmIBYLez5vPfMlm6f/QeC9PYx/B8y/v3/Sl+mzyx+/ tDd7qW/+/tjl/afQxD0g4vbvIOL2hMRh5kD5+6Og6mD2QfXtZwCDBzB9+2H6 0M3rhMrD7IPpm43mDqj59mj2wc2JQtMPs3c2mjzU/v1LoPJCqO6Fuu/9flg4 MqABmDhMHbo8VBzmfnh4wPy9Fi0cYeLfofrQzVuCGg5wd0pDaVj45UDl66D0 HTR/qkD9zwnVtwQ1XmDhBhOHhdd+tPCCq5uNaq+9NGq87UcLb/ttqO7YP1t7 Ydvslm97vqOE96c9AGkorDM= "], {16, 12, 7}]}, {RGBColor[0.27, 0.79, 0.42], Polygon3DBox[CompressedData[" 1:eJxTTMoPSmViYGCQA2JmIBYLez5vPfMlm6f/QeC9PYx/B8y/v3/Sl+mzyx+/ tDd7qW/+/tjl/afQxD0g4vbvIOL2hMRh5kD5+6Og6mD2QfXtZwCDBzB9+2H6 0M3rhMrD7IPpm43mDqj59mj2wc2JQtMPs3c2mjzU/v1LoPJCqO6Fuu/9flg4 MqABmDhMHbo8VBzmfnh4wPy9Fi0cYeLfofrQzVuCGg5wd0pDaVj45UDl66D0 HTR/qkD9zwnVtwQ1XmDhBhOHhdd+tPCCq5uNaq+9NGq87UcLb/ttqO7YP1t7 Ydvslm97vqOE96c9AGkorDM= "], {17, 26, 18, 9, 8}]}, {RGBColor[0.8, 0.31, 0.28], Polygon3DBox[CompressedData[" 1:eJxTTMoPSmViYGCQA2JmIBYLez5vPfMlm6f/QeC9PYx/B8y/v3/Sl+mzyx+/ tDd7qW/+/tjl/afQxD0g4vbvIOL2hMRh5kD5+6Og6mD2QfXtZwCDBzB9+2H6 0M3rhMrD7IPpm43mDqj59mj2wc2JQtMPs3c2mjzU/v1LoPJCqO6Fuu/9flg4 MqABmDhMHbo8VBzmfnh4wPy9Fi0cYeLfofrQzVuCGg5wd0pDaVj45UDl66D0 HTR/qkD9zwnVtwQ1XmDhBhOHhdd+tPCCq5uNaq+9NGq87UcLb/ttqO7YP1t7 Ydvslm97vqOE96c9AGkorDM= "], {8, 11, 17}]}, {RGBColor[0.8, 0.31, 0.28], Polygon3DBox[CompressedData[" 1:eJxTTMoPSmViYGCQA2JmIBYLez5vPfMlm6f/QeC9PYx/B8y/v3/Sl+mzyx+/ tDd7qW/+/tjl/afQxD0g4vbvIOL2hMRh5kD5+6Og6mD2QfXtZwCDBzB9+2H6 0M3rhMrD7IPpm43mDqj59mj2wc2JQtMPs3c2mjzU/v1LoPJCqO6Fuu/9flg4 MqABmDhMHbo8VBzmfnh4wPy9Fi0cYeLfofrQzVuCGg5wd0pDaVj45UDl66D0 HTR/qkD9zwnVtwQ1XmDhBhOHhdd+tPCCq5uNaq+9NGq87UcLb/ttqO7YP1t7 Ydvslm97vqOE96c9AGkorDM= "], {18, 15, 9}]}, {RGBColor[0.27, 0.79, 0.42], Polygon3DBox[CompressedData[" 1:eJxTTMoPSmViYGCQA2JmIBYLez5vPfMlm6f/QeC9PYx/B8y/v3/Sl+mzyx+/ tDd7qW/+/tjl/afQxD0g4vbvIOL2hMRh5kD5+6Og6mD2QfXtZwCDBzB9+2H6 0M3rhMrD7IPpm43mDqj59mj2wc2JQtMPs3c2mjzU/v1LoPJCqO6Fuu/9flg4 MqABmDhMHbo8VBzmfnh4wPy9Fi0cYeLfofrQzVuCGg5wd0pDaVj45UDl66D0 HTR/qkD9zwnVtwQ1XmDhBhOHhdd+tPCCq5uNaq+9NGq87UcLb/ttqO7YP1t7 Ydvslm97vqOE96c9AGkorDM= "], {19, 25, 17, 11, 10}]}, {RGBColor[0.8, 0.31, 0.28], Polygon3DBox[CompressedData[" 1:eJxTTMoPSmViYGCQA2JmIBYLez5vPfMlm6f/QeC9PYx/B8y/v3/Sl+mzyx+/ tDd7qW/+/tjl/afQxD0g4vbvIOL2hMRh5kD5+6Og6mD2QfXtZwCDBzB9+2H6 0M3rhMrD7IPpm43mDqj59mj2wc2JQtMPs3c2mjzU/v1LoPJCqO6Fuu/9flg4 MqABmDhMHbo8VBzmfnh4wPy9Fi0cYeLfofrQzVuCGg5wd0pDaVj45UDl66D0 HTR/qkD9zwnVtwQ1XmDhBhOHhdd+tPCCq5uNaq+9NGq87UcLb/ttqO7YP1t7 Ydvslm97vqOE96c9AGkorDM= "], {20, 19, 10}]}, {RGBColor[0.27, 0.79, 0.42], Polygon3DBox[CompressedData[" 1:eJxTTMoPSmViYGCQA2JmIBYLez5vPfMlm6f/QeC9PYx/B8y/v3/Sl+mzyx+/ tDd7qW/+/tjl/afQxD0g4vbvIOL2hMRh5kD5+6Og6mD2QfXtZwCDBzB9+2H6 0M3rhMrD7IPpm43mDqj59mj2wc2JQtMPs3c2mjzU/v1LoPJCqO6Fuu/9flg4 MqABmDhMHbo8VBzmfnh4wPy9Fi0cYeLfofrQzVuCGg5wd0pDaVj45UDl66D0 HTR/qkD9zwnVtwQ1XmDhBhOHhdd+tPCCq5uNaq+9NGq87UcLb/ttqO7YP1t7 Ydvslm97vqOE96c9AGkorDM= "], {16, 24, 21, 13, 12}]}, {RGBColor[0.8, 0.31, 0.28], Polygon3DBox[CompressedData[" 1:eJxTTMoPSmViYGCQA2JmIBYLez5vPfMlm6f/QeC9PYx/B8y/v3/Sl+mzyx+/ tDd7qW/+/tjl/afQxD0g4vbvIOL2hMRh5kD5+6Og6mD2QfXtZwCDBzB9+2H6 0M3rhMrD7IPpm43mDqj59mj2wc2JQtMPs3c2mjzU/v1LoPJCqO6Fuu/9flg4 MqABmDhMHbo8VBzmfnh4wPy9Fi0cYeLfofrQzVuCGg5wd0pDaVj45UDl66D0 HTR/qkD9zwnVtwQ1XmDhBhOHhdd+tPCCq5uNaq+9NGq87UcLb/ttqO7YP1t7 Ydvslm97vqOE96c9AGkorDM= "], {21, 20, 13}]}, {RGBColor[0.8, 0.31, 0.28], Polygon3DBox[CompressedData[" 1:eJxTTMoPSmViYGCQA2JmIBYLez5vPfMlm6f/QeC9PYx/B8y/v3/Sl+mzyx+/ tDd7qW/+/tjl/afQxD0g4vbvIOL2hMRh5kD5+6Og6mD2QfXtZwCDBzB9+2H6 0M3rhMrD7IPpm43mDqj59mj2wc2JQtMPs3c2mjzU/v1LoPJCqO6Fuu/9flg4 MqABmDhMHbo8VBzmfnh4wPy9Fi0cYeLfofrQzVuCGg5wd0pDaVj45UDl66D0 HTR/qkD9zwnVtwQ1XmDhBhOHhdd+tPCCq5uNaq+9NGq87UcLb/ttqO7YP1t7 Ydvslm97vqOE96c9AGkorDM= "], {14, 22, 23}]}, {RGBColor[0.27, 0.79, 0.42], Polygon3DBox[CompressedData[" 1:eJxTTMoPSmViYGCQA2JmIBYLez5vPfMlm6f/QeC9PYx/B8y/v3/Sl+mzyx+/ tDd7qW/+/tjl/afQxD0g4vbvIOL2hMRh5kD5+6Og6mD2QfXtZwCDBzB9+2H6 0M3rhMrD7IPpm43mDqj59mj2wc2JQtMPs3c2mjzU/v1LoPJCqO6Fuu/9flg4 MqABmDhMHbo8VBzmfnh4wPy9Fi0cYeLfofrQzVuCGg5wd0pDaVj45UDl66D0 HTR/qkD9zwnVtwQ1XmDhBhOHhdd+tPCCq5uNaq+9NGq87UcLb/ttqO7YP1t7 Ydvslm97vqOE96c9AGkorDM= "], {14, 15, 18, 27, 22}]}, {RGBColor[0.8, 0.31, 0.28], Polygon3DBox[CompressedData[" 1:eJxTTMoPSmViYGCQA2JmIBYLez5vPfMlm6f/QeC9PYx/B8y/v3/Sl+mzyx+/ tDd7qW/+/tjl/afQxD0g4vbvIOL2hMRh5kD5+6Og6mD2QfXtZwCDBzB9+2H6 0M3rhMrD7IPpm43mDqj59mj2wc2JQtMPs3c2mjzU/v1LoPJCqO6Fuu/9flg4 MqABmDhMHbo8VBzmfnh4wPy9Fi0cYeLfofrQzVuCGg5wd0pDaVj45UDl66D0 HTR/qkD9zwnVtwQ1XmDhBhOHhdd+tPCCq5uNaq+9NGq87UcLb/ttqO7YP1t7 Ydvslm97vqOE96c9AGkorDM= "], {16, 23, 24}]}, {RGBColor[0.8, 0.31, 0.28], Polygon3DBox[CompressedData[" 1:eJxTTMoPSmViYGCQA2JmIBYLez5vPfMlm6f/QeC9PYx/B8y/v3/Sl+mzyx+/ tDd7qW/+/tjl/afQxD0g4vbvIOL2hMRh5kD5+6Og6mD2QfXtZwCDBzB9+2H6 0M3rhMrD7IPpm43mDqj59mj2wc2JQtMPs3c2mjzU/v1LoPJCqO6Fuu/9flg4 MqABmDhMHbo8VBzmfnh4wPy9Fi0cYeLfofrQzVuCGg5wd0pDaVj45UDl66D0 HTR/qkD9zwnVtwQ1XmDhBhOHhdd+tPCCq5uNaq+9NGq87UcLb/ttqO7YP1t7 Ydvslm97vqOE96c9AGkorDM= "], {17, 25, 26}]}, {RGBColor[0.8, 0.31, 0.28], Polygon3DBox[CompressedData[" 1:eJxTTMoPSmViYGCQA2JmIBYLez5vPfMlm6f/QeC9PYx/B8y/v3/Sl+mzyx+/ tDd7qW/+/tjl/afQxD0g4vbvIOL2hMRh5kD5+6Og6mD2QfXtZwCDBzB9+2H6 0M3rhMrD7IPpm43mDqj59mj2wc2JQtMPs3c2mjzU/v1LoPJCqO6Fuu/9flg4 MqABmDhMHbo8VBzmfnh4wPy9Fi0cYeLfofrQzVuCGg5wd0pDaVj45UDl66D0 HTR/qkD9zwnVtwQ1XmDhBhOHhdd+tPCCq5uNaq+9NGq87UcLb/ttqO7YP1t7 Ydvslm97vqOE96c9AGkorDM= "], {18, 26, 27}]}, {RGBColor[0.8, 0.31, 0.28], Polygon3DBox[CompressedData[" 1:eJxTTMoPSmViYGCQA2JmIBYLez5vPfMlm6f/QeC9PYx/B8y/v3/Sl+mzyx+/ tDd7qW/+/tjl/afQxD0g4vbvIOL2hMRh5kD5+6Og6mD2QfXtZwCDBzB9+2H6 0M3rhMrD7IPpm43mDqj59mj2wc2JQtMPs3c2mjzU/v1LoPJCqO6Fuu/9flg4 MqABmDhMHbo8VBzmfnh4wPy9Fi0cYeLfofrQzVuCGg5wd0pDaVj45UDl66D0 HTR/qkD9zwnVtwQ1XmDhBhOHhdd+tPCCq5uNaq+9NGq87UcLb/ttqO7YP1t7 Ydvslm97vqOE96c9AGkorDM= "], {28, 25, 19}]}, {RGBColor[0.27, 0.79, 0.42], Polygon3DBox[CompressedData[" 1:eJxTTMoPSmViYGCQA2JmIBYLez5vPfMlm6f/QeC9PYx/B8y/v3/Sl+mzyx+/ tDd7qW/+/tjl/afQxD0g4vbvIOL2hMRh5kD5+6Og6mD2QfXtZwCDBzB9+2H6 0M3rhMrD7IPpm43mDqj59mj2wc2JQtMPs3c2mjzU/v1LoPJCqO6Fuu/9flg4 MqABmDhMHbo8VBzmfnh4wPy9Fi0cYeLfofrQzVuCGg5wd0pDaVj45UDl66D0 HTR/qkD9zwnVtwQ1XmDhBhOHhdd+tPCCq5uNaq+9NGq87UcLb/ttqO7YP1t7 Ydvslm97vqOE96c9AGkorDM= "], {19, 20, 21, 29, 28}]}, {RGBColor[0.8, 0.31, 0.28], Polygon3DBox[CompressedData[" 1:eJxTTMoPSmViYGCQA2JmIBYLez5vPfMlm6f/QeC9PYx/B8y/v3/Sl+mzyx+/ tDd7qW/+/tjl/afQxD0g4vbvIOL2hMRh5kD5+6Og6mD2QfXtZwCDBzB9+2H6 0M3rhMrD7IPpm43mDqj59mj2wc2JQtMPs3c2mjzU/v1LoPJCqO6Fuu/9flg4 MqABmDhMHbo8VBzmfnh4wPy9Fi0cYeLfofrQzVuCGg5wd0pDaVj45UDl66D0 HTR/qkD9zwnVtwQ1XmDhBhOHhdd+tPCCq5uNaq+9NGq87UcLb/ttqO7YP1t7 Ydvslm97vqOE96c9AGkorDM= "], {21, 24, 29}]}, {RGBColor[0.27, 0.79, 0.42], Polygon3DBox[CompressedData[" 1:eJxTTMoPSmViYGCQA2JmIBYLez5vPfMlm6f/QeC9PYx/B8y/v3/Sl+mzyx+/ tDd7qW/+/tjl/afQxD0g4vbvIOL2hMRh5kD5+6Og6mD2QfXtZwCDBzB9+2H6 0M3rhMrD7IPpm43mDqj59mj2wc2JQtMPs3c2mjzU/v1LoPJCqO6Fuu/9flg4 MqABmDhMHbo8VBzmfnh4wPy9Fi0cYeLfofrQzVuCGg5wd0pDaVj45UDl66D0 HTR/qkD9zwnVtwQ1XmDhBhOHhdd+tPCCq5uNaq+9NGq87UcLb/ttqO7YP1t7 Ydvslm97vqOE96c9AGkorDM= "], {30, 29, 24, 23, 22}]}, {RGBColor[0.8, 0.31, 0.28], Polygon3DBox[CompressedData[" 1:eJxTTMoPSmViYGCQA2JmIBYLez5vPfMlm6f/QeC9PYx/B8y/v3/Sl+mzyx+/ tDd7qW/+/tjl/afQxD0g4vbvIOL2hMRh5kD5+6Og6mD2QfXtZwCDBzB9+2H6 0M3rhMrD7IPpm43mDqj59mj2wc2JQtMPs3c2mjzU/v1LoPJCqO6Fuu/9flg4 MqABmDhMHbo8VBzmfnh4wPy9Fi0cYeLfofrQzVuCGg5wd0pDaVj45UDl66D0 HTR/qkD9zwnVtwQ1XmDhBhOHhdd+tPCCq5uNaq+9NGq87UcLb/ttqO7YP1t7 Ydvslm97vqOE96c9AGkorDM= "], {22, 27, 30}]}, {RGBColor[0.27, 0.79, 0.42], Polygon3DBox[CompressedData[" 1:eJxTTMoPSmViYGCQA2JmIBYLez5vPfMlm6f/QeC9PYx/B8y/v3/Sl+mzyx+/ tDd7qW/+/tjl/afQxD0g4vbvIOL2hMRh5kD5+6Og6mD2QfXtZwCDBzB9+2H6 0M3rhMrD7IPpm43mDqj59mj2wc2JQtMPs3c2mjzU/v1LoPJCqO6Fuu/9flg4 MqABmDhMHbo8VBzmfnh4wPy9Fi0cYeLfofrQzVuCGg5wd0pDaVj45UDl66D0 HTR/qkD9zwnVtwQ1XmDhBhOHhdd+tPCCq5uNaq+9NGq87UcLb/ttqO7YP1t7 Ydvslm97vqOE96c9AGkorDM= "], {28, 30, 27, 26, 25}]}, {RGBColor[0.8, 0.31, 0.28], Polygon3DBox[CompressedData[" 1:eJxTTMoPSmViYGCQA2JmIBYLez5vPfMlm6f/QeC9PYx/B8y/v3/Sl+mzyx+/ tDd7qW/+/tjl/afQxD0g4vbvIOL2hMRh5kD5+6Og6mD2QfXtZwCDBzB9+2H6 0M3rhMrD7IPpm43mDqj59mj2wc2JQtMPs3c2mjzU/v1LoPJCqO6Fuu/9flg4 MqABmDhMHbo8VBzmfnh4wPy9Fi0cYeLfofrQzVuCGg5wd0pDaVj45UDl66D0 HTR/qkD9zwnVtwQ1XmDhBhOHhdd+tPCCq5uNaq+9NGq87UcLb/ttqO7YP1t7 Ydvslm97vqOE96c9AGkorDM= "], {28, 29, 30}]}}, Boxed->False]], "Output", CellLabel-> "Out[224]=",ExpressionUUID->"7f5b297d-7c9e-4026-8d39-0984ef94b9b7"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"bulatov", "=", RowBox[{"BulatovUniformPolyhedron", "[", RowBox[{"UniformPolyhedronIndex", "[", RowBox[{"stdname", ",", "\"\\""}], "]"}], "]"}]}]], "Input", CellLabel-> "In[225]:=",ExpressionUUID->"c2805ff1-c5b1-420d-b8ab-043f1254c1ec"], Cell[BoxData[ InterpretationBox[ RowBox[{ TagBox["Polyhedron", "SummaryHead"], "[", DynamicModuleBox[{Typeset`open$$ = False, Typeset`embedState$$ = "Ready", Typeset`spolyhedron$$ = Quiet[ Polyhedron[CompressedData[" 1:eJxTTMoPSmViYGCQA2JmIBYLez5vPfMlm6f/QeC9PYx/B8y/v3/Sl+mzyx+/ tDd7qW/+/tjl/afQxD0g4vbvIOL2hMRh5kD5+6Og6mD2QfXtZwCDBzB9+2H6 0M3rhMrD7IPpm43mDqj59mj2wc2JQtMPs3c2mjzU/v1LoPJCqO6Fuu/9flg4 MqABmDhMHbo8VBzmfnh4wPy9Fi0cYeLfofrQzVuCGg5wd0pDaVj45UDl66D0 HTR/qkD9zwnVtwQ1XmDhBhOHhdd+tPCCq5uNaq+9NGq87UcLb/ttqO7YP1t7 Ydvslm97vqOE96c9AGkorDM= "], {{3, 2, 1}, {4, 11, 8, 3, 1}, {5, 4, 1}, {1, 2, 7, 12, 5}, {2, 6, 7}, {2, 3, 9, 15, 6}, {3, 8, 9}, {4, 10, 11}, {4, 5, 13, 20, 10}, {5, 12, 13}, {14, 23, 16, 7, 6}, {15, 14, 6}, {16, 12, 7}, {17, 26, 18, 9, 8}, {8, 11, 17}, {18, 15, 9}, {19, 25, 17, 11, 10}, {20, 19, 10}, {16, 24, 21, 13, 12}, {21, 20, 13}, {14, 22, 23}, {14, 15, 18, 27, 22}, {16, 23, 24}, {17, 25, 26}, {18, 26, 27}, {28, 25, 19}, {19, 20, 21, 29, 28}, {21, 24, 29}, {30, 29, 24, 23, 22}, {22, 27, 30}, {28, 30, 27, 26, 25}, {28, 29, 30}}]]}, TemplateBox[{ PaneSelectorBox[{False -> GridBox[{{ PaneBox[ ButtonBox[ DynamicBox[ FEPrivate`FrontEndResource["FEBitmaps", "SummaryBoxOpener"]], ButtonFunction :> (Typeset`open$$ = True), Appearance -> None, BaseStyle -> {}, Evaluator -> Automatic, Method -> "Preemptive"], Alignment -> {Center, Center}, ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], Graphics3DBox[{ Directive[ Hue[0.58, 0.4, 1], Opacity[0.5], EdgeForm[ GrayLevel[1]]], PolyhedronBox[CompressedData[" 1:eJxTTMoPSmViYGCQA2JmIBYLez5vPfMlm6f/QeC9PYx/B8y/v3/Sl+mzyx+/ tDd7qW/+/tjl/afQxD0g4vbvIOL2hMRh5kD5+6Og6mD2QfXtZwCDBzB9+2H6 0M3rhMrD7IPpm43mDqj59mj2wc2JQtMPs3c2mjzU/v1LoPJCqO6Fuu/9flg4 MqABmDhMHbo8VBzmfnh4wPy9Fi0cYeLfofrQzVuCGg5wd0pDaVj45UDl66D0 HTR/qkD9zwnVtwQ1XmDhBhOHhdd+tPCCq5uNaq+9NGq87UcLb/ttqO7YP1t7 Ydvslm97vqOE96c9AGkorDM= "], {{3, 2, 1}, {4, 11, 8, 3, 1}, {5, 4, 1}, {1, 2, 7, 12, 5}, {2, 6, 7}, {2, 3, 9, 15, 6}, {3, 8, 9}, {4, 10, 11}, {4, 5, 13, 20, 10}, {5, 12, 13}, {14, 23, 16, 7, 6}, {15, 14, 6}, {16, 12, 7}, {17, 26, 18, 9, 8}, {8, 11, 17}, {18, 15, 9}, {19, 25, 17, 11, 10}, {20, 19, 10}, {16, 24, 21, 13, 12}, {21, 20, 13}, {14, 22, 23}, {14, 15, 18, 27, 22}, {16, 23, 24}, {17, 25, 26}, {18, 26, 27}, {28, 25, 19}, {19, 20, 21, 29, 28}, {21, 24, 29}, {30, 29, 24, 23, 22}, {22, 27, 30}, {28, 30, 27, 26, 25}, {28, 29, 30}}]}, ImageSize -> Dynamic[{5.25, 3.5} (CurrentValue["FontCapHeight"]/ AbsoluteCurrentValue[Magnification])], Boxed -> False, Lighting -> {{"Ambient", RGBColor[0.4, 0.45, 0.5]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{2, 0, 2}]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{2, 2, 2}]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{0, 2, 2}]}}, Method -> {"ShrinkWrap" -> True}], GridBox[{{ RowBox[{ TagBox["\"Number of points: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["30", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Number of faces: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["32", "SummaryItem"]}]}}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> {"Columns" -> {{2}}, "Rows" -> {{Automatic}}}, BaseStyle -> { ShowStringCharacters -> False, NumberMarks -> False, PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, BaselinePosition -> {1, 1}], True -> GridBox[{{ PaneBox[ ButtonBox[ DynamicBox[ FEPrivate`FrontEndResource["FEBitmaps", "SummaryBoxCloser"]], ButtonFunction :> (Typeset`open$$ = False), Appearance -> None, BaseStyle -> {}, Evaluator -> Automatic, Method -> "Preemptive"], Alignment -> {Center, Center}, ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], Graphics3DBox[{ Directive[ Hue[0.58, 0.4, 1], Opacity[0.5], EdgeForm[ GrayLevel[1]]], PolyhedronBox[CompressedData[" 1:eJxTTMoPSmViYGCQA2JmIBYLez5vPfMlm6f/QeC9PYx/B8y/v3/Sl+mzyx+/ tDd7qW/+/tjl/afQxD0g4vbvIOL2hMRh5kD5+6Og6mD2QfXtZwCDBzB9+2H6 0M3rhMrD7IPpm43mDqj59mj2wc2JQtMPs3c2mjzU/v1LoPJCqO6Fuu/9flg4 MqABmDhMHbo8VBzmfnh4wPy9Fi0cYeLfofrQzVuCGg5wd0pDaVj45UDl66D0 HTR/qkD9zwnVtwQ1XmDhBhOHhdd+tPCCq5uNaq+9NGq87UcLb/ttqO7YP1t7 Ydvslm97vqOE96c9AGkorDM= "], {{3, 2, 1}, {4, 11, 8, 3, 1}, {5, 4, 1}, {1, 2, 7, 12, 5}, {2, 6, 7}, {2, 3, 9, 15, 6}, {3, 8, 9}, {4, 10, 11}, {4, 5, 13, 20, 10}, {5, 12, 13}, {14, 23, 16, 7, 6}, {15, 14, 6}, {16, 12, 7}, {17, 26, 18, 9, 8}, {8, 11, 17}, {18, 15, 9}, {19, 25, 17, 11, 10}, {20, 19, 10}, {16, 24, 21, 13, 12}, {21, 20, 13}, {14, 22, 23}, {14, 15, 18, 27, 22}, {16, 23, 24}, {17, 25, 26}, {18, 26, 27}, {28, 25, 19}, {19, 20, 21, 29, 28}, {21, 24, 29}, {30, 29, 24, 23, 22}, {22, 27, 30}, {28, 30, 27, 26, 25}, {28, 29, 30}}]}, ImageSize -> Dynamic[{5.25, 3.5} (CurrentValue["FontCapHeight"]/ AbsoluteCurrentValue[Magnification])], Boxed -> False, Lighting -> {{"Ambient", RGBColor[0.4, 0.45, 0.5]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{2, 0, 2}]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{2, 2, 2}]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{0, 2, 2}]}}, Method -> {"ShrinkWrap" -> True}], GridBox[{{ RowBox[{ TagBox["\"Number of points: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["30", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Number of faces: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["32", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Embedding dimension: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["3", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Type: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Quiet[ Apply[Region`PolyhedronDump`polyhedronType, Region`PolyhedronDump`computeType[ Typeset`spolyhedron$$]]], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}, { RowBox[{ TagBox["\"Bounds: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Region`PolyhedronDump`iRegionBounds[ Typeset`spolyhedron$$], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}, { RowBox[{ TagBox["\"Volume: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Region`PolyhedronDump`iVolume[Typeset`spolyhedron$$], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> {"Columns" -> {{2}}, "Rows" -> {{Automatic}}}, BaseStyle -> { ShowStringCharacters -> False, NumberMarks -> False, PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, BaselinePosition -> {1, 1}]}, Dynamic[Typeset`open$$], ImageSize -> Automatic]}, "SummaryPanel"], DynamicModuleValues:>{}], "]"}], Polyhedron[CompressedData[" 1:eJxTTMoPSmViYGCQA2JmIBYLez5vPfMlm6f/QeC9PYx/B8y/v3/Sl+mzyx+/ tDd7qW/+/tjl/afQxD0g4vbvIOL2hMRh5kD5+6Og6mD2QfXtZwCDBzB9+2H6 0M3rhMrD7IPpm43mDqj59mj2wc2JQtMPs3c2mjzU/v1LoPJCqO6Fuu/9flg4 MqABmDhMHbo8VBzmfnh4wPy9Fi0cYeLfofrQzVuCGg5wd0pDaVj45UDl66D0 HTR/qkD9zwnVtwQ1XmDhBhOHhdd+tPCCq5uNaq+9NGq87UcLb/ttqO7YP1t7 Ydvslm97vqOE96c9AGkorDM= "], {{3, 2, 1}, {4, 11, 8, 3, 1}, {5, 4, 1}, {1, 2, 7, 12, 5}, {2, 6, 7}, { 2, 3, 9, 15, 6}, {3, 8, 9}, {4, 10, 11}, {4, 5, 13, 20, 10}, {5, 12, 13}, {14, 23, 16, 7, 6}, {15, 14, 6}, {16, 12, 7}, {17, 26, 18, 9, 8}, {8, 11, 17}, {18, 15, 9}, {19, 25, 17, 11, 10}, {20, 19, 10}, {16, 24, 21, 13, 12}, {21, 20, 13}, {14, 22, 23}, {14, 15, 18, 27, 22}, {16, 23, 24}, { 17, 25, 26}, {18, 26, 27}, {28, 25, 19}, {19, 20, 21, 29, 28}, {21, 24, 29}, {30, 29, 24, 23, 22}, {22, 27, 30}, {28, 30, 27, 26, 25}, {28, 29, 30}}], Editable->False, SelectWithContents->True, Selectable->False]], "Output", CellLabel-> "Out[225]=",ExpressionUUID->"13463b8c-745a-483f-abd2-c5e2b27ac624"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Graphics3D", "/@", RowBox[{"(", RowBox[{"polys", "=", RowBox[{ RowBox[{ RowBox[{"Polygon", "[", RowBox[{ RowBox[{"bulatov", "[", RowBox[{"[", "1", "]"}], "]"}], ",", "#"}], "]"}], "&"}], "/@", RowBox[{"bulatov", "[", RowBox[{"[", "2", "]"}], "]"}]}]}], ")"}]}]], "Input", CellLabel-> "In[226]:=",ExpressionUUID->"375a96cc-925d-4c9b-9d51-451b28575db3"], Cell[BoxData[ RowBox[{"{", RowBox[{ Graphics3DBox[Polygon3DBox[CompressedData[" 1:eJxTTMoPSmViYGCQA2JmIBYLez5vPfMlm6f/QeC9PYx/B8y/v3/Sl+mzyx+/ tDd7qW/+/tjl/afQxD0g4vbvIOL2hMRh5kD5+6Og6mD2QfXtZwCDBzB9+2H6 0M3rhMrD7IPpm43mDqj59mj2wc2JQtMPs3c2mjzU/v1LoPJCqO6Fuu/9flg4 MqABmDhMHbo8VBzmfnh4wPy9Fi0cYeLfofrQzVuCGg5wd0pDaVj45UDl66D0 HTR/qkD9zwnVtwQ1XmDhBhOHhdd+tPCCq5uNaq+9NGq87UcLb/ttqO7YP1t7 Ydvslm97vqOE96c9AGkorDM= "], {3, 2, 1}]], ",", Graphics3DBox[Polygon3DBox[CompressedData[" 1:eJxTTMoPSmViYGCQA2JmIBYLez5vPfMlm6f/QeC9PYx/B8y/v3/Sl+mzyx+/ tDd7qW/+/tjl/afQxD0g4vbvIOL2hMRh5kD5+6Og6mD2QfXtZwCDBzB9+2H6 0M3rhMrD7IPpm43mDqj59mj2wc2JQtMPs3c2mjzU/v1LoPJCqO6Fuu/9flg4 MqABmDhMHbo8VBzmfnh4wPy9Fi0cYeLfofrQzVuCGg5wd0pDaVj45UDl66D0 HTR/qkD9zwnVtwQ1XmDhBhOHhdd+tPCCq5uNaq+9NGq87UcLb/ttqO7YP1t7 Ydvslm97vqOE96c9AGkorDM= "], {4, 11, 8, 3, 1}]], ",", Graphics3DBox[Polygon3DBox[CompressedData[" 1:eJxTTMoPSmViYGCQA2JmIBYLez5vPfMlm6f/QeC9PYx/B8y/v3/Sl+mzyx+/ tDd7qW/+/tjl/afQxD0g4vbvIOL2hMRh5kD5+6Og6mD2QfXtZwCDBzB9+2H6 0M3rhMrD7IPpm43mDqj59mj2wc2JQtMPs3c2mjzU/v1LoPJCqO6Fuu/9flg4 MqABmDhMHbo8VBzmfnh4wPy9Fi0cYeLfofrQzVuCGg5wd0pDaVj45UDl66D0 HTR/qkD9zwnVtwQ1XmDhBhOHhdd+tPCCq5uNaq+9NGq87UcLb/ttqO7YP1t7 Ydvslm97vqOE96c9AGkorDM= "], {5, 4, 1}]], ",", Graphics3DBox[Polygon3DBox[CompressedData[" 1:eJxTTMoPSmViYGCQA2JmIBYLez5vPfMlm6f/QeC9PYx/B8y/v3/Sl+mzyx+/ tDd7qW/+/tjl/afQxD0g4vbvIOL2hMRh5kD5+6Og6mD2QfXtZwCDBzB9+2H6 0M3rhMrD7IPpm43mDqj59mj2wc2JQtMPs3c2mjzU/v1LoPJCqO6Fuu/9flg4 MqABmDhMHbo8VBzmfnh4wPy9Fi0cYeLfofrQzVuCGg5wd0pDaVj45UDl66D0 HTR/qkD9zwnVtwQ1XmDhBhOHhdd+tPCCq5uNaq+9NGq87UcLb/ttqO7YP1t7 Ydvslm97vqOE96c9AGkorDM= "], {1, 2, 7, 12, 5}]], ",", Graphics3DBox[Polygon3DBox[CompressedData[" 1:eJxTTMoPSmViYGCQA2JmIBYLez5vPfMlm6f/QeC9PYx/B8y/v3/Sl+mzyx+/ tDd7qW/+/tjl/afQxD0g4vbvIOL2hMRh5kD5+6Og6mD2QfXtZwCDBzB9+2H6 0M3rhMrD7IPpm43mDqj59mj2wc2JQtMPs3c2mjzU/v1LoPJCqO6Fuu/9flg4 MqABmDhMHbo8VBzmfnh4wPy9Fi0cYeLfofrQzVuCGg5wd0pDaVj45UDl66D0 HTR/qkD9zwnVtwQ1XmDhBhOHhdd+tPCCq5uNaq+9NGq87UcLb/ttqO7YP1t7 Ydvslm97vqOE96c9AGkorDM= "], {2, 6, 7}]], ",", Graphics3DBox[Polygon3DBox[CompressedData[" 1:eJxTTMoPSmViYGCQA2JmIBYLez5vPfMlm6f/QeC9PYx/B8y/v3/Sl+mzyx+/ tDd7qW/+/tjl/afQxD0g4vbvIOL2hMRh5kD5+6Og6mD2QfXtZwCDBzB9+2H6 0M3rhMrD7IPpm43mDqj59mj2wc2JQtMPs3c2mjzU/v1LoPJCqO6Fuu/9flg4 MqABmDhMHbo8VBzmfnh4wPy9Fi0cYeLfofrQzVuCGg5wd0pDaVj45UDl66D0 HTR/qkD9zwnVtwQ1XmDhBhOHhdd+tPCCq5uNaq+9NGq87UcLb/ttqO7YP1t7 Ydvslm97vqOE96c9AGkorDM= "], {2, 3, 9, 15, 6}]], ",", Graphics3DBox[Polygon3DBox[CompressedData[" 1:eJxTTMoPSmViYGCQA2JmIBYLez5vPfMlm6f/QeC9PYx/B8y/v3/Sl+mzyx+/ tDd7qW/+/tjl/afQxD0g4vbvIOL2hMRh5kD5+6Og6mD2QfXtZwCDBzB9+2H6 0M3rhMrD7IPpm43mDqj59mj2wc2JQtMPs3c2mjzU/v1LoPJCqO6Fuu/9flg4 MqABmDhMHbo8VBzmfnh4wPy9Fi0cYeLfofrQzVuCGg5wd0pDaVj45UDl66D0 HTR/qkD9zwnVtwQ1XmDhBhOHhdd+tPCCq5uNaq+9NGq87UcLb/ttqO7YP1t7 Ydvslm97vqOE96c9AGkorDM= "], {3, 8, 9}]], ",", Graphics3DBox[Polygon3DBox[CompressedData[" 1:eJxTTMoPSmViYGCQA2JmIBYLez5vPfMlm6f/QeC9PYx/B8y/v3/Sl+mzyx+/ tDd7qW/+/tjl/afQxD0g4vbvIOL2hMRh5kD5+6Og6mD2QfXtZwCDBzB9+2H6 0M3rhMrD7IPpm43mDqj59mj2wc2JQtMPs3c2mjzU/v1LoPJCqO6Fuu/9flg4 MqABmDhMHbo8VBzmfnh4wPy9Fi0cYeLfofrQzVuCGg5wd0pDaVj45UDl66D0 HTR/qkD9zwnVtwQ1XmDhBhOHhdd+tPCCq5uNaq+9NGq87UcLb/ttqO7YP1t7 Ydvslm97vqOE96c9AGkorDM= "], {4, 10, 11}]], ",", Graphics3DBox[Polygon3DBox[CompressedData[" 1:eJxTTMoPSmViYGCQA2JmIBYLez5vPfMlm6f/QeC9PYx/B8y/v3/Sl+mzyx+/ tDd7qW/+/tjl/afQxD0g4vbvIOL2hMRh5kD5+6Og6mD2QfXtZwCDBzB9+2H6 0M3rhMrD7IPpm43mDqj59mj2wc2JQtMPs3c2mjzU/v1LoPJCqO6Fuu/9flg4 MqABmDhMHbo8VBzmfnh4wPy9Fi0cYeLfofrQzVuCGg5wd0pDaVj45UDl66D0 HTR/qkD9zwnVtwQ1XmDhBhOHhdd+tPCCq5uNaq+9NGq87UcLb/ttqO7YP1t7 Ydvslm97vqOE96c9AGkorDM= "], {4, 5, 13, 20, 10}]], ",", Graphics3DBox[Polygon3DBox[CompressedData[" 1:eJxTTMoPSmViYGCQA2JmIBYLez5vPfMlm6f/QeC9PYx/B8y/v3/Sl+mzyx+/ tDd7qW/+/tjl/afQxD0g4vbvIOL2hMRh5kD5+6Og6mD2QfXtZwCDBzB9+2H6 0M3rhMrD7IPpm43mDqj59mj2wc2JQtMPs3c2mjzU/v1LoPJCqO6Fuu/9flg4 MqABmDhMHbo8VBzmfnh4wPy9Fi0cYeLfofrQzVuCGg5wd0pDaVj45UDl66D0 HTR/qkD9zwnVtwQ1XmDhBhOHhdd+tPCCq5uNaq+9NGq87UcLb/ttqO7YP1t7 Ydvslm97vqOE96c9AGkorDM= "], {5, 12, 13}]], ",", Graphics3DBox[Polygon3DBox[CompressedData[" 1:eJxTTMoPSmViYGCQA2JmIBYLez5vPfMlm6f/QeC9PYx/B8y/v3/Sl+mzyx+/ tDd7qW/+/tjl/afQxD0g4vbvIOL2hMRh5kD5+6Og6mD2QfXtZwCDBzB9+2H6 0M3rhMrD7IPpm43mDqj59mj2wc2JQtMPs3c2mjzU/v1LoPJCqO6Fuu/9flg4 MqABmDhMHbo8VBzmfnh4wPy9Fi0cYeLfofrQzVuCGg5wd0pDaVj45UDl66D0 HTR/qkD9zwnVtwQ1XmDhBhOHhdd+tPCCq5uNaq+9NGq87UcLb/ttqO7YP1t7 Ydvslm97vqOE96c9AGkorDM= "], {14, 23, 16, 7, 6}]], ",", Graphics3DBox[Polygon3DBox[CompressedData[" 1:eJxTTMoPSmViYGCQA2JmIBYLez5vPfMlm6f/QeC9PYx/B8y/v3/Sl+mzyx+/ tDd7qW/+/tjl/afQxD0g4vbvIOL2hMRh5kD5+6Og6mD2QfXtZwCDBzB9+2H6 0M3rhMrD7IPpm43mDqj59mj2wc2JQtMPs3c2mjzU/v1LoPJCqO6Fuu/9flg4 MqABmDhMHbo8VBzmfnh4wPy9Fi0cYeLfofrQzVuCGg5wd0pDaVj45UDl66D0 HTR/qkD9zwnVtwQ1XmDhBhOHhdd+tPCCq5uNaq+9NGq87UcLb/ttqO7YP1t7 Ydvslm97vqOE96c9AGkorDM= "], {15, 14, 6}]], ",", Graphics3DBox[Polygon3DBox[CompressedData[" 1:eJxTTMoPSmViYGCQA2JmIBYLez5vPfMlm6f/QeC9PYx/B8y/v3/Sl+mzyx+/ tDd7qW/+/tjl/afQxD0g4vbvIOL2hMRh5kD5+6Og6mD2QfXtZwCDBzB9+2H6 0M3rhMrD7IPpm43mDqj59mj2wc2JQtMPs3c2mjzU/v1LoPJCqO6Fuu/9flg4 MqABmDhMHbo8VBzmfnh4wPy9Fi0cYeLfofrQzVuCGg5wd0pDaVj45UDl66D0 HTR/qkD9zwnVtwQ1XmDhBhOHhdd+tPCCq5uNaq+9NGq87UcLb/ttqO7YP1t7 Ydvslm97vqOE96c9AGkorDM= "], {16, 12, 7}]], ",", Graphics3DBox[Polygon3DBox[CompressedData[" 1:eJxTTMoPSmViYGCQA2JmIBYLez5vPfMlm6f/QeC9PYx/B8y/v3/Sl+mzyx+/ tDd7qW/+/tjl/afQxD0g4vbvIOL2hMRh5kD5+6Og6mD2QfXtZwCDBzB9+2H6 0M3rhMrD7IPpm43mDqj59mj2wc2JQtMPs3c2mjzU/v1LoPJCqO6Fuu/9flg4 MqABmDhMHbo8VBzmfnh4wPy9Fi0cYeLfofrQzVuCGg5wd0pDaVj45UDl66D0 HTR/qkD9zwnVtwQ1XmDhBhOHhdd+tPCCq5uNaq+9NGq87UcLb/ttqO7YP1t7 Ydvslm97vqOE96c9AGkorDM= "], {17, 26, 18, 9, 8}]], ",", Graphics3DBox[Polygon3DBox[CompressedData[" 1:eJxTTMoPSmViYGCQA2JmIBYLez5vPfMlm6f/QeC9PYx/B8y/v3/Sl+mzyx+/ tDd7qW/+/tjl/afQxD0g4vbvIOL2hMRh5kD5+6Og6mD2QfXtZwCDBzB9+2H6 0M3rhMrD7IPpm43mDqj59mj2wc2JQtMPs3c2mjzU/v1LoPJCqO6Fuu/9flg4 MqABmDhMHbo8VBzmfnh4wPy9Fi0cYeLfofrQzVuCGg5wd0pDaVj45UDl66D0 HTR/qkD9zwnVtwQ1XmDhBhOHhdd+tPCCq5uNaq+9NGq87UcLb/ttqO7YP1t7 Ydvslm97vqOE96c9AGkorDM= "], {8, 11, 17}]], ",", Graphics3DBox[Polygon3DBox[CompressedData[" 1:eJxTTMoPSmViYGCQA2JmIBYLez5vPfMlm6f/QeC9PYx/B8y/v3/Sl+mzyx+/ tDd7qW/+/tjl/afQxD0g4vbvIOL2hMRh5kD5+6Og6mD2QfXtZwCDBzB9+2H6 0M3rhMrD7IPpm43mDqj59mj2wc2JQtMPs3c2mjzU/v1LoPJCqO6Fuu/9flg4 MqABmDhMHbo8VBzmfnh4wPy9Fi0cYeLfofrQzVuCGg5wd0pDaVj45UDl66D0 HTR/qkD9zwnVtwQ1XmDhBhOHhdd+tPCCq5uNaq+9NGq87UcLb/ttqO7YP1t7 Ydvslm97vqOE96c9AGkorDM= "], {18, 15, 9}]], ",", Graphics3DBox[Polygon3DBox[CompressedData[" 1:eJxTTMoPSmViYGCQA2JmIBYLez5vPfMlm6f/QeC9PYx/B8y/v3/Sl+mzyx+/ tDd7qW/+/tjl/afQxD0g4vbvIOL2hMRh5kD5+6Og6mD2QfXtZwCDBzB9+2H6 0M3rhMrD7IPpm43mDqj59mj2wc2JQtMPs3c2mjzU/v1LoPJCqO6Fuu/9flg4 MqABmDhMHbo8VBzmfnh4wPy9Fi0cYeLfofrQzVuCGg5wd0pDaVj45UDl66D0 HTR/qkD9zwnVtwQ1XmDhBhOHhdd+tPCCq5uNaq+9NGq87UcLb/ttqO7YP1t7 Ydvslm97vqOE96c9AGkorDM= "], {19, 25, 17, 11, 10}]], ",", Graphics3DBox[Polygon3DBox[CompressedData[" 1:eJxTTMoPSmViYGCQA2JmIBYLez5vPfMlm6f/QeC9PYx/B8y/v3/Sl+mzyx+/ tDd7qW/+/tjl/afQxD0g4vbvIOL2hMRh5kD5+6Og6mD2QfXtZwCDBzB9+2H6 0M3rhMrD7IPpm43mDqj59mj2wc2JQtMPs3c2mjzU/v1LoPJCqO6Fuu/9flg4 MqABmDhMHbo8VBzmfnh4wPy9Fi0cYeLfofrQzVuCGg5wd0pDaVj45UDl66D0 HTR/qkD9zwnVtwQ1XmDhBhOHhdd+tPCCq5uNaq+9NGq87UcLb/ttqO7YP1t7 Ydvslm97vqOE96c9AGkorDM= "], {20, 19, 10}]], ",", Graphics3DBox[Polygon3DBox[CompressedData[" 1:eJxTTMoPSmViYGCQA2JmIBYLez5vPfMlm6f/QeC9PYx/B8y/v3/Sl+mzyx+/ tDd7qW/+/tjl/afQxD0g4vbvIOL2hMRh5kD5+6Og6mD2QfXtZwCDBzB9+2H6 0M3rhMrD7IPpm43mDqj59mj2wc2JQtMPs3c2mjzU/v1LoPJCqO6Fuu/9flg4 MqABmDhMHbo8VBzmfnh4wPy9Fi0cYeLfofrQzVuCGg5wd0pDaVj45UDl66D0 HTR/qkD9zwnVtwQ1XmDhBhOHhdd+tPCCq5uNaq+9NGq87UcLb/ttqO7YP1t7 Ydvslm97vqOE96c9AGkorDM= "], {16, 24, 21, 13, 12}]], ",", Graphics3DBox[Polygon3DBox[CompressedData[" 1:eJxTTMoPSmViYGCQA2JmIBYLez5vPfMlm6f/QeC9PYx/B8y/v3/Sl+mzyx+/ tDd7qW/+/tjl/afQxD0g4vbvIOL2hMRh5kD5+6Og6mD2QfXtZwCDBzB9+2H6 0M3rhMrD7IPpm43mDqj59mj2wc2JQtMPs3c2mjzU/v1LoPJCqO6Fuu/9flg4 MqABmDhMHbo8VBzmfnh4wPy9Fi0cYeLfofrQzVuCGg5wd0pDaVj45UDl66D0 HTR/qkD9zwnVtwQ1XmDhBhOHhdd+tPCCq5uNaq+9NGq87UcLb/ttqO7YP1t7 Ydvslm97vqOE96c9AGkorDM= "], {21, 20, 13}]], ",", Graphics3DBox[Polygon3DBox[CompressedData[" 1:eJxTTMoPSmViYGCQA2JmIBYLez5vPfMlm6f/QeC9PYx/B8y/v3/Sl+mzyx+/ tDd7qW/+/tjl/afQxD0g4vbvIOL2hMRh5kD5+6Og6mD2QfXtZwCDBzB9+2H6 0M3rhMrD7IPpm43mDqj59mj2wc2JQtMPs3c2mjzU/v1LoPJCqO6Fuu/9flg4 MqABmDhMHbo8VBzmfnh4wPy9Fi0cYeLfofrQzVuCGg5wd0pDaVj45UDl66D0 HTR/qkD9zwnVtwQ1XmDhBhOHhdd+tPCCq5uNaq+9NGq87UcLb/ttqO7YP1t7 Ydvslm97vqOE96c9AGkorDM= "], {14, 22, 23}]], ",", Graphics3DBox[Polygon3DBox[CompressedData[" 1:eJxTTMoPSmViYGCQA2JmIBYLez5vPfMlm6f/QeC9PYx/B8y/v3/Sl+mzyx+/ tDd7qW/+/tjl/afQxD0g4vbvIOL2hMRh5kD5+6Og6mD2QfXtZwCDBzB9+2H6 0M3rhMrD7IPpm43mDqj59mj2wc2JQtMPs3c2mjzU/v1LoPJCqO6Fuu/9flg4 MqABmDhMHbo8VBzmfnh4wPy9Fi0cYeLfofrQzVuCGg5wd0pDaVj45UDl66D0 HTR/qkD9zwnVtwQ1XmDhBhOHhdd+tPCCq5uNaq+9NGq87UcLb/ttqO7YP1t7 Ydvslm97vqOE96c9AGkorDM= "], {14, 15, 18, 27, 22}]], ",", Graphics3DBox[Polygon3DBox[CompressedData[" 1:eJxTTMoPSmViYGCQA2JmIBYLez5vPfMlm6f/QeC9PYx/B8y/v3/Sl+mzyx+/ tDd7qW/+/tjl/afQxD0g4vbvIOL2hMRh5kD5+6Og6mD2QfXtZwCDBzB9+2H6 0M3rhMrD7IPpm43mDqj59mj2wc2JQtMPs3c2mjzU/v1LoPJCqO6Fuu/9flg4 MqABmDhMHbo8VBzmfnh4wPy9Fi0cYeLfofrQzVuCGg5wd0pDaVj45UDl66D0 HTR/qkD9zwnVtwQ1XmDhBhOHhdd+tPCCq5uNaq+9NGq87UcLb/ttqO7YP1t7 Ydvslm97vqOE96c9AGkorDM= "], {16, 23, 24}]], ",", Graphics3DBox[Polygon3DBox[CompressedData[" 1:eJxTTMoPSmViYGCQA2JmIBYLez5vPfMlm6f/QeC9PYx/B8y/v3/Sl+mzyx+/ tDd7qW/+/tjl/afQxD0g4vbvIOL2hMRh5kD5+6Og6mD2QfXtZwCDBzB9+2H6 0M3rhMrD7IPpm43mDqj59mj2wc2JQtMPs3c2mjzU/v1LoPJCqO6Fuu/9flg4 MqABmDhMHbo8VBzmfnh4wPy9Fi0cYeLfofrQzVuCGg5wd0pDaVj45UDl66D0 HTR/qkD9zwnVtwQ1XmDhBhOHhdd+tPCCq5uNaq+9NGq87UcLb/ttqO7YP1t7 Ydvslm97vqOE96c9AGkorDM= "], {17, 25, 26}]], ",", Graphics3DBox[Polygon3DBox[CompressedData[" 1:eJxTTMoPSmViYGCQA2JmIBYLez5vPfMlm6f/QeC9PYx/B8y/v3/Sl+mzyx+/ tDd7qW/+/tjl/afQxD0g4vbvIOL2hMRh5kD5+6Og6mD2QfXtZwCDBzB9+2H6 0M3rhMrD7IPpm43mDqj59mj2wc2JQtMPs3c2mjzU/v1LoPJCqO6Fuu/9flg4 MqABmDhMHbo8VBzmfnh4wPy9Fi0cYeLfofrQzVuCGg5wd0pDaVj45UDl66D0 HTR/qkD9zwnVtwQ1XmDhBhOHhdd+tPCCq5uNaq+9NGq87UcLb/ttqO7YP1t7 Ydvslm97vqOE96c9AGkorDM= "], {18, 26, 27}]], ",", Graphics3DBox[Polygon3DBox[CompressedData[" 1:eJxTTMoPSmViYGCQA2JmIBYLez5vPfMlm6f/QeC9PYx/B8y/v3/Sl+mzyx+/ tDd7qW/+/tjl/afQxD0g4vbvIOL2hMRh5kD5+6Og6mD2QfXtZwCDBzB9+2H6 0M3rhMrD7IPpm43mDqj59mj2wc2JQtMPs3c2mjzU/v1LoPJCqO6Fuu/9flg4 MqABmDhMHbo8VBzmfnh4wPy9Fi0cYeLfofrQzVuCGg5wd0pDaVj45UDl66D0 HTR/qkD9zwnVtwQ1XmDhBhOHhdd+tPCCq5uNaq+9NGq87UcLb/ttqO7YP1t7 Ydvslm97vqOE96c9AGkorDM= "], {28, 25, 19}]], ",", Graphics3DBox[Polygon3DBox[CompressedData[" 1:eJxTTMoPSmViYGCQA2JmIBYLez5vPfMlm6f/QeC9PYx/B8y/v3/Sl+mzyx+/ tDd7qW/+/tjl/afQxD0g4vbvIOL2hMRh5kD5+6Og6mD2QfXtZwCDBzB9+2H6 0M3rhMrD7IPpm43mDqj59mj2wc2JQtMPs3c2mjzU/v1LoPJCqO6Fuu/9flg4 MqABmDhMHbo8VBzmfnh4wPy9Fi0cYeLfofrQzVuCGg5wd0pDaVj45UDl66D0 HTR/qkD9zwnVtwQ1XmDhBhOHhdd+tPCCq5uNaq+9NGq87UcLb/ttqO7YP1t7 Ydvslm97vqOE96c9AGkorDM= "], {19, 20, 21, 29, 28}]], ",", Graphics3DBox[Polygon3DBox[CompressedData[" 1:eJxTTMoPSmViYGCQA2JmIBYLez5vPfMlm6f/QeC9PYx/B8y/v3/Sl+mzyx+/ tDd7qW/+/tjl/afQxD0g4vbvIOL2hMRh5kD5+6Og6mD2QfXtZwCDBzB9+2H6 0M3rhMrD7IPpm43mDqj59mj2wc2JQtMPs3c2mjzU/v1LoPJCqO6Fuu/9flg4 MqABmDhMHbo8VBzmfnh4wPy9Fi0cYeLfofrQzVuCGg5wd0pDaVj45UDl66D0 HTR/qkD9zwnVtwQ1XmDhBhOHhdd+tPCCq5uNaq+9NGq87UcLb/ttqO7YP1t7 Ydvslm97vqOE96c9AGkorDM= "], {21, 24, 29}]], ",", Graphics3DBox[Polygon3DBox[CompressedData[" 1:eJxTTMoPSmViYGCQA2JmIBYLez5vPfMlm6f/QeC9PYx/B8y/v3/Sl+mzyx+/ tDd7qW/+/tjl/afQxD0g4vbvIOL2hMRh5kD5+6Og6mD2QfXtZwCDBzB9+2H6 0M3rhMrD7IPpm43mDqj59mj2wc2JQtMPs3c2mjzU/v1LoPJCqO6Fuu/9flg4 MqABmDhMHbo8VBzmfnh4wPy9Fi0cYeLfofrQzVuCGg5wd0pDaVj45UDl66D0 HTR/qkD9zwnVtwQ1XmDhBhOHhdd+tPCCq5uNaq+9NGq87UcLb/ttqO7YP1t7 Ydvslm97vqOE96c9AGkorDM= "], {30, 29, 24, 23, 22}]], ",", Graphics3DBox[Polygon3DBox[CompressedData[" 1:eJxTTMoPSmViYGCQA2JmIBYLez5vPfMlm6f/QeC9PYx/B8y/v3/Sl+mzyx+/ tDd7qW/+/tjl/afQxD0g4vbvIOL2hMRh5kD5+6Og6mD2QfXtZwCDBzB9+2H6 0M3rhMrD7IPpm43mDqj59mj2wc2JQtMPs3c2mjzU/v1LoPJCqO6Fuu/9flg4 MqABmDhMHbo8VBzmfnh4wPy9Fi0cYeLfofrQzVuCGg5wd0pDaVj45UDl66D0 HTR/qkD9zwnVtwQ1XmDhBhOHhdd+tPCCq5uNaq+9NGq87UcLb/ttqO7YP1t7 Ydvslm97vqOE96c9AGkorDM= "], {22, 27, 30}]], ",", Graphics3DBox[Polygon3DBox[CompressedData[" 1:eJxTTMoPSmViYGCQA2JmIBYLez5vPfMlm6f/QeC9PYx/B8y/v3/Sl+mzyx+/ tDd7qW/+/tjl/afQxD0g4vbvIOL2hMRh5kD5+6Og6mD2QfXtZwCDBzB9+2H6 0M3rhMrD7IPpm43mDqj59mj2wc2JQtMPs3c2mjzU/v1LoPJCqO6Fuu/9flg4 MqABmDhMHbo8VBzmfnh4wPy9Fi0cYeLfofrQzVuCGg5wd0pDaVj45UDl66D0 HTR/qkD9zwnVtwQ1XmDhBhOHhdd+tPCCq5uNaq+9NGq87UcLb/ttqO7YP1t7 Ydvslm97vqOE96c9AGkorDM= "], {28, 30, 27, 26, 25}]], ",", Graphics3DBox[Polygon3DBox[CompressedData[" 1:eJxTTMoPSmViYGCQA2JmIBYLez5vPfMlm6f/QeC9PYx/B8y/v3/Sl+mzyx+/ tDd7qW/+/tjl/afQxD0g4vbvIOL2hMRh5kD5+6Og6mD2QfXtZwCDBzB9+2H6 0M3rhMrD7IPpm43mDqj59mj2wc2JQtMPs3c2mjzU/v1LoPJCqO6Fuu/9flg4 MqABmDhMHbo8VBzmfnh4wPy9Fi0cYeLfofrQzVuCGg5wd0pDaVj45UDl66D0 HTR/qkD9zwnVtwQ1XmDhBhOHhdd+tPCCq5uNaq+9NGq87UcLb/ttqO7YP1t7 Ydvslm97vqOE96c9AGkorDM= "], {28, 29, 30}]]}], "}"}]], "Output", CellLabel-> "Out[226]=",ExpressionUUID->"e07a1192-2fc3-4950-9f9a-58a3659a4afd"] }, Closed]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"PolyhedronFaceTally", "[", "bulatov", "]"}]], "Input", CellLabel-> "In[227]:=",ExpressionUUID->"3830cd4e-415c-498b-a581-7a8ad4fd80f4"], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"{", "3", "}"}], ",", "20"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", "5", "}"}], ",", "12"}], "}"}]}], "}"}]], "Output", CellLabel-> "Out[227]=",ExpressionUUID->"44d8e877-90ff-41d6-b04c-28ceaa139571"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{"Graphics3D", "[", RowBox[{"#", ",", RowBox[{"Boxed", "\[Rule]", "False"}]}], "]"}], "&"}], "/@", RowBox[{"{", RowBox[{"bulatov", ",", "polys"}], "}"}]}]], "Input", CellLabel-> "In[228]:=",ExpressionUUID->"9bf6fdf1-3181-4fdf-88e2-c279bf3ce122"], Cell[BoxData[ RowBox[{"{", RowBox[{ Graphics3DBox[PolyhedronBox[CompressedData[" 1:eJxTTMoPSmViYGCQA2JmIBYLez5vPfMlm6f/QeC9PYx/B8y/v3/Sl+mzyx+/ tDd7qW/+/tjl/afQxD0g4vbvIOL2hMRh5kD5+6Og6mD2QfXtZwCDBzB9+2H6 0M3rhMrD7IPpm43mDqj59mj2wc2JQtMPs3c2mjzU/v1LoPJCqO6Fuu/9flg4 MqABmDhMHbo8VBzmfnh4wPy9Fi0cYeLfofrQzVuCGg5wd0pDaVj45UDl66D0 HTR/qkD9zwnVtwQ1XmDhBhOHhdd+tPCCq5uNaq+9NGq87UcLb/ttqO7YP1t7 Ydvslm97vqOE96c9AGkorDM= "], {{3, 2, 1}, {4, 11, 8, 3, 1}, {5, 4, 1}, {1, 2, 7, 12, 5}, {2, 6, 7}, {2, 3, 9, 15, 6}, {3, 8, 9}, {4, 10, 11}, {4, 5, 13, 20, 10}, {5, 12, 13}, {14, 23, 16, 7, 6}, {15, 14, 6}, {16, 12, 7}, {17, 26, 18, 9, 8}, {8, 11, 17}, {18, 15, 9}, {19, 25, 17, 11, 10}, {20, 19, 10}, {16, 24, 21, 13, 12}, {21, 20, 13}, {14, 22, 23}, {14, 15, 18, 27, 22}, {16, 23, 24}, {17, 25, 26}, {18, 26, 27}, {28, 25, 19}, {19, 20, 21, 29, 28}, {21, 24, 29}, {30, 29, 24, 23, 22}, {22, 27, 30}, {28, 30, 27, 26, 25}, {28, 29, 30}}], Boxed->False], ",", Graphics3DBox[{Polygon3DBox[CompressedData[" 1:eJxTTMoPSmViYGCQA2JmIBYLez5vPfMlm6f/QeC9PYx/B8y/v3/Sl+mzyx+/ tDd7qW/+/tjl/afQxD0g4vbvIOL2hMRh5kD5+6Og6mD2QfXtZwCDBzB9+2H6 0M3rhMrD7IPpm43mDqj59mj2wc2JQtMPs3c2mjzU/v1LoPJCqO6Fuu/9flg4 MqABmDhMHbo8VBzmfnh4wPy9Fi0cYeLfofrQzVuCGg5wd0pDaVj45UDl66D0 HTR/qkD9zwnVtwQ1XmDhBhOHhdd+tPCCq5uNaq+9NGq87UcLb/ttqO7YP1t7 Ydvslm97vqOE96c9AGkorDM= "], {3, 2, 1}], Polygon3DBox[CompressedData[" 1:eJxTTMoPSmViYGCQA2JmIBYLez5vPfMlm6f/QeC9PYx/B8y/v3/Sl+mzyx+/ tDd7qW/+/tjl/afQxD0g4vbvIOL2hMRh5kD5+6Og6mD2QfXtZwCDBzB9+2H6 0M3rhMrD7IPpm43mDqj59mj2wc2JQtMPs3c2mjzU/v1LoPJCqO6Fuu/9flg4 MqABmDhMHbo8VBzmfnh4wPy9Fi0cYeLfofrQzVuCGg5wd0pDaVj45UDl66D0 HTR/qkD9zwnVtwQ1XmDhBhOHhdd+tPCCq5uNaq+9NGq87UcLb/ttqO7YP1t7 Ydvslm97vqOE96c9AGkorDM= "], {4, 11, 8, 3, 1}], Polygon3DBox[CompressedData[" 1:eJxTTMoPSmViYGCQA2JmIBYLez5vPfMlm6f/QeC9PYx/B8y/v3/Sl+mzyx+/ tDd7qW/+/tjl/afQxD0g4vbvIOL2hMRh5kD5+6Og6mD2QfXtZwCDBzB9+2H6 0M3rhMrD7IPpm43mDqj59mj2wc2JQtMPs3c2mjzU/v1LoPJCqO6Fuu/9flg4 MqABmDhMHbo8VBzmfnh4wPy9Fi0cYeLfofrQzVuCGg5wd0pDaVj45UDl66D0 HTR/qkD9zwnVtwQ1XmDhBhOHhdd+tPCCq5uNaq+9NGq87UcLb/ttqO7YP1t7 Ydvslm97vqOE96c9AGkorDM= "], {5, 4, 1}], Polygon3DBox[CompressedData[" 1:eJxTTMoPSmViYGCQA2JmIBYLez5vPfMlm6f/QeC9PYx/B8y/v3/Sl+mzyx+/ tDd7qW/+/tjl/afQxD0g4vbvIOL2hMRh5kD5+6Og6mD2QfXtZwCDBzB9+2H6 0M3rhMrD7IPpm43mDqj59mj2wc2JQtMPs3c2mjzU/v1LoPJCqO6Fuu/9flg4 MqABmDhMHbo8VBzmfnh4wPy9Fi0cYeLfofrQzVuCGg5wd0pDaVj45UDl66D0 HTR/qkD9zwnVtwQ1XmDhBhOHhdd+tPCCq5uNaq+9NGq87UcLb/ttqO7YP1t7 Ydvslm97vqOE96c9AGkorDM= "], {1, 2, 7, 12, 5}], Polygon3DBox[CompressedData[" 1:eJxTTMoPSmViYGCQA2JmIBYLez5vPfMlm6f/QeC9PYx/B8y/v3/Sl+mzyx+/ tDd7qW/+/tjl/afQxD0g4vbvIOL2hMRh5kD5+6Og6mD2QfXtZwCDBzB9+2H6 0M3rhMrD7IPpm43mDqj59mj2wc2JQtMPs3c2mjzU/v1LoPJCqO6Fuu/9flg4 MqABmDhMHbo8VBzmfnh4wPy9Fi0cYeLfofrQzVuCGg5wd0pDaVj45UDl66D0 HTR/qkD9zwnVtwQ1XmDhBhOHhdd+tPCCq5uNaq+9NGq87UcLb/ttqO7YP1t7 Ydvslm97vqOE96c9AGkorDM= "], {2, 6, 7}], Polygon3DBox[CompressedData[" 1:eJxTTMoPSmViYGCQA2JmIBYLez5vPfMlm6f/QeC9PYx/B8y/v3/Sl+mzyx+/ tDd7qW/+/tjl/afQxD0g4vbvIOL2hMRh5kD5+6Og6mD2QfXtZwCDBzB9+2H6 0M3rhMrD7IPpm43mDqj59mj2wc2JQtMPs3c2mjzU/v1LoPJCqO6Fuu/9flg4 MqABmDhMHbo8VBzmfnh4wPy9Fi0cYeLfofrQzVuCGg5wd0pDaVj45UDl66D0 HTR/qkD9zwnVtwQ1XmDhBhOHhdd+tPCCq5uNaq+9NGq87UcLb/ttqO7YP1t7 Ydvslm97vqOE96c9AGkorDM= "], {2, 3, 9, 15, 6}], Polygon3DBox[CompressedData[" 1:eJxTTMoPSmViYGCQA2JmIBYLez5vPfMlm6f/QeC9PYx/B8y/v3/Sl+mzyx+/ tDd7qW/+/tjl/afQxD0g4vbvIOL2hMRh5kD5+6Og6mD2QfXtZwCDBzB9+2H6 0M3rhMrD7IPpm43mDqj59mj2wc2JQtMPs3c2mjzU/v1LoPJCqO6Fuu/9flg4 MqABmDhMHbo8VBzmfnh4wPy9Fi0cYeLfofrQzVuCGg5wd0pDaVj45UDl66D0 HTR/qkD9zwnVtwQ1XmDhBhOHhdd+tPCCq5uNaq+9NGq87UcLb/ttqO7YP1t7 Ydvslm97vqOE96c9AGkorDM= "], {3, 8, 9}], Polygon3DBox[CompressedData[" 1:eJxTTMoPSmViYGCQA2JmIBYLez5vPfMlm6f/QeC9PYx/B8y/v3/Sl+mzyx+/ tDd7qW/+/tjl/afQxD0g4vbvIOL2hMRh5kD5+6Og6mD2QfXtZwCDBzB9+2H6 0M3rhMrD7IPpm43mDqj59mj2wc2JQtMPs3c2mjzU/v1LoPJCqO6Fuu/9flg4 MqABmDhMHbo8VBzmfnh4wPy9Fi0cYeLfofrQzVuCGg5wd0pDaVj45UDl66D0 HTR/qkD9zwnVtwQ1XmDhBhOHhdd+tPCCq5uNaq+9NGq87UcLb/ttqO7YP1t7 Ydvslm97vqOE96c9AGkorDM= "], {4, 10, 11}], Polygon3DBox[CompressedData[" 1:eJxTTMoPSmViYGCQA2JmIBYLez5vPfMlm6f/QeC9PYx/B8y/v3/Sl+mzyx+/ tDd7qW/+/tjl/afQxD0g4vbvIOL2hMRh5kD5+6Og6mD2QfXtZwCDBzB9+2H6 0M3rhMrD7IPpm43mDqj59mj2wc2JQtMPs3c2mjzU/v1LoPJCqO6Fuu/9flg4 MqABmDhMHbo8VBzmfnh4wPy9Fi0cYeLfofrQzVuCGg5wd0pDaVj45UDl66D0 HTR/qkD9zwnVtwQ1XmDhBhOHhdd+tPCCq5uNaq+9NGq87UcLb/ttqO7YP1t7 Ydvslm97vqOE96c9AGkorDM= "], {4, 5, 13, 20, 10}], Polygon3DBox[CompressedData[" 1:eJxTTMoPSmViYGCQA2JmIBYLez5vPfMlm6f/QeC9PYx/B8y/v3/Sl+mzyx+/ tDd7qW/+/tjl/afQxD0g4vbvIOL2hMRh5kD5+6Og6mD2QfXtZwCDBzB9+2H6 0M3rhMrD7IPpm43mDqj59mj2wc2JQtMPs3c2mjzU/v1LoPJCqO6Fuu/9flg4 MqABmDhMHbo8VBzmfnh4wPy9Fi0cYeLfofrQzVuCGg5wd0pDaVj45UDl66D0 HTR/qkD9zwnVtwQ1XmDhBhOHhdd+tPCCq5uNaq+9NGq87UcLb/ttqO7YP1t7 Ydvslm97vqOE96c9AGkorDM= "], {5, 12, 13}], Polygon3DBox[CompressedData[" 1:eJxTTMoPSmViYGCQA2JmIBYLez5vPfMlm6f/QeC9PYx/B8y/v3/Sl+mzyx+/ tDd7qW/+/tjl/afQxD0g4vbvIOL2hMRh5kD5+6Og6mD2QfXtZwCDBzB9+2H6 0M3rhMrD7IPpm43mDqj59mj2wc2JQtMPs3c2mjzU/v1LoPJCqO6Fuu/9flg4 MqABmDhMHbo8VBzmfnh4wPy9Fi0cYeLfofrQzVuCGg5wd0pDaVj45UDl66D0 HTR/qkD9zwnVtwQ1XmDhBhOHhdd+tPCCq5uNaq+9NGq87UcLb/ttqO7YP1t7 Ydvslm97vqOE96c9AGkorDM= "], {14, 23, 16, 7, 6}], Polygon3DBox[CompressedData[" 1:eJxTTMoPSmViYGCQA2JmIBYLez5vPfMlm6f/QeC9PYx/B8y/v3/Sl+mzyx+/ tDd7qW/+/tjl/afQxD0g4vbvIOL2hMRh5kD5+6Og6mD2QfXtZwCDBzB9+2H6 0M3rhMrD7IPpm43mDqj59mj2wc2JQtMPs3c2mjzU/v1LoPJCqO6Fuu/9flg4 MqABmDhMHbo8VBzmfnh4wPy9Fi0cYeLfofrQzVuCGg5wd0pDaVj45UDl66D0 HTR/qkD9zwnVtwQ1XmDhBhOHhdd+tPCCq5uNaq+9NGq87UcLb/ttqO7YP1t7 Ydvslm97vqOE96c9AGkorDM= "], {15, 14, 6}], Polygon3DBox[CompressedData[" 1:eJxTTMoPSmViYGCQA2JmIBYLez5vPfMlm6f/QeC9PYx/B8y/v3/Sl+mzyx+/ tDd7qW/+/tjl/afQxD0g4vbvIOL2hMRh5kD5+6Og6mD2QfXtZwCDBzB9+2H6 0M3rhMrD7IPpm43mDqj59mj2wc2JQtMPs3c2mjzU/v1LoPJCqO6Fuu/9flg4 MqABmDhMHbo8VBzmfnh4wPy9Fi0cYeLfofrQzVuCGg5wd0pDaVj45UDl66D0 HTR/qkD9zwnVtwQ1XmDhBhOHhdd+tPCCq5uNaq+9NGq87UcLb/ttqO7YP1t7 Ydvslm97vqOE96c9AGkorDM= "], {16, 12, 7}], Polygon3DBox[CompressedData[" 1:eJxTTMoPSmViYGCQA2JmIBYLez5vPfMlm6f/QeC9PYx/B8y/v3/Sl+mzyx+/ tDd7qW/+/tjl/afQxD0g4vbvIOL2hMRh5kD5+6Og6mD2QfXtZwCDBzB9+2H6 0M3rhMrD7IPpm43mDqj59mj2wc2JQtMPs3c2mjzU/v1LoPJCqO6Fuu/9flg4 MqABmDhMHbo8VBzmfnh4wPy9Fi0cYeLfofrQzVuCGg5wd0pDaVj45UDl66D0 HTR/qkD9zwnVtwQ1XmDhBhOHhdd+tPCCq5uNaq+9NGq87UcLb/ttqO7YP1t7 Ydvslm97vqOE96c9AGkorDM= "], {17, 26, 18, 9, 8}], Polygon3DBox[CompressedData[" 1:eJxTTMoPSmViYGCQA2JmIBYLez5vPfMlm6f/QeC9PYx/B8y/v3/Sl+mzyx+/ tDd7qW/+/tjl/afQxD0g4vbvIOL2hMRh5kD5+6Og6mD2QfXtZwCDBzB9+2H6 0M3rhMrD7IPpm43mDqj59mj2wc2JQtMPs3c2mjzU/v1LoPJCqO6Fuu/9flg4 MqABmDhMHbo8VBzmfnh4wPy9Fi0cYeLfofrQzVuCGg5wd0pDaVj45UDl66D0 HTR/qkD9zwnVtwQ1XmDhBhOHhdd+tPCCq5uNaq+9NGq87UcLb/ttqO7YP1t7 Ydvslm97vqOE96c9AGkorDM= "], {8, 11, 17}], Polygon3DBox[CompressedData[" 1:eJxTTMoPSmViYGCQA2JmIBYLez5vPfMlm6f/QeC9PYx/B8y/v3/Sl+mzyx+/ tDd7qW/+/tjl/afQxD0g4vbvIOL2hMRh5kD5+6Og6mD2QfXtZwCDBzB9+2H6 0M3rhMrD7IPpm43mDqj59mj2wc2JQtMPs3c2mjzU/v1LoPJCqO6Fuu/9flg4 MqABmDhMHbo8VBzmfnh4wPy9Fi0cYeLfofrQzVuCGg5wd0pDaVj45UDl66D0 HTR/qkD9zwnVtwQ1XmDhBhOHhdd+tPCCq5uNaq+9NGq87UcLb/ttqO7YP1t7 Ydvslm97vqOE96c9AGkorDM= "], {18, 15, 9}], Polygon3DBox[CompressedData[" 1:eJxTTMoPSmViYGCQA2JmIBYLez5vPfMlm6f/QeC9PYx/B8y/v3/Sl+mzyx+/ tDd7qW/+/tjl/afQxD0g4vbvIOL2hMRh5kD5+6Og6mD2QfXtZwCDBzB9+2H6 0M3rhMrD7IPpm43mDqj59mj2wc2JQtMPs3c2mjzU/v1LoPJCqO6Fuu/9flg4 MqABmDhMHbo8VBzmfnh4wPy9Fi0cYeLfofrQzVuCGg5wd0pDaVj45UDl66D0 HTR/qkD9zwnVtwQ1XmDhBhOHhdd+tPCCq5uNaq+9NGq87UcLb/ttqO7YP1t7 Ydvslm97vqOE96c9AGkorDM= "], {19, 25, 17, 11, 10}], Polygon3DBox[CompressedData[" 1:eJxTTMoPSmViYGCQA2JmIBYLez5vPfMlm6f/QeC9PYx/B8y/v3/Sl+mzyx+/ tDd7qW/+/tjl/afQxD0g4vbvIOL2hMRh5kD5+6Og6mD2QfXtZwCDBzB9+2H6 0M3rhMrD7IPpm43mDqj59mj2wc2JQtMPs3c2mjzU/v1LoPJCqO6Fuu/9flg4 MqABmDhMHbo8VBzmfnh4wPy9Fi0cYeLfofrQzVuCGg5wd0pDaVj45UDl66D0 HTR/qkD9zwnVtwQ1XmDhBhOHhdd+tPCCq5uNaq+9NGq87UcLb/ttqO7YP1t7 Ydvslm97vqOE96c9AGkorDM= "], {20, 19, 10}], Polygon3DBox[CompressedData[" 1:eJxTTMoPSmViYGCQA2JmIBYLez5vPfMlm6f/QeC9PYx/B8y/v3/Sl+mzyx+/ tDd7qW/+/tjl/afQxD0g4vbvIOL2hMRh5kD5+6Og6mD2QfXtZwCDBzB9+2H6 0M3rhMrD7IPpm43mDqj59mj2wc2JQtMPs3c2mjzU/v1LoPJCqO6Fuu/9flg4 MqABmDhMHbo8VBzmfnh4wPy9Fi0cYeLfofrQzVuCGg5wd0pDaVj45UDl66D0 HTR/qkD9zwnVtwQ1XmDhBhOHhdd+tPCCq5uNaq+9NGq87UcLb/ttqO7YP1t7 Ydvslm97vqOE96c9AGkorDM= "], {16, 24, 21, 13, 12}], Polygon3DBox[CompressedData[" 1:eJxTTMoPSmViYGCQA2JmIBYLez5vPfMlm6f/QeC9PYx/B8y/v3/Sl+mzyx+/ tDd7qW/+/tjl/afQxD0g4vbvIOL2hMRh5kD5+6Og6mD2QfXtZwCDBzB9+2H6 0M3rhMrD7IPpm43mDqj59mj2wc2JQtMPs3c2mjzU/v1LoPJCqO6Fuu/9flg4 MqABmDhMHbo8VBzmfnh4wPy9Fi0cYeLfofrQzVuCGg5wd0pDaVj45UDl66D0 HTR/qkD9zwnVtwQ1XmDhBhOHhdd+tPCCq5uNaq+9NGq87UcLb/ttqO7YP1t7 Ydvslm97vqOE96c9AGkorDM= "], {21, 20, 13}], Polygon3DBox[CompressedData[" 1:eJxTTMoPSmViYGCQA2JmIBYLez5vPfMlm6f/QeC9PYx/B8y/v3/Sl+mzyx+/ tDd7qW/+/tjl/afQxD0g4vbvIOL2hMRh5kD5+6Og6mD2QfXtZwCDBzB9+2H6 0M3rhMrD7IPpm43mDqj59mj2wc2JQtMPs3c2mjzU/v1LoPJCqO6Fuu/9flg4 MqABmDhMHbo8VBzmfnh4wPy9Fi0cYeLfofrQzVuCGg5wd0pDaVj45UDl66D0 HTR/qkD9zwnVtwQ1XmDhBhOHhdd+tPCCq5uNaq+9NGq87UcLb/ttqO7YP1t7 Ydvslm97vqOE96c9AGkorDM= "], {14, 22, 23}], Polygon3DBox[CompressedData[" 1:eJxTTMoPSmViYGCQA2JmIBYLez5vPfMlm6f/QeC9PYx/B8y/v3/Sl+mzyx+/ tDd7qW/+/tjl/afQxD0g4vbvIOL2hMRh5kD5+6Og6mD2QfXtZwCDBzB9+2H6 0M3rhMrD7IPpm43mDqj59mj2wc2JQtMPs3c2mjzU/v1LoPJCqO6Fuu/9flg4 MqABmDhMHbo8VBzmfnh4wPy9Fi0cYeLfofrQzVuCGg5wd0pDaVj45UDl66D0 HTR/qkD9zwnVtwQ1XmDhBhOHhdd+tPCCq5uNaq+9NGq87UcLb/ttqO7YP1t7 Ydvslm97vqOE96c9AGkorDM= "], {14, 15, 18, 27, 22}], Polygon3DBox[CompressedData[" 1:eJxTTMoPSmViYGCQA2JmIBYLez5vPfMlm6f/QeC9PYx/B8y/v3/Sl+mzyx+/ tDd7qW/+/tjl/afQxD0g4vbvIOL2hMRh5kD5+6Og6mD2QfXtZwCDBzB9+2H6 0M3rhMrD7IPpm43mDqj59mj2wc2JQtMPs3c2mjzU/v1LoPJCqO6Fuu/9flg4 MqABmDhMHbo8VBzmfnh4wPy9Fi0cYeLfofrQzVuCGg5wd0pDaVj45UDl66D0 HTR/qkD9zwnVtwQ1XmDhBhOHhdd+tPCCq5uNaq+9NGq87UcLb/ttqO7YP1t7 Ydvslm97vqOE96c9AGkorDM= "], {16, 23, 24}], Polygon3DBox[CompressedData[" 1:eJxTTMoPSmViYGCQA2JmIBYLez5vPfMlm6f/QeC9PYx/B8y/v3/Sl+mzyx+/ tDd7qW/+/tjl/afQxD0g4vbvIOL2hMRh5kD5+6Og6mD2QfXtZwCDBzB9+2H6 0M3rhMrD7IPpm43mDqj59mj2wc2JQtMPs3c2mjzU/v1LoPJCqO6Fuu/9flg4 MqABmDhMHbo8VBzmfnh4wPy9Fi0cYeLfofrQzVuCGg5wd0pDaVj45UDl66D0 HTR/qkD9zwnVtwQ1XmDhBhOHhdd+tPCCq5uNaq+9NGq87UcLb/ttqO7YP1t7 Ydvslm97vqOE96c9AGkorDM= "], {17, 25, 26}], Polygon3DBox[CompressedData[" 1:eJxTTMoPSmViYGCQA2JmIBYLez5vPfMlm6f/QeC9PYx/B8y/v3/Sl+mzyx+/ tDd7qW/+/tjl/afQxD0g4vbvIOL2hMRh5kD5+6Og6mD2QfXtZwCDBzB9+2H6 0M3rhMrD7IPpm43mDqj59mj2wc2JQtMPs3c2mjzU/v1LoPJCqO6Fuu/9flg4 MqABmDhMHbo8VBzmfnh4wPy9Fi0cYeLfofrQzVuCGg5wd0pDaVj45UDl66D0 HTR/qkD9zwnVtwQ1XmDhBhOHhdd+tPCCq5uNaq+9NGq87UcLb/ttqO7YP1t7 Ydvslm97vqOE96c9AGkorDM= "], {18, 26, 27}], Polygon3DBox[CompressedData[" 1:eJxTTMoPSmViYGCQA2JmIBYLez5vPfMlm6f/QeC9PYx/B8y/v3/Sl+mzyx+/ tDd7qW/+/tjl/afQxD0g4vbvIOL2hMRh5kD5+6Og6mD2QfXtZwCDBzB9+2H6 0M3rhMrD7IPpm43mDqj59mj2wc2JQtMPs3c2mjzU/v1LoPJCqO6Fuu/9flg4 MqABmDhMHbo8VBzmfnh4wPy9Fi0cYeLfofrQzVuCGg5wd0pDaVj45UDl66D0 HTR/qkD9zwnVtwQ1XmDhBhOHhdd+tPCCq5uNaq+9NGq87UcLb/ttqO7YP1t7 Ydvslm97vqOE96c9AGkorDM= "], {28, 25, 19}], Polygon3DBox[CompressedData[" 1:eJxTTMoPSmViYGCQA2JmIBYLez5vPfMlm6f/QeC9PYx/B8y/v3/Sl+mzyx+/ tDd7qW/+/tjl/afQxD0g4vbvIOL2hMRh5kD5+6Og6mD2QfXtZwCDBzB9+2H6 0M3rhMrD7IPpm43mDqj59mj2wc2JQtMPs3c2mjzU/v1LoPJCqO6Fuu/9flg4 MqABmDhMHbo8VBzmfnh4wPy9Fi0cYeLfofrQzVuCGg5wd0pDaVj45UDl66D0 HTR/qkD9zwnVtwQ1XmDhBhOHhdd+tPCCq5uNaq+9NGq87UcLb/ttqO7YP1t7 Ydvslm97vqOE96c9AGkorDM= "], {19, 20, 21, 29, 28}], Polygon3DBox[CompressedData[" 1:eJxTTMoPSmViYGCQA2JmIBYLez5vPfMlm6f/QeC9PYx/B8y/v3/Sl+mzyx+/ tDd7qW/+/tjl/afQxD0g4vbvIOL2hMRh5kD5+6Og6mD2QfXtZwCDBzB9+2H6 0M3rhMrD7IPpm43mDqj59mj2wc2JQtMPs3c2mjzU/v1LoPJCqO6Fuu/9flg4 MqABmDhMHbo8VBzmfnh4wPy9Fi0cYeLfofrQzVuCGg5wd0pDaVj45UDl66D0 HTR/qkD9zwnVtwQ1XmDhBhOHhdd+tPCCq5uNaq+9NGq87UcLb/ttqO7YP1t7 Ydvslm97vqOE96c9AGkorDM= "], {21, 24, 29}], Polygon3DBox[CompressedData[" 1:eJxTTMoPSmViYGCQA2JmIBYLez5vPfMlm6f/QeC9PYx/B8y/v3/Sl+mzyx+/ tDd7qW/+/tjl/afQxD0g4vbvIOL2hMRh5kD5+6Og6mD2QfXtZwCDBzB9+2H6 0M3rhMrD7IPpm43mDqj59mj2wc2JQtMPs3c2mjzU/v1LoPJCqO6Fuu/9flg4 MqABmDhMHbo8VBzmfnh4wPy9Fi0cYeLfofrQzVuCGg5wd0pDaVj45UDl66D0 HTR/qkD9zwnVtwQ1XmDhBhOHhdd+tPCCq5uNaq+9NGq87UcLb/ttqO7YP1t7 Ydvslm97vqOE96c9AGkorDM= "], {30, 29, 24, 23, 22}], Polygon3DBox[CompressedData[" 1:eJxTTMoPSmViYGCQA2JmIBYLez5vPfMlm6f/QeC9PYx/B8y/v3/Sl+mzyx+/ tDd7qW/+/tjl/afQxD0g4vbvIOL2hMRh5kD5+6Og6mD2QfXtZwCDBzB9+2H6 0M3rhMrD7IPpm43mDqj59mj2wc2JQtMPs3c2mjzU/v1LoPJCqO6Fuu/9flg4 MqABmDhMHbo8VBzmfnh4wPy9Fi0cYeLfofrQzVuCGg5wd0pDaVj45UDl66D0 HTR/qkD9zwnVtwQ1XmDhBhOHhdd+tPCCq5uNaq+9NGq87UcLb/ttqO7YP1t7 Ydvslm97vqOE96c9AGkorDM= "], {22, 27, 30}], Polygon3DBox[CompressedData[" 1:eJxTTMoPSmViYGCQA2JmIBYLez5vPfMlm6f/QeC9PYx/B8y/v3/Sl+mzyx+/ tDd7qW/+/tjl/afQxD0g4vbvIOL2hMRh5kD5+6Og6mD2QfXtZwCDBzB9+2H6 0M3rhMrD7IPpm43mDqj59mj2wc2JQtMPs3c2mjzU/v1LoPJCqO6Fuu/9flg4 MqABmDhMHbo8VBzmfnh4wPy9Fi0cYeLfofrQzVuCGg5wd0pDaVj45UDl66D0 HTR/qkD9zwnVtwQ1XmDhBhOHhdd+tPCCq5uNaq+9NGq87UcLb/ttqO7YP1t7 Ydvslm97vqOE96c9AGkorDM= "], {28, 30, 27, 26, 25}], Polygon3DBox[CompressedData[" 1:eJxTTMoPSmViYGCQA2JmIBYLez5vPfMlm6f/QeC9PYx/B8y/v3/Sl+mzyx+/ tDd7qW/+/tjl/afQxD0g4vbvIOL2hMRh5kD5+6Og6mD2QfXtZwCDBzB9+2H6 0M3rhMrD7IPpm43mDqj59mj2wc2JQtMPs3c2mjzU/v1LoPJCqO6Fuu/9flg4 MqABmDhMHbo8VBzmfnh4wPy9Fi0cYeLfofrQzVuCGg5wd0pDaVj45UDl66D0 HTR/qkD9zwnVtwQ1XmDhBhOHhdd+tPCCq5uNaq+9NGq87UcLb/ttqO7YP1t7 Ydvslm97vqOE96c9AGkorDM= "], {28, 29, 30}]}, Boxed->False]}], "}"}]], "Output", CellLabel-> "Out[228]=",ExpressionUUID->"9161c482-7076-4391-9e41-0ca1fd3c91f5"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Maeder", "Subsection",ExpressionUUID->"90320632-00c2-438b-afed-d63c1d2236dc"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"MaederUniformName", "[", RowBox[{"UniformPolyhedronIndex", "[", RowBox[{"stdname", ",", "\"\\""}], "]"}], "]"}]], "Input", CellLabel-> "In[229]:=",ExpressionUUID->"1a283859-2199-4dbe-ba97-fc80a9d8575a"], Cell[BoxData["\<\"icosidodecahedron\"\>"], "Output", CellLabel-> "Out[229]=",ExpressionUUID->"d4353dbd-a811-49a0-a63e-a5d5128cf7ca"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"wythoff", "=", RowBox[{"MaederWythoffSymbol", "[", RowBox[{"UniformPolyhedronIndex", "[", RowBox[{"stdname", ",", "\"\\""}], "]"}], "]"}]}]], "Input", CellLabel-> "In[230]:=",ExpressionUUID->"c92cfb33-9fb6-476c-96b3-f3f47707d6a2"], Cell[BoxData[ InterpretationBox["\<\"\\!\\(\\*StyleBox[\\\"2\\\", \ Rule[ShowStringCharacters, True], Rule[NumberMarks, \ True]]\\)|\\!\\(\\*StyleBox[\\\"3\\\", Rule[ShowStringCharacters, True], \ Rule[NumberMarks, True]]\\) \\!\\(\\*StyleBox[\\\"5\\\", \ Rule[ShowStringCharacters, True], Rule[NumberMarks, True]]\\)\"\>", StringForm["`1`|`2` `3`", InputForm[2], InputForm[3], InputForm[5]], Editable->False]], "Output", CellLabel-> "Out[230]=",ExpressionUUID->"669bf410-5b45-4208-96a3-5918d60b4bea"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"With", "[", RowBox[{ RowBox[{"{", RowBox[{"n", "=", RowBox[{"UniformPolyhedronIndex", "[", RowBox[{"stdname", ",", "\"\\""}], "]"}]}], "}"}], ",", RowBox[{"Import", "[", RowBox[{ RowBox[{"\"\\"", "<>", RowBox[{"If", "[", RowBox[{ RowBox[{"n", "<", "10"}], ",", "\"\<0\>\"", ",", "\"\<\>\""}], "]"}], "<>", RowBox[{"ToString", "[", "n", "]"}], "<>", "\"\<.html\>\""}], ",", "\"\\""}], "]"}]}], "]"}], "[", RowBox[{"[", "1", "]"}], "]"}]], "Input", CellLabel-> "In[231]:=",ExpressionUUID->"75b6968c-fdb3-4ffc-839e-12f8ed752c65"], Cell[BoxData[ GraphicsBox[ TagBox[RasterBox[CompressedData[" 1:eJzsvcuPXVl25neTWQbabakqHwUNhJoI6KEGttEF2ILRgAFPPKgW0IaAbhgS 3F2ulwS0G5IA24MsJsl4B8kqVXngidBwoyqz8tWT8kBOZjCeJCP5jiCDzKp/ 5jj2Ped3929/90S1HiUlg3kHm/c89jn38sb91vrWt9Ze53f+zf/2L759YTKZ /Nk/Ov3nX/zr//2//9M//df/5//02unOH/zbP/ved/7tt/7X//Hf/vm3vvOt P/1v/s2rpwcnr/TjS6cv29vbi7EYi7EYi7EYi7EYi7EYi7EYi7EYi7EYi7EY i7EYi7EYi7EYi7EYi7EYi7EYi7EYi7EYi7EYi7EYi7EYi7EYi7EYi/GCj5s3 b3Y/3fy/uvJaxuf9eRZjMRbj738UrH/wH97r/ttX/qzbn0ym44Ovf737f/74 T7r/7513FvZgMRbjJRz4+9/52kY3mfyg+2jyZrd3iv2d07E32IEy7r/++tQe FFuwsAeLsRjne+Dve9z/8HT8Rbc5+a0p1g8HzN8abMBNHcMWlPH+N77R/fv/ 4+LMHnze/6fFWIzF+NVjHvf9+HeT/7o7GHAO5m8Nr3vD9q2BF+zruLmBbcHC HizGYrw4Y8zfF75fXon5D4TvnRj7GtiBm8M1u3HescLCFizGYnx+o8X9Xwzj x6fjR1P8//YrVxo/v6/XwwHb5gNwgcPBBuwO+7vDuDkcP9B9Spyw0BEXYzH+ 4Qa4/5M/uDT4eXz+j4b969NjRe+7GX79QBzgIGwDc/Z0HBuwL1uwJxuxpzEW K3ze39ViLMbLMvCv1d//UPj/4eD7e79/efJfzfz9oWJ/dID9wPThgHl8ve0A +D8crsdO3NL+zUkbJ5BjLPxgwQ0WYzH+9qP19z/U+IvB1/9Fg/9/NflXM799 IFyD8ZvC7aH0P2zFrmJ/X8/+ga7hHugLtzRvT69wg0WssBiL8dcb87gH7z8a 9ss2mt+16QD7+O8d4REegD/fEZb3Aru2HcT9h5NWIyBuwD7s6Z7oBc45MmfK K/7xV2c5xoUtWIzFaEfBQ497MH99wPmPhmG/39uDwvv3hMNbgT/yAJnzuykc 78R58wLusSc8w/3hBa4tsC3hfeAK6AvMW3CDxViM7Unx97Vmr2D7qnz+DwaO b9z3tqFg3xi0LmeOnzl//LSxybHkA+YT5AXN+Z03RB/k83C/g3gf5xL2tI2O uLAFi/FFGPj7qu2B9x9p+6ryfD8YOH+f4//eP/pfTrd/3n39P9uYG+VcGUUT ZJTcQBnJy+3bzfWJ750byLoBbIhjB64zx4A32DaBf9cbuAZpoSMuxss4iO+r vwfr5PKviQeU7c3hfK/zl9q+h1/60hTfX/rSQffqq4x9be8N+4zcL2N3+orN KDalaAlpN5xXGPPbbB8I18n3nXu0bUCjhGO4LgEeUXjBYq3CYpz3wdqcmr8D 5z9utPyq8znP98MZ7st4/OqrA/73A/c7A64PhPG9Gdb789uac9BduLB3OvZP x86wzdgdho/tTI8V3lFGsRnFdozZjf/7P//6lG/wal+ftUnOS5or3JrM845F jnExztNoeT7Y/qFswHX5f+f6rk6PF9wX/IB9RsFdj/9bp+NQmN8W7u377wzn 9nTsYMA+A9xvn45y7tZwvBy7OcN/P/Zjv7cfr7yyO4ydM163p3YDvsHImAW7 sSuusBs2ZG+y0BEX48Ucba3uD+Tf4fm8bkjbvzazAwUf4P7eMB7qtXD/Hv8F 17cHbN+Rv98bju8N53YGW7EnHrAjrMMDtgesbwv7B8L6lrjCrra3h1FswNbp ONDr9jBuno69mR2odmFbY0dz22OOVWw/sBvltdja8r2X8Xn/BhbjizfmcQ+m 07//qGvreirur0z+yzl/b+y3+N8bcA327wy+/fYwDgd7sKPXWzO70OO34PyO fPqObMAt2YA92QFsA9xgfzbnlVf2B9zvDHjfH7Du1x1h/ZNhYBf2h/1t2YmP h/m2C9iJHZ3rR/n+F1xgMf6hRtt745p8/rWuzeNvBu5rzq9wffv5Mu6exvrE /Een4/DVC9NamoL9L30JLN8eXreHOGBLsQDHbSvQCMHyrQG7ZdwOjG8PPh/s 3xnGjmzC7cEG3JrOrZjdFd4PBmzeGLC9p9ebusbbe8PYGbjEljjDnsbHwzU3 hut7+0I+8fP+bSzGyzvm/X369OuDHfixzv24c16PGP/+Kb4fDRgv2C94B/dg v9iCEhtX/39LfN+2gDiAbeKA29q/rXh/S/4cf08M4LjA+1yHfejv0WNySzH/ lnzz9mAL8Pf7nbWBajNsD/DvXLc/Ei/g/7EBW6ff7fbCBizG38vIXluV6/9Y +CafT2x/bdjvOUGJXf/fyT+e4v6uBlg35uEA92b4vzUdPb7R9m8PrweKCXal 9++GbdiTH2eg8+0Mfh2M+zhage0Fxw66+Zgen2wsw/MPhN3druoFW13r8zmP 3eAee5pPHLEzfZ1MPpl+x/RA/bx/M4tx/sd4z50fDLwef381eP4PZSP6ut0S 498d/P39wc+D/4fy/db+joZ9cv89/g+E+dsD5nfE950XOJD/vz3gH21ve8Dw wYB3cgPW/bERmRe82eiHNaYHz+B4T/g8EE+4IZ5wa7AL8P6dYR/tABuCXYEr OE6oNmEyuTn9vhY2YDH+LmN+bQ41uvTfuK5anerj67kfT3Ff/NH9AfMPCtaH AQe4r3g/dX+2yf1/6Uvk9ckD3JK27xqA3UETuC3ff2fA/94Qt9+WHYDjp7/H 52+FDcAm7Cj+P4h4nrh/Z4jXwStxAfuf6LotHbsx7BMXEFMQO8ANbg6v/fnJ ZGdaq/CXX/vaNEf4ef+OFuN8jfn43rl6r9P5gexB+v6az3sgn393sAHYA+xA 4fzwgIcjNqDP/d+S/ycGYDtjfeqDqBPY7mr+H60fvu8aAHP8LdmHHZ2zXbg1 Pdf7cGMTzB7EtjGPFpj+HJ/unCC2YKerdoAYAC5BDLA9HcXuFt10wQEW468z 5nvu/KCrWp578FyVHXCe79oM9/9+8pUpro8GzD/WNvH+UfCAowH/dwce4Dxg 8Wc9/s3x0QLuDDjfly1AH2AeWsHtGWYrj7f2h493bEBcACfALrgWAN9P/v9W VzW6g65qAdsjWN8TpvHrbMMhPunaPAG6IO/hPMHuYAN2pjHXwgYsxq8a4/7+ hyO+HX6/KV2vcoLC9cH9wwHTxa8/Fvc/kv+/K5vwKHJ+j7VfXl955a8U/x8q p3dbOX70PmwEOQJi/z5uqNydgebnOP+mdH5qAvZkBzIeMC6t9xGb4+Ot198U b9jWdQzjG36fsQBxhXWG7akOOJn0dcv/cagZXNiAxchR/T01uT8SttcHX/8j 2YQfaGAfel3/3oUL3aen49GAZwac/+5I3O+B/x8bfeyPrx+LAXaEfXBPXfCu 8gT7Xa3xdezvusADbe/Hcdf/EjPsDhrAWG4P3wyWyf2Tz3OO0Bq/8wnmBub9 nruj9/1kqgH2Y2fKx4oNKDXDCxuwGGW0uTz31oTrw/uxC3CA653z+nD9gv0y 7peR2h7+XbbAGuADxQdj2l9b+4ePP5Bfp86f89QA2Q5wjNod1/GR58efE+Nj B8gZ7ugaawS9nljr/g6Eb9f9GPPODWZdnzkCvH9XmL8h3Nfan8oH0AHhAdvT OKDYgEVtwGLM1+qCaXj9j2UP4PvYgt4GULNbMH/3dByejtvF91+4UPm8/D48 4Eg24YFswMPAvmsASp179f8HXc31wQduyy5QE+ScP2sB9gb8U/vndT0cRxvY 71rNzzkA6wTYCfz/rrDoWqBPulazdz7Qej7z2QbrrgEgt4gt+KRr6wC2FQNs D+PnUzu9sAFf3DFfv5Nr8sA7dTzo/uh912b5PPz9vQH7bH864N+xfnL/x8M2 GiA8wXW/2Iqy3df+UPuLz88aX6/334uxK3vhul9qecE+cX3W/W1pnu2F7cK+ MGn+D3e374cLfNK1OT38vPOE8ATy+76/OQEcgs/R24uK/93p363gv4xFbcAX a7Q+/6ow72PuzXFdx/oan1Kze3fg+OX1wbD9aNj+dBiFBxT/7bwf3P+R7EHG /tQB5LqfPvd/a+j9Ae5zra/7AcAPdnS8rhMGr7WOH+y7/g/9j5j/QPMOhP+t 2X7l4XvC4X7Xanhgdls4dp0fuj68/+Ou6oTmFdT/f6x7YkuwCfunf7etYXwy fS024MNJ35t0URvw8o/aYxOuX315zd/h968K+5zvuX6p2bW/vy1/X16PZAPQ /cjp82pOQHxA7p91AI7953P/h11d8+eaf+f7b8suGP/EAbe7lsu7zoeYAKxT 72+d/6aO7XfW//sYIOv58OFweWuEaH/UCDB/Tzjm2qwLwJ7YJmzF/s2p3y+5 kz4XsNvEAQsb8PKONqdHfA/2vVbH+Pfa3euzml10vYfC/YPBDjwUF4AblPPE 9/eFd3S+u+ICrgt69Oq8/l/xj/5X83gt9lnzuxs+H22QWGG7q3V/9vtwgW1h mrpg5iTeqQuquYK2dn+va2v93Rdgq2vjA+ajFxIr3BK23WvE6wJcb+wag95u 9PWAxAJbszgAHrCIA16u0fp89Hvq8zfk34n94fy1zg+uf+/CPNdn3Nb5e/D+ 4dzDAetg37qfY3/XBT+Q/x/r+1H1v0PZAPf3YO3PLeEfPRDb4fgfv856f/t0 1gWh96EHoA8SQ7guyLU++HNi+e2urQMgH7gf+Ab/6PhoBOiAN3SP1Ay2dO9a J9hjf2uG/zLK33daFzDpn2+4sAHnf8zX8YBzc3/X6Vvf6zW/We3egOVP5edv D+NTvR4OtuHeMIfrHNNbA8zc/13ZhMevzvP/h43/d33/vnw9a4B9Hq3QfQB3 B/yT098Tdqnlc0yAbUATtO6H/bila28Ii6wHAJ/E7Ps65ppAc3fz/v2u5fzE /GgEzP14sA37XasB1HXBtSagzw1+dIr9jwY9cGEDzveoz8w7ay2O63iyD0/f Z7fU6t+Tn78/4t/vyQ5gAx4M84+E/4fh2xsfH8fJAVArON/3Z1/6H1z+UBqA c4Gu+zuQLaD+lxzg7dAAree75t+6v2uGOVZj/14DBMvGvmv9nNeHx8MTnBu8 qeG1RPCINtdXr2WdAO+7P8QA5gH9a7Gr5AMW9UHnc1Su/8Pw6fTRpjcP9fo/ 1v4PZzW79155pbtzOvD1+PW7yuvfl234VNg3P4AHPJSfB+ePYn+25id0wHuq A665P+J/a3p7sgWO+41/rwOuNYM9bu+I52dPUHCe637w+6wBcC2Qe3y5Rhff 7Vxe9vTItUPmCI4fvP7nZlyXawr8vmB/p6t1ATdnWgBcYFEbcH5GuzYXjm8N j/X51vf/YmoT6Ks/1fVPcf9wGOj5h9Lz7qrGB+zfE9axA/eG8/cG/m+d7758 PFiHC5ALoPeH4/+Kf+J/evy5ttc1P+CcfmDuFVDXAc33+z7o5n07sX/2/HX+ b2/OJlTsee0+df7E+TeF87H+ftb5XP/vHAD3sg7gvKLXBN0I/r872yYfwFjY gBd7tP21HdcTy2MHHP9fndkJYvy7p3h/dDoK/kvf+U9PX28L77dlC6wDoP9j Gz4dXtEEb3NOGoB1f/y/a4CZk2sAWvzvdG39n/t6HnSt7sc884C6drBdx4uu 5xjfnH9HtsDPBfA1WzMbUPV4a3SfdHVNINqAc3jZ/8+2A+wfDPzePp738nHn EGrNQfH9fU3AJ12tCbjZxAEfLeqDXujR5vSI87PP1qZ8PfNUsztgnlHswKfD K/k8dAB4vvfZBud5DZrBbfEA9/5Izu9cIGt/4QHu+zO//se9AKkJ8nrA3div a4Ta9X43FQfcEqfn+Jaw79phP0ek1gi2Nb3m787T2+9njiDX/YB7x/qc/1jv gS2hLvhGV+uDvC4Y7O/ObIBrAxe1AS/eqHG+c3c/GnCOPXB+n9qe+gytuwPG 7wx4J+a/Pxy/O/B/NDz7dOJ75/mxB4eyBUfKA4Bv9/FluO+ndcBcB1i1/x3l /1zzB8bdBwR7sNu1uQJsgGN/9/1x3z+vBTIvcI7gdteuCaQXmGtynbff6tra H8/x2j/3AnKMnzn+vZHrqSs2b6g6ZF0TtNPVnGA5/vPZGiG0AJ5B9nn/9r/I Y76O57owz1od1u1Qt1/7c9Fv81Nh/N7A+x8O2D8c7MGjwR48FN7h++h/5P7v XWj1QM4/EP7Btmv/HOt7LfBDcQOvBej7fuzPNMAa6/sV/Htt4K5shHsB93zB dbvzz/3y2p+bwrb7AmY/gMoJ2r4fB13rl9v6vPG+fmiEW3EOfT/XAudzAlwj TG6w1gTUWkCvD+rXCJkDLHICnz/2a4yPz/faHNfvuD9Hj/tpPm/A++Hwen/A ennW5EzzH16xDbMafuGbvB+1QODfvJ+8gTXAx6/Ox/zu/+FY4JHOtbl/9H+w TVyPDsAgBgD7fi4IfIA1ALe6dr0f9f5eGwwnID+wFefcM9SagDGa/fxviR+g 77kvKHbD6/vw4cT7flaIawaIEXLtcdsrjPx/6oDlWN+zra8NpEZwURvwD4/7 1ue7Fxe+Hi5wrZmDtoe/vy/cHw6v99H6h2PMezRsH15oY/mM8+EE9+Tvqf1/ IPsA13fcX/bBOTU/1v/g/6z/pednqf3v83/0/gHv1P05JtiOV9cCkf93HU/2 +7TGR07AtcK5JnC7a3MHyffBJBgGk37+D3W+1A1Q/+PaoY91LT0Csr/Qx3of 1xJgTzj+cVdrgneG/V4LIA74j7IBCx7wD4f96vPBt/ttXQ3+32v/jvE/HfR8 fPuner2v10fiBXcHmzCNEeTbbwf+HxnfigHuxuusJnDA+hTPp6+3L9Scv+t+ shdIu+73cPba5vsOhHM/F4Btz3U8kHG/ub97Ax7E605c4/VCzOv5Qot//DDx O3V6+GjOO1bI9YHMh1O4vsA5QOcUWSPo/uC1hrDiH//f5gM+lA1Y1Ab8/eO+ f1a21+J7ra7X5rXr9OD6xnXh9/j6O6HzO9a/r3GHOEC6P1rAXfl4x/nECdiK hxfa3CGavrn93fD9aAMZK/R9Pw6Ef6/33e1qb1/y+s4JZh9AawF3hF1rea7n w9+7P6ifC+y63524Nnv2O4e/o/3s3+W+wWk7sqeY64luxr3MHRwPMLJu+OMm Fij7/W+q4v+DISewyAv++sd4zb6H8/q1Rydc37H94eDHi/9/iJ437FPnc6i8 P9oAMUA57/o+9P1HI5ogduDBoPvj+9EDjy7UXmD29+4Dji2wBvig8f/k/lz/ 47W+O7IJ7FPra3vhPmDtmr35+P1m1z7fw35+t2tzhOb/aQO8js8agNcAuH7P uQHnCtz72z2B3ReEesKM970eiGu4f/+ehQP0NmBLmuBWEwd8OHCARV7w1zfa fjzk7Vinu9nVPP51jR/UZ+kol4f/fhTbd2QXnPcj54fuhw34dPD/5P7uC+fm AK4JPAotwLoguT7X+YNz9wI50j7xQMX/rvg/8b/7+xwMGoBr/eAC6ATEBZw3 n8/aPq8NcI8g1wtQ++M+4M4jOi+XPbvB/35X9fxt4dO9fc0TtmPubmw7f0De 388byD5BcH7GVmiCP5+rDaSX8IIH/N1G9fnuw7Ep7MP5qdurXN84vivfTYx/ Nwb2gTmFCxjz2IFHw9zMAeLT4QG3L7S+n2OPZBfoDWJtj7XAuQ4QW9D0ATod te/Hfld7/3stb9oA1/s4F4AeYJ3Aun3W8rju/5b23f/POUI/N6g+M2S+Lh/9 f0/HsQUZG5gDbGsfe4GOSC2hawGzJtjPF3CPsl5D7GsBqAvabuxA1gW9Lxuw wP/ffLS1u/j09a4+R4v6/bXOOX168BCj31Msf0/7t4a4H0yj/5sPPBTuqQF4 pPP3hhjgrrBODcCngXHmwRUOL7TrgR5IA4Dn8zwQ5wO9Jhh70OLf/D97+xXf vyUf715g+azw2kNk/pmeGeOPxfrZJwDbYU0Q/u8cv2v2XANIrE9tsPOFfj5Q 3gv932v/4AvOAdjWMKeNHdp6IG/3/YIK1/xo0tYHf7iwAX9j3Fefbw0/n6vz o87P1XStftbuffpKzeOZA1jzI8+PTbinOdiKh6+0tUDTV8XxaHro/bYLjy60 dYHwgUNd415fd8UF7gYfcL/Aiv+DJgdYdTzX9PmZQO4H4GcCuF9QX0M8/xxf P+ObGqGtkWN+LvC29tEMiBng2fvdvP7u9QDMsf/f62rcb9/t+t+8H1oBNsD1 AO5DmuuMaw1Q1QG2Z3FA+TsQ/39ITcCib8DfCPtt7W7m7on5WcdXe2/dPf2O D4e1OcY/uXp4PL7+4Su1vg98fyp7cCiMYzvuv9LmBKbvIU5/70LL/8ntPdC+ Y3+4wKxXmPR+1wM8CMy7Xqicp+aftf+9//ezfsB39v6lLgAN0L2BmGd/XmzB He1vC9cZJzgX6NpA1wzUdYM9xq3tbcW21+5Q6w/OrfV7bY/jAfoEWfejjsD3 NU/Y0bX1WK0J3FI+sM8J8gyR9ydtXcCiRvBX4378OZrrXe29y7M0ah1/ibnA /aHwjw1I/Q6c49PhAneEbV9T5lgnLPuuDaIGwDV+5P+97t8xgNcDOjcw5QHS 9B+N+PzsBYj/b30/9b/O72e9Xz4bJPP/fhaAa/ju/Ccw7ed8uHaYua4fcj3x WD7PvftS83M+3z19wTE6n/ME1Pxknm++9r/lFLkW6cYs9zffK6TfLvUlHwX2 Pxi2F7UB7Wj1vTZv1z5Dr2r7xv1dDfB/MOAUv/3wlTZ3T86/YHuajxtwT7z/ UPi3Juh1QNQKOedHHQCxPtufxhzOES/MdIHB52c/0KwB9nrgkmeqdb+3urb+ 18/9Jg+43fj2tjeAe4DVNYPzMT/xPrrfVlfX+/nZwO4XRlxwRzogawa9fs+6 O7yA9QFez+u6YPBpvr/dtTzBOcAbuvZGV3sO+DM4J8j8ut6AZ4bV9YE3u9pD vM8HvC/ss13swiIvmD7/WuDcfTqudf9k8gfT8S8n/3T6OpmsTm3sNKd/+n3e kv93DT/+Gsyy73zAI+EaTOPbmQsHoA6QueQMjoTzB4r5wb17gYz1AP70QpsH oPc3OCc3aOxjJ9p1/+j/h4Hj1Pmc70cnNEdwT1Brd5nb2xEnMNapDeQ69w3y 8a3mutrX3/jLeiBwat9uvp7re10H7GeBUE/o/h/YFecd/TmsLX7cVd9f+wQR C5APwO+/N2yz/0W2AfM1++Tu357hvIzvnH5P3x1G2f7e6Shzes1/dfaMnaL3 F///YKjlpZ4X3n8gXcA6YKPjC+f3Xml1AHDOvLuyBeV+xO/u80PcT68/8H4k HZA1A2gHxABzz/rQts8X/Pe1f7fE/43/rO3BBmx3VeOzTpjPDN/uyBO2ej92 wP1A3AfEsT/rBm6E/SCmqJphxR82wLkAx/P7DQ7b2kFriDc0z/1FXddzoPua R7j+2DUGtQdR7/+JAXa133MB6oLeH3CP/3/vC8oD2jqet2d+/Z9Nfms6wDnj 26fjW8J+sQkF9z3+l0/HyrC/2vTp+lTYvP9Kqwc4l+dBbhCN4N4rbcxgreDh Ky13cE3fwwHjj2QPjgabwLM/XDdInSDz3AfMfQB9DF2gjLbvh/t/wv+9zt+9 wOkR4ljAfQFaHjD/PB/j3nx/v6tc3zUAYJ1cgesC/EwQx/Nev0fOz+t+sh+Y 43XXDDpv4BrBm3GN7QrcwT0GqgbAwO/XdUG2Cz+vfYOH13eH1/e+YHnBYuuK 9vHfTf6HKY7/58mrU3yD8T8etr8z7H97OPbH4gCvTb53+p0uDZjndV3bvW0o nIC1fdb1bQfS1zPHGh92BJxjO1wvMLUFF9oaP/T9exdaHdDrBL0O6FPZjLuv tjWAd+XzzQfQCsfxf9jV+h7zANb2ut7vrLyg64fy2d/u+ZnP/MEOuPbXvUJc A8g1rgWgfxf4cy4Pnn8z8Gu937X8xrlrCmwLqAHwGuDsI5I6YK0R9vPDXRPQ 24Od2TrhDzTgAF+k+qCS/zS+y/jmgO/vDNu8YhO+q/nV94P9lWEsBf45tzb9 7ostcE4APFvXcw6A9QCfCvfWDKZ8/pW2Rsi1/O7/6bo/sA8HgBNgOzwX/Y/8 PxoAMb+fEzRf+7M7+H/reu4FhB6407U5QvcFTa7gZ3ubAxAL+Pl/212r9ft4 1gC6HxB9gcfW6Xgt305gGBtADQ++Hr/tWl/3AXC8gK6HHaDewLbHNcGOC/6q q7mA7S77BpdBPgDMvxd64MteG1D+b3/42787xfM3hfVvCevfG459Vzbge8Pr d5u4f33g/kvDNv5/TWO9iQ3KgBPkWgBw7R4fXvvP+awX4th0zoXa43+m40nz 95r/uxfaPCDzDzXXa/t4BnD2/sIG9H1/DkIDZA1gXcff9veBHxj720M8YO2/ 6gX20XX9737X6v2p+/GcUHKAjgsyJujrB9vcP3i2bocdyN6hyf9dR+T1vr5P Phcw+4FyzvwAvcE9Bq3/g3trhH0+4KMB9x9pvP8F4ADl/0YcTyz/XXF7+P8f x/YfD3NLzNDjeFl4p2f/ijAP3ldkCzZmemGZY80wfTu1gq4RBONeM5R1gfcH DkDdn7GOzocOOFb3wzME0A7p+fV4BPPuA/Rwhn9qf3YUAzjGdx0Q/t99wegR 5DpArweknp/1PnD7/a6N/Xd0fFuvBzoHX3As4DVG5PD9XB8/B8DavDV51wK7 r5DX8mWNsfsNZE/wuua3v9+erncP4VpD0MYB5gK1LmjWM3DSrhd8mbXAovnB +c39ifGxCz6GjfjOzPcb/xuB9aXh3Ebogmwzf0OcoecERaP9VHjOHkBe73P/ lfk6QOIAfLz7AMLnHwrz1Ae6NzD4n60PfLX2/fMzQbAJzg8S7/Pcr/k1APhz 5/6p8fPaAD8HGL6w3cxrOQBr/w8C567t97q/LQ16iI31EELf81qgA+F4W/h0 XOA1/WiF5PbRBvw8AOM3fbxthDUI7AuaQeYFqQnenWG/P1afIeL1AQX7P5u8 /LWBxP7J/x33f0+4/7ZsRPX9a8L78jCMf3iBsW9+sCmbsaHr12Y1xLl+IPMD HJvi9JVaE3B/iAFm/F3+3M/+BPfE+tYDySEU+4Df91ogH0MD6Gt/wPyBeAD4 tx9n+7bswZ2ujfeJA8gPkv/reUPFq+MBdD1zA/cEvdnV54ZhD+zz/RyRen68 ttdr+8nfH3R+dkerF5A3dPzgOMC9gXL9sDkCuCcfYV3A77kln/9JV+sBiAm2 5tYJkwt8WWOAaZ3P6f/Ncf43JzWvl7aAPACxQe/7wTRxvrW+5eHYkvZXBntA DADWWT+IbYAL1G3rBNb6qRkkHjiUXch1gIfC/P3AOjr/Q9kI9wmf1Qi92j4L xJyfeoDa9+egG88BeI0PuT50QWr9eU6QewG7Byixgut4Mh/gba//pS7Q64aw IczBHvh5we4FAk6t75mve32v+33c7OqagtTuc50gvn+7m7cxzv19olfiEPKJ tUdZxf/2wAH2O+qEiAPyOSIva00Q2t83A/f4fHjB98L3l+1SE1Dx7bjeHN/x APaB/TVhnLEp+7Ci+/qatUYnsCbgdcT3ZQt49g+8nxyfa4Kp/bknG+HnhMMN pte8WnuAPgo+ABfoa/9uNTF/G/97rb+xn2t/3Rsk1//DC/DvfpbXQdf6c9cA utYPH585APjDTd1je8oX2no84zzXALoGwP0BXC+02837fXQ8+/xcA+QcYOYl 3EeUz0HfUfcJgAdULYA44APlAj56SWMAYn+wn5rfd4bXsdi/z/ej9S8Lw+b2 4JZzYN66X1srVLHv+63rfsQYvS0wJ3DvkIfSBvDn+Hqv7/U6wNtxnNw/dQLY DHr7PHq1Xevntf997t9r/3bVBwj8mge4HsB9P/fjuJ8XVGuEaqxP3b57+WZ9 YD4neK9r44X6HMD2uQEcTw4A5vDpXuPj/kA72vczvplPnHBLc9AYwPhY3tGf w7zBdYZ1vVLNBWAL3C+gPkuQ9UEvaz1QsWnk8r4pbOPvyQG6LuC7M98PVq8I j+T9Uw9YGeZRC+DzG+H3N+Ney13VB1Z0Pb3F1mecwM8Cpf5n1l9AGj4Y9zO/ iA3QAv1McPjBLFZ4teqAYz1/5nP/86/teh44AJyf9f255sfnmL89swtV88ue n+7/7+d8ucYXzS+fFYoe6LUF+Hzr9H62lzk7mDZn8Hqd7dh3jwCfc6ywo/uM 5RGtJ8JLdpp9Pzus6oC9XaBfBTbgZewT4tif3P53hPFvyx7AB4qNKLWBve/H ny91NUZ3fn9d22vCLHhHJ3TcAAfY1Fzwbl3QOYY2f5A5RDRAP+Pb63zd+5tn f4D1rBVAOzy60D73133/4QL1mR/u/X/Q1R4g+H0w7OcCEfOT97cOuBfzsQnO 47kvqOv+cn0Q+64Vxo6QR3Q9ofuLwr/zOYF+/ofjeOv67hOOXuDtG8Irx+z/ 3XPM+Ce/yHX0ByAnABfoP0tbF9RvUy9UfIk5QHl9mfoFEvu7ht8aX9YCEBv0 tX7GN9i1vscxhv0356wBcvyqtq0LbHRt3LAWx1dkM+pnazhB6Hjk9+4K+8b6 Pc2zVug8oNcDg/2jOf9f+3702KcGEC5/IF/uNQH0CD0U1rNXyLaud1/f7AOQ Gv5taQPp+9H6qAuybtDmCudx6Od+uj7HPb7MEVIfyHOOEawf5ppi1wBiKz6J a7x2AW2AdQE5+poh1gihA7xMtYBFz/QaHvy/a3u+KVtAfFDz/Y774fGu/bON MPbtr1Pfg/NbO/T9rRv4nG1CahCVExROB/5d14MGSFxwX/bgU+27VtD9wFgP 4Jrgmvu/O5L/O4wcoOP8Mra6tv7X8/LZYbV3eK3nIwa4I39PHJDxPzHA2PXu G5z1w9bc/NyvtAGO1XMNIfUAWyPYtLa3H/f2e4LvT+KaT+I+XOd1QtviAe3z xMs2PcNYF1Ryui8L/kvs75pe/D4xP3h3XVD1/cuBV+J/7MFq1/pqYgRrfc4V cp8NnccGYDOIB6wXWD9IjdH8gnv0NoX+BNYCXePnOoBPZQv86meAUgN0JE2g 1f7gADwDZGfgAKwFdj6A/N4t4d1rgFn7t63tOzN7UTm9NUHXAGROgPjefcPd F+R213IJ9xHZ79r1QH6+j5/ZvSPMsX0gTLq2h/pi8373CPPav7NyBe4r7hjE HKDWENf64N7W+DlCzgdMbcBLgP/yf7D2hw1wrQ/xPtivvj/X9GSNP/jPOqAx ruAcn69zzsB4t76QGuBK13KGXHOwNndfOAHYz9yf6wPSTvBcINf8sd3X/twS B/Dzv3gOuPv+EAd43S81gds6D/93znCnsRUVx7n2H7wTH2Tsv6NzXkO0383X FuwJ/+Tb6dPjmgDn5HKNkPOHXvdLb1/uk/qese41Rpxz7XH2FLQG4TihYJ9+ IT32HRu4d/DL0CPMsT91/eT9vxs8AFvQ1/pRz5eYNWf3dsb37g+wpnssxzXG KfmAfPUcfw72r+p6+hVfC9tRcwdohqwVcN9g6gaJFWbPD5Pez7O/HjW5/8OG 79d1ANQAWQM4DHtwu2vrgve6du2fnyN6R/jH77svgNf+pI24o2tcM+C1f/CD /Tjfc4K21xd4ZG2Aa4HQ+Mnp7Y7g1pwia43N453vc37xYx33mkDXF9ou1T4G VQ/c6qgRKvcrcQA1wS9DHqB8frR+1/ix5p9zrv+va/yWunlse30PeHYOz7mA MQ3ftUGuD3R8sNG1GkDWCYF35mQd0ko3rx/4+UQbM05Q7L2fC0De3z1Bp7WA iv/x/6U2oOb+D4X3rAMEu9b6D7q23i91Aa8B9vNC4AzweuJ+1+779UB4dmzv vAG+Pp8bknWCrvdx/s75APt68JgYNpbdU8C5O/OGm/Fe5gxeM8B5+/3dOE/P EPcPrusE6Bv6smgAhcN8azIf7+f6PjTBWudvjd/5Otf0gzXH+ebmzMlzyQHw 3eb+mWcci/OtCVzVK7jnuQW+zjnHGkNkfHD7QpsfmPKBEe2/9v047Fr9Hz7g PiB+zi883uv/ye+5D+itsBFeD2y/vzOCd/R/83xifI7d6GouwZyhan9tPgFs HgROb2jbvj5rh83Vs67Q/N41va4F9FoAa4BpX6wVuN7opu7h+iD3Dqr5gPMc Azj2t88n3v9m+P+S76+av/3qWJ2u7YDzfs7hG9vcM2sAfN2m9tEU4Pfg1Z/J vt3aIbjmOq8xwD6w7f3KCdwPZFY3oHUA5ANr7g//nzVAu0P8D97x+WDZun/2 BMc2oBVuyQ70MULl7Wfp+F73Q+7P64bRBLZ1PTVEPGd4p3PesPpXPxeUWj/j 3Xm/7BvgdT7ogumriS1y/b+1Qft09xJAn8QOmB94jQL+Hy7Q75e/6wfnPAYo n/vPFfdb48u8/7eauJ/6vRUN1/B6/T/71gO9FsA6nmsEkvdb83fdX9YQZ17A 9gM8Jx/AFphnuObIHKJ/v6wnmMYD0v7vz+Gfnp/EAO1zwPo+IF7Tm/m+g67V /4kHrB34OD3Bc/2v+3maG7i2h9ze2HoA833XDnld0VhvILCV2HbtX63HaX3/ gbZzbSB+23G/a4sdGzhHuBXnnC9Ad6wximuDqRcovuA8xwDE/q758Vp/tP5v TVzr55yc1/k5324bYD/stb+uC8o6YN/Tcf4Yz/fncfyfMQA2ZHk4b1vh97mm +2/GcfOHmnOAE7gOuPX/+13V/u42vN+5gPY54O7vYV6fzwf1WgFqAFr7Ufv5 W8e3JmCNz/W+7g3gNQDuG+Aa48ojqp81tskN5Bpe5/559ifYxGa4tz98wtuZ F8y8o/U9bAv6gvuWYEv4P5gH1J5BPD+g/N3Pay1giV2+PWl7+bnml9qf2tPX vBpun1qf9T77ZfcBzZrBX1UHSPwAZvHpfs06Ycf9zhFkviDj/3W9z9WYBzfg +abcr56nj+F94b/19Tta+wP+a2zQrvfBt+/KJjjnV2t92lxBPi/I+f1t4feO cO3Y33k95wvJG7g/mLnAno7xvHCvC3DMD0ZdH+z1wa4hdG/Q5A5jNf4eyemp /4Xfc53XK/h5oo45epvS5wMPuhoL/PzcrgdE+/um+D9aHzVAaAB93G9ODi7B KrUAZ/ln1/PA8bMHQOr7zvO7nsg+H/5uXX+zm483XCOQsYI/72bsY8PMC652 8/ZlozkGJ5jP/e9o388CMnbh7+TyWBdwGHj3c0McPziXiH++LSzfEWenvt91 f34+KHh3LfGWXr0uwJqg8+rU+Dg/6Pw72Ob5Qdu6xuuIXR+0FffbjmPW+Thu 7cHxB/dtnyFa53CPPlaoOcG+TqA8C/O84Z81P8T23wnce91fH/fD0+Hvru93 r2/39lkb2T4rH2DbkbG7c/2uJdzQHPvkldi3PdnsWl6Sawquav6qcL/ezeN+ U+f5HHVO0QhK/n9eAzQfYE2Q6/fA847ie7RBa3/k+jIeMAdgPYBrAe3XrQfC 9d0vEF0vnx3qvmDUD/j5wtiA7P8Hl089zzVCXq+HXaDPH/d0H3HHCY7zzT8y B8hn4F58PvcMc12x+4n2eQD6iP3h7/3RucT/n0fsj693r4/e9+eaXdf14/tT d3ft71n9PlIDOKteD/4/VvPjvgK2CXD2POcYwp9jPY7ZLhAnpCaxHuedN+zX Gpx89bXu+ekodqDo8zUXuBMxwM6QB6S3B7gnx0fub0dYRxMY6wnmnuLg9HZX 63yM27Py/PP9vqpdgCP4OcKpK/R1Ai23B79gy72Dvdan5uDmnw9g3RDf7dpe cMy5m3r1fMcBzMcu5HPH3UOA3GD//LC//NrXzh3+i2bxbXH8707m1/5/c5LP 8lkKDNjfeziWN7cfe93s5v1wcvcV4d81A9YFrRvm+qCsF+Ycvhp74Ngf336t a3mH8wKbcS/nJ3s9oGAfG1C04vY5ILtd7QvoXiDWAl3j61pguALY95qA+R5C 8/W/rgHOZwH62SH7cS3xALGC64hcI1zfo9Xe0ADdD9C6ADzbHD/X+Tufb7+f PUatH5gXlDl/JVz7dVvztkZG7W9a/r7vntMcIHl/a37u+Vt9P/n+K8KQ+/ll zG7MO+Z3DG/8emQ+cCxWtw1wLQB2x+uD0u+P1R+7ltjxhs8Z27YDjhmYd31m MxL/z8UF+pjA8f9hV58HPlbr52cE3grMuxYgfT82JGv8wLvzg+j+t/RKP1HX /nA9tsB25UbXrjfY6+pzw10bRI8gr9ml3pd8n7HutQLYCOY5z8e+c/ypF+b8 5Bfg/BPdD12wzw0Uv196ApcagPPm/93vw8/2wQag/ddav1xXm/V9maf3+dUz hmuDW948XxNkjDrnkDbHOHeM4NhiTCdw/G9eYGxf61q742uudTUGqPco/B/M pw2YtwOHgwYIj8+1wK71vd21OT50AfMBegHVXqGtv3afDzRB5/daH972AE3N z88YoIeA+wfA6XONPj7Vuf4t4fGGrnGfwMwvkr/za8YK1hWyHtBYd7yR8UE/ v/zNCvbfP6frAMj7O8+H3+dYrfVzfe+VwDtx/Yr2rc9bJ6QfgH246/fh364b cO1OxhPr3by9MN8Au/bNie+s7bka90yucdaaAesElc8Y/9iAX56OX4QdyBrh 1o8fzvx31QTBumuE3QfcHGCr0Q1bDu86YOuDrA9G87MdaHv/1ePmBY4ByBuk nkYfP+frsQuuAXTN/7aw6lofrzfK5wM6l+9niYNta5Jb3TxXILbo/T/9wAr+ Sy+Qn51D/1/6fST+2W59v7m7a/nAMni2DmjMO++H300O7logMJ91Qetxn/Wu 1Qz9PllXzLXE81kflL3F1jXH9x5bQ7g6cr5qh/D/sfF0sAUnc3Ygnwdg7d/P AcuegcT6+P5D3aM+R3T+2Z6O+R0D8Nwv1wtyznXAWR/MvZwLYL2Qtb2xtYLU 8dhWuFcA9UFbuofrjc0RnNPbjXt+rDn4ddcDjvGQ/tlA4L74/p8O47z5f57z wdoea4DfmfP94MG5ej/fB13Q+Xlj23FB5vic/7NvPitfaK3Q+gBxhGMSPrPz CVlPmD7dc67pXNYJXtfnyX4j1zr4xBj+nw6vvxi2n8Z5NML5HoA8G8B1PtiG 7AGatYG1brDtC+aaYOPbGiC5vlvC/nZX1wW5vsjPFKnPCfPzCFutH9+d9bfb I7jcCUyO1RETS2SOj3zAJ3FNao/mJFzX257C+d8dsF8w/+6k9gU/T/gvnxP8 e72ve3tU389v2hr/ctfm+K8IF84RZv8v++pcE2wbkNqdtQfza685uqp97Idx 6bogtnM94GbX2olrcZx9X3ddn/Va13KKq3P8H7yD/RPt/1LD2kDbE/AwtIHb YSPa2v96bVtXVG0AdQFstzX8ba7A/t39wvDt3Mt1Q7wXPKGvEZ5/Jhh2wTUA GYvvdfN4t58Hs9gO8wb3Jbb+57mOA9q4ofwdCs5/MoyfEfcP+D9P/L98Tmv9 1vzbOn/n9O3fs7en8W5MOtfumN6+2jqd9QTn9rAHSzpubPPe3GMthrkFOHVM b7uS9T3mANYjbauyLqDmDe3/8fO/HNk/CT7wNLhAqTFt/T3aHpi+rX3XCaAd ujfg7a7m93Md756wynHi+bH8P9zAzxJ2vZDXBnM/992Fkye2c81urvfBTpCz x9/bbzPXawUcP7gmwDEBawr79y3f/ebkt2ax/nsD7n822ILz9lzg8jmp7xnr 61Xr/F2bA+bR/5JX53qfXBe8GvOs+61oGzzZ549p9cyxRu9c4ZidcD1B1hil jmcuYC6CDViJ+2JX2vxg6v+/lL/PnMBT2YZf6Bhzei6w1bU5QW9T+0NdoOsA rSf2o123Bx9wD+Czcvs72kbfs1bgGICYgLUFNzvyg/O9wdwjiNzeXszJvr1o AF7TS62eYwzO57pjbIm1wRprlO8c7HsU/v8O2D9n+HfNf/L+Pt+f/TyzPndJ w3pg5vDty11/g35gPINLcJxrirOG3/fK3KBj9sw5er2/eb3tRdoXa4ms/xnT /nNszOH/afh+j19+dV4j4Brzgd4O5PqA28J+rhHcCt5wMOgAmdM/EM5d8ze2 9p/ewLkGyH3EXRPgWKHak9r73/7fdX1+hkDiGf+dNcHGdmr55hyu8XWt8c05 v/9T4f4n4gDvDDzgvODfsb/7+5ALqHE/vt4634peiQnGdEHraKkLOm63P2WY C6SWx3H3FzaHgCfYZ6c9sG4Ppsfqip3LT15gf5/1wFmPsDnz3ycj/h7cPx2x Db8Ymec8Qcv7b8/he14LQDeozxtve4CmJuB1Au77696/2Uvc6wL9vMCteK3P E6o1QK7tQYfbjeOsz83cXK4vcC7BtQY3u1Y7cE/Qrdl8sP/h4ON/Ju5v3/8z dMBzhP8/F+a9zr/W+qHjWZu3pu843XPsk9N3e67rBVyf0/bpb3n2sl4dp7sG yPNtD1wXkPk+r/XD58PjzRnGcgi2A64dqLlDx/8nwrN1wDG/PxYTMP/4za/M bEm1A677BfvE+14v5L7ih12t490SfonfXe9jncC1gqkber0Qet9W3ONGV58h 5jj/ljD6cVfX/Nj3uz7Y9Tl+7ghaINeyntD6YOb36n1Z0w+2ef2J9n86aZ8J ep7w774+1P61vX0cF1u3zz4d9ueZO3eOLrV67oWfzFqB5OLmCqwbzpyccZw+ 2HWAjulz+2rMdU8xa/7+v6/quGOE3oZk/e9ZHP+XX52PB8wVfqF56IXYgRoT sB5gR5gnJqBGwH1F/JygXWF6T1iFC9zpqj6IvwfTt4V99wsZ6zlm7XBndrzN 5+c6PewB+UDnCG5oLlq+n0GWuUL3C6CWF67Qn6e25/0Y2IDG7w+24Lw8C4g1 P671Q/M/22cTCzjntxHnkyv4NfNqtg3YlMzfG1+2IcYq/te1PNbq+WyZ78/c IBpA1gbartl+ZJ2g911ruD6L/wtWf/HVNvcHxtn/5TDPvACM//Kr8xyinHNc wfrCyvHdF9jPC/VzAqjzy3VBxAb289YCvNbPfQDM7a0twjPgBNtdaytc25N1 AM4V7gvXXtd7M3CctYTwfPMA9w3oOX/x++D8PeN7wPw7sgfv6dh58P+O/dH6 5tf3My4Lo/z+c52ubQXzMr63Bpe8wvUExjk4NVdIfuB4wbj2Z3BvjszbEUOY 49j+GM/JRcz//R6OS/rPBf6t+ePLzfXTLjj+P4ltxwQZI7TagNcD7cgeeF3R 7lAPsN/Nc/6s6yXuR893PsC9A7Z0H2McrcBriGrNUc3Ru/Z3N/Duml3nAcnb k++/Eeey/5BrBHutoWD/vcGvvyuOD+bR/t4RF2D+ecE/6/2/O6nrfb/daP6p wa0MtsA1/Os6t6Hjru0b0/TQAu3jjWvz+bQnxrN1PscdfGavxbevd32QsW1e gn1yDWLm9r3Gz8dcW9x/Vvv/k6+enfsbi/1/IVtx1vm8L7pCrSF0HbHrhm8p L+AYn/V+9uO2D7e6ujYAf05fITgAtsE1Bn7GuHFPDNBrEPPPCyQ/4B6ArBF0 rX6u3cN2uJ+Q53rdwPa0j+vP5M+t8xELUPtXjn04qbW/750T/s8zPnmmF/W/ /2TyB12t43OtD3V9tgUZQ2f/rqzdMcd2L3Dzf2uH1vnN863DWQ/gve3/x2IC 5x/tq80LXBtgDSB7BGKHzuolXHWDsfV/foXvW//PHIHrBLMmwLi3vXC/gZov dE2wa4R5VhC6vZ8X6j6Ae12b53ftr68ljvDaYMf+1hn9ujPYAHj92DPCvEbP zxBybP9J1+r8GfvfmN2zcH6wD68H0x8I7z/V+Z+EbXjnnOCf2N/9vsqotX5+ lh/xuOt3zdPXupYzZAzg671G0HVBrgEytq0PZN4/c//M3+xa3uJYfUxTcPzv NULWC80Fss7/atzrmu5BPqDiH0w6BngeuM94YCwX4FoB9AHHBakJPCn84HQU LtDWDczXBdV83s6A/dvCdeb/3e8Hf+4Ywr3C0Qu41vkD9w+r9qL1367rSz+O nWAec9AE4RPzPYSN/Z9K06O2H7yzxv9DzXtPtuE85P95zgc5f2r/2jV+9vnO /7meJ+uCrAGAVWsEiWG/bmh+5tdSO2A+WEzNEfvg2GStm/+c5vGpBeR9zA/4 PPQDyhxgu+6Xa6f4P8XfZ8XPv3mK++E1j5X9Hquvdc+G42M1Qun758692WP+ 6ek4HrDP63wt8VZXnxt8Z4gDMrY3R89nhhjXrg1AO7T/d41QmX+jq+sD8jkE /Xu3Gn727HT8Du6zZ6d7ilvr630/2J/V8IrTE+d/IJuAXTA3QAN40fv/ut8H Pb1rnb/j8Mz3L8kWWP9fjfnGsnN4qRe6PtBxfWp/tiPrmmfb4Pe2nTGnx29z L8cFV+N+jhfAsPuA2f6Q98+cADpAGdf7/n9vDmv+TzH4bMD6VK8b9p8M47mG 7YDtw5PhGuzIZwPWT4Zjzwa8cx/2jwd7gx2o+cK9JiZo6/uzn5/7/GVP0LF1 Qu45vqU5eT+0Ad67jwfaHr7sk+e3BgjG98IGsH6HHGHVCMC+MU7cn3k/1vpg K1z7z1qg84B/+D74b5/lY63LcfxKjOXYzzx/2ojk6Guam3o+2EucG8/WBq0z 2nZYJ3Sdr2OGzZH51u85B5655rq+H8cX17s2Trg2O/dswGHBPD4fHD8bsM5x eMET8QNswJNh/2Q6Kp6fC/NP9Ho82IRfNO9V7UK1A64X8np+9wSh3te6PXbA tUM3tO3+wdkbgNjA93Pdca9Bzufws1ZgrG+Q8e/1A7uN34fjg2nX9Lwru0Ce jzjgHR1DK3jR8U/Nv+t9K/ZddwfHtw3IWsCxGj7r9ObbiXW4/mY3zxXw5Wvx fvl5bDNcJ2zdzzrhWM1v2i78+7W4D/bD3CF7hKb+V98X/n8y4Bh8YguwA0+E 0+fD9mfy878Qlz/W/KfDNZ+J54P/z95s+T/35vV42O7rBtIGsN7feT389n5g mOf+ZH9B+3xj3Pl/9x+hvsjPFnbvL6/dcT9O5wyyhshxQt+/A+zSu8u6P1qf 637H1v7YLrx7DvBfPh++/5ujcf9SDOf0zA2cB2TfuE08muOnrjdWS2RMu67X PD9rczJ3mDl57u21vvjt7N2fOQXn+7Ej2Q+YWMDxAvnBzZmPfy7Onpwefg6u mQ+2jf+nsg/G9BjWT8IWJG94quN9vpC1gaz9y+f/uXdQ1gD5+R93Ovf8aNcF u89I9g+ybah8o9X1/Ixg8E1vj7E+4f2c0q/T63Z+Kqy/M2nr+/H1cABqfz+Y tLlBagVe5GcAO/avtX5eQ+M1vo7tnYezL/baf/tqxwvLcU1i1teYx9s+2M9v xHt6Pzm+NYTUHPDR1vqzxsd2wfbHft7b17TvGqL+meHg/vkMn6/NYvhn2j+Z 6YNfmcX1z7V/Ikz7uPmD44CncU3OMfbZrjGB8bkf2KXmF37guj+vBfI6YdcJ Wj/EvlgnsI5Ye4nM9wEm9+feXn4e+CcN9qndf2cEy+bzYBq9/wPNfS9sAnbj Rcf/H/72787W+c7n+41b6nwzV59rgjd03vV4613NGW5qP69zLLGheyfmluOc /bFx7HpEx/LmFakxeK79+3wM397LOco1nUub0197MovZa5z/y0Grr1pexXi1 CzV+B9PE8diHY82FPzhOYD7bxAtP3mx1QeZgB0pMUPIELaZTC/TzAbze3zqe 8e51RgdxX+cH/F6t/WifAwz2qQm2HcA+tL16ef1g0q7j8Vof1/y+q/m5Dhg7 8qLn/0ven3xfXeNH3O9cvv02mBtb47vWVc0wawGc97eeuBn3d+1u6oyu4+Ge rPtxTOA6IucgnNtLnX817r8Zx1zTd72b9/kZY+D7eZ/2WWHo/8T/6PLm7vhm eL3x/YvA8FPNxWaYE6ANgO8TXYuGyD2dIzQ3wA49HWKC3g5YB3QM4N4+4Nb9 P8gPuA4Q3XC3azUC64NwgxviAX4OoNfuctycv7cRxPvvyZ+bt9uHM+/92GYe eUKfn9UKvMD45xm/35mMre9H28v8f9bruCZgzG64bjf1f8cJ1vyck/faOmN8 I+Znvs7xuvUHOPxm3Mv2xnVAjuU5lvwAXdBzrup65wVr/R+83n76mfAIF3+m fXj5c2Ex54F9sO78ITbg8ZtfnjsPP7Bu+Fzbz/SeZbhuoNYBeG2fdX7sA1qA tQHshZ8vtiXMux/pDXEJ5xW3u/l63uwP1muAxe+XtXzE+/D4n8oO0MMPfLvm 751JW+fjuj/0A3SBF5X/U/dDzV/v+/OZXZd1DF9LLOAYey3mYSuwHcnj7cvZ dmzBvY0xMDiWJ7AtyPV7tiebXWsfzqrdW4u5nLPNcJ7feYFrmmv74Vih9//W 4Y1fNLyTwB7YHuPlYBXujg1hPH2z9f+pC3422IQxe+L7Pnuz5RnWBtrcIDbA awbcT8g1P9lHzLUDW8K61wi4zhiecbtre35S/1fXA4F9/D5cH12fHN/PhGXH 9+b64J35xAheC/Qi4581P33cD6c3ls2Lfcz+fkPn7NetAxgz612bO0gf7rX8 KyPn/ZnG8oN+f9cYjNX3WW+0TViPOavC+rWu1S/TvqSeyCjHa3+wgv/k8can dX1id3N2sO9aPvtyMPpM1/t9wC54Z9u24tmbbRxQ7INrBcxZyBNUbQCe7+cF +vgN4Ri98IZw7ZyfOYH7ChMPYEdYL2j9rz7Xu3y2gn1ic/N++Py7gf+fCM/U 9FkrhDOAf2P/RcZ/if15nlfr14nX0fuc63fMnb7cHGFN58zljRfH7tlLbEn4 X9O89RgZo6/FOcfm9un29eA2NUPn9Dh+rav1PPbp5vtwAOsOrk+oNYPO0T0L vKWGx/5TDWzD8QhO7detLTzVe2Yd4InucaLr+Gz+DCfD+xy9cWoT3qivT05H sQPt+kD8N37e/nu3m+f8xvdWXO9eI5k3rH0E2rX8N2bYL/75oxGf3fTsU9xP Pv8jYf/9wD38n7rfd3XuRc3/F7tU4/7s12kNz3h2PQA2wfn99bjG/f3cI8jn x/QAawfWARx/Ow/oeMJao+N+5wG5/pru6zr9zPuxfjfXBmx0Laat87MWeG3k Oup/qzb/VNu8PhfunNezHSgYBKe/0L2sCVo7sG+3LjiLBd7ox/HpeDKME42n A9afD1j/7PRY2X864P/pcBxtoK35sSbgNYJwgVxHZL7v3uOuCWR+9h6qPIBe vdbz4f8fDXiGD6QP/9mk9e3EC84VYDc+DJvxzgvq/+n3UXv7uI/P5cCkNXjw Qw+QMV1vLeavxj1c92+OkDl/2wY4guOC5O4ZaztHyPu4Ts+6Avw86xDAv+3A +hnnrGWC+w1tX29sAPV/x2+2vtiau/GJ70Yf5LrjN1t9fsbtp7g8vUfg+GjY Phr2n2v7ZDj3XOcKpo8HXB8N2ycD/vH7J8N2vhY7wLNKWg3fPcV2hV8/GzD7 AGQ9Qd7PcUOtHSjvTf8Or9l1XX/28vHaHvtyr/93PdBP9Mo2XOFFxX/N9zvu d64Om5A1OWu6Jmv9zCHAseeZR2RtUPp02yCvD7DuaJ9qfdE1/NYosQGbI++Z 9YP5eXKt75qO857wBL/31W4+T9gfc32Nsc/xI2HxJLbL+EzHPht89vPh9Wh4 5dxJbB/r/JFw39+zx/vJMI6EfTD/RNiHC2AbuBa78bSJCc5aD5S9Apzrz/XC zhu0Pr/O73VHevZ9KDxbyyOP7zwA/vynkzYnYH3ffb6c7/Pc6f5pnP0i4r/W +qXfw0dnPIDmb/7M3OQBie2s7dnQfOfossYn9UFzBNsR1+DYNph/+N6uyTNO HQtcjfe/GvexXbmmV9/PeqQ5Qz/P/vbJG+N828N4PX5j3i4cx/Fj2Qhf69eT wceDZ7A7tg+/Pwo78GywAWU8fr3lCtybUe0AmN2PV/P8PDb2nDHXEuP7q993 XQ+4ROunzv/dIQ4wt3eNP7gey/UT72NX3ovjL6L/Lzap9vVzLt9r9NzTb0m/ Y+t/5gHg84rOWZ8zBzBGPccaunMF2JCs6+GzZ2zvuN/4W42R9iVzBo4T/Nmv a/+a5lif8DF8fuUR0/h/BNv26ex/NuD1M83j9fkbZ9uAxLrjAeL1Y+HUvv5p +Ht4wbG2ucezAfdPhlffi+Psow3UmMDPGL/ZtTW+W13r060Jeo2wewr0Or/7 d7wjfLqm1/l/OIBjfGzFe3EP8M2c7AHE64vo/8tnKTap7e1j3PJ6Wb9lc3r7 /HwOSGp6xpX9vzXFMR5v/NuW8Op7Gfeccx7Cdihz+hnb+P+BTcncX+YSrum4 52ELiPu5d68HFPw/Ea5tB8zH8eFPNM+YfzLi88fihX67+mF8NloeXP15YN/H jf/jiAtSB4D/Z1zA3NYOOAeQfUKtBbhfaPYOqByhYN/1eh9Oaj3PuyN4Zh56 HrbAeX9swayuV5zAa3/f1/kyt/TW+7wxn/gvtY+tfwfHrt/xmh/OjcXrqfNl rdCYBuhjthmZM0gfvn7GMdfbOM9v/SDr+FLvd51Acv2rI3O8rs86n+/puY7/ K/9//sZ8TA6GrdkxMj747I2WJ6QdMGc3b7c/PtEcfDr6Hlg3T/D1cP6TYa5j B+Ye69hzvS/H27oB+3vbAdcR3QybUPMJ9vvgmVg/fXnqfGAbrDv/P7b2513N Ma+w/vci+v/f+Ro1O9bMnJOzTo99QAtc15zVmG98JL6t9efaHWv49sXo/j5n /YDt5BPmBmt6r6zv8zWbcU3GKP6/WfvPmCXtjLlB2zvA+D8KzCeOn7wxHwvw ioZ/PNuuuhyYfh6YJy7Hrz+J2J7tE82zT2effF+xAdiME12L3Xga9z16Y54r tNrAXry6D7GfHXpjhv+yls/9OrMW3737/KyO90fw7V7frvt5NzD+vq7JfgDv vKD+/w9/74+6dl2vcWmcec2f4/G1bhwnYNeYNHbX4l65dsg4BrdZZ2+74vO2 G84Lrun9Mp8wFv+zby3AfJ/rrnUtl3EMsxnvS17guu5x9Uw/ntwd3KMPmveT pwfvTwNbYJ9jx8IbfB084pOf6zr77tT+cpt924CnunexEWXACRw3YGfafKF1 fnJ6+P7WNhTsG/fO25kDOK//05j7wWQ+B+D1P/j8sR6grhtwz9AXDf9llPi/ 1fbWupbfp1ZGTODzWR+cWoHzA+gM+NGsJ7AvX+rmbcCa5jgXeFatv+/pY6u6 LnMMYNz2ZqyPv21H5vdqf7+2vsC2AftyrdHkwDzb8IDjN8Y5wfOBl+O3wZ3r c54LX+binw36n335GLbN4+37T3SvI32Gp3Evj6evV/yX7Sevsf+b3fHpeHo6 2C6jXWfsmmHwv99g3z37vEbPdTnu1Wuf7f6+H+rarPMjJsi1P64pypqAF1X/ r7l/x+Wu/THOrf+P5eF9H8cQXkvkXHri0Tzdup/186zlzfsYb84pWC/Y6NrP nbrBapwzt7EGMLae39pD9gdgbrUn6H/O3dvf4+dTu4e3Z0xuv80xbADbYN1+ mbjdOgB6vjUB5/Nd4/OsxP6v96/Hw/bUxw8YPxq2T4bzBdtHA96fDJh/ItyX /Yev/cbsWI0JHOfXNYR+Pof7cXsdz0eTqsl9IBzD7X0cjc/cIJ/pg8YH/r1u wHnCFzX/V2MAY9R8wJj1OoDL+i0TC6zqPmDf2qF1Avta243M17sGwJi1VmGt zr7befeVuCdzjHPr/1nft65r8O3m9bZHthOOE5z/a2uNT4Tt1AJcfws+XV+b +h1+9vkbrf82J4DzP3mjjc2f6DjjZMBvGScDfp8OOD8asHw0YP3ZcA47gG+f +vkBzwXXz17rt+3vOXc0nGf7yfBaBnmCus641wHLMbAIzrEDflaHeXrGAe7V 7T6ffn1H836i6507cA4Q/aC854uGfUZZl9DWAIzl/F0LlHlC6wDYiKzVsa64 Eu9lnm/9YEXXZJy+FvfIugLbEq//H8sJ2DYkZtEVHAtsnHFPXrnP1a79LOYG bRxhTp85vc/C15vLO66Hd+PbmQ/en74xH2sXfBqvj1+vx46GYxw/0evT1yuP x58/0+v0fq/1mC0Yf/5aj+OTAe/gvsw5GTDO+QenduBIPODhsM8gJui1gZ1p DgtObnxjA9yzB59ufc+Yfle4xV74OuPZczM34P7AXPMixv/EAP98ks/4AdeX u8r9XQNs7u0cYcbrHisxD3+edcLW6cGp64sz1s+c3rquc+7e98/+fo4bHOuj 2Y3lE9ZjvmOCNZ2zLSI/2NoC+3y4veNwa/LGNXk26muosXnyRsXuU/ni6fxh 2+fh6I+Fd/w79qGcP1bMfqQ52Aa4/PHrLa7BLRz/ccT5j3XsJOJ/tp9oGy5Q sO/+HeblcH337XWuzrWA7+k46/a9rsc6oO0EHAPbY03AfORFzP81McBv/248 3zd1ufTJqbOtxbXp79fjuuW4d+YcztL4nVez5s+8qzEn/fRY7f5m1+Ix7ZPz AanjpT20PRjTA7KvcK8P9PivPN1xPJin1o5YG94NB4ej45fB5ZEwO9X7hvmP he1pXDHw+0dTn1ztAfdMO9HbgBaj8PbH2obXJ7afxP5R3Ofk9dZOPBm2y7wS 6xfdpPytin7l2n5e4QDu0fFRxAFen++evz+Z1PWA1hHJAbhuOGsCzA8cX7yo /p/+P5UDpGbnWiBwB8dfj30w6l4fXGP93zVBPm+cc96ao+2BbYrjA9/X+/hh +/DMc2QMnzH7Sjcfv2deMvP9eRzbU/MF6Gr4ZzB5LAwb389erz6YOfbFzLUm Zx+O7376+jz/x7ZYp+e640GnfyK8nmjg+59GrG9t/0jzeEXnSw3wid7jaOD9 fc2abXL/Nyzret2z/0Nh2jV7jtnd+2esHiBzfnCDrCfyOkJrgR9MXtz6X49i mwr+KwdI3Z/XXK83hiFrftYGMz73dcsj97Gfzfn83e3bqRHKODzzbbkG39p/ +v3s23st5pk/8H7OYVovpA8A71l1yKevt/GzMQq+sQ2JUQb+21zA9/M9uQ88 wPvYG6559FrF+pMBz09en+fkJ8M5sPv8tWoD0PLSp5/E6+PXW+7PexSuX3J7 +PxWR6p+419O/mnDvd8VXv0sD3h+w89HeP37OkdtHzVCY33Afxpz3CPoRfX/ jgGKDai9f/G7rs9xnbD1OfN55+5sD7KOeMwWUC+U/MBc3pzbcXVqdqu6jnNj NT/W8m0TnKfzcesB5gHYB+cWsr/42PqAjRm+nwmj+G/wbR0OHgC+7d/R56zf Het6xjMN3st5eXBu/3sy4Bof7njfWp7tgfFvDeDBYBueBP6PX281wIr7jLUy /ux/b8WHeX1PxvLO85u7W+/L+kCv5eXa7Alm7vBOzCmvL6rvB/+lD0jB/z87 5VFtrG+cup+n+bm5vuuB1rvWhqzFINY3B3CPX9sEcwLbF/teawPWHa0zeI2u 5/BZUkvEhpjvpw1xjtD+Hqy3+b6K/Z5jHL/e8nZzdmzAcWD2WczBv+P3H78+ HwNgF/DxR7oGPf749XENDs5vPR5cP434Ht7/RPtPX2+1PvOHvOfj16u+12Kd 35prUc0DV2Y2ADyTB3AdkGP1MZ3Q/ABb4p4B7hPgmiFsBcewMT99wf1/GWgA Bf+9DmAcZey+pu/dw88BhvvbZ+d6Amt6WSvLOXyp9Xpjz/whawbSZ6xrLnZj rWv5gjmDufq67r/ZtbF81hRcjXts6P38bLA+HngaWH088AE4ueP+48Axfhv8 Hwe+PZ/3KePRa61fP3q91eXI34Ft+/3U4h3zl/FUOC6+/MGQ6yfOn75nsQ+n 42mxOUOsULbbGN/1J3z/m13rn7Dbzl2vTDkD/X29rs99u92zL3t+Mte2wuv+ sCnwC/cJoTbAawlfZP8PByj4//3JJOoBwAS21/vO32OPl0b+JsZW5v19LHN+ vqexaZ87pheMrRXKmH0sV2fNz2t3bY9sH1wHvKpjvj5zB36f/rw1dTAOD5/V yoe/h+ej3TueT37Avfvt6qsd16ePhtu7Pu9E55+LK7hGZ2ozBkxPtYNh+8mw Pa37GY6V8UzYL7p++30b05kbWhqZa9vf/3aLDciePeh25gKuAfQ5dAPn9cC3 a37TJsAD0ALOA/5LLeDvDzag1wHAuXP36Vf57p03tO7na20H/HdyLJ8cwOfN HXi/TV2bucHMG2x083i0LdnQ+5kX2CbUuL3VFNbjvR0voPenptjnADKfDpat 8+P/rQc4brBeWGvqh/OBceP+OGzB48A8/JzYYMoBXuv998ngv6f8fdgu47H8 +mPNeTrYhJPhFRtQfH6N8R3z5XpL93hJfShzSPW3WXIDH01a7u6afvv6XCdo ncD1vu7zZb+fPcDPi/8vo9QowwGqDnBF3717+K3rO8+1gNgB2wC02+T9aeuT +7v+IHN1xrFtkG2T1xpZd7fW77qBsVyB7YRzEM4zgHXnHMA9nN8cpdqRY+Ed ru54n9y98+/m9Knv93Pa2jvX2jyR304N7vmA15PALnz9SOPxMDj+SJz+Sdzj wYD/J8Mox9H1xzVhczperSGNrRFNe1DvW3ID7tGbNT1eD5B5QDiCdYQxffA9 3cuxwXnw/zMO8Nu/O8V/zQW4xtc4tj3g70CMYPxb/3N8YDtvX+r8juOCsXyB 75sx+Fm5wRXN3eha/++43jw/r8vzthVe3+8YIuuFyvH++YHm9K7BS67vOgBs Ravd/+aszp74PWvo8e3G57EwfRx+/FiYfhTn4fMn4gDHuvaJrnkk33/0mmt4 /P3Cj/hNLHWt7bcGYw6wpO/V91ptri9xrZ/Z+U7g1bkA9MNcQ4yvp47gfV3z Ttx3Vjfw9a+fK/x/Y8B/fRbgkkb6/OwXtDHy/Runxn5q7l5zZH+Mb7e/5V7G FzZiuat6G58BTPqzmaMn3rP3v/P8qUX6PWwHrA/wf8neYVcbjn+i19TwvY5u phlIh2f7mfg3ODVm4d/MIyZ/LBsAXu3rvY/teDxyf/B/olfswDzul/X98luy Pc/fi38frjfl97Ac88wV+nrBrAl2/a5zgV7TAwdwDtA1A8QJ7+t64oS//NrX zgX+yyAP8I0hDqg1gWDHmr5tctoFvzo3aM1gI447FhjL8TnO5zOYMzAP/K/F NZu6lmPJ/TMHwPa1uB4c+/PZzlyL99yI+1S+4VrerKknn+f6/Fn9THDwJwOm eQX/x5pnzD+Rf+ce2ILk8eb48AXr9tiGEx2v9uc3pOubv1nP8+/C9tKxHVj2 9ca59SbzVv9OVqa/aa8XBsP4bGM/1/az7VxfPjvMPYOxKecF/6wHwgZUHWBZ g7+D8+d8x9QOuQ4g82/mc5m7sT93Dt5zrQ04Z2Ddx9jGNhiz/l2kv8n59kOZ y7dW4Dog20V6f/K8cMf/m02NvXMAR8JxYtJYPop4G5+bMTtzsRHgE+5+orlw 96PX5rX6E12bNoN9Ro3xrZXahxu3y7Hv3JBzfak12cf7OtsF5vRxReEg2ABz f9cJU0PsXkBjfIBY3/W/xAjvnzP/71pARq8DELu7FhCuRj7P37n/dvbpqyPz jN/1OGeNx5zDufn8nTje3oz3xjej+1lPdp4erp56svGd+pQ1P2uY2V/EOsHm FEdguehvxfc/n+L4y7NjT15rffxjvWIP4OnGMffl/CPNh7M/Epbt721reD9s AfbCNuDxgPnjwef3+Tzz/LS7+bfz39m/Mes/qQeX75W+tbl2zT7B71N/q9QM +znf5PuIE94PfJMLJO/nmp+xfmLnRf8H/8QAjMoBMi/vv1f2+nIuDuxZP7cm sBrXet88wPw6NaDU7/2bSS5xVcNavfm89TtrdtgU1/+YQ+SzP+z3sxdQzwV6 DH15ivde32v9OvzdXP1YPv5Yc44Ge2F8PxFWieNPXmux/Vj3AM+Zw3us7QfC O3ahv1/v89sYfz2+v7TLyffMszLfm/knOCd/o3w2tX+Htj/VVhSdC9yiBXg9 cMbz2TMcjLumyOuKz4v+lzEAOmCrA8Dvr2h/tWufDbQaf6fkemPb1nQcr/Hb 4H5ge2y9j39X1h5tFyru2jkZa/AeWeMHrs0/zP2t8613rc0Y0xb6+p+nwqsx B0bx6ScxL3Nuj3X85LU2Tw8nQNtjnvX6xzHH+t7RNE74jWF+j/8aP/xG1O7Z 9lpvyb+5+b55om1H4ph75bOmV2OeYwrHBM5j9cexAe8K31kTALa97pf1Ao73 59YNnjP8Ow/4+40OYI7lNUD217nez9qeMb6h7fT15s6+LvUC496YNX+EM/h3 lNeB6bWuxXdifl3vW/W7cd3P8UPZvt6dFQPAu8H3M2H2+Qh+TwK3xq75wDPd F57/5LVWj0/937EAOt7jQSsE70eK7+H6dZ2O/27WRpIn2gYkn5zn6S1fTF9h rmd7sK795bhvrm9fmfUSwMd7va/xDPZdF+R+Yu7//5Pziv/f+6OZ7285gOuB /CzAsZxr5uL9d7JuY86+2bX2YSVG5hdt3/3bMNdLDPv36LxgYt52xusA2L+m Y7Yz17rW5lyPazd0j6tN7gxe/3jAPj4YW0A8/+y1Nr4/Gc6jAWQ+/+HMb9f5 YBwe8GDw4+D7ibB+ouMzff8rvzF9tl67Jt94P8uP83de6VqbDc8zhv038Hft 34TjfvsQsM5516N4LRvvtzT9jZd6QduA7OWXz/70Wj/bhVmfgHOG/zKoBRzP BYBxvjd/1+bo65rn/OCYz8/Yzzg2H9js2t+Df2+OEWyTrBFU3t3m89bifXhv 1xqs6v3Kq3uBbo5cn9qDc4g1PsAnG//W6x2vww2M20eBZ9fdnMR9zOkrh6g1 +Q/l4x+f4vvpV3qcP47R1uxmHGY+71jbc/2dej/Pcc1Yjanv5dozcG7fsKF9 2wuvLSYmWJk9Owy8e02Ac32OAcj7/SSuO4/4zzxAWw/gnjzGc/pj/hbu8Wld NzFpvKcdsU8wvhwj5H3wsfY7mauz3jf2bC9sUdYO+Llf1hSv6f5whlXtZ6+x zSb/TixvXk7ebSxGx78/G8E3dsD5vZoj7H268X18xuBcmVvzeZmft31MjWe5 a+1h2lzredYIHL9nHtA+wH9361Hcx/bAsalr0vmtVvtQNAHWCPv5frNneovn u18IHAAecJ7yf4n/b4QO2HOA/Ju5Dti6b/4dbYMzlt/U3yDzOI4DnQO2z/Gr f3v4+XVdlxo8mE78J19NDmLe4jrBsc90rWtrAqt2iJ92rA6/zxrcB8IyeUHn 5PDfzu8/GLg8nL3g+eFrLea9/XCwCw++XOeVUdfnJY5tr30s4zD7c9dVeF1P 6oFs87vy78I2/6yYwRqhNanUF6wH1GdXF00AP5+9grMnCFqh64bOU/1/jpIH SPyX1/rMELDp7zy1/xpbtRw78zGOwcd0oLT1/v2k7u9a3TEtwDG4+bx7Ath2 cD/btdq/o3J5X586Y9YBM39zhlV8tvNxjtWd73umuanfuR4IbKef55htwvGA +bymxPhV2zPnSh9vfPs7N9/xNfYBaUf4LdiHsO+Y3zbBeef0R6txzH2rrS3y OWtsUzgvfYY/EKZ/NmnrfX6m16aXyDnk/2XQFxAbAP4rB0ic2kcb79hWx2TW Bc3r7Cf8m0ndzu9tnNoHG2/28+mDrPlZu7Rex+8+83q2C84BEiNYK7SeUEav CxZO/ei1ti7PcXvm563vHclGsA7nqfz48VfOjuHTJoD9p4rxe23PODMHsi22 3bRtSDthzJsT+vfi35J7/vBeY78N/6YyLvU6Ad/b2kHZvzzy/tUGuMeo8e36 obG+QOcV/2N5gLYmMO0+fy/HU67/t05oTc66X2oA1oVSE/AxOCS1drbrGZPa jyXn92/K8XrWAZkTgHH390y7kLFHrSGC2+PL4ffWAgr2Cz5dJzCL9xWfj2Ed XPs48+3vyemV7T7Gt21ejZF6CH+njNP9N7DfdhzvOcayOXzGDr7W3GBZ8x1H pq1wDzHrAFnfWj8rNuDdwL41P/KDfubQecV/GdQCOg9YewQ5brJNdiyWOVvb afP9rO8ynx+rIbC2bq5vvT31xTKo/bUOv6pz5uq2D/Z79u8+Zz0g+wkl7qtd KH42e+WchE1wHeDRgPmM35PbPx05lvMK/m0r2ppd49y6hvVXf+/OcWZOhr/5 pvCZvjg1YP/d8veUcSbXuBaY59SNzfczbRL75qGuJ+xtBr0E6PnhmoBcM3we 6/880AD+eeC/1QH8fTret90G61mvBfb9+zKnzHq+Nc3HPxjv/o3Y35rHr8b9 s8ff+sg91/Sebf1uy/U34p75HADXAvRzvMaGHN/UL0vDP5KfTw6fvD71vDFO gJ8nRqhc3/zcfMzaHFjJ796c3t916r2OI5yzc/7QvM7xu/2y15jah1iTcuxi bdmcY2lkXuYPVvVeyzNdEL1v7Dlg1AGfZ/w7BkgbUDmA/fZa1/pycyj/Nta7 1r5mPOl7ml/4d7iuefbD+RuyFpf6nG1OxrNgwFzDMb+5AcOav+2D4wLyAP3n LfG/NXyvyTF+nwrT7Fu/G7MLx19pNfyyja4P7ivXT/0lNTfmXI1zxrY5Gn9/ Y801Gv57+BXcO67wvbif8Qs2U3uC32fOP+MRx/9+ryvadw6itwHuA07cP/fc sZcI/xkH9PUA9pm211mz4bo6azrO2/i3Yjthbc7vlbGgbYy5YsYMziVw3lw9 dYgx24EeiC1IfdK5x4wPuHZzrlbvmXx9cvf05c7RjdmBMR2Ae9V1udbV8v/L /8Eaiv821u8cz9nXWiPmvZY0J22OtT/XmmR+zzbDdTzJMdl23W/mHByLcH1+ 9tyvuqDrgeACP3sJ8F8GeYCsB5x/XoBt8JjOz9+HXJLx4ZHfPXgiFvB1K137 G7ZPcuzH3yyfE5DvY+yuxj1sGxwLOFfA/kacd4/AzWbuseJ5+2pi8/T3qd8l 58e3m+OfXbtnbC13rV9O7cbau3n8chyzXTWWUwsw1/P+Wfpdcj7/Xf378+/s rPoh+3zrTLYpfs/1uFeNda0Lug5o1k/onOM/+wJ+Y5QD1FzJPG6tu9g2OF+7 Ft9zxpmpB6zouDn8iu5prpq6grFqfpGxyHrc3/G9z1nvT21gNa6xXdicq71L jCd+7ec5n7FB2o/yWp+pYXtmrrUR2+6/x//Jtti2MTl8anPJ960fOLZaiXta XxrzI2lT6EHnmh/X9LgeiPmZn17u2hqBy119FvZq19qy2hsPXdDPBSqvRUM/ 7/gvzwfKOiBqAuZrAq3/GePmjebm/k1gG9KfW19a1vm1bv43ZX9gX5w6lm0D fNzcfjO281lha537eFSbshrX2CaYf/SfL/n9WPyeNmFM08u6HmKDgvv5vnsb 8Znt1/2dMuyjM0ZzHGd/7nv5N8H72F7YB1/Rtam9ja0fSd7pHlT+Lfg+1g/s 730ebrAS9/f17k/S2wD3CTqv639yZC1QaoF9LiB/L+m7+Y3Yz9sG8Ld0TA+W /Nv0/mq8p33KRtzLPDb9vrU55+/XYq59OZ/1ajeu7dlGgH/70P59p/pf+G7H +o7b8/xc3d6X29Fyfb4f+9gxbcXfsbex72j1tgG2K9YBbZNTY1iL9871/I4x 1rv2e1uJeWu6h+1B6gSpTdtOYHvc4zp5g32QeWzVHllHPFs//BLgv3z+b0za WkBrgT0HcJzF39p1d2k7bZv52zpmNPZSJ8q/Z+LK7502wTUA5p8rOm4+Y06x outT/8aObIy8p/VC5vV2BPyPrcHJ2H72ai3vy3X/gXBfub75lP0YHChje/v0 tOn+G5vfr+meGWv5WseBjtPO0gnyWmPP/trn0wdlHrr4da8TSnuwGnOc28aW Zr+bMufSbL/YANYRvyz4Jw9g/++YoOcA/tv5N2RdeIxXWuexHzI/z3jR/IHf nzn7uuY712ytyfHpVb2/1/36vb2uPzVMbAP/N2oCrfuZP/Tvmf4e/Q58T/MB X26PGeuPw/e3/Tazb4G1S/5vtq2O88170lf7NX152urUAmxHkpv7nuDNdt5x ojUMa/urcV25n3U+f6YrXcV65vr4DVvPSPuUMQn3WZutGyix83nHfxnZFzB5 QM0FWMO3NjOW801fYGy5xif5nuOB9Ev81uGeeR8P48Pvz+/fA0xzjr6+WT9k /s/9qDM0Fxj0/6/M+/IypvW+v8Lf2yYUDlHW6dT329BndnztmMr44Jgx5r+L z5kvMJyncwyXGpB/G+mjnUfwZzU38/vYfxvfvF7WXL/H2PPrOc8+NmHpjMFn uaL7Zq1Lf6z00ngZ8O+eABkHwAP6XIBjS2vFiTP/nqy5WzcYiwGXdWwttlPv 8e+W36XtQvowa9rEClzn+JV5ucYnub97Bdp2VIym/x4bruHH72ML5mN8cASf yVzFquaZBxjbfEdLcV9shms5Mj7w92zNYUXXO57mMyx18xhOf46tSR3fOQLf v8zHDvh34ffzup/UA/K9Ev98J5e6Nh/Rf66Chw/+w3vnHvsz/J/GAN8I/z/e K9g6jzGcfG8tvjNjyzHkmA3Z0FzXpFmbso6QHMP2Ie2SfTnXX41r4QP+TNT3 OmZxDsJaY/9/KL7bvvxYPv/Bl+d5/niMz/vZHvr7sl1a1XZyptRW1uN+5k7W VjfievN7a4C2tSsx378Zx9zJAfy51jTPebvKwyu+bTtWY5g/WENwjM/rpWHw Of252vzDy4J9hp8P5ByAbUGvA/j7Mhe0f7B2Yz/D/PxdcB7uuh73AqOpC2zG PZJz2B87F5ZxszX/1Budu3BM4JwCfGG9c94QTFvD9/bYsRrj44vTxmSMb16V +Qz7dHMy+9bUvm2vbVfYzzjfnN8xIJ+rXH9F29zPft2cgd/LWB/ay13rr5lv 3Of/x/W+2B5swiXN8Wf1XOxC5VbFV74MvN+j5AHP8v/zNYH+XVl38e/CHN61 PY4fuPYsH+aY2jhM/crxPvP8e8u1RmN4zxrhXNO3pmOZGySeaON/+37zffz8 8Zf/i9lrrdXPuJ7fseMoPq/9u3Mb1v6MN74H7AXXmsctd63d83HvL+keiWvi C/i9Y4alrrUpy7q/5yTG7YttF6jj4fzlOE/Mb+5hO2A9kbnLOt/GNGVtTMHK 543XX/cYez5Q1gXVXIA1m7G/Y+ptYzF9xhD+nW/E9eYDrsdfjdcx/+R7GF+2 F7YDjiuud62dGOPeayP36D9j4f8Pvjzv4x+d4v14GPO99VO7MCcfi5+87fzJ qu4D/vL65DjmTmMa2pimkn/3sc9mv74Rc+znzf8vdy32zSmwjWB/LNZcilf3 BcZ+gXPbCPsoX1u23+7KutmXzfcz0AByuB6o5QCJQePLfsR/V+t/Z2kCGbfb P1vfdgzi3+JVnTN3MGdwrs738LY/l/2+sWNubK1wcxb/PwjMl1H7bTr+SZ9r zmQO5ffF1zsWN8dKm5t+1FxpLHZ33GA/6e8yfwuey3eDDQFXrhdM3+/PaPxf 7tpYc0XnHAeMxTTGsvnBZV3r98284tsvRb7/Vw33BHAMkDagXx+celT+He3P jFvH+fxmlzXfHD5zBWfFwekjzduNzbW4f9b2Er9zzHGAOYHX/FgDWO3cC3za /+sU6wyw3/bbdIzC56ixZv1/+POYT5sX4dcchzvn4v+77a95O58rc9/GmO3z mI5jbdGYTF7o/2faFsc/5u32x9j87PPjnEJqh8T9qzpmHZGYYFnzl15a3u+R vYHH6gHbPoHmh2O6nv1U+iX7/uW4bsxW2A8l57avSZtjf4RO4BjD18DdNzTX Ps082zGBdcbK/wu3d5w//0yNMW3CftVxsTnMWL7DeNmIexjf5rf5HaQ9TU3Q 5xyj+x721/7b5t89fXXGGrY1xnByc+ZkPdFKN4973y99/armtO8/rft9SXL9 /yn8sx4oY/+zdYCz4tG12DZ2MmbI30j6eh9PXZB75bqcrMl3PODzvpdr+VKD 9P8Hn89ntBZYOQT8v31WtvHp9/L/37bGfIfvwDWP5sFjugrn7bfN95e69u+Q vGoj7pF+2vdznp//J/vW5awZek2Q4x1zFNuU1OvG8gDmCvh79wZxbOVaINYD wjcuTfP8532d399kZAyQ3H++HsD8baNr/bD9zlp8/2u/Yo59o38XY3GBsWRs JYbynmDeeDI3uBbvh21xLJBzr3f+PI9/07q+MWyNwbq97Zz/n4zlrl1nyPVg YFPzMna3XbEmA76sH5jLcZ7PZfzZrqdP9f/R/hQb6DqexLuPuw5vLE6wJph1 QuYKeQ/mXYprsQFXptgvfPiLgn04gGsBx+qB27WB9gnGpHlm+nZzbubbn6Se bR7hONV+PTXJPGcffjVezf/x38T6YDq1v7FniPfzyvdS4sVaM8mghmFN13pd Ma+pDYCNMbz4/8V5/9bt66yVZZyxGnONE/7PjkWwBfhkMJQ83f47tURrAek3 wL59/Kreyzjn/+Q8H583Y5Wx+/v77G0C2H+Z9f4z8R+1gOYAtgWtDpB+I+P0 MR9k/jjGWdfj/Fjca55vru6aPvAGbtdjjnN7WU+YuCzXe+3PxvS3UjBfdL2l 0+/lyulYmtlHcxtrfMnv035yzVLXfnf4+4xRbCewR87NGSvmXukz82/p7381 rnfcsRLXWXdfjvOrej/H76nV+37g1bG6+//xf8x1vtYwvTbQMc2y7t3fs9jv LxLv9yg6Z+qAY7UAlQNY0/Hf17Ghseq4bkOvth3JXa0J8De3n+T+id20PfyW zPWNGesK4PVqcw7/XnpC/Pnpd3B5wHsZF4dxucG/beFK19oB48q5Dj4T3yl1 0NYOUy80Fs3dl0fuba61MXIv4497mk84HliO61N/t1/w3972x8cu697ps63f 2V5Yy+f8pa5iOrU9ry9a6/x/KX+3l2Vt39/JBozwgHEOsBLDfxdjO/2Suaz9 JH8/xwXGhDly8uWz1r2ndoANcGxhf3y9q/59rcF78e+XBoxfHvbfPh3Lwzav NU9q3Pv/7NjemuSq9pmX+b7cd9zPd+jveLlrv9vk4/kdmBf4WtfFpv4PhqxN Yg+Mc9uo1Nvts41VdPqM841hYgDPZb7/X5f0apvRx/xfdOwzynfA88JtBzIW aNcFWOOxPrQecxz/jdW2mv8bs84fGP9gyLxgLa6D81+Ne7S1AfB58A7WLw3Y Xh72l4X9S8Prkl7L9fNxuj+P9Q9zG/Pn9MXW1Yxhf8+2w+ZUxkHa3+TMHnwe 2yr/fRynO1bIeMK+wXYI7F7SZ8k63arLtTYg/Xn6IesHWSeAHah1voX3vux5 /r+NDRjrDza/LsAaSsaG1pwcI+bvPvW+vMa/J+McW4BOl3429QMw0I+C+eKv SwwP1q+IyxPTg3lzfuzB5WH+28Ooz9whlsi4JXONWeNnf5m4JbYyv0hMLOne jhsc947xdOJhv6//tuYCthHgmP+z1+dm3Z3j9fw81u+85ucsvm9tIeOD1P+W dN+15lz5+3/R9L6/rg1AE3DsP18P4D6U/IY39B1vxN8ltfyME9LfL2texs5+ 39QDiQtqzGtOf1mYNq7N6S/K9y8L49gJji9pFO4wr3Gn/3QMAG42Rv6PaeuS r+dv33OyXsA2NO1iagT+bq3pWHtbivl+zbXz3MOxvnvypP8wxlMrNKYzf+/e P1d03Hm+GrN8UWp8/i7DNiBrg9pnB6cNtx/278iakn9n1u/svzPutxZgvDh+ 6O9V8F7+xsnnL0m3u6IBrt8Wnss1bw3Hv694ADuxrGuXh9f5+Nq2LnUxx0H8 P8Y4jP9vG7reOa/k+NZAbXuudC3u7Tt5z+Qkxn3aE/M85yN9H3y64wT7aO7T avKtPTEfcKy/qnnMJc7nvVvsL2L+v/7IfoHWAud1AH7P5qHpbxL/KzEPTYx5 zoNZw7b+3PN5OD0aPXh+e9j39sUB09byvi9+f2nYv6xrlmKO+QD3ap+j5Bo+ 83K/pg9P/c58YAzf6YM3dW1iMV9do2N/jc/l77MSc1ZH5iefN48Hn0tx7WrX 8gI0AfMBcwnH/lxjPpFa4SW9L9e//VKu5//7tgHogo4Feg7wtv6OaNL2L8Yr f8vUAMxxrWs5Znb8W/27c3LG/EXx8+8L70viAG/rOmJ6cMwA98QEFyet5s9g Tp8DcBySPH89hn29bYL5j895P/Ovtgupu5kzpV6TOcTchjNc0f6VuC779OB7 U+N3DM69zPP5/xjnxrQ5RN7DXCJtXG8nFnrf394GFK1kfF2A41b+1v5Nu66X v4trcNKfuWd/5Qr2728Lnxdj33G543R8+aVJi3nH+xfF9a/o3KVJa0/Yt00p o88BrMf/PWNl/9/9nWTuxBzamMzvLHPmfGf8HWxj0w7Yx2cuYiX2reeAT+Pb uXXbn/x/cszcPesDsn7HuQBrz8a5P1dfz9/7p/74Iub/u9uA1ATamkD/hv27 8d8680uO520rVmd4L5i6NGm1t4vC3WUN8Ji+/a1hWPszpi/pXo7pl2Ne2oy3 hvfEFtQcoH38GK9xnG9dLn1xcgLnMxxbWbsz5qy3+/olvU/G9Ma9bY7npj1y fgCMJ8dnHa777GRMQDzic16PzP2xB9b/rPm1+kLB/he1vu/XPYoNKN9lqwOY a1mPyt+aY1DX663NNPqSRzPe4fTfFx7BsPU6juOjvz+psf2lwC/2w7G9Nf7L uqe5/vc1bzmuL3P7HKB1itTS/L24/gkMmPOsxnHbVmt2iV1j1T7aegCfwbn8 5Bu+ztzdsf6K7pM6Hv83awTgGTvA55vX6WrewRqg9cPLuqfrfFo7tND7fv2j fJe2AVUHsH+x5mX+uNqZz7vuxlqc/TEYuyiMMxdfju+3vgeeufcV3YNzjg8u T1pOcUnvwTzH/7Y9bQ7A2MjcmtcAWgO0b12N7812Ahw6bwIGbXOsr/qajMNT 53NOwXxtTe9jLp/6W8buqeEx1zxgpav1QOaPfI5ct5v74N89ffvjRe9bxPx/ PzagxFMlHpjvFez8VOWNBe/E8M7LgW1wDUYvTWoODrtgrn9p0sb/F4MfgHv4 wEW919t6D+v9YDxt0NuTlovYLjkueK2JtZ3fSG5vzcMxsTmA832pbTm3njnA jMGtF9ouOAeQeRk0PnMMa4vg3LxgDO/2x7ZtY7qf+YfX5psPuLdA3v+S9r8Y fXw+bxuAJtDGpv3vJetqjUcw+LaO4btdi2d8vRU+/S3ZjOT3HGOu+Tr3tg3g mLU9eL/rgrxvu8K1fQ7QvtlrjqwDGP+u8c/1AamleF2BebxzicZ5xl3m5Y4z zBVW4n55/4zfmeP7Z63f5TPu67y+db/UAVdjrudk7rDX+xb1ff8wg/VDrqs1 tsHqRfnUi8LZWzpv325sgWn7Y8cF8ALX8aHPOUdvX2//b9vheiBzC9cLZv6P 929zIpnjOKvOz3G5Meu6t4yhwBoY4j6pCfhc2gcfT0ymngcfMPbMM5bino5h rNvZ9mQc4H7caPjYEeY7joFDtLHH9Jl9C63/H3SgCZTnpaY/N66dW0fTe3tS eb6xflEYNb4duzuvZ35+Ufd0btCfyfYIG+GaH/N8PqvrBC9PWhtVjs33S3XN k7Vx2wPz/bbWodoPc2R8YtYHjvl6/KPvYz1guWvxb+7udTk+bx0P3K5o29w+ tQLXCvA9XNY9x/IWy7r+bb2f6we0rmdR4/O52QDsANhynR2YTl3OtsL63Vva Rt+z3704abm59QTigrcmld9jE+AM5gL2/c4zsO3Pm3UHfMZ2HaCx6Ngo/eV6 zM01j7YbqQMaj7YF5hX207nOJ7k2tsgaXn5meLr98Vl8P+ty6rO12+POJ6zq fl7fP5YDtA3o7Uqxvwvsf/52oMQEpYe6fSn4O8sHu1bP852Xc9yedb6Zn2P/ 4qS1P+ybH2AXeG/HChfD9lyczOcD0Rr6dUDOgyS/tibgej3jyRzd/ti1PeT/ PN86oOMG8/j1bt7nZ82PP5Mx7LgA24BNWIt5mf/HxyfXH6sDwMZc6ub/f9YF PHd12m95ofe9OCPtAPi7JEzZ74I36wHg1DzB+Tuv03U+wNca89YLfZxr4fmO Na5ovs9x/NKkjVPm83/O3zv2N7dd7ebXBNuvww0cPxjz1tXMDbBDzrVlLj01 ubU4b3z6Xs7NWVMA7/bv1gCX45y/B+/bdnHd212rDfSfYRHzv7iD+uG//NrX ZpgFx/ABePdF4d1r8c3ljTf8M/uu9b2ouc4PXpTdca7wss47TsAuuPeHff/b cX3Fe2rs5urO+RnLYCnXB5gzW9t3TAAuHW84v5hc2hzDNsl5QXNy/Hzq9hkf JL69Ljfj+Vxb7NyitT5rgbZVS1ObsMD+iz2sDWAHHHt7va1zfemvwdtbkzYe dxyeePQafjCPRuAY4IqOufbPa4K5r+Ma7FabA0j8Obdvfc6atn302HHrBeYJ GRuDIa8PyDjDWE5/bz9sPm/MZs4tYwLH6VyDvbnctc/ZvRRzUhuwnci8xELv O0+DmKDYa3IFF8Pngy9iAdfYXxTuHCOQM8w1PublF8UR3h65Fxp+rid0/SD3 5f2scXK/PgfgeDrzbva1WeeT+bwxjp5xvuN9a31Lse28HffHfnjN/JVu3hbZ Blm/TL3eWmDej7n06rQ98Bx/D/k8DzjHsKZvgf1zOcwHih1ITm+93TWCzvNd FIe4OGnX6qY+aCw7Hriobef23TeA9xnTGbnOsUDNATrvthq/Yftu181Y+1+P 4+lr7c/NqzPmSA4xlp/PXBufsebVx3Ltbe7gV/nt7NGzFNt87lzvZ97R5hYL z1rofed7YAfKGo2LwhD6eubwXbNjnw5e0Q6XNYd7LQVuXRsEjrM+yDbGeQrn H20zymufA3RMba6ea/aSN1sjsL827sEJOgJ5vbFcPu8xVgNkDS/zcmlfnNM3 J3G9Hzh3fvFK3A9OYP6QHMK9Pa5087avvL69WNP3Eg3igqINgCPnAagh9Fof 5wRdu+O8/MW4zusGzDXM78c0xswDOk6wTlDeq88Bro78bjOfTw7Px4038Jv5 MfOHXH9nbu5+jI45UnOzjUguYC0O7p05QHN9xxv+f/oc8b8/h/MD9v2u+a+f 5U/+4NIC+y/hIFdQcob263Bu1wVc1LklYRHbgKZwUfbAeTvjOHMMaA7uB4ZN ch+CXC/Ie89zcGPGeTLn06wPmi+kr12NOfbr2APn2uzLXefjHLx5uDX41B3G NIVl3df8YDm2ifv5/7hH10q8B/YEm1P5xSLmf7kHMUFqhOmLr0zm/f9Y/fBb Omesu4YHm3JJx6xDWkO4qGszt9CuAzL/N86M3YwJOJ6xvX1/8vTVkbnGFPFB 8nfzAmM4NXb7YnDpGB2MOq5B5/NzN3LtrusEMqfntXyMpe53vraxwP4XZJxl B7KWL+sIsjY/5+HLM7do3Od6ArgFNoJ9rxd0/VGfA8zaXa/zG8sDmhsYd8ua vxTbnoP9SO3McUReY39vnOfgvo7vzdvNGez3re2N+f3UAuEJ+Tl67C/W9H3x hnMFaPjO8ztP6N7dF+XzM1cIxuHzF4PLcy33tG1w3Z9tiPXIPgfgXF3q8Ylz 2wrn5c7S+1Nrd53QmF6XccdYbnKpm8et+UpinWvsq/3e1hRtGzKX4Drf7OPV Hy98aoH9L/bADlBPDHZtDy4K12A844dca+C+YUsj93PO4WLM8Vyva6o1AI4B 7PPZN693rtB1O7YVxnL62eTRaXfg6Jfj2GrcwzUBuUYw4wrrdskfsu4hOQX3 cw2hbVr9vy30vsVgWCP0ejzi9aXAYvp18JzP98m+JNgQ9xT2eecJvE6hHKu9 AJNfo9etxXGwYxvguhx8vHGOfTCWslYGLuE4wPh1XV7aFvMRcwe/h3N/yQtS T0D359X8fynuVfG/wP5i5LA2QM7QNsD1fM4VvjVpc/W2DZx3rtFzzAkyLuCV vEKLf+NvrD+H84Sp1TsvMLaG2Dq5dULeN+cYz/ax1vawB47D8zP5XtYRxmoB yyvr9h3rcy8+m23C5ek1C71vMX7VwA6wvujipNYNXBGOUxe4KFxfnMznE51X 8L7rjLyWiNw/a4/7dYD42lyrZ24NDl0H4Dy7Y3Xn6ZOXO7YwpzcHT83P2sNq zMm8nOvvuP6SzhnraHyr2nZM4jjikt4TLaC3DYuYfzH+uiP5wEXh3HwA2+D1 PJdG8PzWpNX6rRt6PbJzDW/ptZzvc4CuwQEbzgMYe9YAXK+H/08t33G7fa8x j0+1/u76O2sKjgmsy7k2IDmLeYNrepbiGDG+eUD27/e8KwvsL8bfeFBH6HUF rg107Z/XGDgHeEXHXS+Abbg8afOIXivsHEDbCzB9dOb3rBNmHj9jbMfxrgPI Ov+stU+9Ievsx7g5diDrF1zTQ0xvG5L75gG2Oc4d1Dq/Rcy/GH+XYTtwMXi7 64Ot/ePT0fWdM7yomML24eJkXhds1wGZuzMyHwfe8H1Z8+ucQeI0OTk2wLW0 1tvNyTN/YJ3P9+EzWZ93nMH/8W3ZlqwHzNgi3x87srLo47MYv7ZhOzDmw50j tO5/MTj990eOeS2QbQs5g4p/P8ODuD85uXHlfJlxn/VExo99svt4uIbW3N05 +P+/vbPLbRqKgnDWwRpYAztgCeyCV7DTJqZsgzfEIk2Orak/T64pCBVHYR4+ VUmtOqXMPf/HOh/08/UsDmqT+mVugr4J53pPdn2P9/xMWvKApf0f376Pe/+/ CfeF7yKjjVfujvplLZA+vc8hsG9A1yjOWM8BUq/07z2f5zafOmbfH2cFPLZn rkH68udtnXE9Nc6fx54drykyZ/eE6/x8YJzvc0d8Vs98DiXmD6+J5wh7032H M4F7hx/sNXeVcx64Oyy5hrkGSE2xNuf5dvYDsc7O/T5bz/JiXc5rgfQvvMeQ /oNycO5T8Ll6x3Htm/C+OmPYs0A/Y2umfzmjEvOHfwF3DvB5Bb5DkDvEZO/V L8T9YNK9zwkuc8Cs21GzX+19j/OZP/MZXerY83/M/3ttwHXPXh3a6lZPju7p ufoB1zPmV0zgfoCuKfpoP+wCa4byAxjbs9eH/b6+m5g1AO0e0bVzDZCaZO6f vXe02a4n2X7vvaetdd9efjV17305vqOfNXjW9emjD7jPYPemre/H9RnBGgFj hyE9PmFX/LklfEYB+3vlD5zstc8e0SeY9c+aPGN3amEYr+066wTUF88M7wXw 3Dt9evrdfh61+oA9j+d9Q+77syZxtPd5biz+RWk/+b5wCzBHKF9A2uZOIu8V 9r4hfm/uAWB9/2lc21bm6+Vbc2cAc3TSJPv5eEYwHvCZAPYLPNr9GScw7+c5 f5/r4Wf2GSDPG/CzzD+zzsb4/eHW4C4y5gXYK8iZX99b3uGMmGuA7v8zvqbO mQfwXDnrh7TxzPNxR/4Xu5efEe7/yzdn74/XDfmV9py1A2mfPofyiEvdr+x+ tB9uGZ8vUk2APQGeC2DvcHdgDwDz+nrNfXw+10N/nP6/22nN86qnhvc6Ne7L fiP2CdHPYH3e8/as//kcn/cbLTM8pfVimtu8+PuKufb+G4fwK1pzBUfYe+YG OTOgnMHcA0BdSLPSXGvmn7E37SzrgoNdy7pBS6tbcb9077UB9hFI38dxyevx POqnOKeo3XxF/XvpmTzO3n/TEP4UrxnS1+czw7x3sJtqgLTjrdidumeMzzy/ agC02aylec8N+3elVfb+Mk/gsYbvBe2nWF0af3f5/UvjZc8rZ1o2veKlaD3c O625Au4FU2zA7y27QD22F9zJw1rgQ+M6jxFkl9kj6Dl95h9YQ6ANP680XnGL dP6SPY/Ow/+GP7ekNTPw6Ur/7MVr5f5Zl2fOnf49/QTW5pnHY72NPn0/0leX xuvrhzdvJ53Hnofw+7BW0CEeUEzQrWqA9PMfx2tbzJoAzwlqX34A+/5OK2TH pe/i/eVzFNR52fPoPIS/R+dA5QaYC+wOvgvYte5zeuyx0RnRmrk5r+JxQp3L d9dcTXQewuuhXWQ6Bz4fuAuY9p01vaeGxs+bGpctf9b5Bdrz2PQQ9sNrhh+f awDsnRk2c26ucer8pRh97989hDCjmKDOgdL5lGe76FcaLz27zhOjh3BfbNXM yFZ8Hp2HcP9E5yGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEII IYRwO/wEoyvYXg== "], {{0, 256.}, {256., 0}}, {0, 255}, ColorFunction->RGBColor], BoxForm`ImageTag["Byte", ColorSpace -> "RGB", Interleaving -> True], Selectable->False], DefaultBaseStyle->"ImageGraphics", ImageSizeRaw->{256., 256.}, PlotRange->{{0, 256.}, {0, 256.}}]], "Output", CellLabel-> "Out[231]=",ExpressionUUID->"544990d5-9efc-4a6a-8569-63b316be0889"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"maeder", "=", RowBox[{"MaederUniformPolyhedron", "[", RowBox[{"UniformPolyhedronIndex", "[", RowBox[{"stdname", ",", "\"\\""}], "]"}], "]"}]}]], "Input", CellLabel-> "In[232]:=",ExpressionUUID->"f3593e31-a105-4769-a193-441d39c5fded"], Cell[BoxData[ InterpretationBox[ RowBox[{ TagBox["Polyhedron", "SummaryHead"], "[", DynamicModuleBox[{Typeset`open$$ = False, Typeset`embedState$$ = "Ready", Typeset`spolyhedron$$ = Quiet[ Polyhedron[{{-1.00000000000000000000000000002239125301`21.14438848584865, 0``21.521926510909992, \ -0.32491969623290632615587141213098356416`20.901383516435256}, \ {-0.99999999999999999999999999997760874699`22.493342161067197, 0``22.703447435698116, 0.32491969623290632615587141226880994578`21.89081051520583}, \ {-0.89442719099991587856366946750241255837`20.714230363195266, \ -0.55278640450004206071816526622876637526`20.856071331710055, 0``21.03627087476406}, \ {-0.7236067977499789696409173668594006767`21.951002332591326, 0.55278640450004206071816526622876637527`21.95951273329008, 0.52573111211913360602566908488361652659`21.70629780965596}, \ {-0.72360679774997896964091736682618814371`20.56750129238854, 0.55278640450004206071816526627224214539`20.314296450721642, \ -0.52573111211913360602566908488361652659`20.569540146423396}, \ {-0.61803398874989484820458683448288024066`19.697593951670708, 0``20.382802382444286, \ -0.85065080835203993218154049697200939656`20.1294688435041}, \ {-0.61803398874989484820458683433942198205`23.76484010027788, 0``24.06537020081589, 0.85065080835203993218154049707623792241`23.43896881750689}, \ {-0.55278640450004206071816526622192421719`21.80443463418667, 0.89442719099991587856366946750664124461`21.806875605183254, 0``21.958910148787343}, \ {-0.44721359549995793928183473373012176208`21.860108142552818, \ -0.89442719099991587856366946747554305476`22.137605720110965, 0.32491969623290632615587141226880994578`21.557444216055497}, \ {-0.44721359549995793928183473369965059294`20.513515447045513, \ -0.89442719099991587856366946752892088908`20.663797034664352, \ -0.3249196962329063261558714121638133398`20.35504371101915}, \ {-0.27639320225002103035908263311820807028`23.325705644915125, \ -0.55278640450004206071816526622876637526`23.573510939530593, 0.85065080835203993218154049707623792241`23.12647678332294}, \ {-0.27639320225002103035908263309000826509`18.894743555203156, \ -0.55278640450004206071816526631940034178`19.073810588944085, \ -0.85065080835203993218154049705338135744`19.43108465272761}, \ {-0.17082039324993690892275210060718587685`22.6774877509637, 0.89442719099991587856366946746447221042`23.264800065913768, 0.52573111211913360602566908489012380561`22.908014516913838}, \ {-0.1708203932499369089227521005467426673`19.525326666661893, 0.89442719099991587856366946750182816832`20.118572919160858, \ -0.52573111211913360602566908484620924334`20.144824043946315}, { 0, 0, 1.05146222423826721205133816969104450323`25.}, { 0``19.43934869836654, 0``19.63682072093832, \ -1.05146222423826721205133816969104450322`19.392319528414923}, { 0.17082039324993690892275210060718587685`22.14478102952008, \ -0.89442719099991587856366946746447221042`22.718285290236317, 0.52573111211913360602566908489012380561`22.289999202063985}, { 0.17082039324993690892275210065408272602`19.28458811164579, \ -0.89442719099991587856366946745551570921`19.880820326579936, \ -0.52573111211913360602566908489012380561`19.923698027196714}, { 0.27639320225002103035908263309000826508`19.46800273622889, 0.55278640450004206071816526631940034177`19.646999590860073, \ -0.85065080835203993218154049705338135743`20.00436039030731}, { 0.27639320225002103035908263311820807028`23.863709711880208, 0.55278640450004206071816526622876637527`23.853075135234427, 0.85065080835203993218154049707623792241`23.791681813396085}, { 0.44721359549995793928183473369965059294`21.087349863211102, 0.89442719099991587856366946752892088909`21.236573701010265, \ -0.3249196962329063261558714121638133398`20.928711153890784}, { 0.44721359549995793928183473373012176208`22.43653322390113, 0.89442719099991587856366946747554305476`22.700010261704822, 0.32491969623290632615587141226880994578`22.143401449592908}, { 0.5527864045000420607181652662722421454`21.00815326783712, \ -0.89442719099991587856366946747554305474`21.28864321853038, 0``21.317996763410257}, { 0.61803398874989484820458683433942198205`23.940355714870464, 0, 0.85065080835203993218154049707623792241`24.26184312112482}, { 0.61803398874989484820458683448288024064`20.312035014172622, 0``20.998963143855068, \ -0.85065080835203993218154049697200939655`20.745069206418126}, { 0.7236067977499789696409173668594006767`22.549862782057975, \ -0.55278640450004206071816526622876637526`22.586631051668526, 0.52573111211913360602566908488361652658`22.33351242034159}, { 0.72360679774997896964091736695359817864`20.00436414962158, \ -0.55278640450004206071816526620531795068`20.263686689952127, \ -0.52573111211913360602566908477861992061`20.1885050646606}, { 0.89442719099991587856366946750241255837`21.328164240989224, 0.55278640450004206071816526622876637526`21.47382230822604, 0``21.654041370374376}, { 0.99999999999999999999999999997760874698`23.09436331397416, 0``23.303660794931154, 0.32491969623290632615587141226880994577`22.53560727997176}, { 1.00000000000000000000000000002239125301`21.757800113708967, 0``22.14113553352007, \ -0.32491969623290632615587141213098356416`21.520406890032792}}, {{15, 24, 20}, {15, 20, 13, 4, 7}, {15, 7, 11}, {15, 11, 17, 26, 24}, {24, 26, 29}, {24, 29, 28, 22, 20}, {20, 22, 13}, {7, 4, 2}, {7, 2, 3, 9, 11}, { 11, 9, 17}, {29, 26, 23, 27, 30}, {29, 30, 28}, {26, 17, 23}, {13, 22, 21, 14, 8}, {13, 8, 4}, {22, 28, 21}, {2, 4, 8, 5, 1}, {2, 1, 3}, {17, 9, 10, 18, 23}, {9, 3, 10}, {30, 27, 25}, {30, 25, 19, 21, 28}, {23, 18, 27}, {8, 14, 5}, {21, 19, 14}, {1, 5, 6}, {1, 6, 12, 10, 3}, {10, 12, 18}, {25, 27, 18, 12, 16}, {25, 16, 19}, {5, 14, 19, 16, 6}, {6, 16, 12}}]]}, TemplateBox[{ PaneSelectorBox[{False -> GridBox[{{ PaneBox[ ButtonBox[ DynamicBox[ FEPrivate`FrontEndResource["FEBitmaps", "SummaryBoxOpener"]], ButtonFunction :> (Typeset`open$$ = True), Appearance -> None, BaseStyle -> {}, Evaluator -> Automatic, Method -> "Preemptive"], Alignment -> {Center, Center}, ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], Graphics3DBox[{ Directive[ Hue[0.58, 0.4, 1], Opacity[0.5], EdgeForm[ GrayLevel[1]]], PolyhedronBox[{{-1., 0., -0.32491969623290634`}, {-1., 0., 0.32491969623290634`}, {-0.8944271909999159, \ -0.552786404500042, 0.}, {-0.7236067977499789, 0.552786404500042, 0.5257311121191336}, {-0.7236067977499789, 0.552786404500042, -0.5257311121191336}, {-0.6180339887498949, 0., -0.8506508083520399}, {-0.6180339887498949, 0., 0.8506508083520399}, {-0.552786404500042, 0.8944271909999159, 0.}, {-0.4472135954999579, -0.8944271909999159, 0.32491969623290634`}, {-0.4472135954999579, \ -0.8944271909999159, -0.32491969623290634`}, {-0.276393202250021, \ -0.552786404500042, 0.8506508083520399}, {-0.276393202250021, -0.552786404500042, \ -0.8506508083520399}, {-0.17082039324993692`, 0.8944271909999159, 0.5257311121191336}, {-0.17082039324993692`, 0.8944271909999159, -0.5257311121191336}, { 0, 0, 1.0514622242382672`}, {0., 0., -1.0514622242382672`}, { 0.17082039324993692`, -0.8944271909999159, 0.5257311121191336}, { 0.17082039324993692`, -0.8944271909999159, \ -0.5257311121191336}, {0.276393202250021, 0.552786404500042, -0.8506508083520399}, {0.276393202250021, 0.552786404500042, 0.8506508083520399}, {0.4472135954999579, 0.8944271909999159, -0.32491969623290634`}, { 0.4472135954999579, 0.8944271909999159, 0.32491969623290634`}, { 0.552786404500042, -0.8944271909999159, 0.}, { 0.6180339887498949, 0, 0.8506508083520399}, { 0.6180339887498949, 0., -0.8506508083520399}, { 0.7236067977499789, -0.552786404500042, 0.5257311121191336}, { 0.7236067977499789, -0.552786404500042, -0.5257311121191336}, \ {0.8944271909999159, 0.552786404500042, 0.}, {1., 0., 0.32491969623290634`}, { 1., 0., -0.32491969623290634`}}, {{15, 24, 20}, {15, 20, 13, 4, 7}, {15, 7, 11}, {15, 11, 17, 26, 24}, {24, 26, 29}, {24, 29, 28, 22, 20}, {20, 22, 13}, {7, 4, 2}, {7, 2, 3, 9, 11}, { 11, 9, 17}, {29, 26, 23, 27, 30}, {29, 30, 28}, {26, 17, 23}, {13, 22, 21, 14, 8}, {13, 8, 4}, {22, 28, 21}, {2, 4, 8, 5, 1}, {2, 1, 3}, {17, 9, 10, 18, 23}, {9, 3, 10}, {30, 27, 25}, {30, 25, 19, 21, 28}, {23, 18, 27}, {8, 14, 5}, {21, 19, 14}, {1, 5, 6}, {1, 6, 12, 10, 3}, {10, 12, 18}, {25, 27, 18, 12, 16}, {25, 16, 19}, {5, 14, 19, 16, 6}, {6, 16, 12}}]}, ImageSize -> Dynamic[{5.25, 3.5} (CurrentValue["FontCapHeight"]/ AbsoluteCurrentValue[Magnification])], Boxed -> False, Lighting -> {{"Ambient", RGBColor[0.4, 0.45, 0.5]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{2, 0, 2}]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{2, 2, 2}]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{0, 2, 2}]}}, Method -> {"ShrinkWrap" -> True}], GridBox[{{ RowBox[{ TagBox["\"Number of points: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["30", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Number of faces: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["32", "SummaryItem"]}]}}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> {"Columns" -> {{2}}, "Rows" -> {{Automatic}}}, BaseStyle -> { ShowStringCharacters -> False, NumberMarks -> False, PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, BaselinePosition -> {1, 1}], True -> GridBox[{{ PaneBox[ ButtonBox[ DynamicBox[ FEPrivate`FrontEndResource["FEBitmaps", "SummaryBoxCloser"]], ButtonFunction :> (Typeset`open$$ = False), Appearance -> None, BaseStyle -> {}, Evaluator -> Automatic, Method -> "Preemptive"], Alignment -> {Center, Center}, ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], Graphics3DBox[{ Directive[ Hue[0.58, 0.4, 1], Opacity[0.5], EdgeForm[ GrayLevel[1]]], PolyhedronBox[{{-1., 0., -0.32491969623290634`}, {-1., 0., 0.32491969623290634`}, {-0.8944271909999159, \ -0.552786404500042, 0.}, {-0.7236067977499789, 0.552786404500042, 0.5257311121191336}, {-0.7236067977499789, 0.552786404500042, -0.5257311121191336}, {-0.6180339887498949, 0., -0.8506508083520399}, {-0.6180339887498949, 0., 0.8506508083520399}, {-0.552786404500042, 0.8944271909999159, 0.}, {-0.4472135954999579, -0.8944271909999159, 0.32491969623290634`}, {-0.4472135954999579, \ -0.8944271909999159, -0.32491969623290634`}, {-0.276393202250021, \ -0.552786404500042, 0.8506508083520399}, {-0.276393202250021, -0.552786404500042, \ -0.8506508083520399}, {-0.17082039324993692`, 0.8944271909999159, 0.5257311121191336}, {-0.17082039324993692`, 0.8944271909999159, -0.5257311121191336}, { 0, 0, 1.0514622242382672`}, {0., 0., -1.0514622242382672`}, { 0.17082039324993692`, -0.8944271909999159, 0.5257311121191336}, { 0.17082039324993692`, -0.8944271909999159, \ -0.5257311121191336}, {0.276393202250021, 0.552786404500042, -0.8506508083520399}, {0.276393202250021, 0.552786404500042, 0.8506508083520399}, {0.4472135954999579, 0.8944271909999159, -0.32491969623290634`}, { 0.4472135954999579, 0.8944271909999159, 0.32491969623290634`}, { 0.552786404500042, -0.8944271909999159, 0.}, { 0.6180339887498949, 0, 0.8506508083520399}, { 0.6180339887498949, 0., -0.8506508083520399}, { 0.7236067977499789, -0.552786404500042, 0.5257311121191336}, { 0.7236067977499789, -0.552786404500042, -0.5257311121191336}, \ {0.8944271909999159, 0.552786404500042, 0.}, {1., 0., 0.32491969623290634`}, { 1., 0., -0.32491969623290634`}}, {{15, 24, 20}, {15, 20, 13, 4, 7}, {15, 7, 11}, {15, 11, 17, 26, 24}, {24, 26, 29}, {24, 29, 28, 22, 20}, {20, 22, 13}, {7, 4, 2}, {7, 2, 3, 9, 11}, { 11, 9, 17}, {29, 26, 23, 27, 30}, {29, 30, 28}, {26, 17, 23}, {13, 22, 21, 14, 8}, {13, 8, 4}, {22, 28, 21}, {2, 4, 8, 5, 1}, {2, 1, 3}, {17, 9, 10, 18, 23}, {9, 3, 10}, {30, 27, 25}, {30, 25, 19, 21, 28}, {23, 18, 27}, {8, 14, 5}, {21, 19, 14}, {1, 5, 6}, {1, 6, 12, 10, 3}, {10, 12, 18}, {25, 27, 18, 12, 16}, {25, 16, 19}, {5, 14, 19, 16, 6}, {6, 16, 12}}]}, ImageSize -> Dynamic[{5.25, 3.5} (CurrentValue["FontCapHeight"]/ AbsoluteCurrentValue[Magnification])], Boxed -> False, Lighting -> {{"Ambient", RGBColor[0.4, 0.45, 0.5]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{2, 0, 2}]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{2, 2, 2}]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{0, 2, 2}]}}, Method -> {"ShrinkWrap" -> True}], GridBox[{{ RowBox[{ TagBox["\"Number of points: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["30", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Number of faces: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["32", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Embedding dimension: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["3", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Type: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Quiet[ Apply[Region`PolyhedronDump`polyhedronType, Region`PolyhedronDump`computeType[ Typeset`spolyhedron$$]]], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}, { RowBox[{ TagBox["\"Bounds: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Region`PolyhedronDump`iRegionBounds[ Typeset`spolyhedron$$], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}, { RowBox[{ TagBox["\"Volume: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Region`PolyhedronDump`iVolume[Typeset`spolyhedron$$], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> {"Columns" -> {{2}}, "Rows" -> {{Automatic}}}, BaseStyle -> { ShowStringCharacters -> False, NumberMarks -> False, PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, BaselinePosition -> {1, 1}]}, Dynamic[Typeset`open$$], ImageSize -> Automatic]}, "SummaryPanel"], DynamicModuleValues:>{}], "]"}], Polyhedron[{{-1.00000000000000000000000000002239125301`21.14438848584865, 0``21.521926510909992, \ -0.32491969623290632615587141213098356416`20.901383516435256}, \ {-0.99999999999999999999999999997760874699`22.493342161067197, 0``22.703447435698116, 0.32491969623290632615587141226880994578`21.89081051520583}, \ {-0.89442719099991587856366946750241255837`20.714230363195266, \ -0.55278640450004206071816526622876637526`20.856071331710055, 0``21.03627087476406}, \ {-0.7236067977499789696409173668594006767`21.951002332591326, 0.55278640450004206071816526622876637527`21.95951273329008, 0.52573111211913360602566908488361652659`21.70629780965596}, \ {-0.72360679774997896964091736682618814371`20.56750129238854, 0.55278640450004206071816526627224214539`20.314296450721642, \ -0.52573111211913360602566908488361652659`20.569540146423396}, \ {-0.61803398874989484820458683448288024066`19.697593951670708, 0``20.382802382444286, \ -0.85065080835203993218154049697200939656`20.1294688435041}, \ {-0.61803398874989484820458683433942198205`23.76484010027788, 0``24.06537020081589, 0.85065080835203993218154049707623792241`23.43896881750689}, \ {-0.55278640450004206071816526622192421719`21.80443463418667, 0.89442719099991587856366946750664124461`21.806875605183254, 0``21.958910148787343}, \ {-0.44721359549995793928183473373012176208`21.860108142552818, \ -0.89442719099991587856366946747554305476`22.137605720110965, 0.32491969623290632615587141226880994578`21.557444216055497}, \ {-0.44721359549995793928183473369965059294`20.513515447045513, \ -0.89442719099991587856366946752892088908`20.663797034664352, \ -0.3249196962329063261558714121638133398`20.35504371101915}, \ {-0.27639320225002103035908263311820807028`23.325705644915125, \ -0.55278640450004206071816526622876637526`23.573510939530593, 0.85065080835203993218154049707623792241`23.12647678332294}, \ {-0.27639320225002103035908263309000826509`18.894743555203156, \ -0.55278640450004206071816526631940034178`19.073810588944085, \ -0.85065080835203993218154049705338135744`19.43108465272761}, \ {-0.17082039324993690892275210060718587685`22.6774877509637, 0.89442719099991587856366946746447221042`23.264800065913768, 0.52573111211913360602566908489012380561`22.908014516913838}, \ {-0.1708203932499369089227521005467426673`19.525326666661893, 0.89442719099991587856366946750182816832`20.118572919160858, \ -0.52573111211913360602566908484620924334`20.144824043946315}, { 0, 0, 1.05146222423826721205133816969104450323`25.}, { 0``19.43934869836654, 0``19.63682072093832, \ -1.05146222423826721205133816969104450322`19.392319528414923}, { 0.17082039324993690892275210060718587685`22.14478102952008, \ -0.89442719099991587856366946746447221042`22.718285290236317, 0.52573111211913360602566908489012380561`22.289999202063985}, { 0.17082039324993690892275210065408272602`19.28458811164579, \ -0.89442719099991587856366946745551570921`19.880820326579936, \ -0.52573111211913360602566908489012380561`19.923698027196714}, { 0.27639320225002103035908263309000826508`19.46800273622889, 0.55278640450004206071816526631940034177`19.646999590860073, \ -0.85065080835203993218154049705338135743`20.00436039030731}, { 0.27639320225002103035908263311820807028`23.863709711880208, 0.55278640450004206071816526622876637527`23.853075135234427, 0.85065080835203993218154049707623792241`23.791681813396085}, { 0.44721359549995793928183473369965059294`21.087349863211102, 0.89442719099991587856366946752892088909`21.236573701010265, \ -0.3249196962329063261558714121638133398`20.928711153890784}, { 0.44721359549995793928183473373012176208`22.43653322390113, 0.89442719099991587856366946747554305476`22.700010261704822, 0.32491969623290632615587141226880994578`22.143401449592908}, { 0.5527864045000420607181652662722421454`21.00815326783712, \ -0.89442719099991587856366946747554305474`21.28864321853038, 0``21.317996763410257}, { 0.61803398874989484820458683433942198205`23.940355714870464, 0, 0.85065080835203993218154049707623792241`24.26184312112482}, { 0.61803398874989484820458683448288024064`20.312035014172622, 0``20.998963143855068, \ -0.85065080835203993218154049697200939655`20.745069206418126}, { 0.7236067977499789696409173668594006767`22.549862782057975, \ -0.55278640450004206071816526622876637526`22.586631051668526, 0.52573111211913360602566908488361652658`22.33351242034159}, { 0.72360679774997896964091736695359817864`20.00436414962158, \ -0.55278640450004206071816526620531795068`20.263686689952127, \ -0.52573111211913360602566908477861992061`20.1885050646606}, { 0.89442719099991587856366946750241255837`21.328164240989224, 0.55278640450004206071816526622876637526`21.47382230822604, 0``21.654041370374376}, { 0.99999999999999999999999999997760874698`23.09436331397416, 0``23.303660794931154, 0.32491969623290632615587141226880994577`22.53560727997176}, { 1.00000000000000000000000000002239125301`21.757800113708967, 0``22.14113553352007, \ -0.32491969623290632615587141213098356416`21.520406890032792}}, {{15, 24, 20}, {15, 20, 13, 4, 7}, {15, 7, 11}, {15, 11, 17, 26, 24}, {24, 26, 29}, {24, 29, 28, 22, 20}, {20, 22, 13}, {7, 4, 2}, {7, 2, 3, 9, 11}, {11, 9, 17}, {29, 26, 23, 27, 30}, {29, 30, 28}, {26, 17, 23}, {13, 22, 21, 14, 8}, {13, 8, 4}, {22, 28, 21}, {2, 4, 8, 5, 1}, {2, 1, 3}, {17, 9, 10, 18, 23}, {9, 3, 10}, {30, 27, 25}, {30, 25, 19, 21, 28}, {23, 18, 27}, {8, 14, 5}, {21, 19, 14}, {1, 5, 6}, {1, 6, 12, 10, 3}, {10, 12, 18}, {25, 27, 18, 12, 16}, {25, 16, 19}, {5, 14, 19, 16, 6}, {6, 16, 12}}], Editable->False, SelectWithContents->True, Selectable->False]], "Output", CellLabel-> "Out[232]=",ExpressionUUID->"29bf5e19-9ca5-4dbf-bc52-63a9d45c3f2c"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Graphics3D", "/@", RowBox[{"(", RowBox[{"polys", "=", RowBox[{ RowBox[{ RowBox[{"Polygon", "[", RowBox[{ RowBox[{"maeder", "[", RowBox[{"[", "1", "]"}], "]"}], ",", "#"}], "]"}], "&"}], "/@", RowBox[{"maeder", "[", RowBox[{"[", "2", "]"}], "]"}]}]}], ")"}]}]], "Input", CellLabel-> "In[233]:=",ExpressionUUID->"c8cfdf19-405d-47e2-88aa-4298c7bea2f2"], Cell[BoxData[ RowBox[{"{", RowBox[{ Graphics3DBox[ Polygon3DBox[{{-1., 0., -0.32491969623290634`}, {-1., 0., 0.32491969623290634`}, {-0.8944271909999159, -0.552786404500042, 0.}, {-0.7236067977499789, 0.552786404500042, 0.5257311121191336}, {-0.7236067977499789, 0.552786404500042, -0.5257311121191336}, {-0.6180339887498949, 0., -0.8506508083520399}, {-0.6180339887498949, 0., 0.8506508083520399}, {-0.552786404500042, 0.8944271909999159, 0.}, {-0.4472135954999579, -0.8944271909999159, 0.32491969623290634`}, {-0.4472135954999579, -0.8944271909999159, \ -0.32491969623290634`}, {-0.276393202250021, -0.552786404500042, 0.8506508083520399}, {-0.276393202250021, -0.552786404500042, \ -0.8506508083520399}, {-0.17082039324993692`, 0.8944271909999159, 0.5257311121191336}, {-0.17082039324993692`, 0.8944271909999159, -0.5257311121191336}, {0, 0, 1.0514622242382672`}, { 0., 0., -1.0514622242382672`}, { 0.17082039324993692`, -0.8944271909999159, 0.5257311121191336}, { 0.17082039324993692`, -0.8944271909999159, -0.5257311121191336}, { 0.276393202250021, 0.552786404500042, -0.8506508083520399}, { 0.276393202250021, 0.552786404500042, 0.8506508083520399}, { 0.4472135954999579, 0.8944271909999159, -0.32491969623290634`}, { 0.4472135954999579, 0.8944271909999159, 0.32491969623290634`}, { 0.552786404500042, -0.8944271909999159, 0.}, { 0.6180339887498949, 0, 0.8506508083520399}, {0.6180339887498949, 0., -0.8506508083520399}, {0.7236067977499789, -0.552786404500042, 0.5257311121191336}, { 0.7236067977499789, -0.552786404500042, -0.5257311121191336}, { 0.8944271909999159, 0.552786404500042, 0.}, {1., 0., 0.32491969623290634`}, {1., 0., -0.32491969623290634`}}, {15, 24, 20}]], ",", Graphics3DBox[ Polygon3DBox[{{-1., 0., -0.32491969623290634`}, {-1., 0., 0.32491969623290634`}, {-0.8944271909999159, -0.552786404500042, 0.}, {-0.7236067977499789, 0.552786404500042, 0.5257311121191336}, {-0.7236067977499789, 0.552786404500042, -0.5257311121191336}, {-0.6180339887498949, 0., -0.8506508083520399}, {-0.6180339887498949, 0., 0.8506508083520399}, {-0.552786404500042, 0.8944271909999159, 0.}, {-0.4472135954999579, -0.8944271909999159, 0.32491969623290634`}, {-0.4472135954999579, -0.8944271909999159, \ -0.32491969623290634`}, {-0.276393202250021, -0.552786404500042, 0.8506508083520399}, {-0.276393202250021, -0.552786404500042, \ -0.8506508083520399}, {-0.17082039324993692`, 0.8944271909999159, 0.5257311121191336}, {-0.17082039324993692`, 0.8944271909999159, -0.5257311121191336}, {0, 0, 1.0514622242382672`}, { 0., 0., -1.0514622242382672`}, { 0.17082039324993692`, -0.8944271909999159, 0.5257311121191336}, { 0.17082039324993692`, -0.8944271909999159, -0.5257311121191336}, { 0.276393202250021, 0.552786404500042, -0.8506508083520399}, { 0.276393202250021, 0.552786404500042, 0.8506508083520399}, { 0.4472135954999579, 0.8944271909999159, -0.32491969623290634`}, { 0.4472135954999579, 0.8944271909999159, 0.32491969623290634`}, { 0.552786404500042, -0.8944271909999159, 0.}, { 0.6180339887498949, 0, 0.8506508083520399}, {0.6180339887498949, 0., -0.8506508083520399}, {0.7236067977499789, -0.552786404500042, 0.5257311121191336}, { 0.7236067977499789, -0.552786404500042, -0.5257311121191336}, { 0.8944271909999159, 0.552786404500042, 0.}, {1., 0., 0.32491969623290634`}, {1., 0., -0.32491969623290634`}}, {15, 20, 13, 4, 7}]], ",", Graphics3DBox[ Polygon3DBox[{{-1., 0., -0.32491969623290634`}, {-1., 0., 0.32491969623290634`}, {-0.8944271909999159, -0.552786404500042, 0.}, {-0.7236067977499789, 0.552786404500042, 0.5257311121191336}, {-0.7236067977499789, 0.552786404500042, -0.5257311121191336}, {-0.6180339887498949, 0., -0.8506508083520399}, {-0.6180339887498949, 0., 0.8506508083520399}, {-0.552786404500042, 0.8944271909999159, 0.}, {-0.4472135954999579, -0.8944271909999159, 0.32491969623290634`}, {-0.4472135954999579, -0.8944271909999159, \ -0.32491969623290634`}, {-0.276393202250021, -0.552786404500042, 0.8506508083520399}, {-0.276393202250021, -0.552786404500042, \ -0.8506508083520399}, {-0.17082039324993692`, 0.8944271909999159, 0.5257311121191336}, {-0.17082039324993692`, 0.8944271909999159, -0.5257311121191336}, {0, 0, 1.0514622242382672`}, { 0., 0., -1.0514622242382672`}, { 0.17082039324993692`, -0.8944271909999159, 0.5257311121191336}, { 0.17082039324993692`, -0.8944271909999159, -0.5257311121191336}, { 0.276393202250021, 0.552786404500042, -0.8506508083520399}, { 0.276393202250021, 0.552786404500042, 0.8506508083520399}, { 0.4472135954999579, 0.8944271909999159, -0.32491969623290634`}, { 0.4472135954999579, 0.8944271909999159, 0.32491969623290634`}, { 0.552786404500042, -0.8944271909999159, 0.}, { 0.6180339887498949, 0, 0.8506508083520399}, {0.6180339887498949, 0., -0.8506508083520399}, {0.7236067977499789, -0.552786404500042, 0.5257311121191336}, { 0.7236067977499789, -0.552786404500042, -0.5257311121191336}, { 0.8944271909999159, 0.552786404500042, 0.}, {1., 0., 0.32491969623290634`}, {1., 0., -0.32491969623290634`}}, {15, 7, 11}]], ",", Graphics3DBox[ Polygon3DBox[{{-1., 0., -0.32491969623290634`}, {-1., 0., 0.32491969623290634`}, {-0.8944271909999159, -0.552786404500042, 0.}, {-0.7236067977499789, 0.552786404500042, 0.5257311121191336}, {-0.7236067977499789, 0.552786404500042, -0.5257311121191336}, {-0.6180339887498949, 0., -0.8506508083520399}, {-0.6180339887498949, 0., 0.8506508083520399}, {-0.552786404500042, 0.8944271909999159, 0.}, {-0.4472135954999579, -0.8944271909999159, 0.32491969623290634`}, {-0.4472135954999579, -0.8944271909999159, \ -0.32491969623290634`}, {-0.276393202250021, -0.552786404500042, 0.8506508083520399}, {-0.276393202250021, -0.552786404500042, \ -0.8506508083520399}, {-0.17082039324993692`, 0.8944271909999159, 0.5257311121191336}, {-0.17082039324993692`, 0.8944271909999159, -0.5257311121191336}, {0, 0, 1.0514622242382672`}, { 0., 0., -1.0514622242382672`}, { 0.17082039324993692`, -0.8944271909999159, 0.5257311121191336}, { 0.17082039324993692`, -0.8944271909999159, -0.5257311121191336}, { 0.276393202250021, 0.552786404500042, -0.8506508083520399}, { 0.276393202250021, 0.552786404500042, 0.8506508083520399}, { 0.4472135954999579, 0.8944271909999159, -0.32491969623290634`}, { 0.4472135954999579, 0.8944271909999159, 0.32491969623290634`}, { 0.552786404500042, -0.8944271909999159, 0.}, { 0.6180339887498949, 0, 0.8506508083520399}, {0.6180339887498949, 0., -0.8506508083520399}, {0.7236067977499789, -0.552786404500042, 0.5257311121191336}, { 0.7236067977499789, -0.552786404500042, -0.5257311121191336}, { 0.8944271909999159, 0.552786404500042, 0.}, {1., 0., 0.32491969623290634`}, {1., 0., -0.32491969623290634`}}, {15, 11, 17, 26, 24}]], ",", Graphics3DBox[ Polygon3DBox[{{-1., 0., -0.32491969623290634`}, {-1., 0., 0.32491969623290634`}, {-0.8944271909999159, -0.552786404500042, 0.}, {-0.7236067977499789, 0.552786404500042, 0.5257311121191336}, {-0.7236067977499789, 0.552786404500042, -0.5257311121191336}, {-0.6180339887498949, 0., -0.8506508083520399}, {-0.6180339887498949, 0., 0.8506508083520399}, {-0.552786404500042, 0.8944271909999159, 0.}, {-0.4472135954999579, -0.8944271909999159, 0.32491969623290634`}, {-0.4472135954999579, -0.8944271909999159, \ -0.32491969623290634`}, {-0.276393202250021, -0.552786404500042, 0.8506508083520399}, {-0.276393202250021, -0.552786404500042, \ -0.8506508083520399}, {-0.17082039324993692`, 0.8944271909999159, 0.5257311121191336}, {-0.17082039324993692`, 0.8944271909999159, -0.5257311121191336}, {0, 0, 1.0514622242382672`}, { 0., 0., -1.0514622242382672`}, { 0.17082039324993692`, -0.8944271909999159, 0.5257311121191336}, { 0.17082039324993692`, -0.8944271909999159, -0.5257311121191336}, { 0.276393202250021, 0.552786404500042, -0.8506508083520399}, { 0.276393202250021, 0.552786404500042, 0.8506508083520399}, { 0.4472135954999579, 0.8944271909999159, -0.32491969623290634`}, { 0.4472135954999579, 0.8944271909999159, 0.32491969623290634`}, { 0.552786404500042, -0.8944271909999159, 0.}, { 0.6180339887498949, 0, 0.8506508083520399}, {0.6180339887498949, 0., -0.8506508083520399}, {0.7236067977499789, -0.552786404500042, 0.5257311121191336}, { 0.7236067977499789, -0.552786404500042, -0.5257311121191336}, { 0.8944271909999159, 0.552786404500042, 0.}, {1., 0., 0.32491969623290634`}, {1., 0., -0.32491969623290634`}}, {24, 26, 29}]], ",", Graphics3DBox[ Polygon3DBox[{{-1., 0., -0.32491969623290634`}, {-1., 0., 0.32491969623290634`}, {-0.8944271909999159, -0.552786404500042, 0.}, {-0.7236067977499789, 0.552786404500042, 0.5257311121191336}, {-0.7236067977499789, 0.552786404500042, -0.5257311121191336}, {-0.6180339887498949, 0., -0.8506508083520399}, {-0.6180339887498949, 0., 0.8506508083520399}, {-0.552786404500042, 0.8944271909999159, 0.}, {-0.4472135954999579, -0.8944271909999159, 0.32491969623290634`}, {-0.4472135954999579, -0.8944271909999159, \ -0.32491969623290634`}, {-0.276393202250021, -0.552786404500042, 0.8506508083520399}, {-0.276393202250021, -0.552786404500042, \ -0.8506508083520399}, {-0.17082039324993692`, 0.8944271909999159, 0.5257311121191336}, {-0.17082039324993692`, 0.8944271909999159, -0.5257311121191336}, {0, 0, 1.0514622242382672`}, { 0., 0., -1.0514622242382672`}, { 0.17082039324993692`, -0.8944271909999159, 0.5257311121191336}, { 0.17082039324993692`, -0.8944271909999159, -0.5257311121191336}, { 0.276393202250021, 0.552786404500042, -0.8506508083520399}, { 0.276393202250021, 0.552786404500042, 0.8506508083520399}, { 0.4472135954999579, 0.8944271909999159, -0.32491969623290634`}, { 0.4472135954999579, 0.8944271909999159, 0.32491969623290634`}, { 0.552786404500042, -0.8944271909999159, 0.}, { 0.6180339887498949, 0, 0.8506508083520399}, {0.6180339887498949, 0., -0.8506508083520399}, {0.7236067977499789, -0.552786404500042, 0.5257311121191336}, { 0.7236067977499789, -0.552786404500042, -0.5257311121191336}, { 0.8944271909999159, 0.552786404500042, 0.}, {1., 0., 0.32491969623290634`}, {1., 0., -0.32491969623290634`}}, {24, 29, 28, 22, 20}]], ",", Graphics3DBox[ Polygon3DBox[{{-1., 0., -0.32491969623290634`}, {-1., 0., 0.32491969623290634`}, {-0.8944271909999159, -0.552786404500042, 0.}, {-0.7236067977499789, 0.552786404500042, 0.5257311121191336}, {-0.7236067977499789, 0.552786404500042, -0.5257311121191336}, {-0.6180339887498949, 0., -0.8506508083520399}, {-0.6180339887498949, 0., 0.8506508083520399}, {-0.552786404500042, 0.8944271909999159, 0.}, {-0.4472135954999579, -0.8944271909999159, 0.32491969623290634`}, {-0.4472135954999579, -0.8944271909999159, \ -0.32491969623290634`}, {-0.276393202250021, -0.552786404500042, 0.8506508083520399}, {-0.276393202250021, -0.552786404500042, \ -0.8506508083520399}, {-0.17082039324993692`, 0.8944271909999159, 0.5257311121191336}, {-0.17082039324993692`, 0.8944271909999159, -0.5257311121191336}, {0, 0, 1.0514622242382672`}, { 0., 0., -1.0514622242382672`}, { 0.17082039324993692`, -0.8944271909999159, 0.5257311121191336}, { 0.17082039324993692`, -0.8944271909999159, -0.5257311121191336}, { 0.276393202250021, 0.552786404500042, -0.8506508083520399}, { 0.276393202250021, 0.552786404500042, 0.8506508083520399}, { 0.4472135954999579, 0.8944271909999159, -0.32491969623290634`}, { 0.4472135954999579, 0.8944271909999159, 0.32491969623290634`}, { 0.552786404500042, -0.8944271909999159, 0.}, { 0.6180339887498949, 0, 0.8506508083520399}, {0.6180339887498949, 0., -0.8506508083520399}, {0.7236067977499789, -0.552786404500042, 0.5257311121191336}, { 0.7236067977499789, -0.552786404500042, -0.5257311121191336}, { 0.8944271909999159, 0.552786404500042, 0.}, {1., 0., 0.32491969623290634`}, {1., 0., -0.32491969623290634`}}, {20, 22, 13}]], ",", Graphics3DBox[ Polygon3DBox[{{-1., 0., -0.32491969623290634`}, {-1., 0., 0.32491969623290634`}, {-0.8944271909999159, -0.552786404500042, 0.}, {-0.7236067977499789, 0.552786404500042, 0.5257311121191336}, {-0.7236067977499789, 0.552786404500042, -0.5257311121191336}, {-0.6180339887498949, 0., -0.8506508083520399}, {-0.6180339887498949, 0., 0.8506508083520399}, {-0.552786404500042, 0.8944271909999159, 0.}, {-0.4472135954999579, -0.8944271909999159, 0.32491969623290634`}, {-0.4472135954999579, -0.8944271909999159, \ -0.32491969623290634`}, {-0.276393202250021, -0.552786404500042, 0.8506508083520399}, {-0.276393202250021, -0.552786404500042, \ -0.8506508083520399}, {-0.17082039324993692`, 0.8944271909999159, 0.5257311121191336}, {-0.17082039324993692`, 0.8944271909999159, -0.5257311121191336}, {0, 0, 1.0514622242382672`}, { 0., 0., -1.0514622242382672`}, { 0.17082039324993692`, -0.8944271909999159, 0.5257311121191336}, { 0.17082039324993692`, -0.8944271909999159, -0.5257311121191336}, { 0.276393202250021, 0.552786404500042, -0.8506508083520399}, { 0.276393202250021, 0.552786404500042, 0.8506508083520399}, { 0.4472135954999579, 0.8944271909999159, -0.32491969623290634`}, { 0.4472135954999579, 0.8944271909999159, 0.32491969623290634`}, { 0.552786404500042, -0.8944271909999159, 0.}, { 0.6180339887498949, 0, 0.8506508083520399}, {0.6180339887498949, 0., -0.8506508083520399}, {0.7236067977499789, -0.552786404500042, 0.5257311121191336}, { 0.7236067977499789, -0.552786404500042, -0.5257311121191336}, { 0.8944271909999159, 0.552786404500042, 0.}, {1., 0., 0.32491969623290634`}, {1., 0., -0.32491969623290634`}}, {7, 4, 2}]], ",", Graphics3DBox[ Polygon3DBox[{{-1., 0., -0.32491969623290634`}, {-1., 0., 0.32491969623290634`}, {-0.8944271909999159, -0.552786404500042, 0.}, {-0.7236067977499789, 0.552786404500042, 0.5257311121191336}, {-0.7236067977499789, 0.552786404500042, -0.5257311121191336}, {-0.6180339887498949, 0., -0.8506508083520399}, {-0.6180339887498949, 0., 0.8506508083520399}, {-0.552786404500042, 0.8944271909999159, 0.}, {-0.4472135954999579, -0.8944271909999159, 0.32491969623290634`}, {-0.4472135954999579, -0.8944271909999159, \ -0.32491969623290634`}, {-0.276393202250021, -0.552786404500042, 0.8506508083520399}, {-0.276393202250021, -0.552786404500042, \ -0.8506508083520399}, {-0.17082039324993692`, 0.8944271909999159, 0.5257311121191336}, {-0.17082039324993692`, 0.8944271909999159, -0.5257311121191336}, {0, 0, 1.0514622242382672`}, { 0., 0., -1.0514622242382672`}, { 0.17082039324993692`, -0.8944271909999159, 0.5257311121191336}, { 0.17082039324993692`, -0.8944271909999159, -0.5257311121191336}, { 0.276393202250021, 0.552786404500042, -0.8506508083520399}, { 0.276393202250021, 0.552786404500042, 0.8506508083520399}, { 0.4472135954999579, 0.8944271909999159, -0.32491969623290634`}, { 0.4472135954999579, 0.8944271909999159, 0.32491969623290634`}, { 0.552786404500042, -0.8944271909999159, 0.}, { 0.6180339887498949, 0, 0.8506508083520399}, {0.6180339887498949, 0., -0.8506508083520399}, {0.7236067977499789, -0.552786404500042, 0.5257311121191336}, { 0.7236067977499789, -0.552786404500042, -0.5257311121191336}, { 0.8944271909999159, 0.552786404500042, 0.}, {1., 0., 0.32491969623290634`}, {1., 0., -0.32491969623290634`}}, {7, 2, 3, 9, 11}]], ",", Graphics3DBox[ Polygon3DBox[{{-1., 0., -0.32491969623290634`}, {-1., 0., 0.32491969623290634`}, {-0.8944271909999159, -0.552786404500042, 0.}, {-0.7236067977499789, 0.552786404500042, 0.5257311121191336}, {-0.7236067977499789, 0.552786404500042, -0.5257311121191336}, {-0.6180339887498949, 0., -0.8506508083520399}, {-0.6180339887498949, 0., 0.8506508083520399}, {-0.552786404500042, 0.8944271909999159, 0.}, {-0.4472135954999579, -0.8944271909999159, 0.32491969623290634`}, {-0.4472135954999579, -0.8944271909999159, \ -0.32491969623290634`}, {-0.276393202250021, -0.552786404500042, 0.8506508083520399}, {-0.276393202250021, -0.552786404500042, \ -0.8506508083520399}, {-0.17082039324993692`, 0.8944271909999159, 0.5257311121191336}, {-0.17082039324993692`, 0.8944271909999159, -0.5257311121191336}, {0, 0, 1.0514622242382672`}, { 0., 0., -1.0514622242382672`}, { 0.17082039324993692`, -0.8944271909999159, 0.5257311121191336}, { 0.17082039324993692`, -0.8944271909999159, -0.5257311121191336}, { 0.276393202250021, 0.552786404500042, -0.8506508083520399}, { 0.276393202250021, 0.552786404500042, 0.8506508083520399}, { 0.4472135954999579, 0.8944271909999159, -0.32491969623290634`}, { 0.4472135954999579, 0.8944271909999159, 0.32491969623290634`}, { 0.552786404500042, -0.8944271909999159, 0.}, { 0.6180339887498949, 0, 0.8506508083520399}, {0.6180339887498949, 0., -0.8506508083520399}, {0.7236067977499789, -0.552786404500042, 0.5257311121191336}, { 0.7236067977499789, -0.552786404500042, -0.5257311121191336}, { 0.8944271909999159, 0.552786404500042, 0.}, {1., 0., 0.32491969623290634`}, {1., 0., -0.32491969623290634`}}, {11, 9, 17}]], ",", Graphics3DBox[ Polygon3DBox[{{-1., 0., -0.32491969623290634`}, {-1., 0., 0.32491969623290634`}, {-0.8944271909999159, -0.552786404500042, 0.}, {-0.7236067977499789, 0.552786404500042, 0.5257311121191336}, {-0.7236067977499789, 0.552786404500042, -0.5257311121191336}, {-0.6180339887498949, 0., -0.8506508083520399}, {-0.6180339887498949, 0., 0.8506508083520399}, {-0.552786404500042, 0.8944271909999159, 0.}, {-0.4472135954999579, -0.8944271909999159, 0.32491969623290634`}, {-0.4472135954999579, -0.8944271909999159, \ -0.32491969623290634`}, {-0.276393202250021, -0.552786404500042, 0.8506508083520399}, {-0.276393202250021, -0.552786404500042, \ -0.8506508083520399}, {-0.17082039324993692`, 0.8944271909999159, 0.5257311121191336}, {-0.17082039324993692`, 0.8944271909999159, -0.5257311121191336}, {0, 0, 1.0514622242382672`}, { 0., 0., -1.0514622242382672`}, { 0.17082039324993692`, -0.8944271909999159, 0.5257311121191336}, { 0.17082039324993692`, -0.8944271909999159, -0.5257311121191336}, { 0.276393202250021, 0.552786404500042, -0.8506508083520399}, { 0.276393202250021, 0.552786404500042, 0.8506508083520399}, { 0.4472135954999579, 0.8944271909999159, -0.32491969623290634`}, { 0.4472135954999579, 0.8944271909999159, 0.32491969623290634`}, { 0.552786404500042, -0.8944271909999159, 0.}, { 0.6180339887498949, 0, 0.8506508083520399}, {0.6180339887498949, 0., -0.8506508083520399}, {0.7236067977499789, -0.552786404500042, 0.5257311121191336}, { 0.7236067977499789, -0.552786404500042, -0.5257311121191336}, { 0.8944271909999159, 0.552786404500042, 0.}, {1., 0., 0.32491969623290634`}, {1., 0., -0.32491969623290634`}}, {29, 26, 23, 27, 30}]], ",", Graphics3DBox[ Polygon3DBox[{{-1., 0., -0.32491969623290634`}, {-1., 0., 0.32491969623290634`}, {-0.8944271909999159, -0.552786404500042, 0.}, {-0.7236067977499789, 0.552786404500042, 0.5257311121191336}, {-0.7236067977499789, 0.552786404500042, -0.5257311121191336}, {-0.6180339887498949, 0., -0.8506508083520399}, {-0.6180339887498949, 0., 0.8506508083520399}, {-0.552786404500042, 0.8944271909999159, 0.}, {-0.4472135954999579, -0.8944271909999159, 0.32491969623290634`}, {-0.4472135954999579, -0.8944271909999159, \ -0.32491969623290634`}, {-0.276393202250021, -0.552786404500042, 0.8506508083520399}, {-0.276393202250021, -0.552786404500042, \ -0.8506508083520399}, {-0.17082039324993692`, 0.8944271909999159, 0.5257311121191336}, {-0.17082039324993692`, 0.8944271909999159, -0.5257311121191336}, {0, 0, 1.0514622242382672`}, { 0., 0., -1.0514622242382672`}, { 0.17082039324993692`, -0.8944271909999159, 0.5257311121191336}, { 0.17082039324993692`, -0.8944271909999159, -0.5257311121191336}, { 0.276393202250021, 0.552786404500042, -0.8506508083520399}, { 0.276393202250021, 0.552786404500042, 0.8506508083520399}, { 0.4472135954999579, 0.8944271909999159, -0.32491969623290634`}, { 0.4472135954999579, 0.8944271909999159, 0.32491969623290634`}, { 0.552786404500042, -0.8944271909999159, 0.}, { 0.6180339887498949, 0, 0.8506508083520399}, {0.6180339887498949, 0., -0.8506508083520399}, {0.7236067977499789, -0.552786404500042, 0.5257311121191336}, { 0.7236067977499789, -0.552786404500042, -0.5257311121191336}, { 0.8944271909999159, 0.552786404500042, 0.}, {1., 0., 0.32491969623290634`}, {1., 0., -0.32491969623290634`}}, {29, 30, 28}]], ",", Graphics3DBox[ Polygon3DBox[{{-1., 0., -0.32491969623290634`}, {-1., 0., 0.32491969623290634`}, {-0.8944271909999159, -0.552786404500042, 0.}, {-0.7236067977499789, 0.552786404500042, 0.5257311121191336}, {-0.7236067977499789, 0.552786404500042, -0.5257311121191336}, {-0.6180339887498949, 0., -0.8506508083520399}, {-0.6180339887498949, 0., 0.8506508083520399}, {-0.552786404500042, 0.8944271909999159, 0.}, {-0.4472135954999579, -0.8944271909999159, 0.32491969623290634`}, {-0.4472135954999579, -0.8944271909999159, \ -0.32491969623290634`}, {-0.276393202250021, -0.552786404500042, 0.8506508083520399}, {-0.276393202250021, -0.552786404500042, \ -0.8506508083520399}, {-0.17082039324993692`, 0.8944271909999159, 0.5257311121191336}, {-0.17082039324993692`, 0.8944271909999159, -0.5257311121191336}, {0, 0, 1.0514622242382672`}, { 0., 0., -1.0514622242382672`}, { 0.17082039324993692`, -0.8944271909999159, 0.5257311121191336}, { 0.17082039324993692`, -0.8944271909999159, -0.5257311121191336}, { 0.276393202250021, 0.552786404500042, -0.8506508083520399}, { 0.276393202250021, 0.552786404500042, 0.8506508083520399}, { 0.4472135954999579, 0.8944271909999159, -0.32491969623290634`}, { 0.4472135954999579, 0.8944271909999159, 0.32491969623290634`}, { 0.552786404500042, -0.8944271909999159, 0.}, { 0.6180339887498949, 0, 0.8506508083520399}, {0.6180339887498949, 0., -0.8506508083520399}, {0.7236067977499789, -0.552786404500042, 0.5257311121191336}, { 0.7236067977499789, -0.552786404500042, -0.5257311121191336}, { 0.8944271909999159, 0.552786404500042, 0.}, {1., 0., 0.32491969623290634`}, {1., 0., -0.32491969623290634`}}, {26, 17, 23}]], ",", Graphics3DBox[ Polygon3DBox[{{-1., 0., -0.32491969623290634`}, {-1., 0., 0.32491969623290634`}, {-0.8944271909999159, -0.552786404500042, 0.}, {-0.7236067977499789, 0.552786404500042, 0.5257311121191336}, {-0.7236067977499789, 0.552786404500042, -0.5257311121191336}, {-0.6180339887498949, 0., -0.8506508083520399}, {-0.6180339887498949, 0., 0.8506508083520399}, {-0.552786404500042, 0.8944271909999159, 0.}, {-0.4472135954999579, -0.8944271909999159, 0.32491969623290634`}, {-0.4472135954999579, -0.8944271909999159, \ -0.32491969623290634`}, {-0.276393202250021, -0.552786404500042, 0.8506508083520399}, {-0.276393202250021, -0.552786404500042, \ -0.8506508083520399}, {-0.17082039324993692`, 0.8944271909999159, 0.5257311121191336}, {-0.17082039324993692`, 0.8944271909999159, -0.5257311121191336}, {0, 0, 1.0514622242382672`}, { 0., 0., -1.0514622242382672`}, { 0.17082039324993692`, -0.8944271909999159, 0.5257311121191336}, { 0.17082039324993692`, -0.8944271909999159, -0.5257311121191336}, { 0.276393202250021, 0.552786404500042, -0.8506508083520399}, { 0.276393202250021, 0.552786404500042, 0.8506508083520399}, { 0.4472135954999579, 0.8944271909999159, -0.32491969623290634`}, { 0.4472135954999579, 0.8944271909999159, 0.32491969623290634`}, { 0.552786404500042, -0.8944271909999159, 0.}, { 0.6180339887498949, 0, 0.8506508083520399}, {0.6180339887498949, 0., -0.8506508083520399}, {0.7236067977499789, -0.552786404500042, 0.5257311121191336}, { 0.7236067977499789, -0.552786404500042, -0.5257311121191336}, { 0.8944271909999159, 0.552786404500042, 0.}, {1., 0., 0.32491969623290634`}, {1., 0., -0.32491969623290634`}}, {13, 22, 21, 14, 8}]], ",", Graphics3DBox[ Polygon3DBox[{{-1., 0., -0.32491969623290634`}, {-1., 0., 0.32491969623290634`}, {-0.8944271909999159, -0.552786404500042, 0.}, {-0.7236067977499789, 0.552786404500042, 0.5257311121191336}, {-0.7236067977499789, 0.552786404500042, -0.5257311121191336}, {-0.6180339887498949, 0., -0.8506508083520399}, {-0.6180339887498949, 0., 0.8506508083520399}, {-0.552786404500042, 0.8944271909999159, 0.}, {-0.4472135954999579, -0.8944271909999159, 0.32491969623290634`}, {-0.4472135954999579, -0.8944271909999159, \ -0.32491969623290634`}, {-0.276393202250021, -0.552786404500042, 0.8506508083520399}, {-0.276393202250021, -0.552786404500042, \ -0.8506508083520399}, {-0.17082039324993692`, 0.8944271909999159, 0.5257311121191336}, {-0.17082039324993692`, 0.8944271909999159, -0.5257311121191336}, {0, 0, 1.0514622242382672`}, { 0., 0., -1.0514622242382672`}, { 0.17082039324993692`, -0.8944271909999159, 0.5257311121191336}, { 0.17082039324993692`, -0.8944271909999159, -0.5257311121191336}, { 0.276393202250021, 0.552786404500042, -0.8506508083520399}, { 0.276393202250021, 0.552786404500042, 0.8506508083520399}, { 0.4472135954999579, 0.8944271909999159, -0.32491969623290634`}, { 0.4472135954999579, 0.8944271909999159, 0.32491969623290634`}, { 0.552786404500042, -0.8944271909999159, 0.}, { 0.6180339887498949, 0, 0.8506508083520399}, {0.6180339887498949, 0., -0.8506508083520399}, {0.7236067977499789, -0.552786404500042, 0.5257311121191336}, { 0.7236067977499789, -0.552786404500042, -0.5257311121191336}, { 0.8944271909999159, 0.552786404500042, 0.}, {1., 0., 0.32491969623290634`}, {1., 0., -0.32491969623290634`}}, {13, 8, 4}]], ",", Graphics3DBox[ Polygon3DBox[{{-1., 0., -0.32491969623290634`}, {-1., 0., 0.32491969623290634`}, {-0.8944271909999159, -0.552786404500042, 0.}, {-0.7236067977499789, 0.552786404500042, 0.5257311121191336}, {-0.7236067977499789, 0.552786404500042, -0.5257311121191336}, {-0.6180339887498949, 0., -0.8506508083520399}, {-0.6180339887498949, 0., 0.8506508083520399}, {-0.552786404500042, 0.8944271909999159, 0.}, {-0.4472135954999579, -0.8944271909999159, 0.32491969623290634`}, {-0.4472135954999579, -0.8944271909999159, \ -0.32491969623290634`}, {-0.276393202250021, -0.552786404500042, 0.8506508083520399}, {-0.276393202250021, -0.552786404500042, \ -0.8506508083520399}, {-0.17082039324993692`, 0.8944271909999159, 0.5257311121191336}, {-0.17082039324993692`, 0.8944271909999159, -0.5257311121191336}, {0, 0, 1.0514622242382672`}, { 0., 0., -1.0514622242382672`}, { 0.17082039324993692`, -0.8944271909999159, 0.5257311121191336}, { 0.17082039324993692`, -0.8944271909999159, -0.5257311121191336}, { 0.276393202250021, 0.552786404500042, -0.8506508083520399}, { 0.276393202250021, 0.552786404500042, 0.8506508083520399}, { 0.4472135954999579, 0.8944271909999159, -0.32491969623290634`}, { 0.4472135954999579, 0.8944271909999159, 0.32491969623290634`}, { 0.552786404500042, -0.8944271909999159, 0.}, { 0.6180339887498949, 0, 0.8506508083520399}, {0.6180339887498949, 0., -0.8506508083520399}, {0.7236067977499789, -0.552786404500042, 0.5257311121191336}, { 0.7236067977499789, -0.552786404500042, -0.5257311121191336}, { 0.8944271909999159, 0.552786404500042, 0.}, {1., 0., 0.32491969623290634`}, {1., 0., -0.32491969623290634`}}, {22, 28, 21}]], ",", Graphics3DBox[ Polygon3DBox[{{-1., 0., -0.32491969623290634`}, {-1., 0., 0.32491969623290634`}, {-0.8944271909999159, -0.552786404500042, 0.}, {-0.7236067977499789, 0.552786404500042, 0.5257311121191336}, {-0.7236067977499789, 0.552786404500042, -0.5257311121191336}, {-0.6180339887498949, 0., -0.8506508083520399}, {-0.6180339887498949, 0., 0.8506508083520399}, {-0.552786404500042, 0.8944271909999159, 0.}, {-0.4472135954999579, -0.8944271909999159, 0.32491969623290634`}, {-0.4472135954999579, -0.8944271909999159, \ -0.32491969623290634`}, {-0.276393202250021, -0.552786404500042, 0.8506508083520399}, {-0.276393202250021, -0.552786404500042, \ -0.8506508083520399}, {-0.17082039324993692`, 0.8944271909999159, 0.5257311121191336}, {-0.17082039324993692`, 0.8944271909999159, -0.5257311121191336}, {0, 0, 1.0514622242382672`}, { 0., 0., -1.0514622242382672`}, { 0.17082039324993692`, -0.8944271909999159, 0.5257311121191336}, { 0.17082039324993692`, -0.8944271909999159, -0.5257311121191336}, { 0.276393202250021, 0.552786404500042, -0.8506508083520399}, { 0.276393202250021, 0.552786404500042, 0.8506508083520399}, { 0.4472135954999579, 0.8944271909999159, -0.32491969623290634`}, { 0.4472135954999579, 0.8944271909999159, 0.32491969623290634`}, { 0.552786404500042, -0.8944271909999159, 0.}, { 0.6180339887498949, 0, 0.8506508083520399}, {0.6180339887498949, 0., -0.8506508083520399}, {0.7236067977499789, -0.552786404500042, 0.5257311121191336}, { 0.7236067977499789, -0.552786404500042, -0.5257311121191336}, { 0.8944271909999159, 0.552786404500042, 0.}, {1., 0., 0.32491969623290634`}, {1., 0., -0.32491969623290634`}}, {2, 4, 8, 5, 1}]], ",", Graphics3DBox[ Polygon3DBox[{{-1., 0., -0.32491969623290634`}, {-1., 0., 0.32491969623290634`}, {-0.8944271909999159, -0.552786404500042, 0.}, {-0.7236067977499789, 0.552786404500042, 0.5257311121191336}, {-0.7236067977499789, 0.552786404500042, -0.5257311121191336}, {-0.6180339887498949, 0., -0.8506508083520399}, {-0.6180339887498949, 0., 0.8506508083520399}, {-0.552786404500042, 0.8944271909999159, 0.}, {-0.4472135954999579, -0.8944271909999159, 0.32491969623290634`}, {-0.4472135954999579, -0.8944271909999159, \ -0.32491969623290634`}, {-0.276393202250021, -0.552786404500042, 0.8506508083520399}, {-0.276393202250021, -0.552786404500042, \ -0.8506508083520399}, {-0.17082039324993692`, 0.8944271909999159, 0.5257311121191336}, {-0.17082039324993692`, 0.8944271909999159, -0.5257311121191336}, {0, 0, 1.0514622242382672`}, { 0., 0., -1.0514622242382672`}, { 0.17082039324993692`, -0.8944271909999159, 0.5257311121191336}, { 0.17082039324993692`, -0.8944271909999159, -0.5257311121191336}, { 0.276393202250021, 0.552786404500042, -0.8506508083520399}, { 0.276393202250021, 0.552786404500042, 0.8506508083520399}, { 0.4472135954999579, 0.8944271909999159, -0.32491969623290634`}, { 0.4472135954999579, 0.8944271909999159, 0.32491969623290634`}, { 0.552786404500042, -0.8944271909999159, 0.}, { 0.6180339887498949, 0, 0.8506508083520399}, {0.6180339887498949, 0., -0.8506508083520399}, {0.7236067977499789, -0.552786404500042, 0.5257311121191336}, { 0.7236067977499789, -0.552786404500042, -0.5257311121191336}, { 0.8944271909999159, 0.552786404500042, 0.}, {1., 0., 0.32491969623290634`}, {1., 0., -0.32491969623290634`}}, {2, 1, 3}]], ",", Graphics3DBox[ Polygon3DBox[{{-1., 0., -0.32491969623290634`}, {-1., 0., 0.32491969623290634`}, {-0.8944271909999159, -0.552786404500042, 0.}, {-0.7236067977499789, 0.552786404500042, 0.5257311121191336}, {-0.7236067977499789, 0.552786404500042, -0.5257311121191336}, {-0.6180339887498949, 0., -0.8506508083520399}, {-0.6180339887498949, 0., 0.8506508083520399}, {-0.552786404500042, 0.8944271909999159, 0.}, {-0.4472135954999579, -0.8944271909999159, 0.32491969623290634`}, {-0.4472135954999579, -0.8944271909999159, \ -0.32491969623290634`}, {-0.276393202250021, -0.552786404500042, 0.8506508083520399}, {-0.276393202250021, -0.552786404500042, \ -0.8506508083520399}, {-0.17082039324993692`, 0.8944271909999159, 0.5257311121191336}, {-0.17082039324993692`, 0.8944271909999159, -0.5257311121191336}, {0, 0, 1.0514622242382672`}, { 0., 0., -1.0514622242382672`}, { 0.17082039324993692`, -0.8944271909999159, 0.5257311121191336}, { 0.17082039324993692`, -0.8944271909999159, -0.5257311121191336}, { 0.276393202250021, 0.552786404500042, -0.8506508083520399}, { 0.276393202250021, 0.552786404500042, 0.8506508083520399}, { 0.4472135954999579, 0.8944271909999159, -0.32491969623290634`}, { 0.4472135954999579, 0.8944271909999159, 0.32491969623290634`}, { 0.552786404500042, -0.8944271909999159, 0.}, { 0.6180339887498949, 0, 0.8506508083520399}, {0.6180339887498949, 0., -0.8506508083520399}, {0.7236067977499789, -0.552786404500042, 0.5257311121191336}, { 0.7236067977499789, -0.552786404500042, -0.5257311121191336}, { 0.8944271909999159, 0.552786404500042, 0.}, {1., 0., 0.32491969623290634`}, {1., 0., -0.32491969623290634`}}, {17, 9, 10, 18, 23}]], ",", Graphics3DBox[ Polygon3DBox[{{-1., 0., -0.32491969623290634`}, {-1., 0., 0.32491969623290634`}, {-0.8944271909999159, -0.552786404500042, 0.}, {-0.7236067977499789, 0.552786404500042, 0.5257311121191336}, {-0.7236067977499789, 0.552786404500042, -0.5257311121191336}, {-0.6180339887498949, 0., -0.8506508083520399}, {-0.6180339887498949, 0., 0.8506508083520399}, {-0.552786404500042, 0.8944271909999159, 0.}, {-0.4472135954999579, -0.8944271909999159, 0.32491969623290634`}, {-0.4472135954999579, -0.8944271909999159, \ -0.32491969623290634`}, {-0.276393202250021, -0.552786404500042, 0.8506508083520399}, {-0.276393202250021, -0.552786404500042, \ -0.8506508083520399}, {-0.17082039324993692`, 0.8944271909999159, 0.5257311121191336}, {-0.17082039324993692`, 0.8944271909999159, -0.5257311121191336}, {0, 0, 1.0514622242382672`}, { 0., 0., -1.0514622242382672`}, { 0.17082039324993692`, -0.8944271909999159, 0.5257311121191336}, { 0.17082039324993692`, -0.8944271909999159, -0.5257311121191336}, { 0.276393202250021, 0.552786404500042, -0.8506508083520399}, { 0.276393202250021, 0.552786404500042, 0.8506508083520399}, { 0.4472135954999579, 0.8944271909999159, -0.32491969623290634`}, { 0.4472135954999579, 0.8944271909999159, 0.32491969623290634`}, { 0.552786404500042, -0.8944271909999159, 0.}, { 0.6180339887498949, 0, 0.8506508083520399}, {0.6180339887498949, 0., -0.8506508083520399}, {0.7236067977499789, -0.552786404500042, 0.5257311121191336}, { 0.7236067977499789, -0.552786404500042, -0.5257311121191336}, { 0.8944271909999159, 0.552786404500042, 0.}, {1., 0., 0.32491969623290634`}, {1., 0., -0.32491969623290634`}}, {9, 3, 10}]], ",", Graphics3DBox[ Polygon3DBox[{{-1., 0., -0.32491969623290634`}, {-1., 0., 0.32491969623290634`}, {-0.8944271909999159, -0.552786404500042, 0.}, {-0.7236067977499789, 0.552786404500042, 0.5257311121191336}, {-0.7236067977499789, 0.552786404500042, -0.5257311121191336}, {-0.6180339887498949, 0., -0.8506508083520399}, {-0.6180339887498949, 0., 0.8506508083520399}, {-0.552786404500042, 0.8944271909999159, 0.}, {-0.4472135954999579, -0.8944271909999159, 0.32491969623290634`}, {-0.4472135954999579, -0.8944271909999159, \ -0.32491969623290634`}, {-0.276393202250021, -0.552786404500042, 0.8506508083520399}, {-0.276393202250021, -0.552786404500042, \ -0.8506508083520399}, {-0.17082039324993692`, 0.8944271909999159, 0.5257311121191336}, {-0.17082039324993692`, 0.8944271909999159, -0.5257311121191336}, {0, 0, 1.0514622242382672`}, { 0., 0., -1.0514622242382672`}, { 0.17082039324993692`, -0.8944271909999159, 0.5257311121191336}, { 0.17082039324993692`, -0.8944271909999159, -0.5257311121191336}, { 0.276393202250021, 0.552786404500042, -0.8506508083520399}, { 0.276393202250021, 0.552786404500042, 0.8506508083520399}, { 0.4472135954999579, 0.8944271909999159, -0.32491969623290634`}, { 0.4472135954999579, 0.8944271909999159, 0.32491969623290634`}, { 0.552786404500042, -0.8944271909999159, 0.}, { 0.6180339887498949, 0, 0.8506508083520399}, {0.6180339887498949, 0., -0.8506508083520399}, {0.7236067977499789, -0.552786404500042, 0.5257311121191336}, { 0.7236067977499789, -0.552786404500042, -0.5257311121191336}, { 0.8944271909999159, 0.552786404500042, 0.}, {1., 0., 0.32491969623290634`}, {1., 0., -0.32491969623290634`}}, {30, 27, 25}]], ",", Graphics3DBox[ Polygon3DBox[{{-1., 0., -0.32491969623290634`}, {-1., 0., 0.32491969623290634`}, {-0.8944271909999159, -0.552786404500042, 0.}, {-0.7236067977499789, 0.552786404500042, 0.5257311121191336}, {-0.7236067977499789, 0.552786404500042, -0.5257311121191336}, {-0.6180339887498949, 0., -0.8506508083520399}, {-0.6180339887498949, 0., 0.8506508083520399}, {-0.552786404500042, 0.8944271909999159, 0.}, {-0.4472135954999579, -0.8944271909999159, 0.32491969623290634`}, {-0.4472135954999579, -0.8944271909999159, \ -0.32491969623290634`}, {-0.276393202250021, -0.552786404500042, 0.8506508083520399}, {-0.276393202250021, -0.552786404500042, \ -0.8506508083520399}, {-0.17082039324993692`, 0.8944271909999159, 0.5257311121191336}, {-0.17082039324993692`, 0.8944271909999159, -0.5257311121191336}, {0, 0, 1.0514622242382672`}, { 0., 0., -1.0514622242382672`}, { 0.17082039324993692`, -0.8944271909999159, 0.5257311121191336}, { 0.17082039324993692`, -0.8944271909999159, -0.5257311121191336}, { 0.276393202250021, 0.552786404500042, -0.8506508083520399}, { 0.276393202250021, 0.552786404500042, 0.8506508083520399}, { 0.4472135954999579, 0.8944271909999159, -0.32491969623290634`}, { 0.4472135954999579, 0.8944271909999159, 0.32491969623290634`}, { 0.552786404500042, -0.8944271909999159, 0.}, { 0.6180339887498949, 0, 0.8506508083520399}, {0.6180339887498949, 0., -0.8506508083520399}, {0.7236067977499789, -0.552786404500042, 0.5257311121191336}, { 0.7236067977499789, -0.552786404500042, -0.5257311121191336}, { 0.8944271909999159, 0.552786404500042, 0.}, {1., 0., 0.32491969623290634`}, {1., 0., -0.32491969623290634`}}, {30, 25, 19, 21, 28}]], ",", Graphics3DBox[ Polygon3DBox[{{-1., 0., -0.32491969623290634`}, {-1., 0., 0.32491969623290634`}, {-0.8944271909999159, -0.552786404500042, 0.}, {-0.7236067977499789, 0.552786404500042, 0.5257311121191336}, {-0.7236067977499789, 0.552786404500042, -0.5257311121191336}, {-0.6180339887498949, 0., -0.8506508083520399}, {-0.6180339887498949, 0., 0.8506508083520399}, {-0.552786404500042, 0.8944271909999159, 0.}, {-0.4472135954999579, -0.8944271909999159, 0.32491969623290634`}, {-0.4472135954999579, -0.8944271909999159, \ -0.32491969623290634`}, {-0.276393202250021, -0.552786404500042, 0.8506508083520399}, {-0.276393202250021, -0.552786404500042, \ -0.8506508083520399}, {-0.17082039324993692`, 0.8944271909999159, 0.5257311121191336}, {-0.17082039324993692`, 0.8944271909999159, -0.5257311121191336}, {0, 0, 1.0514622242382672`}, { 0., 0., -1.0514622242382672`}, { 0.17082039324993692`, -0.8944271909999159, 0.5257311121191336}, { 0.17082039324993692`, -0.8944271909999159, -0.5257311121191336}, { 0.276393202250021, 0.552786404500042, -0.8506508083520399}, { 0.276393202250021, 0.552786404500042, 0.8506508083520399}, { 0.4472135954999579, 0.8944271909999159, -0.32491969623290634`}, { 0.4472135954999579, 0.8944271909999159, 0.32491969623290634`}, { 0.552786404500042, -0.8944271909999159, 0.}, { 0.6180339887498949, 0, 0.8506508083520399}, {0.6180339887498949, 0., -0.8506508083520399}, {0.7236067977499789, -0.552786404500042, 0.5257311121191336}, { 0.7236067977499789, -0.552786404500042, -0.5257311121191336}, { 0.8944271909999159, 0.552786404500042, 0.}, {1., 0., 0.32491969623290634`}, {1., 0., -0.32491969623290634`}}, {23, 18, 27}]], ",", Graphics3DBox[ Polygon3DBox[{{-1., 0., -0.32491969623290634`}, {-1., 0., 0.32491969623290634`}, {-0.8944271909999159, -0.552786404500042, 0.}, {-0.7236067977499789, 0.552786404500042, 0.5257311121191336}, {-0.7236067977499789, 0.552786404500042, -0.5257311121191336}, {-0.6180339887498949, 0., -0.8506508083520399}, {-0.6180339887498949, 0., 0.8506508083520399}, {-0.552786404500042, 0.8944271909999159, 0.}, {-0.4472135954999579, -0.8944271909999159, 0.32491969623290634`}, {-0.4472135954999579, -0.8944271909999159, \ -0.32491969623290634`}, {-0.276393202250021, -0.552786404500042, 0.8506508083520399}, {-0.276393202250021, -0.552786404500042, \ -0.8506508083520399}, {-0.17082039324993692`, 0.8944271909999159, 0.5257311121191336}, {-0.17082039324993692`, 0.8944271909999159, -0.5257311121191336}, {0, 0, 1.0514622242382672`}, { 0., 0., -1.0514622242382672`}, { 0.17082039324993692`, -0.8944271909999159, 0.5257311121191336}, { 0.17082039324993692`, -0.8944271909999159, -0.5257311121191336}, { 0.276393202250021, 0.552786404500042, -0.8506508083520399}, { 0.276393202250021, 0.552786404500042, 0.8506508083520399}, { 0.4472135954999579, 0.8944271909999159, -0.32491969623290634`}, { 0.4472135954999579, 0.8944271909999159, 0.32491969623290634`}, { 0.552786404500042, -0.8944271909999159, 0.}, { 0.6180339887498949, 0, 0.8506508083520399}, {0.6180339887498949, 0., -0.8506508083520399}, {0.7236067977499789, -0.552786404500042, 0.5257311121191336}, { 0.7236067977499789, -0.552786404500042, -0.5257311121191336}, { 0.8944271909999159, 0.552786404500042, 0.}, {1., 0., 0.32491969623290634`}, {1., 0., -0.32491969623290634`}}, {8, 14, 5}]], ",", Graphics3DBox[ Polygon3DBox[{{-1., 0., -0.32491969623290634`}, {-1., 0., 0.32491969623290634`}, {-0.8944271909999159, -0.552786404500042, 0.}, {-0.7236067977499789, 0.552786404500042, 0.5257311121191336}, {-0.7236067977499789, 0.552786404500042, -0.5257311121191336}, {-0.6180339887498949, 0., -0.8506508083520399}, {-0.6180339887498949, 0., 0.8506508083520399}, {-0.552786404500042, 0.8944271909999159, 0.}, {-0.4472135954999579, -0.8944271909999159, 0.32491969623290634`}, {-0.4472135954999579, -0.8944271909999159, \ -0.32491969623290634`}, {-0.276393202250021, -0.552786404500042, 0.8506508083520399}, {-0.276393202250021, -0.552786404500042, \ -0.8506508083520399}, {-0.17082039324993692`, 0.8944271909999159, 0.5257311121191336}, {-0.17082039324993692`, 0.8944271909999159, -0.5257311121191336}, {0, 0, 1.0514622242382672`}, { 0., 0., -1.0514622242382672`}, { 0.17082039324993692`, -0.8944271909999159, 0.5257311121191336}, { 0.17082039324993692`, -0.8944271909999159, -0.5257311121191336}, { 0.276393202250021, 0.552786404500042, -0.8506508083520399}, { 0.276393202250021, 0.552786404500042, 0.8506508083520399}, { 0.4472135954999579, 0.8944271909999159, -0.32491969623290634`}, { 0.4472135954999579, 0.8944271909999159, 0.32491969623290634`}, { 0.552786404500042, -0.8944271909999159, 0.}, { 0.6180339887498949, 0, 0.8506508083520399}, {0.6180339887498949, 0., -0.8506508083520399}, {0.7236067977499789, -0.552786404500042, 0.5257311121191336}, { 0.7236067977499789, -0.552786404500042, -0.5257311121191336}, { 0.8944271909999159, 0.552786404500042, 0.}, {1., 0., 0.32491969623290634`}, {1., 0., -0.32491969623290634`}}, {21, 19, 14}]], ",", Graphics3DBox[ Polygon3DBox[{{-1., 0., -0.32491969623290634`}, {-1., 0., 0.32491969623290634`}, {-0.8944271909999159, -0.552786404500042, 0.}, {-0.7236067977499789, 0.552786404500042, 0.5257311121191336}, {-0.7236067977499789, 0.552786404500042, -0.5257311121191336}, {-0.6180339887498949, 0., -0.8506508083520399}, {-0.6180339887498949, 0., 0.8506508083520399}, {-0.552786404500042, 0.8944271909999159, 0.}, {-0.4472135954999579, -0.8944271909999159, 0.32491969623290634`}, {-0.4472135954999579, -0.8944271909999159, \ -0.32491969623290634`}, {-0.276393202250021, -0.552786404500042, 0.8506508083520399}, {-0.276393202250021, -0.552786404500042, \ -0.8506508083520399}, {-0.17082039324993692`, 0.8944271909999159, 0.5257311121191336}, {-0.17082039324993692`, 0.8944271909999159, -0.5257311121191336}, {0, 0, 1.0514622242382672`}, { 0., 0., -1.0514622242382672`}, { 0.17082039324993692`, -0.8944271909999159, 0.5257311121191336}, { 0.17082039324993692`, -0.8944271909999159, -0.5257311121191336}, { 0.276393202250021, 0.552786404500042, -0.8506508083520399}, { 0.276393202250021, 0.552786404500042, 0.8506508083520399}, { 0.4472135954999579, 0.8944271909999159, -0.32491969623290634`}, { 0.4472135954999579, 0.8944271909999159, 0.32491969623290634`}, { 0.552786404500042, -0.8944271909999159, 0.}, { 0.6180339887498949, 0, 0.8506508083520399}, {0.6180339887498949, 0., -0.8506508083520399}, {0.7236067977499789, -0.552786404500042, 0.5257311121191336}, { 0.7236067977499789, -0.552786404500042, -0.5257311121191336}, { 0.8944271909999159, 0.552786404500042, 0.}, {1., 0., 0.32491969623290634`}, {1., 0., -0.32491969623290634`}}, {1, 5, 6}]], ",", Graphics3DBox[ Polygon3DBox[{{-1., 0., -0.32491969623290634`}, {-1., 0., 0.32491969623290634`}, {-0.8944271909999159, -0.552786404500042, 0.}, {-0.7236067977499789, 0.552786404500042, 0.5257311121191336}, {-0.7236067977499789, 0.552786404500042, -0.5257311121191336}, {-0.6180339887498949, 0., -0.8506508083520399}, {-0.6180339887498949, 0., 0.8506508083520399}, {-0.552786404500042, 0.8944271909999159, 0.}, {-0.4472135954999579, -0.8944271909999159, 0.32491969623290634`}, {-0.4472135954999579, -0.8944271909999159, \ -0.32491969623290634`}, {-0.276393202250021, -0.552786404500042, 0.8506508083520399}, {-0.276393202250021, -0.552786404500042, \ -0.8506508083520399}, {-0.17082039324993692`, 0.8944271909999159, 0.5257311121191336}, {-0.17082039324993692`, 0.8944271909999159, -0.5257311121191336}, {0, 0, 1.0514622242382672`}, { 0., 0., -1.0514622242382672`}, { 0.17082039324993692`, -0.8944271909999159, 0.5257311121191336}, { 0.17082039324993692`, -0.8944271909999159, -0.5257311121191336}, { 0.276393202250021, 0.552786404500042, -0.8506508083520399}, { 0.276393202250021, 0.552786404500042, 0.8506508083520399}, { 0.4472135954999579, 0.8944271909999159, -0.32491969623290634`}, { 0.4472135954999579, 0.8944271909999159, 0.32491969623290634`}, { 0.552786404500042, -0.8944271909999159, 0.}, { 0.6180339887498949, 0, 0.8506508083520399}, {0.6180339887498949, 0., -0.8506508083520399}, {0.7236067977499789, -0.552786404500042, 0.5257311121191336}, { 0.7236067977499789, -0.552786404500042, -0.5257311121191336}, { 0.8944271909999159, 0.552786404500042, 0.}, {1., 0., 0.32491969623290634`}, {1., 0., -0.32491969623290634`}}, {1, 6, 12, 10, 3}]], ",", Graphics3DBox[ Polygon3DBox[{{-1., 0., -0.32491969623290634`}, {-1., 0., 0.32491969623290634`}, {-0.8944271909999159, -0.552786404500042, 0.}, {-0.7236067977499789, 0.552786404500042, 0.5257311121191336}, {-0.7236067977499789, 0.552786404500042, -0.5257311121191336}, {-0.6180339887498949, 0., -0.8506508083520399}, {-0.6180339887498949, 0., 0.8506508083520399}, {-0.552786404500042, 0.8944271909999159, 0.}, {-0.4472135954999579, -0.8944271909999159, 0.32491969623290634`}, {-0.4472135954999579, -0.8944271909999159, \ -0.32491969623290634`}, {-0.276393202250021, -0.552786404500042, 0.8506508083520399}, {-0.276393202250021, -0.552786404500042, \ -0.8506508083520399}, {-0.17082039324993692`, 0.8944271909999159, 0.5257311121191336}, {-0.17082039324993692`, 0.8944271909999159, -0.5257311121191336}, {0, 0, 1.0514622242382672`}, { 0., 0., -1.0514622242382672`}, { 0.17082039324993692`, -0.8944271909999159, 0.5257311121191336}, { 0.17082039324993692`, -0.8944271909999159, -0.5257311121191336}, { 0.276393202250021, 0.552786404500042, -0.8506508083520399}, { 0.276393202250021, 0.552786404500042, 0.8506508083520399}, { 0.4472135954999579, 0.8944271909999159, -0.32491969623290634`}, { 0.4472135954999579, 0.8944271909999159, 0.32491969623290634`}, { 0.552786404500042, -0.8944271909999159, 0.}, { 0.6180339887498949, 0, 0.8506508083520399}, {0.6180339887498949, 0., -0.8506508083520399}, {0.7236067977499789, -0.552786404500042, 0.5257311121191336}, { 0.7236067977499789, -0.552786404500042, -0.5257311121191336}, { 0.8944271909999159, 0.552786404500042, 0.}, {1., 0., 0.32491969623290634`}, {1., 0., -0.32491969623290634`}}, {10, 12, 18}]], ",", Graphics3DBox[ Polygon3DBox[{{-1., 0., -0.32491969623290634`}, {-1., 0., 0.32491969623290634`}, {-0.8944271909999159, -0.552786404500042, 0.}, {-0.7236067977499789, 0.552786404500042, 0.5257311121191336}, {-0.7236067977499789, 0.552786404500042, -0.5257311121191336}, {-0.6180339887498949, 0., -0.8506508083520399}, {-0.6180339887498949, 0., 0.8506508083520399}, {-0.552786404500042, 0.8944271909999159, 0.}, {-0.4472135954999579, -0.8944271909999159, 0.32491969623290634`}, {-0.4472135954999579, -0.8944271909999159, \ -0.32491969623290634`}, {-0.276393202250021, -0.552786404500042, 0.8506508083520399}, {-0.276393202250021, -0.552786404500042, \ -0.8506508083520399}, {-0.17082039324993692`, 0.8944271909999159, 0.5257311121191336}, {-0.17082039324993692`, 0.8944271909999159, -0.5257311121191336}, {0, 0, 1.0514622242382672`}, { 0., 0., -1.0514622242382672`}, { 0.17082039324993692`, -0.8944271909999159, 0.5257311121191336}, { 0.17082039324993692`, -0.8944271909999159, -0.5257311121191336}, { 0.276393202250021, 0.552786404500042, -0.8506508083520399}, { 0.276393202250021, 0.552786404500042, 0.8506508083520399}, { 0.4472135954999579, 0.8944271909999159, -0.32491969623290634`}, { 0.4472135954999579, 0.8944271909999159, 0.32491969623290634`}, { 0.552786404500042, -0.8944271909999159, 0.}, { 0.6180339887498949, 0, 0.8506508083520399}, {0.6180339887498949, 0., -0.8506508083520399}, {0.7236067977499789, -0.552786404500042, 0.5257311121191336}, { 0.7236067977499789, -0.552786404500042, -0.5257311121191336}, { 0.8944271909999159, 0.552786404500042, 0.}, {1., 0., 0.32491969623290634`}, {1., 0., -0.32491969623290634`}}, {25, 27, 18, 12, 16}]], ",", Graphics3DBox[ Polygon3DBox[{{-1., 0., -0.32491969623290634`}, {-1., 0., 0.32491969623290634`}, {-0.8944271909999159, -0.552786404500042, 0.}, {-0.7236067977499789, 0.552786404500042, 0.5257311121191336}, {-0.7236067977499789, 0.552786404500042, -0.5257311121191336}, {-0.6180339887498949, 0., -0.8506508083520399}, {-0.6180339887498949, 0., 0.8506508083520399}, {-0.552786404500042, 0.8944271909999159, 0.}, {-0.4472135954999579, -0.8944271909999159, 0.32491969623290634`}, {-0.4472135954999579, -0.8944271909999159, \ -0.32491969623290634`}, {-0.276393202250021, -0.552786404500042, 0.8506508083520399}, {-0.276393202250021, -0.552786404500042, \ -0.8506508083520399}, {-0.17082039324993692`, 0.8944271909999159, 0.5257311121191336}, {-0.17082039324993692`, 0.8944271909999159, -0.5257311121191336}, {0, 0, 1.0514622242382672`}, { 0., 0., -1.0514622242382672`}, { 0.17082039324993692`, -0.8944271909999159, 0.5257311121191336}, { 0.17082039324993692`, -0.8944271909999159, -0.5257311121191336}, { 0.276393202250021, 0.552786404500042, -0.8506508083520399}, { 0.276393202250021, 0.552786404500042, 0.8506508083520399}, { 0.4472135954999579, 0.8944271909999159, -0.32491969623290634`}, { 0.4472135954999579, 0.8944271909999159, 0.32491969623290634`}, { 0.552786404500042, -0.8944271909999159, 0.}, { 0.6180339887498949, 0, 0.8506508083520399}, {0.6180339887498949, 0., -0.8506508083520399}, {0.7236067977499789, -0.552786404500042, 0.5257311121191336}, { 0.7236067977499789, -0.552786404500042, -0.5257311121191336}, { 0.8944271909999159, 0.552786404500042, 0.}, {1., 0., 0.32491969623290634`}, {1., 0., -0.32491969623290634`}}, {25, 16, 19}]], ",", Graphics3DBox[ Polygon3DBox[{{-1., 0., -0.32491969623290634`}, {-1., 0., 0.32491969623290634`}, {-0.8944271909999159, -0.552786404500042, 0.}, {-0.7236067977499789, 0.552786404500042, 0.5257311121191336}, {-0.7236067977499789, 0.552786404500042, -0.5257311121191336}, {-0.6180339887498949, 0., -0.8506508083520399}, {-0.6180339887498949, 0., 0.8506508083520399}, {-0.552786404500042, 0.8944271909999159, 0.}, {-0.4472135954999579, -0.8944271909999159, 0.32491969623290634`}, {-0.4472135954999579, -0.8944271909999159, \ -0.32491969623290634`}, {-0.276393202250021, -0.552786404500042, 0.8506508083520399}, {-0.276393202250021, -0.552786404500042, \ -0.8506508083520399}, {-0.17082039324993692`, 0.8944271909999159, 0.5257311121191336}, {-0.17082039324993692`, 0.8944271909999159, -0.5257311121191336}, {0, 0, 1.0514622242382672`}, { 0., 0., -1.0514622242382672`}, { 0.17082039324993692`, -0.8944271909999159, 0.5257311121191336}, { 0.17082039324993692`, -0.8944271909999159, -0.5257311121191336}, { 0.276393202250021, 0.552786404500042, -0.8506508083520399}, { 0.276393202250021, 0.552786404500042, 0.8506508083520399}, { 0.4472135954999579, 0.8944271909999159, -0.32491969623290634`}, { 0.4472135954999579, 0.8944271909999159, 0.32491969623290634`}, { 0.552786404500042, -0.8944271909999159, 0.}, { 0.6180339887498949, 0, 0.8506508083520399}, {0.6180339887498949, 0., -0.8506508083520399}, {0.7236067977499789, -0.552786404500042, 0.5257311121191336}, { 0.7236067977499789, -0.552786404500042, -0.5257311121191336}, { 0.8944271909999159, 0.552786404500042, 0.}, {1., 0., 0.32491969623290634`}, {1., 0., -0.32491969623290634`}}, {5, 14, 19, 16, 6}]], ",", Graphics3DBox[ Polygon3DBox[{{-1., 0., -0.32491969623290634`}, {-1., 0., 0.32491969623290634`}, {-0.8944271909999159, -0.552786404500042, 0.}, {-0.7236067977499789, 0.552786404500042, 0.5257311121191336}, {-0.7236067977499789, 0.552786404500042, -0.5257311121191336}, {-0.6180339887498949, 0., -0.8506508083520399}, {-0.6180339887498949, 0., 0.8506508083520399}, {-0.552786404500042, 0.8944271909999159, 0.}, {-0.4472135954999579, -0.8944271909999159, 0.32491969623290634`}, {-0.4472135954999579, -0.8944271909999159, \ -0.32491969623290634`}, {-0.276393202250021, -0.552786404500042, 0.8506508083520399}, {-0.276393202250021, -0.552786404500042, \ -0.8506508083520399}, {-0.17082039324993692`, 0.8944271909999159, 0.5257311121191336}, {-0.17082039324993692`, 0.8944271909999159, -0.5257311121191336}, {0, 0, 1.0514622242382672`}, { 0., 0., -1.0514622242382672`}, { 0.17082039324993692`, -0.8944271909999159, 0.5257311121191336}, { 0.17082039324993692`, -0.8944271909999159, -0.5257311121191336}, { 0.276393202250021, 0.552786404500042, -0.8506508083520399}, { 0.276393202250021, 0.552786404500042, 0.8506508083520399}, { 0.4472135954999579, 0.8944271909999159, -0.32491969623290634`}, { 0.4472135954999579, 0.8944271909999159, 0.32491969623290634`}, { 0.552786404500042, -0.8944271909999159, 0.}, { 0.6180339887498949, 0, 0.8506508083520399}, {0.6180339887498949, 0., -0.8506508083520399}, {0.7236067977499789, -0.552786404500042, 0.5257311121191336}, { 0.7236067977499789, -0.552786404500042, -0.5257311121191336}, { 0.8944271909999159, 0.552786404500042, 0.}, {1., 0., 0.32491969623290634`}, {1., 0., -0.32491969623290634`}}, {6, 16, 12}]]}], "}"}]], "Output", CellLabel-> "Out[233]=",ExpressionUUID->"cbd987c3-ff53-4dea-a624-80cd16e3f74e"] }, Closed]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"PolyhedronFaceTally", "[", "maeder", "]"}]], "Input", CellLabel-> "In[234]:=",ExpressionUUID->"ea4f7885-9b78-470a-8d8d-472d64037f39"], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"{", "3", "}"}], ",", "20"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", "5", "}"}], ",", "12"}], "}"}]}], "}"}]], "Output", CellLabel-> "Out[234]=",ExpressionUUID->"12bd400b-db2d-4661-9e03-151fe579a6f1"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{"Graphics3D", "[", RowBox[{"#", ",", RowBox[{"Boxed", "\[Rule]", "False"}]}], "]"}], "&"}], "/@", RowBox[{"{", RowBox[{"maeder", ",", "polys"}], "}"}]}]], "Input", CellLabel-> "In[235]:=",ExpressionUUID->"1b4dc8bd-6e59-4431-b43a-ac730bd837c3"], Cell[BoxData[ RowBox[{"{", RowBox[{ Graphics3DBox[ PolyhedronBox[{{-1., 0., -0.32491969623290634`}, {-1., 0., 0.32491969623290634`}, {-0.8944271909999159, -0.552786404500042, 0.}, {-0.7236067977499789, 0.552786404500042, 0.5257311121191336}, {-0.7236067977499789, 0.552786404500042, -0.5257311121191336}, {-0.6180339887498949, 0., -0.8506508083520399}, {-0.6180339887498949, 0., 0.8506508083520399}, {-0.552786404500042, 0.8944271909999159, 0.}, {-0.4472135954999579, -0.8944271909999159, 0.32491969623290634`}, {-0.4472135954999579, -0.8944271909999159, \ -0.32491969623290634`}, {-0.276393202250021, -0.552786404500042, 0.8506508083520399}, {-0.276393202250021, -0.552786404500042, \ -0.8506508083520399}, {-0.17082039324993692`, 0.8944271909999159, 0.5257311121191336}, {-0.17082039324993692`, 0.8944271909999159, -0.5257311121191336}, {0, 0, 1.0514622242382672`}, { 0., 0., -1.0514622242382672`}, { 0.17082039324993692`, -0.8944271909999159, 0.5257311121191336}, { 0.17082039324993692`, -0.8944271909999159, -0.5257311121191336}, { 0.276393202250021, 0.552786404500042, -0.8506508083520399}, { 0.276393202250021, 0.552786404500042, 0.8506508083520399}, { 0.4472135954999579, 0.8944271909999159, -0.32491969623290634`}, { 0.4472135954999579, 0.8944271909999159, 0.32491969623290634`}, { 0.552786404500042, -0.8944271909999159, 0.}, { 0.6180339887498949, 0, 0.8506508083520399}, {0.6180339887498949, 0., -0.8506508083520399}, {0.7236067977499789, -0.552786404500042, 0.5257311121191336}, { 0.7236067977499789, -0.552786404500042, -0.5257311121191336}, { 0.8944271909999159, 0.552786404500042, 0.}, {1., 0., 0.32491969623290634`}, {1., 0., -0.32491969623290634`}}, {{15, 24, 20}, {15, 20, 13, 4, 7}, {15, 7, 11}, {15, 11, 17, 26, 24}, {24, 26, 29}, {24, 29, 28, 22, 20}, {20, 22, 13}, {7, 4, 2}, {7, 2, 3, 9, 11}, { 11, 9, 17}, {29, 26, 23, 27, 30}, {29, 30, 28}, {26, 17, 23}, {13, 22, 21, 14, 8}, {13, 8, 4}, {22, 28, 21}, {2, 4, 8, 5, 1}, {2, 1, 3}, {17, 9, 10, 18, 23}, {9, 3, 10}, {30, 27, 25}, {30, 25, 19, 21, 28}, {23, 18, 27}, {8, 14, 5}, {21, 19, 14}, {1, 5, 6}, {1, 6, 12, 10, 3}, {10, 12, 18}, {25, 27, 18, 12, 16}, {25, 16, 19}, {5, 14, 19, 16, 6}, {6, 16, 12}}], Boxed->False], ",", Graphics3DBox[{ Polygon3DBox[{{-1., 0., -0.32491969623290634`}, {-1., 0., 0.32491969623290634`}, {-0.8944271909999159, -0.552786404500042, 0.}, {-0.7236067977499789, 0.552786404500042, 0.5257311121191336}, {-0.7236067977499789, 0.552786404500042, -0.5257311121191336}, {-0.6180339887498949, 0., -0.8506508083520399}, {-0.6180339887498949, 0., 0.8506508083520399}, {-0.552786404500042, 0.8944271909999159, 0.}, {-0.4472135954999579, -0.8944271909999159, 0.32491969623290634`}, {-0.4472135954999579, -0.8944271909999159, \ -0.32491969623290634`}, {-0.276393202250021, -0.552786404500042, 0.8506508083520399}, {-0.276393202250021, -0.552786404500042, \ -0.8506508083520399}, {-0.17082039324993692`, 0.8944271909999159, 0.5257311121191336}, {-0.17082039324993692`, 0.8944271909999159, -0.5257311121191336}, { 0, 0, 1.0514622242382672`}, {0., 0., -1.0514622242382672`}, { 0.17082039324993692`, -0.8944271909999159, 0.5257311121191336}, { 0.17082039324993692`, -0.8944271909999159, -0.5257311121191336}, { 0.276393202250021, 0.552786404500042, -0.8506508083520399}, { 0.276393202250021, 0.552786404500042, 0.8506508083520399}, { 0.4472135954999579, 0.8944271909999159, -0.32491969623290634`}, { 0.4472135954999579, 0.8944271909999159, 0.32491969623290634`}, { 0.552786404500042, -0.8944271909999159, 0.}, { 0.6180339887498949, 0, 0.8506508083520399}, {0.6180339887498949, 0., -0.8506508083520399}, {0.7236067977499789, -0.552786404500042, 0.5257311121191336}, { 0.7236067977499789, -0.552786404500042, -0.5257311121191336}, { 0.8944271909999159, 0.552786404500042, 0.}, {1., 0., 0.32491969623290634`}, {1., 0., -0.32491969623290634`}}, {15, 24, 20}], Polygon3DBox[{{-1., 0., -0.32491969623290634`}, {-1., 0., 0.32491969623290634`}, {-0.8944271909999159, -0.552786404500042, 0.}, {-0.7236067977499789, 0.552786404500042, 0.5257311121191336}, {-0.7236067977499789, 0.552786404500042, -0.5257311121191336}, {-0.6180339887498949, 0., -0.8506508083520399}, {-0.6180339887498949, 0., 0.8506508083520399}, {-0.552786404500042, 0.8944271909999159, 0.}, {-0.4472135954999579, -0.8944271909999159, 0.32491969623290634`}, {-0.4472135954999579, -0.8944271909999159, \ -0.32491969623290634`}, {-0.276393202250021, -0.552786404500042, 0.8506508083520399}, {-0.276393202250021, -0.552786404500042, \ -0.8506508083520399}, {-0.17082039324993692`, 0.8944271909999159, 0.5257311121191336}, {-0.17082039324993692`, 0.8944271909999159, -0.5257311121191336}, { 0, 0, 1.0514622242382672`}, {0., 0., -1.0514622242382672`}, { 0.17082039324993692`, -0.8944271909999159, 0.5257311121191336}, { 0.17082039324993692`, -0.8944271909999159, -0.5257311121191336}, { 0.276393202250021, 0.552786404500042, -0.8506508083520399}, { 0.276393202250021, 0.552786404500042, 0.8506508083520399}, { 0.4472135954999579, 0.8944271909999159, -0.32491969623290634`}, { 0.4472135954999579, 0.8944271909999159, 0.32491969623290634`}, { 0.552786404500042, -0.8944271909999159, 0.}, { 0.6180339887498949, 0, 0.8506508083520399}, {0.6180339887498949, 0., -0.8506508083520399}, {0.7236067977499789, -0.552786404500042, 0.5257311121191336}, { 0.7236067977499789, -0.552786404500042, -0.5257311121191336}, { 0.8944271909999159, 0.552786404500042, 0.}, {1., 0., 0.32491969623290634`}, {1., 0., -0.32491969623290634`}}, {15, 20, 13, 4, 7}], Polygon3DBox[{{-1., 0., -0.32491969623290634`}, {-1., 0., 0.32491969623290634`}, {-0.8944271909999159, -0.552786404500042, 0.}, {-0.7236067977499789, 0.552786404500042, 0.5257311121191336}, {-0.7236067977499789, 0.552786404500042, -0.5257311121191336}, {-0.6180339887498949, 0., -0.8506508083520399}, {-0.6180339887498949, 0., 0.8506508083520399}, {-0.552786404500042, 0.8944271909999159, 0.}, {-0.4472135954999579, -0.8944271909999159, 0.32491969623290634`}, {-0.4472135954999579, -0.8944271909999159, \ -0.32491969623290634`}, {-0.276393202250021, -0.552786404500042, 0.8506508083520399}, {-0.276393202250021, -0.552786404500042, \ -0.8506508083520399}, {-0.17082039324993692`, 0.8944271909999159, 0.5257311121191336}, {-0.17082039324993692`, 0.8944271909999159, -0.5257311121191336}, { 0, 0, 1.0514622242382672`}, {0., 0., -1.0514622242382672`}, { 0.17082039324993692`, -0.8944271909999159, 0.5257311121191336}, { 0.17082039324993692`, -0.8944271909999159, -0.5257311121191336}, { 0.276393202250021, 0.552786404500042, -0.8506508083520399}, { 0.276393202250021, 0.552786404500042, 0.8506508083520399}, { 0.4472135954999579, 0.8944271909999159, -0.32491969623290634`}, { 0.4472135954999579, 0.8944271909999159, 0.32491969623290634`}, { 0.552786404500042, -0.8944271909999159, 0.}, { 0.6180339887498949, 0, 0.8506508083520399}, {0.6180339887498949, 0., -0.8506508083520399}, {0.7236067977499789, -0.552786404500042, 0.5257311121191336}, { 0.7236067977499789, -0.552786404500042, -0.5257311121191336}, { 0.8944271909999159, 0.552786404500042, 0.}, {1., 0., 0.32491969623290634`}, {1., 0., -0.32491969623290634`}}, {15, 7, 11}], Polygon3DBox[{{-1., 0., -0.32491969623290634`}, {-1., 0., 0.32491969623290634`}, {-0.8944271909999159, -0.552786404500042, 0.}, {-0.7236067977499789, 0.552786404500042, 0.5257311121191336}, {-0.7236067977499789, 0.552786404500042, -0.5257311121191336}, {-0.6180339887498949, 0., -0.8506508083520399}, {-0.6180339887498949, 0., 0.8506508083520399}, {-0.552786404500042, 0.8944271909999159, 0.}, {-0.4472135954999579, -0.8944271909999159, 0.32491969623290634`}, {-0.4472135954999579, -0.8944271909999159, \ -0.32491969623290634`}, {-0.276393202250021, -0.552786404500042, 0.8506508083520399}, {-0.276393202250021, -0.552786404500042, \ -0.8506508083520399}, {-0.17082039324993692`, 0.8944271909999159, 0.5257311121191336}, {-0.17082039324993692`, 0.8944271909999159, -0.5257311121191336}, { 0, 0, 1.0514622242382672`}, {0., 0., -1.0514622242382672`}, { 0.17082039324993692`, -0.8944271909999159, 0.5257311121191336}, { 0.17082039324993692`, -0.8944271909999159, -0.5257311121191336}, { 0.276393202250021, 0.552786404500042, -0.8506508083520399}, { 0.276393202250021, 0.552786404500042, 0.8506508083520399}, { 0.4472135954999579, 0.8944271909999159, -0.32491969623290634`}, { 0.4472135954999579, 0.8944271909999159, 0.32491969623290634`}, { 0.552786404500042, -0.8944271909999159, 0.}, { 0.6180339887498949, 0, 0.8506508083520399}, {0.6180339887498949, 0., -0.8506508083520399}, {0.7236067977499789, -0.552786404500042, 0.5257311121191336}, { 0.7236067977499789, -0.552786404500042, -0.5257311121191336}, { 0.8944271909999159, 0.552786404500042, 0.}, {1., 0., 0.32491969623290634`}, {1., 0., -0.32491969623290634`}}, {15, 11, 17, 26, 24}], Polygon3DBox[{{-1., 0., -0.32491969623290634`}, {-1., 0., 0.32491969623290634`}, {-0.8944271909999159, -0.552786404500042, 0.}, {-0.7236067977499789, 0.552786404500042, 0.5257311121191336}, {-0.7236067977499789, 0.552786404500042, -0.5257311121191336}, {-0.6180339887498949, 0., -0.8506508083520399}, {-0.6180339887498949, 0., 0.8506508083520399}, {-0.552786404500042, 0.8944271909999159, 0.}, {-0.4472135954999579, -0.8944271909999159, 0.32491969623290634`}, {-0.4472135954999579, -0.8944271909999159, \ -0.32491969623290634`}, {-0.276393202250021, -0.552786404500042, 0.8506508083520399}, {-0.276393202250021, -0.552786404500042, \ -0.8506508083520399}, {-0.17082039324993692`, 0.8944271909999159, 0.5257311121191336}, {-0.17082039324993692`, 0.8944271909999159, -0.5257311121191336}, { 0, 0, 1.0514622242382672`}, {0., 0., -1.0514622242382672`}, { 0.17082039324993692`, -0.8944271909999159, 0.5257311121191336}, { 0.17082039324993692`, -0.8944271909999159, -0.5257311121191336}, { 0.276393202250021, 0.552786404500042, -0.8506508083520399}, { 0.276393202250021, 0.552786404500042, 0.8506508083520399}, { 0.4472135954999579, 0.8944271909999159, -0.32491969623290634`}, { 0.4472135954999579, 0.8944271909999159, 0.32491969623290634`}, { 0.552786404500042, -0.8944271909999159, 0.}, { 0.6180339887498949, 0, 0.8506508083520399}, {0.6180339887498949, 0., -0.8506508083520399}, {0.7236067977499789, -0.552786404500042, 0.5257311121191336}, { 0.7236067977499789, -0.552786404500042, -0.5257311121191336}, { 0.8944271909999159, 0.552786404500042, 0.}, {1., 0., 0.32491969623290634`}, {1., 0., -0.32491969623290634`}}, {24, 26, 29}], Polygon3DBox[{{-1., 0., -0.32491969623290634`}, {-1., 0., 0.32491969623290634`}, {-0.8944271909999159, -0.552786404500042, 0.}, {-0.7236067977499789, 0.552786404500042, 0.5257311121191336}, {-0.7236067977499789, 0.552786404500042, -0.5257311121191336}, {-0.6180339887498949, 0., -0.8506508083520399}, {-0.6180339887498949, 0., 0.8506508083520399}, {-0.552786404500042, 0.8944271909999159, 0.}, {-0.4472135954999579, -0.8944271909999159, 0.32491969623290634`}, {-0.4472135954999579, -0.8944271909999159, \ -0.32491969623290634`}, {-0.276393202250021, -0.552786404500042, 0.8506508083520399}, {-0.276393202250021, -0.552786404500042, \ -0.8506508083520399}, {-0.17082039324993692`, 0.8944271909999159, 0.5257311121191336}, {-0.17082039324993692`, 0.8944271909999159, -0.5257311121191336}, { 0, 0, 1.0514622242382672`}, {0., 0., -1.0514622242382672`}, { 0.17082039324993692`, -0.8944271909999159, 0.5257311121191336}, { 0.17082039324993692`, -0.8944271909999159, -0.5257311121191336}, { 0.276393202250021, 0.552786404500042, -0.8506508083520399}, { 0.276393202250021, 0.552786404500042, 0.8506508083520399}, { 0.4472135954999579, 0.8944271909999159, -0.32491969623290634`}, { 0.4472135954999579, 0.8944271909999159, 0.32491969623290634`}, { 0.552786404500042, -0.8944271909999159, 0.}, { 0.6180339887498949, 0, 0.8506508083520399}, {0.6180339887498949, 0., -0.8506508083520399}, {0.7236067977499789, -0.552786404500042, 0.5257311121191336}, { 0.7236067977499789, -0.552786404500042, -0.5257311121191336}, { 0.8944271909999159, 0.552786404500042, 0.}, {1., 0., 0.32491969623290634`}, {1., 0., -0.32491969623290634`}}, {24, 29, 28, 22, 20}], Polygon3DBox[{{-1., 0., -0.32491969623290634`}, {-1., 0., 0.32491969623290634`}, {-0.8944271909999159, -0.552786404500042, 0.}, {-0.7236067977499789, 0.552786404500042, 0.5257311121191336}, {-0.7236067977499789, 0.552786404500042, -0.5257311121191336}, {-0.6180339887498949, 0., -0.8506508083520399}, {-0.6180339887498949, 0., 0.8506508083520399}, {-0.552786404500042, 0.8944271909999159, 0.}, {-0.4472135954999579, -0.8944271909999159, 0.32491969623290634`}, {-0.4472135954999579, -0.8944271909999159, \ -0.32491969623290634`}, {-0.276393202250021, -0.552786404500042, 0.8506508083520399}, {-0.276393202250021, -0.552786404500042, \ -0.8506508083520399}, {-0.17082039324993692`, 0.8944271909999159, 0.5257311121191336}, {-0.17082039324993692`, 0.8944271909999159, -0.5257311121191336}, { 0, 0, 1.0514622242382672`}, {0., 0., -1.0514622242382672`}, { 0.17082039324993692`, -0.8944271909999159, 0.5257311121191336}, { 0.17082039324993692`, -0.8944271909999159, -0.5257311121191336}, { 0.276393202250021, 0.552786404500042, -0.8506508083520399}, { 0.276393202250021, 0.552786404500042, 0.8506508083520399}, { 0.4472135954999579, 0.8944271909999159, -0.32491969623290634`}, { 0.4472135954999579, 0.8944271909999159, 0.32491969623290634`}, { 0.552786404500042, -0.8944271909999159, 0.}, { 0.6180339887498949, 0, 0.8506508083520399}, {0.6180339887498949, 0., -0.8506508083520399}, {0.7236067977499789, -0.552786404500042, 0.5257311121191336}, { 0.7236067977499789, -0.552786404500042, -0.5257311121191336}, { 0.8944271909999159, 0.552786404500042, 0.}, {1., 0., 0.32491969623290634`}, {1., 0., -0.32491969623290634`}}, {20, 22, 13}], Polygon3DBox[{{-1., 0., -0.32491969623290634`}, {-1., 0., 0.32491969623290634`}, {-0.8944271909999159, -0.552786404500042, 0.}, {-0.7236067977499789, 0.552786404500042, 0.5257311121191336}, {-0.7236067977499789, 0.552786404500042, -0.5257311121191336}, {-0.6180339887498949, 0., -0.8506508083520399}, {-0.6180339887498949, 0., 0.8506508083520399}, {-0.552786404500042, 0.8944271909999159, 0.}, {-0.4472135954999579, -0.8944271909999159, 0.32491969623290634`}, {-0.4472135954999579, -0.8944271909999159, \ -0.32491969623290634`}, {-0.276393202250021, -0.552786404500042, 0.8506508083520399}, {-0.276393202250021, -0.552786404500042, \ -0.8506508083520399}, {-0.17082039324993692`, 0.8944271909999159, 0.5257311121191336}, {-0.17082039324993692`, 0.8944271909999159, -0.5257311121191336}, { 0, 0, 1.0514622242382672`}, {0., 0., -1.0514622242382672`}, { 0.17082039324993692`, -0.8944271909999159, 0.5257311121191336}, { 0.17082039324993692`, -0.8944271909999159, -0.5257311121191336}, { 0.276393202250021, 0.552786404500042, -0.8506508083520399}, { 0.276393202250021, 0.552786404500042, 0.8506508083520399}, { 0.4472135954999579, 0.8944271909999159, -0.32491969623290634`}, { 0.4472135954999579, 0.8944271909999159, 0.32491969623290634`}, { 0.552786404500042, -0.8944271909999159, 0.}, { 0.6180339887498949, 0, 0.8506508083520399}, {0.6180339887498949, 0., -0.8506508083520399}, {0.7236067977499789, -0.552786404500042, 0.5257311121191336}, { 0.7236067977499789, -0.552786404500042, -0.5257311121191336}, { 0.8944271909999159, 0.552786404500042, 0.}, {1., 0., 0.32491969623290634`}, {1., 0., -0.32491969623290634`}}, {7, 4, 2}], Polygon3DBox[{{-1., 0., -0.32491969623290634`}, {-1., 0., 0.32491969623290634`}, {-0.8944271909999159, -0.552786404500042, 0.}, {-0.7236067977499789, 0.552786404500042, 0.5257311121191336}, {-0.7236067977499789, 0.552786404500042, -0.5257311121191336}, {-0.6180339887498949, 0., -0.8506508083520399}, {-0.6180339887498949, 0., 0.8506508083520399}, {-0.552786404500042, 0.8944271909999159, 0.}, {-0.4472135954999579, -0.8944271909999159, 0.32491969623290634`}, {-0.4472135954999579, -0.8944271909999159, \ -0.32491969623290634`}, {-0.276393202250021, -0.552786404500042, 0.8506508083520399}, {-0.276393202250021, -0.552786404500042, \ -0.8506508083520399}, {-0.17082039324993692`, 0.8944271909999159, 0.5257311121191336}, {-0.17082039324993692`, 0.8944271909999159, -0.5257311121191336}, { 0, 0, 1.0514622242382672`}, {0., 0., -1.0514622242382672`}, { 0.17082039324993692`, -0.8944271909999159, 0.5257311121191336}, { 0.17082039324993692`, -0.8944271909999159, -0.5257311121191336}, { 0.276393202250021, 0.552786404500042, -0.8506508083520399}, { 0.276393202250021, 0.552786404500042, 0.8506508083520399}, { 0.4472135954999579, 0.8944271909999159, -0.32491969623290634`}, { 0.4472135954999579, 0.8944271909999159, 0.32491969623290634`}, { 0.552786404500042, -0.8944271909999159, 0.}, { 0.6180339887498949, 0, 0.8506508083520399}, {0.6180339887498949, 0., -0.8506508083520399}, {0.7236067977499789, -0.552786404500042, 0.5257311121191336}, { 0.7236067977499789, -0.552786404500042, -0.5257311121191336}, { 0.8944271909999159, 0.552786404500042, 0.}, {1., 0., 0.32491969623290634`}, {1., 0., -0.32491969623290634`}}, {7, 2, 3, 9, 11}], Polygon3DBox[{{-1., 0., -0.32491969623290634`}, {-1., 0., 0.32491969623290634`}, {-0.8944271909999159, -0.552786404500042, 0.}, {-0.7236067977499789, 0.552786404500042, 0.5257311121191336}, {-0.7236067977499789, 0.552786404500042, -0.5257311121191336}, {-0.6180339887498949, 0., -0.8506508083520399}, {-0.6180339887498949, 0., 0.8506508083520399}, {-0.552786404500042, 0.8944271909999159, 0.}, {-0.4472135954999579, -0.8944271909999159, 0.32491969623290634`}, {-0.4472135954999579, -0.8944271909999159, \ -0.32491969623290634`}, {-0.276393202250021, -0.552786404500042, 0.8506508083520399}, {-0.276393202250021, -0.552786404500042, \ -0.8506508083520399}, {-0.17082039324993692`, 0.8944271909999159, 0.5257311121191336}, {-0.17082039324993692`, 0.8944271909999159, -0.5257311121191336}, { 0, 0, 1.0514622242382672`}, {0., 0., -1.0514622242382672`}, { 0.17082039324993692`, -0.8944271909999159, 0.5257311121191336}, { 0.17082039324993692`, -0.8944271909999159, -0.5257311121191336}, { 0.276393202250021, 0.552786404500042, -0.8506508083520399}, { 0.276393202250021, 0.552786404500042, 0.8506508083520399}, { 0.4472135954999579, 0.8944271909999159, -0.32491969623290634`}, { 0.4472135954999579, 0.8944271909999159, 0.32491969623290634`}, { 0.552786404500042, -0.8944271909999159, 0.}, { 0.6180339887498949, 0, 0.8506508083520399}, {0.6180339887498949, 0., -0.8506508083520399}, {0.7236067977499789, -0.552786404500042, 0.5257311121191336}, { 0.7236067977499789, -0.552786404500042, -0.5257311121191336}, { 0.8944271909999159, 0.552786404500042, 0.}, {1., 0., 0.32491969623290634`}, {1., 0., -0.32491969623290634`}}, {11, 9, 17}], Polygon3DBox[{{-1., 0., -0.32491969623290634`}, {-1., 0., 0.32491969623290634`}, {-0.8944271909999159, -0.552786404500042, 0.}, {-0.7236067977499789, 0.552786404500042, 0.5257311121191336}, {-0.7236067977499789, 0.552786404500042, -0.5257311121191336}, {-0.6180339887498949, 0., -0.8506508083520399}, {-0.6180339887498949, 0., 0.8506508083520399}, {-0.552786404500042, 0.8944271909999159, 0.}, {-0.4472135954999579, -0.8944271909999159, 0.32491969623290634`}, {-0.4472135954999579, -0.8944271909999159, \ -0.32491969623290634`}, {-0.276393202250021, -0.552786404500042, 0.8506508083520399}, {-0.276393202250021, -0.552786404500042, \ -0.8506508083520399}, {-0.17082039324993692`, 0.8944271909999159, 0.5257311121191336}, {-0.17082039324993692`, 0.8944271909999159, -0.5257311121191336}, { 0, 0, 1.0514622242382672`}, {0., 0., -1.0514622242382672`}, { 0.17082039324993692`, -0.8944271909999159, 0.5257311121191336}, { 0.17082039324993692`, -0.8944271909999159, -0.5257311121191336}, { 0.276393202250021, 0.552786404500042, -0.8506508083520399}, { 0.276393202250021, 0.552786404500042, 0.8506508083520399}, { 0.4472135954999579, 0.8944271909999159, -0.32491969623290634`}, { 0.4472135954999579, 0.8944271909999159, 0.32491969623290634`}, { 0.552786404500042, -0.8944271909999159, 0.}, { 0.6180339887498949, 0, 0.8506508083520399}, {0.6180339887498949, 0., -0.8506508083520399}, {0.7236067977499789, -0.552786404500042, 0.5257311121191336}, { 0.7236067977499789, -0.552786404500042, -0.5257311121191336}, { 0.8944271909999159, 0.552786404500042, 0.}, {1., 0., 0.32491969623290634`}, {1., 0., -0.32491969623290634`}}, {29, 26, 23, 27, 30}], Polygon3DBox[{{-1., 0., -0.32491969623290634`}, {-1., 0., 0.32491969623290634`}, {-0.8944271909999159, -0.552786404500042, 0.}, {-0.7236067977499789, 0.552786404500042, 0.5257311121191336}, {-0.7236067977499789, 0.552786404500042, -0.5257311121191336}, {-0.6180339887498949, 0., -0.8506508083520399}, {-0.6180339887498949, 0., 0.8506508083520399}, {-0.552786404500042, 0.8944271909999159, 0.}, {-0.4472135954999579, -0.8944271909999159, 0.32491969623290634`}, {-0.4472135954999579, -0.8944271909999159, \ -0.32491969623290634`}, {-0.276393202250021, -0.552786404500042, 0.8506508083520399}, {-0.276393202250021, -0.552786404500042, \ -0.8506508083520399}, {-0.17082039324993692`, 0.8944271909999159, 0.5257311121191336}, {-0.17082039324993692`, 0.8944271909999159, -0.5257311121191336}, { 0, 0, 1.0514622242382672`}, {0., 0., -1.0514622242382672`}, { 0.17082039324993692`, -0.8944271909999159, 0.5257311121191336}, { 0.17082039324993692`, -0.8944271909999159, -0.5257311121191336}, { 0.276393202250021, 0.552786404500042, -0.8506508083520399}, { 0.276393202250021, 0.552786404500042, 0.8506508083520399}, { 0.4472135954999579, 0.8944271909999159, -0.32491969623290634`}, { 0.4472135954999579, 0.8944271909999159, 0.32491969623290634`}, { 0.552786404500042, -0.8944271909999159, 0.}, { 0.6180339887498949, 0, 0.8506508083520399}, {0.6180339887498949, 0., -0.8506508083520399}, {0.7236067977499789, -0.552786404500042, 0.5257311121191336}, { 0.7236067977499789, -0.552786404500042, -0.5257311121191336}, { 0.8944271909999159, 0.552786404500042, 0.}, {1., 0., 0.32491969623290634`}, {1., 0., -0.32491969623290634`}}, {29, 30, 28}], Polygon3DBox[{{-1., 0., -0.32491969623290634`}, {-1., 0., 0.32491969623290634`}, {-0.8944271909999159, -0.552786404500042, 0.}, {-0.7236067977499789, 0.552786404500042, 0.5257311121191336}, {-0.7236067977499789, 0.552786404500042, -0.5257311121191336}, {-0.6180339887498949, 0., -0.8506508083520399}, {-0.6180339887498949, 0., 0.8506508083520399}, {-0.552786404500042, 0.8944271909999159, 0.}, {-0.4472135954999579, -0.8944271909999159, 0.32491969623290634`}, {-0.4472135954999579, -0.8944271909999159, \ -0.32491969623290634`}, {-0.276393202250021, -0.552786404500042, 0.8506508083520399}, {-0.276393202250021, -0.552786404500042, \ -0.8506508083520399}, {-0.17082039324993692`, 0.8944271909999159, 0.5257311121191336}, {-0.17082039324993692`, 0.8944271909999159, -0.5257311121191336}, { 0, 0, 1.0514622242382672`}, {0., 0., -1.0514622242382672`}, { 0.17082039324993692`, -0.8944271909999159, 0.5257311121191336}, { 0.17082039324993692`, -0.8944271909999159, -0.5257311121191336}, { 0.276393202250021, 0.552786404500042, -0.8506508083520399}, { 0.276393202250021, 0.552786404500042, 0.8506508083520399}, { 0.4472135954999579, 0.8944271909999159, -0.32491969623290634`}, { 0.4472135954999579, 0.8944271909999159, 0.32491969623290634`}, { 0.552786404500042, -0.8944271909999159, 0.}, { 0.6180339887498949, 0, 0.8506508083520399}, {0.6180339887498949, 0., -0.8506508083520399}, {0.7236067977499789, -0.552786404500042, 0.5257311121191336}, { 0.7236067977499789, -0.552786404500042, -0.5257311121191336}, { 0.8944271909999159, 0.552786404500042, 0.}, {1., 0., 0.32491969623290634`}, {1., 0., -0.32491969623290634`}}, {26, 17, 23}], Polygon3DBox[{{-1., 0., -0.32491969623290634`}, {-1., 0., 0.32491969623290634`}, {-0.8944271909999159, -0.552786404500042, 0.}, {-0.7236067977499789, 0.552786404500042, 0.5257311121191336}, {-0.7236067977499789, 0.552786404500042, -0.5257311121191336}, {-0.6180339887498949, 0., -0.8506508083520399}, {-0.6180339887498949, 0., 0.8506508083520399}, {-0.552786404500042, 0.8944271909999159, 0.}, {-0.4472135954999579, -0.8944271909999159, 0.32491969623290634`}, {-0.4472135954999579, -0.8944271909999159, \ -0.32491969623290634`}, {-0.276393202250021, -0.552786404500042, 0.8506508083520399}, {-0.276393202250021, -0.552786404500042, \ -0.8506508083520399}, {-0.17082039324993692`, 0.8944271909999159, 0.5257311121191336}, {-0.17082039324993692`, 0.8944271909999159, -0.5257311121191336}, { 0, 0, 1.0514622242382672`}, {0., 0., -1.0514622242382672`}, { 0.17082039324993692`, -0.8944271909999159, 0.5257311121191336}, { 0.17082039324993692`, -0.8944271909999159, -0.5257311121191336}, { 0.276393202250021, 0.552786404500042, -0.8506508083520399}, { 0.276393202250021, 0.552786404500042, 0.8506508083520399}, { 0.4472135954999579, 0.8944271909999159, -0.32491969623290634`}, { 0.4472135954999579, 0.8944271909999159, 0.32491969623290634`}, { 0.552786404500042, -0.8944271909999159, 0.}, { 0.6180339887498949, 0, 0.8506508083520399}, {0.6180339887498949, 0., -0.8506508083520399}, {0.7236067977499789, -0.552786404500042, 0.5257311121191336}, { 0.7236067977499789, -0.552786404500042, -0.5257311121191336}, { 0.8944271909999159, 0.552786404500042, 0.}, {1., 0., 0.32491969623290634`}, {1., 0., -0.32491969623290634`}}, {13, 22, 21, 14, 8}], Polygon3DBox[{{-1., 0., -0.32491969623290634`}, {-1., 0., 0.32491969623290634`}, {-0.8944271909999159, -0.552786404500042, 0.}, {-0.7236067977499789, 0.552786404500042, 0.5257311121191336}, {-0.7236067977499789, 0.552786404500042, -0.5257311121191336}, {-0.6180339887498949, 0., -0.8506508083520399}, {-0.6180339887498949, 0., 0.8506508083520399}, {-0.552786404500042, 0.8944271909999159, 0.}, {-0.4472135954999579, -0.8944271909999159, 0.32491969623290634`}, {-0.4472135954999579, -0.8944271909999159, \ -0.32491969623290634`}, {-0.276393202250021, -0.552786404500042, 0.8506508083520399}, {-0.276393202250021, -0.552786404500042, \ -0.8506508083520399}, {-0.17082039324993692`, 0.8944271909999159, 0.5257311121191336}, {-0.17082039324993692`, 0.8944271909999159, -0.5257311121191336}, { 0, 0, 1.0514622242382672`}, {0., 0., -1.0514622242382672`}, { 0.17082039324993692`, -0.8944271909999159, 0.5257311121191336}, { 0.17082039324993692`, -0.8944271909999159, -0.5257311121191336}, { 0.276393202250021, 0.552786404500042, -0.8506508083520399}, { 0.276393202250021, 0.552786404500042, 0.8506508083520399}, { 0.4472135954999579, 0.8944271909999159, -0.32491969623290634`}, { 0.4472135954999579, 0.8944271909999159, 0.32491969623290634`}, { 0.552786404500042, -0.8944271909999159, 0.}, { 0.6180339887498949, 0, 0.8506508083520399}, {0.6180339887498949, 0., -0.8506508083520399}, {0.7236067977499789, -0.552786404500042, 0.5257311121191336}, { 0.7236067977499789, -0.552786404500042, -0.5257311121191336}, { 0.8944271909999159, 0.552786404500042, 0.}, {1., 0., 0.32491969623290634`}, {1., 0., -0.32491969623290634`}}, {13, 8, 4}], Polygon3DBox[{{-1., 0., -0.32491969623290634`}, {-1., 0., 0.32491969623290634`}, {-0.8944271909999159, -0.552786404500042, 0.}, {-0.7236067977499789, 0.552786404500042, 0.5257311121191336}, {-0.7236067977499789, 0.552786404500042, -0.5257311121191336}, {-0.6180339887498949, 0., -0.8506508083520399}, {-0.6180339887498949, 0., 0.8506508083520399}, {-0.552786404500042, 0.8944271909999159, 0.}, {-0.4472135954999579, -0.8944271909999159, 0.32491969623290634`}, {-0.4472135954999579, -0.8944271909999159, \ -0.32491969623290634`}, {-0.276393202250021, -0.552786404500042, 0.8506508083520399}, {-0.276393202250021, -0.552786404500042, \ -0.8506508083520399}, {-0.17082039324993692`, 0.8944271909999159, 0.5257311121191336}, {-0.17082039324993692`, 0.8944271909999159, -0.5257311121191336}, { 0, 0, 1.0514622242382672`}, {0., 0., -1.0514622242382672`}, { 0.17082039324993692`, -0.8944271909999159, 0.5257311121191336}, { 0.17082039324993692`, -0.8944271909999159, -0.5257311121191336}, { 0.276393202250021, 0.552786404500042, -0.8506508083520399}, { 0.276393202250021, 0.552786404500042, 0.8506508083520399}, { 0.4472135954999579, 0.8944271909999159, -0.32491969623290634`}, { 0.4472135954999579, 0.8944271909999159, 0.32491969623290634`}, { 0.552786404500042, -0.8944271909999159, 0.}, { 0.6180339887498949, 0, 0.8506508083520399}, {0.6180339887498949, 0., -0.8506508083520399}, {0.7236067977499789, -0.552786404500042, 0.5257311121191336}, { 0.7236067977499789, -0.552786404500042, -0.5257311121191336}, { 0.8944271909999159, 0.552786404500042, 0.}, {1., 0., 0.32491969623290634`}, {1., 0., -0.32491969623290634`}}, {22, 28, 21}], Polygon3DBox[{{-1., 0., -0.32491969623290634`}, {-1., 0., 0.32491969623290634`}, {-0.8944271909999159, -0.552786404500042, 0.}, {-0.7236067977499789, 0.552786404500042, 0.5257311121191336}, {-0.7236067977499789, 0.552786404500042, -0.5257311121191336}, {-0.6180339887498949, 0., -0.8506508083520399}, {-0.6180339887498949, 0., 0.8506508083520399}, {-0.552786404500042, 0.8944271909999159, 0.}, {-0.4472135954999579, -0.8944271909999159, 0.32491969623290634`}, {-0.4472135954999579, -0.8944271909999159, \ -0.32491969623290634`}, {-0.276393202250021, -0.552786404500042, 0.8506508083520399}, {-0.276393202250021, -0.552786404500042, \ -0.8506508083520399}, {-0.17082039324993692`, 0.8944271909999159, 0.5257311121191336}, {-0.17082039324993692`, 0.8944271909999159, -0.5257311121191336}, { 0, 0, 1.0514622242382672`}, {0., 0., -1.0514622242382672`}, { 0.17082039324993692`, -0.8944271909999159, 0.5257311121191336}, { 0.17082039324993692`, -0.8944271909999159, -0.5257311121191336}, { 0.276393202250021, 0.552786404500042, -0.8506508083520399}, { 0.276393202250021, 0.552786404500042, 0.8506508083520399}, { 0.4472135954999579, 0.8944271909999159, -0.32491969623290634`}, { 0.4472135954999579, 0.8944271909999159, 0.32491969623290634`}, { 0.552786404500042, -0.8944271909999159, 0.}, { 0.6180339887498949, 0, 0.8506508083520399}, {0.6180339887498949, 0., -0.8506508083520399}, {0.7236067977499789, -0.552786404500042, 0.5257311121191336}, { 0.7236067977499789, -0.552786404500042, -0.5257311121191336}, { 0.8944271909999159, 0.552786404500042, 0.}, {1., 0., 0.32491969623290634`}, {1., 0., -0.32491969623290634`}}, {2, 4, 8, 5, 1}], Polygon3DBox[{{-1., 0., -0.32491969623290634`}, {-1., 0., 0.32491969623290634`}, {-0.8944271909999159, -0.552786404500042, 0.}, {-0.7236067977499789, 0.552786404500042, 0.5257311121191336}, {-0.7236067977499789, 0.552786404500042, -0.5257311121191336}, {-0.6180339887498949, 0., -0.8506508083520399}, {-0.6180339887498949, 0., 0.8506508083520399}, {-0.552786404500042, 0.8944271909999159, 0.}, {-0.4472135954999579, -0.8944271909999159, 0.32491969623290634`}, {-0.4472135954999579, -0.8944271909999159, \ -0.32491969623290634`}, {-0.276393202250021, -0.552786404500042, 0.8506508083520399}, {-0.276393202250021, -0.552786404500042, \ -0.8506508083520399}, {-0.17082039324993692`, 0.8944271909999159, 0.5257311121191336}, {-0.17082039324993692`, 0.8944271909999159, -0.5257311121191336}, { 0, 0, 1.0514622242382672`}, {0., 0., -1.0514622242382672`}, { 0.17082039324993692`, -0.8944271909999159, 0.5257311121191336}, { 0.17082039324993692`, -0.8944271909999159, -0.5257311121191336}, { 0.276393202250021, 0.552786404500042, -0.8506508083520399}, { 0.276393202250021, 0.552786404500042, 0.8506508083520399}, { 0.4472135954999579, 0.8944271909999159, -0.32491969623290634`}, { 0.4472135954999579, 0.8944271909999159, 0.32491969623290634`}, { 0.552786404500042, -0.8944271909999159, 0.}, { 0.6180339887498949, 0, 0.8506508083520399}, {0.6180339887498949, 0., -0.8506508083520399}, {0.7236067977499789, -0.552786404500042, 0.5257311121191336}, { 0.7236067977499789, -0.552786404500042, -0.5257311121191336}, { 0.8944271909999159, 0.552786404500042, 0.}, {1., 0., 0.32491969623290634`}, {1., 0., -0.32491969623290634`}}, {2, 1, 3}], Polygon3DBox[{{-1., 0., -0.32491969623290634`}, {-1., 0., 0.32491969623290634`}, {-0.8944271909999159, -0.552786404500042, 0.}, {-0.7236067977499789, 0.552786404500042, 0.5257311121191336}, {-0.7236067977499789, 0.552786404500042, -0.5257311121191336}, {-0.6180339887498949, 0., -0.8506508083520399}, {-0.6180339887498949, 0., 0.8506508083520399}, {-0.552786404500042, 0.8944271909999159, 0.}, {-0.4472135954999579, -0.8944271909999159, 0.32491969623290634`}, {-0.4472135954999579, -0.8944271909999159, \ -0.32491969623290634`}, {-0.276393202250021, -0.552786404500042, 0.8506508083520399}, {-0.276393202250021, -0.552786404500042, \ -0.8506508083520399}, {-0.17082039324993692`, 0.8944271909999159, 0.5257311121191336}, {-0.17082039324993692`, 0.8944271909999159, -0.5257311121191336}, { 0, 0, 1.0514622242382672`}, {0., 0., -1.0514622242382672`}, { 0.17082039324993692`, -0.8944271909999159, 0.5257311121191336}, { 0.17082039324993692`, -0.8944271909999159, -0.5257311121191336}, { 0.276393202250021, 0.552786404500042, -0.8506508083520399}, { 0.276393202250021, 0.552786404500042, 0.8506508083520399}, { 0.4472135954999579, 0.8944271909999159, -0.32491969623290634`}, { 0.4472135954999579, 0.8944271909999159, 0.32491969623290634`}, { 0.552786404500042, -0.8944271909999159, 0.}, { 0.6180339887498949, 0, 0.8506508083520399}, {0.6180339887498949, 0., -0.8506508083520399}, {0.7236067977499789, -0.552786404500042, 0.5257311121191336}, { 0.7236067977499789, -0.552786404500042, -0.5257311121191336}, { 0.8944271909999159, 0.552786404500042, 0.}, {1., 0., 0.32491969623290634`}, {1., 0., -0.32491969623290634`}}, {17, 9, 10, 18, 23}], Polygon3DBox[{{-1., 0., -0.32491969623290634`}, {-1., 0., 0.32491969623290634`}, {-0.8944271909999159, -0.552786404500042, 0.}, {-0.7236067977499789, 0.552786404500042, 0.5257311121191336}, {-0.7236067977499789, 0.552786404500042, -0.5257311121191336}, {-0.6180339887498949, 0., -0.8506508083520399}, {-0.6180339887498949, 0., 0.8506508083520399}, {-0.552786404500042, 0.8944271909999159, 0.}, {-0.4472135954999579, -0.8944271909999159, 0.32491969623290634`}, {-0.4472135954999579, -0.8944271909999159, \ -0.32491969623290634`}, {-0.276393202250021, -0.552786404500042, 0.8506508083520399}, {-0.276393202250021, -0.552786404500042, \ -0.8506508083520399}, {-0.17082039324993692`, 0.8944271909999159, 0.5257311121191336}, {-0.17082039324993692`, 0.8944271909999159, -0.5257311121191336}, { 0, 0, 1.0514622242382672`}, {0., 0., -1.0514622242382672`}, { 0.17082039324993692`, -0.8944271909999159, 0.5257311121191336}, { 0.17082039324993692`, -0.8944271909999159, -0.5257311121191336}, { 0.276393202250021, 0.552786404500042, -0.8506508083520399}, { 0.276393202250021, 0.552786404500042, 0.8506508083520399}, { 0.4472135954999579, 0.8944271909999159, -0.32491969623290634`}, { 0.4472135954999579, 0.8944271909999159, 0.32491969623290634`}, { 0.552786404500042, -0.8944271909999159, 0.}, { 0.6180339887498949, 0, 0.8506508083520399}, {0.6180339887498949, 0., -0.8506508083520399}, {0.7236067977499789, -0.552786404500042, 0.5257311121191336}, { 0.7236067977499789, -0.552786404500042, -0.5257311121191336}, { 0.8944271909999159, 0.552786404500042, 0.}, {1., 0., 0.32491969623290634`}, {1., 0., -0.32491969623290634`}}, {9, 3, 10}], Polygon3DBox[{{-1., 0., -0.32491969623290634`}, {-1., 0., 0.32491969623290634`}, {-0.8944271909999159, -0.552786404500042, 0.}, {-0.7236067977499789, 0.552786404500042, 0.5257311121191336}, {-0.7236067977499789, 0.552786404500042, -0.5257311121191336}, {-0.6180339887498949, 0., -0.8506508083520399}, {-0.6180339887498949, 0., 0.8506508083520399}, {-0.552786404500042, 0.8944271909999159, 0.}, {-0.4472135954999579, -0.8944271909999159, 0.32491969623290634`}, {-0.4472135954999579, -0.8944271909999159, \ -0.32491969623290634`}, {-0.276393202250021, -0.552786404500042, 0.8506508083520399}, {-0.276393202250021, -0.552786404500042, \ -0.8506508083520399}, {-0.17082039324993692`, 0.8944271909999159, 0.5257311121191336}, {-0.17082039324993692`, 0.8944271909999159, -0.5257311121191336}, { 0, 0, 1.0514622242382672`}, {0., 0., -1.0514622242382672`}, { 0.17082039324993692`, -0.8944271909999159, 0.5257311121191336}, { 0.17082039324993692`, -0.8944271909999159, -0.5257311121191336}, { 0.276393202250021, 0.552786404500042, -0.8506508083520399}, { 0.276393202250021, 0.552786404500042, 0.8506508083520399}, { 0.4472135954999579, 0.8944271909999159, -0.32491969623290634`}, { 0.4472135954999579, 0.8944271909999159, 0.32491969623290634`}, { 0.552786404500042, -0.8944271909999159, 0.}, { 0.6180339887498949, 0, 0.8506508083520399}, {0.6180339887498949, 0., -0.8506508083520399}, {0.7236067977499789, -0.552786404500042, 0.5257311121191336}, { 0.7236067977499789, -0.552786404500042, -0.5257311121191336}, { 0.8944271909999159, 0.552786404500042, 0.}, {1., 0., 0.32491969623290634`}, {1., 0., -0.32491969623290634`}}, {30, 27, 25}], Polygon3DBox[{{-1., 0., -0.32491969623290634`}, {-1., 0., 0.32491969623290634`}, {-0.8944271909999159, -0.552786404500042, 0.}, {-0.7236067977499789, 0.552786404500042, 0.5257311121191336}, {-0.7236067977499789, 0.552786404500042, -0.5257311121191336}, {-0.6180339887498949, 0., -0.8506508083520399}, {-0.6180339887498949, 0., 0.8506508083520399}, {-0.552786404500042, 0.8944271909999159, 0.}, {-0.4472135954999579, -0.8944271909999159, 0.32491969623290634`}, {-0.4472135954999579, -0.8944271909999159, \ -0.32491969623290634`}, {-0.276393202250021, -0.552786404500042, 0.8506508083520399}, {-0.276393202250021, -0.552786404500042, \ -0.8506508083520399}, {-0.17082039324993692`, 0.8944271909999159, 0.5257311121191336}, {-0.17082039324993692`, 0.8944271909999159, -0.5257311121191336}, { 0, 0, 1.0514622242382672`}, {0., 0., -1.0514622242382672`}, { 0.17082039324993692`, -0.8944271909999159, 0.5257311121191336}, { 0.17082039324993692`, -0.8944271909999159, -0.5257311121191336}, { 0.276393202250021, 0.552786404500042, -0.8506508083520399}, { 0.276393202250021, 0.552786404500042, 0.8506508083520399}, { 0.4472135954999579, 0.8944271909999159, -0.32491969623290634`}, { 0.4472135954999579, 0.8944271909999159, 0.32491969623290634`}, { 0.552786404500042, -0.8944271909999159, 0.}, { 0.6180339887498949, 0, 0.8506508083520399}, {0.6180339887498949, 0., -0.8506508083520399}, {0.7236067977499789, -0.552786404500042, 0.5257311121191336}, { 0.7236067977499789, -0.552786404500042, -0.5257311121191336}, { 0.8944271909999159, 0.552786404500042, 0.}, {1., 0., 0.32491969623290634`}, {1., 0., -0.32491969623290634`}}, {30, 25, 19, 21, 28}], Polygon3DBox[{{-1., 0., -0.32491969623290634`}, {-1., 0., 0.32491969623290634`}, {-0.8944271909999159, -0.552786404500042, 0.}, {-0.7236067977499789, 0.552786404500042, 0.5257311121191336}, {-0.7236067977499789, 0.552786404500042, -0.5257311121191336}, {-0.6180339887498949, 0., -0.8506508083520399}, {-0.6180339887498949, 0., 0.8506508083520399}, {-0.552786404500042, 0.8944271909999159, 0.}, {-0.4472135954999579, -0.8944271909999159, 0.32491969623290634`}, {-0.4472135954999579, -0.8944271909999159, \ -0.32491969623290634`}, {-0.276393202250021, -0.552786404500042, 0.8506508083520399}, {-0.276393202250021, -0.552786404500042, \ -0.8506508083520399}, {-0.17082039324993692`, 0.8944271909999159, 0.5257311121191336}, {-0.17082039324993692`, 0.8944271909999159, -0.5257311121191336}, { 0, 0, 1.0514622242382672`}, {0., 0., -1.0514622242382672`}, { 0.17082039324993692`, -0.8944271909999159, 0.5257311121191336}, { 0.17082039324993692`, -0.8944271909999159, -0.5257311121191336}, { 0.276393202250021, 0.552786404500042, -0.8506508083520399}, { 0.276393202250021, 0.552786404500042, 0.8506508083520399}, { 0.4472135954999579, 0.8944271909999159, -0.32491969623290634`}, { 0.4472135954999579, 0.8944271909999159, 0.32491969623290634`}, { 0.552786404500042, -0.8944271909999159, 0.}, { 0.6180339887498949, 0, 0.8506508083520399}, {0.6180339887498949, 0., -0.8506508083520399}, {0.7236067977499789, -0.552786404500042, 0.5257311121191336}, { 0.7236067977499789, -0.552786404500042, -0.5257311121191336}, { 0.8944271909999159, 0.552786404500042, 0.}, {1., 0., 0.32491969623290634`}, {1., 0., -0.32491969623290634`}}, {23, 18, 27}], Polygon3DBox[{{-1., 0., -0.32491969623290634`}, {-1., 0., 0.32491969623290634`}, {-0.8944271909999159, -0.552786404500042, 0.}, {-0.7236067977499789, 0.552786404500042, 0.5257311121191336}, {-0.7236067977499789, 0.552786404500042, -0.5257311121191336}, {-0.6180339887498949, 0., -0.8506508083520399}, {-0.6180339887498949, 0., 0.8506508083520399}, {-0.552786404500042, 0.8944271909999159, 0.}, {-0.4472135954999579, -0.8944271909999159, 0.32491969623290634`}, {-0.4472135954999579, -0.8944271909999159, \ -0.32491969623290634`}, {-0.276393202250021, -0.552786404500042, 0.8506508083520399}, {-0.276393202250021, -0.552786404500042, \ -0.8506508083520399}, {-0.17082039324993692`, 0.8944271909999159, 0.5257311121191336}, {-0.17082039324993692`, 0.8944271909999159, -0.5257311121191336}, { 0, 0, 1.0514622242382672`}, {0., 0., -1.0514622242382672`}, { 0.17082039324993692`, -0.8944271909999159, 0.5257311121191336}, { 0.17082039324993692`, -0.8944271909999159, -0.5257311121191336}, { 0.276393202250021, 0.552786404500042, -0.8506508083520399}, { 0.276393202250021, 0.552786404500042, 0.8506508083520399}, { 0.4472135954999579, 0.8944271909999159, -0.32491969623290634`}, { 0.4472135954999579, 0.8944271909999159, 0.32491969623290634`}, { 0.552786404500042, -0.8944271909999159, 0.}, { 0.6180339887498949, 0, 0.8506508083520399}, {0.6180339887498949, 0., -0.8506508083520399}, {0.7236067977499789, -0.552786404500042, 0.5257311121191336}, { 0.7236067977499789, -0.552786404500042, -0.5257311121191336}, { 0.8944271909999159, 0.552786404500042, 0.}, {1., 0., 0.32491969623290634`}, {1., 0., -0.32491969623290634`}}, {8, 14, 5}], Polygon3DBox[{{-1., 0., -0.32491969623290634`}, {-1., 0., 0.32491969623290634`}, {-0.8944271909999159, -0.552786404500042, 0.}, {-0.7236067977499789, 0.552786404500042, 0.5257311121191336}, {-0.7236067977499789, 0.552786404500042, -0.5257311121191336}, {-0.6180339887498949, 0., -0.8506508083520399}, {-0.6180339887498949, 0., 0.8506508083520399}, {-0.552786404500042, 0.8944271909999159, 0.}, {-0.4472135954999579, -0.8944271909999159, 0.32491969623290634`}, {-0.4472135954999579, -0.8944271909999159, \ -0.32491969623290634`}, {-0.276393202250021, -0.552786404500042, 0.8506508083520399}, {-0.276393202250021, -0.552786404500042, \ -0.8506508083520399}, {-0.17082039324993692`, 0.8944271909999159, 0.5257311121191336}, {-0.17082039324993692`, 0.8944271909999159, -0.5257311121191336}, { 0, 0, 1.0514622242382672`}, {0., 0., -1.0514622242382672`}, { 0.17082039324993692`, -0.8944271909999159, 0.5257311121191336}, { 0.17082039324993692`, -0.8944271909999159, -0.5257311121191336}, { 0.276393202250021, 0.552786404500042, -0.8506508083520399}, { 0.276393202250021, 0.552786404500042, 0.8506508083520399}, { 0.4472135954999579, 0.8944271909999159, -0.32491969623290634`}, { 0.4472135954999579, 0.8944271909999159, 0.32491969623290634`}, { 0.552786404500042, -0.8944271909999159, 0.}, { 0.6180339887498949, 0, 0.8506508083520399}, {0.6180339887498949, 0., -0.8506508083520399}, {0.7236067977499789, -0.552786404500042, 0.5257311121191336}, { 0.7236067977499789, -0.552786404500042, -0.5257311121191336}, { 0.8944271909999159, 0.552786404500042, 0.}, {1., 0., 0.32491969623290634`}, {1., 0., -0.32491969623290634`}}, {21, 19, 14}], Polygon3DBox[{{-1., 0., -0.32491969623290634`}, {-1., 0., 0.32491969623290634`}, {-0.8944271909999159, -0.552786404500042, 0.}, {-0.7236067977499789, 0.552786404500042, 0.5257311121191336}, {-0.7236067977499789, 0.552786404500042, -0.5257311121191336}, {-0.6180339887498949, 0., -0.8506508083520399}, {-0.6180339887498949, 0., 0.8506508083520399}, {-0.552786404500042, 0.8944271909999159, 0.}, {-0.4472135954999579, -0.8944271909999159, 0.32491969623290634`}, {-0.4472135954999579, -0.8944271909999159, \ -0.32491969623290634`}, {-0.276393202250021, -0.552786404500042, 0.8506508083520399}, {-0.276393202250021, -0.552786404500042, \ -0.8506508083520399}, {-0.17082039324993692`, 0.8944271909999159, 0.5257311121191336}, {-0.17082039324993692`, 0.8944271909999159, -0.5257311121191336}, { 0, 0, 1.0514622242382672`}, {0., 0., -1.0514622242382672`}, { 0.17082039324993692`, -0.8944271909999159, 0.5257311121191336}, { 0.17082039324993692`, -0.8944271909999159, -0.5257311121191336}, { 0.276393202250021, 0.552786404500042, -0.8506508083520399}, { 0.276393202250021, 0.552786404500042, 0.8506508083520399}, { 0.4472135954999579, 0.8944271909999159, -0.32491969623290634`}, { 0.4472135954999579, 0.8944271909999159, 0.32491969623290634`}, { 0.552786404500042, -0.8944271909999159, 0.}, { 0.6180339887498949, 0, 0.8506508083520399}, {0.6180339887498949, 0., -0.8506508083520399}, {0.7236067977499789, -0.552786404500042, 0.5257311121191336}, { 0.7236067977499789, -0.552786404500042, -0.5257311121191336}, { 0.8944271909999159, 0.552786404500042, 0.}, {1., 0., 0.32491969623290634`}, {1., 0., -0.32491969623290634`}}, {1, 5, 6}], Polygon3DBox[{{-1., 0., -0.32491969623290634`}, {-1., 0., 0.32491969623290634`}, {-0.8944271909999159, -0.552786404500042, 0.}, {-0.7236067977499789, 0.552786404500042, 0.5257311121191336}, {-0.7236067977499789, 0.552786404500042, -0.5257311121191336}, {-0.6180339887498949, 0., -0.8506508083520399}, {-0.6180339887498949, 0., 0.8506508083520399}, {-0.552786404500042, 0.8944271909999159, 0.}, {-0.4472135954999579, -0.8944271909999159, 0.32491969623290634`}, {-0.4472135954999579, -0.8944271909999159, \ -0.32491969623290634`}, {-0.276393202250021, -0.552786404500042, 0.8506508083520399}, {-0.276393202250021, -0.552786404500042, \ -0.8506508083520399}, {-0.17082039324993692`, 0.8944271909999159, 0.5257311121191336}, {-0.17082039324993692`, 0.8944271909999159, -0.5257311121191336}, { 0, 0, 1.0514622242382672`}, {0., 0., -1.0514622242382672`}, { 0.17082039324993692`, -0.8944271909999159, 0.5257311121191336}, { 0.17082039324993692`, -0.8944271909999159, -0.5257311121191336}, { 0.276393202250021, 0.552786404500042, -0.8506508083520399}, { 0.276393202250021, 0.552786404500042, 0.8506508083520399}, { 0.4472135954999579, 0.8944271909999159, -0.32491969623290634`}, { 0.4472135954999579, 0.8944271909999159, 0.32491969623290634`}, { 0.552786404500042, -0.8944271909999159, 0.}, { 0.6180339887498949, 0, 0.8506508083520399}, {0.6180339887498949, 0., -0.8506508083520399}, {0.7236067977499789, -0.552786404500042, 0.5257311121191336}, { 0.7236067977499789, -0.552786404500042, -0.5257311121191336}, { 0.8944271909999159, 0.552786404500042, 0.}, {1., 0., 0.32491969623290634`}, {1., 0., -0.32491969623290634`}}, {1, 6, 12, 10, 3}], Polygon3DBox[{{-1., 0., -0.32491969623290634`}, {-1., 0., 0.32491969623290634`}, {-0.8944271909999159, -0.552786404500042, 0.}, {-0.7236067977499789, 0.552786404500042, 0.5257311121191336}, {-0.7236067977499789, 0.552786404500042, -0.5257311121191336}, {-0.6180339887498949, 0., -0.8506508083520399}, {-0.6180339887498949, 0., 0.8506508083520399}, {-0.552786404500042, 0.8944271909999159, 0.}, {-0.4472135954999579, -0.8944271909999159, 0.32491969623290634`}, {-0.4472135954999579, -0.8944271909999159, \ -0.32491969623290634`}, {-0.276393202250021, -0.552786404500042, 0.8506508083520399}, {-0.276393202250021, -0.552786404500042, \ -0.8506508083520399}, {-0.17082039324993692`, 0.8944271909999159, 0.5257311121191336}, {-0.17082039324993692`, 0.8944271909999159, -0.5257311121191336}, { 0, 0, 1.0514622242382672`}, {0., 0., -1.0514622242382672`}, { 0.17082039324993692`, -0.8944271909999159, 0.5257311121191336}, { 0.17082039324993692`, -0.8944271909999159, -0.5257311121191336}, { 0.276393202250021, 0.552786404500042, -0.8506508083520399}, { 0.276393202250021, 0.552786404500042, 0.8506508083520399}, { 0.4472135954999579, 0.8944271909999159, -0.32491969623290634`}, { 0.4472135954999579, 0.8944271909999159, 0.32491969623290634`}, { 0.552786404500042, -0.8944271909999159, 0.}, { 0.6180339887498949, 0, 0.8506508083520399}, {0.6180339887498949, 0., -0.8506508083520399}, {0.7236067977499789, -0.552786404500042, 0.5257311121191336}, { 0.7236067977499789, -0.552786404500042, -0.5257311121191336}, { 0.8944271909999159, 0.552786404500042, 0.}, {1., 0., 0.32491969623290634`}, {1., 0., -0.32491969623290634`}}, {10, 12, 18}], Polygon3DBox[{{-1., 0., -0.32491969623290634`}, {-1., 0., 0.32491969623290634`}, {-0.8944271909999159, -0.552786404500042, 0.}, {-0.7236067977499789, 0.552786404500042, 0.5257311121191336}, {-0.7236067977499789, 0.552786404500042, -0.5257311121191336}, {-0.6180339887498949, 0., -0.8506508083520399}, {-0.6180339887498949, 0., 0.8506508083520399}, {-0.552786404500042, 0.8944271909999159, 0.}, {-0.4472135954999579, -0.8944271909999159, 0.32491969623290634`}, {-0.4472135954999579, -0.8944271909999159, \ -0.32491969623290634`}, {-0.276393202250021, -0.552786404500042, 0.8506508083520399}, {-0.276393202250021, -0.552786404500042, \ -0.8506508083520399}, {-0.17082039324993692`, 0.8944271909999159, 0.5257311121191336}, {-0.17082039324993692`, 0.8944271909999159, -0.5257311121191336}, { 0, 0, 1.0514622242382672`}, {0., 0., -1.0514622242382672`}, { 0.17082039324993692`, -0.8944271909999159, 0.5257311121191336}, { 0.17082039324993692`, -0.8944271909999159, -0.5257311121191336}, { 0.276393202250021, 0.552786404500042, -0.8506508083520399}, { 0.276393202250021, 0.552786404500042, 0.8506508083520399}, { 0.4472135954999579, 0.8944271909999159, -0.32491969623290634`}, { 0.4472135954999579, 0.8944271909999159, 0.32491969623290634`}, { 0.552786404500042, -0.8944271909999159, 0.}, { 0.6180339887498949, 0, 0.8506508083520399}, {0.6180339887498949, 0., -0.8506508083520399}, {0.7236067977499789, -0.552786404500042, 0.5257311121191336}, { 0.7236067977499789, -0.552786404500042, -0.5257311121191336}, { 0.8944271909999159, 0.552786404500042, 0.}, {1., 0., 0.32491969623290634`}, {1., 0., -0.32491969623290634`}}, {25, 27, 18, 12, 16}], Polygon3DBox[{{-1., 0., -0.32491969623290634`}, {-1., 0., 0.32491969623290634`}, {-0.8944271909999159, -0.552786404500042, 0.}, {-0.7236067977499789, 0.552786404500042, 0.5257311121191336}, {-0.7236067977499789, 0.552786404500042, -0.5257311121191336}, {-0.6180339887498949, 0., -0.8506508083520399}, {-0.6180339887498949, 0., 0.8506508083520399}, {-0.552786404500042, 0.8944271909999159, 0.}, {-0.4472135954999579, -0.8944271909999159, 0.32491969623290634`}, {-0.4472135954999579, -0.8944271909999159, \ -0.32491969623290634`}, {-0.276393202250021, -0.552786404500042, 0.8506508083520399}, {-0.276393202250021, -0.552786404500042, \ -0.8506508083520399}, {-0.17082039324993692`, 0.8944271909999159, 0.5257311121191336}, {-0.17082039324993692`, 0.8944271909999159, -0.5257311121191336}, { 0, 0, 1.0514622242382672`}, {0., 0., -1.0514622242382672`}, { 0.17082039324993692`, -0.8944271909999159, 0.5257311121191336}, { 0.17082039324993692`, -0.8944271909999159, -0.5257311121191336}, { 0.276393202250021, 0.552786404500042, -0.8506508083520399}, { 0.276393202250021, 0.552786404500042, 0.8506508083520399}, { 0.4472135954999579, 0.8944271909999159, -0.32491969623290634`}, { 0.4472135954999579, 0.8944271909999159, 0.32491969623290634`}, { 0.552786404500042, -0.8944271909999159, 0.}, { 0.6180339887498949, 0, 0.8506508083520399}, {0.6180339887498949, 0., -0.8506508083520399}, {0.7236067977499789, -0.552786404500042, 0.5257311121191336}, { 0.7236067977499789, -0.552786404500042, -0.5257311121191336}, { 0.8944271909999159, 0.552786404500042, 0.}, {1., 0., 0.32491969623290634`}, {1., 0., -0.32491969623290634`}}, {25, 16, 19}], Polygon3DBox[{{-1., 0., -0.32491969623290634`}, {-1., 0., 0.32491969623290634`}, {-0.8944271909999159, -0.552786404500042, 0.}, {-0.7236067977499789, 0.552786404500042, 0.5257311121191336}, {-0.7236067977499789, 0.552786404500042, -0.5257311121191336}, {-0.6180339887498949, 0., -0.8506508083520399}, {-0.6180339887498949, 0., 0.8506508083520399}, {-0.552786404500042, 0.8944271909999159, 0.}, {-0.4472135954999579, -0.8944271909999159, 0.32491969623290634`}, {-0.4472135954999579, -0.8944271909999159, \ -0.32491969623290634`}, {-0.276393202250021, -0.552786404500042, 0.8506508083520399}, {-0.276393202250021, -0.552786404500042, \ -0.8506508083520399}, {-0.17082039324993692`, 0.8944271909999159, 0.5257311121191336}, {-0.17082039324993692`, 0.8944271909999159, -0.5257311121191336}, { 0, 0, 1.0514622242382672`}, {0., 0., -1.0514622242382672`}, { 0.17082039324993692`, -0.8944271909999159, 0.5257311121191336}, { 0.17082039324993692`, -0.8944271909999159, -0.5257311121191336}, { 0.276393202250021, 0.552786404500042, -0.8506508083520399}, { 0.276393202250021, 0.552786404500042, 0.8506508083520399}, { 0.4472135954999579, 0.8944271909999159, -0.32491969623290634`}, { 0.4472135954999579, 0.8944271909999159, 0.32491969623290634`}, { 0.552786404500042, -0.8944271909999159, 0.}, { 0.6180339887498949, 0, 0.8506508083520399}, {0.6180339887498949, 0., -0.8506508083520399}, {0.7236067977499789, -0.552786404500042, 0.5257311121191336}, { 0.7236067977499789, -0.552786404500042, -0.5257311121191336}, { 0.8944271909999159, 0.552786404500042, 0.}, {1., 0., 0.32491969623290634`}, {1., 0., -0.32491969623290634`}}, {5, 14, 19, 16, 6}], Polygon3DBox[{{-1., 0., -0.32491969623290634`}, {-1., 0., 0.32491969623290634`}, {-0.8944271909999159, -0.552786404500042, 0.}, {-0.7236067977499789, 0.552786404500042, 0.5257311121191336}, {-0.7236067977499789, 0.552786404500042, -0.5257311121191336}, {-0.6180339887498949, 0., -0.8506508083520399}, {-0.6180339887498949, 0., 0.8506508083520399}, {-0.552786404500042, 0.8944271909999159, 0.}, {-0.4472135954999579, -0.8944271909999159, 0.32491969623290634`}, {-0.4472135954999579, -0.8944271909999159, \ -0.32491969623290634`}, {-0.276393202250021, -0.552786404500042, 0.8506508083520399}, {-0.276393202250021, -0.552786404500042, \ -0.8506508083520399}, {-0.17082039324993692`, 0.8944271909999159, 0.5257311121191336}, {-0.17082039324993692`, 0.8944271909999159, -0.5257311121191336}, { 0, 0, 1.0514622242382672`}, {0., 0., -1.0514622242382672`}, { 0.17082039324993692`, -0.8944271909999159, 0.5257311121191336}, { 0.17082039324993692`, -0.8944271909999159, -0.5257311121191336}, { 0.276393202250021, 0.552786404500042, -0.8506508083520399}, { 0.276393202250021, 0.552786404500042, 0.8506508083520399}, { 0.4472135954999579, 0.8944271909999159, -0.32491969623290634`}, { 0.4472135954999579, 0.8944271909999159, 0.32491969623290634`}, { 0.552786404500042, -0.8944271909999159, 0.}, { 0.6180339887498949, 0, 0.8506508083520399}, {0.6180339887498949, 0., -0.8506508083520399}, {0.7236067977499789, -0.552786404500042, 0.5257311121191336}, { 0.7236067977499789, -0.552786404500042, -0.5257311121191336}, { 0.8944271909999159, 0.552786404500042, 0.}, {1., 0., 0.32491969623290634`}, {1., 0., -0.32491969623290634`}}, {6, 16, 12}]}, Boxed->False]}], "}"}]], "Output", CellLabel-> "Out[235]=",ExpressionUUID->"b1fe7011-6267-416c-b55b-de2412dc3582"] }, Open ]] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Net", "Section",ExpressionUUID->"1afed683-1ef1-4159-b95e-cf4262a93858"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"PolyhedronData", "[", RowBox[{"\"\\"", ",", "\"\\""}], "]"}]], "Input", CellLabel->"In[5]:=",ExpressionUUID->"5d9941db-2c5f-4820-b78b-355478609377"], Cell[BoxData[ GraphicsBox[ {RGBColor[1, 1, 0.85], EdgeForm[GrayLevel[0]], GraphicsComplexBox[ NCache[{{0, Rational[1, 4] (-1 + 2 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 4] (17 - 7 5^Rational[1, 2] + (390 - 174 5^Rational[1, 2])^Rational[1, 2])^ Rational[1, 2], Rational[1, 8] (3 + 3 5^Rational[1, 2] + (150 + 66 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 4] (10 - 2 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (-2 + 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 2] (2/(10 - 5^ Rational[1, 2] - (15 (5 - 2 5^Rational[1, 2]))^Rational[1, 2]))^ Rational[-1, 2], Rational[1, 2] (1 + 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 4] (7 + 5^Rational[1, 2] + (6 (5 + 5^Rational[1, 2]))^Rational[1, 2])^ Rational[1, 2], Rational[1, 8] (-3 + 3 5^Rational[1, 2] + (30 (5 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[1, 2] (7 - 2 5^Rational[1, 2] + 2 (15 - 6 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (1 + 2 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 4] (17 + 5^Rational[1, 2] + (30 (5 - 5^Rational[1, 2]))^Rational[1, 2])^ Rational[1, 2], Rational[-5, 8] + Rational[3, 8] 5^Rational[1, 2] + Rational[1, 4] (Rational[3, 2] (5 - 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 2] ( Rational[5, 2] (4 - 5^ Rational[1, 2] + (15 - 6 5^Rational[1, 2])^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (3 + 3 5^Rational[1, 2] + 2 (15 + 6 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 4] (47 - 5^ Rational[1, 2] + (1230 - 534 5^Rational[1, 2])^Rational[1, 2])^ Rational[1, 2], Rational[1, 8] (5 + 5 5^Rational[1, 2] + (150 + 66 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 2] (7 + 5^Rational[1, 2] + (6 (5 + 5^Rational[1, 2]))^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (-1 + 2 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 2] (7 + 5^Rational[1, 2] + (6 (5 + 5^Rational[1, 2]))^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 2 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 4] (23 + 7 5^Rational[1, 2] + (750 + 330 5^Rational[1, 2])^Rational[1, 2])^ Rational[1, 2], Rational[1, 8] (-1 + 3 5^Rational[1, 2] + (30 - 6 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 4] (23 + 7 5^Rational[1, 2] + (750 + 330 5^Rational[1, 2])^Rational[1, 2])^ Rational[1, 2], Rational[1, 8] (5 + 5 5^Rational[1, 2] + (150 + 66 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 2] ( Rational[1, 2] (20 + 5^Rational[1, 2] + (375 + 30 5^Rational[1, 2])^Rational[1, 2]))^ Rational[1, 2], 0}, { Rational[1, 4] (37 + 11 5^Rational[1, 2] + (870 + 366 5^Rational[1, 2])^Rational[1, 2])^ Rational[1, 2], Rational[1, 8] (-1 + 5^Rational[1, 2] + (6 (5 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[1, 2] (8 + Rational[7, 2] 5^Rational[1, 2] + Rational[1, 2] (3 (85 + 38 5^Rational[1, 2]))^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 3 5^Rational[1, 2] + 2 (15 + 6 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 4] (38 + 14 5^Rational[1, 2] + 4 (150 + 66 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2], Rational[1, 4] ( 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 4] (38 + 14 5^Rational[1, 2] + 4 (150 + 66 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (2 + 3 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 2] ( Rational[3, 2] (10 + 3 5^Rational[1, 2] + (75 + 30 5^Rational[1, 2])^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (-1 + 5^Rational[1, 2])}, {(Rational[17, 4] + 5^Rational[1, 2] + Rational[1, 2] (75 + 30 5^Rational[1, 2])^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (1 + 2 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 4] ( 5 (13 + 5 5^Rational[1, 2] + (150 + 66 5^Rational[1, 2])^ Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (7 + 7 5^Rational[1, 2] + (150 + 66 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 4] (62 + 26 5^Rational[1, 2] + 4 (6 (65 + 29 5^Rational[1, 2]))^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (4 + 3 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 4] (73 + 23 5^Rational[1, 2] + 3 (870 + 366 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (1 + 3 5^Rational[1, 2] + (6 (5 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[1, 4] (73 + 23 5^Rational[1, 2] + 3 (870 + 366 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (3 + 5 5^Rational[1, 2] + (30 (5 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[1, 2] ( Rational[3, 2] (12 + 5 5^Rational[1, 2] + (3 (85 + 38 5^Rational[1, 2]))^ Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2])}, { Rational[1, 4] (97 + 25 5^Rational[1, 2] + (6 (1745 + 659 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (1 + 5 5^Rational[1, 2] + (30 - 6 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 4] (85 + 37 5^Rational[1, 2] + (30 (445 + 199 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (9 + 5 5^Rational[1, 2] + (150 + 66 5^Rational[1, 2])^Rational[1, 2])}, {( Rational[61, 8] + Rational[17, 8] 5^Rational[1, 2] + (75 + 30 5^Rational[1, 2])^ Rational[1, 2])^Rational[1, 2], Rational[1, 4] (2 + 3 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 4] (115 + 43 5^Rational[1, 2] + (30 (745 + 331 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (-3 + 5 5^Rational[1, 2] + (30 - 6 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 4] (115 + 43 5^Rational[1, 2] + (30 (745 + 331 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (5 + 5 5^Rational[1, 2] + (30 - 6 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 2] ( Rational[3, 2] (22 + 9 5^Rational[1, 2] + (795 + 354 5^Rational[1, 2])^Rational[1, 2]))^ Rational[1, 2], Rational[1, 2] (1 + 5^Rational[1, 2])}, {(Rational[133, 16] + Rational[59, 16] 5^Rational[1, 2] + Rational[ 1, 2] (Rational[17475, 32] + Rational[7815, 32] 5^Rational[1, 2])^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (5 + 7 5^Rational[1, 2] + (30 (5 + 5^Rational[1, 2]))^Rational[1, 2])}, {( Rational[19, 2] + Rational[7, 2] 5^Rational[1, 2] + (6 (25 + 11 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 2 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 2] (Rational[79, 2] + Rational[35, 2] 5^Rational[1, 2] + (6 (445 + 199 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 4] (-1 + 2 5^Rational[1, 2] - (15 - 6 5^Rational[1, 2])^ Rational[1, 2])}, { Rational[1, 2] (Rational[79, 2] + Rational[35, 2] 5^Rational[1, 2] + (6 (445 + 199 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 4] (2 + 3 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 2] (43 + Rational[37, 2] 5^Rational[1, 2] + Rational[1, 2] (3 (4745 + 2122 5^Rational[1, 2]))^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 3 5^Rational[1, 2] + 2 (15 + 6 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 4] (193 + 73 5^Rational[1, 2] + 19 (150 + 66 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (3 + 3 5^Rational[1, 2] + (30 - 6 5^Rational[1, 2])^Rational[1, 2])}, {( Rational[47, 4] + 5 5^Rational[1, 2] + (3 (85 + 38 5^Rational[1, 2]))^Rational[1, 2])^ Rational[1, 2], Rational[3, 4] 5^Rational[1, 2] + Rational[-1, 4] (3 (5 - 2 5^Rational[1, 2]))^Rational[1, 2]}, {( Rational[47, 4] + 5 5^Rational[1, 2] + (3 (85 + 38 5^Rational[1, 2]))^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (1 + 2 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 4] (217 + 95 5^Rational[1, 2] + (75750 + 33870 5^Rational[1, 2])^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (-1 + 5 5^Rational[1, 2] - (6 (5 + 5^Rational[1, 2]))^ Rational[1, 2])}, { Rational[1, 4] (217 + 95 5^Rational[1, 2] + (75750 + 33870 5^Rational[1, 2])^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (3 + 5 5^Rational[1, 2] + (30 (5 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[1, 2] (55 + Rational[49, 2] 5^Rational[1, 2] + Rational[1, 2] (15 (1525 + 682 5^Rational[1, 2]))^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (1 + 3 5^Rational[1, 2] + 2 (15 + 6 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 2] (55 + Rational[49, 2] 5^Rational[1, 2] + Rational[1, 2] (15 (1525 + 682 5^Rational[1, 2]))^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (5 + 3 5^Rational[1, 2] + 2 (15 + 6 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 4] (233 + 97 5^Rational[1, 2] + (6 (16705 + 7459 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (1 + 5 5^Rational[1, 2] + (30 - 6 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 4] (257 + 103 5^Rational[1, 2] + (6 (18545 + 8269 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (5 + 7 5^Rational[1, 2] + (30 (5 + 5^Rational[1, 2]))^Rational[1, 2])}, {( Rational[145, 8] + Rational[61, 8] 5^Rational[1, 2] + (Rational[15, 2] (65 + 29 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 4] (-1 + 2 5^Rational[1, 2] - (15 - 6 5^Rational[1, 2])^ Rational[1, 2])}, {(Rational[145, 8] + Rational[61, 8] 5^Rational[1, 2] + (Rational[15, 2] (65 + 29 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 4] (2 + 3 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 4] (287 + 127 5^Rational[1, 2] + (149070 + 66666 5^Rational[1, 2])^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (-3 + 5 5^Rational[1, 2] + (30 - 6 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 4] (287 + 127 5^Rational[1, 2] + (149070 + 66666 5^Rational[1, 2])^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (5 + 5 5^Rational[1, 2] + (30 - 6 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 2] (77 + Rational[61, 2] 5^Rational[1, 2] + Rational[5, 2] (1635 + 726 5^Rational[1, 2])^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 3 5^Rational[1, 2] + 2 (15 + 6 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 4] (328 + 146 5^Rational[1, 2] + 6 (4575 + 2046 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (1 + 5^Rational[1, 2])}, {(Rational[85, 4] + Rational[37, 4] 5^Rational[1, 2] + Rational[ 1, 2] (Rational[6675, 2] + Rational[2985, 2] 5^Rational[1, 2])^ Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 2 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 4] (377 + 151 5^Rational[1, 2] + (194550 + 86334 5^Rational[1, 2])^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (3 + 5 5^Rational[1, 2] + (30 (5 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[1, 4] (368 + 158 5^Rational[1, 2] + 30 (3 (85 + 38 5^Rational[1, 2]))^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2])}, { Rational[1, 4] (368 + 158 5^Rational[1, 2] + 30 (3 (85 + 38 5^Rational[1, 2]))^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (1 + 3 5^Rational[1, 2] + 2 (15 + 6 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 4] (413 + 181 5^Rational[1, 2] + (6 (41465 + 18539 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (3 + 3 5^Rational[1, 2] + (30 - 6 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 2] (103 + 46 5^Rational[1, 2] + 2 (4575 + 2046 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (1 + 2 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 4] (427 + 181 5^Rational[1, 2] + (6 (53125 + 23729 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (1 + 7 5^Rational[1, 2] + (30 (5 + 5^Rational[1, 2]))^Rational[1, 2])}}, {{ 0, 2.2007100527513543`}, {0.37987356147471385`, 3.369840659110212}, { 0.5877852522924731, 1.3916930583764067`}, {0.786610204550514, 4.283386116752814}, {0.9945218953682734, 2.305238516019007}, { 1.123018386952108, 2.7007100527513543`}, {1.3309300777698674`, 0.7225624520175483}, {1.374395456842987, 5.09240311112776}, { 1.7811320999187874`, 4.17885765348516}, {1.9890437907365468`, 2.2007100527513543`}, {1.9890437907365468`, 3.2007100527513543`}, { 2.196955481554306, 1.2225624520175482`}, {2.196955481554306, 4.17885765348516}, {2.325451973138141, 0}, {2.5333636639559, 0.9781476007338057}, {2.6036921246301064`, 5.09240311112776}, { 2.9401003070317, 1.8916930583764067`}, {2.9401003070317, 3.509727047126302}, {3.2765084894332945`, 0.30901699437494745`}, { 3.527885559324173, 2.7007100527513543`}, {3.59821401999838, 4.987874647860107}, {3.8061257108161386`, 4.009727047126302}, { 3.9346222023999737`, 1.7871645951087531`}, {3.9346222023999737`, 3.6142555103939547`}, {4.142533893217733, 0.8090169943749475}, { 4.271030384801567, 2.0315794463924957`}, {4.549270536293533, 4.67885765348516}, {4.929144097768247, 3.509727047126302}, { 5.137055788586006, 1.5315794463924957`}, {5.137055788586006, 2.5315794463924957`}, {5.543792431661807, 1.618033988749895}, { 5.751704122479566, 4.423272504768902}, {5.8802006140634, 3.2007100527513543`}, {6.158440765555366, 0.5534318456586902}, { 6.158440765555366, 3.509727047126302}, {6.49484894795696, 5.09240311112776}, {6.538314327030079, 1.7225624520175482`}, { 6.746226017847839, 1.3624488400336376`}, {6.746226017847839, 2.7007100527513543`}, {7.152962660923639, 0.44890338239103666`}, { 7.152962660923639, 3.6142555103939547`}, {7.360874351741399, 4.59240311112776}, {7.360874351741399, 5.59240311112776}, { 7.489370843325234, 2.0315794463924957`}, {7.740747913216112, 4.423272504768902}, {8.147484556291912, 0.5534318456586902}, { 8.147484556291912, 3.509727047126302}, {8.355396247109672, 1.5315794463924957`}, {8.355396247109672, 2.5315794463924957`}, { 8.483892738693507, 5.09240311112776}, {8.762132890185473, 1.618033988749895}, {9.098541072587066, 3.2007100527513543`}, { 9.142006451660187, 3.6142555103939547`}, {9.349918142477947, 0.8090169943749475}, {9.349918142477947, 4.59240311112776}, { 9.756654785553746, 1.7225624520175482`}, {9.964566476371505, 2.7007100527513543`}, {10.09306296795534, 3.923272504768902}}], PolygonBox[{{17, 20, 18, 11, 10}, {6, 10, 11}, {4, 2, 6, 11, 9}, {8, 4, 9}, {12, 17, 10}, {3, 7, 12, 10, 5}, {1, 3, 5}, {23, 20, 17}, {19, 25, 23, 17, 15}, {14, 19, 15}, {24, 18, 20}, {30, 28, 24, 20, 26}, {29, 30, 26}, {13, 11, 18}, {21, 16, 13, 18, 22}, {27, 21, 22}, {41, 39, 44, 49, 47}, {52, 47, 49}, {56, 57, 52, 49, 51}, {54, 56, 51}, {45, 41, 47}, { 55, 50, 45, 47, 53}, {58, 55, 53}, {35, 39, 41}, {36, 32, 35, 41, 42}, { 43, 36, 42}, {37, 44, 39}, {30, 31, 37, 39, 33}, {28, 30, 33}, {48, 49, 44}, {40, 46, 48, 44, 38}, {34, 40, 38}}]]}]], "Output", CellLabel->"Out[5]=",ExpressionUUID->"75a931c8-5f4f-4617-9666-ba8751527df7"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"PolyhedronData", "[", RowBox[{ "\"\\"", ",", "\"\\"", ",", "\"\\""}], "]"}]], "Input", CellLabel->"In[6]:=",ExpressionUUID->"cacf6352-c8cf-400a-acb7-5519c3291553"], Cell[BoxData[ GraphicsBox[ {EdgeForm[GrayLevel[0]], GraphicsComplexBox[ NCache[{{0, Rational[1, 4] (-1 + 2 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 4] (17 - 7 5^Rational[1, 2] + (390 - 174 5^Rational[1, 2])^Rational[1, 2])^ Rational[1, 2], Rational[1, 8] (3 + 3 5^Rational[1, 2] + (150 + 66 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 4] (10 - 2 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (-2 + 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 2] (2/(10 - 5^ Rational[1, 2] - (15 (5 - 2 5^Rational[1, 2]))^Rational[1, 2]))^ Rational[-1, 2], Rational[1, 2] (1 + 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 4] (7 + 5^Rational[1, 2] + (6 (5 + 5^Rational[1, 2]))^Rational[1, 2])^ Rational[1, 2], Rational[1, 8] (-3 + 3 5^Rational[1, 2] + (30 (5 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[1, 2] (7 - 2 5^Rational[1, 2] + 2 (15 - 6 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (1 + 2 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 4] (17 + 5^Rational[1, 2] + (30 (5 - 5^Rational[1, 2]))^Rational[1, 2])^ Rational[1, 2], Rational[-5, 8] + Rational[3, 8] 5^Rational[1, 2] + Rational[1, 4] (Rational[3, 2] (5 - 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 2] ( Rational[5, 2] (4 - 5^ Rational[1, 2] + (15 - 6 5^Rational[1, 2])^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (3 + 3 5^Rational[1, 2] + 2 (15 + 6 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 4] (47 - 5^ Rational[1, 2] + (1230 - 534 5^Rational[1, 2])^Rational[1, 2])^ Rational[1, 2], Rational[1, 8] (5 + 5 5^Rational[1, 2] + (150 + 66 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 2] (7 + 5^Rational[1, 2] + (6 (5 + 5^Rational[1, 2]))^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (-1 + 2 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 2] (7 + 5^Rational[1, 2] + (6 (5 + 5^Rational[1, 2]))^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 2 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 4] (23 + 7 5^Rational[1, 2] + (750 + 330 5^Rational[1, 2])^Rational[1, 2])^ Rational[1, 2], Rational[1, 8] (-1 + 3 5^Rational[1, 2] + (30 - 6 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 4] (23 + 7 5^Rational[1, 2] + (750 + 330 5^Rational[1, 2])^Rational[1, 2])^ Rational[1, 2], Rational[1, 8] (5 + 5 5^Rational[1, 2] + (150 + 66 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 2] ( Rational[1, 2] (20 + 5^Rational[1, 2] + (375 + 30 5^Rational[1, 2])^Rational[1, 2]))^ Rational[1, 2], 0}, { Rational[1, 4] (37 + 11 5^Rational[1, 2] + (870 + 366 5^Rational[1, 2])^Rational[1, 2])^ Rational[1, 2], Rational[1, 8] (-1 + 5^Rational[1, 2] + (6 (5 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[1, 2] (8 + Rational[7, 2] 5^Rational[1, 2] + Rational[1, 2] (3 (85 + 38 5^Rational[1, 2]))^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 3 5^Rational[1, 2] + 2 (15 + 6 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 4] (38 + 14 5^Rational[1, 2] + 4 (150 + 66 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2], Rational[1, 4] ( 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 4] (38 + 14 5^Rational[1, 2] + 4 (150 + 66 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (2 + 3 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 2] ( Rational[3, 2] (10 + 3 5^Rational[1, 2] + (75 + 30 5^Rational[1, 2])^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (-1 + 5^Rational[1, 2])}, {(Rational[17, 4] + 5^Rational[1, 2] + Rational[1, 2] (75 + 30 5^Rational[1, 2])^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (1 + 2 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 4] ( 5 (13 + 5 5^Rational[1, 2] + (150 + 66 5^Rational[1, 2])^ Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (7 + 7 5^Rational[1, 2] + (150 + 66 5^Rational[1, 2])^Rational[1, 2])}, { Rational[ 1, 4] (62 + 26 5^Rational[1, 2] + 4 (6 (65 + 29 5^Rational[1, 2]))^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (4 + 3 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 4] (73 + 23 5^Rational[1, 2] + 3 (870 + 366 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (1 + 3 5^Rational[1, 2] + (6 (5 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[1, 4] (73 + 23 5^Rational[1, 2] + 3 (870 + 366 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (3 + 5 5^Rational[1, 2] + (30 (5 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[1, 2] ( Rational[3, 2] (12 + 5 5^Rational[1, 2] + (3 (85 + 38 5^Rational[1, 2]))^ Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2])}, { Rational[1, 4] (97 + 25 5^Rational[1, 2] + (6 (1745 + 659 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (1 + 5 5^Rational[1, 2] + (30 - 6 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 4] (85 + 37 5^Rational[1, 2] + (30 (445 + 199 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (9 + 5 5^Rational[1, 2] + (150 + 66 5^Rational[1, 2])^Rational[1, 2])}, {( Rational[61, 8] + Rational[17, 8] 5^Rational[1, 2] + (75 + 30 5^Rational[1, 2])^ Rational[1, 2])^Rational[1, 2], Rational[1, 4] (2 + 3 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 4] (115 + 43 5^Rational[1, 2] + (30 (745 + 331 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (-3 + 5 5^Rational[1, 2] + (30 - 6 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 4] (115 + 43 5^Rational[1, 2] + (30 (745 + 331 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (5 + 5 5^Rational[1, 2] + (30 - 6 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 2] ( Rational[3, 2] (22 + 9 5^Rational[1, 2] + (795 + 354 5^Rational[1, 2])^Rational[1, 2]))^ Rational[1, 2], Rational[1, 2] (1 + 5^Rational[1, 2])}, {(Rational[133, 16] + Rational[59, 16] 5^Rational[1, 2] + Rational[ 1, 2] (Rational[17475, 32] + Rational[7815, 32] 5^Rational[1, 2])^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (5 + 7 5^Rational[1, 2] + (30 (5 + 5^Rational[1, 2]))^Rational[1, 2])}, {( Rational[19, 2] + Rational[7, 2] 5^Rational[1, 2] + (6 (25 + 11 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 2 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 2] (Rational[79, 2] + Rational[35, 2] 5^Rational[1, 2] + (6 (445 + 199 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 4] (-1 + 2 5^Rational[1, 2] - (15 - 6 5^Rational[1, 2])^ Rational[1, 2])}, { Rational[1, 2] (Rational[79, 2] + Rational[35, 2] 5^Rational[1, 2] + (6 (445 + 199 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 4] (2 + 3 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 2] (43 + Rational[37, 2] 5^Rational[1, 2] + Rational[1, 2] (3 (4745 + 2122 5^Rational[1, 2]))^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 3 5^Rational[1, 2] + 2 (15 + 6 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 4] (193 + 73 5^Rational[1, 2] + 19 (150 + 66 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (3 + 3 5^Rational[1, 2] + (30 - 6 5^Rational[1, 2])^Rational[1, 2])}, {( Rational[47, 4] + 5 5^Rational[1, 2] + (3 (85 + 38 5^Rational[1, 2]))^Rational[1, 2])^ Rational[1, 2], Rational[3, 4] 5^Rational[1, 2] + Rational[-1, 4] (3 (5 - 2 5^Rational[1, 2]))^Rational[1, 2]}, {( Rational[47, 4] + 5 5^Rational[1, 2] + (3 (85 + 38 5^Rational[1, 2]))^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (1 + 2 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 4] (217 + 95 5^Rational[1, 2] + (75750 + 33870 5^Rational[1, 2])^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (-1 + 5 5^Rational[1, 2] - (6 (5 + 5^Rational[1, 2]))^ Rational[1, 2])}, { Rational[1, 4] (217 + 95 5^Rational[1, 2] + (75750 + 33870 5^Rational[1, 2])^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (3 + 5 5^Rational[1, 2] + (30 (5 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[1, 2] (55 + Rational[49, 2] 5^Rational[1, 2] + Rational[1, 2] (15 (1525 + 682 5^Rational[1, 2]))^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (1 + 3 5^Rational[1, 2] + 2 (15 + 6 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 2] (55 + Rational[49, 2] 5^Rational[1, 2] + Rational[1, 2] (15 (1525 + 682 5^Rational[1, 2]))^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (5 + 3 5^Rational[1, 2] + 2 (15 + 6 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 4] (233 + 97 5^Rational[1, 2] + (6 (16705 + 7459 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (1 + 5 5^Rational[1, 2] + (30 - 6 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 4] (257 + 103 5^Rational[1, 2] + (6 (18545 + 8269 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (5 + 7 5^Rational[1, 2] + (30 (5 + 5^Rational[1, 2]))^Rational[1, 2])}, {( Rational[145, 8] + Rational[61, 8] 5^Rational[1, 2] + (Rational[15, 2] (65 + 29 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 4] (-1 + 2 5^Rational[1, 2] - (15 - 6 5^Rational[1, 2])^ Rational[1, 2])}, {(Rational[145, 8] + Rational[61, 8] 5^Rational[1, 2] + (Rational[15, 2] (65 + 29 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 4] (2 + 3 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 4] (287 + 127 5^Rational[1, 2] + (149070 + 66666 5^Rational[1, 2])^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (-3 + 5 5^Rational[1, 2] + (30 - 6 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 4] (287 + 127 5^Rational[1, 2] + (149070 + 66666 5^Rational[1, 2])^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (5 + 5 5^Rational[1, 2] + (30 - 6 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 2] (77 + Rational[61, 2] 5^Rational[1, 2] + Rational[5, 2] (1635 + 726 5^Rational[1, 2])^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 3 5^Rational[1, 2] + 2 (15 + 6 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 4] (328 + 146 5^Rational[1, 2] + 6 (4575 + 2046 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (1 + 5^Rational[1, 2])}, {(Rational[85, 4] + Rational[37, 4] 5^Rational[1, 2] + Rational[ 1, 2] (Rational[6675, 2] + Rational[2985, 2] 5^Rational[1, 2])^ Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 2 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 4] (377 + 151 5^Rational[1, 2] + (194550 + 86334 5^Rational[1, 2])^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (3 + 5 5^Rational[1, 2] + (30 (5 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[1, 4] (368 + 158 5^Rational[1, 2] + 30 (3 (85 + 38 5^Rational[1, 2]))^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2])}, { Rational[1, 4] (368 + 158 5^Rational[1, 2] + 30 (3 (85 + 38 5^Rational[1, 2]))^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (1 + 3 5^Rational[1, 2] + 2 (15 + 6 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 4] (413 + 181 5^Rational[1, 2] + (6 (41465 + 18539 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (3 + 3 5^Rational[1, 2] + (30 - 6 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 2] (103 + 46 5^Rational[1, 2] + 2 (4575 + 2046 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (1 + 2 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 4] (427 + 181 5^Rational[1, 2] + (6 (53125 + 23729 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (1 + 7 5^Rational[1, 2] + (30 (5 + 5^Rational[1, 2]))^Rational[1, 2])}}, {{ 0, 2.2007100527513543`}, {0.37987356147471385`, 3.369840659110212}, { 0.5877852522924731, 1.3916930583764067`}, {0.786610204550514, 4.283386116752814}, {0.9945218953682734, 2.305238516019007}, { 1.123018386952108, 2.7007100527513543`}, {1.3309300777698674`, 0.7225624520175483}, {1.374395456842987, 5.09240311112776}, { 1.7811320999187874`, 4.17885765348516}, {1.9890437907365468`, 2.2007100527513543`}, {1.9890437907365468`, 3.2007100527513543`}, { 2.196955481554306, 1.2225624520175482`}, {2.196955481554306, 4.17885765348516}, {2.325451973138141, 0}, {2.5333636639559, 0.9781476007338057}, {2.6036921246301064`, 5.09240311112776}, { 2.9401003070317, 1.8916930583764067`}, {2.9401003070317, 3.509727047126302}, {3.2765084894332945`, 0.30901699437494745`}, { 3.527885559324173, 2.7007100527513543`}, {3.59821401999838, 4.987874647860107}, {3.8061257108161386`, 4.009727047126302}, { 3.9346222023999737`, 1.7871645951087531`}, {3.9346222023999737`, 3.6142555103939547`}, {4.142533893217733, 0.8090169943749475}, { 4.271030384801567, 2.0315794463924957`}, {4.549270536293533, 4.67885765348516}, {4.929144097768247, 3.509727047126302}, { 5.137055788586006, 1.5315794463924957`}, {5.137055788586006, 2.5315794463924957`}, {5.543792431661807, 1.618033988749895}, { 5.751704122479566, 4.423272504768902}, {5.8802006140634, 3.2007100527513543`}, {6.158440765555366, 0.5534318456586902}, { 6.158440765555366, 3.509727047126302}, {6.49484894795696, 5.09240311112776}, {6.538314327030079, 1.7225624520175482`}, { 6.746226017847839, 1.3624488400336376`}, {6.746226017847839, 2.7007100527513543`}, {7.152962660923639, 0.44890338239103666`}, { 7.152962660923639, 3.6142555103939547`}, {7.360874351741399, 4.59240311112776}, {7.360874351741399, 5.59240311112776}, { 7.489370843325234, 2.0315794463924957`}, {7.740747913216112, 4.423272504768902}, {8.147484556291912, 0.5534318456586902}, { 8.147484556291912, 3.509727047126302}, {8.355396247109672, 1.5315794463924957`}, {8.355396247109672, 2.5315794463924957`}, { 8.483892738693507, 5.09240311112776}, {8.762132890185473, 1.618033988749895}, {9.098541072587066, 3.2007100527513543`}, { 9.142006451660187, 3.6142555103939547`}, {9.349918142477947, 0.8090169943749475}, {9.349918142477947, 4.59240311112776}, { 9.756654785553746, 1.7225624520175482`}, {9.964566476371505, 2.7007100527513543`}, {10.09306296795534, 3.923272504768902}}], { {RGBColor[1, 0, 0], PolygonBox[{{1, 3, 5}, {6, 10, 11}, {8, 4, 9}, {12, 17, 10}, {13, 11, 18}, {14, 19, 15}, {23, 20, 17}, {24, 18, 20}, {27, 21, 22}, {28, 30, 33}, {29, 30, 26}, {34, 40, 38}, {35, 39, 41}, {37, 44, 39}, {43, 36, 42}, {45, 41, 47}, {48, 49, 44}, {52, 47, 49}, {54, 56, 51}, {58, 55, 53}}]}, {RGBColor[1, 1, 0], PolygonBox[{{3, 7, 12, 10, 5}, {4, 2, 6, 11, 9}, {17, 20, 18, 11, 10}, { 19, 25, 23, 17, 15}, {21, 16, 13, 18, 22}, {30, 28, 24, 20, 26}, {30, 31, 37, 39, 33}, {36, 32, 35, 41, 42}, {40, 46, 48, 44, 38}, {41, 39, 44, 49, 47}, {55, 50, 45, 47, 53}, {56, 57, 52, 49, 51}}]}}]}]], "Output", CellLabel->"Out[6]=",ExpressionUUID->"d91ee00b-3b96-4096-a62e-e87856b68251"] }, Open ]], Cell[BoxData[ RowBox[{"NetPrintout", "[", RowBox[{ RowBox[{"PolyhedronData", "[", RowBox[{"\"\\"", ",", "\"\\""}], "]"}], ",", "\"\\""}], "]"}]], "Input",ExpressionUUID->\ "194116bd-58be-4346-adff-d43adeede2b5"] }, Closed]], Cell[CellGroupData[{ Cell["Properties: generic orientation", "Section",ExpressionUUID->"b8e0184f-efb9-4bd4-a62d-609c0ce7c26e"], Cell[CellGroupData[{ Cell["Initialization", "Subsubsection",ExpressionUUID->"c5cf003f-88c1-47c4-85a3-0177ee1173f2"], Cell[BoxData[ RowBox[{"<<", "MathWorld`Polyhedra`"}]], "Input", CellLabel-> "In[181]:=",ExpressionUUID->"df0d9430-f966-43ae-848f-38a21affa8ba"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"p", "=", RowBox[{"PolyhedronData", "[", RowBox[{ RowBox[{"pname", "=", "\"\\""}], ",", "\"\\""}], "]"}]}]], "Input", CellLabel-> "In[182]:=",ExpressionUUID->"3617abf1-bc8d-4459-85ba-4da06ca84f08"], Cell[BoxData[ InterpretationBox[ RowBox[{ TagBox["Polyhedron", "SummaryHead"], "[", DynamicModuleBox[{Typeset`open$$ = False, Typeset`embedState$$ = "Ready", Typeset`spolyhedron$$ = Quiet[ Polyhedron[{{0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), 0}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], Rational[-1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {-(1 + 2 5^Rational[-1, 2])^ Rational[1, 2], 0, Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {(1 + 2 5^Rational[-1, 2])^Rational[1, 2], 0, (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, {(Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2], 0, -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2], 0}, { Root[1 - 5 #^2 + 5 #^4& , 1, 0], 0, (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}}, {{30, 24, 29, 7, 8}, {26, 24, 30}, {25, 29, 24}, {5, 7, 29}, {14, 8, 7}, {6, 30, 8}, {16, 2, 6}, {19, 21, 26}, {20, 18, 25} , {1, 15, 5}, {22, 23, 14}, {2, 19, 26, 30, 6}, {21, 20, 25, 24, 26}, { 18, 1, 5, 29, 25}, {15, 22, 14, 7, 5}, {23, 16, 6, 8, 14}, {12, 13, 4, 17, 3}, {3, 17, 9}, {17, 4, 10}, {4, 13, 28}, {13, 12, 11}, {12, 3, 27}, {27, 1, 18}, {9, 22, 15}, {10, 16, 23}, {28, 19, 2}, {11, 20, 21}, {27, 3, 9, 15, 1}, {9, 17, 10, 23, 22}, {10, 4, 28, 2, 16}, {28, 13, 11, 21, 19}, {11, 12, 27, 18, 20}}]]}, TemplateBox[{ PaneSelectorBox[{False -> GridBox[{{ PaneBox[ ButtonBox[ DynamicBox[ FEPrivate`FrontEndResource["FEBitmaps", "SummaryBoxOpener"]], ButtonFunction :> (Typeset`open$$ = True), Appearance -> None, BaseStyle -> {}, Evaluator -> Automatic, Method -> "Preemptive"], Alignment -> {Center, Center}, ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], Graphics3DBox[{ Directive[ Hue[0.58, 0.4, 1], Opacity[0.5], EdgeForm[ GrayLevel[1]]], PolyhedronBox[ NCache[{{0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), 0}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-1 - 5^ Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {-(1 + 2 5^Rational[-1, 2])^ Rational[1, 2], 0, Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {(1 + 2 5^Rational[-1, 2])^Rational[1, 2], 0, (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, {(Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2], 0, -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, {Rational[-1, 2] ( Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2], 0}, { Root[1 - 5 #^2 + 5 #^4& , 1, 0], 0, (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}}, {{ 0, -1.618033988749895, 0}, {0, 1.618033988749895, 0}, { 0.2628655560595668, -0.8090169943749475, \ -1.3763819204711736`}, {0.2628655560595668, 0.8090169943749475, -1.3763819204711736`}, { 0.42532540417601994`, -1.3090169943749475`, 0.85065080835204}, {0.42532540417601994`, 1.3090169943749475`, 0.85065080835204}, { 0.6881909602355868, -0.5, 1.3763819204711736`}, { 0.6881909602355868, 0.5, 1.3763819204711736`}, { 1.1135163644116066`, -0.8090169943749475, \ -0.8506508083520399}, {1.1135163644116066`, 0.8090169943749475, -0.8506508083520399}, \ {-1.3763819204711736`, 0, -0.8506508083520399}, {-0.6881909602355868, -0.5, \ -1.3763819204711736`}, {-0.6881909602355868, 0.5, -1.3763819204711736`}, { 1.3763819204711736`, 0, 0.85065080835204}, { 0.9510565162951535, -1.3090169943749475`, 0}, { 0.9510565162951535, 1.3090169943749475`, 0}, { 0.85065080835204, 0, -1.3763819204711736`}, {-0.9510565162951535, \ -1.3090169943749475`, 0}, {-0.9510565162951535, 1.3090169943749475`, 0}, {-1.5388417685876268`, -0.5, 0}, {-1.5388417685876268`, 0.5, 0}, {1.5388417685876268`, -0.5, 0}, { 1.5388417685876268`, 0.5, 0}, {-0.8506508083520399, 0, 1.3763819204711736`}, {-1.1135163644116068`, \ -0.8090169943749475, 0.85065080835204}, {-1.1135163644116068`, 0.8090169943749475, 0.85065080835204}, {-0.42532540417601994`, \ -1.3090169943749475`, -0.8506508083520399}, {-0.42532540417601994`, 1.3090169943749475`, -0.8506508083520399}, \ {-0.2628655560595668, -0.8090169943749475, 1.3763819204711736`}, {-0.2628655560595668, 0.8090169943749475, 1.3763819204711736`}}], {{30, 24, 29, 7, 8}, {26, 24, 30}, {25, 29, 24}, {5, 7, 29}, {14, 8, 7}, {6, 30, 8}, {16, 2, 6}, {19, 21, 26}, {20, 18, 25}, {1, 15, 5}, { 22, 23, 14}, {2, 19, 26, 30, 6}, {21, 20, 25, 24, 26}, {18, 1, 5, 29, 25}, {15, 22, 14, 7, 5}, {23, 16, 6, 8, 14}, {12, 13, 4, 17, 3}, {3, 17, 9}, {17, 4, 10}, {4, 13, 28}, {13, 12, 11}, {12, 3, 27}, {27, 1, 18}, {9, 22, 15}, {10, 16, 23}, {28, 19, 2}, {11, 20, 21}, {27, 3, 9, 15, 1}, {9, 17, 10, 23, 22}, {10, 4, 28, 2, 16}, {28, 13, 11, 21, 19}, {11, 12, 27, 18, 20}}]}, ImageSize -> Dynamic[{5.25, 3.5} (CurrentValue["FontCapHeight"]/ AbsoluteCurrentValue[Magnification])], Boxed -> False, Lighting -> {{"Ambient", RGBColor[0.4, 0.45, 0.5]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{2, 0, 2}]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{2, 2, 2}]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{0, 2, 2}]}}, Method -> {"ShrinkWrap" -> True}], GridBox[{{ RowBox[{ TagBox["\"Number of points: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["30", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Number of faces: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["32", "SummaryItem"]}]}}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> {"Columns" -> {{2}}, "Rows" -> {{Automatic}}}, BaseStyle -> { ShowStringCharacters -> False, NumberMarks -> False, PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, BaselinePosition -> {1, 1}], True -> GridBox[{{ PaneBox[ ButtonBox[ DynamicBox[ FEPrivate`FrontEndResource["FEBitmaps", "SummaryBoxCloser"]], ButtonFunction :> (Typeset`open$$ = False), Appearance -> None, BaseStyle -> {}, Evaluator -> Automatic, Method -> "Preemptive"], Alignment -> {Center, Center}, ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], Graphics3DBox[{ Directive[ Hue[0.58, 0.4, 1], Opacity[0.5], EdgeForm[ GrayLevel[1]]], PolyhedronBox[ NCache[{{0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), 0}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-1 - 5^ Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {-(1 + 2 5^Rational[-1, 2])^ Rational[1, 2], 0, Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {(1 + 2 5^Rational[-1, 2])^Rational[1, 2], 0, (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, {(Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2], 0, -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, {Rational[-1, 2] ( Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2], 0}, { Root[1 - 5 #^2 + 5 #^4& , 1, 0], 0, (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}}, {{ 0, -1.618033988749895, 0}, {0, 1.618033988749895, 0}, { 0.2628655560595668, -0.8090169943749475, \ -1.3763819204711736`}, {0.2628655560595668, 0.8090169943749475, -1.3763819204711736`}, { 0.42532540417601994`, -1.3090169943749475`, 0.85065080835204}, {0.42532540417601994`, 1.3090169943749475`, 0.85065080835204}, { 0.6881909602355868, -0.5, 1.3763819204711736`}, { 0.6881909602355868, 0.5, 1.3763819204711736`}, { 1.1135163644116066`, -0.8090169943749475, \ -0.8506508083520399}, {1.1135163644116066`, 0.8090169943749475, -0.8506508083520399}, \ {-1.3763819204711736`, 0, -0.8506508083520399}, {-0.6881909602355868, -0.5, \ -1.3763819204711736`}, {-0.6881909602355868, 0.5, -1.3763819204711736`}, { 1.3763819204711736`, 0, 0.85065080835204}, { 0.9510565162951535, -1.3090169943749475`, 0}, { 0.9510565162951535, 1.3090169943749475`, 0}, { 0.85065080835204, 0, -1.3763819204711736`}, {-0.9510565162951535, \ -1.3090169943749475`, 0}, {-0.9510565162951535, 1.3090169943749475`, 0}, {-1.5388417685876268`, -0.5, 0}, {-1.5388417685876268`, 0.5, 0}, {1.5388417685876268`, -0.5, 0}, { 1.5388417685876268`, 0.5, 0}, {-0.8506508083520399, 0, 1.3763819204711736`}, {-1.1135163644116068`, \ -0.8090169943749475, 0.85065080835204}, {-1.1135163644116068`, 0.8090169943749475, 0.85065080835204}, {-0.42532540417601994`, \ -1.3090169943749475`, -0.8506508083520399}, {-0.42532540417601994`, 1.3090169943749475`, -0.8506508083520399}, \ {-0.2628655560595668, -0.8090169943749475, 1.3763819204711736`}, {-0.2628655560595668, 0.8090169943749475, 1.3763819204711736`}}], {{30, 24, 29, 7, 8}, {26, 24, 30}, {25, 29, 24}, {5, 7, 29}, {14, 8, 7}, {6, 30, 8}, {16, 2, 6}, {19, 21, 26}, {20, 18, 25}, {1, 15, 5}, { 22, 23, 14}, {2, 19, 26, 30, 6}, {21, 20, 25, 24, 26}, {18, 1, 5, 29, 25}, {15, 22, 14, 7, 5}, {23, 16, 6, 8, 14}, {12, 13, 4, 17, 3}, {3, 17, 9}, {17, 4, 10}, {4, 13, 28}, {13, 12, 11}, {12, 3, 27}, {27, 1, 18}, {9, 22, 15}, {10, 16, 23}, {28, 19, 2}, {11, 20, 21}, {27, 3, 9, 15, 1}, {9, 17, 10, 23, 22}, {10, 4, 28, 2, 16}, {28, 13, 11, 21, 19}, {11, 12, 27, 18, 20}}]}, ImageSize -> Dynamic[{5.25, 3.5} (CurrentValue["FontCapHeight"]/ AbsoluteCurrentValue[Magnification])], Boxed -> False, Lighting -> {{"Ambient", RGBColor[0.4, 0.45, 0.5]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{2, 0, 2}]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{2, 2, 2}]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{0, 2, 2}]}}, Method -> {"ShrinkWrap" -> True}], GridBox[{{ RowBox[{ TagBox["\"Number of points: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["30", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Number of faces: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["32", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Embedding dimension: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["3", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Type: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Quiet[ Apply[Region`PolyhedronDump`polyhedronType, Region`PolyhedronDump`computeType[ Typeset`spolyhedron$$]]], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}, { RowBox[{ TagBox["\"Bounds: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Region`PolyhedronDump`iRegionBounds[ Typeset`spolyhedron$$], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}, { RowBox[{ TagBox["\"Volume: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Region`PolyhedronDump`iVolume[Typeset`spolyhedron$$], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> {"Columns" -> {{2}}, "Rows" -> {{Automatic}}}, BaseStyle -> { ShowStringCharacters -> False, NumberMarks -> False, PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, BaselinePosition -> {1, 1}]}, Dynamic[Typeset`open$$], ImageSize -> Automatic]}, "SummaryPanel"], DynamicModuleValues:>{}], "]"}], Polyhedron[{{0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), 0}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], Rational[-1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {-(1 + 2 5^Rational[-1, 2])^Rational[1, 2], 0, Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {(1 + 2 5^Rational[-1, 2])^Rational[1, 2], 0, (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, {(Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2], 0, -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2], 0}, { Root[1 - 5 #^2 + 5 #^4& , 1, 0], 0, (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}}, {{30, 24, 29, 7, 8}, {26, 24, 30}, {25, 29, 24}, {5, 7, 29}, {14, 8, 7}, {6, 30, 8}, {16, 2, 6}, {19, 21, 26}, {20, 18, 25}, {1, 15, 5}, {22, 23, 14}, {2, 19, 26, 30, 6}, {21, 20, 25, 24, 26}, {18, 1, 5, 29, 25}, {15, 22, 14, 7, 5}, {23, 16, 6, 8, 14}, {12, 13, 4, 17, 3}, {3, 17, 9}, {17, 4, 10}, {4, 13, 28}, {13, 12, 11}, {12, 3, 27}, {27, 1, 18}, {9, 22, 15}, {10, 16, 23}, {28, 19, 2}, {11, 20, 21}, {27, 3, 9, 15, 1}, {9, 17, 10, 23, 22}, {10, 4, 28, 2, 16}, {28, 13, 11, 21, 19}, {11, 12, 27, 18, 20}}], Editable->False, SelectWithContents->True, Selectable->False]], "Output", CellLabel-> "Out[182]=",ExpressionUUID->"64c98f7a-94f3-4e20-bb11-7e545e12e625"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["EdgeCount", "Subsection",ExpressionUUID->"fcc6b85a-cbb8-4a58-ba70-678413c252e6"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}]], "Input", CellLabel-> "(Local-Devel (5)) \ In[15]:=",ExpressionUUID->"6d9425d4-9f29-4c61-b2f6-342d88e822b2"], Cell[BoxData["60"], "Output", CellLabel-> "(Local-Devel (5)) \ Out[15]=",ExpressionUUID->"45734f40-a8fb-4228-9423-50dbc181c87e"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["FaceCount", "Subsection",ExpressionUUID->"6299b4db-a10c-4ac0-aa6e-57542e3f906c"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}]], "Input", CellLabel-> "(Local-Devel (5)) \ In[16]:=",ExpressionUUID->"c691c115-50f2-4ad5-96db-600749f5f6f5"], Cell[BoxData["32"], "Output", CellLabel-> "(Local-Devel (5)) \ Out[16]=",ExpressionUUID->"5a86252b-779e-4ee3-a632-bc84a9a13b01"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["Net", "Subsection",ExpressionUUID->"ebae90e1-7110-4dcc-91e0-18ed4d9599d7"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}]], "Input", CellLabel-> "In[183]:=",ExpressionUUID->"86b8ed99-0ffb-47e0-b36e-4739067c5af2"], Cell[BoxData[ GraphicsBox[ {RGBColor[1, 1, 0.85], EdgeForm[GrayLevel[0]], GraphicsComplexBox[ NCache[{{0, Rational[1, 4] (-1 + 2 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 4] (17 - 7 5^Rational[1, 2] + (390 - 174 5^Rational[1, 2])^Rational[1, 2])^ Rational[1, 2], Rational[1, 8] (3 + 3 5^Rational[1, 2] + (150 + 66 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 4] (10 - 2 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (-2 + 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 2] ( Rational[1, 2] (10 - 5^ Rational[1, 2] - (15 (5 - 2 5^Rational[1, 2]))^Rational[1, 2]))^ Rational[1, 2], Rational[1, 2] (1 + 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 4] (7 + 5^Rational[1, 2] + (6 (5 + 5^Rational[1, 2]))^Rational[1, 2])^ Rational[1, 2], Rational[1, 8] (-3 + 3 5^Rational[1, 2] + (30 (5 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[1, 2] (7 - 2 5^Rational[1, 2] + 2 (15 - 6 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (1 + 2 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 4] (17 + 5^Rational[1, 2] + (30 (5 - 5^Rational[1, 2]))^Rational[1, 2])^ Rational[1, 2], Rational[-5, 8] + Rational[3, 8] 5^Rational[1, 2] + Rational[1, 4] (Rational[3, 2] (5 - 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 2] ( Rational[5, 2] (4 - 5^ Rational[1, 2] + (15 - 6 5^Rational[1, 2])^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (3 + 3 5^Rational[1, 2] + 2 (15 + 6 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 4] (47 - 5^ Rational[1, 2] + (1230 - 534 5^Rational[1, 2])^Rational[1, 2])^ Rational[1, 2], Rational[1, 8] (5 + 5 5^Rational[1, 2] + (150 + 66 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 2] (7 + 5^Rational[1, 2] + (6 (5 + 5^Rational[1, 2]))^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (-1 + 2 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 2] (7 + 5^Rational[1, 2] + (6 (5 + 5^Rational[1, 2]))^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 2 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 4] (23 + 7 5^Rational[1, 2] + (750 + 330 5^Rational[1, 2])^Rational[1, 2])^ Rational[1, 2], Rational[1, 8] (-1 + 3 5^Rational[1, 2] + (30 - 6 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 4] (23 + 7 5^Rational[1, 2] + (750 + 330 5^Rational[1, 2])^Rational[1, 2])^ Rational[1, 2], Rational[1, 8] (5 + 5 5^Rational[1, 2] + (150 + 66 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 2] ( Rational[1, 2] (20 + 5^Rational[1, 2] + (375 + 30 5^Rational[1, 2])^Rational[1, 2]))^ Rational[1, 2], 0}, { Rational[1, 4] (37 + 11 5^Rational[1, 2] + (870 + 366 5^Rational[1, 2])^Rational[1, 2])^ Rational[1, 2], Rational[1, 8] (-1 + 5^Rational[1, 2] + (6 (5 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[1, 2] (8 + Rational[7, 2] 5^Rational[1, 2] + Rational[1, 2] (3 (85 + 38 5^Rational[1, 2]))^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 3 5^Rational[1, 2] + 2 (15 + 6 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 4] (38 + 14 5^Rational[1, 2] + 4 (150 + 66 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2], Rational[1, 4] ( 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 4] (38 + 14 5^Rational[1, 2] + 4 (150 + 66 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (2 + 3 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 2] ( Rational[3, 2] (10 + 3 5^Rational[1, 2] + (75 + 30 5^Rational[1, 2])^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (-1 + 5^Rational[1, 2])}, {(Rational[17, 4] + 5^Rational[1, 2] + Rational[1, 2] (75 + 30 5^Rational[1, 2])^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (1 + 2 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 4] ( 5 (13 + 5 5^Rational[1, 2] + (150 + 66 5^Rational[1, 2])^ Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (7 + 7 5^Rational[1, 2] + (150 + 66 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 4] (62 + 26 5^Rational[1, 2] + 4 (6 (65 + 29 5^Rational[1, 2]))^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (4 + 3 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 4] (73 + 23 5^Rational[1, 2] + 3 (870 + 366 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (1 + 3 5^Rational[1, 2] + (6 (5 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[1, 4] (73 + 23 5^Rational[1, 2] + 3 (870 + 366 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (3 + 5 5^Rational[1, 2] + (30 (5 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[1, 2] ( Rational[3, 2] (12 + 5 5^Rational[1, 2] + (3 (85 + 38 5^Rational[1, 2]))^ Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2])}, { Rational[1, 4] (97 + 25 5^Rational[1, 2] + (6 (1745 + 659 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (1 + 5 5^Rational[1, 2] + (30 - 6 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 4] (85 + 37 5^Rational[1, 2] + (30 (445 + 199 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (9 + 5 5^Rational[1, 2] + (150 + 66 5^Rational[1, 2])^Rational[1, 2])}, {( Rational[61, 8] + Rational[17, 8] 5^Rational[1, 2] + (75 + 30 5^Rational[1, 2])^ Rational[1, 2])^Rational[1, 2], Rational[1, 4] (2 + 3 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 4] (115 + 43 5^Rational[1, 2] + (30 (745 + 331 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (-3 + 5 5^Rational[1, 2] + (30 - 6 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 4] (115 + 43 5^Rational[1, 2] + (30 (745 + 331 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (5 + 5 5^Rational[1, 2] + (30 - 6 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 2] ( Rational[3, 2] (22 + 9 5^Rational[1, 2] + (795 + 354 5^Rational[1, 2])^Rational[1, 2]))^ Rational[1, 2], Rational[1, 2] (1 + 5^Rational[1, 2])}, {(Rational[133, 16] + Rational[59, 16] 5^Rational[1, 2] + Rational[ 1, 2] (Rational[17475, 32] + Rational[7815, 32] 5^Rational[1, 2])^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (5 + 7 5^Rational[1, 2] + (30 (5 + 5^Rational[1, 2]))^Rational[1, 2])}, {( Rational[19, 2] + Rational[7, 2] 5^Rational[1, 2] + (6 (25 + 11 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 2 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 2] (Rational[79, 2] + Rational[35, 2] 5^Rational[1, 2] + (6 (445 + 199 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 4] (-1 + 2 5^Rational[1, 2] - (15 - 6 5^Rational[1, 2])^ Rational[1, 2])}, { Rational[1, 2] (Rational[79, 2] + Rational[35, 2] 5^Rational[1, 2] + (6 (445 + 199 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 4] (2 + 3 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 2] (43 + Rational[37, 2] 5^Rational[1, 2] + Rational[1, 2] (3 (4745 + 2122 5^Rational[1, 2]))^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 3 5^Rational[1, 2] + 2 (15 + 6 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 4] (193 + 73 5^Rational[1, 2] + 19 (150 + 66 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (3 + 3 5^Rational[1, 2] + (30 - 6 5^Rational[1, 2])^Rational[1, 2])}, {( Rational[47, 4] + 5 5^Rational[1, 2] + (3 (85 + 38 5^Rational[1, 2]))^Rational[1, 2])^ Rational[1, 2], Rational[3, 4] 5^Rational[1, 2] + Rational[-1, 4] (3 (5 - 2 5^Rational[1, 2]))^Rational[1, 2]}, {( Rational[47, 4] + 5 5^Rational[1, 2] + (3 (85 + 38 5^Rational[1, 2]))^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (1 + 2 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 4] (217 + 95 5^Rational[1, 2] + (75750 + 33870 5^Rational[1, 2])^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (-1 + 5 5^Rational[1, 2] - (6 (5 + 5^Rational[1, 2]))^ Rational[1, 2])}, { Rational[1, 4] (217 + 95 5^Rational[1, 2] + (75750 + 33870 5^Rational[1, 2])^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (3 + 5 5^Rational[1, 2] + (30 (5 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[1, 2] (55 + Rational[49, 2] 5^Rational[1, 2] + Rational[1, 2] (15 (1525 + 682 5^Rational[1, 2]))^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (1 + 3 5^Rational[1, 2] + 2 (15 + 6 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 2] (55 + Rational[49, 2] 5^Rational[1, 2] + Rational[1, 2] (15 (1525 + 682 5^Rational[1, 2]))^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (5 + 3 5^Rational[1, 2] + 2 (15 + 6 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 4] (233 + 97 5^Rational[1, 2] + (6 (16705 + 7459 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (1 + 5 5^Rational[1, 2] + (30 - 6 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 4] (257 + 103 5^Rational[1, 2] + (6 (18545 + 8269 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (5 + 7 5^Rational[1, 2] + (30 (5 + 5^Rational[1, 2]))^Rational[1, 2])}, {( Rational[145, 8] + Rational[61, 8] 5^Rational[1, 2] + (Rational[15, 2] (65 + 29 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 4] (-1 + 2 5^Rational[1, 2] - (15 - 6 5^Rational[1, 2])^ Rational[1, 2])}, {(Rational[145, 8] + Rational[61, 8] 5^Rational[1, 2] + (Rational[15, 2] (65 + 29 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 4] (2 + 3 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 4] (287 + 127 5^Rational[1, 2] + (149070 + 66666 5^Rational[1, 2])^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (-3 + 5 5^Rational[1, 2] + (30 - 6 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 4] (287 + 127 5^Rational[1, 2] + (149070 + 66666 5^Rational[1, 2])^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (5 + 5 5^Rational[1, 2] + (30 - 6 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 2] (77 + Rational[61, 2] 5^Rational[1, 2] + Rational[5, 2] (1635 + 726 5^Rational[1, 2])^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 3 5^Rational[1, 2] + 2 (15 + 6 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 4] (328 + 146 5^Rational[1, 2] + 6 (4575 + 2046 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (1 + 5^Rational[1, 2])}, {(Rational[85, 4] + Rational[37, 4] 5^Rational[1, 2] + Rational[ 1, 2] (Rational[6675, 2] + Rational[2985, 2] 5^Rational[1, 2])^ Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 2 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 4] (377 + 151 5^Rational[1, 2] + (194550 + 86334 5^Rational[1, 2])^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (3 + 5 5^Rational[1, 2] + (30 (5 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[1, 4] (368 + 158 5^Rational[1, 2] + 30 (3 (85 + 38 5^Rational[1, 2]))^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2])}, { Rational[1, 4] (368 + 158 5^Rational[1, 2] + 30 (3 (85 + 38 5^Rational[1, 2]))^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (1 + 3 5^Rational[1, 2] + 2 (15 + 6 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 4] (413 + 181 5^Rational[1, 2] + (6 (41465 + 18539 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (3 + 3 5^Rational[1, 2] + (30 - 6 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 2] (103 + 46 5^Rational[1, 2] + 2 (4575 + 2046 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (1 + 2 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 4] (427 + 181 5^Rational[1, 2] + (6 (53125 + 23729 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (1 + 7 5^Rational[1, 2] + (30 (5 + 5^Rational[1, 2]))^Rational[1, 2])}}, {{ 0, 2.2007100527513543`}, {0.37987356147471385`, 3.369840659110212}, { 0.5877852522924731, 1.3916930583764067`}, {0.786610204550514, 4.283386116752814}, {0.9945218953682734, 2.305238516019007}, { 1.123018386952108, 2.7007100527513543`}, {1.3309300777698674`, 0.7225624520175483}, {1.374395456842987, 5.09240311112776}, { 1.7811320999187874`, 4.17885765348516}, {1.9890437907365468`, 2.2007100527513543`}, {1.9890437907365468`, 3.2007100527513543`}, { 2.196955481554306, 1.2225624520175482`}, {2.196955481554306, 4.17885765348516}, {2.325451973138141, 0}, {2.5333636639559, 0.9781476007338057}, {2.6036921246301064`, 5.09240311112776}, { 2.9401003070317, 1.8916930583764067`}, {2.9401003070317, 3.509727047126302}, {3.2765084894332945`, 0.30901699437494745`}, { 3.527885559324173, 2.7007100527513543`}, {3.59821401999838, 4.987874647860107}, {3.8061257108161386`, 4.009727047126302}, { 3.9346222023999737`, 1.7871645951087531`}, {3.9346222023999737`, 3.6142555103939547`}, {4.142533893217733, 0.8090169943749475}, { 4.271030384801567, 2.0315794463924957`}, {4.549270536293533, 4.67885765348516}, {4.929144097768247, 3.509727047126302}, { 5.137055788586006, 1.5315794463924957`}, {5.137055788586006, 2.5315794463924957`}, {5.543792431661807, 1.618033988749895}, { 5.751704122479566, 4.423272504768902}, {5.8802006140634, 3.2007100527513543`}, {6.158440765555366, 0.5534318456586902}, { 6.158440765555366, 3.509727047126302}, {6.49484894795696, 5.09240311112776}, {6.538314327030079, 1.7225624520175482`}, { 6.746226017847839, 1.3624488400336376`}, {6.746226017847839, 2.7007100527513543`}, {7.152962660923639, 0.44890338239103666`}, { 7.152962660923639, 3.6142555103939547`}, {7.360874351741399, 4.59240311112776}, {7.360874351741399, 5.59240311112776}, { 7.489370843325234, 2.0315794463924957`}, {7.740747913216112, 4.423272504768902}, {8.147484556291912, 0.5534318456586902}, { 8.147484556291912, 3.509727047126302}, {8.355396247109672, 1.5315794463924957`}, {8.355396247109672, 2.5315794463924957`}, { 8.483892738693507, 5.09240311112776}, {8.762132890185473, 1.618033988749895}, {9.098541072587066, 3.2007100527513543`}, { 9.142006451660187, 3.6142555103939547`}, {9.349918142477947, 0.8090169943749475}, {9.349918142477947, 4.59240311112776}, { 9.756654785553746, 1.7225624520175482`}, {9.964566476371505, 2.7007100527513543`}, {10.09306296795534, 3.923272504768902}}], PolygonBox[{{17, 20, 18, 11, 10}, {6, 10, 11}, {4, 2, 6, 11, 9}, {8, 4, 9}, {12, 17, 10}, {3, 7, 12, 10, 5}, {1, 3, 5}, {23, 20, 17}, {19, 25, 23, 17, 15}, {14, 19, 15}, {24, 18, 20}, {30, 28, 24, 20, 26}, {29, 30, 26}, {13, 11, 18}, {21, 16, 13, 18, 22}, {27, 21, 22}, {41, 39, 44, 49, 47}, {52, 47, 49}, {56, 57, 52, 49, 51}, {54, 56, 51}, {45, 41, 47}, { 55, 50, 45, 47, 53}, {58, 55, 53}, {35, 39, 41}, {36, 32, 35, 41, 42}, { 43, 36, 42}, {37, 44, 39}, {30, 31, 37, 39, 33}, {28, 30, 33}, {48, 49, 44}, {40, 46, 48, 44, 38}, {34, 40, 38}}]]}]], "Output", CellLabel-> "Out[183]=",ExpressionUUID->"8f2c1d56-2b33-4946-bdb4-036044008968"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{"Total", "[", RowBox[{"Area", "/@", RowBox[{"Flatten", "[", RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\"", ",", "\"\\""}], "]"}], "]"}]}], "]"}], "//", "ToAlgebraicRoot"}], "//", "Timing"}]], "Input", CellLabel-> "In[184]:=",ExpressionUUID->"c93c5be3-48fd-48f9-bf30-615bc112378a"], Cell[BoxData[ RowBox[{"{", RowBox[{"1.756338`", ",", TemplateBox[<|"icon" -> "Root", "small" -> InterpretationBox[ StyleBox[ TemplateBox[{"\"29.3\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 29.3059828449119912363585171988233923912`15.954589770191003, Editable -> False], "approx" -> 29.30598284491199, "interp" -> InterpretationBox["", Root[324000000 - 27000000 #^2 + 324000 #^4 - 1200 #^6 + #^8& , 8, 0]], "head" -> "Root", "big" -> RowBox[{ RowBox[{"324000000", "-", RowBox[{"27000000", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"324000", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"1200", " ", SuperscriptBox["#1", "6"]}], "+", SuperscriptBox["#1", "8"]}], "&"}], "degree" -> "8", "shortDegree" -> "8", "number" -> 8|>, "NumericalApproximationInterp", InterpretationFunction->(Slot["interp"]& )]}], "}"}]], "Output", CellLabel-> "Out[184]=",ExpressionUUID->"5cbe1b27-7687-4295-89dd-45d1e0d9417d"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}]], "Input", CellLabel-> "In[185]:=",ExpressionUUID->"8e61feea-720f-41ff-ba9f-003a71b0e056"], Cell[BoxData[ SqrtBox[ RowBox[{"30", " ", RowBox[{"(", RowBox[{"10", "+", RowBox[{"3", " ", SqrtBox["5"]}], "+", SqrtBox[ RowBox[{"75", "+", RowBox[{"30", " ", SqrtBox["5"]}]}]]}], ")"}]}]]], "Output", CellLabel-> "Out[185]=",ExpressionUUID->"c8cffe76-a463-480e-9355-9ae016c86759"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"poly3d", "=", RowBox[{ RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\"", ",", "\"\\""}], "]"}], "/.", RowBox[{ RowBox[{"Polygon", "[", "v_", "]"}], ":>", RowBox[{"Polygon", "[", RowBox[{ RowBox[{ RowBox[{"Append", "[", RowBox[{"#", ",", "0"}], "]"}], "&"}], "/@", "v"}], "]"}]}]}]}]], "Input", CellLabel-> "In[186]:=",ExpressionUUID->"d71f0871-16f8-462b-bc12-88c911ef56f4"], Cell[BoxData[ RowBox[{"{", RowBox[{"{", RowBox[{ InterpretationBox[ RowBox[{ TagBox["Polygon", "SummaryHead"], "[", DynamicModuleBox[{Typeset`open$$ = False, Typeset`embedState$$ = "Ready", Typeset`spolygon$$ = Polygon[{{ Rational[ 1, 4] (38 + 14 5^Rational[1, 2] + 4 (150 + 66 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2], Rational[1, 4] ( 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2]), 0}, {(Rational[17, 4] + 5^Rational[1, 2] + Rational[1, 2] (75 + 30 5^Rational[1, 2])^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (1 + 2 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2]), 0}, {Rational[ 1, 4] (38 + 14 5^Rational[1, 2] + 4 (150 + 66 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (2 + 3 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2]), 0}, {Rational[ 1, 2] (7 + 5^Rational[1, 2] + (6 (5 + 5^Rational[1, 2]))^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 2 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2]), 0}, {Rational[ 1, 2] (7 + 5^Rational[1, 2] + (6 (5 + 5^Rational[1, 2]))^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (-1 + 2 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2]), 0}}]}, TemplateBox[{ PaneSelectorBox[{False -> GridBox[{{ PaneBox[ ButtonBox[ DynamicBox[ FEPrivate`FrontEndResource[ "FEBitmaps", "SummaryBoxOpener"]], ButtonFunction :> (Typeset`open$$ = True), Appearance -> None, BaseStyle -> {}, Evaluator -> Automatic, Method -> "Preemptive"], Alignment -> {Center, Center}, ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], Graphics3DBox[{ Directive[ GrayLevel[1], EdgeForm[ Hue[0.6, 0.3, 0.4]]], Polygon3DBox[ NCache[{{ Rational[ 1, 4] (38 + 14 5^Rational[1, 2] + 4 (150 + 66 5^Rational[1, 2])^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] ( 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^ Rational[1, 2]), 0}, {(Rational[17, 4] + 5^Rational[1, 2] + Rational[1, 2] (75 + 30 5^Rational[1, 2])^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (1 + 2 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^ Rational[1, 2]), 0}, { Rational[ 1, 4] (38 + 14 5^Rational[1, 2] + 4 (150 + 66 5^Rational[1, 2])^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (2 + 3 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^ Rational[1, 2]), 0}, { Rational[ 1, 2] (7 + 5^Rational[1, 2] + (6 (5 + 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 2 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^ Rational[1, 2]), 0}, { Rational[ 1, 2] (7 + 5^Rational[1, 2] + (6 (5 + 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 4] (-1 + 2 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^ Rational[1, 2]), 0}}, {{ 2.9401003070317, 1.8916930583764067`, 0}, { 3.527885559324173, 2.7007100527513543`, 0}, { 2.9401003070317, 3.509727047126302, 0}, { 1.9890437907365468`, 3.2007100527513543`, 0}, { 1.9890437907365468`, 2.2007100527513543`, 0}}]]}, ImageSize -> Dynamic[{5.25, 3.5} (CurrentValue["FontCapHeight"]/ AbsoluteCurrentValue[Magnification])], PlotRange -> Full, Boxed -> False, Lighting -> {{"Ambient", RGBColor[0.732, 0.8232, 0.96]}}, Method -> {"ShrinkWrap" -> True}], GridBox[{{ RowBox[{ TagBox["\"Number of points: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["5", "SummaryItem"]}]}, { RowBox[{ TagBox[ "\"Embedding dimension: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["3", "SummaryItem"]}]}}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> { "Columns" -> {{2}}, "Rows" -> {{Automatic}}}, BaseStyle -> { ShowStringCharacters -> False, NumberMarks -> False, PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, BaselinePosition -> {1, 1}], True -> GridBox[{{ PaneBox[ ButtonBox[ DynamicBox[ FEPrivate`FrontEndResource[ "FEBitmaps", "SummaryBoxCloser"]], ButtonFunction :> (Typeset`open$$ = False), Appearance -> None, BaseStyle -> {}, Evaluator -> Automatic, Method -> "Preemptive"], Alignment -> {Center, Center}, ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], Graphics3DBox[{ Directive[ GrayLevel[1], EdgeForm[ Hue[0.6, 0.3, 0.4]]], Polygon3DBox[ NCache[{{ Rational[ 1, 4] (38 + 14 5^Rational[1, 2] + 4 (150 + 66 5^Rational[1, 2])^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] ( 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^ Rational[1, 2]), 0}, {(Rational[17, 4] + 5^Rational[1, 2] + Rational[1, 2] (75 + 30 5^Rational[1, 2])^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (1 + 2 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^ Rational[1, 2]), 0}, { Rational[ 1, 4] (38 + 14 5^Rational[1, 2] + 4 (150 + 66 5^Rational[1, 2])^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (2 + 3 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^ Rational[1, 2]), 0}, { Rational[ 1, 2] (7 + 5^Rational[1, 2] + (6 (5 + 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 2 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^ Rational[1, 2]), 0}, { Rational[ 1, 2] (7 + 5^Rational[1, 2] + (6 (5 + 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 4] (-1 + 2 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^ Rational[1, 2]), 0}}, {{ 2.9401003070317, 1.8916930583764067`, 0}, { 3.527885559324173, 2.7007100527513543`, 0}, { 2.9401003070317, 3.509727047126302, 0}, { 1.9890437907365468`, 3.2007100527513543`, 0}, { 1.9890437907365468`, 2.2007100527513543`, 0}}]]}, ImageSize -> Dynamic[{5.25, 3.5} (CurrentValue["FontCapHeight"]/ AbsoluteCurrentValue[Magnification])], PlotRange -> Full, Boxed -> False, Lighting -> {{"Ambient", RGBColor[0.732, 0.8232, 0.96]}}, Method -> {"ShrinkWrap" -> True}], GridBox[{{ RowBox[{ TagBox["\"Number of points: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["5", "SummaryItem"]}]}, { RowBox[{ TagBox[ "\"Embedding dimension: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["3", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Type: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Quiet[ Apply[Region`PolygonDump`polygonType, Region`PolygonDump`computeType[Typeset`spolygon$$]]], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}, { RowBox[{ TagBox["\"Bounds: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Region`PolygonDump`iRegionBounds[Typeset`spolygon$$], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}, { RowBox[{ TagBox["\"Area: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Region`PolygonDump`iArea[Typeset`spolygon$$], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> { "Columns" -> {{2}}, "Rows" -> {{Automatic}}}, BaseStyle -> { ShowStringCharacters -> False, NumberMarks -> False, PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, BaselinePosition -> {1, 1}]}, Dynamic[Typeset`open$$], ImageSize -> Automatic]}, "SummaryPanel"], DynamicModuleValues:>{}], "]"}], Polygon[{{ Rational[ 1, 4] (38 + 14 5^Rational[1, 2] + 4 (150 + 66 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2], Rational[1, 4] ( 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2]), 0}, {(Rational[17, 4] + 5^Rational[1, 2] + Rational[1, 2] (75 + 30 5^Rational[1, 2])^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (1 + 2 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2]), 0}, { Rational[ 1, 4] (38 + 14 5^Rational[1, 2] + 4 (150 + 66 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (2 + 3 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2]), 0}, { Rational[ 1, 2] (7 + 5^Rational[1, 2] + (6 (5 + 5^Rational[1, 2]))^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 2 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2]), 0}, { Rational[ 1, 2] (7 + 5^Rational[1, 2] + (6 (5 + 5^Rational[1, 2]))^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (-1 + 2 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2]), 0}}], Editable->False, SelectWithContents->True, Selectable->False], ",", InterpretationBox[ RowBox[{ TagBox["Polygon", "SummaryHead"], "[", DynamicModuleBox[{Typeset`open$$ = False, Typeset`embedState$$ = "Ready", Typeset`spolygon$$ = Polygon[{{ Rational[ 1, 2] (7 - 2 5^Rational[1, 2] + 2 (15 - 6 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (1 + 2 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2]), 0}, {Rational[ 1, 2] (7 + 5^Rational[1, 2] + (6 (5 + 5^Rational[1, 2]))^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (-1 + 2 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2]), 0}, {Rational[ 1, 2] (7 + 5^Rational[1, 2] + (6 (5 + 5^Rational[1, 2]))^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 2 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2]), 0}}]}, TemplateBox[{ PaneSelectorBox[{False -> GridBox[{{ PaneBox[ ButtonBox[ DynamicBox[ FEPrivate`FrontEndResource[ "FEBitmaps", "SummaryBoxOpener"]], ButtonFunction :> (Typeset`open$$ = True), Appearance -> None, BaseStyle -> {}, Evaluator -> Automatic, Method -> "Preemptive"], Alignment -> {Center, Center}, ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], Graphics3DBox[{ Directive[ GrayLevel[1], EdgeForm[ Hue[0.6, 0.3, 0.4]]], Polygon3DBox[ NCache[{{ Rational[ 1, 2] (7 - 2 5^Rational[1, 2] + 2 (15 - 6 5^Rational[1, 2])^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (1 + 2 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^ Rational[1, 2]), 0}, { Rational[ 1, 2] (7 + 5^Rational[1, 2] + (6 (5 + 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 4] (-1 + 2 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^ Rational[1, 2]), 0}, { Rational[ 1, 2] (7 + 5^Rational[1, 2] + (6 (5 + 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 2 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^ Rational[1, 2]), 0}}, {{ 1.123018386952108, 2.7007100527513543`, 0}, { 1.9890437907365468`, 2.2007100527513543`, 0}, { 1.9890437907365468`, 3.2007100527513543`, 0}}]]}, ImageSize -> Dynamic[{5.25, 3.5} (CurrentValue["FontCapHeight"]/ AbsoluteCurrentValue[Magnification])], PlotRange -> Full, Boxed -> False, Lighting -> {{"Ambient", RGBColor[0.732, 0.8232, 0.96]}}, Method -> {"ShrinkWrap" -> True}], GridBox[{{ RowBox[{ TagBox["\"Number of points: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["3", "SummaryItem"]}]}, { RowBox[{ TagBox[ "\"Embedding dimension: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["3", "SummaryItem"]}]}}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> { "Columns" -> {{2}}, "Rows" -> {{Automatic}}}, BaseStyle -> { ShowStringCharacters -> False, NumberMarks -> False, PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, BaselinePosition -> {1, 1}], True -> GridBox[{{ PaneBox[ ButtonBox[ DynamicBox[ FEPrivate`FrontEndResource[ "FEBitmaps", "SummaryBoxCloser"]], ButtonFunction :> (Typeset`open$$ = False), Appearance -> None, BaseStyle -> {}, Evaluator -> Automatic, Method -> "Preemptive"], Alignment -> {Center, Center}, ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], Graphics3DBox[{ Directive[ GrayLevel[1], EdgeForm[ Hue[0.6, 0.3, 0.4]]], Polygon3DBox[ NCache[{{ Rational[ 1, 2] (7 - 2 5^Rational[1, 2] + 2 (15 - 6 5^Rational[1, 2])^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (1 + 2 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^ Rational[1, 2]), 0}, { Rational[ 1, 2] (7 + 5^Rational[1, 2] + (6 (5 + 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 4] (-1 + 2 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^ Rational[1, 2]), 0}, { Rational[ 1, 2] (7 + 5^Rational[1, 2] + (6 (5 + 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 2 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^ Rational[1, 2]), 0}}, {{ 1.123018386952108, 2.7007100527513543`, 0}, { 1.9890437907365468`, 2.2007100527513543`, 0}, { 1.9890437907365468`, 3.2007100527513543`, 0}}]]}, ImageSize -> Dynamic[{5.25, 3.5} (CurrentValue["FontCapHeight"]/ AbsoluteCurrentValue[Magnification])], PlotRange -> Full, Boxed -> False, Lighting -> {{"Ambient", RGBColor[0.732, 0.8232, 0.96]}}, Method -> {"ShrinkWrap" -> True}], GridBox[{{ RowBox[{ TagBox["\"Number of points: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["3", "SummaryItem"]}]}, { RowBox[{ TagBox[ "\"Embedding dimension: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["3", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Type: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Quiet[ Apply[Region`PolygonDump`polygonType, Region`PolygonDump`computeType[Typeset`spolygon$$]]], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}, { RowBox[{ TagBox["\"Bounds: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Region`PolygonDump`iRegionBounds[Typeset`spolygon$$], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}, { RowBox[{ TagBox["\"Area: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Region`PolygonDump`iArea[Typeset`spolygon$$], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> { "Columns" -> {{2}}, "Rows" -> {{Automatic}}}, BaseStyle -> { ShowStringCharacters -> False, NumberMarks -> False, PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, BaselinePosition -> {1, 1}]}, Dynamic[Typeset`open$$], ImageSize -> Automatic]}, "SummaryPanel"], DynamicModuleValues:>{}], "]"}], Polygon[{{ Rational[ 1, 2] (7 - 2 5^Rational[1, 2] + 2 (15 - 6 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (1 + 2 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2]), 0}, { Rational[ 1, 2] (7 + 5^Rational[1, 2] + (6 (5 + 5^Rational[1, 2]))^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (-1 + 2 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2]), 0}, { Rational[ 1, 2] (7 + 5^Rational[1, 2] + (6 (5 + 5^Rational[1, 2]))^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 2 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2]), 0}}], Editable->False, SelectWithContents->True, Selectable->False], ",", InterpretationBox[ RowBox[{ TagBox["Polygon", "SummaryHead"], "[", DynamicModuleBox[{Typeset`open$$ = False, Typeset`embedState$$ = "Ready", Typeset`spolygon$$ = Polygon[{{ Rational[ 1, 2] (Rational[1, 2] (10 - 5^ Rational[1, 2] - (15 (5 - 2 5^Rational[1, 2]))^Rational[1, 2]))^ Rational[1, 2], Rational[1, 2] (1 + 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2]), 0}, { Rational[ 1, 4] (17 - 7 5^Rational[1, 2] + (390 - 174 5^Rational[1, 2])^Rational[1, 2])^ Rational[1, 2], Rational[1, 8] (3 + 3 5^Rational[1, 2] + (150 + 66 5^Rational[1, 2])^Rational[1, 2]), 0}, {Rational[ 1, 2] (7 - 2 5^Rational[1, 2] + 2 (15 - 6 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (1 + 2 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2]), 0}, {Rational[ 1, 2] (7 + 5^Rational[1, 2] + (6 (5 + 5^Rational[1, 2]))^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 2 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2]), 0}, { Rational[ 1, 4] (47 - 5^ Rational[1, 2] + (1230 - 534 5^Rational[1, 2])^Rational[1, 2])^ Rational[1, 2], Rational[1, 8] (5 + 5 5^Rational[1, 2] + (150 + 66 5^Rational[1, 2])^Rational[1, 2]), 0}}]}, TemplateBox[{ PaneSelectorBox[{False -> GridBox[{{ PaneBox[ ButtonBox[ DynamicBox[ FEPrivate`FrontEndResource[ "FEBitmaps", "SummaryBoxOpener"]], ButtonFunction :> (Typeset`open$$ = True), Appearance -> None, BaseStyle -> {}, Evaluator -> Automatic, Method -> "Preemptive"], Alignment -> {Center, Center}, ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], Graphics3DBox[{ Directive[ GrayLevel[1], EdgeForm[ Hue[0.6, 0.3, 0.4]]], Polygon3DBox[ NCache[{{ Rational[ 1, 2] (Rational[1, 2] (10 - 5^ Rational[1, 2] - (15 (5 - 2 5^Rational[1, 2]))^ Rational[1, 2]))^Rational[1, 2], Rational[1, 2] (1 + 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^ Rational[1, 2]), 0}, { Rational[ 1, 4] (17 - 7 5^Rational[1, 2] + (390 - 174 5^Rational[1, 2])^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (3 + 3 5^Rational[1, 2] + (150 + 66 5^Rational[1, 2])^ Rational[1, 2]), 0}, { Rational[ 1, 2] (7 - 2 5^Rational[1, 2] + 2 (15 - 6 5^Rational[1, 2])^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (1 + 2 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^ Rational[1, 2]), 0}, { Rational[ 1, 2] (7 + 5^Rational[1, 2] + (6 (5 + 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 2 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^ Rational[1, 2]), 0}, { Rational[ 1, 4] (47 - 5^ Rational[1, 2] + (1230 - 534 5^Rational[1, 2])^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (5 + 5 5^Rational[1, 2] + (150 + 66 5^Rational[1, 2])^ Rational[1, 2]), 0}}, {{ 0.786610204550514, 4.283386116752814, 0}, { 0.37987356147471385`, 3.369840659110212, 0}, { 1.123018386952108, 2.7007100527513543`, 0}, { 1.9890437907365468`, 3.2007100527513543`, 0}, { 1.7811320999187874`, 4.17885765348516, 0}}]]}, ImageSize -> Dynamic[{5.25, 3.5} (CurrentValue["FontCapHeight"]/ AbsoluteCurrentValue[Magnification])], PlotRange -> Full, Boxed -> False, Lighting -> {{"Ambient", RGBColor[0.732, 0.8232, 0.96]}}, Method -> {"ShrinkWrap" -> True}], GridBox[{{ RowBox[{ TagBox["\"Number of points: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["5", "SummaryItem"]}]}, { RowBox[{ TagBox[ "\"Embedding dimension: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["3", "SummaryItem"]}]}}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> { "Columns" -> {{2}}, "Rows" -> {{Automatic}}}, BaseStyle -> { ShowStringCharacters -> False, NumberMarks -> False, PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, BaselinePosition -> {1, 1}], True -> GridBox[{{ PaneBox[ ButtonBox[ DynamicBox[ FEPrivate`FrontEndResource[ "FEBitmaps", "SummaryBoxCloser"]], ButtonFunction :> (Typeset`open$$ = False), Appearance -> None, BaseStyle -> {}, Evaluator -> Automatic, Method -> "Preemptive"], Alignment -> {Center, Center}, ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], Graphics3DBox[{ Directive[ GrayLevel[1], EdgeForm[ Hue[0.6, 0.3, 0.4]]], Polygon3DBox[ NCache[{{ Rational[ 1, 2] (Rational[1, 2] (10 - 5^ Rational[1, 2] - (15 (5 - 2 5^Rational[1, 2]))^ Rational[1, 2]))^Rational[1, 2], Rational[1, 2] (1 + 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^ Rational[1, 2]), 0}, { Rational[ 1, 4] (17 - 7 5^Rational[1, 2] + (390 - 174 5^Rational[1, 2])^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (3 + 3 5^Rational[1, 2] + (150 + 66 5^Rational[1, 2])^ Rational[1, 2]), 0}, { Rational[ 1, 2] (7 - 2 5^Rational[1, 2] + 2 (15 - 6 5^Rational[1, 2])^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (1 + 2 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^ Rational[1, 2]), 0}, { Rational[ 1, 2] (7 + 5^Rational[1, 2] + (6 (5 + 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 2 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^ Rational[1, 2]), 0}, { Rational[ 1, 4] (47 - 5^ Rational[1, 2] + (1230 - 534 5^Rational[1, 2])^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (5 + 5 5^Rational[1, 2] + (150 + 66 5^Rational[1, 2])^ Rational[1, 2]), 0}}, {{ 0.786610204550514, 4.283386116752814, 0}, { 0.37987356147471385`, 3.369840659110212, 0}, { 1.123018386952108, 2.7007100527513543`, 0}, { 1.9890437907365468`, 3.2007100527513543`, 0}, { 1.7811320999187874`, 4.17885765348516, 0}}]]}, ImageSize -> Dynamic[{5.25, 3.5} (CurrentValue["FontCapHeight"]/ AbsoluteCurrentValue[Magnification])], PlotRange -> Full, Boxed -> False, Lighting -> {{"Ambient", RGBColor[0.732, 0.8232, 0.96]}}, Method -> {"ShrinkWrap" -> True}], GridBox[{{ RowBox[{ TagBox["\"Number of points: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["5", "SummaryItem"]}]}, { RowBox[{ TagBox[ "\"Embedding dimension: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["3", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Type: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Quiet[ Apply[Region`PolygonDump`polygonType, Region`PolygonDump`computeType[Typeset`spolygon$$]]], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}, { RowBox[{ TagBox["\"Bounds: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Region`PolygonDump`iRegionBounds[Typeset`spolygon$$], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}, { RowBox[{ TagBox["\"Area: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Region`PolygonDump`iArea[Typeset`spolygon$$], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> { "Columns" -> {{2}}, "Rows" -> {{Automatic}}}, BaseStyle -> { ShowStringCharacters -> False, NumberMarks -> False, PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, BaselinePosition -> {1, 1}]}, Dynamic[Typeset`open$$], ImageSize -> Automatic]}, "SummaryPanel"], DynamicModuleValues:>{}], "]"}], Polygon[{{ Rational[ 1, 2] (Rational[1, 2] (10 - 5^ Rational[1, 2] - (15 (5 - 2 5^Rational[1, 2]))^Rational[1, 2]))^ Rational[1, 2], Rational[1, 2] (1 + 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2]), 0}, { Rational[ 1, 4] (17 - 7 5^Rational[1, 2] + (390 - 174 5^Rational[1, 2])^Rational[1, 2])^ Rational[1, 2], Rational[1, 8] (3 + 3 5^Rational[1, 2] + (150 + 66 5^Rational[1, 2])^Rational[1, 2]), 0}, {Rational[ 1, 2] (7 - 2 5^Rational[1, 2] + 2 (15 - 6 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (1 + 2 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2]), 0}, { Rational[ 1, 2] (7 + 5^Rational[1, 2] + (6 (5 + 5^Rational[1, 2]))^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 2 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2]), 0}, { Rational[ 1, 4] (47 - 5^ Rational[1, 2] + (1230 - 534 5^Rational[1, 2])^Rational[1, 2])^ Rational[1, 2], Rational[1, 8] (5 + 5 5^Rational[1, 2] + (150 + 66 5^Rational[1, 2])^Rational[1, 2]), 0}}], Editable->False, SelectWithContents->True, Selectable->False], ",", InterpretationBox[ RowBox[{ TagBox["Polygon", "SummaryHead"], "[", DynamicModuleBox[{Typeset`open$$ = False, Typeset`embedState$$ = "Ready", Typeset`spolygon$$ = Polygon[{{ Rational[ 1, 2] (Rational[5, 2] (4 - 5^ Rational[1, 2] + (15 - 6 5^Rational[1, 2])^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (3 + 3 5^Rational[1, 2] + 2 (15 + 6 5^Rational[1, 2])^Rational[1, 2]), 0}, { Rational[ 1, 2] (Rational[1, 2] (10 - 5^ Rational[1, 2] - (15 (5 - 2 5^Rational[1, 2]))^Rational[1, 2]))^ Rational[1, 2], Rational[1, 2] (1 + 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2]), 0}, { Rational[ 1, 4] (47 - 5^ Rational[1, 2] + (1230 - 534 5^Rational[1, 2])^Rational[1, 2])^ Rational[1, 2], Rational[1, 8] (5 + 5 5^Rational[1, 2] + (150 + 66 5^Rational[1, 2])^Rational[1, 2]), 0}}]}, TemplateBox[{ PaneSelectorBox[{False -> GridBox[{{ PaneBox[ ButtonBox[ DynamicBox[ FEPrivate`FrontEndResource[ "FEBitmaps", "SummaryBoxOpener"]], ButtonFunction :> (Typeset`open$$ = True), Appearance -> None, BaseStyle -> {}, Evaluator -> Automatic, Method -> "Preemptive"], Alignment -> {Center, Center}, ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], Graphics3DBox[{ Directive[ GrayLevel[1], EdgeForm[ Hue[0.6, 0.3, 0.4]]], Polygon3DBox[ NCache[{{ Rational[ 1, 2] (Rational[5, 2] (4 - 5^ Rational[1, 2] + (15 - 6 5^Rational[1, 2])^ Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (3 + 3 5^Rational[1, 2] + 2 (15 + 6 5^Rational[1, 2])^Rational[1, 2]), 0}, { Rational[ 1, 2] (Rational[1, 2] (10 - 5^ Rational[1, 2] - (15 (5 - 2 5^Rational[1, 2]))^ Rational[1, 2]))^Rational[1, 2], Rational[1, 2] (1 + 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^ Rational[1, 2]), 0}, { Rational[ 1, 4] (47 - 5^ Rational[1, 2] + (1230 - 534 5^Rational[1, 2])^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (5 + 5 5^Rational[1, 2] + (150 + 66 5^Rational[1, 2])^ Rational[1, 2]), 0}}, {{ 1.374395456842987, 5.09240311112776, 0}, { 0.786610204550514, 4.283386116752814, 0}, { 1.7811320999187874`, 4.17885765348516, 0}}]]}, ImageSize -> Dynamic[{5.25, 3.5} (CurrentValue["FontCapHeight"]/ AbsoluteCurrentValue[Magnification])], PlotRange -> Full, Boxed -> False, Lighting -> {{"Ambient", RGBColor[0.732, 0.8232, 0.96]}}, Method -> {"ShrinkWrap" -> True}], GridBox[{{ RowBox[{ TagBox["\"Number of points: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["3", "SummaryItem"]}]}, { RowBox[{ TagBox[ "\"Embedding dimension: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["3", "SummaryItem"]}]}}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> { "Columns" -> {{2}}, "Rows" -> {{Automatic}}}, BaseStyle -> { ShowStringCharacters -> False, NumberMarks -> False, PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, BaselinePosition -> {1, 1}], True -> GridBox[{{ PaneBox[ ButtonBox[ DynamicBox[ FEPrivate`FrontEndResource[ "FEBitmaps", "SummaryBoxCloser"]], ButtonFunction :> (Typeset`open$$ = False), Appearance -> None, BaseStyle -> {}, Evaluator -> Automatic, Method -> "Preemptive"], Alignment -> {Center, Center}, ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], Graphics3DBox[{ Directive[ GrayLevel[1], EdgeForm[ Hue[0.6, 0.3, 0.4]]], Polygon3DBox[ NCache[{{ Rational[ 1, 2] (Rational[5, 2] (4 - 5^ Rational[1, 2] + (15 - 6 5^Rational[1, 2])^ Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (3 + 3 5^Rational[1, 2] + 2 (15 + 6 5^Rational[1, 2])^Rational[1, 2]), 0}, { Rational[ 1, 2] (Rational[1, 2] (10 - 5^ Rational[1, 2] - (15 (5 - 2 5^Rational[1, 2]))^ Rational[1, 2]))^Rational[1, 2], Rational[1, 2] (1 + 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^ Rational[1, 2]), 0}, { Rational[ 1, 4] (47 - 5^ Rational[1, 2] + (1230 - 534 5^Rational[1, 2])^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (5 + 5 5^Rational[1, 2] + (150 + 66 5^Rational[1, 2])^ Rational[1, 2]), 0}}, {{ 1.374395456842987, 5.09240311112776, 0}, { 0.786610204550514, 4.283386116752814, 0}, { 1.7811320999187874`, 4.17885765348516, 0}}]]}, ImageSize -> Dynamic[{5.25, 3.5} (CurrentValue["FontCapHeight"]/ AbsoluteCurrentValue[Magnification])], PlotRange -> Full, Boxed -> False, Lighting -> {{"Ambient", RGBColor[0.732, 0.8232, 0.96]}}, Method -> {"ShrinkWrap" -> True}], GridBox[{{ RowBox[{ TagBox["\"Number of points: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["3", "SummaryItem"]}]}, { RowBox[{ TagBox[ "\"Embedding dimension: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["3", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Type: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Quiet[ Apply[Region`PolygonDump`polygonType, Region`PolygonDump`computeType[Typeset`spolygon$$]]], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}, { RowBox[{ TagBox["\"Bounds: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Region`PolygonDump`iRegionBounds[Typeset`spolygon$$], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}, { RowBox[{ TagBox["\"Area: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Region`PolygonDump`iArea[Typeset`spolygon$$], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> { "Columns" -> {{2}}, "Rows" -> {{Automatic}}}, BaseStyle -> { ShowStringCharacters -> False, NumberMarks -> False, PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, BaselinePosition -> {1, 1}]}, Dynamic[Typeset`open$$], ImageSize -> Automatic]}, "SummaryPanel"], DynamicModuleValues:>{}], "]"}], Polygon[{{ Rational[ 1, 2] (Rational[5, 2] (4 - 5^ Rational[1, 2] + (15 - 6 5^Rational[1, 2])^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (3 + 3 5^Rational[1, 2] + 2 (15 + 6 5^Rational[1, 2])^Rational[1, 2]), 0}, { Rational[ 1, 2] (Rational[1, 2] (10 - 5^ Rational[1, 2] - (15 (5 - 2 5^Rational[1, 2]))^Rational[1, 2]))^ Rational[1, 2], Rational[1, 2] (1 + 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2]), 0}, { Rational[ 1, 4] (47 - 5^ Rational[1, 2] + (1230 - 534 5^Rational[1, 2])^Rational[1, 2])^ Rational[1, 2], Rational[1, 8] (5 + 5 5^Rational[1, 2] + (150 + 66 5^Rational[1, 2])^Rational[1, 2]), 0}}], Editable->False, SelectWithContents->True, Selectable->False], ",", InterpretationBox[ RowBox[{ TagBox["Polygon", "SummaryHead"], "[", DynamicModuleBox[{Typeset`open$$ = False, Typeset`embedState$$ = "Ready", Typeset`spolygon$$ = Polygon[{{ Rational[ 1, 4] (23 + 7 5^Rational[1, 2] + (750 + 330 5^Rational[1, 2])^Rational[1, 2])^ Rational[1, 2], Rational[1, 8] (-1 + 3 5^Rational[1, 2] + (30 - 6 5^Rational[1, 2])^Rational[1, 2]), 0}, {Rational[ 1, 4] (38 + 14 5^Rational[1, 2] + 4 (150 + 66 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2], Rational[1, 4] ( 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2]), 0}, { Rational[ 1, 2] (7 + 5^Rational[1, 2] + (6 (5 + 5^Rational[1, 2]))^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (-1 + 2 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2]), 0}}]}, TemplateBox[{ PaneSelectorBox[{False -> GridBox[{{ PaneBox[ ButtonBox[ DynamicBox[ FEPrivate`FrontEndResource[ "FEBitmaps", "SummaryBoxOpener"]], ButtonFunction :> (Typeset`open$$ = True), Appearance -> None, BaseStyle -> {}, Evaluator -> Automatic, Method -> "Preemptive"], Alignment -> {Center, Center}, ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], Graphics3DBox[{ Directive[ GrayLevel[1], EdgeForm[ Hue[0.6, 0.3, 0.4]]], Polygon3DBox[ NCache[{{ Rational[ 1, 4] (23 + 7 5^Rational[1, 2] + (750 + 330 5^Rational[1, 2])^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (-1 + 3 5^Rational[1, 2] + (30 - 6 5^Rational[1, 2])^ Rational[1, 2]), 0}, { Rational[ 1, 4] (38 + 14 5^Rational[1, 2] + 4 (150 + 66 5^Rational[1, 2])^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] ( 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^ Rational[1, 2]), 0}, { Rational[ 1, 2] (7 + 5^Rational[1, 2] + (6 (5 + 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 4] (-1 + 2 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^ Rational[1, 2]), 0}}, {{ 2.196955481554306, 1.2225624520175482`, 0}, { 2.9401003070317, 1.8916930583764067`, 0}, { 1.9890437907365468`, 2.2007100527513543`, 0}}]]}, ImageSize -> Dynamic[{5.25, 3.5} (CurrentValue["FontCapHeight"]/ AbsoluteCurrentValue[Magnification])], PlotRange -> Full, Boxed -> False, Lighting -> {{"Ambient", RGBColor[0.732, 0.8232, 0.96]}}, Method -> {"ShrinkWrap" -> True}], GridBox[{{ RowBox[{ TagBox["\"Number of points: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["3", "SummaryItem"]}]}, { RowBox[{ TagBox[ "\"Embedding dimension: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["3", "SummaryItem"]}]}}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> { "Columns" -> {{2}}, "Rows" -> {{Automatic}}}, BaseStyle -> { ShowStringCharacters -> False, NumberMarks -> False, PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, BaselinePosition -> {1, 1}], True -> GridBox[{{ PaneBox[ ButtonBox[ DynamicBox[ FEPrivate`FrontEndResource[ "FEBitmaps", "SummaryBoxCloser"]], ButtonFunction :> (Typeset`open$$ = False), Appearance -> None, BaseStyle -> {}, Evaluator -> Automatic, Method -> "Preemptive"], Alignment -> {Center, Center}, ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], Graphics3DBox[{ Directive[ GrayLevel[1], EdgeForm[ Hue[0.6, 0.3, 0.4]]], Polygon3DBox[ NCache[{{ Rational[ 1, 4] (23 + 7 5^Rational[1, 2] + (750 + 330 5^Rational[1, 2])^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (-1 + 3 5^Rational[1, 2] + (30 - 6 5^Rational[1, 2])^ Rational[1, 2]), 0}, { Rational[ 1, 4] (38 + 14 5^Rational[1, 2] + 4 (150 + 66 5^Rational[1, 2])^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] ( 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^ Rational[1, 2]), 0}, { Rational[ 1, 2] (7 + 5^Rational[1, 2] + (6 (5 + 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 4] (-1 + 2 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^ Rational[1, 2]), 0}}, {{ 2.196955481554306, 1.2225624520175482`, 0}, { 2.9401003070317, 1.8916930583764067`, 0}, { 1.9890437907365468`, 2.2007100527513543`, 0}}]]}, ImageSize -> Dynamic[{5.25, 3.5} (CurrentValue["FontCapHeight"]/ AbsoluteCurrentValue[Magnification])], PlotRange -> Full, Boxed -> False, Lighting -> {{"Ambient", RGBColor[0.732, 0.8232, 0.96]}}, Method -> {"ShrinkWrap" -> True}], GridBox[{{ RowBox[{ TagBox["\"Number of points: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["3", "SummaryItem"]}]}, { RowBox[{ TagBox[ "\"Embedding dimension: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["3", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Type: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Quiet[ Apply[Region`PolygonDump`polygonType, Region`PolygonDump`computeType[Typeset`spolygon$$]]], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}, { RowBox[{ TagBox["\"Bounds: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Region`PolygonDump`iRegionBounds[Typeset`spolygon$$], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}, { RowBox[{ TagBox["\"Area: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Region`PolygonDump`iArea[Typeset`spolygon$$], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> { "Columns" -> {{2}}, "Rows" -> {{Automatic}}}, BaseStyle -> { ShowStringCharacters -> False, NumberMarks -> False, PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, BaselinePosition -> {1, 1}]}, Dynamic[Typeset`open$$], ImageSize -> Automatic]}, "SummaryPanel"], DynamicModuleValues:>{}], "]"}], Polygon[{{ Rational[ 1, 4] (23 + 7 5^Rational[1, 2] + (750 + 330 5^Rational[1, 2])^Rational[1, 2])^ Rational[1, 2], Rational[1, 8] (-1 + 3 5^Rational[1, 2] + (30 - 6 5^Rational[1, 2])^Rational[1, 2]), 0}, { Rational[ 1, 4] (38 + 14 5^Rational[1, 2] + 4 (150 + 66 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2], Rational[1, 4] ( 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2]), 0}, { Rational[ 1, 2] (7 + 5^Rational[1, 2] + (6 (5 + 5^Rational[1, 2]))^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (-1 + 2 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2]), 0}}], Editable->False, SelectWithContents->True, Selectable->False], ",", InterpretationBox[ RowBox[{ TagBox["Polygon", "SummaryHead"], "[", DynamicModuleBox[{Typeset`open$$ = False, Typeset`embedState$$ = "Ready", Typeset`spolygon$$ = Polygon[{{ Rational[1, 4] (10 - 2 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (-2 + 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2]), 0}, { Rational[ 1, 4] (17 + 5^Rational[1, 2] + (30 (5 - 5^Rational[1, 2]))^Rational[1, 2])^ Rational[1, 2], Rational[-5, 8] + Rational[3, 8] 5^Rational[1, 2] + Rational[1, 4] (Rational[3, 2] (5 - 5^Rational[1, 2]))^ Rational[1, 2], 0}, { Rational[ 1, 4] (23 + 7 5^Rational[1, 2] + (750 + 330 5^Rational[1, 2])^Rational[1, 2])^ Rational[1, 2], Rational[1, 8] (-1 + 3 5^Rational[1, 2] + (30 - 6 5^Rational[1, 2])^Rational[1, 2]), 0}, {Rational[ 1, 2] (7 + 5^Rational[1, 2] + (6 (5 + 5^Rational[1, 2]))^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (-1 + 2 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2]), 0}, {Rational[ 1, 4] (7 + 5^Rational[1, 2] + (6 (5 + 5^Rational[1, 2]))^Rational[1, 2])^ Rational[1, 2], Rational[1, 8] (-3 + 3 5^Rational[1, 2] + (30 (5 + 5^Rational[1, 2]))^Rational[1, 2]), 0}}]}, TemplateBox[{ PaneSelectorBox[{False -> GridBox[{{ PaneBox[ ButtonBox[ DynamicBox[ FEPrivate`FrontEndResource["FEBitmaps", "SummaryBoxOpener"]] , ButtonFunction :> (Typeset`open$$ = True), Appearance -> None, BaseStyle -> {}, Evaluator -> Automatic, Method -> "Preemptive"], Alignment -> {Center, Center}, ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], Graphics3DBox[{ Directive[ GrayLevel[1], EdgeForm[ Hue[0.6, 0.3, 0.4]]], Polygon3DBox[ NCache[{{ Rational[1, 4] (10 - 2 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (-2 + 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^ Rational[1, 2]), 0}, { Rational[ 1, 4] (17 + 5^Rational[1, 2] + (30 (5 - 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[-5, 8] + Rational[3, 8] 5^Rational[1, 2] + Rational[1, 4] (Rational[3, 2] (5 - 5^Rational[1, 2]))^ Rational[1, 2], 0}, { Rational[ 1, 4] (23 + 7 5^Rational[1, 2] + (750 + 330 5^Rational[1, 2])^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (-1 + 3 5^Rational[1, 2] + (30 - 6 5^Rational[1, 2])^ Rational[1, 2]), 0}, { Rational[ 1, 2] (7 + 5^Rational[1, 2] + (6 (5 + 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 4] (-1 + 2 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^ Rational[1, 2]), 0}, { Rational[ 1, 4] (7 + 5^Rational[1, 2] + (6 (5 + 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (-3 + 3 5^Rational[1, 2] + (30 (5 + 5^Rational[1, 2]))^ Rational[1, 2]), 0}}, {{ 0.5877852522924731, 1.3916930583764067`, 0}, { 1.3309300777698674`, 0.7225624520175483, 0}, { 2.196955481554306, 1.2225624520175482`, 0}, { 1.9890437907365468`, 2.2007100527513543`, 0}, { 0.9945218953682734, 2.305238516019007, 0}}]]}, ImageSize -> Dynamic[{5.25, 3.5} (CurrentValue["FontCapHeight"]/ AbsoluteCurrentValue[Magnification])], PlotRange -> Full, Boxed -> False, Lighting -> {{"Ambient", RGBColor[0.732, 0.8232, 0.96]}}, Method -> {"ShrinkWrap" -> True}], GridBox[{{ RowBox[{ TagBox["\"Number of points: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["5", "SummaryItem"]}]}, { RowBox[{ TagBox[ "\"Embedding dimension: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["3", "SummaryItem"]}]}}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> { "Columns" -> {{2}}, "Rows" -> {{Automatic}}}, BaseStyle -> { ShowStringCharacters -> False, NumberMarks -> False, PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, BaselinePosition -> {1, 1}], True -> GridBox[{{ PaneBox[ ButtonBox[ DynamicBox[ FEPrivate`FrontEndResource[ "FEBitmaps", "SummaryBoxCloser"]], ButtonFunction :> (Typeset`open$$ = False), Appearance -> None, BaseStyle -> {}, Evaluator -> Automatic, Method -> "Preemptive"], Alignment -> {Center, Center}, ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], Graphics3DBox[{ Directive[ GrayLevel[1], EdgeForm[ Hue[0.6, 0.3, 0.4]]], Polygon3DBox[ NCache[{{ Rational[1, 4] (10 - 2 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (-2 + 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^ Rational[1, 2]), 0}, { Rational[ 1, 4] (17 + 5^Rational[1, 2] + (30 (5 - 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[-5, 8] + Rational[3, 8] 5^Rational[1, 2] + Rational[1, 4] (Rational[3, 2] (5 - 5^Rational[1, 2]))^ Rational[1, 2], 0}, { Rational[ 1, 4] (23 + 7 5^Rational[1, 2] + (750 + 330 5^Rational[1, 2])^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (-1 + 3 5^Rational[1, 2] + (30 - 6 5^Rational[1, 2])^ Rational[1, 2]), 0}, { Rational[ 1, 2] (7 + 5^Rational[1, 2] + (6 (5 + 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 4] (-1 + 2 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^ Rational[1, 2]), 0}, { Rational[ 1, 4] (7 + 5^Rational[1, 2] + (6 (5 + 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (-3 + 3 5^Rational[1, 2] + (30 (5 + 5^Rational[1, 2]))^ Rational[1, 2]), 0}}, {{ 0.5877852522924731, 1.3916930583764067`, 0}, { 1.3309300777698674`, 0.7225624520175483, 0}, { 2.196955481554306, 1.2225624520175482`, 0}, { 1.9890437907365468`, 2.2007100527513543`, 0}, { 0.9945218953682734, 2.305238516019007, 0}}]]}, ImageSize -> Dynamic[{5.25, 3.5} (CurrentValue["FontCapHeight"]/ AbsoluteCurrentValue[Magnification])], PlotRange -> Full, Boxed -> False, Lighting -> {{"Ambient", RGBColor[0.732, 0.8232, 0.96]}}, Method -> {"ShrinkWrap" -> True}], GridBox[{{ RowBox[{ TagBox["\"Number of points: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["5", "SummaryItem"]}]}, { RowBox[{ TagBox[ "\"Embedding dimension: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["3", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Type: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Quiet[ Apply[Region`PolygonDump`polygonType, Region`PolygonDump`computeType[Typeset`spolygon$$]]], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}, { RowBox[{ TagBox["\"Bounds: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Region`PolygonDump`iRegionBounds[Typeset`spolygon$$], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}, { RowBox[{ TagBox["\"Area: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Region`PolygonDump`iArea[Typeset`spolygon$$], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> { "Columns" -> {{2}}, "Rows" -> {{Automatic}}}, BaseStyle -> { ShowStringCharacters -> False, NumberMarks -> False, PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, BaselinePosition -> {1, 1}]}, Dynamic[Typeset`open$$], ImageSize -> Automatic]}, "SummaryPanel"], DynamicModuleValues:>{}], "]"}], Polygon[{{ Rational[1, 4] (10 - 2 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (-2 + 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2]), 0}, { Rational[ 1, 4] (17 + 5^Rational[1, 2] + (30 (5 - 5^Rational[1, 2]))^Rational[1, 2])^ Rational[1, 2], Rational[-5, 8] + Rational[3, 8] 5^Rational[1, 2] + Rational[1, 4] (Rational[3, 2] (5 - 5^Rational[1, 2]))^Rational[1, 2], 0}, {Rational[ 1, 4] (23 + 7 5^Rational[1, 2] + (750 + 330 5^Rational[1, 2])^Rational[1, 2])^ Rational[1, 2], Rational[1, 8] (-1 + 3 5^Rational[1, 2] + (30 - 6 5^Rational[1, 2])^Rational[1, 2]), 0}, { Rational[ 1, 2] (7 + 5^Rational[1, 2] + (6 (5 + 5^Rational[1, 2]))^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (-1 + 2 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2]), 0}, { Rational[ 1, 4] (7 + 5^Rational[1, 2] + (6 (5 + 5^Rational[1, 2]))^Rational[1, 2])^ Rational[1, 2], Rational[1, 8] (-3 + 3 5^Rational[1, 2] + (30 (5 + 5^Rational[1, 2]))^Rational[1, 2]), 0}}], Editable->False, SelectWithContents->True, Selectable->False], ",", InterpretationBox[ RowBox[{ TagBox["Polygon", "SummaryHead"], "[", DynamicModuleBox[{Typeset`open$$ = False, Typeset`embedState$$ = "Ready", Typeset`spolygon$$ = Polygon[{{ 0, Rational[1, 4] (-1 + 2 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2]), 0}, {Rational[1, 4] (10 - 2 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (-2 + 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2]), 0}, { Rational[ 1, 4] (7 + 5^Rational[1, 2] + (6 (5 + 5^Rational[1, 2]))^Rational[1, 2])^ Rational[1, 2], Rational[1, 8] (-3 + 3 5^Rational[1, 2] + (30 (5 + 5^Rational[1, 2]))^Rational[1, 2]), 0}}]}, TemplateBox[{ PaneSelectorBox[{False -> GridBox[{{ PaneBox[ ButtonBox[ DynamicBox[ FEPrivate`FrontEndResource[ "FEBitmaps", "SummaryBoxOpener"]], ButtonFunction :> (Typeset`open$$ = True), Appearance -> None, BaseStyle -> {}, Evaluator -> Automatic, Method -> "Preemptive"], Alignment -> {Center, Center}, ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], Graphics3DBox[{ Directive[ GrayLevel[1], EdgeForm[ Hue[0.6, 0.3, 0.4]]], Polygon3DBox[ NCache[{{ 0, Rational[1, 4] (-1 + 2 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^ Rational[1, 2]), 0}, { Rational[1, 4] (10 - 2 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (-2 + 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^ Rational[1, 2]), 0}, { Rational[ 1, 4] (7 + 5^Rational[1, 2] + (6 (5 + 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (-3 + 3 5^Rational[1, 2] + (30 (5 + 5^Rational[1, 2]))^ Rational[1, 2]), 0}}, {{0, 2.2007100527513543`, 0}, { 0.5877852522924731, 1.3916930583764067`, 0}, { 0.9945218953682734, 2.305238516019007, 0}}]]}, ImageSize -> Dynamic[{5.25, 3.5} (CurrentValue["FontCapHeight"]/ AbsoluteCurrentValue[Magnification])], PlotRange -> Full, Boxed -> False, Lighting -> {{"Ambient", RGBColor[0.732, 0.8232, 0.96]}}, Method -> {"ShrinkWrap" -> True}], GridBox[{{ RowBox[{ TagBox["\"Number of points: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["3", "SummaryItem"]}]}, { RowBox[{ TagBox[ "\"Embedding dimension: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["3", "SummaryItem"]}]}}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> { "Columns" -> {{2}}, "Rows" -> {{Automatic}}}, BaseStyle -> { ShowStringCharacters -> False, NumberMarks -> False, PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, BaselinePosition -> {1, 1}], True -> GridBox[{{ PaneBox[ ButtonBox[ DynamicBox[ FEPrivate`FrontEndResource[ "FEBitmaps", "SummaryBoxCloser"]], ButtonFunction :> (Typeset`open$$ = False), Appearance -> None, BaseStyle -> {}, Evaluator -> Automatic, Method -> "Preemptive"], Alignment -> {Center, Center}, ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], Graphics3DBox[{ Directive[ GrayLevel[1], EdgeForm[ Hue[0.6, 0.3, 0.4]]], Polygon3DBox[ NCache[{{ 0, Rational[1, 4] (-1 + 2 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^ Rational[1, 2]), 0}, { Rational[1, 4] (10 - 2 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (-2 + 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^ Rational[1, 2]), 0}, { Rational[ 1, 4] (7 + 5^Rational[1, 2] + (6 (5 + 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (-3 + 3 5^Rational[1, 2] + (30 (5 + 5^Rational[1, 2]))^ Rational[1, 2]), 0}}, {{0, 2.2007100527513543`, 0}, { 0.5877852522924731, 1.3916930583764067`, 0}, { 0.9945218953682734, 2.305238516019007, 0}}]]}, ImageSize -> Dynamic[{5.25, 3.5} (CurrentValue["FontCapHeight"]/ AbsoluteCurrentValue[Magnification])], PlotRange -> Full, Boxed -> False, Lighting -> {{"Ambient", RGBColor[0.732, 0.8232, 0.96]}}, Method -> {"ShrinkWrap" -> True}], GridBox[{{ RowBox[{ TagBox["\"Number of points: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["3", "SummaryItem"]}]}, { RowBox[{ TagBox[ "\"Embedding dimension: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["3", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Type: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Quiet[ Apply[Region`PolygonDump`polygonType, Region`PolygonDump`computeType[Typeset`spolygon$$]]], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}, { RowBox[{ TagBox["\"Bounds: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Region`PolygonDump`iRegionBounds[Typeset`spolygon$$], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}, { RowBox[{ TagBox["\"Area: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Region`PolygonDump`iArea[Typeset`spolygon$$], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> { "Columns" -> {{2}}, "Rows" -> {{Automatic}}}, BaseStyle -> { ShowStringCharacters -> False, NumberMarks -> False, PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, BaselinePosition -> {1, 1}]}, Dynamic[Typeset`open$$], ImageSize -> Automatic]}, "SummaryPanel"], DynamicModuleValues:>{}], "]"}], Polygon[{{ 0, Rational[1, 4] (-1 + 2 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2]), 0}, { Rational[1, 4] (10 - 2 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (-2 + 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2]), 0}, { Rational[ 1, 4] (7 + 5^Rational[1, 2] + (6 (5 + 5^Rational[1, 2]))^Rational[1, 2])^ Rational[1, 2], Rational[1, 8] (-3 + 3 5^Rational[1, 2] + (30 (5 + 5^Rational[1, 2]))^Rational[1, 2]), 0}}], Editable->False, SelectWithContents->True, Selectable->False], ",", InterpretationBox[ RowBox[{ TagBox["Polygon", "SummaryHead"], "[", DynamicModuleBox[{Typeset`open$$ = False, Typeset`embedState$$ = "Ready", Typeset`spolygon$$ = Polygon[{{ Rational[ 1, 4] (73 + 23 5^Rational[1, 2] + 3 (870 + 366 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (1 + 3 5^Rational[1, 2] + (6 (5 + 5^Rational[1, 2]))^Rational[1, 2]), 0}, {(Rational[17, 4] + 5^Rational[1, 2] + Rational[1, 2] (75 + 30 5^Rational[1, 2])^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (1 + 2 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2]), 0}, {Rational[ 1, 4] (38 + 14 5^Rational[1, 2] + 4 (150 + 66 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2], Rational[1, 4] ( 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2]), 0}}]}, TemplateBox[{ PaneSelectorBox[{False -> GridBox[{{ PaneBox[ ButtonBox[ DynamicBox[ FEPrivate`FrontEndResource[ "FEBitmaps", "SummaryBoxOpener"]], ButtonFunction :> (Typeset`open$$ = True), Appearance -> None, BaseStyle -> {}, Evaluator -> Automatic, Method -> "Preemptive"], Alignment -> {Center, Center}, ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], Graphics3DBox[{ Directive[ GrayLevel[1], EdgeForm[ Hue[0.6, 0.3, 0.4]]], Polygon3DBox[ NCache[{{ Rational[ 1, 4] (73 + 23 5^Rational[1, 2] + 3 (870 + 366 5^Rational[1, 2])^Rational[1, 2])^ Rational[1, 2], Rational[1, 8] (1 + 3 5^Rational[1, 2] + (6 (5 + 5^Rational[1, 2]))^ Rational[1, 2]), 0}, {(Rational[17, 4] + 5^Rational[1, 2] + Rational[1, 2] (75 + 30 5^Rational[1, 2])^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (1 + 2 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^ Rational[1, 2]), 0}, { Rational[ 1, 4] (38 + 14 5^Rational[1, 2] + 4 (150 + 66 5^Rational[1, 2])^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] ( 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^ Rational[1, 2]), 0}}, {{ 3.9346222023999737`, 1.7871645951087531`, 0}, { 3.527885559324173, 2.7007100527513543`, 0}, { 2.9401003070317, 1.8916930583764067`, 0}}]]}, ImageSize -> Dynamic[{5.25, 3.5} (CurrentValue["FontCapHeight"]/ AbsoluteCurrentValue[Magnification])], PlotRange -> Full, Boxed -> False, Lighting -> {{"Ambient", RGBColor[0.732, 0.8232, 0.96]}}, Method -> {"ShrinkWrap" -> True}], GridBox[{{ RowBox[{ TagBox["\"Number of points: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["3", "SummaryItem"]}]}, { RowBox[{ TagBox[ "\"Embedding dimension: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["3", "SummaryItem"]}]}}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> { "Columns" -> {{2}}, "Rows" -> {{Automatic}}}, BaseStyle -> { ShowStringCharacters -> False, NumberMarks -> False, PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, BaselinePosition -> {1, 1}], True -> GridBox[{{ PaneBox[ ButtonBox[ DynamicBox[ FEPrivate`FrontEndResource[ "FEBitmaps", "SummaryBoxCloser"]], ButtonFunction :> (Typeset`open$$ = False), Appearance -> None, BaseStyle -> {}, Evaluator -> Automatic, Method -> "Preemptive"], Alignment -> {Center, Center}, ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], Graphics3DBox[{ Directive[ GrayLevel[1], EdgeForm[ Hue[0.6, 0.3, 0.4]]], Polygon3DBox[ NCache[{{ Rational[ 1, 4] (73 + 23 5^Rational[1, 2] + 3 (870 + 366 5^Rational[1, 2])^Rational[1, 2])^ Rational[1, 2], Rational[1, 8] (1 + 3 5^Rational[1, 2] + (6 (5 + 5^Rational[1, 2]))^ Rational[1, 2]), 0}, {(Rational[17, 4] + 5^Rational[1, 2] + Rational[1, 2] (75 + 30 5^Rational[1, 2])^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (1 + 2 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^ Rational[1, 2]), 0}, { Rational[ 1, 4] (38 + 14 5^Rational[1, 2] + 4 (150 + 66 5^Rational[1, 2])^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] ( 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^ Rational[1, 2]), 0}}, {{ 3.9346222023999737`, 1.7871645951087531`, 0}, { 3.527885559324173, 2.7007100527513543`, 0}, { 2.9401003070317, 1.8916930583764067`, 0}}]]}, ImageSize -> Dynamic[{5.25, 3.5} (CurrentValue["FontCapHeight"]/ AbsoluteCurrentValue[Magnification])], PlotRange -> Full, Boxed -> False, Lighting -> {{"Ambient", RGBColor[0.732, 0.8232, 0.96]}}, Method -> {"ShrinkWrap" -> True}], GridBox[{{ RowBox[{ TagBox["\"Number of points: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["3", "SummaryItem"]}]}, { RowBox[{ TagBox[ "\"Embedding dimension: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["3", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Type: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Quiet[ Apply[Region`PolygonDump`polygonType, Region`PolygonDump`computeType[Typeset`spolygon$$]]], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}, { RowBox[{ TagBox["\"Bounds: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Region`PolygonDump`iRegionBounds[Typeset`spolygon$$], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}, { RowBox[{ TagBox["\"Area: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Region`PolygonDump`iArea[Typeset`spolygon$$], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> { "Columns" -> {{2}}, "Rows" -> {{Automatic}}}, BaseStyle -> { ShowStringCharacters -> False, NumberMarks -> False, PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, BaselinePosition -> {1, 1}]}, Dynamic[Typeset`open$$], ImageSize -> Automatic]}, "SummaryPanel"], DynamicModuleValues:>{}], "]"}], Polygon[{{ Rational[ 1, 4] (73 + 23 5^Rational[1, 2] + 3 (870 + 366 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (1 + 3 5^Rational[1, 2] + (6 (5 + 5^Rational[1, 2]))^Rational[1, 2]), 0}, {(Rational[17, 4] + 5^Rational[1, 2] + Rational[1, 2] (75 + 30 5^Rational[1, 2])^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (1 + 2 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2]), 0}, { Rational[ 1, 4] (38 + 14 5^Rational[1, 2] + 4 (150 + 66 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2], Rational[1, 4] ( 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2]), 0}}], Editable->False, SelectWithContents->True, Selectable->False], ",", InterpretationBox[ RowBox[{ TagBox["Polygon", "SummaryHead"], "[", DynamicModuleBox[{Typeset`open$$ = False, Typeset`embedState$$ = "Ready", Typeset`spolygon$$ = Polygon[{{ Rational[ 1, 2] (Rational[3, 2] (10 + 3 5^Rational[1, 2] + (75 + 30 5^Rational[1, 2])^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (-1 + 5^Rational[1, 2]), 0}, { Rational[ 1, 2] (Rational[3, 2] (12 + 5 5^Rational[1, 2] + (3 (85 + 38 5^Rational[1, 2]))^ Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), 0}, { Rational[ 1, 4] (73 + 23 5^Rational[1, 2] + 3 (870 + 366 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (1 + 3 5^Rational[1, 2] + (6 (5 + 5^Rational[1, 2]))^Rational[1, 2]), 0}, {Rational[ 1, 4] (38 + 14 5^Rational[1, 2] + 4 (150 + 66 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2], Rational[1, 4] ( 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2]), 0}, { Rational[ 1, 4] (37 + 11 5^Rational[1, 2] + (870 + 366 5^Rational[1, 2])^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (-1 + 5^Rational[1, 2] + (6 (5 + 5^Rational[1, 2]))^Rational[1, 2]), 0}}]}, TemplateBox[{ PaneSelectorBox[{False -> GridBox[{{ PaneBox[ ButtonBox[ DynamicBox[ FEPrivate`FrontEndResource[ "FEBitmaps", "SummaryBoxOpener"]], ButtonFunction :> (Typeset`open$$ = True), Appearance -> None, BaseStyle -> {}, Evaluator -> Automatic, Method -> "Preemptive"], Alignment -> {Center, Center}, ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], Graphics3DBox[{ Directive[ GrayLevel[1], EdgeForm[ Hue[0.6, 0.3, 0.4]]], Polygon3DBox[ NCache[{{ Rational[ 1, 2] (Rational[3, 2] (10 + 3 5^Rational[1, 2] + (75 + 30 5^Rational[1, 2])^ Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (-1 + 5^Rational[1, 2]), 0}, { Rational[ 1, 2] (Rational[3, 2] (12 + 5 5^Rational[1, 2] + (3 (85 + 38 5^Rational[1, 2]))^ Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), 0}, { Rational[ 1, 4] (73 + 23 5^Rational[1, 2] + 3 (870 + 366 5^Rational[1, 2])^Rational[1, 2])^ Rational[1, 2], Rational[1, 8] (1 + 3 5^Rational[1, 2] + (6 (5 + 5^Rational[1, 2]))^ Rational[1, 2]), 0}, { Rational[ 1, 4] (38 + 14 5^Rational[1, 2] + 4 (150 + 66 5^Rational[1, 2])^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] ( 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^ Rational[1, 2]), 0}, { Rational[ 1, 4] (37 + 11 5^Rational[1, 2] + (870 + 366 5^Rational[1, 2])^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (-1 + 5^Rational[1, 2] + (6 (5 + 5^Rational[1, 2]))^ Rational[1, 2]), 0}}, {{ 3.2765084894332945`, 0.30901699437494745`, 0}, { 4.142533893217733, 0.8090169943749475, 0}, { 3.9346222023999737`, 1.7871645951087531`, 0}, { 2.9401003070317, 1.8916930583764067`, 0}, { 2.5333636639559, 0.9781476007338057, 0}}]]}, ImageSize -> Dynamic[{5.25, 3.5} (CurrentValue["FontCapHeight"]/ AbsoluteCurrentValue[Magnification])], PlotRange -> Full, Boxed -> False, Lighting -> {{"Ambient", RGBColor[0.732, 0.8232, 0.96]}}, Method -> {"ShrinkWrap" -> True}], GridBox[{{ RowBox[{ TagBox["\"Number of points: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["5", "SummaryItem"]}]}, { RowBox[{ TagBox[ "\"Embedding dimension: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["3", "SummaryItem"]}]}}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> { "Columns" -> {{2}}, "Rows" -> {{Automatic}}}, BaseStyle -> { ShowStringCharacters -> False, NumberMarks -> False, PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, BaselinePosition -> {1, 1}], True -> GridBox[{{ PaneBox[ ButtonBox[ DynamicBox[ FEPrivate`FrontEndResource[ "FEBitmaps", "SummaryBoxCloser"]], ButtonFunction :> (Typeset`open$$ = False), Appearance -> None, BaseStyle -> {}, Evaluator -> Automatic, Method -> "Preemptive"], Alignment -> {Center, Center}, ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], Graphics3DBox[{ Directive[ GrayLevel[1], EdgeForm[ Hue[0.6, 0.3, 0.4]]], Polygon3DBox[ NCache[{{ Rational[ 1, 2] (Rational[3, 2] (10 + 3 5^Rational[1, 2] + (75 + 30 5^Rational[1, 2])^ Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (-1 + 5^Rational[1, 2]), 0}, { Rational[ 1, 2] (Rational[3, 2] (12 + 5 5^Rational[1, 2] + (3 (85 + 38 5^Rational[1, 2]))^ Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), 0}, { Rational[ 1, 4] (73 + 23 5^Rational[1, 2] + 3 (870 + 366 5^Rational[1, 2])^Rational[1, 2])^ Rational[1, 2], Rational[1, 8] (1 + 3 5^Rational[1, 2] + (6 (5 + 5^Rational[1, 2]))^ Rational[1, 2]), 0}, { Rational[ 1, 4] (38 + 14 5^Rational[1, 2] + 4 (150 + 66 5^Rational[1, 2])^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] ( 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^ Rational[1, 2]), 0}, { Rational[ 1, 4] (37 + 11 5^Rational[1, 2] + (870 + 366 5^Rational[1, 2])^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (-1 + 5^Rational[1, 2] + (6 (5 + 5^Rational[1, 2]))^ Rational[1, 2]), 0}}, {{ 3.2765084894332945`, 0.30901699437494745`, 0}, { 4.142533893217733, 0.8090169943749475, 0}, { 3.9346222023999737`, 1.7871645951087531`, 0}, { 2.9401003070317, 1.8916930583764067`, 0}, { 2.5333636639559, 0.9781476007338057, 0}}]]}, ImageSize -> Dynamic[{5.25, 3.5} (CurrentValue["FontCapHeight"]/ AbsoluteCurrentValue[Magnification])], PlotRange -> Full, Boxed -> False, Lighting -> {{"Ambient", RGBColor[0.732, 0.8232, 0.96]}}, Method -> {"ShrinkWrap" -> True}], GridBox[{{ RowBox[{ TagBox["\"Number of points: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["5", "SummaryItem"]}]}, { RowBox[{ TagBox[ "\"Embedding dimension: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["3", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Type: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Quiet[ Apply[Region`PolygonDump`polygonType, Region`PolygonDump`computeType[Typeset`spolygon$$]]], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}, { RowBox[{ TagBox["\"Bounds: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Region`PolygonDump`iRegionBounds[Typeset`spolygon$$], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}, { RowBox[{ TagBox["\"Area: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Region`PolygonDump`iArea[Typeset`spolygon$$], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> { "Columns" -> {{2}}, "Rows" -> {{Automatic}}}, BaseStyle -> { ShowStringCharacters -> False, NumberMarks -> False, PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, BaselinePosition -> {1, 1}]}, Dynamic[Typeset`open$$], ImageSize -> Automatic]}, "SummaryPanel"], DynamicModuleValues:>{}], "]"}], Polygon[{{ Rational[ 1, 2] (Rational[3, 2] (10 + 3 5^Rational[1, 2] + (75 + 30 5^Rational[1, 2])^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (-1 + 5^Rational[1, 2]), 0}, { Rational[ 1, 2] (Rational[3, 2] (12 + 5 5^Rational[1, 2] + (3 (85 + 38 5^Rational[1, 2]))^ Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), 0}, { Rational[ 1, 4] (73 + 23 5^Rational[1, 2] + 3 (870 + 366 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (1 + 3 5^Rational[1, 2] + (6 (5 + 5^Rational[1, 2]))^Rational[1, 2]), 0}, {Rational[ 1, 4] (38 + 14 5^Rational[1, 2] + 4 (150 + 66 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2], Rational[1, 4] ( 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2]), 0}, { Rational[ 1, 4] (37 + 11 5^Rational[1, 2] + (870 + 366 5^Rational[1, 2])^Rational[1, 2])^ Rational[1, 2], Rational[1, 8] (-1 + 5^Rational[1, 2] + (6 (5 + 5^Rational[1, 2]))^Rational[1, 2]), 0}}], Editable->False, SelectWithContents->True, Selectable->False], ",", InterpretationBox[ RowBox[{ TagBox["Polygon", "SummaryHead"], "[", DynamicModuleBox[{Typeset`open$$ = False, Typeset`embedState$$ = "Ready", Typeset`spolygon$$ = Polygon[{{ Rational[ 1, 2] (Rational[1, 2] (20 + 5^Rational[1, 2] + (375 + 30 5^Rational[1, 2])^Rational[1, 2]))^ Rational[1, 2], 0, 0}, { Rational[ 1, 2] (Rational[3, 2] (10 + 3 5^Rational[1, 2] + (75 + 30 5^Rational[1, 2])^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (-1 + 5^Rational[1, 2]), 0}, { Rational[ 1, 4] (37 + 11 5^Rational[1, 2] + (870 + 366 5^Rational[1, 2])^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (-1 + 5^Rational[1, 2] + (6 (5 + 5^Rational[1, 2]))^Rational[1, 2]), 0}}]}, TemplateBox[{ PaneSelectorBox[{False -> GridBox[{{ PaneBox[ ButtonBox[ DynamicBox[ FEPrivate`FrontEndResource[ "FEBitmaps", "SummaryBoxOpener"]], ButtonFunction :> (Typeset`open$$ = True), Appearance -> None, BaseStyle -> {}, Evaluator -> Automatic, Method -> "Preemptive"], Alignment -> {Center, Center}, ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], Graphics3DBox[{ Directive[ GrayLevel[1], EdgeForm[ Hue[0.6, 0.3, 0.4]]], Polygon3DBox[ NCache[{{ Rational[ 1, 2] (Rational[1, 2] (20 + 5^Rational[1, 2] + (375 + 30 5^Rational[1, 2])^ Rational[1, 2]))^Rational[1, 2], 0, 0}, { Rational[ 1, 2] (Rational[3, 2] (10 + 3 5^Rational[1, 2] + (75 + 30 5^Rational[1, 2])^ Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (-1 + 5^Rational[1, 2]), 0}, { Rational[ 1, 4] (37 + 11 5^Rational[1, 2] + (870 + 366 5^Rational[1, 2])^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (-1 + 5^Rational[1, 2] + (6 (5 + 5^Rational[1, 2]))^ Rational[1, 2]), 0}}, {{2.325451973138141, 0, 0}, { 3.2765084894332945`, 0.30901699437494745`, 0}, { 2.5333636639559, 0.9781476007338057, 0}}]]}, ImageSize -> Dynamic[{5.25, 3.5} (CurrentValue["FontCapHeight"]/ AbsoluteCurrentValue[Magnification])], PlotRange -> Full, Boxed -> False, Lighting -> {{"Ambient", RGBColor[0.732, 0.8232, 0.96]}}, Method -> {"ShrinkWrap" -> True}], GridBox[{{ RowBox[{ TagBox["\"Number of points: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["3", "SummaryItem"]}]}, { RowBox[{ TagBox[ "\"Embedding dimension: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["3", "SummaryItem"]}]}}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> { "Columns" -> {{2}}, "Rows" -> {{Automatic}}}, BaseStyle -> { ShowStringCharacters -> False, NumberMarks -> False, PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, BaselinePosition -> {1, 1}], True -> GridBox[{{ PaneBox[ ButtonBox[ DynamicBox[ FEPrivate`FrontEndResource[ "FEBitmaps", "SummaryBoxCloser"]], ButtonFunction :> (Typeset`open$$ = False), Appearance -> None, BaseStyle -> {}, Evaluator -> Automatic, Method -> "Preemptive"], Alignment -> {Center, Center}, ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], Graphics3DBox[{ Directive[ GrayLevel[1], EdgeForm[ Hue[0.6, 0.3, 0.4]]], Polygon3DBox[ NCache[{{ Rational[ 1, 2] (Rational[1, 2] (20 + 5^Rational[1, 2] + (375 + 30 5^Rational[1, 2])^ Rational[1, 2]))^Rational[1, 2], 0, 0}, { Rational[ 1, 2] (Rational[3, 2] (10 + 3 5^Rational[1, 2] + (75 + 30 5^Rational[1, 2])^ Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (-1 + 5^Rational[1, 2]), 0}, { Rational[ 1, 4] (37 + 11 5^Rational[1, 2] + (870 + 366 5^Rational[1, 2])^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (-1 + 5^Rational[1, 2] + (6 (5 + 5^Rational[1, 2]))^ Rational[1, 2]), 0}}, {{2.325451973138141, 0, 0}, { 3.2765084894332945`, 0.30901699437494745`, 0}, { 2.5333636639559, 0.9781476007338057, 0}}]]}, ImageSize -> Dynamic[{5.25, 3.5} (CurrentValue["FontCapHeight"]/ AbsoluteCurrentValue[Magnification])], PlotRange -> Full, Boxed -> False, Lighting -> {{"Ambient", RGBColor[0.732, 0.8232, 0.96]}}, Method -> {"ShrinkWrap" -> True}], GridBox[{{ RowBox[{ TagBox["\"Number of points: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["3", "SummaryItem"]}]}, { RowBox[{ TagBox[ "\"Embedding dimension: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["3", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Type: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Quiet[ Apply[Region`PolygonDump`polygonType, Region`PolygonDump`computeType[Typeset`spolygon$$]]], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}, { RowBox[{ TagBox["\"Bounds: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Region`PolygonDump`iRegionBounds[Typeset`spolygon$$], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}, { RowBox[{ TagBox["\"Area: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Region`PolygonDump`iArea[Typeset`spolygon$$], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> { "Columns" -> {{2}}, "Rows" -> {{Automatic}}}, BaseStyle -> { ShowStringCharacters -> False, NumberMarks -> False, PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, BaselinePosition -> {1, 1}]}, Dynamic[Typeset`open$$], ImageSize -> Automatic]}, "SummaryPanel"], DynamicModuleValues:>{}], "]"}], Polygon[{{ Rational[ 1, 2] (Rational[1, 2] (20 + 5^Rational[1, 2] + (375 + 30 5^Rational[1, 2])^Rational[1, 2]))^ Rational[1, 2], 0, 0}, { Rational[ 1, 2] (Rational[3, 2] (10 + 3 5^Rational[1, 2] + (75 + 30 5^Rational[1, 2])^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (-1 + 5^Rational[1, 2]), 0}, { Rational[ 1, 4] (37 + 11 5^Rational[1, 2] + (870 + 366 5^Rational[1, 2])^Rational[1, 2])^ Rational[1, 2], Rational[1, 8] (-1 + 5^Rational[1, 2] + (6 (5 + 5^Rational[1, 2]))^Rational[1, 2]), 0}}], Editable->False, SelectWithContents->True, Selectable->False], ",", InterpretationBox[ RowBox[{ TagBox["Polygon", "SummaryHead"], "[", DynamicModuleBox[{Typeset`open$$ = False, Typeset`embedState$$ = "Ready", Typeset`spolygon$$ = Polygon[{{ Rational[ 1, 4] (73 + 23 5^Rational[1, 2] + 3 (870 + 366 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (3 + 5 5^Rational[1, 2] + (30 (5 + 5^Rational[1, 2]))^Rational[1, 2]), 0}, { Rational[ 1, 4] (38 + 14 5^Rational[1, 2] + 4 (150 + 66 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (2 + 3 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2]), 0}, {(Rational[17, 4] + 5^Rational[1, 2] + Rational[1, 2] (75 + 30 5^Rational[1, 2])^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (1 + 2 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2]), 0}}]}, TemplateBox[{ PaneSelectorBox[{False -> GridBox[{{ PaneBox[ ButtonBox[ DynamicBox[ FEPrivate`FrontEndResource[ "FEBitmaps", "SummaryBoxOpener"]], ButtonFunction :> (Typeset`open$$ = True), Appearance -> None, BaseStyle -> {}, Evaluator -> Automatic, Method -> "Preemptive"], Alignment -> {Center, Center}, ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], Graphics3DBox[{ Directive[ GrayLevel[1], EdgeForm[ Hue[0.6, 0.3, 0.4]]], Polygon3DBox[ NCache[{{ Rational[ 1, 4] (73 + 23 5^Rational[1, 2] + 3 (870 + 366 5^Rational[1, 2])^Rational[1, 2])^ Rational[1, 2], Rational[1, 8] (3 + 5 5^Rational[1, 2] + (30 (5 + 5^Rational[1, 2]))^ Rational[1, 2]), 0}, { Rational[ 1, 4] (38 + 14 5^Rational[1, 2] + 4 (150 + 66 5^Rational[1, 2])^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (2 + 3 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^ Rational[1, 2]), 0}, {(Rational[17, 4] + 5^Rational[1, 2] + Rational[1, 2] (75 + 30 5^Rational[1, 2])^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (1 + 2 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^ Rational[1, 2]), 0}}, {{ 3.9346222023999737`, 3.6142555103939547`, 0}, { 2.9401003070317, 3.509727047126302, 0}, { 3.527885559324173, 2.7007100527513543`, 0}}]]}, ImageSize -> Dynamic[{5.25, 3.5} (CurrentValue["FontCapHeight"]/ AbsoluteCurrentValue[Magnification])], PlotRange -> Full, Boxed -> False, Lighting -> {{"Ambient", RGBColor[0.732, 0.8232, 0.96]}}, Method -> {"ShrinkWrap" -> True}], GridBox[{{ RowBox[{ TagBox["\"Number of points: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["3", "SummaryItem"]}]}, { RowBox[{ TagBox[ "\"Embedding dimension: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["3", "SummaryItem"]}]}}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> { "Columns" -> {{2}}, "Rows" -> {{Automatic}}}, BaseStyle -> { ShowStringCharacters -> False, NumberMarks -> False, PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, BaselinePosition -> {1, 1}], True -> GridBox[{{ PaneBox[ ButtonBox[ DynamicBox[ FEPrivate`FrontEndResource[ "FEBitmaps", "SummaryBoxCloser"]], ButtonFunction :> (Typeset`open$$ = False), Appearance -> None, BaseStyle -> {}, Evaluator -> Automatic, Method -> "Preemptive"], Alignment -> {Center, Center}, ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], Graphics3DBox[{ Directive[ GrayLevel[1], EdgeForm[ Hue[0.6, 0.3, 0.4]]], Polygon3DBox[ NCache[{{ Rational[ 1, 4] (73 + 23 5^Rational[1, 2] + 3 (870 + 366 5^Rational[1, 2])^Rational[1, 2])^ Rational[1, 2], Rational[1, 8] (3 + 5 5^Rational[1, 2] + (30 (5 + 5^Rational[1, 2]))^ Rational[1, 2]), 0}, { Rational[ 1, 4] (38 + 14 5^Rational[1, 2] + 4 (150 + 66 5^Rational[1, 2])^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (2 + 3 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^ Rational[1, 2]), 0}, {(Rational[17, 4] + 5^Rational[1, 2] + Rational[1, 2] (75 + 30 5^Rational[1, 2])^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (1 + 2 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^ Rational[1, 2]), 0}}, {{ 3.9346222023999737`, 3.6142555103939547`, 0}, { 2.9401003070317, 3.509727047126302, 0}, { 3.527885559324173, 2.7007100527513543`, 0}}]]}, ImageSize -> Dynamic[{5.25, 3.5} (CurrentValue["FontCapHeight"]/ AbsoluteCurrentValue[Magnification])], PlotRange -> Full, Boxed -> False, Lighting -> {{"Ambient", RGBColor[0.732, 0.8232, 0.96]}}, Method -> {"ShrinkWrap" -> True}], GridBox[{{ RowBox[{ TagBox["\"Number of points: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["3", "SummaryItem"]}]}, { RowBox[{ TagBox[ "\"Embedding dimension: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["3", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Type: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Quiet[ Apply[Region`PolygonDump`polygonType, Region`PolygonDump`computeType[Typeset`spolygon$$]]], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}, { RowBox[{ TagBox["\"Bounds: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Region`PolygonDump`iRegionBounds[Typeset`spolygon$$], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}, { RowBox[{ TagBox["\"Area: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Region`PolygonDump`iArea[Typeset`spolygon$$], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> { "Columns" -> {{2}}, "Rows" -> {{Automatic}}}, BaseStyle -> { ShowStringCharacters -> False, NumberMarks -> False, PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, BaselinePosition -> {1, 1}]}, Dynamic[Typeset`open$$], ImageSize -> Automatic]}, "SummaryPanel"], DynamicModuleValues:>{}], "]"}], Polygon[{{ Rational[ 1, 4] (73 + 23 5^Rational[1, 2] + 3 (870 + 366 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (3 + 5 5^Rational[1, 2] + (30 (5 + 5^Rational[1, 2]))^Rational[1, 2]), 0}, {Rational[ 1, 4] (38 + 14 5^Rational[1, 2] + 4 (150 + 66 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (2 + 3 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2]), 0}, {(Rational[17, 4] + 5^Rational[1, 2] + Rational[1, 2] (75 + 30 5^Rational[1, 2])^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (1 + 2 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2]), 0}}], Editable->False, SelectWithContents->True, Selectable->False], ",", InterpretationBox[ RowBox[{ TagBox["Polygon", "SummaryHead"], "[", DynamicModuleBox[{Typeset`open$$ = False, Typeset`embedState$$ = "Ready", Typeset`spolygon$$ = Polygon[{{ Rational[ 1, 4] (115 + 43 5^Rational[1, 2] + (30 (745 + 331 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (5 + 5 5^Rational[1, 2] + (30 - 6 5^Rational[1, 2])^Rational[1, 2]), 0}, {(Rational[61, 8] + Rational[17, 8] 5^Rational[1, 2] + (75 + 30 5^Rational[1, 2])^ Rational[1, 2])^Rational[1, 2], Rational[1, 4] (2 + 3 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2]), 0}, {Rational[ 1, 4] (73 + 23 5^Rational[1, 2] + 3 (870 + 366 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (3 + 5 5^Rational[1, 2] + (30 (5 + 5^Rational[1, 2]))^Rational[1, 2]), 0}, {(Rational[17, 4] + 5^Rational[1, 2] + Rational[1, 2] (75 + 30 5^Rational[1, 2])^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (1 + 2 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2]), 0}, {Rational[ 1, 4] (97 + 25 5^Rational[1, 2] + (6 (1745 + 659 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (1 + 5 5^Rational[1, 2] + (30 - 6 5^Rational[1, 2])^Rational[1, 2]), 0}}]}, TemplateBox[{ PaneSelectorBox[{False -> GridBox[{{ PaneBox[ ButtonBox[ DynamicBox[ FEPrivate`FrontEndResource[ "FEBitmaps", "SummaryBoxOpener"]], ButtonFunction :> (Typeset`open$$ = True), Appearance -> None, BaseStyle -> {}, Evaluator -> Automatic, Method -> "Preemptive"], Alignment -> {Center, Center}, ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], Graphics3DBox[{ Directive[ GrayLevel[1], EdgeForm[ Hue[0.6, 0.3, 0.4]]], Polygon3DBox[ NCache[{{ Rational[ 1, 4] (115 + 43 5^Rational[1, 2] + (30 (745 + 331 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (5 + 5 5^Rational[1, 2] + (30 - 6 5^Rational[1, 2])^ Rational[1, 2]), 0}, {(Rational[61, 8] + Rational[17, 8] 5^Rational[1, 2] + (75 + 30 5^Rational[1, 2])^ Rational[1, 2])^Rational[1, 2], Rational[1, 4] (2 + 3 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^ Rational[1, 2]), 0}, { Rational[ 1, 4] (73 + 23 5^Rational[1, 2] + 3 (870 + 366 5^Rational[1, 2])^Rational[1, 2])^ Rational[1, 2], Rational[1, 8] (3 + 5 5^Rational[1, 2] + (30 (5 + 5^Rational[1, 2]))^ Rational[1, 2]), 0}, {(Rational[17, 4] + 5^Rational[1, 2] + Rational[1, 2] (75 + 30 5^Rational[1, 2])^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (1 + 2 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^ Rational[1, 2]), 0}, { Rational[ 1, 4] (97 + 25 5^Rational[1, 2] + (6 (1745 + 659 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (1 + 5 5^Rational[1, 2] + (30 - 6 5^Rational[1, 2])^ Rational[1, 2]), 0}}, {{ 5.137055788586006, 2.5315794463924957`, 0}, { 4.929144097768247, 3.509727047126302, 0}, { 3.9346222023999737`, 3.6142555103939547`, 0}, { 3.527885559324173, 2.7007100527513543`, 0}, { 4.271030384801567, 2.0315794463924957`, 0}}]]}, ImageSize -> Dynamic[{5.25, 3.5} (CurrentValue["FontCapHeight"]/ AbsoluteCurrentValue[Magnification])], PlotRange -> Full, Boxed -> False, Lighting -> {{"Ambient", RGBColor[0.732, 0.8232, 0.96]}}, Method -> {"ShrinkWrap" -> True}], GridBox[{{ RowBox[{ TagBox["\"Number of points: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["5", "SummaryItem"]}]}, { RowBox[{ TagBox[ "\"Embedding dimension: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["3", "SummaryItem"]}]}}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> { "Columns" -> {{2}}, "Rows" -> {{Automatic}}}, BaseStyle -> { ShowStringCharacters -> False, NumberMarks -> False, PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, BaselinePosition -> {1, 1}], True -> GridBox[{{ PaneBox[ ButtonBox[ DynamicBox[ FEPrivate`FrontEndResource[ "FEBitmaps", "SummaryBoxCloser"]], ButtonFunction :> (Typeset`open$$ = False), Appearance -> None, BaseStyle -> {}, Evaluator -> Automatic, Method -> "Preemptive"], Alignment -> {Center, Center}, ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], Graphics3DBox[{ Directive[ GrayLevel[1], EdgeForm[ Hue[0.6, 0.3, 0.4]]], Polygon3DBox[ NCache[{{ Rational[ 1, 4] (115 + 43 5^Rational[1, 2] + (30 (745 + 331 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (5 + 5 5^Rational[1, 2] + (30 - 6 5^Rational[1, 2])^ Rational[1, 2]), 0}, {(Rational[61, 8] + Rational[17, 8] 5^Rational[1, 2] + (75 + 30 5^Rational[1, 2])^ Rational[1, 2])^Rational[1, 2], Rational[1, 4] (2 + 3 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^ Rational[1, 2]), 0}, { Rational[ 1, 4] (73 + 23 5^Rational[1, 2] + 3 (870 + 366 5^Rational[1, 2])^Rational[1, 2])^ Rational[1, 2], Rational[1, 8] (3 + 5 5^Rational[1, 2] + (30 (5 + 5^Rational[1, 2]))^ Rational[1, 2]), 0}, {(Rational[17, 4] + 5^Rational[1, 2] + Rational[1, 2] (75 + 30 5^Rational[1, 2])^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (1 + 2 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^ Rational[1, 2]), 0}, { Rational[ 1, 4] (97 + 25 5^Rational[1, 2] + (6 (1745 + 659 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (1 + 5 5^Rational[1, 2] + (30 - 6 5^Rational[1, 2])^ Rational[1, 2]), 0}}, {{ 5.137055788586006, 2.5315794463924957`, 0}, { 4.929144097768247, 3.509727047126302, 0}, { 3.9346222023999737`, 3.6142555103939547`, 0}, { 3.527885559324173, 2.7007100527513543`, 0}, { 4.271030384801567, 2.0315794463924957`, 0}}]]}, ImageSize -> Dynamic[{5.25, 3.5} (CurrentValue["FontCapHeight"]/ AbsoluteCurrentValue[Magnification])], PlotRange -> Full, Boxed -> False, Lighting -> {{"Ambient", RGBColor[0.732, 0.8232, 0.96]}}, Method -> {"ShrinkWrap" -> True}], GridBox[{{ RowBox[{ TagBox["\"Number of points: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["5", "SummaryItem"]}]}, { RowBox[{ TagBox[ "\"Embedding dimension: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["3", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Type: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Quiet[ Apply[Region`PolygonDump`polygonType, Region`PolygonDump`computeType[Typeset`spolygon$$]]], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}, { RowBox[{ TagBox["\"Bounds: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Region`PolygonDump`iRegionBounds[Typeset`spolygon$$], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}, { RowBox[{ TagBox["\"Area: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Region`PolygonDump`iArea[Typeset`spolygon$$], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> { "Columns" -> {{2}}, "Rows" -> {{Automatic}}}, BaseStyle -> { ShowStringCharacters -> False, NumberMarks -> False, PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, BaselinePosition -> {1, 1}]}, Dynamic[Typeset`open$$], ImageSize -> Automatic]}, "SummaryPanel"], DynamicModuleValues:>{}], "]"}], Polygon[{{ Rational[ 1, 4] (115 + 43 5^Rational[1, 2] + (30 (745 + 331 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (5 + 5 5^Rational[1, 2] + (30 - 6 5^Rational[1, 2])^Rational[1, 2]), 0}, {(Rational[61, 8] + Rational[17, 8] 5^Rational[1, 2] + (75 + 30 5^Rational[1, 2])^ Rational[1, 2])^Rational[1, 2], Rational[1, 4] (2 + 3 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2]), 0}, { Rational[ 1, 4] (73 + 23 5^Rational[1, 2] + 3 (870 + 366 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (3 + 5 5^Rational[1, 2] + (30 (5 + 5^Rational[1, 2]))^Rational[1, 2]), 0}, {(Rational[17, 4] + 5^Rational[1, 2] + Rational[1, 2] (75 + 30 5^Rational[1, 2])^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (1 + 2 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2]), 0}, { Rational[ 1, 4] (97 + 25 5^Rational[1, 2] + (6 (1745 + 659 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (1 + 5 5^Rational[1, 2] + (30 - 6 5^Rational[1, 2])^Rational[1, 2]), 0}}], Editable->False, SelectWithContents->True, Selectable->False], ",", InterpretationBox[ RowBox[{ TagBox["Polygon", "SummaryHead"], "[", DynamicModuleBox[{Typeset`open$$ = False, Typeset`embedState$$ = "Ready", Typeset`spolygon$$ = Polygon[{{ Rational[ 1, 4] (115 + 43 5^Rational[1, 2] + (30 (745 + 331 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (-3 + 5 5^Rational[1, 2] + (30 - 6 5^Rational[1, 2])^Rational[1, 2]), 0}, {Rational[ 1, 4] (115 + 43 5^Rational[1, 2] + (30 (745 + 331 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (5 + 5 5^Rational[1, 2] + (30 - 6 5^Rational[1, 2])^Rational[1, 2]), 0}, {Rational[ 1, 4] (97 + 25 5^Rational[1, 2] + (6 (1745 + 659 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (1 + 5 5^Rational[1, 2] + (30 - 6 5^Rational[1, 2])^Rational[1, 2]), 0}}]}, TemplateBox[{ PaneSelectorBox[{False -> GridBox[{{ PaneBox[ ButtonBox[ DynamicBox[ FEPrivate`FrontEndResource[ "FEBitmaps", "SummaryBoxOpener"]], ButtonFunction :> (Typeset`open$$ = True), Appearance -> None, BaseStyle -> {}, Evaluator -> Automatic, Method -> "Preemptive"], Alignment -> {Center, Center}, ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], Graphics3DBox[{ Directive[ GrayLevel[1], EdgeForm[ Hue[0.6, 0.3, 0.4]]], Polygon3DBox[ NCache[{{ Rational[ 1, 4] (115 + 43 5^Rational[1, 2] + (30 (745 + 331 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (-3 + 5 5^Rational[1, 2] + (30 - 6 5^Rational[1, 2])^ Rational[1, 2]), 0}, { Rational[ 1, 4] (115 + 43 5^Rational[1, 2] + (30 (745 + 331 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (5 + 5 5^Rational[1, 2] + (30 - 6 5^Rational[1, 2])^ Rational[1, 2]), 0}, { Rational[ 1, 4] (97 + 25 5^Rational[1, 2] + (6 (1745 + 659 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (1 + 5 5^Rational[1, 2] + (30 - 6 5^Rational[1, 2])^ Rational[1, 2]), 0}}, {{ 5.137055788586006, 1.5315794463924957`, 0}, { 5.137055788586006, 2.5315794463924957`, 0}, { 4.271030384801567, 2.0315794463924957`, 0}}]]}, ImageSize -> Dynamic[{5.25, 3.5} (CurrentValue["FontCapHeight"]/ AbsoluteCurrentValue[Magnification])], PlotRange -> Full, Boxed -> False, Lighting -> {{"Ambient", RGBColor[0.732, 0.8232, 0.96]}}, Method -> {"ShrinkWrap" -> True}], GridBox[{{ RowBox[{ TagBox["\"Number of points: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["3", "SummaryItem"]}]}, { RowBox[{ TagBox[ "\"Embedding dimension: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["3", "SummaryItem"]}]}}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> { "Columns" -> {{2}}, "Rows" -> {{Automatic}}}, BaseStyle -> { ShowStringCharacters -> False, NumberMarks -> False, PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, BaselinePosition -> {1, 1}], True -> GridBox[{{ PaneBox[ ButtonBox[ DynamicBox[ FEPrivate`FrontEndResource[ "FEBitmaps", "SummaryBoxCloser"]], ButtonFunction :> (Typeset`open$$ = False), Appearance -> None, BaseStyle -> {}, Evaluator -> Automatic, Method -> "Preemptive"], Alignment -> {Center, Center}, ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], Graphics3DBox[{ Directive[ GrayLevel[1], EdgeForm[ Hue[0.6, 0.3, 0.4]]], Polygon3DBox[ NCache[{{ Rational[ 1, 4] (115 + 43 5^Rational[1, 2] + (30 (745 + 331 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (-3 + 5 5^Rational[1, 2] + (30 - 6 5^Rational[1, 2])^ Rational[1, 2]), 0}, { Rational[ 1, 4] (115 + 43 5^Rational[1, 2] + (30 (745 + 331 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (5 + 5 5^Rational[1, 2] + (30 - 6 5^Rational[1, 2])^ Rational[1, 2]), 0}, { Rational[ 1, 4] (97 + 25 5^Rational[1, 2] + (6 (1745 + 659 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (1 + 5 5^Rational[1, 2] + (30 - 6 5^Rational[1, 2])^ Rational[1, 2]), 0}}, {{ 5.137055788586006, 1.5315794463924957`, 0}, { 5.137055788586006, 2.5315794463924957`, 0}, { 4.271030384801567, 2.0315794463924957`, 0}}]]}, ImageSize -> Dynamic[{5.25, 3.5} (CurrentValue["FontCapHeight"]/ AbsoluteCurrentValue[Magnification])], PlotRange -> Full, Boxed -> False, Lighting -> {{"Ambient", RGBColor[0.732, 0.8232, 0.96]}}, Method -> {"ShrinkWrap" -> True}], GridBox[{{ RowBox[{ TagBox["\"Number of points: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["3", "SummaryItem"]}]}, { RowBox[{ TagBox[ "\"Embedding dimension: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["3", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Type: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Quiet[ Apply[Region`PolygonDump`polygonType, Region`PolygonDump`computeType[Typeset`spolygon$$]]], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}, { RowBox[{ TagBox["\"Bounds: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Region`PolygonDump`iRegionBounds[Typeset`spolygon$$], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}, { RowBox[{ TagBox["\"Area: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Region`PolygonDump`iArea[Typeset`spolygon$$], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> { "Columns" -> {{2}}, "Rows" -> {{Automatic}}}, BaseStyle -> { ShowStringCharacters -> False, NumberMarks -> False, PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, BaselinePosition -> {1, 1}]}, Dynamic[Typeset`open$$], ImageSize -> Automatic]}, "SummaryPanel"], DynamicModuleValues:>{}], "]"}], Polygon[{{ Rational[ 1, 4] (115 + 43 5^Rational[1, 2] + (30 (745 + 331 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (-3 + 5 5^Rational[1, 2] + (30 - 6 5^Rational[1, 2])^Rational[1, 2]), 0}, { Rational[ 1, 4] (115 + 43 5^Rational[1, 2] + (30 (745 + 331 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (5 + 5 5^Rational[1, 2] + (30 - 6 5^Rational[1, 2])^Rational[1, 2]), 0}, { Rational[ 1, 4] (97 + 25 5^Rational[1, 2] + (6 (1745 + 659 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (1 + 5 5^Rational[1, 2] + (30 - 6 5^Rational[1, 2])^Rational[1, 2]), 0}}], Editable->False, SelectWithContents->True, Selectable->False], ",", InterpretationBox[ RowBox[{ TagBox["Polygon", "SummaryHead"], "[", DynamicModuleBox[{Typeset`open$$ = False, Typeset`embedState$$ = "Ready", Typeset`spolygon$$ = Polygon[{{ Rational[ 1, 4] (23 + 7 5^Rational[1, 2] + (750 + 330 5^Rational[1, 2])^Rational[1, 2])^ Rational[1, 2], Rational[1, 8] (5 + 5 5^Rational[1, 2] + (150 + 66 5^Rational[1, 2])^Rational[1, 2]), 0}, {Rational[ 1, 2] (7 + 5^Rational[1, 2] + (6 (5 + 5^Rational[1, 2]))^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 2 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2]), 0}, {Rational[ 1, 4] (38 + 14 5^Rational[1, 2] + 4 (150 + 66 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (2 + 3 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2]), 0}}]}, TemplateBox[{ PaneSelectorBox[{False -> GridBox[{{ PaneBox[ ButtonBox[ DynamicBox[ FEPrivate`FrontEndResource[ "FEBitmaps", "SummaryBoxOpener"]], ButtonFunction :> (Typeset`open$$ = True), Appearance -> None, BaseStyle -> {}, Evaluator -> Automatic, Method -> "Preemptive"], Alignment -> {Center, Center}, ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], Graphics3DBox[{ Directive[ GrayLevel[1], EdgeForm[ Hue[0.6, 0.3, 0.4]]], Polygon3DBox[ NCache[{{ Rational[ 1, 4] (23 + 7 5^Rational[1, 2] + (750 + 330 5^Rational[1, 2])^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (5 + 5 5^Rational[1, 2] + (150 + 66 5^Rational[1, 2])^ Rational[1, 2]), 0}, { Rational[ 1, 2] (7 + 5^Rational[1, 2] + (6 (5 + 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 2 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^ Rational[1, 2]), 0}, { Rational[ 1, 4] (38 + 14 5^Rational[1, 2] + 4 (150 + 66 5^Rational[1, 2])^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (2 + 3 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^ Rational[1, 2]), 0}}, {{ 2.196955481554306, 4.17885765348516, 0}, { 1.9890437907365468`, 3.2007100527513543`, 0}, { 2.9401003070317, 3.509727047126302, 0}}]]}, ImageSize -> Dynamic[{5.25, 3.5} (CurrentValue["FontCapHeight"]/ AbsoluteCurrentValue[Magnification])], PlotRange -> Full, Boxed -> False, Lighting -> {{"Ambient", RGBColor[0.732, 0.8232, 0.96]}}, Method -> {"ShrinkWrap" -> True}], GridBox[{{ RowBox[{ TagBox["\"Number of points: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["3", "SummaryItem"]}]}, { RowBox[{ TagBox[ "\"Embedding dimension: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["3", "SummaryItem"]}]}}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> { "Columns" -> {{2}}, "Rows" -> {{Automatic}}}, BaseStyle -> { ShowStringCharacters -> False, NumberMarks -> False, PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, BaselinePosition -> {1, 1}], True -> GridBox[{{ PaneBox[ ButtonBox[ DynamicBox[ FEPrivate`FrontEndResource[ "FEBitmaps", "SummaryBoxCloser"]], ButtonFunction :> (Typeset`open$$ = False), Appearance -> None, BaseStyle -> {}, Evaluator -> Automatic, Method -> "Preemptive"], Alignment -> {Center, Center}, ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], Graphics3DBox[{ Directive[ GrayLevel[1], EdgeForm[ Hue[0.6, 0.3, 0.4]]], Polygon3DBox[ NCache[{{ Rational[ 1, 4] (23 + 7 5^Rational[1, 2] + (750 + 330 5^Rational[1, 2])^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (5 + 5 5^Rational[1, 2] + (150 + 66 5^Rational[1, 2])^ Rational[1, 2]), 0}, { Rational[ 1, 2] (7 + 5^Rational[1, 2] + (6 (5 + 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 2 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^ Rational[1, 2]), 0}, { Rational[ 1, 4] (38 + 14 5^Rational[1, 2] + 4 (150 + 66 5^Rational[1, 2])^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (2 + 3 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^ Rational[1, 2]), 0}}, {{ 2.196955481554306, 4.17885765348516, 0}, { 1.9890437907365468`, 3.2007100527513543`, 0}, { 2.9401003070317, 3.509727047126302, 0}}]]}, ImageSize -> Dynamic[{5.25, 3.5} (CurrentValue["FontCapHeight"]/ AbsoluteCurrentValue[Magnification])], PlotRange -> Full, Boxed -> False, Lighting -> {{"Ambient", RGBColor[0.732, 0.8232, 0.96]}}, Method -> {"ShrinkWrap" -> True}], GridBox[{{ RowBox[{ TagBox["\"Number of points: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["3", "SummaryItem"]}]}, { RowBox[{ TagBox[ "\"Embedding dimension: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["3", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Type: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Quiet[ Apply[Region`PolygonDump`polygonType, Region`PolygonDump`computeType[Typeset`spolygon$$]]], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}, { RowBox[{ TagBox["\"Bounds: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Region`PolygonDump`iRegionBounds[Typeset`spolygon$$], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}, { RowBox[{ TagBox["\"Area: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Region`PolygonDump`iArea[Typeset`spolygon$$], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> { "Columns" -> {{2}}, "Rows" -> {{Automatic}}}, BaseStyle -> { ShowStringCharacters -> False, NumberMarks -> False, PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, BaselinePosition -> {1, 1}]}, Dynamic[Typeset`open$$], ImageSize -> Automatic]}, "SummaryPanel"], DynamicModuleValues:>{}], "]"}], Polygon[{{ Rational[ 1, 4] (23 + 7 5^Rational[1, 2] + (750 + 330 5^Rational[1, 2])^Rational[1, 2])^ Rational[1, 2], Rational[1, 8] (5 + 5 5^Rational[1, 2] + (150 + 66 5^Rational[1, 2])^Rational[1, 2]), 0}, {Rational[ 1, 2] (7 + 5^Rational[1, 2] + (6 (5 + 5^Rational[1, 2]))^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 2 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2]), 0}, { Rational[ 1, 4] (38 + 14 5^Rational[1, 2] + 4 (150 + 66 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (2 + 3 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2]), 0}}], Editable->False, SelectWithContents->True, Selectable->False], ",", InterpretationBox[ RowBox[{ TagBox["Polygon", "SummaryHead"], "[", DynamicModuleBox[{Typeset`open$$ = False, Typeset`embedState$$ = "Ready", Typeset`spolygon$$ = Polygon[{{ Rational[ 1, 4] (5 (13 + 5 5^Rational[1, 2] + (150 + 66 5^Rational[1, 2])^ Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (7 + 7 5^Rational[1, 2] + (150 + 66 5^Rational[1, 2])^Rational[1, 2]), 0}, {Rational[ 1, 2] (8 + Rational[7, 2] 5^Rational[1, 2] + Rational[1, 2] (3 (85 + 38 5^Rational[1, 2]))^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 3 5^Rational[1, 2] + 2 (15 + 6 5^Rational[1, 2])^Rational[1, 2]), 0}, { Rational[ 1, 4] (23 + 7 5^Rational[1, 2] + (750 + 330 5^Rational[1, 2])^Rational[1, 2])^ Rational[1, 2], Rational[1, 8] (5 + 5 5^Rational[1, 2] + (150 + 66 5^Rational[1, 2])^Rational[1, 2]), 0}, {Rational[ 1, 4] (38 + 14 5^Rational[1, 2] + 4 (150 + 66 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (2 + 3 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2]), 0}, {Rational[ 1, 4] (62 + 26 5^Rational[1, 2] + 4 (6 (65 + 29 5^Rational[1, 2]))^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (4 + 3 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2]), 0}}]}, TemplateBox[{ PaneSelectorBox[{False -> GridBox[{{ PaneBox[ ButtonBox[ DynamicBox[ FEPrivate`FrontEndResource[ "FEBitmaps", "SummaryBoxOpener"]], ButtonFunction :> (Typeset`open$$ = True), Appearance -> None, BaseStyle -> {}, Evaluator -> Automatic, Method -> "Preemptive"], Alignment -> {Center, Center}, ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], Graphics3DBox[{ Directive[ GrayLevel[1], EdgeForm[ Hue[0.6, 0.3, 0.4]]], Polygon3DBox[ NCache[{{ Rational[ 1, 4] (5 (13 + 5 5^Rational[1, 2] + (150 + 66 5^Rational[1, 2])^ Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (7 + 7 5^Rational[1, 2] + (150 + 66 5^Rational[1, 2])^ Rational[1, 2]), 0}, { Rational[ 1, 2] (8 + Rational[7, 2] 5^Rational[1, 2] + Rational[1, 2] (3 (85 + 38 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 3 5^Rational[1, 2] + 2 (15 + 6 5^Rational[1, 2])^Rational[1, 2]), 0}, { Rational[ 1, 4] (23 + 7 5^Rational[1, 2] + (750 + 330 5^Rational[1, 2])^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (5 + 5 5^Rational[1, 2] + (150 + 66 5^Rational[1, 2])^ Rational[1, 2]), 0}, { Rational[ 1, 4] (38 + 14 5^Rational[1, 2] + 4 (150 + 66 5^Rational[1, 2])^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (2 + 3 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^ Rational[1, 2]), 0}, { Rational[ 1, 4] (62 + 26 5^Rational[1, 2] + 4 (6 (65 + 29 5^Rational[1, 2]))^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (4 + 3 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^ Rational[1, 2]), 0}}, {{ 3.59821401999838, 4.987874647860107, 0}, { 2.6036921246301064`, 5.09240311112776, 0}, { 2.196955481554306, 4.17885765348516, 0}, { 2.9401003070317, 3.509727047126302, 0}, { 3.8061257108161386`, 4.009727047126302, 0}}]]}, ImageSize -> Dynamic[{5.25, 3.5} (CurrentValue["FontCapHeight"]/ AbsoluteCurrentValue[Magnification])], PlotRange -> Full, Boxed -> False, Lighting -> {{"Ambient", RGBColor[0.732, 0.8232, 0.96]}}, Method -> {"ShrinkWrap" -> True}], GridBox[{{ RowBox[{ TagBox["\"Number of points: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["5", "SummaryItem"]}]}, { RowBox[{ TagBox[ "\"Embedding dimension: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["3", "SummaryItem"]}]}}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> { "Columns" -> {{2}}, "Rows" -> {{Automatic}}}, BaseStyle -> { ShowStringCharacters -> False, NumberMarks -> False, PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, BaselinePosition -> {1, 1}], True -> GridBox[{{ PaneBox[ ButtonBox[ DynamicBox[ FEPrivate`FrontEndResource[ "FEBitmaps", "SummaryBoxCloser"]], ButtonFunction :> (Typeset`open$$ = False), Appearance -> None, BaseStyle -> {}, Evaluator -> Automatic, Method -> "Preemptive"], Alignment -> {Center, Center}, ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], Graphics3DBox[{ Directive[ GrayLevel[1], EdgeForm[ Hue[0.6, 0.3, 0.4]]], Polygon3DBox[ NCache[{{ Rational[ 1, 4] (5 (13 + 5 5^Rational[1, 2] + (150 + 66 5^Rational[1, 2])^ Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (7 + 7 5^Rational[1, 2] + (150 + 66 5^Rational[1, 2])^ Rational[1, 2]), 0}, { Rational[ 1, 2] (8 + Rational[7, 2] 5^Rational[1, 2] + Rational[1, 2] (3 (85 + 38 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 3 5^Rational[1, 2] + 2 (15 + 6 5^Rational[1, 2])^Rational[1, 2]), 0}, { Rational[ 1, 4] (23 + 7 5^Rational[1, 2] + (750 + 330 5^Rational[1, 2])^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (5 + 5 5^Rational[1, 2] + (150 + 66 5^Rational[1, 2])^ Rational[1, 2]), 0}, { Rational[ 1, 4] (38 + 14 5^Rational[1, 2] + 4 (150 + 66 5^Rational[1, 2])^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (2 + 3 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^ Rational[1, 2]), 0}, { Rational[ 1, 4] (62 + 26 5^Rational[1, 2] + 4 (6 (65 + 29 5^Rational[1, 2]))^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (4 + 3 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^ Rational[1, 2]), 0}}, {{ 3.59821401999838, 4.987874647860107, 0}, { 2.6036921246301064`, 5.09240311112776, 0}, { 2.196955481554306, 4.17885765348516, 0}, { 2.9401003070317, 3.509727047126302, 0}, { 3.8061257108161386`, 4.009727047126302, 0}}]]}, ImageSize -> Dynamic[{5.25, 3.5} (CurrentValue["FontCapHeight"]/ AbsoluteCurrentValue[Magnification])], PlotRange -> Full, Boxed -> False, Lighting -> {{"Ambient", RGBColor[0.732, 0.8232, 0.96]}}, Method -> {"ShrinkWrap" -> True}], GridBox[{{ RowBox[{ TagBox["\"Number of points: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["5", "SummaryItem"]}]}, { RowBox[{ TagBox[ "\"Embedding dimension: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["3", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Type: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Quiet[ Apply[Region`PolygonDump`polygonType, Region`PolygonDump`computeType[Typeset`spolygon$$]]], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}, { RowBox[{ TagBox["\"Bounds: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Region`PolygonDump`iRegionBounds[Typeset`spolygon$$], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}, { RowBox[{ TagBox["\"Area: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Region`PolygonDump`iArea[Typeset`spolygon$$], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> { "Columns" -> {{2}}, "Rows" -> {{Automatic}}}, BaseStyle -> { ShowStringCharacters -> False, NumberMarks -> False, PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, BaselinePosition -> {1, 1}]}, Dynamic[Typeset`open$$], ImageSize -> Automatic]}, "SummaryPanel"], DynamicModuleValues:>{}], "]"}], Polygon[{{ Rational[ 1, 4] (5 (13 + 5 5^Rational[1, 2] + (150 + 66 5^Rational[1, 2])^Rational[1, 2]))^ Rational[1, 2], Rational[1, 8] (7 + 7 5^Rational[1, 2] + (150 + 66 5^Rational[1, 2])^Rational[1, 2]), 0}, {Rational[ 1, 2] (8 + Rational[7, 2] 5^Rational[1, 2] + Rational[1, 2] (3 (85 + 38 5^Rational[1, 2]))^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 3 5^Rational[1, 2] + 2 (15 + 6 5^Rational[1, 2])^Rational[1, 2]), 0}, { Rational[ 1, 4] (23 + 7 5^Rational[1, 2] + (750 + 330 5^Rational[1, 2])^Rational[1, 2])^ Rational[1, 2], Rational[1, 8] (5 + 5 5^Rational[1, 2] + (150 + 66 5^Rational[1, 2])^Rational[1, 2]), 0}, {Rational[ 1, 4] (38 + 14 5^Rational[1, 2] + 4 (150 + 66 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (2 + 3 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2]), 0}, { Rational[ 1, 4] (62 + 26 5^Rational[1, 2] + 4 (6 (65 + 29 5^Rational[1, 2]))^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (4 + 3 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2]), 0}}], Editable->False, SelectWithContents->True, Selectable->False], ",", InterpretationBox[ RowBox[{ TagBox["Polygon", "SummaryHead"], "[", DynamicModuleBox[{Typeset`open$$ = False, Typeset`embedState$$ = "Ready", Typeset`spolygon$$ = Polygon[{{ Rational[ 1, 4] (85 + 37 5^Rational[1, 2] + (30 (445 + 199 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (9 + 5 5^Rational[1, 2] + (150 + 66 5^Rational[1, 2])^Rational[1, 2]), 0}, {Rational[ 1, 4] (5 (13 + 5 5^Rational[1, 2] + (150 + 66 5^Rational[1, 2])^ Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (7 + 7 5^Rational[1, 2] + (150 + 66 5^Rational[1, 2])^Rational[1, 2]), 0}, {Rational[ 1, 4] (62 + 26 5^Rational[1, 2] + 4 (6 (65 + 29 5^Rational[1, 2]))^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (4 + 3 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2]), 0}}]}, TemplateBox[{ PaneSelectorBox[{False -> GridBox[{{ PaneBox[ ButtonBox[ DynamicBox[ FEPrivate`FrontEndResource[ "FEBitmaps", "SummaryBoxOpener"]], ButtonFunction :> (Typeset`open$$ = True), Appearance -> None, BaseStyle -> {}, Evaluator -> Automatic, Method -> "Preemptive"], Alignment -> {Center, Center}, ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], Graphics3DBox[{ Directive[ GrayLevel[1], EdgeForm[ Hue[0.6, 0.3, 0.4]]], Polygon3DBox[ NCache[{{ Rational[ 1, 4] (85 + 37 5^Rational[1, 2] + (30 (445 + 199 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (9 + 5 5^Rational[1, 2] + (150 + 66 5^Rational[1, 2])^ Rational[1, 2]), 0}, { Rational[ 1, 4] (5 (13 + 5 5^Rational[1, 2] + (150 + 66 5^Rational[1, 2])^ Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (7 + 7 5^Rational[1, 2] + (150 + 66 5^Rational[1, 2])^ Rational[1, 2]), 0}, { Rational[ 1, 4] (62 + 26 5^Rational[1, 2] + 4 (6 (65 + 29 5^Rational[1, 2]))^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (4 + 3 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^ Rational[1, 2]), 0}}, {{ 4.549270536293533, 4.67885765348516, 0}, { 3.59821401999838, 4.987874647860107, 0}, { 3.8061257108161386`, 4.009727047126302, 0}}]]}, ImageSize -> Dynamic[{5.25, 3.5} (CurrentValue["FontCapHeight"]/ AbsoluteCurrentValue[Magnification])], PlotRange -> Full, Boxed -> False, Lighting -> {{"Ambient", RGBColor[0.732, 0.8232, 0.96]}}, Method -> {"ShrinkWrap" -> True}], GridBox[{{ RowBox[{ TagBox["\"Number of points: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["3", "SummaryItem"]}]}, { RowBox[{ TagBox[ "\"Embedding dimension: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["3", "SummaryItem"]}]}}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> { "Columns" -> {{2}}, "Rows" -> {{Automatic}}}, BaseStyle -> { ShowStringCharacters -> False, NumberMarks -> False, PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, BaselinePosition -> {1, 1}], True -> GridBox[{{ PaneBox[ ButtonBox[ DynamicBox[ FEPrivate`FrontEndResource[ "FEBitmaps", "SummaryBoxCloser"]], ButtonFunction :> (Typeset`open$$ = False), Appearance -> None, BaseStyle -> {}, Evaluator -> Automatic, Method -> "Preemptive"], Alignment -> {Center, Center}, ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], Graphics3DBox[{ Directive[ GrayLevel[1], EdgeForm[ Hue[0.6, 0.3, 0.4]]], Polygon3DBox[ NCache[{{ Rational[ 1, 4] (85 + 37 5^Rational[1, 2] + (30 (445 + 199 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (9 + 5 5^Rational[1, 2] + (150 + 66 5^Rational[1, 2])^ Rational[1, 2]), 0}, { Rational[ 1, 4] (5 (13 + 5 5^Rational[1, 2] + (150 + 66 5^Rational[1, 2])^ Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (7 + 7 5^Rational[1, 2] + (150 + 66 5^Rational[1, 2])^ Rational[1, 2]), 0}, { Rational[ 1, 4] (62 + 26 5^Rational[1, 2] + 4 (6 (65 + 29 5^Rational[1, 2]))^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (4 + 3 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^ Rational[1, 2]), 0}}, {{ 4.549270536293533, 4.67885765348516, 0}, { 3.59821401999838, 4.987874647860107, 0}, { 3.8061257108161386`, 4.009727047126302, 0}}]]}, ImageSize -> Dynamic[{5.25, 3.5} (CurrentValue["FontCapHeight"]/ AbsoluteCurrentValue[Magnification])], PlotRange -> Full, Boxed -> False, Lighting -> {{"Ambient", RGBColor[0.732, 0.8232, 0.96]}}, Method -> {"ShrinkWrap" -> True}], GridBox[{{ RowBox[{ TagBox["\"Number of points: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["3", "SummaryItem"]}]}, { RowBox[{ TagBox[ "\"Embedding dimension: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["3", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Type: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Quiet[ Apply[Region`PolygonDump`polygonType, Region`PolygonDump`computeType[Typeset`spolygon$$]]], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}, { RowBox[{ TagBox["\"Bounds: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Region`PolygonDump`iRegionBounds[Typeset`spolygon$$], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}, { RowBox[{ TagBox["\"Area: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Region`PolygonDump`iArea[Typeset`spolygon$$], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> { "Columns" -> {{2}}, "Rows" -> {{Automatic}}}, BaseStyle -> { ShowStringCharacters -> False, NumberMarks -> False, PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, BaselinePosition -> {1, 1}]}, Dynamic[Typeset`open$$], ImageSize -> Automatic]}, "SummaryPanel"], DynamicModuleValues:>{}], "]"}], Polygon[{{ Rational[ 1, 4] (85 + 37 5^Rational[1, 2] + (30 (445 + 199 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (9 + 5 5^Rational[1, 2] + (150 + 66 5^Rational[1, 2])^Rational[1, 2]), 0}, {Rational[ 1, 4] (5 (13 + 5 5^Rational[1, 2] + (150 + 66 5^Rational[1, 2])^Rational[1, 2]))^ Rational[1, 2], Rational[1, 8] (7 + 7 5^Rational[1, 2] + (150 + 66 5^Rational[1, 2])^Rational[1, 2]), 0}, {Rational[ 1, 4] (62 + 26 5^Rational[1, 2] + 4 (6 (65 + 29 5^Rational[1, 2]))^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (4 + 3 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2]), 0}}], Editable->False, SelectWithContents->True, Selectable->False], ",", InterpretationBox[ RowBox[{ TagBox["Polygon", "SummaryHead"], "[", DynamicModuleBox[{Typeset`open$$ = False, Typeset`embedState$$ = "Ready", Typeset`spolygon$$ = Polygon[{{ Rational[ 1, 4] (217 + 95 5^Rational[1, 2] + (75750 + 33870 5^Rational[1, 2])^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (3 + 5 5^Rational[1, 2] + (30 (5 + 5^Rational[1, 2]))^Rational[1, 2]), 0}, {(Rational[47, 4] + 5 5^Rational[1, 2] + (3 (85 + 38 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 4] (1 + 2 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2]), 0}, {Rational[ 1, 4] (233 + 97 5^Rational[1, 2] + (6 (16705 + 7459 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (1 + 5 5^Rational[1, 2] + (30 - 6 5^Rational[1, 2])^Rational[1, 2]), 0}, {Rational[ 1, 4] (287 + 127 5^Rational[1, 2] + (149070 + 66666 5^Rational[1, 2])^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (5 + 5 5^Rational[1, 2] + (30 - 6 5^Rational[1, 2])^Rational[1, 2]), 0}, {(Rational[145, 8] + Rational[61, 8] 5^Rational[1, 2] + (Rational[15, 2] (65 + 29 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 4] (2 + 3 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2]), 0}}]}, TemplateBox[{ PaneSelectorBox[{False -> GridBox[{{ PaneBox[ ButtonBox[ DynamicBox[ FEPrivate`FrontEndResource[ "FEBitmaps", "SummaryBoxOpener"]], ButtonFunction :> (Typeset`open$$ = True), Appearance -> None, BaseStyle -> {}, Evaluator -> Automatic, Method -> "Preemptive"], Alignment -> {Center, Center}, ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], Graphics3DBox[{ Directive[ GrayLevel[1], EdgeForm[ Hue[0.6, 0.3, 0.4]]], Polygon3DBox[ NCache[{{ Rational[ 1, 4] (217 + 95 5^Rational[1, 2] + (75750 + 33870 5^Rational[1, 2])^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (3 + 5 5^Rational[1, 2] + (30 (5 + 5^Rational[1, 2]))^ Rational[1, 2]), 0}, {(Rational[47, 4] + 5 5^Rational[1, 2] + (3 (85 + 38 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 4] (1 + 2 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^ Rational[1, 2]), 0}, { Rational[ 1, 4] (233 + 97 5^Rational[1, 2] + (6 (16705 + 7459 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (1 + 5 5^Rational[1, 2] + (30 - 6 5^Rational[1, 2])^ Rational[1, 2]), 0}, { Rational[ 1, 4] (287 + 127 5^Rational[1, 2] + (149070 + 66666 5^Rational[1, 2])^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (5 + 5 5^Rational[1, 2] + (30 - 6 5^Rational[1, 2])^ Rational[1, 2]), 0}, {(Rational[145, 8] + Rational[61, 8] 5^Rational[1, 2] + ( Rational[15, 2] (65 + 29 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 4] (2 + 3 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^ Rational[1, 2]), 0}}, {{ 7.152962660923639, 3.6142555103939547`, 0}, { 6.746226017847839, 2.7007100527513543`, 0}, { 7.489370843325234, 2.0315794463924957`, 0}, { 8.355396247109672, 2.5315794463924957`, 0}, { 8.147484556291912, 3.509727047126302, 0}}]]}, ImageSize -> Dynamic[{5.25, 3.5} (CurrentValue["FontCapHeight"]/ AbsoluteCurrentValue[Magnification])], PlotRange -> Full, Boxed -> False, Lighting -> {{"Ambient", RGBColor[0.732, 0.8232, 0.96]}}, Method -> {"ShrinkWrap" -> True}], GridBox[{{ RowBox[{ TagBox["\"Number of points: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["5", "SummaryItem"]}]}, { RowBox[{ TagBox[ "\"Embedding dimension: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["3", "SummaryItem"]}]}}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> { "Columns" -> {{2}}, "Rows" -> {{Automatic}}}, BaseStyle -> { ShowStringCharacters -> False, NumberMarks -> False, PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, BaselinePosition -> {1, 1}], True -> GridBox[{{ PaneBox[ ButtonBox[ DynamicBox[ FEPrivate`FrontEndResource[ "FEBitmaps", "SummaryBoxCloser"]], ButtonFunction :> (Typeset`open$$ = False), Appearance -> None, BaseStyle -> {}, Evaluator -> Automatic, Method -> "Preemptive"], Alignment -> {Center, Center}, ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], Graphics3DBox[{ Directive[ GrayLevel[1], EdgeForm[ Hue[0.6, 0.3, 0.4]]], Polygon3DBox[ NCache[{{ Rational[ 1, 4] (217 + 95 5^Rational[1, 2] + (75750 + 33870 5^Rational[1, 2])^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (3 + 5 5^Rational[1, 2] + (30 (5 + 5^Rational[1, 2]))^ Rational[1, 2]), 0}, {(Rational[47, 4] + 5 5^Rational[1, 2] + (3 (85 + 38 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 4] (1 + 2 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^ Rational[1, 2]), 0}, { Rational[ 1, 4] (233 + 97 5^Rational[1, 2] + (6 (16705 + 7459 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (1 + 5 5^Rational[1, 2] + (30 - 6 5^Rational[1, 2])^ Rational[1, 2]), 0}, { Rational[ 1, 4] (287 + 127 5^Rational[1, 2] + (149070 + 66666 5^Rational[1, 2])^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (5 + 5 5^Rational[1, 2] + (30 - 6 5^Rational[1, 2])^ Rational[1, 2]), 0}, {(Rational[145, 8] + Rational[61, 8] 5^Rational[1, 2] + ( Rational[15, 2] (65 + 29 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 4] (2 + 3 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^ Rational[1, 2]), 0}}, {{ 7.152962660923639, 3.6142555103939547`, 0}, { 6.746226017847839, 2.7007100527513543`, 0}, { 7.489370843325234, 2.0315794463924957`, 0}, { 8.355396247109672, 2.5315794463924957`, 0}, { 8.147484556291912, 3.509727047126302, 0}}]]}, ImageSize -> Dynamic[{5.25, 3.5} (CurrentValue["FontCapHeight"]/ AbsoluteCurrentValue[Magnification])], PlotRange -> Full, Boxed -> False, Lighting -> {{"Ambient", RGBColor[0.732, 0.8232, 0.96]}}, Method -> {"ShrinkWrap" -> True}], GridBox[{{ RowBox[{ TagBox["\"Number of points: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["5", "SummaryItem"]}]}, { RowBox[{ TagBox[ "\"Embedding dimension: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["3", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Type: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Quiet[ Apply[Region`PolygonDump`polygonType, Region`PolygonDump`computeType[Typeset`spolygon$$]]], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}, { RowBox[{ TagBox["\"Bounds: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Region`PolygonDump`iRegionBounds[Typeset`spolygon$$], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}, { RowBox[{ TagBox["\"Area: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Region`PolygonDump`iArea[Typeset`spolygon$$], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> { "Columns" -> {{2}}, "Rows" -> {{Automatic}}}, BaseStyle -> { ShowStringCharacters -> False, NumberMarks -> False, PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, BaselinePosition -> {1, 1}]}, Dynamic[Typeset`open$$], ImageSize -> Automatic]}, "SummaryPanel"], DynamicModuleValues:>{}], "]"}], Polygon[{{ Rational[ 1, 4] (217 + 95 5^Rational[1, 2] + (75750 + 33870 5^Rational[1, 2])^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (3 + 5 5^Rational[1, 2] + (30 (5 + 5^Rational[1, 2]))^Rational[1, 2]), 0}, {(Rational[47, 4] + 5 5^Rational[1, 2] + (3 (85 + 38 5^Rational[1, 2]))^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (1 + 2 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2]), 0}, { Rational[ 1, 4] (233 + 97 5^Rational[1, 2] + (6 (16705 + 7459 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (1 + 5 5^Rational[1, 2] + (30 - 6 5^Rational[1, 2])^Rational[1, 2]), 0}, { Rational[ 1, 4] (287 + 127 5^Rational[1, 2] + (149070 + 66666 5^Rational[1, 2])^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (5 + 5 5^Rational[1, 2] + (30 - 6 5^Rational[1, 2])^Rational[1, 2]), 0}, {(Rational[145, 8] + Rational[61, 8] 5^Rational[1, 2] + (Rational[15, 2] (65 + 29 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 4] (2 + 3 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2]), 0}}], Editable->False, SelectWithContents->True, Selectable->False], ",", InterpretationBox[ RowBox[{ TagBox["Polygon", "SummaryHead"], "[", DynamicModuleBox[{Typeset`open$$ = False, Typeset`embedState$$ = "Ready", Typeset`spolygon$$ = Polygon[{{(Rational[85, 4] + Rational[37, 4] 5^Rational[1, 2] + Rational[ 1, 2] (Rational[6675, 2] + Rational[2985, 2] 5^Rational[1, 2])^ Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 2 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2]), 0}, {(Rational[145, 8] + Rational[61, 8] 5^Rational[1, 2] + (Rational[15, 2] (65 + 29 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 4] (2 + 3 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2]), 0}, {Rational[ 1, 4] (287 + 127 5^Rational[1, 2] + (149070 + 66666 5^Rational[1, 2])^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (5 + 5 5^Rational[1, 2] + (30 - 6 5^Rational[1, 2])^Rational[1, 2]), 0}}]}, TemplateBox[{ PaneSelectorBox[{False -> GridBox[{{ PaneBox[ ButtonBox[ DynamicBox[ FEPrivate`FrontEndResource[ "FEBitmaps", "SummaryBoxOpener"]], ButtonFunction :> (Typeset`open$$ = True), Appearance -> None, BaseStyle -> {}, Evaluator -> Automatic, Method -> "Preemptive"], Alignment -> {Center, Center}, ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], Graphics3DBox[{ Directive[ GrayLevel[1], EdgeForm[ Hue[0.6, 0.3, 0.4]]], Polygon3DBox[ NCache[{{(Rational[85, 4] + Rational[37, 4] 5^Rational[1, 2] + Rational[ 1, 2] (Rational[6675, 2] + Rational[2985, 2] 5^Rational[1, 2])^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 2 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^ Rational[1, 2]), 0}, {(Rational[145, 8] + Rational[61, 8] 5^Rational[1, 2] + ( Rational[15, 2] (65 + 29 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 4] (2 + 3 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^ Rational[1, 2]), 0}, { Rational[ 1, 4] (287 + 127 5^Rational[1, 2] + (149070 + 66666 5^Rational[1, 2])^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (5 + 5 5^Rational[1, 2] + (30 - 6 5^Rational[1, 2])^ Rational[1, 2]), 0}}, {{ 9.098541072587066, 3.2007100527513543`, 0}, { 8.147484556291912, 3.509727047126302, 0}, { 8.355396247109672, 2.5315794463924957`, 0}}]]}, ImageSize -> Dynamic[{5.25, 3.5} (CurrentValue["FontCapHeight"]/ AbsoluteCurrentValue[Magnification])], PlotRange -> Full, Boxed -> False, Lighting -> {{"Ambient", RGBColor[0.732, 0.8232, 0.96]}}, Method -> {"ShrinkWrap" -> True}], GridBox[{{ RowBox[{ TagBox["\"Number of points: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["3", "SummaryItem"]}]}, { RowBox[{ TagBox[ "\"Embedding dimension: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["3", "SummaryItem"]}]}}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> { "Columns" -> {{2}}, "Rows" -> {{Automatic}}}, BaseStyle -> { ShowStringCharacters -> False, NumberMarks -> False, PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, BaselinePosition -> {1, 1}], True -> GridBox[{{ PaneBox[ ButtonBox[ DynamicBox[ FEPrivate`FrontEndResource[ "FEBitmaps", "SummaryBoxCloser"]], ButtonFunction :> (Typeset`open$$ = False), Appearance -> None, BaseStyle -> {}, Evaluator -> Automatic, Method -> "Preemptive"], Alignment -> {Center, Center}, ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], Graphics3DBox[{ Directive[ GrayLevel[1], EdgeForm[ Hue[0.6, 0.3, 0.4]]], Polygon3DBox[ NCache[{{(Rational[85, 4] + Rational[37, 4] 5^Rational[1, 2] + Rational[ 1, 2] (Rational[6675, 2] + Rational[2985, 2] 5^Rational[1, 2])^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 2 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^ Rational[1, 2]), 0}, {(Rational[145, 8] + Rational[61, 8] 5^Rational[1, 2] + ( Rational[15, 2] (65 + 29 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 4] (2 + 3 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^ Rational[1, 2]), 0}, { Rational[ 1, 4] (287 + 127 5^Rational[1, 2] + (149070 + 66666 5^Rational[1, 2])^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (5 + 5 5^Rational[1, 2] + (30 - 6 5^Rational[1, 2])^ Rational[1, 2]), 0}}, {{ 9.098541072587066, 3.2007100527513543`, 0}, { 8.147484556291912, 3.509727047126302, 0}, { 8.355396247109672, 2.5315794463924957`, 0}}]]}, ImageSize -> Dynamic[{5.25, 3.5} (CurrentValue["FontCapHeight"]/ AbsoluteCurrentValue[Magnification])], PlotRange -> Full, Boxed -> False, Lighting -> {{"Ambient", RGBColor[0.732, 0.8232, 0.96]}}, Method -> {"ShrinkWrap" -> True}], GridBox[{{ RowBox[{ TagBox["\"Number of points: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["3", "SummaryItem"]}]}, { RowBox[{ TagBox[ "\"Embedding dimension: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["3", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Type: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Quiet[ Apply[Region`PolygonDump`polygonType, Region`PolygonDump`computeType[Typeset`spolygon$$]]], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}, { RowBox[{ TagBox["\"Bounds: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Region`PolygonDump`iRegionBounds[Typeset`spolygon$$], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}, { RowBox[{ TagBox["\"Area: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Region`PolygonDump`iArea[Typeset`spolygon$$], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> { "Columns" -> {{2}}, "Rows" -> {{Automatic}}}, BaseStyle -> { ShowStringCharacters -> False, NumberMarks -> False, PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, BaselinePosition -> {1, 1}]}, Dynamic[Typeset`open$$], ImageSize -> Automatic]}, "SummaryPanel"], DynamicModuleValues:>{}], "]"}], Polygon[{{(Rational[85, 4] + Rational[37, 4] 5^Rational[1, 2] + Rational[ 1, 2] (Rational[6675, 2] + Rational[2985, 2] 5^Rational[1, 2])^ Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 2 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2]), 0}, {(Rational[145, 8] + Rational[61, 8] 5^Rational[1, 2] + (Rational[15, 2] (65 + 29 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 4] (2 + 3 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2]), 0}, { Rational[ 1, 4] (287 + 127 5^Rational[1, 2] + (149070 + 66666 5^Rational[1, 2])^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (5 + 5 5^Rational[1, 2] + (30 - 6 5^Rational[1, 2])^Rational[1, 2]), 0}}], Editable->False, SelectWithContents->True, Selectable->False], ",", InterpretationBox[ RowBox[{ TagBox["Polygon", "SummaryHead"], "[", DynamicModuleBox[{Typeset`open$$ = False, Typeset`embedState$$ = "Ready", Typeset`spolygon$$ = Polygon[{{ Rational[ 1, 4] (413 + 181 5^Rational[1, 2] + (6 (41465 + 18539 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (3 + 3 5^Rational[1, 2] + (30 - 6 5^Rational[1, 2])^Rational[1, 2]), 0}, {Rational[ 1, 2] (103 + 46 5^Rational[1, 2] + 2 (4575 + 2046 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (1 + 2 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2]), 0}, {(Rational[85, 4] + Rational[37, 4] 5^Rational[1, 2] + Rational[ 1, 2] (Rational[6675, 2] + Rational[2985, 2] 5^Rational[1, 2])^ Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 2 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2]), 0}, {Rational[ 1, 4] (287 + 127 5^Rational[1, 2] + (149070 + 66666 5^Rational[1, 2])^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (5 + 5 5^Rational[1, 2] + (30 - 6 5^Rational[1, 2])^Rational[1, 2]), 0}, {Rational[ 1, 4] (328 + 146 5^Rational[1, 2] + 6 (4575 + 2046 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (1 + 5^Rational[1, 2]), 0}}]}, TemplateBox[{ PaneSelectorBox[{False -> GridBox[{{ PaneBox[ ButtonBox[ DynamicBox[ FEPrivate`FrontEndResource[ "FEBitmaps", "SummaryBoxOpener"]], ButtonFunction :> (Typeset`open$$ = True), Appearance -> None, BaseStyle -> {}, Evaluator -> Automatic, Method -> "Preemptive"], Alignment -> {Center, Center}, ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], Graphics3DBox[{ Directive[ GrayLevel[1], EdgeForm[ Hue[0.6, 0.3, 0.4]]], Polygon3DBox[ NCache[{{ Rational[ 1, 4] (413 + 181 5^Rational[1, 2] + ( 6 (41465 + 18539 5^Rational[1, 2]))^Rational[1, 2])^ Rational[1, 2], Rational[1, 8] (3 + 3 5^Rational[1, 2] + (30 - 6 5^Rational[1, 2])^ Rational[1, 2]), 0}, { Rational[ 1, 2] (103 + 46 5^Rational[1, 2] + 2 (4575 + 2046 5^Rational[1, 2])^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (1 + 2 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^ Rational[1, 2]), 0}, {(Rational[85, 4] + Rational[37, 4] 5^Rational[1, 2] + Rational[ 1, 2] (Rational[6675, 2] + Rational[2985, 2] 5^Rational[1, 2])^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 2 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^ Rational[1, 2]), 0}, { Rational[ 1, 4] (287 + 127 5^Rational[1, 2] + (149070 + 66666 5^Rational[1, 2])^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (5 + 5 5^Rational[1, 2] + (30 - 6 5^Rational[1, 2])^ Rational[1, 2]), 0}, { Rational[ 1, 4] (328 + 146 5^Rational[1, 2] + 6 (4575 + 2046 5^Rational[1, 2])^Rational[1, 2])^ Rational[1, 2], Rational[1, 2] (1 + 5^Rational[1, 2]), 0}}, {{9.756654785553746, 1.7225624520175482`, 0}, { 9.964566476371505, 2.7007100527513543`, 0}, { 9.098541072587066, 3.2007100527513543`, 0}, { 8.355396247109672, 2.5315794463924957`, 0}, { 8.762132890185473, 1.618033988749895, 0}}]]}, ImageSize -> Dynamic[{5.25, 3.5} (CurrentValue["FontCapHeight"]/ AbsoluteCurrentValue[Magnification])], PlotRange -> Full, Boxed -> False, Lighting -> {{"Ambient", RGBColor[0.732, 0.8232, 0.96]}}, Method -> {"ShrinkWrap" -> True}], GridBox[{{ RowBox[{ TagBox["\"Number of points: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["5", "SummaryItem"]}]}, { RowBox[{ TagBox[ "\"Embedding dimension: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["3", "SummaryItem"]}]}}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> { "Columns" -> {{2}}, "Rows" -> {{Automatic}}}, BaseStyle -> { ShowStringCharacters -> False, NumberMarks -> False, PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, BaselinePosition -> {1, 1}], True -> GridBox[{{ PaneBox[ ButtonBox[ DynamicBox[ FEPrivate`FrontEndResource[ "FEBitmaps", "SummaryBoxCloser"]], ButtonFunction :> (Typeset`open$$ = False), Appearance -> None, BaseStyle -> {}, Evaluator -> Automatic, Method -> "Preemptive"], Alignment -> {Center, Center}, ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], Graphics3DBox[{ Directive[ GrayLevel[1], EdgeForm[ Hue[0.6, 0.3, 0.4]]], Polygon3DBox[ NCache[{{ Rational[ 1, 4] (413 + 181 5^Rational[1, 2] + ( 6 (41465 + 18539 5^Rational[1, 2]))^Rational[1, 2])^ Rational[1, 2], Rational[1, 8] (3 + 3 5^Rational[1, 2] + (30 - 6 5^Rational[1, 2])^ Rational[1, 2]), 0}, { Rational[ 1, 2] (103 + 46 5^Rational[1, 2] + 2 (4575 + 2046 5^Rational[1, 2])^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (1 + 2 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^ Rational[1, 2]), 0}, {(Rational[85, 4] + Rational[37, 4] 5^Rational[1, 2] + Rational[ 1, 2] (Rational[6675, 2] + Rational[2985, 2] 5^Rational[1, 2])^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 2 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^ Rational[1, 2]), 0}, { Rational[ 1, 4] (287 + 127 5^Rational[1, 2] + (149070 + 66666 5^Rational[1, 2])^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (5 + 5 5^Rational[1, 2] + (30 - 6 5^Rational[1, 2])^ Rational[1, 2]), 0}, { Rational[ 1, 4] (328 + 146 5^Rational[1, 2] + 6 (4575 + 2046 5^Rational[1, 2])^Rational[1, 2])^ Rational[1, 2], Rational[1, 2] (1 + 5^Rational[1, 2]), 0}}, {{9.756654785553746, 1.7225624520175482`, 0}, { 9.964566476371505, 2.7007100527513543`, 0}, { 9.098541072587066, 3.2007100527513543`, 0}, { 8.355396247109672, 2.5315794463924957`, 0}, { 8.762132890185473, 1.618033988749895, 0}}]]}, ImageSize -> Dynamic[{5.25, 3.5} (CurrentValue["FontCapHeight"]/ AbsoluteCurrentValue[Magnification])], PlotRange -> Full, Boxed -> False, Lighting -> {{"Ambient", RGBColor[0.732, 0.8232, 0.96]}}, Method -> {"ShrinkWrap" -> True}], GridBox[{{ RowBox[{ TagBox["\"Number of points: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["5", "SummaryItem"]}]}, { RowBox[{ TagBox[ "\"Embedding dimension: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["3", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Type: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Quiet[ Apply[Region`PolygonDump`polygonType, Region`PolygonDump`computeType[Typeset`spolygon$$]]], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}, { RowBox[{ TagBox["\"Bounds: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Region`PolygonDump`iRegionBounds[Typeset`spolygon$$], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}, { RowBox[{ TagBox["\"Area: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Region`PolygonDump`iArea[Typeset`spolygon$$], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> { "Columns" -> {{2}}, "Rows" -> {{Automatic}}}, BaseStyle -> { ShowStringCharacters -> False, NumberMarks -> False, PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, BaselinePosition -> {1, 1}]}, Dynamic[Typeset`open$$], ImageSize -> Automatic]}, "SummaryPanel"], DynamicModuleValues:>{}], "]"}], Polygon[{{ Rational[ 1, 4] (413 + 181 5^Rational[1, 2] + (6 (41465 + 18539 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (3 + 3 5^Rational[1, 2] + (30 - 6 5^Rational[1, 2])^Rational[1, 2]), 0}, { Rational[ 1, 2] (103 + 46 5^Rational[1, 2] + 2 (4575 + 2046 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (1 + 2 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2]), 0}, {(Rational[85, 4] + Rational[37, 4] 5^Rational[1, 2] + Rational[ 1, 2] (Rational[6675, 2] + Rational[2985, 2] 5^Rational[1, 2])^ Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 2 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2]), 0}, { Rational[ 1, 4] (287 + 127 5^Rational[1, 2] + (149070 + 66666 5^Rational[1, 2])^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (5 + 5 5^Rational[1, 2] + (30 - 6 5^Rational[1, 2])^Rational[1, 2]), 0}, { Rational[ 1, 4] (328 + 146 5^Rational[1, 2] + 6 (4575 + 2046 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (1 + 5^Rational[1, 2]), 0}}], Editable->False, SelectWithContents->True, Selectable->False], ",", InterpretationBox[ RowBox[{ TagBox["Polygon", "SummaryHead"], "[", DynamicModuleBox[{Typeset`open$$ = False, Typeset`embedState$$ = "Ready", Typeset`spolygon$$ = Polygon[{{ Rational[ 1, 4] (368 + 158 5^Rational[1, 2] + 30 (3 (85 + 38 5^Rational[1, 2]))^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), 0}, { Rational[ 1, 4] (413 + 181 5^Rational[1, 2] + (6 (41465 + 18539 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (3 + 3 5^Rational[1, 2] + (30 - 6 5^Rational[1, 2])^Rational[1, 2]), 0}, {Rational[ 1, 4] (328 + 146 5^Rational[1, 2] + 6 (4575 + 2046 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (1 + 5^Rational[1, 2]), 0}}]}, TemplateBox[{ PaneSelectorBox[{False -> GridBox[{{ PaneBox[ ButtonBox[ DynamicBox[ FEPrivate`FrontEndResource[ "FEBitmaps", "SummaryBoxOpener"]], ButtonFunction :> (Typeset`open$$ = True), Appearance -> None, BaseStyle -> {}, Evaluator -> Automatic, Method -> "Preemptive"], Alignment -> {Center, Center}, ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], Graphics3DBox[{ Directive[ GrayLevel[1], EdgeForm[ Hue[0.6, 0.3, 0.4]]], Polygon3DBox[ NCache[{{ Rational[ 1, 4] (368 + 158 5^Rational[1, 2] + 30 (3 (85 + 38 5^Rational[1, 2]))^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), 0}, {Rational[ 1, 4] (413 + 181 5^Rational[1, 2] + ( 6 (41465 + 18539 5^Rational[1, 2]))^Rational[1, 2])^ Rational[1, 2], Rational[1, 8] (3 + 3 5^Rational[1, 2] + (30 - 6 5^Rational[1, 2])^ Rational[1, 2]), 0}, { Rational[ 1, 4] (328 + 146 5^Rational[1, 2] + 6 (4575 + 2046 5^Rational[1, 2])^Rational[1, 2])^ Rational[1, 2], Rational[1, 2] (1 + 5^Rational[1, 2]), 0}}, {{9.349918142477947, 0.8090169943749475, 0}, { 9.756654785553746, 1.7225624520175482`, 0}, { 8.762132890185473, 1.618033988749895, 0}}]]}, ImageSize -> Dynamic[{5.25, 3.5} (CurrentValue["FontCapHeight"]/ AbsoluteCurrentValue[Magnification])], PlotRange -> Full, Boxed -> False, Lighting -> {{"Ambient", RGBColor[0.732, 0.8232, 0.96]}}, Method -> {"ShrinkWrap" -> True}], GridBox[{{ RowBox[{ TagBox["\"Number of points: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["3", "SummaryItem"]}]}, { RowBox[{ TagBox[ "\"Embedding dimension: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["3", "SummaryItem"]}]}}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> F\ alse, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> { "Columns" -> {{2}}, "Rows" -> {{Automatic}}}, BaseStyle -> { ShowStringCharacters -> False, NumberMarks -> False, PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, BaselinePosition -> {1, 1}], True -> GridBox[{{ PaneBox[ ButtonBox[ DynamicBox[ FEPrivate`FrontEndResource[ "FEBitmaps", "SummaryBoxCloser"]], ButtonFunction :> (Typeset`open$$ = False), Appearance -> None, BaseStyle -> {}, Evaluator -> Automatic, Method -> "Preemptive"], Alignment -> {Center, Center}, ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], Graphics3DBox[{ Directive[ GrayLevel[1], EdgeForm[ Hue[0.6, 0.3, 0.4]]], Polygon3DBox[ NCache[{{ Rational[ 1, 4] (368 + 158 5^Rational[1, 2] + 30 (3 (85 + 38 5^Rational[1, 2]))^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), 0}, {Rational[ 1, 4] (413 + 181 5^Rational[1, 2] + ( 6 (41465 + 18539 5^Rational[1, 2]))^Rational[1, 2])^ Rational[1, 2], Rational[1, 8] (3 + 3 5^Rational[1, 2] + (30 - 6 5^Rational[1, 2])^ Rational[1, 2]), 0}, { Rational[ 1, 4] (328 + 146 5^Rational[1, 2] + 6 (4575 + 2046 5^Rational[1, 2])^Rational[1, 2])^ Rational[1, 2], Rational[1, 2] (1 + 5^Rational[1, 2]), 0}}, {{9.349918142477947, 0.8090169943749475, 0}, { 9.756654785553746, 1.7225624520175482`, 0}, { 8.762132890185473, 1.618033988749895, 0}}]]}, ImageSize -> Dynamic[{5.25, 3.5} (CurrentValue["FontCapHeight"]/ AbsoluteCurrentValue[Magnification])], PlotRange -> Full, Boxed -> False, Lighting -> {{"Ambient", RGBColor[0.732, 0.8232, 0.96]}}, Method -> {"ShrinkWrap" -> True}], GridBox[{{ RowBox[{ TagBox["\"Number of points: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["3", "SummaryItem"]}]}, { RowBox[{ TagBox[ "\"Embedding dimension: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["3", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Type: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Quiet[ Apply[Region`PolygonDump`polygonType, Region`PolygonDump`computeType[Typeset`spolygon$$]]], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}, { RowBox[{ TagBox["\"Bounds: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Region`PolygonDump`iRegionBounds[Typeset`spolygon$$], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}, { RowBox[{ TagBox["\"Area: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Region`PolygonDump`iArea[Typeset`spolygon$$], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> { "Columns" -> {{2}}, "Rows" -> {{Automatic}}}, BaseStyle -> { ShowStringCharacters -> False, NumberMarks -> False, PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, BaselinePosition -> {1, 1}]}, Dynamic[Typeset`open$$], ImageSize -> Automatic]}, "SummaryPanel"], DynamicModuleValues:>{}], "]"}], Polygon[{{ Rational[ 1, 4] (368 + 158 5^Rational[1, 2] + 30 (3 (85 + 38 5^Rational[1, 2]))^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), 0}, { Rational[ 1, 4] (413 + 181 5^Rational[1, 2] + (6 (41465 + 18539 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (3 + 3 5^Rational[1, 2] + (30 - 6 5^Rational[1, 2])^Rational[1, 2]), 0}, { Rational[ 1, 4] (328 + 146 5^Rational[1, 2] + 6 (4575 + 2046 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (1 + 5^Rational[1, 2]), 0}}], Editable->False, SelectWithContents->True, Selectable->False], ",", InterpretationBox[ RowBox[{ TagBox["Polygon", "SummaryHead"], "[", DynamicModuleBox[{Typeset`open$$ = False, Typeset`embedState$$ = "Ready", Typeset`spolygon$$ = Polygon[{{ Rational[ 1, 4] (257 + 103 5^Rational[1, 2] + (6 (18545 + 8269 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (5 + 7 5^Rational[1, 2] + (30 (5 + 5^Rational[1, 2]))^Rational[1, 2]), 0}, {Rational[ 1, 4] (217 + 95 5^Rational[1, 2] + (75750 + 33870 5^Rational[1, 2])^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (3 + 5 5^Rational[1, 2] + (30 (5 + 5^Rational[1, 2]))^Rational[1, 2]), 0}, {(Rational[145, 8] + Rational[61, 8] 5^Rational[1, 2] + (Rational[15, 2] (65 + 29 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 4] (2 + 3 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2]), 0}}]}, TemplateBox[{ PaneSelectorBox[{False -> GridBox[{{ PaneBox[ ButtonBox[ DynamicBox[ FEPrivate`FrontEndResource[ "FEBitmaps", "SummaryBoxOpener"]], ButtonFunction :> (Typeset`open$$ = True), Appearance -> None, BaseStyle -> {}, Evaluator -> Automatic, Method -> "Preemptive"], Alignment -> {Center, Center}, ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], Graphics3DBox[{ Directive[ GrayLevel[1], EdgeForm[ Hue[0.6, 0.3, 0.4]]], Polygon3DBox[ NCache[{{ Rational[ 1, 4] (257 + 103 5^Rational[1, 2] + ( 6 (18545 + 8269 5^Rational[1, 2]))^Rational[1, 2])^ Rational[1, 2], Rational[1, 8] (5 + 7 5^Rational[1, 2] + (30 (5 + 5^Rational[1, 2]))^ Rational[1, 2]), 0}, { Rational[ 1, 4] (217 + 95 5^Rational[1, 2] + (75750 + 33870 5^Rational[1, 2])^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (3 + 5 5^Rational[1, 2] + (30 (5 + 5^Rational[1, 2]))^ Rational[1, 2]), 0}, {(Rational[145, 8] + Rational[61, 8] 5^Rational[1, 2] + ( Rational[15, 2] (65 + 29 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 4] (2 + 3 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^ Rational[1, 2]), 0}}, {{ 7.740747913216112, 4.423272504768902, 0}, { 7.152962660923639, 3.6142555103939547`, 0}, { 8.147484556291912, 3.509727047126302, 0}}]]}, ImageSize -> Dynamic[{5.25, 3.5} (CurrentValue["FontCapHeight"]/ AbsoluteCurrentValue[Magnification])], PlotRange -> Full, Boxed -> False, Lighting -> {{"Ambient", RGBColor[0.732, 0.8232, 0.96]}}, Method -> {"ShrinkWrap" -> True}], GridBox[{{ RowBox[{ TagBox["\"Number of points: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["3", "SummaryItem"]}]}, { RowBox[{ TagBox[ "\"Embedding dimension: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["3", "SummaryItem"]}]}}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> { "Columns" -> {{2}}, "Rows" -> {{Automatic}}}, BaseStyle -> { ShowStringCharacters -> False, NumberMarks -> False, PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, BaselinePosition -> {1, 1}], True -> GridBox[{{ PaneBox[ ButtonBox[ DynamicBox[ FEPrivate`FrontEndResource[ "FEBitmaps", "SummaryBoxCloser"]], ButtonFunction :> (Typeset`open$$ = False), Appearance -> None, BaseStyle -> {}, Evaluator -> Automatic, Method -> "Preemptive"], Alignment -> {Center, Center}, ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], Graphics3DBox[{ Directive[ GrayLevel[1], EdgeForm[ Hue[0.6, 0.3, 0.4]]], Polygon3DBox[ NCache[{{ Rational[ 1, 4] (257 + 103 5^Rational[1, 2] + ( 6 (18545 + 8269 5^Rational[1, 2]))^Rational[1, 2])^ Rational[1, 2], Rational[1, 8] (5 + 7 5^Rational[1, 2] + (30 (5 + 5^Rational[1, 2]))^ Rational[1, 2]), 0}, { Rational[ 1, 4] (217 + 95 5^Rational[1, 2] + (75750 + 33870 5^Rational[1, 2])^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (3 + 5 5^Rational[1, 2] + (30 (5 + 5^Rational[1, 2]))^ Rational[1, 2]), 0}, {(Rational[145, 8] + Rational[61, 8] 5^Rational[1, 2] + ( Rational[15, 2] (65 + 29 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 4] (2 + 3 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^ Rational[1, 2]), 0}}, {{ 7.740747913216112, 4.423272504768902, 0}, { 7.152962660923639, 3.6142555103939547`, 0}, { 8.147484556291912, 3.509727047126302, 0}}]]}, ImageSize -> Dynamic[{5.25, 3.5} (CurrentValue["FontCapHeight"]/ AbsoluteCurrentValue[Magnification])], PlotRange -> Full, Boxed -> False, Lighting -> {{"Ambient", RGBColor[0.732, 0.8232, 0.96]}}, Method -> {"ShrinkWrap" -> True}], GridBox[{{ RowBox[{ TagBox["\"Number of points: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["3", "SummaryItem"]}]}, { RowBox[{ TagBox[ "\"Embedding dimension: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["3", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Type: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Quiet[ Apply[Region`PolygonDump`polygonType, Region`PolygonDump`computeType[Typeset`spolygon$$]]], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}, { RowBox[{ TagBox["\"Bounds: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Region`PolygonDump`iRegionBounds[Typeset`spolygon$$], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}, { RowBox[{ TagBox["\"Area: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Region`PolygonDump`iArea[Typeset`spolygon$$], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> { "Columns" -> {{2}}, "Rows" -> {{Automatic}}}, BaseStyle -> { ShowStringCharacters -> False, NumberMarks -> False, PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, BaselinePosition -> {1, 1}]}, Dynamic[Typeset`open$$], ImageSize -> Automatic]}, "SummaryPanel"], DynamicModuleValues:>{}], "]"}], Polygon[{{ Rational[ 1, 4] (257 + 103 5^Rational[1, 2] + (6 (18545 + 8269 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (5 + 7 5^Rational[1, 2] + (30 (5 + 5^Rational[1, 2]))^Rational[1, 2]), 0}, {Rational[ 1, 4] (217 + 95 5^Rational[1, 2] + (75750 + 33870 5^Rational[1, 2])^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (3 + 5 5^Rational[1, 2] + (30 (5 + 5^Rational[1, 2]))^Rational[1, 2]), 0}, {(Rational[145, 8] + Rational[61, 8] 5^Rational[1, 2] + (Rational[15, 2] (65 + 29 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 4] (2 + 3 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2]), 0}}], Editable->False, SelectWithContents->True, Selectable->False], ",", InterpretationBox[ RowBox[{ TagBox["Polygon", "SummaryHead"], "[", DynamicModuleBox[{Typeset`open$$ = False, Typeset`embedState$$ = "Ready", Typeset`spolygon$$ = Polygon[{{ Rational[ 1, 4] (368 + 158 5^Rational[1, 2] + 30 (3 (85 + 38 5^Rational[1, 2]))^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (1 + 3 5^Rational[1, 2] + 2 (15 + 6 5^Rational[1, 2])^Rational[1, 2]), 0}, { Rational[ 1, 2] (77 + Rational[61, 2] 5^Rational[1, 2] + Rational[5, 2] (1635 + 726 5^Rational[1, 2])^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 3 5^Rational[1, 2] + 2 (15 + 6 5^Rational[1, 2])^Rational[1, 2]), 0}, { Rational[ 1, 4] (257 + 103 5^Rational[1, 2] + (6 (18545 + 8269 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (5 + 7 5^Rational[1, 2] + (30 (5 + 5^Rational[1, 2]))^Rational[1, 2]), 0}, {(Rational[145, 8] + Rational[61, 8] 5^Rational[1, 2] + (Rational[15, 2] (65 + 29 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 4] (2 + 3 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2]), 0}, {Rational[ 1, 4] (377 + 151 5^Rational[1, 2] + (194550 + 86334 5^Rational[1, 2])^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (3 + 5 5^Rational[1, 2] + (30 (5 + 5^Rational[1, 2]))^Rational[1, 2]), 0}}]}, TemplateBox[{ PaneSelectorBox[{False -> GridBox[{{ PaneBox[ ButtonBox[ DynamicBox[ FEPrivate`FrontEndResource[ "FEBitmaps", "SummaryBoxOpener"]], ButtonFunction :> (Typeset`open$$ = True), Appearance -> None, BaseStyle -> {}, Evaluator -> Automatic, Method -> "Preemptive"], Alignment -> {Center, Center}, ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], Graphics3DBox[{ Directive[ GrayLevel[1], EdgeForm[ Hue[0.6, 0.3, 0.4]]], Polygon3DBox[ NCache[{{ Rational[ 1, 4] (368 + 158 5^Rational[1, 2] + 30 (3 (85 + 38 5^Rational[1, 2]))^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (1 + 3 5^Rational[1, 2] + 2 (15 + 6 5^Rational[1, 2])^Rational[1, 2]), 0}, { Rational[ 1, 2] (77 + Rational[61, 2] 5^Rational[1, 2] + Rational[5, 2] (1635 + 726 5^Rational[1, 2])^ Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 3 5^Rational[1, 2] + 2 (15 + 6 5^Rational[1, 2])^Rational[1, 2]), 0}, { Rational[ 1, 4] (257 + 103 5^Rational[1, 2] + ( 6 (18545 + 8269 5^Rational[1, 2]))^Rational[1, 2])^ Rational[1, 2], Rational[1, 8] (5 + 7 5^Rational[1, 2] + (30 (5 + 5^Rational[1, 2]))^ Rational[1, 2]), 0}, {(Rational[145, 8] + Rational[61, 8] 5^Rational[1, 2] + ( Rational[15, 2] (65 + 29 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 4] (2 + 3 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^ Rational[1, 2]), 0}, { Rational[ 1, 4] (377 + 151 5^Rational[1, 2] + (194550 + 86334 5^Rational[1, 2])^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (3 + 5 5^Rational[1, 2] + (30 (5 + 5^Rational[1, 2]))^ Rational[1, 2]), 0}}, {{ 9.349918142477947, 4.59240311112776, 0}, { 8.483892738693507, 5.09240311112776, 0}, { 7.740747913216112, 4.423272504768902, 0}, { 8.147484556291912, 3.509727047126302, 0}, { 9.142006451660187, 3.6142555103939547`, 0}}]]}, ImageSize -> Dynamic[{5.25, 3.5} (CurrentValue["FontCapHeight"]/ AbsoluteCurrentValue[Magnification])], PlotRange -> Full, Boxed -> False, Lighting -> {{"Ambient", RGBColor[0.732, 0.8232, 0.96]}}, Method -> {"ShrinkWrap" -> True}], GridBox[{{ RowBox[{ TagBox["\"Number of points: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["5", "SummaryItem"]}]}, { RowBox[{ TagBox[ "\"Embedding dimension: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["3", "SummaryItem"]}]}}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> { "Columns" -> {{2}}, "Rows" -> {{Automatic}}}, BaseStyle -> { ShowStringCharacters -> False, NumberMarks -> False, PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, BaselinePosition -> {1, 1}], True -> GridBox[{{ PaneBox[ ButtonBox[ DynamicBox[ FEPrivate`FrontEndResource[ "FEBitmaps", "SummaryBoxCloser"]], ButtonFunction :> (Typeset`open$$ = False), Appearance -> None, BaseStyle -> {}, Evaluator -> Automatic, Method -> "Preemptive"], Alignment -> {Center, Center}, ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], Graphics3DBox[{ Directive[ GrayLevel[1], EdgeForm[ Hue[0.6, 0.3, 0.4]]], Polygon3DBox[ NCache[{{ Rational[ 1, 4] (368 + 158 5^Rational[1, 2] + 30 (3 (85 + 38 5^Rational[1, 2]))^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (1 + 3 5^Rational[1, 2] + 2 (15 + 6 5^Rational[1, 2])^Rational[1, 2]), 0}, { Rational[ 1, 2] (77 + Rational[61, 2] 5^Rational[1, 2] + Rational[5, 2] (1635 + 726 5^Rational[1, 2])^ Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 3 5^Rational[1, 2] + 2 (15 + 6 5^Rational[1, 2])^Rational[1, 2]), 0}, { Rational[ 1, 4] (257 + 103 5^Rational[1, 2] + ( 6 (18545 + 8269 5^Rational[1, 2]))^Rational[1, 2])^ Rational[1, 2], Rational[1, 8] (5 + 7 5^Rational[1, 2] + (30 (5 + 5^Rational[1, 2]))^ Rational[1, 2]), 0}, {(Rational[145, 8] + Rational[61, 8] 5^Rational[1, 2] + ( Rational[15, 2] (65 + 29 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 4] (2 + 3 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^ Rational[1, 2]), 0}, { Rational[ 1, 4] (377 + 151 5^Rational[1, 2] + (194550 + 86334 5^Rational[1, 2])^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (3 + 5 5^Rational[1, 2] + (30 (5 + 5^Rational[1, 2]))^ Rational[1, 2]), 0}}, {{ 9.349918142477947, 4.59240311112776, 0}, { 8.483892738693507, 5.09240311112776, 0}, { 7.740747913216112, 4.423272504768902, 0}, { 8.147484556291912, 3.509727047126302, 0}, { 9.142006451660187, 3.6142555103939547`, 0}}]]}, ImageSize -> Dynamic[{5.25, 3.5} (CurrentValue["FontCapHeight"]/ AbsoluteCurrentValue[Magnification])], PlotRange -> Full, Boxed -> False, Lighting -> {{"Ambient", RGBColor[0.732, 0.8232, 0.96]}}, Method -> {"ShrinkWrap" -> True}], GridBox[{{ RowBox[{ TagBox["\"Number of points: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["5", "SummaryItem"]}]}, { RowBox[{ TagBox[ "\"Embedding dimension: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["3", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Type: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Quiet[ Apply[Region`PolygonDump`polygonType, Region`PolygonDump`computeType[Typeset`spolygon$$]]], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}, { RowBox[{ TagBox["\"Bounds: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Region`PolygonDump`iRegionBounds[Typeset`spolygon$$], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}, { RowBox[{ TagBox["\"Area: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Region`PolygonDump`iArea[Typeset`spolygon$$], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> { "Columns" -> {{2}}, "Rows" -> {{Automatic}}}, BaseStyle -> { ShowStringCharacters -> False, NumberMarks -> False, PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, BaselinePosition -> {1, 1}]}, Dynamic[Typeset`open$$], ImageSize -> Automatic]}, "SummaryPanel"], DynamicModuleValues:>{}], "]"}], Polygon[{{ Rational[ 1, 4] (368 + 158 5^Rational[1, 2] + 30 (3 (85 + 38 5^Rational[1, 2]))^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (1 + 3 5^Rational[1, 2] + 2 (15 + 6 5^Rational[1, 2])^Rational[1, 2]), 0}, { Rational[ 1, 2] (77 + Rational[61, 2] 5^Rational[1, 2] + Rational[5, 2] (1635 + 726 5^Rational[1, 2])^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 3 5^Rational[1, 2] + 2 (15 + 6 5^Rational[1, 2])^Rational[1, 2]), 0}, { Rational[ 1, 4] (257 + 103 5^Rational[1, 2] + (6 (18545 + 8269 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (5 + 7 5^Rational[1, 2] + (30 (5 + 5^Rational[1, 2]))^Rational[1, 2]), 0}, {(Rational[145, 8] + Rational[61, 8] 5^Rational[1, 2] + (Rational[15, 2] (65 + 29 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 4] (2 + 3 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2]), 0}, { Rational[ 1, 4] (377 + 151 5^Rational[1, 2] + (194550 + 86334 5^Rational[1, 2])^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (3 + 5 5^Rational[1, 2] + (30 (5 + 5^Rational[1, 2]))^Rational[1, 2]), 0}}], Editable->False, SelectWithContents->True, Selectable->False], ",", InterpretationBox[ RowBox[{ TagBox["Polygon", "SummaryHead"], "[", DynamicModuleBox[{Typeset`open$$ = False, Typeset`embedState$$ = "Ready", Typeset`spolygon$$ = Polygon[{{ Rational[ 1, 4] (427 + 181 5^Rational[1, 2] + (6 (53125 + 23729 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (1 + 7 5^Rational[1, 2] + (30 (5 + 5^Rational[1, 2]))^Rational[1, 2]), 0}, {Rational[ 1, 4] (368 + 158 5^Rational[1, 2] + 30 (3 (85 + 38 5^Rational[1, 2]))^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (1 + 3 5^Rational[1, 2] + 2 (15 + 6 5^Rational[1, 2])^Rational[1, 2]), 0}, { Rational[ 1, 4] (377 + 151 5^Rational[1, 2] + (194550 + 86334 5^Rational[1, 2])^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (3 + 5 5^Rational[1, 2] + (30 (5 + 5^Rational[1, 2]))^Rational[1, 2]), 0}}]}, TemplateBox[{ PaneSelectorBox[{False -> GridBox[{{ PaneBox[ ButtonBox[ DynamicBox[ FEPrivate`FrontEndResource[ "FEBitmaps", "SummaryBoxOpener"]], ButtonFunction :> (Typeset`open$$ = True), Appearance -> None, BaseStyle -> {}, Evaluator -> Automatic, Method -> "Preemptive"], Alignment -> {Center, Center}, ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], Graphics3DBox[{ Directive[ GrayLevel[1], EdgeForm[ Hue[0.6, 0.3, 0.4]]], Polygon3DBox[ NCache[{{ Rational[ 1, 4] (427 + 181 5^Rational[1, 2] + ( 6 (53125 + 23729 5^Rational[1, 2]))^Rational[1, 2])^ Rational[1, 2], Rational[1, 8] (1 + 7 5^Rational[1, 2] + (30 (5 + 5^Rational[1, 2]))^ Rational[1, 2]), 0}, { Rational[ 1, 4] (368 + 158 5^Rational[1, 2] + 30 (3 (85 + 38 5^Rational[1, 2]))^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (1 + 3 5^Rational[1, 2] + 2 (15 + 6 5^Rational[1, 2])^Rational[1, 2]), 0}, { Rational[ 1, 4] (377 + 151 5^Rational[1, 2] + (194550 + 86334 5^Rational[1, 2])^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (3 + 5 5^Rational[1, 2] + (30 (5 + 5^Rational[1, 2]))^ Rational[1, 2]), 0}}, {{ 10.09306296795534, 3.923272504768902, 0}, { 9.349918142477947, 4.59240311112776, 0}, { 9.142006451660187, 3.6142555103939547`, 0}}]]}, ImageSize -> Dynamic[{5.25, 3.5} (CurrentValue["FontCapHeight"]/ AbsoluteCurrentValue[Magnification])], PlotRange -> Full, Boxed -> False, Lighting -> {{"Ambient", RGBColor[0.732, 0.8232, 0.96]}}, Method -> {"ShrinkWrap" -> True}], GridBox[{{ RowBox[{ TagBox["\"Number of points: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["3", "SummaryItem"]}]}, { RowBox[{ TagBox[ "\"Embedding dimension: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["3", "SummaryItem"]}]}}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> { "Columns" -> {{2}}, "Rows" -> {{Automatic}}}, BaseStyle -> { ShowStringCharacters -> False, NumberMarks -> False, PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, BaselinePosition -> {1, 1}], True -> GridBox[{{ PaneBox[ ButtonBox[ DynamicBox[ FEPrivate`FrontEndResource[ "FEBitmaps", "SummaryBoxCloser"]], ButtonFunction :> (Typeset`open$$ = False), Appearance -> None, BaseStyle -> {}, Evaluator -> Automatic, Method -> "Preemptive"], Alignment -> {Center, Center}, ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], Graphics3DBox[{ Directive[ GrayLevel[1], EdgeForm[ Hue[0.6, 0.3, 0.4]]], Polygon3DBox[ NCache[{{ Rational[ 1, 4] (427 + 181 5^Rational[1, 2] + ( 6 (53125 + 23729 5^Rational[1, 2]))^Rational[1, 2])^ Rational[1, 2], Rational[1, 8] (1 + 7 5^Rational[1, 2] + (30 (5 + 5^Rational[1, 2]))^ Rational[1, 2]), 0}, { Rational[ 1, 4] (368 + 158 5^Rational[1, 2] + 30 (3 (85 + 38 5^Rational[1, 2]))^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (1 + 3 5^Rational[1, 2] + 2 (15 + 6 5^Rational[1, 2])^Rational[1, 2]), 0}, { Rational[ 1, 4] (377 + 151 5^Rational[1, 2] + (194550 + 86334 5^Rational[1, 2])^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (3 + 5 5^Rational[1, 2] + (30 (5 + 5^Rational[1, 2]))^ Rational[1, 2]), 0}}, {{ 10.09306296795534, 3.923272504768902, 0}, { 9.349918142477947, 4.59240311112776, 0}, { 9.142006451660187, 3.6142555103939547`, 0}}]]}, ImageSize -> Dynamic[{5.25, 3.5} (CurrentValue["FontCapHeight"]/ AbsoluteCurrentValue[Magnification])], PlotRange -> Full, Boxed -> False, Lighting -> {{"Ambient", RGBColor[0.732, 0.8232, 0.96]}}, Method -> {"ShrinkWrap" -> True}], GridBox[{{ RowBox[{ TagBox["\"Number of points: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["3", "SummaryItem"]}]}, { RowBox[{ TagBox[ "\"Embedding dimension: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["3", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Type: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Quiet[ Apply[Region`PolygonDump`polygonType, Region`PolygonDump`computeType[Typeset`spolygon$$]]], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}, { RowBox[{ TagBox["\"Bounds: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Region`PolygonDump`iRegionBounds[Typeset`spolygon$$], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}, { RowBox[{ TagBox["\"Area: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Region`PolygonDump`iArea[Typeset`spolygon$$], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> { "Columns" -> {{2}}, "Rows" -> {{Automatic}}}, BaseStyle -> { ShowStringCharacters -> False, NumberMarks -> False, PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, BaselinePosition -> {1, 1}]}, Dynamic[Typeset`open$$], ImageSize -> Automatic]}, "SummaryPanel"], DynamicModuleValues:>{}], "]"}], Polygon[{{ Rational[ 1, 4] (427 + 181 5^Rational[1, 2] + (6 (53125 + 23729 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (1 + 7 5^Rational[1, 2] + (30 (5 + 5^Rational[1, 2]))^Rational[1, 2]), 0}, {Rational[ 1, 4] (368 + 158 5^Rational[1, 2] + 30 (3 (85 + 38 5^Rational[1, 2]))^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (1 + 3 5^Rational[1, 2] + 2 (15 + 6 5^Rational[1, 2])^Rational[1, 2]), 0}, { Rational[ 1, 4] (377 + 151 5^Rational[1, 2] + (194550 + 86334 5^Rational[1, 2])^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (3 + 5 5^Rational[1, 2] + (30 (5 + 5^Rational[1, 2]))^Rational[1, 2]), 0}}], Editable->False, SelectWithContents->True, Selectable->False], ",", InterpretationBox[ RowBox[{ TagBox["Polygon", "SummaryHead"], "[", DynamicModuleBox[{Typeset`open$$ = False, Typeset`embedState$$ = "Ready", Typeset`spolygon$$ = Polygon[{{ Rational[ 1, 2] (Rational[79, 2] + Rational[35, 2] 5^Rational[1, 2] + (6 (445 + 199 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 4] (2 + 3 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2]), 0}, {(Rational[47, 4] + 5 5^Rational[1, 2] + (3 (85 + 38 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 4] (1 + 2 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2]), 0}, {Rational[ 1, 4] (217 + 95 5^Rational[1, 2] + (75750 + 33870 5^Rational[1, 2])^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (3 + 5 5^Rational[1, 2] + (30 (5 + 5^Rational[1, 2]))^Rational[1, 2]), 0}}]}, TemplateBox[{ PaneSelectorBox[{False -> GridBox[{{ PaneBox[ ButtonBox[ DynamicBox[ FEPrivate`FrontEndResource[ "FEBitmaps", "SummaryBoxOpener"]], ButtonFunction :> (Typeset`open$$ = True), Appearance -> None, BaseStyle -> {}, Evaluator -> Automatic, Method -> "Preemptive"], Alignment -> {Center, Center}, ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], Graphics3DBox[{ Directive[ GrayLevel[1], EdgeForm[ Hue[0.6, 0.3, 0.4]]], Polygon3DBox[ NCache[{{ Rational[ 1, 2] (Rational[79, 2] + Rational[35, 2] 5^Rational[1, 2] + (6 (445 + 199 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 4] (2 + 3 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^ Rational[1, 2]), 0}, {(Rational[47, 4] + 5 5^Rational[1, 2] + (3 (85 + 38 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 4] (1 + 2 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^ Rational[1, 2]), 0}, { Rational[ 1, 4] (217 + 95 5^Rational[1, 2] + (75750 + 33870 5^Rational[1, 2])^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (3 + 5 5^Rational[1, 2] + (30 (5 + 5^Rational[1, 2]))^ Rational[1, 2]), 0}}, {{ 6.158440765555366, 3.509727047126302, 0}, { 6.746226017847839, 2.7007100527513543`, 0}, { 7.152962660923639, 3.6142555103939547`, 0}}]]}, ImageSize -> Dynamic[{5.25, 3.5} (CurrentValue["FontCapHeight"]/ AbsoluteCurrentValue[Magnification])], PlotRange -> Full, Boxed -> False, Lighting -> {{"Ambient", RGBColor[0.732, 0.8232, 0.96]}}, Method -> {"ShrinkWrap" -> True}], GridBox[{{ RowBox[{ TagBox["\"Number of points: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["3", "SummaryItem"]}]}, { RowBox[{ TagBox[ "\"Embedding dimension: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["3", "SummaryItem"]}]}}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> { "Columns" -> {{2}}, "Rows" -> {{Automatic}}}, BaseStyle -> { ShowStringCharacters -> False, NumberMarks -> False, PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, BaselinePosition -> {1, 1}], True -> GridBox[{{ PaneBox[ ButtonBox[ DynamicBox[ FEPrivate`FrontEndResource[ "FEBitmaps", "SummaryBoxCloser"]], ButtonFunction :> (Typeset`open$$ = False), Appearance -> None, BaseStyle -> {}, Evaluator -> Automatic, Method -> "Preemptive"], Alignment -> {Center, Center}, ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], Graphics3DBox[{ Directive[ GrayLevel[1], EdgeForm[ Hue[0.6, 0.3, 0.4]]], Polygon3DBox[ NCache[{{ Rational[ 1, 2] (Rational[79, 2] + Rational[35, 2] 5^Rational[1, 2] + (6 (445 + 199 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 4] (2 + 3 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^ Rational[1, 2]), 0}, {(Rational[47, 4] + 5 5^Rational[1, 2] + (3 (85 + 38 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 4] (1 + 2 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^ Rational[1, 2]), 0}, { Rational[ 1, 4] (217 + 95 5^Rational[1, 2] + (75750 + 33870 5^Rational[1, 2])^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (3 + 5 5^Rational[1, 2] + (30 (5 + 5^Rational[1, 2]))^ Rational[1, 2]), 0}}, {{ 6.158440765555366, 3.509727047126302, 0}, { 6.746226017847839, 2.7007100527513543`, 0}, { 7.152962660923639, 3.6142555103939547`, 0}}]]}, ImageSize -> Dynamic[{5.25, 3.5} (CurrentValue["FontCapHeight"]/ AbsoluteCurrentValue[Magnification])], PlotRange -> Full, Boxed -> False, Lighting -> {{"Ambient", RGBColor[0.732, 0.8232, 0.96]}}, Method -> {"ShrinkWrap" -> True}], GridBox[{{ RowBox[{ TagBox["\"Number of points: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["3", "SummaryItem"]}]}, { RowBox[{ TagBox[ "\"Embedding dimension: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["3", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Type: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Quiet[ Apply[Region`PolygonDump`polygonType, Region`PolygonDump`computeType[Typeset`spolygon$$]]], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}, { RowBox[{ TagBox["\"Bounds: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Region`PolygonDump`iRegionBounds[Typeset`spolygon$$], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}, { RowBox[{ TagBox["\"Area: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Region`PolygonDump`iArea[Typeset`spolygon$$], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> { "Columns" -> {{2}}, "Rows" -> {{Automatic}}}, BaseStyle -> { ShowStringCharacters -> False, NumberMarks -> False, PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, BaselinePosition -> {1, 1}]}, Dynamic[Typeset`open$$], ImageSize -> Automatic]}, "SummaryPanel"], DynamicModuleValues:>{}], "]"}], Polygon[{{ Rational[ 1, 2] (Rational[79, 2] + Rational[35, 2] 5^Rational[1, 2] + (6 (445 + 199 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 4] (2 + 3 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2]), 0}, {(Rational[47, 4] + 5 5^Rational[1, 2] + (3 (85 + 38 5^Rational[1, 2]))^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (1 + 2 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2]), 0}, { Rational[ 1, 4] (217 + 95 5^Rational[1, 2] + (75750 + 33870 5^Rational[1, 2])^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (3 + 5 5^Rational[1, 2] + (30 (5 + 5^Rational[1, 2]))^Rational[1, 2]), 0}}], Editable->False, SelectWithContents->True, Selectable->False], ",", InterpretationBox[ RowBox[{ TagBox["Polygon", "SummaryHead"], "[", DynamicModuleBox[{Typeset`open$$ = False, Typeset`embedState$$ = "Ready", Typeset`spolygon$$ = Polygon[{{ Rational[ 1, 2] (43 + Rational[37, 2] 5^Rational[1, 2] + Rational[1, 2] (3 (4745 + 2122 5^Rational[1, 2]))^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 3 5^Rational[1, 2] + 2 (15 + 6 5^Rational[1, 2])^Rational[1, 2]), 0}, {(Rational[133, 16] + Rational[59, 16] 5^Rational[1, 2] + Rational[ 1, 2] (Rational[17475, 32] + Rational[7815, 32] 5^Rational[1, 2])^Rational[1, 2])^ Rational[1, 2], Rational[1, 8] (5 + 7 5^Rational[1, 2] + (30 (5 + 5^Rational[1, 2]))^Rational[1, 2]), 0}, {Rational[ 1, 2] (Rational[79, 2] + Rational[35, 2] 5^Rational[1, 2] + (6 (445 + 199 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 4] (2 + 3 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2]), 0}, {Rational[ 1, 4] (217 + 95 5^Rational[1, 2] + (75750 + 33870 5^Rational[1, 2])^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (3 + 5 5^Rational[1, 2] + (30 (5 + 5^Rational[1, 2]))^Rational[1, 2]), 0}, {Rational[ 1, 2] (55 + Rational[49, 2] 5^Rational[1, 2] + Rational[1, 2] (15 (1525 + 682 5^Rational[1, 2]))^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (1 + 3 5^Rational[1, 2] + 2 (15 + 6 5^Rational[1, 2])^Rational[1, 2]), 0}}]}, TemplateBox[{ PaneSelectorBox[{False -> GridBox[{{ PaneBox[ ButtonBox[ DynamicBox[ FEPrivate`FrontEndResource[ "FEBitmaps", "SummaryBoxOpener"]], ButtonFunction :> (Typeset`open$$ = True), Appearance -> None, BaseStyle -> {}, Evaluator -> Automatic, Method -> "Preemptive"], Alignment -> {Center, Center}, ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], Graphics3DBox[{ Directive[ GrayLevel[1], EdgeForm[ Hue[0.6, 0.3, 0.4]]], Polygon3DBox[ NCache[{{ Rational[ 1, 2] (43 + Rational[37, 2] 5^Rational[1, 2] + Rational[1, 2] (3 (4745 + 2122 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 3 5^Rational[1, 2] + 2 (15 + 6 5^Rational[1, 2])^Rational[1, 2]), 0}, {(Rational[133, 16] + Rational[59, 16] 5^Rational[1, 2] + Rational[ 1, 2] (Rational[17475, 32] + Rational[7815, 32] 5^Rational[1, 2])^Rational[1, 2])^ Rational[1, 2], Rational[1, 8] (5 + 7 5^Rational[1, 2] + (30 (5 + 5^Rational[1, 2]))^ Rational[1, 2]), 0}, { Rational[ 1, 2] (Rational[79, 2] + Rational[35, 2] 5^Rational[1, 2] + (6 (445 + 199 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 4] (2 + 3 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^ Rational[1, 2]), 0}, { Rational[ 1, 4] (217 + 95 5^Rational[1, 2] + (75750 + 33870 5^Rational[1, 2])^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (3 + 5 5^Rational[1, 2] + (30 (5 + 5^Rational[1, 2]))^ Rational[1, 2]), 0}, { Rational[ 1, 2] (55 + Rational[49, 2] 5^Rational[1, 2] + Rational[1, 2] (15 (1525 + 682 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 4] (1 + 3 5^Rational[1, 2] + 2 (15 + 6 5^Rational[1, 2])^Rational[1, 2]), 0}}, {{ 6.49484894795696, 5.09240311112776, 0}, { 5.751704122479566, 4.423272504768902, 0}, { 6.158440765555366, 3.509727047126302, 0}, { 7.152962660923639, 3.6142555103939547`, 0}, { 7.360874351741399, 4.59240311112776, 0}}]]}, ImageSize -> Dynamic[{5.25, 3.5} (CurrentValue["FontCapHeight"]/ AbsoluteCurrentValue[Magnification])], PlotRange -> Full, Boxed -> False, Lighting -> {{"Ambient", RGBColor[0.732, 0.8232, 0.96]}}, Method -> {"ShrinkWrap" -> True}], GridBox[{{ RowBox[{ TagBox["\"Number of points: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["5", "SummaryItem"]}]}, { RowBox[{ TagBox[ "\"Embedding dimension: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["3", "SummaryItem"]}]}}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> { "Columns" -> {{2}}, "Rows" -> {{Automatic}}}, BaseStyle -> { ShowStringCharacters -> False, NumberMarks -> False, PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, BaselinePosition -> {1, 1}], True -> GridBox[{{ PaneBox[ ButtonBox[ DynamicBox[ FEPrivate`FrontEndResource[ "FEBitmaps", "SummaryBoxCloser"]], ButtonFunction :> (Typeset`open$$ = False), Appearance -> None, BaseStyle -> {}, Evaluator -> Automatic, Method -> "Preemptive"], Alignment -> {Center, Center}, ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], Graphics3DBox[{ Directive[ GrayLevel[1], EdgeForm[ Hue[0.6, 0.3, 0.4]]], Polygon3DBox[ NCache[{{ Rational[ 1, 2] (43 + Rational[37, 2] 5^Rational[1, 2] + Rational[1, 2] (3 (4745 + 2122 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 3 5^Rational[1, 2] + 2 (15 + 6 5^Rational[1, 2])^Rational[1, 2]), 0}, {(Rational[133, 16] + Rational[59, 16] 5^Rational[1, 2] + Rational[ 1, 2] (Rational[17475, 32] + Rational[7815, 32] 5^Rational[1, 2])^Rational[1, 2])^ Rational[1, 2], Rational[1, 8] (5 + 7 5^Rational[1, 2] + (30 (5 + 5^Rational[1, 2]))^ Rational[1, 2]), 0}, { Rational[ 1, 2] (Rational[79, 2] + Rational[35, 2] 5^Rational[1, 2] + (6 (445 + 199 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 4] (2 + 3 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^ Rational[1, 2]), 0}, { Rational[ 1, 4] (217 + 95 5^Rational[1, 2] + (75750 + 33870 5^Rational[1, 2])^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (3 + 5 5^Rational[1, 2] + (30 (5 + 5^Rational[1, 2]))^ Rational[1, 2]), 0}, { Rational[ 1, 2] (55 + Rational[49, 2] 5^Rational[1, 2] + Rational[1, 2] (15 (1525 + 682 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 4] (1 + 3 5^Rational[1, 2] + 2 (15 + 6 5^Rational[1, 2])^Rational[1, 2]), 0}}, {{ 6.49484894795696, 5.09240311112776, 0}, { 5.751704122479566, 4.423272504768902, 0}, { 6.158440765555366, 3.509727047126302, 0}, { 7.152962660923639, 3.6142555103939547`, 0}, { 7.360874351741399, 4.59240311112776, 0}}]]}, ImageSize -> Dynamic[{5.25, 3.5} (CurrentValue["FontCapHeight"]/ AbsoluteCurrentValue[Magnification])], PlotRange -> Full, Boxed -> False, Lighting -> {{"Ambient", RGBColor[0.732, 0.8232, 0.96]}}, Method -> {"ShrinkWrap" -> True}], GridBox[{{ RowBox[{ TagBox["\"Number of points: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["5", "SummaryItem"]}]}, { RowBox[{ TagBox[ "\"Embedding dimension: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["3", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Type: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Quiet[ Apply[Region`PolygonDump`polygonType, Region`PolygonDump`computeType[Typeset`spolygon$$]]], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}, { RowBox[{ TagBox["\"Bounds: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Region`PolygonDump`iRegionBounds[Typeset`spolygon$$], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}, { RowBox[{ TagBox["\"Area: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Region`PolygonDump`iArea[Typeset`spolygon$$], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> { "Columns" -> {{2}}, "Rows" -> {{Automatic}}}, BaseStyle -> { ShowStringCharacters -> False, NumberMarks -> False, PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, BaselinePosition -> {1, 1}]}, Dynamic[Typeset`open$$], ImageSize -> Automatic]}, "SummaryPanel"], DynamicModuleValues:>{}], "]"}], Polygon[{{ Rational[ 1, 2] (43 + Rational[37, 2] 5^Rational[1, 2] + Rational[1, 2] (3 (4745 + 2122 5^Rational[1, 2]))^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 3 5^Rational[1, 2] + 2 (15 + 6 5^Rational[1, 2])^Rational[1, 2]), 0}, {(Rational[133, 16] + Rational[59, 16] 5^Rational[1, 2] + Rational[ 1, 2] (Rational[17475, 32] + Rational[7815, 32] 5^Rational[1, 2])^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (5 + 7 5^Rational[1, 2] + (30 (5 + 5^Rational[1, 2]))^Rational[1, 2]), 0}, {Rational[ 1, 2] (Rational[79, 2] + Rational[35, 2] 5^Rational[1, 2] + (6 (445 + 199 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 4] (2 + 3 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2]), 0}, { Rational[ 1, 4] (217 + 95 5^Rational[1, 2] + (75750 + 33870 5^Rational[1, 2])^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (3 + 5 5^Rational[1, 2] + (30 (5 + 5^Rational[1, 2]))^Rational[1, 2]), 0}, {Rational[ 1, 2] (55 + Rational[49, 2] 5^Rational[1, 2] + Rational[1, 2] (15 (1525 + 682 5^Rational[1, 2]))^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (1 + 3 5^Rational[1, 2] + 2 (15 + 6 5^Rational[1, 2])^Rational[1, 2]), 0}}], Editable->False, SelectWithContents->True, Selectable->False], ",", InterpretationBox[ RowBox[{ TagBox["Polygon", "SummaryHead"], "[", DynamicModuleBox[{Typeset`open$$ = False, Typeset`embedState$$ = "Ready", Typeset`spolygon$$ = Polygon[{{ Rational[ 1, 2] (55 + Rational[49, 2] 5^Rational[1, 2] + Rational[1, 2] (15 (1525 + 682 5^Rational[1, 2]))^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (5 + 3 5^Rational[1, 2] + 2 (15 + 6 5^Rational[1, 2])^Rational[1, 2]), 0}, { Rational[ 1, 2] (43 + Rational[37, 2] 5^Rational[1, 2] + Rational[1, 2] (3 (4745 + 2122 5^Rational[1, 2]))^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 3 5^Rational[1, 2] + 2 (15 + 6 5^Rational[1, 2])^Rational[1, 2]), 0}, { Rational[ 1, 2] (55 + Rational[49, 2] 5^Rational[1, 2] + Rational[1, 2] (15 (1525 + 682 5^Rational[1, 2]))^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (1 + 3 5^Rational[1, 2] + 2 (15 + 6 5^Rational[1, 2])^Rational[1, 2]), 0}}]}, TemplateBox[{ PaneSelectorBox[{False -> GridBox[{{ PaneBox[ ButtonBox[ DynamicBox[ FEPrivate`FrontEndResource[ "FEBitmaps", "SummaryBoxOpener"]], ButtonFunction :> (Typeset`open$$ = True), Appearance -> None, BaseStyle -> {}, Evaluator -> Automatic, Method -> "Preemptive"], Alignment -> {Center, Center}, ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], Graphics3DBox[{ Directive[ GrayLevel[1], EdgeForm[ Hue[0.6, 0.3, 0.4]]], Polygon3DBox[ NCache[{{ Rational[ 1, 2] (55 + Rational[49, 2] 5^Rational[1, 2] + Rational[1, 2] (15 (1525 + 682 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 4] (5 + 3 5^Rational[1, 2] + 2 (15 + 6 5^Rational[1, 2])^Rational[1, 2]), 0}, { Rational[ 1, 2] (43 + Rational[37, 2] 5^Rational[1, 2] + Rational[1, 2] (3 (4745 + 2122 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 3 5^Rational[1, 2] + 2 (15 + 6 5^Rational[1, 2])^Rational[1, 2]), 0}, { Rational[ 1, 2] (55 + Rational[49, 2] 5^Rational[1, 2] + Rational[1, 2] (15 (1525 + 682 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 4] (1 + 3 5^Rational[1, 2] + 2 (15 + 6 5^Rational[1, 2])^Rational[1, 2]), 0}}, {{ 7.360874351741399, 5.59240311112776, 0}, { 6.49484894795696, 5.09240311112776, 0}, { 7.360874351741399, 4.59240311112776, 0}}]]}, ImageSize -> Dynamic[{5.25, 3.5} (CurrentValue["FontCapHeight"]/ AbsoluteCurrentValue[Magnification])], PlotRange -> Full, Boxed -> False, Lighting -> {{"Ambient", RGBColor[0.732, 0.8232, 0.96]}}, Method -> {"ShrinkWrap" -> True}], GridBox[{{ RowBox[{ TagBox["\"Number of points: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["3", "SummaryItem"]}]}, { RowBox[{ TagBox[ "\"Embedding dimension: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["3", "SummaryItem"]}]}}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> { "Columns" -> {{2}}, "Rows" -> {{Automatic}}}, BaseStyle -> { ShowStringCharacters -> False, NumberMarks -> False, PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, BaselinePosition -> {1, 1}], True -> GridBox[{{ PaneBox[ ButtonBox[ DynamicBox[ FEPrivate`FrontEndResource[ "FEBitmaps", "SummaryBoxCloser"]], ButtonFunction :> (Typeset`open$$ = False), Appearance -> None, BaseStyle -> {}, Evaluator -> Automatic, Method -> "Preemptive"], Alignment -> {Center, Center}, ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], Graphics3DBox[{ Directive[ GrayLevel[1], EdgeForm[ Hue[0.6, 0.3, 0.4]]], Polygon3DBox[ NCache[{{ Rational[ 1, 2] (55 + Rational[49, 2] 5^Rational[1, 2] + Rational[1, 2] (15 (1525 + 682 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 4] (5 + 3 5^Rational[1, 2] + 2 (15 + 6 5^Rational[1, 2])^Rational[1, 2]), 0}, { Rational[ 1, 2] (43 + Rational[37, 2] 5^Rational[1, 2] + Rational[1, 2] (3 (4745 + 2122 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 3 5^Rational[1, 2] + 2 (15 + 6 5^Rational[1, 2])^Rational[1, 2]), 0}, { Rational[ 1, 2] (55 + Rational[49, 2] 5^Rational[1, 2] + Rational[1, 2] (15 (1525 + 682 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 4] (1 + 3 5^Rational[1, 2] + 2 (15 + 6 5^Rational[1, 2])^Rational[1, 2]), 0}}, {{ 7.360874351741399, 5.59240311112776, 0}, { 6.49484894795696, 5.09240311112776, 0}, { 7.360874351741399, 4.59240311112776, 0}}]]}, ImageSize -> Dynamic[{5.25, 3.5} (CurrentValue["FontCapHeight"]/ AbsoluteCurrentValue[Magnification])], PlotRange -> Full, Boxed -> False, Lighting -> {{"Ambient", RGBColor[0.732, 0.8232, 0.96]}}, Method -> {"ShrinkWrap" -> True}], GridBox[{{ RowBox[{ TagBox["\"Number of points: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["3", "SummaryItem"]}]}, { RowBox[{ TagBox[ "\"Embedding dimension: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["3", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Type: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Quiet[ Apply[Region`PolygonDump`polygonType, Region`PolygonDump`computeType[Typeset`spolygon$$]]], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}, { RowBox[{ TagBox["\"Bounds: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Region`PolygonDump`iRegionBounds[Typeset`spolygon$$], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}, { RowBox[{ TagBox["\"Area: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Region`PolygonDump`iArea[Typeset`spolygon$$], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> { "Columns" -> {{2}}, "Rows" -> {{Automatic}}}, BaseStyle -> { ShowStringCharacters -> False, NumberMarks -> False, PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, BaselinePosition -> {1, 1}]}, Dynamic[Typeset`open$$], ImageSize -> Automatic]}, "SummaryPanel"], DynamicModuleValues:>{}], "]"}], Polygon[{{ Rational[ 1, 2] (55 + Rational[49, 2] 5^Rational[1, 2] + Rational[1, 2] (15 (1525 + 682 5^Rational[1, 2]))^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (5 + 3 5^Rational[1, 2] + 2 (15 + 6 5^Rational[1, 2])^Rational[1, 2]), 0}, { Rational[ 1, 2] (43 + Rational[37, 2] 5^Rational[1, 2] + Rational[1, 2] (3 (4745 + 2122 5^Rational[1, 2]))^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 3 5^Rational[1, 2] + 2 (15 + 6 5^Rational[1, 2])^Rational[1, 2]), 0}, { Rational[ 1, 2] (55 + Rational[49, 2] 5^Rational[1, 2] + Rational[1, 2] (15 (1525 + 682 5^Rational[1, 2]))^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (1 + 3 5^Rational[1, 2] + 2 (15 + 6 5^Rational[1, 2])^Rational[1, 2]), 0}}], Editable->False, SelectWithContents->True, Selectable->False], ",", InterpretationBox[ RowBox[{ TagBox["Polygon", "SummaryHead"], "[", DynamicModuleBox[{Typeset`open$$ = False, Typeset`embedState$$ = "Ready", Typeset`spolygon$$ = Polygon[{{ Rational[ 1, 4] (193 + 73 5^Rational[1, 2] + 19 (150 + 66 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (3 + 3 5^Rational[1, 2] + (30 - 6 5^Rational[1, 2])^Rational[1, 2]), 0}, {Rational[ 1, 4] (233 + 97 5^Rational[1, 2] + (6 (16705 + 7459 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (1 + 5 5^Rational[1, 2] + (30 - 6 5^Rational[1, 2])^Rational[1, 2]), 0}, {(Rational[47, 4] + 5 5^Rational[1, 2] + (3 (85 + 38 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 4] (1 + 2 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2]), 0}}]}, TemplateBox[{ PaneSelectorBox[{False -> GridBox[{{ PaneBox[ ButtonBox[ DynamicBox[ FEPrivate`FrontEndResource[ "FEBitmaps", "SummaryBoxOpener"]], ButtonFunction :> (Typeset`open$$ = True), Appearance -> None, BaseStyle -> {}, Evaluator -> Automatic, Method -> "Preemptive"], Alignment -> {Center, Center}, ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], Graphics3DBox[{ Directive[ GrayLevel[1], EdgeForm[ Hue[0.6, 0.3, 0.4]]], Polygon3DBox[ NCache[{{ Rational[ 1, 4] (193 + 73 5^Rational[1, 2] + 19 (150 + 66 5^Rational[1, 2])^Rational[1, 2])^ Rational[1, 2], Rational[1, 8] (3 + 3 5^Rational[1, 2] + (30 - 6 5^Rational[1, 2])^ Rational[1, 2]), 0}, { Rational[ 1, 4] (233 + 97 5^Rational[1, 2] + (6 (16705 + 7459 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (1 + 5 5^Rational[1, 2] + (30 - 6 5^Rational[1, 2])^ Rational[1, 2]), 0}, {(Rational[47, 4] + 5 5^Rational[1, 2] + (3 (85 + 38 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 4] (1 + 2 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^ Rational[1, 2]), 0}}, {{ 6.538314327030079, 1.7225624520175482`, 0}, { 7.489370843325234, 2.0315794463924957`, 0}, { 6.746226017847839, 2.7007100527513543`, 0}}]]}, ImageSize -> Dynamic[{5.25, 3.5} (CurrentValue["FontCapHeight"]/ AbsoluteCurrentValue[Magnification])], PlotRange -> Full, Boxed -> False, Lighting -> {{"Ambient", RGBColor[0.732, 0.8232, 0.96]}}, Method -> {"ShrinkWrap" -> True}], GridBox[{{ RowBox[{ TagBox["\"Number of points: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["3", "SummaryItem"]}]}, { RowBox[{ TagBox[ "\"Embedding dimension: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["3", "SummaryItem"]}]}}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> { "Columns" -> {{2}}, "Rows" -> {{Automatic}}}, BaseStyle -> { ShowStringCharacters -> False, NumberMarks -> False, PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, BaselinePosition -> {1, 1}], True -> GridBox[{{ PaneBox[ ButtonBox[ DynamicBox[ FEPrivate`FrontEndResource[ "FEBitmaps", "SummaryBoxCloser"]], ButtonFunction :> (Typeset`open$$ = False), Appearance -> None, BaseStyle -> {}, Evaluator -> Automatic, Method -> "Preemptive"], Alignment -> {Center, Center}, ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], Graphics3DBox[{ Directive[ GrayLevel[1], EdgeForm[ Hue[0.6, 0.3, 0.4]]], Polygon3DBox[ NCache[{{ Rational[ 1, 4] (193 + 73 5^Rational[1, 2] + 19 (150 + 66 5^Rational[1, 2])^Rational[1, 2])^ Rational[1, 2], Rational[1, 8] (3 + 3 5^Rational[1, 2] + (30 - 6 5^Rational[1, 2])^ Rational[1, 2]), 0}, { Rational[ 1, 4] (233 + 97 5^Rational[1, 2] + (6 (16705 + 7459 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (1 + 5 5^Rational[1, 2] + (30 - 6 5^Rational[1, 2])^ Rational[1, 2]), 0}, {(Rational[47, 4] + 5 5^Rational[1, 2] + (3 (85 + 38 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 4] (1 + 2 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^ Rational[1, 2]), 0}}, {{ 6.538314327030079, 1.7225624520175482`, 0}, { 7.489370843325234, 2.0315794463924957`, 0}, { 6.746226017847839, 2.7007100527513543`, 0}}]]}, ImageSize -> Dynamic[{5.25, 3.5} (CurrentValue["FontCapHeight"]/ AbsoluteCurrentValue[Magnification])], PlotRange -> Full, Boxed -> False, Lighting -> {{"Ambient", RGBColor[0.732, 0.8232, 0.96]}}, Method -> {"ShrinkWrap" -> True}], GridBox[{{ RowBox[{ TagBox["\"Number of points: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["3", "SummaryItem"]}]}, { RowBox[{ TagBox[ "\"Embedding dimension: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["3", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Type: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Quiet[ Apply[Region`PolygonDump`polygonType, Region`PolygonDump`computeType[Typeset`spolygon$$]]], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}, { RowBox[{ TagBox["\"Bounds: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Region`PolygonDump`iRegionBounds[Typeset`spolygon$$], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}, { RowBox[{ TagBox["\"Area: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Region`PolygonDump`iArea[Typeset`spolygon$$], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> { "Columns" -> {{2}}, "Rows" -> {{Automatic}}}, BaseStyle -> { ShowStringCharacters -> False, NumberMarks -> False, PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, BaselinePosition -> {1, 1}]}, Dynamic[Typeset`open$$], ImageSize -> Automatic]}, "SummaryPanel"], DynamicModuleValues:>{}], "]"}], Polygon[{{ Rational[ 1, 4] (193 + 73 5^Rational[1, 2] + 19 (150 + 66 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (3 + 3 5^Rational[1, 2] + (30 - 6 5^Rational[1, 2])^Rational[1, 2]), 0}, { Rational[ 1, 4] (233 + 97 5^Rational[1, 2] + (6 (16705 + 7459 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (1 + 5 5^Rational[1, 2] + (30 - 6 5^Rational[1, 2])^Rational[1, 2]), 0}, {(Rational[47, 4] + 5 5^Rational[1, 2] + (3 (85 + 38 5^Rational[1, 2]))^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (1 + 2 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2]), 0}}], Editable->False, SelectWithContents->True, Selectable->False], ",", InterpretationBox[ RowBox[{ TagBox["Polygon", "SummaryHead"], "[", DynamicModuleBox[{Typeset`open$$ = False, Typeset`embedState$$ = "Ready", Typeset`spolygon$$ = Polygon[{{ Rational[ 1, 4] (115 + 43 5^Rational[1, 2] + (30 (745 + 331 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (5 + 5 5^Rational[1, 2] + (30 - 6 5^Rational[1, 2])^Rational[1, 2]), 0}, {Rational[ 1, 2] (Rational[3, 2] (22 + 9 5^Rational[1, 2] + (795 + 354 5^Rational[1, 2])^ Rational[1, 2]))^Rational[1, 2], Rational[1, 2] (1 + 5^Rational[1, 2]), 0}, { Rational[ 1, 4] (193 + 73 5^Rational[1, 2] + 19 (150 + 66 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (3 + 3 5^Rational[1, 2] + (30 - 6 5^Rational[1, 2])^Rational[1, 2]), 0}, {(Rational[47, 4] + 5 5^Rational[1, 2] + (3 (85 + 38 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 4] (1 + 2 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2]), 0}, {(Rational[19, 2] + Rational[7, 2] 5^Rational[1, 2] + (6 (25 + 11 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 2 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2]), 0}}]}, TemplateBox[{ PaneSelectorBox[{False -> GridBox[{{ PaneBox[ ButtonBox[ DynamicBox[ FEPrivate`FrontEndResource[ "FEBitmaps", "SummaryBoxOpener"]], ButtonFunction :> (Typeset`open$$ = True), Appearance -> None, BaseStyle -> {}, Evaluator -> Automatic, Method -> "Preemptive"], Alignment -> {Center, Center}, ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], Graphics3DBox[{ Directive[ GrayLevel[1], EdgeForm[ Hue[0.6, 0.3, 0.4]]], Polygon3DBox[ NCache[{{ Rational[ 1, 4] (115 + 43 5^Rational[1, 2] + (30 (745 + 331 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (5 + 5 5^Rational[1, 2] + (30 - 6 5^Rational[1, 2])^ Rational[1, 2]), 0}, { Rational[ 1, 2] (Rational[3, 2] (22 + 9 5^Rational[1, 2] + (795 + 354 5^Rational[1, 2])^ Rational[1, 2]))^Rational[1, 2], Rational[1, 2] (1 + 5^Rational[1, 2]), 0}, { Rational[ 1, 4] (193 + 73 5^Rational[1, 2] + 19 (150 + 66 5^Rational[1, 2])^Rational[1, 2])^ Rational[1, 2], Rational[1, 8] (3 + 3 5^Rational[1, 2] + (30 - 6 5^Rational[1, 2])^ Rational[1, 2]), 0}, {(Rational[47, 4] + 5 5^Rational[1, 2] + (3 (85 + 38 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 4] (1 + 2 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^ Rational[1, 2]), 0}, {(Rational[19, 2] + Rational[7, 2] 5^Rational[1, 2] + (6 (25 + 11 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 2 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^ Rational[1, 2]), 0}}, {{ 5.137055788586006, 2.5315794463924957`, 0}, { 5.543792431661807, 1.618033988749895, 0}, { 6.538314327030079, 1.7225624520175482`, 0}, { 6.746226017847839, 2.7007100527513543`, 0}, { 5.8802006140634, 3.2007100527513543`, 0}}]]}, ImageSize -> Dynamic[{5.25, 3.5} (CurrentValue["FontCapHeight"]/ AbsoluteCurrentValue[Magnification])], PlotRange -> Full, Boxed -> False, Lighting -> {{"Ambient", RGBColor[0.732, 0.8232, 0.96]}}, Method -> {"ShrinkWrap" -> True}], GridBox[{{ RowBox[{ TagBox["\"Number of points: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["5", "SummaryItem"]}]}, { RowBox[{ TagBox[ "\"Embedding dimension: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["3", "SummaryItem"]}]}}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> { "Columns" -> {{2}}, "Rows" -> {{Automatic}}}, BaseStyle -> { ShowStringCharacters -> False, NumberMarks -> False, PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, BaselinePosition -> {1, 1}], True -> GridBox[{{ PaneBox[ ButtonBox[ DynamicBox[ FEPrivate`FrontEndResource[ "FEBitmaps", "SummaryBoxCloser"]], ButtonFunction :> (Typeset`open$$ = False), Appearance -> None, BaseStyle -> {}, Evaluator -> Automatic, Method -> "Preemptive"], Alignment -> {Center, Center}, ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], Graphics3DBox[{ Directive[ GrayLevel[1], EdgeForm[ Hue[0.6, 0.3, 0.4]]], Polygon3DBox[ NCache[{{ Rational[ 1, 4] (115 + 43 5^Rational[1, 2] + (30 (745 + 331 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (5 + 5 5^Rational[1, 2] + (30 - 6 5^Rational[1, 2])^ Rational[1, 2]), 0}, { Rational[ 1, 2] (Rational[3, 2] (22 + 9 5^Rational[1, 2] + (795 + 354 5^Rational[1, 2])^ Rational[1, 2]))^Rational[1, 2], Rational[1, 2] (1 + 5^Rational[1, 2]), 0}, { Rational[ 1, 4] (193 + 73 5^Rational[1, 2] + 19 (150 + 66 5^Rational[1, 2])^Rational[1, 2])^ Rational[1, 2], Rational[1, 8] (3 + 3 5^Rational[1, 2] + (30 - 6 5^Rational[1, 2])^ Rational[1, 2]), 0}, {(Rational[47, 4] + 5 5^Rational[1, 2] + (3 (85 + 38 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 4] (1 + 2 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^ Rational[1, 2]), 0}, {(Rational[19, 2] + Rational[7, 2] 5^Rational[1, 2] + (6 (25 + 11 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 2 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^ Rational[1, 2]), 0}}, {{ 5.137055788586006, 2.5315794463924957`, 0}, { 5.543792431661807, 1.618033988749895, 0}, { 6.538314327030079, 1.7225624520175482`, 0}, { 6.746226017847839, 2.7007100527513543`, 0}, { 5.8802006140634, 3.2007100527513543`, 0}}]]}, ImageSize -> Dynamic[{5.25, 3.5} (CurrentValue["FontCapHeight"]/ AbsoluteCurrentValue[Magnification])], PlotRange -> Full, Boxed -> False, Lighting -> {{"Ambient", RGBColor[0.732, 0.8232, 0.96]}}, Method -> {"ShrinkWrap" -> True}], GridBox[{{ RowBox[{ TagBox["\"Number of points: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["5", "SummaryItem"]}]}, { RowBox[{ TagBox[ "\"Embedding dimension: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["3", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Type: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Quiet[ Apply[Region`PolygonDump`polygonType, Region`PolygonDump`computeType[Typeset`spolygon$$]]], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}, { RowBox[{ TagBox["\"Bounds: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Region`PolygonDump`iRegionBounds[Typeset`spolygon$$], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}, { RowBox[{ TagBox["\"Area: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Region`PolygonDump`iArea[Typeset`spolygon$$], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> { "Columns" -> {{2}}, "Rows" -> {{Automatic}}}, BaseStyle -> { ShowStringCharacters -> False, NumberMarks -> False, PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, BaselinePosition -> {1, 1}]}, Dynamic[Typeset`open$$], ImageSize -> Automatic]}, "SummaryPanel"], DynamicModuleValues:>{}], "]"}], Polygon[{{ Rational[ 1, 4] (115 + 43 5^Rational[1, 2] + (30 (745 + 331 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (5 + 5 5^Rational[1, 2] + (30 - 6 5^Rational[1, 2])^Rational[1, 2]), 0}, { Rational[ 1, 2] (Rational[3, 2] (22 + 9 5^Rational[1, 2] + (795 + 354 5^Rational[1, 2])^Rational[1, 2]))^ Rational[1, 2], Rational[1, 2] (1 + 5^Rational[1, 2]), 0}, { Rational[ 1, 4] (193 + 73 5^Rational[1, 2] + 19 (150 + 66 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (3 + 3 5^Rational[1, 2] + (30 - 6 5^Rational[1, 2])^Rational[1, 2]), 0}, {(Rational[47, 4] + 5 5^Rational[1, 2] + (3 (85 + 38 5^Rational[1, 2]))^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (1 + 2 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2]), 0}, {(Rational[19, 2] + Rational[7, 2] 5^Rational[1, 2] + (6 (25 + 11 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 2 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2]), 0}}], Editable->False, SelectWithContents->True, Selectable->False], ",", InterpretationBox[ RowBox[{ TagBox["Polygon", "SummaryHead"], "[", DynamicModuleBox[{Typeset`open$$ = False, Typeset`embedState$$ = "Ready", Typeset`spolygon$$ = Polygon[{{(Rational[61, 8] + Rational[17, 8] 5^Rational[1, 2] + (75 + 30 5^Rational[1, 2])^ Rational[1, 2])^Rational[1, 2], Rational[1, 4] (2 + 3 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2]), 0}, {Rational[ 1, 4] (115 + 43 5^Rational[1, 2] + (30 (745 + 331 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (5 + 5 5^Rational[1, 2] + (30 - 6 5^Rational[1, 2])^Rational[1, 2]), 0}, {(Rational[19, 2] + Rational[7, 2] 5^Rational[1, 2] + (6 (25 + 11 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 2 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2]), 0}}]}, TemplateBox[{ PaneSelectorBox[{False -> GridBox[{{ PaneBox[ ButtonBox[ DynamicBox[ FEPrivate`FrontEndResource[ "FEBitmaps", "SummaryBoxOpener"]], ButtonFunction :> (Typeset`open$$ = True), Appearance -> None, BaseStyle -> {}, Evaluator -> Automatic, Method -> "Preemptive"], Alignment -> {Center, Center}, ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], Graphics3DBox[{ Directive[ GrayLevel[1], EdgeForm[ Hue[0.6, 0.3, 0.4]]], Polygon3DBox[ NCache[{{(Rational[61, 8] + Rational[17, 8] 5^Rational[1, 2] + (75 + 30 5^Rational[1, 2])^ Rational[1, 2])^Rational[1, 2], Rational[1, 4] (2 + 3 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^ Rational[1, 2]), 0}, { Rational[ 1, 4] (115 + 43 5^Rational[1, 2] + (30 (745 + 331 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (5 + 5 5^Rational[1, 2] + (30 - 6 5^Rational[1, 2])^ Rational[1, 2]), 0}, {(Rational[19, 2] + Rational[7, 2] 5^Rational[1, 2] + (6 (25 + 11 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 2 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^ Rational[1, 2]), 0}}, {{ 4.929144097768247, 3.509727047126302, 0}, { 5.137055788586006, 2.5315794463924957`, 0}, { 5.8802006140634, 3.2007100527513543`, 0}}]]}, ImageSize -> Dynamic[{5.25, 3.5} (CurrentValue["FontCapHeight"]/ AbsoluteCurrentValue[Magnification])], PlotRange -> Full, Boxed -> False, Lighting -> {{"Ambient", RGBColor[0.732, 0.8232, 0.96]}}, Method -> {"ShrinkWrap" -> True}], GridBox[{{ RowBox[{ TagBox["\"Number of points: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["3", "SummaryItem"]}]}, { RowBox[{ TagBox[ "\"Embedding dimension: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["3", "SummaryItem"]}]}}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> { "Columns" -> {{2}}, "Rows" -> {{Automatic}}}, BaseStyle -> { ShowStringCharacters -> False, NumberMarks -> False, PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, BaselinePosition -> {1, 1}], True -> GridBox[{{ PaneBox[ ButtonBox[ DynamicBox[ FEPrivate`FrontEndResource[ "FEBitmaps", "SummaryBoxCloser"]], ButtonFunction :> (Typeset`open$$ = False), Appearance -> None, BaseStyle -> {}, Evaluator -> Automatic, Method -> "Preemptive"], Alignment -> {Center, Center}, ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], Graphics3DBox[{ Directive[ GrayLevel[1], EdgeForm[ Hue[0.6, 0.3, 0.4]]], Polygon3DBox[ NCache[{{(Rational[61, 8] + Rational[17, 8] 5^Rational[1, 2] + (75 + 30 5^Rational[1, 2])^ Rational[1, 2])^Rational[1, 2], Rational[1, 4] (2 + 3 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^ Rational[1, 2]), 0}, { Rational[ 1, 4] (115 + 43 5^Rational[1, 2] + (30 (745 + 331 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (5 + 5 5^Rational[1, 2] + (30 - 6 5^Rational[1, 2])^ Rational[1, 2]), 0}, {(Rational[19, 2] + Rational[7, 2] 5^Rational[1, 2] + (6 (25 + 11 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 2 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^ Rational[1, 2]), 0}}, {{ 4.929144097768247, 3.509727047126302, 0}, { 5.137055788586006, 2.5315794463924957`, 0}, { 5.8802006140634, 3.2007100527513543`, 0}}]]}, ImageSize -> Dynamic[{5.25, 3.5} (CurrentValue["FontCapHeight"]/ AbsoluteCurrentValue[Magnification])], PlotRange -> Full, Boxed -> False, Lighting -> {{"Ambient", RGBColor[0.732, 0.8232, 0.96]}}, Method -> {"ShrinkWrap" -> True}], GridBox[{{ RowBox[{ TagBox["\"Number of points: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["3", "SummaryItem"]}]}, { RowBox[{ TagBox[ "\"Embedding dimension: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["3", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Type: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Quiet[ Apply[Region`PolygonDump`polygonType, Region`PolygonDump`computeType[Typeset`spolygon$$]]], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}, { RowBox[{ TagBox["\"Bounds: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Region`PolygonDump`iRegionBounds[Typeset`spolygon$$], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}, { RowBox[{ TagBox["\"Area: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Region`PolygonDump`iArea[Typeset`spolygon$$], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> { "Columns" -> {{2}}, "Rows" -> {{Automatic}}}, BaseStyle -> { ShowStringCharacters -> False, NumberMarks -> False, PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, BaselinePosition -> {1, 1}]}, Dynamic[Typeset`open$$], ImageSize -> Automatic]}, "SummaryPanel"], DynamicModuleValues:>{}], "]"}], Polygon[{{(Rational[61, 8] + Rational[17, 8] 5^Rational[1, 2] + (75 + 30 5^Rational[1, 2])^ Rational[1, 2])^Rational[1, 2], Rational[1, 4] (2 + 3 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2]), 0}, { Rational[ 1, 4] (115 + 43 5^Rational[1, 2] + (30 (745 + 331 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (5 + 5 5^Rational[1, 2] + (30 - 6 5^Rational[1, 2])^Rational[1, 2]), 0}, {(Rational[19, 2] + Rational[7, 2] 5^Rational[1, 2] + (6 (25 + 11 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 2 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2]), 0}}], Editable->False, SelectWithContents->True, Selectable->False], ",", InterpretationBox[ RowBox[{ TagBox["Polygon", "SummaryHead"], "[", DynamicModuleBox[{Typeset`open$$ = False, Typeset`embedState$$ = "Ready", Typeset`spolygon$$ = Polygon[{{ Rational[ 1, 4] (287 + 127 5^Rational[1, 2] + (149070 + 66666 5^Rational[1, 2])^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (-3 + 5 5^Rational[1, 2] + (30 - 6 5^Rational[1, 2])^Rational[1, 2]), 0}, {Rational[ 1, 4] (287 + 127 5^Rational[1, 2] + (149070 + 66666 5^Rational[1, 2])^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (5 + 5 5^Rational[1, 2] + (30 - 6 5^Rational[1, 2])^Rational[1, 2]), 0}, {Rational[ 1, 4] (233 + 97 5^Rational[1, 2] + (6 (16705 + 7459 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (1 + 5 5^Rational[1, 2] + (30 - 6 5^Rational[1, 2])^Rational[1, 2]), 0}}]}, TemplateBox[{ PaneSelectorBox[{False -> GridBox[{{ PaneBox[ ButtonBox[ DynamicBox[ FEPrivate`FrontEndResource[ "FEBitmaps", "SummaryBoxOpener"]], ButtonFunction :> (Typeset`open$$ = True), Appearance -> None, BaseStyle -> {}, Evaluator -> Automatic, Method -> "Preemptive"], Alignment -> {Center, Center}, ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], Graphics3DBox[{ Directive[ GrayLevel[1], EdgeForm[ Hue[0.6, 0.3, 0.4]]], Polygon3DBox[ NCache[{{ Rational[ 1, 4] (287 + 127 5^Rational[1, 2] + (149070 + 66666 5^Rational[1, 2])^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (-3 + 5 5^Rational[1, 2] + (30 - 6 5^Rational[1, 2])^ Rational[1, 2]), 0}, { Rational[ 1, 4] (287 + 127 5^Rational[1, 2] + (149070 + 66666 5^Rational[1, 2])^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (5 + 5 5^Rational[1, 2] + (30 - 6 5^Rational[1, 2])^ Rational[1, 2]), 0}, { Rational[ 1, 4] (233 + 97 5^Rational[1, 2] + (6 (16705 + 7459 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (1 + 5 5^Rational[1, 2] + (30 - 6 5^Rational[1, 2])^ Rational[1, 2]), 0}}, {{ 8.355396247109672, 1.5315794463924957`, 0}, { 8.355396247109672, 2.5315794463924957`, 0}, { 7.489370843325234, 2.0315794463924957`, 0}}]]}, ImageSize -> Dynamic[{5.25, 3.5} (CurrentValue["FontCapHeight"]/ AbsoluteCurrentValue[Magnification])], PlotRange -> Full, Boxed -> False, Lighting -> {{"Ambient", RGBColor[0.732, 0.8232, 0.96]}}, Method -> {"ShrinkWrap" -> True}], GridBox[{{ RowBox[{ TagBox["\"Number of points: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["3", "SummaryItem"]}]}, { RowBox[{ TagBox[ "\"Embedding dimension: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["3", "SummaryItem"]}]}}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> { "Columns" -> {{2}}, "Rows" -> {{Automatic}}}, BaseStyle -> { ShowStringCharacters -> False, NumberMarks -> False, PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, BaselinePosition -> {1, 1}], True -> GridBox[{{ PaneBox[ ButtonBox[ DynamicBox[ FEPrivate`FrontEndResource[ "FEBitmaps", "SummaryBoxCloser"]], ButtonFunction :> (Typeset`open$$ = False), Appearance -> None, BaseStyle -> {}, Evaluator -> Automatic, Method -> "Preemptive"], Alignment -> {Center, Center}, ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], Graphics3DBox[{ Directive[ GrayLevel[1], EdgeForm[ Hue[0.6, 0.3, 0.4]]], Polygon3DBox[ NCache[{{ Rational[ 1, 4] (287 + 127 5^Rational[1, 2] + (149070 + 66666 5^Rational[1, 2])^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (-3 + 5 5^Rational[1, 2] + (30 - 6 5^Rational[1, 2])^ Rational[1, 2]), 0}, { Rational[ 1, 4] (287 + 127 5^Rational[1, 2] + (149070 + 66666 5^Rational[1, 2])^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (5 + 5 5^Rational[1, 2] + (30 - 6 5^Rational[1, 2])^ Rational[1, 2]), 0}, { Rational[ 1, 4] (233 + 97 5^Rational[1, 2] + (6 (16705 + 7459 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (1 + 5 5^Rational[1, 2] + (30 - 6 5^Rational[1, 2])^ Rational[1, 2]), 0}}, {{ 8.355396247109672, 1.5315794463924957`, 0}, { 8.355396247109672, 2.5315794463924957`, 0}, { 7.489370843325234, 2.0315794463924957`, 0}}]]}, ImageSize -> Dynamic[{5.25, 3.5} (CurrentValue["FontCapHeight"]/ AbsoluteCurrentValue[Magnification])], PlotRange -> Full, Boxed -> False, Lighting -> {{"Ambient", RGBColor[0.732, 0.8232, 0.96]}}, Method -> {"ShrinkWrap" -> True}], GridBox[{{ RowBox[{ TagBox["\"Number of points: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["3", "SummaryItem"]}]}, { RowBox[{ TagBox[ "\"Embedding dimension: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["3", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Type: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Quiet[ Apply[Region`PolygonDump`polygonType, Region`PolygonDump`computeType[Typeset`spolygon$$]]], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}, { RowBox[{ TagBox["\"Bounds: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Region`PolygonDump`iRegionBounds[Typeset`spolygon$$], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}, { RowBox[{ TagBox["\"Area: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Region`PolygonDump`iArea[Typeset`spolygon$$], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> { "Columns" -> {{2}}, "Rows" -> {{Automatic}}}, BaseStyle -> { ShowStringCharacters -> False, NumberMarks -> False, PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, BaselinePosition -> {1, 1}]}, Dynamic[Typeset`open$$], ImageSize -> Automatic]}, "SummaryPanel"], DynamicModuleValues:>{}], "]"}], Polygon[{{ Rational[ 1, 4] (287 + 127 5^Rational[1, 2] + (149070 + 66666 5^Rational[1, 2])^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (-3 + 5 5^Rational[1, 2] + (30 - 6 5^Rational[1, 2])^Rational[1, 2]), 0}, { Rational[ 1, 4] (287 + 127 5^Rational[1, 2] + (149070 + 66666 5^Rational[1, 2])^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (5 + 5 5^Rational[1, 2] + (30 - 6 5^Rational[1, 2])^Rational[1, 2]), 0}, { Rational[ 1, 4] (233 + 97 5^Rational[1, 2] + (6 (16705 + 7459 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (1 + 5 5^Rational[1, 2] + (30 - 6 5^Rational[1, 2])^Rational[1, 2]), 0}}], Editable->False, SelectWithContents->True, Selectable->False], ",", InterpretationBox[ RowBox[{ TagBox["Polygon", "SummaryHead"], "[", DynamicModuleBox[{Typeset`open$$ = False, Typeset`embedState$$ = "Ready", Typeset`spolygon$$ = Polygon[{{ Rational[ 1, 4] (217 + 95 5^Rational[1, 2] + (75750 + 33870 5^Rational[1, 2])^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (-1 + 5 5^Rational[1, 2] - (6 (5 + 5^Rational[1, 2]))^Rational[1, 2]), 0}, {(Rational[145, 8] + Rational[61, 8] 5^Rational[1, 2] + (Rational[15, 2] (65 + 29 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 4] (-1 + 2 5^Rational[1, 2] - (15 - 6 5^Rational[1, 2])^ Rational[1, 2]), 0}, { Rational[ 1, 4] (287 + 127 5^Rational[1, 2] + (149070 + 66666 5^Rational[1, 2])^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (-3 + 5 5^Rational[1, 2] + (30 - 6 5^Rational[1, 2])^Rational[1, 2]), 0}, {Rational[ 1, 4] (233 + 97 5^Rational[1, 2] + (6 (16705 + 7459 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (1 + 5 5^Rational[1, 2] + (30 - 6 5^Rational[1, 2])^Rational[1, 2]), 0}, {(Rational[47, 4] + 5 5^Rational[1, 2] + (3 (85 + 38 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[3, 4] 5^Rational[1, 2] + Rational[-1, 4] (3 (5 - 2 5^Rational[1, 2]))^Rational[1, 2], 0}}]}, TemplateBox[{ PaneSelectorBox[{False -> GridBox[{{ PaneBox[ ButtonBox[ DynamicBox[ FEPrivate`FrontEndResource[ "FEBitmaps", "SummaryBoxOpener"]], ButtonFunction :> (Typeset`open$$ = True), Appearance -> None, BaseStyle -> {}, Evaluator -> Automatic, Method -> "Preemptive"], Alignment -> {Center, Center}, ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], Graphics3DBox[{ Directive[ GrayLevel[1], EdgeForm[ Hue[0.6, 0.3, 0.4]]], Polygon3DBox[ NCache[{{ Rational[ 1, 4] (217 + 95 5^Rational[1, 2] + (75750 + 33870 5^Rational[1, 2])^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (-1 + 5 5^Rational[1, 2] - (6 (5 + 5^Rational[1, 2]))^ Rational[1, 2]), 0}, {(Rational[145, 8] + Rational[61, 8] 5^Rational[1, 2] + ( Rational[15, 2] (65 + 29 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 4] (-1 + 2 5^Rational[1, 2] - (15 - 6 5^Rational[1, 2])^ Rational[1, 2]), 0}, { Rational[ 1, 4] (287 + 127 5^Rational[1, 2] + (149070 + 66666 5^Rational[1, 2])^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (-3 + 5 5^Rational[1, 2] + (30 - 6 5^Rational[1, 2])^ Rational[1, 2]), 0}, { Rational[ 1, 4] (233 + 97 5^Rational[1, 2] + (6 (16705 + 7459 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (1 + 5 5^Rational[1, 2] + (30 - 6 5^Rational[1, 2])^ Rational[1, 2]), 0}, {(Rational[47, 4] + 5 5^Rational[1, 2] + (3 (85 + 38 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[3, 4] 5^Rational[1, 2] + Rational[-1, 4] (3 (5 - 2 5^Rational[1, 2]))^ Rational[1, 2], 0}}, {{ 7.152962660923639, 0.44890338239103666`, 0}, { 8.147484556291912, 0.5534318456586902, 0}, { 8.355396247109672, 1.5315794463924957`, 0}, { 7.489370843325234, 2.0315794463924957`, 0}, { 6.746226017847839, 1.3624488400336376`, 0}}]]}, ImageSize -> Dynamic[{5.25, 3.5} (CurrentValue["FontCapHeight"]/ AbsoluteCurrentValue[Magnification])], PlotRange -> Full, Boxed -> False, Lighting -> {{"Ambient", RGBColor[0.732, 0.8232, 0.96]}}, Method -> {"ShrinkWrap" -> True}], GridBox[{{ RowBox[{ TagBox["\"Number of points: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["5", "SummaryItem"]}]}, { RowBox[{ TagBox[ "\"Embedding dimension: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["3", "SummaryItem"]}]}}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> { "Columns" -> {{2}}, "Rows" -> {{Automatic}}}, BaseStyle -> { ShowStringCharacters -> False, NumberMarks -> False, PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, BaselinePosition -> {1, 1}], True -> GridBox[{{ PaneBox[ ButtonBox[ DynamicBox[ FEPrivate`FrontEndResource[ "FEBitmaps", "SummaryBoxCloser"]], ButtonFunction :> (Typeset`open$$ = False), Appearance -> None, BaseStyle -> {}, Evaluator -> Automatic, Method -> "Preemptive"], Alignment -> {Center, Center}, ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], Graphics3DBox[{ Directive[ GrayLevel[1], EdgeForm[ Hue[0.6, 0.3, 0.4]]], Polygon3DBox[ NCache[{{ Rational[ 1, 4] (217 + 95 5^Rational[1, 2] + (75750 + 33870 5^Rational[1, 2])^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (-1 + 5 5^Rational[1, 2] - (6 (5 + 5^Rational[1, 2]))^ Rational[1, 2]), 0}, {(Rational[145, 8] + Rational[61, 8] 5^Rational[1, 2] + ( Rational[15, 2] (65 + 29 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 4] (-1 + 2 5^Rational[1, 2] - (15 - 6 5^Rational[1, 2])^ Rational[1, 2]), 0}, { Rational[ 1, 4] (287 + 127 5^Rational[1, 2] + (149070 + 66666 5^Rational[1, 2])^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (-3 + 5 5^Rational[1, 2] + (30 - 6 5^Rational[1, 2])^ Rational[1, 2]), 0}, { Rational[ 1, 4] (233 + 97 5^Rational[1, 2] + (6 (16705 + 7459 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (1 + 5 5^Rational[1, 2] + (30 - 6 5^Rational[1, 2])^ Rational[1, 2]), 0}, {(Rational[47, 4] + 5 5^Rational[1, 2] + (3 (85 + 38 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[3, 4] 5^Rational[1, 2] + Rational[-1, 4] (3 (5 - 2 5^Rational[1, 2]))^ Rational[1, 2], 0}}, {{ 7.152962660923639, 0.44890338239103666`, 0}, { 8.147484556291912, 0.5534318456586902, 0}, { 8.355396247109672, 1.5315794463924957`, 0}, { 7.489370843325234, 2.0315794463924957`, 0}, { 6.746226017847839, 1.3624488400336376`, 0}}]]}, ImageSize -> Dynamic[{5.25, 3.5} (CurrentValue["FontCapHeight"]/ AbsoluteCurrentValue[Magnification])], PlotRange -> Full, Boxed -> False, Lighting -> {{"Ambient", RGBColor[0.732, 0.8232, 0.96]}}, Method -> {"ShrinkWrap" -> True}], GridBox[{{ RowBox[{ TagBox["\"Number of points: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["5", "SummaryItem"]}]}, { RowBox[{ TagBox[ "\"Embedding dimension: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["3", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Type: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Quiet[ Apply[Region`PolygonDump`polygonType, Region`PolygonDump`computeType[Typeset`spolygon$$]]], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}, { RowBox[{ TagBox["\"Bounds: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Region`PolygonDump`iRegionBounds[Typeset`spolygon$$], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}, { RowBox[{ TagBox["\"Area: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Region`PolygonDump`iArea[Typeset`spolygon$$], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> { "Columns" -> {{2}}, "Rows" -> {{Automatic}}}, BaseStyle -> { ShowStringCharacters -> False, NumberMarks -> False, PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, BaselinePosition -> {1, 1}]}, Dynamic[Typeset`open$$], ImageSize -> Automatic]}, "SummaryPanel"], DynamicModuleValues:>{}], "]"}], Polygon[{{ Rational[ 1, 4] (217 + 95 5^Rational[1, 2] + (75750 + 33870 5^Rational[1, 2])^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (-1 + 5 5^Rational[1, 2] - (6 (5 + 5^Rational[1, 2]))^ Rational[1, 2]), 0}, {(Rational[145, 8] + Rational[61, 8] 5^Rational[1, 2] + (Rational[15, 2] (65 + 29 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 4] (-1 + 2 5^Rational[1, 2] - (15 - 6 5^Rational[1, 2])^ Rational[1, 2]), 0}, { Rational[ 1, 4] (287 + 127 5^Rational[1, 2] + (149070 + 66666 5^Rational[1, 2])^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (-3 + 5 5^Rational[1, 2] + (30 - 6 5^Rational[1, 2])^Rational[1, 2]), 0}, { Rational[ 1, 4] (233 + 97 5^Rational[1, 2] + (6 (16705 + 7459 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (1 + 5 5^Rational[1, 2] + (30 - 6 5^Rational[1, 2])^Rational[1, 2]), 0}, {(Rational[47, 4] + 5 5^Rational[1, 2] + (3 (85 + 38 5^Rational[1, 2]))^Rational[1, 2])^ Rational[1, 2], Rational[3, 4] 5^Rational[1, 2] + Rational[-1, 4] (3 (5 - 2 5^Rational[1, 2]))^Rational[1, 2], 0}}], Editable->False, SelectWithContents->True, Selectable->False], ",", InterpretationBox[ RowBox[{ TagBox["Polygon", "SummaryHead"], "[", DynamicModuleBox[{Typeset`open$$ = False, Typeset`embedState$$ = "Ready", Typeset`spolygon$$ = Polygon[{{ Rational[ 1, 2] (Rational[79, 2] + Rational[35, 2] 5^Rational[1, 2] + (6 (445 + 199 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 4] (-1 + 2 5^Rational[1, 2] - (15 - 6 5^Rational[1, 2])^ Rational[1, 2]), 0}, { Rational[ 1, 4] (217 + 95 5^Rational[1, 2] + (75750 + 33870 5^Rational[1, 2])^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (-1 + 5 5^Rational[1, 2] - (6 (5 + 5^Rational[1, 2]))^Rational[1, 2]), 0}, {(Rational[47, 4] + 5 5^Rational[1, 2] + (3 (85 + 38 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[3, 4] 5^Rational[1, 2] + Rational[-1, 4] (3 (5 - 2 5^Rational[1, 2]))^Rational[1, 2], 0}}]}, TemplateBox[{ PaneSelectorBox[{False -> GridBox[{{ PaneBox[ ButtonBox[ DynamicBox[ FEPrivate`FrontEndResource[ "FEBitmaps", "SummaryBoxOpener"]], ButtonFunction :> (Typeset`open$$ = True), Appearance -> None, BaseStyle -> {}, Evaluator -> Automatic, Method -> "Preemptive"], Alignment -> {Center, Center}, ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], Graphics3DBox[{ Directive[ GrayLevel[1], EdgeForm[ Hue[0.6, 0.3, 0.4]]], Polygon3DBox[ NCache[{{ Rational[ 1, 2] (Rational[79, 2] + Rational[35, 2] 5^Rational[1, 2] + (6 (445 + 199 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 4] (-1 + 2 5^Rational[1, 2] - (15 - 6 5^Rational[1, 2])^ Rational[1, 2]), 0}, { Rational[ 1, 4] (217 + 95 5^Rational[1, 2] + (75750 + 33870 5^Rational[1, 2])^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (-1 + 5 5^Rational[1, 2] - (6 (5 + 5^Rational[1, 2]))^ Rational[1, 2]), 0}, {(Rational[47, 4] + 5 5^Rational[1, 2] + (3 (85 + 38 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[3, 4] 5^Rational[1, 2] + Rational[-1, 4] (3 (5 - 2 5^Rational[1, 2]))^ Rational[1, 2], 0}}, {{ 6.158440765555366, 0.5534318456586902, 0}, { 7.152962660923639, 0.44890338239103666`, 0}, { 6.746226017847839, 1.3624488400336376`, 0}}]]}, ImageSize -> Dynamic[{5.25, 3.5} (CurrentValue["FontCapHeight"]/ AbsoluteCurrentValue[Magnification])], PlotRange -> Full, Boxed -> False, Lighting -> {{"Ambient", RGBColor[0.732, 0.8232, 0.96]}}, Method -> {"ShrinkWrap" -> True}], GridBox[{{ RowBox[{ TagBox["\"Number of points: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["3", "SummaryItem"]}]}, { RowBox[{ TagBox[ "\"Embedding dimension: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["3", "SummaryItem"]}]}}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> { "Columns" -> {{2}}, "Rows" -> {{Automatic}}}, BaseStyle -> { ShowStringCharacters -> False, NumberMarks -> False, PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, BaselinePosition -> {1, 1}], True -> GridBox[{{ PaneBox[ ButtonBox[ DynamicBox[ FEPrivate`FrontEndResource[ "FEBitmaps", "SummaryBoxCloser"]], ButtonFunction :> (Typeset`open$$ = False), Appearance -> None, BaseStyle -> {}, Evaluator -> Automatic, Method -> "Preemptive"], Alignment -> {Center, Center}, ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], Graphics3DBox[{ Directive[ GrayLevel[1], EdgeForm[ Hue[0.6, 0.3, 0.4]]], Polygon3DBox[ NCache[{{ Rational[ 1, 2] (Rational[79, 2] + Rational[35, 2] 5^Rational[1, 2] + (6 (445 + 199 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 4] (-1 + 2 5^Rational[1, 2] - (15 - 6 5^Rational[1, 2])^ Rational[1, 2]), 0}, { Rational[ 1, 4] (217 + 95 5^Rational[1, 2] + (75750 + 33870 5^Rational[1, 2])^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (-1 + 5 5^Rational[1, 2] - (6 (5 + 5^Rational[1, 2]))^ Rational[1, 2]), 0}, {(Rational[47, 4] + 5 5^Rational[1, 2] + (3 (85 + 38 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[3, 4] 5^Rational[1, 2] + Rational[-1, 4] (3 (5 - 2 5^Rational[1, 2]))^ Rational[1, 2], 0}}, {{ 6.158440765555366, 0.5534318456586902, 0}, { 7.152962660923639, 0.44890338239103666`, 0}, { 6.746226017847839, 1.3624488400336376`, 0}}]]}, ImageSize -> Dynamic[{5.25, 3.5} (CurrentValue["FontCapHeight"]/ AbsoluteCurrentValue[Magnification])], PlotRange -> Full, Boxed -> False, Lighting -> {{"Ambient", RGBColor[0.732, 0.8232, 0.96]}}, Method -> {"ShrinkWrap" -> True}], GridBox[{{ RowBox[{ TagBox["\"Number of points: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["3", "SummaryItem"]}]}, { RowBox[{ TagBox[ "\"Embedding dimension: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["3", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Type: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Quiet[ Apply[Region`PolygonDump`polygonType, Region`PolygonDump`computeType[Typeset`spolygon$$]]], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}, { RowBox[{ TagBox["\"Bounds: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Region`PolygonDump`iRegionBounds[Typeset`spolygon$$], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}, { RowBox[{ TagBox["\"Area: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Region`PolygonDump`iArea[Typeset`spolygon$$], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> { "Columns" -> {{2}}, "Rows" -> {{Automatic}}}, BaseStyle -> { ShowStringCharacters -> False, NumberMarks -> False, PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, BaselinePosition -> {1, 1}]}, Dynamic[Typeset`open$$], ImageSize -> Automatic]}, "SummaryPanel"], DynamicModuleValues:>{}], "]"}], Polygon[{{ Rational[ 1, 2] (Rational[79, 2] + Rational[35, 2] 5^Rational[1, 2] + (6 (445 + 199 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 4] (-1 + 2 5^Rational[1, 2] - (15 - 6 5^Rational[1, 2])^ Rational[1, 2]), 0}, { Rational[ 1, 4] (217 + 95 5^Rational[1, 2] + (75750 + 33870 5^Rational[1, 2])^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (-1 + 5 5^Rational[1, 2] - (6 (5 + 5^Rational[1, 2]))^ Rational[1, 2]), 0}, {(Rational[47, 4] + 5 5^Rational[1, 2] + (3 (85 + 38 5^Rational[1, 2]))^Rational[1, 2])^ Rational[1, 2], Rational[3, 4] 5^Rational[1, 2] + Rational[-1, 4] (3 (5 - 2 5^Rational[1, 2]))^Rational[1, 2], 0}}], Editable->False, SelectWithContents->True, Selectable->False]}], "}"}], "}"}]], "Output", CellLabel-> "Out[186]=",ExpressionUUID->"6e201371-8422-43de-98d7-a0e3100837f3"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{"Total", "[", RowBox[{"Area", "/@", RowBox[{"Flatten", "[", "poly3d", "]"}]}], "]"}], "//", "RootReduce"}], "//", "FullSimplify"}]], "Input", CellLabel-> "In[187]:=",ExpressionUUID->"e9abd97f-4ed3-4540-b23d-e0241e15fc5d"], Cell[BoxData[ SqrtBox[ RowBox[{"30", " ", RowBox[{"(", RowBox[{"10", "+", RowBox[{"3", " ", SqrtBox["5"]}], "+", SqrtBox[ RowBox[{"75", "+", RowBox[{"30", " ", SqrtBox["5"]}]}]]}], ")"}]}]]], "Output", CellLabel-> "Out[187]=",ExpressionUUID->"a7e217ae-94e9-48c5-a2b4-179cbb2933fa"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Graphics3D", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"FaceForm", "[", RowBox[{"Green", ",", "Red"}], "]"}], ",", "poly3d"}], "}"}], ",", RowBox[{"Axes", "\[Rule]", "True"}], ",", RowBox[{"AxesLabel", "\[Rule]", RowBox[{"{", RowBox[{"\"\\"", ",", "\"\\"", ",", "\"\\""}], "}"}]}]}], "]"}]], "Input", CellLabel-> "In[188]:=",ExpressionUUID->"b6702f5c-d689-4b30-931c-621752a20127"], Cell[BoxData[ Graphics3DBox[ {FaceForm[RGBColor[0, 1, 0], RGBColor[ 1, 0, 0]], { Polygon3DBox[ NCache[{{Rational[ 1, 4] (38 + 14 5^Rational[1, 2] + 4 (150 + 66 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2], Rational[1, 4] ( 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2]), 0}, {(Rational[17, 4] + 5^Rational[1, 2] + Rational[1, 2] (75 + 30 5^Rational[1, 2])^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (1 + 2 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2]), 0}, { Rational[ 1, 4] (38 + 14 5^Rational[1, 2] + 4 (150 + 66 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (2 + 3 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2]), 0}, { Rational[ 1, 2] (7 + 5^Rational[1, 2] + (6 (5 + 5^Rational[1, 2]))^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 2 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2]), 0}, { Rational[ 1, 2] (7 + 5^Rational[1, 2] + (6 (5 + 5^Rational[1, 2]))^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (-1 + 2 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2]), 0}}, {{2.9401003070317, 1.8916930583764067`, 0}, { 3.527885559324173, 2.7007100527513543`, 0}, { 2.9401003070317, 3.509727047126302, 0}, { 1.9890437907365468`, 3.2007100527513543`, 0}, { 1.9890437907365468`, 2.2007100527513543`, 0}}]], Polygon3DBox[ NCache[{{Rational[ 1, 2] (7 - 2 5^Rational[1, 2] + 2 (15 - 6 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (1 + 2 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2]), 0}, { Rational[ 1, 2] (7 + 5^Rational[1, 2] + (6 (5 + 5^Rational[1, 2]))^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (-1 + 2 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2]), 0}, { Rational[ 1, 2] (7 + 5^Rational[1, 2] + (6 (5 + 5^Rational[1, 2]))^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 2 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2]), 0}}, {{1.123018386952108, 2.7007100527513543`, 0}, { 1.9890437907365468`, 2.2007100527513543`, 0}, { 1.9890437907365468`, 3.2007100527513543`, 0}}]], Polygon3DBox[ NCache[{{Rational[ 1, 2] (Rational[1, 2] (10 - 5^ Rational[1, 2] - (15 (5 - 2 5^Rational[1, 2]))^Rational[1, 2]))^ Rational[1, 2], Rational[1, 2] (1 + 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2]), 0}, { Rational[ 1, 4] (17 - 7 5^Rational[1, 2] + (390 - 174 5^Rational[1, 2])^Rational[1, 2])^ Rational[1, 2], Rational[1, 8] (3 + 3 5^Rational[1, 2] + (150 + 66 5^Rational[1, 2])^Rational[1, 2]), 0}, {Rational[ 1, 2] (7 - 2 5^Rational[1, 2] + 2 (15 - 6 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (1 + 2 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2]), 0}, { Rational[ 1, 2] (7 + 5^Rational[1, 2] + (6 (5 + 5^Rational[1, 2]))^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 2 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2]), 0}, { Rational[ 1, 4] (47 - 5^ Rational[1, 2] + (1230 - 534 5^Rational[1, 2])^Rational[1, 2])^ Rational[1, 2], Rational[1, 8] (5 + 5 5^Rational[1, 2] + (150 + 66 5^Rational[1, 2])^Rational[1, 2]), 0}}, {{0.786610204550514, 4.283386116752814, 0}, { 0.37987356147471385`, 3.369840659110212, 0}, { 1.123018386952108, 2.7007100527513543`, 0}, { 1.9890437907365468`, 3.2007100527513543`, 0}, { 1.7811320999187874`, 4.17885765348516, 0}}]], Polygon3DBox[ NCache[{{Rational[ 1, 2] (Rational[5, 2] (4 - 5^ Rational[1, 2] + (15 - 6 5^Rational[1, 2])^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (3 + 3 5^Rational[1, 2] + 2 (15 + 6 5^Rational[1, 2])^Rational[1, 2]), 0}, { Rational[ 1, 2] (Rational[1, 2] (10 - 5^ Rational[1, 2] - (15 (5 - 2 5^Rational[1, 2]))^Rational[1, 2]))^ Rational[1, 2], Rational[1, 2] (1 + 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2]), 0}, { Rational[ 1, 4] (47 - 5^ Rational[1, 2] + (1230 - 534 5^Rational[1, 2])^Rational[1, 2])^ Rational[1, 2], Rational[1, 8] (5 + 5 5^Rational[1, 2] + (150 + 66 5^Rational[1, 2])^Rational[1, 2]), 0}}, {{1.374395456842987, 5.09240311112776, 0}, { 0.786610204550514, 4.283386116752814, 0}, { 1.7811320999187874`, 4.17885765348516, 0}}]], Polygon3DBox[ NCache[{{Rational[ 1, 4] (23 + 7 5^Rational[1, 2] + (750 + 330 5^Rational[1, 2])^Rational[1, 2])^ Rational[1, 2], Rational[1, 8] (-1 + 3 5^Rational[1, 2] + (30 - 6 5^Rational[1, 2])^Rational[1, 2]), 0}, { Rational[ 1, 4] (38 + 14 5^Rational[1, 2] + 4 (150 + 66 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2], Rational[1, 4] ( 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2]), 0}, { Rational[ 1, 2] (7 + 5^Rational[1, 2] + (6 (5 + 5^Rational[1, 2]))^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (-1 + 2 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2]), 0}}, {{2.196955481554306, 1.2225624520175482`, 0}, { 2.9401003070317, 1.8916930583764067`, 0}, { 1.9890437907365468`, 2.2007100527513543`, 0}}]], Polygon3DBox[ NCache[{{Rational[1, 4] (10 - 2 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (-2 + 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2]), 0}, { Rational[ 1, 4] (17 + 5^Rational[1, 2] + (30 (5 - 5^Rational[1, 2]))^Rational[1, 2])^ Rational[1, 2], Rational[-5, 8] + Rational[3, 8] 5^Rational[1, 2] + Rational[1, 4] (Rational[3, 2] (5 - 5^Rational[1, 2]))^Rational[1, 2], 0}, {Rational[ 1, 4] (23 + 7 5^Rational[1, 2] + (750 + 330 5^Rational[1, 2])^Rational[1, 2])^ Rational[1, 2], Rational[1, 8] (-1 + 3 5^Rational[1, 2] + (30 - 6 5^Rational[1, 2])^Rational[1, 2]), 0}, { Rational[ 1, 2] (7 + 5^Rational[1, 2] + (6 (5 + 5^Rational[1, 2]))^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (-1 + 2 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2]), 0}, { Rational[ 1, 4] (7 + 5^Rational[1, 2] + (6 (5 + 5^Rational[1, 2]))^Rational[1, 2])^ Rational[1, 2], Rational[1, 8] (-3 + 3 5^Rational[1, 2] + (30 (5 + 5^Rational[1, 2]))^Rational[1, 2]), 0}}, {{0.5877852522924731, 1.3916930583764067`, 0}, { 1.3309300777698674`, 0.7225624520175483, 0}, { 2.196955481554306, 1.2225624520175482`, 0}, { 1.9890437907365468`, 2.2007100527513543`, 0}, { 0.9945218953682734, 2.305238516019007, 0}}]], Polygon3DBox[ NCache[{{0, Rational[1, 4] (-1 + 2 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2]), 0}, { Rational[1, 4] (10 - 2 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (-2 + 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2]), 0}, { Rational[ 1, 4] (7 + 5^Rational[1, 2] + (6 (5 + 5^Rational[1, 2]))^Rational[1, 2])^ Rational[1, 2], Rational[1, 8] (-3 + 3 5^Rational[1, 2] + (30 (5 + 5^Rational[1, 2]))^Rational[1, 2]), 0}}, {{0, 2.2007100527513543`, 0}, { 0.5877852522924731, 1.3916930583764067`, 0}, { 0.9945218953682734, 2.305238516019007, 0}}]], Polygon3DBox[ NCache[{{Rational[ 1, 4] (73 + 23 5^Rational[1, 2] + 3 (870 + 366 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (1 + 3 5^Rational[1, 2] + (6 (5 + 5^Rational[1, 2]))^Rational[1, 2]), 0}, {(Rational[17, 4] + 5^Rational[1, 2] + Rational[1, 2] (75 + 30 5^Rational[1, 2])^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (1 + 2 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2]), 0}, { Rational[ 1, 4] (38 + 14 5^Rational[1, 2] + 4 (150 + 66 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2], Rational[1, 4] ( 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2]), 0}}, {{ 3.9346222023999737`, 1.7871645951087531`, 0}, { 3.527885559324173, 2.7007100527513543`, 0}, { 2.9401003070317, 1.8916930583764067`, 0}}]], Polygon3DBox[ NCache[{{Rational[ 1, 2] (Rational[3, 2] (10 + 3 5^Rational[1, 2] + (75 + 30 5^Rational[1, 2])^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (-1 + 5^Rational[1, 2]), 0}, { Rational[ 1, 2] (Rational[3, 2] (12 + 5 5^Rational[1, 2] + (3 (85 + 38 5^Rational[1, 2]))^ Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), 0}, { Rational[ 1, 4] (73 + 23 5^Rational[1, 2] + 3 (870 + 366 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (1 + 3 5^Rational[1, 2] + (6 (5 + 5^Rational[1, 2]))^Rational[1, 2]), 0}, {Rational[ 1, 4] (38 + 14 5^Rational[1, 2] + 4 (150 + 66 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2], Rational[1, 4] ( 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2]), 0}, { Rational[ 1, 4] (37 + 11 5^Rational[1, 2] + (870 + 366 5^Rational[1, 2])^Rational[1, 2])^ Rational[1, 2], Rational[1, 8] (-1 + 5^Rational[1, 2] + (6 (5 + 5^Rational[1, 2]))^Rational[1, 2]), 0}}, {{3.2765084894332945`, 0.30901699437494745`, 0}, { 4.142533893217733, 0.8090169943749475, 0}, { 3.9346222023999737`, 1.7871645951087531`, 0}, { 2.9401003070317, 1.8916930583764067`, 0}, { 2.5333636639559, 0.9781476007338057, 0}}]], Polygon3DBox[ NCache[{{Rational[ 1, 2] (Rational[1, 2] (20 + 5^Rational[1, 2] + (375 + 30 5^Rational[1, 2])^Rational[1, 2]))^ Rational[1, 2], 0, 0}, { Rational[ 1, 2] (Rational[3, 2] (10 + 3 5^Rational[1, 2] + (75 + 30 5^Rational[1, 2])^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (-1 + 5^Rational[1, 2]), 0}, { Rational[ 1, 4] (37 + 11 5^Rational[1, 2] + (870 + 366 5^Rational[1, 2])^Rational[1, 2])^ Rational[1, 2], Rational[1, 8] (-1 + 5^Rational[1, 2] + (6 (5 + 5^Rational[1, 2]))^Rational[1, 2]), 0}}, {{2.325451973138141, 0, 0}, { 3.2765084894332945`, 0.30901699437494745`, 0}, { 2.5333636639559, 0.9781476007338057, 0}}]], Polygon3DBox[ NCache[{{Rational[ 1, 4] (73 + 23 5^Rational[1, 2] + 3 (870 + 366 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (3 + 5 5^Rational[1, 2] + (30 (5 + 5^Rational[1, 2]))^Rational[1, 2]), 0}, {Rational[ 1, 4] (38 + 14 5^Rational[1, 2] + 4 (150 + 66 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (2 + 3 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2]), 0}, {(Rational[17, 4] + 5^Rational[1, 2] + Rational[1, 2] (75 + 30 5^Rational[1, 2])^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (1 + 2 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2]), 0}}, {{3.9346222023999737`, 3.6142555103939547`, 0}, { 2.9401003070317, 3.509727047126302, 0}, { 3.527885559324173, 2.7007100527513543`, 0}}]], Polygon3DBox[ NCache[{{Rational[ 1, 4] (115 + 43 5^Rational[1, 2] + (30 (745 + 331 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (5 + 5 5^Rational[1, 2] + (30 - 6 5^Rational[1, 2])^Rational[1, 2]), 0}, {(Rational[61, 8] + Rational[17, 8] 5^Rational[1, 2] + (75 + 30 5^Rational[1, 2])^ Rational[1, 2])^Rational[1, 2], Rational[1, 4] (2 + 3 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2]), 0}, { Rational[ 1, 4] (73 + 23 5^Rational[1, 2] + 3 (870 + 366 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (3 + 5 5^Rational[1, 2] + (30 (5 + 5^Rational[1, 2]))^Rational[1, 2]), 0}, {(Rational[17, 4] + 5^Rational[1, 2] + Rational[1, 2] (75 + 30 5^Rational[1, 2])^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (1 + 2 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2]), 0}, { Rational[ 1, 4] (97 + 25 5^Rational[1, 2] + (6 (1745 + 659 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (1 + 5 5^Rational[1, 2] + (30 - 6 5^Rational[1, 2])^Rational[1, 2]), 0}}, {{5.137055788586006, 2.5315794463924957`, 0}, { 4.929144097768247, 3.509727047126302, 0}, { 3.9346222023999737`, 3.6142555103939547`, 0}, { 3.527885559324173, 2.7007100527513543`, 0}, { 4.271030384801567, 2.0315794463924957`, 0}}]], Polygon3DBox[ NCache[{{Rational[ 1, 4] (115 + 43 5^Rational[1, 2] + (30 (745 + 331 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (-3 + 5 5^Rational[1, 2] + (30 - 6 5^Rational[1, 2])^Rational[1, 2]), 0}, { Rational[ 1, 4] (115 + 43 5^Rational[1, 2] + (30 (745 + 331 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (5 + 5 5^Rational[1, 2] + (30 - 6 5^Rational[1, 2])^Rational[1, 2]), 0}, { Rational[ 1, 4] (97 + 25 5^Rational[1, 2] + (6 (1745 + 659 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (1 + 5 5^Rational[1, 2] + (30 - 6 5^Rational[1, 2])^Rational[1, 2]), 0}}, {{5.137055788586006, 1.5315794463924957`, 0}, { 5.137055788586006, 2.5315794463924957`, 0}, { 4.271030384801567, 2.0315794463924957`, 0}}]], Polygon3DBox[ NCache[{{Rational[ 1, 4] (23 + 7 5^Rational[1, 2] + (750 + 330 5^Rational[1, 2])^Rational[1, 2])^ Rational[1, 2], Rational[1, 8] (5 + 5 5^Rational[1, 2] + (150 + 66 5^Rational[1, 2])^Rational[1, 2]), 0}, {Rational[ 1, 2] (7 + 5^Rational[1, 2] + (6 (5 + 5^Rational[1, 2]))^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 2 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2]), 0}, { Rational[ 1, 4] (38 + 14 5^Rational[1, 2] + 4 (150 + 66 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (2 + 3 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2]), 0}}, {{2.196955481554306, 4.17885765348516, 0}, { 1.9890437907365468`, 3.2007100527513543`, 0}, { 2.9401003070317, 3.509727047126302, 0}}]], Polygon3DBox[ NCache[{{Rational[ 1, 4] (5 (13 + 5 5^Rational[1, 2] + (150 + 66 5^Rational[1, 2])^Rational[1, 2]))^ Rational[1, 2], Rational[1, 8] (7 + 7 5^Rational[1, 2] + (150 + 66 5^Rational[1, 2])^Rational[1, 2]), 0}, {Rational[ 1, 2] (8 + Rational[7, 2] 5^Rational[1, 2] + Rational[1, 2] (3 (85 + 38 5^Rational[1, 2]))^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 3 5^Rational[1, 2] + 2 (15 + 6 5^Rational[1, 2])^Rational[1, 2]), 0}, { Rational[ 1, 4] (23 + 7 5^Rational[1, 2] + (750 + 330 5^Rational[1, 2])^Rational[1, 2])^ Rational[1, 2], Rational[1, 8] (5 + 5 5^Rational[1, 2] + (150 + 66 5^Rational[1, 2])^Rational[1, 2]), 0}, {Rational[ 1, 4] (38 + 14 5^Rational[1, 2] + 4 (150 + 66 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (2 + 3 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2]), 0}, { Rational[ 1, 4] (62 + 26 5^Rational[1, 2] + 4 (6 (65 + 29 5^Rational[1, 2]))^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (4 + 3 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2]), 0}}, {{3.59821401999838, 4.987874647860107, 0}, { 2.6036921246301064`, 5.09240311112776, 0}, { 2.196955481554306, 4.17885765348516, 0}, { 2.9401003070317, 3.509727047126302, 0}, { 3.8061257108161386`, 4.009727047126302, 0}}]], Polygon3DBox[ NCache[{{Rational[ 1, 4] (85 + 37 5^Rational[1, 2] + (30 (445 + 199 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (9 + 5 5^Rational[1, 2] + (150 + 66 5^Rational[1, 2])^Rational[1, 2]), 0}, {Rational[ 1, 4] (5 (13 + 5 5^Rational[1, 2] + (150 + 66 5^Rational[1, 2])^Rational[1, 2]))^ Rational[1, 2], Rational[1, 8] (7 + 7 5^Rational[1, 2] + (150 + 66 5^Rational[1, 2])^Rational[1, 2]), 0}, {Rational[ 1, 4] (62 + 26 5^Rational[1, 2] + 4 (6 (65 + 29 5^Rational[1, 2]))^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (4 + 3 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2]), 0}}, {{4.549270536293533, 4.67885765348516, 0}, { 3.59821401999838, 4.987874647860107, 0}, { 3.8061257108161386`, 4.009727047126302, 0}}]], Polygon3DBox[ NCache[{{Rational[ 1, 4] (217 + 95 5^Rational[1, 2] + (75750 + 33870 5^Rational[1, 2])^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (3 + 5 5^Rational[1, 2] + (30 (5 + 5^Rational[1, 2]))^Rational[1, 2]), 0}, {(Rational[47, 4] + 5 5^Rational[1, 2] + (3 (85 + 38 5^Rational[1, 2]))^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (1 + 2 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2]), 0}, { Rational[ 1, 4] (233 + 97 5^Rational[1, 2] + (6 (16705 + 7459 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (1 + 5 5^Rational[1, 2] + (30 - 6 5^Rational[1, 2])^Rational[1, 2]), 0}, { Rational[ 1, 4] (287 + 127 5^Rational[1, 2] + (149070 + 66666 5^Rational[1, 2])^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (5 + 5 5^Rational[1, 2] + (30 - 6 5^Rational[1, 2])^Rational[1, 2]), 0}, {(Rational[145, 8] + Rational[61, 8] 5^Rational[1, 2] + (Rational[15, 2] (65 + 29 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 4] (2 + 3 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2]), 0}}, {{7.152962660923639, 3.6142555103939547`, 0}, { 6.746226017847839, 2.7007100527513543`, 0}, { 7.489370843325234, 2.0315794463924957`, 0}, { 8.355396247109672, 2.5315794463924957`, 0}, { 8.147484556291912, 3.509727047126302, 0}}]], Polygon3DBox[ NCache[{{(Rational[85, 4] + Rational[37, 4] 5^Rational[1, 2] + Rational[ 1, 2] (Rational[6675, 2] + Rational[2985, 2] 5^Rational[1, 2])^ Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 2 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2]), 0}, {(Rational[145, 8] + Rational[61, 8] 5^Rational[1, 2] + (Rational[15, 2] (65 + 29 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 4] (2 + 3 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2]), 0}, { Rational[ 1, 4] (287 + 127 5^Rational[1, 2] + (149070 + 66666 5^Rational[1, 2])^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (5 + 5 5^Rational[1, 2] + (30 - 6 5^Rational[1, 2])^Rational[1, 2]), 0}}, {{9.098541072587066, 3.2007100527513543`, 0}, { 8.147484556291912, 3.509727047126302, 0}, { 8.355396247109672, 2.5315794463924957`, 0}}]], Polygon3DBox[ NCache[{{Rational[ 1, 4] (413 + 181 5^Rational[1, 2] + (6 (41465 + 18539 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (3 + 3 5^Rational[1, 2] + (30 - 6 5^Rational[1, 2])^Rational[1, 2]), 0}, { Rational[ 1, 2] (103 + 46 5^Rational[1, 2] + 2 (4575 + 2046 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (1 + 2 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2]), 0}, {(Rational[85, 4] + Rational[37, 4] 5^Rational[1, 2] + Rational[ 1, 2] (Rational[6675, 2] + Rational[2985, 2] 5^Rational[1, 2])^ Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 2 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2]), 0}, { Rational[ 1, 4] (287 + 127 5^Rational[1, 2] + (149070 + 66666 5^Rational[1, 2])^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (5 + 5 5^Rational[1, 2] + (30 - 6 5^Rational[1, 2])^Rational[1, 2]), 0}, { Rational[ 1, 4] (328 + 146 5^Rational[1, 2] + 6 (4575 + 2046 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (1 + 5^Rational[1, 2]), 0}}, {{ 9.756654785553746, 1.7225624520175482`, 0}, { 9.964566476371505, 2.7007100527513543`, 0}, { 9.098541072587066, 3.2007100527513543`, 0}, { 8.355396247109672, 2.5315794463924957`, 0}, { 8.762132890185473, 1.618033988749895, 0}}]], Polygon3DBox[ NCache[{{Rational[ 1, 4] (368 + 158 5^Rational[1, 2] + 30 (3 (85 + 38 5^Rational[1, 2]))^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), 0}, { Rational[ 1, 4] (413 + 181 5^Rational[1, 2] + (6 (41465 + 18539 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (3 + 3 5^Rational[1, 2] + (30 - 6 5^Rational[1, 2])^Rational[1, 2]), 0}, { Rational[ 1, 4] (328 + 146 5^Rational[1, 2] + 6 (4575 + 2046 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (1 + 5^Rational[1, 2]), 0}}, {{ 9.349918142477947, 0.8090169943749475, 0}, { 9.756654785553746, 1.7225624520175482`, 0}, { 8.762132890185473, 1.618033988749895, 0}}]], Polygon3DBox[ NCache[{{Rational[ 1, 4] (257 + 103 5^Rational[1, 2] + (6 (18545 + 8269 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (5 + 7 5^Rational[1, 2] + (30 (5 + 5^Rational[1, 2]))^Rational[1, 2]), 0}, {Rational[ 1, 4] (217 + 95 5^Rational[1, 2] + (75750 + 33870 5^Rational[1, 2])^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (3 + 5 5^Rational[1, 2] + (30 (5 + 5^Rational[1, 2]))^Rational[1, 2]), 0}, {(Rational[145, 8] + Rational[61, 8] 5^Rational[1, 2] + (Rational[15, 2] (65 + 29 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 4] (2 + 3 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2]), 0}}, {{7.740747913216112, 4.423272504768902, 0}, { 7.152962660923639, 3.6142555103939547`, 0}, { 8.147484556291912, 3.509727047126302, 0}}]], Polygon3DBox[ NCache[{{Rational[ 1, 4] (368 + 158 5^Rational[1, 2] + 30 (3 (85 + 38 5^Rational[1, 2]))^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (1 + 3 5^Rational[1, 2] + 2 (15 + 6 5^Rational[1, 2])^Rational[1, 2]), 0}, { Rational[ 1, 2] (77 + Rational[61, 2] 5^Rational[1, 2] + Rational[5, 2] (1635 + 726 5^Rational[1, 2])^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 3 5^Rational[1, 2] + 2 (15 + 6 5^Rational[1, 2])^Rational[1, 2]), 0}, { Rational[ 1, 4] (257 + 103 5^Rational[1, 2] + (6 (18545 + 8269 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (5 + 7 5^Rational[1, 2] + (30 (5 + 5^Rational[1, 2]))^Rational[1, 2]), 0}, {(Rational[145, 8] + Rational[61, 8] 5^Rational[1, 2] + (Rational[15, 2] (65 + 29 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 4] (2 + 3 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2]), 0}, { Rational[ 1, 4] (377 + 151 5^Rational[1, 2] + (194550 + 86334 5^Rational[1, 2])^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (3 + 5 5^Rational[1, 2] + (30 (5 + 5^Rational[1, 2]))^Rational[1, 2]), 0}}, {{9.349918142477947, 4.59240311112776, 0}, { 8.483892738693507, 5.09240311112776, 0}, { 7.740747913216112, 4.423272504768902, 0}, { 8.147484556291912, 3.509727047126302, 0}, { 9.142006451660187, 3.6142555103939547`, 0}}]], Polygon3DBox[ NCache[{{Rational[ 1, 4] (427 + 181 5^Rational[1, 2] + (6 (53125 + 23729 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (1 + 7 5^Rational[1, 2] + (30 (5 + 5^Rational[1, 2]))^Rational[1, 2]), 0}, {Rational[ 1, 4] (368 + 158 5^Rational[1, 2] + 30 (3 (85 + 38 5^Rational[1, 2]))^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (1 + 3 5^Rational[1, 2] + 2 (15 + 6 5^Rational[1, 2])^Rational[1, 2]), 0}, { Rational[ 1, 4] (377 + 151 5^Rational[1, 2] + (194550 + 86334 5^Rational[1, 2])^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (3 + 5 5^Rational[1, 2] + (30 (5 + 5^Rational[1, 2]))^Rational[1, 2]), 0}}, {{10.09306296795534, 3.923272504768902, 0}, { 9.349918142477947, 4.59240311112776, 0}, { 9.142006451660187, 3.6142555103939547`, 0}}]], Polygon3DBox[ NCache[{{Rational[ 1, 2] (Rational[79, 2] + Rational[35, 2] 5^Rational[1, 2] + (6 (445 + 199 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 4] (2 + 3 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2]), 0}, {(Rational[47, 4] + 5 5^Rational[1, 2] + (3 (85 + 38 5^Rational[1, 2]))^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (1 + 2 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2]), 0}, { Rational[ 1, 4] (217 + 95 5^Rational[1, 2] + (75750 + 33870 5^Rational[1, 2])^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (3 + 5 5^Rational[1, 2] + (30 (5 + 5^Rational[1, 2]))^Rational[1, 2]), 0}}, {{6.158440765555366, 3.509727047126302, 0}, { 6.746226017847839, 2.7007100527513543`, 0}, { 7.152962660923639, 3.6142555103939547`, 0}}]], Polygon3DBox[ NCache[{{Rational[ 1, 2] (43 + Rational[37, 2] 5^Rational[1, 2] + Rational[1, 2] (3 (4745 + 2122 5^Rational[1, 2]))^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 3 5^Rational[1, 2] + 2 (15 + 6 5^Rational[1, 2])^Rational[1, 2]), 0}, {(Rational[133, 16] + Rational[59, 16] 5^Rational[1, 2] + Rational[ 1, 2] (Rational[17475, 32] + Rational[7815, 32] 5^Rational[1, 2])^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (5 + 7 5^Rational[1, 2] + (30 (5 + 5^Rational[1, 2]))^Rational[1, 2]), 0}, {Rational[ 1, 2] (Rational[79, 2] + Rational[35, 2] 5^Rational[1, 2] + (6 (445 + 199 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 4] (2 + 3 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2]), 0}, { Rational[ 1, 4] (217 + 95 5^Rational[1, 2] + (75750 + 33870 5^Rational[1, 2])^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (3 + 5 5^Rational[1, 2] + (30 (5 + 5^Rational[1, 2]))^Rational[1, 2]), 0}, {Rational[ 1, 2] (55 + Rational[49, 2] 5^Rational[1, 2] + Rational[1, 2] (15 (1525 + 682 5^Rational[1, 2]))^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (1 + 3 5^Rational[1, 2] + 2 (15 + 6 5^Rational[1, 2])^Rational[1, 2]), 0}}, {{ 6.49484894795696, 5.09240311112776, 0}, { 5.751704122479566, 4.423272504768902, 0}, { 6.158440765555366, 3.509727047126302, 0}, { 7.152962660923639, 3.6142555103939547`, 0}, { 7.360874351741399, 4.59240311112776, 0}}]], Polygon3DBox[ NCache[{{Rational[ 1, 2] (55 + Rational[49, 2] 5^Rational[1, 2] + Rational[1, 2] (15 (1525 + 682 5^Rational[1, 2]))^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (5 + 3 5^Rational[1, 2] + 2 (15 + 6 5^Rational[1, 2])^Rational[1, 2]), 0}, { Rational[ 1, 2] (43 + Rational[37, 2] 5^Rational[1, 2] + Rational[1, 2] (3 (4745 + 2122 5^Rational[1, 2]))^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 3 5^Rational[1, 2] + 2 (15 + 6 5^Rational[1, 2])^Rational[1, 2]), 0}, { Rational[ 1, 2] (55 + Rational[49, 2] 5^Rational[1, 2] + Rational[1, 2] (15 (1525 + 682 5^Rational[1, 2]))^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (1 + 3 5^Rational[1, 2] + 2 (15 + 6 5^Rational[1, 2])^Rational[1, 2]), 0}}, {{ 7.360874351741399, 5.59240311112776, 0}, { 6.49484894795696, 5.09240311112776, 0}, { 7.360874351741399, 4.59240311112776, 0}}]], Polygon3DBox[ NCache[{{Rational[ 1, 4] (193 + 73 5^Rational[1, 2] + 19 (150 + 66 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (3 + 3 5^Rational[1, 2] + (30 - 6 5^Rational[1, 2])^Rational[1, 2]), 0}, { Rational[ 1, 4] (233 + 97 5^Rational[1, 2] + (6 (16705 + 7459 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (1 + 5 5^Rational[1, 2] + (30 - 6 5^Rational[1, 2])^Rational[1, 2]), 0}, {(Rational[47, 4] + 5 5^Rational[1, 2] + (3 (85 + 38 5^Rational[1, 2]))^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (1 + 2 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2]), 0}}, {{6.538314327030079, 1.7225624520175482`, 0}, { 7.489370843325234, 2.0315794463924957`, 0}, { 6.746226017847839, 2.7007100527513543`, 0}}]], Polygon3DBox[ NCache[{{Rational[ 1, 4] (115 + 43 5^Rational[1, 2] + (30 (745 + 331 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (5 + 5 5^Rational[1, 2] + (30 - 6 5^Rational[1, 2])^Rational[1, 2]), 0}, { Rational[ 1, 2] (Rational[3, 2] (22 + 9 5^Rational[1, 2] + (795 + 354 5^Rational[1, 2])^Rational[1, 2]))^ Rational[1, 2], Rational[1, 2] (1 + 5^Rational[1, 2]), 0}, { Rational[ 1, 4] (193 + 73 5^Rational[1, 2] + 19 (150 + 66 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2], Rational[1, 8] (3 + 3 5^Rational[1, 2] + (30 - 6 5^Rational[1, 2])^Rational[1, 2]), 0}, {(Rational[47, 4] + 5 5^Rational[1, 2] + (3 (85 + 38 5^Rational[1, 2]))^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (1 + 2 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2]), 0}, {(Rational[19, 2] + Rational[7, 2] 5^Rational[1, 2] + (6 (25 + 11 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 2 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2]), 0}}, {{5.137055788586006, 2.5315794463924957`, 0}, { 5.543792431661807, 1.618033988749895, 0}, { 6.538314327030079, 1.7225624520175482`, 0}, { 6.746226017847839, 2.7007100527513543`, 0}, { 5.8802006140634, 3.2007100527513543`, 0}}]], Polygon3DBox[ NCache[{{(Rational[61, 8] + Rational[17, 8] 5^Rational[1, 2] + (75 + 30 5^Rational[1, 2])^ Rational[1, 2])^Rational[1, 2], Rational[1, 4] (2 + 3 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2]), 0}, { Rational[ 1, 4] (115 + 43 5^Rational[1, 2] + (30 (745 + 331 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (5 + 5 5^Rational[1, 2] + (30 - 6 5^Rational[1, 2])^Rational[1, 2]), 0}, {(Rational[19, 2] + Rational[7, 2] 5^Rational[1, 2] + (6 (25 + 11 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 2 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2]), 0}}, {{4.929144097768247, 3.509727047126302, 0}, { 5.137055788586006, 2.5315794463924957`, 0}, { 5.8802006140634, 3.2007100527513543`, 0}}]], Polygon3DBox[ NCache[{{Rational[ 1, 4] (287 + 127 5^Rational[1, 2] + (149070 + 66666 5^Rational[1, 2])^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (-3 + 5 5^Rational[1, 2] + (30 - 6 5^Rational[1, 2])^Rational[1, 2]), 0}, { Rational[ 1, 4] (287 + 127 5^Rational[1, 2] + (149070 + 66666 5^Rational[1, 2])^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (5 + 5 5^Rational[1, 2] + (30 - 6 5^Rational[1, 2])^Rational[1, 2]), 0}, { Rational[ 1, 4] (233 + 97 5^Rational[1, 2] + (6 (16705 + 7459 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (1 + 5 5^Rational[1, 2] + (30 - 6 5^Rational[1, 2])^Rational[1, 2]), 0}}, {{8.355396247109672, 1.5315794463924957`, 0}, { 8.355396247109672, 2.5315794463924957`, 0}, { 7.489370843325234, 2.0315794463924957`, 0}}]], Polygon3DBox[ NCache[{{Rational[ 1, 4] (217 + 95 5^Rational[1, 2] + (75750 + 33870 5^Rational[1, 2])^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (-1 + 5 5^Rational[1, 2] - (6 (5 + 5^Rational[1, 2]))^ Rational[1, 2]), 0}, {(Rational[145, 8] + Rational[61, 8] 5^Rational[1, 2] + (Rational[15, 2] (65 + 29 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 4] (-1 + 2 5^Rational[1, 2] - (15 - 6 5^Rational[1, 2])^ Rational[1, 2]), 0}, { Rational[ 1, 4] (287 + 127 5^Rational[1, 2] + (149070 + 66666 5^Rational[1, 2])^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (-3 + 5 5^Rational[1, 2] + (30 - 6 5^Rational[1, 2])^Rational[1, 2]), 0}, { Rational[ 1, 4] (233 + 97 5^Rational[1, 2] + (6 (16705 + 7459 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (1 + 5 5^Rational[1, 2] + (30 - 6 5^Rational[1, 2])^Rational[1, 2]), 0}, {(Rational[47, 4] + 5 5^Rational[1, 2] + (3 (85 + 38 5^Rational[1, 2]))^Rational[1, 2])^ Rational[1, 2], Rational[3, 4] 5^Rational[1, 2] + Rational[-1, 4] (3 (5 - 2 5^Rational[1, 2]))^Rational[1, 2], 0}}, {{ 7.152962660923639, 0.44890338239103666`, 0}, { 8.147484556291912, 0.5534318456586902, 0}, { 8.355396247109672, 1.5315794463924957`, 0}, { 7.489370843325234, 2.0315794463924957`, 0}, { 6.746226017847839, 1.3624488400336376`, 0}}]], Polygon3DBox[ NCache[{{Rational[ 1, 2] (Rational[79, 2] + Rational[35, 2] 5^Rational[1, 2] + (6 (445 + 199 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 4] (-1 + 2 5^Rational[1, 2] - (15 - 6 5^Rational[1, 2])^ Rational[1, 2]), 0}, { Rational[ 1, 4] (217 + 95 5^Rational[1, 2] + (75750 + 33870 5^Rational[1, 2])^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (-1 + 5 5^Rational[1, 2] - (6 (5 + 5^Rational[1, 2]))^ Rational[1, 2]), 0}, {(Rational[47, 4] + 5 5^Rational[1, 2] + (3 (85 + 38 5^Rational[1, 2]))^Rational[1, 2])^ Rational[1, 2], Rational[3, 4] 5^Rational[1, 2] + Rational[-1, 4] (3 (5 - 2 5^Rational[1, 2]))^Rational[1, 2], 0}}, {{ 6.158440765555366, 0.5534318456586902, 0}, { 7.152962660923639, 0.44890338239103666`, 0}, { 6.746226017847839, 1.3624488400336376`, 0}}]]}}, Axes->True, AxesLabel->{ FormBox["\"x\"", TraditionalForm], FormBox["\"y\"", TraditionalForm], FormBox["\"z\"", TraditionalForm]}]], "Output", CellLabel-> "Out[188]=",ExpressionUUID->"5d7aaeb3-00c0-4975-ab48-a75189ad3231"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["NotationRules", "Subsection",ExpressionUUID->"9cb62a78-6d00-4dac-93d9-574f5b40d320"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}]], "Input", CellLabel->"In[40]:=",ExpressionUUID->"90f5aeb9-a5d0-4f66-8646-5a009f035a5c"], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{"\<\"CoxeterIndex\"\>", "\[Rule]", "28"}], ",", RowBox[{"\<\"KaleidoIndex\"\>", "\[Rule]", "29"}], ",", RowBox[{"\<\"MaederIndex\"\>", "\[Rule]", "24"}], ",", RowBox[{"\<\"WenningerIndex\"\>", "\[Rule]", "12"}]}], "}"}]], "Output", CellLabel->"Out[40]=",ExpressionUUID->"1c595c32-f47f-4875-84cd-64e641f5318f"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["Orientations", "Subsection",ExpressionUUID->"5bd40420-6a73-43a5-af94-8c980159624d"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}]], "Input", CellLabel->"In[41]:=",ExpressionUUID->"8e1e4c25-e290-4a83-a072-27183c88d6f7"], Cell[BoxData[ RowBox[{"{", RowBox[{"\<\"C3\"\>", ",", "\<\"C5\"\>"}], "}"}]], "Output", CellLabel->"Out[41]=",ExpressionUUID->"07409f64-dd0f-4d50-a815-0fbbbb45e02c"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}]], "Input", CellLabel->"In[42]:=",ExpressionUUID->"dce7f721-9901-41d6-928a-30ca1df9bc67"], Cell[BoxData["\<\"C5\"\>"], "Output", CellLabel->"Out[42]=",ExpressionUUID->"248e7e00-a9ca-4e66-86e6-a85bc2c7ecb8"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{"Show", "[", RowBox[{ RowBox[{"PolyhedronData", "[", RowBox[{"{", RowBox[{"\"\\"", ",", "#"}], "}"}], "]"}], ",", RowBox[{"Boxed", "\[Rule]", "False"}]}], "]"}], "&"}], "/@", RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}]}]], "Input", CellLabel->"In[44]:=",ExpressionUUID->"50899ff7-ac16-4bdf-bce0-730258a3abb1"], Cell[BoxData[ RowBox[{"{", RowBox[{ Graphics3DBox[ GraphicsComplex3DBox[ NCache[{{(Rational[1, 6] (7 + 3 5^Rational[1, 2]))^Rational[1, 2], 0, -3^Rational[-1, 2]}, { Root[1 - 21 #^2 + 9 #^4& , 1, 0], 0, 3^Rational[-1, 2]}, { Rational[1, 2] 3^Rational[-1, 2], Rational[-1, 2], Root[ 1 - 21 #^2 + 9 #^4& , 1, 0]}, {-(Rational[3, 4] + Rational[1, 3] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 2], -(Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 2] (Rational[3, 2] (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), 0}, { Rational[-1, 2] (Rational[5, 6] (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), ( Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[7, 24] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 3^ Rational[-1, 2]}, { Root[1 - 36 #^2 + 144 #^4& , 2, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), ( Rational[1, 6] (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 2] 3^Rational[-1, 2], Rational[1, 2], Root[ 1 - 21 #^2 + 9 #^4& , 1, 0]}, {-(Rational[3, 4] + Rational[1, 3] 5^Rational[1, 2])^ Rational[1, 2], Rational[ 1, 2], -(Rational[1, 6] (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { 0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, { Root[1 - 36 #^2 + 144 #^4& , 3, 0], Rational[1, 4] (-3 - 5^ Rational[1, 2]), -(Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, {-(Rational[7, 24] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), -3^Rational[-1, 2]}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), 0}, { Rational[1, 2] (Rational[5, 6] (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), -(Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[-1, 2] (Rational[3, 2] (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), 0}, {-3^Rational[-1, 2], 0, Root[1 - 21 #^2 + 9 #^4& , 1, 0]}, { Rational[1, 2] (Rational[3, 2] (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), 0}, { Rational[-1, 2] (Rational[5, 6] (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), ( Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[7, 24] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), 3^ Rational[-1, 2]}, { Root[1 - 36 #^2 + 144 #^4& , 2, 0], Rational[1, 4] (-3 - 5^Rational[1, 2]), ( Rational[1, 6] (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 36 #^2 + 144 #^4& , 3, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), -(Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, {-(Rational[7, 24] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), -3^Rational[-1, 2]}, { 3^Rational[-1, 2], 0, (Rational[1, 6] (7 + 3 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[3, 4] + Rational[1, 3] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 2], (Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[-1, 2] 3^Rational[-1, 2], Rational[-1, 2], (Rational[1, 6] (7 + 3 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 2] (Rational[5, 6] (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (-1 - 5^ Rational[1, 2]), -(Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[-1, 2] (Rational[3, 2] (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), 0}, {(Rational[3, 4] + Rational[1, 3] 5^Rational[1, 2])^ Rational[1, 2], Rational[ 1, 2], (Rational[1, 6] (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 2] 3^Rational[-1, 2], Rational[ 1, 2], (Rational[1, 6] (7 + 3 5^Rational[1, 2]))^Rational[1, 2]}}, {{ 1.5115226281523415`, 0, -0.5773502691896258}, {-1.5115226281523415`, 0, 0.5773502691896258}, { 0.2886751345948129, -0.5, -1.5115226281523415`}, \ {-1.2228474935575286`, -0.5, -0.9341723589627157}, { 1.4012585384440737`, 0.8090169943749475, 0}, {-1.0444364486709836`, 0.8090169943749475, 0.9341723589627157}, {0.7557613140761708, 1.3090169943749475`, 0.5773502691896258}, {-0.17841104488654497`, 1.3090169943749475`, 0.9341723589627157}, {0.2886751345948129, 0.5, -1.5115226281523415`}, {-1.2228474935575286`, 0.5, -0.9341723589627157}, {0, -1.618033988749895, 0}, { 0.17841104488654497`, -1.3090169943749475`, -0.9341723589627157}, \ {-0.7557613140761708, -1.3090169943749475`, -0.5773502691896258}, { 0, 1.618033988749895, 0}, {1.0444364486709836`, 0.8090169943749475, -0.9341723589627157}, {-1.4012585384440737`, 0.8090169943749475, 0}, {-0.5773502691896258, 0, -1.5115226281523415`}, { 1.4012585384440737`, -0.8090169943749475, 0}, {-1.0444364486709836`, -0.8090169943749475, 0.9341723589627157}, { 0.7557613140761708, -1.3090169943749475`, 0.5773502691896258}, {-0.17841104488654497`, -1.3090169943749475`, 0.9341723589627157}, {0.17841104488654497`, 1.3090169943749475`, -0.9341723589627157}, {-0.7557613140761708, 1.3090169943749475`, -0.5773502691896258}, { 0.5773502691896258, 0, 1.5115226281523415`}, { 1.2228474935575286`, -0.5, 0.9341723589627157}, {-0.2886751345948129, -0.5, 1.5115226281523415`}, { 1.0444364486709836`, -0.8090169943749475, -0.9341723589627157}, \ {-1.4012585384440737`, -0.8090169943749475, 0}, {1.2228474935575286`, 0.5, 0.9341723589627157}, {-0.2886751345948129, 0.5, 1.5115226281523415`}}], Polygon3DBox[{{30, 24, 29, 7, 8}, {26, 24, 30}, {25, 29, 24}, {5, 7, 29}, {14, 8, 7}, {6, 30, 8}, {16, 2, 6}, {19, 21, 26}, {20, 18, 25}, { 1, 15, 5}, {22, 23, 14}, {2, 19, 26, 30, 6}, {21, 20, 25, 24, 26}, {18, 1, 5, 29, 25}, {15, 22, 14, 7, 5}, {23, 16, 6, 8, 14}, {12, 13, 4, 17, 3}, {3, 17, 9}, {17, 4, 10}, {4, 13, 28}, {13, 12, 11}, {12, 3, 27}, { 27, 1, 18}, {9, 22, 15}, {10, 16, 23}, {28, 19, 2}, {11, 20, 21}, {27, 3, 9, 15, 1}, {9, 17, 10, 23, 22}, {10, 4, 28, 2, 16}, {28, 13, 11, 21, 19}, {11, 12, 27, 18, 20}}]], Boxed->False], ",", Graphics3DBox[ GraphicsComplex3DBox[ NCache[{{0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), 0}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], Rational[-1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {-(1 + 2 5^Rational[-1, 2])^ Rational[1, 2], 0, Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {(1 + 2 5^Rational[-1, 2])^Rational[1, 2], 0, (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, {(Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2], 0, -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2], 0}, {Root[1 - 5 #^2 + 5 #^4& , 1, 0], 0, (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}}, {{0, -1.618033988749895, 0}, { 0, 1.618033988749895, 0}, { 0.2628655560595668, -0.8090169943749475, -1.3763819204711736`}, { 0.2628655560595668, 0.8090169943749475, -1.3763819204711736`}, { 0.42532540417601994`, -1.3090169943749475`, 0.85065080835204}, { 0.42532540417601994`, 1.3090169943749475`, 0.85065080835204}, { 0.6881909602355868, -0.5, 1.3763819204711736`}, {0.6881909602355868, 0.5, 1.3763819204711736`}, { 1.1135163644116066`, -0.8090169943749475, -0.85065080835204}, { 1.1135163644116066`, 0.8090169943749475, -0.85065080835204}, {-1.3763819204711736`, 0, -0.85065080835204}, {-0.6881909602355868, -0.5, \ -1.3763819204711736`}, {-0.6881909602355868, 0.5, -1.3763819204711736`}, { 1.3763819204711736`, 0, 0.85065080835204}, { 0.9510565162951535, -1.3090169943749475`, 0}, { 0.9510565162951535, 1.3090169943749475`, 0}, { 0.85065080835204, 0, -1.3763819204711736`}, {-0.9510565162951535, -1.3090169943749475`, 0}, {-0.9510565162951535, 1.3090169943749475`, 0}, {-1.5388417685876268`, -0.5, 0}, {-1.5388417685876268`, 0.5, 0}, { 1.5388417685876268`, -0.5, 0}, { 1.5388417685876268`, 0.5, 0}, {-0.85065080835204, 0, 1.3763819204711736`}, {-1.1135163644116066`, -0.8090169943749475, 0.85065080835204}, {-1.1135163644116066`, 0.8090169943749475, 0.85065080835204}, {-0.42532540417601994`, -1.3090169943749475`, \ -0.85065080835204}, {-0.42532540417601994`, 1.3090169943749475`, -0.85065080835204}, {-0.2628655560595668, \ -0.8090169943749475, 1.3763819204711736`}, {-0.2628655560595668, 0.8090169943749475, 1.3763819204711736`}}], Polygon3DBox[{{30, 24, 29, 7, 8}, {26, 24, 30}, {25, 29, 24}, {5, 7, 29}, {14, 8, 7}, {6, 30, 8}, {16, 2, 6}, {19, 21, 26}, {20, 18, 25}, { 1, 15, 5}, {22, 23, 14}, {2, 19, 26, 30, 6}, {21, 20, 25, 24, 26}, {18, 1, 5, 29, 25}, {15, 22, 14, 7, 5}, {23, 16, 6, 8, 14}, {12, 13, 4, 17, 3}, {3, 17, 9}, {17, 4, 10}, {4, 13, 28}, {13, 12, 11}, {12, 3, 27}, { 27, 1, 18}, {9, 22, 15}, {10, 16, 23}, {28, 19, 2}, {11, 20, 21}, {27, 3, 9, 15, 1}, {9, 17, 10, 23, 22}, {10, 4, 28, 2, 16}, {28, 13, 11, 21, 19}, {11, 12, 27, 18, 20}}]], Boxed->False]}], "}"}]], "Output", CellLabel->"Out[44]=",ExpressionUUID->"a32474fb-e9bd-4b24-872d-99351e6a7338"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["Skeleton", "Subsection",ExpressionUUID->"6512a765-75d4-455e-9427-5208763adaab"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}]], "Input", CellLabel->"In[22]:=",ExpressionUUID->"723f7a85-78d5-4df2-9a9e-2cf0c94bd67d"], Cell[BoxData[ GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30}, { Null, {{1, 5}, {1, 15}, {1, 18}, {1, 27}, {2, 6}, {2, 16}, {2, 19}, {2, 28}, {3, 9}, {3, 12}, {3, 17}, {3, 27}, {4, 10}, {4, 13}, {4, 17}, {4, 28}, {5, 7}, {5, 15}, {5, 29}, {6, 8}, {6, 16}, {6, 30}, {7, 8}, {7, 14}, {7, 29}, {8, 14}, {8, 30}, {9, 15}, {9, 17}, {9, 22}, {10, 16}, { 10, 17}, {10, 23}, {11, 12}, {11, 13}, {11, 20}, {11, 21}, {12, 13}, { 12, 27}, {13, 28}, {14, 22}, {14, 23}, {15, 22}, {16, 23}, {18, 20}, { 18, 25}, {18, 27}, {19, 21}, {19, 26}, {19, 28}, {20, 21}, {20, 25}, { 21, 26}, {22, 23}, {24, 25}, {24, 26}, {24, 29}, {24, 30}, {25, 29}, { 26, 30}}}, {VertexCoordinates -> CompressedData[" 1:eJxTTMoPSmViYGCQA2IQDQEP9ltuOVG2b/6P/VC+PZRvD1Mhss79YZXIvf0u 3TnPf6+8aB+0Q671deANuDzX9cUFtlxsBxqnOgNV/LRf5Lrt898rjA6mcbs8 eZhYHd4EgjTwHICoFnR4qWbIsUbmm31xxsS3NfYP7SPAFj7fD9H/2h4if8ke yt8P45//Hvx46ew7+/sPfdWI6T8Ec89+mHu+gUS/sjgAFUelWL9G989+sPKP X+yt7/v3Ts97BzPPHmYeVH4/VH4/WvjYi988B9Txcz/M32jq7dHM3w9VDw8n qP8P1GftKZks8Q3m3gMw90LC6ef+XJAxlxgdoOGzHxY+MBM+XfJNEoh4aw82 hoX1AGr4MjAc9zbvdHwg6AAAfUHflg== "]}]]}, TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData[" 1:eJxTTMoPSmViYGCQA2IQDQEP9ltuOVG2b/6P/VC+PZRvD1Mhss79YZXIvf0u 3TnPf6+8aB+0Q671deANuDzX9cUFtlxsBxqnOgNV/LRf5Lrt898rjA6mcbs8 eZhYHd4EgjTwHICoFnR4qWbIsUbmm31xxsS3NfYP7SPAFj7fD9H/2h4if8ke yt8P45//Hvx46ew7+/sPfdWI6T8Ec89+mHu+gUS/sjgAFUelWL9G989+sPKP X+yt7/v3Ts97BzPPHmYeVH4/VH4/WvjYi988B9Txcz/M32jq7dHM3w9VDw8n qP8P1GftKZks8Q3m3gMw90LC6ef+XJAxlxgdoOGzHxY+MBM+XfJNEoh4aw82 hoX1AGr4MjAc9zbvdHwg6AAAfUHflg== "], { {Hue[0.6, 0.7, 0.5], Opacity[0.7], CapForm["Round"], Arrowheads[0.], ArrowBox[{{1, 5}, {1, 15}, {1, 18}, {1, 27}, {2, 6}, {2, 16}, {2, 19}, {2, 28}, {3, 9}, {3, 12}, {3, 17}, {3, 27}, {4, 10}, {4, 13}, { 4, 17}, {4, 28}, {5, 7}, {5, 15}, {5, 29}, {6, 8}, {6, 16}, {6, 30}, {7, 8}, {7, 14}, {7, 29}, {8, 14}, {8, 30}, {9, 15}, {9, 17}, { 9, 22}, {10, 16}, {10, 17}, {10, 23}, {11, 12}, {11, 13}, {11, 20}, {11, 21}, {12, 13}, {12, 27}, {13, 28}, {14, 22}, {14, 23}, { 15, 22}, {16, 23}, {18, 20}, {18, 25}, {18, 27}, {19, 21}, {19, 26}, {19, 28}, {20, 21}, {20, 25}, {21, 26}, {22, 23}, {24, 25}, { 24, 26}, {24, 29}, {24, 30}, {25, 29}, {26, 30}}, 0.059909909909909895`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.059909909909909895], DiskBox[2, 0.059909909909909895], DiskBox[3, 0.059909909909909895], DiskBox[4, 0.059909909909909895], DiskBox[5, 0.059909909909909895], DiskBox[6, 0.059909909909909895], DiskBox[7, 0.059909909909909895], DiskBox[8, 0.059909909909909895], DiskBox[9, 0.059909909909909895], DiskBox[10, 0.059909909909909895], DiskBox[11, 0.059909909909909895], DiskBox[12, 0.059909909909909895], DiskBox[13, 0.059909909909909895], DiskBox[14, 0.059909909909909895], DiskBox[15, 0.059909909909909895], DiskBox[16, 0.059909909909909895], DiskBox[17, 0.059909909909909895], DiskBox[18, 0.059909909909909895], DiskBox[19, 0.059909909909909895], DiskBox[20, 0.059909909909909895], DiskBox[21, 0.059909909909909895], DiskBox[22, 0.059909909909909895], DiskBox[23, 0.059909909909909895], DiskBox[24, 0.059909909909909895], DiskBox[25, 0.059909909909909895], DiskBox[26, 0.059909909909909895], DiskBox[27, 0.059909909909909895], DiskBox[28, 0.059909909909909895], DiskBox[29, 0.059909909909909895], DiskBox[30, 0.059909909909909895]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None]], "Output", CellLabel->"Out[22]=",ExpressionUUID->"4d103486-74b1-4c5a-a632-8d1993a07b2f"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"gn", "=", RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\"", ",", "\"\\""}], "]"}]}]], "Input", CellLabel->"In[23]:=",ExpressionUUID->"c56b4024-b8e6-418d-9e6b-22d879dc49b6"], Cell[BoxData["\<\"IcosidodecahedralGraph\"\>"], "Output", CellLabel->"Out[23]=",ExpressionUUID->"325cfe63-42f7-46f6-9ab4-539b4622aa5e"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"GraphData", "[", RowBox[{"gn", ",", "\"\\"", ",", RowBox[{"{", RowBox[{"\"\<3D\>\"", ",", "\"\\""}], "}"}]}], "]"}]], "Input", CellLabel->"In[26]:=",ExpressionUUID->"43f3e692-1e58-495c-9ff1-7625eb3c4830"], Cell[BoxData[ RowBox[{"{", RowBox[{ Graphics3DBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30}, {Null, SparseArray[ Automatic, {30, 30}, 0, { 1, {{0, 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92, 96, 100, 104, 108, 112, 116, 120}, {{5}, {15}, {18}, {27}, {6}, {16}, {19}, {28}, {9}, {12}, { 17}, {27}, {10}, {13}, {17}, {28}, {1}, {7}, {15}, {29}, {2}, { 8}, {16}, {30}, {5}, {8}, {14}, {29}, {6}, {7}, {14}, {30}, {3}, { 15}, {17}, {22}, {4}, {16}, {17}, {23}, {12}, {13}, {20}, {21}, { 3}, {11}, {13}, {27}, {4}, {11}, {12}, {28}, {7}, {8}, {22}, { 23}, {1}, {5}, {9}, {22}, {2}, {6}, {10}, {23}, {3}, {4}, {9}, { 10}, {1}, {20}, {25}, {27}, {2}, {21}, {26}, {28}, {11}, {18}, { 21}, {25}, {11}, {19}, {20}, {26}, {9}, {14}, {15}, {23}, {10}, { 14}, {16}, {22}, {25}, {26}, {29}, {30}, {18}, {20}, {24}, {29}, { 19}, {21}, {24}, {30}, {1}, {3}, {12}, {18}, {2}, {4}, {13}, { 19}, {5}, {7}, {24}, {25}, {6}, {8}, {24}, {26}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 3}, VertexCoordinates -> {{0, Root[16 - 20 #^2 + 5 #^4& , 2, 0], 0}, {0, Root[16 - 20 #^2 + 5 #^4& , 3, 0], 0}, { Rational[1, 10] (-5 + 3 5^Rational[1, 2]), Root[1 - 5 #^2 + 5 #^4& , 2, 0], (-2) 5^Rational[-1, 2]}, { Rational[1, 10] (-5 + 3 5^Rational[1, 2]), Root[1 - 5 #^2 + 5 #^4& , 3, 0], (-2) 5^Rational[-1, 2]}, { Rational[1, 10] (5 - 5^Rational[1, 2]), Root[1 - 5 #^2 + 5 #^4& , 1, 0], Rational[1, 5] (5 - 5^Rational[1, 2])}, { Rational[1, 10] (5 - 5^Rational[1, 2]), Root[1 - 5 #^2 + 5 #^4& , 4, 0], Rational[1, 5] (5 - 5^Rational[1, 2])}, {5^Rational[-1, 2], Root[1 - 10 #^2 + 5 #^4& , 2, 0], 2 5^Rational[-1, 2]}, { 5^Rational[-1, 2], Root[1 - 10 #^2 + 5 #^4& , 3, 0], 2 5^Rational[-1, 2]}, { Rational[1, 10] (5 + 5^Rational[1, 2]), Root[1 - 5 #^2 + 5 #^4& , 2, 0], Rational[1, 5] (-5 + 5^Rational[1, 2])}, { Rational[1, 10] (5 + 5^Rational[1, 2]), Root[1 - 5 #^2 + 5 #^4& , 3, 0], Rational[1, 5] (-5 + 5^Rational[1, 2])}, {(-2) 5^Rational[-1, 2], 0, Rational[1, 5] (-5 + 5^Rational[1, 2])}, {-5^Rational[-1, 2], Root[1 - 10 #^2 + 5 #^4& , 2, 0], (-2) 5^Rational[-1, 2]}, {-5^Rational[-1, 2], Root[1 - 10 #^2 + 5 #^4& , 3, 0], (-2) 5^Rational[-1, 2]}, { 2 5^Rational[-1, 2], 0, Rational[1, 5] (5 - 5^Rational[1, 2])}, { Rational[1, 2] (-1 + 5^Rational[1, 2]), Root[1 - 5 #^2 + 5 #^4& , 1, 0], 0}, { Rational[1, 2] (-1 + 5^Rational[1, 2]), Root[1 - 5 #^2 + 5 #^4& , 4, 0], 0}, { Rational[1, 5] (5 - 5^Rational[1, 2]), 0, (-2) 5^Rational[-1, 2]}, {Rational[1, 2] (1 - 5^Rational[1, 2]), Root[1 - 5 #^2 + 5 #^4& , 1, 0], 0}, { Rational[1, 2] (1 - 5^Rational[1, 2]), Root[1 - 5 #^2 + 5 #^4& , 4, 0], 0}, {-1, Root[1 - 10 #^2 + 5 #^4& , 2, 0], 0}, {-1, Root[1 - 10 #^2 + 5 #^4& , 3, 0], 0}, {1, Root[1 - 10 #^2 + 5 #^4& , 2, 0], 0}, {1, Root[1 - 10 #^2 + 5 #^4& , 3, 0], 0}, { Rational[1, 5] (-5 + 5^Rational[1, 2]), 0, 2 5^Rational[-1, 2]}, { Rational[1, 10] (-5 - 5^Rational[1, 2]), Root[1 - 5 #^2 + 5 #^4& , 2, 0], Rational[1, 5] (5 - 5^Rational[1, 2])}, { Rational[1, 10] (-5 - 5^Rational[1, 2]), Root[1 - 5 #^2 + 5 #^4& , 3, 0], Rational[1, 5] (5 - 5^Rational[1, 2])}, { Rational[1, 10] (-5 + 5^Rational[1, 2]), Root[1 - 5 #^2 + 5 #^4& , 1, 0], Rational[1, 5] (-5 + 5^Rational[1, 2])}, { Rational[1, 10] (-5 + 5^Rational[1, 2]), Root[1 - 5 #^2 + 5 #^4& , 4, 0], Rational[1, 5] (-5 + 5^Rational[1, 2])}, { Rational[1, 10] (5 - 3 5^Rational[1, 2]), Root[1 - 5 #^2 + 5 #^4& , 2, 0], 2 5^Rational[-1, 2]}, { Rational[1, 10] (5 - 3 5^Rational[1, 2]), Root[1 - 5 #^2 + 5 #^4& , 3, 0], 2 5^Rational[-1, 2]}}}]]}, TagBox[GraphicsGroup3DBox[GraphicsComplex3DBox[CompressedData[" 1:eJxTTMoPSmViYGCQA2JmBgTgDV7Ie+rSh/0MaAAqbg/j9560Dyy8e9QeIv5g /823+4+qzn+zH03cHiYuzKkgm7vhov1TZjfuDovXUP5De5j4E4i4PUwcou+O /fpEz9/Vp6/AzEcXh5lvX/47v/Ck+nO4e6Dm7EcTh5kPdy/MP6jid/aj2Ysu bo8q/sYezRz7gJf65u+PPYb7FyYPE4f5F10fjA8zH6p+Pw5z9qObAwEf4O7H IY6u3h6Hent09bBwQnMnLPz3o4U/urg9WrzvR0sPsHSyHy09wNLVfrT0Zo8m Dk8PAMPQLlY= "], { {Hue[0.6, 0.2, 0.8], Arrowheads[0.], Arrow3DBox[TubeBox[{{1, 5}, {1, 15}, {1, 18}, {1, 27}, {2, 6}, {2, 16}, {2, 19}, {2, 28}, {3, 9}, {3, 12}, {3, 17}, {3, 27}, {4, 10}, {4, 13}, {4, 17}, {4, 28}, {5, 7}, {5, 15}, {5, 29}, {6, 8}, {6, 16}, {6, 30}, {7, 8}, {7, 14}, {7, 29}, {8, 14}, {8, 30}, {9, 15}, {9, 17}, {9, 22}, {10, 16}, {10, 17}, {10, 23}, {11, 12}, {11, 13}, {11, 20}, {11, 21}, {12, 13}, {12, 27}, {13, 28}, {14, 22}, {14, 23}, {15, 22}, {16, 23}, {18, 20}, {18, 25}, { 18, 27}, {19, 21}, {19, 26}, {19, 28}, {20, 21}, {20, 25}, {21, 26}, {22, 23}, {24, 25}, {24, 26}, {24, 29}, {24, 30}, {25, 29}, { 26, 30}}], 0.04688229301851682]}, {Hue[0.6, 0.6, 1], SphereBox[1, 0.04688229301851682], SphereBox[2, 0.04688229301851682], SphereBox[3, 0.04688229301851682], SphereBox[4, 0.04688229301851682], SphereBox[5, 0.04688229301851682], SphereBox[6, 0.04688229301851682], SphereBox[7, 0.04688229301851682], SphereBox[8, 0.04688229301851682], SphereBox[9, 0.04688229301851682], SphereBox[10, 0.04688229301851682], SphereBox[11, 0.04688229301851682], SphereBox[12, 0.04688229301851682], SphereBox[13, 0.04688229301851682], SphereBox[14, 0.04688229301851682], SphereBox[15, 0.04688229301851682], SphereBox[16, 0.04688229301851682], SphereBox[17, 0.04688229301851682], SphereBox[18, 0.04688229301851682], SphereBox[19, 0.04688229301851682], SphereBox[20, 0.04688229301851682], SphereBox[21, 0.04688229301851682], SphereBox[22, 0.04688229301851682], SphereBox[23, 0.04688229301851682], SphereBox[24, 0.04688229301851682], SphereBox[25, 0.04688229301851682], SphereBox[26, 0.04688229301851682], SphereBox[27, 0.04688229301851682], SphereBox[28, 0.04688229301851682], SphereBox[29, 0.04688229301851682], SphereBox[30, 0.04688229301851682]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], BaseStyle->{Graphics3DBoxOptions -> {Method -> {"ShrinkWrap" -> True}}}, Boxed->False, DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, Lighting->{{"Directional", GrayLevel[0.7], ImageScaled[{1, 1, 0}]}, {"Point", GrayLevel[0.9], ImageScaled[{0, 0, 0}], {0, 0, 0.07}}}], ",", Graphics3DBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30}, {Null, SparseArray[ Automatic, {30, 30}, 0, { 1, {{0, 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92, 96, 100, 104, 108, 112, 116, 120}, {{5}, {15}, {18}, {27}, {6}, {16}, {19}, {28}, {9}, {12}, { 17}, {27}, {10}, {13}, {17}, {28}, {1}, {7}, {15}, {29}, {2}, { 8}, {16}, {30}, {5}, {8}, {14}, {29}, {6}, {7}, {14}, {30}, {3}, { 15}, {17}, {22}, {4}, {16}, {17}, {23}, {12}, {13}, {20}, {21}, { 3}, {11}, {13}, {27}, {4}, {11}, {12}, {28}, {7}, {8}, {22}, { 23}, {1}, {5}, {9}, {22}, {2}, {6}, {10}, {23}, {3}, {4}, {9}, { 10}, {1}, {20}, {25}, {27}, {2}, {21}, {26}, {28}, {11}, {18}, { 21}, {25}, {11}, {19}, {20}, {26}, {9}, {14}, {15}, {23}, {10}, { 14}, {16}, {22}, {25}, {26}, {29}, {30}, {18}, {20}, {24}, {29}, { 19}, {21}, {24}, {30}, {1}, {3}, {12}, {18}, {2}, {4}, {13}, { 19}, {5}, {7}, {24}, {25}, {6}, {8}, {24}, {26}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 3}, VertexCoordinates -> {{ 0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), 0}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-1 - 5^ Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {( Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {-(1 + 2 5^Rational[-1, 2])^ Rational[1, 2], 0, Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {(1 + 2 5^Rational[-1, 2])^Rational[1, 2], 0, (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, {(Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2], 0, -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2], 0}, { Root[1 - 5 #^2 + 5 #^4& , 1, 0], 0, (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}}}]]}, TagBox[GraphicsGroup3DBox[GraphicsComplex3DBox[CompressedData[" 1:eJxTTMoPSmViYGCQA2JmBgRY8WX67PLHP/czoAGouD2Mzxu8kPfUpQv2EPGX +ytXF/OsZP22H03cHib+hNmNu8Pitn3Ir9Nnd3/8sv8pmP/aHk3cHiYO0fcM at8DmPno4jDz7beGcXd+u/AR7h6oOfvRxGHmw90L8w+q+LP9aPaii9ujin+z RzPH/n+IizBf/ju4f2HyaOIY+mB8mPlQ9ftxmLMf3Zz11+90S8z/AXc/DnF0 9fY41Nujq4eFE5o7YeG/Hy380cXh8Quhb+9HSw/70cTh8QVNV/vR0ps9mjg8 PQAAQjMsvg== "], { {Hue[0.6, 0.2, 0.8], Arrowheads[0.], Arrow3DBox[TubeBox[{{1, 5}, {1, 15}, {1, 18}, {1, 27}, {2, 6}, {2, 16}, {2, 19}, {2, 28}, {3, 9}, {3, 12}, {3, 17}, {3, 27}, {4, 10}, {4, 13}, {4, 17}, {4, 28}, {5, 7}, {5, 15}, {5, 29}, {6, 8}, {6, 16}, {6, 30}, {7, 8}, {7, 14}, {7, 29}, {8, 14}, {8, 30}, {9, 15}, {9, 17}, {9, 22}, {10, 16}, {10, 17}, {10, 23}, {11, 12}, {11, 13}, {11, 20}, {11, 21}, {12, 13}, {12, 27}, {13, 28}, {14, 22}, {14, 23}, {15, 22}, {16, 23}, {18, 20}, {18, 25}, { 18, 27}, {19, 21}, {19, 26}, {19, 28}, {20, 21}, {20, 25}, {21, 26}, {22, 23}, {24, 25}, {24, 26}, {24, 29}, {24, 30}, {25, 29}, { 26, 30}}], 0.063817669761709]}, {Hue[0.6, 0.6, 1], SphereBox[1, 0.063817669761709], SphereBox[2, 0.063817669761709], SphereBox[3, 0.063817669761709], SphereBox[4, 0.063817669761709], SphereBox[5, 0.063817669761709], SphereBox[6, 0.063817669761709], SphereBox[7, 0.063817669761709], SphereBox[8, 0.063817669761709], SphereBox[9, 0.063817669761709], SphereBox[10, 0.063817669761709], SphereBox[11, 0.063817669761709], SphereBox[12, 0.063817669761709], SphereBox[13, 0.063817669761709], SphereBox[14, 0.063817669761709], SphereBox[15, 0.063817669761709], SphereBox[16, 0.063817669761709], SphereBox[17, 0.063817669761709], SphereBox[18, 0.063817669761709], SphereBox[19, 0.063817669761709], SphereBox[20, 0.063817669761709], SphereBox[21, 0.063817669761709], SphereBox[22, 0.063817669761709], SphereBox[23, 0.063817669761709], SphereBox[24, 0.063817669761709], SphereBox[25, 0.063817669761709], SphereBox[26, 0.063817669761709], SphereBox[27, 0.063817669761709], SphereBox[28, 0.063817669761709], SphereBox[29, 0.063817669761709], SphereBox[30, 0.063817669761709]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], BaseStyle->{Graphics3DBoxOptions -> {Method -> {"ShrinkWrap" -> True}}}, Boxed->False, DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, Lighting->{{"Directional", GrayLevel[0.7], ImageScaled[{1, 1, 0}]}, {"Point", GrayLevel[0.9], ImageScaled[{0, 0, 0}], {0, 0, 0.07}}}], ",", Graphics3DBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30}, {Null, SparseArray[ Automatic, {30, 30}, 0, { 1, {{0, 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92, 96, 100, 104, 108, 112, 116, 120}, {{5}, {15}, {18}, {27}, {6}, {16}, {19}, {28}, {9}, {12}, { 17}, {27}, {10}, {13}, {17}, {28}, {1}, {7}, {15}, {29}, {2}, { 8}, {16}, {30}, {5}, {8}, {14}, {29}, {6}, {7}, {14}, {30}, {3}, { 15}, {17}, {22}, {4}, {16}, {17}, {23}, {12}, {13}, {20}, {21}, { 3}, {11}, {13}, {27}, {4}, {11}, {12}, {28}, {7}, {8}, {22}, { 23}, {1}, {5}, {9}, {22}, {2}, {6}, {10}, {23}, {3}, {4}, {9}, { 10}, {1}, {20}, {25}, {27}, {2}, {21}, {26}, {28}, {11}, {18}, { 21}, {25}, {11}, {19}, {20}, {26}, {9}, {14}, {15}, {23}, {10}, { 14}, {16}, {22}, {25}, {26}, {29}, {30}, {18}, {20}, {24}, {29}, { 19}, {21}, {24}, {30}, {1}, {3}, {12}, {18}, {2}, {4}, {13}, { 19}, {5}, {7}, {24}, {25}, {6}, {8}, {24}, {26}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 3}, VertexCoordinates -> {{ Rational[1, 2], Rational[1, 4] (3 - 5^Rational[1, 2]), Rational[1, 4] (-1 + 5^Rational[1, 2])}, { Rational[-1, 2], Rational[1, 4] (-3 + 5^Rational[1, 2]), Rational[1, 4] (1 - 5^Rational[1, 2])}, { Rational[1, 4] (-1 + 5^Rational[1, 2]), Rational[1, 2], Rational[1, 4] (-3 + 5^Rational[1, 2])}, { Rational[1, 4] (-3 + 5^Rational[1, 2]), Rational[1, 4] (-1 + 5^Rational[1, 2]), Rational[-1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2]), Rational[1, 4] (1 - 5^Rational[1, 2]), Rational[-1, 2]}, { Rational[1, 2], Rational[1, 4] (-3 + 5^Rational[1, 2]), Rational[1, 4] (1 - 5^Rational[1, 2])}, { Rational[1, 2] (1 - 5^Rational[1, 2]), 0, 0}, { Rational[1, 4] (3 - 5^Rational[1, 2]), Rational[1, 4] (-1 + 5^Rational[1, 2]), Rational[1, 2]}, {0, 0, Rational[1, 2] (-1 + 5^Rational[1, 2])}, { Rational[-1, 2], Rational[1, 4] (-3 + 5^Rational[1, 2]), Rational[1, 4] (-1 + 5^Rational[1, 2])}, { Rational[1, 4] (-3 + 5^Rational[1, 2]), Rational[1, 4] (1 - 5^Rational[1, 2]), Rational[1, 2]}, { Rational[1, 4] (-3 + 5^Rational[1, 2]), Rational[1, 4] (1 - 5^Rational[1, 2]), Rational[-1, 2]}, { Rational[1, 2] (-1 + 5^Rational[1, 2]), 0, 0}, { Rational[1, 4] (3 - 5^Rational[1, 2]), Rational[1, 4] (-1 + 5^Rational[1, 2]), Rational[-1, 2]}, {Rational[1, 4] (1 - 5^Rational[1, 2]), Rational[1, 2], Rational[1, 4] (-3 + 5^Rational[1, 2])}, { 0, Rational[1, 2] (-1 + 5^Rational[1, 2]), 0}, { Rational[1, 4] (-1 + 5^Rational[1, 2]), Rational[-1, 2], Rational[1, 4] (-3 + 5^Rational[1, 2])}, { 0, Rational[1, 2] (1 - 5^Rational[1, 2]), 0}, { Rational[1, 4] (-1 + 5^Rational[1, 2]), Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])}, { Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2]), Rational[1, 4] (1 - 5^Rational[1, 2])}, { Rational[1, 4] (-1 + 5^Rational[1, 2]), Rational[1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])}, { Rational[1, 4] (1 - 5^Rational[1, 2]), Rational[-1, 2], Rational[1, 4] (-3 + 5^Rational[1, 2])}, { Rational[1, 2], Rational[1, 4] (-3 + 5^Rational[1, 2]), Rational[1, 4] (-1 + 5^Rational[1, 2])}, { Rational[1, 4] (1 - 5^Rational[1, 2]), Rational[1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])}, { Rational[1, 2], Rational[1, 4] (3 - 5^Rational[1, 2]), Rational[1, 4] (1 - 5^Rational[1, 2])}, { 0, 0, Rational[1, 2] (1 - 5^Rational[1, 2])}, { Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2]), Rational[1, 4] (-1 + 5^Rational[1, 2])}, { Rational[1, 4] (-3 + 5^Rational[1, 2]), Rational[1, 4] (-1 + 5^Rational[1, 2]), Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2]), Rational[1, 4] (1 - 5^Rational[1, 2]), Rational[1, 2]}, {Rational[1, 4] (1 - 5^Rational[1, 2]), Rational[-1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])}}}]]}, TagBox[GraphicsGroup3DBox[GraphicsComplex3DBox[CompressedData[" 1:eJxTTMoPSmViYGCQA2JmBhh4YJ+gu2CiYtEJ+4CX+ubvj122h4rvh4rvh4rv R5OH6UNXh64fZu5+mDi6flTzH+9nQAM43GePrg6qH5f7MezD5Q6YflTzCLoH p7nY3QfjY4Y3mvr9BNTjDG8c8YURH6j2YoQHunp7NHtxmIsRL+j22eOIF0Lu xeV+ewBq5gTY "], { {Hue[0.6, 0.2, 0.8], Arrowheads[0.], Arrow3DBox[TubeBox[{{1, 5}, {1, 15}, {1, 18}, {1, 27}, {2, 6}, {2, 16}, {2, 19}, {2, 28}, {3, 9}, {3, 12}, {3, 17}, {3, 27}, {4, 10}, {4, 13}, {4, 17}, {4, 28}, {5, 7}, {5, 15}, {5, 29}, {6, 8}, {6, 16}, {6, 30}, {7, 8}, {7, 14}, {7, 29}, {8, 14}, {8, 30}, {9, 15}, {9, 17}, {9, 22}, {10, 16}, {10, 17}, {10, 23}, {11, 12}, {11, 13}, {11, 20}, {11, 21}, {12, 13}, {12, 27}, {13, 28}, {14, 22}, {14, 23}, {15, 22}, {16, 23}, {18, 20}, {18, 25}, { 18, 27}, {19, 21}, {19, 26}, {19, 28}, {20, 21}, {20, 25}, {21, 26}, {22, 23}, {24, 25}, {24, 26}, {24, 29}, {24, 30}, {25, 29}, { 26, 30}}], 0.03219189909782555]}, {Hue[0.6, 0.6, 1], SphereBox[1, 0.03219189909782555], SphereBox[2, 0.03219189909782555], SphereBox[3, 0.03219189909782555], SphereBox[4, 0.03219189909782555], SphereBox[5, 0.03219189909782555], SphereBox[6, 0.03219189909782555], SphereBox[7, 0.03219189909782555], SphereBox[8, 0.03219189909782555], SphereBox[9, 0.03219189909782555], SphereBox[10, 0.03219189909782555], SphereBox[11, 0.03219189909782555], SphereBox[12, 0.03219189909782555], SphereBox[13, 0.03219189909782555], SphereBox[14, 0.03219189909782555], SphereBox[15, 0.03219189909782555], SphereBox[16, 0.03219189909782555], SphereBox[17, 0.03219189909782555], SphereBox[18, 0.03219189909782555], SphereBox[19, 0.03219189909782555], SphereBox[20, 0.03219189909782555], SphereBox[21, 0.03219189909782555], SphereBox[22, 0.03219189909782555], SphereBox[23, 0.03219189909782555], SphereBox[24, 0.03219189909782555], SphereBox[25, 0.03219189909782555], SphereBox[26, 0.03219189909782555], SphereBox[27, 0.03219189909782555], SphereBox[28, 0.03219189909782555], SphereBox[29, 0.03219189909782555], SphereBox[30, 0.03219189909782555]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], BaseStyle->{Graphics3DBoxOptions -> {Method -> {"ShrinkWrap" -> True}}}, Boxed->False, DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, Lighting->{{"Directional", GrayLevel[0.7], ImageScaled[{1, 1, 0}]}, {"Point", GrayLevel[0.9], ImageScaled[{0, 0, 0}], {0, 0, 0.07}}}]}], "}"}]], "Output", CellLabel->"Out[26]=",ExpressionUUID->"9f2eb57e-e6d2-421b-861c-e424ad93bb12"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"g", "=", RowBox[{"PolyhedronGraph", "[", "p", "]"}]}]], "Input", CellLabel->"In[27]:=",ExpressionUUID->"66169017-3336-4170-b698-b9f6b2084a78"], Cell[BoxData[ Graphics3DBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30}, { Null, {{1, 5}, {1, 15}, {1, 18}, {1, 27}, {2, 6}, {2, 16}, {2, 19}, {2, 28}, {3, 9}, {3, 12}, {3, 17}, {3, 27}, {4, 10}, {4, 13}, {4, 17}, {4, 28}, {5, 7}, {5, 15}, {5, 29}, {6, 8}, {6, 16}, {6, 30}, {7, 8}, {7, 14}, {7, 29}, {8, 14}, {8, 30}, {9, 15}, {9, 17}, {9, 22}, {10, 16}, { 10, 17}, {10, 23}, {11, 12}, {11, 13}, {11, 20}, {11, 21}, {12, 13}, { 12, 27}, {13, 28}, {14, 22}, {14, 23}, {15, 22}, {16, 23}, {18, 20}, { 18, 25}, {18, 27}, {19, 21}, {19, 26}, {19, 28}, {20, 21}, {20, 25}, { 21, 26}, {22, 23}, {24, 25}, {24, 26}, {24, 29}, {24, 30}, {25, 29}, { 26, 30}}}, { GraphLayout -> {"Dimension" -> 3}, VertexCoordinates -> {{(Rational[1, 6] (7 + 3 5^Rational[1, 2]))^ Rational[1, 2], 0, -3^Rational[-1, 2]}, { Root[1 - 21 #^2 + 9 #^4& , 1, 0], 0, 3^Rational[-1, 2]}, { Rational[1, 2] 3^Rational[-1, 2], Rational[-1, 2], Root[ 1 - 21 #^2 + 9 #^4& , 1, 0]}, {-(Rational[3, 4] + Rational[1, 3] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 2], -(Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 2] (Rational[3, 2] (3 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), 0}, { Rational[-1, 2] (Rational[5, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), ( Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[7, 24] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 3^Rational[-1, 2]}, { Root[1 - 36 #^2 + 144 #^4& , 2, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), ( Rational[1, 6] (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 2] 3^Rational[-1, 2], Rational[1, 2], Root[ 1 - 21 #^2 + 9 #^4& , 1, 0]}, {-(Rational[3, 4] + Rational[1, 3] 5^Rational[1, 2])^ Rational[1, 2], Rational[ 1, 2], -(Rational[1, 6] (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { 0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, { Root[1 - 36 #^2 + 144 #^4& , 3, 0], Rational[1, 4] (-3 - 5^ Rational[1, 2]), -(Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, {-(Rational[7, 24] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), -3^Rational[-1, 2]}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), 0}, { Rational[1, 2] (Rational[5, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), -(Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[-1, 2] (Rational[3, 2] (3 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), 0}, {-3^Rational[-1, 2], 0, Root[1 - 21 #^2 + 9 #^4& , 1, 0]}, { Rational[1, 2] (Rational[3, 2] (3 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), 0}, { Rational[-1, 2] (Rational[5, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), ( Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[7, 24] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), 3^Rational[-1, 2]}, { Root[1 - 36 #^2 + 144 #^4& , 2, 0], Rational[1, 4] (-3 - 5^Rational[1, 2]), ( Rational[1, 6] (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 36 #^2 + 144 #^4& , 3, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), -(Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, {-(Rational[7, 24] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), -3^Rational[-1, 2]}, { 3^Rational[-1, 2], 0, (Rational[1, 6] (7 + 3 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[3, 4] + Rational[1, 3] 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], (Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, {Rational[-1, 2] 3^Rational[-1, 2], Rational[-1, 2], (Rational[1, 6] (7 + 3 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 2] (Rational[5, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (-1 - 5^ Rational[1, 2]), -(Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[-1, 2] (Rational[3, 2] (3 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), 0}, {(Rational[3, 4] + Rational[1, 3] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 2], (Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, {Rational[-1, 2] 3^Rational[-1, 2], Rational[1, 2], (Rational[1, 6] (7 + 3 5^Rational[1, 2]))^ Rational[1, 2]}}}]]}, TagBox[GraphicsGroup3DBox[GraphicsComplex3DBox[CompressedData[" 1:eJxTTMoPSmViYGCQA2JmIJ7n8DHSSP+HPQMUyBpPcF1e+Wg/VHw/mrg9hL4E Vf8Aru66cW/HiQmf98PE5f2C8vY+ebt/xq69Qn3Z3+xXfJk+u/zxS7g9Ymtj /jFt+7AfJg5Vbw8x74V9yK/TZ3d//GIPs5fNrCVQ59qx/TBxmHo099jjcA9M Pdw/EHt/wvlQ82H2wt0PdQ/M3v2w8EEzB91f9mj+goXDfvRwQDcP5n60cNuP Zj7MnP04wm0/jnCDq0fzrz0O/8LCH24emjvtoeEMTw9o8QJPDzD1aOGDnk72 o/sXzXz0eIfHL8x8AOxkRww= "], { {Hue[0.6, 0.2, 0.8], Arrowheads[0.], Arrow3DBox[TubeBox[{{1, 5}, {1, 15}, {1, 18}, {1, 27}, {2, 6}, {2, 16}, {2, 19}, {2, 28}, {3, 9}, {3, 12}, {3, 17}, {3, 27}, {4, 10}, { 4, 13}, {4, 17}, {4, 28}, {5, 7}, {5, 15}, {5, 29}, {6, 8}, {6, 16}, {6, 30}, {7, 8}, {7, 14}, {7, 29}, {8, 14}, {8, 30}, {9, 15}, { 9, 17}, {9, 22}, {10, 16}, {10, 17}, {10, 23}, {11, 12}, {11, 13}, { 11, 20}, {11, 21}, {12, 13}, {12, 27}, {13, 28}, {14, 22}, {14, 23}, {15, 22}, {16, 23}, {18, 20}, {18, 25}, {18, 27}, {19, 21}, { 19, 26}, {19, 28}, {20, 21}, {20, 25}, {21, 26}, {22, 23}, {24, 25}, {24, 26}, {24, 29}, {24, 30}, {25, 29}, {26, 30}}], 0.063817669761709]}, {Hue[0.6, 0.6, 1], SphereBox[1, 0.063817669761709], SphereBox[2, 0.063817669761709], SphereBox[3, 0.063817669761709], SphereBox[4, 0.063817669761709], SphereBox[5, 0.063817669761709], SphereBox[6, 0.063817669761709], SphereBox[7, 0.063817669761709], SphereBox[8, 0.063817669761709], SphereBox[9, 0.063817669761709], SphereBox[10, 0.063817669761709], SphereBox[11, 0.063817669761709], SphereBox[12, 0.063817669761709], SphereBox[13, 0.063817669761709], SphereBox[14, 0.063817669761709], SphereBox[15, 0.063817669761709], SphereBox[16, 0.063817669761709], SphereBox[17, 0.063817669761709], SphereBox[18, 0.063817669761709], SphereBox[19, 0.063817669761709], SphereBox[20, 0.063817669761709], SphereBox[21, 0.063817669761709], SphereBox[22, 0.063817669761709], SphereBox[23, 0.063817669761709], SphereBox[24, 0.063817669761709], SphereBox[25, 0.063817669761709], SphereBox[26, 0.063817669761709], SphereBox[27, 0.063817669761709], SphereBox[28, 0.063817669761709], SphereBox[29, 0.063817669761709], SphereBox[30, 0.063817669761709]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], BaseStyle->{Graphics3DBoxOptions -> {Method -> {"ShrinkWrap" -> True}}}, Boxed->False, DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, Lighting->{{"Directional", GrayLevel[0.7], ImageScaled[{1, 1, 0}]}, {"Point", GrayLevel[0.9], ImageScaled[{0, 0, 0}], {0, 0, 0.07}}}]], "Output", CellLabel->"Out[27]=",ExpressionUUID->"61601c1b-6518-40c7-8003-dc510e829a8d"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["VertexCount", "Subsection",ExpressionUUID->"de3dc24e-4cbe-4216-ac7f-a33212c56f5a"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}]], "Input", CellLabel-> "(Local-Devel (5)) \ In[17]:=",ExpressionUUID->"f652311f-683c-4553-9e76-4d5567181438"], Cell[BoxData["30"], "Output", CellLabel-> "(Local-Devel (5)) \ Out[17]=",ExpressionUUID->"8b27c9e0-afa0-4b84-b508-a35d5086c802"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["VertexSubsetHulls", "Subsection",ExpressionUUID->"58c12321-028f-4dd9-bea0-012f08443f04"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"subsethulls", "=", RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}]}]], "Input", CellLabel-> "In[688]:=",ExpressionUUID->"a3708d46-6e74-40b4-b166-2c498222e5b3"], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{"\<\"Icosidodecahedron\"\>", "\[Rule]", RowBox[{"{", RowBox[{"{", RowBox[{ "1", ",", "2", ",", "3", ",", "4", ",", "5", ",", "6", ",", "7", ",", "8", ",", "9", ",", "10", ",", "11", ",", "12", ",", "13", ",", "14", ",", "15", ",", "16", ",", "17", ",", "18", ",", "19", ",", "20", ",", "21", ",", "22", ",", "23", ",", "24", ",", "25", ",", "26", ",", "27", ",", "28", ",", "29", ",", "30"}], "}"}], "}"}]}], ",", RowBox[{"\<\"Octahedron\"\>", "\[Rule]", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"1", ",", "2", ",", "11", ",", "14", ",", "17", ",", "24"}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "5", ",", "20", ",", "23", ",", "28", ",", "30"}], "}"}], ",", RowBox[{"{", RowBox[{"4", ",", "6", ",", "21", ",", "22", ",", "27", ",", "29"}], "}"}], ",", RowBox[{"{", RowBox[{"7", ",", "9", ",", "13", ",", "16", ",", "18", ",", "26"}], "}"}], ",", RowBox[{"{", RowBox[{"8", ",", "10", ",", "12", ",", "15", ",", "19", ",", "25"}], "}"}]}], "}"}]}]}], "}"}]], "Output", CellLabel-> "Out[688]=",ExpressionUUID->"4554c62b-a2ef-4e22-be2b-6db1b98da811"] }, Open ]], Cell[BoxData[ RowBox[{ RowBox[{"v", "=", RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}]}], ";"}]], "Input", CellLabel-> "In[689]:=",ExpressionUUID->"2a14e612-4110-46c2-a71a-d716131f8f63"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{"Rule", "[", RowBox[{"#", ",", RowBox[{"Length", "[", "#2", "]"}]}], "]"}], "&"}], "@@@", "subsethulls"}]], "Input", CellLabel-> "In[690]:=",ExpressionUUID->"293934d4-3282-4781-9a11-a3fdb2c074f7"], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{"\<\"Icosidodecahedron\"\>", "\[Rule]", "1"}], ",", RowBox[{"\<\"Octahedron\"\>", "\[Rule]", "5"}]}], "}"}]], "Output", CellLabel-> "Out[690]=",ExpressionUUID->"002e9c99-e563-46d4-8f1b-306a31879e0a"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{"Rule", "[", RowBox[{"#", ",", RowBox[{"Graphics3D", "[", RowBox[{ RowBox[{"Function", "[", RowBox[{"f", ",", RowBox[{"ConvexHullRegion", "[", RowBox[{"v", "[", RowBox[{"[", "f", "]"}], "]"}], "]"}]}], "]"}], "/@", "#2"}], "]"}]}], "]"}], "&"}], "@@@", "subsethulls"}]], "Input", CellLabel-> "In[691]:=",ExpressionUUID->"a3f1d129-fde0-4bb3-921d-8304d8bd88f4"], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{"\<\"Icosidodecahedron\"\>", "\[Rule]", Graphics3DBox[ PolyhedronBox[ NCache[{{0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), 0}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {-(1 + 2 5^Rational[-1, 2])^ Rational[1, 2], 0, Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {(1 + 2 5^Rational[-1, 2])^Rational[1, 2], 0, (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, {(Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2], 0, -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2], 0}, { Root[1 - 5 #^2 + 5 #^4& , 1, 0], 0, (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}}, {{0, -1.618033988749895, 0}, { 0, 1.618033988749895, 0}, { 0.2628655560595668, -0.8090169943749475, -1.3763819204711736`}, { 0.2628655560595668, 0.8090169943749475, -1.3763819204711736`}, { 0.42532540417601994`, -1.3090169943749475`, 0.85065080835204}, { 0.42532540417601994`, 1.3090169943749475`, 0.85065080835204}, { 0.6881909602355868, -0.5, 1.3763819204711736`}, {0.6881909602355868, 0.5, 1.3763819204711736`}, { 1.1135163644116066`, -0.8090169943749475, -0.8506508083520399}, { 1.1135163644116066`, 0.8090169943749475, -0.8506508083520399}, {-1.3763819204711736`, 0, -0.8506508083520399}, {-0.6881909602355868, -0.5, \ -1.3763819204711736`}, {-0.6881909602355868, 0.5, -1.3763819204711736`}, { 1.3763819204711736`, 0, 0.85065080835204}, { 0.9510565162951535, -1.3090169943749475`, 0}, { 0.9510565162951535, 1.3090169943749475`, 0}, { 0.85065080835204, 0, -1.3763819204711736`}, {-0.9510565162951535, -1.3090169943749475`, 0}, {-0.9510565162951535, 1.3090169943749475`, 0}, {-1.5388417685876268`, -0.5, 0}, {-1.5388417685876268`, 0.5, 0}, {1.5388417685876268`, -0.5, 0}, { 1.5388417685876268`, 0.5, 0}, {-0.8506508083520399, 0, 1.3763819204711736`}, {-1.1135163644116068`, -0.8090169943749475, 0.85065080835204}, {-1.1135163644116068`, 0.8090169943749475, 0.85065080835204}, {-0.42532540417601994`, -1.3090169943749475`, \ -0.8506508083520399}, {-0.42532540417601994`, 1.3090169943749475`, -0.8506508083520399}, {-0.2628655560595668, \ -0.8090169943749475, 1.3763819204711736`}, {-0.2628655560595668, 0.8090169943749475, 1.3763819204711736`}}], {{2, 19, 26, 30, 6}, {17, 4, 10}, {12, 13, 4, 17, 3}, {6, 16, 2}, {19, 21, 26}, {24, 30, 26}, { 21, 20, 25, 24, 26}, {30, 8, 6}, {14, 8, 7}, {17, 9, 3}, {15, 9, 22}, { 29, 24, 25}, {30, 24, 29, 7, 8}, {18, 25, 20}, {28, 19, 2}, {28, 4, 13}, {2, 16, 10, 4, 28}, {16, 23, 10}, {23, 14, 22}, {22, 9, 17, 10, 23}, {6, 8, 14, 23, 16}, {12, 11, 13}, {21, 11, 20}, {28, 13, 11, 21, 19}, {15, 5, 1}, {29, 5, 7}, {22, 14, 7, 5, 15}, {25, 18, 1, 5, 29}, { 27, 12, 3}, {18, 27, 1}, {3, 9, 15, 1, 27}, {20, 11, 12, 27, 18}}]]}], ",", RowBox[{"\<\"Octahedron\"\>", "\[Rule]", Graphics3DBox[{ PolyhedronBox[ NCache[{{0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), 0}, {-(1 + 2 5^Rational[-1, 2])^Rational[1, 2], 0, Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {(1 + 2 5^Rational[-1, 2])^ Rational[1, 2], 0, (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2], 0, -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Root[1 - 5 #^2 + 5 #^4& , 1, 0], 0, (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}}, {{0, -1.618033988749895, 0}, { 0, 1.618033988749895, 0}, {-1.3763819204711736`, 0, -0.8506508083520399}, { 1.3763819204711736`, 0, 0.85065080835204}, { 0.85065080835204, 0, -1.3763819204711736`}, {-0.8506508083520399, 0, 1.3763819204711736`}}], {{5, 1, 3}, {1, 5, 4}, {1, 6, 3}, {6, 1, 4}, {5, 2, 4}, {2, 5, 3}, {2, 6, 4}, {6, 2, 3}}], PolyhedronBox[ NCache[{{(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2], 0}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}}, {{ 0.2628655560595668, -0.8090169943749475, -1.3763819204711736`}, { 0.42532540417601994`, -1.3090169943749475`, 0.85065080835204}, {-1.5388417685876268`, -0.5, 0}, { 1.5388417685876268`, 0.5, 0}, {-0.42532540417601994`, 1.3090169943749475`, -0.8506508083520399}, {-0.2628655560595668, 0.8090169943749475, 1.3763819204711736`}}], {{2, 6, 3}, {6, 2, 4}, { 1, 2, 3}, {2, 1, 4}, {5, 6, 4}, {6, 5, 3}, {1, 5, 4}, {5, 1, 3}}], PolyhedronBox[ NCache[{{(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}}, {{0.2628655560595668, 0.8090169943749475, -1.3763819204711736`}, {0.42532540417601994`, 1.3090169943749475`, 0.85065080835204}, {-1.5388417685876268`, 0.5, 0}, { 1.5388417685876268`, -0.5, 0}, {-0.42532540417601994`, -1.3090169943749475`, \ -0.8506508083520399}, {-0.2628655560595668, -0.8090169943749475, 1.3763819204711736`}}], {{1, 5, 3}, {5, 1, 4}, {2, 1, 3}, {1, 2, 4}, {6, 5, 4}, {5, 6, 3}, {2, 6, 4}, {6, 2, 3}}], PolyhedronBox[ NCache[{{(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], Rational[-1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}}, {{ 0.6881909602355868, -0.5, 1.3763819204711736`}, { 1.1135163644116066`, -0.8090169943749475, -0.8506508083520399}, \ {-0.6881909602355868, 0.5, -1.3763819204711736`}, { 0.9510565162951535, 1.3090169943749475`, 0}, {-0.9510565162951535, -1.3090169943749475`, 0}, {-1.1135163644116068`, 0.8090169943749475, 0.85065080835204}}], {{1, 4, 6}, {4, 1, 2}, {4, 3, 6}, {3, 4, 2}, {1, 5, 2}, {5, 1, 6}, {5, 3, 2}, {3, 5, 6}}], PolyhedronBox[ NCache[{{(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {( Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}}, {{ 0.6881909602355868, 0.5, 1.3763819204711736`}, {1.1135163644116066`, 0.8090169943749475, -0.8506508083520399}, {-0.6881909602355868, \ -0.5, -1.3763819204711736`}, { 0.9510565162951535, -1.3090169943749475`, 0}, {-0.9510565162951535, 1.3090169943749475`, 0}, {-1.1135163644116068`, -0.8090169943749475, 0.85065080835204}}], {{4, 1, 6}, {1, 4, 2}, {3, 4, 6}, {4, 3, 2}, { 5, 1, 2}, {1, 5, 6}, {3, 5, 2}, {5, 3, 6}}]}]}]}], "}"}]], "Output", CellLabel-> "Out[691]=",ExpressionUUID->"29cb04ae-5d5f-4efb-8496-a40b8b4fe2d2"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"subsethulls2", "=", RowBox[{"Flatten", "[", RowBox[{ RowBox[{"Function", "[", RowBox[{ RowBox[{"{", RowBox[{"pn", ",", "l"}], "}"}], ",", RowBox[{ RowBox[{ RowBox[{"Rule", "[", RowBox[{"pn", ",", "#"}], "]"}], "&"}], "/@", "l"}]}], "]"}], "@@@", "subsethulls"}], "]"}]}]], "Input", CellLabel-> "In[692]:=",ExpressionUUID->"1b835647-9734-4415-959c-2eaa2b07d5df"], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{"\<\"Icosidodecahedron\"\>", "\[Rule]", RowBox[{"{", RowBox[{ "1", ",", "2", ",", "3", ",", "4", ",", "5", ",", "6", ",", "7", ",", "8", ",", "9", ",", "10", ",", "11", ",", "12", ",", "13", ",", "14", ",", "15", ",", "16", ",", "17", ",", "18", ",", "19", ",", "20", ",", "21", ",", "22", ",", "23", ",", "24", ",", "25", ",", "26", ",", "27", ",", "28", ",", "29", ",", "30"}], "}"}]}], ",", RowBox[{"\<\"Octahedron\"\>", "\[Rule]", RowBox[{"{", RowBox[{"1", ",", "2", ",", "11", ",", "14", ",", "17", ",", "24"}], "}"}]}], ",", RowBox[{"\<\"Octahedron\"\>", "\[Rule]", RowBox[{"{", RowBox[{"3", ",", "5", ",", "20", ",", "23", ",", "28", ",", "30"}], "}"}]}], ",", RowBox[{"\<\"Octahedron\"\>", "\[Rule]", RowBox[{"{", RowBox[{"4", ",", "6", ",", "21", ",", "22", ",", "27", ",", "29"}], "}"}]}], ",", RowBox[{"\<\"Octahedron\"\>", "\[Rule]", RowBox[{"{", RowBox[{"7", ",", "9", ",", "13", ",", "16", ",", "18", ",", "26"}], "}"}]}], ",", RowBox[{"\<\"Octahedron\"\>", "\[Rule]", RowBox[{"{", RowBox[{"8", ",", "10", ",", "12", ",", "15", ",", "19", ",", "25"}], "}"}]}]}], "}"}]], "Output", CellLabel-> "Out[692]=",ExpressionUUID->"72bd27b1-aa95-4459-a3ec-5eb8022b8717"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{"Rule", "[", RowBox[{"#", ",", RowBox[{"Graphics3D", "[", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"Opacity", "[", ".3", "]"}], ",", RowBox[{"{", RowBox[{"Green", ",", "p"}], "}"}]}], "}"}], ",", "Blue", ",", RowBox[{"ConvexHullRegion", "[", RowBox[{"v", "[", RowBox[{"[", "#2", "]"}], "]"}], "]"}]}], "}"}], "]"}]}], "]"}], "&"}], "@@@", "subsethulls2"}]], "Input", CellLabel-> "In[693]:=",ExpressionUUID->"61d65a1c-3f29-480e-86de-8851ac1ea7fb"], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{"\<\"Icosidodecahedron\"\>", "\[Rule]", Graphics3DBox[{ {Opacity[0.3], {RGBColor[0, 1, 0], PolyhedronBox[ NCache[{{0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), 0}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-1 - 5^ Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {( Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {-(1 + 2 5^Rational[-1, 2])^ Rational[1, 2], 0, Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {(1 + 2 5^Rational[-1, 2])^Rational[1, 2], 0, (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, {(Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2], 0, -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2], 0}, { Root[1 - 5 #^2 + 5 #^4& , 1, 0], 0, (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}}, {{0, -1.618033988749895, 0}, { 0, 1.618033988749895, 0}, { 0.2628655560595668, -0.8090169943749475, -1.3763819204711736`}, { 0.2628655560595668, 0.8090169943749475, -1.3763819204711736`}, { 0.42532540417601994`, -1.3090169943749475`, 0.85065080835204}, { 0.42532540417601994`, 1.3090169943749475`, 0.85065080835204}, { 0.6881909602355868, -0.5, 1.3763819204711736`}, { 0.6881909602355868, 0.5, 1.3763819204711736`}, { 1.1135163644116066`, -0.8090169943749475, -0.8506508083520399}, { 1.1135163644116066`, 0.8090169943749475, -0.8506508083520399}, {-1.3763819204711736`, 0, -0.8506508083520399}, {-0.6881909602355868, -0.5, \ -1.3763819204711736`}, {-0.6881909602355868, 0.5, -1.3763819204711736`}, { 1.3763819204711736`, 0, 0.85065080835204}, { 0.9510565162951535, -1.3090169943749475`, 0}, { 0.9510565162951535, 1.3090169943749475`, 0}, { 0.85065080835204, 0, -1.3763819204711736`}, {-0.9510565162951535, \ -1.3090169943749475`, 0}, {-0.9510565162951535, 1.3090169943749475`, 0}, {-1.5388417685876268`, -0.5, 0}, {-1.5388417685876268`, 0.5, 0}, {1.5388417685876268`, -0.5, 0}, { 1.5388417685876268`, 0.5, 0}, {-0.8506508083520399, 0, 1.3763819204711736`}, {-1.1135163644116068`, -0.8090169943749475, 0.85065080835204}, {-1.1135163644116068`, 0.8090169943749475, 0.85065080835204}, {-0.42532540417601994`, -1.3090169943749475`, \ -0.8506508083520399}, {-0.42532540417601994`, 1.3090169943749475`, -0.8506508083520399}, {-0.2628655560595668, \ -0.8090169943749475, 1.3763819204711736`}, {-0.2628655560595668, 0.8090169943749475, 1.3763819204711736`}}], {{30, 24, 29, 7, 8}, { 26, 24, 30}, {25, 29, 24}, {5, 7, 29}, {14, 8, 7}, {6, 30, 8}, {16, 2, 6}, {19, 21, 26}, {20, 18, 25}, {1, 15, 5}, {22, 23, 14}, {2, 19, 26, 30, 6}, {21, 20, 25, 24, 26}, {18, 1, 5, 29, 25}, {15, 22, 14, 7, 5}, {23, 16, 6, 8, 14}, {12, 13, 4, 17, 3}, {3, 17, 9}, {17, 4, 10}, {4, 13, 28}, {13, 12, 11}, {12, 3, 27}, {27, 1, 18}, {9, 22, 15}, {10, 16, 23}, {28, 19, 2}, {11, 20, 21}, {27, 3, 9, 15, 1}, {9, 17, 10, 23, 22}, {10, 4, 28, 2, 16}, {28, 13, 11, 21, 19}, {11, 12, 27, 18, 20}}]}}, {RGBColor[0, 0, 1], PolyhedronBox[ NCache[{{0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), 0}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {-(1 + 2 5^Rational[-1, 2])^ Rational[1, 2], 0, Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {(1 + 2 5^Rational[-1, 2])^Rational[1, 2], 0, (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, {(Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2], 0, -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2], 0}, { Root[1 - 5 #^2 + 5 #^4& , 1, 0], 0, (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}}, {{0, -1.618033988749895, 0}, { 0, 1.618033988749895, 0}, { 0.2628655560595668, -0.8090169943749475, -1.3763819204711736`}, { 0.2628655560595668, 0.8090169943749475, -1.3763819204711736`}, { 0.42532540417601994`, -1.3090169943749475`, 0.85065080835204}, { 0.42532540417601994`, 1.3090169943749475`, 0.85065080835204}, { 0.6881909602355868, -0.5, 1.3763819204711736`}, {0.6881909602355868, 0.5, 1.3763819204711736`}, { 1.1135163644116066`, -0.8090169943749475, -0.8506508083520399}, { 1.1135163644116066`, 0.8090169943749475, -0.8506508083520399}, {-1.3763819204711736`, 0, -0.8506508083520399}, {-0.6881909602355868, -0.5, \ -1.3763819204711736`}, {-0.6881909602355868, 0.5, -1.3763819204711736`}, { 1.3763819204711736`, 0, 0.85065080835204}, { 0.9510565162951535, -1.3090169943749475`, 0}, { 0.9510565162951535, 1.3090169943749475`, 0}, { 0.85065080835204, 0, -1.3763819204711736`}, {-0.9510565162951535, \ -1.3090169943749475`, 0}, {-0.9510565162951535, 1.3090169943749475`, 0}, {-1.5388417685876268`, -0.5, 0}, {-1.5388417685876268`, 0.5, 0}, {1.5388417685876268`, -0.5, 0}, { 1.5388417685876268`, 0.5, 0}, {-0.8506508083520399, 0, 1.3763819204711736`}, {-1.1135163644116068`, -0.8090169943749475, 0.85065080835204}, {-1.1135163644116068`, 0.8090169943749475, 0.85065080835204}, {-0.42532540417601994`, -1.3090169943749475`, \ -0.8506508083520399}, {-0.42532540417601994`, 1.3090169943749475`, -0.8506508083520399}, {-0.2628655560595668, \ -0.8090169943749475, 1.3763819204711736`}, {-0.2628655560595668, 0.8090169943749475, 1.3763819204711736`}}], {{2, 19, 26, 30, 6}, { 17, 4, 10}, {12, 13, 4, 17, 3}, {6, 16, 2}, {19, 21, 26}, {24, 30, 26}, {21, 20, 25, 24, 26}, {30, 8, 6}, {14, 8, 7}, {17, 9, 3}, {15, 9, 22}, {29, 24, 25}, {30, 24, 29, 7, 8}, {18, 25, 20}, {28, 19, 2}, {28, 4, 13}, {2, 16, 10, 4, 28}, {16, 23, 10}, {23, 14, 22}, {22, 9, 17, 10, 23}, {6, 8, 14, 23, 16}, {12, 11, 13}, {21, 11, 20}, {28, 13, 11, 21, 19}, {15, 5, 1}, {29, 5, 7}, {22, 14, 7, 5, 15}, {25, 18, 1, 5, 29}, {27, 12, 3}, {18, 27, 1}, {3, 9, 15, 1, 27}, {20, 11, 12, 27, 18}}]}}]}], ",", RowBox[{"\<\"Octahedron\"\>", "\[Rule]", Graphics3DBox[{ {Opacity[0.3], {RGBColor[0, 1, 0], PolyhedronBox[ NCache[{{0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), 0}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-1 - 5^ Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {( Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {-(1 + 2 5^Rational[-1, 2])^ Rational[1, 2], 0, Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {(1 + 2 5^Rational[-1, 2])^Rational[1, 2], 0, (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, {(Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2], 0, -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2], 0}, { Root[1 - 5 #^2 + 5 #^4& , 1, 0], 0, (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}}, {{0, -1.618033988749895, 0}, { 0, 1.618033988749895, 0}, { 0.2628655560595668, -0.8090169943749475, -1.3763819204711736`}, { 0.2628655560595668, 0.8090169943749475, -1.3763819204711736`}, { 0.42532540417601994`, -1.3090169943749475`, 0.85065080835204}, { 0.42532540417601994`, 1.3090169943749475`, 0.85065080835204}, { 0.6881909602355868, -0.5, 1.3763819204711736`}, { 0.6881909602355868, 0.5, 1.3763819204711736`}, { 1.1135163644116066`, -0.8090169943749475, -0.8506508083520399}, { 1.1135163644116066`, 0.8090169943749475, -0.8506508083520399}, {-1.3763819204711736`, 0, -0.8506508083520399}, {-0.6881909602355868, -0.5, \ -1.3763819204711736`}, {-0.6881909602355868, 0.5, -1.3763819204711736`}, { 1.3763819204711736`, 0, 0.85065080835204}, { 0.9510565162951535, -1.3090169943749475`, 0}, { 0.9510565162951535, 1.3090169943749475`, 0}, { 0.85065080835204, 0, -1.3763819204711736`}, {-0.9510565162951535, \ -1.3090169943749475`, 0}, {-0.9510565162951535, 1.3090169943749475`, 0}, {-1.5388417685876268`, -0.5, 0}, {-1.5388417685876268`, 0.5, 0}, {1.5388417685876268`, -0.5, 0}, { 1.5388417685876268`, 0.5, 0}, {-0.8506508083520399, 0, 1.3763819204711736`}, {-1.1135163644116068`, -0.8090169943749475, 0.85065080835204}, {-1.1135163644116068`, 0.8090169943749475, 0.85065080835204}, {-0.42532540417601994`, -1.3090169943749475`, \ -0.8506508083520399}, {-0.42532540417601994`, 1.3090169943749475`, -0.8506508083520399}, {-0.2628655560595668, \ -0.8090169943749475, 1.3763819204711736`}, {-0.2628655560595668, 0.8090169943749475, 1.3763819204711736`}}], {{30, 24, 29, 7, 8}, { 26, 24, 30}, {25, 29, 24}, {5, 7, 29}, {14, 8, 7}, {6, 30, 8}, {16, 2, 6}, {19, 21, 26}, {20, 18, 25}, {1, 15, 5}, {22, 23, 14}, {2, 19, 26, 30, 6}, {21, 20, 25, 24, 26}, {18, 1, 5, 29, 25}, {15, 22, 14, 7, 5}, {23, 16, 6, 8, 14}, {12, 13, 4, 17, 3}, {3, 17, 9}, {17, 4, 10}, {4, 13, 28}, {13, 12, 11}, {12, 3, 27}, {27, 1, 18}, {9, 22, 15}, {10, 16, 23}, {28, 19, 2}, {11, 20, 21}, {27, 3, 9, 15, 1}, {9, 17, 10, 23, 22}, {10, 4, 28, 2, 16}, {28, 13, 11, 21, 19}, {11, 12, 27, 18, 20}}]}}, {RGBColor[0, 0, 1], PolyhedronBox[ NCache[{{0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), 0}, {-(1 + 2 5^Rational[-1, 2])^Rational[1, 2], 0, Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {(1 + 2 5^Rational[-1, 2])^ Rational[1, 2], 0, (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2], 0, -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Root[1 - 5 #^2 + 5 #^4& , 1, 0], 0, (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}}, {{0, -1.618033988749895, 0}, { 0, 1.618033988749895, 0}, {-1.3763819204711736`, 0, -0.8506508083520399}, { 1.3763819204711736`, 0, 0.85065080835204}, { 0.85065080835204, 0, -1.3763819204711736`}, {-0.8506508083520399, 0, 1.3763819204711736`}}], {{5, 1, 3}, {1, 5, 4}, {1, 6, 3}, {6, 1, 4}, {5, 2, 4}, {2, 5, 3}, {2, 6, 4}, {6, 2, 3}}]}}]}], ",", RowBox[{"\<\"Octahedron\"\>", "\[Rule]", Graphics3DBox[{ {Opacity[0.3], {RGBColor[0, 1, 0], PolyhedronBox[ NCache[{{0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), 0}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-1 - 5^ Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {( Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {-(1 + 2 5^Rational[-1, 2])^ Rational[1, 2], 0, Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {(1 + 2 5^Rational[-1, 2])^Rational[1, 2], 0, (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, {(Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2], 0, -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2], 0}, { Root[1 - 5 #^2 + 5 #^4& , 1, 0], 0, (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}}, {{0, -1.618033988749895, 0}, { 0, 1.618033988749895, 0}, { 0.2628655560595668, -0.8090169943749475, -1.3763819204711736`}, { 0.2628655560595668, 0.8090169943749475, -1.3763819204711736`}, { 0.42532540417601994`, -1.3090169943749475`, 0.85065080835204}, { 0.42532540417601994`, 1.3090169943749475`, 0.85065080835204}, { 0.6881909602355868, -0.5, 1.3763819204711736`}, { 0.6881909602355868, 0.5, 1.3763819204711736`}, { 1.1135163644116066`, -0.8090169943749475, -0.8506508083520399}, { 1.1135163644116066`, 0.8090169943749475, -0.8506508083520399}, {-1.3763819204711736`, 0, -0.8506508083520399}, {-0.6881909602355868, -0.5, \ -1.3763819204711736`}, {-0.6881909602355868, 0.5, -1.3763819204711736`}, { 1.3763819204711736`, 0, 0.85065080835204}, { 0.9510565162951535, -1.3090169943749475`, 0}, { 0.9510565162951535, 1.3090169943749475`, 0}, { 0.85065080835204, 0, -1.3763819204711736`}, {-0.9510565162951535, \ -1.3090169943749475`, 0}, {-0.9510565162951535, 1.3090169943749475`, 0}, {-1.5388417685876268`, -0.5, 0}, {-1.5388417685876268`, 0.5, 0}, {1.5388417685876268`, -0.5, 0}, { 1.5388417685876268`, 0.5, 0}, {-0.8506508083520399, 0, 1.3763819204711736`}, {-1.1135163644116068`, -0.8090169943749475, 0.85065080835204}, {-1.1135163644116068`, 0.8090169943749475, 0.85065080835204}, {-0.42532540417601994`, -1.3090169943749475`, \ -0.8506508083520399}, {-0.42532540417601994`, 1.3090169943749475`, -0.8506508083520399}, {-0.2628655560595668, \ -0.8090169943749475, 1.3763819204711736`}, {-0.2628655560595668, 0.8090169943749475, 1.3763819204711736`}}], {{30, 24, 29, 7, 8}, { 26, 24, 30}, {25, 29, 24}, {5, 7, 29}, {14, 8, 7}, {6, 30, 8}, {16, 2, 6}, {19, 21, 26}, {20, 18, 25}, {1, 15, 5}, {22, 23, 14}, {2, 19, 26, 30, 6}, {21, 20, 25, 24, 26}, {18, 1, 5, 29, 25}, {15, 22, 14, 7, 5}, {23, 16, 6, 8, 14}, {12, 13, 4, 17, 3}, {3, 17, 9}, {17, 4, 10}, {4, 13, 28}, {13, 12, 11}, {12, 3, 27}, {27, 1, 18}, {9, 22, 15}, {10, 16, 23}, {28, 19, 2}, {11, 20, 21}, {27, 3, 9, 15, 1}, {9, 17, 10, 23, 22}, {10, 4, 28, 2, 16}, {28, 13, 11, 21, 19}, {11, 12, 27, 18, 20}}]}}, {RGBColor[0, 0, 1], PolyhedronBox[ NCache[{{(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2], 0}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}}, {{ 0.2628655560595668, -0.8090169943749475, -1.3763819204711736`}, { 0.42532540417601994`, -1.3090169943749475`, 0.85065080835204}, {-1.5388417685876268`, -0.5, 0}, { 1.5388417685876268`, 0.5, 0}, {-0.42532540417601994`, 1.3090169943749475`, -0.8506508083520399}, {-0.2628655560595668, 0.8090169943749475, 1.3763819204711736`}}], {{2, 6, 3}, {6, 2, 4}, { 1, 2, 3}, {2, 1, 4}, {5, 6, 4}, {6, 5, 3}, {1, 5, 4}, {5, 1, 3}}]}}]}], ",", RowBox[{"\<\"Octahedron\"\>", "\[Rule]", Graphics3DBox[{ {Opacity[0.3], {RGBColor[0, 1, 0], PolyhedronBox[ NCache[{{0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), 0}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-1 - 5^ Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {( Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {-(1 + 2 5^Rational[-1, 2])^ Rational[1, 2], 0, Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {(1 + 2 5^Rational[-1, 2])^Rational[1, 2], 0, (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, {(Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2], 0, -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2], 0}, { Root[1 - 5 #^2 + 5 #^4& , 1, 0], 0, (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}}, {{0, -1.618033988749895, 0}, { 0, 1.618033988749895, 0}, { 0.2628655560595668, -0.8090169943749475, -1.3763819204711736`}, { 0.2628655560595668, 0.8090169943749475, -1.3763819204711736`}, { 0.42532540417601994`, -1.3090169943749475`, 0.85065080835204}, { 0.42532540417601994`, 1.3090169943749475`, 0.85065080835204}, { 0.6881909602355868, -0.5, 1.3763819204711736`}, { 0.6881909602355868, 0.5, 1.3763819204711736`}, { 1.1135163644116066`, -0.8090169943749475, -0.8506508083520399}, { 1.1135163644116066`, 0.8090169943749475, -0.8506508083520399}, {-1.3763819204711736`, 0, -0.8506508083520399}, {-0.6881909602355868, -0.5, \ -1.3763819204711736`}, {-0.6881909602355868, 0.5, -1.3763819204711736`}, { 1.3763819204711736`, 0, 0.85065080835204}, { 0.9510565162951535, -1.3090169943749475`, 0}, { 0.9510565162951535, 1.3090169943749475`, 0}, { 0.85065080835204, 0, -1.3763819204711736`}, {-0.9510565162951535, \ -1.3090169943749475`, 0}, {-0.9510565162951535, 1.3090169943749475`, 0}, {-1.5388417685876268`, -0.5, 0}, {-1.5388417685876268`, 0.5, 0}, {1.5388417685876268`, -0.5, 0}, { 1.5388417685876268`, 0.5, 0}, {-0.8506508083520399, 0, 1.3763819204711736`}, {-1.1135163644116068`, -0.8090169943749475, 0.85065080835204}, {-1.1135163644116068`, 0.8090169943749475, 0.85065080835204}, {-0.42532540417601994`, -1.3090169943749475`, \ -0.8506508083520399}, {-0.42532540417601994`, 1.3090169943749475`, -0.8506508083520399}, {-0.2628655560595668, \ -0.8090169943749475, 1.3763819204711736`}, {-0.2628655560595668, 0.8090169943749475, 1.3763819204711736`}}], {{30, 24, 29, 7, 8}, { 26, 24, 30}, {25, 29, 24}, {5, 7, 29}, {14, 8, 7}, {6, 30, 8}, {16, 2, 6}, {19, 21, 26}, {20, 18, 25}, {1, 15, 5}, {22, 23, 14}, {2, 19, 26, 30, 6}, {21, 20, 25, 24, 26}, {18, 1, 5, 29, 25}, {15, 22, 14, 7, 5}, {23, 16, 6, 8, 14}, {12, 13, 4, 17, 3}, {3, 17, 9}, {17, 4, 10}, {4, 13, 28}, {13, 12, 11}, {12, 3, 27}, {27, 1, 18}, {9, 22, 15}, {10, 16, 23}, {28, 19, 2}, {11, 20, 21}, {27, 3, 9, 15, 1}, {9, 17, 10, 23, 22}, {10, 4, 28, 2, 16}, {28, 13, 11, 21, 19}, {11, 12, 27, 18, 20}}]}}, {RGBColor[0, 0, 1], PolyhedronBox[ NCache[{{(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}}, {{0.2628655560595668, 0.8090169943749475, -1.3763819204711736`}, {0.42532540417601994`, 1.3090169943749475`, 0.85065080835204}, {-1.5388417685876268`, 0.5, 0}, { 1.5388417685876268`, -0.5, 0}, {-0.42532540417601994`, -1.3090169943749475`, \ -0.8506508083520399}, {-0.2628655560595668, -0.8090169943749475, 1.3763819204711736`}}], {{1, 5, 3}, {5, 1, 4}, {2, 1, 3}, {1, 2, 4}, {6, 5, 4}, {5, 6, 3}, {2, 6, 4}, {6, 2, 3}}]}}]}], ",", RowBox[{"\<\"Octahedron\"\>", "\[Rule]", Graphics3DBox[{ {Opacity[0.3], {RGBColor[0, 1, 0], PolyhedronBox[ NCache[{{0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), 0}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-1 - 5^ Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {( Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {-(1 + 2 5^Rational[-1, 2])^ Rational[1, 2], 0, Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {(1 + 2 5^Rational[-1, 2])^Rational[1, 2], 0, (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, {(Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2], 0, -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2], 0}, { Root[1 - 5 #^2 + 5 #^4& , 1, 0], 0, (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}}, {{0, -1.618033988749895, 0}, { 0, 1.618033988749895, 0}, { 0.2628655560595668, -0.8090169943749475, -1.3763819204711736`}, { 0.2628655560595668, 0.8090169943749475, -1.3763819204711736`}, { 0.42532540417601994`, -1.3090169943749475`, 0.85065080835204}, { 0.42532540417601994`, 1.3090169943749475`, 0.85065080835204}, { 0.6881909602355868, -0.5, 1.3763819204711736`}, { 0.6881909602355868, 0.5, 1.3763819204711736`}, { 1.1135163644116066`, -0.8090169943749475, -0.8506508083520399}, { 1.1135163644116066`, 0.8090169943749475, -0.8506508083520399}, {-1.3763819204711736`, 0, -0.8506508083520399}, {-0.6881909602355868, -0.5, \ -1.3763819204711736`}, {-0.6881909602355868, 0.5, -1.3763819204711736`}, { 1.3763819204711736`, 0, 0.85065080835204}, { 0.9510565162951535, -1.3090169943749475`, 0}, { 0.9510565162951535, 1.3090169943749475`, 0}, { 0.85065080835204, 0, -1.3763819204711736`}, {-0.9510565162951535, \ -1.3090169943749475`, 0}, {-0.9510565162951535, 1.3090169943749475`, 0}, {-1.5388417685876268`, -0.5, 0}, {-1.5388417685876268`, 0.5, 0}, {1.5388417685876268`, -0.5, 0}, { 1.5388417685876268`, 0.5, 0}, {-0.8506508083520399, 0, 1.3763819204711736`}, {-1.1135163644116068`, -0.8090169943749475, 0.85065080835204}, {-1.1135163644116068`, 0.8090169943749475, 0.85065080835204}, {-0.42532540417601994`, -1.3090169943749475`, \ -0.8506508083520399}, {-0.42532540417601994`, 1.3090169943749475`, -0.8506508083520399}, {-0.2628655560595668, \ -0.8090169943749475, 1.3763819204711736`}, {-0.2628655560595668, 0.8090169943749475, 1.3763819204711736`}}], {{30, 24, 29, 7, 8}, { 26, 24, 30}, {25, 29, 24}, {5, 7, 29}, {14, 8, 7}, {6, 30, 8}, {16, 2, 6}, {19, 21, 26}, {20, 18, 25}, {1, 15, 5}, {22, 23, 14}, {2, 19, 26, 30, 6}, {21, 20, 25, 24, 26}, {18, 1, 5, 29, 25}, {15, 22, 14, 7, 5}, {23, 16, 6, 8, 14}, {12, 13, 4, 17, 3}, {3, 17, 9}, {17, 4, 10}, {4, 13, 28}, {13, 12, 11}, {12, 3, 27}, {27, 1, 18}, {9, 22, 15}, {10, 16, 23}, {28, 19, 2}, {11, 20, 21}, {27, 3, 9, 15, 1}, {9, 17, 10, 23, 22}, {10, 4, 28, 2, 16}, {28, 13, 11, 21, 19}, {11, 12, 27, 18, 20}}]}}, {RGBColor[0, 0, 1], PolyhedronBox[ NCache[{{(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], Rational[-1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {( Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}}, {{ 0.6881909602355868, -0.5, 1.3763819204711736`}, { 1.1135163644116066`, -0.8090169943749475, -0.8506508083520399}, \ {-0.6881909602355868, 0.5, -1.3763819204711736`}, { 0.9510565162951535, 1.3090169943749475`, 0}, {-0.9510565162951535, -1.3090169943749475`, 0}, {-1.1135163644116068`, 0.8090169943749475, 0.85065080835204}}], {{1, 4, 6}, {4, 1, 2}, {4, 3, 6}, {3, 4, 2}, { 1, 5, 2}, {5, 1, 6}, {5, 3, 2}, {3, 5, 6}}]}}]}], ",", RowBox[{"\<\"Octahedron\"\>", "\[Rule]", Graphics3DBox[{ {Opacity[0.3], {RGBColor[0, 1, 0], PolyhedronBox[ NCache[{{0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), 0}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-1 - 5^ Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {( Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {-(1 + 2 5^Rational[-1, 2])^ Rational[1, 2], 0, Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {(1 + 2 5^Rational[-1, 2])^Rational[1, 2], 0, (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, {(Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2], 0, -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2], 0}, { Root[1 - 5 #^2 + 5 #^4& , 1, 0], 0, (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}}, {{0, -1.618033988749895, 0}, { 0, 1.618033988749895, 0}, { 0.2628655560595668, -0.8090169943749475, -1.3763819204711736`}, { 0.2628655560595668, 0.8090169943749475, -1.3763819204711736`}, { 0.42532540417601994`, -1.3090169943749475`, 0.85065080835204}, { 0.42532540417601994`, 1.3090169943749475`, 0.85065080835204}, { 0.6881909602355868, -0.5, 1.3763819204711736`}, { 0.6881909602355868, 0.5, 1.3763819204711736`}, { 1.1135163644116066`, -0.8090169943749475, -0.8506508083520399}, { 1.1135163644116066`, 0.8090169943749475, -0.8506508083520399}, {-1.3763819204711736`, 0, -0.8506508083520399}, {-0.6881909602355868, -0.5, \ -1.3763819204711736`}, {-0.6881909602355868, 0.5, -1.3763819204711736`}, { 1.3763819204711736`, 0, 0.85065080835204}, { 0.9510565162951535, -1.3090169943749475`, 0}, { 0.9510565162951535, 1.3090169943749475`, 0}, { 0.85065080835204, 0, -1.3763819204711736`}, {-0.9510565162951535, \ -1.3090169943749475`, 0}, {-0.9510565162951535, 1.3090169943749475`, 0}, {-1.5388417685876268`, -0.5, 0}, {-1.5388417685876268`, 0.5, 0}, {1.5388417685876268`, -0.5, 0}, { 1.5388417685876268`, 0.5, 0}, {-0.8506508083520399, 0, 1.3763819204711736`}, {-1.1135163644116068`, -0.8090169943749475, 0.85065080835204}, {-1.1135163644116068`, 0.8090169943749475, 0.85065080835204}, {-0.42532540417601994`, -1.3090169943749475`, \ -0.8506508083520399}, {-0.42532540417601994`, 1.3090169943749475`, -0.8506508083520399}, {-0.2628655560595668, \ -0.8090169943749475, 1.3763819204711736`}, {-0.2628655560595668, 0.8090169943749475, 1.3763819204711736`}}], {{30, 24, 29, 7, 8}, { 26, 24, 30}, {25, 29, 24}, {5, 7, 29}, {14, 8, 7}, {6, 30, 8}, {16, 2, 6}, {19, 21, 26}, {20, 18, 25}, {1, 15, 5}, {22, 23, 14}, {2, 19, 26, 30, 6}, {21, 20, 25, 24, 26}, {18, 1, 5, 29, 25}, {15, 22, 14, 7, 5}, {23, 16, 6, 8, 14}, {12, 13, 4, 17, 3}, {3, 17, 9}, {17, 4, 10}, {4, 13, 28}, {13, 12, 11}, {12, 3, 27}, {27, 1, 18}, {9, 22, 15}, {10, 16, 23}, {28, 19, 2}, {11, 20, 21}, {27, 3, 9, 15, 1}, {9, 17, 10, 23, 22}, {10, 4, 28, 2, 16}, {28, 13, 11, 21, 19}, {11, 12, 27, 18, 20}}]}}, {RGBColor[0, 0, 1], PolyhedronBox[ NCache[{{(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {( Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}}, {{ 0.6881909602355868, 0.5, 1.3763819204711736`}, {1.1135163644116066`, 0.8090169943749475, -0.8506508083520399}, {-0.6881909602355868, \ -0.5, -1.3763819204711736`}, { 0.9510565162951535, -1.3090169943749475`, 0}, {-0.9510565162951535, 1.3090169943749475`, 0}, {-1.1135163644116068`, -0.8090169943749475, 0.85065080835204}}], {{4, 1, 6}, {1, 4, 2}, {3, 4, 6}, {4, 3, 2}, { 5, 1, 2}, {1, 5, 6}, {3, 5, 2}, {5, 3, 6}}]}}]}]}], "}"}]], "Output", CellLabel-> "Out[693]=",ExpressionUUID->"696fd7f2-f033-489f-a5cf-d1796b4489b6"] }, Open ]], Cell[CellGroupData[{ Cell["Convex hull", "Subsubsection",ExpressionUUID->"2295a7f1-e996-4088-b7d2-385c1be2310b"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Graphics3D", "[", RowBox[{"convexhullreg", "=", RowBox[{"ConvexHullRegion", "[", RowBox[{"v", "=", RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}]}], "]"}]}], "]"}]], "Input", CellLabel-> "In[694]:=",ExpressionUUID->"9ef6b229-44c3-4349-8359-0ac95072d3fa"], Cell[BoxData[ Graphics3DBox[ PolyhedronBox[ NCache[{{0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), 0}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], Rational[-1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {-(1 + 2 5^Rational[-1, 2])^Rational[1, 2], 0, Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {(1 + 2 5^Rational[-1, 2])^Rational[1, 2], 0, (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, {(Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2], 0, -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, {Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, {Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2], 0}, { Root[1 - 5 #^2 + 5 #^4& , 1, 0], 0, (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}}, {{0, -1.618033988749895, 0}, { 0, 1.618033988749895, 0}, { 0.2628655560595668, -0.8090169943749475, -1.3763819204711736`}, { 0.2628655560595668, 0.8090169943749475, -1.3763819204711736`}, { 0.42532540417601994`, -1.3090169943749475`, 0.85065080835204}, { 0.42532540417601994`, 1.3090169943749475`, 0.85065080835204}, { 0.6881909602355868, -0.5, 1.3763819204711736`}, {0.6881909602355868, 0.5, 1.3763819204711736`}, { 1.1135163644116066`, -0.8090169943749475, -0.8506508083520399}, { 1.1135163644116066`, 0.8090169943749475, -0.8506508083520399}, {-1.3763819204711736`, 0, -0.8506508083520399}, {-0.6881909602355868, -0.5, \ -1.3763819204711736`}, {-0.6881909602355868, 0.5, -1.3763819204711736`}, { 1.3763819204711736`, 0, 0.85065080835204}, { 0.9510565162951535, -1.3090169943749475`, 0}, { 0.9510565162951535, 1.3090169943749475`, 0}, { 0.85065080835204, 0, -1.3763819204711736`}, {-0.9510565162951535, -1.3090169943749475`, 0}, {-0.9510565162951535, 1.3090169943749475`, 0}, {-1.5388417685876268`, -0.5, 0}, {-1.5388417685876268`, 0.5, 0}, { 1.5388417685876268`, -0.5, 0}, { 1.5388417685876268`, 0.5, 0}, {-0.8506508083520399, 0, 1.3763819204711736`}, {-1.1135163644116068`, -0.8090169943749475, 0.85065080835204}, {-1.1135163644116068`, 0.8090169943749475, 0.85065080835204}, {-0.42532540417601994`, -1.3090169943749475`, \ -0.8506508083520399}, {-0.42532540417601994`, 1.3090169943749475`, -0.8506508083520399}, {-0.2628655560595668, \ -0.8090169943749475, 1.3763819204711736`}, {-0.2628655560595668, 0.8090169943749475, 1.3763819204711736`}}], {{2, 19, 26, 30, 6}, {17, 4, 10}, {12, 13, 4, 17, 3}, {6, 16, 2}, {19, 21, 26}, {24, 30, 26}, {21, 20, 25, 24, 26}, {30, 8, 6}, {14, 8, 7}, {17, 9, 3}, {15, 9, 22}, {29, 24, 25}, {30, 24, 29, 7, 8}, {18, 25, 20}, {28, 19, 2}, {28, 4, 13}, {2, 16, 10, 4, 28}, {16, 23, 10}, {23, 14, 22}, {22, 9, 17, 10, 23}, {6, 8, 14, 23, 16}, {12, 11, 13}, {21, 11, 20}, {28, 13, 11, 21, 19}, {15, 5, 1}, { 29, 5, 7}, {22, 14, 7, 5, 15}, {25, 18, 1, 5, 29}, {27, 12, 3}, {18, 27, 1}, {3, 9, 15, 1, 27}, {20, 11, 12, 27, 18}}]]], "Output", CellLabel-> "Out[694]=",ExpressionUUID->"7bc38cba-2a2a-424d-bf21-2d0d8ea64ac9"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"v", "=", RowBox[{"PolyhedronCoordinates", "[", "convexhullreg", "]"}]}]], "Input", CellLabel-> "In[695]:=",ExpressionUUID->"fa29b3ff-22de-4945-9eca-9ef1e40cad3a"], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"0", ",", RowBox[{ FractionBox["1", "2"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "-", SqrtBox["5"]}], ")"}]}], ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", RowBox[{ FractionBox["1", "2"], " ", RowBox[{"(", RowBox[{"1", "+", SqrtBox["5"]}], ")"}]}], ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{ SqrtBox[ RowBox[{ FractionBox["1", "8"], "-", FractionBox["1", RowBox[{"8", " ", SqrtBox["5"]}]]}]], ",", RowBox[{ FractionBox["1", "4"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "-", SqrtBox["5"]}], ")"}]}], ",", RowBox[{"-", SqrtBox[ RowBox[{"1", "+", FractionBox["2", SqrtBox["5"]]}]]}]}], "}"}], ",", RowBox[{"{", RowBox[{ SqrtBox[ RowBox[{ FractionBox["1", "8"], "-", FractionBox["1", RowBox[{"8", " ", SqrtBox["5"]}]]}]], ",", RowBox[{ FractionBox["1", "4"], " ", RowBox[{"(", RowBox[{"1", "+", SqrtBox["5"]}], ")"}]}], ",", RowBox[{"-", SqrtBox[ RowBox[{"1", "+", FractionBox["2", SqrtBox["5"]]}]]}]}], "}"}], ",", RowBox[{"{", RowBox[{ SqrtBox[ RowBox[{ FractionBox["1", "8"], "+", FractionBox["1", RowBox[{"8", " ", SqrtBox["5"]}]]}]], ",", RowBox[{ FractionBox["1", "4"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "3"}], "-", SqrtBox["5"]}], ")"}]}], ",", SqrtBox[ RowBox[{ FractionBox["1", "10"], " ", RowBox[{"(", RowBox[{"5", "+", SqrtBox["5"]}], ")"}]}]]}], "}"}], ",", RowBox[{"{", RowBox[{ SqrtBox[ RowBox[{ FractionBox["1", "8"], "+", FractionBox["1", RowBox[{"8", " ", SqrtBox["5"]}]]}]], ",", RowBox[{ FractionBox["1", "4"], " ", RowBox[{"(", RowBox[{"3", "+", SqrtBox["5"]}], ")"}]}], ",", SqrtBox[ RowBox[{ FractionBox["1", "10"], " ", RowBox[{"(", RowBox[{"5", "+", SqrtBox["5"]}], ")"}]}]]}], "}"}], ",", RowBox[{"{", RowBox[{ SqrtBox[ RowBox[{ FractionBox["1", "4"], "+", FractionBox["1", RowBox[{"2", " ", SqrtBox["5"]}]]}]], ",", RowBox[{"-", FractionBox["1", "2"]}], ",", SqrtBox[ RowBox[{"1", "+", FractionBox["2", SqrtBox["5"]]}]]}], "}"}], ",", RowBox[{"{", RowBox[{ SqrtBox[ RowBox[{ FractionBox["1", "4"], "+", FractionBox["1", RowBox[{"2", " ", SqrtBox["5"]}]]}]], ",", FractionBox["1", "2"], ",", SqrtBox[ RowBox[{"1", "+", FractionBox["2", SqrtBox["5"]]}]]}], "}"}], ",", RowBox[{"{", RowBox[{ SqrtBox[ RowBox[{ FractionBox["5", "8"], "+", FractionBox["11", RowBox[{"8", " ", SqrtBox["5"]}]]}]], ",", RowBox[{ FractionBox["1", "4"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "-", SqrtBox["5"]}], ")"}]}], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.851\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.85065080835203987774661982257384806871`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"5", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"5", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "1"}], "]"}], Short[#, 7]& ], -0.8506508083520399}, "NumericalApproximation"], Root[1 - 5 #^2 + 5 #^4& , 1, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ SqrtBox[ RowBox[{ FractionBox["5", "8"], "+", FractionBox["11", RowBox[{"8", " ", SqrtBox["5"]}]]}]], ",", RowBox[{ FractionBox["1", "4"], " ", RowBox[{"(", RowBox[{"1", "+", SqrtBox["5"]}], ")"}]}], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.851\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.85065080835203987774661982257384806871`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"5", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"5", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "1"}], "]"}], Short[#, 7]& ], -0.8506508083520399}, "NumericalApproximation"], Root[1 - 5 #^2 + 5 #^4& , 1, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", SqrtBox[ RowBox[{"1", "+", FractionBox["2", SqrtBox["5"]]}]]}], ",", "0", ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.851\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.85065080835203987774661982257384806871`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"5", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"5", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "1"}], "]"}], Short[#, 7]& ], -0.8506508083520399}, "NumericalApproximation"], Root[1 - 5 #^2 + 5 #^4& , 1, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", SqrtBox[ RowBox[{"1", "+", FractionBox["2", SqrtBox["5"]]}]]}], ",", RowBox[{"-", FractionBox["1", "2"]}], ",", RowBox[{"-", SqrtBox[ RowBox[{"1", "+", FractionBox["2", SqrtBox["5"]]}]]}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", SqrtBox[ RowBox[{"1", "+", FractionBox["2", SqrtBox["5"]]}]]}], ",", FractionBox["1", "2"], ",", RowBox[{"-", SqrtBox[ RowBox[{"1", "+", FractionBox["2", SqrtBox["5"]]}]]}]}], "}"}], ",", RowBox[{"{", RowBox[{ SqrtBox[ RowBox[{"1", "+", FractionBox["2", SqrtBox["5"]]}]], ",", "0", ",", SqrtBox[ RowBox[{ FractionBox["1", "10"], " ", RowBox[{"(", RowBox[{"5", "+", SqrtBox["5"]}], ")"}]}]]}], "}"}], ",", RowBox[{"{", RowBox[{ SqrtBox[ RowBox[{ FractionBox["5", "8"], "+", FractionBox[ SqrtBox["5"], "8"]}]], ",", RowBox[{ RowBox[{"-", FractionBox["1", "8"]}], " ", SuperscriptBox[ RowBox[{"(", RowBox[{"1", "+", SqrtBox["5"]}], ")"}], "2"]}], ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{ SqrtBox[ RowBox[{ FractionBox["5", "8"], "+", FractionBox[ SqrtBox["5"], "8"]}]], ",", RowBox[{ FractionBox["1", "4"], " ", RowBox[{"(", RowBox[{"3", "+", SqrtBox["5"]}], ")"}]}], ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{ SqrtBox[ RowBox[{ FractionBox["1", "10"], " ", RowBox[{"(", RowBox[{"5", "+", SqrtBox["5"]}], ")"}]}]], ",", "0", ",", RowBox[{"-", SqrtBox[ RowBox[{"1", "+", FractionBox["2", SqrtBox["5"]]}]]}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", SqrtBox[ RowBox[{ FractionBox["1", "2"], " ", RowBox[{"(", RowBox[{"5", "+", SqrtBox["5"]}], ")"}]}]]}], ",", RowBox[{ RowBox[{"-", FractionBox["1", "8"]}], " ", SuperscriptBox[ RowBox[{"(", RowBox[{"1", "+", SqrtBox["5"]}], ")"}], "2"]}], ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", SqrtBox[ RowBox[{ FractionBox["1", "2"], " ", RowBox[{"(", RowBox[{"5", "+", SqrtBox["5"]}], ")"}]}]]}], ",", RowBox[{ FractionBox["1", "4"], " ", RowBox[{"(", RowBox[{"3", "+", SqrtBox["5"]}], ")"}]}], ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", SqrtBox[ RowBox[{"5", "+", RowBox[{"2", " ", SqrtBox["5"]}]}]]}], ",", RowBox[{"-", FractionBox["1", "2"]}], ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", SqrtBox[ RowBox[{"5", "+", RowBox[{"2", " ", SqrtBox["5"]}]}]]}], ",", FractionBox["1", "2"], ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ FractionBox["1", "2"], " ", SqrtBox[ RowBox[{"5", "+", RowBox[{"2", " ", SqrtBox["5"]}]}]]}], ",", RowBox[{"-", FractionBox["1", "2"]}], ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ FractionBox["1", "2"], " ", SqrtBox[ RowBox[{"5", "+", RowBox[{"2", " ", SqrtBox["5"]}]}]]}], ",", FractionBox["1", "2"], ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.851\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.85065080835203987774661982257384806871`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"5", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"5", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "1"}], "]"}], Short[#, 7]& ], -0.8506508083520399}, "NumericalApproximation"], Root[1 - 5 #^2 + 5 #^4& , 1, 0]], ",", "0", ",", SqrtBox[ RowBox[{"1", "+", FractionBox["2", SqrtBox["5"]]}]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-1.11\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -1.11351636441160684043438777734991163015`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"100", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"80", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "1"}], "]"}], Short[#, 7]& ], -1.1135163644116068`}, "NumericalApproximation"], Root[1 - 100 #^2 + 80 #^4& , 1, 0]], ",", RowBox[{ FractionBox["1", "4"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "-", SqrtBox["5"]}], ")"}]}], ",", SqrtBox[ RowBox[{ FractionBox["1", "10"], " ", RowBox[{"(", RowBox[{"5", "+", SqrtBox["5"]}], ")"}]}]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-1.11\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -1.11351636441160684043438777734991163015`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"100", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"80", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "1"}], "]"}], Short[#, 7]& ], -1.1135163644116068`}, "NumericalApproximation"], Root[1 - 100 #^2 + 80 #^4& , 1, 0]], ",", RowBox[{ FractionBox["1", "4"], " ", RowBox[{"(", RowBox[{"1", "+", SqrtBox["5"]}], ")"}]}], ",", SqrtBox[ RowBox[{ FractionBox["1", "10"], " ", RowBox[{"(", RowBox[{"5", "+", SqrtBox["5"]}], ")"}]}]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.425\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.42532540417601993887330991128692403436`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"20", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"80", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "1"}], "]"}], Short[#, 7]& ], -0.42532540417601994`}, "NumericalApproximation"], Root[1 - 20 #^2 + 80 #^4& , 1, 0]], ",", RowBox[{ FractionBox["1", "4"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "3"}], "-", SqrtBox["5"]}], ")"}]}], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.851\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.85065080835203987774661982257384806871`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"5", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"5", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "1"}], "]"}], Short[#, 7]& ], -0.8506508083520399}, "NumericalApproximation"], Root[1 - 5 #^2 + 5 #^4& , 1, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.425\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.42532540417601993887330991128692403436`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"20", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"80", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "1"}], "]"}], Short[#, 7]& ], -0.42532540417601994`}, "NumericalApproximation"], Root[1 - 20 #^2 + 80 #^4& , 1, 0]], ",", RowBox[{ FractionBox["1", "4"], " ", RowBox[{"(", RowBox[{"3", "+", SqrtBox["5"]}], ")"}]}], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.851\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.85065080835203987774661982257384806871`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"5", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"5", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "1"}], "]"}], Short[#, 7]& ], -0.8506508083520399}, "NumericalApproximation"], Root[1 - 5 #^2 + 5 #^4& , 1, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.263\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.26286555605956679615431426100258249789`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"20", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"80", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.2628655560595668}, "NumericalApproximation"], Root[1 - 20 #^2 + 80 #^4& , 2, 0]], ",", RowBox[{ FractionBox["1", "4"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "-", SqrtBox["5"]}], ")"}]}], ",", SqrtBox[ RowBox[{"1", "+", FractionBox["2", SqrtBox["5"]]}]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.263\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.26286555605956679615431426100258249789`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"20", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"80", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.2628655560595668}, "NumericalApproximation"], Root[1 - 20 #^2 + 80 #^4& , 2, 0]], ",", RowBox[{ FractionBox["1", "4"], " ", RowBox[{"(", RowBox[{"1", "+", SqrtBox["5"]}], ")"}]}], ",", SqrtBox[ RowBox[{"1", "+", FractionBox["2", SqrtBox["5"]]}]]}], "}"}]}], "}"}]], "Output", CellLabel-> "Out[695]=",ExpressionUUID->"634e5605-67bf-46ed-b642-453d1e338a3f"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"Flatten", "[", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"convexhullreg", "[", RowBox[{"[", "2", "]"}], "]"}], "/.", RowBox[{"i_Integer", "\[RuleDelayed]", RowBox[{"v", "[", RowBox[{"[", "i", "]"}], "]"}]}]}], ")"}], "/.", RowBox[{"Thread", "[", RowBox[{ RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}], "->", RowBox[{"Range", "[", RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}], "]"}]}], "]"}]}], "]"}], "//", "Union"}]], "Input", CellLabel-> "In[696]:=",ExpressionUUID->"adef7aff-1cd1-4718-a55d-5ce6fa2d32f3"], Cell[BoxData[ RowBox[{"{", RowBox[{ "1", ",", "2", ",", "3", ",", "4", ",", "5", ",", "6", ",", "7", ",", "8", ",", "9", ",", "10", ",", "11", ",", "12", ",", "13", ",", "14", ",", "15", ",", "16", ",", "17", ",", "18", ",", "19", ",", "20", ",", "21", ",", "22", ",", "23", ",", "24", ",", "25", ",", "26", ",", "27", ",", "28", ",", "29", ",", "30"}], "}"}]], "Output", CellLabel-> "Out[696]=",ExpressionUUID->"39f8d6ed-9529-4e15-ab7a-532508c0ee26"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"%", "===", RowBox[{"Range", "@", RowBox[{"Length", "@", "v"}]}]}]], "Input", CellLabel-> "In[697]:=",ExpressionUUID->"ed6fe408-a2eb-4aad-ad9e-87d031b2ff0e"], Cell[BoxData["True"], "Output", CellLabel-> "Out[697]=",ExpressionUUID->"6f88727c-8d69-47ae-ba5d-2949f0fbb2c1"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\"", ",", "\"\\""}], "]"}]], "Input", CellLabel-> "In[698]:=",ExpressionUUID->"06638bf0-9137-4c1e-a904-614d3edd5137"], Cell[BoxData["\<\"Icosidodecahedron\"\>"], "Output", CellLabel-> "Out[698]=",ExpressionUUID->"dd4fe772-d464-4aab-ac1c-920d533d8703"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["Platonic", "Subsubsection",ExpressionUUID->"e35d2891-4f62-434c-b3e5-eebcf585a86e"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"(", RowBox[{"h", "=", RowBox[{"VertexSubsetHulls", "[", RowBox[{"p", ",", "\"\\"", ",", RowBox[{"\"\\"", "\[Rule]", RowBox[{"{", "}"}]}]}], "]"}]}], ")"}], "//", "Timing"}]], "Input", CellLabel-> "In[699]:=",ExpressionUUID->"6d72ee0d-d60f-495a-854a-00ecf602b36c"], Cell[CellGroupData[{ Cell[BoxData["\<\"Finding equilateral triangles...\"\>"], "Print", CellLabel-> "During evaluation of \ In[699]:=",ExpressionUUID->"a5967263-7ad1-40fe-8230-a6db933dd02e"], Cell[BoxData["\<\"Finding potential tetrahedra from equilateral \ triangles...\"\>"], "Print", CellLabel-> "During evaluation of \ In[699]:=",ExpressionUUID->"1654b5fc-b466-4382-a8e8-7207e87bfa23"], Cell[BoxData["\<\"Finding tetrahedra from potential candidates...\"\>"], \ "Print", CellLabel-> "During evaluation of \ In[699]:=",ExpressionUUID->"c0adb5aa-f6ab-461b-8418-213e1a944290"], Cell[BoxData["\<\"Finding cubes from tetrahedra...\"\>"], "Print", CellLabel-> "During evaluation of \ In[699]:=",ExpressionUUID->"dbbe3663-69d2-4450-9293-5b2106385577"], Cell[BoxData["\<\"Finding dodecahedra from cubes...\"\>"], "Print", CellLabel-> "During evaluation of \ In[699]:=",ExpressionUUID->"6dfe37dc-bdba-402a-bb93-70cb4f0a5e68"], Cell[BoxData["\<\"Finding octahedra by building up from equilateral \ triangles...\"\>"], "Print", CellLabel-> "During evaluation of \ In[699]:=",ExpressionUUID->"c1a6e321-03f0-400b-9c3d-23889614824e"], Cell[BoxData["\<\"Finding icosidodecahedra from octahedra...\"\>"], "Print", CellLabel-> "During evaluation of \ In[699]:=",ExpressionUUID->"18280de6-3420-4029-b7a0-4d0e61d9d6fc"], Cell[BoxData["\<\"Finding icosahedra by building up from equilateral \ triangles...\"\>"], "Print", CellLabel-> "During evaluation of \ In[699]:=",ExpressionUUID->"9311b39d-b210-4152-a57c-7e4e8260a4cd"] }, Open ]], Cell[BoxData[ RowBox[{"{", RowBox[{"0.07601`", ",", RowBox[{"{", RowBox[{ RowBox[{"\<\"Icosidodecahedron\"\>", "\[Rule]", RowBox[{"{", RowBox[{"{", RowBox[{ "1", ",", "2", ",", "3", ",", "4", ",", "5", ",", "6", ",", "7", ",", "8", ",", "9", ",", "10", ",", "11", ",", "12", ",", "13", ",", "14", ",", "15", ",", "16", ",", "17", ",", "18", ",", "19", ",", "20", ",", "21", ",", "22", ",", "23", ",", "24", ",", "25", ",", "26", ",", "27", ",", "28", ",", "29", ",", "30"}], "}"}], "}"}]}], ",", RowBox[{"\<\"Octahedron\"\>", "\[Rule]", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"1", ",", "2", ",", "11", ",", "14", ",", "17", ",", "24"}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "5", ",", "20", ",", "23", ",", "28", ",", "30"}], "}"}], ",", RowBox[{"{", RowBox[{"4", ",", "6", ",", "21", ",", "22", ",", "27", ",", "29"}], "}"}], ",", RowBox[{"{", RowBox[{"7", ",", "9", ",", "13", ",", "16", ",", "18", ",", "26"}], "}"}], ",", RowBox[{"{", RowBox[{"8", ",", "10", ",", "12", ",", "15", ",", "19", ",", "25"}], "}"}]}], "}"}]}]}], "}"}]}], "}"}]], "Output", CellLabel-> "Out[699]=",ExpressionUUID->"82c8901e-ae1b-4829-8665-72afdf8e6e5b"] }, Open ]] }, Open ]] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Properties: {\"Icosidodecahedron\", \"C3\"}", "Section",ExpressionUUID->"06db7ce4-aae6-4784-9196-1f72a978e7a2"], Cell[CellGroupData[{ Cell["Initialization", "Subsubsection",ExpressionUUID->"0158ec3f-139c-4883-8111-ccd22417bc6e"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"<<", "MathWorld`Polyhedra`"}]], "Input", CellLabel-> "(Local-Devel (3)) \ In[3]:=",ExpressionUUID->"77f7ed8b-7447-4b75-8905-398998d72666"], Cell[BoxData[ TemplateBox[{ "x", "shdw", "\"Symbol \\!\\(\\*RowBox[{\\\"\\\\\\\"x\\\\\\\"\\\"}]\\) appears in \ multiple contexts \\!\\(\\*RowBox[{\\\"{\\\", \ RowBox[{\\\"\\\\\\\"MathWorld`Graphs`\\\\\\\"\\\", \\\",\\\", \ \\\"\\\\\\\"Global`\\\\\\\"\\\"}], \\\"}\\\"}]\\); definitions in context \\!\ \\(\\*RowBox[{\\\"\\\\\\\"MathWorld`Graphs`\\\\\\\"\\\"}]\\) may shadow or be \ shadowed by other definitions.\"", 2, 3, 2, 21917308572643649799, "Local-Devel (3)", "MathWorld`Graphs`x"}, "MessageTemplate2", BaseStyle->"MSG"]], "Message", CellLabel-> "During evaluation of (Local-Devel (3)) \ In[3]:=",ExpressionUUID->"6324bf66-eed4-4d0c-8587-6f5424ade395"], Cell[BoxData[ TemplateBox[{ "y", "shdw", "\"Symbol \\!\\(\\*RowBox[{\\\"\\\\\\\"y\\\\\\\"\\\"}]\\) appears in \ multiple contexts \\!\\(\\*RowBox[{\\\"{\\\", \ RowBox[{\\\"\\\\\\\"MathWorld`Graphs`\\\\\\\"\\\", \\\",\\\", \ \\\"\\\\\\\"Global`\\\\\\\"\\\"}], \\\"}\\\"}]\\); definitions in context \\!\ \\(\\*RowBox[{\\\"\\\\\\\"MathWorld`Graphs`\\\\\\\"\\\"}]\\) may shadow or be \ shadowed by other definitions.\"", 2, 3, 3, 21917308572643649799, "Local-Devel (3)", "MathWorld`Graphs`y"}, "MessageTemplate2", BaseStyle->"MSG"]], "Message", CellLabel-> "During evaluation of (Local-Devel (3)) \ In[3]:=",ExpressionUUID->"f1fde2cd-960c-4ae0-b135-4c73a1a56d95"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"p", "=", RowBox[{"PolyhedronData", "[", RowBox[{ RowBox[{"pname", "=", RowBox[{"{", RowBox[{"\"\\"", ",", "\"\\""}], "}"}]}], ",", "\"\\""}], "]"}]}]], "Input", CellLabel-> "(Local-Devel (3)) \ In[4]:=",ExpressionUUID->"77966a70-6c98-48b2-8bfd-08621208f959"], Cell[BoxData[ InterpretationBox[ RowBox[{ TagBox["Polyhedron", "SummaryHead"], "[", DynamicModuleBox[{Typeset`open$$ = False, Typeset`embedState$$ = "Ready", Typeset`spolyhedron$$ = Quiet[ Polyhedron[{{(Rational[1, 6] (7 + 3 5^Rational[1, 2]))^Rational[1, 2], 0, -3^Rational[-1, 2]}, { Root[1 - 21 #^2 + 9 #^4& , 1, 0], 0, 3^Rational[-1, 2]}, { Rational[1, 2] 3^Rational[-1, 2], Rational[-1, 2], Root[ 1 - 21 #^2 + 9 #^4& , 1, 0]}, {-(Rational[3, 4] + Rational[1, 3] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 2], -(Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 2] (Rational[3, 2] (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), 0}, { Rational[-1, 2] (Rational[5, 6] (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), ( Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[7, 24] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 3^ Rational[-1, 2]}, { Root[1 - 36 #^2 + 144 #^4& , 2, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), ( Rational[1, 6] (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 2] 3^Rational[-1, 2], Rational[1, 2], Root[ 1 - 21 #^2 + 9 #^4& , 1, 0]}, {-(Rational[3, 4] + Rational[1, 3] 5^Rational[1, 2])^ Rational[1, 2], Rational[ 1, 2], -(Rational[1, 6] (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { 0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, { Root[1 - 36 #^2 + 144 #^4& , 3, 0], Rational[1, 4] (-3 - 5^ Rational[1, 2]), -(Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, {-(Rational[7, 24] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), -3^Rational[-1, 2]}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), 0}, { Rational[1, 2] (Rational[5, 6] (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), -(Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[-1, 2] (Rational[3, 2] (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), 0}, {-3^Rational[-1, 2], 0, Root[1 - 21 #^2 + 9 #^4& , 1, 0]}, { Rational[1, 2] (Rational[3, 2] (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), 0}, { Rational[-1, 2] (Rational[5, 6] (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), ( Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[7, 24] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), 3^ Rational[-1, 2]}, { Root[1 - 36 #^2 + 144 #^4& , 2, 0], Rational[1, 4] (-3 - 5^Rational[1, 2]), ( Rational[1, 6] (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 36 #^2 + 144 #^4& , 3, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), -(Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, {-(Rational[7, 24] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), -3^Rational[-1, 2]}, { 3^Rational[-1, 2], 0, (Rational[1, 6] (7 + 3 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[3, 4] + Rational[1, 3] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 2], (Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, {Rational[-1, 2] 3^Rational[-1, 2], Rational[-1, 2], (Rational[1, 6] (7 + 3 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 2] (Rational[5, 6] (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (-1 - 5^ Rational[1, 2]), -(Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[-1, 2] (Rational[3, 2] (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), 0}, {(Rational[3, 4] + Rational[1, 3] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 2], (Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, {Rational[-1, 2] 3^Rational[-1, 2], Rational[1, 2], (Rational[1, 6] (7 + 3 5^Rational[1, 2]))^ Rational[1, 2]}}, {{30, 24, 29, 7, 8}, {26, 24, 30}, {25, 29, 24}, {5, 7, 29}, {14, 8, 7}, {6, 30, 8}, {16, 2, 6}, {19, 21, 26}, {20, 18, 25}, {1, 15, 5}, {22, 23, 14}, {2, 19, 26, 30, 6}, {21, 20, 25, 24, 26}, {18, 1, 5, 29, 25}, {15, 22, 14, 7, 5}, {23, 16, 6, 8, 14}, {12, 13, 4, 17, 3}, {3, 17, 9}, {17, 4, 10}, {4, 13, 28}, {13, 12, 11}, {12, 3, 27}, {27, 1, 18}, {9, 22, 15}, {10, 16, 23}, {28, 19, 2}, {11, 20, 21}, {27, 3, 9, 15, 1}, {9, 17, 10, 23, 22}, {10, 4, 28, 2, 16}, {28, 13, 11, 21, 19}, {11, 12, 27, 18, 20}}]]}, TemplateBox[{ PaneSelectorBox[{False -> GridBox[{{ PaneBox[ ButtonBox[ DynamicBox[ FEPrivate`FrontEndResource["FEBitmaps", "SummaryBoxOpener"]], ButtonFunction :> (Typeset`open$$ = True), Appearance -> None, BaseStyle -> {}, Evaluator -> Automatic, Method -> "Preemptive"], Alignment -> {Center, Center}, ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], Graphics3DBox[{ Directive[ Hue[0.58, 0.4, 1], Opacity[0.5], EdgeForm[ GrayLevel[1]]], PolyhedronBox[ NCache[{{(Rational[1, 6] (7 + 3 5^Rational[1, 2]))^ Rational[1, 2], 0, -3^Rational[-1, 2]}, { Root[1 - 21 #^2 + 9 #^4& , 1, 0], 0, 3^Rational[-1, 2]}, { Rational[1, 2] 3^Rational[-1, 2], Rational[-1, 2], Root[ 1 - 21 #^2 + 9 #^4& , 1, 0]}, {-(Rational[3, 4] + Rational[1, 3] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 2], -(Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 2] (Rational[3, 2] (3 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), 0}, {Rational[-1, 2] ( Rational[5, 6] (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), ( Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[7, 24] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 3^Rational[-1, 2]}, { Root[1 - 36 #^2 + 144 #^4& , 2, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), ( Rational[1, 6] (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 2] 3^Rational[-1, 2], Rational[1, 2], Root[ 1 - 21 #^2 + 9 #^4& , 1, 0]}, {-(Rational[3, 4] + Rational[1, 3] 5^Rational[1, 2])^ Rational[1, 2], Rational[ 1, 2], -(Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { 0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, { Root[1 - 36 #^2 + 144 #^4& , 3, 0], Rational[1, 4] (-3 - 5^ Rational[1, 2]), -(Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, {-(Rational[7, 24] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), -3^ Rational[-1, 2]}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), 0}, { Rational[1, 2] (Rational[5, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), -( Rational[1, 6] (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 2] (Rational[3, 2] (3 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), 0}, {-3^Rational[-1, 2], 0, Root[1 - 21 #^2 + 9 #^4& , 1, 0]}, { Rational[1, 2] (Rational[3, 2] (3 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), 0}, {Rational[-1, 2] ( Rational[5, 6] (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), ( Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[7, 24] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), 3^Rational[-1, 2]}, { Root[1 - 36 #^2 + 144 #^4& , 2, 0], Rational[1, 4] (-3 - 5^Rational[1, 2]), ( Rational[1, 6] (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 36 #^2 + 144 #^4& , 3, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), -( Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, {-(Rational[7, 24] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), -3^ Rational[-1, 2]}, { 3^Rational[-1, 2], 0, (Rational[1, 6] (7 + 3 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[3, 4] + Rational[1, 3] 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], (Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, {Rational[-1, 2] 3^Rational[-1, 2], Rational[-1, 2], (Rational[1, 6] (7 + 3 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 2] (Rational[5, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (-1 - 5^ Rational[1, 2]), -(Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[-1, 2] (Rational[3, 2] (3 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), 0}, {(Rational[3, 4] + Rational[1, 3] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 2], (Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, {Rational[-1, 2] 3^Rational[-1, 2], Rational[1, 2], (Rational[1, 6] (7 + 3 5^Rational[1, 2]))^ Rational[1, 2]}}, {{ 1.5115226281523415`, 0, -0.5773502691896258}, {-1.5115226281523415`, 0, 0.5773502691896258}, { 0.2886751345948129, -0.5, -1.5115226281523415`}, \ {-1.2228474935575286`, -0.5, -0.9341723589627157}, { 1.4012585384440737`, 0.8090169943749475, 0}, {-1.0444364486709836`, 0.8090169943749475, 0.9341723589627157}, {0.7557613140761708, 1.3090169943749475`, 0.5773502691896258}, {-0.17841104488654497`, 1.3090169943749475`, 0.9341723589627157}, { 0.2886751345948129, 0.5, -1.5115226281523415`}, {-1.2228474935575286`, 0.5, -0.9341723589627157}, {0, -1.618033988749895, 0}, { 0.17841104488654497`, -1.3090169943749475`, \ -0.9341723589627157}, {-0.7557613140761708, -1.3090169943749475`, \ -0.5773502691896258}, {0, 1.618033988749895, 0}, {1.0444364486709836`, 0.8090169943749475, -0.9341723589627157}, \ {-1.4012585384440737`, 0.8090169943749475, 0}, {-0.5773502691896258, 0, -1.5115226281523415`}, { 1.4012585384440737`, -0.8090169943749475, 0}, {-1.0444364486709836`, -0.8090169943749475, 0.9341723589627157}, { 0.7557613140761708, -1.3090169943749475`, 0.5773502691896258}, {-0.17841104488654497`, \ -1.3090169943749475`, 0.9341723589627157}, {0.17841104488654497`, 1.3090169943749475`, -0.9341723589627157}, \ {-0.7557613140761708, 1.3090169943749475`, -0.5773502691896258}, { 0.5773502691896258, 0, 1.5115226281523415`}, { 1.2228474935575286`, -0.5, 0.9341723589627157}, {-0.2886751345948129, -0.5, 1.5115226281523415`}, { 1.0444364486709836`, -0.8090169943749475, \ -0.9341723589627157}, {-1.4012585384440737`, -0.8090169943749475, 0}, { 1.2228474935575286`, 0.5, 0.9341723589627157}, {-0.2886751345948129, 0.5, 1.5115226281523415`}}], {{30, 24, 29, 7, 8}, {26, 24, 30}, { 25, 29, 24}, {5, 7, 29}, {14, 8, 7}, {6, 30, 8}, {16, 2, 6}, { 19, 21, 26}, {20, 18, 25}, {1, 15, 5}, {22, 23, 14}, {2, 19, 26, 30, 6}, {21, 20, 25, 24, 26}, {18, 1, 5, 29, 25}, {15, 22, 14, 7, 5}, {23, 16, 6, 8, 14}, {12, 13, 4, 17, 3}, {3, 17, 9}, {17, 4, 10}, {4, 13, 28}, {13, 12, 11}, {12, 3, 27}, {27, 1, 18}, {9, 22, 15}, {10, 16, 23}, {28, 19, 2}, {11, 20, 21}, {27, 3, 9, 15, 1}, {9, 17, 10, 23, 22}, {10, 4, 28, 2, 16}, {28, 13, 11, 21, 19}, {11, 12, 27, 18, 20}}]}, ImageSize -> Dynamic[{5.25, 3.5} (CurrentValue["FontCapHeight"]/ AbsoluteCurrentValue[Magnification])], Boxed -> False, Lighting -> {{"Ambient", RGBColor[0.4, 0.45, 0.5]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{2, 0, 2}]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{2, 2, 2}]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{0, 2, 2}]}}, Method -> {"ShrinkWrap" -> True}], GridBox[{{ RowBox[{ TagBox["\"Number of points: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["30", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Number of faces: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["32", "SummaryItem"]}]}}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> {"Columns" -> {{2}}, "Rows" -> {{Automatic}}}, BaseStyle -> { ShowStringCharacters -> False, NumberMarks -> False, PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, BaselinePosition -> {1, 1}], True -> GridBox[{{ PaneBox[ ButtonBox[ DynamicBox[ FEPrivate`FrontEndResource["FEBitmaps", "SummaryBoxCloser"]], ButtonFunction :> (Typeset`open$$ = False), Appearance -> None, BaseStyle -> {}, Evaluator -> Automatic, Method -> "Preemptive"], Alignment -> {Center, Center}, ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], Graphics3DBox[{ Directive[ Hue[0.58, 0.4, 1], Opacity[0.5], EdgeForm[ GrayLevel[1]]], PolyhedronBox[ NCache[{{(Rational[1, 6] (7 + 3 5^Rational[1, 2]))^ Rational[1, 2], 0, -3^Rational[-1, 2]}, { Root[1 - 21 #^2 + 9 #^4& , 1, 0], 0, 3^Rational[-1, 2]}, { Rational[1, 2] 3^Rational[-1, 2], Rational[-1, 2], Root[ 1 - 21 #^2 + 9 #^4& , 1, 0]}, {-(Rational[3, 4] + Rational[1, 3] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 2], -(Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 2] (Rational[3, 2] (3 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), 0}, {Rational[-1, 2] ( Rational[5, 6] (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), ( Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[7, 24] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 3^Rational[-1, 2]}, { Root[1 - 36 #^2 + 144 #^4& , 2, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), ( Rational[1, 6] (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 2] 3^Rational[-1, 2], Rational[1, 2], Root[ 1 - 21 #^2 + 9 #^4& , 1, 0]}, {-(Rational[3, 4] + Rational[1, 3] 5^Rational[1, 2])^ Rational[1, 2], Rational[ 1, 2], -(Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { 0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, { Root[1 - 36 #^2 + 144 #^4& , 3, 0], Rational[1, 4] (-3 - 5^ Rational[1, 2]), -(Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, {-(Rational[7, 24] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), -3^ Rational[-1, 2]}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), 0}, { Rational[1, 2] (Rational[5, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), -( Rational[1, 6] (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 2] (Rational[3, 2] (3 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), 0}, {-3^Rational[-1, 2], 0, Root[1 - 21 #^2 + 9 #^4& , 1, 0]}, { Rational[1, 2] (Rational[3, 2] (3 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), 0}, {Rational[-1, 2] ( Rational[5, 6] (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), ( Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[7, 24] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), 3^Rational[-1, 2]}, { Root[1 - 36 #^2 + 144 #^4& , 2, 0], Rational[1, 4] (-3 - 5^Rational[1, 2]), ( Rational[1, 6] (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 36 #^2 + 144 #^4& , 3, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), -( Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, {-(Rational[7, 24] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), -3^ Rational[-1, 2]}, { 3^Rational[-1, 2], 0, (Rational[1, 6] (7 + 3 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[3, 4] + Rational[1, 3] 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], (Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, {Rational[-1, 2] 3^Rational[-1, 2], Rational[-1, 2], (Rational[1, 6] (7 + 3 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 2] (Rational[5, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (-1 - 5^ Rational[1, 2]), -(Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[-1, 2] (Rational[3, 2] (3 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), 0}, {(Rational[3, 4] + Rational[1, 3] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 2], (Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, {Rational[-1, 2] 3^Rational[-1, 2], Rational[1, 2], (Rational[1, 6] (7 + 3 5^Rational[1, 2]))^ Rational[1, 2]}}, {{ 1.5115226281523415`, 0, -0.5773502691896258}, {-1.5115226281523415`, 0, 0.5773502691896258}, { 0.2886751345948129, -0.5, -1.5115226281523415`}, \ {-1.2228474935575286`, -0.5, -0.9341723589627157}, { 1.4012585384440737`, 0.8090169943749475, 0}, {-1.0444364486709836`, 0.8090169943749475, 0.9341723589627157}, {0.7557613140761708, 1.3090169943749475`, 0.5773502691896258}, {-0.17841104488654497`, 1.3090169943749475`, 0.9341723589627157}, { 0.2886751345948129, 0.5, -1.5115226281523415`}, {-1.2228474935575286`, 0.5, -0.9341723589627157}, {0, -1.618033988749895, 0}, { 0.17841104488654497`, -1.3090169943749475`, \ -0.9341723589627157}, {-0.7557613140761708, -1.3090169943749475`, \ -0.5773502691896258}, {0, 1.618033988749895, 0}, {1.0444364486709836`, 0.8090169943749475, -0.9341723589627157}, \ {-1.4012585384440737`, 0.8090169943749475, 0}, {-0.5773502691896258, 0, -1.5115226281523415`}, { 1.4012585384440737`, -0.8090169943749475, 0}, {-1.0444364486709836`, -0.8090169943749475, 0.9341723589627157}, { 0.7557613140761708, -1.3090169943749475`, 0.5773502691896258}, {-0.17841104488654497`, \ -1.3090169943749475`, 0.9341723589627157}, {0.17841104488654497`, 1.3090169943749475`, -0.9341723589627157}, \ {-0.7557613140761708, 1.3090169943749475`, -0.5773502691896258}, { 0.5773502691896258, 0, 1.5115226281523415`}, { 1.2228474935575286`, -0.5, 0.9341723589627157}, {-0.2886751345948129, -0.5, 1.5115226281523415`}, { 1.0444364486709836`, -0.8090169943749475, \ -0.9341723589627157}, {-1.4012585384440737`, -0.8090169943749475, 0}, { 1.2228474935575286`, 0.5, 0.9341723589627157}, {-0.2886751345948129, 0.5, 1.5115226281523415`}}], {{30, 24, 29, 7, 8}, {26, 24, 30}, { 25, 29, 24}, {5, 7, 29}, {14, 8, 7}, {6, 30, 8}, {16, 2, 6}, { 19, 21, 26}, {20, 18, 25}, {1, 15, 5}, {22, 23, 14}, {2, 19, 26, 30, 6}, {21, 20, 25, 24, 26}, {18, 1, 5, 29, 25}, {15, 22, 14, 7, 5}, {23, 16, 6, 8, 14}, {12, 13, 4, 17, 3}, {3, 17, 9}, {17, 4, 10}, {4, 13, 28}, {13, 12, 11}, {12, 3, 27}, {27, 1, 18}, {9, 22, 15}, {10, 16, 23}, {28, 19, 2}, {11, 20, 21}, {27, 3, 9, 15, 1}, {9, 17, 10, 23, 22}, {10, 4, 28, 2, 16}, {28, 13, 11, 21, 19}, {11, 12, 27, 18, 20}}]}, ImageSize -> Dynamic[{5.25, 3.5} (CurrentValue["FontCapHeight"]/ AbsoluteCurrentValue[Magnification])], Boxed -> False, Lighting -> {{"Ambient", RGBColor[0.4, 0.45, 0.5]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{2, 0, 2}]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{2, 2, 2}]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{0, 2, 2}]}}, Method -> {"ShrinkWrap" -> True}], GridBox[{{ RowBox[{ TagBox["\"Number of points: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["30", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Number of faces: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["32", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Embedding dimension: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["3", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Type: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Quiet[ Apply[Region`PolyhedronDump`polyhedronType, Region`PolyhedronDump`computeType[ Typeset`spolyhedron$$]]], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}, { RowBox[{ TagBox["\"Bounds: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Region`PolyhedronDump`iRegionBounds[ Typeset`spolyhedron$$], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}, { RowBox[{ TagBox["\"Volume: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Region`PolyhedronDump`iVolume[Typeset`spolyhedron$$], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> {"Columns" -> {{2}}, "Rows" -> {{Automatic}}}, BaseStyle -> { ShowStringCharacters -> False, NumberMarks -> False, PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, BaselinePosition -> {1, 1}]}, Dynamic[Typeset`open$$], ImageSize -> Automatic]}, "SummaryPanel"], DynamicModuleValues:>{}], "]"}], Polyhedron[{{(Rational[1, 6] (7 + 3 5^Rational[1, 2]))^Rational[1, 2], 0, -3^Rational[-1, 2]}, { Root[1 - 21 #^2 + 9 #^4& , 1, 0], 0, 3^Rational[-1, 2]}, { Rational[1, 2] 3^Rational[-1, 2], Rational[-1, 2], Root[ 1 - 21 #^2 + 9 #^4& , 1, 0]}, {-(Rational[3, 4] + Rational[1, 3] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 2], -(Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 2] (Rational[3, 2] (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), 0}, { Rational[-1, 2] (Rational[5, 6] (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), ( Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[7, 24] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 3^ Rational[-1, 2]}, { Root[1 - 36 #^2 + 144 #^4& , 2, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), ( Rational[1, 6] (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 2] 3^Rational[-1, 2], Rational[1, 2], Root[ 1 - 21 #^2 + 9 #^4& , 1, 0]}, {-(Rational[3, 4] + Rational[1, 3] 5^Rational[1, 2])^ Rational[1, 2], Rational[ 1, 2], -(Rational[1, 6] (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { 0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, { Root[1 - 36 #^2 + 144 #^4& , 3, 0], Rational[1, 4] (-3 - 5^ Rational[1, 2]), -(Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, {-(Rational[7, 24] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), -3^Rational[-1, 2]}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), 0}, { Rational[1, 2] (Rational[5, 6] (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), -(Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[-1, 2] (Rational[3, 2] (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), 0}, {-3^Rational[-1, 2], 0, Root[1 - 21 #^2 + 9 #^4& , 1, 0]}, { Rational[1, 2] (Rational[3, 2] (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), 0}, { Rational[-1, 2] (Rational[5, 6] (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), ( Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[7, 24] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), 3^ Rational[-1, 2]}, { Root[1 - 36 #^2 + 144 #^4& , 2, 0], Rational[1, 4] (-3 - 5^Rational[1, 2]), ( Rational[1, 6] (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 36 #^2 + 144 #^4& , 3, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), -(Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, {-(Rational[7, 24] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), -3^Rational[-1, 2]}, { 3^Rational[-1, 2], 0, (Rational[1, 6] (7 + 3 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[3, 4] + Rational[1, 3] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 2], (Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, {Rational[-1, 2] 3^Rational[-1, 2], Rational[-1, 2], (Rational[1, 6] (7 + 3 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 2] (Rational[5, 6] (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (-1 - 5^ Rational[1, 2]), -(Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[-1, 2] (Rational[3, 2] (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), 0}, {(Rational[3, 4] + Rational[1, 3] 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2], (Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, {Rational[-1, 2] 3^Rational[-1, 2], Rational[1, 2], (Rational[1, 6] (7 + 3 5^Rational[1, 2]))^ Rational[1, 2]}}, {{30, 24, 29, 7, 8}, {26, 24, 30}, {25, 29, 24}, {5, 7, 29}, {14, 8, 7}, {6, 30, 8}, {16, 2, 6}, {19, 21, 26}, {20, 18, 25}, {1, 15, 5}, {22, 23, 14}, {2, 19, 26, 30, 6}, {21, 20, 25, 24, 26}, {18, 1, 5, 29, 25}, {15, 22, 14, 7, 5}, {23, 16, 6, 8, 14}, {12, 13, 4, 17, 3}, {3, 17, 9}, {17, 4, 10}, {4, 13, 28}, {13, 12, 11}, {12, 3, 27}, {27, 1, 18}, {9, 22, 15}, {10, 16, 23}, {28, 19, 2}, {11, 20, 21}, {27, 3, 9, 15, 1}, {9, 17, 10, 23, 22}, {10, 4, 28, 2, 16}, {28, 13, 11, 21, 19}, {11, 12, 27, 18, 20}}], Editable->False, SelectWithContents->True, Selectable->False]], "Output", CellLabel-> "(Local-Devel (3)) \ Out[4]=",ExpressionUUID->"5f1640ae-86d5-4096-9fb0-58a8fb702cd6"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"vol", "=", RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}]}]], "Input", CellLabel-> "(Local-Devel (3)) \ In[5]:=",ExpressionUUID->"60afae94-8488-4708-88db-90e4c1879826"], Cell[BoxData[ RowBox[{ FractionBox["1", "6"], " ", RowBox[{"(", RowBox[{"45", "+", RowBox[{"17", " ", SqrtBox["5"]}]}], ")"}]}]], "Output", CellLabel-> "(Local-Devel (3)) \ Out[5]=",ExpressionUUID->"6866a530-cef5-439d-88fa-071e2bb1689a"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["Centroid", "Subsection",ExpressionUUID->"f1800b8b-294c-4b0c-b5b8-422c95db0aa6"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}]], "Input", CellLabel->"In[6]:=",ExpressionUUID->"dc2c6b74-cf2b-4a79-b72a-7a20908b51c0"], Cell[BoxData[ RowBox[{"{", RowBox[{"0", ",", "0", ",", "0"}], "}"}]], "Output", CellLabel->"Out[6]=",ExpressionUUID->"32d84c41-cbe2-49eb-9e2b-c15b1615944a"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"RegionCentroid", "[", RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}], "]"}], "//", "RootReduce"}]], "Input", CellLabel->"In[11]:=",ExpressionUUID->"e9b4b9ac-9792-4776-823a-8aa83826c252"], Cell[BoxData[ RowBox[{"{", RowBox[{"0", ",", "0", ",", "0"}], "}"}]], "Output", CellLabel->"Out[11]=",ExpressionUUID->"ec32c0d6-314d-4db5-b036-18a98bcf93bb"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{ RowBox[{"PolyhedronCentroid", "[", RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}], "]"}], "//", "Quiet"}], "//", "RootReduce"}], "//", "Timing"}]], "Input", CellLabel->"In[12]:=",ExpressionUUID->"7ea010fd-38e6-41c3-bf6b-007db02b40e4"], Cell[BoxData[ RowBox[{"{", RowBox[{"0.364238`", ",", RowBox[{"{", RowBox[{"0", ",", "0", ",", "0"}], "}"}]}], "}"}]], "Output", CellLabel->"Out[12]=",ExpressionUUID->"6c7e0888-5ebf-4077-9c3b-1d7c4636c9ed"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Circumradius", "Subsection",ExpressionUUID->"b8b1675d-3d5e-428c-b7bb-ff0d8bfd9389"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}]], "Input", CellLabel->"In[13]:=",ExpressionUUID->"20ebe2d5-1ca8-49a6-9cb3-ea06c489b225"], Cell[BoxData[ RowBox[{ FractionBox["1", "2"], " ", RowBox[{"(", RowBox[{"1", "+", SqrtBox["5"]}], ")"}]}]], "Output", CellLabel->"Out[13]=",ExpressionUUID->"45fb65c6-c193-42fe-a73c-94b2f3115721"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{"Circumsphere", "[", RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}], "]"}], "//", "RootReduce"}], "//", "Timing"}]], "Input", CellLabel->"In[14]:=",ExpressionUUID->"5cc5168c-2d89-4b46-9bb3-b90ead0d3138"], Cell[BoxData[ RowBox[{"{", RowBox[{"0.111333`", ",", RowBox[{"Sphere", "[", RowBox[{ RowBox[{"{", RowBox[{"0", ",", "0", ",", "0"}], "}"}], ",", RowBox[{ FractionBox["1", "2"], " ", RowBox[{"(", RowBox[{"1", "+", SqrtBox["5"]}], ")"}]}]}], "]"}]}], "}"}]], "Output", CellLabel->"Out[14]=",ExpressionUUID->"4c846bd5-c5d3-49a6-b8eb-498a15c008c2"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{"MyCircumsphere", "[", RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}], "]"}], "//", "RootReduce"}], "//", "Timing"}]], "Input", CellLabel->"In[15]:=",ExpressionUUID->"e43859dd-b1b7-4d3d-8a17-466a5f3e4f9b"], Cell[BoxData[ RowBox[{"{", RowBox[{"0.244859`", ",", RowBox[{"Sphere", "[", RowBox[{ RowBox[{"{", RowBox[{"0", ",", "0", ",", "0"}], "}"}], ",", RowBox[{ FractionBox["1", "2"], " ", RowBox[{"(", RowBox[{"1", "+", SqrtBox["5"]}], ")"}]}]}], "]"}]}], "}"}]], "Output", CellLabel->"Out[15]=",ExpressionUUID->"803d2f43-75bb-4e22-9340-c01429900f65"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["ConvexHullOf", "Subsection",ExpressionUUID->"c27e4e49-0df5-4e6b-ac5e-60f34763a0ad"], Cell[BoxData[ RowBox[{"hullof", "=", RowBox[{"DeleteCases", "[", RowBox[{ RowBox[{"Select", "[", RowBox[{ RowBox[{"PolyhedronData", "[", "All", "]"}], ",", RowBox[{ RowBox[{ RowBox[{"PolyhedronData", "[", RowBox[{"#", ",", "\"\\""}], "]"}], "===", "pname"}], "&"}]}], "]"}], ",", "pname"}], "]"}]}]], "Input", CellLabel-> "In[130]:=",ExpressionUUID->"68431ad6-4e93-45ce-a5db-670ce5e615da"], Cell[BoxData[ RowBox[{"GraphicsGrid", "[", RowBox[{ RowBox[{"Partition", "[", RowBox[{ RowBox[{ RowBox[{ RowBox[{"Graphics3D", "[", RowBox[{ RowBox[{"{", "\[IndentingNewLine]", RowBox[{ RowBox[{"{", RowBox[{"Green", ",", RowBox[{"Opacity", "[", ".7", "]"}], ",", RowBox[{"PolyhedronData", "[", RowBox[{"#", ",", "\"\\""}], "]"}]}], "}"}], ",", "\[IndentingNewLine]", RowBox[{"{", RowBox[{"Blue", ",", RowBox[{"Opacity", "[", ".4", "]"}], ",", RowBox[{"PolyhedronData", "[", RowBox[{ "#", ",", "\"\\"", ",", "\"\\""}], "]"}]}], "}"}]}], "}"}], ",", RowBox[{"Boxed", "\[Rule]", "False"}], ",", RowBox[{"PlotLabel", "\[Rule]", RowBox[{"Style", "[", RowBox[{ RowBox[{"PolyhedronData", "[", RowBox[{"#", ",", "\"\\""}], "]"}], ",", RowBox[{"Directive", "[", RowBox[{"14", ",", "Black", ",", "Italic", ",", RowBox[{"FontFamily", "\[Rule]", "\"\\""}]}], "]"}]}], "]"}]}]}], "]"}], "&"}], "/@", "hullof"}], ",", RowBox[{"UpTo", "[", "4", "]"}]}], "]"}], ",", RowBox[{"Dividers", "\[Rule]", "All"}], ",", RowBox[{"ImageSize", "\[Rule]", "800"}]}], "]"}]], "Input", CellLabel-> "In[132]:=",ExpressionUUID->"bbf0d88d-f9dd-41c6-91dd-c83239893641"] }, Open ]], Cell[CellGroupData[{ Cell["DihedralAngles", "Subsection",ExpressionUUID->"435ac904-0735-4fdb-a808-51b9a90052ba"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}], "//", "Tally"}]], "Input", CellLabel-> "(Local-Devel (5)) \ In[4]:=",ExpressionUUID->"802db25e-2299-437c-bcc9-a9a13484a157"], Cell[BoxData[ RowBox[{"{", RowBox[{"{", RowBox[{ RowBox[{"ArcCos", "[", TemplateBox[<|"icon" -> "Root", "small" -> InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.795\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.794654472291766111879951495211571455`15.954589770191003, Editable -> False], "approx" -> -0.7946544722917661, "interp" -> InterpretationBox["", Root[1 - 30 #^2 + 45 #^4& , 1, 0]], "head" -> "Root", "big" -> RowBox[{ RowBox[{"1", "-", RowBox[{"30", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"45", " ", SuperscriptBox["#1", "4"]}]}], "&"}], "degree" -> "4", "shortDegree" -> "4", "number" -> 1|>, "NumericalApproximationInterp", InterpretationFunction->(Slot["interp"]& )], "]"}], ",", "60"}], "}"}], "}"}]], "Output", CellLabel-> "(Local-Devel (5)) \ Out[4]=",ExpressionUUID->"bc4dd92a-2932-4506-8b79-f44e7900cf02"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"N", "[", "%", "]"}]], "Input", CellLabel->"In[17]:=",ExpressionUUID->"d5be36b1-9947-4c81-b9a4-5a81ba3af366"], Cell[BoxData[ RowBox[{"{", "2.489234513805425`", "}"}]], "Output", CellLabel->"Out[17]=",ExpressionUUID->"e7bb0607-973f-421a-839a-9bc4670fa84a"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"%", "/", "Degree"}]], "Input", CellLabel->"In[18]:=",ExpressionUUID->"50346003-a7da-48f9-a2d2-2de33edadfac"], Cell[BoxData[ RowBox[{"{", "142.62263185935032`", "}"}]], "Output", CellLabel->"Out[18]=",ExpressionUUID->"12b4740f-d43c-4ea9-9e8e-87037e50a4fb"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{"SimplifyNumericallyDistinct", "[", RowBox[{"DihedralAngles", "[", RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}], "]"}], "]"}], "//", "Tally"}], "//", "Timing"}]], "Input", CellLabel-> "(Local-Devel (5)) \ In[5]:=",ExpressionUUID->"26be66e6-f706-4338-913a-13a7223b9189"], Cell[BoxData[ TemplateBox[{ "N", "meprec", "\"Internal precision limit $MaxExtraPrecision = \\!\\(\\*RowBox[{\\\"50.`\ \\\"}]\\) reached while evaluating \\!\\(\\*RowBox[{FractionBox[\\\"1\\\", \\\ \"6\\\"], \\\"-\\\", RowBox[{FractionBox[\\\"1\\\", \\\"6\\\"], \\\" \\\", \ SqrtBox[RowBox[{FractionBox[\\\"1\\\", \\\"2\\\"], \\\" \\\", RowBox[{\\\"(\\\ \", RowBox[{\\\"3\\\", \\\"+\\\", SqrtBox[\\\"5\\\"]}], \\\")\\\"}]}]]}], \ \\\"-\\\", RowBox[{FractionBox[\\\"1\\\", \\\"6\\\"], \\\" \\\", \ SqrtBox[RowBox[{FractionBox[\\\"5\\\", \\\"2\\\"], \\\" \\\", RowBox[{\\\"(\\\ \", RowBox[{\\\"3\\\", \\\"+\\\", SqrtBox[\\\"5\\\"]}], \\\")\\\"}]}]]}], \ \\\"+\\\", RowBox[{FractionBox[\\\"1\\\", \\\"12\\\"], \\\" \\\", \ SqrtBox[RowBox[{\\\"5\\\", \\\" \\\", RowBox[{\\\"(\\\", RowBox[{\\\"3\\\", \ \\\"+\\\", SqrtBox[\\\"5\\\"]}], \\\")\\\"}], \\\" \\\", RowBox[{\\\"(\\\", \ RowBox[{\\\"7\\\", \\\"+\\\", RowBox[{\\\"3\\\", \\\" \\\", \ SqrtBox[\\\"5\\\"]}]}], \\\")\\\"}]}]]}], \\\"-\\\", \ RowBox[{SqrtBox[RowBox[{FractionBox[\\\"1\\\", \\\"6\\\"], \\\" \\\", \ RowBox[{\\\"(\\\", RowBox[{\\\"3\\\", \\\"+\\\", SqrtBox[\\\"5\\\"]}], \ \\\")\\\"}]}]], \\\" \\\", RowBox[{\\\"Root\\\", \\\"[\\\", \ RowBox[{RowBox[{RowBox[{\\\"1\\\", \\\"-\\\", RowBox[{\\\"21\\\", \\\" \\\", \ SuperscriptBox[RowBox[{\\\"Slot\\\", \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\ \", \\\"1\\\", \\\"\[RightSkeleton]\\\"}], \\\"]\\\"}], \\\"2\\\"]}], \\\"+\\\ \", RowBox[{\\\"9\\\", \\\" \\\", SuperscriptBox[RowBox[{\\\"Slot\\\", \ \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"1\\\", \\\"\[RightSkeleton]\\\ \"}], \\\"]\\\"}], \\\"4\\\"]}]}], \\\"&\\\"}], \\\",\\\", \\\"1\\\", \\\",\\\ \", \\\"0\\\"}], \\\"]\\\"}]}], \\\"+\\\", \ RowBox[{SqrtBox[RowBox[{FractionBox[\\\"1\\\", \\\"6\\\"], \\\" \\\", \ RowBox[{\\\"(\\\", RowBox[{\\\"7\\\", \\\"+\\\", RowBox[{\\\"3\\\", \\\" \ \\\", SqrtBox[\\\"5\\\"]}]}], \\\")\\\"}]}]], \\\" \\\", \ RowBox[{\\\"Root\\\", \\\"[\\\", RowBox[{RowBox[{RowBox[{\\\"1\\\", \ \\\"-\\\", RowBox[{\\\"21\\\", \\\" \\\", \ SuperscriptBox[RowBox[{\\\"Slot\\\", \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\ \", \\\"1\\\", \\\"\[RightSkeleton]\\\"}], \\\"]\\\"}], \\\"2\\\"]}], \\\"+\\\ \", RowBox[{\\\"9\\\", \\\" \\\", SuperscriptBox[RowBox[{\\\"Slot\\\", \ \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"1\\\", \\\"\[RightSkeleton]\\\ \"}], \\\"]\\\"}], \\\"4\\\"]}]}], \\\"&\\\"}], \\\",\\\", \\\"1\\\", \\\",\\\ \", \\\"0\\\"}], \\\"]\\\"}]}]}]\\).\"", 2, 5, 1, 21915474987591707712, "Local-Devel (5)"}, "MessageTemplate", BaseStyle->"MSG"]], "Message", CellLabel-> "During evaluation of (Local-Devel (5)) \ In[5]:=",ExpressionUUID->"98a4bc1d-a72b-4e1c-94b0-9475d491b30a"], Cell[BoxData[ RowBox[{"{", RowBox[{"6.805287`", ",", RowBox[{"{", RowBox[{"{", RowBox[{ RowBox[{"ArcCos", "[", TemplateBox[<|"icon" -> "Root", "small" -> InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.795\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.794654472291766111879951495211571455`15.\ 954589770191003, Editable -> False], "approx" -> -0.7946544722917661, "interp" -> InterpretationBox["", Root[1 - 30 #^2 + 45 #^4& , 1, 0]], "head" -> "Root", "big" -> RowBox[{ RowBox[{"1", "-", RowBox[{"30", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"45", " ", SuperscriptBox["#1", "4"]}]}], "&"}], "degree" -> "4", "shortDegree" -> "4", "number" -> 1|>, "NumericalApproximationInterp", InterpretationFunction->(Slot["interp"]& )], "]"}], ",", "60"}], "}"}], "}"}]}], "}"}]], "Output", CellLabel-> "(Local-Devel (5)) \ Out[5]=",ExpressionUUID->"4df02c97-8715-4dd2-99b8-0ac50d084eb9"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Dual", "Subsection",ExpressionUUID->"fb89ac85-f192-4418-a5e6-c0053c84f6a3"], Cell[CellGroupData[{ Cell[BoxData["pname"], "Input", CellLabel->"In[24]:=",ExpressionUUID->"8f6fc65a-bdef-4615-89d8-0bfb0e226967"], Cell[BoxData[ RowBox[{"{", RowBox[{"\<\"Icosidodecahedron\"\>", ",", "\<\"C3\"\>"}], "}"}]], "Output", CellLabel->"Out[24]=",ExpressionUUID->"f6b8ed5b-42e4-4349-b11c-e1f712a91b95"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"dname", "=", RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\"", ",", "\"\\""}], "]"}]}]], "Input", CellLabel->"In[25]:=",ExpressionUUID->"b59021c0-0fa3-4fae-9304-d57b5f97e1c4"], Cell[BoxData["\<\"RhombicTriacontahedron\"\>"], "Output", CellLabel->"Out[25]=",ExpressionUUID->"4b2659ae-78a0-4095-894e-e49a1a5c0307"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\"", ",", "\"\\""}], "]"}]], "Input", CellLabel->"In[26]:=",ExpressionUUID->"a02d3162-1059-4be4-8fc3-4d09023e61bc"], Cell[BoxData[ RowBox[{ FractionBox["1", "4"], " ", SqrtBox[ RowBox[{ FractionBox["5", "2"], " ", RowBox[{"(", RowBox[{"5", "+", SqrtBox["5"]}], ")"}]}]]}]], "Output", CellLabel->"Out[26]=",ExpressionUUID->"7fd6a817-4ed4-4bd4-b54c-9c62ae1c71fd"] }, Open ]], Cell[BoxData[ RowBox[{"midrs", "=", RowBox[{"{", RowBox[{ RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}], ",", RowBox[{"PolyhedronData", "[", RowBox[{"dname", ",", "\"\\""}], "]"}]}], "}"}]}]], "Input", CellLabel-> "In[773]:=",ExpressionUUID->"ebd08b27-0a2b-406a-b4a5-c7e0b9a901bd"], Cell[BoxData[ RowBox[{ RowBox[{"Divide", "@@", "midrs"}], "//", "FullSimplify"}]], "Input", CellLabel-> "In[774]:=",ExpressionUUID->"4c162b19-5e6e-4543-9e46-eb58bc4ce766"], Cell[BoxData[ RowBox[{"GraphicsRow", "[", RowBox[{ RowBox[{"With", "[", RowBox[{ RowBox[{"{", "\[IndentingNewLine]", RowBox[{ RowBox[{"s", "=", RowBox[{"{", RowBox[{"Yellow", ",", RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}]}], "}"}]}], ",", "\[IndentingNewLine]", RowBox[{"style", "=", RowBox[{"Directive", "[", RowBox[{"Black", ",", "Italic", ",", RowBox[{"FontFamily", "\[Rule]", "\"\\""}], ",", "14"}], "]"}]}]}], "\[IndentingNewLine]", "}"}], ",", "\[IndentingNewLine]", RowBox[{"{", "\[IndentingNewLine]", RowBox[{ RowBox[{"Graphics3D", "[", RowBox[{ RowBox[{"{", RowBox[{"s", ",", "Green", ",", RowBox[{"Opacity", "[", ".5", "]"}], ",", RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}]}], "}"}], ",", RowBox[{"Boxed", "\[Rule]", "False"}], ",", RowBox[{"PlotLabel", "\[Rule]", RowBox[{"TextCell", "[", RowBox[{ RowBox[{"Style", "[", RowBox[{ RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}], ",", "style"}], "]"}], ",", RowBox[{"PageWidth", "\[Rule]", "200"}], ",", RowBox[{"TextAlignment", "\[Rule]", "Center"}]}], "]"}]}]}], "]"}], ",", "\[IndentingNewLine]", RowBox[{"Graphics3D", "[", RowBox[{ RowBox[{"{", RowBox[{"s", ",", "Red", ",", RowBox[{"Opacity", "[", ".5", "]"}], ",", RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\"", ",", "\"\\""}], "]"}]}], "}"}], ",", RowBox[{"Boxed", "\[Rule]", "False"}], ",", RowBox[{"PlotLabel", "\[Rule]", RowBox[{"Style", "[", RowBox[{ RowBox[{"PolyhedronData", "[", RowBox[{"dname", ",", "\"\\""}], "]"}], ",", "style"}], "]"}]}]}], "]"}], ",", "\[IndentingNewLine]", RowBox[{"Graphics3D", "[", RowBox[{ RowBox[{"{", "\[IndentingNewLine]", RowBox[{ RowBox[{"{", RowBox[{"Green", ",", RowBox[{"Opacity", "[", ".5", "]"}], ",", RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}]}], "}"}], ",", "\[IndentingNewLine]", RowBox[{"{", RowBox[{"Red", ",", RowBox[{"Opacity", "[", ".5", "]"}], ",", RowBox[{"PolyhedronData", "[", RowBox[{ "pname", ",", "\"\\"", ",", "\"\\""}], "]"}]}], "}"}], ",", "\[IndentingNewLine]", "s"}], "\[IndentingNewLine]", "}"}], ",", RowBox[{"Boxed", "\[Rule]", "False"}], ",", RowBox[{"PlotLabel", "\[Rule]", RowBox[{"Style", "[", RowBox[{"\"\\"", ",", "style"}], "]"}]}]}], "]"}], ",", "\[IndentingNewLine]", RowBox[{"Graphics3D", "[", RowBox[{ RowBox[{"{", "\[IndentingNewLine]", RowBox[{ RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}], ",", "\[IndentingNewLine]", RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\"", ",", "\"\\""}], "]"}]}], "\[IndentingNewLine]", "}"}], ",", RowBox[{"Boxed", "\[Rule]", "False"}], ",", RowBox[{"PlotLabel", "\[Rule]", RowBox[{"Style", "[", RowBox[{"\"\\"", ",", "style"}], "]"}]}]}], "]"}]}], "\[IndentingNewLine]", "}"}]}], "]"}], ",", RowBox[{"Alignment", "\[Rule]", "Top"}], ",", RowBox[{"ImageSize", "\[Rule]", "800"}]}], "]"}]], "Input", CellLabel-> "In[775]:=",ExpressionUUID->"9a7aac7e-f004-4b30-97cb-dc54711f579d"] }, Open ]], Cell[CellGroupData[{ Cell["EdgeLengths", "Subsection",ExpressionUUID->"d68fbe72-ed2e-4b13-a952-8a95559d157d"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}]], "Input", CellLabel->"In[9]:=",ExpressionUUID->"64c1558c-fe31-492a-b2e8-2841a4f8ac4d"], Cell[BoxData[ RowBox[{"{", "1", "}"}]], "Output", CellLabel->"Out[9]=",ExpressionUUID->"02c369dd-e5d1-41bb-ba9f-e2a65802dbfd"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{ RowBox[{ RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}], "/.", RowBox[{ RowBox[{"Line", "[", "l_", "]"}], "\[RuleDelayed]", RowBox[{"EuclideanDistance", "@@", "l"}]}]}], "//", "FullSimplify"}], "//", "Quiet"}], "//", "Tally"}]], "Input", CellLabel->"In[11]:=",ExpressionUUID->"56f743a7-e88d-4791-8f27-3e3afff2747a"], Cell[BoxData[ RowBox[{"{", RowBox[{"{", RowBox[{"1", ",", "60"}], "}"}], "}"}]], "Output", CellLabel->"Out[11]=",ExpressionUUID->"f3e6e4a3-4a11-4873-96ff-d6f66eb94f85"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Inradius", "Subsection",ExpressionUUID->"38b447fc-24ec-4ebe-9f94-7500b4be226e"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}]], "Input", CellLabel->"In[12]:=",ExpressionUUID->"f32eb819-ceec-48be-912b-411c1616df28"], Cell[BoxData[ RowBox[{"Missing", "[", "\<\"NotApplicable\"\>", "]"}]], "Output", CellLabel->"Out[12]=",ExpressionUUID->"bee38c30-2175-4cf5-924d-9a698f235168"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Insphere", "[", RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}], "]"}]], "Input", CellLabel->"In[13]:=",ExpressionUUID->"8e106891-9ec2-40b3-bdc1-6c3a396ff0a7"], Cell[BoxData[ TemplateBox[{ "Root", "deg", "\"\\!\\(\\*RowBox[{\\\"1\\\", \\\"-\\\", RowBox[{\\\"12\\\", \\\" \\\", \ RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \\\"\[RightSkeleton]\\\"}]}]}]\\) \ has fewer than \\!\\(\\*RowBox[{\\\"1\\\"}]\\) root(s) as a polynomial in \\!\ \\(\\*RowBox[{\\\"#1\\\"}]\\).\"", 2, 13, 2, 21915202108134802666, "Local"}, "MessageTemplate", BaseStyle->"MSG"]], "Message", CellLabel-> "During evaluation of \ In[13]:=",ExpressionUUID->"c79c9ec6-bfc6-4bbc-a1ec-ab9d0765aba7"], Cell[BoxData[ TemplateBox[{ "Root", "deg", "\"\\!\\(\\*RowBox[{\\\"1\\\", \\\"-\\\", RowBox[{\\\"12\\\", \\\" \\\", \ RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \\\"\[RightSkeleton]\\\"}]}]}]\\) \ has fewer than \\!\\(\\*RowBox[{\\\"1\\\"}]\\) root(s) as a polynomial in \\!\ \\(\\*RowBox[{\\\"#1\\\"}]\\).\"", 2, 13, 3, 21915202108134802666, "Local"}, "MessageTemplate", BaseStyle->"MSG"]], "Message", CellLabel-> "During evaluation of \ In[13]:=",ExpressionUUID->"e8eb4c4c-bb17-4da5-8808-04e467d59829"], Cell[BoxData[ TemplateBox[{ "Root", "deg", "\"\\!\\(\\*RowBox[{\\\"1\\\", \\\"+\\\", RowBox[{\\\"108\\\", \\\" \\\", \ RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \\\"\[RightSkeleton]\\\"}]}]}]\\) \ has fewer than \\!\\(\\*RowBox[{\\\"2\\\"}]\\) root(s) as a polynomial in \\!\ \\(\\*RowBox[{\\\"#1\\\"}]\\).\"", 2, 13, 4, 21915202108134802666, "Local"}, "MessageTemplate", BaseStyle->"MSG"]], "Message", CellLabel-> "During evaluation of \ In[13]:=",ExpressionUUID->"3ac6638f-52b2-4360-9dc0-c74758b4817f"], Cell[BoxData[ TemplateBox[{ "General", "stop", "\"Further output of \\!\\(\\*StyleBox[RowBox[{\\\"Root\\\", \\\"::\\\", \ \\\"deg\\\"}], \\\"MessageName\\\"]\\) will be suppressed during this \ calculation.\"", 2, 13, 5, 21915202108134802666, "Local"}, "MessageTemplate", BaseStyle->"MSG"]], "Message", CellLabel-> "During evaluation of \ In[13]:=",ExpressionUUID->"0eecce01-4f82-4b3a-85fb-a6acf2e9d28b"], Cell[BoxData[ TemplateBox[{ "Insphere", "indep", "\"Insphere does not exist for \ \\!\\(\\*InterpretationBox[RowBox[{TagBox[\\\"Polyhedron\\\", \\\"SummaryHead\ \\\"], \\\"[\\\", DynamicModuleBox[{Typeset`open$$ = False, \ Set[Typeset`embedState$$, \\\"Ready\\\"], Set[Typeset`spolyhedron$$, \ Quiet[Polyhedron[List[List[Power[Times[Rational[1, 6], Plus[7, Times[3, \ Power[Skeleton[2]]]]], Rational[1, 2]], 0, Times[-1, Power[3, Rational[-1, \ 2]]]], List[Root[Function[Plus[1, Times[-21, Power[Skeleton[2]]], Times[9, \ Power[Skeleton[2]]]]], 1, 0], 0, Power[3, Rational[-1, 2]]], \ List[Times[Rational[1, 2], Power[3, Rational[-1, 2]]], Rational[-1, 2], \ Root[Function[Plus[1, Times[-21, Power[Skeleton[2]]], Times[9, \ Power[Skeleton[2]]]]], 1, 0]], List[Times[-1, Power[Plus[Rational[3, 4], \ Times[Rational[1, 3], Power[Skeleton[2]]]], Rational[1, 2]]], Rational[-1, \ 2], Times[-1, Power[Times[Rational[1, 6], Plus[3, Power[Skeleton[2]]]], \ Rational[1, 2]]]], List[Times[Rational[1, 2], Power[Times[Rational[3, 2], \ Plus[3, Power[Skeleton[2]]]], Rational[1, 2]]], Times[Rational[1, 4], Plus[1, \ Power[5, Rational[1, 2]]]], 0], List[Times[Rational[-1, 2], \ Power[Times[Rational[5, 6], Plus[3, Power[Skeleton[2]]]], Rational[1, 2]]], \ Times[Rational[1, 4], Plus[1, Power[5, Rational[1, 2]]]], \ Power[Times[Rational[1, 6], Plus[3, Power[5, Rational[1, 2]]]], Rational[1, \ 2]]], List[Power[Plus[Rational[7, 24], Times[Rational[1, 8], Power[5, \ Rational[1, 2]]]], Rational[1, 2]], Times[Rational[1, 4], Plus[3, Power[5, \ Rational[1, 2]]]], Power[3, Rational[-1, 2]]], List[Root[Function[Plus[1, \ Times[-36, Power[Skeleton[2]]], Times[144, Power[Skeleton[2]]]]], 2, 0], \ Times[Rational[1, 4], Plus[3, Power[5, Rational[1, 2]]]], \ Power[Times[Rational[1, 6], Plus[3, Power[5, Rational[1, 2]]]], Rational[1, \ 2]]], List[Times[Rational[1, 2], Power[3, Rational[-1, 2]]], Rational[1, 2], \ Root[Function[Plus[1, Times[-21, Power[Skeleton[2]]], Times[9, \ Power[Skeleton[2]]]]], 1, 0]], List[Times[-1, Power[Plus[Rational[3, 4], \ Times[Rational[1, 3], Power[Skeleton[2]]]], Rational[1, 2]]], Rational[1, 2], \ Times[-1, Power[Times[Rational[1, 6], Plus[3, Power[Skeleton[2]]]], \ Rational[1, 2]]]], List[0, Times[Rational[1, 2], Plus[-1, Times[-1, Power[5, \ Rational[1, 2]]]]], 0], List[Root[Function[Plus[1, Times[-36, \ Power[Skeleton[2]]], Times[144, Power[Skeleton[2]]]]], 3, 0], \ Times[Rational[1, 4], Plus[-3, Times[-1, Power[5, Rational[1, 2]]]]], \ Times[-1, Power[Times[Rational[1, 6], Plus[3, Power[Skeleton[2]]]], \ Rational[1, 2]]]], List[Times[-1, Power[Plus[Rational[7, 24], \ Times[Rational[1, 8], Power[Skeleton[2]]]], Rational[1, 2]]], \ Times[Rational[1, 4], Plus[-3, Times[-1, Power[5, Rational[1, 2]]]]], \ Times[-1, Power[3, Rational[-1, 2]]]], List[0, Times[Rational[1, 2], Plus[1, \ Power[5, Rational[1, 2]]]], 0], List[Times[Rational[1, 2], \ Power[Times[Rational[5, 6], Plus[3, Power[Skeleton[2]]]], Rational[1, 2]]], \ Times[Rational[1, 4], Plus[1, Power[5, Rational[1, 2]]]], Times[-1, \ Power[Times[Rational[1, 6], Plus[3, Power[Skeleton[2]]]], Rational[1, 2]]]], \ List[Times[Rational[-1, 2], Power[Times[Rational[3, 2], Plus[3, \ Power[Skeleton[2]]]], Rational[1, 2]]], Times[Rational[1, 4], Plus[1, \ Power[5, Rational[1, 2]]]], 0], List[Times[-1, Power[3, Rational[-1, 2]]], 0, \ Root[Function[Plus[1, Times[-21, Power[Skeleton[2]]], Times[9, \ Power[Skeleton[2]]]]], 1, 0]], List[Times[Rational[1, 2], \ Power[Times[Rational[3, 2], Plus[3, Power[Skeleton[2]]]], Rational[1, 2]]], \ Times[Rational[1, 4], Plus[-1, Times[-1, Power[5, Rational[1, 2]]]]], 0], \ List[Times[Rational[-1, 2], Power[Times[Rational[5, 6], Plus[3, \ Power[Skeleton[2]]]], Rational[1, 2]]], Times[Rational[1, 4], Plus[-1, \ Times[-1, Power[5, Rational[1, 2]]]]], Power[Times[Rational[1, 6], Plus[3, \ Power[5, Rational[1, 2]]]], Rational[1, 2]]], List[Power[Plus[Rational[7, \ 24], Times[Rational[1, 8], Power[5, Rational[1, 2]]]], Rational[1, 2]], \ Times[Rational[1, 4], Plus[-3, Times[-1, Power[5, Rational[1, 2]]]]], \ Power[3, Rational[-1, 2]]], List[Root[Function[Plus[1, Times[-36, \ Power[Skeleton[2]]], Times[144, Power[Skeleton[2]]]]], 2, 0], \ Times[Rational[1, 4], Plus[-3, Times[-1, Power[5, Rational[1, 2]]]]], \ Power[Times[Rational[1, 6], Plus[3, Power[5, Rational[1, 2]]]], Rational[1, \ 2]]], List[Root[Function[Plus[1, Times[-36, Power[Skeleton[2]]], Times[144, \ Power[Skeleton[2]]]]], 3, 0], Times[Rational[1, 4], Plus[3, Power[5, \ Rational[1, 2]]]], Times[-1, Power[Times[Rational[1, 6], Plus[3, \ Power[Skeleton[2]]]], Rational[1, 2]]]], List[Times[-1, \ Power[Plus[Rational[7, 24], Times[Rational[1, 8], Power[Skeleton[2]]]], \ Rational[1, 2]]], Times[Rational[1, 4], Plus[3, Power[5, Rational[1, 2]]]], \ Times[-1, Power[3, Rational[-1, 2]]]], List[Power[3, Rational[-1, 2]], 0, \ Power[Times[Rational[1, 6], Plus[7, Times[3, Power[Skeleton[2]]]]], \ Rational[1, 2]]], List[Power[Plus[Rational[3, 4], Times[Rational[1, 3], \ Power[5, Rational[1, 2]]]], Rational[1, 2]], Rational[-1, 2], \ Power[Times[Rational[1, 6], Plus[3, Power[5, Rational[1, 2]]]], Rational[1, \ 2]]], List[Times[Rational[-1, 2], Power[3, Rational[-1, 2]]], Rational[-1, \ 2], Power[Times[Rational[1, 6], Plus[7, Times[3, Power[Skeleton[2]]]]], \ Rational[1, 2]]], List[Times[Rational[1, 2], Power[Times[Rational[5, 6], \ Plus[3, Power[Skeleton[2]]]], Rational[1, 2]]], Times[Rational[1, 4], \ Plus[-1, Times[-1, Power[5, Rational[1, 2]]]]], Times[-1, \ Power[Times[Rational[1, 6], Plus[3, Power[Skeleton[2]]]], Rational[1, 2]]]], \ List[Times[Rational[-1, 2], Power[Times[Rational[3, 2], Plus[3, \ Power[Skeleton[2]]]], Rational[1, 2]]], Times[Rational[1, 4], Plus[-1, \ Times[-1, Power[5, Rational[1, 2]]]]], 0], List[Power[Plus[Rational[3, 4], \ Times[Rational[1, 3], Power[5, Rational[1, 2]]]], Rational[1, 2]], \ Rational[1, 2], Power[Times[Rational[1, 6], Plus[3, Power[5, Rational[1, \ 2]]]], Rational[1, 2]]], List[Times[Rational[-1, 2], Power[3, Rational[-1, \ 2]]], Rational[1, 2], Power[Times[Rational[1, 6], Plus[7, Times[3, \ Power[Skeleton[2]]]]], Rational[1, 2]]]], List[List[30, 24, 29, 7, 8], \ List[26, 24, 30], List[25, 29, 24], List[5, 7, 29], List[14, 8, 7], List[6, \ 30, 8], List[16, 2, 6], List[19, 21, 26], List[20, 18, 25], List[1, 15, 5], \ List[22, 23, 14], List[2, 19, 26, 30, 6], List[21, 20, 25, 24, 26], List[18, \ 1, 5, 29, 25], List[15, 22, 14, 7, 5], List[23, 16, 6, 8, 14], List[12, 13, \ 4, 17, 3], List[3, 17, 9], List[17, 4, 10], List[4, 13, 28], List[13, 12, \ 11], List[12, 3, 27], List[27, 1, 18], List[9, 22, 15], List[10, 16, 23], \ List[28, 19, 2], List[11, 20, 21], List[27, 3, 9, 15, 1], List[9, 17, 10, 23, \ 22], List[10, 4, 28, 2, 16], List[28, 13, 11, 21, 19], List[11, 12, 27, 18, \ 20]]]]]}, TemplateBox[List[PaneSelectorBox[List[Rule[False, \ GridBox[List[List[PaneBox[ButtonBox[DynamicBox[FEPrivate`FrontEndResource[\\\"\ FEBitmaps\\\", \\\"SummaryBoxOpener\\\"]], RuleDelayed[ButtonFunction, \ Set[Typeset`open$$, True]], Rule[Appearance, None], Rule[BaseStyle, List[]], \ Rule[Evaluator, Automatic], Rule[Method, \\\"Preemptive\\\"]], \ Rule[Alignment, List[Center, Center]], Rule[ImageSize, \ Dynamic[List[Automatic, Times[3.5`, \ Times[CurrentValue[\\\"FontCapHeight\\\"], \ Power[AbsoluteCurrentValue[Magnification], -1]]]]]]], \ Graphics3DBox[List[Directive[Hue[0.58`, 0.4`, 1], Opacity[0.5`], \ EdgeForm[GrayLevel[1]]], PolyhedronBox[NCache[List[List[Times[Power[6, \ Rational[-1, 2]], Power[Plus[7, Times[3, Skeleton[2]]], Rational[1, 2]]], 0, \ Times[-1, Power[3, Rational[-1, 2]]]], List[Root[Function[Plus[1, Times[-21, \ Power[Skeleton[2]]], Times[9, Power[Skeleton[2]]]]], 1, 0], 0, Power[3, \ Rational[-1, 2]]], List[Times[Rational[1, 2], Power[3, Rational[-1, 2]]], \ Rational[-1, 2], Root[Function[Plus[1, Times[-21, Power[Skeleton[2]]], \ Times[9, Power[Skeleton[2]]]]], 1, 0]], List[Times[-1, Power[Plus[Rational[3, \ 4], Times[Rational[1, 3], Skeleton[2]]], Rational[1, 2]]], Rational[-1, 2], \ Times[-1, Power[6, Rational[-1, 2]], Power[Plus[3, Skeleton[2]], Rational[1, \ 2]]]], List[Times[Rational[1, 2], Power[Rational[3, 2], Rational[1, 2]], \ Power[Plus[3, Skeleton[2]], Rational[1, 2]]], Times[Rational[1, 4], Plus[1, \ Power[5, Rational[1, 2]]]], 0], List[Times[Rational[-1, 2], Power[Rational[5, \ 6], Rational[1, 2]], Power[Plus[3, Skeleton[2]], Rational[1, 2]]], \ Times[Rational[1, 4], Plus[1, Power[5, Rational[1, 2]]]], \ Power[Times[Rational[1, 6], Plus[3, Power[5, Rational[1, 2]]]], Rational[1, \ 2]]], List[Power[Plus[Rational[7, 24], Times[Rational[1, 8], Power[5, \ Rational[1, 2]]]], Rational[1, 2]], Times[Rational[1, 4], Plus[3, Power[5, \ Rational[1, 2]]]], Power[3, Rational[-1, 2]]], List[Root[Function[Plus[1, \ Times[-36, Power[Skeleton[2]]], Times[144, Power[Skeleton[2]]]]], 2, 0], \ Times[Rational[1, 4], Plus[3, Power[5, Rational[1, 2]]]], \ Power[Times[Rational[1, 6], Plus[3, Power[5, Rational[1, 2]]]], Rational[1, \ 2]]], List[Times[Rational[1, 2], Power[3, Rational[-1, 2]]], Rational[1, 2], \ Root[Function[Plus[1, Times[-21, Power[Skeleton[2]]], Times[9, \ Power[Skeleton[2]]]]], 1, 0]], List[Times[-1, Power[Plus[Rational[3, 4], \ Times[Rational[1, 3], Skeleton[2]]], Rational[1, 2]]], Rational[1, 2], \ Times[-1, Power[6, Rational[-1, 2]], Power[Plus[3, Skeleton[2]], Rational[1, \ 2]]]], List[0, Times[Rational[1, 2], Plus[-1, Times[-1, Power[5, Rational[1, \ 2]]]]], 0], List[Root[Function[Plus[1, Times[-36, Power[Skeleton[2]]], \ Times[144, Power[Skeleton[2]]]]], 3, 0], Times[Rational[1, 4], Plus[-3, \ Times[-1, Power[5, Rational[1, 2]]]]], Times[-1, Power[6, Rational[-1, 2]], \ Power[Plus[3, Skeleton[2]], Rational[1, 2]]]], List[Times[-1, \ Power[Plus[Rational[7, 24], Times[Rational[1, 8], Skeleton[2]]], Rational[1, \ 2]]], Times[Rational[1, 4], Plus[-3, Times[-1, Power[5, Rational[1, 2]]]]], \ Times[-1, Power[3, Rational[-1, 2]]]], List[0, Times[Rational[1, 2], Plus[1, \ Power[5, Rational[1, 2]]]], 0], List[Times[Rational[1, 2], Power[Rational[5, \ 6], Rational[1, 2]], Power[Plus[3, Skeleton[2]], Rational[1, 2]]], \ Times[Rational[1, 4], Plus[1, Power[5, Rational[1, 2]]]], Times[-1, Power[6, \ Rational[-1, 2]], Power[Plus[3, Skeleton[2]], Rational[1, 2]]]], \ List[Times[Rational[-1, 2], Power[Rational[3, 2], Rational[1, 2]], \ Power[Plus[3, Skeleton[2]], Rational[1, 2]]], Times[Rational[1, 4], Plus[1, \ Power[5, Rational[1, 2]]]], 0], List[Times[-1, Power[3, Rational[-1, 2]]], 0, \ Root[Function[Plus[1, Times[-21, Power[Skeleton[2]]], Times[9, \ Power[Skeleton[2]]]]], 1, 0]], List[Times[Rational[1, 2], Power[Rational[3, \ 2], Rational[1, 2]], Power[Plus[3, Skeleton[2]], Rational[1, 2]]], \ Times[Rational[1, 4], Plus[-1, Times[-1, Power[5, Rational[1, 2]]]]], 0], \ List[Times[Rational[-1, 2], Power[Rational[5, 6], Rational[1, 2]], \ Power[Plus[3, Skeleton[2]], Rational[1, 2]]], Times[Rational[1, 4], Plus[-1, \ Times[-1, Power[5, Rational[1, 2]]]]], Power[Times[Rational[1, 6], Plus[3, \ Power[5, Rational[1, 2]]]], Rational[1, 2]]], List[Power[Plus[Rational[7, \ 24], Times[Rational[1, 8], Power[5, Rational[1, 2]]]], Rational[1, 2]], \ Times[Rational[1, 4], Plus[-3, Times[-1, Power[5, Rational[1, 2]]]]], \ Power[3, Rational[-1, 2]]], List[Root[Function[Plus[1, Times[-36, \ Power[Skeleton[2]]], Times[144, Power[Skeleton[2]]]]], 2, 0], \ Times[Rational[1, 4], Plus[-3, Times[-1, Power[5, Rational[1, 2]]]]], \ Power[Times[Rational[1, 6], Plus[3, Power[5, Rational[1, 2]]]], Rational[1, \ 2]]], List[Root[Function[Plus[1, Times[-36, Power[Skeleton[2]]], Times[144, \ Power[Skeleton[2]]]]], 3, 0], Times[Rational[1, 4], Plus[3, Power[5, \ Rational[1, 2]]]], Times[-1, Power[6, Rational[-1, 2]], Power[Plus[3, \ Skeleton[2]], Rational[1, 2]]]], List[Times[-1, Power[Plus[Rational[7, 24], \ Times[Rational[1, 8], Skeleton[2]]], Rational[1, 2]]], Times[Rational[1, 4], \ Plus[3, Power[5, Rational[1, 2]]]], Times[-1, Power[3, Rational[-1, 2]]]], \ List[Power[3, Rational[-1, 2]], 0, Times[Power[6, Rational[-1, 2]], \ Power[Plus[7, Times[3, Skeleton[2]]], Rational[1, 2]]]], \ List[Power[Plus[Rational[3, 4], Times[Rational[1, 3], Power[5, Rational[1, \ 2]]]], Rational[1, 2]], Rational[-1, 2], Power[Times[Rational[1, 6], Plus[3, \ Power[5, Rational[1, 2]]]], Rational[1, 2]]], List[Times[Rational[-1, 2], \ Power[3, Rational[-1, 2]]], Rational[-1, 2], Times[Power[6, Rational[-1, 2]], \ Power[Plus[7, Times[3, Skeleton[2]]], Rational[1, 2]]]], \ List[Times[Rational[1, 2], Power[Rational[5, 6], Rational[1, 2]], \ Power[Plus[3, Skeleton[2]], Rational[1, 2]]], Times[Rational[1, 4], Plus[-1, \ Times[-1, Power[5, Rational[1, 2]]]]], Times[-1, Power[6, Rational[-1, 2]], \ Power[Plus[3, Skeleton[2]], Rational[1, 2]]]], List[Times[Rational[-1, 2], \ Power[Rational[3, 2], Rational[1, 2]], Power[Plus[3, Skeleton[2]], \ Rational[1, 2]]], Times[Rational[1, 4], Plus[-1, Times[-1, Power[5, \ Rational[1, 2]]]]], 0], List[Power[Plus[Rational[3, 4], Times[Rational[1, 3], \ Power[5, Rational[1, 2]]]], Rational[1, 2]], Rational[1, 2], \ Power[Times[Rational[1, 6], Plus[3, Power[5, Rational[1, 2]]]], Rational[1, \ 2]]], List[Times[Rational[-1, 2], Power[3, Rational[-1, 2]]], Rational[1, 2], \ Times[Power[6, Rational[-1, 2]], Power[Plus[7, Times[3, Skeleton[2]]], \ Rational[1, 2]]]]], List[List[Times[Power[6, Rational[-1, 2]], Power[Plus[7, \ Times[3, Skeleton[2]]], Rational[1, 2]]], 0, -0.5773502691896258`], \ List[Root[Function[Plus[1, Times[-21, Power[Skeleton[2]]], Times[9, \ Power[Skeleton[2]]]]], 1, 0], 0, 0.5773502691896258`], \ List[0.2886751345948129`, -0.5`, Root[Function[Plus[1, Times[-21, \ Power[Skeleton[2]]], Times[9, Power[Skeleton[2]]]]], 1, 0]], List[Times[-1, \ Power[Plus[Rational[3, 4], Times[Rational[1, 3], Skeleton[2]]], Rational[1, \ 2]]], -0.5`, Times[-1, Power[6, Rational[-1, 2]], Power[Plus[3, Skeleton[2]], \ Rational[1, 2]]]], List[Times[Rational[1, 2], Power[Rational[3, 2], \ Rational[1, 2]], Power[Plus[3, Skeleton[2]], Rational[1, 2]]], \ 0.8090169943749475`, 0], List[Times[Rational[-1, 2], Power[Rational[5, 6], \ Rational[1, 2]], Power[Plus[3, Skeleton[2]], Rational[1, 2]]], \ 0.8090169943749475`, 0.9341723589627157`], List[0.7557613140761708`, \ 1.3090169943749475`, 0.5773502691896258`], List[Root[Function[Plus[1, \ Times[-36, Power[Skeleton[2]]], Times[144, Power[Skeleton[2]]]]], 2, 0], \ 1.3090169943749475`, 0.9341723589627157`], List[0.2886751345948129`, 0.5`, \ Root[Function[Plus[1, Times[-21, Power[Skeleton[2]]], Times[9, \ Power[Skeleton[2]]]]], 1, 0]], List[Times[-1, Power[Plus[Rational[3, 4], \ Times[Rational[1, 3], Skeleton[2]]], Rational[1, 2]]], 0.5`, Times[-1, \ Power[6, Rational[-1, 2]], Power[Plus[3, Skeleton[2]], Rational[1, 2]]]], \ List[0, -1.618033988749895`, 0], List[Root[Function[Plus[1, Times[-36, \ Power[Skeleton[2]]], Times[144, Power[Skeleton[2]]]]], 3, 0], \ -1.3090169943749475`, Times[-1, Power[6, Rational[-1, 2]], Power[Plus[3, \ Skeleton[2]], Rational[1, 2]]]], List[Times[-1, Power[Plus[Rational[7, 24], \ Times[Rational[1, 8], Skeleton[2]]], Rational[1, 2]]], -1.3090169943749475`, \ -0.5773502691896258`], List[0, 1.618033988749895`, 0], List[Times[Rational[1, \ 2], Power[Rational[5, 6], Rational[1, 2]], Power[Plus[3, Skeleton[2]], \ Rational[1, 2]]], 0.8090169943749475`, Times[-1, Power[6, Rational[-1, 2]], \ Power[Plus[3, Skeleton[2]], Rational[1, 2]]]], List[Times[Rational[-1, 2], \ Power[Rational[3, 2], Rational[1, 2]], Power[Plus[3, Skeleton[2]], \ Rational[1, 2]]], 0.8090169943749475`, 0], List[-0.5773502691896258`, 0, \ Root[Function[Plus[1, Times[-21, Power[Skeleton[2]]], Times[9, \ Power[Skeleton[2]]]]], 1, 0]], List[Times[Rational[1, 2], Power[Rational[3, \ 2], Rational[1, 2]], Power[Plus[3, Skeleton[2]], Rational[1, 2]]], \ -0.8090169943749475`, 0], List[Times[Rational[-1, 2], Power[Rational[5, 6], \ Rational[1, 2]], Power[Plus[3, Skeleton[2]], Rational[1, 2]]], \ -0.8090169943749475`, 0.9341723589627157`], List[0.7557613140761708`, \ -1.3090169943749475`, 0.5773502691896258`], List[Root[Function[Plus[1, \ Times[-36, Power[Skeleton[2]]], Times[144, Power[Skeleton[2]]]]], 2, 0], \ -1.3090169943749475`, 0.9341723589627157`], List[Root[Function[Plus[1, \ Times[-36, Power[Skeleton[2]]], Times[144, Power[Skeleton[2]]]]], 3, 0], \ 1.3090169943749475`, Times[-1, Power[6, Rational[-1, 2]], Power[Plus[3, \ Skeleton[2]], Rational[1, 2]]]], List[Times[-1, Power[Plus[Rational[7, 24], \ Times[Rational[1, 8], Skeleton[2]]], Rational[1, 2]]], 1.3090169943749475`, \ -0.5773502691896258`], List[0.5773502691896258`, 0, Times[Power[6, \ Rational[-1, 2]], Power[Plus[7, Times[3, Skeleton[2]]], Rational[1, 2]]]], \ List[1.2228474935575286`, -0.5`, 0.9341723589627157`], \ List[-0.2886751345948129`, -0.5`, Times[Power[6, Rational[-1, 2]], \ Power[Plus[7, Times[3, Skeleton[2]]], Rational[1, 2]]]], \ List[Times[Rational[1, 2], Power[Rational[5, 6], Rational[1, 2]], \ Power[Plus[3, Skeleton[2]], Rational[1, 2]]], -0.8090169943749475`, Times[-1, \ Power[6, Rational[-1, 2]], Power[Plus[3, Skeleton[2]], Rational[1, 2]]]], \ List[Times[Rational[-1, 2], Power[Rational[3, 2], Rational[1, 2]], \ Power[Plus[3, Skeleton[2]], Rational[1, 2]]], -0.8090169943749475`, 0], \ List[1.2228474935575286`, 0.5`, 0.9341723589627157`], \ List[-0.2886751345948129`, 0.5`, Times[Power[6, Rational[-1, 2]], \ Power[Plus[7, Times[3, Skeleton[2]]], Rational[1, 2]]]]]], List[List[30, 24, \ 29, 7, 8], List[26, 24, 30], List[25, 29, 24], List[5, 7, 29], List[14, 8, \ 7], List[6, 30, 8], List[16, 2, 6], List[19, 21, 26], List[20, 18, 25], \ List[1, 15, 5], List[22, 23, 14], List[2, 19, 26, 30, 6], List[21, 20, 25, \ 24, 26], List[18, 1, 5, 29, 25], List[15, 22, 14, 7, 5], List[23, 16, 6, 8, \ 14], List[12, 13, 4, 17, 3], List[3, 17, 9], List[17, 4, 10], List[4, 13, \ 28], List[13, 12, 11], List[12, 3, 27], List[27, 1, 18], List[9, 22, 15], \ List[10, 16, 23], List[28, 19, 2], List[11, 20, 21], List[27, 3, 9, 15, 1], \ List[9, 17, 10, 23, 22], List[10, 4, 28, 2, 16], List[28, 13, 11, 21, 19], \ List[11, 12, 27, 18, 20]]]], Rule[ImageSize, Dynamic[Times[List[5.25`, 3.5`], \ Times[CurrentValue[\\\"FontCapHeight\\\"], \ Power[AbsoluteCurrentValue[Magnification], -1]]]]], Rule[Boxed, False], \ Rule[Lighting, List[List[\\\"Ambient\\\", RGBColor[0.4`, 0.45`, 0.5`]], List[\ \\\"Directional\\\", RGBColor[0.24`, 0.27`, 0.3`], ImageScaled[List[2, 0, \ 2]]], List[\\\"Directional\\\", RGBColor[0.24`, 0.27`, 0.3`], \ ImageScaled[List[2, 2, 2]]], List[\\\"Directional\\\", RGBColor[0.24`, 0.27`, \ 0.3`], ImageScaled[List[0, 2, 2]]]]], Rule[Method, List[Rule[\\\"ShrinkWrap\\\ \", True]]]], GridBox[List[List[RowBox[List[TagBox[\\\"\\\\\\\"Number of \ points: \\\\\\\"\\\", \\\"SummaryItemAnnotation\\\"], \ \\\"\\\\[InvisibleSpace]\\\", TagBox[\\\"30\\\", \\\"SummaryItem\\\"]]]], \ List[RowBox[List[TagBox[\\\"\\\\\\\"Number of faces: \\\\\\\"\\\", \ \\\"SummaryItemAnnotation\\\"], \\\"\\\\[InvisibleSpace]\\\", TagBox[\\\"32\\\ \", \\\"SummaryItem\\\"]]]]], Rule[GridBoxAlignment, \ List[Rule[\\\"Columns\\\", List[List[Left]]], Rule[\\\"Rows\\\", \ List[List[Automatic]]]]], Rule[AutoDelete, False], Rule[GridBoxItemSize, \ List[Rule[\\\"Columns\\\", List[List[Automatic]]], Rule[\\\"Rows\\\", \ List[List[Automatic]]]]], Rule[GridBoxSpacings, List[Rule[\\\"Columns\\\", \ List[List[2]]], Rule[\\\"Rows\\\", List[List[Automatic]]]]], Rule[BaseStyle, \ List[Rule[ShowStringCharacters, False], Rule[NumberMarks, False], \ Rule[PrintPrecision, 3], Rule[ShowSyntaxStyles, False]]]]]], \ Rule[GridBoxAlignment, List[Rule[\\\"Columns\\\", List[List[Left]]], \ Rule[\\\"Rows\\\", List[List[Top]]]]], Rule[AutoDelete, False], \ Rule[GridBoxItemSize, List[Rule[\\\"Columns\\\", List[List[Automatic]]], \ Rule[\\\"Rows\\\", List[List[Automatic]]]]], Rule[BaselinePosition, List[1, \ 1]]]], Rule[True, \ GridBox[List[List[PaneBox[ButtonBox[DynamicBox[FEPrivate`FrontEndResource[\\\"\ FEBitmaps\\\", \\\"SummaryBoxCloser\\\"]], RuleDelayed[ButtonFunction, \ Set[Typeset`open$$, False]], Rule[Appearance, None], Rule[BaseStyle, List[]], \ Rule[Evaluator, Automatic], Rule[Method, \\\"Preemptive\\\"]], \ Rule[Alignment, List[Center, Center]], Rule[ImageSize, \ Dynamic[List[Automatic, Times[3.5`, \ Times[CurrentValue[\\\"FontCapHeight\\\"], \ Power[AbsoluteCurrentValue[Magnification], -1]]]]]]], \ Graphics3DBox[List[Directive[Hue[0.58`, 0.4`, 1], Opacity[0.5`], \ EdgeForm[GrayLevel[1]]], PolyhedronBox[NCache[List[List[Times[Power[6, \ Rational[-1, 2]], Power[Plus[7, Times[3, Skeleton[2]]], Rational[1, 2]]], 0, \ Times[-1, Power[3, Rational[-1, 2]]]], List[Root[Function[Plus[1, Times[-21, \ Power[Skeleton[2]]], Times[9, Power[Skeleton[2]]]]], 1, 0], 0, Power[3, \ Rational[-1, 2]]], List[Times[Rational[1, 2], Power[3, Rational[-1, 2]]], \ Rational[-1, 2], Root[Function[Plus[1, Times[-21, Power[Skeleton[2]]], \ Times[9, Power[Skeleton[2]]]]], 1, 0]], List[Times[-1, Power[Plus[Rational[3, \ 4], Times[Rational[1, 3], Skeleton[2]]], Rational[1, 2]]], Rational[-1, 2], \ Times[-1, Power[6, Rational[-1, 2]], Power[Plus[3, Skeleton[2]], Rational[1, \ 2]]]], List[Times[Rational[1, 2], Power[Rational[3, 2], Rational[1, 2]], \ Power[Plus[3, Skeleton[2]], Rational[1, 2]]], Times[Rational[1, 4], Plus[1, \ Power[5, Rational[1, 2]]]], 0], List[Times[Rational[-1, 2], Power[Rational[5, \ 6], Rational[1, 2]], Power[Plus[3, Skeleton[2]], Rational[1, 2]]], \ Times[Rational[1, 4], Plus[1, Power[5, Rational[1, 2]]]], \ Power[Times[Rational[1, 6], Plus[3, Power[5, Rational[1, 2]]]], Rational[1, \ 2]]], List[Power[Plus[Rational[7, 24], Times[Rational[1, 8], Power[5, \ Rational[1, 2]]]], Rational[1, 2]], Times[Rational[1, 4], Plus[3, Power[5, \ Rational[1, 2]]]], Power[3, Rational[-1, 2]]], List[Root[Function[Plus[1, \ Times[-36, Power[Skeleton[2]]], Times[144, Power[Skeleton[2]]]]], 2, 0], \ Times[Rational[1, 4], Plus[3, Power[5, Rational[1, 2]]]], \ Power[Times[Rational[1, 6], Plus[3, Power[5, Rational[1, 2]]]], Rational[1, \ 2]]], List[Times[Rational[1, 2], Power[3, Rational[-1, 2]]], Rational[1, 2], \ Root[Function[Plus[1, Times[-21, Power[Skeleton[2]]], Times[9, \ Power[Skeleton[2]]]]], 1, 0]], List[Times[-1, Power[Plus[Rational[3, 4], \ Times[Rational[1, 3], Skeleton[2]]], Rational[1, 2]]], Rational[1, 2], \ Times[-1, Power[6, Rational[-1, 2]], Power[Plus[3, Skeleton[2]], Rational[1, \ 2]]]], List[0, Times[Rational[1, 2], Plus[-1, Times[-1, Power[5, Rational[1, \ 2]]]]], 0], List[Root[Function[Plus[1, Times[-36, Power[Skeleton[2]]], \ Times[144, Power[Skeleton[2]]]]], 3, 0], Times[Rational[1, 4], Plus[-3, \ Times[-1, Power[5, Rational[1, 2]]]]], Times[-1, Power[6, Rational[-1, 2]], \ Power[Plus[3, Skeleton[2]], Rational[1, 2]]]], List[Times[-1, \ Power[Plus[Rational[7, 24], Times[Rational[1, 8], Skeleton[2]]], Rational[1, \ 2]]], Times[Rational[1, 4], Plus[-3, Times[-1, Power[5, Rational[1, 2]]]]], \ Times[-1, Power[3, Rational[-1, 2]]]], List[0, Times[Rational[1, 2], Plus[1, \ Power[5, Rational[1, 2]]]], 0], List[Times[Rational[1, 2], Power[Rational[5, \ 6], Rational[1, 2]], Power[Plus[3, Skeleton[2]], Rational[1, 2]]], \ Times[Rational[1, 4], Plus[1, Power[5, Rational[1, 2]]]], Times[-1, Power[6, \ Rational[-1, 2]], Power[Plus[3, Skeleton[2]], Rational[1, 2]]]], \ List[Times[Rational[-1, 2], Power[Rational[3, 2], Rational[1, 2]], \ Power[Plus[3, Skeleton[2]], Rational[1, 2]]], Times[Rational[1, 4], Plus[1, \ Power[5, Rational[1, 2]]]], 0], List[Times[-1, Power[3, Rational[-1, 2]]], 0, \ Root[Function[Plus[1, Times[-21, Power[Skeleton[2]]], Times[9, \ Power[Skeleton[2]]]]], 1, 0]], List[Times[Rational[1, 2], Power[Rational[3, \ 2], Rational[1, 2]], Power[Plus[3, Skeleton[2]], Rational[1, 2]]], \ Times[Rational[1, 4], Plus[-1, Times[-1, Power[5, Rational[1, 2]]]]], 0], \ List[Times[Rational[-1, 2], Power[Rational[5, 6], Rational[1, 2]], \ Power[Plus[3, Skeleton[2]], Rational[1, 2]]], Times[Rational[1, 4], Plus[-1, \ Times[-1, Power[5, Rational[1, 2]]]]], Power[Times[Rational[1, 6], Plus[3, \ Power[5, Rational[1, 2]]]], Rational[1, 2]]], List[Power[Plus[Rational[7, \ 24], Times[Rational[1, 8], Power[5, Rational[1, 2]]]], Rational[1, 2]], \ Times[Rational[1, 4], Plus[-3, Times[-1, Power[5, Rational[1, 2]]]]], \ Power[3, Rational[-1, 2]]], List[Root[Function[Plus[1, Times[-36, \ Power[Skeleton[2]]], Times[144, Power[Skeleton[2]]]]], 2, 0], \ Times[Rational[1, 4], Plus[-3, Times[-1, Power[5, Rational[1, 2]]]]], \ Power[Times[Rational[1, 6], Plus[3, Power[5, Rational[1, 2]]]], Rational[1, \ 2]]], List[Root[Function[Plus[1, Times[-36, Power[Skeleton[2]]], Times[144, \ Power[Skeleton[2]]]]], 3, 0], Times[Rational[1, 4], Plus[3, Power[5, \ Rational[1, 2]]]], Times[-1, Power[6, Rational[-1, 2]], Power[Plus[3, \ Skeleton[2]], Rational[1, 2]]]], List[Times[-1, Power[Plus[Rational[7, 24], \ Times[Rational[1, 8], Skeleton[2]]], Rational[1, 2]]], Times[Rational[1, 4], \ Plus[3, Power[5, Rational[1, 2]]]], Times[-1, Power[3, Rational[-1, 2]]]], \ List[Power[3, Rational[-1, 2]], 0, Times[Power[6, Rational[-1, 2]], \ Power[Plus[7, Times[3, Skeleton[2]]], Rational[1, 2]]]], \ List[Power[Plus[Rational[3, 4], Times[Rational[1, 3], Power[5, Rational[1, \ 2]]]], Rational[1, 2]], Rational[-1, 2], Power[Times[Rational[1, 6], Plus[3, \ Power[5, Rational[1, 2]]]], Rational[1, 2]]], List[Times[Rational[-1, 2], \ Power[3, Rational[-1, 2]]], Rational[-1, 2], Times[Power[6, Rational[-1, 2]], \ Power[Plus[7, Times[3, Skeleton[2]]], Rational[1, 2]]]], \ List[Times[Rational[1, 2], Power[Rational[5, 6], Rational[1, 2]], \ Power[Plus[3, Skeleton[2]], Rational[1, 2]]], Times[Rational[1, 4], Plus[-1, \ Times[-1, Power[5, Rational[1, 2]]]]], Times[-1, Power[6, Rational[-1, 2]], \ Power[Plus[3, Skeleton[2]], Rational[1, 2]]]], List[Times[Rational[-1, 2], \ Power[Rational[3, 2], Rational[1, 2]], Power[Plus[3, Skeleton[2]], \ Rational[1, 2]]], Times[Rational[1, 4], Plus[-1, Times[-1, Power[5, \ Rational[1, 2]]]]], 0], List[Power[Plus[Rational[3, 4], Times[Rational[1, 3], \ Power[5, Rational[1, 2]]]], Rational[1, 2]], Rational[1, 2], \ Power[Times[Rational[1, 6], Plus[3, Power[5, Rational[1, 2]]]], Rational[1, \ 2]]], List[Times[Rational[-1, 2], Power[3, Rational[-1, 2]]], Rational[1, 2], \ Times[Power[6, Rational[-1, 2]], Power[Plus[7, Times[3, Skeleton[2]]], \ Rational[1, 2]]]]], List[List[Times[Power[6, Rational[-1, 2]], Power[Plus[7, \ Times[3, Skeleton[2]]], Rational[1, 2]]], 0, -0.5773502691896258`], \ List[Root[Function[Plus[1, Times[-21, Power[Skeleton[2]]], Times[9, \ Power[Skeleton[2]]]]], 1, 0], 0, 0.5773502691896258`], \ List[0.2886751345948129`, -0.5`, Root[Function[Plus[1, Times[-21, \ Power[Skeleton[2]]], Times[9, Power[Skeleton[2]]]]], 1, 0]], List[Times[-1, \ Power[Plus[Rational[3, 4], Times[Rational[1, 3], Skeleton[2]]], Rational[1, \ 2]]], -0.5`, Times[-1, Power[6, Rational[-1, 2]], Power[Plus[3, Skeleton[2]], \ Rational[1, 2]]]], List[Times[Rational[1, 2], Power[Rational[3, 2], \ Rational[1, 2]], Power[Plus[3, Skeleton[2]], Rational[1, 2]]], \ 0.8090169943749475`, 0], List[Times[Rational[-1, 2], Power[Rational[5, 6], \ Rational[1, 2]], Power[Plus[3, Skeleton[2]], Rational[1, 2]]], \ 0.8090169943749475`, 0.9341723589627157`], List[0.7557613140761708`, \ 1.3090169943749475`, 0.5773502691896258`], List[Root[Function[Plus[1, \ Times[-36, Power[Skeleton[2]]], Times[144, Power[Skeleton[2]]]]], 2, 0], \ 1.3090169943749475`, 0.9341723589627157`], List[0.2886751345948129`, 0.5`, \ Root[Function[Plus[1, Times[-21, Power[Skeleton[2]]], Times[9, \ Power[Skeleton[2]]]]], 1, 0]], List[Times[-1, Power[Plus[Rational[3, 4], \ Times[Rational[1, 3], Skeleton[2]]], Rational[1, 2]]], 0.5`, Times[-1, \ Power[6, Rational[-1, 2]], Power[Plus[3, Skeleton[2]], Rational[1, 2]]]], \ List[0, -1.618033988749895`, 0], List[Root[Function[Plus[1, Times[-36, \ Power[Skeleton[2]]], Times[144, Power[Skeleton[2]]]]], 3, 0], \ -1.3090169943749475`, Times[-1, Power[6, Rational[-1, 2]], Power[Plus[3, \ Skeleton[2]], Rational[1, 2]]]], List[Times[-1, Power[Plus[Rational[7, 24], \ Times[Rational[1, 8], Skeleton[2]]], Rational[1, 2]]], -1.3090169943749475`, \ -0.5773502691896258`], List[0, 1.618033988749895`, 0], List[Times[Rational[1, \ 2], Power[Rational[5, 6], Rational[1, 2]], Power[Plus[3, Skeleton[2]], \ Rational[1, 2]]], 0.8090169943749475`, Times[-1, Power[6, Rational[-1, 2]], \ Power[Plus[3, Skeleton[2]], Rational[1, 2]]]], List[Times[Rational[-1, 2], \ Power[Rational[3, 2], Rational[1, 2]], Power[Plus[3, Skeleton[2]], \ Rational[1, 2]]], 0.8090169943749475`, 0], List[-0.5773502691896258`, 0, \ Root[Function[Plus[1, Times[-21, Power[Skeleton[2]]], Times[9, \ Power[Skeleton[2]]]]], 1, 0]], List[Times[Rational[1, 2], Power[Rational[3, \ 2], Rational[1, 2]], Power[Plus[3, Skeleton[2]], Rational[1, 2]]], \ -0.8090169943749475`, 0], List[Times[Rational[-1, 2], Power[Rational[5, 6], \ Rational[1, 2]], Power[Plus[3, Skeleton[2]], Rational[1, 2]]], \ -0.8090169943749475`, 0.9341723589627157`], List[0.7557613140761708`, \ -1.3090169943749475`, 0.5773502691896258`], List[Root[Function[Plus[1, \ Times[-36, Power[Skeleton[2]]], Times[144, Power[Skeleton[2]]]]], 2, 0], \ -1.3090169943749475`, 0.9341723589627157`], List[Root[Function[Plus[1, \ Times[-36, Power[Skeleton[2]]], Times[144, Power[Skeleton[2]]]]], 3, 0], \ 1.3090169943749475`, Times[-1, Power[6, Rational[-1, 2]], Power[Plus[3, \ Skeleton[2]], Rational[1, 2]]]], List[Times[-1, Power[Plus[Rational[7, 24], \ Times[Rational[1, 8], Skeleton[2]]], Rational[1, 2]]], 1.3090169943749475`, \ -0.5773502691896258`], List[0.5773502691896258`, 0, Times[Power[6, \ Rational[-1, 2]], Power[Plus[7, Times[3, Skeleton[2]]], Rational[1, 2]]]], \ List[1.2228474935575286`, -0.5`, 0.9341723589627157`], \ List[-0.2886751345948129`, -0.5`, Times[Power[6, Rational[-1, 2]], \ Power[Plus[7, Times[3, Skeleton[2]]], Rational[1, 2]]]], \ List[Times[Rational[1, 2], Power[Rational[5, 6], Rational[1, 2]], \ Power[Plus[3, Skeleton[2]], Rational[1, 2]]], -0.8090169943749475`, Times[-1, \ Power[6, Rational[-1, 2]], Power[Plus[3, Skeleton[2]], Rational[1, 2]]]], \ List[Times[Rational[-1, 2], Power[Rational[3, 2], Rational[1, 2]], \ Power[Plus[3, Skeleton[2]], Rational[1, 2]]], -0.8090169943749475`, 0], \ List[1.2228474935575286`, 0.5`, 0.9341723589627157`], \ List[-0.2886751345948129`, 0.5`, Times[Power[6, Rational[-1, 2]], \ Power[Plus[7, Times[3, Skeleton[2]]], Rational[1, 2]]]]]], List[List[30, 24, \ 29, 7, 8], List[26, 24, 30], List[25, 29, 24], List[5, 7, 29], List[14, 8, \ 7], List[6, 30, 8], List[16, 2, 6], List[19, 21, 26], List[20, 18, 25], \ List[1, 15, 5], List[22, 23, 14], List[2, 19, 26, 30, 6], List[21, 20, 25, \ 24, 26], List[18, 1, 5, 29, 25], List[15, 22, 14, 7, 5], List[23, 16, 6, 8, \ 14], List[12, 13, 4, 17, 3], List[3, 17, 9], List[17, 4, 10], List[4, 13, \ 28], List[13, 12, 11], List[12, 3, 27], List[27, 1, 18], List[9, 22, 15], \ List[10, 16, 23], List[28, 19, 2], List[11, 20, 21], List[27, 3, 9, 15, 1], \ List[9, 17, 10, 23, 22], List[10, 4, 28, 2, 16], List[28, 13, 11, 21, 19], \ List[11, 12, 27, 18, 20]]]], Rule[ImageSize, Dynamic[Times[List[5.25`, 3.5`], \ Times[CurrentValue[\\\"FontCapHeight\\\"], \ Power[AbsoluteCurrentValue[Magnification], -1]]]]], Rule[Boxed, False], \ Rule[Lighting, List[List[\\\"Ambient\\\", RGBColor[0.4`, 0.45`, 0.5`]], List[\ \\\"Directional\\\", RGBColor[0.24`, 0.27`, 0.3`], ImageScaled[List[2, 0, \ 2]]], List[\\\"Directional\\\", RGBColor[0.24`, 0.27`, 0.3`], \ ImageScaled[List[2, 2, 2]]], List[\\\"Directional\\\", RGBColor[0.24`, 0.27`, \ 0.3`], ImageScaled[List[0, 2, 2]]]]], Rule[Method, List[Rule[\\\"ShrinkWrap\\\ \", True]]]], GridBox[List[List[RowBox[List[TagBox[\\\"\\\\\\\"Number of \ points: \\\\\\\"\\\", \\\"SummaryItemAnnotation\\\"], \ \\\"\\\\[InvisibleSpace]\\\", TagBox[\\\"30\\\", \\\"SummaryItem\\\"]]]], \ List[RowBox[List[TagBox[\\\"\\\\\\\"Number of faces: \\\\\\\"\\\", \ \\\"SummaryItemAnnotation\\\"], \\\"\\\\[InvisibleSpace]\\\", TagBox[\\\"32\\\ \", \\\"SummaryItem\\\"]]]], List[RowBox[List[TagBox[\\\"\\\\\\\"Embedding \ dimension: \\\\\\\"\\\", \\\"SummaryItemAnnotation\\\"], \ \\\"\\\\[InvisibleSpace]\\\", TagBox[\\\"3\\\", \\\"SummaryItem\\\"]]]], \ List[RowBox[List[TagBox[\\\"\\\\\\\"Type: \\\\\\\"\\\", \ \\\"SummaryItemAnnotation\\\"], \\\"\\\\[InvisibleSpace]\\\", \ TagBox[DynamicBox[ToBoxes[Quiet[Apply[Region`PolyhedronDump`polyhedronType, \ Region`PolyhedronDump`computeType[Typeset`spolyhedron$$]]], StandardForm], \ Rule[SynchronousUpdating, False], RuleDelayed[TrackedSymbols, List[]], \ RuleDelayed[CachedValue, AnimatorBox[0, List[0, Infinity], \ Rule[AppearanceElements, \\\"ProgressSlider\\\"], Rule[ImageSize, 20]]]], \ \\\"SummaryItem\\\"]]]], List[RowBox[List[TagBox[\\\"\\\\\\\"Bounds: \\\\\\\"\ \\\", \\\"SummaryItemAnnotation\\\"], \\\"\\\\[InvisibleSpace]\\\", \ TagBox[DynamicBox[ToBoxes[Region`PolyhedronDump`iRegionBounds[Typeset`\ spolyhedron$$], StandardForm], Rule[SynchronousUpdating, False], \ RuleDelayed[TrackedSymbols, List[]], RuleDelayed[CachedValue, AnimatorBox[0, \ List[0, Infinity], Rule[AppearanceElements, \\\"ProgressSlider\\\"], \ Rule[ImageSize, 20]]]], \\\"SummaryItem\\\"]]]], List[RowBox[List[TagBox[\\\"\ \\\\\\\"Volume: \\\\\\\"\\\", \\\"SummaryItemAnnotation\\\"], \ \\\"\\\\[InvisibleSpace]\\\", \ TagBox[DynamicBox[ToBoxes[Region`PolyhedronDump`iVolume[Typeset`spolyhedron$$]\ , StandardForm], Rule[SynchronousUpdating, False], \ RuleDelayed[TrackedSymbols, List[]], RuleDelayed[CachedValue, AnimatorBox[0, \ List[0, Infinity], Rule[AppearanceElements, \\\"ProgressSlider\\\"], \ Rule[ImageSize, 20]]]], \\\"SummaryItem\\\"]]]]], Rule[GridBoxAlignment, \ List[Rule[\\\"Columns\\\", List[List[Left]]], Rule[\\\"Rows\\\", \ List[List[Automatic]]]]], Rule[AutoDelete, False], Rule[GridBoxItemSize, \ List[Rule[\\\"Columns\\\", List[List[Automatic]]], Rule[\\\"Rows\\\", \ List[List[Automatic]]]]], Rule[GridBoxSpacings, List[Rule[\\\"Columns\\\", \ List[List[2]]], Rule[\\\"Rows\\\", List[List[Automatic]]]]], Rule[BaseStyle, \ List[Rule[ShowStringCharacters, False], Rule[NumberMarks, False], \ Rule[PrintPrecision, 3], Rule[ShowSyntaxStyles, False]]]]]], \ Rule[GridBoxAlignment, List[Rule[\\\"Columns\\\", List[List[Left]]], \ Rule[\\\"Rows\\\", List[List[Top]]]]], Rule[AutoDelete, False], \ Rule[GridBoxItemSize, List[Rule[\\\"Columns\\\", List[List[Automatic]]], \ Rule[\\\"Rows\\\", List[List[Automatic]]]]], Rule[BaselinePosition, List[1, \ 1]]]]], Dynamic[Typeset`open$$], Rule[ImageSize, Automatic]]], \ \\\"SummaryPanel\\\"], RuleDelayed[DynamicModuleValues, List[]]], \ \\\"]\\\"}], Polyhedron[List[List[Times[Power[6, Rational[-1, 2]], \ Power[Plus[7, Times[3, Skeleton[2]]], Rational[1, 2]]], 0, Times[-1, Power[3, \ Rational[-1, 2]]]], List[Root[Function[Plus[1, Times[-21, \ Power[Skeleton[2]]], Times[9, Power[Skeleton[2]]]]], 1, 0], 0, Power[3, \ Rational[-1, 2]]], List[Times[Rational[1, 2], Power[3, Rational[-1, 2]]], \ Rational[-1, 2], Root[Function[Plus[1, Times[-21, Power[Skeleton[2]]], \ Times[9, Power[Skeleton[2]]]]], 1, 0]], List[Times[-1, Power[Plus[Rational[3, \ 4], Times[Rational[1, 3], Skeleton[2]]], Rational[1, 2]]], Rational[-1, 2], \ Times[-1, Power[6, Rational[-1, 2]], Power[Plus[3, Skeleton[2]], Rational[1, \ 2]]]], List[Times[Rational[1, 2], Power[Rational[3, 2], Rational[1, 2]], \ Power[Plus[3, Skeleton[2]], Rational[1, 2]]], Times[Rational[1, 4], Plus[1, \ Power[5, Rational[1, 2]]]], 0], List[Times[Rational[-1, 2], Power[Rational[5, \ 6], Rational[1, 2]], Power[Plus[3, Skeleton[2]], Rational[1, 2]]], \ Times[Rational[1, 4], Plus[1, Power[5, Rational[1, 2]]]], \ Power[Times[Rational[1, 6], Plus[3, Power[5, Rational[1, 2]]]], Rational[1, \ 2]]], List[Power[Plus[Rational[7, 24], Times[Rational[1, 8], Power[5, \ Rational[1, 2]]]], Rational[1, 2]], Times[Rational[1, 4], Plus[3, Power[5, \ Rational[1, 2]]]], Power[3, Rational[-1, 2]]], List[Root[Function[Plus[1, \ Times[-36, Power[Skeleton[2]]], Times[144, Power[Skeleton[2]]]]], 2, 0], \ Times[Rational[1, 4], Plus[3, Power[5, Rational[1, 2]]]], \ Power[Times[Rational[1, 6], Plus[3, Power[5, Rational[1, 2]]]], Rational[1, \ 2]]], List[Times[Rational[1, 2], Power[3, Rational[-1, 2]]], Rational[1, 2], \ Root[Function[Plus[1, Times[-21, Power[Skeleton[2]]], Times[9, \ Power[Skeleton[2]]]]], 1, 0]], List[Times[-1, Power[Plus[Rational[3, 4], \ Times[Rational[1, 3], Skeleton[2]]], Rational[1, 2]]], Rational[1, 2], \ Times[-1, Power[6, Rational[-1, 2]], Power[Plus[3, Skeleton[2]], Rational[1, \ 2]]]], List[0, Times[Rational[1, 2], Plus[-1, Times[-1, Power[5, Rational[1, \ 2]]]]], 0], List[Root[Function[Plus[1, Times[-36, Power[Skeleton[2]]], \ Times[144, Power[Skeleton[2]]]]], 3, 0], Times[Rational[1, 4], Plus[-3, \ Times[-1, Power[5, Rational[1, 2]]]]], Times[-1, Power[6, Rational[-1, 2]], \ Power[Plus[3, Skeleton[2]], Rational[1, 2]]]], List[Times[-1, \ Power[Plus[Rational[7, 24], Times[Rational[1, 8], Skeleton[2]]], Rational[1, \ 2]]], Times[Rational[1, 4], Plus[-3, Times[-1, Power[5, Rational[1, 2]]]]], \ Times[-1, Power[3, Rational[-1, 2]]]], List[0, Times[Rational[1, 2], Plus[1, \ Power[5, Rational[1, 2]]]], 0], List[Times[Rational[1, 2], Power[Rational[5, \ 6], Rational[1, 2]], Power[Plus[3, Skeleton[2]], Rational[1, 2]]], \ Times[Rational[1, 4], Plus[1, Power[5, Rational[1, 2]]]], Times[-1, Power[6, \ Rational[-1, 2]], Power[Plus[3, Skeleton[2]], Rational[1, 2]]]], \ List[Times[Rational[-1, 2], Power[Rational[3, 2], Rational[1, 2]], \ Power[Plus[3, Skeleton[2]], Rational[1, 2]]], Times[Rational[1, 4], Plus[1, \ Power[5, Rational[1, 2]]]], 0], List[Times[-1, Power[3, Rational[-1, 2]]], 0, \ Root[Function[Plus[1, Times[-21, Power[Skeleton[2]]], Times[9, \ Power[Skeleton[2]]]]], 1, 0]], List[Times[Rational[1, 2], Power[Rational[3, \ 2], Rational[1, 2]], Power[Plus[3, Skeleton[2]], Rational[1, 2]]], \ Times[Rational[1, 4], Plus[-1, Times[-1, Power[5, Rational[1, 2]]]]], 0], \ List[Times[Rational[-1, 2], Power[Rational[5, 6], Rational[1, 2]], \ Power[Plus[3, Skeleton[2]], Rational[1, 2]]], Times[Rational[1, 4], Plus[-1, \ Times[-1, Power[5, Rational[1, 2]]]]], Power[Times[Rational[1, 6], Plus[3, \ Power[5, Rational[1, 2]]]], Rational[1, 2]]], List[Power[Plus[Rational[7, \ 24], Times[Rational[1, 8], Power[5, Rational[1, 2]]]], Rational[1, 2]], \ Times[Rational[1, 4], Plus[-3, Times[-1, Power[5, Rational[1, 2]]]]], \ Power[3, Rational[-1, 2]]], List[Root[Function[Plus[1, Times[-36, \ Power[Skeleton[2]]], Times[144, Power[Skeleton[2]]]]], 2, 0], \ Times[Rational[1, 4], Plus[-3, Times[-1, Power[5, Rational[1, 2]]]]], \ Power[Times[Rational[1, 6], Plus[3, Power[5, Rational[1, 2]]]], Rational[1, \ 2]]], List[Root[Function[Plus[1, Times[-36, Power[Skeleton[2]]], Times[144, \ Power[Skeleton[2]]]]], 3, 0], Times[Rational[1, 4], Plus[3, Power[5, \ Rational[1, 2]]]], Times[-1, Power[6, Rational[-1, 2]], Power[Plus[3, \ Skeleton[2]], Rational[1, 2]]]], List[Times[-1, Power[Plus[Rational[7, 24], \ Times[Rational[1, 8], Skeleton[2]]], Rational[1, 2]]], Times[Rational[1, 4], \ Plus[3, Power[5, Rational[1, 2]]]], Times[-1, Power[3, Rational[-1, 2]]]], \ List[Power[3, Rational[-1, 2]], 0, Times[Power[6, Rational[-1, 2]], \ Power[Plus[7, Times[3, Skeleton[2]]], Rational[1, 2]]]], \ List[Power[Plus[Rational[3, 4], Times[Rational[1, 3], Power[5, Rational[1, \ 2]]]], Rational[1, 2]], Rational[-1, 2], Power[Times[Rational[1, 6], Plus[3, \ Power[5, Rational[1, 2]]]], Rational[1, 2]]], List[Times[Rational[-1, 2], \ Power[3, Rational[-1, 2]]], Rational[-1, 2], Times[Power[6, Rational[-1, 2]], \ Power[Plus[7, Times[3, Skeleton[2]]], Rational[1, 2]]]], \ List[Times[Rational[1, 2], Power[Rational[5, 6], Rational[1, 2]], \ Power[Plus[3, Skeleton[2]], Rational[1, 2]]], Times[Rational[1, 4], Plus[-1, \ Times[-1, Power[5, Rational[1, 2]]]]], Times[-1, Power[6, Rational[-1, 2]], \ Power[Plus[3, Skeleton[2]], Rational[1, 2]]]], List[Times[Rational[-1, 2], \ Power[Rational[3, 2], Rational[1, 2]], Power[Plus[3, Skeleton[2]], \ Rational[1, 2]]], Times[Rational[1, 4], Plus[-1, Times[-1, Power[5, \ Rational[1, 2]]]]], 0], List[Power[Plus[Rational[3, 4], Times[Rational[1, 3], \ Power[5, Rational[1, 2]]]], Rational[1, 2]], Rational[1, 2], \ Power[Times[Rational[1, 6], Plus[3, Power[5, Rational[1, 2]]]], Rational[1, \ 2]]], List[Times[Rational[-1, 2], Power[3, Rational[-1, 2]]], Rational[1, 2], \ Times[Power[6, Rational[-1, 2]], Power[Plus[7, Times[3, Skeleton[2]]], \ Rational[1, 2]]]]], List[List[30, 24, 29, 7, 8], List[26, 24, 30], List[25, \ 29, 24], List[5, 7, 29], List[14, 8, 7], List[6, 30, 8], List[16, 2, 6], \ List[19, 21, 26], List[20, 18, 25], List[1, 15, 5], List[22, 23, 14], List[2, \ 19, 26, 30, 6], List[21, 20, 25, 24, 26], List[18, 1, 5, 29, 25], List[15, \ 22, 14, 7, 5], List[23, 16, 6, 8, 14], List[12, 13, 4, 17, 3], List[3, 17, \ 9], List[17, 4, 10], List[4, 13, 28], List[13, 12, 11], List[12, 3, 27], \ List[27, 1, 18], List[9, 22, 15], List[10, 16, 23], List[28, 19, 2], List[11, \ 20, 21], List[27, 3, 9, 15, 1], List[9, 17, 10, 23, 22], List[10, 4, 28, 2, \ 16], List[28, 13, 11, 21, 19], List[11, 12, 27, 18, 20]]], Rule[Selectable, \ False], Rule[Editable, False], Rule[SelectWithContents, True]]\\).\"", 2, 13, 1, 21915202108134802666, "Local"}, "MessageTemplate", BaseStyle->"MSG"]], "Message", CellLabel-> "During evaluation of \ In[13]:=",ExpressionUUID->"a9395a66-47aa-4e11-bb33-d4f1c21c4632"], Cell[BoxData[ RowBox[{"Insphere", "[", InterpretationBox[ RowBox[{ TagBox["Polyhedron", "SummaryHead"], "[", DynamicModuleBox[{Typeset`open$$ = False, Typeset`embedState$$ = "Ready", Typeset`spolyhedron$$ = Quiet[ Polyhedron[{{(Rational[1, 6] (7 + 3 5^Rational[1, 2]))^Rational[1, 2], 0, -3^Rational[-1, 2]}, { Root[1 - 21 #^2 + 9 #^4& , 1, 0], 0, 3^Rational[-1, 2]}, { Rational[1, 2] 3^Rational[-1, 2], Rational[-1, 2], Root[ 1 - 21 #^2 + 9 #^4& , 1, 0]}, {-(Rational[3, 4] + Rational[1, 3] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 2], -(Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 2] (Rational[3, 2] (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), 0}, { Rational[-1, 2] (Rational[5, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), ( Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[7, 24] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 3^Rational[-1, 2]}, { Root[1 - 36 #^2 + 144 #^4& , 2, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), ( Rational[1, 6] (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 2] 3^Rational[-1, 2], Rational[1, 2], Root[ 1 - 21 #^2 + 9 #^4& , 1, 0]}, {-(Rational[3, 4] + Rational[1, 3] 5^Rational[1, 2])^ Rational[1, 2], Rational[ 1, 2], -(Rational[1, 6] (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { 0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, { Root[1 - 36 #^2 + 144 #^4& , 3, 0], Rational[1, 4] (-3 - 5^ Rational[1, 2]), -(Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, {-(Rational[7, 24] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), -3^Rational[-1, 2]}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), 0}, { Rational[1, 2] (Rational[5, 6] (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), -(Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[-1, 2] (Rational[3, 2] (3 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), 0}, {-3^Rational[-1, 2], 0, Root[1 - 21 #^2 + 9 #^4& , 1, 0]}, { Rational[1, 2] (Rational[3, 2] (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), 0}, { Rational[-1, 2] (Rational[5, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), ( Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[7, 24] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), 3^Rational[-1, 2]}, { Root[1 - 36 #^2 + 144 #^4& , 2, 0], Rational[1, 4] (-3 - 5^Rational[1, 2]), ( Rational[1, 6] (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 36 #^2 + 144 #^4& , 3, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), -(Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, {-(Rational[7, 24] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), -3^Rational[-1, 2]}, { 3^Rational[-1, 2], 0, (Rational[1, 6] (7 + 3 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[3, 4] + Rational[1, 3] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 2], (Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, {Rational[-1, 2] 3^Rational[-1, 2], Rational[-1, 2], (Rational[1, 6] (7 + 3 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 2] (Rational[5, 6] (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (-1 - 5^ Rational[1, 2]), -(Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[-1, 2] (Rational[3, 2] (3 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), 0}, {(Rational[3, 4] + Rational[1, 3] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 2], (Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, {Rational[-1, 2] 3^Rational[-1, 2], Rational[1, 2], (Rational[1, 6] (7 + 3 5^Rational[1, 2]))^ Rational[1, 2]}}, {{30, 24, 29, 7, 8}, {26, 24, 30}, {25, 29, 24}, { 5, 7, 29}, {14, 8, 7}, {6, 30, 8}, {16, 2, 6}, {19, 21, 26}, {20, 18, 25}, {1, 15, 5}, {22, 23, 14}, {2, 19, 26, 30, 6}, {21, 20, 25, 24, 26}, {18, 1, 5, 29, 25}, {15, 22, 14, 7, 5}, {23, 16, 6, 8, 14}, {12, 13, 4, 17, 3}, {3, 17, 9}, {17, 4, 10}, {4, 13, 28}, {13, 12, 11}, { 12, 3, 27}, {27, 1, 18}, {9, 22, 15}, {10, 16, 23}, {28, 19, 2}, {11, 20, 21}, {27, 3, 9, 15, 1}, {9, 17, 10, 23, 22}, {10, 4, 28, 2, 16}, { 28, 13, 11, 21, 19}, {11, 12, 27, 18, 20}}]]}, TemplateBox[{ PaneSelectorBox[{False -> GridBox[{{ PaneBox[ ButtonBox[ DynamicBox[ FEPrivate`FrontEndResource["FEBitmaps", "SummaryBoxOpener"]], ButtonFunction :> (Typeset`open$$ = True), Appearance -> None, BaseStyle -> {}, Evaluator -> Automatic, Method -> "Preemptive"], Alignment -> {Center, Center}, ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], Graphics3DBox[{ Directive[ Hue[0.58, 0.4, 1], Opacity[0.5], EdgeForm[ GrayLevel[1]]], PolyhedronBox[ NCache[{{(Rational[1, 6] (7 + 3 5^Rational[1, 2]))^ Rational[1, 2], 0, -3^Rational[-1, 2]}, { Root[1 - 21 #^2 + 9 #^4& , 1, 0], 0, 3^Rational[-1, 2]}, { Rational[1, 2] 3^Rational[-1, 2], Rational[-1, 2], Root[ 1 - 21 #^2 + 9 #^4& , 1, 0]}, {-(Rational[3, 4] + Rational[1, 3] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 2], -(Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 2] (Rational[3, 2] (3 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), 0}, {Rational[-1, 2] ( Rational[5, 6] (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), ( Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[7, 24] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 3^Rational[-1, 2]}, { Root[1 - 36 #^2 + 144 #^4& , 2, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), ( Rational[1, 6] (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 2] 3^Rational[-1, 2], Rational[1, 2], Root[ 1 - 21 #^2 + 9 #^4& , 1, 0]}, {-(Rational[3, 4] + Rational[1, 3] 5^Rational[1, 2])^ Rational[1, 2], Rational[ 1, 2], -(Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { 0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, { Root[1 - 36 #^2 + 144 #^4& , 3, 0], Rational[1, 4] (-3 - 5^ Rational[1, 2]), -(Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, {-(Rational[7, 24] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), -3^ Rational[-1, 2]}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), 0}, { Rational[1, 2] (Rational[5, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), -( Rational[1, 6] (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 2] (Rational[3, 2] (3 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), 0}, {-3^Rational[-1, 2], 0, Root[1 - 21 #^2 + 9 #^4& , 1, 0]}, { Rational[1, 2] (Rational[3, 2] (3 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), 0}, {Rational[-1, 2] ( Rational[5, 6] (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), ( Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[7, 24] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), 3^ Rational[-1, 2]}, { Root[1 - 36 #^2 + 144 #^4& , 2, 0], Rational[1, 4] (-3 - 5^Rational[1, 2]), ( Rational[1, 6] (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 36 #^2 + 144 #^4& , 3, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), -( Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, {-(Rational[7, 24] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), -3^ Rational[-1, 2]}, { 3^Rational[-1, 2], 0, (Rational[1, 6] (7 + 3 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[3, 4] + Rational[1, 3] 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], (Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, {Rational[-1, 2] 3^Rational[-1, 2], Rational[-1, 2], (Rational[1, 6] (7 + 3 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 2] (Rational[5, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (-1 - 5^ Rational[1, 2]), -(Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[-1, 2] (Rational[3, 2] (3 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), 0}, {(Rational[3, 4] + Rational[1, 3] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 2], (Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, {Rational[-1, 2] 3^Rational[-1, 2], Rational[1, 2], (Rational[1, 6] (7 + 3 5^Rational[1, 2]))^ Rational[1, 2]}}, {{ 1.5115226281523415`, 0, -0.5773502691896258}, {-1.5115226281523415`, 0, 0.5773502691896258}, { 0.2886751345948129, -0.5, -1.5115226281523415`}, \ {-1.2228474935575286`, -0.5, -0.9341723589627157}, { 1.4012585384440737`, 0.8090169943749475, 0}, {-1.0444364486709836`, 0.8090169943749475, 0.9341723589627157}, {0.7557613140761708, 1.3090169943749475`, 0.5773502691896258}, {-0.17841104488654497`, 1.3090169943749475`, 0.9341723589627157}, { 0.2886751345948129, 0.5, -1.5115226281523415`}, {-1.2228474935575286`, 0.5, -0.9341723589627157}, {0, -1.618033988749895, 0}, { 0.17841104488654497`, -1.3090169943749475`, \ -0.9341723589627157}, {-0.7557613140761708, -1.3090169943749475`, \ -0.5773502691896258}, {0, 1.618033988749895, 0}, {1.0444364486709836`, 0.8090169943749475, -0.9341723589627157}, \ {-1.4012585384440737`, 0.8090169943749475, 0}, {-0.5773502691896258, 0, -1.5115226281523415`}, { 1.4012585384440737`, -0.8090169943749475, 0}, {-1.0444364486709836`, -0.8090169943749475, 0.9341723589627157}, { 0.7557613140761708, -1.3090169943749475`, 0.5773502691896258}, {-0.17841104488654497`, \ -1.3090169943749475`, 0.9341723589627157}, {0.17841104488654497`, 1.3090169943749475`, -0.9341723589627157}, \ {-0.7557613140761708, 1.3090169943749475`, -0.5773502691896258}, { 0.5773502691896258, 0, 1.5115226281523415`}, { 1.2228474935575286`, -0.5, 0.9341723589627157}, {-0.2886751345948129, -0.5, 1.5115226281523415`}, { 1.0444364486709836`, -0.8090169943749475, \ -0.9341723589627157}, {-1.4012585384440737`, -0.8090169943749475, 0}, { 1.2228474935575286`, 0.5, 0.9341723589627157}, {-0.2886751345948129, 0.5, 1.5115226281523415`}}], {{30, 24, 29, 7, 8}, {26, 24, 30}, { 25, 29, 24}, {5, 7, 29}, {14, 8, 7}, {6, 30, 8}, {16, 2, 6}, {19, 21, 26}, {20, 18, 25}, {1, 15, 5}, {22, 23, 14}, {2, 19, 26, 30, 6}, {21, 20, 25, 24, 26}, {18, 1, 5, 29, 25}, { 15, 22, 14, 7, 5}, {23, 16, 6, 8, 14}, {12, 13, 4, 17, 3}, { 3, 17, 9}, {17, 4, 10}, {4, 13, 28}, {13, 12, 11}, {12, 3, 27}, {27, 1, 18}, {9, 22, 15}, {10, 16, 23}, {28, 19, 2}, { 11, 20, 21}, {27, 3, 9, 15, 1}, {9, 17, 10, 23, 22}, {10, 4, 28, 2, 16}, {28, 13, 11, 21, 19}, {11, 12, 27, 18, 20}}]}, ImageSize -> Dynamic[{5.25, 3.5} (CurrentValue["FontCapHeight"]/ AbsoluteCurrentValue[Magnification])], Boxed -> False, Lighting -> {{"Ambient", RGBColor[0.4, 0.45, 0.5]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{2, 0, 2}]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{2, 2, 2}]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{0, 2, 2}]}}, Method -> {"ShrinkWrap" -> True}], GridBox[{{ RowBox[{ TagBox["\"Number of points: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["30", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Number of faces: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["32", "SummaryItem"]}]}}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> { "Columns" -> {{2}}, "Rows" -> {{Automatic}}}, BaseStyle -> { ShowStringCharacters -> False, NumberMarks -> False, PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, BaselinePosition -> {1, 1}], True -> GridBox[{{ PaneBox[ ButtonBox[ DynamicBox[ FEPrivate`FrontEndResource["FEBitmaps", "SummaryBoxCloser"]], ButtonFunction :> (Typeset`open$$ = False), Appearance -> None, BaseStyle -> {}, Evaluator -> Automatic, Method -> "Preemptive"], Alignment -> {Center, Center}, ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], Graphics3DBox[{ Directive[ Hue[0.58, 0.4, 1], Opacity[0.5], EdgeForm[ GrayLevel[1]]], PolyhedronBox[ NCache[{{(Rational[1, 6] (7 + 3 5^Rational[1, 2]))^ Rational[1, 2], 0, -3^Rational[-1, 2]}, { Root[1 - 21 #^2 + 9 #^4& , 1, 0], 0, 3^Rational[-1, 2]}, { Rational[1, 2] 3^Rational[-1, 2], Rational[-1, 2], Root[ 1 - 21 #^2 + 9 #^4& , 1, 0]}, {-(Rational[3, 4] + Rational[1, 3] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 2], -(Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 2] (Rational[3, 2] (3 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), 0}, {Rational[-1, 2] ( Rational[5, 6] (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), ( Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[7, 24] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 3^Rational[-1, 2]}, { Root[1 - 36 #^2 + 144 #^4& , 2, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), ( Rational[1, 6] (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 2] 3^Rational[-1, 2], Rational[1, 2], Root[ 1 - 21 #^2 + 9 #^4& , 1, 0]}, {-(Rational[3, 4] + Rational[1, 3] 5^Rational[1, 2])^ Rational[1, 2], Rational[ 1, 2], -(Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { 0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, { Root[1 - 36 #^2 + 144 #^4& , 3, 0], Rational[1, 4] (-3 - 5^ Rational[1, 2]), -(Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, {-(Rational[7, 24] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), -3^ Rational[-1, 2]}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), 0}, { Rational[1, 2] (Rational[5, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), -( Rational[1, 6] (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 2] (Rational[3, 2] (3 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), 0}, {-3^Rational[-1, 2], 0, Root[1 - 21 #^2 + 9 #^4& , 1, 0]}, { Rational[1, 2] (Rational[3, 2] (3 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), 0}, { Rational[-1, 2] (Rational[5, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), ( Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[7, 24] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), 3^ Rational[-1, 2]}, { Root[1 - 36 #^2 + 144 #^4& , 2, 0], Rational[1, 4] (-3 - 5^Rational[1, 2]), ( Rational[1, 6] (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 36 #^2 + 144 #^4& , 3, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), -( Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, {-(Rational[7, 24] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), -3^ Rational[-1, 2]}, { 3^Rational[-1, 2], 0, (Rational[1, 6] (7 + 3 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[3, 4] + Rational[1, 3] 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], (Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, {Rational[-1, 2] 3^Rational[-1, 2], Rational[-1, 2], (Rational[1, 6] (7 + 3 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 2] (Rational[5, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (-1 - 5^ Rational[1, 2]), -(Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[-1, 2] (Rational[3, 2] (3 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), 0}, {(Rational[3, 4] + Rational[1, 3] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 2], (Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, {Rational[-1, 2] 3^Rational[-1, 2], Rational[1, 2], (Rational[1, 6] (7 + 3 5^Rational[1, 2]))^ Rational[1, 2]}}, {{ 1.5115226281523415`, 0, -0.5773502691896258}, {-1.5115226281523415`, 0, 0.5773502691896258}, { 0.2886751345948129, -0.5, -1.5115226281523415`}, \ {-1.2228474935575286`, -0.5, -0.9341723589627157}, { 1.4012585384440737`, 0.8090169943749475, 0}, {-1.0444364486709836`, 0.8090169943749475, 0.9341723589627157}, {0.7557613140761708, 1.3090169943749475`, 0.5773502691896258}, {-0.17841104488654497`, 1.3090169943749475`, 0.9341723589627157}, { 0.2886751345948129, 0.5, -1.5115226281523415`}, {-1.2228474935575286`, 0.5, -0.9341723589627157}, {0, -1.618033988749895, 0}, { 0.17841104488654497`, -1.3090169943749475`, \ -0.9341723589627157}, {-0.7557613140761708, -1.3090169943749475`, \ -0.5773502691896258}, {0, 1.618033988749895, 0}, {1.0444364486709836`, 0.8090169943749475, -0.9341723589627157}, \ {-1.4012585384440737`, 0.8090169943749475, 0}, {-0.5773502691896258, 0, -1.5115226281523415`}, { 1.4012585384440737`, -0.8090169943749475, 0}, {-1.0444364486709836`, -0.8090169943749475, 0.9341723589627157}, { 0.7557613140761708, -1.3090169943749475`, 0.5773502691896258}, {-0.17841104488654497`, \ -1.3090169943749475`, 0.9341723589627157}, {0.17841104488654497`, 1.3090169943749475`, -0.9341723589627157}, \ {-0.7557613140761708, 1.3090169943749475`, -0.5773502691896258}, { 0.5773502691896258, 0, 1.5115226281523415`}, { 1.2228474935575286`, -0.5, 0.9341723589627157}, {-0.2886751345948129, -0.5, 1.5115226281523415`}, { 1.0444364486709836`, -0.8090169943749475, \ -0.9341723589627157}, {-1.4012585384440737`, -0.8090169943749475, 0}, { 1.2228474935575286`, 0.5, 0.9341723589627157}, {-0.2886751345948129, 0.5, 1.5115226281523415`}}], {{30, 24, 29, 7, 8}, {26, 24, 30}, { 25, 29, 24}, {5, 7, 29}, {14, 8, 7}, {6, 30, 8}, {16, 2, 6}, {19, 21, 26}, {20, 18, 25}, {1, 15, 5}, {22, 23, 14}, {2, 19, 26, 30, 6}, {21, 20, 25, 24, 26}, {18, 1, 5, 29, 25}, { 15, 22, 14, 7, 5}, {23, 16, 6, 8, 14}, {12, 13, 4, 17, 3}, { 3, 17, 9}, {17, 4, 10}, {4, 13, 28}, {13, 12, 11}, {12, 3, 27}, {27, 1, 18}, {9, 22, 15}, {10, 16, 23}, {28, 19, 2}, { 11, 20, 21}, {27, 3, 9, 15, 1}, {9, 17, 10, 23, 22}, {10, 4, 28, 2, 16}, {28, 13, 11, 21, 19}, {11, 12, 27, 18, 20}}]}, ImageSize -> Dynamic[{5.25, 3.5} (CurrentValue["FontCapHeight"]/ AbsoluteCurrentValue[Magnification])], Boxed -> False, Lighting -> {{"Ambient", RGBColor[0.4, 0.45, 0.5]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{2, 0, 2}]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{2, 2, 2}]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{0, 2, 2}]}}, Method -> {"ShrinkWrap" -> True}], GridBox[{{ RowBox[{ TagBox["\"Number of points: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["30", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Number of faces: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["32", "SummaryItem"]}]}, { RowBox[{ TagBox[ "\"Embedding dimension: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["3", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Type: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Quiet[ Apply[Region`PolyhedronDump`polyhedronType, Region`PolyhedronDump`computeType[ Typeset`spolyhedron$$]]], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}, { RowBox[{ TagBox["\"Bounds: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Region`PolyhedronDump`iRegionBounds[ Typeset`spolyhedron$$], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}, { RowBox[{ TagBox["\"Volume: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Region`PolyhedronDump`iVolume[Typeset`spolyhedron$$], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> { "Columns" -> {{2}}, "Rows" -> {{Automatic}}}, BaseStyle -> { ShowStringCharacters -> False, NumberMarks -> False, PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, BaselinePosition -> {1, 1}]}, Dynamic[Typeset`open$$], ImageSize -> Automatic]}, "SummaryPanel"], DynamicModuleValues:>{}], "]"}], Polyhedron[{{(Rational[1, 6] (7 + 3 5^Rational[1, 2]))^Rational[1, 2], 0, -3^Rational[-1, 2]}, { Root[1 - 21 #^2 + 9 #^4& , 1, 0], 0, 3^Rational[-1, 2]}, { Rational[1, 2] 3^Rational[-1, 2], Rational[-1, 2], Root[ 1 - 21 #^2 + 9 #^4& , 1, 0]}, {-(Rational[3, 4] + Rational[1, 3] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 2], -(Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 2] (Rational[3, 2] (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), 0}, { Rational[-1, 2] (Rational[5, 6] (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), ( Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[7, 24] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 3^ Rational[-1, 2]}, { Root[1 - 36 #^2 + 144 #^4& , 2, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), ( Rational[1, 6] (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 2] 3^Rational[-1, 2], Rational[1, 2], Root[ 1 - 21 #^2 + 9 #^4& , 1, 0]}, {-(Rational[3, 4] + Rational[1, 3] 5^Rational[1, 2])^ Rational[1, 2], Rational[ 1, 2], -(Rational[1, 6] (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { 0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, { Root[1 - 36 #^2 + 144 #^4& , 3, 0], Rational[1, 4] (-3 - 5^ Rational[1, 2]), -(Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, {-(Rational[7, 24] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), -3^Rational[-1, 2]}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), 0}, { Rational[1, 2] (Rational[5, 6] (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), -(Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[-1, 2] (Rational[3, 2] (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), 0}, {-3^Rational[-1, 2], 0, Root[1 - 21 #^2 + 9 #^4& , 1, 0]}, { Rational[1, 2] (Rational[3, 2] (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), 0}, { Rational[-1, 2] (Rational[5, 6] (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), ( Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[7, 24] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), 3^ Rational[-1, 2]}, { Root[1 - 36 #^2 + 144 #^4& , 2, 0], Rational[1, 4] (-3 - 5^Rational[1, 2]), ( Rational[1, 6] (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 36 #^2 + 144 #^4& , 3, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), -(Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, {-(Rational[7, 24] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), -3^Rational[-1, 2]}, { 3^Rational[-1, 2], 0, (Rational[1, 6] (7 + 3 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[3, 4] + Rational[1, 3] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 2], (Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, {Rational[-1, 2] 3^Rational[-1, 2], Rational[-1, 2], (Rational[1, 6] (7 + 3 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 2] (Rational[5, 6] (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (-1 - 5^ Rational[1, 2]), -(Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[-1, 2] (Rational[3, 2] (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), 0}, {(Rational[3, 4] + Rational[1, 3] 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2], (Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, {Rational[-1, 2] 3^Rational[-1, 2], Rational[1, 2], (Rational[1, 6] (7 + 3 5^Rational[1, 2]))^ Rational[1, 2]}}, {{30, 24, 29, 7, 8}, {26, 24, 30}, {25, 29, 24}, {5, 7, 29}, {14, 8, 7}, {6, 30, 8}, {16, 2, 6}, {19, 21, 26}, {20, 18, 25}, { 1, 15, 5}, {22, 23, 14}, {2, 19, 26, 30, 6}, {21, 20, 25, 24, 26}, {18, 1, 5, 29, 25}, {15, 22, 14, 7, 5}, {23, 16, 6, 8, 14}, {12, 13, 4, 17, 3}, {3, 17, 9}, {17, 4, 10}, {4, 13, 28}, {13, 12, 11}, {12, 3, 27}, {27, 1, 18}, {9, 22, 15}, {10, 16, 23}, {28, 19, 2}, {11, 20, 21}, {27, 3, 9, 15, 1}, {9, 17, 10, 23, 22}, {10, 4, 28, 2, 16}, {28, 13, 11, 21, 19}, { 11, 12, 27, 18, 20}}], Editable->False, SelectWithContents->True, Selectable->False], "]"}]], "Output", CellLabel->"Out[13]=",ExpressionUUID->"37e222a6-4b9e-42e9-acd9-fc8de567dc67"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"MyInsphere", "[", RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}], "]"}], "//", "Timing"}]], "Input",ExpressionUUID->"44422947-98c7-42a1-81c7-9ee10c4febb9"], Cell[BoxData["$Aborted"], "Output", CellLabel->"Out[14]=",ExpressionUUID->"0a1051e6-5077-4df4-b4df-d6b0415af437"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["InertiaTensor", "Subsection",ExpressionUUID->"506573de-972a-485e-8124-0c56cd58ff97"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}]], "Input", CellLabel->"In[4]:=",ExpressionUUID->"4983e23b-7885-452b-91c3-9bc1ac2dc0eb"], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ FractionBox[ RowBox[{"690", "+", RowBox[{"271", " ", SqrtBox["5"]}]}], "1450"], ",", "0", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", FractionBox[ RowBox[{"690", "+", RowBox[{"271", " ", SqrtBox["5"]}]}], "1450"], ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", "0", ",", FractionBox[ RowBox[{"690", "+", RowBox[{"271", " ", SqrtBox["5"]}]}], "1450"]}], "}"}]}], "}"}]], "Output", CellLabel->"Out[4]=",ExpressionUUID->"49c1615d-5f26-4605-bdcb-64017caf9dc3"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{ FractionBox[ RowBox[{"MomentOfInertia", "[", "p", "]"}], "vol"], "//", "RootReduce"}], "//", "Timing"}]], "Input", CellLabel-> "(Local-Devel (2)) \ In[29]:=",ExpressionUUID->"2cd43307-8695-48f8-9095-b3a2bd63c0ff"], Cell[BoxData[ RowBox[{"{", RowBox[{"1486.72627`", ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ FractionBox[ RowBox[{"690", "+", RowBox[{"271", " ", SqrtBox["5"]}]}], "1450"], ",", "0", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", FractionBox[ RowBox[{"690", "+", RowBox[{"271", " ", SqrtBox["5"]}]}], "1450"], ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", "0", ",", FractionBox[ RowBox[{"690", "+", RowBox[{"271", " ", SqrtBox["5"]}]}], "1450"]}], "}"}]}], "}"}]}], "}"}]], "Output", CellLabel-> "(Local-Devel (2)) \ Out[29]=",ExpressionUUID->"6e7407bc-33de-478b-95b3-fcc2fbcfbfd3"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"(", RowBox[{"i", "=", RowBox[{"PolyhedronInertiaTensor", "[", "p", "]"}]}], ")"}], "//", "Timing"}]], "Input", CellLabel-> "(Local-Devel (2)) \ In[30]:=",ExpressionUUID->"4ed14307-d704-471c-a4a7-72faf36c7612"], Cell[BoxData[ RowBox[{"{", RowBox[{"84.180939`", ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ FractionBox[ RowBox[{"690", "+", RowBox[{"271", " ", SqrtBox["5"]}]}], "1450"], ",", "0", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", FractionBox[ RowBox[{"690", "+", RowBox[{"271", " ", SqrtBox["5"]}]}], "1450"], ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", "0", ",", FractionBox[ RowBox[{"690", "+", RowBox[{"271", " ", SqrtBox["5"]}]}], "1450"]}], "}"}]}], "}"}]}], "}"}]], "Output", CellLabel-> "(Local-Devel (2)) \ Out[30]=",ExpressionUUID->"bc27da37-9c38-44a9-94fe-aa7ae37790ab"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["MeanCylindricalRadius", "Subsection", FontColor->RGBColor[ 1, 0, 0],ExpressionUUID->"dc93fc5b-e48b-4469-b184-4eee268ff500"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}]], "Input", CellLabel-> "(Local-Devel (3)) \ In[4]:=",ExpressionUUID->"66bc1fb9-d675-4ce8-98a1-590d3883cdb2"], Cell[BoxData[ RowBox[{"Missing", "[", "\<\"NotAvailable\"\>", "]"}]], "Output", CellLabel-> "(Local-Devel (3)) \ Out[4]=",ExpressionUUID->"0e548275-3a76-4ee7-9a17-dfa57e6f9c71"] }, Open ]], Cell[BoxData[ RowBox[{"N", "[", "%", "]"}]], "Input",ExpressionUUID->"b29c8912-8dc0-4327-828f-eae93c418e8f"], Cell[CellGroupData[{ Cell[BoxData[ FractionBox[ RowBox[{"NIntegrate", "[", RowBox[{ SqrtBox[ RowBox[{ SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]}]], ",", RowBox[{ RowBox[{"{", RowBox[{"x", ",", "y", ",", "z"}], "}"}], "\[Element]", "p"}]}], "]"}], "vol"]], "Input", CellLabel-> "(Local-Devel (3)) \ In[5]:=",ExpressionUUID->"d5619c1e-a9af-449a-acd7-6f63d7c653df"], Cell[BoxData["0.879160679805339`"], "Output", CellLabel-> "(Local-Devel (3)) \ Out[5]=",ExpressionUUID->"439a963d-1645-4d41-b546-7b94f741ff73"] }, Open ]], Cell[BoxData[ RowBox[{"ClosestMeanCylindricalRadius", "[", "%", "]"}]], "Input",ExpressionU\ UID->"96ff6e39-f95a-4ed0-89c1-74cf40fe6ed5"], Cell[CellGroupData[{ Cell["Integrate over polyhedron", "Subsubsection",ExpressionUUID->"64be50ad-d078-4584-a13b-8a12cf44f58a"], Cell[BoxData[ RowBox[{"(", RowBox[{"rxy", "=", RowBox[{ FractionBox[ RowBox[{"Integrate", "[", RowBox[{ SqrtBox[ RowBox[{ SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]}]], ",", RowBox[{ RowBox[{"{", RowBox[{"x", ",", "y", ",", "z"}], "}"}], "\[Element]", "p"}]}], "]"}], "vol"], "//", "FullSimplify"}]}], ")"}]], "Input",ExpressionUUID->\ "d58d7a5a-b6a8-4cdb-9741-1fcf92fbd167"], Cell[BoxData[ RowBox[{"N", "[", "rxy", "]"}]], "Input",ExpressionUUID->"00273a83-e697-4ec5-becb-64edacf3b0eb"] }, Open ]], Cell[CellGroupData[{ Cell["Divergence theorem", "Subsubsection", FontColor->RGBColor[ 1, 0, 0],ExpressionUUID->"f386bd27-e4a9-4ef6-a1f1-ba0dfaabf1b1"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"(", RowBox[{"rxy", "=", RowBox[{"MeanCylindricalRadius", "[", RowBox[{"p", ",", RowBox[{"\"\\"", "\[Rule]", "FullSimplify"}], ",", RowBox[{"Debug", "\[Rule]", "True"}]}], "]"}]}], ")"}], "//", "Timing"}]], "Input", CellLabel-> "(Local-Devel (2)) \ In[7]:=",ExpressionUUID->"e3ddd0b6-657f-4f3f-82b4-0d81e55d4833"], Cell[CellGroupData[{ Cell[BoxData[ TemplateBox[{ "\"\\nIntegrateOverPolygon on polygon \"", "1", "\"/\"", "32", "\" (\"", "5", "\" sides)\""}, "Row", BaseStyle->RGBColor[0, 0, 1], DisplayFunction->(RowBox[{ TemplateSlotSequence[1, "\[InvisibleSpace]"]}]& ), InterpretationFunction->(RowBox[{"Row", "[", RowBox[{ RowBox[{"{", TemplateSlotSequence[1, ","], "}"}], ",", RowBox[{"BaseStyle", "\[Rule]", RowBox[{"RGBColor", "[", RowBox[{"0", ",", "0", ",", "1"}], "]"}]}]}], "]"}]& )]], "Print", CellLabel-> "During evaluation of (Local-Devel (2)) \ In[7]:=",ExpressionUUID->"a1504ce0-8574-49db-8ba9-3943507ecec9"], Cell[BoxData[ TemplateBox[{"\"Integrating over triangulation \"", "1", "\"/\"", "3"}, "Row", BaseStyle->RGBColor[0.5, 0, 0.5], DisplayFunction->(RowBox[{ TemplateSlotSequence[1, "\[InvisibleSpace]"]}]& ), InterpretationFunction->(RowBox[{"Row", "[", RowBox[{ RowBox[{"{", TemplateSlotSequence[1, ","], "}"}], ",", RowBox[{"BaseStyle", "\[Rule]", RowBox[{"RGBColor", "[", RowBox[{"0.5`", ",", "0", ",", "0.5`"}], "]"}]}]}], "]"}]& )]], "Print", CellLabel-> "During evaluation of (Local-Devel (2)) \ In[7]:=",ExpressionUUID->"a2111a15-67cc-4433-8554-cf732d52e82f"], Cell[BoxData["\<\" IntegrationIntervals:\"\>"], "Print", CellLabel-> "During evaluation of (Local-Devel (2)) \ In[7]:=",ExpressionUUID->"c9ba0f09-2c31-4ffb-9d18-8ed6a452035c"], Cell[BoxData[ RowBox[{"{", RowBox[{"0", ",", "1"}], "}"}]], "Print", CellLabel-> "During evaluation of (Local-Devel (2)) \ In[7]:=",ExpressionUUID->"f079f81e-c4eb-424e-999f-91fd91ee462e"], Cell[BoxData["\<\" Polygon:\"\>"], "Print", CellLabel-> "During evaluation of (Local-Devel (2)) \ In[7]:=",ExpressionUUID->"bc6237f6-6fa9-42c7-8a8b-9dea037c03f3"], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"-", FractionBox["1", RowBox[{"2", " ", SqrtBox["3"]}]]}], ",", FractionBox["1", "2"], ",", SqrtBox[ RowBox[{ FractionBox["1", "6"], " ", RowBox[{"(", RowBox[{"7", "+", RowBox[{"3", " ", SqrtBox["5"]}]}], ")"}]}]]}], "}"}], ",", RowBox[{"{", RowBox[{ FractionBox["1", SqrtBox["3"]], ",", "0", ",", SqrtBox[ RowBox[{ FractionBox["1", "6"], " ", RowBox[{"(", RowBox[{"7", "+", RowBox[{"3", " ", SqrtBox["5"]}]}], ")"}]}]]}], "}"}], ",", RowBox[{"{", RowBox[{ SqrtBox[ RowBox[{ FractionBox["3", "4"], "+", FractionBox[ SqrtBox["5"], "3"]}]], ",", FractionBox["1", "2"], ",", SqrtBox[ RowBox[{ FractionBox["1", "6"], " ", RowBox[{"(", RowBox[{"3", "+", SqrtBox["5"]}], ")"}]}]]}], "}"}]}], "}"}]], "Print", CellLabel-> "During evaluation of (Local-Devel (2)) \ In[7]:=",ExpressionUUID->"a1d45732-3a62-4b4a-9a27-2ba9a8911cca"], Cell[BoxData["\<\" 1 integral:\"\>"], "Print", CellLabel-> "During evaluation of (Local-Devel (2)) \ In[7]:=",ExpressionUUID->"db86349c-d0ee-4b66-8481-1fd0fd8f4a0d"], Cell[BoxData[ RowBox[{"{", TemplateBox[{ RowBox[{ FractionBox["1", RowBox[{"96", " ", SqrtBox["3"]}]], RowBox[{"(", RowBox[{ RowBox[{"2", " ", SqrtBox["2"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", RowBox[{"3", " ", "\[FormalS]"}], "+", RowBox[{ RowBox[{"(", RowBox[{"3", "+", SqrtBox["5"]}], ")"}], " ", "\[FormalT]"}]}], ")"}], " ", SqrtBox[ RowBox[{"2", "+", RowBox[{"6", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", "\[FormalS]"}], ")"}], " ", "\[FormalS]"}], "+", RowBox[{ RowBox[{"(", RowBox[{"3", "+", SqrtBox["5"]}], ")"}], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", RowBox[{"3", " ", "\[FormalS]"}]}], ")"}], " ", "\[FormalT]"}], "+", RowBox[{ RowBox[{"(", RowBox[{"7", "+", RowBox[{"3", " ", SqrtBox["5"]}]}], ")"}], " ", SuperscriptBox["\[FormalT]", "2"]}]}]]}], "+", RowBox[{"3", " ", SuperscriptBox[ RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", "\[FormalS]"}], ")"}], "2"], " ", RowBox[{"(", RowBox[{ RowBox[{"Log", "[", "12", "]"}], "-", RowBox[{"2", " ", RowBox[{"Log", "[", RowBox[{"1", "-", RowBox[{"3", " ", "\[FormalS]"}], "-", RowBox[{ RowBox[{"(", RowBox[{"3", "+", SqrtBox["5"]}], ")"}], " ", "\[FormalT]"}], "+", SqrtBox[ RowBox[{ RowBox[{"3", " ", SuperscriptBox[ RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", "\[FormalS]"}], ")"}], "2"]}], "+", SuperscriptBox[ RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", RowBox[{"3", " ", "\[FormalS]"}], "+", RowBox[{ RowBox[{"(", RowBox[{"3", "+", SqrtBox["5"]}], ")"}], " ", "\[FormalT]"}]}], ")"}], "2"]}]]}], "]"}]}]}], ")"}]}]}], ")"}]}], "\[FormalT]", "0", "1", "\[FormalS]", "0", RowBox[{"1", "-", "\[FormalT]"}]}, "InactiveIntegrate", DisplayFunction->(RowBox[{ SubsuperscriptBox[ StyleBox["\[Integral]", "Inactive"], #3, #4], RowBox[{ SubsuperscriptBox[ StyleBox["\[Integral]", "Inactive"], #6, #7], RowBox[{#, RowBox[{ StyleBox["\[DifferentialD]", "Inactive"], #5}], RowBox[{ StyleBox["\[DifferentialD]", "Inactive"], #2}]}]}]}]& ), InterpretationFunction->(RowBox[{ RowBox[{"Inactive", "[", "Integrate", "]"}], "[", RowBox[{#, ",", RowBox[{"{", RowBox[{#2, ",", #3, ",", #4}], "}"}], ",", RowBox[{"{", RowBox[{#5, ",", #6, ",", #7}], "}"}]}], "]"}]& )], "}"}]], "Print",\ CellLabel-> "During evaluation of (Local-Devel (2)) \ In[7]:=",ExpressionUUID->"77b8db92-0919-4c1a-aa63-cedb421c4206"], Cell[BoxData["\<\" integrals over t and s:\"\>"], "Print", CellLabel-> "During evaluation of (Local-Devel (2)) \ In[7]:=",ExpressionUUID->"0091b5a6-d895-465b-9f21-e6fdc3c758ef"], Cell[BoxData[ RowBox[{"{", RowBox[{ SubsuperscriptBox["\[Integral]", "0", "1"], RowBox[{ RowBox[{ FractionBox["1", RowBox[{"96", " ", SqrtBox["3"]}]], RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{"22", " ", SqrtBox[ RowBox[{"2", "+", RowBox[{"2", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SuperscriptBox["\[FormalT]", "2"]}]}]]}], "-", RowBox[{"10", " ", SqrtBox[ RowBox[{"2", "-", RowBox[{ RowBox[{"(", RowBox[{"3", "+", SqrtBox["5"]}], ")"}], " ", "\[FormalT]"}], "+", RowBox[{ RowBox[{"(", RowBox[{"7", "+", RowBox[{"3", " ", SqrtBox["5"]}]}], ")"}], " ", SuperscriptBox["\[FormalT]", "2"]}]}]]}], "+", RowBox[{"2", " ", SuperscriptBox["\[FormalT]", "7"], " ", RowBox[{"(", RowBox[{ RowBox[{"5428", " ", SqrtBox["10"], " ", SqrtBox[ RowBox[{"1", "+", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SuperscriptBox["\[FormalT]", "2"]}]}]]}], "+", RowBox[{"12138", " ", SqrtBox[ RowBox[{"2", "+", RowBox[{"2", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SuperscriptBox["\[FormalT]", "2"]}]}]]}], "-", RowBox[{"24447", " ", SqrtBox[ RowBox[{"2", "-", RowBox[{ RowBox[{"(", RowBox[{"3", "+", SqrtBox["5"]}], ")"}], " ", "\[FormalT]"}], "+", RowBox[{ RowBox[{"(", RowBox[{"7", "+", RowBox[{"3", " ", SqrtBox["5"]}]}], ")"}], " ", SuperscriptBox["\[FormalT]", "2"]}]}]]}], "-", RowBox[{"10933", " ", SqrtBox["5"], " ", SqrtBox[ RowBox[{"2", "-", RowBox[{ RowBox[{"(", RowBox[{"3", "+", SqrtBox["5"]}], ")"}], " ", "\[FormalT]"}], "+", RowBox[{ RowBox[{"(", RowBox[{"7", "+", RowBox[{"3", " ", SqrtBox["5"]}]}], ")"}], " ", SuperscriptBox["\[FormalT]", "2"]}]}]]}]}], ")"}]}], "+", RowBox[{ SuperscriptBox["\[FormalT]", "8"], " ", RowBox[{"(", RowBox[{ RowBox[{"3003", " ", SqrtBox["10"], " ", SqrtBox[ RowBox[{"1", "+", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SuperscriptBox["\[FormalT]", "2"]}]}]]}], "+", RowBox[{"6715", " ", SqrtBox[ RowBox[{"2", "+", RowBox[{"2", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SuperscriptBox["\[FormalT]", "2"]}]}]]}], "-", RowBox[{"24277", " ", SqrtBox[ RowBox[{"2", "-", RowBox[{ RowBox[{"(", RowBox[{"3", "+", SqrtBox["5"]}], ")"}], " ", "\[FormalT]"}], "+", RowBox[{ RowBox[{"(", RowBox[{"7", "+", RowBox[{"3", " ", SqrtBox["5"]}]}], ")"}], " ", SuperscriptBox["\[FormalT]", "2"]}]}]]}], "-", RowBox[{"10857", " ", SqrtBox["5"], " ", SqrtBox[ RowBox[{"2", "-", RowBox[{ RowBox[{"(", RowBox[{"3", "+", SqrtBox["5"]}], ")"}], " ", "\[FormalT]"}], "+", RowBox[{ RowBox[{"(", RowBox[{"7", "+", RowBox[{"3", " ", SqrtBox["5"]}]}], ")"}], " ", SuperscriptBox["\[FormalT]", "2"]}]}]]}]}], ")"}]}], "+", RowBox[{"2", " ", SuperscriptBox["\[FormalT]", "6"], " ", RowBox[{"(", RowBox[{ RowBox[{"8631", " ", SqrtBox["10"], " ", SqrtBox[ RowBox[{"1", "+", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SuperscriptBox["\[FormalT]", "2"]}]}]]}], "+", RowBox[{"19303", " ", SqrtBox[ RowBox[{"2", "+", RowBox[{"2", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SuperscriptBox["\[FormalT]", "2"]}]}]]}], "-", RowBox[{"19642", " ", SqrtBox[ RowBox[{"2", "-", RowBox[{ RowBox[{"(", RowBox[{"3", "+", SqrtBox["5"]}], ")"}], " ", "\[FormalT]"}], "+", RowBox[{ RowBox[{"(", RowBox[{"7", "+", RowBox[{"3", " ", SqrtBox["5"]}]}], ")"}], " ", SuperscriptBox["\[FormalT]", "2"]}]}]]}], "-", RowBox[{"8784", " ", SqrtBox["5"], " ", SqrtBox[ RowBox[{"2", "-", RowBox[{ RowBox[{"(", RowBox[{"3", "+", SqrtBox["5"]}], ")"}], " ", "\[FormalT]"}], "+", RowBox[{ RowBox[{"(", RowBox[{"7", "+", RowBox[{"3", " ", SqrtBox["5"]}]}], ")"}], " ", SuperscriptBox["\[FormalT]", "2"]}]}]]}]}], ")"}]}], "+", RowBox[{"2", " ", SuperscriptBox["\[FormalT]", "5"], " ", RowBox[{"(", RowBox[{ RowBox[{"7835", " ", SqrtBox["10"], " ", SqrtBox[ RowBox[{"1", "+", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SuperscriptBox["\[FormalT]", "2"]}]}]]}], "+", RowBox[{"17529", " ", SqrtBox[ RowBox[{"2", "+", RowBox[{"2", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SuperscriptBox["\[FormalT]", "2"]}]}]]}], "-", RowBox[{"7995", " ", SqrtBox[ RowBox[{"2", "-", RowBox[{ RowBox[{"(", RowBox[{"3", "+", SqrtBox["5"]}], ")"}], " ", "\[FormalT]"}], "+", RowBox[{ RowBox[{"(", RowBox[{"7", "+", RowBox[{"3", " ", SqrtBox["5"]}]}], ")"}], " ", SuperscriptBox["\[FormalT]", "2"]}]}]]}], "-", RowBox[{"3575", " ", SqrtBox["5"], " ", SqrtBox[ RowBox[{"2", "-", RowBox[{ RowBox[{"(", RowBox[{"3", "+", SqrtBox["5"]}], ")"}], " ", "\[FormalT]"}], "+", RowBox[{ RowBox[{"(", RowBox[{"7", "+", RowBox[{"3", " ", SqrtBox["5"]}]}], ")"}], " ", SuperscriptBox["\[FormalT]", "2"]}]}]]}]}], ")"}]}], "+", RowBox[{ SuperscriptBox["\[FormalT]", "3"], " ", RowBox[{"(", RowBox[{ RowBox[{"3182", " ", SqrtBox["10"], " ", SqrtBox[ RowBox[{"1", "+", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SuperscriptBox["\[FormalT]", "2"]}]}]]}], "+", RowBox[{"7110", " ", SqrtBox[ RowBox[{"2", "+", RowBox[{"2", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SuperscriptBox["\[FormalT]", "2"]}]}]]}], "-", RowBox[{"828", " ", SqrtBox[ RowBox[{"2", "-", RowBox[{ RowBox[{"(", RowBox[{"3", "+", SqrtBox["5"]}], ")"}], " ", "\[FormalT]"}], "+", RowBox[{ RowBox[{"(", RowBox[{"7", "+", RowBox[{"3", " ", SqrtBox["5"]}]}], ")"}], " ", SuperscriptBox["\[FormalT]", "2"]}]}]]}], "-", RowBox[{"368", " ", SqrtBox["5"], " ", SqrtBox[ RowBox[{"2", "-", RowBox[{ RowBox[{"(", RowBox[{"3", "+", SqrtBox["5"]}], ")"}], " ", "\[FormalT]"}], "+", RowBox[{ RowBox[{"(", RowBox[{"7", "+", RowBox[{"3", " ", SqrtBox["5"]}]}], ")"}], " ", SuperscriptBox["\[FormalT]", "2"]}]}]]}]}], ")"}]}], "+", RowBox[{"10", " ", SuperscriptBox["\[FormalT]", "4"], " ", RowBox[{"(", RowBox[{ RowBox[{"885", " ", SqrtBox["10"], " ", SqrtBox[ RowBox[{"1", "+", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SuperscriptBox["\[FormalT]", "2"]}]}]]}], "+", RowBox[{"1981", " ", SqrtBox[ RowBox[{"2", "+", RowBox[{"2", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SuperscriptBox["\[FormalT]", "2"]}]}]]}], "-", RowBox[{"376", " ", SqrtBox[ RowBox[{"2", "-", RowBox[{ RowBox[{"(", RowBox[{"3", "+", SqrtBox["5"]}], ")"}], " ", "\[FormalT]"}], "+", RowBox[{ RowBox[{"(", RowBox[{"7", "+", RowBox[{"3", " ", SqrtBox["5"]}]}], ")"}], " ", SuperscriptBox["\[FormalT]", "2"]}]}]]}], "-", RowBox[{"168", " ", SqrtBox["5"], " ", SqrtBox[ RowBox[{"2", "-", RowBox[{ RowBox[{"(", RowBox[{"3", "+", SqrtBox["5"]}], ")"}], " ", "\[FormalT]"}], "+", RowBox[{ RowBox[{"(", RowBox[{"7", "+", RowBox[{"3", " ", SqrtBox["5"]}]}], ")"}], " ", SuperscriptBox["\[FormalT]", "2"]}]}]]}]}], ")"}]}], "+", RowBox[{"2", " ", SuperscriptBox["\[FormalT]", "2"], " ", RowBox[{"(", RowBox[{ RowBox[{"357", " ", SqrtBox["10"], " ", SqrtBox[ RowBox[{"1", "+", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SuperscriptBox["\[FormalT]", "2"]}]}]]}], "+", RowBox[{"787", " ", SqrtBox[ RowBox[{"2", "+", RowBox[{"2", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SuperscriptBox["\[FormalT]", "2"]}]}]]}], "-", RowBox[{"133", " ", SqrtBox[ RowBox[{"2", "-", RowBox[{ RowBox[{"(", RowBox[{"3", "+", SqrtBox["5"]}], ")"}], " ", "\[FormalT]"}], "+", RowBox[{ RowBox[{"(", RowBox[{"7", "+", RowBox[{"3", " ", SqrtBox["5"]}]}], ")"}], " ", SuperscriptBox["\[FormalT]", "2"]}]}]]}], "-", RowBox[{"57", " ", SqrtBox["5"], " ", SqrtBox[ RowBox[{"2", "-", RowBox[{ RowBox[{"(", RowBox[{"3", "+", SqrtBox["5"]}], ")"}], " ", "\[FormalT]"}], "+", RowBox[{ RowBox[{"(", RowBox[{"7", "+", RowBox[{"3", " ", SqrtBox["5"]}]}], ")"}], " ", SuperscriptBox["\[FormalT]", "2"]}]}]]}]}], ")"}]}], "+", RowBox[{"\[FormalT]", " ", RowBox[{"(", RowBox[{ RowBox[{"88", " ", SqrtBox["10"], " ", SqrtBox[ RowBox[{"1", "+", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SuperscriptBox["\[FormalT]", "2"]}]}]]}], "+", RowBox[{"204", " ", SqrtBox[ RowBox[{"2", "+", RowBox[{"2", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SuperscriptBox["\[FormalT]", "2"]}]}]]}], "-", RowBox[{"66", " ", SqrtBox[ RowBox[{"2", "-", RowBox[{ RowBox[{"(", RowBox[{"3", "+", SqrtBox["5"]}], ")"}], " ", "\[FormalT]"}], "+", RowBox[{ RowBox[{"(", RowBox[{"7", "+", RowBox[{"3", " ", SqrtBox["5"]}]}], ")"}], " ", SuperscriptBox["\[FormalT]", "2"]}]}]]}], "-", RowBox[{"22", " ", SqrtBox["5"], " ", SqrtBox[ RowBox[{"2", "-", RowBox[{ RowBox[{"(", RowBox[{"3", "+", SqrtBox["5"]}], ")"}], " ", "\[FormalT]"}], "+", RowBox[{ RowBox[{"(", RowBox[{"7", "+", RowBox[{"3", " ", SqrtBox["5"]}]}], ")"}], " ", SuperscriptBox["\[FormalT]", "2"]}]}]]}]}], ")"}]}]}], ")"}]}], "-", RowBox[{ SqrtBox["6"], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"9", " ", RowBox[{"(", RowBox[{"3", "+", SqrtBox["5"]}], ")"}], " ", "\[FormalT]"}], "+", RowBox[{"36", " ", RowBox[{"(", RowBox[{"7", "+", RowBox[{"3", " ", SqrtBox["5"]}]}], ")"}], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"168", " ", RowBox[{"(", RowBox[{"9", "+", RowBox[{"4", " ", SqrtBox["5"]}]}], ")"}], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"126", " ", RowBox[{"(", RowBox[{"47", "+", RowBox[{"21", " ", SqrtBox["5"]}]}], ")"}], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"126", " ", RowBox[{"(", RowBox[{"123", "+", RowBox[{"55", " ", SqrtBox["5"]}]}], ")"}], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"168", " ", RowBox[{"(", RowBox[{"161", "+", RowBox[{"72", " ", SqrtBox["5"]}]}], ")"}], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"36", " ", RowBox[{"(", RowBox[{"843", "+", RowBox[{"377", " ", SqrtBox["5"]}]}], ")"}], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"9", " ", RowBox[{"(", RowBox[{"2207", "+", RowBox[{"987", " ", SqrtBox["5"]}]}], ")"}], " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{ RowBox[{"(", RowBox[{"5778", "+", RowBox[{"2584", " ", SqrtBox["5"]}]}], ")"}], " ", SuperscriptBox["\[FormalT]", "9"]}]}], ")"}], " ", RowBox[{"Log", "[", RowBox[{ RowBox[{"-", "6"}], "-", RowBox[{"3", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", SqrtBox["5"]}], ")"}], " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox[ RowBox[{"3", "+", RowBox[{"3", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"6", " ", SuperscriptBox["\[FormalT]", "2"]}]}]]}]}], "]"}]}], "+", RowBox[{ SqrtBox["6"], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"9", " ", RowBox[{"(", RowBox[{"3", "+", SqrtBox["5"]}], ")"}], " ", "\[FormalT]"}], "+", RowBox[{"36", " ", RowBox[{"(", RowBox[{"7", "+", RowBox[{"3", " ", SqrtBox["5"]}]}], ")"}], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"168", " ", RowBox[{"(", RowBox[{"9", "+", RowBox[{"4", " ", SqrtBox["5"]}]}], ")"}], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"126", " ", RowBox[{"(", RowBox[{"47", "+", RowBox[{"21", " ", SqrtBox["5"]}]}], ")"}], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"126", " ", RowBox[{"(", RowBox[{"123", "+", RowBox[{"55", " ", SqrtBox["5"]}]}], ")"}], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"168", " ", RowBox[{"(", RowBox[{"161", "+", RowBox[{"72", " ", SqrtBox["5"]}]}], ")"}], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"36", " ", RowBox[{"(", RowBox[{"843", "+", RowBox[{"377", " ", SqrtBox["5"]}]}], ")"}], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"9", " ", RowBox[{"(", RowBox[{"2207", "+", RowBox[{"987", " ", SqrtBox["5"]}]}], ")"}], " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{ RowBox[{"(", RowBox[{"5778", "+", RowBox[{"2584", " ", SqrtBox["5"]}]}], ")"}], " ", SuperscriptBox["\[FormalT]", "9"]}]}], ")"}], " ", RowBox[{"Log", "[", RowBox[{"6", "-", RowBox[{"3", " ", RowBox[{"(", RowBox[{"3", "+", SqrtBox["5"]}], ")"}], " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SqrtBox["6"], " ", SqrtBox[ RowBox[{"2", "-", RowBox[{ RowBox[{"(", RowBox[{"3", "+", SqrtBox["5"]}], ")"}], " ", "\[FormalT]"}], "+", RowBox[{ RowBox[{"(", RowBox[{"7", "+", RowBox[{"3", " ", SqrtBox["5"]}]}], ")"}], " ", SuperscriptBox["\[FormalT]", "2"]}]}]]}]}], "]"}]}]}], ")"}], "/", RowBox[{"(", RowBox[{"12", " ", SqrtBox["2"], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"6", " ", RowBox[{"(", RowBox[{"3", "+", SqrtBox["5"]}], ")"}], " ", "\[FormalT]"}], "+", RowBox[{"15", " ", RowBox[{"(", RowBox[{"7", "+", RowBox[{"3", " ", SqrtBox["5"]}]}], ")"}], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"40", " ", RowBox[{"(", RowBox[{"9", "+", RowBox[{"4", " ", SqrtBox["5"]}]}], ")"}], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"15", " ", RowBox[{"(", RowBox[{"47", "+", RowBox[{"21", " ", SqrtBox["5"]}]}], ")"}], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6", " ", RowBox[{"(", RowBox[{"123", "+", RowBox[{"55", " ", SqrtBox["5"]}]}], ")"}], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"2", " ", RowBox[{"(", RowBox[{"161", "+", RowBox[{"72", " ", SqrtBox["5"]}]}], ")"}], " ", SuperscriptBox["\[FormalT]", "6"]}]}], ")"}]}], ")"}]}], "+", RowBox[{"3", " ", RowBox[{"(", RowBox[{ RowBox[{"8", "/", RowBox[{"(", RowBox[{"9", " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{"16", " ", "\[FormalT]"}], ")"}], "/", RowBox[{"(", RowBox[{ RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{"16", " ", SqrtBox["5"], " ", "\[FormalT]"}], ")"}], "/", RowBox[{"(", RowBox[{"3", " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{"616", " ", SuperscriptBox["\[FormalT]", "2"]}], ")"}], "/", RowBox[{"(", RowBox[{"3", " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{"88", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], ")"}], "/", RowBox[{"(", RowBox[{ RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{"15832", " ", SuperscriptBox["\[FormalT]", "3"]}], ")"}], "/", RowBox[{"(", RowBox[{"9", " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{"7040", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], ")"}], "/", RowBox[{"(", RowBox[{"9", " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{"10324", " ", SuperscriptBox["\[FormalT]", "4"]}], ")"}], "/", RowBox[{"(", RowBox[{ RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{"13844", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], ")"}], "/", RowBox[{"(", RowBox[{"3", " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{"129272", " ", SuperscriptBox["\[FormalT]", "5"]}], ")"}], "/", RowBox[{"(", RowBox[{"3", " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{"19272", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], ")"}], "/", RowBox[{"(", RowBox[{ RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{"391424", " ", SuperscriptBox["\[FormalT]", "6"]}], ")"}], "/", RowBox[{"(", RowBox[{"3", " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{"525184", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], ")"}], "/", RowBox[{"(", RowBox[{"9", " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{"286396", " ", SuperscriptBox["\[FormalT]", "7"]}], ")"}], "/", RowBox[{"(", RowBox[{ RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{"128084", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], ")"}], "/", RowBox[{"(", RowBox[{ RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{"442244", " ", SuperscriptBox["\[FormalT]", "8"]}], ")"}], "/", RowBox[{"(", RowBox[{ RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{"197780", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}], ")"}], "/", RowBox[{"(", RowBox[{ RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{"1298176", " ", SuperscriptBox["\[FormalT]", "9"]}], ")"}], "/", RowBox[{"(", RowBox[{"3", " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{"1741696", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "9"]}], ")"}], "/", RowBox[{"(", RowBox[{"9", " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{"440968", " ", SuperscriptBox["\[FormalT]", "10"]}], ")"}], "/", RowBox[{"(", RowBox[{"3", " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{"65736", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "10"]}], ")"}], "/", RowBox[{"(", RowBox[{ RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "-", RowBox[{ RowBox[{"(", RowBox[{"274324", " ", SuperscriptBox["\[FormalT]", "11"]}], ")"}], "/", RowBox[{"(", RowBox[{ RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "-", RowBox[{ RowBox[{"(", RowBox[{"368044", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "11"]}], ")"}], "/", RowBox[{"(", RowBox[{"3", " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "-", RowBox[{ RowBox[{"(", RowBox[{"4669912", " ", SuperscriptBox["\[FormalT]", "12"]}], ")"}], "/", RowBox[{"(", RowBox[{"9", " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "-", RowBox[{ RowBox[{"(", RowBox[{"2088448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "12"]}], ")"}], "/", RowBox[{"(", RowBox[{"9", " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "-", RowBox[{ RowBox[{"(", RowBox[{"1331176", " ", SuperscriptBox["\[FormalT]", "13"]}], ")"}], "/", RowBox[{"(", RowBox[{"3", " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "-", RowBox[{ RowBox[{"(", RowBox[{"198440", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "13"]}], ")"}], "/", RowBox[{"(", RowBox[{ RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "-", RowBox[{ RowBox[{"(", RowBox[{"211216", " ", SuperscriptBox["\[FormalT]", "14"]}], ")"}], "/", RowBox[{"(", RowBox[{ RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "-", RowBox[{ RowBox[{"(", RowBox[{"283376", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "14"]}], ")"}], "/", RowBox[{"(", RowBox[{"3", " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "-", RowBox[{ RowBox[{"(", RowBox[{"414728", " ", SuperscriptBox["\[FormalT]", "15"]}], ")"}], "/", RowBox[{"(", RowBox[{"9", " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "-", RowBox[{ RowBox[{"(", RowBox[{"20608", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "15"]}], ")"}], "/", RowBox[{"(", RowBox[{ RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "-", RowBox[{ RowBox[{"(", RowBox[{"2", " ", SqrtBox[ RowBox[{"1", "+", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SuperscriptBox["\[FormalT]", "2"]}]}]]}], ")"}], "/", RowBox[{"(", RowBox[{"3", " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "-", RowBox[{ RowBox[{"(", RowBox[{"130", " ", "\[FormalT]", " ", SqrtBox[ RowBox[{"1", "+", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SuperscriptBox["\[FormalT]", "2"]}]}]]}], ")"}], "/", RowBox[{"(", RowBox[{"9", " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "-", RowBox[{ RowBox[{"(", RowBox[{"14", " ", SqrtBox["5"], " ", "\[FormalT]", " ", SqrtBox[ RowBox[{"1", "+", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SuperscriptBox["\[FormalT]", "2"]}]}]]}], ")"}], "/", RowBox[{"(", RowBox[{"3", " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "-", RowBox[{ RowBox[{"(", RowBox[{"221", " ", SuperscriptBox["\[FormalT]", "2"], " ", SqrtBox[ RowBox[{"1", "+", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SuperscriptBox["\[FormalT]", "2"]}]}]]}], ")"}], "/", RowBox[{"(", RowBox[{ RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "-", RowBox[{ RowBox[{"(", RowBox[{"845", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"], " ", SqrtBox[ RowBox[{"1", "+", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SuperscriptBox["\[FormalT]", "2"]}]}]]}], ")"}], "/", RowBox[{"(", RowBox[{"9", " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "-", RowBox[{ RowBox[{"(", RowBox[{"6916", " ", SuperscriptBox["\[FormalT]", "3"], " ", SqrtBox[ RowBox[{"1", "+", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SuperscriptBox["\[FormalT]", "2"]}]}]]}], ")"}], "/", RowBox[{"(", RowBox[{"3", " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "-", RowBox[{ RowBox[{"(", RowBox[{"3068", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"], " ", SqrtBox[ RowBox[{"1", "+", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SuperscriptBox["\[FormalT]", "2"]}]}]]}], ")"}], "/", RowBox[{"(", RowBox[{"3", " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "-", RowBox[{ RowBox[{"(", RowBox[{"50479", " ", SuperscriptBox["\[FormalT]", "4"], " ", SqrtBox[ RowBox[{"1", "+", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SuperscriptBox["\[FormalT]", "2"]}]}]]}], ")"}], "/", RowBox[{"(", RowBox[{"3", " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "-", RowBox[{ RowBox[{"(", RowBox[{"67639", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"], " ", SqrtBox[ RowBox[{"1", "+", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SuperscriptBox["\[FormalT]", "2"]}]}]]}], ")"}], "/", RowBox[{"(", RowBox[{"9", " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "-", RowBox[{ RowBox[{"(", RowBox[{"805948", " ", SuperscriptBox["\[FormalT]", "5"], " ", SqrtBox[ RowBox[{"1", "+", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SuperscriptBox["\[FormalT]", "2"]}]}]]}], ")"}], "/", RowBox[{"(", RowBox[{"9", " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "-", RowBox[{ RowBox[{"(", RowBox[{"40040", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"], " ", SqrtBox[ RowBox[{"1", "+", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SuperscriptBox["\[FormalT]", "2"]}]}]]}], ")"}], "/", RowBox[{"(", RowBox[{ RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "-", RowBox[{ RowBox[{"(", RowBox[{"357500", " ", SuperscriptBox["\[FormalT]", "6"], " ", SqrtBox[ RowBox[{"1", "+", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SuperscriptBox["\[FormalT]", "2"]}]}]]}], ")"}], "/", RowBox[{"(", RowBox[{ RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "-", RowBox[{ RowBox[{"(", RowBox[{"159874", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"], " ", SqrtBox[ RowBox[{"1", "+", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SuperscriptBox["\[FormalT]", "2"]}]}]]}], ")"}], "/", RowBox[{"(", RowBox[{ RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "-", RowBox[{ RowBox[{"(", RowBox[{"3261544", " ", SuperscriptBox["\[FormalT]", "7"], " ", SqrtBox[ RowBox[{"1", "+", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SuperscriptBox["\[FormalT]", "2"]}]}]]}], ")"}], "/", RowBox[{"(", RowBox[{"3", " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "-", RowBox[{ RowBox[{"(", RowBox[{"486200", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"], " ", SqrtBox[ RowBox[{"1", "+", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SuperscriptBox["\[FormalT]", "2"]}]}]]}], ")"}], "/", RowBox[{"(", RowBox[{ RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "-", RowBox[{ RowBox[{"(", RowBox[{"2530671", " ", SuperscriptBox["\[FormalT]", "8"], " ", SqrtBox[ RowBox[{"1", "+", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SuperscriptBox["\[FormalT]", "2"]}]}]]}], ")"}], "/", RowBox[{"(", RowBox[{ RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "-", RowBox[{ RowBox[{"(", RowBox[{"3395249", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"], " ", SqrtBox[ RowBox[{"1", "+", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SuperscriptBox["\[FormalT]", "2"]}]}]]}], ")"}], "/", RowBox[{"(", RowBox[{"3", " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "-", RowBox[{ RowBox[{"(", RowBox[{"4487054", " ", SuperscriptBox["\[FormalT]", "9"], " ", SqrtBox[ RowBox[{"1", "+", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SuperscriptBox["\[FormalT]", "2"]}]}]]}], ")"}], "/", RowBox[{"(", RowBox[{ RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "-", RowBox[{ RowBox[{"(", RowBox[{"6020014", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "9"], " ", SqrtBox[ RowBox[{"1", "+", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SuperscriptBox["\[FormalT]", "2"]}]}]]}], ")"}], "/", RowBox[{"(", RowBox[{"3", " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "-", RowBox[{ RowBox[{"(", RowBox[{"17896307", " ", SuperscriptBox["\[FormalT]", "10"], " ", SqrtBox[ RowBox[{"1", "+", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SuperscriptBox["\[FormalT]", "2"]}]}]]}], ")"}], "/", RowBox[{"(", RowBox[{"3", " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "-", RowBox[{ RowBox[{"(", RowBox[{"24010415", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "10"], " ", SqrtBox[ RowBox[{"1", "+", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SuperscriptBox["\[FormalT]", "2"]}]}]]}], ")"}], "/", RowBox[{"(", RowBox[{"9", " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "-", RowBox[{ RowBox[{"(", RowBox[{"51899120", " ", SuperscriptBox["\[FormalT]", "11"], " ", SqrtBox[ RowBox[{"1", "+", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SuperscriptBox["\[FormalT]", "2"]}]}]]}], ")"}], "/", RowBox[{"(", RowBox[{"9", " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "-", RowBox[{ RowBox[{"(", RowBox[{"2578888", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "11"], " ", SqrtBox[ RowBox[{"1", "+", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SuperscriptBox["\[FormalT]", "2"]}]}]]}], ")"}], "/", RowBox[{"(", RowBox[{ RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "-", RowBox[{ RowBox[{"(", RowBox[{"11494418", " ", SuperscriptBox["\[FormalT]", "12"], " ", SqrtBox[ RowBox[{"1", "+", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SuperscriptBox["\[FormalT]", "2"]}]}]]}], ")"}], "/", RowBox[{"(", RowBox[{"3", " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "-", RowBox[{ RowBox[{"(", RowBox[{"5140460", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "12"], " ", SqrtBox[ RowBox[{"1", "+", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SuperscriptBox["\[FormalT]", "2"]}]}]]}], ")"}], "/", RowBox[{"(", RowBox[{"3", " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "-", RowBox[{ RowBox[{"(", RowBox[{"14096338", " ", SuperscriptBox["\[FormalT]", "13"], " ", SqrtBox[ RowBox[{"1", "+", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SuperscriptBox["\[FormalT]", "2"]}]}]]}], ")"}], "/", RowBox[{"(", RowBox[{"9", " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "-", RowBox[{ RowBox[{"(", RowBox[{"2101358", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "13"], " ", SqrtBox[ RowBox[{"1", "+", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SuperscriptBox["\[FormalT]", "2"]}]}]]}], ")"}], "/", RowBox[{"(", RowBox[{"3", " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "-", RowBox[{ RowBox[{"(", RowBox[{"297203", " ", SuperscriptBox["\[FormalT]", "14"], " ", SqrtBox[ RowBox[{"1", "+", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SuperscriptBox["\[FormalT]", "2"]}]}]]}], ")"}], "/", RowBox[{"(", RowBox[{ RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "-", RowBox[{ RowBox[{"(", RowBox[{"1196219", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "14"], " ", SqrtBox[ RowBox[{"1", "+", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SuperscriptBox["\[FormalT]", "2"]}]}]]}], ")"}], "/", RowBox[{"(", RowBox[{"9", " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{"5", " ", SqrtBox["2"], " ", SqrtBox[ RowBox[{"2", "-", RowBox[{"3", " ", "\[FormalT]"}], "-", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"7", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"3", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}]}]]}], ")"}], "/", RowBox[{"(", RowBox[{"9", " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{"34", " ", SqrtBox["2"], " ", "\[FormalT]", " ", SqrtBox[ RowBox[{"2", "-", RowBox[{"3", " ", "\[FormalT]"}], "-", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"7", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"3", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}]}]]}], ")"}], "/", RowBox[{"(", RowBox[{"3", " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{"34", " ", SqrtBox["10"], " ", "\[FormalT]", " ", SqrtBox[ RowBox[{"2", "-", RowBox[{"3", " ", "\[FormalT]"}], "-", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"7", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"3", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}]}]]}], ")"}], "/", RowBox[{"(", RowBox[{"9", " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{"1001", " ", SuperscriptBox["\[FormalT]", "2"], " ", SqrtBox[ RowBox[{"2", "-", RowBox[{"3", " ", "\[FormalT]"}], "-", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"7", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"3", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}]}]]}], ")"}], "/", RowBox[{"(", RowBox[{"3", " ", SqrtBox["2"], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{"143", " ", SqrtBox[ FractionBox["5", "2"]], " ", SuperscriptBox["\[FormalT]", "2"], " ", SqrtBox[ RowBox[{"2", "-", RowBox[{"3", " ", "\[FormalT]"}], "-", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"7", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"3", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}]}]]}], ")"}], "/", RowBox[{"(", RowBox[{ RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{"1664", " ", SqrtBox["2"], " ", SuperscriptBox["\[FormalT]", "3"], " ", SqrtBox[ RowBox[{"2", "-", RowBox[{"3", " ", "\[FormalT]"}], "-", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"7", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"3", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}]}]]}], ")"}], "/", RowBox[{"(", RowBox[{ RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{"6656", " ", SqrtBox["10"], " ", SuperscriptBox["\[FormalT]", "3"], " ", SqrtBox[ RowBox[{"2", "-", RowBox[{"3", " ", "\[FormalT]"}], "-", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"7", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"3", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}]}]]}], ")"}], "/", RowBox[{"(", RowBox[{"9", " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{"208351", " ", SuperscriptBox["\[FormalT]", "4"], " ", SqrtBox[ RowBox[{"2", "-", RowBox[{"3", " ", "\[FormalT]"}], "-", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"7", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"3", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}]}]]}], ")"}], "/", RowBox[{"(", RowBox[{"9", " ", SqrtBox["2"], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{"31031", " ", SqrtBox[ FractionBox["5", "2"]], " ", SuperscriptBox["\[FormalT]", "4"], " ", SqrtBox[ RowBox[{"2", "-", RowBox[{"3", " ", "\[FormalT]"}], "-", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"7", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"3", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}]}]]}], ")"}], "/", RowBox[{"(", RowBox[{"3", " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{"58630", " ", SqrtBox["2"], " ", SuperscriptBox["\[FormalT]", "5"], " ", SqrtBox[ RowBox[{"2", "-", RowBox[{"3", " ", "\[FormalT]"}], "-", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"7", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"3", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}]}]]}], ")"}], "/", RowBox[{"(", RowBox[{ RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{"78650", " ", SqrtBox["10"], " ", SuperscriptBox["\[FormalT]", "5"], " ", SqrtBox[ RowBox[{"2", "-", RowBox[{"3", " ", "\[FormalT]"}], "-", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"7", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"3", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}]}]]}], ")"}], "/", RowBox[{"(", RowBox[{"3", " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{"667667", " ", SqrtBox["2"], " ", SuperscriptBox["\[FormalT]", "6"], " ", SqrtBox[ RowBox[{"2", "-", RowBox[{"3", " ", "\[FormalT]"}], "-", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"7", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"3", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}]}]]}], ")"}], "/", RowBox[{"(", RowBox[{"3", " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{"99528", " ", SqrtBox["10"], " ", SuperscriptBox["\[FormalT]", "6"], " ", SqrtBox[ RowBox[{"2", "-", RowBox[{"3", " ", "\[FormalT]"}], "-", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"7", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"3", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}]}]]}], ")"}], "/", RowBox[{"(", RowBox[{ RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{"642928", " ", SqrtBox["2"], " ", SuperscriptBox["\[FormalT]", "7"], " ", SqrtBox[ RowBox[{"2", "-", RowBox[{"3", " ", "\[FormalT]"}], "-", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"7", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"3", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}]}]]}], ")"}], "/", RowBox[{"(", RowBox[{ RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{"862576", " ", SqrtBox["10"], " ", SuperscriptBox["\[FormalT]", "7"], " ", SqrtBox[ RowBox[{"2", "-", RowBox[{"3", " ", "\[FormalT]"}], "-", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"7", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"3", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}]}]]}], ")"}], "/", RowBox[{"(", RowBox[{"3", " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{"2840409", " ", SuperscriptBox["\[FormalT]", "8"], " ", SqrtBox[ RowBox[{"2", "-", RowBox[{"3", " ", "\[FormalT]"}], "-", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"7", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"3", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}]}]]}], ")"}], "/", RowBox[{"(", RowBox[{ SqrtBox["2"], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{"1270269", " ", SqrtBox[ FractionBox["5", "2"]], " ", SuperscriptBox["\[FormalT]", "8"], " ", SqrtBox[ RowBox[{"2", "-", RowBox[{"3", " ", "\[FormalT]"}], "-", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"7", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"3", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}]}]]}], ")"}], "/", RowBox[{"(", RowBox[{ RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{"2386956", " ", SqrtBox["2"], " ", SuperscriptBox["\[FormalT]", "9"], " ", SqrtBox[ RowBox[{"2", "-", RowBox[{"3", " ", "\[FormalT]"}], "-", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"7", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"3", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}]}]]}], ")"}], "/", RowBox[{"(", RowBox[{ RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{"9607312", " ", SqrtBox["10"], " ", SuperscriptBox["\[FormalT]", "9"], " ", SqrtBox[ RowBox[{"2", "-", RowBox[{"3", " ", "\[FormalT]"}], "-", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"7", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"3", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}]}]]}], ")"}], "/", RowBox[{"(", RowBox[{"9", " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{"54079025", " ", SuperscriptBox["\[FormalT]", "10"], " ", SqrtBox[ RowBox[{"2", "-", RowBox[{"3", " ", "\[FormalT]"}], "-", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"7", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"3", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}]}]]}], ")"}], "/", RowBox[{"(", RowBox[{"9", " ", SqrtBox["2"], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{"8061625", " ", SqrtBox[ FractionBox["5", "2"]], " ", SuperscriptBox["\[FormalT]", "10"], " ", SqrtBox[ RowBox[{"2", "-", RowBox[{"3", " ", "\[FormalT]"}], "-", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"7", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"3", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}]}]]}], ")"}], "/", RowBox[{"(", RowBox[{"3", " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{"2745808", " ", SqrtBox["2"], " ", SuperscriptBox["\[FormalT]", "11"], " ", SqrtBox[ RowBox[{"2", "-", RowBox[{"3", " ", "\[FormalT]"}], "-", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"7", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"3", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}]}]]}], ")"}], "/", RowBox[{"(", RowBox[{ RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{"3683888", " ", SqrtBox["10"], " ", SuperscriptBox["\[FormalT]", "11"], " ", SqrtBox[ RowBox[{"2", "-", RowBox[{"3", " ", "\[FormalT]"}], "-", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"7", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"3", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}]}]]}], ")"}], "/", RowBox[{"(", RowBox[{"3", " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{"15500459", " ", SqrtBox["2"], " ", SuperscriptBox["\[FormalT]", "12"], " ", SqrtBox[ RowBox[{"2", "-", RowBox[{"3", " ", "\[FormalT]"}], "-", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"7", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"3", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}]}]]}], ")"}], "/", RowBox[{"(", RowBox[{"9", " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{"770224", " ", SqrtBox["10"], " ", SuperscriptBox["\[FormalT]", "12"], " ", SqrtBox[ RowBox[{"2", "-", RowBox[{"3", " ", "\[FormalT]"}], "-", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"7", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"3", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}]}]]}], ")"}], "/", RowBox[{"(", RowBox[{ RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{"1990582", " ", SqrtBox["2"], " ", SuperscriptBox["\[FormalT]", "13"], " ", SqrtBox[ RowBox[{"2", "-", RowBox[{"3", " ", "\[FormalT]"}], "-", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"7", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"3", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}]}]]}], ")"}], "/", RowBox[{"(", RowBox[{"3", " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{"2670646", " ", SqrtBox["10"], " ", SuperscriptBox["\[FormalT]", "13"], " ", SqrtBox[ RowBox[{"2", "-", RowBox[{"3", " ", "\[FormalT]"}], "-", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"7", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"3", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}]}]]}], ")"}], "/", RowBox[{"(", RowBox[{"9", " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{"710647", " ", SuperscriptBox["\[FormalT]", "14"], " ", SqrtBox[ RowBox[{"2", "-", RowBox[{"3", " ", "\[FormalT]"}], "-", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"7", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"3", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}]}]]}], ")"}], "/", RowBox[{"(", RowBox[{"3", " ", SqrtBox["2"], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{"105937", " ", SqrtBox[ FractionBox["5", "2"]], " ", SuperscriptBox["\[FormalT]", "14"], " ", SqrtBox[ RowBox[{"2", "-", RowBox[{"3", " ", "\[FormalT]"}], "-", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"7", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"3", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}]}]]}], ")"}], "/", RowBox[{"(", RowBox[{ RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{"4", " ", RowBox[{"Log", "[", "1728", "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{"9", " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{"8", " ", "\[FormalT]", " ", RowBox[{"Log", "[", "1728", "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{ RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]", " ", RowBox[{"Log", "[", "1728", "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{"3", " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{"308", " ", SuperscriptBox["\[FormalT]", "2"], " ", RowBox[{"Log", "[", "1728", "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{"3", " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{"44", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"], " ", RowBox[{"Log", "[", "1728", "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{ RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{"7916", " ", SuperscriptBox["\[FormalT]", "3"], " ", RowBox[{"Log", "[", "1728", "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{"9", " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{"3520", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"], " ", RowBox[{"Log", "[", "1728", "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{"9", " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{"5162", " ", SuperscriptBox["\[FormalT]", "4"], " ", RowBox[{"Log", "[", "1728", "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{ RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{"6922", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"], " ", RowBox[{"Log", "[", "1728", "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{"3", " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{"64636", " ", SuperscriptBox["\[FormalT]", "5"], " ", RowBox[{"Log", "[", "1728", "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{"3", " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{"9636", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"], " ", RowBox[{"Log", "[", "1728", "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{ RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{"195712", " ", SuperscriptBox["\[FormalT]", "6"], " ", RowBox[{"Log", "[", "1728", "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{"3", " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{"262592", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"], " ", RowBox[{"Log", "[", "1728", "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{"9", " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{"143198", " ", SuperscriptBox["\[FormalT]", "7"], " ", RowBox[{"Log", "[", "1728", "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{ RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{"64042", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"], " ", RowBox[{"Log", "[", "1728", "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{ RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{"221122", " ", SuperscriptBox["\[FormalT]", "8"], " ", RowBox[{"Log", "[", "1728", "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{ RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{"98890", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"], " ", RowBox[{"Log", "[", "1728", "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{ RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{"649088", " ", SuperscriptBox["\[FormalT]", "9"], " ", RowBox[{"Log", "[", "1728", "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{"3", " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{"870848", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "9"], " ", RowBox[{"Log", "[", "1728", "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{"9", " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{"220484", " ", SuperscriptBox["\[FormalT]", "10"], " ", RowBox[{"Log", "[", "1728", "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{"3", " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{"32868", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "10"], " ", RowBox[{"Log", "[", "1728", "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{ RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "-", RowBox[{ RowBox[{"(", RowBox[{"137162", " ", SuperscriptBox["\[FormalT]", "11"], " ", RowBox[{"Log", "[", "1728", "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{ RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "-", RowBox[{ RowBox[{"(", RowBox[{"184022", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "11"], " ", RowBox[{"Log", "[", "1728", "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{"3", " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "-", RowBox[{ RowBox[{"(", RowBox[{"2334956", " ", SuperscriptBox["\[FormalT]", "12"], " ", RowBox[{"Log", "[", "1728", "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{"9", " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "-", RowBox[{ RowBox[{"(", RowBox[{"1044224", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "12"], " ", RowBox[{"Log", "[", "1728", "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{"9", " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "-", RowBox[{ RowBox[{"(", RowBox[{"665588", " ", SuperscriptBox["\[FormalT]", "13"], " ", RowBox[{"Log", "[", "1728", "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{"3", " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "-", RowBox[{ RowBox[{"(", RowBox[{"99220", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "13"], " ", RowBox[{"Log", "[", "1728", "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{ RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "-", RowBox[{ RowBox[{"(", RowBox[{"105608", " ", SuperscriptBox["\[FormalT]", "14"], " ", RowBox[{"Log", "[", "1728", "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{ RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "-", RowBox[{ RowBox[{"(", RowBox[{"141688", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "14"], " ", RowBox[{"Log", "[", "1728", "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{"3", " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "-", RowBox[{ RowBox[{"(", RowBox[{"207364", " ", SuperscriptBox["\[FormalT]", "15"], " ", RowBox[{"Log", "[", "1728", "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{"9", " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "-", RowBox[{ RowBox[{"(", RowBox[{"10304", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "15"], " ", RowBox[{"Log", "[", "1728", "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{ RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{"8", " ", RowBox[{"Log", "[", "\[FormalT]", "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{"3", " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{"48", " ", "\[FormalT]", " ", RowBox[{"Log", "[", "\[FormalT]", "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{ RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{"16", " ", SqrtBox["5"], " ", "\[FormalT]", " ", RowBox[{"Log", "[", "\[FormalT]", "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{ RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{"616", " ", SuperscriptBox["\[FormalT]", "2"], " ", RowBox[{"Log", "[", "\[FormalT]", "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{ RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{"264", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"], " ", RowBox[{"Log", "[", "\[FormalT]", "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{ RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{"5280", " ", SuperscriptBox["\[FormalT]", "3"], " ", RowBox[{"Log", "[", "\[FormalT]", "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{ RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{"7040", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"], " ", RowBox[{"Log", "[", "\[FormalT]", "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{"3", " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{"31020", " ", SuperscriptBox["\[FormalT]", "4"], " ", RowBox[{"Log", "[", "\[FormalT]", "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{ RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{"13860", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"], " ", RowBox[{"Log", "[", "\[FormalT]", "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{ RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{"129888", " ", SuperscriptBox["\[FormalT]", "5"], " ", RowBox[{"Log", "[", "\[FormalT]", "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{ RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{"58080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"], " ", RowBox[{"Log", "[", "\[FormalT]", "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{ RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{"396704", " ", SuperscriptBox["\[FormalT]", "6"], " ", RowBox[{"Log", "[", "\[FormalT]", "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{ RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{"177408", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"], " ", RowBox[{"Log", "[", "\[FormalT]", "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{ RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{"890208", " ", SuperscriptBox["\[FormalT]", "7"], " ", RowBox[{"Log", "[", "\[FormalT]", "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{ RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{"398112", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"], " ", RowBox[{"Log", "[", "\[FormalT]", "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{ RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{"1456620", " ", SuperscriptBox["\[FormalT]", "8"], " ", RowBox[{"Log", "[", "\[FormalT]", "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{ RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{"651420", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"], " ", RowBox[{"Log", "[", "\[FormalT]", "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{ RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{"1694880", " ", SuperscriptBox["\[FormalT]", "9"], " ", RowBox[{"Log", "[", "\[FormalT]", "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{ RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{"2273920", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "9"], " ", RowBox[{"Log", "[", "\[FormalT]", "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{"3", " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{"1331176", " ", SuperscriptBox["\[FormalT]", "10"], " ", RowBox[{"Log", "[", "\[FormalT]", "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{ RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{"595320", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "10"], " ", RowBox[{"Log", "[", "\[FormalT]", "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{ RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{"633648", " ", SuperscriptBox["\[FormalT]", "11"], " ", RowBox[{"Log", "[", "\[FormalT]", "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{ RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{"283376", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "11"], " ", RowBox[{"Log", "[", "\[FormalT]", "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{ RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{"414728", " ", SuperscriptBox["\[FormalT]", "12"], " ", RowBox[{"Log", "[", "\[FormalT]", "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{"3", " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{"61824", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "12"], " ", RowBox[{"Log", "[", "\[FormalT]", "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{ RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{"8", " ", SqrtBox["2"], " ", RowBox[{"Log", "[", "\[FormalT]", "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{"3", " ", SqrtBox[ RowBox[{"2", "+", RowBox[{"6", " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"7", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"3", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}]}]], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{"52", " ", SqrtBox["2"], " ", "\[FormalT]", " ", RowBox[{"Log", "[", "\[FormalT]", "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{ SqrtBox[ RowBox[{"2", "+", RowBox[{"6", " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"7", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"3", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}]}]], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{"52", " ", SqrtBox["10"], " ", "\[FormalT]", " ", RowBox[{"Log", "[", "\[FormalT]", "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{"3", " ", SqrtBox[ RowBox[{"2", "+", RowBox[{"6", " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"7", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"3", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}]}]], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{"728", " ", SqrtBox["2"], " ", SuperscriptBox["\[FormalT]", "2"], " ", RowBox[{"Log", "[", "\[FormalT]", "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{ SqrtBox[ RowBox[{"2", "+", RowBox[{"6", " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"7", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"3", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}]}]], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{"312", " ", SqrtBox["10"], " ", SuperscriptBox["\[FormalT]", "2"], " ", RowBox[{"Log", "[", "\[FormalT]", "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{ SqrtBox[ RowBox[{"2", "+", RowBox[{"6", " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"7", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"3", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}]}]], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{"6864", " ", SqrtBox["2"], " ", SuperscriptBox["\[FormalT]", "3"], " ", RowBox[{"Log", "[", "\[FormalT]", "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{ SqrtBox[ RowBox[{"2", "+", RowBox[{"6", " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"7", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"3", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}]}]], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{"9152", " ", SqrtBox["10"], " ", SuperscriptBox["\[FormalT]", "3"], " ", RowBox[{"Log", "[", "\[FormalT]", "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{"3", " ", SqrtBox[ RowBox[{"2", "+", RowBox[{"6", " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"7", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"3", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}]}]], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{"134420", " ", SqrtBox["2"], " ", SuperscriptBox["\[FormalT]", "4"], " ", RowBox[{"Log", "[", "\[FormalT]", "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{"3", " ", SqrtBox[ RowBox[{"2", "+", RowBox[{"6", " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"7", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"3", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}]}]], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{"20020", " ", SqrtBox["10"], " ", SuperscriptBox["\[FormalT]", "4"], " ", RowBox[{"Log", "[", "\[FormalT]", "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{ SqrtBox[ RowBox[{"2", "+", RowBox[{"6", " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"7", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"3", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}]}]], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{"211068", " ", SqrtBox["2"], " ", SuperscriptBox["\[FormalT]", "5"], " ", RowBox[{"Log", "[", "\[FormalT]", "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{ SqrtBox[ RowBox[{"2", "+", RowBox[{"6", " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"7", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"3", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}]}]], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{"94380", " ", SqrtBox["10"], " ", SuperscriptBox["\[FormalT]", "5"], " ", RowBox[{"Log", "[", "\[FormalT]", "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{ SqrtBox[ RowBox[{"2", "+", RowBox[{"6", " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"7", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"3", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}]}]], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{"736736", " ", SqrtBox["2"], " ", SuperscriptBox["\[FormalT]", "6"], " ", RowBox[{"Log", "[", "\[FormalT]", "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{ SqrtBox[ RowBox[{"2", "+", RowBox[{"6", " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"7", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"3", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}]}]], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{"329472", " ", SqrtBox["10"], " ", SuperscriptBox["\[FormalT]", "6"], " ", RowBox[{"Log", "[", "\[FormalT]", "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{ SqrtBox[ RowBox[{"2", "+", RowBox[{"6", " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"7", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"3", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}]}]], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{"1928784", " ", SqrtBox["2"], " ", SuperscriptBox["\[FormalT]", "7"], " ", RowBox[{"Log", "[", "\[FormalT]", "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{ SqrtBox[ RowBox[{"2", "+", RowBox[{"6", " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"7", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"3", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}]}]], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{"862576", " ", SqrtBox["10"], " ", SuperscriptBox["\[FormalT]", "7"], " ", RowBox[{"Log", "[", "\[FormalT]", "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{ SqrtBox[ RowBox[{"2", "+", RowBox[{"6", " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"7", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"3", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}]}]], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{"3787212", " ", SqrtBox["2"], " ", SuperscriptBox["\[FormalT]", "8"], " ", RowBox[{"Log", "[", "\[FormalT]", "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{ SqrtBox[ RowBox[{"2", "+", RowBox[{"6", " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"7", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"3", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}]}]], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{"1693692", " ", SqrtBox["10"], " ", SuperscriptBox["\[FormalT]", "8"], " ", RowBox[{"Log", "[", "\[FormalT]", "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{ SqrtBox[ RowBox[{"2", "+", RowBox[{"6", " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"7", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"3", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}]}]], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{"5508360", " ", SqrtBox["2"], " ", SuperscriptBox["\[FormalT]", "9"], " ", RowBox[{"Log", "[", "\[FormalT]", "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{ SqrtBox[ RowBox[{"2", "+", RowBox[{"6", " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"7", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"3", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}]}]], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{"7390240", " ", SqrtBox["10"], " ", SuperscriptBox["\[FormalT]", "9"], " ", RowBox[{"Log", "[", "\[FormalT]", "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{"3", " ", SqrtBox[ RowBox[{"2", "+", RowBox[{"6", " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"7", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"3", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}]}]], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{"17305288", " ", SqrtBox["2"], " ", SuperscriptBox["\[FormalT]", "10"], " ", RowBox[{"Log", "[", "\[FormalT]", "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{"3", " ", SqrtBox[ RowBox[{"2", "+", RowBox[{"6", " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"7", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"3", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}]}]], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{"2579720", " ", SqrtBox["10"], " ", SuperscriptBox["\[FormalT]", "10"], " ", RowBox[{"Log", "[", "\[FormalT]", "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{ SqrtBox[ RowBox[{"2", "+", RowBox[{"6", " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"7", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"3", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}]}]], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{"4118712", " ", SqrtBox["2"], " ", SuperscriptBox["\[FormalT]", "11"], " ", RowBox[{"Log", "[", "\[FormalT]", "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{ SqrtBox[ RowBox[{"2", "+", RowBox[{"6", " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"7", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"3", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}]}]], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{"1841944", " ", SqrtBox["10"], " ", SuperscriptBox["\[FormalT]", "11"], " ", RowBox[{"Log", "[", "\[FormalT]", "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{ SqrtBox[ RowBox[{"2", "+", RowBox[{"6", " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"7", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"3", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}]}]], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{"5391464", " ", SqrtBox["2"], " ", SuperscriptBox["\[FormalT]", "12"], " ", RowBox[{"Log", "[", "\[FormalT]", "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{"3", " ", SqrtBox[ RowBox[{"2", "+", RowBox[{"6", " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"7", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"3", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}]}]], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{"803712", " ", SqrtBox["10"], " ", SuperscriptBox["\[FormalT]", "12"], " ", RowBox[{"Log", "[", "\[FormalT]", "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{ SqrtBox[ RowBox[{"2", "+", RowBox[{"6", " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"7", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"3", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}]}]], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{"361924", " ", SqrtBox["2"], " ", SuperscriptBox["\[FormalT]", "13"], " ", RowBox[{"Log", "[", "\[FormalT]", "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{ SqrtBox[ RowBox[{"2", "+", RowBox[{"6", " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"7", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"3", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}]}]], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{"485572", " ", SqrtBox["10"], " ", SuperscriptBox["\[FormalT]", "13"], " ", RowBox[{"Log", "[", "\[FormalT]", "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{"3", " ", SqrtBox[ RowBox[{"2", "+", RowBox[{"6", " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"7", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"3", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}]}]], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "-", RowBox[{ RowBox[{"(", RowBox[{"8", " ", RowBox[{"Log", "[", RowBox[{ RowBox[{"-", "2"}], "-", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SqrtBox[ RowBox[{"1", "+", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SuperscriptBox["\[FormalT]", "2"]}]}]]}]}], "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{"3", " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "-", RowBox[{ RowBox[{"(", RowBox[{"48", " ", "\[FormalT]", " ", RowBox[{"Log", "[", RowBox[{ RowBox[{"-", "2"}], "-", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SqrtBox[ RowBox[{"1", "+", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SuperscriptBox["\[FormalT]", "2"]}]}]]}]}], "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{ RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "-", RowBox[{ RowBox[{"(", RowBox[{"16", " ", SqrtBox["5"], " ", "\[FormalT]", " ", RowBox[{"Log", "[", RowBox[{ RowBox[{"-", "2"}], "-", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SqrtBox[ RowBox[{"1", "+", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SuperscriptBox["\[FormalT]", "2"]}]}]]}]}], "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{ RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "-", RowBox[{ RowBox[{"(", RowBox[{"616", " ", SuperscriptBox["\[FormalT]", "2"], " ", RowBox[{"Log", "[", RowBox[{ RowBox[{"-", "2"}], "-", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SqrtBox[ RowBox[{"1", "+", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SuperscriptBox["\[FormalT]", "2"]}]}]]}]}], "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{ RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "-", RowBox[{ RowBox[{"(", RowBox[{"264", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"], " ", RowBox[{"Log", "[", RowBox[{ RowBox[{"-", "2"}], "-", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SqrtBox[ RowBox[{"1", "+", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SuperscriptBox["\[FormalT]", "2"]}]}]]}]}], "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{ RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "-", RowBox[{ RowBox[{"(", RowBox[{"15832", " ", SuperscriptBox["\[FormalT]", "3"], " ", RowBox[{"Log", "[", RowBox[{ RowBox[{"-", "2"}], "-", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SqrtBox[ RowBox[{"1", "+", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SuperscriptBox["\[FormalT]", "2"]}]}]]}]}], "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{"3", " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "-", RowBox[{ RowBox[{"(", RowBox[{"7040", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"], " ", RowBox[{"Log", "[", RowBox[{ RowBox[{"-", "2"}], "-", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SqrtBox[ RowBox[{"1", "+", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SuperscriptBox["\[FormalT]", "2"]}]}]]}]}], "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{"3", " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "-", RowBox[{ RowBox[{"(", RowBox[{"30972", " ", SuperscriptBox["\[FormalT]", "4"], " ", RowBox[{"Log", "[", RowBox[{ RowBox[{"-", "2"}], "-", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SqrtBox[ RowBox[{"1", "+", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SuperscriptBox["\[FormalT]", "2"]}]}]]}]}], "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{ RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "-", RowBox[{ RowBox[{"(", RowBox[{"13844", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"], " ", RowBox[{"Log", "[", RowBox[{ RowBox[{"-", "2"}], "-", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SqrtBox[ RowBox[{"1", "+", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SuperscriptBox["\[FormalT]", "2"]}]}]]}]}], "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{ RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "-", RowBox[{ RowBox[{"(", RowBox[{"129272", " ", SuperscriptBox["\[FormalT]", "5"], " ", RowBox[{"Log", "[", RowBox[{ RowBox[{"-", "2"}], "-", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SqrtBox[ RowBox[{"1", "+", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SuperscriptBox["\[FormalT]", "2"]}]}]]}]}], "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{ RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "-", RowBox[{ RowBox[{"(", RowBox[{"57816", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"], " ", RowBox[{"Log", "[", RowBox[{ RowBox[{"-", "2"}], "-", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SqrtBox[ RowBox[{"1", "+", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SuperscriptBox["\[FormalT]", "2"]}]}]]}]}], "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{ RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "-", RowBox[{ RowBox[{"(", RowBox[{"391424", " ", SuperscriptBox["\[FormalT]", "6"], " ", RowBox[{"Log", "[", RowBox[{ RowBox[{"-", "2"}], "-", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SqrtBox[ RowBox[{"1", "+", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SuperscriptBox["\[FormalT]", "2"]}]}]]}]}], "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{ RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "-", RowBox[{ RowBox[{"(", RowBox[{"525184", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"], " ", RowBox[{"Log", "[", RowBox[{ RowBox[{"-", "2"}], "-", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SqrtBox[ RowBox[{"1", "+", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SuperscriptBox["\[FormalT]", "2"]}]}]]}]}], "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{"3", " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "-", RowBox[{ RowBox[{"(", RowBox[{"859188", " ", SuperscriptBox["\[FormalT]", "7"], " ", RowBox[{"Log", "[", RowBox[{ RowBox[{"-", "2"}], "-", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SqrtBox[ RowBox[{"1", "+", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SuperscriptBox["\[FormalT]", "2"]}]}]]}]}], "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{ RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "-", RowBox[{ RowBox[{"(", RowBox[{"384252", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"], " ", RowBox[{"Log", "[", RowBox[{ RowBox[{"-", "2"}], "-", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SqrtBox[ RowBox[{"1", "+", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SuperscriptBox["\[FormalT]", "2"]}]}]]}]}], "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{ RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "-", RowBox[{ RowBox[{"(", RowBox[{"1326732", " ", SuperscriptBox["\[FormalT]", "8"], " ", RowBox[{"Log", "[", RowBox[{ RowBox[{"-", "2"}], "-", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SqrtBox[ RowBox[{"1", "+", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SuperscriptBox["\[FormalT]", "2"]}]}]]}]}], "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{ RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "-", RowBox[{ RowBox[{"(", RowBox[{"593340", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"], " ", RowBox[{"Log", "[", RowBox[{ RowBox[{"-", "2"}], "-", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SqrtBox[ RowBox[{"1", "+", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SuperscriptBox["\[FormalT]", "2"]}]}]]}]}], "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{ RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "-", RowBox[{ RowBox[{"(", RowBox[{"1298176", " ", SuperscriptBox["\[FormalT]", "9"], " ", RowBox[{"Log", "[", RowBox[{ RowBox[{"-", "2"}], "-", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SqrtBox[ RowBox[{"1", "+", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SuperscriptBox["\[FormalT]", "2"]}]}]]}]}], "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{ RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "-", RowBox[{ RowBox[{"(", RowBox[{"1741696", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "9"], " ", RowBox[{"Log", "[", RowBox[{ RowBox[{"-", "2"}], "-", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SqrtBox[ RowBox[{"1", "+", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SuperscriptBox["\[FormalT]", "2"]}]}]]}]}], "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{"3", " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "-", RowBox[{ RowBox[{"(", RowBox[{"440968", " ", SuperscriptBox["\[FormalT]", "10"], " ", RowBox[{"Log", "[", RowBox[{ RowBox[{"-", "2"}], "-", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SqrtBox[ RowBox[{"1", "+", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SuperscriptBox["\[FormalT]", "2"]}]}]]}]}], "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{ RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "-", RowBox[{ RowBox[{"(", RowBox[{"197208", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "10"], " ", RowBox[{"Log", "[", RowBox[{ RowBox[{"-", "2"}], "-", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SqrtBox[ RowBox[{"1", "+", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SuperscriptBox["\[FormalT]", "2"]}]}]]}]}], "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{ RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{"822972", " ", SuperscriptBox["\[FormalT]", "11"], " ", RowBox[{"Log", "[", RowBox[{ RowBox[{"-", "2"}], "-", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SqrtBox[ RowBox[{"1", "+", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SuperscriptBox["\[FormalT]", "2"]}]}]]}]}], "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{ RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{"368044", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "11"], " ", RowBox[{"Log", "[", RowBox[{ RowBox[{"-", "2"}], "-", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SqrtBox[ RowBox[{"1", "+", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SuperscriptBox["\[FormalT]", "2"]}]}]]}]}], "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{ RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{"4669912", " ", SuperscriptBox["\[FormalT]", "12"], " ", RowBox[{"Log", "[", RowBox[{ RowBox[{"-", "2"}], "-", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SqrtBox[ RowBox[{"1", "+", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SuperscriptBox["\[FormalT]", "2"]}]}]]}]}], "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{"3", " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{"2088448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "12"], " ", RowBox[{"Log", "[", RowBox[{ RowBox[{"-", "2"}], "-", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SqrtBox[ RowBox[{"1", "+", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SuperscriptBox["\[FormalT]", "2"]}]}]]}]}], "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{"3", " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{"1331176", " ", SuperscriptBox["\[FormalT]", "13"], " ", RowBox[{"Log", "[", RowBox[{ RowBox[{"-", "2"}], "-", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SqrtBox[ RowBox[{"1", "+", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SuperscriptBox["\[FormalT]", "2"]}]}]]}]}], "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{ RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{"595320", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "13"], " ", RowBox[{"Log", "[", RowBox[{ RowBox[{"-", "2"}], "-", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SqrtBox[ RowBox[{"1", "+", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SuperscriptBox["\[FormalT]", "2"]}]}]]}]}], "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{ RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{"633648", " ", SuperscriptBox["\[FormalT]", "14"], " ", RowBox[{"Log", "[", RowBox[{ RowBox[{"-", "2"}], "-", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SqrtBox[ RowBox[{"1", "+", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SuperscriptBox["\[FormalT]", "2"]}]}]]}]}], "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{ RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{"283376", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "14"], " ", RowBox[{"Log", "[", RowBox[{ RowBox[{"-", "2"}], "-", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SqrtBox[ RowBox[{"1", "+", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SuperscriptBox["\[FormalT]", "2"]}]}]]}]}], "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{ RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{"414728", " ", SuperscriptBox["\[FormalT]", "15"], " ", RowBox[{"Log", "[", RowBox[{ RowBox[{"-", "2"}], "-", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SqrtBox[ RowBox[{"1", "+", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SuperscriptBox["\[FormalT]", "2"]}]}]]}]}], "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{"3", " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{"61824", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "15"], " ", RowBox[{"Log", "[", RowBox[{ RowBox[{"-", "2"}], "-", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SqrtBox[ RowBox[{"1", "+", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SuperscriptBox["\[FormalT]", "2"]}]}]]}]}], "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{ RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{"5", " ", RowBox[{"Log", "[", RowBox[{"6", "-", RowBox[{"3", " ", "\[FormalT]"}], "+", RowBox[{"3", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["3"], " ", SqrtBox[ RowBox[{"1", "+", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SuperscriptBox["\[FormalT]", "2"]}]}]]}]}], "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{"9", " ", SqrtBox["3"], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{"25", " ", SqrtBox[ FractionBox["5", "3"]], " ", "\[FormalT]", " ", RowBox[{"Log", "[", RowBox[{"6", "-", RowBox[{"3", " ", "\[FormalT]"}], "+", RowBox[{"3", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["3"], " ", SqrtBox[ RowBox[{"1", "+", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SuperscriptBox["\[FormalT]", "2"]}]}]]}]}], "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{"6", " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{"25", " ", "\[FormalT]", " ", RowBox[{"Log", "[", RowBox[{"6", "-", RowBox[{"3", " ", "\[FormalT]"}], "+", RowBox[{"3", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["3"], " ", SqrtBox[ RowBox[{"1", "+", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SuperscriptBox["\[FormalT]", "2"]}]}]]}]}], "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{"2", " ", SqrtBox["3"], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{"175", " ", SqrtBox[ FractionBox["5", "3"]], " ", SuperscriptBox["\[FormalT]", "2"], " ", RowBox[{"Log", "[", RowBox[{"6", "-", RowBox[{"3", " ", "\[FormalT]"}], "+", RowBox[{"3", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["3"], " ", SqrtBox[ RowBox[{"1", "+", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SuperscriptBox["\[FormalT]", "2"]}]}]]}]}], "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{"2", " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{"1225", " ", SuperscriptBox["\[FormalT]", "2"], " ", RowBox[{"Log", "[", RowBox[{"6", "-", RowBox[{"3", " ", "\[FormalT]"}], "+", RowBox[{"3", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["3"], " ", SqrtBox[ RowBox[{"1", "+", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SuperscriptBox["\[FormalT]", "2"]}]}]]}]}], "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{"6", " ", SqrtBox["3"], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{"9100", " ", SqrtBox[ FractionBox["5", "3"]], " ", SuperscriptBox["\[FormalT]", "3"], " ", RowBox[{"Log", "[", RowBox[{"6", "-", RowBox[{"3", " ", "\[FormalT]"}], "+", RowBox[{"3", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["3"], " ", SqrtBox[ RowBox[{"1", "+", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SuperscriptBox["\[FormalT]", "2"]}]}]]}]}], "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{"9", " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{"2275", " ", SuperscriptBox["\[FormalT]", "3"], " ", RowBox[{"Log", "[", RowBox[{"6", "-", RowBox[{"3", " ", "\[FormalT]"}], "+", RowBox[{"3", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["3"], " ", SqrtBox[ RowBox[{"1", "+", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SuperscriptBox["\[FormalT]", "2"]}]}]]}]}], "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{ SqrtBox["3"], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{"15925", " ", SqrtBox[ FractionBox["5", "3"]], " ", SuperscriptBox["\[FormalT]", "4"], " ", RowBox[{"Log", "[", RowBox[{"6", "-", RowBox[{"3", " ", "\[FormalT]"}], "+", RowBox[{"3", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["3"], " ", SqrtBox[ RowBox[{"1", "+", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SuperscriptBox["\[FormalT]", "2"]}]}]]}]}], "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{"2", " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{"106925", " ", SuperscriptBox["\[FormalT]", "4"], " ", RowBox[{"Log", "[", RowBox[{"6", "-", RowBox[{"3", " ", "\[FormalT]"}], "+", RowBox[{"3", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["3"], " ", SqrtBox[ RowBox[{"1", "+", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SuperscriptBox["\[FormalT]", "2"]}]}]]}]}], "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{"6", " ", SqrtBox["3"], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{"275275", " ", SqrtBox[ FractionBox["5", "3"]], " ", SuperscriptBox["\[FormalT]", "5"], " ", RowBox[{"Log", "[", RowBox[{"6", "-", RowBox[{"3", " ", "\[FormalT]"}], "+", RowBox[{"3", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["3"], " ", SqrtBox[ RowBox[{"1", "+", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SuperscriptBox["\[FormalT]", "2"]}]}]]}]}], "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{"6", " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{"205205", " ", SuperscriptBox["\[FormalT]", "5"], " ", RowBox[{"Log", "[", RowBox[{"6", "-", RowBox[{"3", " ", "\[FormalT]"}], "+", RowBox[{"3", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["3"], " ", SqrtBox[ RowBox[{"1", "+", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SuperscriptBox["\[FormalT]", "2"]}]}]]}]}], "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{"2", " ", SqrtBox["3"], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{"200200", " ", SqrtBox[ FractionBox["5", "3"]], " ", SuperscriptBox["\[FormalT]", "6"], " ", RowBox[{"Log", "[", RowBox[{"6", "-", RowBox[{"3", " ", "\[FormalT]"}], "+", RowBox[{"3", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["3"], " ", SqrtBox[ RowBox[{"1", "+", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SuperscriptBox["\[FormalT]", "2"]}]}]]}]}], "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{ RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{"4029025", " ", SuperscriptBox["\[FormalT]", "6"], " ", RowBox[{"Log", "[", RowBox[{"6", "-", RowBox[{"3", " ", "\[FormalT]"}], "+", RowBox[{"3", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["3"], " ", SqrtBox[ RowBox[{"1", "+", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SuperscriptBox["\[FormalT]", "2"]}]}]]}]}], "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{"9", " ", SqrtBox["3"], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{"1347775", " ", SqrtBox[ FractionBox["5", "3"]], " ", SuperscriptBox["\[FormalT]", "7"], " ", RowBox[{"Log", "[", RowBox[{"6", "-", RowBox[{"3", " ", "\[FormalT]"}], "+", RowBox[{"3", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["3"], " ", SqrtBox[ RowBox[{"1", "+", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SuperscriptBox["\[FormalT]", "2"]}]}]]}]}], "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{"2", " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{"1004575", " ", SqrtBox["3"], " ", SuperscriptBox["\[FormalT]", "7"], " ", RowBox[{"Log", "[", RowBox[{"6", "-", RowBox[{"3", " ", "\[FormalT]"}], "+", RowBox[{"3", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["3"], " ", SqrtBox[ RowBox[{"1", "+", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SuperscriptBox["\[FormalT]", "2"]}]}]]}]}], "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{"2", " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{"7890025", " ", SuperscriptBox["\[FormalT]", "8"], " ", RowBox[{"Log", "[", RowBox[{"6", "-", RowBox[{"3", " ", "\[FormalT]"}], "+", RowBox[{"3", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["3"], " ", SqrtBox[ RowBox[{"1", "+", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SuperscriptBox["\[FormalT]", "2"]}]}]]}]}], "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{"2", " ", SqrtBox["3"], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{"1176175", " ", SqrtBox["15"], " ", SuperscriptBox["\[FormalT]", "8"], " ", RowBox[{"Log", "[", RowBox[{"6", "-", RowBox[{"3", " ", "\[FormalT]"}], "+", RowBox[{"3", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["3"], " ", SqrtBox[ RowBox[{"1", "+", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SuperscriptBox["\[FormalT]", "2"]}]}]]}]}], "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{"2", " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{"32332300", " ", SqrtBox[ FractionBox["5", "3"]], " ", SuperscriptBox["\[FormalT]", "9"], " ", RowBox[{"Log", "[", RowBox[{"6", "-", RowBox[{"3", " ", "\[FormalT]"}], "+", RowBox[{"3", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["3"], " ", SqrtBox[ RowBox[{"1", "+", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SuperscriptBox["\[FormalT]", "2"]}]}]]}]}], "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{"9", " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{"2677675", " ", SqrtBox["3"], " ", SuperscriptBox["\[FormalT]", "9"], " ", RowBox[{"Log", "[", RowBox[{"6", "-", RowBox[{"3", " ", "\[FormalT]"}], "+", RowBox[{"3", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["3"], " ", SqrtBox[ RowBox[{"1", "+", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SuperscriptBox["\[FormalT]", "2"]}]}]]}]}], "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{ RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{"11286275", " ", SqrtBox[ FractionBox["5", "3"]], " ", SuperscriptBox["\[FormalT]", "10"], " ", RowBox[{"Log", "[", RowBox[{"6", "-", RowBox[{"3", " ", "\[FormalT]"}], "+", RowBox[{"3", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["3"], " ", SqrtBox[ RowBox[{"1", "+", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SuperscriptBox["\[FormalT]", "2"]}]}]]}]}], "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{"2", " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{"75710635", " ", SuperscriptBox["\[FormalT]", "10"], " ", RowBox[{"Log", "[", RowBox[{"6", "-", RowBox[{"3", " ", "\[FormalT]"}], "+", RowBox[{"3", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["3"], " ", SqrtBox[ RowBox[{"1", "+", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SuperscriptBox["\[FormalT]", "2"]}]}]]}]}], "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{"6", " ", SqrtBox["3"], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{"40292525", " ", SqrtBox[ FractionBox["5", "3"]], " ", SuperscriptBox["\[FormalT]", "11"], " ", RowBox[{"Log", "[", RowBox[{"6", "-", RowBox[{"3", " ", "\[FormalT]"}], "+", RowBox[{"3", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["3"], " ", SqrtBox[ RowBox[{"1", "+", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SuperscriptBox["\[FormalT]", "2"]}]}]]}]}], "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{"6", " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{"30032275", " ", SuperscriptBox["\[FormalT]", "11"], " ", RowBox[{"Log", "[", RowBox[{"6", "-", RowBox[{"3", " ", "\[FormalT]"}], "+", RowBox[{"3", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["3"], " ", SqrtBox[ RowBox[{"1", "+", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SuperscriptBox["\[FormalT]", "2"]}]}]]}]}], "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{"2", " ", SqrtBox["3"], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{"5860400", " ", SqrtBox[ FractionBox["5", "3"]], " ", SuperscriptBox["\[FormalT]", "12"], " ", RowBox[{"Log", "[", RowBox[{"6", "-", RowBox[{"3", " ", "\[FormalT]"}], "+", RowBox[{"3", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["3"], " ", SqrtBox[ RowBox[{"1", "+", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SuperscriptBox["\[FormalT]", "2"]}]}]]}]}], "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{ RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{"117938275", " ", SuperscriptBox["\[FormalT]", "12"], " ", RowBox[{"Log", "[", RowBox[{"6", "-", RowBox[{"3", " ", "\[FormalT]"}], "+", RowBox[{"3", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["3"], " ", SqrtBox[ RowBox[{"1", "+", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SuperscriptBox["\[FormalT]", "2"]}]}]]}]}], "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{"9", " ", SqrtBox["3"], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{"21243775", " ", SqrtBox[ FractionBox["5", "3"]], " ", SuperscriptBox["\[FormalT]", "13"], " ", RowBox[{"Log", "[", RowBox[{"6", "-", RowBox[{"3", " ", "\[FormalT]"}], "+", RowBox[{"3", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["3"], " ", SqrtBox[ RowBox[{"1", "+", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SuperscriptBox["\[FormalT]", "2"]}]}]]}]}], "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{"6", " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{"15834175", " ", SuperscriptBox["\[FormalT]", "13"], " ", RowBox[{"Log", "[", RowBox[{"6", "-", RowBox[{"3", " ", "\[FormalT]"}], "+", RowBox[{"3", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["3"], " ", SqrtBox[ RowBox[{"1", "+", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SuperscriptBox["\[FormalT]", "2"]}]}]]}]}], "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{"2", " ", SqrtBox["3"], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{"2648425", " ", SqrtBox[ FractionBox["5", "3"]], " ", SuperscriptBox["\[FormalT]", "14"], " ", RowBox[{"Log", "[", RowBox[{"6", "-", RowBox[{"3", " ", "\[FormalT]"}], "+", RowBox[{"3", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["3"], " ", SqrtBox[ RowBox[{"1", "+", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SuperscriptBox["\[FormalT]", "2"]}]}]]}]}], "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{"2", " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{"17766175", " ", SuperscriptBox["\[FormalT]", "14"], " ", RowBox[{"Log", "[", RowBox[{"6", "-", RowBox[{"3", " ", "\[FormalT]"}], "+", RowBox[{"3", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["3"], " ", SqrtBox[ RowBox[{"1", "+", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SuperscriptBox["\[FormalT]", "2"]}]}]]}]}], "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{"6", " ", SqrtBox["3"], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{"2080100", " ", SqrtBox[ FractionBox["5", "3"]], " ", SuperscriptBox["\[FormalT]", "15"], " ", RowBox[{"Log", "[", RowBox[{"6", "-", RowBox[{"3", " ", "\[FormalT]"}], "+", RowBox[{"3", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["3"], " ", SqrtBox[ RowBox[{"1", "+", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SuperscriptBox["\[FormalT]", "2"]}]}]]}]}], "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{"9", " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{"516805", " ", SuperscriptBox["\[FormalT]", "15"], " ", RowBox[{"Log", "[", RowBox[{"6", "-", RowBox[{"3", " ", "\[FormalT]"}], "+", RowBox[{"3", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["3"], " ", SqrtBox[ RowBox[{"1", "+", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SuperscriptBox["\[FormalT]", "2"]}]}]]}]}], "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{ SqrtBox["3"], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "-", RowBox[{ RowBox[{"(", RowBox[{"5", " ", RowBox[{"Log", "[", RowBox[{ RowBox[{"-", "6"}], "+", RowBox[{"9", " ", "\[FormalT]"}], "+", RowBox[{"3", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SqrtBox["6"], " ", SqrtBox[ RowBox[{"2", "-", RowBox[{"3", " ", "\[FormalT]"}], "-", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"7", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"3", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}]}]]}]}], "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{"9", " ", SqrtBox["3"], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "-", RowBox[{ RowBox[{"(", RowBox[{"25", " ", SqrtBox[ FractionBox["5", "3"]], " ", "\[FormalT]", " ", RowBox[{"Log", "[", RowBox[{ RowBox[{"-", "6"}], "+", RowBox[{"9", " ", "\[FormalT]"}], "+", RowBox[{"3", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SqrtBox["6"], " ", SqrtBox[ RowBox[{"2", "-", RowBox[{"3", " ", "\[FormalT]"}], "-", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"7", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"3", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}]}]]}]}], "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{"6", " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "-", RowBox[{ RowBox[{"(", RowBox[{"25", " ", "\[FormalT]", " ", RowBox[{"Log", "[", RowBox[{ RowBox[{"-", "6"}], "+", RowBox[{"9", " ", "\[FormalT]"}], "+", RowBox[{"3", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SqrtBox["6"], " ", SqrtBox[ RowBox[{"2", "-", RowBox[{"3", " ", "\[FormalT]"}], "-", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"7", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"3", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}]}]]}]}], "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{"2", " ", SqrtBox["3"], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "-", RowBox[{ RowBox[{"(", RowBox[{"175", " ", SqrtBox[ FractionBox["5", "3"]], " ", SuperscriptBox["\[FormalT]", "2"], " ", RowBox[{"Log", "[", RowBox[{ RowBox[{"-", "6"}], "+", RowBox[{"9", " ", "\[FormalT]"}], "+", RowBox[{"3", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SqrtBox["6"], " ", SqrtBox[ RowBox[{"2", "-", RowBox[{"3", " ", "\[FormalT]"}], "-", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"7", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"3", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}]}]]}]}], "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{"2", " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "-", RowBox[{ RowBox[{"(", RowBox[{"1225", " ", SuperscriptBox["\[FormalT]", "2"], " ", RowBox[{"Log", "[", RowBox[{ RowBox[{"-", "6"}], "+", RowBox[{"9", " ", "\[FormalT]"}], "+", RowBox[{"3", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SqrtBox["6"], " ", SqrtBox[ RowBox[{"2", "-", RowBox[{"3", " ", "\[FormalT]"}], "-", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"7", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"3", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}]}]]}]}], "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{"6", " ", SqrtBox["3"], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "-", RowBox[{ RowBox[{"(", RowBox[{"9100", " ", SqrtBox[ FractionBox["5", "3"]], " ", SuperscriptBox["\[FormalT]", "3"], " ", RowBox[{"Log", "[", RowBox[{ RowBox[{"-", "6"}], "+", RowBox[{"9", " ", "\[FormalT]"}], "+", RowBox[{"3", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SqrtBox["6"], " ", SqrtBox[ RowBox[{"2", "-", RowBox[{"3", " ", "\[FormalT]"}], "-", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"7", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"3", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}]}]]}]}], "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{"9", " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "-", RowBox[{ RowBox[{"(", RowBox[{"2275", " ", SuperscriptBox["\[FormalT]", "3"], " ", RowBox[{"Log", "[", RowBox[{ RowBox[{"-", "6"}], "+", RowBox[{"9", " ", "\[FormalT]"}], "+", RowBox[{"3", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SqrtBox["6"], " ", SqrtBox[ RowBox[{"2", "-", RowBox[{"3", " ", "\[FormalT]"}], "-", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"7", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"3", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}]}]]}]}], "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{ SqrtBox["3"], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "-", RowBox[{ RowBox[{"(", RowBox[{"15925", " ", SqrtBox[ FractionBox["5", "3"]], " ", SuperscriptBox["\[FormalT]", "4"], " ", RowBox[{"Log", "[", RowBox[{ RowBox[{"-", "6"}], "+", RowBox[{"9", " ", "\[FormalT]"}], "+", RowBox[{"3", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SqrtBox["6"], " ", SqrtBox[ RowBox[{"2", "-", RowBox[{"3", " ", "\[FormalT]"}], "-", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"7", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"3", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}]}]]}]}], "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{"2", " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "-", RowBox[{ RowBox[{"(", RowBox[{"106925", " ", SuperscriptBox["\[FormalT]", "4"], " ", RowBox[{"Log", "[", RowBox[{ RowBox[{"-", "6"}], "+", RowBox[{"9", " ", "\[FormalT]"}], "+", RowBox[{"3", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SqrtBox["6"], " ", SqrtBox[ RowBox[{"2", "-", RowBox[{"3", " ", "\[FormalT]"}], "-", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"7", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"3", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}]}]]}]}], "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{"6", " ", SqrtBox["3"], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "-", RowBox[{ RowBox[{"(", RowBox[{"275275", " ", SqrtBox[ FractionBox["5", "3"]], " ", SuperscriptBox["\[FormalT]", "5"], " ", RowBox[{"Log", "[", RowBox[{ RowBox[{"-", "6"}], "+", RowBox[{"9", " ", "\[FormalT]"}], "+", RowBox[{"3", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SqrtBox["6"], " ", SqrtBox[ RowBox[{"2", "-", RowBox[{"3", " ", "\[FormalT]"}], "-", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"7", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"3", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}]}]]}]}], "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{"6", " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "-", RowBox[{ RowBox[{"(", RowBox[{"205205", " ", SuperscriptBox["\[FormalT]", "5"], " ", RowBox[{"Log", "[", RowBox[{ RowBox[{"-", "6"}], "+", RowBox[{"9", " ", "\[FormalT]"}], "+", RowBox[{"3", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SqrtBox["6"], " ", SqrtBox[ RowBox[{"2", "-", RowBox[{"3", " ", "\[FormalT]"}], "-", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"7", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"3", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}]}]]}]}], "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{"2", " ", SqrtBox["3"], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "-", RowBox[{ RowBox[{"(", RowBox[{"200200", " ", SqrtBox[ FractionBox["5", "3"]], " ", SuperscriptBox["\[FormalT]", "6"], " ", RowBox[{"Log", "[", RowBox[{ RowBox[{"-", "6"}], "+", RowBox[{"9", " ", "\[FormalT]"}], "+", RowBox[{"3", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SqrtBox["6"], " ", SqrtBox[ RowBox[{"2", "-", RowBox[{"3", " ", "\[FormalT]"}], "-", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"7", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"3", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}]}]]}]}], "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{ RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "-", RowBox[{ RowBox[{"(", RowBox[{"4029025", " ", SuperscriptBox["\[FormalT]", "6"], " ", RowBox[{"Log", "[", RowBox[{ RowBox[{"-", "6"}], "+", RowBox[{"9", " ", "\[FormalT]"}], "+", RowBox[{"3", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SqrtBox["6"], " ", SqrtBox[ RowBox[{"2", "-", RowBox[{"3", " ", "\[FormalT]"}], "-", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"7", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"3", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}]}]]}]}], "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{"9", " ", SqrtBox["3"], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "-", RowBox[{ RowBox[{"(", RowBox[{"1347775", " ", SqrtBox[ FractionBox["5", "3"]], " ", SuperscriptBox["\[FormalT]", "7"], " ", RowBox[{"Log", "[", RowBox[{ RowBox[{"-", "6"}], "+", RowBox[{"9", " ", "\[FormalT]"}], "+", RowBox[{"3", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SqrtBox["6"], " ", SqrtBox[ RowBox[{"2", "-", RowBox[{"3", " ", "\[FormalT]"}], "-", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"7", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"3", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}]}]]}]}], "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{"2", " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "-", RowBox[{ RowBox[{"(", RowBox[{"1004575", " ", SqrtBox["3"], " ", SuperscriptBox["\[FormalT]", "7"], " ", RowBox[{"Log", "[", RowBox[{ RowBox[{"-", "6"}], "+", RowBox[{"9", " ", "\[FormalT]"}], "+", RowBox[{"3", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SqrtBox["6"], " ", SqrtBox[ RowBox[{"2", "-", RowBox[{"3", " ", "\[FormalT]"}], "-", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"7", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"3", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}]}]]}]}], "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{"2", " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "-", RowBox[{ RowBox[{"(", RowBox[{"7890025", " ", SuperscriptBox["\[FormalT]", "8"], " ", RowBox[{"Log", "[", RowBox[{ RowBox[{"-", "6"}], "+", RowBox[{"9", " ", "\[FormalT]"}], "+", RowBox[{"3", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SqrtBox["6"], " ", SqrtBox[ RowBox[{"2", "-", RowBox[{"3", " ", "\[FormalT]"}], "-", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"7", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"3", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}]}]]}]}], "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{"2", " ", SqrtBox["3"], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "-", RowBox[{ RowBox[{"(", RowBox[{"1176175", " ", SqrtBox["15"], " ", SuperscriptBox["\[FormalT]", "8"], " ", RowBox[{"Log", "[", RowBox[{ RowBox[{"-", "6"}], "+", RowBox[{"9", " ", "\[FormalT]"}], "+", RowBox[{"3", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SqrtBox["6"], " ", SqrtBox[ RowBox[{"2", "-", RowBox[{"3", " ", "\[FormalT]"}], "-", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"7", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"3", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}]}]]}]}], "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{"2", " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "-", RowBox[{ RowBox[{"(", RowBox[{"32332300", " ", SqrtBox[ FractionBox["5", "3"]], " ", SuperscriptBox["\[FormalT]", "9"], " ", RowBox[{"Log", "[", RowBox[{ RowBox[{"-", "6"}], "+", RowBox[{"9", " ", "\[FormalT]"}], "+", RowBox[{"3", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SqrtBox["6"], " ", SqrtBox[ RowBox[{"2", "-", RowBox[{"3", " ", "\[FormalT]"}], "-", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"7", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"3", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}]}]]}]}], "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{"9", " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "-", RowBox[{ RowBox[{"(", RowBox[{"2677675", " ", SqrtBox["3"], " ", SuperscriptBox["\[FormalT]", "9"], " ", RowBox[{"Log", "[", RowBox[{ RowBox[{"-", "6"}], "+", RowBox[{"9", " ", "\[FormalT]"}], "+", RowBox[{"3", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SqrtBox["6"], " ", SqrtBox[ RowBox[{"2", "-", RowBox[{"3", " ", "\[FormalT]"}], "-", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"7", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"3", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}]}]]}]}], "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{ RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "-", RowBox[{ RowBox[{"(", RowBox[{"11286275", " ", SqrtBox[ FractionBox["5", "3"]], " ", SuperscriptBox["\[FormalT]", "10"], " ", RowBox[{"Log", "[", RowBox[{ RowBox[{"-", "6"}], "+", RowBox[{"9", " ", "\[FormalT]"}], "+", RowBox[{"3", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SqrtBox["6"], " ", SqrtBox[ RowBox[{"2", "-", RowBox[{"3", " ", "\[FormalT]"}], "-", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"7", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"3", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}]}]]}]}], "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{"2", " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "-", RowBox[{ RowBox[{"(", RowBox[{"75710635", " ", SuperscriptBox["\[FormalT]", "10"], " ", RowBox[{"Log", "[", RowBox[{ RowBox[{"-", "6"}], "+", RowBox[{"9", " ", "\[FormalT]"}], "+", RowBox[{"3", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SqrtBox["6"], " ", SqrtBox[ RowBox[{"2", "-", RowBox[{"3", " ", "\[FormalT]"}], "-", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"7", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"3", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}]}]]}]}], "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{"6", " ", SqrtBox["3"], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "-", RowBox[{ RowBox[{"(", RowBox[{"40292525", " ", SqrtBox[ FractionBox["5", "3"]], " ", SuperscriptBox["\[FormalT]", "11"], " ", RowBox[{"Log", "[", RowBox[{ RowBox[{"-", "6"}], "+", RowBox[{"9", " ", "\[FormalT]"}], "+", RowBox[{"3", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SqrtBox["6"], " ", SqrtBox[ RowBox[{"2", "-", RowBox[{"3", " ", "\[FormalT]"}], "-", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"7", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"3", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}]}]]}]}], "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{"6", " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "-", RowBox[{ RowBox[{"(", RowBox[{"30032275", " ", SuperscriptBox["\[FormalT]", "11"], " ", RowBox[{"Log", "[", RowBox[{ RowBox[{"-", "6"}], "+", RowBox[{"9", " ", "\[FormalT]"}], "+", RowBox[{"3", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SqrtBox["6"], " ", SqrtBox[ RowBox[{"2", "-", RowBox[{"3", " ", "\[FormalT]"}], "-", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"7", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"3", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}]}]]}]}], "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{"2", " ", SqrtBox["3"], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "-", RowBox[{ RowBox[{"(", RowBox[{"5860400", " ", SqrtBox[ FractionBox["5", "3"]], " ", SuperscriptBox["\[FormalT]", "12"], " ", RowBox[{"Log", "[", RowBox[{ RowBox[{"-", "6"}], "+", RowBox[{"9", " ", "\[FormalT]"}], "+", RowBox[{"3", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SqrtBox["6"], " ", SqrtBox[ RowBox[{"2", "-", RowBox[{"3", " ", "\[FormalT]"}], "-", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"7", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"3", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}]}]]}]}], "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{ RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "-", RowBox[{ RowBox[{"(", RowBox[{"117938275", " ", SuperscriptBox["\[FormalT]", "12"], " ", RowBox[{"Log", "[", RowBox[{ RowBox[{"-", "6"}], "+", RowBox[{"9", " ", "\[FormalT]"}], "+", RowBox[{"3", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SqrtBox["6"], " ", SqrtBox[ RowBox[{"2", "-", RowBox[{"3", " ", "\[FormalT]"}], "-", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"7", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"3", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}]}]]}]}], "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{"9", " ", SqrtBox["3"], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "-", RowBox[{ RowBox[{"(", RowBox[{"21243775", " ", SqrtBox[ FractionBox["5", "3"]], " ", SuperscriptBox["\[FormalT]", "13"], " ", RowBox[{"Log", "[", RowBox[{ RowBox[{"-", "6"}], "+", RowBox[{"9", " ", "\[FormalT]"}], "+", RowBox[{"3", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SqrtBox["6"], " ", SqrtBox[ RowBox[{"2", "-", RowBox[{"3", " ", "\[FormalT]"}], "-", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"7", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"3", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}]}]]}]}], "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{"6", " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "-", RowBox[{ RowBox[{"(", RowBox[{"15834175", " ", SuperscriptBox["\[FormalT]", "13"], " ", RowBox[{"Log", "[", RowBox[{ RowBox[{"-", "6"}], "+", RowBox[{"9", " ", "\[FormalT]"}], "+", RowBox[{"3", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SqrtBox["6"], " ", SqrtBox[ RowBox[{"2", "-", RowBox[{"3", " ", "\[FormalT]"}], "-", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"7", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"3", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}]}]]}]}], "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{"2", " ", SqrtBox["3"], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "-", RowBox[{ RowBox[{"(", RowBox[{"2648425", " ", SqrtBox[ FractionBox["5", "3"]], " ", SuperscriptBox["\[FormalT]", "14"], " ", RowBox[{"Log", "[", RowBox[{ RowBox[{"-", "6"}], "+", RowBox[{"9", " ", "\[FormalT]"}], "+", RowBox[{"3", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SqrtBox["6"], " ", SqrtBox[ RowBox[{"2", "-", RowBox[{"3", " ", "\[FormalT]"}], "-", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"7", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"3", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}]}]]}]}], "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{"2", " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "-", RowBox[{ RowBox[{"(", RowBox[{"17766175", " ", SuperscriptBox["\[FormalT]", "14"], " ", RowBox[{"Log", "[", RowBox[{ RowBox[{"-", "6"}], "+", RowBox[{"9", " ", "\[FormalT]"}], "+", RowBox[{"3", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SqrtBox["6"], " ", SqrtBox[ RowBox[{"2", "-", RowBox[{"3", " ", "\[FormalT]"}], "-", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"7", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"3", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}]}]]}]}], "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{"6", " ", SqrtBox["3"], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "-", RowBox[{ RowBox[{"(", RowBox[{"2080100", " ", SqrtBox[ FractionBox["5", "3"]], " ", SuperscriptBox["\[FormalT]", "15"], " ", RowBox[{"Log", "[", RowBox[{ RowBox[{"-", "6"}], "+", RowBox[{"9", " ", "\[FormalT]"}], "+", RowBox[{"3", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SqrtBox["6"], " ", SqrtBox[ RowBox[{"2", "-", RowBox[{"3", " ", "\[FormalT]"}], "-", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"7", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"3", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}]}]]}]}], "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{"9", " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "-", RowBox[{ RowBox[{"(", RowBox[{"516805", " ", SuperscriptBox["\[FormalT]", "15"], " ", RowBox[{"Log", "[", RowBox[{ RowBox[{"-", "6"}], "+", RowBox[{"9", " ", "\[FormalT]"}], "+", RowBox[{"3", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SqrtBox["6"], " ", SqrtBox[ RowBox[{"2", "-", RowBox[{"3", " ", "\[FormalT]"}], "-", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"7", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"3", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}]}]]}]}], "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{ SqrtBox["3"], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "-", RowBox[{ RowBox[{"(", RowBox[{"8", " ", SqrtBox["2"], " ", RowBox[{"Log", "[", RowBox[{"4", "+", RowBox[{"6", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"5", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"3", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"2", " ", SqrtBox["2"], " ", SqrtBox[ RowBox[{ RowBox[{"(", RowBox[{"1", "+", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SuperscriptBox["\[FormalT]", "2"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"2", " ", RowBox[{"(", RowBox[{"3", "+", SqrtBox["5"]}], ")"}], " ", "\[FormalT]"}], "+", RowBox[{ RowBox[{"(", RowBox[{"7", "+", RowBox[{"3", " ", SqrtBox["5"]}]}], ")"}], " ", SuperscriptBox["\[FormalT]", "2"]}]}], ")"}]}]]}]}], "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{"3", " ", SqrtBox[ RowBox[{"2", "+", RowBox[{"6", " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"7", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"3", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}]}]], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "-", RowBox[{ RowBox[{"(", RowBox[{"52", " ", SqrtBox["2"], " ", "\[FormalT]", " ", RowBox[{"Log", "[", RowBox[{"4", "+", RowBox[{"6", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"5", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"3", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"2", " ", SqrtBox["2"], " ", SqrtBox[ RowBox[{ RowBox[{"(", RowBox[{"1", "+", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SuperscriptBox["\[FormalT]", "2"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"2", " ", RowBox[{"(", RowBox[{"3", "+", SqrtBox["5"]}], ")"}], " ", "\[FormalT]"}], "+", RowBox[{ RowBox[{"(", RowBox[{"7", "+", RowBox[{"3", " ", SqrtBox["5"]}]}], ")"}], " ", SuperscriptBox["\[FormalT]", "2"]}]}], ")"}]}]]}]}], "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{ SqrtBox[ RowBox[{"2", "+", RowBox[{"6", " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"7", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"3", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}]}]], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "-", RowBox[{ RowBox[{"(", RowBox[{"52", " ", SqrtBox["10"], " ", "\[FormalT]", " ", RowBox[{"Log", "[", RowBox[{"4", "+", RowBox[{"6", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"5", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"3", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"2", " ", SqrtBox["2"], " ", SqrtBox[ RowBox[{ RowBox[{"(", RowBox[{"1", "+", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SuperscriptBox["\[FormalT]", "2"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"2", " ", RowBox[{"(", RowBox[{"3", "+", SqrtBox["5"]}], ")"}], " ", "\[FormalT]"}], "+", RowBox[{ RowBox[{"(", RowBox[{"7", "+", RowBox[{"3", " ", SqrtBox["5"]}]}], ")"}], " ", SuperscriptBox["\[FormalT]", "2"]}]}], ")"}]}]]}]}], "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{"3", " ", SqrtBox[ RowBox[{"2", "+", RowBox[{"6", " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"7", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"3", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}]}]], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "-", RowBox[{ RowBox[{"(", RowBox[{"728", " ", SqrtBox["2"], " ", SuperscriptBox["\[FormalT]", "2"], " ", RowBox[{"Log", "[", RowBox[{"4", "+", RowBox[{"6", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"5", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"3", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"2", " ", SqrtBox["2"], " ", SqrtBox[ RowBox[{ RowBox[{"(", RowBox[{"1", "+", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SuperscriptBox["\[FormalT]", "2"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"2", " ", RowBox[{"(", RowBox[{"3", "+", SqrtBox["5"]}], ")"}], " ", "\[FormalT]"}], "+", RowBox[{ RowBox[{"(", RowBox[{"7", "+", RowBox[{"3", " ", SqrtBox["5"]}]}], ")"}], " ", SuperscriptBox["\[FormalT]", "2"]}]}], ")"}]}]]}]}], "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{ SqrtBox[ RowBox[{"2", "+", RowBox[{"6", " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"7", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"3", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}]}]], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "-", RowBox[{ RowBox[{"(", RowBox[{"312", " ", SqrtBox["10"], " ", SuperscriptBox["\[FormalT]", "2"], " ", RowBox[{"Log", "[", RowBox[{"4", "+", RowBox[{"6", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"5", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"3", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"2", " ", SqrtBox["2"], " ", SqrtBox[ RowBox[{ RowBox[{"(", RowBox[{"1", "+", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SuperscriptBox["\[FormalT]", "2"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"2", " ", RowBox[{"(", RowBox[{"3", "+", SqrtBox["5"]}], ")"}], " ", "\[FormalT]"}], "+", RowBox[{ RowBox[{"(", RowBox[{"7", "+", RowBox[{"3", " ", SqrtBox["5"]}]}], ")"}], " ", SuperscriptBox["\[FormalT]", "2"]}]}], ")"}]}]]}]}], "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{ SqrtBox[ RowBox[{"2", "+", RowBox[{"6", " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"7", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"3", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}]}]], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "-", RowBox[{ RowBox[{"(", RowBox[{"6864", " ", SqrtBox["2"], " ", SuperscriptBox["\[FormalT]", "3"], " ", RowBox[{"Log", "[", RowBox[{"4", "+", RowBox[{"6", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"5", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"3", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"2", " ", SqrtBox["2"], " ", SqrtBox[ RowBox[{ RowBox[{"(", RowBox[{"1", "+", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SuperscriptBox["\[FormalT]", "2"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"2", " ", RowBox[{"(", RowBox[{"3", "+", SqrtBox["5"]}], ")"}], " ", "\[FormalT]"}], "+", RowBox[{ RowBox[{"(", RowBox[{"7", "+", RowBox[{"3", " ", SqrtBox["5"]}]}], ")"}], " ", SuperscriptBox["\[FormalT]", "2"]}]}], ")"}]}]]}]}], "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{ SqrtBox[ RowBox[{"2", "+", RowBox[{"6", " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"7", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"3", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}]}]], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "-", RowBox[{ RowBox[{"(", RowBox[{"9152", " ", SqrtBox["10"], " ", SuperscriptBox["\[FormalT]", "3"], " ", RowBox[{"Log", "[", RowBox[{"4", "+", RowBox[{"6", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"5", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"3", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"2", " ", SqrtBox["2"], " ", SqrtBox[ RowBox[{ RowBox[{"(", RowBox[{"1", "+", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SuperscriptBox["\[FormalT]", "2"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"2", " ", RowBox[{"(", RowBox[{"3", "+", SqrtBox["5"]}], ")"}], " ", "\[FormalT]"}], "+", RowBox[{ RowBox[{"(", RowBox[{"7", "+", RowBox[{"3", " ", SqrtBox["5"]}]}], ")"}], " ", SuperscriptBox["\[FormalT]", "2"]}]}], ")"}]}]]}]}], "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{"3", " ", SqrtBox[ RowBox[{"2", "+", RowBox[{"6", " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"7", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"3", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}]}]], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "-", RowBox[{ RowBox[{"(", RowBox[{"134420", " ", SqrtBox["2"], " ", SuperscriptBox["\[FormalT]", "4"], " ", RowBox[{"Log", "[", RowBox[{"4", "+", RowBox[{"6", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"5", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"3", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"2", " ", SqrtBox["2"], " ", SqrtBox[ RowBox[{ RowBox[{"(", RowBox[{"1", "+", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SuperscriptBox["\[FormalT]", "2"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"2", " ", RowBox[{"(", RowBox[{"3", "+", SqrtBox["5"]}], ")"}], " ", "\[FormalT]"}], "+", RowBox[{ RowBox[{"(", RowBox[{"7", "+", RowBox[{"3", " ", SqrtBox["5"]}]}], ")"}], " ", SuperscriptBox["\[FormalT]", "2"]}]}], ")"}]}]]}]}], "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{"3", " ", SqrtBox[ RowBox[{"2", "+", RowBox[{"6", " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"7", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"3", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}]}]], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "-", RowBox[{ RowBox[{"(", RowBox[{"20020", " ", SqrtBox["10"], " ", SuperscriptBox["\[FormalT]", "4"], " ", RowBox[{"Log", "[", RowBox[{"4", "+", RowBox[{"6", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"5", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"3", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"2", " ", SqrtBox["2"], " ", SqrtBox[ RowBox[{ RowBox[{"(", RowBox[{"1", "+", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SuperscriptBox["\[FormalT]", "2"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"2", " ", RowBox[{"(", RowBox[{"3", "+", SqrtBox["5"]}], ")"}], " ", "\[FormalT]"}], "+", RowBox[{ RowBox[{"(", RowBox[{"7", "+", RowBox[{"3", " ", SqrtBox["5"]}]}], ")"}], " ", SuperscriptBox["\[FormalT]", "2"]}]}], ")"}]}]]}]}], "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{ SqrtBox[ RowBox[{"2", "+", RowBox[{"6", " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"7", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"3", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}]}]], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "-", RowBox[{ RowBox[{"(", RowBox[{"211068", " ", SqrtBox["2"], " ", SuperscriptBox["\[FormalT]", "5"], " ", RowBox[{"Log", "[", RowBox[{"4", "+", RowBox[{"6", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"5", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"3", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"2", " ", SqrtBox["2"], " ", SqrtBox[ RowBox[{ RowBox[{"(", RowBox[{"1", "+", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SuperscriptBox["\[FormalT]", "2"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"2", " ", RowBox[{"(", RowBox[{"3", "+", SqrtBox["5"]}], ")"}], " ", "\[FormalT]"}], "+", RowBox[{ RowBox[{"(", RowBox[{"7", "+", RowBox[{"3", " ", SqrtBox["5"]}]}], ")"}], " ", SuperscriptBox["\[FormalT]", "2"]}]}], ")"}]}]]}]}], "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{ SqrtBox[ RowBox[{"2", "+", RowBox[{"6", " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"7", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"3", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}]}]], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "-", RowBox[{ RowBox[{"(", RowBox[{"94380", " ", SqrtBox["10"], " ", SuperscriptBox["\[FormalT]", "5"], " ", RowBox[{"Log", "[", RowBox[{"4", "+", RowBox[{"6", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"5", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"3", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"2", " ", SqrtBox["2"], " ", SqrtBox[ RowBox[{ RowBox[{"(", RowBox[{"1", "+", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SuperscriptBox["\[FormalT]", "2"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"2", " ", RowBox[{"(", RowBox[{"3", "+", SqrtBox["5"]}], ")"}], " ", "\[FormalT]"}], "+", RowBox[{ RowBox[{"(", RowBox[{"7", "+", RowBox[{"3", " ", SqrtBox["5"]}]}], ")"}], " ", SuperscriptBox["\[FormalT]", "2"]}]}], ")"}]}]]}]}], "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{ SqrtBox[ RowBox[{"2", "+", RowBox[{"6", " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"7", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"3", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}]}]], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "-", RowBox[{ RowBox[{"(", RowBox[{"736736", " ", SqrtBox["2"], " ", SuperscriptBox["\[FormalT]", "6"], " ", RowBox[{"Log", "[", RowBox[{"4", "+", RowBox[{"6", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"5", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"3", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"2", " ", SqrtBox["2"], " ", SqrtBox[ RowBox[{ RowBox[{"(", RowBox[{"1", "+", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SuperscriptBox["\[FormalT]", "2"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"2", " ", RowBox[{"(", RowBox[{"3", "+", SqrtBox["5"]}], ")"}], " ", "\[FormalT]"}], "+", RowBox[{ RowBox[{"(", RowBox[{"7", "+", RowBox[{"3", " ", SqrtBox["5"]}]}], ")"}], " ", SuperscriptBox["\[FormalT]", "2"]}]}], ")"}]}]]}]}], "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{ SqrtBox[ RowBox[{"2", "+", RowBox[{"6", " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"7", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"3", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}]}]], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "-", RowBox[{ RowBox[{"(", RowBox[{"329472", " ", SqrtBox["10"], " ", SuperscriptBox["\[FormalT]", "6"], " ", RowBox[{"Log", "[", RowBox[{"4", "+", RowBox[{"6", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"5", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"3", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"2", " ", SqrtBox["2"], " ", SqrtBox[ RowBox[{ RowBox[{"(", RowBox[{"1", "+", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SuperscriptBox["\[FormalT]", "2"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"2", " ", RowBox[{"(", RowBox[{"3", "+", SqrtBox["5"]}], ")"}], " ", "\[FormalT]"}], "+", RowBox[{ RowBox[{"(", RowBox[{"7", "+", RowBox[{"3", " ", SqrtBox["5"]}]}], ")"}], " ", SuperscriptBox["\[FormalT]", "2"]}]}], ")"}]}]]}]}], "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{ SqrtBox[ RowBox[{"2", "+", RowBox[{"6", " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"7", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"3", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}]}]], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "-", RowBox[{ RowBox[{"(", RowBox[{"1928784", " ", SqrtBox["2"], " ", SuperscriptBox["\[FormalT]", "7"], " ", RowBox[{"Log", "[", RowBox[{"4", "+", RowBox[{"6", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"5", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"3", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"2", " ", SqrtBox["2"], " ", SqrtBox[ RowBox[{ RowBox[{"(", RowBox[{"1", "+", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SuperscriptBox["\[FormalT]", "2"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"2", " ", RowBox[{"(", RowBox[{"3", "+", SqrtBox["5"]}], ")"}], " ", "\[FormalT]"}], "+", RowBox[{ RowBox[{"(", RowBox[{"7", "+", RowBox[{"3", " ", SqrtBox["5"]}]}], ")"}], " ", SuperscriptBox["\[FormalT]", "2"]}]}], ")"}]}]]}]}], "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{ SqrtBox[ RowBox[{"2", "+", RowBox[{"6", " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"7", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"3", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}]}]], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "-", RowBox[{ RowBox[{"(", RowBox[{"862576", " ", SqrtBox["10"], " ", SuperscriptBox["\[FormalT]", "7"], " ", RowBox[{"Log", "[", RowBox[{"4", "+", RowBox[{"6", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"5", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"3", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"2", " ", SqrtBox["2"], " ", SqrtBox[ RowBox[{ RowBox[{"(", RowBox[{"1", "+", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SuperscriptBox["\[FormalT]", "2"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"2", " ", RowBox[{"(", RowBox[{"3", "+", SqrtBox["5"]}], ")"}], " ", "\[FormalT]"}], "+", RowBox[{ RowBox[{"(", RowBox[{"7", "+", RowBox[{"3", " ", SqrtBox["5"]}]}], ")"}], " ", SuperscriptBox["\[FormalT]", "2"]}]}], ")"}]}]]}]}], "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{ SqrtBox[ RowBox[{"2", "+", RowBox[{"6", " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"7", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"3", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}]}]], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "-", RowBox[{ RowBox[{"(", RowBox[{"3787212", " ", SqrtBox["2"], " ", SuperscriptBox["\[FormalT]", "8"], " ", RowBox[{"Log", "[", RowBox[{"4", "+", RowBox[{"6", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"5", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"3", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"2", " ", SqrtBox["2"], " ", SqrtBox[ RowBox[{ RowBox[{"(", RowBox[{"1", "+", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SuperscriptBox["\[FormalT]", "2"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"2", " ", RowBox[{"(", RowBox[{"3", "+", SqrtBox["5"]}], ")"}], " ", "\[FormalT]"}], "+", RowBox[{ RowBox[{"(", RowBox[{"7", "+", RowBox[{"3", " ", SqrtBox["5"]}]}], ")"}], " ", SuperscriptBox["\[FormalT]", "2"]}]}], ")"}]}]]}]}], "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{ SqrtBox[ RowBox[{"2", "+", RowBox[{"6", " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"7", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"3", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}]}]], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "-", RowBox[{ RowBox[{"(", RowBox[{"1693692", " ", SqrtBox["10"], " ", SuperscriptBox["\[FormalT]", "8"], " ", RowBox[{"Log", "[", RowBox[{"4", "+", RowBox[{"6", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"5", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"3", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"2", " ", SqrtBox["2"], " ", SqrtBox[ RowBox[{ RowBox[{"(", RowBox[{"1", "+", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SuperscriptBox["\[FormalT]", "2"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"2", " ", RowBox[{"(", RowBox[{"3", "+", SqrtBox["5"]}], ")"}], " ", "\[FormalT]"}], "+", RowBox[{ RowBox[{"(", RowBox[{"7", "+", RowBox[{"3", " ", SqrtBox["5"]}]}], ")"}], " ", SuperscriptBox["\[FormalT]", "2"]}]}], ")"}]}]]}]}], "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{ SqrtBox[ RowBox[{"2", "+", RowBox[{"6", " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"7", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"3", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}]}]], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "-", RowBox[{ RowBox[{"(", RowBox[{"5508360", " ", SqrtBox["2"], " ", SuperscriptBox["\[FormalT]", "9"], " ", RowBox[{"Log", "[", RowBox[{"4", "+", RowBox[{"6", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"5", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"3", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"2", " ", SqrtBox["2"], " ", SqrtBox[ RowBox[{ RowBox[{"(", RowBox[{"1", "+", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SuperscriptBox["\[FormalT]", "2"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"2", " ", RowBox[{"(", RowBox[{"3", "+", SqrtBox["5"]}], ")"}], " ", "\[FormalT]"}], "+", RowBox[{ RowBox[{"(", RowBox[{"7", "+", RowBox[{"3", " ", SqrtBox["5"]}]}], ")"}], " ", SuperscriptBox["\[FormalT]", "2"]}]}], ")"}]}]]}]}], "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{ SqrtBox[ RowBox[{"2", "+", RowBox[{"6", " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"7", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"3", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}]}]], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "-", RowBox[{ RowBox[{"(", RowBox[{"7390240", " ", SqrtBox["10"], " ", SuperscriptBox["\[FormalT]", "9"], " ", RowBox[{"Log", "[", RowBox[{"4", "+", RowBox[{"6", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"5", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"3", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"2", " ", SqrtBox["2"], " ", SqrtBox[ RowBox[{ RowBox[{"(", RowBox[{"1", "+", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SuperscriptBox["\[FormalT]", "2"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"2", " ", RowBox[{"(", RowBox[{"3", "+", SqrtBox["5"]}], ")"}], " ", "\[FormalT]"}], "+", RowBox[{ RowBox[{"(", RowBox[{"7", "+", RowBox[{"3", " ", SqrtBox["5"]}]}], ")"}], " ", SuperscriptBox["\[FormalT]", "2"]}]}], ")"}]}]]}]}], "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{"3", " ", SqrtBox[ RowBox[{"2", "+", RowBox[{"6", " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"7", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"3", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}]}]], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "-", RowBox[{ RowBox[{"(", RowBox[{"17305288", " ", SqrtBox["2"], " ", SuperscriptBox["\[FormalT]", "10"], " ", RowBox[{"Log", "[", RowBox[{"4", "+", RowBox[{"6", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"5", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"3", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"2", " ", SqrtBox["2"], " ", SqrtBox[ RowBox[{ RowBox[{"(", RowBox[{"1", "+", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SuperscriptBox["\[FormalT]", "2"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"2", " ", RowBox[{"(", RowBox[{"3", "+", SqrtBox["5"]}], ")"}], " ", "\[FormalT]"}], "+", RowBox[{ RowBox[{"(", RowBox[{"7", "+", RowBox[{"3", " ", SqrtBox["5"]}]}], ")"}], " ", SuperscriptBox["\[FormalT]", "2"]}]}], ")"}]}]]}]}], "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{"3", " ", SqrtBox[ RowBox[{"2", "+", RowBox[{"6", " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"7", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"3", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}]}]], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "-", RowBox[{ RowBox[{"(", RowBox[{"2579720", " ", SqrtBox["10"], " ", SuperscriptBox["\[FormalT]", "10"], " ", RowBox[{"Log", "[", RowBox[{"4", "+", RowBox[{"6", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"5", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"3", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"2", " ", SqrtBox["2"], " ", SqrtBox[ RowBox[{ RowBox[{"(", RowBox[{"1", "+", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SuperscriptBox["\[FormalT]", "2"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"2", " ", RowBox[{"(", RowBox[{"3", "+", SqrtBox["5"]}], ")"}], " ", "\[FormalT]"}], "+", RowBox[{ RowBox[{"(", RowBox[{"7", "+", RowBox[{"3", " ", SqrtBox["5"]}]}], ")"}], " ", SuperscriptBox["\[FormalT]", "2"]}]}], ")"}]}]]}]}], "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{ SqrtBox[ RowBox[{"2", "+", RowBox[{"6", " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"7", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"3", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}]}]], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "-", RowBox[{ RowBox[{"(", RowBox[{"4118712", " ", SqrtBox["2"], " ", SuperscriptBox["\[FormalT]", "11"], " ", RowBox[{"Log", "[", RowBox[{"4", "+", RowBox[{"6", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"5", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"3", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"2", " ", SqrtBox["2"], " ", SqrtBox[ RowBox[{ RowBox[{"(", RowBox[{"1", "+", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SuperscriptBox["\[FormalT]", "2"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"2", " ", RowBox[{"(", RowBox[{"3", "+", SqrtBox["5"]}], ")"}], " ", "\[FormalT]"}], "+", RowBox[{ RowBox[{"(", RowBox[{"7", "+", RowBox[{"3", " ", SqrtBox["5"]}]}], ")"}], " ", SuperscriptBox["\[FormalT]", "2"]}]}], ")"}]}]]}]}], "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{ SqrtBox[ RowBox[{"2", "+", RowBox[{"6", " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"7", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"3", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}]}]], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "-", RowBox[{ RowBox[{"(", RowBox[{"1841944", " ", SqrtBox["10"], " ", SuperscriptBox["\[FormalT]", "11"], " ", RowBox[{"Log", "[", RowBox[{"4", "+", RowBox[{"6", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"5", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"3", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"2", " ", SqrtBox["2"], " ", SqrtBox[ RowBox[{ RowBox[{"(", RowBox[{"1", "+", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SuperscriptBox["\[FormalT]", "2"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"2", " ", RowBox[{"(", RowBox[{"3", "+", SqrtBox["5"]}], ")"}], " ", "\[FormalT]"}], "+", RowBox[{ RowBox[{"(", RowBox[{"7", "+", RowBox[{"3", " ", SqrtBox["5"]}]}], ")"}], " ", SuperscriptBox["\[FormalT]", "2"]}]}], ")"}]}]]}]}], "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{ SqrtBox[ RowBox[{"2", "+", RowBox[{"6", " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"7", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"3", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}]}]], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "-", RowBox[{ RowBox[{"(", RowBox[{"5391464", " ", SqrtBox["2"], " ", SuperscriptBox["\[FormalT]", "12"], " ", RowBox[{"Log", "[", RowBox[{"4", "+", RowBox[{"6", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"5", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"3", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"2", " ", SqrtBox["2"], " ", SqrtBox[ RowBox[{ RowBox[{"(", RowBox[{"1", "+", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SuperscriptBox["\[FormalT]", "2"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"2", " ", RowBox[{"(", RowBox[{"3", "+", SqrtBox["5"]}], ")"}], " ", "\[FormalT]"}], "+", RowBox[{ RowBox[{"(", RowBox[{"7", "+", RowBox[{"3", " ", SqrtBox["5"]}]}], ")"}], " ", SuperscriptBox["\[FormalT]", "2"]}]}], ")"}]}]]}]}], "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{"3", " ", SqrtBox[ RowBox[{"2", "+", RowBox[{"6", " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"7", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"3", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}]}]], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "-", RowBox[{ RowBox[{"(", RowBox[{"803712", " ", SqrtBox["10"], " ", SuperscriptBox["\[FormalT]", "12"], " ", RowBox[{"Log", "[", RowBox[{"4", "+", RowBox[{"6", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"5", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"3", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"2", " ", SqrtBox["2"], " ", SqrtBox[ RowBox[{ RowBox[{"(", RowBox[{"1", "+", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SuperscriptBox["\[FormalT]", "2"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"2", " ", RowBox[{"(", RowBox[{"3", "+", SqrtBox["5"]}], ")"}], " ", "\[FormalT]"}], "+", RowBox[{ RowBox[{"(", RowBox[{"7", "+", RowBox[{"3", " ", SqrtBox["5"]}]}], ")"}], " ", SuperscriptBox["\[FormalT]", "2"]}]}], ")"}]}]]}]}], "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{ SqrtBox[ RowBox[{"2", "+", RowBox[{"6", " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"7", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"3", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}]}]], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "-", RowBox[{ RowBox[{"(", RowBox[{"361924", " ", SqrtBox["2"], " ", SuperscriptBox["\[FormalT]", "13"], " ", RowBox[{"Log", "[", RowBox[{"4", "+", RowBox[{"6", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"5", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"3", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"2", " ", SqrtBox["2"], " ", SqrtBox[ RowBox[{ RowBox[{"(", RowBox[{"1", "+", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SuperscriptBox["\[FormalT]", "2"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"2", " ", RowBox[{"(", RowBox[{"3", "+", SqrtBox["5"]}], ")"}], " ", "\[FormalT]"}], "+", RowBox[{ RowBox[{"(", RowBox[{"7", "+", RowBox[{"3", " ", SqrtBox["5"]}]}], ")"}], " ", SuperscriptBox["\[FormalT]", "2"]}]}], ")"}]}]]}]}], "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{ SqrtBox[ RowBox[{"2", "+", RowBox[{"6", " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"7", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"3", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}]}]], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "-", RowBox[{ RowBox[{"(", RowBox[{"485572", " ", SqrtBox["10"], " ", SuperscriptBox["\[FormalT]", "13"], " ", RowBox[{"Log", "[", RowBox[{"4", "+", RowBox[{"6", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"5", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"3", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"2", " ", SqrtBox["2"], " ", SqrtBox[ RowBox[{ RowBox[{"(", RowBox[{"1", "+", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SuperscriptBox["\[FormalT]", "2"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"2", " ", RowBox[{"(", RowBox[{"3", "+", SqrtBox["5"]}], ")"}], " ", "\[FormalT]"}], "+", RowBox[{ RowBox[{"(", RowBox[{"7", "+", RowBox[{"3", " ", SqrtBox["5"]}]}], ")"}], " ", SuperscriptBox["\[FormalT]", "2"]}]}], ")"}]}]]}]}], "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{"3", " ", SqrtBox[ RowBox[{"2", "+", RowBox[{"6", " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"7", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"3", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}]}]], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{"8", " ", SqrtBox["2"], " ", RowBox[{"Log", "[", RowBox[{ RowBox[{"-", "2"}], "+", RowBox[{"3", " ", "\[FormalT]"}], "+", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"14", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"6", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"2", " ", SqrtBox["2"], " ", SqrtBox[ RowBox[{"2", "+", RowBox[{"3", " ", "\[FormalT]"}], "+", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"18", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}]]}]}], "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{"3", " ", SqrtBox[ RowBox[{"2", "+", RowBox[{"6", " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"7", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"3", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}]}]], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{"52", " ", SqrtBox["2"], " ", "\[FormalT]", " ", RowBox[{"Log", "[", RowBox[{ RowBox[{"-", "2"}], "+", RowBox[{"3", " ", "\[FormalT]"}], "+", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"14", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"6", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"2", " ", SqrtBox["2"], " ", SqrtBox[ RowBox[{"2", "+", RowBox[{"3", " ", "\[FormalT]"}], "+", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"18", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}]]}]}], "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{ SqrtBox[ RowBox[{"2", "+", RowBox[{"6", " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"7", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"3", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}]}]], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{"52", " ", SqrtBox["10"], " ", "\[FormalT]", " ", RowBox[{"Log", "[", RowBox[{ RowBox[{"-", "2"}], "+", RowBox[{"3", " ", "\[FormalT]"}], "+", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"14", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"6", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"2", " ", SqrtBox["2"], " ", SqrtBox[ RowBox[{"2", "+", RowBox[{"3", " ", "\[FormalT]"}], "+", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"18", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}]]}]}], "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{"3", " ", SqrtBox[ RowBox[{"2", "+", RowBox[{"6", " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"7", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"3", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}]}]], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{"728", " ", SqrtBox["2"], " ", SuperscriptBox["\[FormalT]", "2"], " ", RowBox[{"Log", "[", RowBox[{ RowBox[{"-", "2"}], "+", RowBox[{"3", " ", "\[FormalT]"}], "+", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"14", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"6", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"2", " ", SqrtBox["2"], " ", SqrtBox[ RowBox[{"2", "+", RowBox[{"3", " ", "\[FormalT]"}], "+", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"18", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}]]}]}], "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{ SqrtBox[ RowBox[{"2", "+", RowBox[{"6", " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"7", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"3", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}]}]], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{"312", " ", SqrtBox["10"], " ", SuperscriptBox["\[FormalT]", "2"], " ", RowBox[{"Log", "[", RowBox[{ RowBox[{"-", "2"}], "+", RowBox[{"3", " ", "\[FormalT]"}], "+", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"14", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"6", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"2", " ", SqrtBox["2"], " ", SqrtBox[ RowBox[{"2", "+", RowBox[{"3", " ", "\[FormalT]"}], "+", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"18", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}]]}]}], "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{ SqrtBox[ RowBox[{"2", "+", RowBox[{"6", " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"7", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"3", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}]}]], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{"6864", " ", SqrtBox["2"], " ", SuperscriptBox["\[FormalT]", "3"], " ", RowBox[{"Log", "[", RowBox[{ RowBox[{"-", "2"}], "+", RowBox[{"3", " ", "\[FormalT]"}], "+", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"14", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"6", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"2", " ", SqrtBox["2"], " ", SqrtBox[ RowBox[{"2", "+", RowBox[{"3", " ", "\[FormalT]"}], "+", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"18", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}]]}]}], "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{ SqrtBox[ RowBox[{"2", "+", RowBox[{"6", " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"7", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"3", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}]}]], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{"9152", " ", SqrtBox["10"], " ", SuperscriptBox["\[FormalT]", "3"], " ", RowBox[{"Log", "[", RowBox[{ RowBox[{"-", "2"}], "+", RowBox[{"3", " ", "\[FormalT]"}], "+", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"14", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"6", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"2", " ", SqrtBox["2"], " ", SqrtBox[ RowBox[{"2", "+", RowBox[{"3", " ", "\[FormalT]"}], "+", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"18", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}]]}]}], "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{"3", " ", SqrtBox[ RowBox[{"2", "+", RowBox[{"6", " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"7", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"3", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}]}]], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{"134420", " ", SqrtBox["2"], " ", SuperscriptBox["\[FormalT]", "4"], " ", RowBox[{"Log", "[", RowBox[{ RowBox[{"-", "2"}], "+", RowBox[{"3", " ", "\[FormalT]"}], "+", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"14", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"6", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"2", " ", SqrtBox["2"], " ", SqrtBox[ RowBox[{"2", "+", RowBox[{"3", " ", "\[FormalT]"}], "+", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"18", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}]]}]}], "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{"3", " ", SqrtBox[ RowBox[{"2", "+", RowBox[{"6", " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"7", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"3", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}]}]], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{"20020", " ", SqrtBox["10"], " ", SuperscriptBox["\[FormalT]", "4"], " ", RowBox[{"Log", "[", RowBox[{ RowBox[{"-", "2"}], "+", RowBox[{"3", " ", "\[FormalT]"}], "+", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"14", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"6", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"2", " ", SqrtBox["2"], " ", SqrtBox[ RowBox[{"2", "+", RowBox[{"3", " ", "\[FormalT]"}], "+", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"18", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}]]}]}], "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{ SqrtBox[ RowBox[{"2", "+", RowBox[{"6", " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"7", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"3", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}]}]], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{"211068", " ", SqrtBox["2"], " ", SuperscriptBox["\[FormalT]", "5"], " ", RowBox[{"Log", "[", RowBox[{ RowBox[{"-", "2"}], "+", RowBox[{"3", " ", "\[FormalT]"}], "+", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"14", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"6", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"2", " ", SqrtBox["2"], " ", SqrtBox[ RowBox[{"2", "+", RowBox[{"3", " ", "\[FormalT]"}], "+", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"18", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}]]}]}], "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{ SqrtBox[ RowBox[{"2", "+", RowBox[{"6", " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"7", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"3", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}]}]], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{"94380", " ", SqrtBox["10"], " ", SuperscriptBox["\[FormalT]", "5"], " ", RowBox[{"Log", "[", RowBox[{ RowBox[{"-", "2"}], "+", RowBox[{"3", " ", "\[FormalT]"}], "+", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"14", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"6", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"2", " ", SqrtBox["2"], " ", SqrtBox[ RowBox[{"2", "+", RowBox[{"3", " ", "\[FormalT]"}], "+", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"18", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}]]}]}], "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{ SqrtBox[ RowBox[{"2", "+", RowBox[{"6", " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"7", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"3", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}]}]], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{"736736", " ", SqrtBox["2"], " ", SuperscriptBox["\[FormalT]", "6"], " ", RowBox[{"Log", "[", RowBox[{ RowBox[{"-", "2"}], "+", RowBox[{"3", " ", "\[FormalT]"}], "+", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"14", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"6", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"2", " ", SqrtBox["2"], " ", SqrtBox[ RowBox[{"2", "+", RowBox[{"3", " ", "\[FormalT]"}], "+", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"18", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}]]}]}], "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{ SqrtBox[ RowBox[{"2", "+", RowBox[{"6", " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"7", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"3", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}]}]], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{"329472", " ", SqrtBox["10"], " ", SuperscriptBox["\[FormalT]", "6"], " ", RowBox[{"Log", "[", RowBox[{ RowBox[{"-", "2"}], "+", RowBox[{"3", " ", "\[FormalT]"}], "+", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"14", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"6", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"2", " ", SqrtBox["2"], " ", SqrtBox[ RowBox[{"2", "+", RowBox[{"3", " ", "\[FormalT]"}], "+", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"18", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}]]}]}], "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{ SqrtBox[ RowBox[{"2", "+", RowBox[{"6", " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"7", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"3", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}]}]], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{"1928784", " ", SqrtBox["2"], " ", SuperscriptBox["\[FormalT]", "7"], " ", RowBox[{"Log", "[", RowBox[{ RowBox[{"-", "2"}], "+", RowBox[{"3", " ", "\[FormalT]"}], "+", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"14", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"6", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"2", " ", SqrtBox["2"], " ", SqrtBox[ RowBox[{"2", "+", RowBox[{"3", " ", "\[FormalT]"}], "+", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"18", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}]]}]}], "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{ SqrtBox[ RowBox[{"2", "+", RowBox[{"6", " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"7", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"3", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}]}]], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{"862576", " ", SqrtBox["10"], " ", SuperscriptBox["\[FormalT]", "7"], " ", RowBox[{"Log", "[", RowBox[{ RowBox[{"-", "2"}], "+", RowBox[{"3", " ", "\[FormalT]"}], "+", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"14", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"6", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"2", " ", SqrtBox["2"], " ", SqrtBox[ RowBox[{"2", "+", RowBox[{"3", " ", "\[FormalT]"}], "+", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"18", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}]]}]}], "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{ SqrtBox[ RowBox[{"2", "+", RowBox[{"6", " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"7", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"3", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}]}]], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{"3787212", " ", SqrtBox["2"], " ", SuperscriptBox["\[FormalT]", "8"], " ", RowBox[{"Log", "[", RowBox[{ RowBox[{"-", "2"}], "+", RowBox[{"3", " ", "\[FormalT]"}], "+", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"14", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"6", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"2", " ", SqrtBox["2"], " ", SqrtBox[ RowBox[{"2", "+", RowBox[{"3", " ", "\[FormalT]"}], "+", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"18", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}]]}]}], "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{ SqrtBox[ RowBox[{"2", "+", RowBox[{"6", " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"7", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"3", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}]}]], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{"1693692", " ", SqrtBox["10"], " ", SuperscriptBox["\[FormalT]", "8"], " ", RowBox[{"Log", "[", RowBox[{ RowBox[{"-", "2"}], "+", RowBox[{"3", " ", "\[FormalT]"}], "+", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"14", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"6", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"2", " ", SqrtBox["2"], " ", SqrtBox[ RowBox[{"2", "+", RowBox[{"3", " ", "\[FormalT]"}], "+", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"18", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}]]}]}], "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{ SqrtBox[ RowBox[{"2", "+", RowBox[{"6", " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"7", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"3", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}]}]], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{"5508360", " ", SqrtBox["2"], " ", SuperscriptBox["\[FormalT]", "9"], " ", RowBox[{"Log", "[", RowBox[{ RowBox[{"-", "2"}], "+", RowBox[{"3", " ", "\[FormalT]"}], "+", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"14", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"6", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"2", " ", SqrtBox["2"], " ", SqrtBox[ RowBox[{"2", "+", RowBox[{"3", " ", "\[FormalT]"}], "+", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"18", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}]]}]}], "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{ SqrtBox[ RowBox[{"2", "+", RowBox[{"6", " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"7", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"3", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}]}]], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{"7390240", " ", SqrtBox["10"], " ", SuperscriptBox["\[FormalT]", "9"], " ", RowBox[{"Log", "[", RowBox[{ RowBox[{"-", "2"}], "+", RowBox[{"3", " ", "\[FormalT]"}], "+", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"14", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"6", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"2", " ", SqrtBox["2"], " ", SqrtBox[ RowBox[{"2", "+", RowBox[{"3", " ", "\[FormalT]"}], "+", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"18", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}]]}]}], "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{"3", " ", SqrtBox[ RowBox[{"2", "+", RowBox[{"6", " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"7", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"3", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}]}]], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{"17305288", " ", SqrtBox["2"], " ", SuperscriptBox["\[FormalT]", "10"], " ", RowBox[{"Log", "[", RowBox[{ RowBox[{"-", "2"}], "+", RowBox[{"3", " ", "\[FormalT]"}], "+", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"14", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"6", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"2", " ", SqrtBox["2"], " ", SqrtBox[ RowBox[{"2", "+", RowBox[{"3", " ", "\[FormalT]"}], "+", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"18", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}]]}]}], "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{"3", " ", SqrtBox[ RowBox[{"2", "+", RowBox[{"6", " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"7", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"3", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}]}]], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{"2579720", " ", SqrtBox["10"], " ", SuperscriptBox["\[FormalT]", "10"], " ", RowBox[{"Log", "[", RowBox[{ RowBox[{"-", "2"}], "+", RowBox[{"3", " ", "\[FormalT]"}], "+", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"14", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"6", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"2", " ", SqrtBox["2"], " ", SqrtBox[ RowBox[{"2", "+", RowBox[{"3", " ", "\[FormalT]"}], "+", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"18", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}]]}]}], "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{ SqrtBox[ RowBox[{"2", "+", RowBox[{"6", " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"7", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"3", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}]}]], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{"4118712", " ", SqrtBox["2"], " ", SuperscriptBox["\[FormalT]", "11"], " ", RowBox[{"Log", "[", RowBox[{ RowBox[{"-", "2"}], "+", RowBox[{"3", " ", "\[FormalT]"}], "+", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"14", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"6", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"2", " ", SqrtBox["2"], " ", SqrtBox[ RowBox[{"2", "+", RowBox[{"3", " ", "\[FormalT]"}], "+", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"18", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}]]}]}], "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{ SqrtBox[ RowBox[{"2", "+", RowBox[{"6", " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"7", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"3", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}]}]], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{"1841944", " ", SqrtBox["10"], " ", SuperscriptBox["\[FormalT]", "11"], " ", RowBox[{"Log", "[", RowBox[{ RowBox[{"-", "2"}], "+", RowBox[{"3", " ", "\[FormalT]"}], "+", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"14", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"6", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"2", " ", SqrtBox["2"], " ", SqrtBox[ RowBox[{"2", "+", RowBox[{"3", " ", "\[FormalT]"}], "+", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"18", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}]]}]}], "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{ SqrtBox[ RowBox[{"2", "+", RowBox[{"6", " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"7", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"3", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}]}]], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{"5391464", " ", SqrtBox["2"], " ", SuperscriptBox["\[FormalT]", "12"], " ", RowBox[{"Log", "[", RowBox[{ RowBox[{"-", "2"}], "+", RowBox[{"3", " ", "\[FormalT]"}], "+", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"14", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"6", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"2", " ", SqrtBox["2"], " ", SqrtBox[ RowBox[{"2", "+", RowBox[{"3", " ", "\[FormalT]"}], "+", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"18", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}]]}]}], "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{"3", " ", SqrtBox[ RowBox[{"2", "+", RowBox[{"6", " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"7", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"3", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}]}]], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{"803712", " ", SqrtBox["10"], " ", SuperscriptBox["\[FormalT]", "12"], " ", RowBox[{"Log", "[", RowBox[{ RowBox[{"-", "2"}], "+", RowBox[{"3", " ", "\[FormalT]"}], "+", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"14", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"6", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"2", " ", SqrtBox["2"], " ", SqrtBox[ RowBox[{"2", "+", RowBox[{"3", " ", "\[FormalT]"}], "+", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"18", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}]]}]}], "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{ SqrtBox[ RowBox[{"2", "+", RowBox[{"6", " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"7", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"3", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}]}]], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{"361924", " ", SqrtBox["2"], " ", SuperscriptBox["\[FormalT]", "13"], " ", RowBox[{"Log", "[", RowBox[{ RowBox[{"-", "2"}], "+", RowBox[{"3", " ", "\[FormalT]"}], "+", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"14", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"6", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"2", " ", SqrtBox["2"], " ", SqrtBox[ RowBox[{"2", "+", RowBox[{"3", " ", "\[FormalT]"}], "+", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"18", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}]]}]}], "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{ SqrtBox[ RowBox[{"2", "+", RowBox[{"6", " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"7", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"3", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}]}]], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{"485572", " ", SqrtBox["10"], " ", SuperscriptBox["\[FormalT]", "13"], " ", RowBox[{"Log", "[", RowBox[{ RowBox[{"-", "2"}], "+", RowBox[{"3", " ", "\[FormalT]"}], "+", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"14", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"6", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"2", " ", SqrtBox["2"], " ", SqrtBox[ RowBox[{"2", "+", RowBox[{"3", " ", "\[FormalT]"}], "+", RowBox[{ SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"18", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}]]}]}], "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{"3", " ", SqrtBox[ RowBox[{"2", "+", RowBox[{"6", " ", "\[FormalT]"}], "+", RowBox[{"2", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"7", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"3", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}]}]], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"12", " ", "\[FormalT]"}], "+", RowBox[{"4", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"42", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"18", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"32", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"47", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"21", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}]}], ")"}], " ", RowBox[{"(", RowBox[{"2", "+", RowBox[{"24", " ", "\[FormalT]"}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", "\[FormalT]"}], "+", RowBox[{"196", " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"84", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "2"]}], "+", RowBox[{"1008", " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"448", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "3"]}], "+", RowBox[{"3290", " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"1470", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "4"]}], "+", RowBox[{"6888", " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"3080", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "5"]}], "+", RowBox[{"9016", " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"4032", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "6"]}], "+", RowBox[{"6744", " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"3016", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "7"]}], "+", RowBox[{"2207", " ", SuperscriptBox["\[FormalT]", "8"]}], "+", RowBox[{"987", " ", SqrtBox["5"], " ", SuperscriptBox["\[FormalT]", "8"]}]}], ")"}]}], ")"}]}]}], ")"}]}]}], ")"}]}], RowBox[{"\[DifferentialD]", "\[FormalT]"}]}]}], "}"}]], "Print", CellLabel-> "During evaluation of (Local-Devel (2)) \ In[7]:=",ExpressionUUID->"6ac69797-f930-45c7-843c-7db9187282b2"] }, Open ]], Cell[BoxData["$Aborted"], "Output", CellLabel-> "(Local-Devel (2)) \ Out[7]=",ExpressionUUID->"4c5ce9cd-f17d-4d95-8dfe-c86070e8b5ef"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["CAD", "Subsubsection",ExpressionUUID->"2f343772-ea17-4fdf-9c70-fe999ac89340"], Cell[BoxData[ RowBox[{"cad", "=", RowBox[{"CylindricalDecomposition", "[", RowBox[{ RowBox[{ RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}], "[", RowBox[{"x", ",", "y", ",", "z"}], "]"}], ",", RowBox[{"{", RowBox[{"x", ",", "y", ",", "z"}], "}"}], ",", "\"\\""}], "]"}]}]], "Input",ExpressionUUID->"717fdb1e-9edf-4c03-830c-6b9d05e00638"], Cell[BoxData[ FractionBox[ RowBox[{"NIntegrate", "[", RowBox[{ RowBox[{ SqrtBox[ RowBox[{ SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]}]], RowBox[{"Boole", "[", "cad", "]"}]}], ",", RowBox[{ RowBox[{"{", RowBox[{"x", ",", "y", ",", "z"}], "}"}], "\[Element]", RowBox[{"FullRegion", "[", "3", "]"}]}]}], "]"}], "vol"]], "Input",Expres\ sionUUID->"bb3806ec-d9fd-46d0-aef0-b8def78dd903"], Cell[BoxData[ RowBox[{ RowBox[{"(", RowBox[{"rxy", "=", FractionBox[ RowBox[{"Integrate", "[", RowBox[{ RowBox[{ SqrtBox[ RowBox[{ SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]}]], RowBox[{"Boole", "[", "cad", "]"}]}], ",", RowBox[{ RowBox[{"{", RowBox[{"x", ",", "y", ",", "z"}], "}"}], "\[Element]", RowBox[{"FullRegion", "[", "3", "]"}]}]}], "]"}], "vol"]}], ")"}], "//", "Timing"}]], "Input",ExpressionUUID->"5879e97b-ff79-4d3d-9a1d-\ d433fe437d84"] }, Closed]], Cell[CellGroupData[{ Cell["CAD over 1/12", "Subsubsection",ExpressionUUID->"f25b06e7-b3fc-46a5-9805-d77103ba9b4d"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"reg", "=", RowBox[{"FullSimplify", "[", RowBox[{ RowBox[{ RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}], "[", RowBox[{"x", ",", "y", ",", "z"}], "]"}], "&&", RowBox[{"0", "<", "y", "<", RowBox[{ RowBox[{"Tan", "[", RowBox[{"Pi", "/", "3"}], "]"}], "x"}]}], "&&", RowBox[{"z", ">", "0"}]}], "]"}]}]], "Input", CellLabel-> "(Local-Devel (3)) \ In[6]:=",ExpressionUUID->"a7cb3fd5-a1a5-4088-80c0-a45f71082b43"], Cell[BoxData[ RowBox[{ RowBox[{"y", ">", "0"}], "&&", RowBox[{"z", ">", "0"}], "&&", RowBox[{ RowBox[{ RowBox[{"2", " ", SqrtBox["3"], " ", "x"}], "+", RowBox[{"6", " ", "y"}], "+", RowBox[{ SqrtBox[ RowBox[{"6", " ", RowBox[{"(", RowBox[{"7", "+", RowBox[{"3", " ", SqrtBox["5"]}]}], ")"}]}]], " ", "z"}]}], "\[LessEqual]", RowBox[{"9", "+", RowBox[{"3", " ", SqrtBox["5"]}]}]}], "&&", RowBox[{ RowBox[{"2", " ", SqrtBox["3"], " ", "z"}], "\[LessEqual]", RowBox[{"3", "+", SqrtBox["5"]}]}], "&&", RowBox[{ RowBox[{ RowBox[{"4", " ", SqrtBox["3"], " ", "x"}], "+", RowBox[{"2", " ", SqrtBox["15"], " ", "z"}]}], "\[LessEqual]", RowBox[{"9", "+", RowBox[{"3", " ", SqrtBox["5"]}]}]}], "&&", RowBox[{ RowBox[{ RowBox[{"2", " ", SqrtBox["15"], " ", "x"}], "+", RowBox[{"6", " ", "y"}], "+", RowBox[{"2", " ", SqrtBox["3"], " ", "z"}]}], "\[LessEqual]", RowBox[{"9", "+", RowBox[{"3", " ", SqrtBox["5"]}]}]}], "&&", RowBox[{ RowBox[{ RowBox[{"2", " ", SqrtBox[ RowBox[{"6", " ", RowBox[{"(", RowBox[{"3", "+", SqrtBox["5"]}], ")"}]}]], " ", "x"}], "+", RowBox[{ SqrtBox["3"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", SqrtBox["5"]}], ")"}], " ", "z"}]}], "\[LessEqual]", RowBox[{"3", " ", RowBox[{"(", RowBox[{"3", "+", SqrtBox["5"]}], ")"}]}]}], "&&", RowBox[{ RowBox[{ RowBox[{ SqrtBox[ RowBox[{"6", " ", RowBox[{"(", RowBox[{"3", "+", SqrtBox["5"]}], ")"}]}]], " ", "x"}], "+", RowBox[{"3", " ", RowBox[{"(", RowBox[{"1", "+", SqrtBox["5"]}], ")"}], " ", "y"}], "+", RowBox[{ SqrtBox["3"], " ", "z"}]}], "\[LessEqual]", RowBox[{"9", "+", RowBox[{"3", " ", SqrtBox["5"]}], "+", RowBox[{ SqrtBox["15"], " ", "z"}]}]}], "&&", RowBox[{"y", "<", RowBox[{ SqrtBox["3"], " ", "x"}]}]}]], "Output", CellLabel-> "(Local-Devel (3)) \ Out[6]=",ExpressionUUID->"feb4b673-9c4b-4899-81f5-f6ea5f9dd99c"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Show", "[", RowBox[{ RowBox[{"Graphics3D", "[", RowBox[{"{", RowBox[{ RowBox[{"Opacity", "[", ".2", "]"}], ",", "p"}], "}"}], "]"}], ",", RowBox[{"RegionPlot3D", "[", RowBox[{ RowBox[{"ImplicitRegion", "[", RowBox[{"reg", ",", RowBox[{"{", RowBox[{"x", ",", "y", ",", "z"}], "}"}]}], "]"}], ",", RowBox[{"PlotPoints", "\[Rule]", "50"}]}], "]"}]}], "]"}]], "Input", CellLabel-> "(Local-Devel (3)) \ In[7]:=",ExpressionUUID->"f23e67b1-7c49-4e00-94e6-82083feef3d5"], Cell[BoxData[ Graphics3DBox[{ {Opacity[0.2], PolyhedronBox[ NCache[{{(Rational[1, 6] (7 + 3 5^Rational[1, 2]))^Rational[1, 2], 0, -3^Rational[-1, 2]}, { Root[1 - 21 #^2 + 9 #^4& , 1, 0], 0, 3^Rational[-1, 2]}, { Rational[1, 2] 3^Rational[-1, 2], Rational[-1, 2], Root[ 1 - 21 #^2 + 9 #^4& , 1, 0]}, {-(Rational[3, 4] + Rational[1, 3] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 2], -(Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 2] (Rational[3, 2] (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), 0}, { Rational[-1, 2] (Rational[5, 6] (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), ( Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[7, 24] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 3^ Rational[-1, 2]}, { Root[1 - 36 #^2 + 144 #^4& , 2, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), ( Rational[1, 6] (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 2] 3^Rational[-1, 2], Rational[1, 2], Root[ 1 - 21 #^2 + 9 #^4& , 1, 0]}, {-(Rational[3, 4] + Rational[1, 3] 5^Rational[1, 2])^ Rational[1, 2], Rational[ 1, 2], -(Rational[1, 6] (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { 0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, { Root[1 - 36 #^2 + 144 #^4& , 3, 0], Rational[1, 4] (-3 - 5^ Rational[1, 2]), -(Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, {-(Rational[7, 24] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), -3^Rational[-1, 2]}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), 0}, { Rational[1, 2] (Rational[5, 6] (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), -(Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[-1, 2] (Rational[3, 2] (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), 0}, {-3^Rational[-1, 2], 0, Root[1 - 21 #^2 + 9 #^4& , 1, 0]}, { Rational[1, 2] (Rational[3, 2] (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), 0}, { Rational[-1, 2] (Rational[5, 6] (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), ( Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[7, 24] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), 3^ Rational[-1, 2]}, { Root[1 - 36 #^2 + 144 #^4& , 2, 0], Rational[1, 4] (-3 - 5^Rational[1, 2]), ( Rational[1, 6] (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 36 #^2 + 144 #^4& , 3, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), -(Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, {-(Rational[7, 24] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), -3^Rational[-1, 2]}, { 3^Rational[-1, 2], 0, (Rational[1, 6] (7 + 3 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[3, 4] + Rational[1, 3] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 2], (Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[-1, 2] 3^Rational[-1, 2], Rational[-1, 2], (Rational[1, 6] (7 + 3 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 2] (Rational[5, 6] (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (-1 - 5^ Rational[1, 2]), -(Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[-1, 2] (Rational[3, 2] (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), 0}, {(Rational[3, 4] + Rational[1, 3] 5^Rational[1, 2])^ Rational[1, 2], Rational[ 1, 2], (Rational[1, 6] (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 2] 3^Rational[-1, 2], Rational[ 1, 2], (Rational[1, 6] (7 + 3 5^Rational[1, 2]))^Rational[1, 2]}}, {{ 1.5115226281523415`, 0, -0.5773502691896258}, {-1.5115226281523415`, 0, 0.5773502691896258}, { 0.2886751345948129, -0.5, -1.5115226281523415`}, \ {-1.2228474935575286`, -0.5, -0.9341723589627157}, { 1.4012585384440737`, 0.8090169943749475, 0}, {-1.0444364486709836`, 0.8090169943749475, 0.9341723589627157}, {0.7557613140761708, 1.3090169943749475`, 0.5773502691896258}, {-0.17841104488654497`, 1.3090169943749475`, 0.9341723589627157}, {0.2886751345948129, 0.5, -1.5115226281523415`}, {-1.2228474935575286`, 0.5, -0.9341723589627157}, {0, -1.618033988749895, 0}, { 0.17841104488654497`, -1.3090169943749475`, -0.9341723589627157}, \ {-0.7557613140761708, -1.3090169943749475`, -0.5773502691896258}, { 0, 1.618033988749895, 0}, {1.0444364486709836`, 0.8090169943749475, -0.9341723589627157}, {-1.4012585384440737`, 0.8090169943749475, 0}, {-0.5773502691896258, 0, -1.5115226281523415`}, { 1.4012585384440737`, -0.8090169943749475, 0}, {-1.0444364486709836`, -0.8090169943749475, 0.9341723589627157}, { 0.7557613140761708, -1.3090169943749475`, 0.5773502691896258}, {-0.17841104488654497`, -1.3090169943749475`, 0.9341723589627157}, {0.17841104488654497`, 1.3090169943749475`, -0.9341723589627157}, {-0.7557613140761708, 1.3090169943749475`, -0.5773502691896258}, { 0.5773502691896258, 0, 1.5115226281523415`}, { 1.2228474935575286`, -0.5, 0.9341723589627157}, {-0.2886751345948129, -0.5, 1.5115226281523415`}, { 1.0444364486709836`, -0.8090169943749475, -0.9341723589627157}, \ {-1.4012585384440737`, -0.8090169943749475, 0}, {1.2228474935575286`, 0.5, 0.9341723589627157}, {-0.2886751345948129, 0.5, 1.5115226281523415`}}], {{30, 24, 29, 7, 8}, {26, 24, 30}, {25, 29, 24}, {5, 7, 29}, {14, 8, 7}, {6, 30, 8}, {16, 2, 6}, {19, 21, 26}, {20, 18, 25}, {1, 15, 5}, {22, 23, 14}, {2, 19, 26, 30, 6}, {21, 20, 25, 24, 26}, {18, 1, 5, 29, 25}, {15, 22, 14, 7, 5}, {23, 16, 6, 8, 14}, {12, 13, 4, 17, 3}, {3, 17, 9}, {17, 4, 10}, {4, 13, 28}, {13, 12, 11}, {12, 3, 27}, {27, 1, 18}, {9, 22, 15}, {10, 16, 23}, {28, 19, 2}, {11, 20, 21}, {27, 3, 9, 15, 1}, {9, 17, 10, 23, 22}, {10, 4, 28, 2, 16}, {28, 13, 11, 21, 19}, {11, 12, 27, 18, 20}}]}, { GraphicsComplex3DBox[CompressedData[" 1:eJyEfQd4pVXxPl1BijSl/miidBARKZJQFaQJqBRBEBBBmiCidAQFlCIiAgoC wtKka+hlKVna9t1sy5Zssun9liQIKP/cd857JjNz8/x9eLx737x3vlPmzJmZ U74tTj3/6J+ssNxyy2151XLLrTj6echtXxr9767aPVfe+ZGlbRP+P5/lGs9f 7UdHvDl52w8Db7zfL3z+3NH/egJ+5hNr3Tz0j0J47vGbbdRzwM4qf+7173w0 Y4N/BR5xW566ccpVl7+3rffqPdfcuazW4+tX4GMGw+/Hk89yoh5bPDrO8+vC czyf8lkffB43McixeLnG8305idv2rKutsH694VtBPnFTnjHPw9fNGkP7jHbi szW7DYdy87nEvbxfV/6x+Yvpe73t18yrH5fvy+nrWyntRtu/Xivl/iDIt3i5 xvO9fOK+Xm+MNtueW08O8omfdgV6POBLoYgjAbf9qPW3/To9/932b30oJ/vV /m5C5lu8XOP5GP6HzApypPzzAi78YsBl3JUCvhYUqDxOOSPO9vQ49bB6OUdy fWt2G/1L47TQzuS/UDFXmymO+mw4K7QbcbZPdbwYcJbH6x/HF3Hfj/zu+4v4 ORVDO1f1x/Nh35pGajcfFXfappNcuSdkvsXLNZ4Pc75wOPO/N3jhaj9aMjPU i3yI+flIbYV2xBbvJbkN+bkep155XPq3PeC029X5wwH35Sd+TIW4gpb/wIqi 3Tc3tA9xyieO58yck+X7fuJziHt75ctjx+PUcezS9FrUftZ7ASd/60o3rPmh e+702l9UfnDfSP7efcBoxU6c4eySjn+Mu6+OuHppORsrFT98amhn8m+ofBwZ cfKfrQzMt4adfZyX29/j1Ifq+HCwUw9WHnDMcG2luS7cblqtn89suzXmenn+ To9UJC4KcuT3TQGHvfloacClXVvGKU9rwFlfj0v9OgKOx87oDLh8dgecflr1 eg0EnOOuen0jTn+vejsUAy7iI855xOOcR6q3Z8TtvDy9FsXbb37QH/IHKuO7 TfmXV36+9cKgPxavD7i3yxZvDDj1zePUq+rPbQ049cfj1JPq5ekOONvNz3u0 Y8Q/GB2WK0+flO0ScdYf/TFtpPbUirzFM8J8Tf5KcHumBtzYsZMV52fFbO5Z GM7fH60ImKLzly1/Q+3nKw10TbQbtAMPVOzHyIxgZygH88LEuQEn/9PK/9Yd du2gdsbjR1Yq8NBQ7TYVx/fOGVkPqG8e53xSnV8/Dn96wFmO6nIaAs76eZz1 qC6nbNvnX41Br8iHgu4+lP0n2lm2g9WHJtueY/iM+zxOu0E5V1aK8dCSUE7y QX+vbMv5RCwPcbaPx/lc77dX9xfUT4C8dWaHOIh8xDGT3wo4+X+qlOO/Ixnn c5sqcm9RfP9Khzz9gfOf1X+ZOfqYns1Gsp3wcSH8xh1nB7+RcmC/vjMz4ORX qnvas8Ou/A3SbvsrDr9jnzl53Hk/8uRKMzQM1aI5Dp4d7D/5iC93WRBw8g+v jMefKE79/HvFkA2XXfs0hX6E+m21OOuV5/dU/K8bytJ/d8/O9t22a4PDU9w6 hs/5kXxMo39Y6vRN5WDe31BxwBu0hOcSt3ZRcc4vHmd5vD2lflq8zur5KE79 h/3cXvHKdPzmjZr3sHLqZb5+bUTqf+qcrOfUZyPn8XcDTj4qcsSIK8/02h0r /b90OOPwH/40PeuzH/dQqwuGRV+vmBPiFFOeV2YHnHyIX0Fxfr5SqejtQ/n7 mhUBT83L+mzr1Vj7ZKW8Ww/VblBRvLvmBPtM/q6VCt+/MODkf1zRvxfKrn2S Ph+suNdb4pWf9/xZ7WFV/oJS7emVemw6J/vN1E/bzi1ZfnV+XZBD/arOrw84 9aK6nOkBZ/9Xl98QcNbH4/SH+Xfo2dvNYXyZcp5dyvGqzXtqu1m8XFOdXzeO nPqA+ziZONvH48Z/CvIbAs5yV39uY8Cpp9XL0xRw6p3H6SdXf273OPUqBtz3 I/FfVSr8ieI3VYbDia2hv4jzuR7nc4nDf35Vn+v9Tt9+3j5bvM76+X9V++z5 GNfXvhRwY897RiRf17Ug65PNIzXWwu9+JOLk4/dXKE79u7tS3TVHpBz/Vrtt 8z+NYo9vnhJwk1e8f1jad6XGrK82/5PwPcfBR/mYZ7867MrfUFsJU1Z+e0ji j2lqz2m3Td5hh7kBJ3/DisH93pDEXbkdNP7ld/7d4/xEf43BOX7Q778qS7t0 zgv+s4nz114ScPKxnvRZxTneKuHgan8rZRzx4Qpq33zeBN+3V9zbMXxdcX4Y d+QD/rgl4OTPqwCvFmVe32J+jqttPrDR4eUazyfP48zbeJzj18ufVPl6RFHK /eAC529peSye2iHw68aR0xpwfnqc5fc47aTHaa88zryTx5l38jjzTh5nfont gLzCUGxPI6dJ+e0VgffF9iRO+T4Opz2UcbUoty/tHvm7VD4v/3fAyYf52ejD EM+fVKE/MZJx2LMH38z20Mf5j1eKuc+IPGfPRdke0r6RXwmvrrjh/YCTj7hm 2nDIF8CvO0Xx7SqB0wszst3zeQT0b2Go9uAK8D3NI9COkY/H/jPi5Fead+dr h0LeAfPmeorDb/r7/GzffD7ipxXpD7n4Xf3emusqvPMXZZx2jN+Xq/zv1ojz E+tH3yi7dmuqxdf3SqlfGkO8Ztptv4iTj2Y+oSTt9YdFwT807bNXxMnvqMjv UZx272uVx1xeTP3VGOySqe9uESdf1h2K4n9MWBTGKfnIt+wYcfJlnaKQ84+0 Oxx/Vh86cj96PvvB48xXezmy3lGQ8f/IomzX/HMtXq6pzq8Lcji+q/Prx+FP Dzj1uLqchoBz3Hjc2LsxOOtZvTxNAaeeVi9nS8Cpd9XL3xpw6kX1enUEnJ/V 69sdcM5H1duhN+Ccj9hOUyqG6iudQa/Il3UuxeHntES9snhdwKk/1fn1Aadd 97i3g1ZOQ8B9/G/lNwbc20db/qaAs3+rP7cj4Gx/n3dj+3jcrpM2hXmcOObH zn/WVufXid++cETmg58vyf3BeZn8/6sI2ue1gJOPvM05I05+fe2qlef+dzjj sMe/fcetnzblfkUe5o/Dond/WGLjl92Uj3b72bSAkw//fHPFzTrJs0MZR7Ns M9utozVlvcHXAxT3+b9V0OxLPJ75yGtuHHEz7zeUXTs01r5b+TijbNt/jYV5 vvZ6t25Ff0ZSnmTikvx3zr/8DjVbLuL8RDFvUJx2EPsKNlIc09wlzXletu3c Ultxr554PK17Ni4J+QTTPr+IOPl/ruD7FF2/pHXlaQWrV+e05fnXrHOMjkPk +U8uyDr70JIwb5KPOPonESdf1uMU9/Omx2U9blD8nO2WhHUGj7O9Pc44gvLh r57cFewG+bJO5+q1te5f9Djl2/UH3Q/p854cTx6n/nrc+382f9rh/C61b379 APPaqgk/WvHq/Drxt+8eyTj8pq+/kO2YXX+eKPmHHUZqT6yIO2VptmO0V+Rj neXqtwNOPvzz1xSnfYN9PlLxZyr/OGNybne/Ho5mWTok5T53qd3HMmqvyC9X fv7wzICTj7zEhUOunA0yzlZUnHl02ivitFdzKuW6vSzrEZcuzfaKdol8tMuN CwJO/laVYn1ZcfY/9PmFUsaPrtidKxdne2Xbp0ni40NKYoduWJr/Trtk+uvF iBv71lh07dZSW2nWuWcX7bj8V0u2Vzb+WSb7p/5bEHv9l6XZXtEukV8xRwc8 HnHymysCb1Gcdqzy1/U2Vxz7ASa0Z3tl+6sjrT8m/IGlwd8jf7gi/t6Ikw81 33/Q9WN3Hq8eh5hHB/I6sd8/bdbtMp7sxBg+7Pxq/TaffafaQy8H7Tq5X/IY dy7N/i6f63GOM4/z0+jDn3pDecjbqyK/r8+225l9ob7EaQ887uMP4nyOXx9i P3uc7VOdP+LwtD76flpnvLQ520/Px3yx47MBN/b2h4rTrsLP6R3O+MMVAZe/ 4fax6HrVWZVxccVwGtfNub3svpS0znTqewEnH3mMtYZdeaaLn3P/UMYxfLea 4fZv6LoXxO86VLuoUuC/NGf7STtJ/r8qHfeFiJMPv+jtsi3/qF1FvuJ7imM9 YNX5bl9HS7af11b0sL0k/tODzS7/Ucp87If8ZGHAyb+gMnH+quTap0n8nFUV Rz5poCnbT+LUU8SDfytKvPFMs2u/opU/2Bxwfsr6uOK0q7IOXsg4PrqXZftp 27k1rXcXaveofH+tOdtP2knysU69rC3gxt4uHXT91ZHWwRWHX7m4I9tP4hzP iLNWHEz2qTn4deRjvXtuV8DJxzy2jeIm73xof8ax3jRd7aft917xF87rk7jv uObMoz0g3+LlGs/n88nH/Pd+tFemHKN2lPsqWE//XIuXazzfP5c4+vPfiiPP /HiUT9zrH3Ebr3g5rQGnvnjc22fiPp9EnP3scdbXrw/RvnqcdqI63h1w2nOL TxC/8Q+Ko30Pfbi2Or9Oyr/xiNj1B9X+086TL8P25YCTj3WrJ4ad/HqJi2sU h5910qRs/4nT/mM8Th9KdkntP+08+RiXB0wNuJkvThlyejFL/MZiOeOIQ2/P 5w7CPgDY/2vL4i+8pvafdp781srn9XMDTj72v61fdvVtlP1vD5cyjnF3qe43 Jk77j7j4G6Vkl9T+086Tj/n6nCUBJx9+5vuKc15A+U/QvLpf1yMf9mpnnRf8 +MP6UW9B7N98nRdo/43/vW3E+Snr7AXXL61pnb1gy7+lzgvEzXri/YO1d1UU oF3nBdp/8rHevknEyZf1dMVpFyD3OrVD2Ie4vs4Ltt+75XeP9st4KrUE/5n8 8yp/WDPiZh6Z3Of0pFfi1P5euw79WbXzRt9G5aKd1+51ejJg7dZyy4I9Jx/x /PIRJ1/WbXrED2hsqfXnHsm3eLnG89neHvd2kjjy4sc6fGSc544MZjtRnd8Q cI5vj3t7TtyvexH3caktT0vA/ToG9tVdMejiPN0fYP2tcsatX9zq8HLA7b5Z 3ZeAzw1HxE953e/3GnH8Oin3GDnIj3XU1Xr5nF++XvnHOcNJ33V+sfmvVtHj 498KOPlYH/zfUMY572C974+K49xQ7QduX26rnY+2GJJ+mK/zi2831H+dmQEn H374v3w7N0ge4wDFsV658hy3n7Y16x/87TklORfXvszpXynz5TzB/ICb+egM xamv8Ks/LGYc+tq9KM8vtn2axN/+fTHZt2UuT6N8nB88L+Lky/6Eomu3Flm/ eKKQcZTjzJY8jxDn+JD9CSnPvFyre85g/g479uOI8xPrHdMV5/wi+xMUR7Oc 0O7sme6/uQhxzICMlzVb3fqm+q2IB78XcfLR36sMuH7sTvNqf8YRVx3e7eKD 1myv4bce2ifja+PWkFchH3HltyPO79Kfipv55U89Vk/27Xf5pNZcT9S7Ls2T 27QGO08+7MImEScfeaJ5XeIv3b3M9euEcfSgXOP5fn2YOPTtP515H2T1+wU8 Xq7xfOqRx+3+gtRfGxZCecjH+tYmisNObVgM5SHu92EhT/GFYn6uzxv6/LCP R/x+CNpP70fSPvv9ZK9Vuu236Tz1BW0Z57zg95ORL3ZP5xfykd9Zsz3PI/65 yMc8/nrAycd61o7+ufXSTq8PSXxV0nnE1xfl2PvdgJMPf/7IIRl/G+s5Oc4X 9vxxxMlH/qe57OLaWa69FUc/XpjyVMuznRvy/EL+vZVRdM3sgJOP/M+K5WRv 2p0/VMp8xE+/jDj5OOfyl5Jrn8bafSp69uVS6se2PB9x3jHtcObCgJs45kXH 5zx1iOLozx825fnI5qGWpvX3Quqvtjwf+XEM/+GR5oCb+escxTlPyfr7YMYR B9+vdsiPV6xP/TGdQ9+2LexXNPuf/toWcH7K+vug65e0znf6gNXnP3dkO+33 X2L99Lp+GY+7t9lzv6PzAPnYn3VTV8DJR7M91hf2a8I+TunNOJ5zXU+ef2y/ 98o5wIEe6dcD2kIejHzE71f1BZx8+AVr9zj9GZA4e7du2w6/1ryQ7w/oxbFd ogdHtYX5hXyM55ciTj7U6NJO27+jeoZ2vaej9q3K7zdtc37VBKeHxWwfPN/r B9ZHn9P5yMuBXzmxXdallrQ5v1Cfa/FyTXV+3ThyGsbB1Q+DnfpXLD/5aL+W NsvfqxTKafG6gNv5xPPrA27XQ7yc6ePIaQg47aXH/bojcZ8ft/Jb3Xw9QfLw /UPi53W0u3YZdvy6cfh1gc/2Qh6sb0ji8m905Pay58XSfrpvRJx8rLdeOeT8 lDSfrjVk7dcmU/K8acszXfJg/yiLv3lgh50fa5SP5l0u4uTD3di17Mqp91R4 HPmx+lLmYz4pzXHnqjpyfyN++X66x+aojjw/Uq/Jh//dviDg5GN/dXvRts/o /Ij45ddFsd+76/zI8U0+7OCCxQEnX/Z7FCVv9aOOrJfen5U8XMTJl30gBdfO LWm/R0H2tR+o8ybtotGfppaAk4/1ytcGZT45R/1r2mnT7/MjbubfIweDXUQ/ vTmQ+qvdtZOuM2B+mdUecNM/rXH9mnol+7o67L0bo/MVfz+roleTI875Ce2/ bV/qL51n+RzysW9jUnfAyUce/bBep1dp3+r5PRlHXvL13vw70w6j5UOxbuuu vQX9ou3C8pKPda0X+wNOPsr7XFfI82I/wjzd14liHqfzrN9nhu8fdYh/dUl7 0Fd+wn/9fsTJx3rjph1On4uyn3Ff1Q8/PxJH8xyt85rno7yntmUc47xG5zXi yCudpvMacfh/N+i8xvMnNk9U78ZRSfJ2774Z+LTHHqfdrS6/IeAcr3wu4oEj 4vxFPtb7f9dq++XJWH6sA83SchI/tjKeR7ScxGGvN9HzG/DLT+kI59vJJ455 5dWGwKc987ivL3H086OKY17cLz4XccWJep7Z45wHPO7PIRCnXfe437dE3K+7 4+NQrZfff8l52eITxP89fkjGzUmK0x+weF3GbR5tYpBD3POpH6hXzVDar6n7 1305MW43eD/g5CNfOqPsyjNd4s0fK4781FUzcj/bdebkVxRLab+s7o+nvpOP 2lwQcfLRP78tOTs3T9YN1lcc8cPp87NdsfVqlPznI0V53iW6z572jHzEXcdG nHzYmz2Krn3SfuH3Nb+Fc1Vbq5/g91vhZz8sSFx1va7P+7gK+YP/izj5st8p rqtg/fpKxTHvbNAa1qNoj2T/0qCM+9s7Q7xIvqy3RZx8+Fn7DYR5CXJP77f4 ajq/E+cn/PLr+0TeP/T8Cedn0y8rRdz4CY8pzvkb+jKlR/T4ep33+XfysR/2 vz0BN37CQLeMu6e1Pnw++YgbRvoCTj4+1+l2ejUg67Ff70r90hH6j5+wx4MD ASdf9tN01n6nojivdgb/knzsuy1HnHxIu1Rx6jfWef7e7vRT/QHpx44Qp5MP +1IoBJx81O+NlHe4rTPE6eQjv7kk4uRD3DpPS7nf93J0fQLrbf0RJx/512WK w+9fUf0T4rCn26h/An91WkfwT8jH/rzDFMf4P6Iz+Cdm/F6gOPIM0zqD30I+ /JA7Ik4+xsVFEb+joqaraH2xv+SVUrb30Jc/RL+CfMRpS9Vfws9Gx7+/x4R8 rAuurDj66/fKp10nH2qzXcTJx7rInxemcRr9FvKRJ+0pBZx82RenOOaVI9UP IY788i/UDyEO2l3qhxCH/3an33/Z7fyNeodPyPs8IW9Wl1svUZz6R9zKqR9H Tn3gU8/QHLeW0/zVlfXJ9k+3xEUfTQ04+bCrWyhOfUI//LuUcdivwVluHHRn fUJ8fWBJ8pq3d2W94XglX5p3bsDJ/1zFTs0p5jyQa88a2w6NEkf/VOXAX5uj 9zTaeSv5Dx8WpF0e6Mr6Yc/jd4uf9t6SgJMv++UUN/swNtZzSV6P+B3z2knN 2a7b9m9J++IGZX57uivsTyEf8+exEScfdrQmrnNiHN43YOv73bYQN3M+wNe3 +tP9LBof+/kWzXVIxMmHfrT2hX2qvn04LnGv22d03obdP6Ar/87qQ9Kv7Xrl 84Ou7Dfwkzz4xd+MOL9Djw7vcfrTK/nq8/V5sMu794VymPMDt3WJPzWvK/ht 5KM/do648UOeU5z9jY/5mpfBuubt6j9Y/Uz7kj9uT/3QFdaZyEec86eIk491 uU3bnd4WQz8SRz321XUdjPMr1E8Q/6sr5PPJh/16QHHAtymf9tW0z7uKA16n 28lXe75xxX71Rtz4LRdOsuW/Wf0Tz4canaY48sVrq59AHOejdld/AO16eFe2 s7TH5MMu/1Bx7M+Y2hXyIeQjP3xVxMlHfupPcyW/9W5XyJ+Qj32TP4o4+ajv bJ034cdO0HUHM77e13twoE6rdoX7KcjHvqJ+vVcC5f298r2dxee6it9fGa8D yvfnl+ReSMXRrCd0hXwL+YjTJur6iD/XxP71OPvX9lPa7z4mLiJOHvydg/U8 lfGDMl6fcX/+Cvfw7FR2du6DjFMOcS+H5Ya85lKaj9RPYDnJxz7tc2cGnHz4 6b8ouXI2SBy9kuIYR6fMyePJ5n3nSR7+L+m+jlfVH6C9MefEjlkQcPLRn18p uvz1IvETXyxkHPutvrU42z/bPk3i/36nkOYd9Qdod02++56IG/9h4aBrt5a0 j1FxOZ+k+1j9/lnEmZ8MpLy1zvucT8jHvPPHiJOP/t5McbO+vb+uh0OPbmgP 6+RmHeAnffLZpvO7j/vRLddE3ORRbugN8zae80+dz9EMl+l87j/hf01N83Sx O/gT5GGevCji5OP88KD6Gaw//JR1u8I6O8c3+YgXz9P8i9WrATmH9/VO8Ts+ 7Q7rSeQjP/+1iJOP/jmuw+nbYO0JlfFxma7fjFdO+M27qD/g+XKutE38obne H5iQ+YWK/d5UcdTv+z2OX5f5eNz+EScf/bPoedm3sIaXo/sUse775YiTL/2g OOLKn6r/QBxx5Y3qJyCv8qduF8+o/QftGcUlf9fj/JbpmY+86pyIk494748z xV8/RXE/H6HfOyJOPj62S/n2D7T8tB+mHa6POPYff1TMdp04PjZTfwPj7HD1 E2i/yUd++UDF4XdP7XZxpt73j7z8WYrD/h/Wk/m03+Rj/8nNEScf4/fMxTIe ivpcf974xooiHhxx8v9X0YvpTWm9oNv5b9r+KMajer+GP7fMcefjIls/5WNc 3uXxunHk1AU+9bu6nPqAU4+ry5kecHnPy/RaX37j136tJHZ9vvoD1Efy5b0t swNOPuLlesWpTyjuDxSX957My+Pe1iu9J6IjnetvU3/A3vfVK+v/9QsDTj6K 9euCa58mWT9crTBOPbS/sN79fFO20/6c+kGVef3u9N6KovoJ9n6nXrGPDc0B J1/2qSrOcY5xdfmAPUc6zZ3LGbOPG/PTff3ib38a98GRL3FGW8AN/60+148d qT96bfnf7HDt3mv9hM/2ynhcY/z5G83wclfAyRc7qTh53BdPnOdRfb6An8if /zzlTTbqDesu5KG8T/YFnHzZR9np9GpA5t3ntT2wH+dh3RdC3KxfzG93eqX7 2GHPvqK43x8p65QRJx9q9HFbxu04uU788r17nb+h5wF4rtvj5MNvmKTn1hBv vqr7501/NRey/YMezemxeYl8L1mv+AmrKA5/9fu9zq+ot3qyfcSNfdnkffEH T1Pc579wjmitiJOP/r+mOcX7Wn6OV/KRD326EHD003fVDyGOfXW/VH8Dcv/k /YpZmQ81/Jvi+N3ne8N+S/Kxn+R1xTEObu11+8zmZT7ee7Qs4uTDTztjvujP jb3Oj9L5FI+bEXHysR541RLRo6Eeux9mzH4prJv8POKY5z6rfghx7BvZUf0N yL1B/QSWx56n0byBx/06JXGWl/uiqPd8jsXrAk79rs6vz7h97oR0v4HyWW7P pz55vs+DkE99Yv08Dn6pmPny/q9Z9r1LuZwNYg9+m/ZJLdeX9cmMp1E+8rJH zg04+ciff6Ho8tmNMl4fKWRc3sfk3huV57dFkk/dM90Lukafu3dtMPORH9ht ScDJh9/9waDNL4/qJcbNDxXHfLSuzvu2PZPf3zgg89tGeg6Y8wn5EldFnHzM V//tD+fD0O6bK475aBWd9/lp9qfv3yf9uU1fmLfIF/+iPeDky71ucX7lOCQO P/A/Gm/79Qq5t6lb5ouv6/5+/t20fzHm/Y2fMLXL6UMaB4M6ruFP9qr/4tsJ 4tbtzO3E/vDrMKh/W3/Aycc9W7une7Af7wvnOsiX81wRJ1/izzanh+o/QP9m 92Wc+kI+8m7zFEd/nKVyqKfwO2v6nHw9H4j55WLFQdugL5ynI1/2mykO/l2e X5f5iDd/E3Hy0Ry7vC559o9VDscl+RIXRZx8fC5I96CdoXLYDuTLPQ6KN1T6 dYb6Rb6d5f7oQrb3xLE/7INCtvcSJ6i/4ecj2LuBQsblfGmf86OmZ77cc604 +A19zv+ZlfnYf7JnxMnH+cTTZ4s+3OKfq/Mp7Ox/CgEnH37yToslH/ah1tf3 C/T/R+q3EJd7vdU/wTj4fF+4l598+MmPKo5ybd7n4r9Fth2OV5zjluOK49rj rAfaeTedr61/pPfjQF3OVT77yfOpN+RbOfUBp354nP1KXOYdnd/NutkBA7nd bT+nc1NTIk4+8uQHFp19nCf9OTeN1210Hrf3iKZ8+cT5ATfz/k8L4sd+dyD3 E+2Tee6/Ik4+7Mp/Bl07N8l+oz8Mpryvzu/2/s+BfC9mVXyUjzzlxoOu/VvS +fKBjGPeOazFlUPvHcG+sitSPvuA/mB/ycc8eVDEyZfziDpvcV6B3Lc1jsX+ rJp2O0+Omefk/IeuT/h7P6Rfxs+ng75HxMmHXfhsj+v39B6I7XU9Hnnfr+q8 79dPEKcc0SXz/0k67/v9hfAzto+4if8uSOfEN1H/y9sB/P3VvoCTj1b6qD2d fxkI/cPvKHdNxM34eKFV9PSp/tCf/A6/8Ir+gPv+gl84V/0K74diferTgYCT L+sz6V6v/fqd/FY3Lgalfj+YIHr2P/U3OG7IR/O/EXHykcf/quKw86eo30Ic 6zIf670BxOXcrPoV0LsN+p3dmZj5iCsPUhzVvKvf+S31mY88488Ul/3HA24/ 0weZL+eBI04+9HjSlHRf/IDL5yyy+v+biJOP+WbRwnSvg69vU+bDPm4RcZyn qCM+PeOY9xcUbL7iezrvc34gH/s3/lvIuPiryue8QT7WxbdUHP7qS/3OX9L3 D0PtW/R9LZC/lfL9vMHxwO9+nLCd8PN/+nvuiuFeJOjj/IK7p3BWximHeHU5 DZmP9vq63lvE8pAv77WMOPnIq91RcPvUGsWf/YriF1cevMvCWt8ObC/so3lp UPbrfFPvvSbPvG9nq4iTj/78juIc5/j64kCy2wNhPJOP//9Dc8DNPNuY/MUD YvxDPsbDbyNOPvYD/bcv2DXMc6N+JOaPswdCHpZ8/P6KtoCTL/5WypMeMv76 MdYdfxVx8rE+c4biZh/8Dek+yzHn2/lp+uXnXQHnd8RXj3dJPuZbut/B77NH exwacfKxj+4vCV9L1z1YD/KRh1k94ibvcHS77NvdSvMr3i9B3uuWvoCTj/Mu a6X7g57V+Zr9Q77sV+gNuLcT+P6N6PeRB735fMSNHzGlWfz0BdEfJB/7Qo7U PBD8gkPjOON3jNtDxh+v8h629F6C5eK45He000z1c+Ucbhx/ch/OgLOvEzJv e5wTVhznXRd6fl3mww6+oTjs4Y6Dzr+fmPk4R9AacbMP8+23RE/XU5x2zvTr YxEnH2p9Y2M6nzLgytNk5ayq/gBxnEfYSed9uXd7wM3L061dOkZx6P/nBl2+ Ylbmy/lwxfH7Qwed39KQ+dgf8nfF8bGN8jmfkI88xs8Ux/nfV72f05j5XH8l jn69VfXA5m8UR951f483ZNzKaQhyWD7ywXtf50Hrhw6m9+EuCLgpd2fUG+QP LlEcH/cvDnpD/UD7rTYY/GDaE/ipM8b3g+UcT8TJh93fQ3GOT+j/D/utHr/d EvKJtC/I+1zZJ37qPJ0H/bqj7AeMuIkH7o/rmvDP3tZ9UcjDPa/7nPx5Lbk3 Ku2HXjwY9m2TL/slI04+/MhVuyWv8K7Od/y7WU+9uyvg5KPevemc9pj9gya/ PsqHX7NpxM1+rsfa0v5vxVlv084n6r5++HEDcR8B+bI/IOLkQ9/PSO+BeUhx 9hv5iNuWaPyP8XyC8lkvlP+luO5h9P+UvoCbfPtWzeJvnKe4L7+No8s1KP/U mNchH/mOZf0BJx9f31gs9bom5nXIR7dvqfkh6M907w9MyHy5vyXi5CMOv/LZ dB+Y4t4+wX7tGnHj1+y1QPJtd0T/3fT7hJg/A/9knWeJw9//rc6n2Cd37qAb 3/X5O/yNxxQH/0lvRz/I33Fed5riiLf7vL2cnr9jXbMUcX7Cz9pjhpyjG/Ll bMjfMX+WIs5P+KF1aZ75p+KcT/h9aqU8f1Yc+nBynDf4HeP1izov2/tKed6t LuwHZX+i/ocWgj55v8HHr+QjT/uEyvH18fM9+X5ex3h/NOEnFYKfRD7fd+px sy9wT1/+Jsk33qH+BIr3WZ3v/HoPPl5M6x+nx/Ubsz68QsTJh5lZqOtAtDuI J/6n6z2y7qT7PPx+mlsr8rZI6/Rnj79/V94/2xZwE1ce2CN+x9V6XwnnH/LR uttFnHz4l9d3SX76z3oun38nH+vOT0acfN67BHt1SMHGm2PORaN9evS8NMbj SXpuz+/Pln3Acd82+chbLd8m43EdxVlO2J0LCm5/qN5TjvWiwe6Am7zx6y1y 7uXLirM/yZfzYrqv/8hKuX5XcH7PUqtvF0acfPTbpeke970KNv885p5CfH+2 J+B+HkQ7/DXugzB5wHJfwMnH/rPzF0ne6IiCW1fQ85ponq/pfgr4PysWnB+Z 6nVqXM+hHKxfPDf+upC8931etpvEffl7cf+s5ufQzWsV3LxcZ/XtfwMZx7r4 kQUXR0/MfIybrRRn3tbKr898FO/giJOPcX/uO7Lf7mIvR+MYtOvGETf5sFNn p/e6xPwf+fCbLx4IOOdzzr/E/13pwNt0nsX43VHjKs5f5OP84+WKv5rWFavv K1Kc/WnxCdIfXxyUeH9lxVk/4j4u9XlhL4e451OfXqzwSwOy364Y8+Dky/ud lwScfLT3FxQ389Qe2g7Q7/2aw3o5xzns6A/7RJ8+jPsLTd58r4iTj/3gVyY/ fY/xz2PIvtyIky/+b4/Eu8sXwzlV8hFnXtYWcPJhR5s60302ei8dP8mXe0ja A87vaJ+72/O+CuKcd8hHfuKb7t6NbfU+G9aPfMSPV0XcrFcel96DtETnQdaP fNl/p/fMob77FF27tFh9WD7i5OP82fot6Z4hnQfZz+TDD95Xz6/Lfgjls17Y x7NK0cXbS63evtUdcPLlvd1Nsj70asHpTUu+D97v06ccrCMeGHHyxX9cmPY9 x3395COPcG1PwG1+uFyD+u4U9xuSj3jsnfH3LaJd75or9W3V+Y52hXysy6zc l3F5r6mfr3UdCc1W0v0j8l5xv8+iLvPhp+0TcfLRLw0vip9/QNwPYvT54Igb P3vtWaK/H/ry634QOR+o+0DlHjflV23n63Sfi9HbGbrPRe7v9+tXH1g7uYbi 2Ge2etHN49MzH/nhlRSHHXgzrtfxPC71huMI6veGzkesH3H2N3E7D04QPV1x IOxDIk45fh2XfOo32u+OfsmTXBf3UZEPv/fqiJMv66l9bt95S8rnpfWpl+I5 NPLRr6tFnHy4B5foOTe5p0L32WNenjr+fUOIw2+KOPnIX+2e7q+5dvx7AVCc ycus/Wse/95heY9PxM36XalN9PPO8e95lPMqes8j9POweA8Uyv+4zmusB+XI ++baA04++vmZZem9ForzOSjnxKKbF1uyHKzvHBVx8rGv5NxmKf9FirOfjX7e qve2Yh12ts5f1F+j/w1dAScf8/sxS6ReNyhu1o15L9W6XRmHf94Rz52Tj/2I P4g4+YhLpi6Q+3XuiefUyYcf/5dum884quj2OTVJ+Z+J5+QoB/vhvxhx8uGP fHuO3Cv8k3h+jny7jvlnyd/VF51/qf45xv9f+wJOvuRFZ0h9Lon7/cl/ufI5 vzfg4O8a90WiXy/rz/MX5rsL4v5H8uXcUX/G8bNn4r5I8tFeaymO9ZT5cb8k +fBXN1ac94zY8ug+TTTXCbp/sy2dq7D7SZaGeYTj0fM5Xj1u/TvF/TlY4tQL 5Dcv0/tk2W/E/f5XyvH5Qyt/gqwH3dvn+E0Zp3zilI+PC/Ucr12vKKX3HUSc fOQt1uuVfdW/0/O9vn2gVxtH3PjTM7vELu0dzwmTj24+oTnj0J/BeE4M95cd Ge9Noxzsn17UEnDyMT/c3CF2ZqV4zws+T9P7c73+yL2nEScf9fhOm5R/g/Hv 4ZX+0/tqn6tU+1clJ3eZbc/mtoCTj3zjZ5ZJPnYHxfl88uW8Spudt2/U+9TZ /+SjO06LOPmIJ+qXSn33Lbm4sSXz0bwP6Ps9MN6Hiq5dUvm/p/etUq8pB3r5 pYiTj/ZfYXHaB1By64hLxd87s2T7e8x7wLAe+nBXwMnH8y+fL+NiU8U5vsmX c7x6nyvqdXm8D4Z8ue8v4uRjH+rwbBnXu5bceqW+NwZ68NPugPvz1/h6azzX bvr3nxEnH/HH0mnSDgfF8+7kw//scvfifBzPtSNuXSeewzP6f4G+fxx2/mjP r7P25OW+jCOPfZs/t6fnAqHHK0WcfOyzWe8Naf8TSi4O1XOB+Di7L+Dko1yz Jom/tFY8R0g+4oEd+vN8mvrNzTuLAs5x4efB8eZHjkeP0z7gfOEO5dzuHK+I 61ZXnOMMeK/OXxwfwKcoTv3FudwnFadeUL7J41H+FJ3vKMeWf0I6f98e7vH0 ONvR45RPnOUkbs5j7xDv+2Y7EGc7yPnteL8Gn8v+4HMhbuN4bzgeP0PnU7YP 4uqd/Xt6W7N8OZ8fcfKhjw+kfm/V+ZHzCfmy30PfmwI1/lu8jx6P+bDk5qFl WY7sL484+TLftsg9Xk+pHKOfq5fdPg/Vc7mvoC3g5Iv/slT2Mb9VcvnEFnuf WlHfr4jHb67vM6EekS/nWiJu1vmeXSjz4lydN/34fbTyh4v0fSPQq93Kbj1R 37cs732IOPlQt+3nSX27dX7k+CAf+Y5hfS8Kfnef8lkv3Ov3v3hPqnnur7sC Tj7O3TyU5osx97D68tt5s1yD8q8T728jH3b2o+6Ak494tGaKrFe8G+9vIx/9 tKfeAwe/cbeym7/0vjrJC0ScfMR/+z0q7fZlL0fvt5NzJRE352t2eTvdoxbv rSEf+v1KvPcO9fqPnpsnznOonAd5v6GdZ+vDPgoXx7j5xb/3lfHXvIBT39DO U9Sec/wCf0Jxjkf4VzcpbvzJcxQ3duMwxTnurZy6ceTUjSOnLsix/sSyzCde /bn14bmsJ59LvvUzlrnnTh/nudPDc62/rnz2H/m2vvr+LfYLf095Vk6L5U/R edPtx8z9Av+xuSnzKcfz+VzPJ04+9ptdqjg/sV6wQOcd2lvKl/f7RJx85C/b l8h+sFsU53MRp495XzHrgfI8oPOR9+vkveltATf5zFPS+uqx/r2XTbW/qZTn eZ13/LhDfuWzEScf475xjpT/bMU5TsnHealv63sp5f6G+L4O8vH1DxEnX/KQ M2V/11X+/Sf5vWFiT9/X94bJvfzxHnHy4cevHnETx93zvuwD+HO8R5x8OX+h 95HDHh4S7xcn389fcq+Gx9XP572NHicf63R/fEP8gRPjvafk8/2OHE+ST/bz Tr5HrXZXrJcrLnnCsosT9X53xKW39GS8+rwQ8fHmEZbf4hNEH742K91LqDjb GeuD5yhOfQB+mOIm37uD4tRbWc9SnOMOeK/aJY4vPtfmW/xz9T3klEO7Qzms l8mbHaL1tX7prFxOyjF58h38+9t9vfS95f69u2xnuX9hyK2zzEvvJ1Q7Q/n+ PYSSh5kh5T90yOWFZom9Xd6/tzCdwztlyPmlqg9Ynzox4uQD/ugdOV+xvn/f 0fTMR7Pd3RFw68eWa+T9CkPODqg+Y5/Hkq6Ak/8emucVqe+2Xr7qv9wzru9D QF7l+0PhnmPy4aftpDj2C+3j+freJ9mX3p1x2Oei958nip3f3r+PoE7s4eeG nf5PFLzHj7t6ed5kP74+EH14fMjJmZ6fa+28PtfGR/qeassv1/C51DM+15an IeDUb19O4iyn5XcEvp1/p+dymvpu8K/cblb/62V/yx1Drr7TQ30pB/7OUHyv F/Jp/4zv74I6rDrs9FDfX4p2e1bf7wEBr3u9rUvn4LyeTMi4fW46p3v5/ZJ/ 6Lw94Pzu/87v/PRy+Bzkn790V8hHeT7Xk2y5yzU7J3tYvZzlgMPf2Xkk4FjX 3fbDUH7Mkzt8GOrrceQrbnwitCtx3w7EfX2J+/JQb3z/kM/yiB49HdqfuG8/ i+v5bs9ju3n5/rn8HfKkO38o+YfLnsn6Z/unrtY/H/PYtQ/Led6r/m39iDG4 8TfH4Gw3WM8tHs3P8faJn76ckLPZy7leIu+pjLM8fB7Hra+X5ad2Hu0/8lke L388nPXyz2U5iWOYtLwR5gHiLKfn87ket3pYJ3m/Dd8K7Uk+yyPz08KghzYe Uv1y/mzKk08J+mHjCK/HPAc8O+P4WK836J9ptzH9Sn2w+4qeds+ZGPSHcvj3 8XDKkbzMEu/Hy/rOq69ku2/HL/d/vZX5iGeufV7s91Vv53p43OzH3PzFLJ+4 57PfWR4+l+2G32/9Sprv3s3Pxbh78/U8v/ryW365psLaaHvlG70aI3883Iz3 Mc+1dmliri/7hXxU64EPcvnJJ87ye76ft5H323qyPZcxhi/DYTjgoM8dCXLg r1wf+ayv53s55LMdrq9mj0b1+gYbd+Y4brxx5+0ahtsxSwPfxw1GX0/rGxf3 4xr60VNyep/j6hriXq/4nX9nv/O7i7dr2A783Xh84rR32I9WO9X6UaPjh/6f nRd4/25+b3tNdTn12c7a/EV9eC7LVZ3fEHDRn84gR/yrloBLfrk1yKE/Vr38 kc9+9HyJc9oCH81+W3kc/lDg4/ueQ4EPe7c08ol7Psed53P8er7oy0jWE8QT n05x82Z6D8OG6b3LX/ow6An8q5kjmY+85RVT8vglH/5Zy4wQtxGnvnm+HW/1 8n1D/V5dfkPApR3ax5FfDPLH459q8kS+POXAZ395/KYU/3ic/Vi9/BFnP/r2 ZL/4edfaG7VHnNf9OGc86u3ej+TgVsDt+fMpwS7xu7dLxF3eM5e3ernelXz/ cVOz3lIuppU7p8q64kpRPtaTPx3JfIzzj3Xewfmee9/N9aN+ki/1nJHLg7h4 +UnC/+qsrOfV8fqAN469R2fTSfm5nI88n3bG45NTvMP6Iu/78cysJyw/8HVn SRx2yUioL5rzy8pHuSbNkHZ6dkTs6Obv5/Hm26fd+bOYp+57x+EpHhmD8/fI s2/xXsifeJzrHV4O9dDzF6V29vz2tA/G85GXPKAU+BynHuc49XLI9+2GfTf9 w6Hd0K97jlh9e2uOzSuMyiHO9vQ4f+/xZpd/gl25b66sTy9sD3zsi3hkMOBs H48zv0Mc1frhnNw+xs/eY25uH+Lks33Gs2NuHSnHX55Pf8/an5eD/fHxEXE/ 3iF/z2nynEved/7t9IxjPW2T5I+N8lk/4uTL/X3vZPuD7/dMDnEBv3u7Sz7t mC8P2wXzwryRWhunTk/3syoOt3ZTtRvkoR2Onin9dbzyWR4003dHbL1WmiH6 86cRZ8fzupr40cdMk+f9rSHrCeUQh/xpw7XkUw5xk788bLbMs6uMpPe+TA7j jvEGyr/2vDyOrJ80z8WD09P8PTeX38vhOPI4xxHjH8rnePR8jiPPpxzWy48v X07wbxwO9YIeHjgs8+UjU1J8ON/OX29SbxtDO1h+ucbLmZN48C+2UznEPT/9 I/Dpn3g+9c7zOd49n/bV8+Wcc3Pg35zaz/Pb0zpYdX574DNe8Hz6mZ5P3PPN OvkYPuMjzyfu+fTfPJ/5Ac+HeX6nO/D/lXDPZ1zs+Zx/PX85eRF24K+U8mCe T/33fHOP4Bg+9j0cUQh8ltPzxc2PfO5L8nw89p5i4EOtno38GWne9HzmAz2f cajnM670fPqHns94xPMZh9I+AG5R+2PyAruk+9NWHw72Ae7nS0OZTzm0M+TL vs/GbGfIJ0474/mct8nHvoWtF2bc89vG+lPhuQ1Bjo8TiI8npzHliz1u87Aq Zzy+zUcpX+xkU+DT7/U47ZKXwzxJ9XZoDbhfV6Qc2jHPp52p3p4dgU87U71/ u4Mc2ivP9/cikc/x7vkcpx5nXsjjHKfV2zniHKce/3za7+hxE8eFfok4x6nH aQf8OOJ45HzLeXqKixO9P2z82DF5SOsH1wcc+4O+q/ltzs/YFzTyrtiDT0Yy n/4s4s/+ETufnzAp+71o1z/PlHXm66a5/NWsjGNeuGAk81kP4uSLmk2Wee3R kXRPwQzL/5Pi9GP9c1kP2KtttF78u/hxI3m8+nyvj0tsHmWG2M1bNK6kXKj3 gtnS708Pu35pEHkPKB/3Ivwhnf9sH07vDZgpf99inl2PZ7m3SO95/JLy6TcS N+0wa47o5w+H5e9Hzwh+pu33xlBf709Sjp+PTLwxyhdzOxTkY3qfNCT6uMUM GQeDC/O8g31TP5+Z7TXnHcqnvWZ5vByOG49z3EDv75zh1g/rxilPfeBTjueb daQgpyHI4TqB5zM+8Hy2Y/Xnzgt8+tWez/7xfD63ens2Br7xZ8fw2T8eZ7zg cY5Dj9P/98/lfiXPp/9ZXX7EabfZrpDfq3bb7B96YaHkVX48FPQT43fNIav/ ZzaKHf7rUM4Dzk1+g9dnu35broH842Y6PI2LgNcFnPrvceptdTn1Aac+V5f/ QcCZR/A47Snz8mwHjgvPZ1zj+fTzPZ/zNfsF/GcW5/ma7Szv11gi/TuvHPoF +nCt8inH9O9XU39d05T7xfTjNbF/0S5PNNk80Rg54+H0M6vzuwNuz4/553aH crK+c0x/lGsYZ3n/xPsP3g+B/fhkttR//ttu3aoh43juuso365TrKh958L3f tPsEntR8vcfpn/jnUo/lvR4jIa+NfM1TiuNczq5Tsl9BOSjvSlMlPj1K+fRP kH+rVX5r5e8/TevAN4zkdpZP3b8BM7dqumfu/ZnZr6Ac4vB33knx2qoNuR+I k49iXTZD8of/HZb+eWVW5tPfIE4/xD+X9cMwu3TYrRM0iP986nC232xP1ot8 6OX/5rh9kGncnzJX7gVcSeVzPkOaoaz7NdGvayd/Zu9hyZt+sUHyFI8ucPvF FUd/XTKU+SYfcony0a7Hz5e83zNDEpe/Nyvzac+J087753L+Q3V3Gsr14nyB cyJfGHL60xTazc8LxGHuWtW+8bl4Xk2y8y+Ug3z0+6PKx2w/sEjuSelP50L3 1fUbu9+gIdtx4wcWk/6duTTbQ49TL6rzWwPOeA2fd8/O5eH+AdZL8h7+PHM6 R/5WOs+5Q6wX9Gt+KfMxTjZeKvml01QOPn/fbPed7as46+txOw5SHnyDlox7 PvPMnm/6YQyf7eD5zGt5fluKi3292A5+n9upKZ/g4wG/nutxk48K+zn5/qKn 83xh9XOiW9+Zl/cHoV47fpj9U/I9juce/Ga2/2Yd6vtvSR6iNOLWCeolj794 JPNhJi+cKHnO7VIcfeFc+X3be3leIJ847OGZI5nPdiJu9pEf/I7Y9ftG0n0W ui7I+YK4mUfGPJf+FszNF0dc+0xP+0eGrV//e923QDnQn8/OlPZ7WPmcL+T9 VcqH2/zL6TI/Lx4WO351eu53G7KdN/UdxaFWGyuf+kicfNi9FWbL+eqjh9P7 5+ZkPu0/44Oqfsoon/OFLw/rB/WbPJS/8+/g1ymOcwnnz3fnW+bJ+auO+aKn xyuf4wb0g5SPc5Z3pfPMtw6J3tw8V/yPnfRcH/nE0S/Typlv4uJpyj+x0jBL 03sbVx6SuKl2TubTzq+f7LiP68nnvODLw/mI5/GsvqX7ts5UnPbL5hOWBrtC vuS/l7pz8vMkb3jqUhmXq0f56Of/lCz/4iZp/wPS/QLLz0n3O7Zkuw1/Lb8P uyXbLcqhfrGcXg7t2emV75vOyXKIV39uXeDTznk+4zjPp9/t+fQrPZ/+r+dT jufTrlQvf33gM372fD7X82n3q/PnBT772/OZr/Z84p7P+NHjzCfzOfjo13nT zAurtIj9/E0p6A++76h8+C8np/n6xZLkU5fMyXl/Ez+uPS+f4/N6aPnlmupy 6vJ+EcqhHno+9a26nPpx5EwMfM5Xns9+93yzr2EMn/rm+Zx/PJ/6Vr38DYFP ffN8tq/nUw88n+sdnk87Wr2duwOf8YHnc93W82l3PU5/3Mthfqx6+w8EOfTD PZ/rv54/XjtQvpfD9R2Pc33HyyG/6rgYLoZxATfna6XMR5z/n2V5fJFP3ORn xvA5XjxOO+xx2luP065WL099wM3+8vDcDwJu9veE8kwPOPdvVC/nrIDfkObn 6uXptn7Uia35fI7HqQ/Vn6v9i3Os/9T7TClH3kvYmvWBOPnUB+//+XHm4xTv 9xA360Zj4hfiPn6xcupsHmzRfPFDznvV7YNtzDjii9WUTztLnHx83+0Fm++6 eZ7lb5f2p63UKPmFd+rd/lLFYU6uHsl86iVxymcc5MuPj+3ekvWuF0bkd8/P z3IY1xBnvOPLQ71Hf35rJLcn9R69t9NIuj8u7QspTXX7FRszjvn3teHMN3m5 15QPv/oHk8U/Hkr71u7W872MayR+SONgv1k5jrh+7PjYL+WBdnX8QxSnfMZN vvzQr+IMkf+z4fR+ON1HxTiIOOMjXx7Oc9Cvj4acfjak8wYpDzaS2nneXHde vTHjKNfPlc/xR5x8POeGOdLfj6b82KPz7P1Nt6Z4hOtIY+4NMetLo5/oL95b wfKMwSmf8ZQvP+zBaL2xnL7pUP7OvzM+Is64yZeH9kPe/112+5kWyXrCnele jJUWyLrmc0vCfXPEoZdbKZ9xE3Hysd/np4vleSek8/nPzct8xjXEGe/459I/ wDidWcrlZ9yEVnvJ3w+b474a8qE3p6o/TPnQ94eaRS9/rPLpD4N3aMmO9/+l e37uUr71Q1KctfYCiXcP0XmBcoh/p/Kguen9DaN8yiFu7O0DyT9fI+UV345+ BT43X5D9Ibt/vtHl3VL+c9Y8OX/yj9bsb6A/t5if5XC+9nzins/283y2V3W8 M+CMd7x84p7PeZnt4+dl3w5o99/FdsPzDk3zdcv8vD+J7YPfNS/I+5l8O1t+ 2o/x4AK3/+npIH88nP6Bx6n3Xj7tluczH+D5/Lvnc5+V53Mfqedzv5bnE/d8 9rvn0z/3fOKez/VWz2cc4fncn+n56K71egOfcYTnc53R87leT71CsftUP6kn mAdub5O4Yr1i0CvIeUPfn0c51E/yce/KWe1ZP8knTv30fJPnGYNzf6yZl+/T +yQ9n/tjPc529rjJY4zBmf+vXs6BgHO/hMfZ/h7nvj7fPmxn+isctz5v6NcX /P4e+rdWjp6jh90/N+072aUu+6VmP8ooDnu1pfLpnxMnH37NwJP5ueJvLMx8 j9MP989lPgXVXTaS/Qb65+BNGbHxyNZvZ3+YciD/wLfFLp/i+KN+NepzkvJR jEffkHum7xxJ77VbJPms2e9nP5N84uj3OcOZT3+buPFvvvGu+Murj0g8tsPC zKf/TJx+tX8u5zl53/awa590/vdqxcVOzcz+ranv1TOln9dRPvUF9mpt5cs6 wAyR/51huf/qhkVij95ryH4j+cRRvRuGMp/+M3HyMRwumS3+3cShdE+o7vei P0z7zX7kOCCf/rMvD/NQ6LdDh3J9TXy82/jyyUc5frQg+7eUj3X3URzyJ5Wz fI5v2S+hfPhPa6U47L+J/5dFIv/hRe5+UsVRr72Vb+4d29vdv3zsQmn3C8vy fo5vL7Tj+wS9l9ms743Wl3z6z748tEMwz8uVnR42yXzSmc6VX5r2n/1d77s3 7z8cxfHrXyuf/gRx8tGtfU2iP8+U0njR/eL0h+26iPqZ8MceTHq4n+bNjL8+ is+qdExf8t8eXJTnG+J8Lv1wXy+019+apX+3Tvehf29hlkP/2dolLSf59Ld9 OZmvk/W1YpZDPxxi7lHc+4EyHtN4uUn9AaMfozjOs2xfrCWf5SRu7EPbMvF/ Tyum8dsY/FiWx97vV67B/aLPLJL3Teyi8yPlE0fe5f5CLfmUQ5zP9X4O5aDc v28T/ZlfkM9TFwY/x+w7X7sjz592n2hHuD+H/ijr5eUwf+jPD5hzYWP49DM9 35xjGsPnuQDWy/sbvpyyzlgI9YIdW78g/mz7QmcXJ8j3Zxflcvh2sPxyjZdD fw/+3CMqh3j159YFPv0Fz2ee2fOZT/Z84tXlfzBOeeoDn/lNz2d+zvOZZ6pe /g8Cn/OY59Mv8HzGuZ7POM7zOT6r91dT4Jt9pmP4zJd4PnHPp/32fMaJnk/c 82kXq/dvS+Az/vZ8yvF82lHP57kkz+c48/zPj91/NYbPv1fXt8inffB8ltPz GZ96/k3J/nk+4y/PN/Uew2fc5PmMj2hnQG/oyPGR8RsvT/dhLRkMdgb1ulH5 lEN7RT781wVqr8x+9wVqr6rz66yf06J2yfNNXDKGb+6HC/LrA5/2x/NpNzyf uOfTDnjc7GMO9Zo+TjkbAt+cgwjlnBf4Zr/UGD79M8+nvaper0WBb85HhH5p CnxzbmIMn3bJ42ZfzBic9qd6O7cEnP6FLw/tTPX27Ah82hPPN+NyDG7syhic eQ8vn3knz+e49jjfO+rHF8cp/Rr6ARxf/n6B8fIbdj9kU8hv+HMdzG8QF/v4 TK2Xg/Lt+Kys263g5aR7Ez8ayXzYr45H8nPhN7Uukfjg0NfdPRJNGcfjfzWS +bQXxM26xdovyfen0nrfHYszn3kJ4sxX+OfSjsAP//pIOJeC8bLpiJ23V3nP 3avQJPp91HsSvzw3HM6rIN/ztPKx7/O5SVKe3rR+V0jrNM3T3DnrpoyjXbZT Pu0RcfIln5PyHj9O63cPLrZ5j+8oznyFfy79M6wfdg258zyz5HczHd41250/ bZL6fybtEz9zyLVzQ8o3Dtl4+MW0//M+f5+47v9FHPO/JRL3HqHvD6Ac4pC/ uFxLPscPcTNelkv7Mdcbku/PLLb8/5bDvh+Wh3zmK3x5aK9R3b+XnZ40ir5e pzjMyLSF4b1QiHdbF8p96Bsr37wH7ovKx3vl7mgUPTk63Z++epPs599B32NH PnH0162lzOffiZvvSxZL3PVu2u/92uL8d+YfiDMv4Z/LeQX6flQp14vzCtRu L8Wl2ZrD+5LRvs3N4h9NKzq9bRE7PLloy79Xs/ghK6fz2hs2yfrl73TfCPkG P6CY+cwnEDf1X9Ii9vPS9P7RyYszn3kA4swP+OfS/8bfVy66cZT2UfUXMo5x OLXNnYtvknLMaBO7fbXyOe9Cf68qWHu1bZu004sFyXN9Jb1/4CL1S8knjvYf Hsx8ztPEzbiY0i7tv2NB1tfnLw7xNcvJedrkDfK5wY6MU473n/lcEx+9NBjk Q94DgzI//WKx2NWr9X5y2Kc3OX673X04TTneMPm0MXLoJ1eXn/K+26l82l3P p3/gcdotj9PeeJz+ocdpVzzO9vI4z5t5nOPb14v9UL38HQHnfkWPc93Q41wH ZHnR7pt3uffGN8n4m9gl5fnaYOhfjJs3BjIf7t8G6d7Ds5WP9YgH9H578omb db0xfO6PJx/9sXVPxj2f7eZxrrv557L8vI/K+pn63mDvf7alOMasix+zNOC0 0x7nuht/R5zrsP7cF6r1TjrP8rCe78L+qA0/lP01nzbZuHRbxcmn/0mcfqnd d6f3/qL+s0ZcOetEn15R/HA4RC9nf5Jy8JxvvyLz4LEj7h6XidL+hykf/bvG 86Knt4yI3CeXih5+rT77meQTX7NiqKcMZz79VeLko/53vCn2bcWRtI9c+fQ/ idMv9c9l/IzP64ZzveiPoV3PVxz55s4p2Z+kHJxnOXmq9Ntqw+GeG/h9yykf o/OtdD/lfun8Tl2SMzIz+5lG/igO+KqhzKfdJE4+5vHHZkgc93zat7a68ul/ Eqdf6p9r7pnca8jpT7q/bivFV63o3/E5nstyeM4GzfFaOfNpx+H31Smf52bg F5TL4u++vFTinzkL7PsjP1Ic/bOr8jkfECcf8/b182XcnZXus11X+fQnidPP 9M/lvIL+7C/lenFewfd5JatXtUvCe8Hx9ex07v7nJac/yY84U/nQ502Tv/lI ST7fTO89XbA0+43kE4cf0lbMfP6duBlfu6ZzQ5ukcxYbOf7KitPP9M9lfkTW z4r23oJRf1Xej1G0+rCO+ofGjn0pvU9uK+XTz3wL7aF8PPaKdP7ohLTu895S Wa97rzX7jeQTx2PvKmQ+/U/iRt+2SOtZ0wti5zZXPv1J4vQz/XOZn0V7HlvI 9TL7fPZVHPVfWf09yhE9TXmiuYNufHWk/YrKR7uck/ZNrVGw+bAx6zXgT1sq 8/QLmuehHOIo16EJn6bvFTb4KB/j6vMp73pNKudXltp1mbMHnR3utvPzKJ/+ iS8P/VLYrc9FObCbnQP5vgaM30P0fU88L01/i/Mw5TNvbvzzMXLoz3iceTPe H0H5Pj4EbYn6OXwu1glW6JE4ep2BUE5YoZ/1W7v9w26Jd68eED9p96U5j8/6 4vt7tFe9ob6WX67xcphnwrnNO1UOcc+nnlXntwQ+92uxvqjupz3ZnzPz+MO9 0v+f9IV6gfa9vsynHLYb+ejfdfQ9B6bfR3G2j+ezvh5nHp5yxI735XMunk/9 8XyT/xrDpz5Wf25vkEO+rxfbZzy/l59+H4zHmT/y5zxph2x+ifcY9wb/+aN0 X4GXD/o9xXHkj2Q9Yj8hfnx4xPHTunVXyqO2pPz9qv+u9XKIo33PUz79Z+Lk X1z5w/2P5+eilfZy/FsUp5/sn8t1IzTDVlp++ttyjkdxuQ/kTXd/WovY/Wff EvvxxLBrh3Su5O/Kh9z13pD3OLcOyzmhzmbRj33fd/eStWQceZUtlE//mTj5 aJcJ79R+XKnY8cPih+ynfPrDxOkn++dyXGG8zx9y7ZPuRXhDcbR76wx3D1V6 T+zuM8U+n6x8+sko1tHKx7m46ek+4DuGJN4caJZ9X1fq+1PJJw49bihnPv1n 4mY/0M7pfpjV03vvDlY+/WHi9JP9c5k3wX6dm8q5XvS30R4XKQ57+sF8d99R yuutt0DmkXWUTz8Z7beK8lHud+bJefdDytJ+w83p/Nqi7Peaco7ij1fEXl/K fPrPxMnH/rk10n6l19M+sSOUT3+YOP1k/1zOQ4gL9i05/UnrJ9sqDj07Tv1q yoH8S9J8MkntEu0WnvNy0erthLT+8EnKf36SxtcmLdnvNeNrkzQu91K+Ga97 Fa29+mWz6NEFKX/7/WZrF09QnH6yfy7tNPKM5UKuF/1t2JXFBVvf76hfbep7 Zsrf/rrg7E+r2KXzlA+9fCO9b/rpgjxvxXRudnXdR00+cbR/32Dmm3MBfcpH +52ezil8qSDj48Rmy19DcfrJ/rlcf4W8Rwfd+OpI93soDj9tH/WfKQfz3LGd 0p7bK5/+MNhbKh/zwdMdMh5PVb+X79XgfIjqrNYiftbHXdmfpBziGDb7DtSS Tz+ZOPkYz8d0Sb2fHpD4+bTmzKefSZz+p38u/Q+Z3vpt+4yWHx83Km7fp5z2 9/4j9csuvdkPpHz8/aBe6b9X+4Ic0J/qy3wU594eKff2/VKPGc1Zrr13riX7 oywPvm6byv+S+o0ep7/ncZ4Lhh4fp8/dOdmz6vzugNNfNvPXX/uCf43ydfVl f9nXl34x+ZgP9u+T9bj1k//7YnOOZ1hfe3/HQGg3y0/riWPksL4ep15AzTdQ +eT75yKPdGtPeC7qt2Vv5mPeumYgl9/4A9do+T2f+TAzHh9XvLr8hsCnffX8 m809Qcrn+pjn854rz2dewfO5Tuv5tGeeb86tj+Gb/WVj+Dy37vmMy6vzewKf dsL3C/uX6x4+n+/jAvrLPq6x985qPEK/yccptMfjxSNeDudTfw+kiB8JfPr/ /rnEOe9SL8G7zvPT+x0fU3xd/OOJWi8H/JWfEX04wsupEzu394i9h+Kuh/Jz 0Z2bpnzc1q/luIN84lCf+uHMZ38QJx95wJ4XJK/2ccrbX9yS+YxHiDNO8c+9 LcXhR1ae98vhcA8L7mf+0bC956LpnRxfUA7yva+/K/fTLq98xikY7wP6nng5 DzpJ1gv2HBb9/NIymW+OmJbjDvKJo/0vHsp8xi/Ejb/17GQpx1NpP8nlLZZ/ h+KMU/xzue8F5d12KNwLg491FMfPv5/HTZYDv/e1tC5QF/eNYL3iQeWjm85L 8VRvWfy+7dL+gJXn5bjD7BsYxWEPtlU+4xfi5GN96Pk5sk7143RP47V6Hw3j EeKMU/xzaR8RZywuuX7n+0EUh/7tvTDHF5Qj9xMsFPv2U+XT7qA8xyof8/dh jVLv+0oyDr6a+qtlSY47TD+O4tj3s6iY+YxfiJOPOO72xdL+65XE3/tDS+Yz HiHOOMU/l3katN9txVwvk4e7tGj97TH2j3x83sq4pGjt26vNsh61UdHpZyrX 6kU7LtZvFn04KuX590j1PWVZjkdMO4zi6Jc/FjKffydu7NhLLdIv7xZkPe3W Fjvun1ac8Yt/LudvuZej4MZLa7qXQ3F5329bjjsoB/r7eNrPPXXQnv/hOeU3 lI+/r9RWe05F/kpp3aFmmejtkR05HiGfONp//8HMZ1xDnHzMl4+2i528ZFDk 3dmS+YxTiDN+8c+lP4HhUVb/iPOujFfF8f1ijWsoB3Hm37qkP5YbcOM3xSOd /ZkPe13qlLzM+ek870HLxA7WaJ6ZfOKIF3r6Mp9+DHHyEd/d2S1/P75ffn9v i+VvrzjjEf9c+vfQw5P6nD3plflqJ8VRzzPV/6ccxA2/T3nwM3ozn8/DeDpK +VCrlt7agQo+p9fKP24gjGu/zwLdelgapzuqv2fG7yiO+n23p5Z8yidOPrrx un6xQxNTXDAh+v/43ei4pp7Rb6Ic7z+iXH9K7b/eYPanPE4/3+M8N4F+bGzJ z6X/7Pn0tz3OceNxjg+Pc3x4nPruy0M/nO3m/XDfPpj/J3WH9sS42bs784E/ pO1s+A9pe1bH662cEcU9n/s1PJ/94vn01zyffr7nM6/s+fQLPM51EC+H56o8 Tj/Ly2Gc4Pmsl+f7fBxxxn1eDvWEOOLGM1VPKAf4y6onBj9T+53zm7nHeUy8 79eJfN7E7k8aCHGZnR8Z37WOK8fnF1gOv28S8G3lcO8M51n/XL5nls9nPTEP fjQsccnRek8N9Go0nsJ8+09/76Ti5DOeIs44i3w+V9rpaSn36HNt+evEnnys ONbZe19w98+3yrje/GVZl5igfMZZOF97k/KxD6S9Tua5UTmwr8e1pvsF33b3 zyuO8xcbKp/jmTj5aO4V3hT9+u6w7BN6Vu/1YzxFnHGWfy7tAvbjvzuU68Xx j3I9rTjmnTcnu3vmWyWvNGWK4McOufZJcda+yod93/kDae9bhqS9T071fXJm jpvIJ47iTylnPu0CcfIx/k9O98CumO5DflHvGWQ8RZxxln8u7QjU+TKv/+m9 EKeV7TnId+a4e+BT+xw4V+LLVZXPOAtx4VAp83HOeiidg9gvrQed0Srz9428 X0r5xOHnXFXKfMZfxMmHf77PfPHrn0/rPq8vs/z7FGec5Z9r7mnYuZTrZc4j bqA42uvxxTk+ohxo1RZL5HmvFp3+pPeDPKZ8PHZ2ujeiXBS7ck6rzAd5f5/y iaM8uyqfdpA4+Rgva6T9Wmel+3kmLct8xk3EGU/553K+kemgkOtFOwv9m1Kw 9X2vJc8TlIPnfZrWqc5XPucZuY9F+Wj+41L890hB6vGLVlnferA1x0fkE0f7 tw5mvrE3rcpH+32yTOKyTQoy703R+1sZNxFnPOWfy3kX69d3DuZ6MS7D765W HNV9pT37U5QDuf3ttY9W6r3loBtfHek+xEE7Xr6d9omdMCjz0aWt8rvbOt38 qjieu/NA5tM/IE4+HtvTUbs14pMBaY9ZyzKfcRNxxlP+ufQn0D939jv7nPK8 ZykOv/SpbhdPpPG1uFvs2ON9mU//VfYT9mU+2m33tF9rw36Zj65O4/03vW59 SXHsP/5Lb+aTR5x87Fdq7BF7uGKf6O+CZZnPuIk44yn/XPo12J+2XG+uF+uP 5pvZk3Efv5h57R+6bmL8hyn9Yg/X7nF2aUDGb7nb2o2tU5x1lfKtvpZr8Jjr W0U/9hh0+/UUxz6Fj9P64fUqhzj5m1ea4f0Byb+d1S3lWhrjDuR/99Xxb9+r 0prPmbOcyI/9NennfzQeqY7XB5z+hcfpX3iccYTHGRd4nPcGSN5wWa4X48fq 5WwNOO2Qxzle2Z7e//fthn0RZ3aFdoYetnXKOPt4Wb5nhO3Jew99fED5lp/W W05UPtezvPzxcNpFj5v7DMbIZ9zNeuHvqxXcuas0j4zOQ3iP08WdoV6w89M7 Mp9y2D7ko18Xa/sYf2yxto/n2/fXpPllw2LGPZ/zDHH4E4sKLv5plXJ/seju p1E+6+XjoJuSv+3jJrTT9cPhvhu+f5l6bezFaBzB8rL+sBMnDkveepbea4l7 a54eFv99+7bMpxzi5DMugxrke47qshzkKbfXey19eYi/Vqn/b9P7Pds1zmIc BDu1RbpPZ/mJOR6hHOJYt9hF+YyziFM+46yq7fPeS7l90E+XtmU5jJuIM57y 5eG62Ocq42JoyN0DVZ/ukU/rULcn+/Hkezk+ohziKNd5yqcdJE4++uPz74he PZTWp3o1LmPcBHu5TVp/3iffO27vAx3FUZxl5cxnXEac8hmX+fJDr++fIvnh jYbSObq2LIdxFnHGX748XEeT9dZybk/GZRh3t5XdPKT3yKH//9ZW21up/24N Oc6ifOIo1hZp/etv7C/Fyce6ZvsskXNcWucqaXzH+Avl3qldfnf5vBwHUQ5x 2P87SpnP+I445TO+8+XHeNtxrtjlqek8y/VtWQ7jNeKM43x5mHebVFGXH5Vy OzO+w7rft0oyvv7RJv7SOotyXEY5xNE9DcXMZ3xHnHzg9ele5M+VZHx9pPEg 4zXijOOqPne1JaJvVxfdvbrp3umzFEcef02N+4zefi/tZ19H+Yzj8NiPdB7A z09oknHAe88ebZO/f9ic5zHT7x+muO/6QuYzviNuxuNRaR/W6+mcy3KO/4ji jOP8cznPyD0VhVwvxoNyT0XBjq/l1R+hHIyzA1ol/zNp0Nm35Nc8rXzYrXvS es4naZ3rqTZZr+loy/4m+cSR/9hL+fw7cX5HnFvbJvHRBekcymfa7PNPUJxx nH8u51WMm1m6r4fzOuazBxWXbfMd2a+nHHzs2il2eKA/3Hcs5477Mx95zxs7 RH9/NCDz6XPpvry5XTkuIZ844Ma+zKd/SZx81HKnLlkfPDjdm71mm/VHN1Sc cZx/LvcJQd5efeGeZVkvVlyasyfHX5QD+7NFr+w3/n5v5pOH/ZI791p7e2mP xGv1vdKfr7bJe+Hr+/LzyScOe1jbk/msD3HycY5y0z75+1PpnNB6ymdcRpzx mn8u8+Kw/w92O/szIH7wRYpj38yCgdwPpr6fTfHIK12ZT31F89zZlfkYdmem /MJ23TJ/vdUm9W7UeMSMh1Ec5X2oM/M5zomTD7/hurROsV4677VxW4hT7D3j GneQ7/1/ymccgXb+XJQDMYs6aq+sAMsnu/HVYvZDkb/J9rOY/VbK5/lwlkfO Lyqffr6XPx5u7PLN6T6LdvX/+XfMZ58Wkr53hHKKXrdbP/bxgujnHztkvr+i Lb8/hvVF+Vdtz/Ofr6/ll2u8HM7zmE+XtLl7T54OOP1HL4fnpzzOdqkuvym3 A+znFUU7L/I+vJnFdK6wPdQXn6e3Wft/hbYn+fj9+qXcbkb+KM52q86vy3wM 671KuX08n/kHz+e5Is+n/+v5jBs8n/6v5zNP4vn0iz2f5axe34ZxyjMr8Lkv yfO5zuv59Duql2dR4DOO9XzmxauXvzXwvRxTnlH9OdX4LRpH2/wE10PLeXxT b+APvDYk881uel8tnrN2ul/r5nY3PhUnn/GmlVOX5eBe6A6NlymH5SGOgvcP Ofl1Wb4pz2ic6+VQX9HOfUP23AXfE7ZGutfrxA6ZN26pd+8VVRz5it8NZT7j MuLki3l+U+zraHuim59rz3zGs8QZ5/rncjxg3fPbWn7aL/TXzopDT+6dWuv7 V84RTZXnvV127TA9rWcqX/zmyTJPfZT2N57WIeXbepZ7H6jiGNd7KJ/jjbhp z7kzxK/7edr/+Wp75jMO5XzMdqD+Up89Tjkmnh1TTrMf4uOSyzuleypbFRd1 m5vjSsqBP/TKXPF/Li5ZP5vvH/6l8hHHnJPe4/pkSer9s3R/z4qN7j1riqO/ eoqZz7iVOPly/8V8GedbliQP9lZ75jMOJc741D+X65iy3q15PrOv4q60brio XfTmr0vy/E85xPH7bZXP+ZI4+SjGdxZLf5+S1hO/rnzGoSjGzzvEfxtcmv0p yiGOfrm3kPmMc4lTPuNcX37Y40OWyrieUxB/6f32LIdxK3HGs748tO/o99M0 f8w4V+69SeuSy5I933uZ0/uOjCPPtmgw882+xUXKRz/dns6vrJvWH7/Zbvch fpL2kf2qQz6bdF2FcogjDj1K+ZyfiFM+42Jffsyje7SKPb8h7Z+a0W7lXKA4 419fHvphsp6u++BMvnC5QRkv3Sm+207jWcohDrv4fwOZb+zl/w3YeeTa1G83 D8g42t/xR+Nc+hH+PB2G4ZUdtddWeNP03lTKYbzsywm7/5VOsTe/6pdxMrc9 z+eMf4kzLqZ8Ppfrp2imv/W5eSTdl3VWn4yXwZSn3VDjXJaHOM7H/bY38xk3 Eicf6+IXdkv9Sr0yXg5RPuNf4oyL/XO5f1XSYT3OLqX3+jytOOLtzTSOphzk H0/vS/sIujOf7YXxOrM787H++loqx3k9oqcjKX78rMa5xv6M4qh3d1fms1+J k4846sdpXfm47tpbKh30XeUz/iXOuNg/l+u5iDu/1ZXrxfED+/FFxaE/N2gc bdbBHkv7RX+i9wRzPKOd9lI+9OoHad9bQ7ov8L/tov+XqR0088sojvY/siPz aTeJk49qbpPkvJ7s+A+Uz7jS4I/H5zJehj/wVLuzw0Vpv6sV57xo153a3b4W xWUfrMZ9fC7yhv9Icd/ktiAf5X7AvZfs8JQX3qvd+mnf1LiPfDTDF0tuXSu9 p+pIjfvIxzaBo0pu/SrleX5cyn4x+ajOxRr38T0Q8E/OKmV/lu+NoJ+EfOAP 3s5yMLxuLYlevfRGkEN/lu/lsv7Wu4FPv9XzGQ96Pv1KzydevV4NAec+Wy+H efrqz20JOONHj3N9lP0Cu3CgxoNsT5yn/UVqz+daQ/uDt6by4f9tlp77pbbM hz18QPvR2MkHtB/JR7HrtL/Ix7idqP1FPuaLd7W/yEc7tmp/kQ8/aUEp++nG bqxaznkDsXfJT+7R/sI4v6DD3kMxs8H6MzsmOdfMDnLYjx5nf2GcnaLyzf6+ MXz6WZ5POb6c+Nl9ek6GcrAe8cXWzEc9a8u5vmZ9vlbrSz7+fHg55zHIx3OP UNzzGceQL/cZ6PtWPZ+45zOe8HzuS/F8tr/n2/dsKZ/+luf7/dvk0x8nH+18 kJ7fM/p8jPaX6ZeDtL/8voVt03qtv9+W+8Y539JeoxybDaVzPvqeCZT/F0Py nAHNzzA/QJx85m0oh/aacrCv9iR9/wTl2LxQnfgjx3v5dUG+yZ+Mkc/n+nKS z3wIceZJfHmYN8SwOiy+Tw35gx8NybrZXWk/0d3v57wH5RDH98Zy5tN+EScf 4+3Td6Tf1xkSf2uwI/OZDyHOPIl/Lu2a7Mcvu/ffpH0Cv1Ec+/9qZ2Z7YOSc PlPs1QbK57wF9VtH+SjP+jPEb/pusnP3dqZz8Q15fiCfOD5vLmU+7Qtx8tFN J6V94JNS3nSkI/OZ3yDOvId/Lu0Ovh9Wcu83mif+yNcVx36+rRdkv4lyUM/9 F0i+fnLRvfeoMe3nL1p9KM2T7yuUpB8e6pR1u98vyv4d+cQRp+1bzHzafeLk y7n3hVKuXxclzv6fvn+D+Q3izHv459IOYjwuX3T6k+7n7tJ9aoiffqf5EMrB uP1jup/1SuUzj4HyXqZ8rN/NbJJ+fy7lDZ7olDzI11pyHEA+cehdaTDzaX+J k49y3NQseert03NXUj7zFcSZx/DPpV2GP/ucnm+jHUccea/isJ+/1vwG5eDb lWkf3FcHnZ3hPqBBqz/zlkm/n5n2V/+rU75vqXEb+cSRDzt8IPMZJxAnH3m3 y9qkXV9J51I/p3zmH4gzL+Gfy3kJ9nZ2vxtfKR8zQXHkGc7WvATl4O/npnNf 76V1+a31fTDETRz5TvKzvtEv/fNSsktrd9v7FGcojvzAv3szn/EtcfKRt/lZ uo99iz6JT9Zx/FJvxpl/8M/luj/KuXevPR95bo/43av3il3ePr3n7MRee5/M DMVR7516Mt/kL3ZSvuT7e6Qd/94jv/9th+Wf1yPz1BvpPPNy/bl+lEMc7b9B d+az/4hTPvMYvvyw58enfND13TKvbaBymJcgznyFLw/3Cch+ki5nrwbkd7/s Ev3fNdmlrXVcGXu1ddqPfXtn5ptzuLd3WnsyYUDi7BXTecMb9Xw48xL4wTtJ n0c0n2j0fCTty7myI/Npd4hTPvMevvzQuwmD0r99qRybddp86OuKm/zGmPJw /wDG/eod7n11BRknizXP4PcD4O97JvuwqeYlKJ848sYftdWSz3mIuLF77xfk fN+ZaT/QbR2Zz3wF+mu1zrCOj3I92yn75jp03d+0/58jn3IwPj55LPMphzjm 5anpHrQBPXdEPnHIb23NfFPO1tZcL+ZhfLvBz7i7KPp2TJvM41/utOv4o/E1 24H5GdbXzFNf0/yMaef/pHzRN/5l3yN4nOZnzLhbX/MzGD9HJv/qQo3rjd0b sy4PO/JozNvAv16zM+RhsG75xzQuf1uyfjTnnZOVDz26pTPkZ6D/0zslj3Gn 5gcoR/LIkU85mN7OUD7lEGe/MO/h9QH+zQHpvb8XtTr/IfEPas3t4/MkCOc6 Yz4E+d9tOkPeg/Lx3B7NO7E8eOxjyd9dfqZ87pjs81oa75MP8zzN5Umui3kP 2PEPFKffDb05N8UdW2i8T/lox6Luf0D1vtPp4pP5Mo6eTPPFbuXsdxt9/mLk Uw7G5QLlUw5xzGv7pvKs5+/ZURx6csqyzDf5mVOUj25/M8U509L7je8aJw9z Xcy3oHzvxDwJunOVzoyzHYxf8X3NF7E8EPutstx39BV93y3WRc7078dK+vBj zZOQj3F9qb5XwMwj12mehHzsD7xE8yTkQx/u1DwJ28fnScjH/o6fpXj4xZaQ D6Gd8ftSOK79eX++J5f+BecDxJuj8TLk/EffM4T6NqT+OarLnRdSnHzmWyjn +mQ3KYfPJY5+edvLqQtyWE/Kwecs5fvy0I57ObQvXg7lV69Xfc5XEGceg3zW i3aZ5w6Yp6L9wvdnUn5udlc6bzwtjw/KIQ7zsIvyae+Iky/+9BT53U/Tc3dQ PvMVdp/lhKwX5DO/4cvDvDD0vbuU60U7Czs9q2TvL3lmdrb3lANe92wZB+eW XB6vQdbrT1c+5oF7Zoldeagk63WNaf1113luv2F3xk+v9PeyYubTjhAnX/aj zJHnbpTmt127rL1eQXHmN/xzaX8xv99bdP3eKP7M9YojbrpjYfbvKAf3+b63 UOLazZVPu4b22ED5+PmljeIfHlcUPViaxunnm3J/m/E+iiPvd0ch82kHiZOP j7cWS/tPLch42lP5zGMQZ37DP5f2EXp0dCHXi/ZU4sRCjosWpny00c9fp/3r rzdnf9/Yk9npnvjZg04/W8TPmKJ82P8d0nmKz6V9Ix1daR+AnmclnzjOGx48 mPm018SNXs1I94tfnc4L7Kt85jeIM+/hn8v1Kshfxee903mKJr2/E/3yjO4f pxyU4602sQ9rKN/sI15e+ZC7cdoHcvmA6EF/V7rvoSP3k9GTM5JfP9KX+Wbd dRQ3duD1tD/ojLS/4ltddh3pG/r+CL/fw/DfieXhPIxxdnGftUuj82pr5THf Vhzle7DL7ncYlYO8+7NdMj/+oteN61TvnykfxVitS/Kpzb3SD+Wkh9/vyfkB 8olD7Ek9mU8ecfLRT092S79MSe8tOVz5zHsQZz7EP9e8L3xJt7MzvWl/muLg 3dFnx9tm6fz3/X0yvy7oynz2B/pnlraXzMPpfRLf7pZ9qh+n9+QdqPk18onD fr7dmfnUb+LkA78n3Ufw1S4Z599z/BUVZ36j6nOXG5Rx+i19f7u5p2sDxWGX 6zXvQTnIG787KPpd0+HsXnq/497KP6vSYb9I5yOe7JD5a4VuiUP+queyyCeO eW3b9syn/SVOPuz1QWlfx53tMq+d0JX5zD9Y+6n7MTiufD6EcpjH8OUkH37M 021BPvrhasXfrfzsKc1jGL/oNM1jQI/vSudL3i9mf5B8lONWPaeAcVDQfALz ACjG0V0ZZ7yP+XF+ap+FxexXmvH7nPLxMUvl0K+EnA265dxofzH7lZSDfHpj 5Jv8zA6TMp9yiLPdIOd1zc+QDz2YmNp5gt73Qfly/qjVtvPZqV7rtuV2Y/7E +Omj4wzzy+ol63dfkMbX/2lcz+dC3fbTuJ7PxXhbLsl5793Mxz0eZ2i8Tz6i 5600j4Hx93yaxy/RPIDxrw7W8xHYP7ZWV/ZTmR9AeW9W3OQBhpOffKPuizDt dm7kUw4+XpmT+ZRDXM7tdsm8c5nuczDz0WVpXe3ryzKf8omTj3b+SsL/m+7H OUz5jNPZDsyTsN0wbRyZ9P8VrS/7BfZ8Tin7y8a/ujedv1h1Xubj+3/Y743W v3qhlP1oyUN3SX99QeN6I39RKe9bkHyw5iUY7+Oxh3RlnHG95K27ZD1jW80D UD7i7uWUjzzWqyqH/iw+P9Mtz99Z8wOm/TdUPtrrIZXDPACe/2o6t/ep7mui HMzHA3qehf3IfIvXE9T78ZLYtVvSut/6+lzmE9huzJOYe9d3TPP28do+cj9v 8jfO1vpSPvMVLL8/X2fv29N7/2gfeE8ncY73hc7/43j3fI5rlos49ZPrUsQx //aUwvvksK7TUhJ/4Yfu/XO7l8U/qNP8CduVOPnMqxBn3oM45ROnfNjNgxWv Lr9+HDkfBDnMS1AO68v3XuD8/k6+nB/kfIL1vzVvQD7zD14++wnx/mfKuf1N 3nb5svMzJth+W7NH9HzhzGy3KJ84xP2O+/J6rN3/nfLhL9yU8huvpnMlP9X3 WzPPQJz5B/9c2neoz94lp1cNYi++pDjG2RZz83xr/PsL0vsk3i5mPvUV+xef Uz70das5oncfFdN9cMnvf2lBbkcTD4zigPdQPu0vcfJRvJ/NF7/1/KL4M+d1 Zz7zDMSZf/DPpV1GmDFYyPWifYFezlccevyZJdkPpRw0w5FL5HcXF5z+pPfb /0z5WKdYfrH4LU8WRJ836ZH5YPLS7HeTTxzl7xnMfNoP4sY+fCmdT9kyvaf+ om7L/1whjxdvh8hn/sGXh/Ydw2jCYHjPhtz/qbi8LkHvDzb78b+Q8hLbKJ/z BM73/Z/y5Z64FsFPGZT1qS17JJ/1st5DRj5xOZcykPn0O4mTL35kep/UP9P7 WC7Te62YZyDO/IN/rrkX4Zn+XC/GG2ima/qrv1dntP1Ne3a1u3xTiptXTvv0 X+hz4zHtt5qg5x7kXEqS8+X+fH6U6/V8Ltartu0Rv/gx3b9AOcRRnAd6a8k3 61EPKB/9vkKn2JnP90me4xrdL8D8A3HmJfxz6ZfBLmzYm+tr8qndPXb8LurO v+cnxnM5+TubKp9/R33W6LF27/CUX7gpzRO79Mi8dZfmU8gnjn75THfmsz7E yYefXEj9c3HKd9yg+1SYfyDOvIR/Lu/9wz6133TlelFvMOqO1vsW7L2Tqm/Q +2m678fMI8tS3uraTmffBkQvfql8DPNv9kt/FtO+h91Tux7g7ic/V3FZj+zI fNoL4uTL/XMDyb9Oebs/dmc+8xLEma/wz+W9Svh7l94DwvbBfqhXdN3f3/9g 2uEUzSeYfjmrIOcIu9qyfMpBHLxE7xmB/7x+ofaiip4c2y73El3aHfxTjJst ekTu19QfMfahqWD56/dkOcwzwP7/OD33II2XKQfr/DtHPuVgPDY/Z8t/kOLo h316xD/4hsb75BNHO/yzNfMpnzj5gFtTu+2f9l3coe3DPADbjXkYtg/i85dT fumXWl/2C35/p+ZP+FwMt+PSOZ2NXrH2/FXNkxg7eYnmSTDuP032eYbeO2Hs 873F7P/CXh6neRXmGdCvM12+ZdRvhZ7XJjvcUsx+K+VDj9+OfMpBP/x9ht0X 1qI4aGekeb9H38ti/AGeT96rJfMpnzjM1Po9dp/MYIvY11F/BvtqXtH3sph5 +QXls9+Z//F6heY9syh5mhXSfo+LtN2YZ2A7M59j4pK7kj+8ruZzjH3YTvMP fC4+htJ+od6ZmQ//7UjNS5h2Xl3zMOjfxUk/z9V8BfkYx1/V/RjQm927s9/P PAbmsZu73X7rtO9i0zQvX635DcqX83PKx3yzRk+WY/IYJ6X9kbfpfReUA/pl kU85iOPWWWz3Wd6mOOq3S6rv+fr+ZtMO56f3G12wNPMpnzjiuUdc+/A9x0u6 8/4fr8/4uklaT72tOesP81TUT/BqVD7zGOwX5pfM/pCLkx14RtsfH8+n+f1t bU/qj6R3SjmeMHp+f0n2JZ2yRH7/++QXLIztRr68x6kpl595GJsPifsxxst7 rJfm3f/H2HeHWV0kXZvWnFBUMKNiRhQV0woqyxoxrQGVXTPm/IquCdaAEXNA VjEhRoyICVQQAQmShjiEyXPv3Ll5ZsC0fJdTdarovvo83z/MM4ea+nVXV1fq RJy/x+thrGPE78GH+8L8/Xj0e2hMr3X2WqenfwrrLo4jP16DD/GYD+vjMX1Q r68tlvnR+Lu0+zEf1kni79Lu/zH91DJ62vE/7tdM2Wc7znGM9/uzesZyRjO3 ny1263KnD+oM/3B6WJ0XZtq4cF9JtC+lB/7/pGbRt0sqIn/l+Emr/3Cx+oeT ms0+Eic94pCt58p++HZ6f8XrKaNnnYE46w/xd2k3oe9DCtZfzk/EFQMcl/Na C228yQd8Vy6UfY0dCtF4LRZ7voHTyz4bPc9ymu5/OL1Z7MMxSyweJD1xjMuQ vNHTLhAnPepT+cUy3yfmZb/jOymjZ52BOOsP8XdZR5Z1j3ykV2ov9s2X2U2O O+ml3uR1DPJHHfuaKolbp+WMP+0U4vevnR5q++By8dPr5EUfz22W+GJzryeQ njjG5Zic0bOdxIN87IrqnqNW9/c2xT/yd0RZZyDO+kP8XcYlwFNZ6xf9BMjG Og7/c4DXK8gH66Ln1wm/3zKR/dF3UZZ73QD35X+i73Vcne15xeqB+6fq2+9+ z1+gh8Qb0kbPvIU46SUe0HvdztZ9DmNSIf2eGanLt4/vo9c695io/rBGe7hP EPryj3Q0HxslP+7sOPSyUyKyg3rP4olaf7ik2eiZt6Fuc0LUvtf0vpxZzbJ+ c5nqebPvUwj8SLOuQ56SMnrm4cRJj3b2Too9+krrCON8XwPrCcRZZ4i/S/8P +z3W90OQDv51iOOwb+29XeQD+R6mPycnjZ7/j33WH3ndhe+fYRy6a53lGrX/ lX7OJ/ALlXoO55OE0XO8iZMe8jtE7xnZVfdjTPT36lg3IM56Qvxd1q/Q3j0S kb3S+/9b/d4QTMd1vQ5APpD/1nruq4vTc56DXwenhz8amBW5veT7JeJ76dne +B0BzPObVf/r/Z7WYF6UcIzXdrpf4uZms6fESQ+/+JT2a3CD2IWpKaNnPSF8 35t16gHGh+0nDvt7Z7PYzdv9PRXSE4fczq4zevInzvawvhH3F5/bQ/3cjXo/ e0UqrJMcV2/tx3xP+/5Q8kHc/6H6rWeHhf1t5/k+6eEfZuYtjsP3S3YCee9e XgcgPca5JW9xIvzpa16vYH0AdmubZsMZH8GPPaTz9EivGwTn0jqU05MP/n+t yWE8c6TjUu/Sebe/5+mBf99fz5HWVxs9+RNHPtHBcfo3rJv+rVnWV37zd0nJ H3HPcn9/lOPIuk2sP9DXt/Xc0wf6fufLLk/m75Qz6zAcF4x3dUrkdLXLk+OO 8G2Q11v4XdQ5TymI/Xz5R6NHfeJNr5+QHmbmEq+foL17Nsu8/qFg8XJQt32w YPs3MJ8Het2D9QH571S4z+eFuTJO/dW+LShYnBvkR+87PczL6c3Gh3EumjWy ueeBq/+uqWBxLvng/NTscnrywTmWFqcnH+LyPrOOY5XfgxqMbwnHeaTUMqMn f+LQt2Mc5z4EjEtftTMfFSxOJH/0+1Wnh59MpIR+aLn+4+/7qRx6VMv4f+zy Z75PPWQdiXrOcWSdJ8iTvtV8ZAOv8yAPWaX8t/c6APUNZId7HSCYp79pf49b ZPRo7z+9PhDE1Tt4vQXt36jZ4vR4XMBv86LUKV9eKutYd3r9hPUEyof1EMo/ pmc9gTjrDPzun62b0z/G+yti/M/8K/18XE9o0HYxnmA9Af7n54Ld/8X2QEx9 inY+lvTsH3HSM/8lH/oP8kGd+RuvM/wxn9FlfIjHfOhvYj60gzEf1hliPvQr f9yeiWV8uO8i5sN6RcyHdvaP5TOzjA/taX00Xmwn9HrduL9ef8Cfv+R2n+NP etYrYv60y2jPrwVbP+N8xjTaumj6RnryJz1+7DTX7EfQ/tfmil/6yvnTLoDb iELYnjPnyHzN6/rJA2nxt4n5Nn9ITxz18q5OT/tCPNjfPGyezKv+ui9imdc9 WJcgznpF/F3WhWU/f976RfuF+TXZcYhlnUqL48gHVuqeSvFf1zl9cC6ubz6c vwculnhgRF7quo/qu22TloX30m2cMRz+oSZn9LRHxEmPOP72pSL/jnm9l8rr Hqw/SD2opWy/BOlZr4jbQ/+EeOGZnPWXfBCf36n7GXrE+5hc3+Cn/6/a8hLy x88PquXnrrlIn2uk3rKZ0+P/N6gWPTlX7694Oi1+80x/N5v0xDEf98saPf0i cdKjn+9pPf1Fvaci5fUQ1iuIs44Rf5fnSvDz8Uw0j3Q/xkWO47tX1Idy4bt3 L+v9eiPTRs88ROZB2ughtjZ9B28bvb/ixbTE9cc2hn66RE8cfujJZqNnnkmc 9Mjnhum9fqv0noqC1z1YlyDOekX8Xe5zh/xX+D4A+k/89xTHQX9eMlx3LPGB Oj2m57E2TUXzuknvIWsK7Vt9wvw9/vuVtK3DBPsySvTE0b+2pNGzHcRJz3UM yP9y3be3sjmk7+446xXxd4O67IXJyM5o/Hig4+BzissvOK9zp9Y3bk4YPf8f zfqH06N+W6HxXVUi1Ltd/F7XYD6WcPjLfo1Gz/lAPKif3Z6RcZ/WaHpEetYl 8P+VaRmnQ3Nh3a7Ehzjyuan1Rk/7Qpz8WfeI2y/3SfN9lwbxuwenw3t7BzdE di9XFt/FdRLoXTYt+pfMmf3A/x+RMZz5JuoWO2eMf5C3PuTfpV2BnEakpf1f +HuIgR17y+nZL9ZbYnlinf3ynMh193qps//udRvWN9DOJq+TsF4B/X5K7fZA r2+QP/Lg/Xxfh/jJtPFhvAk+s9Pid57KW1wZxBvXl9OTD+T66Jeh/3rKceyD XFf19uW8+bFAn0u4nMOtMnryJw75fOzf5fos8okvNH64Nm9+jPwh9yudfuvV 7dvB+XDcd8d5mbTFcbH+IK7u6PyD8drD6xX/Wf3dST5erFdwHFl34njJvdKq J+PzYVxf0n98bn7e4nf2C/zfyOs5rW+MHnL/NW9xLulFTnmLl9G9G9Qu7eh1 D9JDDEvzFr/j76d4nYf1EMQ77dPRutd0sQMfaj3+AK+TBHXedZxe8sJ0WB9j PaQ0ryH/Yz2PJh/0d69yevLB/Frg9ORDHPN6usqtk9clAv6d9F77XsuMnvyJ y0/HGcfJfuK0nReL9R9x7Yy8vidWJfFBO7UzC13foJeLXf6sS1DfWB+j3nK8 WL/i+MK/bqjtvNDHBfgJagduiuoVJb2S9yy8vhTEFf/Q9+06Vxg9+vWp15FI j+/d6HUk6NmQtPiP6QXLD0iPafScv9eD/27w+g/rHrBzHdKGs74hf6/2YUTB 8oagPYOcHvO6s/rBIeX6AP05oyBxR6vyyXh7WCfheLGOxHFn+1m3Cfqb8XpL cG7lD/ZX0K/G+yv+rB4S799lPBiev/Y6S1iH8bwi3r8R2mOvt/B7jDPoh8Dm AtWLSRmzg/juBzqfdvE6DOVKnPSsz5AP7Rr5QP8PcTzmQzzmQ3tHPmw/7bLs L3V6jkdMT/4xPe1dTM/vxvS0azE9x5v07Bdx9gvt/jJj85l85DyZ86d8MGxb OT3rDOjmqRq3LaqI9rU4jnOZxzs97QVx8mcdI9i3WOKDXx+Za3qC30dmjA/r EsRZr4jbQ/uCvHWzguk/7RHy1Db1n9+pHb5hURQfZQ2HPb7f6TlviQfj3knf FRur9651jOhH5CWfOEvvJ/h8icV95EMceWsJJ31wf3QJJ3/WPeL2g+2VlWKX D9J3TEZljA/rGMRZ34jbc6/u98B61/hcz3B+L5fzE+9qPWGyju/IqnBdtMSH OOzPYRH9L46THvHgquWiPzfoPopdnZ51CeKsV8TfZfzXZ3U/f8xa+2lfwW+Y 4xDP+zXRfNN14nyN+OtUxujpdzEe49zu4b9PUvt9nrZjBv1aXeiH+mYNx3jM Sxs940viwbhkavVeAZXLnk7PugRx1ivi73K/P+R/UNr6xbxF6nOO489e8XVZ 8sGvVXzfpjmad+qvOjs9zmUd0SB+5VvNsysy8vN+PydAeuKQ/1Epow/Wz49y eshraaPo7Tu6f6KL07MuQZz1ivi79JOYxsOaQjnsoveCXuO41P/83An5YB/R TN0XPMb9Mr+HYXnc73dAfL237rvsrPwqM2K/b/F9K6QnDvm/ljD6YP/La04P uzFdz09sofdIHOL0rEvIPYBql2q9XhXYq1rNm3s0Gn2QR5Zw8mfdI24/8L9q 3e5nvUfiGa/PsY6Bd3FOVft8ctb0PbDbJ6u9+anO6AM7VMLzqwfk5/J5AP+5 bla+l/J5QDqM11J/15btZL0llg+8US/Nj1/Q9+f6+XdZD3lI9WWbKM5CPWW7 rOD7eH2Df08cf75+bc+A/h+OYx310YzhrFfgnc8JGbsnJJYn4Pf1vaK96qz9 rOdQPrAfnZ0/6xvUc/qVBeD7bHiPyVuOIx/eT+fL0pzZ+2AeLdV+PV9l9ORP HGW90f5d+gGMW7XW40blzA+QP9atn3R6TOcbNU54rlz++P55ei/Kv2pMDqzz UJ6Ug9xz4XWAQA9+zel91COMHmSne32A9BD75l6fwbT9IiP5zC1eNyA99Plg 35cC9W3n9RbWEzC+fR1nPIv/X5kRezjY6wzkj3jiXKcH3cJMWA8pxbmQ7+Ea 9w7NW34a+Nu7yukDPjdPC+PnoY5Dz3vquDyVt3gnGK8SjjjxlCVGT/7EoddL MtG6lL5f16rz+WLKeXnod85wevFbGbErJ+bL9Bnza3OV51K9b6yPf5f1gWC8 3vDxRdxxhtZ5xvi4YH/3UzpPp7icqVegryOfmdYe5LfvKf0WPxk99HMjrw8E 8p/k65/o93xdT9nd6wakx/7YVN72pSBu65qxOJ71BOjTM44H+0+2VX071OsM 5I9x29LpZZ+a82E9AXZgo6zuN/N8PIiv1nF68Lk+E9bBrqvU/UAZq/PE+obf J+Qlfvx9sY0v6z/UH9SbtnP+rDNQPqy3BPtGbtD52N/lgP+/WP3Q7d4v8mcd g+38s/2I4Tran9ff+ffBvdul/B32f5zep/cfrwOwf8RpB5n3hfhow5G3tc8Z Pfq3pdM/qHbtj+knGn3oXyeKn1jo7Zy35rwqa8/EMv6cD+SPX991+ri/pI/5 M/8lffAeW2mesJ2hn66Q/GvzgtTp/paTOOqiBWY/yIc42L+UN3rqDXHSQ9/a zbdxRF5bkzV65rnEmf/G3+X8gT+80NtPvYQ9Pt5xnE/OV5rfJp8zkbdXit4u zhk99VjqEE7/P5zrWiz63k73h56QE7/ZY7nR8Sdx9OO0nNFzfhInPaxLdqno 9eCc3GeQyBo981bizGfj77JeLPtJvF/0Exi3lVmZj2vzvcrqMP77h+PQi45O H9QROzo9rNdxGt88pPPngmxIX8pboacnazw0pNbicfIhDvuwXsboGScRJ3/m xXH70d+GGvn/m9W/ZrPGh3kucea/cXsY18JOPZEui2sxXhdpHrNeTsZpUb3l PeRDHPHmwGajZ7xLnPTIMw/S88YZfX/yEo+Pgzz3VJ0Xd/k582C+lHDo39Up o2deQZz8mUfH7cf8ndcgeeRC3W/X5uuyzItp5+M6MemZR8ftZB0Z/nOF3zMY 5HVT9Bz7BjpPp/j9icH5mCmaD9cnjZ50xEmP5vE8wFlNEveu8c4l82XcF3KK +qN+fv9E4Kf66fn+TxNGz34SJ3/m43H7JX/T/QQ9kmJXC9lQXlto+w/KSZ3t Mt/HQT7EZb2wweiDcx4lnPyZv8f9wvwdl5Lx2FTPtYz180PMryHXo3Kyb2C6 75chH+LYh3dHndFzvhGHXH7zfJ95MfR+W91XdY3voyF/7G85IB2+0zvW6wCx fOCXJ+o+x176Hs4D/l3m15/oeZg4j8bvvbWeeojbOdIRxzTYWPHeXkckDn+3 leNcRwa+q96nWeF1QfJH/z7KGD3GY5b+/YhMmfwxrvtn5J7QubUSz7/odQzm 45QD6wyUM+djLAfZx6f6f6r7t2BenKr15UOX9yQ9/584xLdnuR/D9/dVO7mz +7FAPzs6PfLSz7OhPynl3Zg/6az1Ix4v9Ps59Q+XVpt8WK+g/DFvLnH+zNOB n+91A+bdcs5f5T/V403+PfKT2zzORVz2Ujaqm38o78LsqvcrL81ZPEs+OE84 yulhjzfLGR/m6Zjvx+Qkf8jmLO8jH/RjTjk9+SC+Omy80ZMPcYj1EN0HM8fj qeBdnBIOf/dGpdGTP3HEN8tdDsx/wWXjnOUNsb7hc/fkRA8al8q4jtK66yOu P7AHA5w/82WOL+sw1BOOL+sqHEfE7cM079vM6yqYv4v1fuhdPb+m/gE/0vPr QD7r5MUOVnxv9OjPhZ53B3Z+R69vYB1jC933c4fn46THuvSxeVs/xLy63esV zNMlLHec+Th+7aryH5K3/COYb5c7PabNfjnjw/wDZvo0Xf95JW/5B/lg3jzi 9DBDR+bCukopH0f7e+Sk/jA4b/kE+WA+3e/04Leu82E+ge91UHt7Tt7yiWA/ 2ZFOD7s1XtcHe+TL9Jz7d7FP5+zF4kcecXkyf6cesm5Dfea4sH7CccR3vtC6 9Lh8uL66IivzfqbLE/o6T/1CjcuH7WE9gf2N4zbqZ5y/Uw7xfce0t5xXtGty 363eJ/+Dzx95Lygv8+0mp6eciJOe+WOITzQ85F9h/KEHT+ZsnoR67Tjm+XEx /4qy7zKfjfkEdaLj8manKHfkR9fqfrGanLwX37gofO/rF8fRn3zO6DlOxEmP 861DF5qcoY6POz3zVuLMZ+Pvsg6F4f3I7Sz1G/Hwi45D/S5ZFuZdv2hcfZe+ I9m13F6Dbl+nh7wOWCry6Z8zveJ5beoXzxfF77rA/tbrO/Q1Xg8lf+Loxglq r+vdHxAnvaz/6TuVpXgC+vO00zPPJc78N/4u5wN+/uj7O+lXUEf7r+Po3+61 4XrXL3q/WJdasfcT00bPuATk3/h+U7AfXKPvc+i+22RO7NFsPw9JeuL47gfN Rh/sT/3A6XF/3r514k92Sksd9jmnZ95KnPls/F3G66Dv1mz9CvLcdR1Hf7Zt DO8P+kXzix01n903Fc27RvHTezo97OKt+s75UL2fqFm/+53fd0964lDz9k1G z3yJeNCvjvoO572KD82F++TP0vudq3V8l/o7DMG4l3CJMxNGz/YRJ3/ms3H7 Id/ueq/8dUnR/yHOh/km5JJS+9bb710gH+LQ22y90XM8iIPfmFx4TxXvXfhB 5V/v90cGejiuyejZTubFsXzQ/B5Nei9lo4zDzf5d5q2wf606H0f5uZBgnpZw tH9grdFTX4nDb051nPUh/P1MHa8+fn9GEH/3dHrZ154L19NL80Dsgd9TEstf zsvq+Yfj662/zNMpT5Cf4/yZ5+LvFmnc9Vk63Lfyi+OAx1QbPe0RcYzLM44z D/119R986OeBYjmDfvO08F2g96PclZPzdp29boD6yUXOn3kr+8X8nfLhfA/r cxqP1Or47pQN/c8vjoP8Mb1nt9bzceIYr7dyYb5cyjcR532j4z7O9xOFcYWf x8KPwUo/JFMmf1mP0v3CW+g9YFf7d5mfUj7M6ylnjMtTuTD/LsVTGI961ZPj PZ7id/G9xmwZfXAfZv49oycf4hB7Ru1eL487AnvYS/X6/UVGT/7E5f1hxxmP QI5TVA5beTwSyG0dp4dePan2qrV83KFX92Ql7uih55Fv9e8yf6T8WR/g+FLO zN8pT+oh+vGE5+nB+sN52t5unxo9ujPa8/GgjnCz5+PIK0dr/+d4/Et66MXz OVs3x36MizzOYl6JesGQXKSnk4V/hcqnLmf5JukwD752epitGc6HeSX+rEXH tS1n+QvpED9VldMH8WOd05MPcdT7VuZkn/sKj9NJTxw/Z1QYffD/M3RdeKbj jN8xLHN0vWWSx++BPf/e6SHvB5wP8yPMp1c9/o3nBfYN3aLx778Wmh6yjkE9 h76d5/yZV3J8WTegPgAfpPTtvW6A77yq+rGX55VsH+KSEzyvDPq7kdIfM1v0 Y4Tq5yn5MvmTXs7dzpX5P1D1oJvnoewX82XKB82pao32pX9o/oA49RBx3Eu+ z7yr+j3mZ7RruF9rkNrFAb5vBvHpXNWz3Zw+0L/dnJ55Fr9LOfL7sB8n58vm T1BnKeGHrobfd/6B/u2ct3ZSXnE7iZOeOPPB+LvUS+jHuzlbr6fc5fym0g/U +9uuWxLVUx3Hd//u9NTXAC/R770a2KVS9sfcrd/d3+mZ9xFnPhh/l3VA2Pd1 vP2075D/vKzh8LNXeT4YnC/4T5XYkw2z0bl7pV/p+2YQzny2XPKZ27J/em4a bO7Te4g6+/mx4H6iEg79KOq79vf5+Rziwf6ke7R+fbHux+rq9MzviDPvi7/L +Ax583Xl59OwHt7DcdTT+nmeGJwbvLGu5/LVf3h9c7Tfo07OPV7k9GjXj7US 3y3V9crBum+9vd9bTXricg9LyugZ5xEnvbwrpOdFJ6ekfwc7PfM72NWndHzP 8XfFgvpNCUddbW7S6BlPEyd/5o9x+yHODxv0HhPNY452PswHoWbD8hIvf5uw /ycf4hLvNRo98x/i+LvrHec6Ktpxq86Xf/k78cH+vFOcnu1k3hrLR+ogml/t r+/S7ebfZV4J8oEqz0nRO4qvOQ45DKs3en6PuNwf5zjzQbkf1N/JjOUm79vr vXljG6ydzH/ZXujV+s6f+SP80cN5yasPSNn8IH/iaOe+tUZPPSCOdcqTHWfe h3ZcpuPyk7/zQP7g94S/b4m4ZX/Vn+FNZfKEPPbSd5CKdXIP+Zb+XeaJ7C/z ZcoN6wXPKJ8X/F7MgH8Jh/i/qjJ62gXi8LcX5SN7oe8xXa/t7+73Ygb2sJ3T 4++7q56s31wmf3TrCb3X7b4amd/b+3eZV1IOzJcpZ+bVcZ4Ifi8r/1V+L0jw 3RKO8Xhe47GX/b4Q4mD7f47TX6Edt6v+DPd7Qchf9iemjR51033y4Xp0KX/E OP4tH51r9/GCHq/Qdyq3rjL5MO+m/GG/Vnl+zXwz9KdZkw8+f6+ex94ga/EC v0scfmO9RT1JTz7Ewf5ox5mvoV998+G+5jXkD/lcmOl53Op+HV8p/ncP1ZMB fn4oiFP7en7H/jK/ptzYX5GD53H8LuKkwdkwHuyr+5738fyO9IjnF2VtHRbr mH/x/WvM++BPujoerLfyfsOjPB8kf9m36/T4eUM+XA8v5X3cxww7earnieSD fncvpw/es3jnB6MnH+KIvx5TO3OY51+kJ45x36PC6MmfuOw3dpzxL4anf17y 6w08/yJ/xEkL/Hwe9PwAnV/LyvUT/K/ISp18jN5Xv3U+XPcu5V/UH9YHqIfB OJ7n4w6976z7Aa/18UL80Fvj93tc/tQ3eefA8+tA3y7S+vrfpxg9BDLB82jS 4368QZ5HA74iL/u4vvb9pKT/YvV0e5B55CyxW+19/Yr5HX4/XOfjG+Xji/dL rtB9gvPnlPFh3kc5M8/lOJKe8g7WMXvZPd896MfeivI72gkZPsf/ovad+145 b1GP+V73n+3l98JhHh6q6xNzPe8L55PfL4D4fzvzG2X3kJM/6ckfepIqltHz u2wP81Pi1A/i5M88jvw3WT1B/1Io2x9APpR7zIfzJOZD/jEf0jOPI878LpYb 7TvuV98wV7avHfEE9+/sxHsel0Xnnx0H/8OyRk+7T5z00MuRS+W93JG6vj7V 80TmccSZ38Xfpd+FP30rU3b/An7c7jjjGPpV8sE0/qFa7Minfo8D/TH89n/9 3geIeWfN+zrpe0q76j7+q/z+U9ITx7nUl5uNnvETcdJD38bXSJy6id6LMcPz QeZrsv9H9XmWv3cSzIsSLnFmyugZbxEnf+aDcfsRl+2t8XGbriOlPa9kfgc+ nQv6Lnx9+N7wiY7DjAxMGj3jZuLkz/wx7hfqUQfWi195VfOD2Z5XMr+Df+qq cjim0eLqQD4lHN/dotHoSUccfHOeJzIvg35uXBB9Xd4Q5lsl/hDPSw1Gz3Yy D43l8/jq7xzeoPv/E3bOh99lfge5HaFyezth40A+xNH+V+qMnu0jLvu1Hec6 F9R/ax2v4xMmV/KHf98lEZ4nrsyL3dkuUSZnjNerel/ZlQ0Sb3yXD9dnS/kg +8t8lv+Pceml9z1s6e8Kkj9xjEPXGqOnfImjHx0cZ90F47hzQebDh0mbZ+SP dryaNHro5QzPT5kPSnPz0X0bPi6YVhvqveora00OzIspZ8Qnbzp/5o+IY/bW 804dovceT3Qc8u9fZfTBPWn99XxZdT6qj1SLvv7m71XGcoYdu0nz3If0Xqap mtc86O80gu5D5898kP1iXkz5QP7ddBwH+bsWwfiWcNQ105VGTztFHGJvLX+/ Av3eVMd3F7/HMZBbXcro8bNC+eTK5Qy7c3tK4yi95/ZL/y7zO8qBeTHlSf8S 7+eKz9kTxzj+tSB1oYTf68n2EAffzfTdkr/6PZ3E8XOj8vs7kd9tq/J8yO/v JH+oZf+00WM8lmk9vG+6bLzgL6qaJe54ZbG+Y+T5MvNEyo15MccFavSj54mM +7AOspP63z39PBm/i+l5j98rA7xdfJ/Kh+Jfjtb7oU7282fkg3neoZyefBA3 Lx0T3j91suOQx9/V/p/u58ACv3C6vpPYZY7Rkz9x6MdOjnO/Jfz4rhp35fze lDCuzhg99HSOy5N5GX5k8tH9Da5XqHOcqPufvp1n48h8n3oCf/uW82cex3Fk nh7E9UndP/qey5/zAmwas5avsT1Y37whq/uMxhq93AvleRzpYVff83t60NxN 9TzfgZ7fkR5xZqvf04P9JF94Hsq8T/arO858AnZhXz0XuL/ng4H93Mjp8dcN +Wh/3ixdLy9E++Fdf6BnH+t5+uWzRD9n6Hyc4vfxYF597PyZD3K8mHcH+06/ 8Dw3kM+CvJyTusX7Rf7MN+N8lvaL74SJf/D8kfcgxHkl7SDzR85n9PPBjLRz oeeJ+OwBeq7yfqenPhInPfNN8uF4kA9+/c7xmA/1/o/5LCnjE+zbtHMkBT1/ qnJc1/mTD/Mj4sybYj5BXXJGxvJx2lO0b76e6/5a3zscVxXtD3IccqpOGz39 H3HSS71O91uenpF88QqnZ35EnHlT/F3GHxjfo9LWfvpL+JtN9b62eTqPzvD3 IMmHuMRLTUYf7L8pNhl/tGeCvwdAPsDfrbF6ND7zH+fDPIj0sBuldmKfY4kP 5snyguxj+LIujHNzjsMK35cwesZDxGHf33accSX68aXGIX3ronhW9Wd/p2f7 mcfFckP89HGtzJtT9J2g/v5d5lkYn2RB6ledGixeJR/imBdbNxg96YjjO2Md 5/oR9OR7Hcfx9WHeU+KPetsH9UaPftzkfJhnSV5SCN/dXkP+2N/fsV7W4Zc0 Wn+ZV1Ke6PdJzp95GeQ/Q/3jPo0mJ/InLnFBndGzP8TR/gccZ3uh968VrJ+x nBHf3dsgcdu19aKvN+r4Dm0wfpiHZzl/5l/sF/NNygfyX6D6/FTC5l+g5yUc dZLKaqPn3xNHv14sRHJXPp9o/HNgwuYT+Us5tdHo0d47dBzXTpTJGd95uFH0 6o1a6de//LvMsygH5qGUJ+xutdrnn5NmL8mfOPRu/jKjp34Qh96Ncpx1KcQZ Y3W+v5g0u0j+oLslafT48/tVf65KlskfZrOQkLrQwXqO40r/LvMyyoH5JuWM dqZU/y9OmR8L5kUJl/P3i4ye9oK41Kccp3+DnZ6k8cna/t5gYGdam4we9uE2 5xPkX08XonfFfVwQh53fJHJ4cKnJgfkp5Qy2fZw/8zWMyywd36v83YNg3K/S fb+Xzzf6YD9wCUcd5FHHmR+h/SPL34Ekf5ynnZDS92gXSv9uVj1Z5HKDHM91 /syn2C/moZQP/Rr9K8z/EffZd7kuSbx59XgtVjs/29+7COr2s/Xc7gOzjZ78 iWM/xCuOM++AnftM9eEmf+8iiH8OTxs9xu0utTPHpsvGBeM+Veue284TOVzs 32WeQrkxD6X8KR+we9rvGQ3iqJ31fqxBw40e8c2SjOUppIe9OzdjeSLa9ZHK eQvPX4L+vpqx9UHo/z89v2NeAz16svyeUTSnpIdwc4f4vSPkj/9v8ntP0f6J 5fePyv5RvsOdtTg/sPPbOL2cj3c+jIsRt3yr95os8ntJyQfj+VUmjKMH63x8 J1Omb7Cn3TIix+6z7D1vfpf5Dsed+Sn1ivJknhis991dEH/5rMsN+0Ge1PZ/ 6XLgd5lnsV9b6L4y5imBHUt5/kK7HedB9MMxPf18fD8P45k4b/oznPFejNOO xnj4LmnR8iacG+qi9wA/XLR5gvNNFXrPRnen5/wjTnrma/IOYNHynZieOOn/ bP2O7SF93B7aTfIhPe0j6dmewN9snDE5qCEXezPc+ZMP8x2I9X59F2iqv0NG PsSR/17ZbPT0T8TJn/lU3B7o/e5VNi74/SDnA708Ut+reLwofrNbjcUF5EMc 312ZNHrqK3HESRc5Tv0Bv6uKYjfmVJtfJX/8+nW10WPctnE+1Deo+UHFcF/R GnLDdNi3WvMAjQtyng8yz8L8vKUo++KPrA33373gONrVNWH0jIeII+7Zx3HO I/jj3kWLR2N5wq48U6P3oCYlPtxG9f8dfz8ecdEvnj8yz2K/mD9SDvizu4uS t79eZ/Eqv0scv35bb/SMj4lDvkc7TjuD8etblHX+4+osPyB/6NP/ao0e9mYX pd+qrkzOeK9nWK3oz0P6Dsh6/l3mWZQD803KE+ufDxbF7m/cYHIif+L49bRa ow/OIZZwtO9Mx7kuA7leovrwbr21i/zhFwbVGz3yiZI+IO67o75M/hj3deul Px30fdLN/bvMyygH5puUM+T6VFHix1sabR6TP3Ho0/Iqo+ffE8f4Xu445xPG 91q1P1s12rwhf3xvHaeHPdmhGOXbNbovsGh6EI8L/u6aBq1T1JgcmJ9SzogT ip6HMl/DuAxQfbsjYfY10MM7NO/rsszoqX/E5d48x5lP4XsnFa0uEMsZP+c2 ir07XO1uh6LUxZtcbvAnv3teyfyL/WIeSvlArQfpvKhJWvwZzJcSDr3os8jo OR+I4/dejjPegN0+vyj52L1J83vkj7/vnTR6jMtuav/PTJbJWfJ2nc/LdR1n A/8u8yzKgXko5YnvP6L6cHLK4rFAT0o45t/1FUZP+0gc3zvXca5T4DuXqR1o arK8gPzlXEST0cM+7l+UfaZfNZXJH/lGL7XjqxZI+9r5d5mXUQ7MN4P71HsV zV4zPsFnnlW5fervE/K7xDFfdpzZk/TkQxx01zjOdQGM+/XqH89stviZ/MHv JKeHXu/qfJhnof1HFaN3Mn28UK96LyXzdJe5Jh/mrZQ/7FCr56fMy8Bm7WIY 55XyKejZ2Tofx/l7m/wu+G6bDvdzdnM+wXrcrWofavydTPIB+fP+Dif43ux8 mH/Bzj5XlPZukLF8gXygTcvTZfTkA7/2ndOTD3G0/3a151+nLb8I7PzXmnf/ PNnog/1JJVzuq3Kc+RTkenrR8vpY39D+rdMyngOnC78dVG77er6P8VjleTTz L44v827qSTC+O3seDf3qpPakl+fLmFbHqh5e6XLmPMK0HZ6xvIztR5y+g77/ dvcE0cPOqv9PZ8rkSXo5H/OD9Yt5JeXDfnLecr4w7yDOek6MP6T2BOJ7uiXM T0p+J87vgjh9jfyR/jfG6X9jPDjPvkZeSf8c07OeTDy4v+XuBrl/rcbzOPpn 2IUdW2xc6T9hX+c4Pf0hzhX95nkf42fQT3B6+hPQL3F65gug/8TpaY8x/uOc nnYL+dzrTk87RJz0zJvYr0Dv99H2b+p40K8lng+yncCnOx63kzjbiXl0qMsT 3+ncKHyaixavcD2U48V5Lu+oNhgf4uRDnHkxcfJhHBDzYTtjeubFpGe/GDew X5DrKO9vLH/SU/78LvWe30W793f5Uw/ZnuBc9+QGG0fiwTj+5nkx9RD0FY5z HIFPdPlzHNl+5t3sF+bLu86H+Snme5cWixfZL9Dv4f1lvzDMbZ4Xs/0YpYzn xdRDziOI89Fqm0f4Mdr5MA9lO5lHB/snD2sRv3F/rcXnlDNxNGdindEHeXEJ h73e2HHaGYxvuxbxA7vXRnmY8t/S6dGsb6N8vFLv01hcDPOQNfQB+F01Zsco B+bjlBv4DHX+zE8h7x1aRJ8erbP/J3/imI+/1hg95UVc8odiJMc6G0f+HssZ 9qpO6xU71sl4fVNUvi43zIvXnT/zTfaLeXeQF3ZWObfU94z9DnHRoyqj5/eI C7tidJ5N1+3X0vF9pt70jvzl/F+90ePPp2i8fWl9mZwxjs26Tn2Wnpd937/L vJJyYN5NeWBcuraI/Po1WnxO/sQRZx22xOgpL+Jo36+e/9L+Qd4bqz782mD2 jPxRf57XYPT4Xsk/Im6e1lAmf4z7WQ1iX6bofvYx/l3moZQD82vKGfHcEcpn YsLi8ID/RH3/99wFRs/5QBzDsIXjwbpV+xZp/6UJy5vIH/p5rtPjx0TPu+ln MJ5VnnfH44J4dmyj/EwsNjkwH6ecYb7/WwzrTaX8FPW/nVvkO9OTFpeSP3Gs T/8w1+hpN4nD/i/0PJf5I362FKNzrC5ntGePpLR/w/kyXt9p/HlUlO+/WQzr hqV8k/1i3k35NGgcG+ZlLT0wLnvrfDkkVbYeQRzinzajJ+lp94nj75o9z2Xc C3u8ro773Cbzw0E8MKzJ6NG+qUWxJyOayuQPuezfJPpy2xzp74f+XeaVlA/z ccoZ+Xe9562M7yCekj5DnGOaLZ7id+EuNi+nJx/8/sxIoycf4tCTbi2Sv73U bPkI6YmjG5tMNPqgblvCIZ+1HOc6GuKEzVqkf0c1W/5C/pj/Ozo99KpC9XDT 5rJxx+/PpqTOccA0keeXLjfmfZQ/83qOL+XMvDtYt0lpfne+59f8rrwL3Sz2 /r6PjB512dfSlt8FceyOnkej/ltfjO6tdDnz3V3kodePF7s63PNf5oPsL/Nc yjOmZz5InHkivyvxiN9nQlzWyVujPG5WGc7xivNE1ltinHbm/zff5LyIcdrb GKc/Is75gGa/rPurH2gJ6ywlPwX8Vsfpd6CXL3n+wrgMcrzc6enfMU/uaonm Z53Qn+309OOoa/Vz+iCe7O30wb6d3k7POJDtZN2H7UR7HnP8j9s52toJ/Fqn /+N2jrZ2Ij45xenjdhKP2xnuJ/B2cp7E7STOdrI9xOP2EP9juY0ua8+DSh+3 h+uwcXtCv+hyoz+I5TZE9Z7t5Hf5Dkv8Xc6r+LucJ/wu+bCdMR/my38sz8V/ Is/FZfJke2J58ruxPDn//3h8F1t7+N1Knc/xd2l34u/SjvC7vJepMrQLPWS9 NJovr1Xbdxl/xN9l++Pvctz5XfB/38eddoN8yP+P58XyMrlRXvxJeubppEf8 tCiqU91a1TPsb4X1l+Me5i11xj+4r2EN/kG9iPynO86/43fD/R/VxofyjPmQ LubD/sfjFeT7a9jJ4LtrtJ96Fn+X/IP93fUuN/nscmsP+bA9ULNnHCc//H5f S/h76f9p/zHuS2rMPqAe08/5MC9mv5jvU3/Q7eUt+k5qnekR209c4szlRs/v EcfPTx2nfuHvR7WYfsTykf39deZPMQ5XOZ9gX8PtzifYT9HP6wDsN8brWOfD vBjmYqKO79J6m09sD3HwfbzS6Ckv4ujGXY4zTkCePbTF9CmWJ/pzaL3IZTbv gdZxPMXrDGjHyc6feS77xXyfckA89pOOV+/GnnGcQxzt/2C+0TNfJo548CnH 6R/Qrre1nXUNlpeRv5wbbzB68LtR/cvohjI5Y1iPbpBxOWaxrmf5d5nPUg7M 9ylPiGWh8hmVMPsR8B+l77D+NNvomf8Sx9+96TjtCn79RPWhTyLywy2Wj5Me 9vaOFtmPs1OiTP4Y9zcbpb8XzRN9v9C/y/yXcmBeTznj72r0u9s0WXwetGcb Xdde+qPRB+vdJRz9+dJx+nN4ubHa/s+Slh+RP+zHe0mjh75f73zoV9GOh1ss 34/HBeSb6ztEg2aFctgjGcq5l/Nn/st1Iua/9MvMI4L9UrxPcZLqw06knxjq yU66L+qrCT1JH+yjLuFY97rXccYv+P3llnBf1xrjgr8foPegHTNZ8rSrVK+G NJmcEX30cf7MQykH1gEoT8oBfuA0z9+D736QCs97leywvD9E+tFG32X1uLZv DuP68zzvZn4K+3uz44yLIf/3VH/svepvQ/2pTRk9husWtUut5eMCsnt0P/xO 3wl+bku4Pl7KZyk35u/BOuZ5nl8H/T3X82K2M85bwzzAccanMf5nfKgn/798 OL+Ic/wwX3K6bvZYq4233Ps0R+o1h7dG+aaeh73L6WmvIJd9WqP8sULrvE7P uBj0HVuj9c0FolcbtUbrkvpu5s8t0XriEvFjv3mcSb8J+qTT085TDtX6PZRH Dp4j7bzW8bj9xIM65F+9X/RT8KM7Os46APic0mp5VtWa/P7qOPnwu/T7/C74 b+r8g321SZcD45+QviKUW7PHk5QP9YH9pT4wfwnvT2jpIe1us7wp0Lu7nA/1 hPy31LiL/FHverTV6GJ9Iz3/P+xvhfWX/IP4ag3+Wwbx3pxovCpsvKhXjP9i vSLO74b6UBfqw/4+vtTn8Lt14XdL4xXsj1xjfBnfcrw4L8iHcSDlRjlQbujG mY5Tr4Af5/pWteb4b+X07BfynU2dPp6njEuD/W9Jjz8Zp4F/ad4xTkM79pyt 79W12rojx4vzlzh+7jBb/n5P58P+Qo7dnZ7jjB+bt4o8hzdYf8G+6HEj4yu2 n3Em+wu3OaBV4pXnE+Yv2E7ikNdjU4yecRpx6OWRjtNuY53pDG1n94T5d/IH 3W+NRg+73aFV9HX9RJncMD5PaBz4ob5v9bvHjYyjKAfGmZQbxmuQ8lmVLPN3 xE9brYcvjjN6xl3EId9THaf/ws8LdByHJ82Pkz/ipnuSRo9276b01yfL5I/7 ZVbofUC5H6RfG/h3GUdRDownKWf4h51aLY4K6qk3teo70imzu8G4j2wyeryn e6LzYVyE+PxypV8/ZXEF+ch9+k1Gj/Zs53wYVyCeOrg1Opfn44LpcKG+D3rR FyYHxpOUM6Znc0t4frAUL1EOjAPZX/Bt16rvTHj7yYdxF9tDf0G5hPVjxxHf Pfq+yLdrm30P/R34qejBkjjeGC1/t0NEX5IP2j29NYoHvpV471f3p9Qr0I+N +U8U/P04PtH74V+K+c80nPwZdyHO3i/2m6OlPZu0heu4pXaiHlLpfBgHsr/M H9lf0KdajQ/bj3H8Oo4fphs96yykl/XyVvud/Q35TDQ+HC/2i+NF/mG9xvnT Xsf82U/ypzwZV1Ce5M/6Tsz/scD/xvwXGH/4nfdajS4ex2D/Er87zb/LvyMf 0pNPHC8B7/CJtZ9+Jx4v+q9YDoE/LbWH+kw+1GfqD3HKFfnVx46TP5b/XvPv sv24R+wpp6cf4bjTj3DcETduGeEl/YTfW8v1lnqOcZrlfpDtx3+X5Ez6eD5C fbKNJn+057/Oh/af7acfZL8gh2nuFziP8Zmd26RdiaTNG44j7OuxyTCvqnM+ tNtSTojj59FlfGj3IKfxrTL+57qfRfvfdP605+wv/R3lw37RH7H95EO/EKw7 9WyL7N4Iw/l7sF91DTyw2z1dz0mPut7Jsd0bUUYf8+E4/hket4fyJH+OA/Uy tNMfGl/i0Ps7P7L/l3MLK8voiZOe+k0+/J3yPQ/nYVZG9Uurm1idQPYHfF/G R8r23/0pzvaA/divbZ6TPsZJz9/5k+3k/EMc0nNGVA+YIHHp61MNZztIzzpa zAff2WNlGb2Y6RVl/NlOygX6XDPL9PyPcV8XhN3oOFPi7PW8v7JfYXqZHPD9 g+ZE9YnJxj/GSQ+9+PeKMnrYm49XyLm14ZPN3wXj+Mokw1mXiumxfyXTJvnj rj/K/L1gntj3B9ssz6Q+sY6K9h3xU9m4096jfb9OlfNhOzoObi/MkH7UrTAc 57i3nqPv/TqO+x1/mCV5y1MrdN/hT9Z+2NH1nZ444s2OjqO97RZE9Z7p0o4J 88pwygHd/aktjEfemS952wttpk/EKTfqH+Ml8kf/35puOPPdGKee4zvjf5K/ P3CR1U2Iw1+9vljX1ZeX4VyXi3F+N8bph2OcfibGeY490It//yhx+m8rDMe+ nCWTTE+gH8/MDuOPt50+0KPPIz7rqT7c5Dh+njlb/NsRjqM/wyqkvx+2hevr p+h6fYP6p1dnW1yH7l7g9MTPX61/1ziOftYskJ97OM7xwr0Dza2GY5xyldF+ nFkmT+KwL52cPliXXgMP13Udhz++uLWMP+zwi61SD7xxttWhAjtcsjuQ76pl VsdH/3+ba3aU4xjW1yaYnScu+8p+EHlu7TjuN1kxWc4bLVkR3l84+CeZ52c4 LuHJNBnPh1aIHm5UYf2Dvf69LbxfpISj+Rs6H7zL9sgcvb/G6aHGi+aK/X6i LexXpwVybnG9iP+cedKvo9qi8+3TzV5iH/N2FeF7Tx95fkJ8weofYyP8ysUi h39H+cznei/qcY5zvNDez1vCdcKPlsq6b8Zx9P/KKhv3YLzuXV6Gkx7TYP+W MnqYk0t9nwrjCOoDcfBd+L3sCyyuMBx+7qjx4o/2XSnyvXm++RfI9xWnJ34F 6kmO162Gr5gqfvnKFWF9fb0ZUlc4aEW4n+bH2dKukW2Go3t36rm4pW0yXwbN t35jeM90+kBPz3dc3lWZJ/LZwXHwu2i+zK86zycxrm8vEvmd5zjU6zzdB/Vk q8hvyHyr88J//sXpieOe+c0dx7/ZJdLfn3y88KOH6s8LLXqPZFW8jm77GcF9 QpW0f1Png3m4g9473Mtx2N+Dakyvgn2RD1cbjvm09jyjD8ZvDT7o3n+KZXwg ny90X/5p880+kj/in2XzDGf8/cf4t2U49S7GOe9jnHYoxqkvMc7+xDjzkj/s V1vB4hucB/+5NlzfXgOXfmUNh/19t9buP8L3lyy0+Us7TztFHPrYxXHowc3f yvzd2HH4v+4TLA6Huxmj9aOzHQ/qUydMErpBjss+4ikizxPU/icXmtzhT1q9 zkUc9mCF4wirbp0pchznOH6uNdviN+jX94pv6DjpYffWUTvdLaqvna77qX5t lXMsKxaG6yJvex2NOOp37zku7wbqO5c3Oo5zQA0eH8Lfl3B5p95x0vfD+Qy9 v7Te91Ninf0Afe/vA123Xm+RxQOgO78l7G8JB58LHUf8N0Djzt0j/BJ916fZ z9HF+xUD/Vlf5/XFReOD+O/CajsHhf61W2T6j/Zs5vTEUS/b2nH49dfqovOs C21exDjnBd7LmO/vcOBemTPq5L6YV/T+0DkLDOc8Ar9dF1mcHeR3NR73sx4W 42fl1ng3sVrj/mfr7R5k4nj346oG63dwD0Tpe5y/fCcyrj+E99V+aP6aOObz IZ8L/90cx7her/eXNa0wHPN90kSRy0WO4/d9J4icXlghefodS8yeQh83dXri u6/Wiz0dB9050yTemddmuBwvnyHx/8uOw84dq+d8t3Ic+lSYJf06qU3WSR9a YnYZ9cpvW42eOPq92HHwfWie9O8hxyHOBeonT3dc3mdZrO+v+3ldzmP043fF n1sSruPe7PSBnB53HHnnFUtFj45yHP35bJnMv3X1/MwdleF9lB8VjZ44/u7j Yvi9/+m5tdsdh3kcXm3n/FGPPatS4p83HQ/05/WannNW42m/Nxl6emKt6PuY go5Lpa1fYx5f6vTE8XeXO475ka6T81/7OY5p9ZTPI/T7ksqy+UV6yLFdo80n 4px3f4ZjHrxazgd6dFXe8jTWn8kHcmxwnHYXv3+s79rdlbB3goljXBclbB7H OP12jDNvi3HGLTEe7GteAw/i3TVw2s0Yp1xiPO4vcdrFGKf9jHGeN4rzW9q9 wM8dOFrym3Uch9/OjjJ65E91y0yO6NYHK4yeOMTzveMYxre/E328zXHY1b99 L37mGMcxT+b+KO3/rM1wjPdhWk9t1nWO/LLw3oCLnT6oq93WFsr1oFnSn33b wnYOmi1yLrYaDn2bUiFx2pWOw9//e67065VW0ff/LQvzs/ZOTxx+eb/WMJ7Y Qu3eUr+PAPn2v/R9+pGO48fIJbI/bofo/oJzK6VfZ+q+kE2X2//DPkyO7wHU c7xVjkPN0rp/90nHYRZerhK72ddxxDHH6rsyP/n97LBLw6pFL/5SFHl1XG5+ Gvp2h9MTh717thCOV72+T9OrEOrtY3ouehPH8U76gQ3SzkH+TjPs4MP10q8v 9N2+vZbb/EE7uzg9ccybE/ydsHA90c+fYT5UNIoc2nKh/pTsFf78m1yo/4N8 nYs452+wL/SWpUbP9Y2YD+RwcK6MD+R2jb63MNLrHcw7wvXplh4xjnnX+JbU ATquNBzzpMvHwq/G6dHek78RfTvXcYx/uy+lvY+vkPOTo6rM/kK/1nV64tDz bRxH3PnZD7L/dnpbeE7mjCkyjs+1hd+t1vrxxo6L/VH7cKzWN0ZXmd2HOMb4 +j1x+M8fHYcb+mKOzJuBjsN+blAhcf0JjkOtTl0g8dE4P+eD9q01X+ZNS4u9 Z0v/Aflf5fRBnfxux3FP2vOL7bwuccQjdRoP/ur3gCD/2X+5tPNGx6EHy5ZK v94qys/xVfb/aOeOTs+f8GsHRXyOVDtQXwjjqmqtF37gOOT7gO4D3L0QxmfL NN8/X+/hmlJl8Q/GeWY+bJ/dR5EP9WefeunvUMdhj2bVy7hd7Dj04v90HX9+ LpT/dN0vt5nW/3+qCuOZe52eONaDhjm+unXtOySlvyc7Dn/wbVLiqa1zoXxP 9H1TxJEXvN5UhpMeZmGrbBk9xn9Q1uqbPI9PPvh9it4vOLLZ4grWe4N61kit b9RUWxxGnPTEEed94jjaudkY+d71jmM/1/Ffy/ge5rjsz5oodc73vf6MeOX5 8XI/Zl2b2N1EteVTuL/7PKcnjrp0f8fhPyZMFf/cyXHUKS6cIXJrag3xFbOl nRc6Dn1+Z5boy/O6nyBbHe4f3dTpg3WA7R1H3tRznuhZhZ+jYx0Ueviy48gz 5y2Sdm7lOPzegwulDnqi7idrqw7zuW+K4bhcp+9XzXQc82inpbIP70HH0fxr lkl+c7rj4o/0fs8fCuF4dVP7+pvef/1btf0/5H+T0wd6cZ/j+HG3nt8+shDq 2x610t51HQfdlDqpM9yeD+XWSe3Jh/oO5bp+/hDt3MPpiWNcD8uH8+JatQ/p nOHyXprugx3jOOrNnydEX/ZzHPHclgkZx0tyeh9RTfjeyYdZoycO+SzIhnp1 gb4Hc4zjmD/rpITvnEw4L0bq/VZjfb7je6tSokf7ZcLx/dLvMyQu+53LcdLz OzG9+P209HtWtb3bRT4xDv/2ZMrq43IeKCv2tRS3sf4WnvtY8Cf341WV1c3x ++AVhsOeb/SpzJdTHR+wmtGr7xk9hmOnWsuPoF+/thk9ceQF6zof6Gf77/R8 o9PL/rIJ0p/H2sL6+DE/yrrn2m1hPX3EJInjjmiTeHSPWsuPQPdBa1kdH+7z i9awnjhzpnxngOOQc/fZMp49HUf+co+uT45uCeuVXXWdqLlF9G/fWsuPoLcX t5StB0APr3UcwzZJz5vs0xLmFe0XSf24UAz59NP8+ArHUf/crFLqKq8UZXwO 8vMJaGd7pycO/du1GMptxHLJA5cUDIfd+XeVzL83C+F47Vgj8eP2hVCvbtV6 0Rka5xzu543Rzsn5snPj0P8Kx+FHv9N3o57Ih+28sk760ddx6MWmeq5hRi5c B7qsXuru62mc08PvL4O+/dvpiWM6PeQ4+vOhnhs9znHkC+eq3dvEcdTzf00K n7WyhkMb/pEUe3uDvqPdu9b2aaO/52WMnjjivTscBzxc7VgqbTjsUO9miZ/v chz2IZmWv+vfbDjMz3Fpead4Hu+prSmzK7DLp9SavYKf/DZlfIhLHTwVtrN9 LrRDObdvxNHvp5ye5wtinP4h5gN9Ob38u/CPNU1lfChX/F1JP+G/3szZfkPi iKuu9O/KveW+DgH5d10RxestPWIcejj0TZnHp0b0f/lI5sUa9IinO48TOzSi Lbz/IPW56E1lm70rxnwT7T29LTrHPkHe+zq7Lcw3Ov0g6wUdHUf+9c1kmU81 fu4I6nDqT+KfznVc7Pk08fOP6/7gC+ss30Q7122NzufrPZwbOY5pd/0c8ePT /Rw+7M84jSefbQnryH/R+6c2chx59Zh5El8fq/Fhfz9/Je8W+31/xLEPYZzj GP9T9D3UgY6D73+17nl8MexXzTKJu8cWDMf3nl0q49ii75pc6/cXQN+ucvog X7zZ3wEKzyH6/bKQ/zbV9s4ucejnWL2H4pd82J6L9H6JG/Khvn2p92G+lZd2 3eL3JKLOuaPT86es7ziO5q9XL3Koyxku74fWS/9GOQ59Oa2x59ur27mb45gn bzdIv87Pyby7o87yUOyLGJ41euKon412HHFDMSHzu6vjsAvDkqLP4zOGY7r0 SIkffy9tOOz8C7ovuqPGa4PqLN+U+Ccd6k8JlzzDceh3TbPUj55rNhzD/LDa 5z2bw/nVJSt62C5lOPRjsNrhgXpv3IN19g4p4oKr/L1r4ph3DzSF8vnZ7TNx 2sMYpz1EPlfyb8Sh32Nzot+PJSUOebHWcNpPxIXH1Nm+Q/Ln+i7iq3/mbTyJ g8+SvPlnxClzfF2W6/vMZzhPiJOe+TvqEh+2ST6zn+O0q+SD/K5htNETxzz5 8Uv7Ltp3R73IedevytqD+bDOeIkXD3Qc33/le5lvP7fK3z9bb3k96ntvxucw tQ7wluP4+6667/p6xzEfP5pu+wqk3lovecV0x0mPeXqhnverbQnlOWq2zI/3 Ne4dVh+eq+zbEvIp4bBfFziOOnarvh/QKcKPnm/30+HPH9R2/s1x0qPZRy+U OOd5x/F3jy6S/OvCouw/fq0+XJ/cxOmJ48cWxXBdf66+D1tRCNevOqmdf8lx rAeO1vuHt3IcfnYztfMnajz8dn2YZ3+TN/qgHvO940hr+qp9ftBxiGWV5gGn OS7vdtRJ3eOHnOGYn7/pu6i/aV39g/qwDnCT0wf8bsuFcj5e39k80nHwy+j5 oHUch348nRB9zmYMhzqn9B7Xf2X1fpB6sxfIU05weuKYJ30z4bzo3iRxyuJ0 OF5L9d6Ma9LhuP+nWeo/Zzcbjrri4pTUTSfqe09j68P1yA9SRk8c+d13qXDc O2ckXuvpOOQyPSN+YXaT4fBnh2v8+XXScOjvj1nxf/s6Pe0n7Rzm44R6W1eG nNo7H+L4sbfj8LMb67vibybC8S7ZYeh5d8cxDw/yd5uD+b40X4bLPb76/lun RolD13ac9pz0tPOQ2xMaF7xdH+7LKfGHvbjbccZHE1Z/ZyPNA2f7PAzwbYpm 72Oc9YwYZx6Pe8sP8f0E3M9PnHzxd+10nXdIg+EY535t4frclC+NnjjswNp6 L+eWbfL3/fz8HsZhXHweXvcBzHNczttNkvF8wHH451FT5PuntobjcPRM0Yfv WwyHH3l1uuSzv+h9B5c2WjyPeXej0wf4I6zf5u38FfWW9FhXaND72Q53PnjH 8pAK+X1txxF23LVA4okB/u4R/HQX3Sc7St8XudrvmcLP3Zw+2C/Ww3HY6YmL RQ4p11PM/62WSPw4WuP5JX4/F9p/UUTP9d41cAzX+bp+u08hHPcTq2wfC+bL jyr/sxwPxusMrQcPz4fyWal17is0nq9tCPP1rfPh+JZwqVs6Dvv3Uq30d0nO cMy7v9aZXZFzmg3yey/HSQ8/1VP9yxmOQ48b1a5vr+/eNzWEej0kG97vQP16 2nF531X9yM6OI77qmrD6BLo5v0Hi8G6Okx7Tf35S/n+Yvm+ea7B6Ab5TbDZ6 4nJeynHo8x36PsH9josdbNb7tByH/ZiYVn/eZPhGq+l20jrz9Sk9z9kQ1o37 On3Qn0sdx3S7Mit63pQM27lhTuzPnclw3Bfr/qTLfZ8O8vzBWueqSIi+/u7v YaKd3zQaPXHY82mNoZ6/l5f+nuY44rNVeV1f9fe0xb4VyuwG7Tx+TqsP9e3u gr4r6HpDex6c6+R55r+6XyAO/36a+4VAb6/S9/3O+T6U/8VFs8fcT0Z6xu8x zrp1jNPvxN+FOD+rK+sXxmWPetuvBn0f7d8lDvs/2b9LHF9bVDT7DXtzk45P Fz83QnrG5fjxSq3R43N9/D5R4qDv3RLWT1/w/SLMR8Jz3X7/Gum5jwRyvkXP RWfd/6KuO87x4B3fcc5fzOl440Mc8dTjet7+8laJc4cmTI5o/1ZOTxzf2ctx uS9jmtj/xX6vH+zUVzMkH3/Dcci1s/rBDi1he+brebXT9f7T4b6fD/WKH/we f+JoVqXjyP+unSf9GuI49Pzr+RJvn+M45LXuYom3phUMh90Zrf50Hd3X/abv C0Q7by+EcuA5lycchxqctFTy82Mch9l4cZn0YyPHYX9yum/lHq8TIF4r+U30 67O8+JP3E5ZPoY6wXz4c99e4r9VxjOuzug+7mAvleZSuq4x1HN1arvWtgxzH vD28Tvp1pda1Poni66+z4bgzv8k5Dn26r0Hk0cdx+J199d6GZRnD71vdvp90 nKekDUeddy9t72EZsa9fJiyfQn87OT1xrEP1dRz+42b1g582Gw570jEl+fjf tB62XyJ8R/blVKiHJRzmbbjjWIcYp/fqH+A49P38tPlbTP8OCfneZY6THubi 4ox8p0NTqD8bZiWeeVfrV90SVh9D3LJu0uiJw86vnwzlc47Wx55NhO0c6XqA Otouek/BO47zJ+bJ3roudU9jOF/uzIvd2bJRxuuIhMV/qHNe2WD0xKFv1zuO /LHR8ybizJtoX4nDbPQpiHx+qQ/7+6rnU3Bve+o+5tei+gjfEdlX34s47BOR 88aOB/ucaed7u5+F/T5N5XSh+1O0+229F+xJx0mP79xfDOtnTyQkrn3B/R2/ i3hjF40H6ryODPpbdP/HrXX23difwl4myv0p+dCf4ve1Z4v+7Z0o87P4/y4J seO/F81+4zuDy/0v6THPOrWE5wyvU/9yiJ/ngR4dkzB/Lfu9akM7n9J3ThbU 2nfpx8kffCc5HuwP5zvnffTe0L20fra+48G+8RI9/N/ZLeF+2RKO+suVLWX7 zzDP7/D9QEH7e2u8cVFtaJdu8ngDfuBn37fK89HQvzP8HjH6d9pB1NFWTbL9 S8Qxr//7o+j/13pf/Fy/xxZkVzg9cUy721tC+7vNLLGHB0b0l82W9a+V/s4N huu9Chn/6xzHNPyn1l3f1HegFydt/LD+s73TB+cyuxTDfhUXyLu5tQXDMT2P WyTyfc9x1NEeXiL2Z1fH0Y6jKiUO71uQuKEqaeON/5+RN3risN/VjuOeuNnL xR4/7zjm/RO6P/RfjsO/Hqz7Eeb6+oOsT+h7dptontvo68lo56DydWZ8/7lc KJ/SPMF59BMcB/k9un7SznHIZbcG0YfNsoYjP71T1w3uyop8M56HQR37Z8L9 UsxLnnEc87U0LzFfVqQNR/+v03WUh9OhvrVrkvl+S7PhmF9X63vH1Xp/bUvS /CvaOT0V0pdwfPdXxzE9P0tJf//pOOrk/fTd20yT4ZgWa+l7MYuSoT6fl9Z6 c5Oc//41aXku5u1ByfC7JRz27rJkOO4jsuKvvk+E+tNZ66JnJUK5rcjJePZo NBzTZURO751vlPm1TlOY577QYPTEYfenN4T682Ne5tc+jsN+7FSQeOOr+rA9 z7gfR1wzNCl//3nB/Cnsad79PnHSw25WFsJ7txYmpc6WKZj943fR/KzWuUbU GY584L/KZ+t6+y7mz6buxzF+B6n8dy6W8Zd6ssYDUyZrnug4/WxgD89yP4v/ H6PvRvZ3f4o6yRZJ8/vESQ/9f9T9LH4Wk3bODZ/73c9hB+fiDqkz/pDn186H 9LCzP2n8sNECXed2nHaX9HIsw8+7Slyp+rZeS3j+Le3+PTgvWqJHXL5PS3gu pULHsav7U/zcQNcTVhXL9l+iu+NVDoe6HGCX5xXDOuI2SfFP7d3Psp1Qv/O8 PRj/LknRl2tawv3rFyWlDnZ19O7oiTUWp4peTZV5fEF0/3iqaDj1Bny763uK o5sMp1+m/ZL7a6cbPXHQvfOT2OEt9f6ozf09NpibsUWjJ47+TnUcYcZLc0Qe DzgOcTXp/U6nOo6/77ZA+v99wXDQ1el9R78UdP9HyvQG9eIbnJ441kfuKUT7 yfRd5MMdR743pVLatZbj+N6Wy+X7A/KGYzgmLJX5Piovct4xFZ4L2S0f+gme I+nmOOK9/XW8U74/C/KaWy11sU8dh37epv5371won1k1ss5yUU7qJrv5vgn8 /m7W6ImD/wzHEe/toPb3r47Dvk3Q9b0ZmVAO/fVdz8/T4fh+o+sAe2YkHt3H 81rU7bcsz1+xD6u745g+Gyfl5+vNhqO+/7Hec3uw45Dj2Sl7f4A45tUo9buP pUReB6YsH0c7BzSF++Pa636U4Y5LHK3vJW/gOOzaq2lp14tR3PC3rLTzvkR4 L+1LGelXQfPn7inLu6EXSxpDPiUcdm4D53PV6n7dktP8x+kxHybnRE/+5/V6 2OsX81I3StYbDjPSO9/z/1b361ynB93B7n+JM++mfULc1CklcV3vQriv5OiU 0aPuflx9GR+064Z62cd2h7bn1kJ47qREj/z8oYLIa/uvZd36K8fpf0m/yeoB f8f9O8ZtlerBNwWzi9DHvk0WDxAnPexJTSG8X7p/SuKBrwtl+1bR72sK0t93 6wxHneoR368Gvv/XJPHMt46zPbBzW7vfJx/IubO+Q9s8W+z3UMdpj4P5crT7 a+jLUm3nBcUwz+3eZHFCkF8v1XhvUDE8x1aaZ/AjTxfDc+z1TRJP3+B+lnLD cOzoOOT8bZN8Zy/3s7IvTdt/Z7Sfu7v6tY+8PaAfoPP0++ic/yRdFyr5cdTP LtJ94mMcp78O9iVX6v7ym/xdbrSjzs/LSZ6h8nzP+xWfywL7of5+KvUMal7r OMcbccc4x2H/K2dLey93HD8fm2X88fOkZhtv5IXtnJ448ugdHEc8sfs8uT9k ccFw9Oum+dKeNwphffPLRTL/OjiOYbp6oYznaZr/nt4c3mMxMW/0wbu8sxxH HLv2UunvEMchttP0/Pc5jqP+Mq1K7Na0XCj/PapkXq2TFzme6+dXRq3+cZvT Ex+HdUzHZf96jfT3mFw4jtvWiv/cyHHJZ3R/6G8ZwyV/0P2/V2dlH+4/fT+O +DGnD/CbMqHf+pf62Ya04Wj+XxrFjt7mONi8kxD9uKTZcMzrdXR9Y1azxEOX eX6MPP4r95dBnrQoFepJH50fpziOPKilyfYlERe71SztnJwM94/mU7a/SfYx +TlGTI9dk+G8uFTr9cc6jnb8NSP5xCeJUP9rM6JHvRzHfO+l9eoujYbDDlZl ZV37Jc1/b2629X6pGzYYPfHJqyfUuw2hnNfYv0QcdnsbXRfezumB9/T9bdDj ipS+d+R4MO7LdT48OyycL6vy5k8xzifoOvw27jdRF37N/XiQL5+gcjjS/SnM yBPNEh/+Fp1jKX1X7onTdaazfX8w4pKmfLiP+eWUxKOHuR9kezBvr/bvkg/m 2916T8rLP4qdrk4ZTvsafPfpQphH79ks/fukYH4TchmYMr8f5NF7qpwXFML7 BPs39zxwNd+mQng/1ht6f+1Hfi6a7QE+VNf56t1fINx73889on8fp+T3lOOY P4mU+LErPQ5h+6FnGxTDfak8v7K9+3d+F/3cX+OH4xbpOxYpw+lng3l3svtZ sNut2eoGqDOllhkOv3uJ+1mM050ePxCHnv/mcQLlRnrGFcS5HkY/y+/TLnC+ Eed6G+cD/SZx6n2MU/9inHpGnO2hnuGzfZyeOOnZTozGCzONnjg+u/1smce9 HUczL6mQ+fGVn5uQe4nnihzymi8/kLbxxjj2d/rg/tjrCuF58XcWSJzb1XGI faXer7YybzjylmP0Pqrr8qFdzi8WPzIir+8Q+T03aGfHfLjflPdhdHIc8+nB 5eJPanKGIy+6Ru8heM9xTIfNNV7c1XHEm1dUS7/O1XXqp/3cGL77YjbsL995 fc9xnK/7pFbP1ToO/3A+z6NkQnn+rvt2R6YNx/w6p17rGrpO/WI63P+1yv0c cehR+3So56+p33rS6eEnTkzYPCQO/W/WdaFNU4bDvPRO2nyTfS6el6OdlzcZ PXHo4V2O83wv+tuWNBz8DtN58FAy1P/KtLTzZr8PCfHIIWlZP6pKmPxY94b8 pzWG7ec+sbrGcF4MzMr87Oc48sSk759DOw5O6/2/0b69bFr0+As/t0M+iLOf yok/nOr7pDEf3vB94XwnD3zrHSc97MxA9+PEGT+IvAfo+T5dJ3jK/TvWN9bV fX/X+vl2rFddlzY82I9U6hfsXkfHMU7Hp+38PPv7H6yHNts5fOJoV1OzyGG8 tyewYxV5qQtO/Eb3czgevOPDcU/kw3jjhrT4x40LYb1ziscnxEkPOR7gfh9y /1D7e2wh3Pf1n7TIo5P7a8pTztnmDYcdu0D1YaHLGeO0WOPz/d1fI65tp/sa 33Y5s/3o54XeTvRnQx3fm7ydlA/qC/cXZN2jc4XQn+B44PdL9M+s5v+axydQ pyFqD7/0+yIxDA0ezxAnPZo9wu+nI3/YiyG6r7fXMsORNz7n9z3hZ0b9ZpXj mBedVd/6RffINGi+snl0r98kv1+A+zuCdbKS3yeOP9slY3KkfyQ98DP13sUP HIdde3au8Uf/R2ZkvF6bW/Zd/DpsntR1jnccdf6E3je3RUHmwXcZk6+cG8sb PXGce/rWcfT3QPWn9zsOOd1RaXZC1usykmfe4zjpkc/cvlTm0y85w/Fj0jLx sxPUb07O2HigXzc4PXHkPbc4jr/bQPcrHOa4nCfRe0TWchz25Mxa4ZPKGI7f 39P1kPP0HowZmfCc398yYft76D60Ux2HGWnT9wHnuZ/A7y/rOZ7+jmO+Htuo +82bDYd/H9ag58E1v63w/WjIY95JGT1x9ONzx6E/9Yof5TjE+ZiuH05vMhzz 9kCNx8f4um9Qf+qs+XKl1wmwLr+F0wd58C6OI36r0HrDa4nwu2f5fjjwfyYj P+90HPXNU7N6Pt/PKZGPvDeu86xHo+E4F7rGfnTodz/Vn13cL2M+TM9If/Zx /8vvSt7k512x/++tjOjBhGy4X6tzRuzVobmydjJ/D85T7qftGOX3vJAecnwu J/Nvfb8vAPHGf/1+BMz3GzPSrsu9/aRHvruf1smHjzAcfrKH+1PYmy9UPhfn w3XndhmLB4iTHsM02P0p2rNS7dXQvPlN5G099d6pi/1+PbYH9YET9R7S56sM h7j6uX+EnPpoO192HOK9P2PxBuXJ9st5dW8n3MgZOo5TvJ38LsxaZV70cYuf xN885Tj9KemhTm35cN1yfkb8frvIb3bNWJwQ5PsleviPQ92fornbZrWeUwjr 0t9kDKf/opzRvgl+7yqaO9TjDcof7dsuY/FJsJ+oq45vf28P6G7Q8b3d2wO9 vlj7dYa3B/Z3jXsruD7D9SfOhxiHej+i+/a2LBgu9cEKw7EO+bectQ/zb5zz IY75scBx6EEnleNLjsu60SL5/mWOQw8+XyJyXZwzHP2/slL63U7n2Qm5sO4w 2OmJi346jnhw1XJp12mOyz7YKrH/26nfXNvtBebbQ1mjD+zIw45DTU9Sf9fR cfjrRE3od7NZqYfkHQ/an9F9DOs5Drrn1A8+p/Hoerlwn2um2egDu5l3HOuM RzRI/DjQccQrlV7HhJ1oy4peVzWEda61dF/R0kYZj6t9HVTshO4H/1XXcTfw /WX4eZavjxKXc2aOI37bW/1ofdJw2NVvfD8W9LOQlf7MdJz00I/pKfEPn/o+ adiBHXxfOOCxWalX3OI4vn9UTt/19XO55AP/+1fNp5saDJd7Lz3vl3qOrivX Og6/2FvlUOH35pAPfh+R0ffq/X4Euf/c4ybYzxezMr9Odn8q+wyykh/3ivx7 aR6AbGe/9xB813Oc+s52oh/P+b1maE6d+/FgXfWSrPn9uF+Y11Nz5jeJ04/j nZq+z0p71tJ8fmnO/CkY7Kr3R2Rz5jdh7jbX783JhX6w1F/o8z2OQ61X6j7H R1wOmF8DVK+WOo7+j8rq+2EuH/T3fPUjm7nfl/s7dL/kru7fAz3vlpefFd9L PrE4azj9Kelhj05xf4p62BY52YdxpftNjN/tWYsTiJMech7i/hTd6Kp25pW8 +U2oS0lu8O+lOIT2Hvx75Gw9j36K7QRdD91n+Eal4RD7391vIp94ROX5lOOI H8arXm3u/pT9QvvGefvRvy+yYsdnevsxz1eoXtbkwzx6nvtxth+f/8H9KfMv 4pQ7+Nyc13sTHad/DO5Nbzff6InLuzwLDJf25awdsg/R6Yljnh/q+P9W26W3 Fkv78j5/oA9tuj77lePofo/lwqer45BKdqnoV/+c6HF9dE/q51mjJ468odFx jN5x1TLPTnBczstW670HHq9j/gypFT85MW04xrWhRvdfadyf9PgbdYednJ44 pt1pjkMfDqrX/NXX+ZAPL9J7KXo2h3K+S/3avqlwHOc1SH1yaErfG/FzMrBT 9zaF9CUccvzccdinXXW/dvumcFwG+z5g/N2QnN6/mwzXb1Nqh+v93Cz5yL0U up/rX35/P/hU+L4tfP9m1fN+vs8L9qlV/Xuf5nB/y7uO04+wPTBTI/3+CNQ5 X9A4cFwqzAfP0bjoMj9XDDswWu3PZ16/Z3swfps7jjytFN9hfaaz31uE9cKL clIvnu447PBdOdnXPdHbL/bD40HGy9DLWu3vuKhe8pbiQ7Q+MaY6lP+Lfl8n 2F+tcdEh7jfBbrDq2/7u98kHcjve7RCal1H/t1XO7GSgb61Z0a/HlhmOcdgs F67f3ap8T3Uc8nnS/XvcX9i5h3Wcu30q+vmU4/R3pAfd6+6X4dc4vt/mwnvg LnI/Tpz0aF+d21fgFRpfteXMr6G+szIn580meV4CuzXK8cBPleSZX93fWxzH /vdhHidQzujveR5XEGf7oUft3S8DH6T92cv9b2A/j9A44ZjZEj+86jj9Gulh j0p+H/WtGRWG4zvn58M8d4SOR7d8eG5mYM720wT7twf4fSjkG+97IE76B3V/ M+zrXB2P3bz/9F/kI+9MLTR64vKe1CI9H6/+YGA+zLfvdnriaNaTuXB95YCl 8t2/Ow66u5aJXm/hOH7WVMn/b5g1XOp6VbJv6Da95+c+r3dgPpXycNIThzge cRxqPLhG72FIh/XdLrVin+53HPsgZtf1XI77E3zfCc6x7lsndm6p1i0H+z4S iGNyyuiJY72n4Dh+3Kp5XN9UOC5r3BsBfkfnpX07+v5U6MswjcP+5edCg+92 1PPHc/08CeTVJxHmZSU9gVn+znHo6fmq95OSob8ofVfOpzoOeR2vcu7u510h n/VVzkuToR9+WNv/k++nDu6DGN4kfnxYfahXI/0+I+x33VL3x/R2fwf7s7/W 13q4X0a8/Yzy794crjfxPdv1m+W7+9aG983t7fefIu7YXvVtlOOwK93z5n/Z L/T3Zb0Xabivz2P8z3Scdp7tRLy+ojlcxzkmb/6X7UczV7m/DvaL9stLHWuD bGg/X9b9UhdmDEf7T1I5DMiE79xspP3dKWs48v09tL/bul+m3OSeFr+vFXz7 6jnkbXPheutf8uZniZMe43uU+y9893Y9t3eq+yn4zcfysp63gfsdtgfyWKb3 /q+3KJwX6Wz43tvWOo96uT/CuB+g8r/H5cn2wy9cmwvvjeis+nOPt5PfhZ6V 7Cbsyt+nSDzQ23Hab9JDvB/lwnrsFXmZZ5Ny5qeg/+3z5peJB+tXb2geuUeF 4bAHX+TMf5EP/NwKx8Hv8Lz562D/y16FME4qxXHxfnfi4n/c/9G/kF7eTdN3 2A51nO/aod97qp/eyeu52Dc4Mmv0xHEv2ETHkdd+tlzs2WHZsJ3/UX80JWO4 rHvUyHh/mjYc43SP+qNOum9gV99PhnrVJk5PHHLt4jj06cdaWc95udlw6NEF vv8Pv6d1fG90nPSyD0nzqeP9/ADy3C/8/ADsy2zVn/budzB/uhbE7y4vvy8A 8v5Qz5MOTBoOOX7aEJ5nG6P25Bw/D4n5cURBvn+832NBPtCD7XT/yhaN4bgc 6vcKYb5/l9f13ehdsErd9/S534+AfvUq6L3cfk4X47cybzjtNtuJ6bah42h3 vftBth/z9033m8H9ievoukKHlNlntgfrjzc1hefTs2r/H2wKz6F/qHbsgFS4 /2Gq9nev6P7WbtrfXZrD965aNQ7O6f6i/lWhvv2aCvcNfqn8X3B/BH4VWo95 wvsFO/hX3YfxUNrmN/lDDn3TMo/TlYajf3enza7KOQTlv8px9HeZ+8e4XzC/ e2bDOLpkH9CPk7PmX9C+vxf0fphM+C74r3nDad/YL9RrTsyE5z4S7k/ZX7T3 Lfe/xPGZHzVPeM/bw/bLuzxZqbdsO1boko4H65U8F7S++xf896YFmUc7uR9B Xv+F+03ipMef7+/+Rd4xczyo75XkBj/5cdZwyLug4zsla/LEOH2sfvYw9yOQ ywydR1dkTZ5sJ+pCt3h70L8FeTm3dYW3B/QL3e9wHQfT437fD4T8+Pus0VOf 0L8DskZPnH6E+1OgZiOXGj1x6EnLMqmDrNB10699/w3qeKdnjJ442nOF4xiH navFzlWnDQe/H/R+10sdx4/das3+o9n/UXtyleOkB9/xNZJPjG0W+S4v2H3w wbn6l/Q8yt4avxabwv07x/m5LMi3v8p5luMY36S2Z7zfs4buD3ec9pntQf2h o+No1qMFyZcP9PPtaPdJ6kcWOA6/8LbO030aw3tIk3qu7F6/P1T2H2h/h0b3 BZ6l/TrG75vDON1Y6Pn4an093P0j4vYFBYkbDkyYfabc8L21E2qH/N1g/PmG CbPbci9FQfKytxPh+tEdKodXvV/of3XBzk9Sv8gfcrhK38eprDYcevxI0uw2 +ntlQezMlk1hPn2/+0H2C/1OqR1YOxW+m/Sa47TPbCfi3fObwncoH3c/yPaD XR/3m8Qx7d/VeXpVc3ifTKk9WJ+bkAr3hQ1V+SzydqJ952p/B/k5KvzZzTov bvf2U27xvnice1ys/b0pbfaN9CA/VtcrL59vuJzD8v3j+PzFuq8t4TjG5S7V zyrvbzAf79H16UHDDYd9+Txj/gV500cFifebMmGe8k/3j0Ge9ZHq5yFZ8y9g P0vt4ZFZ8yNSHyyIX1qUMbvL9sD+v6Prng/MDvf9zfZ9hTz/CfGe7v4F/w52 /xv4kX/qfRPPejt5jgXt+dLbKfmV+y+2M66zyU99X+Fhv/8x2Ifdq2j0xElP vUF9vUL33XZ3nH6BfCSPrjJ64jLPq+y7iGcO0nsWxjkOfX1czy/OqQ7Pgf/N 8eC8yv1FiTP2dZz8Of/pL5DH9Cnq/Zi1oR0ufRfyfsbf6cI4HKXyecfP92K+ /aLz/YzaMB/Zpijz5cSa0K/drfcSHef3V1I+wLdSvGvCcIzvNn4/F+S+XlHs wJeO4+cuRYlHP/Z+IQ97UPv7br3ZYfKHn7lD7zX/tt5w0Uu/Bx16s3lR9nt0 cr+D+blP0fwd+4WfTxVFH7dqtHGQeqrjtMNsJ8btGr+XF3wPLpq/Y/vhZ4vu H4nj5+n6PskdidAOl9qD6TO3MYxfji7KelmTtxPz8Xe1e0/5vYmQf4ei2IGH vf0wN4OKsk56b9LsMOUJ/ThT34Htsiy8V6Wf3/8EfdtA9zf/7Djkv1vR7gtg +zHvHymKnWtqMntL/qgvfqXnsPssMhytW+b3ZEDu7XQcL3a/I+9IF83fBfdc Pqt8zmw2+wYzfaLjtG9sJ+Kw91KGo18le0J/x/ZjHrW6f4z7BX0flzZ/EZ/3 gvofcZ/EC2erPtSkzY9gfG/V82MbuB/Bn/+jKHX2r/38FvuLVmztOORzjPLf Nx3ea7dK49XZjmN8d1B5TnX54Mfaeg9dL/d3+P9Oev7/Sm8n+wu2j+n+37sn iJ4f6zj9SDDuTyv+82TD5R20jPkX6ENnnafd3A/KPGsxf0E9jHHeX4NxPLTF /A7tA+o4Ne6PaMcwznMcD+r5ExwP7t34xHHaW+yz/433Ls0xPvBLrxd7qoLL un+XtLWT44G/69wofJb4OcP4u5DT7n6eE/16V+U21XHQty+/v4/9xXA/6vcQ YZhHq93oVlMmB/q74N6Tw7T9u9eG7yU0Fw2n/KH/XfTeorv8/TcM/yL3g2wn PjPU/SZx+ME2ndeP+vtIbA/Gpa7WcDSrVu/J+tXbiXX01/Ve6dfrDIc8vynK Obth3n6MV2ft7zP1od1OaX8v1fdhfq0xHHRX1ZvdBrv31X5u7H4H5maKymFd 95vod9cW6e+vfs89+cOfTGvQ8awyXNSgwfQI2jdG7cwt7o/Q3znuB9kv2J0j WoT/pQmzz5j32aLhwT2TpXbC345tDM/nLnE/yPZDvf7rfjPo1896P+J0vzeR 7UE79nAcPxuKkucflbR24ntv6jjWOI5Wfad2r9Lbj+/vrf2d6/dLUZ6w+yOa JF/9Ya7hCH8/brJ5jH59qPI82f0O5uVU1ZNe7jfJB/NvjN/bQZzzmXaO73Uj rjzKzwGTHnLbVOO/aTMMh9k92M8B48++VDvwqeOQRoX7zVgO+Luj9PznfR9J O+odD/xdSvkPTJsfwTzKu99EOzeZaDjs5Yi0+RHo53D3m8F5/GXuHykH0tOf Eo/zT8EXiB4scn/BeYGfDzjOeQH8Vsc5f6F/lzvO+Qv8bMdpZ7BufVeLySuo Y/Rz/I/pvw3r6r3pByuknXc3WL+CusOtVdZO8FlSE56j7Kf3t91fW9Z+2u3g /uyvWvRck7+nx+9Kvc9xOe/k7wf+oTzr/P1S8Dm2xex8UBca3iJ6sLQ+rGMv V393qOP4/VHt7yn11h78/cna35b6sO7YX/vb7O2EXv2kfOr8PRPea4vfR+t6 0OOVhsMfftMQrnuW5Al+/dxO4u9uVDmc5XYeZmKh9reP3zdP/rA/O+n9XB/M Nxx2+JiE2RmEpxcq/4mOoy52h9tt9gvjW6P8P4vu2X3BcdoHthPTfHPHMc/u d7vN9kNfe7WYnQ/wer8XkPMVYnqtxe5Z47xmOyGvAX7vIMTwuMptSJO1H73u o+N7SCq8L+EqlcP+bv8pT6jf5pF9HtVi71pxvuLz57WYPQ/s4SiVW2e/74H8 IddWrZt9NSG8L/kvfg8Efj+3RezBS45jfG9R/XzW5cP28Px3cF/ZY63hPoNS f9HPwx3nuMh9l45Tf4B3dJz6g/5u5Dj1XPy720PqOcZjR3+nNKanPQnjBLc/ xNG9bv7OXtwe2gfyh3ySbk+C+fiYv9cE9nvOFn3p53gsH7RzeIPJB80oajt7 Nxou+/xbRZ+PdnuCYR+gfLonwnl3RKv0c/2EtYc4xm2rhI0j1od+1/kyKhGO bweVw5uN1n70d1Cr7iPy+7nJH/j1Wrd6bEr4nuFzSdM39HcDfZdjG5+P+Pxu rWYf4n6hPX38nlH82U2tur8oFd5j39PxQJ9L7Ud3LmwyHP3dv9XsA/uFYWh2 exLkrTu1yv3Hc/274NtO23+Pfxft7tpm7SY97P4S13/Sox3THed3gY91PKgP v+845Qa/v0ObvaNM/tCuX1tNn4J+fd1q+x7Jhzj9XHDv30uu59KtmTL+OX93 JW4/5JRttPaD7391vJ5PlPUL8/KJRvsu7G9Vq8yTRDK0Qz87TjlT/tDDY5Nl 8kf/zk2G7x28qd9d5Th+jm/Vd5+8X7DX01yvyB/y/eh13Qd1v723hvrm4y/Z 72B//itlv/PvYj4cT9iBPYba30l7CmX020hgVPbem7RzZhl9UMdZA5f137Yy XMZ5pfEnDni/lUbP/8c+tS4rTQ5oxxdvR+0boe+ofmTyiOnZ3xiP2wO8wyfR u1UjjJ7tkf//pEz+Iu93y+RH+nj/cEyHdez3VxifWD4hnxFyzrTrSqljPPa+ va8U6snonvH3ke+MflPfk3V+MU45xDjlhvnS6e3oOwX7nfrNdqLbH30ifMaO NXmCvvN7Op8/t/bwe8xT4n6RT6CnHZw+aM8a/DkvYpz9wu/dRhsftpPtQR5x /HfR+I0WP3DPeGtnTM/2xHioh6PFj3WcUCZP0rM9khfXlukh/XOsX7RP/F3i o4oy/WD8E/899Rb17kmLDYf/mOb2MtbbcJxcb4O68hrfp9xj/SEf/j9xjh9x 8hFzNqdn3G/UyzJf6u8TTX78e4ljvjd65DWjPxM7On2C9SPGqVcQ065fGH+O Y0zPcYccHhmn8vDxhXl940uN8ybZd+FPB3xj/jduv4h1yv+j67rjsyyW7rX3 3rtix4Ll2ksUe8PeG5Zrx37tVwX7p9gVFRULYu+AXRFBQZCaUEJIb2+St6dg /5Izc2bYfeJf+WVzMs/u7OzszOzsrPUfcrKD49mfmD77H7eznwh7rPKd0WE/ w/U23uaF/cTfB/4c6tNuPOSmzvsf49lP4nFuuPUU26divMhBV6Jd8l0XJejA XFwmied4Y3xMh3jygfMX633aKWH7+H9cd6EebD8Q56IdNdH+0n4g4+oPLK7P utvBnetb/rE9XtfiHxes/4F/2P13tody2H7gAgkM2noJ1/U4kxPi+6ldRjrE 8/+JZzv1nfhhU63fXD+0S8J9YYL6b9PsuzGdB1QfUM+SDu3GGF+m8x3jg7zr xdrx+fMyCTqrq76N28W/LEvQoX0V44f+w3clvtuewMMOXZDEy3iTeOlPRwIv cc+OBB75HGOTeJmHzgSe7TEey7FfVwLPdU25wu9rTo32zQni5/42TfbhbVUO d5tg9FFXeVGX4XGOOWCKrV/KFcTxiHj/nKDx0JkmbzGe53WB3t9glslVjKf8 xO2DZAP9B/qFBP1/wgdxn8Xw8t3OBB58X60j0X6hykPcznmM23Hu8UCynfPI /rCd8xLrvZ11v38w0iOi9+Yn1jn5Geu9zcTxS7QL/TajE+sl7qOxXiKOckV6 xPfeL91HN5hmcku6iA98put6Pf8u6SNvJdtleOxHQ33fwT2Oc380+aN8Ei/+ +MzQXiuqPGw9y+Q8bg/iA4u183wc+fObTLTvMn8rxss+UUy0y/i6jJ/Ct1km J+w/8mV+nSnx7ju7RN9UTrLv4tz1mK7QLtl7hsjNpC75ziu0h0oT/KFeJn/g J1ZOLKH9GPjji7VzX8Cwt3D67FfcLvtcXYLOb4uf/y2GR12wFTMJPONcMb6f 6vMYT388bpd4TGeCDvFYxyMmh+2LOo1vpIN94VTnP7q365zQLu3mP/CnlIV2 4GLt5FvcLgui2uhDT43QOsAzcgk8xvN9a6Id+eFT8on2oaoP2Y641OZlxh9+ F91eeo7xh+3Ekz+x/S3nQTN0HSxI6AXqudjeo11EOzG2l2L/iN8N5bb9QPDj 7V9knU2dHNm3aq9sM1niWX2UzqRpNj7A13E8+lMz0fQPPnfW1BC/g+u30B/V 91YW/iz5KZdNSfSnXO1K+FGFLtOn/DvOzT/sMhz0X/e+TL1BHNg0d4bI49VO h3KG/IiDHY/1/NF0WV/PdUV63PUDzs1nKD/HlZqcBHGyG0vFDinrFP7OcToQ z0mOh/75eZaMd6Oukok9bBsy1fA432voNH8DcaJ5c8I4oNlJcyN/cLr2b471 P6YTrKPF2itUb9P/IX2uxxjPdRTjSQdy0vKz8PXZsgTfLlQ7GPp9VKfYv8dM Mzov9/zjMZ0Sf2ik3MwzPoDPN02zfT7mA+0G8iGmE8Sf+zod2hUxnuswxot+ qPyHfk5I4LeXQHUCP3TxfXEx/P9UP8T4wP5YDL+6noP1Tr8xgZfuNCTwYtcl 8WK3NyXwjPfHeNpjMX6q0onxjC/FeJGLJP5H2VAT+M31uzGe/lrv/Ezi5e+5 BB7xna1SCTzXV4yn/x7jpT2fwJMPMV7s40ICL+0tCfwn6u/HeMYHYny5rt8Y /4meq8d4+qExnucxMZ5+aIynfxHj6YdS72H6Ppkb7uPd6x3uzBe6TjfvlH1g lenhup7eYXjSoZ6hPsF4BpaHdks3HvlKda5nYjz3beKxr2+9wPzYGM9xx+08 f4vpxH4C26nvYzoyLxWJduF/RYLOP+Ex7r+rEnjmvcT4A3W/iNuZhxPT+U3j 2r3zvz7RTj0W06Eei/GizpsSeJ5D9s7/ZPsDur5iOlynMV5w2QSe/lGMl3O7 fKJd/Llk+wOqB+L2N6sXuz+5WLvoyeR3ZV9LtnNdx+2MM8TtjCfE7YwvBXGr gb4eud/G52KMN3L90O4lnTgOGfq9E6yd9jj+vsYksz9pF/7aw5a6H+Xvazod 2rPoT2VXmJ+9udvDWE97z5T9MjvN7FLiYf9uMk38iVu79P3omTYOqP/LHA// Yukpcn79VZe+jzHD8KDzUJfk5eSny3ngLjMS3+W48b1Du2xc/DvOd5boCu9J n+x2u/idDQl/hTg5V5ltdl1gZ588W+Z1Ymc0L6WyTp90vNRRnSXz3Nop/D1W 8Se6nide7onPkf7vqPq/fabZjbArN3Y8untOmfjL16i/NnKG4YHbv9PGH8eN 2P/YnoR59JfGg9aYl+gn9Tv2mUUdkVyVS5x2TIfop2nTpf7Gwwts3+nfswyW mmn6mvsO6VNfsz8xHa6buJ3rBr8Pm2H0eW7We38mJPCkE+O5T8Xt5HdMh+cE MZ78i/HkY+/fTeIZ74nxnM8Yz/00xnPeYjzpxHjOT9zO/TRu5/4Yt3N/jL/L +FuMFz2cTrQP0fhS3E77ivIPv3j5Baa3KW/g77/1HeubO2QdV7h8Im7ZpyPU k4eWSxxqREcUB6xKyDP9KMoz5L+L74csDNfFYu2U27id8h+3Uz7jdsY/43by JW5nv+N2nrPH7cH/beB84DlgjOe8x3jaA733v930BujuSb61W38xH7P0HkWl th/g9OGPv+F40gnmd2udr0FVUZ6RxgeHJecX/Xuvyn6P6TC+Grczvyxu337x epGLtfN+V/zdAH+U4zneMA9CzxFXS9ontB+C+kyL2SfQHw/Mlv3p/AnRuVWp /H7iD/L9TRfpPfxS07NY1ss7Hv2/0fME5H1HP3di/A39uV3th6cnJr7L+GN9 D66my/Qi7Rz4sy93WTxRzMKp0TlOqbz/OX+K+I+XOx3aJ4jP9XM8+HGIntc/ 3GV2/T6a50K+ov/Dte7yCh6vJh3ou/+bKXGiGZ1id99cGu6HXzkex/dr6/3G VXVc7bMMD1x1p9wTGzJL7Ld3k98lP2CPPtMZnR+Uyu8ndUZ5kx6P5f+LPHjc jP+PP08rk3OxjZ0+90vURanvMDz6+bvKRUmn5Ed8OFv0ft1809tB/6+aL3Jy j/rjd5bafoZ7wNc4XuzTuRI/Gd8h9tbys8N4xVMdYoc+qHbO0PLEd5k3hNVz VIeNi/sF5HnZDuMv9Q/5Rny8LxCPc6LDrN2+Czn4aKGsh2ntkXxW6TuW0b2X sgrhX6FdxpOebX4s9RjxjN+xP+jfS7MkDrpZtenDuD3QO4u1s35O3E7/C/vA cO/PVXr+G5zHLBXfa1U+jNK6UXu0i/w9VWp0MI+/Fg2Pz02qEjn+b3u4fmfW GB/IH3y/f42NN26nPicd0F2/NrSPF8OH576O5zlajGceRYxnPC3GN6ifG6yL /jXGh92jcxzxc/0+Qaz/43Ue7wtxXhzzgpjXw/2C46AdE+a5zbVzcszjzovM Pg3yknZcZPF09GMFzzcjHfRzle/lXtaqi6JzggkiR790GR7k/vOdfLe7/4C3 lMnvQybbvkA87pUcOUnswv92iTz+Nsf2F9QDPNvxGO+wiSL3H3RJvw4pMzxw 96k/u0xZyVo9bH3458R3eS6EdbJ7V8Sf6VKvItdp/MG0tcwwPU86YMNlGicY 12l0OM+Y18GOh597qebtVHaKHv9L53F4qel54kFm2VL5zradWq9nrskj4Ks5 HvP3xiyJY16o+93pLu+wW/bq1PtO5Qk7BfvESmXyf9uWJfpDfkDfNHXYeIP+ juwwHMSpe3+jnicO+uhorftzg9PhfoH9aQ/HY76HzpX1+GSH1EFea47U+f2v +bOGv66n/01a77u8XfaP5efaPgI+jXc8xnuXnoOs01HySg8friwzPOazpV3j 2eUyH4v50di31iwTuVphYaI/tLfhvw9vj+StSvbLM9qNb9S3pM9+xPYm8Vg3 Z7k+53fB/3Wrxf/a2r9L+pjvVNHwUEOXqj4/TPO+iqUit1vXmt5G3sFYnsfX mp4P9EBHjfUzpkN9hv14E6fDeHiM5zl2jO+ncaYYTzoxnvGH3sc1OoGn3xfj qV9jPM+DY/wDqqdjPOMSMZ7xsxgf5Acm+jM3ged8986f2gSe8efe56sl0c5z H8oh2LtUre2b7Be6UV8j/uMjRdFPqTn2XcCPdbzco6oRfTK5KOfD/yvTOLXL Ic+VG3S/j+VQ8iPrTA57pzPa8kVIh/IT4ylvvdOZ8A90xifw3K9iPOUtxnNf ivGUtxjP/SfGU956739pAk95i/Hkb4ynvMV4ic9nE3jGwWI86w/HeMbHYjzP W2M8/YC4nfZ4TId543H7KRo36328jQk87ckYz3OfuF30cfK7PIeN26WbhQQd 4jG6o+ZaO/z0Xws2b6SDaTm+aOsI9ZQm1dn6Cvb9HeptfcV4rpe4nXGO3ulP SLRT/uN2xtnidsbZeu/PrEQ742xxO+2guJ3x5Liddkrcznhs7/gW4ye+d069 xevidspD7+MqWDvsqFfqTB5IR94Fd3kI7K5XXB647qkf43UW+ynxeQbbqf97 va/XPZ+x/xLSGW3tmJ999Vyp7psoD1bPy3/9Un7fcJH8/X/zza+BPvy9y/Cw l1cZa3Ewqacz1/D40Vfz0zrnyzqfMyHKL9X8ic8mCJ8Hd8n53BrlJsdY13dq nuqDcyXf5a7vEv3HdtQ6TvydmV3yf8fPNzqY3ic07rSx1nv47cdEfxiXg9Re 0GX85L6C+dtU8+EHaL7AqGlRvmK51A086BfRk1P1XvG9822/wTnbh44Hn778 WeZ7yS6ZpzfnGh6/V3TK+FfS+TpslvkRwTweoHm8u3eKPK5fbusW/N5N/aNH 50q/75me6D++d/wMoX9fp/DjovlGB+74IdqfLfVe/vmzE/1hXAR8Wrczkk+N E8zqEP/pQs372XGu+TVBHsxgreN2Z4f4Hw/PD/2YCx2P8exVJv7YGL038dVc w+P7j3bIeTPlx88ZjQ7/jv51txPHv2N+GvT++TNzJd7/+j/0v1vfgY97633m m+eHdDraDXdED38PWpDoD+N44OPP7cZP+jGIWz7AOho6L8t5HJ50wI+LtP7s rvrdJ+ab34T/W9fxyJdYY6HsU5crH6bPDc+PDtb+vKjnuPclv8vzNohFW9H6 T78J5sk7RRtP7K9x34Cd8ZTHkUgfP05Re/gOp097GLj9HI/+/VEt5/bPO576 Ojhf/r95wv9rfV8gHayzPnXiv9VpXd3n5of23mTHQz/9V+3zjbU/dW5XYB8q at3kV5m/WB/lzzP/o976ibj8Oxr/ubPe7A3I5xZOh/t1jKddEeP5M8YzLyRu Z35d3M57rDH94L2nxfDcl6GeXpsrcvhpkv/B+dyrWvd/xHyjj33lWK0zPmRe CfMpyB/M7/j5ls8U85n5TOQzpul1x9NOi+lzf+79u6WJdsYhYvrM74rxtMNj PPsb45m3GeOZRxrjma8V45lHGuOZxxXjaZ/HeNKJ8ZIf1ZrAU65iPPNIYzy/ G+Pp1/Q+X4UEnuf7XI/QnymXT8oJ5PTQBrnvsLPqgX95nhzkfEY+1MMpl0/K IeIHxzeafBIPPXKvy2eMpxzG7ZtG97Bgr43wd09iPPkctzNPNW4XPdCaaMdn L2tLtLOOW9zOeYnbqR/idp6/c1wBfoa/A8d1W6b7Ffchtr+q+dXcd3o/L5hr 80G7essedh+ueSoPjza7lHTgJ8z5VORmm0VyDvN0hdnnkLNNHQ/2XvG22dWw P0YsMDz7A/6NKBf5OufzxHcZR5P3xrvM76B9DnZ93WX2BOybxh/MHiYd0L9R 3226rivyX/Qe4XGOh/j1HSf7yKtd8n9nVYie+nWy2ZnEY1l8MFnO2ed1yv43 vCK8fzarM+TnqnpvZ+sufY9ogeERt27WPLc3yuU+R2FK4rs8p8B3P+2M+DNd /JVrO40/EL95M82+JR2s3400321Lp0M7GXK0RDTeSqV/quZXX10h62pOqdmN xEsedanw+f865N7saxW2f6Bf9zkey6pmlsSJ53WInPy0wPBof6HD8uUZP+U6 AL33ymWdlZcl+kN/FPvwpR023uB8bKsOu0/A+EIQz/9R7dhvzd81+u/3yMmf 84RuWbvR5/rGrjDG8VDbk+fKfC/fIXSHaD8/rjD7k3j0a7jyb3+l/1aF/R3w fRwPPflVueR3PtIu90UXLLC/I85/rNdnjP1+4D8tFz349cJEf3h+gf1io/ZI DqtE38/TusDl5fJzarXZvaSDablG6zY+qHU8N3L7GfN5ueOhH1+vknXxtdZR 3d3zxSEezxUtj4L13DguzPOzyp/DPG5G+vLudq3kS2R1P/2wwuxwxN3aCjJv W6u8/asmMS5556RGfpYUpb/ZBeE5xd8FW6dxP3He+KXmkU9L9pPxOnmvu2D8 px0O+CNOP7TftG5ERv3NL9weIH2Ma2C9nE/tq+9/9KkwuxT+ziaOx/r7tk7O 4a7VOiFHeP49xOVo7w/tCvYH8ax3KkqO7unIbr4/Bv5hv0bxL17V9wvHVhgd 6MNX9F20HdUvzifHhf1mrwY5ZyzmhV9LVYT20sf5ME99ntszYR5qk9kzpE97 lOOK6fC8iXn8pEP/MMbTPozxtENiPOPMkLtxbnfF/OS9LIjNvfre3mkVRh/r fsu8nHvfv8DsafJB9G2F3XOI+UD7OJDnxejQvwA/3nQ6tANjPM/7YjzPX2I8 6cR48j/G0+7onf7UBJ77T4zneUqM5/ldjOd5Soxn3kuM53lKjKf/G+MZF+id P+MTeOqR3vlflcDTj4vxtFNjPM9ZYjz9xBjPc+MY31fpxHie7/XOnySecYgY L+c7NQk8/dMYz/zSGE99EOPvXPy+9mJ4rpve56s2gaefGOO5P8R4+qcxnnZA jN9A/aAYz7hFjOe5XoznfUbqT9iX7zbZuUZgt5zYLH9vy8k+NtbpY7ijHE86 1FfUS9AvZc2mr4jHz0rXV73jR4d+Ta3rpRhPvyTGUy/1Tn9CAk+9FOPD+/6O 5zlKjOf5b9we5DEvRkf4P+Mf+lmawFNfxXja0TGe+irG0y6O8dRXMT6Yv8Xw 1Fe9z0tVAk99FeOpl+J2ruu4fZSur7ideYZxO+2LuD/UP73zsymBpz6J8dQb cTvjIb3zsy1B/zm1N2I86wXF7TwfD+7/lPk6jevicR9/N8rHpf8a5+mGdR6q EvGNEO/xDfonsON/+7gkpgP1/uoHel4Q0xkt66uly/Dw3y8ZZfENeV9K67vP /DaqI1El63bCN2K//U/zDDetMn0Bub3O8dDjv4+V/WtCl77DUWl4bKePdIl/ uP1Crb/xfeK7tANgT5/QFY1LzyVX6TL+YH5+mhTVVaiSv1/5k6zTSZ1GJ4hv jHA87NPjJoqf0NEpcv1tpfi5m0yP7llX2fkjxKef1pPZ2u8HS35aZ3hOs9sU ySe/pVPmbb1Kw+N7JZrf2G+h/P+NMxLfZX4A2LG0j4v6EXbx9x3GH/z9qNLo /qm+Pz1stvz9to6Iz6UynpMdj+a7Nf/mrQ5b32F+c/uB8OdmVop+uWyuxRlI R+5PzZU4SI2+F7JDlelf9HKe42En3VAm/7eD5s/3rTQ86OTbTQ9FdfAlf3nP hXI+dNq8RH/ot0AvfdEeyUm57IM3tYf3rPp5fIN0INe36vthOzod6hXI13KO R97CWeWy3s/Rdxca9H37/lXmjxMP/bZuleixp/Tdnd2q7O+Y3kccD3k4bqHw p6oo6+rASvs7fr6ucYb9F8r3N6pOfJd2MMY/qGjjoj0KcexbNP5A/a7o/n5g d7+veeZVhUhua+X3rxwP+d+wRuKjq+m97N8qJS76qOeNEI9lcoe2H67vzO1T FeatHeR4fO+pWrHzntJzrpMqDY/1eVpB87EXih23cn3iu7QjsU1tUYjWUb3e m84bf7Cu/mwwf5Z0YKe+rOdQT+SNDvddrKtr8qG+Wk7fRfpB359etUrOG253 u5R49P+qJtlnF+VETkuqbB3jZ9Hx+P3uRunH4fr+9yWVhgds+Xx0n9D9Zfaf 51Jsxz2boxdK3aU/k/0M/KmynPEh8F+ezMnf11so87NrKrx/8V+u35aoHk6V +RvBeeJidGgnx+3Bu3J9nT71RIynnu6d/qxEO/O14nbqp7j9n75LezJuD843 F2vn+o7HxXpiMZ72YdzOOjNxe3BumBhXLtynlkiZPcb5wjp+LCV68RC9t7hK lfUT+3V71vDQi+3NIl835UweQHWg14ElHucU9S4nMf5yjYcQj/OLrVvFfprT lMBzH4rb5f+z4Xoc6P2nf0m5ZD/FDy4k7M+4HjX5GLfz3C1u57nbyRonYDvt ZOp32qsgP1Lzr2b4/S7s82ssEv9j++qQj9t7O/G0exF/fa9K3yN/O6wL3f1d xtew7jJd0X0zrbv+bpfJL+y/r76K6qZWy72+A78QOoOcDu1SrIv9HY9+3DpG 9oVnukpKe3D3V8s++sgEszOJhx6f/4Ps/6WdMv7SarNXv+yZ6ImOx3J4dZzc N1m/S37u7njYIfWdYl98UiXreeMfE9+lXw15e63TxkX7FvHm8zuNP/ju27+Y PUk62L8umirxos06I/5onbZcR3g+cd3PogeO7BQ75nHN49l8ltmZxEPOp80U fXK/1sud6/cAwe9bHI/9vq/W+ZiiduwBjsfvz3aIPH6h90xyye8y/w39Oq0j kp9S6cdaHcYfyMGXdm/I6PBeDuRqZrvRof0J3EjH894M+PqHniu9oHL423yz G4lH/z6aL/pxb7UPy6tNv2M/39Hx+PvSmkd5l76HdITjwYYj28VuHVcl+Q0z yxPfpT7AOFb0cdFeRX9+Khp/pC5mpdmHpIP7gu0LZZz3FCP5qRJ5PtPxyC9q q5A8xg+1Pt5IleeWarMbiYf9P1nv9bTou+CV1aG8VDn+pZ5/r9Rx76bvVp7o eND5rSD1/H6sEjvozJrEd6kXod++Ldi4aK9Cbm8vGH+wPPu7XRqs99ZaGcee Tod2Juz/VRwPub5I8+0v0vfgP6gWPTG33uxG4tH/LzQ/7aW86ImaarM/IddP OR6/V6i92piX89WzHY/5fz8v5/m/qP45uiHxXZ7H4dfr8zYu2quIw+ySD/XP Hm7vkQ720Qp9f7o5F60vPWf53vHQUydoXtO6bifzXJ37GPCfV8s6meBxHtJB HOQdjfcer+311WHdqyMcD303uUnk9Xnt538cj36dn4v0sL+/BjbMVr9jv1Si P0dp/yEn2ybpYH1Mylq9Btghe7Xavsr70swH4j5M+oybB/b5YnRoz8TtmOZl slY/gvR5T4TzCztmyVazc4L1+0uL4PfIil752PuJfXN4xvBoPkDr6z2d1fui 1WaPcryov/BhtcUB4/Ey7h/EARajw/My6PdhTodx6Ri/jtrzMZ5yGuNpR3Fe IJ9jW63+DPuJ/g1vk/9bKiN5yjVOH+fXr7o9RjrkG/mA/29qM/4Qj+4ckDb+ xHiON25nHJ508OOytNkpMZ5+SoxnHc4YTz7F7Rx3TId4thNP/sT31qmnAz7z PHvtZH4zz+Pie56cX57Lsb1c5Te2n8W/zNs+wfYWPVfqnX6X4Wlvg/zTXRF+ pOxf87skPvJBjfze9WlJTEfeN/tEft6i9xrW8fuBsG//43gM75C3RK4+13yz s2oMDzoPapx2wxqJf786NvFdrivEJ0q8/7S38fc/Oo1viCd+Nz6qn1YrdsOw 78Wum9AZ8UHfJRjqeMz/uO8kT6i5U/zAzzXe9NHkqC6Z7t8zJ8k+tYPey1jf 7zFCD67vePBl4kShe6XiL64xPPyZ/fSexaZqN6w9JfFd5r/h+8WOiD/TxZ75 qMP4Az4eNjOqQ6X3eN/Teu83OR3ayehHf8dD/p6eLv0e3iF5KuNrZPyfWN6U 4bGfHa31IRZqfHVjz7OCXpvqeMmz0jr8m+n7eVfXGB6wtL7/vUWN3UePv8s8 N2wrb7bbuGhvC9/bjT/4ve/8qN5Rrd6zmSfzuJ3ToZ3cqu+gE49xjpwrfDpe 75tP1XdrH6kwu5d4vLO8Y4Xo48c0LrpZrdnPOL+4qxiui2fLJf9qlr6vfGuN 4eGOj9B34reqKVmhZwKPW5j4Lv18xC3OKUbyo/HyDYrGH4zzQberSQf6fW/V f+UFo0O9iPl8J8LfWSVyvlRR4nBztP7I7rVm9xKPaV1W32s/WN/d6+P3tPFj 90L4+9410v/79f7FPTX2d4zvxILEB7dTuRqW/C7zBjA/q/u4aG+DLb/kjT+Y h9vdriYdiVvofYqh+Uj/1Esdj/McD/vnPbWrx+Zl/qu1XszmjWb3BvtCV4P4 ie05mZ9tasO8/UbHY51v3SB09snL/w2tMTx+Xzov+mKHmpKangE/mPxuUM96 Qi5aX/qe6eCc8Qd/HuT2M+lgXWyo5/UlTof2MH6umQvl9vkmmdcr3O4VP9Tt ZOjNlhrJs1jF42akg3hDs76PfKzev96+1uxk2Bv/zoZ6b019d7Vc24fVhPir srLf7Vwj47w1+V3m32P55TM2XtqxYN+V3k47huMiP0F3YJvZgcF6WbFN/P26 dIIOuvto2vDwB+5vFXneLyPr5+kao0t7j3jao+wP6K6p9YaeSJt90Xv7hEQ7 822gD87w7wZ+5GJ4xoHjdtrp5A/kY3Daxs3+Y/nOT8u8fdwm++TKtfZdwI50 PPj4d5vcCzw4LevkwRrLR+R4w3oc2QTf6P+Qb73TqU/Qp1xAzNd3+sRjvR7g 7ZjP11rtu6QDO+HMNusn+DAoa/0nXuTa+x/jh2q8kHjYs+9mre5LjBd98FMC Tzs4xtOPiPGMh8d41rmK8cxPi/G87xbjmU8S45n3GOOZZxLj6e/EeJ4X9d6f 1gSefnYgt4N8fuXvRZMnxvOZjxO2f5eI2wfn5K+6H8F7hbGfwnX3T/4I13H4 3azlM4b4rsR3af/H32U79136NejOvTF+pOiRF7ps/0Z9xtM/LInpYD52eFfW xWUxndGiD3dwPOSs5A2xKx7U902qa2U+S741v4N4/L7S17K/TNf742fVmf+C /n/ueLRfNlbiuyt1iZ59pNbwmNeqThn/+bVaH2xc4rvMe3mqZ56e6IzGNaFk lx7GDOg0/kj+z0/mX5AO4p5DfxT538jp0E9B3mZVR8jPpSbKuuv2X0CvRevs zJ5mfgfxwE36Rfg3pEP+/9w6818gTlc6HmLUrO9xfav1cp/1+i+g86T6Cxeq X7bMjMR3eZ6K4RzWYeOiv4M/L9lh/IFfM9byQMJ6K9tpPbxf2iM+l8r55FOO h1yeo+/HZdtLtu75XHutxGkOmWt+B/G4l/bjHJmff2vdwgu8HgbW82aOR/cH 6Lsw12udxle8Hg26d6jec7lE/fqm5HcZf8G6+bUYzbvekx5bNP7g78MXmH9B OhDLFTVP/y6nQz8FfDrC8SC/Z7n4c68Vxe7+S+dxkyrzOwJ5e7NS7KzGgqzH i+vMfwG92Y4H37dbKHKyTVHW0zu1hoeYdGrdmMvVv56c/C7jlFiH7xdsXLRD IZdXFEzvxXqRfMN2No5+idMH+2+qkf1010Ikn1pP7I+84bHdLF8jcnJaQeyf 5bWe0e115o8E83Jondjvz2ldx0vrwvVxv+Oh7warHM3XuP3o2lBe3soLXwfp PlWW/C7zW6QuRz5aL/ValyNvcoX/+7TB/I4g/+bSBvlZnzM69F8Qf/4oF363 Q+mvkBc/ds062e8vbzJ/hHj0bw+9z3KM+h1X1plfA37smwvl6mq9PzJU8w2+ rTU82s/O6X3EWlk/Pya/y3wVqbPh46IfBD00Kmv8wT4xKmV2H+kgv+f0lNi1 O2aj9dsicjUpY3j0r7ZZ/NDb1H7ZWPXVaR5nJh5yu02rrJ/f0rKvXV1ndgzk cEHa8IjvnN0i++fgjMjfpFrDg86GaufeoPvRZ8nvMm4LvfB0OtInbSWDe/Cr po0/0PvPu/1POuDLkWnRk0+0GR1+D3bdrm2hvE1XXE1bVHfM7XnSkXOkjLWD P9vUSX8OyYZ+Xjd96J31sjK+81tlXV5XZ/Th1/RvDfX8kRmJ8zS3ynzO8v6A 33dpvs0KdSZntOdDPe95IuhW9/oVv9n9griddn7cvreuY/Sv3OuFUf/FeNrn cTvPg+J2ro+4nesjbqe8x/2hHY75uNn9nXheeH8D5P/Q/JrLnJ+/90z4US2G R/s053PA/ztyxs+4Xfr5ZUinK2d5YjGe96diPO8jxHjm1cZ43keI8bQfY3xc V4XtQZ7YYnRkvxr/D3yYkKDD/TLG09+M8XE8ju28txzToZywHfN3Xs7khHSQ J/+iywnbiee8c51zvumXxH4N+cPznPDcZ4Ht/2yXfs6z/ZLtzJf7JzrxufUj uh/G+ZRSz6E9UXeGdk783XH6zjv3aY4T6rJV7+kP9zo1iLv/W+sSjI7rTno7 8fTjEKd7VfVb4Y2oTn695XHh7yt2Rf0frfkRndZ/yME1X0T15+tFHu75TNb1 d51Gh34W3i+7w/GwJxpHyz7XTQfxyjW1zk7/CVH9+XrZH/8YL/fBt9F8/hH1 JveYkJUcD3vz9HElK/VM63la7+tb99cQ599T6xiMVDutZGLiu8zjgl6t7bBx 0V8DnREdxh/8fcjUqM58veDumyLt13dE/FE/a9eOcF62/VnsiMf0/Z2NNX/+ d3s3OeznwJkiP/Pbpb+v1Zv/Bfv1O8ejd8uov7am3hdYrI4h7JRUu+w/b9Zp nbFZie+KfOt738/G8q/vSJzcbvzB+fy2c6I68MqHkVpXeyunE/hZDUXDg266 VOLp/dtl3rapF3ktoz4thuvr4PlC9+GijG9Uvflf8I+udzy6W6X1Cyfqecos 99dAZ7i+Q/punfilF5Unvsv4EM4/jy7auOivwf5cvmj8wTyuXGn+Eeng/+7X PNw5hUh+NH//ecdDn/2kdQU69Z21XZRvlt/neIz/Cc1zOUDv179dH+Z9bON4 0PtS8/JuLVjeEvGwo44r6Dm42rd9ahLfZVwZfPw7b+MKzp2+zht/sH5+rTU/ iHQwLaPVH3zQ6QT+13GOB3tPULvm7byss33rxY6d4PUwA/kcUi9yns2JXL7n 9b+wfssdj/n9uU7vm+SFD43ul8F++DsndunHaq+u1ZD4LvO4kEfxac7GRb9M /J+c8Qc/WhvNniId9Huk3t/fLxetrybpxxK5UP4PUL/v3JycZx5ar/1tTsTL sQ5vaBb8oVmZnw/rw/OmDR2P/ewzjQt/n5V1knO/DPN5cVb2rzF1EtdZOpX4 LvOyYD9Mz0T6uUXOB47KhHVPK1sS5yEwg5/Rc6XytNGh/Yq/X5k2PPrZt0Xk aouM7F8D1B9+uS06X1I9cLHmzbyl+TWf1hvunJ7/H9IWyvPIVuHjtmnZv35z v0zqs7YJ3c/rZL12JL8LvbRaWuJOe7XZuDh+yNfHrcYf2ue0U9gO+Zzp5ybB urg/I+c5Ja2RXsqKX1naEuqN9dXPetC/G8qrvhN3Rr3kix6Wi/L16qUeTl+9 n7BKi+jnsfVGB/WhUinDQz6eyEo+5WNaF3dpx4POTi0i92mvj0w7K5j3xe4B gI/P1cn9ikXuj8Tt9DvidsZN43buw3E7zxHidt5PidupjzG+4T4u+o8x/p/a OU9xO9cr7ISv1M6/ITlfcv9E7f8RKdH3T7mehVxlm0VfT9F6wVvljZ+se0i9 H88L65IEdvo5juf74DF9nnPF7bwXFbfzfCqmz3Muyg/+b8l85CfoePfLy/+9 3izr7wenA/53NhmedMgf8gHi9J3zJ7ATfnf+xHjygXiohw0K1h7juc+wHfvk d3nbN4L1tV4hqk/jeI4rzq+jH8G4RbCuVuxM1LvB/jy2Q+JxDe5nSd5Ep/WX /hTyt4/slHOVpbzOzh89/X2hU/aPAQ3GL/aH7cTTL8P8WT9HGx2IxwoNdj+N dNgf+lnf9PDhXm1vdD8L4+3G4z7TelpHcqfvzB8hHQxzzrciN7vpveO+jeZn zeqRv507xb5tVHum28+K+4N46+mfleR7FuS1nWJHTGgwOrA3+ndqnrjWu/zg +0R/GNc4vqc/a8TzOKGkrWc/maZ+zSENEl+9ZLL5R6SD88v2n4Te//Qd7foG 87NgV5zveOiz2yeK3H2i/lTO/TLI71C9P7KF1mc8err5LwEf+k0XeanXOr07 +7vNmIfadpm/lPple/2c6D/k7/wpsn/u0SHjmdZgdOCPtrfLPrl7g9avm5Ho D/cD/JzYbvzkfoDfh7SLPzmoaHEurgPcqztO8UNLzc8i/cN6PrxgtqyrXdpF jpq87iq2/zUdL/fQZwmd/+g512/u32H6S/Sd5R01vnjXXPODSAf3+W+dK/Px bFH8lV0bzb+Df/RMUeJtbbq//5nsP9b9Q2Wy3zQXZd3MazA6mJVReg61Z4Pk g74wL9Efnschj+/WovGZ/p38f1HW4+kNIm+XVphfRjpQ298sEHuuVu8dtzSY f4f/+9Hx8KOvKxd7b4OirLulHQ99VSjIustpHkpV8rvMM4SeerFg/Q/O3c4s mP9Q1cOAA93vC/LSltD7HDs5nSC/u8X3AaGrft9Rer/mggaZt83dLwv4PL1G /u/pvKyvTIP5d+DzrY7H/rl1jdgJU/OyjlZ1POiMzMs6KtbL/A5MfvdNPU+Q OhV5G1dwzrlK3viDn7u6PRKs63ydxOercpF+q5d7fCMcD7rPa32oP3OyLq5q kPW/ivtlgT4f1yDfOVzrmeQb7O+A7+R4+Bdraj3eu3MyD+s3hPw+LSd87awX OTkx+V3mGaJ1aR8X93XsH/dmjT/wb7Zyv4908Hut3q/Yys8faPcgz3FUJsTf r/XlLshKP/7boOdeKfNLiEd3Ptb71wW9Z9HeYPal1NNIGx5y8LfW4blU6fRx PORvzYyM7zeNm/VvSXz3Rc0nxLiuT9u46P+AH21txh+so/Xc/wrmY3arxJEe bDM6xMFPWa0t1G83tMq5yCT14+5qEL3RlLbvEy95S2nh32mav7SowcYDfm3X Go6ru9+IP0xTf21Hx6N/N7WKfP1ZL/7z7pnEd5n/BjEqb4n0T1bsxVNajD+w Q5Z2v4B0sH4naL5ZOmV0Ar/s5pThQWdgVtZ/vxa5R/6Q1stucX+EeMjz5Jzo 56/U3v7d4yyQl8ccD7kYlJM48x4pWX97Oh7DWeB12sI4lL4H+i+V/zXyif7Q j8Do+ifpYH1/3ST7e1HjA1sXzA7dA3k4DabHabeGdqafe0A/beJ42vkxffpB cTvpch7Bj7/c/g/0XrnmH5yo9dIy/l348S82hut0VF7iA882if3YbbfIuvPx Sn8abP+Lxxu8P9Q93pgO6+zBfqxsiPLsP0m060FRoj8z9Rw6buf89U6/1uYL 6+Qi52ew/44vyLrfrFHyBTZtNDrY715vCPeLi5yf5A/6t2TR+BbQ365ofOsd P9rwsLf2LRp/YjzrT8Z4+Hl8p2wxPO3WGM+6XTGe5wkxnvmrMZ71hGI880V7 H2/pP/RndgLPvM8Yz3PeGM84SYxnnYcYz/t3MZ5+cu/9T+JjOsRTftr1nJ/r hO+GM/+U7RK/a7f1TT8a6/mNDtnPzvY6rZjff+n52peN0fr0duLpj4d0Rhsd 3A9r8nr9pMP+0I+GQGQ6IvqjjT7iyhfo/rvP1wk6vAcH/dBNh3EG+r/4/p8d wsej1L75ckL0rmiT+J8XTRB5e6hD+HVNk/m/0L9DOsI8p+njhE9l+q50Z6Ph 4T8+3yH65UbdZ0f9mPguzyWhBy70/tP/Rb836zA7D/vawGnmb5IO1FrrVNHf pe0RH6YLvz92POLNL/8s/VymQ/TByVqvc69Z0XugGt9fS99730/fG72hyfQC vrOH4xGnOXiG8PFBvUf2L8eD/jF6T83qYX9t8su4Hf3oQK5vaSzZqKfj/56d 6Cf1Doa/XnsUd9L3SEqLxk/EM9dxP5d08OvpWj/3gaLRoX+Kv//H8bBjttf7 dJ8XNV+3SeKja5TbPkC81HOYL/owXZC/39QUnkumHA9/fqN5Yv/sr+/4rOh4 kP+zIHy/Xe8drbsg8V2eY4LOFI/z0W/FOnpQ8zwfatRzukrb/0kHYrxPpfRz H63H1c/r/2I9b+B4/FhqofDtqoLsM3s2Gh7T2E1f8i2V/x3VZk+RDtZhq8bB X9F3Em/1ur2IJ7yYF/uS776cXZXoP+ISHVoHMZuXfX9tpwMz6aO81C+4U8/P 7qhJ9Ifnnvj1Lo8f027APOyfF/3/lNb1vtzj96SD9lX0fLVV7d/dmsK8118c j+m6Wu9xbp6XeP1BjYaHeP+ek/Ou67QOaK2fk5AO1E+F5iOclJP+/8/jvtAb J+Rk/HurvfNysv/ge1OdyM/reo6xqdMB/Qu1fYj6L1c1JPpD+xRs3j1n/OR+ CP+gRu+LvKR2+GlN5q+QDva5vzSus5/ev9izKdSXSzhe9jGtD/9mVvh9dKP9 HXTOzlq9CMlbiu6d3a37wi/N5odhPe7XKHrgsWQ/MfpSXd/v67nndk3mb4Bv 22dkPdyncZVzU+G55+1Ndn6Kcc5KR/uInt8clZZxvtko57yHtCbqK6CfWc3n e6VN1tc+TeY34ruXOR5ycGSL8HvVtMjJKY1hfYxxbbKODtR1dHfyu8xfxc91 2iK91CZ22mOtprdP75m/492PJh2cj66RFj7v2Wp0yC/8+KTF8IgrddOHnrtG 6X+s876L50kSj/5Xqz++dIvsiwf4vOK+/vRUeB6/R0b6/9+Wkkd75Pi8RsPj +1tpe39dF9cmv8vzXMQP/peycXH9SH5fs/EH+/ir7kcH9sbgnKyj4V4nmOsZ /76h4+HPnJITu2OOxmO+ahS98qjrwWDfvEzrFV6u9tZBTaY3sV4XW4eYlzWU ToXmd1/m7xCgew+pfjxM2z9Kfpd5f1LfszHSw7rfDPR4GfdFrl/iJd7o7cTj xwuFMB7B79+qft/fDfbdwA8d0hDuF8cURE8c4P1B//dzv494dH8H9/uIx3Qd 6n5f0J+z3O8jHvpsQNHsYuIhB3e538f3paDfTiyaPQty8xrNTsI62HRCqAee KooeOOj7BB3as3yXi3ToD8Z42q0xnv5gjKe/H+PpD/Y+rtJEO/NFYzrc52M8 81njdsat43bmVXBe8L0S9wfJT9RrGah26i+KP6rJ+iP7U324jyynfuIhDTZf sEdf9HkM7M83fR6Jh/4f5fNFPORpss8X8ZiPD32+iIfdnPH5Ih5q7POi5WMH /V+z3eISiNtN1/34e5+vqXovhXY/5mmB04E9tGe76KHNShN0OI9xO+8nQH4H On3xP6oTeNpZMT64d3Gbt0seUF203+m50YB6Gxf4VNJu4w3sooN8vMRDzx/e bvU8Anv71HaLb8R45pkQj/jdOf7eaownnRjP/O0YTz8pxrOOWIznOV6Mp70V 42lfx3jGW4hH/w72+3vEY90d7/PFduI5X3xXkPsB44W0t9gudkq77beMt+Dn kh2yr432dyag/y/RuMc2/s4E4wNsJ55xG9KhviYdrNtz/f0J0mF/ZH1+KH7N mTH90Qn63Cdi+vxu3E/iwYc3tJ7kF7qfrv1Doj/MNwDfT+qI3gGaIP83QOul 394s9urCyRb3IB1QPVPf3atulzjy6GbTX/i9zPEyfRNFTrbrkPPZ7RyPfuTa ZT/+QuXhxSmJ77K+EOiNbrf+B/vWde12Lwd/fmWm6QPSwbjyMySusoPTYZwE y25JxyN/c/x02Q/OaBd9ep++bzGpNNpXm7U+T6n090nVo581h/GQhxwPf2/2 LLFjKjQus5vj8b3XND76TZPW1SxLfJf6CMv3sqKNi3oB87p10fiDfJL755vd RDqAz54n67myYHQY98D++pnjoS++miv6deWirL/HmuXc7rUKsweJR/+vrRD7 9jCtZ/6VvyMCv31/x4Pu+1rP8zE9x9jf8ZDHUzSPepzae08uTHyX5/5g68aF SH60Duj8vPEH9x/GeDyEdOTevNZpe9zz2hjHQPuVjkc/ntF6k9/lZV97Xukc WGt+APFY/9trHZSunOi9b5tN/yKvN5cL9d4hNeI/HqJ5Aoc7HuNZTvPyfmiS +OYXye/SfoIczszZuKjHcU//0Vz4jtFbHt8gHWxnx9SLH94/F+kZzWfczPFg 72e6r9+Qk/X5erP8/w7utxGP8W2ocbKT9Rz8ez8nxDI4IhvqvV303D+t+dXH Ox6467Oyfn5qEvl4J/ndoL7Qitlofel+eG/G+LNuD1+Ge1yCdPD3bvnFuk5p 3Zvbm0N981Y69CNHan7kcRqXeL9Z4orrt0T1HVUvrdgifPysTeRpYrP5t3Kv wPHQu5ukhN4paVmXZzkedOa2ybr9uUn87eHJ7/LcH/r2+jbjD+MFOMdpa5V4 wXz1Qx9pC+vJdNOBfO/Upv5Tq/T3Tn8XB/O+muMRL3lC86HHtAqf7vM4Buhc 3apypvHtZTI2PtKBP/m71pPcuEX2sUk+f5ivdVpEr9+j8/FNsv/4sWJa1sFX LbLfXex0YKfv3yJ8/0X9x0eS/WGeAOZvQSrSV3o/99SUzE9dk+iV/X1d8Sfs h9Vysl4/UTke3BzmtdzUHOqBO7Nyb2DjlJ7ze9xD7vMo37/Xd5J+9XhioLc7 Ne/6bo1rTGk2vYN99g71Hx5QeTg92X+sx9v1u32aRQ9d3RzGQ19RO3WmxhUP zCf6w/wBzP8hTcZP6nfM1zeNlr8c5wPg/9IaF929EOoP2jnLFWTc62l+5H3N tg8hL3Sh5/dg/GPyEl+/R8+ZXvD4Cdr30nfXf/T4Bu1c/P5as8TdW/3cn/TR /S/83J/4YL+/9k3Dkw728wfek+9MUXnL+r0j4sGnjMZVGjTfZbrTx9/r6kVv /J/G645P8g186bbvIZcPaT7xLU4H87pMg/GB8RmOl/oW6/MYj88E+9FfBfF/ H/3U8Jivaz0+E/BhU4/PYL9aTfP073W/PtCfh/i5PNbFMx43AL1Hx+u5q7fz HBLzfU2zjPNRjwOQPu05xgHw3s/VzUaHdjHivdOaZR8a5vGBwO4d6vEB4klH 8nAdTzoY96Dp8n+lTZJ/uVcxIQ/o9oZFiVO+Wx/ZDxq32bre+MN4CPkJ2Bg9 N/khil+VNcl7A1U+Ls4j9OnS7Wa/B3bFJ0WZ/zdm6rmL1tHY1v194iG/c6M4 yb1NYX35H0slLvmOt9Puxvj2031zF/fHSR/70R+e/4D+9G02OvTHse6Gq77a p93s7kAvbu5xA+JJB+vmjvJQ7+2j90L3XCB86dL44fbupwf7+N9FrQNfJ/vg g04f29Khjoe//l5R1nlLnex3I50/kM/hdcZPxlXIf/CT9s0pzjfI2wRvJx84 71J/39+9Zn+gR4/R+7fXVRge6+3C6L0u2odXeJyEeMzTle1hPi/fPX3M4yTE Qw6u9DgJ8bCXhnmcBPpiqMajjkzyH+RO0e/mahPxEOqZOC+F+iG+78/1QvuC +wfm+fx2obOyvx/D+reQoydT0X0hbyee8RbSYZyBdPhdxkmgp39wOoyTxHQ4 TtIB3Vkp3Ze/TPSHejymQ/0S04neP4zGNcHeuYAcrKF17VeyOtxh/fpuPY7v j223Og3UX4j3vqL3IN7XenVLTLf1QTr4txOnidzvpfhfU6bvMK/bOR56b90p sr/c3i7235mOx3o8gvfHfb+kXMCv/KtZ4gBHz0j0R+KwM8QOXdbHFejZ8UWL y2Fdr+HxENJB+6DZ8v9DitE7VXof7xTHYzzXz5LvdOsVyP9nKdETZ801u4B4 6KMV54reThXkfO+PlOmRz3vmr6IQ2tcXl8l3+6meu8jxWNa/ap2rJVJaD3le 4rvU1/jxZSGa93Kx3272uCX61en1NUgHZAcsEL21h9OhXsP/L+94zO+x5ZLv eH5B5PN7zf/9d5XZs8Sj3236zthwfTf8Xy2mBxHnedzxkJeShTL+2rzYBYNS hkd/39XzxmVSYkcsW534LuuSQQ6vztu4qE8hFzvkrb4O8/8C+ezmG9iVqTF7 n/Qxf8/VyN+bcpF81oq99XUulMO19D2UtdTe78ZDvh7we7TE477rpfqOyYCc 4JbyuizIzz/E8eLH6TvNz+bE37nZ67VAHs5Tf2V5lf+u5HfJB9Dvk4vWi94X /C5rcoUfNZ4/Tjqwyx/SPOLdvd5nkIdemwn5+S/NDxmq9bvKUrK+bvTzfOLR n9N1H14iI/HUZf38HHn+mXSoT25tlP3y6YzI1+BUeB61ecb2rzjfA+0rKb45 2R/uw8f1zOv7aRsv99W1er6/bdr4BvjslMUJSAf9vi0l9sCwtmhd63eOdjzm O91cckDPh9rbZJ+vSolcX9Bq8QHiIe5Haj2s/2hexootIe5Ux2NdX6L75+96 r/3hlOHx/fs0j2M1fY9ufvK7zPeAXbROa6Rn2mT/eKzF+CP2rs9fsC6uTMv+ 2q1nSYfzgX3kE+cX7M9yjZOc3SJ5qqmU5FcM8Pga8ZC/fbTO7c/Ngl+sXjbi El87HvN0ckbW9YXan2e83gHotKgdvGZKxvdz8rvM90Be153+fnsQJ1nkeT8Y Z4XHPUgH9Xre1/vjA5sivafv32zkeHTkopzEOcZrXmMxJXGYl/xeFvFQb8/o vaydG2VfWb3F9C/y7LdsDOdtc617OFnjGyNShsd7CQMaQ32yWP0n1nGK4yFY v+vovrMw2U/mh0CPNTZE+rkg4xvYYN/FvP7ocYxgfq/1OAam6dSUxLErCubv B3r+eb+ngH7XeDxBjpc/Er22WyrK1/xM1u0Y7WdjwexK0sf58bcFiw+g+ZNU mH/ym9bBXUfxFj+ZYHTOwjFowexQ4oP4zPITw+9mNT5z/ETjG+yPOR6fIR52 zyitRzOx3vgf2DH31If64SwdV98G4xvjJ+Sz5PEpfzb0+Anat9B1t4f79ewn vn+m+/X8Ln6soOde7ZMMf1MPgTvd3yceftZOHseA3A3RffxBvzdBPPT8iX7/ AvZ4zuMSgJ03Q/brQSlr/1rzmmHf1+q+84TnRZA+9MBNHjcgnnSwL55QFtoJ T2j/t5kj+mVhSuzwhzzPgXh531HzfC7ROs4rtIT5OUs7HnKzkrbvUi925f95 f8CfT+uMD4yTkG9Yxqvre13TfLycF8Tn00Wzl/ld1IV8VfNtDp9reKmL7/47 8RjPuKLFMRDXPz4l67uv+/XEY34bipb/APJVHpcAmYULZP/dPmXtPPeDHH2Q kv13d48DBPv+ih4HwPS/5nRozyKe8XtK+LqXxwdIB79v7PEB1AH9ORXGTwbo vd6H1a7b1OMGpIPzr7l+nwXkVtV1NycpJxsq/zG+j/Re717+Xdj5g2uNb4yT kM/g/996LnWJ8wf/v35K4mND2sNzzqKeVw32/q+t+yX1NeMNEifzOhWCH5+o B8h6L2G9HNYVnJLA009lv9genLcv9j4c84BIn/3D/H+j6+Zif48N8rObxgf+ 8vd0g3jbXx4/YVyF7dyH2E76bCd9zO+RrbZ/9E5/QoIO9WlMh/Eg0gn5OVrm bWenTzrg/8nt0fslHjeQetT67t1SvyToc54w3xu1G/+px+VeOPVle4I+5LBK 7ew1Z5neIn344yNnyvcfVf1xYKvpL/DhDseDHxvPEL00XePBD7cYHnrlZY0z HKL21Y/J73I/QBz99GIkVxovXrto56DYbgfPCc9tBml93OYysX/mF4wO9Snq kLzheKzrpcvEfv1bz0NS9Ovnmz1FPH69X+PCB6l9cXCr6V/EV/o5HtPcObfk RsRntO73M/7+N+b7BH2v83C1694sT3yX91zgR6zk46J+wXxPyht/QPfSSrND SQd5Iz8vFL/ykXwkP1Uy32c5Hnyr1HqAn+q7RcUWiffVVZvdHeTHj9Z4RSEn /DjU398DX+ty4XzNqBJ7aE99L2lEi+FBZ8m86bdYz2H8R7fIuA6tSfSH+wHw 3+US72xI/c+c8Q32/jYeNyAdsQNrJV5xoNPhPgH7etVcKCfn1Mq9nEtyst// 2SJ2wQyvQ0Y8+DSyXuTx6KzgjvR6ZljXOzkeP8rqhP7srPT3ba9rBX/rCq2v fJz6fXs0JL7L+ylQF80ZGxf9DfDvwkwiPz3MH9T3jTbwuAHpg88/afypJh2t Rz2nutfvPUAOjtI8kH9n7P5oXP8N8rdcq+ijbzx/gXTAr2c0b+vDNtErx3ge AfbrZ9pCPdDtHyKPYt+0nCt86vkC6Oc0rZN3gvrd26QS36VdBr14QpuNl3YE 4qw/t5q8Qd+u3Brul1xHn+s6PqzV6PDviMOkPa6BOOCeOg/DlS9rtIq9/I7H U4hH/+9XvqzVInbfAL/Hgnzt31OhnHzYKnbaqy1ix3zjeSr4++66f5+ieS3r pRPfZd0/fO/zlI2LcgO9tLvXW5D1m0/IG+6X/uV5P8E6eisj6/Wd5ki/6Tu4 pzoe/NoyI/xYMiV210a6rx3j8YdAn++n6/8WPfc6qdX0Bab/Isdjvl/Mynwv r9/9qcXwGPZzem53eou843Jv8rusU4f+bdFk46K+g787nHUWPF4R8w0/b/F4 AumD2rF5iXuv2mj0SQdxm2+9zgjUxvL5kqaebl7eKPVzj2sJ961uu0/kSOOl B3r8IZCrv7wuHPAdTof3qmH3nN0qeuAI95dJB2zY2+MSxJMO1PRFYwxPOpC3 88fqO3ka7zvI/X3icZ+pe18HP36qF3qnOn3w55H6cP3+oHy7tkH27Zk+Lszv H/XGN8ZhAjv3Ko0bPOLj5TzKeiyE53Lcr8/X/JB9vjE84hulHicJ5HmIx0nw +ySlX10wu5V46KM3C2b/yrm8x1WwPb/0o+A/9nbarVgP2+n6ShXMbiV95F9M LVj8gXjSAf+2nhHan910EAdbd6Z8/yKdl4zXuwjGm1J5OFjf77zC6WOZ7ab5 m/t6O/M3oS+Kek9ujr/jQvpSd8nfccH4ztL5vSMpV2g/oyB5AHtrHeQRLWF/ fq4zPjOew3lBvPlstYe38ngO5x16tr/HH4L10qV5OxvOCu3qSz0uQTzUxbrF 8N2BZzRfb4jHK4iH+tjP8zHQj74eV8G4f5kj+9ggb+e5H4bRofrq4aLZy6Qv dQM8voG4edrp0F5GP07V9fhM0ezlQB7u9bgH8aSD35sqwnXdTefxnu8doO+s du+zsBvvKZrdSjzsj3P0u2M1z2GA08f/7Vgt/tEv3n/arZj3l5TPg4oJeQZs We1/pb5bfLT6WYd4HAN+xXEtod91Za3NC+NLnEfI0dFal+ob5z/8lCtapC73 POcn5Qf+6qKi+ROBvTpS69lVVMr5xil67vBnkm9oH14U3CdV8vvOeo42xvnw T/kYHDfbeZ8OdklHPoqHtCXeExV5aE+8B0/+BXZf9z6Hf+9uD/EjpX/fOJ77 U/x97nOwH59zOsTHdBhPj/HM3yCecQDSj7/LeEhMh+3xd5mPEeOpj2I89X6M 5zxJPnjRzs/A95VnlsR8hhoZMkP2pTtj/syS/z/E8dCft0yX9u7vhvdU/L13 6PE12kSfjCw1vRvUS9u8VPalhoKs53vaTD+Cv9MdD/n8YJboxz5Fyb/8xuMY 6HaH1sl/UO35g8sS32XeG8b3dsHGy/UJ8bykEL5vX5hn9gXpYLgXzxP7Y5dC NF/lEgftyhse//7sXOnvSTrejdSPubPC7EHisT6XrBD+DtO6iPe3mV6A/rjH 8bCzHywXe3BOXvT/Tx7HgH54My/7w8Ot8g7rlgsT32XcGT/PzUdype+4bcj4 RjHht5JvkOerPI4RrNMtq0Uu6nLRuqgWv/vdXLgurq0S+Vw2r+9xt2n9UX+P iHicm+T13eOjcuIXPeTv0CJetGcuHO+uNSW39gzgIa0/N9PjGPCHztT3eR5t lXPHIcnv0o6Rurg+LupL8O/FrMkV/vs8j1eQDuKba2ud+77ZSO/Vi7x9lzE8 zjXe0Hcmb+C7yW2yv27QaP5fILe1Wv9vUVrs5KFej1DyZdPhet+0Qeyl2zIl WbxL1hri18/Ye0HxO8uYvydbxX68Idkf3k/Bvz+cjtZjk3xvmbTxDXRP9LgE f2K8y2hc4rE2oxPkV27XFsrVk5r/uKBN5mNv/fuy7lcTj/7P1ndnz22Vc6/H 3f+X+iGOR39XSomeqtE4RYPHK/C9OzSf4hn1Zy9Ofpf7P+S42GLjIg71bAd5 ngT+fmhbeA7HddGhdnExZXT4d+iXxz3uwvfPWC8TfOyv66jo93yCfX5CWsbz vd57fMrf1Qb8NceDf4t0no/UeyJZj1fAb6rRvN7nWiU+eGom8V3eN8Hv5zRH +iorfm+Z1w1BvzbyOECwLhr1fbQzmowO1znEeVFjqM+v0vcq3tZ6H3OaEnXp P1b7R/rt7wiIf6pym/M6raQv9RVVv2zTKHI6rM30Kf6+guNx//D6nNj5HzaW jOkRj189jgH5P7zR+EC9L37EJeG9o+7+SzxpsOjds7V9qL+nQjz04UWab/dS veih4W1GX+ruap36F9XO3zKfGC/6uVpezrPGahx6OaeDn2s1WP+xzy3jfn2g B8bqfcL1XzU8/t7X/X3iodfm5c0eBJ9XaxP529vjAMQjXvRn3vIo0L0HPF6B z/3+ueitDm+n3Yc46NVtsq8f7HGDgP99PG5APOmIuzLR8KQDOVt1kqz7W9tE DvZ1Pz3gz6ZaJ3o9fTf3Dacv5ww18v8HeDv3NznH13o/fdxPD/jzk79Liu+9 qut6mUJCfkD+DZ33L/Xd0DHON6mTVGd8ZhyG8wK/4009F7jd+cl5x2eeK4Tn hIyrDiiI3qqcbHjw/RuPnxCP8Vzp8RN8p3sfxH5cXjB7OdAnjxcsfwP22U0e 9wB/v5kp59cft4Z5PrlZup/o/lVXMDs3WO9jChY3QPMubUaHdq7ErdtEP6UL ZueSTm3P7+UFiycQTzrgx1eOJx3wa6d5wsdhys/mgtmJgR6bp3VZ+1SJfvjQ 6eP/xlRK+3+8nXkLWEfbqv81o2B2IunLPY+C5S1g3O9qHOa7pPxjPk7S9TKw RvaD2c5/9P9wve9wn8rbzS7nnEfGeTjv0CPPatxsLY/zYF8dq/T7eRyA8ob5 P9HjAOwn+L5kUcbz8XzDIz7wX48PBPbMVh5vAd3JrRbfiOcF/fhb/aVVK2V+ bvT4Ce4t1S+U/39Mzz1283gC1v9gx4PeTVVGh3EJfpf5FfG5Od9XjPMraN/E edViD3k+3zKab8vzD7ZL/d5ieG6Wvlf2wQ6Vu8/S1h+Q365o92MZN+f42E48 4xKkwzgA6UCvfOtxht7pjE7QEX59mKDD/SamQz0Y0+F3YzrcV3rvz4QEHfYz pkN/P6ZDPdv7uKYn6FCfkg7ni3EYnCMsFY93utGnXcX8G84/67UhD/ez6Qn6 zL9Bf7rXwSAREFvP6PdSRZM34kmf8ob8u//NNv1B+ujfX/qeU5nTp15At592 PPTScbNkvRV0v+2vdfj2mGv7IfG4z/jiHPEv9tf18FPa9AvkfEvHY50dVCb6 4b+qt7Ie94DeP1bzNH5p03cukt9lHBl67re8jYv6C/vSZ3lbj3I+tMDsuKA/ 1eUyzgecDvUa/KyjHI/531brkY7S99OP1Xz51arMziUen/tfpaz7TE78mSnp UB/NcTziLRsuFD2+fV7s+l897oHx/JUrYR3lOF8CdGaofTUi2R/uZzhH/SBn 46U+XbmHr1fmrM5tfI+A/IRfMrLG/BLSx3cv0HpG++Yiea6VffK3bHgevERN yUE93z9T31s/La11iP3dbOJRV6Sfvjd4cFb2wWn+Pjmmf23HQ0xuq9V7Rvqe 9lKOh79wQVbfS1D/cVzyu3Jcquc0EzPROtL3pg7KmLxhPQzz9w34E7iTtC77 vLTRoR8CO/rCdBifyOi7WBtm9B0CfS/9AvcbiUf/N1e/cZTaizPTYRzjdsdj Xi7V/I0t0vquneNhN/yo+8dc1dsfJ78b1MXZuc3GRT8Z43vL8wPwb//n+QeB f94/Jf05oDVa1y1iX03xdzNAbkGz2QF4/+GKtJ3D8P+I53kO/r6i0ivz/BTm Hwfr8RQ9b3lQ86fXS4fnbH1bhE/lav+8lvwu7Sbw9dlUpGc0brd6yviDfJQ7 nH+B3ttd9dmrzUaHf0e3dnc8ujGpTeSmWfN9b1T+7+91XYmH3CyZFX/mmiaT U64H0D/K8ZCXgzNah7XJ5Ih47F+PadzjB42fHZoL43bddJCXsHVOzlf/1ndZ CmnTL/C/ntF7EAvbBPdUsv9Yz0OzGmfSeoXXOB30/9xG4zP1Yxw3juMk+L8a 1Uv5XFjnuI/yoTpn/qb8zBh9+q1YHx/4d6lXAL9O+Tbf30PluFA36jF/PxV6 qEv9iI+S/IT+OUfrrB7cIHH2Tfy7GOcOGseY7fENzNevT4odeWpa4o2P+3t/ pA8+HOJ5HZKfkTY6tEPxc4x+9/m82XGkA/vgFo97EE862Af3/iy0Z57X/MWF X4mc/q36akTe9rFgv35B67gWqoW/y2aMPuavtlr05hz/Ls9ncW77mK6vB/K2 jwX6/IS85Znv1vOBg5wO5x39XCNtcS3KD36cqHpsRaePf6vQeNQ+Hu96p4fs FJ8v6KPX62weGXfifEmeudKZ6fyn/GMcmbzZ74EdODIvfv2q3xke63wtj28E ds73ebPrEUfpo3bjbh73IB52QGPe7HfozfEe54Hdcc5k0eft3s7zRszrYK0b vb/HSQI9uJLHSaCfb0wbHdrRoFOj++9h7keTDmC7ePyEeNLB/D/ueNLB+22b zJZ1/b7mRe7hcYlgf19F413TKkXeWp0+9ODnCyX+dpm3046T/M603S+L5R/y 120HQ208qu9sNuq5QLvLG+Yt5XzGPrFxjfT/+za7t0y55XwxfsX5xbzXKp0r fF7QvqTqt/ucz5QrtI/y+FKwf52p9frvKzU89vspHkcK9MltHkfC+AekJW5f WTD/gHjsiy8XLM8E62dmW5ifU6r319dOWzvzT8D+s9PSv58L5jeQPvatQQWL h6C/OV2/HyTlAfJzXEH1hb67vlw6jAvtuFD9iDaR40t83tl/xm04XsxjmZ7T bepxm3/Kr1hN83Lj/Ip/iofw/IPtrF+zYZRfwfpQcf5ii+b/SvzM913mh/aN 2rk/085gXAXjPEnzE1fLhnrwUc3b2j4T1nXKeTvxjM+QDuMApIP+/jtj+ium w/aYDvUj6bD/jLeALYPi7/6UwDOOH+OpH2M88zpiPPVajGccg3iOi/LBcUHv rJAN8zQe1bjsFhmjH8jvuhnDYx7yKr9HZkWeq0pND7E/0POzS+X+/pEaNzs5 a/oC/ubhBdnnV9W4yumzwu9204GctsySebhY47UdGaMD9XKG6r8zMvruSVmi P4xrY/zbax3OZbKmj/D+bKPGDW7U/ein+Sb3pAP7bL35kjfylO63K2dt3YKP Nzke/ZypdTwm67shm2cMDzqvq74/SeXhiwqz+0gHv46ukHgL7dPTsqYXMI5f 1Z5dQ+2TfcoT/cdynlAu/DxW9/O/MkYHsBX13Oxs9YPnLEz0h/keyFdZmDN+ Uj/Ke6qaz3Cn2oEzqs2uD9bFHdXCx8M0/3r1rOlH6OHtHQ85fq9K4gp3aH5F 34zhoXZO1XyMddR/XKUm8V3ai/j5L+8/91dsR7dlTU+CfEVttP5VrkbUSr/6 ZI0O913I/UsZw2N+uulDH52V1fftM+InfeP+A/GgM0j9h2xa5n+trNmX6NeX 6VBOxtfJPfuBavf/O2N4/FxN46TrZ0Tf/5X8Lu+hgB+Xp21c9Fvwa52fo2O4 0xvDc6wzNE7zWKPdbwjXnb7bsIzjUV9lT71X323HYF08qf16pznMR+zGo//n qf98ip7brev1DhDP36I11CcfNYm995P6jQd6fgDPIdCvjTLS32zyu9xHMR8z W2xcjCNgeMe0hO9fjve6EoH8361xitaU0QnyW6/2+g7o15Z6b2U7vV/9YkbO wYZ53kowj8e3ib79QvMfNsyG57oPOR6/v9Qq87BzSvJ8jvK8G8jTPK2DtoPm DXV6/CmY9+lp0csDm8T+O8rjc1hfG2ucYTON21Qn+4/x/6H20R5ah3FuJpTX UU1y3+Io1W8n+fogHbn3pu/0lNdrHQ1fx+D7D/WihzbNJtYB9rH56p9uEb1r S9z7GbsnI/d3MvLzg0yCPxCfbTUOMVnfbbovE8rFjY16fuP5JLSnEE/pykj7 gbkwX4z71Nqq7wbUSRxi72wYV/mmVvj/ccbaGd/A+cRgxu1zCX5i3xqi93eu qdf7Rhn5vy7nD9uDuPPSDbYuuK/gPuN594Z6rNtexDnzkJdl315H9522nOn7 wF6arvQn6b3G/lmjL3WvtA7TfP8u9wHYq29o3Lg0Z/sA6WM8t+QsboD5OiAj 9MYm+Y/zjNP0fazLa0WOu/Ut5Ohq5yf5APk/1OMApAO9+bu+P/v9SMNjf7/c 4wPEQx+t5/EZyPNlGenH/3ncIODb/p6Xgn1s1Ux47nLbt6Lv9vZ22rPCb+3P 03mLMwRyfoHHGcDHz50O7VzkB2yXFTl9KW/+KelAPu73+APxpIP2SY4nHdDf eKrKYVbysZ7Pm70TrLeHNJ/kXn2n7linj3uB3f4gfl3C22kHSbxU5Wow+Vxl 9CG/++St3oLU7Va/5rp8Qp5Bdmmtz7665uFf43zDespWhfM10ucXy3gnjfOM 83lBvPU4jW9XOJ8pV/CT/yCd6dYf6K8PlW+jpxkeemQLjw8Qj+9Mz5s/AT49 o9/d0+MGxOO+UHve8lJkf8iYHY97eBNnSxzlBm+nXY9ts0P32RKPMwT6eQOP M+D/f3E6PJ+EHqjJiH7r5/EH0oFeKeQt/gA+P+V0GGfAur04Y3GeWN7Q30/y ck9m0AKZ5x31fbY6lx/0dxOnD7rzKow/jLeQn/j8/hnZb290PqC/e2p/Hvdx Ab+67qenej/jfAnuy6wrHccTeB+S7YybBve2+T7sh5rn9UzW/HqOj+3Ug4wP sJ1+N9vRr909PwTja3f61IMxnv4y8WFdui9FH87LR/0ZnegP8TF9rgfSx6/v uJ8ej5d40pE4lJ6L7OD+NfvJfC/2M9ynSzWOnJd7kgdoPb/r5ob642S9Zz9g rszDCN03js2FcbrnHY91fXuZ+H0/5+UexlqOR38+VH3/ktoJ185LfJfrDXny t3n/KZewI/bK2z1zNJ/kfjHpoL7+UwtknbTkjA7lGPyf7Hicq1xULnpx47zY jf31/PyYqvC9u5PVv9xF85NOVHvquJytT8zfsY7HOE9dKHwdkZO8/vUdD9gF WofhFY2fbV+d+C7jxdBv/Xxc3Cewr83Lit3wkcZhNqgN7b9uOlhvX9bo/qPn gX3dvoEf+lsm9I83rZF5f0X1/jnuF4POmbq/HpGTePeTdWaPk468q6fnHMup n3m820lTtY4i5uks1c/HJPsPfg7T9lFKZxOnA/N8Wz3PHqn+9Qb1if7QrpV3 4NMJuxZ0D0oLX7/Mih2/rPuzpIP5fLdBvvOS+k87+nkeunWB4yHHKzXIfr5c Wusbun2M9f2NvltxrM7zXX7PnHQkL0LfFbhS/cITPR8d9tBlmj93rtar2D/Z f/D9Pn23bRV9t6KP08H3H9Z6BFulEnUeME9vqh21YnOin8wrkHsdrcZn7h/4 v7f0fH6CxruKXj8x8BNeTMm8LKn1R3byuqFyLzoV6rFFzWKnXt0idsRi71xC zvu0iJ1xlMrDf7z+ROBfndwqemx8s5xDnOB1RFBXZKTW0R6o63enlkT/8eMK zVf4r/rvm0X1SHL63c1zso4f9/srAR/2brN3LdHe3+8PgT8vN0o+8Rs6T78n x4XPPtMqfDlB29PZMA/0W61H361vMM+tni8T6Nv3tR7mR/o+4BGeTyR1XzQu tbq3B/GkrOb1fOV5NKSPeyl/tpkfDfn7P9Vzd6R758+4NpGro/U9nOEeZ8A6 /U+j6Nux6XCeu+WZ/jPYcLjrOeIgT31Ur2yv7cfmQruytUbiJVt5O8+Rsa8s q3p4XY8Lkj7m7a6M5SGg309nRe7ymQT/MYyNMvI+bV7r433h8QqcQ1XV6Xuz WbFHB2aMz1zPMR/A7+PUDz/R96tgfR2j6+aIKpmHE32/gr25pdaZ3zu5j4GP 6+QkHre372OBXloiZ/nYWK8V3k/66fi397KmV+L5wrhvzmo8TPPablU6Zc5/ 2EOXOn2Iyym1Mo4zPW6AehG36TsjH+j6qnV7k/+/TU83HvI6cOjeHU6H+RWw I5ZTPrblzK4kHZHTnNmtr/eo09+dDs+1YNftlRO/tCNnfh/pIJ68IGd+PfGk g+5cP87wpIP18+f3Yh9tpb83uj0V7Kff6nlDP/UXDnH6YPN6C0TPLent9Jfh 95R5nCeWN/Dvcl03d1TKvN6j6/oNlx+w476Iz8OrZB7PVT/9HJcTzi/jKsE8 3qp25noeV8H6fV7lbTf3r7mOpN6M+9cBf5bN67uGEwyPftzsfjfxWLdbe3wD 9vUC3b8edX88mK+jmec6TeyayzwuATm54heZh8+8nXkUWGabqH4bljf/I8jf usb9d/zYKGd06H/A3z5O7ZZX8uZ/kA7eL3o68uv7Ox367+jH7rr+n86bP0E6 0LM3581/h32zrtOhP7FHD6M6syIvd+TNnwjs4T75MH9gqMrh+fmEnDN/V97x Kxc/9/WIz49qHYxL1V5ez/13zgvjJ5xHzNuDakdPcf5Dz72l8ZNG5yfGM0zP o5d0vx7yfJ3K1Swfr9i57r/TT2Wd4iBPjvd3FvPfuV9zXdF/x8+V88K3al8/ 0Kdnqbzc7XowuId3t+MZB2A7+8f2kH6p0Zf8nZzJcRiPpJ76WuSyf/zdUqOP +OyFqiffnJOgQ7kkHeop8h1/Pl37OScneRpLldv/86fU91M561R9mnE/F99v czy6sco8Gd8uefGf3nM85GBZld/rcnLfpi35XcahIGdTc9Z/yjfkqHu/YtwG 0j6+0uSedPDbqpWivw7OJfQ1fm7oePS3Q+8RXZuzOBLrMYfy6HV52I7m7n0L +jnj8VDSl7p/Wh/gBD23yfl+AD1zUDaMEzRVyTl0o8bvPo7w1+p6u179/Utq Et+l/YEfS/i+xX0Feuv2jPETceRT3C8O8voX6Ts3TWmjE+TDv5wO192ltSKP R2gcsFrlZIHfhyQe++pP9bLPjlG7OO9+Lv7vzbZQPqvrJC5ynOaljXW85Fvr +duN6s+e3pD4LvUF5PvyNhsX7U7o0TqvmyZ2ZFTH7Tf1U1KN8p1jWqN11yT2 07Ktobyf0ij78AdaF7JB8ZOaQ3/xN+3/Z/ou4AZaN7CYC88dV3W8vI/eJH7j aH1/5SvHQ6730XcRSnWf+MvfYSAd6JGvtQ79sGaJ/2bcn8U62FrfQ71J7cAj U4n+Y/6W0nPir1Kix95xOuDncikZV53qtzO97gLpwE3fVeuHraHvYxTdP0V/ p6q/NtnbWXcB0/iuxs229/qRgRwObZFx9mvSemqaD/2v1gR/EEfaWesvzmqS dTnYv4t195PSKeSE7hivk0E6ENtRmi/5sPpBi9xfxvq+Xt8nWZgLz8Fb68Tu +lLl6l6vn0H6OL9brc3yuhH/fNLpcB1gPLd5PY+Y/1KnXOt53NIgcnGh3r+p d35ifs5w+lCj+yn/J6vfUu33dUgf3XhY7z38XSPy0ZILz9+vqpH1NMrb6bfK +4F+HyjmM/RLQ5vcT9lM3/O6VP2BMz1ugHVzqdPHdI7R8+hTdd+c7Pyhfgjj c+0HYl7m6fu6+3meUbC+/qXn/IVKWadZ98fB520qZb6+9PYgL/cV1ecref5R oP9Pyph/ivm6SvXAtEyC/8Cvruf7G9TIPN7k3wW+X434+WepnjwwY3yGnF+f C/3+bvsL6608J/N2nNtTgV+3nttfxAd+4ZVvGZ50gLv5Q5G7Jo1fHZMLz4l4 jr6v0m+cL/PRngvt5Rvmi/05zdtpj6D9w5zY77u7PUL6WP+lWcu/RfN1Oi99 col5B5+u1Pd+7loo91Luy4V+1YkLRd7OV/vrU59f8pn+O/lJOcQ8v+l+emBX nKP9X3m04bFepro/TjzOGW53fxx1rx/X/a4xZ/5jYOe8krNzc+ids9zOwjo7 5gepe/Q/b+d5OuiP030wmzN/kzicu0zImb+J8XzjdJiXivnO6X6xKGf+SyAP qZz5ocTz75KvPT3cdxapvbDODLE7OjVOtMjt9MBe6tB5nK/34n91+pCTcVqP vNbbab+Dfd/qPl7t9jtx2G/fzZlfCdywXDi+br8S7Lvb7d94XUCvXKT+5dR5 sv9crPbw0y7n2K/Pcfq4X7Rvuc0v4waUB7RfofgtPG6Afe02XacHuF9JOYS8 D3S/Mlgvq6s/M2GmxMfu0PjdjfkE//GdJfMiDxtoPbbLlZ8D3E8H3dNyVm+L /JF4Vkd0T/8TO88M89XHldAvYLvkS3jeA/Ug5Pdy3ece8bwZvAMzTtftnn7f ieNhO/H0Z/ld8pHfh51xTJKP7E+ZrnPEHd5z+pQn0mc/ya+4n2wnHutk1bzW W5uf+C7lEnmw7+bsnhL5Dv36ueKv1n4+7XEN0tmyZ1iHVwifjtP2xz0OgvVx kOOxn40oFz32lH73MMej/Vz139bSOj6XLkx8l3FAxJs39f5TvwM3Jmv5BuDL 8+4Pkg74fFi1yNkuWaND/Y5pnOfyg/X1QJXsE/dn//HeNP79Br1ft5ffHyMd 8GvtWrHz/tL7JE/6/Rys+ya/VwYx3l/PYYdmxO452vEwKzbV++3r6L32kcnv 0j6TdyGS99Pw/sqmaeMb7g894n4i6Uh98nqpc/BMW1R/ql7058FtYZzrI70n mdb6jLdq/HErr1tNPPq/tNaNukjt96e9fhPs4gGOh/7ZvkHksb1VznuOdzzi qPe0in3+oPLzKn9XLPjuQfqe7a96fvh8Pjw3ej8l41hX19kzyf7j79c1ilz8 pu9AnOd0IEcn6js0w/Iix93+ZpDXzPuKY7W+3A1aV/zlvPk/wJ2sebCDvZ3n qJin81X+hzWH/8f8uY2b7f1p9GtjzTe5uDnBH6zCF5tk/s7Sd5728O9C32+m 75terfHZor+jSDr43AspmY+mBtFHi72riXEPaBD6R3s7/UfwdTd/JzPmG/q/ qFnz8/X9+lW1/5e5fw2xX9npwz5/qUnszP9pnHqAvwtB+jAPVtN6YBdo3uYz /s4G/r+9VuTsPG+nnwi5p97b1N+FIH3c5z2/xfxEzONaOl+VLQl+Yv631PcI f6uX98A28u+CX+tqvfd/6Xo/zt+fXLdneI9o/Yy3vS5msC7u1Tz78mqZhxfy oV/8QrXcG7je2xn3gp48JW91wqi3SB/yUtNq+bHo9vo6rpPbEvyHfrqzVfbx V2rFvujr34WYPK76dRm9HzPe+cz7Z3F+AuZtuMrJ0n6vJVjXv6ZFrt/WfLwR Xi8E+e736Pst93s79yv8fpHqn9J0uF+9qvy/KG15njjv3M/p0N+Uukv5RD2P oJ/zNY5xRLWskxU1f3Qv9/fBxyWcvoy7xvQ/90vyB/N4vcbF+/m9pUCfVOp9 gif0vZ0n86EffdM80R8neDv9O8kzz9s9hpj/WJ97ZKQe1YIFsp+tpvP1Xsb4 STuV9MGHPysk3vGn5pls7Pd+OF787ON+HL/LfDTag+jHv1VuD3T/jnjUe231 /EF85u9ceI50xici75t5XhvPZ3H//2I99zrC/cHgnGFD9wdht5+fj+Lv44Qv T+UlbnmC+4mBHitxP5H44Fz+iImGJx3I80o/Sh3Gwfq+5mHufwX95Dn7faWi 14flQ3//h9kyjou9nf4X+HSU7hc7uf9F+uDPqKzZy5DztfMiX2vkEvIJu3ag +vvT50q99sX4j/nPzTW/BeN8wuUwmMdzfN7x36tpPuAtPl/482Yqn085/ylv 6OdY96/ZT+QNXKrzuNtkw+Pfy92PJr7QM6CH3I+GXB6t9sMCzycN5nEw7emZ og+X8/MrzOfX+k7cBjq/U5LzC4acq/K88WzxNzZ3OhhfvdYn7KZ/fk9/7vF5 5He5XtlPsGPDoumdoO7eYueSwzSPXOxab2e+Dv1E+n2Y5kdVH+ztdTzBr23U L21zvy94B2axeprYn9fL/WMdctJfTc+tSf9j7X+M53fZH/qnbKefyHbS5zk0 6cOfW6aQOI8nHfI9psN1EtMh/ZgO8cg/ukzzcr7Ml/zaM20jFiT4Rv0OeVg9 l8hrR1xjBZXr5fR8epuqMN7ZTQfrd3ylvqel9zB393v14Os2joce2XWh1Jua mpV4RaX7iejGZXoeN0b9iLrkd7nv4v+rMon6C/hxRsbOx7G/zKoJ6y5104EZ cI+eD1Z6HQfuxzDbb3e5xf+vrH7fTlrvZmWtn3i31z8lHv9/osbZ39P7lXt4 HUnUb3vU8XJvTO2w3dPih9S5Pwj9OFXPJfZXuS33905IB/vhRL3fdVaryMOh XncV2/keWqfyM5Xn2mT/5R6f1rvcV+u9rul00P6C1o9aqyDytKy/o0w66P/b Wu9muvofexXMboZ90S8l6/En1fMfNyTGBb9xpQbZX2r0ffGU+5WQ68v0/K6P rqML/F010sF4N9V3249skrj9/gXDgd1ljbIul/R2+nGSn54X+du1yfwX0sc+ fFWj+XHYDr/QcaWT/EE+156Neg7cbPd8+F2M8y+9F7ur9ufrZpsH0sE+8pTe 6xhfL3w5uBD6mbfXS3xlXW/nORfOD37V+juPNBtfA32babJ8Tvz4Vt/hvrA5 wWfw8YkmWa+DGwU33f1TwG7Ruu/vaT7TTOcn34uC/bpei61L0sf8La9+2f76 fuDhBeMvvtdH6/f39XbGXTCPy2t9k6aUrTPSB+7alOU1QP9Wu38a+I+T8lFe hM8L+N2m/u929ULn47zkmR7u/jj871H58Jy4TfPZ19P56u/vPQbrK63vw3yk eZh7F8Lz342r5Tvt7ofSH8TfK/y9ypjP0ANHav3yaTUyX2PV7/iqxfgGto5x +vDnLqmV/r+ufsQO/o4iYNsUxE952d+14Hchxxe2yXo9pUL8xgP8/Q3El+5f IPxc3tvp30FPZ/Iif4O8jmOwj3zaav4dpuErXae7tiX4DP1zQ6v6U1UyXxPc z4XdPK5K+PGWxj1ecX5yP6I/RXtjbd2fGR9nO/i2h+4Lv3pdT/YH+Llax+5I za/r73U6oZ9mz5F53zhZvxP23p863slev5P0Mb97pM3uwLyP0/uTo9KJ+UIc cFqb2B1V5dLf2e7PIt/803KRh/d1va+TDs8Bx7ifSDsR9sVyWnekxO+TBfvd F15XBnGgJbxeCPN10d/ufQf74Yl+D4x0IOB93U8knnTA75oxhicd5EfM/0zO tQ7V9X6K3wML9NWx2p/9Zmm+vdOHfGw2y+pesZ35mRj/yqr/t/L6K6Q/VO/j Mj9TypM6P+nHYRv7JZ+om0I6sGu2V/tmhzkiz59o/Pn/vN4J5u+dfNjPF+fa PNJP53xBXCZq3ZRS5z/XBfq1kvtr7A/yO27XvK7PvjE8+r2L+3HEw2761uv9 AJfWfedg9++CeVzKz0/BvvfdD8V7pWf+JPqs0tt5rgq7YyOd3xL3B0kfcajl 3B+EHP3qdJj/CO1bk4/y4V1+oJ7v03oVt8wUvd1tv+F9i79dHrA/fxHRf2yW 8Hek8uFqn3eOl34u+QNx+TovdWmH+Lhgz7ydl3u813s/5XPu9+2ter5Bz2WC uN6P/u4a23luQzpc/4AfqXUV691PhPhuoHLxWsHWP+WR7cTT3yQd+o+kA/kc 535iTIdyH9OhHozpMO8hXMf0L8aLHC/l9EkH6/wurW9yaUH0+EaVCTrc58TM zJg/Tn2KfJ2xqu9fUf5UeH060gH+5WrR852qj8vcn8L0/eJ10MCf8RrXu0Hr vt0c1eVfV+frDL2P3a8m8V3aH9h3b0tb/7lfQt/Ut4ld+pP6WTf6e5CkA7ne qU703i6aB1frfhbWw9gWy1/Fd//y9wACub211vK8YH+85HQwzk9aQ/5395N1 xnEOPEfrx02vNzuWeMjDaxrvfqdZ+tvk/hTondsseQJfeTvW+1Yp2Tde1vpe I+rNTgz48Hud2aHg13/UDr+uPsE36K2Rmld3kb4rfKN/99keRg3Uc7GGgtir fRvNXiUd7M/rN4re5flhm/t3kufYKPvydG/n+RHqdb1f0HriDeZHkD6GeWeD 5R9ieu51OvTL5ByxYP5JzH/oo7/rJS62gvorp2ve8qkNxk/w5RinD7ksbRb+ f018k/GJ9IH7Q+vAPlcv8lJVCM8r/6wT+XvO24P8/LsLNs6YzxCDszW/86MG 4es5apdOaQz917OcvpzfNYr809/ct9H4A/5P0XvqHzfb+uN3RX6ahc6ataKP 6t1/hH8wskbPb7ydfhboPKX7493Ntp5IH/L3fZP5Wfi3C3S9H9Sc4DP6cb+e e75TJ/N1uX8X4v+Tnk8N0PX4ofMT/C5X+V+5xfRlsE4bU3rvqUr4nSqEfvsz lbIuxnk741KI/7+m/a9ImV4kfeAPSVn+IebxEq3nNyaV4D/fwQJfTqiRft3i 38XfD64R/p5M+9D9WchlSvXwpa3hPtZNH/bD2a2SP76i3kvIuP+IdVMzX/RQ qbcH9xI+Vj7v5e8Nkj7ySie22H6IfjzkdLiP4f+uL0Tvivu84HP76/l3Wt8t PEPX4/Mt4fnR8YUwz/lKnRfuy0/6uweBPjxI36MrzpH5qHa/EtMyp0zovuTt 9KegL+9PvgMZ6LHn9D3bfeeLvJ5bkDqHq7r/Cz/pvMifPV/P445Rf/lO5w/3 Ne6v8u7JDfZdnkvK+nik5N4e3HRdR5l0wn6D2IxJ6/u8M2X/bYj8yi1nSlz6 40K0r88S/DCdl2/8vQvSx/wsnzY/RfKl1W6/N52YF/hXP7TJvtivTP5/kH8X 8n1SmfDpBJW3ovOf/MF6+yET2oN8r2M7PW9d8zXDY79b2f0U4iHnl2fMT0Tc 7fGC6Il/Z81/CeyETzN2Pohunez+HdbXf78Uvg5O1hnFfj5O6+EenjV/J9Cf f2bM38H/f5msP4q/V2rdnKOyZueTDn7+P2PvHd91kfyPnx179+y9N04866ko 2DtnO3uvZz3L6dl7AztiRxQ7NsSOiBSVTiAhEEJ6fSd5510TUD/6Dc+Z50x2 X/h7/P4hD56ZzGt3dnbK7uzuxp2WB6Ffk50P8x3EOW+rv9ik0/IC8oFbfyxt +Q74Xa72bUk6oW+Ih7bUfPP22faeN7+L+XXEbK0zV/t2hd8bSnkyT6T8Ie+L c2K3Rrvc4Dd4r2qrywFxVY/fRHywyPsl5sjzlA90vQj0Pzgu+3C1iTxI9kO1 TmaDQrjP9HBT4n4exjNx3vRnOOO9GBe+qQQevkuatzwLci20i34/lbd5Av39 ukPG5195y7M4/4gH9etH63sct+dV/+Yl6ImT/s/279ge5k1xe4K68x4+pKd9 JD3bw/U+tody4PxBPPOa8ycf/H6PtOhrDx/YoTp/h4x8YFdH18i5sWd0P+UJ fzcL62eHaJ3e+nlZhzmuJtEexIuzqkUfL1W7OMj54NzZr/q+0WN5ae/BdeG9 lT18EB/uVCfzaHV95/5Zf+cb4mhoFTnd6Dj1R+4xyotfWNPfRyd/ebe11vw2 1Hpn55PRdx3Ab5281RXFcoOc16uVOqGUvsOX8XwQP3rocU7ywrysI11Rb3Ef +WBddvV6yQvu0X2TB/29duSVVc0yfgc5zjwLcdD2eYtHY3liGl9bJ3bhab1/ ewXV5wqXD777h+eP4LdPSvaFGNf1epcO43l9XvKpSQ0Wr/K76O89DVr31Chx 7GP5MH98sFHyn5Mdp52R/eW8+NtnGyw/IH+0d2a95R/wK33y4k9PakjIGXWv L9bLuuLjzdKftfy7mGc9cTfynaL6/XEuT9S33q3vg23VZHIif8QxxUaZzzfW S1z1ZD7MK3erF325xHHuy6Ae/6i8+IXORmsX+cMMntxodX0Y1zXzsm4yqTEh f8in0CB2ZK9G6c8W/l3Ifxe9H+gXzTf39nwW4/uE6vn/mm0eB/P03826T6j3 Wz7n72tDv+bovci3Oh6cZz09L3HCsc02b4L2z2my+Qf/vofzYb4m5/Hzpgfx uKA+4CTN9+fXiRx79Bz7bO82mZwRJxQ8D8W6zKs6LpeqvXqrxewr+WO8T9J8 e2KV2K2H8qZ/sL8vaPx/mONBPd6uedt/jeUs70M2ix24q0bvZ8xLXLCl57/4 8xWcP8bvr7USt2Y1rhvi8sG0vykv+rdcyuJPfrcaeqX1sV8skH4/nrf5gDi3 cb7Yk9Pz4XpET54FO99jr2CfZrea3yN/xCUbtlqehXFZNS968WxrQs74+3kt onfZSpH7ev5d5DPbLhJ71qXzd3nPZzGO96tendNm8Vgwfw9oEz15v1TrivNm H5En9CuVcbvSce5TYJyPU3u4e5vlBQH/YSmrN8N6Y4/9Qbv6tCXkD7q9NH88 eL7w28a/CzltOF/mwa85ked/UyZnrlfH75sDfiYvv//S3yfkdyGujzTfPFDv 4RzqfNC/3/Uezrsc574Axv0stZMPt1v8HMR1m7Rb/Rj0cu98tL45R8Z3s3z0 nryPF/R6sNZRPz5X6on+ku//8tI/b3f5ox2Lo7z4d83jFnteJuJ/QezI3zVu bPD3NoP2D+wI1++39XcauX8Hvb5Y464uf5eSfDBf3/V3L2EnL0q+Jwn9fVbt 26ppyxfIR7ZbOixfIz35wN8MdnryQbsK34ve9ugz6Oo6LL8gvcxHvZ9ujSnS 3kecP340/Sj9Pspx5l8Y5r55y+tjfcM4NOs6xsczRJ9XUvt2kef7yJtXcf7I r+tn6fnxnNxLVeJ6Eozvzp5HYx72Ubt9ftrGBT831vM4z7ucf9R6QsQz89KW lwXy317vGft0oujhamq3y9MJeQJfX/ONYZP1nLjms0f6uxn0Q2FeNo//N/xT tbcx3lftgOi94/Q7cX5HO8m8hjj9dYzT/8Y445k4r+Q6d0zP9WTizO/A50w9 r7NKweYb5SJxb8HGlfkmft/peR/9IdatVnR6xs+gL3d6+hPQN3ieyPwC9N87 Pe0x9k0nOz3zCMyrd5yedog46ZnPhv2aZP1Ce9YomJ8I+lWaD8+L9uQ1wKc7 HreTONsJv3qgywdmt6tJ+PyWt/Vfqa9otfHiug/ipZ+ajA/3JcmHOPNo4uTD uCHmw3bG9FyHJT37xbiB/UKc8qH3N5Y/6Sl/fpdxJ7+Lup7dXf7UQ7ZH/F+N tYfjyHkVjGPB82Kuh0C/ahynvoHPeJc/xxGj/Epe9Pg8z+sxXz6L8u5heo5n n4LFi+wXmrWV95f9glz6OD3bj+ZWe15MPUT+MErXK+bW2jxCcyd4fo11w3Vb 5buvq70dUBvGWXsXRC5D6i0+p5zx4396j2uZ5pc948W4FuP+WYPUu2/uOO0M mvGrrp+cWx++p9rDH/a7us725dCNOZ53Mz+F3/wmH+4D9dIHDMdFen/sG/pe w1t5ef/jy7owP3gxH8blDzaLP11N9eerBvs9+cu4a13aMfrO2h4FkxfqCz/U cWvyPJf2Weqf8pZPxnKG/x2n+9fnN8h4vZ8Xvnt4vn/CUrm+6/wxzn/ozxf0 3exXXD743iZqzzdo6r9MvzO3UfzkxBqZj/0KYR59iq5X/eL5LP0UpmFtXvLF +sZw3aiHP+Kf7RpNf+FWP87L373RmJAz5NXaoPf31Wkdi38X7b+1Ttrzqq6D rev5O8Zx54LMw+uaLT4n/1e0rhfxyG2VMo77FUxeiBMLCyXuXstx2j/8zOj8 6t9s9ixYnxzZZOuIGMcxOk//2pyQP+bf4bpv+xfN63/0vFv8YrXYozfyMk8e ajI5Q5/3U/2f2mJxeDB/x2kefXW5tP+ggs0HjPdh5aIn2xbCfdJd9H29P3Q9 5KUWs8fkD7uwU4vVAWKel3teTD8Dft973h2PC+QzXM/HnqB1m+9ovPqryxlm +tV82M4ZlTLea6kdK7ZaXBrM3zdahf60UvEfexbMbuJ+jX3mCt7meS7zTdjb ufnoHGt5OO6/tMg4vjRP65bz4idvaA3zzVER/x/K9fyy2ocalw/3F+hfGcdh XLZQ+Q9qszg2kOdf9f7oZ2ZK/rF3wew+/PGKM2S8/vA8l3kl2DSqX9u6zfIC 8sd0vCpleSXWxT/Ved2USsgf9m3HlNyf8YS+y/mtfxf9H6N562s6r09LmZzR /XGetzJuxTrEfmo3vm63eIrfxfCd327xIOmDuGTsW6H9+Vrfz77qHdGrnjgE 6waj2i1ODOzJYL3H+NZJIr/9nT/k9NpEwdd3nPtuGNee+ATtuqPd8hfyB117 m+17SH21zqOz2xPjjvl9b5u094tpIs+pLjeM90nTtO5a7clUH1/KmXl3GF/n 5TuPeX7N74JfSuuixow2eshzbofld6RHnLiH59FYL56cj95vdzlDDyo1bz1p gtjVlzw/xXrd0T9ofbWut/T3/Br+d4TTo7/bTDY+zCv53YvFYdl8e0T5iB9w nPMF/mptx7m/GeeJXG+J8T/LN2mHY1z0IYl/8if5Kf0Xcc4f2I/bq0X/3vO8 j34K+NOO0+9IfZjnL8xP4Zdvc/pgX+UBp2dcBPoLnZ5+HHUQlzh9EE8e4/SM C4gH/M9ssnZynYjtlPsyCrYetOx2jrF2Ar/a6ZfdzjHWTuQvxzt93E7icTtl nnycaCfnSdxO4mwn28P1rLg9pI/bI/L5JtEetjNuD/dD4/aoYibkRn8Wy416 yXaGejUm8V3awfi7nFf8LvlQDjEfzs+Yz4Hqt2J5Mv6I5blQ191iebKdsTyH qN2P2xOuv/t34TcZF/b6Lv1u/F2uA/C7vJeJ/Qn2+Sf5fGE8z+8yv46/y7qc +LtcZwjWkUZRzlVmN8iH/GM+tDux3Jj3UW6kZ7tJj3yhuhD6rb1r+rO/og8/ 2d9x3Nk+yon8WbexbP6TQv7Tfb2C/eB3ySc4V1Xt+hDzYb4U82H/4/Fi+2M7 GfSrV/uD/L3Xdylnfpf+gnKTblRbe8iH7UGzhzvO9mJ63uX8+XvEM8cWJA7Z 0dcfoDf/dj6yf14v+cqAgqwrD60z/YEZqSyIH17UYPOJ7cdnZ2id6EHVMm/r PH+H/VtB7/H+0XGu36JfrxYsf4/lg3WVOl1P+L5a1jVudz6UD/KIc50Pxwdi OkHtxmoN4frEAOcDOZ1YJ/L4TOdjn6bIvhYkfv5Uz9XuUCl2pMzzeoRn3br+ 92Qh3Kfuscegv7Vg6zKxPDGOazZKnnZOlejFP7Vf9zSafOQ9JeeP+PAprUvs r3re6XJAPcGEguRRlzRb/M/v4seOWp+xcbmsL1RE+fvher/Em44zjoL+PKZ2 e+9mm6/kDz34b5Pls1IHrvO6mJQz+rF/k+SXJ1fIeF3g34UcH6gQeR1ekPqB S5pMntCLkoKM0/ctFoeTP/TuZb3HePU5IpfqKH9/ukTPPxWiuvY5Mh4vFiSe fZL10qXGH/Jf0mx2XerGddyvaknIH/ye0zz9Vb334zr/LvTnv2VaT67zcYHL GX9XU5Dx2zRl8Tn5YzzX1X3t36doPbnn6ZhnY6fIeE5znPtf+P+7Gg+kWi0/ In905/ZW8/+Q973Oh/E82F1ZsHw/HhfRW833U3o//YkqhxN9/QFqdKTzh5gv mCNyu8Lzcfpl5hHcVyCOz3+p8jyizfwP24N2F/U+rtkTRY/nRfn+yB9ED4Y6 zjwU7buzYN+NxwVyP1bfI772Z+nnKTpPJ6VMzliPOq0Q7n+8M1X05jDV871T Jk/KAV+92/N3fhfxwsw2i/cxzk8VxE68TPoxRg+92bE9jK+P97wb33lzlOjB jY4zToT+PqFx1PXtlreSP/h+3WZxtNSZ6/ge0J4YF3zvZs3HTx8v+nCJfxf1 aEPGy3eP1HjmXZc/28/8mv2Veu+C1P9t4fl1nLeynTHOfaQYZx1ljFNP/v/i nI/EmW+C/YmzZf4OLtp4w44doOdYLypG+eYcyUMfcHraN+j9scUofyyVvPIS pw/uie1XjPY39T7OTYvRvmSF6NvyxWg/sVLqNFd0/vSboE8VwnqFHjtPOXAd AXqx9xxp59VFOV9s8YS3nzjbL+8H+3eDddrtHec6APgcX7Q8gv0lH+Lkw+/S 7/O74P+bx9WM69lf4lxPAP3mRYsbRR8WitzaPS+gfKgP7C/1gflLeH9C4RCJ J7pUD+oMp55QztQT8md8TP4I7x4vSlyxQWVC30o0XiUf9pftZ3/Jn3FOzJ/f JX/w26BofFiXRb1i/BfrFXF+N9SHhlAfdvfxpT6HetJgeoLvrlG0uJR6DrvT XJD6ids8rua8IB+wOXKRyS08n6Z5+fmOU68w3Ae5vlE/Ia4dnJ79ArvfPC5l v9DOTs2Xz2sM52lbFPf21f2IO4ph3PjcbBmvs4tW38jx4vzlfiTk8U6J+LMD nA/7C+rNnA/ntdR/qh+c22T9JU4+co6mTPxQs8YzA5rCcfy3yv+zFvMXbKeM V4uMx+lTZNzuLVqchuk48Sc593SC47TbOAe4d1HiwftbzL+TP7L9ac0WR8Hv /6H+6+iWhNww+x/ReL5iluwDrOrfBflGs/V8qO5ffOlywzz4X1Hm1dqphL/D Plla47TbxmldaNHiLpxT/3qsyP1Cx+kHUdc2QNtT1Wp+nPxB3hPXcd0LYuqZ p/j5XWtC/tg/bNB7Vm/+UcZ342K4T7++rgNlNd7Y3eNV2IPlihZH0X8ijrtY 9fDcNrO7/C7y8lTK/A/eWTzJ+XAdFH57UFF+HthmcQX5iH6kLI7CuO3qfBgv oZ3rebwaj4vcy5GSexK3+EbrRQsyz0akTM7Qm06PGydDnN+bHBgHsr+Qw68F uSdrZY+L5DymzpeHvD30F0EdUY88ifP/oP/qXbFX/brsezDP00fLfF6xK4o3 xsi82c7pKR/Ir70YxQPfy/xZwemph6AvjeMZvb9ibByf6H7EyJj/LMPJn3EX 7MJusd8co/drdNm6E9sJPZvrfLiuyf5yP5f9Bf2vRePDeBJ/P9H50M6Qnutu pAc+rWjvaAf5yETHyYfj1Vdxjhf5y7poQ4I/896YP/NA8qc8GVdQnuQfruc4 f+7rxPxp98kf8+GDotnNeBzpz4LvTvPvkj/5NGmcQD7Uc8oH+MYqn4Xuvxiv sZ30X7EcgnXbnvZQn8mH+gz+9c6f+QKaPc5x8kf7XvHvsv2Q+3NOD3k8MMvG nX6E445wYUvHqZ9g2zNe1FvquUwH90dsP/h/6/Scj4gjXtFx2dH9L/zgm84H fK+aLPHFk2r/h3q/4HdGuV+gHUL8s0GX+LEVUjZvOI5o122tNu8RJ3c5H9p5 xEMVcfw8xvggzlhV74/o+4n4rXeKsu/9cqvJB78f7fzRrze+ED17TuO31dxv sl/0R2y/1DmoH7k7Ze3Bd46I7aru4x3odjKw00c4HtjtA92+kR7rJsfFdm+k 8SFOPsQ5jjF/4kH97IE+LuQf+M9+Y4yeOPkSh/4MHmW/hx7vttjGk+NEHHL/ ZLStRwTnNXv0nft6qCPru9jsIPcZ43UC6H2/ScaHuNwvPD7BH2p01w/WHvz9 Y9+ZnyA97Gz6a5v/pGc8RXq2kzjcwnEzw3eReI75gqmGsx2k5zpazAf6vu3i BL3cM94dnquunxr2q5/ex3xnifmfGB+s84r9kfxA73vKdVv/8d0PZhh/0oPu 4DnWL+LoxlGzEzjpob83O3+2B+7nxW6xD1U/m78jH/zdBT8ZTv3APui5P1o+ g3WBxi6x58OnSNz/fJnWuXXZfiT1ifkd+v/eDGsv+8u8AfH8EJXzho7ju7fO FH8zodtw/NxT64eO6Da/gfYOKpE8/tFusTuzZ1i/4J8yXUZPHGzXcv5o/zHl Jp+gPaeWJXDEoVuXib783GW45DPl8v7IzV2mT8Rx7um8LtM/7jcE9uHKGeG9 wVw/6IXzvAF+vabmZ1/P13Z0GY64oL7C9l1jnPFXjDPPjnHJx1sSOP1MjC/U 81HUE+jp9Ckij8Zui7cwDct/Mj1B//YvMbli32Co0xMH+w+6jT/yhU9midyu cBw/Z5QInw27w/aMLxU9eqHL+Et94VzRi5ouadfxJRbXYV4d1RXuG/TgWNc9 3+cFhnt0uax7bO44xP7OAuE7pWg4+nV6pekDceRDF1QYDj0/Z7bR0y7FONeB Yv7wD8d7vMvxQnueVb9eWWL1rIF+Hqz3ecypMj1E/x+ea3aX40g7Qpx2nvMQ dFtPFnvRx3HM/9WniH3+vNtw2KHOmVpv12384ZZmTRf/9GC3fO/ludZvmKX2 rnCdZoTajd+6jD/m51VzRN7fOo7vnV8q+7hXOA79GFQucU9Pvkf+mAfHqJ7s 12XziX6G9hL7tR/PtXmN/r3mfIjjXr1Pi6HcDq+Q/YXrHIedO0Dvi9vccajB 7nqf5nCvm0G7d9M6jVQh7O+nNaEf5z7hNdUJnPSQ67bOH+M4TO/xHlSw9T/G F9QHzh+05/xJ8v/53UaP/68wQeLQXReLf0uVmX+BPXm6O1xf7MFxH+xL3cYf PwdOFft8tuNY3ttzpsivj+Ngt+ociR8Gdxl/5BP1s6XflV0SF/9eZvJAnjPQ 6YlDn0/sCt+j+7VU4pK1HUccnp0n82Ks55Ny//kCiaf7F40/xm+y1gU+UZT9 t/XnhfcNFl3+xLEvvbzzx/iV6X1MEwqGYz5NqxL9ua5g6+Os/6E+kx7fq9Lz Mvl8/yAu6PFD0IfDnD/80MEetxOX9c9aw6Eva5cZfaAfvfhAfrfkw9+XaD3P u3q/Rus8q0sJ6iL7O874e9n4NwmccViMM/6IcdrfGOf8iXH2J8ZZR4H11S/K rP4G26z5nMU3+PvdGsK8sBcu9iljOM5LfFZv9zDCHRw43+Yv7TzX6Ylj/Hdf bPYLzb70e/E/v3YbDjleN9HicLTrpAXy/VcdD+iHTRa6uxwH3/umyDmu3TSe P3G+xQnYN27psnYS77P0/21dxgdyvXyW+IGPHUd89WqJxW/Q+osVf89x0uM7 b82R9vbrCtv/st57VV0U/3DR/NDevFS0dhKHfx5eND6ww0P0XcaLHMe57PsW WB4E/fjvAqmzvt9x0kOOd1fIeDUWDIe8bq6Uef6M7nvdMt/iAdit4/3cIHFM i1OdD/T78mqZdxs5jjjsIz2vNzFv61bsL+1JEB/vpPP6SD9nCPV/utbOQcGO Pzbf5gX08Y+c0RPH/lCffBhnT2wwO0AcdXY/1ydw6Nnrer/olFw4Li/rfZK3 6LxbUm64nDfUe6aGL7C4IFhPGOg4951iXPybvkf+lwrxh4c32nsVxNG+B5ps nZ52n+stuM9sj8X2TmS8/sB9QuL01+SD8VjzCxnnLR2X4fxOxnlat+GIG+dN kjjqxG7jj/5cMVH0fHC3xM1nVZofxz5Pviuk78Fxf8amzh/y/Waq7DvM6TIc 0/1tzbfudhz9OkLn6fLOH35waInEFf01v7u20vw4/MfbRaMP8uiZReMPfd6v TMbtQcfR/t31fEs/x6GevJ/ucz+vy3kMeWYVv6/S/g7x77+cPpDHfQX7P+z5 uotkHfAAx6Eeq1RLv5ryIv+KCjsPC3G/mTf+wTnZt/LGB/3/rUbm4ZWOo93t vA9K793oXCjzrttx0kMuN9fJvTLtfm8yvn+9rm+/qPcOpCtsPRxsTvf3bIjj PbIznQ/sYKvex7qF47gvpLrR7hOHXFeolO80OE56zM9jmm3+Eof+ndT0pzji oNeTfNDeE7KWp3H9OYhPjnKcdQIY5y8qxY4OajH7QBxxWFWLzeMYp9+O8eDd sV4486cY5zyIcdr1GKfdjPFAf3vh9DMxTrsY49xPiPEf9J77wG/1sofE0e7H dZ8v3W3yxj2XB3xqdhLr5+9XheuxLzg9cdi9L7uNP4Zj1/HS3xsch13dcFL/ 35fawy0dx88lUyRPeqPL+EN/zv9Z+tvQJXzHVVmcg/E61umJo11Xd4XvXVTN kvxiB8ch34YSma9ziuE4zNP3pE8rGn8Mx7qaxz9flPWVkirTA8TJ/+fnQIjD L2/t/DFOU/Q9ufkFw/G9cQtkPj3kOOLYTyslL161EMonv1Diq6O1vraxyv4O 9uLjvNETh5xK/X5AyP3NauEz2HHYy+l6D9cBjmP+HFEn3x/r97ODLlUr+C96 T+gvVWEd/oVOTxznFh7JheMyTuP/Q3Oh3n7dIHrdkTUc79/0a5LfX+/vNOMc 7EKtn/lQ331Zqzq8920DpyeOdh7k70PLODZZ/BasH32g+4z5jLUHevZ2i9j5 1zPhfJzdanaPOPx0WUu4HzFzkdFzfyPmg/m1XSa8V7jHDiAeOV/f8bujxuyA rJsttnMA7A9x+j/kRZe9LevB6zqOebLqZzK+47oNh96VjJP8fEC38Yef2elb 8S+PdPcvXdqPh2rM/qI7nV1GTxz3Aqzq/OHfT5gs9yFO7jIcP/afIn7nP45j fm2h9+AUi8YfadcZM0QO/+iSePcpX0eEfxnh9MTRrO+Kxh9iu0fr8G51XPKJ UhmXHRyHHK8ol/F5r2D88fdD5old6yjYe7b0H9hPONXpgzzshoLxRz/OqrDz vcQRL5+s8ekCvwcE/myAyuOcvPGHHl1XJXHO8LzYwZE19ncYn5WdnjjqsnZ0 /tD/TWslD6zOGQ7+G+q7b4NzYTuf0PrAdfzdO4zfzhoXDcqJHHvyK8Y/kMNX WaMnDjlVZEP9WaVRxudZx5GvLq/vUR3qOOR4e7N8b2LG+GMabqLvaK+o701+ VWNxC/Llfzs9ccj/iUw4vwpab3+U49Djzlbh09JpOPz02V43RRzjc0EqgZMe /037+72oQ2pIyfhf3Wnrm7wnjXywDlCr9bsvt9s5ZtbB0J7AL33VLeP9Ua3F YbCXz3XbOSHi4PN2t/HB+N32uejPpY7LO73fyd+t5zji7cF6H/TQLuOP9ebH J8h4VXeJfL+qtXwKcfGRTk8c9zie1RXW99wwVezsxo7Dr58zU9/18Xog6O3W c8SPHV00/rB3O5VIXPtMUfzThNrwHvDFft6POMZvbecP/71emdiBXufoYEf6 aN3zbY4jPvhF7634LW/88ferLpD5dbjWZU6vtXgU/fvA6YnjvxP9vh746fZK WT+423HEV3V6f+Xu+VBuKX2n8uNcOF431whdl75jMa/W/g76dK7TE4c/+W/O /o/5dbGen9zbccz/89Se1GQNhxzKG2Q8Ls4af8Rnl6k9eTcr/aupDfc31nZ6 4jgXt5vzxzw/WetymzKhXh3XLPbwWcfR7kmaL/w1E95veobmL2dn9J7gWlvf xPx7oDPUtx4cP7/vDN8zP1jn+98dR1y/v66bPJE2HPbtU72Hf2iH8Uc7j9b7 JTZNh3pY12F2gzj+rLk9gZOediVo/8F673NLu8hpjTrLZ8hHzmvVit08Ly3j eXebrY9DzsN4/3niXOMhrDfmfi9x1gkwHqV9Q1zcE7cQR9zT/ZmM1z7dth49 dGl7fv9I4qMHdP+9ps7yI9iJti6jJw69W9xl/LEeNP574fNVV7iePm2i8L3U cbTjkymihy3F8L3H+3+S+HPfLlkXSdVZfgR9eNXpicN9jioaf7T7uVniZ/7t uOhZiYzDJo7Db40ulXF5xc/3Sn4xV+x6a6H/Dks/VKgL8+eTCmH7e3DYmwsK 4f7ByHKxi1s5jvzzxQVyj+l0v1cLdR6DdZ/opLzxx30dDy4UfXo5L+Pwe12Y ny3v9MTlXIXzh9zu0n3AuTnD4W6/1nPf9ziOfGNvvedohZzxxzT4TM9Rn6B2 r099eL54TNboiSPenpK1/8MfjFJ9echxTIO39Z6CvbOhnm/dJHnsF5nwPPpI PSf/R0b2W9bz+7Khb5c5PXHI7c6M8cePF5tl/A90HHrznJ7rnNlpONbz19R6 vNK08Rd7pHbvkk6R++b1tv4Lu9LP6YmDz0XpcB/rIb3/dmGH4Wj/ve3yHsk+ HeH8+kXvaz2o3fhDjx/q0HX0dtunkjysw+wK/NiO9WbH4DeebzM+xCG+aW32 Xcjr7xmze4EduMbtobzjXmf0rHeNcczr7VsTfBD3DUh+F/bhlVSCj6zzp0TP rqgXPz4zY/WGxPG+3o0Z80uIO/s0RHXd3Yl7HIgzjkde3P8tiTP/7jjobx4t /1/Jcdk/HNd/o6UNeqTL+GP6Xvu16M3CLrEL6zVYvon10QFOT1zWL7uMP/qz wmQ517W648i/0vqOyFdexww7NnemzPuDvC4cv//fdNGDIUWJnzZvsHwT8Wqh YPTEMW9+9/P2GJ9z5oi9+N5x5DuDtA78ascR1w8sF7vamTf+eMd0q3liJ/rr +aIdGyzfxPffdnri2F8Z7fcAYnz3rZB16f84LnX6uu65VT7M37bQe8zfzBl/ xPl/qZJ9mZyuI/2twfIbtO9Mpw/yyMtyth/F+nbqF78Lfn1q7V1e4tC/5fU+ oLlZw9H/23W/+/SsfRfTJlsn8c3IrPj1Axvs7zC/Vs+G496Dy/5ONlzfL6r+ VmQMhz51Nso4P+w4zMaVzf2zSxVytYzxhxzr9HzZ6RmZd4c3WB6KPPf2TqMn ftLS4Xy1M3wfoE7X2zd1HHFZZavYg5vToR6e3iZ6d3uH8cffz9Fz3OulZd6d 2GD5JvK+mvbwXskeHP58pY7wHMKsdjkfc1+74fizKWqfK9sMx3wb2Kn3UqfC eTQxLXb4ljaZd//iOUO1n4c7PXHE9demjD/6tSQTxqU9OOzhHUkc902fl5F5 1tpqOMS/MCP+aGCrxCEv1RtOu4146lnOx6zx5/4u4tx/ZG08icMuL8maf8bf v9Fodpj1rqzHDNc3u4ye9SKQ2+Qu+V6fRsvrpb1eD4b8omlM/9+W9vclx8Hm wLFWVwC5TmqU+GKs46SHHTxjfP85S4djz6jebMAk2ddYqOdwBjZaXg9+L/o5 VeKw8y/7+Uz0a6ep0t7zi+H9IC0zrK4AdmWmrh+t5/XYpIderTRb5F/n5znh R34tEfk8qfVFJzSG+6rHFaydxOVdCOcDPewoFTu6nuPYr1kwz+6nQ/vma7/q HSc91Lq6XPKMoY7j+2UL5H28AXrP7BmN4X7V/+WsncF+5grOB///Sfd7f/T3 KdGO76rEPt2YC/tVrutzXVnjD7pD1M7z/fIL/d5VkH3i9MRB92U23Dc7uU7s wG2Ow44fVy9+akfHYd8mqb15P2P88aNvg8Tnv2bEf1zdGI7zRU4f6PvVmVD+ B+s54j0chx7s3yzrY2M6wzqJT1vkXZdv08Yf3d1K9w3P1nd1b260eAvt2cXp iYPvoemw3mLXlPz9Dx3hOO7QJuOzmeMY99faZT5s2278UZ+zjt5LOV7PL97d aOuGiM+faDN64uD3bpvxh1w3Tsv83rktnI/rdYre3pcyHOt3R2RE3x9tNf7o z18yEp9v7/S0n7RzmI+Pet0J7G2uJbIbap/XbTU+CLOXz8o4POn7tPj3bs2v WptDPTjY33kmjvjv+2wCx/cP0ndWM01yrnltx1k/w3bSzsPMP6rnv9ONVt9G /pjXHzrO+Ah1o1tqPc4En58Bbu9cjU7gXM+Icebx8NtrNUfvqXUZTv+CeGdb Pcd1YZN9D3HO9V3mxxB/nKHnUf/iOOzvHt+L/H/X+w6OabZ4Hnr4lp97Jy5i 8HN6sF+3T5Z5d5/jWF+9bIr4i77FcB/+2FnCb3TB+EN9amboO1i6P3tKc1hH f4bTB/hd3P/19yeot/wu4o1her5yn0J4zn+IvkNT5+8bYTzuLpfxuSxv35V9 7HniX97Qe4HPbbY4H/qwqtMT33ipnvXLh+cqb9D6lNZcKM/LK0WPn8+J/3zU 75VGv091vSaOvzvN+cDOn1kt+cEmjiP+fKHG6lgwPhso/TuOkx76sYPeX/aK 4/C/W9dJPndMVtbPnm2y/Bjx4ipZaydx2a90Pvjei5onzcgYDv/yWIPI4c6M +Lktm2U+Puc46eU8uvrzkx2H/NZsEnvzS6d879Um+z3s1n86rZ3B+PfE/8F5 1Id0fJZzHHHFnS22zorx3FnfW77XcdLDv/6i7zRd1CF6947X58G/l7dbe4hD 3+rbjQ/08EZ9T+4Kx6F/1+q9xBPaQn1r7pD/T0kZ/1uW0p3YIfK/Vt/F/bTJ 1luQdxzk9MTR/uNT4Xhd0CnrirNaQ7n1+G/Mv11aQ/uTyoie/K0ltAPD1d/P Ub/9bZP5I+QdrzdH8ysr+cCYZuMveXhW9H9fx5Hnb6/vBj/l75ZLXJRN2A3Y xRp9b3CY12PCz72g74vu53oD+uX9/cxgvA7Om/0mjvE+M2/nKomD/z36Hs4T EwyHOtyct3MkrO8kPevPYzw4/9YLZz15/F2sW77aENaf7qzrGis1Wr0axmli 3vIG4qg/qM7bejlxxJ2/+Hmw6Zqfox37+vkTzKP5TRaXo/0v14ve/U/t0ql+ nyhx0B9dCNe1/9di/lTWHYv2zgbHmzjpWUci69Ja1/R1s/lZuWfNcfp1fKfM z43L+/Z6z8hljoPNN5NEH/+p9U63t5gc8d3fCtZO4qDbzPlg/eW1qWIXywqG g+7RmfLzPsfBdz/1gys5f3kPu0Ti1aP03p8HvZ4P7fwob/TB+cpZfr8/6gF2 KRM5POo4/P6W5ZLf7+s48vV1K+S9+a9zxh/3l5yg/nSJxmVPel0g+nWB0xPH jwdyxl/qNxeJfzrIcaSlS6qkH62+HiD36dXoe8BZ44/6qGFaR/BBVubHiy2W T0Hf1nN64ljn3d/5Q02urZP1+0zGcMRDV+q616uOo/91DRK/bp0J3196pEHs z3kZsSNvenyNafFYp9EH+cH8TuMP/3O22r+jHIfdPF3fMRyRNhxynNUi62Xv dhh/rCPfpuO8dVrk+GGL5VMYn3S70RPHfD2sI3yX8eiU1km0G47+DdR30vvo /sOCZlsHg/webDP+xGE/H2ozPvj7se0y/ms7Dun09Ifr9lhfuUTzmy8dJz3m yz76vtiGjmNc/tYp9v66Vml3fbOtj0E/Uy3hOz89OOZFZ4vxwd+fmhH/dEtL OF4zXA/+tpTftVoHPMdx0qPZ62Ylj7zDcZA9kRV9mNck49XRbOcHsO9/YpPx Iw45n9FkfLDeVJcz+xrM917vVxNHOHRcTtaXFjUaPfT4J183Ab9bW2Se/ew4 6dGuNfXdiZpPJK460XH6WdLDjW3vfhbNe0rbOdD9KeLFoepHBjtOeszP293f YV3ukxZZD3re/V0gh1X0vEq9ry8jXnlQ68MO1nXVb5vFHr7tfhzr0JvpOH7s fpx8oH9f6btn582Wdt/uOM+Xgf5urcOuzNv5MsjjAdXD7f3cJumx/7G+n9MD /+G6H9m3EJ576aYd1vsyP6uP7LPeq/q9vlP0iMYzR/q5ROhHi+M8txP4ryN1 HXDRQun30Y6z7p/0MAP/9Dpg4ogXri0k6s/Eb3q9EXG0/zDFD/f9AMQ5DxTC /eZGv58lOB+9rt8jhu7u7PezyHSZbPVLxGE/Fk0R+/2W3lP8od9jC/6nFGz9 mzimyzWFcF9xwiyJu3Z2HM2ep3X8ZfnQXv9cKnp4Zt744/fNc8XPv5aXn1+2 mn5APis5PXG0exvnj3Dz23J5D7gyZzjm8ScLJJ551HHkmW9Uiv9ZIxeu909Z KPP25Jx874dWy4vRvy+zRk9c1C0b3vM7tFri0accR7sna13wwY5j+A/ReoTx vv+APKdM70NfXtddp/l+Mtbhr0zuMyOPfNT3gdHOL+vlfO5AxxGfjW6QeLK2 03DYid10P6s5bfzx80fdN7iqU/x5medhGK/9nZ44pu3t6VBPRjZLfJzuMBzz oMceYL3naMcxDzdOqV1uN/6QV4++YH1yZruMQ3Wr5bnw16+0GT1x6GFDm/HH eD+t9+We1hbOo8Ht8p2PU4Zj2q2k9Q2ftxp/2PMev49x2jsl7+q2tlqeC31a zumJY/3u+Fbjj2l+V6fU64z1uAf+66CM6MtGjuO7S3Q/cotm44/xma7r5i/o ++D5VstzEZde1mT0xOGPxjQZf0y7z7OyX7md44gn9tZ1pTt9vRtsrvX1T9kn bJX5+VIuvIeo1v0+cdLD/JbkLB/C+sFvrf0fWNqhjpzZP34XbrRT960faLB+ oZ+T9Z3w3/Re0uVbZZ/791x479yFOh9XyYf3+EzT8wPraJ3lqz/q+r3j9LOB /ennfhbsUqo/J7o/xbpZxv0+cdKjHujBvOVJsAuLWu29aLR3ar31lzjGewu9 739Pbc977q/ZTtiX0XrOZIbWfz3hOP0p6TFvf8yH52AXKH1TPjznWe3+PTh/ uEDt9pZ+3gbyXKL2YadCeP5hfb33vNc7lmwP+jlK46UV6w3Hd6d6PRn+bD/V q13cz4L/r3q+63j375ifZ7dK3HFaIaznflffwzzV/busQ9RGdTWzZB1nkN8/ zviFOPUG/vlAvZ/9ypTFhbBjt/u96pgHG+k9ev0ch7yXmyX6vSQveUm1v68G svfzln8Qh16My4d28z9638YdjsNfXFEq9nkXxxEPn1UufmNUzvhj/C7Wd2OL WjfSmgrPr5/j9MRf1Xif/CGG4yukXX0dRzsG6HnHyqzhUJu/V4s8Lsgafzmf q+ec3snK//Mp0zOIY61s2P539BzGTs5f9FHfrazPhH5lrTqxc085Dv18WP3v +l7PhfFev176e2ZG/PD/eb0D7P29nUZPHPHMF53GH7/+i66j7eE48qBfdX/v kbTh0NebmvX8R0fIf0W9j3djrfNdpS3MM5raE/kr6iG36jD+sMsdLRL/DG03 HPxbWkWv022Gw1xd2GbvD5A/9I//v6NN/r9um+XjfE+A9MRB93DK+GP9oaJd 7OuvHgdgepZ1iD073XGwObFT7NU5LcYffqQpLf3r8VuY9pu1Wd6Ncf642eiJ Yz53Nht/CODijOjfxY6DvDYj9Rvf+Xo97NSrui8ysdH4Q/z/Vj9+pNOftbT/ O3seTZz7MbRP+O9RWq85MBeuR+7QZnk67MT6/l3iaO+/GmUevqvvOpwf+fGe 70KPr9D4+9evtC7Rcfpf0uPekUdy5n9hn/bVetO3cuH9dP9IWTxAnPQYn8pc eP/aVW2yPjgiF9bjbqr0Z+WkjnJwQzhej+TC+qThWt9fHtXD3az3Si/nfp98 ME6rq9/8TvOk0pTh9Pukxz7ZZu6voUc76Hw/OB/ev7NryuIE4qTH927y+ynw nSPaJD59ys/JYz6MSMm61v3uZ/HzYpXPyo7jx9r6ruTq7mcxziekRC8edRzu 8zB9r3Skxw+gH6H250OPHwJ7+0Ve8uOGRRLXLuc4/TXp8bmv89KP3WsMl/33 vPlxoN/pPBrh53BoRzh/ZH/G30+lX4ae9SkYTj2DfGbljQ/Ucr05Yh+Odz6o h/+/2aLnw/L6zna7xXkYluWcnjjs8DrOH+1fUe+FmpUzXM4B6z1PdzgOfWpf IP34I2v8IaZqXR85PifjtFm76Qfk85nTE0e/J2WNP+RfVSn6dr/j+H+p7i// zXH4mfoamcefZYw/7MkFNbL+9HtG8pDt203/4E8vdXrity01cLdmjD/06py6 /jctJdvXcfTvDH1n/KdOwxGPz9Z6zJlp4498YZDuY13YKf3fsz2sq+rr9AF+ Ztr4wz4e06TnwTtCfTu8WeLvPTtCf/ad+tN92o0/7N0AfY/8R/XL+7eHeeFz bUYfxPs/uB/F3++bkvjnH44jHtmrTeLcoe5f8d33Va9faTX+yMP7tVt9E34O 8HOMiN8Wtxg9cchh11bjD/3bLq3vsLeE+rNlp8yX33xdHnI+Tvc5VmgO5+m6 Wh/2ZLPEKSe0W30RzPO5TdG81jr8Z5qMP+KH7d1vEkd+0EfXcVZ1esRdR3md HP5uFZ0XDzpOegzLeMWXPGM44pKqrPlTjNN92p5fs+Y3MW4Pux8nTnrw7+f5 MsbzrXZZdyjzcymBHk7Ufq3pdcPYV5jhddXg87nGe4e6H0Rdxrc6vme6Hycf zKuL9Z6Uc6bI/N/Mcfpx0iPfvSEXvs91g+r7sznzm5DLLe73iZMe82FaLrwX 8un2/lchb83Z+iL87sftUhfylJ+XZnsQt1yv8dWY2tBuPOHnJ9HeuZqXpXPh ubsd2mXc/pULz/88onb4t5z5fdjxljb5/0ru3/ld/HctXQconS/jfZTj9LOk xzDtEuXp1zFOz4sefl5lOOb1Ue5nsU9xk8cPxKUeuN3iBPpZ+J972yyuII59 t3U7wne5rsmLvV/bz/MQ534b41T6ZeJcJ4px6n2M048TZ3uoZ/DX/3F6+nfS 035hXG7V+5l3dhw/Pi2ReGVzxxHvjSwVvsNz1l/cP3LbXJFHVvViQIfpJcj+ 5fTEMb4X5ow/xPN8uXxnO8fhtx5fIPo1O2s4vneXvgtwStb4Yz3k7IWSD72p 5+6P77D1Gsyr1ZyeOMS0kfPHfL6+WubjvExYhzq6RvYH73ccf7+73q++csb4 g89reg74tIz4h9M7wnNvt3UaPXHES891Gn/sl7+lcf8GjsMvDtf6/WvThkNe mzRJvfBNHcYfZvxJte9rp7VuqSOsR1vUHsqTdVu/tYfyeaZZ7sm73XH4+yG6 H1vWFtb1rqz33i9MGX+0/+5Wm5+II67yvFzuv3R64rC/l6aMP8/3yrmWVsMx bW/TeXCQ47KOou/HDWgx/jBf1+vP+S0mP657g/7t5lCePTjm3YzmUJ+v1vXz YxyHXVkpY3VFmLfXdUicv7fjEi90yH7JMD/PQz7Iq/+j6y9DvU4afnyI15fz nTyILZNJ1FVjXK/JSpyy8QjDGT/IfL1Mxm9mh/jnR7PhPf4rp4Xun9H5+a00 TnrY/TXoajvELqzmOPzykA47P0+//P7SAZimcdQQx6Gny3VI3cKnHm8E9uFb vUfsf+OE/kLHGW+QHnr8U9b8Pob1O7VXqaz5d/yc4PEJcdLj77fx/B16VKly ODgXrmserO3ZJxfeP/JHh9jRL/2eEfzdBx1i177z+wXgJ1q1PQe6v0b90D9U D9/y88AY15nqj071+AT2Zk89x3+uxyGUD+KZy3JyD/PkuUL/hOP0+6THft7d OfP76MU03Wd6ze+jhBxKPJ4hTnrI926/n4788d9/6z0vXy0yHG79v35vFMS9 in63xXHMizPV/vzT75GBXH7VuPcPv0cP6nJn2vw+6+JZ30q/Txzi2CBt4w05 53JmL4CfMEf88hOOw/79rdTqRzD+RV2/G+g46SGfQ/U+3CMdhxz3KZf25nUe 3JS29RTI7+OstZ846lJ68mXywXTbSd+vvcVx/NlGlWYnMG1+13MkWzhOetSB bbpI5LokYzjm5drVokdva557Vzq8d+fCjLWTOORxufPBj+X0PpJdMqEcftV7 Yj7qNBxyvKle/M6YtPFHPFxZJ/bkzE7J5x/x84v4+53SYb3zM3o+eL90WB+c 1vN/37ifgL9t0XXJDTpCOV/YrPUu7cYf52WmN4l9/E73kZ9Jh/VQj7cZPXHE +8PbjD/s7cIW2b/ZxnH4mzJdR74jZTjafWKbxOf3tRp/rj/JuZ6UjOcr6XDd IuN130Ee3Mf3j/G9n/U856MtoT4/0hHWh5WnZVwnOI5pdYryGePnlMgH8/ww jYc2bzYc8f+wdHiu40Edz4O8Dh7yejgtenmI+1+sUx/TKXb4Pj/vCr9eVL5D Os3Pyr66rq8cHp0T62kP6/hpPyTe0XnxUCY8x9ZDD/24SdcBvvN7ATCud2bC eyjeTMt8PsfP/ZIeefr6WVk3/t/I8H6BLdyfyvlN1c9D3W9iPq2VtniAOOkh /1uzlscgf91Z592z2bB+7PhO4XNYNrxXYyWdr9tmRQ8urgn1ub/f5wXzf11a 2jHcccyDH9IWb9A/Qh4bqj0Z5X4f87PHTmJ8P3e/z++ifeO0v1fNkJ+lacPp T0kv9SZZ86eg+6vah2I29Jubpy1OIE56NHt3z/ehF/upPH/Nmv3GZ2/Q9vd1 vyl6qHZytN+7ijrL6rTFG/SP+M4WaYtPiCPuPUzn2xm58H75EeoHL3A/jn4P Scs++AnuTyVu6TR/yv0ZtHtUp80H4tyXwjxN6X3Fhazh+E51qeF4x/PgjMkL 06zH35E/cYz3POeD75aUyzi86Djof1ogP490HOP9daXEIVMyxh+/X7NS9G7l rNiNAX6/I+prr3F64pDT8xnjj3k2Stf9j3ccYpxdI3wK6l8/8XubMN+u7zT+ wT1S/+k0PuB7jN4z80vacOyD7Ftvdhzy20LPSR7uOOkxfSbo+7zLOQ479p36 wbM0nvvGz61i/pW1WzuJQ/4V7cYHedC+Wqd7oePId3bx9VOo6ba6f7mX44H+ fNIsfv4Kx2GO3tf7tSbovs4kry/DzwNS1k7imH8DfN8UYt5O31f9udVwzLcV va4L39tK7+va0nHSwz692ib1VCNbDIf8NvA6cvinjk5Z/xvWHtbHH6V6snlH uK6/i+7z/6b7MK81GS73v3WYH4TevKz7Bl2O47vHa776tN+bQz4YhzPSUrd4 uN+bgHz18bT5I8ynrztF7v/0+yYwPVfS/ead/Hwy+jVI6wdX8PsQJc5SP7i/ +036b8zD//o8QHs2yJgfp99EHn95p/0dcbYf9eaf6Tj/MNJw+nG5l+AB0ctd Vf9nZixf5v1GkldmbP0P/V6g7WtyO4HunZAR+VzpOOzWdhmx39f6PZLwNw+q /213HHzLO2Xd4HS/Pw79PVv97Iru95Hnfav3J63p/p39xTTYSPP34ybK/vea jtOfkh78d3N/in7tlZE84Tj3m8ifrvA4gTjpwe++rOVVaNdhGle9lg3fnxmk 8ro1a/Ye+nF0xvbz6DfZTln3VH/914WGo9k7Z81/Ybzf7JT1hxcdlzhQz5Gs 6P4U7X1Y9exjjwfkXKLq7VceD8AubKd6MyFrfhafWTVjfjzYj34/Y/70PK2L JL5nbz17TOsyLspYOxBXTs3afhLm9e1loh9nOY7/31BuOPjNy4TvuK2RtflA HOOxp/NB/n2xvpvWnjEc9ufMStHvFx1HvHBctdjvLXy+QX6P6r3j52r/F7pd kDoij7OJY5xmdRp//NhS/eahjkM+m9SJ/r2UNhzj84yu347oMP6g36de6LdM y/jVeP4AfW1vN/rgfpr9Oow/5vXqjaK/7/j+H/iurPngco5DD+5Wv9anzfiD /Y56ruJ+rddpzITnCQaljJ441OL1lPGHWi7Wc4FrOQ6/8JTXB0Ov3tdxyTuO ccirXxuRCs8fz9Z7wa5K6Xlrv78f+eMLqfDc3b3K51I/7wT7vlj1bSO/9wfq d5/6wQd83xt2p17jq8d83xt0X6t9Htpm/g768q+MxFlP+flk1OU8rXFFja/f Y9xyamca28N7IX/WOCrj9xmhLuBytWNtfi8S9v+fyogdHu/3aIj9zibiZeCd qg/XpUP/OFv91nGaF19dazjm7blp8wvo7y3q/470+0Mh/+FKv5nfo0c+kie6 HYI+FXSfpKEzfP+D92W8o/Z+xyrDYReqO81+Yt/3QfWvg/wec8jnI/fv9Hfk A328VuvP/zVa/v+J4/R3gZ7fkzF/h78rz8g+1xsZ82vYVz7L/Thx0kP/FmQs zwXerPIvZGx9GHH3koysf47yfAX27iG1wzVuR9GuHj7wtxc7js9853EC/RH6 eU7G4griyPsv13av4n4Z+DBt5zrZsA58ttrPTfUenLH6buKPjgd14LM1vtpO 883xpYajLuUA93eIX6er3m7k/g7/fy5j9TSBv7sga3pGvnHdQ6BPPfSoN/vX 9/LdHjnCfKzl7cZPiwt0PWLN+VIfOz5jOPbjVqgQOz1W5XWt59VSJ+jtIY7p +6Dzgf4XKyUuPNRx+L9UlbSzotNw8EvrOdyatPGHubtP68auUP91o+/HwP/v 6/TEEU7+J238Ma8v13M9zR2GQ38vqpf95sM6QvksbJDxO8rrTrCPcaPeIzq9 Xexsr3uVQPdSm9ETh91b2Gb8MYCnap3KiY5Lfu11qxjf8/S7JznOuBD6uYOf IyUfzK8Zmkd96OdJoDabt5j/wrzbR+Pgnx1HHLSv6mvezw/hM8P03r7F/g4L 5HGNym2FVvNf0LueuAn24HfH0Y6h2p67vJ6a7cQ4n6d16Cc2hvpzVcr8Be65 2EzjwTPbwv3Bw7MSz+zp91zg50s6j/Jep0b+ksdrfWKhLpRbu99bCvuxq953 8rnfi4rvnZI1/0t/J/df6Hhd6fvzWI/oyR/w39IO82s4dz1Y85AF7YZDPy7K mv+l/4K+LZc1f00cZu5AzSv6up9C/17W9uyTNhztv0H14dB0uN+0jp53/4f7 LzTrAF1/XMfv2afcZB/f72sF3Z1ZqavOdoZ+6g/3s8RJj/b19bwS9mOI7v8c lwnfp+3RT7lv3tfD2B5I8WX1y7fMN1zube40Owx93krt+HFunzHuR6ue/7vT /A7my2qqJ+e7n4WcDlT+V7o/5XeRT/8nI/ernPmTxNVXOR68r8558UTG/Bfa 9UBW9GWU5z2Yb6tkzS8TJx+073b1PxPnGo6fL2XMf2Eeba3rzosdRz/OyJq/ pl+DXDbyevdgvSyud+/BkR9+4/kqxvfZjK2bQn7DK2Re7+g4/N1z6l/W0Txn FX8nB/R3d9p3iSMf+LDT+GB+Pqxx1Y6Oo5/j1B/dkzYcfPerE3v8cIfxh3kZ r/5oI90vWcPr2nFOqKHd6InDv2zYYfwxLp/Uy71gT7QbjuY/1mDrfohj18uJ 3n3gOOnx+10axT7t4zj05kU/P4D526rzaPsmwxHH8J61IX4vAPmg/TfovUF9 Ww3H+cH/NoXncserfbvaz0NiOeOwnNRdr+D3WwTjPkP9R1mT4chTfvF7gjDP Z+n8+tnvG0J8uFjPD73SbH4H/TpS7xe51c/pgv9s1ZNmv58U4tgrJ36nvcVw tHeVnPlB+h2sN7ztfpM45mO1zt8B7ndYr4l+HZ0yHO3vmUfQs1NS5l/w43O1 Sye2hftiVRp3bef3t6K5B+ckHixpC99b2kr3UT7S+u7NawyHefm+zew5+jVJ 68veazcceVOHxm93tYXvWwxQ/kd22Pwmf+zTrdYh9yc/tNBw6HNPHEa7iu7N 1XFcMW04+vGb+0f6I/IB2Rqd4brR3nqe5PBOW7eU9eScrC+MTds6G9pRqnZy +85wv2UfnRe7pA3H362eM38a7BO97/6XOPRhkdq9+9wPBnbgOV3/vvkb0bM1 Had/IT3s2pRO8y+Qz656XncF9yPo3ofuN4mTHj839jwOP+tV/v0ztj4JvTxc 7eeDnYbDDG2aE316qtP8BebL1xoPH5EJz9HU6X11F3SaH4E9n6h6frH7O8Qn 2aycAzo3E+4/Tne/w31KdONytZ+H6D7akk6jpz7hswOdnvHQoUt/Pb3T6mLQ vr30nbRNHMd47Fit953o+L+eC+s69kiH9S89OPLIk9PGB79eo1b6NaPDcPRn Fa1LXqcj/O5G9Wb/MQ9fVbt0j+P8Lsb7d+UzVs+3NOfsPnju/5A/7FKNrvt9 kTIc822VBvMX0IebcmLfKhxH3Neekzr0hxstX8Cw3az3bP7i978gH52XE73/ oyG8v2NUTtb7Vm80P4LxOy4n8fbK7ncwHx5QP3Wa35MEdo16vu7sJsMhh29z Ir/LmsyPYBzOykl97YXudyD3+3OyH7uv36eDfcIG9Rc1zeZfKDc5p6552f85 jnZNbza7jX5dqeM7tsVwyPkZrWN7utn8C/S2NWfnJ6lf5I+/36JVxnNkbfju 94mtZrfB91aV/19ThqMdI9wP0u9gfSqt4zItFb4HfJv6r/3awrisQu3zQSnD YQc+cT9I/4LxOClnfpM4mvWIztNn2s2/oF+tagdeaDMc62zfa/z2ZpvNe+T9 5+m8eK3dcIjvYe3XjW3mXyi3uC4e/e3RK+wLbt9hfoT0sFu/6/rtvDLDMazr d5jdQ3+v0fMhSxzHuDyv58ZmtpsfCcbxcK1rqHjBcOj5zWnzL+A7W/HP0uF5 z1PcPxInPfR2m07LsyDHGp2/u3baeiDElNJ+vZg2P8L2ID4+Ky3zZLsSw+E/ hqZDe36H6tupnYbje2+5/6UfAd/LtU7/FveD4NsjN+QJj3aav0N8Ncb9V5BP 7eJ1S+Lf9T7W+/LmX4J63E3zRk+c9NQbxBOdGget7++I4ueNaTtvAXiCvkP4 dYfhkPuzNaZ3sl+s7amsCevIn9XzJ8/XWl055sumeq51zbrwvNnteb1fujY8 V7OOny/luQvIbxe9v/IKv98B9WeP6T3I19aF9xxdoO2/rc78An78oX7qpvpw XWtnldsxdea/gPfwx3nlTH14/+k1ej9Iqb6jWuU46oUX+H1VaMdaeWnXrAbD Me/303M4I/3+Dsjjybzoz6WNFv+TP+T7t0Zp74ONhkM/z240+4x5vUVe6j12 9XurMR5H5s3fBfdaP6f3mFQ02TggvthSx/dY9y/3LhXf3XnR65P8Xl6sj52W N39HPwI/W3D/SBz920Pb/1ZL+B7kE3re6YNmw9H+S/KiR180m79A+1ZQuX3a EtZ1767nnx9qNj8C/Xtc5bB3q/kRyhNqsK7ek/TCIsPRnm1abZ5hXNfTcVwj ZTjk/4+83RdAPwI1fUrb+V7K4nnyxznFa1KSpzbONxx830yZHUY3ttHzXZe3 GY75fWze/B39i6x/6vhu2W7xM/huq+e+Hvbzx1gnvF/vnRns54/RrzPz5u/o L/D3i90/Emf78ftheh5kvTcS572wLjPwRol7blH7MLMjPO/1UF7ijZXT4brc Xnl9d6TD7D/YP6P3wzb7+S10+wq9HyffbnYefmEV1ZN0h+EY37/lZTwmtpv9 h59eTdu5o/s76PWBOl4HuL9jf2Guj0uL3Tj6B/FjVzpOP0J6qP2JWlfb9KPh YjfT5l/wnf46L7ZMm3+Reeb+gvNI8pNCWC+b0Th9r4L5Hdo9mK2xfh8x42TM nzGO0w4DH5UP74HivQYjHaf9xznDAts5yfjgr17xc4xYH7y0w9o5RPuPvzul WfiU5m2+8buQz/d5iYNnVZudx/c/y4te19UYDvp1kvf3Ae9UOzCwNryfboLa sYPrwv2Ocvd39Dto1YEFrd+ss7wA3ZmoduPc+vA+5e313qKL/P03qNcv7gfp X6AHL7rfJA69nKP24St/Nwnx5N4FyWvG+btJ+LGq3js4pd78CPKrd/OSR09q CM81l+RlX+/FevMvmC/99D7Hgf5+CO9Dgn3ZvlHWyz6sMxzy37PR7DbYfan2 ZKsmw8GvRu+BKjSE7zPtV5B2fuX33JM/1vHuUfyUGsNRj/BJk+kRvvejjuP/ mg1HfzvdD1JfIOeDCtKfPVosL0B7fspLHv6S30MM+7Gz3oc13O8hRr9+dz9I /4J+vup+kzg+P0/9V9HvTYQ+9MgB5uWXFsMhvjX1vs6VW22eQa9G6T3dy7nf gfzL8hL/zmsx/4L506M/0OKH/H4pyhP51oUpuf94n7mGg+zmlNlV9OtbHcdz 2gyHPW7Q9y32SoX3n9g9oX5vB3HOZ9o58Nlf34X41e/zID0+N7ZN/MmKMwzH 33W3mV2FfKbqPS9fthsO+eTdb9KPkA/k+KvWsbw5SvRhTcfpR0gPu3BQh/kR zKONC+Y3Ma9fm2g49OCGDvMjmPYvud8kjnYtXzD/GJy7H+H+NDiX19fvOX9Y Ej/hP8f9Bf0LxuOiQuI9WuBnFRLvLOLv/llIvOMF/NhC4r0W+M+bCiYv0ss+ t+PLpv/G6CG3Afo+833leu9Ek/UrOJ//VY3I8TadR8/UmZ2Bvv5b70MdUm84 6C90u007Cb0cqfNikb+zx+9i/Ovqw7qjkf4+IeWJfZ6n3W6zvVDHnn7RzhPH NL5d7W0ft4cwH5V63/2ajYZDT0ar3DZpNLsHfzFIx30Dt5PwW//TdrY2mD2E /lTovXdD/T0T3muL5t2k90t2VxiOdt7XZHYG/bqgIPHbdc2GQ/6PFqRdhzeZ PUTcVF2Q9czV/R568ocYZ2mdweHzDIe8V2wxO4PfX6fjONVxrOe84HabdlLW 5fQdyHv8Pl2063q1t6nW8P2ZEn1XvLPFcNjVd9xu0x5CfEcWzM4H+AFFizM4 X7HOdbfq2xFu9zA8NQW7T404xvGLgsz/01Nm3+BHTitI/wa5PUScfJfq4Y4p s3uUp+xvttk8hjynFOxdqyB+Pt7tOXHSQ38WtFn8T/743qdqt0f+YDj8/tQ2 s3uQzyUFyW9GtYf1ZkPUft7r9zJiPlym+lnZHu6zDy6a3eN4oT9rF62f1DcM xyqO0//KuoTbN84LtKfbccYDwDsd5zyFfDfw906DfHb5otkTzgvitD/EZX/V 3/EL6pE3LZp94LzD+eU2tyfEKZ9gXfvLEn1P2HHKB78/Vt/BuLLJ5hea9UtB 5vElzYZLPZzq+f5NNu+gvvcq3tIczruLi+KfJ+l8f2624fhZ3mx6izqDVYsy P75vMRzi6KfvzT7XbPMO33+oKPnIeX4/N/nj91tpPDbxJ8PB78xW0zfAGxdl 3m+aMhz56WFFsw+cd+QDfT/E7xlF++7W9s9NWR4NMW1SFL4H+jwCn/9pe/qn DMf/Ty6afeB8kfpYtyfEIY4e+wM9eL3N5i/GYSfVn5vbbB5hvPbosnazndC3 MT5f2B7Yu1GOB/cAj3Scdgz4K45THzAe63cp3+nGH/43r/Q98iV/zO/Pilb3 SD7Eg7ic/J/z98rQ34pZMi7pYrg+2MMf/S7V+ft1s4077Mmb+t7mZy2Gg35s UdaFH2k2fZDvd0l+P701lGul6uEKqfDeiT30/bdVWw1Hu1fsEn4btIb7v6OL EjetnQrrexcWxd42tJg+SF2v6xX1AX76iVesfeKnRsq4ffKG/Z/jFv+ffxfz kfbzXvcX7O8e0Xg1pr9YAqnEe2/ysyFBL3arK4FL/Xh3Ahe7tNj4E8e67B6L jZ6/B/lui00OaHffT6L2jZRx++rdUN970bO/MR63B3w2Hm30gbx66Nkejlss f+pLLD/SB/X0J2YTdOK/uoxPLJ+Qz0jJp/sulrj+E353TKQnY/rH34dd+uc7 oq/9xhi/GKccYpxyg7Zs8270nYro/99YOzF/B4+yeUJ5Yl3m+U/M7rA9/N48 tTNxv8iH/eL4kZ7tiflzXsQ4+4X/T3c+bCfbA7Nz1w/R+I0R+3/UeGtnTM/2 xHioh2PEPmwyISFP0rM9tK+xHsp6ZkNCv6Q/H9v/aZdi/RC5/pT4e7HrHbKu 2ONPiL+g53Y53rHehuPkest2xt8Px8/1J/CTPb8nzvEjTj7Ma5fZ78e+s/VV yo9/T7mQHno+SO8h6DfJ+hHj1CvMx62/Mv4cx5ie4464L/11WEfbM77wI++O Nf/N72IY1vxe9ge2mppoP/0i2w8/uts4o2d7Yv5sf4yznTD3tzgftpPfpd5w XNhOxB31U0M720OPnxdMDdfRe9GznaSHn91hmpxruq88QS/97krgKfVHMR/G BzE9+xvTx3xITzmE9t/tPuOqcN7N/tN5F9pBzrtFCf4S/zeansX1vf/fuM9r vidO/Qvnf+EQ4n+P5j1xzheOO3HqSdw/8iE9/570xGnvECcfN9Pazfkj4zAr 8guTLP7jd2M+e+p40M6Sz8Nqb2J6kfucBL30c24C53pUzIfrrzF+tdYtxHxk nSqXoJc4IZ2gF/75BH1Kz/PF9JjnVxQS9IwDY3rqSUzPeRTTw79+kaSX+sDu BD3jyZhe9Kbb9ArrXR0zIr85Sfp/wCyJ37ddLHHvdOePn+91Gz34fzDD5i/1 Cr2/sySaJ5Mk7z1qtulbTE89IT3+v8kc06uYnvoT41w/XDb/XIL/n9GPUHnG 9PLdfIKe8WeMy/pMEuc4xrjkeUmc48j2EOe4xPaF6wyxX+c6ajzP5e/nJ+xe uP43KbJf0bs0vewS/Whsl0hHvSI/0i+7XT/3f33peAybbnpLvujmrWpnct32 XfLHPFnb6RF/XTEtjJ+rfjb9o36SnnIM+r32ZKE/eI7peYxTb2Oceog6zy0m 23cp/5j+GrUDMT5e9YfywXnYDtcTth/Dt+ccrVvtlvOR5/5o34U8/+L0+P2g Evnui91iV4ZP0X6WJuTDdatg//+Cn2w9jvKJcX4f6rjNz8af6yIxLn6nMsFH 1ifbE/Qil5YEPc4DFLMJ+hv1fEtML/F5VwLnvI75kB6ff91x7N80dpncyAfr 3Ft2h/I8tczkTPnDXuw1z+QZ45RbjD+ifMkffmj4PLkPcpf5CfrK3nVgvfC+ ug4e40M0biQOfXu+zOTD7+Lvr55n8gn0s4ee8onzUt6TQXsf5BUjShLxOuM9 rrvF8RXxOD8iH+aFgf35eaasG+84JYpvZ8nfTZ8i9mTDxaIP782w/mGfYVun RzhR/pPZH9SxLPLxYd7H/8f9xnQ7a7rM/yFxvD3L2g/78m232VP+HmKb1W10 mD9jZ5vdIB3kO6NE6I5wPpy3aMcFTo846W+zZd/+0e7Ijpda+/HZeTNlft7k 8yiQ5/hSyQ9+7pJ95NkzjA+Gqczp0f8Zc8VfZ7qkXampRo/+Lu4K86hjym0e hXFSeZQPzgrvS+1pf8yH8yjGGa8y/yF/zseYnvMopicf1I/eN132pbYuS8iN +0DQl+t0HbzfdOODcTtI18eunGH7MZQD5vOajOMrEnLgvgjlEPOR+aP7ULvO ND6iLxMS3yW/mD7I13rR8/cxfXBPbC96NJPvivSiZ/wT08MO/6UmQc96tphe xqspQc/9rpie6/cxPfevli2flgQ91/tj+qO1TiymZ/1YTC96mErQM96L6Q/X OpGYflOtu4vpse+1WjpBz/tRYvrxeu4ppuc9ODG9jHuSnvcXxPRbKZ+Ynuda Y3ox/El6nkeK6eVnNkGPH5vmE/R3ahwS0zMPjem5H79s+RcS9MwfY3rmocG6 wLrzzf5wvuP37yyQupAlRfF/t0T9erMYxvE9fGhnaE8wTPW+H0B6+J0L3M7E 9PTbpEddwA4LbR0npqc/Wzaf2Qk+cZ5AnPF+zIf70THOuDTm82f0rMOJ6aX9 VX/S/poEvo6u/8Z8gvtpE/JvSOC0YzEf2rGYnvWrMT3Pm8T0jMNj/GG1PzEf 2quYnvlmTP+8rp/H9GL/C38ityTOeRTjsg6exFkXEuMHin9M4Jx3Mc55HePc j49xri9RDsQ5H+lv432xYH+4Z/4w7iWfOE4O895JhjPu/n3pd5/80eJPxoVo 9+pTRG6N3eH7Ocxvfu82esQzz022eBhk6RKJi7fw9SvSw192zhS5XdEt47B/ ifUDzb3N6fHns6aLXxjaLfX32Vnh+sAL3Xpv2mzJoz6Zlfgu+w27uob3i7+H md+muz/XlZm3cBwYn8XrCeQLP7fHXIvryBf055eKXr3QFf29nqMY3RXK5wPN x2vUnhdKxO9mPF8L1tsGlUu7N++ScTi+xOJGnC/Z3emhj8foPb1Hdcm+xu+z jP61pYbsuC6TF/1FvC4Vx5NSlzhb4rPR5Yl20q/hnq8fipFeqT0pK0q+cM5s saenV5rfgdmtLDF7Tb9D/rTXbE/Mh/MmxjlvUKc+bHbkDz7+k/ZMStCTT0wf 1NMm2jMnwYf7BDE9z5HH9JTjsr87L0HP9Z6YnuMZ0wfvTPWi57jF9OQT03N8 Ypz1aTFOfxrjrHOLv8v91Jie5zxjXOSQxGnnA/2f5Xab44b8+ACt1z++KOdR VnD9hD35pRCu0w2pkHnwbNHWAUXPqhP6zDyK+gz9/6rE+h/Mi1449TbGqf8x zvWaGOf6Z4zTLsY4169inPMixu/oXQe+icuB+h/TSxySSdAzPonpGQ/QbsAO 7ka5+bggbdy9WuhmKb6D80d/L3R68gnG92Adr2HVNi6kR3uuSY4v+I6qNrnF fEgX47IuszCBB3luL5znu+LvBvTHOD37K3alxvSP54vj+ITxA+N0ximMN2A/ bigV/R80Mdq3KhV5nq/7V30Wi/98eK7ZWchvS6fH71eYYPEGvne77ztx/Q32 r0b9ztaTE9/luru8Y9ltdpFxDuzCuG5b5+23lP76adE+Tqn4zz1nirz2dz7B ustJTr/+UoLHp+o7kI7H+zNII/9bKv70Md+HIj3M0apzxH5+q/Hhy3NtPJH/ zXZ65C31s+Xv2rukPu++OUaP8WvTdfLCHFnnvWpO4ruUB9rFdXXbP9Df/6fL 4ijqN/vFv0cd+mtlFifw77G/mZ0netFeNP6MT+AWVnR6yGmnMoln9tM6xbtK 5e+uXhDV9ZWKfa9fIHXf1xXlHODHc82fQU3ud3rIZ7Kus79WlPj0kTlGj7q9 4UWJz/rofWaHVyS+Sz+HdGQ971cQb+xYNPnS/gT7MpmkXwjOMTxguH0XejFN 7fDwQqSf1XqexelhX1bV9btUQcbh2VLLY8N6g1Jbv2N7ME5HztU6/BqzhzFO vYjxIRq3xDjXVWB3X55r7blY4xPKAe07Nz7XqvKs0ne/ttVzVh3OB/r6Vd7o 8b1T9P7PQc4H8htQa3KgfDBPSmqtvzEexOu0PxvXmRxi+v7arpie+hLTs44i pud6YEzfqPl4YFd7cMohjqdH6DpnuM/s9j+e58TpzyHHXnVx3BeJ81nGXfQz Yf1beVjvtvvi8N4m1mPvudjW09Hvh8f3D9uj+wevThS6+d3RPoHG9x3dRo/l zbu17mxXrd/7ZZ6e3/7Z/ALp0Y77psj9L2d3y35sqsz8C+KNm50e3f3lR/n5 tOatKzk96B7vlv2ngbp/MHDqsr+72kyxi792RfLRfaG1u00+0PNdZpudJx/M q/dKpJ5ksPOhHoN+hNPj//fPkvla2SV2fDnt18qlZueDfZSXdT9obd33+b3M 9BE/dnJ6zPvz54r9HKj7las7PeZF/y475xfHKZDHGWXyd78m20N5QD4fF62/ /L2cby4aHfRj7flm50kH/H49t9Pf+dBfgOw0p0fe8Kbq4xN6fqNPef8blra3 eaHZc9LjXcWbNc+aUJB7ItafF9qFCqc/aqkgDl0o418syLxer8zo4Q9zep5q YL3ZU8oNdRv/LhO5lFUm2sN4G/PykkKkb9XiF28tmNwOCewa61DqLV+N11uw L1nwOJbfxbrJRzXSj7y/h0z+GO9VnR768KDeA3CYnsdeu0zfjawL99Fa56n+ 1IX1zD18uP/EdsZ8aM9Qz7FFmfFhvWNMz33smJ55WUzPfCqmD9b/Ev2alKDn ukRMH9Sj9KLnfnBMz3rCmJ7rEjE98ZiecUlMT7nH9BzvmF70rjNBz5/Llmcm gXPfh3oobs/9ZrDfvJO+c3NLXvbNvvDvYl6s7fSYZk/re2nv5sW+9p9n55+p h9xXbtT5EeshxP5KnenhsvmMsXoR8qEexvTUt2XzmfQnfL5J0NNfxfTUt5g+ qK/sRU99i+npf2J66tWy21+aoKe+LVsO5Ql66ltMT7sZ0wfnf3vRc98npme8 FdNzHyemZx4Q44zHYz6DdZ8oxmWfpf1P5FOXoOc+ckzPfZ8YF/vQnuDDfdgY 57pczIf08CfzHcf/8zkbN/LBedSN8zaPMH67+bkQ0uN+sZ/rw7ymF31Qp94L p51fNv8xCTyoi+qFc50txoP9h154EGf3woNzG4l2TkjgXKdZdvsnJfC+7/Sq 40+0P2XyhJ6d02BxaIxTH5bdzpzhWB/8zPWBfBAP/L3B9IE46akP8XpKPM/i PCXezyBOfxjnL2E87PlLyGdMiN+5QOiXfBPVwVaI/ar/TuT2a7fEOwfOt7wG PzZ1esjhnK9sHUzeeS0P8yDWp61bIXr85aSovlTXL+bpPUt3dYtcuxaY/CD/ e7X+/NlyWT+69PtE+yGnK/R87Cu6Dra51yMjTvyoW75zktavDJucaA/ljfhu 126TJ/0Kfn1It8TXDyyQdbpDZ0T1ihWyTvT2TFnH+ljrt0+cb/4G7Znu9KjP yk2T+LpF85Enyo0edqWqS9q1cYWtszKPIB/gR+h7mv26JG9cvcL8Fvq7t+4D vlMu9u/yWYn2Q45DS4T/Scpnu/nhPt5FXVI3d7HWG72VbA/XRSRML0b6qetS uaK+I7hA/O698yyvCcZld433LyrKettF80O7e5fTY7mgokz05aWi/N3QcqPH j2f0vHQP/ZKlDHyfMawn4zmoHpx0/D3a0ajnz7/V9g0pT7Qf7fvvAmnXckXp p+mVymnDotFBT+9OtofreLADzxRMnsynMD7vFIT/01p3dXGV5S/kg/hvlWr5 uVFB5ust8y1vAtu9nB76PnaR5K/HF+T3r5SH+yBH6L0Vs8pFvy6vTnyX9Sto 1+d+nxrzJvR/it47NszjIdpF7uOCbz+Ph8kfv+7WdxCPdP6Mh0F3dj7Uk7/o +tgLTk97ze/K/YtaJ7et+wXygV2/XuOrKXoP+GPOB3F5fS7U55kan/+Rk/WZ NzzexneW6D2Vw2kPG6L6+Qq7Z4PtxM8l5SKHiR5vQC+3mW98An/di577vDF9 sB7ci571QjHO+sMYh1x+TCX4E4/p6Zfx+fpyWWd8PSl/qbPR716Zk/k3wvkj XD1W770duMDWaSgfjO9fvJ4pljPjYMoZw/Sm13EG98b04k//vOzvTkrgjHtj /sxzY3qOf0zP9sb0Mp+aE/SsI43pWa8V07OONKaX+dmaoGd8HtNzfTimJx7T 8xx0TM860pie56NjetaRxvSs54zp4Z/eydh8RDuykX6yvrihUeb3En0fZYLz QXM+zYb+Jev6ST2EHXmgyfST9FhXOMn1M6anHsY4zyGSD+zr8CZbB4/pWR8b 4zzHGuOS/yZx1s3GOOUZ46In2QTOextiXNbrs6EffcDlHO8XBPWjG9h6op1X px+N423W3XM8GFfzPR7Uecz7zOJS8kFc9fgYkc+Wi+XdjyMrLT6HndrR6XEe 4IBPLa6Gfgz3ewjYHsQhwxeKn1vzi8R3uU+BafpTd3j/bk98jrrHym6TA35e MsHiYfIB/w0nSRx/YneUv0wSf3WN08s5lx9EfwZ3y+9frhR78dEUizNJj+Fb MkX0ek6XjNtZlRZvY9jnOz3s1Pk/yzm8vNaJvVVh9MiLlu+WOOOzhWJHvpma +C7zQ9iHO7oi+ej9OE91mXwQr/y1xOJb8oEaN5SIfizvfBgnY55u4/SYDjfN Fv79u2Qf+g19V/7rUosbSY/2zyuV7zyo9djXVlr8DL16zOmBr1sq8fnbRfm7 URVGD3v0eVHi/r7N5lc4D6BvP2k97n5lifZwPRLt/1sxfK+mJ07D/w8v2nmC YH2hhz/liXN0/2fzMqxjG7dA+v15wfhzfkOfy5wecdXp8+V7Wb0/7t1K6d/L lRZ/BvVkn1bKOB6g/O+rDOV3UCHUt/xC0eN/FeS+988qQjtxZcHsDNvJ/oJ+ 4UJZH1h3UaI93L+AP2rIR3qo9UiL8/L9zfQe1utqLO4lH8yb6TUyvlfm5f8V Xv+N4X7E6TGqm2kd+Zt6P/UOTs97e1nvc3Fw34HGPx9rnd8hdRaPkT/8yhF1 ch6wXddJnq+0OBzvLXTqezB7V4hcfkv2C/qb0vfdV8uL3fqmIlzn3zxv8zRu J5rfuVD8+s3Jdgbrri/4uziMw5HfjfJ3ccL4Te8z3LZS5H6BxwPBfPm6Qeq8 ttB3btJeT//l0t8fmAvn+xp6b/Dpep/J7k4PO3y8t4dxReDHvqiU+/L7un8k f7wb1q9J7OrrWVl/fL8yjItG6DuLR2ndeWuyX7g/d6G+v/Kdvjc5viKMl2Zn rb4c8+iYZvOfrHdkPMp4Jph3D3u/Yj7M01jHTz5cV4zp6d9jeq6Hx/Q8BwSy FSot7orlyXNZ+O/x+o7s484f07hPVuzRUZUWT1MOGO8vKq2OMJYD4+xgn6UX H+YX6Pc7zifYZ+lFz32TmD7Yf+lFzzwxpice03P9bNn8f0rQ0//E9MF+Si96 4jF9sJ+SkM+cBH2wn9KLnvlvTB/sp/Si575xTB/sp/Sip12P6bmfEtNzvSSm D/ZZetGLftYm6LlvHNO/rft4MT3392J6rsvE9MxDY3rOu5ie+WlMT/sd09Me xPTEY3rOm5g+sBO96JmfxvRBv3vRMz+N6c/V/Dem5zncmJ55a0zPeteYnucZ aT+x//d/zbaPHMSZb+t8mZ3RODCaL9c5PfnQXtEu4fdVbq9IDztS5vZq2fRj wni7zu1STM+8JKanXVo2/0kJetqlmJ52KabnvnBMz/3fGA/qmHvxoR1bdjtL E/S0VzE94+iYnvYqpme8GdPTXsX0pIvpaa+WPS7VCXraq5iedinGxW7XJPBd 1b7FOOPQGA/Xw7w9p6p9W7Y8mxP0tBsxPe1GjHM9c9ny6Uzw57shMT3XnWJ8 Q10/CcanyudpvD9IPx7fd1Om4xXX6Yb3PFQn1jdCel/fCPKT9g/7x3xg7lb9 TNqR7o74jJE4dTWnh9wvfy+813HLapmHk76L7pGoFn9WMk743NAtdXDvV5m9 QPx5p9Pjz3f6VuzSC1pXucui8H7BEd1iV1eoEv+06/jEdxlHQrybxP2aJHVz e3SH50mO+Cm6V0HPdew/RfT8jS7jw/UKqPk4p0c/N9d3Dhr0fpgdqm0/MTxn XS15/hZ6n9gOXdKfcVW2jgH96ev0UL8zZohcj9V7LfouMnrMo9O6xJ//tUrm Q9WsxHdZJwuzNKMY3rvQYx/Bt7Zo8oEcHpkbnT+t1n0nre8+rRjJuVTfIXR6 OYeodejPF6P6Kr9HCHq2m+5L/d32j4wP4p4ryqUf8wtyPrKkyuwv4v9ap5fz U/NET/9P79Pfd5HRg0+fotmhuJ4Qecauej57SrI93NfCPUL3FiI90XsqhhZM nsiDr11o6wnkg7z95Eo5X7Cq86FdwWd2cnrkkyX6DuzRBVnH7KfjslG15eOk Rz8GVAv9YF03aKyy30P9n3V6fP+6KvEvH+dlPA5aZL/HfBmr96EdUiXz5M3k dxkHI4/e198XpJ+AvI/Nh+fT3qu1fD9oz4Z1YofG5iK9rZN1qYVOj7D2zFqh /0Xfoz2gWubFHfWWFwfyf0LxQ3Myb3+psvUE4Ec6PfRn53rpx4X6vubARUaP +trrdX/wnzqPxiW/yzgb6pLKRvOoQc9NZ8Nzeq80Wj5LPqBbvknG5XrnQ7+L efBkNrRXx+p55Q/1Xer+6v+v9riU9FhPvl3vIc9npL1rVZufxucWOz1+bNIs dmODrOj1sYuMHnZvu2x0Tq8lXM/saT/vFyCO9l1WJX7ig2Q7GW9DHq9lTA7k L+emM9KOmYukH7NbzX9ifNastvqk8D6cass32J6YD+PkGOd6HP6/a5Xxp1+K 6blOFOPBed9eOM+9xvgHvc9r9sLLeutxL5xxYIwzDoxxzu+4X9TrmF7u4WpL 4KwPjHHuG8Y44zHqD+zLoa0Wj3G8YNY7VZ7baTx2s7cTfAd3Gj34/aNV/MH5 GdMH1Pk0pExPSI+vXZAKz2n2ou/SuJT00IMd2vpf2fu8Si965psxzniVfIiz /atHcSbbGc8fxp/xfdQ8VxvjtK8xzvH9oLfd7nUvLu0741XIqVnvt7zDz3fh /9sslvEb5eddGa8SJz3jXujdLvpe9GVvGz2/y/U1NPuL7ui82RiJL6d1m/7i HZ4vv7J4knzw/ZO/E3s+wPkwLoVdO8fpIY8RX0gc9Ui39L9Uz48tmBjeC9pD D3s0eFL/b5YKaHJX/9KlfB+qMbuAdpY6PfT78QkSP3TqOw2jq40e69pFvU9s 7xqJb0+YnPgu82qMy1Vd1i/Gt5Df3V2hfHaabvFk4L/P0XrNYjGSj94PsY7T I37bYJrI9R96/2255oszSyzODPYzttZz8LcWpY7kqRqLG+VdT6eXc50l0r8R RfEHX/u5aOjnuxqvHlwjdcz3zEl8N7ivcqtipD963nTvosnnKdRn2vkX48Nz Ofj5XiG0r6wjnuT0PDeD5nZovFehcvhkgcWNpIf+/bJA2rO77qO9VBPWh+7v 9NCLVfXerVMLst88vtrokT+eo+/eHVUj8j6rIvFd+ifIcW7e+hXcL9GcN/mA T9Uiiw/JB+pUVyXx0zn5SH/Uvt7q9Hgf+YRFsm8zXN9braqR+HNKjcWNgX6m amQ/qDon/EbW2O8RH6Zy4fy6WddtV87Lecofq+334LN2Xvz8oBqJYzatTXyX 9VXQ74dz1q/gXMzLOZMP1nnr6iw+JB/07zyt21/H+TDORL/3cHpwG6bnWQbl ZN7Xan3e1w0WNwb6UK5118/qftBHNRZ/Qi1edXrUx1+m9VpfZaXudUZ1GK9O zMp9O2er/VmlMfFd7sdhn/EfWesX41XQn5QN368rbbJ4L7DzxzVLuydmovml 713WOj3uwX9E66VWzIbr973eJwR9Q434m/d9nYd8MEyTWiRPOErxr2oszkR8 cpLTYz6d0SJ1C//Wds71eyiwjnuLtz+MD/Xd3UvV3xWS7eG6FexbdWeCj5x/ z4T3QZzdZn4V6vRpjcVnwX3dXM/r9R5czIfxTIwP0zou3h9B/tpxG1/o8bce 5/C7iJ/2bxN9SadFX7fydgI/MB3O39tSYr+v7ux/8FL8shp7J5j9RVhWW2Pn CuL+xu9+xnzoPxEXDHM+XPeO6anvMT3fa4jpB2o8zHGBvh3Nd6i9vxDXp3pO ptjR/3KcQ3X+sJN9OkK9Pbrd5EY5oLsHd4RxGeXQ7PKJ6dnfGOf6ZhBvXNFh 8VdMz3gypue5/pie+h7j7HfMh/TBfOmhp3zi8x3MjwK72oOTLsa5Lxaf86Qd 4r4ccY5jHD8L3mX5WZgPF/+Ef7f5Fcbbch6/O6IfKf1eoveYbVgn/99sdP+Y D/xi92eyXnWpnpv4qNbGD393q9MPXUr3+0fib57T9dhNnR58hmrd2llaF3Lb 54nvsv4N/+3j7We8Dflv3m3+FXp28A/R/WlaXzJtovijoV2RHPQe/Q+dXs7j jxc/Uq3nODauk3aW/BzdS6bvoH4yRfLFjbvELn9Va/Ez7PxuTi/n3H8S+3yk 3re2pdMj3jhav3uJ1rXfMDXxXda/4Xtji5F89D6/2UWTD+KfB2ZH91DpuH9f InHB0cXwflzuk13k9JDDSrqv/4y+X7h5neTJx9o9z0aP/o/WdeDpBalfmVBr 8TPGZZHTy/rhXBmXxfqu+TZOD3/9m9ZrXVtr59Hj77LODeN5vb+/zngbcegD BZMPflw5P7rvqE7WV19cIO34LW98GCcjDtqoEMqzWc/pHq7rvVvVCd3ulRb3 kh77zYMrJf6/W8/5Tq+1+Bl54ZNOj3jqQb2/9IP/R9hXx8ddNP/j8OBQnOKu xR0Cxa24FyjuzoM/uLsVeHBK8WKlUKSFUqO0pZpaKvFccrlczpIU/17eM++Z 7n54fr+/7nV7c7O7s7NjOztblLji5g4P8flpUc4fbq2V+WeS/TJeIv8vRvyj 90r2Lhp9wB9buV1NPDAvvlH5+mnB8AR+2/hCaO/+rPHnzoL8b9M68b+WcbuX 8ODXXfXd5F01n2pmrf2O8R/k8Oj+i1qRU2fr+y9b14b79QK9X3BfrfiFFyT7 ZV4Z4h2z8zYv2tv42pY3+kB/rOd2NfFgfu82CN9fkI/kT4PM5858KK9m6P3f 9/U9gi1VX3Q1mt0byPmN9b3jppzwUU2t2c9Yx5LD42Og4lklL3b5dg4PPGvl 5X9P1Mq+Pr4p0S/zprBfn8hF+yul9T1yof+zkturxAMx9ry+a7+246E9DD2x i8NjP4xNiX44y+1evgMRxJ+2qZN93txi9iTxIM9rJbUPd2sXeZ+uNTsZeI9x eLBDf30H8/526W9Hh4c8fl7hX6yV+e+fTvQ7VhJthG/vzdp8accC/CNvD+67 ludFeoJei7kdGKzLPRkdb1sCD/7+S1u4X4bqe8frZbW+aZ3hDevO1Zk9GpyL Haj469xu/Of2IYl20fMTJQ50eq31Sz0Ww0s9xnSinXY66QMz7HO3A4P9/5uO 55WMvr/r/YK/vmo1eIzrQbVvmzNivzUr/qXbbb5Y1kXqR8R0o/9DusV4ON+4 nXwBNl+nLor/6ntNW3g79OxdPn7iEbZrDeuMvOjjD+TPVT7+GH5pjfcEcvKj dpUfYxPwPI+I4WkHx/Cswx/D/6b5aTE861zF8MH9qUXgyR8xfHB/ahH4YXqf K4YP7k8tAs9xxvA8L4rhub4xPP1sthOe60s/Jo7nMx+H7bSX47g95SbnF+aZ zE74Kcyf+V/+CPMWw3OHkq0/22V9Fyb6pf0f98t26l36NZjnwzG8vufxTZfp b+R5HPdBRYwH8P/Wd6x3j/EMETof7fBiHrwjfHW/+kFn1oucX2GY+R2El7oU 3wv811pXsKbO/BfQf7LDwxy7+huxl1o7hS/OdXjcQ2juFL3xuJ7DjPgh0S/z XnAOdEZnNK/Rsr+u7jT6wF7YcKz5F8QDvZkdJ/kMzR2Gh34K5vV3h8Hjs2KM xPH20LyUs+vFvhn3i/kdhMe4p08SPr9C3ztP14Vy7d6OkP63TRS5/1qHbPvz HR54XtH7Mi/UCR2fn5zol3kvoMPKPi/6O7CrN+0w+sB/7rC8FMMDu+kE9Wte LUV0rhQ9+YXDy714rRfbUhI5cF693CcbO9P8DsJDvBys93E2KlVs0Q1X8npG 0He7Obzca58pdDhO6zRe7PCgR7kd9HtT71EMnJXol3ksoMPIYrTueo98ZjGs w1JVZf4F8WD+22ldyuMcD/0UxO8vieAv0HvArxRlv1xYL3z03gLzOwgPebSB 5sFNL4h/9Ved+S+wM5scHnp9Mc3fWaIo/vdlDo91WbIodtCHav/cWZ3oN4jT 31SweQXneI8W7F6C2LF+Hku6QY32ox5y/ABfQvl3yULEn3USP+np8NArm6r/ cWxB6HJJvciJQ+rNHwn4/3a9b/yg+iPL1dvv0IMvObzcb62T70P0HsRVdfY7 2OUrjecPqZNzx0HJfhnXk7oc+Wi/6P30A/LGVzBbTnJ/h3iQ59XeKJ9f5QwP /RfJC3B4bP8eWkf2b/UjrtD9tXvK/BHCo9/L1K/ZJyfx+9Xrza8B/qMdHvuk rknk5MU58ZeurTN4yJ/LNQ/he/Uj/pvsN8gPH+72Ef0grHtTu9EHcvZQ92uI B/b7PM1brcxG+zct35dzeMiVpdSvubBd9vfVyldbtppdTHjsk1NbRf7M1feA etabHYP9U7avCY/xT0vLvt9F/Ykb6gweePbNCr+O07pyDyb7ZTwccmOLtkie ZESO9mkz+mD8e7n9Tzz4/ec2me9+GcPD/iAfrsuE/N+R0TpPmajuWHtoz79a Z3kqQR7jdcqHa7u9R/zgj4PbZX69W4X+Wzp+0Ofc1nD/jsqqnmuV/9/s9j/o N6BV9uGl9cZntOeJh3kzgV32lcbfdvN3juN22vlxO/kd+7yqzvoN/LtF4Gk/ x+20M+N27o+4nfsjbie/x+OhHY7pTYv8nUXWhffk8f8ntb7Bv5yeWOcd0gaP 9juczgH9Jzk943beOwjwdOXs3m0ML/lXUxLwMqxpCXjaNTE87yPE8Lw/FcPH dVXYznOQGA/zZ+N22hExHvoJMTz9zRg+jsexnf5XjId8wnbcX73B+YR48L7I HOcTthOe6y79FG296ZfEfg3pMyE6V15F7QO+w8Z2Wd+asC6LvY/b9P/BU7B2 2ln8X9heStSdofyL+xW50mV6mvMEHZbvkvyz5bxODbbRpV0SX3srrjvp7YSn Hwc6DdG6kBXvRHXyvV6ejLszGv8QyXtZoSuqI/NVVH++QeTesGEVa3XT+WHH Qz8L+vNVh8f3piHCn3zv9Y0G4Y8/Rkb15/XcsvdoiUus0Cnx/dW9Lh7shC0d Xuoq/Cj3iHtr/YGBXjcTcn5frRv2vdrDS45J9MtzaNgPH3XYvOivwRz7ocPo AzZbbEJUZ17zP1bXd8z364joo37W8Q6P9dpzvOjRJ9T/GtAgfNdvqvlNhId/ +vtU2b8/6PvpPRtMToEN5zi81FWYIvZ6qSTnMe/Vh/5au9bpHaf2Sd9piX5X XVSunRvzv9atv6Fk9MG51cUzojrwOt96PVdqLxoe+lng76UdHves/9R66hUl Gd+7WgfqoDlRHfUGsadnzJH8r+uLss5bNpjcxPgec3jEQ1+eLXbBu0XxRz+q N3jgGVCUdZmm8ZM9qhL9Mo8L4+rh8wrqDWxVNPpg/x893/wj4sH+GL5A1uXt QsQ/el/gG4fH79XzJN+soPn8HzTIuJ+pMf+I8NjXs2oEz5aan7+T5wtgePs7 vNQ30HcBzijo+XV9mNdwqt7rn1cv+JarTfQbnBP+lE/E+aBX5uWNPvh4qc78 IOIBnx2t8YBTHU8QR7kqH65vvzrpf2Be+GyQ+kv3Nph/FMir0Q3ip1Wp/bVP g/0Ocdju8LB3e+m7Ryvkxf/7vD7ki3/lhW5NGn/tSPbLvBb0d4frYfploMvT uZB/Hmsye4p4sN/2SlXku9dl+Vy0v1Ii/zZxeOA5Qe81nJrT+utaJ+CG5shO b9D56X3S9dpFfx3SYPYB8owOcXjg26hZ7pXc3i77+8t6g0d9/tvaRW7n1K+v S/bLeC2m3y8byee0yLlHsuE9kDvT5pcEeLZolfnd3mZ4aL/CrP+oLeT/3mmJ 66ye1fPRBhnvhZnofEnX+/VMRd9u+Hszor/6NIT5NO87/CvdA1w1I/5pTUbw fu11ezG82ozor990v0xO9sv70qLGWm1enD/kYr411O/bkA88Dx10vC5r9Aji C6vrOV9dOpJL7TLPNVrDfbGr+lk3eb8hv+q7Wl+pnN82F+XrNVS81g19aE7i cy0tou9Obwj9iJXSIX8upv7UIWnRd9+53wH79Mi0yPnnfB8G9YfLeHjPnONE fOxl5dtf3R+J2+l3xO2sJxy3s55w3C7jGpFoF3k5MtFOOQF6vFJv86L/GMPz PkPczvzNuJ37FXRdqkHoeE5yvQQuJ/TduUX4t83HA76Yq/ekt2uwd39JT9Y9 pNyP14V1SQK7vq/Ds05ZjJ/nXHE76RC307+O8fOci/wDtKvljT4cJz7uyldM 657/kc1i79zpeGC3f5AK6VbGQ/qQDlju350+hMey/uD0ieHDem26r9ctWHsM T/5hO7bLr3nTG4H9v04hqk/j8JxX7B+dr3Yy622wXc5XuxL1bpi/R/uA7eK/ dYXxyrI/BX13reaDDfC6lpAvY/TexHKNRq/gHsdyDk+/DOOxepdDDA/s4D6N dj+NeDge+lnDu+lxf6fYq01elxxihfejt22SuPPM780fIR7Ea3b4Qfhnx07J C167yfwsrNMuCl/GD71b9rPi8UDO7z1M7MMjOsUu36nR8OCc65xOibuO1jr3 p41IjIfnYvDjqzqieqBapzrbIevR0Kjvhvxk/hHx4J7FxT/LeM9VP+jgRvOz sB7/cXi59z1W+O6/HUL3lgaDh3x7qkPWfUetu9RrsvkvxAPpf9RkoWud3h/Z xN9tBl80qP+SUz9lq/GJ8QO+5hfBs1iH3l9pNDzgn9U7ZP6TNF9/6SmJ8fAc DXR7shS+e1/2yyDnBpQsLyOuUwf4VGPFod0DnDvd/KyAD5/Qc7TV9X2ZY7le lRIH2cnh1+8m8G6K52g958o0GDzspd6aT7hzk9SDunWW+UHEA/67a5acr/Yv yvpt32T+Hej+QlHm/ZvaIW2VifHLffSZ4ncP1nOlPRrD/MMxes41u1H0THVy PDyPu6cbrnfR6Ez/7qbuCZ6q96zTjdLf8LnmlwV69RK9pzO2IPvxtEbz77BO dQ4v98e1/uKfBdl3Oa+vifXpLMi+W0rrrv40L9Ev8wwx7IsKNn76g2DPWwvm PzzW/b9h1eZ/EQ/g3tN7JJ15wxPkfy3v8OCPs/QeSRkP6JhtlPWaXGt6jPDg l43rZJ1u1Xso5zWa/Eb/zzs89v8dmqfzWV72UbHB4IHnA613urLWyT2+LtEv zxOkToXPi/6g1KnIG31AtylujxAP/MTntf8Pc5F80/YfHB6fr9eL/P49J/si 3yjfRzSavUl4yNWVmmR9d8jJvriyMaw/fFgulFdXah2o83NCj86GkH5na9x3 HeX//ZsS/TLeCXZ5xfN6qNfR76h2ow/kxaiU2fXEA3Le0yx19b7LGh7aPahD 2ZQ1eNhHT6WEf8/SeyglXZfPW8wvIbyce7XIeH5sk89/N5p9CTus0Bau+9la Z2qbrOjZ3/w9DIx3E8W/qY5z23SiX+YTAn7JNpsX/R+xC9vC+tFftZr/RTz4 /eqM8OumGcNDOPh5fTLh+t3dKv2PyMjnwkY9f2qz/gmPeEdK759srX7WXY02 H9DvVIeHXOuj53dPtoo++7PB4MGnD6tftr3WMVwnm+iX+W+gwxXpSP7oudvz aaMP+OODdluHQG+W+R7jeKTF8JBfsQxDW0L+v7Zdzg03135/V/r/7P5IYC+l NX7xlN4De8TPvyGfv2sOx/OGnlMUmkV+LdYY+oPtXqctjEPpe6B7KD8vkU+M h34E1rMylcCD+3B/pMTPXKVR1t/ibgPFTsw2mhyn3RrkGU/w8YDuGzg87fwY P/2guD3g4xrl20lu//N3rOvmBZGXuaaK3ZFH5P3i87Sm0M75TO8fPpISvflx o70LzvkiDrRhk+m/eL5ovt7PZ2I8vM+BfbWg0fDQTo/b6UfHeAbreVPczvX7 Z/xVtl7gs5cKoZ4of4Ifa7TfLr2vWXQ84P8tXB8QD+lJ+gBu66LRLcC/hJ+n /TP8EIOHWbFP0egTw7MuXAzPe2oxPPkthmccI4bnesXw7DeGFzxTEvC8H/fP 8638H+OZkoCP68kSnue8MTzj2TE87coYnueaMTzPYf95/A0J+BgP4ck/tIe4 T8R+7Azfo7B7dh1hXk7Zj8Y6zuyQ+OXKXq8W9vimnRIfOq8p2p/eTnj64yGe IYYH+Zgpr9dPPBwP/WjIq2xHhH+I4Yef9K36facNTeDppXE32L1tHRZnoP+L fjbQfNFrUhLXumB09K6o5mV8O1r0270dst+snu9o4edHHB7drjFK5Og7HSK/ bmwyePQzWN+h7lT/4vYxiX55Lgk9uZ2Pn/4vxlHRYXYe7Oj55icaHvDBI5PE XhpciuigfutUh8d+eHWC6NWcvit6g9YT7TEteg9U4z176rvWu5dE7p+UMn8W 9sm+pdDuvELPMU9Tv/uWJoMH/otKZj8xb4P8y3c2gnfayu3At5jmh72YHCfP MRHeqy5GcadKicOXikZP2HMnzzS/kniwnhvqu7gXOx76p6jz8YDDS92JGWJf D9B9fFNK/OTSnOidtZTYz6vpeWVLQfOBU+H7OW0OL/Uc9B2PfxX1vKXJ4LEP 19U6D8unRG5eV5Xol3IQ/urzHuej34rxvF8QfirTB+y69wLT/0He3q8LZH+u q+8JPtJkfivA93Z4rNuz84VvTi7IOdxuDo/9daTiuTUl+7C1xuwp4sEyddRI 3P/VvOZzpszPBZ+/mRe5sIf6xWdUJ8aP84gXta7Jd2qv3dlkeLAeE/NiD6yR Erm7RW1iPNQTOB85wuPH9HOl7o3aj7toXd6V3D8lHrRfpvnFv+TEfniuKcxj bXV4yIVv6iSOvayOcy+HB5//mRM+/09K4Ob5uQrxgJ/qNB52fE72zXUeD8a4 TsxJXPBAtUv/mxw/Ph9uEDl9teY33evxY+C/W9s3VD5cvfGfx1O2T8GOC/3e CfUh4FbVfK49tD7aX03mrxAP+PJUrWuxeLuM+7WmUF7u6/Do9UN9f/36dtlf +zo88Jzn9SI+03tWlEv4vD0l6za52fwwrOdROr4HU4lxIs/mVq2HfKC+4/NA k/kbGOcleu65dUr472/Hj311d8rOT+U+clukR7Tu1iP6rujeKn/a01E9hpTo 0YM1v/TSjOyv95rMb8Q5/psOj3v5r6Tlf7Myso8OiODHZYQ/T9a43w2tiX6Z vwqyvtsaySW9rze51eQ26kBkM2GdtHvVDxvaJnA/pw1PcE6cTxs89vXwjKzT 1Vq/ev+UjLcmG72/qXy+U7vMe7LGMz53/sP4l4rgH8/KftwvXfEkzpsdHvq8 l7af0yRysV97ol+e52J8q7TYvLh/kB+1Z4vRB3iujc71yMfTNL90J68TzP0M fjrT4UG307S+9jStd36gyuFL8+E8y5+QH0/mZf/tofvsO39XAP1flgrndYDi eVPl4KEOj3PKF1ISv7hU299N9sv8PrDDzU2RHC6IvHzD42VhXo7mIT+k+qLD /W7Cg16XF0I5VO4X+Wrj1I97sdH6JX7QdaTH4+S+R0H0254+HuyL/d3vC+zD Jd3vIzz22xnu9xEebHKE+32Ehx3z76LZxYTH71e538f3peC23F00e5bvRtBO An89OdLwAP5x9VN2HZHAQ3uW73IRD/3BGJ52awxPfzCG5ztfMTz9wX+eV2Wi nff0Yjw8Z4jh6a/F7fTT4naem3JdILePdH+Q9ATfl+1L8Ndreo4728cDe326 5/3A/ttT8S/daOsF+/M9X0fCQ4296utIeOzzUb5ehEec7itfL8KjHl+1r1dg p8319SI8+v2taPnYhF+nW/4vVjI/APtsJ9qrJVsv6IPbUmGdtbGVoTzZXP2T xmkJPFzHuP09PbeGPdHP8fN+UgxPOyuGJ56Jek+G7VLHzNeLeKQOVb3NC8M7 0Ocb+KcVPl/Cg51OLlk9j+A8//CSxTdieM4r4Le+0Xuri8B/rnGzGJ752zF8 L/UnYni5/zE/AR/UX10EPqiXtwg87esYPrjPf5vKpSN8vYJ4yOm+XoEcO8LX KzwnKh1wpeZhxfeL5Z2Lkulbxlsw3f06xD+4zd+ZwD69W+srfuPvAzE+wHbC M25DPJTXxAN77mx/f4J4OB7ef8Z0zojxD0ngp56I8bPfeJyERzcz9H20LfX9 g8kjEuNhvgHoc2hH9A6Q5nVf3SHx2SH67ssZP1vcg3igB+f/LHAztJ7M7c0m v7Avahwe9tIK46xODtbxm5TBYxmX7hD/eGt9N+L18Yl+Gd/E/P5TsvFTDqLf Z0p2LwfxguopkVxRes6cKv9b2vEwToJtvanDS33oKRJvOFzlxFB9t+HJStMP hIecGVcp6/JIUeITD/i7HeDzZx1e6vNMF3p8ovpkeMrgsR2/1vfLdmkW+3Wb GYl+KY+wn3Yu2rwYP8E6HVo0+gDPmNlmNxEP4kqfzanIdA/8m4LhCeIkMx1e 6gjNFv75VeuZf9cs9Lp2ntmDhMd+HjBP/Lb99FziKX9HBOeOhzo89sHPc2X8 /fRcYoS/vwEyXFnQ+3PN+r7W/ES/PPeX54DyEf9Ua/2xvNEH8dBTPB4S7Osx Wn/3KsfDOAbG+5jDwz9bRusUfpSXuML3uk+3qTM/gPDo/gCtB5PLiT3y32aT v7AHunLh/pqh9ZBW1/jMqJTBQx9tnBc9fJi+w3R1sl/aT9Kf34ejHMd8P/F7 b9hWR3h8g3iw7oP13sDGuUjOaD5+hcOjvate7PNzcnperfV31nO/jfCIE2yn fsPh7SKP3vZzQsi9kxwe9B6r50KPtgs9fkqF50LvtWtdT32X5axkv4H9+Eo2 2l8pkeOjs0YfUGUfjxsQD35/o1nyvN/X8/HJKfsd8qKlLZRXzRof3TgrfDNG 5czyHk8gPOTnOmm9V6Bx3o+bzb8FvYY6vNTb0TrkWT1vH58yeOBZuU3W/0x9 R+eIZL889wcdlsoYfRgvQL7m9hnBd2ez8PcOHk8I5PzjGVnHVVpFjs9JWX/g iz4Oj/nNaRX99kCryNf7HB54rmkVfTWuWfy+39tsfgGepbNC/zX1PfGhvn4A 75mWffKA2ufDkuOXeG6byNeT0sIvv6QMD8D/nRZ9d6HGA3bPJsbDPAHI1Stb Inml9Zv6a1zinmax/1bxfcVP7Of9NH/lJtXf9X7fG2Qa3Bzul/Htgi+t70Q9 5PDgg5lKxwnKP5250H8mHX7NiT69IyV294/NJncgju/W+NpT6o+fnBw/0E7U PISh6ldPTYXx0Hmpip26x3u1rtdq+cR4mD8AeVzp741TvmMefzZZ/nKcD4B9 94DiX9bjEkGewq4FiQvNbxR+akuZHgL+tR0e6zo/L3XY+uh72o86PPrbX/N4 +jSbnqadi3GW6Yl81jo/9yd+TPfqQpif+6PjgTh7aJDBEw++X/ue8N9klYdZ v3dEeHy0a32Her0/NsHxY/yN+k7py3oecXSSbvh9jOYJ9NT8m0qPF0HOH9xo dGB8hvOlvMW2WN/jM8SPbddREHw1nxk84o0Henwm0F8renwG43la5fC57tcH 8nNnP5cHPb7zuA362XC01HfesTmy28ZJvuJnul9u9zgA8SOee6rHAVAf4RPH Q7sY/y/Do87uCx4fIB7sm9s9PkB44sH5zlUOTzzyPvZk4btbVK8tW0zwg+At St3t/Rsi+6EodLmowejDeAjpCb2+vtp77zodQN/bdd996vPiOgLf9KLZ74Gf 8mZRxn3OFIG/S/mny+NRhMe2Hx3FSR72eAL0y9xK4eO0twd29xt6L6FHyezu wP5s8fwHLNvlzYaHcRLsux90H/UqhXY39fvKHjcgPPGADHvMNXjiwecdVbLP HtZ1/Nvr3RAefLyN+vWH1Mu4u3y+6Pd2hwfdZyr9v9D7wE84PIY/sN7oybgK 6Y9+mlWuH+Z0w/+OaLZ20oHrDr/xRH/3muPB+Hpr/vf8ueG7sFf7O1UBfU73 OAnh5Xzf3xUg/DbqfzJOQnisy8MeJyE85veSx0mg9wdqPOqgUoL+sAvvKUk8 6566RDyEcibOS2Ecj/FRtu+j+4v2RaA/BpQET6O/M4T/z1e+Xq0lui/k7YH8 3a/D8DDPhHjYL8ct+bCOh3GSGA/hiQffp7G+zKeJ8VCOx3iC+xSL4CH+f57X aNE7W2s+ybOaX1sYY/ChvabxjddKVqeB8gsfI0oyz19bhD9PmGT7g3jwt8Un iz2ytcJ/3GLyDv3v6fAY75K/CF+fpP3+1WzwkNun8323rK0X+QJ24Rktwm8j JyfGw/sUaJ9UtHlRzoJ/64oWl8M2OH66yXvigT69tFL01xnF6J2qSomv3Ojw QD92mtjPrxfFzv6jRfbP8rPMLiA84qRnzqr4upse8wryv7I/QzmC84AWh8f+ vWCm4Ftazw0Wd3hs0xVVX12g70h9l+yX8hr25L2FaN31PfkXC0Yf6Mfd55p9 RzyYf2+Nh6zoeIL6yVs7vNQf03fUjy/IOediaRlfZoHZs4SHnbmbvuv8tN7P +7EllIOv5EM+PFTjwkP1/HBph8e6/6B5F1cpP/SvTvTLumT4fc+8zYvyFOt0 NOtueb4p+ZN0w8cTtWbvEz/4aWWtFzsiF/FnnfDtPIdH3OkQzSdZQu9HLJmW +tWX+H1WwuP3h+rFbjtY7y9M8PoruP/VJxf61T3qhR8uU79kuZbw3OKGnPg5 N7eof5nsl/d6oadntkf7Re/v/tUe7ru7PX+ceBBP+V3vl6Syhof2N/Bt4vAY x+6Nolcv13vJy2i+xWnuvxIe++dGjXtktb7WjBbzu+C+Lp4N57WU+gF7ZWUd VnB47MNjs/aeW5zvgd/vUfiByfFQD+NewAFtNl/q1S+7+f4SP0fA/25osThB MM7mFvU3MtG+1vdKHnV4ibu3yLnfJL1Hvnxa7MkjWsM6ypTb5+n3U7Q+cLW/ P4f5X+Tw2H8daa0Do/XJVnF46J0vW4Wej+k7K88k+2W+h9RjTUdyJiPrPzlt 9AEdLvY4SfA5Q+uafdlieIJ7EIWWcF+srXGuXdOSp7qS8tveHl8jPIbZp138 nGHNAt/ideUQlxjv8HIfVOMqZTmO9Vjd4YGnZ4vMq3+LyJs7k/0y3wPjWsXf bw/qhu3l7zDjfs4gj3sEeqFW719skIrknuaHneXwz3X/fL/eX3pJ40qrKh/2 93tZhMf4X8tXHNdNz82a9J5Xi8lfLO+ODo9tcUVe6HSx3vNZ0+EhJ+5rsnlR P3HfTVw07rlIPARf32gRPv8yOU7mh4ButzRG8ln13JuN1i/uB/T3OAbxsB5K UNdqntYt/qpg/j7hMd6H/J4C+HuJFtPfsAee/EL80+u9nXnN0Kd/6HpNLZhd Sfyg30cFiw/INB0Pz9mkLma64v7uhW0rmF1JPMA7pWB2KOGD+MxxYwyeeAC+ 3BijG+I273h8hvCY5yytR3N/g9E/wD/K4cEOd+i8/mgwujF+QjpD75/XIvrv L6ePxO1VHy3rfj3HKffK3K8P9M5CjfO8NtbgYTf2cX+f8Bjfeh7HAD3SyleX exyA8Md275OKouU5yP5oMTsVcumdqRL/+NjbmdcM/GV5jroSD3jcILBDLvS4 AeGD+MyWMw2eeKBfjp8hcutfGk+/yv3xwD58RPEspfbCfB8n6H2xw2P6B2v7 eK13vLLDg67peqMD4ySkG+IXT6r++8Dny3XBNIcVzV5mvwj3vKzvJf8y0+DB F7V+j4Pw4PdPihbHwL6ao+/CLuF+PeGFvEXLf5D7ax73wPpdN0/sgMtarJ3n fhjHr2rPb+hxAOJHvneXvwONuNtMx0N7Fv32UD7cyuMDgbxdy+MD8HfvcjzM X8b8smqPVfs7KIE+WtbjBpDfj7aIvB+U5BPwx5eat3aF2sXF5jBvJ1dndGOc hHRGmOEszWc8xukj51R6/nCKzxfT2FPfuVokP2RV7S+uQ8j7BdQfwj8/hfXP Lb4xJaqXw/oVkxLw9FM5LraT38A3i7wPxzwg4uf4ICeW03v9J/j7c9gf+2je 0GX+ni7pynbCM67Cdsp3thM/24kf7HVEq8VP/hn/6AQeytMYD+PFqyy6HkbP 0bKuOzp+4oGdeXsper/E4waQc3/p/l1rQgI/1wl0LxWN/pTjkAurMe8sl8AP PjmgVfIKBk41uUX8mNbq02Sf3lGU873qtMkvgD3p8PDv/pwi9sKHRdk/Bzs8 PgepHnhM7ezrpyX6pT7A3zYuRnxVKXJpt6Kdg2K+I2aE9y+v0ncHf5sp8e5B BcNDeQo5Ncbh8XnQDLGLO9S+OEjvGT84J7zPWoaXOMAcmUcvvQfZkjb5C7gD C6H/UD1b7KW+BZH7hzk87tGdq/W9++s6HlOV6Jf3XDDOyrzNK3gXvDlv9IGd ++78sC5RGQ/Wv1Lvv/TLR/zDvDSHRz2CzeYL37+Xl3kfovt6SI3Z3YTH+UK9 vjNRr/WfiulQrhUcHv5MvxrRIyvnpf+jHB54evA9UJ5fen11yPs39L51j9rE eKgP5P3PXOKdDfH7ckY3xI/Hev1g4sG5wmkar+jheCgv4Qft6PA4d7y3TuIJ Z+TknKosN9DfwIbw3ZgyPH6fovXAdmgXP/JPr1MFvXeUw8M+PKFBzp/vaZd9 eazDY/xPtMvnB6q/FmtM9Mv7Kfh+a9bmRX8DHwOyRlfeHyb9STd8/drvJQTy /xC9T/ZkW7QfU2KvjW4L1+sGxbNO1uLtrBfHfiGPj9Z7Ff2bzc8mHsiv4c3i r/TPCF8u63kEWM9PHV7q5mm+VZPe2zje8wVwP6OUEfvpi7TIibZkv7TLhO1a bb5BXGf5jPEb9PtH6VAelT+x/jtrvKIjbXj4O84Bd2gN99GFCneHyos+reKv P+jxlGC+H2bkHPL3FqHXan6PReJtDo/4yy4ZwXuUnnOcnA7nf1Za7LHhGrep SvbLdZS8vxabF/kGv1/v9Ra21X0f8xviA6973k8g3zbU+ox9myP5pvVE+jeH ++iUrKxnbbPQ5US1H/b1+EOwX45WuXaB5teu32ryAuO7xeExvtVyohc/1Xzo 09IGj2mNVPif0nJ/+IJkvzLPXEVdd/vgJpsX9yXWb67f44jrP5Bu0LNHeDyB +PG/B/ISJx/VaPiJB/GDPxvDfb2Zxj0O0zpZ76dNb9Huw3Y4vLXizO7xbe3x B+LB7yO8Lhz8hN1bDQ/tNfijl+h+Otj9ZeJBPHdLj0sQnnhgd5/7lcETD/bX BV/K5ymtcm+pl/v7hAd/lPU67g0+rvf/tnD8UifW4UG+pbW9h8rdM50+UOfb NhrdGIchfaTOtu7rc32+XEfEle7y+AD7xXIdr+civ39t8Pgc6HGSwJ651uMk UrdK5diIgtmtgX7vXzD7F3r53x5XgTwojRM5nvd22q3YP3xPYl7B7FbiB12+ LVj8gfDEA/271tTwPYl5yidb6Pns5bp/W/x9R8Lje1brAu+idZ4ucPzgg4P0 Hbicj5/nwfhatn+Qv/uWv8tC/JJv6O+4QD9P1fU9M8lXALtZ83l+0fuyR0V0 26nB6Mx4DtcFYJUq3xb3eA7XHfRb3eMPgZ9S0Pyi4VMNHnJ/T49LBHptSY/D wK/ZQvnqDI9XEB5xjq09HwPu+kEet8FwDpsleuxjb+e5H74eqvLhxmJoX1+l 4zzW4xvQT9u3Gh7ay9i3F7VKnPvpotnLxAO75HqPexCeeJ7uHuj+8w2eeECu lOZF9FH7sG/R7FbCww6/T89Zt68RvKs5foznqxqln9OBdivQbKR0Xq+Y4Gew 5S667ofp+8pvqN2ygscx8PuOjh969rM6WxfGl7iOWO+30jKvgU5//Ly4+kcf Oz3JPwjvjCqaP8Fx4vsrRblf1TBf76mqHfhNkm74GKjjuUnzx4/V+M9bTof/ lY8R5D/bOwgTE++1UB7H74lKHcNi4j34YN2GZUzPSf2bGH6gyNPlvC4E9VM4 rozpOcSRF8FD+BgP4+kxPPM3CM84APHH/TKeHuMhfNwv8zFieMqjGJ5y/5/H OVn4fHLRzs/AF0dPqYjpDL74fKrYUcfE45wmeukCh8c+HarvYr9YjOqUDDU6 gL/v0zpnG1eGeqyMB3pgoN6rLMt1+BOrZUw+wg5tdHipMzld1mdxlXMPtxo8 7OK/NY91uL7/s9SMRL/Me8N+vq5g8+X+lHdKC0Y3wO082+wL4oF/9NgcWbe/ 89F6aZx3bYeH/TB8luzjYwoiH8v+A+K1S8wzezDg/zvnidy+Ly/yYv2MyQXE r150eDmfmyt+0Bd56e+xVoOH/11uR7zwJ53vgmS/jDuDDlvmI76qFvtkn7zl TcZ+K+kGNlvB4xjED3kwuEbOhb7IGX7KKbDTBIeH+HtD49F/5eTzkYzI1Xyt 2fuEx7bYvq7ixm60e2ge9+b+bi26OdLhMZ/XNY5xUU7G96S/I4r6HxerHzBV 5XPfukS/tGOAb0i7zYt6AvbCvHbjK+zfv7xuevCu8BsNwueTspHc0/jD31mD h34doe/NnddeMb6bD57ICN46rwsY0HNdjQNUtun7y16PEO0L/b0vuItPaT5G r6zM79nWEH433h9xepAfYIfMVXl7ZFNiPLyfArumZ1u0H1MSBz20zeiGfvJ+ T4KfkB9PaFxi94zhCfK1L3V4yOfPNX4yNiP+wtMZ4b/pnqcQ9LOMnjfuq37O Xu6Ho9+zW8N1vEvzEZ7XeEN/z2vAPF7R741qL+2RTvRL/S/v1adtXoRD3ORj z5OA3VHv/RAP2m/V+y2vtkT1hHUfTGkJvw9otXqZ2O/PKb+N9ns+gZ4t6rsD AzRfube/q435/+jwoN+1bRK3W6jxhJf8vTrI8yVahE7tav9slk30y/sm0F9t qUhetYvfu2az0Qf9zPS6KsQDP3dXvSe2pOMJ7pvs5fDwE5/TuMdTKVunuC69 6JumxDsCkOcvZsT+qvI6rcE+zeXk9381yb4+NhPK0y2bQn77TOv5n63vhLza avCp7ule1mR0oNyXd8jvMTwcv4z7YjmffCUjcdcL/D2V4F7TE3kZ50p6f+4s xw+59FqD5DH92irrtVw+MV+Mc2/VN9vpe9NvtRoexAeubQzXsdLr4RMP5vO+ 1v/99VmDl3PUvPn7hMd50Ni82YPYh/dmJF6xtscBAr5N583egT79zuMVkJN7 D5f9unvG2mkPIg46QO2KXTxuQPxoX8XjBoQnHsQtVh4Xwu+i9UyKY0QvvqP8 s6H76QH8PhpHGlIrcuJWxy92i97jLPq8qN+w/+/OyPnKDH+XNLAfuqJ3SZdV OTYqyT+g50dq37ytefgPeL/Yl3s1GJ0Zh+G6wD4t20Vg1zOcnlx3fFzqfj37 xTnkUeqf9P3Z4DHNJzx+QnjQ5QyPn+Dn67Qu0acFs5cJD31yZ8HyN2ivBvk8 602TOGUuaj+gUsbxTEb+N6Fgdm5Q5+jtgsUN4AdcmzE8tHOhXj/PVFzeTbim gtm5wf4dV7B4AuGJB/txh9kGTzzg5+9miXz4VOXY7EJ43kW6NStffblAPl90 /LhHtGm18Ov6mTDP570aWZdHMyI/ny6YnRjIja8LlreAcWyRkfjQtUn+x3pc XBD7uWetrOdTTn/ww4Ja2UdfKr+d7vGowO8o+LpDbTXrueQfvl4Sp9V5Le1x APIbhrWxxwE4TuihTo2nVc6uCOzqQz0+EOzr1TzeAjlxVMbiG/G6YH9vqO3b z5e40z0ePxF7dYHQZ7rGA5fxeALW7UaHhx8zuNrwMC7BfplfEZ+bB3GzRfIr 4vcWg7zqRd4rwjj6+Pks2+Vr0ewJxhMg5/8qyP3c1dpsPLAfri+G92PtnVdv JzzjEsRDv554sA7fe1zin/EMSeDhvZIYD/VNjIdyMMZD/RHjYfs/j2d0Ag/b YzyMU8d4KGdjPJSnMR7KU+LhejEeAvNuyXi+kw0/66k8pHQL8q6H6767ZXIC P/NvMJ6ugtpBbbaf0b5Z0fiN8MTP8zbIi2HToni8nnsdXCnjfsPxUy5gHkMK oX182jTh07zKj5/apF7TqzNNHxIe49pd4xWbaVy8d5vJF8RB9nN4qS86Q+I1 p2t+xS8Zg0d/J6o8a1e988KsRL+MI0Mej8rbvCi/QKZZeTuPxN8HVJkdRzxA s4HWET3J8VCugZyXOjx+3rtK9PnbedH7E9qkv/8sMDuX8JAXq1QLXWfqO1rH tIXx06zD43PmfJnH8trvlIzBY7zL5K0eU5wvAXn6q+6La6sT46E+A1/cnLP5 Up7ifPAxvWfRWErcIyA9oeYO9rhHwA+/63uzy+Qiftb3nDdweCz7SrUi50/J id0/qU3eAerlcQnCo7cb9d3LNdrl91P9fXLst4McHnkX8/Qd71vb9b6rvwcO u+GGdlnHJdtEH72T7Jf3SiAmTstG+6hB7Li7ssZvyAvZozFc1/In/MzmRtH7 N7YZHvoh0JcD2gxe6oXquzerZGV+U9tkXTZ2P5Dw+P28lJy73J7R+oxt5mdC f7/r8LjvMVHz1+er/T3L61zCHpurdt5KbRp3SfbL+yPQuz+02rzoJ4Ndmz0/ AGbeNi3heWoZD/yjGZrnODcd7eu0yOEVHB5+XHuz2QHg7xltdg4T5HdSnvfR /Ii6Fon3XO75Kcw/Dug5XM/reut9vKo4r0TPUdZuEz66K9kv7SbQbeuWSM7o PZnjW4w+gO/p9CMe7PuRKj96Nxse/o5h3eDwsIdq1L+Z3Sz8NVvxL+HxB8Lj Yz/NNzoyZXzK/YBzuWtS4Xg+ycrv76aMjwi/tb6/hnODQpv4a1vkwrjd8hpf PCQn8qG/vlswqs3kC+Icf6s/vonK8yuT44fc6tK6pjdq/c2ujOHB/v+0yehM +Uj5xvsacZwEcH+0yT6oyZn8wMcJKpfyOfM3sY9+dfz0WyUfwdspV6DnZ7XJ /bcX/T3UgD4/+PupsFeuaRN5fX2SnqjnfrXK2aW0nuc8j9vg3tlXen9k8TbT i9Cr67yl7220ybpd5fEN4sf/e3heB9De4nhoh0qedpvsm0c87kE84KeL8uF9 k2xbmNc4/zuDJx4sz15Dhc+W0X36ct70GOEx7zd0XnX63tTfjh/6pqD1sx/z 9uB8trZNPk/Mmx4jfmzru/OWZ4791ulxJ6474mbPtVlci/yDcW2aFftha8eP vMwNlE9W8XgF0P3o+LEO39bbOjLuxPVC+3lt4t9/7vQn/4Ps3+fNfg/s0gFq f9z2vcGDvHV5s8cJj33+ad7sesjp4fqe7TIe9wji7pV5s99F73v8B/ptgcZD dmuL7D/Nj56n9NnE4ySBnF+YN7sefDPE8dCOBp4/VH7u73408cA+2MDjJ4Qn HuRNbTA91PP7a/7P02q/t6qcX8njEoE/uLvmDX89X9b3Y8eP3yctELm8obfT jgN9v2uz+2Ux/wO8Pi/yr71a4tD7tgnfDnd+Ezs2iu/1q634sJtME9QOf8f5 luvF+BXXF3HCHXWcJ/u6oP3JNtknZzudyVeI697k8YrAPu9TkHt+Y6YbPOTF Kx5HIjyW9RKPIwHfBB3PtwXzDwJ58njB8kwA97vHf4Dnc33HoKyPg/jMGvNk XaaoXXRXwfyGgB+eL1g8BPv6jDbhjyuS/IDPUwpC39n6vt8MHw/ItvICsd9b VA6c6PEojp9xm8AfWlbtwL99nP8rv+LzyO5nfsX/iofw/IPtrF8Tv6PKeyyc T5y/KPEzx8P61vJOq8PH5yuMq4AuF2qc7D9etwHrN1nvC6yRNb3FcbCd8IzP EA/jAMQDvtkta/GQGA/bYzxzF817m1yw8TPegnW6yuF7Kd1jeMbxY3jKxxie 44/hKddieN4jIjznxf3MeYEOl2dtPxMPzjN2dPykD/h6ZYeHfC5oXPakdtEb 0ytNDnE8wFNdKeebhym/H9Fu8gL2zhEKv5bqr2M9HkI8YMvtNK59osZfT88a Huzrf6t87dBz5gNnJMbDuDbqphXyIgfOyZo8Qr/LaBx9Rc3TX3uO6e0Az09z xL67SfXtjVnbt5DTzzk8vl87W/jiU7UvVnN44HlXzz1O1XUfMs/sPuIB3b/R eyW/av2HE9tNLkB+lOHhP26s9tVWVYnxY/uvNE/Wba28/H5W1vDATttG63n+ pf7IevMT42G+B/z1d3NGT8pHnL98q+2rKn/eUWN2fcC3U/T90G1yYj/cmTX5 iPU41OGxztvoPZTzNL9iTYc/sPvzDM3H2DardRlqE/3SXsT8nm238VO/Ynrf tpucBF3uqLP/8xNxukPqxZ8dkjU81LtY3/lZg8e+ObpO9uMZ7bJuPdoF/ir3 HwgPsTlc645926bvLmbNvsQ02t3fw7qv2yDj3kr5ex2HxzKvp/7Pbrru2WS/ vIeC9t8yNi/6LdhOm7YZfaAOrvFzWeJBfGHnlNY7y0T7TuupH+rw4Kf9mmTf D9dzjrWU/uc0h/mLXIcP9b3GTVplXzybDf3wkx0es1pe74M+pufE6zs8zyHw /QCNH85N9ks9Cjqcn7Z5MY6Az8fSRh/8fr7fOyEe6MkNNe/s3hbDw/4wvo9b Qv7fQeMam2qexnrKV8d5fVLCwx5+Uc91H9G6fq96Hg3k8zcOj2X/XfOVclrv byOHl3iY0ulIlSeTPV5FPNh/nW1Cn576rth2Hp/D/uqXEj/rSLWrxyXHj/15 h9pr32sdsT4en5N3ZvQdkLI+kvtw7cbvxAM75kTdz6Ma5P7Dkb6PIR6qGqS+ wPTkPgDf76h2yxDfB4TDOq3k7+OCLrOyIp8OyiboA/uyn8rpi5q0Xoj3C/7v 8PsjlF+0p7A+e6meWiMX5hWfru0HaF7H8DqJx3RlQznYp17k9MXezvgG5NOS qr8GJekpdZg1vlRdr/VoNR74hL/7C3qt4/jxeVCj7QvqFdyjufd1w894DvIP z1G7r3e78MHknMl7woPOGY0XXVAj41+zPYynj1N98qTfn6MewOh66r5+MGd6 gPhBlvdzFjcAv72dFbl2Y5L+QNtX9d/Jdba+OF/p6/Ei0kHupXgcgHjw/9/1 fazbBho8tuNeHh8gPH5e2uMzmOdyao/19bhBYA9s43kpkBNrZs1uAL1W/kH4 4BZvpz2L37dW+t/icYZAP/bxOAPsoIWOh3Yu+i/bh1iH5/Lmnwb25A0efyA8 8aC950SDJx7gHzde9PMxyg+P5M3eCfTCf/U9oLKfKOvVHsZt7p8n8uUrHz/t IPSzZbvI5YNI5+pw/Jflrd4C8gx+1Hj4pvkEP2N+a+s6vlIt+Xfbe7/gxydr wvUa4OuLcd6o50eDfF2At1LjYF86nclXYPuJxDPZxgP24LtIl/9i8Ij/5vPm HxAe8n543vwJDHtttRtX9bgB4SEv6vKWlwKxc1DW7Hj87wF9d/ELb6ddj328 p+bPbu9xBuKHnlvW4wyQuz84Hp5PovudlH9+z5udTjxSbymKPxzpeBhngB3T lLU4T8xvgJ+m9HxS79Fck5V9PdT5B3yxquOHvF1tvtGH8RbSE/R4Kyt66zSn A9bhCbUD+3mcAfAbqD471uMMcb4E9fKGem4UxxN4H5LtjJsG9zDL/j7k5fi8 8M1V7ebXc35spxxkfIDt9LvZLnEVh8fn9g5PuRPDP6R4CB/mZU8UOTU7H41n dGI8hI/xcz8QP75+6P3G8yU88YA/+6v8T08zeI6T+V4cZ6inKyWPfRuN2x2j 9+P7zDL5QTxYz+s0HleWf8hf3D9nfIPhvuHwUo9xptirn6oeeK099KN/zss9 jB7KD1OT/XK/4fvBPn7yJdjqtLzxIe59PTPX9DbxwP47Y57Y0T/nDA/5GPK2 xeFx3ylTJXb9MrrPjlV/cafq0E4pf2J+R1fLepTpCLuxd872J/TKCQ4PP/2R BWK3XKX++JvtBo9z8jtyUs9sHa0vPyjZL+PF2LftbodRT4AvVlT7btucrMe3 taF9VsaD/69bJ3rpN/XnP2s3+wb7aW+HBx0urhX+ulbpeKbDA8+Z6o8dp+N8 pN7sceLBejxbL3J3cY1rH54L/eJl1S7uq37rIvZWMP7dNX59gL5DMbDd8EDw 9NNz9w20HsXI5Hho18I+Pa0tYddKXUk9/9he1+ejxrBe4En6TuEyTTKu8zRv 41u3dzGP1xwe8dnTGvWcW+8Rnd0e1o/7UfPtTtB9cZvfMw/OQe/SdyMv1XoE x/i9dPRzhd4vvbhdziX3aEqMH2TYUuvuv633Y9/zc1mcj/zk99sZv6dch/my qdq1nyXHybwCfB2RNjpTf2A4zXpPfge1y1/1+onBPipqXbpxeh9itNfvRDdL ODz22RFa93Bvxb/IO5eIm2ydlvoCx6tcOsnveRAP1v+iVqkfMrBZ7vcc6XVE IG9HNtv+gFzbLJ0YP8a7mN63WLZF7L13vM4H1mdHrbfYW+mwVybh72G/Pq3v iLyu73Fu7Pdl+A4mprGRjv+15Lywjg2aj/lTStblUb8/BDm3u8YHyvsU+Xcf e74M8YBfWtu0vmyD8Fsvzw8S+aL3o2e5v08/GnGa3dR/6+l5NMS/WTfdzmkz Pxrtbep3/5GkD84xf9Y81n31PZxrvF/I/5+bZN/MTPrR+H6M7otNXc4F9zcO U7++tdb86iDeto2+x/d3e9h+sNbH3Vvf+XnG44LEj/nXZC0PAeu0tO6j07IJ +gP+AM0b+VLl663eL9TsNQ1iD7+i89nK4xXUpzEd0P0Jaicc7fqNcNBn5d8R 99msWtbz2Fy4bw7XvLkeST2GdT9A6byk+++EA7l2zlk+NubxjOsB+ulgi7Vd z8frBbgvtL2X5gN8o/rzXtcbmMfZjh/scVmd2ENnedwA3f44UOInZT2L84Mv vI4X/4/9eVHO7Fno9WGOh/kVkNv7qB01KWf+O/GgjsHAnPnv4JsNcoZHzpeG Cb6jVP+nc+b3EQ/2+c858+sJH8Q9/vzR4IkH3V4/Qutx6Lp+nzN7KqBzk+rn tfW9ss0dP/i/l/oR3zgd6C/LfZ2cxXlifsPvz+fE3zlhvvRXlifQc1c7/4De lzh+sPmqWm+73I58m1M9nsP1ZVyF64jz6u80PriUx1Vgx66k8m0l96+5j7DO m7p/HdDnL6XD0aMMHvbVYe53B/unh8c3sG121vW4xP1xwqNO0J6eLwE+fcjj FVivIZNkXbu8nXkU4IuD1K641/33wH7r6/471mHfXBgXKvsf2M8nqF54PW/+ B/EA/B7360GXnR0P/XfIhyMU/pa8+ROBv/N03vx33K+t9XnRn8A+3UPlyU7u vwfzOjFv/jvkQIfKhZ75BJ8zfxf3cvbROvTXeb+4r3XVXPn/A3qes5T771wX xk+4jli3lMbxPnX6Y3yb5YQeXzs9wd//Uj4e6fTB/nlb436Dfb48z4/zAXhv lu2fa57DXL2XzXbGMbiv6L+DH3bSe3sf+v4B/z6q9YrOdzlIOrGd8IwDsJ3j Y3uIv9LwS54O4YcZfo6T/Ip59Y77rTT8+N/dqpdvn5HAQ74kHsqpgC/v0byz bE7sofFz7P/8hH2yZJXMJ6P7fGbO1gnfOx1e6vvNEfqtqHx9XS7MC+mp9x0H KfwFVYl+uX6Sn+lylvyN+X2QMzsfeBdfYHxPPLCr05rPtEFSXoNf93F4zPOS +bJOZ+fsHbLfNA+S/MX7F6WITyF/c/q/mR4PJX7Yu1mN4x+oduFc1wf4PN7h IZ/uVX/54XZZ7+sdHnL9TT3/+VzntWFtol/aH1j/Z7NGB+oV7KvvskZPmCdF zzskHvzt/HqRT2+1GR7aJehmvuebgg0H1ok+2DArcep8TuTOT34fMtCvcxvk 8z3ND6vx8wb0+6XDQ67foO+CZ9QPuNHhIc+W1fytr9SfXaEx0S/te9Dh91ab F+1OzG+zjNEH/TV5vbNgPMepn7tca7TvUhJvOczhwT79myQOdJ/eoy7qOId6 vXvCA884PV9cWevXN/o7fOCPdR0ey3uhvst0Qlr2000OD/66WvPcy3IA8mKY v8NAPIib/NUi9sAW+j5xpb+DgXV/Ud9P+k7t8IXJ8aP90hbxczbSdzWudTxS l0rPkYtKn5297kKwT8/QemYTG4Vu9e7nQs+tpvcM3vZ26g/0V6Py7C2vH0n8 qC/QlrZ8MsjhsjzHPrs8naAP/n6sjv81rZd3vveL/X58s8x7odbpe9fvhRAP xvel1gu5Xt/zKri/DLn5mNa9GOrtjA+B/o0qf9bK2D4I4o7XZEyeYTxXOR7u A4i977xOSUx/dDdS60Ku1Sjzu0f1Tn+vY4FxneL4gf0ojRuV7XXIy8f8vg7x Y/1r9Pz9ylqROz+7nw66/l0r63C3t9NvBX9O9vtAMZ1B1z01H+VprZtS1ss4 78s53RBvOdPxn9b9Pa/+1+naPiITvZOYi+JzpQOwLu26vxZrD89HflN/eV89 t9lygej52e6nQ48VFsh69Y/yicr+Kbqbp/bwNdlQn1AOD86af4r1ekPt2KOz CfpjOj01z2apWlnHc71fycvQ+jGXKJ+v7/EB7JfP3I+m/QX+zqlfcaDbU4G/ +oafqxA+iGff/Gnopx2o8uCK94WOJaXDPm53EB5ojla+uGGO8GkqGmeT1mn+ wNtpj8D9q2U8yuP0gZxcL2f5t+CrT3L2bnG87nLfXc/9/pwnnxfmQr/8jgXC b2W5jfW/2ePopDP9d9KTfIjfb3Y/PZADp+r/Th9s8FjPV90fD/LmLnV/HP+b pf7I8Jz5j4RHv0/QThkh5/+XuJ0FfXf2aPGDXvN2nqcDf0r115yc+ZuB/Bmc C+/jznc8zEvFZ5fyVSln/gvhYBfMypkfSnj+Djm45pSQP0tqV74+Wdb7V+2v Ixf6O79pPGih8s+ISrF3F7GXYS/MqRR6DPd22u/YB005qT8wyO13wsk7lznz KzGO6x0P/UqMd4Tbv/G+OBf1ttQ+zc2Se1MP6P8vc7sbcvPUXMjv11bZ+jJu QH5A+4sKv6zHDUCXsUrPVd2vJB8iXreT+5XsD/y/hL6bM2yKyKGJKm83yyfo L+f1Wle2YZrIhedVPqzlfij4tW/O6m2RPsJHnSbHGdeifmM7+Q0/r+d+KPKT xnrdW8pB8P0LKrf6ed4Mtn1K7Z6V/b5TYC+u7PD0Z9kv6cj+IT+Pzktd7EX2 c3hvalrF7t3Ngxw/+Snwl/vlw3PSRcYZnNPvpP7pHppfstLsRL/ky6Hqx/G8 nXTHx2yFfzovcfXDPK5BPJjX8+onHqjtV3scBHiOdfhfu8n0xlw5z7hU++3h 8OCva5XvD1U/tSPZL+OA2E+/tNv4Kd/BXx3t5j/Cztnb/UHiAdrva0TP1mQN D+U7hrWOw0MP1FfLvC5t/5/3pgH+rPLFGu7HEQ+Gtae+O5LSe1Y3+P0cyPW/ /H4a7JYR+g7KHpqnvqbDg18O13tZRynfXpLsl/aZ1GVO3k/j+Qnphryl7d1P JB7EQT9qkP1/eCaqP9Ug8vbuTMgndfVi301UO/p5va+/VFOYr8r7+ptr3ag+ rSI/bvX6Tfj/BQ6PaX2ufsjLrTLPtRwe9PpE82T/q/0emAr9pzIesNWVes7z cYvYgQ/7++gY5q8tEnc4Tvnk5OT4MZ62JuGLS9Ni7/d0PNDzQ9IW9wS9v2pO 1PuGHC77m/h+UkrG/2Le/B+s+w36HuBZ3s5zVIzvMX1vYQt/J574cb50R7PF +yBnztH6Wb8k6QM2mZoS+f+X9rOy94t99p3WS3la722+7O8oEg/GXWyRefdR f+dqfw8TdE81il7ewtvpPwLNDf5OZkw3zOswPfe9RfNgd1e5saT711i3xRw/ 8vem6Xlof43PrdIaxlcoN/ponfJSnXz+x9/ZgDw8r17u5e/t7fQT0d19Kq/u 9HceiB/x2x/S5ifCbjlE6XxOOkFP0H079fMzDSI/lvZ+Id9uaZT1W1HvV+3o fjfW+2XdF/dnTP4RP/TyB+oXv1xTsVY3nse9fifmUVUj/HCstzPuhWV6WOVD 0etcBnq5d8byYzG+k/Q849sk/fH3N1vF7ri4Tvh2ee8XdN+ovuKm7g7XV/vj Ua9nyTy0OE8N83hD5eSvXheE/Yo/lpW88/vmybq/4vVCwNcfqB9xnrdTX2Ge T+h+vKwtjPMzT3R0m+V5Qu6v5Xjob6Iu7UX5RD2PYJ+uqfcOR1SLfb2tyqVG r0sKtH/mwvPudWtN/lNfkj7437O6Lgv8HlJwPtRL/eibZot9fH0+9FufUb9v W2+nfyfn0X6/KqY/6jc8mpX8gi+qRA7trXL1QL8/RDuV+MEfd80X/bC43t9e 1f10zhf4GjwfMDh/uMb9Yvz/P/oe5Bru3xEe9v7YdjuHBb8t7/lrmNeKQ0Tu VXg7z2fx9Qmt+9LL/cFA/izn/iD47a586Ke/OEr2yWvKP0e7X0A8ch/E/UTC B+fqK4wN9fLReo5/+Bih24uqB7dx/4vwoOehatePmi73fu9x/OCnByr1Xax8 eJ5c9r9An/vz8r+RnicYyKUl3f8Cnx+hcuaV9gR/YppXa7z+Va1Ht2w+9Pcn zja/BZ9XeJwhWMdTfd1Bp32U38719cL8Llc9fpnTn/yG+MQD7l9znLjfeKbG Qc/4yeBv7UbwofvRAb/d5H405FqZbq93z+qVnPkZhN+jG8Hjft4F/bJxPowD jNZ34k7T/XV7cn1x7n294nlqmvijyzoejGddrUe1keZ1XuB+NPvlfuU4Wec5 9Pv4bo7fC2Yeudi1Di9wyfdL5F15zXNZy9/ngL1xiJ6bfut+X8CnR+r90QMq xW9aO/c/65ATP/cV8WPfrJKEZ78cD/1TtpMubCd+nkMTP/JDly6Yv8nxEw/p HuPhPonxEH+Mh/CQV8/pOWhG9csbVQm6Ub6DXxbPJfLaIV+30fsxuxbk/Gbk gjDf/UjNR9+y2u5L4Pdl/V69vMvl8NAn62v9x7s0j/BL9xMRZ3lQ8/sX6Dnj Q9WJfql3Ma1rs4n6C/h4KWvv+IJ/rqs1vUo84Ndl6yTu9JDXcaA+hjz7zus+ 4Ode6vetpfdDdy+I33+C1z8lPD7urpf6bU9q/dkVC2H8fZDDQ4//VSf3txv0 /GGo+4PYV21a9+EQpcMYf++EeDD/qgaxz3fXvND9/H0U0PNMfY+tXvnws+T4 0e11DWKvDdbzpZ/cr4R/WtLzkD11Xh80mv1OPPj/Mk1C71763naPQug/Ttb3 v1cvyOc2jYl5Yf6nNAp9+uk75d+4Xwm+/k3zQvfTfbdhyuxq4sH4zkvJ/GY0 iX7etGBw2C1HpMRenu9+Iv04uA3bFPR+XJP5L8QPP+mXJvPjsI4tasde15Sg D/L092kS+7Wy2e75sF/Q70z12w4qSJzjuWZbh2A/DlN/8na9B7xzwcYHe2uk 1mfOu5/Icy7Md8eCnEcv2Wx0JX7Ik+OaLZ8TcmKhyplfknTGvvo0pX5lk3x+ 7v1Cviym/uMItedfTdnvWMfDtP7Bcv6uIPHDfl07LfbIpnX2jhTpC7D99B2i pb2dcResY1m+YZq3tNg+C+TD1BbL58R+/TYf4i/7j/Av/1Uw//cf12Vz9cN/ qpfxTla/aaHTGez1tuMHvt80X3Qv3V9t/n5jsN976/7sWSN41vb3LaEnP6uR /TLJ/VD6g6DzBv6eZ0xn0Ou/+i7fQXpfsiyfsb4n+TuN+Hzf8aMO35t1osfe 1fjhZu5fY377a12K8/1di0Aevp4ROfPgXLFDt/T3NLC/T9bzprrk+xXoZ1uV z1P9/QriRzxrjYz5dzgHbFM7/5PWBJ0xnjv1XcQrqoXOH+fD8+jD9b2hL7W+ 1Z3uX1Mf0Z+ivUF+X0wexgrzmXvrfblZXteT48F6lP1i6Mvpeo9nd6/TiXEd MUvWvdP9Vsab0U0vtQcO8/qdxA/4F9rM7sA4/lC/ePm2xHrBzy8qPc/V94wG e79vdtNt7lzhh9EqD+d4fU3Yq/PdT6SdiO53VfttRfcHAzvwEK8rA7thk0Jk NwwWfAfrO3N2r3yI4cH3pd1PJDzxQC7OGWrwxAO61H6p+fa6j47xe2CEh19w svq/G02T/XNIVIdm32ny/+W9nfmZkm+v9tgwr5tC/IyPMz8T6zQiqndS9uOw 71YuJOqmBPLq0qzooxNnyPfp6p/u7nEG7KuBkV8/eZatI/10rhfQr6T3M+91 +nNfgI+Htof+Gu2oCzVe8e9vDR75Q4u5H0d4fP7X7wtifcpyAOccG7p/R3iQ q67dzk/R/6h8mD+3y89iT/3p7Tznwre9dZ+u4/4g8YMfV3B/EP1U5qNzlKmi h8t2SJgP7/wD/2y+3vM+dIrYSXV6HvG03xfEMn8Q+dE9p4u982Fe+Kef+++c L/1c0gdxv7zGNy7weWGcZbsLiuds92fXGPYP9xDK9oDoB/cHWYcqPh8UOex1 vrj/QbYxGreb6H4i9NfBmv99ScH2P/mR7YQP/M2J7j8SD/bPCPcTYzzk+xgP 5WCMh3kPxMN5CZ/N1Hf/HD/xoO7NRM1vHKD3nHeen8BDPQf++Txr/jjlKfz7 To3DzdD2170+XUDneXo/8ReV928Wwnhcp68L7KKjtY7xDloH4XSHB33K7VBn N6seWbE20S/tD5x//56x8VNfQn7t1qZ8rnp8B38PkngAfqO+r/RVWuTCT+5n QX7upOcDY5UfHvD3AIgH4rCqzvK8gPcixwN9vo/DY/7lcQKujAf9pFSfDmgw O5bwkPeTNW/z7OaKr7unMdP9MsjND/UcpL+381426FleR9Bl9QazE4kf5yV9 G8wOxXhfK2gd2iTd8Pv36lfurucPp3m/AK/V94gyqnfWaTJ7lXhwvrNtk57n qB3b6P4d/MzN9b7SB97O8yPI/aqCvO/xUKP5EcSP7wsaLf8Q/zvX8dAvAx9+ XDD/JKY/9MeujTLOsl+C9bhR/bUV3G8F+JGOX/Jw1T6r1vdI/mgyOhG/+Kd6 XvlnveyDYe5Xgr1fapA41Q3eTv8L/PRjweYZ0xn29PtNwj/bKJ3u03W8OHqf uI/jx/66R88/j1Z/cw/3W0H/Bvr7zbb/2C/8m8+bhY8G1sq9pgnuV0I+rK55 0w95O/0s4Jmq9k9NyvZTIAc2aTY/C+vyrNLhx1SCzkD7RErkwmv6buxJhdCv 3LpB5nOmzuuZlNETYqhF92lTi8lL4gedVlQ/qL/Gq6rcf5R7UvpeySvezrgU 1n2m7tNTW0wuEj/k2Nstln+Iab+ldsIGLQn68x0sxLvXrpX1Pd37BfpJtTLu y5TOmWajM/gtW5B7Rmf5+4TEj315Savsj9o5wt8t7j/iPsTyVTK/T72dcUTQ e67uowlp02PEj/yGLVpNH0LOXeh4qMewDoPdD43XBfH3m9MS/9l0vqzDLSrf jnC/GOQ72vHLOVe1rEuNru+B/u4B8WM+z2r+8MwZks8yInrvsThT5Owt3h7k lY319yRjOqPee0bv7a45W/b9Qyqv3vZ3GsHfxzt+5OlUVwkfHKd0vsH9Weo1 6lfZB49bvzyXhP9w8A2iHxt1X3zp710QHvPJql+52VR5p3Gy4wefpqaKnfq4 t9NPwb6cVhC+2dzfuyB+2DOX0Z5Qu/EFrcP7V3JdkGc8Vdflr0rNo/Z+sS7b zZRzyHPUr5+UMfqTPmCz873OKPEDzxpat6zqJYOHnTYoa34K4UHeQ7LmJ0Ju T9F+01nzXwiP+2ZPel1SrOsl7t9J/vpw4fs3k3VGwR81Kg838folxA85Mztr div4alKy/ij0ZLogv2/bbnZ+QIfV3Q+CWl1kPPR3sM6zGBfyuqTEAz3Qmg3f GX9H+fnMbILf8HmY1k2vn2zvebNf2DO3TBX+v0rpsI37v6Qn/cTgfPYF9Ytv crrBLx2ieu0RpwPk0B0qhx9ot3lJnK9kfgrjIXwHhO0yn7qEHyTwWn/vR/d3 aP/EeQ+0Z2K/6X+1096L28W/ak20Uz6xnX4W/MuL9D2Ve4u2T6B32jUPrUfR /KwgntTD4emvQe7czvekRybg2U74/+f5XXk89Jvi8QT34Ogn3uvvThGe42G8 j+MhHbiu0CevO37ikTwn5d8n9T31wf4OGfGAT+tqRE8ckBF9d7u/m4X9+qzq k9OLIpdGVifGg3U9R+OJJX3PbFXHA3v0Nq0j/1xR9MJWdWYXEA/62V/roDa0 yPvNj/o735j3CmnRk8d6O/kHdL1b31l6odb0KvGDrq21prdhfi/pePj+BvTC CUXLK4rphv3Uu1bW60V97zPn/iDff0I3DxQljrhCvdl9xAM9fGm95KcsSEmd oPP8vXaw0d3Nkp+5trfTz8LXi4pmj8b0RF2VoVonYrUWkc9bF0Ve3+rvx2Oe HYXQDrtA4+i0Yxd5lw54HtXx390Q3rcr9wv/a7T6jw80Cp2uLZp9LHlSjfL7 dt5OOQO+ublYMaZ7Orl68w+IH+u3Y4P5H7CT9lR+q0zSGb+/Wi/88YCej/3m /iPkyb+0buvfancNrDd6gi+eKopd0tEYniOU8YMeG6n/tV19xT3deO4qGl3k vmO98HOFt/NcBst5R1Hk/EWNNi7ix9fPGi2vD82HqTzcqTFBf/h1qzUKP/7d IPbP34XQr/hM/biVi7Kf/m4wOmM+z+s+vSJl+5j4Qd7bUiLnpmndgyeL9n/J Y62Rz5O8nXEU4LtH5WRVk+0b4sc8d03Z/sN+Xs7x0F9DPt1pReODeF2gzx/U +2+31Im820D3+1nuF8NOyBfCc8wP62VdHizq/dBmk6+BvHqnWeTmS/PFfirv R/If7K5RC6Tfnt5O/wvfLy/a+WtMZ5Dr95S8h9ZQLeu1fVH6+ypldMM+7nS/ EvM4vlbiNiW1kx90fxZgjxUrqrsbRreY/RnQf/G0nCM0zpZ9c2PR9gPwfzVH 5NZO3k4/C19vVb7atcX0HvFjX9/UYn4W6LNvUeTaai0JOmOaNZp3+cs8kXe/ u18JOrXNFz5ZUuVbbbPRU/KKdf/u3Wr2GPFj3/dtFX9jl0pZx/uKJh8RF/pQ 880O8XaeU2Ad7tT9+0Ha/ALix/5bmLZ8M8iJo4rCv1elE/TH/j1F4X+cJfp0 Me8X+mWfOcKXq6vc28/9WcarKa+DPNX+yoef+PuE7Bd28NCMyO+/tI7Hs44H 89pnsqz76d7OcwH0e5/u6w0zZj8TP/bzbRnLHwN/rOR46Jfhb32L0XvyleG+ Hq95+UOmybg2UXn4UqvRH3Ku6P4p7PZeM0SuLe/vK0KfrD5A1uEmlecv+nub 7Be/t/h7m/ADexejfJ3BMu4HVU5OajO/jHjwcV+b+WXg/3sdD/M5IeZeKIod toz7a8QDuftLm9mhhCce4C05PPFg3I/rudXDSufn2sy/IDzg6tqEjk1jRe5c 5vixziv+LOu/ibfT/8J+urZofv0/8ltFm+zX4yYIP++k8yo6/8j968iPvn2K rNNCzQMZlTE+CdZ3kfc6sC320XXZ0v1l7IfL1N7e2+nMfEJ5fyprfhnHj/3Z Iyv74YgfZR0qlD/7ZBP0xHQ2Vz7ZZIz478uqPN/Q/dPgnLe8b+nn6ndrp/yJ 28n/rHfBduqd2L+jnJRzJoenvo7bqX/jdtozsV9J/RbDM57Mdvp3oMMArcc/ zP24IO9pDX+fl/4m5MkQh6c+lPdE3e+j/Qz4QQ5PfQL4SoenfwH4gQ5PeYyf v3R4+hH416sOTznEdsLTn+W8qA84L4xnxZLxXzCvhqLFX+jXoH2it8fjZDvH iXXbOXrv+CS1O+YVLf7Le5Fcr1UWjaP91GR4GN8hHrbTj2Y78dBuiPFwnDE8 47CE57xoN3BekAsf+3xj+hOe9Ge/tDvZL/J3tnf6kw85HtF/tTYeriP3VbCO S3k74yGIP45zf5n8BjzjnP5cR8jl99ROmOzvZGO/vOl4AJfWOO7mJbMXOS/Q aWufL+eFburdL+b4Mao/3S8O7M1ZKg8Prg3fm3jH8WBaz7RIv18o/Vd3Px34 9ymJn3Ib6/Y0GJ2xb5/QOq5fNIh+2bVkdi383BnqN3W5v0w5A72wtfJVS535 Q8SPjwPr7VwO9BvkeOifYj6/u98d8wPszP463zOahJ4ji6LXr64L8zBfcvyg 32PqV+1Q0rhKg/1O/Fjfr7XOxcear7V8yeiF/o6sF74d4f415TOmt0opqo/k dMb4lm9Q/6xe1mtqUfD+XG90gz3xmuOHnt+5UfTZf4sSt/iv+++g/y46zumN FbHeAdusoX70SXo+sm7J+gN9Rml+YKX70dRTsHc2Uj4/uNH4jvgxjPsajX/x v5qi2J2bNybojN/btd5onzrx2wYUw/Pi2XVyHvy+2hulBqMH6LdnyfJ0aZ8T P+yca/R+ZmmurGOZP0kv2B23av32Zvd/Kf/we3lfw17/usnkGfGDj5dOWRwR 69helHHf3ZSgP+6XXtgkdHy6WvzG97xf2Dl31kgez9CixKePc/8d/eyn6/V9 s9nhxI/pj28WPjhI86/2LNl+wMeVs0Qf/FEMz21vmSPj2qYkfL9Ds+lJ4of8 fajZ4qP4ebDjoZ6BHlusZH53vC7AM0fjAPdXCR3Hqnz7KGV0lnvBjh/zys8T +2dH3b8DmGdbGcqxjha5T7H7dOGDlUsmNzH+UyolvjvW/Wvae6DrGqXoHuus cP/2aZH1uHmGrNeMor43Fvn7rxdDP3r/2cLHr6lfNrPZ6DNV78tQv9KOw7rs qnp57VazYzkeyOUTVG8t9YuMY4OSyX10/6zWYahyP5d+JfrZuCRxsAfT5hcE dsj4tPmV+CzbRVjH89IJ+mP776r3YftN03xm7xd+/GPThT6DVO7t7H499vVK JdO7tFsxrv1U/nyRMXuK/WJ437eG7w/s53hA98vfM3jiAd2GvSPz2kvlyeMZ s0cIj7jFoIzw9eujhK+2d/yQY7eMFr7Kut/Nczfsjy3Unvm91fyXwE47JmPn buCrosZjhyXXHXL2/VaJc7ynftD7xfCc+tNfZN7fqRx+vNXWl3Sm30168jwL w9jW/Wv2C7k4Qe28twcZPPJ6r2kz/47w0OsruB+N/y1dit5vdzrz3V3E9Z8Y IfvhLfd/IS8+HyXzHa9xvFTG6Amx87LDo58Xxxge+pXsl+dNQRynPH7eC2M7 94vIe28P7PFF/ETGW+L24F3URdoph+N2nnfF7ZS3cXuQ995YCvMnf9C89/NL UR0VzW8/sxTunyPV/nre/Rf6p9DXJzo89Tv02I0OT7sI8Ec5PPW41Gtw+MCe 7O3wtAvYTnj6sxwn40QcJ8bzeMniQf88ziE2TrRf6fD/PM4hNk7Ygcc4fDxO tsfj5Lsn8Ti5T+Jxsp3j5HgYz4rHQ/h4PMLfnybGQz6Ox8P2eDyyvxYk6MZ9 GNONcSuOM+Sr0Yl+gzpWi/RL/ma/xEM5G+Nh/kGMh3ZGTM99VJ/F9KSfG9OT dI7pubTuz3g8xM/xsF/aH3G/1Ltxv7TD2K/Qt9PoTHkAuTfE90twTnQy6TY7 0e8wzcuJ+yU8+wX+QaTDTyY3iIfwMZ7g/aRF6Ea/j3Qj/EeL5ocxfjUtkjNf 11RwvuRPzpfrzvFx3Ylf6FyTwE97LsA/0fmW8pP9Mv+D/RIP+SHGQ38pxsP5 x+vF8cdyku3x+Mlncb+kM/ulviDdJOxSbeMhHo4H+udBb+d4sa4PO37+Dn/2 POWHZ+tMPgDsWMcDeX+u+tNHKp7zPZ6A3+tKet+wwfYxxw+9PZ/vHVZLfGWe ++9Yn/1UD77l7cG54TD332P6wJ64tUHs7turZf1OdTykD/OFiIfrA/peURL/ 5/t6m7dEdR0P5nFGneZ7lyQe9Xmj7RuOB3bGclrXtatK5OYX7teDvbZQvru8 FOYzcz99XbK4TExP9H+OxhMOmy9y8DbVX+t6nAHTPKQUnoMvViNyrbfSoaXB 6AC7sEr3xZYps//ZL/5/ofrvh8yUe2Uj3X+HX7TOLLHL7/R22lFY558YL2qy fRzMa3aTyVGsyyOK58amBJ2Br7fSuVeV5od7v6DzsXP1/aiSfB7icQPMp1rt /1eazQ4nfvz/B/Vzn5kqfDXV/XfY8ytMk3E+6+20M7Ee5X2NZVyB94IrQ3qe 2WxyHXmSL+l4JifpD/4Yqnn5m2k99T7eL/C9PFPWt5/Cv5EyOks+udr/q6Uj u6Ak67eenmsP+1nmX+N+Os6v//pZ1v9db6d+I31AxrtbzD8ifoR157aY/se6 nVUK/fGyPY/l/9D9/XhdsE2217pVa02R8VyjdPjN6YzfD3L8uHfz5DTlI/fH qZfpR/Bcge2SN676qCNteiaQb4eqvz/wR+l3qOPHfKaMEjl1jbfTPoIa+r5k /cbrArq9pfGQHmPF37tT7bFT00ZnjP8wx499+NUEkSOH6f7a0uMJpAPAN3J/ k/3i9yfdf5f6xqWK61DXmvBDDP7D7oVZPGP2NeTPxe6Pg7+GDBb467yd9jLo OE7lw5xW81uJH/NZOWP2HcbzhK7L562JdcG+erBV8i/G/6D556XQHz9upMTl TlH9dY/HATh++tecL+h5ocqZeRkbZ+y3cpxxO+3WuJ3+R9xOPonb+T5D3M79 yHb6m2h+Vv3lxztsvUGHg7UuTdm/Dv3NafL/Gx2e8g39LNsR+Y+VYlec7PC0 oyXfrBSdb+q5bVcpOpeskvb2UnSeOE/yN0tuZ1JvSj1eh6ecJx0qFtWLu+o9 3Cs7lF/HJ8bPdo4f5NjN5xXotTW8nXEA4DmmI3x/tzxf4mE78bBf6n32C/w9 Hb/Iz7k234DOP+i9jD/cbuQn6JZxv4D0IT9wvuQH+i+Uw+QvsSc6dd9OtHby CelMPiH+qWqPEj/k2mMdap+MTfAb6UA8nC/Hz/kSP+2cGD/7JX7QZ/MOw8O8 LPIV7b+Yr9jOfkN+aAj5YXtfX/JzyCcNxifod8UOs0vJ51jntMYh6+rDOHx7 Key37wKjG+lAumEch3g7+Qr9He50Jn/CT/nb7UbOS+pYODznhXEu0SH7aqXG 8Hwh5XjAR8dXyXr17TA7DWQdOlXW6/YOy28M8mHK+5fnkfh4aor018PxcL6Y 3wmOh/ta6i93SP+XNdl85R5lZDe+NkPWpVX18l5ur2Id7ulQv6PZ9EUgh79o lnGM+knW/YoOs9NwT+rUn0Ufb+3tlNtAd43aIc0p0+/Ej3Ft32x2FNZjlw5Z n9GpBN3w9/567nP/ZPHf8pHdmJ6iecJqvz2fMrpJXmiHnOdnWxL6DvbxKumK FbvhvtE8rts6wno6t34v67Wvt1MPgg/Jt+e0mB4P7h180mJxL5xnHdQh49qo JUF/uI3Ltwj9Lh+j+aJuB4JOV48Te/BfHXru2Wx0xv/27gjPa8r6E3S5q0Po eECryV32e77mkVP/4Jz0YMfDOCjw3dohfDY9bXZFMN/lW82OAn2Xdjy0l+Tc uCO6l+frAvi79N7sgK9kfdfpEHlylNuxcu8yshtPHWF0oB3I+aK7rTpEbr7Z auOH/d+ucZJ/u/1GfUG6kJ5s53fMt9dn8r8dOq0/0GOXIfL/IbG9MUT4oIfD kz7wLwZ1RPbADyLfiq5PyYeAHxjjHy3tr3ZE9sl4rdMe459s7cRPuwvyYrtY bw6R8ayg9CnvZ44T8qve8TD+yvnyPJfzBfzcDsND/QZu+KIjXL+ynCH82Srf CY/2Cdyn34Z1F7/wduLhejHOxvUiftorMX76vTF+2rXET3rSriA9iZ/n/TF+ nuvE+Cn3iR9656MOqwcYr2OT6v2g3wneL/ETT/gO/WTjc9IH7esMFjy/u/5i vhjHSf0V0yGI55THQ34mHvIz/j/d22mPIB9ioLcTP/T1u94vxw974ymHx2fV ZFv3IC9qF63bs6S3kz8xvWWcb8nn8K+Gux7k+PFRXl/Ccz8C/zC1l75JGf3x v+cdD+Tgv8eKXCm3gwsfdn0Ktky7PqIcgp2yTafQY2KL7RuuI+Io/2qxfY/t MzXSd2U5D7quGtvPQwwPxn+r6tOv3xc6l+crebyuZyXvwvGjrvEG34q/9naH 5MM0NBt9OC/qI44fdBis9luF6x2MY5/OSO7pOd6hLldJH8IHeCm3D3X5Rnj4 9UfHcm+g4WE78bA9uFeyCH62Ez/buS7BuMr6E/gnDg71TLmdeNkOu+GzwfY7 6mfssNDWk+vEdtD/8UEWjyAe8jvP9ZC/02uh2i9T7JwxjhOATyaONDxsB7vc +WMCv9QXHmHjgf2b/cb0BOHR76PDbf8TnnqC8OE4R8j/d5kY4im3Qx/Wjw/X 93CHZxwtxoNutlqYgJf6agtt32OY/cbbOEkX/Hz4FNM/cbv8v2jzwbL9Nkn2 29oLbf7IB+kzwfA/vqj/ucU0mxfbIY//MzXRTnj4I3d2GX6OB+s8rkvOF88e a/qOeBCPXjDG2hE/fFXrRCwYZ/4M7LyFnUKXN8cJ3MYzRI6f06l5yhZHt3gR PsdNsvFyvvQbYM9fOkH84029Hff2hk4U+i3r7ZA7v06VePbVXaY3gHcvvZ/w UpfopZmTbF7YV+s7PNvBJlt0GX74Z7NnGn3Yjv52TrYD3wszhK9mdFo76LW/ viv6TafxE9vFr+80/gvy58r4Ydc2TbB2nuvF7VinrzpkvjdNErv3vTmJdtjb /aosDhO383wqbqefHbeLOdWUaKeeidvhb56TtXNr/L6l3mNZfaHF3fH32jHG J6BHdqrRFXrouy6DZzsYbmSX4Ydc3GmKnCPd2hXmqc2aIvLhHG8Hn95YKXw6 ptPwg//H67tKrbqOpalm10EOXuPwbMc7QTd1Gn4s32qzJc9te2+HffCN1oVe 1duRx/vY3PA93nI77Lv6KmsH302abPDMC4rbyT8xftDz5g4bP9cLcuGNDsm7 WnKq2Znsl3IHYnP7arv3gvlfV2lyN9ALB3g75Xwgd54fI/tiQ29HfZP6sTLv Jbwd90I20Pp6l3UZfsl3VL/jsS7REzdX2ryxb1Z2+CCPYo0uww/786Npsp+m dFo79PtJ04XOX3o7pp+bKe8M9Ow0/Pi97wyxxys6RR6MZf6sncNJvPzOStvX qC8zssPwsH397o7Gud+C9ieqJD52n7eDzLvNFbl8ibdjXactED01qRTG0feY L3qx4Hke8Ps3qrF1Zzv44cXqRDvhgW/3Uqg/rtJ64P8uhXm1ZfuC/MD9g3md oOdVKy80eNDxxhGCf7uFQsffZpp+QT+fdBk82yVPpMvw9+ge8GPjZV/829tR B2mO6qUzvB3i69Gpsk9GdBp+8P8aGgdc0Cn5n4vPMnpAfJ7fGcbRyV8XdRp+ 8OlWM0RebeXtAJ80Q+i9orcDz5VzxO6+ocPwi7zUe7DPqh+43CyLL2M91nR4 tqNuwbod4fsM/5ov8qqqZO2QD5/pef/3JdP71Cvk5wD+Xa07vIWvO+TmOOWH Qx0/9tcWdcZXbMf/ptaG9l6x0uCJN8YD/fV4MaR/b83D+Lko8bevZlheCvEj z/4/3k77+5/bRybaaf/E7bQ/4nbK37id+ydu53zidrH324XvWmZa/g3OPX8t mH2D+8zj6k1fx+08n2Q77ku9WW91GLE//zPH9i/l/DlBHGeozHfHhSa/EEa8 6wexn9fzdsilv0aYHS7nTbOFn1b60doJL3a12rP3dFm73AsdJ3Lhoi7hu/vn mJ0A/liiy8bJdsitJR0Pmu+brHU8O60d7H3hFLPfMJ/NtP1Sbyc8/Mhzpws9 du0Mx79MpdBz7U7Nf59j/As98WWHjTOIIw3tMDzQz2/PknW+09v372bAo2ab H4R5ltuxjou0E/7wbj44cK7YjY2eR4hz9tRc4afxmjf5zJzQHrisZONkO+yZ KxwP2OwBvd+ys7fjYy2937Km5//Jelt+ldVVAts31Mq+vqNo/YKO29faPSip DzHH9gX0fE+HZzv0y0bFkH/ubDA5wHbQf7tkO+JGX9SLHKn3dzhwD3JZzR/9 SeuHfjjL2llHDPbfW7PNziZ+fN7r7Tx3ittv0HcpQL+Rc2S/NTTaexVsh990 XJPG5WeY3Ge8BcMu61O+ExnHH3hOyHbq66BuX9+vBf+W3o51//Vb8bOW93bg GTpa6HJdl+EH/7SOELq91SV67JV5psfBH1s4PNuht3fuMvzItyhMkPON2Z3W jrzFA3+RdR/WGY5zf61rsFmn4QffHDdF5NMpneK3D5hnehzknN1h8GyX+/sd hh/rUKXvhD7q7dhP98zU9zi9HXbvRlWCd4bf1+U+Bvxy2u/78+x/4K/HHZ7t kDcvl+w75OKw+bK/9vN26NULFoj/sImeN68/z+7DQi4OKxp+tmPdhxfD+S5W K3GJh4thv8fX2j1/+IXfqj9zsrcTHnp0Up3UU28vhPVLNq0XfNO1zuOm8+z8 GvdfrvX3bNgO/rrO8eB7vkHqw+7j7Rj3wY1WTxx+xYgqkT+HeHtA39lNof9O e+v+/90O/fpWPoEH8umBvPlpjD8TD+j2oLczTwD27KB5mh/XbO8Ysx3jntFs +zhup96O2+m3xe30n+L2IO6ySDv1WNwexDkWaSdd4nbqmbidcjFu53lC3M56 J8QXy0O2Q17P/EL4aK2FRm+5P/aByUnQb8Pq8F7T6C6DZzv6ndxl+CUe8qN8 /sfbIVdv1Pyw87wd6/7Jz2IPjOs0/BjnymNlP3R0ap5vtdk54IdbHJ7t4P/7 Og0/2ObGKbKOvbwd8mF9rUffw9sljqF+3m0dhh8/106T/72v5zrbVRsfgK22 c3i2Qz7v6edb0K+nzpZ9X1uydtzn/HO26P8x3g77/xW9Z7G93w+B3/Jdleiv vuq/7FJt/wP+6qLBsx3xhlavDwj5u77ei37O2zH8a2rEnrzF26GnDqgTvqr2 +uyQK0fVit21SlHfP642+wT7/DmHZzvE7hsFw4/5r6h51Id5O9i+n77rs623 I07RS8/1nvF3mrEP92yUdR+l73BUVNv+AdxhDs92+KEn+zthrGsZ5rXOlzjv n1oPbmHOxoN1OaFZ7JZ53i7321tM7rEd/SxoDuNjazs8zzdiPJC7B+ds/JQD GNdN+p7DlBqTA9h3g7rsHgDnw3bqP9Dhkg/k/5sstHbsv7c+kXVZxtvBD6OH yzyucvyY/+9fybr375L5VdaY/AVfrePwbIfdtrGPB3qv51jZT5Wd1g56XPGT 0P9rb4fceVfrB23UafglPj1B1ueITuGjWTUm9+FvTugweLZLXYgOwy/xsWla p8nbcX/hxekiHy73dolfzRJ5ObVk+OEn3TBD5PAfel+rqib0q+5y+MD/eKRk +LGfp1bZ/V62g163zhW+7+nt2CdrKV3vKxp+4D12vvjRn6p/saAm7GcXh2c7 4kT7F+07+jujVvgoXbB20P3jWpH3k70d3++oF3rs4e/ega+fUzlzQUHr9NeY /YP1a8obPNtBh3w+5J+j1B95zdthP7/eKPrhHm+H/Pk/vq46Tu/ieOMuxYpD CK4JBFKCBXeXFvcGK94CwRIIkuIQIFiRNEAoEgIhJEiIu18uLuf63r12kgKF 33vPzDNzu9+73z/3fu5555212ZnZ2dndv+k9JjUZ44/x66/nI/6o7/BVlJjf gt+96fTEEdf4MGP80a6jNU5xnuPQly/WyvuAPRyHXfuT500Rx7qgoi6Bkx71 PyJt9UH9rtXzBa+mLb5Jv4F8sP4YXiL2eETKzjHzHBf1Cfi/qvsO25WZHwa5 G91q+zDE0R9jW40P4pgfjJL+fMBx5EsdN0bqc5XjYLdU87wntRh/yMEH42Sf raZF2rlDma2nYBdvc3rie7cJ+j0t4fvP286UfcADHYdc3TBLxmtLxyWeOV/a d1+z8Yf9O2CefP92s8zjXcrC/crdnZ44zM8+zcYf581v0/joSj9Hh/XANnqO crzj0ONfLhX52q/J+EOvrLdEvj9P/Yfdy8wfhXwuyBs9ccjhMr+vB/fbn6N+ xYuOy/1YarfvdRzzebramWX+Dgred1i1WuIi6+r9F13Lwt895fTE4Z+8kAvv VxpcJvgJjkMe6vW+lX0ch3oYo/m9z2eNP+bDCtUno/QdoH3KzP9Gd/TKhvJW wHEf4ElZ44/7TwbqfVJNGcPhT6yokt8tcRx+9n80T7V3xvhDT06vFjm/Vd9v 3b/M4puQ02Vpow/u8WhMG3/Yo776XsDZ6bB/Z2u+6HbpsD/fTok+L28I78UZ pfdAHd1o9JD7lxtMbxDHfD42iZOeeoX88XV1SuJ/J+g9Wq+W2rtd5IN5tVmZ 6Mn19f72IfUWH4ceut3vM4/ONR7H/FspN2s48+nojwZ5SE+0Go527fyV2OGb Wy0ejY+Thkm/DtQ47eXltj6CPtvU6YmLXnX+Eu/VeNHcFsPR3MHjRa5GOo56 zNfzTju3GH/o38mTRT8c3SL1vqrc1kdo/thmoycOv3Fic8h/ffV/Hm8O9wM+ 0/zmPo7D3zpT9wln+/leic/ofRxpPSd5XXm4H3JPU1j/Ag5zdn9T2P/Vi0Ve DncceueFJdKfOzgued0rpL/75cP+f32Z6Ncheo/GjeXhemuffDi+BRzbFwf5 vV3ot+nq91Xlwn2RI0ukP2c4DnHbQD8PzRl/yPuROg/+zHdKysP7wZZmjT4o pyQbxoWL9TzIG45DD+5fIfb3Ecch/616z1VFxvhjnu5dKX7TxvpO8G3ltj6C vD3v9MShh17NGH/ojSka5znLceTH7qR6r5vjiOfX1Mo8Pyht/GG3tla/6MG0 yNMd5Zanjfo+1mj0xGHnXm40/ujfb/Vc4c8N4bhsoveST2wI+3Npg8jnyynj D/34u/5fmrLzvrIO8/cu0S93l5seQzfV1Bsf4vj8ud7KlXv3/F3IYH9usOOo 1+1Oz33LGOd9lTEf9Mc1yXLh/+xXn+AzRRxs6ZeNy0XuH85YviFx2MWrM2aX 5DxwhelVyb9vtfsJ2F/E6cfj+9yHUo+bHUd7DvxU8nQvdRx0m2qe4E8txh// 3zxK80E1jvReha038e741U5P/PK2YbquxfhDbfeeLPsU+ziOddHzmh+4qePQ v9Nmix2/p9n4Qz/WzJB+e1HPVwypsPUmxGNrpycONbSdn2uSeLvG55f6OXzM 2/2KxO7+6Djel52ySOzvXk3GH5/nFsv+z4l6rvWjCltvYl5Ozof3zRdw+O/T 88Yf+vcGjfs+6zis6yaat3NnPhzHj/UehkU54w87sd9KkdMWjfN8UhGuX/s6 PXHMt0dylh/UO7L/LBc/61pq7/ISR7PuU79+j1xY/5P1nsOB2fA95Md0fnyi 71h/VmG/k3id0xOX/Z2s/Q9zt02llJPOhPcp3FQp+nuh45D7I/QegKMzYb/d ofGrq/S9zeEVtg6FXRufNnriP7Y1eFba+GNdtF6t8DnZceRd/kXPAW3mONjt o+dTljWE945cofeq7dFo925yvYn67ev0xGE3Dm8I9zmaUzIvh6UMh504XfXz 3amwP7dPi57uXR/K+emqhwfW6zuKFfYOKfabXvT3ronDH/lXnfHvovE+6mHi 0Idzkjj2e+7VOODmzmdB28c7GZlvi/S9+Dccp94GeYPmPeyVNf7c34V498va eBKHfvkpa/YZ+9jrVpkeZr4r5wvnCXHSM1/k17aKvKX59+dW2roe9V7eYusi jEuV3h812XHI66XfWl4ByuleKf02wHHSy77AeD2P5zjK/3WC6KE/at5pRaWt 62F/vmq2dhGHPvjKz1ui/n+aIXL1iOPor/tnWl4B5KiHvgP/pOOkl/2CedKv FX7PCMq9dr7ERacrXl1p633J62iyegb5bn2cj+wLLJR1QPcI/6DY7qeDHuqp 95sMdZz0iIO8tUT05et5w1HvE5aKv/yQ3qtbV2lxgCvbCHfMh3m7BRxyvLPz wf+rV8g8LvP3KSE+T62U8Z3iOPzvlzWudrDrbdiz71TPn8F32irD9eWsrNET l2VfNmzvtXpP0auOQ15G6v1LDziOdj+u82l1xvhj/GaUSxz7fxlZN2crQznq 7/TEMX8GZOx/yM0Fep76VMeh94eq3j7QcXn3pUbvfU8bf+ijb/Ve1uv0/eem SvO30M83NRo9cdTzzsZQPk+sk89cg+FQI6/pvSXfOY5xvzEl/sDAlPFHfw6t l326aXqf5ZpKixsinj+n3uiJYxwX1xt/fPTQ9wX+XB+Oy1Na793rQ/k/ICPt aqg1/pj/L6v+71Zn9NSf1HPAf6m0fWX4dUc4H+LQz8fXhu+tbpUVOf/e92kx Dkdnxa4NcFzyPPyd52Be/JJN4Ph/T10fXqDx43yF4cyfYT2p5zF/X6+WfO3r Ky2/jfzPa+N/juP0j4R/paxXS3x+Bvg6edP3Mc54RowH+a9XVJvdYT4/cdoX fK7VIuP0XVWYn3N6i9kx/K7XD+KPdHUcH4vGSv276vmrO6vDczPFzeE7UQUc 9KV+Tk/2j6bofUmOYx3aNFV+d7vj8AO7zRV5Xthk/PH9NXoOY33NR7232vx5 1G+g0wf4a/Tb/Z7/YF1ZKBf504cXyXw5usnqc0rb/FpeJOV1cRx5U30Xix57 Om/loh//qfGW0XrP733V5udDzo9xeuKo3hn58FzlH5eLWDXkwn3WH/V+6gW6 /9vN75VGu//mck0c+5t/cz74/gq9J6KX49BXrastjwVx1Uc1Drt2ieHB/u7D pVLO+9lQruaWSn2eyEo7Dqu29bH0Z9bqSVz2K50P4kTvql9cnzFc4rN8Xywj evdxtQdZx0kv+1D6ztaFmVDOx1XKuPXMyHj1rLbvMV4fp0M5fFrzdv6Ttv/h n7+o+TZHO45pW1ptcVb0x5N6frXM8eDdrBG1Uo8F+o55r2qLw0CNbtFg9SGO n2/dEI5Lf7Uj76fCcSnS9wxudlziv3ofb8/6kH8qJX7ZnRofPrba4i1YL/yj zuiJY14/WBf2/11qX9dzHH7FpLTwmV0bju/0jKzT364x/rAft9PPV3t+fLXZ I/xuRbXRE8e/5T5+sCtfZvW+Dcehd5Zlhf9h/v7zx3r+LdYbmBcTciI/v3s+ Jr6+Qd8LPbaqd0C/n7+fGZR7dN70N3HI8cn58Bx9AYc/cYG+77fbJMOhTs71 dzaY30n6wzX/PMaZfx7jzCePy8X/s/2dQNopyPtJlZavhnnxUXTucYnqt+F5 i5cThz8zOm/6G/b+QdWTezWF5yTOqDa/XPwmfXeiMJ7o51P9PlHioD/B49po 9sgas6e8xxly94jnqRAnPfNIML59mkXO9vH8Ofz8Q8dp19GeD/3cOOqxrd4z 0t9x+F03TBI+fZtlnhTKZT+in/fzehJHNXs4H7T3nZkyjiV+zz7kvl7PF05q CuMa2+i5qwObjD/87xPm6fujer/Pt57PBzlYkTd64iIe/q6e7KvqOZJXHMd4 /2WR9O/9jst+6FKp16qc8Yec7Kz2dDPNj/re8wLR3y86PXHks72dM/5QV6+s lPl+iuPo316rpB37O478qHrd538pa/zhPzdrfkTBf4S9Gltj6yno4ZOcnjjs xXkeb8A8GqP77a0ZwzGfN9f9luWO43NFhYzPiZnw/aVq3S+6V+3d+JpwndWQ Nvogb3xd5w/x/4/mh1+UNhw/+03jHzs7LvuhOj61DcYf4rBQ34s8p1HoJtfY egrjc7HTE/+tzY+6s8H4I076dp2s575NGQ49k9Z4U/+U1O9Rz+PE/Pqm3vgT B58CTj6o34/6Pvu59WEcaLMGi9vj57Or5V7MrRwnPcbpOd1v3aXOcOjrkkbx 2yvU3j1WY/ExxAt3qbV6Esc5rF1rjQ/05190v+erGsNRr34uB6jWfH3H5jHH SY/5f1xW4if9q8P5eHNW5OQMHdcna+z8AObBgCrjRxzte6rK+KCd9TnTr8R5 zoH6lTjU9Xk5GZ/tnQ/a0dfjGmj/Qu3ndjjpYd9P1XcMXvhavp/iOO0s6SH+ N7mdxXp1yxr53UNuT9HM73W9M8hx0qOeL+TDc/h31sh6crDbO5aLeNCf9L3K So8jI659re6bfq73+76m69SJ+fA8/zf6XvFqt+Pkg3XIzxpX+nC+1LfYcZ4v Ez2i/t6ufj4T/TuwWvz1no6THnGi7n5OD/yOrhG718vP82C8B/p75rADdeXR fMybX4/PJ3Q+trvvHG7IUMd5bieYvwUc+u/uFdIfkxxn3j/pYbcu8zxg4hi/ 65sS+Weox22eD0Qc9T9d2/tQeThPr/b9eNiBzfwerp30fDTszCt+jxjzGKkH EdfddJrlLwX7gZdNl/Gdp/cs/9fvscX8e6jJ4t/E8fsnnA/yKs6cJ/X9k+PQ j9l5Uq+dHZc8gYXC9/G88Uf5RQtE7j/Ly7nBX2tNPmSf2umJg/+ReeMv+QZL RN5qc4bDjSpaIvZojuOQp7v0fNgROeOPcflc86+uycl6fa06WxdjXMqyRk8c 2iSVNf5YB2+g932/7bjkp2h+X3/HMZ/313vjq33/AeN+kuapbZOVuNq6deaP Yn6+nknsMw9qY/SB7wNLvkG5xHPOdRxycFaFyMthjmOe7KT7Dz18Hxv9zn2D 59Pi923g6zPI8auNRk8c0+U/jWG+VI3Op7Udx++PUfswvcFwzMNNNK9gcMr4 47Ng53BOsSkl/vImdbbOxc9/qTd64vjcOmX8Jd9A99f/Wm84zs0crO/mHOI4 1m+/NMj8/LXW+EPNbtIg43ZFneRFbl5n61yM4/VOH6yLH6o1/vickRb7MsP9 G/y/ZUbKecVxyG2L5p1fW238IZcPZeRzQrXMrz/U2ToX82N6ldETl/vaqow/ 1NpKjfsf4ji6c8Oc2LNWj3fDjxnj8U+4JZdo3nxRzuwpxmudWrP7xEmP/6ty th5CP31TK/lO6ZzpP5aLZjTqvvXkCmsX/Ph7ctJ/B6g/W6r3pO+UD9/tXVvH 8Qi318H8vUDfQWqaJvR7OE47S3qJd7idhTl8vFbkpp/bU+nXWrP7xEmP9r+c t3US+G5cZ+9Fg393by9x1PPsCvGzMjWiZ+bkzS6znthXqNU8g1MXyzz8g+O0 p6THvxu5PYV+PU/lYQ+3mxLnd/tOnPTg08PP26D7vqgVvfwnz5uHHfpF9dhu nnfL+uBjUV7GoU95KIclnk+Gn+V1ffG74yBfreuQPm7fUc/fa8Tfe9ztO77e oVbywB9rivKJy8xPlfdYJmmem98/Tv+FOOUG1TlM7ftvdeF51Yv8XnWMx7qz xd4e5TiG/4I50g/76vgcV2/xEYzv3HyYT1TAQbcob3xAN0Xl7AXHMZ63F0k5 9ziO8dhksdifpTnjj3bdWCzj/3tO5tMJ9ebn/R3+gNMTx7rmmZzxl3wVPWd8 fC7U4+cuFz26t+NoVmqV2JfnssYfH71Xyv7311nROyfXm5xBL/R0euIwY4V1 D/ljXpysefG5jOGSR6BysNhx5DfcpPb3uIzxl3VfmcQD+mRknp5eb3kKwIvS Yf0LONZTlWnjD3t8hJ6nONNxzPd/6v7eNo5DPv+i66TShlAe+mq87fBGka+z fJ2KePtRyfUr5uc5DcZf4ljqrw1PGY78wwfVr7zfceiBQrv5/gD5Y7r1qdO4 br3oj3PrbT2O4fmgzuiD8xSj3A9AO7ZvkM9t6sJxuU3zYFbUhv3ZK63vN9QY f+iFi/R99oLdwvy8sN7W3fj9Rk5PHP7ybjXGH/7ZEyoHD3hc/t22z8/Vjh9f Hc7H17Lil25RZfzhR3bJ9q5uG7hbqsJxP87X0UG+5u6+jsa68Zc6qedpOYtH Qg4uqbd1OvJo7qoM4xkzdf48VSnnIs6pk/5/zu04y4Ue+Fjza3v9qPsrjtP+ Bv0zM2f2F/0xTd99XJwzfQl9/I868weIkx7yU1gPcB0DPX2D7kssyoV5zMxb fTgn83pqheFo/3Oe9wa5OLOu9+g2th85LutZ1cN7ud0P+v94tb876f1TVzhO ux/Mo6vz4T1Tr+m+Tl+3y5gHJ9SZn0Cc9OD3rN9PAblp1nnzmp+TB/3+9TJv r/TzJNBnt+r55sMcx3y6U+XzJLenGIZD6vRcouOYvwfUSf/96PdogL7Qn8hL WeL3ArAfsO5p0jyYFXre9VbHaa9JD37/U/9nVInhaO86bsfhh12sevubfHgu Yrzba3TPYH8/NbhP8UfHKWcSB80bH/h1Q+eL/XzU6VGNXeYJ3Ru6bz8gZX4e xqOr0xOHWtk3H9bzhGI531yZMxz1qNH18nTHJS9oqcRvu+eMP+ha9J2eC3Oy Tn4qZfIBvbIoa/TE4ecszxp/nCfZc6X4SYMdh92coee8H86G+npkifh95Rnj j/rPWy39tkFW2v3PlMlf37aK/tPpia/dxueljPE/s20ePa7nJ85wXPwezU8/ xHHotaEV4kcekDb+GN5izTu+Ny167/mUxcMxLx9sNPoAH9ho/CFn96qdXdNg OPTm1CqRz/GOYz32mt578GLK+IPvBI23LU+JnXnJ17VY95TWG32wnsu4vYR/ c2Od6MWrIjs6Wv2vvR2HXirIBeZdvjZs7/B6y2/CfBjk5xihn053euKo1mW1 xh9+0iV6z+P4mnBchjUK/2cchxgerfsQl1Ybf7TrnbSs4z/Rfhqcsvwi6MPh VUZPHPsj46tCOXnA85eC/tlTz6vvUxX225GeJwez+YGePzjbcdKD/W9ZKWeH DwyHGu/i9hT13zIl87eb203cz/99vdlx4qTHPDzB18vQ/31T4m91zYXnNArl Qi7X17yNf3l+MCbQRm7vAD9Z3/uFto7v5jjk4mnVMw+5HQ/yj1/Xe09WTRc7 8rHjtOOkx3pgZC58f3K5yu38nNlNlMf84lrHSQ++5TnTo5J/kRK/uyFn8UWM x2B9/2men5dmfcDnJ83X2t77DfI03c9PQv5fVPmsdVzeI1f//34/j4R5dZ/W f5t8+F7M6/V6j4bbd5YLvXmW2o8RS0Vvj3Kcdpb0KPdvbmdRfHG93ZsDf6rr asPR/IfdzkJuHqs3/4E4983oJ9DOgt/f3a8gjmp92xC+p7BTXuR+VIPNN+Lc b6OfSrtMnHGiGKfcxzjtOHHWh3KGebef0wf3xBboqb/knuG54o/c4zja8fg8 ibPd4TiGtYvel1mcs/bi/y8WSDk59dOnNoT3Jv7D6Ymjnn1zxl/yvhaL/j/G cUyrG5eInHZxHH7QOitEDzydNf6Qx4HLRG4+ysq+6cyG8H6X/Z2eOD4Ozhp/ DN97q2WcGzOh3t9T30EochzLymyp2KOjMiH/Q0t7H9/W/5dlpH5z/NwY5Py7 tNEH5/Ampo0/9M44PSdyguOI52xboe+upMN+K6sUfbOkwfhjPu5WKeXspOfg 5jeE+Tt7OD1xiNGBDcYf+nGE2q2PUmG/ra9xyjsdx7AX1cr3x9Ybf4zTprU2 P9Hu4oZwHTmwzuiJo96D6ow/z/di2mxSF45Ls+qJQvlBf05qEHv9QY3xhz+y JiV2u6bG+o9xb9mHrzZ64rCnv1Ybf8Q7BqV1veE47M40z7eDem3Vd+yqHEd/ l+o4LvXzPOQj+V0ZKed3z5PGPBnj+eWSL6b7D8syibxqjMtLmtf+31cMp/8g /z8m+uuSBtEjb2ZNn6F9v6seeNrPt2Mf6gc9b3OhnyPF73/V+b6f49DXazfY +XnaZcyf8Snxh2/Ihud/ilRPzs+GcfgttT4NWbFHW/ykcdSU4fQ3SI/yN3a7 j7hPV93P2d/tu8xf90+Ikx7jd4yv3zFsj6n+PCVn8UvYuSkNIjebu70Guw0a pZ3lfs8I+nMznS9Nfr+A6Dc9z7Sb22vkc1RpvOpTPw+MeTJBz6He6v4J6l+m cvik+yHsH+jNDzQf90l9p28dx2n3SY984wk5s/vo7nN1vhTnzL7Lfpf7M8RJ j/Jm+H1zgfx/oXHYOasMx8fXfm+U+AMq/0sch9hlUjIefXLhvTDzU+J/7+b+ Bqb7lukoPpWz/FbafeLo7/393nfUM5szfSH5YHpP3FzHoU/XLLD8EVT3Us03 /c1x0kv+WLHk053uOPIu3lkk8/ogHZ/N0hZPQbWmZ63+xCHQM7LGB/3Za5n4 6YMcR3tXLjM9gfG4Qtc5JY6THt2ySO3szxnDMR6PrJJ+XaX4H9Im9zhv+3DG 6kkc+vlR5wN/ZfNSaecpjmM8ryuVvM8DHAffbuUyD7umjT/q/WCZ+KOXa/7Y Nn5+Ef1zbaPRE4f89mk0/pI/pvG1tNsJiNOFqpdHOw757lJt61Tyx/y4Sd+/ K+hBzIs/ej4a8qam1hs9cdwvMqfe+OP7tJ6jv9hxzPcTdT9/1/qwP7dS/7e+ 1vgz/gS7uJ/Gy3ZKm5+OPIJDnD5YB/f0/WPwKUmJvzSmxnDITxfPk5P4eaPI Zw/Hcd76DD33v0c6fK+hwAe/+6JR5s+11eG8m9lodha/66Hzbh23v5jOW6cl rr6t21+Jpyte7OOP9hXmKeJKrenwvNMOjRIH39vtL+vDPH7qD9jV7ZTvQr// hfSo7yjdTz/X7wVAfcb4PQuwY8c2il64w8/9kh566iSdt+OHhvP6GrenmE83 N4q8PuZ2E/XbrtH8AeKkh954NWvrGMjdNLVr/8raOkb6X/PmH8uG90LyPpe7 s/r7EsNR3IPZMH/pIPVn33Ic9vC0RvM3aB8x77dQfFzW7D5+f7DGvVZkzb4H 49Wq8ZOR+o7bOY7TnpIe9drB7Sna95q26+DIbp7QaH5C8H7ra3oOubev9yGn zY2il7v5/cv4elPd1/nF71fFevZs1ScLsmH8/AL3N2gf8fUfGs0/IQ5zvkuj +Ot/d/sO+mMaxS98ye04Pnuq/r/E76VFf/XImD3l/oy0w+cDce5LQb0dqO9H HJQzHP1R5DjaeXbG+gvxsRnOnzjasdj54/MufY/mPccxv7bXe6YHOI52jFyh 735ljD8+Ji2TftslK/P1HL/fEePzntMTR30+zxh/yPH+Go+4wHH098MloleO yEj5B7i+QD3fTxt/4qjv+2njI/lUeh9bL8chD2+VhXZlqJ5vf89x0mPe7Kh+ +YaNhsOO3K52cK6uDw/yc6to9oYNVk/iGL+NG4wP7OsxVVLOv1Jh/z9XFcZz P9Z2v+g46eX+lhrR07f5fifMytU14l8drvGvgzNhftMddVZP4hjfu+vC8TpY 97vWcVzmQ53lu2Af40Mdx/6Okx5y/Iu+NzrB86QxX/dMhfnTz+g4nuc41F+3 jKwPvvdzueQD+/uwxkt6VhuO//v7+Ss5F6X9OddxzIfjMtLOgj/CdRz5IB6e VTv/pd+PgP5dx++VgP3vm9a8Bschv6+mRU9d6+eT8VmYRzhHcKTfe4h18EE6 LutmwnvNztb70r72+8tQn3fdjtNuYv5d5XafeDAuZRnZX31waCiHBTteBoF/ V/7/Qu14KmPrZczjDTOyv9acsfgf1P2h6meMdX2A7y/QfZ5XHUf/DNN7fD70 eyShT2/S+87mOo5xHJCWeXil3x+H9l6m+Rrbu92X++B03A9z+x7ojXM1vnbV JLGfbzpOe0p6jNftbk+hj5enZR35pNtNVOvptPkJxEmP8R2cDe/f3lX16PvZ 8H7Ec7T9BT+E+h6/L9gd7ufRbgbjeI2ul7utCMf9hqzZL/Tb3Tp//5kN71t/ Pi3jtr3bU8j9zdqumVnzB9C+gXo+siprdh9yWhhf9OM6bmdR78Fux2lnUW6J 21PmRRJnfyHee7mW3z9j771iHg/P2n6S5C/pO+XPOC75S4sNR7c2ZqwfUU73 rM0H4ui/o50P8vlTei9ES8ZwnDcZtFzkaJnj6N/uep/uCRnjj3Zcovuzd+k6 MeN6Afq/yucnccT5fkuH/PuUynie7zg+viuV/t/RccjVP/V+r+qGsD6D9fxv we+E1sr6+gH7zOc4PXGU26fB+Mv9OXoPxDe+z4dz+Z9WSjsecVzWrXo++6x6 4w/9+qSef/1C90HzmXCdOLLO6INzcnPrjL/cn6P50Ts6Dvl8yPODIdaFcYBc v1Mb5umWK/3+9RZXJh/Mi7V0P22w398vcR0/14Tvr1f/8CLHUW5O85CeSIXx 0gXaP39MhevEvNqLCX5PBPTJPzR+X+HnhFG/S7RdR6bCexUWq9w96/F7VHuN 3rf9J8ehNx5Uu3KZ32cEe3m5yv/njmNcbspIPGq636NxgGyIJ/xl6MklGdEP m3q8hP0JfnMaRU/8Xmo4fr6w0ewCyr9G+6er3x+Kj79lxF4d5/fokQ/s2zmu h9Dsas0TLOhdrjtIj3p2VfnKrTIc5R3o95XD/t2o+ucsx9Geu92+096RD+o7 VPXcZiPld/c4TntHenw/MWP2DvcrvaTzYmXG7Brs/01ux4mTHu1OZ2ydC3xc RtYvBblgfBj6oEXPL5ZkwvVdYf1/a1uFPnM9CnlvyvS+pu3fAY5jPXu/+wm0 R2jPn92vII64wOU6X/Zwuwz8Vr0n4Fi3v8H9Jpcp/aT5IucPOk67RnpZJ2Zl n2DpQsMRt3rI7R30zcPaDwX/gfYO9bglY/k0tHeYb89lTc4CPdgu74E46WW8 F0ge3DiVg55Zs4Pgt1nW7KfkBS2VelRnDJe8II1fVymfl3xdjW4e5PUhjvn0 jvOBfrxJ35M6x3HI+Rb6zsahjkv+T4nMl+5p4w9/rXq1rAefSsu4v5IN79N9 vtHoiUPcPmg0/nK/kN5T91uD4ZL3o/ccT3Uc+ahTK2Q/+bWU8Uf/lOh+ZUNK 5dLvT8L9gk2ep0J8ozZg45Txx3x5TfNUbqg3HHqyqCrMM95F5abWcQz/YJWT wX4ulHwgDjfWyO/+6+dJMH8frTH7hXm3RVbs67eOo5hHs1LOW35+CO15Nyvx 0FMdh5ztoeN7s5+DRf3W0nerfnAcfuMjKp+7eT416wn9sqpO/ONqv7cI666y OrMXGM/1tT8P9fuVEOfeRs/VnOP3XPyxTZ4K84V5N5QX8se/F6XEDl1XHsrn jX7/Kfppk6zYl48cR3/vkDX7S3uH9r6t53UX+v486Bnvu6UhvMfxLV0PbOc4 5HXXrNlf2i+os/+5vSYO+n7sz0abr1CL72VlP+0Zx1GfrjqOnzWG5y/W0XFc Kx2+X7KlnoPfpdHsVHBP3/Z+HyC+Pzwr+8VHuJ2Cv1noT9pZ4qSHPj3N15XY 97hR5fb8jMVjsZ/6mMrtwW53WB/o860ykjf48lLD0ZxtM6aHIZcb6jrqKMcx 7ttqPPfldBj3+z0j8fsHMmEe9Zban4PcnrJcWZ9o/Q+bLvK0u+PB/myBHnZn fsbsF6p1puqBkozZKej3Llmzy8TJB8M0U/v5yYXhebPijNkvzKMNVU82O476 7pg1ex3kQR3p+e5cZ8b57sRRXsrXq4gf3ZyxuCneTXtvueiBkx2Hnj11hcjV sRoX6eHv4SAvZZaXS7w7hittfNCf5av1vIfjaM8pao/+4DjYbavvcq5qMP6Q n2PUHh2s+2VHeD4f+r+H0xNHv5/cYPxxrqNM102fpQyH2B9YEeZTTs3K+PR0 nPRo7wi9N+5yPyeAYhf5+QEM2xi1j+u5fYGcds2J/3Ko3y8Q8G9Q+zW3NsTT fo4R8/cz5X+8n4cU+6/vEjzn91iQD+bx9XpO43QvF3Jwt98rBLEZofp5lOOQ s7GqP+dXm91Bu47XuH+1n9MFfRe9L+SBWrNHEPcT9NzjXo6jPRPdDtLuoJh/ u90kjr9752QcG+rM7mB9dKruq79ZF75DME39zu/rzL7g98M0PrGl36ONZo/S fe8D/f5WyPE+modxe8rmQTBeh2rex5clhkP+eqZMn6M9n+s4PpEK96e+V3/j /XqzO6A/Qufd9Aab3+SP9cVHei/ixSsMhz0f3WB6Fe39SuNW/3Uc5Y9z+0h7 RD6Qp96e14D5vWFO4nUXpMM8n5M5vunwneeC/ON3PzSaHYE/eqLS3+w4+mGy 21PaC0yboW5/iaN/v9FzOwvTZu9Yf8jZBrpu+PZHkdPJjtO+kB7rgX3dvqB+ DVnRp0e6HcHHRLebxEmP5vf2dRzkf1+dLzt4vA30p+XEzqxMG45+m5GVezB+ T5u9gNx8onK1v9sR6LFvdd11R9rsCL4uyNtmbc173O0duvuHrJxLusftGvIr K9zucJ8S/TfE861RzRfSRk95gt7YMW309IcwXP3SlhcDfbjzKr0vy3HIyYRV Mg/20/c3ij3/CdW8t9HyXIhj/vdrDN9h7lYqctLSYDim7QDNV/7WcYzDIeWm /1H+X3Midxc4znIhH0+WyfnzH1KyXlyUs/vguf9D/hjXuytkvLrXh+XyXV2e n/yL5htNrgjXKZV6z8vPlbZewDhMzUm+/NN+/wvKqc6Jf9ajMryn41bVk5dU mh1Bfc5QvfqJ45jfs3LS7l+rwnt+Uzl5f2eY46jPnTnNO6sK8xjPzYme2s3v p8N4XpkTP/Yov08n1dbdM/X8a/+a6Fyb5uUfr/kqb1QYjn45qcb0NvCL9H66 QY6D3XU50VvD/f5TiSvn7Pwk5Yv80R/f6H0SW3t98PPJtWEc7FKt/0Z1hqO9 fdwO0u6gf2u1Pn+qD9+dncb+rAvzHwr0uA/qfsfRjtvcDtK+oD1nud0kjo/Z Ok+PT5l9wTqlMdf77bb6p/wcM+pzV07yyrZIhfn25+fED7s+FfrzV+VEbz9a H51ryyXy4p9og+dq/X9sMDtCepxzfkLzjvOLDMc0ebbB9J7EY1XfLnZc4sO5 3mnN96QdIR/0yxjVI1sPMRzj83Oj2RfI00s6r/dImx3Beucmt4/ESQ/xPjVt ehTzbJzu35yRtngg9MsqvT+xoE9pRwI5/K/mr1XPNxzze/O06XP8f7nK4dmO S9zY7S/tCPTNRXqvzFdps4Noxw06LrVps3dyH6Xbr/B8qK9TeI8A5PulvNkX 5mXynAbpiZM+yNcco+N/qb8jinoe3GjnLaCOziqR9XC6wXC096kSkzvY9T/o PeXvOo541TN6D+Pmfp4W43a73svwup+rhFy8oPmgJ5aG51Iu8POlEJ8fdH1x T1788E2j+x0G5SX++a2/0wUx2k7v1VpWZnYBfJvVTh1cbjiGYV297+OMMrNf 6I+79FzuoIrwPtdC/2BenKf3cPWvMRzz/fwK08+Sp6l2f4jjGLaN8qIHxpab HXkM8ZO87MOnK83/J3/sM02qVP+00nDIf1Gl6Wc043f1E3aoCu+t3jxv9o72 Be19QcfrzGobB8zTO9mfVWZf0E8v6rncpxxHdbbOm72jHcG8ybp9JA76v+dF fs+rMTsCdfOq9v8v1Yaj/tvnZT7tVmP2AuLYQv/BcfT3eir/z1eHcbNCuYiv zqs1O8L+RPMHqV2fuMpwrH/fqA3jUb/o+FY5jv7fOG/3BdCOYL90gN7HelC9 +fPkj+830vkwaml4z8tO9aaHMR/Xyovfe4Xj8DO3yJu9o31Be1/Rc05Pp8x/ Bn6Xju9ufs4Y4viSju+MesPRrm3yZu9oL2Qf0O0jcdYfnxWqX5a9kTjvJXry OZHHw7XfWhps3YR23KD3YW/caHE59Ms/OF4Npv/B7jW9R693Q/hO9Q4qP9c3 mJ6XfUaVn28cx/iun+/9lzaxmZ8y/Y/v16gfco3bO9izjVS/vd5odo3txc/n aP7piImix3dwnHaE9JCPxZrPu9l0w6H3VzeafYE8bKL3BJ3aaPZF5lmT2QvO I4jpcY5Le/UcxFFNZneo9zDfN2yyuCr9ZNmf83uKqYeBL3acdgH4T45T/0Nv rtckcfLdl4XvLn6cD9eZTSmr5/oq35DLlirhU+HnDFku9N1QvTfu6hLT82jG +3pO8ivHQb998v4+4CPVzhaVhvd/fZiXeu1bZjjoP3N7R7uDuHOPJmnXVeW2 LkB3b6d4bVl4n/IRTSJfrzmOaTDa7SDtC7rvDbebxCGvO+n9fFdH7yYdpfcg b+I4ivkxL+vGgyvMjiDf6F95iSf0dxzd9B+9V+Kd8nDff8cm8e/K/f0QGX+V 2yGV6t+VG47+/7AyjDsNyUs/NDsOPTI8L/GSrSrNvkB/7Nck/dHb77knf4zj 9no+fGKJ4fjYt9rkCPLxsY7vbY6jvSPdDlJeYCf+1CRy+VaNrQsgD39s0v70 +4Yxvwv0WDcsrTZc4qVuB2lfMJxvut0kDjnh/YtD/N5EtPsYHd9zHUd9xubl PoO7a82OSPpdvvdq+BuOS3xV7wsrqTH7gvHbtUn8vi5+v1QwvlWa93nJQsNR n1RdeN753zq+veoNxz7cCB3fS+qic9D6vtmYVOKeLc5n6jn4OQc1yTmwh/0c MOkhHlfoeyqvzDEceuSOlOlViYtq/b9wXOKibjeD9cV4lZ+HdN93pMbfxjpO O0J61HNCg9kRyXtzu4lyHphkONq3uMH0Jdr/gdtN4ujP790+0o5Ant9ye0qc cT/2o3xqPG2124vgnN0nbi+C84wvO06/Efqkr+PUP8Cvc5x6EnHPJ5qsv0iP ONONjndMPyF87/CMJstnAH5ZlbWL+gXV71Ei43uhvh+1T3kYJzmnSez4g46D /kzX29STiOvN0/vvZvt7eiwX9r2v45Cj1/z9QPYn6n25623WV+KqrueDdkxo knk0otL0IcavTN8hvNpxzNu/arn9K03vgd/J6j8UOQ5xv1DtZrrC9GFay0U5 Pfw9E8z3m9XuN+v+zt4rDIe8/FwV3gt0RpPt0xCXeGCTrI9urDJ9iH6a3yT+ 3Yt+3zz5o9q36j2FOyw2HHQP14TxkHN1fMc6LnE519vUk2hHifKp8/t0QTeW /VlrehLqozDuqPZBtWFe7nWut6kP8fsTXM8H+CtN5mdwvoLPxCbh2+z3C0IO K5rsPjXiEn9rknpNqjP9Brk4Ve9J3L7ecNTvoiadJ3Wm99ifkINrUjaP0R8v Ndm7VpyvqHWfJtPnxEmP/rnL73sI5KeXxqnmTTQc9vGElOk9ie+p/DznuMQh 9X7JYX4vI+pxdpPEbXZ1PQz5fa7Z9B7HC8N/fbO1M7jP6UzHaX+BH+Y45wX4 7uQ4/QH0wzqOB/N0L3+/lPToh7Trk8B/SLv+IQ55OMLf8QvmaavrB847/Kza 9Qlx9g/9P/z+1Xkyny92nP0DOdqwWc+jV9n8kvi5+vn7VBsucRWdXydW2bzD /7c1S3sG1ITzbstmGd/Ta6Tfv51vOOTp3Jpw3Zdt0nd0HYdf97vK/7fV4fmy B5tFblb5/dzkj2r8WCvt//N0w9HP82pN3iSOoe9TbVVnOH6/XrPpB8478sF6 4Cq/twzrphuaZT4fVW/raPDpw36us3mE8XpK5bmf42jvxs2mHzhfJK7u+oQ4 xn/tZjk3vYHPX9TnFx2vp+rD84+HtVi9WU+0f70Wk3PWB/xSLv/sZ+ALHQ/u 1f+hOdQ7BXnA554tdm8r+cP/WbfF7Bb5YzpMbDY/gXyIc94RhzwMbQ7z1Z6Y K3Yy7++xBPHtAr3cJ1Vj445+fbVZ529N6I+90yx677Vqk4fgnbd1/f54rLv+ 2CLyM6vW+pn9j8++juN3I/Udzrdrbbxk3dEs6+xGxxHP+ljleZNakwfEJT9z uaI84HcPv2/jwk+078sh9r9006uG839+j3X0C++Ev59Xk8AHalyB5ZIP8bhc xCkPWpOoJ/TMgWsS9YlxjM+znyXaheqNHma/I3/icbuIs12kJ3/WP6aP20Wc 7YrryfrH9SEu29v/Eb79vrZ6Qj5+/FTmz2EjDYcd3+ZLw9leTLcLPzZc5CGX wNle8BnwkZVLesjZl1+ZPCEv5uA1hnM+E8e0fOhLmQeVI60fkBfy0nB7pymQ xzNHhPG7Ao55+78R4XwotAvz7vUvDWf/i/38wvgTj+nZ3rhc9n9cT+Jxfdgu 9qOot3GhHi3gsBunjQvnQaF/iZMefGd9ZTjrSXryD+ZXO3ricbmd1ZPtiutD nONHv5Z+DuUgjGfONzkgLv8v1vfaphhep/mB9EeISz47/c2pho/Tc7vs915a L8R1uq2J5OA7w0M5cJz1Jc5yaG9inH5fr6g/YNcvGC391m+ijSP8ti5jNO9z kuHYJ278znDKA+pzwbeGc9xjnOOL+gwYZeUSR33u/t76L9AP+R/MngV6uveP hrM++Bzm9OSPdu/t/InH9IHctuNPOYzrQ3mL6x/Mu81/Ers/ZEaoHwo42Fw7 I+zP8WMNJz3cg/scD/q5QE/+bFdMTzzmH9eTONsb15/0tNuUJ/on8XwJ8rsu /cnw8P9Jhgf3YrTDd9L4HOWcOPyF2+ut38mX84X15HmTGOe8Jx7knRX4EWe7 +D1x1jPG0Y7Xx4t/2nt2uI9x6ASRo7PmGI7mVThOeUCxj443nOXF+NM676kf WS7xmF4HJoFL/81N8GF/xPRB/kk7eq6zYnosQ56vTOAna35CjHPcY/4yfuUJ +tfb3wPSDhe/tzHBh/54x/2QTuDU5zEfxg9jXPRvc4JPZ7jwSeKyzk7i9OPj col3PF4tCVzmXUuCj8h9i8VDIQa7z5bf77smXM9tNieBw14eNEfzsxyHGX1x pukZ4rDTY2eZnmG5+Jw/03DaFXyWzQvXeQUc7E6bZ/OI9oY46TH8syYYzvkV 46I/Zhkflku8Yz4LE/TSzqIEfWe4zLvqBB/GUWN6xntjXMJ8+QTO/d2YP+Ww 43Yl6W9Xeeu435oSOOU/5iPztCVB31l9OC9iPpTnmL6zepI+5sP5EtNzXsS4 xKtaE3yIx/QSp2pJyC3ia/NbE3IOvfRJa0Keicf+J+Nssb1G3uilq81uER+h frLYjRkJuxb6SY4v13hGbDf5P+MOLCd4t6Ywf2I8picfiHcvfSdpe68P1j0P zE7gosfnSPxtPcel3JnhOreAwz/a3/UPy4VerHMc3XOixo0OXRD6z+crfuyC MD7x0lTDqZcwLltONhz7WA/UJnCpr54vXnuylSvx5JKwn/+o7+Q+2hrmfWyY xEHfdYGs7/s6DrFZqHpjhOM4/3LtfJlHb7q8YT7f6Tjsz25TTa+xHxDnWj01 zI+kP3/NtHB/t9A/aN61Tk+5jPFi9fvA570pVu7/j6cTfNj/MS7ztCqB816A GBe90Zgol3GJmH6F5mvG9IzbxvRHqR7uuNyWBC7xxZYEf9LH/Q+90diSGC/0 T2VLYnyJg/696VL+xcXhOHZxPJCHAj3UzgTHIW7vTzP6YNy7OD3HN6bvDOc8 ivlwXRHTMw4Q4zznHvNBHk1zNkH/hvqlMd5N7WPMh3hMj/3hk/KGI17epdjG N8YDeSjwx3BdkcRJH48j8UAe3nM+pKd8UF9vqf8vbx//bmePuM4gjjjxvCVG H6/jqGfi9Rrp4/Ud9NU0vZ+973Tpt66Ow87Mmi7jsov6mb0cj+lRbLepob2Y puuoA6aF/movtVuPOA6+B80SffrLDOOP3xfsCtYVzzuOdj4423DWE3k4K2cY H/InTnrWE/73OzMNJ33gt74xX/K772g1u4vvj0ziEL+v54scXOY4hvHGeaIP X3Yc4/3SPPn+n61WLuZP1nGQL9J1wlv6HnBxi+Hov3EL9T6VFqnHRY7H9NCP dxfJ9xs4f1GzRbJ/k3E+ULM7LjQcdnL4TBnPrRabXhJ1r/J8huPYP/7fLMOp 92BXy2cYzn2eGL+4fT77kBlWLuLS26YS9LQXMU57FPMhPfIres2y+ct+wzit N9vmO3Gs0552nP0v/tCMhB4gHusNrOtGzUzoGanWLPUvllh/gm6kxxGIQ1+t Ncdw9jPaeYvTF6t+iXGuJzHOH3u5wTqzHT31f4xzfznms53u78f0V7Uvvx3O 38V8GOeN6UXfLU/g9NtjPoxTx/SM28T4ZRovjvkcpevZGOf+f8ynM5zxn477 syqBc77E5RKP6Zl/2/E4Vif4ML+g43GpSeDcj435dFYu83tj/Gr1M2M+5B/T r696IManaP5OzOfeTsq9Q/MBOx73hgSfqcq/Y/lpTOD0c2I+wbmedvTcT+l4 /qYTfHZsHwduRy/roEwCl321TIIPz0N1PO5JPtSrMZ/bO+lPicNkE3hwz047 Pox7dyw/ST6iH5J8xmt8MsYZb4n5cH0R44zzdDx/k/TkH5fLOCTjiWjmV6pP j2mx+CNxyM/JLWF8vMzp0b7N54p/MWSZ2QXisDfXLjO7gG4aP8dw0qO/73Oc +pb05M91R0zPOEWMU6/GOOMtMf/fNG8zpg/yJNvRE4/pGQeIcbFrZQmc+bQx //ma/xnTi39fkaAnHtMzPh/j1P8xTnsR8yce01Nvxzj1fMyH+jmmp76N6YnH 9KJPkjj1eYxT/8f8iXcsP40JnPsOMR8pN5ugp76K6XnPS8ftynTSrmyCT/Au Rjv6i1Xvxfgjui6O+Yj9yifo71W9F+Pv6DnYmM9y9W87lv9kPcVcJPkwnz6m 76y99KtjPmKvmxL083T9HuOMz8d8mJ8a03dWT9LHfBiHj+kZ/49x6v+YD+1F TN8Zf9qFmA/xmJ5x/g719r+bE3pezpc3d2wXCvTc52ScgeNC+0Scck5/nzjz pMkH+bh/1Tjx1p6PgfYPnZrA4feP1ryFX1sNh9jsPMXW6cSRF3jJlHCfq1Au ziv80fMKwK9R461P6fq7b6vh8I/Tc0QP3N0q8jXI8Zge3180S9YRwxyHPB05 W/yW15wPuusDxyGO780Tf269ecYfYl0/T+zfl3MNx/Q7db7hrCfuN8zODfn8 0/GA/uVWWSeeHPEv0NNOxvshHF/mYRNn/nKMs/8Bb7tQ7P7kFhsvzIevixI4 PnstFHs33HGsD+sX6DmnljD/fbMiKbekxcYd+ut2x4E26bpwD13vH+Q46C7Q uMReLcL3fcdjenTHuvpu0RWOo159F4n/dprzgb74j+OsZ+Q3Hsd+jOcZ8Zge 8/ajeebvsZ7Qc/+dZ/4hcXTbOfMNZ3shv7/NTfiNxGM/E3QXzkv4pZj3L6hc ZZaH+ZnTdJ/yzyvC80ZHzDec/ifWK1c6PeOUMR7kV+/h5TIOGtMH57ba4Yxj xHxI3zFelODDcY1xxm1jvLITPow/xOXyXENMf0MnOPfTYz6Mw3Tcn4sTOOlj Ppz/MT3lNMYp1zGfYN3ZDhe/qy7Bh+vlGJ+l/i3HAfgdy0Wu7m8O7cUFSRxy tnC5+PPXOQ4/6cllst5/03HMj/+ovzfI7Sbs9FTHYc9uVDnfZFUYF50039Y/ AT7Pcc4L4KMdZ35mjAd29FIvl+Mb0zNfKMa5Xoj5XK/rEeB3Kd5zpdi5n/Xc 1wrHIc9bNBuOXvrS6blfC/rHV1s/EEd9bl8dxi0PdTyg39txWYcuM3ryl3Xo ogR9YD/a4eu1jyO14yPzqyJBH8Tl2tUfYj4g2V7I3XVNiXYRR3/frfu7SybK 97utMRz6/ZpJwn8b3Tf5tcjwmB7lThhvfhRxdNczE8L9lwIf9MofJhqO9WvX IuFz+eSQ/yVFQtfFcfTTdMdZT7mXf4HxCfIkCzjpWU/w+dzxMK+ySPyqK2eL n3RLa3h+6O1ZCRz7D5M13+yC1nBffD/NyxjYGu7vnq34k61WLs77bjHLcOrp HlGeCOUuzt9gPKMyyjeBf3i/3ocxfb74hfNaehNHMRsvEL9vitr3jR2P6TGd v58n/tf/HIfcd50vv0s5H6jZ6x3H/tP+RXL/zDPOH+N3fZHo5VsdxzJgnuOs J86zPL7A+NBPI056+nvQu987Tnr2P8p7cZHc67NLS5h/0C2JQw+NWyTlrdcS nu+8R98pP9pxjNvAYvHf/uTlwo+ucZz7CUeq3Y3zgygXYR59aSJvB/8/ulDy YoZp3HtAc2/ics+txg/7Novd297xmB7+4GtL5Pzul45DPNfS/YJ3nQ/0zDGO Q/11LxL7ffMy44/v79R5fbLjGK/FjrOeaN7ABSGfQY6TnnYW4zRtQci/QB/m YayK7vdaYHYqxmN68pF9z1XCd06TjTuW21slcXy+q/tA3zqOcs5fKXnJjY5j 2t+6Uujrmqz++H6G4xiPk4tkntxcEuY/v1kk66wRjkM+Uo7TPkIPneq49Edj Amcer4S3Fli5zAdmPfH7s5XPEd4uyFvfJI5+fo3vHTqObl+xWvTJDY5DvvbR dl3g/QO/K7vacNizQdrPJ5aG5xeOd5z9Q3qM9z8dh5/ZUGT0f9P9CPIhPfGY fkuN38blYn6PzifqiX5fkk/Uh/RcB4Tr6jUJO0G8V6RfYnqeS6R9ZH4u+4v2 lOuemD4+38P8EK5j4ryRMF/Fz+lw3cDzNZCTQxzvpnxQ3MFrzC8jTnrikg84 QfahtnA+6Ne54zvGt58odj7fajj4PjhO7PkBTo/29R8nfuMBXi6qf+J4wzH+ Py8SvpXT9D2eVsPFr5uu74xqPuo9jsf06L/KKdLv7zkOez14qszTl50P+v/w aYYjj/OzYnlv4qYZxh9iNbNY2neS4xjWixYZznpCHtZ3PvRniJOefhH0xV4R XqBnv0Ee9te4yLiW8Hz59HkJHHb3Fo3rfOQ41gk7zxN/ZaXjKKbrPGnnihYr F/33uOM4R7m25qOdr3poX8chn2+r37Rzi6xr+i8yPKaH/Tq7SPALHYccf6L5 6Cc5H8yrJsexrvq6WPTKVsXGH3yXaF7aL14u/MvLFxnOeuL/TZ0P/RDipKc/ A7pDHSc9+01+t1T8onubrZ9xD+WnSxI45Oi0pdJPlzkOefnvYhmHlxxHf6yn ca0Xmq1cyOWNjkO+N1os69tDVsg8XtZkOPJx/qHxojl6D8XziwyP6XGf3j7L ZX9kfeePdj2t8aJm5zO5TeDmOA47u1ZJ+E6cxb89j4Q4z40x74Q44g5jimW/ N+31xL2EVcUyH4odl3j9IsPZXvTL1s6H/gNx0tMPwbtcvR0nPesX+0vMN4zx AzQ+zHV1vK7B1/epH7J3k4079MSpSRz64hX1QzZzHHK5SP2EkxzH/KpUf+CE JpMfxL/2LDEc5G8VC35oWRhXGVYs+uTYsnBf+8RFhtNOwo5t6fRi/4YncJ7r hzis7eUSj+kDu9oO5/nbmI/Y6a86qc9PCZz2OebTWblcd8Y4/YOYT2D/E+2a msCDd7Tb8eH5x5ie9zzEOPMKYj5VndSf/kqMc70V8+msnpS/mE9nOOUyxpkf 1XE/l3Uy7s4P8r+l0j2Xt/Lx/c+lCRz++c5az8cch3z/Xf3Y0Y5jfnxUKvUa lrdy0V0/OI7317ZfZPd7cB5Bv96/yO7DIo7yvnSc8wv73quKjQ/lHOvQ3k7f Gc752DGfCZ3wSeKcRzEfnt+I6TvDKf8xH8pbTN8ZTj8+5kO/PKbvDGc8M+YT vGfXjr4znOuxmA/lJqbvDKc8xXzgF+1Vm6Dn9zHOPJwYl3yA8k7qX54ol/l+ Mf1RGteNca6XYz6IY91Tl6AP7qNrhzOfJ+bDvMSYnvsgMc68mpjPpZqXGNPL uiqVwBn/j/nUa55hTE88pmceS0x/hubvxTjzQzoe31yCP+k71CctuYT+QT3z uYS+Is78b8Tr/uv6ijjyB6a5vmJeOHHSg9+SRYZTL5Ge/OkPxPSd4bSzMR+u s2N62vcYp32P+ZB/TE892TH/qQk+tOMxPe1pjNO+x3yC97jb0dPud9zPcxN8 OiuX+jbGg7zxdnyo52N66tUYD86rtePD9sb0jEvGOOPEMZ/O6s94c8fjtTjB h/n2MT31dowHefjt+LDfYnru83bcbyUJPs+rXeh4vFYlcOYNxniQN96OP/GO 5SfdST0znch5xugRH3zf9VWMU1+RD9bx/0nipI/1EnHqN+LkQ/p4PcZ4YJwv QvzLaL0axxXjeCDzT+L4If2FjuONC8N1Szenj3HyD9ZXBRz1ekTzwu/4Qdq5 k+Ni1n+UdfImGq9bscTwmF7U7GirP3ER4zHhvucKzcM+9fvwvNhWer/UlEky fx9rNRz2atEk8Zf7a3xsPcdJL/tSS3S/6SerJ+b9EUtk3ftXxyFeixwP2jtw ccjnAMcD+gN0XJ5fHPI/QPdPJy6R/j99itUT+bNXaXxn8GTDsW641XG2F9/v 4nwYnyROesY58btRjpMecvaE7m/lZ8v4zGoxHL/7aI7Eq37U/craJYbH9IgL bTxL4iDNjqNfhs6S72ucD9ybv8w2XO6v1TyCExbIePSI8FN0X+swjbNt5Tjp IX899bzBP+ZaPaHnTlwiftBNjsOdWuk42wuz8cJi48M4J3HSM14q+9+Okx5q d8YSKX+dIqsnPm/VfJwPvf5wK+92nO1FPHNP5xPEOfdcYvSMl0L+JzpOesSX nl0qcrlY/bhHmw1HeQctFj18l+5Xti4xPKZHvQv+I+RimOOYz90XyTx4y/mg Pk86jn4r6FXIDe+Vq2wynJ8Yl8omoyNOesyHY5bIPdlveD3xu/OWyHg/7zjC jRWOs72yr7bY+DBeSpz0jLtKvMtx0kPuC/YZ94iWeD2Rh3C/np/p5zj8xAcc Z3vh1+zvfBgvJU56xl2RVzHP8YD+ZT0n9s0qGZ9DHceyaEM9B7Kn1mc9x2N6 eXdypcjF5Y5D3rdYJfU/2/mg369xHPropCVid+5z/ui3K9W+3OQ44r91jrOe +P6dxcaH8UnipGecE3b0G8dJz/P32+l5Fdpt4ozLhvm3JXZfMHH6ZZgXIzVe 9HA+PH/1RBLH/FlUKvP2OsfhLh6i97i+4Tj+7673p7+RD88NXue4vPezVOLu Z5T3HtBWUHnOcPgpd5XL/RmLclKvrRyP6TFu0/X9js2dP+xNc5msf393PtCX u5QbjnG4YInY4Q8qwv33vkvkdxMdR/evcZz+Efr7v4sN5/oIv1uw2PgTj+mD fd92OPs35sN1R0wf5Du0w3nOJcaZJxDzJz2+PnOJ+Z/sf9jtW5eYv0oc9inr OMcRcjMk6ccSj/1ezPOJST8Z47W2n48N4vnX+3naIA+5v+McL/A/yXH6oTHO dbqEn5ZYucF9v+3oOT9jnPv9MR/e5xDTM34V40HcsR2fi/RcfIwznzPm0xnO PMYYZ9wpxnleLC6XeEzPuF+MM04e89ldBqyTcalL4Fz3xXw6K5dxsBgP7kts x+cdjfvF9JxHMc5zxDEfnvONcZ5Xjfnw3E3H/anvVXfRc6q1+i7emfpu4nuO g/1ZjoNtg9NDf661TOKht1TZPCJ+Y1s9z6uyeYTfly41nPSwjxMc5/wiPflz HsX0neHUbzHOOHDMn+ccY/rTVR5i+uB99nb0lM8Yf1rlMObDc9MxPeUzxhkH jvnw3HRML/vPdQkcUrFtKsFnsOZ3xfSUwxjnPZMxn/F6vjKm572+HY97OsGH 5yhj+s7qKXogk+DDc+gx/XZ6zj3GL9J4dcyHeEzP+E8s/8DHZRPzBXxGZBPz gnh8zod59YzDEee+A+NtMb5M9/HjOAz9v87wOJ4D//xVPafRfaTooX0cRzHP jpT1fNc14rfd7nhMj3MU//4iwR9hoFdHWH3IB/GhRsfxXuepy6W+h39r/JEv MWW55N1sPspwvMvY4DjrCTP53jLjQ/7ESc96yjrO+ZCe/Yx4TstEGce7W60/ QX9EEsd4ra/3Ql/ruNwHMF5+N9hxrEerx8u7EM+1WrmSDzzBcKizt1eI/i6a LvN3SYvhEJf/Thf/rVjjAw86HtNDrK6cKv71Zs4fYvnkNPFP8s4H/fep4zhv eM5y+f2fZxp/qJWi5fK772YYjry1JsdZT8j5h8uMD+MwxEnPeA7090HOh/Ts N547gf7fs8X6GeP6cBIXe6rvE2/tuMw3Pdd4puOgWzhPvu/t5Z6r59uIw98d skLGcdpCWec902w46r9Iz2EMbJb+Geh4TI/qDCwSffiT41ArXRaKfv7I+WAd 3s1xuGUXLZf6Dyw2/pDLUj0n9ifH8Y7dL46znuivz5YZH8ZPiJOecRiMYy/n Q3ra7fj8cS/dj+U+UJyPFOfPsv8xrmM1zlfcZOMFNlcncbgTYzUeMNlxjPdd eh/I/xzHuIxaIvKXbbJxx8f2Sw0H/bAVGp9UfXCM49D7I/Qc39HK5zXHY3rU 8/rlMq73OA7/8rfl0h+XOh/EpzdeYTjm1eXLxe+/aaXxB964XPTxVo6Dz9or DGc9kT/39TLjw/gJcdIzDgP8NOdPetRr5xUiF//Sd+AG5g2HPp2l72I/oO8F Prjc8Jge/++t+WBfRnzOLJH58W/nA3l7wPFFeu8I828oV+F5Dc+L4//8njjE criO3wllci9QWt/BHa7nUU8p672gTbAadJ37b8dJD706W+/p+M3bK3pV7yP4 1XHIxd+XG85+Q/32dj6MwxAnPeM5olcdJz32Ba7T/h/i9cS8KegH1OsfjsMv 2miF4Wwvzhl8t8z4MA5DnPSM5yCud7HzJz30XlfVw89VyDvERzmO+TimQu6d ODCn+nC54TE99k+2rpD5d4Pj0LO99P3WPzsf1O+vjkNsRq2Qe+i6V0m8orCO I444yGFVMl/fz8o640vHSQ/9XLTM1mWsp+jnZbaOIw79/NByw9leqMmDliXW d8Tj9aDo52WJ9aPkzS6X+b9Vta3v8LsztB/OcBz6crjj9Dfhv5QvM1wd4QTO fADMryHLrFziMT3XRzHO9X7Mh+t0yO1Ny81vZ//DTynoTfrtxDHOWzrOcYR8 jkv6/8Tj9QL6qaDH43UB1ov1yy3Owv7Ev2evsDhIEJ+8wHH2M/zI0xznujvG g/V1lZdLPKZnnkmMM3815hPk7yXq81MCZ15KzKezcp/XfI8Yp5zEfDorl3ka MU6/I+ZD/h23a24CZ/5GzOe5Tuof5PW1w+kfxXyCvMREPxQlcOafxHw66wfm pcQ4809iPp21l3GbmE9nOO1rjG+r+yExHrz32q5c4jE946Ud93NJgg/vSYnp 6S/EuNzjVJrg01m5jOt2PF5lCT7kH9PznrEYp58d8wnyKtvRw270qkzg9Mtj PvM7qb/M06oEzvhlzOeX9vmc7eh5z0OMf6vx6pgP4yQxPb+PccarYz6d9QPj hzEexAnb8QnyQtvRM84c44wzx3wYt+d9Gfj9p9WirzbK2r0YxNGd2zmO6i10 elnPKP1Sty/EYQ+K3b6gHiMcD85ZfOY47U6M0y6QD8slHtPzHGGMd1N7EfMh 3nG5ExJ4cN9LOz7EY3qee4zpaS9ieurnGKc+j3Hq/5g/8Y7rX5TAmXcV8wnO w7ejD87ztMMZl4z5BOcHEu1dksC5jxnzIR7TB3GcdnjwHm47PkEcpx097UiM 0+7EfIjH9LQ7MT3tS0zfGU79H/OhfelYTpI47U7Mh/xjetqLGA/yytvx6Yye 9ijGuX8V48H+YTv+xDuWt6oETr0X8yEe01NfxvTU8zF9ZzjXETGfwI4l5D+J 8z6ZGOf+Y8yf65qYnnn+MT33TWJ67kPFOPP5Yz7EO54vjQm7APbPZhJ2BHJy ZyZhL4jH7yAwX515ocSpVwdGcUDmUXB+x/sdnMed4fE+CPlgvC/+SvylPzo9 3KQFXyZw2O3hX0m8Yx3HxY/5j/Enjnjsbf4+LMvFuvvO4eF7OrutlvLOGivj +0ir4Zie88eKf3J/q76Lt8rwmB7tfWOM2OUvHIfYfPG99NMbzgduzxE/GA77 MG+l1G/YOOMPumNXib91gOOYx/c7znpiPbG/8+G+BnHSc38E/F53nPTsN8Sl GqaJ/Z3WYv0s70gkccjp1tNlHn3jOOb/fVOkX1KOy3sRU0TPVLRYuVj/vzvV cKjdvTUPrHSOyHk3x9FPu86V/j1A80WzqwyP6REf6q/vqF3nOOo9aLaM85nO B/pijuOyf7BSz3/PM/5o35na3lVeLqbXo46znoi7dXM+3NcgHvA5U/M8/+04 6YP5daneF/Jgs/Uz1OOaogQO/+YmvU/lZsehlncsErl6z3Goh/OLpJ9eb7Zy oTZHOE57xXU79Qrvy4/vw+xsnwL0B66W/j93sawLSpt6E0cc6ObFUu7KJo3X rzI8psd83EnPSW/bbDjk4GM99/k/54O4+njH0R8rNc6+5RLjj9//ReVtupcL Pf+E46wnxq1nxCfreEBfKFfOZ60M+Rfo2f9o11G6b3lQk40X/LylyxM45v8p KyQOvrPjmG+ty0Q+L3Qc+xiHLRe/5XQvV+5fcRz6+LDVIocH6bgNyhsOu3Ti apG3l/Kyft3M8Zgect+0UsZhquOQtye1XsOdD+T5bcehBytWSv0anD/k869a /387Djv4rOOsJ8TyGOfDfQ3ipOf+COT3R8dJz37DfuUWZVK/1TnrZ8kvL03g +NyqTH43x3Hwu7VU6r1+3nD8/plSka+fc1Yu7Oh3jkOeeq0W/feknlM71XHQ v6D4SVrujhHejh6f1WXy/YOOw84dqvP7OueDfjnKcYxDnerDSueP+t+j64ax jqNZr0R4oZ5ws05yPtxHIE567kdgns10nPTsN4zzb5qH9nLW+hl6Zk4SB5+1 qsRO9Hcc+uMyzd8bnQ317UOa3/h51srF/XCfOi5ZTKvl/Njfq2UerMkYjnn9 ULXISUtG5vO+jsf0qMdCzQc72PlDv3Splnmybdb4oD/3dVz85ZW2Hoj372Kc 9MwbI475nV1p8RPWE8uGfqss3kIc/f6G42wv8ljOXJmIwxCP4zbI+1/iOOkh j2NXyrqif63FYaCfd9J7Rec5Dr/gr44HebD3Oh/622j/nJVGzzhDjNNOxniQ F9oO5z1acbm0rxwXzLPza0XvnpQJ34u4K4lD/t7XdVqPTOgPrNH18m2ZUC/t Uit5PddkrFyxZzWG43ebrxZ9PaQuvHe0gGP+XFsX5kOOX2U46VGvfzjOPAbS kz/jtzF9ED9phzN/L+ZDPKYP9mfa1R/6cFw60V6M33PpRLuIMw7BdRbbG+9L 8ZN5hTF9nM/BeEh8bvExHacY/1THNebD+EZMz/hGjFM+eT9nSJ+1OA1xrtMZ p+kQn+f39GHc57QaHszPtOIflYT56616T/vvq8N9wcI6EXrlM8e53iTOckmP 7tm/ROpR/bGUt8ca4X9Rify+z0ch/ojjEKsdnT/5xPUhPevD+hMP6nOR3gd0 4g8yj2/3e+mx3z7uuwQOuZv+g/hdf3Ec9vPFb0WvvOA4ytlztNR/YKuVi99/ OMZw9OPCEtEDPSaJ/V3YYjjsznOT5NzwrJbe57TNi88dj+nlHYHxMr7rOn/Z Rpkg+jDtfKA3j5toOObbQSWyzv1msvHHuvQyrf85jkOe+zvOeoLfV6uND9et xEnP9S/GYwPnQ3r2G8qrnC16cvcW62eM015JHB9d9J36TRzH/BwwU+IiJziO dUHxTJGno71ctOf1WYZDLy3WcW+dL3rvqWbDode6LBC/uJ/eyz3S8Zge6mWB vqcwynHU+3zND/zA+aA/+zqOfuuu7R3t/CEf1+q493cc4zjAcdYT+nPMauPD dStx0nP9i/I3cz6kZ79hHi3UdeX8JuvnE9v67d4kjvyXxkXiD/zoOMz6e8Ui N02O79DWP7OKpf0NTVYu5unBiwyH37OsRPy9Yj3PfaTj8IN+1nvkD9N7vb5z PKYXfaPnC29xHPU/ZKmMz8XOR/Sc4/AHeij/15cZf/TfTSVy/uhyx/G7px1n PRG/GLfa+HC9SZz0XLfCDm7jfEjPfoO++GaV6LEBeetnjPclSRzzbpbG2+7K h/PoEV0Xfuw46L5YKfuL7+WtXOj9LVYZDj29qkTjuqrP6nKGI+5QVyL+eaWe zxrveEwP839SicjPLs4fevGpEvEzN8gbH1T3dcch5z1VTx5VavzRX7frPN3J ccy7ZxxnPcFoyuqQz8+OB/SFdSv02U4R/59z4XidVS72sGfO+hn9tnMSRz9c Ui7rzz1zoV/xud5Hd7nj6J9per/ZBV4u4iprHEf8rVTt0TQ9t/ivrOGQ38UV Mv5vZEVupjke0yMvr7vmic11HPnff1c/dbTzAd0AxyEHRyn//SuNP+bN39W+ bOg49MvzjrOeyO+evdr4cL1JnPRct2J+dHE+pGe/Qf6OqZb21GSsn7EO2CyJ ix9ZLXwWOS75E1VCv7n7h4jPjdZzSet5ufi/1nGuO7heov/IdUqYd+E495mC /ZCKEjn38q3u45yX6U0c/TipRuTtLMXnOB7To367qv/+uOPQtzfWyL3stzkf rFvuchztPbZE9N8OtcYf/fOQ+pNNNSH+suOsJ9zwotXGh+sy4qTn+g7l7ut8 SA97v4nqwzPqw/fTt1X8CsfB/yrH6UdDDAavNpx5KTHO+0Mxvo+vtnIZV6A8 wE5tWy/yc0Ta5Af9malL4JCTferFT9nacfhn/eokrtnfcYzjv3Rd+be0lYt6 jHMc/ud5JbZPyX5AvfuV2Lk44nIfgePsn2Pb5KFPSfj+6BkTEjjz+uCv9vRy icf0XC/HOPMQYj6MV/B+c+jDUfViT45qtPvQiYPNrY6D7+9Oj+lZqnlhWzdY PxCHP1ft/YB6THOc9De1TeDhjrN/SE/+7IeYvjOc+xYxH+5zxPR8RzuuP/TK xQ2J9uJzo4ZEu4h3th7vbP3e2Xo/Xl+L3s1bPgLx3fU8YJx/z3djiTPOgPF8 tdX4dIZz/GC3PtJ14naaZ7Hx1+JnPuA4+r31a+mXO3S/sqzU8JgeccGHP0/w x3rq9i+tPuSD+XvFCMMhz3eUyrzcfJTxh555QfNK+n5jONTQBMdZT+i9nSI+ Ax0P6AvraMyPoyL+A1utnyE3O0wUeZvUYv2J8i+dkMDl/qKJon8+c1zSTceJ 31HhOIrZeLz03+oWKxfzYYbjWC/voPd4Hj9d7NGBjsPf/HK6jM8eLWK/a0oN j+nR79tMlf38yxyX67+mih9/qvNB/1w3zXD0092l8rsJM4w/xPQ1vRfjbsfh b052nPVE/XZzPlz/Eic919HotxMcJz37Df1/x3wp777msJ83T+KwL4P1nahr msP8oNP1/brXHYc89pkn9vGVZisX8jzVcdRjlzK5Z/xRfT+B+48FHP3ylb5X s7BJ8j3TpYbH9Oj3G4pk/mzm/FHe4iKpxxrnAz9tk4WGo37/KLX7s8kf4/B2 qd23TRzyO81x1hP2Zw/nw/UvcdJzHY2w4+mOk579Bj14nt5btl+T9TPkM70k gWPe/n2p+ANbN4X5yPssEf1+huPQR6frebeTvVzMq2GOA95d7ye+coXYzxfz hiMu8twKOZf7dF7sXkup4TH9xm0CfKyeRxzrOPThN8ulnE+dD9YdFY5Dzh4o lXXBriuNP9o5pFT8lJSXC7mY5TjrCf22l/Ph+pc46bmOxjw813HSs9/w/Rtq x5blrJ8x3jcncazrP1G/Y3Iu1JPr6Lr8V8chp9uVyP8tOSsX8/YUx9GvXVUf FuYB2nOC49DLPcqkf47Kif7/tdTwmB71flbt292Owx5PV/t5lfNBu1Y7Dv34 kOqZR5w//P1PSoXPDY7j/7mOs57wg/dzPlz/Eic919Ggu8Rx0rPfED/8p963 83w2nF+XJXHE097Qe4EfcFzeXy2X8oY7jvm2vq6Lh7l/gvVkT8ehV/bRffTN dJ3YlDEc86CLrjcbMvouqeMxPeTwgUqRn72cP9zn0YpvmTU+WDfNchz2o5+O 39+cP/TR8FJp//mOQ18scJz1xDr8wIhPYf1LPKAvrKPRv1dG/NfzfoPdeVDz e3tnrJ/hH52ZxDEvnq4Rv/VAxzGuJXpe7HrHIR8t1bLuvML9TMyLfWsMh73Z v0zPSddKv52dNhz6f/M68Q+OT4t8buJ4TI9x71Mr/TDccfz/se7nPuF84D+O cVzW66ViZ65w/vBXRqk8H+u4xDMcZz1hPw5xPlwnEic915vwD25wnPTsN/Tr bSmJ+5Y3WD9j3h+dxKH37kuJHPzQEOq9ufVS3oGNod9SXS/yt1OjlYvP7VOG oz//qv7/mIZwn+1hnY9ljsPujXGc6wO073jHV2i+OvTL/s6f9zjF9NznZT3x 808aJN4+ImXtwu/HJ3Hoi/m6TvzIcfx/QIPooe283zBfb1f6mpSVCz1+ieOY /5NKLd+X/QB5aSq1+1+C+MlaZYazf+gPE5f1WUUCl/Maei/JaC+X9DF/jONL 9Yn6wG73q0/Unzjk5tgyiZc+7vUnjmG63euPeX6o46SHH7m346x/jLP+5MNy Y5z0cT2Js71x/UkfxwF5XiaOJxIPx4P3LIxMrKMZV4nPw/O+spie90UzD514 sD5sV8/4fq+wPhWJ/XTJG/D9LOJyPqs5UR85P5Wz823EJX7SmmgX8TjOQJzn Hhg3QLlPtNr5ic5wyhN+/5Tzwfx980v5vNnpsR/X7YsELvGdEdKP5zoO+Xhn mPEnjrhiyzCrD8ud1CYGP39quPhHug+x94/S73NbDJd7+seK/E/S/dZdHY/p 0X/rjxF9/ovj+Bz4ndjneueDYRjyveGwz1+rn7ftOOOP8ZheJv7/uJ8MxzBt UG4464nxuMb5MD5AnPSMM4i9cZz07DfU/w/TZL7v3GL9DDt+3tQEDn+y3zQ5 F7m248JussQzezkuem6K2JGeXi7aM8FxxBOuKpd5dq6+I/J4s+GYt0VzRE7u 03tl93I8poea7DlLyvvCccy332eJnfqX88G67MnZhsP+jyqTePncucYf/uU8 zbN81XH4W5uUG8564vP6iM8rjgf0rzdLfz0c8S/Qs99wLr1W32+c3WT9DLn8 ZxKHXOyqcYaRjkNvzl0g45ByHPq1bIH0S21T+M7KiUWGQ29fp/22/mKR78Md h5o+Se8B3l/jCQc4HtMjTt9cLHHS6xxHHsFVi0S+znM+WJ++4zjkcUyZyM8U 54/41uIyacdQx+F/bF5uOOuJ//s4H8YHiJOecQbwGeB4QF/oN9DN1Pt7+uWt n+H33JbEIae/6PnXm/Lh+H6u7+6+5zjs06RlMs/fzlu56J+9lhsOs3Gj5vuW rZL9tKqc4dDLu66WuNGKnJR3qOMxPebdXM1/3Nb5w44drXn36+SND9p5n+Oo /o/6/tZQ54/yVuo7Q486DrP9h3LDWU/M51ucD+MDxEnPOAPk+xnHSR+c/yus G6B/D82F7698lMRhh1O6btvJcfA9Rf3TC3KhPrxQ41XneLlwAwY4jn64SfXJ tWon38gaDnP+kM7vF3Wf+kjHY3qJ32n8aarjqM9m+q7KSOcDd2c/x2VfrUzW SeOcP+xHRZnY5c8cRz9vW2446wl9drvzYXyAOOkZZ0B/v+R4EE8o9BvoplaK 31ORsX6G/zU4iSOOvFzvoZ3tOPT94ZWSt7JeNjw/elKlnEv/PWPlQj/83XHZ p9V5cZ7eG3OW43BPb9FzmCfq/vJxjsf00Bvjq0Sv9Y3wX6qkHX2cD8rdrtpw yMHEMo1nOH/Y53p9V+lNxyGv25cbznoiTnGX82F8gDjpGWfAfB3sOOnZb4gD j66V+XtQ2voZcfKBSRx2fEatyMFajmP89qyVePedjkNOD9e4wY1pKxcfNzoO ub1D/bTjdH39c4PhsHN/1vV4vd4XeorjMb2cP6wTOb+s0XDUv65O5tVhjcZH zlXWGw67NFXfEXzX+cM/zGpc+inH0R87lRvOeqL8eyM+OzUaHtAf2Cjtfzfi X6Bnv8FPKKzfIV8vp8L3yfomcczHMZof3Mdx6NutGySvpTgVjuPeDfpeTcrK hR28xHGud8J1NN9DT+Kkf1zvRSIu8d1y6e+D0/J5TX1v4pLHpfGg8+v1niLH Y3rwfVv3139yXPLK9Nzy684H4592HHpvvI7XtpnwHqTKMpmvhzsu5+fKDec6 DOW97Hy4noS8jnI+XE/GuKwHFyf48F7fmL4zXPL5a6V9M3xdz36DnljjcQDi CBvtVm44+x/9fn8yPkA8jifAjx6ajD/Aftys70U97P2Gco50nP0c0H/oOPhu 7PR8HzfGKZcB/w8dJz3806u932Kc/Uw+pW3jdHMSJz2m1cF1Vn/iGJ+jHScf 0ncWJ+ksHtJZ/IT3FhAP9lnb4Yv0XkKe+yfe2bmmwO62i8MUKx/eZxDHZzrj 0xl9Z/wlfaPScPhpU3K9ec8xcYkHZRLtlXiG7su87e8rQF9s22o45Qx6a69W Wcdf6DiqeVyr+Cn/8Xf7GPfAuv0Dxxk/IR6c53lCz2U0qf1640PR5ze3yn3F v+k6sbfjyAM+vcJw2I1znT/5xPUhPevD+hMnPc+pgM/A7+Tzpxa79wh+wgZj Eji6d8j38v1QxzHMt4wS/ssdx/8FHP28vMXKhT1OfWs49NN7FbKeeG+i+Ff7 OI7+O3GSvPO1Y4vooUsdj+khXx+Nl/l3vuP4vGCC+DMnOh+sO5ocx7iuUTu7 x2Tjj7j4+hWiF9Z1HHkwZznOesIPG+p8GIchTnrGc7CfNcJx0rPf0D8bzha9 fE+z9TPW66fOSuASJ1X6vzgu81PfR3whwtfMED/g+WYrF/02ZqbhmKdDKjTf eL7099Imw+Fv/DJf1iez9D3uaxyP6SE/n88TeVnX+aNdG8yXdjc5H9TzYsfx u1/KZf16xwLjDz9+0wqxn1c6Dn1ynuOsJ+IgHzsfxmGIk57xHMzL0Y6Tnv0G vfhXPQexV5P1M/pz/SSOeOPQRRLH2thx1O/PxaLHT3Ac9bi6WOxxby8X83Ss 46jXRxVi955dKr9/Nm84+q94qfRLP82X6ON4TA+/9Okl4l+Pchz/V2h8/yPn g98fstRw6JWC3oNdPXuZ8Zd8QW1XT8fB90LHWU/4HZ9GfN52PKB/T/MuxpaH /Av07Df072l6Hn1RzvoZeqZqZQLH5+N6rvEHx+F391gperLJcfR/75WiH3K5 UB++7zjq8UmFrHtHlogdPdZxyNVi9TsP03tZ/+Z4TA956K7nLG5xXO7lLRG/ 8DLnA//lCcflfq+qxP4G80Zp74nz/CLPnRJHO9dR+d+u1OoJ/bSj6u2NHMf8 vsRxthf29Yty48N4DnHSMy6Eakx2nPTBfNlW1xkDszZecFMqyhI4/LPuGre4 03HMt4H6nvjH2VB+XiqT/huatXK5LiGOenxWIf7KvytED6UzhmPdPqlC5K1C /eJ7HY/p0X+76nju4vxR/PkVkge9adb4QC7udhz6dn3Vt+tVGn/Yvd1VDzR7 uWjPZY6znmjPiHLjw3gOcdIzLgS5meU46dlvWEatXy10R2esn+EOFlclcPDZ vbr3sLYO6JoJ5+n9VSJXl2fCefqYvjPyZy8X9CMcx3QYXiHfv1Ij8/3ktOHS vhpZl3RLi5/5oOMxPebfJjW990a8wHHUv3dN70fbgIecD+bl1Y5DzjbS97fy zh9+5j4VEicqcxx+5pWOs57wJ78pNz6M5xAnPeNCGLcFjpOe/YZxb6nT83UN 1s/QB1OSOObpFvUynp86DjnrUyfzccdGwzHv79Fz7ls3Wrnw74Y4LvuD+v7J Yynpr2Epw2FH3k3JPslrmvfR3/GYHnxa68Ver9tg+OS29h+SknEqcT6Iy5zl OPppM7XvZc4ffubB6hfNdRzlXeM46ynxvnLjw3gOcdIzLgQ/c6njpIec1fs7 x9TbvJ81XrcxPyXOCwj8xupG2Z/oXR/6pd92gv+vUez1Vo6D7yUa/+nnOPT6 DRrnua/exh3mZ5Dj+BxVIfPqSF2Pb15n+L/a9NQpGZHvXzR/6mnHY3r4pRVp 8QtvcRxyuIXq35PrjA/6eRfHMf4pnV//9bgH1vcpfQ+7HQ6/o3eF4VxfIr/p Lafne48xLuOyUPr7TS93ueYdoR+3rAjjFYX2wn/uURHGPQq43CvjOPsN/fF9 Mu5BPI6TQH+VJOMqsK+7Vdi7SuwH+IHn8l1Dx2Ef7nKc/YN5eaDjvAdQ9v/K jT/xmL5U43UxznNYMc54RMyf+TTw749X+7VOVubN8hrxwwY5DnaVjqOfNnF6 fD9R11Mrs2F8YqLmSf3k/cB3GYkH57AedZztDd6JXOn9E9PHOPT/T1m7hzPG 2T/kDzu0IomTHnLySbW1izj8j7mOkw/pqQeojyQ+3WL3MYdxMH3XpuDHxnlB Mb3ovxbTk8QlLt6SiFOhGoe3iH1e19+9w/399zjO8eje1r6nWsSfW+DvUOL/ t1vEnzswereyvkXtvuPQRz87znJJj378stLuTUa+w3C93+9Kx8Fncovc09TP 37kkDj/oQMcZz4EfuLHzIY5u2chxxovw+wOqxN9Z+yfBD3Mcw3TwT6J3u2t9 9nCc9LAPhfFCHl/VSKsn9FwBh5y0wyEvzzvOfoA/WFVhfFh/4qRn/dHv7XDS Qy4G6LuP64y3em7a1m+zK/VevXGGT8A5asfZXpxX6e58GKciTnrGu1CPBx0P 4loVlZrnME3k45Fmw+EP9pmu+2qat/Oq4zE92jd9iszHDx3HfL5mqsSX3nQ+ 0JfbTzMcevOQKrH7x86VcapoMhztPXOurI/K9V3j/RwnPf4/Rt/17DbD6oly jld8X8cxri85zvbi/9oK48N4V4Dv63EzyGfKcdLD7j6l+9/XzLN6Yl21UN/p XN9x2IVljrO9GKcezofxLuKkZ9xM7sNyPIiPVVf2TrXV+/CFMj7dHcd8fH6h xKP20PyftxyP6dHA44pEz17qOOT3ecXPcj63tNWn0nG059AqWYc+rPb19bzh sB/9Fkt/FXCM2yGOkx5qpDC+iJM2ez3hT5ym90Y3OI75PcjxoL2pCuPDuBlx 0jP+hnrmHSc93K9nKvVe2yVWT5i35fr+7mqvP/5f6Tjbi/VCT+fDuBlx0jP+ Br33tONBnK1O7+/beoX442U5w9Gem/SduoU50asfOB7TQ7520Pe4Ns2HfG7T 9/T+53wwX8c5Dn1xkr5XWeT8oQ/P0fd3pzoOeRrsOOsJvZepMD6MmxEnPeNv +PzZcdIzjxj9d52eaz84Z/tQkI9Dkzjm6xN6b8rWjkNOv1st+uAMxyvaCvh+ tcj7GV4u5GDzEsOh9xor5f81eu7h1azhkMcuGl96WvOIhjke00NO++q5mbGO o15DNf/9S+cDv2a245DrUytFr13q/CGnF6s9Ot9x9MtbjrOe0Ff5ipDPUMcD +o/1/o21Iv4FevYb2nNhhfgTqzPhO8ddkzj64V6Nt012HPN1luan/Oo4lpdz 9L2TXzJWLr79zXHwzWq/FfQf4jqnOg79u3mV+FtHaR7RF47H9GhXn0qx13c7 Drd8kLbjeueDcfvOcbTnTJXn05w/9M8Vqh+OdRz//8tx1hN6pqXC+DDeRZz0 jJuBbkPnQ3r2G+bzSfquyl5p62f4y9skceir62vEr2AeR4nqme/1Ha6rnR72 56dq0S9XpK1cxEvSjss+rPrJi2plXZVrMFzyfmrFT16m8ZxvHI/pUcxFtSIv pzcaDvl4XO+93L/R+Ih8O45+K+g96JeedcYffsF1+q75AY7DX/3AcdYT4/Bz hfH5P7rOO0CqYmn75iwqJkQFs2LOWVExKyoGxIwZs6ivevWaAxgwohgwpyvm AAbkioiAIpJz2GXTzO7OzE4As/INT9VTj3Pmu/+48tvaOn26q6urq8Nhvouc 8syb4f3bSQ/lWW9ojz0zltfrn4l6xvNWqOao/x4ZOw97mjj0DGn1/bOZyvb9 0O9LGZmJ5yIPVStu67D+nfvRWWuHnq3B0b6prPn1rn5vylfiSXnkww7J2vPf F4cf6pu1/vSI9OD3A8XNH3ncu3Uu9CMe7OP100Eccebr4iwnxoe/GkIP81Tk lGe+C+PsetJDedYb7Km9rwdkm6OeD4E9tlVxtPdmLj9cHPb5rOeXt28JbnbX Zu2zVUs89/OlfmqyOOfLzHtUzqf1HXpy6klyW89ttHaYk7f+M9zzHn/4uZ8W v4/1Df8uzSjxpDz80dO+/2e95uCICz7MW/8tSg/yaCPFYcfl8Y55GOpHnHlN Y+RtyBFnviVeUc5lGqvyOeTJ/A/adePGqnwRnnOUjzu7FWPe/+TSgp7mdnuQ OL4r+Zw48wGI09YSZz4HeYllpZ88Kc98EdsR7bW678PukQr7Qf6vWKjiOOey oZ/f3lwc49DogvWXR8XRD7/3e7IeSMVz0Y4LxRE3Pulxy2DVw4nIF3l+YIz4 Xks72Cxx1g/mA7dJj+1zmmXzmfckj/J+9WMVt3Od46v4Z77vK8ltHXVK1XNN /7wqee6/THLeH5XUw3VarIP9x8epC/37oKd7fionjnj6FnG0322Sh55OTWan 65eiPsmxbrBcKeoT7bKqOOVRzlJjcOaTkpx5I+rhc8mT8vwOV5Lze4VJPWZm o6vkbR/anCrO7zQl9fD7U8l6QP1f1FhVb+hnWzdW1Q857O4sfQ8VrztxcfCK ekwttvFyT3HYz28uP0D5RsyDjvZ83fniWCc5W5zPpTz1s97xHuv83PXspd2j Xaoyr7iFONuVHPOFL5uCUz859ZCz/OQsJ8z7Uy/nuC9CP8b1hU02fp3+WXCs h6+SCs7yV7xvWU+yfijP57I85JRH/HZNyvz6I6Mt3nhgcXAU/8vRFoff53mk s8WT8nBzm44yexghDns65Fvzi29ID+znCnHY7zj/LtbaY0I//O6qfv/crd8F hx1sIs5ywn3cID3M45FTnvlAjHtDxSnP9QH0t6t+Mj8/bVGsA6D9351QxfHv W38yvd+K42fNeJuf/S6Odj73R4sL8oviuWjvzhOCYx5yvY8nW0+x+O0AcdT7 PlMsvt/Xvz9+oXhSHv42PcnvmxeH/d022eKj06UHfvVRccZP/K5t5XoF73cb m1jfyFXJ4+f4JvPjTSonnrdWys+RiCPu6CzO94Vd3iw9zOORU575QNjlVwl+ nOofcVWHmRZn9itFe6H8n8+o4mj3jf27MDeKozomTLf1m/fEkT9Ye4bFF6+W 4rmIX/qKo5w3ejsuP8fmQ9licKy/rTPH7K3Vv8dxuXhSHo8ZNcvvtZF+1PdZ /p3CVUuhx36K23p8k9XDaOlH+26QsnGlrzjabQtxltP2g0gP82/klGceD+tL o8Qr8nXl+oQ5Puv3A+8njv7y2wKr3y6e75rXFDwpDzsYMt/sqrc4/E1xvuUt T5Ue2G+PBcGRN/lXyvxI3u9Zf7kQHMP9Yr+X8cWC9cNrxSmP+uzfZOU7sybK iXI/4PvczhBHO80T5/ui3vaUHubxyCnPfCD6117ilMd4M8XrrcfCKCfsYVO3 n63F0a7biPN9EeffLj3M45FTnvlA2MP34hV5v939u+kH+Lm91nwlv6zezqfN 83lkfVPwpDz6wSg/P7Su9GOcStXZ+vjKhdADvn59cPTr2/xe3Rpflz45Hxz2 Uuffte+R9+/HiVMe4/VDnrcarHJivHq0yfzMs+LwLzXifF/MN/aVHuYDySnP vCKmDQeKUx5+a7rXf9fGKCf4lu7H2oub3YnzfTGfvDuh5wLxCvm+zic1Vepn /nBv/47x9p43O6AtOOysp+ffOrVZv2hpCp6UR/194PHaAHH4lxlNZgfXSQ/+ vVwqOP6u3C5o54ekH89/2uPG+8XhD+vEWU7Y+QEJPWeJV8if22b997CE/rP8 /tv7fP1x50Qe7z5fv16Sjnwg35Oc8vBX+6UsPt3Iz029nAkOv9yt1fbx3Ovn 8vJNwZPyWJ8d3GLvVxLH/XjftdjfzZQelKdNHP7gCR/fb5F+1P8LTRa3XC8O /9MkznLCzxwsPczjkVOe+UDU/zHilOd4je+o9M1aO+zdWhkPHFrN0f4Ds9YP lrQEx3tm/f7bqyWPeUkuY/3z6tZ4LtbVOmWDI/4/yMedVTyPvEJLcNtf3Wb1 0+LnZX9pCp6Ux3Me8DxhL3G8z6c5i38ObAk9+P18ccTjTzVZvNtH+m3fcJPZ b29xPK9ZnOV8ZKkfOEx6mMcjpzzzgeAniVOe9QY7+sj95vP6vi7i2WerOcb3 b9wvXywOv3m1+6Np4uhX1/g6zRR97xfzrH7iti7scdGt/h2vy1LB4V8f8XzU iSnrD381BU/Kw18e4Pu+/itu+SznL0sP6uticcSXz3q/e0f6US9DnL8pjjgp I85ywn8cIT3Md1XwN5U3Q/v3FKc89+0zL8T5AuszySlv8+5qefi5t4vWj5c0 Rnvh+Y9Xc4zzXxSt3OMbK/v1xb5eu39TcIwHl/p68D5N0e4oz53VHP22i/JL 1IP4ZvtqDrvaQHkq6sG4dKTyS5SHXZ5UzdHORyl/RT0YV3qV4vvylEe7XlHN 4RcuKFV+v/5Vv8fwspLVT6fRFk+OaLL4/E5x2OvP4sgL9vzW2uEy6bFzlOOs /9wr+f/FOe9M6rH5509V8v+L7+z50iS3+pxSxf3AZ9Vz/xfnveFJPbZPb0EV R3N1nhPthXbpWbJ+MqEh2gV2flY1x59fXTI/NlQc3aajzwO3kp1jf/funt9b sTGeCz07ieM5x6Rsvf1VtS850o+D1b6I+9cRpzyqdVaTzVvfVDsmOdudevC+ n4pTHu36gdoxydnu1IM4Z6w45TEP/5z33k6u4syHUw/882zZCeZPu3o8vN6i uOc/yXne2fLi3k9baT/V8pN8v3uSM3+e1EN52NOhCT0v+b0w+4pjXHq+3tpt FekhR73e4uNjV99vNHdacLx+maMeJk+z+WRfccr/6PeeQP+Rvn+O9w3+g/Me A+qBeXQXpzzKf6jqIclZD9QD/UdUc8on37dCz0vi1EN5mNGn+j4g3nfHxcHp 323evdj+fpA42qnnYntOm/Lk0PfGYr+3Uxzz0RHifC7lqd/61WfWLtf7d75u 8fXAxk9N7k5xjh/kmEdtk47xg/rJKU/O8pOznNTPcSX5XI4r5Cw/5Vl+Ppfy zCeTU56c5al4brk8cG9rpK2fF76J56K6uqWt304cGRx+orc4y8P6px4+l7xC zwiVh5zy6HdlO0G88fz35n9rFwXHfGH+9+b35vh3uJ4RT8qjvQ4Za/2ivfTD 7XQfZ+X5U3owDDwqjvpdM232ven40I92Pjxt49mLPwRH9+stznLifb5IhR7m t8kpzzw5fubFKc/7HDB+fTzZ4pEdFsV9m3ZfQjWHXYyebP6ugzjyODdOsv50 krjdTzDJ5ltH6bmoj9UnB/9f+e3/lQ//X/lz/PwsbXbxzjSrpyd83a/M7fsk 0+z3A3x8eFE8KY92vmWqted34qiXFXx/6fvSg3WbzcURjqzt+q+cHvqh77i0 jZtdxNHNLxJnOc3eU6GH+W1yyjNPDr/+izjlWf+INwbONv++oBjthbhij2qO +n91tq0/jhdHHHqq58OXKwXHeZ2HZ1lc+1sxnovzaVlxxOvD07av6IF5Nu4e IQ77eXWezUcP8fzqG+JJedu3ONfs8GZx2FfdXIsPe0sP7lP9QxxmuF7a95/P D/2Wp077Peji+LtLxVlOPG9kKvQwv01OeebJ0e5/i1Oe9Yb6/dK/q/NYIeoZ 68wPVnP82Uj/Pt7t4tgH0cG/VzZUHPtK9qm18r5TiOdiPeVSccyj/pu2+HQP v+/ql3xwqDu4zuy55HnRd8WT8ij3oIW2fraD9CMuq/Xz3e0LoQfdvEUc5d8w bX55YEJ/r7TNc68WRz1eLs5y4n2/TYUe5qXJKV+R315Beirku/g4+E6D5b8O y0c9wz/cWs3hDz7wPPZu+cr+uLKf/+4jDvversHmxefm47nwi73E0U7fpO3v t/B1g1PagqMcO/g8qbuf5/1YPCmP/Pi9Pm8ZLo518Ym+3/ZB6UE9zBSHPXZ0 /3+P9MOPnZf2/Q7iaLerxVlOu38xFXqYTyanPPPS6FerSw/lWW+on8Fp85PN 2ahn+P8rqznqP8YNcfSTnz3/t0+uknfwn5vl4rmot2PEOV/hd8oqx7uFVbyL z4dsP0prcMRD33m8sY7ngT/z76R953FFB8+ffpLx78aKJ+VRz32bTd/m2eCo h//6/Vk56cH7jBaHv+yUtrzkddLPvCDe+2hxjF99xVlOxAs/pCr1zBSvkC9l rF+2T+hnPvx2H6fO9vzwCa3B4acf9nzyzn7+ewfxpDzilMZWs88XxDHvXtW/ N3ef9GD82lccdjbO/ckyvn93k5bgqI8Vc34+o8W/GytOeTx/ZsrG2REqJ+pn VsryuV+JQ9/26eB8X7TzPQk9V4tXyJc56vHehP6rfb/r5v69xvNVTtTPlT6O 7CVu+0zE+b6IbyekQg/z5OSUZ74d3aCD9FTk1e9K2zxq67zV98fp4FgnPNDP Xw9Mmx/bXTwpD782pc36w/LNwe18h9//3yI98Ift88ExbxzvfukXv4fizlRw xAW/+XmA21P+/VlxysMNzPH7MnqqnPCrNa7vVHH41Z3Twfm+8J/9pIf5dnLK M28Pv/qQOOWRf9uK41Qhyol6ut770Trits9EnO+L8k9OhZ6KfPvkVMgzb4/9 KJ3Tlfxlf+597sc2LVo/2bApONprj6KNb7/7PuP9xJPyeM8aX3fvI478R6nQ 9dilA88JTaEH5Vm1GBz139HHnVbtR0U9nCvO/ATs6iqPx1Li8PcfSR7Dx7Vv 2fjzjTjmSX++HZx6KI9+NdHjsbaivU9jQ3DMf9u8nA1+L8MEccrDzy/w/Rjd VW+w70ZfDzlOHHK7pYOz/uGvHpQe5v/JKc91BPj5J8QpD/tazePn5bUugPYb kwrO+idHnLeh5Dle4+fOJd/390mM75DfoJojTl3H96nu83Hogf2eqHUByqM8 e1dz+LmdtF4A/3Wir5tdpn2wsLPHfP7Ys5rj8d2ZXx1l7bCLl+cR5Y1RfyeK Mz8MO7zG/dm94jjv/mja1okHKW+M378vzvww1q8/SFue/B8c/Xei5PG88yZa v5gkbvfEiFMP5aFuO8/ndC6FfaK//Mvjk5XF0X63itPOUa5pqdDDvD055Zn/ R3m2kR7Kozr+U523Rz08VZ3nJ0+uC8A+x1Xn7VH+P1JVeX7M1+emqtYF8H6r pKvy9vALZ6Wr8vzo7wekq9YFaM/Y/19X8nn15Eq7/aGaI474xvMRy062nzu5 H1jJz+UePM3k7/B+lytVcbxPI+18qvXXP1OWf9nV7+/bc4bZwybp4MN8fz7m Y919nrW5OOzkLM937bfI63OWf59O3M61zDa/P8DrZ09x/HhP8rCTf88xv/q1 OPrhbHHqoTzson/a7H49z6PdWh8c42UXz//39nuaDhFPymPeMMPzVj+JY5xv df/wifTg/ZeIo97vr16PAL+3ev2CPLnegfzjm1qPYP3j/cdp/YIc8v8RZ/vC bpqkh/WPX2+XDnlylG8V8Yr27eJ21cPvhew7L+wW7XRCNcdzjl1k88Rt54Ue 9NNzF8W6JOXxOhdVc9uHxHzogtADu+27KL5/THnI3VnNMR+5Ses71GPrA/qu J+URZ/ev5tDzgL73ifFnodZraFcQz2h9hxzvv2c6OO0TfmFA9boPeXKdCPH8 M9XrSlv98/6ouI9lTNxnSE6/Z+twutdlrp8TwXxyjZaIAzCPKL83OeMA2MkQ 3+/9W3Nw2OUnizxPKA79y/l++HXEUc+dxflcyqOYjc2R30Yzzl8UnOtQ5CyP rSt9Hd+Zxe+faI64gfpZTnKWh/L7+XpWsjyMJ5LlYTyRLA/lk+WhPNdHyClP znJWPLf9YstPX9xsP5eMiefaONNs/aL4XXDU1+fiLA/rn3r4XPIKPe1Vb+QV 6zu/+bnDt3+y3+8jjvdddqL5iV2dTxVPyiPOvehH03epOJ531gSzi1OkB+/z sTi6+8mer1l/UujHPPaOZru/btTESv6GOMuJ7vV3OvRwvYac8lz3wXN3lB7K m9/1ett5mvXzu0tx/zr8y4SpVRztcNw0G5+vErd75KaYf3pDHPWwzVSLa14s xXMh108ceYo/vTy7z7S4orkYHP35zJkW19YXLX8wRzwpD7+6xgx7347Sj+c+ 5OPTiqXQg276iTjs+7Rme4+S9KN89zebfx8uDjt4W5zlRH9cVnq4zkJOea7X YBzaXZzyrDf83Vq+zrJXsbJdPphbxRGHd/H1ms2Kle0yZ47Fsb3E4adXmWvx 7kl6LvxvH3HU2zLun9eusfI/XwiOcu9ZY+V5umB/X9scPCkP99M039pngjjG 98sWmL/4THpQrAHieL9ezXbedLL0W77Z+/VT4mjHd8VZTjx/RenhOgs55ble Az+9nzjlWW/496/+fdSUvm+AMGNcNYdbXd6/NzhVHHZ8tn8ffvVCcNjd//l3 U5fTc+GH3hBHP1u+xeOQestzn5APjp/96u3+xaN933uqOXhSHv6o1r8Df6c4 4q0t6y0Pc5n0oLh7iOPvzvZ+MVP6MV98stnirs/E8fcfiLOcaP9VpIfrLOSU 53oN4pFDxCnPesPzm/1c/h5tUc/wB19Uc8TpRb+PYU1x1P9xfj773+LIE1zc aPuaL2+L56JcT4vDzlfyOOcSP2+3bC44/NQNno/5xb9/m2sOnpSHP5ng52Yu EYf/bO95mn1zoQf+YTNx2Pl5HueMkX78/XPOXxe3eYk4ywl7XF16uM5SwV/X eg1+f6Q45VlvuO9wjrfnoExlfxlSzXF/60L3r9eLo1729/s0F4ojfuvZbOdv f8rEcy3/Ko5xfrUWe+/TWu19L24Njvc5v9Xs5By/X2JRc/CkPPzwly1mPz+K ox2WbfX1MemB3a4pjnDxAn//odKP+ewrzebHHxeHHx8mznLC/64lPVwfIac8 11kg112c8qw3/H581uL4P5ujnuE/nq/mKNekrNX3bHE8r0vW78tpCY4fR/l3 rfZoiedi+naz+P3Y/+P1e7ivC/yQDo5+eIKvI3zr/I/m4El51Otbfk/vbs2V evI5a+dlm0MP2u13cZTzEh8fX5d+vNdbzZavuj3BvxBnOZG/aJ/Q0yJeIb+8 x0mnJvS3pKPeILfA1zt6p6KeEd+MqeZo95q89dODxaH34bznX8Th3wfnrX2e ScVzMd/9VBzx29otZk/PFuz9dm4KjvK/ULBydfHzAMuJJ+XRT4/1cXSQuJ3z Lvh33aUH73O9uOUnuE9P+/MX+72zNm/X/Sqcvyfl7fye2/X3Kifik/ebLR4c Km77i8T5vohH1pcermuQU57rI/j3meKUZ/2j+C9rXaOif/Wv5pav1boJ8gLP NNu5/ZHF2C+Jv5vXbOtT71ZzvOdrxdiPif79fx5fNRVjfozp9lPizM9j3fNz L/9ccfSz6c22ntFWjPku+GJxzmsxPv7abPc35hK8Q0vIww5W+c7sZBNx+Osd xamH8qxn9JcZ/n2I7xqiPrHf47/VHP1xpp/XfV0cefp7vH7WbQyOeeTAoo2f fzbEc1n/5LD7Qtr62+JirJtYfkmc6ybkeM5vkocdlOfpiO/W0LoJ7PBQ7+9/ q13Qn7YQr8h/9HB76KR1E4xzr/i4sHKC3yXO9uX7Io7Zz/Pki8ZF/SDu2rya o506+LmScWNDD9bfz1EenvK4j/uIag47PED5edT3MM8jXat9+Hhei8v3rubw s6fr/AXig1c9Lnpc+XbwUeLMz+PfMzz/8FCC/yx52PdJ/h2bcrxBDvXDxamH 8uhHq7bYusatvl5zSX1wnJd8wNcd9vLvI5aagyfl8Z57ufxf4vjZw+V/kB6M b+eJ4xxfOT7BOtHLWu+AXebTwbneQY73fFvyeN4u3i7DVW+wy6t9Xvx2gp8g znapmEdP9n2lR84MO0E9f1HN8e9hbg+rzqzUky9F/rxCz6xqjvhqYiny6ra/ wOPPNRf5PqZ51k9ne/z8W6mKI27O674d6Lvax5E9lCfH8PaIOPPqiIc+bbZ5 QhdxW1/w7y7uozw5+kmdOPPqqI+sx4G7iGM9cobnSzspT47x+0Nx5tUxXtd5 /mpJKTia8wLPF30j+8T87SWvz3fF4X+GitPOUax20sP1GnLKc90Hr328OOXx nllfdztM6x34fY041zvI0Q5HSh5x6pqe7zpD9Q/9B3i7HJ9YB9lYnO2L8pbn ZRg3rlD9Y3203O6o19PEYQc3iLN9ofcAn0ddrnZB+c5ptv3Tp4rD7u8WZ/ui /KV06EH++K664JRHfXzu+0bXlx7KW1zWULVOwfNi5LyfDdX0j3vvd3E/n1zv sPedFHEjOceLJLfvM3o++KLWiKvwvk2l4IzDUM41/DzWWa2V8dna/j2yT7Vu gv5w3iL/nrg42usucT6X8rD/Hq1+fu9L86P7izOeI2d5yOFX9vb1hb/dz/8+ MvSznOQsD+X5XMpTP9fXqZ/lIU+Wk+1KTv3kzNuTUw85y0nOdQH08xEtZqdr /Bj6EZ+t3Grx4Abjg2O+vrY4y8/6px4+l5zyfC7LQ16x7nBwq5Vrro9nj5SC 237MKVav9/l+hHbiSXn0l28nmd1/JY7n7TnZ5idDpAf9+wpx1NfTLbZeMVj6 ITe8xerjOnGM6y3iLCf8Yzfp4ToCOeW5HgF9l4pT3u6Z83ta355h88XZPr/p 2Gr+75hqjn44eYbZ9bfi6Of3TLd+87s46vPV6Tb+leNoPhf1uNyM4IgXDvV8 yhezzb8eIg57zPh6+b6+b2t98aQ8yvnCLJtPXCOOcrWfbfH22dKD9zlCHHqf 8/z8LXNCP35+49+ROl4cb5sVZzlhx0dKD9cRyCnP9QiU72pxyrPeMN4+tMDs 5uFC1DPsY4dqjv7x4QKz0xvFMQ6cP9/e9z1x5EXunW/j9FuFeC7+3SAOezq8 1cbd8R6XFPPBEQ/X11q9tuatHJuIJ+UxHBxYa/azhfSj3DfXWnnbFUIP/v2o OOrpBf+ez44LQz/sa5zfF7uuOPpHQZzlxPOOTehZrhC8Qn71grXTDQn9y6ne 7N4Qz+cfnI96xnuuVM0t7+t5/u3EMZ69VGd5hd7iGDY/rjP5M/LxXKtncdjX 0b6/+0v/ftSxbcHxc5LPkw9ss7h+C/GkPOKGLv59qiHieN4lDTb/vkt64Bf/ LY6/f8XvI9m4MfTjntuJLTbOLyOOv18kznLCv3WXHq4jkFOe6xHwA7eKU57n GRhXMR5hPJOMaxgXJeMj1j/UbOv7ShZmK/3qL01VHH+/l+cHPxOHn3zE82Lb 5IIj7n3NeYdctDv60TRxjLfHtVoc+bbvq/ogE9zGbc9zvJrxc3riSXn0gw08 r7p2Njjq7TTfF9kkPTZui2Pe+7qXc7Xm0I/7g6Z7njOr50LvL+IsJ173JOnh egQ55bmugfz63eKUZ73Bvjp4eY9ojXpG/iTdUsXR3Fu5H9pUHOPBbZ5/f1gc jxno+dR/t8Zz4a+/E4cd8pzEM17v67YEhx0O8XWalVusPXYVT8qjHpfPmD3c KI44+/CM/ftY6cG6Uk9xzHff8u+w/Sb9mO/Ma/HvyYhjPP1DnOVEPZwqPVyP IKc81zVsH5g45VlvGLdW9XXEIemoZ/iP2bkqDr+zbpuNk/eII466Mmd2VBS3 9Zuc/VyYjudCz1Bx1PvJ3u7d3C/fnAqO8fI4vz/8Kj8XtLd4Uh7/zrfZ+DNP HKXayNebP5AejJObi6N+32mxe5qvl37MJ+pb7NzGheIox9/iLCfq+3Tp4XoE OeW5roF2e1Sc8qw3tMdtBTsn2q4p6nmQ31+U5PCTdxVsnbq5sdLv7VToesPS /zld8gP83iT4+SOb4rnov6eI2zmMFps/Hay8/ZZLDeEncc4L4TfK4w7KsYc4 /MrGfh//Ucrbw48dIM75H/ih9C/i6F/nSx71eOFQ45eK27E7ceqhPH6e1mr5 7X2K5jfHNgSHvR7i92wP8XMTB4kn5VGrmYLJH9YYHMNkO5dftzH0YH/3BuJY V7rF/UFP1dsPSw2xuzjrnxz6LpR8zdL2KsfhKM//qd7QLmn3B+eJox3HibNd aA/oL4/6eeb9RoT9YJ5zUzWHXV1btP7WcXjoQbzxidZHKsaF56q5rQtr/QV+ cUmL2fnYYsyn7btLPj58Vs1Rb+8XY76O+CDt8XlzsTLfvkprcOZbEK939vxA nTiK21XyKOfWk+zfPcVhXy+IUw/lMW+63OOBVrfPQ+uCQy7n59v3r7Nx7xJx ynN+jXqeofvk7b4HcdQu73s51O1wuDjG0ffdrq6QnSPeanY7PFMcfmK51uDs L2iGM6WH60fklOc6FJr5aXHKYzzr1WJ5kV+Lsf5i6yXiXH8hh90uo/UajL83 u/51tf6CeGKozzuWFYcZPiVOO6E9Iz+6nefzO04Ju8WPtas56nvNkvWPzOTQ g+cdqXUByqP9dq7m+LG11gsw/sz3/MBFpdhvj/6ztcdHJ1Zz2HX5udyHj+4x 1OOqh5T/t/VQca4X4H3+8vHiTnGY0fo+Lj+l/D/G073EuV6A/lz2h+ivT4ij nc6RPN47Nc/e+2Jx7FdtPz849VAe71GO3zD+XOPtOKw2OPzuPZ4P6ltr9bGr OOXxFqtJD891oxyZlpAnRznGiHOehN8/x/mO7qeyc9meJ1xdnHktcvZr1Pex 0sP1LHLKc10M/75BnPKwv739e8LPaV3JzheLc12JHPHWi5LHe/X0ecGHsgf8 /V0ex74ujvc7X5z2BnN82vm3sgeY+0LPC70nDjv+Rpz2xv6Fdphd8nurF0Q/ Qrt+Xc3xZ1+WzF/09nMcb/l+j7myB8T981piPY4cdvSHOO0K5bzQ/eE7Wj+y +5M8f/6KOM7zPyNO+0E17Sw9tq5SF5zyqI9H6uznweKUx/r0N7p3IG8bj6vu IyCvmHeXuf2zFHkA6M3ea/U3yOuvz//mjGMs7hVn/IH3HSH9to4yxOYj9ZIn pzx5rZ+zSOph3JPUw3vAKG/rMPnQz/e2vy9Wccqz/OSV7/V1VXlYzmR5eH7k //9eY6s4456kfvL/v/4fLf4aIs7xj5x6yDHu/UM/+ne3yWaPt0uPPW9SFYcd 3OLrCxeLI+7YcVKVPcDPHDgp7IfPRf8bLA5/cY9/l+yCaV3vWaqosRgcccrr 02z/0hyPp44VT8qju5021fLH60g/WvnLqRbXL1sKPajmP8XR/nN9vN5yeuhH Pf7s+cwVxFFPu2SCs5wwt/7Sw/w/OeW5joC451VxyrPe4M+2nm3z8l2LUc/o 59/NquJmt7Ntv1KHYsJOZlk9nSiO+u80y8b144uVdn67ONr7fm/fQ+ZZ/DKo EBx6bp9ndjLA9/OfJJ6Uh5vaZa7Zw2hx2P8zc218+kR60I4zxJH/rWm1cxDL zg/9+Pdfno9doOciH7R7JjjLifp4SHqY/yenPNcRkAd6W5zyFe11T63ZaX0+ 6hn2cko1R3M9X2vz7/HicE/pGosnlisEt3lVjY1Pf+fjuXaOqDY4fj7g9dau zur1GHGYw451ZieH+HrB6eJJeYzS9y7s+t7SerlJHOUfvtC+X3ax9MDeZomj /HWttn/nmoT+5TPWP84Wh7/bW5zlxPs+Ij3M/5NTnusI0POheIU87fyGBsuT bd8W9Yw87uHVHHoebLD2+TMXHP29vt7q6fK2Sv+Z930k5ysPj/nd5g3BkR8Y 4Pngv/zc+6/Z4NC/kee9m7JdL10qd06C/0Mew31fP9dwWi44+s8Q/w7WLrnQ g3j8O3GME42tfo+/9KNeVvNx/Bhx9Kf9ErxcTsTnTyT0dMgFr5Dfxu9lGpbg HXJRb7av3fPnj2Yq44q9qjn85L88r35BptLvTfH7oSdlKvvXwpT5ozGZeC76 bft0cNTDY+5vM36usTz/IYfdrdTi+34873yReFIe4/e5zTYefCmO8ftZ3y82 UHowXnwsjvlas+/v7y79qI91fLzeWxz1fKA4y4n6fUp6mLcnpzzz/5AbIV6R 5y/XG9ZFevr4XGqujGe2qeYYX/q4/Y4Vx3rGyNb4Lis5fk5pje+v8rlo1+Uy wREnP+nxz1w/X/BNOjj6SSlrfvRjPwd+hXhSHv30uKzl1TZrDg677p+1dvxV ejBuvCSO+U7G8wYH5kI/7G9Dv99rS3HY6yHiLCfq+xnpYd6enPLM/6PdRotT nvWG8WzLvOnvlYp6RnlXr+Yo3w5+jmsncVuXb7P2H5yqHAe/bbOfj6biuXY/ oDj87la+P/b3fMTnP/7zHvtJ+cR+Lv+uylbanw/7H+TfwWj08WCbpq7k8J95 /37zhn4u4DrxpDzqa7CfQ7tfHHY83M/FnSM98D9jxPm+Nq8ueJ7nkqgfcpsP 3xjc8hSSR17j+YyNi2V5jCMvNASHngF+T+JpDTbO3ipeId/m+dv1C/G+dy01 mE7uf1YRxzmrbuKsN/ihwdLD9QhyynNdA/ey/SBO+Yr5Y5Ofe+zwStQD4r6f qrlNszwOG/hcpR9YRfnzinlZvlDFMf9PFWJeiL8/2vtFJ+1vh7+728fxdtUc 9b6C9r3Df+2csXj0UOXJbb1SnHl1+Pk+7k/2F4d995c87KH0nfWzV8XRP5YZ G5x6KA8/+IbHaTv6fGbDuuAo//6+XtC40Ne/xCkPOz/Vv5OzhfLYqLedxZkf w2tfnrH9FH8WgqPcizxOa5B9wu628/H6W3HIHS1OO0e/fUV6uF5DTnmu+2Ac nSZOefjrV3z9+yStm+Df/cS5bkIOPb0kj/7yTau12+VqR+Rz/mi1ePEMcdjf XPEKO+H84vai5ZsWfB92i+dfUs0x3lxUNP/6wveV/mew1kcoj3/eW83RH25J rL9s4+Pg8GKca7D7U3ycerOaY3x/oRjnHfA+f/j4XV+MPDnyUBtngjOvDr94 pL/vTHHk4c5yu8oWI08OO71VnHl1+NPyfHPXpe/TIo7qflPyKM/wmRZffSSO alkkTj2Uh1/9wP1Mrd+3tkVNcJQrXbR9q60LzD+/Jk551Pd17g8nFWN/NfLU x4tzPzbKf7uPCx+Kw5/83Wr8GfVf3PdwQMbyCNeK27q8OP0A+tG3bud91K9h p3O9X/QSt31ImeD0D4hz7pMe5NMn1AenPOx3uQZ7/gvilEe73eF5zmIx1nHs +5biXMcht/Nhkod9vuTyKyfWccZ5PudP2RvM6z/itFvUd43HYx21jgO92/q8 fkVx9I+VxWm37Kfwd7t7Puuj2dEf4Vc7VnPY23p+7uCw2aHH7utWHr5inntg Nbfz8MrPY3zewOPybqWwT/j5nu6HO4qjmS8Qp53jnzPdP29SCvsE/83XJVcS h3/ulAlO+0e5HpUeeJMjFwanPEr/hPOPxCmP8ftWP2/9vNYX8B43iHN9gRzv 9XK1PDna4caaKj2IDwbWVD2X8slzCjx3gHMsAxqrzi+gX3RJV51fsHMGbcHN D/v9G+fmgvM8azKetu9xezz+WTby/3hep1Jw7mPAv7f0erpIHO11dCnutyVn Hpj32JIzn0zO51K+YanCdbIRn2G8vE6ceX5ylocc5tvd1+tGaP2C+skZF5Kz /OQsJ5/LdYFkebhOkSwP9STLw3gxWR7Gl8nykCfLw/WLZHm4TpEsD8ufLA/j j2R5Ku6b+kd5yJPlafxnfPOP8lB/sjwsZ7I8tPtkebhukiwPecU6RVk/4xvq Z3nI///19mNwPpc8WR7qSZaHnOXB66+dtbh70MTQb99dztq4cLM44ocLxVl+ 9hfqSfYvyvO5LA855aGvrB/j8NdTrbzTi+ZHh2Xt9+dVc7iXZaf59+YT8p9M sXopiNv3qX2/RaEYz8W8v8PU4PBHY7M2f0rPsLzvgeLwR3vNtH0xu/g+svvE k/IYzlJ+3vWShJ5DZ5if7SU9sLdHxDFP2czvO3lb+vFau2V9X4w4/n2DOMuJ 8W5CJvRwnYWc8lyvQX0sEKc8683mK3MtH9WvEPUMOzqkmqMb1cy1/nqVOPrj 43Ms7npdHD+enWNx72uFeC6Gk9/FMT8fn7V6GrPA/i6XDw67WqvGvyect/jz IfGkPOz+m/m+P1T6Uf7OCyxuW60QemB/fcS57p3c98518uT+9o4W2Ffth8e4 uVXW4vR+KifG8309z32tOB53kzjfF/1mUib0cL2GnPJc98E43iBOeda/5Qc9 jtk/H+2F93+8mtvxz4X2vM3ylfawz0Kzz9PFUU0HLbTyn6bn2j1x4ijvT1mL d06u93sB2oIjHryh3vZv7eDfrXhCPCmPeceEOrc7cXTcv+usHP+SHrv/vj44 7GbbrOWZPpZ+2EPXrJ3rf0Mc/uAWcZYTfmFqJvRwvYac8lz3QT22ilO+wr99 3Gjz2FnZqGf44burOX5MaDQ/9KY45LZp9PNdueDo5zt7nLhWLp6L9ztXHO89 OWv96VDPz76ZCW77fTw/+5jP558VT8pjHvClnxdZIo7vDWX9e93zpQd5qXap 4Pj77bNWvlekH/V8BNeRxFFft4uznPBfMzOhh+s15JTnug+6eVGc8qw31O9r fh/bQa1RzxgPrq/maN+v/L6KNcShbv3miPvJETd3bo55Ap+LX58ojvnQ9Gzs d+N9DeTcH1fr9z6g/l8ST8pznxTe72Jx7pNC/R7WEnq4T4oc/X8nb/fHpB/t erzb1R3i8FN3ibOcqO85mUo927cEr5Df2/eH/Zqp1L99S9SbrYe5X3wlHfUM /31RNce/3/F1n+vE8fwVsrYuVysOv7m2+61Z6Xgu4qxDxNmP8fvObTY+X5MK bucBfZ347FT0b/KkPJ4/MGd+abw4xoPxOYv335QelDMtjnorZs3+9srbfoMl jcFhB4f7Obof/Puqc8Upj3FlN/fPd6ickD/F6/9KcdTHveJ8X/Z76uG6Dznl uX5Ev0JO+bm+/y05f+X6kX3HVJz74pLy6K/r5aw/N+cjfwW72NHvqyvkI3+F P19JnPKws698/jU7H/cIoF89LY73eKLB8hLf+7rg5+J27ixr48fjqn+8br+s jdPXieN1XxJnO9r5skzo4ToUOeW5noX5wx7SU7FutU3W8qyPaZ0F9XmwONdl UJ+3eDx5hzjG6f/L2nzjWa2zgD8lzvkx2vcj76ePJ/hkyeN5+35m84qcONrz oS+CUw/l2Y5ovhcKFmcUa4OjXl4qWJzbUmt+cnlxyiOvPcf7Xb9CxJsox6fi 3C8K/zvf/cWV4tin8aQ4xvPBdV3/XupvL5MecpwfOVyc9ol1gC28HrYqhF0h X9jN+Vri+Ps+4rRbPGZeJvTAH+zQWMnX8n1a1zb6/itxysNftXjc+x/ZA34/ VZx2RW7nviQPPat5v/hG9gC/caj7648SfHNx2lvFeDG9YHnddl+Hn4ddj/gf /Cv/ft7o/4YezMsLhch/VMTPs6s52mdSIfIf+PU1WVsPXVfnYuBXR3hc9Geh isO9lQqV91sclrXfH6j1GozX54szD4E/e9TniTuLw5+9krW8+RFarwH/Rpzr O/ATEz0OPzTB2ySPfNVjU8y+/xTHuDRTnHooDztozVp/3tznwz8tCI5/7+Xr ON0W2Ljxozjlof9N6bE8p6/L9JM8OfzEBeLMP1s84n57lvov4v5yPWMaOUIc fuJ+cfqHl5facavntf6j9VD4gYKPd2+IIy7ZIBuc/R2//kZ60M9fqw9Oefz+ /Xpb3x8jTnnoH5exfP2xWk+0+8fEuZ5Ijn5yvORR/2mPu8+TXUF/Ox8XTk2s M+YywWm30L+d++2+sivov9rzD+ck+AnitFv2U8TTD/j3RO+bFv0Rdti3muN9 ryja91q2nhZ6UO9DtG5IefipJ6o5itFf65LwbwOcjyrGOQv08/H+3A+rOfzy W/QPs8yvnez5tx+KsV6D+cnp4lzfgbrHfXx5XRznDQ/3+HCA+gv8+s1Z64dX iGP8GiTOfmf7U93/n631RzynnefNTk6sV+4pzv5leR7pwXtvsjA45WHPB/s5 nTnilEd5m3ze+XMx1svQ/yeLc72MHHb5p+RRzhbfD9iuVFmfy3uecInqE+27 JBOc7QL7mS49aMYd5wenPPzGC/OtHDlxyucT50GsOhur4l36n0GJdR+uJ63o 64PknW3BJfZfJePp5HPNDtNV+7RMT77qvlTr77nYz0Ru61h5i+vWaot1H5Tz 38XgXCey78B5+4/JBYc/fsPtsbM41i8XF83u1xPHOupv4nwu5TE+3paLcRrV O1Gc6ybkLA85quV9Xw/vIj3Uz3JSnuWhPDnluZ7az9f5kvlMxhnJ9T2zv/HB 0V7X5sJvsvwo30258Jvk8FsjJc/3wjxlS8kzb4/+vankydGfNhLnuoDtj2/z 7zNNs3sOjhbHa9VMs3txj/J6OEGc8jCjC7w8J0+J8qPaL/Hndhe/zu87IOd7 YbxuJz0sPznlWX74m/bilMdz3/V2fG56lBNx7O++D/oQcbTPEnG+L/T3kp6K 9Yhekue6hsU54pTHOL2G3xNzzWyLR54sBIeZjJ1t/ehej3NH5oIn5aH3X7Ns vvmVONz4uFk2PnwgPRhnN5sdHMN8T7+34jM/X/p7Pjjs9gv/Lsbv/t3LU8Up b+dJvf/uOifKifq40vOd24qjG30hzvfFv9dJ6HlNvEL+df8u9kYJ/a953PdB zuKRm+dHOVFfy7bZeNtRHP1ueXG+L+zpLOnhugY55bk+YvdViFMebnftNrPn N2utnY7IV/JJ/v2qfTzPPzYXPCmPftel1uzzGnH0+/L4jfY/X3rAbxPHaNjH 590rLwz9mAde73muZcUxbnwlXlHO9aWnYp1ifclzXQNx5WbilIc7+ihn96kt qfP7i9tsPrai+6WJ1Rz9fAs/D9yaC47+d4vfO3mG5DGO3Vpn85sy53PRnu+I wy7W9d8/1WC/b8sGh98a4fdcTPf4aUIueFIefmsDP/9/eC442u0w//7otrnQ Az96uTjC1nI/gj/7Wfoxjt+S8/yKONrna3GWE/6rg/RwPYKc8lzXgP1tI055 1hv05Jt8fpWJesZ7jazm8Adrp6wf9hBHeS/z76R+LQ67u9LzYiMy8VzkeweL w19t4N9dv9e/F3dqa3CMjkPSZicH+H0T03LBk/J4zvL+3eC3xVHu3fxe2Iek B+U9XRz+5xqPNxqlH39/V85+zhWH3LfiLCfac2Pp4XoEOeW5roF23kmc8qw3 9MuFfl68tTnqGT8+quY2D/d7Q4eJ2/4mP1e9dUtwy1f6+sEWLfFc+JUB4rCn jm3ub3wf9xfp4MgHDMrYe7zi5zjm5oIn5fGYfKvdb7FWc3DzNz7PzksP/n24 OOK+Y3wcrPd5Xu9UcMwXfvb83MGe/99fnPL493U5y0dOUznhF/p53DtOHOPc GHG+L/pfZ+nhugY55bk+Ark9xSmP+j/F443jPC6Y0xAcfuZkH39+arDztSeI Ux79YMs2G+c2b4v9cCj/37ngnAfZ9xPcrsp+mRzyr7o/uTkX9YbyNrl9HioO uZ/FWf+2b196uM5CTnmu16BdnxSnPNp/3zazmy5+Hv2E+krO+xNXqrf1kg3F KY9+VsyFHlvm8PXnybmQJ0e/f1ec+V7Uc9k/IL4ZpfrE9yWG5EzfAHGcs5wk znax+8ykB/V2Q1NwysOehjZZu5wtTnn2X67XYN/+ufdW+vMyn4kKHhic82DK 27qlj5vzPZ4YVxsc7ZLxen661sqxgzjlbXzzdaJp+cjjIb79QZzzbvzdSu6X 3hOH3ON+/uoptaOdz/I45AZxxEEN4rQHvOdxObtn82KtH9l303K2D+lscTTz 7eJsd+jrID0o9wqNwSkPv7GlnxPdWpzybC/45x08Tv3m9WgX/Hrdao76WdfP Zbz4euhBvHSU8vmURz3uUs3R3Nsoz49x83M/p3t5oXIf5Spttv/5lGoOvccW Yj8m4pP+Pq4NVN4e943+R5zzb5jfLI+j7hdHP027/39BeXv8u/xccub50S86 +P2gz4hjnrFvQn7cDyZ3dFul/uvGB6/QU5ZHeY5v8/XBgt+POy84evmzBZtH Hj/P8pJdxSmP+mvn/fauQtwnD7tN54Jbuy6weuvo84jzxVGvz+d83CtEv4OZ zvI4ZwtxNFtOnP3X9inmrP02Uh4e732jt9dq4njfweLs1/j9Oh4Xv6r1IMTR 7cS5HlTBX5M8/N5uOYs/hskeMO6c6vOjd8VtnV6c9gZ/2df96jjZA57zac7s Yqg46n2gOO2N/QvzsBo/3/fpT9GPkPcdW81Rnm8LNp6t9VPogdwyysNTHv9O Fao49C8oRN4I7TnD+0VHnbPAn23ocfjK1Rzt/Heh8vzFUL8vtqvy7fC308Ur zgH97PHDXuJop5zX2y7Kt8PvpcSZn4e9rtXm5x8TvD4XHOsjY+aYnuHSQ47n Pi3OvDHs+HofLyaov+C9nspZP/hMHH7jS3H2R+5noB6M/201wSmPcaWbj3fd xSmPet8lZ3Z9QmLdZBNxrpuQ471PkTza60T3k5eo/mGmd3ncdrq4+Qtxtq/t 2/R55M2qf/x6oOe9e4ujOZ8TZ/tCz4HuN3oon49fH+b5q+7i0N9HnO2F5lxb ejAPnTUvOOUx31k8z9pxQ3HKo1x75CMvjf4xuxCceWyUr6lgfmw9cfTL5X09 4S7lz9F+J/s5qqvEkRc4S5zPpTzsprkt1udQfzuKW1g4OjjLU3FucG3Pbz8l PdTPcpKzPJSnfsqjPkd6vuXBqfFc+MvpngdomRIc77VaPjjLw/elnmT9UJ7l YTnJKY/nHp+3cbH3TKvXlwrB7X6xmX4u2seHw8WT8nCXW86w8WCEONr/c7f7 D6QHeb8fxJFXLng8s/ms0I94vqOv10zWc2GvW4iznGjfF6SH+VtyyjMPjJ91 4pTH+LiM3wdzqt/D0+L3B5TnLdjnUppbxbH/tuc8s4s54tCzivvHdQrBpy3t D8f7OuhKei7Gz/fE0W+6+70GB/t5rR754DZvrbH3PtHnE0eLJ+Uh99d8q//7 xdGOgxbY318lPZh/vC6O+e8iH2eXSP8jSwvYyb8z8K447GIrcZYT8cHL0sO8 Kznlmb+FPaTFKY922J79ZaHV835tweGPN/I850Y+Hi8rnpTH+Hadz5f6i2N8 etrzvddKD8ozRhz1eqLPuwb495NWzgW3+yR9HrWC5zmPE6c8xuP3fD5yrMqJ /v++5xmOEcd4tUw+ON8X9nhmQs8Z4hXyZ3h+56yE/jM8//iLxzk5lRP1uLn3 91HiqI+txfm+sOPXpacif/t6W8gzDwz9beKUx3i0Y97sY3ajlfeFTHCMvyv5 vu47fH16BfGkPIbd8/ze2Jw4vsd9X6PvP5YePPcTcfinHv6+/05ZnuKK1uCo vztS1o8u97zoCeKUR3/5qM3m0fupnGjfoW3WD/YWR30vlw/O97U8o/QwD0xO eeaT7f4hccrDD/3h+1nnq5zop1t5v/tQHP1yW3G+L/7+LelhHpi8Qs/bXm8/ i1Me4+lOPl6P833sy7UEt3ta/Lugjf79vJXFk/KY5x3v38E9VRxyN/h3Tfdr CT0o18viyEec5PJn+/3co9LBYUcXt9o4/Una7vc6Xpzy8Jef+jrIdi1RTtTn Vz5P2VIcdrZ8PjjfF+XvLT3MJ5NTnnlphDF9xCmPOPqwvK3rXZQxfXungmMc f8zv3WlpMr6bOOXhP35zv/ij3hfjwJZeDy+Io1zbiLPekFd8Q3qYlyanPPPb 8D9Fccqj/x7l4/KP/t3nDxuC4/mtvv/xFs8DHyBOedTXJn4ObHg28ooYF1YT Zx4Sfns7P092hTj83AL/3sCB2ag32Dvt7c9MJe8gzvrH9OJB6cG847+p4JTH Y39L2XO/Eqc86u9495N7+jjQpS447OVIH09Wc36EOOXhR3bwfrFBW+wDRNy1 kTj3DUJ+97z1w2m54Oj/af/713NR/3aPZt7Gz9PFEc9sKs52RHmHtPn9ornK dhnpceO24va9FHG2L35eIz0o58VNwSkPvzqoyc9pilMe9tbD6+EEt/ejaoLD b/bw99irxs9ZilMedrh/3vJe++Zjfxqqbztx7mfD+x6Yt3lcJ3GMExuK2/4n P4+4nPSQw1/VtgVnPgrl/y/jNLUv2qVs57DHu8UR/y+XD047wTj4L+nBPp6a +uCUx/tu6+vAz4pTHo95z+P8unzkb2H374sz34t88TI+jv8gDvv8yf1JRvfy 4mdOnPle8LU9Pp0vjvfb0P3q4nzkb7FOsa048734Lseueb8HSxz+7RDJQ811 Iz0vLI5+ss83wamH8qjubh7nT/H4cZd5wWH2TXkb716b6/shxSnPOJB6bB/q fNOzjuTJbV2sLXhFPnaKr689mLDbP9ssPrhaHHJl/eS0f5Srn+eNz9C6BsbB h9tsv0VPcej5WJz2jDj8HOlBMU+tC055lO/cOvPHF4hTHvxMj2f+kF1Bzxni tE9ydLd/yKOebvE83ppaX8A5m+d9H8cK4vj7W8Vpt7C3L93/b6b1hb2WCvzu 8fma4oh354rTbjlvhdq9/fzzOaNjnovndqrm0NPRz6dM+zb02D1Zyg9THuvg B1Vz6NlTeWPU+1p56/99C7F/G+aym7fTOdUc9n1qIfI6GO/LcS/mgYOUB8Y4 smY+OPPGaI/OeYtXBoijXDv5e72sPDDe+yBx5o3x666+3+clcVj74W73AwuR V0T9HijOPCRGsSN9Pnu/OPrJZr7P69+FyCui3O3EmYfEuLCDj8s9xVGusv9H OQ4uhB9Avy7HP2iOTcRhjx3F6U/Q7IPdz7dTfhj5yyG+z2gFcZj1JHH6DazD XSo9sM/na4JTHvU438fZG8Upj+q+2c9Jv6n1BcwT+ohzfYHcvvskedTTM76v YITsAe09ts3ipQ/EUa63xGlviBdnut+bKHvA79f1cflzcfzV8uK0N7xvk4+v dbIH/Gzv49MocbzHxuK0N+j9wPMHo2QPMKRxvp/hY3H8zInT3tBf+koPyvfI nOCUx3j11xyr5wfFKd/Z94Nz3zD9QHJ/ONenZiTuHZrh99Bg/K5VHhv1tnch OPPPsLejvZ6+E4ef7e33//UVZ54TfukCceZLyflcylO/jWeTrP6v834zRBzl e1Cc708O+7pTnPrJqYec5SdnOVEfD7u/WmdG6If5Pu9xxq3Tg6M+homz/Hxf 6knWD+X5XJaHnPIYt3N5O4eU8nMRP+eD45zT8nOsHnkutk48KQ87+HSW36Mp /Tj/1NW/b7tGIfSgX54ljvp8zvPDb0k/7PbzfNfDltr1heKYt44WZznRX/pK D/PA5JRnPhn+4hFxynN/Cep90gKLiw/Nx34UO89XzfHe8xfYuLKLOMaXR+db v7pE3M5jzbc44Zx8PBf+sMuC4Nz/3ynRX3le4OhEf0U+dHCx6p4TlCvv85C6 Wv/epMc3eb/nI+fr7kd7nNQonpSH/zjK50ufiUPukVqLy/pLD977OXHY/2Df L3zYwtAPfz3c7aqTOOYXY8RZTtj3ddLDfDI55ZmXRr0+IU551j/inF71fl9s NtoLw+h21Rx2fE69zRtGiyNuHVZn5dpd+5xsvbrO+0sungt3umJ9cDRbwdeP JjdYPQ/NBEf9zfXzve/7vr9m8aS8xXsNdo5302xwfN/vNs/jZKQH5937i8MO X/T5wm6NoR/x89fOVxfH/HScOMsJf3iD9DAPXMFXVz4Z7f6UOOVZb5Zv9/zn cTr/j7h3o2qO/nG851e3b63sv2802e+fEcc4O6bJ4vB7WuO58Gc/i6OflDwP MDJt9rdRS3DU47i0/d16/r2ujHhSHn5t87Tli+8Wx+OvTJsd9ZAetNv/iWO8 z3n+bb7ncwelg8P//N3s8y+/72KhOOVRDy/lzV42a64s5yjvL7+q/Oiv34vz fVFvN0oP88DklK/IJz8jTnn4j5KPg0f4vdTrNAWH3Bl+f2eb36PTKk55+MVJ vt7XpTXui4J9/Vcc9bWL378xy/1xY0tw2Odzzoe2RL3ZPYpuJ5eLw0+OFmf9 o99eKz3wKys3B6c8+tHBzfYeA8Qpj3HsV5/3vuf99qH64Cj3UF+nuaPexsPF 4pRHvr3G/fm9mdhPiB8TxLn/EHZZ5/bWXRx2NUIcP/drNLt+S3rI0f5PiTN/ CPu+z+PqEWoXjEMDvb88JY5++5Y42xf1coH04H3HpoJTHvOhNdx+rxOnvG1T d3871O/1WbIwOOyx1s9zD1tofmq2OOXx2mOlB+Pa4Dqz72GSJ4dffV2ceT/k GR7N2/1/W2ej/rHu/FrezjXk1S54/2HibF/77nXe9nmOzkReF3nLK3wcGZmp 3I99uzjbC885TXrwPgc0Bac87K9bk/mZnuKUpx9mnqPinOPvnv98V/MSficg yeEn27xfbNpm9ldc0JUcdnSA7398eIHJ1YtTHj+/c/tZvS3yZrDbT8SZZ4P9 T3b7H5ELjjj2aecDcmEPiOs+9HIeJ45qHSlOu4LdXO/x1Y7K/8NOb/H4ZGNx VOMAcdoP1t3OlB7Y+9D64JS/f2kBp7p/6C1OefjDclwHe+mu+Rnec7g453Ow /zFeb0flK/cxNUoe/vuK/1j/zovj/QvvBKceyqP9Fnl+ht+5bpodHO9/nH83 6N3ZVj85ccpj/j7N79/ZIx/7wVD+UeIV58TnepzZXhwV/LyPX4tlV7CfL93/ vyWO7vqdOO0T/fQ250/J3uweBH/fm8TRTweL025hR+dJD+pvl4XBKY9p8IW+ z/Zyccrbd4K9vS9WO6J9rhOnPZBjH+FNkmd8hXjiYY+/1vg0/ADmuzf8D97X 98Pv/knowTj+jvL/lMdzn6zmzJ8zT4t2/dTnF+PysY8X7zHT//1pNUc53uH6 xaiuU5baz8se77UprwD+oTjztHjuaPeHDeL7e9yCrNKv2n+H+qoVZ54W79Pg 9vezOF5vkeRhby9OtN//Ig57axCnHsojXvzN121/8fzx7GnBMd//1X8/YZrN K34Vpzzuga3Px3swb4bqmyzOPBvG2UbfvzFGHP7xa3HLd/t9Gu9IDzke86w4 82ywp36+Pnu7+i/82zNuJ5eJoz7fEad/QL+6SHrwvj3mB6c8/Fdqvsfx4pTH 99Z6+zzl73ysCyAeOFOc6wLk6ObLaR0Beq71+Go9rQuMXVr+fs5XTvCbxCvy hI+5fW+rdQH8+MzHqbXFd/F4jJx2W3GvxSH+3NGToz9inNyummM82dzXZQ6Z bD/f8HWg4wthV7CjnzxO2FIc7zFRnPaJceNx99u7K6+Lfv2W280G4vCvX4rT buGHr8zHfa/M6+J51+TjvldyxON3i9MO4Sd7Sg/Otew/JzjlkSc4zfPAZ4hT HuPUw4Xwv1gffTIfnP4X37sY4n76RnHk40a4vW8hzjwe3rqdOPOB5Hwu5anf /OMU82tTfdzuLQ77TYnzfgxy2NPesteKvOLeWicgZ/kr7sHo5PnYfQt2n98z s0I/4uLj/fdriqP9LxBn+fm+1JOsH8rzuSwPeUX5H3N7vcr9S/d8cMTVA/07 lUc6v0M8KY97oY6ca3HMbeKwjzFzrZ/1kR6731UccfJB/v2qneeHfq5vwZ8t nlfJLxVnOWHH60oP85zklGe+FM/dUZzyvGcGce0btTYe7doW39lCP/i/ao7y fVxr48Eq4ohnV6s1/36TOJ63Ra1/z6Qtngs7OFkc7feE71Pe2r+T9Hc2ONTt U2d+vuT3b94jnpSH+T+20Ozh/FxwuJcpC/07mrnQA/9ZL45xtqvruV/64b7P KPj6njjGvz7iLCf82frSw/wkOeWZ58S4t4s45VlvsPenG2we8ZS+i4b+ckk1 R77ylQa7D/FqcXzf8rd6m+/OF0f+fN0Gm9f+qO+rQa6bOPDAgpVvPd9vdGFr cIxbW/n9mL183+n94kl5zFdu83s8x4ojTv6m0ez7OemBXU4Shz981v1ST78X 9bfm4PBDV6Yszpzq9w0/Lk551P8h3l/+T+VE+5zt+k8Vh77Lxfm+6FcbSA/z nOSUZ74U9b6HOOXRLC/6eYWv/Tue16eCY7wel/b5hX//7zlxyqNf3et2NSgd 30fBuHmdONc1Ya/9vb3OFcf7HeHtslE66g3j4KW+bjZB9Yn1gWvEWf947ibS w7wrOeWZv4W+g8Qpj/d4zOttTLPtG0g1Bsf7l5pNz3N+DvcOccpjGn+l9OA5 /Zrs32dJnhx+4hhx5sdgT3t6f9+7OeoNdnC0j1PLiyOOP1Oc7YLft5Me1FPn 5uCUxzh/VbPfvyJOeYzSTxXs/Xb2/Pv59cHhh0/wfdXb15vff0Cc8njvyz3u 7NQa+S48v5c482N2ntTt56eW4NgveZDHwS+2RP1jfOf+m3PF8V6XirMdEcds 5OPRwcon4zmd/d7VncUxP9pNnO0Fu19GeiD+Qio45RE/fZbyffzilEf9POd+ bJB/P2dObXDEk2/796K/rLX50ZPilMe8618ep/0rE/vBMJ+9VJz7x+DH7vL6 3Fsc/uMwt+eVMtGOGOfO8zj7S7Uv9FwpTntAXLyl2+Gbal+MMzv7+aEHxTFu HipOO0F9rSg98CMbNAanPPzjUY02zqwtTnnU00s+f1iStf739rzgsPMVfPx+ ep7Z8wvilEe79Hf/Py0b+3lgzzeKc/8P7O9B1/OiONIWF4vzflTYy0nSQ47n HyzOPBLeZyfvL+2y0Y7IAxzkdtWYqbwn4SRx2gmeu5r0wF09Vhec8qjnmR6/ dBSnPOrhCd+HsrLf+/L47OB43i5tfh/8bP9OgzjlUaxrpIfnedFe50me3OJf ceYB4Pf2cXu+MRf1jzzT8W7/h4ijOc8TZ/vCntq7HW6Qq8wzr+f3Wa8tjnJs I872grq/8qHH7GthcMrjvdda6PdeilOe8RXM4y+dN2U8hnabUM3RP4fpHCrq peyHkW/YTPt+of8270erV3MY9rLaV4zfH+77uo5SHg/xx6nizPvZOQ6P2w8Q hz+5oWDzupOUx0M/uke84l6I/j7PP0G81u9loDz681HfxT0O5KiWt8Wph/L4 9yCPc/bx8tw3LTief4Sv3241zfIPD4tT3vb7+vx7J+XZ4EfPFmd+A88v+3Pk S1cWx7z0YPcbC9Rf0P96+XzkeXG0Qx9x9jvY2ybe329vi3wazHRLjweuEMd4 uLd4xb24y0kPzPKvecEpj/IdPN/Ks6o45dFvVvTz8D0Teeay/ZMzz1zBz5A8 6nt9j2OvlF3hOdt73uo8cZSnozjtFuXfy9vldtkV2utM13+ZOOLYY8Vpt+yn sItBns/b/fvojziHekc1R57oZj+fdOS40IP45otEnrks//nS5nilmmP8f0b5 atT7pT4v+CYfeRrG+Rsvfd9Xqjnei+vGv0+y+VM3b8fXZOcYzi9w/3mrON7/ KnH2F/sOdqFrYenrXS87R/ywe8HWUS/MV+7zPEKc/Qh8ZelB+fIzg1Mednju LNO/rjjlMf6vVwj7Zf4T5V1ZnPlPctp1Up4cfrRhSpUevNbtU6ueS3nk/8YU Yz3VziNk495actuv5ucZ85K3ezQ877FvMfw+8lEL24JznEB8ubr7xW3FkY/q 6PuBpirfiPzNZb5/90tx7Ne/U5zPpTzsZgN+v3aK2fXh4rxfl5zl4f5g/NzL 1w8yyltSP8tJzvJQnvnMZHkq9pH/ozzMCyfLQ/lkeSjPPB455clZTnLmCdEO DQXb/9l5bjwX7fmXx10vzQmO57crBmd5WP/Uw+eSU57PZXnIK/KQe/A7zQvM rxzdFhz9epsa88f7+DrnpuJJefTbWfMt7nhTHH60+wKr3zukB+Zwhzi6RY3f FztU+uGvSh439hNH/161GJzlRDsNlR7mFckpz/wk+uUP4pS3+Fr5QDs/xu+k +v0sn1RzxuUY/z4R57k1xB2b54LDvff2fGM5fuRzmbckh9xefh/KZfVWX+9m gkP+znr7nvoLfr/gZuJJebzvbP++9erZ4GiP9f07PQ3Sg3B6R3HY1+H+HYJJ fu7xzNbgqO85DT6Pa/XzYuKUx/i20O/f/l7lRD//xceXD8VhZ6sXg/N9EZ99 Jj3MT5JTnnlO1P8EccpjmrqP33s90/e9TWwODntZqcn60x3NpmdrccrDDxY8 L31VY7wv3HjZ/6DfdxGHOWwsznrD+DZWepjnJKc886Vo16w45bH/hN87OcTv czw6FRz+8/yUvddaKYtTdxGnPMq7ln+PZLdU5KlQ/rIfI2deC+2+SdH6W01T cLRLfcH8wQeqN9j/H74e0Vfczn0Vg7P+Md5+IT2YP/ZpCU55+761528mi1Me 7Xuofwf9P2nfl9kQHHbyle/vfKnB770Qpzz8ayfv7w+nK8/triHOfV/4uY3b 21HiaL90wfrThumof/i5FX1cmKB2gX20F2c7wh6+d///mdoF9jnV5x2DxdF+ TeJsX96zRj0o59/ilIfeHZvjHjdyysPejiza79f2fOCBdcExz9mwxexllzqz w27ilIcd7uR+ONUc+6/Yj8i5Xwt2uKvbzwfNlfu7VhdHfbXW23x2cSH0kMNP 1oszr4X2nerznc7N0Y54rzr357+qfeHmF4nTTlDdH0kPfn9zU3DK270MTRaH jxSnPP5+Xx+XO3j+7cPa4PDDh/l3Ay+ptfnAduKUh52vLz0cx2AXK0ieHPVU LARnPgp8vucx+rVE/dNPYh58ijjscIVicLYvxs/P3A63VT4ZzfCFr7NsKY4/ Gy/O9oK5vyY9GF8y4pRHPyw1WHneEKc8HnOQ2/OdGVs3PnVecNTbixl7j6yf N9xdnPKwt3X9u0pXZSJPhR/LijOvhXJ0drvtLA79jZ6Hz6sd8dp/+7rh++Jo x3bF4LQHtNM3nl99tDXiGjx3nJ+bvV0cz50rznbHetR/pAfx5iV1wSmPer6n zuKbD8Qpv9o/z/OuqP2ouEejT6Zqn6rlWduqztvZ/SFFa5+0f2f76JldyRFn /+Z51zVnWr84UJzyKM8W7m+/z8b8AHa+tjjnAehHXXz87S+Ov2v2fHuvbNgD psGrFO0+jdXE7dylOO0K/WK8969fZA9o95k+3s0WR79oFqe9wf7fkx7kVUbW BKc82mvdWr8nW5zyaL8aj1u6Kj+JcaYkzvkl/NiqPj/dJpHn3LBo42CPtshP 4vfbijOfiZ87eXxynDja5SDJm3kONT3dxJFHmD8sOPVQHv3jqKLFcSe1Wbse MCU48rGn+vxhpynW3keKUx7xyW4eP2zVFvNgvG9ncZ6rRb1xvpbPBbfzxuLo PwOmm538Vgg95ChPSpz5FrT3dG/H83Jhn+jv5XgA4/xe4njub+K0f/Trj6Wn Yem/P5kTnPI4L3jUXCvXt+KUR3V87+cyr5E94L2Gilfkvcsc+/Lulzxem98X fEf2gPHkL5+n391WmQ/PitPeOC9DHDLXz8V9NqJy3vdONUd9v9xm7b3BV6EH ccFayjdS3s5rtVVx6J3bFnlI4DX8PsVtta8Vdrp90fJM61dztOca2jeLdvrT 47Suyiti3XCNYnDmIeHHN/Zy7piv3K/YQZznd2Fdq0gPOcr9s57LPCT8ao37 w3Gyf7TLYt/v9Jg44qZVisHZjzAef+lx1KVtkW9E+UZ4HrW3OB4/UZz9Av99 XXpQ/MEzg1Me7z9sps0z3hKnvJ3DLcR+UuaH8RrviTM/TM79qpSHHZTnfdiH fn2iXep8vf7CxP7kqeJsX/x+dKHrZUsN41Llh2HuP/p60DniUFcjzvZC9b0t Paj+R6cEpzz+fsYU8zMfiVMe8X6D8plo78G54OzPGL7m5Kw+Z4mjnG2+nnav ON77EW+fS8VRj9+K87mUx2v/qO8sot92E7f3Hxmc5SGHne3s/uBV6aF+8rXc jslZfnKWk/q5fkP9LA95spxc1yHnc8mZfyOv+G7fHSoPOfN7kH/M81dvzg/9 eM33PU+12/zK8nwpzvKz/qmHzyWnPJ/L8pBTHtY43fNXI/wc0c/Z4Gj3ebUW By70/Plw8aQ8nrNnrcWJJ+WC4+8vqzU/s1Mu9MD/9BfHed67XX+nhaEfv3/c v+u5hjjijHfFWU7Yfy/pYT6QnPLMK2JcvFSc8ojX6rzeenA+3Boc7XGD7/sp tVh5potT/i0/F4/+Wazryvib6xoo57BqDvmmOrcjcdjFfS7/lTj8RJnj+V9l 4rmIO0aJo1ypoo1XXzSY3x+SDo74eGKD+et70uY3a8Qpj/W5b318fKnB45xm i/8/Eke5xjdbvFruX9g30Usc9f2o95ftGqLeMG95p2j+vVb1ifz85+Ksf7zf xdKD9/64NTjl8e+f/VzmXeKUh11kirausHmTvc9WTcGxz2j7JuvP6zb5993F KY/Xm1K0/MXvjbFvCuPWSHHus0Lzz3B7+0bc7hcVt2E2ZXb7nPSQQ76/OPNR MJOb/R7wXRuj/jFu93N7WF0c/flZcbYvzOp06UF+u3dLcMqjnV/27yJdIk55 1HeNr3d0SVn/e6YhOOKs0/x9jvPzoRPEKY/fD5cenueFvbwteXK0zyBx5pHg r+52+3mmKeofdvy0v+8l4ijn2+JsX/w8p2jr2vsqf4v3P9f53uIox7XibC/U /zHSg34+LcHL8nAPs9JW38eKUx71U44H8LzH/Zx7+7rgWM//yPOSc/27djPF KQ/+ufv5O9OV9/69KV6Rj/rO5327isN/PFT07xamox3hv1/zuP0btS/iwqHi tAfU86Ve/y+nIk8Ie77Kv/v7uDja9Q5xtjvioBOkx/a/NAWnPOy4j+9rPVWc 8hh/mz1O+K3Zfr9hTXDkzdfwexNm+HeNF4pTHvrH+jgyrzn2TaGdh4pznxXe Y6L3r2fFUT+Peb+4rDnaEfP293w9a1NxjL9fitMeoKdv0caTVZQHxvP+7fP0 jNoXPx8Rp53gxynSAzsfWx+c8qjnX+vNns8VpzzeN+f57fNb7R731eYEh9yl rXa+5OfZ9u9WccrDnmb4uLZPa8R3mGeNFmccZ+t/Rct3LCuOceETcdufMN/a 90XpIUc5HxZnHgn+6Vb3831bKr9n/ZCPU0eLI2x+QZx2ArvtJT2Inw5dGJzy CJf7+z03fcQpj3l0rdvzZRmrr9KM4Hj/J/zc/cV+7mySOOXht0dID88/wj+/ J3ly+NXnxZknQbnuczufrfpHeZ7zOPY1cfj598TZvoi3ensccnNr5PfQPhe4 /uvFUW83iLO90C7HSQ/e94qa4JS3/S011o+6i1OecRrk+H34btdHXEdu49c9 wbkPhvKo/0aPtydnzV5Tk4OjenN+7/F9k7tmlvrhOeKUv2FpQ3zl4+OIbOQH EAcOEWc+AePCWLf/vuKw/4d93Dk0G/aA+cGbXm9/y04Qbw0Tp13BH1zu9lCb iXwa7LXslxAH/yQOuXvEaT+oppOkB/8+b05wymOfyEtz7H1OF6c82wt+q7/P n9u/Gu0Cs+n1P/gJObPvO18MPRjffshFPq1iv9Oz1Rzt0S8XeTbU94f+Hfc/ c7GvD3Ll/oh4a1Y1R7N+l4v9fmiHl31ef6TyZuiXH4pX7Dsd6fazpzj6+w++ X+WYtsib4dfTxJlnwzxwjs9n9xfHj/Eeh2yk77dgXvuFOPM2WEee7HnF2bng qLbH/Xvvb+fCzpEn+tDzDGeKH7v0xYeLs7+gmm7w8fQY5ZNhF3d6fNJFHH7j CXH2I1TradKDdj15enDK4/2+nm71db445VHeczweuEh5VJTzFHHmUclRT9dI Hu93lc8XBqodYaf9fLy+URzVepM47QT7yO73+v9C7Qj7GeLt9YA45nEvi9NO YE+3uz/5SO2L4e1Rj0/uE0c8+Ko47QRx+5nSg3IcMSk45fH8mknmX68Qpzzv teN6mNVDvdntP/Ylcp2U+07JL/A4M6nH3jdVJc95XFI/5x34s0Ha9wg/c11L Fb/e53FJbv29xeKPx0qRx7PxPxuceT+U+04/b/GAONQ/nzU72btUud5wtK97 rCtu+8XEK9YhjvbzB3eXwp7Qbm16Ljnuu+P5krK8fbd3YsjDrnuJUz/LST0s D+XJKc/nMg5IPpeczyVnfJAsDznzXeTUQ85ykjOfhvI9UrL5ww+1tp75RCY4 5i91tTb/6ZPxe6zEKQ+/dGDJz1/URjnRnueVbJwaVRMc4/gl4qwHtiP1sPzk lGf5+V7klId9PFkye9/d161XbwmOejqozt7r12azx0fEKY9zvDeVrN3W9Pu7 x/j9ZxeJ277hVhsX/10yfzZlYXCUr6c49xWjv3aVHnLo31Gc+Tq4g91Ksa7P /Bv64dql2AdADrf4D878HuzmvpLFCfvXW57nznRwzI/61Ns4sUva2u16ccpj v15v6UG7bNVs5+1PkDw5/MoB4sz/4LnbuT95W/UJ+yrLo13/JY7xp7s42wW/ Xr5k8eExyn/iOWWOcfUfHPWzvjjrGX+fL4Ye1id5hR7W5z845fF6D5ZsfH3V 92H+1hjc7sVp8O/veD7vNnHKw37O8XZ/siHyQrD/48Tpz2HPl5fMHg8Tt/Vu 5+0boh3x/GNK1r+nqX1h/2eJ0x5Qz2uWzK9/VB/5PZxvb1+y/MPr4hh+thJn u9t6YjH04H33aglOefj14/27NL+LUx7t8GjJ4qTVmkzf9fXB8bjO/p2jE32/ aj9xyqO8V5Ysb9HWGPuUMN6eKc59TaiXG7y9hojDjst+CfOkWxqjHdFtT/Hx a1dxbJvpLU57QLfZsGR5iY2Uv0X7bO58idoXw/Ee4rQT2O3vxdCDcnyQquRl ebT3PM+TrSA9lEd9DSzZ8673/Y3Z2uDoT7ekrB5rPF/0uDjlUa+3+nh9bCr8 Gez5MnH6Ldjz7T5OtRe375KJ2/ynzvxqN+khx7x2V3HmkVB95frE/P7upsr7 Hnf1cfwscdzXcJg47QRuZUkx9ODvuzQGpzzi4iv9O+/tpIfy6Db3+7h2S9re 89sFwTFOveH3J++0wOLTG8UpD799ofTw3Cvs7WTJkyOO7irO/A/Kt0PJ7K5F 9Y9/l+Vtn6k47LCHONsX8eOKJZs3PZCK/B7mXyuX/DvU4rCbjcTZXujnhWLo sXPF9cEpj/d4rd7yDCVxykP/QyXL39X5OsSw2cHh55ZtsX7Qfbb1zzvFKQ/7 PN/1TGqOvBD87InizCPh11eVLJ94tzjqcw+PW05ujnaE3R1fsn61jjia7Wxx 2gPsZC2PN4rpyO/h5wY+bi4Ux3+3E2e7o35/LoYe2NOGC4NTHuXYw/eX/iVO ebv/oeTfgW+1/jFkWnD4m7NbzY9e7efXHhSnPOr1Wve3O7bG/hD453PFuZ8E P2/ycaGlJTjmyfuWLH75Uu2I1y7HabhP/ipx+LsLxGkPdk9wyeY5Z7ZEO6Jc W/u4eaA4zHcfcdoJ/NMfxdADu9lifnDKo577zbf+uLL0UB52+1TJ9o984t8p 3H9icDzvM9+nuclEs+eB4pSHPd/h42O/TOwzwXOuEue+FFv3LFl8cbI45M8W 57k0jDNHSQ85/m5PceY3UM9bevwwSu0LN7Gnj5vPiMN/HClOO4H/WUZ6EG+v Pys45VHPb/n3UNYRpzz62xbOG7KRf4O97yDOfB3ii3L/hb2PEEe1dvP5FPc9 9PrA1y/EK/ZVXuz+vE4cr329j8urKv8GffeIM1+H/nKfzy9WFofcU5KHHTz8 tdXz0+Jov5Hi1EN5lKu/yw/3e5fW+D445Fj+38b6OrI45W2dV3p4fhH+p6fk yZG3OVy84j7Jnbzets+GfeI53fx7BCXZLer/NHHaP/zRKt7ff8hEXg7zlNVL Fv9+K4522VSc9gx/WiqGHjTj39OCV+jZYLrZ22JxykPdsu4n11N+GO/xazE4 7bOCd5I8xu2ynWM86JartLftPX7bRhxyHcVpt+i35fmFrWsm7OpMn2ftJ448 4bHitFsb/92unvLvtH/0rbdzycp9djWHHznV99/eNsrea0/3P0/kwq7QnOX5 KYa/E8TxGueK0z4Rp7X3OHN35YExjnT0OKeTOOLMHcVph3ZveTH0YN9G/cTg lEe77+37MJeIU97zbpF/W9HHlyTn+kWSz/Vxp6MdPA3Ocd/iWXHGCTaOVfOk POPAJDf7qavijM+T56yZ57R+qXwmvHm/pip57sfAetj+iyIfiOe92xS8Yl/y ZP9e7l7iKOYyKRsnliTyk138nNkv4tx3gf48R3lIcrxeSvIV+15qxCv2z/wg PeSQnyh55j3Ax4ozT2L3B0kPOfz3Z5Jn3gPx0AfizJOgPoZIDznydq9KHuVY 5PfZDBaH39opG5x6KI9mLNuV2ceUqDdya9/RlfeebSLOdsG9UotK5o95Hrxc b+ANpVi3Y34bPFMKv888tvXXRbFfv9K+FkcetfL+gMVRfnJU99BSrEOz3si9 QMHxvBGSZ7tgPHtL8qw3csqTs13IWf+0c/Z/lHdrv6drt0VuT3Os/KeIMz4j xz9nlWL+QDtEeX8Up71BflIp5hXktCvEWVvWRj3QDrHfe2JNcNotOeuHdkU9 STukPOuB9UNOebTrdotiHsv3tXzsopjHkqMad5M869PuXRGnfcJ8i8rH0p4R Hy4r/eT0AxiXHlpY6QfKfgP20i3BU+L0M/BLw3wc3F55afi3r30cby8O/zZe nO0Lv/uy9CA+GtQanPK2r9Dzt0PEKY+nlP0w4pJ7fV/X9IbgeJ8Bnicc7ffa 7SNOeczjN1tkcdU59bH/Ct1kTXHu10K338r5luIo75JScN4rCHtNl0IPOexu ujjzbHjPMSUr35N10Y6o17I8zPVqccinxGkn4G9ID36u0xyc8njfHs2m/1Nx ysN+dlpk9fSQ5wOPqQ+OZv3cz1H/4c/fWJzyMItVpcfMxOvvl1LIk8OOG8SZ H0M1lf2APU/1j/5SlsfzvhfHj5/F2b4w63c8r/JcfeQ/8fx3S7bf4llxvNd/ xdlesKtnpAf8vlRwyqO++qf8Oz4JPWV5xBW7uz0vcnv6tjY42me9Ju/Hfq5z a3HKo/uvtMjWsesbwx/Ankul4BX3zq3r9vykOOpvttvnhY3Rjihf0fMhW4mj Xyy/KDjtAeu8Q90Ol1d+G/16uM87FjUER7VOEGe7Q/4F6UH9LhGnPOLcDo22 zvqqOOXRDmU/gL87O2V+81/zgsO/XJOydt9nnrX7LuKUR/2s7/FG11Sso6L6 lhPnOG/7F93+/2gKjp8LPF86Xu0IPX94PvlOcdT3KouC0x5Qz1/7+HVFU+X9 JWX/j/1QJ4rD384Tp51A/lXpsXl1XXDKYzj9j99z/K445RHPHOjx82j3R1fO DI7w6Af//tbpfg5rP3HKY15W9rd43nPpiL/wd+3FOU+xc3SLrD4vFEd/WVac 9xPitcvxG/WQI96YLc48G/rD9yWr76lqXzxnto+b74hjnbJVnHYC+bekx+LL muCUxzi6b63VxzBxymN82XmR/d2Pvn/1tGnBbd7fbO3z3VSLgzqJU97Wq6WH cSviqD9KIU+O/FZanPkx9I+pJVsfOKA56h9+LO3z65XE4e5/F2f74vfvexw4 Nx35T7Tvh54fmCGOdh0lzvaC/T0rPXjPCfOCUx7tUOPnpZ4XpzzaYQ+PY/f0 e16e+Ck4/FIPzx+On+Dr0eKUh12s5uPjZq2RF4K9cRzcrDXmE6jf9d1up7YE R/2X54nwx6+3RDuivcrzF/iZ81sq23eFRcFpD4jrPnc/3035bfCvfdzcTRz1 PVmc7Y76e1F6LH6bGZzy+PcS52+IUx72k/b1kS8yMc+z9YhFwTkvhP9r7+Pg MHHY/36SxzznqzfMfg4Uh9yTbwanHsrj9/susnnDYL+H6ObRwbH+8m7G3mP1 0da/dhenPNplo0W+vyMT+8rQjiuJV+xP67zIfn+AOH7W+HrWGpmwK7uXxfNa X8neYE/luIuc9om/H+V28o7sDfXwk4/vD4vb92DEabd2z4b04N+fTglOefx9 56nWvz4Qpzzes9HnKc2ZynzGf8Ur8hlljnrcIFu5n6vV5+nHZq1/fvpx5J3s ftxqjnFp9az9vOfD0IN44rFs5Bspj/c/t5rD73TPRh4SdtNain3RtAesA62x yPzkWuL4s/bitCv0x/K8GL1t3WzYA/h8zz+kZCcoT5s47c3u65Ae9NcTxwen PNrzjh+NfyFOecRPL/p4tK7yqND7nDjzqOR4r42r5clhf5t/V6UH7XD2d1XP pTzzKsybMF/KvAq5+asxVZz5f5sHK094oY93ST7A/R7blZz5kmS+9H9x+tUk t/aaafPmGuUhYZfr1Aan3aM4W/j67GxxhCEX1Zp/eUWc8R74s4l8Zjk+hH+7 Tc8lR70+IHmup+Pfd4lz/R2PuUp6yNGOfRPlZJx/WSKPWp4XwD7OkR5y2P8Z kuf8Du3cQ5zzQeuf0kOO9j1iUaUfOcPzvYcl6u028Yp2Kcuj3Qb+P8bOOs7r avn/ioWtiN15bVHR670GtmJhi9fAi4ntFRu7r4Jd2IqNooggICINsjS7xBLb HZ9e6+rvw2vmNbPnfNjf4/uP6z45O6fmzJkzJ94Z289gfcnFLnxuHHboLeds T9iNARnbL2H7gPd3znYgZ77ksHeXenq2j9wXc852IKccciTr6Zz1Zbux/Gwf pieP20f0e1RB+2B9Wj2ioH1YTrYPy0k7G5ef8snZDuRsB5aTPK4X843rxXKu vt/HF9TrQJ0n4nox37jfS/SccNzvwXfg2vU77R05863W8/FxeXiuOC4Py8ny hP01rUAO7Wks5xh9PyHuL8aB4/6iPxH3F+1m3F+M28f9xfLH/cXyxP01qv1+ f7t60e+J63WQtnNcL/ZLXC/OH3G9hus6M64X24flJK/Wfd+4vlyPsb7Ml+22 +nGxqKA8XEfF5WH543w5b8XtLGIXWnr4wyNcf8JzxM45HzE95TA9yy/9u6yg /NwXiO0beWzHuA6P68V9jbhe8i7xUkuP3p7v+0348X2ZceonOeflYL/pDk/P fGM53E+J5VBPKIec+hrLJ4/lU4/J4Uc94+n5E37C856eHH77a56e/875GqN6 WUUY98vP7xiOL0b8Nue0e5yvIXdARXif+hyNF/V1Tn+AnPrA+Zpy4vmd6dnv 1Adypkc/VWSknYqrRN5RK43Db15epeudlaK/K50zPeJCRS6H5yexLprh6cmx zh/lnHot65WMtSPHEezVrc6DcfTfjLUvubxHrP5Mlfc7+uMujUv/6BzD9jHn wXxxpstBPy2tNM70kLtDlej3pc6ZHr8X6/haru/37rnMONqpc438/SC9PzvZ OdNjWH3jcsRf1/ds3vP05OiXgc5pJ/Dv96g+n1Ft+5M4LzhQ/ZBtnUMb33XO /pJ9P9XDJm9/lP8CjUvUO0d+1zpn/6K5e7gcOW9SYZzpMQ2cr/Hb45wzPeKo S1UPT9J44zaLjKP6V+m9r69KZJzOds706N9hascOrbU4nuyfOmfcDz/GantW 1RjHOu9htQMjvB9Rz8E6X/R3jmn3C+fUB4w/rhfO93g77MFVGTlXf6JzjPc7 nbPfUf4TXQ7q+/xK40yP/eDpK0XPTnfO9PLuVkby+7JOyrfhfOOoz/g6Kf/s eVKvxc6ZHuP/R52Xn6uz82Bory+c8/wY/n2K6v+ZzjEunlD5O9ZZPyJuNUT9 nznev7CTXzunPuAca14/oU8/eP9Cn2/X+r7rHPsyjzsPzlP0dDmyr7vUONPj 3+uWij5f4Jzp5f0Q9X+2bJB4/p8zjKM+2+m52eX6XY8K50yPfGbp+GqoN/8a +Yx1zvNaaOc52p7fOYf8z52LHVA/9xWXQ472fcQ5/WLoG+fHPeqtH7FP84jy 37x/YWdedk49gfyzXA7s2l3FIf9N3zfurOec+zhnep5v4X4/4xaMY8RcvneR tXMA5LCPJdqPOzZKe83V9xJLdL47Sd83GDNR98edM73sX7scrktQ7SGenhz+ 7gvOg/XNfTpeBjZYP+LPXlA//0LnmC8+dE49gT5dqPq8v8ftUd6Ldb7byzm8 vxucs98xfx/nctC9V8w3zvRor7v0fM0JzoP0L6oeHuTx1eCc0l+NBVzMY2MY 5/hS/fDrmmx9jH/P+y0tq+SfUsixP969yeIHaP/nVP6tTbaOl3e3nDO+CnFD tfx7OofdfkTnr6zrA8b72+r/f+Mc8+pQ59Qr6OUVOh+93GhxVNT3Oo0PP9wY xufvdU79we8nuxzEeT/52TjTYz/gwJnih5/pnOkhLq8n2A+Z2WTxapTnDOdB vDrPMW+Xenq0Y++MnFv6X9SeV+u8ucw55FzjnP2C9Ke7HLyLMfAn40wP+3Pz BNHDi5wzvfjjHnflujzmwfnedpzxlZhzXfV/lc93A9CPz2ZNv0WP5hrneEA7 vDZP9KQdx7h8a57017+c096in851TvuMYnXzfMnxZ8d7esYVwP/pnOtv9Peu LoccZmVfT895Fuuy3ZxzXsb439zlkMNv6+Lpua8KvoHz4D2iNV0OOf7uN4+j 0r8CTzkPzkskPb4a8HpPj3F+n75rXesc89bbzimH6ZGuf1b1+2drf9ifAc7Z j0xfrvGT4Nz++VmLI7H95XxJVubnT8qsH5l+S10PMD1+/cPjHmwfctqXgG+U Nc64CNqzweWwvmw3pmf7MD0500s+OX3Hp9LGDTnjV+RSzWwPvkMRnGvNj5dH tdzwY0+Y34P8Ko0vkXN8Yf5aQ/c5jvH0PJ8dy9lM17OxHKanHNir7i6fek7O fR1y9NtRnp7jCO2/Q9bW1xwX4F2dB9/vy3Ouu4PxktR1+oFVpuccF0hXURny 35xTH6jnlBOPC6Znv1MfyJke4k7LWjyF+on0vbIWTwn4RdkwLtNd9Xk352w3 1GNT52xnyNvZ5ZPTnsB6H1Ydvm+Wtz/w1zaOeBfnwTmQ1ozJgfqevNw40yPb ecsl31+dMz30KG8feC4Q7bXXPNHDG51jGIxSnk/P84LkmMaO8/S0M2iXA53T zuD8WU+XE7zns73q2zs11i+oR35+Qf79nKP8Rztnf+HHH+o/H+3rcZTjTz0/ cERNOC9sljXO/oWa1roc+GcHLTUeyDlW35Ovd870EPdwVtr91TqJP144wzjU 51t9X/LZ6fI+xJ3OmR7l6K3n7R+tM/8c7wKd5Jz+PPZ1rtT2PLwu9P/3ycrv 69ZZPyL/43VdM9n7HebiPOfUE7T3uqrPH9WG887Gmu/LzlH/nZ1TT9D+TRmT g/G7e7Fxpkc7X1Esfm/aOdPLffCs6Ptf+v3xe340jnX/pg09eq3q9jfGSX0e cs708DevzYoerKi3/SX0x/nO6XfBTt+k89c7zmGfDlR+c731I9rhjKyei3GO evR2Tn1A9pupf7KJr8dRrrzdRnu0ev+iPAc6p57gRzJjciB3q7nGmR7t/NBc mdf/55zpof/7ZTUu5esp2KdTnNN/wb9foHpypnO082VZ0aN/Ntp6CnGzi5xz /YV/vkHH0bqN4brsXOfch5Tv2LoccpiP/ZxzXYDft9NxcWeD9SPaL58edvk0 58jvaOfUE7kPnjE5sFdbTDXO9NCjY3UfaT2Xw/Sw1ztmJf9BjaF/uqbzwD9d U8v/laeHHdo6K99FX+DthvY4ICtxoveco16HOg/WuX+q/jzQGN6f7aTz1B2N 4Xq2q3O2s7zX6nKmwD0db5zpoU87/iT2qsk502OcH5ILz1GkvjTO+qOeFV/r d7udwz6+8o2U/49ofZQvJ+RknLNe0M+Fvi4gR/tVeXrqA34ui9dTk/R7By6H HOmLsmH58/4s+OR4HTRd5IxwOeSYdkd4+uA7GkOz0fpltvz9EJdDDjv5lqdH tc7SdeXL0for4Tzol3x6FOuAnO07o16HjLB+IUf7P/itpX9K9yuZHnq1fc7e MWF/Id8tctruFdYv5JzvyeVdzGz4/inteWVW9zFnWpwNvNE51+nyHZSs7V+z v8gZFwt4Y9bWObEc7pPGcp5s3w7t5ATvVrSTQ/mxHPqXsRzcwz2r3ORgvI31 e3zUH9TnW+fUE/Indb1JDv9sCNd3i0wfqFcsJ/WH6YP96Hz6sD3LC8rPdUrc DsE5EsZFx/r6Ja6XhHsrC+rF9onrxXViXC/yuF4SxykL69XI9qkNy1/pPNDD tPPguzyfub/NckI9vnJ/mxx/P9LTB+3wjqcHf2yOyHkjSp/n8HNecy7ThZ73 6Zyz+10cd6jHJjm730WO6m3l6TmucY4ivx4np12V8+zO2Q7wp1ZkTX5gb/P2 EL+21pqdpF1Fv4+OeJFz6g/iIO8qf642bM/3s+JfPOUc/fmVc7Yziv2cy2F7 kjM92xPxixciOfn0KG+x1nethjC+nXVOOw39+0v9n7p649j/3ShnnOfdEB9Z M2dyyKGHLS6ffgL2EWbrvH9RvfUv1hH16p90rQ/fy805D87BfaXxqDbvR9Qr r7cob5VzlGO6c+oJ/v1ll4P12fVTjDM9ypeYIvr/pnOmx/CfqXb+Sm9P6MNQ 52x/crT3xw3hfP696mGfBvO7cA9qisZ5ejhHMy1yznaWex8uB+X8YKRxpke9 rvhe9Ocj50yP9vyn+1HBudF/5kI/Pv/vEn12HpwnbcdRzu8/LZCD+fuZoQX5 Mj1+nuTzfiyf5zOCvzvJeZB/OzmUTzn0N1gepieP02N9tn59QfuQB+MuzxH/ Oa4wPXncPpTD8sT5Mj3G+9cfiB/S/Jjd00e5B7wXtkvv1oL0nJdiLvqWKpAj 82G6ID3OBZyVLODb6TsaMee+RSyfcdg4PcQMbStITx6nRzsd5BztctDXas/r TA7bl/WN05PTzrH/mA/HX8yZnuXkT3LGkelvUk64v1NWkJ56HZcH38M54JeC fGGv9/+loJxMT851Ef+O9obrolAvhtv6Km4H6mXcDh1xtn+wbh3xkfRP0XDr L6jdox/beoDjOE5PjvRbfG3lZDsg3jjuC6sX3IL9fhF/ruVzawfyuJyUE9cr bs+YY/76erjNZ2wHcsYjyOFv3fe1cbYP9GDPL4xTP8W/+crkk8fp2Z5cP8HP emCCcbavqNlPJidOT87zHbH+c12x+vEyp2BcDFR/lnqOdfVQf6ecHOvVdVrD dzfsXkyTnV+P9TyID7UbF2yXOD3PKcTjjzwer1y3xOkp/x9aLnxX8yDPl3LI g/fJ2nHKZz3i8rDeMQ/z53vkY8R/OXhiQdwC9rRqovUXOczyqxOi8TtGzpmc 8pNx5tcRp14xX9nP/07i3EUTTa9k/3+k3teaZDxOT72Fv9QyxsrJ/oW/s8to qxfHNep/zvfWDuRxOWM9Yb1CezumgMt51HGmv2wHcq7fyKWZxxpn+6AdPhxt nPWNeTjex4Zxop4pk8/1JOvF8tBvjstP+eRYX208Xuxh5c+27sRsPuFHsbcf /GzvUsXpRS8TBVz2AXMFcmQctBWk5/wec9n2aSuQI/ucheUnj8cJ4xPxeGP8 Jh5vvF8f7A/kOcvJ9/HJ6bfE6cm5H8JzIfz3TXX/JP477qM+qfoYnxNh/8ac +kBOuc9G9pjpY3tMznVyLCfmLAfl076R82doJ6dZOckpH/NnYmZB3BTx/v8V RX7uJImPDZsZ+TN6/u6Kn8Nxmq9XR5x6xXxpLzA99ZilepUwu4BuOaTI9odj LvN3YXp5VydXwBFnWaetIF9y2kFyzKf/azM7CP/o9NlSv9/azA6So90XFMpv UP2My9MR53iM2y2wP+3aOZyvJxZwpD9kst5nmGd6EfMn29vlB3V/pmKu8Tg9 41tx+puk4wvSd8R5TjTmon/pAvnk8Tjn77FfxPH0fx3P5+m6jPHT2L+K06O/ /5OycYc//8cceV+x0y82bsmxjuviHHq8rcYHuzqX+9JF1u/kuNdy1kzrX+bb EUd7Pj2vYH8D/JV5Nk7J0S4tcyM/RL+PdIrz4Fztajj7i/li/khP1nfN5pte xZztC/u85hThB3ecXu7FtBakh9+zR7IgvfD6As5zrjHn+jqWz3NOqN/z6jcc re8O92oTe3b2VONop33bZJwfP9XkYH11fltBu0FPJrQVtDPseV1bQb9Avxa3 SfxwxfTwfEC+X8i5DgjiEO9MMx6su9+dGp4Xf79c0q+YYul57ijmT2pcJZYP 87xBW0F50O0HFZYfflvXNrHr784Qe32wfs/vrHL5+130XMDEYntXLU6PcdG1 yTiK/XOxzRfkqOb/isU/vjxn8jEPPuc8tic8Z8d7p+TcN3sq8jO4DoztDP2V eL3G36N3Ao4JviPUUGTjOLAb+zsP7MO9s0yPyJmO5YvtKP250O+bVuCvMU6P 6vcsknk07zcyrg/5pTOlnL+2hftF+8wSfVjeFn5n/W59J3d+m73TTI54cYVz TKOvzRI/PtNm+2px+cnjfiBf/bq5SMp74Hyp1wWeLznU5GrneD90C72n2c/5 LqsG3BTVg/edoz+OmCv+9/feDuSIx3/aJud4n5wV3v/ZtE3iCWvPsvNDsHu/ 5Xq0Yh4qMo5htLbnSzmYd/eJ2jnfDkh/UtQveQ79Pqwt3AfrV1KwHw79/qDE 7A851Oj3YuOB/POdB+VZDacdCOK4eX8I/bS4RM/n1phfhXbffFGPDfWedJye nOWB/E4l0g7f5qz88AOnFcv6/0vniP/eUiLyXsiZP432+axE9PO5nPnfck5o kZ6Lypm/To7zalfnrPwICy8vMbvE8uPnkEKO8XNbidk9+q+Mq7I9yXl/nJx+ LTnbGePtkyKTw3PNWOfVzLT0PB8dc56PjuXQv4rT0/+PueijfqdzhI7/NZbY fA01SRdJu1282OZ3/N0as6Vfn3aO9tpY42/d9LxjLmsc7fTJEilvhZ4jnDDb OH4WeXq4K5VLbZ3M9MjvA+dxevo/MafdjeVwHonT067HnOljOWzXOD3X+zHn OdtYDuObcfqOuNRrZQGnvxHLJ4/TM/4fc96rjeWQx+l5HjnmPFceyyFffbvV FnCup2I55HF68SvqC3hP9W9jOeRxeq53Yv6qBPgL5JDH8yLrFa+/eL4gjoO8 r34azwNx/cZ4BTn9qTi+wfgTOeO38HeKZkg5sm2m7+TYl17nlx6B/3XPDLHb GznHem/ZVPOjgvTlUwri3jFH85w8z+YNpBrWJvagcW54b/CtNll3vOsc8oZ4 +YN3/6c557yH+byizcpDjj+b7xx/98Vc0fML2swfAn9Qz9Oc4Rx/t5feQz7Y 5eDfZ+k9qD3bwnurs3S9eZhz/N256nf1bAv766eFku+nubC/ftL3Cr93jn4f rPdZxjtHf5+h36/NOUe7/Dxf7NuGni852uf3nM03/Pd4vzH2G7nfGMfrkOzM eXaeHuuUK3Myr/w61/x3+IO91E/42Pk9qwRdFLVDXg6+F3efc56XQ7av5qzc 5PK9W+ec19AvnXNWH86DyH8N55w30f5VWZPDeQ3T0ZKslYccelrvnPMm/voP l4NsepaG5yLe13sSw0rN3yCH3M6lUVxxrswfVyw1znw74rRjzBfNO3uOvMP8 TKnNvzHn/Iv22HWuzE+JjtNz3R5z2q9YThAPaseDewft5HDejzntcswZb485 5+s4347S832MmDOeHsvhPlycnuMn5px/Yzl8/yROP1fvpcWc5zRiOTyHuPp+ rCiQw/OPMef8HnPMR1c2F3DGP+N8RY0TBekZv1p9fdMFcqCe2+n3rg6bJ3pz oe4nH6HndKfPNQ67sbue7xzkcmAXz8wWjBdU97NswfjC34/PFoxHJBum97uW zTP/LNjHXzbP9Ikc9yJvdc5xejzC5XONc7835tw3hpzenm9H6elfrF7++AI5 9Dvi9IwHxZz+0OrLM74gPeMOMed8HsvpKF/ajdXXa06BHNqfOD37Nea0y7Ec zodxetql1bfbggI5rG+cvqeOizg990nj9DIuGkXfJs+T+j+2wt5BgJyr5on9 Wr7c4sBIP1fvb/VeYZzxXKxX/1ohcZIRzpF+/5WS/5cZi/OSQz//6+mR7rWV as/HW3rU65GIt0sfxK0KeEOBHDnnnihIT45yzVhg+0j0Y+FPXLDA9Iz+MOzE bgsK9sEZR4v3JakvMadeMN9wf3OB1P/TqRIXaGuzuBX8zpunSvyryTnszw/T ZJ0yry2MI284Q961mdJm+ZLj3Z5i57C3bdNEP5pcDvzU1tkyT53q6cmRrrdz 2P0nNG75b+fSTTPFzr/uHHGLtWfK/PuF50uO9G+2yTiYu8DGJ+StpXHUvgus veU7DTmJM+7jHOnacpYv5aB/t/Hy0N5jvdndy0OO9dQezmUfU8v7ec76Bf7r 5gvk/sx7zhEX+17fR3gsF8rvo+/X3J0Ly5PnOE/wVC6MSy5ZIPr6rsvB35+j 5xLy/mewbs1zmIeNcqEe7rpI6ts1ap/5xTK/nu4cPy/VuF8fzzfgeT+ffgft GtcL/L5UvJ6Wcbw0rEeeY3wsWmDrFbzfPlLvDd6ywO7pwP8foudFuzlHPPAL bwfKwf8UOWfcB/1Tl7VykOMe/2LnwJupH3hZ1voX9WhcKvpwnnPo94ul0v5H uBy0zz+WSZxwfy8POfT4KOeQP0rfaTzH5dDewmwP83cSyVGO8c5pz1Geac7R PF8vl3Xcn84xfg5fLnHOLp4vOdqhk3PI6Vpm/gzbAW7tZWXm/5Aj/rBBWXQe Y4G+o7zSOMvTEaf9Z75I9/Z8GYc7l9k8gh+p+ZLvdWU278TpO+JdNd4bc8aF Yvmluu5AfzTpeP+mTP69k77v84ZzpC7Xff8TF5gcTF8bZgrqi/a6PVPQPhhG r2QK2hPJHs+IHryk76LNK7f6ov2OVXv0tPM4Pdsz5oyXxnI4X8bpuW6KOdcd sRy+SxGnZ5yQ8d04zhba/5+Mcz+T5xnJGY9APn0my/51XZvFHciRzS/OUd7F k2SfZ61fjCPudaSek9zPOerf/yfJ/wDPlxzzdt4PgbzzSsLzDh9o3Glmsfmj aOaX22SeHxrx19oK7h/Ca/zOOf1jzFPz2qw8wf78BOd4D++7mbJfcmabxXfW X9UhL8yUON6xbeE7MWVF0p57uBz4OQeqH7+Nl4cc+rt3VM61Z8k+33EuB/+8 vtr7N3OWnhxq8EUufEd4hvoJI52jnvfxvIdzqF9XjR/+mbN8ydEeLTn9LnWJ jT/8vFDjb4uLw/fsTslJ+33rHPPPaZ4v5UAvrndOvYZ+Pe7lCea3O5wj/++L pd//yobvKn1YLH5X2jnqcVqJtNuirMlB/yX1ewBFfq+VHH7QMufo9ytKZJ2Y cTlYV1Qukfbv5enJYf/6ZMP2/3SJ2M1+zqEfF+v7z+85h5lqWSTz7HDPlxxm 4wO975ovH+NEiLtukBU/uqbY9m/w4zf97sVo59gX/tPfp6Yc1HcnLw/jTbA7 //DykOP+1T7O0S+v6Xp2uL9DDXt6v677PsmE7yrtsULa8xl/pxv6M1PXjw9m Qr0if845/uyYFZJPXj73Oelf0U/ju0jhPWXnYbyC36MokfqsKJPzKWt5vuTo 5y2co3oT9V2pHTKhnmxfJuP7POfolukrRd+v9nYI+AXOUa3l5eY/sD3RPvXl 4f0Lvp/+Snl0Hkzb/3jnwThdDee8xnxRjjWLxW4eXGHrFdQzrfsBe1aYXY85 1z0xp38Syxf/pLEgvfRXVQHnPlosh3G8OP1ruo+Gn8fr+0lHV8h4vUi/G/1p sXHke4R+L3Owy8f6t2+6oN3w99PTBe2M7qhPF/QLfl+SlnVqPe1khfUL+Sdy 4cc47H0v5+wvOQ9WbHJ4zwPrlfuLo/cHCjnjdTFn/G31csYU5Mv0Madfs/p8 xxdw+kexHM7/cfqOOP2LWA7XhXH6jjj3A2M5XJfH6TviHEexHM6TcfqOOOfh WA71L07fEQ/2zdrJYXw+Tt8R572PWD9hp7ukC/QZdqtbof6jPFumdd9ykZR7 v6rwfbt2nPad54rg9/xaGb6f1y696FtrAef9rFgOOdPDryit1HqkjGP9tVaV nZ+hHMTF5lcaj/c1ud8RnzMkZ7yAnN9VR/Yli20c0m/Hvx+22MYb/XzIP8g5 /XnGFygHxTvAOcczin/gL1aejrhcV/lJ/PZEm83Tct1GvwNS7lz2KyeK3zhV 41qTFos+njzRzudjPXX9Etm/f2CSnedHu1+2RNIPcg47P1Lb7W19F2msxtl2 cI58Z0T8gonS/1VtVi/EbV+bJvKvagvfY6ueKv7Plc6RX/fp8h7EKS5H1sv6 ntqRbdbO5FDn052jHauni7711nsQy/18HN5Jyum+9vGLbR/iTCxD9R774c6/ WNWQDTmTTzlIv57nSzsIPd7dy0+OeO0WzvF3l+l65AN/vwb9duFciYO9nAv9 tl+V35OTfv55schbe56dl4PbdtsSmX/z44bn66B/1yv/yDmKN0m/W/PZPNGL m3Rds7tzrG8GOEe+nfWd6Nf8fAL09rMF0u5be/nx72fouc2tnONnRuNhv/t7 PRhfby6U9W9rNhx3eQ6795dz/NnZ+i7thjmRV7XY7DXMxWcah+y12OwHmuGt rPz9Uc6hv++4fMpB/cY65zwB+7DIy0+OdpjmHOOnx2L9jkLW2gHxx+7aric7 f29VrqV6bpDvlOXlvLlKQWsW2/fkoJf59HiX+dElPfiO+Z+r4nd3Lenx6yo7 0o4jPpSXA73Mc+jHzlnR132c4z3kg5xDfq3GXXt6vTCuniyVePvPGSs/yrlX qayX23G88zW7VOR/lTE5iAvcsUzi5x/494HI0X/DnWP9deAymdd+1O/QNCy2 fTeU8zJ9l+3SxXYOAP3VS797cYJz6Pk5mdDObKDnBm5xzvURqvOMlz/YN7zP OezUJro+6uztgOTr6fdsfkuH4+VfZVLfFWmTA3/9K13PLUhbecihV5XOod99 y/R93rSda/im/Xq23X1ntkPMS/S8Y3zuCPb8bxUyz1/o+Qb8GucYz+tWyDi7 zTnmuT7lMg4+dQ4/YH+9RzHa24Ec9ftM/aLkYvOL4C9tlpb8rl9s5zAgtlNa 3491jvG9judLOYh/7+6c/himzR5enoAf5BzzxJlVtu5g/2K+vKXK1inkKO8O zikH77BPrzTO8nTE6Y8xX7TT54vkO2wPVNm7CjGnH4h/nq/+3vtVVr84/Tp6 byXmokctBXK4bmW9EG/8X6XIGZOydsC4y+h7v185h394apXEb19MSfzgnMWi Z+eo//e23o/+Rcf1m+ov3pESe3yPc9il/ikrJ/yje9wvZb1gLy8s5Pi+9YFV 5t9Cn95dYudxg/Pq7y6x+Dg5+meXJWHcnO/0PLLYOPefY04/RbrHvz9XrfvY Mee7aLEcnmuKOf3qWA7XBXF6mV+aCzjPw6O4fdUvfZ75JuXnmkvEfh5drfqp 77c8pO15nHP4lWsslTjCy9WyTljbOdqlqlr2oRs07lG+xDiKU5q09LD7j9WY nsec+xOUg/mpX43tQ9BvmBq9O8H1S8zpT8TvV8DfbC61+ALTI5451c/zMf3D q+pzsvNYPuXE5xwY1yBn+WMenJefN1rae91fwvdAPv9e9LuTc/Tvyfr+QW2b yZFlqb7PW9pm8VNy+P+NzjHObv5Bxt1vLgd+aslkOXdxuacnh77d7BzlmTpZ /KRbnaP8+04Ue/KJc+hh40/S7xM8X3LMU9/ofk3Gz01Cb7bV89ILSi3eh++K rNEm36U40znkbOz5Ug7a7XDnjNfArp/j5Qm+a3mcc/TDEL1HMjpn/QI/av0i iauPdI556yK9NzM4Z3IwXj+eLe30XM7KQ44/fzcXtlt6loyLL10O9PMkvYfV xdMHfLeIH6f7Qe04fqT0ezP/yoX600v5HblQ3/Ic8/nVOfFffy8Nzy0U6XuU 5aW2jwP7/G1W9Os852juCVnLl3Kgpw3OGYdCO63r5Ql4Lmsc9qib2oMbo3c8 VxTLuut65+inx3U/5yyXg/baf5H8fryXhxz9fK5z6P0itRNXZEM953tMUzJh /+Y5UhU7x3phZ/Un23GuMzCvbuz5cj0Bfd7b8yWHPm+jfM1l9u+wvw+p/JZS aw/YpWuU/6s0bKf+mTDfvBzMC+84D84Tj8lYumD8fe4c6TZZIf77zv5dUozn 7/Uc4I7OUZ8+K8TPWdPlwO9db6X4Ibm05UcOvVzXy4n8vtNzfVtkxP70L7Xz DbA7X6fV/iy192Mx7w1Ji/2Z5Rz28KN0OI7O03fKJjjn+Wbo0bK0lZ8cftos 51iPnFUu+nl5OuynM/Q7jr3SoZ6/pd/z7p4Wffm3josPyu1cMexrZz2vnSi3 c8X499/1e3pp5+iP81Vv2vT9273T4keOWWoc89vfnUNvPirX8ZIO4zPHVNk6 iOegYh7sF1Y7Z/tgHs5W9NgTxytS4X7kjIoe3Vb9Os85zMYO+m7td6lQP2+t FLv4WSrU5zz/dFX9RztHfKxnpXwfZqpz+nn/1/LTryOHXb2v1NoB88xVGtct d/lor4tSYlcXOEe/9/byUA6mwztS4bhorJTx8kIqHEd5Dr152NPTX43rxXdb 4np1xDHueug9us28X7C/emS1rJvWdI55YaB+/6UmKfp5rdrnF93vRbk3XSbv cZTr991nJmWdsv4yOfdW4Rzq1re0wI+Fnv9U6PeSx35y0I/jaswPZflh73I1 Be+/Qc4HzikH38fp5Zzt3BGn/xzky/P6i2usHx7R8/3ox81rpT1+KytIPzyy 76wX9OTxZEH50Y+PJQvqi/a5Lmn3fNB/PWul/D2Sdi+IHPp9SNLu/7CcGK+X JO0+g6x/6sJ75ReqHSupNc57DuRsH7mOWGpy6K/DXj3h6bfUfbSY83xXzHn/ MeZcx8X5HqT7O/j1DL2ncW6d3o9OiL1sLBX9/YvvLSf0fbZlEo/bu8442mmk fi93QJ2Mo4nOUbyP68R/H5GQcnzjHOPhDU+PflhRZ+uemHN9Qzlo9yXOV59+ TAHnfk4shzxOz/V7zLlvG8shj9MH97DapSdffTmnFXDut8ac8YRYPu9zxenp /8Y8OMfUTg756utVUsAZR4/lkMfpg/hgOx7cy28nJ4gztktPOxJz2q9YDvnq 23NFAWecOJZDHqfnd8NiznhFLIfzYZxeqlVTwPkuTSyHPE7Pfd6YS3ysoUDO VL3nEsedS1Sv4nNI5Iy7kNOOsV3juEpwr2Y1PI63UA7a5ZkRYr/+bLP05LD7 m7gc6Fm3EbLu6+IcfnCrv08b3He6/jMrD/ONOfK7a4XZHQyL0W0S3z56Rfj9 yw/1/OTc5cYRP/nSy0858PsWOKedgr/U2mblIUe6lc5le3GC+G2XtNk+Acz+ 3RMk/YXOsV6dNlHiWf90OVgPbDm5x7WrEh7o5SGHlhzjHPPziZPkHOLZLgf5 /DpD7OrwnKUnhz810TnkLtD3lqY4x7z192myXvnDOfpvk6myT7Wl50uO8qyj 72U9wPtXRXLO40bdbz1thdlTzG8X5mR8lPj9N+zD/tvzDeQ86Zz7yOjPD3NW nuCdnpecQz8X6/efNslZv2AaelXfu13fOfylo+dJe7ZkTQ76t0rf06vIWnnI 8WvKOczpQ/NkHKyVC+1fyULxR6/OhnYuz1GMO5yjvaYv1HVXNuzfexZIeYY5 x49yvX8z3ctPjr/7Xu97PrbC5hv4Jbtkxd+5aIX5VShXZ31Pf/ny8HulXT1f yoHfeKTz4DzyRV6e4NzrKdkonu7vU9F+8/wTOe0x53Vyyke7j9L9jQkZ61/4 XbfqvtY45/AXt14i88v7mfC+4o9LRN6rmfC+5Y+6P/mRc+z7Xr5E2uG7TFjf /DyAOMW2mbB98hz6uI9ziSvq9yb3cy79o/ej+zqH/zFW4xkDPF9yjPcbdZ/3 mRX274jHLkhL+1+9wtoDvTlW1/tVy41jXExPR/dXdf5JOA/m9Q29POSQ/3va OOpzWpnYn/5pyw/12bNM7NatztH+d+v3ZS6I5BTpfZaeXh5yyL/YOfrpbV1H XZcO2+0k9SeKUmE753n/Vf+wzDn077iKHv1WyVvuHMUdXC7ja0vPF+P/tHKp x0GeLzm0fWfdn31xhe3DYv/jyZSk/88K27fF392cknhkw3Lj2Be9z8tDOWi3 Ic7pP2HdMT5l5SFHOw1LhfbkH1ViF/6Wsn6BHeiifA/nGK9XV0l7dk6F/sbo Kpm3/5cM/Y08x7ywsZcT4+3ZKnmXY3uXc9qqfj2kRsr1kMshh94/7xx+Rrca Wbe145hvntZ4wvRkqMd/r5bz8JXJ8DzE33V/cIHGGV5fYf4l2vOfSdH3B1fY 94PQLrsmxR9JLjcOM3pQ1A78nlFv57R/GHf9vTzkKP9VSfMnKT8+z1Cm56pj zvVvbFe5bsX+0tKE9W+wzl3knOtitP8PCSsn162wZ18nQr80z/H3PyXCeXCA +v+zXQ7yPcC/S8J80QwD6i2eQA7137s+jD9soH5mscclAr9xNZz+PPPF/Lb1 cvGbD/bvCsWc63HY9dvVr3vI08ec+5mxHL7THXP6rTGnnxVzrmfjfIN5u116 zsMx535qLIf+Qpw+uD/cjnMfOZbD9WycviP5XB/FcoL4frv0h3Ygn/d+YzmM l8Xpv+lAfmn7+Gw7OdSnOD3HYcyZPpZD/Y7Td8T5blss50/dx4jTM84dc77T GMvhO2Zx+u563jvmfO83lsP1cpwe435CIRc9bymQc7MMYNHTq9VfmVsvdmWD hNjv7ZzD/pW1qp/ncqCe2yYK7ADyuy9RYDdgj19NFNgZ6PkT+s7DxitlfVXV IP5DfhyhvSesEH39wHmcnvea4nNpQdzvPw0FPP5OPN9jCfwZe+9+vul7mH6h 7FtWLyzYB8J0c7/fi+Z5bPDz/H41v1OAftzH05MXR/Uij8/nkVN/yZkv9/Ow 7tnlS+nnP9ts/w9//t4X0o855xiGN34t/bHU5eD39b+V+X92m+3/kUM9VziH f33AN6IHKZcDfZz3o9ifczw9Ofrv385RvtN/lP2ga52jPTYfLf7fO85Rjt9H irwRni85kg3R8xUPlVl8Fn7JRm3SvxeX2Xsg+OdfdP2+v3OkW8PzpRyUd0/n jOfCTzrWy0OOn92c4+da08R/+SZn/QKr8OZUOWf3mXNk2zBN7MzAXNjvR8yQ 8zyP5Kw85DBvLzqXdwqmi535yOUg3Y5zxL6t4+nJERfZ0jn6pVzfZdzOucRz NL5xjnPo5SEzxa5e5/mSQ79656S9Hy2z+Rjt/FNW7OgVZTYfI67zhb4f1c05 hvmIbNQv+h7PEudBfDyTDfslz/FnVc5h7/oskP650r/bCvOxt74/cZlz9Mec BTJvHudy0F53LhR9PszLQ47SnuQc6/P19Dx8b5cDPbtO93tGZyw9OX6d7hz5 nbVI+n2Wc9irNUpEX9b2fNG+t+u5lB08X3L4URvp99efLDM/Bv7J7bp+v7Ys vP9xucYlDnWO9r/Wy0M5cCsGOg/O43+WsfIE54vfcI5xfrSes9sqY/2C9uqk 51A2c456fKbnobJpk4PzCGcvk3V2fdrKQ45166/O0f5Veh5qQy8P/Pvjddzc 6OnJkW6Ac4zD/VdKvz/kHHZ/xXKp3yjnyO/M5TJO5nj5Az4+LT//6+9l4B75 39Iyfm4qs/aA3m2u55wPdw593t7zpRz4Kcc550/o22VeHnJMf2emw34cqPdw Z6TC8ys363u4k51jfTVBz5N8mjI50Lst9Xz4WynLjxx/PdS5xA/Lpd9/TIX9 PqhS7svv4unJMQ66pcJ6Pq78UOewbysqdB/AOfTgJb1H+ajnS46/u13PUQws s/MSmN+WJmUfoH+Zna9AfSclRV/+6Rz1mpO0fCkH9izrnPFIzHube3nIcY9j TefwXwZUi90YkLR+gb5dovHOu5xjXHxVLe1zadLk4EenGsn3bC8POczEFc7R /nOrRS9vdTnYX7ivVuq3IGHpyVGMSudY//SvlfapcQ65RRpv2dHzhV17SL83 c7jnSw693Uvr+0KZ7adjHhiUEH5fme3Ho33uTIico53D733Ey0M58OM+d844 BvRlSsLKE+zvf+ccv99Qr/d9EtYv0LNT6yXusZ9z1OfNerFPm7oc6HmrrnfW 8vKQw55v4Rzjbny96NvuLgd+fs6/txuUp3Oj+cvk8ONGNETvqZZJflc4Z74d ca47grjKTStlPvh7o61HYs71CMbxI8p7enqIv6xM+CWNku7HFnt3iRzjc1CL va9EOWif8pbVl/O91oJ6YXwvbC1oB8xTI1rt3SJZ3zSF7fZNma0zyfmeETnb R+7zOGccDuU73OXLPklNQXquZ1DPB9U/v6xJ12PNcn+mV5mMxw2a7J1S+L+v l4n/cZ5zqHe5jruPtV7DnGNe+aZJ5s9Pm6V8051Dvy719CjP0c3mpzM9qtml 2fZh4vQ8jxFzxm1WL2dRQXq+mxRzibc0FMhhu8bpyTleuE7kuUrxj8uN810I 3gshFzuUsPTcZ0c/TG+zd+TIJS7qnHqD5hmp3yGaWG7xQdjjobrfOqjc4oAo z+A20cObnUNv3nP5lIN8JjoPvq+7os3KTw4zOts58v/8e9HD89qsHdDOW30v 5ejpHOm+1e+QHeBy5DtL42Se3M3LQw5/9RDn6J9Txup3k1wO6v/sZJn3PvL3 +sixv/adc5Tn0Mky3/3gHOu0VyeIvUg7xzz6vr5b1dnzJcd5zl/0e9tTyk3v EV/qk5P+eKXc7jVgHXdmTvTvNueY38/3fCkHP+90zvEjfkrOyhPwR5zjzzYv kn3IdXPWLxA/fqa09/+yxrGO3HiWzGvl2VD+pbNlXivOhuXJcwyfaufwa/vM knb9zeVAP3bR9xJ7e3py2MnrIjlt86Tfb3GOH5/pOvRj52j3fefKz7GeLzmG 6xf6nuH08vD9vy30HvSb5XavAXLXyIqe3uEc+rye5xu8F7ivc57rgvyTvTzk GI+HO+f7TMgvvz5lv/B9JqxfvnbOd57Qby9nTI6cu1wk88PTGSsPuZwPdA65 A/XexJeZsDy/6T28jTw9Oez2Ds7x98VLxB7s5hx28Ek9Z3ZxJrRLay+WcXqL 50uOfPpkxN8sKrfzZ9DbaWnJ54Nyi0eKvdH907udY1yMTUfveeq54xXOg3PQ v7n9J0f/N6RDfZ68XOzGDWnrF8wzL+l+/lXO0Q5H6n7gqS4Hw7dihdiFo7w8 5Jivz3AOdbtB94GvSIfjtEH9mvGpcJzmOfR/jnOJV6sfXZwK7eEhuv7YyPPF +6QrVsq6aTfPlxy/d0mLvDnl9u8YH/em9D3ycmsPzC/X6He973OOcXizl4dy YE9fcs6f6J6vUpYu0K93nCP/eRWiFzulLD/owUh952dr5zCzG+h5wd+TJgfl vrxS9C2RtPwCvkYqLMceeg5/Cy8Pfl+k78/c7nLIYR8edY55bXqV9PtTyXDc 7ar3i8c7xzhYVinjtyQZzuPkU3Wfen65nbuB/TlQz+cPK7dz5+Db6nc2H3QO fd7N86UcnL86xTn3jRAnuTIZzqd5jnPx5znH8P1Jz1/OS1i/4MeHut890zl+ tun5+WGJUG9Or5V++DBh5SGH/nzrXO4R6funU10O7MhkPbf5N09PDvv6d+dY /4zS86tHOse++WZ10u//cY5xMkP3zZ9OhOMnz9Fu9ybC9d1U388hF/vWGH23 sDA9ylvi742iGJP0e/Qjy/V+he6Lvd4q7fqIc8j5ojXU/7t1367NefAdo629 XuRon/US9g4D9/lYTvK4XuSt6seTUz7OOw5r0H2YVtMTtOMLDaK3/2sxjnpX NUg9prZYOeE/HdEo+vNVi9WLHONntnPME50a9f1cl8P1FPrpu2ZLT45qFzvn eg32e5lzlPuvRrFLp7WE9mFko+j1fZ4vOezKJc5Rvmuabf3BdsDvg5ptnRv4 G/90HviZtb5eDvy01XCuy5gv9LCLrjteaLbvQcSc7/diftlH56/RHacP3hlt xw/S/fRYjjrkBem5bxpz6mMsh/oLvR6tfldFs63Lkc0A51zHw+5c7XK47o/b Td7nai5oZ9T34eaCfkEz/LtZ/OCNKuwdCvYLOfysy53Le/XlxtlfcIOfcs5z mjFnO+Pvvi+3fJk+lo/2mN5YUB60/2ZNBeVHvZY02nuL0PvXWu37HXxvEWIe cR6np57EnOWP5XAdEKcPzmO044znxHKu1HM1cXru38ec8bRYDr/PGKfn9xlj HszT7eQE+0Lt0lOfYs53/GI53KeK0/P8YMx5/iCWw/trq++vygLO+H3MGb+P 5a+j64PwXqefe6tWvSDn+YM4Pc85xOfkmG98ro6c8bl4PovjS5g312ktiFNJ +7s/Sc5xw/OdjDsh/ett1g/kaK9PnQdxzFfbTA788rZv5e9O8vTkaLcL2sL7 N+t/K+P3cud3riroe1+YfHKowQmfWnmYLznLj2quW2n3OHCu9a+cfg/F3wmF fW7V77h96xz3cjO5gndI0Y5beHmC83MHeXnI0ew7O8ePvhPEv/40Z+du0c8H TpD2eMs5+vV+fb/m4ZzJQX4zJ4mfeEcufA80zxGfedw56vfNRP3d5WAcfj1D zhX8kg3f08xzzDedc+H7m8fOkPOEm+fC9z2H6PfPezrHPDRlipyrvSQXvh+a 57hPfbq+a7dBpd3jgJhvs1K/uRV2HlHuoWZlXhjpHNl94uWnHPhf053z3gf0 sTJr5SFHvRY4x3h6bq70/yVZ6xeY8dv0+3tnO4cftY2+R9zd5WCeHq/fbdnH y0MOvToiG74XdbjK6eVycL55+ELx04ZmLH3Af3CO+j+g8ajJmXA8HqR+zx+Z cFz/MF/6Y1PPlxz26y/9zsLGlXaPA/W4JiP+9KIKi9djGFyQEfs92jnyvSQT 6k9eDuI8AzKh/uTnP8RPXsuE+kP+pHPU/yZ9L22TjPULynv6YvFP13IOO5vS 9+fq0iYH8bI3lsh4Wpa28pAj+ybniPN01fcAO3l54Lc9u0zav4+nJ8e64JZ0 2A6X6rsyd0X5blwq/uGwdGh/Xl0q7T8xHdqfV/W+5XB9X3qzyvBc4Xb6Ptvy CvM/8O+d9d7BOOfQw008X8qBv9ktHdrnvH+D+p2RDu0zvy94lHPI31PPv0xI Wb/Av+mi+4KjnKOdr9FzTG+mwvfmRqvf83zKykOOdnvPubxXpufyvnM5+PtD dfxt4enJoZ+7p0J7uIO2977O0a536Hz7b+fQyyM0znRnKrxfcYTuP1yTknbq Wmn/Dr2dlZRxWFVh7QG/YmxS8v/JOezWxGT0vnOFzINVzvkTcdQ1vDyBXieS xnE+oqu+Y9w/afmhvn9Vih273jniTudVSbv1cjlot4+rxJ6fkAzb82P1h85L hvb8uiqZD65Lhn7LLjViz6YmQr9lF40LlTiH/d1Izz8sdw59u6pa1o9dPV+M kz313MU+ni857kNtq/t9W1fa/QuU8+GE6HVjhd2ngFt3s8Y3JjlHfnd4eSgH 65nXE6HdflLjVyMSod/1pL7nMMQ57O9aer97r0TobzTVil3cyTnG27F6DrmT y8Fwf1nvobe4n06O+WI9Lyf8s4vqZH7c3uXgvaONG6RemRZLT45x3dXly7tT eg9iF+fyvpSe53+uNdTXLvViV8e0Wr7kSDdY/frtKm0/GHpxfYuM12SFrc9h B45v0fdonUNvz/XyUw7G7WDnjAtA3+a1hH5gnkNvvnGO/FKNYs+/bbZ+QX3z 61icsxviHPU/oEna7cZmkwO9erhJ/v2CZisPOd6dvcM59PGkJmmnt1wO+vW3 ZunnS5tC//A3jSPc5xztV98s8+oTzvH78c1id7POYR/+apL67ur5kuMd3zWb bR0Zr4fIH9Fz/DHnOocc42+nSosPoDvnNYo/+Yt+Tz6/jsL89an288/OMS+P brTyUw76v1NTOC6Y7z+awnF0ucbXtnWO34tbbV0V+JkbJML3ME/Q83ATWqPv gqn/f5PzYF2wGs51LvOFvtxUIeOnweMhMWc8BPJe0O8NdE1Y+pgzHhLLYfwk 5sF9tnac+wAx53v1cb7vq12M0/NcTcxpR2M5tNNx+o441/OxHK7/4/Q8jxZz nl+L5XTEGS+P5XTEGY+P9RB6vW1jgb5h/G7YWKCf+LsFDRI3n+Dlwbhc2CDt 0VXldE9IHHVQg9jV6grjmBceaiioF+1lXP6OOO0xzuFeVylxsdkJ+943/Kkj lH/kPE4vdmNyAee6M5bDcxZxesYzY85z9LEcnvuI0/M8fsx5XiCWw3VtnJ7j N+a8nxPLYX3j9FyHxbxMz2XFcljfOD3Pp8ec9+NiOaxvnJ735mJ+vsYzV98v KwvkM17K9IhTvJCw8UKO9e7XPu4oB/xJ5xwv4f5TMvzeSJ5LPDEdzqcWD8yI n36qv3Mt9qdN3rP909+tlnq1SXtn/J1r8rg85HG+5HE5mS/jlHLt63M5X3hM m8VZ8fd3f673u53LMbRhom9d28J3AO8Yrt9nabNz0uQYXntGfJ2vpR16uBzY oR4/yrnc13OWnhz1+dQ5ppU9x0n/jnAu24ajxL40Oke9rhsp/tLvOcuXHOOl Ud8vPb3K7jfhfcLzcvKe5DpVdh8K98tP1O9o/FJpHHp7iudLOfj3q53znCXs 6MNeHnKct7/NOdbFt0wVO/+/rPUL8j9X43gJ51j3vTdN8l2YNTlY/7RMl3lz etbKQ455bbFz6O+P+j3HpMtB+y6YLf1zhqcnRzUucQ5zdJamv9a5xDlnSru9 4xz2ou5n8fOHeb7kiJ+9q9+t61VldgrdsK6+Z7thldlf1KstI3r9e6VxZPdb JuoX/Z7Ztl4e2W/X+OFhXh5yWV86h9+/ld57+jpj/YL+XmuBpPvQOfy6zxfI uHgqY3JwjuuchZLvAC8nOczCs84x34/Tc2tDXA7a44RFYuf/Slt6csRBN3U5 aNd1Fqnf6xzxiJHFks85zlGPs/S7zH0zoZ3Jc9jJczMy/s717xdhHTlGz311 qQq/E/K5fmf2z0rjVavkfOXlpxz8Oss5973QTvVpKw+57DM6R7wis1T098q0 9QvOISxfKvPHRelwfD2m778e6XKw3thP3ws8yMtDDn+ph3P035ulYrcuisq5 o95v+DYV1ivPUY1JqVBvK/Q9hiLnaO+X9b2itT1f2Ou9l0ucbCvPlxzz4bpp GQcXVNn5esw3N6Xk77atsv0rDKfLUtKOnZxDn/umonGk95kecc5z/WiHt1Oh 3eP9j4Epe4+f+/qc325vf36l3X1l+u/L1M+I9+vw63V6vmyrlPUv6nNJueS7 gXPMO8PKZb3ZmgznkU4ab6tMhvNOJ13vpp1LfL5c/n4Dr6+sz1VfrvH05CjX ncmwf6/Qee9B5yjnaI3rjHIu802FzPszvPzk+H10Uuz0xVWhXuyalHdZdq6y 9sC+6WZJGTfrOMe42NLzDeQc7pw/5b13Lw85fhznHPsSF1XLuJmRsPywXj1V v5vwYyL0W97S7zV8kDA52Ddq1XdiX01YfuTI52PnmEe/0Pdsx7kc6He/Wrnf tJ2nJ0c/7Osc7dSrVsp7SCIcj5/qu6z9In6znou7PxG24836DsxNCZmnL62y delWq8bZZ63iZ+5VZetP2J8n9N2Dzs7xZy+2RvZT72ctdM7xhDjAul4ecvza 5PvzGKcn63r1lxbrF/THYfUyLiudox2f1ncehraYHJR7mZ5De6XFykMOff3O OfyJwXo/q8zlyPt0jTJPvdls6ckRxxrrHOU6Rs+jzGwO9fY1ff/xH56vnMfS 9e2/PV9y6NFxLeJn9qmye0OYlzdrFj/zAJ1frmuScdqk93U2cg79/7XJ8qUc /P3RXs6EnqODnejfbOUhh7zzm8N55zA973R5k/UL5uPd9LzWac7Rr3c2S3tu 0WRykP0MlfNHYzieyXfw8kMPn9b7Rye7HMwzJ7RKO3RyOeSwM7s1hvU9oFXe W+jmHPk9oeeL3m0M+/dUjQdObwz9FvJPG0M9WSNh80g4XhIF80vM4VddWWVy 8O93NYgfdqinR77nahx6U+cYF1c0FJQH88JHzqEmQ1tFL5Y1WL3IMS5+cI5z vXMSth4N/NW5Hs8kR/qPnVMO1uMDnLM8/1/+keeL+r1eKfJ/8ThPzBnnwXh9 Q+e1XztOz3hIzBnnieUwLhSn5/og5lxPxHIYF4rTMx4Sc8Z5YjmMC8XpGf+J efC983ZyOmqH4Bx5O864fCyH7/TG6YN9qYJ6VRbIYXw4Ts/z5jEv0vhtLIec eti0Ss9f1PJMqje9xbr9yYTsU3xTH/oP3yTEntxbL+u3pko5j/FDQsbNI/re Ug89x1+q5fyHvi/VVGkc3X5gvZUT8pd6fIn1QnmWFHKUf6zHrzB/vFRl37fm OCLnPUZy/H6sc44vrMNmVhrn+inm7HdME/n1MvMN7smcpX7ahUnzF+AX76Tz y/5J8y8wb9yq9/C7O0f1Juk9/MuSMm+f7Rzqnfdr4dftXmffVyPHePyj1tKj 2L8nJf73iH+PDfq3PGnv6sfpY45ff03avi45qv9b0vYdKF/8EOdop2H+/TN+ txT+zYP+/TPZj8pJvS/19OQcZ5w/pDy5gvedoAfreLyOnHJQvvnVdg8Ufu6w nMTb1qox/seq/hzsnPdMycVvrDaOdVyjc8qBf/dbTn7u5xzjJZ+e4xvtctEo Kd+bObt/gv7Kc8TfnnAu5nS03Cv5j77r+6h+ByIz2toZ8bNF6q9f/YN9B3bD VXo6S99NeN45xvm91TLOf/hB/v7GnPx7N+cYl/c6x/S7yxh9P9brBf0/Z6Lw Lb380P+PJ/QYtKpbt3AO+ZmJcu6uzd/LRbseP1napzFr9pIc7fG7c7T3u5P0 uxo5OV/wfLXdP0Wc/GM9p3dstc1PcB8HZ2V/5ijnWO8NdvmUg/Yf5ZzzJfR1 vpefHN9nmZgN+/2WmZLPeVlrB/BrZ4qcE51jvvy0SOz9vvo91ieqpd9+LLLv w8J+La2Wv8/Nsu/Aws9dqHqy9mzj8u6bzjNdZoucnbJitw91juF2gHO0V1GR 8FO9Xsh3XY0rTstY+WFPv5yr37POhPU6X7+b90XG5ED/f58n+b+bsXYmh/0d 5hzivpwn7f1DRsb3S9XmT6C9LtbzfqdU2/4u+BkahzzWOep1VpRvXg7szA3O g32sJ7z85Phxp3Os997Q+OG63g4Yly/ofdi2dMgPKxE7vEzPof23WubNY/V8 fKN+F2m56u0yfe96QlriUKX63muZc1TnSbVLlXoecq5+R+lw54j7lTlHv59Y IuX8LW31Qn9ULZZ57t50eL/uSf2ubzuO9j5wibwbf7nLQbsWL5H6nJu2diaH v9fXOerxjJ7LvyUtduu1arsPC73fOC3teGZ1+M7fX/p+7wnOMezXdPmUA73f 2TnPy+O8z5FefnLMi/s5h924V9/j/z5l7QD9uFnfx/zcOcbDVvr+8aBUaFfH 6TvEj6asPAF/yTn8kl31XdihLgd8UZn4PetG6RepH7CVc/TriDKx37s5R/tt rN8Ru9g50o3R98z6eb4Bz6eX9x6qw3veE/Rdo/P9e6Xol+Hqr53sHHr3XdLy pRz8WOCc90MwrluTVp7gvtHKZDh+h+p5tBuS1i9yXk3jipcnw/76pULeMTne 5ch+WqV8//bwZKhXp2vc8mTn6O+/9LxYH5eD+W9yldivMb5uIEe6n51jHvlQ /biFzlHePzSutpHni3b/uVK+17CD50uOMPRGek7y7Wr7d7Rzf72/eUm1tQfs 3NW6zjvNOfy267w8gT4+mQjHO39+mAjtA+3xS86R/5v6jvROCcsP/fdCjdj1 zROhXarWuGJTq8mBu3iE3p9d6Od3yCEn4xzpWmrEf+6SCOf3b/R7QKUtYb/k OfyH31tC+S/qe9GbunyUv7FW/OMHnMO+jKoVfXjfy08u8Wy9L/V+ta2jYHfP 1vtw/662e68Qe7DGh850DrtxhJeTctCPdznn+g35DWux8pDD73/OOdyi/2r8 5YNm6xfYgwf0vaP/Oke+8xukPc9rNjko556NMp6ObLbykMs+RnNo35Y3iB14 xuXA/r/T1GPMqgof32TpyTFe+jaF4/fhJpkH73AO+7+0UcZNlXPo2RA9D9nZ 8yXHz7omtS/V9i4S5p1RjXqOuNrOE2K585relz3bOezfu42WL+Wg/GXOEQbb tFnfF26y8pAfj3dKGo3jz+5pEbvcudH6Be17Q4voabLBONKPb5F8xzSE37/o onG5DxqsPOSYZyZGvKhF4rpJl4P3GU7S94g/8/ebybGvOsM5vr94hKYvdY64 yoxWsXs9PV+Mqxf0/Ngtni85/Jlezhk34LqTcmQdkSjgEkdzDn/1k2r7vhr6 e6d6ye8Wl4Mff9TJOD7fOcqxnteLclCuU6P63q/nDB+sD981uF/jRX3qw/m6 e1Lyu7nO+pfxDfgzvetCu3qhvuO/a53JYbwC8tevs/KQw57sUxfaycuSot8X 1oX+z3opix8E64gtUhY/CObreo8LUQ72ccc7Z74dccZPmC/mt7Tum++ZsnhL zBlXkXcTtX0Odo76nKJ26SC9z/Bnjfj3g3W+O0r91Fk1PV5a1REXOEd5P68x +Zj/uqUsDsPywI3do5BDD3dPhXGef+i6cllS7OiwWuNwk8frvYKSWmvPgI/U 7xm2aHu+5f1CLucgnWN9/KnzoJ3vdzkSR/m5R69V5TnT03fE2S/gk9TejnJ/ FOuFl1R/Brr/fdiq7lms8ahPnKOcO+k7lfN0X7zIOfS4LCU/R6n89Z3Df7jb 00Mf9k5bPCnmjBtRDvLd0vnq048p4BK3GFUgh3z16acVpGf8PE7PeEnMSzVu H8vhuaE4Pe9BxpzfcYjlcN8hTt+RfInrzi+Qw/V9nL4jzvt/Mee+QyyfPE7/ hd5XW329ygvS8/776utVUSCHcdI4Pc9Nrr6+lQVyGIeN05PP1P0Hzmfid2TN 3pDLdwqyum9TFd5z6J4Tf6fcvxcr+qbfWRvh35clR3yic21k97OyH9G91saJ vGebEzt7iXO02xrOOQ7JEb/8t8eBk6sM4q3OKYdczuk4h99xac7sK8zo1fpd v3x52G7op/Ro6Ze/ssZRn+d/EPuU55SD5j1gvMynm+Ssnckhb6dcGI9fc7z0 1y56bnOHWjufifackZXyrV9r5zmR3zdZ3R+uMY55Y5z3L+Wg/tXOeZ4T88ea 3g4BT3q9UO8+08Tfvz4bfk9oxlSZ565xjnXp1tMl3neay8F5kGtmyDzWw8sT 8F7O5Z246aJ3l7sczCOnzZFyTsyE38nMc6Sb7xzzytFzxP4scI7+e69I/J0N PF95T36m+Ht7er4B31LjzDvX2v4r1P9+vRe8aa3ZQcQzrsrIuJpZE/LbMlG/ zJX4/WDntJv4s+8yVh5yrE8/yth6g/vNHMdyP6bJ9qfJe6p/HKenfNibgfpe yY4Z619MLMcsEP3azjne261eIO3yZ9rKiXQDF4rfkkqH+pnnWLd18vpiP6P7 Qun/zb2++Pmg7p/d6XLIEfd7wjns14BFsv5rx6GXB5TIuBgX8aeLpf8We/nJ 0W/TNe66W63tU6Ifuuk8vFWtnQuFvd1a54E5NcZhZ/fwfCnn0lX/fpZzngvF vnA/Lw+5fCfDOfK7Qd8tnJuyfsG6bhv9vvos55jXfyoVuzk8Fcq5dpnYy4/d PyWHfzzSuexHLJPxNDkl42BZjd3vhl5dof7d0zXhOzUX6PfUnnKO6l0Qyed3 LG+NysPvqT4blZ/fyRzgHHrcpt9V2NTbAXGcnL77/lfSOM6B9NTvA1TrOmO+ 6m2vMvuOPNpxL43vvF1m34tHuh1V/gfOYS9n1Mjf8z3/pUlZXzzgHOa7zrns y+h3d9byeqGeQ/TdrEe8/JgX7tH7Kg87RzvM0vcmr/b9ZJmHKsSvu9j3jclh n/olw/H1i76be5fun6+sCe9fdtXzmc/V2DkMNNt6uj//jHPYgc7J0D4nNK67 p3P6SfI9Fy8/OcrZzTnav6lS7NYEv4cHs9dQKfubw52jn/+pcdrXdF1erHa7 R5Wt4yF/Hx1Hg6rCdfzutTJOXnAu3wvW+9Uv63mEZ5U/4hx2903nyO8EjTOP TFi9sBx4Sdeph0Xlv0bjvd0T4Xgfo+vCbV0O5o+N9b75xglrZ3K0347O0R+1 um7bNyH9UFFj8tBOz7XKuH21xvKX9wz0PafnnKPb7m4N7XleDszB8NZwXqbf VN8azst5DjPxs3PYr+X6HYG6FssP+S+plfnyZ+cwz/vpd8NfbhG9XqJ+Rbc6 u6cL/dq/VuLFD9bZfVwUY99a0duH6sJ3xUp0vn5Yv9t1v8Z1H3cOu/eWc7jf h+j3B+d6eZDPI3p+dX6z5Qu7cZ5zlhP1/US/Lza42doH/fabvrv4SLO1IznG 5fvO0d8l+n20Mc2iTzU1dk8S83Jbk+T3dk34HbXSJtHLF52jPVc2mXzKQX9s 7/nyfiaa89zm0A/Mc/w4xLnEZRqlPGc2hf07Td9hP9g50m3fJPX9tTG0qzc3 Sbyuwt/XJ0fctZOXH376rk1ixw5rMjn4vVbf96trsPTkSNbZ5WOdNFnfwd/Z OfardtT+HtQYtk9Tk9j/rxrD9mnSdwAHKa+vMT2W7/5oeT6ssfvpsNvHKX/F OfTiZC8/5cB/fLQhHId5vce4HtNg5SHHnw12LvcOWqUdhtdbv6BfR+h7a687 x3y5tt7nvaLe5GBePEDP9fWst/KQ45xJP+c4L9NZ+ZsuB/NYQ0L09Oy6cB2X 56jHrc4xfpbqOdLHncOePqH32TNR+pvUnm7p+ZJjnZitk3ZqqrFzbqj+lFq9 l0V/kt9x0Xn9DefwN76stXwpB/sJjc4ZJ0f77l5n5SGH3LWcQ26x7rNuU2v9 IucVkvpdVrfvci4hKe023e079GYPjb997XacHPoz1znk/KXy19Rz/d25rk9F cQuufws545DxeofxQPzdqGrLN+CLnDPeiJ+NzmFH7k/1mLaqWP+qCe3blSnR 3/u9Hcgxv1/mHPl2Skfn9TrmjAsF7zBwXBzl8UmmR38d2TFnfCXwq3t5fDJY v5zYMWf8k3Kgh1frOmfORNMT6NsA/f53Z+dId7ee83h4Qmjn/522uEXwHeKz OuaMi2Bd10/9mX5pOxeGeb1XjdjTczrmjMfGcnguOk7fEWd8NeaMi8ac8c84 344445yxnI4446gx5zos5rw/F+d7jO6nxOl5TmT19a0okEO/Pk7POGrMeY5/ 9e2j5yxyNWJHHkqLX9RXvx8+zjns2176vtQHkZ7cW1Uw7tAMJ1YXjFPU99Hq gnENfqWm76nveYxxvSLH+u0b10OsmzevFX36wjnTo5wlrlfkiBcUuR5SDs5H /5gO3zXsqXGtZNriUuSww3Uez6ccsdfp8F7ycRonXCtj+ol1Tmf1xyrS4fcu jqgVO7NRxjja6Tb10w7Xd/G6L5T63escarWPc1TngIzGmRbIOnROjZ23Yzwm 5tRzucdSa+f5mJ71ZXqUd1GltQ+57J9Xhf3SqHastNLKCbU/JWPjkfXF/H+y c6aHnLMyNk7JIf78jL2bQTn49UzG0QrTM54Uc36HOpbTUXq+TxtzvqcRy2F7 xunX0XN/MWdcJ5Yj64bCfB/Wfow57+/GnO/uxvLXjsoDfoa/z0iO8XO2vztJ OdCHns7lvlRdtJ+dFbkn+PfduV+D1tso/h581u4r0I/h+WGe7yEXO5Cx72CT 60+9N1gX7rPcnhV/bYRzxCGucS5/P8I4yjXa92sw75c4p59BjnZvdQ67OC5O P0b6t9g5/Qw0f7HLIYedycvh/Q/007GTRM6N3m7onx0nSnv1cY5y3DBJ7Elv l4NxOmay9GffrN0vJcd5qv84h/0apPH2O/Qce77fA/u+Q1b6+8Q626/Fv6+b lfpv7BzNsbnLpxyU5+/OOR/g78718pPD/zzBOfTjxiLJb3zG2gF63zRTxuNo 5+iHI2fJz3cyJgd2/unZYv9fzITfQcxztPcHzjEOxuh5+G9dDvTx7/NFj7b0 9AHf0znUfs/5Mn/snQnbv0Tf2b/COeKvx+m597s9X3L8fp2eP7+qzuYtqPVc Pb99ep3NT+iG0fpewWbOsc6anLZ8KUfODzrnuXTIXS8T6i15Wzrsr64l0p// SVu/wH+eWyztepNz1POuEmmfc1wOxO+0SNr1ZC9PwC90jv4eWyL5XONycB5r 86USJ5yRsvTkqMeSVNiPay2Vfi91jvjCiMWit108X7Tj9ov1fJPnG/Ad0qJn 19bZ+XDU41Fd551TZ3Yc7XOj7lN0dY763e3loRzEUd91zvPkGC9jU1YecsR7 v3Auy9PlYif3TFm/QF8+Xy5xiF1ToT0/Z4W05zouB3r+6wrxR39Nhvqf57AH 63s50S5vrJD5ZVuXAzXM6ne5B7gcctjTZ50jjpHQ7zoOco44dU99J36K8y9X VSy7UsbpSr+HR45WnaPnxq+vs3MViKf9PSn2uHedrRPEr9D9ha2do7n383wp B37uec55nhx+6y1eHnLUu49z2P9andcX+zt50OOJFSJnYSKcL7bUe+TfJ0wO xnu/SolTfJkI7UA/vcc5LuJH6j3pIpeD/q6okjhVN09PDn07NnoXcKWuZ45L hPPCEXxPyznaq1bvd77k+ZI/umqgPKr7ETf7uT+4xyX6DkMfP2+IZhnSKr9v 5xw/f2wN9TYvh3E4cp5rg33Y3ctDjvG4RSK0YyW6L7Clv3eIn8M0jr6Zc+hd J43/L24xObBrF2r7TWix8pBDD8udM+6On3/q933+Viflm6N2Zbp+x2ZerXHY rXo9F7ygVtp3tnPKhz+Rl4d8L2oJ7fNCjbcNbAnbIc+R7CbdR7itzs6H4/zt 0c2S/uo6O0+O8xcb6PdOd3IOOXt6OSkH7XOP14v+JsbFN83WDuQYp883WzkR x57SIPnc12T9gnK81SDzxl3OkX9rg+6/NZkc5HdCo9ilvZusfchhj091jrj2 tvruxFUaL9+3zt6pkHd+9N8X19q7Fsj38Uaxp4ucI90TjSafcmCufmwM7fAE fccj22jlJ0ezFjvHefSNmkXvfmuwdkC7b6jnzEsbwndS/tWs7143yLy0q/pj ffx7tdCP/tq/X/r3hiDmRvVLhzvHqN1Gx92oZpH3nPbbrFrjeJd7qHO0z1X6 Tm9lQ/huy4gWkVNeH9braf3u8grn8FOXt9j+FeWgnN30vdPn6kN/OM8xbw+r D+evzrqP8HO92LED6+ydCpx/W1vfcVlZa+9aIC7QqPZrqXPY4eY6k085aLa9 onyHajkv8/KTIz51dH1o3x7Q9w361Fk7wG+4PyH9caxz/PhIv0u3ofqde6h/ /qnbR9T7bv05x+0s5N5eJ+NzrnOce9hZ5cxXnlG/bV5tyLvUGUf/f6b5nlJn +WNePEf340+ptfKjH47U9ytPcg79vzoper1JrclB8Qbpu+q5GisvOfppq9rQ f7svKf3TTf2bg+vs3Aba/wY9T1Nda/sIWAeco/sxK5wjbnW+50s5aL9BznnO A/7l1BorPznEfewc8cuJfu6a7YB+GOfnroP11+uenvnG+x2Mn8f7I2X6rnC8 D8Ly4Pc7UzJfTaq2fNG+/fWc/MfOcb/j7ZTU61a9n7C33pt6z891Y9zfVyf9 N83vJSK/e+rET5ruHNXZq07G4XTdJ+qt5+nz8xy53HtyLver9Bz4UL3vvZ2u m/bVc7zJr2X9fZOO4401HnvYMPm7y51D7udD9V20OvEbdvF9E7TLVPXfuhdy rGuO9v0UtjPkHeX7JuxHyD+/kMv+qe+nwB/9Q+NXd/m+BuzZUeqnXer7INCb em2f/s7RT6+o/Od9n4Uc6V7yfRn036fOuY+Ddnpe38P4j8exyVGN6zxejX7r pXbvPudY93xdJ+020OPY5BD7mMer5XyR2pmBztnOeKe+Z1r2sb/098Ug/2B9 53Goc/gNl2hc9w5/vwzz3ON6r/syf1+MHO1wv3Pcj7o9Lfr9SpW1Wxy3ZzvH cX7yeF8AflVdYdwe9u27wjg/ebwvgN9pV5foO5J/zpVxNkD90e8133/pudR2 HH9/0VyZz/auK4j/YzwUF+4XkMf7C6j2UvWXtvT9ArT/furvZdIWF0H6xRof 2ChjHOV4rDD+Tx7vF4A/Ubi/AH14UP2TDTzeTo5f1/T4PMp5gM6n2zhHfd7V eXKvjJ33JEd/7eBxddjJmzSusp9zVK97ne0jQM58fd+nif6nxuFH6XfLyp2j /cb6e3mUI+ciKyN/Ve3egVWRv6rjZZMqa7d4n4LtHO9rkMf7F8hnauH+AvIZ UrhPEXO2J+zXNnUmB+/C/lyq9yG13fLlRHs9pO9uXuwcf7d7qZR7XZfDuA7K Odnz7YgzbsR2wzx9ge9fsJ0xP1/cMec+FOVgvF/n+xfBur5vx5z7s5SD9rvX v48exA1u6JgzvhLEky/RuOrelaH/1lvbeSPnWH/erPtTCyvCeNQdvj/CfPH+ 8zWFHO/u9fX9F4kPNUT3XHT9sU6rcd6jjb/ju5Oez8Q89FG9+VvcN8E65Op6 87fIUazv66N36DJixzfSe9E9h0s5ipzzvD05xsev9ZYearVQ9+s2rze/AdU6 KqvxQecYXjtnLT33ZZienP4Bmv0g5/QD8PMwl0+OZt4ma+t/yD1zur0nw3gB ynPsNNGf8c7hhj43Xez58IzJgT1aPkPa8btMGEfIc/w+xTnkvTlD+mNmRub9 fH9xPoNfc6vyB+vtXhyKcYnme65zlOcql0858J+ecs55VOJaXn5yObfrHPb2 h7kyzrp6O2C8PDVX9GRj5xBz0Dxph2Ta5OD3knkirzpt5SGHlcmmw/JfNU/6 oXNUnukLRf/6pcPvDOQ57Mo96fA7A18slPF+v3Po2WX63s53zjHPLJgvelzk 5SeHff1B55nP6s3uw//aXeeZJ+ptfxrzySZ6XuMC5+j3bTxfygE/2jnnG8jp 7eUhR76nOod+D14s6/r8uoT9Aj3uu1jeqfnJOcSsv0T+/qOUyYHcr5eInryR svKQI873mXOYgeP1/MFYlwO798EyWX/t4OkDvr9z3Fd8Wt/x7uZc9ulKRe51 zmHev1wq65MHPV9y+H+36L2MofU2D6G9F+m9hoH1dl8D9ntCUvLv7Rzxq5nJ 8B3BvBz44clkWM78/AeztZGXJ+B/JMPvzBxVJv1zb9L6Bf++U5nYp/7O8fM2 vX/ROxnq5xR99/vMZKjPU/RdncucY73yXJno1c0uB/19jH6fcK6/m0iO8VLm HOuEQ/Udw0rn6I9n9fvH23u+mF9OKJf2P9TzJYc92V33L4b5d3iQz3/1nOlL /v0Q2Kv+Cdl/uNQ55D7o5aEcjIuPnHM+xnQ6wd+DJMc5xm+cY5raT99RPiBh /SLfAaqS+MHfEuE8crmm38jlID44vEriM2t4echhLzZzjuI/oOl3dTn4fT+9 t7qef9eIHPr7N+fQ6914j9M51mf36fs5bzrHvNmtWtptln8fiRzl/FLvQXzr 53/x7wP0HsFgP++Mfz5L9xf6OEe7Xt0SfpcpLwf//G1LqG88f9rQYuUhR7f9 7BxmdTtd7/7UbP0C/ouuJ0Y6x4/T68QOPdgc+gn59c3uqwpyXbOVhxzz0VPO ISe/7sH5909dDvzsbRrs3D3Tk8PODHKOeXlzfXf4Jeeo7vX1sv+wpueLeuxY 32Plqnbo7vmSYx3RtVnG88h6i6ejvJWNYs/erw+/6zeiUexWX+ewf0WNYXny crDO2L4p1Nv/6HcMz20K56k8Rzcf4hzjaH3dd9ir0foFw7q6Ufd1nGMeOaJJ ylnTYHIg/tkmqc+chtBuP6v3Olqd47zUpfou9iaNJgfzwTotem+q3tKToxzZ +tCerNEi/f6Lc+j7xc3SPtd6vrAPG+g+05tefnKJM+p+xOh6u6cAd/Y07ddP 6u1eA+zhdjp/XOMcf3eol4dy0J6POee9BjkfUW/lIcd88qZzuTen36N/xvfb 5N5Oq/gzjzuHH9ZF9yPO9P08/H6UvktzuO+3kUPehXXh/LWn2sf+Lgfzx696 T+xo388jh95dWhuO07aE6OHlzmEfhui++CznGAf36Xc9O3m+5Oi3Co0LjKu3 ewqYl4fr/c+v2H76nslDeu62n3Po8+Aay5dykL7JOe81yP6y72uSo93Xcg49 SyfFD0z6O1zIb2VS5tEm5yjv+imZ10ZUh/1+aEri+m/7O1zkcm7NOfRmx5T4 jUtdDn7c7PF/pu+Io1gv+T4CmuWkejm/MSdl60jYo6fq5TsNw1MWx5a4U32P /qsE/ZwKz/GV18n5g9qUxcnJ5X3YlMXVUa6kc8bhIW6ZtvP0lMW3ydF/41MW D8f887rajfnOEXf4Q+tVlbL1LjnGbWnK1rXwyxfr+2jVzgN70qrl/LAqtD+t um8yyTnatVX97MnO4a+/mRJ/5lDvX/gH/9H9i37ev+Qo72nV1m5ybsH3BdjO MEvrFXLI3cz3C9C+B6v8LaN9gTXrJb6+eyGH3d4/2l/or/ulB+s9lI80zj9d /dLNdF13r34HbIpzOc8wVc/Harzibx73Rr67qv3sUcjx81SPh7PdYI9O87g3 2xnV6VvI4X/c6PFw2N0r6+UdgQc9Lg179pr6Fdd4HBvj6oR6uZ//gHPYg0Sd xP9f8zg5Ofyq1zyujv7YtN444/DIvkHbf4Df7yCHfbs9Hca98/4J9t8fcQ4/ 7zv6+VqebfW7Ne8yjpGW8Vaj55X6OoddW9P1mXIQhzvfufg5uj/yTJX1CznC kzdUWX3RvsO9nGwftPrYQo7xMCUd7gtcqf7/bK3XuxqfH6Xz5nDtx74lMr99 6BzlbCvW799onGqK34uRc0Mqf1Ehhz9Q5vdlgvl0Rdri1cE6JVfI5d2BtMWx ZZ9f7d4OHk/G709onCefnvFnqO8hOv9u7XFpiF+p95m7e3ybHPPdPzweDvvV 7Jzxc7TTknrpv64elyaHH7ihx7Eh72U9P7Szc+jhrzpP7eFxaXL8uqvHsfH7 Qp3f93eOv9+iQexVm7/LRI78N82E5/vWaxA7v7Vz9hf6b2Za2r1LZRj/Gan7 d+UVxmFPf0pLe42vkL87We1VNm3rZpRjsMZdG/weE/zLfqqH62fC70BvqeNi H4+TI590nXHG1cmhHV09Ds9+lPur3v7sd+R/fiFHv17m/Qt+gK5T2u0vYN3/ l+Z7SyHHn9/j/SvfA9M4QLv9Bcxb26jdfriQw4497PsOPG9BP4Y/5d5Gq9T3 X++a/yPlKuS8H8b4f6nOC/yec3hOYlrB9wsG6nwEP269RisH99nQruMaLD9y zJubNUbl0O/Z9fP9AhTng4zYuxHOYZ/y7cH03Edgeuj3JY02T6PdD9f+vErf P/3hBynfIc5RzdcmGad81h/lfco552PYiVe8nOTo9v4ZW9+inpfMkvLunrH1 sJzDK5J5eGfnMi/Mknps5HLw+5pzRL/y44brYXKUY1vnGN6fzZZy7ZIxPZF+ HGL9Sb2KOfUn5qh3Q4P5B/h9Ulrml7EN9r4T/vlrteuvOoe+j0qH6/y8HLTH Uuf0J9BvubS1A7nM185hn05YIPNFv7S1J87XbrdA7MsVzmEHJiyQcXKiy0E5 rlso/sg/vDzkUK+ezvGzYYH42Ze7HPz81yKZr39IWXpyvP9Y5FzecVgk8cMF zuXdXr3XsIHni2a7qljsxM6eLzl+31Tn+eYGm1/x/Y67dJ00gfGDJXIe7Ep9 73Owc5yLviEV5puXg3djBjnnvA5/5fNUGCfKc3xfY7BziN+1VMbZDinrF/RH eqmM567OsX/6Zqm05y9Jk4Nzs8cvk3yaklYecsQD/nAOv216qcxbm3l5sJ7t vlLG662enhz2/aFkeG50s5UyHp9wjvJOXK7v3zuH3B7LZRzMT4b2Ic8xfifp O7XJBps/YHf2TUqcY3qDfccT3bCVruPfdg45OyejcaTpj3fOeQu/Xu7lIUf9 GIf4ocn2NWgHGF+gXxjbE7HD840H4/TBcunHOQnrX8i5tlz2X6YlwnjiGL0v PTRh5YRd26RC1t/v+fftyeGnfO0c5m9Bufhbk1wO9r+f1O+T7+7pA36oc/TP XZUS3zgiEY7TuRWi57c6h34/WyHx9Sc8X3LEG+7U771n/PtveKfxh1axB3Ma bB5GvV7SONn7zlGeIa2WL+VgXDe3hnrYqPXqkgj1kLyTc/x+s76LvHZraFfP 1/V8riV81+YTfRd5fIvJQVzid/0ewictVh5y6Mk057AjE/W7Cs0uB3rXX8+d feXntcnR/7Obw/F4jZ6TWtQc2u0f9T2Gk1vC8XJPjbRr/5Zw3rlH05/fIvVo 8/Pd+M7C7s0SXy/28+mIT//aJPZoiPMpq8q1UXNkP3W/4ELnwbn+gX6enRz7 Djc5R/tfVi/9f32T9Qt+HKf7Npc5R7qXdf2xV5PJQf3rdJ98kyYrDznsyYHO Uc9vND5xnsuBf/Zv9bO2bLT05Ph5mHPYjQsapd+Pdo72/rJB3u8a2hja52sa ZD4vbQzteZ5DD8fq/YXfG+yeAvyW/zbI/Lmswe41wI/p0yB+xCfOUa7bGyzf 4DuhPzrnvQaUN9tg5SGHn1DiHPPRGc2Sz1zfL8G5hAObZR062TnEPKzvPQ30 fRTYt2J9l+rO+tDu5TnM+iv1oZ18T79vOtrloLpn6ftlA+osPTnWnW85x3xz Yqv0+4fOoR9v6TjZ3POFfp6n9x2Orw/1Ns8xPHbT+PKfDXa/AOMvWSvznN2r 0Pj5ZD2/+IVz1G9pbVjONdQu7xXVa2ir2JvL68J2GKr3Jo5xjjjw2/o948Nr rV/gDw3U8//7OUd7jUpIHDvj73yhmOUJse/L/T0vcvz5/5xj/pim5d+p1uRg en47KfcLK6stPTm/G0eOefeNpLzbvr5zlPYkfa/wrppQf3bRewqf1YT6Rv60 c8zHXT0Oz3ZA3Gt9j8OTo18b/H374NzCTP9+Ae1mzIN9imwyPM9/SqPEn/+Z Cs+fn6Lr1oM9no9zqLs2Sj8d5Rxq06nR5MMB7q3zVX2D3S+A37KvfnfqK+eo 93HeL5QD/pxz1gtyplaH65qZSbt3AHtwr87vN3o5Ebc9s0HW2fcUctiFR70d ECf7SeNIT+k9hbd136Fro+jBdXpP+IHvZb7axDnmizW+Fzlj1G4/6PsRqNeN audeKeSQ847vd7C+GEfvpcLzd/n2Qbt8X8jnr9KiCb7fAbs5tEH8p5KUrePx 75XqV4xL2Xod8+pzDVKfYufopiMbZP3TkrK4PTnarTVlcX7MJ72dc19AvlOm 31PJr+sYbydHPWakLD6P/v5L7dgS5yjf9Y2yXzs6ZXE2ctjLeSmLp+Gfr9F3 8hY4ZzujHvempLz9q2w8It9+uu92oXM07z3a/rtU6X1BtYdDUuZvoj/z6xes Mz9MmV8JP3G62odxztGd/bV/F2n77KTx89OcQz/PcY71wPiU+DO3VVn7Y1re wPc72F8oV5dCjr/b3vdBYE6GNYjcPTXefvs8mV/W0vMEG6Yl/5Pmybza2GAc /VGk8YzXdZ24g++PwM5couvoAwo56vd3338J1mWH+r5A4N+eUcihrxf4fgHG 8X/Vj73d4/ao93xthws8zo9yP9Ag9uYm53JvVP2jZ3wfgRxq9oLvO6A4hzvn PoW0b6Pke4PH/8lR/r7p8F7AcrUzdzlHfU5Sf+nJtO0XkEPu/b5fgP7dsVHG /dPO0Rx7aZzwZI+r4/cK9fcu9ve7UFx+57ybc447+HvrpkUvWsptnJKjXWqc Y3zl9QR6M7hc/NAH1U8+x+PqP+n5FDmv7HF19Ncg7cc+zsV/0XjI0x63F//d OeP85MjnPt8XYD9iXfyJt3+gD58XchT7W+9flOdO/b76aG9//PNpKn9qIUd1 5qTD/aAftX2K9d7WYbovs7neKx6ZlvPuo5eLPV7fOcoxaLmMn5HqDxelbV8A 9vn6Bpk/Kwo54raN/l4WxynW5WVp8ef7lpn9xH/HafvsWBbGISemdZ1VZnIQ /ypPWzyG4xr2/PdCjvb909+jw3h9Wsf7pLTtL6Dc56tdrS7ksNOzXP/Fn6oq 2BegvSc/SO0nz+GR8zs48f4C7Z7ohb/LxO+qxFzaeXZ4z/xf70o5xqVtfUWO cVvpnH4nytcuPeP/6NfOGePcLyBnvvQzUMx28jl/yLBzzvkGy4ls2uSQQ9xc 53KveL7Iv9TlkOP3G51DL0v1O/d3OIe8Z+fqe6nO4SfsMFf69wfPlxzd/rmO p4OabP6Atm6l+v7/6rrueKmr42uNHTB2UTH2rmisUbHXgC1qbFHBrlERNUrA ir0r9m5sUSzYUURFRcRGl87ru/u2776HLcbfeubMHL+7v/zD+7zDffd778zc uTPntkXZuOcHw/139B9zhUPfK+i7Xg++u6Vwn7fw3weqPY6jPTsLh7wmzbB7 4cdVIj+HfF+cYePvDeEwxyNn2vz/QCXqgTn9ONPqv7US7XEc61uPCIc8Bs+0 cfl6JdnO3Gzj33pWkv2q4TDfPsLxc8xs+//NhKO758yy754sHO5g0be2/+oi fddx+IOBFVvf2T4X/hHtnVS2/P7nbNzzgzhqTNn8+0LhiMfHlevsdq6Npybh 7pfhx34qR3scR3uywsHTPT/fyg8uh17w+3Xzzd+dKRzjfqsFJrdDVQ/sbDr3 z++l9jgOXuDwcnJcH7aA/J/qsXsZmiyu/7gU5R1HPDxNOOzqiybT+9xS0p9s RH/9e30X7Z680Hi+TfRdxyHW1cmr75QLP4v3vYaX7HtL5iKewLsi55ZMPi3Z wPG+z0Vqj9eDvGekcPfv2O/ySina4zjqf1w4xs/HLbxPoRR6sffpWyy+7i0c drZkq83T/y1GPZh/jm3l/rhitMdx+Jsl1U74zdWZD6yp9iBfm9zGOKoQ5R1H v1ZS/ciP3m2zfTzrCMf4X4Xvy90s3OKHVuMJXlf7Hbf9g7xXf1e9S4l5YFCB 98fk4p4flN+D+3/bs0n8ULXf68HPuwpJP+PveE8sRHsch9ifJ092FvnHa/TO 1eZ8n6Eet/m0FPfMOp7wh69x//wr+dAv/NIjxB8VDrsv8b7n0/PJeXk/3hs0 IJ+cl/fj/SjnC4fZLs17LO7Pm179HoC38g38j+9DTt7vmGso7+2x/Qi8T+Xo XHLedPwS4VDLv7mP45pcchwtkTa+tpRL+oHxPBewtuTgOPZ1/0h/vbv2raPY JI6HlXPBe2Ge/Bfv6c9o3zq6+Vo26ff83NIPwn1fFcxgu1y0J4H3Eg77e5Lv hq6WDf1ivN3MdZWlhGOens/1oq/Eg8M/9mV73xTf7Tj82gzhaEcX94n8rHoQ N7xAOxqbifKOgz+fJ9zy7JzZTyqT9Odlrgcc05kcX68wXrumMzm+XmEeOZB5 9V65eK8WP/uSl1xD9ob/Xo48di4bOMbFWpmkvdXqwbx6aiY5v/TMm508kIn2 OA77uFy4ncMq2HeGppPz5qV8//hc4dD7JK7P/TGdnE/XK1p+v046aVc1HP5j d+Gwy9aC+cFB6WTceCj9+IappH5rONzWvsLt3BbfC+ifSuq3qWg/xwqHXB8p Wh6W0T1TjsMOP0/Z+tu+uXifBvP4Ax12D+56uXiXFv9/QYfxLcVs4I/96ueu 6kjaba0erHNOEu7v2eDn4mqP45B/c0dyvXKAeGkfh3/jvn3HE/z/b3Cv3/cB 4DNT20O/kO+6ZYuzPqnDt2f8cQXf8+6i/f9F76ljOjiI8/6Jde+vb5azef1C 4fj+dM7X13F94Uy+I/ukcKxH3Csc9n829wW81x5yg3v7kPseNrwz5Ow47Pah m5PzxcKy9Wfc/cm8YFE5eG8vD3H0qDTgqGcN8eGIk7vp/7cWLz2D65z43iri sT/keiP+fkvhqPeGrOlrf/HkjqM9B4pXBw/1pHDn4eHXruH8vnklua+thmP9 YP26/fwH0Z/3FQ6/+EzO1gXy5eCRHEexpcUPw7/fwbxmVeGJ9c5U2cbpIW1h bzDfCbx3cgnhaMfnPJ+yqNXy2tlZi79XFm+MZm2VM/6/Wg5+GHlt2fdxiTeG fTxKv7RXHS99nXDnsR1HHLuzeG+XP9p1quTm+kI+c1Yjbvf8SC+wn5+yfN+i YvPInRNNLwNyNt8P4jrCYRP5Hqhw9Gfvz/jeKO1/SN06xXPMa0Y04tDTbVrv cH0hr7tJ6whu/5hHnmzEsR75otYpwENO47w2qRK8NIqvyzh/VCV4bPR7Ev3n J8IRD15Kf9tSCZ7ccdhHphK8Opp1pXDn4SG/wbTz8ZXk/cSD+R7RO5XgDyCP TXI2vr4WDn9zV87ej51fCT7ccdQ7vRK8N+z7DI6jJuGYR15h+ecrwb85Dnv5 sBJ8Heb1fzE+nCg8EUc95edrmpPz+FDeb3u3cIQVI3jf14XNxne2Us5fVCIv RP07sf6XK5H/ofzSjAe+Fg67GM39tIVK8NLA7xDuPLbj+F62Erw3/i6dtXzs KvkTW6/Pmjyfa8Tx+x1a50rYw3+lR7cfu4+o2oDj75bXOgj0+wF5+5Xr1jvu y/I+okYc5TfRugnUthz921bkv5abbfo/ifl7D/KxD88yP3ekcOTXA2dZvb9w 3tlQ/Dnk9hbxXRpxfHdv8epuPxi3+4g/T8RXxzfiFs+JV0f3NsgZH3wU33f+ J/fDX8B7Pzfn+sJ+whFH7sL1jul8l/JrxgNDxZPDX/XOWb9PEa8Ou/mMcftl ws1PZ82P3i3e3nFM0/eK54f//adwXxeweya0vuPjFO1fMhfrOD4eMbzGZ2Pd x3GvH/29Vry9t8dx5/kdh11doHUBmzcqDfvzjT/t+p94/f5/1DsoH+X8fBLa 1Ssf5fw8Ez7bS+Udd3/icafx4tWG+4LMbqqxLzR5jsDlWop4K8n3lyLectzl UF8echybi/L47gPVfo4n4rkH2M73hcPcGsq/21CPx2319TheX4/P9/X1eHxQ X4/j9fX4PF1fj8/r9fU47vX4PbOJ84H9q3EvrX8X7d1MeGI/xGb6rs/39e1J xAe/aY/j3h7PbzGOhky2OObgavJd5kGTrdxGwpEnLc/1i/VVD/579BRrd82/ ej7sOD6/u3CoZW2WP9r3+fO8ZZ9JDfuTvf31du3vidffpwW/9vR08+OvVOK7 jmN8fiAcnx04nfm3cPihVaZZ/Yur/fCPL3O94/eSg+MotwTH78X5mIeQlp3D /SZ983FfEPpzAuPr9YWj/39Te7weyG14Jck71OY/2MmDlWhPAr9JOH4/YpbF s7W8wfWLeveYZX5wGeGYx9tm2TySLUc9iN9u4TtDTeVoj+PwvyXhcCvfz+I9 x2oP5H/FPIs7BpWTeqnh6PYQ4Yhb95pHOQiHHy9zHfoN4Ygvbpxj8p+g9juO 885vlU2f/8jH/Id6avk65tFd8rGv3vatl43f2kg45Pr7ctJOavUgv+wr3OdL 6L1/Oclb1XD4vz2Ewx7WaLL4YUIp9IIfKzRZfvCucNR7cpPJ8/FS1IN55rUm 493vKUV7HO/9q2L+JRz5xLlNJp/3VA+6tRXv7Vld5R3H+tcmwjGb9GgxvW8n HMP4zGaTz5mlpHz68nzB5aU6Xq/Z8oCzSyaPofmIOxF3PEWeqV8+7gvCOLyG 74VuKhxyuqWYtM9aPWjPF8I93oW/WVztcRx5WGsxcPBYv2MeWy2EXuDnv2+1 3+cJx7rEn9tsPn6mEPXA/T3O9ZHbC9EexxFmviwc9nh8m8l5XiHp59fi/Tkj 81Hecfj1N/LJ+n/2fY3C8esx7TaOdiwk5bYezxccr+86Dv+xW8F+v0Lv30I+ y3Hc7p9Pvv+czpk+txCOcVgR3+r12H6rfNL/+Lvr5+aT/srf7TxUOPxIN/ft Hye+GOXb+V7HvsJtfYn3yK4o3hn+7jbeg94tvthxyHs1tR8/Dub5131UD/r/ O+4r/KkzyjuOZvRW/fBTuYzpfSvh8Ev7Z2y9+yHhsPsVuH7xG77bcaxrP8n9 vlfX3ct/Yafxl3/Ox74YyKc/971tnU/uFz5O7fd6EA890pn0D76vdlpntMdx zHqvC8f328gDfZAJvYD/m8p8+gXhsJtNGAcNyUQ9aO/lXF89MRPtcRx+Y5hw 9GrnnP3/c5nkfFqlHgamo3wCv0Y4+jOX72fcLRzrVX9k+cX0XfiH73PmDzfT dx2HWJflvv0R+Vh3Q77xLe9pPSof9wWh3td5L1df4bbPOJW0n1o9GIdLpZN+ /m98l3n3dHJecHwd4VDIG0Wzk96p5Dz1JNdxlxUOPzGzaHqZyPd0a+MV42op vQcP+T6et3XxVfXuO/7/hrz5zY2EQ+41P4H5bwfeIzSa77F8lwscepkj3M7r c512Kd4H/R+O61dLwYs6jnZNLAX/iZ/FfKxfOO7ywXzzUMnk/WJ7yAF8/T9L dq7rUuFYvxjB9Y6/tlv+vx392CelWC+A/7iWcnu5FOsC0OfhbOc3wm3/CfPr UinWI9DvecJ9/cJxyLu9FOsd3i+M5zO0XpDIL47WuoDjkPfuWkdIxGkb8V2G uWck47r/B/d1HPM3l5o9fp23ddqrypGnOo7vXqr1CDTnLtZzo3D83e/4Xs05 5eDrHEd/rykHL4fvLVkwuV0nHOP2Zcp/X/H8Z/5a38mMt08qR5yC/O6JvPFv Owj376Lby6se2O9Wwj1OgX5W5T1fawnHed1leM/cgHLYM9rdn3LeVTw/2r9i 3vKEQcIR90wgP3mb1hHQ3I+E+7qD46jnMq1TQG+dzLvfqVsnmsZ9Sh804jD7 idIv7PcA5pvTqa/BY00OD3Geeq9s/mHTscw3hGNYzBjD95M4X39RTvIQVa6/ z23E8fdt5eAzEvHGwnLk/Ql/+10jbvOB1i8w//RmOzfQOgLGwdm8b24JrTvA 763G+Ght4fg5nnzFblrXcBx2sLfWQTCPThTu6ybwo+/nzU+vWbce8T79eU+t X2D8XMD2bCwc5juP89EftX7hOPq9hdYp8GevUA67CMc4G8/5pSZP5w9hpsPZ nhUqcQ4b/nAc54XmcuA+ftGdt/kO3GNNMe4cRzvvE4646iu+A3co6+nNcb2E eH7o81zuo0nJP6B9W5CvWFk8P37O4TrsblpHAA/7hXBfd3AcYdRWWqew9w6Z v3woP4D4o4PrDvMacZjjJ/Izbg/IP4+WHt1+EK8c24hDD6fIToAvS397Vt36 VAvjsyGNOH4fVrfOdXTe5sURXE9cwPWmf+ctrj2jYvK+YpqNi4eFI8/deZq1 5yCOu6Fav8B3l2Ccc0cjjr9/oJJcv6iNd5x7ul/rUD6u0c5XG/Hjf/27MVrn wny0a97kPKWS3J9/Gf3GW5VYd8D43ChvefjXwuGnp+TsvE9nJbmuMYX79/KV WAfBuOoQ7usm+PkF92/dXYn1CMfR/2cryfWL2zi/vCM8wf/cxfspNlkQ8YDt /6AcHpkfOPo9hPdcX0l8M8bn71aCd7FzscybHnW+ab7pbx/ms+OFo3yB8V66 Eusj+P8Zwn09xXEMk6ZKrL8gjto4b/tIL9a6IcqVuO55XyOO7l2hdUmXP+xi aa0Hub7gt1ZoxOFfVq0m9dLeuP/f7EL79n3/v8eP9ecIfB0quU9R93bW75tZ mutc9fsCbb9YIdY1zM9UbL4YUoh1EPjjCbz34yyVd9zXKZLfLTfsy/H8pg/3 /ThuHeD+pp7FOEeAft5eCTyxXnA759sJvq/xExuPL6u84/X1+H1M9fWYHCc2 1ON4fT3Ok9fXM5d+tr4eP49RX4/70/p6Euc6Xua4XLUQ8Qfs5L8Vm3/7qP3I Y35Qece9vOPur/H9RcK9PVDfj6rfcdhrdyXyUoyL6lSLi5+pRB4Lqy9MtfF4 nXCY7x3TzL6H+btb5OEemhZ2CP39wnsmdpoe74/BDn8sWH17CMfPZznv7zvd 2nM1+fy/Cke/7xQOeT45zeKCF9Uvi8Nm2r6hLdV+yCM1w/K/LYSj2bfPtPWK HnX17Pit8fxLViI/dxzzzyrCsc8lzXr6cP/OmELMN2jn+4yDzivEvUMYj6/y fPnpwlFudDnq93qwb+SbcrI9tfkJ81FnOdn+Gg6+d45w2OuMOdbvs8shB3Nr c0y/JwiHOxs81+bzfmX7/RX6mWFzI1+09eWi+dU150V+ifoWJ6/cWzi6+RL3 ca47z/7+j8wzThBu+yiFw96u4LvPJ6lfcLN9FlhcsaAU7Qdv/dF84/HmC0c7 zlpgccf4UtQDO++50OKat0oh5wQ+QTj+bALfa57K9yHHFmIe+uzXjg8mP1/z zx4fww4Hcd3hLOGIu05X/V4PxuO1wn3+w3h5TO1P4LcLx3eO532I65SS9v+X ZpuPewiHu32eeHsxaVc/8ZzFV8WkHdZwRF154bau12z20kvtgf4u5vrC9EKU dxzf7xKOPPdI8kErqH7I5UW+M3S5cPRzaIvFPw+p/Y5DrEP5bucHhcjb4TcO LvDdiULcOwT1bMX3ec8TDv+wfSFpD85nnS/c83z8/mwh2uM4pqXrC8l9/we3 G/6YeEbME3vzncVrhUNP93Kf65/FP8IO0uS//iie0XG08y/CMe4e5T7a61UP mnkq34P9Uy7KO45xdoJw5El7p8xvXSgc6ywPddh4XSgc4/9Mnr9YXN91HP1r 5r6Ej/UesvlPnjO5uhD3DmEc3c19RRcIx3rTg9k6/8n1hW+Fd/N8Buy3Ry7a 4zi+W8gGDv+5C+9fXzIbeoHdbMPzCJ2dgcNMruE7Ca93Rj2Ib2fwntFHOqM9 jsMPviccdnwr76nPqR7IfQDPDTyVSc4jA3hub7xwjJPteE/STOF+vhbt3F/f 9XO0lnfqu45DbgfxXoAJOt8DXnYNni+4oRD7cSCP77nf/iLhyJ8WU3sS55b6 Cff4Gs24NJOc7/x84TGZZDtX5XrU6enQC/LRZckz9ReO8gdxXWtlvsv7FO3n TL17bfc4En9Y73zDr3UULP58RTh+v4f9Gs/1lh+5336AcPjp9dKB4+/+SZ5j AM8LHUXev62QfI/1KPr5VYvBV2N8DKDf6C3c5QN5jaR/WikVcoD9ncT5KtsR OHiOoZyHx3TY92/gubF0IdYdMA7m0N6+LsT6AtT6Ksd7rT7HIecT6Ud317oG 2ruDcF8HcRz96qN1E5x7W6lo8/cvxfDT0NNn1NeqpfDrGN/LFk2+M4uBu9xg ntcw3rm+LeTsOOTzT+GoZxTfg9mB9Z9RsHvhVtC6g70nULB5qFl6wTi4mPHw 2lp3QLs3pp3vp3UNzBtrCvd1EMex/rKj1k38nN36dXke4tkvMg2456d+fsRx +JV9ijYv1OIS5+scx/h4uxS8HPS8JfOpT4W7HeLnA4xLfmpJzoP/4P19rwlH c4eyX8/xfsTPGUc9XQpeDvK7jXbyhXC4i0tor+NLwddB/RcWQg4+b0Mfe3Bd 4LFGHPq9Xutc3i/4mVXK/Ub8ak+THgs/5jjE+sTIwMEPb1m2c6+/fzzp33Ys J/cD/o3t79+Io95jxPPDHk9n+cvFt0Ovb3I98jjx85DjqRy/g4XDvntQzneJ /3cc/uRBrRfA3FcW7usLth7LOO6CcuTNjiO/Pl08P/T2DuPGYcJtvbdo+cPN 5eD5HYcary4Hnw/9fs844Q7hiDv/XDQ7q8nB+THHIc/B5eDBMP/343cvF+76 QneOKls8dnFT2K2NA6677SMc39uR9fyB73teSb0MFz+Pz0yjXk4uRx4AOT9J /V4p3PYdFEwuj4tv9/Uvx52fdxzteFR8Pvo/gn6pr3h4fPdA3ov310Yc/dhL 64BuD/CbL0mPbj/AX27EMV++LTtBP46g3/hAesSw3Jp50OeNONzZtHJyPehJ jq+53Ed5+lfmN7tZ/zjK4cMvbTy1CcfwWuNL0+NdrH+q9mNC3zX5Yx5ob8Th hwrl4PkT/jBfDl4nkZ8uXWnA0b4e4vnR/2vIw2xeSd6b9Anj25XEz8P+LmSc ubFw1LMO/d7e4v8dh7vbX+sFsJtthfv6gp1P47ywoXh7x5GnrFV3PmUm86yt hOPHzkWbR1cUz+847Gcd8fkwl9U5X2xcx/P/wvwrWw4eGHoZzXGxtN9PMc/s v1Iw/c8tB+5+AMP4tbLxQ/Pmht9wHO1/RjjkML5s96vuyHcZji3Eepz7H/Tz 8UKsu7mfgfw8L1hB/Dz6tQbPx+4o/h920Uu4rxc4jr/7g9YXXI+Q74mSv+sd 7RzYiMPfniv9ol7Pyy6Q/O38eMH47+GNONp5g/QLPZ3K9pym9RH82U7kdYc1 4lDT2Vp/Mb9YbODhfT+W434e3ddT6stj3ly+FHy778PGf88oBj/v9yaiWR8W o7zj1m/FVRfZBt0GHt75+tXq+Hzzq2Vrz9+LMd/be7h8r+lq4aj3hEqUt3re iPKOO89fX4/HAfX1WP0fRHnoaYdSvGuA/naVA3f+33GMi1VVHt/ppfrd79e3 x9tZ3x6/B6m+X+736+tJzCu/qcfXe7y837sKePvp0U7Xo80D06JfjiPs3mV6 4Il7YBdyX33PStzT6jjWJ7cQjnE3ezrjCJ4z2aAU4w39mFS2+4TWLsU+eeQF Y8vGi5SLgYM3/rwc9Xs9ML+KcB/n4Dl7SA6O43sV9QtmOnGWyecqyQH+7HKO 8+HCMV+sP9v8xUDVg3Z+Ntv0coza4zj6f4Zw6OkC3lN0serB+B8zz+aT2aUo 77idyxQOO3x7ns2XncJhv2fxfZ0/6LvoxidzzJ5213cdx7jdqmxxxUal5Pu5 I0t2z/p6zpsusP2AQ/2e3WLg6N+Nao/Xg3lotHCfD/Ddr0rRnkSc+r5wzJu1 +BL171AKvcAON2+yebSvcJQfzrhwNdUDvU7mPvzl1B7H4b3WqsOf5btBm7L/ iymfhD3cxPveXy7GfUGQ22Dmhy8Jh/8cXIz6vR7kVf8W7nEq8oymYrTfcczv HwqH23iQeWN7IeQAXuAB3ks4QTi+l2ox/d9N/Duuj+RbIs5DnrIx77H5U2ty PeAPJYsL+tXhRd5zsR/3tw1lPPe0cOj9fuHY51rm+YKvC9EvW+dvs3q+zEf7 sW6yepvJ93Ph+HFOm43vu/NRD+TyflucN3A5J/CHhKP/97ZZfv4m9yEtIX4E 7SqRj32zGPcOwQ5m8n6H0cIhzlm5qD+xv3Nlfdf5FPP3an8C3zyf9GM3d9h+ ukNyIQfI5YYOy+O3Eo7xOKvD7GIR+eqf+D7o/I7kPWubksfZSveDIA6u+Qf8 3EY45ptFtPe+KfOHC3n/xXPC8fvPwjE9NnWY/LfPRb/Qrr5ps7/ts9F+yHtJ vuu4XTY5rx2bNv/wg+4fh928kLY4q0X3jDuOYktkA7c8Mm15RG/uQ19S7znb d3h/8dhi8h3p3Xkf8RvCbTWtM+mH/d3jocI9bsN/j1b7HYe53CUc43dIp80j L2dCDrC/88mP3y0c43QM7+U5ge+K/cC44jO9a4sfm5RMjivpfiP82JBxxerC oZ8K+cf1eN/DvnwX9hnhiFcGCYd8vuG7NPdnol+23sZ7ns5P1907n+V9fcL9 HiDIYW3qcwHzqQPd7ll+zVLcM+S8N/BlShZ3nysc9YylX7o/F3w79HWzcOfn Hbf11Vzw+YgvDizxXvB8jHvHMd8Nzyd57z8xXnpEuMsH+cNe3Ife0hFywDrF YjxvcZ9wvL+8FO9NuoO893i+KzJS52/w+wr0D3/VORvIdRb79Zxw2NF15LsX 5ZN8+wXCnZ93HHFLaz74fOjzzyUbn+MLwXM6jt8rheBFge/P+XmpYuAuH/z/ m8yPT2wLOaDfZxX6PYz8UTj83uUF089ybfZ3XxbNXpcTP4+4tBfHxVdaL7Vz O+TNehYDh9oe5Hg/Unw75oXLhTs/7zjqP1R8vr1zwzzi4kLYA/Q0ku/SfNSI 2z4Vrb/sx32J9fnZcdy/V48/ynM79Tjkc0TJxn3vUvB+jkMeO5SC34M9H8b7 oXYSDj66Fleg2rTiIKyP/ET77FlKxlPrUY+TFE+5PaB7/yjy3Elz2I/j0Mvb wmG/91LO13B/wb+0LuN2aOvTWn9xe0P7ni/Geo3jGB4DWc+e4v/tHRjhvl6Q wDfX+oLbM8bFmFLw8263sM8nS8HDO47f7ygFb+/1+HoB5vO/jYh553/hvp7y LQbsSNPXFiXjeT7VvQKOQ55jdQ8B5Ob+fLpw1LtbydYxm0tJnn83ngf9thR5 PID1S9y/LNz4H7bneeUrGH4r8v3yscpXEE5tzbj9buFunxDf2ZwnH18Q9uw4 +nG7cOj7CsbX3/O879u049c1LiDeJRmPPSD7h3+fwHhvvHDUfynzo1wp+Hbw MmcKd37eccyn80vB50MfL9FuL1LegPFwLdcRb2vEoY5LlN/gO8eTL1pK6zjo z3H87v+DY/ispPUdjP+HijbeV9d6Dez+cvIY6zfiiPM313oQ/HCe+PZcv+jx Mf+e+5tW5/mU68db3r+6cPTjw4+MD57D+Whz8fn2Xgt50d0bcehtf/H8Pr7w /X3F5yfi+RMacfjP08TzY/74omjz+FXi2zGOavEJ8qZB4udt/y3j2H8Kx3g4 izzSA+L/HUezH9V6Aaa3y4T7+gKGf1/Gn5eXg7d3HPVeKP4ffrsn7eZa4WjH 3uRP7i0Hz+845q9by8Hnw+y25fx+n3C04wjGRdeVgwdyHHK6q5zk4Q/j+cB7 hGO+P6hk8dBB5eBvHYc6TnHeZ5a1e0+ux58v3PUOO9inbH7gxrnhh7EeVLNn 2Ol/5gSO4bZR2eL3Zt5b8CnHy7ni+bHuviLXcQeUgzcGv7WA4/pi4dDvzRxf D4q3t/c6hDvP7zjs7i6tC0AuH9EPbFJO8va3cV/ugY04zHVbrQsk7OoN2YPb IbT3TiMOPzRe9oZx8A7Hy4Rycj3oRo6v6Y047HS+7A1+/Tu+7zdb9gD/V5vH sZ+11Iij/T/I3mzfKvclTpU9oN33c396pRGHvFpkb7Dzh0vBwzt/jvbeKt7e cXz3LeG+3xXjbqB4aexrmsT17cHCMc7eV3nnt708zK42rztfjf5exHOBTcKx v+544e6/HPf6Z3L/udfvuO9jr2+n+0dvp8cfkNc7M6M9fv4W43rDmfFdxxFX TBLu9eD3wd/auLygHHGP4+j/COHgTU751vR2A9/p+qQU+oO51eYN2O07pdgv jXG5JteTHxIOO9pQ9Xs9GCeHCHe7gT86Xe13HGo7XDjOfR5GvzOjFHJA3rc8 75OfIhz7Hl+ba3b3ZinqwT7J4+aZ3v6teNFxjMcxwrGfahHrn6R6LH9ZaHLY WuUdt/PBwqH2PRfa3/cTjtFWnG/yvVQ4/v7o+dafO/Rdx2E/V5XMf05QHGbn pIvGT7xXin3OFu+R73tEOOT5tuJjrwfqXFLt8bgN46GP2uM4vttTOOz/vmbz EysXQy+wy4uaLY5YTjjkOKHZfk4tRD1oz1otNr+8W0i2cy2eE54j3NYJmk1O P6geu+et1fr9UT7KO45+NeeT8r+t1cZjm3DYR0eL/TyykCx/P+8zvb6Q1FcN Rz/PKJhfnqj9Sah/p7zlFx9oPxzmx6XJxz4mHOJaT+3xejB+L8g37JeC33o2 H+1x3PcbO453o69rN/n8Q/caww5Objc/fKFwzCOv8x7eXbUvDT9+x/tS/qD9 bY4jLNxbOOqZ3W7j4ORc0g9cmbL4dbNs0m84flA26WeGpSy/O6Su/IwOy6ve EY7xc12H+fuC7mV2HH7xa+5j/bwU/BrimEf5HtL4Uuxzxrg/l+/lPC4c/u26 zjq/l7a45NvOpH+YmbLv91R7EnixM3BM30dlzK9OyIReMC625L3uHwq3fQrc F31RxvzGQ4zrnssked9PeA/F6EySr32b9j9VOPpxG9f1qpngXeFnLhTuPK3j kPvETPC6+P8q5/EpncHXOY5+LZ5N8nJZymE14S4f2Pcn3C+9XzrkYPvE+I7Z CsJtfYvvX5VSNg/eynG3Zjb0hu+9xfrn6b1czA+PkOdZPxs43OlFrP908bfw CwOFO9/ruO3DFT+M+Op75gsH5GLcO45uX5qL8Q3/2s3+DheO+XwS46If9F4E mvsU54W+encC/fiY8p+vdydc/vDXN/P+y3HtoS/HETY9LBzyfJb9Oqfd2vkP +uFeudA75okHGf9kpF/Ucznjsd1zgUOPxzAuujMXPDC+d7Rw540dx3rSabng mcEHTuc8MlD3bMFMRnNeu1X3csFvTyUfsYtwl7+d5+F52Z1bQ1+OQz5bCrfz Dzxn3Mb9tFfzfpPL8slzM89TnvvlQ7/wEzeWyNsLR79OoT/P5oMHhj87Xrjz xo4jT/8yHzwz+I1h3G/QrfdDIL8zS/32+bUjm+cbcOj1B71z8iH3W3p+6byr nQvVepfjyfMjwgEXqa8ndH7Lcchnss5pYXy1en4h3P0G7OYe7nsa1Rz+Ad87 gvvgBgpHe47le95/bTYe8ybORx2F5Htnr7H+FwvBR9m+f/K3PwjH359D/u0A 8bfoz8nCne91HN34o/hh/LyefOtJWl9Au85jPY814uZ3tE7h/YU9rqt8znGo tap9VS5PzBMbKp9D/7tYfvlS8ACOYz7ZoBT5PsyjwPW+LYR7/RDXUvy7QxdE eywdZHva5weOer4kz/f0fIvHbqcf3kb8KszrbY7TXtqvgWoeo5y3E27vvZBf PkJ8Kdp3mnDnVx1HOwaIj8X4upPy+bQY9on2D2Z8snypAYcdthbD/uEfHuE8 fhP1dsFo3itZsjz1fH7n3ldtvL4nHOWeecnkehfPM1wlfhtmfRHznbsbcexn elj8uesLdv6g+G2Pf/D/oxtxzAPvij/H/f43c5/Dt6XgJ8GbvMR63i0Fnwle 9FrayVTh0Pvx9JPFUvCljmNe6C4Fv4r+nyLc+Vj83be0n8niCRyHXico70fc +gbtZq5wlE/RbrKl4EUdh5xbSsF/LuJ6A+LpvHDI64eS8Wefaj+a4xDXfO0X Q578PfWyUDj0+FWp339+7cCjyuPhx56lPb+tvB/T0mfcP3VbHU9Q4P6pQRx/ e86O8e645TvC8Q7ZEOr5/ln2vaFaB3G/gfH6qNY73D/ADw/X+ojjxtvT7jtK wU+iv8cIdz7TcQyrqaXgP90eUH4F8d5uPyjfsxG3e4fEh/u4QvvXFb+N8ucQ 36IR9/PbCf78X4zTdiUvt+4U81NfMa5bm+e3H5xs7Zsk3NZj+C7wE1wv2U68 JexjKPt7QCMO8R4mPtPHO4odxfMI208PP2zvmvNe2k2E42df8j63TIt64A+O EP+Z4FvObsThfy4SLwo7eZp8ST/xn/Cnw5iHntWI4+9OEC+K/l7J+H9t8Z/4 /tmc53ZqxNGM9cSLJu5viPfGxsY9DY77fl6Pfxx3u7L5qv7dsi8b3mmzuHF6 A27xCe+9HlhumL/xd38uN8z3+LNdVN5x3zedbH+xoV++Tj+M+7UdH8+4EN+7 tMz7PT4wPmsa56Vbhb/za7s/FH4D9wk7Dq310HiDHmp27bjL3XHE2RsIhxjW U3m3g/ryvo+3vrzjXt757CdQy2wbB1NLwX9DXm/MMj/6gXBM9yfMNjsdV4p6 wIsuyfcxvyzFfQ+OQx3zhCPuT83me1Ks/0ytxyC/vIH4MTpfAfPx9dU9hENM /1T9Xg/80RPC3f9Cr2PV/sS6zijhsKsZjNu2kBzw94/Mt3G9kXDY074LTA7L qh60o5P3YP9YjPY4jm6spHbCDIfx3EUf1YP/LzRxvV/1OI5urC8cf9fCe9Y2 E45x9acmi2fuF478P7XQfp9QjO86Drt61t+XrBqfP1z3IT1Lf1L/HrKdp6jy O7r3yN4f0nkwxCmX8DzxceXYd4J44RDeI9BPOD5f80fefq8H7uiFQlIOA8gD NxeiX45DfR8JR/tmc3/ve/nkutB7LdaOV4WjOz1aTf6X6T5NtG9gq42/U3X/ puPXI6/OJ+9H2brV4qSnVQ+6NbfN1hnPzEV5x2HvNwiHXqa0mV3fLhz8wxZt lvf+LBzrF02t1t+t9V3H4SdW4j1l5+h9NfjTeXw/6cRy8DLwW6/ynd29hMP/ fJpN3hNTqwfrG7/PJeXg+/MOzkV7HEe9mwvH+Hytw/Ce2dAL3P3dHXwHSDjs cTL34Y3lO4n7cxz9LhX3LsMvXkB/smEq7ldGM86k/HcVDj3vwfXmw1L290/z Pcl1hCPenCkc/MY6KbPz77lP8zHGDUeng/dzHOPmunTwe7afmnHP7cJdPrD7 HdL2d8/ofT6rNmX88JWZpH9bIm3+9kieb9qFcr4+HTwtfj+V89QxutcM7T2U +0juEI44fAPOgxPTwQOjfT2EO2/sONrxYTp4ZpQbSj82JJO8H/0Y2snjmbgH HXr+R9nm70OFu9xM7pRvn1TI2XH4pZ7C4Q/70I990WH1bUq/cVMm9IU8rT/P RR+bCb3AT23FefYF4bY+wfcT/psJHhjz0GLCnTd2HO2anwmeGfXey/H1Smfw dY7DLBZ2Bi+Heesm3mP7X+GJeeepTmv3Pe1hJ7D7gZ3G0x0oHOPpDO7P3qvd /NC2tLdFnTHuEZceR3t7tzPGN8bDbhyny+vdYOzL6VU2PR8n/hbzztLCne91 HPrYX/ww/PdW9P/ndwZ/C/muwjjnpUYc9Q/XugD+/yHuf9pI7107jj//i96j Bq9xD+V2hvCEn18jZ/a1UmvIE/r4Imty/rYlcHxvbtbG1bst5l/+SHs7Nxe8 Gcbh3zhvbptL7p/cj3Z+kXDIrZZXwK7fzAUPjP4vL9x5Y8fRnpfEM9s74JTD zGzYFeS3Ju1zw1wDDjutZJN2+zjj2Afr3ht5nO+EfK73QGDPj/Je2m/q3g8Z Uo73DJynwjg7lHK+Oh/r0vAv55Wtn1sLdz2i2bP57voNTaF3x/HdM4VDTt/x HMsO3E/Ypxw8v9sPmrtPOfj8BB/7h3Lw/47jxy/kn5vywQPj95+FO2/suJ2n yQfPjHqGs7+vFyKOxvg5nuNlXiHibtjhPznv3Cg8If8dea/+4vNCX44jvijM DRxyO7lg4/z4uSafzfndSYXQO34/guNuZCH0i3HQl+M9JdzW+TkP/km8K+xv CeHO0zpufEgxeF17N572fIB4e4ybnvSfwxpxtPvPdesCA1j/4+KrE3Hs/4PD PlM6Twx72IbnCLcVz4nyRzEf6SVeFHranPLZTDjq+YV8zoHiXR2HH+8vnhaf W7ocuPO66NdwfncT8aWOQw7ril9Fe/5atvhge+EQ023c97aP+FXH4Vd2FY8K vVzG+GQ/4bDP+3n+taLzrI7jeyuLb0R/buW7v31Kyf1pA8jvdPCcQues8MO+ nx1+4CThcBcv8JzBvrNsHGxH/a4jPhPyqo0v5Nv/LQZvAznX4knfv+844vtV 2J5DxU9CLssIdz7Tcdj1vuI/4ee3od2+XIw8GPWtSn9VbsShpo+K4R/cHtCd gdKj2w/w0xtx8KkXyE5g3xuXbZ67RHpEe3syTri6EYc/vrmOhz+Y+fWd5O/b yIcPoTwvIi/z3QRr3/nC4Wbu4/64/WnPN4gnRzbTh/HJo404zOVZ8fBuP+BN nxNP7uPa993U4xgvE8XDo7170N8uKAXPCb93AuXwSSl4UeR7fZkvzBMOeSzD OG1RKXhXx/Gd70vB0yJeWlW487reL7TiJfLE86eF/aPcddzXNly47ydD+3ea Fu1EO74tBV/q/erH/XDOr7oc4LdnC/d2wv1+Xwr+1vvluPO9jqN935WCH0a7 dmFcfYv8APC1aIevN+Jox8Na70A/elTCj/s6M+zpZ/GZvp4M/bWJz3Tc7Fq8 5QPkYS1PFY76zso18JzOz0Jdu+i9Zz9/6LjbmeP4uanKoz87loL/MfObGN+x fQeNuLWrK8an4/+rnv9V/n/Vb++5iY/F++z3lcjXCsd5nat4Du1d8bRe3nH3 y/BDI4W7/0X+fq/qdxzj+8pS3P8BXmPCXOP3tnE/V7F3Pw6Ya/6vj/AXcc8P 13XWUD1o/8h5Zs/ri99O4NsJRx7wd95jsBN5xeV0zzt46Tc5z1TLcT4HHb+d 59kWCsf9948Vo36vB+sbbcI93kK/eqj9jqOe/xQDh3q34bt7ixVDDtD7Gk32 /WIhcMxX5/D+gXcKUQ/G3TjeJ/BEIdqTwD8sJNcFrm7ieTjVA3vfmffEPZeP 8o5j3v1MOH5s3GLz1jTh8GNXNNs43lvfhTh3577Tv+u7Cbw/7/NaQe9Do751 +P7Nd3rPBvsJu/heRbNw/Fg6n5RDrR7cs99fuOd78IMj8tEex/0dVsdR7vdt xusflwu9gF/7odXim4OFw9/uzXf6lmY+WqYfPr0tzr+jeG/eY3VvW5xzt/NL FWvHE8Lt3gTynC+22T7JQtb84WfCsc7QOxc4vnch3xncOxf9wnC/m/uBlslG +5HnHtZuPE5XZ+AY1xeTn3y908ZZK+XT0R78IfSyEt8v+aw9eEJ89yfmL4uE o11TOL42Ej+JKGuMcOczHcf3VxX/Cb+1e8Xm23EdyX2jNRz+tdARvBPWK7fl /VA9U4G7fKCX0R1mz//MhBzgF4d02Hy2pXC833EJ278ZecIZ5OuWTgV/CDH9 Qp7z847gCfH9JuY7vVOB2/vgHC/npYKfRPw5SrjzmY7jO8ekgv/E3+1dMTvZ IR18lOPQ66B08E7o16685+Yy4S4f2OkmaZtPujtCDhjH8/g+3HvCYWfZlMn7 Sb6bNofxwNB0ks9cqmL2uWc6+CjIr5N8yLXCkb98WDb/OzEd/CTKjxbufKbj mLc+EP8Je5lLvadkD6hvHPnY7dMNOOpdPJ20twM47zyfCT/kuN3TkQl/Azvc l+8kNQmH/axJf3hiJngh2GOJ/MnITPJ+7pX53b2Eux6RF+S47/b8ttC749DX ocLRjmUzZi+92yzu/FT8s9sPvpMSz+x2AnucIF7aceQXz3C9v5oJvhR28C/h zq86DnuekAk+FvVsWLH54JPO4JF8fKHdxc5YN8NwWp/3VD0s3OVv9x5z/SPd HPpyHPY2VzjaOZi88b3NZpffML6a25nkIRfxPOdznUn9zuC5vh+Fo95XOH8N EM+JtOp54c6LOo7PbZMNHhV+YxLz1mPFb8M/vMV4+5ZGHHo6Qfw5zGgPxslL 5CIOchzzxPa5JB+1Pe35cOEJv9rN+eykpvAPaO8bWZt/VhGO5o0hv70c46Bv yacdnAt+Ce1bvGLlVsoFHwU/0sLvniAc9jOGPOq/xU/C3l4S7nym4/j9fvGf kMd08gYfZIOfhJ94j3pZLNeAQ92Ts2G30Ns+jAP/kY943HGI8bl8xN3wa7vT P7wj3OWMcXFO3uLrl+aGPBEXr8N3QQ8QjvOZ2/i7xLzfax73XYzLB+8Bvf2O 9VyTD54E/5ujHD4WDnv+mHJYSjwn9PSacOdFHcfnfskHjwr7WMA4alPx27CD D8mPXdqIw13vL/7c+4vpY6reEXIc9vVAoeFeQ/j7bCF5bnKHCu8d0v2CjsPd 9SkG3wi/uW7Fxs0uwmEHB9Jv5wrJ88sH8v2tdYqR76OfNf+D+Gd94WhHb86b jxQiH4c+usiXTinEvhh8fjW+nzNcuNsV/N3m5LefmBl26Dj89hnC0d+DKZ8f ZvCciXh1t2e0Nyv+3O0WYp4kvt1x2N1z5A+3Fa+I3j0t3HlIx2Gny4i3hFg/ L9s+ngeLSX74zbK9D/tKI459r+OlX+yXKTLunezvvbxn/VqL7yON5PnmoWNs HK0iHP274h3rR4btf1/3SmIe+JR8WqoRhz5/KAZ/6PYJHuUHvUPl+Q786Wql Bhz7WNer45lbGC/tJB4P+l6M99v2Fu+Hct9yPtpBOKaNl7juOUC8ouOIEw4X D2nnW4U7bwm3uEWF71GWkvcDb0F+aZ1S8r6CFekPtxGOchsz/l9C/CH+XZL+ dnW/j2KK+Y2NPE4rBu7jDvq+jvfrjJwS49RxjIvrhSMOGc3zlrnJ1s6pjBtX Eu8Ht/Uj+dU2jWvobw553d7i/aDH0cyD9heviGH8b+HOQzpu65TiLdHur9ie +3XPJfzj2+RDvmnEYZ+Pa33B9Qh7OVvyd73DXi9sxA/B/Q/SL/TxLfOjv4u/ xefHcr1geCMOP/kP6de+U2043+J8muOej9eXf435LJr1ciXmiY+4TxL9vFM8 p+OQ17vCjU/i+w1nim/0+9Ec9/HpONQ8Qji+93HR5DyrYvNi+3TySUXbX9tW ifPvaM5awl1/jvt3fV5/GfuqhPv83fvXfneqPY6jWW8UYz8t+t9/gc0zqxTj /T3Yx6z5Zq8/FwLHZ69cYHJtKUQ9+LEJzzWnCsHrOg7/vYz2tRptusDmvzV4 X9UovY8Iv3Ui59W79J4r6t+V7xZcIxzN20/f9Xqwn/0G4R5HWh6p9ifONT0u HPYwmPnJU/mQA+R9Cvf13S7ceJZm8x+H5ZNyXob78XbJR3sch3s/WTjG6afM T27hO5d3VBgXtQYfBf/7DvFdW4N3Qr0v0n5OEo76rma8dFVr8F34/XThzo85 jnrObg0+LcHbf8R3rNqEQ2/XtVgetqLk4DiKtfEd2RTziH3agm9xHPHwRW3B q8COFjLuvVG41w8/sSPft57fGXqBP823Wr79RGfSzn/kexg3dVo7rmY+clNb 8GOwxxcp5/5twYOh/3ew/SOFQ19n8D7pOW3Bv6GZxwp3vs5xu9etLfg92F+O 4/3t9uBbHMd8kGoPXgX9ztB+ysIhz3GVfv1/Fe/f24P3AH4v9ftce5zDhpzf qlheeVQdvpB+7BfudzkmHfpy3N5rqsPXIm+5JN+zOpf55oj20Dvc/K2Mh//W HvqFvZ9LOb8mHHn4IeS7ficeD3o4WLjzfo7beaj24AlhPxM5fmd0BE8C//E0 45MlUrE/FN/5lHzLyx2Bu/zRvBM6zM4nt4e+HLd9gsIRl13TYfHCMN7negn5 5FxH6N3W7Si3dztCv7CDoezXSqnAYb5/4Tvfp9bxeAOEO+/nOOxwr1TwhOjv hcyDzhIfC3mdyPcGHmrEESecI14Xfr6NcdfK6eBbHLf3GtLBqyA+/pZyO1V4 Yt5Zive+7tcW49p4r5TNo9+1Bo7PTUyZnZVbzX6GM07+azr4E5R/rmI/10kH 3wKx3kg5nCcc9fyN7RmbDv4N3ztKuPN1juNzz4vfg9yH0v4np4J/w9+fynmn V7oBh3wXppL3EGc4Xq7PxHzoOPzqW5mY92AXzfQPnwt3OeP/L88YfzCuOTnf bc36bxAOde9JPv0c3m99De3tq0zwJ9i/Mor135UJvgXyvbti64bThaP6s+hP 1hCPh/r+Ktx5P8chh17iCWHPI+iHdxF/i2ad4XlBIw47+4v4Yci7QLn91Blx meP4fctsxF/QU5brp32Fw14/qti++Zc6g/fA9x+kn2/tjHVOtO9dru/cKdz1 iGp353x24YLQu+OIm7YVjnn6+E7zz5/Pt3b+XTyt2w/UcKf4WLcTiOOCSvC3 jkMc/Snnfer4wEOFO3/oOOaPNcU3Qj5fVPp9+iuwei54CfjP57mu1y8X5yih 388p/2w2cJc//v+BrI3HQbNDX47b/UnCoafx3Mc7dpbV8w/a51a50DvE9Djn 0++kX7iJKyjPQ3KBQ17Hsr+P5YLHg386XLjzfo5Dr1flgieEOC5iXPR8Nvg0 yOkkrkcvaMQxv7ycDXtL3Ef0m3Ny+/L8medLjvfh+cH683bIp9s5jo7OR77s OPzAdfnIi8HXzKE/eVK4+x+056C8zbN/nhl+BnpYOm9x8PszAgcvuSLvVXiG vNaV9J+P5CP/xd89z/pPyUe+hX7eQvscJdzOxzCO/SEfvJndjyHceTbH4c/S +eDl0MxhnNdWzif5tIHs11GNOPZLbCie2eWD4b8f+b0eIyMOdxz9ue725LvW V/C9ozcejHqgz2cKwad5eYuLGnHE0+lC8GxQ//XkP9cW34V5/FnGk62F4Mcw Loaxv6uIN8Of1eZHxAWHin9zHOtUR4ivMz8h3Pk96GMy+9Wz7j2WyZTDfwqR r6PdrzLv+0Mxuf+oifimeo/FcZTbqBh8mq0T0P53Fo52dHJ+nFQIXsFxe1+z EHyL5UmUz3LFwF1fiGvf5zu3/aYk89PzC2bf8ycHjnj4Gua3D0y29o3gO0wr F4OHwT7Ul5hHz9A77Vi/upd562p6Zx5yONfnR/FmmC+OF+48m+Owl8PFy+Hr 19NOLi+EH0B9Z1KenzfiqP8B8fBuD4jrrpEe3X7sHqZGHD+fkJ3A/obzu89J j7D7QbTPTxtxtP9b2Ynt7yT+pvQIfdTmWZxba2/EB2M+L4adWNxUrttnxveZ 1xYPZvvIFjbsu/M4qn7fncfn9bjnfYnzhr/BEW+cUQ3ezOYX+q2Tq8G//d0K 8J4/lXe8nt/z+aae3/N3d+txkw/n/1Wq3Ef3De+v5LshO1WT73vdUIjyjnt5 mNFN1VhfQZ4+neev76zy/vPJ1t8xwk3f3wbu9fv8iuberu/6fIzfX1A7HUcc e24h5AO7PaIp3u91OaD76zTZPH+VcNjFX5vifWBMY7ux/meaQl8Q12nUy4tN /Vz+GB7HV+37HwtHnNCX9c/juzkD8pYv9xKOYXS7cNj/+008p8XzHPdUrd0T moNvcRz1LmoOXgXlbq9avUu0BA6/eRrlfEVz8GOQV62/th7fHO82Qx0nVO3v zhCOz4+omh/6fbO1c0++6327cMRxqwqHmWzRbPFXZzb663kO9PVTLnAfh2jn bpKn47C/nxj3nV+1fZYdLcGTwM4Orpo/Xq013hXB98+mnXzUErjLDWI5v8Xy 9HcyIWfHEV89LRz+7R7u6zuN+6DWph5/bgl9IZ/Yq8p1CekF47BP1eKQ9VuT +vqRfOPF4t/Q/27hztc5jjjsiNbg99C/1aoWn1zeEjwn9Lsk9f5CI275bEvY Cfpzc9XkvX5b8C2Oo/+HtwWvYuuvtMOLhPs4xfhbhe9GbJWO8Yj4fmar8Yhz U4Ejr5nVannQ7BTXs6qW15zZFvwJxkN/1r9lW/At8F/bVC0fGC4c4l6qav7p m7bg32zdqhK483WOo9wY8Xv4fk2PyE+bW4N/gztYtmp66dPWgEP/hdawW4yz O6rGy9zbHnyL47DbT9uDV0FefUPV9jHPEe5yxj1tN/J85rPtIU/EcXu2Wx56 rnCMl/48b3kk7+vbvGrx0bz24E/wd0dWeS9De/At0PcuVYur2oVjnutRtbhp C/F4cCu/VAJ33s9x8B9/EE9o6/T0n4eIv7V7F6oWP41sxFH+tPak3Y7kPQbL p8IPOW5+JxX+Bn93F8fpPsKh1zOrNu7HdQTvger2ZD2LOmI/L9Y3avM+/vxf wl2PyAMOI8/YpzX07jjG639aAodfPJf7Bb/kfudVqsHTuv3AfnesBh/rdgI5 rVoN/tZx8NhVrhccLT4QdlMW7vyh41D35qngG20/Gf3epungSeBH+zOuODId 61QY3zV/jl//mwrc5Y/6XiQf+2BT6Mtx8L63Cke4MS3FdW7i61ZtvO6RDr2j 3fvRHy6fDv3CXDasWrtPEo7+/Mz3JEeng8dDfLBIuPN+jsN/3JUOnhB2vSbn wTGp4NNQbin64Xwjjvng/VTyPslb6Cdr85DzLY7Db4/MBK+C8XBVtd/CX6t9 LZPkYfal/RzLewTWWRD+AbWuzn2b188PHO3vTT7z4vk2721cNT/5YibiO8SJ h9HfXpCJOA7d2K5q42OccLjLZarWvhXFv0EeP1UCd77OcbTrh0zwe/A/G3A+ 2kD8LfzMcrSfQY045Le9+GHYzZ30z7M7Iy52HP55uWzwIbC7m+mH1xbucobY v+Q59J6zQ56wrys7bV/Zs7MCh13dxe+exX1xW/i8nA3eA/HqX1h/W2fwJPj/ 3SiHTbKBo96VOS7OFI+HeGwx4c77OQ4++VTxhJgntuI8fnNn2BXk1cPn8UYc 9TzXmbTbe5kfDcgl97fcy3j4ilzk17DnkZTbtcJR39mM53/JRv4L+96H392B 66x7Tjf9D6R8mrKBux7x+618z2+J6aF3xxEPfjYtaQ8vZu3nCdP4Dlw1eFq3 H/zYtRp8rNsJ/nfNavC3jsMvdHNd6e5c8HgYZlXhzvs5bvLIBU/odojxemc+ +DG3N7TrnHzwYI5jvO6eD97M6/H8BzzTvkMi7/5fuOdXFidca3Z7KeP8sfng zRzHd/6dD54N4/5oziOThcNNX095VvPBszmO7zbng09Dcy6pmr/pFg45D2Ge e2Y+eAbo+wiWvyMf+1PQzYvo3/4k3O3T1qOp99xXYc+OY53za+HQ/yp8p/rR L80fr0/7vCIf4wJx20HMBw/Ih/0jDNuUcc5DwmGfv5BnK+SD77J7g4U7P+Y4 2jElH3wa+t+beeWPuSQvvTTnr775Brzt14YsLt4bPxanv91OPCrk8j3X+3Zr xKH//uJXUd8fOH8dLR4VdleLtzG+BzfiaP+IQtgJ7HUfyvNWvls3aLzZ6Xnk AQ7l/b3bfGTz0rnC0c9VPzK72Zvja6h4VMixNq7R7H834tDPe4Xg2Xx84fsP cx3h/c9iPOK/j2U9L0wIHP7tZN7DdcGEqAf1PlkIXs7HI747uxGHv51XCL4O 88XGzPsGio/FvLA89fhsIw47vFS8rsWnXcFTXc04wc55CB/N+aIe9zjB8lTh Jjee58uKB/N4r76842an4vf8/rN6PLGv4Dd8o99HBHyFruD3HEfxDvF7jkNM vboC9zwF439ste4ccboB93wW8W+LeEXHYQdvVJP7vGv5Zj3u+Sn6PVX1OI7y o1Te+Y163HkM1DNe9TiO8k+rvPMM9bjzEqjnNdXjOPic/7h+P4l+AV+qK3Bv v+NmH1OT+DzG1fd/HP0CPr3aj4EVx0M2cC/vOM4pfirc2+m41+M45vP3Vd7l AH+yW1f4BcSjtTzScR8/jqO6HVUe3do4FeV9X2V9PR5P1Nfj81Z9Pc731tfj vG59Pc4Dez2Q0iOSA+53Pz0fuMvBceQLTwnHudet81G/67G+nb6eXd9O9yOO Yx10oy6eH58T4wV6WEe4jzsv79/18rCHtmrkCW7nwLuqkccO+S0PmRNu806n 8dAvM26/tCnsAX7zvSrvt2kK+0Ec/TbnqduFww+8QH/b0hS8K5r7hHDnaR1H 3DWpKXhd/FyzK/JelwO+u35X8vxPTQ5of01u7k8dRz8/Zty4oDnGKeKkJub7 9zXHeMQ4n8K4rlM4xFTzV/C/e4h3hTU9I9x5Wseh9+3F67pfwrA9oTnpl0bx Psx/NeJoxhDx8LDbml1Br2u1Bj/mOPiEQ1qT75DvzPJHCcf8umKXxSPftIT/ h/xbq4Yv1xrzBdq1ZJfNS2+1BI7+bN1l8cdAvl+/GO15R+Fo5pSOwFHPsBab j0d1WDvHiFd3vQOfI/7c9QtxjBHfnsAfIE94lvhb1PMb3Plex7EuuVtr8MOo Z/Uu4/N2aQteC2ZWYV58elucD4XcV+my8biycJc//n8c7ym7ui2pr3Hkby8U DntsI1+2dVvYM/L6AW2hd/Q7w3WBddtCv+jfRMZLFwoH//sU+/tJW/CuGL+P Cnee1nHk2U+1Ba8LfBzt+YvW4D/x3RfYnp8bceMfWsPe4Ce37zI/M6Q9xrHj +PVf7THu4W42pj1/3J7kx7LkG88gH9vdEnEX7HlT7h99Tjj0syXPbz/F86Rf kJ98tz34LrS7m/Vf0R78GMb9zKrtX/9GOLo3ivFzH/Gl0ONTwp1fdRx53vLi Y6HfibTzHcS3o/5XuE50USOO/u/dnuRjd+Y8m+4IfsxxlFszFTwYxt+2XWaP Wwp3OaN9zmtf0BTyxLC9k/PxzsIxHp7gvb69m+zvJ1d5r2Aq5jH83Y/k86sd wY9BrDW/jXlr51TyXOpbjP+HindFO54T7jyt4/ALQ8Tr4v+nct5/uCPsCnb7 BvnzVCMOe3mrI+wWctqdcchJ6eDHHIcd3pYOHszOCVBuI4UbP9dldtkrHTwV 5JBivw5Ix715+M4yXcaPVFOBux7RvMdTxttNnRt6dxz2codw2PVYzqNbzrX/ f0+8emJ/2gLx524naN/74tsdt3yS9vlMOvhb+LsHhTvf6zh+H5oOfhj1rNVl fvOyTPBa0OeiqpV7KhPxI3jeNVh+gHCXP9rxY9rk8enM0JfjaNcrdfhG5JnX m2nz9afMi+/IhN7Rrjx5pOMyoV+U/5LrBS8Jx+/PUM6Li3cF/phw52kdR5zY kgleF937kDzSCuLb7V4L+uG9GnH83kt8PuKBHegn3+4M/sdxqDXVGTwP5LEZ 582lsoG737B77Tptnn95WvgHFDuL50DWE277sDuNt11mmvmRr6o2Lv7bGXwO xv13VdPv+M7gf6CP2RzXPbOBw35eIQ9zovhSuydBuPOrjsPeDxUfi3ZOqtq8 MqQz8hvEpaPpn99qxO0e5s7k/pcs7eH0XF2eyjxiYC7yUcfxZyvn6vLXasTx yXN71dhX4Ti+d38jDngX+u2tcsn3B3Zh/nViLngb/H1tvkb+dJ5w7xe+3ydn /n3fr6L96M9k5qXDvwwc7qUta3Fx9xd8/4Z+eEgu8lHU/x/ybzvngv9BuVby wP8Qjm6MIU/7di54Trv/Qbjzoo4jL3tdPCpGx3TGyXNl53b/A+P2LXMNOMT7 YzbGEfKRNPX+p7zZxRqv2vd+3xX7VCCfr16033sKh5gXvWDzYTvXlTYXLw15 j2M8c0wjbvv3xXu7vqCH88RLu12hX4824ujnK+K9AZfJ712bNzva4mOL62r5 HcbBdnmLY98fHzji0cPJ28/9iPcfMd6YkQ9+EuossJ1P5YOHgB18Qj82XThG 2UNs5zLiSx1HPLCc+FXEA48Jdz4W9Y4TP+/jAu1vEQ/v9g+//JF4e8e9fvS3 JR98qbfHcedXE+18Lx98rO/X83Hbk+tHfg9Dcj/el8l7GH7zfgp/D/wk8hn1 uPMT9bjPXxivr4iHdL4BbvcW8Y2Oo59vCvc4EPIaKNzjq3o8sT/rOn3XcZQ/ XuU9nq/HPW5HPZeoHsfR3iNV3uPqetzjcPid01WP4yh/iMp7HlePe76Geo5W PY6DRxnWFePZ2wN8hHD/ruPJcc5zUieqvLcH8cVpwv27jns9ifaM6Equb/3m u4l7Wh0fpvKJ9g9j/DB2bEO/7LsfNNTv49xxb+dc+v369g/ifJzgQ070734Z cvD6fZzUf9d5ufp++Xiob39iP/Rv6vF13/p6nFf8//U753/od2FDPY57PfBX +6hf+P+nOgJ3v+Y4/Pn+4mnxd8M7zB8+rfb7eHHc437HETc+4nKeF+PRv5vI H37zXc/3/Lte3tdv6tvv+63r63G/U19PIp+slUc884n05f7E8bmMjxP4WOfJ 5yV5jH3cPpsa2uPl6tvjeH17/L6t+vb4+lN9e1zuXh/6P1vyh51e0mTx5ULp EdXsINz14rh/1/VX3x7fZ1bfHse9PbDTU7uMH9+uNewTYr+Y+VpHS9gz5r8L OS52a02eA62NX8j1NvFm6H5/4c6zOQ7+ZYR4Ofe3KDeqJfyD+2fj8RtxtGdC S/gN5BOfc368ui3mNejzddrJzW1hj/jvj+nndxLu+kKc00L5nCa9OI6wYgPh dp8Fz92vzP3go7pCXi5/4G8Id33Z/o6u0IfjmN9PEC/q+kd8cqn4T7c7O3fc FXxpYj7dm+Pinbbg31BdP+HO1zkOud7SFvwe7P4Djoub2pP3qj3Mfr3ZHucx 0d/3OK5PFY6/X0j7XIm8+b0LbJy3CIdaLhMOOe5I3jLP+9nOpZ080R56R//v 7rJ+nNce/gb9HNxlee+HwvH9Q7ts/WFV8WZox37CnWdzHPbc1R68HORwBu15 HfGl6PeRzLMOb8Rtf7H4WLs/h3zUhI7gNxxH/Ys6Yt6z9+fpl1ZLBe7r6dDj GJ5jv2Iu/WaX+ZfLed9lak7g6NcVHSa/mXNsvh5Cv7RSKvgK2P+jtMMpHcl7 Vq7g+Fo/leQ9auMddn2B+C67l0C482OOo38nik/Ddy+kvx3REf4S5n4s7fDT Rhw8wkjxsfhRs0Po70/pmH8ch92dmw4eA+N+VlfcB+G4yxn93obn3wfPDHma WlMm52VmJuVf5b2dk7jv6zLq95p08BWw86e6LJ89IJ18d/Imxhs3ppPnN0+m fCalgzez+w2EO8/mOLr1iXg5xA9D2a+c7Mr9DPq/W7oB9322brd2vwF5lVcz wSc4DvNoygRvgOpa6GfahaO9b1Mvp2Yir8d372S/7stEnIV2jOa42Fe46xH1 F/m+1WlTQu+OQ1+bCsf46cF7Qd+fbPo5Tbyo2w/qv0H8p9sJ2n9GV/CljsPf 7Mt5szuT5N/2Fu58neOo58tM8Htuh75fwfPFn8gzFLl+7Hgv7s8x+WaT+eVH 9FeTOiM+hT08zvm00hn3u6MbH9B+HhPuesS8eUinjeNXJ4beHUf4eIdw2Oul 3Nd66mcmz/Op36bO5L1b93WZXP/dGXYCu7iE+xl+Fo7RVItD8J0jxHfBTxwg 3Pkxx6GnP2aDTwN+NsfjieJj0e+j6M/vacRhV4PE67q+UGxcNvLRte2CqP+J Q949xE/Cj1zLfSDX5SJfxHRb0xfykiNzkV9C7pdQ/tfkkvnrn2k/b4nvchw/ x4gfg1kcJ9z5NLTrc473pXKRjzqOfR7b5pL560uc9w8Tnpi/fuZ+5qvHh//E 72P4Xth5HyXnr/G872kH4pdw/joil3yv4DHOX6vlIq/F966m3zsll9y/V5tH MA+NygVvZvc2CHeezXHI/5Fc8HLwz0Polz7NBk9l93V0kQfLNeDQ56xsjEeX P/qXq5NnTV/gx35qxPH7iuIPLY7ujvHv9dfjPq7rcd+/gzhhYHfYZcLf7tpd xy/RPw8S7uMC+/p7Cne/Wo+7/8SPXfRdx+FHllF5n0/r8cQ9c5urHsdR/hfx RT6v1eM+D6KetVSP4/j9O5X3OKoe93gJ+lpO9STexS2qvMcz9XhiHfkH8VqJ dedbu2kHkywf3nVq4M3c9+U4xvNvyuP3PaeaXz9NuMvNca8ngZ+o8q4X6G1F t6unI78HvqpwX28FvpRw7xf47v26Yx5y+Tt+22/PdWzOdcPdVd71i3XMEd12 XqrWbrcrx6+l3B1He4d18/2YprBbL9+L+V19PZ7f1tfjuNfj8nF9J+SzlHCX Q1Ju00NusINUV+Awww/IY2W6oh58/tGFUd5xL4/61+mOvC5xD8xG3cH7ud06 7vxYws5/UP7u30F9S3RHnu79ctzz+no7h/+e3xZ5oo8Lxz2vdBxyntEWeSjy kp0lf7cH/H8/4W4/aMdu3cFHOI55+Qflyy4fzHPLd0denDi39ZPyaMcxfDLk i5ZVXgaxp4R7Huc42ju/PfI+H7++Twjz0WtTYrw7bvyFcN8/BP++Pu+VPU/l E3Z+sfCEnZ+mehJ5Uw/aZ7kj/ACKbdttP8d2hN9AP1ajnfdKBY4fVcarpymf gh/MCff8y3Hocf9U5GsYDrX2wG7+rvwa5vUj44GnGnHY00XK0/Hj6m6zo7XS Ea86DjkcnI64FGHOpd2mnzOEm511mz5XTPMerym0926bLyelTE5XTA4c88+U lI3fs3n/Se9uk/cp6ZhnoYf9uy0e2Cgd8SreF9iUchgsHPtsfmbe6u9Q1PIg dK8s3PMmx+EfXlKeBfWv2R37CN0e0L9fGH+umW7AYSepVNgb9HA9/cPtmYjr HIe9jstE/Ab5XkW7+lq4yxl2e3XGeMllJoY8kRfswHvY9vwscLjzAzLW7zET rF3rU78zMhGn4f8PYf0PZiKug5z6Ug5zhMOea/EJ8q21lQfBbhd1Be55k+Mo t5ryLHRvg262W3k0fixF+7ytEYfYT1Se7v1FPT921sUR3abXtzrr1tO6rT/L K3+Beq7s5rnpzshTHEe9a2cjH4H4BvO7WwjH8DuF7X+9M+JY6HdXtqejM9a1 8L3jus1f3CPc7QHt7ddp93DNey/sx3G8n/WfdwOH+Z3cafNJvzGmj9q87Pmy 2yH8+HbdkRe7vcEue3ZHHu041J/jPLW/8hfUmxHu+Y7jGF/rKj/C/LIu5fxh Npn3Ld7N83GNuJ2ny4ZejF/mOHo+G3kEfv+J+cXcRhz282o29AJ9/W5R2I3J 5zUbLwsUhzuO8bLsosC9Pfj9DZX3+utxbw/sZp7iZ8eRx4+q/+74Btz1gvnm S9XjOMo/Xf/dzxpwH9eoZ6zqcRzlH1F5H3f1eOJerFGqx3GU770o1lVdPvj/ DYW7HBz39U3H4ZZ/6o71XJcP8CUXBZ7Y71HDff5zHPY4UnE+7PXuKTbuHhEO +yhNjvKeL3h5+P2Pu3le493or+N+Dshx2P97Ku/y9PK+rlpfj9nZNw31uJ68 Hsc9X6iv3+fX+vo9762v3+PX+noS8W5DPc2Bw89svyjWh6DnL1/jOxPCIe8r X4/yrncv7/L3OA3z0OXSi8d1+H1p6dFx8CGDyGst0vzu9oMf/+1Onh9wf/h9 d5xDSPjDUfTz+6ZjfMFffay4yPUDv/+64pwEf/Iw7eT1dHK+Hinc53fH0Y77 0hEP+LizbRGp5LiryQHd6m7E4Uc/TYV+zf4WWXtHZmIcO277/TIx7m15knJ7 Vbjtq1I97iex//07lXe/inb8XvU77naCOGe5jO0Hv3d02Injtpz4auDId/bm u12Vl6y+j7pt3n4xE/4Hek1zfjwrE34Gce9XzB/fEw47eqbbeIeemmdtf7Jw n5cdR7t+ycQ8ju/X2oO/31TxHs5dPNdt7T23EYc72U3xJOzlC9rhtZ0xb2Kd cRTn2QmNuN0D05ncB7Sb/HBiH9NuGo8Jnqyfyif2N/2mPH5u+2qU9/EO+7tl VJRP+IFa+f8DxKSMgw== "], { {RGBColor[0.880722, 0.611041, 0.142051], EdgeForm[None], Specularity[ GrayLevel[1], 3], StyleBox[GraphicsGroup3DBox[Polygon3DBox[CompressedData[" 1:eJws3Xm8TXW/B3DzPM8hkcicecosc8YImcqQcw7nGCJjFPGgkKkyllAKyZjK GGkyFEoioqIyy0x63r/X2n/c133fz/38vmvttddeZ3vd+/x2kZ4D2iWlSJYs Wb17yZKl9N8XV0uWbFjrZMmupU2WbP8DyZKN51u8Sv4iJ0+XLFnt6smSlW6T LNkMXiF/Qf6fzodNkyWbzCnuS5ZsqXwk35T/aM5ETqb/lXw+F+TL8sVcgL+U vxnzFn6Vs/MFnUWcjzfI3+P0nLVwsmSfcw3+W76N6/B657CK0zmHP+SfxDrH eR1XDMfSKef8C+hs4I/CTN6lMyd2rHXyDzit/BPezJm5gON+wY10Nsk3cib5 LWu/5ZbyIjpLuQUX4q+4KX+kP51T6a/lmZyGe7qe+3ijTmb+jZ/h9PwLd+OM /Cv34EpmJm8T5RX5nrwrf25mKnkeM3fwHXluzmrtae6lU5Bv8kBOyz9zF87N Fzk+XH9r/wrX39qc8nPcN7x38grmF5RXkj/A/5PvlD/IeeV1nE82jpPX5Azc m2txZn6WP9X/3sws+p/xIc7KFcwsqDNB5zH9PJzE9TgnJ/AX+iX4Pv3q8rTc U75LXozzycuZcx+Pk6fmw+Z35q91Ksvv11kgX82X5PN4JV/gb3RqciGdb7kx P8CtdOrxOzoTeRr/zC25Ni/mvfrduYh+U3k1XiBvz814OT/vnNvx29xG3pCX 8h5rO3FhayfqdOGP5MO5Q+y4z/HjvJD7WNubP+EfrB3NJa3dzwlclJ/TeZ6/ 1PlePpCLhfeuWbJk/dp573iOmYnybTqj9cfyd7xPvy8/qHOQR/DDPEZnHB/Q OSB/jovLPzBnEh+Spyzi/uWy6V17nQlcWmc7X/Ne5OIh+q3li/QnmTmDj/E0 nsen+HV+l//mmfw2n+YpPJuP81EzF/IjZr4r38q35a/yG/wrv8nv8zlexGv5 Cs/mJfwnv8Ob+Dov5c/4Jr/NG/gq/+xYr3A5xzrGu7h8eD54Lcf4N52f+BtO 4bVv4B/5hHwNf8dHwz3MF/girzV/L6fR/9XME1zZzJXyLzmZ/IT8CFeSn+RT XIWP80GuyKf4T67Ky63dwXfN3+ZYf/Bf/EcNnyfve40MrpP+Fe9FDv0vdS7r XA73CSdr69nB+/lf+S0e4z1dLl/ufPbKb8tvhHuP08j/42/5hvwaH+SU8n/5 hPPJx5Ws/dNxC3Gt8Hzm3FyDD+un5+Q6p+UFuKb8jLUP8aPyO1yXW/MlnVr8 mM5ZLsV1+QJX5QZ8jstzPe7ota/gFdaeN6cs1+ffdXJwdZ2/+WGuw4W83hrc VOdf/Qbclq9wJW7MKcxsyk9yFv0iYU7omNModMz5z+vKxCXDZ8HarFyaU1nb gjtxYX6ah/A1a5/iZtZe527cnHubP4an6dyWj+JW8rv8ErfhmzycH+cHzezF z+tX4aE8ma/qdAyvS6eFmf15qLw1P8sjuKR+PL/A6T0rPuRu+ql4QThnbq3z Fi/RuWfmVG4nry//H8+RN+Ap/Dqn4Vb8FKfjttyVU5o5lztaO8g5zOL58mTy 17i9PC0v4y78r2O9HN4LTi1/hztzCn49vBf8j057bsIZ5Gu4e/hb77hl3P/p 3f/ruCSn5Z78sc5Gx53qHHbyx+E9tXYL9wyfEXlG/cvyzPJP5c+E56G1R/mA PKN8PfeQz9Pfzbvkz+vs5284jrfzZs6m/wP31s/OP3Gf8PeaD3Cv8AzX/5q/ 1M8lP8lx8oJ8iwdyHj7DCZyf/+EknmLteT5u7UmOc/5VvN68On/L++ncz3d5 EK9yzr/zYf1P+Tr/zm9Y+x+f5Xz6l7h/+BsqT23mJXkO+XH5s+Gzwynkg/k3 78VZz4RqvMjMPTpf6T+ok0XneXkxzssjeLWZRTml81zB9/N/+kV1svMwnffl +flfeSn5ozxG/hDn4uG8Rqc4pzbnYfkjPCq8RnlhTi4vIa/Co+UluTq/EJ7n OhU5s05heToeIi/D9fnF8LzS6cyldcrJm/A4eUV+gidyeW7JL/PXngNXXYd/ PA8fkTeXj5f/bE5XLmdOWflj/JL8B/mTXFJ+lHvwI1xBpw1P0Dkh78OV5KXl dXis/Bd5T64gb+uaD3bNR7lWF3mQ/D756/oD2rsP9K/Kh8kLyW/yC/wgX+eR XJjv8nguzld4CBfk2/wiP8T3eCKX4JQP+q7LZbkef8sJXNlx5/Akx63Cb/Jk TqMzk8vrVJXP5ynyO17LYm4tr6KzmXtwDZ11PFWnuHwptwnnoP8et+NkNX0v 4fZcTX8Vv6KfTH8yl5Kn1vmIO3MR+SJuwbX0P+HXwnsq38hd5Vn0t3FPrqPz Oc/UySn/gvvKU+i/ymXCa9f5imfrNOR9/AY34sM8l5vzb7yIm/AvPD/0zfme E8O5mf8zD+V2Onf43fAckB/igeG91j8d7nNupXOR39FpJf81fC7kbeTXeKm8 Ld/kZdxZ50q4J8O1red/7uLaZnMv6yR/wjUNz3zHuo+XhNfFaXk2D7Y2Jy/g JvLMPJ87cwlexQ04A78ezpML8jLuYH4qft/8pzgPf8hP6DwQjqvTUZ6NV4S/ 4/JiwfLqfM85v8pddB6Ur9bpIi8dLO/BFXgdP6+zkr8Jz23n3JCXy7vKK/NH 8qnyavyxvK+1NfkzHi6vze9wf/1XeLt+d67Ha/lVnU68UWccN+OV/CI35g94 IrcOx+JJ3C6s5Sncgdfzy/x4uA48nbvwJxznWKN5s2P14edCziOcZ2/eq/O0 vG+YI+/JCeF8eLk5iXwgXBP5M+GahO8VPJA38RdFvR6+mNFzXD6CP5VPMP95 PmLtenPG8nFO0BnHW3X68QTexqX0/wrPZJ0ZPEn+B3fjcryGh+gv4a/095k5 m2/KB8rf4F3h+wDP4y/4LWsX8j86O/Rn8Nlw7+m8zbt1jso3cWrnv1z/fb6r s1/+Lt/iVfLVnFznQ17LKXi4ORt4jzlJPI0/51H8Ge/nG+Yc4yL6X1l7kAvy Czq7+HudbfIvOad8rPwbPig/Z+1eziP/RGcHZ+ZxOt/xj+F5rrOV08tflh/h n+R79H/kwvKJ8hP8s/yg/BQ/LP+B/+CSPEenv2f7XzqP8znvxdt8ROesTlmd /8n/5aPhb7T8NleTj3QPLLN2KZ+U35BX4b84pbw2n+Cr8kp8hpPJH+VrnJub 8S0uwC35H87BTfgsp+G6fIPzcQsu4bhFuB1Pd261+DfnNo1r8CmezA/zL+Gz xpX4V36Fy/KJcJ/zcr4bvv9wKT7Olx0rKzcyP8Wj/l7xkzxVpyqf1HmN6/Lv nMr5lOdyOjm4EdfiO+YU4tY8Q78B/6F/Xp6e68svciZuyLmsbcp1eLZ+N/4z fEeSd+Sm8sL8FDfneTqj+ILOmzycz/HTOmN4ik4F5z+UJ/BD8qe5Fb+hP5jP 6s/i9nyGS+jH82id4vq9uA2X4me5Pb+vv4L/Dc8T+VxeIm9u7QJexIt0pvAV nYX8Ml/m2jr/4xk6eaxtwfU4H7fiBrwkfD/nG/r95a/x6/K35VP5qvzd8H2e b4fvlvwSX+Kl/Bbf5Hd4Fl/nmdyWT4e/C87hQ15h5rfykh38/cjv88fFuRCv DN/PdZJxL/3t/HF4DoTv85xCvj1839PPxROd58fyj3Q2he/nnEn+Aa/he477 Ee/kVPL1vIfT8Wrewil5gGMd4J3mbAzf+TmDfAPv5/S8lndzGn7bcY/zN/pr +Dof5S06v3N2ndfMvBTuVfnW8H2ec8iPuvcu+Gw+Ip+kc0Z+LJy/ObfC54g/ C/+O4Kz6y+X/8IFw/+jfDfcPb9M5zzl15stTdIj+LnwiPyrPLJ8n/y/cq/LD jvun45bmmWZ+Ld/MX3NGa//hXeH7Oeez9isuzAXDOZiTn+/qfB7+XcB55F+E fxfwffxd+H7OD/G3Zmbna+G4XJSTZ3L9zSnD6Xi3/v2cX38fV+QH+Tf9KpxZ Z0/4dwEXli+wNjVfMnM71wn3gM7POk9yOZ1D4fs5l+A9Om3CWp0fw/d5LiX/ xXW47DpUCM8Bx2oSzl/nDnfmYnwg/DuCi+v/FP69wGX4GHfl8nw4/NuBS4eO Y/UMHWu/D//eCXPCsbgHV+CWvnsP8D1/mO/5x+V95BXlv3IcV+bfzRnC1c35 XT4yWP6HfBjXkOd+yPcVrsu/6Qziajqn+QWuyX/yeK7FZ/nV0OfczV3jJz1r +I6ZM+WtzfmX53BbPqc/nevplHKsN7m9vDgv4jbclD/hwXxfLZ8xTuQS8sXc jsvwUn6Ss+q8x704F3/AcXzFcSdyY74Qvv9zA8dNpTOfO8kvyzdyI/nF8G8K bsj/8GZuwld5GzflYtZ+ziOs/Vs+mevIr/EX3IxvhO/83IIr6B/iCfqpXZ8r 3Fn+r87P4ZpwGvk1fipct/DvgnDduJm1N3mhtbfl33Mr+X/8Kz/BKa09xx35 adfkF56i358v8uucTOe3cJ11apt5mmfIZ+gU8359xml17si76Lwszyn/UD6c k/M7nFknMz+jk4nT8tPcXudba8foZJSnkveQZ+c83IfT8z2dbpyVs8l7cQ6+ j5/lDs4tA79vTk75A9xXfiv8u8naltxTp6B8o05enRLcT56PS3N/fpTf5ek8 Vr82Hwz3krwcJ8qHyCvwV/IC8so8QF6Qq/FALs8T+GW+n2vyIC7C7Xgojzen IR82p5C8Hg+Wb3FNmvEZ+es6j/PfXFinNQ/ReYAb83Ph+aPTgS/prOXnOU1m fyvMSeT/5EX1u/Mw/Yf4GR7O7+r35ts6xeR9eYT8Qe7Cz/PDnMCjeJF+J76i X0r+HI+Rl+SB/AKX5hE8lsvyaH6JTzqfsZzRuSWX/+V96SB/hMfJx4d72/w/ uK1ONflCfkVeiafx//i8OTM4r04V+WyeLK/Kb/CU8NnhV3hC+Dtu5jwupF9X vpZnhXvDnCVcVF5D/jZPldfi9/m18Cy1diWX1qktX80z5FvlkziHPE0xf4+5 PLfQ+ZHf0mnKe3lB+Nuhv5Wr6TSU7+A35I14F88N97M5X3ItnQbyz/h1eRP+ hudzfd7Ec8JnnA/ywvD8Mf87bmhtIXOOcFNuqXOMF+u04hPh88infC6SXP+q 3Fp+Sr6E6xb3+evkOZzFeyO/HD5T8upm3uCeZj4pv8ofyDvzv7wqfJb5Ai8P n9/a7qnw+dV/Sp6so2eCvIQ8PY+WrzXzLT7GpeVZeSyX5Rz8EpfiTDyGu5iT m1eb040L8Bp+lqvyp+G7GZflj7m7+YV4krU95EV4XXjW8UO8PnzezX+Yp4dr pZ+Sh/EzOqV4g05XeT6eKO8jr8SfyBPk5Xm2vIk5NXg+99WpxZ/pxHNd3sI7 3W9p+LzPzvPWNuC39fvpNOJt4fset+WdPIIH8F4exB35C+7nWIND39px5rTn lTxSZyjv00nkVryDe+h3C69dZ5p+PG/iwTpP8W6d4dyf9/Bz/DR/yUO5F3/N r5jzDp+wdrR8OH8Xnvn8Gv/EY3gMH+BxPIV/5GHWvszfWttf3pS3h2csv8QH eQLP4iM8z3mO4l367/LUcCweb87rfJhf1P8fH9KfxAvCvcRP6LTg93Qmyufy z/IpvIyPh9fCy8Nr4VVc1D2fvIBr7Vifym9YO8OcFfwHv6rzIf+qP43X8Knw PNRZz1fCM81nJ4U5pX12XtP5WP67zhzez3/x+/rb+V/9WfItfCZ8T3Pc3ZzC 2rU6X3MaPijfE+uvlO/kZPKT8gOcka/zP1yY55n5N18w83U+yn/z3zrHOZfO m/KTfE4+l38P9yRvNv8nzqazm89wfu5Rx9+ScP/wQv1LfDl8zzHzPN8v369/ nYvyWzq3+B+dQ/K7XELeRv6nZ8JS+WL+T36N2/FZ+bu8gvO7hv/xcWszckVr 35Vn4dvhWSrPztXky+W5+G74bub6p+Ny8mycl2uG66nzCKfx/p6ztjDXk+fU uZ9r82qd4pxSp4C8JDeSr5GX4dTypZyabzrWTXMq8uM6W+VPcA6dz7g5Z+WH zXmU2+p8LK/DGeWbuD5n4lSu7WPcSWeDvDqnl3/CTTgzr+MqnJa3cBvOzpXM b8ndwus150nuzdt0OnNOnR3clXPzTu7JebmgfhwP1P/0YZ/3p9wHWd13OkPk 9+u0MH8QD9X5V16ws9ci/5KT5AX4Wx7JD/AX3I/v4294GBfiyo71Kk8y55B8 JpeQf8eT+SEuofMCj9Y5IJ/OxeU/8ptcio/yOn6EBzq3j3iefgNrF/HrfETn Ay6r01S+lBfIv9d/wPnf4SReLH+TO/FEHsf19efzHP7ZnFXhXjJnqs5G/lj+ k/w9LiP/hTdzBf6B53BJPsafcHnewy9yYd7H4/lBPs7bwr3Nf/AhrsHzHWsf f+FYv8u/5+ryi3yFG/J5vsj1eYP+NT6hP9H5n+OfeTgf5j18LnzXCve8/in+ lqvyX/xruP/5NP8cPi/8J//CtfgDcx503e6Zc1OejR+XL5bn5Gvyf+TJuYn8 Mt8Jnx2epXOPz+jMcp6f8xbuL/+Ct/MCzmztpfAcszYtN7d2u34q/lu+j+/j mzxN/6a1p/i2fh55q3Bv62Tg8/Jf5V/pVJb/x8XkT4TPYwt/b3kUp6vrWcZd 3fNHrS3NqTmtTjXuovOxY1XgjPIH5GP5ufDe6ZfjdPKs8tbcS56cS3CHcD11 anI2nZ3mNOS8nFqnMnfWyczN+Bm+ov84F9TJKG/MPeTpuTZ34/3mdOCiOvfJ EzlRnpO7cF/Oy325H+fmZzie0/ru0S/8e993j3uO1V1ewpz8OgM5SSc7d+I+ nI8TuH94HvJzPIDzcG9O4EI8ggdzNm7Hvfl+fp4H8VnX/7T3oi5nkNeTd+fC PI6H8IP8Cj8fnofelze4k3N7SD6Dh8uL8AQeykV5Gg/j0ryax/J112dSuH+s LS6fxyPDs4WX8GhOYf5sflKnpPx9fkHexDNwZThneT1+N7xG/tvM0VyHi1q7 IRyXK1u7lydZW44/43Fckb/kiVxSf0eYr9/bzBM8jdvw1nBuXEX/O56sX5Y3 8UvcSeebMFPnjDkH+dFsnik6u/hlnap8hKdwGV7LL3IV/R/DTGvf917/5vof 9LmornNM/qpOTT4Vzodr8Vl+jevzDZ4TnrHO4TLPM2eYfK6/Ed/K6/AF+czw jOWs8gVhreP+Gdbqt+TbvJhHm5NS591wbfWvymeHa87p5fO5s34mXqXTWJ6G 58kb8L/6r/Mkc3LL1+ok6pflHeFYOgV4sU4bfpiXch+dIvyJzm/WLuDMruER 16QQp5S30y8fzk3/cc7Hb/Ns/VK8VWewOZV4N7fSeYjf0XlLpwZ/LW8uz8GL 5O25Ki8Pf6+tfYuzO+5j8mT8pvwda+vyHmu7yFvw6vD3Wh7PZ+Xd5W3D65XP M6c/X5Cv0mnFh7mvzgD+TOdFnaZ8SD6FO/Jxns29+E/+yNr2/HO4J619ljdZ +zQ/xeu5J3fjjdyRa/EKjufBvCXcGzyFd3F/Hs7b+ZD5L/M987/jMXybRzmH Brw/vHf6o8J7pz+Ip/IXnMBDwzXnVfr/4+Su22D5a+H6y5P4Jf6cn+fX+Ztw /3CjcP/wEJ7FX/HI8u6zvu6HfM5R/k645vJqJTz7ung+mj9Svly+Tz6W1/NB Hs0f8nc8k+/yaR7FK8JrCc8rc/ZwOXM+d87LOA+/qPNxeC90vpdv52LyMfI1 fEB+z/XZzSXCPanzNZfl8To7w/ur8xJ/yj/wy3yAf+JX+W/+NfyNcA4/cSVr c/DvXIv/p3Ocj+rs8hzu4zmQL3wHcKyj8qo6F/k8N+QJ+j/wEZ1X+AyfCN9/ +BKf5Ml8kn8Jz3/Hus5NrT1mzn4uz9N1/uHfdBby/a7zZb7h9W6RF9G5o/8f t+ZS5qTTac9z9XPxef03OQufC98lOAWf4Tc4I5/lx6wtw0nWzpGn5r/C9yjO yxd5ERfmK+Hvfj2fRe6q/5a8OP8Tvs9wSb7GuXSKcpzODPkt5/mHfClXlN/k Fdyc/+NlXJ1v8Qf8GN8LzyLnVodHmvOo/A/Pseny9/hR+Z1wn3NLTl7QdXHc KjxUvyw34Ze4qzlteCK/r1+f/7X2I36SU1m7hB/hG/LV/ASnlD/vfX/Wv7O+ 8W+WNfKu8tTyCq08W3p5zwv5/MuT5JnkG7kfZ+CznKer5xRv4Dh5+jDT+Qzh t51PAvfh2fyJziDOrLOVJ3IO3sGvcm7ewuM5O3/KwzgLb+fJnIsnmzmT15m5 V76Ki8j38AdcmHfxm5yPv+alfD/v5kWcn8/xfc6/Hse5nvPlm83cLH+Rs8l7 yefwx/Jv5O9xIfk+/ogf5C95MRfgpc5tI+/T3ymfznnl+3kdF+XPeCRn5fbm v8DL9V/gT/h7/lFnH5fS+YG/4pI8QedbPqLzi/wcV5Af5b/4Ef7KOVwM93P4 vOifDp8XXi//no/zNv4tfBb4A/6CD/Fhc37m0uZMtfYQn5Rv0jnMp3irvKDr liO7e4YzcGo+Y21mftTak3xHvwr/yte4Mi/Tvxk+C+YckG/m4vKDvI0f5tOc 1pyafMhxk/M9/d/k93SqhfnynPKMjntCfkVeSf4XZ5PX5j84FdcIc/hznRJ8 nh+Q1+fcj/vbyfGcp75nByeYed78YpyX9zjnClyYL1tbmhvpZ7B2BHcP95VO Cc6vc0enGbeWX+QHuSH/w5W5Cd/g2tyCr3A5bsw/mdOQy5hzS96YW8pvcj1+ nK9xNW7G/3JrbsupnU9f7hxeuzkdwms3J6X8Ge4oT85duAMv5Ce7e038nzmd 5E9wWnkCd+F78nbcjlPJe3MnLlzS32lubn4u7s51OJ3Oc9w1zJE/zhXkt53P QG7FR8z81XtRVueO61xTXkye0drR3EOejSdwb87BM/hZzuw9eoWf0c8sHxss r+RYk7ibvKD8fR4oz8LjuCfX1pnNfXXyyBeG91qenadxH76Pl3AiF+B3eQDn 47e5f7hWXsvz4VqZ87DzWc2juJjOlzxC5wHewM/xg7yDn+dH9D/j8fr1+QjP 4Y7ObRO/FGbqfxNm6t/Pa3kQF+VdPIyf1t/LU/SLyLfyUHkJPsijuaXOytDX qelY3/E0jivlHvG+z8zhfvNe/OK9KKNfR+eYzkydMuac5RflpflPHsu9eFY3 z0MuxX/Ix3BZvhzOn0vyKX6BW5t5gZeYWUme0tr/yac4t/S8Xt5FJxmv5kd0 robro1OF08gnc3XOyq9yfS7Fc7guP8yzuAbn5qnhtXARnslvOFYB3mF+b/nr vEn+KOfj6VyR/3XciRznfHLIN+sP4Yf4K15qTlnex7X1C/EM/ce4Er/J1TgT v8INuTy/wWOsvWH+cmsryG/zBPlL5lfV+UHeQt6C35I350a8iKfqNOWTOu3l 8bxc/o78Wb4u329+f77FT+j04vfCPcCteDG35ad5GTfjBryQ23BHXsqbzWnL p81pLW/PS+TP8lz+lH/X+R9ncf9scQ5TODt30Rke3kedTjyYV3JnHsqruBHX 4LnchGvxfO7GL/MaXm/mGE5n5s+ONYpT8TM6r/EGnY48gFeEzwJPDfcSd+WX +CP+yNq6/LPX0le+gD+T52zgue7+72vmJHkuPibf57jv6DwoT+4z8iGX5nid 5bwlvI98nQ+E+4SXhfuEM+nv5qr6Vx33LS4UPl9mruEyPED/U96p359X8HYe zNt5Nw/lnfw1D+It/AUn8vpwD4dnmmPt4epmjpT/Hu5J+Z+OdYBryUfIj/Ne eR79n7iefL78Ca/3onwY/yD/lq9ae4ab6uzW38+X+LL8JDfiUfp/8379C/Kj 3EA+Wn6Jvwv3hvzr2Lnd4PPcguvyj+75Wd6LJP2P5Z/rj+VbfJDHcQrn9iNX dQ5Z+Glrx8vT8eHwbJHf1X9Cntb7mFrehafqFOeT4TPF/4XPFP+Ps8uP8mTO z7/wBM7IR/gVLswnwmfW/KKcaGY+8+/n/vyCzj9mfq9TRF5GPlT+hvwxPiuf wRX5j/A81KnDL+nMklfnM+FZ4TqccB3edB3aOFYV+UidrtyEJ/J0/Uf4N/05 XJ//4rncnM/zbH6U/wzPPcdqw1OtnSYvyafk87glX+D5jtvN+V903LfkXeX/ hOdkS/+uf9pz8n7vsTk95XPNac5xvIgX6/fha+GecZ5JvFj+trwHX5Uv4X58 IzxPrB3ES3Xek4/kO+HZwhs5m2N9wC/yPflKHs/J5OPMf4FXWjuZJ/I6XqXz KifX2cTvcSZex4s4LX/I0zkFf8QzORW/bs4c3m5OknN7kz/ndjyE3+W1+vM5 jX4v+WT+WL5RvpQzyDfwYk7Pn/AHnJmXmb+K9+uPtfYjPsjv6gzj217jp7yO s+hv5U84B2/jzzkn7+J9nI938Fecm9eYvzncw2Zul3/BueQLHet0+P4WnmO8 LTzHwudX53vOr/O5tT/zOflO+becV/4t/8oPhOPq/BbuE5255vwS7jGu43tO D98NZvruvVh+LtwD4Zpwqh6uSU6v2dor8lvydfJ74b2QH5Df5LvybfKc+jnl 7/G1cD/I9zuHtPKizmEPX5QX5n2cXP4g/2ZOBs5sbRm+o/Oktac5mzybfJGZ f8mvyA9Ym1le3NpDnIdL8I9ckEvxf/wGP8G/cDmuwJfNfIALmHlE/iCXlV+V F+NC8r2OVYKLhPMp7TsdP8lH9UvzI/rp5A25ovyEvDJXkt81p0I4tzDfnJph Pp/Uqc1VwuvlelyNf+VqXJn/4MZcgy9yX24Yztmc7tzInDPy1vyo/C9ux7U5 l/PpwHV0zso7cd0w09rHw0z5OXkXric/zc24Jl/X6c3Ndc7Ln+H68qJmJnBL +V2dRG7DV3QGcmOdL/mQ96UA/8PPyZuE+03/Ps4X1sqnhbXymzyWH+eq5o/j p3VuyydwK3m2hu517i2/Lh8dzk1+h1/h1pzKM20Jd+IG5szm/vr3dGZwO3ky nXncnpPzQu7AKflt7shpHGsEP2VtK3Pe5eGcXedL7qOTibeG8wx9Xh36nJ7X cjeuYM4GnmBtBvkm7i5PzSu5M2fkz7gHl9B/n0frZ5Xv4l7yLLyDe3IO/oaf 5Zy8l/tybv6O4/ktczp6tv9jzjde+2HvRSF5Y/mPOvPkw72uP/kdzm/tH5yk 04Zfs3YpP6dzSr5QZxxf4JV8n84JTtTpaOZZXiF/VSeZtRu5qE4aHqZTmP/V GcIF+TIP5Ac5pc7z/BBn4uH8rjkP83fmlJU/xC/J35Tn4M/lpeSFeEy4bpyP R3M7nsXv8iDnlpu/0C8kv+24g+XFOat8JC8xswjv1RmrX4oP8vNcgL/hl7k8 /8TxnJ638CPmlOXx5rxszlXzP5R307nBa7iCTiWdCTrVuSm/Gu5zbsBTeJZ+ Iz6j30D+LL8uf1/ei/+VN5TH8xvy/Y71NN+Sb+cW/DfX1enGs3SmWVuXT8l3 67TnSzxX3orP86P6bXm6fnt+nZdzK36Z3+HW/D9ewk14KM/nY2YO4DS5fD81 czCn4zXyqnzU/Mr6NXiS/uP8Er/NzXkUL+KmPJwX8DfmTOVC5jSW9+d58ktm TuH88jM8hrPzBq7FJ8LzhOdycfkIa3M94z21tsBjujxA3kH+ls778qd4BX8Y 7mFexiu4fBmfG35K/0n5O/yB/Lxz28n15Qd5AT/MXXU+5I90evDHvI4783Je Fb5X8Bb+mPOYv53rWfu0/FNeL+/Ga3gN9+Gv+RNO4JO8lfvyfv6Mi5hzlFuY c8X5/MCNOa/OEfdev/DadQ7IG8n7yX/nbfJneQ9/yvF8PNzP4XOkf4bb6cfJ f+LN8kQ+zzu4N+/mTeH56dr+zR30k1z/g477pveiu856+drwGeTr4TPIWfX/ 4176w+QZvS/fyodyav6aB/Mtnd3h+cMp5F/yw9YW5VHWZuG7Oj15uE4W+R6d UZyX93MdryUdx+m8IL+fv5eP4cJ8INyHOvl5iM4A+SUzd8rLmF9S/qJ8krw+ Hwvvqf4jPF7ekx/lV/llnSr8k04+Phb+7nBFcyrKJ+pMlj/Gv8hf4jL8Az+q U4en67wib8In5BO4Oh8Jz22dljxPZ6y8OB+UJzmH5vymfK7v+U918z75nj9V p438pM50foJ/C892c3rwUv3Z8j78Z3j+cE8+w+PN7MerdGbKu/Jp+Rscx2fD c5iT+BzP5WF8PnwnsTZzT/ddbn8z5C/IL8tnyl/kzWbOk4/kC+Hecz7jeYv8 bflkvipfqb+Uf5Qvk8/nW/LF/CpfC89tns43eCnP5Jvhb5+1c8K9ZO0EHsSr wzPBsd4MzwRepD+Rr+gv58V8N/zd4UV8OzzP9d8L76n+B/IP+J58Ba/i/8Ln XWcIr9NZKf+IkxXyPOB1nILX8jZOw5v5F87G6/kLTsdb+FfOHjrO+fNwzcNx zf8tHJc3yjfzr8H633IG/U/5MGfhDfwVp+c9+j/zdf1dvC9cc15o5vfhfeFv OJv3q5D3a6u1p+U5rN3N9zg/H7H2HKfU2SW/yfnkO/kK5+WPeCOn4s/5Iufh P61Nbn4Oa7fL/5Lnkn/muHc4q3wHp9LJzRv5Wnhd/I1+hnBu+mv4E3lq/prT yu/nvZyTi/B+zsNFuUgj3/d4qDmpy3qu8SN82/ncxw/xAccqyMX5e2sf4GLW HuAHQ84XeCA34B+4GJfko1w7zOQfuRyX4mNmlubyZv4sr8zl5FmdQzWuIT+j U5Mf5cM6Fbh0WMv1wlr+i5/h2vwHdwpr+R9rm3ETa3+VP86V5ae4NVfl37kd V+f8jtuYH9Mvxh24NR/XacgVw3vE3bkWn+YuXJMf0e/NnfXTu559uRv/rZPA dcL/fZAPeV8y8VlOlNflodZ+x2/pX5dP4ubyizyCG/IlHh3OjS/zWG4UXiOP C6+Rczru89zXnKvyCdxU3tb8hTxK3pyn8RC+pfMKt9RpIZ8duweKmvMGDwv3 gM48bqVTS+c5flZeTudtHsepWrkvuZNOct7EHfiute9zG/6XV3Jb7m7Oap5k bTVz1vIrXIHf5Qn8n/4GfkK/s/4SHi9Paf5W7ih/Vv4ZvyZvaO0ufiPcwzpf hvdCp6n8G14gH+5+7uz6v+OznFZnr7yLTqPGrktvz+Y8vtfpH5Mv18+ic4p7 6mTmE/wMd9P5k9fojHIOR3gZv8x/8IecXf8s99F/TX6VPw3nKZ/Sy3nK8/Bt eQLn5X+5H/c1/wZ/pn+fPJl+onywPA3vln9oZhH+iQvr5OMhOgU4PQ/g+zkT D+IHOCs/x0utzcH7rM0hvxDeU/ko83PL98vn6aTkXfyQTiEeHp4VXICH8gT9 h/iIzv/4YT4aPjs6pXiETm6+bH48F+ey8pFcksvzC7zNsWrxX9ZWkT/Fk+Vl uAG/yNW4G7/Ccx2rLp/Xry5/ml+Vl+YaPDZ8Hrkpj+eK3J4nclluxC9xZe7I k8Lz3zm04OtmLjW/Fd/ky/KpXMC9UVO/F08LzwH5KM4hP8HxnJ5P8VDOxLX1 B/CM8HdHXol/D89t8/tzBp3tPIZzcS39Z/k1/bo8nGdxPX6JZ3MdHswzuQH/ j1/nUlyVx3B9fpnn8Dfmv8aFzG8kn8Vz5YXd81nc80PkR3SWyctyE53Xeb7O Lec8l4vKD+gs4OLcTOctXqiTwZzz3F3eQv4OvyV/gj/l97glr+DF/Dgv57fD c9jMNVzV2jby9bw0PK/4Y17G6cu517mSTm7ewnU5meMe5/bcRf8HXq3fkXfz ivDc4K95Vbj/rd3DzfSvO+5+bs4ddHby+zpP8QH+kM/rbOf6OiWtPcpPcHed n3itTg8+yev4af6d13MvPsMfcytzDrr/3/G+VzLnb3k3czLo/CjvrpPIqb0X O8Jnn6/rfMa19W9x3/Davd67HM/xOv/xFp0+/A9/wv04hTnbwvW3Nj+/oJ8k z8ify5vI0/Eg+QB5dt4pH8i5eBc/x3n5S+7Nl8zfxEP4fvlX/CLX4UPhnM2s wjPMHC4vznvkI7gk7+WRXIb3hecMP8L7+Xkuyt/wGK7IB8LfRC7MX/NYfpQP hvvfdajOMx3rJXl9/iG8dufwGM+Rj5M34R/lzfRb8kL5MJ0neDF/+4j79Vnf n/J6Luj3kP8cnmnclY/wdf20fZyHzgjuLF9i7f90+vBRndbmPxnLO3FPXslx PIw382v6L/Dv+lN5CJ8MxzIzjlfrTJOP5FPyefLx4b2QL5Av4kvhucfz+TzP 4sl8JlxPx5oTrqf+G/LpfDZ835NncP5FnP9s+avyP+Wv8CA+wYN0JvIX1r4p f5PPyT90Dov5J/lSnhneO16o8x5f1pnJL/Lp8FrMWRquW/iMcD9ey1N0kvi4 ziL+gK/w52ZuC8cK8+Wf8E35u7yZb4fvijq/cDLn/5H8Z071gHMz/1dOIV8l P8zJ5XPln4frY+ZK+aGwVv4Ob+TrZq7gb/k/fo+/4Du8nL/iu+HvEWd23XJa u8vMO/J8jvWp/B5nkZ90buc4o3yt/DSnka/nvzgdv82r+Gr47qf/UXh/ndvf fJNzWbtJ5wpn0t/IFzkDb+VUziEHr+Hf5Kl5MyeXZ+NP+Jo8M7/mPNeFeyz8 TZFn08klP8WvcNVwzjyJq/BOzsN5eTc/yPn5nnMryCWc22F5ApeWf8H38X2c w2enJtfS2SHPybnlX3IxLsBfczm+n59r4m3gL/W/lVfmB+R7uFr4fPE3XIEL 8TGvpQSX198rrxfuYXlKczpxR/kNncbcgr/XacfFdPbz41yUZ/gO+aTve3/4 t+c+eTP5g/KD3IUf5lFeb0Ne5rqV9ro6cAczD+l0D9dB5ztuzQ9xJZ3e3E3n b+dQm+vwjzrPcCmdJfLvvRc3zPxKXlpeUP4TJ3IZzu21PM/x1jYxcxwP4uM6 o7mizs88kMuFa8IjwjXhMzyPH+Xa1j7Hfa0tZOYEHsx/6EzjGjq/8liuzCV0 ZvNondPyN7imvK05M3iUPINOX+7OXeRv8wS+or+JG+uf5Xe5bjgH/bU8Q+eC fCU3kN/ib7gln+P3uR5f5c+4KVe0dglPtPaSfAM/Jh/guFt5rrwPr+bpfE1n FzfT+ZsXhuvPTczZwfN19nhP94XPe/hbr/OlvLnOSHP28lKdJ/V/5A94svwU r+N/9Y9xW/3CrX2P8jdiCN+VH5G34dn6t3mr/mg+yO/y02b+wes5lbUXuJN+ Mj7B7Xmm/lXerJOgfyM2J63OZe6ik5z/DPchpw97NjuHbjxGPx8fCO9R2LeY u8uzhD1EuSdnCnsh89Ph+jvW/7hoPs+psL8y95BnDXs8cy8eaGZK3mXmu/q5 +TvOplOIe+tkDnsD8zM8Qf8hPqLTn/91ntvDc9jaIvLD/J18Cj/kuCmtPRs+ s9au0ykl/0Vnlk5VPsP75O35ZniecC0+yyt1OnIyc17nGvy3fDU/xSnlr3El /l0+nxvwRV7CrfgGz+W6fJ6XctvYsXKEPaT52fCsljflq/JJ/DAf45xh72fu q5Ofh3IS5wp7OXMc5+UB3I9PO/94zubcXjGnLJ8wJ4/Os5ygc1FnON+ns0nn ac7E9+kM5sTwLJWP4gLyLdyfs3MhnZd4sE52Ls99uCCP4YHhOrdwL3RxT4X/ Hwz5VPlQedGm/ob09b3EnGLyWfIR8of5LR4VnjmONZfLhXtG/0y4Z8L7WN57 wGW5vP7H/LL+g/waP8+l+B0ew6V5BY/l4ryAR3I5XsPjwnUzcz3XN7OM/EN+ Mdxv8mVcTV5BvoUnhOcM/8AzuArv5Mlcg/fzVK7KX/MUHu8z28Zz4LC/v0XN 3C1vaeYj/BN35kr62/l/+jX5AE/jNF77UX5Kp5p8D78ir2DtSe4iv+xafcqN uI7OcZ6p00onnes8XP67znJ5da6r8zfP0mnA//Dr4b5yrP/CfaXzmPwWvymv x+d5Njfk6/wGN+K85s/l+nxJPocLmZNCPtic4pyRR3ID53NXpz+XlWeXv8QV ORdP5JKchV/g9Px7eObw09beL5/CrR2rCi9xrKZclBfw4/wIv8199UvyDP3b rv93Pvut5M10issXhmeOTnWep1PDsQrzVG6pU5EXh+e5/FGeL28hL8Nvhb9T XJ+XcWPOH+ZwG64T/vMpfKGB962H153Tc0X+mHx5+IxX0x/rbxI/Je8s/5Bf dj5PBjvWasdNHud+v8//XucJ+SqdrtyDP+InuQ1/wF24K68Oz3ZzBvFmc3rJ h/HH8mc4iTdwd+7Ja7knD+GN3Idf4E84nt/kLTzO+czhH81cYP543s0j5dN5 H/fVn8yf6R/RSRU7/yE6E+VfhfdRpx+v13mWX+RPw98UnZl8ILx2a+fzEY7T eTW8Fp0EXsxbuTeP5E38P2sX8VH9adb2CTk/K48L83mtfCkf4wHWfsI7re3P 63g7J/JG3sHLrD3Mt/T3WXuIb/J+/jmWP6//fd/ofdwp38zn5Uus3cc3eBZ/ xGf4Of0v+Mtw7/E23sWD+HP+go/6r7SuW+qwT7j75FrfyHvlN8PMtM7LsU5z 8rDvH//K/5q/yrF+i+VT+T0+KZ/OH/Bv/Ks5VziDmXfD9yEuzu851l98x/xN fI8zyd+39pfY/O/178Q6B8LfD77L/Zz/Kt4mW6OfIZy/c7jg3CbERfvwn+dx cdHvAhzjbHHR7x3cdqyC3Mqx9nAeLsxndHrHRb878Ke5OTmH/GPzK3NG+VGd zLFj/WDtA1xS57i8RFz0uw+/WHsfp5X/Ki/HGeTXwzM0dqyNZpaO5bfC3xIu Kj+lXzMu+k2HVIV9t+dy8t/k9eKi34C44biPx0W/73CJG/Nj3LGC50NCtH/v eXlDeX15cXM6cBvOxrW5ZjgHndZx0fvysLwTt+Ur8mbcmDc7z+6czcyTzqFa 7Dr8zl3iot9Q2MPfei+ue79+4WJx0e9W1DWzb1z0mw5/ywfGRXvvXzV/dFz0 mxRFq7uneRhvc6wEzqlzVv+5uOj3I+LNmc2zdP6SJ8Y6xeRjubV8t7WTOL/8 nM6IuOh3KProTOPpOi15RuxYl3ReifVP8zOx13iF58VFvzFxk9fGRb9BcJXf jot+l2GyOSt5nTmdnP+7vDLc2zq74qLfI7jGS+Ki327orr+BJ+n8I18YF/0G xA1eHRf9XsN3zn8TPxTuE/n7cdFvMcy2ditvtfay/I246HdDbvNnsX4n7/tj CdH+z0N9Lr7yXnztnjpk5pc6JeQ/8Y9chseZeTB2zjfkY+LdS/Jk5nwnL8Up +RiX5R919sbyI3wklm/w2i9w+vSebXw13J+c1tqzXCHcw3wiLvrNgk06l8O9 rZNOfjsu+u2ArJw7PtqHPwvniI/2w8/AyeKj3yMYXMM63m1tJnma+Oi3Borw S7Hzz8gp46PfJvjFef4ZO4f08n/jot8vSFHE8XTKmHNGJx8/Ks+skz4+2if8 L3khrs2bnfONcG/oZ9cpEOun5lNx0e8+pOE/4qLfYsjJRWJr7+Oq3JDzcnmu zxfNrxTL75e3j4/2iq/q3Nry045VgztyL67CrbgHX7a2BjfSryxvwd3l5+Vl Y/MfljeIj34voID5tWL9IvK64VrJS7ueL/NYbiwfzAO5CQ/lQVzY2l7x0f7/ hbhbfLRv/wP8dHz0GwG5+KH46DcLcvPD8dHvIDQK+wHyAHMacjwncgN+lvtz dR7FPbkmP8W9uSkP58H8GPfnpHD9uVR89FsM5Z3///hlbuS4Kdz/Axy3QDPf J+MjF5VP5ZbhmvDc+Gjf/mI8i1tzTT4ZH+2Bf8c1fC2WpzFnDT8Vns/yKbE5 //ECfoJLW7uMO3Bxfj0++h2EsrwiPvpNgXL8YXz0mwVleHl89BsBJfmt2Jx0 jvUxd+Vq8v3x0d7+lXhLfPTbBx289q9j71cm/Z3hPpE/qVMnIdoTvjJvj49+ a6A6H4iPfjugIn8amz/FnD283px+ruEPvI2r6uyOzRwgP8o7w3WWr49dh0T5 T7xDfsfzZ0dc9HsuyZ3PO7Hr8Kj+7/HR7wjklp/n+PBZ4FvhHuB6Ov/ER78X kFN+hvuGvxfyS7F+EXl2r2so15b/Hes05LuxOY05dUL0GwT1+Xp89JsCD1ib Uf4cN5NnibkJp0uIfmugBh+Pj37j4HHOmxD9FkA7fiQh2pO/Fd+fEO3n/4br VjIheu1t5EV5pPye6/BN7Blb3HELx/IndComRPv5t+T8CdFvB8w1p0xCdG3b y6skRL8d0JaLJ0S/EXBB51HOl8FnVZ4rdh06cPWEaI/9ijpN46PfsOgsb5IQ 7ef/FzfqH+2b2oVbJkR79XfjJxKi39zpym0Sot8I6MGdE6I98J/i5gnR7wV0 5ycTon3yn+auCdF++D25D78aXpfXu5gXh/ed+/H08DdXJynmmvI4nhbeRx7E M8J7zcN4FjflmbyAk6ydzG9yPI+MderrvMBzuAG/yK9zf53xMS9wTXokRH8j HtOZGJvTV2dI7LgDeTrPC/ePzqsxN+M5vJCf03kz5hby+fxW+Exxz9hrH6qz KJYP46Wx6zCSVyVE+9uP4U94OY/mdQnRnvmtzXmPl/Ao+UcJ0R74L/P3CdH+ 8yP4g1jnSf3N/EG4Pg/6zh5el3ujvXxjbH5n/pZX8Xhr98XcSf4Vr+Tzldzb z0X/WeMJOocTov3qe+lc5I/DfcK/8Bp+hv/iDTxJ/7eEaJ/5GXyPP+P/8a+x /lS+EpszkX9OiPa0f4XPxeZM42sJ0X7vk/l0QrQPfF/HuhObOcJrPJQQ7fM/ XedmQrTPfLxO8n6eiTxbnrZftPf7Rh7XL9qLex7f1y/av30OZ+gX7QmfaG1m 3hE+y/JsMQ+Q5+SdPIGf4SPhc6qTJ5Yv5nL8bbg3dB7gL3m+vGC/aH/4ofJi /DW/JS8R8zB56djahfIHY2tHyCvwXn6J2/EPvFynGR/gw65DzX7RXvGjdWrz d/J3derFfFynIafTWSqvxvvCvaffODZnJFeO5S9yaz7Ep6x9nDNZu8LaDrFz GK/TiQ/zKnmXmF/kbbH7cI613cO19R7NkqeKvS/reUS/aM/zNZzQL9rjvVhR 70G/aN/ySeYP5GPytTrPxfwR9+0X7S2/jp/vF+21/ilP6xfti57xUc8/7mHO BvnoftG+6x/zhH7RPuqbeFK/aM/2T/iVftFe7qu5d+z9/Yxn9Iv2Tv+C1/LF 8L47t/f5PG+Vz+sX7Zc+tKb3L7ynXu82+dv9ov3tt/OSftHvmGzhN/pFe57v 4Hf7RXuhb+bZ/aJ9wuebvzp2rJ3ylbFj7eYN/aL9xr/kTf2ivc3f0v+M/+E/ 5Q36R/tsJ7r+n3sv3nA+i3V26FzT2SU/yBfk+/W/41vy/TqjrC1q7TLeG8u/ 1znCd3gvf9Mv2iP9PZ0fY/lh+dlwH1p7hC/3i/YVX6XzZyw/ID/WL9r3/ie+ 0C/az/wo3+DU/DvncA5Z+FNrs8b8i/xfnbR8ktPLM/IJTtk/2p/8Fo+Jnf9x TtY/2uf8B/7D2v/CPWPm7dicU/JM/aP90jfLc3M2/pjTxOYvcU8W4L3upTXy q7HzPG1tvlj/IJ/oF+1Lv0LnVOxYZ+SF+kd7oX9oTiX+yZyVXJZ/5FVcng/z Dmvbcm79J+St+AX5WXPax/J28hb9o33yV3NVPsKz3PNN+Uz4nMpL8Q+8nuvy cV7LNfpHe62v41r8C982/6X+0b7lV3lA/2gv+ms8uH+0R/1Ffrp/tM/5eX6K 8/IF7tY/2i/9PTOL8Pdmvs8P8UH+R6c/369zmZ/lAvyl19sr5hvy4VyEd8o7 xubv5aGx/GuOj835wPyH+ZD5d6x9uX+03/j9FV37/tGe2AX5Ljfmf3Wm8MOc XP56/2jf8v/kr3HJ8LrMP871wz3DU2N5ev0PuVJ4r+X/i805wnO5LKfWeYcf 4WQ8q3+013paXt4/2v/8hP6K2Jw08mX9o33UU/KC2JyMvJ6rcE7ew7U5M3/a P9rnPDvv5kc5K2/nGvyt17Ir9hn/w7G2xPJ8D/lsc4NM7nX9j/tH+/H+pfN1 bH4u+YH+0T7hZ8K/HWLz88h/6h/thX4y/Hsndm655T/0j/ZU/9pxt8aeP0d1 3opdh7w6J2PXM3Mtzz9+xjnkl1/nx8K58aX+0Z7n6XR+5646ufk8x/ODOlkS /R3SySA/I+8uvxL+vRB7fwvppEiM9j+/JP8nNr+wPJ28Od8M3/ljc65z6lh+ v+tzNNwzZj6knysx2sO8DJfhJ7k45+c2XIqLJ0Z7lZfgwtyO97gOX/aLfvfh nvn3x/JUzV0P7sR35Xljc1LIS8bmlzOnYqxTkosmRnunl+fqidG+60U5e2K0 x/gjXCUx2qe9YPg+Hx/9ll86Mx+Vd5VX1KkTc1VunhjthV6d23BPzqLfMuaa 8ie5N1fhJonRHunZdJ6I5Y/KOydG+6XnkvfkOO4pv8mv8iuuZxxvcD3z6PTj BHkdnT6xfj1OiuUNeEhitC/6Mmun835rG8knJkZ7nuc3Zxgn8WPykTHP13+B v9BfwC/ybq6l0zUx2rP9Lfl4/lpeXz4oMdqPvQm/mhjtl96YJydGe6o35ZmJ 0R7pE91vc/hnayfxm3yMc5nZg+vwFPl8Ps6v8iL+lZuZ80FitHd6O/6KR3ML /igx2pv9Cf42MdrPvDmvSoz2XW/P+xKjPc9nmvkenzbzcfnGxGi/9Db8OY/k Xc5nHV/QKeFafRE7VkudTxKj/dhb8ebEaD/2mjp3eFq4z/l7fpEr8188KdyT fJjHhXuJf+OJ3NmcXxKjfdSnObfFfMpxO8l/jvW787nYnCf5UGx+Vz4dm9OD LyZGe6o/xb8mRvvYV3esa7F76TXzl/Lv5j+tcyUx2ne9N9+LnX8fTp4U7aVf uLbXzUMye4/lOZOiPcyf5VRJ0V7rdcxPyzM5Tp4h5nryzDw7XIdivtNyd3MS dLLF8sFcIinaa/0x/fv4Te4vz5MU7aPeWP4Az+OB8gdjHsTFkqL91ZO4YGxt c/3SvChcc8d9nDs57iidhrxM/jxX5rd5GFdLivZaH841k6K91kdw7aRof/XH zawQ67flerE5Q3TKxY71Ajfj98J9qNM45jHy1knR/urlnU87fsr5VOQO3JWL 62+L3XuV5J3k3eSvW/tZUrTndn7vxXOcJO+k35tXysfp9I05l04Cx+nk4URO 4I76z/CK8DdCPpD7y7vKJ/FH4ZkvH8GD5QX4eR7A480fmxTtFf8yj0uK9oTf 7TMyISn6/YKx8u5J0Z7zE/mV2Mw481fy5nBvy5fwJp7Ms5Oifd2n8BtJ0b7u PfXn8UZ+Vb4w5kk8g9eGe1Xn7dic7jwtlr+m835StJ/8dH43KdrvfSavjp1D gv5a3sqz5RtirsyPuf7deQ5vSor2dX+ijmf3QO9jFucl/1K+S76A9yZFe7DP 52+Soj3eF/FB/ircq461K9Yfwt/F8rd0fkyK9mZ/h08kRfu3f8VDB/hM8ij9 P+T7wzNc/mfMS/hUUrS3/As6Z/l7Xi6/nBTt376GM5lzlD/klAOiPd7f56tJ 0Z7tL1l7g3/gFfLbMY+X/8uHw+eCj/C3vEon2YAof48vxI77P530sWOtlqcZ EO0DP1melX/hdfIcMa/n3AOivdwX87HY/A2cb0C0r/sG93+BAdF+9Z/IH+bf wvtoZiM+zTt1yvJ5nc06TWP55/JSfE6+Rd5iQLRP+3RrH4rN+UKnEl/U+Zbr 8jXexeX5As/Qb8B/hPtcXpUvyb/iGgOifePf1hnOV3UOyVvxPflOx312QLQ3 +1Zuz3/yDn6az/I2fmpAtLf8VHMK8cnw2n3uOnJ699t8eXw4z3CvctvYnM+t 7TUg2gd+gbx/ODd+g7vF5i/iwbF76WP9IrH5u3lArP8Nj4qd/zv6Y/g6X5Xf GhDtAf49v8Z3wr2n8xLf4L3yl2NeJv8f3+L98ikxb5f/xLnC3ok8NTbnJ51l nCLsuyh/PVy3cH/yLP6XV/ICTqbzo/5bMX8ofye29pB8bmztR/LlnEr+u/xr zsInefuAaP/2Y7xmQLSf/Hr99ZyOj8s/jnmj/FPOwEflHw6I9pD/lbfE8p95 RexYn+rvjh3rlHzngGh/+M3yPZyNT8v3x3yGDwyI9oFP0tnq/v/c+f8p/2FA tBf9m7wjln+lc0leUH5OfpLz8Hn+fUC0J/wFPjMg2iN0t/7fnJ8/5+Ox/iWd 87F8vzy1Z1pR/kd+fUC0b/wV/id2rGt8d0C0P/xe/f+4CN+QpxgY+W8+Gnt/ b3G62MwUlXznHhjttZ6MCw+M9oHvUdzr5snu7YNm5uKH5f9amzfme5x/YLTP /B3OwsX4P75/YLRP+/fWZozlyc0vzqX5sLxozCnlZQZG+8m39gx/hJc4bluu yMu4A1fn97kz1+FVvNDaqoM9661Nzc0HRnvXT3b+TQZGv6dQS36Fn5V3s/Yx XiNPK28zMNpbvou8Pq+Wp5G3HBjtLZ+Ze3I1zspxA6M95H9z/j1i+YnwbwSu xFl0+gyM9pPPzkn8KOfnyfxYeH/1J8b8Nw/hOuHe4Be5AefWHzkw2tM7Vwvv MccFy4fF+hm5K1fhHDxoYLSffD4eH5tzxcxXuTHnkb8wMNqj/qp8JjcN93n4 d0rsPAvqTI/10/OTsdd1Uqdz7FjXeA4347v8AbfhovpLuWW4H+TvcWsuJ/+K O3Eqr+WLmNPwt/wUl9X5nDtycV4Vm5lSZ1ssv2Xm4tj8ZPKN3D7ch/KPuB2X sHZdzHX4Zuy6VefT3JNr8F8Do/3kK/HhgdHe7+nM/J67ckX5oZgf4Ddjr/eG Y83nFuG91v8tNjMT/8JPc2X9nwdGe7DnkF+M3Xvl5ftir7cmnxsY7eVelX+N rS3Ci2Lz6/KdgdHe8t34+UGe3eGczXwu5vry5IOivegLyjPzQG4oTzso2ru+ HXcYFO3N3oBTDYr2nM//sM8lP5bVPSG/NzDac74xZ4vNyaVz36Bob/bH5BkG RfvY55U/wPXl9/GD3JCb6RQcFO3h34RzDor2qG/BpQdFe8tnrKvLPfRbyisM ivaZL2FObW4nL+a1VOMR8gyuef3Y971W+pUHRfvVZzanMT+j/7i83KBof/s2 XG9QtC99Vp1m3EuntbxmbGZOeWvuK28uLzEo2ic/u/xx7iNP4Rw2uyZPypvq 5BkU7cNfSt6Jx/CT8mcGRXvCV5An8gR+hPvyeG6v0yXW78i9B0X7z9fQmcBT uYO8+6Boj/0uPDA2pzuPGBTtgd+ZE2Izq1k7ll/hZ+TjYu7BowdFe9235XaD ot9i6M2vDIr2om9o7RJ+g2vzDJ7BCToLB0X7xteVv8GzuBlv4IXcV2d2rJ/I 78bm9OFpg6K9l/vx24Oi/e0bWfs+z+V4+bzYzIG8elC0/3wvnhS7DgN4Zaxf ij+JfcYH8dpB0T72z/Gm2Pk8zzsGRfvJt3Wsvbws/B3hL3lJuPfcVwP8jRjq PR2mv2tQtI/9OP6DV/JQ3spv8Sj+LjangzlH+H0e8X+WzjnOjmVrw7FtZxib o9ic7R2eWCc5wdixbdu2bdu2bSf3WXfVH/Wr53u/t1ZVV1dV956cuxr9hInZ D74Lr4Cb4Xlg4rjgW0a3wxfhpfAg/C/hNXK96EkZz1bZ1/B79PVyH+Hf8Ga5 j/BXeCO8hrYhIZqTfCj8yfhHwylMnFb436Cvg0eiJwrROJ3QU8Pb4eHoP0zM cXBG9B1wCzzPzNg6w+mMPgQOh2/A8fivmGuZAGdH3wVPgT1DNC/9PLhaiOaK 70XbwvBBeD56zRD9rsFU2CdE89JH46kDn4YnoxeA98Iz4JIhmvc+HI8/fBye jl7MxJwLBxl9JlwmRPPbh+Ivb94HusJZzDgX4qlv+hqA3ha+Ai9GbxqieeaX wy1CNC/9UtgBn4cnwrlCNCd/PG2tRl+F3sHEWQQ3CtH89ivg1iGalz4350ln +D/W3jJ0d4jmpf/NmuwBF87EfiFmXnPtq/F0C9G89M5gzscujKsg9xU9ytyL a/A7OEk+9gScAN9C3wKPCNF89ZvgQfAd+Ax8IURzqo+gr/5G34O+AH4GD0OP NXHGwKPhB/AOPFPgR/BmeGiI5qvfBc8K0Vz9k/DPNXF2ok8P0Vzu2+BxJs4+ eBn8Aj4G7wvRXPEH4DUhmn/+CLwDfgcfgjfBb+BkcGBv/U7QDPpab/R58EH4 E7wfz8oQzVd/FN4dovnwT8BHjGcW/q0m/in0U/AXWcPoi83YFsDHjX4dz8cQ zfE+Dn2imYcl8GX4B3wBzx34F3wFfgEnwn8JfhSiOerPwdeM/yJ8P0Rzy9+B k4Ty3oF/GTFvmjhr4Nfm/t7A8yVE88+vQn9q4t9C/wWnkFyv6H9DNM4G+LvR T+M5G6L56reip6KvtOh7YQ84K/wAT4ZQzUv/BM4TqjnbH8HZQjVvfCP8O83Z +BA9c6jmn38Oe5s49+G0Jv5TOH+o5p9/ARcK1Zzzj+GcoZqz/RVcAs4B34WT h2re+wP0VdTo1vo8m+W/58/F3kYvh55bcr1WYt/Ecj8LcKag10YviP6RODVC NUd9kQr0Eao5tz+gV4XzwV/ghqGa3/4YbQON/hm9nonzC24VqjnV/8DtQzXn +U+4OewLf4WbhGrO/N9wm1DNu/4X7hqqeeZTMIaBcBm5X/TVz3DiIrxDwcXZ +8nwxMCl0JPAYaGaRzpRY94bYYf40fuEaj7588RxmTEkQu8eqvnt9xAzHn5G zDt4hsDlZP3AkSZ+avyjQjXHe//qPBvgy/hToQ83/m+M3xKqOfnP0dYO+8Bp 8IwN1fzzz9AXwUFwRvQ5oZofPhM8P1RzzueBD8C14XfyDm84L/rhUM39ngve BdeEs8BLTcw3+LcbPQP6TNgPzgavg6tKbliudwXsZvwv8K82ejE8H8y8+cD3 4KZyT+VdHbbIGpD3fLih5OyV3yBwfbgA/jOGH6BPgCvB6dAnG/4h7/kmpif6 1VDNP+8BXzIxC8PPQzWffD74WKjmpS8EPzFj8IJvhGou+kfEnGauMQn3/TPs gm14eodpHvL2RXmGwKMyc+3oP0M1F31ZOGWY5plPQdvEcAsZDxwMh8Gl8PwJ 1Zzz/nBB9A5wCfib6Ss1/jToreV64axwW7gMnmQmZmU4d5jmis+IJ5+JUwk9 h/GXh9ObOIGwb5jmhM+DvwrcU+4jXBzuCtfAUxnuDleDy4bpdwTuwyUiOE8k /xhcyvhrw9VNnKzEKQJ3gWuiB4Rpbvk6cK0wzTmfE08FE78A3AAOgQPweIVp bvy6cN0wzXWfA94Sqt+zqABnCtNvEzSEbWY+fYjTEo6SMwq9S5jmmS+E3g6O kTMT3Rmm+eSbwv8Yfyk8feEBcGP0ZmGa034V6/lf+Arr2Y4eGqa53y1wRxPT CUeHaQ55FxwXprnlHXBEmOaQrw83NtdYhr4Gw4PgduizwzSnekt4ZJjmTq+E Zyo8Qq4XHg8Pg7vgWRumudlbwWPCNK97e3hemOaQbwEPM/HbwjNMnADiLITH wP+gTzIxg9CXw+PgZugDzDx0hJcY/wO4dITmJc4ObwzVb6N0hTeEaS76HvB+ eIrcd2LuMbwAvVs4z3U5c5jPnWH6LYn/0I+GaQ75f+Ft8CR4IXvqEHwaTyj6 9TDN5d6YmHfhefKsQb8Cz4J7wifCNEd9GHwrTHPLN8X/GF4A90NPxBhWyD1C /x2mHI3+MkzzwMfDX8M0t7wNz3t4ieypYlwbbf2zcL/xvAnTfPL18Vw0Y4hC f2b6cqL/gJfLeY6eNFxzucfBn0zMFnhSo6+BI9AfmOsaAKcI19zydfGcRp8B 90Y/Z3gQnM60bY/HE94CD0fPC2+ER8AFwjVv/GS4GrwX7o4/yPAU9Jrhmqf9 X3R/eA88Ct3HxJwAVwrXPPBt8OQy8ceil4S3w6PhwuH63YROeIoZfSF6r3DN 0x6B3ho+Ac9Db2t4BtwUPgRPg+uHa+703vgbGX0wesZwzb0/BM4Srjnw58At 4GNwKH4HfBSeiW4N19zyUeidzdqbil4nXPPMr2QddgjX52wYHreJ8w+cHd4A L8IfEq7550/Br+Evsp7xvDC8BD0qXPPDr4AHwZfgZXBCuObSn4b/FPwKXooe G6651tfDs8I1f/tiODxc889Hsf6HwgtY/4NoOw6+JmsY7m/iD4GnwDfgdbSd bngNPNH4V8IjwjVX/Aj8C+A7ck/hHfATudfwMvgePA7eBD+Ct9J2TbjmnN+K XtSc+VvQVxr/Lni3ibMJXmzi74C3mji74X3hmh9+G7w+XPO3TyHmEfgFvAF9 brh+p2APfDBcc793hleZc2kVPDpc8+cfgM+a+ZxFnGvwO/g4+qNwzf0+B/0O /AE+iH4hXHPLH4FvGv8yPL/gX/Ah9Mvhmk/+BPw0XHO/L8LzDv4GH0O/b2Ke hb/A3+Fz8PdwzYW+GP9Ho+9DP26u8SKchDn8Dd+E88DJmc/LcCr4L/p1OBuc FP0qnCFCc8JXJ+ZmczZeQU+LLvnkb8H5IzSv+0o8yU2c9XBOE38T7AGngtfC mU38u7QtFKH53pej/w3Xsd1B9zb+8XD5cP2uxEO4XITmhO9bkWdYlOaYfYzu h54RfgpXhTPDu4kZaPg5eu0IzQO/E72i8T9DrxGhueJfwPUiNPf7a9gSobnc z+MfBfvCb9FdcG7Jlws3j9A88Ifx2I1+DG4F54M/4mkP54evcIbHy7xl5YxH D4M90T/BnSI0d/RnuGuE5o0/jL87/JYz/xjcM0JzsB8gfkM4B57TcB8T5zjc xvR1CX8M/Af/eTgyQnPCX4P7wUkYQyF4IGxB/0a/QyI0J/wruImJf46Yw2Ef +Cf6WDMPl9GnwUXhJNyLRXAJWTPoc+Di8EV4AlwY/kvbmcafBv+uCM27/ht9 svHcwL8ULgWnwLMOLgNfQ59v4qdC3wKXg1PD2yM09/sdPBuN/pbfKRXN78F0 eA6gV0LPBt+Aq8IZ4GOwH5wFvgQHwZngMxGam/0dMZ/DtSWnLvrJCM0Pnx2+ HaE53h/hOWzivICvmvg58NyL0Hzvz9DPm/i50J/ANeEH6HvN2N7AD43+Hn4F 14Hz4f8Qofne8zbhfSWS5xn8HU8yuImsH/ldgKe+rB/4G9wALkjbn4a/ov+B G8EB6I1p2xH2hBNHql4Uzh2peft94DSRmhPeG05p+vpNnEywVXIFo2c1XATO Eam5333h9JGaK74YnC9S88BXhKtEag72cnAFuBVcEvaN1JzwpeAikZpbvjRc PFLzt6fk2kvBLeES6F6wS9YDelkTJwlc0OgV8AREah748nDlSM0Vnx5Pdbgd XBm9lmE/uG6k5n5PBq8w6zAT/gZmrvKivzX3pSbcMVLzD2fD44S7yu8R9GaG c6C3hP+V8xP9H8NBsC1Sc8vXgNtFah7p2OK8C8KL2Zth8L/wHLgWni6Rmge+ DtzbrIHL7N9Q+C/79yocASfGH4gnOFLz519Hj4OTogejz4aj0RvDkyI1J3w9 eDDcR9YMYx4Gh8IN0Eca9kQfA4fD+eEBxt8Iz3ij36SvvnBy+vLFM8P01QTP 1EjNUV8YfR4cC1vRFxouir4EjocT0EtGaY70W6y31eYcKI5nFZ6+cAs8e+BB cBn0nYbHo3eO0tzdzeBt6ANkDeA5BA+VNQZvNno5eD88BPaHr8Cj4Y60vQWP gdvBF+GRcGv4qIkTgP+68VSBH8Dj4V54fsPT5X6h/zDcFf1ZpH4Lpgf8KVLz z9fA8waeDE9A7xal+cCro79EnyRrFT5nxtAFz2PTV230r/A0uDd6oijN5d4d fm9i9oFTRGk++SD8d9HHyf5ijSVFb879qoh+An04ehv8pw03QE+NZzYcjV4g SnPUR8K54PlwFJw3SvPYD4SDojQf+wDYH14FtyRONXit3Be4ktGtsCe8GO6H v3yU5oFvgp7dxI9HLwYvlT0C+xi/HU9hoydwLT1kzXAto/G0iNI88GPg1lGa R30Y3ChK86UPgetEaT75oXD9KM0JHwqnM9fbiPgZ4bnwKHQ3vEXWA7oV3gwP R28apbnox8EdojTf+2C4prnesXDbKM0z3562DhMnHD2LiT8R7hWl+eF3wS+i NB/4TvhplOYi60HbcHif3Gu4P3wI7gnHwgfg9fiPwzfhKXCU8c+Hp0dpHvhJ cEiU5rqfAQ8yccKIMxo+Bk9DTzAxI9AnwifgeehTDM+Bxxn/THholOafj8E/ Fz4jawDeCl+B4+DF8Dm51/B6+BK8lLYrozRvfAn0tay9fvAS9GXGPxB9B3wV XoS+wMRfAW8ycVbDu41nGbwmSvPPD6HtQfgGvAB9VpTmsV8D74vSfPJ2eLk5 f2bBI6I0N/4G+FSU5qUfRZzL8D251/B9+JGsMfgm/AAeAZ+F78BbaHvN+PfD 36M0r/sm+ILx7IAfmTi74ddRmh9+G3zHxJxCzI/wC3gf+hfDk9Hfwc9lDcNH zH0/iOdvlOaKX4CeM5o2cl1wcvgdfBxPZvgjfBROG6055F3wBjP/R+BUxn8K zmPizCROEvgtfAI9W7Tmkz8N54/WXPFz8WQw8c+ie0drbvkD8K8ozWl/BvaI 1nzy43gPLBOu379bSttC6D/Rz+MpavgyXDFac8JfhQPhxAW47/j9DF9HrwEn hS/B5aI1n/xaPFWNfgO9drTmUd9WgrMGfpCNOajEOxhcEf02HjucEr4Du6I1 h/xG4liMfhe9ebTmgd+K3gZOK3kg4Rg4K/wET59ozUV/H25vPNvxdILTww/R uxreid4dzgjfRK8XrfnYH8M9jV6UMbeC7Yx5eW3OYvg3/BRPWLTmt38Ox5sx 7CdmPzg7/BJ9oOF8xGkYrd+zeIU+JFrzyb+Gh0drzvljtJ0M54N/om+M1vzt H+GZ0Zof/iKeLXBh+AP6NOO/hL4dLgIfhSfAeSVnMjwf9oDPwathH/n3GngO XBD+QZx1Rv8CLzL+M3iWwl4yb/ATuDL8B88u09dt9EtwWTgR9/RAtOaNTwaf idZc8dfxHINLwofhUXBu+Bp8GC4Bp8R/1cT5S/y90ZqXPjn6+WjNS38X/w24 PJwU/aSJeR/9nllLb2k71sRPjee28aeHn5vxZ4BfRWs++fJwlxieW3A2+E+0 5oHPCL+N1hz1T4n/AQ6EM6N/NpwF/hateeaLwHWJY4Ozwj+jNdf9B9pmRa8r 9xpOBteAX8GJ4epwLvxpYjQnf244fYzmk88DZ4rRfPI54ZSmbT44h4lpL8k1 wfHZ6VPe2+Fg9IJ4CsIN4K/oXnAj+BvsCzeGvfAUMfwZPZ/xe6MXj9Gc8/nh 3DGau95CXxXgGPryRS9r+pok+f/hZ6ztfazzKvALuBCe6jGaW/6bvOebtfSH vmqZuaqPZwkcApeB/4FbwEkknyfsgkug2wyXhJ0xmlu+FNwsRnPaF4Mbww44 heQONXEqo4fGaE741Ogdzb1OJblA4VZwWvhfuA2cTvJ/wm3hSrTtbTgRegMT PyMcAXeQeyT5OeGecHX8Y2I0V3wg3DdGc8tnxTMA7iJrDB4Md4Wr4hlmOACO gzvC1eCRMZqPPZPkFDV6TfRJcA9ZM+jjDddGn2HGkE/ybcK94bro8wxfZP5L y9nF+VwAz0Iz5zNgjzjeieW+wxvQI+GmtN0Wo/nkm8CbjV4Yzx44VtYPvBaO gIPx7IzRfPJF0PfDcbAD/USM5jxvhd42lrMGdqGfi9G88aXQL8IDYCf66RjN D98MvmL0FvAteBDcAf4Kj4bbwm/gEXBL+G6Mfue9PDEfwEPh1uiPDf8DP4vR fPI2+JAZZyX8L02cMpJH1PTlD38yfbXD/z5G89sHov+Ax8Kd0H8b7gwnitX8 8Hb4aIzmz+8CJ43VPPNd4RSxmh++O5wlVvPAh8NlYjU3e23i54KnwRHo5WM1 H3sPOHus5pNviqcSvAD+Fz1jrOafr4teAJ4BN4SLwXPgnnjymphhcEmj94Y9 jb8+fh/zb/qt4Q7werm/sD+8EO6H3wqvgGPgarGaEz4BbgQvg+PgOvAS+BHn Rmo4Qw7mnDg1jd4MdsCr4Gj8QSa+C72piT8A3W08DvT6Jv4g9Naxmge+G5wu VvPwD4RbxGo++aFwZzP+YXC3WM0JvxZ+FKv5w8fAsbGaO3043CNWc8W3o69e 8Ga4PRwCb4FH4Qk3HI9+ED4Pj0aPitV88j3Qx8H74HHo/eEdsjbQEwxPQB8K 75J7hz4C3iNnKfpow13RBxnPFPSJJuZ8eBN8Ep4Dr4zVfO/T4Vmxmiu+D23n wofhEHgBfASehWex4Wnw9FjNOT8bXhar+eSnwlNiNdd9JG3Xm77moq+J1Xzv C+CtsZpDfiG8I1ZzyC+Cd8dqDvkG8PIY/Z5FHHH2oZ+TNYm+Kka/hTEI/Sb6 NXg5+qlYzSG/Aj4bq7nrV8IXYjWH/Cr4cqzmjV8GH4/VXPS9SxFD1jBrbCP6 O/g2+lvW3n04N/oa9Dumr3Xw01jNJz+MMbyAb8kagF+btkvxHDH3dxP8MVZz pE/Bk40z8wW8Cz1tnOZX3wr/itW88WPx/IUfwtvRk8Qpj0dPDj+Gt6B/x3MP 3gmnMvooPF+MPhnOjP4c3o0nQ5zmk98H5zRj2A/nidN88gfg/HGaH34mbb3h t/AR9KJxmqO+RWX2e4Lmhp2PpyL6Z/TjeMrBH+EL6LfhQnjmwqWNvhAOhL/C R/GXiNM88ydhPxNnOZ4m8G/4Erod/gOfhxvGaS7303BVE2cFfovxXEFvHqc5 4e/CYXBqeDOePobXwm3gpJJHF+4Op5S8uPg7xWn++V/wPTP+63B74z8H14vT 3PVraNsKToJ+G72nibMVPRJOKzkn0bvGaV73B3B8nOaBvwy74jRH/X04xvgX 07YG/B39LHptww/hfnGaB/4FPDlOc78/g8fGaQ755/CEOM1p/xHeGKe52T/A 6+I0P/kneEuc5mBPWZpzDi6bk/tOv9PgHOjv8ayI0xzvT+FRcGbJuQrPh3NJ bkt4pvEfou0co/9Gfxinede/wefjNB/7d/hSnOZsz0i/B2B/+v2CvitO88N/ hffGaR74ncQcCGeEH6MPMZyftmfgerTNDR+Da8GZ4cNwIPwD/404zeX+Gd4e p7noffFchYPx5INPwnXh3fQ13FzjZfgJXBT+I+948TxzJL8xa/6feM0Nngh+ Fad54G/i+QaXlnUCf4BLyvzD1fHXgxPjfxunOfYfomdCrwz/ZWzPTV/J8fw0 ce7iSYanPJxU8pSamGngNPGa4z0tnD5e8/ynhlMa/23a/pF7CmeQnJ/ofvBr 9FJwDTiT5AWN15zw2eAi8Zpf/TkeL7gKvJx37BLmfe8ZekH0IPSc+MuaOBnh 3PGafz47XDxec8W/xV8BriW5RdF9Tcz36AFwHfgRnNWMLTeeysb/jjlZGqff KUiJnjheryW/5Pk08/mVto3hRpIzFW4GB0tuUTw2uDFcQPKFxmv++W/yW8Do JdB7wy64oOT/jNc8875wSxPnr7znw3bYG90Zr/nti8H/xmuO9yTBvOebOEXR uxh/XriKucbkeCLg5nBF9DHxmpu9jOQFhVvAM1mHw+DDrMNy6APgVugr0OfB l9BTEaev0SvhGR+vud9ToEebOBXQR8ZrrvjK8KR4zeVeHh4cr7nl/eEZ8ZoT viQcGq852/3gqfGaW/4t878oTr8BEYA+O17zwwfCC+M1D/kuxrYKfsLYCsDb ZJ7hIDwb4jXXeg+4RYLmvt6LZy36czzV0M/B3eScRF8O30f3gHfCDeFr8CE4 SS7eReDN8ZrX/SZ8Ak6Onp1rP23iVCHm0XjN334Rzx74N/5ceK7APdAb4HkD h8K14FvxmoO9HvwM7gPXgR/AveD/4NYJmos7L3HuGr0h+vt4/V5ATfi6iV8Q z0sTvxH6p3jNx54f/bGJ7wP/gKPg6nguxmuueG/0r3Ak3BO9bYLmBi/EteyX M4drCUZPlKC53O1wOjhe7jtti8HDYCd6lgTNx/4PXNLoDjhjguZsbwOXSdCc 6kVpm9rEcaPngvvD5dB94CGyTuDsRm+Fp7DRS6PnhQfCzdELGG4K/zbX2BYu n6B52rvCjRI0d3p72B8eBXeG68DjZI0Rsxo8FragJ03QfPId4KAEk/u9DH3A bVkDfvgrmThd8NRP0Lzx3WBrguZgD8JT08Tvju5O0DzqRdBTwHHwv+iOBM3B /q48cUM5f/IxRvrqgN5B8jzjuZmgubtroHeDu6M3h8Pl2mEb3EtiwoPx707Q nOF10XvAvdHD0UcnaJ7zKuid4S6SO5p7HQWngfvg6Q/PlHuKJ0TuKXpDxjwU noMehmeE4RB4UILmae8FxyZo3vim+CfCC+C+6CsT9H+DEA1PT9Ac7/HwYngp bMM/F14CH+YcKGTe/WLwzErQvOtuPGvglXAU+hQTPwFelqA52JvhWQ+vkrUK LzDxB+LZmqC51iPgcQmaT34AvMn4x8F3EjRveT3aJph5aA3vg9fDw/EchzfC o+HLCZqDfSR8NkFzsA+FDxr/CPhUguZFX8J8vobPMZ9tiHnExBmD51qC5jwf D99P0Fzro+ALCZq/vRZtn8L/SR5y+AV8Gp6A51GC5lEfBO9I0Jzzk+CPCZpT PYS+0valP3gy+vcEzek9HU7eV/Ol98TzF/0AvIH1sCRev08xBc+vBM2jPgvO YOIMr8/7E/ptxjADPVVfzXkeRpzM8DF4GnqSvhpzLpyzr+ZMngi/S9D883Pg bMZ/wpc9I//79PTMEdeYH/0H8dO1oF/K6oy8N+GLo4/PKVk7st7g7/BduY9w +VScZfJsMp5V6AlwIvSFlVWXXOsxwRrnG7xW1jCcFM9A6sEmZj/qAZTE6Jdk HcN/JE97QfWIfgMeBieD98nzEc4mebZljcFZ4Z2yX+CM8BO533AmeDj1SEqS 3LxvSP5quCz69sqqp4dPFdQxfKHfIcHal1zLqGCNkxkeG6z9JpN8erLHgzWn +gF5FsM54A3wUDl34P3wRDlb4fhgva6/xF8je1/Ggz4hWNtKLvfjsgfh/JJj nPHMMNc4LVg5L/xD1rec3fB52dewL7woWHXJoz6feqHxv8I/24ztc0HVC0rO cFmXcB7JkQ7Pg/PBM4PVL3yC+HPhAvDGYJ23cvBq6rXBJj88nvVmPq/K+QMX hy/Cy+HC8NJg5dTwS/qaYubksLyTwLnl/lbWmJIffgX1qmDNu36tsnIJ9HXU GyQOujf3cRncBP1mZdVLw9fhNXBJeHKwxs8FP5BzSZ4l8G151lNaw2n8lP+B t1BvC9Z89c/kbIeDZC3BO4M1z3wS/JdhF5yOMewwMQ9QH6L4ww8ra5zKcGbJ eQ4Hwunh/UbfHqwxxf9KzjG4OpzNQ+NUlbUdrH7hXcEaR3Lmf5R3Ibge+h85 D2Gb3F85M+EGcHPinIYHwseoTwRrjvo+jD/MwtzDbfxUl9zvifGfM/fucLDG rwOfDNY4Ms9ngtWzBb4g522wfvsgMXEuwk44C3GOmHlLhH4BdsCn8S+APWUN wPvganBSPFdgN1yCttfN3N6gvkVpCafCcxNuJedDsPozSi7HYPU3R69I28dw GzgF/mtwC7gs+h0TJx36fbgtXNpD40vbe9QPTNsMeB7B7eEKHqrL2jgfrNco 3wjIhOcp3FHuHfUbShdZJ9TPKB3kPuJ5DXeVOYFfwp1lr1F/knODOJnRX8Cd 0HPA7+B/4coeGqcdHOih8cVTBX5v+noerDHl+w65aPsR7iFrL1jnQdq+DVa/ fLNgGm3Due8H4DnBut9lX+Sl7Re4F/yN+gelN1zSQ1nuS3e4PG0nw/nxf0fv AxeAf8MhsvaovwbrNxHK4P9l5r8hnJS2YXAlOLlF59+TtkngcPhnsMaR7yMk tqhf9mYy6hQW/fZBeuqMFp1Dq4dyLNwUTg1HyV6mTmfR+1KY+GmNp6xFxy/f QUhpUb/c3z/0mcii66oQ/lRwDFwEzgDHwUXhzHA8bPHQ+OLJRJ3FovfXx0/H KWOweagubT3Q/wbrtdf30L5kroqhZ4MTYDd6Xri/rAHqXJSe8Ej0PPBm2Iva x6Lf/qjkpzwC3Q8uBI+S9Q97w8Ph3BaNOQAuSO1JGQo7PDS+9JuPugBlMFyO tvnhITI2D9Vlz9ZDrwjPhGvApc0aqAmXgafA/nAxeDTsS13Yot8rCUQvatFv VdiJmd3MYVaLsqzz4tQlKePhqvhLwBNk/i0aMzdxaqOXg6fJeeWh8eUaS1l0 DPL9iM4eGmecxMSfE+4L14ErwdPhuV60t2jO25ayvijr0Bvg8YNny1qFg+A5 sgep/Smz4IHEd8Cr5fz0UF3mxIq/NrxYzgqL9iXfwgiwaBz5vkYV6mqU+Xga 4Q+E58LBcE14IVzdorwAjiR+DeNvjKcqPA+uRV2Hsgjui6cpvByOgesbvQF1 I8oyuBd6Q3PtvWXdWTS/fV2L+uVbHo0tGkeu3UZf9eAlsAtuAq+Q9Qlb4JWw 00/jS7/B1FYzV9EeOja5ln4eqkvb3H561v0Hh3voPMi12yw6n3JdTmq3ufY4 PK3MGFrRtoW5Ry1hF7wWjsXT3Mx5O+oOsoZS817poXHWoP/jp/d3g3jgtmYf NbNoTPkWySj87S36LOvgp3G2SluL+uU7Ji3Q7SZmF7gzvBNuT9ueZt91Re8K 74LHo/cwni7U3Sz6vZWaHno2yvk81kP17fBEuBe8G+5o0fii/2vRON60/c+i nr1yDtNXd8O9/PSeHoQ7w53gHXBPuI9Fz/lSHrr3m8GhFj3/5XsuaT2ZAyt7 m3kLxx8l+wJPBBwDnxC2qH5U7i91rOxt2obhiYSPoc/2UF08Uejx8Ck4Hu4H n5c5oZ5IuSXrlro/5ZwwnoHwRXixh+pn4SXwIOPph2cIfAkeCo+Fb8p+hEfB V2Vf4x9qxj/YolyccQ5DH27WwHx4BHxSroW2CfBpeJhFdYk/wKL9XpCzl3q0 Rb/zMshP+Rr6auKMM/2OsSjfgIfjmQDfljVs0fhFabvOQ69dPCPxTIbvwqPh afB9eAueWfA9eKrsV8Mb0KeYedvkofodeDJtF8HP4UkW9Yg+w6JxHsh9kX1m 0e+5jMU/E36IvoM4C+BH8DyL8hNZh3jmw0/hkpyTPe3sJc7JhbLPKM/QD9B2 DfwK3iPv3kZfLmeD0acTZwX8Wu4LvBH+KPfUov4X8CqLxnkj14tnKfwSngmv ht/K+OF18Ht4n4fGl7ZrqddT3sG7PHRsMv5DHqpLzCPwJuOZT5wt8Gf4lsyT mYfF6Lvg7/Ax/FvhD/Bmi/IneCGe7fBX+IS85xt9I3zJ3OttFtW/wOfQD8I/ 4J2ypynf4FMeyuI5A+8z+h6LsviX09cB+De8FN4L/4T3WzTmL3gNbc+adbge zyk4Ofv3EPURi36vZzX6MTgx+iX8x+E/+I9alBOhr/RT/1+5F3hOwlfgFeiH jX8jfAZOif+ERftKAp+26BhSwFvwnIfTwHeIcwFOBY9Dn2PW2DmL6rJnN1j0 vsg8XxfNot8w2ov/KpyVtk+Jcw3ODF+xKMt+2Yp+w+yXi9SXLfqtpX1+Gicb /t14Hpo1/MJD77XoB/DchnPAO9HvwY/xHJTfAnBO9LsWZfk2024/jS9jOCy/ BeDc8Cn4LewBHyTOK7PO38JPjeexRVn25n7052ZtH5P3fDgfnqPwEzgv/Myi unz76YFF+5LvPb2U2Bb9ftMJP+UC+D8R853hNxZl2S+n8XyAPdEfwQU52/3g 8X56Dsj1vpe9aPbUV1n7Zl9881D2wp+T50I52taAz9L2G7o3/F3e5w1/krVs 9vU5PD9hH/SfeJLQ1he+iJ4MLgxfgBPDheAfFo0jeyqRVf2yzpNSJ7fq+k9H nYFSVNaAn3Ix+DfxU5mYqanTWnWdX8aTxvjLWHX81Zm3FFb1yzr/Levd7PdL +FOiF8F/g5jp4WRwCzgTPAjPHw+NL56M1JkpxeFfHjpOuZZWnqoPgc8T849F r/2Hh/Ylc3ITPSue0vB9OI955manzmnVb4TdQ88NV0D3pPY29y69p3JlWSd4 fOEgeCbxvaz6+z2XVWOWRy9g1Wd6EDGTe2p86TcvdX5KgKwx4uSDK8kceqou bT+iV4DrybqCS8E14bfyzg/Xgl/I+zxcFfaRObDqt6ueoxeBq8C35HcNXAbO YlWWb58Voy5h1W9pvcJTXO4RnsJWExP9HXpZuDb6LA+Nf0SeR1Ydg6zJrJ4a R/q6gz+H3G94Lf6K8HWZE3/e4az6Ta4W1K2s+m2vT/grw/VlTuSbRHAduJKM Ua5Xfrei2+EW6Lk9VZdr/0PbWrANLm/VvurC/laNIzGD5Dpk/MS5yXgCrHo+ +xCnBtwUrmZVDpa1RMzqsAX+Clex6rfMakoMq37vrARtm8AuODHXVQ92wvWp Gxo9KXoD2A2fIc5ns5frWNUvudYbWTVOM/RE+OvCDjg53BhuDqeEg+GWcDFP jS+epjJGMye+njo2GX8pT9Ul5hcPPVvkbPzmp/PQGLZadT7lu04OGa9Vvw2X nb5awt3knsLN4S6y12CnVb8TlwVuBneG21K3p4TBGfw1jnxnLchT7694cqC3 gf+F3VaNKd9380RvB4ejN/DUOKFwa6v65XtwqfHY4NboDfF0Mn2VRP8P7g9X Re8Cd4Wrw91NX51Fo0TLffTQs1HO4SL+qsfBLvw94X5wB6vGj4C7WTVOPNzD qh4ZZzHa/gsnyLXQto8Zgzd6RzhS5h/uDQ+AKzDnHhb9JmMvq/rFUxZPKDwY rgxHwiNhPzgaHgWHW1UfDkdRx8i9k78z4ImAR6C38VRdPAHocfAYOBV6X7MH 11Cvs+r33RLkWo2nCv4B8Hi5dk/VR8t8og+EJ8h8woPhSbJu4THwdLgWPBKe Cneh7RATZ5BVWb5/N4Y5HwZv49qz4Blu1XOyHRxvrneoVfXJcH+r9ivfthsh c0CZgl7bX3ma3AvajjX6aKuyDX89POPhmeixVo3fFL0n/gmm7TirskP2Hf6p 8FzZC/B8eDE8RbxW/XbeXKvqC9Eb+6s+D7bBC+El8EQZu+k3nL5mmpizqOdY 9Xt8TfHPgBegW+B58CJ4ulX98v0+b9rOlrNAnl94Nsg9g6PRF5kxNENfBa+S PQsvgZfB8XhWwEvhxVLLWUHMHOiTrHqex3qqLtdYA14t6xteYNX4zfEvs2oc ibnSqp6VcjbiX27OhBb+upbWwL099dpnwM3R10obeCD6RsPrrcryrcB+eG7D l9C3Um+nbJE1jL5ZfLL34S3weniTVbkNbTugb4O3op+lPk85AY/01DibZS3B +03bTvh3SR9wR3inrENZq/AeeCc8Bv9eo++2Kst3DHdYta18G7Eb/gPwbrm/ 8Gn4OBwGn4CPwdOIcxg+AB+0Kss4x6EfhXfAffAfk/+fzBt8CD4EH7GqLrzP qn3tgo9Tn6QclTnxVB4qz7uCPEvgIvL7xaosY4gk5jlpA4/117X3EL7mp3Ml 3yHdRJwP8B14EXxD2sMX5J5Y9RuFMbS9YvRY+Cp8Fr5sVZbvV0b7q/+0rD34 utwP+A71PUpnPH3Rb8EXZQxW7Uu+1XjTqmvggux3PHfhy/AyT20rehT6RfiU rCX4gfQNv6B+ZdVvLz6lfm7Vbzv+S9vHVj2jVsFP4CvwI6uytB1CnGcyDvi+ zA2lK22H+mucm+grPFWX9bnOU/sS/3A8L2Xcst7gN/BdeBT8Vq4Zfm1VlrkN oQ6jxMoZhec9fB9+RczeNvYlv98/on2m9GQM29C/wQ/k2uGv5qyYSNsf8FN4 i6f6pa8vVvU/gifh+Qk/kzWM54/xb0UvQ19p6WsanAh+JWcOnBh+Df+yql++ U/nXqvpL9P3ESWb4MJwefitrG05j2iaxqSeEtosCeKeHv9HXADwpbXpGJbcp v4O/W3Wc8g3N2YwhNfp79BlwUviN3CPaprPpuZfKpn2F4U9r0zGIfx7+jPAn eD6cCf4s5zb8m/gv4Aw21eU7mwvQs8Bf0E8RP4fh/NQFKX/hJXhywT/kWQl7 wkm4lmw29ct3OS/T1sv4F+PJDn+Hc1LnpkTjWYVeAE5E26X+qv/Ec9FT+/ot aww9L/wHPoeez/S7Db0snI62HjbtKzF8E09xODl8FfY1eiHqIkbfQNvCcAr5 uxCcFf5KTG+b+pOiF7VpnJTwOjw+cv/gTXAxOBW8BS4p8w5f99T40rYEdSlK ajizTePLN0Zve6ouMUvbdPzyXdEdxCkPZ0BvTt1S+ob3ofvD2eD7tK1g1mc5 m3J6eDeeSnBmeA9cGc4Cn4etcj1wRZvq8u3Uw+jV5R6g+1EH2PRbqE89lSXO ATxVzL4LtCnLt1APoVez6fdP98NBcHa4qk1jyvdPz6A3lvuBfgpuAHvANahr 2fR7uMfR68D50U/AdeECcG2bsnwn/Zi/+vOhn4Try/qDj8I14bzwabgR7AnX s2lf8q3thjYdg3x39SyeprA3nnNwMOwDv7Pq2d4DTxOb6vJ91XF4PpmzwoXW jFIU/0V0B1wYvgQ7ZT3BdpuyfLP1CrobLoZuobbZ9Buvvz01jrS9hactXAb+ 66n3WuJfQ28Bl5C1BLeGS8KJ5XuOZj20simXgi/4a/xCcDI87Yz+EL2H3G/4 AdwNrgQnx9MRLg23tymXhVOidzZ8D38XWVvwHbgDXA7uZFO9PNzGpn1JnK7U /1Iqwmm8lKVtWvg/o3e3Kcv3bZ8Qs5esOfSeNj3b/eGM+EMNh8N57bwTwmFy Jpk1kNlLORAuBq+FHfAzYobDQXAW9GjDfWwaU9b5czxRso7ljMLTF64Kv0Lv L2sXfgknwNXgSJvGkTUZb1O/rOd+sr7M+hlOPdLc61xeyjXhHPBgE3MI9TCz Tt4Qf6jxrLbp+EcyJwNt6pf7GCN71OyX1/gHwTXgt/AI2T+ybuHRcG04p5fG F88o6jFm/WT30nHKteT2Ul3avqBtrLn2rF7al8zJe/RxcB15zsJT4XrwBOpJ Zq2mwj/FrIc51PMojeDv/spN4F/wAtgCp8c/16zDyTaNKd8snkk926bfLM7r pfGl32nUM2z6vePU6NPNevvir3pDOAXPzfVwC9kX8ErZe3ASeBXsgueyp5bY 9J1zPvVC2dvov4mzGLbCeYg/3szhWJuy7LWl1Mtl38rexL8MtsOLbBpTrisp fa2x6b8pzPbU+PLOucKmY5A1Oc9T48j79gfiTITryl6j7Qa4JewF35T1Lc8p 6uuU6Vx7KvRNcCv0Uoxzm5xB8EbqzZTReKqhn4O7ybPGS3W59oy03Qd3kGeW TftqLs8pm8aRmNupd1LGEWcp49xq03fRCsTZI+cLnl025TbwSjy7bfrOmZb4 O4y+l3o/pT0cQNsTcqbIMwU+ZPTDMjdydsi+o+0RuKs84zz1fW8gMQ/Y1D9B znybxpkEZ8Z/EO4kewo+LmeNzIN8J92m75bZAzS+zMNJ6tPGkylAxybjCfJS vTP81V/Xnqzbsl46D3Ivzth0PqfS73nqi5T/0AsS55qcI3AB+AocAm9lDBds +o6aH/0y3Af9NvVdykzi1PTSOD3Q63rp/e0Ne+O/BUfKc8SmMUX3Qb8DR8H1 vTSO9HXDpv5w2ct4zpqxNcTzAA6Di6O/gPvCheFHcKw8g/A8g2PkuUD9mDKH sZXG8w4eiN7ES3UZTwn0l3A/eRbYNL6M54lN40jM5zb1JMCHmIenNn0XdRDn jdH3od+36btlSWK+hvujp8Mzy6bPo1c29c9jPC7096bfZvAneAD8mfqrTb/Z /ZqYX+Cccr08H0pS1sIfbOqXawmgr0ToY+Cz+D/a9J2zPPp3eCh6JfiXnD9w uQCNPwT+Sf3bpt8B90f/K3sNvbWX6tK2AvoPeBgcCCehr7Gyr6lTUybJuUSd lLKUON1omwqeiF5F3vnh8fA/cGl4A1wNTm483fGnhSfD7b00zii4RoDGF70W nM6u3xdOZteYy+mrLnoGeAb6H5vOg7RNY1f/FHgwMcuYeftm02uR75unR8tI mSnrE082u57nMXABeJE8L6izU2bB+eyqL4Y7e6k+DnYwBg94mexB6iyUlcRv jJ4Lnidr2K7Pd/mGeCP0nOZZb4Pzw0tkv9vVL99bb4qeB16A3stLxzkdjoU9 zRha4CkqftgJe8ucwH3xFDbsRe1j1++q18eT2VyLK0D1FXB//MVkzLL37Rp/ Kexr1ziiF7GrZ7WsVdoWglfBA710TYre0UuvXdZhKzwl4HXwSF/OPzfndXrO drvei/XooXiaw0fhobQtb/QK1JXs+q32dngqwpvRG1M3Nddb1q7+jfB42laD d8Jt8ZeDN8Fh6H7wHLgreiC8S9ZYgMbfInuHOsi07YZeFd4NR3ipLveuM7o/ vAOOQ69h7ldd6vpmDqtT17Tr9+j/w18P3o8+CX8deA/8lHM4xKbvcj3w1Ebf B/eEG8IH4H8DNI74p3hpfPFMhRuZmLXsGlPWWy/8TeCDstfsOg+yZhrY1S/3 aBZtW8BH4Mp2vZatcG/aWuBDcB/YDh+GZ+J3G7ZRO8yenY5uNX3N8FJd2kbQ tg18Ag62q0fuu9OuceReNLPrGGTOQ/C7zHhmE6e1WQMt7crb5d7haQUfg6d5 6X2X+fmHui3lbVr2Eno3+DR6JP4O8ElZh9SdjR6D3gk+A7+16Xm7QNaVXf0b 4S52jbMJ9iVme7u+O8XRtit8Dk6Au8MXZA8GaPyzcr+oe8h10faHv46tKfpi L9XFk8emv9/ld/1S9F7o5+VscXGGUNakY4+hh6NfRh9E/DD4GrwSXg3/lftF HULZRl9D0CPhG+gDAlS/InvKrnG24xmBHg/fkWuhTpD1jx5NHSvrGR6KJwq+ iWe9l3qEN8L94dvwRDwj4KfwBHg4/AQeDQ+E78Nb8Q81PIB6kKxh4l9AXwP/ Qh8ToPoDeK2XjuG6nFd27UvGOdiucfbSdphd+32MPo62Q+BH8E7ajjZ6INzP ru9Lk/CMgp/JmrTrdUn8Yegx8C05i+zadh/xZ6BPtuu36fcSZyL8XM4Tu/JL eD6eufBneB48B/4k69au+kfZC9SzZL8QczvP3yl2/ZvqYS/V38p+hCfY9Z1q FnGmw+9kzHb1y9/EZqJPM/5Vdp23E8RcInud8h19OZ4V8G9ZY/Aiox8n/gIz nnl25SO0nYpnrLmW3XjGmft42ktjfoUXUi+WvYb/pJeyXO9y6pXm3i0gznz4 C7wiQPU/sBv/Uru+54yxa/wDct+DOAPgQpz5V2QtUzzYs5+8lAvIN+Wp11MS y/fuibkFTg6vk98CcDJ4HP4zdj1716JvhJOi76TeLfuLvlp5aRx5n7kEbzVj uwLvgBPJ9+jtGjMJvJk4u+DU8A0vjSN9bbOrX8aw2a5xTsnfr/Dsg1Oi76Pt MTgbvAM+AGeAH+I5AqeH91MfNOzw5nngYF/JmANUzygeebeHs8N77BpfxnPI rnHO0+9Ru3qyou/CfxjOBD+mr1MmTid4r13fxw7gOQnnQJ8Dz4Q/yDMRz3a7 vvs9hc/CmfEcwXMBzgNflLOHkg8+jn4Jzg+ftqtfYp6zq/8KY3tDnDtwLvTD +M/DueGT8FW4oLSFb8Ce8FsvjS+e63LGyJogzhz023Y95196qS5zcsKu13gR zzni3IN95Npl/VKKwnflvKHckL9B4XkCF0P/QZxHxv+S+jWlJHwJz0O4CHwN fg6XgM8HaBxf+LeXxi8M/4VfmL4e2DWm6Dfwv4JLwbfsOg9yjc/s6i8OFw/k uc597wtPtet+P8Q4b9H2LVwG/b3sV0pZOLm3cmk4BW1L0LYFfAf/B/RycEo8 X4z/jZwfxn8Pz2e4ApwWzy+4oswV+h/YH34E/4T9ZA/aNU55mSu7+ivLtVP/ lXvDOFPQfypKNfSs3spV4IxwEofGTEqd3OgviJ8MrgoXc+j47xAnkUP9gehf 5awyY3uGPzF6EPwKTglXl+uC08A14czeGl/apqZOS6kBPwnQcQbA2b1Vl3E+ QP+GXkn83tqXXOM79PR4asN50bPBdeRaqDMb/oQnK1xfPNT5KU1gT2/lRvAv PAVhi8wbnA9uCmdxaMx6cC7qPMaf21vj15JxUuekNIC/0DYH3BDO7626tE0C l3LomvzD2ivi0LWajPVQFG4GJ4a9YSdcgNqDEgx/x+8Fe8M5iZPBzFU6h7KM wYe6EMUl9444vrBbrtGhMW1wItoWd+g+8vbW+DIPhR06htvc059eGkf2yweu JRNcF05FzNJwK4kJN4PD5QyUPilPaZsOvSzcFj09XBFuB5ehLufQPVWbfpvA PeEK3qr/I9cCV3Ho/S3p0L7uErO8Q+PcgytR+1HuyxrGX8Ghey0zfQXCnWB/ h/IDPGnwBDh076SCKzt0rwXJWqY8xFMDvR7cXe4jcWrA3eCasqYoj/FkwlPL oWuym3gpcXA1h/of4anj0Diy5jPgr+7Q/ZibmHXh/+A8cANz7TkDNb70W1/W i9lfWQN1bF3gWt6qS9vE3nrWyfmTMVDnoQPcyKHzKfurqaxfs7/y4Xeae5cf vx3uIzocDPeW8eCxmb3TQu6tWbd1vDVOL7hgoN7fULgBenPDVofGfMK1e+Fp CUfIeLw1jqwNt0P9/993eBqbmN5wGzhS1h7cBY6FfeF2cDQcTJxOhttStzf7 Mam3no1y5jfxVl3iWOCucAzc2qHxnzG2Dg6NI/u6s0M9DrgQfXU0fpeH3tN+ qbgW4vwDN5Z+/fgNAG9CL+ite1/2eA+Hnv/P5d+G0HM7OZvQSxGzD/oAWfNw KDwI7uVQ/QX+EOowyku4JJ7ecH+ZK2/VhcuhR8BDZI/A0fAweAT1KMoH2kbJ 2CmvZF/giYNH4GnprfpgmQc4Hh4Kr5F/I3Do746q+IfBE2QvwIPhcXAb/P3g 4XCCQ1li+uMZAI+GA+CB8Bi4PBxp4vd3qP6O8cQ6tN838CC5Dsp7uRfeyhKn Gm2HwxPhoQ7l8XB19JHwJDjcofHlWrp467WLpyaeMfAUeIf83duhvx3qok+G Z6CPk+sznm60HWv66u6t+mRZq/hnw3Ph0Q71fGKcEx0a5ws8hXoa5avscfyT 4OmyF+CZ8Gx4ukN5IbyP8cyQe814/rPr70H5XTkLbY4UPFGMYSm8AA6D5xt9 AfUiyg/6shB/ofzfsj7hVfAKeK5D/d/wLHZoHPE0wTNP/n/wMcawxKHvh3b0 5eJDj/DW+PPgZRKP8kv+lhWoYxPdEaj6Mjge/2rTthn6WngVfJn6KiVNHvY6 +mZ4HXpzeB28WtabQ3mlnC3oG+A1sk6IudHo3dFPw3vh9Q7V/zCetui7ZN+h b6LeQklEXwO9lSX+YHg7vBbe6lCWMbSh7U6JJeOUf2tw6O/rHQ6NmYQ4Y2l7 TNrIfYcPw1vh3TIWSlI8HYmzH96G3gk+YPz7HMriH+6tfumrM55D8A64PbxH xg13hY9K3/BBh/aVjPhHHDqGFPAT+bcGh77/jyfmSXinPBdoOxWeBR93qC5x Vjr0vvyW32LUlygH0XviPyfjgycT57yZ27MO5dT01RvPRfgQ+inqM5RU6H0C Nc5hWSfwLfiErG1vvdcSPwT9CnxE1i18Xa5B9il8Az4OX3MopyNmj0CNvw99 JnFum/hD0Z/BN2WNwY9lfPBsPPfgo/Adh7KMIRrPA/g0HAM/lHHDxfHfdej7 0n2H6hnp96ZD+0oPP6J+QskMJwQqX8C/jrbPZazwU4fyLXgUnpfSN7wUzsXZ /lPOcG89B2Tvv6B+RclCzHeyz+T8QV/krSxjuyHvWrRNlo57Spz36I/Rd6F/ ljHBr6nfUrISZxKeT/Az9L14fsqY4G8Fuc+wF8+gKXh+yNmC/tGhceRavjvU /wD+JXuI8hJOTv8pKe/knPdR7sx4AuDEcEc4iYzRqX9zO0S/SeE3cFGnjr8g Y/vrUL/oX+TsMffuIP5E6K/lmeXPWnbqf28/m3Gmht+jZw7S+J3oKxV1Gko2 YhaqouOMSc/ZE6j6B1m38Fdz7Xu8tS+Zk3no6fB8gk+gZzWcgToTJQcxW6Bn ceozNw91PsoveEWg8h/ZO3AB+C+8HM4L/5ZxOjXmZzinU5/puYl5zFvjy9iy ST+UXOiLaJvdPPcXB6r+Hd4Ml4RTc73r4MJmDayHi8DJ4UvE9DLjyS9zTMlD zNV4POHEeJx40jv1N2Zap/JH2Jva13g64/Fx6rPbw6kx8xFnI3GKyb3Hc8Fb 48s8FHLqGArgueKtcRLhmY8/o7n2LXApuU/o52G39AfbqZ2UErTdil4GTot+ T97Djb80dVmKB57j8r4H50e/4616KngvepDMNVzCqX2JXs6pcbxoW5G6slwz +nb85Q3vhgPgzLCfU9kH/y50f1kH6CH0VcmpZ2YgdRUZP55X6HXl/uE5gL+6 4RrUtSiF8BxErwnnRB8Lv5EzhThVnerPhl7bqXGK4N+PpxqcHf0wXEfWDNyP vuo79Xn9wlvjS9t61A2M54m3jk3G/MZb9Vzw6EA9W+7T9oG3zkM69IZOnc9i 9NuEOlj2J3wWvwP2xnMGtskcwifhprK24NOwFfaEm1O3NPf0g7fGyQd/8db7 6wF/g5uZOBanxhR9FHoLpz7XfnhrHB90l1P9pWS/0FcjE/My/A9cFL4Jd4ZL w1fhtjJ++Ia8h0tbuA11O1lDxNnirWejnMN/vFUvIucVZ1cXWYdwK6fGL4O/ vVPjiN7JqZ5y6NeJ3wEuiZ6Mtv+avi6htzYxb8PdpF+5dn7z5nbo+39Xp/or EGcaY+jh1GfrfXlvhyvifwiHyHqFezpVryTPU+pQ0eF7eHpJHDxpfFQXnkvM cKc+N5/giZI1jb6UejmlAxxJHU3xh5/hiYWD4KeBqgfCGYkZZzwv0RPgavBH eChcT9YYPAiuCWfG39e0jXcqBzDO7Yynv1PXfFY8A2T/4FmMHgGfRe/nVF3i xzi1Xz95N6MeLGOD3wYq18KTlzjD4DrwEKdyXfgTnhFwfTjMqfH94M/y/i/7 BB7uVK5KzG/o42QPoCflmTIDdss+pR4v+1PukVN1B/r3QNWbwMnxz4Kbyxqm HiPjx+/F2CaZmJOpp1Ks8C/aToQtsAee6XBDeIJT/cHwHzxTZG/I3sezEn4L e8OzTb8Z6Hcx3B5OAc+FW8Dl8SyEW8NzqOeZvr4SczTcCC7lo3ozuBK8BG4L z3RqfNHnOzWOjGGRUz0uOC19LYDbwNMDdS3JM7qAj167zHkmPMuc+g6QFV4l ewZe4VTuKuNEvwIPlWcZ9QbKf3B14qyRvQHnxLMW7g6vdirXZG7zoK+He6If oz4h14WeN0jj9JLnC+tqh1Pfr2oRc7OJnw/PJtlLcAF4KxwC18GzzbTd4lSu I887p7atBdfDsxPug6cIbY/IGoULwQfhGNgL3iNrDt7lVK5HWx/0fXAUeiPi 7IfDYU/03Yb3OlWvL/vFqX3J2A5QH5K9ChcOUo6Fg4lz1OiHncoNaFsMz3E4 Ad3XR9eerCurj86VtO0Cv5T1Dbvhi3B/OdupT5u2JYlz1uil4HOyP+VZ4FRu Ql92H/XHo5fBcwEeJOcw9XXpF0859MvwELkvTu2rKfolp66BwegV8FyTPQy3 9NG2ot/mPp5y6vtGJTw34RFyNlI/lv0oZyD1A4odfo7/jlPfAdoQ5y48XOI4 laWtP3Huw6PlGUF9S/YmbQOCNM4Y9NY+qsv67OCjfYk/CM8jeBxcFX4KT4Cr wc/gifL8dSrL3HaXdefU8786nheyz+FzxOzm4lkHv0J7I2cOY+iO/h6eLOeV /D3Kqc/ZOrT9CE+Hu/moX/p661T/FLgunk/wDLgXnq/G3x29KH3thRvC39Hn yDqEf8BzpS+n+lvIeehUfTZ6KHF+G7bhT0GcJfLsQE8Kz4d/OtXTkrZN8fyF F6CH40nk0vh/nMqt8Xxw6jibw4nxJHHp87oxbX/JmSVrFU6OvhhO7NK+JGYy l46hDW0deFLBy9BjiZPa+OujfyHOLDilS/W2+F3oaeEV6H3xZ4SXwzmoc1E6 yXs+nszm39bbwnngTXB6l/rb4RlK27zwevRmeDLAq+Tco85C6YCnNXpO4+nv o/pK+J8g7WuDxETP5tLn+0Af/Tf91XAPPMXgfXBul/bVmZhj8PjA29A74ilg uCC1J6ULnk7oHvB22ddwOtNvPpf6t8gZ5dI43fB3wJMf3ipnAuwN75Rzib4K ufR5McpH40tbX+rCxpPGpfFlDsf5qL5DzkaXjr878XsSswR8QNYPtYMSjj4b fzn4qDwf4ZJmfRZ3KfeQ9xzaloYPy3qGy8AH4ZX4G8KX5Vxyqf4f/vno/vBJ 9LLU5SnHZB0GKR+Ho+BK8Ck5c1zKvWgbg+4Hn5G1DVc0cSq7NGZvPEuIXwc+ h74crglfhAOogyh98PSjbVX4EvoyPNXgC3AVl7L444LUL3H6wzXMtcTCgfBZ eBBcG74m54ZL+wohfi2XjuGqPE+JX8/0NRF/ffgp/NypZ7sTf12X6qFwTTyv zVkRjGalhKFPRW8Cv5RnDWdOU/gVz83GLuUX6NPxWODXcANZF6Yvq6/GieW3 9lw8zeGP6DOC9F6/gV147HA/PLPRXfB7OTMZv1vWIex0Kb+T9RCk8Z/L3oRb uPR9YCncCf4JL4bbw9/heXBr+JM8O1zKEVzXAvQ28Bf0hXBb+Ct8nH5bmXH+ 41I9En8zl/b1Ab2d7GNKFPopH2WJs4w4neFfsgddynKGL0fvCv+WfeTSsz2a thdo28P4axVmv7tZqxkpsu4of9Ev+Sj/EZZ3J7gIc9UUvadL3xnWoofASdH/ dWnMWOKvQe8DJ0HfBEfBqeDNcAycGt4IR8Ip4d4ujRNP2wiX+lOgR0s8Sl/0 AdSDKAPhnUHKGfHcYTwJJn5f6v6UtHAL9H4ufe4vcen4x9I2zqX+/nCo7Hv5 v+U3PjHjTdsd8EA4A7wbHgJnhu/5aPw08GDqoRKftrd8dJwy5kc+qkvb9bQN g5PD13y0L5mTvejD4azwC/RxcDZ4JPVoymD5bY5nLJwTfSr1dMoI+fubj3Ie 9JN4ZsIF4ePwNDg/PMalMYfK39mop1CGw898NH4WPOOpJ5r4ndEnuPT94ZWP 6jnkv3Uh5gq4GByCvsilz69v8GLYC/0TPBcuAM+Q/7/h07SdA3vC++AR5hqH uZRlDPOoF8g1y+96PPNhb9mPLo05Ev0i+lK4MPqpII3vAS906RjE/8VH44i+ H88oODv8W36nmLYf0C/BdSXHLPUFSi25L+ir4RJwYs6E9XBxeBX1GsOZ0Y/D gfD1INVLwnfh7XB5eLlL+xrHmNe6NM54eAP1Jplr+Ib8d0RwKfzJibkVLi37 wqVcBk5gzFtc+v5wC/9Go2+j3kGZTJz0tD0IV0ZPDe82Y9hDvc/oj2i7F/aD U/jo+14ZYu50qX+K/D3HpXGmwg/w74Ir4X8CH4AD4GfwYTgIfhyk8f3hQ9RH ZF3Ku26Qjq0CekZf1cVzNEjXXl44qa/Og8zbUZfOp8Q8QX2KMlPWNv7zcG30 7PjPwtXgl+gnDb+Bz8A1ZX1SX5O1In/vCtI41dHfB+n9rQPnJs5lc69PuzTm LPyf8FyF66Pn9dU44r/oUv9sPCOYt2MufdfKj+cmXA/PT9o+hIPhr/BtuBHs iee+4VvUdyjziZOoCs8N2IH+LUj1xvAveW+HLbKuXBpfxnPXpXEWyH1xqWch /AP/Pbgpnr/yng/b4WmM84ZL32f+oD+BbehH4MnmrHjsUr8VLsw4XxhOwthe wy6ZW+p3svboKwX6W7gFug/Ph0KUTegvXepfAhcnznfYiScZ/ldwMzgd/AFu C2eAP8Pt4ZRVNH5LOTeov1BWEGcv4//m0mdrUV/V5brS4/8It4NLoP8040zE WJJQ1sicoP2idEKvjCexW/1etP2LHgEHwUXQx8Fl8fwxYwiAk6F3hLNU0Tid Ye8qGj8S9oWTw9Fynrg05mr6HVKd60G/kYk14NJ5kGtM6la/tK1C26LweFmT Lr2W5TK3aKnc+t5iYwzp4TgZG/6c8GCZQ+oMlATZC27V19K2aBXV49HLw7nh oXIOUKc1cezEzGw8Wdz6fO8PO9AzmZhlaJsDHiR71q3+vvLftKNnhQfIOqmi 45T3qBPcozxufZ+pjO4Fj0SvAOeDh8Gtie9hxpOXOj9lPWMOpG0at/6bSEtf 1eUa/WjrDY+Cc7k1/hC4gFvjSExPt3o2yjOCOAXd+n7VzlfXpIwhfwm99nrZ uKfE9IXHoPcP4D3Erv8dcmG33oux6M3w2OBVcCfilDB6SerSlK30VR1PKXgS eh2JTdkrf8dwq38z/B9t/eCpeKriLw5PgG8yzrJufe7XQq9gPF18Nb6sh/LU FSnb5X0YT2V4BnrtKqpPg7vhLwdPhOujB8Cz4GrUNSi7aetPHUiZid4YT3V4 HtyHtlWNvpJzoLtL3+sa4qmCPgf9KeOs5dZ3mwZVNM5sONRX4wuHw7XhubKP 3BpzJ/0G468LL0Sv5NZ52CHv8271yxj6yjs2vFzWm1uvRebTRtsG8BJZk3Bj eBkcj98CL4UbUTcxHI3e0PTlrKK6xGwJN5N9IfPjVs8++b3v1jj7Yatbx3BQ fmvjD4ZXyNogpgteKWNwK8t6+MicON36HmWpovd9Eeymbk45TJzhtG0vaxJ9 MNzKjKE1dRujt6XtP3JmyjPUpeftIvkt71b/EbitW+Mchf/B3xLegL893A7e Iucn4+no1r8Vt6ui8eV/e9JB9hPlOG1bVdGxrZPzp7rqbs6lBZV5lw7WHPId 8XRB34ZnYxn2V1/N4d8VvSf6Llmf8H9yf+FR8BL4nqxD6u6m7b/oveE98Ghf 1bfCPdwa55T8vsYTAR+Q9UMdSTmDHkIdJvsIfTxt+5i+JvuqR/SpcIzcO3g2 PFDmB44g5gD4hJyN6HFufVcJQ+8HH4NjqeMph2Rs6Evh+/B0X9UPwv9V0TFI /Ci39nWOsSW4Nc4FuL9b+70ovxHw9zVjiIaHwKfh3nC06SsKHizXDvdy63Wd pm0P9FBZk+iD3Nr2pJx1jGeMW99hFsKjTMwRbuUrtB1M22nwdWkLT4WvwVPc ql+FJ1JPFg/+xcQZC59FX+6r+kU4jrYj5RrhfvAE+JLMj1v9ovdFH2/8i906 b3eIOZd6PuUW+knW1UK4YGbOZfyzjb6avmaa8Ux3K9+Qv13gGSb3HX0+nuHm 2tf7asyb8Cw5hySOvDP7Ksv1LpA9R7kLDyHODIkJF/JVXd6XfOB5bn0XGurW +JeIMxb/cvgh+lnq85Tn8vuuinLaDJw1cgZIfPl9hL4WfibzCa+Gn0pb4h+F v8MT0FfBT+BNsi8pH+AtvhpH9shOeB38WO4R/o3wCzl73RpT9Lnom+GP8FFf jfNe5sSt/gfy29mtce7Bu/FsN+M5B++Hf8DB8E63vpMsJeZe+Ce8Q/Yx5as8 f6vyLtOM9cj17vVV/Tn6CvwH4D/wVrfGfyR9uTXOU3ifWz2/8SzBv8f0e5k4 h+G/sm7Rt5m+VsOH4MT0NQCeJGsYfRq8AX4l1wgfg5PjOU+ck2bMp2SNmL42 4TkNp8JzxK3+JPBxt/pTwG7aXnXr+8xG/CfglOhX0c+ZMdyAL8LJ4Fu+Gl/a XpA1YtbADtpegTPA26uonh4+6NZrTATvRr8OZ4bvyD2hZIOvyXqkZIL347kL Z5d5hm/DWeFHsl4or5nPPei34CzoB+AHcA74sa/GyQi38NX48j52EM9DOCf6 TbfGfEGc13geG/2yW+dhI3zfrf5X8vwtxDnOfe+BPs6t+/0a+lFiPoPzor8Q L+WN/G7yVZbx5KCtL22ry5zjf4meH36L5y2cG34q64iSB+6I/sat71qf4c9y PqCfo+1X2Afuiv7Jre9Fr90aR2J+dKvfA/5C/Y3iDf+Ve8gYPjO2n77Kvujf 5f3feH7J+qUUkXmgr99wUdi7mY4/cV78/2PpnKPsWp42HNu2M56JnQwyiH2T HMzRzMS2bdu2bdu2bdu6T63qP3rV83vzdnXt3r179z5zv/U1Vv8n+a6U51We NfntC/9P2EvWDBwPvz/cnvwJLXoGu1pJ8/uhJ0BLZDwXKmmdUs+fwqp7w6fR P5hr+VhYx8ol6xA9CZ4g+D6cGi4JJyOmMPo99FRwCTgTMQvtN3Wm8FIWf29y ZrPoeekp/sxwefSUFs1ZHE5PzEgrAyf00vyBcBpiOtpPcj6gb1q4lNTgpbr0 /YDuDUfCb+D8cBj8Vs75cGU4Lf5ccDk4KzG7qeEFnpxwJTgenqQWnbfEFuXv jJubmNd4+nMteSx6Bsth0Zz/5G/o5CkEh+NJ5aX5S8P5LFqDrMkMXpqnItyZ PMkteo7Nhu5j6kzFvlcPdsO1iHVoDng4fj+Lnq++yNkerobuK/fWXHsS+kbB NjiHl+oR8C/8pSUX7GXRsRKyxgIsmicxXIRYjJYE/ow/EK6K/6ec/+HacHGL ck1Zz+gl4FrwN7goXAMuJfdQ5o488aknFG6IXoh6yps8FWQuafXgyfL/O8mi 57EYYhwtK33LWtSfHA62aJ6U8B/GKmf6xiN/CPyfrBm4MtxYrtFL89eFw+Se 0FLRt4CX1ib1+3mpLn2PVNK9TvaHPF46D3LtERadTwtcReZb1it55lNzbYue 5Yrir2nmPCk1VIXtcHK4hrl3DWQOaBnoG+SleSRncS+9v9Fwavz1YQ9c3aI5 0+JPi/4fHIte2kvzyNqoa1F/ejyJ8UTCVlljsAVuCq+mTrdF32UZ0W1wM/SK 5HEaj1XqlWePPMcr6d4oz355L9Xj4GDYAzeHG1k0v+jRFs2Tmb4ui3paoGdm LIfh7MF6T9vIMw43hpvA2eBYi+7zTyrpsy/PZhOL7v/ZyHmUcTNY2f/kvuBv id4Rzgu3hjvJ/mxRvT3cSsaRZ5u+ufG0gDugR3mpLp786O3gLvLeZH46WvSs NYg4RJ5V+naQ3MZTCH8XuLvcFy/VO8OF0bvCPWBvuDvcC/aHB8D95NmE+8J9 4Nr07WHydLMo52Gsi9TQC/4t32h4esMD8FSF25vr7WlRPS/+zhYdNzfcR8aR f5P1HKzcF65P34FG729RzidrD89g+d/obS2aPyf6f1567dL3FvUMs+g5pxj+ kTIv8lzDY+ER8AjiKFoh+jai73C4v6znYNWHyjMOT4XHwUMt6pFxR1s0z3B4 HHECzYs8dvKMMWN54MkyBjzRouyDpzw5J0l/9BDO8247/5vvxClo02i+eFrR dz48RTz4Z8KT4FnEOUYPRZ8teeFq8BL5N3i6Rf1+5Jlr0TxTZf3jmQFPhMPh eTIeHMtYC+Exsg69NL94FhAX0abLsxastY2XPSRY9VlwU/xLjd4CXm7qPEs8 TzsCt0Ffa8aqTt8V8Fx4mUU5gDpb4lllrqUmntVSt/SFj8IH4JUW1QPxx6Bv gbeiryGuowXJfQxWXin3i5wb4fXweovyTLkveDbDW2AnvEH+Dd5k0ZxFyDOO vgfgHTInePbCu+GtxO20bfKMo+80nqbwLninPI8W5aLkeV5Y/XLmHE/OPcYT h3+b5JJ5g/fDe+DdFh2rGH33WbSG4vIuk781yLMma4k8h009Zeg73qyxgxbV Jc9ii96X2fAp4hlaafK0w38CPoQ+lTwn4f3wcYtySdk38Jw29+4I8ZjxTPfS PAfl2cdzBT4Fz/TSe30Y/i1/L7Doua4znovwcbgLfAk+AV+wKJdlrLbBml9y ziXPVePvh/5AfHAf+C58QfYQ+AZ8Fr5mUT4N90K/BZ+DF5LnttF7oF+X64dv WlQvz7iXLTpWOfgO8R6tItw3WPmizCF5Hpqx7luUK+FJif7Youe3efjTs7d/ gssG6z4wGn5EfGLqf0F8RQul72ov5avyXsNfiL7x0rJfwC/letCHw2+lVvgp 8TkthL7D0N/At9A3kuez8WSHv1r0zDYKzye5Hvi1RfPchD9a1B9Oni/Eb8bz lxiPGp7BU4KVX8hahX/yb4/hX8Q/tEj6TkD/LdeGXsCq9f+Fv1vU/xB+R/xA C5PnCP8P+BH6ZPifXI+sPTgBfV/C2700v/SNj5aQVoW+m720zrvoO71Ul3pG 0Pc9+h15rr10LLnG/HBiq57fDsKp4NdwUmJyWnVyFkZPadUzZEZiZtoXeFGw 8je573BW+LusJTgT/BVOYdWcb+B0Vn2n15Tn1Evzy7ylJqY17/o59E0Df5C1 Haz6R9mvYC84Pve9GH3zWfWsdR7OD/+ET8I54c9wFmI2Wm3GCkTPYdXz4W44 CfwUTmRVlvnMRcxDq4d/GWPlhn/JOrFqTrmuVegF4X/y7Htpfqktr1VrEP8Z L80jczIDfzJz7ZfRvc19P4VeF87LtdSUGmm54A3ovnBi+Dr+QDgB7EP0ozWk tiNy3oOzo1/1Ul2ehZ3opeA0cGGrjtUAv79V80jOIGJRWjK4HH0DrHq23EHf EnBqmVurckp4O3pxuX9wJfxFrHqGLEksTbOSf7+cw+FMeB7hKWfylCdWpKWD I9ErWPX3nIH4n5lnuYxV/XbyVLJqHge8G09Z03cfHAxnhA/CYXAW+ImX5k8L hxIr05z0feCltUn9L7xUl75LvXRvOc+4d7x0HpKih1t1PrPCUcSqNBd56uGp ZdVz3Tu4hpnzo9RQBc4BH4erm3tXn/gfLY6+b7w0j+T84KX3Nyd8Wr7v4Hxw Navm9OA/i94ALoD+xUvzyNqoY1V/LJ7DeCJkTaNfkLM0XBiOw++y6rnoIroV 9kL/he4wHgvRRmtCnkHBujdew//DS/WCeP7Ablk3cEOr5hfdbtU8zejrtKrH B/0yeaINX5fzPBwAn4cbyR4HX4NjYH/4Mef8DPL+krOEVf0tyHkDTxNZo3gS eqMZvoPeCi4GN7Oq3krOPMTW0uDbeJrLmsZzN1j14vA9uK2sY/gB3AEuBc8n LpR7St/2xI60tvAjPJ3hMngeBqteWmqW8z9cFn4Kd4PLw2/g/nAY/AruI2sX fibfAnAFuKtVuYOcZ9B7yvMgaxLuBVeC78v3CFwS7mFVvSP+TlYdtx3cm9iX Fowng7ey5Hkr3xqy7uF+VuVO+D+iD4Kj5L+Jsmr+Nuif5PwPV0EfaFXujP4N fYSsRfTfcsaG68LDiSNp1eEJVtW740/jrbrMScIQ3n+yVuRdTBwmdeP5Tp4x cE30scTxtG7o6ek72sxPZniimbdRVvV3xZMRfZyZnyLwYtlnYH94KtwQTs64 c2Vdwonh6cYThGc2bIGnEWcY/kI9Q+FqcIC36o1gX3ge3ACebNX8os+0ap6e 1DPHqp5o9CSMNUueJThTiK6l5nAub712mfNAeIGZkyx4lsAt4UVW5d7kLI5+ Dh6KvoK4itYHvSh9l5n82fAsl3Uue5dVWfLkRF8p9xU+QDwkfaWGEM3THq5O nk1yf2Vu5TvCquf2PHjWyBpDzwuvlzUD54M3GP86q3I/OXdZtW8H9AJ4Nss9 gmeQc59Vz8Ne6LtlrmRPY9xtJucWq3I3uDb6Dlk/8m7CvxPuAReCtxp9u1X1 AYy70apj9Yd3EffQBsK1vJUlZx14v8mz16osNfiR86A8M/DPYF17tWX9hOhc 9YOD4cfwRLgxeU7LuPBh4lF5NuR7Gc9xGVf2QzwnTN9jVuWheBp4q1/mfwFz csqqZ/vzxIu0EXiKkecsPATPSauOJTnPWHUNDMdTEs8FYdlvvbWv+APQj8g8 wMvJf9mqZ+zbxLu00bJ/Em/JswqXxn9NGH8Z+Do8Ss4JVuURcFn0m9IXvkS8 Is8j39Eub80jnmVeqsu3g8dbx5I85el7Bx4r6wTPfauevWPxPJBnWPZeq7J4 4ohNZd3K+52+j+AJ6JPgGBv7pbzH0Z7RxuEJR38JT0OvDL+QZxKOgF/D0+Vd 4K1+yfPcqv4pcCv0N4bbwO9Nnqb0LcBYO+Fd1PzRqufwdng+yR4he6lV/ROp 4YNV9ZnyHNH3KzwX7ob/H7xA1h76b3gR/Nmqnsn0rYn+HZ6P3gn/D3gO/M2q PAXPK6vWOR6ujf8XvFCeHfiL8deF/8KLZQ1bdSwZ949Va5hK3/p44nNdS+Xd wVgJbFpPFPo7U388m+rT8Z/g2hPZ9JurEZ5k8Eo8aYnpabPxWNBTwKvRnXBG eKPsezb1z8QzRP6bW3idPBd4ksIrZE8mpqTNwhONng5eL+8mb9XFM8hbx1oD 2/CkhtfKmofTmJzN4ILwLnnf2XSsueQcRd/c8Bb0YXBWeIPsk8QctPl4PPTN bjy98CSGl8i7xqZ+uZacNs2zAP81+TuFTb8p4uibC94u7wL5b3XgvalYpyGa fyt6HmI+WkJ599k0v8x/9lDV2/Ac5bdp/TvQm9O3MLwbrkGsJdfIuI/l93mb ntXHUaeX8ReyKS+Ucw59faQGef/i8TVz0hs9HD4Pe9tUX4x/Gp7i8AHZA4kB pu8kb+U9cDv6FoEPyXvKpiz+9ujF4MNwWzgIPggXtWnOpfKbGHmC4ePos+AK 8BG4BLEU7Sjchb5l4BPyjsBT1oxV2qa8XH7DDFG/5Hktfxew6Xm+E3pJ+Bjc Ha4En4bL2XQsyVnRpjWsIs97+oba9By+gLHC4FPwQ6vu7WPxhNhUlzyh5Hwq zylcFa067TLcFz0KvggvIU8V+BwcaVNeQ54BeKrBV2RfIkYYz8AQzXMVHgrX h2/K/umt9/qCrHn0mvA1+Lv85m/Tc/4KPHXhS/J+tCmLp0+I5pe+q/E0MPnH oTvhR/AY2A4/kH0YTyP4BvyfTVlqGIXHAt+DR8NW+D78W/6OYNNvhMY21e/C 9Ww61kau10aMpm2W3xO8lcUznjwu+DHssClvxTMR3QM/RXfbdG8Xz1T0JvBL ODHPSGo74/GMNEVrLs8afbd6K0tt+/AvgDPimQY3g1/J2QBPK/ghHGvTnM9l X0JvadPz/2z8HeD38By4E/xB1ircHn4Ht7BpHsnZzqb+XdTQkdhZnhG4F7GP PBfw0hDln/jnw93gz7I+iT1p+/EsRO8Bf0WfZ9P601N/F5v69+JpTWxLeyse /F3hT7Le4N7wD3m/w/3g3/CiEM3/TdYnsb+pYW6I1vlR1k+I6n/gHcxDG7M2 knnrWPIdtBLPQPgvnB99hE3P+YOJQ41+Cn04/EXuL3GiPMvUvCFEOTHXshGe DCeB18MT4ETwMJvmjA+PIY6TPYG+h7w1/xtyjiSOlr0FfS19R8EJ8J/2Vl3m bT/6IjgT+i54DpwW3i3nfDgdvFXO+XAKeBJxiuwh5NyCPg1Ojr6fnIPMehtg Uz6IZwZxluwP8Hb8M+FU+KfaNOdJ9L3o8+EM6JtCNH9SeLZNa0gN7wjRPMJ5 GWuITb8pnsl3irnvt/CcgYvAJ2RMWiB8F89SOBl8D15pal5CXEbLAp+Xsytc CC7hrbp84xxD3wjnlP8uzqZjnabm5TbNcxZeRVxDOyfzj38FnBX/UTnnwzng tTbl8/I7Evo6ODv6YXg1nA3eQNxEu4jnBTXsNs/jSTmrw3ngbcQdtMt4TqFv h/Oi3wzW814QNW+2qf8Snp02zXNFziH4t8C58Z+Bd8H54cqMtdem3zunQzR/ PvQ9xH3GczxEa8sFv/JWPTN8zlvXnjxHD711HuT+7rfpfBaGD8napF2jhpvk OQkHoUfiP27T76mL6IdhL/Qr8DHYV/ITL8g+A18K0TzecDwfvb9+cAL4LBwg c27TnD7wHfzn4WJwQh/NI+vhtE39UsMPajgAF5R1gv+yPL/wI/g2XEbWDHwV LgEnI89N47ki10S7Ib8z4HkIV0RP4qO61PxYzu1wWfiiTfNfx3/dpnkk5y2b ekrDjajnhk2/O1KR577Rk8KXzLU8Iec9uBy8Dh4LJ5T6beq/Jb8V4H9kxk0H P4XLw8+IL2j35DxM3+dwCHpu3g95aR/kjGRTv1xLdvp+hMNhJ7U9sem30lv6 voIro7+H38IR8OsQzR8KvyG+M30/on+Ao+APIapHwpnJ/9rU8Bn9M1xV7gvx F+2J/H5C/EJ7JL+Z4PkJ15Ca6fsdrgJn5B2Xn/qbwS2p85tNzxs/8f+Ba6Pn 9NE8Mu73EM1fU86N6H9Nzq82zSk1/MYTj5x15RptOg8PqOG3Tf1P4fL0LYAn Ds9Lm17LffR/xPjodWStUlsS+D84CH862AInJialvZD7ZVf9Nezto3o9PMnp mwF2yDonJqI9w+OLJwXcAD2lXd/vr9C7cu3J7fodlJS+aWG7rFu7+qWGROip TA1/QrROGSsFekbYCQ8kT067fo+kRM8Mu9BLMm5248lEzEJ7w7h/yZMQro9e 3Ef1aLg0nAt2w+ntml/0rHbN846+Oezq8aCnZqxshtOH6ppsAhf20WuX+UyH nsfMebzC3O/G+n9rls+u9+Kj/J6DpwY8GE8WuDDcEvYi+tA+4cmK7g23Qg8m htJ6wgXt6m8O58FTDO4oaxUuBLeAc8B+cFt4LHMVaNfvl2AfzS99A4hBxpMb f1G4g+y3Pqq3hkNhf1NbPjwl4M5wWWJ52g/qLE4sSfsOF8JTDu4udcJl4G7w FOY/Tp5taiiAXhq9q1wvXNFcVxUfzSM11PDR/F3gWnAlk6eUXXOKPpPrCrHr t0kRu87DN2qoYFf/L7gxfWvCA/D72vVavsj6ZNzKcB+ZBzgS7g8XgavBg+AI YhTtL34/9HC4L3oDH9Wl73JqqGfXb4Qwu3r+4K9i1zwybnW71vAPPYg8VeGB 6Fby1DFj1bIrx8/FfOKpDQ9Fr+Oj970HXFfWr9Er4LHD42QNww3hkbI/y3Mj zyF5yqI3hkejP7DpfnuHGhrY1Z8Qj9WuecbI3OL/Dx4Bl4dt8Fi4IuyAx8Mu H80vnmh5zmiJyWP30dqGoMf6qC45mzbW/78SJ3PwfmauPOh35Mzv5Pmn2TOw J+Jvhj5Bzg94mtr1+6UF486D96DHyPNES8pY4egt4GnoTXxUl3loYtc8k+Gq eNrBs+G2xPa0VPRtRWxDSwFH4GkJT8dTLVQ9c+CacCd4PtyT/L3hxXLf0XvB y+DacBd4IVwP7gEvgTvLujZ9h9N3PrxR7mOo6ovgqFCtYSbcwa5jpaaebnbN kwbuaddx08J18Xc3NRxlfvrZ9VumBnpHeJ7kYay+8Cy4uV2vKzl9I/G0hmeg 97Fr3+VwY/Rh8Cq4C32HmDyD7Mrp6evCMwHeJO9WeLy5lnF21bPiGS1rhJYZ tuAZDq+WtRGq+npZk/BgeCVsg0fBa+GhdvVnkHWIPhJegz7XrvOWA326zBMt GzyMOmfDG/DE4Z8Kb5e1AU+Gt8IT7cpSc0P0AfAKuCN9B5r1MMZHc26TfUnW keEmoco74FmyFmi7YQ/6JHgLfMtbdfn2aYo+A94J97dr/nTU2RJ9IbwX/Tjx JM0XfVCo8jX0BbIWaDnR26Ivhw+it4GXwgfgfvB++BLcGl4C74fXENfR8st6 DtU8+9DbwSvgQ3K98Gr4KLzYrjlz4++MvhY+Lvc9VPOcgFfa1Z8PzzK75skD d8ezET4t+y3zthM+LM8F+mb4LDwBfTu8C94k80QrSN8YdFe07j/jfFSXuX3P HO6y63fHervmL4B/q13zSM4ddvVcgF/K3w7s+g04izx74SNwN2rYAJ+C+8J7 4IuwHR4jcyTPBbzK+OfS94C59gXwYdP3CPEY7TL8XX63l3rgfXb1e1PbQbv6 feAR5DwP35H7Dh8yfQfCJ+Crco/If9rc66U+mv88fIp4hnZD9gf85+Db8OBQ 1a/Du+16jV6MNQr9InwP/Zr0oz2EL8i6oN2VucVzHX4k889YV01td6QfLYA8 Y/FcMX3Hw7fgx/Bvb80j3zVbfTT/fbmneG7DT+DLds35AN6F567Rz9p1HvzI f9Oufn84oy/nKe57pfTMlV2f90zoU8j5AH5B30eSw/AeH+Vn8H45O9E3E33T oj+263fELPTn8Dv4vlwHLZCcM9GfwW/lPuJ/azzZ4Pd2Pf/PxfMG/gg/tWue N/Bru/qLkecd8YPxfCf+pP2Al4Uq/4IXwp/hr/AX4jdaSfouRv8Kf0fPFa31 Z6D+j3b1l8DzgviKVgRegP8T/EXWBvxDxoOXw7/h37JOfDS/eH4R/9BK0feY j9b5Af2cj+pS52z6voTfw4d8dCy5xpXo/+C/8Fo551NbAmqLT0wYrfoa9MRw fPTUxLS0Cox1y0c5Mfo2POnhlPBmOA2cDE4UrTnL4U9BTGX8l3w0/x/yJyUm p5XHs56+yeBEeK75qC7jHpDfyeHM8B44B5wefownJ5wGvgdnllxwOpljWWPk LIaeKVq/Iy7A8aL1fv21K5fBk4WYjRYC7yR/VpMzY7TmlOvah54bzgjf8dH8 SeHs0VpDKH13hWqetOiF8CSI1m+353B+c9/v4KkOF4OjiFVpteh7CL0gnBX9 NX5vOAtcgFiIFo7nCp4Q2Bf9pY/q8iycRC8iawvOG61jheEvHK15JKcP0Y+W A65EX69o/d48Tt9AOBe6f7RypKwl9AC5NvT7+H3hFHAQsSgtCs939HJwAfSz cv43XJJYmlYFzzn0UnBBdDvRQWso9yVa/fnQy0RrnmroZ/AXl2tAvwCXhQvD 1RmrQrR+X3z10fzStzyxovF88NHapOafPqoXgieF6l4ne0i4j86D/M2lUrTO Zw3GDSVWptWUtY2/ClyEvjfl/A8HyZqEw2B/+AYcIfMF15T7bO7pXx/N4wMn 8NX7GyDPAlzD5AmP1pyiN8JfK1q/L5L4ap6i6NWi1V+Hei4zVrDJ+RCuJ/ML P4etcv3yLMAN4LLwMznby3MK1yf+R6sva9tH90bZ21P6ql5K9lLYJvcArhOt +evhbxiteUS3RKunAfpT8jeSZxY9va/eUxnrAXpdk/MlHA0Hw5tC9dmX58UZ rfu/6CPom9LBv8Pv8MTKOpf7CDeROYI90ao3Ztw4YlOaBX6LJ0buGZ5svqoL f0RvLusT/gK3knUF9yb2pbno25LYmmaXNYynrdx3PF9DVa8O/5BvBHk24V9w B7kXcLwwzjcyp3Auxu1mxvot5224Ltw+Wrk2/Ae9s8yn7An4uxj9k3ynyDMC d4pWPZp62kTruFJDV2J3mXO4rY+yfI/kJU8vc109opWd9I1PbX3k+UJvFq35 regJwvTaG6EnhPvLfMKJ4UHigZPDw+T5hAcSB9Ni6JsIfYDMOXqSMNVtssfC 4+A4uF+0ejz4h0Rrnjh4OHGkyZkM/1C5Rllv8Bi5r/CoaGUPnAZ9tIwLu+z6 PTiR6x2LNp7WhJwDmYcZ0fod4cU8TDJzPpk4ldYM7oNnSrR+i2Uj51y53+gT otXflDzTojVPS9nn8Uw0fYuRc7qsDTgr+iy4leyfvpq/PjyTOFvmlzzpw0xt 6MV9VZdrzI4+D24D54AXwG3hY8QTtB70zYu+DO6EnhNeKPcenh+t3BpPLvTF cHv03PASuANcFN4n9wleFK16G/xe6GvhnuhLicslJ3q+MOXO6AXhVXA3eEW0 cns8hdHXSG3y3oFXwl3h1dGaU/whXONOuXbZe+FtZg2sI26QtQjXQ99k2I88 m+XZgzdGK3dgLN8w9fdBD4S3yhqSeYbXw73h8dzHHdH6DbUlWsfqRN/t0VqD +Ksy1m553uAp+PdE6/dOSvKMkOcdfVe06oPgOdF6X1qS5zDxqFwXXAz/QXiI 7OfkPGSu/UC0YTzF8RyBh6LvJe6X5xa9RJjmGYa+RH7Ph8/JbwK+eq/lGkvi OQ4Ph0vDp+TZgP/Dc9rMz8lo5V7krOar+WVtWOBz8EC4Mn1vylqHQ+Fr8GR4 mHwLwLcY93y08lj0JvS9DI+DK+K/Is8SXAG+YPRL0ar3Ztwz0TqW1HaVeF2e GdlPfJUnwC3hW2bcG9HKU+CDXPsd+DU13JTfeB16lksVpvuAG75NvEubKO8y 4mOZH8atEqY8C30q+XPTdz8chf4Ifaa8E+Fn8Bz4HvEBbbqsAfSn8kzCnen7 Bp4L10V/By+Ga8Gv4QXwk2jN05dxX0Wrvz/8lvietgjPN+IPeX5kP/FVXib7 LfzJeD4Tv8q6ou9/5P9i/DkdWv8BeZdFq38AnufEl7R+cH38H+GleM7K3wKi 9RuhMfoveSbRe/lq/iXwT+JvWZ/0rRemdYpuCVN9NVwdfmGuvUaYjjUPtsF/ 5RmGh5AzMbWtk3cZMYFhJ55E8Ea5X8Q0tFGM1SRMeYesATgdvAuOg1PD2+Wd 4tCcw/And+g7fTO6I0zzb5B3BzEZbQQeN3pS4xnmq7p42qPnhQ/DbeDsZg4n 48kB75W1h57JcFpietpocrZAzwjvQR+A/5+Zwz/RykPxZObfs9LGwK3wZ4H3 4cng0Jy74Wfym79Dvy/G+mp+ucZsDq1hHH0n+moe8UeTJz68Hu4A54OPSF+4 GvwQjiRWoc2lbyf0AvAxeb/DXvBJOD+xIG0injXkD4avybvGV3WZk8/y27tD z/l5HDrWBPyFHJrnOLo30Zc2Cb0L+QvDJ+SdQp4AM5afQ3kKnp54/OGz6N1g H/iU7MnEIkYfhF7W1NMXLg5fhEsQS9Gmk6c/ekn4slwvfJ85nyHvKYf6p+Ep 7dA8V+SZwlMMvgAPhMvAV+HBcHn4OrzMV/OLpxyxAm0GeRb6am2n0Vf5qi45 w8N0b5kGz/XVeZA5qejQ+ZxF3xBiGO0m+mj8UfB9eCQcAd+F49M31KHn/BHo 4fAdeaaItWjzyLPOV/PcQN/kq/dXPOPwV4cfyV7t0Jxz8I9Hrwk/Rt/mq3ke yN7lUL/wUDyVTG078NQ1eaajW+DXcBr0+g49509FbwS/lHcusQHtKdzaV/dG eUfs8lX9CbwPtsIv4NoOzb9A9i6H5lkEN3aoZzE8hfwNjT8FfaPhkvBE9Dpm rJmwHX4r73feQSkZN4nsOQ71v4Fn43HC7+Ej5ImB38maRI+DP8Nuh+pLGDeW 2IS2DJ6LxwN/xLMgTPUv8CK4GfxN3rlwS/gHPEPuM22n7AnEVrTlcE7GbePQ b4pjvqp/gE/AbeFP8HLytId/w+vgHnDCDOytcFc4HrwC7gD/wdPOobyK/CvR O8F/ZU3CneF/8GK4Ofwd7uhQfTX+1g4dV2ruQuxGWyPPfphyfMZaL98acCK4 u0N5HZ6N6L3hJOhNHZr/q6xDOf/DSdF7OZSl7zb0gXBKOIDrHe3Qb4EBxEG0 9eQc6VA9PZ7tYaqngvfCY+EMcF9if1oy+Cx5hprrGkYcQUuDvhP/EMPX8YyC E8CDHerfwFje6MMd+k10Av8cODeeG+jjzJwfQp8GZ4X3wRPgjPBBeAqcBR5P nEjbQs4t6P3g5Oj7w1TPBB+Gp8PZ4DEOzb8Z/ySH5tkGT3WoZzt8AP9kODP+ Y2G6lnLCW8P02lPAR+GZcA74pHxfwHng2Q7lXeSJ58feA/uhL5TniVYAPo1/ PpwPPiPfBXB+eJ5DWfKcQ18EF5T5JO6mHSLn+TDNUwj9Grwa9ocvyncE7AVf gJfCheHL8ArYB77P3K409S93KO8h5xKH9t0NP8CzxqyTm/TdDgfJfYG3wIHw Uzzr4XTwWoey1PAOfSOcHQ6X879Dv32C4XWyRuENDtUD8Kxy6Fj7GXczcSvt APzeV1nm9hO8w6yNbQ7lg3huUc8uuIhcr6+uvV9ytgzTuSqKnpn5vwOHwL/w HDFzsoe4j3aEPPfwH4BLoP/Ec9DM7X6H8lE8d8PUXxz9IXwYLg2fIJ6ilYUb 0feYPBvUcMihY52g71GHrgHxp6Sek3Ap2OGrfeV74Q4598LF0F3oZ+RZQr9C vCZjkOci8TKtIp4y+M/Do/A8lTM8XF7WjEP5PfwC/RJcSdYb8aypM9ZX84yh b2o/1cugvwrTsWSuXsJX4WD4DXwDDpN9hr43HfrtcN2hHCrXQnQ5dD9/h/82 HC5/tyW/3clzC99Fu087w7VkQ38EV0b/iP8hHAXnQn9i+H2Y+iPgBw71R8p6 kHM+XAXOif+F0bNU5n8zVks4L/or9GrwVznzw9XhZw71V5VrdKh+jnry4H9n 9D/4v8u+JGtGzvNwHZkHh3pqwAXwf4Brwj/kDA/XkpodyufJ+dihdZ6Ff+L5 DNfG8x1+a/oWJs83k/+TQ8e6gP+rQ2u4CP/D/xNugKcQ/l8mzxf05+YafzhU v4S/G/foj0O/cRIxJ/GZEwueZMQUtGt4kqAnhG3oqeBUsBv+51D/FTwlGCs1 7EBPiCce3BhOQExEu4onBXpy2Ike6Ke6eIr56Vjyt/tkeJLA0XDyyvo3fclZ CU8uuJk8F04d6wY5y6FngWPRS8HpYBecnpiRdgtPWvJkMB5vPH/N/UrjVL9c Syan5rmNfzBzktap3z4Z6JsZbioeOBvcHE5XWfPHwVmJ2U1tvx2aX+Y/c2XV W8A5nFr/HfKPIX8eeBv5I4hRtFfoE9ALOfVbKRd988Lt6Zvbqdwazo6eH24D h3AtBUz+APSKcH84n1P1e/KNjMcf7oBekFjY9A3zU24F56GvD9wR9nIqP6Bv PnQ/uLPUAHubPL5OzfkQTx3ylIF7oNeCS8LdpB5iEK2LrEP6FoW7wzXwFDN6 EafyI/IUrKx+6esFl4B7yrMDB8Jd4TnMT2mnfgcVd+pYT+hbyqk1iN8Xfzm4 D+wHl4f7wrccurfLHlLWqfoz+mannntm/wlDC6e9QA+ibwg8UOqEQ+FBcLBT eQBcFL0yPBiuQKxEey7nYT/NI55SeGrAI2Crn95ryVMcPRIeCq+U3/yd+h1k x1MNHoJexaksngZ+ml+uqzR9a8IjpR64MTwRrgj/B4+X9wL+OmbcWk7lt9RW Hk89eKzUDNeHx8mcwLXh0XBdp+pj4OpOHesNfRsQG9LeyXnbT1k8TWCLydPI qfwBz1b5G4FTv5WsTt3bpc7KjOWEp8Lb5Xl3sadkpGY0D+2zfGv7KU/Bc4k8 M516fo7A74any/zAcfAsONqpOT/RNwo9Fp6JXhNuCc+XeYBbwwtkHcIt4Hlw jFPzzICbO9U/F24lzwrtGzk7yxqkLUX/r7LycrgTdbaH58AdiJ1oi+F6eDrC S+DpTq3/INzWqX6poYnsGbQv5D/INbZz6vdaA/p2gZfhaQh3h1fAh301v3w3 dZNnjvaTvh38tE6Zh0aVVV8JV4WbwrPhdn46llyjBb0XvFrmDR4Ir4f7EPsZ 3Y4+AF4HjyCOom2Tmisr75D3OzwG3gnHwSPh7XB/p+b8S21DicNpm9B7+Gn+ RfAgWeO0eLm5b/QdDG+UdVtZdfG3g2fDh+Dz8lu6XK9875NnGrwWvQWeCfAe eLSsa1p8ck7AMx7ehd4V7m3WQE+n8i/5TYY4mZYIf2vyTIL34xnn1JwJ0IfQ d4aZh2aVNb/knOLUGsTfz0/zyD06Tp19nfrtORx9jrmukfQ9Ct+FDxIP0zKS vz36PPnfspbgRfAxeK7US0uKZxJ5dplr7FBZ9SNyLfAq+Cw8y6ljJcG/wKl5 ksOLZc3SUsAd8S+Ej+LvDq+AT8PLnMqp8HRDXw6fQu8ML4GPyx4l64KWGs9A 9C3wVfS+8Dr4IrxerpV2SdYA+gb4suzbYXrek2/nNU71n0Pf5NQ8acjZB/9a +AL6Cq53s8kzBH0bfAMeUFnzX4G3ylqjpaNvr8pam+Qc76e6rMmYyrr2tsJd Kus8nIB3OHU+M9B3N3Ev7ZasczyH4DvwS+7jAad+Dz6B98Bp4fnk3w+flHst kZaZPNP8NM8B9AV+en9lDhfDx8w92ufUnLfhUYx1Ar4n67ay5rkPH3GqPxM5 h6HvNLWNhc/AD2XtwVfgF7JW4XPwI3gSfAl+Bp8lnqdlI88/+e0d9pX5qaz6 Y3gVtV0183nKqfmz4r/g1Dw54MtO9eSEJ9L3IvwU/2r63jBrYAz6afiB7HXw dfg17IGHyT2GrznVn4c86+l7G76JnkTev079/rov10fLi2cmfR/Ab9Gz8H7I RvNBv+NU/xv0Y3Juhz/Au+C78BM4BfwYLgkHVGI+nPr/v2a3n+aX+p8Sn5u+ 8xjrJfwJzhOgetVM3Cv5voBfoS/E8wb+Cn8kfqb9gF9LjbQv8FI8n2SPkvsO f4C/yz2Fc1B/dt5xi+D36N/Ql8Nf4d/wST/N8xnO5Kf55XvqrJz5TZ53Ts2Z j3lYQd8f8B/0F06dh4/wF6f6f8FH5RuHcXMw7iOnXovM53ep0Yy7Gc8/OBme O4yVHH9S+C9aPMNJXaoXZNybfqonQi8Kp3Tpd8EvqYXWCN4i3wvSB08il77f U8B38Sdw6Vg78CSDU8PxXeovQP5t6InhlOjn/bROmc97cCqTcz+eTHAmeDec Bk4HP8GTAU4Lp5ZI8yKnbyTXSp4+mbn/fqrLeeOAnO3hzHAKl+aXetK5NI/k zOhST0a4JH3Tu/T75YWfrknRffz02uvL3k7OrOhZ0EPlv0+w638/nN2l9yIb eiP8ES49q7+C85ga8hLziw+uiJ7Ppd8dZYjlaCW5llwu9fvB5+R8LvcF/zE4 t+l7Ei4oPqmBPF4u/c5946f5s6IXJnobz1n8vjL/8Cc/1XPD7+FCZv2cxxMA F4KLEUvI3ML+xEBaEeqpjr+4S78XfsBFTW1h9HU49Sx3ES5i+l6BS8G+8Dc/ zZMf/uWn+QvDV/GUluuFg1yasxhjXUcvCwfI/Lt0HqRvSZf6S+BJ6s8ZW/zo BVx6LYGyhulbAQ5Cvw0HS144Mf7Kci1wJWIIrRT+W/JtZfSE/qoHwo/Rq8Nl 4fIu9Yge6tI8Zegb7tIaisv6xx9m+CFcVWqFo1zK5fA/QK8i46L/89P7LvNT jViDVh5Pemr4D66A/kzO7YbrEOsJ43mOXldqQr/p1P1W9uSaLvWXQ6/v0jyV 8D/FX0vyo7+EG8DBcAw1NHLpd0Faf80vfRsSGxtPSn+tTWrO6K96JXhVVea9 H9eRjbVHTit6GPrlotwr9L/on+Q8j14F/SPsgqPg7OG8S+A2sJ3ooIVS52c8 MTJf6Fn9VZecTpfmiYR/4GkO14KbEVvQwukbJ88TrTp6TvrGGn9uf/VIDXnh 1nA1WTNwF7gmnIB6OsON4D/kbytzDcdD7yjzCLchtqPVhXOgz4Dbyl5aWfX6 8PfKWoPkbOnSsaTO9i7NE0WdnVw6bhV5d+PvADeQZ5Z6usN14Lbcl1Yu/Q7q CHdz6Tnf49LrCqPvN/o2kXWDv6tL+0r9qaitv8wXnBzuK/ML93YpV6dvBvSR Ml/o6eERcBN4uEv1OHgIcZisJ9ljqW2AqTNtuOqx8o5A7wPb5PmFB8MWuJ9L /TXp2536B8ELqX+aS+etgZzhiZNk3uBBeKbAa+Q8QP5xcEvyZILHwM3hUS7l OvLso/eE7ejJ4F5wNFzCX3PK9Y4ljpf7hb+4v7J4JhOnyr2R9Uzf0XAzuIy/ 6h44G/pE4+nh0vxyjTnRZ8k6kPcL8RAthvxlwpVHoc+UeyVrBj0f+gK4M3oe eJ6sA7g4vAMeKusTngt3gJcSl8u9hHOFa572cH54oawbuBC8xHjmuDRnQ8by Ql8G90T3Dtc8veRM4lK/Bc98l+ZpDPvhWSVrAs8U5n8TvI/590dfA/eT9xRz ssGsk9XEtTSr5MFjcfO8ogeEq95f9lX8m818rnBp/t7wOpfmsdF3o0s9DjiI vuvhgXhmUcM2l377+KKvhPvI3kjOrXAnOA36UJlzuCC8GO4GV8ez08xzLXiP 0fcS98uzwFgl8e+Dh6Nvd6nfib7LpX4XXBHPCVk3spbg3fIMwKXhg/JswGXh I/BouFS45h8BHyYeleeCPBXQj8Pj0MuFqz4G3uLSaxwCB6OfgifK+5d4kdaC vieJp2XO4Qg8F2QfkPcsfA6eIu9N4nXaTLgF13tWniV4LXN4Wf6NOQwJ1zyi N/TX/HJPbfAVeDB8xqU5m8n+iX4NHot+zKXz0AT9kkv9UsMCclq571/ggS59 3mWfqYJ+E54l71ziXXl26NvcX1musROerPQ9BleF78hzArfC88Bc1w3iLVor +lbDcx+eg14PfibrWN6D8At4kdxr+Cm8AL7n0jxt6PvEpf628q4kvpR1j+cD 8ZM8U+gD/JVXofeB38DL4LfE97TVsJX872RfgjO7tf4j8CuX+qXvQ+JjU6cF /2vT1wZ/lGdGzhLcly9wGri/v+ZfCX8mfjWeM35ap3w7DPJXXcbdL38fkWuQ 30z8dawZ8k4k/3d4IzwC/R+8Cf5J/C37DNcYg+cvvBU9CbUno3VDH+evvEPe U3hSwHvh5nBSeLe8B12aszP+hGiJaV3lu9Vf82+Q9yNaArfmf02d8d16Nh7l r/oWuDM5s8PHpTY8Gd16zpyGJxN8AJ4Ep4H3yDuLmNJwa/qmhvfDLviHucZv LmWpIS3/np7Wk9ra4kkHH5T3oFtzdpffRtCzwEdlvYVr/n1wBrfWIP4p/ppH dDeeX7JPyb6EnsPc9wno4fATOIQYRnsId0PPBZ+SPRl/PrPOcxJz007Ca9DL wtfg7uGqn5b7gu7j1jNqNreO1Zua87g1T184P7Eg7Yy8j+ib1/BC+nqZPIXc ygPw98ZTGD6PngBPAbeepb2JvkYfiqc4fBMeAAfAV+BAYhHaIPktCD0Ivor+ H7ER7T3s51b/JbioW/Ncl7WN3x++DA+Bi8E34GFwSfiWvBf8Nb/0LUEsRRvC WEv8tbZz6Kv8VZd6tvrpXie/n8zz13k4IXuyW+dTcpYjVqANl7XNWKHwI/RN +IPhO7Im0cvD9+S+o1dy6/k5kliF9gxe7695ZE7Gh+v9fSzvC/QIc68rujWn 5JmMJwp+LusnXPO8gCu71T+SetLQt4xbvyN2wtVNztn465v5zIFeU/rIekOv C7+DaxBr0V7CTfx1b5R3ym5/1Z/C++AGZtyqbs0/mnFruzXPG9k/3eoZJ7+9 kL8O/Bb9oL/e09fwVPRqZqw86A3deg5vGq7P/k64sVv3/08y5wF8/3t432Vi L8YTjf4NfQnshH/IHuhWfSLjOogu2iR4IR47/BXPEX/V5XoLwR64NrwSTxz8 F+5C7EabRd9YYhPaH/TVeJrB8ahhVbjq/+RZg5vD8dHXwS3hhPAWuBOcHA5k rPZwY/yn4FZufa+1cCtPk7MK/jZwEvyn8bQ1NR+HY+CPske5VZ+Jv6lbx50K tyN2MH0v+Cv/kvUs3xpwCvSObuVk8Db0rnBK2O3W/DKH28P12lOhPyRPD8N7 0HvD6eFb6P3hxHAvYh/aXGrYKedkOA36VX/VZa6OoA+Hs8Pd3eqZjb+vW/NI zgGyB9Dmo5eibz+5f9RzSM5gcFY8g93KC/EcRB8CZ0FfEsnajqX+zDz7aCNo i/CckXM1nB/PCTl7w7nhMbI2aXngU+hj4bzwRXga7AWPdKs/BzzerXkWk/M4 nlFwLvTP1DnB5DmPPhkuJPcuXPPngycRp9CW0vdouNYmOR/4qy7z/xiebuYt DJ4pa0LexcSDtFD0y/SdD/vAz/HMgjPAM9zKUvML9DlwRjgCnuvWb8an9N0O l0ef7VbdG74mZ3jYH55HXEBbQZ2v/ZVlbt/Bi829W+hWXonnKn2Xwn7oV+BF sK/cC7fmXCW/P6Bvgkuh35WzN1wcXi45aGvk9xP01XCQrCv5FoCLyPPlVl6L 50a4+gPR78Dr4GLwdXgFHADfhzfCJeG1bh1rPX03uLWGDfAjPFvgMjLn8Fa4 LLwPHmjmbbNb9Y34p7r1viyH9xD30bbBL/Dvgivh/8r87Db3eqdbebPMIZ69 5t5tI+6QOuQ72l/zyJp8i+cYXBn+5a/3ujBshQ/I8yDva/a9w3BRdBf6Ebee /w+5lcPQn4Vr/gpwUvzHzfy0wX9J9hY5i+I5D0eip8BzyszVCbfyDmp7j+cM HIGeGs9ZM1fv0E/C4bK23arvlPXs1rG2y++HxAu0XXC6AGVZb5nhy3CIPF9u ZalhVmXWEPyO92yGCPZL9vam6PvDdR/IJOuKeI0WJWuDeIdWA+7mryzn8Ejy Z6FvO/Tv9L2NXlPmU87zcB1ZJ8Sbcm+o7Sf6Pbg2eiH6PjU8kpzP3XoG+4vn CVxf1q1b8+yh72O3+vfBz4gvjOc98SPtEHpggHJj9IRc12vDb+RaaQfwJEJ/ C1vQM3m0/jPoL93qbyj7A/ERbS96Avyv4EboSeAPsA2eSM2f3Xp+9g/Q/NL3 E/GL8XgHaJ314CIBqlvhwvBDMz9/wnUs8SQn/zfYIWsA/gt74B/EX7Sj1BMl v1G79b8nSUztSWkn5Ds0QLkJ/rnUltyj5/BM5EkCN0f/7dacMXACj77Tj9G3 RIDml3H/EeObd306+saD4+D0EapL/nxwNrgznAvOALeHc8MZ4Q5wNjg13BpO RkxhasiKngpuJc8C/J3xnPIsu5WPyDmKf09HOw3nwJMWbosnpUdznpIzM3pm uCN6pQDN30zq9GgNsibDAjSPjJUK/0/yu+Eq6NlNncHoleGJwsRQ2jh4NXOY 06Pn4UJ48sLd0XMQc5lrL41eBh4JVwtQvRPsh+4N95Xr9ehY56g5t0fzXJDf i4gFaBfhgvjzwN3w+8KF4T5wQY9yL9gHvRDcG/aC88M9hYk+tEvkaUgNxeB+ 6EF4/OGBcAAxiHYFTxH0QHgQ+hfW3g3mpJqM61F/f1mrHs0jnkD8fvAAeBdz UtSj30Ql0EvAw9AbBGh+qbk4sSRtKFwvQGuT+ktGqD5c9plCure8TMXZNkDn Qa69lEfn8zp1liWWp92Q32roGwKPx2PHXwkeApdFLwePhg9QW0X4FbVFEKNo d+hrCdA8Mg+VIvT+ToBD4HB4ElzBozklTwv8kUYPi9A8U4Q96r8tZyT00vAI eS/gr2a4PVwPngkfk9/S4Q9yVsdfB56NXp1YkzZd1ny47o3V4bgA1cfKWsJf H54ja9Wj+e8xbi2P5pH8dT3qeYBeBX9teBZ6c/I0NOs5Ar2qGasm/B88H27C uInc+ptAA4/6H8l3BJ7G8EI87chjh2fAddAd8CJ5P3pUF0800Ul7St/zXK8N /knOjxGqR3EmrAe74SWyTuBYeJnsn8TJtO/y24XsMbRncCM8TeGVeP6LUH05 3JF6mpk5tKK3gNfADrgjvAG2we3gtXAn/C3NHDb3KL+SM4/8XQBOJO8yPG3g BXB9+nrgpXArj+qSv4lHx30uvzkQ29New/YI5XV4nHAneCPcwaMsuhu9C7xZ 1olH8y+GPehd4S1wZ4/yJhkLvRe8A35FnUPgzHBPee5pb+X3c4/qe9B7B6gu Nbek7zB4r1wXsQftDf4+ePqZOe8vzwFtt8wJ/r6GB+MZbOatj0f9H+RvSfK3 ADid5MQ/FT4l8wMPh/fJ9cLj4SNwa3gkvF/WDzwWPgSPII6ifZZ7jd4d3ore JkL1A3J/4QnwUXioR/N/xD/ao3m+yPe+Rz3f5F7gHwMfxN8lQtfSCTg2Qq99 m8wtPAk+DneHp8Gn4SkeZfFPQD8AP4FnyXqh/SB/T/QZ8Fn0XvBM+Bw83aN8 RuYffTZ8Ht4k95OWIA9zGKF5Lsi7mzlcAheE+6HPhy/By5jzecYzEH0hfBUe jb7IzM8Cj/Jv6pnr0b4/5e8peJbCu/AMo+8G+JbMG7wWvgnHx7PCo98XyzzK 1+EheFbBN+R68aw2924mvBw+DK/0qP6XsRZ7dCypbY2sa9o/qSdAWeZ2ODk3 wrfh9R7leMzDCPTN8B25xgBde6vhJQE6VzKfx+Crst4kP7wXvgZvJW6X55Q8 o8mzE76PvgLPLjOHOzzKifEsDVC/3ItM8B44GD4o10R7Co8nz374Mbzbo2NJ zn0eXQNJyDMJzyH4GXreAO0r78dR6Nvge7IG4KOyD8BnZUx5NuFTsi5oKciz j74n4Bfo0/CfhF/Bxz3KyfHMRD9t+h4hHqMlQz8YoHkk/5QI1SXPoQAd6428 3+FzHj3HzsVzUZ4XeB58Cf4EX/Aoy9w2Eq+sc/mbDp4r8jyiZw1kn43h/cZe fU3WBS0NNZwi/2157vCUhm959Oy0hL535RmBTwSoX8a66VH/V3gpnnuyVuFz ctY1/s9wJsbKw1ir8DyWtYS+Gn4iawb9vkf96anhkUf1v3guy3/PY3iTnMPh pPivo7+V5w5+6lFPBvquw/MSToh+Fc8rk/+FRzkTnjserTMdHIHnjUfPmWvo +wyOj38j/F7WBvzao2NJzncerSELfbfg+ST3FP02eT4b/3L0B/L8kvOjR/Ws +Lehf4VTyvXi/ylrBo7P3CSkZYB34/kttcEH4cToWeDvHvVnI88hOdujZ0Xf Af9ATw3/Iv6hpYXrkj9BjJ4V90Sonh79cYCOlQbei/7Po+M+RI+Hngo+I2ds OD+cKEbHygy/xJMWzgQfwZMczg6nkH5yf6ntGHpKOCf6dvmu8WjOpDHqz40n dYzmEc9hPMngbPB/5E8To+fnU+jp4bzozwI0v9SfTubJrKUvHs0vc3g6QvV8 cMYYUz9jnUfPChdCr0QMoRVBv4SeG/ZGf0v+bKaGLDHKBfHY0HPAg6nnE5xT 6sfzhL6l4HJw9hjVJf9XPIVMDbmkRpoXfDlC2UfWpJzhYT84b4xyYca6jl4Q DkC/AueDfeECMZrTC8999KJwSfS7cp6Hi8OF5TrEjyeWGnzhMdT8C/aT/Hh8 YpSLwN8C1C/39w55AuBi8C3Yy3juwUXgErB/jI5VFA6K0Rr8GOshnuJwafS/ 5CxhrvGyR/f2VHiKxajuDy/Ef93sFeXRKtIq4G9D37LwNPRE7Evl4CD0MjHK Ms/P6VtB+sAlZUzxkPNFhOaphP4ejoAj4FcReq9DZN3CwXAwnJn8YUZ/I9+A Zg8MjVEuSs5/AZpf5j85/kgzDz/w14VrwbnRa8FV4DRwVbgsHBWjLDV8xl9d /resVbgGXA3uQv4q8Dw588eoLnnCY3Ss4tRQk1hb7jX8NUK5Op5MjFXPXEud GOXSeH7haQDXQa8fo3t7WfSc+BtLXpnnSK4NPgBbiDaZWzx/IpTryb5HbZNi 9J3+G90K10X/J98CcAO4YYzmlLH+okfD9eHE5I+FrfK8w01gu+whcAxsge0x mqc843pi1F8JjiM2NX3bENvJPULPG6gs85aSPC1gF9yS2FrmAU8q9FawG31C jNbfBW4Wo34H7JR/l/WDPwX+5rATPS3cVuqAM8AdpA44daTm98DtiR1lfdA3 WaTWGY2eL1B1uS/x0V1wQzhBpI7VCB7PfHaGdzKf/vh7GU9XYndaM7mn+HvC zeGBst/IemCs7JHKbdBzwEPhtnA2eJBcP9wjRnOG4+9HHCD3Gp4SoPnlrN6b 2FfWJHpm+vaReZFnOVB1uS+b8U+B7+JfBY+Dr8AV8IyHm+ApBY808z+EOEzW Njlzk3ME3AG9EJ4usnbhTjHKMp+jZE+SZwd/Pvyj4c7ow2M0Z3X0KPpOhNuj 54zU/O3gsTFag/hLB2oeudd+cDdZ63A1eCrcCQ6h7z5ZB/Au4h7pL7WhT5d5 h73g2XBPeBpxBq0bXA59s9QK1wxUvStcFH2x3Bt4coyOJWtsZozmqU39c+SZ lvshezL+WXAPea+RZ6HcA3h+jPJAuAieBfAgOACeC/eHFxGXGN1O37XwEHlm 4eWm7wriKnk2GTcafSU8FL1VgJ735LeLpTHql76rYzRPPfzFGWuZ8ZeE18DD 4ZP0XR+j58MSkZp/GPo64gbjaRyotQ2AHYGqiydrpK69VvDOAJ0HOW9vjNH5 HIW+hbhN9hBquIhnd4yekWLJs9PMeXnybIXHwhXhHebeHSAekrUq+0ag5pGc TQL1/o6TPRz/fngyvD1GczbEXxn9oNwz9BaBmkfWxt4Y9TfGUxbPJng0eiR8 VNYEXAM+K/dV9nb4ODwTrg6fhufCx4gnaFby1EG/DC+SfSxQ9WlwO/icyXk4 RvOLfjJG88yGz8Sox06eauQ5Bc9B70Dfi/AsOAL9CDxd3tHym3+Mnj+zoPeH W8LnY9QvNddFvwIvhjuT57qp+Qbxlqwz+BF5bsboGTJtLOcsWidquBqjfifc k76PTZ565Lxm+jaE78ArZG3A92Vdwt0CNf8CqZP4gOaRMxWeR7IWZT1Hqr4a bgTfhVfCL+RvBHBGeY8T38j+Q98nxGemrxv/a1lbsAt+CW+CEzJuRuoPlD0f /QX6RjgWfifrD+4TqHmWwZ5Izb8F7o/+3tTwPEZzboCb4vko6wl+GKPzEEM9 b2PU3xSeRd9MjHsEz+0YvZbl8AfiJ1oLPM3J8x3ejT4Sf4JYrf8b2g/aLjhe rOpt8LeIVH0P+g/5Wzx6Qfgz2ldTTyv5b+PhffCfGH2/t6JvS/Rf8F55f8Hx 6XsY/hmj/pbyjqCGv6bvgECtU+7dODgx/h1wd/qmhk/Lfg4nhY/BXeCU8Ak4 CTEZ7Sj8Uf7eQZ5cst4iVT8ueyY508RqPQljNb/UkzxW87ST93isejrAs/Gn MDmnBeqalHPL0EC99vVwT/KnQz8LN6jKft2Me5qN93is3gvRp+GpBL+S+w5n hS/IO5SYg9aZsfqiZ4cvyj5PLE7rI+/KWPWfkz2ZcQvCZ+De+LPA52Xe4Fzw FXgwnBe+DveL1PyX4DzEfLTu8u1DngJwGfR5garLHM6Fc5u5GkrfwvBNeccR A2g96FuI6EW7IesHjz98Fx4B+8J3pB7mv5HcR/l9Bt0H/Tb6GDgIfgCnC9Q8 5eFRkZr/HrwMvYiZH+9YzXkLHo+nGPwYzh+r8yDXGBir/p7UNh1PMPwaPWes XksXOcOQsyQcjj4BTxn4CTwFrgC/gEsTy9L64l+DvxR8DX1ipOpP4dlwOPwe LhGrHqmnXKzm6UffirFag+ScjL88/ByeBYfB7+CQWOU38Ez0UPgtvDxQ77us gcrECFp/cu6Qcz78SO4X/irwJ7gqsTptkHzXoFeDv6JfitH9dqG8R2LVPwBP jVjNI55j5IyCP8AF4JpwTXgXXMfMz+ZAzS/3tzaxLu07PCdSa5O+3oGqy7n9 r0e/33Mw1l70BubavzVh76DtzcoeTV8r+h+5XtgC/4ZPwRPgvFk4qxAb0YaS ZyW6Hf4rayNS9V+yz8dqnuHy3cpYHtmz6OsmxtBGozuILtooeBV9o+F/9F0f qZ5E+I/St4m5p2Fw21g9P1yF28Dx8GzB3wxODp9BbwV/kz2Z2Jw2nvyn8UyU ZwzPiUDV5R6tjdQapLbYWB1rrOyrsZpHcraO1XFTwOXp2xKOo+81uAMcH30T eeLgpPA2uL3sWbAtVq9rhKxbdKfxt4vVvhPQd6P3gNOh35XzKpwM7hKrnAo+ KOd5OAv8Cs9AODM8IFb1ybJHyXqkZULfI98LcHr4WaDqwlXhrnBH6q8D94nV 82f3WPVPkt8n6dsbzoh/fKzOWx54pNw32jT5FqPv2Fg9g72Fh8PZ8ByWbxDD g2OVp+Dfjt7JXMtN/J3N/X0TqDmzwsNknmhT8R+NVM6BPoY4jpYTPoQ+xPjf B6ounmPoo4ynY6zmn0ieM+iT4fzoO4m7acvQkwQpF0WfJDXSZqC3JufMWD0H foWnmzXziDwb4TLwOXgaXBCeR1xAm0Pfz4GaR+bqOzwLLgBflnM77ANPjdWc s/BfQZ8P+6JfjdQ8fvDsWPV7wTNiNY+M9Y+ci43/Hv7VcAmZT3gpHATfgVfC xeAlcq20QLhGFHtAHPXCtyJVLwL/JecaU9vCWM0/j9qWx2qe+fJsxqpnAXyb vivMvMVnDtfD/vB19EVwANyVnOukL3N4AL2fWauX4DmwN/xYztJwWfipnOfh 8vLsEHfQljBWOvJvN/qGWPWXhjfHqn8xnndybofD0Z/AW+By8ozAu+AQuDf1 7IWXypktUvNXlGeEuM943qIfgCvDKYNULwWvjdVrlHnOin4YDpM9hHhK5kV+ ayUeoa2Av5DnJFwNT1r8x00954gXaNXhT3iOwVXgIdR2Bl5Hbe8jNU8EeoYg zS91ZoHPwqGyH8ZqzlWM9Q3/ebgG+v5YnQep7XSs+qWGmtz3+tz3+XCvWH3e M8A/6HsJrgVfIV6TGuRdHKQs81mAvuno2xX+jf8qel04B56bps6LxMu0tfKb GJ4bcAP0BPS9DzeCE8IP4cayZuB7cENZM7GaZyN978aq/z/0B8RHcr/RXxJf 0xzoPkHK9aU2+ClcU/Y34gvaNvzJyf/c+NPEaf2dZb3Fqn8znlvEO6bOJPif wDZ51rgXr+BD3IuU6G9hF3rBIM0vc/WG+I7mhBNFaZ0WOFWU6m54LHluw9vl XBekY1VFT43nA+yBA9G/mzn5RPwi657aMuL5BjeT550Yn/r3oGeLUm6NnhNO CLeDQ8gTD24Bf43VnLvw/yb+jVU9XZTmj5P7Tvxl8i+gzp+yjqmzeJDq0XK9 +DOQsxucB04Fd4TzwqnhTvIexJ80TnMmICai7ZPfefAkgTvI/MMfyRkje3Ws 8nb5fYx/T2E8q6khOXyVGhLHac4DePLTNy3cBU+ZIM0v85YyTms4iCc4SPM0 Ry8LfzZjFaJvRvTuMj9wRXiSeIjlaRNhL/TMcE+4Mn2zm7nNRMxCOyy/r6IX M+s/LEj1VnAAffPD/eH0cTrWIfxZ4zTPMTgHMRetDx5f/NkM+8N54X5w7jjl 4/j90PPAfdG3Myc54YfMST5iAdoJPKXw+MMj8BSBC8OD5FqIPrTT8ls6ujc8 BL0WsQ5tjtzTOPWfxOMbp3nOwEH4C8ED8ZSE/eDhMudwIDwKLh6l+YfKtROD aGfpGxiltQ2QuY1SfbS8+yJ1r5NnMypI56G91Byn83lOfl8ilqRdlO99POXg wXjqw2Xg3nAlcpaAJ8CnmJPS8BfmJJgYSrtM31pBmkfW6oVAvb9y/rSjVzLz UCpOc0qeUHKGwJNhZ5DmkeutEKf+S+Qsj6coPBbdgyfczEMUeg14JnxbfvOH k8A75Gwv6xKOIEbRpsA/I3VvrA03DVJ9PNwWrglPl3UVp/mvMG6VOM1zFa4e p54ZeMIZtyo8De4YpPd0tvRFr2zG2slYteE08p6K0mdf1mrdON3/r8mZCv0P nINz/lPqbxinZ86u5Gxs3hEN4lRfADciWmiL4Nr0/Q9eKPcoSvWlkh+2wYvh /2AHvFyuUe457a789kh00m7I78+M5YZX4GkYpbpwY9gDr4KtcCy8BnbBreFN 8DdqbhGnZzkbehy8Fo6JU14N29GbwuvgvozVzNTTHbab+pvEqX6LelxxOu5N +e2F2NL0HRCkLPW4ydkG3gy3ilPeKGsDvR28RWqO0/wyVzFReu1b4dHk6Wh4 HNwF3gG3xNMD3gt3lj2G9kDO1eid4O3ozaJU3wW3hwfIvgR3iFPPPfzd4jTP bvSe8tzIviHfL/i7w3vQRzFuP1Nnnzjlx3ja4ukLH0SvF6vfg0PQ+8t+QHsK d8EzSvYfPBPIM8TUM1SeG9oRWZN4hsFHpQZ4vOwP8KA49UvNI+I0zzNyJiDP 4Dg9K3bGPxI+DneDx8Cn4E5Rmv+YzKE8i7Tn9B0bpLXJ/EwOUl3mcAo8Ad4H p4Anyf4iz6bUS/su30fknCF7jrzr8UyGD8ET45Sl5t54psLnZa7gafAFOBf+ DfJsy1hxqp+D56LPN/VPl72B9lrWeZTyJfQ5eOaYa5kVp/wGz2A88+Drst7g 2bIPSM44zfkezyj01XKvZQ7hFfAdeXfLWjN9h6IvkTUMD4OXytqGF8cp34AX Ban/DDwcz3L4trzv0BfCwfAmeJXJvyxOx/og3/hxWsNHmX/6rpU1hmc5/nVm PifCvcw6XBOn+mf84+L0vryCt8p9o32FJ5BnM/xE+sJbZL1JDXHKj2VPI+c2 w+vlmTPjTorSPM9gbzz74XrwxiC913JdU/HshF/KfYH3yH2Bt+DZa+Zzd5zy T/k2D9L812TNwAfgR/BC+p6WmuF58An4k9xH+DD8Dj4Yp/wGno1+VO6d3Hf4 mMwhPBM+BL+Fj8Sp/ku+teN0LKntOPEk7bf8JhCkLHOyBz5jrvdUnPI/edej n5N9R3KS/zecnb39f5bOMcyuJQvDsW2nHac7TlpxumPbON3H53Rs27Z1Y9u5 sW3bN7bmXbPqRz31zjdffbV27dp71+l7nxlHNX0PyLNwVvayqf8y/VVavLzc 32rKP9GfkpPWwreAscvRr8iaSCb6DXONF2Qv077CK/Fch39LPXjuwZ/h9egP 4ITkhKPfhWPQr3XSnPjMe6eT+uPhuS/3k5YAfiF7hJYMz/miylLDJjmfw0nk myXvAGE8t/E8M3pqi9afEf1RJ/Unhm/KXqAlgjeS81h0/Nvhl3BKuAo5b2A3 c22ppvnJ0F/LvTKeDdW0zkTwlaKq/8W/Bv2WuZajRXUuue870d/BqdEPyHke zgR/kGeClop69qN/gTOi/5EM6k+Dfqyack70k3ACOA/8H/l/8WWDP3fSzNT4 f3bSb7roe6tpfnr4m6yfmfdf9O9wFvhQNdWzwufg9OT7w4/IT2nRmhvDqSx6 Rr0LJ7HomsSnTyj7hHlPMzYx7IO+S37XkJkGfttJOQWepPz3yY2nPjnJ4D5k JrJoZgY8ZxmbBvbDc6uo5ss9SmHRGnzhh0U1JxW8B//HTrpXX6BnsOgavkAP gyPgMvTlZF7ZS+iZ4AD0d/izWfT8k5E+szQ8D+W8B5dGv1BN9UD4GuwDF4LT WXSuTPizWDQnK5xd7hUtO3wRf1Y4SO4Rc+WB88K5LMr5YQt6bniCPI/4cxg9 r1wr7ZjcC845BS16nrwh53O4CHogfT6ZT/Y2ehBcFH0pfJE1+Ybfz6L+HHjy WzQnBM91PP5wYfgOXAAuBt+DC8MlZP2raX4wXEjmpOUiJ16w1lZQ7m811SvD B4vqu+UV874vqusg+7aoRdczN2OLSbZcP/yMsWXhMHmW4dJwqFwvXBwuAz+B S8n9gyPoy9Mi4cfVNKcs/Lya3t9wuBvzhlv071olLZqZl7le4YmU8XhSBmtO KTjUon4Z+wBPsNFfy1kargD74a8B14Iryf+Ok0X/d1mzoUfDldAr01elLWPe ZdX03fhdvt1Rqn/A811+L8C14QoWzfeltmoWzamJXt2iHj/0b/ijzLw/4Tpw Xdm3cEW4CvwDrg3XgbPIeZ4zm515a1nU70/OX/R6cEM8vtTcyMw1nLVqAm+Q M7xF9UD8jemb0hrLM079DQ37B6su9SdCbw43gxPDreDm8Bj6cbLu5LSkby17 VJ59PG3hlniSRKneQt511NYObgAnR+8gY+QdDjvg9nK/YCvcFi5ADR3NtbS3 KBckfyLXYoF3cS2F8cTATfAEwC3M+nSyqC75bSw6b37GxtLbaG3QU0Upt4PT wE64A2y3KBfCX5ZMt9GbWTS/qbwT8HvgTrDLolwY/wxq6wofpLYyjO1vrqsL fTdaLNzXonpx/MWDVW+FnpvMgXAc7KXvLM84nqzoPWEHei/6PvKMybsIvQds R88J95M64O4W9dvg8uT3NpwPzwQZL88C+iBTvy/6KKkPXkz9Q+DT1O+DPgLu ij6YfqipLSN6nLmWyGDVrfLsoI+Gu8MDLJpfkjqHWTSnM/pIi3pKoefFPxzu gl4xWPeSXGNwsF677LEAPGPleuR5RJ8o9wYeb1EuR05b9F3wKPSp9NNpfeE1 XMtk+CrXUg3PFNiLPsmiLOtQgPxpcD/x06+TZ5XMglGa0x+9GDwfHgYXhmfB A+U9Cc+EB8h7D54DD4ZrMNdcs26zLcphsjcsOjYUrolngVnzdvAqWRe4FDn/ mGuph74Y7g0vtChLDSXwLJU1hUvCy+CR8HaudxH8QM78FtWHo8+z6FyRzLuc fgWtPFw6SlnmLQuvhsfCKy3KFfCEoa+FJ6Bni9K9J+vfOFjXSq7dDZ+DZ8q7 Ds92eCq8nn6jGRuJvhmeLHsS3iL3AN5kUZ4EtwhW/1A4Ft5m9N30e2nR1FOZ sTvhGehbLTpXFfQdFt0D1eCqePbIWuPpEKxj5br2yz+zgF+wPifl7/zwJ/gY /QlaDcYepj9Kqw5Hk/Ov3D95V8OH4Hny7bMoz5F7jX4Eng/voz9g5q0ZpTkL 4Jhg1SfCtmCdS669Np7j8CK51/ApeKm8f/CcNmt40qJcm3rq0tenBcCX5Z8L wH+kfvy1Y/gO4z+PdpFWR97tZF6BV6I3gi/LvYebwtfkHsMNotS/HL5kUb9w M/Tr8Bq5L/AteTbgHnBq5joFt4LvoG+Q9xs13DXrc8Oi/npyVreoXh/uiueB WasOjH0Jb5Pvvpzn4bTwPYt6GuG/j/4ITiHvPcY+hpfADy3Km+GrFq1zFdwH z1PZ93Bb8u8bT3v4BbxV5rLoXFvg5xatoTFzdcTzWvaTfDvgN/AOuDl8E14L v7Ko3hS/Bf0tvBN9CPN+NJ4f9L8s+s/TP1L/Zzi3fCPw/4EPwu8t6m9JzjTG /oX3o1vxfID3wJ/ovxj+LX+fh/PJ+zNY9U3wlGCda6+80+Bv8G74Z1H9Z/py ju1JZhru12nJsehcB+AV6MnQf0mdlfmtAUdl4gxOn5h2GD0OTyL4iLz/yX9n 9kO8GPW3pv4kMZrTBnbjjw//i6crnBQ+Di+AU8Af4VnBmn8ITk6fktaWsf9Z NL8Z3D1K9ZPyjY7R+tuh90JPB59BL01flvYM7oeeBb4A94bTw2fhtDHK7Rnb Bz0jfE6+v3Am+Dw8Fi4K34czxKjeAf8g9NzwFfTM9FmNP3mwspyZF8E5zLOQ LUb5IjyQsbngy/IdhLPDl+QbHaOZHclfw9gC8FW5F3CQGZuH3ofWCc9QxvrB 19H/weNvrtE3Rvma7L0o9QsPhwPhm3K/4LwmfxScH74j39MYnesGnC9Ga7gN j8ZTCL4Lr2OuwmbeMxZ9t8t7qWCM6pJTH/8F86yVQCtFewyPQy8GP5BvNFwc fgiHxChbuK5J6CXhJ+hF6INp9+R9Hqw5wjPxRMCv4V3Beq8lfyp6Gfg5PAMO hV/BO/GEwY/gcjHKL+UbFKz5cr1b4EhzjYsYWx3+DB9Frwa/g/fCFc2+Kh+j /Aaei7+y8RzAU8Xkz0avAP8HV4pR/S0cHqNzSW1V5dmixXDt86KU5V19RH5r GH90jPIneDGeWvAX+Y7E6Ltd6lyJXg/+DWeJ5nmH7dm4F/QNad/kexqlnAT9 opyd5H7DJ5mrgck/DTcx+XViNPMrvAx/Y/i7vFfxtILjMXYLeht5zuENcEs4 EdwoRnNk3hYx6k+I3lqeaVos1xtDb5U65VsQrCy1nYc7wD8Y21H2hfjw7CK/ kzzzeEbHaP0BcLsY9aeCm9I3N7XtxN8eTg3vgWPhdHA4+XZZc/IvB2v+H/n+ 0juMZ2uU1pkcvhOselJ4LXozOL6sYbDOJe/JfeguOAP6YbgrnA320MdJLvUf Qu8i7wv0PvT9aDnhE1HKueH3ZA4w+nH0vnAuuHOMZrrI6Unfm5Yd/UCU5meC u9H3oLnxHEHvbjwPg1WX9bmEPh7OB9dFHwn3ov538Cg4B/pLeIjJ7E8/kOYl 8wxjB8O+6PthN5wRdsYop4eH0g+XWvGfwzNM3kfog2I0szP6BfQxcKDsvSjN zwOPiNEaxP8mWHNkrZ7BXpN/WX6nwPnht/AOuLLsQ/pt8kzCV9EnwQXhT4yd ZvIn0k+mdaeG53J2hcPlf4c2WHVZ/zvo8+Bi8LgYnasb/ikxmtMLnk4/k1YE zw38Uw3flnM+HALPilEuCt9Cnw0Hw82Za4ashbw36OfLvSQzQQjvcbgwnl94 FplnczH9Ulp/+RsmOUvgMujxovS810i+oTHq74NnWYzmiOc+noVwSbgTmcvh 8XLOQV8Jl0P/Haz5sh9W0K+ilYXvRmltxeGnUaqHwk+Cde+lhb8F6zr4watj dD0HUMM6+g2yb2Annq3wdOZNyjVuNmubAV5v1v8N+ZvMvdtFv4dWVfZhlOZE wqlC9P6Wht/JOR+uAm+M0czBzPUBfTdcTe5plOZEwdtj1D9U/taEvgYOk70B 74ej4Z7UeQxeTJ1f0Q/CNdEzMe8RU8MB+n9pI8j5hecMXA89fYjqkpkNPg5X gvfGaP4wefZjNGcUfDRGPbXxfCfnsOGfcs6H68I5ydln1uEH+km4DlyFOnvJ 80adJ2LUP5rM33jOwvVlb/D+vwA3kncU/WW577LH0C/BTdCTxXLuovWEz8Wo fxyeseTfidGz918yz8MN8SRm7FW4uTyneG7AG/HkDtF8Wefr9DeNJz/6bbgB 7Beiei04D3zNrHlSMu/BLeHH9E9prWXv0d+XZ5V6UuB5ArdBL8rYR3AzOB96 KurvI8819TxE3yVnQvTncDv0AiGaI/UXD9H8VnBJ+IXJfBCjmVJDGsa+gjvI Mxuj69BC3j8x6m8r72TmSh2rf8e7EqPXMok6X9K/pk2BM5LzHo6V/QD/hJ2y b+k/yHsEz/cY1WfCmaJVt8pawb/lHSXPBf1b2lQ8mdE/wzb0LzH6fZ+Bngv9 E+xFzwr/gB2y/2PUPx1PbvSvcBx62mitsyM8n2v5E6Pn8AD0JGY/hLE+8WAL 7IOeCO4K/8UbH3bLnkf/L0Y9+aNV7wv7wknhbvIei9F8ufYEsZrTWfZSrHp6 wFWZKyHsgWuF6J6Ua88QrdceAxeGk6MPhJdX5RzSkeuUfxcrVu9Fb/RqeErD s+W7Rk46uJfUSZ+RNkj2D54M8GDZG/SFaJPkvseqvx/cgrG54KFwQfxp4f5w CTgzPEL2D5wNHgk3DNF8GZuVPjttlvz9BE9OeDR6qWjVR8HV8WeBu8CvWf88 cBbYnz6QNlfuF31eMzaMsQHwBLgGY/3MvTjB2Lox+rspFI8v+nj0CDifua6W IZozDA6P1vyJcBv0/KZ+n1jNHCf7isyCsA+cI1bXYTb1BMWqf578tmVsGVNP pli9luFwefKLwFPgSnAIPB3uiL+kyQ+mL0ZbSE4FPEXhqeiVo1WfAUfD4bIO ct9j1bNA/hYaqzmL4FKxWsMSuAr+EvBM/FbmCoUnw2VjlWU/xEcvJ/cbbh+i 932MrC19BG0O7ESvZmquSWYFmReuSF+Ztoy5aqNXkhrQT8fo+3YMemSs+pdK PbGaswKugb88PB9/PbiqeOCUzBUNl4JtIZov6xZFX914qkdrbfNgT4jqs+Qd Uol3WFv93wJtgKcm+nLZG4H4PeyN1Owt/A3M2KZ46sOr4R7waPgUXJu+Lm0l dbZAbwSvQ28cbXSpOVZzVsnf8NFbwOvRm9O3FD96E/pmZmxX5m1srrdVtHo2 wG3hNvBmeAieWHit7D04Bq4Bj4LbGU9/uJOsoYylby85zNWNnDHwCbmP0apv hXuFaA1LZN5YnWs9/g6xmrNJ9m2szrsDTyfGdjQcyFh7rH5z26C3Fj88DN1m rrdhrF7XWvm7OnpTud+y32J17C64CHpnuCk8Bvaa2tyxhhnrJb8vfFjuKdwH PgT3jlV9B54e9L1o2+EJ5HSBd0pOtOr/yrywB94DO+Du8H44Llb9otvRu8H7 ZG1jdd12kzlE3ge0o+jTyB9hxvbCPwg+IznwAPgI3C9Weaf88xF0p+Sgj2Ss y6xV2RDNlO/mQPrBsib4O0cry1zD5X1DOw4vxN8fPin50apfgLvAQ+Fjcl2x mr9Ffu+gj4NPo2+WtaQdkHN4tPJL9LH04+Xa0QegT4EvoS9mrklm7ET01fBj uA88ET4Hz5T3BG2v/H0pWnOktqWMnQqfhVfAM+CL8IRYzRR9KP5Z8HXZM9Ga c0PWNlb9V+HJsZojY1eTMw++IjXjXwbfh9egLzD+kehL4NvwfPqFtFtwdh+e FSvvi2SsS4jqd9E3wMvhm/CcWM2XGhbFas4+rmtprHokcwz5i+F78Gh4pckZ Ds81OePhFfBD2AX3hA/K8wtPh6/BW5l3jcmZhL4efiL1yL6gPYOnom+En8Or YtX/CF4bq/791LaTnN1G3wWvM/doGmO3wC/gGfB2+JVcV4jmy3tsmzw3Uhs5 s/Dsgt+g7whRXer/J1av8QHcE30vvBj+V55F2eeM3SPrZMYewXMIfivrSeZB w8dlX8j7B/9s9APwf7Kf4aPwJ3h3iObIOsyL1vz38F70Y2ZN9sdq5mFyFuM5 AX9B3xmr63BIfr/Hqv8Y/L4M73nue1Xue9dYfd63oQ8m87SsKWPP0p+nfYVH hChvhJ/gS87YtIw9jH7O1HwMvmRqOyXPvalhKfVchL/By+Eb8A9ZQ/gW/BOe wtjr8rzAF2I15yTzXItV/3f0m7LXDD+S9aDFz846hSi/kz0v5384Hvp9uVe0 37JP0B/E6v9HTFKr1p+Y+u/Eql88l+VZMXVeJPMu/Au+Cj82mSfgZ/BHqTNE 86X+p7IfTT1TQ7ROeU9eCVFd/j9rxsFX4O2yPiE612dZE+7FS1mTpOwp+L3U A7+WdaUFUedP9HdwXfibeOW+4NlcRjmpeOQ3JBwozzL6dzgZ/DZWM3/h/yzj YvXaz+fVfJn3g+w1Wgr0VYz9KGuFfimv6lLPTWpOybol4hrvoie2av51+bs8 nADezth4cEqpR8bJ+jD2ivy7ArIO8Fn5dyZkneEXscriic+4hNLIv85cCSQT /hOrmanI3EN+Mjgd7Oej+bXgRFatQcbuKqM5adBXwG/MtT9j3lTo6dEfoJeC S8HF6EvQfODbeNJIFvwIzgCnhlPLfpc9Q/4b+ee1cFb0h3lVl9rOkZkD9odT WHUu8aezak4SOCN9ZvnPeA7hT29yTsHZ4LxwFquy1PNJ/nk8nAc+iicTnAPO Tp/Tqvf9KnoAXBD+jT8PnA/OS+9LKyDXi+5j7ks1+mhaFTiXVf11ZD2tmiP1 35PfDPKcwI9hf7OeL+TsDmeEL5fR/PxwoMwp9XCNZ8tobX7of/OqLjXsD9F3 nbx73+bVdciOnt+q65mMsYXoi9BSyPNLTnG4JJ6P+EPg3FIbOYWlNjwJ2QPB Mga9DH05uUb022U0JwQ9mY/e3+JyX+DSJrOoVTNlrq/kl5X1Qk/gozmF4ZJW 9UtmPPQCZp0Tw+FwsNwvuApcAU4OR8p+krWihkpwBBxBX54WCv8bou/G16zD szKqh6H/B1eFK8GhVs1PxbwVrJqTGq5sVU9FPCmZq6LZw2/L6D2V7/hjOAwu C2fDE2UyN5TRZz8RXN2q7/9q8K6yvKfl/ibnEvHXgWugx/flvA4XQq9lVb0m el36+lZ9V5wns7bsG7hEOdVH4P+F3hCuh56EzCbmXsTS26TBjembGk8aPM1N zb/LqF5f9g/cAm4IZ8TTyqxnOdgCd4QLwB2MJz/cGm4At7Qqp2HdnrDmbeG0 cCKutx3cDI+Da2wET6PmNlbV0+FpZtV5pYb2Mo/RM/sol0fPCseYe9HJqpwe Tw50q1WfrwZWzS8q/rJ67Q74OfU44Az4K+J3G70Q3BluDLvoPbSMkslYJ+xG z+Wjuty7QPTecC/YblWP+L1WzckEd6HvRssM52ZsHByF34+xPeHucHercg+4 Jp4eMga2+nEdDs6bKZgDrQ8ti+xDPENhF568cH+4OjyAfpBVv1MB6AOt+m55 y/WOgrMztq9V/dHog62akxW9MPX0gweil4GHwGPgquQMl7WAQ8pq/lB4mOw1 WjbG1vLR2uRaWvmoPhwOxT8aHg+3Rh8rY+BN9Ftofowtj2cyPAU9Cs84OA4e Y1XOgac6+gS4C3o4/onwRMmEV8Eb4fFW1SfIvcA/C54KT5Jss7axPsqT4AqM nW48U63KUkNl9JnwDLgu/mnm/s6wamZO6mmIZxn8j9wjPIvhyfBs+rm0XHiq 4ZkPz0bviGeBXA88z6qcG097H/XLOneGF8l4uDE8Bx4g+xBeaupZaNW58jB2 iVVryAsPwvMPvBpPc+ZdAa+VvQF3Neu23Kr6GnikVe+LrO16WT+aL1wE/1rZ Q3i+8Oyvs+q7aI1VeTPcjLk2wIPhlTInzYexo300Zwv6d/bbTtgfvaWP3uth 6DbyN8N75R7B2+B9cCd4O7wD3mpVHil7zEfz18NOPLvgA7Ab/Qg8E/ai/wsf htuh75Vrg3dblQOooRP6frMPvfABc19cjN0DH4T3WVWXenZYdS4Ze5D+EC0Q dvooT5f9AB81Yw9blYPw/JZ/XgDngx/g+Qyn5P1WzUffA178x+hP0PLjOUN/ jlYQ7l1W+Sye9/iT2dhvjP1L5ln0Anj6o1+Ue4nnJP1pk9OZsRekDvRB8HX4 CpygGGdHuDCe+PA1uBB83qo5Mu9Vq/rFc4P+Fq0I/JD+MS0Y/sdH+QKZI+C7 Vn3u7tE/oBXFM4x578M30JPYtP7Sch6wql8yL0ldZh+uIOeO1CFrDj+CH8IX 4afwL3iJj+afgZ/QP6OFkDO4rNZ5Vfahj+qX4D7ol2VN4cU+Otdp+Cr8Ao7H em7B8w5OBr+if0MrJnXieQsnQf9K/52WDt5dVjktvA/+CWeAH+P/ZtVv939W zUwOf7LqNz01vKGs5ieC39N/pKWC7zP2A5wC3l5Wddknp+AUrFte+CicCM4B v8GfGM4Kv4D/4s8I/5B1ohWXvYr/D5wZfR38Ek4AP7cqyzXGIyMBrSR8GE98 OBue31bNLCG/s9CToudGf+Kj+XLtCW1aQyk8r300Jwv6evyv8SSEP6CnRM8F Z2O/lYQr4Q+hL06rCAfjTw0P4b6Mw58e3g6nok9DO8rYdJwNCsCh8Lcyqstv jXRkZhednOQ2nasMnNamOYXxZ6DPRCsr+5m50sFF0BORmRUuCme2KZfDM5ka ssB7yL+DPyNcTOqXtaeF4ZmFxx8+hCcpObmNJw+9Dy0CTwZqywuHw/3wn7Lq NyKnTf2S42vTHPFPx5PLpu+0p8zrZ673FRwIl5f1L6v55eAA+iBaJGMfldXa yqDP91H9ODk9yuq75RQ80UfXYRecz6brWZ6xBWWdpB7GrsZTzKbviveMDYar oi9FL2TTd1EWrqsoXIGxpWVdaZXhGuU0Z76sp6/eX6n5Mzml4OpwEZtmyn3/ gl4GroF+w0dzZM+UsKlfMhei54dPMu93/GFwbTwP0Svb9NnJxVwRcDXZ/3gq wnXgcFkbqZ+c2T76bpTvwh0f1ZPi+Yu/CtwQLmfTfPGXt2lOTfRKNvXUh+8x toJNn+tHcp636XOdgzUJFR9jC1BPNZN5g98yXzjnJ2Teqjb1V8PzlLHVbfo+ Scm61Ybbyr1Gr2vTZ7amTfU2cB36esbzHE8tm75zUpVTvR38H3oDmz6/Zaih MdweHko/nDYAbkTfROqgho/4m9n0uX7no7q8W9KR2RzuJPcOvaVN3z9Z0TvB Djge+e3hgnB69FawBW5hU5axmdDbwFY4DH9b40mN3tDU1tqmejT1NLXpvB3R 29F3kD2D7uOrLPvED7bAteCONuUaeILQY2WN0OvbNF/WJDtzWWEXHGNTdsKF 8LvgxnAePD3gzrCT3i0N7mZTPQ7OWU51j+xPxvaCW8M2WQ+TnwtPHOyFO9N3 NVwEvxduCheDu8MtYY9N/ZIZjN5Frh9uBo+EB8N5yewNd4GD4MFwbzgA7gv3 hAPhgXAvuA99P1k7OD85drgBXMtX9e5wPvxD4D5wT5vmy7X3t2lOTTlD2tQj XIexA8xchcvpXhoI5yin1y5r1RDPMJlbrgV9lIyHR9iUh4oHfTP8DzyOfgKt Nvl+PDtj5J7C5fCMhcfhGW1TFs9NntPxNn1XL5MMuXfobXw1ZyR6ecbOgKfI foMnyxyyVuRPguvgD0efCk9ET8LYaXAIPMWmXBfPRJuOFU6BZyZcEk9BcpbA jeT7gr7Qpu/hGHiOyZxlU66PJz/+ebL+cv5n3vnwbDyp8M+GS8Nzbao3lPe/ TeeqBy+gX2R0m6+yXFc0OUvhufBim7KsQ3X05fA89NzldO/Jvs3kq2sVCTeC j8P9xQNvgKPgFfSraE3kty36GrgKehd4rclcbVNuiiebr/oroXeF19v0nb+F fhuthXzTufZNsp/hdTadqxm80aZ7QDx5GbvVpt+FHr46dhFcm/pXGi5Gzg64 Jf4D9P/S2sB76ffTWsNN8O+Wa8AfQc4eOBbeZVNuJb878OyD16Nvp99p9Hq+ miPPVONyqq+EB/rqXJLZAD4I94VLUc9huK3sPfxH4E3oh2zK7dCj6WtIPvog xh6DV8O35btgZ9/x+/0E2imbvpPbk3MW3gq3wHPGps9LDPp5eBc8ylf9m+HT NvVvgceiX5B1h4fBl801TmNsEuZ6IXsb/Sr6XtiOfg3eB1+0qb8DNV+xqb4f 3YnnJnwAbsfYR/BoeBF8X+qGr9vUcxCejn7b+N2MvSP3Cb5lUz4En7Npne2Z qySeezZ9Zqcy9oappy/6Q/g8fNemc3WU3002raET3AH/E3gsniXwU/gM3BK+ BA+DH9tUt8jzzv16DsfAy/G8Nvkf6T/T7OiReP6DrbAHz1d4Fp6XNvXHoq9H /wbfQLfAr2z6bnlD/5ZmwzOS+j/Bt9GHllP9Ouzy1blmyD1Cf29yrOgf4Mlw bzgp92sp/MWmcznInIQ/PvoT9PHwT/SH8C/6PzQXns6M/W3Td8JgPC/gq/B3 m/rF89emOR64Etf7g//shKvA8dDdcu5lbEL4KWM3+Wq+XEsCtERm7DOb5sua dPdVfSGexHat34veFz05vBw9mL4YrS/6APS0dn2+9sApzFzJ7Mpx8uxQTyq4 MzyHelLDb/Hcw58PTs6zk9Kuehc8Q9GzwOvwpKFPZ/T9vsqy/+eTkxH+AKe3 K3eTdyx6Zvgjeg3mzQB3Rc9k10zxrMDjB//Cc4LMvMaflT47rTuepXhywt/Q J+DJBe+Ec9iVe8je8FW/vCsmwXng3fBROBv8Dq5LDb5wL/y57TpXTzn/2LWG 3vBJ/AHwJ/yT4UB4j+TY9N0u7x9/u+rib0dtJ827ojBaUbs+j7vRC8JpWc9H 5BSSNYUL2JXlud6Dp4isKXoQfX5aHzKf+GqOjD2EpzScFX7qq/da/PvRQ2St 4TnoJeAjZJ6FS5q1Km5X7kfmNF/Nl/fPBbgM/BN+D1eCc5LzDi4P54Avw6Hw Hzxl7coDyLmKHg7Hw3OUGiKM/xV6OTgzHGZXPRtcyq5z9Zf3AH0F2kD4uq9y Ajw34cryDMAV7cqD8HxErwrnRq9i13f7YPS76NXhZOgDQrkG+BJcg74WbSie +77KKdA3ytkJvsW1fIVrwr7oD+G6cCo4yq6ZQxj7Hb0O7I/+mGtsDJeFP8FN 4Wj4hfwt3ax/bbvmDGNsQ7v6R8h3k74ZbSTclr69XX9rL/RTPsnY3HBLOApu Rd+GNhr/N+ZqLdeDPsSu9U9Hb25X/yj5ttI3oA2HP+NvIdeAP4DMdnAduD17 viM8Rva5n+bXQO9A34k2Fj2Xn9ZZDT1RqOrN4J9cY33Z67IOvjpXGngxHAOf lvcPY11wc3QrvZ02nsxOzOs03JW+O20SvNJX+ZK8n/H0hCejp2bebrJG5Djs mjkBPY6+ixmbPFTzW+Nx03uNJwW6R9YOfZmv6ufku0D+CHgGHgc8CJ4GR1Dz YDgWfxm4r5m3B30v2hQ5U5HTx67flwJ4YuGGeCx2ZVm3fvJMmEw7+f3hqXBv u2ZKTjZqGwo7GZshVPNj4IF2rUHuadZQzXGgdyTHBo+TsyL6SNgtzxG8Ue47 vJZ+PW0pnpzoo2EPug88Hu4Kj5J7Tpspe5L6l8P90Lf6qn6P6+rMXNPhuXiG 23Uu8Y+1a85seIKsvWEP/nHwLDiQuabKepE52a4sOXF4psBz4N3MNdGu39Zp ch9o89D/lbM9/Bp9n5zV4efwHPnvaQtkz5AzF54v97ecnvfkd/pMu/olZ75d c8QfRD2z4N7UUwBeYK63OzmLxYcnf6jm90VfRL+Etgi9pp/W1g29aKjqg+FU obr32sFV/XQdZJ2X2nU9Zew/9CslCz7FtayDP1PnGTnnw1/hntSwAl6MpxiZ q+Fh5Gym3ypZ6CGhmjMU/aKv3l/5Jj6HN8EZ0FfZNVPmeom+Bc6E3tJPcyRz g139y/Acx7PMrt/lcPJ3wBNlz8MHZH/AaRi7y67vt0j0fXb951876XfTVpCT F89Ru75b2vqpLvswHXwQDoW32TVf/HvsmrNKzgl29QgPYB32ynrJuYi5Dst+ Y2w/9O3wP+h5yDxk13dsDHpnqVn2jF39M+ReMPaY7EO4OnxS9gN8iv4MbS3+ wYw9LesFx3dw7qLtlTWxq1/0eoy9Ks8RYwfhPwGvlj1MDedkD6PXxnNR7jVc I1Tz58MX6C/R1smzj/+KPAPosX6qT4L94PN2fYf3g6/LNcJ35PmjbWTsNfob tPXwGDx3ZU/g8cK3Za/DY5k3MfXfh0eh30LfDHdCfyDrDjv9NGc63DFU87fD FvghvBO+adfMDfI+RH8M70e/bNd1WALft6tfaitHZhLm7Yh+1q7XImv7iP6J 7DN4NOv2Et4CF8L/CW6M/wX9K7kW9A921bfLOzNU9Qt4hsBf4GvwU/rncl14 FpPzH3wa/a1dv+8yNj/6G7gB+kDGfoQvw6/t6pe5xlLPO3gbPMVP69yLJwT+ CreAS8N/7fpcl4C/2/WbMorM3/Ad+Bv9D1k3cnqiPzP1rPJTXeZdC8dzaP2f 7Zq/A/9Pu+bshv/Y1SM8kdp+8Z93yb0O1T15j7H5/PTa68OT8SRA34OnUTTf 8Fj993gTOfReyB5ugT/Yoe+KSDg5bIVT0Kei7cdTET2lQ78pfvQBtGPoSR3q 3wfPpIbM8Gs8E+Bk8CN4OjWkgQ/Ic0pOeod+g7b5ab7sw3T0GWgHJQd/Jvhf eKef6pIzjcy08At4FpwVfgPnos9DO4I/C3022iG4LmNzO/SbUgvOCXeXteU9 Fs365IXnkZMD/T08l3l94KOMjfLTnDj0Q36aL3Mtwe8Lf4WzOzTzMP4GePwd +i3I6NB1kBryOtQva3UBTwj8E09qh16LXO985g2Cj8v7n/wCxrMGLgLHS8le pS9IO4FnOXo++Aeexn6qD5DayCkFn5HvqUM94i/k0JxTcFGH1iC8EH9h+CS8 icwSsieYq5hDWXIW4ykOn4aP+el9l7UqSV+adhZ9G2PLwykY2wZPOXgknlD6 cFp89PboYQ79Rhyx6/tW3tVlHOqXnAiH5pyHN5NZFk7K2GXUEAmfQ9+OXhFO ib4lVPOTwRXoK5mx1/20tgToHf1UHyfv21j9/5VYJv8+KmOryv7G88LFO4Q2 MgfvP/w1TX4XuIZDvwVpwni/wB3Qq9FH0y4yVw88tR36Pt8bqnp6PNUdmiOe VdTfEL4s+4S+Ee2K7E/6+kbfx9g68gxIPX7qyQiPh5s69J38Qc7hcC70k/jb yr6H15DfHL5KzmQ8reV5x9+MvoW8T9BL+/N8w+3wHwtVPSd8KFRryAo3duhc UltLh+bI2DYOnVfe7c/Jb2XqPMvYjrAffBhuIs8evI56OsDXGVvLodcl67wS vR58Cb29Q8fekLM6tTngMnjekW+Dc8CxDuWbeOKx/t1k7dD/MldXuKHcI4fq t/F46Tsb/kiOE86N50+o6g3gi7AVDoJ/yzlf7gFsd6j/lvz2Yawbzos+2KHr dh+9L31/2j24ODUPhFvhSUptveGWcGH0nnATuLtD+Q7+c8xlgf3Rv5AfA/vA If6a2QLuRd+HdleeU3/lZugD6AfR2sKJmasH3BxOEaZ6Gzg53E/uGdzJofmy tunQh8OdZJ/Qr6O9kd99/spD0IfRj6A9QM+EfyxsRS+HZ7TcJzgYfanxZ4BH yRzwJPoptCeMLeOvOe3Rw+BxsAWOgCfCsfBIh2Y+lN8y5EyWdUcv7685Ntnz DvU/lu+aQ3MewdXwTIe9eA4G8N6EX6ViHcmZCXdFr4VnLtwdnkE/i/aMsePx VHYyL3qUv+pxcAH0BXA/eKpD85/in+3QnOfwPId6TrD/A/DPkfuKfxH3cTF8 Cj0P+jTZf7IH4EXwQDgfc8WZPZYFfQJsh5cydhl8lrFN8Kww/pX0q809+pfn ZRX8Gl7iUP9Lef871P8KXkPOFvgqOcvhf+Dz8Ep4rUP/jnGYnA3wf/hLhWn+ KOZaT7+R9ha9LPpmeCx6mTDVx8ALHXqNL/CEoW+DJ6Dvpt9L+4i+lX477Z2c h5lrD/wB7sB17TKZB+kP0T7Lt4badsK3qW0rvN+h55YNfppzE64YpvnTGGsh 54CZd4dDM9+Tc5K5/oU/SaZD10GuZZ9D/f+vjbFVuO/3GOty6PNeF65C/hF4 JnxM7i3ti/zW8FN+Sg0v4QSMzSR7Bv9x9Dmwm8zTZuxh+qPmuvbhPyV7hrFx eC4af13GXoaXwP/iueDQM9JJh+Z8Zex5h/q/w5for8j9wnOb/i7tl1yvn/In 9PpkXpc9QeYN+lu0n/J9Qb8JL0eP59T6k/Fdu+pQv3jO0J8zc52Xf6cI/gE3 ZuwdeCVjTzPXfVkT5jrqp/nv4Hv0D2i/8Xfx1zrn4e/rr7rMe5bMs/A3PHXC dK7F6JfRH8F/0Fujv5T9h/6E/hntL/pVPC/geNT8Xu4hLSE80l95E/6beD7D idBvU9sHh55bnjs0Mz76f1IvLQE8wF/z5bpeybNlPG2o4bXJvOSn+m+u8Q2c yKnfRDueP+j74MdyzofTwGPI/A5vhT/JOtESk3kfzzeHnoVaMvYxvB5+6FCW a/wh95OWVOrnWn5K/fBXh2ZKjoux8anhIGNjwzR/N/zboTXIWFuY5uxFP8+8 Tx16JpxKbYmdWnM4XNSp7+qC9IVpV+D7zJsUTkHODDwpzVxJZL/QUsq6ke8P X0LvEqb6MbgnnBE+DSd06lzJ8Sd3ao6MTUWfhpYK/kZtKZx6TujB2PTwKTit UzkNnkfUkw5OLfcdf2qnnk8yyPNnPH0Zmxs+j94Hzgqfg7PR56ClwzOfa8kO H0cvT1+RdhfO7FS/eHI6NeeM7D3mzQKnRQ9mbC6nfluXw3nNXEX8Nb8pnIfe R+rGX8Bfa5NzSDF/1eUMUDlM33Uz4F9+ug5y3vB16npegANEM2sbythCTv1G D2JsAXOPSqEHOvW7XxbO79TzZwh9cdo1eGCY5lyGB4fp/b0KD4GDjSefUzPF E0lOMad+34eGac51uUan+mVsCTx+Tj1LDMNTCr4B10CPcOp3thJcxqnf7lF4 wuA7cGn6ssa/w0/fjQ/Zk8PDVL+JPhqONPelhFPzpYZyTs25LfvWqR7JjGau UKd+W8eE6T2V93kF9JJO/Z7WgSs49bt8w0+f/YRSp1Pf/xm4XxGcGd7CsZwZ FuOPMnt4F1wdfgxXdaqeEX80fQ3aM/T6eKrBfeDJYao/hQ+i14JfwT/z8a6H A9NxXpZ7RctOTh36ek49Y7xkvzWQPY0+M1z119SzgMyG8Ed5TuHGcH/Zh3Ab +Ae8BG4Jf4WPcS1N4PeMbeRUzkzma/KbwVngxfibw1/wz4Rry1xwU6fqWfHU d+q8MrYFfSujN/NXHoy/FdwWHg63dipnk/cnent4JHpNp+b3hc/467VLne+o p5M8n/jbo8c69VyxjnoccALqj5H9KM87njXoFjge+nl/1eXa7XAXeCrc0ake 8ducmpMbdtK7DX9gXjucC7bKGQyezFiPUzkP+ibm8sJJmKuyQ38Pym/JzrLH aXnx7JJzNZwGzw45e8Op4J70vWm+8q4mv5dTn/d9eAbLfsPTzal+8fRxao4/ /IXaust7RN6NcF/YD97N2AFwWsbe9td8qa0//UAz9oa/1pYQ3euv+mzm7QYP gRfIOxYeBi+CV9OvpZWQGtDHOPXM8AQebuYa6lQOxPOLekbCQfBhOefLvcZz CV4C54NHOFXPh6c/OZPhFfJc0481+nN/ZVmHo3LulT0Aj3MqF8BzDH2S3Ef0 P8w7Hs6PPtGpmeL5RM58uV+yH+TsDQfAU+in0QriGYpnBryOGt7DM03mdKdy ITyD/dW/Bk+C4qwZXBj9JJlTTf4IPPOceiaZ5dS5iuCZ69QahBMxdiFcFL4o 53xZK8auh13mvixwqh6MZ5BT70sAvIJ+Fa2YnMfwL5f68Y9n3n/gHcy7zKkc IuuAvhLehb6YfqnJ/O2vOXIvUlDPJriknCXC9F6HoCdDXwMXR5+Cf71Tzwnx eG9sMPOucyrL3hjtr/lb8NyV3wIyFk8acvbBZWUd8OyGj+KZDm+DD8BbnMql 8Dxk7A64NGNn49kJH8ZzD32rzIW+3al6afwbnTqXjN1Fv4dWRs4SAcrif8HY /XAEvNepXA7PIvIPOvUsEYn/P9iKp5O/vgfGox+g/9f4j9Ifp4XB2/2VH8jZ D47vYl3hN8x1DL0iOe/gU3AV+BD9ETM2A2tyEg6XswqeC3BVPF/gS3ANqZPM 8079dpxwak4E/nNO9VfCc5H+Mi0S/Rb9HVoUer4A5fpwVviaqec6/U1aBfw/ mOsGXAf9r1Prj0K/4lR/efg0/Vkz7wHquQq/pJ6/jL0NN2RsAfLvGc4eoPmV 4bv092VexuYK0DqroccLV70R/JKcM1I/vNtf53pCfnw8D+HG6MnhF3Br+DH9 U1oruBiZz+GWss70H2RN5J3gr/yenOys8yepBz0bOe9hJ/5nTs1sA79x6jfd BicN13zJfEn/mtYeLsVcr+C2cKpw1dvBV5grIev2l7l80H+jd0U/h/4H/i7n B8Z+M/N+pP8s+0HWFs9Xp35bEzD2EdwEzwOnsqzbd/qfsm5y5uRafsg+kfe/ UzMlx5+x8aihB2Nzh2t+HPzLqTXI2LzhmtMFPYR6nsAt4BpwIpfW/I56irj0 HVuAvhCtiYxl3iRwdbg2/hRmrsT0SWk10J/JeQ9OL2PDVe8HB8MZ4CFwApfO FY0/mUtzZGxK+tS0WvB1cpK79Jt+C04HJ4bTuJTFU5jMtPBAdF9qSwXXRE9P n5FWG25OnbnMvE3gLMaflT47rR6eQMZmg+vC6eDDrEkonMml/jpwDpfmiP8B 9WSGU8o+hHO69Juej7F54Pp4SoVr/ii5F/R5aQ3Q7/lrbcnRy4SrPkb2UoC+ W+RdVyhc12EA7OPS9ZSx/vSBtIZwIeYqCDeGOzA2PzwWfxhjA+AJsp+ZKx+c VdafvhitGf5X/pqTGb1iuN7fabCFnKJmbJBLMxvhL8JcIXBTuHK45szAU9il ftkbZdF9TQ0f5SwN55Znk7HhcEs8UXhKw3PQ3cwVCs+UZ4q+DK25nDnD9N1Y Af2rv+q+cG3GRsCL4OIuzZdrKevSnBZwmEs9reR5YWw52B9/HHNVMPNWIaeE mfcXnvIu/ea2Z963Dv0NHulSv+SUoP5KcGv4r5zb4QL4G5ITDf8jmS7V28g1 yvNBawvXw1MVXoonYYDqReR5gWvCwbIHyK8Dt8ffT+457Yhcr+xHWgd5RvDX d+k3tHm46mvhfugNTA3lyGkEd5RvCnprOBy9Lf4W8Ga4JdwYXi/1u5Q74W+F 3hTegJ6Ssc3gUnBvuJapv4lLdfHXc+m8Ultzubc0izw7Acqh+IfDbUxmK5dy jJzbmasdvFXeOS7Nb4e+PpL/Dk6YlppdyvItyEJOjEv3Q17YK+sre5U+lmZl rNuluh0eFaC6XK+LuTrDB+EOUrvxB+Cxu/R756B3mbE50G0u/UbbGOuB98JW l/ql5vKssxO24S+Jf5BLvx2F4C4u/U7ZGdsH3gcXQe8mzw7sRe8FH4a70nen OeW3JJkd5XrkfBWguswbDPeV50L2sEvzHXh6uDTHDfd2qUe4Mjk95XrgzuG6 l44yNiZcr32XPDtk9nfpd7ML+mD4GDzQpSz+3XjWwE/kPtKPpHnILIM+1KXf we6MHQafhIe4lE/AvdBHwGfg+fQLaffhhQGaI/758ET4ODwDHmPuUVl4tOwr 2dvkjIMvwLPQx8OH4LEu5Ti51y4d65XfDvgnwRfxbMQ/F74Fr4dnwTfgwXim wlfhyS7lzoxdi2c6fA19GJ4Zxr8EfYq5lmku1W/CE1w61zl4Jv1s2m14RLiy zDsKngffgee4lO/Cm8lcYHRruO69PfCYcF2re/Aq+CD8B54ErzT3YhH9EtpD eDs5y+AHUg+e5fAjeKlL+TE8Llz94tmJf4XxrJV3AK0r1z4Vz2r4Ofo/Lp3r qdTg0j3QBU85xq6Tdwv6vwE6Vv7OsBVebGrOQM5GecZlLvrdtB6M3Ua/Q/Y6 PAfPFvgtnqO8S7fC73jfbnYp/yfXiGc7/BneQL+J1o2xFQM0x4HeOFD1Aal5 VgN0LrdcO2N3wd/gauh7ZW/Ap+B9JnOPS7mnZNJXdul7uy7PzgF5ruB/8Jd3 6977V55XWm/5ewL5x+B4zFsf/1G4j+wf9BNwfPSzAeqXGo641N8XTy30k7IO 6PXgM5IJX2DsXziQsQ3Qz4kf/Rp83mSecqm/HzlnXar3l7Vl7CU4BZ5m+G/L M8zYHeg34FToF1zqGYi/MZ4rLj1X3ISvwonwXHYpi+e4S+uUmptyjdfhQTIW vihj4Z3k34JTM/aaS+cajH7TZWqA9+C5C6fD00p+F8DD5Z6inzbz3nGpPgR/ GzwP4JGy5niewFnwvJZ94dJ/nt4ezzOXnpeO43kH58LzyKX+4XiseN7Dk+V7 R82P4WHoT2WPG88Rxr6BszP2aYDqUmenAJ1rPGNbM/YlPEL+dhGu/0w/Gx4v nnjsjdl43rp0rlF4PqD/MPW8hT+Z/M/0X2ljpX4yv0j98CM8D80afnCpfzT6 N5fmiN+O5yM8Vb5l8HeXnrs6kvMLHif7IVzz/cj5Sf9b6ke/79L8ofD5cNUD 8Pxxaf3iuYKeAC6Anp++IG0ueiz5yeBJcFfmTQjPZ974buUJ6N3RE8ML0X/C Sdy6hz2M9YFn4UnkVn0ifEfO6nAxPEnpk9Mmy2/VcOVg9L/kpDL1pHAri8dG Zhp4CtwLT0p4CfOmdmvmVPndQU5OOIyxyXg/ZIOLw+noMxjPAzyZ4FLoA8nJ DK8iJ6NbeRqevgHqXy7fCzgrvAa+y9j0JtNFPTngGfizuHWu6XB2t9YwEx7G 2NxuPWulpJ48Zt79Ln23y/skl1t18VfHf8ilv8sC0fLR5qC/ZF5/OJKxI/EE wJvw+LmVZ+N5gycIrognL72v0ccFaM52+d7BwW791mQK1HstmRPQC8A75TzA dRWG5zH2I5lF4Cg8hdzK89FfhGt+BHpWckLMvEvJCYPPkvMdT1m4tux/OW/D 1eFibuWF8rsVvRRcA306Y0vDBxjbjRqKwwvkfOVWXfxF3TqX1FCGvhxtEbw4 QPk0Y32oJ9xkhrqVF+OZjSfSreeuCLe+25egx4/gbA83xj+FsS/hvXBl+qq0 ZfKbK1BZriUv/v5wF3gNmVXcepZIiB4NN0Wv4NZMGduXa4mSvQQnxlMHbo4n mMx6hjeQU9ut54pqbs35R74XbvU3w1OXvj5tBXoz+ha01vKMRCi3kT0PN4Jb wY2lFsPb5G/7bj2D9XVr/fK/I9rArf4WcHX6mmbeLfgbuvWssgNu7tbzxi64 lVvPFckjNF9qaCm9qWFTgNYpZ6GUEaq3RQ/kemvAdeF1ATrXdTyl0NsaTzr8 MXAnuD19R9pq6hnEGloMu+g9NDuezBHKNrg8OXGGI2A3HCvvc7dmrpF3Kb2T ZkVPG6H5HeFYGWc8pRlrhduh7wtQXc5FvvgHwt3Qq+HpDXvh3Oh94Dg4O9wN dsk3gr6zzAdXxN8VdsB7yGzn1vNVG7fySnmX0veUa5O9h7+Hyeni1kw3HIXe z8yVNULzJbOXW2voDOeK0BypbSDr1gFeJe8Wxg4y+/YeNayCk8PLZU/Jsy+/ iRg7ROpAf4x/BJwmDe9A+qG0dXg6oi+Ax+GpFah6d3gEc02AN+IZ4Na51so7 0K0577jekfSjaRtkDzN2ODyYsc3hcfAQeIxbWTzHqXMs/EHO5OSPgtejj6ef SNsEt2PsLMll7Bk5q8Nf8U+ln07bLGdXrmuaqbluuJ735Nsxya1+yZnh1pwt sgfwTzaZl8icCf+W8zk1zIG34rkQoPk/0WfTz6VtQy8VobWNkj0ZofoUOGOE 7j3Zk8UjdB2Gw/Pcup4ydiH9YtoOuCqef6QmPDfknA8nhMdRwyJ4O55KeJbK dcq7SO4PbY+caSM0Zxr6nQC9v0lhJ2u12viXuDVT5ppE5lp4N1wzQnMW4Fnp Vv8u9Kvy70e59dzrIWejqa0+/p2SJe9PcjbDe/E/wb8dTivvBFlX2j5ZZzz7 4YNw7QjVF+F5gX8XnBFe79Z8uZatbs2RsTvc6tkP12HsNlkv/D2pZ6/hh/LP I9x67n0lf/OHM8PheBzyLoB3u9V/QM635ByQ60Tvg+eQuZbD9Edph/HMouYj 8CH4B/0v2hX4oFv9/8JDGXtO7gFj/5O/47n1rNiC/ONGbw2fkmuTPR+h+Wvh k/SnaUfI+crYs7CvfDcDVM8Lv4dPwDllz1DPBfiY3Bf667QTcsajv0g7Lmct 8q/BxXh+R1DbFTPvGsb+ga/Ktcjf4d16JlyIfhM+Kc94hOZsR/8VoPlBsAX9 lrwr5Llwa6bMFYN+R+6NPINuXYej6Dfc6j8F98PzF76A55hbr0XW9jb9XeNJ RJ2P4KJ44vC/kTWRe0r/mHYGzyu36hfgiYGqy7yd8b+VeeX9Rv9A1hSPB/2Z 3Cf05279vp9DX8r1PoXPwsvh1/B52bdu9YsnKfkv3Hpe/ROgdeaXby76O7gk vIqx3+DL+Lsx1we5NvS5eL6Yet7Tf5R7I+dYPPfdesZIE6h6Wdl76N9lXtk/ bs2Xa/zk1pxLsjfc6pG9l46xn+FQ/AsCdU/KvAkC9doLyzsH/unWc9o/xfh+ OMjMzrvMrffiGjm78OT3sI54ssAJ4ApwQvrEtOvy/aW2RPAV9Jz0uWn34Hge 9UvOasamMZ7++OPDF+V7hJ4UribnHNYqBXwTf45Aza+Cnpw+Je0Wel701B49 K46IMDq8Aj2ZydxETjr4Nv7M9Flpd+G09Olpd+Qbwdgs8EP8fozNBNeCezO2 Ite+FM9oPBllLHpBPNnhRvCoCJMD5w/U/AbwFjiH8WfwaKbMVQQ9l0fPfqk8 ug5yLdk86r8Hh+EpAFvwJPHotdxA30Y9eeH78p3C4+fRM8kMagiCX8G+9P60 B3imofvAL9B3BKou11gBLurRc1Eej3rEH+DRnEdwPo/WILyDeQNlrLzfyCwM v5F18Ci/hiPJLOTR89LECL3vsk+K0Acb/zz0svB7eA5cHH4Ll6AvZbgKOSU9 eobZ59b3rbwzQzzq/w+9tEdz3sGV8Bfz6NmpKlzGo+eiaDjUo+ecuRGaL/5y 9GG0D/DsCK1NMhdGqP4JbtaWdzGtfG6+N+iR6J/RL/fiXUgrloc9gV4F/Rv6 LtanslwvdTqYt69Hv6fl6SuasbvxVIOfyG+QCNW/SP0ezRF9BXot+Bd6Tfra tGfo0fQ1aE/hZXii4O94DgSq5yW8Gr0e/BfeBjeHU/A+v4unmewh+CrcAI4H b8DTBE4E16dvSHsuf0+QcyPsh74uQvUEcJ1ArUHOe3U8OtcfuJFHc2RsU4/O mxz/esY2hhPC9xnbytRzAq4Lf5Q9iaclnAq9qkevS67xNJ7qZn1aeHTsC/kt id4Jzoj/GdxBnmG4nUf5FZ53cp6XZwn9CGvukn2F7vSo/k7eq/QOox+mBguc Df/JCNXzwMFwe4+eM1/JOR/OjN7Ro/7XjG2LHuvR81sfj67bJ3m30/eQPQaf oIZecr3wMbiL7H+4g/wGgcfKGcmjLLUdwNNG7qkwNbSVdwfzxgRq5kT5ftF3 NflnIpR98fSk721qOIXuhfOiX4pQPR98Fu5u7m9rj+bLup1i3gGyV2WP0f8j 9z0n1xykXB5/f/qBcl/ke03OMLgI+h9qGwLnh6+QM0/2odxHeLDxj5ZrlX0L X4/QnML43XK2h2dyXbfQR8n7An2QRzO/yncffQwcgt45UHPmyjvfo37JHOrR HPE/xD8BLi3XTg0z4N/oPRg7yaNnyGdyzpd3AZ6J9JNpP2UPR3L+8/I8oScJ Ul3mTQ3PhMvA4zyaL/4pHs2R/Oke9fyBLzLvVHmW4d7MOwdeyrzn0cfDP9Cf U8NsOJzMw+h2eRehn4VHyrsFfolnPhwp60/OIngFOYslz9yja/iXwPHhuR71 x4MXeNQvPJyxa+ENsp/JXGju6RD05R49W94gZ6U8s/jfRWh+FTwr6FfJuwL9 I/oaeVbRP0SoXg2e5dFrlGv/gr4eroG+hX6bvH8Yu07mpyWG7zDXVjgpnJu1 3Wwyd9HvkXcF+lj5u72Mp7YJ8A6PnidHB2rOFjlzRmh+Pcb6kLPTzLvRo5lJ yLnHXLvlvQSv9ug6yLVs96hfauvP2Aju+wp51jz6vL/hWv6Svw9uiH6A/l9a SvzTA5UPUENtxv6UZx5PAvbPQbgJXAD9iBm7l36/ua6ZjD0sWYwtjOeU8T+h zjNwWjxz8Jz06Jn2kEdzUqGf8Kg/DXya/iwtHXyF/hotA1wqSLktmfPJuQAf J+ci/WVaejxpqPMS3AHPd4/Wnwf9nEf9knlUxpm5UuI/bzKXknlV5pbfYtR8 A86IZ3Gg5p9Gv05/k5YJPUWk1tmGsZkiVbfCjxh7DE6NJ1mkztUK/R9ybnv0 /L9KzvlSN3yX/j4tC/6s+B/CDvwv6V/TcqD7RCp3Rd/M2P88ejZ7y1yv4Ox4 Hng0U3Ke0b+gZYOzRGq+nbGP6Z/SsqLnQH8Cu+WbGKj6dTLvV+C5h0um59yE 5yvcG88ePN9kvJwn0T/A3dHf0L81db6nnvdwTrgs9+uOuRe3PMqybh/pP9Ny wf7kfDJ77J1HM0Xfx1w/4OdydgrSfKnzi0dryC37PFBzHsizz7z34MzoB9H/ ePTcWJX8fOz/WYz1pw+kFcLzBX882AeuR34ir17jX3nfwL7oLdBzwUPRC0eq PhD+If+ODRyA55dH58oLJ/BqjoxNTJ+U5g+fpZ6EXj1T3YBTePX8kMyrLJ4Q 8pObub7Jv18E+8n+pE8tdcPl8GSBx+G5Q046mQNOT5+RNgq+h57Bq2eVsvSh tJVwGq/6JSeTV3PywUXITAsPwvOLeTPDQejtuPZs8Gj00pGaL5yVPrsZWyJS axuB/jBQdTnz/InQd10DOW9E6joMgXN4dT3zy7uRPi+tAOxkrgB4Op42sB88 Eo5gbB54EmxB94UnyPtH7iGtMGNbBWnOcPQqkXp/Z8LV4PzwbHl/ejWzIP6a 6AXhBfLNDdKcuXCQV/2yNx5xLTll3dG74ikKz4d7w6XhpXB3OAReCNcjs6TR g+mL0ZbAkwP13bhHzpaRqi9GbwCXgZfLvvJqfhHmLe7VnGXopbzq+UfOP8xV woxtFKn3VN7nteEi8CK4L55yJrNikD778g4J8+r7vyj5ddGfw73QmzG2ArwG HoxeyXCkV/W1kkNfmbYeHoinPLwKbhGp+jp4KHpVw+3Qo+EtcHP6lrRSzBtF X522Wc6ZeGrC2+HdEaqnhZ+yVrVkj8JjyawDb4Md+JvC++V5KcH1w8XJjEWv C++WdfAqh6D/R059r557x5PTAN4Bt8JfDd4g98urejH8Nbw6bzDckL4xrQRs j1Teh/+9/NaAc8JNvMriSUE9LeSewVW8mr8RjzdSr/0w/JWxrb16jk2Fvx1c Gv8POfPLOwS9LX17ud/o06i5jbnezpGqH4XTMdYpz7Psea96ZG07eDVHxlro Y2ll4S6M7QgfY+w8Mu2GrV7lcvK+Qrd59bx6JR91deH9l5Y1R3PRwvAMJKc7 fBnPQvxe+CQcR9+FFi5nhlBqhV+mYD/g7wNflzOwV/2S09WrOZHybiTH49Xz cEauq5vsUfRBjO0JX0FPGqT58re7HrJnzdi+kVrbefTkQaqXkPcb3FeuXd6H cH+vnoGXyjNBqy3vPfShXj1zroYHmLn6eZUryPeXegbBFeHRzDUYvivvEPS5 cA1ZE6/qlcRPzhjxy5mTfpjR1wUpyzqMJWckfB8e7lWugmcc+mj4AXp28kfI 84Y+yquZ4tlLzgz4GZ4Z+KfCrySTfrzsOTy58Ez06nl1OzzJZE7wKotncqT6 n6LnZq4pcBR6TngcXBXOA0+Ho8Xv1bmEp3m1hupyxiNnFvyanLzMNVt0eR+i x5i9MdNrdPy9vXpfysOL6JeYezEH/wL4rXyXyVkoupzrvMo18fhRz2J5PsVP P8/oCyM15xP+QDyr5flHPxKk91oy88PLvPoNCsCzAq6DZxljV8Lf5TzmVZax syM1/z/0U4xdA3+Wbw1jt8MN8azEswX+jV4Iz3p5X8Brvcr18OTDvxGuD6/A vwn+hWc5vA7+AW/wqt4AzyqvziVjN9NvNXpwkHJzOZsxdgecgGdzm1e5EZ6S eHZ59fx5Es8zOA+ev4H6HiiAvpN+t/Hvpz9IawpviFROhL8DOT/gsfI9ov4D cBM8ZdAPw+3l7Ee/z+ibGXsITsrYMDwnYYt8+xh7WmrGsw3PCTgFnn+9miPz Hveqvxl8iv4MrQV8mf4qrRVcOUjZReZ9+LzJuUB/yXiKMddFuCX8zav1W+Ws 5VW/ZB6hP2bmqkDOOa+egfdR2xU4A5kH4etwZnhvpOanh6/R36C1ZuzuSK0z LXpUkOpx5GxBPwonQ98aqXMlh6vjuQV3wfMKfmjy79Dfo7Ujsxb6A6+en1/I M03rKN+gIOV+6I3hN/AA+Az5L2Ffcu57NVNynnr1m94BPhap+TnxPKJ/YvQy rNVjuY/yOytS9dx4WpP/y6vntwg8X+BY+c0lZ37ZP3guwe/hfPBreT5onfCE 4X8n9x1+Ts5ts543vcpt0D/IM0qLgZvj+ejVc+Bbr2aKfpX873BBxn4K0nzZ w5+9WoPc069BmiPXXop578Jt5QyA/tur58MRcFCcfn/96ANolfHfIv8vnmA4 Ht+4hHE61x+0eLCdnNd4csIV0D1BqsvvheT4U8Il0H96dS4b/vhxmuOAE9En oTnhOMYmgOcwthucPE7PmUnjlF14kpKZDC5GZnw4MVwITkGfiubG04exmeP0 HPhEzudwOTzp6DPQvPK7gLHp4VLohViTvfIuQk8dp37xZIzTnDi4Kp40sEc8 jM0El5FMOCscCvcK0nw5u2ahz0brjL9HkNYm58x+QarLufRSkL5b5H3YJUjX YZ58y+J0PSPJzEWfh9aFnGF4/OP0PPmW6/I19ygLNeQ26z8Ej0+cnj/zy72i dZWzQZDmyN+v3kXq/a2C/738voOrwnnjNLOi7CX0AnA0nDOf5ognME79MnYA mTni9PdRYjxF4nSf/GZsKbg+/B0OhmvDfnhKwLXgovQhtO7UtilS341J0H3y qV4DDpAzFVxH7lGc5neTd1ec5vSQd3icenrCP8kpDteV/QmXgxvAI6mzMLxJ fqeQWRauh76B9/xz+XsEvy/KxKm/Fzl/GRsGN5Q9Vp5vL9wYzsPYimZNIuJU l/wK9JVovRmbDU+k/Gf0pOVVbwkXR68Ct4JLwlFwG7i71E4bwdhqkk1rj14a Tw24HZyqvOrCaeCacAe4LJ7ahrOiN5FnCs4MN4Rtsj/hOnAnuFacsgUOZWw9 o2fAUx+OkecIrmpqqxuneqy8k+N03o5wA/pGtD7UHJ5PWcZGwk1hK9w4Trmv vJN5dprD/eTbFKf5bfHkZq4W8nzBzeKU+8s6kNNWnkH0fHhsMhfcRtaANkDe XXGqD4F9y6veDU9+2CHzwi3pW5vMaDI7yvOI3knqpQ1Cn8Te6BCnv4OaUacV HozePk79A+GpeCxx+lumBPm95X6RMwPdCR+U30eM7QoPx98CdsND4QbM29nU 45L3B22YnI0Z2ypOf+sVKa/6IDzBcDe5Ltgep/lyjd44zZGxXeLUI3tmLjlx cfobZ0GQ7qUT8ls+n167m5wQMntIPfASPH3gM3h6xSmPJKc+nmXwMnmupRba GDnv4e8Hn5PfrWT2Nzl945RH4WnH9Q6ER8Mz6GfRpsDlymvOOPzh8Ch4onw3 yRlq1nAV+UPi9PdRB3KGw2Pl+4h/BDwBz7A45XHog+N0rNS2lrGj4WuM3QZP i9PfCDHkTJa58GxEHwffQh8TpzxezmDoE+A74qeeiaa28sw7VuqHx8epPgH/ yDidS2qYJP89bZJ8F8orz8JvI2e6GTs1Tlk8VuqZCU+Wc0s+3Xvd5SxUXtdq DjwIfRe8+n80nWV4FsffhXG34lAoTjyB4lZCgrtbKe6eJ/rEoFgp7u5a3N29 uLu7Q3GH9z7/374f5pq7p2fOzM7Ozs4m0MIueB48A56m2pnPWvhnwbPRdzL+ 2fAjfZ+GGE/As6Ww+e+i74Hnhtj3ziLqfyiT8fRkPAs0Pn0LhFhfE+H5IbYG 5Nmv3++E2Hk+3MPaqt/qjGG6M7be5CyFp2gP11rWtcCrqNdQpsGN8a9Q3/gP kbkSfkXm8hDjqXia4VntXPsS1Y5+rLDlvMffqKLpi/HEe1hfyjyp3xGE2PeI i/Fs1Nho+wf+TRqHzpYhxjPRy1KXD7F9/ox+LxBi3xceei+47J21DW2Hrldn OTy74R/6+QyZu3SdeDrAe5ULt6lo/nW6LyHmV9srtN0XYt8Iw8g/6LQdyjg/ wmvxRMH/6h7A3cg5rL7x7A8x/1ydS0NMn69vXnKOOf2G4D8PH4Dv0NcZOA18 JMQ88keTfwJeAPfAfxLehed4iPFC9D0hNs45Wht4Tusa8NzU7yBC7EweS845 eBGeUyHWl9qeDbExLIYf6vcLIXb+n8Q4Lzk51/T7jhB7v18IMV3+eDKv6D5q H8N/Q9eM5z71Q8pynZ0Yzy34qM42+B/DK9CvhZh/KdwPzxP4rPYuPNfhJeg3 qW87nmg8D+ATeJ4UNj0z/KKw9ZVdzyBt72r94XfjvwcfR/8L/qQ9BH4UYn2t 1LcnY34Dn0NfAD938l9Q/0dZrTMbmS/hVXAEOVfhI3iehphfOa9CLGcN/Ibx PAux74shtH39/zm0fQdfRh9U0fIv6Zym58NpeznE8nXt7wubnhfPhxAb/zrt Y7T9Al9Dz8d6L0DZrTMP/oQu+2b5rO8aPAXFIcZqO4zxfNcahkeR8wO+g+cA 156Dti919gsxfQOeRDqro/vq24E6kcv0tR7GGsNYcpLC9+HELuNNeP5GTw5f Rx9Bv0ngjejJXJYpz3adw+EHeJLoPA/7wympU1O24BlN27QO78STDn6kM5XL eCv6lIrmf4Y+Fc4AP9f+T9tU8Gbt+XAmeBuc3mV9qW1Gl41hu/ZM8rPCL3SO 0ncBXBzeHGJ7u/afLC7T5Q8jczv6LPgXtLyUXTpvoOeCd+rZ19kefqVzuMtY nvToeVz2XZOdOidlB/rcipbzDn0KOZ7wXn23eti9fqO1iic//BFeDBeCv2hP wFMY/qCzt8t4D23TeFh+SfRl+L1c9nPOGeQXhw/iuYSnqO5xBsYI+8LV8Hi7 jPfhuYjuDyfEUwAOcNl3wXIyfeAE6H4u0/fj93BZX2pbhPpXygG4kIexzvln 4BLwV7iYy/iQngX0UnBiMku6bG+XfgW9HJwEfSZ8V7rOJ9S/UQ7jWV/ROAWe Wzo76T7C3vgrwI21p+lbAE6GXsZlmWq7CX+g1h/6HrganAUuir+Gy74F5jFv VeFj+Cu6LOeIzhIu8x/XeZW6psMNqBtRTsP3PYzTk1lC53+XnaXrUtennMTz XP/NH60zPOEuG/8VnR9c5j8BB1FXphyFn+GvDWfFv4ixNYRPob9AbwJnRy/l Yfn6NmlM3dQZzwUPG6fuXRkP0/WNsJVrD9Yzpjn0sL5SwS/h5nAOuKLO+S77 TmlJ3YpyVnsgemutdTydqbtSeuEpU8l45E/sueR3hz11jT58D8CzM/Hed1nm OXI6UHeiXIAreFi+vmXaUrd39GVcbzv4PHyioun5ybwNu7We4Aa0DXXZN0hS T55brVH0C3h6w95wN+oelIta5+i9YB/0crRt4bJvrmYu4zN4+lCHuOyb5Qee vlrr+Hu6LNMDXsXYIuDL+HNWtHyd510uG8MlPXcVLccX/ytyfod/hhvD0XC8 zgnwfJedM2dTz6U80tmY/Fj4Kpya6+rvXG8MdRzlms6utJ0Cj6Ptg4qml8Xz HB6qtQtHuawvrbF4l+Wo7Z/UAyk34Bbk9HPZd00reAg8RO8yl7E8T8gcrOeQ zHWMbQB8Hf0v6r8pN+FsjHOc029meITjH0k9mnJHzyBtR8G34QQV7bynZ3aY y/y30Me4LEf+9oxnuP4dnk7wWJd9d2whZwJ8V2uyouVXo6/x1BMp9/Tt42Fj G4b/XUXTa+Cp5GFrT9/jjyvaPFRAn+Sy+VTbqbonlPvwDvqaAz+E83Jds/T8 4/9E22l6buHeZM5UezIXUi+mPNGZzcNyJmktVbT720h7LDkLnLYzXJb5AP8u +loEP4YTBlpOEzzzXObX2nhPzmRnDGHkL1V78vfRdi38XO9i2i6HW+Lxpa/V 2hfgZdQrKE/xHMC/GX6ps66H6fP0/qXtOrgt/n9clq9rWemynGdany7zvND5 jbarND59z9LXRqffROQscfqNw7PBZd8I7+COcB709S7zKycd/i16/tH749mu vvHvoN5FeaV3Op6dcGc8b6jfURLnYk9zmf8/POUZw7+OJz3+bXAHeAiZe3QN ZB7m2vfDb/AP8rD8lZpD6gOUtzrnoB9y2bdD9kDTe2ovJX+vk3mUnCMaB/6T 1KcpH/ROpz5KeQ/noe0pOBT/CDJP6JrJXAl/cNlZMRee43BfPOPQz+p6dK4I tJw+6GM8LH8relXGcM7xH3NZpvo6yXguwJ/ggy6bB13LGZf5P8KtafsRHkrb 3S67ltf6nqK+SPkMnybnGvwFboj/ARyL/6qee8pX9Hsu07/rPBBoegye87R9 BP/QHqi9x8mcwvhvqT/Gf9tl7/dv6J60venkz8Fz32Xn8Bsu86svHzx34H54 CgXaON16d8OP4cFwcfiVc13zyXnqsm+EYugv4b/Qn2j9UhKwZibiueyyb64m nqYrfxH6a/gU+kOX5cv/3GU5ieD/XOYRX+R6X8AJ4WUetibP07aGp1277nsp xvAWHg4HBPOcRLLv8E5877J7kYS2j8jJF8oahyvg/4I+Fv9XzTElGfoa8r+5 7HsnM96slHTon1zml2cbnuShdm6/SuZn9KTo1+EE6MnhIPITw5PIb+dp+Rpb IrQklBR4uqIng8ehb/Aw/SaZlWibEJ6o8wOZKeFU+NNRZ6CkgVNIo6SGa+JP D8/CXw1OC0+HZ9G2rNao9ljy06A/JL8OnozwXDy9PC1nMtzH0/KnwqFwJngm nDrUMtVXQ9pmgRehJw21eUiJ/lOo+dPCUbTND8/D88Nl16Lr3csYsofat0Y8 np/hf/Ac0XkefouekzqXrhN/Tzw5nDn818P01/pWRfeAl6FnCzVPevy5Qy3n JzhvqI0hE9wP/y/wEvwnyCkUauf/AqHG8vTHUxBeimeXh933x3gKU3tSMuMZ jKcovArPQNgHXqH9n9pfawXPWf0uAP5G200u22+1Z3qFml+egFDLyQY/5R55 w1ngtsxtEXg9mS/Qi8HZ0f8ItPw16L9SF9c1o5/2sLHp+6VLoOnb8NwJse93 /QwhlnGWcu7X1XDWKOU/2g5Hr4C+QWcn+ioP/4yeCj081M78panLUnKij0ev CO9Av+5henKd8UItJxeet+RUgX+BK1NX1f2AK1EHU3LDt2kbGGrfCJM8zbMb 7sv4a8D74dnoDeHDsBu9AXxcaxKuBR/SOx1PPfggXJO6NiUv+VvQI+C76FM8 Td8L3/OwMehMXi3U+tLY6oRaTj64fqj1mx+OoK+68BGdCeEm8En4ATnVtT51 PuF6G8MF8P8WateleZhAv0HwTjyNQq1tQfTF6H/Ap9Ef6byqvQhuEWpcSG3p qwv8CL1+Id6xcLT+7lio6efR21N31LrE/1rfC+oX/b2H6XnhWHJawqfgt+jt dF/gVqHmL0zbfxhPW/iMzjmhNm++6L2p+4baGX4THhd8Gx5GZk/4BnxS3yC6 drhrqLEXbT8zJ82c651H2+bwMb2XAy3zFtyDuhfFW/utp/FV9BDqUPWrHMbc TTl6Xwea/kD7JP4+8E24aajla94SF2ffgf3gWdRzKGXgwp7G9fFHUrv1rGq/ Qo+Hy6GnhWPhUnAeeFKonWMn028M/FTPO/VgShHaTgq0nCdaY3A/+Bk8Ex4A v4KjQy1TfWUic1ConYH3eFqOMvuHml+ZcaGWo/s+m5yh8Bs4F/4xepb07kYf Br+Fc6KPgivDf1MPp/xKTiDzUCKM+wFn9TQ9UHssPNZpOyTU8uUfEWo5xeDR oeYpDs+nr5HwB/xL4AnwNzg5+X/BRfGkhsfDJeAl5HeAz+q9gP4nHIB+HH2y k7OMnGnwD3g69UxKaTzL0WfACfi2nRhq/pLoU0LNL88GPIvglHjSkj9V9wt9 FfpsODG6J33N0zNMfn5Py68Nz6WeTymr+07bhbrv8AVP09XvuFC7RvXrg/5P qH0XrKBeRflNzy/1Ekp53VNyVuqewnX5Nl8OzyNnHfUGSkX0jYxtGZwKfQu8 Bk4LX/a0HI15c6Dlp4ED0NfCLeh3aahlNoO341mvPQfPglCbB41hdaj5NbYS Xoyd+94GT5tQe949pJO5CW5DzhbqbZQgvYsDjbNqPmn7VvMJZ+O6tsKV8Dyg 7U6n343Um7WW0Euj7wi174hy8H64E3yYzINwbvwH4H1wDnh7qOX8r99Q81eG D1AfolSBT1CfolSH33gaK+clfMTJOUp93PHkZpzH4GraA0Nt/I3hf0PNXxXe Rb3H6asSOYfhHoyzCnwy1M78ecg5o+cdz6lAyy9IX6e1lik10St62ji74T8T aHphPDlouxsOxrM/0PrKjn4WPq/5h7/R9prDF6kvU2ppzaBfhaPIvEt9n1If /Uag8a/4b8IP9WzChejrHlwPz5VQy6wN36K+Q6kL1/a0/Ai9o6lvOnoB2t6A 68DXAk0vQqYP+nutc3Qv+D+4EfxY53ytbTzNyXwKD9C7j/qRM867eJ44a6Y6 nguwC8+5UGPN2zPqF3oe4ZZ4nsOD8DwOtcwGOtugvwm1b4fGnpYfD78MtTHo nqb0shzNwwX6vQR7w0/hD3rWYDdt87L+52vPpP6F0kFjwPNJ6xZPRzzf4FF4 PlJ/pjTFk5/8LPhr42nrafowPM9pmxS9Evq7UOtL/i+hltMM/q79A09zfbPg /6r1hv+tzv/o1eGEYcYtdfZjnhPBLeDO9PUD/xj6SoKWzPHkZDzpwywnN5wS rganok5D+QPPr+SkhlvBRamLUbrBycPM/zucNsxy5P/AeFLAtcjpQb/pwuz7 wov8n+BG6N8DLb8hnIE6I6U1bbt52tjG65zmafo0uJin7XV/wFm9bB40z5nC bD7b6h1End3h0ow5N9wejtT5P8y+Qbxpmw1urDUJ54SbwPmpC1I64g/ztBx9 4/h52f1thic5e28+Xa+exzDLbKdzLHoBjV/7qpfltIDzhJlfa6ME48msPRMu hcdDbfFkoW2A5hMuj8cL7oynHB4/uJPeNdTelC56Fjxtb9TenrmS6V3hGPQi 8EJ9U4dZfie9X8IspyvsH2YecQX68nUyB3naPV1J24xkFtYYyAxkDL/q/Q4n 8LJnX89C8TDb/3vQdiz+2/B99CHklIFXkxOEvxzcE71UmOnyl6UuL137JJ7S 0vEM8zRd3yPBjO03uJfODOiV4I3oDXXfKGE6e1AHUXrD+RhDZTicnF8qme6C q5JfBe4LF0SvBkfBNcivD4fStgyeOrpH6DXh6spX2zDjvniq4a8Jh2g+yakF 98NTGX9FjUGZYaa78ASHWb99tE9S13V030rG/fE3oW0DJ6demLGuyx9PI3gA eoUwJx99lKdd+2ad4WnbFB6IpyXcAh6kHPgP2K29VM83JYK2k2nbDN5D26me pu/T+Rx/J3iIxhNmnnD8v4dZThTcWs+Tw3WYh1ZwpNYz4+wA/03bdmHG0ej1 8LTXGOQJte9BfT921JpyPCt1roYv6Wc7cLcw++bqrnVBuaCfYzC2HvBwvdP1 u4AwO5N3CTN/DDm9wixnBJ7W+LvCQ+FV+HvDl/FXYJwh8Fj00pUsX/6+uieU WHLmeNrY9P211tP0a/oZBZnh8FT8u9Ejw+wcPpN6tsZG24PocfB/+qbAHwVP xx8RZhyvNUC/0fAc9P34Y+AX+M/DE8PsjOoOM72fvgfJGeT4Y5WhNYMe6mU8 E70RmX/Ci+F+YcYD8Bwmc2CYneebcS/669+hDwizTHn6kzMGXkrbU/hHwp/x D6b+Sz48Tcn/2/EcwzMMfo9naJixPE0qmX8JnhbwCHiFmH6HaH3iOUPb0fBX 2g4Ps74Gaz2H2RiG6L2Mf5z6htuQMx5eR87vjLON/PDYMNOHah7C7L7EwdOo Z2hMakvOFK1JuB05U+ENtJ0cZixPe/Tp8Eb0CdSTnMxLnpaTCL0DOQs0Vp1h PO1eJ0PvTNtZ8Fb4BvpcOAU8gnHOczLnhBmPoO1AL8vXnPSk7UJ4N+yCV8MH 4T7wCj2P8Bj8/zj5i8KMR5HTifEshUfDvfEvg/fiucMYFofZeX5JmOlj9D0V Zn2p7XLqlY5+39M4Pf7H8Bo4k56XMOOxeJ6ir4OzoIfT7y2tdfSZnrYP6Och a6nXU8ahb9Z4KRPgGV7Guq7ZjPON1iH8grZbwuy82gF9B7wJ3qDaaetG3659 AP01/n1wLp2F4ANwHj0LePbCp+BtYZaTE94TZv5JOhurfyfnOPVJyjT0wZWM L6N/0PkczgcfoT5GmYLnE/pRuAD6qzAb/yL0Q2Hmnwzv1D10+upH5r/wWd1H 5uqE1hn6V3JOh9m5fZGX5WvMp6jPOOMZFmzjvJGJe+dlunJ6kLMLnognppL1 dRI9BP0cPB09Mf6rsJ/OqNSX9AygD8d/Bb6ptUF9jzIHfYOXsfRIch7Ac9FT oN8Ns/P/5TDLnIl+M8ze6Wr7w9PyvfBc03gps9CT0vY6HIC+1sv0azrPwO/C 7JycEX4Jl4d3wv/Bj+A08BO4JHyf+qGeGTInMP7Hjucv+LzGpG+cMGNd41Pq 55T5eq/heQY/xfMozDKVE8M1vtYzAI+vZPkPtQ7DbAwL0DN4WU5Z9KF4Ljrj 34P+3sl8COcJ58yakbMedW7KOtruQ/+ocej+0vYr/FnrivoTZbG+rfBkxp+C ttm8TNfZ/gicBP2tzu1h1pfW2Ocwy1kCf6P+QVkKx3MtX7QXwDlom4i2wTqP hRvLs5gxJIS/6F2A/7uTkxgtKWWZ3rl40qkN48lHTopwO5+npE5NWan9irap 4BU6h8MbyRkPJws3/3I4TbjlyH+GnOTwV3IKwGnhOvAa+sqgvunrnJflf0dP r7mkrKLtL142Nn2zXPAyPQH+qV62t2g/POZl8/Beaync5nM1bbNQZ6OshbfT Vy44A23v6DwPp4H/YvxZ4TV4hsI5HH8+6gKUjfC2SpaTHn8hL7u/9ejLH84L N4ezh1um7vtwcvLDG/Re8LKcZLT9Jdz869G3kJkJToteBE9huCU5JWF/uK32 XtgTzoTnKewLZ4E9qL0om8iJqmR74zGdt71M1/fFAX0vwDnwFwy3fF2Ld7jl bIH9ws0jHsWYfeDN8HOd5zV3tH0EF4Izwv+SWRTOBTfgeb8dar/7KxJu/q20 PYqnOJwHz0ed2+H88Hjyy8I78JQMN327ztXU5Sg74bO0LQV74D9fyXQveAJt KzieC+iBsDd6H+oQynH0itSVKLvg7/QbDHviKe1lent9N8GVw+2bJZE3Z3fN BZ4kcD3YX+uKvmrD+8ipgr8a3Ad/lXDjPXpe8NeA/fBXw1NT48DzFf5Nc41e Pdz0vfiDwq3f3XAtrX3Kfvi9l3Fe/LXg+uH2bVI33FiepPTVUPcJT/lwy9c1 1sXfKNy+UxqEGx/Q+5fxN4cPwQ3xtIdj8TSjbkH5F71tuOlH4OTephcl/z5z 2xEuAzemburk3EZvBZdA/4O6jdO2Pvm/w9Hk38XTDi6Fp2W4+dXXbMbTGj4M 98AfCk/E36065xWth+ycx9F7wePQ5+LvAh/Fn4mx9YArkNmZuivlmM4PeJrA B+FnlUwPxNOLnN7wZJ0fwi1fv5voFm45atsz3Dy6xo74u8Oj8GfztrVUCf1W Jbv24nA3PH3h8Xhy4gnTvUR3hRufIHMInlnac/BEaT4op3QGQ4+Ap6Dnpm2k 1hBtw8ONT+Lpi8cNT9O5TnNAuYSe19tyauJfwvUOgM/qzMDY4rQ+tD/jiYVr aTzk9INnaI9F7691hh4fbnxG77twa3saThDEPg43xhNL21HwItomRR+utaJx og+BZ6MPCjc+R9tEeIZqfeD5rvM/3BBOiD4YbqJ9Ndx0/fz5z3DrS22HUY/Q fYGjvYwX4PFhzKOdtiPDjS/gWcG1j4Uvwim9be0Vw5M6yOaqDVwFfZ2eU3gA mdPh5WSO11pz5nMVOZPhy3Ba2k6B2+GfFG58BT3A2/y69nR4puk5gWdTz6Vc w/MT+kytLe0V4daX2s4ItzVwVe8RxjAHXqtvSW9rq5x+6BPC7TtoHeOZD1/H v4x6BeUW/A/1UoeH418Ubt8m5chZ7PS7MNz4hs5s5CyBb8LzNJeOnjPIcnrr XBFkeg94tJf1tYXMn9GXO/OWB14Fh2qvxrNazyaeleHGt8kspj2Asg2eiGct vAvPLMZWNILnnbbr0TZS7uGpgb7FyZyCf3O4fY9sY8zb4Pt4CgWZ341nU7j5 1dYDfTscgz6dtrvgAzqr0/YV/AGPD549cD/dIzx7tc/g2RFu/gd4doeb/lD7 IeM5AMfiL0bbE/BfcBP0o07OvnDzPMK/i74OwY/hovj/hQfjORhu/AR9a7iN U30tZAxHwu0cPhfeDx/VWZGc4/BTPIfDrS+1PRZuY3gGFyf/FDyU/H9oe1rP LG090Xc6Yz4Zbrr8pdDPwsPRWzP+i07bG1o7lNd4DtDvZfglHIj/DjxB79Zw 879AX6+zvdaM7jV8Qc8LfEnrOtx+L3+InJvwK7hCkOljyakYZH2Nh9fQ9lq4 ncPbedvv9DW2unheax+Ab4dbXxpbDfRn8Ez0zbR9AN/RWVrzTXmruUV/pPWA vhw+pz0Bvhdu/jd4noRbzns4mMz78GQyjzLmp/A79B36WX24ne27e1u+5uG5 5sZpeybc8p/DvbxNV85/4Tb+j+gnyHzrcE7Wey5K0ty8W+n3M/oy/GG0fae9 AH4TbvwJfz08H+D56Lv1XaA1oHkmMyM5ich5H266/P3JSYi+FP8ntC+Uz+ix 3saL0FuQ+V17B/w13PirroXMBBHGp+Fvaq9vtHDL/KZ3Fjlp4dWaK8aTCn6n cxF1EsdzjrbJ4O/wH/SVHF6DP2mE8Q/0g17m/4+20WSmhBfoDIA/MbwSbgun gdfDKSKsL7VNHWFjSMC1d8WTHt6u/Z+cDPAmratw29vv4E8XYXpC/FsY2wat J/RsaDmcexFP2yzwP7TtQWZWeBecOcI4MZ4rtM2u64R/os7k6BO8LWcn/ut4 8uk60Y972b3+wDX2IvNneI/2NPy/wHv1TOkbUNeld32EcTLadg+yfGUOx58f 3qB8/dxe+Tpv0Je35gX/RZ23dY3oBSKMU6BPo60HvB/9qr4LIuy7aSp6QXgf XDjC9JT480ZYX2rrRe1DSQ3P8DY+iD+CsfnDR2DfCGN53OhF4OPoARG2t6dB n0fb4vAx3VP4GjwMLkFdipIez8Ag44voh/H0hd/A97jGknA6PIPwlIUvof8a YZlp0UfjLwNvQb/JNQbqWuBV6EHwZXgIbSvCV3S2j7Ac9ftbhPl/gitRB1My wjWpa+vew4u9jU/T9hn5VaXrDE9dg5IZzzo81eHr6L0jbPyv4coR5s+Epxx1 BaevtfirwNf0jcY11oKzoK9HrwvfQH/hZfnZ4TrU9Zzx3PWyceob8LWX6fq2 ekBOea11PCu8rS/N5wa4AXwTHss8NIfvw42om+gZwP+BnGZwPvQ21O0oudF3 eBs/RJ9M2w7wU/VLX23VL56mEZapnFbUrR19k7fl39aeQ/07JaeeF3Jawo/Q t3ibfhd+T6YLzqv1hqen9gf0DHh66Z7B3xhnlwj71mtP3dEZ5y48neHH6O/w NIywb8n6EcbZtFdQd5cO78PfDX6Op1OEZf6C/pBzaR+4nPZPL8svoD0hwsbw UnuRt+X8qnvEmBvrHtF2IWMOhT+hl8IzI8LOilOop1G88GRED4fLoy/F74a/ a/+njtD84/HHM1Zzin7M2/T32tPw/6nnNxPfHBHWl/yREZbzBU80dayTuQx/ lPYWeCXcD05E27gI4wTwKvR4ODG8Ao7RHgL3px7g+LfqbK9nEF6rszqcDB5C PVT7BWPwZpx/Rdh3wSsvO+/9DA+MML++O/6OsJyC+M/iHwR/0zwzh8M0z+if 4ZGO55q35auvEdSjKIXQVwfZ2JKg3/I2PRU8KcjW3hMylwfZPOgaR0fYfKrt OOoJWj/wd/qaCnvCv5IzGW6ldyL6eLgw+k5yJmlPIGcW9RyKj56LIMv5CX1f kN3fbPAjcmY6/okRlqm+EpTgrAl7w/8GWU4uPNMjzK+1sQ19DJwe/QU587Wu 4GPoy/RcwIfhhVrz8FF4idYzvIB6EcWXnMq0XRNhZ/iy3qZ3hH+Dl8Nd4bkR li//4gjL8YeXRphHnJgx/wP7wad1ztcc0ldC9HnOPCSFV8IB8Cvm7Q/4Z+0/ EeYvovMJ/a51xn+WnA2aE3gj9WY9R3jOoW/SvUB/Rv2CUkX7aoT55bmucztc FE9y+l0v1rsPfavGg16XvnbAUVxjdW/Ld8HbqXdSiuNPTdvdcAmtAW/T1W9t eJueQ/wN4H0R9h3xL/URSmn8e6n3U0rCt+j3sDJpexM+BBeDv8D/wfXgtPR1 EC6lfRv9mFhz6GM5GnNjb8uPp6/m8HE9e/CBCMtUvy3RT8KD0HdF2DxoDEcj zF8G7onnFTxJ+2qEXUsx9BPUpyhl4T/wnI+w75eO8E09V/A56guU8prnCNP1 38dO62O6xtwZ/214DP7T1Gcd/1Ou67L8eK5E2Pv9N/RMXPsluAL8Es8NOBjP xQjzy/MM/SociJ7Kx8ap+cwK33H0HOQ8UVv82eB7cCU4B55HTuZd6vuUIJ3N 8JyBy8Hvgkyvgecz/BSuq30jwsnH8yDCctT2cYR5KsPduN6HEfadktfH1mRN 2j4OsmuvAOekr+eOf5z+fEIoa01/5ifC7oXWcGna5ozkfYW/MPwWvT78jvoD pTqe3OS8h6tpzvGmp9SDX0eYvyqcKph9BL211g/8Br0J/AttPzk5SdC/ws3R EwdbfjOtSepvmged8fD/0LXAfb1Nn8Y1ejO2z3Bj/J5wIvpqqGeNOiWlDv6E 1IkptTRO8lPA7fAUx5/MGVss81NMa47M/PSVFL229gr8qeEWeFIHW04bONzb 8mfjj4HTwAvhJJGWqX6z4E8Hd8P/PcLmQWNIFWn+uvBftP050r41PkbYteh6 CzOGn9Dr67zHODPDXcn5E3/2SPv+ykSdhdJAa4y+MsI99K70Nn0xHh9y8sJN 8GSINI/8WSMtp6HWZKSNoREcSF/Z4O7kDNOZP9K+ZXJFGjfGE4wnN9wLT1kf u+8d4TzU+ShN8dRC94bDpTO2gnAoXIjag9IMT370wnAE+uoI22+19+aPNL9y PCMtpzk8gvEUgDcynkK09YLdtPWDfeE/4Wo+lh8C+1D76d7RtoqPja0PekMf 02PhWoW45j72/0UqwlwFoLfEX76P/Tf29d/eH0W/JdE3028R+ioBD6JtZfy9 4d74i1IXo7SCm5NfGh6Ap6mP6f213iItR55W6L/BQ9ArUFfUukIvS11ea1LP pr4RIu07cba3eQ7rfEjbIDiatm3hWvAwuAzjqQl30J6JXhn+C32RzvmRtraD qato/eOpy7X0gefhme9tur6DZnrbGA7BgZHWl/xVIy2nPVwj0vrtCLemr2rw UK0HMuvCo+CSjKcS3BbPP2TWgc/onBlp1/UH+u+0LQcP1rss0toqswJtm8Jd 4M54GsNjdO8ijTvrvU9mW/gcmVXotw08FU/rSNO7K1/9OByEpxk8CU9PH9PF geiN4AlwMNwSngw3iTR/V9o2xt8CjkfvFWnz1ge9i55vPQta87TtEWl/FzgE fyd4OryZcXaA7zDOdpHGPXSN+OvDY/G0x98AHgHv9LZMfWt01LVSeuLf6m18 D727NMos/H1p2x6eBv/kbbq+BVzoXeEZ6PUiLb+T3r/6+T/8Tt9HmjNKJPoo H+PNyqR2OdcYjR4JL0Cvz5jDHa7JPRoNh+Fx4wmD52sv1TxF2vk8wsdy5uje 0TYKXgQ3gmO0R8GhkZapM38s/jjH0yTYcpbA7kjzL1RmpOXozN8Uz5/wUrg6 4/lb49ZahQfCfeHbOufDqfEM0LOr/UHndvryj2Kvycw6CTZ9FZ528DB4A9wv 0vL1/TI40nLUdmikeUL1LOMfAq/W9wWZIx3uB/d3xv+QMYyItLN3RcbWSutG 64q20fA/6B3gMfAm+An+8XBmeILWKSVC6w3PRHgb+qhI84ejj400//+Yfmc7 no74xzn39DWZUyLtDF+XMUzXPOqc4235OdCnab1Q3DqHoM+KtLN6r2DT98DD I+0ade31yZmrvQhepOugxMFztK/onsEN8SyGY+GPZC6E85OznHolpZ/e6eQv gPejf8OzNNLO232CLWef3rnBln9Y4+Qalzn++ZGWqb4a09cKrT94ZqTNg65l SaT5NbaKtA2Isvdy80h73vWMN6Htamc8a6nXU/rrO8jH2Ft7KWN4Dn+GY+B1 8Em9c+FN8Gl4FfUap20zMjdqDcED8eyAL+JJSeauSDt7t8CzHR6IZ0Ok5QzQ t1Wk+Qfpm456t8OHNAdai3AaH+OS5Awlfx98Dd5PfdDxtCL/ADxE595IG/8E eE+k+aVvpt7q9Ps7/r3wYPhvMv+Fr2tfRT8KD0Vf6WP5l9CPUB+j/K193sfG eQZ9RLDpt+B4eIujJ/Gxvvzhkegn4NvwJvTzDp+SlzJc5yj0c5F2Vr9GfYMy Cj27j3EQeifGdgsejT6FzOvwM/SzkZapnMvUV52244It/wGeC7oOrWn09uRc hEfAk4NNf4qnO/pLZ94WoD+GP6IfZgxP4DfwPvie5he+qevQ86n3F23vOpwB z0m4LJ7jkcaat/vUDylj4VnkP4Bf47kTaZnSu5HzTM+51naw5b/C8yjSxjAO PZeP5VTV2QD/aXgY+nH0/+AP6NfhHKz/5Ox7WaizUebiWUzmazxfNG943sPf 4Fe6PspEPNt1psWfgbb5fEyvhWcN+nc4KfqLSOtL/reRljMJ/kD9iTJF6wf/ OzgR/ovkfIUTwp8jjafi6c34vzj+XvBHeDL8jfqH47lB2xSMJwVtfXT+j7Lv i8TUSaPs3L6OvpI41+tN7UtZrOc6yvzT4GRRljNd64SchHBi/FtomxxOC7sY Qyp4htZ5sOV/1bNMnZoyE93Dx8bWAH1bsOnpaRsdbHvdCZ11g20ekqCnibL5 VNv01D9RZsMR9JUVnqOzpc7/8O+0DUPPAM/SnkBOJjgjOT9T56bM01rysRz1 uyfY7m8WuIy+6eAO5GSMskz1tR9PLjg7nic+lpMZzh5lfq2N8+hp4R+0fQ7n 1brBE8t4POFFOifA+eEF8Emd7eECWieqKQv1XvCxvfEIOSeCTc+P5yO6l8O/ RFn+fPwFoyxHbT2izKN7dwt/ITgV/nI+dk87kXmIzDzwz+inYR+4ELzDx579 h/peiLL9/x9dO/oV+AV6VfhXuK++1+DisCdti0SZvgR/MeoSlKVah3iKwh54 qvuY7tI3GvNQCl6G5wd6WY0bTy3qOpS16GWoy1GWax36chaEvfHU9jFd30T1 9I0QZd84g8gMhFfiv8N11YBL4r8JV4WLwYnIqaT1DVeMMl6FvwE5wXCM9k/8 leEieF7rOwXOBQdFmS5/+Sjrd4W+m6irUVbDSXyN/fGngGtqXnTtUcZrtPbI rw2XQS8ZZfm6xtS+du0l0B/hqQeXh4dxXQ3h9Xh+wtNU84LegLoRZQN6OvT6 ytL6DDb9NzgbemtdJ1w3yjzrdAaIspyNev9qD3B4OH01cTKbce2touybsWWU 8Sb0TGT+DlfQ+qnC/Y9h/WTlWwGtDWUznu46V0fZ90IHnb3hkWKtQcpWPDnI 6QgHk5Mf7gXXhttGmX+L3gtRlrNN7zI87eAgPDnhLrof8AeutztcC+7iY/n6 XuhG3YOynbbtfGxsw/UNFWy6ztuf4N5ac7TNS2Zf3Sd4EvUUyhHaTmROIuBd 8Ff8IZpHPH2ijHegDyY/NMrOxgXICXMyZ9J2FHwIjyvK9J1w0sqchzTveMKp Iym79SwEGzdCH0pmtJ4FMqOijOWZTGYsvEfPBTluuDH+mCjL3Is+gbZ/qy/a joGHaM51xqDu73imkjMA3gcnJ2cg/Ds5f0YZ70f39jW/8lPgGax1AI8ks1+U ncNTow/VvUcfFGV9qe1fUTaGA/Ak/MM1fvy/kjnCyXnK9TaHK2qdR5l+EH/P KLsvOvOPp57o3Iup5IyNsrNuCXLGOf2OiTL+F89srmsCfBgeST3a0bNUtpxu +BeQMzPK3jUzfOxeH4Sz4pkMd8eTA54G94Ln4pkOH8UzNcphPQuVLb8LnkDG M8tpmx99CRwBL2Q8i+CT+POgz4VD0WdHGZ/QuYL8+VF2Ng4mZ4HT73zazoGP 45kXZbr8M6Ksr2PwQurFlFNwvsrG4bRdSuZS+ByZ/0QZy1MIz3LYjacKfBme CjfysX0gDv8y6hUaD/412jOUA/tUNu6H/wz+Z1H2fl/CONfCZ/HUY/wbnfyV 1KspZ9A34t8QZWfdpni2ay3iKUrmTngwvJycbfAF/OujLEf9bo0y/0V4h55F hw/q3lKuwm19jYeR0wreq7UI79MapFzBs4r8/fBl+EmUjf8BvDvK/JfgTdRb nDGUYmx7tG+Qs5q2h5ycsuhH4FE6M1S2/JHwYa0LZzxbfGycd/XzCh/TH2lu ydkMn8dTpLL1NUjrBz4OT4CD4XPwZPik7gPlBv7WXNdZeCj6VerrlDvoNSsb z9IeiOcmPBbeRF/X4Nt4zkRZpnIuRdk7/RYcVNnyJ+E/r3l19A20vQDf1PPo a7o8TfC/gJfAEeiP4DnwCa7xcZSd+cPQ7zrjuaE8Z5xbyLyjOYE74Tmh5xPP sSjja+j3dE8o9+A69HVfzwme21GWKf0B+lO4bBb2/cqWPxvPwygbw308R3ws 563Ot/R7SvOlMxj9vtSzhP8oenY352z0zNRZKW91bkR/pfsFx+N/p70I/3/U r9UH+l2d99x27m1W2fRlWnvwN617+HmU9fUQ/5soy3kCv9c8ObyLvt46mZfI /BJlZ/5PUcZP0fszhs96htGbk/8BXg5/pf6uday9Dk9yxrMJ/W84IbxOZx7q JJSXOsvRV2L4BbyWvlZF2bfwjyjzP9e7yW05/8Ed6SsBvJmcA7RN5uR0QU8J b0PvXNnyt+odQZ3Kaev2tbHN1xnMx/SU8Cof21su0+85H5uH73qPuG0+X+k8 Q52B8kbvMnKywDv13YQ/k9vO4f8ynvTwazzj8WSEd+hsQJ2L8l7vIF/LWYP+ ysfur869k9BzwLvhn9yWqb7e4PkZzo3et7Ll7Nc5ym1+ZY6mbRp4C/oUOA+8 Fz7FeDzgz/o2oW0++Ij2cDyF4OM6Y1Dnp3zEU9vX9ka9I2b4mn4Q7k9bT/gc nNtt+R/wF3Bbzie4sNs8X7Q+8ReEz+jdDfvA5+FQ+Bf4EDycfG94A9yBcV5x vuW93OZXzhl0P/gr/E7ndvWtPZy2xeBLcIDb9G94fqUuTvkOD6SvIvBFPIl9 TffTvYZLwpfhC+SXgRP8wpmOurvuN1yauiwlIbwaf3n4it65vqYfhVPq/O+2 M/wlcirCifBvQK8O30RfB1eBr+sswXgC4Rvwb27jxPjX4AmCr6KngYPd9o2Q FC4FB8CV3KbLX85t/Wpslamr6lmC0/sa6wyfEa7htrN6NbdxUjyb0GvBt9FL uC3/B3M1irHVhu+g13QbV4WvcV0N4GS03aEzNvwQvT51Qz2T6C3cpqeEx1U2 /QGePfj/gJ/CdajrOflb0JvAd+Gm1M0pKWg7J4gznfY6/TkxPC3ddqZt5Da/ +tqG3gy+j36PsfWE06FPpd/W2ivQ76B3htOg34Lb6vmHfXW2h5viaUPdjpIa /Yc/3yGwVzbOUJVNf6l7DXeB32n/dFu+zsDt3Zajtp3c5tGamYG/g/YZPAd9 bS2JV3vatV/JwDpF7+a2M+18/L30HME93MbpybmPZ7KY90gIdaj2Hf1/ovH3 0XOKv7i+CzQmuLfbWG0X43Hp2dF+Sz2ckg29rK/ldER/xJzEwBnRT6BHOJnl 4XC4M1wajoLbw6Vgt+YLjnQbf4PD3Nb2J3JW0m+s1j9jXg//pXsKr4EHae3B p8np54wtzm2cibZPGM+fcGY9a/gHaD3jr4g/3m1n4/5u07PgiXZbX2o7kHqw owf5GvfEXxUeqnmBh7iNs+Kpjj4Mdmm/rWxr74nOLb42VxrnSZ1F4QLwLniC +oJHUI+i5CCnFv4xbjvT3oDHOtc72m0sz9bK5k+H/h/XOB7OiT6FeholF/wK fRL8s54dt/Ulnui2NSDPbnKman7IqetrbaP03qHtSDg7noN4ZigfzwLqRZS8 6HOp5zv8Vn8uCP4F/hf/HOXjn+U2zoP+Tn/exuHp1DMpueGXvpaTA/9TX9Oz wA19ra9YnTPJXCg/+gf9eR44n9aYvjvg/OiL3Q7reaT2d9u+/ZycZVqrGr/e C9G0I3MF2ipKQfzN0NfCf6KfJnMNXAj/RXg97AN/9DW/+lrtNr/afkXfABdG v4x/M+wHf4afwHXhb4x5K+yBP4Efew3sjb7RbX7pW9yme8J/kLkT/ovx3CXn EFwKfzLa7oeLwNvd5pE/Efpu2Be9HW33uO0Mv8tt7IVnndvGWQi+TeY+uAT+ K/AOzRecsCT3W9eLZ6/b+vKGD7htDL7qC89hh1PR7xG4OG2/co2bNA9aA27T /eB75B+DS+PpzthOue3Mf5H6stv+P/XP8JyBA/GkIP8q/Kvur9v8/nB2+roG B+FJA5+ES+rZpz5LCcCTAv2S2qL/5Gd6OfhlZesrWHNI/nnNIf4X6BeczBjG 9hReyNiuuK2vYng+6kwO19aeqW8NeDqeW9R3NIeaBzJvax7gzniOw2PwXHeb Xzl33ZYj/ysyb8BVyMzEOO/BFXRd5DzUdeH5UNnya6E/oH6kNYB+1G35mtt8 fqbL89ht45enAPpzuI7yWe9ZKFXRM5D/Br0s3I9xvnDbd80zt3Fp9Fy0/Q+u StsheF657WxfBj01OR00n27Ty+D3RP8MN0R/Tf1Wc45e2M+4PnqCKlwP3Bh+ 5zaWJzH6J7gZ+lD6eq/nir4+ui2zPJ5S5CSj33Z4MuBPDHeEv+j51rzhSYf+ A26PXgx/Ajx/wN/dxr9pT/Azf1P0LMxDIvSK6Mlo+xW9JXpW9KTogegJo60v cZJoG0Ml+Cf8KeBO+Icx5pTwev38wW17u/af5NGmy/+J52IlegHNP1pGSmW4 AuNJB3chZzI56eE95KSNNg7G8xuen+CueFJRp6EE6Uziazn79B2NJyfcHU9R P7vXv8M/cy2Z4Sr4K6Jng7uhz6Rt9mg7J2eNNtbaGOVr+fr2mQP/HG3n+Xzk FIZr4ckLF4Br6p1I5i9wTzJzRRvXQJ9H27zwMdrmYq7ywX3x/ELb3HB1PHmi TZc/R7T1VQ3OT13Q6euXKsYu2lamLw+4N1wo2ri2cvB4waHontG2t0v/hzH4 Rds3whw85+G3ePypi1Dq4fGoYhyDfl1nJzg5XJBxBsB18dSl32JwFLpPtGXW QR/Ns/lrtJ0zfcgpA/fD06Aq6xpemJW9mczS8CP9zCfactRvqWjzx+EvS13e 8QTrXlEa4ilRxfhvPH5wRfhPOFD3n1Jfe7J+th9t58ku0Tb+P7Suos2vs0dx 6pKUaNo25Vp+g/vDHlxjZbgB/pLkV4OHobf0s/xBcFXdK2c8TfxsnLrGf31N f02+J21LwLHo3lWsr3jYi/yacCONB70BPBa9tuaV0hjdB099uAncnLolpbm+ lfyMx+EPwNMKboF+kX5bwAnR60VbZlONjbqZCtzWz/J1LQ3Vj+P5jTE0cjJP +Zr+WfNDfg+4NZ5f4U5wK9hFTmd4Bv4ecFt4Ivy75lhjxXOFnDbRdp4sR34t eDRcI9pY19hO+6WTWZT89no24dbRlqmcOrTtCs+lbbUqlj8d7hhtY9A9rV3F cuagH9fvTaLtbN8QvSe8CP1vxjkRXgePpR6vZ1NriX57w2303qetC06Npxd1 H41D71+dXeGs6FF+ps+Dy9A2WteAp3u09aWcvtGWo7ah1OGUdnAjxhMCL9Zc wVHwKjgi2lg5pcmMhNvDLfCEwSvwuPUsUjqid0QfBG/Wu09ndTgD3E/PAaUT nvZ4+sMb0Zf62nlPP0OIjTa/cgZEW04XuBX+OHg1/vKMYaDmV+sTHuJ4/vKz /DV4BlP/RemqHD8b23L04X6mb4DP+9ra+0G/8X42D//oXRZt86m2w6lH6vmE K9HXOLgHPBb/GHgb/pHwCHgT3JNxjoZ3671APZXSG/9/vpajc3jvKnZ/98J9 4EnwPnhUtGV2xx9MX1PgXvou8LMc+SdEm19roxNt/4a36L1M/gw4j9YhbRfA IXiqwLO0VuBI/PPgo3qPUM+m9NWeT/5S+JjudRXTj8Bz0Bc6PC3a8nUtc6It R23nR5vHBY/HPxfeoTMz4/kH9tC5i8zp8AGtE3gxfByuBDd1ns1F0eZXTkJy lkXbuX0hvBI+Ca/SvaVE4KnFda3W2oXvUz/U/YaXR5s/DE5N263Rdk7uT18r 4HPax2i7zskZiL4Rvog+oIrlX4A36H5SIvEsI2cLfB49uZ/pReEl8Hr4LDyC ttvhW/Ae3U9KLG23aT4obrgB/e7Vc6L3Nf7d8B3taeQ8hj/D9fHsgqP1nsJz AL6LvsbPcq5qbH6WfxPOCB+Ey8M7oy1T+ZvQ/4Vvo2+OtnmIQt8fbX6NrQie J9F2dlobbdei6z1EfZgSB09iDCfgJ3jmwpfgd9rHdE8o/fBciDZ9ALzdz/QH eFpwLVfggehHtL70bMP78JyBn+M5G23vd7WdRf5p+DX6OjwX4euan2jz98fT jMxz2kfgrH42Tn13HIGvRts5oRWeu/AQrU8yr8Mf9F7DcxtuBF+jvqH9ResW z1GtIZ1z/Eyvrvuosz38FL4cbfny34y2nMHwnWjzaO2dwH8L/qj3vp+tSZ2N V/nZtV+GT8IP4E8673G2/DWSvZbv3EfRdi+GkvMET6YYzn+cQ87oWwD9K/4X 1P9pb9L7Dv0l3Ao9Gd4UlHHoT6PNL89anc/hZOS0YU6ewX+jr0J/DSdGb4/+ Dh6hZ6eK5SdAf0v9njJSZxX6+gi/1DqsYnpSPOfQ38Df9b4j5ws8Cn8CxpKI Mgb+rLFTRsPX8SdET07b4vAP9Nbar2Bf7VfwevK/wynw3EJPgj8VfNXPctRv aT/L1/dCMJwU7qU9J9oy1ddt9OToqfF/iLZ50LUkjjH/WF0XfWWGc+B5FW3X MlzPLHoq9PQ6B8Jp4YzwY53n4UxwGup0lPE69+JJDUcwhjp+pkfqHc2c5IAn 40kZY550tE0fYzkT0DPG2Bgmwg1pmyHGzmPPdOaHs+LPEmM8CU8b9Kwxdras 4mf3vQ+cnTonZQqeN+gF4Ny6v3BueITWNnVeyjQ8fRhbHngqvCTa9ttQ+OcY 8ysnX4zlyH+Ya8zlZHYhM3+MnQlDyCkET9f6r2L5+fEUpC5MmYH+bxUbWy70 U1VMLwj7R9r/V0LrvzuZXpoT7S1xPCeUbnl436AHaDzoF2nrD/vQ9jvcBW4I e1P7UmbpbIO/qMaM/6uf6YXx+MVYjjyRjLkUPFfnZ+rSlHlwMeoSlDnwF9r+ 6vxZkVtVzFMcTu7PeREuqvWAXhmuAMeQGQwv1NpDr6AsrRP8leCScHnq3yjz 8Qwlvyu8lnGG+pk+E07sb2Pww18mxvqSv2KM5SzQt1uM9bsIfkhfgfLhf6Jv AfUBRzGess51JSWzqq4fvUiMXdds9Bv4i+uf0avEWFtl9qNtPXgJ7GZsdTQG xlYrxvgfedBbyIP+lpzmcHVymsWYvhxPY+qmDr/CUx+ugudnf9PFz9Brw4Hw a53z4apw3RjzL6VtOvwNdZ/QO8fYvK3R94L2AMpqeAhj7ujwF3Jaw/XwD2Sc rWLsjNoyxmE8cfhrwIvhTOTXdO7jtyqW2UB/Roi6DWUlnrz+xjXRO1B3csaQ G/13zZ3WvL/pdeHB5LeDV+GpHmP5mrfCeLrr2vCMoR5H2a3znr9xL/Ru1D20 NtCHkdMXXg974+kNN8aTmW/VoZoLOCncS/MOh2vvoWzEP8LPcnTGTo4nBP5d zx05YXBzuGeMZa7DnwJPhOYIfZyf5WynrSvG/MrsE2M5G3Q2wBMdY2ddXzIH 6H5rfyMnFu4A/wT313zpGaGOo2zWuQvdI5ZnWu8Cf9NbwxnRB8KdtYZjLH8T /vgYy9kK/xljHvFo5qcfvAUuR84Qp68isBtuCY/FMxjeprZwE3iZzvZwqHMt M7mWv+FDXEsOxjDCuRcjqUdTdmqvIHMU3Bb9rxjzb9c9ijG/PEvJmRJj58zx 5A+Hd6BPhMfCu+Bc5E+A+5KTs6rl94bHU0901kMV+poM90Ff5Gf6KTIHxdg1 qt/1PuxzMfbfV5xNPZdyAH0q9XTKXnga/c6B98M1yZyle0nmQq19ykH0Qoxh JuxGn45/vpOz2s9yruhnDlUtP0bPJjkL4Ch4Roxl7sPviWcRHIs+KcbmYY++ L2LMr77S0taT+14KT4MYe971jNdHX6L7jb5MzyjlX/QdfsY6mzUl/4H8eKrj Xw674N14VsfYGfUf/XvdR+0/eFbB8VoPtN0ID4KLwZvhv+C9tN0AP6PtyhjL Oay5jTH/UZ2ltb4ox+DdmlfdC623qsajyWlFX9t1b+Adus+UE3jK4NkJj0S/ F2Pjv4y+Ncb8x+E1ev6cvkri3wYP0z3iXuyBT6Ivgvc7/bbxt/y/8ezTvaKc Rm/ub+McoPe+v+kj4Dm0XQsfwdPU3/rqr/cRfR2Cx8BnmYcT8Dfm4bDGQjmD vyv+4/A4POepL1IuoPf0N56EXo2cy1pzOjcG8+/h6vpzMjGWeRb/GT0TlPM6 D/hZvs75JzV2/Tv0bmSegserLz/Tf+B5rZ+Tx9j5IRrPHa0nuBH93tU6huvA 1/UMwJe0ZinT4BVc+zWNW98++iaCX5B5MMZY83aD+hblEnwfz80YO/tdjbFM 6bH0ex9ehF4z2PL1d7Vux9gYdIYM87ecWXBH+Ag8Co6DHzvj3Ml4MrL+H+m9 Rp2B8lBrAP0pnqvwAPwv4eV6p2ttUq5pv0VPjn+31ltV01fDG2j7Ab6p80CM 9XUFfh5jOdfh/zTfDq/F/8LJHErmO3gtOW9ijG+gdyD/LbxJ70H4FbwGfk/9 UfOlNYCe0BlPZ/gL+lb4K/V3ym2d//Vz+xg77xXAW4jyEv1TjPmV8yPGcu7C gxjPZ/55Jf7NjDMB+h3tseiJ4fXae/0tX+NJhJbEadupqo1tC3qvqqbvgdf6 2V53TT8n8bN5yKP3ZqzN5329+6hTORxB2/TwETwJ6Cst7A33QU8J74OnoKeB 9+pdTJ2V8oS23/wsx0N7qb/d3wN6l9E2E3wMTh1rmQ/w7+Ias8CP4dn+lnNY 781Y80vfiicZfA9OgicH7K9nHz0f/Bx9LvrP8FHtG3Ae+KTeL9S5KE/xbPSz vVE/o0jhb7rOfgMYW374Apwt1vJ1LbljLeeZzj+x5nkB98f/C3wO/xJ/u6dn YTd6dvg4vJ+xFXT8l/3s2df3ZuFY2/+1BjIF0A6ukI3rJccn1s6xw8jxg2/A XrGm/4ffV9dNeQUvw+8Nn8ezyt/0y/C/9FsEfo1nMXox+DR6ZeqqlE/ov1IX p7yBj+AvCb+FR1Y1/Tb+jbQtBd+CR6OX0RqDT+APgj/qmcVTEb6Knh0uCwfB pWON3+E5hr88/B6eQE4FPft4RsBFnfxysaZ/wFMi1vpV29+oAx19YlXjx9pD 6CvYyakUa6zrmoyniu41ekCs5esa8/nbtdfSuxKurvsLz8JfS3OldwRcT/Og /Y26NuWLzgb4a8TaWXqfv+nP4cNwM+Vr/481z2f8dWIt55ve6dQNKd+1/zMP deGvsA9tm8BNtIfHGsszlzE01rWje8TY96C+H5uiNaf8gE/Ttp3Ghue4zt6a H+2H1K0pifhmvEhff8AJ4bN4Oms8eFrEmj8BeptYy0kM/0O/LTU2vTto29bJ WYbeQf2iL61q+d/1bqXu6LQN8Lex6exdwt/0NnAZuEusnYHX0bab9hrW+Wjq sZSMtD2Jp4/unfrVd4H6xdM11jgpnmuMpyecDN6gcz6cEs8V/H/BSeAesaYn xxOIHqH2ZPam7uvoG6sap8J/E0+okxMS6zCezXjC4TToN+jXBadAD4u1THke 6pwP/4TnHtwPTgdHUrspqfGsICdG849eA0+s+tC7O9ZYnm1VzZ8ez044XnMC 36LfKI0Tzx70P+Es6HGx1lca9P6xNoa08D38gzQG+F/8g+Fc+M+iN3DW4cBY 09Pj6RRr9yUJPIJ6lK4FfoB/GJwBfs2Yhzs5f8cay3OU/JFwHvQh1EOdzFr+ lhPONX6EJ8H58dTzt3utc/VbeAz8C/oHeDycD24GT4D/xDMu1jgTmYerWn5u PC30LQAPxPMZngcXRH/OmGfD2fA/Q58GZ0WfEusw+if0GXAB9D/gmbF27n1K 26maWzzTY02Xf2Ks9ZUZnkU9h5Jdz1FVYw9y2pIzP9bOqHNjjeX5ir4QLoyn P3wm1s7qh/xtH3gFL6BeRMmBfyn1csrPcOIAYz/a+sP39czDvWi7TGPSHs4Y VsFT4MXUSyg5aXsDfSX8K/5UtN0AF4ero2+CZ+APIWd9rJ1RV8RaTlE862LN n1vPCPVm3SN4F/Ue3SM4S4BxRfzp4G1waXg79U5KXjw16WtHrJ397sba+D3Q t8SaPw+8mnqt1hUcyni2at7xpyVzN1yKzKzwPjgQzhBg+WXhvdT7KWXgNAE2 zpJaA1VNr6RnB17jXHsff+trqt7p+A86njd4jsPV4H+pj1CC4bfox+Dq8Dnq C1ozuqdVjeujf4MvwQ3gPGSeh2vAR2Mtsyp8Otbe6fn1HFW1fOknqE85/b5H PwnXhN9VNV0531mTD2FP2iaqxnsYboo+UGd+eAXX4km/1+CG6BepL1PqwTnR r8KV4Rf6roGD4AOxxuXg69Q3tT7J/0JfN+BC8JVYyywIe5Bzz7nGzAGW/5vm NtbGoLbeAZbTGP0VfR2Gq8BF0B/BLXWPSrFnxHGP8KelTk8pAafgup7gaYVn JNf1ItbO2I+pn1K88ASTkwx/L+0//qavw+OH/h5uhv4g1vqS/1ms5XjDL/Wc UXzgovifw7/rfEW/b+FO8OtYYz/NM+N8A/vC6fH8B3fQfaH+4HhyoCdwxlOO zM9Ozhfqb5QAPJnxfIW7ogcxJ//E2rfhx1jzy/M91nKKwkno9xP/7A8ng3/A ReCS5CfC05ac8f6Wv4OchGiJnbYZq9nYOuu+VzO9N9zB3/YWfWsXD7B5aI2e JM7msxhtk1OndLgAbdPBkXjm6DwfZ2f+XOgp4L7oVchJDfeBM1FnoZSm7Qx/ yzmIv3qA3V8XnkK0zQi7tRfFWWZxrQGuMTNcCq4dYDkResbjzC89BZ6k8K/w IvKzw6f0LYCeFy6HXpe2OeEo2jaEf4Fj4RzUP1PK4EkYYHujD/pSf9N1Vg9g bPnggdpn4ixf15IrznLKwnnizFMe9sOfG/4Tf1MyC8L94cLo2eBoOCNjK+D4 u9PXWc5sE+grf5z5K6AXwV8YHoR/vc7tcXa2L4XuCw9H94wz/Tf8PtR+lIpw c/r1ggfgaRVg+hCNn34D4EA8jdF/hePR21F3oDTU+td9plSCs+MvAQfBZauZ PkprhrYl4ZFwefTS8Bg4F/5KcFX8rfH8Bg9F38b4y8D3Nf4442A8OfGXgyvD lcgpD0/EXwYu4uSXjTO9Cp7icdav2lbQtTp6UDXjSTrX0W+QkxMYZ1wNT2U8 leEpelfGWb6ucT9jqwK/YGzBccby18ZfE56jfRhPY/gjnhrUtSg18DSMM702 HBJg+nSd6+Cm8Fy4KnV1Fa1DMuvC83TOoW7gtM3LPNSBa8L18DSC5+OpHWf+ Wuj58NR32BPu5NyvM/qmiLNz+O+0bQOvom1BPC3UXmd7PH/E2dmyOXVLSj30 XoyzGjwZvVE10xfrHILeFl4KN4mz/Dr4f4+zHLVtHWee+nBV2raCp+m8VM3W 0hq9K/3t2vWt5MF42uua8Q8ivzO8Ek/HOONG6LPRx8CH0btT99T8qi8yu8Jr 0S+T2Q1ODHeJM1bbIbTtAa9GH6DnhtIK/bq/5eg7YjieMHgDHA/3gf+BfRhb b7gJ/mHoIfB69Ee0dcXZGbtvnHFTzVuctRU/xRMeZ+ftouT0h39Hf66fz8PZ 0Dsz/ih4KxwRZ9xC30H4ox0eSb8x8CatT/RIuDm6O870ljr/xFlfzeBYPbuO 3qWa8TbajibnT3gL3C/OWPPQDc9AeAd6eICtvdnwS3+bqxzwRvSF8C04ETwS 9oUHU/+le0+Oi5y/4YPoF3hnDdMeBA+NMz4ATw4w/x71hX+Ec0/HUo/XutG7 DM9o2F/3Jc76ao0+Ks7WQBs4KZ5xcIDeNQHW9gh8nn6HxNnfMUmGPlHPMzxT 10TpSNtp1DMoHfSOwDMlzs66C+Cp8AmNM864PZ756NPh4+gTtJdQ2qEvCbCc s+jzAkw/Bi8LsL7OwwvhWfBJeDU8F74C/8W1z4Ovavxxxuf0vqP2iLN9fg3+ BY6nL1wg3p6jRVqblGvwOHKWwQ+0l+JZCt+Hd8Ir4Ee679XMfxdeEmf+2/BE 9JXwY73X4DXwd/ggfBfOmZ13HTnr4uw8thdeDz+DV8WZX23XxpneWe9Z2m6C P6OvhHfDichZBu+Af6BviDPPc/gkmVvgT/BiPFvhL/DmOGOdn5fH2Th1jafx b3c8x+GN8Af4IrwLTkhf2+KsL52Hd8bZGL5pbeDZ64xhHX3t07OPfz/6avgF +p4403U+v4J+AE6CZyP+w3Aq+BT1mTj7ffpNPEfhlOj34HNwOvhQnPm74Cmj s32cnQMvw//CifEc0XqhJNWYyT8Np4c3VTM9NVwiwPpqQ9vfePZPwF3JvBtg v9NPiydQZ2y4O56zcdZXd+0/6De0/+DZQ+Ylhy9rTVF66lsPzxU4BfoaPAed 8VyIM7881+Isp5fexYzhItwDvk3b6844K6Pfgnuj761m+VnRb2qtUfrofRpn +VoPLwJMzw7fibPxy1OVnAdwXzgN6z0dJQ6ujv4M3aWfG5D/EM5D2/txxiHo j8l8DGdCP6bvAjivxgAnIacY/CjOdPnr4H8TZ+fVp1qPlFD0dwHGyq8B/ycd z4s4h/F8QH8N58NzgvyXcH74VZxlhuFphOcHHEfb7/BX2BPPW+r3lHCdJbiu j3CE3sXkfIJ98HyIM45E/xxg/oLodfB/cfTz+N/BXuiX4O+wL/w5zvqKwvMt zsYgTlCE54N58MbTTN8F8XYWnR9ne3sneeJNd8Ob8SxGv4MnJVpq5140YAzJ 4RitAZ3t4RJkJos3jtX5B08qhxNTJ6VEa78tYjm/4n9M20xwBfiPALvXf9HX HfS0cEn0VPgzwMXhdnh+irfzbfp443i9L4pYvj+edHBmuLTWGDl54CC4OePJ BQ/Qc6HzNlwRPUu88Z/6bqJtDrgI+jM8OeFAuClts8L9de6NN13+jPHWVz/4 Z+rclIFwliLGyu/KmPPC4xjzL/HG8pzV3/mNt7/fly/e9vZBWns628M1aOtB zgm4gZjaizIEz/tqxjX17ONpD3eHM8CecFk4D+zr5BSMt0y1/YNr8dE8wxE6 58fbOTYH/uJwMP58cFG4FuwdbzlD9d0Rb/6/4WK655RhcHnq3ygj4cJFjOur X7g0XBcuQ12OMgJPP/otCy+h37bxNv4p+laNN788ftQBTr/tGHMp3Xd9i1Vn vcBNyOyIHgiP0rdwNctviF6RuhJlNHpcgI1TZ9fE1U1vhucjfn+4NuwKsL5m 4OlEZrDTdjB6zXg7M1ehrkYZg+7LddWAm9K2AXUjynj0SQHGu/FPgZvAe+EM 9NsQ7oi/erxljtWZX/NEaYv+Z4DlL8Nfi7qO1ozmnL5qwy3xjAowfbPuF5kd 4V7oM9Bbx9u5qyL+NnA39PJwC7gz3FjjpUwgsw/X3hzeh98bT2W4MZ6geGNd Y0vqVpRJOi+R/zu8H3+zeMuciD4TvR18CL1sEcvXNf4Rb2OYjOe3IpbTFT0J Y64KN4cL6f/5pX1GexGeUXqm4GG6/5RZ+i5D7wL3Rq8F94DD4c7Ko3TRfs4Y BsIZdVapbnofPe/4Q/W8wx3ira8O/8fUecfrXP//v4XrXGddx0ihRUOTSnsX UZRzOIcz21NDNDQ4oogilBJlZYSsysrKzEgoJSktGkjZEvG7P77Px+d2+/3x uD2er8dzvJ6vcb2v9/V1+nyxHyyPOg9hP6za4DHsxsS3wW6HfTZ12ulzjd22 POyO2kNiHtMzR+eI/Qh2e90f+AnHl6F30udLz2rsDtgdsJ+Gny2P94dW6M/o eYI9+bx431vP76AnyyP+BfTnyqPOQN0B+nlKzwf0etgdHfMYd7Uz9iD9Nm8S 9buhl6s2eBv90ibRWy/02+uH3hP7ocZx9z7h7E5qEvvwuO5heeyncl/UM0Of C50jMa/oTmr/qdNT9wS7FLub4rAfp58e2IOJ76tYPVuw76kfdV4lZme9ON9a 2NdRs4/uEvZL5VFT534X8f3cc5v6Uac/du/yiB9KzCXkdtUzAf0RYt7QfcNu hj5Y82I3wh6gPcQ+rHf48viufFPPG/CufivR8wjs0dgH6oV+GjHtqDlE+4D9 ennUV/zA8qgzAvud8ogZif0o8YNUl/hbmXe44rE7UL8/9nBinsMehj0KO5OY 5th3EjO0POLVw5PUGak1olfAfg+7HvYYeBwYQ0wH9LHKQf8B/gnMRB9VHvHv 6RlLzEfYY4lpzlyj1bPuHvZ41cJ+nn4mySY+rX7U1zvSRHiynkXoXYj50HZh k9DH634SP0FrwS5Cn4o9AXsmPBtMJH4KPE3x+t4hZhb2B8RUIffj8vjeH4D9 C/Z83T3sGZoL+w7i52JPwc6uH3Uuw65RP+o3xO6O/Yl61TtzedScoN/79Dxf un5Dlcc+qIc55RE/CXsIuRuxl5L7fnmsZSz6PHiB+sTuQZ0l2B9in038F+Xx vfOp8lQXfVV56FOxe9UPfZqeLfS/Bnse9kJ4sWvWIuYz7Bv1jloe3+9T0O8l frnWgN6PmNXYs7CXlUe85uqL/rnOGv2uJtGn5uqt/72gcv9vTRDzPfbt6Ali 1mKXYr+Fvl5rw/4a/gZM1/cj+iLdGX0u6oeungdhb8BehP1ledSfRvy68qgz A/u78oj5WO8DxH+LXUb82/XjTi7Ws7dJrH069iXoP/rOP34xe/ocn9UT6bs8 zmIWdd5mzzM6k4M9lPjf0JcR/zu8uTy+7waj/4G9RJ9r+EjiFxC/qTziZ2NP IGan1knMQOxfsRdij8Leir0Keyz2X9hrdPeaRP2vsbfBf4PV2OOI2aH16/PS JHTZHbH/dMxEYnZjr8PeDx/QPaOHXfAeMBf7IWL+LY9n3XvY/+jeYJew3tOw uxHzGjX3aQ26z8T8pzPF/qB+1PkOe1r9qP8T9lzsQ9h/YO8tj5ob9Jmi5hHs yXxqbi+PfZiDfbA84ufp/jNXJjE7id9SHmv5XPcE/Wj0P7HnU78i9lbsXOwk 9rN6LsGVwELqtEc/Bvsd9Kfqh65n72B6qIy9hJijOkeMzijROeoswk7vHD18 qmcp86Zhb9fzEDuFvQs7q3PYiplN/ezOsT/z6se5b8HOgauApcS8jF6rczw3 OmIfiz0auzp8PFhGzHL047B3o79bHs9bPTOrdo541anROeosxx5OP9Ww9xD/ Obk1sfdh52GfiP2c7kb9qK/n6gnwSeBf7KX1ozft85gmoR/E3v4gGnjweH4T oNXuHGen/17/G/83+x2bUxvsqRT8LNiPPQX+CFyY4L0CfgZ0AOWgEzgiEZp8 +5zb0fkvghfA0Ymwu3ncBXQFz4POrnWoUvgVdyTxPeCXwDHY/eC+oGoiuA+o gv0y3BNkY78K9wYp66/YN7V5rOH8RGjyZSZifvWxt1LMo/m6u4Zq9fKc/Txf b2uVye0Pvw6OTUSu8iomQnsNVEvEmjp7j7p4rUc5pr/j3gFvgxPQB8EDvUax xm+B0WAUODURPBKcZnu0x++CEWA4GOy66m2EfSe5purVwB4GDwW1EhE72H1I GwJOTMSeTfXZTwSTwATwAZjs/XwfHgfOxh4LjwFnJII1fg+8Cd7wngzw+PhE 1FPd81xnvGuJNT4nEXN96PnGuN4tidDkq5eIGurr3ETUHuD5poNp4GL0H+Af wQazxrclImaG4+aA2eBK9FnwTHA59tfwV6BVIrSPXXMhvAgscA3VugR9rmtd gT0fnmddubOcv9B51yaihsZXJyJWOZ+4xlz3tAR8ChoTswpeCVpgL4OXgpuw P4dXgBesL7fviVy+/8DiRGjyfYS9unnU0tl96jkWu4ZqfWb/as+3wtrpxK+B vwQFzl3sfZP2BchPxL3TfTzF69KarsFe2zz2tDX2t/A67+138PdgffOwxaXe /7U+A8Uq5xvwK9gEbk+ELq3YZ61zLsH+Gf4J3JGI2qpbZP0X+1RjI7grEdrP vhtayxqv53fwG7gHfRv8F/jT+h/2bbP2ADFb4S3gPuxd8G6w09pmcC/6dvhv 0CYRNVTrzkTU3uaYHc0j7v5E5G51/i7XezgR/f/qNSh2h+s+mRtnvyARn2t9 5vXZ3gv2gLbo++F/wT/m/T6XC8m7ALzhGPnbYf8HHwTtE1Fnn2tJO+D9P5q8 ozQ3dgX4mNzYf2lHgicTEf+fc6QfbZ/iKzonC2SDTLPGz5GbBifA09jpcAZI 5oaddIx61xrOd6xyKoHDzHcEfKh56NKeTURtzdMROwdOgU6JqJ3uGOmV7avo XtWDtBznqr5qa+1HeD7tVVXsKqAcuyZcA3TBrg4fB461djyYil4HPhXUNmv8 Mvrp8Gmgl2Pk75mI3JrOPxmcAk5y7eqe9wT4RFArN2xx90RoGuszexHcALyN XQ8+z3egfm6M38Q+Cz4T9HY/Z7gnaXVBH/RqubHmTl57Na//HHAuONu2+LVE 5J7l/At8bm8lovbpXqPmr++eznV+X++h9q8z9sW5sYaB2LfDt4FlSZ4jcBko AZeCS8BgYq6ErwBDEqFfZl8+aAkmJEK71HvSEL4BjPJeXez9Ug3VuhxcDa4B V1mXNpT46+HrwIhEsMbXWhMPT0Su8oZ5rkae71ZwCxiL3gRuDEZi3ww3BTfl hn2T194Obg8ec6xybnQN1WpmXdroROjSxmHnws3B+4mofbPnlZ5nn/pq6LVI y3Xubj+bHknEHlzttbf0nrYArUBrUJAb51LiHorhIjA5ETHyT0qEVug9vwu+ G9zpGoqbmIizVa0Pse/IjbOf6txi59/lvGmJqKHxdN+TO3xXWrpH1bwPvhfM wn4UfiQ3PncPwPeD2dgPww85RvqD9u3zc1bPZ2nyfYzdNjdqzUlEbc1xj2uo Vhv723q+h6x9kojz1LkudK7yZvqsdc56zutzr89/YSKe/foO0Hf/yXk8D8BF aTyzGHcAy4h5Fn4GLE+EJt9TuaE/Z18Ha0sTocm3BLsT3BGswH4e7gy+wH4N fh30yw29i30vgK5gTSI0+VZhv2jfauzucDfwFXYf+FXwHXYv+BXwDfZLuRG3 zPEvOacn6OE78LLHn2GX50avnydCe9lxmvNF96T6vT1Hb4/XEd83N/r4xv30 dU+veX0bvA/l3ovX7VuP/gbcH/yI/RY8APyM/Q78NvjJ+kD73syNnO8Tocn3 A/ZIeATY7Jpvuq5qqNYgMAQMBYOtS9tI/LvwcLApEazxMGvi33W3W3LXQOtk zDXK800EE8CfxIyB3wN/YI+D3wdjc8MWb0P/SHsPdiUiVjmjXUO1xruGtK2J 0KX9jT0ZngR2JKK26m6x/oF96kv9/ZYITb6/sKfkxtzbsafBU8Ee7A3aP+0n mA1mgf3o03MjbqfjpzvnYzAD7EOf6fFu7K/gNT5raTMdtxAsAP8mov4czzHH 8+1Fnwd/Av5JBGs813nzwX/WpR1IhL7QvlVgpe/hCvgzUIHP72L4U7AILAVL wJHoyzw+lAheZp9ilXM4ETWWg7WJ0BY5XvN8DiqlRcwKx610H/J9AVaDJDFf epxIi7s32HdM2peO05lM8Z1YD74D34JvND+oQu46j3PSgtfZt96xP3v/v/YZ fGdfVeI3wr/kxh3WOW+wvsFnfiz2T/CP4Fdifs6NcXXrP9un2l+5h025Ufd4 7L91v8DJ2H/CW3Pjnv+uO+gYsca/gs3gj9y421s8ruUY+WumhbbFcZpnk9eg +tv+N4fHJxK/PTf6ONH9bHdPO8EOcEpaPNdPBJemxTNgiNermF2O+wfsB/vM Gtcm/gLyzgfXpYUmfx3sg7qPtvfAe8Fua/+CU9GPIu9IcBr2MfDR4Iy00I4A p6dF/EHnSD/KPsVXcE4myAIZZo3PIjcBV3LNJJwO0vLCFp+ZFr1rDfUdq5yK 4JDuO/gvN3RpddOituY5BjsFZ4MXE1E76RjpOfZVcK9aizT5uqdFfdXW2jXP Ie9JFfyVQT3sGvDx/s49Fq4Oqlk7DjRArw3XAaeYNb4E/TT4VHClY+TX73fl 1nC+zv1kn71qH+t5a8EngJp5YYsvTgtN4wuxG4hBY+zz4HPB9dj18mJ8A/aZ 2g9wtfs53T1JOwNchV41L9Zc32uv6vWfDc7ROdoWX5sWuWc6/3yfW8O0qK05 Pk3E/PXc0znOv8p7qP27APuivFjDt8TfBpeBh9FL4FJQrH3UukET9Cvgy0Gj tNAvta8laKH4tNAu8dpv0H7I5726yPulGqp1mXrS3uiMrEvT8/k6rRXcmhas 8TXWxLlpkau8pp6roee7BTQDrdAbwzeCAuyb4Ju1lrywxa392dztz7JildPI NVSrqWtIy08LXVoRdnP1CErSovZNjpGea5/6Un/N00KTrzAtnis7/Wy82nvR LC32Unuap761DtXMi3PRmTxITJFqgPvTIkb+u9NCaw3uw74Tvgvc4RqKuyst zrbEMbfnxdm3cW6R8+903pNpUUPjx9Mi9nbflRbusQz9Xvge8AT2I7pHoAv2 /ZoHPID9kObxXNIfsE/PxT1+DkuTryP2o3lR6/m0qK057nYN1XrQ/kc9Xxtr 5cS3gx9zD/c4r0NaaG1B17R4x9fv+x6J0NvZ9zhoD7oR0wF+CryC/Qz8NOiV Fpp8T+aF/qx9T1l7OS00+Xpid4SfA69id1aPefEZnARPBhPzQn/evq7qHfRL C02+3tgv2Pcadjf4RdAf+1X5wUDsVzQ/GIDdPS/i+jm+u3N6gJfADL3Pe6zn ZKe86FXrldbTcZrzBfek+r08Ry+P3yK+T1708ab76eOe+oG+4G3vQyfvxWv2 Kbefx4oboBpgKPpweBgYlRb6W/ZJk2+oNfmGETMCfheMxu4PvwFe19xgkGsO hoeAd6wNVE5a1FS9kWmhv23fYMfegv4h/IHODHtkXsw3Ans8/D4Yjz1a/YIx 2OPgseA96+/Z19996XkubbTXOCEvaj3ktYz0elRDtcbYP8HzjbWmZ4Luke7T xLRYt+YY5Dum+zUB+6O8WMMEr+Ujr2cD+B58hT4D/hhMB1PBFMWhT/P4g7Tg afbNcOx09NXwF2CVa8g3FX0+PM+5s+FZ8qcFz1Qc9lx4jnzYn+TF+H/6J//z 5UW+chbkRd05xHwOrwDLsJeLwVLsxfAixaYFa7wQLAGfqg76Uo8XO0b+RWmh LXXcfM+nNaj+Z57jM49fIn5lXvRRNxG80j2t9n58lhb3TvdpY1rsk3znYO+E d4AfsNfD3yofe43OBHwJ1oKvrX/j8aq04G/sU6xyPk+LGut0Htg/wj+pvs/5 O8U5Zr3jvvc9kO9Hx36dFnkaf+l+1MsK7F/gnzU39lb4T7AF/AE2g9/Br2BT XjyjfvN4bVrwb/b94dj1rrnRdTfb911aaPLpfmqerY7f6jk3YP8Fb1Ov2H/n xfgn63/bp2f7E3nxfNd+b9dc+l5owbMfHMvv991oe8Au8A/Yp7nTgvfmxbPi X3i/+k6L2N2ea59zFHcgL+L+QD8E/+f4+sxTD6Qz1xHwYe0d+pEtYrwtLWKV czAvtCMddwx8NNhKTCacAf7GTsJpzpVfcUeBiqAC+Ie5KnmsZ5S4kn3/ulet RzUSYIfrqMZfaTFPeot47ikm6TjpmfZlgyywm5iUx3u8Fq1jS1poKcdVBjlg L/qxcDXbJ8IngRPAcaC6ekQ/BT5ZPSUjVjlVQe0W4TucFrq0/WmRe7zzT3S9 I5KhyXcgLeaR7z/smnANcAi7VosYa97zW8SZZSRjntru42xwlvYQ/TT4VJ0T 9hlwXXB6i7DFFdGreM370iJWOXVcQ7XOdA1pxyRDl5bAPhc+R/uejNqqe7T1 8+xT7SreU2nyVUpG7+f7zl0ILtD+oxfDJaAIXAYu1d6hN3Cc7qe4gXMuBhep PvolHlfGzoNztZ5kaJc47lpwjc4gGfUv9xyXez7VuQq+skV87sQaX+G8q3VO 1qVVS4Z+rX3NQFOdB/pNcBOdC/b18A3gOtAINNTZo9/o8YnJ4BvtU6xyaiWj RmPdP9dRjZrJmOdm3TPH3OS4pu5DvlvBLTo/Ypp7fGoynjM7/ayR1txxu/2M 2cR9aM24ELQC+aClzpjcAo/rJoML7Gvt2LO8/y18BoX2KfcO+HZQPxnnrPM+ 0+euMz8Huwwu1V3Bvq1FjM+2fpt9qq05Tke/s0XUPQ/7YfghnTf2g/ADuhPY 98B3674lgzW+C9wH7tVdRL/f4waOkf+CZGj3O07z3Ok1qH4bz9HGY+U+0iL6 uMj9POKe9Cx/VHctGfZjHj8O2uv+oddsyecdDMV+Eu0p8IRZ4yvQJ8ETdQaO kf9K7Gfgp223d9121jqAq9A7w+W6q9hd4OfBtcnQOoFrkhH/jHOkd7ZP8V2d 8zJ4BfQ0a3w9ud3gF13zJbgH6N4i7O6OUe9awwTHKucF8BzoCJ61Lu26ZNTW PDdg94Z7gYbJqP2SY6S/al9X96q1SOvt3OdcW2vv6Pm0J33hPqAR9gD4TdAY +3W4P3jN2hu+D0PhYWCIWeNb0N+Fh4NcxwzxPVTuAOe/AwaDt137dc87EB4E 3moRtvjCZGga34z9ATwZFGO/D48DBdjjW8S4FfZoeFSLeOdUPyPck7SRII+Y fi1izQ299n5e/xgwFrxnW9wyGbmjnT/R56Z/U1BtzbEkLeYf757GOn95WqxP +3cj8R+2iDWUYH8HrwdPYa+DvwXfgCngI1CKPgOeDgqToU+1bzVYBR5MhjbF a58HfwLu9l596P1SDdWaBmaCWeBj69L0LjoXngNuSwZrPNuaWO+cM513u+ea 7/mWa7/BPeiL4IXgLuxPtTdgcYuwxQ8k411P73wvpEWscha4hmotdQ1p9yZD l9YGewX8WYt4t1ziug9a/9w+9TXP/UiT775k3Dvdv6bJ2IOZPotV3tOV4Euw RnvSIs5FZ/I4MWu1B6B9MmLk1zuqtK9AO/Qf4B/Vm2so7uFknK1qPYb9fYs4 +w7JyF3r/B+c93QyavzguRT7ve/KKvf4CPovmh88gb0F3gw6Y2+CN4LnsP+A fwfPWv/Vvu3gb/BCMrRN7mdri6j1fDJqa46fXEO1frN/q+f73ZreRf+Ct4Fy 5ypP75bS/gRdkrH3+tzr+0j6X/btcE+adze8C3TF3gvvA3tahC2ujn4O3w/n grNbRqxydoIjGB+GX02GLk3vnPvhf8BL6AfhA+DlZNRW3e7W/7NPNQ6B3snQ Djr33xZRqwf2Ucx1JOiDnYDTQKWWoR9tX8La68RUhCuAftj14PPAh8nQjnFM OpwEbySjhmr1SkbthPWMlhE3wLkVnZ8FMsGgZPSvvdAaFJvhuvVbxtyTkrGO f70vys12flVQpWU8z0+ETwAjk6FXs0+afLWsydeXmJPhk8AY7By4MkiB40B1 MCwZ3+36jj/e2rH+rj/B9UYnQz/OvhqOfTcZParXgdintIz5RmGfCdcFE7Hr wLXBWOwz4NNtSz/Vvhz39U4yNPnGYZ/VMmq977Wc4vWohmqdZv9Znu90a+OT cR91LyckY92a41XfVd3TydgPtOY9CkzNjHOo73tQBArBEmIuhC8AH2BfBF8M GrQMWzwV/Rb4VtDMsco5H1wDrgazkqFLm4J9KXwJGIJ9BXw5mJ2M2qo7zfqV 9qnGVWBOMrQrfHaXtYxaM7Gvg6/1eTWGm4AbW4Z+vX2Nrc0nphHcEMz1u5ne y/QuJ+0GMA/7ZvgmsCAZNa5zfBPXUkzTlhE337mNnH+L92NhMvq/xmtQbFPX LfZef+o9ucz7kguag0XoLeEWYDF2a7iVben59uU5R3NJa+nc2+HbwPJk+PNc VzVUq8DzF/u8W1lTP2Vwqe+AWOMSa+KlyTjzW7w/musOz/cgeAB8jn43fBf4 DPte+D5wT8uwxSuT8azd4e8AxSrnTtdQrftdQ1rzZOjSVmM/BLcBXyajtuqu sv6wfepL/d2aDO0hx+i3u37D6/d825bx9xlf6NnSiucIqAKeRHsCfJ0Mfhys w54AjweHsdvB7cFjoAN4CqxPhibfWuc+6fxOoCP4IRl2ucfPgufAM+Bp1/ou Gf5OtrvAz4MN2C/DPcHvyeAe4DfsF+Cu4Gfsl+DutqW/aN/ElrGGg8nQ5Psl GfOrj2+TMY/m6+waqtXNc77s+bpb20R8b7gX+NW5ytP7krRXwB/JWNPT3qNn vdbvHdPbcW+A/uAv9Nfh18DmZLDG/cBQMATsSQYPBrttD/X4bfAOGATedF39 31Tfse9v11Q9vVMNhN8C25MR+6b7kDbA8RO8dzr798AYMBqMA2PBf8SMhEeA /djvwsPBrmSwxsNAH/Aq2Ire12Od4xjX3ec6o1xLPNLr1Vzve77hrrc3GZp8 h5JRQ33pPUe1+3q+yWASOJ1n/jfwOrDWrPGJ6RHzgeOmgamgAvoU+CNwDPZK +POW8eyV9iE4Gn02PAfMcg3V0vvMdNdSbzPhj8ER6ZE7xfmznZeWHjVmey7F KmeGa0x3T/PAJ6ASMUvhJaAq9gJ4PsjC/hReDDKtL7TvkXyeBaA8PTT5srGX tYxa1dKjtuaY6xqqtcj+ZZ5vsbUU8Svgz1znE+fpfUzacnBsetw73cedyViX 1qR3v1UtY09ziPkS/gLUwP4K/hqsaRm2+ATv/yqfgWKVsxr8ADaA49JDl3Z8 epytzvkk7PXwt+CU9Kj9lWOkf2efanzfMp7z0tZ7T7SWFV7PT+BHcCr6b/Dv 4FfrP9v3m7WziNkEb3T8n/A2sNXaL6Au+mb4D3BOetRQrdPSo7ZqnYG9pWXE nZkeuZuc/6frnZce/f/gNSh2i+s+mh9n3zk9Ptf6zP/fZxv8Beqj74R3gR1m jeuhn0Pe2aDYMfJfgL0X3gPOT486211L2m7QAP0gfABchH0I/g9clh7av+DS 9Ijf6xzpB+1T/GHnVGL+BKho1vgqco+Cj8yPmsfAFcDR+WGLr06P3rWGsxyr nCPAP9TdD/a1DF3alelRW/Nci52E08D16VFbda+wnm7fYfd6eXpo8l2THvVV ++L0mEfjC7Ez8WeAhthV4SqgEXYKzgHZ1iqDJui14BNATbPGTdFPgk8EuY6R /9b0yK3q/ONBDXCca2uOG4g5Fq4OquWHLb45PTSNG2OfB5+bH3eyLnxGftzV M/NjXIhdB64NCtzPye5J2imgDnpWfqz5Oq89y+s/DZwOTrUtbp0euXWcf7bP TZ8j1dYct7ifM93T6c4/zXuo/bsRu15+rKEUu1C1wZPYBXArkA/OB/XBHegX wQ3AnemhX2DfLaAZeDQ9NPluw75K9yU/zlfz1PN+qYZqXQguAZcqxro0fdau gC8H96YHa3yZNbE+O5c47wLPdbXna6z1gYfQr9M9BQ9i36A7pbuaH7ZYd7KN YhXjWOVc4xqq1ci6NH0eb7T2CPZNuoNee0PXfcj6zfapL/V3f3poNzl3m59N Z6fHHmg9d6fHXmpPm4LmIBfcmh/nku+zawm3AO3SI0b+x9JDy8uPz06JzhYU u4bi2qbH2arW49hF+XH2jzu3pfNLnPdUetQo8d1QbJHvSjP3qJq368xBB+z7 4fvAc9h36u6AZ7Dvhe+xLf0u+7b7OXtuemh3us4D+VHr2fSorTnKXEO17rb/ Ac93jzXF6zx1rs8nIld5zXzWOucpifjc6/N/U3o8+/UdoO/+4wt4HoB/0Ntp X0FX7Mfh9uDF9NDka5sf+hP2PWatS3poj9t+SvsHumM/Az8NemC/AvcCL+eH /qx9HbV/0tNDk68bdif7XsLuDJfnx++OHtLAa+jd1CPoi/18fsT1dPzzzumq vkBv9Bc8fhW7Q370qvrSXnCc5uzknlS/u+fo7rHq9MyPPl5PD+7pnl7x+vp7 Hzp4L3rZ1w/9VdUAb2L3U+/58dvhDeWBQdZfs69PfuRoLmnyvYE9GH4HDHXN Pq6rGqr1OhgA3tJc1qUN1DuY5gGD04M1HmhNvCUZvwX1m1B/r6+5hni+98Bo 8C65w+Fh8mGPgEdKzw9bPBJ9PPw+GJcescoZ6hqqNco1pA1PD12a3g/HwmMU lx61VXdYeujj7FNfg61L+78c7An5MbdyJ8ETNcZeC38DvgZTwRQwGX1yfsRN cPxk53wIPpCN/pHH72N/Dq8An6SH9pHjZoNZqpse9ad5jmmeT/U/hmdovvRg jac7b6ZqWZem39ezXFe+pWCJcohZDC9SHPZc9QLmgPlgnuZAX+Cx4sUL7FPs XM+lGgtV33VUY1p6zPOp5nbMYsctcR/yLQfL8uP9/zOPZ6XH3dO9eyc9tM8c pzOZ4DuxBnwFvgSrwSr1R/wXHmtvxV/Yt8axi7z/K30GX9m3GP17+Dv1kR7n rPNe6HPXmX+K/S28TmvAXp8f42XW19un2ppjHvqG/Kir+n/Av2sO7F/hTeoP +yf4R+1NerDGP4BfwM+qhb7R45WOkV/vS9I2Ok7zbPAaVP83z/Gbx18Svzk/ +ljvfja7p61gi+ZOj+d6dXAgPZ4BOg999hXzp+N2gJ1gu3mHezubvLPAMRmh yf8r+h54t3rB/gv+G2yztks9oR+A/1VP2P/BB0HtRGj7NW96xO9xjvQD9in+ kHMqMn8lUMGs8X30cyR8BLgH+2j1CI4qCFv8V3r0rjWc6VjlHKbmPvAP2Jsf urRt6VFb8+jv7dPgBNiRHrVV996M0JP2HXKvz2aGJt/O9Ki/12v/x/NpTzLw p4Pd2FXgyraz4RTIspZTEN+5NeFaoIZZ40PoJ8InqG/HyP9feuRWcb7O/Xif vWpnu7dq8LGgakHYVf29f6zH+7HPhc/ReljvGfDpvgN1C2JcAbs2fMr/189J 7knaydprYjILYs2dvfZMr/9UcBqoY1us727l1nb+WT63ShlRW3McTI/567qn 05x/REasT/u3h5jzCmINSfTWcCvFYufDBaAlqA/qqR/0BvCFjpd+vn3NQFOt KyM0+RLYV8JXaK8zYp7zvF+qoVoXgIvBJeAi69Iyib8cvkxnlBGs8aXWxKmM yFWenpma6yrPdyNopPMj5lr4GtvXwzeA6wrCFlfPiM+mPpcb0yNWOVe7hmo1 dA1p1TJCl3Y8dhO4cUF8X9/gulWt32Sf+rrSPUuT77iMeK7o+fJzeuyB1pOR EXupPb0Z3Aqag1sK4lx0JnWIaQHn6R5kRIz8J2WElqv7hV0Ml4Ai11BcrYw4 W9U6GbuwIM6+tnNbOL/YefpeK/H4VN+TQt+Vpu5RNW+Dy3QXse+D79XdwL4D vh2cjX0PfLfugfU77dNz8S8/h6XJV5eY+wui1jkZUVtzlLqGat1l//2e725r 5xLfBn7Qc5U5TzWlPQDOz4h3fP2+1/u/9Db2PQweKojv1sfgtrpnxLeH2+m+ ZoQm36MFoT9uX1trDTJCa2/7SfiJgvjefBruAC5HHwOPBe8VhP6Mfc+BZ3Vv MkKT7wrsjvZdhl0Od9LdxH4J7q77hv0i/ILuInbngoi7wvGdndMFPF8Qd76r x1cR81RB9LoqPbSujtOcHd2T6nfzHN08voHcHgXRRyP308M9vQx6gibeh6e8 F6/Yd1NG8CuO6wv6gGbog+CBuqMZofezT5p8b1mT7xZi3oHfBkXYveFXQS/Q H7zumm/CA8Ab1l4DuRlRU/Vuzgi9v31vOrYF+vvwOPA39uCCmE/zjoJH6v5h D4WHgGLsEfC7oMz6MPt6u6+mGaHJV4g9uiBq3eG1DPZ6VEO1hts/2vO9a+32 jLhHuk/6jn7VczTxHdP90jvA+IJYw/1ey3ivZy34WueH/gH8IZgMJoIJoA36 JI8fygieZN8Hjn0UfRm8HCx1Dfnaos+EPy6I96up8BTwSEbwR+Ax7OnwNNAe e0ZBjNtan2Gf4qc6Z1ZB1G1HzKfwYtAReyG8ADyLPReeozuXEazxbDAPfAKe Rp/v8ZOOmW1b2nzHzfR8WoPqL/Icizx+jvglBdHHM+5niXta5v0oz4h7p/vU PCP2aZlzt8JbQD/sNfCXoAv2Cvhz8BlYBVZaX+1x14zg1fYpVjmdMqLGF+BF 7HXwt+Abn/NXoLtj1jjua98D+dY5tkdG5Gnczf2oF71vfAevBy9jb4J/BRvB z+AX8BP4AWwoiHeAHz3umRH8o30/O7a3a37vur/Y92pGaPLpfmqeTY7f5Dn7 Yv8O/wZew/6jIMavW//DPj3bHymI57v2ezPor++FVjz7wb/Y29D+An+CHWA7 eCMj+O+C+J7dBe8EAzMidpvn2u4cxe0uiLhB6PvgvY4/k3nqgk+w96P9A4Zg /1sQ46EZEaucPdb+ddx/4CAYTExFalQAo7GPho8CwzPCr7gD4DA4BN5FP6JV jFVfrPEh97jb61GNI1vF9/VB1xiWEfMcA0ZlRMzRjpNe0b4EqATGEJPm8Siv Ret4JyO0NMelgyQYh54NZ4Gx2NXh48CxIAekwET0GvDxYEpGxConE9RsFb4P rEsbnxG5lZ1f3fUUU9l138+IeeT7MCP+HV//hq/vd/17vsYTsM9qFWc2zz3U dB+ngjpgBvqJ8Am2T4ZPASe1Clv8MXqG16x5FaucWq6hWrVdQ9r0jNClzcI+ HT6tVXxfnOK606yfYZ9qZ3hPpck30/ftLN+5c3S2YAF6SzgftAAXgPPBEvRz Haf7KT7XOfXAeWAxen2PF2LfDN8Evs4Irb7jLgOXgs8yov6FnuNCz7cM/WL4 IrAiI1jjBs67BKy03sB1LnVd+RqBhmA1+vXwdWAN9hXwleBycDW4CnyFfo3H X2YEX2OfYq9wHdW41mu5wjVWZcQ8N4B1jrnecQ3dh3yNwY2eq4nHv2fEc2ar nzXSmjhum58xbxKTyzgPNAe3gGZgK/qtHv+ZHnyrfbmO3eb9b+ozyLPvOX5r F8GFYFdGnLPO+y+fu878eWJawQVgB3rrVjF+MCO4tX2qrTk2oxe3irp6H7gX vgccwL4LvhPsxy6DS8HujGCNS8Dt4DawF/0Oj/c5psR9SrvDcZqn2GtQ/bs9 x90eq859raKPg+7nPvekZ/n94L+MsB/0+GHwkOOrtubzDh7J5t0FrS14xKzx Ib07we+Bupmhya93hvZwO3B0ZtRT3TbWHgNHoT8NdwAJ7GfhZ0BaZmhPgUqZ Ed/eOdKftk/xzznnBfAi6GrWOJvccriT6z8PdwGdW4Ut1ve+etcaRjtWOR3B E+BJ8Lh1aemZUVvzZGF3h7uBnMyorbpJ6y/Z95x7rZgZWnfnPuHaFTJjnie8 Jz3hHqAKdl+4D6iK3QvuDV6x9iqojv4WPBAMMGtcA/1teBA4yTHyn5AZuX2d /wZ4E/R3bc1RmZjX4NdBv1Zhi/X+8LrHxxIzDh4LzsIeCY9oFd9fo1rFuDb6 UHgIONH9vOOepA0Gp6C/3CrWXNVrf9nrHw7eBcNsi+tkRu5Q57/nczsjM2pr jpPdzyj39K7zT/Yeav+qYb/fKtag3K/gNeBG7C/gL8FqMAGMB+egfwBPBmdn hj7RvmVgKbgiMzT5zsX+GJ4BLvReve/9Ug3VmgQ+AlPAh9alnUf8dHgaqJcZ rPFUa2K9P3zkvPqea6bnWwgWgEvQ58Cz3cMn8Dwwt1XY4ksz411P73z1MyJW ObNcQ7Xmu4a0izNDl3Y59mJ4EbgyM2qr7mXWP7VPfam/BpmhLXbMm75/NTNj Dz7yvi31ni4Bn4EVYHmrOBedSUNiVsErwTWZEbPctrTPwfX6Wyx4HVjrGoq7 NjPOVrUaYX/dKs7+Bueucv43zmuSGTW+cbxiv/ZdWeoe9a71HbweNCZmI/wL aI69Af4eNMX+Gf7JtvQf7NsM/gD5maHJ1wx7U6uolZsZtTXHt66hWj/av8nz /WTtVuJ/h38DLZ2rPL3PSPsVtMiMvdfnXs8K6b/bt8U95aFvg/8ErbD/hreD v1qFLS5GP43vh9PBqa0jVjlbwX7wDyjIDF1aIfZOeAe4A3sPvBvclRm1VbfE +l77VGNfq/hulbbH69rVKmrdiX0A/td9HkkfR4EjWod+0L4jrSn+MOND4Cns umhngL6Zof3nHo5BOxrckxk1VOu+zKitWh2wK7SOuGece9j5ldAqgvWp6H+/ 16DYCq57ZuuYu5/3ZJf3RbkJ52eCDNCRmOrwsaBbZuhZ9kmTr5o1+ToRczx8 HHhJ/6YAp4M0kANSjtF3u77jK1vLBuWZUVP1XswMPce+Ko7tmhk9qle9R9Vo HfPpfaY2fAp4Bb0WXBP0wD4ZPsn9SD/BvqT70r+JSKvlNdZpHbV6eS01vB7V UK0T7a/j+U6ypvcr3cfT3EO652hcNTTd01cz4++I9ffF+jvkuj4P3YMWIA+M J+Yc+GzQB/s8uB44t3XY4v7oN6o2aORY5ZwFLgWXgAGZoUt7Dft8uH7r+N5v AF/omHqu28/6RfapxsVgUGZo8r2FfUHrqPU69uXwZeAd7Gvh68A1rUO/wr5r rQ0j5mr4KvC23830XnY4I7QrwRD0G+DrW8e7zRWuNTgzal9ru2HriBuaGblX O/9G78eIzOj/Uq9BsQ1dt6X3eqz35ALvy02gCRiN3gxuCsZg58LNwXvWb7Hv ZudoLmnNXLMQbg0mZYb/ZtdVDdW61fO39Hk3tzaO+FZwAXg/M1jjfGtivUc1 9jpHeq4iz3cXuBN8hF4Kl7iH2+DbQVnrsMVTMuNZu8XfAYpVTrFrqNYdriHt w8zQpU3Dvge+W/ubEbVVd6r1e+1TX+pvcmZo8rXmuVR8Oz5wfZX4b1buAzMy QysE16E/ivYImJ0Z/DCYhT0aHgV+wm4DPwQeBI+BtmBuZmjyTXfuo85/CjwJ FmSG3cHjx8EToD1o51qaq4NzPsF+Fn4GzMd+Ae4KlmQGdwHLsTvCz7WOd5Xn 4c5gqfVO9r3XOtbwc2Zo8i3MjPkfd33No/medg3VKvecL3i+ztbUQ3e4G/jc ucpblBnai2BFZqypnffoca91nmO6O+5V0Lt1vMP0gl9xTbHGL4O3wADwbWbw m2Cd7bc87g/eAK+DPq67KjM0+da4puqtxn4N7ge+yozYPu5DWl/Hj/be6eyH geFgKBgB3gUn5fBcgN8B3xP/NjwIfJMZrPFA0AO8BFai9/T4s8yop7rfZUad Ia4lHuz1aq6Rnm+Q663PDE0+vS8Nc196F1Ltnp5vLBgDNqKvhr/Qnpg1Ts+K mHGOmwQmgj+InwCPB79jL4E/BfszQ3sf/IY9FZ4GpriGaukzMtm1fsX+CP4Q bHHuBOdPdd6uzKih8Y7MiFXOB64x2T19DGa4n/m6R+Bf7FnwzNbxTvIJPBcc sD7bvvsKeRaAtlmhybeZmAWto9ahzKitOaa7hmrNsX+B55trTfMuhheBw85V 3r7M0BaCI7Pi3uk+rvW6tKY/sZe2jj2tQMxn8HL3/LnuCFjROmxxIitil/oM FKucZbpnqg26ZIYurVJWnO0q97AG/hIckxW1Vbei9a/sU42vQVZWaPJlZsVa Fns934J1IAf9R50z+MH6evt+tFaNmA3w96AK9q+6L2CTte9AZfRf4J/BsVlR Q7Wys6K2aul9bGPriKueFbkbnP+r60lf67342rEbXff+wjj7h7Pic63PvD7b f+gegZroW3Umup/mre7nNPJOBdc6Rv4TsP+G/wLHZ0Wdza4lbVvreNfaA+8G JxGzD94LTs0KbVfreC9S/N/Okb7HPsX/45wjmP9IcLh1sManUeeA7iCog/0f fAgcbB22+Mys6F1rqFMYscrZD3aAnWC7a0g7PStqa56zsY/GPqow3sEOue5Z 1o+x7x/3qn6kyXdGVtRX7ZOzYh6Na2FXxF8BnIedCWeABthpcBIkrKWDC9Gr wceCquZqjj8Orl4Y70vV7L88K3IznV8ZVAE5rq05ziUmG06BrMKwxRdlhabx BdhnwKeDRtinwCeD67BrF8b4euxacE1wmfs53j1JqwGuQq9UGGs+y2uv5PWf CE4CJ9gW6x1MubWcf6rP7YasqK05LnY/td3TSc6/0nuo/dN7bN3CWIP6zINz wR3Yt8LNwS3qCZxZGO9X52lvwE1ZoZ9t343aA1CcFZp8DbEv1p6plveqrvdL NVTrHFAfnA/qWZfWhPgGOltwa1awxhdYE9+SFbnKa+q5LvF814JrQAH65dp7 17lS+w2uKAxbrPexu+F7wF2OVc6lrqFaV1uXlpcVurR87Ot15qB1VtRW3Vzr N9invtRfs6zQrnfub3426flwvvdCa2/kPW2osfYbNC6Mc9GZ6F2umdbtPW9i f0lWaDeDMux87QFo6RqKK8yKs1WtUuwWhXH2dzq3mfPznXd3VtTI991QbAvf lUbusQi9UHsA7sO+A769ML7LiuUH96Pfpr4cI73Evs1+zuqzL02+e7DvLIxa D2RFbc3RyjVUq9T+Oz1fmbUHs+I8da6POFd592aFpnPWc16fe33+9dnUs1/f Afrur1zE8wBsR2+jeqA99sPwQ+DxrNDke6Aw9Efse9Bau6zQ5HsMuy38KHgS u738hfGu9SLcDbxQGPrj9j0JngBPZ4Um3xPYT9n3DPbTcAfwHHYX+HnQGbsc 7iRgP1MYcU87/pn/5YBnwUG9/3vchZjHCqNXrVdaR8dpzqfck+p39hydPS4n vmth9NHR/XR1Ty96fV29D495L7rZp9yX4O6F8Z7zMtxTfuxX4d4aW3/Fvh6F kfN8Vmjydcd+E34D9HHNHq6rGqrVC/QF/RRjvZfn6g+/rjmygjV+zZr4Vd3t Eu4aeD0Vcw3wfMPAUNnEDIIHKg/7HXgweLswbHF/9FHwSPmyIlY5b7mGag1x DWmvZYUubQD2u/Bw9Z4Vtd9xjPQR9qkv9dc3KzT53sYeXRhzSx8Dv+c+V8Gr wUowEUzwXGMLI26I48c6530wzmsZ7/Ew7E/hxWB+VmjjHTcVTAHTsqL+JM8x yfONQ/8Q/gBMzgrWeLLzPlIN69I+zAp9qn3zwTzwMfpceA6YjT0dnqF5wUz5 HTPL45lZwbPsU6xy9M75fzUcM901ZmTFPJ9oDsfMddw89yHfQrAAnEjMIo/V T1/fO90xaYscpzMZ7TuxAnwOPgPLwFLlE7/c43lZwcvtW+HYxd7/JT6Dz+1b gP41/JXisuKcdd6LfO46c73XfQl/oZrYawpjvMz6GvtU+1PXXFsYdRX/M/yT 4rB/gDcoHvtbeJ3myArW+BvwHVivPtC/93iFY+T/PCu07x2nedZ6Dar/o+f4 0eMvif+lMPpY6X5+cU+bwMbCeH/Tcz0FdmXFM0Dn0SsrYn513BawFWw2a7yW mFPJqwOOyA5N/m/R/4K3qVfs3+E/wG/W/tTa0HfDuxyzF95TGO9s0nZqHVkR /5dzpO+2T/H7nHMYHEEPh8wabyb3X3i/1op9EP4PHCgMW/xrVvSuNdQuiljl /AO2gx3gb9eQtjEramueP7CPIudIsCUraqvuL9aPtm+fe/0hKzT51M92196Q FfNovB67Av5jiuL9LQNOB39iJ+A0UMlasijeIavC1UAVs8b70KvDx4J/HCP/ 3qzIzXC+zr2yz161NYf2LQvOBplFYYt3ZIWm8U7s0+HTtEbO/WT4pKJ41zql KMb/YteEa4Dd7uc49yTt+KJ4P6xYFGv+zWuv6PWfAE4EtWyLD2RFbk3n1/G5 Hc6K2tXdm+Y/xT2d6Px93kPt3zbsM4piDYewc7WXimctt8C3gmbgTFBX/aGf C5+j88sO/Sz7GoGG6ic7tDP9WbgIbqD9yo55zvB+qYZqnQ3qgfrgPOvS9G55 IXyB9j07WOPzrYkzsiNXeXqH1FwXe75rwNW6B8RcBl/qOlfAV4LLi8IWt/Vn 8zd/lhWrnEtcQ7Wucg1pqezQpVXBvg6+VmeaHbVVN9v69fapL/WXnh3adc79 1c+g1VmxB1pPpezYS+3pDaAxaAJuLIpz0Znova4pfLP3vLH9NbJDu0l3Bbsl nA9auIbiqmfH2apWTey8ojj7k53b1PktnVc7O2q09N1QbJ7vSkP3eBx6a7iV zhf7dvi2ongvKoILdc/Qy+BSx0gvtk/PRZ3BN1mhyVeHmDuKotYZ2VFbcxS4 hmqV2H+H5yu1Vpf4u+G7dKecq7xTs0O7U/csO97x9fv+0qzQ77bvXnCP7igx D8IP2H4IbqP7lx2afPcXhf6wfQ9Yq58dmnwX6G+B4EfAhdjt4Md0J7CHw++C YUWht7fvCfC47lx2aPJdjP2kfZdid4Cf0j3Gfh7urLuF3QnuqLuL/XRRxF3h +Ked8yx4BlyJ/pzHV2G3LYpeG2SH9pzjNOeT7kn1yz1Huceq06Uo+rje/XRx Ty+Arrqj3oe23osX7WucHfyi43qCHrqL6K/Dr+mOZof+sn3S5Otnraf35A24 v+4Kdnf4JdAN9Aa9QDP0PnBf3U9rr3h/XnM97Vsv58jXx7Han5HwCFCE/WZR zFeAPQQerHuJ/RY8wDHvwG+DQusD7evuvm7KDk2+VthDi6JWS6/lTa9HNVRr kP1DPd/b1oqz4x7pPj2QHevu7j0f7vulPRlVFGto47WM8npWgZXKQR8Hvw/G gvfAaNcf4/HD2cFj7Bvn2LboC+CFYL5ryPcY+kfwh7pH2BPhCUXx3i4eD9qj T4Yn6Y5hf1AU4yesf2Cf4ic6Z0pR1H2KmE/guUXxPjwbngWeRZ8OT3NNscZT wcdgBngafabHzzhmqnVpMx33kefTGlR/jueY43EH4ucVRR/PuJ957mmB96M8 O+6d7tOt2bFP8nXG3gRvBK9hr4A/A12wF8OfgkVgKVgCuqIv81i54mX2KVY5 nbKjxvKieLf/Av4SrPY5f67755gVjlvpeyDfF47tkR15Xzh+sXt5HvsreE1R vGNvgH8A34P14DvwLfgGrAUvE7/O41eyg9fZt96xvVzza9f9zr6e2aHJp98O mmeD62zwnK9i/wT/WBTv3j8Xxbi39Z/t07P9vqJ4vmu/fwH99L1QzLMf/I79 G9rv4FewBWwGA7KD/wBvYv8JbwVvZUfsb66z2TmK21YUcW+gb4f/dp3azHMK mIm9E21HUbyH7yqK8cDsiFXOX9Z2OW4v2AOGEHMYPgSGYx+ED4AR2eFX3G7w D9gHhqHv93hwdvB++/50r1td41/wruvsdrzm+Q+MzI6Yg46Tfti+I1nTEWA0 MUcVx3iE16J1DMoO7SjHHQOOLo7fXAm4EhhHTArOAdkgCdLAePQqcGXwYXbE KqciqFocvknWpY3Njtx056dcb3J2aEnH5Ng3ATsTzgATsbOKY6yadYrjzGa5 h6ru4wRQC0xFrw4fCz7APh6uAY4rDvs4x1TwmkdlR6xyqrmGatV0DWn6TVHL 2gzsk+ATwdyMqK2606yfbJ9qV/CeSpPvkVT0Xsd37jRwKphNbjP4FtAUnA3O Kva7uuM+zg4+3Tl1wRnqAf1Mj7UnN8DXg9XZoZ3puAvA+WB+dtQ/x3Oc4/nm oNeDzwMLs4M1Ptd59cEi69IWZId+gX1Xg6vAUvQr4MvBYuwG8EXgQnAJuBgs Q7/UY80lvtQ+xTZwHdW4rDje5xu4xpLsmOdKsMIxVzjuKvch37XgmuJ4D7/O 48+y4zmzyc8aadc57jc/Y/oTcxPjm0ETcCNoBL5Eb+zxquzgxvbd5Nivvf8N fQY327cWvQWcB9ZnxznrvL/wuevMv8FuDt9aHO/5ucUxXmM91z7VvsG5LYuj rurfBpeBjdglcDH4GbsVXAC+zQ7WOB8UgtbgR/Qij39yjPz6jSCtyHGap6XX oPqlnqPU4x+Iv704+tjkfm53T3qW36E9zg77Lo/vBfeALfq8l/B5B0V8Ru5H ewDcZ77fvQ2Hh4EqjpF/K/pDcBvwS3bUU927rT1YHO//7eDHwHbsx+H2YEd2 aG3B39kR/5BzpLezT/FPOKcj6ASeM2v8L7kd4KfAbuxn4GfB08Vhi/dmR+9a w1DHKudJ8Ah4FDxsXdqu7KitefZjd4bLwcHsqK26+6w/b98T7nVndmjy/Zcd 9R/23XjU8+l3UFe4CziE3RPuURzv+d3g7uBFay+BPej94NdAX7PGFTiL/vDr oGIqNPmPSUVuT+e/CvqA3q6tObZR8xW4F3i5OGzxUanQXvG+jYDfBVXRB8Pv gGzsIcUxTmG/BQ8ASffzhnuS9iZIQ3+hONa8xWt/wesfBN4GA22LM1KR+5bz h/ncKqeituao5H6GuKe3nZ+ZivVp//SbYmRxrCEH/XN4BaiHvRz+DCwDo8Eo kEAfB491z9Lfs28BmA9OTYUmn37jfAh/AGqmYp6R3i/VUK0xYDyYAN63Lq06 8ZPhSaBGKljjidbEx6ciV3nHpWKujzzfbDCrOD6P0+Cp4ETsGfDHYHpx2OKT UvGup3e+87IjVjlTXEO1ZrqGtBNSoUs7BXsuPKc4fu987LonW//EPvWl/mql QpOvWirune6fPkcTvBc63/ne03lgEVgMFhbHuehMziNmKbykOH5PLbL/9FRo n4IzsVfDX4BVrqG4M1Jxtqp1FvbK4jj7c5y71PmrnXd+KmpofK7vyUrflfnu sQ76V/AacAH29/B34BLstfDX4ELs9fC3jpH+jX2/gJ/BlanQ5KuPvaE4al2a itqa40vXUK119m/wfN9a0++On+AfwcXO/dJrkfYDuCwVe6/P/dHWf7Jvo3vS vL/Bv4LLsf+AN4Pfi8MWX4N+It8PJ4ETSiJWOZvATrAD3JAKXZp+K22Ft4Dr 0f+Ct4GGqaitutda/9s+1dgObkyFJl8j7D+Lo5Z62A3vAk2w/4UP6F4Vh77H vn+tNdXfz8P7QGPsU+j7ZHB/KrS9xfG+8R98ENyaihq7Pe8B12qGfag44po6 9x/nH0G9w3BuKvrf6TUo9pDr1i6Jue9JxTr+9L4o90jnV4QrgHxiUnA2KEyF Xsk+afJlWZMvj5jKcA4owz4aPgYcBZIgDbRMxXe7vuPTrSVK4ndQtuuVpEJP 2pfhWPWgHo/wXFVKYr7bsGvCNUri90g1uKr+3Rf9ePg4x0g/1r6j3VeLVGjy lWLXKolad3gtVbwe1VCt6vbX8nzHWbszFfdR9/LeVKxbczT3XT3Be66/I9bf F+u/NdM51PY9aApuBi8Scxp8KmiDfQZcF5xeErb4IfRr4GvB1Y5VTh1wPqgP 2qdCl/Yg9lnwmeBR7HPhc0ri90td133A+nn2qUY90C4VmnwPY59dErXU24Xw BeAJ7Mvgy8GlJaE3sO8ya08Tcwl8MeiQinczvZdtzg7tIvAU+pXwFeDZVNS4 0D1c7lpPYl9VEnGqo9xLnH+N90O/Tep7L+o59irXbea97uI9Odv7cj24DnRC bwQ3BM9j3wQ3AS9Yv9G+G5xTngqtkXPz4NyS+I1wveOucw3Vauz5m/m8m1jr Sm5z+FbPJdb4Fmvi7qk4c63zGc/VwvOVgGLQB70AzgcvY7eGC0GrkrDFvVLx rN3o7wDFKqela6hWkWtI65kKXdqr2GVwKeibitqtHSP9NvvUl/rrlgpNvt6p +Pt8/f+W0N/o31kSf5+xgb2qeBvPEVAB3I92H+iXCr63JH6/DIWHgDnod8P3 gLvAg7q/YEAqtLu9D8q93/ltwaPgnVTYj3n8MHgEPATauNZbqfArbjD243B7 MAy7I/wcGJkKfha8h/0k/AR4F/sZ+GkwyvpT9g0riTV8mApNvhGpmF99DErF PJqvnWuoVgfP2dHzPW1NPXTWHSyJ3zLtnTc0FVon8HYq1tTGe/Sw1zrQMZ0d 95LuF3gfvRv8ouuINX5B56EzBx+lgvt4LX3t07i37ojuGOjhuuNTock32TVV bxz2K7qnYGIqYnu4D2k9wYRU7Nkwn/1A7ZPOSGep9YEPiHkTfgPMwO4Pvw6m pYI1fg10Ac+DsehdPdZ9GOS6011ngGuJNf44FXMN9nyvu97UVGjy6bfPQPc1 MxW1u3q+d8FwMBd9GbwcLDVr/E0qYkY4bozuFFiAPlr3CMzHngd/AtakQhsJ 5mFPhCdpr1xDtT5BH+taC7HH62zBp84d7fyJzluaihoaL0tFrHLGucZY9/Sh 9husIGam9gYswp6iewFWYs/QXoJZ1qfad3spz4LSeP5Im+K9nVUStfS74wPP Mdk1VGua/bM833Rr+g04F54DFjtXeZ+lQpsNvkzFvdN9nOR1jXP8/JLYU619 kfbJuZ/CSxRTEra4tvd/vs9AscpZAFaDVWBDKnRpX/msdc5rsVeots96ieuu tv65faqxEnyfCk2+dV7L3P+tB3wBfkRfB3+rmtbX2LfO2kZi1sJfu7cflCfb 2lfgF/Tv4PVgUypqqJZ+13zrWj9hf18Scb+mInet839wPemrvBcrHfu9695R Gmd/VU58rvWZ12f7Z9UGm8ndpBrq2azx73p3Iu8EUDUnNPn1O+IP+cHfqajz i2tJ+w38hf4XvM0x28Ul8f4v7U+wMxXxfzhH+l/2KX6Hc/aDf8E/Zo0PkLsb 3gX2Yu+F94E9JWGL/0lF71pDrdKIVc5OsAVs1dpdQ9qeVNT+v3mwD2oecDAV tfc6Rvp/9u34X6+p0OTbn4r6qr09FfNovA37MHxIwK5ITxXAUeztUfDR4Ehr x8hGz4KzQaZZ4wroOXAKpDtG/kRO5FZ0fjrIAEnX1hz/MW8CTgOVSsMWH5MT WsLzngyfBKph14CPBznYNUtjnIVdTfdCtdxPZfckrUpp/I44ojTWfMBr11jr rw4fB44tDftY11RuNeef4HOrkhO1NUcl91PTPR3n/GzvofZPv91OKY01VEa/ Gb4JnI/dGG4CbgR1QG3lo58Bn64+ckI/1b5rwNXgzJzQ6vizUA8+T3fLe3WK 90s1VOs05YCzQF3r0vR781z4HK0tJ1jjs62Ja+ZErvKSnqu+57sMXKre0C+E L7B9EXwxaFAatrgOeilcprNwrHLOdw3VusS6tFNyQpd2GvYV8OWl8fviYtc9 2fqV9qmveu5Zmnyn5sRz7gc/Q87yXujfXK72nl4FrgPXg2tL41x0JvXIbQQ3 1HpzIkb+s3NCu0H7hX2Lzhk0cw3F1c2Js1Wtc7CblsbZn+fcRs6/xXn6fXGr x/V9T5r6rlztHlUzD87V/mIXwYVaP3ZLuIX2Ers13Errt55v3y9+zurZLk2+ i4gpLo1al+VEbc3R3DVUq8D+Ys/XytrlOXGepZ4r13kX+ax1zlfnxOden399 XvTs13eAvvvTy7hT4CP0uxnfpT3Bvhe+R3uUE5p8d5aGfp99d1m7Pie0e20/ AN+v88N+CG6jPcTuBJeDjqWhP2zfo7oLOoOc0OS7Gbutfbdgt4Mf09qwn4Wf 0Z5id4Cf8lztSyMu1/HtnfMEeFx7iv6kx7diP1gavTbOCe1Jx2nOtu5J9Z/2 HE97rN8jz5VGHze5n+fcUyevr8D78KD3oty+VujPw511rtgvwF11ttgvwd1B mfUX7etSGjmFOaHJV4zdB35VZ+GaXVxXNVSrG+gJXgY9rEsrJb433EvnmhOs 8SvWxHflxG9B/SbU3+trrr6eb6D2oDR+R7wOv+Y9fwN+E/QvDVus32JD4ME6 75yIVU4/11CtAa4h7f6c0KWVYL8ND9KdyInaqtvC+jv2qS/1d29OaG97jUNL Y+5HsIfDw3S22EvhZWCJ+gOjde7o75ZGXFvHv+uckWCE7hL6KI/bYX8Cz9U5 5YQ2ynETwQTdj5yoP8ZzjPF8T6C/D4/TfcoJ1nis88brLlmX9lRO6BPtmwk+ 1t1Cnw5P8x2YDH8AJoGPwIe6l+hTPC7PCZ5in2KV0yknakzVHXId1eiYE/PM KI3fUIqZ7riP3Yd8s8Es0J74OR7r905P37vbc0Kb4zidyVDficXgU7AILADz QTfiF3qstYsX2rfYsd29//N8Bp/a9xL6SvhzsCoV57zUa1zqM++B/Rm8HLyM vaI0xuXWV9in2p/4bqwqjbpdsdfD34I3sb+B14L+2F/CX4DvUsEarwZfgTWg DzFfe9w3J2JWW5f2teM0zyqvQfXXeY51Hvcj/rvS6KO/+/nOPW0A34M/U/Fc TyuLdzk9A3Qed+REzA+O2wg2gV/MGr9NzAnk1QLzckKTfxD27/BvOjvsn+Cf wY/WfgXvoG/T/Dpn7L/hv8DInNC2guE5Ef+7c6Rvs0/x253zD9gP9pk1fo/c XfBOMAJ7D7wX7C4NWzwmJ3rXGmqWRaxydoDNYAv4wzWkjc6J2ppHvxEOwP+C 93OituqOygn9oH3b3at0afKNz4n6f3jtWzzfUOxD8H9gInYFnQmYhH0kfBQ4 wtrR4EP0TDgLZJg1/hg9BWeDWY6Rf0ZO5FZwvs493Wev2prjA2IqwQlQsSxs 8ZSc0Co55iT4RLAI+3j4ODAfu0ZZjOdiV4Wr2FY/Oe5JWmUwB/1waaz5fa/9 sNd/LP7qoFpZ2OJPciK3qvNr+dz0+0K1U16j5q/hnqo7f7b3UPs3GfvksljD Yuyb4CbgF+wb4cagEagNTgFL0E+HTwPLc0KvY9/V4CrwTU5otb0n58HnlsV7 vuY52fulGqp1KqgLzgRnWJe2jPhz4LM9l1jjs6yJV+ZErvI+81z1PN+l4BL3 cwF8PvgSuwF8EbiwLGzxV/5s6nM5MCdilVPfNVTrYteQ9kVO6NLWYl8OXwbW 5UTtBo6RfoV96kv9rcgJTb6vc+K5oufLgJzYA61naU7spfb0SnAtuA5cUxbn ojP5iZiG8A3gh5yIkV/v+dKuBxuwm8G3gKauobhvc+Jsb3TMzWVx9hud29D5 zZy3KSdqaPyz78nNvitXucf16Llwc9cphFuDP7FbwHll8Z7fCi4AW6y3tE/P xZ/8HSFNvl+xi8qi1uacqK05bnUN1cq3v8jzFVhTfClcovNwrvJ+ywmtGPyV E+/4+n1f0XqpfbeBMrAd/S74TvA39j3w3WB3Tmjy3VEW+r323WltZ05o8u3B vh++D+zDbgM/CPZjD4LfBgPLQn/IvkfAw2Xxm+Ih+3ZgP2rfLuzH4LbgIPYz 8NPg6Mq8B8BPgiOw25VF3H+Ob+ecx0F7cAj9CY8PYz9QFr3+kxPaE47TnI+6 J9Xv4Dk6eHwkcz1bFn0cUzn4WffUETwHKlaO2g94LzrZV6lycCfHdQVdQDp6 L/iVsvgtIP0F+6TJ97I1+TKIfxXuDSpjd4afB+WgO+jmdfWAe4KXrL0IsipH TdU7qnLo3e3r4Vj9JhoMvwNOIKZPWcynPR8AvwmqY/eD+4Iq2G/A/cGx1l+z r7P7SqscmnxVsd8qi1rHeS19vB7VUK3X7X/L8/W3Vq1y3CPdp5qVY92aI1k5 NN2vGthDymINJ1YOHuL1LAVLwFnoI+CR4F0wDAwFJ6MP9/iUysHD7Rvh2Dro s+DZYKZryHcq+nj4fXA29nvwaHB65eBR4DTssfAYUBd7XFmMk9bH2af495wz oSzq6p7MgKeD87CnwlPAudiT4UkgVTlY44ngQ/ABOB79I4/122eS/Q/khPaR 48Z7Pq1B9ad5jmkea28/Los+TnA/H7unWd6PepXj3uk+HciJfZKvPvoG+Htw DfZieJH3ZC78CZgD5oN54EL0BR5rb8UL7FOsci6oHDUWgouxl8OfgWU+50/B 8zkRs9hxS3wP5Fvu2IsqR57G+r0w172cj/45vAL0RF8LfwO+BmvAV+BLsBqs Aq/oHd7jyysHf2HfGsde5ZorXfcr+3rnhCbfJZVjnrXeq7We82rsb+F14Drs 9WUx1m8H8Xr79Gy/vSye79rv78ANxJfcxrMf9MP+Ee0n8APYCH4B11cO/hnc iP0rvMm2YpXT0DEbHfdbWcQ1Rt8M/wEaYddknhqgDfZWtC3gJuw/y2J8c+WI Vc7v1v503N/gL9CEmH/gfSAPew+8GzSvHH7FbQM7wHbQDH2nx7dUDt5p36/u dZNr7AK3us4252qeva6vmD2Ok/6Pff+C/aAlMQc8vtVr+d1rlHbAcf+Bg2Xx G+dI9uMIUEhMGpwECXA0OEpng54Bp4M7Kkescg6Tn3lb+MqsS2tdOXL/H1Pn He9z/b9/RZxlnXPeZ8hItkRKKiEpFZVCWupMnElEEhpItJBUGiotlaikYaSQ KCKJJkppoCFakn736/u4Prfb74/rdj2e12M8H8/xfr1fb6mqOT/Z9fLSQ5NP MSn2DUiPf46vf4Z/VXr88/zqrlk/L86sxD3UdB9ZIAGK0evAtUE+djqcAerm hV3XMYe9Zp2XYpVTyzVUK9M1pOm3T8LaYOJz4GxQmh61VXeg9Vz7VPuw91Sa fGW+b/V95xqCBuB16veAzwFng6agSV78VmrkuGHpwY2c0xgcA4agH+ux6neG Twe3pId2rOOOA63B8PSo38xzNPN8Fegt4Rbg2vRgjZs7rxUYab2567R2XflO AR3BDegd4JPA9djHw21BG3ACaAdGo7f3+Lr04Pb2KfZ456rGiWCM66jGqPSY 5+S8+B2kmA6O6+g+5DsNnApuJL6Txzelx3Nmm5810jo5boefMXr+dGd8FjgT nAG6ggno3TyemB7czb7ujr3V+9/FZ3CWfePRz4d7gdvT45x7uE4Pn/lt2OfB 5+bF76CeeTGeZL2nfard2eu6IC/q3oF9GXwpmIF9CdwPTMe+CO7tecUaXwj6 gIvBVPS+Hk9zjPx3pYfW13Ga5wKvQfX7e47+Ht9N/OV50cc093O5e9Kz/Iq8 +K0ke4DHeeBqcL8+7/l83kFaBs8UtEKQb9b4Pr07wQ/mxftzgf2z0AfCxeDh 9KinuldZKwIPoZfDZeBx7Eq4AsxJD60UPJYe8QOdI73cPsUPcc51uoNgpFnj Z8kdBl8DZmNfC48Aw/PCFj+dHr1rDbMcq5yhYDAoAYOsS9Pvtes8z1xyR8PX g+fSo7bq6neT9BvsG+JetQ/S5Hs+Peqr9iPpMY/GD2KPhceAF7AnwOPBS9g3 wTfrjlm7BbyIfgd8p+6SWePF6HfrvoAljpH/jfTIneD8yWAKuM21NceTxNwK TwIT88IWL0wPTeNXsB/RmsAq7Pt1F8BB1v5AXowXoN8DTwdvup+p7knaNLAU fVxerPlxr32c138vmAlm2Ba/nR659zj/QZ+b9kG173ZNzf+Ae5rp/Oe8h9o/ /facnRdr0LrehVeD7dir4HfASt0/8KjG6E/CT4A16aE/bt9S7bHX+LhzVmPP 0zmDDd6r2d4v1VCtObp/4BnwlHVp7xL/HPwsWJ8erPFca+J16ZGrvLWe6wXP 9ypYBLaiv6hzAB9hv6y16i7lhS3+OD3e9fTOp9/OilXOfNdQrVdcQ9qm9NCl bcZ+HX4NfJYetVV3i/U37FNf6m9jemiv+05O8f17LT32QOt5Lz32Unu6WHsK loNleXEuOpNtxKzQXciL34Nv2l87PbS3wPvY74m1P66huBXpcbarvIdr8uLs Nzh3hfPfc96O9Kih8Ve+J2t8V5a4xy/QP9BZgZ3YW7Sv4EfsjaoNvsHerHMA 31v/0L4vwOegVXpo8n2LvTUvamk/VVtzrHMN1dpk/1bP95G174j/DP7Ud2C9 875OD+0TsDc99l6f+1etf2bfl//rCX0HvD0vfn99rfVpH/LCFv+Mns33Qw7I yo9Y5WwDe8BusC89dGm7sL/VfoAO2N+r37z4/9fsdN3vrP9gn2r8CPanhybf eZnUyotae9B/0prAH9j74QPgt7zQf7Zvv7WDxOyDfwV/Ydej71whI7RfwJ/o f8C/g0PpUUO1DqRHbdXS76k/8yJOdZS7z/l/SwP/pkf/e7wGxf7pukfnx9z1 MmIdu7wvyj3o/P/AYZBETDKxSaBGRuhV8u3LD1+N/NDkq0ZMKnZKfvwuOKRe wD+gKtqRysmI73Z9x1ezdkR+zJXkejUzQq9q31GOTc2IHv/2fqblx3yqmQln gEzsWqoB6mCnw3VBbeu17Tvkvm5MhFbL7xuJ/KiV8FrSvB7VUK06//N7vrrW 9PtF91H3MiMj1q05+vqu6p5mZcTfI9bfL55ZJ87haN+Ds8FZ+fGu3hBu4B6O gRuDRvlhi/W741T4NHCKY5VTH7QGrUCTjNClHY3dBD5WcdjN4Wb58Tu3setm W29hn2q0VE5GaPI1wG6aH7V0f9rAx4Gm2CfCJ4H2+aEfb9+J1vR74QS4nXvT u5ney/QuJ62t5kA/Ge6g+TOihmo1zojaqtUMu2N+xLXOiNwTnH+q96NNRvTf 2mtQbEfX7eG9bu89aep9OR10Uh30rnAX1cXuDp+pvq2fYV9n50iXJt/x2L3g nuolI/ydXVc1VKub5+/h8z7T2onEnwefq14zgjU+x5r45Iw481O9P5rrfM93 CeinntB7wxfavhjuAy7KD1vcOSOetV/6O0CxyrnANVSrr2tI65QRurSu2JfC /fP9u8B1T7N+mX3qq5d7liZfl4z49+z179vr373Xf0tf/519/ff0D5TxfANf JvM+zzhf684IztP6sWfBD4Ah2FfBV4MBoAgUar8yQpPvTOcWOL8UlGhNGWGX eTwIDAYDQbFr9cgIf6l7qIQrtM/Y18EjtS8ZwSO0Nv2/ANSX9hr7Wni49tH6 NfY9mB9rGJoRmnx9M2L+Qa6peTRfuWuo1jDPeZ3nG26tH/Gj4et1rs5Vnn4H SRuVH+/5RV5boefRWs/PiJjRjrsF3Kz9Qr8JvlH7mxGs8ThwB7hd+5URPEX1 bN/h8W1gMpgExruu+pxsX7Frqt6V2LfCE3UHMiJ2vPuQNgE8kR579qDPfga4 F9wD7gMzwXxipsFTtX7q3K27qfPLCNb4TjAG3KA7gz7W46syot4Mr1d1pruW eJpjNNf9nu8u1yvJCE2+woyoob4qM6L2WM/3MHhI9wB9JbwKrDBrfGdGxDzi uDngcZ05+mPwo7oH2IvhN7SPGaHN1l3Angs/C55xDdUahv6Ea12H/TT8lM7b uY85f67zxmREDY3HZkSscp50jSfc0zzwvO4EMa/AC8Fb7P98+AWdHfrL8Eu+ J9IX2Hd5Ac8CcCAjNPluwV6UH7W0n897judcQ7VetH+R53vJ2gTiX4dfy4/f Ps8778aM0F4FIzLi3uk+FnldWtP12EvyY0+1z2/Cy6y/Bb8NlueHLZ7i/V/i M1CscpaC98Ba3ZeM0KVN9lnrnO/AXg2/o7uTEbVV93br79qnGmt05zJCk+9u r+V1r2cdeB/MQN8EfwQ+tL7evk3WZhGzEd4A7sP+BP4UbLX2AbgX/WN4s3zp UWOd9Y9cS2e6JT/ibs2I3I3O/8T1pmZE/+95DYrd4rpXFMTZ/54Rn2t95vXZ /hx8Bh5G3wZvB1+at3mN2eRlgTWOkf8R7K/hr7wu1fnCtaTtALPRv4e/A09j /wj/oLPPCG0XmJMR8V87R/r39il+t3N+A/vBPrPG88j9Cd4L5mL/Av8Kfs4P Wzw/I3rXGhIFEaucPeAb8C3Y6RrSXsiI2ppnAfbv8AFQKyNqq+7z1v+wb7d7 /b/fDvnh07zfuPbu9JhH4wfR/1IsWIj9H3wYvIL9D3wIHLT2L3gNvQZ9J4Hq Zo0Xo6fAyWC5Y+RflhG5/zm/GtpRoGpB1NYcLxNzBOMjQZWCsMV6Nz7S41ex c+EcsBY7A04viPfMzIIYr8CuBdcEb7qfVPckLQ28jf53fqz5Fa/9b6+/Dv66 oHZB2OKVGZFby/lZPrd3M6K25njL/WS6p7rOf8t7qP1bhF2vINawGvssuDvY hd0NPhOcAeqDo8E69GPgRr7n0hvYdyo4BXySEZp867Fbwi0K4h1V89TzfqmG ajUEx4ImoLF1aR8Q3xxu5jpijZtaE3+YEbnKa+O5Wnm+E0F78Dl6G/g4sAW7 LdwOHF8Qtngren/4UnCJY5XT2jVU6wTr0j7OCF3aZ9gd4JPAFxlRW3U3Wz/Z PvWl/jZmhNbB/XzqZ5P+/KSJ9+K9jNhL7WlH0AmcDk4riHPRmXxDTFe4C9iW ETHy78gIrXNBvD+fA58LerhGJ+/Jma71LfbZBXH2O53b1fnnOO+HjKih8Y++ J2f7rpziHvU7ohfc0zX7wn3Ar9gXwOcrB/ti+CLwi/UL7fvCz1l9p0iT7zvs fgVRS/OqtuY4zzVUq7f9/TzfRdZ+zojz1Lnuda7ydvusdc56D9fnXp//JRnx 7Nd3gL77qxXyPADFmbxXMR4A/iQmD74a/J0RmnxXFoSeb98Aa39khJbn9RbC BeoPeyBcDA5jj4KvB9cVhD7IvhIwGFTJDE2+/4gvte8I9HK4DFTFHgFfC5Kx h8HXaC3EVxREnL7XxBXOGQIqQXXih3qsnosKotffMkIb6jjNWeqeVH+45xju 8T/EjyyIPlLcz0j3NMrrS82M2kXei+vtS0O/AR5texw8FtTFvgW+GRxl/Ub7 xhRETq3M0MZ5r6bAk0Gua45xXdVQrZvABDARjLcuLV/vYPAkkJ0ZrPGt1sRZ 6H2LuWvg70TMdbvnmwHuAY2JuQu+EzTAngpPA3cXhC1uhP4AfD9onhmxyrnD NVRrumtIq58ZurSG2DPhe0HTzKitusdYv88+9aX+6mWGNtP7P6sg5ta+PQQ/ qDvB2lfAK8Hb4HHwGGhJzMMFEZfu+IedMxs8AjLQH/VYvxnfgF8HnTJDe9Rx c8Ez4LjMqD/Hc8zxfNrbp+AnfXZijZ9w3tOgtXVprTJDn2vfK2AhOBn9JfhF cCL2c/Dz4FnwApgH2qLP97hdZvB8+xSrnOMzo8YC0N51VKNNZszzMujgmJcc t9B9yPcqWAROIeY1j0/NjLs33vsm7TXH6Uxm+U4sB2+BN8FSsAR0IX6Zxzpr 8TL7lju2W2bs/2KfwVv26U6ugd8F3TPjnHXezTKDdeYTObt34FXgBPTVBTG+ 3fpq+1Rbc5xOzNqCqKv92Qx/pHUQ/yG8EfRAXwe/770Sa/we+ACsB2ejb/D4 FMfIf1ZmaBscp3nWeg2qv8lzbPJY9+3jgujjDPfzsXvaCraAX9LjuX4kGJwZ zwCdR2ZmxHziuC/BNvCFWWO9h2eRlwDXZIYm/wXYX8E7wEXYn8Gfg0+tbQe9 0b+Dd9n+Af6+IN7BpH0L+mZG/FfOkf6dfYr/0Tn7wG/gV7PGl5G7F95j+2et FfxUELb48szoXWvILIxY5ewGO8E34GvXkHZpZtTWPFdiH4D3F8T78y+u29/6 7/b96F77ZIYm3xWZUf9r7883nk8xf8J/gKuxD8P/gkLsg/A/4G9rhwri75NU p+8a4CizxoOIT4aTCuM9vLr9pZmRe9j5OvdqPnvVPuh5qzA+AvxXELZ4YGZo VVw/B84GI7HT4bpgGHZGYYyHY9eE00Cl+0lxT9JSQQX6XwWx5jyv/S+vvzb+ OqBWYdjioZmRW9P5CZ/btZlRW3OUuJ8M91TH+RXeQ+1fAXZuYaxBfXaHzwQz sM+Au4Gu4GhQrzDehxvBDcHozNDr23cK6AjuyAxNvhHYLeDm4CbvVa73SzVU qwFoDI4Fx1iXdr3+f75wU3BjZrDGTayJx2VGrvLGeK6Wnq89OAHcjH4c3BpM wD4ebgvaFIYtnujPpj6XPTMjVjmtXEO12rmGtPGZoUvTb6KT4BPB5Myofbx7 lt7BPvWl/sZmhibflMx4ruj5sjst9qCx197Re3oyOA10AqcWxrnoTKYT0wXu DCZlRoz8d2WGdjrYQ2894HPA2a5xmvehm2vdg31WYZz9vc7t4vwezpN+jsf3 +Z6c5bvS0T3ejt4TPs92H/hi8BD2+XAvsI9+LoJ7g0esX2Cfnos6g16Zock3 Ve9UhVFrdmbU1hznuoZqXWh/X8/X29rDxPeHLymM+3ye82ZlhtYPPJ4Z7/hV C+LPBKT3t+8ycCl4gpgB8JXgQeyr4avAk5mhyXdFYeh59l1p7WBGaPKdwzth AZwPnia3GC4Cc7HvhWeqz8LQB9o3GAwCz2eGJt+z2CX2aQ/L4FIwH/taeDh4 GfsaeChYgF1eGHGzHV/unEpQAaqhD/F4DnZhYfT6TGZoQxynOUvck+oP8xzD PH6R+BGF0cdC9zPCPV0HRoJFmVG70Hsxyr5XM4NHOW4sGAMWo0+CbwWJzNDH 2SdNvonWxrrnyfBtYDn2aPgGcD24GdzkPR8PTwC3WLsRLMuMmhO9bzc5R77x jq2Dfj98H1iHPaUw5nsLezo8DazGvgO+HbyNPRW+G6yyfqd9o93Xa5mhybcC +57CqPWu1zLF61EN1brL/ns8393WVmbGPdJ9ei8z1q05Xvcd0/1ai/1AYaxh vdfygNezQv2CXeiP6L6Ah8GDYBbYgP6Qxxszgx+y7xHHfoi+SOcJXnEN+Tah Pw0/BZpgPw4/BjZnBj/qmCd0B8FW7CcLY/ya9SftU/zjznmmMOouJeZl+CXw BfYCeD74HPs5+NnC+H0h1ngumAeeB5+hv+DxasfI/05maC847mnPpzWo/oue 40WPtbcLC6OPL93PQve0yPuxLTPune7TC5mxT4u8n1vhLWAf9nL4TfAJ9uvw G9oHsAQsBl+hL/VYeyheap9iX/dZqMYy0BV7ldake+Jzfgt865jljnvb90C+ VY79PjPyNO7pftTLDux3tWdgL/ZGzal7orsFPgDrdBe1N+BHYt73eE9m8Pv2 rXfsz665xnU/sE/1pb3rOppH8/3keTWn3mM/0j0Cv2FvLozxfuub7dOz/fLC eL5rvz8GB/S9UMSzH5zJs/pT3Qvtv85Sdwr8nhn8eWG8O23XeYK/MyP2U8/1 hXMUt6Mw4g6i74S/dnwm82SAhsz1Ldo34D/0XYUxrpKIWOV8ZW2X437QmYDD xO+DfwU1iP9Z+wGOTIRfcd+B3dozUBV9j8eqL95j33b3us019hbGe+b3rnFE Iub5BVRPRMzPjpO+z7792nuQTMwBj6t7LVrHoczQDjjuD+0rSCXmoPYGpGAf yd5UBUeAQ2j/gDroRzGuBrISEaucvzRHUfiyrUurmYjcf51/pOvpXVGafHUT MY98tbD/076CdOwqRTFOw04UxZk1dg/V3Udt5cmHngwngVzsVDgNpBSFLT4a /U+vWTUVq5warqFaNV1DWk4idGl6f64L1wGNElFbddW/9HT7VPtP76k0+Y5J RO8J37ls7R9oit4VPgN0AQ1AfdACPcdx6uH/2Dn1tD5wK/0c7XEDYk6GO4DT EqEd7bimoIl7UP2GnqOh52uJ3lh+0DoRrHEj5x0L2liX1ioRelP7TgDtNDf6 8YoFJ2I31zpAM+VoHnC33u09bpYIbm2fYpv7fFXjONDedVSjXSLmaQtOcszx jmvnPuQ7UXmgIzEneaw16jmz1c8aaSc57lM/Y/6gt9MZdwadwKngFPCA3u09 bpsIPs2+0x3b2fvf0WfQ2b4u6GfDZ4GzE3HO/3fePnedeVfsM+Fu1rsXxfhM 693tU+2Tvf89iqKu9uFi+CJwIfaF8AXgXOzzxOo7EazxOaAX6Kkx+vn/GztG /scyQzvfcZqnh9eg+r09R2+Pe5Hbpyj66Op++rgnPcv7yk6EfYnHl4FLVVef d/gwWIF9BXwluNyscR/0e+EZRfGdfoX9F6NfDV+leRJRT3X7WxugudCL4SLV wh4ED5QvEVqhaiUi/mrnSC+2T/GDnTMUXAOGmId638rgUpCPXQFXgvKisMUF iehda7jHscopUY78IM+6tLxE1NY8xdjD4WHqIxG1VbfQ+rX/87nXqxKhDfe5 5Lt2/0TMo/Gl2CPhEWCJ3ufhMY65Hh4NRlm7QX2hT4RvBRPMGg9Bvw2epL1w jPyVicgd6/xbwHhws2trDr2r3wjfBMYVhS0uS4R2o8/lPngm2E78NHgq2KL3 /KIYDyLmDvh277/6meyepE3RXqBfVxRr7u21X+f13wXuBnfaFo9MRO4dzp/h cxuWiNqa45pEzD/dPd3t/ALvofbvEuz7i2INI7DfgpfrHmAvg98ES8Es8ID2 Bv0R+GHtfSL0B+1bBF7RPInQ5BuF/RT8pM7Ee3W/90s1VOsh8Ch4DMy2Lu0G 4p+A5+gMEsEaP25NPDERucq7xXM97fkWgPnaZ/Rn4bk6e+zn4XnguaKwxbcl 4l1P73z6swvFKucZ11CtF1zjGcfPtzYF+yX4xaJ4P5znupOtv2yf+lJ/4xOh veSY8b5/FYnYA61H79uveE8XgtfA6+DVojgXnYnekZbAi73nr9k/NRHaGzp7 7JXwKrDCNRR3ZyLOVrWmYb9dFGc/07lLnL/SefcnosZK3w3Fvu278op7vAv9 XXi17gT2BvgDnSv2WniNzhV7PbxO67T+nn0fg806u0Ro8j2AvbEoaqmmamuO d1xDtd63f6PnW2dtNvEfwZt0p5yrvFmJ0D4sivdP7b0+9+XWP7Jvi3t6Cv1T +BP3/Dn8BfisKGyx3iHrFPMeBWoXR6xytuoswTeu84m1p7G3wV/q/mF/Be/Q vUxEbdWdY/1r+1Rjp+5iIjT5XsDeXhS1nsf+Dt4FMrD3wj+BPUWhf2/fXmuL iNkN/6gzxM6g73RwfCK0H3Su2L/AP+vuJKKGas1NRG3VehX716KIe965u53/ G9in+5SI/r/1GhT7q+tmFsfcq70n270vyt3v/L/An7qvxBxJ7BHF0b/0v+2T Jl+V4tDke5OYaoyrgibYv6P9AQ6AQ+Af8FYivtv1Hf+vtYNgeSJqqt47idAP 2XfYscrd7151dkcVx3yLsWvCaWA9dg24OliDnQqngPesJ9n3u/uqnwhNvrXY tYqj1nKv5SivRzVUK9n+Wp4vxdq7ibiPupd6b9G6NcdLvqu6pxv0zlMc/0z6 B9+BTN+DLqAz2IOeDWeBTdi5cD2QUxy2+CP09vCJ4ATHKiehfQfHgg8SoUv7 ELs+fDTYgt0Ibgg+TURt1d1s/Rj7VKMxOCURWiPvYYPiqKW9agY3BZ9jHwe3 Aa2LQ29u33HWthPTCm4JtiXi3UzvZfMyQ2sBvkRvq88E+DoRNVSrUyJqq9YO 7HbFEaf9UW4r57f3fnybiP6beA2Kbee6Xb3Xe70nDbwvHcBJ4Cz0U+COYBf2 6Zof/Gj9VPtOds4nidDk+w77LLg7+DUR/pNdVzVU6zTP39Xn3cma7sOZcDfw SyJY4zOsiX9OxJm39x3QXGd7vgvBBeAb9HPhc8B+7J5wL3BecdjiPxLxrNUz V98BilVOD9dQrfNdQ9q+ROjSLsC+CO7t/enlututX2yf+jrLudLk03u7frvr N7x+z+tzoM+D/n7GX4N4joA/QX/Gl4JLwBXgcvBvIvgycAh7AHwlOJyIWOX8 45grHHdVccT9h54P54Ejs3h3g6eDRtiFcIH1ouIYV8uKWOVcba3IcYPAQJ/v UHhIcbxLVMDl4M9E+BVXDErAYJBMzVKPdS7iUvsGuNcrXaNMc7iOatTIinkq QZWsiKlwnPSh9g0D14BUYoZ7fITXcrVtacMdNwJcC9LQr4dHgSTsm+FbwE3g BjAa1EGfAI8HiayIVc51YGJx+LKsS7s2EbljnH+z6yl3jOvWzYp5brY9Dh4L MrBvLI6x3ktnFMeZHeMeJrqPu8CdIBv9NngSyMGeAt8OJheHPdn6SK9Z56tY 5dzqGqp1h2vc6pp3Wjsaeyp8d3G8793uuvWsT7NPtUd6T6VNdYx6n+E7NxPc CxqjL4WXgSXgIfBgcbz73ee4hlnB9znnAflBE/RZHmtPFsIvg1OyQpvluDng cdA6K+o/7Dke9nzHoj8KzwYts4I1fsR5j4FW1qW1yAp9jn3zwQvOfR5+DrTH fhJ+CjwBngFPg7bocz1ulxU81z7FPum5VONZcILrqEabrJhnHjjJMc877gX3 Id+LYIF6128Bj4/zvbrRd0vaS477EGwCG8EbYDF4HbwKFoHTyH3N405Zwa/Z 94ZjO3n/X/EZLLavM/oK+G3QPSvOeanXtdRnfgb2cvhN7Yve84tjfLL1t+xT bc1xKvrK4qh7FvYH8Hqtidz34fdAT/TV8Dvg7KxgjVeBNeBdcC76Wo9Pc4z8 Z2aFttZxmmel16D66zzHOo+1xg3F0Uc397PBPX3ofT0fvc9AvgPAY1mx3/Jd gN0b7SJwIdiKtgVcnBX2Jx6Lt3q9n8OfeV2b4Y/BR9Y+Bf2ywv7c4y/BNvAF qMMctcEoYr5ivANcmhWs8XZr4v7oO+GvwWW2v/F4D9gLdoMfwI/ge7ALfAuu JP47j7VG8Xf2/eDYq7OiN/X1RiJqyHdhVsyj+S7Pink0X9+sYM25ivif4Z9A PvovxTEuyAr+xb5tXv956PvgX0Eh9m/FMS7CPgD/DvaDKuzNf3AZ+l/wn177 EQPDV5kV2h+gJCu0I5yjGqo1EP0g/LfuiN7z4X9BhXP/cr40+Q6Bf4oj5yrn /uN8nZXOrBaoCo4E1xCTDKeAJOvV7Eu2tlXv+XD1gdGP1vqb1y/tKDAcPQ1O BddmRQ3V0v6kuFYpds2BETciK3JrOL+2+7rOe7jf+6nYmq6bDuqC69EzPB6N 3Rk+HdyLnQvneG/lz3BOAmSCMehZHmsPxVn2tQcn+D6rRja4Ebsh3Ag0AEeD emBnImJyHSe9vn0NHXtTVuRpfHNW+BU3DLsxfAy4Bbs1fBxoBVqAlqA5aAqa gAnENPN4YlZwM/taOHaSax7rui3tuy0rNPnGZ8U8mu92z6s5p2AfD7cBd2K3 HRjju6y3tW+znw36TGmf2oGpWfHMkK839mlop4JbsTvAJ/m8xBqfCDqCk8Hv ev/3eJxj5L8nK7RTHNcNnOE+Vb+T5xBrrHfULgPjHkzyfejiO6G8rmCme27v vs9wXfkuAOeDWcT0hM/TncPuDp8FzgQ9wNmgOvo5Hk/PCj7HPsV29x6qxrng AddRjfuyYp5e4CHH9HTc+e5DPj3D9fyulRXPco0fyYrPuD7f5dh9B8Z3wOPY h7QHuovZPF/gy8GloD+4ZGC8Z15mTfHS+oEnsiJWvmewr4SvAE9hF8D54Dns AQPD94Rz+zv/anAVeBY9z2PFi/PsuwYMA0NB4cCoO4+YYrgIzMceODDGC7AH wyVgECgDpQPjvU7aYM+l2IHOV18D3He5c1S/Eh4CKgaGLX7F6yr02sqcU+o+ 1eOrWZGnnEVZ0bt8r2FfCw+3PR2eBjZg3wCPBssdM8Jx14GRYDH6KI+XZgWP sk+xynkjK2pcD97Evgm+GdwIxoIxYJljbnCc9HH23eTYlVmRd5PXMth7+SL2 ePgW8A72Hbqn4HYwGUwBt4FbwcSB8X44yWP1LJ5k32THvuuaE1x3in1rskIb 73VpHs33nufVnGux74bvAuuwpw6M8XLrU+27mN+uF4F+3O17Bsa+v0XMvfAM 0AF75sAYr8K+H34A3AceBLPAR1mhybfJuTOdf79jP0R/yDmbsR+BZ4OHB4Yt 3oL+OPyY+1fsQ55D2qPg06zIe8T7sEB7D+aDl8FL4Bz0J+EnwAdZwRrPAc+C ueBL9Oc83ob9NPwMeGpg2OLPs2Lexz23Yp9z/gLPuZOYF+B5YIfn0jxds0J7 3vVfdM5H1l+wb5zvmfZ8odfwCfa78GrwK/Yi+BWwC/sN+HXwfVawxq9ZE3+L /urAyPnOua86fwlYDHajL4ffdM/Sl9r3tnoBfbJCW+K9UqxyljlPvNefU92b ae59oc9gFVgJfibmHY9/8brWeG3v6ZzB/qzQ5NuXFbHvOH+Fe/oG/X3naF3r dbZg3cCwxX9kRewKr0Gx73uOjWADGJAVeeu9h3rG61mvd/0PHbcH/SN4E/gL ewv8MThoe6vHYo3/Qf8M/tRrVO5m50v7BPybFfZnHn+hfdUdA7X5/NUCdfgM 7mC8HfyeFazxNmviwehfw1+Bqtlh7/R4t3oHP2pt4Aftle6E9g8cRfwuj6tn B++y73vHSv/CfVXJjhryJWXHPJqvWnbMs9t7sttzpqL/pHsBhqL/PDDG/2UF /2zfl16/7vav2jNQk9x9A2NcC3s/fAD8pnxwGOSg/6lzBpnYVQaF7+js0H4H GdmhyXfYNVSrLvrfOk+Qhf3vwPher+fcP50vTT593x8cGDnZzj3ofJ2Vzqwm OBIcARoSkwQngxrWq9qXZG0s660OHzUo9lNr3ef1S6sGjkFPhVMGxZ5UdS2d XbJrpWGnDYo4vfcqt7rza7mvY72H2r86rpnmunV110AT9HSPtW+nw51AF+wc OHtQ7I/86c7JVCxoip7wuFl2cMK+E0A70DE7amSB5tgNtE+gvuqCXNDSMTmO k360fQ0cOy0r8jRulB3+/4vDPkYaOA67FdxaNTUfaKHetE7tB2hDTFOPj88O bmpfc8e2dc3GrtvCvnbZocnXOjvm0Xx6j23lOdujt1Ev4CTs4wfF+Czrx9u3 0c8aPY+0T23BydnxzNCz429qnop2Cjgd/ST4RHBqdrDG7ZUDOoDT0Dt63Mkx 8p+SHVpHx50Bunou1T/Nc4g17ozeeVDcA/25h7iz74TyuqhGdvR8gvvu6rry nQ96gQuJOQ8+F3THPlMMuoGztR+gMp13e49/yw7uYZ9ildMtO2qcAy5wnf+r kR3z9LSumPMc18t9yHeh/KA3Mb09vig7uLd9fQbFO9Al6MfezLvTeTxncxij 9VMt9Evh/uClrNDk6zso9Mvs62etf3Zol3ofroAvF7CvggeAK7Dvgu8Gdw4K /Wr78kGe7OzQ5LsSu8C+vthFcKFysCvgco2xS+ESxWEXD4q4fo4vds4gMBAs 0burx5cSc+Wg6FV7JW2w4zRngXtS/TLPUeZxAfGVg6KPIvdT6Z6GgiHWVftK 78U19g3MDr7GcSPBCLBC7+fwjV6X9OvskybfOGvyXUXMLfDNYDj2cPhaMAyM BterP/Qx8Fhwg7VR6jM7aqreNdmhj7ZvjGPL0KfBU5WPPX5QzKf+b4enqBfs ifAEsJ7+J8O3qT/rt9o33H2VZIcmXyn2HYOi1iivZbzXoxqqNcn+OzzfbdZG ZMc9ustrvNZz/O+O6X6Nxp4+KNZQ6bVM93qWgMWqjX4ffD+YCWaAe8BWvc97 PCw7+F777nPsjejz4QXgBdeQ7yb0R+HZ6hX7QXiW9i47+AGtEfth+CHtD/Yj g2I80voj9in+Qec8Nijqas+fh5/TvmDPhZ/xWp6A5+gMs4M1fhw8BZ7UnqI/ 7fEUx8j/dVZoTzvuUc+nNaj+s57jWY8177xB0cdd7meee5rv/ZiWHfdujPd/ gX1a+0Z4g9aH/Tr8mvYU+yX4ZfAieAUs1BmgL/L43uzgRfYpVjm3ZkeNV3VG 2MvgN8FSn/Mb2kPHvO64xb4H8i1z7IPZkbfM63rJvfzI/rwFLwcHsNfC74E1 YDV4F7wDVoIVOj9yV3k8Ozt4lX2rHftodtR823Xfte+x7NDkm54d86z12td6 zjnY6+D3dZbY6wfFeKb19fZdMJjnMTh/cOz3B+BwVmjy7SN+E9pH4EOwBXys c8wO3qwzx/4E3qozzo5Y5TzjmC2O+3RQxL2A/gX8OViAXZN50sA67G1oX+rM sLcPirH2R7HK+czadsd9Db7yXu3WOeiuYH8PfwdqZ4dfcTvAN2AnSEH/1uMn s4O/te8T97rVNXaBp11HNV7Jjnl+0D3JjpjvHSd9t317wR7dJ2J+8vgNr0Xr mJ8d2k+O+wX8rHuHvh/+zTH/wIfAQfC77hdogH4Y/ld3JjtilbMP/DcofG9Z l7YsO3L/cP4/rtciOzT5FmbHPPK9mR3/HF//DH9pdvzzfI31TltrcJzZevfw n/tIQqsBDqEfCR8BztW/AwgfBaoODlu8mphfvWbdB8Uqp4prqFZ115C2Mjt0 aWuxU+BksD87aqvuKuup9qn2r95TafK97/tWy3euDqgNPkA/BT4VdARZIAE2 odd13Ibs4LrOyQDpYCN6pscfYreFjwdfZYeW6bgGoD7Ykh31sz1HtufTu3E9 ONefBbHGOc47GnxsXdrm7NAb2NcKtARb0ZvDzcBH2I3gY0BDcCxoDD5Fb+Kx 1ihuYp9ilfNJdtRoCj53nYaur3lagG2Oae64lu5DvuNAa7CdmDYea149Zzb6 WSOtjeM2+Rmjz1oHxidrT0B7cAL4Gv1Ej3dmB59oXwfH7vL+t/MZnGzfDvQu cGewNzvOWef9rc9dZ/4Ddif4NLAH+/TBMf7G+un2qbbm+Ay96+CoqzX2hM8D v2OfA/cAv2KfCXcD32cHa3wGOAt0d8zZHu92jPw/Z4d2tuM0T1evQfXP9Rzn eqxnda/B0ccv7qeXe9KzXM/4P9AvgnsPjs/OxYNj/C/2n/BfigF9QR9wIDvs fh73s686vwUuhfv/fzUvdl1pl4C/s8O+1OPLwRXgMjAUDAEZ1LkKHgCq5ARr fKU1cTX0PPhqkGQ73+MSUAoGg4FgECgGhaAA1CS+yOOD2cFF9g10bK2c6E19 HZETNeQ7nB3zaL7knJinxGsv8Zx1sMvhMo2Jrxgc4xrWK+y7wuvXs1HrrgTp OWEP9XgYGA6uAaPAdSCXmJHwCJCTEzHy180J7VqQjT0OvhGMdQ3FZaJf71pp 2GPgG0Bt5450/jjn1c+JGho3yIlY5YweHL8F9ZtQfyZ+C+ObQUNipsCTVZd1 TYDHg8bot8GT3Jv0ifbdCe4Cd1ib4D5vHxy16uVEbc1xk2uo1q323+75Jllr khP1VLe5c5V3dE5omqcZ9lT4btDC9jSPF4M3wNnoM+H7wL3gHjAdtEaf4bH2 RDzDvpmOPR79BXg+mOcaM70/s+FHQHvsWfAD4Nic4Pu1B+zbQ/CDoB36w4Nj fEJO8MP2KX6Wcx4dHHVPJOY5+FlwGvYz8NNgqt7b4ce9J2KNHwNPgifAKehP edzCMfJ3yAntKcfN9nxag+rP9RxzPW5D/PODo49O7ud59/SC9+P0nLiDuovX eZ/k65wT56DzaIn9Gvwq6Ij9IvwSWAAWgpfBmeiveKz9FL9in2KV0zUnaizS XrEPS+FlYInP+XVwlmNec9wbvgfyLXXsOTmRp/G57meBe14Ovwl6YK+B14J3 wTtgNVgFVoC3wfnErPRY+yBead87jr3QNd9y3dX2aS3S5DsvJ+bRfN09r+Z8 gjW+D78HeqOvGxzji3KC19mnz7I+x0OJ/wBeDy4mZsPgGPfB/hDeBDaCrWAL uAL9Y3iz9yGthHcpMDYntI/ApdhfwtvAF66hWpegf+Ja6v9z+DNwgXM/dv6X zuubEzU01ju8YpXzqWt84p6+AjtAP+J/gL8HBdg74a91fnonh3eBq6x/Y1/N kliD/mxNmnyXE/Pj4KiVlxO1Ncd211Ctb+3/0fPtsqb4vfAeUOxc5Q3ICW03 KPK+1fTefeY1vUwPP8M/gUHE/AbvA6XYB+F/wN/gANgPhqH/Cx8Co3IiVjm/ gsODw6d3433WSnIi93fnH3S9ipzQ5CvLiXnkq8yJdwB9/w/PiXcBjcu9lr1e z7+eT33UYD3VwXXEHAFXAeOwq8LVwJElYYuvQf9lcKx5cE7EKue/wVFDtY5y jf+8J9WtjcZOhpPALTlRW3VHWk+xT7V/8Z5Kk097pb9TrL+DfDDB9x9aLXAT +ilwRzAtJ/Q69iVAJpiMngGngxuxj4fbgHtzQqsLJmAfDdcH9VxDtW5Az3Kt Edi5cA643bkZzj/aeXfkRA2Nb82JWOVku0aWe2oEGoJJxLSAm4N7sBvDx4Cp 2M3gpmC69WPt02d9gz//0hp7D1uWRK0pOVFbczRwDdVqYn9Lz9fUmvbtOLg1 uNO5ysvKCa2V5s2JPdZen+w9yPZcbUtiT2dit4dPAA9gnwR3ACeWhC2e5f1v 6zNQrHLagS6gM5idE7q0+z2v5nwI+zT4VHBcTtRW3butd7JPNU4Hj+SEJt8M r+U4r+cM0BU8it4DPgecbb2bfT2sPUXMWXB335kP/XzVs0vamWAO9nnwueo1 J2qo1mM5UbuH19KzJOIedO5Zzj8f9ALP5ET/XbwGxfZ0Xf037/Xfwtd/C/QC 58wlvjd8IXgWuw/cF1xs7uP9vFN3E7znGPnn6TMFX+J9UJ2LXEtaP7AAfQB8 JXgJ+2r1ARbmhHYFeDEn4vs7R/oA+xSf55zBoAQMMms8n9xCuAC8il0MDwRF JWGL38iJ3rWG2x2rnHxwGbgcXGpd2is5UVvz9MIug0vd50DXfdZ6uX157lW5 0uTT9+9lrt0tJ+bR+EnsSrgCLMUeAV8LFmNfAw8DQ60NVw76WHgcGGPW+B30 m+AbwfuOkX9VTuSOcP5ocAO43rWv8V5dB48CI0vCFi/PCU3jt7Dvhu8C67En w7dZn1IS403YE+Dx4F33c7N7knYL+AB9SEmseaHXPsTrvxVMAhNti9fkRO4E 59/hc1uXE7U1x2r3M8U9TXJ+kfdQ+7cMe2pJrEH78zr8GtiDvUh7oPMC08E0 sBF9Jnwv2JAT+j32vQDmgR05oU33njwCPww+915N9X6phmrNAPeDB8B91qVt Jv4h+EHwWU6wxrOsiT/NiVzlfeK5Znu+Z8DTnvdx+DGwHfsJ3S8wpyTsOe75 /FLuMuiRFLHKedQ1VOsp15C2NSd0aV9hPwvPBTtzorbqfmn9OfvUl/rbkhPa s+7nBt+/lTmxB1rPRzmxl9rT58EC8CKYXxLnojP5kZiF8Ms+9wX2f5sT2kvg B+wl8FKw2DUUtysnzla1dmO/URJnv9O5C52/xHk/5UQNjb/xPXnDd2Wee9S8 y+E3Xf9d3UFwAPtt+C3wM/Y78Cqwz/oK+9ZrHVpzTmjy/YK9piRqfZ8TtTXH MtdQrZX2r/F8q6wp9334Pe/Vm857Iie0teCPnDhznX3P0jgHPQNWoH/gnvZi fwRvAn9hb4Q/BBtAEjnJoEZpaPK97PjNztnoWK1d2kde+6fwZ7q3uivgi5J4 tkiT7yD2FvhjnU1O+D8H/2Bvh7eBQ9jfw9+B/djfau91RiURs8Nx31qrkssZ w1+7Tip9p4BquaF9BQ67N/X1Zk7U2O7cXa71K/oPJTH3fzmRu9P5u7Xf6r9G 9Pyl+1bsD+51a0ms7XevcavXucf5f5H7q/ZJ51gStviipNA0/peYQ1oHaIb+ t+ZUrnwl4bsgKTT5amDvh3/TGmuEptgk9J90Pjpr3Qn1BaqiHyiJHM0lPuD8 tNLYu7rEVIePAkcmBWtcDfynPYMPl4T9f1wjNI1Tk2Kte7xfP3n+QzWijmqo t6qqDWolBR+hcW7cO92/2kmx1n+9F0m+j3UcX9U5P3sOnYt6T/PZdwQngw5J Zo2xa2tOxWHXhdNVszRscTZ6K7g1aOlY5dQER4N64Nik0KVVx86EM+TDzoaz QMOkqK26Na3n2KcauaBJUmjyNcJOlEatXOwGcH19DrGbwE01b2noDe1rYk17 2Bg+Rj0nxWdfn/uzkkJrVBrn0hxupl6TooZqtUiK2qrVGrtFacS1cm5j57fy fiimnvci17EtXFfPn/f9DNI6Et6XNuA4rYXzbQe3BcdT5yT4RCEp9BP+53PO CUmhydcA+3S4Ezg1KfzHu65qqFZ7n3lHn/eJ1nQHTlOe6iYFa3yKNXHjpDjz Vr4Dmquz5+sBzgbd0c+Au4LTsc+UBrqVhi3WHdPzVc9ZPfcVq5wurqFaZ7mG tJOSQpfWDftc+BzP1d11u1g/zz71pf7aJYV2rs9an/E//Tm/EO0C0BT9d/gP cKA09N729QEXg8nJwRdpP7H7wX3lS4pY5fRKipg+jrukNOLuI/4y+FL5iKmA y0E6Z30FfLnP68rSGPdLiljl9Ld2peOuBldpbmIGw4O0fuxiuEj7mBR+xQ0A +SAP1GauAo8vTwousK+fe+3rGoXu4SrX0N5qnoGgOCliih0nfbB9paBEZ0hM mccVXovWobsqrcxxlaWxF0PRrxHr7LCHw9eCYaVhi8/1vlV67xSrnCFgLBgD RiWFPsTzjoRHCNjXyw+uS4raqtvf+mj7VOMGISm0612zRwVrAmmpvLujjQO3 oE+EbwUTSkO/yb6J1u4kZrxiFYd9B3w7mJoU2s2gN/Zt8CStJylqqFbPpKit WkOwJ5dG3G3OHe981ZsCcnOj/7Feg2Inu65i7nDc3eAurZ86r8GvguXY98Iz wD1J4VfcnWCa+vUeTvd4epLZvnngefBikmuAe7FnwQ+CB8B9YKb3VjH3Ok76 /fbNcuwDSZGn8cyk8N9n+2H4Ia0d+yn4afAkmAOeAI+DR8FsxRHzmMd3JwU/ Zt8cxz7imo+47hP2zUgK7WGfo+bRfHM975Pucy78jPYA+9nSGM+3/qx915XG XRyWFPv0HHjZ+6w9noz9CrwQvIm9QDVK43ki1vgF8JL2GExAf9njRY6Rf3xS aC87bglYDN52/UWeQ6zxJPTXS+MevJEUrPGrznsDNMmNnue578WuK9+7YDVY Qe4qeKXOEnuZ1gGWgrfA8tK48297rHMRv22fYpVzR1LUWAHecZ2lrq953gGz HLPKcavdh3xrwRrQgp7f83hdUjzX9XyvlRznoPPQc2EdeN9nugn+ULWwN8Ab wQegRhnvVaB6WWjybXD8R87Z4NhWuaHJ9ywxn8Cfgq3gC/C57KTQ5NuC/TG8 WfMlhf8z0IY62+AvNQf6d/AucAj7G/hbsLM0YrY77htrO4n5Gv5KPWGn0Hcy aJQc2g7N4d7U13G5UUO1dCe/da1N2N+XxtybkyL3a+f/CH4AVZKj5y/ct2K/ d69bSmNt673GLV7nbucfSe4v8K/g59KwxdWTQ9M4Cfsf+CBIx/4L/hv8qb0o DV/t5ND+sv0bvA+kOP5Pn/te+Cewx3dB3/Op6PtLIyfVufudn1oWe1cf/Si4 GshODta4KjhM3H/g39KwxYnk0DTOSI617vZ+7fX8VV1HNephHwkfAbKSg6uA nOS4d7p/R3sfDnkvavg+NnD8kc75yXNUS47eU332J4MOoGdy8EmgO+deC65Z Fr+V6sB1Qe2ysMXHE98SbgVaOFY5aeob5IJTkkOXNpE6GXA6aI+eBSfAsqSo rbqvJ4WebZ9q5IBOuaHJ15bczLKotYT4+tqDsniOHQs3AY3LQm9g37HWOpF7 jO47OA17fWl8zvU8kdYQdGauZnBTcEZy1Kjvnpu41irim5dF3FrnHuP8lt6P 95Oi/3peg2Kbu66ePXoG6XmkdWR6X44DrcviGdJWewy60c+Jmt/9SG9nXxvn PJocmnw9sDtpfeDs3PC3cV3VUK0TfOYn+7zbW9Mz51SdW1ncQ7HGHa2JeyXH mbf0fmqu0/83HzgL9EPvCncBNbC7wWeq/7KwxcnJsfc6Az1nFauczq6hWt1d Q9o5yaFLS8M+R2v1XGe6bm/r59qnvtTfhcmhyVczOd7x9a5fjfX2RDsP1EHv VRbjPOwLlAfOBxeDi0BBcnDvsvgs94X7lMXnUbHKyXfMxY7rVxZxheiXwv3L 4nM9BZ4MJmBfDl9WFp/ZK8piPDA5YpVzibUrHHcVGAAGETNIsZobu0jz+IwG OO5KrQdcDUrR8z1Wrjjfvr7utY9rFIDWrqMa+o7QPMWgIjliihwnfZB9JWCw 1k9MqcdDvJZLvA/SSh1XDso0P/pQxYJrsEfB14PrwDBpWjv6DfBo9Zwcscqp BGPKwjfCurT+yZE73PmjXG9AcmjyDUuOeeS7FnuEWHuNPbIsxsOxby+LM5vo Hsa4j4k6QzAW/UZ4nGph3wzfAm4qC1s8Gr3Cax6aHLHKGesaqjXeNcY6foK1 MdiT4FuVkxy1VfcG67fZp9oV3lNp8t2SHL1rDbpzd4I7wAU8HxbCr4CXwT1g OuiNfpfj7k4Ovss5U6WVxXN4msdTsJ+DnwVzkkOb5rhZ4AHQITnqz/AcMzzf NPT74JnghORgje913v2yrUubnhz6LPueAk+CR9DnwI87/iH4YfAgmC0/6Mu6 HvX4oeTgR+1T7EOurxqPlcV3xEOu0TE55nkCXJIbMXMc96T7kO8Z8LTmIH6u x12T4x7pPl1rba7j1oC14F3wIngJLAAvgHngbHLne6ya4vn2vejYR73/z/sM XrLvXPQ34NfBgNw4Z5333ORgnfkV6K/Ci8riHeC1shjrHMWv2afamqM7+uKy qPsc9jvwKpBPnRXw22Ac+jJ4KShJDtZ4CVgO3lR/6G95PMYx8j+fHNpbjtM8 i70G1V/pOVZ6rPjVZdHHQvez2j2t8b7OS45ns57leldca99N2D3K+V4AZ4MP 0NaDW5PD3uCxWONX0TfBH2pfsN+H14H3rG3UGpLD3uTxZvAx+AjUYI7q4Cli PmG8VetPDtZ4izXxm+ifwZ86RvbnHu8E34CvwQ7wFdgOvgRfaH+I3+bxyuTg bfbtcKw+s5vd16TkqCHfuuSY5zPX+cbz3ZEcrDk/xN4Ffwvuwv6uLMYfWP/O vo+9fp31D/D3YDD35MeyGG9F3wPvBbvBn+AP8CD6L/DPWi/2X/Z9lhzaT6A0 N7S/nKMae9zbPvhXx/8OHwAPOPcX50uTbz/4rSxyZjj3N+frrHRmR4GDjP8G lcxbhfER4L+y0P+xr4q1ocQchv/VGXjtP3r90g6VxfOqKvFHgu+So4Zq7UyO 2qq1C7taecQ9nhy5h51f3X396D3U/k1zzWqumwySwDPoKR5rrpPgE8Fq7Dpw bdeRP8U5aSAVXMtaanr8S3JwTftaghbgreSoUas8ngkJOAtkgnRQF4zMjZg6 jpOeYV/CsfuTI0/jBcnhV9xv2DlwNvgVuzF8LDgGNASNQANwNKgH/iKmvseL k4Pr29fQsUtdM9d1G9mnHqTJp+eJ5tF8hzyv5ryBtTSFm4AD6M3KY7wsObiZ fXo+6NmwKDn2qbnOICWeGfK9gn4CWjvtBfpxcGvtb0qwxq3A8aCN9g69rce1 HdPKtrS2jjsFdAT/uH57zyE+wXU6lMc9+Mv3oYPvhPJO1p6kRM8t3XdH15Xv LNBd94yYbvAZum/Yp8GdwKmgMzgdVEHv4nG9lOAu9ilWOYeTo0ZXx5zmGomU mOdMnWVKxHRzXHf3IZ+e4Xp+N0iJZ7nG1bHPg8/V2dru6fGvYB/4BfQGF+q8 iDkfvgD0AreCSWCiNflSUiL+Iuec79jGKaHJl4Z9Cdwf9AOXg8vAOSmhyXcq dh/4YtAsJfyXgvOwr4SvUK/YxXARuFN/Pg8XgvzyiBnguAJrvYnPg69WT9iT 4dvAA7mhXaV1uDf1pfs2wLXOTYnaqvU+9sDymPvylMjNc/5gMAisT46eL3ff ih3oXvuWx9pqeY19vc4S5/dDr4SHgIrysMVTc0PT+ApiRsPXgxno18GjwEhw Q3n4BqeEJt9m+rkGHqpeU0JTbCF2GVwOSsG1YDiYTs1h5ZGz0bnDnD+lPPZu KLkT4PHqPSVY41vAWDAOjLEt1vfUOI8172CvWftV5vnvzo06qnEf9s3wTVp/ SvCNYGZu3Dvdvy+SY603eC+k6T5WOv5m55R7jqt97lN89gvByyA9JfglcDv2 nfAdYAf179beg7vKwxY/SA9Pw8+ApxyrnNvBA+B+7XtK6NKuwZ4OTyuP76x7 dW7g4dyorbojU0KfaZ9q3AceyQ1NvhuIuac8aqnmg/As7S/2Y/Dj4NHy0B+y 7zFrNxIzW/V0NinxO16/5/XbXtrDimOuJ+A5qpUbNVTrh+SorVp7sZ8sj7gJ KZE72/lPez/0fXS/9+I+xz7purpjI8p9z8pjPdqXZ8FcxTLvPPh5MIn6L8IL yuP7RfoL9j3nnFtTQpPvT2Jeh19TrdzwP+e6qqFa833mC33eC6z9Tu6r8CLP K9b4FWvizJQ486e9n5rrDc+3ArwNOqEvhZeUx116E14OlpWHLX6O3tbA72p/ UyJWOYtdQ7Xecg1peh6+be1O7FXwyvJ4Hi533RnW37FPfam/6SmhyTcrJfZe Z1CQEvOvLo9nqew1Hr8H3gdrwUawQedLzAfwet0T7KMq+H4DX6WEtk5nw7q2 wFvBx66hWrOJ+dC19IzdDH+ks3fuB87f4ryZKVFD46dSIlY5m1zjQ/f0GfgU 3E/M1/BXWjf2F/DnOjPsHfB27YX1L+2rXhFrKE4JTb6HsHeWR63FKVFbc3zi Gqq1zf6dnm+7tVeJ3wV/q/NwrvLmpoT2jc7P+1bde/eR1zQH/Xv4O+0v9h54 t3zY++ED4DfwE9gL+qL/Af+uOVIiVjk/gj/Lw3eldWmLciP3Z+fvd72PU0L7 yfMesK9/SrwD6Pv/tdx4F9B4s9eyy+v5w/Opjyqs5z/3cxD+2/UPwf+Cf8rD Fi+h5g/lseY+KRGrnL/Ko4ZqHXYNaXpuS5eme3sk/iPAstyorbrbrFe1T7V/ 8J5Kk29HSvw9Yv194udyeI9HqwG+QT8Bbgf+SQk92b5aoCZ4m7nS4FTf+eZw M7A2N7SUivieyoQTIMM1VKsUvbZr/YidDtf1vMpNc36m81bmRg2N96ZErHLq uEZt95QDssFwYo6BG4F3ya0H54J96A3hBuCnlNCPtk/venrnS0oJTb5R2I0r otafKVFbc2S5hmrVt7+x52tgTd9NTeEmnjfbeZpX2rEV8b2jPdZet/UeaE16 l2hREXt6ELs13ArcjN0GPh4cVxG2+P3ciG3hM1CsclqCjuBknXdq6C19pu08 p74vToTbg/W5UVt1q6SGfpJ9qtEBfJAbmnzVU2MtTb2eU8EpuifoXeEzQBfr p9nX1dpG6nSGT9edSI3nop6v83JD61QRz/Yz4W66Z6lRQ7WmpERt1UpB714R cXenRG5n5+vvWZxVEd8FJ3svOji2u+vq7+br7+jr7/QrvodzfhrCXQO5NfEp TnfE3Mv93ApPBAWpocmvZ3tv+EKQjn4ufB44x9oFFfF8uwTuBzKIuRTur7uV Glpf8HFuxPd2jvRL7FP8Zc7J1/wgz6xxfepcCV8Bjsa+Cr4aDKgIe4B7U+9a wwTHKudycDHoAy6yLm1rbtTWPA3JLYILwae5UVt1l6WEXmzfZe5V30HS5Ds2 Neqr9ubcmEfjbPRB8EDQBLsSrgANsEvhMlBirVx3CX0kfB0YYdb4EvTr4VHq 3THy90uN3ErnDwfXgmGurTnqETMUvgYMqQhb3Cg1NI37YN8GT1Kv2LfAN2v9 2OMrYpyHPRYeo71zP6Pdk7QbdAbogytizcd47YO9/hvBTWCcbfHVqZE71vkT fW5FqVFbc1zqfsa7p5ucf6X3UPvXHHtyRayhEPsl+EXwM2cxH14AXgC3gynq iZi74bvUa2rod9j3NHgKbEgJTb5iYu6DZ2p/vVeTvV+qoVp3gmlgOphqXVop 8ffCM3QmqcEa32NNXJkaucor91z3e77HwKNaM/qD8CydM/bD8CPgoYqwxaPR z67ksw52pEasch5wDdWa7RrSRqaGLm1PGp9h+HGdd2rUVt1RqaE/YZ/6Un/D UkOTb11K3Dvdv76psQdaT0lq7KX29EkwFzwLnqmIc9GZ6H1jHvy89jo1YuT/ MCW058Be/bk9vAgsdI257nOBa03Efrkizv7O1Mid5/xXnHdXatTQeGtKxCrn RZ/5k67zOvwa+JyYt+DlFfFesRh+A3yJ/Sa8THuRGvoS+1aDd7THqaEt9rxv V0StaalRW3O86hqqtdT+tz3fMmu/sfZV8EqdmXNfdR1pK8CB3DhznX33yjgH PQP0uX7XPe2k53Xw++AH7LXwe2ANOIKcI0GVytDk+87x652z1rEPp4a2zmvc BH+k8wJbwMe6T6mhbXL8BvgD8Fdu+Ddrr9E/0TmAg+hfaY/BH8y7Dd6ufa6I mE8dt83ac+R+ofMBvxJfjb6rVsbzVtpnukPuTX3p/epT13o6NWqr1gH0ryti 7mec+4Xzv9GegcPueYv7VuzX7nVjRaztCa9xo9f5rfNfRP8R3q09rwhbXKVe aBq/TMzv6gVUQ/8N3g/2aS8qwrc0NTT5FmLvhffY/s2xem/5Dv4e7AK/gJ91 V9B/qoicf1OCf3L+UZWxd8uJ+U9rBbVSgzX+V2cG/gZ/2hbr/eRvj1X/G69Z +/Wd59c73mHXUP1D8D/gzdTgg+q5Xtw73b9M78Mf3osjfB9XOP6Qc773HLoD 6v0on3070BZ8khp8fGU855PgGmANdgqcCpIrwxbru/tYuAlo7FjlVFdPIKMy vmdrWEuh55pwWmW8h9SBa4Oa9aJ2inuWXtc+1UgH61NDk28ddq3KqKXvryw4 oXjq1IcbqH5l6Nn21bemd4B6cC64LDU++/rc70wNLQesxW4ENwQfpkYN1dqY GrXrWz+mMuIGOLee84/1fug7OsN7ke7YY1xXzx89m/QM0jpqeV+agaYgn9yW cIvK+E5vAx8HtlpvZV9z53ycGpp8W7A7wCdVxndiM8c1dQ3Vau0zb+fzPs6a 3mFOhNuDT1ODNT7Bmljfy028zs2e62TP1xV0AdvRT4VPAZ9jd4JPB6dVhi3W +4Cer3rO6rmvWOV0dA3V6uwa0vRd38Wavn+7wWdUxnf36a67zfqZ9qkv9fdZ amjy6ftdn/Ff/Tk/B60HGIv+M/wL+Kky9HPt6wV6gu9Sg88D32JfAJ8P9qRG 7Dm+qz2do7gLKyNuL/rF8EWy09hruFj3hnvbF+6ju4LdrzLG+1MjVjm9rfVz 3KWgP9hHnXw4D9xG/FW6j2BCavgVdwm4HFwGsqh/hcd/pAZfYd8F7vV817gS /Ok6qnFTasxzNTiYGjFXOU56vn2FoABMIabI4z+9Fq2jWZ3Qihw3qDL2ogpr KYVLXL8crgBllWGL69eL2EHeO8UqZ7DuBBgBqqaFLk3vM0N0d6wPg68B1dOi tuoeaX24fapxLZiZGpp8M1Ljt5t+t23ie20U2nXgGPoZB9+o+1MZ+vX2jbN2 LDFj4Bs870SdD3gsNbTRlfF+crP2GNROixqqlZYWtVWrFvYtlRH3kHPHOF/1 xoP0tOh/pNeg2FtcVzETHXcbmOS5XoQXVMb3y13aM9eZ5LhbdZZgMmjOWm73 OCct+Hb7ngJPgkWpUeOOynhnuEf7B6aDqeBu0LJexNzlOOnT7LvHsUenRZ7G z6aGX3H10GfC94KG2LPhR8Ej2hfwMHhQewru19rIneWxaopn2feQY9vUi5r3 ue7D9jVNC02+F1Jjntn/37yaU+8hj+s8QVvqzKmMcfO04Dn2Da2Muzg1Nfbp CdDC+6w9noP+AjwPnEidufAz4I3UYI2fBs9pP8AS9Oc9Vp1n7G+dFtrzjnsF LFTNtKg/33OINT4B/aXKuAetfR9e8p1Q3sugQ73o+Sn3vdB15XsLLAddyF0G LwUnYb8Kv6b7oDWA10FH9MUev5MavNg+xSrn7dSosQS8mxraItfUPG+CU+tF zDLHLXcf8q1Qjcp4T1jpsebVc13P95K0OAedh54L74BVoBM134ffA52x18Br 1QOoMoT3KvCfNfm+To34dc5Z49gz00KT72zsD+FNYCP4GGwG56SFJl8P7A/g 9aBrWvg/Ar2wt8JbwG7m2gFvB/3Qv4S3gS8qI+YTx31pTTGfw5+Bs7Cr0vuR 6j81tE9Bb/emvr5PjRpb3f821+qD/VVlzH1JWuR+7vyd2gPQ3z1/7L4V+5V7 3VAZa9uVGrzB6/zG+ZeS+wP8o3qoDFs8IC00ja/GPgDv11o4l33wb+BX8Htl +IanhSbfPubaoz0D+WmhKbYSexf8HfjWd0Hf86XoeysjpyAteK/zqw2JvRuJ fpjxv+Dv1GCND4E/wV/gD9tifbf+5bHm3ek1a792ef4r06KOaqj+P/BBMCIt +G/djXpx73T//k2Ntf7uvaji+3i94/9xzneeY4DPvZrPvi04HkxLC24zJJ6l NeDq4EbsZDgFJA0JW6zvx8bwseAYxyrnKJAB0hWbFrq0nvScBqeC87Frw7XA LWlRW3XVs/Q69qlGXTAxLTT5jsKuOSRq3YydgDNVF/touL76HxJ6ln1HW9N3 ZS6cA27HXl0Zn/NuaaFlg4vorSHcAPSpFzUS7rO+a6mfRkMi7k7n5jq/sffj rrToP8NrUGwj19WzR88gPY+0jprel6agic+iBdxcNbGPg1uD+6y3tK+ZcxJp obXwvCfBJ4JZaeFv5rqqoVqtfOZtfd6trfVnve3hE8ADacEat7MmvqxenLnW WddzdfB8XUBnMAf9FLij4rBPgzuBU4eELW6SFnuvM9BzVrHKOdk1VOt015D2 cFro0gbQwxlw1yHxfdrJdbVe6d3sU1/qr0FaaGe4jt7x9a5flc9Od7QzwdXU PGtIjJ8kpgd8Djhbdxecpz1LCz4XzMU+H+6lfUmLWOW0ckxPx10wJOKeQr8I 7g3mY4/XnQJ52H3gi4fEd3HfITFWfcUq50JrfR3XH1wCXiQmT72Dl7AHwFdq r9PCr7h+OjNwqWMu9/jktODL7TvfvfZyjSvAK66jGsX1Yp6rdD5pETPAcdLz 7CsA+eBVYgo9rlo71qJ1FNYLrdBxxaAIlKCXwIM97zXwMDAUlIHSIfG9eS08 HKxIi1jlDAIjhoSvv3Vp+lwrt9z517jem2mhyafvu2H29cSuhCvko58hQ2K8 DH3CkDizNe5hhPsYB8ZqH9BHwde5/mj4/9Fw5nE6l+8Xb0Wa5Zl55hkyi1ba tVJJqbRp074ppbQbs5oxMykRkkgKFZKQUCEtWokopZKdEApRpCiV+L3P9zq/ P87r3Pe5ruvcq8f9qb7fbqCyc7TFnfWd4jW/nxa5qim3h7yq7SHtxrTQpX1M uzv8sPY5LbzlO9v6I47J+27vqTTF5vi+PeY71wv01BmgT4QngQmgH3hCteiP O29eWvDjrukDeoP56H3dV85o+GWwJi20vs4bBJ4G36WF/5Me40mPp3McAD8F ZqUFq9/fdQPB59alLUgLfZBjI8BwsAr9Bfh5sJL2YPhZ8AwYAp4DS9GHur88 LXioY8pVzZK08BjmnMH20Ho1zov2V84LzhvueSj2Ehjp+Yxyf43vVWffLWmj nDdDewA+AePBa+BVMBaMAWupHef++rTgcY6Nd+567/8rPoPXHPsJfQo8GdyT Fuc80fpEn/km2m/Ar+vu0H6zc/R/sf6mY/Ie7flM7Ry+j6Rz1+EPQTH6+/B0 sIv22/A08NvBweq/Bd4F74Cd5Lzn/oNpkaP4trTQ3nOexpnqNcj/A4/xgftF 5H/cOeYhT/HHntMM72u3RvHbrN9y/Q7PdGwP7XOK+HsBtAJz0D4DNY2iPdd9 sfr7sN558BegK7Wz4NngU2ufg33Toz3P/a90d8CXqmeMvbo31H4Lf+N8sfpf WxPXkvMdvED73CjaC91fCb4HK8AysBwsBYvBos7xLlri/gHpwUscW+bcHo1i bl86Z7ljaekxjsarnx7jaLzH0oI1Zjr6angVSNBe0zn6vdOC1zg23+uvRl8L /wD60l7XOfry+RH+CazXXdH5g3z0TfBG+2937Jm00DZ0jneXtO2ukYe8csnf DP8M+rDGrZ3j39MPcO0m10tTTP/+fkvnqGno2i2u3+sz2wP/AX4Hz+LzN/wP 2GV9h2N/W9Pb6S/4T3B4eqx1ndcvbafmz9x2w/+CpxqFh7z03xL8Yy/tw3+d I+/I9Kj9y/Wam+Z1lPdQ+/e4Pf+z737MfV9wDDn7F0V/JHM7Hj4OjCD/ILge aJYe8f1dcyA4AIzSG959jSWu49hh4FD92UkPj7pgEJ4ZcCZIBweD+kXxplLO Qc6TnuZYhnMHN4o69U9Oj/jBnn8WnACn0G4E54FDQAPQEOSCHJAEp5OTcn9C WnDKsQbOnZQWntn2beiY/KUpNi4txtF4LT2uxhzKPAvg/KJ4gxUWRV/jigsd 0++Dfhv07aZ9agyebxS/GYrpd/IYtKPBdL3V4SPA1LRg9Q8HTbT34Dz8m7r/ rnMUPyc9tKbOO0nn6Xz5H+sxxMc4/4SiuAcXpwef4DuhuhOL4s1zqM+4sfWT HDtb+wHaUnsmfAb4ivxT4FN1dtoLcJpzmrs/Iy24uWPKVc2l6eHRAlyRHpo8 XmoU45wFvk6LnDOd19LzUEy/4fr91lvoXPf1TjgPbg3GNIr2+e7/DDaDTVo/ uEhnTU4b+EJwAXgYdAe11tp4bsq/xDVtnKs3wyX2upGcK+ArweXgatAOfJ8W mmI3k9NW6wZXpUf8KuvXwteA1eS3h28FP9K+Gb4F3FQUOdc572Zr6/Seh28A t+HzKPwIqEgP7XrwQ1qMr3mtSAsPebVPD2953U77tqIYu4Nrb3R9B8Wtt/Pa rnLubZ7rZUWxtmVpwZd5nXe4fgN6J/gecHdRtMUTG4X2vz7+JXAxuJ92EdwF dAalRRF7MD20IufcB9+rcZyv3Htpd4TvAneqBjygsdHvL4oavX/E97u+R1Hs XRk5NXC1xksPVr8bKNe+KsftMs+nwv3O6bHWO7xfHT3+hEbhI49icqrgSrfF XV3b3fevzPtQ6r142PexxPlVrrnLY9zlc+/hs5+oMcGQ9ODXwEG0e8E9VUu7 N9wHPF4UbfFj6CPhl8AI56rmMfA0GAieSA9dWhXtJ+C+4E3W2B9+EvyeFt7y zcgI/SnH5DEATGkUmmI98elXFF69aT8DDwL9aA+DnwdDi0If7Ngwa//pPQ8/ B/5Ni+94fc/r217asxobnxfhF8DbjcJDXn+lhfcwjzW8KPIGp0ftENeP9H7o HTjQezHAucPtqzv2kO+Z1tHP+/IyGAXeZdwx8Cs+l/Hwq6BueuhjHRvtmufS Q1Nsf9qTtcdF8U572Xmj7CGvcT7ziT7vV609T/4b8Os61/Rg9SdZE3/QKM58 pPdKY03xeO+D6SCJPg1+S/Oj/Y7WpP0sirZ4NPoM+BPNIz1yVTPVHvJ6zx7S PmoUurSx5H+ouYBUenjLN9P6R45pXpO9LmkfetyHfAb6s6/xPwYzG0V7hvuf glnSwedgrvaC/DnwZ9oP2nt0p8CSRqHNVg3tr+FvwHx7fOo5f2GvPNpfwV+C xulRO8f1X7vusPTw+NrjKlc18+zxhef0HVig/SVnBbxcOcxhEbywKN6Ey+Cl oEl66Isd21sUa1iQHppiU2ivLAqv6enhrTG+tYe8lji+0uMttXZyBn8nwavA 0a5V3dxGoX2vc/W+7fXefek1adwf4DU6P71X4fXO/wX+FWwBG8BP2hc8t8Fb tXfpkauadeC3ooidZl3aielRu9H1v9jv20ahKTYrPcZR7LP0eAPo73+9M/UW +Nlz01pWez3bPJ7m8TfYpbMn5w/4d3AG7Z3wn2BHUbTFZ6GvLYo1H58euarZ bg95/WUPaV+khy5tEXP+F/6nKN7Vf9pX+yB9t2PyXus9lfavffTfEevfSWfx 3b1vF36rwHd6B8JHg07poe/nWF1QB1yktz18AGhDuzFcCH5oFNr+YDF6OpwB 0uwhr9Z6/9tLYx0M1wcr06P2QNenu07vvQz35alc1Rxkj3qeUxZIgFXkHAI3 BNfRTsLZYDXtBnAuuMZ6jmN66+nNd316aIpdrjd8l/BSbcJjZNpDXinHG3m8 XGvr9LaH88GPrlXd941Cy+sSbz/tsfa6qfdAa1pBzqFdYk9/JucI+HB7HgU3 AUd2ibZ4XaPIPdRnoFzVHAaagRPB1vTQpd3lcZt6bsfBx4L70sNbvlusH++Y PE4AD6SHptiv6bGWAq/nZHASeAi9BXwGaG79FMdaWOtCzunwaeC39Phd1O+r vqmlnQqKaJ8FnwlK08NDXtvSw1te22m37BJ5O1x7uutbgbNBeXrMv5nXoNyW 9q26ircR+LMu3wGu2Ul+a/jcLvEevgBuoztiVn8X+sNwrfY7IzTFf+QsLoYv An/b5zx7SbsQ/ETOFbpfYDM5V8FXgj/SQ7sM7E6P/ItdI/0Kx5TfzjU3gZt1 l8zq12c+18LXgP1oXw/fAK7rEm3x/hkxd62hxrmquRpcCtqCS6xL2ycjvDVO Pdq3wreAtIzwlu8B1ts71s5z3Zse2q2e26X2/jM9xlFfb8Lb4du0J+xPJ/hu 0JD8O+GO4A5rd4EkemfdEd03s/qN0It1v0Bj5yi+rVHUdnL9A+BBcL+9NUYW +ffC94F7ukRbrLfrfe6nyHkE7q57gmc3zV1np7d6l+g3JaccLgOHeT4lnpO0 UrCd/A5dYs05GcEdvP6uoFJ3z+0K3zHVlru+1uem9568NUb/9Bi/2nOqdP3T 6bE+7Z/ezI92iTUcj+dr8HjdhzzeffCrYCx4DPTQGTHP3vDjYFh66D0dGwlG gHMyQlPsaNoD4KfAP41inEe9X/KQVy/QV/sK+liXdgK1/eEnwfD0YPX7WROf lBG1qtvVKMYa6PGGgaGgBTnPwIOc/6z2CQzuEm3xbmpbFfP7AMZnRK5qnraH vIbYQ5rerkOt/UftC/Dz4OyM8JZvy4zQX3RM89L8mmeEptiY9Lh3un+FGbEH Wk+zjNhL7elwMEpjgpe6xLnoTPTOHAO/AtpkRI7i52aENhrsyzlOUi6YaA/l jU+Psx3n/Ald4uwvcu0Y109y3cUZ4aH+5PTIneC7MsJz3Ms+TIbfBNPIeQ9+ t0u8FafCU8A7evPDb4N2GaG/5djH4CNwbUZoUz3u9C7h1TYjvDXGG/aQ1zTH p3u8t63VZe0fwh+Aa1z7hn2kvQ8Oyosz19m3LI5z0G/AVr35PacPmfNseBb4 lPZMMZgB/gH/gr+tKTbD+Z+5ZqZzb8gIbbbXOA/+EnwBvgbzwe0Zoc1z/lx4 DkjPi/hXIJP2t/A3oAM5y+FlIIm+BF4KFneJnAXOW2Lta73z4YXyov0fvBuc lhXad6Cj56Z56a27wF6fp4f3Eo+7okuMfV9G1C5y/fdgZZf4dpjvtX3l3BWe 6+ddYm3tvcbPvc5Vrtcc1sHrwdou0RY/mBGa+ovw3wr/2iXeeFvgX8BmsK1L xIoyQlOsnPZP8I/Wtzj3EPZtDfwDWA02gY2aq74LukTNsvTgDa7f0yX2Tu+i XfBfiqUHq/8n2A5+B7+5Lc7LC039rhmx1lXerzUeP5UXPvKoJmcnvEPrTw/+ A1RmxL37x+2tXvOv1nQfNzl/p2t+8BgPZMTc9/jsj+beNwUvZAQ3Ac/T3hfe BzxKe3/4ALBfcbTFevPkwfmgkXNVs1f3FU4DfTJCl3Yo66pD+0BwOO2D4Hqg V0Z4y1frlV7fMXkcDI7MC00xvVXqFodXT9qZcAboQTsF54Kc4tATjqWsNcEn CWeDfhnxZ19/7idmhJalMWg3hBs4J2GvuhnhLa+naB9SHHlprk26Ps/7kZ4R 80/3GpR7iH31+6PfJv0GaR11vS+FoAAMovYw+FAwkPZR2gMwzPrhjjV2Te+M 0BTrS/sE+HjwckbEG9tXHvI6wmd+tM/7SGtDyD8OPhYMzwhW/xhr4pcy4szz fHYa60SP1wI0B+PQT4ZPAqNpnwqfBk4pjvYp1vX7qt9Z/e4rVzXN7CGv0+0h bVRG6NLG0D4TPsNjnWbf/9fPckzz0vxGZoSmmP5+15/xn/3n/Fy0c8AE9I3w JrChOPTWjl0AzgdvZASfBybRvhBuY721ayY55wLnXVQceZP11oUv0X2ifRvc vjjehJfBbcG7tC8vjn4iI3JVc7G1y513FbhS90jvcPhGnYfe9vB14OOMiCvv CnA1aFcc7+dr3H8vI/gaxy70XNvY41qdU174yOOdjBjnBvBJRuRc7zzpNzl2 C7hZ503tre7P9lq0jmkZod3qvNuLYy/keSd8B5hD+y74btCxONriud632713 ylVNB9AZPAS+zQhdWnPmcA/cCcxDvx++rzjeunfb90jrDzgmjwd1h/JCu9/j tijDD4xL8HZHKyqOd1oF3BWUF4de7FiFtVb4lMGlxfHPwWrhGt3PjNBKwOb6 vNHhSrA4Izy6eM5d7bWIdrfiyDvVtWWul181WJYR8+/sNSi3m32VU+u8R0B3 jzUeflX3iXk+DveyT3fnPQx6gEfBeeQ85v7qjODHHBsBhoOtGeHRszi+BfrB T4InQB/QG1yQFzmPO096X8f6OXdtRtSpf15GxJX3A+2n4P7gQnyGwEPBc2Aw eBY8A54GA4vjTTvIfXmKBzk22LkX54XnAPs+69iWjNAU25AR42i8jRnBGvMS ap+Hh4Ff9OYvjv6lGcEvOHZvcdzFYzJin14EbfNin7XH+l4YC48pjvfqKPgl cEVGsPojwWjwMric2lfc3+EcxbdlhPaK8yaBiWCn/cd5DPFY579WHPfgb9+H 13wnVDcBXJUXcx7heU+0r2LvgXfBfpm8veFp4GZ83oDfBK+DKWAyuBqfqe7v zgie6phyVXN9Rni8Bf6zjzz+yYhx3gHX5kXO28571/NQ7H0wvTje0h+4Lx/9 ruv3vVtGnIPOQ78LH4EPNS6es+BPQV3WMgOeCT7Rvmh8sMuaYgdkRv5s18xw 7g15oSl2J2N9Ac8Dn4P54CuQmRmaYp3ImQN/BuplRvxL7SE+38BfF8ebbRm8 FKTIWQwvAYuKI+db5y22lk3OQvg7kEV7N/xvcbzHpC0At+bF+JpX/czw+Mbt JfbqrO+L4hi7xLULXb8SrABlGTHn+Z63cpd7rnOLY20HZQbP9Tq/d73muRZe B34ojrZYb+N17mu9v8K/gEfQN8NbwM9ga3HECjNDU+xhcn6E12v/80JT7mHk rIbXgFW+Cxtc+1Nx1BRkBv/k+v+KY+/0HvsL/hMckxms/k7wG9gOtrkt7pQX mvpNM2Ot33u/Vnv8DnnhI497ae+A//A8xb8Xx/v2H9+//hmx1q3ei799H491 /g7XrPEYeT73/3z2TUt464ELM4OPAlP0Pof3Fsebfz/a+4N9S6ItfhG9EZwH DnGuavbAafDBJfHOlC6tGf4Hoh0AjqNdD64LTs4Mb/kea/0gx+RRH5yaGZpi emfWKQmvEbQz4HTQhb3KgVMgWRJ6pmM51lrgkw1ngVf0ziyOP+d1MkNLgNNp N4BzwVmZ4SGvMzPDW15j9S1QEnmvZkRttusbeT9ey4j5p3kNym1oX/326DdI v0daRx3vSwHIB60Z61C4MXgdnyPhI0Ab64c5VugafadIU+wCco7XHoOpGREv tK885HW4z7ypz/sIa2/qbQ8f4/sgVv9oa+JLMuPMG3meGusEj9dc+weuRD8J bgba0j5FZ6izLom2+KrM2HudgX5nlauaE+0hr9PsIe2KzNClXU37DJ0naJcZ 3vK93PqZjmlemp/unjTFrsmMN/4m/3ODljpncC362SXRv472OfC5oBU4H5wH bs0Mbu19aKP9Bu0zI1c11zvnfOddWBJ5t6NfAl8M7qBdDXcDfWi3hS+1fllJ 9DtmRq5qLrJ2mfOu1H6Au8m5Eb4B3Ef7Oq0D3JMZceVdrj3Sfjv/aveVI77a sTae6wX2uAbcb5/LPR+Ncz14MDNyrnOe9BsduxncBB7mz+Mt7pd4LRd5H6Td 4rz22teSeP/fAXcAFeTcp/HBvRob3FkS3zUPwg+A2szIVc3t4KGSiM3MCF1a cWbU3uX6++z3WF5oipVmxjiK1dDupH0qiW+le0qi3xW9piTObL7n8JDnUQHK QU9yusBFoAftEnlrDiXRFuv75TavuSgzclXT2R7yKrOHtF55oUvrTbtSc5Ge Gd4l3gfpVY7J+zbvqTTFvsiIudf4zj2sOvAN+hh4LHhFa9DelMQ3RXfnaSxx d9c8Ch4B/ZhPD/efIudF+AUwPDO0Hv+fB54ASzPCv5fH6OXxdP/7aH1gYGaw +o+7ri942rq0/nmh93NsCHgODCZnMPwMeJ52f80LPClfMACs0jvffXn+jx1T rmpWZoTHIMXyQnvS/hrn2ZL41lDOYOc953koNgwM1Tz0/nf/Rd+re3y3pD3v vOngffAeeBmMBqPASDACvETtS+5vygh+ybGXnavvEe3/cJ/BaMd0FhPg1zRm Xpzz/847M1hnPgT9VXhcSXyjjS+JvsYVj3dM3hpjPTkTS8L3VXLegd9WHJ+3 4Kkl8b3wBvw62J4RrP4kMBm8CSZSO8X9P52j+PjM0KY4T+NM9BrkP81jTHNf +e+WxDymeD7vek7Tva/6ptBv8/9+yzNjv6d7Di1K+XsBNAefoH0s78xoz3Bf rP5efGbBn5bEO/9D+CPwgbWZGjsz2rPc/wzMAbO1L2CX7hg5X8Cfqz4zWP25 1sSj2c8v4Xkl8U5W+yv3F4HFYCFYAL4D34KvwXydsb4R3P8kM/gbxxY4d0Zm zE3z0vvnO8fSMmOcL72WxR7vs8xgjTkO/6XwkpL4jlhWEn15ipc5Nsfr136u gJfrvKhdWRL9eeir4NXge/Az2KR7Q85a+AeQQ85mxxZmhrZG88sMbbNr5CGv Oejr4XU6X3w2whtAQ9eudb00xX4CP5ZEzXzX/uj6XT6zv8AvYEtJfAv8Dv8B tlv/1bHfrU1m3N/gbdoLr32l1y9tK3iTnJ3wDumZ4SGvrzPDW16L9E1REnmH Zkbtb67f5XlNzYt1a/9es+ef9v0X/KOY3vzuH0n7KO76keBf2vvB+5ZGjuK7 XbMH/Kezw3Ov++syg/c61oi6Q/RnJzM89imN76C6cD1QBxwA9gfv5EXOfs6T fqBjdZ27KjPq1D8+M+LK+4l2ffgg8J7+WT2cA7JBAmSBTJAO0sB0cjLc35QZ nOFYwrm/2vNg+2Y5dmJmaIr9khnjaLwNmcEa8wP8c+EU2KrvhdLon5YZ3MAx /T7ot2FkXuxTQ7AtM34zFHuL9uFoh4FdtAvgfLA9M1j9PNAYFJbGN8ih7u90 juIf54V2qPOOAUeDvfY/wmOI1f8DvUlp3IO/fB+a+E6orin41HNu5HkfbV/F TtdawW697eGTS+M9f5zODRyrfQQn6G4leH+7rze8uJljylXNxZnhcZLuRyI0 eeyTiHFOBXPyIucU553meSjWwr/f+yfit1x9fSOcpT0Dn+dFu6X768B6sBa0 BufqHlDbCj4HnA26gkpQYU2xeonIP881rZyr74Xz7FWHnIu0JnAhaAsu9Vqk KZaifQF8vu5lIuKXlMb3xeXwZbpP6NfLW/tP+xr4Wq2rNHKucN411r5lje10 DuBOfLrBVdqjRGhX6l56bprXV3nhIa8OmeEtr0xybiiNse/KjNp2rr8J3AgO 8Zzbet7KvcFzbVMaa6vvNbbxOm92fSc8b9eY4LbSaIsLEqGpr++OB8S6d+j3 wveBe8CDpRHT+1maYk9lsWb4DrA4LzTlvpRkT+H24BZwt9YEGuPZsTRqDk8E d3R9dWnsXXf8y+Ey0CwRrH4p6KzxwUNui49LhKb+sYlY683er1s9fp595KFv jRK4GByfCO4CjknEvdP9Oy0Ra33Qe9HV93F5XuSXuKa9x7jX517tsx8DXtFd SQSPLo236MNwLTgL/RH4Ua23NNpifcsMhYeBIc5VTQ14AvQF/TJDl7ZS//wf 7gFW6d8XwL3AOYnwfsT3UHpvx+TRB5yXCO1/MTx7loZXK/QnNQ7ojz4IfgY8 XRp6f8cGWdO3w0B4ALg4Ed/x+p7Xt720p8Ba5vYsPBiszwuPJz3PZ+yl+TxX GnmXJqJ2oOuHej/aJmL+T3gNyn3OvrpjnXzPtI6e3pcXwPM+ixHwcO0vc34Z HgWutT7SsRddMyQztBEe9zV4PLghEfEX7SsPeb3kMx/j8x5lbaPe+fA4cH0i WP2x1sQ/58WZa53PZMZYEzzeW2AquIPa1+FJ8ifnTXgyeKM02uIx6NPh90DH ROSqZqI95DXFHtJuSYQu7Vfm8DY8rTS+LybbV+uV/o5jmpfmNzIztLft08ln oH9GofHfBdvyoj3d/Q/Ah+B9MBPM0Br05oc/1hpo/wX/WRrvN2kfgXvwnwt/ DubYQ14T9Oa3113kfAbPBg8lovYT1891nf7e/9x9eSpXNbPs8ann9CWYB7qQ sxD+TmNSOx/+ChSjL4C/1Vqsf+3YrtJYQ99EaIq9ozd8aXipdp7H+MIe8vrG 8UUe71trZeQvhZeAbq5V3c680BaDv/NizF3eu9le0x/oy7WXpfE9sgr+HtTg 8xO8AfwI1oDVoBZ9E7wR7M2LXNWsBD+XRuzxROjS/s2L2h9c/5P99H3xg30/ zYxxfrK/3gD6+/+RRLwF1J+bGWtZ6vVs8niax+9gu/aDnF/gLa7dqvsFfi2N tnjffN78pbFm7ZtyVbPZHvL6zR7S9N2x3ZrOa4f2DDyZCG/59rG+0zF5r/Ce SlNsMT7NKnkfgRPBPzoTcCDzObyMNyAYnQj9X8f2QdsL1yVnD/yfx22I3qAs 3sDSdpfGd2sdtLrgwLLwkNcg8vctC6/naB8A7w/WuHaP6+u47plEeKivt71y VbOfPfb1nOrDB4Gh5GfDWeBl2mnwwWAjtQk4EzxvPd0xvfX05jsgEZpiL9JO loXXiER4a4x69pBXhuNJj5dpbST5uXAK/JwZtaqrnx9ajv8bAO2x9vpQ74HW NAT9kLLYU7Xz4TzwOz6FcGNQUBZt8Wve/0N8BspVTSNwNGhaFt9uedbGe1yN mc18joSPABMS4S3fHZmhH+WYPJqAiYnQFNM3iNaS6/UcC47RmvE8CT4ZNLN+ nGMnWZuGz4nwCWBKIn4X9fuq30Npx4P/8D8VPkV7kR8e8no9Ed7yelNv/rLI +8C1J7pe/53F6WXxXdPUe9HEuafZd4O/6fUdrfwWrllTwW8D2M64Z9NvpTti Vv9txuoKV4D1idAUzyO/NXxuWXwjnAmfBc6wdg74SO9q+EIwg/Yl8MW6T4nQ 2ugM8iO/tWukX+SY8i91zdXgGtDOrP4X+FwOXwY+pX0lfBW4oiza4nmJmLvW UO5c1bQF54MLwHnWpc1NhLfGmU/7Ovha3Y388JbvHOvXO3ap5zo7EZpi3yTC X94fJ2Ic9fVdcyN8g+4WnrfDt4F89FvgW8HN1tqDBej3wPeCTmb1N6HfD98n H+coXp0etbe7/i5wN+hob42RTf4d8J2gQ1m0xd8lQlO/kHYVXAlOYJ6lcAlY q7d6WfQ30O4MPwRWej4PeE7SHgSr9eYvizV/5bXf5PV3AcWgyG3xmkTUdnZ9 hc/tf2/+shjjiESMX+Y5Fbv+B++h9u9b2t3KYg2baY+GX9bdof0SPAqMBDXa M7BFb364O/glEXqtY0PBEPBXIjTFWtDuA/cGJ+fHON28X/KQ18OgB3gMPGpd Wku9+eFeHlesfk9rYr3ze7iuWX6M1dfjDQJPgx36FoD7gda0n4IHgP5l0e7v OTcv58866JAVuap5wh7yGmiPJ+z5tLWLaA+GnwGn54e3fNtYf9YxzUvz+yMR mmL/JeLe6f4dmog90Hq2J2IvtafPgefBC2BYWZyLzmR/5jkCHg4uT0SO4i3y Q3sR7EPOWHgcGGMP5e1NxNnKq52+78ri7JWv2hGuH+u6lvnhof5BWZH7iu/K EM9R3zuvweM9tynwZJBOeyI8AdSn/Sb8BkizPsmxd8E7oEMiNMVGkzO1LLxu ToS3xnjVHvJ63fGpHu8Na62Y89vwNHCba1Wn7xdpb4FEVpy5zv608jgH/QYs JOc9z0nz/wj+sCy+R96HPwDTdZa6C+B3a4rlOv9j17zv3PPyQ/vI486CZ4NP wVwwB9yfCE2xTrRnwJ+AC/Ij/hkooPYL+HPwIDnfwQu0/+R8A38Lvi6LnHnO +8aavgXmw1+BI/H5E96pPckP7UtwcX6Mr3kdkhUeX7j9rb00h4VlMXaTrKid 7/rFYBFomhVznut5K3eh5zqzLNbWMCt4pte5xPWlzHMl/D1YURZtcVUitJX2 3whvAKfS/hH+CawHm8oi1j0RmmKnkLMaXgWuyA9NuVfRXgYvB0vBWvBDWXxf rCmLmpNcu8b1f5XF3p2Lvh3+TfctK1j9bWAz2AJ+dlvcIis09R9LxFqXeL+W efxj7SOPa5nbVvhXr1H8C+iViHv3hz03es0brOk+6s2v/K2uWe4xuiZi7n/5 7A/j3h8Kbs0Kbgxe0Tuf2N+gH+3d8H/g37Joi9uQn0NuCiTLI1c1u0Ad+geC wYnQpbUmfy+8BzyNvh/xfcHN+eEt3wHW93dMHgeA87JCU+wS2vuUh5c869Gu Cy6jnQFngvTy0A9yLMOavi/S4IPBNf6zrz/3D+SHVh+0p50FJ8C1WeEhr4uz wlteWnt2eeS9kIjaNNfneD865Mf863gNys22r35/9Nuk3yCtQ+vRvjSAc8F1 +DeCDwHX0y6EC8CN1vMca1geNfq+kKaYvnGawEeBe7Ii3tC+8pBXvs/8MJ93 gbWOev/DR+hcsoLVP9ya+PasOHOt8/KsGKupxzsJNANjmcOx8DHgPnKOh08A x5VHW3xvfvy+6ndWv/vKVc3R9pDXifaQdk9+6NLux/MU+GSdXVZ4y7eT9VMd 07w0vzuzQlPsjUT8GV/nP+dnoLUAD5LzA7wWrCkP/UzHzgYty+M7RXwWeIj8 c+BWoHN+5KpmsnPOdt655ZFXRP758HmglPYNOlvQk3Yb+AJQQfvC8ugXZ0Wu alpbu9B5l+g+gnJyrobbgUdoXwlfAR7NirjyLgJtwaWghHle5r7yxZc5do7n 2soel4O77COPqqwY5ypQlh85VzpP+tWOXQuuAY+Rf5377yViLVrHO4nQrnPe jeWxFzP1LtW9A7Not4dvA7eWR1tcmR+5N3rvlKuam3Q/dP7l8S1zs7VezKED fDt4nHZH3QXQLT+85dvN+l2OyeNu0DsrNMWeyIpvN323fYj/fWj3gr7oRXAX 3YHy0O93rMjacr3Vdb9Af/IrdG7g+azQHgBP0i7RmYNBWeEhL31bdbHXMr3n yyPv+0TUPuR6+ZWVx7dGJ+/F3c4tta9yKpxXpb0ELzLWy/AoUI92d/hhMCIr 4srrCqq1T8pDr3F/ayK4xrEh4DnwelZ41ILfyOmpc9B90L3UvQM98iOnu/Ok 93Csp3P1Tu7lvsbt4bxXaffWeSqGz0D4aTBA+wue0n7qzHQ+YILe8+7/mQju 51h/575uzz72fcqxfxKhKfZaVowz0J4DPeZucp7Ruame+Qwuj/5bWcGDHbuj PO6ivp21T8+Wxzu80nus76+R2nvwPrXPw8PA21nB6g/VmYEXwDt6q7u/n3MU fyI/tOHOGwvGgBlZ4f+SxxCrX0fv+fK4B+/4Poz2nVDdK9qP/JjzEM97jH0V mwImgyS1b2gvQSbtV+HxYJz2S/unvcNnovufZgVPdEy5r3rt8pgEZtlHHvpe 0DhvgjnOecN5kz0Pxd4CU0GKnGnuy0e/6/p9/8m/CToP/S68oz3WOTG3D+EP wHxypmsu4D3wu+4j2G5tuueg/I9cM925etNKU+xd2p9qfDBTNeAzsDoZmmL5 5HwCfwyey4/4bNAY/XPdF7CQ9gL42/J4b38Nf6N5lkfOF8772trzes/DX6qG /J3wjvJ4r0qbB47w3GY65wt7HZYV3vJaTvu78hh7oWu/cv0iabp/nvMcz1u5 33muM8pjbd94jTO8zsWuX4m+QqyxyqMtXpMVmvon0N6gcwMvM9Z6+EewDmws j9jGrNDWu3YV/D1olhWacvX+XwovA0t8F/T3/Et4ri53jWtXu/7P8ti7LXqT w9vApqxg9beCn8Fm6W5vcs5m95tnxVoXe7+Wevzv7SOPs/W2h38BZ2UFb/G4 f/z//fM+bPRe/O77ODY/8n91zTKPcYzP/U+f/aEV3ClwU1ZwIcjK5n1ObFd5 vLH/hXeDf8qjLR6Pf5LcHJBdEbmq+QscSP+AiniT77L2K+098H/gNWr3Jb4P +DcrvP/nmxX6fo7JY3+wIys0xS7Q90J5eP1Juy5aHbCbdjqcAdIqQq/nWLq1 K8g5GK4P9tB+tzz+nH+VFdpB4HXmloAzwYHZ4SGv/31H2Gs/9KyKyNsnO2oP dn3S+5GeHfM/0GtQbpZ99duj36CpXsde70susRSYwhwOgRuCqbQL4HxwVVbo jRxrUBE1mdmhKZZG+yj4SM0jO+IN7CsPeeX5zA/1eedbS5B/BHy49i07WP3D rInfzo8z1zrreawmHq8ZOFHzQD8GProivguOg48Hx1ZEW/xefuy9zkC/s8pV TVN7yOsEe0hLZocu7Q48T4ZP0tyzw1u+qezQT3FM89L8bskKTbEG2fHGX+tv 6tPQTtV+oJ9eEf082i3gM0Bz0BKcpfllB58JPmL+reCzwcf5kauaw53T0nnn VEReE/Tz4NagI+OWwaXgOdoXwOdrreS0qYi+vtGUq5pzrbVx3sXgItBFb2/d i4r4RrgCvlznmh1x5V0ILgWXaO/Q27pfkhXc1rFWnuvZ9rgMzMoPH3kcnx3j XKnzyY6cK5wnvZ1j14CrdX7kXOt+ldeidRybHdq1zrseXAfmMNbN8E06J3Lu 1D7prMGtOkNQjc/d8F3a2+zIVc2NoFNFxD5qGLq0uflR2971d9qvRXZoip2e HeMoVov/7fBt4AtqO1RE/1RyyivizNpkxzidPI8i0BkMpfY++F6dMTkPwA+C +yuiLR6g7zuv+bTsyFXNPfaQ10P2kPZlfujSnqG2WGcOBmeFt3xbZYde4pi8 b/CeSlPsvOyYe7nvXFfdFzAMnxHwSDBc6wc1OlPyK513cXZwpWu66TzBC9RW u9+WnGc1r4p4D0urdl5P8Jjmkx3+D3uMhz1eO/RH4Ud0n7KD1e/uuh5gYX7o 0oZnhd7TsYHaV62b2v7wk2AMOY/DvUEv0Bf00b6Q84T712QHP+GYclXzUlZ4 9NPdyg6tl/01zlNgnHP6O2+A56HYIPA0WMqcn3G/Q3bcow6+W9Kecd5U8BaY oj0FL4LndZ/AELAcn2Hu35kdPMyxF5zb0fv/nM/gRccmMc9X4NFgVX6cs857 ss9dZ96J2lFat+aid35F9Dtaf9kxeT/rPRlTEb4P0n4TfgOU0Z4ET9Q9pP2q 9sn+YvXH6n6A8WAN85ngfpFzFNd3jbQJztM4Y7wG+b/uMV53f7re/xUxj4+y gid7TlO9r59kxW+zfsubZsd+T/U8T+rK7w1oBt5De7civkHUnu6++D2v8UP4 A1BD+234HTDN2vvgp/xof+j+xxpfcwO/g+1aC7WfwjPBF1nB6s+wJn6EnNnw LPBlVrQ/c38++Bp8BeYpLh8wF8wBPzOHz91/PDv4c8fmOVdv7489r9rs8Jjn cTXObOtfe7w+2cEacwv+38oD9EVfUBH977KCFzj2idf/GfpCxcGT5C+qiP4S 9CXwUrAYrANrdc/IWQEvB4Nor3dsdVZoy8C2/NDWu0YeSzyf7+GVFfEd8UNF /Hv6wdlRu8L10hTTv79fVRE1T7p2leu3+8x+07mCH8FQcrbAv4DN1jc4tsXa Tub2M7zJa9FaF3n90jYqn7lthX+tiO+UDfZalxXe8hpB7baKyNO4qv3Z9ds9 r7/yY93av2X23GbfHeAPsIucne6PxKeQu14APqX9L9o/YFx2xHe65i/wJ3gF fZf7m7OCdzmWxCMbfJwdHn+DibT3QdsX7KX/H9gN/s2PnH+dJ32PY/s4d3d+ 1Kk/ITviynud9v5o+4E3aKfB6eBgcBCoD+qBOuBAsAefuu5PyQ6u69hBzh1j zwPsW9+xnVmhKfZbVoyj8SZ7XI05jXYmnAE+pJ3oGv13rScc0++DfhvW58c+ ZWmsgvjNUKwb+XlojcBMvdXhFPgkO1j9HNAQNNBcqT3E/Y+do/j47NAOcd7h 4DCNb/98jyFW/y9963WNe7A3K7ix74TqDtV+FcSck573YfZV7ERwApiH/3Hw sWAO7SPho8ARoCloAmajH+2+vqfERzumXNXsmx0ex+gcCkKTx6zsGOd4zcc5 xznvBM9DsZP8+z0/O37L1f+c9qnwKeBbt09zfyX4HqwAZ4IzwHRymsMtwOmg CygGRdYUW5od+We5prlzMwpCU2wZOefCrcE54AJwftf4HpSm2EG0z4Zb6q4U RPw8sBz9QriN5kf7SvgKsJr2ZfDloG3XyLnIeZdZS+FzKXyJ7gf5pXCJzqsg tIvBKs9N81qRHR7yys0Ob3kt0Du/a4ytbyvVXur6q0E7sCY75nyB563cqzzX Vl1jbUu9xlZe5zWu13fWjfBN4Iau0RYflh2a+j/RvgvuCLbQvgO+E3QAd3eN 2BHZoSm2kfYt8M1gk/OVm8/ar4OvB9eC20B7kId+a9eoWe/aW11f1jX27m/0 zvBDOu/sYPUfBPeAe0Ent8U/Z4emvt4YV3vN2q/rPH7DgvCRx2/6RoDvB6dk B98Hfs2Oe6f794f34W7vRRffx5bOf8A113uMtT73Mp/9CDAcZCeDX+wab8iu cAX4k3YV3A1Udo22eC/60/AgMNC5qikHj4Ee4IBk6NLOJr8Grgb7oneHHwb7 J8NbvnuyQ3/EMXk8Cg5MhqbYfrRru4bXPrR7wT3Bf9T2g58ET3QN/XHH+lk7 gr3tC/cBdZLxHa/veX3bS+vdNb5BnoL7gyMLwqOX85+0VwbtAV0jr34yavu6 /mnvR2Yy5v+Y16DcAfbVHbvd90zrqPW+DAbPgCaMOwR+zufyAvw8aJAMfahj z7omKxmaYu2Z/2j4ZXBcQcSfta885DXMZz7C5/28taPJHwW/BPKTweqPtCY+ tiDOXOu8yWO94vEmgYm6b3qrw2PB3bTHw6+BV7tGW3wCPlPhKeDQZOSqZow9 5DXBHtIKkqFPcP4b8OugWUF4y7ex9Tcd07w0v4bJ0BQ7Khl7rzPYnB3jT+4a 3xdqT3V/GngbvAXeB9O1n9S+B78LSsn/Dd4GrkqG9o72kPYMeCb4xB7yaor+ gb26Uvsx/JHzVfue62e47vSC8FD/5GTkquZDe3zgOc0Gszy3r+AvQQvac+DP 1MZnHvwF6J4d+lzHtneNNQzJDk2xU6md3zW8HssOb43xqT3k9bnj8z3eF9ZO o/Zb+Bu3Z7lO30HSvga9vG/bvXcfeU1V6N/BC0BL5rwEXuy1rIbXgFVgGVgK WpGzFv5BdzE7clWzCKzrGrHWydCl6dtEtctdv9p+FyRDU+zcZIyj2IDseAOs sI/eAur381q+9XrWejzNY4vuFLiS/J/gH8GltDfCm8CGrtEW61tjYddYc6tk 5KpmvT3k9bM9pJ1XELq0C2j/Cv8C2hSE90avRfpWx+S90HsqTbG2yfjviPXv pOsm+PsD7XdwPXpeJW/AyngPS9/h2N9gF7iEsf6C/wQ3kp9FbgK0KwhtJ7iY 9l54H/Q99pBXO/L/sdd1tP+Dd4MXsqP2L9erVnVtC8JD/duTkauaf+3xj+e0 Pzn7gQ7kHAzXBzfTPhA+AFyOz0FwPfBSduh1HNNbT2++r7JDU0xjpVWG19js 8NYY+9pDXnUdT/N49azdSW0mnAHuTkat6q5JhpYO7k/GHmuvD6mMdWlNN6Fn V8aePkg7BeeAV5lDA7ghyK2MtvgB73+2z0C5qkmCw8ChoEsydGn3eVyN2ZF2 AZwPOifDW776LpNe6Jg8GoPrC0JTTN81Wkum13MEOBy8g34MfCw42vqRjh1j rRtjNYWbgJJk/C7q9/XkgtCOAl3Rj4ePAz2S4SGvsmR4y6uC9gmVkVebjNqm rm/m/w3KLQUx/8O8BuWeYF/9f97r//te/x/vJ7mmJz6HP0I+2NuQ31+05roj ZvXfY41d4CIwOhma4r1onwmfURnfeqfAp4KTrbUAj5FzLnwO+IKc8+DW4I6C 0FqB3snIP9M10s91TPnnu6YtuAxcala/H7UXwm0q4xvnYvgScFFltMV9kzF3 raGzc1VzAWgJzgZnWZfWJxneGucu5nkFfDn4Lju85avvJulXOna+51qdDE2x Acnwl/fjyRhH/bnUtoOvAoPQb4RvAENoXwtfB66xdj24lzl00J6B283qL8Kn I3wneCEZmuLPJ6P2Rte3B7eBW+2tMZ4m52bdF3BTZbTF3ZOhqT+UdglcDHYy 1oPwA5Xxv/N9qDL6em/fA3cCP3o+d3lO0u4GL5J/dWWsuX8y+Gqv/z5wv9bo tnh4MmrvcX2Rz62oILw1xjrP5yHP6X7X6xvnWu/fs/iUVsYaRtF+UfsEqvAZ pn3SGkE5KAOvkFMFV4JxydArHHsaDATvJkNTbAztR+FHwGveq1Lvlzzk1VV3 AtSAbta7urY7/LBrxerXWqv1HKpdN95j9fB4/cAT4G19C8A9wZu0e8N9dN8q oy2ejN6sit+HqvgdVq5qHrOHvPraQ1pxQejSSmn3h5+sjPd2H/senAz9Kcc0 L81vQjK0/h73Nt8/3e0a78WrydhL7ekA8AwYDAZVxrnoTPQOHwI/Bw5JRo7i 7yVDexZ8QHuk7iMYYQ/l5STjbIc5f3hlnP1M1w5x/UjX6f38kvsf+J4M910Z 6DmWsw+j4ZfBLHIm6Nwq4307RncHzKY9XusDX1gf69hknY/OriA0xQ7X274y vFQrb40xyh7yGuf4RI/3qrVafN6AXwdfu1Z11QWhTdJ9Kogz19mfUBXnoN+A +9GneE7zqH1H90hniP4WPA1MBb+AX8EWa4od6/x3XfOWc79JhqbYAtofwh9p P8EM8An4LhmaYktpT9f5WFf848p4h3+qswKPM58vNUfdRdqfa1/B3MrImeW8 z62t0vsf/gwso70N3qqzLghtNuhdEONrXj0LwkNe3yfDW17N9U1RGWP/kIza Oa7/GswHaz3nGZ63cr/yXN+vjLWd6DW+73V+4/qz0BfBi8HCymiL9Q5f7L78 f4DX6A4yz1Xwas1TscqIbU+Gptj5tJfCS0B/5yv3F/QF2mPwLVgBloOnyFlW GTVbXLvM9b9Vxt79hb4Z/hn8kQxWfxNYD34E69wWP10Qmvq/JmOt33i/Fnj8 fgXhI49d+kaAN4CLksE/gd+Tce90//7xPqz1Xvzi+zi4IPI3uuY7j7HB5/6b z74R9/4QcFcyuCGom8N6NA64DH0n/CfYURlt8X7kpJObAdKqIlc128FesAdc nQxd2r+0d2nPwFDm9q/mDoYVhLd8/0uGvtsxefwHDswJTbF9af9dGV4H0N6X sfcB+9OuC9cDdapC38+xutbSyTkQPgDsTsafff25PzIntP299vrwQWB4QXjI S99B9exVj5yDqyIv07UHuj7d+7E3GfPf6zUo92D76vdHv02TvI6/vS8J+YGR jJuEswX8G8C5IJUTeo5jWVWuyQlNsVsZtzFcCPJyIp5lX3nIK+Uzb+TzzrU2 inEL4HyNkROsfp41ccOcOHOtM5ETYx3q8Y4BR4PD0Y8Qu30U3ET7XBVtcf2c +H3V76x+95WrmsPsIa+m9pA2piB0aeNoHwcfK7+c8JbvETmhH++Y5qX5NcgJ TbFOyfgzvtJ/zk9GO0m+5CyHV4BlVaGf4tjp4DRQmgw+VXMkvwXcHEwsiFzV FDvndOedURV5+eS3hM+qim+Zq+ArwdnorcSaM+1zqqKvbyLlquZMa+c47zzQ Wuskvy18qeZK+2L4InBiTsSVdy64AJwPavBs4/5JOcFtHGvhuTa3x4Wav33k 8UZBjHOJcnIi52LnSW/r2OXgMs2ZnCvcPz0n1qJ1HJMT2hXOa1cVe3EG+rXw NVon7evhG8B1VdEWv10Que28d8pVzdWgA7gdPJkMXdo08m+Cb9Qa8LwVvkV7 mRPe8m1pvb1j8rhNe5cTmmL63jymhjMHz6Z4u6PdoX0j5174PnBPVegdHbvX WhtyOsF3V8W3TBHcWevPCe0unQftB+D7tSc54SGvp5LhLS+91R+sijy91VXb yfXye0h7nRPz7+A1KPdB+yqnyHkloFj7SP4L8POK067U3dSe5kRceV1AGSit ivdzufuav7jcsYFggOaaEx4V4BP2vxZ+WHcPdANVOkvnVDpPerVjtc6dWRB1 6t+cE3HlTWUOj8Ddq+Jboy/8BOgDHge9QS/wmM4NzMKnp/u35gT3dOxx57bP Cc9H7dvbsfeToT3iOWscjfexx9WYHdCfhPuBGXrzV0W/vfX+jt1cFXfx4WTs 01NgbkHss/a4LflD4SE6N9rP6L7YX6z+07oHYDD4gtrn3L/fOYrr7S3tOeeN BCPsKf9hHkOs/hy956viHnyZDH7Rd0J1w6vi/TzAZ/yU9ZGOTQCvgUXkvAqP 05ky1ij4ZfASeAWMrop37xj3dd/EYxxTrmrKcsJjLPimIDR5zC+IccaDrs55 1XmveR6KTQITdVfIed395cn4Xdfv+9ZknIPOQ78Lb4I3quJ9+zY8rSretFPh t8AUsAX8AjZbU+yRnMh/xzVTnbuwILS3PYcP4A91l8AnujtgfTI0xR4l5z34 XbC4IOIf6f6hz9Sd0n2iPU9nDgbQngt/rrOripxPnTfX2gq95+HZOi/yt8K/ ap9yQpulvSiI8TWvJQXhIa/eOeEtr360v6yKsTclo/Yz188HX+n+5cScP/G8 lful5zq9KtbWy2uc7nV+7fqB6At1d8B3VdEW980JTf2htNfAq8Eg2t/Dq8BK nVNVxF7KCU2xkbSXaC8VKwhNuWtpf6s7qHvlu6C/558nf2lV1Axx7VLXb6uK vRuD/rP2oCre5GL1N4J1Ok/5uy1eXxDaOs9nvtes/frW468qCB95jCJnA/wT 2JEM/hG8nBP3TvdP79U1XvNqa7qPZ6Uif4NrFniMIT73bT77Q7rxdgMzcoIb gJ3M4Xdi28FE9B3wTvBHVbTFP5OTRm46OLhb5KrmN7AH/AdeyQld2ib9uwD4 TzAJ/R/4bzAhJ7zlO976v47JYzeYnBOaYvq+2FUVXntY+z6MvVf3Cb0O7brg wG6h7+tYHWvbmMMB8P7gfb0zq+LPuX43pO0Htuqf/8P1wAc54SGvt3LCW17v 6lugW+Qd5NoDXJ/m/ZieE/Pf4zUot7599duj36CJXscu70smsQzwu/47GTgL fIRPLpzqFu926UnHEt2iZkpOaIrpHV4IF4C5ORFP2Fce8srxmR/i805Z+1hv e40DZucEq9/ImrggJ878f2fvsRp7vKNBU7AI/XD4MDCH9pHwUeCIbtEWf5cT e68z0O+sclVzqD3k1cQe0ublhC7tH/bnWPgY8HZOeMt3fk7oxzmmeWl+n+aE ptjinHjj662/kftzAtrxYLf+mU+36Gv+J8Eng2bgNHCqYjnBp4BltJvDp4Pl OZGrmsbOOc15LbpFXjO9deEzwZe0H4If1LkU8naHW4IVevN3i77e2MpVzRnW WjmvNTgXrCbnUviSbvG9cBF8Ybd4Y5/rvHPA+eA8sFJve/f1Vhdf4Fhzz/V0 e7QBq+wjj/0KY5yLwZqcyLnIedIvdewy0Bas1Xve/XVei9axT2FolzvvSnCF zqsB73P4arCB/FvgW8HN4DpwLdiRzfsVbg+25ESuatqB27tF7Ffr0uoURu31 rr/FfnrfXm/f9TkxjmIbad8I3wB+on1Tt+hvpt25W5zZXzkxzu2ex73gHrAT /U74DrCN9l3w3aBjt2iLf0O/ymtekYhc1XSwh7w62UNa/cLQpaXRvh++r1u8 V++27w05oT/gmLyv8p5Ku9/jau6dfee6gCKwC30IPBQ8BypAueaid77zbs8J LnZNKSgB/+qd7/7dtJ+C+4OGhaGVOa8W1Oj+pMK/q8fo6vE0h25wlfYiJ1j9 StdVg+zC0KV1zAm91rG+oI/mh/443EvnRLs7/Ah4GPQAj4IcfB5z/4BU8GOO Kbe71yWPnuDAVGjy0Fta4/QG9VKR87jz+ngeivUDT2hf9M53Xz66Rzf5bkl7 0nkTwSQwAQwGz4JnwNNgYLd4Mw9yX+OKBzk22LmNCmP/B/gMnnUsSf5w+EXl pOKcdd6ZqWCdeR61z8PDtD/oL3SLflVO8AuOyVtjZJAzolv4pmiPh18Fh+Ez Fh4DCtBHwS+B/FSw+iPBaPAyaEz+K+4f4hzFCwtDe8V5GmeE1yD/cR5jnPu1 zPO1bjGPwz2f1zynid7XBqn4bdZv+dKc2G/FjkA/ppq/F8DRYAraZHBUKtpT 3Rer30Nve3gaaELOG/Cb4HVrb4HjUtF+2/13wXvgHbAFbNa89f6H3wfHpoLV n25N3JR9+Aj+EJyYivbH7s8Bc8FnYBaYDT4FM8An4HjyZ7qvbwTxTMdmOff0 VMxN82pSGB6KnZSKcTRen5wYR+O1SAVrzOPI/wL+XGPRntct+qelguc59p7X fwL6V/CX4Aza87tF/2n8v4G/BV+DlWAFOAXPhfB3oCX53zt2fiq0BaB1KrTv XSMPeem7YzG8SGvBZzm8DFzg2oWul6bYUrCkW9TIf7H7i3xWOrOfwWqwClxI zo/wT2C99TWO/WitFTnr4LXgMq99vtcv7QftFXPbCG8AzQvDQ14v5oS3vC6n dlO3yJOPate5frPndWUq1q39a56K3E32/RX8Aq5A3+q+vvUacNdzwf3oO9D+ AO1SEd/qmt/ANnAR+nb39Q4Xb3csDY+Dq+PtLY/fwVms5W/4H7AL/Al2gqnO 2eE86X859rdzb0xFnfrXpCKuvOto74b/BbfQPpAx64ADwH5gf7Av2Et8D+hI zj7u35YKVl+x/Zx7bmF4/mff/e11dyo0xW5IxTga706PqzFbU1sPrgs6oR9U Hf1pOcEHOabfB/02HFEY+1Qf3JWK3wzF9HuVg5YEF5KTCWeAmTnB6qeDLJAA 95Gf7f4s5yh+byq0bOflgUbV8WaWf8pjiNW/lfyG1XEP5vo+NPSdUN0h4IFU zDnN825kX8WagiagiJwj4SNAKe0CuBDkg0NBY/AV/oe5X5wKPswx5armoVR4 HA7aFoYmj0sKY5yjwGWFkXOk85p4Hood49/vslT8lqv/NeMeDx8HSlLRPsH9 RWAxWAhOASdXxzuwGXwSOFF7rT8f2ltritWkIv9U1zRz7pWFoSlWRc4Z8Jmg BTgbtASPpEI7w+3T4dNAbSriZ4Gxuby14VbgUfSL4YtAP9ptdEfABdWRc67z 2li7mjmcD58HepH/oM4Q3F4YWuvqeJee4XltygkPefVIhbe8nqB9SXWM/XtO 1J7v+rbgUnBtYcz5bM9buZd4rs2rY23dvcbmXudlrh+I3k7zBVdVR1t8fWFo 6g8ipz18K7gZ/Wb4FnATuK06Yi+mQlPsGdrXwte4fbNz96V9hc4HXA5u0Djg OfTrqqPmn5zg61z/UHXs3Thy7oE7geGpYPXvBh3AHdpbt8V6T97hvvzbes3a rys8vr4dOtmjPeu6C+4IRqWC79SaC+Pe6f7V9T7c5r24z/fxZeff5ZorPUY/ n/tDPvshmguYlQp+FrxFuwtcBEbTLoFLQXF1tMWvoj8hP9DXuarpDGpANZiU Cl1aB+ZcDpeB19Er4a5aW2F4y/dg61WOyaOb1lAYmmJv6huhOrzG034YrgWT afeEe4HHqkPv7lhPa/fg0wN+FExJxXe8vuf1bS/tEfAOem/4ce1jYXjIK5EK b3m9R7tPdeS9nYraHq5/wvsxPRXzr/EalNvHvrpjN/qeaR0V3pf+4EnwLrUD 4QFgBu3B8DPgU+tPO/aUa/Rul6bYB7RfhF8An6Ui/pR95SGvQT7zIT7vZ6w9 qHc+PMxjidUfak3cuTDOXOvM9VjDPd5YMAbM01sdHun2y7pHYFR1tMUfoU+E J1THe1i5qhlhD3m9Yg9pXQpDl1ZC+1V4HJifCm/5fpkKfbxjmpfm1zgVmmJN U7H3OoO9OTH+a+CrVLQnuv86eANMAm+BqbqTjDtFdw0sIf9neBP4JxXamzpL cqbD7+ue2ENe3+jNb6+FelfrroGTXTvF9dNdtzgVHurrHa5c1bxtj2me00fg Q7CSnM/g2WA97U/gj0E185ml8wRrrM9wbHN1rEHvJWmKrdMbvjq8zk6Ft8b4 wB7ymun4HI/3qbUavfnhz6vj7f2h635IhTYXrPW+bfbeveM1LUX/UvcFbNR7 Ff4abKC9FF6mPQcLwLfgd/QV8HLQszByVTNfe1EdsR2p0KVtTkXtd65far9V qdAU+zUV4yi2MxVvAP3936Mw3gKL7Km1fOH1rPB4mseP2nuwhZzV8gaX0P5B 69b+V0dbvEtv/upY8/JU5Krme3vIa509pP2VCl1ab+azAf4J/J0Kb/lemwp9 o2Py/ur/97Q6Yno/678j1n9P/GiSd7zmC57AM6eGNyA4JDf0Xx37HWwH+6P/ Bm8D+9CuT+5BIDM3tK2gPf67NC/N2R7y2o3+h7320P5TewwOdO1vrt/lum2p 8FC/Tm7kqmaHPf7wnHaDf+1zAHPZH9SnvQftP1CP9n5o+9bEm1/6Xsf01tOb T/+cWZpit+sNXxNenVPhrTH+qQ4Pee3j+IEeb19rdRmrnhh0ca3qBhSGVgcc nBt7rL3Orol1aU399f6viT3tSm0GnA4qaSfgLO1zTbTFehMq92CfgXJVkwYa 6QxBfm7o0rI9rsbMoZ0Lp2riLZdl36T1Bo7JoyEYWhiaYrm5sZZ6Xk8+yAMF 6IfDR4DDrBc4drg1vdkOhRtLy43fRf2+LkqFVgieZ6yj4CPBi4XhIa/+qfA+ 3GM1qXFebtQe6nr9dxZNFcuN+TfyGpTbxL66+/rv6G8tiPxjXLPgYX4bQGZD 3gX0m4ETzOoPYw73wfeCqanQFD+OsU6BT/a4x8HHg2OtnQRe0JsfbgFOI+cs +EwwujC05uDlwsg/xTXSz3BM+S1dcwFoA843q99K3wViMIKxWsPngXNroi1u mRtz1xruca5qztacwOngVOvSTs8Nb40zlrldBF+o/cgNb/k2zw39Ysdaeq4n 54am2Dm54S/vU3JjHPVPoH0pfAl4Ff928FXyQb8cvgJcZu1K8Bo5N8E3gxvN 6r/Gem+Fb9E8ckNT/JLcqG3n+uvBDeA6e2uMV6i9Br4WXF0TbfEZuaGpfxHt B+D75UX7bvguMJn5dKqJ/pXoHeDbQdvcmE97z0nabVoHetuaWHMrr72t138n 6AjucFv8ZmHUdnD9vT63a3LDW2PoLa3xO3lOHV1/tfdQ+9ea9oM1sQa9b5+F B4Ni9EHwM+Bp0Bk8pH1FL1FcY+SGXuTYE6AvmJsKTbHryOkGV2m93qsHvV/y kFcXUAbKQal1adNYYyXcFXyYCla/wpq4fW7Uqu7twhir2uP1BI9pX8h5GK7V ftN+BH4UdK+Jtng6tUfX8mcdtMiNXNXU2ENePewh7a7c0KXdQPtxuBf4oDC8 5dvJem/HNC/NT+92aY875wbfP93tcu/FTbmxl9rTPuBJ0B/0q4lz0Zl8wlgD 4QE6g9zIUfyjwtCe0l1BHwoPA0PsobzOuXG2g9x+ribO/ttU1A50/VDXdckN D/UX+Z4857vS13O8j5wX4RfACnJegUeDz5jPCHi41k/Oy/Ao7WNu6CMdew2M 1z7lhqZYOe0xNeFVlRveGuN5e8jrJcfHeLxR1mbrWwAeB75PRa3q9P9pKW2s zjM3zlxn36Q2zkG/AROpneA56Y36JvyG7gr5k+DXlQN+AhvAj9YU2+j8ya6Z 5NzS3NAU05vzbfgdME33D7ynu5YbmmK9aE+Fp4B5hRF/V3uN/gH8vs6b9mx4 ls6OnJnwp7pjNZHzofNmWvuGnE/gj3W3qN2k+dbEe0DaRzr33Bhf8/olFR7y 6p0b3vIaSPuzmhi7v2s/cf1cMEd3NDfmPN3zVu5nnutbNbG2R73Gt7zOz12/ lXHnw1+Dr2qiLX4mNzT1/yNnObxMdwJ9CbwULNb9q4nYyGRoig0h51vtARjs fOVewhtvHvwl+AIsBN+BZ8lZUBM1e1PBC1z/c03s3avkrIfXuS1Wf63uHFgF VrotXloYmvov58ZaP/d+zfP4A+wjjzG0f4DXaC25watr4l29wfdvQm6sdYX3 4iffx3HO/8E1X3oMfR9t8hp09knufTb4Kjc4C2xinr8Q2wImo2+Ft4Ffa6It /p6cOuTWBQfWRq5qNoNd4C+dfW7o0laSvx3+TWeNvgP+Q3cjN7zlO8n6Tsfk 8afWXxiaYlPJ+b0mvBrT/gf+G7xBex/msS/YWxP6v47tY20dPnt0dzyHpv5z vzQ3tN018W7cH20/MC03POT1fm54y2uGvilqI2+ma/e4vo7348fCmP8ur0G5 B9hXvz/6bRrrdfzufTmIWD0wC880+GDwKe0EnAk+s57uWP3aqGmaG5pix9Ju CDcA83MjXt++8pBXhs886fPOtDZP73w4Bb7IDVY/x5r458I48zreB411iMc7 HBwGlqDnw3m18a4rhBuDgtpoixflxu+rfmf1u69c1TSyh7wOtYe0L3NDl/Yr czgSPgJsLQxv+X6TG/pRjmlemt+JuaEptjA3/owv8p/zY9GOAYvRv1McLKgN /TjHTgQngOW5wceD1bRPgpuB3wsjVzUtnXOi806ujbwf9NaFTwVraV8CXww2 024Onw526M1fG33lK1c1p1hr4byzwJngfL3DxfozS7s1fK7OKDfiyjsDnK15 gT/xb+W+8sWtHDvJc21mj3PASvvIY31ujHMe2FUYOa2dJ/0Cxy4EbcAWvf/d v8xr0ToW5IZ2kfMurY290Bv4cuXqfGlfKQ1cURtt8e7CyL3Ue6dc1bQFN4Eb a+ONepm132lfDbcD/+m/54GvBTtzw1u+O3JDv94xedwA/sgN7X+x3Ph203fb CHxu0TiaD/od8J2gQ23otzp2h7X9GvPuhG8De8i/F76nNt6Q0tqDfcm5C+4I 9uaGh7z+yg1vef2r74vayOvg2ttdL79OWmNuzP8mr0G5d9tXOfc67wFwv+bW gL8L4WfAYbSL4S6gfoOIK+8+8BB4ENRhnp3dP6hBcGfH+oI+oKBBeBSBv5lP BdwVlINSUALqNY6cYudJL3OswrlpDaJO/QdyI17qcavgSs0Tnx7wY+BR0B08 Ah4GNaBae0t+rftlucG1jnV3brY9u9n3EccyGoSmWGaDGEfjZTUI1pgp2r3g nspnPo/XRj/f+uOOXVMbd3F7buxTb3CA91l7XJf20/BAUEj7SbiffcTqPwGe Av1BY/QB7lfkRo7iicahDXDeUDBEc8gN/0EeQ6y+3uTP1sY96JEb/KzvhOqe A4c3iDn39byH2FexV8Do2niLjoJfAk3Jfx5+AQwDw8GL4Aj0Ee7rHSse4Zhy VZPbIDxGggaNQ5NHqnGM8zI40jmjnDfa81BsLBgDmpAzzn29afW7rt/3Vg3i HHQe+l0YD16tjffhG/Dr4BRyJsKTwATwI/gJrLem2AkNIv9N10x07tDc0BQb Rnsa/DZ4C7wH3gXNG4Sm2Gm0p8CT3Vb8He0Rte/D07VHtGfBn4LW5MyAZ4JP aiPnA+fNsNaCnI/hj8BZtDfCG8DRjUP7sDbek9M8L72fP7DXGQ3CW17n0p5d G2P/H1PnASUF0XTtGeLMrKIgsDMqbsAMKouB3RUVIzuo7AQUUMw558wugoo5 YUSMiBET5oRiVkTFLKComBARFUFEBP/7cOs933/O16eqb1Xdqg7T3bPD67dz pWNfivg31d4I/JkY29Ph+3rU+vhIj218d8vHY5xvRfwuip0h+Z7auyOtI5sq jdEfKP0Lyc/VitI/lfxM7RO1WSNt27HSGLaC9A8k31cbFP745qW/Izld7e3Y C9zzvJ9njnRMPmJnRvz8kZ67/YTPk/yWte5uSf8btTlqX6rNDh25W6Ux+qVK j/WtmK93Iv/uleaBY1/pX0vOVRtSafmV2kZV3nfsv2ExD7NiLr6P/VgM/68j Znrk2CPWfX6sfZcWnVtq51Rarq22nfh/kW0B+0Dj+lVykdrCkdaR+8u/vXw7 qLVrsS8xP6stU/tL7chK42AjpP8u+ZvaYdL/lFys1rvK3PDy5gdfEjY4lqoN rTSG7Qjpf4w014HSl0v+rbaleP6TTKiWVSON/xM2cLA+8lkp+a/aVN6ZI/05 71VpbIXa0dLbiCOpdnClOZZHXrjhOkF62xb7nRixKyO+fcxH3yrXvyzGgG/b 4OXs4QyaFOP4I+YlJVtHtZPFWSGZUTtJ+lqSndRODXyNsKVbHPNmd2PYeKtX SnZXO7fS9nTwwgHXmrHmXWK9OwV2lvy7SXZVO7PSkv46gSH7VXnNGSfzQK5s 5KtRq1a7QPh6kuu2+D3fQ3IDtfVbrCNHV3ruWQPOWXyJyQUHXFXBAXZ2pXGw 7VVDT8latf5V5oZ3ZKXxDcNGXdQ3s7sxbOdX+o3PW5/fpzYWtpHahcI3aXF/ tvDNJDdX21RtC7XeamMrLXupXS59K8kt1QZU2ZcY3v+9Iwa/Pi32u1L+W7Mv 1K6SfoTk4WolxW4ruY3aLtK3a3Eff3yJqQtsu/BrUKtX+4G3t+TOajfIfyfJ HdVurLQdv37Ml1qj2m7i7x99/JH9w7ZV1LplcOygdknwwHFNpfMMUNujyj47 hR/4LmHbTW1XtZvlv3v0F3X3WBhHa6Wx3cNvIHxqNwnfU3KQ2gTpZckhzI/a 3mp7YVPefSX3Ubur0r7E5NWGttjG23tQYHdWOnZwxJeD7+5KY9gmVjoPtr8V W5Bshle5ii3u3yGfI1u8Zo9UOs/QqONgtYPUHhS+n+Rwtfukj5A8QG3/FuvI W4Q3xZj5DoIvMcOCA64DgwNscJVxsEcVe6jkIWrFKnPDmwz8sLDB3RRzCoZt Suy3I2PPHa12lNrjwq9mbdmTaieqncC4xH9M+LWttDwmYo5TO1btMd750eeN Olbyohb/by7Ajg+/M9ROb/F7GP6TIsdJke9+4adKntLi9zaS/skRd5raU4GD PVlp/IywjVY7X+054a2SLWovSD9L8my1M9XOVTuHedW4zov+M5WW54UNX2Ke rzTHSLXK4IFjWJXzjGItq+zTGn7nRx3YLlAbozaVd370c5XeR8XYW2AXht8k tXvU7la7Qu1KtcvVLlW7RO1N3vnR37zS8rKwXRG+78T8XxxrcGXYegu/QfJ6 tT6VXuerw//qWPMtpY+TvFZtK+nXtbg/PfDrwgY3OV4RfmOLeWdIv0vyTrXZ 0m+XvE3tA975kjervV9pSf8mtQlqt6i9J/zW6H8cPth5Y4PdGn7kuTHGAP8d keOO6H8q/4ktrmNO1DMxapoU8wrO2cxZPqbS843tG+m1rboX1GrUHhT2gNoP ldYnRx9J/0fe9pIPq/0s/T7J+9XuDewhtfmV1h+J/mNqU9QeVfte7Tu1Y+Xz pOQTagsrLek/HhiSd+DTkk+pLQv9mei/rDZN7SW1F9lrai+oPaf2rNpy+T8f /RWVls+H7cXwBX8s6lpUaQ5s/1U6D/n+qXQe8rXJWpIzKf1V9kL4v9bifsfA XwvblBj/Kvm8Ifm6Wjv5vNnifnvpb7Mf1d5S+4S9oNZJ+AzJd9UqpH8aNt6N YNPV0lljn0YMHHBlhL/P/lI7Wp/Tj1r8O/1BETsj4sGw8fv9By2OWTNiP4j4 72LN5ql9rvaZ2nHi/EpyrtqXgX8Rtq8Co+Y5krPVumc91jdj/GCz1FLCv5H8 Wu3EKnPA1S1r7q9C/7bFftmsY+dE/HdR17oxh8xf2+D8Nnh/VPtB7WTx/xT9 Kvmsrb2+lto20n9lDwaO/aeI+Vltvto6whdEvzpruSBs7cXRTm3LrDl+UTtV uRZL/qn2h9pv7C+12vD5NfzAfw/b4vCtyTqOPm/R38PvNOlLJZeobSafVew7 tZVqK9T+Za+q/a22TO1M1bA8+r2ylsvDtiJ8z6oy51/B+2/YNs0aw7Zh1nnI 11JpSc7ewpMad0Jtc+ltWt3nTYtsEzbOB86GeZWep7ZqW2d9ZmD7TviawtZQ 2054SrKj2rZZS/od1DJqabWRqrki+n3DB/t5VcYqwq+r2jpq9Vnzd4ocSPoX 812v1fuAdyyyc+wJ4rqo7ZB1ze2j7nWCF1u1WpXaOMX2kFxfbSf5d5esVOum llPLqvURvm70B2Qt1w0bvt0jFo711MZUGYPj/Crn2UBtl/DpEX5VUQe22ji/ V3b1WU6ft9ZGkhuqXVRlfePov6f2vtoMtV6sIXMin00lN1PbRO0QtUPVDg4M 26Cs/XtHzKbh25g1hi0vvY71YeysJZ+zVr8JwbDxLt1Scgu1vbK2b622q/R+ 7AXWRfUMYG7UrpK+g+SOav1b7VMffjsEto9it6cWtZL0wyUPUzsha6xB7YFK 56euPbPmgGtw1txwFaTv3OrcQyN2+4jflXVQu7rKNW8bdeO7c9S6VavHdmuM casY524RP0SceeZSranVOnLfrDH6vHX3wVftVeklybJaEb9W2w7PGsM2TT57 MSa1/bLGiuGzh+RAtd3Vmhkrayt871bHPBuxe0f8Ea2eu3Pkc5DkgWrHZC3p H6A2TG048xM68rVKY/SPzHqsu8V87RH5hwUPHLzrRkjur3Z01nI/tdcrve/Y f8dmPdZ9Yy4Oif34VqX9R0TMwMgxudK1HxFrfzV7R+2GrOWVaqOlHy15lNpJ 0o+VPI4xtlpHniJ8jOQF+IcvMUeqna52mtoVWeNgJ0o/QfJ4tVOlnwy3WmvW 3PCeEfgpYYPjVLUxWWPYRkk/sdVcp0k/kzi1C6WPlGxRO6/V+FlhGxnYBfI5 l3VTuyjr7/F8n+e7PdjZaucLH0VdardUmWM1V9bccF0s/fxW+12adey5ET8m 5uPyrOs/PcaA7/nByx4rxD5jHCfGvFzEONTGKvYS8qjdphqugE9t/cAvDdvY iLkqawzbNdKvl7xO7a4q28cGLxxwXRZrfnWs9+WBjVPsOMlr1a7PWtK/JrBr Yk0viHF2iVw3RL7bqVdtgvCbJW9S20j6LWBq41utI28WPknybrU7svYl5sbg gOvW4AAbnzUOdqf0O4lTu6fK3PBuFvhdYaMu6rspawzbxKznnjV4udL5J6rd W2V90v/6avfBr/aQ2mS1BxX7oOQDrb6j50l+q/ZK1tj95Jb+uOQTalOCA66t hD8cXPdIf0zyUfoR+2DEPx5xk6vMQf+BrH2JeSQ4Ho6anlZ7Sq1BPi9JTlV7 Uvqzks/gI/1FyRfUdgv8ubB91+oxvJ01ho07/eVWcz2WNTc5ngwOuJ4P+8uR 74XApvC2Zz6IiVjiHs4amwZnlXN+F3P3aIzpQeGvS77GnPFelXwreGZKfqj2 gdp0tXcYg/CPJT+CN2tfYt5U+6TVNv5bEG8F9niVY9+N+JnB90LWGLY9ss6D jbuSNwD3//NZvwXoF2Msr8Z4Po581PGV2pdqr8vnc8nPorZZkrPVvmi1jjyA N3+rx/xM1r7EfBoccM0JDrARWeNgB0n/WnJuq++p2cH7auDfhA3uN2JOwbC9 kfW/I+Y36Y276x0v7Ht8eAeO0htQbXHW+I9h+0VtAfPF215yPjVJbyvfNmoL s8Z+Ys2k/yG5WO334IDrHd72wTVT+m+Si5i7iP054v+IOPDF0f88a19ifg2O hVHTUrUlzIt8Vkr+y7pLXyb5F/mlr5D8hzkI/O+w8dbjzcd7DAzbh9JXtZpr ftbc5PgzOOBaHvZVke+fwLhDk5qPhNqCiCXui6yx/6S/UuU5Zq4rRnlcjOlj 3tKjPKe38m6X7DDKZ11aMqOWGmUd+XvMf7tYA3yJaa+2jlqXWMcOgf2SdV5y vqEa1pLsNMrzkwnec7PG1w4bHJ3V3qoyhu3PGEsyxtNNsqvaUuHrSa6vtu4o 493Dtl5gy+STk8yO8lnKucj5enfWWKXaEukbSPZQOy9rDrjuzZobLs63qlH2 +zdicxHPfxe/Wm1V1vWvE2PAtyp4dzhJb1m1/ifZvzZiDq/VOdqoflKfdY35 7GbdBf0s6S/rqLtS+hd9NOc5Y9jb8J9qEv4u3xflM4N3g/p39TN2t2Q7/ucc geHzfpVt4GD3qCntagwuYsCJwYb/yMjxqdoo6Z+EpP+fOFukfyY9kdL8KqZV /Yf6WUe2Tbh2xvBcP/sSM1n6B9LPlT4pcDBRruYmz5rESj7cbzX9am54V3U0 fn6zbdRIrX93NIatTcr8k6IG8tBf3tHz90jM4QXCZwlvK//PJcc0ey7B8Cf2 S8mxMU4k/Q7yf0wcj6ulwwc79RN7QeRjHi9q/j9uZDLlui9U/9F+1h+NMV4Y Y8JnvnynSu8s/DvpL0hfS/plze6vKZ9LYr4TUc/Fza4JbHbUPzr21F8xdvqM /wfZL0Vvso6kBmLhJZ61Y93WTpibHO1Szk8d1AQH8WvFHDJ/7Ksrmj2GLsL/ kFyg1k34NMWMl+139V+U/lKM6yphPwnrnDJ+ZbNtN0r+JjyXMoZtbemz+5iL +SEP+ZgvOOD6UfJntaupu8k4GOt1TbPr6ZqypP9yP+tI6iSWuE4J57q22fmu Zw+o30Gfx3HSf2Fc4lkoeZ36r/SzjuT/neO7wv5Vf+OUfYl5vMkccL3azzgY 8wAOxn/yDY7XgwdueLunjN/QbBt1UV+7nDFs1HNRfI7Z88wB41kn5bm8Mepe pHaT9Df6eWysCfN5s7A31V83ZR/setqsxt4K/U/hE+T3dj9z4JdNeW3hYm5v afbar5dyLLzEE0sc/wwWDvo9Yp/cEmtDndTInNwa88TYiZsesYurPCfMz+3y WSJ9g5Tx22K+llWZlzUFw7a+fO6I2tHhJsc7/cxxe4wHO37TAwdj7HfG3Gcj 9p1YL7DFUQ9rztovj7P28/hc3NXsmmpSnoulwfmu9Imc+5wF1XrLSu9YbQxb Vfjf3ewYMHz1lWI1ho15nkk+9T+UvJdcknumjGHbUPoK8ou7ImH7P6xdwrU+ pdZBelL2J7Qn15X+tewPKP7jfva5r9l+4GBryOd+YSvV30T8ayj2WcWunzDW U/2Xks7/YdxN98Xc7J0yN1xp7pFm5+6Vciy8xLdR+5x5iJoZG3XjSwy1Tmr2 2DaKMdJnnJObHd9beFvJh9V/ssk6krUDo7+FfNpLftXP9bMGjzFe+U1ptm2r lDFsddLbSc5i/sMfX/bnV/pcPsSdJNtc6bM564U/0uyYLSOWPvFPN3vuthP+ ZLNrgB9J/2vmXDyPS58TOrJHwhj9dM5jZczMFzV8EWcaPF/HuJ6QPS2/rVOW c/ut/k/Wrd537L++MQ9Tog4wxsa48CeeGMZHjo45184YWPvXuRdkb0hZdpVN /5d4RviaUvoJn6e4Z7nP+llH1iQsp3FG9bMvMfOkvyC5VrU5wcHgRP4Q+trV roMxwg3vGjnjz8f8wvGj/PX8Wo1haxTnc5GH+e8i7DmNoyf1iOMl2TpXG3+x 2TZwMOZtKveXYrdP+bO/PD5HYPMjVzf5LuAzmDAHXP1T5oZrTdX5crP9dko5 Fl7imZNfYn6on7lgDPgSsyDuijvjjGMczzX/39yvGfPfPcZPPa9F3I4p46/G /L7S7BhwMGwDpPeI8TMnXcNvzRgTXAtjHV6PePCFMd43YhyMF0l/vWrr60U9 02Iv9Itcb8YcvSN5KXuOM5A7RT67S68S9rb6G1RbR26a8Pl6V9w9+BLzZz9z wLW0n3GwTRLGwQrSl0geVO8zCm548ynj05ttoy7qG5gyhq0p5c/4o83+nG8l v48k24tnDfhE/mqT8RnNtr0XZxtnIHJ4nJObSh4qv80S9iXmgvAhBr/3m+1X 4q0bn3XOzB9UQ1v591bsFdU+HznDZza7/3TKvsSs6mdsZpy5H0puLjlEPp9I 7y19X+kfS/9evJ1ytuP3vMbSiw2lXJtLfNTs/j4pS/rYNo1aGQ8cyXrvH3jg YIzkeaHJ+wQf8uEHTh3YtpDeRlgv+Xza7P7QGMuquBfAsOH3WbPnYi3V/Ln0 PrLtl7LtC/U71FvvEJz4EsPc4UtMe+lzQg5PGUffQv5bVbs+au7L2Sh8y4S5 4WXewGc320ZcKmLBsI2QzzvaF58xj3qY1lWbF85tJOc2G6N92WzbNtHH56vg 3l8830jfTvjBKWPpqGdrYRnpWyXMQSz+cMN1oPSvm+13QMTCSzx8FcxH4v/m gjHgS0wmfMiN37eBwTlAeDfp23J+Cq9nT6dsx4/PxLYxHsYyr9n9g1KW86K+ XzhXOWdz5lhTcXXy7yf9h4ghd6eoEx/y4Qf+fbNt+G8buYijf0jKdvzI28jZ KL2vfLaX/rNsU7X3GjinIgbetaOGnyIPPEj62PDvF7ng/LHZvHBgOyxlDNvh Kech3xEpS3JupNj+0jsz39IXNLt/ZMqSPrZZsS/Yn8xTl6ifeV4j1n2HavPC uVD+O0o/OmVJf516c3WNXL8G9xHhg32bhDFs+P0ecUelzL8oxoCkD/5bs/fB sbEf6LMniOsenNTMGncJHF5sS7gvGI/W/U/puyr+BPHsJPlH5NhF7aUmn+GL m90/PmVJHxu+xByTMkeWPZswtkPMCXly7JGEfciHHzh1YNtd+LQmn3VLm90/ KeVznXnmc8c6zIpzk/j1ItdA9devX30cJhaIc1nUWuSzWfA+AMPWNWf/v5sd A4YvYwTDdopy7SH5T5yDK+I843wDw3ZyymdZj7gLsL/S5LOuqdpnGWfRBsKr 2bPSBwlbFWcTPv/GuQkOxnmyUtgvqqmb6txYcZuobZ8wtkHwkJ+6yAUHXKem zA3X6dL/a7Y/OLEro8/50hS1UTNjo25sxFDr8jinh8YY6TNOLnDiOVfxa6N+ TYyvJmoDo08NC5V3w6h/sHK2L/g861CwrXvOGLazUz4TB8U8gOHLmbOnZLLg c5G9sPqeF9624JgDIpY+8RUFz9254AWfT5yNyHTkK6h1LPg8Q0dy5oDRJzYV Y2a+qIH85IVncNSWKniM1I/cOMbLvmP/nRfz0CH8wNiPnCH0U1Er4yPHGSn3 GQNrn5M8RPKplOWWav0Vu0bBZyHnW4lzs+BzCx3JOcPnvJvwcrV914ixrR1Y S8p4IcZOvk2j/i5RK3XCDe/IlPG1YmxwcH5xzoBh4/zsFLUzdvg2C84hnHUF n1XgnQu2gYNxl3Up+Pzj/PwrzgnOHLBSjIuYzYMTDrioDW64WvEP7paI7RJj YE7KUXM55oIx4EvM5nEWcQZxHjGOTpFjH+G7Vfscw69X1JCVfV3pJ6aMVxZs 615wzKiUMWzUNkzY0Gq/h7HjBy8c2RjDIbH2rPe6MUfMz7rCtlB/dMqS/uXV 1pH8zYE1Z5zHRq71Cs63geT+khcJX1/6COljpXNw9lC/b711JOcwc88acM7i S0xdvTng4o0JDrZDwjgYb84DWSvhOybMDS/vXvCqgm3URX1jUsawXZLyG5+3 fkrnQzvuMbX7RFFdcH+YfA6Qbw3zI1kreZDkpSnL15p8LxzMnMl/p4R9ibk4 fIjBr2fBfpfx+ZX+q/JWKu9JwgYqdg/FHir99SaPcaOC+1ek7EvMdvXGsOG3 ccF5qWcz6YfJdiWfBelHSL86ZTt+9ZKL+rgmat6k4H42Z7lJjI0aewYvHG80 +b6jXx9jJM/20ndO2Id8+IFTB7bfxNkguQt7uOB+LuexMI4BCWPY8DtasTtI 7iq8N2eM9GtU//GchervrP5R0o+s9vn/B/cpn6GEfYnZUbJPwbb1csZ3jDqJ 3aLgeDjh2y1hDNu1KefBdqP04yTfavLnbsuC+zcwnwWv2fiU85CPOraWXKz+ +spbJ/1E+dyccp6+fO7qI2fk7VXwmMel7EvM203m2DrygYMxV+Bg1HOK5DtN HlffmBtqA9+mYBvc5GBOwbBNSLl2xsCe+1Ocu3Peiec84btybtfblo89uV3B fj1ylvSJOU3+TfjKp1/B/dvEvzd3FvEJY9jwa5Q8Q/07UuavLzhHfdRCbQ3S T5XPrSnLhqibuOlN3hvgYIwdHF5sO3Kv1Zt/B+lnynan9NOZs7AtUf2Doub+ Bfc3yFnSx4YvMbenzLF3jAUMDqVaLfcKHR/y4QdOHdjOirqpeaeC+3fFvmI/ sbfAdop5GaU2KPbW2Wq7SG8WzznV9oNn54L7d6csdw5e/PEdlHAdAwpeAziw TZT/udWOgYd1Zr3vSVmy5nsmzFEMnt0iP7mQ9IvBTQ7GsnvBvJNS3hNDYi8t 7WOcXHvIZ6T0e1OW9N9tcs5S5B0Y+25S+GDfKxF7sWA/+HaP8cPfFLmR9Ku0 jvnYm+OjHvrUxNwyr+xnzmbOct7SzDe2B/gMyu909pvk+dXeu+wT9L1ifyPp P8g+l75PvWNb2RvRp+2rtnfCOn77xudpcOQ7qOA7lLdWs/TR0ienLJtj/6Ej 2WPEDw1O9ELB/eG8MaTvJ3mhfEux7wfFGKi/GPua/Ywsxhjwx5e9nY85Yn7g wPZIynnIx3jJQ76HU5bkHJzwXr8g6hwSe5/PHZI+tsHxWed8uCj2K3tsn4L7 j6bMt6/6+/MW0HqOkORPT0NjL7OH9yvYVp0zdmHUD4ZtRHDARf3s1xlNzjVc +Fj5P5Zy7NAYJ9jw+DwMiz1+T8TSJ/7yWLM7ar0XiWHfku8A4QfGXt4/coAf GPWPEHaJsMdj7PvEZxKMvc4+P6MxkXhPeS5LmgMuPi8HxJio+cCC/d7JOHZE fK6ojbp4jzHu/WNd8CUG3mV9/M7jPX9wwf0azeEx8Z7gvXGo8CulP5OyHT9i +Htf2xq/tQ4puM/fHpH0sR0reYNiX06Zg79F8rfKayQPl+0I+c5SO4z9l7AP +fBbjRdswx/fIQnH0X8+ZTt+W6R1Tws7ks9Zwr5Hc49KjhN+lPT3Nd6r0fls yOfIgvvPpSzpHxX++DIuOI8omBcObC+mjGF7IeU85INndd6o8+8+5iXXMQX3 a3OWx0Ruzod94vPLPH3Q5HcUZwa2+1N+W2EDPy5qJC+S/nGSy/u4HsZ+fMH9 nrnwifGCHR91nxRxLwf/CbFOSPq8LU8seB9MTVnSZ08Qd12MixjWmLrB4cV2 muQEyTe4r6WvUO6NVM/Nwk5W/0P5j6/22TpUPKcU3H8tZUkfG77EvJoyx0l8 9hLG4OC9RJ6PpO+bsA/58JsQdWCD65TIdXpww/lvH3PBg35G5LuZ84wxSN7B eSs5Qj63czZy5nOPq10an2EwbG+n7H9WwTFg+O6fMIbtHfncKXmO+h+rtnOD 762UMWzTpd8meQbnacL2M4NnZR/bwP+Tfo7wK6XfLayFM6TePucV7AcOdoB8 RgqbqP4M8Z/PXR08YJ82eR+Sn7qYZzjg2iRnbrje414rOPdmOcfCS/x96Jxx UTNjo258iaHWs6Out2KM9BnnqILjPxR+r+Ro9e+pto7k7AKjP1M+D0p+3uSz 9H7pF4btooJtn6SMYftI+gN83pTnoPC/NzjP406UX0u9ax8V9Y8pOObjiKVP /GUFzx38l8QZzxmOvCRyM56x4Yd+fqzj2Bgre4CxMmZyUkNLrBE8cDCui2VP 1um9nrNk/7AP2Xfsv3djHhgzcwHGfuTuwP/i2HOMjxwfxLozBtb+ZsnL1J+b srxS7QjFXi78YeZX+COSV6h/Qb115CHyeUr69RGPLzGzOWPDl1hwMMbVTvVc yL0hfYrwsZzvCXPD+0XK+FUF2+C4OHKBYZvDPVIw15aak8eqnQN+YsbJdmm9 8WtiDOCXRq5rhT0h7KuUv8fzfZ7v9mCXSB4un8erHQ8nHOizU+aGC/26gv2+ TDkWXuKZk8tiDqmfuWAM+F4XXKz3BQXvM8bBeJgX4i+PGp6sdgw13CT7M9K/ TRm/MXLfEDmpAQwb6/gcc8h9lbAdP3jhgOuKetfI2l8ZONiR8h8v7Gn1v0lZ jg9e9CejHtaccX4duW4pON9tks+r/73wCZEHnmeF3Rq8zwYXPHcIa6/xb5Wz LzFX15sDrjlNxq+O2sDB+Gy+wPpy1ybMDe+8lPHbC7ZRF/V9lzKG7YeU5541 4Awh/7UxV+jURH+qfO+UPk76i9XOTd67gpsxvi3szcDBrot6iJnEfVpvDrh+ kv/Egrl+lH639Jel/5xyLLzEE0vcMQlz0McfX2Kuj3omxlzfI/mS5Hz5TKu2 Tj2vsE+4+6XfF3H4gN9bsO3JgsewOGUM2y/S7y+Ya0HKfPdE3XDAdVO97fdH bnCwY5XrAWGvCfs1Yl+MesC4U49POCe5mbuXI55YahofNU+W/VXZForndclH ov8G+00+J8jnLfaV9BMTtk2Ouh8t2PZHyvi0qIHYhwqOh/PVwMGw/ZZyHmyL Uq53QtTMW4A+9TCWB6L/VuSjjscl31H/T/k8FnngYZxTghf99cj7YKwD84wv MbfVmwOu2+uN3xbjBQc7KeF8d8TYp8Rc/p4y/kTBNrjJMT4wbPh8rHf5+voy PlPyXfa58JOZQ+5P6f+kjD9VsG16tdeMmp+Outgzk9gPaqcmjN0VtRHzHG+F enPAtVT+zxTMtYQzQfp70pelHAsv8cTeHfU8F/nxx5eYiVHPM7F3n5ecIfmX fN6vtk6dH1S7Pmp7MeLwAX+hYBtvPd58G+eMYVsun6kFc/2dMt/zUTcccN1T b/vUyA0OdopyvSTsQ2ErInZ61APG3J6WsGSuH6j3uCZG7MtRF3mnSZ9Z7bX4 WPIV9e+vt448PWFfYlgDfKdF3a9LfiK5KmX8/aiBvA9EDR9V27b6rCiYd2XK +GuRG44vm/xeAsP2b8pjeSn2yqfSH2Qu5fO59LeEPxT4GwXbwMHOlM+bwjro nO2T87k4Ls46sMkxLmIeDk444PovZW64kvqu93ZwM0Zi4SX+s6ibmj+JuWAM +BIDL9/D+U7P93T834n5qmzQm1dtL33XnqP+u4wlJP32yjs37ijuFDDsB4tn hvBHhLeRzxj2qPpfVBubonaWfN6Pe553zpfVfvPwtgF7ot7vIvzhIgacGGz4 f1BwDO+Jj6TPrbakz7topvRvhGVUw5PCPuTOrbeO5P8dBrUzhgXV9iVmiuRX au/xrqg3DsZ7Ce65USdvqLlNxuGGN5U2/nHBNmqk1g5pY9h4a8EPN//v68hD v6N8fqr2+4k3z2fCf5a+jvCU1vRT7s56Y7w3eFPxXpkl/OsmS/q8ixgP75gj wwc7/sTCSzxvoC8Kzgk3OfrmnONz7uN668jWhDH6ndN+E3zT5HfCND6/9av/ JyuJrwrud5XPHOlpcW6dcz2zC64JbFr4fxL5O8fY6TP+hXzWCn6voCPJReyc yMHaLYgxzo41JC826qAmOIjvHnM4NcbydcFj4P2zpvDp0i8QvoR8/7uzq/1G 4g3zrbCM/LbJGf+mYNvPkosl108bw1YpvUK+b4hzdMJ5yMd8wQHXa/V+38yT /m3gYOfL/zthv4knl7akz9mAjuR8IJY4aiPX9wXn+6ng9xLvqB+k/yH/9dK2 /cg7oN76W1HbBsVEopPuvfq0fYnhDXJDcJETHIw3CfhvUQNvnHlNxn+M/NQM Pr9gG3VR37Y5Y9h4U7Hv2H+8mZkDxsObcHHM6SuSayhuAfdavdeFNeHt8Uvc 4byp8ME+JmHsuya/l/6S76KC3zFw4LddzmsL1waq89eC175fzrHwEk8scbwx 4KBfnbYvMewV6qRGcv0WGJwzuMNiL02Iuqn5D/ksk16TNv571PF3td8xvBPA sPHuWlwwF3nh/i36cMDFO4s+fu8FDsb758+C30i894idEfWA/RXjYs1Z+/lN Xoef4sxZUnBNtWm/mZYFJzmWcp/W+15JKXZltTFsNeH/V4wT7P3IC4aNdyDY 37wtJJcX/MbhLfR3cJN3ebXfSCcnbP875uefar8PeBusqPb7hPcM76N/C47D 55+C/cCXB8+KyNlT/P9V+97k/gWbGXWS/4PQ4YBrw7S54eJttrLg3Bul7Qvv zOD4MGLvirFRN77EUOuyqLFnjJE+41wVHKtzqc8ffnlToCN5n4DR31g+H3G/ RC7WoG3R75V2RdvwaRvrs0nadX30//njy7uCN9p/MU7eTCtiPpNFx2wUscng TRc9d5sJ71h0DfAj6X9S7/dU+6gV/d+oH4w+byrGypjhpoZ/Yk3h+STq7CD/ VcI3TVvy5uH9w75j//H+oaZ2UQfYyhgX/sSvficVnIN3LLUzBta+UnItfZ4b cpbta/w36kyMg7y8jSqiDvRVUUMH+a4jfE7US8ynkp1CMj/gn8ZYHqt3bvYb /5h9tvSzE+aGl/cb+JpF24j7LGLBsG0unzWK5monvY/k55y3rJfsnWUbUWN8 raJt4GAv6/22trC+esuNTfuzz+eev/2C7Vftf4PNHHzf5HmAA64LU+aGq5di uxTtt1XasfASz5wwHxcl/m8uGAO+xMDL+fNnnKeMY43YT500/1+qP5b1lf8P 8r1QeveYY3KBdyva1rXomPqcMWx9uXMlv5H/pQnb8YMXDrjm1nutK2MM4HOj 5qywjLBt0pb0v663jrwk4TVnnH0iV67ofOuH79bC15WerrG+huR66v/YZB3J GDkXOGc59/El5tt6c8A1r9442MUJ4/OihrXrbAOHG97t0sZ7RG7qor5t08aw Neb8GW9T9Occ7u+Dv798hwpf0mS8qmhbtWQXxfbPWcLJ3PK7AXuI/VMVtZML n+rIXVO0H7931Er/Tno/+XTlTpd+RcI51oyx9IycvEPwJYbfK8Cw4bch9Uj2 l88m0teRvoP0jaV3lr592nb8flLcqWrz6/07+0ZF999MWdLHRo018QaC41bl HJ4wDxyPJpxnQZN/a8CHfPiBUwe2rtJ/lv/l8tm06P6OMRbGwW8xYNjw26zo udiR/32B9O6yDUjb1kv9hfXWFwYnvsQwd/gS84vybimZU3/XtHGwy+Tfrc71 UXNW8lfFXZ0wN7zMG/gWRdvgWCR5TcIYtl3iuxvf2/j+WCnsN/WvSjimTn6/ 1xvfqmgb+O+Rq4+wdWXbTTxbS+8hfWDa2MIm74HudY6HEw70ndPmhgu9b9F+ A3KOhZd4+BbL59qE62cuGAO+fYMLH3Ljt43kRZKztAc2Fb5S+g2K3U74Buo3 pW3H708+i8Ierfb30G2L7u+RtqSPbUfGqHy75cyxqMnfbbOcT7E2zMuSmDd8 yIcfeL+ibfjjy/wTR3+XnO34sb58ByYe/ho+B8x/k+O3l76esD/q/T38YPk0 Ft3fPW1JHxv+68Wcw9kQ498+amEewLDxHZ885NszbUlOvrfWSl8mn+uk71B0 f6+0JX1svYveizvlPE9/1/vvCcwzc8zvdBvxma3x9/Gd5L+x9ELakv4K3gi8 JSLXgKL7g8MH+/UJY9jw2zXimtPm37noHEj64LsUvQ9KaUv67AniVgUnNbPG fwcOL7aB7AfZ9tC49pDeS/H7cC6x3yPH5uzPptX/L2kSuxfdH5K2pI8NX2KK aXPwD/ZuTBjbKOaEPMkG71V8yIcfOHVg20J4G8mbZGoquj807XOd8/3ItNeh d5ybxLeNXFup3076zdJ7Sx8Ute6idoD0v5qMYds3bf89i47pHeNkjGDYhstn S8m9I2awZB1nUdoYtmFp19s+asbeQfr4hHk7Rj1g6cC3Zp4Un2qwT3PRfuBg t8inIKyP+vuJfwD3uPDbE8a2jDqRvUNvjnFQD9xwHSC9VHRueIgtRN19a9wf GTUPDj8aMdS6V9Fj2zfGSJ9xlouOHyG8nv2i/loN1pETEsboHyqfDTjDhd/G 54s54/5Tf3jRtqacMWxHcdcL6xTzAIbvrSw1+44zrcl7gXuet+W+RccMzFnS J/7AoufuWHGOkF4lWz5nOSL2007MsfSlTdaR4xLG6B+T9ljLsR7UQP7RCfPA QQ37x5jYn8huUTP7jv13fMwDY2YuwNiPnAP4E08M4yPHYbHujIG1P15yqPqj 05Z7qt2p2IOEV4t3UM7YwfQbrCPx2UjyaM6IBvsS0136YZJ7cw6njYPdwbgk a2K/DZI9X+O1gBveM9LGDy3aBket/O9KGMN2unwOKZrrtLRr6Rn1dGWeZGuO Gg8v2gYOxv45Qthe0s9UbD7OCc4csEFRT0lyxxrvq8Nj3OSFG66jpR9VtN/I iD0i6mNOmI+JCdfPXDAGfImBl7OnKT4DjIPxMC9DhG8mOSnhOds85u042cuy taSNH1u07ZiiY1rTxlbb0ubat8bzjB0/eOE4LvYua318zDv4gPA/gTNJvuen Lelv0WAdeU/Ca844z4lcJxad75SYb9b9JOnDhI1JO+5kzofg2DJ4mHvWgHMW 35Ni38BxSuzLYbEP2APgQ2N/7s9Zp3Z3wtzwsofBTy3admLMK/sKDNtFab/x V3+f1ztnK9nr1O4Vz2lF9y/gnmLN1R/OvpQ8WPKytOW2sj0o/0Okbyd9csK+ xJwXPsTgd2bRfpcLP0v6QdIvTfttfVW1396HCvtbn9n7pZ9ddP+KtH2J6ddg DBt+5wQ3PCPDDv950g+X31Vp2/Grl6ytM9cD4j+36P5eOctzoyZqpFbGA8c/ Tf7eB099jJc8jQ3mwYd8+IFTB7YN68zFnLQU3R+cc45+EQvWEvPC90u4yDWK M0o+V6r+o9k7nN2R87Cof2PF7qj+Iwn7EsP32wuKthVyxsH4jkzs+UXHwwnf wwlj2Jgr8mAbx+da8t8mf5ccXXT/WuGXFL1mfLciD/moYyzrrn5ReS+Ufqz8 r087z0V81hqsD4i8rUWPme/j+BKzsskcYyMfONhDCeNg1HM47/0G/+9KLoq5 oTbwi4u2wd0a+wAM27Mp184Y2HPH1fj7G9/dzpC8kbMor8+L9F3F8bjwS4v2 uyFtSZ+YE9R2kc8U+VxWdP+mtL+HnVLj72Jg2PC7UvIk9cenzX950TmQ9G8W foX046kjbUl/twbHrWryWoODPZYwDi+2a8MXnmuKrmFC2rmvUn93zuM6xxN7 ddH9Us7y6sh9VdRLDXDwj4EZC9juMV7yDIwa8CEffuDUgW3zOo+LORxXdH9I zmvIfmJvgY2L8T/HPcO5WeP4G6SfLH2PBn9f5bvq9UX3b0lb0u8e/ifHuJj/ 62L8N0QtzENvPuvSn0p4nVnvO9KWrDnfQ8/k3pfPk9JvKrp/Z9qSPja4ycF3 8JuL5t1X41rO39vy/o65RZ154Rwvn7OlT0xb0m+bN9fgyHVLcN8RPtifSBjD hh95yMcY4J8QY0DSH6oabi26jr3TlvSpibllXvk+xdk8PO4R5hvbd/KfIPmW +tdInqvWLL9nEtbvKLqPpD9J/ndKP0/6Pbzhlf929a9uMFaQfDZhHT/655CT +4jPFfcJ54BiJ0ofKdu9aUv67fPWkawXuUtRD/rdRffhulf6EMlWapHeUTFb 1Tnf0/KfVHR/eM6SPjb88eUNSR8u/OHAdn/aeVbnSzsPPowXOST86+o8TsZ7 X9H9/XOW98Uc3RU54ekWtZL3/qL7vIHL3AlFv4lHq+1c4zfPgzE+6nm4aNvk tLGWGCMYNmLggOs+znP1h0p/Xj4PFf07/XERCy/xYNj4/X5y0TEPRSx94ofH mo3gTSA8nfe7bmuN8THh+wX+SNE2cLAX5fOosAuxxdjvj/kFg/cF+YyVnmGf JswBF3sDbrgO0HxOKdrvsbRjH409RBsRPIyb+RsXnMTAu02dOan5iaL7B4rz Ou4GtanCnypan5K2/Ymo41K1irzfok8W3X8ibUkf21TJa9V/IW2OgxrMeaX0 Z2Q7VP1tGYfkSwn7kO+gwJ8u2oY/vi8nHLc6Pm07fgep5kN4AwT/1eSU7XDO eOnPS19T9VzB/VLjt9xzRfefTlvSx4Y/vvjA+WzRvHBgezZtDNtTaech33Np S3JO4y2kuo6Q/or0F4vuH5KzpI+N84GzgXuWeeqU997gzMA2LOfxHx3z81KM iRqQ9I+SrK9zbdT8ctH9Q3P2OSrqAXs5xvCq5DjJF9Pmn1Z0jmkx36z1K0Xv g6lpy1diHxB3jHxejZpZY+oeF7zY3pQ8kjlT7Bsxf6zXLfJ5LdbvRO4mtTfE 83rR/VfTlvSx4UvM62lz3Bx7EgwO9gN5bgkdH/Lhd2TUgY0znPObteAsp/9G 2jlOiRrQ3y66/xr3ux7eN0vfWu30Bv+3JW8X/o58TuOckP6l9FENxrC9nbb/ 9KJjwPB9M2EM28XyuUP4jIh5T/KTfnprpIxhe0c+t0keUOPfnrCf0eD/nQu8 q6pcz52yf1FvvI30mYo/K+p9v2g/cLDN5POBsLvUf1f890ueL/zdhLEzpb+V cH7qoub3YxyMC264ekv/sOjc09OOhZf4idLXypuHmhkbdeNLDLW+W/TY3oox 0mecHxUdP0N4g/bqJ9wNDdaRfPcBo3+Y9vZ98u2sXG/zhhf2OXeK/L4o2vZh 2hi2w+U/SdjaeX9PAcN3uvS7hX8sv7O5w7jjWU/hnxYd837akj7xXxU9dx8J nyP9AeLTlvRbG8wxi3sk9JbgBKMP58QYM/NFDeRnLPDAMUP6bNm35xzJWVIH 9bPv2H+fpD1WxsxcgLEf30vYf3aMgfGR471Yd8bA2v/C3SE5O215qdoHip0r fDJjTruWr9Uf3WB9dNT2mOw/Ce+ety8xXaTPC25qAwdjnvvXOTf77WHJrnl/ 3/k65oz5BP+2aBscF8T+BMP2uXy+KZrrSM3JjnUeM+MdI98fiv5uBP5dzBE4 GN+Vvi/6exbfv/gez/d5vtuv/u5V43rI+VDUCQdcR+fMDddniv2xaD/qIfb7 qI85YT6mJFz/vPCjEQMve+yz2AeM45vYT1NqvAbM/wDhF0ufKX2B7E+wZmnj Pxdtm190zJy0MWzHqs6nhF3GfCZsnx9rDAdclXn3WftLAwd7n+8IwnYWz3E5 S/qMCR3JuH4KjD1Drl+Lzve75DOsn/BF0p+W/o30JyV/U/+KBuvID8WzWNgu 4j0+Z19iLm8wB1zZvHGwjxPGwZgT8l0ZY4Qb3rlp438UbaMu6vs6bQwbPsw9 a/BB2vmJpR70xcH1vNqf0tflu1ud66CGJTEOxvVmjd+CvCHBrolxXSW5rOjv K3DA9b38lxbNdaLG+1fR31347kMsvMQTSxzfceCgPy9t37+CC46lMb9/Rxz8 ewi/nv2p2KmyrZ/394J/5PMS+yBtfHnRto4lj+H3tDFsP0lfUTTXyTlzk+PZ GnPAdV2D7fiRDxzsU+X6V9g09lnasc/G3IL1UM5PEs5JbuaOcTEmvuvBcWPw rBLPQOU4RTW8IntS/uN5H0i/iTOeN4P0DfIeL76rYgxtSrYtShsHYx6I/a/o eDjh+zxhDNvCtPNg+yXtNwD3/6yE3wL0f017LIyT8bwe+aijveT7tZqvjL6n lpwHnibV0C540ZHkXRlzyZzjS8wtDeaA69YG47fEeMHBZrbxd5JJjf7eCje8 p+aMdyjZBjc5bgwMG99f+HfE/Cb9Gf/+WbVU5/0doZt8JrLP0sZTJdsG1Xns zEM61oF5eK/G/l8mjN0W8zlBco2Sv2fAAdcf8s+UzHW66qwo+bsJ31mIhZd4 Yol7LmEO+r+l7VsRXHBkYj3WjDj49xJ+V8zPdNlq834zryWfd9VfmjbeqWQb bz3efLwtwbAtkb52yVxn5sxNjjdqzAHXnQ2240c+cLA5ytVZ2IwazyGxb8Ra g/XM+x3OnDHX9zR4XIyJ+e9S8pwuU+w60vdWjrNUwwfclepvmLeOnJ2wb5dY M3yJuVt6ZfzvMP5JGwf7KvLeE+s1uM41UQ/c8C5PG+8eY4Bjo7zf+WDYzs7Z xjgZz4fS7+Vc5W0mfV3hDzQYz5ZsAwf7Rj45Yc3iOSfnzz3nK599sPt4ZyQc 82BwwgHXirS54Volfb3gZozEwkv8x1E3NSOZC8aALzHw8t+85783zn/bnP/N CjEr08b4b9knE653A9keCkkfnzrpReU7L2fsoRhXlfBPOV+4Xzjr1J/cYOzj qKcmMHw+r7ENHOwRtW8TxqqiJnBisOFfGzlmsS4lY0j6bXXm9JQ+W3o76Q8r ZkP1H2uwjpyXcO2M4dkG+xLzKOcL50DJvuBg3yXM/XnU+SX3P3dNwtz4JjPG Ny7ZVht1gYNh65Ax/8NRA3not8k4z+ORazPhczkzhM+R3DTGBvaEfH6QzzfS ewt/qsGSfiZj+9P/nw/2HxOOhRf7V9J7lf6PG9k+47o3V//JButPxhg3jzHh 8z1nkvT5wudxn3BuS+9Tcn8N+Wwp/Wvp6ahni5JrAvsq5nCTmO+2MXb6jP9b 2beSvkneOvK1hGPhJZ61ezbGtUWMqWPG+amDmuAgviLmcFbk7VvyGDoJ30c8 b3A38XYSthP3ZYPjn49xbSPsO87XjPGtS7b1l1wovHvGGDZylcT5kvQFCech H/MFxzZR009q20rfNG8cjDFuJ2w+Z1nGkv7UBuvInxOOJY7v6eTqV3K+Rsmy +i36PNZLX8BZmXFcg/rTGqxPC55ThHXWPbp9xr7EbJY3B1zkAQfjzAQHI+8v kpvnfS41RI2dM8a3L9lGXdQ3MmcMW7eM9x1ryHptG3mIZS6Z01fENURxO0h/ tcHrwpr8qlw7ClvEeZqxD/aFCWO98j5//pC+s/x6582BX2vOawtXTrEDSl77 UTnHwks8scTx2YSD/nqxT4hhr1DnK7FndhG2WP315bNE8h3qFb6v/N+OmneT z5+cgxnju5ZsW8p+zvvzBYbtfNWze8lcG2TMTY63GswB1xZ52/F7J3Awzo09 hA0Vz+icY4lblDA2PXTW/JSYC9ZhTnwuBpZcU5XyDuNOjLH8JayJdwNnnGL3 l/5fYNiqwz9fcgwYvr8njGEbo3r+Fr4n9zpvBsnhwi/IGcNWK55lfPbzPruw vx88y/lc5/15XyG9Lu/P5n7yaeaOb7DP3iX7gYP9wf0u7B/ZNuQtqvpnC1+W MPaB9MUJ538v/OGAq2fG3HBdqDoLJefeKONYeIn/V/qHrEPUzNioG19iqHVQ yWOriTHSZ5zFkuM3Fr5Ssqx+37x1JGcsGP1N5POxeD9TW8I7XGPZl3tQ/aEl 2/ABw7a59FU1xv/nj+9SqfurzpL8PuLdJf2TqH9IyTGbRuyQ4B1R8txtIXy/ yLlZxpL+Fw3eE8OiVnQk9Q+L/YI/Y2XMzBc1fBTzD88XUdtw2dsoV++M5efs qYT3HfuvV8wDY/4s9uR/kQt/4olhfOS4KOfaGQNrf6xkhfrbZiwztY49IOLg byfswMiHngwffI8U3jHqImaW5CGS7YVtlTE+K2ruIGyO9L8Tzv1l7D244d0y Y/zgkm3tIx+5Do568TmoZK4+0lOSX7HfE67j8MgNfmjJNvD2wXNYyTVQG599 PvecS2BzozZivg5OOODqmzE3XHXSjwhudGLhJZ456Ri5yHlIjA1fYuDl/OFs 4gxiHAdFTWnp30j+w3cc6d/yuZF+TMn4NhnjR5dsO6rkmK0zxrBtl7Htu4jF flTE0+Ca1+C1Zu0zkXNe5D1O2JrC+mUs6W+dt478N+E1J26byHV8yflOijuK N8AJ0g/gb1Xab2vL90T1f2iwjlyZ8PnKOcu5j+8JsRdfDa4fG4xXxHyC/xh3 3Fq1vnu4d+CGtzFj/OR4ixwf88TeBsPWkPFnfJ+SP+fU8lPU00v2BzkvGo2f WrLttLjruCuR8JC3S63vFe6RU2N8DeFzWuQ7vWS//sLPCD7eGNwN69T6TuH+ Yy+yD8+M+5A7FF9i5jcYOzPeKGeVHLuDfM6V3lX6jtLPiT3FXblO+HE3Ev9z jPHs4KMeJH1sXaJWxjM9+owLHjiokzzcZ9xB+JwTYwM/N+4/uBZErvOCe4cY y/zAwbDhNzLuSe7NFundxLVTxrZW9X8Jvl8idkbEUBe+LXFfjg5fYsHBuL+4 e6iPmrvX+q7ijG2N/Mwb+PlxL8KxMHKBYRsgn5PKitG++Cjju5Qc8ON7ofx+ bTA+JsYA/mvwXCCsUtjOih0rPSt9l4wx7gDuGs5+clHbmLjDuaPhhosaLoo7 auOIvSDuS/i4n7jXqH90xOB7UYwBn7Fxn10c9VIPZ9Y2eZ97lwrPyW/XjO34 LWrw54R81HlJfG64E5GXxNiujbOfOxEO7lfuL+6ky2PMcP0Wc4LPpXE3g19W sg1/fBnL5XGncXdfFrUwb+vW+m7jTllP8uq4j7kzr4oxwPV75LoyuBkXkj42 /HNRJ5xXxF17Vdzh3Llg2HbLOA/5ds9YkpP7C64/Itc1wY0/kj62USXvRd51 zNO6UT/zvChiufPWC85x8l9f+h4Zy3Fx58G1OPyvC+7dwwc76wiGDb8bJXsI H5gx//UxhuvjjuUOvSHurr6xH+izJ3rEPco9SM3XxlyA3xj34i2SB+k8vVTn /Hjp1cIGiedAYTep/2eD77xt8+a5Oe5A7iwkfWz4EnNJzhzcW9xHYHCsSjjP X9L/S9hnfNx/4NTxV9xj2+UdOyHuOu5EznXO930yXodRcW7W1Pre5K7kDqsJ /WBx3iafZcyRsMd4VzQaw3ZZzv63lxwDhi9/JLo97kPuULA71V8ueZfkxvIt ZIxh25O/z9T6fuVuxb5CeJukfx/+t8G/t/Jb6coG/567iXwmBRc+E0v2Awcj 9m5hG0lvFn8de0O1p5PG+G2V347JvzxqhgMufnuFG66iYu8pOTe/OxMLL/Hk 4/fgN6Nmxkbd+BJDrXeUPLa9Y4x3xNvi3qiXeeC34fvV/6/BOpLfiMHo8zvy 5oxJ9bdTnb2lT5Ytqf5DJduGZIxh21f6prX+XZm5AsO3g2I3k34fZ2CD9wL3 fHvhD5QcU4pY+sRPKXnu9udvMtIP0RpfnrN8NHJvofaw9H5568i2SWP0h2Y8 VsbMfFED+fGBBw7G9Ui8OxgLsm3Uxr5j/+2XsS9jZi7A2I+ppP2JJ4bxkaMc 684YWPuXJRvUPyxj2UnYGop9XPhW6g8X3lfyCfzy1pH8Nn2k6nwh5gJfYjoq /umSf7/m93RwsI5J15eK9TqszmvA/MMN74iM8adizeAAJxcYtis1z0/GWFnT do3+PZvfwbeV73Oy9c8bf6ZkGzgYv0E/W3IN5Lo1PqN81sC2jDmn3oqoGQ64 hmXMDddB0p+Pse4fsfASz5wwH3ymqP/pGBu+xMDL2cMZxHnEOJ6MmvidHH7q zDT6t/Dp0l+KOPKCTy3Z9mLJMfzmDobtQPnUi2NtxpC0/cWoGw64tqn1WrP2 nWKsYIx3mrBG6YdnLOmv1WgduWbSa844r8k51ysl53td8mjh44S/Kn172Y7I OMdr6ndutN459hhzzxpwzuJLzI55c8BVHzhYJmkcjHHtKLmOeNZKmhveQzPG 3yjZ9kpwgINhOzrjNz5v/bGqcydhXeW7tnjeLLl/jHx2kHxL/W6yvS05QP1j M5YD8v7NnTF3j3nGl5ijwmd1DJ+TmBvmc7r0Y/nNVXn3lk+t8Mqkf1MnBs53 S+7z2z2+02M9wN6NOmZIdlHskeL8IGqk5vel7yr7CRnb8eO3emrsH/P2Xsl9 xoKk3z/2yzthg2PXvH8rhwcOfusnT441TNpndb68cerAdkKd55D5nFly/6ac x8I42D9gM2Ou+d0dLnJ9JCwrjuNVW5OwT3mjRM5dap13D8kN1O+StC8x/M7/ Wcm2kzPGwfjdn9iPS46HE76uSWOr6804D7ZTpQ+UXF/4OvL5pOT+KXyXL3nN zso4D/moY5bkSRrPeI3xc+l57t6MOb5Qv6rRelVwfljymPk3D/gSs3veHLNi DOBgnZPGwRjvXrxL2HNJc8PLeMFnl2yD+8PYB2DYzsy4dsbAnttTek/JbuLZ R/rP3FmNHs+GMbdflux3RsaSPjGDpQ/M+zf3r0run53xb87FWv/uDIYNv29K /j2Z3/fhn1tyjrkxf8z519JP0Tgn5Cy/jvUgDi5ygYOxduDfRO7voy7W5buS azhPerWwb0v+7Z18g2IO50V+akbSx4YvMadnzDEo77GAwcG/QyDPJjFv+JAP P3DqwHZ6neeaz/UPJfdvz3kffRJrBvZD7Kfe6v/OXRvc86UXhG/c6H8rwL9V +Knk/rkZS/rY8MeXepj/H2P886MW5mFI5Mglvc6s96iMJWu+rvB9pfeSvp70 BSX3z89Y0scGNzn4NxK/lMzbKp/hkoPz/o34zDrj5Foon6HSR2cs6e+Vd84t Iu+vse9awwd7NmkMG37wkY8xwL8ociPp36m5/a3kOi6IeuhTEzFbxdg5m7vF 2fV78DHGPalF3+EHN/q3buIZC/ri4EXS5/fuP7nn5TtGsWcr/x8xX2D8Jj47 YR0/+uRfIn0Y7zLlOUryWsUuFfYa358zlvQLeetIftceId9fa/x3LfS/Su4f KH259K3FfYD0v1l3xZyrevo2+t8zLCu5PylnSb9v+OPLb1vUNizWCw5sF2ec h3xjM85DvksyluTsIf/zxLkNZ4b0f0ru35OzpL9NjJscrMvBii0p7/ryX1Fy /7KM+f5Vfzvub2GNktXyWSlspLjuzSVW/0e+sV2RMUad1A+GrTE44KL+w4TX S68Rz3/CD1f/qohdGeMEw9Ygv1Ulx1wZsfSJPyrWbCfpR0gv5z3eFvG0jZrA k2XbwMGov03ZHFfE2Bkz4wfbPmo7Rvg+eX9nhwOuqzPmhus+jb1d2X7XZRwL 7/ZRG3X1THrc28W64EsMvKP4fZAzXXiHsvsPiLN/o7938b0yJfw46TdkbMeP GLgHBH/HmANqQNLHtrbkqYq9NWMOcjOWnWXLyLYL74xa9zdK2icV4wFPl22j 7RI+mcCoBzt+10s/odbx8O/O51i2Pbj/eFNIH8i7gXeL5MbiWaPs/o0ZS/q7 hj++myTNWRHjhwPbLRlj2G7KOA/5xmcs9wj+U2Q/qdZ/c1ir7P6EjCV9bJwP nA2cq8zT0Ly/U3NmYJuY8/dsbOCdYy+zV5H0myRH13m/1sqnS9n9yTn7NMXn BQwbft0ijnWBf51YJyR9vnd3LXsfXJOxpM+eIO7I2MPEsMbUDQ4vtpzk2ZIT eWtJv1C5H1E9Zwjrrv5+8j+z1mfrZuKpLLt/Z8aSPjZ8ibkjY469hG2eNAYH e488zcJ7Je1DPvzOjjqwwTU4cq0b3HCeU2sueNDXi3wny15mzbg/1UrBP1K2 9YUX1d+fu0P6gY3GsN2bsX+PsmPA8O2dNIZtknxahVdxJrA2wXdPxhi2+6Wf J3lurfc89iHB01JrG/hF7B/uS+nnMw4+1432qSnbDxxsS/nU8hlX/wHxXyx5 Ua33Ktj+eevkLwcnHHDdlzE3XA/yLio796M5x8JL/Bj2MPMSNTM26saXGGrd IOq6J8ZIf/U4y45/SPhoyU2iVvRRUScY/cnyGVvrNagTfoH0zcPWq2zbYxlj 2B5m/0gOl3+f8B8dnMzNxvIb1uja94v6Ny075pGIpb86vuy5myJ8S+mXSH88 Y0n/gEb79ZY+IvQRkbd3cFDPmBgzOalhWKwRPHD0lb5F2Wv0aMbygqiZfcfY H4156BV92oExJ/hvEePfOPbF/9a9T/DuyHtD+AsZy2PU+im2Tvhlsj+ZiVrU P7jR+sFR2zju4ojHl5iDpG8reYX6T2eMg23Nd9ha56b+yyVH5H3G9o05Yz7B tynbBschwrdJGsP2FO+BsrmeYOzcp8F/jbB62U6vNb5d2TZwsE3l00/YIGG3 Z/zdku/zfLcHu7LW9RzG+cY4kuaA67GcueF6nr+Dle33TMax8BLPnBwVc0j9 zAVjwJeYI2OPbVb2PmMcW8d+4sw6Os63a2t9DnJe7SD7ddKnZoz3j7Ny+zjn ODPBsLGOnDsH5n1eYccPXjh2iHOZGln7YwIHw3+neOdybiN3Cl70a6Me1pxx vhi5BpSdb1fJG4VPE76z9Oulv8TnQvO3C/d0o3VkvXh2j7OBsw7fneMMhWPX OAfBwTj3wME4l+A4PnjghvfxnPHdyrYNiDOYM3m3yE89m8VnjjOE/NcHP/ru UfdNanvEeceZdWPkHRjcjJG9dWut9x7YCVEPcpD8Tmw0B1yv8PeKOP84P/PS bxb+asax8J4QHCcGz6DAiMU3H+cjHE0x13vGucWZyX7Cj7NrfK3PLM6cvaMW coHvFefafvH54HMKhu011j32Juce3HvGGOCA66Q4IwfHGMBPipqbhd0i7PWI JY4zDYxzinOJnORm7ogfEzXDcXLwFOPs5AznPBsSvBNqfT5y/hB/Wcw/vsUY wz7B/WbG+PiYB2JLcV7DeUvUA4btjYzzYOM8p5ZToh7eAvQZF3HNccfcGvmo Y5jkbZJv8b043g5wcl4OjRzoE6L+Qswlc44vMac2mmNYnKHgp0YN4GCch2Cn BT40zmbOavDhZdvgLkTdw4ObOeHfEfPviRPSbxff1Wrbiedo+Zwjn/cC379s 2xFRE3lHBDdjvEfYudL7J42dHvVsyJnPGdVoDrje5h4pm+s51lT6ncKnZxwL L/HEEpdMmoP+4Ix9iXmjpzkOiLk+mHndXt/nK3SW8m/bOWeT/j3poLx/zzpU PnfJ992M8UPKtvHW4813d8YYNn7zOqxsridy5ibHPw3mgIvfsrDjRz5wMH4X O1zYJOnvZxxLHP9/zcCY2+2Tlsz1yEaPizHx3/k8ouw5/UCxR0q/u9ZrcS/n NWuct45kjPgSwxrgS8x50o+VvL/W/94AHKwx8o6MGi6rsw0cbnhnZowfE7nh ODTv35LAsD2Z81gOj70Cd2vw8xvSCZEb/LiybeBg8BzPvhbP0zmfDefH+QDG eNhLLY3+/YvfuY6LMTEncMPF72Inlu33Ycaxx8fcke++GBc5mQvGgC8x8LL3 +Xfw3ybsz7/PIGag1mFdtdMU+xCfPeGjGy3pf8Y7kPuBf5ecM4Z9Rz6Pwq/i 31ILnyz8ZPUPzxsbwz0qn9OD71PxXF1nP36DA7swePCHixhwYrDhf0bZMY9y X/NmaLSkP4vvTdIfkz5b+hTJszijGq0jd0m6dsZwVaN9ibmIs176aXw+88bB dk6amzwDpD/OHst7LHDDOydj/JyybdRIrc/ljGH7MmN+uHdIOg/9LzLOc0nk Gin8SeFzhV8jjvNibGBH5/17EL8LjQo/JH1+P7q00b8DZcIHO/5IeIkfx79f jrrhJsfzOY+vhf3daP2yGG9LzDFjfF4xx/HGEf6s9Ct5Z/A9ouz+PL6zBMfc qOf8smsCe6LWnOfGfM+KsdNn/M9wD/JGyVtH8rsVsfASz9qxbrsnzU2OrzLO Tx3UBAfx38YcPhp5Lyp7DN8Lv0l+L0vfQ/gN0seV/XsC8dfEuC4WdoPiX84Z H1u27WrJ6yR/yhjDRq4Xao3DSR7yMV9wXBw1vcjdLf3aRuNgjPFSYVNrzYmk P67ROrIp6VjiBiad67Ko40reQeKapjovl/6SbPMz9r2Cz2qj9esj9nVhP8pn 7Qr7EnN83hxwwQ0OxjyDvxBz9YrkiXn/RnNFjOOHjPGryrZdFhzgYNh+yXjf sf9ezHkOGM+PGY+BOWVNbub30pgL1oU14feda8v+bYjfjPDBzpyAwU89r7M/ yv7f88GB36s5ry1cP5Mr8lAPsddGfcQSx9+E4aC/KPYJMS/H2t4U63tD2f99 Cf47Nm/KNkH4oKT/94H892343w/exF0t228Z4zeWbXubc1XzlE8aw8b/tvHm srl+z5ibHLc0mgOuk/O24zchcDB+5xqPL78H5xxLHP/tC7Bbpe+Z9Jqz9i1x DnAGcB7eUnZNi7mv68wLJzkm8HbhjuZvV9I/qjWG7bfwvzXGCXZ7zAPYai7V 865st/PWke0OyXfU/zNjDNtS6dMl75B9cNL2u6TvLX2G9FPzrv8D6afn/ZvI rfxdMLjwubNsP3AwYu8qm5Nc/26YSDwsvdzG2MTIRX7qak6aA66/MuaG603V f3fZuZdnHAsv8dR4T9RJTsYGhi8x1Hpb2WNbEmO8LWqaFL6Mnd9v7o0cW0Q8 YwSjz29Dnwh7gPqFf4zOG0P9B8u2rcoYw7aSN0+jfyvKhj++Jem388aIeaf2 92Ku7is7ZlnE0if+0bLnbuM1NX+R89+MJf3Jjd4Tk6U/GDqymDRGH/+7Yszk pAbyM+fwTI7aHpL9U+H/ZSzP1PwVkt537L/pOY+VMT8QexJ+cuFPPDGMjxxv 51w7Y2Dtp5Jf+Ac5y9mK2Vexj5X9mw+/43wubErZv+ugI/ld6SE+12X/RoEv MR/1190q+YWwNhXGwThDZgl7RP19ks7zaKNzwQ1vssL4E2Xb4HhMckjSGLZ2 8nm8bK620udInp337xcTuTti7cGfKtsGDsY+eTrWhL3BZ5/P/dCksSmxRvwe QjyccKC3rzA3XDM0V8+W7cfvUMTCSzxzwnzwWxX1MxeMAd9ng4vzh7OJM4hx MJ5HIv9nsXZf8xbJ+7eeF4ODsYO/ULbt+chJbWDY0tKfaPTvQfzehB2/z2Iu 4Xqq0Ws9NeYU/KmY55fK/o2I35KQLwUvOpJ6WHPGmYhcL5ed71XJH7i7hU+L PNTzvbBXOOcbrSOHJ32+cs5y7uNLzFe15oDr+agLjNrAwfaT/h3zIH1Y0tzw dqow/lrZNuqivo4VxrCtWeHP2/1lf86p5cWoZy298VcKvzhv/I2ybW9K3qf5 +jBnCQ95F0i+LPuIpH2JgR+fNyPfW2X7dRX+tvRfpHeT/ipvpeD5mflRf3/O zLL761TYl5hpjcaw4TddciH3kXzeK/tvh/ztcQZngHJ/nLMdv1F5z8WrMVfv xtywRkj62BZErYwHDuaaeYYHDv7mSR766PjMiPUGfy9qmtrov4XyN9X3y+53 jrEwjgOSxrDh90HkZywzpf8mLCf9d8kPuUMbrSMPTNqXGOYOX2LGqL5PwpdY cDD+1voQayH8IOl/Mp98PpPmhnfdCuMfl22D453IBYatR4W/X/G9je9liyM3 /NPl+zl3R6PxT2MM4O9Grs+ELRVWJZ5Z0pfxOaowNkM+h8jnL+7DWv+dBA64 1q8wN1wbSP+ibL/qiIWXePguzDuW+pkLxoAvMfDiQ278Zsc+Yh+20Z7/XPpR iv2y7L+18DcZ7Pi9J/lIndePtZtTdv+LnOWc2NPfS66U3KTCHMtiLMTPlW2R +q83+m8+/E0Jny9jLsC/KtuGP758FuZGfuYKO35Z6f/IPjbvNVolfR53PPeP 6vlW+ofSV7A3JA+Tzzdl9zeqsKQ/M/zxPTxpzq/L5oUD2+ycMWwbVjgP+Tat sCTnEUlzfRK5vgtu/JH0sX1U9l78LOd5gpP6mef34rP/X61t4D+U+UdDicTm FZb0P210zs8i748x7k3CB/uRSWPY8Ps54jarMP9PsU5I+uDzy94HvWM/0GdP EPdFcK6MNabuT4MX26+SbRWzhWIXRlwv6UlhCyJHO+mzhB8tnl/K7m9ZYUkf G77EEAvH7NiTYP/FnJCHPjo+5MMP/NeI76A2R9gx8llUdr9Phc91zveGCq8D 68G5QO4vo7aU7F9JP1Z6e+m/x9i6qrUdojE3GsO2VYX9/yg7Bqxt1AaGra98 Okr+GTFLJDOS21QYw1ZX4XrnRs3Yv5Z+XNK830Q9YPMCX0M+yxT/baN9lpbt Bw52POeJsLT6W4v/J+ZX7aSksY5RJ7J96EtjHNQDN1zbSf+77NzwEPtX1F3R 0/0Do+Yl4UcjhloXlz22rWKM9Bnn8rLjt61wvSu4vxutfx/1r4jx4TNF6/Wj 9BOEr624Vdw76v9Xtm1Ozhi2RvmvGfUdGP74nii9k/R/uJcbvRe45zmf/y07 pl/E/hv1tRviuduez4X0zj2tI+nD0UUtEX7oP8U8g9HvX2Gu5bEe1PBdjAUe OKghOcR1sj+R86Nm9h37b8eYB8bMXICxH09O2p94YhgfOepj3RkDa99FcgPh TRWWfwo7g30ufB31dxDenc+P+r80WkeeIp8cdQuv7Gnf9jEXacms5C4VxjvH WKhrYdTWLWLA4YZ3QIXxVOSG41f5n5o0hm0nPjvxmaM2alkU9fC32DVk+63R eGaIbeBg/J22IurdmfdAnDGcUWDdoh5y/h55MzFu8sIN127shyH22zliK6I+ 5qQyeLIxF/jRiIGXs2dRfAYYB+NhXtbn3JA8Pel6F0fNnWVfT7bdK4yvPcS2 tYY4Zo8KY9h2ld6jp/2pATt+8ILBRY2sNWv/Z+C58F8nfMmFpL+k0fqSqK1T cPwvV9eor1KySjLPOkqvlj6owjm6q/9Xo/W/Yo8x96wB5yy+xCxtNAdccIOD nZk03iPqrOWsE35W0tzwDqwwnh1iW9fgAAfDtleF3/i89fkbBdx/B38u8lN/ jXzXjfGsJ7mh5OAKy+XyOTvpHP9EDfgSs2f4EIPf+lELeA/pPWXbm++/PX2n cpdtLLlCPudI32CI+4UK+/YIXjBs+FUFNzy10nvJtg81S/9AeM8K2/H7V3Kj nuZi3qr/H1PnGSZVtXRhpkcU7TBiQnoEhBmCJGVAESagIMo0IKgdzWLOEQNm zIpKEIyIOXvNOWBGxSxmzGIWRURUUL/1suo+9/vRT+1atSrts/ucPWe3mLc+ Lmm5cdS0PGqlH2L0qvP+kzgro1/y/Kln7oQqc8gHD5w6sP3DPaexTZtJ4tTl re8YvXSNGsCwwevHPEieJLx73vsu9mP9hffKez/Vt877M/ZR9+let5r4J1cF V5xq6Zvkbfu4o3Ew9m/49sjbn5jEY48Ehq2YdB5s5aT3ZOe1OlfPvHX2df3z vma7Jp2HfNTRV/J+6Z8ob++891bszTZjXvLefzFGsl+qz7vnUjK40s9vdQxi rd5oHIw6wcFOqfK+6oJWxyE2cXdOGu+Xt43Y5GBOwbD1jfVGD6y5BxSzneyn Vvl53CT8Yv57GGEpfU4TvmnevE87WqLjs0Wd92fsizbLW98z6X3GRa3ek4Bh gzcw7+83ey3iD8g7BxJ9d2rLe7/G3g+JPqjOflNanQt8UHxfwImLbbDkEOF7 y3eLvPcR7K8GCxuU9732QdWfVq7T5bt53vpnHS3RscHFZ6+kY1zY6n0XGDEY k4f9Gz3CIR88cOrA9pBi1ijeZHG2zFv/vKPXEeuJtQWGDd7W3Efz3o88LLyR Z6jwxjrvn9jXDc1b3zdpib5W8OGeUeX5H5L3NSAGti+U9xHJdcU5s8rXmevN /g3JNSd+c533deyvmvPW909aomMjNjnYo7bkHffLjt5zTGv1vuVRYesr11ka D8t7z8Z+A4k+lbPAOu9D4G+Vt35gcLBTAxg2eOQhHz0Qf+u8cyDRv1INw/Ou gz0eEp2amFvmlf0S954ucf9hvrEdLH6BWqTnuQ513puxT2M8Mm8diX6o+Nuy f2i072PKv03ofDrqc3aVx/DQ2XttF/nKPE+EHS3fURpvQ21JS3T2boyR7JHw z0ZMxq1563zG8MyVHMkzJ+/9E/u5EVF/Lm+d/SEyFz3Ah8t+idq2jvkhBrbD k85DPvodEzmpE1kb9bBf2SbqHBv7F/ZvyLHRG32Tg73utnXeD7Gn2j5v/Yik 441jHyP5uOazk+Q54ozPe+/GHnKnvG1fdzQ2MuoHw9YpYhCL+tljTW91rh3z Pqc/Mmnf8dEnGDb2czvk7bNN+KLjz7XimnVt9H5rRqv3Y0/wG9q4luD5vG3g YOeKUxDWWudrTa/0TP9g7MnYR42u8z6MvRAxiMVejtjE+kb9lvLmTUzal7j4 k6dr5KLvjeK6wMWHuOzXWiNXJW+dfX4PcXvqc57wXaI/4mOvRN1j6rz3Yl+0 c976sUlLdGx7S46XnJR0jG5RD/up3WS7pNV7vdHRIxzywQPfNXqDD5dc+KGz T8MOjz3k2Drv39hr1cl/L/YxXHe+03nvuZ4cYBt97ZG3/m1HS/S64MNlP0PM 3fOOSwxsJySNYTsu6Tz4MUZ2j/jsk8ZGPRPy1tkfIieEP/eHDnFdmCf2cOzx uGdgW6TadhDWW58The8TPVEDEp1rxf5rXNS8b976+OD0iHrA9o0eDmDfITyf dPz98s6BRD9R+P4Re1KsB3TWBH7jo87xcY2pG/yAuN6HEI89iXwP1nhHYSdp fP7GupdL78W+aEvNqT7j5XpQ3vpp7SzRscHF5/52jlHUeLU2xohxfpXzzGz1 b6XgkA8eOHVg4x7O/fuCKt/L0U9VPXM1x33Em1Ll8WF569vrc1Pe5wxlcftJ v1CcEvc/4bMUcx+NJ7O3aDSG7fSk+Ufk7QMGl99HgWGbLM7O3OekX8r9Irj4 gmE7U+OnVE9/4RdV2b5Z1PD0AMcl5i6SA4VfzPeC75/8GxrNOSZqAgebJs5E YbtKP1vxXxBnqPBLqowN0HhqlfNTF3NCDGL90NGxiXWOfI/LO/dZSfsSF//d Nb6s9X810xt1w8WHWo/Mu7fvO1qi0+fxefufq5jPCJ8UORgj6REM/ceO/g3T nnX+jdNzwk6O+k7J28ZvgcCwLe5o7hWt/+PDZU6o+wTxBjW6vi1iPk/M2+f8 pCU6/mfkPXe/KObpGu8t24VJS/SrOPNg75z3b5IYI/mdEhj6eUn3Ss/MFzUM ivknDjH4/dJpeddDDcg9Yh5Yd6y/i5Lu9ZSoFYz1OKPKfPzxOSGuz1lx3emB az+NfQffn6Qlv7Ph90hnCt9PflOTjneW9KZGj5si/iH0LfyaVnPxma3xuZIH Sp+RNA42Xfx5A9wbfR0g2aw4s6ocm7jMIfg5eduI0SJ5aZUxbNPFOTvvWEs0 //sLG0b9Vfa5QLatGo2fl7cNfKvIdb6wg2S7JOm/4zvGswTs6lZ/F14cYH9i EoPxtKRjE4vxlLx5v3a0L3HxZ06YD37vRP3MBT3AnRKxWGMnxXWlj7NjDVHr 8Ojl5QH2p/epef9Oit9ZgV8c83tR9Mc8g2H7TfUcLtt1rf5tEnZ4xCUGsahx 67j2XG9wMGqeHtxZSUv0g+s8Pjjm5MKIAYdcM/LON0vyKNau8Es0PoLvm8av qK6Z0rdt9Bh5heJcJuxV6cs7movPyEbHINb1rcbBLq8yDnZZlbFRgRObuL93 NH5p3jbqor7Lk8ZWxUl67rkG3MfID4e5YnxZ+MzSnFyu8Qkaj2Nfrc+V4lwh 7GjWtHzf5p5T59+9gD3Vzb8ROhY7+5ZGxyDW9/y2J+9Y18v3Ko0nijcnaV/i 4o8vfldXOQb6NUlz8ck1OgaxqOlqyWNYu+K8NsDjq+R7nOQNrZ7na8IPDvic vG135t3D3x2NYbtWnGvzjvVHx4gtfUyjYxBrbKPt10ZucLDZynWdsEnkTtqG H/WA3dTq3zKRk9zM3cTwxxfu+ODfIPsb4v3V0djN0o+v8++hiEUc/G9p9fzD vSHm65aIfXPSOBjzie+NUR8xj4+5AsPG77XIg4362QPw/Od3ZewF0K9L2p8+ 6efkyEcdt0ueJv02cW7V+BRsGr+lGm6Tnm/0GHmtYl4f88r1hYvPTo2OQaxb W42DXVNlHGxOlbFi4MQm7sqOxu/I20bs66OfOyI2c8LviDmT5jfDkxWzBE9x HhPnfOn3J43/J2/b6RpX6F2cu4SdIf1OcXZp9O+E+E0RWJl5q7LPvexjGh2D WHeIf3fesW7X+B6e0eRI2pe4+OO7c9Rzb+SHDxef21odg1jUdJ/kAvX+j3p/ d4BjUcPZ5Gz176AeCC41g9+ft429Hnu+7zoaw3a3OA/mHYt/sInY9+X/NwfE 2rXR9gdjLsB3jfl5KO/fX/GbK3zxAwcjPvUwx8z1Ho3ui55YDw/nPad3qYZH Ig/1nCfOo+wlWj1G8jsouPhwDeDic5bsT0hOkXwwafysqIG85LxJ4/dV256s hyrHJu59SeOP520jxl38/qvKGLZE1r08FPNFvAkR8yLugTzLGo0/mbcNHOxW 9tjCPlCc6qzvi9xfV/2+a4BroK+L2ceIf1uVYxCL2ohNrIc1fjpv3iNJ+86N Hi7UZ1/xb6ly/cwFPcDFh7jP5M17KGmJjs9Urn+r54R694uaGT+Xt/5c9Ifv 8xp/yLvmrH2fzdsfjLjUwPj5yDddnxc0vlec9yQ/k20t+c6L/PSCRD+g0eMD opeFA9zDbTF+MfrHPl/jaRrvr/HLef82jd8ekY/fJr2Ut87vk5Ho04MPl9+w oVMXfGJgeyzpPORbPes85Hs8aTktepzJd6rVv2V6JW99btISHdsLkRPfWZIH c0/imZu3/hTvVJXnNfYW7A+EHc53QZzXhV3GdeJemrftuaSxB7jvVhnDhg8x iNUu6zyHRa43hX8qfM2sfYmLP9ibUfcbeftQPxIdf64V1+xyca7U5wi+m4p5 lcbvCH+w1fjbedvAwe4UZ0H4PRu9vxo5wI7kHlnluo+KfolBrOeTjk2sFzR+ N/ojDr7EPTJqQycOfTN/d0ZMfIh7Nd+bVp93vJ+3/qLifCP+KXy/WKvCv5Ce ytoOD585Gh8jzj3ifJC3/lLSEh3bF+wppL+WdIyJjf5tMPUt5LnMs4rva6vP feCQb2LgH+Vtg39szMnC6I95wA7vZY2/HOD5Yf7hfibbbOlHa/xp3mdNVRGX XJ/krXP+hfwkYsGHy1kVMT+OeScGtnlJY9jSWechHzUgZ8ecX8/9vNXnU5/n rb+atER/LNYY64vvCPN0Qsz5I3xXZL9X41s0Pln4/dQjv0WcE2Qt0Sdxv+ae 1uqznq/y1t9MmoP9k2pj2OB9I3kP85t0/EV550Civ8X78LzXQfusJTprAr9z eeZFzVzjEwInLrYfJB+iT94h8z3Q+DOes7J9K/0c9gJcqzq/4/oub31h0hId G1x8Pkw6xpOtfmcFdk7MCXmmaPxglTnkgwdOHdi+5d7L/VmcH/PW11FfHQqa J/FWJI1hgwf2vGI8I/7iiEH93w1wDmoAw3Zxo/Gfo0/wi6MeMGzrKtdjsk3l 2VzlazItrstzrEvVMbTe+JK8bY/WeX5ZD0viOvM9+jVv21caP1nn68U8zK3z NeC6cJ0eD9+lefO+Df7SuMbTxbmE54s4v+Wtf8177LxrXZQ0hu2SqOfX+D4T f1neOZbFumDN/J53Hd8lLX+PdYb/zMhFbHIwF8sjNrVdEjq8p7gv1fl6rRT2 2uA2bbq1M/5n3jYwbJc2GsP2veKM766/Ubr4by7WyB/R/18Rm9ouklwRtYLN itqISTzeJYLjgw3+3JjbKxr931sqTJu/8843Ka3naJPuwTzLxHlaskez5kzj f7nPi/9T0vg/eduo7cm4dmDYfiBowbH2STk2OeiHGMQiP3Z45AO/IuphHbGe FifdNzn4joOxvp5QrkTBfDhIdPpZW/JHrdUNsv7vRFeT3l55Guvtj291wfq+ KcvqyAcfLv9tKe9JU8KvaXQMbPw3sy9INsnnd3HaCt+1q77Ha1pe1ej3tOso RsMQx1m9YH2/lCU6Nvj447NGwXF/UfyXef7o87R8v1cfVzd63E6cecKXJC3R n9J3+0WNZ7PWxFmzYP3X4GCfmzCGDR55yEcPxF+r4BxI9PU0b8mC6/gt6kGn JuaE+eDd6U9539+/THqesPHOGQwb9/2aiE09cyTTBb+bns9+p9XvezMF68uS lujY4OKzNOkY18Y88L61ffhwnemN3uGQDx742jEX8OGSCz/0M6MeauGdOT3x Xpi+XpdcX7wbuE9pvB5ro9VxX47rsm7koWbkujFf8OFOjZjrFByXGNj+SBrD xtySh3x/Ji3J+Sz3atV/o8bPabxBwfqGWUv0G+N7z/f5i6Tv8zwDuNePl1wu vavW29vcV7nmVY69oWw3S3aU/FmxOmaNYaO2VVjUmi3Y/2/hG2n8lsYrk8aw ERc+XPqtFbaA+0LSEv3WRvvdxj5HnF8H2DavyjhxsXWSfEf6v0lL9BfUyy8D zMO3S8F6NuvcnaXf3ujx7dEjsclJfLhdCv/Lf2fUsLGw93hWpZyLPMwz2Iut fvfbNeqiF3B8sIFhI1a3gvvZSPX01fhTvmOKeYds9QW/G+ZdMv7ErCtY550z si7qgA93esxPt5hHYmBro5gfscfQ+CVxukd+6ke+G/PzoeTLrX4P3KNgfbWU JTq2znHduI49C47bVpxlA8zDlzz3Ra5e4vwmW+esJfo9sn3Md5h7jzibFKyv kTIH+8tVxrDBIw/5iM2nd8E5egdGnX0KrqNL1rJP9MC83i/OK4q5flHfJ91D /5Myzrxj6yf5mfS1UpboDwj/XONXWl3PpgXrSXE+kewv/cFGj5Hzq4yht0uZ iw/+vw8wDmezyAkHfED4gD0UdYJh2zhrHB9sj/B9jTiDC9bTivOlsAa+d62u 5ZGoZ5CwP1gTWctB0Sdj5KviDIw+1oo4xOC9Me+I0RlvIc7DPM9Sxjcv/C8n khrAsPF+Gy4+vJNmjOS9NOuN9ceao0Z6oJ8WyR+4byrOlhp/rfHaGn8jOUT6 4+xBVPMTkm9UGcPWPmUuPm+0GoP7ujhDC/apV+/fCW9kj9vqMfI1cZoiNrng 4kMOsLkRBz981o21wbpg3shLTt7NNouzQv7ds5bN0cOP3O/Ff1ucYQXrG6Tc Kz0/1egx8q0q56UmcsPFB/+fNH6r1b1vxXOWZ0LKuchDDWDPiPumxlsX7NMh ZRwfbNynb45nBHZ4xB0etRBzhMYrFbeHevlZnAWtfo8KNiJyg29TsA0cjLxg 2DqmnO/5qOefAe6HeVghWeS72Wp825gX3sniSy4wbL1Uw3YF23hv/Fyj3/Py jncp91vp73Df0/jdVr8XHVUwb8OUJTo+1LI46mwtWKfOkTE3XBcwbIujnu2i H+LnCs6BRN9I/NEF19EpZYlOTW0adP/j3lrl2CMj35iCbb2zlujw8JkfvezA d1axuqWMb1+wDQzbq4Fho4bf+c7ynJDvMo3H8lxQneMkq5SjT9bPc57rrzQa o37mipjE+6DK+LjoDT7c96sc+82Iv2PB+TZW3kSDx+B/Sr7f6n7zkQcO+E4F 26iNuhZUGcNWJ06h4Fh9s45HDnISg1ivN9peiNzgr0dtrCPWU/eU+yZHl5Qx 1hfvXUsRj/lEotPPvpJttYfdNOX3sJWItVqD54U5KRes989aluPawIdL/DWE 78V6rXMMbLxbRl/Y6nekO3N/4rmesuTdK++NqeOvmMNdoi56QaJjg48/PrtG nl7iLOCa6PMR1059fMy7VY13E+dfnp0pS3S4q6vOdyQXirN7wfpmWXMWRBww bPD+iXz0QPw9Cs6BRO+j+HtG7P/Wg05NzAn+9M595dm4vzFP2AZkjXPfwbYP a0Ax+ypOteQE1gzPdY0/kPxUvnsXrPdPWaJjg4tPv5RjfMj+osr++7FHafR1 /qTVvcMh34eBsw6wwYf7SZX90P9bz/uBt2uwP/HX0vigqIlYBzI/9C79s1a/ Uz2gYH1AyhId26oao05i7h/9Hxh10SMYtoas85BvUNaSnMzJYZGPXAcXrPMe GHlw5F7Y6Pe5vAc+pGB9s5QlOrYkNbPfqXJdh7I+hB1GXslBKWPY6GWtsH2h Xg4v2H9z4UdqnNZ4cMoYNuLCh8v72yOEpdTDFllL9M8b7felOJ+J812j/w7k vR84cbEdFfGoB4n+ZaPfk37V6HeqxxSs8w42rfhHRw+MkdRAXnJ+UWUuPvhn ZL+xzu+jJgo7kXtN0rm+jPkB490u73uPLdhny5RxfLCBYSPW2hovoj7xjytY H5oydqL0byXbC/tacpE4xxesN6Ys0bHVaPwNdfA3b4N1xicUPB7C+wHJr1rd F+NJBevY4eFP3m+jHuzwmlKuBRtxmDPma7Cu0UkF59tS47UlT436iHWKxj9I rk/9rX7Xd3LB+rCUJTo2+D/8v/pPirpPibrol7k5LuogD/mGRl5yMj8XRz5y nVawzjsE5GmR+/SC11BzyhKd9UT+dWPeJkft1LmhsDO4Fqqzo8aLmaMqY9iG p8zFB38wuLzDPLNgnxHMv+o8iz1Do8fI78Q5W1gncbZLmYsPOcB+lfy+yn74 NKnf9SQv4HkmW1dxfmD+xDlH2BL2EylL9KWSnXkX0+p3d+cVrI8SZyPJc6XX 1nuMhENeavo1fPHBn7zk/FGc84V1ka01ci2NOQH7jWtZ5RrxackaxwfbLJ6l kuPkO6XgHkZr/Iewlfr8VGXe8ohzEddNcYZlLS+KHhh3jpovjNj0hUTHv5vs P7a6tqnC6qSPTRm/uGDbBorzJ2u72hi2MSlz8aEuxn9EbSuih39i/umBa9Cj 3rbF4kwvWB8ffc0ouLfu9Y5PPTMiNrngTo95mVZwTVup30sK9mGueknOlP53 o8fIn6vMxefPiH9J9ECsf6Ie/PDZMeVrzvXeVuOe9fahnhGS97Ie9Dfw5ZL9 pJfYQypG73qvQ8aXFazje2nUB3fjeq8Nxvijb6rPlTwHeRerT7U+v1Q5BrFy KeNXFGyDD/fXKvuhV8S5XeNmjfdPuc+2Tb5ejK8qWO9f7+vENbpa2GYa75yy vDquB2MkczK7YJ9yyvmpI59y/tWjhmviuo0PfE7BtqtivllLc6I/4sC9JuIy 7h/1bF7v+ed6XVuwvkfK8tq4NgnF2CI41wlbU/puKUv0ZJOv58Co//pYg1zT mwr2L6aMYYN3g+SWkhOEp2TP6LOsylhffZZofGPBtj1TxvHBBoYtE3M7O74/ 5CEftV6p8XpNfi89pN7v2XnHfnPB79J5P49Er4l3/7yX5/3/LQXrvPOHg533 52DY4NE7ff8W8W8tOAcSfW/Fv63gOn5OWaJTE+vleZ6/CY9ZQ+gt+qwr+3LF vKNg/YCUJTq2rTXeiu+8OP8pWD9YnA1ku5P7c6vHi+MdOBj6QSlz8cF/G306 Cl+hOHfxvNB3dXjW+N0F28A6SP5ZZQzbYSnj+GAbxbVq9d/mDxasH8Xfp5L3 SM82+fvLd/cvce4Ttq30I1KW6D+3eowkF991fA6NOMRYWeWaNoqaH6BG1TEi a/z+gm3kxOfwlDFsxIH7QMRd5VfverrK/pTw+uiFHujnCckx0o+V70Nx7yFm rXwfjhy8k8CH3sGwjcyai0/npsDqXf8jBftwXtlJtkcLfofNGMl55WPhxxzC fSTmFGy7qBk/fI5M+T7H/W6HlPN2jnl+XPho4RNTluhL1Vcn1dNNnH/FebJg fbuse6Vn5oMx8p8qx6MmcsPFB3/s9cGZK2x72Y+PXOThvTTYbxr/XeU5xod6 wPHBxt6cPTt/U3RusP8LMX46enhGcrzkJPnuwH1ScRIJY9i6Nxl/tmAbOFhV whi2E+U7jmcD93vhO2q8rNXzsJvG74jX0GT8+YJtxOgVccCwnaQ4L0TOEzTu 0uC4xOza4FzURp7ekWtewbzWrCU6Pnl9lrf6nfOLBeun8P4n7MQHw7Y86iE3 NRH/pYJzINHp8eWC6xidtXw5+ue9M7HIReznwmd+wTbeYyPnRx3E3Sn6eoP7 q2KNzRp/tWAbGLb+gWGj/p1Zp6q3Wr6bCHul4Pfir0mWZDtdnLLk6zzLm4z9 2ep3yMQkXtuEcXywwYe7mvBdNB7Is1DjNwvOd6Zi7io5QPgaCXM3C/7bfL8V d/us8bcKtlEbdfE+/62ohdoWFBzr7OiFHPRDjLejB+zwyAcORv2sI9bTOSn3 TY6TU8ZYX+1Uz7sF93BWyhKdfr7i2SF5Ycpx35c+SHJ3cVa0ek7eK1g/N2WJ jg3+oOh9b+GfCf+31TGwkYscW8S8fcAaZu1mLakDfE/Jv1v9DvnDgvXzU5bo 2OB/ED18FLXTL7H3iDibN/n9M++rF7LW+G5kLRfGHPG+mLjk+rhgnffVcLAz V2AfRx3kIR95iP9JwTmQ6OfJ99Ownx/1oFMTc8J88D6Hdcd6mpzyPGFjzn/Q uA/v7FTnlxrvJ3yq8H0kP49rswl/2/HsV21fFKzvlLVExwYXn4tSjtEmp/2C +L3FWRT5iNWkz1oJc8gHb0isA2zw4VIzfuj5rGMPCd8DNG7WOK3xQRp/J16V 4uyv8bcaD5PtQPYW7LHE+aZgfUbKEh0bfLipiPl1wXGJgW1ayhi26SnnId8l KUtyMif4bBX1fB8x8EWiY2OOiUkuxj9EDu733PdH8T1tcH3U/KPwQzSelbJE r8653uFR80/RK30NlO9E8dZLGMMG7xfJrSVnphx/ccwFEr3E2UHB7615H4v8 OXLjx3ta3gODg/Hee+uIi+03yU0Vp6I4SzU+QpwrUs69RPrB7Ev0aZvze+Bf C9YvT1miY1sS9dIvMUZqvHbC2MExb+TZVnr7hDnkgwdOHdiO4ruoeDXiLCtY v4q/a4qeo92yxrDB+z1iUM/R3MN5/nIfbXB91Ly8YH3nrOXy6OEYfVrFXVe5 jtV4jZxr+6Ng29UpX5Nck68L4z8L1rHDw5+85FwnYTu8OSnXgm12yjWOijlZ UXC+a4QfL/mP9DWVe4Bq+zt8iDsmalsZeYiDRMcGH+46UT9x6YEY2HbJOi9z RG7ykO+6yEtO3kVT+/ZR/78xf9SPRMfGuSXnl5wlch24HvRZ4DuqcTliHBf1 VBX9fpp310h0co5t8jtt3p8nitavFed0YUWNswlj2OC1lTxJ8qaU41cXnQOJ Ti+raXyisBtTlujJnP12EGeDhHEw3i2fFHGxrSm5hfrZU3PVLjDibC5sdek7 sj9g/cp3fcVZo2j9lpQlOja4+OyRdYx85AUjRoeE81AHNcAhHzzwNaOH02JO O4q/VtH6bTGHzB/XCwwbPL7T3Ff4Xk/WOC08Lf1UjUuyb6g4qaL1W1OW6NhW 8XOujflPFn0NiIHtDvHPlKzJ+X1sJnISB1mOOgc3OC65aorW98pa1kRuYpPj dt49Fh2X3wZUmvzemXfRvPcFJ1f7qBE+sn38nmBIg+OwTtYpWt87a87O0S/Y OpGPeOSjB+KvG7mR6Lw/X6/oOu6MetCpiXhnRF8HlPR9ZW+atUS/oLuusbjn iHMP74Ikd5PPRgmPOxStI9Hv5e9QjRvlv2/Wfvi3zxnbXdxOCY/hoZ8vTkeN 1xGnt+TWsh0s32zEJi8Sfc8mj/eMGpoanIP3z4xro9Yp+nTWeB/xLtK4k8Z7 s4fTeIJkF/luVLT+UMoSfULw4W6ccG3UVZtwDGwPp5yHfPtlnYd8D6YsydlZ /Iu5Bjn326Vo/ZGUJTo2+ibH/Snn3jdq2zhqIWaz8nSNHLyjnFbv95zdih4/ Jk73om28FwVbP2cOWPfgEYNY+2dd4/5RZ73wYTzXs+YRF3+w+ui5LuaS3pHo +HOtuGaHaLxfk99v8m55pmQv4R1yxnsUbQMH451ez4jxWPROz/tGXVPrXdss yYOld0s4BrEeTTk2seZqvEnRvKdS9iUu/tRGXXUJ9z3l/8XEh7iXsfZVT1f2 PEXrz/AORPxr6/3uq5/w4cTK2g4PH/wPi9r6RjzqQaJj21zyOvm8knIMaqb3 yyU3le1Ica5k/ef8/hBOv+gNvH/RNvhw6xP2Q382ZTu85zUewX5AnO7iXC1s IM8vnnMaN2g8W/JonusRZ0DR+ryUJfoxwYfLOzRiblZ0XGJgeyllDNuhWech 34spS3L2SHj+anOew0FF6/NTlui1scZYX3zXmKfjuH4a3861kr1vwtikwLeQ 30j6zFqiHy/bDXx/c77Wg4vWX0uZg71Xwhg2eEMlb5T+esrxtyw6BxKdOocU vQ6OyFoOiR7w65TzHFLz5uEDTlxsLTxDhb3F91fj22RbwHtXyUaeg7Jtx7mV ZG/uY0XrR2Yt0bHBxeeNlGOcKqxPwhgxNkk4z2kxhkM+eODUge1Wnuf1vi7D itbf5m8Ejd/R+N+UMWzwwHrm/B5p64gHf1SDecQBw3Z6k/HhERf89KgTDNtR 6us/sp0hvF/CvZ0ZvY/m7yfxrmgyvk3Rtjvr3Sd9bRPzwTyMLNr2Xsq9dcmZ Q84n6p23VTFn8P3TeNuYgwXBR8cH7m3B365o/Ru+R0XX+n7K2HZx/cg5Mq4H 8UcVnQOJfrR6bI35eCdl2Rpx59Z7TbOeiU0O5iJXtO27lCU6vKf1mcW+Sfxx wp6V/lPK+JiibWDYNs4Zw/YDf6c36/4g++CE6xvN/URyLPc3zuP47/vE3V76 M3XGLm3yv+9BTOI9VmUcH2zw4fLb+3kaX9Xk99jji853YrpNm+eEF7v7/XmO 9wrd/X5+R3H6inNaOvCibdQ2M64RGLZjNIc7FR1rcfRCDvohBrG65myHRz5w sJMSXkesp4lZ900OrikY64vfyReK7mFJyhKdfvaW3J77hXxfEF7iucizVLbZ TT6zKBatH5iyRMcGHy69vyq5B/f9JsfA9ov4L9b7nT/zVhb+kvSlKcur2fcl fAYwp8nnCJWidc4IkOjY4OOPz85Fx/2V91o8p3N+Dz9GfVwj+1Dey4UfuZDo 3cR7ud6xyLtr0fpvwcFODWC7Rq3kIR89EH+3onMg0Y/VvO1edB2/Rz3o1MSc MB+N9BhrnO8I84RtecoYNu77E2L+iDOWv12kXy/9dXHqc+5rr6L1P1OW6Njg 4nNc1jFujLxvirMP398mX2fqY67gkO/GwPeOHuDDbUnYD31F1EMtTcLfEnaz xsMS5h7APZB7pfD9Ne6uet7g3iusmXdKRet/pSzRbwk+3P/G3LfouMTA9nfK GLaVKechH3GQt0ad4xocl1wHFq2fkLU8MHLzvef7/H3K93meAdzrry/6b2je RXCGgI37P/UdzDWTPITvLn/jZY1hox6wQ6K+Q4v259zh8PD7N2IeGs8b+HCZ t8O4v8r2T8oSnbMI/BZEL3nx36/3O39w4mI7omg8kbZE30S97MRZmHjDxT+q aP1k1fyBOEdyf2/yGLl1wnnJyZkIXHzwx35PcI4W9pE4bSMXeagHrLfGW2l8 TMSmHnB8sIFhI9bEovs5RfWcWvQ7b96Tf8L+R/p90j/W+F6ehbz3KFpfI22J jg0+3JExPxNjLoiBrV3avAcizvHCFwpfPW15v/ARwj/lGZjzXJ1QtL5m2hId G3PGfFULnxT5iVNqcC5qIN5DEfNEcQr8zZy1PDFyf65Pv5zf/59UtJ5Mm4Md XzBs8MhDPnog/slF50Ci0+MpRddxetbylOifeSUWufibkL9B+TsR/NTIfZrk g9LXSluic7bwlT6b5vzefnLReibt3KdL/6ze48+i5tOjLnqBiw/+FdXzGHsE cc4Qtki2mrTxM4u2gT3KfjBhDNsZWeP4YPtW46fYT/A3adH6OorzjeRZrKGc eU9EnHPogxxZy3OiB8ZI+jo7YmciDjG2Ff6dxk+yN9H4PHG+l75e2vi5RdvI iU/7tDFs66bNxWduk8fI0Qlf2+PjmlE7PdDPtKLfqfM+/wKNf+B5m3aOKexp eF412Ifep0R+eoeLz4Ccsaej5guL9jlLvf8kzkXSB+Y8RvJ+/uLIT19wLyz+ b46fjXnGD58OsTZYF5ydkZecXNOp4uzG/GYtp8Z8PdPk8wPOF6YXrW+Qdq/T Ii5jJPWQl5rIDRcf/H/RZ/Oc39vPCDv1kIs8zC3YjzE/lxTtk00bx+fHeP7c Hs8g7PCIO1NyifRa8WdpvIfinsd7cmFbsK9MGMM2r8n4pUXbwMG2TxjD1klx XmCPos9Y4Xs2OB/1t9Fe7Vaud8745VHrMn1eFn98whi281XDFUXbuijm75Lz xdkhYe6rwV8ufHDONVxZNG/j4KPj85vGr0iOE+eqovXO4lxWdK3MFRg2eOQk N3mIP7voHEj0ruJfHXbiINGpaa8GxyIXscnBXMwp2nZB1nJO8X91vR613SDs NfZeaePXFm0Dw8aZwLVRIz1i+yNy/Sl5jWxDVOd1knuzprN+nvNcxw7GvDCH xCQeZxDg18XcwYfLO/y3NX5Xn7zGN0Ytdcq7r/gLNC4I/1vcxpzf4d8szj/S e6WN31S0jXjURUwwbD3FuaXoWBdnHZsc9EMMYpEfOzzygb8d9bCOWE+90+6b HNQGxvrakWd6xCAXEp1+HpZcU7yBwhOSd0h/j+9rg2ujl9uL1qdmLW+PuuHD LbG/En6/8OqIga2vYq4m2Zzz/NwZ9n5py/flWxZepfEHGhf5e7BovU/aEh0b fPzxuavouP3Tti0M39WFDcv5Pfzd0QdxkOgfSu7f4Ljw7ylan5Y158PoBeye qIM85KMH4t9bdA4k+maKf1/U2C/qQacm5oS66ZH7ygtxH2CesM3IGp8Z372H wo+YnBM8EDk+avLZA+cRDxatb5q2RMcGFx/OKYjRNnpcS/IR9jFNvs5b5/wO f2HkgwfOOsAGH+7OCfuhD4p6qIW5PVi1f8azSONDNH4i1hB+j2v8hWRK+nCe +eI8VrS+RdoSHRv8LyIXMR8tOu7jUS9rEgzbzKzzkG9W1pKc9JKR/FL83TR+ smh9y7QlOrYajb+S3F2cuUXrQ9KW6NjgfR1x0sKfYo/Cs1RybelD08awDU4b wzZCvTwTecCf03gdvntpY9iICx8u8/assEPVw6VZy2cjLn4jc36f/7N8ftVn 74Rx4mJ7PuqifiT6t00+B4CH77yidd6lH674L0TPjJHMA3nJuWvC3HlRN7Ha B/4iexvpjZELGzgY7+o5C3gp8tMvOD7YwLARa319tsv5ff7LRevD2LdwT5e+ mD1Bd+t7ijO/aH2rtCU6tiNV8488W/hbpsFxiPlK0bYr+e+mhY3imZzw+NWi dezw8CfW4siFHd7wtGvBRm3MGfN1OffkovNdxW/5xH2LvYJ4tRq/ybObZ2d3 XzOu1xtF69ukLdF/Dj7cfaL+12MuiIFtZNo6c8R8kYd8I9KW5Jwg3400bs15 Ht4uWt82bYmObUHkxBeJzno6usGxiPNO0fpszm6EvSt9dM55fotcYNhGpc19 J2oCg8s7//diPqh/In+fRj+MkfT7QdHnAJwpwMWHHGDEIg5++MxRPcfx9xTP QdnrZd9eufYV50NhS4Vtl7ZE5yyiqzhjc343vrBofXTaOT6S3qm7x52id/J+ EL3BxQd/8pJzf3E+FtZNtjGRa1WehLHlPCcTrhGfa7PG8cH2Hc9JyR34+7EY PWi8ieQ/wg9OmPdXxPlcnOPZf2QtP48eGCPp67OITV9IdPy7yz4u53fIXwrr IX182vgXRdtOUJyV4n5fbWyVT9pcfFY0eYw8IOHa6aFNs2unB65Br+62HSTO oqL1HaOvr4vurafG//IMTBjDtlPa3EUxL18VXdP1/Ps/RfswV725B0kfn/MY ybWAi8/KiI8POYhFjdSDHz75tK8515t1O6nBPtRTJ27bkvqX/FGcvjwrxelP Hzm/k2f8Q9E6vt9HfXBXk98hCY/xR99M48U8g3n3Kn5C2KEJxyBWOW38p6Jt 8OFumrAf+s7i/KPxGI2P1XiA5OriHpbw+Oei9VMUZ42oYYmwLWTbM22JXsh5 jBzE3zhF+9ySdX7quInzenFSinO4OEuFn8p5RuC/Fm0jJ7l3SRvDtlfaXHzS zR6no84tmcuc32P/VrQ+IW2Jji0jbp+4FsviGrI2kOjYT2vwmuE78nvR+m2q 7c+wExPs91hby4t+f87ZQVWzzw84XwAjN/X8UbStkDa+POoDw4YP88R8Mb/k IR+1oldynvNGntPSj9T4r7ierB8kenvJplgr8FcUre8XnPaxNsBWxPqjd/Id GPFXFp0Dib4vf0dEXVwLJDo1sV64Rsw/43/imp2hXrqJd4Lwf4vW78xaomMb 293XlDVQVbJ+XNrXs430nXMeI4kPhs4agIsP/mtHLOIkhJ2pHP/JGq+OuGB8 9yYljGHbJ20cH2z8Gz+9mv3v86xZss6/BTSO7530od3N6x5xVhd2dy89A9a2 ROfchjGSs5u2EZu+iEOMIxI+dzl7K5/LtCv5XIVzJfA1SraRE58T0sawcb4D F5//ni8hOWPqOEx/MwnvH73QA/2sLbmJ5MnyXUvjpSP0/FpP9xfFS0rv1Ne8 3tE7GLaT0ubiw7+HBAaX851UxIazk/B0+DBe5cveWFhe41PS5uJDDjDqOTFh P3yojfsc97sbss5LTuanJvyIg0Tvw3cp8pGrfcn6qWnHXrv0vzxIciEzMRdw 20du5o0548xoHWFlYZMjV5+YE7B+zGHCc4zPoTXG8cHGfnZR7FFL7Jt6yjfG 65Wsr8+6Zj3yvktyM+5hCWPYdskZ36BkGzjYKQlj2M6S71mapwHcq4TvJmzX 7h7vL9lLvKZm4xuWbON8aGCzz2vAsJ3Dvq5kG+dNDc0+Z+Ic6pwG56I28gyK XNmSeWenLdHx2V3c3XI+36ktWT9XnA4l13pX1hg2eOQkNzURf6OScyDR6bFT yXXck7XsFP1zPkQschG7Q/h0LtnGORSyc9QxKOaC+uuEnSef+7LGN465AMO2 ZWDYqH8fnm+q9/SEa+1S8hlXV8m9ZLtAnAmS3bgXNRvbI+czIGIS74yEcXyw wYc7Wfi+GjdrfKbG9SXnu0gx96M/5iFh7tDg9xDnfN53ZI13L9lGbdTF9e0e tVBbz5JjTY1eyEE/xOgRPWCHRz5wMOpnHbGepqXdNzlYM2Csr7PF2aTkHi5O W6LTz2DWu+SlacftI71F8gCe4TnPSe+S9elpS3Rs8Fui90OFDyRHzjGwkYsc W8W89eX3car7gawldYAfJLl3zmdG/UrWL0lbomOD3zd66B+10y+xD4w4w5p9 hsS50qbiXCifh7KWm8YccZ5EXHJtVrLO+RQc7MwV2GZRB3nIRx7iDyg5BxJ9 Bt+vsF8S9aBTE3PCfHCWxLpjPU1Je56wMectGk/jzEN1bqHxEcKvEH4Y34e4 NhfLvo3keYqzecn6I1lLdGxw8bks7Rj7Ke854k9lbUc+Ym3L9yVhDvngjYh1 gA0+XGrGD/3RrGOPCN+jNN6OdavxMawx5pa/nfkuaNwq29Eaj5KcIs7QkvXZ aUt0bPDhnh8xh5QclxjYrkwbw3ZV2nnId3XakpzMCT65qKc5YuCLRMfGHBOT XIxbIgf3e+77p4s/o8H1UfMw4cdyP05boh+Yc71jouatolf6upyzO74jCWPY 4I2QHC05J+JvHXOBRH9Cczu85HMozoaQwyM3fpwZccYEDsZZ1eiIi207yZmK M5ffXGk8SZwb0s69jfSJ7Ev0OTjns56RJevXpy3RsW0T9dIvMcZpfFHC2MSY N/KMZz0mzCEfPHDqwHaS8EMU70JxRpWs38Teo+Q5ejZrDBu81ohBPScLH8v+ QPqsBtdHzbmS9aeylrno4RT2FVxbcU7j+5ZzbaNLtt2S9jXJN/u6MB5Tso4d Hv7kJefUhO3wbk27Fmw3p13jjjEn25ec7zbhkyV3kH64cl/K/IQPcYtR27jI QxwkOjb4cKdG/cSlB2JgezrrvMwRuclDvjsiLzl5V0zt5ah/x5g/6keiY+N3 y/z7a/x2meuwU/S5B89C7k0R4/SoJ1/yOQznU8h85C41+9yKc65Cyfrtaf/u eU+NL0sYwwavLHm2bHenHb9Yco5i1EUvJfYewu5KW6IfmbPfLtxXE8bBOMMC Jy62XSWv4t2l5mqXwIhzpbCK9F25Z4l/lHxnsH8rWb83bYmODS4+z2cdY/fI C0aMmQnnoQ5qgEM+eOC7Rg/nx5xeyn6vZP3+mEPmj+sFhg0e32nuK3yvpzCH 3B+4r/H85XsgfI+S9fvSlujY4MOlNuZ/95KvATGwPZj2v6syMed/m2WvyEkc 5ISoc3aD45JrQsn6vKzlhMhNbHI8IN+9S47Lv7tCHftEnRfJfmzO5037iNNP f1+V1rZE599lmcN5h/5merdaz8aS9Zey5mDn334BwwaPPOSjB+LvV3IOJPrD 7HNiPqgNiU5N/CafmlmTnNtzfs99lDMtfKnzPy3aV1T0nOmhPM0+D+MsjPFB JetI9IcU/+CITV7iHBh1gF0Yc8gYHvo07ocaH6+aT+b5Lttz8j1U4+myPZ62 RN+/2WPkFYpzneo/gGdZjA8rWb+eZ1nJseEewV6F9cq9XnkuF//wkvUn05bo 2OAfFPHxpy7Os46I/I+lnYd8r2Sdh3yvZi3xgT+LZwrPPp7dJetPpS3RsR0S NRLzUuZB2NXiH12y/jTvWCSP4b5HTRqflPNZz0Rhl0l/RpzjS7Yxb2CTcp4T MGz4EINYc9POfVjUdpzwG1T3a1n7Ehd/sOPC59io97++6Phzrbhml3d3fehX JXwedWLUBH5CXFdwMOqfJOwm5Xgj617pmf7B0JmHw5t91sX51wkxB8wJsYnF WdhJJfOeTdt3Uswd+aiLemZGHVdFTHyIO5tnZM5nVaeUrM9TnDt4n8o+geeO 8Fukv5UNfsk+V1Mz3yGemyXrL6Yt0bGdK3mc5Py0Yxyj8bUJ2ybzPcUfvuLN SZhDvmMCP71kG/xjI9fkiE2d2OG9rPGtDa6PXq6VPJv13Ow+zuL7pfF13V3P 9eKcWbL+StryzKgVPlx6J+YZMS/EwPZq2hi2t7POQz56RJLzOvneoPFpOfd7 Tsn6a2lL9NNijc2Ma0TuSVHbHeST/caE450UMc+T323yWZC1PC9y36TP5JzP oc4vWX8jbQ52fMGwwbuw5HMrzqqIf0HJOS6IOaPHKSWvg3ezllOif/yItWfU zDWmbvALI/c06pRcoDhTmSuN32bdsj8q+ZyMfDdGbRdHfmpGomODi8/racc4 M+dzMTBicDZHnlP53iTMIR+826IObP9hXbG/Emd6yfr7nAVr/IZ4f6WNYYMH NkMx7hH/kohB/Xc1OAc1gGGb3Gx8ZvQJPjnqAcP2Ab/Vl+0M9l3C76IXjW/T +H7Zb+ZZ0Gz80pJtd7IGJG9JGMP2Afe3km3vaXw36zznvu7V+Nycz4DubjAH 38tL5n0YfHR8qOXsqOeKknViziq51vfTxrCdHfWQm5qIf2XUgUT/UD1eVXId C9OW6NSEz7nRC7FnRb7ZEY++zgodHmdR+NPLdcKW6dnfpb3xOZEDDNsFzcaw cS7Guc78rXw+da/qujrm7hrJc8T9KO0c10q/p7sxzqU4EyQm8Ya3NY4PNvj3 xHw+InmBerpd4+tLzscZ2UPCp7BfFf5Ad5+Bcf51ozgPavxZ2vgNJduojbpY A2DYPuUeXnKsz6MXctAPMYh1fs52eOQDB+PcinXEevok677JsTBrjPV1J/fY knv4Mm2JTj8PSr4o/Vfq5Jwk6ibHxdHXrZGTXpDo2ODDpYan6I1nc7NjYPtU NTzGd4rvoji3C39c+tdpy2msff6G1Xg664t7YMn6N2lLdGzw8cfnzpLjLhLn Ge4XOZ+nPNhgnFz/EedJjb9NW6JPydn/ksh7V8RbFBzszNWqukrmEY989ED8 uyM3Ev0z9XhPyXX8GPWgUxNzwnxwP5lR8v393bTnCdv3aWPYuO8/wDNH/CXC H+Ydp/RZ0l9iXyB5H/eNkvWlaUv0VbaSfb7IOsacyPuqOA/JNjXn6zxPn2MT 5pAPHjjrABt8uJyP4Ie+POqhlnsTnovr45rOZI5KPufgXOXR8Hm0wdePa/pI yfpXWctH4hrDhzspYj5cclxiYOPc5OGYe9YDecj3XdqSnJzF4DM3rvvjEYOa kejYro17DPco7vM8A7jX/849RHp9Rt8t1jbzojhvCnuyZGwu9arub7LGsK1I G8N2szhPBZdnyjMavy3O32lj2IgLH+6Div+0sAXi/JO2fDqeSfjdJs5DrGGu oT6PJIwTF9uzku9Jr8pYot8h/F2N3+nudfJ8yXobcW6X7Tnu280e3xnxyUtO 1glcfPD/SJ/XWVvCX+CZLP6faeciz8MJY+9Hrnkl+7TNGMfn/YiDjVgvltxP Qpy3eHZovFrG8/Gy9PskP+YewnpSzJdK1tfIWKJjg39fzCHxiHtPxMDGdYF3 f8SZL3yh/FfPWHLtuL6fxFwzD6+UrLfLWL4S1485Y77+VcxXIz9x5vL+mOsp 38+7e16Yk9fiOnPdka9FbuZ7Zs65Xo/rwLWDszDqAcMGjzzkowfivxHXG4me lO+bJdfxXdYSnZruDh/qeaysege2abNZrfG3wv9tyS8l0xlL9A8lv9Jnjxb/ d1XvlKxnMo67gOdHs8ePRO8LIif1wMUH//N6+N0pZ2fvlny2xntU8PdKtoE9 2uzzODBs92WM44PtKb5frHdxPi5Z/57fe7BP4VnCNaaWZtf8obCvZVs7Y4m+ qLvHyKfE+aBkn5qM4xDjaeHfajwr5/FCcb6Tvm7G+Ecl28iJT/uMMWzrZMzF 58lmj5HPJHxt58f9gtrpgX6+knxWsgPrTeMfZF8/4/PCT6U/Te/NPjvk3BAM G2eOcPH5vrsxuJzxfVayz3qK8yP7CJ7FOY+Rz/H3qbCfujsvXHzIAfaM9OcT 9sNng1gbrItHE85LTq7Flzzv1M+PWcsvo5+fIxZxFpWsd8zYRs+X5zxeJRPm UtMz4bso6luizwvC5onzNbGV46fI9WysB7Dnm32u903JPrUZ4/hgY95vivs5 dnjE/VbyV+kbce00/kXjrMZLJa/I+ZwODNuLzca/L9kGDvZCwhi2Thn38FLM 4XMNnkPm/F/JldzrmwOP+R0acckFhm0xv7Ep2cYZIj1w5keP5Hwl8v4ubHbO 52uLo1fmGYmOz0sxp9Tzc8k6df4Q8831XcWJ60TOn6If4v9Scg4k+sbiL4n5 YN6Q6NQ0r8Hz+WLCsX+IfL+WbFuSDU7M+/xmnxdyhrhc2Ar2Ahnjv5VsA8P2 RmDYuojzJ/dw7vcJnzEujfqWRS3UyfOc5/rrMWfLunveiEm8VxKBl2yDD3e+ 8Da6D73DvVjjP0rOV8dcNXhM3pWSczQ3L2n8V+SBA/5nyTZqoy6uERi2HuKs KDnW0qzjkYN+iEGst5ptXxG5wd+K2lhHrKdNMu6bHJy9grG+XhPn75J76J2x RKefpJ4Fa0ofKLxK8l/h16rOf+T7Ls8b+f5Tst4rY4mODT5czvheU21rlB2b GNj6ZHxGyBhOm7J74poi34vrNb/B14D5rypbX5a1RF8R1xZ/fBJlx+Xckzo+ jDpXU54bcj7XqxbnbeE9M5bonGHi/3dcr9UiXp/gYOcMFAwbvG0jHz0Qv23Z OZDo/eW7etl1MLdIdGpiTpgP1gzre16zvwvME7Y/ssa572BbK/yIyRlku8jx QbPPLzm7XLNsvV/GEh0bXHw46yRGdQ/PyVqSKdk+bfZ1/kTy7YQ55IMHzjrA Bh/ugoT90AdFPdTC3LaT/Iz1p/Eb6mPtsjH8azT+nHUl/SbN05viZMrWN89Y omOD/3nUg3+67Lg1UUtDxhg2xuQh319ZS3BqyEh+yf5A4/Zl61tmLNGx1Wj8 FWtOnHXK1odkLNGxkfvr6CstfF3hi3h2Sq4tfWjGGLbBGWPYblEv60ftzFWH ss/fOMcEw0Zc+HA5E9xA2FvqYWXWcoOY6x2DB2cx91J9PkgY7xB1bCj5hfQt MpbonJGuK9vtOZ8hZsvWmzPO3VF6qofHqZg38pKTaw0XH/zfafC8MFe1MQdD Ihd5OKsF+06fdzTeqGyff7PG8Vlla7CNWJxfkoPaOpWtcx66obCu0n/i+dvs c03OZDuXrTdlLNGxEXedHs67QQ/PEfPTJXLSbwfhP3JfSHi8cdk6dnj4k5ec HyVsh7d1xrVgG57xnDFfXPduZefbir+t1Ff30Ilbr/HPzLH0O9kPKmZd2fqI jCU6Nvg/R234E3dxxMBGfOamU1w/8pCvqtYSH/qtlbwr5zPHHmXrIzOW6Nh6 Rmx6QaKvWk8N7pHee5WtV9f6bHKTiPVLs887OQMFw8YZKNxeMUdgcKmhd9k+ 22Sco4/0bA+Ps1FzX2GdNR6VMRcfcoDdk/PZYp+okV4WKteA8KnT5w++o+L0 E9ZFemvGEv032bpqfK/iLBRn07L10ezJFae/9GXNHiM/STguNZEbLj6r/Bts o57NIvaoyMX444Tl8hhTIz6r1xrHB1uT5ErJ8fJtKLuHsexDeAbp86l864X9 yX1Q40HidJM+JmOJDpfxX8EfWLbP9hlLdPy783dSzn1tUfZcEQd887JtHzc4 FnHAsI3LmIvPimaPV8Q8r4weOA+k9oaI21PjB3I+E9yybH2H6GtIOXprcH30 NST6oGa4+OA/uOya1tC8DS3bZ81anzc2RtyDIh+54A6OOYI7NOaCOqmRc0z8 8OEck2vO9W5b65p6RO9DJcvcB/Q36TDJPtILqq235EM5nwMybilbx7e5bH+4 beT3ZcJj/NH7cf/Q+GHxP+f7KuyrhGMQK58xvlXZNvhwv0jYD70kzg4aD9Z4 r4zjVkcuxsPL1r9ocEzq3EbYphpXMpboq7V4jPxanBFl+6RqnZ86khpvxn5G nG/E2VZ4f+YlY3xk2bbh0R/1g2HbOWMuPqu3eIxcxHdB40dy7n27svVdMpbo 2BY1OA55R0W95EWir0HPDY5LzNay9bRqHlO2f02tsdaoOyc5UHK3jGtZM+oB eyzns8LRUS/1DwwfbGDY1oy5HRHXjDxjouct9Hki5/M4eA1R29iyzyI5c0SO jTratfgsknPM7cvWd82Yg516wLDBo/c14noRf1zZOcZFXfQ1vuw69sxYolMT 6yUlzncJj1lD6N8wZ5Lfs38oW29fa4mODV5N+ObDj/j8vmEn6U/mPEZ+mzC2 6rcPGXPxwb9R2NqSP4pT4NmtHOvUGi+WbQOjbuYQDNu+GeOF6G2YPk/nfF62 a9n6geI08f2Q3r7F31++uz+IUxHWLH3/jCX63JzHSHrnu47PPhGHGD8lXNO6 UfMu7B9Ux7q1xncu20ZOfPbLGMNGHLi7RFzGSOrZUPb9eIa2uHZ6oJ+9JUdI P1S+u8W9h5g/yHf3yME5IT70DoZt/Vpz8Vm/xRhc6t+jbB/ODtbjupV9bsAY yXnxXuHHHMLdI+YUrCVqxg+fAzK+z3G/435O3vVjnicIHy7+IRlL9GfV10+q p6M4v4izT9l6h1r3Ss/MB2PkzwnHoyZyw8UHf+y1wdlX2EjZD49c5OFcEuw5 jRcnPMf4UA84PtjYmy+KfeniBvvfGuP9o4cDJLeTPFK+oyQ7Kc7ShDFsG7UY P7BsGzjYrwlj2I7ib1vJzsKXcI/S+Pmc56GfsBPFe6u78YPLthGjS8QBw3a0 4hwSOY/Q+OcGxyXmkgbnojbydI1ch5bN61hriY7PaH3m5Xw2d1jZ+kTFPCjs xAfDNi/qITc1Ef/wsnMg0enxiLLrqK21PCL655yPWOQi9kHhc2TZNs4TkUdG HcTNRV/HCluqWJ1qjR9dtg0MW/fAsFH/DrK9rHp/Y69OXWWfVR4jub1sx4sz jl7ZD7QYeynnszxiEu/3hHF8sMGHu0z4MnFK0ltXa9PmuLLznaiYt6j++Tmf bcHtGfwTxPmNPWKt8ePLtlEbdXEWfHzUQm2Tyo61Mu3Y5FjVT4NjURd2ePMD B6N+1hHr6fSM+ybHMRljrC/OO04qu4cutZbo9HO+5K6SZ4uflzxF+iby20nj XpJ/yPfksvWTMyHLtsGH+2fC5yhnCy9HjFWxMub1iTinCt9R+EkZy97Cl/Ms 0PiVnOf/tLL1UzOW6Njg44/P6ZGfOH80OBc1YOsfMSeL87tsG9daTo7c1Pda zudiZ0S9kzPmYMcXDBu8XpGPHoh/Ztk5zoxa6PGssuvoVmt5VvTPnBCLXKw7 1tMJGc8TNs68pmm8Uj495HuexruIc5bwvop9TtnnYOQrRm3nRn5qRqJjg4vP aRnHeCPnM6y/FPsC9gktvs4DJFckzCEfvF1jHWCDD3dlwn7o9bWOTS2c68Eb FHH24nvOfUxxdtf4Io03l22PHs5BDReWrZ+Xsbww+oQP9++IOaXsuMTAdm7G GDbmhDzkuyBjSU7OkiZoPFicfzSeWrY+JWOJjo053lLy34THzDs693vu+xuq x38aHJeY04XvQz8ZS/QFOccaGrlmRGzqOYrnvz5tqo1hgzerbHxqxvEviR6Q 6L2Ud6bG+zKPGUv0d3L2a2xxTHAw5hycuNiukGwzUGtRcS7X+EDZZijOv4p9 KXsGntnC3s15ni8rW5+esUTHBhefTWodo0V+iWpjxKiqdp5hUQ8c8sEDpw5s BwnfWrJanCvL1i9RrpvKnqOrMsawwbsqYlDPIcKvkX5wD3+oj5pnBzYzYzk7 ejhUn+HyXU25hkgeFvyry7ZdmnGOEVEP4zll69jh4X9I5MN3TtRFLmrBNivj GreKObm27HwXCj9a9ht43knfRp/r2TfwjGNv08Pr7bqy9SszlujY4MNtG/UT lx6Ige2yyMsckZs85Jsdecm5RrWvT2tcoxvjmrPekOjYOLfk/JLzTq7DTbEu p+hzP2uS3nQdc5LtFOfmuJ6sJST6+/wmtoevPfNwS9n61eLsKs7u+rSvNnZL rMXbJY/lumYc/9aycyDR+2q93Rb9sU6Q6B/k7Mda4dqBg5H32IiL7S7J1RSn v+L8R+PThN2mONXC7pA+Jq7/hznHuTOuP2sDiY4NLj79ah2D9cG6AiPGmtXO U9Q4U23Of2KdgVMHtnPZQ+mzujh3l63fG3PI/PHdAcMGj3sL95W/uN9qfB/3 fOnbin921HBv2foVGUt0bPDhcjbN/N9T9jUgBrYHxL+I+60+61b7OnO9H8xY cs3XEd5W9U9oMeeBsvVNay3RJ0Rsctwt3wfLjvuwxlMl9xW+Pv8fRo0Xqp71 NH6o7LNszriR6PuIt3eLz745K3+4bP2h4GDn7BsMGzzykI8eiP9I2TmQq3T5 Plp2HY9GPejUxO8X9ou+Mjvrmd5T17vGv6/nd/b8u1WPl83Bd3oP+9ML4yci LhL9cerUeA3FHVBrP/w/zhk7oMXntozhoc+Q31yNPxHnDe4Dwp5XnKeiRupH oh/Y4vGBMZ/tBrrH9WL8dPSM/bmoiRzPavwb51XNzsfZ9zNl650zlugzgv9b nC+jUxf8Z6NeeiQP+RpqnYd8T2Qsp8f8XCp5iPQNNX6+bP3pjCU6trmRE9/L +E4J6yj+C2XrzwifRb3c92S7UuMvcj6vfFHY5dKfFWd+2TbmDewzcTaoNoYN H2IQ66mMcx8etb0sfC31MqjWvsTFH+zl8Hkp6v2vLzr+XCuu2RU9XB96h2qf qb4WNYG/EtcVfFVNqv9VYSnl2KLWvdIz/YOhMw9HtPhsl7PgV2IOmBNiE4sz 39fL5j2Xse+rMXfkoy7qmRV1dIiY+BD3auFf5Xy2+2bZ+ov8za44p4h3l25H bwvPSN+y1nZ4+MzR+Bhxaum3bP2ljCU6to8kj6f/jGNM1Hijatveke04nmni L1K8bLU55JsY+IKybfCPi1zvRGzqxA5vvsY1A10fvVwn+YFsk3gmavy+xifw 7O3hejorzntl669mLN+LWuHD7VLtmO/GvBAD22sZY9iG1DoP+egRSc5OPGc1 /jrnfj8sW389Y4n+dayxWXGNyH1i1HaHsB9yPou8ReOThW8sfKH81pbP0FrL hZH7Zn2+zfm/b/q4bP3NjDnYqQcMG7zPJG+V/nbG8T8pOwcS/S3hn5a9Dppq LdFZE/h9l/N56/FxjU8MnLjYvpI8ie+G4nxZ9vks57bMzefST+WeO9DzyTx/ UbbeXGv5Rcz153ENmXNirKo5YezUmGfycB7MGTGcL6M3cOrABvemmIdFkZ/e 165ozQpfmjGGDR7YH+qjv/jfCLuT9SHO+qrtDPHqqo1hm9xi/NuybeBg3aqN YRumvu4S/iNnRNW2nxWch4X/xXOkxfj3Zds2GOh1wBr4PvK8y7u+sm1bKeY9 sp8tvLvi3KfxTznXdrfG5wqv1/jHsnkfZSzR8blX43Mke4jzU9n6Qt5Jll3r Bxlj2M6JeshNTcRfXHYOJPqHvHcqu46PM5bo1ES+86JOYpODufglasEXiQ7v AXxzPt9cVvZZJ2eg4L+WbQPD9l8M+ak457f4rJTz0w6qeUnUtzTqpceOwn+L nsEuiLkiJnHIC44PNvhwmavHJJdwLqrx72Xn+4Q9BvsPjXtX2+f+Ho75hziP aPxlxvjysm3Udndwlkce6v+z7FhfRS/koB9iEOuiFtvhkQ8cbJNqryPW0xcZ 902OrWuNsb56ibOi7B4WZSzR6WdNfRc2Zn8vfq3k3xGL2NMi/srIT3wkOjb4 cIk/XXrbis9CiYFtpGI+IX2mbH3E+Uf4k9yzMpYzhPcVPlfjSzTux9+VZevf ZSzRscHHH582Fcf9JuOz0qd6+Cy100DPEdeiqmL8+4wl+tKc52NWzEmiYv2r 4GAnDhg2eOQhHz0Qv7riHEj07dTjahXXMTrqWS1yMyfMB2fKX8d3iO8y84Tt 64wxbNz320Ueeif36tIfZ6+jz+85n6uuUbH+U8YSHdvqUS/9EuPymHPOY9cK H64zc8o8wyEfPHDWATb4cMmFH/q4qOfxuNaXtfj8l/PiFyUz4s0WNk/jtMZX Rf5neriGVOShZiQ6NvhwN4uYyYrjEgPbkowxbD9mnId8v2YsyTmAfaPGV2u8 Kc/uivVfMpbo2Pje830eUev7PM8A7vWtkr9K30j7/1ckrxV3YLXrai/bHMl1 JLvx916tMWzEB1sn8q1bsf/vPC80nq/xsowxbMSFD5c61xP2qsbLM5bo17XY 73rJBnFukHw5+ODExbaB5GvcFzKW6H+pl/qBnhfmZMOK9e1r3X+HiuMxviHm irzkHFRt7oYxv9e0+EyZ8+WOFZ8blyIXeThTBkNnnK3Y57eM8Y5RHxg2YtVG fmrurvF7fCdr3E8n6TdLvsm9I+dzzI0q1ldkLNGxwb/5/80PcZmjTjE3zOdN LT4z5hy5s/Ce6m2HWkt6pt81Ih+5ulSsc9aM7BK5O8TaYb1tXHHcv9h/ynaH xlsozrsa367xlhp3jT6oGYn+huzv6HOb9MHidKtY/zc42OkFDBs88pCPHohf V3EOJHobzVt9xXX8E/WgUxPz+q/mafNq/x3K36D8nQvOvGPrEXnwRaLfKfkR 12S0z3N7Vay3Va5NNG89Ix9jJL2Doe9Uay4++PcZ6DqZk02iLmoG7x09gN0T cwiGrVBrHB9s91O/uEPF2axivV2Nz4z7RH38N/WcKXO+3C/8qBmJ/n4Pj9+P mvnv7/FJRBxi0C/ntZ/08HnupuLcJ32NGuP9K7aREx/Or8GwcXYMFx/OjRkj OTtmvXWO7zm10wP9DJb8mnuQ4g/Q+AuNUxp/yVqQ/rC4n/PsJ1a1MWzpGnPx eajFGNxh4gys2CcpzlesceltR3uMbBJn8/CDAxcfcoA9qk9Ltf3wydR4bdwZ 65a8DwVnC3E2VW+VWsstKv+r9/GoecuITc1fR89rjPYYyVkt8aiJ3HDxwZ+z XHhwhvA9UI5dIhd5iA9G//Q+tGIfznzBh8R8cZ+eE88X7ENj3hslH5Neo9qa IifX4jvZ1hztM1YwbIt6GG+u2Aa+KGoAw7aufL+XnCvb1lwL1fCUxsM1XiZ8 HOtmtPFhFdt+FL6WsK2qjWHbjd/YVGzboMbxnomYPwt7TuORGi9mT6DxNry7 rpi3bvDR8Rk00LXRy/CK9d0Vv6XiWterMTY8eiAnuamJ+CMqzoFE31D8bSqu o2ONJTo1/aTx83CrHbslahpZsa1DjSU6POK+EPXnAiMm+HYV28CwvRgYNuIM HujczMMvktvKllTNoyQ3l22PWj/Pea6nRxsjN7UR88WoE3xU1AcfLuezv2s8 n5zijK4431619lsScTivxQf+WPYqrNka42NiP0Ft1MUaAMPGufD20dNG0cvo mFNiEIszXuzwlgQOxvk164j11KXGfZMjW2OM9cVZ6viKe9i4xhKdfnav+NyJ c6s/hO8ofW35DFENrwgfpTp3qFjfu9YSHRt8uNuK0yh8Z+F/Rgxs3ZTrL8nX uWbi7BQ5qRP5Wszn0IGulTrzFev71Frmozf4+ONTqDhufY1jvxXxVwprP9o1 F8VZwbOtxhL9jRbX96ZkqzilqLcuONhHVxvDBo885CMP8csV50Ci95BvJex1 UQ86NTEnxCIX9xV+U8LvTJgnbPvWGue+g203nhXC9+dsUfouPEtGu44FUfOu URd9IdGxwcWnV41j0A+9vC3bHhWfG6w6h+zhs0g4u8UcDY11gA0+XM4X8EPv WWMbteBLvr+jr2GsC56nPDt7tmkzQeP3NK7i368c7TOmvSrW+9RYomODD3ds tWPuWXFcYmDrW2MMG32Rh3wH1lqSk99XVIu7wWifi+1Tsd6vxhId22oaf8D3 R5x9K9b711iiY+OzMDhbcRYg/EOe5ZKri7dZjTFsB9Uaw9ZB8Q+IGOQ9iGea bANqjGEjLny4YxT/QGFbK87BtZYHRt34bTja53Travyt/IrVxomL7WDJdtIb aizRPxZvTY07jvZ53KEV6wPFGa74h7BXafH4k5hz8pKTeYOLD/4jhH8mznjh h3Hvl21Q5Po4cLBPuQdpfHjFPofWGscHGxg2YiWFZ0f7XOyIivXNFTMjeQzP ZXFSGn8uuaM4R1asb1FjiY5tG94HRt6RGn+lcV7joyq2HaYa0uLXKtda1R4f XbGOHR7+5CXnTtW2wxtc41qwbVnjOVs1d4o5seJ8h2u8neTx0r+Rf3txj2P/ wF5B407Kk1TMYyvWh9ZYomODD7cQ9ROXHoiBrbHGc8McMV/kId+RkfebqHkd cTrLntL4hIr1phpLdGyTKl5DzTWW6KynUewBooYTK9aPUvz1xTmJfUCLeT/E 2gPDNqzGXHzwB4NbEufkiE0N6wk/JWpijKTOU/muaLx1jbn4kAOsy2ifk+KH T4s4OeU6U/pSnhnCuoozTpzT+B5IH15jif4Tz06NNx7tM+XJFevbitOqOKez X2nxeHHUTF5qIjdcfPAnLzl3FucMrpts20Uu8pSrjf3Kvb7aNeJzTK1xfLBd LFkvfXv5nlVxD60ad+vpa838w1sWcc4RZzRrotbynOiBMZK+zo7Y9IVEx7+r 7L/zHBDnvFhTrGHwcyu2bdzTa5v1A4ZtdI25+Cxv8Xh5fKeo/eJYQ9ROD1wD 1mC30Y5zQXwPGqOvKbGOx6jmP3g+VRvDNqbGXHzwP7/imnLCL6zY59har62L pNeN9hjJXME9P76fcPEhB3VSI2v1olibrHmuOdf7aMUcK/mX8N3Yh2h8O3M7 rE2b6ZI95Du+xmuxfrTjMJ5WsY7v1Ir94bLuWT+Mp8d3o58+l/DcUsztxV/J M7XaMYjFdwd8RsU2+HD3qrYfekmcG3i+cK/nWSl7tT57VHs8s2K9L8/Snl6H lwrbVONKjSX6asM8Rk4QZ1bFPsUa56eO42udv23UcLnw/sSsMX5ZxTZykrtQ YwwbceBeHnEZ9416NpPs8X9MnXWclWX39ZE5hHkCseZgK8yIgTPYOqFY59jF nMJu7MQCERQlVAxUDEzAQEEQBFRETCwUBRURsBUUC1HBd31d+/n83j/ms/de e+24rvu6Y4b9+GjPTpJ+d4vtQtISG9/O0ms6e133RL/URWK3lTy8Lvrhb24t tvuo5/tbHF9KGhsZfd8rWSdZFv4v70LlOL7KWHvpJ0u/r8W+o5LGicEHhm/N 2Fv2i/2lDvXolb3okvNeHaG668s+U/oDcU24dkjszuLtE2cC/qgW26cHBz9r BxsV1561t43rRf4HW1wDiX2F1v5QXBOuNRKbnjgvXG9i0R+OM3Gk4jYQ7yzh j7TYvrLaEhtfc2dfG67XYy22z066l0fjLKI3Rv5H4/pwTeE+Fte4B9dUvZwt zujIzRkGH9NiH9hG0Q8YvnOTxonBdxBnW9zzxBnXYvtCfq+RHMt7vMH3L/fu OeI8wftLvguSltgHdLaOhMO9TsxV1c5Djt5VnmfZtMEzLU/xnJd+ftL4ky32 UZOY85LG8DEnA5cY5mbQkczVHCbuFO6xzu6dNbCeSTz/G7yWp3lfyHeR9GPU 1zM8Bxv80zXnnsHwXVNt7tMRD7Z5rH18xJEnL86EyIuOPFecZ4Udq5i+1eYS Qw2wLRs8K0IcMZck/ZzjeXdp1KUmeSbGmi5LWmJvJd8hsU6u13Mtti9NOo41 b91gfevIQ1162jJin4trzL6R93xxJkfc/2pRBxxs+5zzsMfEXJ40Tgw+vs35 Zuc74Tjp2zR49gP9+RbbU3meKLZP0rm3jfxg+HbIGZ/WYh84GPMh02LdrLFn ndfA2pn/gAenJPmOeN0ajL8Q9ajNTAn9gOFjXuXF6Iu1UO+w2IejuBc4M9KP kV4r/WLpL0VffYL/UuzF0dyDnAdxZrTYvlqc6S3u9dpqY/jgUZPa9ET+l1tc A4l9DX97aXEfVyUtsenpWJ4b2pMLqpx7elz7V1rs65u0xIZXqHM8a3lDWEn2 wGrjr0YNsDeiNhi+66o969Gzs+c96HsWZ1jytRbj1ybd0+tcuwZjO+fMJyf5 2DdwYvDB3yH2tiLOzpw36W+2uB4zJEXx63Oewdi+wbMlzKXMjjrUBX+rxT56 6xr7D4avnzhvtzjXgKRzvxl9k4Ncx3W2Hx71wI+LveIccZ4GJr1uanAtwDhf l4rzbovXcEO1JTbrWSC5K8+mpLnvk1+yotjuqnOJYt9rsX1D0hIbH/z6yH+i 8PnCd8k5Bz7WwowI8yHMoswR3ku1B1Vbsh72jRmRbxpidqjFNvMkSGx88OfE Hn3Y4rzMq/Tq7P4v51ktfRfpV0ifK066i745U5bYzLMcz7q4L8T5qMX2jUlz 8DMPA4YPHnWoxxrI/3GLayCx2bd5Le5jUNJyXuwpe8J+cGZej3uC+4V9wjeY 72rpJ2ttQ7Unn6ELH5p07U9k78Y3Sp3zssZPW2zfWG35adT+JPqlB3LslvOs yIn8Lh+90tMesVdwqAdv1zgH+ODDZQ+Jwx5c7dy7xb4xa0I8+U+TXExszvGL pJ8kbPcGz20wu/JFi+0hSUtsfPBPinWRc2Gsf1H0wj6A4WO2hDrUuyVpSU3m Q06XvjfXSvqSFtu3Ji2x8bHH+0heXWWdfcfmec9zv5/WeEqd85LzK+FnSr8t aYm9Z865GqPW15Gbfs7id4jOnkkAwwfvO8newu9MOv83sQYk9jDV/Vb62cLu SFpiNzU4rpnnQ5VxsL5VxsmLb6nkqfzuoTw/Rtzt9CPO97L35TtA+l45r/2H FtsjkpbY+OASQyw59otaYOS4psp1sNHhUA8e+NKIP08/++Q8+7Gsxfbdyrmy xXt0e7UxfPB+ih7Zn/0lf+WdJ//pdV4na/+5xfat1ZY/x54yR0IuarH3jTnv //IW+5hX6dHgmRVmb9B/abGNf3n0R91zY1344d2VdC/46J8e9499+K3F9e4V fonkCvZdtc9Ub39IP5jnO988kv3F/73F9n1JS2x88OFeF/2TlzWQA99t1a77 U/RBHeo9EHWpeW2Vc+Wj1p+Rm96Q2PiYW+a/v8a/63IdVsYa+uqnXUHvP57j fGPx3Faev+S/TPaDSUvsQ3h28A0meb04f7fYfkicIxo8G8H8Gxg+eKsjblTS +f9pcQ0kNvgq6X2kP5y0xG7OOe5w/QysMg7GXh0SefG1Vu/naD0jtFdrFJyb fs4W9m/UuFI/++X8b3mtCrYfTVpi44NLzB3VznFk7AMYOdCpw9pYOxzqwQOn D3z8myF5qVVVsM2sIHt4SKwFrCr64NnCc+VK4ddIbyt8/5zzXhF120QdekZi 44MPl5kT9j9R8DUgB74x4l8reYA4N1T5OnO9xyYtueaDhJ+n/o+VfqP09gXb d1dbYh8buanxiGLXLDjvE/zNSrLAs12x10lvkT5Y+lpxpugBid1T8vw690bP axds31NtTs/oB2ztWAN1qMcayL9OwTWQ2E8p/7oF9zEu+sGmJ2bzi3zbKGeh V6tWHbu3atXQyRJ7WXOrVklxB4r3dNJ5S9E/eqpgOxU1mfNPS7+AvylUO474 A3PGqEct9HT8bwNu0E9G+sH8viA5TPYU/tZacG/0jMSuNFivRM8X1Xk9Q0Jf P9aJf0Pp10svS9+g4BkN/r2devybe8eCbeZkkNg3BB8uMx7Y9AWfHPieSboO 9e6rdh3qjU9aXh9rvEkyr9g9pW9UsD0xaYmNLxM1iR0seYLih4m/ccH2JJ5j qrOJ7BN5HvL/YaredhenWthQcSaLs2nBvhfWMXaIcg+tMoaPGHKQ64Fq1zk5 anUSfqnwUdWOJS/xYJ2i72zBMfSPxP4vvrOv2WnS99X34W1b+7/nfLPwLYSf EvhmBfvAwW4VZ3Nh47jPY+0bRw2wjRv9/x9xi/BThQ2vcg5y9U45N7me5++l BfOmJh1LXuLpjb5uqfK62b+bIycx5L2VZ3XO+NYF29N47ol/J+964dsKv4y/ JVXbD48Y1nF6rGWbWCvnFomNbwfJuxQzM+kc9EQ/9NWFayZ5m7DDc579gLNt 3APgnQv2wT8z1tIl9pv14of3Au+FOq+NvYLbVb7hss+Qvl3BcyfMgsCnVm3B NrMoyNrIBR8uMy3krIn9JQe+6Ulj+B6udh3q0QNyeKxxhGRv2Xfwe1/B9stJ S2x8nDHOF/cI+3QO3zlVnrG4v7NnM+CdF3l2LPi6zEhaYp/L94f0I7VPt4mz U8H2K8HBz3UEwwevTvJe2a8lnb9bwTW6RV/k37ngc/BoteXOUZu4C/j+iZ65 xvQNTl58u0ZfXPddCl7LG9Lvk6yXfaF8I6VfJDlCeboXbL+atMTGB5eY15PO cXTOewJGjrurXOfiWCMc6sE7N/rAd3Wde2VvdyvYHq11nST9ReHfJY3tFucV 7DbFPS7+HryDpM9KOtc9cV+A4WO2BXzPgn3g/827VBnDx9oflO+4nOdSWNtl sfYB/P1HvMdiP/Yu2NevzutkjXvHfrAP+xTse7zasyzkJeejkldwHaocP6qz 8zcUzGOWA4lNzKUNnvFghqSxYPstcfYK/+ykMXzwqLlPXA/yNxVcoyn6hd9c cB/vJS2x6Ym1XSl5X5VzU4O92DfW/X7SEhveaL4T5L9H/AOFPS57btJ4j4J9 YPj6NhjDN0ecJyT7sX7FPsLeyHeV7P2jl3fF6a+1HFCwH+zq2Ddyku+BKuPE 4IMPd2SVZ0ee7OyZk4MKrvdR0jX6N5gzlu8S6fdLzxXM/zhp/OCCfeS7Kvhg +D7kb7DR7/uxFmqwHnKQq5izH17/wMHoh3PEeRpX7XVTg/WCsb/s/6EFr4G5 GuSh0V9J8kb+rlrtvIfLHiP8mgbP4TCfc1jB9gdJS2x88MfE/kyS7Ml7M3Lg Y+031Hk9XJcjhD8t/ZOkZSXn2Rv2ZWDs25GxT+wtEhsffOKJOargvOPV80Th N7KvVeaN6+w8Rxc8R8OMDfLoqD2gwbM3zPkcU7A9Pzj46QcMHzzqHBXXm/zH Flzj2OiLtRxXcB8Lk5bY9MSesB+PKufuBT/fmcFjn/B9kTS2ezwrixH3ufBn uRdkD5b9nPTjte4H+V4t2F6UtMTGB5cYYskxJPZkirCyfCfm4jrLfrjKHOrB Ay9FPHy4zHgQh70k+qEXYp+XPoz7W/p06SfwDSF7Gn0W7B/M3x64p8XpVbA9 qdoS++bgw30sclYKzksOfF8njeH7Muk61PsmaUnNMVXONTxqnRi54SOx8XHf cz8/We3nPO8AnvUjJb+SndT31QzJk3Oe4XkJXb7bxTlF8gXZ3yaN4fs+aQzf HeKcWnD8D/x9SfpQ1ZpcbQwfeeHDHcu3UFxbzgAS+84Gx3E2ODOvdPbcDDMz 4KfHuTmj4JkgZoqQZ0Rt4ifH9T0r8tHPUL6jCp4hQkcyR0TdO+OaIokhnhkf rjtn4Oy4JkuiFnXYH7C74wz0LjiGmSJwYvCB9Y4zdE7B61nGN6H02dL/4N0k eR7vUN610k/LxVxQwfZPSUtsfPDhPhn7Q972kQPfz+K/LnmvOE/xvhZ+C3/j qLYcGWfmNfYx53mhCwq2lyctsfGxZ+zXYuEXFpz3F+m38ftE5H+T5w3PJ97v nDX+PaPaEvs+vgPEOVP5xolzccH2r0lz7ou1gOGDRx3qsQbyX1JwDST2b7yj C+7jhWpLbHpiX8+OWicUdWb0u8OtKePsO77LJd+WvSJpif0g70jpveV/hvdg wfZKce7g389lP9RgHTm+yhj2S9XmEkP8nXw/ivOsOFcKe0++v5LGryrYB/aI 5IQqY/hmVBsnBt+IOt9rT4jTv2D7ZXHmCLs68n6gn9HiThSnb+SmFhJ7TIP1 MdHPNQXHrEo6Dzno4UPOUs6zNNfGPc09Dt6vYB81ifknaQzf6qS5xIxtiPs7 7nHOG+dvZKylfzw7bpScJ9la1+W6gmdwmO25S7wBBc/LkGNmZ+cBw7c0ae51 URsMLv9eOTDq088oyet5vzdYR3Iebih4Poe5HbjEUAPsrc6e2yGOmN/jbHAu OA/UpSb7M0icj6WvkbLE3iK4TwX/pjhT3OPzYs3n5awjme2hLj29FbHEED9f 9vk5z9sM5lmivXul2rWow5wSGGeadQ0pOKYqZXxwPF/Ya57fnB/88Mg7NM4X Z3sYzx7FzFL+T7j3c569ARsW9wD4zQX7wMFYIxi+hOp+Kvk072rhI8V5Js7k 96xNvMtyxm8t2PeZ8IuETa4yhu9VnhsF+9oq5wLJ8eJOEecL6ROlPy99Ic+E iL2tYF674GMTc5/yTYh+bi/Yfp1nYMG9tkkZwzch+qE2PZH/joJrILHXFP/O gvtYK2WJTU8P8M6SnFrl3NRgL0YU7Huz2hIb3hJxJvP+F/9eYV/LTqWM312w Dwzf1AZj+NYVZwpx+pmu2MXcA/JdynXh3KrGW9V+n4+MGLApwScn+V6oMk4M Pvhw6We67Jf44ffN8FP3G/lflP6i8G87B0/6A+J8J7tDyvj9Bfvojb64XmD4 MuKMKjhXOtZCDdZDDnK90GA/vBcDB5tR5XPEeVo/5XVTY52UMc7XJHEeivrk R2Kznmckl4tXLfxZvg1lvyz5YF2sTbEPF2zPrrZ8OHqFD5fz9gjfUFGbHPja K+dS2X34+xC/kxY8D8U8FfLzzp6n+rGzZ6eYp3qsYHuDlCU2PvjEEzO64Lwb pnwmXokzs4x3jWqdKn1MnEHOJxJ7Jt80dT639Dy2YPudanNmxn0ENjbO99Ko xxrI/3jBNZDYGyn/E3E214l+sOmJPWE/yMlzZVy819gnfO9WG+e5g+9p3lPC 3+O/l6i4p2RfqVo/S5/FXit2XMH2JilLbHxwidk45Ryvxnn+hWcF3zENvs5X K9/pVeZQ79XAOQf44MOdWeU47GzKuenlNOGjeWZEP2O4x/n+kP0bzyK+Y6T/ Kv0a8c8Q59mC7U4pS2x88OG+EjknFJyXHPg2TRnDN6fadaj3QbXlm9Hn7+L2 zXl27rmC7c1Sltj4/pD+Ft+S4kwu2N48ZYmNj/vq7biXx/J84H3BmeD9yDsm ZQzfh9XG8PVT/qlxX3K/Ty947oyZNzB85IUPl1m1acIeV5651ZbT4nmxUfDg zJP+aYNngcCnRx8vSM6Q3TFlic3c3LvS39fPLq11bxdsb5WKNcn+obP1H+K+ pi41eYbAJYb4v/n+oe815BP2l+ytoxZ1mOsDW6mfV6W/XHDMNinjxOADw0eu f6T3z/n/U2lmwfa2Kc/NvSZ7ruQqYXOw+YYv2O6cssTG9yTXX/J1vs0aPO/H fOCsgn0faz//Fba6sznorxZs44dHPHWpycwefng1KfeCjxnCF+O6cd1fL7he F+lV+nZ+S3YryY+Evcn7XjIhe77kG3y3F2zvkLLExgf/k/+vf/KyBnLgq015 b9gj9os61Ns+6lLzTcW26RJ5pc8u2N4xZTk7ar9d8BnqmrLE/jTqt+7iHt6J 3umznbB3+c5ocK8LYi1g+LqlzCWGeDC4b4nzXqyPPtsKfz/6Rq+KnucUnJM8 cN8Lm5/rcq5FHDE7iTOO6xk2M1BrdvEc1AfC2kvfOWX5QfSHf0DOnLkF23Xi PMX9yrujwTqSGTPq0hO14RJDPHXbRs8fxX7sFLWow3rBFsba6ZGY+dXGicG3 WPJLyd3Y/4LXwAzbYr4t2Mcq98JMG/18EnH0jPwk1onePurOj3WwdiQ28et2 cV5yfiZsvS6uC/5pwb51urift6uM4ds1ZS4xSxqsI9+tMpc1fNvg3ufFnib1 c732aTb9F2zvnnKNhQWv7Zk616PWwqi/S8pcYohfUDAH/IuCYz7lvwUkbJHs QTnrSGbG4C6IPYX7ReH/1vRtrIs4YvZK+Zpzvecp54Q6r411TZO+Wr4tZH8l +bVi90h5No1YaqF/GbmIXRJ7CpeZNubc0InH7ijfN9JvyrmXVKydHORiFg78 64J98OEyH0UcdoN6WMG7UrwDpG8g7Aee6VXWvy3Ynqh+fuTs8nsE7xr5mlOW 2INz1pHvifNdwTELq12fPtgfci2L/D8Kn8SeVhv/oWAfNandmDKGjz7h/hh9 oyNZyyaSP4nzofSlBdv7pSyx8T0n/sbct3yz8byV3iNlif1zg/3LG8z5qWB7 X3F+KTh+UbUxfPB+lszK3j/lGr9ED2BDct6r5VGfPODE4APD90vsLfv1Y/T5 S9RmNmvTLp7jmlLnXudK/7Vg/MCUJfawnHv6Lfr/LXrsERz85PmPUzCPfKx7 buT/PfYFib2E/4ZwwX0wY4b8I2pzXpgLYSYEnTOETd5Osc9/Rh36RGLj21I/ K7i3eacXbOdTvjdWyr4lZx3JfNfKuG9yKXOJIX5r/p4kzsfi/C1sqnr+qtr4 PwX7wP7kmVVlDN+hKePE4OsibHjOnNZF20emXGMV3yINvn/pgX7+Fbat9MNT lth/N1hHflrle52Yr6ud569Yb2d6k/6Z9DVUaxvZh6WMtyratyrWx3rB8B2R MpeYVQ3WkZ8oz47S1xGeaHTvrIH1rCn5rzhH8R4vujdqTVdfiahdq5/bc57L AsP3TbW5xKxuMAaXWm2Kjjk65fptZbdqtI6E007Yi5zpanOJoQYYa2HtbWMd rIvnHM+7BVF3dexh+6LnwpglQ7aP2tSpiX7Wivr0w1pZM3Nn6Ehmz6jbLvYR LjHEs2/s2UJx1ha2g+yeKdeiDnsCdmfOM1HsMTEtKePE4OPbnG92fqeYIb2N cn4R+rpF2+tJdlNMMeWa7aIuGL4ROePJon3gYAuqjOGjt5frXJt+6iTbC18s PSW5hXgdGo2ni/bV840iuaTKGL6y8mSK9lWk7yy5ljiLxJlZZxud+LUjf4ei 8VLwsYnpLv2unNe7ftF2L3FSRff6Y7UxfPCoSW16In/Homt0jH7Jv0HRfSyt ttwgau+qn3tynr8idyqu2YZF+05IWWLDm1Xneqw9K2zdRnPAN471g+HbpYsx fD+p7h6y783FnJg4G0X8JkXPgDFXto7s6qLnv8CoTW/wdok9BN8k+oMPlzm3 1+tcg/yditZPVm97S96nul8K37OLr+tX0jcT5zXFLK82vmnRPnpbN64dGL5T lGfzonOdlnJuarAecpAr3Wg/vPsCB/u6yueI3PSzUVxnzglYh+hny6LX8Eu1 5Zaxhp0kD5S8QPxGya1ld1RMA2dA8lvFblW0fUbKEhsffLjfVXm2qavw/SIH vjNT5m0YebYRvo/w01OWGwj/RniT9PtzXsu2RdtnpSyx8cEnnpjOUZ88b9W5 Fj3g2yRydhHnDfl+rbbsErXpb1TOc1w10e85KXPwEwuGD976UY81kL+26Bq1 0Qtr3K7oPn6vttwu1s+ekItanDvO0/Ep7xM+5tB2lZ4T52LhO0o/QPr5XEdx ty96vox6zdHbDlGfnpHY+OASc3bKOR7Kec7qbfXTTb5NG32dO0n+WGUO9eAd GOcAH3y4S6sch72i2rnphRm5g8V/WHE/SM9L7y7eFvK/w/0bayDX5lGrLnKz LiT25sGHe2vk3LnovOTA92e1MXwXpVyHepekLKn5k2IP4RtF+s/SdynavjRl iY2PPd5KclmVdfYdm+c9z/0fVOvdOvvg7Cb8UOmXpSyxH8m55tZRd/dYN9du rmKPE++3KmP44O0VdeiH/HvE9UZir+T5IP1wYX1SltiP5Ry3bfQMDsZM11aR F19jSGIb+EaQfrn095V779gL5rSIJ3afom1mvZD7RG24xPxd7RzMfjEbBkYO 9pY6h8X+wKEevP/1ge8o/YzJedarqWj7Kq5X0Xv0b7UxfPCaJY+WfTW/i8m/ f8R8IL1WeX9Vnn2LtldVW2LjO1a8sXxH89zmHhD2O/dv0b6+ylkjrKt+fqmy 3qNoGz884qlLTXrGD4+e6QXf6mr3WBN5Dii63rXiFCQPlv14ztf/IOk7itci fQfJP8Q/sGi7f8oSGx98uL9F/+RlDeTA1y/lus3RE3Wod13UpSb7Q8xOsfZc 5CAWiY2Pf7fk3y/5906uQz5qnKKfAu8CcT6uc3/0fIiwEt8tKUvsJ3Pud+fo +dBYK+vqLrmbfv6sMoYP3hGS3SQHpJz/sNgLJPYaWZ2/omemmMVCHh61iWNG i5kucDBmrrpFXnzHSM5XnirlOVr68eLcmHLtI2UX+b7Rz7icZ7SOKtoelLLE xndk9Mt6ydE91gJWjPuaOrvIXlllDvXggdMHvhOFP618K8Q5tmh7cOwh+0f/ YPjg8WzhucLz9mTpLcJ3V55P6twfPfcs2k5kLXvGGuDD/bvKfRxX9DUgB76h qnuq5DM598x15noPS1lyzf8RfhLPHOl/SS8WbQ9JWWLvGbmpwb6Vis57s/RB /K7f6P8ezhnC9pG+SnnKsQ7yILH3kvy0znmpVSnabpM1Z69YC1gl+qAO9VgD +XsVXQOJPZzrVXQfC5KW2PTE/MIEnZGHlPPZku6ver2DspbYtU26FuKeKd5t Ka+zMfYB/aSi7ZNiD9i3k6Uv4PeTrOOIn5Azxp6yn+gnx14zI3VK1LiE95fy PMB1kb639FtSltjMZKEjmdei9mmxV//pRdsLlf9M6fvxHcB3mfR9pfeWPjHn WabTi7bvTFli44MP998q90ZfzHqRA9+IlOtQjz2hDvXWzFruF9f3XHEnKV8r XfezirbvSlli42Pd1GDe7DzhPRS7hvhnF23fzd/0lLO37P15jwqborjW4pwj 7ALZI8U5v2jf/Sljk6MuGD5iyEGutdTnhTxjG53nPOGL+Ttj1rHkJR4M30Hi nVt0zL0pS2ziuVZcs8OQwnOSCeW8jO+RojF+Lijad1nYcC4UtoTfJ7NeK2tm /WDkbSPO5cIPld424RzEcjbITa4HpV9cNO+hlGMvjDPEz2GRh3XvH9cULjHk 7SP9+Zxnki8t2n5Yeb6p896xP5cL/5K/e2bth0fMFdIPV452rLdo+5GUJTa+ frFPXCNyHCG9fcK+K3iP8x4Vf6ryra4yh3pHBN6naB/8o6LWFZGbPvHDe0z6 V3Xuj7VcLXlN0TNbzMdcLf183p+KO7rRZ+Oqou17UpbY+ODDZY6LnFfGvpAD HzNgYPiSWdeh3uiUJTWZubpG+rSc57j6Fm2PSVliT4szxvmqSnifjokzOUCc GfKvnfC5OTbO1bWK+5rfk7OW18Y90Fc/03OeE+tftD02ZQ5+1guGD95AyX7s Vcr5ryu6xnVxTrmPBhR9DtJZywFxjxH3Qs4zWgfGNaZvcPLiu1HyOtlP8fyX 3p93m/RrJa/nu0L8b3lPxdm+oWg7k7XExgeXmCdSzvFSznNWYORYM+E6LdLX SphDPXjg9IHve+UsBP+mou31VWtS0fMLzDyA4YMH9nAXz2AMETaQdzZ/uxan FLXA8BUbjQ8t2gcOtk7CGL6OqnWD8JlxTQdJr4izrvSf5X+gaD/4zUX7lvJ+ l1wvYQzfBPVwS9G+DZXzpoghz1DJk8RPJxx3YsTeWjRvYsry1sg1WD8niJMU Z3jR9iRxhkUv41PG8J0Q/VCb3PzcVnSN2wKjt9uL7mNyyhKbnobxLSKZSTg3 NdiLO4r2TUlZYsO7WforOT8r7hFWFvZMyviIon1g+E5vNIbv+ZTnn67v4vmo IbzfeM+Kc1f08pw4y7SWu4v2g50a+0ZO8nGNTooYfPDhpoTfJvlazvNII4uu x7wT1+yMuKa3dvGsEvNR94kznPszZfzeon3koy9yguGbJs79cf3Hx1qowXrI Qa5Xc/bDox44GHNcnCPO0yZZr5sarBeMfWddo4pewwspS2zWM05yBX8TV+xy yYdkn6X8t4tzpmQHxT5YtP1iyhIbH/yz4iyN5LnC87bROfBVK+evvMcjz8PC 7+D+Slm+kfMM1Z28B8VZX5xHirZnpCyx8cEnnphHi87bSfnvET5bWEfF/ibs 3MjzmDgj5Hs5ZYn9Jr9/8q4XZwNxRhdtzwzOm5EHDB886lCPNZB/TNE1kNib qoexRfcxK2WJTU/sCfuxoXIOLvr5Pi7lfcL3asoYPp77T0nez74I/0O5n+A5 r/j7hL2dc54ni7ZfT1li44NLzOZZ57hIcRtz3XmGyfdOztf5YuGbJMyhHjxw zgE++HCJJQ77reiHXjbiPPA9IL064bP8LO/KRj87J0h/V/F/in+ZsKw444u2 t8xaYl8WfLg8b8n5TNF5yYHvnZQxfLNTrkM9nhvIPnEfrazzc4TnzMSi7a2y lhPjWcN9z/28UdbP+UlR46ei/62SfwM9j++BRp+B03hmFD0HNznWRz9g+Kam jOG7hWdZ0fGvCJ8q/TFh70dOfFdFv7fE8+T5ouenmMVCYt/dxXHMZjEftarO 15jrDk5efNMkR8uek7LEnqN9/KfO54/+Xyja3jbrMzid75VG61fHmaQuNZn1 gvtCnGPOxDVxfl4UNkbYB1GLOsxN/Yfl/G8lL8U54kyCE4MPDB+5ZhS9ns7q 5y2+DYR9nPL1nim7r+RYxX6Y85zVy8WwU5bY+OD3jbNHvhlxP8yMs8NZvVLy z5hNekX4av7Om7XkPLOudxqcl1qzira3TFnOitrT43nGff1q0Xnfk/5vnftn xulJ8a6V3kk5X4t10DMS+1G+Y/QzN+fZqteLtj8KDn7WAoYPHnWoxxrI/0bR NZDY7NubRfdRk7V8M/aUnwHRG7/D8Tsov8eBs+/4Zks+Jd+8lOXsyDuevsTf nP0p2v5MnHE8f2Rf12gduWnCGPb8lLnEEN9Kv0cPEmcLcd4VNkG+BSnj7xXt A7tBcquEMXy1WePE4Huui204HxVtL1Keidxbsp/t4rmumxo99/WBsBulf56y xGYeCh3J/NicomO2jTzkoM/JkkPE21L63OiRnsE/LNpHTWIWpozhW5wyl5ih jdaHxto5b6/EM5TeP/rfXvDMEOcr/vYlfYqwJXx3CZvH8ypyTIrewPB9kTL3 46gNBpdZo/lRn36el+8T2R/nrCO3Vp5PhU3t4rpwiaEG2M2yt0k4jpgv42xw Ljjb1KUm+/OZOGvoem2Xtfws1jM9cpHn86Ltb1L2seZ5OetI8sClp5sj9vPo 70XOVM7zSAuFtVaNrlHrlrhGYMMbPUf0RdEx36WME4OP5zTPb2aY8cMj76Ko yRoXS69SzPZZzx7Boy7Y4tgL8CVRAxyM/QTDx/wS9ZhPop/bYz3swzuSv4v3 Rc74V7Evr+jnLtldEsbw0f/XRfuWSZ/Fe0t4TcLckcF/lX1Tvm2lf1M076fg YxMzU/o9kp3F+bZoeym/j8fecF3A8MGjJrWpQ/7viq6BxP6Z35XCTx4kNj21 qXcuapGbGuzFD0X7dsxa/lD8v77ui95+FnYv35Ip40uL9oHhYxZpafTIGvG9 FrVel/xRvgXqc5lkO9XolvX7nPc6fjD2hT0kJ/mYawJfFnsHHy6zTKP4LtHP duIvj15+Ud01xX9Qelfhb/EMyHlG6FdxZsv+I2X8l6J95KMvcoLh+12c34rO VZd1bmqwHnKQi/r44VEPfFT0wzniPP2Z8rqpQW9gnK9acf6IHNRCYrOeREnP AfHWSGv95BD+iPC16t0ba1lRtF2ftVwRfcOHu4Pyryu8lXK9Hznw/aVac3g2 57w/K4v2/52yfFSxO/IukP6Y9O2l/1W0vTJliY0PPvHE/F103n9S9o2N2A95 XuY8h/NPrIM8SOzRkmvXOy/8VUXb3bPmjI61gK2KPqhDPdZA/tVF10D+Z/Pe jx7/jn6w6Yk9oW/WyHPl9niWsk/4ds0aXxT3eVXJceRknmiNkmuMafRcE3NQ rUu2V6UssfHBJYbZJ3J8EGucJ9lGvicbfZ2/ynn2ZmzUgwfOOcAHH263hOOw W6edm17Y26R6f0qcncVJSV8zzhBx7aU/LfkJzw3l20mcdiXbibQlNj74T0ct crYtOW/76JczCYZv96zrUG+PrCU1Wctnks+IX688a5Vst01bYuNbIH28ZHeu b8l2u7QlNj54z0aeT4WvI3wC11Hyc9nt08bwtUkbw/eN1rJe1AFPSV9E3rQx fOSFD5d9SwpLaw17Zi2TkZe473KeHXpBMTP0s0fCOHnxpaMv+kdiP9fouSJ4 xHYo2WYeqYPyZ2LN6Ej2gbrUrEuY2yH6JtfCwNcXNpFnT9TCBw7GDBPzSx2j PusFJ6Zb5MFHri957uc8a7RByfZ64j8vziayp/MO7GJ7V+XfsGQ7mbbExtdR PU+V3E2cDeqdh5wblexr4O+TPP/5rk5Y37hkGz884sk1PWrhh5dOuxd89Mae sV97K2d1yfUa+ZukuJvKfol3nfRO0l/kPd3F14zrlS3Z7pC2xH4h+HD3jP6r Yy/IgW/9tG32iP2iDvUyaUtq7q7YH3j/5bwPm5Vsd0xbYuPbPGoSi8TmPG1Y 71zk2aJku0nrWipsS9k/5VxnZtQCw7dh2twtoicwuMwLbRX7Qf8bi7N1rAcd yXq3KXm+iJkluMRQA4xc5CGOmH3Vz8/Cakv+bxIt5yfnuaBthb2smA3SltjM Ok3iG0U/P7TV91DJ9lpp1+jMGehi/cdYO3W3ibXBJYZ46lKT/85STcn/rSP+ m0jUog6zW2BfdPF/Q4keidkkbZwYfN0lZ7PvwrcreQ3V0v+UfFt4k3r4Rfpr 5JW+vTjVWnuPrCX2643WkfuI07XkmGzaEpv433jna3/2EmfHwKgFvkPJvmy9 e2APwfBtmjaXmDcbrb8Z/dA7a3i30XH/rYG/F3Wxr1GcbiXbW8S6di55bX9I f0eyIWEM35Zpc7vFvuxUck/7a711JcewVysl62X/mrOOZO1wd4p9hEsMNcj1 bvRDHDFbpX3Nud6c2071jqGfztKPkG8xz5HIQW9/y/97zjNI6LuWbBO7S+n/ 1vR+rOudiMdmPmmPkuM2q/d6ub67BrZN2vjusRfwwalFHDYzSwfzruQ7hO+x Rs8yMTeFvmfJNvX+irXsLWy19C5pS+wVOetI5o72ih7pgfr0cZD2/F9xPhS+ r/I0CN9CeC7wfUr2UZPaW6eN4atJm0vM3EbryP2UZ40arU91m6U3lmxvl7bE xte6xmvsIU5T1KF/JPbHXI96r4H+m0u28+qtR8nxXdPGmmP9+0pWCd9eeEJy vnIckDA2T/r+0vcr2cfeghODDwzf/Li27Bf7S50ecT3aSf8753mererDp5z7 y99G+o5pS+yVOef9NOoeEHW6Bgc/ewWGDx5r/ziuBfkPjHUisQ/R2g8quY9u aUtseqK/BbGf6Jwh7G3qvTb2IVeyfVjWMhd78VmjZ5uYiTqkZHuntGee8lGv a6yftYNhMysFlxji15Z/Vc4zRYdGffoEP6xkH1jb2DcwfN3TxonBl9LPV+QV 55iS7T347pI8XPaiRt+/3Ls5cY4Utp58u6UtsVfnrCMPTPhe/++ezzoPOQ5O WH4Z+tHidBHnyKzxo0r2UZOYXdLG8NEz3KNjDehI1v6d/L1Kntmhd9bAekqS 33A/KfZY6eka60nJ48KXkf5vzusCw7d72lxivm40BjcvTs+SY/ZKu0YL7+VG 69/GHhaE1ai/o7LmEkMNMHKRpyV6pBbPOZ53B2Rdl5qHilMUvr7sfdKW2Gvk dW/XmwenXLJ9TNY9subvG61/Hz1TtxBrg1uOvWDf2DPmoColzyUxB0Ut6jBb BYaNzh4Ts3faeCX643uW71S+UanZIdaIfnzJ9gmSG0k2876WXCbfEQlj+Kry xk8s2QcOxqwRGL59Fbu9+v9J/iMVWy0sIc5h/A7Ls5wz32j85JJ95FoetcDw 9VCeU6IO/exQ73rU2lH6r8KPFr8T9x/nUvqpJfN6Zi1PjfVk9dMm73mb00q2 91fOk0ru9bisMXxtoh9q0xP5Ty+5BhL7AMWeUXIfLVlLbHraTP52efdDbmqw F2eW7DsobYkNrxvvX5414p9bsn5w2vjZYfODb2WjMXxFnlc13tMWxW4u/Sze y7J7817g+irPVpLn8H5pNAbvmIRzroy64MTggw/3OL5P+F7l3pB+Xsn1DuP7 QbJ93td3W66J+AXpF5TMPzRt/PySfeSlL+qC4TtcnAtLznVE2rmpwXrIQa5/ Gu2HRz1wMPq5KLjUOit6Z9/AVsWeXFzyGkpZy4ujv/6SO0kW0p7DujTOBNf4 3zhLl8Q155wgsfHBh8tZ2l7yGuHr5p0DH3NfrLVVk9d7Gc8Z8Y5KWzIbxnxR rfS18p7jurxk++i0JTY++MQT0yeuLeenO+/ZJl+jrjwHpBelXyFOvXyVrOUV cea208/aec/PXFmyfUzaHPysFwwfPOpQjzWQ/6qSayCxj1Xs1SX30StriU1P 7An7wTwV547zdEja+4TvOOk3Sl9T3LL0a7mPhLdwj0v25Tkj3668o2Nd/Uq2 T8haYuODS0zPtHOsp7pl8XcT5zrem02+zm0kKwlzqAdvpzgH+ODDLSUch31i 1rmrAt+Zd3Dk7y79BvHqeAeLe32sB7u9ZC9xBoafNSKx8cGHe3zkHFByXnLg OzlrDF8p7TrU65W2JBf5d+GaKs8J0geVbB+ftsTGR511ohY6+/6fHe8f3lm7 ip9kflOcm1g7z/e0Jfa68u3O3kqeLM7gku2TxGlUvxtHD2D44A2T3FP2KZF/ SMk1kNgnCB/KenkHpC2x03nHpcQ9JWEcjN7AyYtvuORePN+1V7fGc4LnyZ7C biaPOHuLn8l7Fu6Wku3T0pbY+OASc0rWOTo0+dkCRo5TE67D84rnGxzqwQMf Hs8yZu7IS63bSraZtbu/5D06M2vstujjdsnVvB/ZQ9l3lTyrRd4u8by9I+rQ MxIbXzvpGzT5HDbJ7pj3nNWdJfuKac+EdavxzBj6iJJt/PCIpy41mfXCD4/5 MXrBd2baPTI3yMzh3SXXO0t4s+S95FHtBq1vZJxXzveGcf7vifPOGUZi44MP 93/9k5c1kAPfGVnXZY+oTR3qnR11qcnM2L7SN2J/pN9Xst07bYmNj7ll/vtr zC5zHbgenNfDxXmS95n0Zv7WFHke4BnOMzptib2R6vWQvgn5xBlVsn2uOIdI bim8d8IYPngPSx7A+y/t/A+WXAOJfbbW+JD0/XnnpS2xN847LivumQnjYGck jJMX32h6UJ5zlecx6QfLdxFrF/aI7E7iHCSsOmIfLdm+MG2JjQ8uMb2zzrGZ 4s5KGOsU66XO5tLPTphDPXjg9IEvT895x44p2b4k9pD9Y74ODB88ni08V07i 9x3pT5S8l/sr51bCzxH+eMn2eVlLbHzw4bLnyLElXwNy4LtcdY+U7Czs/ISv M9e7T9qSa35uwrm2jVpPRe5L05bY+MZGX+DjSs57pfSj+Wbh2iVcp1PetZ7m 3ud9mbbE7tJkbk2T+c+UbF8RHPwXJIzhg0cd6pGbn/El1xgfGLETSu7j6uhn QuRlJp95/AsT/m/cr1fwf7f+OK5v3vN7fWv1XVHRN0Czn6fbx/MWfVLJ9qR4 1vJ8fo7zo7wXZp1nYsm5wHhG83xGfy6e6afq/p1cMvcNrot8lyt2Cve6cp6R tsRmHhEdyRwjtRtq3A/68yXbLfqZXvI83VnKP036gcI2FWfHJp/zqSXbF6Qt sfHBh8vcHb3RF/tADnzM6T0f6+6Xdh3q9U9bUpN5vIL0LfKel3uhZPu6tCU2 PtZNDWYsuU92invqxbhvuAdz2o+X4p4s6WervOfEZggr8k0gzisl+wamjW2Z 9wweGD5iyEGui7O+B7rFs2gm96DwS7KOJS/xYDPj/nw57hvuUyQ28VyrN+Ic l/Wzs7CLlLMi/TWemXnjs0r2gYMxI/cq94viL816rayZ9YPVxX3H+a6Pe4Ec 5Lo+7dzkukH663EfcB8RS9666I2+uF9YN/t3RuQkhrzHc+/nPUf3Zsn2jfy+ xvufe1n4bO4Vvo+z9sMjhvtml7h33irZ5v5CYuP7kOurmJvTznF0PAd2kO8d +R7RWbmi0XnpAc7suFfB346e4MNlBo847GvT9sN7N+V6PWvcz8mSc+S7Xr5n +Fun9D25b4XvwXUU572S7WFpS2x88OEyp0TOd0vOSw58n6aM4WOvqEO9oWlL ajILRI4ueef5IOpTC4ndJc4Y54szzz7RB72dK7kfzy7pe/P90eQ5pbk8VxVz ZdYSey/ef+I3SF4uzkcl27elzcHPdQTDB2++5Nmy70g7/8cl10Bi3yJ8Xsnn YHicB2zOBHFN4vSJnj+MfQQnL74Fkr1l36nYz6SP0J78mHKNT3ivc5/XuCd6 /rRk+/a05aexhk+iL9ZCjn2kX5ww1hx7Qp2Xu/j/7wwO9eCB0we+06XvK+wy 8T8v2b5VOdcs+9+O+TdlMHzwwG6s8b8pfxH9slfnxDpZOxi+Hk3GF8WegveI 3sDwjVDsebzX8r6m5/P+FudK6cfx9xnxLq8xvqRk31H8/awpZoFK9t2jPF+W 7LtKZ+ACYbV557lI+nZ5z/Aczf3e5Bmer0rmjUxbYhNzofQDeW6I83XJ9r3i LC6517vTxvAdGP1Qm57I/03JNZDYV6ufb0vu4760JTY9XSz9YJ4PCeemBnvx Xcm++9OW2PAuld41796WCesj++G08R9K9oHhO6zJGL5R4lwheTjPB8Ueo76+ 57kv+8fITW/HCl8avYIdEr2Rk3z9EsaJwQcfLnt7teSOec/M/FRyvUfSjjsy YrmWR0jvK325OFfKfjRt/OeSffRGX9ckjOF7iL+fxJoeirVQg/WQg1zb5+2H d2TgYOThHHGe+mW9bmpckzVGfvr5reQ1jE5bYrOe1roXBsgex3ucv7PF2uj1 6FjL79E760Vi44MPlz0/TvZq3vdNzoGvf9a8q6KHFSXPDTFrhKQP9vOoJs8b MWv0Z8n2Y2lLbHzwV8QaVkZ91nId71+to79ii/xdU/gA6X+J00++x9OW2N3E u7bGvV4nzt8l208EBz8zPGD4jos9oB5rIP8/JddAYg/QGleV3MdT0Q82PRFf iFoLS36+35X2PuGjNzB8PPfX0LW4XvYzwkvK/W+sYSC15b9eeVqVbT+dtsTG B5eYgVnnKAm7QfwbpFeJU5f3dS4LH5gwh3rwwDkH+OD/x004Dnt89EMv7A/1 KtEPMe3EO77Jz8620rvz/VPvvNRqU7Z9fdayTZw5+HC7Rc5E2XnJge/ZtDF8 nM920SP7gzw+1tKr3uthve3LtgdlLdvHnnLfcz/3zfo5v2bUaJacwDuDv7dI 7pr3DE8v5V6r7JmjtWN99AOGb0LaGL5Bilun7PjJwteTfoJq3ZQ1ho+88AfF nqwrbJj0KWlL7JObHHeK5GBxbuVdKX1Iwjh58SUlb5FvatoSezf+BlTvevSf LtsenHXelOzTmqwjb0q47smhw03HGm7Tzxl8twjPCBsue3rUos6ghLHTxRkq vUPZMS+kjRODDwwfudYvez3T+L1D+t3SX0mbt4HssyRvF7Z73mvvWLb9YtoS Gx/8s6Iu+ch7ZuTAR37s3rFvGwo/SWsbkrUkBvxOyT3znuHZqGx7RtoSG18q rgnXdOOowxrJfUfkObvJ8z/MC23C9VGNYVnLTWJfmBUiL7Wqy7aZF4KDn30G q44+qEM96pA/W3YNJPZLiu0U/hnRDzY9sa975z1H1E6/v3bT77HFjHH2Hd9m kvfInpW2xD5POe6Vvg9/81PsFmXbr4lzGn/fkH1+k3XkrQlj2LdkzSWG+NPr XY8etozc/11r/nYR1x7sQr45E8bw3Zo1Tgy+M4TdJ+5wfn8p2x4uzv3CtpZ9 kTgPSL+YsyPOtmXzX09bYl/SZB1Jnm3Kjnkz7TzkuE34KOkNea+rS+QmD3jn sn3UJOaNtDF8b6XNJebSJuuXRk7O24Zx7um9JvrbSfIxyff5vUn6w9LfSbvH 7WT34YzXu0/WtV2sg57hEtOUN9Yn1tW17Jjbs57B2T7yoiOZydlB2GXiz06b 2zX2Aox5HuZ/iCNm0zgb58U1Igc1ybNj9EjPSOwH+bbQz1Wy7xSnW9n2nLTX ypr3zVtHMm9DXXqiNlxiiB8rfT9x7hBnZ865er0z61oPxnkAu1r2COl1Zcd8 mDZODD6e0zy/mSPFD4+89VGH/e8u/RzFjFD+J8TpJ/zuhLHucZ3AdynbBw5G /2D4PlKeJ/kOkv8e4Y9L7y/9LumTpR8o3pAm47uV7XtKeo+8+wfDN1d5di/b Ny/tetdFP8QMjJxPy39A3vMee0Rfc4OPTcy59c4Jf8+y7bu0xl3L7vXjtLE9 ozY1qU1P5N+r7BpI7E/4nTF6JxaJTU/n1zsna0dSg73Yp2zfPVnLfaL2gCbP 9DDns6+wZ6V/njbeWLYPDN+gwPDN53cT5bmRezrhmZeG6K8peqHPCfFePyhv bFzsAznJd2/CODH44MNl3maK9KHyjZK+X9n17lX/F9WbB2eS5MH8PV76/tEj 3w/gPcr20Rt9cY3A8H0hzgFl57ov69zUYD3kINfgJvsPiO8S8MHRM+eI87Q4 7XVTg/koMM7XA+IcVPYalqQtsVnPcZIvy/5R+POSOdk59fkc7x/57+d3n7Lt RWlLbHz/8fPe81tlHyV8auTA96X40yQPyXseJh/nnTzIm6O3i+udl1qHlG3f n7U8JGrDJ56YQ8vO+zXfHk2ey2Emh9kacGodFj2yXiQ2PV5a7/VzHQ8v2x6V NefWWC/Y4bFf5KMeayD/EVEbic2M0JFl9/FV9INNT+SbGuviudI3noFHRS/0 D85zB9+xkper9kPq50XFHS37MP5WyfNe/of4HbZs+/u0JTY+uMR8l3aOO4Q9 nLCvp3wjmnydD1e+BxPmUO+OwDkH+OCPiFo9Izc5yU0vzP/0qbeNPlOyJN5a nGPtR5H3OO917i3JR8QplG0vS1ti44MPt7mNc7bEGsiBrz5tDN/DWdeh3tK0 JTX5b/68yjNGeR7j946y7Z/Tltj4XpM+UnK0OJWy7eVpS2x88O6LPLOE9+Jb R/bxkq/L/iVtDN9PaWP4jtC+nBB1wE/iXSnfb2lj+MgLHy7X5URhV/BvTlnL EyMvcUeJc7g4c6WP5Z2QME5efCdLviX797Ql9gPivS39Qd4n4p9atr2CM8bv DnyXNFkfFdeFutR8NGEuMcTPlv4w71vhpwl7R/afUYs6YxLGHpL+hPTTy475 I22cmIciDz5yvct5zntO6Yyy7ZV8a8nXu+y5Jfb6kSb3c2bsPdcIiY3v6npf M64j9hvR/1ll+0ZnPXtEfmqhnx318J8V15661GS2Cj885qboBd+vae8Z+/WY cp4T9em5H9+6ssfI/kA5zuObRvoc7qO8Z6vOLdv+J22JjQ8+3Cejf/K+ETnw rUq7V/aI/aIO9R7PWo6J/f9QnJ55zyBdULa9Om2Jje/Css/Qv2lLbM7TteSL Hi4q235C+T8S52LZLbynpD8hztMJY/haZcwlhngwuOPEuaTsmDXE6c+/Y/BO b7L+ZJzhy4TNF6cqYy4x1AArRh7i/ovh93HOK+87yYW8+yUn8uwS9onsRMYS e5x8n9XYfoazXbbdVpwByten7HzoyPEJ16UnasO9IvLinxCcK4UtENYualGH /GDj4SXcIzH0A04MvhskH5P8m7+tlb2GNTO+H56P++sLYROlT5LeV5zPZbfP WGJParKOfFaca8qOWStjiU38Ip7DeXOuFbZY9joZ4/3K9g3U2ieLOzlhDN/a GXOJea7JOvK5hHtnDcyR0Ttr4Bp8yXM17zmx68q214t1DSh7bdfX+1nA82FA PAN4hsAlhvj+Zff0tK71wLJjnsl6Bu36yIuOpBZcYiZH/oHxbKJPemSmjjhi mIvjmnO9x2Xd0/s13vM/eb7J956wm8qevWIu6ynJ6U0+h+g3lm0TO6jseLjz ajw/1jrisb/lG0X68VrXNzWe9WL+ihzkap0xPrhsH3y4zEcRh50R517pv0nf NOOz9kKcN/ShZds31vvs0ufNwr6T3iFjiX1C3jqS2a1hZcc8m3V9+kiL/73k i8o3he834TeJMzFr/JayfUPj3uKeBcO3fsZcYl5qsv5S3As/8J7Ke25qeNl2 x4wlNr6h4r/Cvopzm7Af5dsgY4k9Q74h4rwcvd1etv2cehtRdvzkrDF88O6Q XKr4DZVnmeRMYdMSxk5Wzan8bads30YZ48TgA8M3M/Z2WDynqEM9ev2V95q4 09lz3kFcG+l3yf+zfJtkLLFPFW+59FebzL+7bLs6OKdGP2D44LH2GbEn5L+n 7BpI7Oe13pFl99EpY4lNT5yXN8R9MWGdM4R9i+LelHxJ+H1l21Ozltj4Vog/ W3KGOA+UbW+h/H/wjoyziI4kPxj25hlziSF+pfR3JGfyN5PIzRkGf7BsH9jb 0Q8Yvq0yxonBt5p3X97zLaPLtruI8xffG7zHm3z/cu++zDtU2N+yt8lYYp+e t46Ew71OzJaRhxyvCP9H+vvSZ/GsE+dW7cu0rPFHy/ZRk5itM8bwbZsxl5g5 TdaRryY8IzVe+E817p01sJ5xktPkSyl2TDzXeYYPV+zYeKavUatvkbxn58Dw Tc+aS8yHTcbg8r54vOyY7TJ+Zj/BO7jJ+sfxDH9S2B3cn1lziaEGGM9/3hdP xLOfd8GgeH7zPKfuh/HeeUr4+tJPT1s+FbWp83WNaz0d9emHtbLmfWqsI5kD pO6T8e6BSwzx7Bt7xjzkM8Jmyd4441rUYU/A5jX53mGPiWFuDZwYfHzP8r3I N2HrWs+0nRb6hLLtZyWrZG+f8b03P+5TMHy988Ynlu0DB2Oma2Lcr9zvd9b7 fqafhDjn5D179pH8r4l3bI3x58r2cU9+EvcpGL4dlGdy3K/c1yPqfW/Tz13S P4t7s624n5KXv0WUzXs5azklngttxDk373mz58u2d+Q6lt3rjKwxfOdGP9Sm J/JPLbsGEnsnrmPZfczMWmLTUzv5z897Bozck+I5OL1sX7eMJTa8e8T5PPp/ WdhI2a9mjb9Ytg/s5bjfwPDNEmcd5bk45sTaS39BvgU8RyTXlF2X8fNghuyF TcYuYH0J5yQf9zs4MfjgL4xnyGLJVrV+Dswsu94uytm1yTp1eRYsjmfFLHHu V943ssZfKdtHb/T1esIYPp5Lr5adq2/a+ajBesgxK55f+F+N2uBg9MY54jzV ZrxuauycMcb5Yq749ahPz0hs1vORZEfJhoxngN6UvbbsRXzDNXl/3ijb7p6x xMYHHy5zRx0k5/CNEjnwMXe0RLJXjWeK3hK+nni7ZSyZTWL2qXuTbfTZZduD 0pazI4Yf4ol5u+y8uyrPyGY9G6ip2JQ4uzb5v2v0TvRILST2uvKfwDu31v89 onfLtm9Km4Of9YLhg0cd6rEG8r9Xdg0k9h7K/37Zffwc/WDTE3vCfsxO+Nxx nnhHsE/49uZ3AekbSW+WPpfnp/R9pO8u7geyv5PMCDtJ9Tfjd7qy7b0yltj4 4BIzJO0cl+Zdd5TOycfy/dDk6/y95PsJc6gHr2OcA3zw4b6dcBz2W1nnphfm lDYUf4NaczbmmSPeMr5PeHaVPePDDNHSJs8RzS/bZqYLib00+HCZXyLnvLLz kgNfY8YYvqaM61Bv34wlNd9JuN+foufPYq2cZyQ2PvaYdbJ29AVx7nne89zv Kv5DPKubPF/0ecRRC4l9OXN4ta5N3YVl2/vx3lfsyibP1YAtjF4Xx940R/4v yq6BxH5be7tIelbc/TOW2MubHPdLrBEc7N2EcfLi+1ryYX6PUp6vpHcS7wDl qebsxtmC1yfvPF9GHLWQ2PjgEtMj4xzUoxbYRrFv1Pm1ybNMcL6KvsHpA99m sn/j/hDnm7Ltg6hV9h69lzWGD963sVbqPiL/j7L/kL1prWtT97uy7QMzlt9F r7+Ld0XefW4pe4XsOdK/L9tH3c1rXY9+0H+InvDDI5661GTOCj+8gzPuBd+7 Wff4e+z/0rLr5cX5U9jPsq9Uni2E/RS9srY/Yx+WxVrpH4mND/6msUbykZc1 kANfLuO638Z6fo64/9WlJvm3qnU8a19etn1IxnJ59Mq/1fHvl/x7J9eB68F5 3UG+VhV9v+i59RjvlNjDX+XfWr5DM5bYV6neNtL/EudDfo8o2z5MnFVNnqdi /goMH7wVkp1lH5Fx/t/LroHEfl97+0dg5EFiX513HLmoBQ5Gb+ArovbfkmOU 5wPl+Stq0vNoYX+W3VeNeNfkPa+1smz7qIwlNj64xMzJOse/sUYwcrAu6rAX HyTMoR488L9jvw6JetT6p2ybGTN87B+xYP9EHzxbeK7w7Npe9r/C++Wdt3Os fXXUoWfk6thT+HCZH6PHVWVfA3LgO078nSSvFeejhK8z17tnxpJr/jG/I6j/ hPR50teo2J6btcTGtyr2kuvYuuK8Bb4ZJNvL/6lid5beTvonfCfHmaIHJHZb ySfqo2++hyu2P8qa0zb6AcMHjzrUYw3kb1NxDSR2SfnbVtxHOfrBpifmF9aU nM/fhTrr/uO/CV3l+Xpm1JlFby9uvXiVjPOuFf2jr1mxvWbUZBZiLelP8k7N Oo74/nlj1KMW+loxP7GLftaWPkCcrOQE+RbwvVpxb/SMxF6nOfToeVy91/Np 6OvGOvGnpHcnt/RkxbNjzItRj5mx9Sq2mStDYu8SfLjMvGHTF3xy4OuVcR3q zc+6DvWOz1h2jzXuLnl93nNc6YrtkzKW2PjWjprE7iGZVPwC8TMV2ycLf0Z1 OshOybePsA6SX/B9Imwv2aeKs2HFvtMzxm7gb7EJY/iIIQe5Ps26TiZqbSB8 PL8jZR1LXuLBNoi+O1YcQ/9IbOK5VlyzvcVpIFbYIuVslL6J8EF54xtV7AMH +5zvoog7LdaeiRpgHSUXJtz3BrFecpDrjIxzk+tM3uOxPvIQS96O0Rs2eVg3 +/d55CSGvCfx3dPs/y5Np4rt5/g3X/EPqPUc1GbCm6WfnbEfHjH7Cxuic3Kj OJtWbJ+XscTG11nyQNkXZJwjy7dvO/e3hXwbS+4r/Ka858TgUC8b+OYV++Bv HHuyRayPfcAPr7f0ifXeH/Yf7jbyNXH9pW9d8XwZs2n/1eOdWLHNnBtyq8gF Hy5zaOTcMvadHPjOyhjDtzDrOtSjB2RT7Dn7NyTvPdy2Yvv8jCX2kDhj/90n Ce9TJ8UvkX649Fvyno0B2zzwLop7jr+5ZC2xN5XvYK6V+IvFqanYvihjDv4v E8bwwesqmZd9Scb5ayuugcSmz+0qPgeLs5bbxRqI24LfqaLnzhEDTl58O4W8 WHl2lH6ofJdJP4R3kuwt5ctJ30ryK+XZoWIbPhIbH1xiLs04x7C81wJGjm8S rrN19AOHevD+1we+KfXOS61uFdtL+Ldg6WcJvz1jrFv0AXZ/3nMFddELPUyt d23qguHbttl4ffQKvm2sCwzfV1nPnP13Xfn+afZMG7NwM+TfX7yWWuO7VOwj x2HRMxi+y9XDrlGzj/Sj5B+e9zzYsdJvk/6t9OnKWSvO99J3q5h3VfCxiTma 8yDOdzyrK7avFqd7xb0ymweGrybWRG16Iv8eFddAYn+jNe5ZcR99M5bY9ER8 16hFbmqwF3tFbnpDYsPryTmR/FH8Jt5TvLMyxvep2AeG7/a8MXzXZuzbKWJf 4BkY62+IPe4vznGSjbJ3bDa2g+TShHOSj31riRh88OH+kPCMRanWMxjN0Uu/ jP07B+fFeseg71cxf2DG+L4V++iNvrh2YPi+0x72iL76x1qowXrIQa478/bD 2zlwMPrhHHGefsh63dT4NmuM9bDGAypeA/NsyAOiv2MkZ4n3U9Z5D5JdFN6t 2fNtzMsdWLE9IGOJjQ9+MdZ7iuQRvL8jBz7WPlO5d5H+M88i4b14F2Ys78p7 Du146d3F+Ul6rmL7xowlNj74xBOTrzjvUuaQOavy/6LYV+rNI+ch4pwofXDG EvvuvHPtFrUOjdyDgoN/WcIYPnjUoR5rIP9hsQYk9jL1cHjFfQzNWGLTE3vC fvzKN3Ccfe5f9gnfsIwxfDz3j464IbxzhR8pe0/Zp0q/J+89PKpi++aMJTY+ uMQQS469Yk9OF3Ysz5a8rzOc5QlzqAcP/JiIhw+X2TDisG+NfuiFWOQ+oe/N PVnxLBozZS0R81q918jae1ZsL89a9oz1w/+vXuQ8ruK85MDHbNtxsQfsFXWo d0vGkprMyxFzWqyrGDnoGYl9Wtz33H/cszzneQfwrL9d8lF+Z1Otc4Q/wL+J Kc/Z0st8SyhHRfIN/saRNYbvjowxfM2cz4rjRwg/Qfqb8v2WNYaPvPDh/sGZ j9y8g5DY+zU7jv54B70l/VzpKxLGT4j31omS53FeM5bYPZrNPaDZ/JMrtu8S 53zJk2Tv32wduTLhutT8PWEuMcST60D9/Ml9LewC+UZGrR6Bg43Key2nRn1q gRODDwwfuU6reD2/M7cp/QrxHhH/EskzeP/y3cA9Lvk357Zi+/6MJTY++HD/ if05LdZJDnwPZLyGQ2IfzhR+kfD7MpZ54X8Jv1T6Q3nPqp1VsT0qY4mNjz1j v+4RfnbsDTq5L4zrclCzZ+CYi+stztvqaUXWsnfEMxP3Xz1xzqnYZmYSDn6u Bdg50Qd1qEcd8p9bcQ0k9r1ci/CPin6w6Yl9PVz2qoR/D+V3UH5/B2ff8V1Q 8ewcM3VI7CN4H/PMkfxX/Isqth9T/j6SF1Y8f4eOZAYMDPvhjLnEEH+l9KMl V4tzsbCrZY/OGL+kYh/YUZKt2hjD92jGODH43q/3NeVaX1mx/bf29hphl3Lf 5v2/qed/T7+G8lwu7D3+zSZriX1ss3Vk6zb+398TMzbjPOSgz2tZa97ze1dU fE44S+B9KvZRk5gxGWP4nsiYS0zPZus944xx3s6MXPR+ZZzR/pI3SI5n3yqe 72M+8DD2peJZP3JcXus8YPgeyph7VdQGg8tM4DVRn34GyNeXd3TeOpK5r37C Bsp+OmMuMdQAK8quauM4YsZlfDY4F8xYUve/PWKvxPlQ61mdtcQu8R6VvyLZ RvzrKrYnZLxW1vxE3jqSWtSlp2LEEkP8TbW2yTNA2Eeq0aqTa1En0cZYL+lt yVNxzMSMcWLw8Zxuiucb/oHR0/W8XyQn0Vtw6XMoz0npa7Yxhu/EZuODKvaB nxh1wfBNVuwwnp/C1xI+hGeg9PbS7+L5Id74vPGbKvbdLP3JvDlg+J5TnsEV +56XfovkqeKuLc7wWtvopwl7SrHrUKtifGrwsYn5uN48OEMrttfQHt5Yca9T MsbwnRb9UJuesIdVXGNY+Ml/c8V9TM9Y3hy15ynPGeKs28a5qcFe3FKxr3Un S2x43K9nxz17h7AC68kYH16xDwzfezXG8HHf4buuNmL5NpHvaX4XkvyEvw92 8vuc9zp+MO5Z7nFyko/5T/Db4n6GD5fZV87fuXGG74xeXlLdEbWesWTukfN6 Ttwvd1U8V8nsJfiIin3koy9yjogz/t89VXGul2Mt1GA95Lgr7j388KgHDsb9 yzniPM3MeN3UoDcwzhdzkiPjHuLZgsRmPWMlHxbvHXrgfSh7An8vq/c9yVru rdhu28ny3nhOwYfLPOcXwh/l3dzsHPheUc6R3H95zz3eL/we2bMylueJu57y L+B9J72d9Acqttt1ssTGB594YkZVnPdV5bmf94uwNM8i7l3VSkl/UJx7Zb+W scS+QLyFynlh1H2oYnvNTubgT7Yxhg8edajHGsj/cMU1kNivK/8jFffxRvSD TU/sycWRk+fKCbFG9gnfWp2M89zBN0ZysfB1hI/imSp7smo9yHtN/oxiR1ds z85YYuODS8xbGee4TFgH8R/h/PI+bvZ1npJ3HjjUuyxwzgE++HDXb+M47Hcz zj059naJYq8Qp2Mby3G8yyVHi/MU3wf0U+tY8jxZsf1+xvLJyAsf7gaR84mK 85ED35yMMXzrdnId/PSDvDp6GCvuNdI3kv50xfaHGUtsfI/z7pPcWJxnKrbn Ziyx8T3B/aSfDdtYjhfej3dA5PggYwwf+jXhe54Z2YrjPxI+Sfo46fMzxp6N GPhw6XOisC+1rvU6WWJf2+y4aXnPJHMdboxrAU5efM/Fs5x3ARJ7gOQz4ryQ 9yzulIrtT8X5Wvknx/sDHcn7hbrU3KSNucQQ/229n+O8U56PZ/P0qDUg3jtg 18ezfWrFMZlOxonBBzY13g1Tm1yD3qZVbCcznvF8SfYD8vVWzFc1nu+dXrE9 I2OJjY+8d9a67vhaz44yz/lC1GS9l/CObvZZRX+xYhs/POKpS03mS/HDezPj XvAxj8qesV8prWtGxfU+E/6dsFfifuPem8n3A2dB9ot5z1u+XLG9IGOJjQ/+ oLiXyUde1jAz7mPuX/ZmWlw/6lCvQydLarKuZ1lD3vOosyq2P89YYuN7Ne57 nu1IbM7T9/W+5+nhtYrt9ZV/Is8z2TMUO4lvEnGr2xjDtzBj7mvxzgCDy8zq GxXHfCHOD+K8KXtws/XBcY+/Jew5cRZlzCWGGmAz857hJI6YjupnmeR7nFtx pvG8F6eT8szmuSh7ccYSe4g4U9iv4LxTsb1EnKXK87bsoc3Wh8a6qEtP1IZL DPHUpWZWnHe5v+X7MmoNCRxsmPRN27hHYjbqZJwYfJ9KDpT8RLHvV7yGrzO+ 50bEfTedbxXpm0n/QJyflWeTTpbYw5utIzcXZ07FMd9kLLGJf5F3Xd6zsnPj ucXzDfzDin3L6/284xkIhu+7THBl395sHckzcGCs4d8a984auAYvS38z79nU jyu2f4x1zat4bb/V+9lHnnnxbOPZCJcY4j+quKdqrXd+xTGbSp/LXFDkRUdS C+5H8eyGOz+eufT5b8yvEkdMTcbXnOu9YSf39HSt9/x9yRXyvcM9U/HsIXOJ t4hzV7PPD/qCim1iP6s4Hu7UWs9PohOP/QpnX/pbXINazzoyl0gOcn2VMb6w Yh98uMz1EYe9TJyfo68/M76ud8fZQF9Usf17va8HfS7hW0J91Gcsl0QudCT5 F1ccs1kn16ePpeLfqVxr1XqO8avIvSzwLyv2LYrzxbkFw/dDxlxiZtRaR9Ln sdvoW0r2bq0VU7Hdd11LbHyvszesX3W/4brv26rVgetbYnfd2/5Nu5rzbcX2 cp4tFcf/kjGGD953km/I/jXjGvdHD2D3Sd9CvX0f9ckDTgw+MHz3x94ujnuV Oj9E7bd5zuh6bclzjPOvn4ul/yj/bOl/ZCyxRynPA/p5sNkzeEsrtn8LDn7y gOGDx9pZ95WtnX9ZxTWQ2L8r9qeK+1iRscSmJ87LQ8qxdRvrnCHsP3jOS24l fHnF9uadLLHxMcP3aLNnin6t2Gae8D32WPa7tdaR5AHD/itjLjHEzxH2mOQ2 4vwm7BHpKzPGf6/YB8YcIXOGYPj+yRgnBt9R22sfav1v0H9XbF/V0b3+IXt0 s+9f1sl6/xT2gfRVGcs/Iy86kn6414n5O+M8o2NP6HtMrP2vyE0/4Csr9v0R +8T9uDLWytrh/hV7gf5e7M9iyTa99G5pdu+sgfW0FrZQcs0OqiFstfbuSOVp Ld4q2V14FvE9Iru2jTF8x2bMJaamhzG4c9Xz6opj2ivn0zwD+Q5otv5sXItW qrtAnHYdzCWGGmCf6KemjeOISXTwc47n3Y9Rl5r8d8/W6OWc1EJiv8McFN+u zZ4Xquple8tOXitrpubCWBvroi49URsuMcSzb+zZ9uIkhC2SvXbUog5rAZsk u2sb7zEx63QwTgw+vrP7xfvrC+mTpW8XettetttJLpG9bgfvxZTYczB87+aN t+9lHzgYs0Zg+P4fU2cdZ1X1vX+Me8VAkRvmvaIgIjMDgswIKKDMDIhyr5Qi BjdREFERAztRFLu7G7sDxe5uxQ5sDEys3/P2WZ/X9/fHvNZaz3pW7H322efM nI0yn3/093iYw2Tw4PzAc0a8J4YZXynqMU7OJzFXYPg4E7VyzAFrg3ofxlz9 1d9jZE7oe36MZZXoq1PwV4m1tYg1P8rnkTqVbHcWZ8WSe+2WM4YPHjWpvUnM 06ol11g15om5Xa3kPnrkLFeLeeecE7moRe4VY511LtnH+Shk5+iDvJ/3cv8Z YV9JT6WMdynZB4bvkcDw0f+3vMOo3978riFs9ZL/hp2S/FoyLc43SNkPDzO2 gLlOOCf5+iSME4MPPty+whfzfiG9n/RsyfWyyvk9z0bhmyYc82jkXFOcfzTm njnja5Tsozf64u/qa0QdxrhWybnWirFQg/GQY82Yi//8JdcDB6Nn1tF/6ynl cVNjtZQx1ld/cdYpeQxrpiyxGc/GXHf2pZTnICf7KZ5/rMFRPu+0bsn2OilL bHzwn4p542zQhsJ/7uUc+DLiPzbMZ6Q4W5UX3qFZ6zZnyfwyt12iHrXWK9nm jBZyvagNn3hiupacdw3lX67Z42SMjOfZuEbrxzjoGYn9XS/3984on4/aIPrN B+e7mE8wfPCoQ70t4vp3K7lGt5g/5rx7yX005Sy7x/VgTsj139mz6J05YZ7w cRZrE+krKKavYnuyN1JbnGfk71HymS3qLenlcW0U9ekZiY0PLjG5lHO8IH0z nmvsE+xXw3ydX5QckDCHei8EzjrABx9uS8Jx2OtHP/TCebClkgv5Hs7+I703 97XsBHMQMeR9OXpojDrkQWLjgw+XWuRsKDkvOfD1yRnD1z3lOtTrkbKkJmec 6PfV6LlPjJX1jMTGxxwzTsaOvkmse/Z79v2VUub9Gf30Lfl8E2eikH2j9ivD fC6Kc1P9SrY35LlJjQatk4QxfPCaWfPCe0X+TUuusWn0xVj6S/+Xa5CyxP5w lOPeEGdQwjgYZ5bAyYtvIHupxtNfczUgMPKsKKyF+1T2suJ/pNiByrNZyXZj yhIbH1xiNs05x9tRF4wcmydchz7oAQ714IEPjDEsr5zvCBss/qCS7d6q1V7y HPVLGcMHb3Outew+wldWnqHcSw3+WTjM87lFYE0pS2x8Sekfj3JvHaV/Osrn hQaX7Nsk5RrvRT/oQ0q28cMjnrrLxbUbEn1Ri17wNefc47vEi7NlyfUYC2eP WsPuJO6wGA/9fRD9bxX9MkbkVjEX8OEOif7JyxjIgW+zqMscvRt1qMdZKSQx jPf9YT47xTmutpLtvilLbHycG+a/v7Zi9MX1YL1+IX0cz0ieGar5Cf2pn+GM nXWWssT+nO9GzDl7gTgjSrZbxPlc2JfUSxjDB2+bkOQh/9Yl10BiD9QYR0pf VTEDUpbYi0Y57rOoBQ42NPF/efEVySPfQMUWpK/OfEnvrNzbxhg6N7g/ehtV sj0oZYmNDy4xg3LOsYg5ShgjB2fDVov5ak2YQz144PSBrwucUZ7D7Uq2t4g5 ZP7IA4YPHnsL+wr7WFr4WJ71wldvdl5qjSnZ3jxnOSbGDB8u55EYw+iSrwE5 8A1J+RwSOpxx0SPzg/w6xpJq9ngY7/iS7cE5y/Exp6Njnpjn7UvOy/moNeX7 TvoIxa4h/ZtRPju0A+PgvktZYnNOipqpGNeEWHdDgoOfM1Rg+OBRZ/sYD/l3 LLkGEnsrxU4suY9hKUtsesqo/8WsNf4mNlQ/O3foMHdLPbO5nsoxXPgdI/Qc 3k3XqI9jfoixoO9Ssr1L5KPWrjy7lXfLnPPsXHIuMPph7Oi7Rn/r6mcS7zCK 31uyB3OpPCXpOe6TlCX2T8OsI7flnU36EukjQy+XbK+h/LWSMfJWeY/hnYBr McrjrZRsb52yxMYHH+42Cff2Y+jV6LE95TrkRqcO9bbKWYLTz/qSv4pfkF4v 2d42ZYmNj3FTY7jwDSR/434Vf3LJ9ijhXSV3471nmM8TdWvwN/fdS9YL4uxR so/zUWDfjzIHbI/gkYNc26Q8R3/EvE0Vvpb6bs2ZR17iwabGNZgS8zoiYrGJ 51pxzf6R/sswn8fifNdGwqfzPhD4tJJ94GCjVXfPyFGIsTPm36Kv9WIOe0r+ LXtMwjnINTLl3OQaI32vknljU44lL/H0Rl/bJTxu5m9U5CSGvBuzlkaZs0/J 9jjmXGNfsVX3kPB9uUayh+fsh0dML+n/speIM6Nke3zKEhvfwZL9ZO+Sco4O yjku4V724z2Dv1exhkf53Bcc6nUIfGYpfMPMpf/9Yi2wNvDD24F7pNnzyPqB O0u+DWX/Ke6BJZ8d46wYfGodULLN2TPkAZELPlzOnpFz/1iL5MC3XcoYvhE5 16EePSCpSZ99JZPg0g8q2d45ZYmNjzXG+uJeZp5WEDZB+gDpS0f5nNWmvKfo Z3vhh5Ss75SyxO7Y6ly/jnKtQyP3/zj4iQXDB+8IyRb2i5TzHxZ5kdi7Cj+8 5HWwTc4SmzVB3O+jfI6OnrnGKwROXnzHSC7P+lGeo6UXNW9XdPGaOJJ3Avk2 aPZ6Yu0dVbI9Kmd5VKzFI2MdsSbJQQ3qgpGDtUedWb18zg3O0TE2cPrAB7d3 g/nHRn3Gfov0HYUfnTKGDx5YsuCzOscJGyi7xu9xPHPFG58whm/VVuPHl+wD B5uYMIavqHFtznuG8J15X5W+uvRdpG8s//nird1q/ISSfYOkd+E6Jozh2009 nFiyry59MPMxypwt2VtG+XzdhsqZVuyuwueWzNs9+NjEDJGeavUZuZNKtqeI M6fkXienjOFLRT/Upifyn1xyDST2dhrjKSX3sUfKEpueWIPZWIfkpgZzcWqs X/aHjmHDG8beNcpn6s4SNlHX9aYuxk8v2QeG738Yck/l6cR17+VzfT3U12mx B50R65e13VP4mbHWwdaMvY6c5KEuODH44G8a92C7ZIeCz2idXXK9inK2CV9L +qSEYzZrcM5zxWnleZAyfk7JPnqjL+73c6IO/Z9Xcq69YizUYDzkINe/o+yH Rz1wMM6tsY5YT+NyHjc1RueMrR1r8oKSx7B3yhKb8VzHWuVeYg8X/yL2fdnD xVlHsqTYC0u290lZYuODv26MvSj8Kp65rc6Bbzy/p/P3mchzsfARPCdSlsuo fln41tJzzKf0S0q2901ZYuODTzwxl5acd3vlL3DPC6sqtknY+uLWpF8mzjby 7ZeyxF5OvG2ld201//KS7f2Ds1z0A4YPHnWoxxjIf0XJNZDYE9TDlSX3cWDK EpuemBPmo66cs0ve36spzxM+5hwMH/v+tZJj2N/5m4ZyXx3XZnSD+eS5pmT7 4JTlNZELLjE75pyjh+J2E3+c9Ot5V2h1ro30MzlhDvV6BM46wAcf7pSE47AP i366R+x4YRtLnyp9B+k3cT24z6XfKD2hsY+V3kvY7uLMK9k+NGWJ3Sv4cHeP nDeUnJcc+I5IGcN3eMp1qHdkypKae/C3HfXWKH2a9JtLtifmLLHxcd9zP4/N eZ/nGcBe/6XkQVwz5ZymfWDFgs83st/dypxK3sZzUrE75YzhY08Guy326NtL jl/AOQr2GN71c8bwkRc+XPb/O2J/ZX9GYp/dy3Hs1+zt/Zu9LlmT4HfGnn6X 5HqKmZmyxO7LM6bBZ904n3ZPyfbslM/A3S17ZIN1JGfJqEtNngVwiSGedd8v 7pF7he3CMy9qUYd+wFYq+HzafXGvcK+BE4MPDB+57i95PJM0J49Lr/KMSfn+ mM98sUcLW7ng83gPlGwfn7LExgd/07inyHd/3OfzY+/hHizJ7s++Ks6DwpvF K+UsuT8Z1yTJVQo+5/ZQyfaclCU2PuaM+eLM4YKS857APcvfYCJ/RViL9OnS H+YdRL5yzhK7mfni3aDg82aPlGyfmDKnOe5TMHzwqEM9xkD+R0uugcSey9/P S+6jmrPEpifmdTXl2Es5byrr3YZ7IGececf3hGRN9skpS+wB3Nu8n0TsUyXb p4ozUDmelD2w1frAGO9/GL9z5swlhvjNWefizBDnaWG7yXdayvgzJfvANpfc J2EM3+SccWLwDeb3S9aVOC+VbO8uzhRxnuU+VK2p0oeIs684z5NbnN1ylthD W60jZ4rzXMkxZ6achxz0gD9VMOdF7mX5zk4Zf6FkHzWJOSNlDB954L4YedGR 9MN6ezCeDfTOGBjPm5KDJE9R7MvS9+K5nvJ+9grvAZJDm70Hsje+Evsr+yFc YjIFY22xB75acsxUjf1YrdnXIi86knODr7OP8b6bMvfV2GfBbu7lc+bEEfN2 F68N1sXeCeegJnneiB7pGYm9U4PPatUbfF7rrZJtznQNijEPb7WOZI1Rl56o DZcY4mfoZ42Cz0q9LWwf3leiFnUYLxjnwDiL9U7JMRemjBODj326d7xL44dH 3ndjfbG2F3JNNBfTNG/7Mk8Fn8sCWxj3APh7JfvAwegfDN9FKa/BrWMdDmv2 OmFdHSO5WLyjG4x/EGtopn7WKvhcFhi+Pfn2XbLv4pTXyshY/+2SD/fy+atz hplD7Eexps4OPjYxrc1ei/Tzccn2dM5Fl9wraxjs41jr5KM2PZH/k+gDif21 ruOnJfdxfsoSm56ot3eD+yQ3NZiLz6IXxjIybHiH6KfAO6f4X5V83oRzKeCL SvaB4duu1Ri+q/l9sNXnVzgDc6Cwz+VbWz1/wZrUePbK+XnOc31Wg7ExPBcS zkk+zn6AE4MPPlw4O/C+3Orv8l+XXO8K1T2K9yD9HJTwtZwg/GDp3/KOJP3a lPFvSvbRG30dkDCG70Zxvis517wYCzUYDznItWOr/fCoB75j9M86Yj3dlPK4 qXF5yhj56ef7ksdwQ8oSm/H8zf3IPSP8WMkfZa9bcO4jY+w/RH36RGLjgw+X sxPHS/+DZ2Grc+C7Wfz7h1mH81PMAWNE7hRzNbzZY2MOl5Rs75OzXBLzAp94 Yn4uOe+qynOCfJOEHa7YOdJ3lX6Y9F9ifMwJEvuzXo4/Jubk18h3c3A+i3MX YL/GnFLn5xgP+X8ruQYS+3bF/l5yH3dEP9j0xJwwH4cmvK+MiOca84TvtpRx 9h18f3F/8Dcv/u2M/Etl5wuuV45x/Rn1iUVi44NLzJ0p5yA/dan/j3zVVl/n rgWfN4DzV/QBzjrAB78aPf8T15NxkZteDhG+TbPHyZzDXVbvE3NlV6QvU/Z5 BM4ukJdaHcq2Of+AxD4p+HB7R85/Yx7Jge+ulDF8++Vch3qsVeTcGOOpkhsU fKZiubLt+1KW2PhOkz6ZNc3fiMq2709ZYuPjZ0pwRvGtTfhuspOSZ4g3P2UM 3wE5Y/i6Kf8KkYO6K0o/S76HUsbwkRc+3COUv6OwgvIcmLPsGH0TN5U1yrOJ PZ51lDBOXnwrSZ4te0HKEnsP4edI7678R4m/Stn2w+KcKbmy7Gmt1pFHJ1yX mswbXGKILzabB6dT1HwwalHn2ISxPaPPVcuOmZUzTgw+MHzkOk8/PQr+vr9a 2faj/O2a96uyv9nT117RW+folzEisfGNbnYf9IB9bvS5etm+g3M+K0B+aqF3 iXr4V4+5oy41OZOAHx5nBugF3yMpzxm9M/Z01KfnC3kPkT2TZxjvNdL3lX5R g68Z1ytTtv1kyhJ7RvDhzon+yXtu5MD3VMq9MkfMF3Wo90TUpeZx/D1Eek/5 Z0tfs2z76ZQlNr61oiaxSGzW09hm5yLP2mXbh/Lvg4StI/sAnm3s/dxjCWP4 nkuZu3b0BAb3RHHWLTvmeXEuk8zJntVqHXmCOHlhV8p+IWUuMdQA61Xw+QHi iHlWnIPk6yb7UtnX6Kep4O/y68XcM1dIbLicLSAXedYv2+bcwnj13DXmFx3J /MOlJ2rDXT/6I9elMT8bCNtf9jNR66CYfzDOQ3BGolvUZ1zgxODrLXmE7Nf4 W3HZY3hZ+jzJI4WfmvDcHBrz00OcCTwLc5Y9Yk7RkVyLDWNemWckNvGcUSA/ 89NT2CHCXkoZ3yhqw7u6wbXA8HHmAS4xnHFAR3JGgt4Zw9GtjmcMXIMbGuw7 RZxeZduvx7gayh7b9dKPkjw5YQzfGylze8W8bBy9MyeNZccwVzdyrWX3KVhH npQwlxjGAJcYapDr6OiHOGLeTPmac70P13xObHYM/VT5+4l898vuK3mr5Lvi 38K+ojynJ6xvUrZNbJ/oD+5s9vKEdeKxb2Mfld5Xvd7M2hF2WsI5yPVOyni/ sn3w4XJWgTjshbx7Sz9F/k9SHtvxMYfo/cu2d272fLJ+Wso+18BZCGRL5EJH kr+57JjZOdenj7d5P2z1OQnOSAyI3AsD36xsX/+YY64dGL63UuYSc1OD9Zti bu8ipuCzEwPLtj9MWWLjm8s7RYPnZ1DMB/OPxMY/qdnzyzxvXrY9R/0PCT85 wTaP67dF2WcZODtxQqvPTHCmAoza9DO4bN/7qeBGf2D4iGGemmO9Uod69PqA flrU+5nKcy+9y3cWfx+Q/z7Zn6Ysh8b1Y22dyjNZnC1jrX0WHPxnJ4zhg8fY 58aaIf9WZddAYrMehpXdx+cpS2x6It/pkROdNYRdbnYsfbaVbZ+Ys2yLvAvw i3s+7+Fl218p/0OS7Tz/Wq0jz0sYw/4yZS4xxD8sfUDBZyFGCHtQ9hcp41uX 7QM7m2d2whi+r1PGicH3uPTzJS8Up1i2vTjluRgp+5xW37/MHXO7bdlnLtpS lttGXnQk/XCvE3NSznnOiWt3RqvPZHCuoxC56Qd8VNm+kXEduHZg+BalzCVm foP1+THPz0nuyDMsxsIYGM/2vINIfqvY7aQ/Id/3/L1OcjTPU/meZN8t+HwF GL7vUuYSc0GrMbgXiDOm7JgfUp67sbxztFq/KOZ5nLDJvOflzCWGGmBcP677 2Jh7rjv7HPvdMTnXpeZF4owv+xwI50OQ46M2dR5tcK0doj79nBdj5iwJ+n9n SxKuOy7WGVxiiGfemLNLxZkg7FnZP0ct6jAnYJeKc0nCc0zMLynjxODj3Zx3 dt6BnxF+Oe9coU8s295J8nnZv/L3OskreE9JGMM3pGB857J94GDkAcP3G38n VK0r5b9c+Evc+wWfbyFmuni3txrftWwf1+3quHZg+P5gH4vrz3qY2ux5Z87h Pt1g/iXSuzf4bECpbN6ZOctSrKelw5yTHspl20Xl3KXsXs/IGStHbWpSmzrk r5RdA4n9E79nhZ8+kdj09DrPYNlXJZybGsxFrWzfPylLbHivSZ8neSV8YXsq 5pyc8cll+8Dw3dRqDN/fyvOOZGvB52TekF7nnUOc3STflN0hrWeS5O48+1uN DSu4FjnJd23CODH44MO9Rvg+zb7GXN+pZddbTjnfY28o+IwK6+aWWEvTxJmu mHNzxvco20dv9HV1whg+1ueeZedKpp2bGoyHHNNiHeOHNzxwMO6F6bEGWauM mxr/pozdHut2r7LHcEHOcq9Y34fGfDA/10ruI7uJsbW6HuPau2x7Qspy7+gV PlzOz9wrfZbwrQvOge9P8T+S/y7pN/C7aqx3xoh8pcG9fSh5p+zrpe9btr1i 2hL7zhgH8cTMLDvvSuLMaHbtGxX7ibB7pM+Tvp84H8jumLbEvlu+j9nv+XbN +3nZ9srBwQ8Ohg/eR1GPMZD/gLJrILFXUeyBZfdxYc4Sm574YT7ojXXHelom 7XnCR+wx0g9QzGWKPUT6F+KsLvwzyYOixr48y3h/Up6Dy7Yvylli44NLzKpp 59im4LM9+4lzWNwDXOcHYz3DoR48cNYBPvhwuS+Iw74k59z0wtyu3Op48n8l eZR4owqOP1L6QmG3SW9u8Dm0I8q2E2lLbHzw4V4TOQ+P8R8ZvTAPYPhKKdeh XiptSU3OJ3wtfYE4N0s/umw7nbbExsccP8z9mbDOvGOz37PvL+F3Jb6FCbtN nGOFfys8m7bELqred9IfFedWcWaXba9Bn82eI+YHDB+8Obx7yF477fzHlV0D iX2F5vZ46d+Ls1baEnu7guOeYO0njINRF5y8+E7iGdvq/HOlL5EvJ/0g/v4W vp8aHEOeE8u2101bnhj9wSXmypxzPK24OxPGyHFHwvKZ0OFQD96T0Qe+X4Q/ K3m3OCeXba+nWueVPUfX5Yzhg3eK5K+yu4pzMM8fnp3Cfxb2vORdynNq2XY+ bYmNj/jRBddaKnxswWelTovc8H9rcAx50E+PXPjhEU9dat6bsB/e+mn3gu+q nHt8Tpx7xDmz7HrdxflL8hzZ45XnUP7uFHsKe8TLsRedFXsG+wwSGx98uNdF /+RlDOTAd03UZY6oTR3q9Yi61OS8Fvf/q7E/nBv7AfsAEhsf3xWfi+83XIfz Yr9YplF12B8ix5cNznO+sDVkT0tZnh+1H5K+VYPPIF1Qtt0l7bX4RqxVMHzw Li77HBFnk8h/Ydk1Loy+GMtFcY9yXyOxX2t1HPc59zj4a3GPg18ce8Hlkkfw e7vm6rK457hn/5bvkrLPPf2jn+0LPkd0adl2z7QlNj64xGyUdo7X4x4HIwfn lKjDXkAPcKgHD/zy2C/+ZV8s+DzSFWXbG6c9h8wf1wsMHzxi2FfI2UHX4mrh E2Qf2ex7nh6uKtu+IWd5VewX8OFyZon5v7Lsa0AOfL1Ud1nJiQWfveE6c70b 0pZc8/v4u4FyvhX3+7Vl2/NylthvRW5qsEddV3beRukJyXeFz1fs8tJ3Uq0H pF/PO4PsprQl9tviHaOc70TdG8q2b8qZg//+hDF88KhDPcZA/nll10Bi91b+ G8vuo0/0g01PnF9YGDk7VLXP8XfJvCX2J+LeLO4Kkn0V21HyfZ6RCeu3lG0j sfuJc6v04/i7Q85xxO9SMPaBuA8lwl+2vZI4t0nfVZxHWSPCtuT9h+eafM1p S+yPWq0jFyjP8ewP0h8O/Y6y7TnS7+b+5T4X/y7pn0rvJH1SwbF3lm1vlrbE xgcf7iMJ90ZfjJcc+AakXYd6t+Vch3q35yyp+aj4ncUtFZznnrLtQWlLbHyM mxr9ha8uuUixj/GuWLa9ufATlPM+nvvct8JqBZ/Ful9YSvZgcR4s28e8gZUL PmMGho8YcpDrjpyfDV/Fs2O+8BOF35lzLHmJB5sfz54H4nnCMwiJTTzXimv2 Z4OfD9/GM6IP1yR6An8ormufGAP9LxB2smrck/NYGTPjB/stnkev8P7R4DNd D8Vzj+cOucl1jPbMR8rmbZh27IJ4PlGPvuiHcTN/j0dOYsj7nvTvWn0/Pla2 vYnynN7s68S1e4J9XvpWafvhEcPZomSjzxc9XrbN+SUkNr4XYt2xxsjB2SPO NXHPPCXfYsk1hdcLPvMDh3rwwJ8s2wd/cdx3T8U9x/2IH94w6ac0+35jLKfy u0+sLe6VZ9kP2ZtkTy74zMkzZdutaUtsfPC/j/uLnE/H/f9s3H+sVTB89+Zc h3r35SypSZ9rMzcFn1N6vmy7LW2JvVusMdYX7wzM0w9x360nzpSC/zserIkf 4754UXGn8a6fs3wx7uF19LN7nC96qWy7PW0OfsYChg/eq5KtPPtTzv9y2TVe jjXIffpK2evggZzlK3EPE0eumdEz15i+wV+N2m9KnrOF3q9X0fOG5wL/jpz/ RgrPaNnTG1wv0+hxvR716RmJjQ8uMUPTzvFTq/9/Z2Dk4IwodS4c5v9XGhzq wQOnD3zrKtfD3TVvin2rbHs4z75Khw5bcJ3SxvDBA5upeXpJ+d8R1lX2Nrzv cb2U+4mEMXy/tBp/t2wfONiTCWP45vNvEISv3+hYzqD83uozKg3CvuVZ2Gb8 vbJ9v7X6DAZnPMDwcR7j/bJ926qf7oqdqj6fEudPYXsUnP/MZtvoH5TNKwYf m5gNpS8V52l+vy7b3k6chWX3OiptDN/S6Ifa9ET+j8qugcR+UGP8ODDyILHp aaNG56IWuanBXHxStm9M2vKT6KMne2TBZxW+KPtsAmcSwD8r2weG738Ycizv da0+Z8AZg7PU16dlY5/HOJiHs4UvinkB+yfmgZzkoe7SiMEHHy7z3Ftyuuo/ I/3LyE3/TcKX1TV8PuGYjWK8X4vTKH2HtPGvYsz0Rix9fhV16P+bsnNNiLFQ g/GQg1zLtNkPj3rgYM8lvI5YT9unPW5qPJQzxvp6lt89yx7DjmlLbMbzp+RF /C4n/rm8W0Yuci8f+RdHffIjsfHBh0v+/pK/CV+xzTnwPaKc5ze7b+bnB+Gb 8C6Ytty74PMS9JiMPn+Me4J5QGLjg088MT+Vnfcx5d9U+IyCzxLA6xP9LCn7 3ATnLpBLonaizWcpOEfxc9n2xLQ5+OkHDB886vwU14b8v5Rd45foi7H8WnYf u6YtsemJOWE+XlTOt8ve30emPU/4JqWN4WPfXxrzR54LVfd3nmWyW8TZl78r K88fZdvltCU2PrjEPJFzjlWiLv+vmr/kW7XN15n+mCs41Fsl8D9jDPDh8v/B IQ6b/28OuemFvXGzRv9/dPh/62wuvYP2087yDZL+r2JWkz5AeifJl7kvyrar aUvsTsGH+2rk/LvsvOTAV08bw1dJuw71JqctqfmaYgdKX52epS9TsV1LW2Lj 477nfl6Q8z7PM4C9fnPJc3Xtv9E6GSJ8/4LPYNDXcvJ14T6QvFixT+WM4SM/ 2PJRL1Fx/BThK0i/VL5ncsbwkRc+XPpMRl+MBYmdbnMcY2Ncl0tfU9ibCeMr xPg7VnwWgzMbyI5Rm/jBkX+lyEc/KckVKz7fgY7k7Ad10zFvSGKIH6afNWS/ IXxlYVuxL6ddizrMD9iBBZ/fWKXimD3TxonBB4aPXJ0qHs9z/Nte6dvIt1/a vtVkry3ZJmyW4l5XzlUrtvdKW2Ljg7929EY+8q4ZOfDR5wjWsfR3+H1E+BX8 jT5nSX/0PJz3J3HeZh4qtvdJW2KvE3PGfO0uvEvFeWdIv1J52nlvSJiXjzyp ivG905bYOfm2ln5QwdcxXbG9b3DwkwcMHzzqUI8xkD9TcY1M9EX+bMV9vJCz zEZt5vWQgs8z8P66S/zeDc6841sz+mIsSOyubT4HAY/YtSu2OQtxtfKvFeNH RzK3YNgv5cxdO64ruUb+b36ErSd7Ztr4uhX7wDhrwdmMdaM+6wGcGHzXKXeh 0WcqNqjYfjVnLCf7MM6bSe+mmIW8Pwu7lnfWnCV29zbryPfEyVccMyvtPOQg /2jph0t/V/r6Fec8MG28a8U+ahIDDobv4LS5xPRos94j+mG9dY77h943iPiN JSdIHkWs9LHSD5U+TrK77J6KHwNP8v2EMXyHpc0lZqM2Y3A/FGfDimMOEWe8 ZA/ZRxSsIxn7RhEHBy4x1ADrpZ8PEo4j5vBYG11jfVJ3o+D0FOd6jee1nGXP qL2jfprE+UScXhXbR6c9Vsbc2GYd+XHC+eiJ2nCJIX4ic1PwmYQGYTvwXE67 FnWYE7De4n4kvbHimGPSxonBxz7dJZ4v+OGRtynGzXz2lj5Ped/I+dwDPOqC 9Y55B+8TNcDBmHMwfJypaGjzuQrOePThXSn6nCK5lXhzCsb7VuzbVT/9ZH+W MIaP/vtV7Dte+iTJTYV/zjuq9GaeY9JL0o9Vvk+lb1oxb87/+BXH7CK9f5s5 /Su2j+O9q+Jej0gHp2Lef/1U3BP5myuugcQ+gfeNivs4MW2JTU83a05aJL9I ODc1mIvNKva9nbPEhse1GRDXbgthfaXPThsfWLEPDN8jDcbwsZbw7dzo2Krk APlmc/5P8hb+hpjz85znOn4w1hZrkpzk4+wH+KBYo/DhckZlquQQ8b6RPjh6 OUl1JwsfLP1L4btJ31z6V9KHirM7ayRtfEjFPvLRFznB8J0mzpYV5zo1xkIN xkMOcm3RZj886oGDfZ3wOmI9nZH2uKlBb2CsL3obVvEYzkxbYjOe0TzjJC8Q PpRnrewTFHN7s+1vFdtasf1ezhIbHz9w4bRJHyW83ugc+Ki1l+y5BZ+9aRc+ jfsobUkfzOcdPH/F/47nb8X2+zlLbHzw22MMIyrOe57yDJLvqQafObm41Ti1 to41yPpEYtPjXc1et6z/kRXbH+bMaYv7CGxkrO+9oh5jIP82URuJ/aPu8W0r 7uOU6AebnsjHfJCTfaVP7Nujohf6B2+K+3w7yX0afS1mSBbi2uxLD5I/KLZY sX1R2hIbH1xiLkw7x9bCFos/U/qYyEuukzWO7xO2qQdveKwDfPDxEUsc9sXR Dzxi72F+pP8o/T7p28f6Yz2Nlz5K8gDWcsHnasZVbF+WtsTGB39U3FPkHFtx 3vGxNlnPYPg+zrkO9T7NWVKTtT2L+6zgMzM7VGxfkbbExscaKsYamxBrinWI xMbXrp+XG3xO5gH2h1ivEyWv0bVemjKG7/OcsYlRb6eK489n/5R+kLAr08bw kRc+XPrcOWrSJxJ770bHnaF+r+DvQsLfbfCZDXDy4ttVct0mXY+MJfZ2PL/F GS35M8+Ciu2rlX+++p0k+6c268jBSdelJnMClxjiD5Y+VnIJzxdhh8q+Ju1a 1PkpYWyM9F+kVyqOuSptnJgxkQcfuQ5j7yk4Z7Vi+9q0199uPMslD2dtSP4q Tq1i+7q0JTa+B9X/eMnfxHmo2fcA90W9Yt8XfPMSdlbB54jQJ1ds44dHPHV3 iHsEP7wb0u4FH/cXc8Z8LVLO3Suu96X0RyT3iHuD9TqVdwCe0zwzCj4XNKVi +6a0JTY++BPj3iHf7nE/T421z73G3DBHzBd1qPdN1J0Z9+atrc5LrWkV28un LadF7T0rXkOXpy2xWU/UP7DRPUyP3unzWPY72eep7mzWtPDfE8bw3Zw2lxji wc6Ltbp3xTG3iPOo+tyH51ebdeQf4swQdrw4t6XNJYYaYNjUIo6YbzXeE4Qd ILvCs1b6+fxdSpx9hc2RfXvaEntXcU5kDUv+Jc5+Fdt3pl1/puxJbdYnRT/U nRF9wyWGeOpSk1r7s/fLvitqUWdpwlhZ+t8J90jMHWnjxOA7ivcIyRuFH1jx GO5Oex1PiXV+Mtda+j/c4+I8prF/l7PErrVZR/7LXldxzD1pS2ziT+W5UfCZ qEPinuOeBT+4Yt/jzb4/uWfB8N2XNpeYyW3WJ8e9v2OMYVGDe2cMXIMzeCbE OaXDKrbnx7gOr3hsTzV7HZPn8Lh3ud/hEkP8oRX3tFjjPaLimB+lz9caPvJ/ eVstqfVf/7EfwT0i9hH6pEfOyBFHTOe0rznXmzVJT0c3es5fUuzFxAo7lvuL bw9pr8WpsebRj6nY/i+24ni4rHvW/H963Btn6ec46ZdoXGfyXtPgs0PHxBrn 3gGfXbEPPlzODhGH/ZA450i/Qvrz/F1acg/FdkhaP75i+2n1Py3W4QnCzpHv 4bQl9mUF60jO3sypOOannOvTx4Pin8seoTzLKP9c4c+K83PO+IkV+6hJ7QVp Y/geSZtLzPQ269Ojz/N4vqnustJPqth+NG2Jje8F9m3xE+KczJqS77G0JfZe 8j0nzt7R2ykV27/wu1jF8b/ljOGDd6rkhYp/Qnku4r4WtnzS2JXRz2kV+55M GycGHxi+GTG3zBfzSx3q0evl4lyqn6TyvCh8f2ErSD+Day786bQl9lUFc/dr M//Miu1ngoOf3sDwwWPsjHu5yH9WxTWQ2L9rvGdX3MdzacuzIy/r5UBxOyat s4awiZ8VfZ4b+egBiY3vavYHyZXFOb9i+yVxrmJv5z2mzTpypaQx7BfT5hJD /DW8a2hcK4pzAfMq+4W08Qsr9oEd0mYOGL6X08aJwXcjz/w4o3V5xfab4lwr eRH3fpvvX+7dTspzSdzHr6Qtsa8pWEfC4V4n5o+c85BjFeHXN9pGv0ycl8VZ mjN+aeX/aiLJD4bvtbS5xBzRZh25atJraB7PlBgLY2A811V8LoazNFfEns2z 4FXFXhnPhpdaHcPYwfD9lTOXmKPbjMHl2XRVxTHdlGd3rqXsPxqsIzlDe03E MYdwr4o5BTu90c8d4oh5IO19jv2O/Zy6R8ez6Vrh+0h/PG2JfSz7WqPPBnE+ 5/qK7bfTHitjvqDROpLzQuSjJ2rDJWaZuF9nxz17g7BbhL0TtajD/Qt2Q8Hn c+bF/cr9/h9esY93c97Z+Z3i9Wbf58Si3xh7xE2St0q+m/a9d1zcp7eGb17B +M0V+8DBOLN0c9yv3O9vNPt+pufbeEYVfJ7nAfZj8U5rM35rxb7b2cOFrZY0 hm+h8txWse896W+y/8S9/Haz7zHuTe6NE+Leub1iXoe8JTYxdzCnBZ//uaNi +33mp+Je/80Zw3dz9ENteiL/nRXXuDPuRfaBuyruY9m85V2xR9zFuAo+20Pu W2IfvLti34dpS2x47zb7fqf/B4QtlJ3IG7839gKwB+IeA8O3vDhfa/3c3ejz Kty798g3V/K+ivGP0r7/7uc+ajN2W8F8cl4f9zg4MfjgnxT37Hvs89K7SJ9f cb0hynm/+LeLu7rwY+RPN/psxkNRh7rgD1bso7e5sbeA4XtLnAUV5/os7dzz o29ykOumRvvhUQ8cjN5YR6ynz9MeNzXYM8FYX2lxHql4DMm8JTbjeYlnq+R3 aZ9BeIxnP/0qdn6jx/toxfYXaUtsfPDhcm7hcZ459FxwDnx8r1zAM0KcjPI8 LvwM3sPSlny/5LzKo9z3isuK80TF9rdpS2x88Ikn5smK834lzocay7lt/s7+ SKNxaj0lzgfydcxbYp/d5p+7Ch7X04GRB87ZcX2R+OAtiHqMgfzPRG0k9je8 51Tcx4p5S2x6Yk6YD76D3x/PAZ4LzBO+xdzL0j9RzCqKfbHib+N8Z6fe8+yN rKFmzwXz80LF9kp5yxdivp6PHpm35aM2dYl/Wb7HGn2d+X7POQQ4L0Yf58c6 wAf/sZjDl6P+4ujngriOT8t/sfS1pD8r/XXx7uVMCc893jd4h5B+ieTa4rxa sb0kbYmNDz7cNSPnKxXnJQe+H9PG8P2Udh3q/Zy2pOYaScdcFv28ETmIRWLj Y47JSS30N6MG+z37/j/8e4Rm90fPbwl/XvqvaUvs+wvu94ro+e0YK+P6mpzi dU0awwdvoeTlkr+knf+dmAsk9qrsbxV/S+e7PPLdqE0c3+n5dg8Oxnf5yyMv vg8lF/GtiHXO+4mwpWnXfk/2c7wzcC8X/C3j/YrtP9KW2Pjei34ZLzmulr5u 0thzMW/UuUZ2LmkO9eCB0we+V4U/qHzriPNRxfZfyvlNxXOUzhvDB+/jyEE/ r7OH8RyU/UWz+6PnTyq2V89bfhJjeINnOvsI10v6QwX39mnFvn/Tvibz2nxd 0D+r2MYPj3jqUjOftB9eh4x7wfdP2j1eF3OyqOJ6y4jzDvuQ7If5Gzp/+4kY 8t4UvX0RdciDxMYHH24++icvYyAHvi5512WOqE0d6i0XdanJt2x6vyX6/zrm j/6R2Pg4t8x/f42zy1yHb2KcdzP30u+LHG9HP99W/K2cb+jIb6P2zW3+ps53 9u8qtpfN+NzzPdJ7JI3hg/eD5PuSK2Scf3HFNRZHX4zle55NwpIZS+xHC467 XZwNksbB+Fb+fuTF97PkdxrPGpqrJYGR51v+TiD7Dtkfiv+YYtdXnp8qtlfM WGLjg0tMNu8cd0VdMHJ0S7oOfdADHOrBA/85xvBxzOmG4v9Ssb1yxnPI/HG9 wPDdHfc0+wr39afSf2dPlv0R+5v83ZXnt4rtlTKW2Pjgw6U35v/Xiq8BOfB1 En+R5APCeiZ9nalJHuR90efiZuel1tKK7TXzlkujNrmpsYpi/6w4b+eM+3go +vySZ2XB36//4p6VvXrGEnu+eJ+zP0huJP7fFdurBQf/xklj+OBRh3qMgfz/ VFwDid1Fsf/GfKwS/WDTE2fy6Zk1yXd7vt//7xs7sfS5dm/NYU3rR/L+Nn+X 5zs++rJV20jsVZV/uapzU5c8y1SdC+yzmEN0eNjf6md56Y/w7JT8TT2tr7lN SP9OvjUyltiPtllHNirPN6xb6b1CT1ZtL+FdQ/oT0r8X3lH649xbPNsL5q9Q tb1mxhIbH3y4TUn3Rl8NSefAt1bGdaiXybgO9XJ5S2r2Fv9H+Z8t+Jv+SlXb 62QssfExbmpkM76WT8V1X7lqm7XxM+8+VV//X8gpfBNxOlX9bZ+zBJ2r9q2X MUYN6oLhI4Yc5Mqrz4fbfA6BcwurVV13nYjtFL2C4fta+qpVx6QzltjEc624 Zi/wXJT9nGTfpOulwAvGV6/aBw5G/13ohzUXY185+gB7XrIP93WjbXRykKtr xrnJRWy6at76GXPJSzy90Ve/pMfN/G0cOdNReynP/oLPS2Srtrsrz1/NrsVY 1hT+h+xuefvhEcMaeTnWyRqxvlhLSGx8XSU7NGleM87BOmPtPSPf2vLtJHuT NuelBzhrxroEXyt6gg+XcxHEYecy9sM7Nu16Sxrdz1/Mq3yv80yVnpP+mvS/ eV+Q7C/OulXbG2UssV8NPtzmpHOuU3VecuDrmTGGj7miDvV6ZCypuali/5X+ SsH6elXbG2cssfFxvVlfrHnm6Q3ZLdyb0t+TPjDpa/l2rIf1Ffen5mjDvCX2 m+xD4r9a8HmPDaq2GzPm4N8saQwfvA0lE7L7ZJy/W9U1usXaYY11r3od9Mhb do/1R9wbBZ/HoGeuMX2DkxffxoyPZ4fy9JQ+UPrJaa/HHrIXsgc3ey0yro2q tjfOW24Ua7pH3Fus7YFRg7pgC2NtU6fW6DMYcHrG2MDpAx/cPxvN7xX1Gfv2 0idIn5c2hg8e2IZN/j7YKKyj9H7se5IfyDcgaQzf+23Gm6r2gYMNShrDtwn7 pOSbBceuJP1DcTaXnmjp0GEo+2mb8T5V+zoI/0hyi6QxfP2VZ5Oqfb00V6sI e6vgsyKrSX83zlEs0+K1yhruWzWvJWOJTQzr9JNYq/3iXmFt9666100zxvB9 Ev1Qm57Iv2ncD0jsBvXTv+o+BmYssemJ9fF5rG1yU4O5aI61w32BxIbX2uZ4 xjJIWBfpW2SMbxY1wPB9ERi+c3UdU8K/lL6lai2vvlri3htALzybMq4xUPby TcamN/ocFDnJNzRpnJj/fG3m0j/X6T31Pkz65lXXG6ycGcmv5duKvVr6V9KH SB8sTlr2kIzxLar20Rt9Mf9g+DYXZ0jVuYZmnJsajIcc5FpYsB/e14GDUYt1 xHrqk/e4qdE7b4y+6XnLWGvkR2IzniJrTLz+4iclh/H+wV7e5HqMa6uq7a0y IaNX+HBb2etkb8Pzpc058G2inB1bfO1Z/63C15belrH8oOAzIaz7H+K+aIv7 gHWIxMYHn3hi2qvO20/588KXyN+eNG/VJucZLs62si9NWw6P2p9J37/RZ59G VG0PyJiDn37A8MGjTnvcG+TfuuoaW0dfjGVk1X1snbHEpifmhPkYrn4aqt7f +2Y8T/hGZozhY98vSHZlHoXnJLfl/abNuT4qeIyjIveIjCU2PrjEgJMDvU38 bpLbcS8XfJ1/JTZpTiFiwFkH+ODD5RwIcdiF6IdeyMn6+yPWPNd/HPtn7J1j mVPFr9IS61+cMVXbLXnLMXFvwIfLfkvO0VXnJQe+7TLG8HEfjYu1yTpE/hlr b9WWWJfSx1dtD8hbjo+1OzD2GPYo9vnto8YpkkfJfkPrpIfszwv+vv+jsB3w 8VyI8dEPGL72jDF86yhux6rjRwvfib1KtQfmjeEjL3y49DxR2EbSx2Qssf9q c9zfbT5j00X6su26xknj5MW3s2RP5jpjib1I+Tuzt7BGxd+1anuQethYnF3Y t9usI7dJuu5fwYdLDPGNwpdR3W2FTxLWIHv7qEWdkUljX4Zeqjpmh4xxYvCB 4SNXuerxbKF+9pDeIl9Z/D6SVfYscXqzfxZct1K1vWPGEhsffLiFmB/yMkfk wDdR/H6SKwjbTpwae7V4g/OWCeFFno9N5pOnXrW9c8ayHrmYM+ZrnPDJVefd Rfqmkisrz2jFNnP/SB8rfbeq89MDErujZH9xVpQcI87uVduTgtMx+gHDB486 1GMM5J9SdQ0kdkmxU6vuY9foB5uemNevC+5tnH5/3Vljnp03zrzjmya5GXOa scReRbEDpX9T8BmY6VXbNX7XUI49ZXdqt44cnzSGPSRvLjHEZ1q8v7Hv7RV7 GHsd+N6x94Gt1u79BAzf0LxxYvB10U/3Ju9X+1dt76Y8WwjbR/bigvcscDj7 CluTZ1ject/YT9G7xn44I/a5bSIPOTgbs1ubbfT9xFkqu5gxPrP6fzWR9ACG 7/60ucSc1mgdyTkZ1lst1gQ9MgbGc6jkUK6Z8hwgvQPzmfG5gQNl95JvcJPP TnAuAgwf5yjgEpNqNwaXsxyzqo7ZnXcJyYNkf1+wjuQsxMFxL3IvwyWGGmDp uN+JI2ZKrA3Wxbik61KT+/0QcdbS2FrzlofEHsF9mYl787C4p7l/h8aYfyhY R3JWgbr0RG24xBC/pTg/FnzG43Ce26rRFrWoQw9g7Av0fETVMXtkjB8eewf7 NPs3Z/zwwyPvkZJbse7FP4r9m2e88g8TtqTgMw9g+NZoN3501T7wNWJvAcO3 J++orDPhOwjPibMW8yz9RPVwFu8iTcaPrdrXJvtn5ZuQNIZvhHqYXbVvL+Vs l1ybOUz63s7FnjNC+K8Fn6k4rmre3sHHJiavfOtEP8dXbW+t/MdU3ev0jDF8 60Q/1KYn8s+pugYSe4b4J8Qew/6DxKanri3el9gDyU0N5uLEqn3b5C1PjP2L NdU11tWpwlaXPjlj/KSqfWD45jUaw8fzAt/mTY7dRnIu7wzq82TeVVSjkPfz nOc6fjD2PuaNnOTj3B34yfEcgg+X8x7riXNno7+bnxa97Jfx9eObN9/f1xW2 fruv3RlVfz/n+zv46VX7yEdf5ATDt4/ynBlrYf8YCzUYDznINbzJfnjUAwfj mz7riPX0Qdrjpga9gRFDb2dXPYaZGUtsxnOl5E7iHCu8KHku8xXjGNnksZwT vdMbEhsffLg78c4geWnV35zJgW+W+NuxDxXMOU/4BuxTGcvu+llveV0bcUbx jBbn/KrtAzOW2PjgE0/MBVXnPSjj79WN7f5mvYOwMTyLpV8ozmjpB2cssTek pq5vj3ZzLqraLubNwb9z0hg+eNShHmMg/8VV10BiH6n8l1TdB9/ikdj0xJww H3zrZ1/Jxr3PPOE7JGOcfQffFZI7sqcInyh5GfuV8F766RM9X161fXjGEhsf XGKOyTjHeN4l+JuDfFfJt0m7rzOcXZPmUA8e+JURDx8u346Jwz4q+qEXYqk3 IeZ5Z8nrom/81/I+RK+y+7IniHNN1fZxGUtsfPD7/X85r64677Uxbubh6hgf 46IO9WZnLHeMMZLjr4LzXB/1qYXE/s/X5Nr0c0PV9vEZyxuq/9dv/+i5h9bA POGbyr5RchL3YsYYvtF5Y/j+Vv6bYkz0dkvV35D57gyGj7zw4fLd+WbWAL/z 5C1vjrERBw/OHpJD2QOTxm+JPm6Nvugfic337ap8m8muin971fZJGde+LcaM vmvMA3V3jjmESwzxFekDkcLvEFaTfXLUog7f0MEGyK5Jv7PqmLkZ48QMiDz4 yFWX/q/GXhb/rqrtUzL23Sd7i3bXHhT93x29kBOJjW/jFuelt4YW16OHe6r2 jdN87iZsmaK/vaLfW7WN/57q/41vixgjfninZdwLPsZ7W1w3rvv9VdfbPu+4 B2VPVszm0udX/Y2ab67koe4DVdt8y0Y+EDXgw10n+r8/5pcc+E7NeG6YI+br wZgbekNOjrFPlVyu6O/FD1Vtn5mxxMa3oOo1dFbGEpv11KS6W0ruptiHq7Yn aFx7ivOI7OWL5g2LtQeG75yMucQQDwa3Ls6jkZseeovzWPSEjqTPx4XtJf28 jLnEUAOsVXJK0nHE7Kh++kg+I3u6/DP1s7U408R5QtjePBsylthtPEelJ4oe 11NV2xdkHP+k7PZ268jdk65LT60RSwzx1IUH5+nwnxu1qDM1aWx49EyPxEzM GycG3+uSByvmKsU+W/UYLpY+ot3fkvm+vJ+wkcyl9OfF2Vf2RRlL7G3arSP3 EOe5qmMuyVhiE7+/9BWK/gb9YoyV+QF/oWpf3xaPgf7B8F2aMZeYbdutbxvz Q++MYbt2984YuAZ8wyaWWi9Xba8Y43ql6rGRY0bMIRi+CzPmvhy1X6q6p505 4xH16ecg+V7jHaLdOnKvpLkvxbWHSww16JMe9046jpgrM77mXEeu3SzJ0Vx/ cbZQnh/kO1LYWzHHzOchslcq+hs3+ptV28S+UXU83DFxLdCJx+bb+DtVx/Vv 8bXhmr4Z2NUZ42/H9YMPTi3isPn+/pX0E9hDef9p93d5vtejv1u1Tb0Dm9zD e8KOkH59xhJ7fLt15AxxFkaP9EB9+piU9/i3Z32J84Hww3mWZ4y/X7WPmtS+ PGMM3w0Zc4nZod06ch/lOUp6p6L1D6u252UssfENaPE143p9JOxonqMZS+wJ PAvYAyT3E+fjqu2Kev6s6vhq3hg+eJ9IHqv4mzO+TjvFtQZbtejzDJ/GNeR+ BCcGHxi+neLaMl/ML3U+i3t4jn52le+ApHmHNTn/5/Iv0LVLZSw/jz7GifNV nCVYVLV9bXDw0w8YPniMnXHPjPxfVF3ji+iLcX1ZdR+3Zyyx6Yn1Mok1kbTO GsI+nuc8e4Pwr6u2b8tYYuObK70sOUucb6u27+J3B8lvZK9etI4kDxj2nRlz iSH+ZOldij4b8B3PMs3d5LzxxVX7wCrc00lj+O7JGCcG39P8naTJZwZ+rtpe N+P19T3Pynbfv6xD1u2PVfPvz1hiZ4rWkeThXidmt7zz1GKtMt+7xZwv4fnF sypv/Keqfd/HGmfN/xRrk/UMd0msb3QkOc+V/Ef42U3u/efo78/AFij2F+m7 8N6WcY1fZR8n3xnsl7IPSRrDx7jgEvNTozG49Pxb1THz+f1R8nfZU9qtIw8V 5w9hp8t+IGMuMdQAmyp5cNJxxDyY8T7HfndF1P0pzgksFX4W7xYZS+ys5ndL jX0ae4A4f1Vt75H3WBnzHu3WkYclXZeeqA2XGOKZN3hw/g5sQdSiDn2CrVF0 LeaYmEcyxonBx7s576m8o27Fc5y9MPR/q7Y71PRewLM/47W7T6x/MHxrFY0v U7MPHIxzGmD4WP+tLb4XuC9eajMPzgz5U+It12R8uag3WfgfjT6rA4avm/Is X7Pvvozrndrkfi6S3E/2kdIv4ZpLP1p6Ivp6PPjYxFzMPSH7KHGSNdtPibNs zb1OzxvDB4+a1KYn8q9Qcw0k9tOK7VhzH09mLLHpifh1iq5FbmowFytGbvhI bHjt4uwv+xjxVxU2QvaMvPGVa/aB4eOag+HbW5yrZK9X9LmFS3lGR0+rSF7B e1LG66uT7FntxnJFn+sgJ/lYP1dEDD74s2JNHsy7SZPXyWo113tROd9ps05d 1s3BsZZWF2ek8s7MG+9cs4/e6IvrBYaP9dml5lxNGeejBuMhB7lYx/i7RG3w c+NeYB2xnp7IeNzUeCZjjPXFmZx01KdnJDbj2UDyINkvCL+W+0j2obKvkX6I 5GzFZmq2X85YYuODD/c4fleVnhfevegc+F4R/3rJw3nOiLOG8KtZ7xnLw4Qf K/w66V2L1tes2X41Y4mNDz7xxKxVc97X+Ntai9cha541d1TcC2uLsw3vWHlL 7CPYl8Vdv+hzMuvUbL+RMQf/nKQxfPCoQz3GQP51a66xbqxx1n+u5j72z1vm 4t5gTpgPzmOw7lhP7I3ME763pW8s/TbpC/m7mfRPOZuQ8VpfT/axksUWX1PG 1bVme1besmtc7/Xi/uC6k4P81CW+m3xXNvk6d2ryGQ8460cf4KwDfPDhcg92 i/pvRz/Hxr15q/yzeafgbwjSNxLveNm3SO8hvbPkIuU/TtiwhN5fa7YHZSyx jws+3MGRs3vNecmB752MMXzvZlyHeu9lLKk5l78/SJ8j/STpPWu2389YYuNj jk+QPDFpnXnHZr9n35+m+dxOcq6wU8TpJf+d4n2QscTeUNfyLukn8i7D7+Y1 2x+Kc7aw8/RzRtIYPni9Y81yL5C/seYaSOyDVLdJ+j2K+Thjid2j6LiT4x4B B+OcyWGRF18/yXHKc5jy9I11yr0zWlifuA/vZ7xFn+XYpGb7s4wlNj64xByc d47T4p4FIwf3OHW4J+kHDvXggfeL+/b7Nuel1qY1262qNaTmOfoqY2zT6KO/ 5DHC3xI+nm/vss+I+jc1uYfmqEPPSGx8D3Bdil4/DzHn0k+V3lKz73Px50ue 3m4cfbOabfzwiKfufzWT9sNblHEv+A7Pu8e1mnxGa2DN9b4U5xHuM9kLJLcX d/MYJ/ZZvEOJPyj8jB2JjQ/+2bFmyEdexkAOfEdEXeZorahDvW+iLrnI/6jk ubzTSR9cs/1txhIbH98t+X7Jt0Rqcj1Yr6fqZ5T0DcR9TD8Xyj5LeYYKe1z2 4owl9vk8Y6RfIHmOOFvWbH+f8Vq/Iu4LMHzwWiWfkv1jxvm3qrkGEvs74cOk Pyn9h4wldmPRcRfx3pc0DkZv4OTFN0JyAu/Wmqvh0p+Rbwm/C/DdT/bF7f5p Uux5im0PjH6Q2PjgEnNk3jmoQV0weMRS51Lp5yfNGR5jA6cPfM/L7lP0eZut a7Z/jTlk/s5OGsMHj72FfYV96Xe+xUTMxBb7wLep2T4mb7lN7E3w4VKL+R9Z 8zUgB75RGa/1q2L9c5253p9mLLnmnHkj5r4mX7tC5KBnJDa+kbGfsR8W4x7i /mIdXx3r/CXeNYo+H7JdzedNOKOC3C7uyRebfHaEcyOja7Z/D84D8SwAw7dR 3LvUYwzkH1NzDST2H4odG/fTl9EPNj1xfoH7irFfU9czpbeeKVmfr+ecPf+t vPHivizOUsW+InmN4i5IWt++ZhuJ/SfrSvouyntc3nHE9ysauzbuQXR42K+y PqT3F2eK5G7ynabYHaW/Jt/fGUvs69qtIy9UnkniXh/9oE+s2S5J34V3F+lv iL+z9Bukv86zXXUu4u8DNdv/ZCyx8cGHe3HSvdEXZ0jIge/fjOtQb07edah3 Qt5yXvT2Fntp1Nq1ZnuZrCU2PsZNjb/4m5LkTYq9hLHUbC8rfkU5S7yHyPc+ e2PRZ13KgcGp1exbIWtsgDiXJo3hI4Yc5JrLv31rcn5qVYVXhZ+Udyx5iQfD d6uwSs0xy2ctK9Ef12pK7CnsNXfEXvQhPuFbFI3Xa/aBg3G+ZbKwuuJPyTsX Y2b8YOxl7GPsF3fFflKP/Yw9kNzkWlH97B77CnsasZNjr6S3Z2KPYtyM7dLI SQx5O0dP9DO1ZruuPPdyHwu/jN+Xg0st/FOj9pXSBzX5HM4eNdu/ZSyx8c2M +WPeyPFCk8fCGYfp8r0p+0bpd7d7ncCh3guB71mzDz5czkUQh835CvzwOij/ R03+Dsq30d35vTDWHHO6j/R7JD9m/yj63MLeNdsrZy2x8cG/J9YhOfeqOe8+ cX1Yw2D4Vsq6DvVOz1tSk7F8Ijmk6PMV+9Zsr5K1xB4Sa4z5YZ6R94b+jTgP S79S+p2SWzf5/MN+ipvCu0jecr9Yl/l256XW/jXb+2bMeTfWOdj+0ccsyUWS nbPOf0DNNZDYHYUfWHM/9IzEZk0QN7To7+z0PDN4iyIvvkNr/g7Ot/VDpH8l X0p5vpA8SPZ81pF6e5B3An53rtk+M2+JjQ8uMatnnePLJvPByHFV0nUWtPub OxzqwQOnD3wPtfsbPOcHDqvZ7qKc10lPas/fJGsMHzywURrHreIfEb3Qw9dN rk1dMHyPtBs/MnoFfyTGBYYvnTW2ZdH4t02+xlzfnyXP4Jnebvzomn17aB4e bfd3VTB8WeU5pmbfWZqr71jz/O4rzuPiDis657QW2+jH1sxbI2uJTcxi6Y+J c404s2u21xTnqBhTJmsMHzxqUpueyH9czTWQ2Gern+MDIw8Sm55+aHIuapGb GszFnJp9a2ct50QfP+qntehvuCfX/M2W77zgJ9bsA8P3Pwy5jvI82e5vn3wj 3pPnUs3Y3BgH8zCd/T7mBeypmAdykoe6j0UMPvhwmeffeJ9S/WulnxK56f9X 4c9JvyHpmB9ivKeJ84v09bLGT40x0xux9Hlq1KH/02vO1TXGQg3GQw5yPdtu PzzqgYNdn/Q6Yj3lsx43Nc7JG2N9XSfOmTWPYf2sJTbjuVxyJu+y4u/N9Yxc 5H4h8p8V9cmPxMYHHy75/5G8mHeXdufAd75yzmhx38zPOcL/kN4tazmi6G/E 9PhS9Hlu3BPMAxIbH3ziiTmv5rwXKv/fwl+V/6akeb9HP+fX/H2Y787I86P2 i+3+9sx35wtqtjfImoOffsDwwaPOeXFtyH9hzTUujL4Yy0U197FR1hKbnpgT 5uNmfi+O+5v7i3nC1zNrDB/7/mWSHbQH9RL+F/u37NeF/yt9ZNHfiy+t2d44 a4mNDy4xPbLO8YbibhF/WelXyLdt0df5zZgrONSDB846wAcf7ryk47Abox96 uTHpmLcjf0L+a3ge8byXfrX0d3jmtLg/er6qZvvSvOVVMQb4cG+LnFfWnJcc +HpnjeFjvNShXp+sJTVvV+xy0he2e9++tma7KWuJjY/7nvv53Lz3eZ4B7PUf SzbJniD+ipKFos8JrCD9evne496WPECxl+WN4eubNYbvfXHm1Ry/qfCbpB/I nOaN4SMvfLh3Kv+NcW1ZA//Nq+wP2x3H2mDNrKLYz4TdlTR+U6ybm+md9ZKx vDlqE79Mb1+jWyMf/bzFtWIMTdaRfMen7odxTZHEEL+qfj7lfUj4bcI6yd4s 61rUYX7APpF9t/Tba44ZkDVODD4wfOS6o+bxtIjzoPSx7L3qv7Owu2R/Lns1 6aOLHu+dNdsDs5bY+ODDvTfmh7z/zVHNvkHid+ltHc7dwg9mzeUtF4l7X9Jy TNH6PTXbxCKx8TFnzFcD70I1591C+mEtXkOsN9bHN4xP+n3iHCLf1XlL7C95 poo7ruhzCPfXbA/NmoP//qQxfPCoc2+Mh/wP1FzjgViPvLfMr7mPa/OW8+Od ZmzUoxa/h/I7KP/WA/zBqP2Q5Meym7OW2IfyHiDfd7Lni/9wzfawrGsvkL1y b+tIxrsg+mIscIkhnn/f/j398twXtpbs1qzxR2v2gS2mp6QxfFtljROD76gW X3vWw9M12/PyrvGY7O2L/jf1xFLrCWFHiHN93hL7h3bryIeS/vf3xLRlnYcc jDfHHlD0mYenYj2y9sCfrNn3WIyPPsHwjciaS8ySdutLYn2y3u6OtUXvT8ea fklyffZZxT4jfT3pI7NeC8/y3iB5TEusg6QxfKw9uMRMLBr7JdbPczXH3KSx 7yzs+ciLjuQsxAvCvpW9Zdbc52JNg81u8pkK4oi5JeO1wbrgLAo5qEmeF6NH ekZiZ+XfQD+/yX6EtVezPSrrsTLmX9utIx9Oui49URsuMcR3k76Tai3g7y3C usreJmpRh/GC/d5uzqs1xxSyxonBt0LcP6xV/PDI+5pkd9lF9l7px2oububf VTFfRZ/TAMO3tN34GzX7wMEeSxrDNzrrNf1XrPnZLV7HrO1NJb8Qr1Y0/lbc DxvrZ1LR5xnA8N3C3wRq9o3Les3+G+v2Z8lTmnxuod5uDrHvxBpvCz42MXNa vM7p592a7dv577PF/cf9CPZu3A/kozY9kX9h9IHEvlfr4b2a+9g6a4lNT9TL 93af5KYGc/F+9MJY/g0bXqN+lhmue4jfl4X1lr1j1viHNfvA8C033Bi+HXi/ Vc/LC3tasQ3CPpCvg+yPJHvJHp/185zneqlobFn5H086J/meShonBh98uHD+ 4Bkn7FHpn9Zc7w7N24ktXqOs7U0ky0Wftfg81hrrHPyzmn30Rl9PJI3h24nn S8257sw7NzUYDznIlRxu/6K4f8DBWOesI9bTrlmPmxrbZ42xvjjb8GXNY+Be QGIznl8lB4u3u/C9hX8duU5u8b1B/q9qtu/JW34V9xV8uOQ/RfhPPO+HOwe+ x7Q2muVfSdiz4nzDe4rwsVnL85t8vog+evb23H4bfTEWJDY++MQT813NeUvi DJDsJN7zit1Mel3jfUb6YnFauB5ZS+yVxesvfZXh5nxfsz0pOPifSxrDB486 1GMM5P+h5hpI7Ipif6y5j2r0g01PzAnz8ULS+wrzzhiZJ3z35o2/FtfmF8lT eT/IO26J7MmqNai38zLGn2u261nLn6P2kph7eiBHZ+kvJr2uf5MvNTyuc9Hn K+BQr3PgrAN88FNxL/wW9xnvwOSmF8ZyeovvDe4LuH+K1092R+lLpV/OdW13 Xmr9UbP9XMbyj1hz8OEeGjl/rzkvOfDtkjWG74G861CPtYqkJn1uKZmR/bL0 v2q298haYuPbSnpW8hVx/q7Znpa1xMY3TPpQnklJy394/xD+b+SYmjWGDz0T vqmalw51x+8pfFnp7dwfWWP4hkaPcOlzGWFnalwP5i2x1xzuuGlFn6MoSu8m 7K2kcfLiW67u9cXaQ2KvIzlCnOlFn0lI1G3PEOds9sa61ys6kvVPXWq+mjSX GOLPbfHaYr0l614j9ai1TtxrYLlYYyvUHfNI3jgx+MDwkevodtegt451229q PYzkfpSdFz+tnxubfDZjxbrtKVlLbHzkHdLbdc9T/vWG+//jtlLUZLxby79X 0ecN0Feu28YPj3jqUvO1pP3w9s26F3wzs54z5muBxtWp7nqPcj5E/s6yN1D8 KOmrSV9f+rbSu0q+oZyr1m3vn7XE7hp8uG9G/+RlDOTAd0DWc9Mxrh91qLdf 1pKaryu2wPoqWl+9bvvArCU2vi51r6FZWUts1tP5qttd8m3u37rtx/j3SuKk Ze9T9LrvMdz3Ahi+g7PmEkM8GFzOVGTqjuGeukCcbN33FjqS+24NYeOkH5Y1 lxhqgM0s+hwFccQ8zr8ll29d2cPlH88cFP3Nfc24V7jXkNhwT2l3LvKsXbf9 Cd9tee+K+xN9WNzjcOnpv9rtjgEjFzW5L9YRtq7sfaLWxnG/gN3b5HMO60Z9 xgVODL6NJHdRnuP4faHuMRwufaJkb/HeU+z20ntJf0f6euJcwu8DeUvshuHW G2Kt5uuOOSJriU38Dqy1os8GrC9sAntv1njXun2Xsm9HLTB8R2bNJaZxuHXk u0n3zhj6DnfvjIFrsCPrVHKhON3qto+OcXWve2yXqVafyAOG75isucQQv0Hd PT2j8W5Yd8yz/J4iTg/Zs4rWZ0UtuMQ0RX5iqEGf9Ph+0nHEzM76mnO9n1LO KyT7ifOBOPOkt8pXYe4lS5IniD9J8qCi86BvXLdNbM+64+H2l/wwaZ14bHI1 Sj9Y/CvFbxb2UdI5yDUna7yhbh98uORpjF7mirNFzDf9V4VtJv3jpPWmuu2r lGeA5CfC+wirs+azltiHFK0jOT/Qu+6YF/OuTx8v5L2XDIr9pK/wq4W/FPgm dfuoSe2TssbwsUfB7Rt7FjqSPW131njR5x/61W2fnrXExjdYOcb29nNt09iT 2LuQ2Piva/FeRm/967Zf5Xx++MkJ1j/2vmbJy3mH0v3eU/7nmny+C4za9NNS t+/QrPHm6A8MHzHME/PF/FKHevQ6lXuu6G/ZU3r7+z7f2QfIv4l4x2YtsYcM 97f8nXr7+/7Aum3OA8DBz3oGwwevW9R7K/IPqrsGEvsM5d+87j7OzFpi0xPr ZWisf3TWEPb1Lb4XqDW4bvu1vOXguE9Yu1vGeh4aa5m1uod8Q2QfWbSO5AwA GPZZWXOJIX4a+03R35S3FHaDaryeN75V3T4w7gX6BMN3dtb4lnGfTGcvEfdT cUbUbZ+b9bofxjNluO9f7hd6bhN2O78LZS3bIi86kn6414l5I+88W8U9tQV7 cJPPJg2P3PQD3l63b1jcc9ybYPhOy5pLzG69rSPJeYDkGJ79w907Y2A8Rd4x hF3E+4n0T5W7k/Qb1ddI2fep333Ebxfn86QxfG/mzSWmdbgxuM8tr/eBumMu UJ42+bblWTncOhLOKN4FxDk/ay4x1ADbSz+fJR1HzHlZ73Psd89HXWpeLk5B +GeyV81aYo+Ub6Zy7KufReJsV7d9cdZjZcz3t1tH8u+yqUtP1IZLDPHMG3P2 rfKM5nnFtYta1PkiaewYzeWXSc8xMZdljRODj/ds3i14vt/EviT9q9DH1m2P 49ki3hVZfzcuDvc3XDB8B/Y2Pr5uHzgYecDw8a28MNzfufn2Td7totZ41gP3 13DjO9TtOzTGyRh3iF7of0LdvmukHyQ5VvjXScfMirr0MTr63LFu3pXBxybm 4N62iZ1Yt30V7wl193p51tjEiKfmhJhH8u9Ud42dYtzMz87RO7WQO8fcHc4z VvP9XdK5qcFc7FK377qsJTa8WzT/28e4KsJulf1u3vikun1g+CYMN4bvHc40 MkZhPyj2COm71j3HpYi7XrWOEl6u2w92XNG1yEk+vs9uHzH44MNdLPy2FvfK WKp117tJOWdLHl/0t85jmTfF/yi9zj0t+8as8VrdPvLRFznB8N0szuS6c92S dW5qMB5ykGun4fbDox442PdJryNyMp+7xvgYL9jOUWv3usewMG+5e1yD/SVP l3wg6zmYWvc3Xr7RUo9xTanb5vsvckr0Ch8u81aVPkP43KJz4Jsn/onilaT/ LM4esd4ZI/KomNsTJCfJXiJ9Wt32HVlL7EkxDuKJ2bPuvHeKc2eLa/+q2JOE VaT/In26OHPY47OW2GX2aOknqsefxNmrbvuu4OAHB8MH78SoxxjIv3fdNZDY d7Nn1t3HB3lLbHrih/mgt3L0zpzMCD+xh0q/VzGfKHY/6ZOF3yf8FPbMqHGX /HXmWnlm1m1/mLfExgeXmHuzznFy0Wvjnv9H1HmAR1V9W3xQZGZQsYCZGVQm QSygJkGBBLsgyWBJLIAFFZVMs2Av2HvvYMfeRcVeUBDFioBiQVAsKHbF3ttb P9b+f+/73rx99tprl3PuPufemdw/inMMzzAtvs6X1DsOHPLBuyz6ABt8uPwN Fz/0xb0cm1pY2wmSFXH+6GJ5PLkV53LOFu79wiZqXJX8kzOzw/r0Gkt0bPDh /h4xj+1wPGJge7rGGLZpNc6DHRxJTmq4ot584pzQYf2ZGssTIhZrfJB8/uri MeuOznnPuf+O5jh1kK89PXCS8Ks1fq7GEv3SNl/7cdFjJ0cv0D/PDnI+agDD Bu+0uD5cF+KfEj2HRF/C/x5W42uFPV9jiX55m/0Oi+sODsbfzTsiLrazQuJ7 Zlxn9vLTin169AR/F8cf3zM6rPN3eeQZkRsuPp/1cgz+dk8PgF0c1/2w6CHq gUM+eP+rA9skfQ6X/o84Z3dYf1G5LuvwGn3dyxg2eOdIXi/9JXGmsf7c14Vf J+xIyb8V59wO6y/UWKJju0HjCW3m3KzxxDa/D3Beh20vi3+j5FHi/tfF4/M7 rGOHhz95yZlI2g7vlRrXgu3zXq7xCHH+5ZzpcL5XxbmNPSX9KsWZzlpFr9PX x0ZvXxR7gv5HomODD/fPqJ+4zIEY2L6IvKwRuclDvrmRl5y8D0AfHx+9fWn0 Nf2PRMfGe8v8+2u8u8x1uCz2CWtxI/ehiHFNveNcLuwj9ceAGsvLI/eh4nSt 9zsGEzqsz6zx9TgtrhcYNnhXSt4pOa/G8Sd2OMfEqIu5XKHxHcJer7FEP6HF fidKLp80DrZc0jhxsV0r+Zzm843W6hqN75btTcW5nfWRfpI4d2l8tdaqk3yv 7rD+Rk3gHbbBxee1Gsc4WX6dk8aIgS95TtF4haQ55IMHTh3YJoO3+d2G6zqs vx1ryPpxvcCwweNs4VzhvZr7Nb6BPSN95iBfe/rt+g7r3/YKPPYMfLi8h8D6 T+rwNSAGtgXK+9Uwj+HcGL3PvkCeGfvixUHeD1y7mzqsf9/L8qbYS5Niz7FP b+5w3K00fpC9LDylNXlA47M0Tmp8izjjNZ5TY4neo945b6133luj7xYEBzvv 5CzjdJhHnptjPsS/rcM5kOjvcq07XMd7UQ86NfFu/jmSXVTPj9VEYo3huu/k tBfGJBI9+W8ad1cvifuQeIvk+zBni/jppMd3dVhHor9Pb2j8ktblh172w//6 NmPnsTeSHsND53MPayjOU5JzZftdvpO5j8v/wxrLyZGDMZIaXuY8lP+KMb63 w/osjadEH9N/93POc4+RflOb30m4r8P6xzWW6NjgXxy9TW3URc33Ry+zL8hD vh97OQ/5fu5lSU72wo/DHJdcD3RYb6mxfCBy3xNrwLqdIblWfbwX1GH9nRrX 8hD3YPYBfaJ6Vmb9hT0l7FNxHuuwbUmNMcZwkNjweSjWgPk+Lc5lGncT51Hu s/X/7/twxALDdrnGj3TY57PwRcefa/VU9Me0evuspJgz2E+ch23GH48c4GC8 n/CEsNny/7WX58qcmT/YBOmrJN1bV0a/EYNYn9c4NrG+4pkhepD+xJe4E6I2 6qK3mTfr1zli4kPc54Td0eb3DZ7usP6N4rwxyPNkfaYLf136n71sh4cPfXZ1 9N606Dt6FYmO7UX2gnx+qHGMR6NvL5FthmzrS/9nmONSA5zp0ffgz0RN8OHy zgN+6J/U2A5vlxrne7Le9cyUfJ5nAmEvEJtnGI2f5+yVXI2zusP60hpL9GuC D3f1pGM+2+G4xMD2XY0xbKwVecj3bY0lOVeV74vs/TaPX+iw/n2NJTo2eoL+ omdYp0kad9d4rsa3alyTtP3G/3HkN09r9FcvS/TrZXuFs6jN7wO83GH9pxpz sPdIGsMG71V6T/qvNY7/SodzvBL9Tp/P6nAf/N3LclbsAfwmt/kdCWrmGlM3 OHGxvcbzjrCvFWeuxkmeL2rcl7PZj5JvD3I/M685Hdb/62U5J3p9dvQyPZ+M HOQFuyX2CHn61/vdCThzY27g1IEN7rP15r8e+Zn7Xxp/JzyXMYYNHtjz0vuK /4aw16T/If4c7h3C10gaw3Zbi/E3O2wDB8skjWH7jf6XvLfNvvPYd+JkNX5P 8/2UM6TF+Nsdts0XfqdkLmkM21+KM7/DtkRe8Tm32/xexHzuf23+2/o7g9yr 9PA7Heb9U2OJjg99enf06oLYK/T2Wx2u9c8aY9jujnrITU3EXxj7AYneSfW8 2+E6EhlLdGqiP+6N3iY2OViL96J32BdIdHirt9ifuXwkbKHGy2eMvx85wLDd Hxi2kuK8K3yKxmsr17uqa1HsvQ8kbxb+S41zfCj91XpjW9T7fSFiEm+tpHF8 sMGHS/1cp4dUe17jxR3O11m1LZJ8ULZerCfXQuM1Nf5EnPekr5Ax/nGHbdRG Xaw/GLblxFnS4VhdMo5NDuZDDGI92GY7vAcDByMXfUQ/rZD3vMnROW+Muqn5 s+g14iOX6fL/WfJj8VbCl+8W0h9hDeqdj3l93mE9lbH8PGqFD7dWnCWcc5yZ LY6BrYtifjDI157+/1L4Ys7qjOUjbX6fgb5/PPbFV7EP6EMkOjb4+OPzdYfj phT/E+GPtfnvm/Dernecb8TpKX1cjeU3kXuyxtvV+12dbzus/xcc7NQDhg0e eb6OvUH8pR3OsTTqYi7fdbiOlTOW6NTEmrAedez9Dp/vv9d4nbB1yxjDxrn/ k+Tn0lcT/hHPkjw/cK2EPdHmOD92WF81Y4mODS4+XfOO8bT81mHNNf6F69Lm 6zxNeJ+kOeSDB04fYIMPF1/80LtHPdTSm2sk7BmN19X4W85I7tesMfPrsP0T 8WcIW0+c3zqsr5y3RJ8RfLjrRsxfOxyXGNhqMsaw9cg4D/kyGUtyrp90rJmR 68+IDR+JPjP2PfuZM4pznnsAZ/2Aou4PDYnE4Iz1qW0+/78X52/OOmH/SC6l rzLGsPXMGMP2ojj/Rjw4CcVconl2yxvDRlz4cDdQ/P+E/SB9zYzlf5EDv5fE 2VCcLwZ5v7EHwYmLrZPkz+AZS/SnFf+zQT4XOBOWL1pfNe/zYjnps1o8nhXn FXnJST1w8cGfPT079nVnYb8Kq41c5OEdFbDpbX4PZIWifTgfwPHBBoaNWF2K ns/qqmdVjf8Qbx3xn8BP+i7S12+xPzGTResn1Fgmow74cHknhHjEXXY2FW1b KeP3HdiHnAnpyE/9yI/rPS/25ZzYm12L1tm/SPQ5sWasF2f4ikXH5d2JLwd5 7+HL/pkbe20lcX4Dz1ii857F7+yXNr/PsHLReu/gYOedCjBs8MhDvk9iH3cr OgcSnb2/StF1dM9bolMT6zqjze+H/CFsonp7esY4645ttaL3Gfsaif4ae0Wc Z9v8nkP3ovU+4nzFdSv6LGCMZL5g6D3y5uKD/9fC5sXe7CHsL/Z4xvgaRdvA XpfcKGlsmS1vHB9s3w1yj9Kfaxat58T5m7NB+sw276c3Yk9lhX0rTiZvic5e ZYzsJ06maB/2L3GIwbsW/2r8Qpvfi+gZ+4y9CZ4r2kZOfNbLGMO2QcZcfN5q 8fit2L/0G/1Hz1E7c2A+vSWX03XZSL5raby5eJeor17l+UV6sd4xfql3HDBs +Yy5a0VuMLi8O9Er8lNPJ8XOSz+y1WNkveLUCpsvTr+MufiQA+wdfU5czn74 bBi98Vqc8+QlJ+tTJ8714ryUsURPSC6vzwLxGsRfp2h944znypxfbPMYST3k pSZyw8UH/87EbnOcPlxDrV3PvHORZ+OksYUt/lv/ukX71GeM44ONa875zXXH Do+460muIL1B/PW5JlwbxU8KWyR+/6QxbO+1GN+gaBs4GH/XBsPWP+O/q7/f 4r+bd2nw37/hdNd4M/FWbzDer2hbWuOX2/w3dDBsjZxdRds2pcckP1TMwZwt Gi/WeFONV9T4FfluovFGRfOGBh8dnx9V53ct5mxctL6W5ti36Fp5fwAMGzxy kpuaiF9fdA4k+kDFbyi6jkEZS3Rq+klxPm7x3+iJTQ7WorFo29p5S3R43Vgf 7r2qbaCwVVmjjPFNiraBYfu0xRi2ZnF+4ext8d/0V2btua+pzk25J8rWK+/7 Off1V9uMLWnxOwbEJN7ApHF8sMGHSz28R/Bli//OPqjofHnF/JVn4xa/P7Ca +LPbHKc5ru0WGeNNRduobVldSWPYNhdncNGxavOOTQ7mQwxifd5iO7wvAgcb lHQf0U9bZjxvcjRljMGDs3nRc+D9ByQ68xnOfUdyR/HXIAZnd4tz8A4E89oi cjKXZbJoG3y4TYq/i+Qw4Te0Oga2rcXvKTmnzZytoi/oGeTX0bc9GtxL9OTW RetbZSy3jj6Djz8+2xQddztxXpYc0k/3Ds75IXouUF1fq+ZtxamRbZuMJfr3 8v1Na/hN9NiQovW6vDnYm5PGsMEjD/mYA/GHFp0DiX7w6qqj6Dp+jHrQqYk1 YT3mL+9z5V16P+l1wnZ7jXHOHWwFyTrpOyhOb8kW6hO+tMXXiOvYWrQ+JGPZ GtcPLj5cR2JkGzyXdSS3Dxu8uW2OA4d82cDpA2zw4W6ZtB/6TlEPtYD/rvX5 o8XvNvyhcRv3cu4HcHk+0LiPxq8p3rbi71i03paxRMcGH+5WEXOHouMSA1t7 xhi23nnnId86ecu/4hzrK+7rire1xu1F67tlLNGx9dP4P3pHnJ2L1kdkLNGx Mb9OrZ7jn4q/C/cv6btKbijeyIwxbH3yxrDNU/zd4lpx7UZqvLfGD9QYw0Zc +HB552QEa6Y46+YtR8S1xw8enOXkc2m93w8BHxl1jPrfOmUs0c8Wr557rXyG qP49itb3yDj37nEtGa8T15e8ddEny7hF+2/c4OvEtdszrmdb5CIP1x2sc6uv 3V5F++yeMY5P54izV1z7Bn3ebHNto4vW9xR/A8kx3C/Fb9R4Bcmh4uxdtL5X xhId2z8827f6PPlX43/j/NmnaNv6Ws/+4r/V5vdDGO9btI4dHv7kJSc9gx3e 6IxrwbZrxmvGenHd9ys63waKn2hKJMZGn9E3B3BvFm9T6fPb/P7G/kXr+2Qs 0bHBh7tN1L8sbsTARt+yNqwR60Ue8vWLvOSk5lKL45Kro2h9ao1lR+QuFt1D ozKW6PQT+TdqcA2lqJ06BworS+8qfRBnsmRL0hi2MRlz8cEfDO4wcSpF++wn zgDJKs8ErR4jtxPnQGFNrEXGXHzIAfZOmzn44bMvNWu+h/IcwJ7k/Gzz+xsH CWuWfkDGEn1lcbrps0CcguIcUrQOp5PiHBw6YyQc8lITucHwwZ+85Bwuzjhh m4nXEbnI05o0hs6YGvHZKG98XNR3PPcByYPle1jRcyhrvK1kjeLsmHRPd4+e P4J9ozj1ecsjYp8wRrJ3Do99wN5BouN/SIvjsz5HCUsJ2ztj/MjIDW+TBucC w/Zsjbn4XFXvMZL3r4bEHLZusD9z4Bpso/Ea4u2gOMcUrR8Y8zq26Lnhk5Hc PmkM20EZc/HB/+ionTU5LvJUM7aNl76ozWMkubqHD3OAiw85hoROrvERmzhc c673hlrPLpJZ4TuJs6u4V3IPkH5S9A49OUz4B21+F4XxiUXr+J5QtD/cNaMH Vg7/Zbr4p2j8kfipJvcW/UwMYh2aMX5y7AH4cHmHBD/0w8W5JPLQM/Tg2tGH jE8tWu/a5D6jhtOFHafrOLvG8vSIxRhJ/NOK9hmQd37q2ETjHop1S73fJzkz YlMD+BlF206N/Uf/g2GrZMzFZ6sGj5HUOVyyl/R2jc8qWj8yY4mObUXl7819 VZyzhW0v21EZS/Q8+1PjWsk2cc4pWj9CnPOL9h+YN4YN3rmSO0g/WpwdJeuE 7ZI0trjNcc4r2nZMxjg+2MCw1cXanhZ7njzko9ZdpH/a5nc5VmpyP7N/L5C9 jfXOWKJ/3Oa+7BP9f2H06UHBwc57KWDYlvEaPO+dI/5FsWeQ6IM034uLruOE jCU6NdEv60dvM6aH0Fdp8t6ghkuL1gfnLS+Ns2kt8e6t93sjlxetH6b4p6t/ Lot8jJHMHQx9fo25+OC/m+wbSB8hzoTIT53gE4u2gbU0uE4wbCdljOODbQ99 Pm/zOyHXFq2fLs4IySu457Z6/7J3dxPnKmEj2XsZS/TP2jxGwmGv43NixCHG SOGjNN5Q41EaX0Ofs6/yxq8u2kZOfE7OGMN2asZcfDZq9Ri5u+LsK/tt3H9b XTtzYD43S64n7Hj5Xhc9S8+vJt9JsQdG6/NVm9+vAMO2ed5cfOpbjcGlT64v 2uesjHv3Bp5jWj3uH/1/I3tWPlvlzcWHHGDsAfbFDdH77B3OOc67xshbH3vw JuEX6bovrrG8KXKTZ+cG57ol8lMPc2XOj9d7jOS9LPLeGHsVLj74s26s2V7i 3CpsH/Z2xrnIw5qAbSLOnkmvMT7nZozjg41nc57ZeabdW/gArkOMby9av0Ny DHue5zqeY4SNThrD9nWb8TuLtoGDEQcM2/ncp9iXsu+dtPymzWN8nhRvaKvx u4u2HdBgX3KBYSPOPUXbLuS7qmI2C9+HvdzkPqaH6cXNo1cnF83bJm+Jjk9R 3KVtftfl3qL1SxTzrqJr3TpvDNvSqOeemA/x7ys6x33R++yp+4uuY0je8v7Y b1e0OBa5iH1XzGdK0bYvayynRB3E3avB9T8irKzxZRnjDxZtA8O2dWDYqH9L ye9V7xj5Nmr8gGzPqJ8ekqzI53JxqpIPcz9qNYYPfGISb9+kcXywwYe7n/C1 mnyNub6Php3aDhH2Y5vfDzkw6iPO4+L0lM92eeOPxXyojbp4tw0M20TFeaLo WFfFXMjBfIhBrG1abYf3Y+Bg+yfdR/QTvcq8yXFmxtjQ6NupRc+hJW85Nfr7 5VjLCRn3x9M8i0geKtvPbX4P5Kmi9WsylujY4A+LPjxK+PPCf2lzDGz06haS s+r9XtA07u3KXchbHhB9flOL45JretH6zzWW0yM3/GmxB54pOu6lin84zxQa j5XvkRoX6HGNZ8Q8qBmJXuL5gGci6R3iPFu0Pik42JkLGDZ45CEfcyD+c0Xn QKJfL9+ZRddxXdSDTk2sCetBbfQd/cQ6s07YbtD4Nc42cW/T+CWNjxV+s8ZH S77AmS9bnnNYsqw4LxatD89bomODi8+NGcf4tc3vAtWK80rk5jrvFH0Oh3zw wOkDbPDh0vP4oW+fd2xqKQk/XuM/2vyeyT26RnOKxtYRd3b0NL25c/Tnq9G/ 9Dny1Zgz/ANjv+A/q+i4xMC2U94YNtaHPOT7t8YSnBq2U6y36v3uytyi9asz lujYyDeuwfUwZt3HxXnPuX+2+H2Uc1f2vTivCz8Be8YS/U/VdiL3Mc4PceYV rd8hzhhh4xu8PmDY4L0leYr0uyP+G0XnQKK38U6OxieLc1fG8s2Ii98IcQ9M GgcjLzhxsS2QPJUzWr7vaHw6Z3fGOd7mHJY8jTNV8mD5zi9an5yxRB8VXHyY CzF257xJGhsZa0KePTQ+KGkO+eCBUwe2MzT+u82chUXr9ynmkqLX6OGMMWzw 3pU8U/r9PONpPT6IfbWexntxDinOe0XrO+ct0bGdLd4/bX735jyNE+1+X2VR 0bYHMt6He8f5wPj9onXs8PAnLzk5N96Pvcu+phZsu+Rd4570kDgfFp2PuTym Pvw49H7iLo69zV4ZE/vlo9jH7HfkR7EW8OGOjfqJyxyIgW1E5GWNyE0e8nWN vPgw33Zi1vv9sU+K1m/NWKJj4++W/P2Sv3eSm+sxPub0I/dIyfOlf1rv9zQ+ jf6l/5Ho+0k+1eL90FOcz4rWV8n42hejN8A+i/3zpeSF3P8yjv950TmQ6I8I /0LjCzR+NGOJ3qndfvsr5mFJ42C8f3JhxMX2reTGWqvdtVbfaHwx90jF2VDY V9wvxLlI2PLtfsfj66L1xzOW6Njg4jMy7xhj5Xd40tgBsQfJ0xH1wCEfPHDq wHaJ8M6Kd4Q4S4vWn4w13C/ODTBs8FgjzhXW83KNfxCeFF7f5D3GHvy+aH2P vOX3sc/hw+WdE9b/u6KvATGwPa28r7R4DOfH6CP2I7IS/dy/yXuSa/dT0fro vOVPsYe/i/3N2fJz0XHXzvjv8Zc1+O/1Zdap1XP/RZx9NX4oY4n+U71zntvg vL9G3z0dHOy8gweGDR55fo75EP+3onMg0Z+S7+9F17Fu1INOTby/wDsBvCew Y1lr3ah+zlqi71bQ2ov7pnzW5/lQ8f6Jv/Uz/qtoHYk+TZy/Iz/vReCHP3nA JjR47ozhoV/FGaXxwcK6lfT8qzXdT2v7r7CDhD2TsUQ/pNVj5Kr6rn2lfK/Q 58ikx/8VrW+qGMsp1k9DtV78t+01Hiefq2VLqx+OEj9Rsv5cxhIdG3y4/L2e 2qgLPjGwtfZwHvLNyDgP+fbJW5JzWic968h+mHyPke/yJesvZCzRsTFvcjzL cyP7KfJ2LlmfKfxa2VeQfg3XWp8VVeOxitlF2A3SXxYnXbLtp4yxru1+BwAM Gz7EINbz4rwheZTiXyhOSvgA1b1v3r7ExR8M213iJUv2+Tt80fHnWnHNjtP4 JuE3Sh6nmDdrvJLwldqNdy3ZtgxvN2dFYQP5zpD3XJkz8wc7ptV/47tF/GM1 Hp90DGLNyjg2sV7VeOWSebMz9iXuMVEbdfGeAPNm/Y6OmPgQ91bG7Y6/Ssn6 HMUZLN/TZD9e+GrCm6Tvn7cdHj63aTw+OKuWrM/NWKJjy0Ue6iTG8a1+/+EO cbrLdgL3D427tTsOHPIdH/jqJdvgwz0haT/01zO2w3uN7ybyPbHV7zwgMyW/ d8D7CjUanyTszoaIpThrlKzPy1iuEXHhw+W9CGL2KDkeMbDx7gQYtgPyzoOd epDkpIa7JU+mnxUnW7L+ZsYSHRs9Rn/Rz6zTKXGtHxDnLHSNJ2t8qsYnadyT fpT+RsayZ/TBPVyXdudas2T9reBgp9/AsMHrJXmv9PkZx1+r5BxI9LeFr11y H4zNW6LTE/it2u56jo1rfErgxMXWO9abta3T+H7ZFmh8n2Re+umybcY9Ja5p bcl6R94SHRtcfN7JOAbjk5OWxGBMnjPjesGpCx9w6sB2Rlx7cq0TsYnZFvuS cwNsnegJsFtjL68b14o1n9LgNQUHw3Z2q/H14tqAnx3XHQzbQvk+LHmu8FOT rv28qH+a8GbxpsacNijZ9lCD15R13iDWjOvVt2TbIo0faXBcYj4meYE4pyXt f3+sVb+SeR8EHx0f1uX8WLcNY524RuuH/f2MMWznRz19o2+Iv1Fc142iXvgb l1zHRxlLdGqily+MfiY2OViL+pJtrM9ZocN7XJzV2j2XTYU9Jf3TjPHGkm1g 2C5tNYZtccb5Lot1eFRYQ1yD/pJPSH4szubqsU2kX9xq7CLJ05OOSbwzksbx wQb/4tiDzwq/kjlpPCDm92HGfhPDl2v5aPTJIHGma/xFxvjAkm18pgRnYFz/ JZyTMaclMRdyMB9iEGtCq+3wJgYOdmbSfUQ/fZ7xvMlBbWBTI9fgkufwdcYS nfm0Sm6heZa0B2cI31z6k5KXyHZV9O1mJeufZCzRscGHyxoSa6jwSa2Oge2r jHmPRK9uIfw5jb/JWFIH60mfXR09uWX0HX2LRMcGf4uYw1aRn7m8KP06jc+R 78wGz5n5bi3O8xovzViiX9PqNbs21m2bWNfPg4P97KQxbNfGGmwVe4n428Za I9G/le+Qkuv4PupBpybWZFL0TJ+Sz/d3M14nbKwPWJ/YDy2SL0n/QfgLktvF OhJj9XbHGRZrTC4kOja4+HyXcQzqYE1elSzwDNHq63w91y9pTkvUDU4fYIMP 99yk/dB/iXpmxLVmbjfHmuOzI88ikrNl3yF8ZjXYB/72Jes/Zyy3j1rhwz03 Yg4vOS4xsP2aMYaNee0YNbI+yFtiLvi8FPPdKWJQM3KnWFP2Pfu5mPc5zz2A s/4cyXUlx2c879ti7m/Kp73kZ8mdJedI/pYxhu2fjDFsd8tnl1hj5ribxnNl +z1iYiMufLjnKf6uwhZJ75K13DXWCL+HOKPFmd/g506eV8GJi22E5GvS/8hY joh8t8U1oP5RkZMaWKeR0m+PNbs91m1RXCeuEdxRse48m9zX6ueT3YW9I6xT 1rnIQ21g94pzgcZ7lOzDczI4PtjAsBFrz5Lnk1CcsRov0bhb1rzR7A3Jdzkb JS9SzL1K1jtnLdGxwX8g8hKPuKzR6MhJ/A+lP6LxJeLsLXyh9OWzlvNjPT+Q 7K59c7HG+5Ssp7KW6NhGRl/Th/uWHDctzseSrzf4Ot4h+5NxbowRZ0v1WDlv if4o56a4T0heKs5+JesrZ815NOYLhg0eecjHHIi/f8k5kOh/qp4DSq5jpagH nZpY1x7tfq+G76F8B+V7Ljjrjq1D8h7F+TdjiT5V8jNxatr9fkupZH1Vxd+K fSP9rQaPkcwXDL2SNxcf/Ldpcm/RV+XoWfocvBJ9D/Z09DkYtgPzxvHB9rl4 z0heJs64kvXVFGd1YdWo72HOtQa/b3ZQ+FEzEv39Bo/fj749sGSfZMQhBvP9 gnuH9Ms1PkScL+mPrPGDS7aRE59Sxhi21bPm4jO91WPkhKT7be/oe2pnDszn aMnvpOfke2jEZl5fCTss5rmt1mOG8IlJY9h6ZM3FJ9NuDC7rc3jJPgfxv1MQ doT0XLvHSOIcKWyp9GzWXHzIATZT8oqk/fDJZN0b9AXXkbzkZH2OEmeo/A/J W6I/3+refSH6/JjoZfqTuTLnnu0eI3knh7zUNDN88cG/Z6t5cI4Vtp1yjItc z8f5CfZx7MHjSvYZlzF+bOwNzmnOb84x7MfFuo+XfEr6Kqrt+MjJtfhRtpc0 vippDNunDcZPKNkGDsYcwbCtJd+fJF+W7WrhP5BX4ys1/kfji8Srazd+Usk2 Yq3V7lxg2NZUnJMjD+OfG4wTh+s0J/rhN2G92v2ezCkl83oF/5SI1aJ1mCX+ NeKcWrJ+mNbwxJJrXTtrDNusqIfc1ET800rOgUSvE//06Bf6EIlOTYUm9yJ9 SGxysBZnlGw7Im95RvQx1/u16LdzeQbhmmeNn1WyDQxbe4MxbPQktu8b7PuH 5Jmy1arOsyW3pxfzvp9zX8cORj+zbsQkHu/egJ8dvQ4fLu8U/UvfSL9e4/Oi lnWU90/hb2h8rfC/OP81vk7jC8T5W/p6WePnl2wjHnUREwzbuuJcWHKsPjEX cjAfYhBrXqvt8MgHDjYp6T6in9bPet7koDYw+ovaLi55DhtkLdGZzyTJZKO+ 2whPSF4qvTf7kPNc9hvke0nJ+tF5S3Rs8OHyfs5Celz47w2Oga2fYi4vuW67 32O5LHqcHkPOj72wY5P7gz1yecn6MXnLy6Mv4eOPz4SS426sOHOl79ngd1ca Wo2Ta2L0L/2PRKfG9ibvB/JeUbI+Pm/OwtgXYFfE/iEe+ZgD8a+M3Ej0M/gu U3IdvaMedGoiHutBTM6V7Rr87uvVUQv1g3PuYLtOsrNi1wtfQfIannVk76Lx e5I3y/fakvXGrCU6Nrj4NGQdY5GwG8VPaXw997tWX+f12o3DId+iwOkDbPDh 3pK0H/omUQ+13CR8Z63PBxrfqvEuGt8cvU5f3qTxR5JdxV+/3e/V3FiyPiBr iY4N/kexd4h5Q8lxb4oeZ++AYTs+7zzkOyFvSU76f2V6rd3vydxSst6UtUTH Rq9/Evv31uh99gsSHdsCfToa/B7XCMW/LfbV7ZKbyXZxxhi2k/PGbo98d5Ts v5Fi3qXxKsIGZ41hIy58uNR5Z+SkTiT6co32W0JccXpq/J3G9ySNExfb3ZKr St8sa4n+qfDVNN5Qc71N/Mkl65uL003yHumftXqMhENecrImcPHBf6Tm94Vs dwm/l2cb2baIXOS5I2nsc+rW+L6SfU7JG8cHGxg2YvHZqN0x7w+MmPTaQ5y3 kj0a7U/MKSXrW2Utp0Qdo7insAbi7NHk3qWfHyjZdiq/wbKH2v2uDuMHS9ax w8OfvN9Gn2OHt23WtWDjPGTNWK9mjR8uOd/pefs9Jn0l2T7W+FGND9b1HdLq OOR9pGT9yozlI5EDPty9ov6H4/wlBrZBWa8Na8R6PRZrQ21IclJzjjNA9gM0 frxkfWjWEh3bEyX30HZZS3T6aS/l/b7V//umJ0vWz+Q9H3Gm8pzAGa3xj5L3 JY1ha8maiw/+YHDv5Xwr2adVnDUln+bcbvUYOVmcaRF7WNZcfMgB1r/dcfDD B84+yvVc9PE6+gxs9zst03kGkV7IWk4Pnzp9Nm33uzozStZ3EGe04jzDed7q MfL+pPNSE7nh4oM/ecnJHnk2ennzyEUe5gL2W/Q/NeJzTt44PtjmcM6JvwvP MCXPYSeN15X8U/YpSffiH9HPL4gzRnHOy1u+EHuAcY/YF89H/7IvkOj4t7U6 PuvzkrCl0odkjb8YueFlG50LDNstGXPxOa7BYyTv81A7c/g7YjMHrkEfjQe1 +x2PV0rW22Jes0qe236q+a84u8CwtWfNxQf/l6N21uTVkn3O550NcWZLb2r3 GPlA0lx8mANcfMhBndT4YNJ++Oyc9TXnep+lmPtL/hNrPlD2L2UbIPk69wfJ EeL35cyOXIxfK1nHd27J/nD/48xKeow/+kYav8F9Qvyx4icK2ttJxyDWblnj 80q2wYfLOzb4oY/iOzvPALLvkfW+Wa7gfmP8Zsl6R5P3D3vzbZ5DNN4za4m+ ZbvHSN6Heatkn4vzzk8dF+W9D1YoeC+8I7ws/LLA55dsezP2Mft6fuwh9h3c d2IfMu4V+2KfVucm74KS9Qczlgui1sZGv5PBexELhf0u245ZS/RzGpy7d6Nr ezdqYY7vl+y/V9YYNnjvSf4r/12zfv9ig0a/gwHWpeBruqhkG++WgOODDQwb PqzTW3GWkYd81FrijGr0Ox6VJl9TYn5QMj46a4m+Vbt7Illwn3wYPbJbcLAT BwwbPObOvIsR/6PoGyT65boui0uuY2rGcnHkpl8ubfC7H4zpIXTi1je6hk8i D3Ui0bGlNO5a8PsDn5as75313lgiPV3wGPlo0hj6vllz8cF/kLAVJR8T5zPO Uen7ZI1/XrINbBN9Hkkaw7Zf1jg+2DbXZxvuXeJ8W7JezDrHF9xzC96/1EA9 Xwlr1viArCX61u0eI3kXgr2Oz5iIs1LMd7Cwbho/Ls434lS1zhPyxr8u2fZF zI/5gmEbmzUXn1UKHiOpeRvZf6N/Cq6dOTCfn6lLelW+SzXeQuOSxgfK9zvp q4u/Jc8g4j6ZNIZtYt5cfFYrGIPLexHfl+xT5rc47sXSuxc8Rk5VnB+FHcT3 mby5+JADrEfB7wDgh08l63OO8+6CyEtO6vlJeIv0w7KW6EM4v8Rdo+D3On4p Wb8y77ky57UKHiOfSjovNZEbLj74s26s2dPi/Cqslb0WucjDXMCGtjsOa4zP gVnj+GDj2Zxndr5THKJxTcH/hgPj30vW/2AN5HOQfIdIZoRNSxrDtl278T9L toGDURsYtoPlO04xswW/W7Jjo3Hi8L/PXqms+1LB+N/hwzsivQv+nRkM2zF8 Ty/ZxrsrxOO9E2JuJ/sG0qdrvGvsDXrs35J51IBEx4dr1TOu13/RL+ydv0qu 9eq8MWzwyEluaiJ+ouwcSPQT5dup7DrGZS3RqWlNfXpFjxH7r6hpubJth2Yt 0eEV5Fsr+Yz4SWE7ST82a7xz2TYwbHUFY9iOEGcUzxf6zJDv9pLLyzZMcoWy 8ePE2UGyi/Q+BWPrFMwnZl30Xlv4YIPfJ677zo3+39jzPJwqO9+pirmL5Hqc lUmv0UZx7bpGHvKCp8u2URt1cb3AsHF9Vyw71gkxl1TUTQxi0QfY4ZGvT/QN tdFH9BP/DgDzJsdRWWP0F/8OwMplz+H4rCU681lTslGcM3k2k1xFej/JEeL0 lXxW8buVrZ+ctUTHBr9fnGn7skdY83bHwDY+a159xFlV+G7inZS1bNfnReF7 SG4sznMar1a2fnrWEh0bfPzxWT3yE2dv6cMb3TN57h9xHbuLs7vw07KW3SP3 PtxfxHlenB5l6+cEZ7eoBwwbPPKQjzkQf42ycyDRj5RvTdl1nB31oFMTa8J6 kIu+o5+OznqdsJ1Lb2g8VuOL+P6l8X4an6/xGMms9AHsE+2dgZIzFSdXtn5N 3hIdG1x8zss6Rku7f28/TJy1ZNur0dd5UPQ8HPLBA6cPsMGHSy780K/NOza1 vCD8uVb7E7+DPSve4Iid13i0sP4af9Pgv5H1Kls/K2uJjg3+6NizxFw75p+P WlgHMGw1Wech38VZS3K+lPS5sFmcG3VxTtD/SHRsrPH2se8Y9459wnnPuX+V 5niE5BbRG+vIXpT9kqwlekFrVeKMFedlcfqUrV8qzvgm86gHDBu89eMacq2J v27ZOZDok/guo3FZPpdlLdGHt9tvy1hzcDB+8x8QcbFtGBLffho3aXyBxkcq 9gbRZ7Nb7Y9v37L12qxl38gNF5/r847xa4P/DgVGDNaEPPs3uh445IP3vzqw VfXZQXW+Is5GZesTlKup7DW6NW8MG7yNJQ+UPlGcY2TvL30ozxwabxNnQn3Z +o15S3RsB8tvR8WYJc44jXdq9+/qDWXbrlTMQ7jnivtq0uPGsnXs8PAn79C4 h2KHd1XWtWC7Ke8aty441yZl57tanMMkB3IuKc6x4g6I/Uxvbhf9uWnsD/Y4 Eh0b/LHRk8QjLnMgBrabIy9rRG7ykO/ayEtOfnunz1qiJwdF39G3SHRs/C2X f3+Nd5e5Dk3R36zFMI13jhiVRsdpFvaO+mPDrGVz5N5KnE6N/h1+cNn65VnX t1OsDxg2eFvQV5LXZx1/s7JzbBZ1MZfN2QvCJmUt0VsL9itIzk0aB5uTNE5c bNtIHs/vsDxP0iey3ag4h0tuyT7iLNB4Z63VbGorW78ha4mODS4+12UdY3v5 vZY0Rgx8ybODxq8nzSEfPHDqwHYs9+l2/wa+bdn6zbGGrB/XCwwbPK4B5wp9 crzG2wkfIf2EJu8T9tHQsvXb85ZDY1/Bh8tv7Kz/kLKvATGw3aa8i1s9hjMs ep99gdw59sXJTd4PXLuWsvW78pYtsZeGRA+yl1vLjjtQ45Nk21X4W/I9kblr /KbGBXGGaXxN1hJ9xUbnPLTReYdH390WHOz8Vg+GDR55WmM+xN++7BxI9Dt4 riu7jjujHnRq4p183sd/I+l/Y/+ODv87+ycLH9lufGyzniuqicRCyVNYT/Hf TnrcVraORL9b8dsZa13uzjvOTmXHAhvJs1bSY3jopzFnjUfxG5Hk2fy+zN8m ojfZF0j03Qse7x79dmqTe31ujHeNvXQGuaKP6b8RGu/FM5z0PeP3893K1u/P WqJjg79X9Da1URd/RxgRvcy+IA/57sk7D/nuy1uSk9q+aXVcco0qW98mazkq cjNvckxm3RS7ptF/n9q9bP3WrGvZQ/p4nof0Ga163hFnT2FnSZ/CM1XZtoey xvZq92+GYNjw2SPWgPmeTZyC44ymFtV9f96+xMUfDNverEfZPg+ELzr+XCuu 2f4anyd8X8mFijlGcgy+7cb3KdsGDvauOPtSv/yn5D1X5sz8weDBuaDR/sQk BuOHs44Nh/F+ZfMezdp337Atq03yvaTnzfq9FjH3i1gXU3P8Zn5A2foTinNB k3nk7WBtpT+Utx0ePvR9R+yFsbEP7spaomM7OObNdSEG+4E9taewkmy10n9t dVxqgEO+kwMvRk3w4fI3I/zQ78vaDm/7rPOd0eh6LpU8sOzfi/lttxq9wjUr xXWvxDWkf5Do2ODDpX+IWS47LjGw8ftzOebHWpGHfFOzluTk9+HLWOd2/558 UNn6U1lL9P2ix+ivBUmvUzn65ypxxsq+KOlrWInreIj8zpfPI3nLQ6LvL9dn /3b/VjyubP3prDnYmS8YNniHSy5Pz2Ud/9CycxwavUwvHVZ2Hzyatzws+gw/ Yj0cNXONqRv88Mh9tOQVks9wD9V4Is8wXC9xjpC+caPzXdLoeR0Z+akZiY4N Lj5PZh3jAH7D6WSMGPx2TZ4DpX+VNId88K6IOrBdqPoPKng9jylbf4y/BWv8 qHgfZo1hgwd2oGJ8If5xwq6W/pw4F4kzruDfHsGwHVIwPr5sGzjY+0lj2B5X rmuEd7Qbv1bjQ8X5gD5hr4l3dMH4CWXbLmbNC/59Egzb86rhxLJtTyjmMbIX 2x3nVtlLGn+o8SWyH17w76gnlc2blbVEx+c68W9qNP/ksvUXxDm+7FpnZo1h g0dOclMT8U8pOwcS/UnVc2rZdczJWqJT0ySNx4v7UdKxycFanFa27cWsJTq8 6xutwz87rgm9BH5G+IBhO6pgDNtL4tzZ6GtPP1yquk6X7QjufWX/FstvvOhn lf37LtiRBf9+S8yjok+6hQ82+HD5HfgWele1f6zxOWXnm6eYN0oeWzB+g8Yn abxY4/PEuZnnmazxc8u2URtxiQmG7WX2bNmxXom5nBN7iRjEKrfbDo984GDk oo/op6fynjc5puaNHR09eWHZc5idtURnPtdKThBvmviX83ee6Buu/XEF98lF 0Qv0EhIdG/xjop9P5vmRM7PgGNieVszbGp2P9blE+O3cj7KWx4u7JOlYJ0Su SyM2dSLRscHHH5/Lyo47V5z7JE8X9pl872o0Tq7Lxblb4zezlujUiP8pkXdC xJsbHOyfJo1hg0e8y2LtiD8xciPR35DvFWXX8U7Ug05NxDsjYh5b9vn+bNbr hA1fMGyc+9dITuH+K/xeyasix/3ch9o9x6vL1hdkLdGxwcVnftYxzlT8z8V/ QOPrIi7X+azYj+jkgwdOH2CDjw1f/NDfjXruirU9jT1Y8G9i50veGLmZ8w0a n1NwrMmxl6+P2MwLiT45+OfEtSPmpLLj3hDrx1zAsL2ddR7yfZC1vDfqeVDy kUaf2zeVrb+XtUTHdlacB5w5nPPcAzjr35Wcx/OC8MckH9Lny6TlLbJdIJ9b JSdqjabnjWFblDWG7Vz6pGz/j4TfEdiiiHlb+MA/N67L7TFX1haJfmHB9gdi /Z9sdK3MC/yOuB53Sj7B3LOW6BdxljV6XViTu8vWF2c9/7ukX1zwGElM8l4Y 1xHu3bG+zPnSgtfhHmFTZVsSucjzddLYJRp/o/HkWCfup+D4XBJxsBHr3rLn 8wlrovGzGn+t8VP0d+SAd1C7894XfuRFomODD/ebWB/iPhoxsH2a9fk4MdZh Cueo1v2ZvOVlBX93ns5+0Hgpe6Rs/YusJTq2u6J36LcH49zlPL+Sv1PFOsxg v2v8HT0jzjSuXdbyobgHPKPPwe3O9XDZ+pfBwc4ZDoYNHnnIxxyI/0jZOZDo X9HDZdcxI2+5TC94XQ9p9+8hN1Y0V2Fr54yz7tgej16gf5DoV0nOFOfQdv+O 8WTZ+recUTx3RM8tGzd67mDoz+bNxQf/a5p8beixqdELXHfwp6IPwK6J/gHD NjNvHB9s1wq7TvIHcZ4tW3+ef3dX2NNRH9fzuMa4puFHzcjp0ROMn4qemVa2 D33SFnNmvs9LHtbuv+PMEOcF6d9ljT9Tto2c+NySNYZtadZcfK4teIz8Pul+ mxL5qJ05MJ+XJWeL96t8nwuMXC8Jmxm5r+M3V+E/Jo1h+yFrLj6HtxuDS67n y/Z5gfdRwaUf2e4xkt9eXoy+pj/h4kMOsJtiL+CHz8/RG1fFWUFecnItXsJP /i/lQ0bf06O3xF54JXqWPmeuzPnodo+R/B5CXmoiN1x88N+jYB6cWcJuVI5X Ite02C9g7BlqfrVsn3uzxmfFHuPMvSDOMeyvxrrPlrya3hN/TuTkWnDdbo1r B4btubiec8u2gYMxx7lxzemBfQruB/pnjuQ5jf5+9xb3BPHebDT+etm2ufoc E78JgGH7TXHmlW37Petrc1v0wM2SFzX697SxBXPwfSOu4Q/BR8fnpib3B3N5 s2x9ltbwtbJrfTBr7M3oLeKRm5qI/1bUgUR/XPy3y67jl6wlOjWR79VG10ns 12JvzI9amAsSHd7rnL2N/vvje2V/V+N7IviCsm1g2O4sGMP2J8+NBX/f4/tg VeN3ysYWSr4m/I+s7+fvhs7nDtl/Sjom8fiOAI4PtnnBg4P9nuAsitjE5Prd q/HPwu+SvDtifiDOfNkSOePvl22jNnypEwzb34rzYfTCPzEXcjAfYhDrjUbb 4ZEPHIy/I9NH9NO/Wc+bHNOyxvChtsWxZjzPINGZz3eS69YmEu0px/1E+n0x j3kx94+jdmpDos+Led8Xc5+nHvqa3sg7BjbmfiPXotHnwxLhk9hHWcv5UT/2 F4Pzadl6p5wlOjb4S2JNPys77k/0j3r1Dn3UMonXlftOjVfQ+HNxJovzX9YS /ZVG1/t2rMkXMVdywcH+bdIYNnjk+SxqIv6XZedAov8p/ldl1/F70hKdmlgT 1qNzwufK6Y3+bZZ1wvZX0jjnDralXGf5radr8Qb/lpD0v/OOdVfM8duITV4k Oja4+PyddAxqYx3elPxetr+afJ3hdEmYszTmAP5d+MOHqyVZ5of+TzJihy/5 7o56HpP8OXhgP9FXkm9J/0iflcX5sWz936Ql+kfBvyfiEPOH8v/HQJL3h5gf 8yIP+bqmLMlJnVM0flAfwYlfytaXT1miY3tX3IV55/q1bL1zyhId2/v6PEJ8 cd7T+DfhD3BdJT+QnkoZw7ZCyhi2OZJ/lO2fFP4X15f1ThnDRlz4cJdT/D+5 bwj7LWmJ/nCT/eZFz0yjbvXFagnjf0Xf/C35u/QdU5bofwmfzDNY07J/Sjnx b9n6f0n36z/Se9d6jKQ3yEtOcsHFB/+PFetxyW7C/xO2WPqKkYs8KyaMvR3X N1Gxz0op4/hgA8NGrPvV51MKvkadKtaX08W7n/1a8dos0WeB5ruqOMtVrHdL WaJjW8gZH9eIeAvyjrl8xbblc15rxnAYdw7bMnvF/vfH9eBaYIfH9aUWbMul vGasF/u0S8X5iE8/paV/Kv+n8NP4acnP8u6NNP+cdcX6qilL9PeCD3eVqJ+4 y+ZQsW2VlNemU+QjD/noN+SnMd8HuFcXfI26Vqx3zlmiY1ux4h5aLWWJTj+9 x3eRqHOlivUV5PuQOCuHTh8syruXwLB1SdmGD/5g6MTpVrEPPUDuVaInGCOp c1Vh32qcSZmLDznAFilO94T98KGe6eKsIf07nl01nq1PjTirCXuSWlOW6DMl vxfvi7z3S/eK9Z7iPKR4q0v/JO8xkvUnLzWRGy4++JP3u+D0EPYC52HkIg/9 CfaiPj0SrhGf1VPG8cFWK/mv4mwgvKbiOfTS+E3JD9kvnFeSP+cdJyvOrxrX pizRX23yGJnhP/9XsU8+ZYmO/x9xftHzPYX9rnHvlPFcxTb2+tzY72DY1kmZ i89rTR4jpyRcO3NYHOvPHLgGj3JeNflesFbFejrmtXbFc+ujM+Yf1rKTMWzr p8zFB/81K66JM7NXxT5tKZ8XeelvN3n8dpxFD4cPc4CLDzmoc3GcRfk4bziv uOZc7y7qpf9kf0t4T3GeELaFbCsoxjqSCcl+KZ8Lf8QaMu4da4RvXcX+cDmP 6IFE+KM/w3nPOjd6/ebHGvaO84ZzDLxPxTb4cNdI2A+9uzgDNf5I4wEpz/vL 2DuM16tYf7jgmpjLBhGP+pHoHzR6jKSG9Sv2Seacnzq47jNjPsylH2egOKmc 8b6xLuvFdeibMoaN/Qu3X+xnxkj276MaP1bwPt2wYj2ds0R/LOw/5c3ZSFgX 5WlMWaJ/yHcjfRZxvcXZuGK9q+I0RgzGYNjg1UsulNxYcV7h/l/resDgEaeh YtvaKeP1ERcMGz6sE+vF+pKHfNS6omyPF5b954uX7YFUrevvL3vXWl8vZP/Y wx80+Tr2EmeTivVNgoOdvbwMi+vN3Jn32hF/04pzbBp7jjNhQMV1DExZolMT /osjF2N6CH1xo/ORa1DF+oo5y0FR9wLxfsu7D5sr1jdS/DmSTeEzJ2IRBwy9 LmUuPvh3U6yPxakTZ3DURS7wzSq2gS1X6zUEw9acMo4PNur+pNFz2SbmwXzf k9ycvdbk/cveXUucLekX1itlib5qrcerBoe9js9KOcchBuu8muzpWufaWpzP hG+WMr5VxTZy4tOQMoZt85S5+Hze5DGyt+KsKfv2wnMxF+bAfFoDGyrfbTXu rvGWGj+puoawr8X9Rp9vOSMSxrCtnDN327j2YHDXEWdoxT7bKE5Wtu2k19R6 jKSeYcIy+KfMxYccYEs5sxL2w2dIyuccvc9+J++Kcb1aKubDQaJ/z3kq+3ec TeIUKta3S3murRE3FzVRD3mHRSy4+OC/ZvDgDA9saOT6PuoE+zFyscb4DEsZ xwcbz1g8s/NMspbsP3DfifEOFes7Sv7JPUq+v0p/Pe6JYNh+azK+U8U2cDB9 lVyGYduetVLM2lo/D7/T7O8kfB+pFzZGvE8bjbdXbNtHm6OTPs90MoZtQxW6 c8W2c9L+XrTpYN/L3pXPQXU+w7cV9rf0OzXepWIe34OQ6Pisp7yda33W7Vqx vrM4bRXXukPKGDZ45CQ3NRF/t4pzINGvUD0jKq6jPmWJTk2cuetFLmKTg7UY Gecx5zlyZNRB3H+i/r0qHu+SMr576Hyw/RcYNuqn35c0uufXV6xRFZ+Xe8R5 wBnSV/qecaaAwWOPE/O/yAuODzb4cDmvPlPszs3mjI69yN58Snvt6YL3479N 3g/shX3EmSq8W8743rGfidsl8oJh21Vx9q041io5xyYH8yEGsTaotR0e+cDB +ibcR/TTHinPmxysGxj9tZE4+1U8h1VzlujMZ1zsiRbxv5Y8oOJ5sx7wmO/+ sd67pSz3j1jw+8b6TFc9Bwp/puAY2LZO+RwZXOv1GRu1UwNyjcBXUR2fK94m GndUrI9NWaJjg48/PsU4nziv1hAno89A+r/W5wV7vyTONPmslrMsxRnHObF1 rc+KcpxPnEVwMoGDYYNHHvIxB+JX4vxCoh8k32rFdVSjHnRqYk1YD86WPWNd WUPWCdvqqu1ojZ9lLTQ+JPyIuR2xpX+huX+pT8+Y48EV691zlujY4OIzLuUY 2OCT/9CKzzau87axPnAOiVjg42I+8OFS86FxPclFbGrhcfAn/b+vGs0ZLvxI rrf0GeIeofGGwjop/tq13o+HV6yPTFmiY4MPt1/EPKziuMTA1iNnDFtrynmW 5UtZknMw57Zi5vXR/yWOqlg/LGWJjo01bpHPhgmPWfeWOO+ZL/2/E/cWcTcT 5xjhdRofnbJEX0dyR3xql/0nehPHVqwfI873qmUz2bdKGMMG7/iKYx4T8Y8L HYl+rPDxGrdrPD4VUvo3jeatG/WAg22eME5cbCdL9pKtIN+TNP6F+5zGz2mO J0R9o/T5Oe5fJ1asn5qyRMcGF5+anGNspNg7J4ztGPMlT16fDRLmkA8eOHVg 4zsbvxXyve+UinW+r51f8Rr1zBnDBu9Uyb0kzxRnpnKdKX1orX9fbGz2vfK0 inV+f0aiY9uf/amY24izpvSlPLNqfHrFtgvEzwlvanbfMj6jYh07PPzJS058 scM7JOVasGVyrpHvk3xXPavifIeK84Ls50p/UfJ5fc7ReG/xNpF9WPT22RXr Z6dCVmyDD3fLqJ+4zIEY2LKRlzUiN3nIl8tZkpOe75DtO/kN0fi8ivWLU5bo 2Pg7In+/5O+dXAeuB/26jT5Xs+bNjtda65gXCNtUg3NSlhfE9Vtb431qfU+5 sGL9cM60Wvco/QmGDd4lkiXJS1OOf1HFOS6KNaMfLo49yr5Gohdr7cc+Z4+D F6O2UsTFNiH2Jfvoco231PgyjTeXvFT6FpzHtd5r7KPLKtYnpCwvi30IF59L Uo6xtT5DE8aIsW3CecpRDxzywQOnDmzrRj5yTYw9Oj7WkPXjfACbGHXUhT8x D5F+lfAfGh13m6jhyshDzUh0bPDhDkt4/a+Ic4QYy2KJv6F4P8a5cXX4TUxF 7Ij/UsH+cK6pWF8zZ4n+v9hIfK+tOO4pGg+WbGl27x0m+0/KtavG18U+Yw8i 0UfK/nLBe489O6lifa2cOdjZp2CTYg+Th3zMgfjXV5wDiX6t4t9QcR0XRT3o 1MT7C2Nrfe0eqpcP//3DpN+v531h3j2+SdyCuJPku5XkEcFnfHPFOhL9cnFu 0XiW4vbK2Q//nxuNVWq9nozhLdPFuVXjX8R5RHKubL3le5vGJ8l+Z8rytrhm jJFc01fF3Y17Toxvr1g/Xfa7NN6T84wYGp8mubv0PfTZSfw7KtYnpyzR9wg+ XIVbVht1UTMxsN2Xch7y5XPOQ757U5bk5D/1eI7GvzYu+8+AJO6uWH8wZYmO 7dY4V+jD0Zwb4XtPxfoU4bOVZ7L0s+RXL+w3+W0hzr3UT63iTKnYdnrK2Hm1 vjeBYcOHGMSqzfk7xsbN/s51v/AxGj8cvsTFHwwb39Puq9iH72tIdPy5Vlyz 0cL2Y20j7wTJh4T/3mj8gYpt4GC7ifOgsDnyr8t5rsyZ+YOdL975uo/056xo 9vlPDGI9knJsYk3T+OGKeWel7Etc/KmNunj+Z96s3/YJc/Eh7kRh+9b6zHm0 Yn264swT/2CNtxP+uPAB4p6bsh0ePhfrc2Cz9/JjFetPpCzRsT0T+4w9SIyO Zn9fuFKcJ2X7g985let1fbZOmEM+eOBPVGyDD3dkwn7oM1K2w1uHZwaedeU3 KmGfaayXeIOEPc3eoc9qzYPzVMX6sylLdGzw4XL+oE+tOC4xsJ2fMoatT855 yMcYSU7mslmsL2s7vWKdey5yeqw1PfZrPHexTtyPOSfZw/82el8P0fiwZu/3 GbGuXCPkjP+dcfr8Jf4e4jxbsf58cLBzjcCwwXtecjvu6ynHf67iHEj0K4XP rLgP1s1Zoi/rCdn/bnRvtMQ17gicuNhelrxZ2KuK85LGb8p//ZzX9QXp42R7 o+B151q8WLG+Xs7yxbg2L8R14xoR462C5wg2Lu4R5PlHOfdKmEM+eODUgY21 PDbOyVcq1jdQrp81fpxzIG0MGzywJ/U5gXM11ob1JC7rSA1g2DiPwWfHuoOf FOfz7KiFXG9Lzi/47L1N9v+U7yKNFwr7oOJzEXxuxbZEfz3DK9aeCWPLbKrh tYpt/RRzUq3HcG6v9fnL+Umek2ud6/WKeS+mLF8P/xHcy2L/zqtYv4szpOJa ++aMYYOHD7mpifhvVJwDiU49b1Zcx2spS3RqOo615HxPOPac8HmrYtvslCU6 vHdkW1DwvWNhxeONcsbnh84H28LAsG0ozr3Kt5xq3S/h+9nbst0i7B3JyZJv p2xfIP20ZmOdpO+diJiRd3L4YIMPl5hThHeWfoDG71acb37KZ/ddsf7Ly366 9DEaL2KdNH4jZfy9im3UdktcIzBsG6v+9yuOxb2S2OQgPzEWBQ87PPKBg5Hr g1gP4jBvcnBfBqO/mNeHFc9hYcoSnfl8K/m+eP3l+67kYum3yj6ee0uze/Wj ivU5KUt0bPDhcn0XSH7J9a11DGz1/GYueaewfcX5WPjF8vs4ZblC/2X/tEfi JI2fiDifVKzPS1miY1vmV7HPkorjNnDdm13/May55N21XpNPWSfOrJQlehf5 nsI1iXo+q1h/MzjYj0oYwwaPPORjDsT/vOIcSPRG1fBFxXXwwzHyi1hT1mR+ 1DOr4vOd5zrWCdtyaWOz4mz6hnWjz4QnVctX0u+XfWGt9WMV5+uK9eXTluj/ 4yKXXUfhU+R3nPgPSS6V7dFYpweavVZwyDclcPoAG3y44xP2Q+8S9VALNXzA Wuizv8aLJX8U7yPJx2T/gesl+aH0RySPF+f7ivV02hIdG/wngkPM7yqOSwxs XdPGsKXSzkM+zm0kOcfSV7U+uzm3f6pYXyltiY5tQewnzhN07gGc9RtXtQ6a /zbCp3K/1+dExVki318i36+Sn0iunDaGrVvaGDb8fgsJ/ofGn8m2avr/bcSF PzXi/y7sU+mrpC1/j7j4PcW9hD2rur6Uzn9WD5y42P6U/EL66mlL9JTm9kHB sViTvyvWN8nZ5y/p05s9nh7x4S4JPty/o6ZnuPfqc7Lwf4R9LWyNyEUecLA0 +0njfyv26Z42jg82MGzE+q/i+WyqetJa81/Ey4v/nGydpD9PnwrrKr9TFTNR tZ5NW6Jjgw/3lFgf4rJGxMBWI/5MyRebHWc54R+JNyBn+U2tz5zv6SPOd87t qvWeaUt0bH/FenONOlcdN0NfKc4P4h0o35eEvdLsOCuIs1i2gTlL9G/pQfqR e4M4XarW106bg72SMIYNHnnIxxyIn6w6BxJ9Tfmmqq5jUM4SnZpY15UV44yE v4fyHbQ1YZx1x9ZV8mXZ1kpbor/KM4c4Rwz2b1krVa2fofPqE8VfUfqPtR4j D0oYQ2/KmYsP/pPq/L4X37NWrvqdMd43A+9WtQ2sodnvkoFhezFtHB9sSxT7 UukjxOlRtd6sXMuLu4r05er8v6nnf0+/izirCVug8UZpS/SLaj1G8s4D//t7 fB5POQ4x+K6UpDatzdkadxenJM7UlPHVq7aRE5+N08aw9U+bi8/7zR4j+c5C v9F/9By1Mwfms2bV3y34LrOGxhXOHY3fpX+lXy7Op+J3VvwzE8aw1afNxWeV /sbgUn+map/B/B1HMiv984LHSOaV4/orZlPaXHzIAbaq4p2TsB8+m+XcG/QF fUtecnIteoqzmsab5yzRP4l58x2Nua8V68H6MNc1w4cxkud/8lITueHig/8X nHv67C7O2jGP/+UiD75grD/z6lW1zxY542vHteFsWxznG3Z4xM2zfrIPVm21 GndX3C3lu2qdx+cnLLF92my8Lnh8wOCAYdtMcQ7lmaHZ3xHIcU2t61/KmSfe dzGndaq2rSG/Hop1YcIYNmroU7Vta8U8SvG+bvYzKrFvqnX8Y+gB+Y7WeN2q eS+nLNHx+Urxbqg1Z72q9a0Uv3fVtc5MGcN2Q9RDbmoi/vpV50CizxJ/g6rr YL5IdGr6uuB1YE2I3Tt4fau2bZ2z7BvrdVSdv9fwbFkvbE3pw9LGN6zaBoat pr8xbDeIk5H+Q7OfyflO0o++km0j+kT65mnfz7mvf1swtv1g/x2cmMS7OGEc H2zw4XIt8uJkxblU44aq822bs501gsN3gkx81+gf6831Am8MH2qjLr6jgWHj O8gmURcx4ZHjh7jOxOL7B/ZNog/AwegB+oh+GpLzvMnBd0Mw+otnswFVz2F4 2hKd+Qyp+lmL56Ja4YOk5/r78wvniHwHBjY0Z4mODT46nB/oI/Z2rWNg2577 ZsE2nhubqn6u5BkV+Wuzn0WpcWGt62yOPUEuJDo2+PjjM7jquNuJ8zDnQ52/ f/3IeaJ6LtN4M3HWEb5T2hK9Z3/b/2g2Z/Oq9WE5c7Dv2MkYNnjkIR9zIP4W 4YNEb1H8LauuI5m2RKcmfFgP5s65srr8zkt4nbCRF5xzB9u2kr/Jf4e0n7W3 ll7H/qvz8zHPw9tUrbelLdGxwcWHZ2li/KnPBPH7ijO06mdervP6dY4Dh3zw wOkDbPDh8syMH/puUQ+1MJd/eG7T5wrWXPNorfoZlufmlvDBvlZ/c4ZVrRMH iY4NPtwTIuZ2wSMGNp6rwbDtknYe8rXkLMnJMzPP0JvUeVyoWucZG4mObUCd n5V5vh1etb5v2hId28A6P8vyHJvS/t9eeFfJHap+Nua5Ggzb3mljO0SsHav2 HyO8repnW56NB4aNuPDhUsNOEZsakOgrDrYfPtSwmvQe+lyXMN4WOdolB0nu l7ZE5/ma5190noF3qVrnOZm4O0tfabDHyGsTzrtijOHuEnGxrxz4rsKahO0f uchDfDCev0/VeLeITT3g+GADw7ZyxFu7v2OOCIyYm4m/R9XPuTzX4k/MkVXr PHsjR0YdPxX8LM5z9SqKsWqsz6iqba05PxMPrjOH8e5V69jh4U9ecvIMgx0e z97Ugq0j7TVjfbime1adb2zaOfeu+vpsLu7oqp+jeSbCl5h7Va3zXQa5V8SF D/eMqJ+4xCMGtmLaa8MasV57h70j8q4W891K3F6yX6/xPlXrlbQlOrZ9o0Zi ItHpp58LzkUNY6rWC1q3+dw/uU/09znLizqcz2DY+qXNHRO1guXjO8X+cTZz 5v8izgFxD2CM5B4xVti2Gh+UNhcfcoDVKs6NCfvhM1z1ZFVrRXpO8l/xh4o3 UZwOYb9L3zFtiZ4R52/OsTqfe6Wq9Z3JpXhF6b3rPO4dHPJSE7nh4oM/ecl5 gzjlqvMeErnIwz0CbL2ohxrxOThtHB9sR0q2Sh4uvFr1HHbVuIXvCvpcJd/t JDeo8zl5UMyVXEj0nlFLz6jnwKp9xqUt0fHvNNg6cQ4RNkzjQ9PGDw4fYqwZ ccCwjUybi8+GdR4jr0y4dubQUOfaq7EWyw82D86hVeu7x7wOq3pu5FkrcoEt s6XNPTTqGxfzYy6HV+1DzStIHhE+jFtirZZxg8cHH3JQJzVenbAfPnumfc25 3tvnzFs76vlD2CWy7SufYyQLkkeIn4xYxGF8dFw/fI+q2h9uf32uSXiMP3pa tuMiFrxekYsYxBqdNn5s1bZ0xCIOfuj7iHOuxnuyNzUeLrlpnc9MxuOr1vHP R/wThLWxT9OW6M11HiM5K46PnMzx2JgHPdlbso8+N4tzkvBuGh8Q+IlV28hJ 7iPTxrAdkzYXnx3rPN4x6sTnt4JjnhwxqA2Jjo3P+pH3FGHtzC1teUrMp057 cl1xbhHn1Kr1HXQdz4gYjMGwwTtNcmeebRRnF/amsFsTxuAR5/SqbSekjZ8W ccGwrRfXjfXKxzzIR631+jTqczv3JvE3ivGZsvdlLdKW6BtKjuK5qc7X6Kyq 9VODg/22hDFs8Nrjml0X8c+uOgcS/RT5nlN1HaenLdGpiX7Zo87ryZgeQt+L fSH7HcLPq1o/M22Jjm2sxr21BneLc0HV+kWcdZr7+VXvFcbIuxLG0HfMmYsP /vxesE5//y5xYdXjnXLGLwqdz+DB5oBh47cLcHywlYStK/1ecSZUrV8qzgDZ Lq76tw1qYe9Sz6XC/pTelrNE/6vgMfKshPc6PtRDHGL0FV5UjD7KNVnjy6vO 254zflnVNnLic27aGLZL0ubis/lgj5HUfJjs13Mm93ftEyLutZJbDPZcJmq8 iO+Eadd4hfQu4lbpW35PTxjDRj1wJ4Y/GFzmdWXVPhMU5yNxrpK+9WCPkeeJ c7Wwv+Wzc85cfMgB1pVeSdgPnwFpn3Ocd5zV5CUnv6VcI/xjni/TlujrK84/ Bc+TuV9Xtb5Lzn7MeaU6j5HEIS81kRvudXGNWTfW7AFxJgn7V7Zdc85FHuoE +6/g9WGN8bk2bRwfbDyb81zLWdRXfi2D/fsD4xuq1m+s+rcafudhnfgOxlqB YYMLflPVNvC+8fvPTbHGrDn5WFPqSQzX/VSfCzhLhT3E/upv/JaqbUcI7yfs oYQxbCM0x1urtk1SzA1lLyj+wwn79KhzzK9Uw/DB/p3htqp5I3OW6PgcWWcd 39ur1q9XzJtjbXbLGbs9/MlJbmoi/h1V50CibyXfO6N2ciHRqelYzkD5PZpw 7JujF++q2nZz2hId3nLyzbJ3xL9P2PLSd88Zv6dqG9h9UTcYtlE5/xZT39+/ 1SxVXXfLtpOwyZLf870x7brvld6zztjG/Z2LmMRjTcDxwQYfLuvZKH23wX5G vb/qfPymtIJ8uwz3HH9q9m9N/Db1AGeX8D1yxqdUbaM26uI3IjBsrYrzYNWx 9oy5kIP5EINYa9fZDo984GD8RkEf0U93pj1vcgxJG6O/HhPn4arnsFfOEp35 PCs5SvKetOt6tOrffvjtpjF+t3mkap3fhZCPRCz4cJnLWZLThG/a3zGwcX1P 4VlI2BPiPBa1UwOSa8+6JTVO6TNJ48er1kfnLNFTscaPRd88UXXcu9O2bVln 3+6DPRe+7zwpziZ8N8pZoo+U7dS60MWZWrXO3MGwg4NNDf9TIh9zIP5TsV5I 9LJ8n44ayYVEpybWhPV4OuG+o5/Ya6wTtikav8z5J5/95DtD4w14rkr7OWO6 9NE8Bw73swjPJ89Ure+Ts0THBhcfnm2IMSCeZ7qK81zMk7p3rfP6wCEfvFHR B9jgw2Ud8EPfN+fYo+N5acXhrpnnk92FvSjeoP7+vKDxvtwLFWOg9OniPF+1 /lDaEn1g8OFOjZgzYy1eiHisCRi2MTnnId/ktCUcfPvxbFfn74YvVa2fnLZE x0bcEXWumTHrjs55z7nNuccz13nBeUX4+Ro/krZE5xlrjDj76TNNnFlV6w+L c41s4zR+IWEMG7w5khfQ52nHf7XqHEh0ntlmV/2MxnMXcnbkviCez3g2Awfj eRKcuNjmSa6s+eyv+l/X+ADxHks791zp+3PWiNekOT4r39eq1qemLdGxzY16 mS8xSvo8kzC2f8yXPBdGPXDIBw+cOrD1l97c35w3qtbPUsz3q16jmWlj2OC9 GT3OXrhC9nekHyi923DvEfbOW1XrB+Qs34r9UxXvIH2eS9jnEH1mavx21bZp ijmRZ5861894ftU6dnj4k/fA8MUOb3ratWB7Ju0aR9e5/xdEjXAOlnxP+qGS V8n+btXYlXWOQ96FVesz0pb/R9RZx1lVfW187jXnBiIW96jolGI7YzKBKArO 2A2KKCoIt0YM7MIWuwsLFQMLRMXAQrAVO8HuQLHzfb486/d5/7iftdez1nrW 2mufe+45ew/6TuTAH99ZUT+8zAEObE9E3kU9qnMe/B+PvN0Re0Wdecn1/hjr T9Zavh+5+btl/vtr/O0y68B6cL0ep883Y/zMuox6e4PkHPHMG+PnZ55pkej9 tF5H9vOz7lrymT/G+vPymcIznOzP1xjDht/HfJe5dmvN/+EY50CiH6g1/Ujj W4S9UmuJ3trsOOrj2Rsc7Lka4/Bi+1xyWfGMFM9nGh/Nd048PYV9wjWtuM2F tSn2dsV+Osb6ObWW6NjwJeaggjkOqPO7AxgcxJJnksbP1NiHfPiBUwe2Xhov 1+k6vxhjfVTBPaR/cIJhw4/v9B7xveb94GvhHc3+jO/nZ+avAju4YImODf+O eA+i/1+O8RrAgY13kOWVYwV97qzxOtMz+oxkzektddBfav426iIX8ttYG7jJ 8aZivxtj3tHy6c/3u5+fb++WfQvuJTyDyecu6W/XWqL3b7b91H72+WGM9TEF +2B/scYYNvzIQz7mAP+CiEGivyP+H8e4jotqLdGpiZjRdZ77U7vrfteg+17W +E9jbFsoOZXviWIHKuZn6WeGRL9c+FJFve8o5pCCMew8n/8inxWFFwvmgGtA s7GK9Hvl81vUQp0rxRyYO1h3nfuGP1zEgBODDf/fY54DxfuXxuf1s0SvKO8f GveWX1njB+X3p/Stmj1Gzq1x7czhmDr7ElOQ3EZcv2q8ZbNxsFdqzE0enod5 ZxgY7wtww/txrfG/ow5qpNZSwRg23lPgh5s+kAf9ylr3j/cKevif8ESx1YLz /xvrAbayPvfJ5xHpadW/TbMl+ufi2Z417+dnSDDsr9c4Fl7iwVKKubCfuclB 3x6uq1n0RzhbN3uMfK3GGPpn4t9VMYOFPyB4Z34n+vk5dsmi9Zvks3jReboL rmexomsCG1fn+v+Ja+r9mDs6839MnyXkP6jZY+SbNY6Fl3jWjnWjBrjJcX2t 81MHNcFB/Fe1nh/9Yx2XLnoOtwivE36q8IeF7813Q7bron/H1bmHGWGrym9s wXht0bZeks9I/lRrDBv971S9V/fzsyJ5yEe/4MjEOvXROKvxap3GwVijnLCn Nf6h1hJ922aPkW/VOJY4ekKufNH5egbfYTwPFP3czrsAvVim6Gd2xoue3RU7 WNjz0lfL2JcY+ODoGb0D74z3AnAw8q7e6d7Rt2Wi3/QZfNmibfngox4wbIcX fN1x/XFt0APmc2jBvaSnXexX8l6h8bX9vC6sCc88ywt7lntKrX2wv1tjDJ3x NcJW4poIDvAjCl5buO5S7IpRIzixy4cfscS9kjYH+oK4TojhWqFOanxHuXoX /azOM/xIrv1+fp6s7/QzPc/5iXxe0vj3WuOFom0Hy3dH8TxeYwzbONWzctFc M2rNTY7ZdeaAa4dm2/EjHzjYB9zThDWI58iCY4njXQDs/DrnYs1Z+6HNXgfu AVx7qxZd08PK29jpvtBPet+He4X0vsKbNf68zhi2heG/WqwN2IXxjAqG7SjV 86qwOuk7KWc99wrJYwrGsP0tnib5rtHpZ1fst4rrPY2v72ed8XSNd9H48xr7 NvHdq7NPQ/CCg8HTKGw014/4x0ru1uz3EbDnYo3IT13za8wB18+15oaLOtco OndtxrHwEs+z8vy6/6+ZuVE3vsRQ6+pFz+3oguXqwbtm0fE8S38mjrWKfsb9 LJ6DeY4FQ19GeR9mHvp8WeM1WLfo59b1irbhs26sT0+NZ/Qz/j9/fJn7msrd t+jneJ6tP6nzc/7aRcfkI3bt4G0pundPq84Ni64BfiT6Y/383L1+1Mr4s6gf DJ13HObKnOkXNVwaeeF5LOrcQPavhC+XsdyVZ7caX3dcf8cVXNN6UQfY5zEv /IknhvmR49iCa2cOrP0AyXWFn1SwfJvfbsVuFN8nvqdrCd84vreMkXy/FvA8 L/zNOvsSc7XGm0muLb8TCsbBuA98J7m7cn6r8WR60M/XGNzwHl8wvmnRNjjm 8l5RYwzbX6pnk6K5VlJPnhC2hzi/kc868m+V7fU645sXbQMH+1A+/YTdzu98 rb/7fO8X1Bj7JnJN0fj78IcDrhUy5obrRNXZVrQf/0EuYuElnp7Qj49qXD+9 YA74EgMv9x/uTdyDmAfzoS+zuEfp812N5Z7NHm8h+13S0xnj/Yu2dRQd0ztj DFui8T2SP8Y6Yu8IGxxwUSNrzdqz3uALouYthc3hfpqxRN+r2WPk9zVec/z/ l2urovNtIzlV+pLCB2q8nnKczG+KsK2lD2n2GPlDje+v3Ge57+NLzLt15oBr YZ1xsE9qjC+M8frC39f40xpzw7tqxvigom3URX2LZ4xhG1/wd3ydor/n92n8 S/BsyfdA+Fadxrct2tYpuYGwUwqW87gnyf9Ffo9V+4819iVm6Yx9iMGvq2i/ OuHbaXy/xhmNW+TzaZ2/4xtq/GGd7+HbF62fWrAvMb/VGcOG3w6SL3N/F8/O XF8aN2m8k8bN8jutYDt++/Ccr/Efwb9j0XouY4mOjRqplfnA8bGwL2rMA8dP Nc4zTOOFNfYhH37g1IHtIb6jEbtL0XqPjOfyW/QNDBt+uxbdi9NV825x7+Re 16Ne34m49zFGct/Dlxh6hy8x+yrvXpI/SR+UMQ5Gbzeiz9L/5llRPMOF/1tj bng3zxjfs2gbHD/r80+NMWzbymebkta3Veurd8ON+f4K/10+C7kGuE76GR9S tA0cjFxDha0mrFM8wzSu13j7jLH9lPM/+WzCs6/0P2rMAdeZBXPDNVj++xTt d1bBsfASD9/+kjUp108vmAO+xMCLD7nx21fyV9abe5p82ni+Ufh+wv/kmsjY jt/v3I/5jVb8n/IZXrR+dsESHdvBkptLP6dgDv7enr/P5+/1R8h2vXzGqX+N kqmUfciHH/j+Rdvwx5d/I0AcOn+3jx2/51TbZp3OtZh8jpJ9pGwHNPtzkMaL y299cYyQvrh8DixaH5KxRB8R/viyVwPnATGHg4KPuYBhm1BwHvK9UGuJD7H/ aXxjnffERhWt75axRMe2R9HX4hkF51ir3vXTZ3rMNXCQ+Gq5xoSPln8/+Z1b sERnrTaifvktKZ8xRev7ZuzTGusIhg2/suQS4hyaMX+x6BxI9PPEXwpuxkh0 rgni8KEeamaNqRu8HPGHhO/5iu3W+FjN5WWe/9l74L4p/43rrS8lnmrR+vCM Jfr/fJHwwJFp9V4TGBzEkufmOs8RH/LhB04d2No17tDnBfmMLVq/oOD7Ovf3 SwteB9aD+8Km4h5F38W/GdexxpmU5WHyyYl/IPcnjbfuNIbtwoL9Dw+dD77E gmEbkXEt46TfptqOlOzPs3jBGDZ4TlQd+Vbva2HfotM87eIYLd5synb2v/Bh z+sYxY9pts9RRfuBj4m9taPDfrH4t5ZPReOeKWO9Wu1DfuqiV3DANSpjbrjY lzu26NzMhVh4iadG5kid1MzcwPAlhlqPKHpur9VaHhFcx4UvtW0pjhOkF5s9 RuZTxtBLylvmWUfjHsKXU/zJspWEjS/adlnBGLaDM7atpPEy4Y/OeADPmHEd 8OF3/mXN/cTg49pAohN/RtG9q4rztKL9yYVEv5dnDNlPiToYI6kTbJGe8VyP i2tiQOQmLzxwMD5V9jPUo/dqLXu3en+G647r7/KCuZkzvQDjeny1xv7EE8P8 yHFJrDtzYO0vldxW+DUFy0593lDsmcKrsl8hfBv5nxU6Y+SymssgrtPi/2PE JMp1DphsVxaMg+E/gefHVu+VUeP0Otd5VnB0Z4xPKNoGBzkWxcb3jHrOLppr vnrSRRzXbsrv6OfLdkiz8XOLtoEfEvt754X9KvEcWvT3fP+MsdVb7UON7ONR JxxwHZ4xN1zs711QtF93xMJLPPUyF2qmfnoBhi8xD8e9aGx8z5nH2cE1uNNr QP93EsdY8S4vnkv4vWv2GoFfXLTtoqJjri4Yw3a06jmMvSGNV0jZflGsMRxw NbVaZ+07AwdbUf6XCavT+IiM5WWRmzESnwtjTvSQXJcXne+q4Jso/AqNdxZ2 jHgu0RyvlL5Gq8dI9sfoPWvAfRZfYuCDA66ZdcbBmAs4GP3p0ng7fd6uMTe8 X9Yav7po2+XBRz1g2K4t+BmfZ33OyHZlbbkviP+aovXjVPMRxEnvq1qvldxN +PEZS2y95X+FONZq9R4XvuDXFexz7f/0ov2+Va7roy58ZvIc1upn1+2F7dBp zhuK1q8v2JeYJ+uMYcPvRskhyjFe9dxcdA3UdlPRe33stWLHb5xqOFKf9Vu9 TzWpaP2GgiU6Nmq8LrjgwIY/PHAUUraxr8d88bkpuMCpAxv1MX/mckvUe0PM hXmwXmC3RE935H1Bn/eF3ypsb2Gnai6TxH+H9GZxH60cG0qukrLvi3X2x5eY o2SfUrRtUsE42Mopx95WdDyc8LFHAYYNf/Jg+01926feOLluL1o/TfXcW/Sa 9co4D/mo426uc+k3iedOjW/g+b7We1t3SX++zmMk+3KTi57zjQX7EnNMszng Yo8NHIz9VXAw9kP2Uy3HCu+TMje87AeC31O0De7J0QswbGdlXDtz4JrbRbYv xfmVOEfI/pjwk5rdm69jD2dq0X43FyzRiXlcPMc1O3Za0fry4t9DPnt2+v0I DBt+97PO1FQw/31F57gv1pbeTud7xzVRsJwefSdu907PFxyMdQGHF9tDMSfm OKPoZzfe3UbJ9wHpx6uGE3geavW73oNF67cWLNGx4UvMBRlzYMMfDI7VU87D uyHfWXxmBBc4dSx6N+10z6n54aiRXNR+e1xzYA/H2nTrM7vo9zbWYKbG/cU3 WvqJ0hvF82jR+kUZS3Rs+OO7Wsr9f6ToNZgZ63l7wXrPeq8L68x6T8hY4kPs 55rLZq3ef3u8aL01Y4mODW5y3CbOJyIP/LzLVuv9PjtQflvrs4Y4nyz6XZN3 ZCR6pd6+fcL/qaL1K8KnEnWCYVv0/t3pfMwB/llF50CiX67Yp4uug/do5NPB S2/pK+9Q3Iu5l3Nfot/YrpT/bZILpJ/DXoFyDen0+zLjZ4rWkeh3aL7P8pui mIkZ1zFH+jatxk7mnTvlMX7o4/V5jt9F+bwnOUjyKsU+H9xTCpboQyP/0Kjh 8HrH943xC0XrvBe+rPFYYYN5Ztf4lGZ/uqSvKf8XA7uzYImODX90fOCiLvjh wHZ1xnnId23GecjHvgRybPSTGtk7oM5XonZyIdGxPRf1Mscjua9rvLb85xat 3yDODuV8ld8JyZ302VmfdeTzGr8F4rpLsW8WbZuUMXawYhtSxrDtHBxwXSif AfxmhM8b3F81vili4SUeDFtR8vWiYy6JWHTiB8WancW9iHuV6l9PnPuI5x3h 5cDfKtoGDsb1/7awrXh+yniuzJn5gx0vvUk++2l8urCNUuaAa3LG3HDdrbm/ W7TftIxj4T0+ajsrcjFv+tcYnMTAO0wch9R7rd8vWr9HnJOFnS17q/B5ws/l XpmxHT9iRohnX+kby+eDovXpGUt0bJ9L3sh1mTHHhMh1nuSHsp3R7M+Bitkk ZR/y4Qc+v2jbeaHjQxz6gxnbwe9VzecLO0i+m/KuKvmpbCXJS4V/ovGZza5p ZKtr/jhqJBaJPjL88d08Zc6PiuaFA9tjGWPYZmSch3yPZizJuZlih4vz4npf q58VrU8tWKJj4/6wTdwP6dNZytsv5XsGNu57+8t/RKfxL4T/o+/YLhlL9KPk t5/sayo+LZ8vi9anFeyDPakxhg2/b+ixck0vmP+ronMg0e8T/nXR18HcjCU6 1wRxx7d6D4qaWeOzAocX2w+SB/AbLJ7vg5tc//KcG7mpq2+9a/su5sF1gkTH hi8xu2bMQT76AAYHNZDnQH2WSNnn+7jmwKkDG/dw7t/tKd/L0V/jmuSdXfk6 Uh7/WLS+jj5rlTRvyZQ+J7V63+x2xf1UtO8ywpaQzzmtxrC9nrH/wqJjwPCF HwzbHvK5U/gvXMey/Sq5pPC9M8awvZVx3evUe17YT2n1XtNBwjes997ayE7n gJ98fxS9h4fPb0X7gYNR/+9F7+Gx7zeGa0p4LmXs/GZzkp+6tkiZA64HC+aG izn+WXTuGQXHwkv8KO69nY6lZuZG3fj+GT36OdbkgYIlOvP8q+j4h4RfKK5/ uK5aPUayXwSG/rB8Rnd6DtRPTv7DL9SeKtn2SMEYNvxzwZUJf3ypc5rk3+K9 oNm18s5Jn/8tOoZ3f+S/kXvJkvM+Ks7FNb6fe1nGEv1ivld8FzW+KMbIrVLG 0OdnPFfmTC3UQP4BKfPAMVDjxYKPXMgJrca57rj+Dsx4rqmoCYzrkX0w/Ikn hvmR44NYd+bA2i8v+STfs4zlFYrZVrFLCZ/BfVP48opfWvr5rR4j2Q9kz6an 8Mub7UvMJRpn4ztBT8DBtpF/UXn713s/jT2yS5s9hhve0RnjmZJtcLCPx1zA sLGnV1sy10z23DrdL3rymGQP2S5rNp6LtQEHG8ReqLCybI8X/B7P+zzv9mCV TtfJfC5t9f4MHHA9VjA3XF+phmVi3k8UHAsv8fQEnFjqpxfMAYyYS+N7/F/R 1xnzYD70hb6y70Zv4aJ31LOc7FXejQvGe8XaLBtrwhr1ivzU8xTPrTy3pWzH b9FeZKe5uju91qw96w0Otpz8Vyg59qmCJfoVrR4j4WTNmSd7m+RaMWIKknOk /8g6aryqfMZmzN1b+uB6j5HkWlnYIdJnFexLzJWt5oDrqmbjYOxxgYNtp3G9 sImt3pPpHXOiZvCkZBt1Ud93GWPYxmXce9aAeyz5t6/3nhVjakJnr2sVja9W vrGd5mHuq0aNcB4pfK7wnVPG2FujzhclV5ffNc3mgIs9tz4lcz2tOlfT+FCN ZxccCy/xxBK3Q8oc6L9l7EvMYZ3m6BNzq2Ou8p9TsI0e0R/eYybGHlRD9IN1 Aa+PmA1LnsPzBWPY2NdqjDxw4keOSdFvuPjeYG+M9QYHYy2ahB3O+1DEEkcN YEfw/Ug5J7npHfOCi5pf4X1CMTtpvKbs12n8bMFxa0vfo94x4PR8XKe5GIMR cwu/3SXbnisYB8OH2L7BCyd81NM3avkr4zzYyMszAL//7BHxLIB+YsZzaQo/ 8qwTfVy/5D0k9qbW1fhN3n2yeofhnUD6lFaPkexRrFHynP/M2JeY62MfCy58 wcF2SRm/IfadqIs9LGpbL3xZR/ANSrbBTQ56ukE8yzDHt1TrFWVdDw161tL4 aH1WFU9/+XyomEzWeHPJtkmKn8pzi3xahL3Ps4R85tV7j4D9AbAb5bcb+048 y5ccBwdcL6i2jQJ7UeONg5sxsfASTyw+5IIDPZ21LzHHRD1wUdOmkjdJf6lg 2/B6z+WDeuO7a7y5fDaW75kZ45tFzI/xHMdzCBi2pZSrX+SBEz9yvF1vDrim tdqO3/DAwdjPaS15L4T9E2KJowawt+q9f0KP6fXNzZ7XMdH/tpJ7yt8JtPMs w7OnxsfK3iH9uE6PkXUp+xLDGuBLDH9nMEDyI2HZrHGw3dLOS849FXuL5P3C 90qZG96XC8a3KNkGBzo+YIxfKXguzJP59NP4gVbvabDPNDDmAL5lyTbweXGd bBXzgIf7IvdX7r1gB9Z7Xh/Xew+Ld1U44Do3Y2642OPaumS/XNax8BLPXB+M +VL/gKgbX2Lg5b2ed3rer/Hn7zOIuUPfh831OZn3LNkH851ptkRfVrn2Zl2E vVUwhn2I/LcVfqvGrwo/XvUMkn5Cp7FHW71/0hX9YF2wUR+9BWM/iB7iD9ej 0VdisOG/Xawrte6o8cyQ6PRh+5Lf8dkz+VJ+O5S8r8AYyb4KtTOHOa323T76 yB5PZ8wB/OPoP9wzo58nqoaTOv0ODje8vbLGdyrZtl3Mmz6AYXutYP5bY5+K POjsj30njtuoSfiuwfG6/G/nnsdvXKuxkyPv9/LfQ/gdzZbovbN+P5/V6nd/ MOz7pBwLL/Fgu2v8Vb25yUGux5hf6IyRw1LG0JfLugf0jj78qPgpGu8nn6El 6yvLZ6/I80bB9exZck1g7FdQ/84lz3mlrCU68x8vnyEan9LpMZI9BGLhJZ78 c2It4CYHeyDkpw5qgoP4N6OH9I+57BPXC+t1uuwLFDNc+Gyeu2V7FdnqNeU6 2Tdq4ToHHxbrPVLyBemrZ41heyTjPY+f6l0zefaJ7wkccF0k28/kLHkPBfyi 8N9P2DP8JmYt0Z9r9Ri5f8qxxLEnQ679S853oOTdyvOO6hyh8anifVvj32U7 gN+PZo+R+yr2KmE78ruXtS8xp3WaA66XWo2DkQsc7ACN/6i3zhhueOuzxg+K OqiL+tgjAsPWkPV1x/XHtUEPmE+frHtJT19udc5RGv9a73VhTbjGDhb2N7/l Wfv8Gn0Au0ecB2n8iXyL8ru32Rz40RPWFq5EsWNKXvt3C46Fl3hiiaukzIG+ WVwnxHCtUCc1jqD/wp7lmVU+a6qXv9QbP0P+C+u9XhX5PC+f1bLGyyXb/uF3 mGeOlDFs76measlcu2TNTY58gzngamqwHT/ygYORq1vYXzx/RyxxXNtg5CMX a87az2z2OnAP4P5wSMk+5J0q/F9+23kmlP/YqOkc1XiqxpsGhm3X8D+05Ji+ UR99AMP2vua1trDDpf8nnyNKnjs4GLbdxbNWg/3Ji53/qQ01byB8mvDjNW7W +D6NT9D4LPkcpfh1G+wzrmQ/cLADecYWlhbPnuJvFfYA95iUsSX0OS7l/NR1 bMoccA3NmhuuD1Tn0SXn3ifrWHiJX1yfpdpcGzUzN+rGlxhqPazkue0Wczws +nJMyfFDhG8k/Djp05s9Rp6YMoa+r3w2lmzR52D2ChR3omxZyZNKtg3PGsM2 TOMlJWvb3CswfOE8m+cn+a2vmAm8g0iOEn58yTF7Ryw68aeV3LuDhJ+icU7Y /llL9B6Sm/C8oHEmxsiTUsbQ98t6rsyZflED+UemzNMj/MeX/OxxQNby/mY/ h3Ddcf19WPBcmXNLXJNcj6NT9ieeGOZHjnkF184cWPuLJS8U/lnBcosGf99P 53umGkYo77nCz5C+WYPHyDHsP8h+vvAV2+xLTE/mwu+S/D4uGAej5nbFPci9 X+NlhPVq87UHN7wfFYyfVbINjn6KKaaMYTtQ9ZxZMtcojftLzhDnqexpyP9c 2doajE8o2QYOVmLvRdiy4hmZ9Xef7/1ZKWPLt7m2Afx7TeGnpcwB1+isueH6 RHWeV7JfMetYeImnJ/SDeqifXjAHfImBl/tPd9xfmAfzoS8X8DwvvczzsOTD wk7X+CLZVxDnmKzxC0u2XVByzKcFY9jK8llFvn3aHIsdP3jhgKt3m9eatd8i cDDme4mwbYUdmrVEf6TZY+QZKa858zw4cl1acr4rJFeVHCv8Mo0vUo7PVVuX Yi+X/mizx8gzU57/IXHvw5eYQQ3mgGv1NuNgh6aMg1HDxewXce9ImRvew7PG ryzZRl3Ud0jWGLYvCv6On1Dy97xe9sY213O09NeEz6o3fnXJtmskL1HMlwXL 7bm3krdd97dW//+P8CVmXNY+xOA3sWS/b3J639Z4N2HH0x/53MR7GnsUkmu1 +W+brytZfzZjX2KeaDSGDb/rJffkO6+ASRoP1fgUjW/U+FLxflWwHb/H1Osj VeO6bT4fuaFk/fmMJTo2aqRW5gPHDfX+//bCA8c5Ked5XOPzUvYhH37g1IHt GPYZ2nyeclPJ+ksxF+axadoYNvxuLrkXX/OOqfFxsr2ScU2Tpd9S7zGS+vEl ht7hS8wTynu75H7KcVbWOBi9vbzTc6D+K7g2Ol3/5Jg3PQS/rWQbHE9yz0gZ w/ZtvLvx/sJ72VOyb9LmsxXmcGfJ50bgd5RsAwejD1NKPjviXOluja8Sz/cF Y8TAQ276SG1wgH9XMDdcrO9dUeN3ETsl/OC7Wp/+KddPL5gDvnfF9YEPufG7 R3IE98eszwCebfY++VThB9CrrO34zZLtaX0247son3tL1n8oWKJje0hyorh/ LJgDG/7ku0+2KerFePZJ2ny2gs/U4AKfVrINf3yZy31RL7mw4/emejhSsbMV dwnPGLzryDZH+jXyfUDjexR/uvC2Np+t3F+y/m7GEh0b/vhumTLn9JJ54cC2 oGAM2/lZ5yHf+xlLchJL3VPrPa8ZMQ96iETHdmvJ1+I3BfeJ+dMf+kyPL0x5 HbZs81o8LP9r5fdTwRL9OsmS/J+R36XyeaRk/dKsfbDTEzBs+D0Wc6V++B8t OQcSfaH4Z5Z8HXD2hJwZNuI4k6KH1PxQXB/g8GJ7SvJ5+f4inic1rnCvz7qW x6N313M/0Wdr8TxRsv5zwRL9hvAlhnrgeE6cl6eMwcG8yDOQ34aUfciHHzh1 YKs2WMdnVsn6FVnf17m/T8p6HW6Ne+h5mu/WbT5PGSv9Bb5PKdc0Wz4Pcp8R /o7Gc5uNYWO++M8pOQYMX+YIhu1q7snCn+U3VLbn+B3hXTpjDNuv4rlI2OA2 n69hf5G9pZTrmlnv2o4S30tc49xXFfei4m/utM/zJfuBg1H/C8Imafyb+K8R 565t3ksHW9STlPNTF7nggItewQ3X74p9qeTcN2Yd+0L09GXVsmObzz6omblR 96I6S671mZLn9nnGEp15vlxy/B8F63NLPndijKQPc8OXHl7FPliD/xtrncJe l20nyTdKtn2fMYZtYtY9oP/0AQzfq1M+p3olcnMt8DvP30m+Gr2kHuSrsX7v lty7BeJ/O9b/r4Il+i78LrGnovHkTo+RXSlj6H8WnI850y9qQKdv8MBxncZv yX6sct6ctXxFtmtTvu64/m6JPjBnegFGPLH4E08M8yMH57bUzhxY+y+5B/MO mVjeqc+uin0vamdeJ4rnfemvNnuMvEE+b0h+KnyfNvsSM1u9m881rBy/ZoyD Mffrhe3R5vOaW4U/J3zHlLnhvS1rfF7JNjhea7YPGLa/Vc8HJXP9nPEcXqj3 NXw77xay3dFp/MOSbeBg1PwRv8ka/8PvVMnf848zxugdfTtN8nXlvTFlDrjo M9xw/avYT0r2uzvr2I9iPegJ/eD8iPrpBXPAlxh4+Z7Mivsj82A+9IVzJ+KJ Rec8hl59EXP6r2D885Jtn5Ucw3nQ58FBD99i74pnqJTt+MELxxfRa9aatb8z egNGf74SdobG92Yt0d9s9hh5U8prDh/1kOvrkvN9F3wpXUvf8JvIbzn94bqT PrzNYyTnPvT+6bi/4EsMfHDA9Vq9cTDmAg7G9TlB+NvCJ6fMDe8/GePfl2z7 OvioBwzb9Kyf8XnWn6/672aPqs1nHD+UrC8mn7v4nZf+jvL9WPLZEWdYyHea fd7EPDiLYi74EpNO7EMMfj/FvOnDQvjls5h8im3ez2Uf+x5h93Z6Lj+XrC+e 2Hdh9BEMG36/SF7Ie6A4fy+5fub1W8nnMJzHYcfvXdXwnj4Ht/kZ9deS9SUS S3Rs1EitzAcObPjDA8etKefhTIhe4fNbcIFTBzbqo8/M5Y+od4mYC/NgHcH+ iPWYqvE0nnGF/yXsYt4DVf9D4v+35D59oBxjJO9I2ffTevvjS8z7XIsl25ZK jIPdnnLs3yXHwwkfPQfDhj95sPVQ3ksajJPrn5L1mcIXLzuWMXnIRx1p4fdJ X1o8NRpfzvuMfB4XX0p6pc1jJPvJf5Y85yUT+xIzr9kccH1dbxzszpRxMPbk 2Zuf3+wx3PAunzW+WNk2uP+MXoBh4+yA2pkD19z0Ts+LOd4o2Uv4p4qdqPGH kncJX6Jsv9rEEp2Y+3mW7nRtS5atZ+Qzg+fATu9JgmHDr7bs/XD2veFfquwc SPQ5wpfW+CNh2cQS/bA2x6Gzf44EYwxeGzH5sve92evOlX3ewdkK/c6UvedO HfSUmrNRF7kWyVizTKwVawfHx80+NwGDg7UjD2cn7LHjQz78wKkD24Od3itn j71H2Xouce/+iWsODBt+i4m/oPG1DV6DZTU+UtgN/F5Iv0c8PcvWn89aomPD H9+pKfd/mbLXYNlYzx6JdfZSWRfWmfV+IWuJD7Hs6R7V5n3d5crW2YNFomOD mxx5cS4feeA/nN8j3vdSlse2ebyCfB6mpsQS/RGeQ5X3M/nNW6ymZsWy9Zez 9sHOPjMYNvzIQz7mAP9KZedAovcUf++y63gma9k7bPSWvrIW3Ju5l3Pfpt/Y 9pL/BN6rpJ/X5n3qSQ2ugfHKZetIdPa6V9H4Fp7Dsq43kb5egzH2w9nfZowf +tGKW1Xj4yTXl7yT3zPF9gkMHiT6F80eI6elvP97S3AyXi1y36ZPfdn73ew7 12k8mftmp/fT2cdevWx92cQSvTn8J4cPtZGPXHBgY/+cPORjD5885Hsta0lO 9saPl/1Efe7TuKFsfW7WEv3EmDc5Xsx6T/22iG0sW2ev+3ZhTWXvfZ8k7OTg XCM4yLtW2bbXs8ZOCh8kNmLggAsf9sgZs0/et+xz+jcido3gAsPGXviaZccc ELFrBhdrxZqxF9szYtivJt+6wse3GV87coCPj9rWETaFZ6aYe2P0EYx9dva3 2cueEmM44OLsYN2YEzWvV7Yfe9r4wtsatVEX+9LUuknMF9/1Ije1nBL1bBD1 Us99Dd4XZW+zWfhdPEtlbcePGPas7wz+DcvW2etGbhjXcb+y93fZE4aD/XD2 t9nn3ih44To1akAnX//AW8q24X9XxBKHzv55S9TC9+XuBu+Vsxd9j+RmZe9r sz+9adl2uE6LXJsEN/NComPD/+7gQW5cNi8c2Ngn3zj43sk6D/nezVqSk/1z uE6PXJsHN/5IdGzcH9aL+wl9mhqxSdwLuXexbz2twXvXrWWPP8haorO/fqZ8 zuIZTz5tZevvh8+2EQuGDb/+IeGBvz14kejsh3eUfR3Mi+sBnWuCuLMjFzWz xlMb/p8X21b8rgn7WLFbBgYPe+JbBO/0Bp+jcIYyoGx9ftYSHRu+xHC2DseE yAt2X1yf5PmSvbeUfciHHzh1YEM/L2IHhp1cMzudjxoYbx11fMqa8GzQ7N+2 XRr827emxtsI/0r4C8KGaPxtszFsx2btP6jsGDB84R8Uv5P8tl4gua30iyU7 WWt+u7LGsH2q8WOd/g3m9xf7Qw2+Dz8qeZF8ZnDvkryizecITwrfXvFPNNin q2w/cLCH5LMdzzLCvhH/d7y/Yk8Z21U+i9c4P3U9mDIHXF9kzQ3XtxrvUHbu 47KOhZf4uVt4v569empmbtSNLzHUOrjsuS2XWA6OZ44dy45v6umzip3xb/cY qVSLMHTOQXZXzDesbcpyN9muk233sm0nZI1hW0G5HmfPUJ/H0sbwJfbJRr1D y++vNWtqnlXc17I9IXyXsmOWj1h04oeW3buVhO9FT4StmFiiPyU5UfXuofHa bR4jORMBQ/8x57kyZ/pFDeR/OGUeOM7VeM/ISf3IOY2un+uO6+/X6MPuMU8w rsfHU/Ynfk7Mjxzf5lw7c2DtD+Z5QfLPrCV7yuwn7y38RY1/E74+v/PSJ7V5 jOSsYbb4D4S/0757R1+GS7Zw78saB+MaY05DGjyvVyS/Fz4rZW54x2eN71u2 DQ5qoh4wbNQ5LHpM/2dJDhN+Qcp1jZBteIPx/cq2gYNR8/7CNpZ+Ztbv8T/E uzHYD83meTrmQ81wwNU7MTdc9OSAsv0KiWPhJZ6e0A/mRf3Do7/4HhA95Rrb tezrjHkwH/rypj4LhD2t2B8lp7R5n39U2ecknLmAjyzbdlDZMTU5Y9hWVj3P iPNZfS5O2Y4fvHCMCr9bYu1Zb3Awco2O9YQHOTr6zhjJvFhz5plErjFl5ytL viOfxVRPUeO3NU5rvFDcJX7r2zxGPiOeasStmtiXmJ+azQEXvuBgc1LGwYht 5Te6Lc4swhce8ErZNuqivlUSY9jOy7r3rMHCrPMf1OBeMaYm9Pf16db4Z/E+ Rx+kXyafQ3g2YV24VoUfIXxiytjUNp87kPsw+RWDA64l1YexZXP1UT2H8kxB /VnHwjs15kQc8zos5kE/8SXml6gHLmo6XPJ56auJ8zfeG9u8P/8C1zD7pxqP k8/H8s3ljB9Rtu2UsufQmBjDtrrGR5bNVZeY+/BYVzjg+rXZdvzIBw72vHId VfZZCuc4xBLHeoERQ22vRG56x7yYE71l/ovOgDQ+Jmqkhj9kP57fEdlfEvay PlfK57MG215K2feY6PUJZduWyRkHow/EHlt2PHGL+FLGsNUnzoOtIfEzAL// L6b8LIDeI+e5HBU9+izyEXOy5JfSe8nnRI0Hye+qrPOdJP2QBo+R1H90rDnX Br7EPNxmDrj+bDYOxnkEONgr/I4Lm9nmff6TYk7UDD6+bBvc5KCnYNiuy/rv iDmTnlvQb7Kwv5p9DV/I76b0W7PGTy3bNrfT86RXp0WN9HaBsH9lfy1l7MgG 1/k9z2Xy+7vZHHDdIM7Ty+ZqUp1naPyqxmskjoWXeGKJm5syB3rvnH2Jea3T HKfHGp8l+Y/810xso0f0h7MRcPbqJ0Q/WBfwsyOGZz2e+XolxrBxhnJO5IET P3LMin7DxZkJ9nNivcHBWItzhb0uW9+IJY4awN7Q5/qUe0yv57R5XnBR83ll 9zRRnedr/J/i10r8byouCJ0x8vWUfYlhDcCImc2zG/ct2frkjIO9HnnJuehc RjlPaHA9cMO7cs74RWXb4Khp0W9Iyhg26mEu54Y+RHzPtXnPf2/Jy4SnWoxf UrYNHGySfC7lN0txayf+Xi66v6aMjW+wDzWe2uA64YBrStbccN3FM2f0j5qJ hZd4/h0Kc2G+1E8vmAO+xMC74fZa78N1v+vrf7NCzDqqp3+3+tGhuLy+Z1zL sqVbLNEbletOjWuFbZQYw/6Wcl0tfDGN1+O3jPsT98xOY6+0eU97YvSDdcFG ffQWjLMTeog/XK9EX4nBhv+1sa5LyOcGvj9tlugbKO91Gr8rv/U1/pu1lb54 i8fId1KunTm832ZfYt7r9NnMNTEHcLBbUuYmz7sa/xO5GcMN7xo54zdGHdfG vOkDGLY1c+aHmz6QB53zo/0lX2vzWcDNrJWeUdfOOf9N0s9uMLakYt/nWYj7 k/ClWizR+f8jwMH/K2Fy+GC/LeVYeBfFi3Oyxuc1mJsc9O0gnjO5Lts8RnIu AIb+YNZnA/SO/fAlxbm0xh9oPKVsfUPVfLvGH7C/lrie28quCYw+0LdJZc/5 vpg7Or7z5HOHxvM7PUYyX2Jvjz6Sn3Wjhtsijt6SnzqoCQ7iWxLPj/6xjneV PQfOTT4RXquYD4XP5/dFtmsaPG/ORZj7PVEL1zn43WXbHuR3TPqsrDFsrFdW uee1mZM8d8X3BI57Yl0/1PhejT+K+YExx6nUrnFLzhI90+Ixcn7KscRNSTnX tLLz3R98m6jO+8qe10biKcs2vez5MUayt/+dsOX1/jU6Z19i4IMDrssajIMx F3Aw8uaE54R/nDI3vI9njT9Qtm1a8FHPIoy/W8v5uuP62zBxD5jPxol7SU8/ 5jlK2AyNr2pwvawJNT8k7FDps7P2wX53yli+xeNPhT/Kb2Jw4Ldp4rWFi548 Uvbab5Y4Fl7iiSWOecGBvnli30eip9RJjZw1zBS2nLCOnDHOG8CXEddXbd6v eLzscwfOI8AfK9v2uTi/oNcpY9j68W4bPaBXcJOjR4s5Hg8/7PiRDxyMXE/G vOEhlrhPUsboP/NizVn7Fdq9DtwDuD88VXZNrYpdVnHfivcL4SsqbpZsPYV9 I/tbGq8UGLYBOfs/XXYMGL6fpYxhaxPnufzmSv9O8pmy5w4Ohu2jrHnxJy/2 Bxrcny81/qrT+zDLy2c5+Xyesnxe8Qva7PNs2X7gYPg8JyxRzNaqs1FyRfq8 mLFerFPK+amLfTM44GpPzA1Xh8YvlJ27f86x8BJ/oeK+bvMZDTUzN+rG94WI nx092zJnOTv68mLZ8Z9lvc/0svTejR4jmS8YOvtOP0n+Sj7hq8v+KjWJ57Wy bYNyxrB1abxyo/esZoQ/vt+m3KOX5Pcwz5mK+5H+8T5Sdsw2EYtO/Ntl925H 4W/GGjIXJPrj8vlanK9rvEqjx0jygqH3TzxX5ky/qIH8zBEeOOj/G9x7mGPW coUW83Ddcf1tkXiuzJlegNFTrhn8iSfmpbgWWDtqZw6s/eeSLdKH5SyX0vdg Ie/Uwn9Q/EDh3yruXemFRo+R9GddvkPCU+32JeZPyQ8kF0oOzhkH47paS/6r Nnq9/hH2nz4/pMwN74DE+Ptl2+BYM3KBYdtFnO+VzbVbzn7fdZpnJe7N/Ka0 G59Xtg0cbAG/a8LWVuzuOX/3+d6z/wa2VtS2TqNj8J8XtZALbvAtOWsu22+P nGPnR030hH78mHL99II54PtRxHP/eTJ+A4hhPvSFWtPtnsuSkkvr8xP3K9mb Zd8nZ/zTsm2fxPyoBwzb3vLZqNH+36dsxw9eMLg2bPRas/ZLBb5h+H8RGLmQ 6Jl2jzNxbbDmzHPPyPVl1PeN5KaS+wv/SuONNR6ucVZxX/Ob0u4x8ueU769P xb0PX2Jq280B1yaNxmvDHxyM/mzGb67wX1Lmhne/nPFvy7ZRF/XtmzOGbUTO 3/G5ZX/Pl5Nff+G/cc+XvkZF69li/PuybT9IbiE5JmfZoc/m6ZqarSR7y/eP lH2JOTh8iMFvQdl+ZeE/ajyR+4u+yws6jS+K1XhOg/dvfypb3yoJX+6B7caw 4beQ76b0gfL5tez9WvZ7f+Hernq2TmzHjzyDlacg/E/efcrWx+Ys0bFtFbUy HzhWbfc+JzxwUCd5sIEjyYffovyRm1rZa2af+beonbkzF8bgSGz4/R41UvMf rInG22jcqXr+5P7b4jHy75R9f4+e4kvMTzxHS96sHH9kjYM9Jf9VFLea8v2j cVejdcZww3tYzvjfZdvgWL3d+5lg2A6Xzze6LobLfmZi7pcbzH+b/Gtka2g3 /m/ZNnAw9if/E7aDeI4UT1q+d3DvyxpbVZz/ca/gfV9xs1PmgGtQYm64/pF/ qmK/wYlj4SUevj4tjqV+esEc8CUGXnzIjd9iFduZ11DxNAhbQtfeEsJ/UUxn Yjt+b/Au3uk+0LfFK9a3TSzRseUl68WzfWKOXzs9r9WFLSXbWuLbTX6rcS9O 24d8+IEvWbENf3zZGyQOvSuxHb/jc94nBsfnN8VnZfs9cmYq7g29Z4+Y/tfG +tB/JDo2/Bf1MWXOpSNfJuoiLxg29qvJQ77tEktyPqvYPcRRp7i05pWrWD8x Z4mO7a+4vlhT+rQO/U27z2/E/jl87zWYs4fi9lT8STnLHtHfe1XLuu3eG1mm Yn2J8MEOJxg2/HpJTucdNWf+nhXn6Bk9Y72Wrfg6OCWuB3SuCeI2aPc+J9ys MXWDw4ttRck/xbOjeFaInNT8B8+d0ufzHCP/RsW/wPNqxXo2Z4mODV9idkjM 8VHszYLBQSx5mCdzxId8+IGvGP36S+O/O309r1SxvlPi+zr395VyXgfWg/vC foppkr5k2vu+a7R4PxNZUMwm7d4nW5e5BYZt58T+Seh88CUWDBt7wtSySvR3 Vcl/pO+SGMMGD31kD5k+Y/+X+4vGIxSzJu+7qu1R8W3e7v3AA4Svrvi+Lfbp U7EfOFit/FcL+67ib2v3niD7sWCbtduH/NRFr+CAa0LO3HCdo3FdxbmXzTkW XuKp8YsG10nNzA0MX2KodeW4RriuNgidedaHL7U9wbVRcY2MkdQJhr5Cjv+4 tuuhZnjXlO078fSt2LZ7YgwbNf8n7m9kfzVl7LvY+x3JfYF7UYuvBX7n8Wmq OGa3xBKd+PWirvPFuU6s/56JJfqWsqWUfy2N010eI7NpY+h7JJ4rc6Zf1EB+ fOCBgz3JtWUvyXZpznId2XJpX3dcf0n0oW+szaJrssWx+BNPDPMjBzVTO3Ng 7dskl1L8Ponl0vosK/71o3bmtZjkBtIX7/IY+QZ7fZKbce9rsO/6kaNFsip5 Rc44GPOqSK6nWnrALzlQdSyTNje8eyXGmyu2wYGODxjjIfLZsGKuy8X/rOa7 dbv3RcfyHMi11WJ8o4pt4GDMa+OYBzy9K/6en5UztrDB83qRd5R273/CAdeq OXPDdbXGm1bsVxex8BJPT+jH2ynX3xJ140sMvNx7VorvOfNgPvTlZfls2OJY 6v4j9ntbZV9SvHsnxvtVbNu84piGnDFs9LxFHDu0e/8QO37wwtEaa8Nas/as NzgYfW4XdqTGN+Qs0ZtbPEb2SnvNmefQxLk6Ks43IPiGsTde8T4w+73MeYuK 938ZI+ktvWcNuM/iSwx8cAyIXoODMRdwMNaxVuOMPu+lzA0v6wK+ZcW2juCj HjBs+yZ+xudZfyv5Hy2+jeSzPM/tFeuThG/M9Sl9J/FuLXmM8JtylthWkP8b 4ti53XuS+IIPT+yzdejbVOy3lmIHRV34fCRsWLv3mo7nupXvSuIcXLE+OWdf Yv5rMIYNv20l31H8evLZruIaqK2L33B+m3O247cb71Z8bxU/T7k6K9b3SyzR sVHjNsEFx6Yt9ocHDvZUsS3R6PniQz78wKkDW67L86c/21es7594LsyD9QLb Pnqa17hHl+e+o7BThN2Zc85dKt7T3Vw5hrZ7fxVfeoE/vsRsxu9ZxbYDEuNg vdOO3anieDjhYy5g2PDfJfpEz9kjBifXzhXr7DPvVfGabZJznl1jnfaQbJX/ QeLZTeNlZDtQ49Nk2116vxaPkYnq2aHiOY9I7EtMzy5zwLVPu3Gwj1LGwVZW 7OmN1hnDDe/dOeN7Rh1w7xC9AMN2T861MweuObizjeZnL3Kk8P7s+Wi8X7v3 JIdEXcwLiU7MWfq08R6oGoZWrE8T/3LyWb7LOBg2/IZJfine9pz59644BxK9 Vfg+Gi/L70Riid6zMeLE8WnKOBhjcHix7c93YQ1dw8uIV+MJ8pme8zz3ld5L eq8u94G+Da9YH5VYDo8e7Ru9oVdwsC/JvigYHHxPyTOi3fui+JAPP3DqwMae 3d39vc85omK9f1xXO8c1B4YNv4vYA9B4ixavwUEajxLPBewnSO+jmg+sWH8o Z4neEf74sqdH/w+oeA0OivUcnVhnPVgX1pn1Zi8aiQ+xrAf70az7qFgf1hSJ jg1uchwszoMjD/wrSK6ozzcpz589RPozuuK9ZfaTkaNjbdjzY1+Yfb8xFes7 hs+E6DkYNvzIc3BcZ/AXK85RjH6z1qWK6xgT9aBTE72lr6unfS/mXs59iX5j e0Sxd0teJv1OyYv1GSC/urTH1Yp1JPqj8u/W+BfV15mzrSJ9dLuxMe3eN2aM Hzp1HKLxaoo/WXKi5BzFjtX4co2fyFmib9niMbIh7f3CSuwZMj60Yh3eI3hm 4J2H93WNt+L3o8v7iexPHlaxXkos0dcJ/61iD5PaqIu1gwPbXjnnIR97mEfE PJg7kpzMsXeXe0KvxlWslxPLcdGvQ2IdisILkkmX9y2PrFivCL9KfkdJH9hi +waN9jma5xl6L5/jKrYxBjuE79lixrBtEBxwzVKdlzTaD59j+V2S/9CcMXiJ B8NWlDym4piZEXtM5J4Ya8ZeI/uqV0dtYzU+Ufih7caPr9gGDtaonpwg7Bqe x3Oe65ExBzD2WNkvZd/0mhjDARf77XDD9bTGJ1Xsx34pvvAST23Uxf4n86Z/ TWn7nhS5qeWwqGd81Es9t8p2rT5rCD9V+PUaP5ezHT9i2Iu9LvhPqVhnjxSJ ju0cycmSc3PmYB+VfddJkqfLto1qOkL+49qdCx/y4Qd+WsU2/PHtm3Yc+os5 2/F7Nme/o4OH78DZ3Evl10PjszQexO9il3NQw5kV692J5ZkxT/zxxQfOMyrm hQPbATlj2OjJ2fGd43uKJCffx1W6/F3lezqhYv2QxHJCfLe5P3Bv4DtCnwZL XzvtewY2vheHy35zo9foXOHd0p/KWaIfL7mqOK8Mn/Mq1scm9sHOuoNhw+9C yWOFv5wz//kV50CiP8PvSMXXwatxPaBzTRB3gj5rRc2sMXWDw4vtUslTJN/i +6JxH+U+NHEfL5K+rfynNHodWdOLK9bfzFleHGt8UfSetYZjvMbrpo3BwVqT 53TuO2n7kA+/U6IObNzDuX9TM/dy9HfEeY/kabKvn/b48or1O+mNxrsKu7fR /sRiu0L4mcxVnzu4LwSGDU78r4wcYGcGPxi297h+uFdIP5vvt+Q04R/kjGHD Z2qjxxukbb83ariPZyzhG2p8v8YTNG7WeLrG1wUXPhMr9gOfFrHXBkau1dSr hwMHOyc4yXl25IUDrnk5c8M1n+9yxbk/zDkWXuKp5byoh5zXxJzxJQb7VRXP 7f2Y41Ux5xvCDv+DXBvSz233GNmSNob+sXzO51rSZyP234TdUjE2OeQnOWPY Ps2Z44LgATs/Yh/Q+MaY24xG6/Tkpsj/UcSiEz+l4t4dpuv5do1nyv/LnCV6 Z4v7emvFfA8HL5xg6J/lPFfmTL/IOT184IFjE41vk/0RnnlyllxzG6d93TH+ LPf/c74orslLwgf/28KP+ZHjo1j3KVHHQ/zmyF7NWd7U7rOSO4Uvo/GBOf87 ibuk92v0GMm/m3iedRW+fYt9ielin5nniA79RuWNgz3Kfn6X/70A/x6hXXI7 4b+mzA0v/44A/J6KbXD0avf/JxcM2yiexyrmOlz9r2OfrEm/8ZrvNXqmuo/f 2XbjUyu2gYNxVjtN2NPi+SHe63mf590ebFajz+au4jewwbXBAdcRibnhWsC/ J6rY7/ucY+Elnp7Qj9a066cXzAFfYuDlWrg51oN5MB/6shLXQ7vPy+rZoxD2 u8YzZH+Jcc74gxXbHqg4ppQzhm0cvy/CdmSfOmU7fvDCAdcOLV5r1v6mwMHa VfPDwhp4Fkks0bdu9BgJJ2vOPH/JOdcjFed7TLJJfkcr9tHIiU+jsJkRwxhJ f54QtrPijknsS8ygRnPAtUaXcTB6Ag5Gna8L24l9pbS54T0qMf54xTbqor5D csaw/Ztz71kD7g/kv73d51OMqQmd/f0noz5y0iPyPhU9Yy3WFf4u11DaGGeC fHfelJwtv11azAEXZ4WzYk7M92mN19T42MSx8BJPLHFbpM2BXpO3LzF9owez 4pqYw2+U/I9LbNueOaqGtxqNDxDPs1wbPGPljD8TMW9WPIeTEmPYUsr1XOSB Ez9yTGk3B1z8NmLHj3z18XvJWdjzFfdk8bxjiaMGsN1a3Ctyvhl+zAsual5D vve0+yzsRdnXYh9HNawt+UrU11f23cWT4vvVZS448SVmZ/nMrdh2YmIcDH9i X6o4Hk74qA0M23E558F2QuI58fvPvF6OedMf6maezIc8c6OPr1d8xsX53asa fyi/jPz3lN9r/F62e4zkHOqFiud8TM6+xOzRYg648AUHG5g2DkYsfeKMkF69 Fr6sI/gbFdvgJsf/MCTrwt8R8/fE68p/PdW9vj6Li+dT+XyruBXzxt+q2DZE 3A/yPZTP28I+lk9OPjOEDW/0GRDYXuxlsm/P80vFdjjgOlm53qmYa7zG72r8 iWLyecfCSzyxxMEJB/r4nH3fjXg+cFHT+1EjnBtIDpPfUor9XHIo+6Aaz5NP C8+IOeMfVGzjWY9nvndzxrD1VD3zK+Y6JTE3OYY0mgOuR9ptx29Y4GCctX0o bGOe+XLRu0b3FmzvFtdGj+n1Pi2eF/Ohtx9Fzxb1ROMNFX+qamiW/IQ5dHmM ZF74EsMa4Ptx9PTzis/ZOI8DBxsUecnZqfEw7k3tPheDG97TEuOfVWyDAx0f MManJ54L82Q+zJuzP+a+kTi+Yv5dxr+o2AYOlpHPlzEPeLgvcn/l3gtG/5nX 95L7Ct8ubQ64WBe44TpDsV9X7Nc779gvY/34O4tZ8t8+7fo/j7rxJQZern3+ npxzE/z5+wxi9tbv9W/y21GxrdK/E/50SPTzOEerasx7VGIMO+dW38e8+RuP H8TxbcXcYAc1eu4LhPXnmZVzIvbGuP7Txp5p95kX/nARA04MNvx/rDhmU41/ rjgPEv1s/rZE4wE8/+Vc10LpxUaPkdRJ7czhkEb7ErO/6vyJZyKN92sxDkZt cJNnUT813rzL/VkYvSnkjf9SsY0aqfWsxBi2CYn54SaWPOirKPZ3yRHsuwn/ veIzPc7sDhD2G79x7cbQOXvqJ76/Kp4HEv1c/t2EeA6Uzy7hg71n2rHwEk99 f0bu3wI7J3F//6j4nI0xkrX4I3pPnf8JG8n+u/BBwua2+4zpv4r1q1TzP6xb i68N6vm74prAXuG3RP6/Vjzn+pg7OvP/i9/tiGeMxB8JL/HMiXVjXnCTozHv /NRBTXAQ35T3/OgffUtVPYe1hBeFfyB8qPCl9HzcQ7Yxwrr4nWj3OddiwtqU 7/zEeLpqWzYkPGDYruW5vct5qZk85KNfcMB1ONcQvz8ajwocbDn5L1F17dSM RB/X6DGSPhNLHP7kWrLqfLWSo4VfxNm0xh2yXajxEprX0tIPbvEYuadiBwjb WT43JfYlpn+XOeB6r904GGsNDsaeMHvD6IzhhneDvPFM1EFd1HdBYgwbZ4V/ xveD640eMJ/rc//fU95FyJmLdWJdWJMhypUXtoVsFyf2wU5tYAP0WZF65N+z 6rXNxZzoCWsLV7PqXCbslySOhZd4YsG5HuBAb4nrhJgP4rqgRq6NZYXtKv0W 1b8nv0HtPreC67hG17OcfLLi2SRvvFfVtiHyLYu3kDaGjXqWr5rr9py5yTGv 3RxwlVpsx++jwMH2Ec8KwrYUz6WJY4nj7A/spEbnYs1Z+13iHvZT3OdXrLqm Kcq7VfSCPizikG08v0nC19Z4+SZj2OgP/r2jX2D4khcM22WcVcmWSK+w9yhZ lbwiMYatTTwDebfq8lywf9HucyjO9NAZbyP7IH1WSdu3T/QXn1WCF3wRxl5f 9In+dwrv0mdE2hhngqwX+alrWNoccHFWCDdc1Lla1bmvTBwLL/HLKbZbscOj ZuZG3fgSQ62Fqud2eWJZCN7Vq47vyLun9fwetXiM3C9tDL2/fA7kN7jdZzQr CWuSbSzvZVXbHsgZw7al/IcL+7rd51lg+DJ3uOvk91W76zuz0f1sqDpmas4S nfh1qu7dRN4jAqMeJPr5ih8s+5oanxtj5GppY+hXJ54rc6Zf1EB+5ggPHNTZ l/slz745y0NbzMN1x/V3TeK5Mmd6AUZ/4MGf+ENjfuS4KnHtzIG17ye5g+QN ieWNvHvxLiZ8VfEM1rwOV9x60he2e4xkX7rMdST813b7EnOY7BsG97WJcbAD 0t7PJp5YauUcjbWDGxx/8A2qtsHBOrFGG8T8WMf1q+biDG47+WyvT718xolj I9l+aTfeXLUNHGykfFqErSbOzry/+3zvD04bO4LfZI1Xb3IM/nDAdV1ibvDr edat2q8r71h4iacn9IO9ferfMK4/fDeOeO4/3Ju4BzGP9WP+1HpZo+fSIP8j W1zb5rIfJb8XcsY3q9q2acyPesCw7ZB3/psaXQN2/OCFA64/2r3WrP2NgYOx 394q7BiNX8pZoh/V4jGSa4M1Z56P55yrrep8/as+U+BMp13jHbmeEp+ZdfBb 1uIxkvM17q/cZ7nv49sePYUDLs6mwMFYC3Awzix26vIZA2cicMPL+R34FlXb 2uLaZI3AsE1K/B1vrPp7vo64j1H+Mdzr9Jx/tPA+Hca3rNq2leSxkjcnlqkO nzVwloDOGF9i9sgbIwa/gVX7cX6x9f96L5/dVMNdjT6b4Bpk7VjrbeK3iFz4 EsO5B9g2scaD+J2VfgvfZZ535LeTOLel/8o9ObEdP/Ksxz6o8Ir4B1et75W3 RMdGjQNjnnAsptpHp82ziCPtPNjAkeTDD7wzcp/K81qT16Wrav3tnOfCPLjG wLDht13USM3bV30mw3v3BlzLVb+HM0ZyVoIvMfQOX2LWl33nqs9TODsAB6Pm xVXfEvqU05YntHgMN7xD88Z3qtoGBzi5wLDh80O8Q/K+s3uXzyc4B2mR725V n4WA71K1DRyMc5Ndqz434axkj6rPQzgfAduwyTxLKs/S+lTT5oDr1sTccA1T DbtX7bd33rHwEg8fPuSi/p1jbvgSAy8+ewTXnpIbSe4rnr2UZ0iXzxSGVH3m wBnKRuHH+QzxtVHbXsFHPUh0bPtL7iGe2xJzEM9ZD7a9ZctIbtzkMxrOWfAZ EnWAD63ahn8mcu0d3NSJHb/heZ+1MIYnK/tw2U5scdy+VWObNPksh3OcYVXr ++Ut0bHhn41ccO4TOfaNeskFho1zouHBDQ+SnMRyvgIvufarWudcBrlf5N6x 6mtxSN594gyGsxjmT4/p1ck8V8vnEI1HyH9P+d2eWKKzVv3kf5L8SvI5oGr9 wLx99op1BMOG30jJVukH5c1/YNU5kOh3iP+g4GaMROeaIA4f6qFm1pi6wUdG /JjwnaLY0VWfMXHmNV62UdJ7Kleuw3q3eA6uWt8/b4n+P18kPHBs2uT+gMFB LHk4A2OO+JAPP3DqwNZLvsvrM1Y+xar1UXnf17m/H5L3OuwY3+0Oxbc3+Z6w nPQV9TmUvRewqrHtND5R41NajGEbnbetUnUM2HIRW4m4g3nH4XlY+grkDjkm bwxbkd+mJtdBDdh763MYvylNtoEPbLLOeCXsik86jI2t2g8c7HD5HCpsK/x5 PhFWp89RaWMrhQ/5V4hccMBVypsbH8aHV527knfsoWHbWuOC5BHp/58bdeN7 eHBVo64xMUd05nlE1fFV9ih4zokcjAfGHMHQWa9tJVcV95H8fvF7HbZjq7Yd mjeGbazG2zR5rceF/6DgpN5x8lu5w/Y+4XNU1THdEXtUXCsnVd27w4SfoHEX c8tbnhA26jqO55YYrx51gqFTz9YxZ/LzWTn6Bs9qsS7Hy97Z5FzIwVEz1x3X 3xHRh2ODF4zr8ei0/Y+P+Y+LPJVYd+bA2p8nua++J/cmlsP1aeOeI3yoxncK 31Hx4/nNbvEYeYx8Tpc8m9+ODvueHLWexm8v3+288c6ouV5YY4dr25vn8ybf J+GG96i88VOrtsExu9FnrGDY7uJvcavmGif/h7h3Mk/ef3lHk21Yl/HTq7aB g50gnzOEXaN7xAL+xi+uO76PYJ82+d9FDmMOmttJaXPA1aOHueG6WzWcVbXf 6RELL/H0hH70S7t+esEc8CUGXu493IO4HzEP5kNfrm13PLEbSH+m0fWcG3O6 JzF+TtW2CVXH/JQzhu0U1XOmODbR+OS07fjBCwdcQ5u81qz98OgNGP05X9h+ 1Jq3RD+jxWPkiWmvOXzUQ64Lqs53cfBNFX6hxvsr5mzxTOKdjntyh8dIzkbp PWvAfRZfYuCDA64XG42DMRdwMK7PA6lR+Clpc8P7W874JVXbLgg+6gHDdm7e z/g86/POO1lx/Tp8fnpp1fpf/J0q71zS5yrf5ZK3Cf8nZ3m2OPunPY/XGj0X fImZltiHGPyuiHnThyvpiXzuk89WwuY3+ixyhLADujyXq6rWpyf2vTL6CIYN v6slxwi7WJzXVl0/85pY9fkp57/Y8ZvAnrU+W3T47PKaqvX7E0t0bNRIrcwH Dmz4wwPHqWnn4XyZXuEzMbjAqQMb9dFn5nJd1Ht/zIV5sI5g18V6HMhzhT5b Cr9BWEnYpar/bt5Vq+7TebwbS56Rtu87jfbHl5hzeQer2vZgYhzs9LRjb6w6 Hk746DkYNvzJg20x5S03GSfXpKr1y4TfHrUwJg/5qONWyZHSZ4jnFo275X+l fKaJbzK/Hx0eIznrvL7qOT+Q2JeY81vMAdcHjcbBzkobB9ta4+niuaDFY7jh XSpv/LaqbXBfH70Aw1abd+3MgWtuVJfnxRyP5dlb+KWKPYLvIPd04XdU7fdQ YnlH9OJgjUd3ubYpVesPy+covneKPTdtDBt+d1d97sr5L/x3Vp0DiX6d8Ls0 vkjYI4kl+nYdjkPnLBIJxhj87oiZJnkk14F4pvK9UM5HE/f7nqrPiqmDnlLz vVEXuZD3xprdE2vF2sFR1Gdw2hgcrB15Lub7lLYP+fADpw5s9GCHDvfhvqr1 mYl7NymuOTBs+J3Mb47Gl7eY6wGNP1O+hzXHHTt8vnl/1foyeUt0bPjjS530 f3rkeyDqIm9J8iv2zNJeZ9b75rwla36+8MfEuUuHz09nVK0vl7dExwY3OW7k N7dq3sfEX5Gsdpmn3GUf5v6wfJ5Q/Ap5S/TLWlz3N3Fu+0jM48bwwU6dYNjw Iw/5mAP8j0YdSPTHVcPMqut4IupBpyZ6S18vSPvezL2c+zb9xnYHa61cX1V9 5sGZ7hXxLs/4iap1JDpnx09GP+ghtsel79VhjDNjesgYP3TqeCr6/rrkvrLd q9hZXHfYEkv0Q7o8Ru4gnlO4lyjHRTF+ump9jmp5purz51OFz9H4qhZ/hvI7 LP/Zgc1KLNGHhj86PtRGXawdHNjuyjsP+e7MOw/5Vs5bkpNzEGr8sdF1Phu1 kwuJju2pWIcnhZ/B75HyXir/56rW6cPz4nw++nJol2ugtheEjZX+tGJfrto2 OzH2i7h3Tht7OeqGA67VxPmi5DUt9nkp+sS8iIWXeDBsnN+/WHVMXcSiE09N rBnnpocp9vAu13+tbK9yH+8w/krVNnAwzjTn8rukuh7Ie67MmfmDTZS8LO0z WmLwhwOuOYm5wZ/R+LWq/Ti3JRbeiVEbdXF+zbzRdwnO1yKemshNzW9EjXCO ku/iTT4TfEv4q5wT5G1/I9ZmqTV0bxbHm4vpU7Xe3MMSHdt87nl8F/Pm+KDD /z+ycfxGc1+WPEKfvxv9/yjBh3z4gb9dtQ1/fHdPOw79ucR2/J7V+HzluZ7n Kfm8Tq6q53GB8Pc1vqHFn5Hcw+XzXmDPJ5boI8MfHR84362aFw5sD+WNYZuR dx7y9c1bkpO+Ue+/ja55XsyVXEh0bNwfuDdwP6FPN0q/Ou17Bja+F++KcxJ+ wj8U/rb0dfOW6NyfjhJnusk+H1Wtv5DYBztnvmDY8PtU8mielYP/46pzINHX F/8n0T/mi0TnmiCOPlwZNbPG1A3+afToy6rPeDkj/kLjm2V/WbmO4feIex3P rfK7iedL8Xxetf5U3hIdG77EvJSYo7vDZ6lgcNAr8mADR5IPP/AvIzc94P5N H76KnnFNwsEc4GH8dVyv5/He1e39sKt5BhPHtbyby+cb+RwvOVn4vxpPaTGG 7ZXE/t9WHQOG795pY9ie5n1Q8nvpk+Xzg+SH7EvmjWGbnbdtrOq4Lm37oR0+ h4Uv02TOEzTuwbuaxp/ynsf3ocM+C6r2AwfjXPVHvpfCnhX/neI/nt+ptLFb +X6knZ/c5F0Qc52bmBuuzRW7sOrcryaOhZf4z3nObHE91MzcqBtfYqj1u5g3 nEh05vlz1fGt4j9R/r9GLxgjqQcM/bXEZ553tPi8EvkH1xX3vKptnAWDYXtD /ifxe9/lOYLhSyz1/SK/njz36HM77wPCf6s65vWIRSf+v6p795bwfzQeL+zN xBL9lC73+6+qz2kZI+n/X7E+9J+5Mmf6RQ3kZ33hgWN/jf+OnNSPpNfUz3XH 9Tc377n+GfME43q8KW3/v2O9f4l1mB3rzhxY+7yu8ZMl38hbch7JOWaN8Fs1 flX4t+JPST+hw2Mk56qni79W+Bld9iUG7sUlF3D+lDcOxjXGnFZs8rzu4DmC etPmhndA3vhi3bbBQU3UA4aNOtPd5qL/p0omvCOmXddSsq3SZHyJbtvAwah5 SWE/iXdQ3u/xvM/zbgp2d4t5Tov5UDMccL2dmBsuerJ0t/3eSRwLL/H0hH4w L+pfPPqL79LRU66x36u+zpgH86Ev9/KOIexW3kF4v+zw2WWu22fQnDuDZ7tt y3Q75r28MWzvsd/Cu5c+o9K24wcvHLnwOznWnvUGByNXj1hPeJA9ou+MkcyL NWee70auZbqdr5fkffKZp3p6ajxN4w94zxX3svh0eIy8QzzLR9wHiX2Jmdpi DrjwBQe7PW0cjNjf2WPp8LnnsuELD/hy3bZRF/W9nxjDtn3evWcNXs47f32T e8WYmtAf1GcF5sO7rvC+0ovyWVHYv5yfKfZ84W1NPi8A4zeDsxVyF+S3dnDA 9bH8V+o21zzV01vjGvntnncsvMQTSxzzKsQ86Ce+xEyPeuCipkRygvT54pzA swt7F0v4bHV6k89bV5HPQ/wO5I2v3G3bWt2ewyeJMWyc7a7aba75eXMnsa5w wMXZL3b8yAcOxhlxH2HnKObDxLHEsV5g5+pzZ9o5yU3vmBdzorePSb+fd3uN V5f9AY0/ShzXEH3k/Amcc6XzusxF/8GIuVT2xm7bPk6Mg+FPbF3wwgkf9YAt OtfKOw828rIe/P6zpvWxPqwjc+kTfuRpjD6uGf2gz00aP6HYbzSeoXxrSL+8 w+PLY41W6/acv8rbl5gHW8wBF77gYFPTxsGIXTb6Ts/XCF/WEbxvrDfc5KCn YNhG5v13xJxJ83e27C8/GdfwZvKZw2954Gt323YFz8u8k8pnHWFP8Rsun9lN cT6RNsY5FmdYsyTX7/YZERxwcea1bre5vtV4vW6ffXGGRSy8xBNLHOdKcKB/ n7fvepEbDrioaYOQ1HOV5NVRJ+dJs4KnWT5Pa/xD3viGwft1PIfyXAqGjTOv lm5zkfd/OdDhgIuzLHT8rg4cjHOxjbp9jlaN2KuiniT88KHH9JrzIub1VPRt 4273dIFiNwluaubMZ9OwMZ4dPUcSwxrgS8w1XLPdPp/ibAv8mqiBvOTk3Aps YuBww8sZFvjm3bbB8Uz4bx7c1MZcNoqePtfksyXOrTi/au82xqe12zbw58Kn Tdi1/N7m/f3j/sp3EIz/pv003lWbfL7F2VZr8PHfuocbLs7ROrrt90vesW3x 38Tnc0Pw9IleMAd8iYGXf4PPv7/nvxeBP/89fWJ6DdBvwJr6Xgt/geuw22dl SPRflWs3jWeq5i8TY9g5q9oyOKiHM7Mtoj6wG6OegcJe4refPTqe0YTflzb2 kPR70vaHixhwYrDhv3W3Yx7ReLDGN3dYon/OfqbGF/J+xX6IYgd1O+7/mHrP MCnK5/sbd9aE7sysCaXHALo7CwaUWRAVNiiK7mJCwZxznGjOCqiIWTEnzGLO ARUj5i9mzDkDBlARA8/5cOp//Z4Xe9Vdp6pOhe7p7pm+UdZIclE7Pdw9zL7E XMT3Of1tGvH8gfH+Du6bo/7JkZs13PD+1WB8y6hjeOSkhi2jD+Z2QfDCSR70 r3v7ndZrMcNu4W9p/U+D83cV/c4P7ElxPsz3FPlvI/ydJkv0ufJ/V/rLTa4N DDvnNrHwEn+xOLfWelqTucnB3CbJf6T024Z5jeR6C4b+o/g/aPLsHhM+U+v3 IteoovW6dI8e22l9h/z/i3q2LbomsCnct+S/VdE98x4TuVWcW3dqvb3Wl3R5 jXy0zrHwEk9+jhs1wE2OhQ3OTx3UBAfxPdLuj/kx8x2L7iEl/DLh32n9jPAn 5btP0e8FPxR2D/cV4WOiFs5z8NFF2/aU/FH6Cmlj2Oq1/ox7N+dHnfPsGJ8T OOC6l3Od5wuePaI/MHrcWdjniumZtkT/tMlrJHMjlrgn6pxrl6Lz7c49X1w/ qM5dtf5StmXTtu3G/XSY149GbRdznPle1Nu+xDw90By7Rx3gYE/WGf88apjU 5dkxt90iPzWD71G0jbqob+m0MWw/9vZ5x/n3XW/PgH6WSnuWzHQa93q+y7Ie 5uPCMeHd7t5Fv3vlvS0+2HkPC4bO+mmeX7hfBwf4T719bOFqVK59o0ZwYvcO P2KJe67OHOjLx3lCDOcKdU4Ln/2FzZG+snyeGeb3vrzzvVz+z3Pf1frAot/3 8o4Y/ICibVfym43+Tq8zhm2W6jmoaK4V0+Ymxw9N5oDruYG247dX4GC8KzyY ZwDxzO7tWOKerTP2U5Nr5phz7G/v8nGYFteHQ4quaY5iXxDfK+KdLnye7IdS s7Dr+Q1H6/mBYVstbf/Dio4Bw5fewbD9LM4XZTsi9CO5h/O9trcxbL3TnsfV MZNFdnG9qPXvTdZZXyP7tfobV2ffsuL3bbJPMXjBweApCRsi/oma/w3CJ+vv rDpjrw7zu1fyUxf9wgHX6mlzw0WdlaJz/9rbsfAS/6d8pyv2paiZ3qgbX2Ko 9fCie2MOV4UOb7Xo+D5pz/Qo7tEDvUa+XGcMva98/uXazrHh2q74Y4s+JscV bcunjWGbq1xDuXcO87tdMHzhhLsmv9eHub4DmzzPo4uOuaDBEp34k4ue3e/i PDEw6kGi8w75FXEer/Xbw7xG8s4UDH1eb/dKz4vmNdD5qQceOKjzhKLfP/Ne uzO44DkpeoWHXun55TgnmQ88+J8Q+Woxy996u3Z64NhP5HlB8q/elhXFnqPY U4TXNet5Wn29prhTuZ8N8xr5Br+ByH4W/Q+0LzGv8tsFs5T8s7dxsNfqnO/G ON/eCS544Gb9R2/jp4cOx3+q5/U6Y9haVM9pUTv+qWb74QP3eNmObDI+NuoA ByPvOGHDxXN5gz/7fO7PqzP2wTC/572py7NgDnDAtW7a3HDR15lF+83v7Vh4 iWcmzON/dc7NLOgB3zNj1lx/uDZxDaKP04L3f/xOI443+T2q2Trrc2Tfkuf1 BuMTiradHZJjB4ZtfdW5rOQM4W/V/Z8fvHDA9fEw18Gx53iDg/Fu+lxht8i2 oLcl+q1dXiOph2NOnwMi13lF57swuKnhfK3fFPZ3b7+rviB01kje83J9PSSu BWDEfBm1wMW7cXAw/MHBqJNa6Jd64IaX9/jgF8UsqIv6BqeNYaMePuPHFP05 b5T9LeV4RzxPCH9N+NQu45cUbbuUz7Hkv70tv1Ou9+p87twR5w++xGyStg8x +E2Kewuxl2n9lbAN5fOefH7UeiafBa0bFPsu98qi9f962/eyyA2GDb8rJJeT HCqeq7WeIv6FXEuLrofY5cKPuO3E8/0wv6u9smj9pgZLdGzUOCni+Tu+yX3B Awe1kedOntfr7EM+/MCpA9sK9CH/97k3Fa23pd0LfTA3MGz4XVv0LHokuiZr vaJs7fLfUf7X8xkZ5jWSd9nvRQyzw/e6iL9Rsrf04WnjYMyWmk5ucs13aX13 l3G44b2twfjkom1wvK/YD+qMYVtMtV1Y0rVT6y20nsm9eJjfNVPXLUW/8wa/ qWgbOBg131z0+3Peid+m9T3iSSXGiIGH3NRNbXCA1yXmhouZ3Bo11kXszeEH 3736u6TO9TMLesD31pgpPuTG73bJnLAt0n6v+elAv7ObInxV4SPStuP3gWwf ct/gc8lxL1qvTyzRsT0geT+fycQc2PAn312yjdcsdpff3GF+p4zPlOACv7No G/740stdUS+5sON3r2a4hmI/Utyn8tlX2H1cd6Tfxxy0nsAzrPA/hvmd7z1F 6w82WKJjwx/fy+rMeXfRvHBgWzwxhq0r7Tzke7jBkpzEUvfEJvd1f/TBDJHo 2G6IzwfnOXOif+bDnJnxR3U+Dv8M87F4UP4PyG/JxBL9Qclm+X8iv8/k81DR +nbp8OnyTMCw4fdo9Er98D9cdA4k+lLif6To84B31shHwkYc77KZITU/EOcH OLzYpkp+Lt+e4nlC6xbZR6Vdy2Mxu4e0flh/V4rn8aL1pRNL9IfDlxjqgeMz cX5RZwwO+iLPf8r9ZZ19yIcfOHVg69dsHZ8ni9Z3SPu6zvU9k/g4cDy4Lhys mIXD/J53Hfl+odiv61zT0/K5SD5DuEdwPR9oDBv94j+t6BgwfOkRDNsY5X1E +LPSJ/F9g2cTvlM1GMO2jHgOF1bX5vfI2L8U3zV1ruvyJtc2UHxf8fuJ1o8p 7kXFP95ln+eL9gMHo/4XhD2q9bLiP1Y+6Ta/+wNjJsyH/NRFLjjgYlZww9Wg 2OlF59497dgXYqZfc+60+d0rNdMbdeNLDLU+U3Rv0xos0enzpaLj04n1V4p+ /80ayRxeCV9m+C3nl9bfC2/leU+2b3h2LNqWTYxh2zPtGTD/r8Mf3+/q/C75 5cjNucB9/nrhr8YsqQf5ahy/t4ue3Wuq/814LiAXEv1avm/ynBZ1sEZSJxj6 Xmnno2fmRQ3ozA0eOKhhhuw12V5qsFymze9zOe84//aNOdAzswDjfPyxzv7E E0N/5GAvAbXTA8f+C8lOxRyWtpyl2Dk8ewh/kucd9XW8/N/leWCg18gbOZ9l /yTqwJeYydzvJJ+WvnxiHAx/6ripyfU/1eU5MBO44X2jwfj7MSM4yEEvYNiW E+d70RMzbJPfD6rnpzq/n/6IZ4CBxj8o2gYOxvvZD8O+gnieKvpzPrUhsDb7 MBfei/O5gAOug9Pmhot36B/H/Jg/sfAST73Mg5qpn1mA4UsMvHxOnozrI33Q D3N5hmsCz9SK7ZDPT7LP5vpW9HFZKTH+WdG2T4uOWTExhu3QtDnuaDIPdvzA 4IBrpTYf6y+CdxF3m4/7l8JOVY/vNFii92rzGsn73E+iJ2YI71dF5/tW8jnp vYR/rfVw5ThS9YxV7DfSe7d5jeT9LLN/Kq4v+BIze6A54Lq7yTjYL3XGwW7X erxi5gz0Gm54ZzYY/65o21fRN3MDw/Zhg5/xedbnOy893dvkvr6PXvksPC/7 D/HZ+FHyBemrJJYvdrmeLtl+Vp5f6+xLzMrhQwx+PxXtVxPnLK1/kX/vxO/0 Pu/wuzneb4Pz3nN20TrvwcGIWaPN2OyInxOzZLa/aj1S/Edr/YvW05UzSWzH j/fh1MEcqfnnqIsakD/HcaJGaqUfOF7imb7OPHBwvMjzq+xz6+xDPvwW4UXb ftNfX8XMk89vReu5xHXTBz2CYcNv62br+M8Tdq76/ILf8yX/5DmmzTkeaXI9 L3N95nfnOvsSs6Z85hdtWzUxDsZ7ImJ/LzoeTvh4b/J71E5t5MH2Ld99VM9c nnHk80fR+vH8plT0MeP9LHnIRx1/S74ifTXx/KX1JVwfG5x/AdesJq+R1DO3 6J6PSduXmHkDzfF32MDB6BEcjPn07Ke6hW9Vb2544QH/p2gbvnNj7mDYWhtd Oz1wzr3a5ffEvLOYwbOGvsO8KTmGZzjF/Sn8v6L9Vk8s0Yl5TevXuzyfhUXr a8hnV8X+pdgFdcaw4VdX8jso3mHB36PkHEj0U1X/Ylr/KaxPYom+Tpvj0HkP hQRjDV4XMUtI7iKeM8SzuNZvKGffxMc5VfI7MergOFJzfck6uZDo2PAlhmMN x/+6/N4EDA7OGfLM53eVOvuQDz9w6lhk09+ANs9hyZL1NZPIX/S5BYYNv72F L1fyOwC4epb8PoR3J+u3+d3K0iXrvItBomPDH1/qZP5LRb6eURd5/5ZeaPM5 w3HmeK+VWHLMeT+yh2IXcL5ovWzJ+plpS3RscJNjrPCGknmbEr9j2avZPPB9 0uR1Wj47CT8tbZmOmAfkv26b381lStaXDJ+/49wGw4YfGPnoAf5syTmycc5S Q2PJdfAOBYlOTcyWufIeh2sz13Luccwb2wR+TxDvUGqVfEs+b3f5PQ7rFUrW kejNyrWi1vsp9lzFDlLM8tIHtxn7R7UurPMaP/R/ubdqvZF88pIl2a5UbK+I owYkOr6skf/W+R0UdU6N9cpRN8c+0forjj33U63/G+haeRdF/atE7fnEEv3L 8McXH/JQF7ngwNaQdh7y8V4siXON444kJ+fkO10+HzjPcyXrLYllLs6VlaIn ajhI+kI+2yldo0vWLxTnQHGuJn0Yz0GK3bPZ9awu7F2+kyi2b8m2/omx3TlX 6oxhIwYOuMaLcxPJHgX9KVcf4a3Sz0o7Fl7iwbAdoPUaJcecH7HoxHOsOGab C9tUf+9zvRDnYrI1CR8e+Jol28DBFpfPWsKOVPzlafdKz/QPdnj0WGx2DP5w wDUpbW7wtbmOlex3Rdqx8BJPbdS1RMp9M79/grM54qlpizbX3BI1wnki9zSu ecL7C99SPlenbcePmKNkrxPHUvLpV7J+XdoSHdtAyW3kOzltjm79LSn/Y+Sz jmwp+cwUZ6XZxwIf8uEHvnbJNvzxXTrlOPQb0rbjt45q7uJZoc31HMtnQLaj JUcKG6D1tpIfyLdG3fJZr2R93cQSvRb++JILznVL5oUD2/VpY9iuTTsP+egR eXTM7bhm995T6w1K1m9MW24Qc+H6MDg+X+jbhz/XDGxnswdAcgf9LSO8UPJx uSltWYjcJzTbD5/WkvWbw+fYqAcMG34bSp4k/dbgH1RyjkFhh39wyefBLWnL wZGbuFHyWTblmjnG1A0OL7ZNJE+TPkWxG2t9ita3p20bIn205MnN5qW2jUrW b0tbbhS5hwQfNcDBtbghZWx01ECeep0b6ZR9yIcfOHVgQ98pYoeGnVwfdjkf NbAeFnXcob+jtF5esafzDNLsz8gYxbXxPCG5P8er5PfDYNjuSNu/veQYMHyp DQzbnfLZme9X0nfj+iA5VvjdaWPY8Dmj2etMyvbTo4ZxkrsKz2p9pta7a92o 9Xg+78GFz2Yl+4GPjdjhgZHrE/V7nvDlU8b2CE5y7hZ54YDrnrS54bpX6y1K zn1f2rHwEj9B2Nn6e6rOOTeNnvElhlo7Su7truixI3oeUXL8g8L34nlE+hPD vEaybwEM/QH2HnBtK7j+j/iOIdu3OhZbl2x7OG0M2wCe+cW9+P/PH99pfDfk PRb3TcVMVZ792rwfo6vkmEfSlujEjyp5dhvwzFbyHgT2LSDRl5TPhXz2tZ7Y 7DVyuZQx9CfS7pWemRc1kJ964IGD9/7byv6xcq2fWB4knxVSPu84/x6NOdAz swCbE3sV8CeeGPojRyaOOz1w7PeWvFryxbTlsuJYRfw7CP9UfgOV9xI+d9KX KniNpAbeOe8ufJmCfYn5THInyemyJWnjYOwHWFp+h6qWlRR7abN11nDD+1Ta +JiSbXAc1ub9AGDYnmaPUNgLibl/bTL/lXwuZOtZML5zyTZwsF7KtYuwz2Vr Tfw9nu/zfLcH+6LL9dBPqc3vwXeOnsgFN1zPq4bdou9BiWPhJZ6ZgBNL/cyC HsCIKcU51l3yeUYf9MNc8OO9Pv3CRb/Us5fsX0ofnBjfM2axR3Azkz0jP/Vc I1uDeHunbMcPXjjg+qrLx5pjz/EGB3tVefcpOXbDxBK90uY1Ek6OOX2y14Jc +0bMAZLXS39F+H5az5DPWmlz7y99QZPXSHIdJOxr6UMS+xJTbTMHXOmCcTD2 AICD5VTDu8KPbvO78v2jJ2oGP7BkG3VR3/S0MWz90p49xyCbdv6FTd5LwJqa 0NmncLDWGeX7pss89H5I1AjnT8LTzX4vCcZ+Beq8hec3+WUL5oCLvRCHlsy1 keo8jGuV1hsnjoWXeGKJWzVlDvQZafsS812XOQ6N3o6QbJT/JoltzIj58M4e nHfcxZgHxwX8yIg5seQe2hNj2HgvX4o8cOJHjhPbzAEX7++xl+J4g4NxLMrC pvXt0ePHnpGjzTWALSf9nh7OSW5mR19wUTP/PnPSxv63nFXZvxc+VDWsoLij uZ+K6wdhP/IdTD5Tmm3rk7IvMfw70WNKtr2bNr7o346mHFsrOZ44+IgFwzYs cR5sbYmfAbj/r57yswD6O2n3Qp/0MyXyEXO85N3SZ/IcyHVD/RTSzncc16xm r5HUXym5Z/59K77EnNZmDrhWLBgHY48BONiaqudr4WPb/K78uOiJmsFPKNkG NzmYKRi2ITyfiOPrsuLavc9gpYLP4QnymS29M238pJJts7rcJ7M6OWpktg8L W0X25pQx9jBQ54OSp8mvV8EccLG34ZSSuTpU56nk4vt24lh4iSeWuLVS5kD/ NG1fYuZ0meOUOManS64s/00T25gR8+EdPzjvxMfGPDgu4GdEDM96PPOtlxjD xn6DcZEHTvzIMaHNHHCxBwH7uDje4GAci/HCfpZts4gljhrAftHfh3WeMbM+ t819wUXNZ5Y8089Vw1la9+a7Iu9YeaYKnTUyn7IvMRwDMGIminMi9z1xbp4Y B8OfvOTkfTG19Gp2PXDD+0Xa+Dkl2+Bg3wKxYNioh17Ghz5VfolytKT8Lv98 4bmC8XNLtoGD8c76vLAv2gsxzNdXrr1gF7XZhxp5t02dcMD1bdrccLH34IKY HzUTCy/x1Esv1Ez9zAIMX2Lg5Xs93+n5fQDbhdH/Lnnd28R1lGKfkX6x8FUL lug/KdctWv+lmK0TY9j7y/8S4atpvaXwubJfJH1el7HLlG8d+UwSdrHW34ln deFPKn7tlDH88EHCRQz4pODF/7KSY34X75Var95sib6V8l6u9bPCZon/d/YC SL+8zWsk78GpnR5eaLYvMXBT66XBBQ5Gbejk+YTfurX+U3+f15kb3q3Sxq8q 2XZZ8FEPGLauxPxwwXNpzIZZPS/uNeS/rnJdG3X9LM4+wq6RfmWbMfT15DNf cTfEMUCijxTPK/LpK58B4YMdf2LhJZ76rtd6zWZzg3Xzm7z6uE76VW1eI9k/ AIa+tepZoNi/eU6qs509BPjcHHHUfCPcBZ8b1DO55JrArm/ze/OrS+55TtoS nf7Zf3BTxLNG4o+El3h6oh/6gpsc89LOTx3UBAfxo2KGzA//W0vuYRvV9h/f h/hMiX9x2R+U7XaepYStpZgN5H+7sCatt02M31ay7T7Jt6T/kzaG7S+tm2V7 VeuBKechH/OCA66b26zfofU/gYMV5D9F2A2cp2nLKZGbNRIfYv+J+ZPrzpLz 3RN826nOu7SeIWwB7wu4j0q/pc1rJO/0v+Xck89qGfsSAx8ccK3dbByMXsDB yPtvl2fH3OCGd3Ta+L0l2+4MPuoBw7Z94vOO84/z7Y6YDbNllsw0zzVUf/dr fVubjwvHhL0HDwh7W37/pu2DfVDKGDrrheJ7WH49us0BPirxsYVrF373jhrB iX0g/IglDh440HeI84QYzhXqpMZW+TwibKb0uoxrZJ8EdfaX/e42v69/rOS9 BuypAH+0ZNtiylOnvx/qjGHbkb0TcQ7SI9zk6Fcwx2Phhx0/8oGDkeuJ6Bse YokbnDJGn/TFMefYD4nrANcArmNTS65pNHtymL94N5H/x7I/yfkgbAnZZ2j9 eWDYlsjY/6mSY8DwHZIyhm0M+9yETwv9Gcl1JXdKjGGrz3geqZgJ9nvFtzHP w83WWX+Kr3xm1dn3ecVv2GyfZ4MXHAye54Q1iGcfzXNJ4Uvp7+c6Yw+0ee8B +amLfuGAa8mMueGizhdKzr1UxrHwEv8Zz2pR57rRG3XjSwy1Pl1yb8yhLnR4 Xyw5fumMZ/qS9PUKXiOHpoyh95TPN5IDeF4TvrjiXy35mLxWsi2TMYZtF76z 8NtPm/dFgOELJ9zT5fdQm+vbpNnzfLnkmAPSlujEv1ny7HbjGhgY9SDR2Uux vjhf1/qJNq+RvD8CQ981ca/0zLyogfzUAw8c1PlGyfsr2JuxUnDBMyN6hYde 6XlAnJPMBx7834h802OWOyeunR449p9JDha+d2I5vc3vi98S/p14GtXXQOFv 84zR5jWyg/OZZ0bhWzXbl5gN+M4Q3LsnxsHa+S7W7HhiV2lzPPsK4AbHH/zd km1wbNbs8xMM2xGawzslcy2n2n6SLPCcL86l5f+BbCOajb9fsg0c7DfxzBS2 qnjKaX/2+dxvkTL2TJv3J6zOtatgfzjgWjFjbrj24PNbsl817Vh4n4memAd9 UT+zoAd8iYGX688Tce2mj3ei/57d1pnPMlov2+2+PpX9V56nM8Y/Kdn2cckx eybGsO2VuA72VdBLz/CDFw64BhV8rDn2HG9wsM2U6/OS91awJwT5eZwfrJGc Gx/F8WH+5Pqi5HxfS87l2Vf4l1Ej51WD5FfS091eI3+v8/V1alwL8P0yZj03 uDYsGAdjDuBgm6d83F5u87GDG959EuPflGz7Io4Jx+6buMbvm/gz/krJn/Mm fv9o8/t9fo9fXd9/e+WNf1ey7fuonVjkts2u/0/JjXi2T9mXmOPS9iEGvx9K 9uujGn7k3iWfk+QzlM9Um9+BZuS/g3zma/1Tyfp+iX2Jeb3NGDb8ZnH/EXaK eH7mGiXbAXzP1Tqr9f6J7fhtXHAPo5vd4+zoieccJDq2P6NW+oGDzwazhQcO aiPPct3uFx/y4QdOHdj+lb4Jz/ny+aVkPZ9xL/TB/gcwbPj9WvIsDlTNv5W8 r4H9GPjOLXl/BGsksUMjhtnh+1vE/8HzCff4jHEwZktN9EbNy2u9gv7+qzM3 vBwX8N9LtsExjOf/lDFsB8V3t3nxPaVN9nf5jHEe0pP83msz/mfJNnAw3unP 5zlE51R/5fq75P0I7JEAIwYecu/b7NrgAD84MTdcE/muETWCEzs//OBrL3j/ A/UzC3rAlxh48SE3fv+U/M6Xd+ifSQ4Xtr1q+I97pXgHZOKdcMn7OFbs9nto 3r//W7J+SGKJjm0JfW5Wln54Yo4OviNwDxLWo+x3y7xz/qjN753xIR9+4AtL tuGPL++1iUM/NLEdP95lj5DsLNjnfe7Z8ttUei+el8qeDbMvN3v+dWXrzB+J jg1/fJk/nIuVzQsHtsMSY9iuSjsP+dbOWJJza8VuRWze81m8bP2atCU6tnnx +eA8Z07VZr/vZs7MmPfvq3T7HTnvqZdU3CeybZCxRN+sEO/J845dqmydd+v4 YN8uZQwbfsuU/Y6ad+LwL112DiT6EaqnZ9nnQSFjic45QdzSeddDzRxj6gaH F1tGcgv5lrg2ap0RtpF4enNNL/t9fKJ1rtvvrxvK1ouJJXoufIk5MjHH5jz/ p4zBwTt38nyj3KNS9iEffuDUge2LNuv4ZMvWB2V8Xef6zrtFjsO8uC7zPn+Z vPm/0nqEYndIuablyn4nz/vLJurLG8NGv/gvX3YMGL6L3tGXbdtQeVcVvmLZ 79hXkvyW62nGGLZy4nfkDXnHYt9SfKNTfu+ezfvd/Up5v8PmPTXvt1dR/Ap5 +/Qq2w8cjHffKwtbTfwV5pz3e1beBYPxPh4f8lMX/HDAxXt/uOHivXzvsnN3 ZBwLL/E/cn/R305RM71RN77EUOsKZffGfgMkOn0mZce3ZfzufdXIwRpJj2Do 7BOYLfmz/nbmuVH2Ncp+P9ynbFtnxhi2zTjW3X7Hnw5/fHlnTb05Pp8Fnwvc 5/FZreyYamKJTnxz2bPbXJxrlV0D/Ej0X9r8Prxv5GaNJBcYOu/H6ZWeZ8XM yM/c4Pkl+lozzq/hGUverfPOnfOO8+++mEOfqAMMP3yQxBOTizwcL2qnB459 q2Re+vYZy21Uw56KzUcf5F1NeIv0roLXyF3pRTNZX/gaefsS8yvXQck9Je9P G/81ekHOi/Ua3a6Dcw9ueLfMGO8f84Wju2AfMGw1nn8iD/Pn3nBWs+8daypm PdlGFoyvU7YNHGx3vnsK68P1lO99ZX/O2WMDxr2He9Mf3Ls5hilzwMW9D264 tuZZomy/roxj4SWemTAPrhV7xizoAV9i/oprUTauj/RBP8ylCW5he/CbJPfl NtdcIC/Xu8T4wLJtG5Qds23GGLaRnJPyXUv4mJTt+MELB1x98z7WHPttAgfj 2jJI2ALxbJOxRP+3zWsktXHM6fPoxLkGl51vI+YpvuOEb6j1P/LfTjwtsg2R 3pz3Gsl5zuw5Blxn8SWmqdsccP3XZhyMcxIcbC+t++Wts4Yb3lEZ4xtHHYvq UuyxiTFsO2T8jM+zPt95+wtbKM69xbNJ2fqOGeccyjNDu+7FknO4r2csW6L+ tSVXzvt8Hhq10zs+w6KmtrL9Riu2PXqizqHUmXf9HPvtCubpiHOBzwK+xCzW bgwbfp2SG3Bdkc9wrVv5rGi9mdZLyXf3jO2d8blqVl1LCt9P/JuWrR+fWKJj WztqpR84ltHf/inzwMHnnTwDo2Z8yIcfOHVgG8T9StgB8tm8bH2v6IU+iAXD hh9/DeE/Qthg2faW/xCuM6FvyL1LPgfKZyOuzVoflLJtRPTfXbZtv4zx1qiT 2C3LjodzcOBg2PbJOA+2fTP2y0SurSKOerYr+5gdmHEe8lHHNpKbSD9A+MjA 4OHYbh28rIdE3i2ib44XvsQ0tpsDrmy78cboERzs4JTl8rGGG979M8a3LdsG NzkaAsO2f5xv20XMMJ5XhB/C8wy1cF8vGFsx8O3L9jsoY4mOvZ21fA+Vz6iy 9UMy3ou0Y8H7kcCw4TdaslP6YRnH71B2jh2Cj3nuyD2IZ47EcseYNXGjxHFY yvjQmCE4vNh2kRwhvSyenfmM8xzDHgBxj5HeS7JFWBvHWrE7la2fmFiiY8OX mIMz5ujPd5aUMTjolzw7KOeRKfuQDz9w6sDGDFZt9xx2LVs/OfF5xPnEuQWG Db++nPtl72eCaw+th/Os1O79XuyL271s/ciMJfqE8MeXOpn/bpFvj6iLvGtL 9lFMKeXjzPEuZSxHRy/d4thCf0dovVfZ+lEZS3RscJODvXZ7l817SuJ9SDsV vO9oHX4DyJtzn7L3kbFvDYk+hueHdu9nY2/bvmXrlYx9sLNPDAwbfuQhHz3A v1/ZOZDop6qG/cuug/1gSHRqYrbMFU6uzVzLuY8wb2xH87mQPF/6A/yWLJ8B PMumvD6obB2JfrpyHcx5rfwnKHZdvrfxvJE3tnPBc2aNH/ou+juE81t5jpc8 TvW9Tp2cv/I7MWOJji9rZEU8R3Cvaff+OtaHla3vxIy13lV+6/NdjftB1H5Z s+s/PGo/I7FEx4Y/vvCTh7oW5SrbNjZxHvI9k3Ye8p2WsSRnVf67Sa7b7j1O xbL1cYklOrZDoidqYC8YNvxLZevsIaSfctn7y/aQfQDHRT6V6AnOo8q2nZkY Y0bUDIZtQHDAxTwH8pzD86V8amW/pz8jE33H3MGw8f6+WnbM+MQSnXiOFces IN5d885HbdiOFX5ds/Gjoz5wMPIeI+woxb+cdq+lmBHY+u3ev7QH921hx6bM AdfYjLnhot/jyvY7M+NYeImnNupirxF9M79VgpMYeFvFcaPw1YSfULZ+FntX 2nzes4fkpOAjL3b8iDmB56yCY08sW/9f2hId2zjub4qZmJjj5mb3NZhrA/dX yUHdMaOUfciHH/jJ0TP++DIH4tAnJLbjd7bW+/FcwLNlyn2fUfb+KvZkna71 PgX/bdTufUenBXZOYomODX90fOA8tWxeOLCxXwsM27kZ5yEf80eSk5lTL7Om 5rHRK7mQY+OYcX3g2lBMeU4b8Zyd8jUD22nyP5BrmfKfKHy88AOkn5+xRN+3 YPsm7fY5s2z93MQ+2E9IGcOG34Syc50b/GdFDBL9AvGfXfZ58H7aEp1zgri7 ml0nNY8LLv7gxXae5NmK+YR9zjxTyHaech0i7nOk708tPLu2e6/XxLL1j9KW 6NjwJebijDnu43f3lDE4Tk45zwEF4/iQDz9w6sBG3Vy/OZ/Pjz7ocZNu98vc WF8Q/V+sv5e0PpZrFc90kqfwDC+fC3nu4XMg/CatDy8Yw3ZBYv+Lyo4Bw5c6 wbBdkfH+qUu4/8nn0uiVHsGwsV8L2+bt3neEnb1ZzAo++ofzEPmMkO10rcvC Llf8wQX7TIrZgYOdJp/LeJaR7SLVeQS/3bZ7LwdYu/76pZyf3OSdFL1emJgb rqtU5xVl5744cSy8xFfyxk+PmumNusGIodaLo284kej0eWXZ8VdnzHW19Mea vUZS29WRh7zsZzqs4D1OHVxXZXtKfteXbWNvFRi2S7hHcA+V/9jwx5fY8+V7 Fc8MPAvwe0K79w5dU3bMdRlLdOJvLnt2l4nzRq03ZdaJJfpm3ea6oez9XKyR 7Om6IfLQI71eGXOkBnB84IGDOifL3qn1pYklMcyW847z7+aMe6VnZgHG+Tgu Zf/JMVP6I8dXaddODxz7ByR3lLwtY8neG/bq3FL2Ph/2FDGPW8veW8QayXxO E+89wksF+94Sc7lD8iTZbs0YB+McoyfmSF/Dtd6c34ZS5oaXOYPfXrYNjiO5 TqSMYbtcc7gtZsz8i/zmqtizOF7KdVf0Az6lbBs4GH3dKezkvPvlezzf5/lu D0YMPOSe3uza4AC/IjE3XL9qJndHjeDE3hl+zIR5TEi5fmZBD/gSAy/n2LXR M33cFufZZJ6T270fZgvhrzV7n9L9Ze9rYk8U+H1l2+4tO+aPtDFsV6qeLSW3 6nYN2PGDFw64ygXPg2PP8QYHI9eDfEYVe1Vi+WDMizWS+XDM6XNKxrkeKjvf o2XvI2If18Ncz+Vzn3yq4n6E+12710j2zzwecdck9iWmUjAHXPiCg52TMg5G LP2wf2jR3qHwhQf8sbJt1EV9VyfGsFEzs+cYfJ92fnphVqwfj966tH6CY8Q5 y29Iij1PPlPL/m8vPyCeE/jeyTUjZaxW8H+TeYq4n+aZod0ccF2rGp4sm+s6 rZ/SeoJiHsw4Fl7iiSWOPT9woC9M2/epiOcPLmqaFjXCObLb+2/Ye3Muz1Py u0DrZ8veR8O+IPBnyrb9r+webk6MYXtEPs+VzXV9Ym5yvNtsDrj2a7cdvw8D B2PfzvNl711iLxOxxG2YMnZMwbWdELmZHX3RD7Olb/Y80fuLsm+t+Bt4vpX9 Za6T/JYibNtu98WeF2zsV8H3xZjpK2Xb2AsEDgY/sdPLjicOPmLBsE1OnAfb jYmfAbj/X5jyswD6kxn3Qp/0Q55XIuZ1ye3Ec5NiX405MU/yvRbzZY2k/hfi HOEcwJcY9vXAAdf23cbBmC04WJvWl4rjeO6dKXPDS83gb5Rtg5sczBQM29MZ 7yPmnfQI+U/K+3hwDn/C508xL2aMz4jzg5xfNjvvm8IeVc/Lyud6nkG4D6aM Hd7uvTpXCX9HficWzAHXNPm/FT1xvr2t9Sitb0kcCy/xxBJ3acoc6C9k7EvM DjEDuKjpXe418r81sY1c9MI+I3D2w7wf3NQA/l7E8KzHM9/5iTFs7FmaGXng xI8c5XZzwMW+JOwzozdwMHr/gPsP1/SIJY4awEbrrzPlGTPrUwruCy5q/rDs mb7CO4uw35447mPpY4JjTPDgSwzHAF9ijuZ8kbxBtlczxsGuiLzorE+VvJrn xZS54SUX+Kdl2+BAxweM9R2Je/kgYqbxuW73HpudOE+E7xz452XbwMGGy+eL 6AMerotcI7g+gP3Y7L5u5LcEnilS5oBrhYy54ZrC+9Oy/V7POBZe4vl3KPwb lKtSrv+zqBtfYuDlv3nPf/ue/980/2aFmDsTY/y38Pnv+T+vnN/yOWq3RF9Z uf7i+i//BxJj2NlT9F30Dc9NyvVN8ILNaXbvPwi7Xba3xTOWY9bufTJgZ3A8 UvaHixhwYrDh/2PZMbvKZ3bZeZDodyvvT2XvXWIPFXXNKnvfE2skdVI7PZzZ bl9i4N5FHN8HFzgYtaGTh3nupvXu+huRMje8b2SMzynb9mPwUQ8YtnsS88MF D3nQ7xJ+t7jHyf9a4b8Gx73Cxwv7Ba52Y3tE3nvkP4/6C5boH6iG11TzuHbv 1QHDfl3KsfASDzZX6zvy5iYHuU5V3G+hs0ZenzKG/g7X/LxnN1n4fTwHaX2D 1vPL1j+Szx+R577E9fxedk1gfzS7/p/L7nlmxhKd/veUz5/c07u9RnalIrbs ePJz3KgBbnKskXF+6qAmOIi/P2bI/OhlQdk9fMy9Rva6vPefzBTHkhVxy2+G 1me1e//SP1EL5zn432Xb6uX7BOd3xhi2tbQ+h3t4u/fDkGdBfE7ggGuB6t9b 63+13if6A6PH/7inKObLjCX6hILXyJtSjiWO3sm1sOx8dRXjD7GvqeL9U+zj otbFKt7TxBpJXxsJq8n/pcS+xMAHB1zUDg5GL+Bg5N2327NjbnDDyzzBUxXb qItY6gHD9nDi847zj3ODGdDPg4lnyUwn8uyov8W1vrDdx4Vjwr6sJYQ9IL9P MvbBfmPKGDrr/cW3tPwO6DYH+COJjy1c6yh2qagRnNglwo9Y4rZJmQP90cS+ xHCuUCc13iafnsKelT6L3yv4bZzn1pTl5e1eLxu1PJYYX6Zi23M8+3AfSRnD hk9DxVzfZ8xNjvMK5oDrwG7bGyIG/MCoOV0x5+OJY4m7JWXsqbxzccw59kfF dYBrANeHTMU1zc6Yrz5vzg81s6xsV3DfF76m1i/njWFbL/wbK44Bw5e9AY1R L/VcJGx5jqlyriB5keTUxBi2b3mvId+Du72PbpGd785aX9lunfVV/G6i9V0p +/ZSfM+8fVYMXnAweFYS9rlqahX/m8Iuk/3BlLHn897rRX7quj1lDrjmZMwN F3WuXHHunzOOhZf4L7V+If9/NdMbdeNLDLUuV3FvTySWywXvKhXHDxbnodIT 6Yd1e428J2UM/SmepfPes8WeLvZprSbbpeJfvWLb7xlj2Ng/dg3fybgHhT++ 7Ok6RHy95bds3tj0vPFcxTG/Riw68WtVPLu/hffV+jruoxlL9JvaXe8aWt8Q ayT1rxE9PZ24V3pmXtSwbOSFB457te4j+xtcxzOWk5T//pTPO86/aTEHemYW YJyP5MKfeGLojxxPJq6dHjj2AyXLwl9ILNnzwT6NJuE3qoY/lfcI4c3SX897 jbwv5f0o6wl/P29fYm6V7MfnQ9zPJcbBqPlIxRb1t4vW7/KMyfNVytzwPpMY b6nYBscUft9MGcO2kL1GFXM9y/N53n74wL2ObKvmjfePOsDByLu2sLmqe0TG n30+94+mjN3Z7r0Kd/GbY8EzhAOuHllzw0Vf61bst1jWsfASz0yYB/t/yM0s 6AFfYuDl+sO1iWsQfeSDt9TtPULs27mbZ9WC57xBxXt22KsDvn7FtgEVxzyf GMNWp3pu43dE7jUp2/GDd9G+H677eR9rjn1T4DMjb0FYRbYXE0v0arfXSN6B cszpk71M5GqtON+GFe/zYT/YID47fJbEc498BofOGvlAytfXTFyjwYh5K28O uD7IGwfDH/yDOD+phX1I1AM3vKms8SGV2KNUcX3/ZIxhox4+46tW/Dm/V/Zr uSem4n0mcywY37hi2yZ8xvmtIbH8MPLyThidNb7E1GeNEYPf0Ir92Bc0TOtP hS0ln2NUy+daP57yOfhgu8/DtrgXkQtfYvg9Egwbfu2SXwhbRjybav211mmt O7U+Wn6vJLbjdz3XC35v4Pcv8XdUrC+RtUTHRo1Do084Ps67HnjgeCLlPDdo /WTKPuTDD5w6sD0snsfb7b9ZxXrPrHuhD/ZKgWHDb3jFs3hVNW+u9bFav8Z3 FvluIX1ywWvk0yn7EsPs8CXmOMmt4vPH5xQcjGvCjYp7pt37l9irhM4abnhX zBrfsmIbHOxb4joAho29UhtWdY3kHpUzN9cE+NnDNFJ+s/LGu+J6AQ7GPqhu noukr6Rc2/BcoXWvrLGbCp7z8d3e28Repq7o6fXE3HCxD2rriv3eSBwLL/Hw 3VzwuUT9zIIe8CUGXnzIjd+2Fe/xYf/Sy5J3CHtesdsLP1ExM5LYAyR9tmJP 6PZ+J/Y1bVex/r/EEh3bLpInS38rMcdJ3d6DdKu4d+AezLOiOG/h2StlH/Lh Bz6qYhv++E5NOQ79zcR2/DKa2/PtxvF5gd8R+JwXzDWm4j1W7JWZEzWPrlhn fxcSHRv++FInnDtGvjFRF3nBsK2cdR7yrZK1JOezKe+3+jl4dq5YZ08XEh3b iDi/OKbMib1Z7MVizrPjuJ/S7f1S7KHaleuTbEnWEv32gvdp/Rqxu1Wss88K H+zPpYxhw2/PSuzLyph/94pzINHfVj17VHwerJq1ROecIG5u1EPNHGPqBocX 27587uT7Hu/KtZ4vrK94TuW7XMX7uU7T+vRu78Xau2L93cQS/fTwJeadxBxT +NymjMHBHiryvKHcL6TsQz78wKkD26vt1vHZr2J99ayv61zf2XvDceB4cF1g f9bvwd+9mY6t9CF1rumAiveLLdOiawrX94IxbPSL/4EVx4At2quWMobtuuV1 neNYcU52ao6S//F8kzWG7Qi+d/fT9X1t1Vlv+13K81LK+7PeafcerR6q4X2t X+E7ptaHc6/N2+fQiv3AwabL5zBhZ6im91Vnf9m+aPd/awKMfWDsDSM/dbGG Ay72icEN19qq84iKc/fPOhZe4t/W33vtrpOa6Y268SWGWg+quLdzGy3R6fPI iuPz4qyTf0n6wrzXSDjB0NeRz1i+u2r9svCPFFeteJ9UrWLbzMQYtgFZ7/ea 2e79VGD4sn5X62LFe9M4F7jPsxeoXHEM+9aQ6MQfV/HsThZ+TBz/DxNL9M9l G8czpNbju71G1lLG0D9I3Cs9My9qID/75eCB4zXup7L3VI+tWct7Cj7WnHec f4NiDvTMLMCIJxZ/4omhP3L0y7p2euDYnynZS36dWcuHeK7ivhO109eZkidI P6vbayT8D8r3DOE/tNuXmB3Vw8kV759ifxQ4GL1nxX8f1zp+85H8tt17eOCG 96PE+EkV2+BAxweM9cfcRyrm2jjrHth3xTl8tjhOk21Ct/FTKraBgx3DdSP6 gGf/ij/n7CMFY3b0tbzkA8r1v5Q54GLOcMP1iWJPr9hvWNaxp8bxYCbMY0bK 9Z8cdeNLDLxce/aL6yN90A9zWSHiiR0onx/bvRdofPT0aWJ8XMW2sRXHtGWN YRvPb2tcP7nPp2zHD1444No972PNsX8ocDDmc5awweKZkLFEn93uNZJ9QWcE H/WQ6+yK802UnMjzq/AJWg+R/8SMaz1H+r55r5H0xew5Blxn8SXm4YI5JkZv 4GD0Ag7GfM7V+rxun6vnxDyYA/i5Fduoi/o+S4xh+yLxMz7P+nzXXlV8j2j9 tnjOq1gfIZ5HhZ3PvUy8F1S8B4o9VEhs7P9hHuyXYib4gn+Z2OeC0C+M+fH5 uijqwuevdu+NYY/N+cIu4NlI64sr1r9K7HtRfD7BsOF3ieTqwrYS52Vat4nr It7Bab2G8K6s7fg9xvOf/n6Xz/viv7Ri/evEEv33OLbUSj9wYMMfHjjeTTnP H+3eR4TPpOACpw5s1Hdw3r1cHvV+Hb3QB8cLDBt+awp7QhwfCL9S2KbimJQx 1zXSj5TPhfI/XPJUfjvqdm5qw5cYZnltxbZvE+NgzJbYqyqOhxM+6gfD9k3i PNiY23DJqQXnurpi/XKeDSLP1lnnuTZmfYPkU/L/nu+AWl8s23da95PteulP FrxGfsh3/4p7hgdfYi7pNgdcC9uNgzETcDD28LAXCp013PDukDU+OeqAmxzM FAwb+6+onR445+DGD/4rtL5P+JWSawt7mmus8JuiLvpC3hR1X6r1JP2dIZ+b K9Z/kM924n9WseNTxrDhd5vkOoobkzX/LRXnQKKPFn6r1tOE/ZhYoi/W4Tj0 T1KWYKzBb4uYOyW3oX/1OEXr9WXbVZxdPPfyrNDhOmp513xH1EUuJDo2fIm5 NmOOZ7gHp4zBwR4k8izR4f1F+JAPP3DqwHaZOI/New53Vaz/lPg84nzi3ALD ht8Q8Tyq9QvCLxd+b8yLnMfnnfee6IMZItGx4Y8vM2H+d1d8DODANot3jtKX 7fA+HI4zx3t2Yskxp8fB4nhOfl9wX65Y3ztriY4NbnLcpPk8UDHvHPFcJY6r udamzMdc4Hyw4r1U7OlCPhgxzIh9TszwoZgZxwsf7NQJhg0/MPLRA/wPxzF+ OM5Zanik4jp+jnrQqYnZMtevUr4Wcy3nus28se3L70LCvuRcFP9Gwl7k2pjy +vGKdST6fvJ/QusxirkjY9tj0tMdxjId3hfEGj906piq9anq5XXugdzP2Feg 9VBxHpi1RJ9e8Br5Ld/12v3/bj831k9VrMP7jNbj+b4mfJrWL/FbmXKN5T4s /6cr1n9NLNHHhj+++FAbdXHs4MB2b8Z5yHd3xnnIR+9IctLjtd2eCbN6tmL9 t8Ty2ZjX1DgOv3BtlLy+2309V7E+l2u1/J6X/nLBdvrH5wVhrwibJ5+XKrax Blu5w/tzwF6KOcIB1+FZ73PCD5/pMTPmDAYv8WDY2Ev1YsUx7NFCvhi5OVYc s5x8b1Cuyfo7X5yv8QwnPAn85Ypt4GA/yecVYZurnmLWvT4XPYC9yjOifLZo cQz+cMD1e2Ju8D94L1yxXynrWHhfjdqoi31B9M38vvt/nBFPTRPzrvmNqBHO 7eXzpuy/CJ8h/EBxPZ6xHT9itpLP6/KZLZ//VaxXs5bo2GZWvCeLPUJwrN7h /UUHa/2WbG/I50aebcR3Uco+5MMP/M2Kbfjjiw9x6FMztuP3Z+JeL8q7321V w3uy/U8xN8v+rta3cI/qdv/M852K9fmJ5TsxR/zxpS84366YFw5sfyXGsDFz 8pDvuKwlOecwN8mmDu/Deb9ifUFiiY6N6wPXBj4jzAkb/o/FdYXPxa3cI7mn Cv8gZsOckejswaJe5k7NH0av5MIHOzMH+zCO0yeSb4n/n+D/qOIcSPS/hX9c 8XlwQtYSnXOCuLx4f42aZ0Zv4PBi+0JytGJOUeznwU2uUcI+jdxHKralw3u9 PqtYfzZjiY4NX2JOzJrj8rznAAYHNZDnba7dKfuQDz9w6sDGNZzrN/t/uJaj T1eu2+V/Td77l1h/VbF+rexJVc+BLa6DfVHUyb6nr+Xzjjhbhf9Z8Z4LMGzs s8L/m4pjwPCF/5voiV6m8Awo/U6enyR3U55xWWPYFmpWd3S7T3rE/i7XOq3f k9ygw/teiKdPeqe/nyrel4TPDxX7gYPR+48V72Vij9O9it1TsX+mjBEDJ/nh hRMO8B45c8PFMZ0VtYMT+2P43SXsbmYaNdMbdeM7K86Jbyvu7b/o8ds4xrMr jl9MnDMV87P0QofXSOoEQ6+Tzz48n2r9V8o5f+O8V59zK7adkzWGDX96JfbP 8MeXOvcQPkd+7/Odrd3Hlb1Dv1Qcc1bW8pfIPb/i2dWL84+K98Ow9waJ/qF8 TtN6ntYbdniNZG8PGPq7Gfc6O+qjBvL/kTIPHOyx+V32e2RP5Syn5I1z3lEn tdErPX8Q5yTnI/XjTzwx9EeOM7OufX70tkTVez/Ye4M8uMV7P/6S/T75La68 BwlbIP2jgtfIBfI5nGdQxX9asC8x90v+G30zf3AwjtHH8hvW4X0v7DlCZw03 vBdmjf9TsQ0O9iExNzBs7In6O+xL5MxN//AfJtlD9XxSMP5fnAfgYP/IZ6Gw B2RbMufv8Xyf57s92IN8J0m5n07l/i9lDrjIBTdcl6rOxaLvpXKOhZd4ZgJO LPUzC3oAIwZezrFf4/jRB/0wl3OEb9rhfSZwPZR3PYsrro17W9Z4fdW2VNUx n2WMYaOeh3m+5bNZbzt+8MIB12cFH2uOPccbHOxf5VoSbsUunbNEZ58OayR7 dTjm9Dkp61xLVZ1vGcmLxfud6lla6824tvP7m7h7Sj+ixWskPA3/Ly5nX2I+ L5gDLnzBwRamjIMRW+Z5OO99Jj3DFx7wZau2URf19cwZw3ZV1rPnGMzIOP+I Ds+KNTWh1+Sb1vpL8T4qvNhin4ywzWW/Qjw/yHas8Pp6Y136W0zrrXh2lN/W HeaA61r5Z6vmWlb1NGp9DL8NZB0LL/HEEpeqNwf6NVn7EvNV1AMXNS0v+Rh1 i/NxnuHz3it1Is/dnJ/iWVE+l6rfHzLGV6ja1rfqHpbPGcN2i3KtVDVXOmdu clRbzAHXqA7b8SMfOBj7MXpVvSeLfVzEEldXb+ybgmv7IXIzO/qip8XrfY6y 14rzfxXOO8VnVMNUyZz0l2TbUT7fFnwsRmv9XcH8+K4S5+WqVdtuzxoH4/NI bO+q4+GEj/08YNhuyzoPtmzOzwDc/9kfxbMA+m8Z90Kf9EMe8lHHGpJPKXY5 xa6m9fXcA/geJ2x16a/kvUayP2fl+FzyOcKXmFNazAHX093GwagTHIz9MNso 7nuugfXmhrcxZ7xP1Ta4ycFMwbBNznofMftv2Wc7psPHg3N4ffnsxm8HWeNr xvlBTvYDkXetqvcXsafoTJ678t4rAnZqi/tiz05efqe1mAOuO8TZFD1xvjVr vZPwKVnHwks8scSRCw509krhS8yPUQ9c1NQiOU36CuKcJdsZLd6T9gzfMbm2 qK/+8tlF8Xdljfer2sazHs98/ybGsK0onrWr5lopZ25ysO8JDrh+KtiOH/nA wXoq1zrCblfN/2YcSxz1gBHDmhkz67073Bc9La3Ydaue6X2qc72okRomCBsg fXbBa2S63r7EcAzwJWYP8Q2UfF76yjnjYMyBvORcVuvnhI9rMQ43vA9mjW9Q tQ0O9i1wDQHD1ivnXtaJGV3Is5Nktt57lQYJ/znwQtU2cDD2PLSGnb0QXBe5 vnKtAzuowz5cS9ivxfUEDrieyJobLvZxDY7rENcrYuElnnq5jlEz9TMLMHyJ gZdzn330POti2zCufVx31+7neh5Qno2EX9Riib6kco3U+jU+nzlj2Nn/s7Hw F4X3Fn6weIZI/6Vg7JO8988MFbaPbA/xXCrbOYptqDf2q/RMvf3hIgacGGz4 D6s65iX5dFS9vwaJnlPeNq0PUcyTWe/LaZd+cYvXSGqgdnq4vMW+xMA9Xfgm wQUORm3o5GFPzqHC53K/qDc3vOwjAu+s2jYs+KgHDNtTWfPDBQ950JOc9/Fc 0mJ8ONdI4asJf1lys6r3B4G9ymdTeafKf4Tw3wuW6FnxX8n3irz3h4BhZ68R sfASD7aF1pNazE2OVZXrcNW4ufR5Ba+RK9QbQ5/G9ZnvScJ7Cz+S79/6W0nr 7qr1Z/ndI/KsnnM9W1ZdE1ipw/VvWnXP7LlCotP/Nfrr0vqPgtfIlesdCy/x HDuOGzxwk+P5rPNTBzXBQfz0rPtjfsxh66p7eEX4m8K/Fz6Ne4pq2JXzX7EV /R3d4bzbCntdfn1yxrep2raT5LHUkjWG7UWt35DvdeJfpd55yMe84IDrar5X 6G87recHDtZL/tsLO0o8L2ct0Y/r8BrJzIklLlfvXKOqzjdacoHwtVTnDlr/ T7Y1tb5Zth2l/1XwGrmcYifSF8cya19iZnSbA64TOoyDMR9wMPKCvRk43PD+ L2t8TNU26qK+vjlj2KhtizhnOTeYAf28nvUsd4oe/tbfzlpPbvFx4Ziwj2UX YbcIm5G1D/ak3hg665Pku7v8/gkO8Kacjy1cyyl2t6gRnNhdwo9Y4jiv4EB/ M84TYjhXqHNBzH8PrhP8tsjvpZK3tXjv0Fvy/y3v9V7yOVkxb2WN71m17RS+ VxV8noBha1Y9e1fNtVrW3OS4tcUccP1bsB2/2wIH4/zZR9jb4snnHEsce6vA 5uW9P41jzrFfutXHgWsAn4t9q67pbeV9R/5/5L3/5zXx7Cfb7fxmIPxorR9r MYZtjfDfv+oYMHzJBYatRfU8JexA6ds16f4kOYXfcbLGsH2vdTP/7ySeqRez /RLOfc437nWq9QnhD/L9Q7X3Ef6uuA/lXG+3z8FV+4GDDa7TNZxzn3en4v9A +Ic8w6WMLeD37JTzU9c9PcwB11pZc8PVT/UfVnXuT7OOhZf4M1XjhA7v/6Fm eqNufImh1gOq7u34Bkt0+jy86viPxHmO5JFV7xlijWQPEhj6Z/KZyj2MZ0n1 fq6wMv7ir1Rt+zZrDNsXfCcV9lCLZwWGb1+t31NPR8jvvhbvMZrY4X0yxapj Po9YdOKPqXp262oOR2l9vvy/ylqis3fmfb7jaH1Rh9fIteqNoa+dc6/0zLyo gfxr1JsHDmqoVb2fhz08yLrW2NtT9fm3Ts690vMjcU5yPtIX/sQTQ3/k6J9z 7fTAsR8n+bHk+jnLZxTbrNhjhU/T+kflrVf8cdIndXiNxGe67KcJX7zVvsSk tD4xuNfLGQejd7iJJ/Yr1XZZh/fJwA2OP/gJVdvgaGjx+QmGbUPVc3zVXD/x u2i7z1fOVc6zU2S7vMP4SfFZAr88PjsnC3tW2KysP/t87tepN9bY4v/P2kfd ngV1wgHXJllzw8Vn89Sq/QbkHAsv8cyEeeTrXT+zoAd8T41Zc/3h2sQ1iD6O j/6X0N81Hd6jwj4gdNZjYx70C35G1bbTQ3LswLCxp+hlcS4pvF/9//nBCwdc 7Cf6OI49+cHBOBbjhX3Cs37OEv3Tbq+Rb6Z8zOnz18h1ZtX5JkjOUg0d7GvS eilhA8XzinzODp01sn+9r69cZ7nugxFzXYc54Lq+wzgY/uBg7AOhlpVaXA/c 8M7LGj+naht1Ud/crDFs1MNnvFT15/wXrW/s8B6VufJ9QXjSavzcqm3nSX6m 2ELOsrf83pH/b/Lp2eo1vsQMz9qHGPzOr9pvC+EXRE/U+WW3zz/Ovc+7XT89 Xli13pqzLzG5FmMXRp8XSX4hfZB8Lq16Dw77eS7RelnVMzhnO37keZvvc8LX Ff/FVev/Zi3RsVEjtdIPHLd3eJ8MPHBQJ3mwgSPJhx/4pZGbebHvh3lOivnx TEUv9MGxA8OG32VRIzVfzmec711avyvbFXx2Wr1GDqi3LzHMDl9ivuaZUXK+ 6hiZNQ42U7nSipvC92qu8y3WWcMN78Ks8auqtsFxZ4f3t4Bh69Ho7258b+N7 Mdx9W8z/j/yvk989HcavqdoGDsZ+mGu5X3AdFM8NnO/8LpY1luEzIs5vuN5w nUiZA64hOXPDtR0zrNpvo5xj4SUevmyrY6mfWdADvsTAiw+58Zscdvr6SrYV OGdUw01c6/i+l7Mdvxbuo92eA3O7sWp945zljTGjO7n288yaNcf33e5rOXHf wn2TezbXWOmFevuQDz/wm6u24Y8v+1KIQx+asx2/pRu9lwccn8+F3SHbui3m uj1mzezZI8T8b4vjw/yR6GuHP77UCeetke/2qIu8YNjYa0Qe8vVstCTnp+I/ tp+eD7g+L6FzrWp9cqMlOrYr4/zimDKnbTp9r2HOzJjzjePwaIePxV1cz1XD sJwl+o98FuW7vPwGyefuqvVlG+2D/bOUMWz43cf9WZy7ZM1/T9U5kOht4r+3 6vOgIc6He8NG3GMd3pNDzRxj6gaHF9tDkj8pb7t4HtR6aWF7ZF3L/dIHcP7o b0V65/eTqvVsoyU6tvujP+qBY2qH996AwUFf5Clo/WXKPuTDD5w6sC3D9+9W +zxctb5X1td1ru+rNvo4cDymRH+DWtzjbPHM6XadsyQfjbnM1fpV7teBYevI 2f+xqmPA8OXYgWHrlM/KyvUEzxz0VPU7ffYOgWHblN8nFddL643qbQfnvT+9 sdeIOcyRXEX4JvwmJu6nud902+fJqv3Awb7hGT7qgn8BfSu2vd4Yc6dH8lAX uZ6MWXJc4IZrM57fqs69cqNjn4rj11uxz8t/aNQ8NfrBlxhqfbzq3lZqtESn z2eqjh/O+w7FPif9hQ6vkYv2+VStH8B7Gc4vPq/CVxT2Ivd1yelV2zbPGcN2 SNYz2KTFcwDDlz0zPwt7NnJzLnCfb+P3wJgl9SDRiX+t6tmtpfpf4T4u2xY5 S3T4eon7Je7RrV4jqRMM/bCs89Ez8/o5Zsfc4EFn/XLMYJVGy84Wz4HzjvNv RM690nN7nJOcj9SPP/Gd0R+c8CyIHjj2H0quJb9js5Z9hf3M91/hq2m9Zc77 j94InTWS/TB/cP0XvmWLMWJmyP4mzx6ybZUzDrZoP1KH9xsxc2pk1tQJN7zs awKfEZ9JOMgxK2UMG/X8L44zn9l/5Le6cnSK51+ev2Rbo9X4W1XbwME2lc/b Ye8SzyNxreL6BvZWh31Wk3y7w3tj4ICrudHccOW1frdqv0rWsfAST73Mg5qp n1mA4UsMvFx7uAZxPaIP+mEuPXRf6MP5rxr68t2vw/upPpD9T3F054zPrNr2 ftUx/RuNYTta9czvdp30gh0/eOGAa2SLjzXHvm/gYBz3j6JGekSib9PiNZKZ vBc9MUNyfRxz+YxzSXzb8B1B679k21rrJVTDp9LXbPUauXm9Z88x4DqLLzEL us0B18cdxsGYCTgY+1vYM4TOGm541280/nnUQV3UNzJnDBt7k3jG51mff3PE HNmrxJy/iLkyT3J+GfP9SvJv6dvmLP/R32/yX0q2JuUZUW9fYrYJH2Lw+7pq v4Hi/EbrZvlvJ58Vha3NrBS7dD/jW2r9bdV6odEYMZ92GPs24r+T7C/sZO6n Wq+n9el8B9S6QX4bNtqO32cdrmPHFtf8fdRFDUh0bNRIrfQDR16yu948cLC3 hzxfdXjPCT7kww+cOrD9K86d+exyX65a3z7nuumDHsGw4bc+zzmt9p8d9dL7 8uL/RXo/nmO73T+x/aX/0OE9OfgSsyvfOau27ZgzDkbNxM6JmcIJ38h6Y9hG 5ZwH2zDlXSisx0j3/nPV+g7s26n6mLU3Og/5qGNe1f7k/a3qfUfsmWEWc6ve Q8MaydxmVd3z2Kx9f4u64ZgXxw8cjB7BwahnMa3r9Dc/ZW54Odbgv1dtg5sc i2ZatW10nG/0wDm3Dtdv+W0rzl7C62uK41mf2A7vjfmzar8xOUt0YlbqZ53Y +VXrHaphceVZYqT3hIDNj/i/ua9KH95o/r+qkaNqfYLmsCBqJxcSfe8Wx60r jlH1xsHoHRxebAuDjxr+03qo1heIc2POe+7fkinF7q/YvxX7b9X6TjlLdGz4 EnNe1hzrtdofDA72ApHnwBbPBx/y4QdOHdjqR7p/5tOjZn3nnM+jn+NcAcOG X4v+ltF6YKuPQUrredxjhQ/gfKb3mvUtGy3RB4Q/vtvVe/6L1XwMUnE8d81Z P6TFx4XjzPHubLTEh9h2Pkcd/u/8LF6zfnHWEh0b3OTYBc7IA/9SkkuP9DFa UnJV8e7AWj59OG8bLdE34PmKz26H+1qqZn1E+GAfU28MG37kIR89wL90zTmQ 6Luphp4117F71INOTcyWue5c72sz13LuI8wb2yjlXUbfWwZJ72j1XqtCq/d+ sG6oWUeis48rXfP5wPmMbVnp/8U5wl4vzhPW+KFTR6bmc3YNZiC5m2KzWi+U 3w6NluitrV4jmeEWWvfr571MrBtr1udrvYLWg+S3jPiX13pZ+tZfqcV7ipar Wd8zZ4mODX98eWdNbdTFsYMD21455yHflVnnId/IRkty7iT/wZJ9FTta6xVr 1vfOWaJjy8Rx2IO9cJ224b9SzfqOjd7D1Et6f/k3jPT+Hvb2rBw9wZnUbNsn Z4x9ANQPho0YOOBi39Ri4t5QuXaTT++a39Ozb4pYeIkHw8b7+1VqjhndaIlO /AZxzI7j9yGOI72IcyPZVhO+bj/juZpt4GDUv6qwlLh2anSvK8WMwIZI7s47 0w7H4A8HXPvmzA2+n9ar1+x3Y9ax8A6J2qiL/Tz0zfwWC87VI56alux0zX2i Rji3l8+Knd7zsCafa613abQdP2Jaxbcxx5Rn0Zr1PRst0bGtLbm8Yg7KmaOn /vaU/1Cei2TbRD5Z2Qf0cw34kA8/8LVqtuGP74H1jkM/sNF2/PYXf4NiltPf fvJp4z6On2KW43MedTTqb0PZ9pVPvmb9gJwlOjb88V2y3pzNNfPCge3AnDFs +zQ6D/kObrQk566KHSa5Qqdr7l+zzhyQ6NgWXUs6fD0h5wqRd9m4rvC5aBdn m9YHCF+HmhV3QKPlOsGLfZN+9lm3Zv3gnH2GxdzAsOG3fs25Dg7+9SIGiX6I +AfUfB7cnLVE55wg7oQW10nNawcXf/Bia5VcSfqh4i8Qxz1G65UUvwE5mBH3 5H7epzSwZv3urCU6NnyJObTRHGNbvCcKDA7OGfL0Guk9SPiQDz9w6sDGNZzr 9z71vpaj7yXOTmGDlGeveq8H16yPVQ1Han2PeHbXurOf8/biulGz72hhXVqP aDWG7bBG+w+pOQYMX/jBsN2rHlcWvrH0TTluNe+hYq8UGLbDG133+Bb3hX3T fl6vPNJ7q9ivNVzxw/t53VtxbYrfrNU+Q2v2Awc7mHNS2CqyHaFjsSWfz05/ FsB6c4zqnZ+6Dqo3B1yH58wN15Gqrb3m3EfmHAsv8ft2GE9HzfRG3WCLYrTe KI7JYTlLdPrsqDn+4ay5NpW+WqfXSGrbNPKQdxtxbUENwhNhm8u2BVjNtmMb jWEryr9b2ObyPzz88YVzS5535DdRNeSUpw/nm/DNao45qtESnfjummdXEedW Wq8qrnLOEn01yTXEMULrtTq9RpIXDL3W6F47Yo7UQH72a8EDR5naZM9xz85Z dsnvsHqfd5x/pzTGHGqeBRjnY7Xe/sR3RX/kqDS6dnrg2O8iWVQdz2Utd+3n fUojuRdwLZX/GGFbS9+on9fI/eUzgPshM2q178iYy3bBTW3gYJxj9LROp/ta nRlxPa43N7ynNhrftmYbHFtFLBi2Ksc9Zsz8u6Jn+t2fZyXZ1us0vn3MCByM vTqjhO0s7PRGf4/n+zzf7cG6Ym7kPq/FtcEBXsuZG65HNasdo0ZwYkeFHzNh HpxX1M8s6AFfYs6Lc2x4zecZfdAPczlC3Lv08164PsIva/Gx2Fn29WUf22h8 p5ptY2qOeSZrDNtRqmdN7psjvecKO37wwgHXyFYfa479roGDcV7tKqyvYo/O WaJf0eI1kv1pHHP6PKPRuXarOd+ekhsIH8c1UOsmrY/j/OQ6LX3bfl4jj+D6 EHHH5uxLzNat5oALX3CwYr1xMGLZl7ZbP9ezR/jCA75XzTbqor5jcsawsYeN 2XMMSo3Oz942ZsWamtCbeJbUullyO3EP4jMrn32F7SXus7nvc13R+oR6Y9ty Taj3nrYDuNb3Mwdcx6mG/WrmOl7r/bUeKM7xjY6Fl3hiiaMeONDZX4fv/hHP H1zUdGDUCGd+pPeAsZ+qVbbt5VfS+uCa97yxNwz8oJptR9Xcw0k5Y9jOUj2H 1Mx1Qs7c5GD/HRxw7dnPdvxuDByMPXWHCttQPOc0OpY4cLA7W7yPiJzkZnb0 RT+LZsu8+nlv0uGyny7e91TzEPkUpd+t+HEd9sPnID53ij2m3r7E4Fuq2XZh o3GwVesde0TN8WDwgYNh+yDrPNgmNvoZgPv/avV+FkCfmXUv9Ek/5CEfdVRr 3quzaO+Q1mdp/bHWLVyrpN/f4jWSvTqHRS3kwpeYYZ3mgGuHVuNg7FMCB2M/ zOad3rsDDje8J+aM12q2wU0OZgqG7YpG7yPmnfTUrPfj7Njq/SpncG2Qz/WN xo+u2dafe5E4TpTPMcJGyOcq+ZwkbCfZT603xn4dartSsccHFxxwsRfo2Jq5 Tladx3Fu93MuYuElnlji2H8CB/qcrH2JGR31wEVNJ0iuLf0UfoPi/iDsJMVe zXVPvi1an8Q1WJzXNBo/sWYbz3o8m/EcAobtF+U6uWauU3PmJsfzLeaA68UW 2/EjHzgYMzxF2LqynRaxxFED2HrUWe/+mDX7S+iLnsBPrXmmt6rO07TeWfjp Oe9hOT101kj2e+BLDMcAjJgduP5yfVauM3LGwfpHXnIyW2ohN3nhhpe9LuBj 49jAsT734Xpj2KiHXk4J/RT57UKd1K/1WcJ3bTU+vmYbONgZ8jkz7GNzvi5y jeD6ADa60z6TOXad3jcCB1y3N5obrju0Prtmvz+yjoWXeOp9rcU1Uz+zAMOX GHgnBEYNZ3CfUPw4+d/fR89jG/ToMUNfx2/h/tjpfSOsJ9asI9EXKO+5Wm9A juA5p2YusBmqYb16r/FDv01x53Ff4DhynZTtHMWeH3XRFxL9rRavkcxh4Ej3 fkasL4hZ7Cmui7XeS75nS79I6z2EFfjuM9J9XVizfmbOEh0b/viOr3dt1EXN cGB7oNF5yDc+5zzkOytnSU72dUzpsM76kpp19sYgL4kY+ibHP1nPkf0zzPbS mOtdja5pUs2znKi/vRV3tnwuEzaIepX3ypptDzcaG6y/DeqNYSNmUvRHnefw 3Y6a5XNF2CfkHAsv8WDY9lEdl9cc81CjJTrxHCuO2ceq+27uQZ3e+3GBfK4h ttX4VTXbwMEmci2KPOSlV3qmf7CZLa7/fsUe2Om9GXDAVddobrge1/ramv2W aHQsvMRTG3W11rtv5jcuOImB90FqbrXP9TXrS4lnqPy/gYPPnfAh0ifmbMeP GPr5tMX93hD9MX8kOrY7JC9X3mcbg6Ofj90kyZtk2088GwnfeKRngs/kOJbg N9Zswx/fc+sdhz6t0Xb8zuXZSfbDO71fgpjbYkb0eWvNe1jYp4IfPrfUrLPX BYmODX98mTn6zTXz3hozY+Y3h+95OechH2skOellk5GeIzO8vWb9/Jwl+tA4 xzi/mAlzOkD6+Vq3y9ahv4u0fkK1FTu9v2IKNcjngpwl+pHcv/sFLp87a9af azSGHRzszoi/R/Jq6S82mv+umnMg0TPC744ayYVE55wg7qBW10bNHGPqBocX 2wPBRw33a/0MvxuyD+T/Y+qsw6Suv7ePuLOCyc7MmvNZA4MNzB1QTHYWc1ex u7u+1k4hdgcWKDYmYoOKmNgBWAgqoIKNiojdwnO/uI/X7/ljrnPOfe4T7/cn Z/aI/M4h+1R+f1LOb5RvgPKM67J9dc4SGx9cYjJ1znFMq/lg5GB2hTrz+nh/ 4FAPHjh94Nuqw+tnHx7rsn0Nf++TvhPXcM7YY7F3YB363Cr+48LuEPaGejhO eSsDPV8Bhu/YVuMTuuwDBxteYwzfiJxnNdCJpXfmWui/oDqTxPu9j/Enu+zj +LOn7POTsWccr6e67CPnnfL/IO63/N1BWJs+W4r/qmodPtDzY093mfdmnSU2 McN4d+K5J/4zXbYncC10uVfmc8DwwaPmU/+dN/I/2+UaSOxVxZ/Y5T6uzVli 09PdvHNq7dfWOPcTsS/Pddn3dp0lNrzR0k/gng1f2BR+m64z/kKXfWAvx9rA 8L0jzmPN3br9ygxDyrzn5Ttdfb4o+bpicnXu6SXZP/UxNnSg50nIST72E5wY fPDhsrdv8xug8m4j/ZUu15ud0f4KP2ug50kW72vBe/uaOPcq57Q646922Udv 9MUaX4095hi93uVca8ZaqMF6yEGuE1vth0c9cLDra3wecT6NzHndi/cwZ4zz i54nd3kNvesssVnPDMntOefEb+d9KfaU9f8Z8zZTYj/YZyQ2PvhwWcs4yenC T2l1DnzXK+fJsi8Y6NmSN4UP4prMWW7b4f4fVuxJ4t0g/a0u2zPrLLHxwSee mLe7nPdG5dmuw/0XauxjX8j5Tpfna5jDQb4TMewd8zkcr6mxl9OCg58+wfDB A6MeayD/u3Fc341e6GFal/u4KfqZFnvKnrAfNynn+C7f34fnvE/4PqwzNj6u 7Q8k31MfjcJPVdx7si9S3Ucabd+sPO932f6ozhL7P+5iTs45Lh7ov12OZy/l O63VPS3q472CQz144JwH+ODD5R5IHPac6Ide6GGmYi8b6DkW4j8WL8V6+I4r vUvcHZRzSWHbivNhl+1bcpbYSwYf7raRc1aX85ID3wZ1xvD1rXMd6rF2JDVZ 444d3gt6m91l+9ac5ezYr5finsR1wX2eZwD3+pWLeiclPud5k1Kr50aeVswn 4hRlf9pl/LacMXxf1hnDdzXvDl2OZ27ni8h9W+T8LOL5wCX/57FW9haJzUwN cew5+7+z9GWl71hj/Is4Hl9Kdsq+PWeJDbei/MN5Fok/t8v2HeI8q5ivZJdb rSNvr3FdanIc4RJD/Ge8qw/0DMnXwiaK83Wda1GHfsAW55f+TZdj+tUFN2qD 4SPXt9Ej/fzS5dkQZmO+kvxO9khxXuDZpLi7lHNel+15dSG77IMPd+fYH/Ky R+TAN6DO9dKN7n++8F14p8xZ9hLeybr4XaLV+vddtreos8TGx56xX3OFL4h1 sA9D5Rs10DMbk/jdQfZo6T+IM1g17spZ/hB7t6v03Tq8rh+7bN8dHPzsIRg+ eNShHmsg/09droHE/lk9/NzlPkbnLLHpiX3FprePdW7fTB85479EzK+x3+wt Ept5nxv4TUP+uxX7e5ft+XXu6bc4HuhI1vJb9EsPcIkhfvcOz4swK/JHl+dB mCEB/7PLPrCXGj1DAobvnpxxYvCdrVxv8K4pzqIu2/eJs4e4f8neU/Id+c8U Pkacf7ifS783Z4k9eqB15P3i/N3lmL/qnIccu9ZY7hX6QnHuEP+3OuP/dtlH TWLG5IzhoxbchVH7jqhHLc43zr9esRbWwHpqdVzG8Bzib/3Spwr7m3NMa19C 9j0DXW+VRvcDhq9QZy4x5AODu3jeqegY9uc2YUvKPqfVOvJecWqKnv9hLggu MdQAmxzHizhifolzg/OCa21qrIFjkRJnb8Xfn7PEZs6I+Zt3Gz2rs1TRNvM8 rJU1n9tqHflgjevS0+SIJYb4fZVzP30eFqeHsH2kPxC1GiI/GDNAzP/0LDrm wZxxYvBxn+b+ParGfnjkXVryPo4Z8zzSzxfnIcX+uY11ciLxTW80vmzw+EyP umD4OpVnhrDejZ51ocZDA93/s5IN4l3aanz5on0f8r1c2CM1xhbHqIcVival 0lqzeOP0Gcv3F74j6DOeZ4f8Fyr2Cem9iuZ1Cz42Mfsr3/uN7qGuaPth5iKK 7rV72hg+eNSkNj2RP110DST2cuJniu6jR9oSm54O4DkrzmM1zk0N9iJbtG9s zhIb3pf6XKTcD4i/irAnlGPZtPEVi/aB4bu41Ri+FcS5hOcK31kUe6By1sfz e6Xg8hw/KJ7rB3cYe3qg94qcF8e+IYnBBx/uvlwjsuc2xixQ0fUezdm/TqM5 XzUap4ecOH/rHNilzvhqEUNvB0VOMHy91H8SfZETHjVYDznI9cxA++GtEzgY MyScR5xPdWmvmxrjcsY4vzjWqxe9hn3qLLFZT1/JZWUfIvxQrh3Zh0keos/6 jZ4vWqNo+7GcJTY++HCZ1TlcsrHouR5y4Bsv/kTlvlw9jBNnLeGPcM2nLS9j D2vs/6jRnN5F24/nLLHxwSeemLWLzptOewbom0b38Jz0YfI/KX0dcWrZnzpL 7K8b3e+GwV831kotOF/HesHwwaPO2tET+dcrugYSO6Me+hRjZqnOEpue2BP2 g9kn7ivncT+p8T7hm5Azzn0HX4vklfTP71fyN8k+kueqOFcIf0qxzUXb9WlL bHxwiXki5xzzou4CyfXl69fo44wP/MqoNy/wvlEbPlxmYIjDXiXt3PTydI3l KwOtHyV9Y/Hm8y4tbCPpr0v+JPsq5ZsozoZF27m0JTY++HCfiZwbFJ2XHPhW ShvDx55Qh3pP5SypSQ+/Sl6tfM9L36Roe/W0JTa+1/h+OtD9tBZtr5a2xMb3 Ft/59HlJnKOVPy/8R/ZD8l/J9dLG8D2dM4bvGuXvX3T8WuJsJv1YcZ7NGcNH XvhwX1X+TYUdI84zOUvsPxodd1yH59MSntdNnskBJy++AZKLxG1MW2IPb7Xv +IjdIrgTlX+EfJvLfm+gdSQ9UJeaL9aYSwzx1/KOJPwV4Vvy7BV/3ahFncdr jI2ItWxVdMxzOePE4APDR65uTbbJuXXRdlPaM3MF2QvFWV76+wM9N7JN0fZh dZbY+Ohv00av8YSOmPGTPjB6p4fp4l3X6ucOelvRNn54xFN3YeTBD69P2r3g Y25w81gHe9hedL3npZ8ouZ3sQdzX+f4vvbvWM0P6yFafk4OKtlvSltj44MM9 OvonL2sgB76T6rw3W8eeUod6L0RdanI+zBT3evmflb590XbftCU2vh2KPodO qbPE5nz6H/03en5px6LtF5X/JMmdZJ8s+Yb4NyjHCzXG8L2UM5cY4sHgMrPU UXTMGurhRsV1yv6t0TryOb6XCZslzvppc4mhBhg8OMShv6xapyj37kXPLp0q /TR9JvH+XPRcDDNXSOwaretD6TdxrfO9qWh7g7R7HFz0fBY6kp6pu3PUg0sM 8dSlJjNjuxU9l1WJWtRh38BSTc5Dj8S8kjNODL6DJOfI3kQ97FH0Gl4VZxn5 Bjd6XmVp6TezXul7iXML/ecssT8ZaB35Ot9Hio5pTVtiE8/edMX+7CPsY+6j aeN7F+27VbylmrwuMHzUgrtP1P446lGL3lnDqFb3vkfErDvQucizX9H2kDqv a/+i10a9Twe6HzB8+bS5xBC/b8jXeQ+MHtGLkgfKLnVYRzIP9l8Ma4BLDDXo kx65jxFHzKScjznHm3PpNvl7NrmfocKGyLeG7EMl+yh+qPpfrsk8OOiHFG3z ObjoeLifD/QMDzrx2CvId3jR/yYN/e7W6J7JQa7+aeOHFe2DD5d/M4Q47M04 XtJ/UL526cM31PvtQP933OhHFG3zb9kcu73/3Z6jhJWVd0rOErvSYR35Bs/W omP4938Oi32dLP6Kqnm71vYmzwLhd/C9OvCji/ZRk9rPrmwM3zZpc4n5bqB1 ZEl5BoSNfmzR9hV1lsdGDdZwYqPXdZywb3hmpC2xj2h075km9398rIne/hd7 wF6B4YN3guRWwq9RrYLkMeSoMcbess8nFu0bWWf8hNh3MHzEsE/sF/tLHerR 60Dpd6n3IcpT5XtFk/ftJPm3lm94nSX2neLNZ72Nnjs6uWh7YNoc/NUaY/jg sXbWzb9rRP5Tiq6BxH5Taz+16D6urbPEpifOl+MbnROdcwh7iOJWVY63hHcV bb+Vs8TG9zNrbPS6SkXb26nPdu6vsu9utY5khg0M+/o6c4khflvpo1tj/kfY 6arxds54pWgfWKKab9cYw3djnXFi8G0vbEyr53POLNq+WZzfJKtcz42+frl2 3xHndGG/y7dT2hL7nlbryHdrfK0T807OecjBWtZVjjX1mSr9DHHOEGdqzvjQ on3UJGbHtDF8g9PmEvPPQOvIadwT5L+Y94E2984aWM8FPH+4T2ktZ0n/U3qn 8pyp2LNl91bcWej6nFljDN+7OXOJObXRGFzWdU7RMdPEaRJ2rux7W60j6ec8 Yffx20TOXGKoAdZNPb5f4zhi9kj7Psf9bnLUpSbH9HzhzTxv0pbnR15yFRvd 84WRm1qslTUv0WYdyRwRMfREbbjEEM++sWfviXORsBbZe0UtYugTjH/zgr9j ssfE7JY2Tgw+3s15Z+e9iH9LYmHcP9EvKdq+VHIDxeyr2ME8x9s8mwSG7/5W 45cV7QMHm1FjDN9dzF/xHOGewXuCsAdarR/AM1S8ujbjw4r2sQdDG70PYPhG K88VsU/s7bkdXjPrfYjfmto8z5MX9qDsmXx3K5r3fs7yyjg250k/v8N9XlW0 /QHfo4vu9b2cMXzwqElteiL/1UXXQGIfrH6uKbqPGTlLbHpijgqb3shNDfZi eNE+ZrGQwyOeeuwjvV0vbCzvfTnj18bxAMO3XJuxxWsRZ9PwfVTj4zGi6Hmv 6yQvEGemOP3FGSn74VZjF7IXNY4jH7HgxOCDD/dDzjf4/PYk/Yai6x2mtW8u OU6c2bxTaS3Lt3lm5qbIQf/gNxbtozf64lwCw/cA84RF5zoy7dw3xPrJQa5z G+2HNy5wMPrnPOJ8GlvndVOD8xaM84uZpVuLXsOHOUts1vOA5JHiPVnn/m6T fTG/fQh7pNXrHVUMu84SGx98uKz3MuUcI/zyDufAx/4MVM+PijtHnNvJLf9H OUvWyZ5fIv3SDu/hHUXbH+cssfHBvz32/c6i8x6fto99IZa1MmvFeu8S5zGO S84Se6U2z85gMz9zd9E2M1pg+MHB7o74gVGPNZB/dNE1Rse1y/G6J3qkFvKe OJbsCftxWY3PO86nQ9PeJ3xzxH9U+hXSP5N+v/RB4pzEs5X7s+zxfJfmtz7V +ox7Y9H2JzlLbHxwiflf2jnwwaf+g/Jd2ejjvFqbZ43g3B+5wDkPFvs6zKXn B+N4Uovc9PKp8B2kT5D+Be9dih0n3hOyh4k7VvpwfqMQvnqbZ5MeLtp+ts4S Gx98uFdEzoeKzksOfJ/mjOE7Le061HuuzpKaxNL3tY1e1yOxDvYQiY2PPWbN 7An6o7HX3O+57/NvJT2lfOu0xcwPeybe5zlL7Kskd1HMk7yfijO+aLuqWs8L 26jN8wxg+OA9EWulf/I/XnQNJPYXyj+h6JkrZt6QE8JHHPNS7CE4GL2Bkxff M5LPCP9KeZ6Wvqtqn552r0/G3l0t/Rp9rlbsU0XbX+Yssa8JLjH0Q46nlXNu jTFycKyps55qf10TnKJ54PSBb7cm23CeLdoeqn5eL3qPvs0Zezb6nih5itb2 itY+XLVelD2q0T3d1Oien4seWSMSG9+e5CEn75PKMVH6COnPF+07S3WLwpvb PEeE/kLRNn54xFOXmsTihzepzr3gm5tzj33aPFv1UtH1pohzLd/XZV8nOYLv 97FmuLc3mv9y0Tb7gMTGBx/u19E/eVkDOfB9HXUnRjx1qPdNzpKarH1/5XhO cfOkv1a0fUHaEhsff7fk75f8vZPjwPHgfG3l/Y7nb6PzsS/knFT0rBFzVshJ cfzYO+au2M/JsZfs87ni9G/zvAoYPnhvSh7Iu1fa+afEsZkSe8b58Ib0kdLn 5Syxr+9w3At8T6oxDjayxjh58U0N7neKfUf6merjXY6dfG/J3kS9HNRk+3vF vl20fXHaEvs/LpI85GBfmAUCIwex1BnT6B7gUG8xr8N94DtUOV/i+5Y47xZt X5b2HrJ/3B/A8MHj3rL4uuP9WZz3hL8s/AZhD/DbmPDpRdvzc5bY+ODDhcP+ Tyv6GJAD3wztw00d8Xf8Gh9n+mXtSI45a7yxw3vBGj8o2v4+Z/lB7Be5qfE+ f68sOu+CnOsxj8RxZ8bn1daY8xHnaO49aUvsV1rt37LNnFlF28wYwMH/Y40x fPCoQz3WQP4PIwa52FY/H8W62WckNj0Rw16z9g3LOt/zuiYSS+wNCnpmi3sL 3wfUw7FcL8r9c431OUXbSOzhyv+J9NeF/ZRzHPG3dhjbWrV/qbEOD/s4xX36 X4zkW5J/KPYz3hnU/+w6S+xt2qwjmeEh72Naxy2hf160PYp7Ic9cnmvifym9 oJgT+e1K+X8T/4ui7ZFpS2x88OEyw0Nv9EXP5MD3WZ3rUI81Uod6P+csqXkb zwVxJ7dan1u0/UWdJTY+1k2NEWmv6alGr+vrWCv4bdzPgsf80Butnmn5lnuk fL8y11G0j1kasDs6vEYwfMSQg1y/iH8a9xe+34vzXfh/yzmWvMSD4dtBfcwr OuaWtCU28W/FMdu5zXvGPA/7difXk/C7Oox/X7QPHOxOcRZEHeqyVtbM+sE4 HvRf4T6mGn/WOAe5OF7kJtfviv2xaN4daccuiONKb/T1d43Xzf79EjmJIS+9 3B39/Bz9cu5N4zu5eEuktL/C36aHnP3wiNmxzTXI/0vR9q1py1/iPP5X8jy+ c6ado0v6X+Jfp+Pyu3y7iFttsg8cST144L9FbfhwmQsiDvvbOvvh3Zl2T883 ei2jpf8t31C+2yvuL+l7S57D7z3K113r+rNo+/60JTY++HAX1TjnH0XnJQe+ 0Wlj+NgT6lDvr5wlNRcq9h6eBbzrS/+naPvvnCX2mDjHOL84n9mnqbL/kT6Y ezT7J30v6e9GzwuL1v/JWWLv2+Zc90atRZH7Pw5+YsHwwete0v2f9+m083cr mYvEvk/4EiWfB//G+YDNOUHcYjvlnjnG9A3ePWJqJS/ie6/ypKTfp5oLledm HbclZe/X5j5ebXTPNSXb1EJi44NLzA91znF/h2eNwMjBXBZ1pqtmTcoc6sED pw987OWBbd7PpUq2F/G3YOmjOSfSxvDBA/tcdr1y9hR2u+r9Wue8UxrdAxi+ IU3Gly7ZBw7GnNvS0Qu1LuX3GPZGOQ9QjUPa3PM4+XPivdlofNmSfQ8Iv1Ax S6aM4RurPpcr2ddNz6lr5P9AOZcV5yFhD3dYf1BymHw9pC9fMu+ZtCU2MYcr 3zH69BRnhZLtCeIsU3Kvj6WN4Tsm+qE2PZG/V8k1kNhLqJ+6kvvonlhi09MI frPhN5SUc1ODvUiX7JuYtsSGt4fqzWz1dbSSsLGcE4nxbMk+MHzsHxi+Mcpz nOSsiIWXKRmrl7yW9+C0e1pR9vFtxs7Up1vKOcnHfB04Mfjgw2Vv/8f7Q6uP y8qRm/7v5Pf/Ns8dfdjq9bDeVcUZyXtq2vgqsWZ6I5Y+wfCltMbVSs71e539 1GA95Fg1ePjhUQ/8w9jbXOwHeTKxT0smxji/WFdS8hpeTFtis55myU8llxH/ EfFX5zohht/pmzxT11CyvajOEhsffLjMpTAftp7wG5ucA1+tcs5W7suEpdTn GsIfFb5UYvlYh+fQDlU/H3MdirNmyfb4tCU2PvjEE7NWyXl7KM/J4syRvnzK vg8anbO3OCfJ91LasnfEPKg+b2hyz2uXbC8RHPz0CYYPHhj1WAP51ym5xjrR Cz2sW3IfL6ctsemJPWE/6KdHyff3u9LeJ3zM44H1iHtTk+SpfJ8TPl65+5Q8 Q/e49Alce+qtsWR76cQSe0JwiemZOMcnyreC+I+qTkscYz43N3k+EA71Pgmc 8wAffGw4xGEvFf3QC/ht4n3c6PmrLuXZULyq5J3CN5D+Wat7KrW55/WjR84x JHYp+HAzKefsW3JecuB7M20M3+S061Dv9bQlNesU+4Ry3trkWhuVbC+bWGLj WzHuSVwX3Od5BnCvP55nDt8F+B1G/qf1WVl5Ksq9iXxD+S4s+ST3wcQYvjfS xvDdofh8yfHLi9Nf+pfsf2IMH3nhw00rfz/OPe7jaUvsL1odd16b7+FzW+1b NWWcvPg2lTxS8sm05aZRjxrnt7n/AVGTHh5Sjs1kX9lkHbl0yrmpSX64xBBP ja9a3cPmwp7h3Etc68vAwZ7t8OzoFtEXawEnBh8YPnJtWfJ66pRnO+mXcM1z Xun82prnC8+5JnPoZ6uS7Vlpy60iHj5c5ojmRl7WQQ58PdOeH324yb1tE71Q Fzmn0fgFvHtz31OtgSXbM9OW2PjYM/ZrhvC2kvMys/qc8nzX6Jm6F/n9u8lz gwVxJsqXTiyxmXO9WDm/afX52V6y/VHaHPyLZ0fb7INHHeqxBvIPKrkGEntF xW5bch+ZxBKbntjXb1t9jvE9lO9rfE8EZ9/xbS/5svKsnLbEfpRnlbgvdnjO bceS7Xrlf15yB9nfN1pHMncHhp1NzCWG+O9U4x7ly6qHnYSdodpT08Y7SvaB zZO9YsoYvhUT48Tge6nDc3jM5u1Wsr2SOJeK0xkxzAA+1uR+don65EFiMzOI jmRdO5ccwzwhechBn5dJny99Nem7ljzTxxwg+OCSfdQkZnbaGL45aXOJGd9k HUktzjfOP845emcNrGdfzhNxvlbs7hwL7jnqeZjy7cE+q9YC7qFNXjsYvk/T 5hLzSocxuDn1vGfJMasoz5vqYa+w0ZHk2Zt7gnJ+mTZGDDXAfm/0vBZxxKwZ 5wbnBec5damZqNY+UZ9aSOyr1cuVfHfXp0Gc/Uq2P097raz5h1bryDVSrktP 1IZLDPGvKefrHZ6l3J/7s/RVoxZ16AHsySbrB5Qcs1pinBh83Ke5f/N8wQ+P vAdy3sr/Lb/1cY6wh4l9k6IuGL7r2owfXLIPHIz+D458xA5vsw/8Z8lneQ+S /ob8p7CnHcYPLdn3QpNtOGDoifIcVrJvHt+dtf8j2zzfxQzoc03u7Vq+a4u/ kmIPL5nXO/jYxNDrn43mHxG9k/+QknudmzaGDx41D4s+yH9kyTWQ2N+If1TJ fTDLisSmp8kdnk9lnpPch8SeHl2yryGxxIY3m9+0mzxrdwLPB9kD0saPLdkH hu/mNmP4NhbnJt4pmvzv/NzAdxmuKd6puWZ5f038POe5/kqTsR5NnkkjJ/km 1xgnBh98uPybP2/z+4Py9dbenlhyvQWqeyt7Kt+awuvIR27lOUmcUfL9nDb+ v5J99EZfnJ9g+Dbn/bDkXD/FWqjBeshBrrkD7Yc3KXCwTbv7POJ8WiPxuqkx P22M82st1Tq15DX8mbbEZj1nS37Ie3hG9x3l6+K6a/Xn7jbPSp0W2JqJJTY+ +Nhw7uOaEv5Am3Pg24Lv0fyOoc/a6qHIO5H8v6Ut01wLNe7xjSb3WYprglpI bHzwiSemXHLeRcrzPt9F5FtPsR/w3V+fdXlPK1lfmLbEvl+8e9rc6zriVEu2 /w4OfmLB8MF7L+qxBvIPibxI7CW0b6eX3Ee3jCX2g1HngajFfeVH7sMp7xM+ egPnvoPvrNg/8szkWRh5Z/CdU3gfxZ5Zst09Y4mNDy4xS2ac46GoO0vYOfKN a/NxJoY8cKj3UOBnR174cBtTjsOuiX7ohX0mZmzkZ0bpAt5DeHeR/3zuBZL3 tnmuiTmo80q2/01bYuODD3edyHluyXnJga82Ywwf66UO9ZiVQlKTeSTmfv5o 9XzLhSXbzB0hsfHBZR4J/kXRL/mR2Pi+4Ppo9drf0rl3cfRxCdeO7N6JMXxr JcbwvSN5acnxyyvn5YGtnRjDR1744B+oh8uE/dVqDhL7qTb7pwZnYptnAJgn AScvvmGSj8u3dMZyWOT6Uty/+c6m/q8s2V4hY+wK2Z+EHwmHGGq2pMwlBj81 1m9yD1cJqxFnn7RrEQMf7Ok2z95cHX2tkxgnBh8YPnK9K32aPrPEv6Zke13x e4h3XclrnSveP8rfV/mHl2zXZSyx8f3LM1Tc9VPOt3GTc44o2beecn7dZB0O +rXh4wOPeOpSk73FDy+dcS/4Dkh7z9gP1jWy5HrkXyTsRp5H3Ge5p0tfKGw6 v3t0uO71Jdt9EktsfPDhbhD9k3fjyIFvpYz35pqoRx3qNUZdajIDw/wRNvpN JdvMiiBvipibY19ZFxKb84k+WC993hJ9kf99vhdwX+N9hvtZXt+TU8bwNSXm 3hL7BQb3Y/UwquSYnGotobjbeN61WUduojy3R+7mxFxiqAE2I/IQRwwcsNGy B4g7k3NHn0/EuUPYy8q5csbyjoj5mfui5MaqdVfJdpIxdqfs78OPhENdeqIO XGLwY1OTfu7mOawaR6RdizqsBWxSm+eIRkeOlsQ4MfjG8ezinVA93FPyGvqK 8zfPW+Xpx99TuGdLb5V+L9ea9PUTS+wpbdaReX63Lzlm9YwlNvG/NZkH535h Wd6B0sbvi7zs31ZN3kMwfPQG9/7oFR3J3M4bsYb22H/WQI4P9fmow7UeLNne INb1UMlrq9VnapvnZ8DwrZMxlxjiH4h8rPfhkmM2TDyfNDZsdCR5ZkUMawAj Zmr0S4/0TBwxzDXdGceT40I91kvPX/JeJN8+sh/j3sBzTb19LHw2371rrD9a sk3sI7FfcJdSzk1T1onHXij9ce4deX+mqYfNUs5Bro0S4+NL9sHHhkMcdh/1 8Kr0ns06x6Q3iDe9zX/rR59Qsk1P2ze5zyc598Vvzlhi98xbR27O72Cxjo0T 16cu+lrK9UGb53aeFj5HnE0Cf6pkHzWpfWraGL5S2lxiOpqsI7/it1OeS3nr z5RsV9KW2PiW1efjtpj5iTWxdiT2zpyjHd4T9mdiyXYrvyeUHN8vMTYx9u45 yU85J4UvpbUvI84WKWOfdXgfni/Zt1HGODH4wPARwz6xX+wvdahHr58L/0Kf b2ocw/6S88WS55iYoUK+GP2xd8w8sbcvxV5yjODgZ+1g+OCxdtb9ReR/OY7r y9Ej632l5D76J5bY9MT5spxybpWyzjmEvbw+c5R3a77nlmxvmlhi42vS55O2 mOEp2T5Ta1laeV6PGHQkecCwWzPmEkP8csJWEGegOJOjL2qBTynZB7ZHk/cQ DF//jHFi8M3l2dThPFNLtjdXnvW5zll/m69frt3vlOctYRvyzpi2xO6Vt46E w7VOzGaRhxzMCNH3fk1e+zvifMV9PzH+dsk+ahJzbtoYPtYO953YC3Qk+9OP dwrh37W5d9bAemZI1sPh+S49I31L6WnuFbK/afPcEDZzNWDoWyTmElOXNwYX zvSSY5iVYk3vlTzrhI5kje9HffLAnR55wdh/9vm92FeOxSNxb94w6lKzwLOS HoVvmVhifyuZlX+eYrcVZ2bJ9laJ18qaM3nryEEp130/jj1cYohn39gzZm9m CVtR/m0yrkWdBTXGiKEWe0zMpWnjs6I27+YfxXcK4g5pciz6RyXbH0uuopiC 8g9QjgVtnuEBw1efNz67ZB842PYpY/iuUN15/E6ifD/xW7ewFfPW21gHz7w2 45+U7GN9RzV5jWD4rlKeT+N8Yb3fdXg9rHFlxfza5jmN1YWtJHsH4Z+VzNsm sfws9mu+9O873OfnJdsDxZlTcq9bJ8bwwaMmtemJ/F+UXAOJvYP6+bLkPtoS S2x6YlYJm97ITQ324quSfcw+Ib+KeOqxj/Q2j2e0sPbE+NdxPMDw/dVmDB91 f5D8UZ9fa3w85pY8X/UNx0d4QZy1Ff8tefLGfgg+OcnXmTJODD74cHdKOfcJ TeZ/F356W0ec1cTpEOe3Nuciz/cl44MS4/NjPfRGX5xLYPh21B4uKDnXLhnn pgY1yUGuNZrtXxB5+YBRl/OI8+m6tNdNDc5bMM4v5oJ+jHz0g8RmPYskW5Xn IPH/4RznmVLQc0hYTjV2V/6fSrb3zFhi44MPdzB/pxP+N+dE3jnwDRa/r/BE 2M7i/CL8J9XeNrFcl/Xym6f0X/T5Q33+WrK9XWKJjQ8+8cT8VnLevTOu1yR9 N+Xppl4aouffS9a3Tyyxlyw4169R64/I/R8HP7GLeymZ1zfqsQby/xl5kdh7 qIe/Yt07JJbY9MSeYNMb5x3n084Z7xO+faTXlrt16805o9iFnA+quaP0bbV/ /8iuKbiPk5vc87/RF7WQ2PjgEnNj2jl+12cv/iZO36qxdMHHeQ3Z+6TMoR48 cM4DfPDhclyIw94p+qEX5soWthmH84fia8T7M2ouKX0Z8fLK2UefXcXpXrZ9 cMYSGx98uPRJziWiHjnwURcM324Z16FeR2JJTWbJ6Het6CcVa+V8RmLjY49Z J2tHZ9+xP4pnFM8j8hWbnHMp+fvLf2jGcqk4TjvxHlPwzFWPsu1R2vNFHZ4f Yj4HDB+8ZSR35fte2vl7ll2jZ+wZx31p5kZVY9+MJfbaecelCv43JMHB9kgZ Jy++FST/Vp5deGeT3kvYEZyTwpaVfbpqbc29Q7EHKna5su1jM5bY+OASs3Pi HPX67J8yRg7moKgzQDH7pcyhHjxw+sD3D+dkh2fhepVtD2ZGpew92j0xhg9e neRAxR2fsV0v+wy+a6mnlQruOV22vWtiiY0vW7ANZ0XpfaTvKT1Ttu8Y5dxd e7VVs2d10LNl2/gzkZe61KRn/PDuSbsXfNSlx3XF3ZtaZdc7TvmXl1xFdiPf 78RduezZQOYBt2l2zpXKtpkbRGLjgw+3e/RPXtZADny7RV32iNrUod5hUZea +6Y8f7Zps4/RqmXbzNEhsfExt8y/v8bsMseB48H5uiZ5OAcku3V61op5s5yw VYSdmLHEbsp7zqzQ7PM8Kdtm7ivhGtTn0JQxfPDWkFxN+EkZ528ouwYSew/u mdKXkL5nYondvdNxzap5cMo42CEp4+TFt3Zw91Jsb+k7qOZpqtXCvUz2INmH tdlmXWuVbT+etsT+j4skDzkub/JMERg5iKXO6gX3AId68MDpA1+H8L6KOVyc dcq2S7GH7N9BKWP44HFv6R335F24Zwpfn3ugcm7X7FrrlW3vnVhi44MP98iU 93/dso8BOfBVVXdvyQ3EOT7l48zxLmYsOeb0WaOcO7FP0pvKtvdJLLHxkZsa p/AOUHbec6TvK7mh8h+g2Frxl+r0fGAL57L4QzOW2H25H8u/m2KOFqdv2fa+ iTn4j0kZwwePOtRjDeRfv+waSOz9FLtB2X2cF/1g0xMz+czjs3b+bs/f7/l7 P/E9os892vW8r+h7vrgtBcfAR9845vuR2Gcr/ybSN2a9ifNsVHYusL1U+7iU dXjY+/E9OGIG8UwQ91DF5qUfofPvibQl9oYF60hmbMh7RZP7RO9XDlv6ZmXP ZjJnuan0fTgXFLdJ3vfn/mXb52YssfHBh0tOeqMveiYHPmY++8WaWCN1qHdg YklNZho34n0i7/NzQNn2BRlLbHysmxrnCz9Nufdv9qzd5mXbr/EbgnJuIfsW 8nZ6f/ib+5bsmXJdqNhtyvYdkhjL532ugm0Te0oOch0kTlG5D2j2DNvWvI8I PzhiyUs8GL5RqrtV2TGT0pbYxJOXY8Y82bqK7ae4o5RzE+kF3g/yxgeW7QMH O0KctvBzrFkra2b9YIObzWEG7cBmz6GRg1xDMs5Nroukt5fNY56NWPIOjt7o i71i3ezfCpGTGPK2KsemijlB+LZl2xfze4L4R8l/svDteabIPiyxHx4xzD4c 1Oz825VtM/OMxMY3GK5iLs84B7NxzD/3E7ajfJspzwrCe+nzv5Q51IMHvkPZ PvhwT0w5DvvSjP3wDldvAzjXmp2fmJ153+B6EdYpfYxyntlmHpyOsu1305bY +ODDZXYIe6ey85ID3xUZY4u5ietQDx1JTdZytLibi3MK9+2y7aszltibxznG +cXxZZ+25DkovV74ip2etdtC2DYF59lVcXXCj0wssQ/jnqLPFsp3mji7lW2P yJiDn37A8MHbUzIj39GJ8+9edg0k9lWK3aMc50Fiic05QVy207XomWNM3+Dk xbev5InijlSefXgvkP9M6ScI2ws+v+9wrhZ8n9+7bPuYxBIbH1xirss4Bz74 YOToSrnOHryvpszZJ3KB0wc+eioU3PN+0SO1LpB+ofxjM8bwwQPbTjlOF/+A 6IUetsm7NnXB8G2dN35g9Aq+dfQJhu841Tqp2TqxZ+t8G1Tw3/EHCTtJvJ0L xg8u28fxv6/J5wAYvuk6Vw8p20fObbm35H18t+N7QN7X7EryP9Hk2a1Dy+bd mLHEJuYK5Tu52TNph5Vtf8bMUtm93pAxhg8eNalNT+Q/vOwaSOzj1c8RZfdx U8YSm56uUp5Tmt0PuQ+KfTmybN8XaUtseNtz/5T/VM5b7r3CRmWMH122Dwxf V7MxfDdnPM+yU8EzLStz/sr3FM/Bsue/mItbRfixZc+LgZ3a7LkycpKPeRJw YvDBh8v81e1tPmbMmRxfdj1mbyritQsvc48qeCaHGZ4TxVmV+1ti/ISyffRG X9QFw3er+v9f2bnuiLVQg/WQg1yrddoPj3rgYKWUz6PF51PidVPjhMQY5xc9 n1z2Gn5NW54cMWeWPQPC7Af5TpVdUp0OxU1Rn0XFnlK2fVvGEhvf4vrN7uEM ySFcdwXnwEc/zMUMLng25jThu0i/M2PJfAyzPUN4J232HnaVbd+VscTGB594 Yopl52WG50z5TtenkvLczG4Fz5mUyq5LHiQ2MzdDm52XWuWy7dHBwU+fYOXo gzrFyEX+Stk1kNjM8FTL7mNMxhKbntgT9qOqnPuXfX8/NvE+4bsnY2z/uLbP kDxL+L3Cd1Xc6bJ3L7geMzSsa2jUp2ckNj64xNydcY6hscY9hZ1V9pwOxxmb GR44Z8T6wTkP8PGBu5gT2H/90As5z252PPoFvF9zr9G5lNMazpWedHoOaK9C zAKVbTMnhsTGBx9uS+Q8O9ZPDnwnJ8bw3ZdxHeo9nLGkJnvLPXv/gu/b55dt n5JYYuPjuud6PjHxff6C4E0s+29Zi/9myve4TueZIOxC+Q7gfSvWRE4wfMtk jOH7VPt1cdnxpzJLLH0HnsuJMXyrx1rhst5LhF2mPsZnLLG3zzvu0ILnK3bi +yLHL2WcvPguK3sOhfkW5GVRjxqsjf6HRU16YA2Xlz0Lg45kToa61ByaMndY PBeH6bMj9wbhVwhbQ76uxLWoQ29ga+qzofQry46ZkDFODD4wfOS6quz1FJXn Rulrcz+T/rxyXiP7CPV1RbM5rPfqsu0nMpZXRzx8uBvF/pCXPSIHvqz4r0ge XfBcxPDohbrIb5vc89Xc4xR/jvQRZdtPZyyx8V0ex5/3hGvLzruK9N6d7ok+ 6YV5FPq5Tpy1uCcmltgLmjzD0pn37MfIsm1mXeDgBwfDB4861GMN5L++7BrX xz6xJzeU3Uc5sbwh9ot9XafT6zpP319vVL6XE+PsO76bJEeK+0LGEnvnvOdE dsl7zuGWsm1mRcBuln1iwToSDhh2NTH3lrCpwT7Sw62xDvYWfFTsNRgzKByj UdEXecCJwbeesD8k+4tzd9n26eKsK3lb2DfwfYPrXJw7uAfmzUFin1SwjryA 53jZMS9lnIcc5L+x2Tw4d4nzFr8BZYzfGXmpScyQxBi+lzPmEnNywTqSGQ/O N86/b2MtrIH1PCDZJPtM5RktvY/0odJH8Uzg/q5au3OtFDzDAIZvUsZcYho7 jcG9UJwxZceckXhG5N6w0ZHkuS96pGcwYqgBxjwKPRNHzHpxbnBenJtyXWqy P/dHfWoh74+9uIvnnfgX8ywu234r47Wy5uZO68gBKdelJ2rDJYZ4/C3BeYhn EPeEqEUdegAbwvdB6Q9HbjjgxODjPs31y70OPzzyjuUdR/hknkc8ixRztmLv brZ+ScoS323Nxh8JHh8wOGD43lae91Xr9ILnOqjRrdn9byz9ZfE2iTU9Vrav r/T19dkyZQwfPYwv23eO9HvE21v1LhNnFs/oguc0xgjfh/uT9MfL5k3NWGIT g/+MgjkTyrbPVc5Hy+61KWMMHzxqUpueyP9ExCCx3xX/ybL7WD9jiU1PxNQ0 ey3kpgZ78VTkoy4SG96DfEdT7mHiPxc5yA/+TNk+MHw9A8P3gTgbRn+sawPp T5eNPSu5H/eBxM/ziWHzOa/g+Qpyko89BCcGH3xsOOfz/U761dKfj9zkBLu4 YHyjTh/XbaS/KM4jyvlRxvgLZfvojVj6BMN3gfK8VHauCxP7n4/9JQe59s/b D4964GBXpnwekZtY1k2N8xJjm0Q/r5S9hhkZy1ei3rSyZyWYIXlUOV+TfWDe n4dkX6XYVwO7KLHExgcfG05edd4W3ity4PtYOVs77WvnWSb8M9Xql7G8pOBZ EXpcttl9ToprglpIbHzwiSdmctl5LxbnK+HDCp4DmSDewepnuPQp4jwu+5OM JfZBefsvL5jzRtn2JYk5+K9JGcMHjzrUYw3kfzNikNifcp8vu48BGUtseiKG /WDt3Fe4B3FfejvyURd8bNzL3pU8lOtaeD/535HdX/IZ5ThE+AjFTi3b/ipj iY0PLjGXJs5xTcHzHvQxvex5GY4zPvBDox488GlRGz5c9nN6rIM1kpte2Lf+ sRfohytmBu8N4r3AtSj9MGGbirOZPttx7ZdtX55YYuODD/e6yPle7Ck58M3L GMPHnlCHesMSS2pen3KuAVFrZuSGg8TGN7zgGPizyrbnZixnRd7vtQ/XFzxP coTsD4U/yzUs+aLkdxlj+K5IjH0U9sdlx7eJM0f65qp5ZWIMH3nhwx2p/LOj L/IgsVdudtwW+uwozp2KOU7821PGyYvvE8nXxP0xY4l9ZN6+LSP2s+BexXd/ +T6VfUvBOvKmlOtSk32DSwzxR3OfEX6j8M95LxJ/ftSizg0pY+Qizxdlx1yd GCcGHxg+cr3ebJucX5Zt/6Sco8T/hncC3pe1V7cWPD/zVdn2thlLbHz0l2v2 Grfi/iD9Fulzo3d6eEvYMbFv6F+XbeOHRzx1qXlryn54f2TcC76fM94z1sEe flt2vWsSH5P5skeL9w7nhfRjeU5wr+30PM+8su3hiSU2Pvhwb47+yTspcuD7 K+O9+TL2lDrUGxF1qcm6yDUwan0fueEgsfEtKPsc+j1juSByHc/9SzVuU+wP ZdvXKnYq51TYv/M37YLncMDw/Z2xjxjiwbDJ81PZMTtlXPtn2Ws2W0fS5y/C ZkjvnjWXGGqAnaA896QcRwz9/E/Yn7LHitMubFCnZ4d+FXYv76YZS+yHJAud 5sH5vWx7pPK0Sf4me1qzdeSdKdelJ2rDJYZ46lKTfv7g3Ua8mqxrUeeulLET xRuVco/EXJ8YJwZfjb5nvSv7H+YrIjccZqBmNrvPBwuOpdY/4pzE9ZVYYn/Q bB05Wpy/y45ZImv5d9T+MHhwFgr7V/u7a8b4v5GX/Vsv6oLhS2XNJWZcwTqS ORx6Zw2Pxv6zBnI8zHeDvK+7bhXbS2a9riUqXtu2nZ79Yj4KDB/zYHCJIX5R 5GO93SuOuVH6x4pbsuIZFnQkcyxwiVkv8hNDDfqkxztSjiNmqayPOcf7usSz L2MKno3ZRdga4s2HJ/mY8B7ify77FPX1QMp6bcU2samK4+E+yW9fKevEY2+v nD2l78BziPu54seknINcy2WN96jYBx8utYjDvll9riJ9BZ5V2qsvxTtV9R9M WV+6Yvs0fZ4u+BxeVtj90hdlLLHxoyPhLBPYLYnr08dNvDsp53t8jxFn+ej9 lsCXq9hHTWqvkDWGr1fWXGKeKVhHspYdpe/U6RmtFSq2b00ssXcK/0bN5vSq eC3kR2J38R0377qsva5ie5TyZCMHOlhd9JeW/BqpPEspz8SCZ2/AirGHmYp9 +2eCG3nB8E2MPVsmeqIO9TaK86uc9zmGfCHOt3r5O8S7LbHE7uR+r5iSeA+L s2LFdn3WHPzM4YDhK8Xx7IrjRf6VKq6BxL5d+VeOa5FzG7ly+DhfPo5rBH2V uAaos1mza60afZEHiY3veb73F9xnrmI7q/zfy7ea7EreOnJcyhj2yllziSH+ R2FVcR4VJxG2s2rckRhvqNgH9q3sh1LG8K2WNU4MvseV6/S8r521K7aXFucl ydVlv1bw9cu1O5bfUoQNln1XYom9a6d15OMpX+vE3Jk4DzlYyx/KMYTvstJ7 V1z37sT4WhX7qEnMSllji31Zc4l5K/pF0jPzbesL/yvWsnbkbZask30kv3dJ /1P+3ln3uK7st+XbTfrunZ6jWzfWQT9wifmk2Rhc1rVexTGjE9fvI3to9DI0 9rBR2Bk8XxJziaEGGGth7X1iHayL+xz3O2YLqUvN+8RpEv43fWQtmyIvuTZv ds8tkZtarJU1Ty1YRzLzQ0xj7CNcYohn3/6KPH2FvcPeRa0z4hiBncm9LeU9 Joa5RHBi8PF+zTs779h7dHpm8cDQN6jY3lBymmLWU/4cz7xmz1mB4Tsrb3yj in3gYJy3YPhOVt09lXPbZs+bTRd2dt7nZG2L3ic4fs3GN6nY1yB9YfDB8PVR D60V+05Vzr2Uc/tmz8Wdq5ifpD/Cd2f5z5H9GN+1K+bdl1hiE7O39H06PaPV r2L7fn4HqLjXexNj+OBRk9r0RP7+FddAYufU26YV9/FAYolNT+8VbNMbuanB XmxWsa8xa7lZxFOPOTZ620rYvrIfTIxvXrEPDB+zaJtHj9Tdj2tCn6dTnlcb IN8icbaQfF92U9azaVvK7tZi7DzVfDLlnORj5g2cGHyL5xdb3A+5Pyo4/9YV 13uI2VFhF+QdO0P6+dKfkj6wYvzhxPg2FfvobVEcOzB8LeqtreJcp2ecmxrU JAe5urfY3xZ5+YBRl/OI82nDrNdNDeYDwTi/mC9qj3z0g8RmPbtJZsXbSrGz ZG8re45kT2EXqsZE3qkqtjfJWmLjgw/3GXHSwncWfkneOfCtL/5syc8KzrOd 8ANUe2xiWdPi/VxW8iLFPS99+4rtfllLbHzwiSdmh4rzbizOQcKXEfacYj8V 9mXBeXYU50D5xiWW2D3EW0Gfi5XvRXF2qtjeLGsO/mdTxvDBow71WAP5Oyqu gcTOK7az4j4eSSyx6Yk9YT9eTvm843xifpJ9wreFYveVfhjPIP7uIP0Q6Y9J /4JnGO8rkgfzHiX+C8ozuGL70cQSGx9cYjbNOsehnZ57vIz7L8/Ngo/zpbIn pMyhHjxwzgN88OHSM3HY46MfemHfiDks8tcrdm/xLs/7sxfPMGFzC44lz54V 25tnLfeMvPDhvhQ594i92CvysSd7RI/0QB3qbZ21hENso3LOK3ieZ5+K7TMy ltj4yLt7s3tGZ9+xud9z3x/D70Wdng1lVnM/4d9wv8haYg/Le5400+I8+1ds M7PK3+r/LPhvymD44B0k2Z+9yDj/ARXXQGJP4PyUPl+cgVlL7CvyjlupxbN2 4GBcL+DkxXeY5JHK8yS/6UnfTL5hqnWEsIPZO9X6XtiVeZ/bh1Rst2UtsfHB JeaJxDlWbvHsHBg50KlzeLPnzeBQDx44feBbIPyqvK/Hwyu2C6r1v4r3iDkH MHzwjqh4FmzxnBvnVMVzZ0d1eu6NGbYjK7afSiyx8f1AXN7XxZrq4xrpr0g/ qmJfe9Yzaqu2OA/60RXb+OERT11qMuuFHx6zcPSC7+nEPa7S4rUfW3G9nZT/ D+EnVDy7cYy4x1c858Jsy+8Fz7ccV7HNDAwSGx98uMXon7ysgRz4nom67BG1 qUO9jqhLTWZXesu3VovXfmLFdmfWEhsff7fk75f8vZPjwPHgfN1AvqHSRwo/ VjX/Efaa8pwk7DfpO2YtsYeLs674a+jzqjgnV2wP5j7Ms7Ldf/cHwwfvtKhD P+Q/peIaSOxntcZTK56zYDYDiT0i7zhmNRbPwBSMMZ8ATl58ZcnreHbwOznX vmrurlrHKXdX7MXx0k/gfVaxxYrt5xJL7BOCS8zExDmuzXsfwHrH3lJnkWpP SplDPXjg9IGvqcU2nErF9h6xh8Pj/ASrRN/cW7ivjOfYqdbpwv8X/V7c7J6H RI+sEYmNDz5carH/1YqPATnwvZB4vuH6vOcNOM4c732zlhzzySn7U+3mnFGx /WJiiY2P3NR4hDmlivMys7ER55Z4b3DOqObJ+pwt/azohbUjsZnpoF/WT89n x1qpBQc/5w/Y2bF31DkzeiL/ORXXQGK/xDtnxX3sn7XEpifmF5ZS3jd5r6tK 7yd/g+frmbPn39g/X9yNFXOAYo9SrR7tnj1Av6BiG4n9lNZ7YdRnLoI44qkD dlWz144ODzvPu430m8S5nvuAfJMVezHnG+9FGUvsZdqtI5lJOEXcEcpxXuiX VGyfKv3y6Jv+LuNcEn6CYm/Om39pxfbzGUtsfPDhskZ6o6+3U86Bj32gDvVe SVyHeq8mltRkP0/jmul07LCK7dcSS2x8rJsaByvnlpK3qNZU8a+o2D5a+K3C ruRZqdrFTu/PReJcVfHcBbMWwyv2TUqMEcPf8cGGx56SA/z1xPvH/Y49vCZ6 eT1irwoe2DXR39Wx9/SJxCaevByzm6VvLd4oxU3jOcI1Lvy2vPERFfvAwaaL c234OdaslTWzfrD6dnNOVT8rtnvmgRzkOjbr3OQ6TvrIinmvZhxLXuLpjb7Y K9bD/l0QOYkhb0E5bpfvfeE3VGyfqJyjha0p/yzhNwkvK9eUxH54xJR53rV7 fuDGiu0pGUtsfHeGJCc5bm/23y6pfUvFcxnMUtyRNw6HercHfnPFPvhw2Ydb onfWjh8ecyCVTu8J+3YXv3XJt7p4O7Dn0u8UVuXe2On1jqrYfjOxxMYHH+4H Kee8NfaaHPhOyxrD90biOtR7K7GkJn+XZ+4BG/2Oim3mKJB3RAznGOcX1wj7 xIwF+8nf5sfkPQ+wk/x3S5/JuqJHaiHvimN2uvSh+lwhzt0V228HBz/rBcMH bwzvIDyfss4/uuIaSOyi8HsqPg/eSSyxOSeIw56V+r9jTN/gYyLmAZ69WsNM fk+Wvot8VeU8W9i9vG+0u4/7mt3zfdEXtRbjFfvgEjM94xz3KPdHKWPkYG6B Ouu0+2/ucKgHD5w+8J3B99pm7+eDFdtT+d7NPYRzOmsMHzywx5VjvvgPR7/s 1ZmdXidrB8PHDAX42NhTcDB6A8P3rmqdxTOr0/3vKd69yv+x9PN5vol3QIvx Ryr23cfvfe3++zgYvrP4zbZi3/TEswXocM5RnnP1uTblOuwFtR6rmMcMA/Kx iGdfmFdg38bHPnGMxlXc67TEGD54xFCbnsj/eBxXJDb9TKi4j/cSS2x62o/j ovg5KeceFzFPVOw7P2uJDY+Y82ItzwrbX74LssafqtgHhu/BvDF876vulVrj Ru2eB3iA32/k21D205It9J51zDOy92oxBu/TlHPi+yRlnBh8YHDBL+DZ3ekZ gIkV1/tce7ux+P31+SLl/p5sdv/Pi3OoYi/LGn+uYh956Yu6z8WaPlD/L1Sc 68Ksc1OD9ZCDXA/l7YfXP3CwuSmfR5xPMxKvmxrsCRjn1+fivFTxGmYmltis Z6rkY/yeIXws76GyN1P+wxX3sOzPFPtyxfawrCU2Pvhw6WFz3qe4Z7Y7B75Z yjlO8hDFfCXOq1ETHHlR7Ge/dvPJ81rF9qVZy9ciF3ziiXm94rwf8ndtrh3p 36Xsm9jsnJPEOYLna9ZyUsSM0N4OaPccwuSK7a8z5uCnTzB88MCoxxrIP6Xi GlOiF3p4o+I+RmQtsemJPWE/vlHOhyq+vzPTxT7huzJrDB/3/XckT+AdApz7 vewj+a1I+qWdXuPbFdsfJ5bYlwaXmI8S53g07mOtqvNuHGM+be0+H+BQ79HA OQ/wwceGQxz2xdEPvXzN9xF+v9Dny5Rj3hdvPL8RcQ/gvhP9Ftrd8/TokXMM iY0PPtybIue0ivOSA9+cxBi+kVnXoR77gxwffXLPZj2s94OK7U8Syw9iT5+J ewbXGvf5GcGr0/v/scr1rHIO41mqzwLebXiOiTOI96FYEznB8H2fMYbvZZ0P H1Yc/yl/g5b+BNdOYgzfFbFWuKz3I2Fd6uPWrCX2hLzjdmz3Pj+Vt+/HlHHy 4pstuSXvo1nL2VGPGju1u/9PoiY9FJVjjuyjW6wjv005NzXJD5cY4qnxZN49 fMq9Tr7PE9d6InCwqzo9A/NZ9MVawInBB4aPXJ9XvJ4vlGc+zxqeheLfxm+z sjvFLbeYQz9fVGzfnrX8IuLhwx0V+/N57CM58P2S8WxOqcW9fRW9UBc5udl4 B/d5xc+TPrdi+7asJTY+9oz9GiX864rzMudzTafnBvgbLn/X/6rdswHfiHO1 fF8mltjMBvXqq/NP+bas1b5XbA+oNwc/Mzlg+OBRh3qsgfzzKq6BxGYm5LuK +/gqscSmJ/b1WeX4PeXvZHwH5XsZOPuO73vJwbxbZy2x95QcwbO30zMqP1Rs f638w7kmZA9psY78OWUMe25iLjHE89+3793uHn7k3YD3gKzxnyr2gU2U/UPK GL5vEuPE4LuOe0Wz+/mjYvvbxDV+Dpv/pv65WO+vwp7Pm4PEPrPFOvK3lP/7 e2LGZJ3nuljvucGD87s492mfF2aM/xZ5f4710ScYvgey5hKzT7t1JHMRnG+c f5xz1GENrGcR1ybvPYr9k/cR4rKeD/pL9tnc7zo9Y8RsDxg+Zp/gEvNC3hhc +v+74ph5PFuF/SP7xbx15J/i/CtsF97ds+YSQw2wA/T5KeU4YsbGucF58UvK dan5vfSF4lzPOZdYYlf5Pi/OEfr8I063qu1Hs14ra34pbx25KOW69ERtuMQQ fyPPhE7PySwh7Abp86MWdbjuwC6R/rf07lXHfJ8YJwYf92nu38zL4YdH3iUl r+Jeo95qpL+ifhYk9t0cdcHwHdVuPFW1DxyM/lORj9jD2+0Df1VymPIvlH67 /CuJd0en8aWq9l3dYhsOGPoPzNhU7XtavY3nd+l2/w2dOaErW9zbkbwX5X0N 9qya1zP42MTQ65xm85eO3slfW3WvE7LG8MGjZo/og/zLVF0Dif0kf3erug/m kZDY9HRLp+eUmOEhd23s6XJV+35MLLHhHSjO6/L/JX666hkQZkLAV6jaB4Zv eIsxfOPEGdXpGRJmMG6VvnzVWC/JSexJ4ud5Xdh8LlKOP1LOST7mVcCJwQcf G84J0qdIX0L36kzkJudtnZ45YUblOHEmi9NNnPqqZ0KYRQHPVu2jN2LpEwzf RHFWrDrXL4n91GA95CDXiBb74f0YOBh5OI84n35NvG5q/JQY4/zqrn5WrnoN z2ctsVnPupKjxflL/En87UP2G3l/rmvxulYJ7LfEEhsffGw4dynHWpxPLc6B L1GtW2S/KU5KPazG9cj3hKzlz82ePaDHk9vdZy6uCWohsfHBJ56YpOq8rynP qXwXb3f+24S9xbUkvUGc/wl/MWuJfRr3OL5btLjW6lXbvyfm4F+y1hg+eNSh Hmsg/xpV10BiT1b+Navu49XoB5ue2BP2o6bW95WXefakvE/4/kiMc9/Bt47k 3cL/FD5GeG/ZbwuvKteZ+iytPGtXbb+ZtcTGB5eYd7POcaf0nuLfJ7mefO/k fZzv4XqrNYd68MA5D/DBh7t8reOwp2edm16InSp5drvvscQ0i3eO7PvFaZJ+ meSh7ebBaazaHp+1xMYHH+6/Kdt9qs5LDnzvZY0tzpO4DvXQkdSknzHcmzs9 v9RStf1PYomNj7zvRj99ow7rQmLjm6Jz9rx2/717muz1Y/0bSD4o+UHWGL5/ E2MbhL1h1fGri7Ox9POVZ0bWGD7ywp8We7tR9EUeJPavzY6bnvf5yQzBuBbP QoCTF98mkjPl65u1xH6I30TEeS/v8y1ftT2T9xDlb5W9ZIt1JDMn1KUm+waX GOLv57nW4jmNfsI+5O9+UYs6zMCAPRx5+lcdsygxTgw+MHzkekD6g51ey6ZV 290aPA+yheyx4pT5zqj6PdT/ZlXbU7KW2Pg+0Od2cWtrna9n7M+Aqn1LKOeF 7dbhoG8ePj7wiKfu2Fgjfnizsu4FH7Mr7Bn7tZDvOFXXI/9M5dlG9qV8J1aO raXP4L1L/oc7PU+yVdV29wZLbHzw4S4T/ZO3Z+TANzvrvdk06lGHektGXWqu oNiL2m2jD6za/jBrOTBi2qo+h5iNQWJzPtEHszL0WYi+yH+JYttlz8p7ZuXR 4IDh+zhrLjHEg8HlPjOo6hhmY8aKs23VczHoSOZAtuPeoJg5WXOJoQbYh8qz bK3jiKlRPz/xt2vZV3Beb6v3YnF7ibN91bMlzMMgscfLN0y8HOfkEvqOWbX9 Kb9hKt8OVc/QoCOZM6EuPVEbLjHEU5ea/P90dqq67mdRa3ysBWxC9EOPxGyb NU4Mvr0ln+c7NTM/Va+hcSW9G/Gdss3/BsiF2+i6WV/fv1Rrl1grtZDYY/tY R9LPzlXHzOpliU38I1rXo/rUqZ9dhT2jul9ljQ+u2vex1nlNu+cHwPDVNphL zEd568h0rXtnDU+3uPfO2IvJTc5Fnt2rtn9Je117VL026j3Z4n7A8H2eNZcY 4ncLuZR62DN6RL9a3L1kz85bnx39/BfDGuASQw36pMdsreOI+TLrY87xTinn Y3ynE76iOM9IP02+AYrZT3I43+2znjOYk/ff8dH3rdomdp+q4+Eyr8A8Azrx 2CP5rlT13/nHi/9si3smB7mYeQDfv2offLjUIg57Hu9mvGsI/136S5Iv6FNf a/3Aqm3mBm5o99/EDxb2OO/rDZbYEzqtI6eIc1DVMcw5UJ8+eor/inJ9kvee HCr8U+5LgR9StY+a1J6fNYZvQdZcYm5qt45cSXlebbGNfljV9g9Zy8Oixufc w9v9+8PhwrpzvLOW2De3u/eWFvd/RKyJ3o6uOn65BmP44B3Jucl9TfgUrldx Vq419mSn+zmqat+vWePE4APDRwz7xH6xv9ShHr0+Jd7T+ryVcgzrIecxVc8M MEuAPCb6Yw3MFjDncGys6YfgfB6/vYDhg8fasd+I/MfF3h0XPbLe46vuY/kG S2x64nz5QjlXrbXOOYT9pT53Kudqwk+s2l6hwRIb39K8p7b7b44nVW0fpD7f Up7/RQw6kjxg2H9kzSWG+Kncb8RJxDk5+qIW+ClV+8BaW7yHYPj+zhonBt/y ynUv+ZbSc79q+zBxekmeKvuedl+/XLvv8lsl93VhR2UtsefmrSPhcK0T06vB ecjB3+Xpe4sWr73Edcn9s8F4sWofNYk5ImsMH2uHW4q9QEeyP7MkzxH+bd69 swbWc2b0znor0peTfqj0aeJXZffnPUZ5nuv0HoLh+zdrLjGbthiDe6meHUOq jkmr5xnCTue5mLeObFCeocK+kZ5pMJcYaoA91O6/jxNHTPd63+e43/VocF1q viPOGVXPETBvgDwj8pKL40jPZ0Vuat0Ta2ZGAR3JnhNDT9SGe1acB+wbe7aG 8pzNc1O+bINrEUOfYC/o817Ke0xMTb1xYvDxfs07O+/Y86SP5ftY6OdWbZ/H M1+clGJXlj2u3X8TB8MHF/z8qn3gYOQBw3dC1vXaWtzPbMnvxOktztPyXyfe j3njF1bty/G+2O6/3YPh66EeLqrad7Jyvsi7E++I4rzU6drUpY/tW9znxVXz VmywxCamQZz5ecdeUrV9qnJeEHtT32AM3/zoh9qPxR5cWnWNS2Pd7M9lVfex UoPlZbF3L0t/pdPrJTc12IvLq/at3GCJDW+B6j3V7r+VXx3YKg3Gr6jaB3Z1 7AsYPjivCn+NveD3f97z5PteviurnkFgPoE1XFX1vAIYsdQiJ/noE/zKyAsf LsfiJ+6V0tcT55qq663a4JqvR91veI7xe4k4I+LYrtZgfHjVPnqjr7VrjeHL aA+vrTrXarGWa8ImB7mea7cN7/XAwfrU+jzifFqh3uumxvL1xuDBGVn1GnIN ltis527JPuIN1f6sLXkD15Xkty3msd7rq7az9ZbXRy74cJkZmKKebhf+Rqdz 4Ktw/ku+qk+z8twYvdMDcucW79sPkj/zXVqcm6q2V623xMYHn3hibq46b704 v+Jrd+xP8v0iu1H6LeJM4j7ZYIk9j/fSTvc6m98Aq7YbgoO/qdYYPnjUoR5r IP+oqmsgsXPq4baq+1i9wRKbnoh/I2pdFdcQ1/LtkRv+AzwfpK/FM4W1cp8U 5xVx74i8v+mzQHhffneq2l6jwRIbH1xiVql3DnzwqT9avt1afJwntXumAs5d kQuc8wAffLj0PDqOJ7XI/Wscozc73fOGvHMKv0+8P/L+3Mt6eP7xfip7Y357 qdpeq94S+/fgw22KnPfEXtwb+dgTMHxrNrgO9Vaqt4RD7J+8e+rTIv3+qu3e 9ZbY+Mj7drt7Rmffsc+Nezn3vb/y7o+eH8TPvavBEvudTvf7Z9R9KNbKut7r 9FwFcwhg+OCNk+wr+5ys8z8ce4HEXlv5x0r/W9g69ZZjw0fc1HbPUYD/FfsJ Tl5845GqvQ7fX6S/y3ePevf6iOy9FbdEX8Urtr9iH63abq63xMb3SKyPfsjx gT6ttcbIwcwJdf6RvkmtOdSDB04f+N7l+drpmZbHq7bXVc4Xqt6jxgZj+OBN kFxSffRVPwt5/5PdTfa/0me2u+cnqrbXa7DExkf89KhV09fx/cR/MnLDf7/d MeRBfypy4YdHPHHUJBY/vKZ694KvT4N7/Ef6Rnw3rLre+uLM4B1F9qK8c02U fiB7xHOs3XMOz1ZtX5S1xMYHH+5//T8T9SZGX//VZY+oTR3qtURdam5Q65me 7n2d5/mqbWaHkNj4+Fsu//4a3y04DhwPzldmTN6Wvqw47wuvldxUOV8Utoz0 fL0ldrd+uteL/6k+m3HtV21vKM4Wkl+0ezYADB+8VyWXU3z/eud/ueoaSOwm 7i2cR9KbGyyxZ3Q6bgnVzNcaB2MeBpy8+CZz/kj25R4u/RPOW9XqLuw12Z+3 O25mxL4euVsaLLHxwSUGnBzoW9RakgOdOkur9ua15kyKmCWjD3zL97UNZ0rV 9qaxh90iJ9iU6Jt7C9cY19dnyvkW51Y/93RUi3t+M3pkjUhsfPDhcj2y/29U fQzIga+f6q6oWilx2mp9nDnezBohOebkn9Xp2SPmbd6p2l6/wRJ78VxS1TWu UuzUqvNuw7uxZK3yF5T/I/E/7nStd8WZK/7m9ZbY3/GeLH+dYrYSZ1rV9gYN 5uDfutYYPnjUoR5rIP/0qmsgsTdU7HtV99EW/WDTE7P537f7fL6sS+d/o+7j dcaZ3cf3geRsyY0Vu4piZ8juERK7IHwe55Fq9W8whn+Acs6MXpj/nx25yA22 oN378GHUobee/dwfewXWo597g08uYsCJwQf/o1jbHHHmSD+lxRJ7E9X9WPpq 8g9S/u0UO1v2j+3WkcxI0DtrOL3FXGLIPVv4rMgF3jOOIzZ1Fs8CcW7qM6jW ucl7U9b4J1X7Pop89AOGr7XB+clFHupgbyx8TdVaWvztlPNz4d8o55ZcI8I+ 492g3Rg258lnivsqjgESu1+Decv+fxz8zBsQS17i6e9Lnrntzg2WV+xa3C9l Z/paR25Tawy7g/cHxSwv/kB+L5X+V7v/Nvdt1fbd/N7L/a2fzw36mVt1T2Cs kzV+WrW+U70lNutfm+sv4tGXiz1Bfh0xrInjxrrmxt6Qh/r0QU/kIH7n2EM4 7Ml3Va+hU/jXPE/E2UH4Qt5huP8M8oxG777O/z33D/E2bTA+v2rfb5JNknvU G8PH/NWXnZ73YD6EOtRjv8hBLuaGfuJ7lvQVAgdj3uaHqmc3mBVBYuf6Wkcy T0Isccw+UevHquv9wr2BeyzfZaR/Jd8A6f+I/7PsXv2sI7dXbPMQvVNrrafU m0vM3E7nINe6fY2DsT/gYKzroHbb6OQm7+B6479GH/RFf5s1GMP3SNbnHecf 5xt7wHq2rfdesqcXt7jm7zxbB/m4cEx2VA9/COsr3t715uCnN7C0anZI31D6 35zD/ZwDHnvCsSXXbor9q+pjv0WDY8lLPLHE7VzrHNj7xXlCDOcKfdIjsxb/ 8KxTD3txH5NcXp9dFfsNz1LObc4rcTaVfli98X+r9s2T/l2nZ3vA8G2pfhZV nevAeuemRu0g5yBXtp/98JYPHGwP1eqmY/qt8mzV4Fji2BOwTcQbXOtjzrHv HfcB7gHcx5YY4p62VuyK8vUa5JwDFNddvnphOX3qpW8UGL4j6s1fcohjwOBu W2sM3zb8JiZfKuxayZW4hzQYw3dovfdjfuwJ/v7KtbvybN7XNvoK4q4svb3W 3J6Kv7TFnKUiLzgYeXoIO4T3cn5/G+Q1dNYaqxvkv6FTf8XYQ3KQ68h65yYX fS49xLUPr3cseYlnvmqzvv/XM2ujb7jE0GvNEK+NfUDWRN5lhjieubWM+MvJ XqWfdSTnNhj20ap7Evewvp6lyQrrJd+q4tUNse+lrDF8x4h/Is+Qvp6rAYPL Ofm9ai87xLNjC6SPbHHO5Yc45oWsJTbxKw7x3h2rnFnpS0nfv94SezXl/UF5 0tJv+H9NnXe4U9Xz9cGS2CspKib2yi22XLuo3ORayAVEQERExa6I2NMuNlQU u6BiQ2yADRv2gr1gxy723rGj6Ls+rvk+v/ePPDOzZmbN7H32OTm5e4u9rCM5 EwKG3SfnsTJm5ose/jvHtrh54OhU/Mry/8R3a85yfl+fUWHdce2KOY+VMTMX YKxHrinx5M+P8VFjp5x7T0f+OpJrMg85y5x8Q5SbqfgcC2djyM9WfIYFHUkP RdVZQ/i1vRxLzg7CVpP8WXGlnHEwxp4W9+qqsWfC51p6N5knGz0yFvBVK/bB wdkYzuGA4eOczCoVcx2mOf9FMb/qM1gxefqXb6cm4z0r9oGDwbM6a1C5R6R8 73Pf8xwAy0kfJP3EPs4hHg64OnLmBt9Fer7iuBd6OBde8pkT5oOzB/TPXDCG /zgjn+cPzyaeQYyD8TAv9Nqz3WP5jWd+X5/VWVv+DsWOSRlfq2LfmjE++gHD t6v0Vdt9LbmOv0YcvHDAtUbBfq59LnCwAYpfN7hZD0jsP6KXP6IfrjnjHJ1y rfViDW0oWeG3heZkfelr8R0knl0Uu0HY6EjGyPO1ezwLwMjp02QOuPLtxsGI BwfjzAO9XNfL/cAN7zEp4xtV7KMv+huVMoaPfrjHl6/4PufMU6nJPEuUdU8K X7JsvFfFvibJP5XTN2fJGSbOCy2Q/pc+QxOOJYdzU8SQQ1xzxXFl5bZI7y++ qvpZT31tpM8w5pyxt3uPu7ViuzPnWHLWKRjDR9wmFe9Xsw++ufQBiquJc7OK +yEX/ybBtU679805J7BpxfaJKUtsfPTYHPl8yk0eFzxw0Bt1+umzd8Ix1CMO nD7wDeRai3e4Yrao2G6kPBbGwXjB8BFXqHguKoppk36xevlS49pTMVvKfriX deTKCceSw9wRS84e8m8jubGwrpRxsG8Uv2G78TcW1bw32wcON7zEg28dtYnt X3Q8GL7r0+Kp6j7Rurgi93890c9gye0VNyh63DZ4wcEY73bCeol3rGr1rniP m71vMM4ccN6AMwFN7d5D3zbGzTzADdfJyt2h4rivIxde8uFbr+B9ZPpnLhgD seTASwy1idtRslXYafx9T2NaRJ+eyt1Z+EJd1/45+4ljn/5v1rh62EcxO1Vs 98tZYuPbjWvCO0POHP/oswr3prB2+bYQ376KW7/gtUEM9YgD71Oxj3hiRySc hz0gZz9xZ/G+0WScmH95/snXrWyuDunPqOer+NtGu/eySxXb83tYYuMjnlj6 hLMY9TqiL+qC4Rufch3q7ZGzpCY9HCj/hsrbT/quFdvnpSyx8W1V8VqspzxP 27R7n5d5Zo657v/xNZlz94r31Tm/gdw95pe+2ZtnXH1jHPRGDH44wfAR10/y YHFekDJ/OcZTjjnjenVWvA72zFlisybI21icByTMzTWmb3B48Q2M2EHK3UP6 DTxLWJ/y9Ze9He9eTbZH8gyp2L4wZYn9v1gkPHBs3+69YDA4yKXOy728Vomh HnHg9IHvcJ7XyjlIMXtWbF+S8nOd5/uwnK/DVvG8mCGeHdu9X3yL9Gbl5nlX V+xgxczlO0b6YdKXDuw/X87xQyrOASOWXDB83VV3MeFDY8x7Sy4ue6+cMXxD ch7Dm7H3jT9Rdv9H8/wX98EJ98g+NX2y9zyce7jgmGEVx4GDsc+7T/iHir/G 81n6EQljpXbHUJ++mFs44JqcMjdc7InvW3Ft5pBceMmnR+b2oOiZsYERSw69 7hXXh2uNxGacIyKW3o4Xx/6yNylYRx6aMIZ9Dd9rwsZIP0x4h3gOlG9TrnHF vn1yxvBdkbJvd+mHRzw2elI194t1wIfv+bWEHxB8rA0k9n/5Fc/dDeI8NN4L qIXEfl9jOUH+g6MPdCR9gmFPSXmsI2ItJqM2deGBA/0Q+e/UnCdTln3bvdfM umP9Dc+ZmzEzF2Csx3UTjiefHMZHjb3jujMGrv1JkssLPyBnuULZe75H8GyW f9+c+Y6UvUxwLxP8y0oex/tNk2PJGaBaoyXrwm5MGQcbpfhyu230guSJijky YW54qQV+VMU+OLCJAUMfoZhRFXNdK/5Z3O/t3jc/lXc9+doKxo+u2AcOdqxi xsQ44BlU8X3+bw9jH/XyuAayJvmbT8IccC2dMjdct0g/tuK4m1LOhZd85oT5 GJ1w/6Ojb2LJgZfrzTOI5xHjGBVzvVzZ14D5P533HOaC3x3yb1XwNQI/oWLf 8RXn7J8zhu829bO1fKcwFwn7j49rDAdce7fb5tqvEDgY81MRNkT6zSnLStRG 3yrmkGvOOPfLuVa14nqN4BvJGpM+Ttjt4nlQ81eXPazdOpJ9duZ+UDxHiCUH Pjjg+ryXcTDGAg7G/JzDux3rN2FueFdIGe+q2FcNPvoBw3dPyu/4vOvvLHwf 1d5fn+PFM7Zie6ZiVlStk2WfoZxTJFfi2ZuzXLnsMwnnyrctz6CEY8k5MGLI Ie7UiuPuFedpfO/x3FbMZbyzcC0TjusRnKdHHjHEkjOy3Rg+4sZJ7ifsbnGe JX22xp6Wfqb088R5X8r+cVFve33OFn6i+M+o2D4kZ4mNjx7plfHAgY94eLaL eabOge3eKyfmzOACpw989PdtL49lfPR7SIyFccADho+4A4TtUPD9ck7FZyU4 v3Ewv01kHyGZKvs8B+cH0tIvUO1KwrHkTJB9fsW+w3LGweiB3AkV58MJXzVh DN+hOdfB94DqTlReb/XT4PpWbD8q/JKKr9njKdehHn1cJLkTzz7xXCA9w/ef 9Et5l2FtF6wju8R5dsVjnpVyLDnZsjngGtVuHIwewMGOk75vu210uOGdnTJ+ cfQBNzWYUzB8d6bcO2NgzcF9VLv5V5c+VXiu7Do7B//E6ItxIbHJWUX6qmWf hZhUsX2kYg6Vr1jwdQHDR9zlkpNV88mU+S+tuMalMVb6v0x6H8aZs7wsxkZe n5i3PjGP6OCXR85VktfIfk48V0pfjbGJ53n2mnh3aXcfv/Zyz1dEX9RCYuMj lpx8yhw9uf8TxuBg75467ap5asIx1CMOnD7wMQfHt3serq7YHp3zOmI99Y4Y fMRxBmK69GubzHUt7wfCp7C2eCaKZ0rF9vMpS+yLIp5Y+mT+r4l610Zf1O0o uD965jpzvY/OWXLNOadBH6W4dtdFX8wnEhsf3NR4SPj1FfOOEc+JwnaRXk+Y b2Evc96gmKmqOydleUPkvKbxntTuffkbK7bXj5iOmFswfMSBXR/XGP6bKq5x U6xZephWcR8vpCyx6Ym5ZV7ph2czz3LWNvONj3Mszwl7XfZgxU/nd5nkmQnr N1dsI7FfV/wt0quq8ZL0vDhnVHwWBmysPqcnrBOHvYZibpV+vWIekbxX8mPl 3iZ9Td6fcpbYa5WtIzkjcTO/n/kuD/32iu0u7mnpuxcce4f0tcu2T2l3/zPD f3zOEhsf8WsHP73R12kJc+AjnjrUeyPlOtR7LWW5e8xPX8lpijlD+l0V2yfk LLHxMW5qHMtvoib7iL+7YvtNcb6v63CP7FPFvU7ZZx045zArxgTn/RX7TswZ Sza5fzB85MAB1ybiPFlcZdUaq5j7Kj5LwlkUcuElHwzfDL6bK86ZG7nY5N8b 16yf9Hukd0qeK851xfOQ8JlNxh+o2AcONl4xD/LuIK53Ux7r3TFHYOfwjFbM eopfv+xzC3DA9WHK3HCdxN+UKo6r5JwLL/n0Rl/jEh4387d1cJIDb3/6bXfP j1ZsV8VzobCJ+pzPdzrf/9I/SNlPHDnkbxC9PRZ85CKx8T0n+ZD6+CJljv4x P/cJe0K+AQV/7pY9IeGY2dEH+OMV+4jHJoY87E9S9oPXVPdLjfG8du+zc9bj GflmwSvsael7FNzTSk3u+anokVwk9koRTyxrHs4nK+aFA99HKWP4tk25DvU4 r4KcFfwbln2+hHMaz1Zs13OW2Ph4PvBs4PwY8zSw4DnnmYHvGMU/ym8B4Rfy XSP8dPXwdsoS+yLJjXg+NHkv+4WK7UbOMfjPShjDR9xLkhvL7gr+ORXXQGJ/ Lf4XK14Hn6cssVkT5D2omPOiZ64xfYPDi+81ySa+HzmPJ72X9LHSn5HvZdmD +A4X11X8fUA8r1Rsf5eyxMZHLDnzU+Z4XPrFCWNwXJpwneaydWKoRxw4feDj Gc7z+7KEn+XYv/D7he+tdt+P6HMrttfWZ9mq7hPmWLF36nOOYs6S/UbFsewJ fyX95SZj+N5POf7NinPAiIUfDN+vimlRT2/LbpV8J2rSDxi+U3Pue0q7x4V/ r+AZWnD/jIX8XJP3nX/R2nuf79R2x7z7v3H2McY+8nvC5gj7XbU2L3tfnj16 sKExP9SHF044wE/LmRuuDuXOi97ByX0v4q5Tnb0LXhv0zNjom1hy6PWtuCan xBixGecHFef/If5NhH/EPdNkHcm5BTDs05V7vWL3EfcFCctP5XtMcZ9V7Psz ZQzfGfx9Rnmblb2PD0Ysuf9qTB8q7kXZk5Q3jPds4R9XnDMucrHJ/7riuTuT Z470G5SzIGWJPbzgcxafS3+pyfpL0T8YNucurosxM1/0QH3Ok8ADx+XSv4ia 9I/kjAX9s+5Yf5ypYKyfxTjBXo4Y4sknh/FRY4+47oyBa/+H5HuSibTlk/pM VO43wrdQ3Fmqe5M4v5W9b8E6crJitpT/F+FblR1LTkHyB8k3xNMtbRzsCsWP UN6rsd6WaLeNDje8f6eMf1+xD45Nm7yXDYZvGGeEwj8+Z+6b280/XXI+z7d2 4z9W7AMHu1IxPwl7m2uS9u94fs/z2x5sP965FdOm3NebzPljjIlacMP1j3r4 ueK4s3POhZd85oT5gIf+mQvGQCw5r8ca+6TidcY4GA/z8q4++/M8Uu4BvI+1 +1n3u/yTpf+QMv5bxb5fK85ZPG0M3wT+3qJa25R9fgY/cfDC8XvEvRfXnusN DkatP+N6woPEvqPdOpJxcc0Z5zlRa0HF9RZKzhPfEurnr+iR3g4U99/RKzqS Mf4beeflHEvOyII54Dow5mBk9DYv8sldSvhd7d53/jti4QH/p2IffdHfuTlj +IanPPdcg29Srr95k+cKnZ6w75S/m57/B4l327LPBnGmpXvVZ4U4g7Sj8Cel X58w9n7wrCJ9McV92GQOuJKah0Wq5jpf/Swq/R7hS6WdCy/55JLHOQc4sI9M OZacg6MfuOhpccntZF/A32p4Zjd5736W4g/ht6/0pGJWk31Uyniial+Pqsdw Sc4YvqXVzxJVc12YMzc1dm4yB1wfNdlPXHvgYJx/WFLYZ9KXTzt358DBPuU9 MOGa1GbuGBdj4l7bnfdkvuekLy3//dKXE88Oil9Odl/5v9TnUH6/JrwHfFjB e4LEkrOW5PJV+9jXBgdj/5rcZarOhxM+aoHhWyntOvguyvkdgO9/9rJ5F8A+ IeWxME7Gs0HUo4+VJB+V3UM8K0h/RPrK0nuLb0XZXzVZR9L/UlWP+fiUY8lh PxwOuA4vGAdj3xwcbKr0H3hH0+e6hLnhvThnfOWqfXBTgzkFw7eK+pnFO29N v3+bvV96RMH7hmsp5lnZq6eNp6r27aT4b5tcNy1stnxpxfwh7Ci+ExLG2GPl WsynjuKOLJgDLvZeM1VzTeTvRawp6ZNywVd1PrnkcU/Bgd0z7Vhy+pTNARc9 rSo5ivfAnH378wxV7s9Nxm+U3pN7RTXOSRlfLXLmxnsc7yFg+Bj76lEHTuKo 8Uy7OXrGHOEnjnrgYOx15rgn5LsscsmjB7Bi2TqxzDV7oYzrv76F56ue07XU wxrSR/MOkPMe5pphoyPZdyOWHK4BGDkvyr+OZEmck3PGwUZGXWrSJ70wXvqB G172ecHXjrmAg3MLByaM4aMfxpILe4HijlaN6Yr5S/r6wscUjK9btQ8cbAa/ PcPPWQieizxfJyWMvdzumN68/7d7fxAOuNZJmxuudaVvUHXcxSnnwks+/R7W 5J7pf504e0EsOfDyu57f9Px9AB/nM8h5g3dt3RO3CH9V+sbCjylYYq+nuttL 71TO1Jwx/MT3En4sz1vOLMm/kexdy8b+FvfNimlmXVEjZd8o4YckjL3Z7r1L 4uEiB5wcfMS3VJ2zm/RNYy6Q2Fdz7oJrotjLUx7nJqyZJutI5pPeGcMxTY4l 5zjV7K5xN8UYwMHoDW7qcF2WUMzxwu9KmBtergX4ZlX7WmLczAMYvk3T5oeb eaAO9sbC3xbHPH1mCi/wjOc3D3+P4p1S9qLNxspl78Mit4prgMS+lt8m4jgx egPrjHhyCxGHf0u+l9vNTY1reGdQjTbZJxSsI29NGMPeXH2uKFkRfp/wXVhD 7d4T365q+0reJaSfVPDaoJ+tq64JllT+nYrfvOoxN8XYsRn/0vJvG/noSOKR 8JLPmLhujAtuamySdn36oCc4yN8i7fExf7crfoeqx7CN8IHCT2ryHmuncnbn WSr5sT5f8J3Md7Swfoq7Lme8d9W+Xfgeo17aGL6C9FrBOLWoQz3mCw64lhHW n2c333Fl42B3K35nYSs3mxOJXS1YR96fcC55zD+1+kQfpeC7geeS9HeFtYin h3KLshdvto68Q7kNYQfCk3MsOfDBAdfX7cbBGAs4GHX3KHvumDe44d0+bbyj al+f4KMfMHw35rzuWAusVeaA8Vyf8xiY07p8DX12jbngunBN2NvdTVhaWO+0 Y/AzJ2CNmJ89uUcUN6hsDvCbcr62cE3V+uwbPYKTu1vEkUvegwlzYE/LOZYc 1gp91mNOOoWtpvx29dNTcjl9ZgkfK/9P7b6m/Xk/4jszbbxf1b7B4hxS9r45 GL7pqjWgaq5i2tzU6CqYo3/E4SeOeuBg1Nojxg0PueQ9nDA2v93j4ppz7Q+K 5wDPAJ4VA6vuaYZyTyk4n1x63VO+k4XtI/8h0s9sMoaPsRM/KOYC7OToBwzf zeLcU/gQ2b/wXlv12MHB8E3Tdck1O566+LuaPD8/y3+q8Hv5HlTMadIfl76X YoZVfc6AmKFVx4GDsf++d9XnCDiH8LfkmfI/kDC2erP5qU9f7E3DAVcpbW64 bmHvu+ranWnnwkv+b9L/0ufR6Jmx0Tex5NDr4KrH1pG2HBzzMrzq/F2F763c EbKHla0j2WcHw75NPSxQ7LgYO/4Dqr4mI6v2ldPG8N3O359V63TFPxTx+wTn UMl9FbdGs/kWtptzv6pz+qctsck/tOq56yf8YOnDpd+RssT+R/IMxR0ofZ1m 68jZCWPYM3MeK2NmvuiB+o8kzAMH+/sHyb8B6zttSS48h8RYZ8Y8MOZxsSZZ j4yL+IOiHuOjxq05984YuPYnSO4v/J6c5YVN3uM+rOq/f3DmYTjfmVWfgUBH she/WFHfO8LPLjiWnPVUc5Tkvoq7M2ccjH5aJM/i3Vd6N+Uurs+TCXPDe0fO +JFV++DYSDlPJIzhG6h5OKJqrr2kj1DMfmX3TB9H851YNH5U1T5wMOqOFraJ cvdO+97nvp+TMDZecY8lnLN/cMIB1105c8N1t/QxwY1OLrzkMydnxxjpn7lg DMSOibnm+cOziWcQ42A8zMs5+jTLflq5mzbbRj9e/kN4XqWMH1e179iQXDsw fMPSPqfQ2uz+/xcHLxxwLVF0H1x7rjc4GPvFJwpLSB+atsSeULCOZH1yzRnn kKh1UtX1arwXCR8uvCL9ANWYxd+L6EX2uQXrSOac5+vAePYRSw573XDAtXzR OBjnDcDBnpM+Uvjm4no2YW54D0gbr1ftoy/64wwGGL57c75P9q/6Pt9GcefJ flE8+/B9JfzagvGuqn1jJc/n+zRnuWLRa3KRom10Ysk5MG2MHOJOrjpuEN8L 0rflnpR+iHq5ssn776zBlYqek1Pju4haxJLTq9kYPuJOkzxY9gPs60nfnmsr znFcT9V+MGc/cdShjwuiz9OjL/pEYuNbJHql9wtj/MwJPHDQJ3UujLlCjosx g58RtY/RnPYoet/5zKrtp1MeC+N4KmEMH3FnRY/0PF76odIfkr6zYs+WfVHB OvLVhGPJYe6IJecwyXMl+/DsSRsHe1nxFytvlaLXyTJF2+hww3tk2viEqn1w FPR5PmEM34i0f7vx+4XfPnCvWjQ/3Bco7pKC8fOq9oFfErXOF3a4fI9oXBdJ L/K8SBs7oux9/4kxTsZ4Xozp4Zy54aLPC6uOezTnXHjJh29izA/9MxeFwC6M cRJzUeRfLFnTNXhZ1+Vonktl7ylP5J1FtY5K209cz6Jr3NDkPi+JmvSAxMZ3 leRRsh/PmWOS6rzAc1vYpVWfgeBMQ3uzeYihHnHgk6r2EU8s5wTIw34sZz9x nKMYz/8HsOB/Z6xTOVfId5nsUYqdLP125Y/jPW5j/z8OLq/afidliY2PeGLZ A4Xzsqp54cA3O2cM37yVXYd6J6UtqfmWctfQWNbVZ670K6u2j01bYuM7J9YX 15R52lX5ryc8z8wxe/GT5V+/aM6rFT9acU/kLLG5Vv2Vd7niXlHMNVXb1bRj jo7rCIaPuKm8g/AcT5t/StU1kNhPiv/a4EZHYrMmyJscY6RnrjF9g0+N/Bsj 9inl3sA7hcbznub5Cvmuk11W/IBm22+K5/qq7VraEvt/sUh44Nig6H1VMDjI pc4dTR4jMdQjDpw+8K3HnCvnJcXcVLVdSfu5zvP9jLSvwzlxX3Eeol+zOXOy r5LvNZ5RrMOqz1UcIP9D0q8rGMP3dM7xM6rOASOWMwxg+Mao1rHCb6l6P/xW 3gWEN9LG8D2T8z58R3Psxct/tfjeTnhPfWCz9/17Cb9G+Du8DyhvpvJPKDvm tqrjwMHeVcztwo6T/qz4t1DuVvp8mDDGPj5nBqhPX/DDARf7+3DD9Zxy76i6 9ti0c+Elf4p6GdRsHnpmbPRNLDn0enPVY+OMBxKbcd5Zdf7z4h8q+27Zs5us I9ljBcM+TXVPVN0hzR5Xs/jvlW8zyfuq9r2QM4bvlLTnoLX4f/HEvsfzhGdC 1GYt8D0/T/g9MZf0g8Qm/+Gq5+4scT4o/ST55uQssYeJY4Q+90ufWrCOZJ7B sMenXY8xM1/0gM28wQPH+9IfkH9TngNpy0LRvbHuWH8TYh4YM3MBxnr8OOF4 8slhfNT4NuXeGQPX/gXeEyQvTFtOK3h+HhFeEe+LGleVtcF3Q9k6kjMYddap 8CeaHEvOvqr/eMS+nDMO9oHiD+S+Fv8b0m/gXaLoPuGG96Wc8dlV++CoRy0w fHA+VjXXeep5y6JxeA4S9pR8NxaMPxE54GAfKebJ8L/CGb+q73POR4Ht3+yY y/m7WNH72nDAdU7a3HCdL/3pquO+j1x4yadf5oOe6Z+5ACOWHHh59vAM4nnE OBgP87I1eMHPf86yjGw2z/PyN8Txas74c1X7nq0659y0MXyce+lS7GtN3nPH Txy8cMDFWZjt49pPCxyMcyNzwMSzMGWJfUizdSRnDJ6JMTGH1Hqx6nqv8F0s +3XhL0nfQTUuUm8zeKeQfWizdSS9MfdcA56zxJIzvWAOuOY2GQfjXgAHY1++ N8/YgtcV3PD+mzL+atU++vpvLnLG8F2c9js+7/r89mef/7Bmc75Wtc1e/8mM o+q9+rk8t3vpGdXD8maeUXrH2El8v+gdoLaIY8mZm3MMOcS9UXXcRHG+Kf0U xbyhmD2K3qti3+po1R+tz2fS36ranpx2LDlHNBvDR9zbfEfw/37Su8d7PKOE TVH8u9JPJSdnP3El1Snqs+vO7vmdqu3L05bY+OiRXhkPHKfp82XCPHCwH0qd WzSmrxKOoR5x4PSB71Z9+ha9T/p+1fZbOY+FcXySMIaPOPYasYn/gF74rlVv dcV+zDOo2TWObXY/7AEzd8wbseSwv/pJ1T72K8E/i71jcj+sOh9O+L5OGMNH b9TBd6Ny+xW978k+6UdV29cJ/7LqusRQ55OwP5c8XTxvi+dT3mF4HilmLNeT 52CzdeS34pxX9ZjZ7yaWnNsK5oBrUNE4GH2Cg32X8N7g7QXvwcEN7/S08S+q 9sE9L+YdDB/7ofTKGFhz48oeL/xnS/+N56DkOGEzC671VdVx7+Qsv4o5OkP6 mfpMU8zXVdvvKmaCfHcp97eEMXzEfRfyvZz5v6m6BhL7dvX2rfQ7Co5BYg8r Ou+sqAUO9mPi/3jx/ST5vMaYF8+P9MMYpA9R7PfBe6c+pwj/Qbk/VG2/n7PE xkcsOTenzfGfL2EMDupSZ5+i9y6J+TG4wOkDHz392uSe50eP1GIdsZ5YW2D4 iCNnYdV7luPJZb7EPVz4Afr8LJ5fqrbvSFti4yOe2PkJz//PVV8DOPDNU917 +I4peixcZ673BzlLrjnX6zzl3q2436X/XrV9X9oSGx/c1Jgl/I+qeT/MeQ91 VsH7ffAdVDTnn4oZKv3WtOWfkXM+97M+PylmQdX2/RFzT8w5GD7iwKjHGOD/ q+oaf8WapYe/q+6DPV8kNj0xt8wr14tnM89yziMtjGvFOvlE8evX9Dzje1Qx 5+nzZ8L6v1XbSOyP+TukYieqr0eVO0HYP7HmwO5Vzb8S1onDvk+f7tKPEP9K ktfK94JyF5E+QthdaUtsYtGRXNNJih2vzy+hL1qzDVdC+v3Mp3pYXPoF0fuR Rfe/WM32JzlLbHzEE8seNHXgohYc+D7NuQ71Hku7DjGMF3l/9PZAweNkvMma 7c9ylsmYo+4xJnq4rNk+4peo2X5cnK9p/peUfZS4L1T9bsJvU8xSMSY4l63Z 93nO2MIm9w+Gjxw44FpfnKPE9SD3gWKWqXmffqO0c+FdGHv3+Ni/X7rmnNmR i00+14pr9rD0a6Q/JNktqXca8awgfHKz8eVq9oGD/a26yws7WlxPpj3WJWKO wI7nnlfMxYq/pOy9bDjgei5tbri+0HhXrDnuy5xz4SWf3uhrQcLjZv5uDU5y 4H1E/hOL7nnlmu2vxHMzcy/9H8WnhB+nmGfT9hNHDvkTo7cewUcuEhvf6pLT xfV62hyPxPxMFZaR79GCP1fL/jfhmFT0AZ6u2Uc8NjHkYc9J2w/+teq+w9+T i96TZf97NfmmKO4EYatKf6zgnhZrds+rRI/kIrEXi3hi/0iYM1szLxz4nk8b w9ecdh3qcSYBOSX4J5V9VoE9wZ4129/kLLHx8Xw4I753mKfZqrt40s8MfB9x X0heXvYeek55VfXwUtoSe6zkpfJfz/2k3HzN9rc5x+BfJGkMH3FrST6hWt8H /xo110Bifyd8zZrXwRtpS2zWBHmnFN0nPXONZwcOL771JG+R703lriv9SZ7b OddYm/tCsqvoHHjWqdl+LW25TvS3dvRFn3BME+diSWOTY06ogw8cST3iwNeL 2jzDeX6zp8yzHLstbY5lm82DvkHN9o2KHSH9rYLPKMyImJOFbyj8KeEPC9tW +gsFY/jmph2/Uc05YMRyv4Ph47zEXfL1kv20fE2Spyvu7bQxfPOkX1H2uQfO CeAfr09SY7xS+G3CE9KfVf45RV/3e4S1Kv+ZgmOaa44DB1taMS3CrpJvvuZz jrCLi+YBu5pnX9L16QsdDrh+ypkbrg/V2yY11/4551x4ya8XjdMPPTO28YGR Q68b1zy2H3OW2Ixz05rzX0mba3PZE4rWkfSzedSh7n3KeT7GhWyL/ras2fdJ 2hi+XxV/jfKmlL13D0YsubMkN1Pcjc3u77nof4uac36JXGzyt6t57n4Xvg3f 18J+y1liT2W96jpvxfdr0TqSvWMw7J3SHuumMY/0QP1Fk+aBY1npW0dN+kdm m90/647192XaY90yxgnGelw+6XjyszE+anyUdu+MgWu/G/e75Hdpy6v0WVG5 2ws/Q/q7PPOVt4Psmc3WkUsoZqL8JeEvFxy7fczLTsFNb+BgrDHGdEnR47qO 51XZe/1ww/tV2viONfvgeDFywfD9oXnoHXPM/L8UY2a8v7NHwHO2aHznmCNw MPZn+/A9IOybtH/H83ue3/ZgL8W8UXvNZvcGB/ifOXPDtZtyi9EjOLl9Io45 YT6WTLp/5oIxEEvOmrHGCjWvM8bBeJiX/84+RN0byj73wFmCXbmnpc9PG9+l Zl9HzTmcowDDt0D93CQ5rez9cfzEwQsHXK8UfK259lxvcLAe6nl37gPl/pWz xH682TpyhaSvOeP8Ou1afWuu1y/kQuWWGZ/if+H9Tdyd3EtF60hqDRD2Ou8Y OceS82rh/7iml42DLZc0Pj3GdWVwwQM3OnXB+4dNX/T3d84Yvp/SnnuuAc8x 6j+tGisnrdMT9vP67BH9UXPjZtcdKKy7cvdU7u1l7x2z9wo2peg9Ss4fDOa+ Dg64flX8njEmxjuI55jifk47F17yyX02asGBzVkFYsmZG/3ARU9D+J6R/S/v bJJzhKU0llcl31DsKtKHcr8o//e08b1q9h1c8xgWyxvD97di9q6Zq1ve3NTg rAEccN1UtJ+4OYGDpVVrGN/78nWPXPI4zwB2a9n779SkNnPHuBjTMsy/7Del ryR9eHz3LiKetyX3Y902m+O24JnbbF826Vhypotv/5p9/6aNgzEP5O5bcz55 8JELho9a1MG3aN7vAG/FHPIugP1X2mMZFjnU2T9yDmT9K2ahYg6QvrT0fdOu N1L2Fs3WkfS/T81j/iftWHJmFM0B1zsF42DsKYODcQ9yluG14BkZY6Jn8INq 9sFNDeYU7L8zEWmfI2ZP+krOlCrmXfnz4jxOMWnFHJY2fkjNvpmKfUv2aoo5 lHHzPpnRb37JeQWvN7A79ekp/QPFHqG49wrmgCup+MNq5lpcfR4u/Q7pibxz 4SWfXPLWSJoDe8mMY8m5s2wOuOjpSPgVn8zbd0/RY7m+aJzejlLMh4pdKmN8 VOTwrsc7H++lYPj+1NhHRx04iaMGY4UDrpea7SfunsDBMqp1tLC75Fsicsmj B7C7y973Z46Z63uLHhdc9Dwm6jDeYxg73yPi+Vjcx4aN/kHMD7HkcA3Ajon5 OoG+xLlU3jgY8dSlJvu/9NK72f3ADe8yGePH1+yDg/+ugz1NMHz0w1iODvsz xX3Ie7/435ReEf5RwfiJNfvAwVZVzEnhXzrv5yLPV569YA8UHZOXvKXoPXo4 4Fo+Y264ukuv1hx3TNq58JJPv/w3KPRM/8wFGLHkwFsLjB6+VOzHyl8n6X8P n38Ln3/f/n7FPVz0uNAbNdtI7OXUQxfXUDzLBE+9Zi6wT2WvmbROHPY3+oyV /oliLoBPvpWUe7L0h3jvylhiP1a0jqS3+xT7hfLXDv2Umu3PxHU67weKmy/7 NGoJu18xD+izoeJPrdleLm+JjY94YjdOujf6Wi9pDnw9M65DvWXzrkO95fOW 1OSZcHvRNvq4mu3FMpbjIodxUyMl/GfJd/RZXfFn1GyvnnFPZ/K9qbxfhX0R vZ0l7EH5VlDdc2r25TPGHir77AQYPnLOjPHRJz1+Hr2dHf4V886Fl3yws2PM 42MuGTsSm3yuFdeMsxtr8jwueo/yOcnzhH9ZMD6hZh84WE51z4061GWsjJnx g+3W7P455/FL6HDAdVza3HDl1M/5NcdxhoRceMmnN/rirAXjZv647sSSA+8c 6V8VvCYvrNleU5zfC3tNei/eV4U/ovyV8/YTR04T7w7NPldwUc32yWlLbHxX 1LxXzhkJOAY3+7xBi7CJ8v0h+0XpXxe8homh3uDAL6nZR/wfkUse9qlp+4lb Sz0/qty9mr0v/61yLpfvW9mz5b+MdSbsMcXMLnsf/NKa7VTeEhsf8cSunzTn pJp54cCXzhjD1yMfdRSfzltSc13lvlS0jT65ZnvtjOXkyGGNsb5Yz8zTn9E/ +10/FrzntVD6d9I34jd+9EgtJDbnDh6X/kTZ5wSuqtnORAx+xguGj7gpki/z DMmY/+qaayCx1xd+Tc3rIJu3xGZNkIfdK3rmGtM3+JTIub7mMwKcMbhO+qvS 18v4PMG1shc0uw/OM9Dz1OiLWkhsfMSSw5kHOH7g+zlpbEGMizp/Bw8x1CMO nD7wPVn2+Qb2+m+o2V5FtV6peY+MvTAwfMSB/VHwftZNfL/I3lj9P6WY7i3d ujUnjeFj/xN8Ws0+cDD2dsHwrapaOwv7SZxTxPm29CObfX2f55msuOVajM+o 2fe08EWFtSSN4WtSDzfX7FtNnEvIn9RnE8UsJTlf/JtKf1+xfYret72l5rhN M5bY5Ixi/hTzqXq4tWb7Us3D9Jp7nZQ2ho84alKbnuC/reYaSOxNeLbX3Mfm GUtsemrnfajofWq4qcFczKzZd1naEps49o1/Lnjv+B5hY3iWpI3fWbMPDN8v BWP42Pv+WLKj6Nxn1PMd8h2l2LuCm96eFX539ArGHjm9wQnf5wnj5OAjnljm lv3g3wreU55Vc72COD+VPKbZuc/x/a/4zfheVswu8l2ZNn5vzT56oy/mHwxf ju/imrm2zJibGowHDrh+LdhPHPXAwdizZh2xnvJ5j5saPfPGWF+bq58Hax4D e+VIbMbzHPeNuHZW3RcU/7DsFZTzedH74vA/VLO9dcYSGx/xxG4h/qzkU8Iz LebAtwbfHTxrhbXxnOd9R3ltGcvfC+7tG+nLxrw9WrO9Q8YSGx/x5JPzWM28 a4r/O+ErRg+fFW2jz+ZZK713xhJ7+Rb3l9ZnS8U8Hv3uGDHLx1yB4SOOOtRj DPA/UXMNJPZWyn0yMHiQ2PSUjXrUurHm5zvnOpgnfDtljOHjuf+sZE/hReFf cO/xXJVcTdgq+mwlnmdqttszltj4iCVnm4w5fuJ6KT4n/fng5TrPL3o9Y1OP OHDWAT7i8ZFLHnZH9EMvBeGrC/uFWryfS3+JtSR7Dekv1uyH6+eoNSe4GRcS ++eIJ3ab4HyhZl448O2aMYavlHEd6u2SsaTmtklz/Rq1Xg5u4pHY+LjvuZ9X z/s5z3cAz/ql6prHku7JjOP+jGfpV9JfrfnMxGu8byh3rbwxfNtljOFbWb28 HnXo7Q2+9+VbO28MH7zEE8sczhW2nvR+Gcu5MTby/mYtMRbpGwjbIWkcXnxv Sq4vvH/GEntdyb/k6xHPq7drtjsV87XkW3zHF60juR+pS03mkFhyyP9H+qpx z77D2uR7JWpRZ/uksQUFr+13a84ZkDFODj4wfHC9V/N41tGcfC79dcYmvZvm fh698jcYYa+WfXbi/ZrtdfOW2PiI/yvqwgcvcwQHvoHqYS/VXaTkMwMfMGf8 lslbbqTY3srt1WIb/cOa7UEZyw8jhzljvrYX/lHNvLfo/n1NdZu5f5W7WMnz wpx8HD1SC4l9arPne2HB8/lJXAeuHTH4GS/Yf76C61CPMcD/aVxvJPYQ5X5W cx/r5y2x6Yl5nVv2OZCXtLZ3aOvW7dC8ceYd3xeSCfEMzVhi/8O6V/6/kjuz /mu2h2WMfSm7NfxIYsCwN8w79quwqXFWs3v4Wti+fH+njX9Tsw9siZLPKnwT fcEDTg6+N4VtLt4+qvVTzfbGiknK9y3Xu83nWjZpca3vhb2hmI3ylticQUFH cs7ku5pzOJcCDxzcX1uJo7v0DtY27wjyDc8Y/6FmHzXJ2TtjDN8BGceSs3zJ OrI96TXE+mPN0TtjYDx/SL7DGlKf86W/Jb2X9G0YB9ddtRbVZ8WS1xgYvgMz jiXn7bIxYndRzC815zSJZ1Hl/Ro2OhKe34Rtq5yDMsbIoQZYU4ufOf/lCRsc a+OfWLfUpSbz83vUpxYSe6WSuRaLWn8GNz0zVsb8btk6kjMn1KUnahNLDvnb y148xrWgZr0lalGHHsAYPzF/1ZxzSMb4gpgvntM8vzlHh/+v4Ppb8lDeY7QG FkZf8L/Hc0af3ZLG8F3UbPyfmn3gYPQPhq+V93zxJ8TdV7lJyVVKXrcf846k +/CTsvFudfuWKdkmBgx9E/F0r9s3QmPpw3cF7wNJ5ywR8fPE9UHZZ0IWqTtu VMRjk0Ovq5Y8lkXrtuH/t+Zej8wYw7dq9NM9+oB/sbprILE3Ve7i0Tu5SGx6 WrLNnIwdSQ3mIlG3b7O8JTb+MZr7niWfJ1m67vMpnGMBX6JuHxi+9hZj+J5S zIdln3vh3EiR30FRY8nol1p8n/O9vlSbsSuaPVdwwocOTg6+/+IVWxJnp/zL SN9d+jJ119tcnB+x9uUrC+8rubRiBkhfTjE55Y/JGF+2bh+9LRnrAQzfCYpZ vm6uLfLmpgbjgQOutUv2E0c9cLDOpNcR66mQ97ipMTpjjPXFuY4V6x7DSRlL bMaTl/yCZ0besSvL/lRyWfnWLXksK9Vtt+UtsfER/2nwfya5Wt1nPVaOdU18 P9VaTjn9FdND+Fpcw4zlsv+bK+a1xTGpuu0t85bY+IjvEX2k6+atZHxupdzi HtbhGSv/rryrK6bGe17aEnu9kvu9odnx2RgrtYjBz946GD7iqJOOnuBfpe4a SOwT1cOqdffB+SUkNj0xJ8wHZ1d4rvQo+ZwV84Rvq7xxnjv4csI/F7618MG8 b8teQbU2kK+Jdxjeh+u2axlLbHzEknNyxhwDpO+h+L0k15BvxTZf5y/LPh9C DPWIA2cd4COe2H5J52GfmjE3vQxmPfDcLVlfmXlR3CD5e7Em6/bD9VXUWiu4 t81bYuMjfqX/j3PNunnhwDc2YwwfudSh3nZ5S2oOUu7QlrClr1u3fVrGct3I Gad5bi35TMJ6ddvvpC2x8XEGZUiLe6a/9YXfruu3gWSz/KdkjOGjBzB8PcS/ Yd35nMnZWPp+4jk7YwwfvMQTy7NiI2Ffi2f7vCU2Z2rISylmmGIOl76q9P2S xuHF10tyU3GNy1hit/HuI57vys5trtvuLf5v+E6WPazFOnJI0nWpyZkZYskh P6MaW5W8flqEHaD4CVGLOnsljaUVt4/01rpzdswbJwcfGD64NirZhnOTuu1G xr4tZGflG6ncgfrsqZhN67bPzVhi46O/rUse4yptrkcPm0Xv9PC95A9lnyFB 37xuGz9x5FM3G/3gJ26nvHvBx3iZM+ZrB+GFuuvtnDfXVrIf0NxdwN9mpG+r nINaHEM/bXXb52cs2yKfeGKXi/4LMb9w4Pss7bnZJOZ0q+j9f3Wpybh+5L1R n32lb1233SdviY1vm7rX0CUZS2zW02pcq5LXwLZ12+3K3VzYdmEfofjh+gxN GsN3ZsY+csgHw4Zn+7pzJmZcewfZO5WsI+mzt7D5sot5x5JDDbCfyz5TtEP0 Tj9g7bKf0Jh35vmoWnsrZseoz7iQ2D3lGyWu1eN+2blu+9KMsZ1iLtCRxFCX nqhDLDn4salJP32EXc7fONKu1TPGC9an5HMI7cFRygdet6+f5G6SV6uHYt1j mCT9RJ7J4hmR9NmaI1tcq0Mxv/A+kQ9Z97kbdCTnWEp153DOB4lN/vH8Zhfn wYrZVVhJtSZnjO9St+9X8RzNb5OkMXzXZBxLzu4l68iRSffOGNZsc++MgWvw G+/2ZZ/l2L1ue9e8x9W37rGRUy65HzB812YcSw75u9Xd0y7KLUed3fL2dcr+ I+r8EbV+jRzG8B9/3TXoc80Ye+f/uPO+5lxPrstaksfxG0cx3Tq1/uo+c7CH 5HWaxz80nye1OI4Y9AF123z6151PbGfJ+/jo5GP31WdP6Wu3ud8Xm90zHHBN zRgfWLePeGKHJ52HPUUxB/L9Jf3WjM/LnNBiHvRBddt/ln0OhzMnQ4QtkF3O W2L/VbaOZK98cN05ffOuTx+7S6+Lax31cCjfocLXld4Z+F51+6hJbc78gOG7 MeNYcvYoWUfuL57RLbbR967bvjxjuXfU+Fv1x8o+XDHD6t5vZ78eiV0suXf2 8el/nxgTvY2oO79f3hg+4oZLni7O28QzSPl763NE0th6qnmU9H3r9k3PGCcH Hxg+cpgn5uu/c05l16PXf6T/W/bZlQ14xpfMuZ/8C4X3z1tiE3uGctZX3IGK 2b9ue2bGMf8EDxg+4hg74+Y8A/wH1F0DiT1A/CODGx2JTU+slw1ijOgHRs6G +pzGb0DhB9Vt75G3xMZ3m+oOL3mf/ZC67UXV55nyHRw56Eh4wLDvyDiWHPKH 8R3f5mfLodEXtcAPq9sH9nazxw6G7/aMcXLwjeB9RrGHsJbqtu/K+NzP4bLH tfj+5d7lPMyRwrrL3jNvib1Ip3Uk5yK418kZmDcPHPQwUNwbq9Zh0o+qu+6g vPFRdfuoSQ5nk8Dw3ZRxLDmNFutIej5A/orwljb3Pjp4T5A8XzH3K/fous+J rJRxj2PqPhuyn+KbFDs6aQwf/RBLzvgWY8QyrmPqzrk74zMgx8o+u8U6kpjj hC2qnMF5x5JDDTDOWnCWgzxyOHfRP555u0ddanK+5XjhiylnSN4Se/FOj/Mg 8R6tmBNj3HvlPVbG3NxmHXlk0nXpidrEkkM+84YNz0nBvVfUQh+TtEyEzhyT MytjnBx8vJvzzs47fKv4JrR4jOjVuu2a5OP8JlTuBbxTNnt/HwwfseD1un3g YPCA4Xsg43oHl9xPUvoSnT5TcZyw85ivFuNddfsOFL5Jm597YPj21hjH1u27 j3ds+c9rMSc5PzSb80n1cGjJ+/4n1x03LG+JTc5FLbbJPaVu+yFxNmJuhuaN nRL51KQ2PcF/at01kNirKPe06J1aSGx6+lefzZT3UHdzU4O5OL1u34YZS2zi llTMJNU+Vr2N5ztcsU9mjJ9Rtw8M3xtFY/j2Ud2r5duce4j7XTHj5JurmDMl r5DvKfF0kzxL9piSscm8EyXNCR/77+Dk4COe2CbFLN3pGvCfXbf+rDjfUd4W qtsq/K2iryv77xMUs5RyhueNn1O3j97oa4WEMXy9xHNu3VzNGXNTg/HAAdci LfYTt0XgYJwrOC+46YdxU+OxjDHWF/2cX/cY9s1bnh9juEryZHriPVDyQu4r 4e+qVqHNZw8uqNtuyVhi4yOeWMZ+kvTLhW/VZg58z/EeK5loMc9FwpdR7RF5 y2uEn6jc99hTavOZhIvrtlszltj4iCefnEvq5n1BMcsJv05Yhfu95PMK8ExU zLLy7Ze3xL62xecStmzzHvqkum3OORCD/6SkMXzEUYd6jAH+S+uugcR+UbmX 1d3H/nlLbHpiTpgPemPdsZ42ynie8M2Rfr30FbnvlXul9Krwl4R3SU6WPVU5 y8s/jWeSeK6o2z4gb4mNj1hyXsuYY2ueZYpfgXUr34wWX+frY66IoR5x4KwD fMQTW086D3tk3txTY37G8X4U/ZwBrrhtxDNW+rV1YzPlv12fLsVMqdt+N2OJ jY94YuvBeU3dvHDgez1jDN87GdchHh4kNck9J+pR67q67Q8zltdFbeb4HuYg aZ15x67Gs5zn3pk8k3neKeYG4edK/zhjiX2H4u/T516ej4q5sW77k4z3nm8s eT8aDB9x0yUflPw8Y/6b6q6BxH5P+DS+L6R/lrHEntXivAf0OTVpfFb0/2Dw 4rtV8sKS+W+R/oiwr6RPEDYjfBeXnAPPzXXbX2Ysb47+iCXno4w5HtbntKQx OBgv8pLQiaEeceD0ge/ykn3k3la3/b047697jjgPAHZb9Hq75OuS/whfSdfl LtmzW8w1PWrNDG7GhcTGx/mDbdt83mCq7MfjeXJH3T7OOVxa8lkHzj+g31m3 jZ848qlLzdOT9hP3bca94Dso7x6f0GecYu6uu97v3L+S99Z91uEyrpH0GyRf lj2H7xvF31O3vSBjiT0n4okdF/3DyxjgwPddxnWZI2pTh3p/Rl1qMvZXJF/S Zzxrr277r4wlNj72Ldm/ZL+T68D1YL1+KPsZ6W+3+EzEjJL39B8IPzxIbM5V zG0xL7UerNv+l+8Fvp/0mZA09mD08QjfcZKLZM3/UN01kNic03hY+i3Cumct sV9rcd6bfBcmjb8W379vBS++x+s+18BZiNnS3xeWFM80xT8q+9aS63FegXE9 FvXpGYmNj1hyFmbMMTfGCAYH15E6d5a810nM7Bg/OH3gu73k/uj5ibrtxbKe Q+aP5wPYEzEvPFvuiOftbdKfFr5dm2vOjLpPxTiYQyQ2PuKJZc6Z/yfrvgZw 4FtU8XeX7COG68z1XipryTU/R/jKPBsVd670Z+u2D85bYuODG57Flftc3bxL Sr9Pcvs2r+Eeik91ev/6ecV8pPils5bYH7S471kxrhdiHItHDP7zksbwEUed 56I2/HPqroHEPkR9vlh3H8tGP9j0xPmFT5R3ftJn6vlNxO8pcM434HtZ8jO+ Y5W7NOu85D1T9FfqtpHY+yr31ajPuYjPIh8+sC1aPHZ04rDvZ91K7807B88e +Y7ieVL3Xj9nAJDYn7ZY/zR40p0+J9AR+ty67Z3E9Zb0xxT7DfeI9B2FZRST 1edCxb9Rt3143hIbH/HEXpx0b/TFMxYOfKms61DvsLzrUO+IvCU1uUZ3lWyj v123vUTW8u3IYdzUWE74t+Ke1+I19k7ddjrrnt7lma+4VTs9P+w7vxfXn/Xz Qd2+UXljO7d5/YB9EHP6boyPPunxo1hL84SvIvzIyIWXfLB5Meb3Yy4ZO/L9 WLvwcs168+wX3ifq/ij7Y+HtbcY/rNsHDnaJYj4KP9easTLmeeH/vsUxae7l kveL4YArmzU3XKtK/6TuuMMyzoX3++iNvpgrxs38XRic5MDbU/jq+kwS/lnd 9mj1s0an95TZV/1CeInf1Hn7iSPnV/mLwi9TzOd12/msJTa+HyTzqnNMxhzP S79A8b8p5iv5vuI5XbIPHEk94sC/jNr/xetzUdJ52Gtk7Sdu5ax7eqHkseyi nO+iJ7i+ld4hLKeYfKf3u7+p2x6Tt8TGR3xH9APn13Xzfht9McavYw6YE+pQ 75i8JTWZkz9abKN/X7e9Vtby+8hZJe437jXm6cWS90zXFr5Op/dq2Z//vcU9 /xg9UguJvYt8cxSza9yzP9Vtr5l1zC6RC4aPuF8k/xW+Ydb88+uugcTmLMHP da+DY2M9YLMmyNtNHFdFz1xj+gaHF98fkt1bu3XbWPy/S19L+ceL52XF/cp3 Iv0JW6Ccy1kPddvH5S2x8RFLzjpZc6wdcwIGx+Sk6+yumpcmHUM94sDpA19f fd4suec/67ZPYC+4ofcdxZ6eN4aPOLBN9blZ8X8Je13YBuqhrJh/1NeVSWN/ BRf433X7wPvG/IDhO1H8i7RaJ3dDxbxV8h7lhqqznPrYp8X4P3X7uP57tHi8 YPjqui7/1u2D8w1hneKcqJglxd9P+lTp63Z6r5098W4Nx22UtcQmh/3+bq3m 796wzb7/wrp77ZU1ho84alKbnuBfpOEaSOyTOBvWcB+bZS2x6ekd8XygzzVJ cy+MeVmsYV9z1hKbuPXFt0Gn94iXbFiv5Y0nwuaDb8PA8FUVM0/5A2Ie1hO2 uHyLqWZScmnJLbL2LyH7o5Kx/rKvSJpzw6i7dOTgI55YOD+UHNjmdbtUw/U2 Fedmkh+XvNe5B/zKv1b6MopZRnoha3zphn30Rl9XJ43hq/O3iIa5zsiYmxrU h2OZiMNPHPXAwai1XMwHPIybGpW8MdYX41q+4TFsnrXEZjyrS+4leariN1L8 ig2fF2CvfqlW567QsM2ZBCQ2PuKJZT89LXsV4YlWc+BriHNj1rmw6xSzkvCV pW+XtdxTdW8S/qk4v9LneukrN2xvmbXExkc8+eT0aJi3i/N18g1u83wivylZ Tymml2LG5i2xm5DiGaS4afTcsL1D1jH46QcMH3HUoR5jgD/TcA0k9snizzbc R2vWMhs+5oT5mCLOBfF84vnDPOHrnTW2IO7tnsFNP/SyquxvuU+kt3R6H3y1 hu1T8pbYLRFLDv3AMSTmJKs6ubjGfBgbYyeGekMCXz3mgvi9Yn7Iw94p+qEX 5md7ye9L3oNm32ktxb3WSzl99ByXPrTNPR3S4p7XiB5ZY0hsfMQT+0pw5hvm hQPfwh7G8F2YcR3qsSeIpCZ7Xq2d3iNk33Dthu3T8pbY+Hi289zn+Z7XmPbm t5Ti92n4b7n8HRh83YZ960kO4/dL3vLXktfw5yXb6MSSs0vWGDnErd9w3NbC N5C+hmJ2lb457x0t3h+nj99K/q7ZMPqiFrHkrNBqDB9xG/F8kH2GYpqkr8X3 H+tW+nDVPjNvP3HUoY99os+Noy/6RGLj+zx6pXc4GAtzAg8c9Emd4TFXyF4x ZvCmqN0hnj9K3q9sbti+IuOxMI4bksbwEdcSPdJzq/Tfhe2W9dmBTWSv2Wod SQ/EksPcEUvOvqq7ecN7x+wpg4PdqPgtOn0+gT39H1inwqcnzQ0v5xbAN2vY B8cqrV4/YPh2zvp3HL/h+J1Y6PT+NfvdC+Rv4znZZnyLhn3gYLcRzzNTvrM1 xq14bsk3LWNsS31uV8z+il2n1ZxwwDU+b264yuphy4bjzsk7F17y4QMnl/6Z i//G0OYceInZKvK35vtT2ABxLtKhuRE2Q7nb8iwlNms/cV0trvFPyX1uEzXp AYmNr4/kQcxP3hwHSL9T8VspZnu+h4T9rbjuqjcz6RjqEQe+XcM+4omlFnnY E/L2E9dPvW1N3U7vyyN3km9byQPFtaP0RcXTxHqRfYtiejdsD85aYuMjnlj6 hHOHhvngwHde3hi+c/Ougx8cuW300K3D8fDs3LA9MGu5c3Bt2vBaPCvvedpI fdyR9Dwzx+wdw3dyiznbebbLNyRr2R7zO1hzsFiH90CLDdszMo7BDycYPuJ2 afg8AucZ4C81XKMUc8b16mh4HQyK9YDNmiCvV6v7gZtrTN/g8OLryzNZPBeK Z3fmVb57VWs7Ybs2fD4iIc5D2nxNd2vYHpq1xMZHLDkX5M3R2ur9azA4OJNA nXNbvLdLDPWIA6cPfG28Z+lzj2LKDdv7ZT33XIPjIwYfcZfIXlZ9HKP4fsKW kT6CNcY7oexD26wj7+X6srZZl62OJedw9TJQcpTk7IxxMPbvjkB2eL9yB/Uw scW14IZ3ZNb4Hg374DiszfuMYPgu0pwMaJjr0Yz5Lm0x52W849NDm/E9G/aB gx2nmEHCeovnYvF08m6muKeSxuiBca0k7KiS68IBF73BDdfjqjuk4biDss4d FGPYkXtB8r6k+2cuGAOx5MA7suHaJ2U9jgFRg9y9Gs7vIfvyFvc8nHcQ2Ydm je/dsA8MH3uwYPgOUczO3L/ieEC5o8U/lPlSD8Mkd2Le8/5u5zv+yDZj2yv+ /qQ54WOfF5wcfMQTy94uPdLrJeLZt+F6k6T3keyt2AcVc4ziR7V5v3U/xaTF e1jW+IiGffRGX9QCw/e05nb/hrkuzZubGowHDriubLGfuN6Bg9Eb65F1eWTW 46bGExljrNNZSf/W4TdELdYA14N10Myakf2YYg4UtrzsA8SzKteZe7LV+nZx fXtKH8X3fodjyVmX6yS5uuTRWeNgrKt25fXR52HpKwtbrcNzDje8o7LGD2nY B8eOMZ9g+A5WzMENcx0lfU1hpbjWOelHyFdsNX5Ywz7wYlzfw4VluCeV29nw Pf9IxthuinlIMbtIdujzSNIccB2XNTdcY6Qf2XDcMdngazifOWE+6Gf1mAvG QCw58I5peK5PyXocjId52UjYgLgHuQ4D41oczXe0fLWs8dEN+45qOKeRNYav S/rGwrbs8DzjJw5eOODaOK71mMgB3zjij+G9QNg5WUvsIa3WkbOTvuaMc3TU OrbheidItkieKvw46UMVfxq/ZYQdz/O5wzry0aTnnmvAM5dYcvZqNQdcfVuN gz2eNN43rnWvDu9JsB8BN7wnZI2f2LDv2BgrcwKGb6z0G0bqN+VI/xuDe/O7 r9X9oJ/UsL1Zh+tRi/2MivBNZFejR8YIho/9ETB8R3FfNZx/hvAG61H36uV5 Y7WYI+KJZVx11rNiLstbYu/T6rxSp/9OezjvLK1+VoPDi6+LdwnxnZW1xB4t 3v0Ue7Tkk4o/uWH77KyxsbL3DT+SGOpS84mkY8nBT40vW9zDKcIe1nhXilqj o3+wtg7/PfbU6Gty3jg5+MDwwbUpa6/NtU5r2B4nzm0lz+Q5yPes9GFxD57e sH1u1hIbXwe/RSSfVsyxyjlI+jPSxzXsu4K/wfLu0Rl/B+Z3UsM2fuLIp+4x 0Q9+4q7Muxd852c9Z8wH4zqr4XpX5c11juz5GtczGu/ZfF/wDGt1DP2Mb9i+ MGs5PvKJJ/bS6B9exgAHvp5Zzw1zxHydE73/ry41GVcTz6c235sTGrZPzlpi 4zu34TV0SdYSm/W0G++4intWuec1bF+d9/18vuzjldu7w/c//OfHvc7zgVhy doznDbE8Qy5oOOdifruxfnkHaLWOfE4xF3F/y56Sd+wF8dwBK3f6b7nkkXNN 3tilsv/iu0/xJ7X5ul/M953sSVlL7BPkO0pcJ0o+r5iJDduXZY1dwvd++JHE UJeeqEMsOfixqUk/k4S9ouuybtQ6IcYL1t7hvxleGhzX5o2Tg28qcyt5tXIv a3gMl9IPz402zz9/wx7V6lqTFdMpnql5S2z+po6O5O/Jlzecw9/tkdjkH69P RZwvK+ZK7kfVmpw1fkXDvn7iOVr2C0lj+K7JOpac3TusI+ck3TtjqLW5d8bA NegvngGd/lvu1Q3b1+c9rmsaHhs55Q73A4bv2qxjySH/qoZ7uk65U6LODXn7 rpW9R9TZI2r1ixzGQCw51KDPWoz92uCG55K4nlyXOu/CynuJZ778j8g3TvYN ku9qHlvU20mtjiMG/fqGbT7XNZxPbGeH/46HTj52X31ukt5oc7+Lt7pnOOCa mjV+Y8M+4onlviAPe4pi7m34b5z8XZS/g58QPOjTGrYHdvpv6/wteoawsdKn Zy2xu9qsI99QzPSGc27Ku/5/fUjvr5qD9HlNMbfwXiB8WuA3N+yjJrX5ez4Y vuuzjiWn2mod+Sq/NaQP7vTfb29t2J6et8TGd4r66lL8XMXcJuwU6TdnLbHH yn+yPkM63P/tDdszOHfdcP7NeWP4iJsZ3MTs2WEfuWBDop87GvZNyxonBx/Y HVGDeWK+mF/qUI9eB/OO0+Z7h5zlW815l/ynSr8la3lX9PeZ5myvDv+96+6G 7a0iBj9jB8NHHGNn3C8G/z0N17gnemS8sxruY0bWEpueWC8nRz/orCHsvTr9 t3L+Tntfw/YteUtsfD/ym6jDf3d9oGG7j/jP4N1Z9mlt1pFvJY1hz8w6lhzy xws7XTHvKOZBYUO53nnjDzXsA1u11X9/A8N3V9Y4Ofj24B2qzWvp8YbtG/mb Ku+qskd0+P7l3n1TMY/yXiD79rwl9j6d1pH0w71Ozm1588DBWM4RxzjVelf6 7Ibrzswbf6xhHzXJuT1rDN89WceSs3/0i6TnhZqTOcLPj7E8HrzP8b4gX1G5 T0ifIP+srHt8UvYBih3O775O/x34yRgH/RBLTr3VGLGM66mGc+7Iu/7Tss+M Xs6MOXxG2Fms47xjyaEGGGNh7E/HOBjXdfHMuzHqUvN1xTwr/Dzp92Utnw1e uHq2uufng5tajJUxH9hhHcnf4sh5JuaRWHLIZ96YM/5e+oKwgxR/f9Q6K64R 2Pg2X3fmmJz+WePk4OPdnHd2zpCMEP/6rf57I/qLDdsvSR7Me37Wf3O8IGLA 8J3dZvzlhn3gYG8njeHjb6T7dfrvmPzdbyK/nxTzHu918n+suEmtxl9t2Der l35PdvjvQmD4HhXPaw37Puqh6yDOCX009u66zp2OgZO8JSL39Ybj7slbYpOz qWInqM5dvFc0bA8T/ysN93p33hi+CdEPteHm80bDNd4IjN7ebLiPWXnLN6Pv JZljcdydNDc1mIu3Gvbtk7XEJm4k73Lyv6/491kXPIPyxt9p2AeG7/JWY/ju zfu34vlt/rvZKOlvy7cZa1dyadn78ltY8j3ZW7QaO6/NfwOEE755SePk4COe WPo/mPcK6R9Jn9dwPf5meCRro809H93hvxvC+SHrUzn3541/0LCP3uiL+QfD 96R4PmqY67GsuanBeOCAa3Kr/cRdEDjYB0mvI9bTM1mPmxqzs8Ymxdr4pOEx PJC3xGY8P/H9oLg3+W0u+Znsy/gNKv3CNs/Jpw3bj2ctsfERf1lcry7p3wm/ odUc+J5V/AzZV+rzoWI+F34Iz/G85dXCPxZ+TIf/DsXfoL5o2H46a4mNj3jy yfmyYd65vI/xXtdhfmpfr8+nfMc1/Lcr/t6FxD5Zssr7aszb1w3bL0UMfn5H g+EjbkbUYwzwf9NwjW9irC8r99uG+5gT/WDTE3NyQ/TDumM9PZH1POF7Tfof 0u9kDvmu5L1G+OvSpwv7Xva0VnONjTH+ENzURf4QOcSSQy72RW2OP5Tfg/Ld 0urrTMxnScdQjzjwnyKfeGI/TzoP+6G8fdMi9zTFX6y8L/geF/Ybz3lhhyn2 V+kzhZ0h+9bg+aVh+92sJTY+4on9Mjh/bpgXDnwP543heyvrOtT7PGtJze+U W2etdvje/L1h+5WsJTY+5vhGfb5OWmfesXne89y/S7UO53kp7CvF/Nnw71d+ FyOxL+H7sMO/k1knCxq2P1TMFfzujx7A8BG3kDHJ/jJr/r8aroHEfkR1/+ZZ S27WEntim/NmxT0CDvZN0ji8+Lp36bnIe4Z4ukmfyNrlb5Li/kcxD/PckD6q 07/X/m3YfixviT0qYsl5NG+OSVELDI7vk67zqPQfko6hHnHg9IFvdqttYhbp sv0tz7Quz9FTeWOLRN+LSnaI6wqeLaqV7PJvTnoa0+qeF+uyzRiR2Pgm8fxp 8/p5Svbl0n+SvniXfd9k/Tv1seBBT3TZxk8c+dSlJr8N8RPHb156wfd43j1e 2uF37yW6XO9H/m4m/9L0Izlan6Wk95NvPcakzyeKX7LLdiVriY2PeGJfif7h ZQxw4Hsi6jJH1KYO9Z7MW1KT8T6j3MnKmy99mS7b87OW2Pj4+yV/xzw91irX g/XKe+5q0ue0mu/qDnMu1+X7hnsNuVxcv2dbfe9x3y3fZfvnrH8HPtfq34lg +IhbKerQD/wrdLnGCjFnrIcVpR8j/em8Jfaxnc67ss33FDgY/ODw4ktH7DPK TUkfwDNXta6Sb+WYi+dbbTM/Pbps/5q1xP5fLBIeOKZ0+J32P6zVudSpxRiJ oR5x4PSB7xrZV7f5fsl02f4l5vCKGAsYPuL+e8bE33mmSl+VHL5bO/37nN+n q3TZfjZviY2PeGJ/THr+s12+BnDg+1111+e7Ap5FfZ253vyeQnLN+Y1zfKd/ Z/F7oWeX7efyltj44KYGf0NYvcu8Vf6+xHeOPr/wN4R4zvKMzSnmVel/Zy2x +/MdqpibeNYrJt9le0HE4Od+AcNHHHWoxxjgX6PLNZDY/7DX0+U+/o1+sF+P 74cZ8R2BvlaX7f8Hexynvg== "]]], Lighting->{{"Ambient", RGBColor[0.30100577, 0.224146685, 0.090484535]}, {"Directional", RGBColor[0.2642166, 0.1833123, 0.04261530000000001], ImageScaled[{0, 2, 2}]}, {"Directional", RGBColor[0.2642166, 0.1833123, 0.04261530000000001], ImageScaled[{2, 2, 2}]}, {"Directional", RGBColor[0.2642166, 0.1833123, 0.04261530000000001], ImageScaled[{2, 0, 2}]}}]}, {}, {}, {}, {}}], {}}}, ImageSize->{360., 360.}, ImageSizeRaw->Automatic, ViewAngle->0.4501451452638718, ViewPoint->{2.445658541815866, 0.289239885781375, 2.3205806569296987`}, ViewVertical->{-0.06617830858687625, 0.4645335699226347, 0.8830792681789743}]], "Output", CellLabel-> "(Local-Devel (3)) \ Out[7]=",ExpressionUUID->"38d2c680-4a47-4d63-b7d1-56fba02ef6b0"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ FractionBox[ RowBox[{"Volume", "[", RowBox[{"ImplicitRegion", "[", RowBox[{"reg", ",", RowBox[{"{", RowBox[{"x", ",", "y", ",", "z"}], "}"}]}], "]"}], "]"}], "vol"], "//", "FullSimplify"}]], "Input", CellLabel-> "(Local-Devel (3)) \ In[8]:=",ExpressionUUID->"df46d22c-f361-4d0c-9596-0e8d73acc34c"], Cell[BoxData[ FractionBox["1", "12"]], "Output", CellLabel-> "(Local-Devel (3)) \ Out[8]=",ExpressionUUID->"7b0aaa9c-edf9-4670-9907-aedfbdabff22"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"cad", "=", RowBox[{"CylindricalDecomposition", "[", RowBox[{"reg", ",", RowBox[{"{", RowBox[{"x", ",", "y", ",", "z"}], "}"}], ",", "\"\\""}], "]"}]}]], "Input", CellLabel-> "(Local-Devel (3)) \ In[9]:=",ExpressionUUID->"593cfa78-77b9-4ef5-8760-a5c352a298b3"], Cell[BoxData[ RowBox[{ InterpretationBox[ RowBox[{ TagBox["CylindricalDecompositionFunction", "SummaryHead"], "[", DynamicModuleBox[{Typeset`open$$ = False, Typeset`embedState$$ = "Ready"}, TemplateBox[{ PaneSelectorBox[{False -> GridBox[{{ PaneBox[ ButtonBox[ DynamicBox[ FEPrivate`FrontEndResource["FEBitmaps", "SummaryBoxOpener"]], ButtonFunction :> (Typeset`open$$ = True), Appearance -> None, BaseStyle -> {}, Evaluator -> Automatic, Method -> "Preemptive"], Alignment -> {Center, Center}, ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], GraphicsBox[{{ GrayLevel[0.93], RectangleBox[{-1, -2}, {3.5, 5}]}, { Hue[0.6, 0.7, 0.5], Thickness[0.02], BSplineCurveBox[{{0, 0}, {1, 2}, {2, -1}, {3, 0}}], BSplineCurveBox[{{0, 4}, {1, 3}, {2, 5}, {3, 3.5}}]}, { Thickness[0.01], ArrowBox[{{-1, -1}, {3.5, -1}}], ArrowBox[{{-0.5, -2}, {-0.5, 5}}]}, { Hue[0.6, 0.7, 0.5], Thickness[0.02], LineBox[{{0, -1}, {3, -1}}]}, { Thickness[0.01], Dashing[0.03], LineBox[{{0, -1}, {0, 4}}], LineBox[{{3, -1}, {3, 3.5}}]}}, AspectRatio -> 1, GridLinesStyle -> Directive[ GrayLevel[0.5, 0.4]], PlotRangePadding -> Scaled[0.1], FrameStyle -> Directive[ Thickness[Tiny], GrayLevel[0.7]], Axes -> False, AspectRatio -> 1, ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}], Frame -> True, FrameTicks -> None, FrameStyle -> Directive[ Opacity[0.5], Thickness[Tiny], RGBColor[0.368417, 0.506779, 0.709798]]], GridBox[{{ RowBox[{ TagBox[ "\"Number of variables: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["3", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Number of cells: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["152", "SummaryItem"]}]}}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> { "Columns" -> {{2}}, "Rows" -> {{Automatic}}}, BaseStyle -> { ShowStringCharacters -> False, NumberMarks -> False, PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, BaselinePosition -> {1, 1}], True -> GridBox[{{ PaneBox[ ButtonBox[ DynamicBox[ FEPrivate`FrontEndResource["FEBitmaps", "SummaryBoxCloser"]], ButtonFunction :> (Typeset`open$$ = False), Appearance -> None, BaseStyle -> {}, Evaluator -> Automatic, Method -> "Preemptive"], Alignment -> {Center, Center}, ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], GraphicsBox[{{ GrayLevel[0.93], RectangleBox[{-1, -2}, {3.5, 5}]}, { Hue[0.6, 0.7, 0.5], Thickness[0.02], BSplineCurveBox[{{0, 0}, {1, 2}, {2, -1}, {3, 0}}], BSplineCurveBox[{{0, 4}, {1, 3}, {2, 5}, {3, 3.5}}]}, { Thickness[0.01], ArrowBox[{{-1, -1}, {3.5, -1}}], ArrowBox[{{-0.5, -2}, {-0.5, 5}}]}, { Hue[0.6, 0.7, 0.5], Thickness[0.02], LineBox[{{0, -1}, {3, -1}}]}, { Thickness[0.01], Dashing[0.03], LineBox[{{0, -1}, {0, 4}}], LineBox[{{3, -1}, {3, 3.5}}]}}, AspectRatio -> 1, GridLinesStyle -> Directive[ GrayLevel[0.5, 0.4]], PlotRangePadding -> Scaled[0.1], FrameStyle -> Directive[ Thickness[Tiny], GrayLevel[0.7]], Axes -> False, AspectRatio -> 1, ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}], Frame -> True, FrameTicks -> None, FrameStyle -> Directive[ Opacity[0.5], Thickness[Tiny], RGBColor[0.368417, 0.506779, 0.709798]]], GridBox[{{ RowBox[{ TagBox[ "\"Number of variables: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["3", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Number of cells: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["152", "SummaryItem"]}]}, { RowBox[{ TagBox[ "\"Dimension of solution set: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["3", "SummaryItem"]}]}}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> { "Columns" -> {{2}}, "Rows" -> {{Automatic}}}, BaseStyle -> { ShowStringCharacters -> False, NumberMarks -> False, PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, BaselinePosition -> {1, 1}]}, Dynamic[Typeset`open$$], ImageSize -> Automatic]}, "SummaryPanel"], DynamicModuleValues:>{}], "]"}], CylindricalDecompositionFunction[{ Or[ And[ Inequality[0, Less, CylindricalDecompositionFunction["Variable"][1], LessEqual, Rational[1, 48] (18 3^Rational[1, 2] + 6 15^Rational[1, 2] - 3 Root[144 - 84 #^2 + #^4& , 4, 0] - 5^Rational[1, 2] Root[144 - 84 #^2 + #^4& , 4, 0])], Inequality[0, Less, CylindricalDecompositionFunction["Variable"][2], Less, 3^Rational[1, 2] CylindricalDecompositionFunction["Variable"][1]], Inequality[0, Less, CylindricalDecompositionFunction["Variable"][3], LessEqual, Rational[1, 2] 3^Rational[-1, 2] (3 + 5^Rational[1, 2])]], And[ Inequality[ Rational[1, 48] (18 3^Rational[1, 2] + 6 15^Rational[1, 2] - 3 Root[144 - 84 #^2 + #^4& , 4, 0] - 5^Rational[1, 2] Root[144 - 84 #^2 + #^4& , 4, 0]), Less, CylindricalDecompositionFunction["Variable"][1], Less, 3^ Rational[-1, 2]], Or[ And[ Inequality[0, Less, CylindricalDecompositionFunction["Variable"][2], LessEqual, Rational[1, 12] 3^Rational[-1, 2] (18 3^Rational[1, 2] + 6 15^Rational[1, 2] - 3 Root[144 - 84 #^2 + #^4& , 4, 0] - 5^Rational[1, 2] Root[144 - 84 #^2 + #^4& , 4, 0] - 12 CylindricalDecompositionFunction["Variable"][1])], Inequality[0, Less, CylindricalDecompositionFunction["Variable"][3], LessEqual, Rational[1, 2] 3^Rational[-1, 2] (3 + 5^Rational[1, 2])]], And[ Inequality[ Rational[1, 12] 3^Rational[-1, 2] (18 3^Rational[1, 2] + 6 15^Rational[1, 2] - 3 Root[144 - 84 #^2 + #^4& , 4, 0] - 5^Rational[1, 2] Root[144 - 84 #^2 + #^4& , 4, 0] - 12 CylindricalDecompositionFunction["Variable"][1]), Less, CylindricalDecompositionFunction["Variable"][2], Less, 3^Rational[1, 2] CylindricalDecompositionFunction["Variable"][1]], Inequality[0, Less, CylindricalDecompositionFunction["Variable"][3], LessEqual, Root[144 - 84 #^2 + #^4& , 4, 0]^(-1) (9 + 3 5^Rational[1, 2] - 2 3^Rational[1, 2] CylindricalDecompositionFunction["Variable"][1] - 6 CylindricalDecompositionFunction["Variable"][2])]]]], And[ CylindricalDecompositionFunction["Variable"][1] == 3^Rational[-1, 2], Inequality[0, Less, CylindricalDecompositionFunction["Variable"][2], Less, 3^Rational[1, 2] CylindricalDecompositionFunction["Variable"][1]], Inequality[0, Less, CylindricalDecompositionFunction["Variable"][3], LessEqual, Root[144 - 84 #^2 + #^4& , 4, 0]^(-1) (9 + 3 5^Rational[1, 2] - 2 3^Rational[1, 2] CylindricalDecompositionFunction["Variable"][1] - 6 CylindricalDecompositionFunction["Variable"][2])]], And[ Inequality[3^Rational[-1, 2], Less, CylindricalDecompositionFunction["Variable"][1], LessEqual, (9 + 3 5^Rational[1, 2])/(3 3^Rational[1, 2] + 3 15^Rational[1, 2] + Root[144 - 36 #^2 + #^4& , 4, 0])], Or[ And[ Inequality[0, Less, CylindricalDecompositionFunction["Variable"][2], LessEqual, Rational[1, 12] 15^Rational[-1, 2] (30 3^Rational[1, 2] + 18 15^Rational[1, 2] - 9 Root[144 - 84 #^2 + #^4& , 4, 0] - 3 5^Rational[1, 2] Root[144 - 84 #^2 + #^4& , 4, 0] - 12 5^Rational[1, 2] CylindricalDecompositionFunction["Variable"][1] + 4 3^Rational[1, 2] Root[144 - 84 #^2 + #^4& , 4, 0] CylindricalDecompositionFunction["Variable"][1])], Inequality[0, Less, CylindricalDecompositionFunction["Variable"][3], LessEqual, Rational[1, 2] 15^Rational[-1, 2] (9 + 3 5^Rational[1, 2] - 4 3^Rational[1, 2] CylindricalDecompositionFunction["Variable"][1])]], And[ Inequality[ Rational[1, 12] 15^Rational[-1, 2] (30 3^Rational[1, 2] + 18 15^Rational[1, 2] - 9 Root[144 - 84 #^2 + #^4& , 4, 0] - 3 5^Rational[1, 2] Root[144 - 84 #^2 + #^4& , 4, 0] - 12 5^Rational[1, 2] CylindricalDecompositionFunction["Variable"][1] + 4 3^Rational[1, 2] Root[144 - 84 #^2 + #^4& , 4, 0] CylindricalDecompositionFunction["Variable"][1]), Less, CylindricalDecompositionFunction["Variable"][2], Less, 3^Rational[1, 2] CylindricalDecompositionFunction["Variable"][1]], Inequality[0, Less, CylindricalDecompositionFunction["Variable"][3], LessEqual, Root[144 - 84 #^2 + #^4& , 4, 0]^(-1) (9 + 3 5^Rational[1, 2] - 2 3^Rational[1, 2] CylindricalDecompositionFunction["Variable"][1] - 6 CylindricalDecompositionFunction["Variable"][2])]]]], And[ Inequality[(9 + 3 5^Rational[1, 2])/(3 3^Rational[1, 2] + 3 15^Rational[1, 2] + Root[144 - 36 #^2 + #^4& , 4, 0]), Less, CylindricalDecompositionFunction["Variable"][1], LessEqual, (12 + 6 5^Rational[1, 2])/(5 3^Rational[1, 2] + 5 15^Rational[1, 2] + Root[144 - 36 #^2 + #^4& , 4, 0])], Or[ And[ Inequality[0, Less, CylindricalDecompositionFunction["Variable"][2], LessEqual, Rational[1, 12] 15^Rational[-1, 2] (30 3^Rational[1, 2] + 18 15^Rational[1, 2] - 9 Root[144 - 84 #^2 + #^4& , 4, 0] - 3 5^Rational[1, 2] Root[144 - 84 #^2 + #^4& , 4, 0] - 12 5^Rational[1, 2] CylindricalDecompositionFunction["Variable"][1] + 4 3^Rational[1, 2] Root[144 - 84 #^2 + #^4& , 4, 0] CylindricalDecompositionFunction["Variable"][1])], Inequality[0, Less, CylindricalDecompositionFunction["Variable"][3], LessEqual, Rational[1, 2] 15^Rational[-1, 2] (9 + 3 5^Rational[1, 2] - 4 3^Rational[1, 2] CylindricalDecompositionFunction["Variable"][1])]], And[ Inequality[ Rational[1, 12] 15^Rational[-1, 2] (30 3^Rational[1, 2] + 18 15^Rational[1, 2] - 9 Root[144 - 84 #^2 + #^4& , 4, 0] - 3 5^Rational[1, 2] Root[144 - 84 #^2 + #^4& , 4, 0] - 12 5^Rational[1, 2] CylindricalDecompositionFunction["Variable"][1] + 4 3^Rational[1, 2] Root[144 - 84 #^2 + #^4& , 4, 0] CylindricalDecompositionFunction["Variable"][1]), Less, CylindricalDecompositionFunction["Variable"][2], LessEqual, (3 + 3 5^Rational[1, 2])^(-1) (9 + 3 5^Rational[1, 2] - Root[144 - 36 #^2 + #^4& , 4, 0] CylindricalDecompositionFunction["Variable"][1])], Inequality[0, Less, CylindricalDecompositionFunction["Variable"][3], LessEqual, Root[144 - 84 #^2 + #^4& , 4, 0]^(-1) (9 + 3 5^Rational[1, 2] - 2 3^Rational[1, 2] CylindricalDecompositionFunction["Variable"][1] - 6 CylindricalDecompositionFunction["Variable"][2])]], And[ Inequality[(3 + 3 5^Rational[1, 2])^(-1) (9 + 3 5^Rational[1, 2] - Root[144 - 36 #^2 + #^4& , 4, 0] CylindricalDecompositionFunction["Variable"][1]), Less, CylindricalDecompositionFunction["Variable"][2], Less, 3^Rational[1, 2] CylindricalDecompositionFunction["Variable"][1]], Inequality[(-3^Rational[1, 2] + 15^Rational[1, 2])^(-1) (-9 - 3 5^Rational[1, 2] + Root[144 - 36 #^2 + #^4& , 4, 0] CylindricalDecompositionFunction["Variable"][1] + 3 CylindricalDecompositionFunction["Variable"][2] + 3 5^Rational[1, 2] CylindricalDecompositionFunction["Variable"][2]), LessEqual, CylindricalDecompositionFunction["Variable"][3], LessEqual, Root[144 - 84 #^2 + #^4& , 4, 0]^(-1) (9 + 3 5^Rational[1, 2] - 2 3^Rational[1, 2] CylindricalDecompositionFunction["Variable"][1] - 6 CylindricalDecompositionFunction["Variable"][2])]]]], And[ Inequality[(12 + 6 5^Rational[1, 2])/(5 3^Rational[1, 2] + 5 15^Rational[1, 2] + Root[144 - 36 #^2 + #^4& , 4, 0]), Less, CylindricalDecompositionFunction["Variable"][1], Less, (18 + 12 5^Rational[1, 2])/(13 3^Rational[1, 2] + 5 15^Rational[1, 2] + 5^Rational[1, 2] Root[144 - 36 #^2 + #^4& , 4, 0])], Or[ And[ Inequality[0, Less, CylindricalDecompositionFunction["Variable"][2], LessEqual, Rational[1, 12] 15^Rational[-1, 2] (30 3^Rational[1, 2] + 18 15^Rational[1, 2] - 9 Root[144 - 84 #^2 + #^4& , 4, 0] - 3 5^Rational[1, 2] Root[144 - 84 #^2 + #^4& , 4, 0] - 12 5^Rational[1, 2] CylindricalDecompositionFunction["Variable"][1] + 4 3^Rational[1, 2] Root[144 - 84 #^2 + #^4& , 4, 0] CylindricalDecompositionFunction["Variable"][1])], Inequality[0, Less, CylindricalDecompositionFunction["Variable"][3], LessEqual, Rational[1, 2] 15^Rational[-1, 2] (9 + 3 5^Rational[1, 2] - 4 3^Rational[1, 2] CylindricalDecompositionFunction["Variable"][1])]], And[ Inequality[ Rational[1, 12] 15^Rational[-1, 2] (30 3^Rational[1, 2] + 18 15^Rational[1, 2] - 9 Root[144 - 84 #^2 + #^4& , 4, 0] - 3 5^Rational[1, 2] Root[144 - 84 #^2 + #^4& , 4, 0] - 12 5^Rational[1, 2] CylindricalDecompositionFunction["Variable"][1] + 4 3^Rational[1, 2] Root[144 - 84 #^2 + #^4& , 4, 0] CylindricalDecompositionFunction["Variable"][1]), Less, CylindricalDecompositionFunction["Variable"][2], LessEqual, (3 + 3 5^Rational[1, 2])^(-1) (9 + 3 5^Rational[1, 2] - Root[144 - 36 #^2 + #^4& , 4, 0] CylindricalDecompositionFunction["Variable"][1])], Inequality[0, Less, CylindricalDecompositionFunction["Variable"][3], LessEqual, Root[144 - 84 #^2 + #^4& , 4, 0]^(-1) (9 + 3 5^Rational[1, 2] - 2 3^Rational[1, 2] CylindricalDecompositionFunction["Variable"][1] - 6 CylindricalDecompositionFunction["Variable"][2])]], And[ Inequality[(3 + 3 5^Rational[1, 2])^(-1) (9 + 3 5^Rational[1, 2] - Root[144 - 36 #^2 + #^4& , 4, 0] CylindricalDecompositionFunction["Variable"][1]), Less, CylindricalDecompositionFunction["Variable"][2], LessEqual, (12 3^Rational[1, 2] - 6 Root[144 - 84 #^2 + #^4& , 4, 0])^(-1) (18 3^Rational[1, 2] + 6 15^Rational[1, 2] - 9 Root[144 - 84 #^2 + #^4& , 4, 0] - 3 5^Rational[1, 2] Root[144 - 84 #^2 + #^4& , 4, 0] - 12 CylindricalDecompositionFunction["Variable"][1] + 2 15^Rational[1, 2] Root[144 - 84 #^2 + #^4& , 4, 0] CylindricalDecompositionFunction["Variable"][1])], Inequality[(-3^Rational[1, 2] + 15^Rational[1, 2])^(-1) (-9 - 3 5^Rational[1, 2] + Root[144 - 36 #^2 + #^4& , 4, 0] CylindricalDecompositionFunction["Variable"][1] + 3 CylindricalDecompositionFunction["Variable"][2] + 3 5^Rational[1, 2] CylindricalDecompositionFunction["Variable"][2]), LessEqual, CylindricalDecompositionFunction["Variable"][3], LessEqual, Root[144 - 84 #^2 + #^4& , 4, 0]^(-1) (9 + 3 5^Rational[1, 2] - 2 3^Rational[1, 2] CylindricalDecompositionFunction["Variable"][1] - 6 CylindricalDecompositionFunction["Variable"][2])]], And[ Inequality[(12 3^Rational[1, 2] - 6 Root[144 - 84 #^2 + #^4& , 4, 0])^(-1) (18 3^Rational[1, 2] + 6 15^Rational[1, 2] - 9 Root[144 - 84 #^2 + #^4& , 4, 0] - 3 5^Rational[1, 2] Root[144 - 84 #^2 + #^4& , 4, 0] - 12 CylindricalDecompositionFunction["Variable"][1] + 2 15^Rational[1, 2] Root[144 - 84 #^2 + #^4& , 4, 0] CylindricalDecompositionFunction["Variable"][1]), Less, CylindricalDecompositionFunction["Variable"][2], Less, Rational[1, 6] 5^Rational[-1, 2] (12 + 6 5^Rational[1, 2] - 5 3^Rational[1, 2] CylindricalDecompositionFunction["Variable"][1] + 15^Rational[1, 2] CylindricalDecompositionFunction["Variable"][1] - Root[144 - 36 #^2 + #^4& , 4, 0] CylindricalDecompositionFunction["Variable"][1])], Inequality[(-3^Rational[1, 2] + 15^Rational[1, 2])^(-1) (-9 - 3 5^Rational[1, 2] + Root[144 - 36 #^2 + #^4& , 4, 0] CylindricalDecompositionFunction["Variable"][1] + 3 CylindricalDecompositionFunction["Variable"][2] + 3 5^Rational[1, 2] CylindricalDecompositionFunction["Variable"][2]), LessEqual, CylindricalDecompositionFunction["Variable"][3], LessEqual, Rational[1, 2] 3^Rational[-1, 2] (9 + 3 5^Rational[1, 2] - 2 15^Rational[1, 2] CylindricalDecompositionFunction["Variable"][1] - 6 CylindricalDecompositionFunction["Variable"][2])]], And[ CylindricalDecompositionFunction["Variable"][2] == Rational[1, 6] 5^Rational[-1, 2] (12 + 6 5^Rational[1, 2] - 5 3^Rational[1, 2] CylindricalDecompositionFunction["Variable"][1] + 15^Rational[1, 2] CylindricalDecompositionFunction["Variable"][1] - Root[144 - 36 #^2 + #^4& , 4, 0] CylindricalDecompositionFunction["Variable"][1]), CylindricalDecompositionFunction["Variable"][3] == Rational[1, 2] 3^Rational[-1, 2] (9 + 3 5^Rational[1, 2] - 2 15^Rational[1, 2] CylindricalDecompositionFunction["Variable"][1] - 6 CylindricalDecompositionFunction["Variable"][2])]]], And[ Inequality[(18 + 12 5^Rational[1, 2])/(13 3^Rational[1, 2] + 5 15^Rational[1, 2] + 5^Rational[1, 2] Root[144 - 36 #^2 + #^4& , 4, 0]), LessEqual, CylindricalDecompositionFunction["Variable"][1], Less, Rational[1, 2] 3^Rational[1, 2]], Or[ And[ Inequality[0, Less, CylindricalDecompositionFunction["Variable"][2], LessEqual, Rational[1, 12] 15^Rational[-1, 2] (30 3^Rational[1, 2] + 18 15^Rational[1, 2] - 9 Root[144 - 84 #^2 + #^4& , 4, 0] - 3 5^Rational[1, 2] Root[144 - 84 #^2 + #^4& , 4, 0] - 12 5^Rational[1, 2] CylindricalDecompositionFunction["Variable"][1] + 4 3^Rational[1, 2] Root[144 - 84 #^2 + #^4& , 4, 0] CylindricalDecompositionFunction["Variable"][1])], Inequality[0, Less, CylindricalDecompositionFunction["Variable"][3], LessEqual, Rational[1, 2] 15^Rational[-1, 2] (9 + 3 5^Rational[1, 2] - 4 3^Rational[1, 2] CylindricalDecompositionFunction["Variable"][1])]], And[ Inequality[ Rational[1, 12] 15^Rational[-1, 2] (30 3^Rational[1, 2] + 18 15^Rational[1, 2] - 9 Root[144 - 84 #^2 + #^4& , 4, 0] - 3 5^Rational[1, 2] Root[144 - 84 #^2 + #^4& , 4, 0] - 12 5^Rational[1, 2] CylindricalDecompositionFunction["Variable"][1] + 4 3^Rational[1, 2] Root[144 - 84 #^2 + #^4& , 4, 0] CylindricalDecompositionFunction["Variable"][1]), Less, CylindricalDecompositionFunction["Variable"][2], LessEqual, (3 + 3 5^Rational[1, 2])^(-1) (9 + 3 5^Rational[1, 2] - Root[144 - 36 #^2 + #^4& , 4, 0] CylindricalDecompositionFunction["Variable"][1])], Inequality[0, Less, CylindricalDecompositionFunction["Variable"][3], LessEqual, Root[144 - 84 #^2 + #^4& , 4, 0]^(-1) (9 + 3 5^Rational[1, 2] - 2 3^Rational[1, 2] CylindricalDecompositionFunction["Variable"][1] - 6 CylindricalDecompositionFunction["Variable"][2])]], And[ Inequality[(3 + 3 5^Rational[1, 2])^(-1) (9 + 3 5^Rational[1, 2] - Root[144 - 36 #^2 + #^4& , 4, 0] CylindricalDecompositionFunction["Variable"][1]), Less, CylindricalDecompositionFunction["Variable"][2], Less, (12 3^Rational[1, 2] - 6 Root[144 - 84 #^2 + #^4& , 4, 0])^(-1) (18 3^Rational[1, 2] + 6 15^Rational[1, 2] - 9 Root[144 - 84 #^2 + #^4& , 4, 0] - 3 5^Rational[1, 2] Root[144 - 84 #^2 + #^4& , 4, 0] - 12 CylindricalDecompositionFunction["Variable"][1] + 2 15^Rational[1, 2] Root[144 - 84 #^2 + #^4& , 4, 0] CylindricalDecompositionFunction["Variable"][1])], Inequality[(-3^Rational[1, 2] + 15^Rational[1, 2])^(-1) (-9 - 3 5^Rational[1, 2] + Root[144 - 36 #^2 + #^4& , 4, 0] CylindricalDecompositionFunction["Variable"][1] + 3 CylindricalDecompositionFunction["Variable"][2] + 3 5^Rational[1, 2] CylindricalDecompositionFunction["Variable"][2]), LessEqual, CylindricalDecompositionFunction["Variable"][3], LessEqual, Root[144 - 84 #^2 + #^4& , 4, 0]^(-1) (9 + 3 5^Rational[1, 2] - 2 3^Rational[1, 2] CylindricalDecompositionFunction["Variable"][1] - 6 CylindricalDecompositionFunction["Variable"][2])]], And[ Inequality[(12 3^Rational[1, 2] - 6 Root[144 - 84 #^2 + #^4& , 4, 0])^(-1) (18 3^Rational[1, 2] + 6 15^Rational[1, 2] - 9 Root[144 - 84 #^2 + #^4& , 4, 0] - 3 5^Rational[1, 2] Root[144 - 84 #^2 + #^4& , 4, 0] - 12 CylindricalDecompositionFunction["Variable"][1] + 2 15^Rational[1, 2] Root[144 - 84 #^2 + #^4& , 4, 0] CylindricalDecompositionFunction["Variable"][1]), LessEqual, CylindricalDecompositionFunction["Variable"][2], Less, Rational[1, 6] 5^Rational[-1, 2] (12 + 6 5^Rational[1, 2] - 5 3^Rational[1, 2] CylindricalDecompositionFunction["Variable"][1] + 15^Rational[1, 2] CylindricalDecompositionFunction["Variable"][1] - Root[144 - 36 #^2 + #^4& , 4, 0] CylindricalDecompositionFunction["Variable"][1])], Inequality[(-3^Rational[1, 2] + 15^Rational[1, 2])^(-1) (-9 - 3 5^Rational[1, 2] + Root[144 - 36 #^2 + #^4& , 4, 0] CylindricalDecompositionFunction["Variable"][1] + 3 CylindricalDecompositionFunction["Variable"][2] + 3 5^Rational[1, 2] CylindricalDecompositionFunction["Variable"][2]), LessEqual, CylindricalDecompositionFunction["Variable"][3], LessEqual, Rational[1, 2] 3^Rational[-1, 2] (9 + 3 5^Rational[1, 2] - 2 15^Rational[1, 2] CylindricalDecompositionFunction["Variable"][1] - 6 CylindricalDecompositionFunction["Variable"][2])]], And[ CylindricalDecompositionFunction["Variable"][2] == Rational[1, 6] 5^Rational[-1, 2] (12 + 6 5^Rational[1, 2] - 5 3^Rational[1, 2] CylindricalDecompositionFunction["Variable"][1] + 15^Rational[1, 2] CylindricalDecompositionFunction["Variable"][1] - Root[144 - 36 #^2 + #^4& , 4, 0] CylindricalDecompositionFunction["Variable"][1]), CylindricalDecompositionFunction["Variable"][3] == Rational[1, 2] 3^Rational[-1, 2] (9 + 3 5^Rational[1, 2] - 2 15^Rational[1, 2] CylindricalDecompositionFunction["Variable"][1] - 6 CylindricalDecompositionFunction["Variable"][2])]]], And[ CylindricalDecompositionFunction["Variable"][1] == Rational[1, 2] 3^Rational[1, 2], Or[ And[ Inequality[0, Less, CylindricalDecompositionFunction["Variable"][2], LessEqual, Rational[1, 12] 15^Rational[-1, 2] (30 3^Rational[1, 2] + 18 15^Rational[1, 2] - 9 Root[144 - 84 #^2 + #^4& , 4, 0] - 3 5^Rational[1, 2] Root[144 - 84 #^2 + #^4& , 4, 0] - 12 5^Rational[1, 2] CylindricalDecompositionFunction["Variable"][1] + 4 3^Rational[1, 2] Root[144 - 84 #^2 + #^4& , 4, 0] CylindricalDecompositionFunction["Variable"][1])], Inequality[0, Less, CylindricalDecompositionFunction["Variable"][3], LessEqual, Rational[1, 2] 15^Rational[-1, 2] (9 + 3 5^Rational[1, 2] - 4 3^Rational[1, 2] CylindricalDecompositionFunction["Variable"][1])]], And[ Inequality[ Rational[1, 12] 15^Rational[-1, 2] (30 3^Rational[1, 2] + 18 15^Rational[1, 2] - 9 Root[144 - 84 #^2 + #^4& , 4, 0] - 3 5^Rational[1, 2] Root[144 - 84 #^2 + #^4& , 4, 0] - 12 5^Rational[1, 2] CylindricalDecompositionFunction["Variable"][1] + 4 3^Rational[1, 2] Root[144 - 84 #^2 + #^4& , 4, 0] CylindricalDecompositionFunction["Variable"][1]), Less, CylindricalDecompositionFunction["Variable"][2], Less, (3 + 3 5^Rational[1, 2])^(-1) (9 + 3 5^Rational[1, 2] - Root[144 - 36 #^2 + #^4& , 4, 0] CylindricalDecompositionFunction["Variable"][1])], Inequality[0, Less, CylindricalDecompositionFunction["Variable"][3], LessEqual, Root[144 - 84 #^2 + #^4& , 4, 0]^(-1) (9 + 3 5^Rational[1, 2] - 2 3^Rational[1, 2] CylindricalDecompositionFunction["Variable"][1] - 6 CylindricalDecompositionFunction["Variable"][2])]], And[ CylindricalDecompositionFunction["Variable"][ 2] == (3 + 3 5^Rational[1, 2])^(-1) (9 + 3 5^Rational[1, 2] - Root[144 - 36 #^2 + #^4& , 4, 0] CylindricalDecompositionFunction["Variable"][1]), Inequality[0, Less, CylindricalDecompositionFunction["Variable"][3], LessEqual, Rational[1, 2] 3^Rational[-1, 2] (9 + 3 5^Rational[1, 2] - 2 15^Rational[1, 2] CylindricalDecompositionFunction["Variable"][1] - 6 CylindricalDecompositionFunction["Variable"][2])]], And[ Inequality[(3 + 3 5^Rational[1, 2])^(-1) (9 + 3 5^Rational[1, 2] - Root[144 - 36 #^2 + #^4& , 4, 0] CylindricalDecompositionFunction["Variable"][1]), Less, CylindricalDecompositionFunction["Variable"][2], Less, Rational[1, 6] 5^Rational[-1, 2] (12 + 6 5^Rational[1, 2] - 5 3^Rational[1, 2] CylindricalDecompositionFunction["Variable"][1] + 15^Rational[1, 2] CylindricalDecompositionFunction["Variable"][1] - Root[144 - 36 #^2 + #^4& , 4, 0] CylindricalDecompositionFunction["Variable"][1])], Inequality[(-3^Rational[1, 2] + 15^Rational[1, 2])^(-1) (-9 - 3 5^Rational[1, 2] + Root[144 - 36 #^2 + #^4& , 4, 0] CylindricalDecompositionFunction["Variable"][1] + 3 CylindricalDecompositionFunction["Variable"][2] + 3 5^Rational[1, 2] CylindricalDecompositionFunction["Variable"][2]), LessEqual, CylindricalDecompositionFunction["Variable"][3], LessEqual, Rational[1, 2] 3^Rational[-1, 2] (9 + 3 5^Rational[1, 2] - 2 15^Rational[1, 2] CylindricalDecompositionFunction["Variable"][1] - 6 CylindricalDecompositionFunction["Variable"][2])]], And[ CylindricalDecompositionFunction["Variable"][2] == Rational[1, 6] 5^Rational[-1, 2] (12 + 6 5^Rational[1, 2] - 5 3^Rational[1, 2] CylindricalDecompositionFunction["Variable"][1] + 15^Rational[1, 2] CylindricalDecompositionFunction["Variable"][1] - Root[144 - 36 #^2 + #^4& , 4, 0] CylindricalDecompositionFunction["Variable"][1]), CylindricalDecompositionFunction["Variable"][3] == Rational[1, 2] 3^Rational[-1, 2] (9 + 3 5^Rational[1, 2] - 2 15^Rational[1, 2] CylindricalDecompositionFunction["Variable"][1] - 6 CylindricalDecompositionFunction["Variable"][2])]]], And[ Inequality[Rational[1, 2] 3^Rational[1, 2], Less, CylindricalDecompositionFunction["Variable"][1], Less, (-6 - 3 5^Rational[1, 2])/(-3^Rational[1, 2] + 15^Rational[1, 2] - 5^Rational[1, 2] Root[144 - 36 #^2 + #^4& , 4, 0])], Or[ And[ Inequality[0, Less, CylindricalDecompositionFunction["Variable"][2], LessEqual, Rational[1, 12] 15^Rational[-1, 2] (30 3^Rational[1, 2] + 18 15^Rational[1, 2] - 9 Root[144 - 84 #^2 + #^4& , 4, 0] - 3 5^Rational[1, 2] Root[144 - 84 #^2 + #^4& , 4, 0] - 12 5^Rational[1, 2] CylindricalDecompositionFunction["Variable"][1] + 4 3^Rational[1, 2] Root[144 - 84 #^2 + #^4& , 4, 0] CylindricalDecompositionFunction["Variable"][1])], Inequality[0, Less, CylindricalDecompositionFunction["Variable"][3], LessEqual, Rational[1, 2] 15^Rational[-1, 2] (9 + 3 5^Rational[1, 2] - 4 3^Rational[1, 2] CylindricalDecompositionFunction["Variable"][1])]], And[ Inequality[ Rational[1, 12] 15^Rational[-1, 2] (30 3^Rational[1, 2] + 18 15^Rational[1, 2] - 9 Root[144 - 84 #^2 + #^4& , 4, 0] - 3 5^Rational[1, 2] Root[144 - 84 #^2 + #^4& , 4, 0] - 12 5^Rational[1, 2] CylindricalDecompositionFunction["Variable"][1] + 4 3^Rational[1, 2] Root[144 - 84 #^2 + #^4& , 4, 0] CylindricalDecompositionFunction["Variable"][1]), Less, CylindricalDecompositionFunction["Variable"][2], Less, (12 3^Rational[1, 2] - 6 Root[144 - 84 #^2 + #^4& , 4, 0])^(-1) (18 3^Rational[1, 2] + 6 15^Rational[1, 2] - 9 Root[144 - 84 #^2 + #^4& , 4, 0] - 3 5^Rational[1, 2] Root[144 - 84 #^2 + #^4& , 4, 0] - 12 CylindricalDecompositionFunction["Variable"][1] + 2 15^Rational[1, 2] Root[144 - 84 #^2 + #^4& , 4, 0] CylindricalDecompositionFunction["Variable"][1])], Inequality[0, Less, CylindricalDecompositionFunction["Variable"][3], LessEqual, Root[144 - 84 #^2 + #^4& , 4, 0]^(-1) (9 + 3 5^Rational[1, 2] - 2 3^Rational[1, 2] CylindricalDecompositionFunction["Variable"][1] - 6 CylindricalDecompositionFunction["Variable"][2])]], And[ Inequality[(12 3^Rational[1, 2] - 6 Root[144 - 84 #^2 + #^4& , 4, 0])^(-1) (18 3^Rational[1, 2] + 6 15^Rational[1, 2] - 9 Root[144 - 84 #^2 + #^4& , 4, 0] - 3 5^Rational[1, 2] Root[144 - 84 #^2 + #^4& , 4, 0] - 12 CylindricalDecompositionFunction["Variable"][1] + 2 15^Rational[1, 2] Root[144 - 84 #^2 + #^4& , 4, 0] CylindricalDecompositionFunction["Variable"][1]), LessEqual, CylindricalDecompositionFunction["Variable"][2], LessEqual, (3 + 3 5^Rational[1, 2])^(-1) (9 + 3 5^Rational[1, 2] - Root[144 - 36 #^2 + #^4& , 4, 0] CylindricalDecompositionFunction["Variable"][1])], Inequality[0, Less, CylindricalDecompositionFunction["Variable"][3], LessEqual, Rational[1, 2] 3^Rational[-1, 2] (9 + 3 5^Rational[1, 2] - 2 15^Rational[1, 2] CylindricalDecompositionFunction["Variable"][1] - 6 CylindricalDecompositionFunction["Variable"][2])]], And[ Inequality[(3 + 3 5^Rational[1, 2])^(-1) (9 + 3 5^Rational[1, 2] - Root[144 - 36 #^2 + #^4& , 4, 0] CylindricalDecompositionFunction["Variable"][1]), Less, CylindricalDecompositionFunction["Variable"][2], Less, Rational[1, 6] 5^Rational[-1, 2] (12 + 6 5^Rational[1, 2] - 5 3^Rational[1, 2] CylindricalDecompositionFunction["Variable"][1] + 15^Rational[1, 2] CylindricalDecompositionFunction["Variable"][1] - Root[144 - 36 #^2 + #^4& , 4, 0] CylindricalDecompositionFunction["Variable"][1])], Inequality[(-3^Rational[1, 2] + 15^Rational[1, 2])^(-1) (-9 - 3 5^Rational[1, 2] + Root[144 - 36 #^2 + #^4& , 4, 0] CylindricalDecompositionFunction["Variable"][1] + 3 CylindricalDecompositionFunction["Variable"][2] + 3 5^Rational[1, 2] CylindricalDecompositionFunction["Variable"][2]), LessEqual, CylindricalDecompositionFunction["Variable"][3], LessEqual, Rational[1, 2] 3^Rational[-1, 2] (9 + 3 5^Rational[1, 2] - 2 15^Rational[1, 2] CylindricalDecompositionFunction["Variable"][1] - 6 CylindricalDecompositionFunction["Variable"][2])]], And[ CylindricalDecompositionFunction["Variable"][2] == Rational[1, 6] 5^Rational[-1, 2] (12 + 6 5^Rational[1, 2] - 5 3^Rational[1, 2] CylindricalDecompositionFunction["Variable"][1] + 15^Rational[1, 2] CylindricalDecompositionFunction["Variable"][1] - Root[144 - 36 #^2 + #^4& , 4, 0] CylindricalDecompositionFunction["Variable"][1]), CylindricalDecompositionFunction["Variable"][3] == Rational[1, 2] 3^Rational[-1, 2] (9 + 3 5^Rational[1, 2] - 2 15^Rational[1, 2] CylindricalDecompositionFunction["Variable"][1] - 6 CylindricalDecompositionFunction["Variable"][2])]]], And[ CylindricalDecompositionFunction["Variable"][ 1] == (-6 - 3 5^Rational[1, 2])/(-3^Rational[1, 2] + 15^Rational[1, 2] - 5^Rational[1, 2] Root[144 - 36 #^2 + #^4& , 4, 0]), Or[ And[ Inequality[0, Less, CylindricalDecompositionFunction["Variable"][2], Less, Rational[1, 12] 15^Rational[-1, 2] (30 3^Rational[1, 2] + 18 15^Rational[1, 2] - 9 Root[144 - 84 #^2 + #^4& , 4, 0] - 3 5^Rational[1, 2] Root[144 - 84 #^2 + #^4& , 4, 0] - 12 5^Rational[1, 2] CylindricalDecompositionFunction["Variable"][1] + 4 3^Rational[1, 2] Root[144 - 84 #^2 + #^4& , 4, 0] CylindricalDecompositionFunction["Variable"][1])], Inequality[0, Less, CylindricalDecompositionFunction["Variable"][3], LessEqual, Rational[1, 2] 15^Rational[-1, 2] (9 + 3 5^Rational[1, 2] - 4 3^Rational[1, 2] CylindricalDecompositionFunction["Variable"][1])]], And[ Inequality[ Rational[1, 12] 15^Rational[-1, 2] (30 3^Rational[1, 2] + 18 15^Rational[1, 2] - 9 Root[144 - 84 #^2 + #^4& , 4, 0] - 3 5^Rational[1, 2] Root[144 - 84 #^2 + #^4& , 4, 0] - 12 5^Rational[1, 2] CylindricalDecompositionFunction["Variable"][1] + 4 3^Rational[1, 2] Root[144 - 84 #^2 + #^4& , 4, 0] CylindricalDecompositionFunction["Variable"][1]), LessEqual, CylindricalDecompositionFunction["Variable"][2], LessEqual, (3 + 3 5^Rational[1, 2])^(-1) (9 + 3 5^Rational[1, 2] - Root[144 - 36 #^2 + #^4& , 4, 0] CylindricalDecompositionFunction["Variable"][1])], Inequality[0, Less, CylindricalDecompositionFunction["Variable"][3], LessEqual, Rational[1, 2] 3^Rational[-1, 2] (9 + 3 5^Rational[1, 2] - 2 15^Rational[1, 2] CylindricalDecompositionFunction["Variable"][1] - 6 CylindricalDecompositionFunction["Variable"][2])]], And[ Inequality[(3 + 3 5^Rational[1, 2])^(-1) (9 + 3 5^Rational[1, 2] - Root[144 - 36 #^2 + #^4& , 4, 0] CylindricalDecompositionFunction["Variable"][1]), Less, CylindricalDecompositionFunction["Variable"][2], Less, Rational[1, 6] 5^Rational[-1, 2] (12 + 6 5^Rational[1, 2] - 5 3^Rational[1, 2] CylindricalDecompositionFunction["Variable"][1] + 15^Rational[1, 2] CylindricalDecompositionFunction["Variable"][1] - Root[144 - 36 #^2 + #^4& , 4, 0] CylindricalDecompositionFunction["Variable"][1])], Inequality[(-3^Rational[1, 2] + 15^Rational[1, 2])^(-1) (-9 - 3 5^Rational[1, 2] + Root[144 - 36 #^2 + #^4& , 4, 0] CylindricalDecompositionFunction["Variable"][1] + 3 CylindricalDecompositionFunction["Variable"][2] + 3 5^Rational[1, 2] CylindricalDecompositionFunction["Variable"][2]), LessEqual, CylindricalDecompositionFunction["Variable"][3], LessEqual, Rational[1, 2] 3^Rational[-1, 2] (9 + 3 5^Rational[1, 2] - 2 15^Rational[1, 2] CylindricalDecompositionFunction["Variable"][1] - 6 CylindricalDecompositionFunction["Variable"][2])]], And[ CylindricalDecompositionFunction["Variable"][2] == Rational[1, 6] 5^Rational[-1, 2] (12 + 6 5^Rational[1, 2] - 5 3^Rational[1, 2] CylindricalDecompositionFunction["Variable"][1] + 15^Rational[1, 2] CylindricalDecompositionFunction["Variable"][1] - Root[144 - 36 #^2 + #^4& , 4, 0] CylindricalDecompositionFunction["Variable"][1]), CylindricalDecompositionFunction["Variable"][3] == Rational[1, 2] 3^Rational[-1, 2] (9 + 3 5^Rational[1, 2] - 2 15^Rational[1, 2] CylindricalDecompositionFunction["Variable"][1] - 6 CylindricalDecompositionFunction["Variable"][2])]]], And[ Inequality[(-6 - 3 5^Rational[1, 2])/(-3^Rational[1, 2] + 15^Rational[1, 2] - 5^Rational[1, 2] Root[144 - 36 #^2 + #^4& , 4, 0]), Less, CylindricalDecompositionFunction["Variable"][1], Less, (3 + 3 5^Rational[1, 2])/(5 3^Rational[1, 2] + 15^Rational[1, 2] - Root[144 - 36 #^2 + #^4& , 4, 0])], Or[ And[ Inequality[0, Less, CylindricalDecompositionFunction["Variable"][2], Less, (-3 + 3 5^Rational[1, 2])^(-1) (-6 - 5 3^Rational[1, 2] CylindricalDecompositionFunction["Variable"][1] + 15^Rational[1, 2] CylindricalDecompositionFunction["Variable"][1] + 2 Root[144 - 36 #^2 + #^4& , 4, 0] CylindricalDecompositionFunction["Variable"][1])], Inequality[0, Less, CylindricalDecompositionFunction["Variable"][3], LessEqual, (-3^Rational[1, 2] + 15^Rational[1, 2])^(-1) (9 + 3 5^Rational[1, 2] - 2 Root[144 - 36 #^2 + #^4& , 4, 0] CylindricalDecompositionFunction["Variable"][1])]], And[ Inequality[(-3 + 3 5^Rational[1, 2])^(-1) (-6 - 5 3^Rational[1, 2] CylindricalDecompositionFunction["Variable"][1] + 15^Rational[1, 2] CylindricalDecompositionFunction["Variable"][1] + 2 Root[144 - 36 #^2 + #^4& , 4, 0] CylindricalDecompositionFunction["Variable"][1]), LessEqual, CylindricalDecompositionFunction["Variable"][2], LessEqual, (3 + 3 5^Rational[1, 2])^(-1) (9 + 3 5^Rational[1, 2] - Root[144 - 36 #^2 + #^4& , 4, 0] CylindricalDecompositionFunction["Variable"][1])], Inequality[0, Less, CylindricalDecompositionFunction["Variable"][3], LessEqual, Rational[1, 2] 3^Rational[-1, 2] (9 + 3 5^Rational[1, 2] - 2 15^Rational[1, 2] CylindricalDecompositionFunction["Variable"][1] - 6 CylindricalDecompositionFunction["Variable"][2])]], And[ Inequality[(3 + 3 5^Rational[1, 2])^(-1) (9 + 3 5^Rational[1, 2] - Root[144 - 36 #^2 + #^4& , 4, 0] CylindricalDecompositionFunction["Variable"][1]), Less, CylindricalDecompositionFunction["Variable"][2], Less, Rational[1, 6] 5^Rational[-1, 2] (12 + 6 5^Rational[1, 2] - 5 3^Rational[1, 2] CylindricalDecompositionFunction["Variable"][1] + 15^Rational[1, 2] CylindricalDecompositionFunction["Variable"][1] - Root[144 - 36 #^2 + #^4& , 4, 0] CylindricalDecompositionFunction["Variable"][1])], Inequality[(-3^Rational[1, 2] + 15^Rational[1, 2])^(-1) (-9 - 3 5^Rational[1, 2] + Root[144 - 36 #^2 + #^4& , 4, 0] CylindricalDecompositionFunction["Variable"][1] + 3 CylindricalDecompositionFunction["Variable"][2] + 3 5^Rational[1, 2] CylindricalDecompositionFunction["Variable"][2]), LessEqual, CylindricalDecompositionFunction["Variable"][3], LessEqual, Rational[1, 2] 3^Rational[-1, 2] (9 + 3 5^Rational[1, 2] - 2 15^Rational[1, 2] CylindricalDecompositionFunction["Variable"][1] - 6 CylindricalDecompositionFunction["Variable"][2])]], And[ CylindricalDecompositionFunction["Variable"][2] == Rational[1, 6] 5^Rational[-1, 2] (12 + 6 5^Rational[1, 2] - 5 3^Rational[1, 2] CylindricalDecompositionFunction["Variable"][1] + 15^Rational[1, 2] CylindricalDecompositionFunction["Variable"][1] - Root[144 - 36 #^2 + #^4& , 4, 0] CylindricalDecompositionFunction["Variable"][1]), CylindricalDecompositionFunction["Variable"][3] == Rational[1, 2] 3^Rational[-1, 2] (9 + 3 5^Rational[1, 2] - 2 15^Rational[1, 2] CylindricalDecompositionFunction["Variable"][1] - 6 CylindricalDecompositionFunction["Variable"][2])]]]], {3, 3, 152}, 3035438580}], Editable->False, SelectWithContents->True, Selectable->False], "[", RowBox[{"x", ",", "y", ",", "z"}], "]"}]], "Output", CellLabel-> "(Local-Devel (3)) \ Out[9]=",ExpressionUUID->"348bc5ea-a8a1-4abc-a595-071c5be5d7fa"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"12", FractionBox[ RowBox[{"NIntegrate", "[", RowBox[{ RowBox[{ SqrtBox[ RowBox[{ SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]}]], RowBox[{"Boole", "[", "cad", "]"}]}], ",", RowBox[{ RowBox[{"{", RowBox[{"x", ",", "y", ",", "z"}], "}"}], "\[Element]", RowBox[{"FullRegion", "[", "3", "]"}]}]}], "]"}], "vol"]}]], "Input", CellLabel-> "(Local-Devel (3)) \ In[10]:=",ExpressionUUID->"be660cc2-06c0-444c-ac96-a83c501f45a4"], Cell[BoxData["0.8791621033215842`"], "Output", CellLabel-> "(Local-Devel (3)) \ Out[10]=",ExpressionUUID->"77eec039-a0d2-4513-ba48-c46497ff7408"] }, Open ]], Cell[BoxData[ RowBox[{ RowBox[{"(", RowBox[{"rxy", "=", RowBox[{"12", FractionBox[ RowBox[{"Integrate", "[", RowBox[{ RowBox[{ SqrtBox[ RowBox[{ SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]}]], RowBox[{"Boole", "[", "cad", "]"}]}], ",", RowBox[{ RowBox[{"{", RowBox[{"x", ",", "y", ",", "z"}], "}"}], "\[Element]", RowBox[{"FullRegion", "[", "3", "]"}]}]}], "]"}], "vol"]}]}], ")"}], "//", "Timing"}]], "Input", CellLabel-> "(Local-Devel (3)) \ In[11]:=",ExpressionUUID->"53d86795-afcd-47d7-a9b6-727818e00e35"], Cell[BoxData[ RowBox[{"N", "[", "rxy", "]"}]], "Input",ExpressionUUID->"ff042b56-be53-47b9-8c9f-1fcbd60a200f"], Cell[BoxData[ RowBox[{ RowBox[{"ByteCount", "[", RowBox[{"rxylog", "=", RowBox[{"LogSimplify", "[", RowBox[{"rxy", ",", RowBox[{"Debug", "\[Rule]", "True"}]}], "]"}]}], "]"}], "//", "Timing"}]], "Input",ExpressionUUID->"316b0305-af2a-4ec4-a248-e5f92ae50fab"], Cell[BoxData[ RowBox[{ RowBox[{"ByteCount", "[", RowBox[{"rxycollect", "=", RowBox[{ RowBox[{"Collect", "[", RowBox[{ RowBox[{"TrigToExp", "[", "rxylog", "]"}], ",", RowBox[{"Log", "[", "_", "]"}]}], "]"}], "//", "RootReduce"}]}], "]"}], "//", "Timing"}]], "Input",ExpressionUUID->"70ea45cd-04ca-49f5-942d-\ b8926c658e0b"] }, Open ]], Cell[CellGroupData[{ Cell["Boole Integrate doing z integral first", "Subsubsection",ExpressionUUID->"123818fd-b728-48d5-945a-bc03c6cc3292"], Cell[BoxData[ RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"xmin", ",", "xmax"}], "}"}], ",", RowBox[{"{", RowBox[{"ymin", ",", "ymax"}], "}"}], ",", RowBox[{"{", RowBox[{"zmin", ",", "zmax"}], "}"}]}], "}"}], "==", RowBox[{"CoordinateBounds", "[", "p", "]"}]}]], "Input",ExpressionUUID->\ "2c3612ce-b864-4c8e-b67f-c0319c72108d"], Cell[BoxData[ RowBox[{"ineq", "=", RowBox[{ RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}], "[", RowBox[{"x", ",", "y", ",", "z"}], "]"}]}]], "Input", CellLabel-> "(byblis65 V13.2.0) \ In[11]:=",ExpressionUUID->"90170fbc-2474-4f72-a385-ac2fcfa25ceb"], Cell[BoxData[ RowBox[{ RowBox[{"(", RowBox[{"i1", "=", RowBox[{"Integrate", "[", RowBox[{ RowBox[{ RowBox[{"Boole", "[", "ineq", "]"}], SqrtBox[ RowBox[{ SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]}]]}], ",", RowBox[{"{", RowBox[{"z", ",", "zmin", ",", "zmax"}], "}"}]}], "]"}]}], ")"}], "//", "Timing"}]], "Input", CellLabel-> "(byblis65 V13.2.0) \ In[12]:=",ExpressionUUID->"d1534e6f-1eff-4c81-95f1-4cf5c992eeac"], Cell[BoxData[ RowBox[{"NIntegrate", "[", RowBox[{ FractionBox["i1", "vol"], ",", RowBox[{"{", RowBox[{"x", ",", "xmin", ",", "xmax"}], "}"}], ",", RowBox[{"{", RowBox[{"y", ",", "ymin", ",", "ymax"}], "}"}]}], "]"}]], "Input", CellLabel-> "(byblis65 V13.2.0) \ In[9]:=",ExpressionUUID->"f7251ac3-1ec2-4546-8bef-948d37c6d95a"], Cell[BoxData[ RowBox[{ RowBox[{"(", RowBox[{"i2", "=", RowBox[{"Integrate", "[", RowBox[{ FractionBox["i1", "vol"], ",", RowBox[{"{", RowBox[{"x", ",", "xmin", ",", "xmax"}], "}"}], ",", RowBox[{"{", RowBox[{"y", ",", "ymin", ",", "ymax"}], "}"}]}], "]"}]}], ")"}], "//", "Timing"}]], "Input",ExpressionUUID->"764039ef-c7bb-4990-ba64-\ 9c1f9e631d23"] }, Closed]] }, Open ]], Cell[CellGroupData[{ Cell["MeanSquareCylindricalRadius", "Subsection",ExpressionUUID->"5d157f8a-c604-4840-8221-e115020a5c1c"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}]], "Input", CellLabel->"In[6]:=",ExpressionUUID->"f3dc819c-90dd-4b82-85b6-bc19ad21d7c1"], Cell[BoxData[ FractionBox[ RowBox[{"690", "+", RowBox[{"271", " ", SqrtBox["5"]}]}], "1450"]], "Output", CellLabel->"Out[6]=",ExpressionUUID->"342e3a6f-f0d5-48cf-b706-c456e640884f"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ FractionBox[ RowBox[{"NIntegrate", "[", RowBox[{ RowBox[{ SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]}], ",", RowBox[{ RowBox[{"{", RowBox[{"x", ",", "y", ",", "z"}], "}"}], "\[Element]", "p"}]}], "]"}], "vol"]], "Input", CellLabel->"In[27]:=",ExpressionUUID->"37fc4865-ee6e-4b55-a2ee-10d99e633dc4"], Cell[BoxData["0.8937754633809952`"], "Output", CellLabel->"Out[27]=",ExpressionUUID->"a6162c9a-fc06-41b7-b182-b2a441168672"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"(", RowBox[{"i", "=", RowBox[{ FractionBox[ RowBox[{"Integrate", "[", RowBox[{ RowBox[{ SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]}], ",", RowBox[{ RowBox[{"{", RowBox[{"x", ",", "y", ",", "z"}], "}"}], "\[Element]", "p"}]}], "]"}], "vol"], "//", "FullSimplify"}]}], ")"}], "//", "Timing"}]], "Input", CellLabel->"In[28]:=",ExpressionUUID->"daeeaf0b-60fe-46b5-a0c6-71dd57bfe1d5"], Cell[BoxData[ RowBox[{"{", RowBox[{"6.202969`", ",", FractionBox[ RowBox[{"690", "+", RowBox[{"271", " ", SqrtBox["5"]}]}], "1450"]}], "}"}]], "Output", CellLabel->"Out[28]=",ExpressionUUID->"53d71f93-fb62-4761-a352-d7544dc8e76e"] }, Open ]], Cell[BoxData[ RowBox[{"N", "[", "i", "]"}]], "Input", CellLabel->"In[31]:=",ExpressionUUID->"95aa0100-8e8b-4471-a4e3-2269513b64ab"] }, Closed]], Cell[CellGroupData[{ Cell["MeanSphericalRadius", "Subsection", FontColor->RGBColor[ 1, 0, 0],ExpressionUUID->"ead509d7-eb2d-4aad-beb5-36ae452820b0"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}]], "Input", CellLabel->"In[7]:=",ExpressionUUID->"ec607696-4464-41d2-b7e5-19e600418f45"], Cell[BoxData[ RowBox[{"Missing", "[", "\<\"NotAvailable\"\>", "]"}]], "Output", CellLabel->"Out[7]=",ExpressionUUID->"36f55db0-e742-4364-9ba7-8dea48983b7c"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ FractionBox[ RowBox[{"NIntegrate", "[", RowBox[{ SqrtBox[ RowBox[{ SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"], "+", SuperscriptBox["z", "2"]}]], ",", RowBox[{ RowBox[{"{", RowBox[{"x", ",", "y", ",", "z"}], "}"}], "\[Element]", "p"}]}], "]"}], "vol"]], "Input", CellLabel->"In[8]:=",ExpressionUUID->"e9d3ee26-2cd7-4bf2-aab0-76ab0c76d0c2"], Cell[BoxData["1.120289221353842`"], "Output", CellLabel->"Out[8]=",ExpressionUUID->"e02dc547-dd44-479d-8206-8801a2506401"] }, Open ]], Cell[BoxData[ RowBox[{ RowBox[{"(", RowBox[{"i", "=", FractionBox[ RowBox[{"Integrate", "[", RowBox[{ SqrtBox[ RowBox[{ SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"], "+", SuperscriptBox["z", "2"]}]], ",", RowBox[{ RowBox[{"{", RowBox[{"x", ",", "y", ",", "z"}], "}"}], "\[Element]", "p"}]}], "]"}], "vol"]}], ")"}], "//", "Timing"}]], "Input",ExpressionUUID->\ "e874accb-169a-48ed-b0f4-08d0fc5f6747"] }, Closed]], Cell[CellGroupData[{ Cell["MeanSquareSphericalRadius", "Subsection",ExpressionUUID->"d5fc9cc6-f61e-4c89-8c7d-774f80edf6f1"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}]], "Input",\ CellLabel->"In[35]:=",ExpressionUUID->"66e8e320-fbaa-4afa-baec-9f34e0604473"], Cell[BoxData[ FractionBox[ RowBox[{"3", " ", RowBox[{"(", RowBox[{"690", "+", RowBox[{"271", " ", SqrtBox["5"]}]}], ")"}]}], "2900"]], "Output", CellLabel->"Out[35]=",ExpressionUUID->"2254c325-10f8-481d-aaee-2393a3d0555c"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"N", "[", "%", "]"}]], "Input", CellLabel->"In[36]:=",ExpressionUUID->"81083740-005b-4d41-8c87-95e8d88efb8e"], Cell[BoxData["1.340663195071493`"], "Output", CellLabel->"Out[36]=",ExpressionUUID->"84f04a9b-68ca-4bac-9887-ad9e66a42baf"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ FractionBox[ RowBox[{"NIntegrate", "[", RowBox[{ RowBox[{ SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"], "+", SuperscriptBox["z", "2"]}], ",", RowBox[{ RowBox[{"{", RowBox[{"x", ",", "y", ",", "z"}], "}"}], "\[Element]", "p"}]}], "]"}], RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}]]], "Input", CellLabel->"In[34]:=",ExpressionUUID->"05a78d08-e2c7-484d-84fe-f91a1e6f731d"], Cell[BoxData["1.340663195071493`"], "Output", CellLabel->"Out[34]=",ExpressionUUID->"43036519-fad0-4b89-9276-cd70686b4f62"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"(", RowBox[{"i", "=", RowBox[{ FractionBox[ RowBox[{"Integrate", "[", RowBox[{ RowBox[{ SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"], "+", SuperscriptBox["z", "2"]}], ",", RowBox[{ RowBox[{"{", RowBox[{"x", ",", "y", ",", "z"}], "}"}], "\[Element]", "p"}]}], "]"}], "vol"], "//", "FullSimplify"}]}], ")"}], "//", "Timing"}]], "Input", CellLabel->"In[37]:=",ExpressionUUID->"ca4cc52b-71f4-4754-9c76-1710cad87384"], Cell[BoxData[ RowBox[{"{", RowBox[{"4.188102`", ",", FractionBox[ RowBox[{"3", " ", RowBox[{"(", RowBox[{"690", "+", RowBox[{"271", " ", SqrtBox["5"]}]}], ")"}]}], "2900"]}], "}"}]], "Output", CellLabel->"Out[37]=",ExpressionUUID->"f6950335-2f47-4136-853e-2fae669d912c"] }, Open ]], Cell[BoxData[ RowBox[{"N", "[", "i", "]"}]], "Input", CellLabel->"In[28]:=",ExpressionUUID->"85eddf09-343d-4dee-94bf-63ab07cae065"] }, Closed]], Cell[CellGroupData[{ Cell["Midradius", "Subsection",ExpressionUUID->"5b2a15a9-3797-46cb-b104-d89d0aac89e5"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}]], "Input", CellLabel-> "(Local-Devel (4)) \ In[14]:=",ExpressionUUID->"ca4b514c-1e61-43be-a04c-0139358856bb"], Cell[BoxData[ RowBox[{ FractionBox["1", "2"], " ", SqrtBox[ RowBox[{"5", "+", RowBox[{"2", " ", SqrtBox["5"]}]}]]}]], "Output", CellLabel-> "(Local-Devel (4)) \ Out[14]=",ExpressionUUID->"939bd4b8-b578-40a7-a5f8-3f7a7536a913"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"Midsphere", "[", RowBox[{"p", ",", RowBox[{"\"\\"", "\[Rule]", "RootReduce"}]}], "]"}], "//", "Timing"}]], "Input", CellLabel-> "(Local-Devel (4)) \ In[15]:=",ExpressionUUID->"b2b7fc15-80e4-4253-8143-ba226fe08d86"], Cell[BoxData["$Aborted"], "Output", CellLabel->"Out[39]=",ExpressionUUID->"e0410a94-74a1-41f3-8762-9c3d4c507f47"] }, Open ]], Cell["...ran overnight...", "Text",ExpressionUUID->"0cb5e1d6-0bdc-43f9-b3e1-0b6dd72b4803"] }, Open ]], Cell[CellGroupData[{ Cell["Polygons", "Subsection",ExpressionUUID->"5edf45b5-9c42-4181-bec3-9f5fdb9d98fb"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}]], "Input", CellLabel->"In[45]:=",ExpressionUUID->"eb769558-3847-4ee4-9399-9f9264a46dcc"], Cell[BoxData["32"], "Output", CellLabel->"Out[45]=",ExpressionUUID->"db32834e-ce18-488a-8da4-cc7cefb1a336"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Graphics3D", "/@", RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}]}]], "Input", CellLabel->"In[46]:=",ExpressionUUID->"1367e0a7-e79a-40ff-823c-6cd6e3a4c24c"], Cell[BoxData[ RowBox[{"{", RowBox[{ Graphics3DBox[ Polygon3DBox[ NCache[{{Rational[-1, 2] 3^Rational[-1, 2], Rational[ 1, 2], (Rational[1, 6] (7 + 3 5^Rational[1, 2]))^Rational[1, 2]}, { 3^Rational[-1, 2], 0, (Rational[1, 6] (7 + 3 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[3, 4] + Rational[1, 3] 5^Rational[1, 2])^ Rational[1, 2], Rational[ 1, 2], (Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[7, 24] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 3^ Rational[-1, 2]}, { Root[1 - 36 #^2 + 144 #^4& , 2, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), ( Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}}, {{-0.2886751345948129, 0.5, 1.5115226281523415`}, { 0.5773502691896258, 0, 1.5115226281523415`}, {1.2228474935575286`, 0.5, 0.9341723589627157}, {0.7557613140761708, 1.3090169943749475`, 0.5773502691896258}, {-0.17841104488654497`, 1.3090169943749475`, 0.9341723589627157}}]]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{Rational[-1, 2] 3^Rational[-1, 2], Rational[-1, 2], (Rational[1, 6] (7 + 3 5^Rational[1, 2]))^ Rational[1, 2]}, { 3^Rational[-1, 2], 0, (Rational[1, 6] (7 + 3 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[-1, 2] 3^Rational[-1, 2], Rational[ 1, 2], (Rational[1, 6] (7 + 3 5^Rational[1, 2]))^ Rational[1, 2]}}, {{-0.2886751345948129, -0.5, 1.5115226281523415`}, { 0.5773502691896258, 0, 1.5115226281523415`}, {-0.2886751345948129, 0.5, 1.5115226281523415`}}]]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{(Rational[3, 4] + Rational[1, 3] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 2], (Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[3, 4] + Rational[1, 3] 5^Rational[1, 2])^ Rational[1, 2], Rational[ 1, 2], (Rational[1, 6] (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { 3^Rational[-1, 2], 0, (Rational[1, 6] (7 + 3 5^Rational[1, 2]))^ Rational[1, 2]}}, {{1.2228474935575286`, -0.5, 0.9341723589627157}, { 1.2228474935575286`, 0.5, 0.9341723589627157}, { 0.5773502691896258, 0, 1.5115226281523415`}}]]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{Rational[1, 2] (Rational[3, 2] (3 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), 0}, {(Rational[7, 24] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 3^ Rational[-1, 2]}, {(Rational[3, 4] + Rational[1, 3] 5^Rational[1, 2])^ Rational[1, 2], Rational[ 1, 2], (Rational[1, 6] (3 + 5^Rational[1, 2]))^Rational[1, 2]}}, {{ 1.4012585384440737`, 0.8090169943749475, 0}, {0.7557613140761708, 1.3090169943749475`, 0.5773502691896258}, {1.2228474935575286`, 0.5, 0.9341723589627157}}]]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{0, Rational[1, 2] (1 + 5^Rational[1, 2]), 0}, { Root[1 - 36 #^2 + 144 #^4& , 2, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), ( Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[7, 24] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 3^ Rational[-1, 2]}}, {{0, 1.618033988749895, 0}, {-0.17841104488654497`, 1.3090169943749475`, 0.9341723589627157}, {0.7557613140761708, 1.3090169943749475`, 0.5773502691896258}}]]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{Rational[-1, 2] (Rational[5, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), ( Rational[1, 6] (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 2] 3^Rational[-1, 2], Rational[ 1, 2], (Rational[1, 6] (7 + 3 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 36 #^2 + 144 #^4& , 2, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), ( Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}}, {{-1.0444364486709836`, 0.8090169943749475, 0.9341723589627157}, {-0.2886751345948129, 0.5, 1.5115226281523415`}, {-0.17841104488654497`, 1.3090169943749475`, 0.9341723589627157}}]]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{Rational[-1, 2] (Rational[3, 2] (3 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), 0}, { Root[1 - 21 #^2 + 9 #^4& , 1, 0], 0, 3^Rational[-1, 2]}, { Rational[-1, 2] (Rational[5, 6] (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), ( Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}}, {{-1.4012585384440737`, 0.8090169943749475, 0}, {-1.5115226281523415`, 0, 0.5773502691896258}, {-1.0444364486709836`, 0.8090169943749475, 0.9341723589627157}}]]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{Rational[-1, 2] (Rational[5, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), ( Rational[1, 6] (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 36 #^2 + 144 #^4& , 2, 0], Rational[1, 4] (-3 - 5^Rational[1, 2]), ( Rational[1, 6] (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 2] 3^Rational[-1, 2], Rational[-1, 2], (Rational[1, 6] (7 + 3 5^Rational[1, 2]))^ Rational[1, 2]}}, {{-1.0444364486709836`, -0.8090169943749475, 0.9341723589627157}, {-0.17841104488654497`, -1.3090169943749475`, 0.9341723589627157}, {-0.2886751345948129, -0.5, 1.5115226281523415`}}]]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{(Rational[7, 24] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), 3^ Rational[-1, 2]}, { Rational[1, 2] (Rational[3, 2] (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), 0}, {(Rational[3, 4] + Rational[1, 3] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 2], (Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}}, {{0.7557613140761708, -1.3090169943749475`, 0.5773502691896258}, {1.4012585384440737`, -0.8090169943749475, 0}, { 1.2228474935575286`, -0.5, 0.9341723589627157}}]]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{(Rational[1, 6] (7 + 3 5^Rational[1, 2]))^Rational[1, 2], 0, -3^Rational[-1, 2]}, { Rational[1, 2] (Rational[5, 6] (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), -(Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 2] (Rational[3, 2] (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), 0}}, {{ 1.5115226281523415`, 0, -0.5773502691896258}, {1.0444364486709836`, 0.8090169943749475, -0.9341723589627157}, { 1.4012585384440737`, 0.8090169943749475, 0}}]]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{Root[1 - 36 #^2 + 144 #^4& , 3, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), -(Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, {-(Rational[7, 24] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), -3^Rational[-1, 2]}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), 0}}, {{0.17841104488654497`, 1.3090169943749475`, -0.9341723589627157}, {-0.7557613140761708, 1.3090169943749475`, -0.5773502691896258}, { 0, 1.618033988749895, 0}}]]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{Root[1 - 21 #^2 + 9 #^4& , 1, 0], 0, 3^Rational[-1, 2]}, { Rational[-1, 2] (Rational[5, 6] (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), ( Rational[1, 6] (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 2] 3^Rational[-1, 2], Rational[-1, 2], (Rational[1, 6] (7 + 3 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[-1, 2] 3^Rational[-1, 2], Rational[ 1, 2], (Rational[1, 6] (7 + 3 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 2] (Rational[5, 6] (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), ( Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}}, {{-1.5115226281523415`, 0, 0.5773502691896258}, {-1.0444364486709836`, -0.8090169943749475, 0.9341723589627157}, {-0.2886751345948129, -0.5, 1.5115226281523415`}, {-0.2886751345948129, 0.5, 1.5115226281523415`}, {-1.0444364486709836`, 0.8090169943749475, 0.9341723589627157}}]]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{Root[1 - 36 #^2 + 144 #^4& , 2, 0], Rational[1, 4] (-3 - 5^Rational[1, 2]), ( Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[7, 24] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), 3^ Rational[-1, 2]}, {(Rational[3, 4] + Rational[1, 3] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 2], (Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { 3^Rational[-1, 2], 0, (Rational[1, 6] (7 + 3 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[-1, 2] 3^Rational[-1, 2], Rational[-1, 2], (Rational[1, 6] (7 + 3 5^Rational[1, 2]))^ Rational[1, 2]}}, {{-0.17841104488654497`, -1.3090169943749475`, 0.9341723589627157}, {0.7557613140761708, -1.3090169943749475`, 0.5773502691896258}, {1.2228474935575286`, -0.5, 0.9341723589627157}, { 0.5773502691896258, 0, 1.5115226281523415`}, {-0.2886751345948129, -0.5, 1.5115226281523415`}}]]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{Rational[1, 2] (Rational[3, 2] (3 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), 0}, {(Rational[1, 6] (7 + 3 5^Rational[1, 2]))^Rational[1, 2], 0, -3^Rational[-1, 2]}, { Rational[1, 2] (Rational[3, 2] (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), 0}, {(Rational[3, 4] + Rational[1, 3] 5^Rational[1, 2])^ Rational[1, 2], Rational[ 1, 2], (Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[3, 4] + Rational[1, 3] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 2], (Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}}, {{1.4012585384440737`, -0.8090169943749475, 0}, { 1.5115226281523415`, 0, -0.5773502691896258}, { 1.4012585384440737`, 0.8090169943749475, 0}, {1.2228474935575286`, 0.5, 0.9341723589627157}, {1.2228474935575286`, -0.5, 0.9341723589627157}}]]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{Rational[1, 2] (Rational[5, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), -(Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Root[1 - 36 #^2 + 144 #^4& , 3, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), -(Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), 0}, {(Rational[7, 24] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 3^ Rational[-1, 2]}, { Rational[1, 2] (Rational[3, 2] (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), 0}}, {{1.0444364486709836`, 0.8090169943749475, -0.9341723589627157}, {0.17841104488654497`, 1.3090169943749475`, -0.9341723589627157}, {0, 1.618033988749895, 0}, { 0.7557613140761708, 1.3090169943749475`, 0.5773502691896258}, { 1.4012585384440737`, 0.8090169943749475, 0}}]]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{-(Rational[7, 24] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), -3^Rational[-1, 2]}, { Rational[-1, 2] (Rational[3, 2] (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), 0}, { Rational[-1, 2] (Rational[5, 6] (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), ( Rational[1, 6] (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 36 #^2 + 144 #^4& , 2, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), ( Rational[1, 6] (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), 0}}, {{-0.7557613140761708, 1.3090169943749475`, -0.5773502691896258}, {-1.4012585384440737`, 0.8090169943749475, 0}, {-1.0444364486709836`, 0.8090169943749475, 0.9341723589627157}, {-0.17841104488654497`, 1.3090169943749475`, 0.9341723589627157}, {0, 1.618033988749895, 0}}]]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{Root[1 - 36 #^2 + 144 #^4& , 3, 0], Rational[1, 4] (-3 - 5^ Rational[1, 2]), -(Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, {-(Rational[7, 24] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), -3^ Rational[-1, 2]}, {-(Rational[3, 4] + Rational[1, 3] 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], -(Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, {-3^Rational[-1, 2], 0, Root[ 1 - 21 #^2 + 9 #^4& , 1, 0]}, { Rational[1, 2] 3^Rational[-1, 2], Rational[-1, 2], Root[ 1 - 21 #^2 + 9 #^4& , 1, 0]}}, {{ 0.17841104488654497`, -1.3090169943749475`, -0.9341723589627157}, \ {-0.7557613140761708, -1.3090169943749475`, -0.5773502691896258}, \ {-1.2228474935575286`, -0.5, -0.9341723589627157}, {-0.5773502691896258, 0, -1.5115226281523415`}, { 0.2886751345948129, -0.5, -1.5115226281523415`}}]]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{Rational[1, 2] 3^Rational[-1, 2], Rational[-1, 2], Root[ 1 - 21 #^2 + 9 #^4& , 1, 0]}, {-3^Rational[-1, 2], 0, Root[ 1 - 21 #^2 + 9 #^4& , 1, 0]}, { Rational[1, 2] 3^Rational[-1, 2], Rational[1, 2], Root[ 1 - 21 #^2 + 9 #^4& , 1, 0]}}, {{ 0.2886751345948129, -0.5, -1.5115226281523415`}, {-0.5773502691896258, 0, -1.5115226281523415`}, {0.2886751345948129, 0.5, -1.5115226281523415`}}]]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{-3^Rational[-1, 2], 0, Root[ 1 - 21 #^2 + 9 #^4& , 1, 0]}, {-(Rational[3, 4] + Rational[1, 3] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 2], -(Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, {-(Rational[3, 4] + Rational[1, 3] 5^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2], -(Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}}, {{-0.5773502691896258, 0, -1.5115226281523415`}, {-1.2228474935575286`, -0.5, \ -0.9341723589627157}, {-1.2228474935575286`, 0.5, -0.9341723589627157}}]]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{-(Rational[3, 4] + Rational[1, 3] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 2], -(Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, {-(Rational[7, 24] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), -3^Rational[-1, 2]}, { Rational[-1, 2] (Rational[3, 2] (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), 0}}, {{-1.2228474935575286`, -0.5, -0.9341723589627157}, \ {-0.7557613140761708, -1.3090169943749475`, -0.5773502691896258}, \ {-1.4012585384440737`, -0.8090169943749475, 0}}]]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{-(Rational[7, 24] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), -3^Rational[-1, 2]}, { Root[1 - 36 #^2 + 144 #^4& , 3, 0], Rational[1, 4] (-3 - 5^ Rational[1, 2]), -(Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { 0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}}, {{-0.7557613140761708, -1.3090169943749475`, \ -0.5773502691896258}, { 0.17841104488654497`, -1.3090169943749475`, -0.9341723589627157}, { 0, -1.618033988749895, 0}}]]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{Root[1 - 36 #^2 + 144 #^4& , 3, 0], Rational[1, 4] (-3 - 5^ Rational[1, 2]), -(Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 2] 3^Rational[-1, 2], Rational[-1, 2], Root[ 1 - 21 #^2 + 9 #^4& , 1, 0]}, { Rational[1, 2] (Rational[5, 6] (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (-1 - 5^ Rational[1, 2]), -(Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}}, {{ 0.17841104488654497`, -1.3090169943749475`, -0.9341723589627157}, { 0.2886751345948129, -0.5, -1.5115226281523415`}, { 1.0444364486709836`, -0.8090169943749475, -0.9341723589627157}}]]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{Rational[1, 2] (Rational[5, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (-1 - 5^ Rational[1, 2]), -(Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 6] (7 + 3 5^Rational[1, 2]))^ Rational[1, 2], 0, -3^Rational[-1, 2]}, { Rational[1, 2] (Rational[3, 2] (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), 0}}, {{ 1.0444364486709836`, -0.8090169943749475, -0.9341723589627157}, { 1.5115226281523415`, 0, -0.5773502691896258}, { 1.4012585384440737`, -0.8090169943749475, 0}}]]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{Rational[1, 2] 3^Rational[-1, 2], Rational[1, 2], Root[ 1 - 21 #^2 + 9 #^4& , 1, 0]}, { Root[1 - 36 #^2 + 144 #^4& , 3, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), -(Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 2] (Rational[5, 6] (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), -(Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}}, {{0.2886751345948129, 0.5, -1.5115226281523415`}, { 0.17841104488654497`, 1.3090169943749475`, -0.9341723589627157}, { 1.0444364486709836`, 0.8090169943749475, -0.9341723589627157}}]]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{-(Rational[3, 4] + Rational[1, 3] 5^Rational[1, 2])^ Rational[1, 2], Rational[ 1, 2], -(Rational[1, 6] (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 2] (Rational[3, 2] (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), 0}, {-(Rational[7, 24] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), -3^ Rational[-1, 2]}}, {{-1.2228474935575286`, 0.5, -0.9341723589627157}, {-1.4012585384440737`, 0.8090169943749475, 0}, {-0.7557613140761708, 1.3090169943749475`, -0.5773502691896258}}]]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{Rational[-1, 2] (Rational[3, 2] (3 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), 0}, { Rational[-1, 2] (Rational[5, 6] (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), ( Rational[1, 6] (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 21 #^2 + 9 #^4& , 1, 0], 0, 3^ Rational[-1, 2]}}, {{-1.4012585384440737`, -0.8090169943749475, 0}, {-1.0444364486709836`, -0.8090169943749475, 0.9341723589627157}, {-1.5115226281523415`, 0, 0.5773502691896258}}]]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, {(Rational[7, 24] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), 3^ Rational[-1, 2]}, { Root[1 - 36 #^2 + 144 #^4& , 2, 0], Rational[1, 4] (-3 - 5^Rational[1, 2]), ( Rational[1, 6] (3 + 5^Rational[1, 2]))^Rational[1, 2]}}, {{ 0, -1.618033988749895, 0}, {0.7557613140761708, -1.3090169943749475`, 0.5773502691896258}, {-0.17841104488654497`, -1.3090169943749475`, 0.9341723589627157}}]]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{Rational[1, 2] (Rational[5, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (-1 - 5^ Rational[1, 2]), -(Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 2] 3^Rational[-1, 2], Rational[-1, 2], Root[ 1 - 21 #^2 + 9 #^4& , 1, 0]}, { Rational[1, 2] 3^Rational[-1, 2], Rational[1, 2], Root[ 1 - 21 #^2 + 9 #^4& , 1, 0]}, { Rational[1, 2] (Rational[5, 6] (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), -(Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 6] (7 + 3 5^Rational[1, 2]))^ Rational[1, 2], 0, -3^Rational[-1, 2]}}, {{ 1.0444364486709836`, -0.8090169943749475, -0.9341723589627157}, { 0.2886751345948129, -0.5, -1.5115226281523415`}, {0.2886751345948129, 0.5, -1.5115226281523415`}, {1.0444364486709836`, 0.8090169943749475, -0.9341723589627157}, { 1.5115226281523415`, 0, -0.5773502691896258}}]]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{Rational[1, 2] 3^Rational[-1, 2], Rational[1, 2], Root[ 1 - 21 #^2 + 9 #^4& , 1, 0]}, {-3^Rational[-1, 2], 0, Root[ 1 - 21 #^2 + 9 #^4& , 1, 0]}, {-(Rational[3, 4] + Rational[1, 3] 5^Rational[1, 2])^ Rational[1, 2], Rational[ 1, 2], -(Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, {-(Rational[7, 24] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), -3^Rational[-1, 2]}, { Root[1 - 36 #^2 + 144 #^4& , 3, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), -(Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}}, {{0.2886751345948129, 0.5, -1.5115226281523415`}, {-0.5773502691896258, 0, -1.5115226281523415`}, {-1.2228474935575286`, 0.5, -0.9341723589627157}, {-0.7557613140761708, 1.3090169943749475`, -0.5773502691896258}, {0.17841104488654497`, 1.3090169943749475`, -0.9341723589627157}}]]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{-(Rational[3, 4] + Rational[1, 3] 5^Rational[1, 2])^ Rational[1, 2], Rational[ 1, 2], -(Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, {-(Rational[3, 4] + Rational[1, 3] 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], -(Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[-1, 2] (Rational[3, 2] (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), 0}, { Root[1 - 21 #^2 + 9 #^4& , 1, 0], 0, 3^Rational[-1, 2]}, { Rational[-1, 2] (Rational[3, 2] (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), 0}}, {{-1.2228474935575286`, 0.5, -0.9341723589627157}, {-1.2228474935575286`, -0.5, \ -0.9341723589627157}, {-1.4012585384440737`, -0.8090169943749475, 0}, {-1.5115226281523415`, 0, 0.5773502691896258}, {-1.4012585384440737`, 0.8090169943749475, 0}}]]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{Rational[-1, 2] (Rational[3, 2] (3 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), 0}, {-(Rational[7, 24] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), -3^Rational[-1, 2]}, { 0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, { Root[1 - 36 #^2 + 144 #^4& , 2, 0], Rational[1, 4] (-3 - 5^Rational[1, 2]), ( Rational[1, 6] (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 2] (Rational[5, 6] (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), ( Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}}, {{-1.4012585384440737`, -0.8090169943749475, 0}, {-0.7557613140761708, -1.3090169943749475`, -0.5773502691896258}, \ {0, -1.618033988749895, 0}, {-0.17841104488654497`, -1.3090169943749475`, 0.9341723589627157}, {-1.0444364486709836`, -0.8090169943749475, 0.9341723589627157}}]]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, { Root[1 - 36 #^2 + 144 #^4& , 3, 0], Rational[1, 4] (-3 - 5^ Rational[1, 2]), -(Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 2] (Rational[5, 6] (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (-1 - 5^ Rational[1, 2]), -(Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 2] (Rational[3, 2] (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), 0}, {(Rational[7, 24] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), 3^ Rational[-1, 2]}}, {{0, -1.618033988749895, 0}, { 0.17841104488654497`, -1.3090169943749475`, -0.9341723589627157}, { 1.0444364486709836`, -0.8090169943749475, -0.9341723589627157}, { 1.4012585384440737`, -0.8090169943749475, 0}, { 0.7557613140761708, -1.3090169943749475`, 0.5773502691896258}}]]]}], "}"}]], "Output", CellLabel->"Out[46]=",ExpressionUUID->"0f508f72-8d51-4f13-bdb1-1b9b5a797186"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Show", "[", "%", "]"}]], "Input", CellLabel->"In[47]:=",ExpressionUUID->"db1dfe90-9a44-44e6-ad94-917bbde2c5e4"], Cell[BoxData[ Graphics3DBox[{ Polygon3DBox[ NCache[{{Rational[-1, 2] 3^Rational[-1, 2], Rational[ 1, 2], (Rational[1, 6] (7 + 3 5^Rational[1, 2]))^Rational[1, 2]}, { 3^Rational[-1, 2], 0, (Rational[1, 6] (7 + 3 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[3, 4] + Rational[1, 3] 5^Rational[1, 2])^ Rational[1, 2], Rational[ 1, 2], (Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[7, 24] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 3^ Rational[-1, 2]}, { Root[1 - 36 #^2 + 144 #^4& , 2, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), ( Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}}, {{-0.2886751345948129, 0.5, 1.5115226281523415`}, { 0.5773502691896258, 0, 1.5115226281523415`}, {1.2228474935575286`, 0.5, 0.9341723589627157}, {0.7557613140761708, 1.3090169943749475`, 0.5773502691896258}, {-0.17841104488654497`, 1.3090169943749475`, 0.9341723589627157}}]], Polygon3DBox[ NCache[{{Rational[-1, 2] 3^Rational[-1, 2], Rational[-1, 2], (Rational[1, 6] (7 + 3 5^Rational[1, 2]))^ Rational[1, 2]}, { 3^Rational[-1, 2], 0, (Rational[1, 6] (7 + 3 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[-1, 2] 3^Rational[-1, 2], Rational[ 1, 2], (Rational[1, 6] (7 + 3 5^Rational[1, 2]))^ Rational[1, 2]}}, {{-0.2886751345948129, -0.5, 1.5115226281523415`}, { 0.5773502691896258, 0, 1.5115226281523415`}, {-0.2886751345948129, 0.5, 1.5115226281523415`}}]], Polygon3DBox[ NCache[{{(Rational[3, 4] + Rational[1, 3] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 2], (Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[3, 4] + Rational[1, 3] 5^Rational[1, 2])^ Rational[1, 2], Rational[ 1, 2], (Rational[1, 6] (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { 3^Rational[-1, 2], 0, (Rational[1, 6] (7 + 3 5^Rational[1, 2]))^ Rational[1, 2]}}, {{1.2228474935575286`, -0.5, 0.9341723589627157}, { 1.2228474935575286`, 0.5, 0.9341723589627157}, { 0.5773502691896258, 0, 1.5115226281523415`}}]], Polygon3DBox[ NCache[{{Rational[1, 2] (Rational[3, 2] (3 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), 0}, {(Rational[7, 24] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 3^ Rational[-1, 2]}, {(Rational[3, 4] + Rational[1, 3] 5^Rational[1, 2])^ Rational[1, 2], Rational[ 1, 2], (Rational[1, 6] (3 + 5^Rational[1, 2]))^Rational[1, 2]}}, {{ 1.4012585384440737`, 0.8090169943749475, 0}, {0.7557613140761708, 1.3090169943749475`, 0.5773502691896258}, {1.2228474935575286`, 0.5, 0.9341723589627157}}]], Polygon3DBox[ NCache[{{0, Rational[1, 2] (1 + 5^Rational[1, 2]), 0}, { Root[1 - 36 #^2 + 144 #^4& , 2, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), ( Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[7, 24] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 3^ Rational[-1, 2]}}, {{0, 1.618033988749895, 0}, {-0.17841104488654497`, 1.3090169943749475`, 0.9341723589627157}, {0.7557613140761708, 1.3090169943749475`, 0.5773502691896258}}]], Polygon3DBox[ NCache[{{Rational[-1, 2] (Rational[5, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), ( Rational[1, 6] (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 2] 3^Rational[-1, 2], Rational[ 1, 2], (Rational[1, 6] (7 + 3 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 36 #^2 + 144 #^4& , 2, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), ( Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}}, {{-1.0444364486709836`, 0.8090169943749475, 0.9341723589627157}, {-0.2886751345948129, 0.5, 1.5115226281523415`}, {-0.17841104488654497`, 1.3090169943749475`, 0.9341723589627157}}]], Polygon3DBox[ NCache[{{Rational[-1, 2] (Rational[3, 2] (3 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), 0}, { Root[1 - 21 #^2 + 9 #^4& , 1, 0], 0, 3^Rational[-1, 2]}, { Rational[-1, 2] (Rational[5, 6] (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), ( Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}}, {{-1.4012585384440737`, 0.8090169943749475, 0}, {-1.5115226281523415`, 0, 0.5773502691896258}, {-1.0444364486709836`, 0.8090169943749475, 0.9341723589627157}}]], Polygon3DBox[ NCache[{{Rational[-1, 2] (Rational[5, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), ( Rational[1, 6] (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 36 #^2 + 144 #^4& , 2, 0], Rational[1, 4] (-3 - 5^Rational[1, 2]), ( Rational[1, 6] (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 2] 3^Rational[-1, 2], Rational[-1, 2], (Rational[1, 6] (7 + 3 5^Rational[1, 2]))^ Rational[1, 2]}}, {{-1.0444364486709836`, -0.8090169943749475, 0.9341723589627157}, {-0.17841104488654497`, -1.3090169943749475`, 0.9341723589627157}, {-0.2886751345948129, -0.5, 1.5115226281523415`}}]], Polygon3DBox[ NCache[{{(Rational[7, 24] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), 3^ Rational[-1, 2]}, { Rational[1, 2] (Rational[3, 2] (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), 0}, {(Rational[3, 4] + Rational[1, 3] 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], (Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}}, {{0.7557613140761708, -1.3090169943749475`, 0.5773502691896258}, {1.4012585384440737`, -0.8090169943749475, 0}, { 1.2228474935575286`, -0.5, 0.9341723589627157}}]], Polygon3DBox[ NCache[{{(Rational[1, 6] (7 + 3 5^Rational[1, 2]))^Rational[1, 2], 0, -3^Rational[-1, 2]}, { Rational[1, 2] (Rational[5, 6] (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), -(Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 2] (Rational[3, 2] (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), 0}}, {{ 1.5115226281523415`, 0, -0.5773502691896258}, {1.0444364486709836`, 0.8090169943749475, -0.9341723589627157}, { 1.4012585384440737`, 0.8090169943749475, 0}}]], Polygon3DBox[ NCache[{{Root[1 - 36 #^2 + 144 #^4& , 3, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), -(Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, {-(Rational[7, 24] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), -3^Rational[-1, 2]}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), 0}}, {{0.17841104488654497`, 1.3090169943749475`, -0.9341723589627157}, {-0.7557613140761708, 1.3090169943749475`, -0.5773502691896258}, {0, 1.618033988749895, 0}}]], Polygon3DBox[ NCache[{{Root[1 - 21 #^2 + 9 #^4& , 1, 0], 0, 3^Rational[-1, 2]}, { Rational[-1, 2] (Rational[5, 6] (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), ( Rational[1, 6] (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 2] 3^Rational[-1, 2], Rational[-1, 2], (Rational[1, 6] (7 + 3 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[-1, 2] 3^Rational[-1, 2], Rational[ 1, 2], (Rational[1, 6] (7 + 3 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 2] (Rational[5, 6] (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), ( Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}}, {{-1.5115226281523415`, 0, 0.5773502691896258}, {-1.0444364486709836`, -0.8090169943749475, 0.9341723589627157}, {-0.2886751345948129, -0.5, 1.5115226281523415`}, {-0.2886751345948129, 0.5, 1.5115226281523415`}, {-1.0444364486709836`, 0.8090169943749475, 0.9341723589627157}}]], Polygon3DBox[ NCache[{{Root[1 - 36 #^2 + 144 #^4& , 2, 0], Rational[1, 4] (-3 - 5^Rational[1, 2]), ( Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[7, 24] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), 3^ Rational[-1, 2]}, {(Rational[3, 4] + Rational[1, 3] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 2], (Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { 3^Rational[-1, 2], 0, (Rational[1, 6] (7 + 3 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[-1, 2] 3^Rational[-1, 2], Rational[-1, 2], (Rational[1, 6] (7 + 3 5^Rational[1, 2]))^ Rational[1, 2]}}, {{-0.17841104488654497`, -1.3090169943749475`, 0.9341723589627157}, {0.7557613140761708, -1.3090169943749475`, 0.5773502691896258}, {1.2228474935575286`, -0.5, 0.9341723589627157}, { 0.5773502691896258, 0, 1.5115226281523415`}, {-0.2886751345948129, -0.5, 1.5115226281523415`}}]], Polygon3DBox[ NCache[{{Rational[1, 2] (Rational[3, 2] (3 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), 0}, {(Rational[1, 6] (7 + 3 5^Rational[1, 2]))^Rational[1, 2], 0, -3^Rational[-1, 2]}, { Rational[1, 2] (Rational[3, 2] (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), 0}, {(Rational[3, 4] + Rational[1, 3] 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2], (Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[3, 4] + Rational[1, 3] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 2], (Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}}, {{1.4012585384440737`, -0.8090169943749475, 0}, { 1.5115226281523415`, 0, -0.5773502691896258}, { 1.4012585384440737`, 0.8090169943749475, 0}, {1.2228474935575286`, 0.5, 0.9341723589627157}, {1.2228474935575286`, -0.5, 0.9341723589627157}}]], Polygon3DBox[ NCache[{{Rational[1, 2] (Rational[5, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), -(Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Root[1 - 36 #^2 + 144 #^4& , 3, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), -(Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), 0}, {(Rational[7, 24] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 3^ Rational[-1, 2]}, { Rational[1, 2] (Rational[3, 2] (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), 0}}, {{1.0444364486709836`, 0.8090169943749475, -0.9341723589627157}, {0.17841104488654497`, 1.3090169943749475`, -0.9341723589627157}, {0, 1.618033988749895, 0}, { 0.7557613140761708, 1.3090169943749475`, 0.5773502691896258}, { 1.4012585384440737`, 0.8090169943749475, 0}}]], Polygon3DBox[ NCache[{{-(Rational[7, 24] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), -3^Rational[-1, 2]}, { Rational[-1, 2] (Rational[3, 2] (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), 0}, { Rational[-1, 2] (Rational[5, 6] (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), ( Rational[1, 6] (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 36 #^2 + 144 #^4& , 2, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), ( Rational[1, 6] (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), 0}}, {{-0.7557613140761708, 1.3090169943749475`, -0.5773502691896258}, {-1.4012585384440737`, 0.8090169943749475, 0}, {-1.0444364486709836`, 0.8090169943749475, 0.9341723589627157}, {-0.17841104488654497`, 1.3090169943749475`, 0.9341723589627157}, {0, 1.618033988749895, 0}}]], Polygon3DBox[ NCache[{{Root[1 - 36 #^2 + 144 #^4& , 3, 0], Rational[1, 4] (-3 - 5^ Rational[1, 2]), -(Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, {-(Rational[7, 24] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), -3^ Rational[-1, 2]}, {-(Rational[3, 4] + Rational[1, 3] 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], -(Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, {-3^Rational[-1, 2], 0, Root[ 1 - 21 #^2 + 9 #^4& , 1, 0]}, { Rational[1, 2] 3^Rational[-1, 2], Rational[-1, 2], Root[ 1 - 21 #^2 + 9 #^4& , 1, 0]}}, {{ 0.17841104488654497`, -1.3090169943749475`, -0.9341723589627157}, \ {-0.7557613140761708, -1.3090169943749475`, -0.5773502691896258}, \ {-1.2228474935575286`, -0.5, -0.9341723589627157}, {-0.5773502691896258, 0, -1.5115226281523415`}, { 0.2886751345948129, -0.5, -1.5115226281523415`}}]], Polygon3DBox[ NCache[{{Rational[1, 2] 3^Rational[-1, 2], Rational[-1, 2], Root[ 1 - 21 #^2 + 9 #^4& , 1, 0]}, {-3^Rational[-1, 2], 0, Root[ 1 - 21 #^2 + 9 #^4& , 1, 0]}, { Rational[1, 2] 3^Rational[-1, 2], Rational[1, 2], Root[ 1 - 21 #^2 + 9 #^4& , 1, 0]}}, {{ 0.2886751345948129, -0.5, -1.5115226281523415`}, {-0.5773502691896258, 0, -1.5115226281523415`}, {0.2886751345948129, 0.5, -1.5115226281523415`}}]], Polygon3DBox[ NCache[{{-3^Rational[-1, 2], 0, Root[ 1 - 21 #^2 + 9 #^4& , 1, 0]}, {-(Rational[3, 4] + Rational[1, 3] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 2], -(Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, {-(Rational[3, 4] + Rational[1, 3] 5^Rational[1, 2])^ Rational[1, 2], Rational[ 1, 2], -(Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}}, {{-0.5773502691896258, 0, -1.5115226281523415`}, {-1.2228474935575286`, -0.5, \ -0.9341723589627157}, {-1.2228474935575286`, 0.5, -0.9341723589627157}}]], Polygon3DBox[ NCache[{{-(Rational[3, 4] + Rational[1, 3] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 2], -(Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, {-(Rational[7, 24] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), -3^Rational[-1, 2]}, { Rational[-1, 2] (Rational[3, 2] (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), 0}}, {{-1.2228474935575286`, -0.5, -0.9341723589627157}, \ {-0.7557613140761708, -1.3090169943749475`, -0.5773502691896258}, \ {-1.4012585384440737`, -0.8090169943749475, 0}}]], Polygon3DBox[ NCache[{{-(Rational[7, 24] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), -3^Rational[-1, 2]}, { Root[1 - 36 #^2 + 144 #^4& , 3, 0], Rational[1, 4] (-3 - 5^ Rational[1, 2]), -(Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { 0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}}, {{-0.7557613140761708, -1.3090169943749475`, \ -0.5773502691896258}, { 0.17841104488654497`, -1.3090169943749475`, -0.9341723589627157}, { 0, -1.618033988749895, 0}}]], Polygon3DBox[ NCache[{{Root[1 - 36 #^2 + 144 #^4& , 3, 0], Rational[1, 4] (-3 - 5^ Rational[1, 2]), -(Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 2] 3^Rational[-1, 2], Rational[-1, 2], Root[ 1 - 21 #^2 + 9 #^4& , 1, 0]}, { Rational[1, 2] (Rational[5, 6] (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (-1 - 5^ Rational[1, 2]), -(Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}}, {{ 0.17841104488654497`, -1.3090169943749475`, -0.9341723589627157}, { 0.2886751345948129, -0.5, -1.5115226281523415`}, { 1.0444364486709836`, -0.8090169943749475, -0.9341723589627157}}]], Polygon3DBox[ NCache[{{Rational[1, 2] (Rational[5, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (-1 - 5^ Rational[1, 2]), -(Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 6] (7 + 3 5^Rational[1, 2]))^ Rational[1, 2], 0, -3^Rational[-1, 2]}, { Rational[1, 2] (Rational[3, 2] (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), 0}}, {{ 1.0444364486709836`, -0.8090169943749475, -0.9341723589627157}, { 1.5115226281523415`, 0, -0.5773502691896258}, { 1.4012585384440737`, -0.8090169943749475, 0}}]], Polygon3DBox[ NCache[{{Rational[1, 2] 3^Rational[-1, 2], Rational[1, 2], Root[ 1 - 21 #^2 + 9 #^4& , 1, 0]}, { Root[1 - 36 #^2 + 144 #^4& , 3, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), -(Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 2] (Rational[5, 6] (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), -(Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}}, {{0.2886751345948129, 0.5, -1.5115226281523415`}, { 0.17841104488654497`, 1.3090169943749475`, -0.9341723589627157}, { 1.0444364486709836`, 0.8090169943749475, -0.9341723589627157}}]], Polygon3DBox[ NCache[{{-(Rational[3, 4] + Rational[1, 3] 5^Rational[1, 2])^ Rational[1, 2], Rational[ 1, 2], -(Rational[1, 6] (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 2] (Rational[3, 2] (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), 0}, {-(Rational[7, 24] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), -3^ Rational[-1, 2]}}, {{-1.2228474935575286`, 0.5, -0.9341723589627157}, {-1.4012585384440737`, 0.8090169943749475, 0}, {-0.7557613140761708, 1.3090169943749475`, -0.5773502691896258}}]], Polygon3DBox[ NCache[{{Rational[-1, 2] (Rational[3, 2] (3 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), 0}, { Rational[-1, 2] (Rational[5, 6] (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), ( Rational[1, 6] (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 21 #^2 + 9 #^4& , 1, 0], 0, 3^ Rational[-1, 2]}}, {{-1.4012585384440737`, -0.8090169943749475, 0}, {-1.0444364486709836`, -0.8090169943749475, 0.9341723589627157}, {-1.5115226281523415`, 0, 0.5773502691896258}}]], Polygon3DBox[ NCache[{{0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, {(Rational[7, 24] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), 3^ Rational[-1, 2]}, { Root[1 - 36 #^2 + 144 #^4& , 2, 0], Rational[1, 4] (-3 - 5^Rational[1, 2]), ( Rational[1, 6] (3 + 5^Rational[1, 2]))^Rational[1, 2]}}, {{ 0, -1.618033988749895, 0}, {0.7557613140761708, -1.3090169943749475`, 0.5773502691896258}, {-0.17841104488654497`, -1.3090169943749475`, 0.9341723589627157}}]], Polygon3DBox[ NCache[{{Rational[1, 2] (Rational[5, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (-1 - 5^ Rational[1, 2]), -(Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 2] 3^Rational[-1, 2], Rational[-1, 2], Root[ 1 - 21 #^2 + 9 #^4& , 1, 0]}, { Rational[1, 2] 3^Rational[-1, 2], Rational[1, 2], Root[ 1 - 21 #^2 + 9 #^4& , 1, 0]}, { Rational[1, 2] (Rational[5, 6] (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), -(Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 6] (7 + 3 5^Rational[1, 2]))^ Rational[1, 2], 0, -3^Rational[-1, 2]}}, {{ 1.0444364486709836`, -0.8090169943749475, -0.9341723589627157}, { 0.2886751345948129, -0.5, -1.5115226281523415`}, {0.2886751345948129, 0.5, -1.5115226281523415`}, {1.0444364486709836`, 0.8090169943749475, -0.9341723589627157}, { 1.5115226281523415`, 0, -0.5773502691896258}}]], Polygon3DBox[ NCache[{{Rational[1, 2] 3^Rational[-1, 2], Rational[1, 2], Root[ 1 - 21 #^2 + 9 #^4& , 1, 0]}, {-3^Rational[-1, 2], 0, Root[ 1 - 21 #^2 + 9 #^4& , 1, 0]}, {-(Rational[3, 4] + Rational[1, 3] 5^Rational[1, 2])^ Rational[1, 2], Rational[ 1, 2], -(Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, {-(Rational[7, 24] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), -3^Rational[-1, 2]}, { Root[1 - 36 #^2 + 144 #^4& , 3, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), -(Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}}, {{0.2886751345948129, 0.5, -1.5115226281523415`}, {-0.5773502691896258, 0, -1.5115226281523415`}, {-1.2228474935575286`, 0.5, -0.9341723589627157}, {-0.7557613140761708, 1.3090169943749475`, -0.5773502691896258}, {0.17841104488654497`, 1.3090169943749475`, -0.9341723589627157}}]], Polygon3DBox[ NCache[{{-(Rational[3, 4] + Rational[1, 3] 5^Rational[1, 2])^ Rational[1, 2], Rational[ 1, 2], -(Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, {-(Rational[3, 4] + Rational[1, 3] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 2], -(Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[-1, 2] (Rational[3, 2] (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), 0}, { Root[1 - 21 #^2 + 9 #^4& , 1, 0], 0, 3^Rational[-1, 2]}, { Rational[-1, 2] (Rational[3, 2] (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), 0}}, {{-1.2228474935575286`, 0.5, -0.9341723589627157}, {-1.2228474935575286`, -0.5, \ -0.9341723589627157}, {-1.4012585384440737`, -0.8090169943749475, 0}, {-1.5115226281523415`, 0, 0.5773502691896258}, {-1.4012585384440737`, 0.8090169943749475, 0}}]], Polygon3DBox[ NCache[{{Rational[-1, 2] (Rational[3, 2] (3 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), 0}, {-(Rational[7, 24] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), -3^Rational[-1, 2]}, { 0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, { Root[1 - 36 #^2 + 144 #^4& , 2, 0], Rational[1, 4] (-3 - 5^Rational[1, 2]), ( Rational[1, 6] (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 2] (Rational[5, 6] (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), ( Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}}, {{-1.4012585384440737`, -0.8090169943749475, 0}, {-0.7557613140761708, -1.3090169943749475`, -0.5773502691896258}, { 0, -1.618033988749895, 0}, {-0.17841104488654497`, -1.3090169943749475`, 0.9341723589627157}, {-1.0444364486709836`, -0.8090169943749475, 0.9341723589627157}}]], Polygon3DBox[ NCache[{{0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, { Root[1 - 36 #^2 + 144 #^4& , 3, 0], Rational[1, 4] (-3 - 5^ Rational[1, 2]), -(Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 2] (Rational[5, 6] (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (-1 - 5^ Rational[1, 2]), -(Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 2] (Rational[3, 2] (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), 0}, {(Rational[7, 24] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), 3^ Rational[-1, 2]}}, {{0, -1.618033988749895, 0}, { 0.17841104488654497`, -1.3090169943749475`, -0.9341723589627157}, { 1.0444364486709836`, -0.8090169943749475, -0.9341723589627157}, { 1.4012585384440737`, -0.8090169943749475, 0}, { 0.7557613140761708, -1.3090169943749475`, 0.5773502691896258}}]]}]], "Output", CellLabel->"Out[47]=",ExpressionUUID->"0e8c4f72-d858-4470-8538-e6312adb91cc"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Polyhedra", "Subsection",ExpressionUUID->"c104ea1a-0af8-46c7-a0e3-d388011c08ae"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}]], "Input", CellLabel->"In[48]:=",ExpressionUUID->"d7704def-ed9e-4168-9832-27220ce8a871"], Cell[BoxData[ RowBox[{"{", InterpretationBox[ RowBox[{ TagBox["Polyhedron", "SummaryHead"], "[", DynamicModuleBox[{Typeset`open$$ = False, Typeset`embedState$$ = "Ready", Typeset`spolyhedron$$ = Quiet[ Polyhedron[{{(Rational[1, 6] (7 + 3 5^Rational[1, 2]))^Rational[1, 2], 0, -3^Rational[-1, 2]}, { Root[1 - 21 #^2 + 9 #^4& , 1, 0], 0, 3^Rational[-1, 2]}, { Rational[1, 2] 3^Rational[-1, 2], Rational[-1, 2], Root[ 1 - 21 #^2 + 9 #^4& , 1, 0]}, {-(Rational[3, 4] + Rational[1, 3] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 2], -(Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 2] (Rational[3, 2] (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), 0}, { Rational[-1, 2] (Rational[5, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), ( Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[7, 24] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 3^Rational[-1, 2]}, { Root[1 - 36 #^2 + 144 #^4& , 2, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), ( Rational[1, 6] (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 2] 3^Rational[-1, 2], Rational[1, 2], Root[ 1 - 21 #^2 + 9 #^4& , 1, 0]}, {-(Rational[3, 4] + Rational[1, 3] 5^Rational[1, 2])^ Rational[1, 2], Rational[ 1, 2], -(Rational[1, 6] (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { 0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, { Root[1 - 36 #^2 + 144 #^4& , 3, 0], Rational[1, 4] (-3 - 5^ Rational[1, 2]), -(Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, {-(Rational[7, 24] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), -3^Rational[-1, 2]}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), 0}, { Rational[1, 2] (Rational[5, 6] (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), -(Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[-1, 2] (Rational[3, 2] (3 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), 0}, {-3^Rational[-1, 2], 0, Root[1 - 21 #^2 + 9 #^4& , 1, 0]}, { Rational[1, 2] (Rational[3, 2] (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), 0}, { Rational[-1, 2] (Rational[5, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), ( Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[7, 24] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), 3^Rational[-1, 2]}, { Root[1 - 36 #^2 + 144 #^4& , 2, 0], Rational[1, 4] (-3 - 5^Rational[1, 2]), ( Rational[1, 6] (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 36 #^2 + 144 #^4& , 3, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), -(Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, {-(Rational[7, 24] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), -3^Rational[-1, 2]}, { 3^Rational[-1, 2], 0, (Rational[1, 6] (7 + 3 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[3, 4] + Rational[1, 3] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 2], (Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, {Rational[-1, 2] 3^Rational[-1, 2], Rational[-1, 2], (Rational[1, 6] (7 + 3 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 2] (Rational[5, 6] (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (-1 - 5^ Rational[1, 2]), -(Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[-1, 2] (Rational[3, 2] (3 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), 0}, {(Rational[3, 4] + Rational[1, 3] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 2], (Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, {Rational[-1, 2] 3^Rational[-1, 2], Rational[1, 2], (Rational[1, 6] (7 + 3 5^Rational[1, 2]))^ Rational[1, 2]}}, {{30, 24, 29, 7, 8}, {26, 24, 30}, {25, 29, 24}, { 5, 7, 29}, {14, 8, 7}, {6, 30, 8}, {16, 2, 6}, {19, 21, 26}, {20, 18, 25}, {1, 15, 5}, {22, 23, 14}, {2, 19, 26, 30, 6}, {21, 20, 25, 24, 26}, {18, 1, 5, 29, 25}, {15, 22, 14, 7, 5}, {23, 16, 6, 8, 14}, {12, 13, 4, 17, 3}, {3, 17, 9}, {17, 4, 10}, {4, 13, 28}, {13, 12, 11}, { 12, 3, 27}, {27, 1, 18}, {9, 22, 15}, {10, 16, 23}, {28, 19, 2}, {11, 20, 21}, {27, 3, 9, 15, 1}, {9, 17, 10, 23, 22}, {10, 4, 28, 2, 16}, { 28, 13, 11, 21, 19}, {11, 12, 27, 18, 20}}]]}, TemplateBox[{ PaneSelectorBox[{False -> GridBox[{{ PaneBox[ ButtonBox[ DynamicBox[ FEPrivate`FrontEndResource["FEBitmaps", "SummaryBoxOpener"]], ButtonFunction :> (Typeset`open$$ = True), Appearance -> None, BaseStyle -> {}, Evaluator -> Automatic, Method -> "Preemptive"], Alignment -> {Center, Center}, ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], Graphics3DBox[{ Directive[ Hue[0.58, 0.4, 1], Opacity[0.5], EdgeForm[ GrayLevel[1]]], PolyhedronBox[ NCache[{{(Rational[1, 6] (7 + 3 5^Rational[1, 2]))^ Rational[1, 2], 0, -3^Rational[-1, 2]}, { Root[1 - 21 #^2 + 9 #^4& , 1, 0], 0, 3^Rational[-1, 2]}, { Rational[1, 2] 3^Rational[-1, 2], Rational[-1, 2], Root[ 1 - 21 #^2 + 9 #^4& , 1, 0]}, {-(Rational[3, 4] + Rational[1, 3] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 2], -(Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 2] (Rational[3, 2] (3 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), 0}, {Rational[-1, 2] ( Rational[5, 6] (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), ( Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[7, 24] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 3^Rational[-1, 2]}, { Root[1 - 36 #^2 + 144 #^4& , 2, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), ( Rational[1, 6] (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 2] 3^Rational[-1, 2], Rational[1, 2], Root[ 1 - 21 #^2 + 9 #^4& , 1, 0]}, {-(Rational[3, 4] + Rational[1, 3] 5^Rational[1, 2])^ Rational[1, 2], Rational[ 1, 2], -(Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { 0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, { Root[1 - 36 #^2 + 144 #^4& , 3, 0], Rational[1, 4] (-3 - 5^ Rational[1, 2]), -(Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, {-(Rational[7, 24] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), -3^ Rational[-1, 2]}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), 0}, { Rational[1, 2] (Rational[5, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), -( Rational[1, 6] (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 2] (Rational[3, 2] (3 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), 0}, {-3^Rational[-1, 2], 0, Root[1 - 21 #^2 + 9 #^4& , 1, 0]}, { Rational[1, 2] (Rational[3, 2] (3 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), 0}, {Rational[-1, 2] ( Rational[5, 6] (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), ( Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[7, 24] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), 3^ Rational[-1, 2]}, { Root[1 - 36 #^2 + 144 #^4& , 2, 0], Rational[1, 4] (-3 - 5^Rational[1, 2]), ( Rational[1, 6] (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 36 #^2 + 144 #^4& , 3, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), -( Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, {-(Rational[7, 24] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), -3^ Rational[-1, 2]}, { 3^Rational[-1, 2], 0, (Rational[1, 6] (7 + 3 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[3, 4] + Rational[1, 3] 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], (Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, {Rational[-1, 2] 3^Rational[-1, 2], Rational[-1, 2], (Rational[1, 6] (7 + 3 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 2] (Rational[5, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (-1 - 5^ Rational[1, 2]), -(Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[-1, 2] (Rational[3, 2] (3 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), 0}, {(Rational[3, 4] + Rational[1, 3] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 2], (Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, {Rational[-1, 2] 3^Rational[-1, 2], Rational[1, 2], (Rational[1, 6] (7 + 3 5^Rational[1, 2]))^ Rational[1, 2]}}, {{ 1.5115226281523415`, 0, -0.5773502691896258}, {-1.5115226281523415`, 0, 0.5773502691896258}, { 0.2886751345948129, -0.5, -1.5115226281523415`}, \ {-1.2228474935575286`, -0.5, -0.9341723589627157}, { 1.4012585384440737`, 0.8090169943749475, 0}, {-1.0444364486709836`, 0.8090169943749475, 0.9341723589627157}, {0.7557613140761708, 1.3090169943749475`, 0.5773502691896258}, {-0.17841104488654497`, 1.3090169943749475`, 0.9341723589627157}, { 0.2886751345948129, 0.5, -1.5115226281523415`}, {-1.2228474935575286`, 0.5, -0.9341723589627157}, {0, -1.618033988749895, 0}, { 0.17841104488654497`, -1.3090169943749475`, \ -0.9341723589627157}, {-0.7557613140761708, -1.3090169943749475`, \ -0.5773502691896258}, {0, 1.618033988749895, 0}, {1.0444364486709836`, 0.8090169943749475, -0.9341723589627157}, \ {-1.4012585384440737`, 0.8090169943749475, 0}, {-0.5773502691896258, 0, -1.5115226281523415`}, { 1.4012585384440737`, -0.8090169943749475, 0}, {-1.0444364486709836`, -0.8090169943749475, 0.9341723589627157}, { 0.7557613140761708, -1.3090169943749475`, 0.5773502691896258}, {-0.17841104488654497`, \ -1.3090169943749475`, 0.9341723589627157}, {0.17841104488654497`, 1.3090169943749475`, -0.9341723589627157}, \ {-0.7557613140761708, 1.3090169943749475`, -0.5773502691896258}, { 0.5773502691896258, 0, 1.5115226281523415`}, { 1.2228474935575286`, -0.5, 0.9341723589627157}, {-0.2886751345948129, -0.5, 1.5115226281523415`}, { 1.0444364486709836`, -0.8090169943749475, \ -0.9341723589627157}, {-1.4012585384440737`, -0.8090169943749475, 0}, { 1.2228474935575286`, 0.5, 0.9341723589627157}, {-0.2886751345948129, 0.5, 1.5115226281523415`}}], {{30, 24, 29, 7, 8}, {26, 24, 30}, { 25, 29, 24}, {5, 7, 29}, {14, 8, 7}, {6, 30, 8}, {16, 2, 6}, {19, 21, 26}, {20, 18, 25}, {1, 15, 5}, {22, 23, 14}, {2, 19, 26, 30, 6}, {21, 20, 25, 24, 26}, {18, 1, 5, 29, 25}, { 15, 22, 14, 7, 5}, {23, 16, 6, 8, 14}, {12, 13, 4, 17, 3}, { 3, 17, 9}, {17, 4, 10}, {4, 13, 28}, {13, 12, 11}, {12, 3, 27}, {27, 1, 18}, {9, 22, 15}, {10, 16, 23}, {28, 19, 2}, { 11, 20, 21}, {27, 3, 9, 15, 1}, {9, 17, 10, 23, 22}, {10, 4, 28, 2, 16}, {28, 13, 11, 21, 19}, {11, 12, 27, 18, 20}}]}, ImageSize -> Dynamic[{5.25, 3.5} (CurrentValue["FontCapHeight"]/ AbsoluteCurrentValue[Magnification])], Boxed -> False, Lighting -> {{"Ambient", RGBColor[0.4, 0.45, 0.5]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{2, 0, 2}]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{2, 2, 2}]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{0, 2, 2}]}}, Method -> {"ShrinkWrap" -> True}], GridBox[{{ RowBox[{ TagBox["\"Number of points: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["30", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Number of faces: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["32", "SummaryItem"]}]}}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> { "Columns" -> {{2}}, "Rows" -> {{Automatic}}}, BaseStyle -> { ShowStringCharacters -> False, NumberMarks -> False, PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, BaselinePosition -> {1, 1}], True -> GridBox[{{ PaneBox[ ButtonBox[ DynamicBox[ FEPrivate`FrontEndResource["FEBitmaps", "SummaryBoxCloser"]], ButtonFunction :> (Typeset`open$$ = False), Appearance -> None, BaseStyle -> {}, Evaluator -> Automatic, Method -> "Preemptive"], Alignment -> {Center, Center}, ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], Graphics3DBox[{ Directive[ Hue[0.58, 0.4, 1], Opacity[0.5], EdgeForm[ GrayLevel[1]]], PolyhedronBox[ NCache[{{(Rational[1, 6] (7 + 3 5^Rational[1, 2]))^ Rational[1, 2], 0, -3^Rational[-1, 2]}, { Root[1 - 21 #^2 + 9 #^4& , 1, 0], 0, 3^Rational[-1, 2]}, { Rational[1, 2] 3^Rational[-1, 2], Rational[-1, 2], Root[ 1 - 21 #^2 + 9 #^4& , 1, 0]}, {-(Rational[3, 4] + Rational[1, 3] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 2], -(Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 2] (Rational[3, 2] (3 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), 0}, {Rational[-1, 2] ( Rational[5, 6] (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), ( Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[7, 24] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 3^Rational[-1, 2]}, { Root[1 - 36 #^2 + 144 #^4& , 2, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), ( Rational[1, 6] (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 2] 3^Rational[-1, 2], Rational[1, 2], Root[ 1 - 21 #^2 + 9 #^4& , 1, 0]}, {-(Rational[3, 4] + Rational[1, 3] 5^Rational[1, 2])^ Rational[1, 2], Rational[ 1, 2], -(Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { 0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, { Root[1 - 36 #^2 + 144 #^4& , 3, 0], Rational[1, 4] (-3 - 5^ Rational[1, 2]), -(Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, {-(Rational[7, 24] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), -3^ Rational[-1, 2]}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), 0}, { Rational[1, 2] (Rational[5, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), -( Rational[1, 6] (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 2] (Rational[3, 2] (3 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), 0}, {-3^Rational[-1, 2], 0, Root[1 - 21 #^2 + 9 #^4& , 1, 0]}, { Rational[1, 2] (Rational[3, 2] (3 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), 0}, { Rational[-1, 2] (Rational[5, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), ( Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[7, 24] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), 3^ Rational[-1, 2]}, { Root[1 - 36 #^2 + 144 #^4& , 2, 0], Rational[1, 4] (-3 - 5^Rational[1, 2]), ( Rational[1, 6] (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 36 #^2 + 144 #^4& , 3, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), -( Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, {-(Rational[7, 24] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), -3^ Rational[-1, 2]}, { 3^Rational[-1, 2], 0, (Rational[1, 6] (7 + 3 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[3, 4] + Rational[1, 3] 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], (Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, {Rational[-1, 2] 3^Rational[-1, 2], Rational[-1, 2], (Rational[1, 6] (7 + 3 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 2] (Rational[5, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (-1 - 5^ Rational[1, 2]), -(Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[-1, 2] (Rational[3, 2] (3 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), 0}, {(Rational[3, 4] + Rational[1, 3] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 2], (Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, {Rational[-1, 2] 3^Rational[-1, 2], Rational[1, 2], (Rational[1, 6] (7 + 3 5^Rational[1, 2]))^ Rational[1, 2]}}, {{ 1.5115226281523415`, 0, -0.5773502691896258}, {-1.5115226281523415`, 0, 0.5773502691896258}, { 0.2886751345948129, -0.5, -1.5115226281523415`}, \ {-1.2228474935575286`, -0.5, -0.9341723589627157}, { 1.4012585384440737`, 0.8090169943749475, 0}, {-1.0444364486709836`, 0.8090169943749475, 0.9341723589627157}, {0.7557613140761708, 1.3090169943749475`, 0.5773502691896258}, {-0.17841104488654497`, 1.3090169943749475`, 0.9341723589627157}, { 0.2886751345948129, 0.5, -1.5115226281523415`}, {-1.2228474935575286`, 0.5, -0.9341723589627157}, {0, -1.618033988749895, 0}, { 0.17841104488654497`, -1.3090169943749475`, \ -0.9341723589627157}, {-0.7557613140761708, -1.3090169943749475`, \ -0.5773502691896258}, {0, 1.618033988749895, 0}, {1.0444364486709836`, 0.8090169943749475, -0.9341723589627157}, \ {-1.4012585384440737`, 0.8090169943749475, 0}, {-0.5773502691896258, 0, -1.5115226281523415`}, { 1.4012585384440737`, -0.8090169943749475, 0}, {-1.0444364486709836`, -0.8090169943749475, 0.9341723589627157}, { 0.7557613140761708, -1.3090169943749475`, 0.5773502691896258}, {-0.17841104488654497`, \ -1.3090169943749475`, 0.9341723589627157}, {0.17841104488654497`, 1.3090169943749475`, -0.9341723589627157}, \ {-0.7557613140761708, 1.3090169943749475`, -0.5773502691896258}, { 0.5773502691896258, 0, 1.5115226281523415`}, { 1.2228474935575286`, -0.5, 0.9341723589627157}, {-0.2886751345948129, -0.5, 1.5115226281523415`}, { 1.0444364486709836`, -0.8090169943749475, \ -0.9341723589627157}, {-1.4012585384440737`, -0.8090169943749475, 0}, { 1.2228474935575286`, 0.5, 0.9341723589627157}, {-0.2886751345948129, 0.5, 1.5115226281523415`}}], {{30, 24, 29, 7, 8}, {26, 24, 30}, { 25, 29, 24}, {5, 7, 29}, {14, 8, 7}, {6, 30, 8}, {16, 2, 6}, {19, 21, 26}, {20, 18, 25}, {1, 15, 5}, {22, 23, 14}, {2, 19, 26, 30, 6}, {21, 20, 25, 24, 26}, {18, 1, 5, 29, 25}, { 15, 22, 14, 7, 5}, {23, 16, 6, 8, 14}, {12, 13, 4, 17, 3}, { 3, 17, 9}, {17, 4, 10}, {4, 13, 28}, {13, 12, 11}, {12, 3, 27}, {27, 1, 18}, {9, 22, 15}, {10, 16, 23}, {28, 19, 2}, { 11, 20, 21}, {27, 3, 9, 15, 1}, {9, 17, 10, 23, 22}, {10, 4, 28, 2, 16}, {28, 13, 11, 21, 19}, {11, 12, 27, 18, 20}}]}, ImageSize -> Dynamic[{5.25, 3.5} (CurrentValue["FontCapHeight"]/ AbsoluteCurrentValue[Magnification])], Boxed -> False, Lighting -> {{"Ambient", RGBColor[0.4, 0.45, 0.5]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{2, 0, 2}]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{2, 2, 2}]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{0, 2, 2}]}}, Method -> {"ShrinkWrap" -> True}], GridBox[{{ RowBox[{ TagBox["\"Number of points: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["30", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Number of faces: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["32", "SummaryItem"]}]}, { RowBox[{ TagBox[ "\"Embedding dimension: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["3", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Type: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Quiet[ Apply[Region`PolyhedronDump`polyhedronType, Region`PolyhedronDump`computeType[ Typeset`spolyhedron$$]]], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}, { RowBox[{ TagBox["\"Bounds: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Region`PolyhedronDump`iRegionBounds[ Typeset`spolyhedron$$], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}, { RowBox[{ TagBox["\"Volume: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Region`PolyhedronDump`iVolume[Typeset`spolyhedron$$], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> { "Columns" -> {{2}}, "Rows" -> {{Automatic}}}, BaseStyle -> { ShowStringCharacters -> False, NumberMarks -> False, PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, BaselinePosition -> {1, 1}]}, Dynamic[Typeset`open$$], ImageSize -> Automatic]}, "SummaryPanel"], DynamicModuleValues:>{}], "]"}], Polyhedron[{{(Rational[1, 6] (7 + 3 5^Rational[1, 2]))^Rational[1, 2], 0, -3^Rational[-1, 2]}, { Root[1 - 21 #^2 + 9 #^4& , 1, 0], 0, 3^Rational[-1, 2]}, { Rational[1, 2] 3^Rational[-1, 2], Rational[-1, 2], Root[ 1 - 21 #^2 + 9 #^4& , 1, 0]}, {-(Rational[3, 4] + Rational[1, 3] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 2], -(Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 2] (Rational[3, 2] (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), 0}, { Rational[-1, 2] (Rational[5, 6] (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), ( Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[7, 24] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 3^ Rational[-1, 2]}, { Root[1 - 36 #^2 + 144 #^4& , 2, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), ( Rational[1, 6] (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 2] 3^Rational[-1, 2], Rational[1, 2], Root[ 1 - 21 #^2 + 9 #^4& , 1, 0]}, {-(Rational[3, 4] + Rational[1, 3] 5^Rational[1, 2])^ Rational[1, 2], Rational[ 1, 2], -(Rational[1, 6] (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { 0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, { Root[1 - 36 #^2 + 144 #^4& , 3, 0], Rational[1, 4] (-3 - 5^ Rational[1, 2]), -(Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, {-(Rational[7, 24] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), -3^Rational[-1, 2]}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), 0}, { Rational[1, 2] (Rational[5, 6] (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), -(Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[-1, 2] (Rational[3, 2] (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), 0}, {-3^Rational[-1, 2], 0, Root[1 - 21 #^2 + 9 #^4& , 1, 0]}, { Rational[1, 2] (Rational[3, 2] (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), 0}, { Rational[-1, 2] (Rational[5, 6] (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), ( Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[7, 24] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), 3^ Rational[-1, 2]}, { Root[1 - 36 #^2 + 144 #^4& , 2, 0], Rational[1, 4] (-3 - 5^Rational[1, 2]), ( Rational[1, 6] (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 36 #^2 + 144 #^4& , 3, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), -(Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, {-(Rational[7, 24] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), -3^Rational[-1, 2]}, { 3^Rational[-1, 2], 0, (Rational[1, 6] (7 + 3 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[3, 4] + Rational[1, 3] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 2], (Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, {Rational[-1, 2] 3^Rational[-1, 2], Rational[-1, 2], (Rational[1, 6] (7 + 3 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 2] (Rational[5, 6] (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (-1 - 5^ Rational[1, 2]), -(Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[-1, 2] (Rational[3, 2] (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), 0}, {(Rational[3, 4] + Rational[1, 3] 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2], (Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, {Rational[-1, 2] 3^Rational[-1, 2], Rational[1, 2], (Rational[1, 6] (7 + 3 5^Rational[1, 2]))^ Rational[1, 2]}}, {{30, 24, 29, 7, 8}, {26, 24, 30}, {25, 29, 24}, {5, 7, 29}, {14, 8, 7}, {6, 30, 8}, {16, 2, 6}, {19, 21, 26}, {20, 18, 25}, { 1, 15, 5}, {22, 23, 14}, {2, 19, 26, 30, 6}, {21, 20, 25, 24, 26}, {18, 1, 5, 29, 25}, {15, 22, 14, 7, 5}, {23, 16, 6, 8, 14}, {12, 13, 4, 17, 3}, {3, 17, 9}, {17, 4, 10}, {4, 13, 28}, {13, 12, 11}, {12, 3, 27}, {27, 1, 18}, {9, 22, 15}, {10, 16, 23}, {28, 19, 2}, {11, 20, 21}, {27, 3, 9, 15, 1}, {9, 17, 10, 23, 22}, {10, 4, 28, 2, 16}, {28, 13, 11, 21, 19}, { 11, 12, 27, 18, 20}}], Editable->False, SelectWithContents->True, Selectable->False], "}"}]], "Output", CellLabel->"Out[48]=",ExpressionUUID->"07640970-d8ca-4a4e-b14f-a5955f04f9cd"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Graphics3D", "[", "%", "]"}]], "Input", CellLabel->"In[49]:=",ExpressionUUID->"8bb00bde-d53f-4182-84b6-4010edbdc875"], Cell[BoxData[ Graphics3DBox[ PolyhedronBox[ NCache[{{(Rational[1, 6] (7 + 3 5^Rational[1, 2]))^Rational[1, 2], 0, -3^Rational[-1, 2]}, { Root[1 - 21 #^2 + 9 #^4& , 1, 0], 0, 3^Rational[-1, 2]}, { Rational[1, 2] 3^Rational[-1, 2], Rational[-1, 2], Root[ 1 - 21 #^2 + 9 #^4& , 1, 0]}, {-(Rational[3, 4] + Rational[1, 3] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 2], -(Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 2] (Rational[3, 2] (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), 0}, { Rational[-1, 2] (Rational[5, 6] (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), ( Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[7, 24] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 3^ Rational[-1, 2]}, { Root[1 - 36 #^2 + 144 #^4& , 2, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), ( Rational[1, 6] (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 2] 3^Rational[-1, 2], Rational[1, 2], Root[ 1 - 21 #^2 + 9 #^4& , 1, 0]}, {-(Rational[3, 4] + Rational[1, 3] 5^Rational[1, 2])^ Rational[1, 2], Rational[ 1, 2], -(Rational[1, 6] (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { 0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, { Root[1 - 36 #^2 + 144 #^4& , 3, 0], Rational[1, 4] (-3 - 5^ Rational[1, 2]), -(Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, {-(Rational[7, 24] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), -3^Rational[-1, 2]}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), 0}, { Rational[1, 2] (Rational[5, 6] (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), -(Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[-1, 2] (Rational[3, 2] (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), 0}, {-3^Rational[-1, 2], 0, Root[ 1 - 21 #^2 + 9 #^4& , 1, 0]}, { Rational[1, 2] (Rational[3, 2] (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), 0}, { Rational[-1, 2] (Rational[5, 6] (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), ( Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[7, 24] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), 3^ Rational[-1, 2]}, { Root[1 - 36 #^2 + 144 #^4& , 2, 0], Rational[1, 4] (-3 - 5^Rational[1, 2]), ( Rational[1, 6] (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 36 #^2 + 144 #^4& , 3, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), -(Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, {-(Rational[7, 24] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), -3^Rational[-1, 2]}, { 3^Rational[-1, 2], 0, (Rational[1, 6] (7 + 3 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[3, 4] + Rational[1, 3] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 2], (Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[-1, 2] 3^Rational[-1, 2], Rational[-1, 2], (Rational[1, 6] (7 + 3 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 2] (Rational[5, 6] (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (-1 - 5^ Rational[1, 2]), -(Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[-1, 2] (Rational[3, 2] (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), 0}, {(Rational[3, 4] + Rational[1, 3] 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2], (Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[-1, 2] 3^Rational[-1, 2], Rational[ 1, 2], (Rational[1, 6] (7 + 3 5^Rational[1, 2]))^Rational[1, 2]}}, {{ 1.5115226281523415`, 0, -0.5773502691896258}, {-1.5115226281523415`, 0, 0.5773502691896258}, { 0.2886751345948129, -0.5, -1.5115226281523415`}, {-1.2228474935575286`, \ -0.5, -0.9341723589627157}, { 1.4012585384440737`, 0.8090169943749475, 0}, {-1.0444364486709836`, 0.8090169943749475, 0.9341723589627157}, {0.7557613140761708, 1.3090169943749475`, 0.5773502691896258}, {-0.17841104488654497`, 1.3090169943749475`, 0.9341723589627157}, {0.2886751345948129, 0.5, -1.5115226281523415`}, {-1.2228474935575286`, 0.5, -0.9341723589627157}, {0, -1.618033988749895, 0}, { 0.17841104488654497`, -1.3090169943749475`, -0.9341723589627157}, \ {-0.7557613140761708, -1.3090169943749475`, -0.5773502691896258}, { 0, 1.618033988749895, 0}, {1.0444364486709836`, 0.8090169943749475, -0.9341723589627157}, {-1.4012585384440737`, 0.8090169943749475, 0}, {-0.5773502691896258, 0, -1.5115226281523415`}, { 1.4012585384440737`, -0.8090169943749475, 0}, {-1.0444364486709836`, -0.8090169943749475, 0.9341723589627157}, { 0.7557613140761708, -1.3090169943749475`, 0.5773502691896258}, {-0.17841104488654497`, -1.3090169943749475`, 0.9341723589627157}, {0.17841104488654497`, 1.3090169943749475`, -0.9341723589627157}, {-0.7557613140761708, 1.3090169943749475`, -0.5773502691896258}, { 0.5773502691896258, 0, 1.5115226281523415`}, {1.2228474935575286`, -0.5, 0.9341723589627157}, {-0.2886751345948129, -0.5, 1.5115226281523415`}, { 1.0444364486709836`, -0.8090169943749475, -0.9341723589627157}, \ {-1.4012585384440737`, -0.8090169943749475, 0}, {1.2228474935575286`, 0.5, 0.9341723589627157}, {-0.2886751345948129, 0.5, 1.5115226281523415`}}], {{30, 24, 29, 7, 8}, {26, 24, 30}, {25, 29, 24}, {5, 7, 29}, {14, 8, 7}, {6, 30, 8}, {16, 2, 6}, {19, 21, 26}, {20, 18, 25}, {1, 15, 5}, {22, 23, 14}, {2, 19, 26, 30, 6}, {21, 20, 25, 24, 26}, {18, 1, 5, 29, 25}, {15, 22, 14, 7, 5}, {23, 16, 6, 8, 14}, {12, 13, 4, 17, 3}, {3, 17, 9}, {17, 4, 10}, {4, 13, 28}, {13, 12, 11}, {12, 3, 27}, {27, 1, 18}, {9, 22, 15}, {10, 16, 23}, {28, 19, 2}, {11, 20, 21}, { 27, 3, 9, 15, 1}, {9, 17, 10, 23, 22}, {10, 4, 28, 2, 16}, {28, 13, 11, 21, 19}, {11, 12, 27, 18, 20}}]]], "Output", CellLabel->"Out[49]=",ExpressionUUID->"0c9f685b-b376-4aba-88c5-cfff0f53f023"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}]], "Input", CellLabel->"In[50]:=",ExpressionUUID->"ee7bb76f-c529-4651-830d-989ed5792e8b"], Cell[BoxData[ RowBox[{"{", RowBox[{"{", RowBox[{ "1", ",", "2", ",", "3", ",", "4", ",", "5", ",", "6", ",", "7", ",", "8", ",", "9", ",", "10", ",", "11", ",", "12", ",", "13", ",", "14", ",", "15", ",", "16", ",", "17", ",", "18", ",", "19", ",", "20", ",", "21", ",", "22", ",", "23", ",", "24", ",", "25", ",", "26", ",", "27", ",", "28", ",", "29", ",", "30", ",", "31", ",", "32"}], "}"}], "}"}]], "Output", CellLabel->"Out[50]=",ExpressionUUID->"4172c4ee-4f4a-4e49-8d79-7536cccc1b46"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Region", "Subsection",ExpressionUUID->"a7c98578-0c82-416e-aaab-549333f0478c"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}]], "Input", CellLabel->"In[15]:=",ExpressionUUID->"3db2ec43-322d-40b9-a7eb-1c25b04bdbab"], Cell[BoxData[ Graphics3DBox[ TagBox[ DynamicModuleBox[{Typeset`region = HoldComplete[ Region[ Polyhedron[{{(Rational[1, 6] (7 + 3 5^Rational[1, 2]))^Rational[1, 2], 0, -3^Rational[-1, 2]}, { Root[1 - 21 #^2 + 9 #^4& , 1, 0], 0, 3^Rational[-1, 2]}, { Rational[1, 2] 3^Rational[-1, 2], Rational[-1, 2], Root[ 1 - 21 #^2 + 9 #^4& , 1, 0]}, {-(Rational[3, 4] + Rational[1, 3] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 2], -(Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 2] (Rational[3, 2] (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), 0}, { Rational[-1, 2] (Rational[5, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), ( Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[7, 24] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 3^Rational[-1, 2]}, { Root[1 - 36 #^2 + 144 #^4& , 2, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), ( Rational[1, 6] (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 2] 3^Rational[-1, 2], Rational[1, 2], Root[ 1 - 21 #^2 + 9 #^4& , 1, 0]}, {-(Rational[3, 4] + Rational[1, 3] 5^Rational[1, 2])^ Rational[1, 2], Rational[ 1, 2], -(Rational[1, 6] (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { 0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, { Root[1 - 36 #^2 + 144 #^4& , 3, 0], Rational[1, 4] (-3 - 5^ Rational[1, 2]), -(Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, {-(Rational[7, 24] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), -3^Rational[-1, 2]}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), 0}, { Rational[1, 2] (Rational[5, 6] (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), -(Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[-1, 2] (Rational[3, 2] (3 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), 0}, {-3^Rational[-1, 2], 0, Root[1 - 21 #^2 + 9 #^4& , 1, 0]}, { Rational[1, 2] (Rational[3, 2] (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), 0}, { Rational[-1, 2] (Rational[5, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), ( Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[7, 24] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), 3^Rational[-1, 2]}, { Root[1 - 36 #^2 + 144 #^4& , 2, 0], Rational[1, 4] (-3 - 5^Rational[1, 2]), ( Rational[1, 6] (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 36 #^2 + 144 #^4& , 3, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), -(Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, {-(Rational[7, 24] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), -3^Rational[-1, 2]}, { 3^Rational[-1, 2], 0, (Rational[1, 6] (7 + 3 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[3, 4] + Rational[1, 3] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 2], (Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, {Rational[-1, 2] 3^Rational[-1, 2], Rational[-1, 2], (Rational[1, 6] (7 + 3 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 2] (Rational[5, 6] (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (-1 - 5^ Rational[1, 2]), -(Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[-1, 2] (Rational[3, 2] (3 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), 0}, {(Rational[3, 4] + Rational[1, 3] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 2], (Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, {Rational[-1, 2] 3^Rational[-1, 2], Rational[1, 2], (Rational[1, 6] (7 + 3 5^Rational[1, 2]))^ Rational[1, 2]}}, {{30, 24, 29, 7, 8}, {26, 24, 30}, {25, 29, 24}, { 5, 7, 29}, {14, 8, 7}, {6, 30, 8}, {16, 2, 6}, {19, 21, 26}, {20, 18, 25}, {1, 15, 5}, {22, 23, 14}, {2, 19, 26, 30, 6}, {21, 20, 25, 24, 26}, {18, 1, 5, 29, 25}, {15, 22, 14, 7, 5}, {23, 16, 6, 8, 14}, {12, 13, 4, 17, 3}, {3, 17, 9}, {17, 4, 10}, {4, 13, 28}, {13, 12, 11}, { 12, 3, 27}, {27, 1, 18}, {9, 22, 15}, {10, 16, 23}, {28, 19, 2}, {11, 20, 21}, {27, 3, 9, 15, 1}, {9, 17, 10, 23, 22}, {10, 4, 28, 2, 16}, { 28, 13, 11, 21, 19}, {11, 12, 27, 18, 20}}]]]}, TagBox[{ PolyhedronBox[ NCache[{{(Rational[1, 6] (7 + 3 5^Rational[1, 2]))^Rational[1, 2], 0, -3^Rational[-1, 2]}, { Root[1 - 21 #^2 + 9 #^4& , 1, 0], 0, 3^Rational[-1, 2]}, { Rational[1, 2] 3^Rational[-1, 2], Rational[-1, 2], Root[ 1 - 21 #^2 + 9 #^4& , 1, 0]}, {-(Rational[3, 4] + Rational[1, 3] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 2], -(Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 2] (Rational[3, 2] (3 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), 0}, { Rational[-1, 2] (Rational[5, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), ( Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[7, 24] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 3^Rational[-1, 2]}, { Root[1 - 36 #^2 + 144 #^4& , 2, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), ( Rational[1, 6] (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 2] 3^Rational[-1, 2], Rational[1, 2], Root[ 1 - 21 #^2 + 9 #^4& , 1, 0]}, {-(Rational[3, 4] + Rational[1, 3] 5^Rational[1, 2])^ Rational[1, 2], Rational[ 1, 2], -(Rational[1, 6] (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { 0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, { Root[1 - 36 #^2 + 144 #^4& , 3, 0], Rational[1, 4] (-3 - 5^ Rational[1, 2]), -(Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, {-(Rational[7, 24] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), -3^Rational[-1, 2]}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), 0}, { Rational[1, 2] (Rational[5, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), -(Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[-1, 2] (Rational[3, 2] (3 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), 0}, {-3^Rational[-1, 2], 0, Root[1 - 21 #^2 + 9 #^4& , 1, 0]}, { Rational[1, 2] (Rational[3, 2] (3 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), 0}, { Rational[-1, 2] (Rational[5, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), ( Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[7, 24] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), 3^Rational[-1, 2]}, { Root[1 - 36 #^2 + 144 #^4& , 2, 0], Rational[1, 4] (-3 - 5^Rational[1, 2]), ( Rational[1, 6] (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 36 #^2 + 144 #^4& , 3, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), -(Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, {-(Rational[7, 24] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), -3^Rational[-1, 2]}, { 3^Rational[-1, 2], 0, (Rational[1, 6] (7 + 3 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[3, 4] + Rational[1, 3] 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], (Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[-1, 2] 3^Rational[-1, 2], Rational[-1, 2], (Rational[1, 6] (7 + 3 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 2] (Rational[5, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (-1 - 5^ Rational[1, 2]), -(Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[-1, 2] (Rational[3, 2] (3 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), 0}, {(Rational[3, 4] + Rational[1, 3] 5^Rational[1, 2])^ Rational[1, 2], Rational[ 1, 2], (Rational[1, 6] (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 2] 3^Rational[-1, 2], Rational[ 1, 2], (Rational[1, 6] (7 + 3 5^Rational[1, 2]))^ Rational[1, 2]}}, {{ 1.5115226281523415`, 0, -0.5773502691896258}, {-1.5115226281523415`, 0, 0.5773502691896258}, { 0.2886751345948129, -0.5, -1.5115226281523415`}, \ {-1.2228474935575286`, -0.5, -0.9341723589627157}, { 1.4012585384440737`, 0.8090169943749475, 0}, {-1.0444364486709836`, 0.8090169943749475, 0.9341723589627157}, {0.7557613140761708, 1.3090169943749475`, 0.5773502691896258}, {-0.17841104488654497`, 1.3090169943749475`, 0.9341723589627157}, {0.2886751345948129, 0.5, -1.5115226281523415`}, {-1.2228474935575286`, 0.5, -0.9341723589627157}, {0, -1.618033988749895, 0}, { 0.17841104488654497`, -1.3090169943749475`, -0.9341723589627157}, \ {-0.7557613140761708, -1.3090169943749475`, -0.5773502691896258}, { 0, 1.618033988749895, 0}, {1.0444364486709836`, 0.8090169943749475, -0.9341723589627157}, {-1.4012585384440737`, 0.8090169943749475, 0}, {-0.5773502691896258, 0, -1.5115226281523415`}, { 1.4012585384440737`, -0.8090169943749475, 0}, {-1.0444364486709836`, -0.8090169943749475, 0.9341723589627157}, {0.7557613140761708, -1.3090169943749475`, 0.5773502691896258}, {-0.17841104488654497`, -1.3090169943749475`, 0.9341723589627157}, {0.17841104488654497`, 1.3090169943749475`, -0.9341723589627157}, {-0.7557613140761708, 1.3090169943749475`, -0.5773502691896258}, { 0.5773502691896258, 0, 1.5115226281523415`}, { 1.2228474935575286`, -0.5, 0.9341723589627157}, {-0.2886751345948129, -0.5, 1.5115226281523415`}, { 1.0444364486709836`, -0.8090169943749475, -0.9341723589627157}, \ {-1.4012585384440737`, -0.8090169943749475, 0}, {1.2228474935575286`, 0.5, 0.9341723589627157}, {-0.2886751345948129, 0.5, 1.5115226281523415`}}], {{30, 24, 29, 7, 8}, {26, 24, 30}, {25, 29, 24}, {5, 7, 29}, {14, 8, 7}, {6, 30, 8}, {16, 2, 6}, {19, 21, 26}, { 20, 18, 25}, {1, 15, 5}, {22, 23, 14}, {2, 19, 26, 30, 6}, {21, 20, 25, 24, 26}, {18, 1, 5, 29, 25}, {15, 22, 14, 7, 5}, {23, 16, 6, 8, 14}, {12, 13, 4, 17, 3}, {3, 17, 9}, {17, 4, 10}, {4, 13, 28}, {13, 12, 11}, {12, 3, 27}, {27, 1, 18}, {9, 22, 15}, {10, 16, 23}, {28, 19, 2}, {11, 20, 21}, {27, 3, 9, 15, 1}, {9, 17, 10, 23, 22}, {10, 4, 28, 2, 16}, {28, 13, 11, 21, 19}, {11, 12, 27, 18, 20}}], {}}, MouseAppearanceTag["LinkHand"]], AllowKernelInitialization->False], "RegionGraphics3D", AutoDelete->True, Editable->False, Selectable->False], BaseStyle->{ EdgeForm[None], Hue[0.6, 0.3, 0.85]}, Boxed->False, Lighting->{{"Ambient", GrayLevel[0.45]}, {"Directional", GrayLevel[0.3], ImageScaled[{2, 0, 2}]}, {"Directional", GrayLevel[0.33], ImageScaled[{2, 2, 2}]}, {"Directional", GrayLevel[0.3], ImageScaled[{0, 2, 2}]}}]], "Output", CellLabel->"Out[15]=",ExpressionUUID->"e88f541e-b301-4966-a8b6-54b316be40c3"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["RegionFunction", "Subsection",ExpressionUUID->"d51aee3b-63c2-4a01-9ba0-33141a170098"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}]], "Input", CellLabel->"In[51]:=",ExpressionUUID->"0ab5599d-3c0e-4295-a101-1e695a91bd71"], Cell[BoxData[ RowBox[{"Missing", "[", "\<\"NotAvailable\"\>", "]"}]], "Output", CellLabel->"Out[51]=",ExpressionUUID->"0faeb836-722c-4c09-a3e5-07f3088eb6a1"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{"Collect", "[", RowBox[{"#", ",", RowBox[{"{", RowBox[{"x", ",", "y", ",", "z"}], "}"}], ",", "RootReduce"}], "]"}], "&"}], "/@", RowBox[{"PolyhedronInequalities", "[", RowBox[{"p", ",", RowBox[{"{", RowBox[{"x", ",", "y", ",", "z"}], "}"}]}], "]"}]}]], "Input", CellLabel->"In[52]:=",ExpressionUUID->"6031e2c9-47f6-4c32-8ac0-b877172fc40c"], Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{ RowBox[{ FractionBox["1", "4"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "3"}], "-", SqrtBox["5"]}], ")"}]}], "+", FractionBox["x", RowBox[{"2", " ", SqrtBox["3"]}]], "+", FractionBox["y", "2"], "+", RowBox[{"z", " ", TemplateBox[<|"icon" -> "Root", "small" -> InterpretationBox[ StyleBox[ TemplateBox[{"\"0.756\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.75576131407617075375071635789936408401`15.954589770191003, Editable -> False], "approx" -> 0.7557613140761708, "interp" -> InterpretationBox["", Root[1 - 84 #^2 + 144 #^4& , 4, 0]], "head" -> "Root", "big" -> RowBox[{ RowBox[{"1", "-", RowBox[{"84", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"144", " ", SuperscriptBox["#1", "4"]}]}], "&"}], "degree" -> "4", "shortDegree" -> "4", "number" -> 4|>, "NumericalApproximationInterp", InterpretationFunction->(Slot["interp"]& )]}]}], "\[LessEqual]", "0"}], "&&", RowBox[{ RowBox[{ RowBox[{ FractionBox["1", "4"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "3"}], "-", SqrtBox["5"]}], ")"}]}], "+", FractionBox[ RowBox[{ SqrtBox["3"], " ", "z"}], "2"]}], "\[LessEqual]", "0"}], "&&", RowBox[{ RowBox[{ RowBox[{ FractionBox["1", "4"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "3"}], "-", SqrtBox["5"]}], ")"}]}], "+", FractionBox["x", SqrtBox["3"]], "+", RowBox[{ FractionBox["1", "2"], " ", SqrtBox[ FractionBox["5", "3"]], " ", "z"}]}], "\[LessEqual]", "0"}], "&&", RowBox[{ RowBox[{ RowBox[{ FractionBox["1", "4"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "3"}], "-", SqrtBox["5"]}], ")"}]}], "+", RowBox[{ FractionBox["1", "2"], " ", SqrtBox[ FractionBox["5", "3"]], " ", "x"}], "+", FractionBox["y", "2"], "+", FractionBox["z", RowBox[{"2", " ", SqrtBox["3"]}]]}], "\[LessEqual]", "0"}], "&&", RowBox[{ RowBox[{ RowBox[{ FractionBox["1", "4"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "3"}], "-", SqrtBox["5"]}], ")"}]}], "+", RowBox[{ FractionBox["1", "4"], " ", RowBox[{"(", RowBox[{"1", "+", SqrtBox["5"]}], ")"}], " ", "y"}], "+", FractionBox["z", RowBox[{"2", " ", SqrtBox["3"]}]], "+", RowBox[{"x", " ", TemplateBox[<|"icon" -> "Root", "small" -> InterpretationBox[ StyleBox[ TemplateBox[{"\"0.110\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.11026408970826791222652474289134261198`15.954589770191003, Editable -> False], "approx" -> 0.11026408970826791`, "interp" -> InterpretationBox["", Root[1 - 84 #^2 + 144 #^4& , 3, 0]], "head" -> "Root", "big" -> RowBox[{ RowBox[{"1", "-", RowBox[{"84", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"144", " ", SuperscriptBox["#1", "4"]}]}], "&"}], "degree" -> "4", "shortDegree" -> "4", "number" -> 3|>, "NumericalApproximationInterp", InterpretationFunction->(Slot["interp"]& )]}]}], "\[LessEqual]", "0"}], "&&", RowBox[{ RowBox[{ RowBox[{ FractionBox["1", "4"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "3"}], "-", SqrtBox["5"]}], ")"}]}], "-", FractionBox["x", RowBox[{"2", " ", SqrtBox["3"]}]], "+", FractionBox["y", "2"], "+", RowBox[{ FractionBox["1", "2"], " ", SqrtBox[ FractionBox["5", "3"]], " ", "z"}]}], "\[LessEqual]", "0"}], "&&", RowBox[{ RowBox[{ RowBox[{ FractionBox["1", "4"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "3"}], "-", SqrtBox["5"]}], ")"}]}], "+", RowBox[{ FractionBox["1", "4"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", SqrtBox["5"]}], ")"}], " ", "y"}], "+", FractionBox["z", RowBox[{"2", " ", SqrtBox["3"]}]], "+", RowBox[{"x", " ", TemplateBox[<|"icon" -> "Root", "small" -> InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.756\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.75576131407617075375071635789936408401`15.\ 954589770191003, Editable -> False], "approx" -> -0.7557613140761708, "interp" -> InterpretationBox["", Root[1 - 84 #^2 + 144 #^4& , 1, 0]], "head" -> "Root", "big" -> RowBox[{ RowBox[{"1", "-", RowBox[{"84", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"144", " ", SuperscriptBox["#1", "4"]}]}], "&"}], "degree" -> "4", "shortDegree" -> "4", "number" -> 1|>, "NumericalApproximationInterp", InterpretationFunction->(Slot["interp"]& )]}]}], "\[LessEqual]", "0"}], "&&", RowBox[{ RowBox[{ RowBox[{ FractionBox["1", "4"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "3"}], "-", SqrtBox["5"]}], ")"}]}], "-", FractionBox["x", RowBox[{"2", " ", SqrtBox["3"]}]], "-", FractionBox["y", "2"], "+", RowBox[{ FractionBox["1", "2"], " ", SqrtBox[ FractionBox["5", "3"]], " ", "z"}]}], "\[LessEqual]", "0"}], "&&", RowBox[{ RowBox[{ RowBox[{ FractionBox["1", "4"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "3"}], "-", SqrtBox["5"]}], ")"}]}], "+", RowBox[{ FractionBox["1", "2"], " ", SqrtBox[ FractionBox["5", "3"]], " ", "x"}], "-", FractionBox["y", "2"], "+", FractionBox["z", RowBox[{"2", " ", SqrtBox["3"]}]]}], "\[LessEqual]", "0"}], "&&", RowBox[{ RowBox[{ RowBox[{ FractionBox["1", "4"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "3"}], "-", SqrtBox["5"]}], ")"}]}], "+", RowBox[{ FractionBox["1", "4"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", SqrtBox["5"]}], ")"}], " ", "y"}], "-", FractionBox["z", RowBox[{"2", " ", SqrtBox["3"]}]], "+", RowBox[{"x", " ", TemplateBox[<|"icon" -> "Root", "small" -> InterpretationBox[ StyleBox[ TemplateBox[{"\"0.756\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.75576131407617075375071635789936408401`15.954589770191003, Editable -> False], "approx" -> 0.7557613140761708, "interp" -> InterpretationBox["", Root[1 - 84 #^2 + 144 #^4& , 4, 0]], "head" -> "Root", "big" -> RowBox[{ RowBox[{"1", "-", RowBox[{"84", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"144", " ", SuperscriptBox["#1", "4"]}]}], "&"}], "degree" -> "4", "shortDegree" -> "4", "number" -> 4|>, "NumericalApproximationInterp", InterpretationFunction->(Slot["interp"]& )]}]}], "\[LessEqual]", "0"}], "&&", RowBox[{ RowBox[{ RowBox[{ FractionBox["1", "4"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "3"}], "-", SqrtBox["5"]}], ")"}]}], "+", RowBox[{ FractionBox["1", "4"], " ", RowBox[{"(", RowBox[{"1", "+", SqrtBox["5"]}], ")"}], " ", "y"}], "-", FractionBox["z", RowBox[{"2", " ", SqrtBox["3"]}]], "+", RowBox[{"x", " ", TemplateBox[<|"icon" -> "Root", "small" -> InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.110\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.11026408970826791222652474289134261198`15.\ 954589770191003, Editable -> False], "approx" -> -0.11026408970826791`, "interp" -> InterpretationBox["", Root[1 - 84 #^2 + 144 #^4& , 2, 0]], "head" -> "Root", "big" -> RowBox[{ RowBox[{"1", "-", RowBox[{"84", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"144", " ", SuperscriptBox["#1", "4"]}]}], "&"}], "degree" -> "4", "shortDegree" -> "4", "number" -> 2|>, "NumericalApproximationInterp", InterpretationFunction->(Slot["interp"]& )]}]}], "\[LessEqual]", "0"}], "&&", RowBox[{ RowBox[{ RowBox[{ FractionBox["1", "4"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "3"}], "-", SqrtBox["5"]}], ")"}]}], "-", FractionBox["x", SqrtBox["3"]], "+", RowBox[{"z", " ", TemplateBox[<|"icon" -> "Root", "small" -> InterpretationBox[ StyleBox[ TemplateBox[{"\"0.756\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.75576131407617075375071635789936408401`15.954589770191003, Editable -> False], "approx" -> 0.7557613140761708, "interp" -> InterpretationBox["", Root[1 - 84 #^2 + 144 #^4& , 4, 0]], "head" -> "Root", "big" -> RowBox[{ RowBox[{"1", "-", RowBox[{"84", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"144", " ", SuperscriptBox["#1", "4"]}]}], "&"}], "degree" -> "4", "shortDegree" -> "4", "number" -> 4|>, "NumericalApproximationInterp", InterpretationFunction->(Slot["interp"]& )]}]}], "\[LessEqual]", "0"}], "&&", RowBox[{ RowBox[{ RowBox[{ FractionBox["1", "4"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "3"}], "-", SqrtBox["5"]}], ")"}]}], "+", FractionBox["x", RowBox[{"2", " ", SqrtBox["3"]}]], "-", FractionBox["y", "2"], "+", RowBox[{"z", " ", TemplateBox[<|"icon" -> "Root", "small" -> InterpretationBox[ StyleBox[ TemplateBox[{"\"0.756\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.75576131407617075375071635789936408401`15.954589770191003, Editable -> False], "approx" -> 0.7557613140761708, "interp" -> InterpretationBox["", Root[1 - 84 #^2 + 144 #^4& , 4, 0]], "head" -> "Root", "big" -> RowBox[{ RowBox[{"1", "-", RowBox[{"84", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"144", " ", SuperscriptBox["#1", "4"]}]}], "&"}], "degree" -> "4", "shortDegree" -> "4", "number" -> 4|>, "NumericalApproximationInterp", InterpretationFunction->(Slot["interp"]& )]}]}], "\[LessEqual]", "0"}], "&&", RowBox[{ RowBox[{ RowBox[{ FractionBox["1", "4"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "3"}], "-", SqrtBox["5"]}], ")"}]}], "+", RowBox[{"x", " ", TemplateBox[<|"icon" -> "Root", "small" -> InterpretationBox[ StyleBox[ TemplateBox[{"\"0.934\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.93417235896271566542026221213745884597`15.954589770191003, Editable -> False], "approx" -> 0.9341723589627157, "interp" -> InterpretationBox["", Root[1 - 9 #^2 + 9 #^4& , 4, 0]], "head" -> "Root", "big" -> RowBox[{ RowBox[{"1", "-", RowBox[{"9", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"9", " ", SuperscriptBox["#1", "4"]}]}], "&"}], "degree" -> "4", "shortDegree" -> "4", "number" -> 4|>, "NumericalApproximationInterp", InterpretationFunction->(Slot["interp"]& )]}], "+", RowBox[{"z", " ", TemplateBox[<|"icon" -> "Root", "small" -> InterpretationBox[ StyleBox[ TemplateBox[{"\"0.178\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.17841104488654496718069708549592178315`15.954589770191003, Editable -> False], "approx" -> 0.17841104488654497`, "interp" -> InterpretationBox["", Root[1 - 36 #^2 + 144 #^4& , 3, 0]], "head" -> "Root", "big" -> RowBox[{ RowBox[{"1", "-", RowBox[{"36", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"144", " ", SuperscriptBox["#1", "4"]}]}], "&"}], "degree" -> "4", "shortDegree" -> "4", "number" -> 3|>, "NumericalApproximationInterp", InterpretationFunction->(Slot["interp"]& )]}]}], "\[LessEqual]", "0"}], "&&", RowBox[{ RowBox[{ RowBox[{ FractionBox["1", "4"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "3"}], "-", SqrtBox["5"]}], ")"}]}], "+", RowBox[{ FractionBox["1", "4"], " ", RowBox[{"(", RowBox[{"1", "+", SqrtBox["5"]}], ")"}], " ", "y"}], "+", RowBox[{"z", " ", TemplateBox[<|"icon" -> "Root", "small" -> InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.178\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.17841104488654496718069708549592178315`15.\ 954589770191003, Editable -> False], "approx" -> -0.17841104488654497`, "interp" -> InterpretationBox["", Root[1 - 36 #^2 + 144 #^4& , 2, 0]], "head" -> "Root", "big" -> RowBox[{ RowBox[{"1", "-", RowBox[{"36", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"144", " ", SuperscriptBox["#1", "4"]}]}], "&"}], "degree" -> "4", "shortDegree" -> "4", "number" -> 2|>, "NumericalApproximationInterp", InterpretationFunction->(Slot["interp"]& )]}], "+", RowBox[{"x", " ", TemplateBox[<|"icon" -> "Root", "small" -> InterpretationBox[ StyleBox[ TemplateBox[{"\"0.467\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.46708617948135783271013110606872942299`15.954589770191003, Editable -> False], "approx" -> 0.46708617948135783`, "interp" -> InterpretationBox["", Root[1 - 36 #^2 + 144 #^4& , 4, 0]], "head" -> "Root", "big" -> RowBox[{ RowBox[{"1", "-", RowBox[{"36", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"144", " ", SuperscriptBox["#1", "4"]}]}], "&"}], "degree" -> "4", "shortDegree" -> "4", "number" -> 4|>, "NumericalApproximationInterp", InterpretationFunction->(Slot["interp"]& )]}]}], "\[LessEqual]", "0"}], "&&", RowBox[{ RowBox[{ RowBox[{ FractionBox["1", "4"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "3"}], "-", SqrtBox["5"]}], ")"}]}], "+", RowBox[{ FractionBox["1", "4"], " ", RowBox[{"(", RowBox[{"1", "+", SqrtBox["5"]}], ")"}], " ", "y"}], "+", RowBox[{"x", " ", TemplateBox[<|"icon" -> "Root", "small" -> InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.467\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.46708617948135783271013110606872942299`15.\ 954589770191003, Editable -> False], "approx" -> -0.46708617948135783`, "interp" -> InterpretationBox["", Root[1 - 36 #^2 + 144 #^4& , 1, 0]], "head" -> "Root", "big" -> RowBox[{ RowBox[{"1", "-", RowBox[{"36", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"144", " ", SuperscriptBox["#1", "4"]}]}], "&"}], "degree" -> "4", "shortDegree" -> "4", "number" -> 1|>, "NumericalApproximationInterp", InterpretationFunction->(Slot["interp"]& )]}], "+", RowBox[{"z", " ", TemplateBox[<|"icon" -> "Root", "small" -> InterpretationBox[ StyleBox[ TemplateBox[{"\"0.178\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.17841104488654496718069708549592178315`15.954589770191003, Editable -> False], "approx" -> 0.17841104488654497`, "interp" -> InterpretationBox["", Root[1 - 36 #^2 + 144 #^4& , 3, 0]], "head" -> "Root", "big" -> RowBox[{ RowBox[{"1", "-", RowBox[{"36", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"144", " ", SuperscriptBox["#1", "4"]}]}], "&"}], "degree" -> "4", "shortDegree" -> "4", "number" -> 3|>, "NumericalApproximationInterp", InterpretationFunction->(Slot["interp"]& )]}]}], "\[LessEqual]", "0"}], "&&", RowBox[{ RowBox[{ RowBox[{ FractionBox["1", "4"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "3"}], "-", SqrtBox["5"]}], ")"}]}], "-", FractionBox["x", RowBox[{"2", " ", SqrtBox["3"]}]], "-", FractionBox["y", "2"], "+", RowBox[{"z", " ", TemplateBox[<|"icon" -> "Root", "small" -> InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.756\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.75576131407617075375071635789936408401`15.\ 954589770191003, Editable -> False], "approx" -> -0.7557613140761708, "interp" -> InterpretationBox["", Root[1 - 84 #^2 + 144 #^4& , 1, 0]], "head" -> "Root", "big" -> RowBox[{ RowBox[{"1", "-", RowBox[{"84", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"144", " ", SuperscriptBox["#1", "4"]}]}], "&"}], "degree" -> "4", "shortDegree" -> "4", "number" -> 1|>, "NumericalApproximationInterp", InterpretationFunction->(Slot["interp"]& )]}]}], "\[LessEqual]", "0"}], "&&", RowBox[{ RowBox[{ RowBox[{ FractionBox["1", "4"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "3"}], "-", SqrtBox["5"]}], ")"}]}], "-", FractionBox[ RowBox[{ SqrtBox["3"], " ", "z"}], "2"]}], "\[LessEqual]", "0"}], "&&", RowBox[{ RowBox[{ RowBox[{ FractionBox["1", "4"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "3"}], "-", SqrtBox["5"]}], ")"}]}], "-", FractionBox["x", SqrtBox["3"]], "-", RowBox[{ FractionBox["1", "2"], " ", SqrtBox[ FractionBox["5", "3"]], " ", "z"}]}], "\[LessEqual]", "0"}], "&&", RowBox[{ RowBox[{ RowBox[{ FractionBox["1", "4"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "3"}], "-", SqrtBox["5"]}], ")"}]}], "-", RowBox[{ FractionBox["1", "2"], " ", SqrtBox[ FractionBox["5", "3"]], " ", "x"}], "-", FractionBox["y", "2"], "-", FractionBox["z", RowBox[{"2", " ", SqrtBox["3"]}]]}], "\[LessEqual]", "0"}], "&&", RowBox[{ RowBox[{ RowBox[{ FractionBox["1", "4"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "3"}], "-", SqrtBox["5"]}], ")"}]}], "+", RowBox[{ FractionBox["1", "4"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "-", SqrtBox["5"]}], ")"}], " ", "y"}], "-", FractionBox["z", RowBox[{"2", " ", SqrtBox["3"]}]], "+", RowBox[{"x", " ", TemplateBox[<|"icon" -> "Root", "small" -> InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.110\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.11026408970826791222652474289134261198`15.\ 954589770191003, Editable -> False], "approx" -> -0.11026408970826791`, "interp" -> InterpretationBox["", Root[1 - 84 #^2 + 144 #^4& , 2, 0]], "head" -> "Root", "big" -> RowBox[{ RowBox[{"1", "-", RowBox[{"84", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"144", " ", SuperscriptBox["#1", "4"]}]}], "&"}], "degree" -> "4", "shortDegree" -> "4", "number" -> 2|>, "NumericalApproximationInterp", InterpretationFunction->(Slot["interp"]& )]}]}], "\[LessEqual]", "0"}], "&&", RowBox[{ RowBox[{ RowBox[{ FractionBox["1", "4"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "3"}], "-", SqrtBox["5"]}], ")"}]}], "+", FractionBox["x", RowBox[{"2", " ", SqrtBox["3"]}]], "-", FractionBox["y", "2"], "-", RowBox[{ FractionBox["1", "2"], " ", SqrtBox[ FractionBox["5", "3"]], " ", "z"}]}], "\[LessEqual]", "0"}], "&&", RowBox[{ RowBox[{ RowBox[{ FractionBox["1", "4"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "3"}], "-", SqrtBox["5"]}], ")"}]}], "+", RowBox[{ FractionBox["1", "4"], " ", RowBox[{"(", RowBox[{"1", "-", SqrtBox["5"]}], ")"}], " ", "y"}], "-", FractionBox["z", RowBox[{"2", " ", SqrtBox["3"]}]], "+", RowBox[{"x", " ", TemplateBox[<|"icon" -> "Root", "small" -> InterpretationBox[ StyleBox[ TemplateBox[{"\"0.756\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.75576131407617075375071635789936408401`15.954589770191003, Editable -> False], "approx" -> 0.7557613140761708, "interp" -> InterpretationBox["", Root[1 - 84 #^2 + 144 #^4& , 4, 0]], "head" -> "Root", "big" -> RowBox[{ RowBox[{"1", "-", RowBox[{"84", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"144", " ", SuperscriptBox["#1", "4"]}]}], "&"}], "degree" -> "4", "shortDegree" -> "4", "number" -> 4|>, "NumericalApproximationInterp", InterpretationFunction->(Slot["interp"]& )]}]}], "\[LessEqual]", "0"}], "&&", RowBox[{ RowBox[{ RowBox[{ FractionBox["1", "4"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "3"}], "-", SqrtBox["5"]}], ")"}]}], "+", FractionBox["x", RowBox[{"2", " ", SqrtBox["3"]}]], "+", FractionBox["y", "2"], "-", RowBox[{ FractionBox["1", "2"], " ", SqrtBox[ FractionBox["5", "3"]], " ", "z"}]}], "\[LessEqual]", "0"}], "&&", RowBox[{ RowBox[{ RowBox[{ FractionBox["1", "4"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "3"}], "-", SqrtBox["5"]}], ")"}]}], "-", RowBox[{ FractionBox["1", "2"], " ", SqrtBox[ FractionBox["5", "3"]], " ", "x"}], "+", FractionBox["y", "2"], "-", FractionBox["z", RowBox[{"2", " ", SqrtBox["3"]}]]}], "\[LessEqual]", "0"}], "&&", RowBox[{ RowBox[{ RowBox[{ FractionBox["1", "4"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "3"}], "-", SqrtBox["5"]}], ")"}]}], "+", RowBox[{ FractionBox["1", "4"], " ", RowBox[{"(", RowBox[{"1", "-", SqrtBox["5"]}], ")"}], " ", "y"}], "+", FractionBox["z", RowBox[{"2", " ", SqrtBox["3"]}]], "+", RowBox[{"x", " ", TemplateBox[<|"icon" -> "Root", "small" -> InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.756\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.75576131407617075375071635789936408401`15.\ 954589770191003, Editable -> False], "approx" -> -0.7557613140761708, "interp" -> InterpretationBox["", Root[1 - 84 #^2 + 144 #^4& , 1, 0]], "head" -> "Root", "big" -> RowBox[{ RowBox[{"1", "-", RowBox[{"84", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"144", " ", SuperscriptBox["#1", "4"]}]}], "&"}], "degree" -> "4", "shortDegree" -> "4", "number" -> 1|>, "NumericalApproximationInterp", InterpretationFunction->(Slot["interp"]& )]}]}], "\[LessEqual]", "0"}], "&&", RowBox[{ RowBox[{ RowBox[{ FractionBox["1", "4"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "3"}], "-", SqrtBox["5"]}], ")"}]}], "+", RowBox[{ FractionBox["1", "4"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "-", SqrtBox["5"]}], ")"}], " ", "y"}], "+", FractionBox["z", RowBox[{"2", " ", SqrtBox["3"]}]], "+", RowBox[{"x", " ", TemplateBox[<|"icon" -> "Root", "small" -> InterpretationBox[ StyleBox[ TemplateBox[{"\"0.110\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.11026408970826791222652474289134261198`15.954589770191003, Editable -> False], "approx" -> 0.11026408970826791`, "interp" -> InterpretationBox["", Root[1 - 84 #^2 + 144 #^4& , 3, 0]], "head" -> "Root", "big" -> RowBox[{ RowBox[{"1", "-", RowBox[{"84", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"144", " ", SuperscriptBox["#1", "4"]}]}], "&"}], "degree" -> "4", "shortDegree" -> "4", "number" -> 3|>, "NumericalApproximationInterp", InterpretationFunction->(Slot["interp"]& )]}]}], "\[LessEqual]", "0"}], "&&", RowBox[{ RowBox[{ RowBox[{ FractionBox["1", "4"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "3"}], "-", SqrtBox["5"]}], ")"}]}], "+", FractionBox["x", SqrtBox["3"]], "+", RowBox[{"z", " ", TemplateBox[<|"icon" -> "Root", "small" -> InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.756\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.75576131407617075375071635789936408401`15.\ 954589770191003, Editable -> False], "approx" -> -0.7557613140761708, "interp" -> InterpretationBox["", Root[1 - 84 #^2 + 144 #^4& , 1, 0]], "head" -> "Root", "big" -> RowBox[{ RowBox[{"1", "-", RowBox[{"84", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"144", " ", SuperscriptBox["#1", "4"]}]}], "&"}], "degree" -> "4", "shortDegree" -> "4", "number" -> 1|>, "NumericalApproximationInterp", InterpretationFunction->(Slot["interp"]& )]}]}], "\[LessEqual]", "0"}], "&&", RowBox[{ RowBox[{ RowBox[{ FractionBox["1", "4"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "3"}], "-", SqrtBox["5"]}], ")"}]}], "-", FractionBox["x", RowBox[{"2", " ", SqrtBox["3"]}]], "+", FractionBox["y", "2"], "+", RowBox[{"z", " ", TemplateBox[<|"icon" -> "Root", "small" -> InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.756\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.75576131407617075375071635789936408401`15.\ 954589770191003, Editable -> False], "approx" -> -0.7557613140761708, "interp" -> InterpretationBox["", Root[1 - 84 #^2 + 144 #^4& , 1, 0]], "head" -> "Root", "big" -> RowBox[{ RowBox[{"1", "-", RowBox[{"84", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"144", " ", SuperscriptBox["#1", "4"]}]}], "&"}], "degree" -> "4", "shortDegree" -> "4", "number" -> 1|>, "NumericalApproximationInterp", InterpretationFunction->(Slot["interp"]& )]}]}], "\[LessEqual]", "0"}], "&&", RowBox[{ RowBox[{ RowBox[{ FractionBox["1", "4"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "3"}], "-", SqrtBox["5"]}], ")"}]}], "+", RowBox[{"x", " ", TemplateBox[<|"icon" -> "Root", "small" -> InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.934\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.93417235896271566542026221213745884597`15.\ 954589770191003, Editable -> False], "approx" -> -0.9341723589627157, "interp" -> InterpretationBox["", Root[1 - 9 #^2 + 9 #^4& , 1, 0]], "head" -> "Root", "big" -> RowBox[{ RowBox[{"1", "-", RowBox[{"9", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"9", " ", SuperscriptBox["#1", "4"]}]}], "&"}], "degree" -> "4", "shortDegree" -> "4", "number" -> 1|>, "NumericalApproximationInterp", InterpretationFunction->(Slot["interp"]& )]}], "+", RowBox[{"z", " ", TemplateBox[<|"icon" -> "Root", "small" -> InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.178\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.17841104488654496718069708549592178315`15.\ 954589770191003, Editable -> False], "approx" -> -0.17841104488654497`, "interp" -> InterpretationBox["", Root[1 - 36 #^2 + 144 #^4& , 2, 0]], "head" -> "Root", "big" -> RowBox[{ RowBox[{"1", "-", RowBox[{"36", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"144", " ", SuperscriptBox["#1", "4"]}]}], "&"}], "degree" -> "4", "shortDegree" -> "4", "number" -> 2|>, "NumericalApproximationInterp", InterpretationFunction->(Slot["interp"]& )]}]}], "\[LessEqual]", "0"}], "&&", RowBox[{ RowBox[{ RowBox[{ FractionBox["1", "4"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "3"}], "-", SqrtBox["5"]}], ")"}]}], "+", RowBox[{ FractionBox["1", "4"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "-", SqrtBox["5"]}], ")"}], " ", "y"}], "+", RowBox[{"x", " ", TemplateBox[<|"icon" -> "Root", "small" -> InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.467\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.46708617948135783271013110606872942299`15.\ 954589770191003, Editable -> False], "approx" -> -0.46708617948135783`, "interp" -> InterpretationBox["", Root[1 - 36 #^2 + 144 #^4& , 1, 0]], "head" -> "Root", "big" -> RowBox[{ RowBox[{"1", "-", RowBox[{"36", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"144", " ", SuperscriptBox["#1", "4"]}]}], "&"}], "degree" -> "4", "shortDegree" -> "4", "number" -> 1|>, "NumericalApproximationInterp", InterpretationFunction->(Slot["interp"]& )]}], "+", RowBox[{"z", " ", TemplateBox[<|"icon" -> "Root", "small" -> InterpretationBox[ StyleBox[ TemplateBox[{"\"0.178\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.17841104488654496718069708549592178315`15.954589770191003, Editable -> False], "approx" -> 0.17841104488654497`, "interp" -> InterpretationBox["", Root[1 - 36 #^2 + 144 #^4& , 3, 0]], "head" -> "Root", "big" -> RowBox[{ RowBox[{"1", "-", RowBox[{"36", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"144", " ", SuperscriptBox["#1", "4"]}]}], "&"}], "degree" -> "4", "shortDegree" -> "4", "number" -> 3|>, "NumericalApproximationInterp", InterpretationFunction->(Slot["interp"]& )]}]}], "\[LessEqual]", "0"}], "&&", RowBox[{ RowBox[{ RowBox[{ FractionBox["1", "4"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "3"}], "-", SqrtBox["5"]}], ")"}]}], "+", RowBox[{ FractionBox["1", "4"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "-", SqrtBox["5"]}], ")"}], " ", "y"}], "+", RowBox[{"z", " ", TemplateBox[<|"icon" -> "Root", "small" -> InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.178\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.17841104488654496718069708549592178315`15.\ 954589770191003, Editable -> False], "approx" -> -0.17841104488654497`, "interp" -> InterpretationBox["", Root[1 - 36 #^2 + 144 #^4& , 2, 0]], "head" -> "Root", "big" -> RowBox[{ RowBox[{"1", "-", RowBox[{"36", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"144", " ", SuperscriptBox["#1", "4"]}]}], "&"}], "degree" -> "4", "shortDegree" -> "4", "number" -> 2|>, "NumericalApproximationInterp", InterpretationFunction->(Slot["interp"]& )]}], "+", RowBox[{"x", " ", TemplateBox[<|"icon" -> "Root", "small" -> InterpretationBox[ StyleBox[ TemplateBox[{"\"0.467\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.46708617948135783271013110606872942299`15.954589770191003, Editable -> False], "approx" -> 0.46708617948135783`, "interp" -> InterpretationBox["", Root[1 - 36 #^2 + 144 #^4& , 4, 0]], "head" -> "Root", "big" -> RowBox[{ RowBox[{"1", "-", RowBox[{"36", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"144", " ", SuperscriptBox["#1", "4"]}]}], "&"}], "degree" -> "4", "shortDegree" -> "4", "number" -> 4|>, "NumericalApproximationInterp", InterpretationFunction->(Slot["interp"]& )]}]}], "\[LessEqual]", "0"}]}]], "Output", CellLabel->"Out[52]=",ExpressionUUID->"fb2b3479-394c-4231-87f1-850f5466620d"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"ineq", "=", RowBox[{"FullSimplify", "[", "%", "]"}]}]], "Input",ExpressionUUID->\ "7e2f3811-e9c9-4c1c-84f2-125dfa50ebf3"], Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{ RowBox[{"-", "3"}], " ", RowBox[{"(", RowBox[{"3", "+", SqrtBox["5"]}], ")"}]}], "\[LessEqual]", RowBox[{ RowBox[{"2", " ", SqrtBox["3"], " ", "x"}], "+", RowBox[{"6", " ", "y"}], "+", RowBox[{ SqrtBox[ RowBox[{"6", " ", RowBox[{"(", RowBox[{"7", "+", RowBox[{"3", " ", SqrtBox["5"]}]}], ")"}]}]], " ", "z"}]}], "\[LessEqual]", RowBox[{"3", " ", RowBox[{"(", RowBox[{"3", "+", SqrtBox["5"]}], ")"}]}]}], "&&", RowBox[{ RowBox[{"3", "+", SqrtBox["5"], "+", RowBox[{"2", " ", SqrtBox["3"], " ", "z"}]}], "\[GreaterEqual]", "0"}], "&&", RowBox[{ RowBox[{"2", " ", SqrtBox["3"], " ", "z"}], "\[LessEqual]", RowBox[{"3", "+", SqrtBox["5"]}]}], "&&", RowBox[{ RowBox[{ RowBox[{"-", FractionBox["3", "2"]}], " ", RowBox[{"(", RowBox[{"3", "+", SqrtBox["5"]}], ")"}]}], "\[LessEqual]", RowBox[{ SqrtBox["3"], " ", RowBox[{"(", RowBox[{ RowBox[{"2", " ", "x"}], "+", RowBox[{ SqrtBox["5"], " ", "z"}]}], ")"}]}], "\[LessEqual]", RowBox[{ FractionBox["3", "2"], " ", RowBox[{"(", RowBox[{"3", "+", SqrtBox["5"]}], ")"}]}]}], "&&", RowBox[{ RowBox[{ RowBox[{"-", FractionBox["3", "2"]}], " ", RowBox[{"(", RowBox[{"3", "+", SqrtBox["5"]}], ")"}]}], "\[LessEqual]", RowBox[{ RowBox[{ SqrtBox["15"], " ", "x"}], "+", RowBox[{"3", " ", "y"}], "+", RowBox[{ SqrtBox["3"], " ", "z"}]}], "\[LessEqual]", RowBox[{ FractionBox["3", "2"], " ", RowBox[{"(", RowBox[{"3", "+", SqrtBox["5"]}], ")"}]}]}], "&&", RowBox[{ RowBox[{ RowBox[{"-", "3"}], " ", RowBox[{"(", RowBox[{"3", "+", SqrtBox["5"]}], ")"}]}], "\[LessEqual]", RowBox[{ RowBox[{ SqrtBox[ RowBox[{"6", " ", RowBox[{"(", RowBox[{"7", "-", RowBox[{"3", " ", SqrtBox["5"]}]}], ")"}]}]], " ", "x"}], "+", RowBox[{"3", " ", RowBox[{"(", RowBox[{"1", "+", SqrtBox["5"]}], ")"}], " ", "y"}], "+", RowBox[{"2", " ", SqrtBox["3"], " ", "z"}]}], "\[LessEqual]", RowBox[{"3", " ", RowBox[{"(", RowBox[{"3", "+", SqrtBox["5"]}], ")"}]}]}], "&&", RowBox[{ RowBox[{ RowBox[{"-", FractionBox["3", "2"]}], " ", RowBox[{"(", RowBox[{"3", "+", SqrtBox["5"]}], ")"}]}], "\[LessEqual]", RowBox[{ RowBox[{ RowBox[{"-", SqrtBox["3"]}], " ", "x"}], "+", RowBox[{"3", " ", "y"}], "+", RowBox[{ SqrtBox["15"], " ", "z"}]}], "\[LessEqual]", RowBox[{ FractionBox["3", "2"], " ", RowBox[{"(", RowBox[{"3", "+", SqrtBox["5"]}], ")"}]}]}], "&&", RowBox[{ RowBox[{ RowBox[{"-", "3"}], " ", RowBox[{"(", RowBox[{"3", "+", SqrtBox["5"]}], ")"}]}], "\[LessEqual]", RowBox[{ RowBox[{ RowBox[{"-", SqrtBox[ RowBox[{"6", " ", RowBox[{"(", RowBox[{"7", "+", RowBox[{"3", " ", SqrtBox["5"]}]}], ")"}]}]]}], " ", "x"}], "+", RowBox[{"3", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", SqrtBox["5"]}], ")"}], " ", "y"}], "+", RowBox[{"2", " ", SqrtBox["3"], " ", "z"}]}], "\[LessEqual]", RowBox[{"3", " ", RowBox[{"(", RowBox[{"3", "+", SqrtBox["5"]}], ")"}]}]}], "&&", RowBox[{ RowBox[{ RowBox[{"-", FractionBox["3", "2"]}], " ", RowBox[{"(", RowBox[{"3", "+", SqrtBox["5"]}], ")"}]}], "\[LessEqual]", RowBox[{ RowBox[{ RowBox[{"-", SqrtBox["3"]}], " ", "x"}], "-", RowBox[{"3", " ", "y"}], "+", RowBox[{ SqrtBox["15"], " ", "z"}]}], "\[LessEqual]", RowBox[{ FractionBox["3", "2"], " ", RowBox[{"(", RowBox[{"3", "+", SqrtBox["5"]}], ")"}]}]}], "&&", RowBox[{ RowBox[{"2", " ", SqrtBox["3"], " ", RowBox[{"(", RowBox[{ RowBox[{ SqrtBox["5"], " ", "x"}], "+", "z"}], ")"}]}], "\[LessEqual]", RowBox[{"3", " ", RowBox[{"(", RowBox[{"3", "+", SqrtBox["5"], "+", RowBox[{"2", " ", "y"}]}], ")"}]}]}], "&&", RowBox[{ RowBox[{ RowBox[{"-", "3"}], " ", RowBox[{"(", RowBox[{"3", "+", SqrtBox["5"]}], ")"}]}], "\[LessEqual]", RowBox[{ RowBox[{ SqrtBox[ RowBox[{"6", " ", RowBox[{"(", RowBox[{"7", "+", RowBox[{"3", " ", SqrtBox["5"]}]}], ")"}]}]], " ", "x"}], "+", RowBox[{"3", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", SqrtBox["5"]}], ")"}], " ", "y"}], "-", RowBox[{"2", " ", SqrtBox["3"], " ", "z"}]}], "\[LessEqual]", RowBox[{"3", " ", RowBox[{"(", RowBox[{"3", "+", SqrtBox["5"]}], ")"}]}]}], "&&", RowBox[{ RowBox[{"3", " ", RowBox[{"(", RowBox[{"1", "+", SqrtBox["5"]}], ")"}], " ", "y"}], "\[LessEqual]", RowBox[{"9", "+", RowBox[{"3", " ", SqrtBox["5"]}], "+", RowBox[{ SqrtBox[ RowBox[{"6", " ", RowBox[{"(", RowBox[{"7", "-", RowBox[{"3", " ", SqrtBox["5"]}]}], ")"}]}]], " ", "x"}], "+", RowBox[{"2", " ", SqrtBox["3"], " ", "z"}]}]}], "&&", RowBox[{ RowBox[{ RowBox[{"-", "3"}], " ", RowBox[{"(", RowBox[{"3", "+", SqrtBox["5"]}], ")"}]}], "\[LessEqual]", RowBox[{ RowBox[{ RowBox[{"-", "4"}], " ", SqrtBox["3"], " ", "x"}], "+", RowBox[{ SqrtBox[ RowBox[{"6", " ", RowBox[{"(", RowBox[{"7", "+", RowBox[{"3", " ", SqrtBox["5"]}]}], ")"}]}]], " ", "z"}]}], "\[LessEqual]", RowBox[{"3", " ", RowBox[{"(", RowBox[{"3", "+", SqrtBox["5"]}], ")"}]}]}], "&&", RowBox[{ RowBox[{ RowBox[{"-", "3"}], " ", RowBox[{"(", RowBox[{"3", "+", SqrtBox["5"]}], ")"}]}], "\[LessEqual]", RowBox[{ RowBox[{"2", " ", SqrtBox["3"], " ", "x"}], "-", RowBox[{"6", " ", "y"}], "+", RowBox[{ SqrtBox[ RowBox[{"6", " ", RowBox[{"(", RowBox[{"7", "+", RowBox[{"3", " ", SqrtBox["5"]}]}], ")"}]}]], " ", "z"}]}], "\[LessEqual]", RowBox[{"3", " ", RowBox[{"(", RowBox[{"3", "+", SqrtBox["5"]}], ")"}]}]}], "&&", RowBox[{ RowBox[{ RowBox[{"-", "3"}], " ", RowBox[{"(", RowBox[{"3", "+", SqrtBox["5"]}], ")"}]}], "\[LessEqual]", RowBox[{ RowBox[{"2", " ", SqrtBox[ RowBox[{"6", " ", RowBox[{"(", RowBox[{"3", "+", SqrtBox["5"]}], ")"}]}]], " ", "x"}], "+", RowBox[{ SqrtBox["3"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", SqrtBox["5"]}], ")"}], " ", "z"}]}], "\[LessEqual]", RowBox[{"3", " ", RowBox[{"(", RowBox[{"3", "+", SqrtBox["5"]}], ")"}]}]}], "&&", RowBox[{ RowBox[{ RowBox[{"-", "3"}], " ", RowBox[{"(", RowBox[{"3", "+", SqrtBox["5"]}], ")"}]}], "\[LessEqual]", RowBox[{ RowBox[{ RowBox[{"-", SqrtBox[ RowBox[{"6", " ", RowBox[{"(", RowBox[{"3", "+", SqrtBox["5"]}], ")"}]}]]}], " ", "x"}], "-", RowBox[{"3", " ", RowBox[{"(", RowBox[{"1", "+", SqrtBox["5"]}], ")"}], " ", "y"}], "+", RowBox[{ SqrtBox["3"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", SqrtBox["5"]}], ")"}], " ", "z"}]}], "\[LessEqual]", RowBox[{"3", " ", RowBox[{"(", RowBox[{"3", "+", SqrtBox["5"]}], ")"}]}]}], "&&", RowBox[{ RowBox[{ RowBox[{"-", "3"}], " ", RowBox[{"(", RowBox[{"3", "+", SqrtBox["5"]}], ")"}]}], "\[LessEqual]", RowBox[{ RowBox[{ RowBox[{"-", SqrtBox[ RowBox[{"6", " ", RowBox[{"(", RowBox[{"3", "+", SqrtBox["5"]}], ")"}]}]]}], " ", "x"}], "+", RowBox[{"3", " ", RowBox[{"(", RowBox[{"1", "+", SqrtBox["5"]}], ")"}], " ", "y"}], "+", RowBox[{ SqrtBox["3"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", SqrtBox["5"]}], ")"}], " ", "z"}]}], "\[LessEqual]", RowBox[{"3", " ", RowBox[{"(", RowBox[{"3", "+", SqrtBox["5"]}], ")"}]}]}], "&&", RowBox[{ RowBox[{"9", "+", RowBox[{"3", " ", SqrtBox["5"]}], "+", RowBox[{"2", " ", SqrtBox["15"], " ", "x"}], "+", RowBox[{"2", " ", SqrtBox["3"], " ", "z"}]}], "\[GreaterEqual]", RowBox[{"6", " ", "y"}]}], "&&", RowBox[{ RowBox[{"3", " ", RowBox[{"(", RowBox[{"3", "+", SqrtBox["5"], "+", "y", "+", RowBox[{ SqrtBox["5"], " ", "y"}]}], ")"}]}], "\[GreaterEqual]", RowBox[{ RowBox[{ SqrtBox[ RowBox[{"6", " ", RowBox[{"(", RowBox[{"7", "-", RowBox[{"3", " ", SqrtBox["5"]}]}], ")"}]}]], " ", "x"}], "+", RowBox[{"2", " ", SqrtBox["3"], " ", "z"}]}]}]}]], "Output", CellLabel->"Out[53]=",ExpressionUUID->"4ebff9b7-670b-4c08-b734-1468c88e4652"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"ineq", "/.", RowBox[{"{", RowBox[{ RowBox[{"x", "\[Rule]", "#"}], ",", RowBox[{"y", "\[Rule]", "#2"}], ",", RowBox[{"z", "\[Rule]", "#3"}]}], "}"}]}]], "Input", CellLabel->"In[57]:=",ExpressionUUID->"e609dcdb-1637-4529-b65e-04b6f9706ae8"], Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{ RowBox[{"-", "3"}], " ", RowBox[{"(", RowBox[{"3", "+", SqrtBox["5"]}], ")"}]}], "\[LessEqual]", RowBox[{ RowBox[{"2", " ", SqrtBox["3"], " ", "#1"}], "+", RowBox[{"6", " ", "#2"}], "+", RowBox[{ SqrtBox[ RowBox[{"6", " ", RowBox[{"(", RowBox[{"7", "+", RowBox[{"3", " ", SqrtBox["5"]}]}], ")"}]}]], " ", "#3"}]}], "\[LessEqual]", RowBox[{"3", " ", RowBox[{"(", RowBox[{"3", "+", SqrtBox["5"]}], ")"}]}]}], "&&", RowBox[{ RowBox[{"3", "+", SqrtBox["5"], "+", RowBox[{"2", " ", SqrtBox["3"], " ", "#3"}]}], "\[GreaterEqual]", "0"}], "&&", RowBox[{ RowBox[{"2", " ", SqrtBox["3"], " ", "#3"}], "\[LessEqual]", RowBox[{"3", "+", SqrtBox["5"]}]}], "&&", RowBox[{ RowBox[{ RowBox[{"-", FractionBox["3", "2"]}], " ", RowBox[{"(", RowBox[{"3", "+", SqrtBox["5"]}], ")"}]}], "\[LessEqual]", RowBox[{ SqrtBox["3"], " ", RowBox[{"(", RowBox[{ RowBox[{"2", " ", "#1"}], "+", RowBox[{ SqrtBox["5"], " ", "#3"}]}], ")"}]}], "\[LessEqual]", RowBox[{ FractionBox["3", "2"], " ", RowBox[{"(", RowBox[{"3", "+", SqrtBox["5"]}], ")"}]}]}], "&&", RowBox[{ RowBox[{ RowBox[{"-", FractionBox["3", "2"]}], " ", RowBox[{"(", RowBox[{"3", "+", SqrtBox["5"]}], ")"}]}], "\[LessEqual]", RowBox[{ RowBox[{ SqrtBox["15"], " ", "#1"}], "+", RowBox[{"3", " ", "#2"}], "+", RowBox[{ SqrtBox["3"], " ", "#3"}]}], "\[LessEqual]", RowBox[{ FractionBox["3", "2"], " ", RowBox[{"(", RowBox[{"3", "+", SqrtBox["5"]}], ")"}]}]}], "&&", RowBox[{ RowBox[{ RowBox[{"-", "3"}], " ", RowBox[{"(", RowBox[{"3", "+", SqrtBox["5"]}], ")"}]}], "\[LessEqual]", RowBox[{ RowBox[{ SqrtBox[ RowBox[{"6", " ", RowBox[{"(", RowBox[{"7", "-", RowBox[{"3", " ", SqrtBox["5"]}]}], ")"}]}]], " ", "#1"}], "+", RowBox[{"3", " ", RowBox[{"(", RowBox[{"1", "+", SqrtBox["5"]}], ")"}], " ", "#2"}], "+", RowBox[{"2", " ", SqrtBox["3"], " ", "#3"}]}], "\[LessEqual]", RowBox[{"3", " ", RowBox[{"(", RowBox[{"3", "+", SqrtBox["5"]}], ")"}]}]}], "&&", RowBox[{ RowBox[{ RowBox[{"-", FractionBox["3", "2"]}], " ", RowBox[{"(", RowBox[{"3", "+", SqrtBox["5"]}], ")"}]}], "\[LessEqual]", RowBox[{ RowBox[{ RowBox[{"-", SqrtBox["3"]}], " ", "#1"}], "+", RowBox[{"3", " ", "#2"}], "+", RowBox[{ SqrtBox["15"], " ", "#3"}]}], "\[LessEqual]", RowBox[{ FractionBox["3", "2"], " ", RowBox[{"(", RowBox[{"3", "+", SqrtBox["5"]}], ")"}]}]}], "&&", RowBox[{ RowBox[{ RowBox[{"-", "3"}], " ", RowBox[{"(", RowBox[{"3", "+", SqrtBox["5"]}], ")"}]}], "\[LessEqual]", RowBox[{ RowBox[{ RowBox[{"-", SqrtBox[ RowBox[{"6", " ", RowBox[{"(", RowBox[{"7", "+", RowBox[{"3", " ", SqrtBox["5"]}]}], ")"}]}]]}], " ", "#1"}], "+", RowBox[{"3", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", SqrtBox["5"]}], ")"}], " ", "#2"}], "+", RowBox[{"2", " ", SqrtBox["3"], " ", "#3"}]}], "\[LessEqual]", RowBox[{"3", " ", RowBox[{"(", RowBox[{"3", "+", SqrtBox["5"]}], ")"}]}]}], "&&", RowBox[{ RowBox[{ RowBox[{"-", FractionBox["3", "2"]}], " ", RowBox[{"(", RowBox[{"3", "+", SqrtBox["5"]}], ")"}]}], "\[LessEqual]", RowBox[{ RowBox[{ RowBox[{"-", SqrtBox["3"]}], " ", "#1"}], "-", RowBox[{"3", " ", "#2"}], "+", RowBox[{ SqrtBox["15"], " ", "#3"}]}], "\[LessEqual]", RowBox[{ FractionBox["3", "2"], " ", RowBox[{"(", RowBox[{"3", "+", SqrtBox["5"]}], ")"}]}]}], "&&", RowBox[{ RowBox[{"2", " ", SqrtBox["3"], " ", RowBox[{"(", RowBox[{ RowBox[{ SqrtBox["5"], " ", "#1"}], "+", "#3"}], ")"}]}], "\[LessEqual]", RowBox[{"3", " ", RowBox[{"(", RowBox[{"3", "+", SqrtBox["5"], "+", RowBox[{"2", " ", "#2"}]}], ")"}]}]}], "&&", RowBox[{ RowBox[{ RowBox[{"-", "3"}], " ", RowBox[{"(", RowBox[{"3", "+", SqrtBox["5"]}], ")"}]}], "\[LessEqual]", RowBox[{ RowBox[{ SqrtBox[ RowBox[{"6", " ", RowBox[{"(", RowBox[{"7", "+", RowBox[{"3", " ", SqrtBox["5"]}]}], ")"}]}]], " ", "#1"}], "+", RowBox[{"3", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", SqrtBox["5"]}], ")"}], " ", "#2"}], "-", RowBox[{"2", " ", SqrtBox["3"], " ", "#3"}]}], "\[LessEqual]", RowBox[{"3", " ", RowBox[{"(", RowBox[{"3", "+", SqrtBox["5"]}], ")"}]}]}], "&&", RowBox[{ RowBox[{"3", " ", RowBox[{"(", RowBox[{"1", "+", SqrtBox["5"]}], ")"}], " ", "#2"}], "\[LessEqual]", RowBox[{"9", "+", RowBox[{"3", " ", SqrtBox["5"]}], "+", RowBox[{ SqrtBox[ RowBox[{"6", " ", RowBox[{"(", RowBox[{"7", "-", RowBox[{"3", " ", SqrtBox["5"]}]}], ")"}]}]], " ", "#1"}], "+", RowBox[{"2", " ", SqrtBox["3"], " ", "#3"}]}]}], "&&", RowBox[{ RowBox[{ RowBox[{"-", "3"}], " ", RowBox[{"(", RowBox[{"3", "+", SqrtBox["5"]}], ")"}]}], "\[LessEqual]", RowBox[{ RowBox[{ RowBox[{"-", "4"}], " ", SqrtBox["3"], " ", "#1"}], "+", RowBox[{ SqrtBox[ RowBox[{"6", " ", RowBox[{"(", RowBox[{"7", "+", RowBox[{"3", " ", SqrtBox["5"]}]}], ")"}]}]], " ", "#3"}]}], "\[LessEqual]", RowBox[{"3", " ", RowBox[{"(", RowBox[{"3", "+", SqrtBox["5"]}], ")"}]}]}], "&&", RowBox[{ RowBox[{ RowBox[{"-", "3"}], " ", RowBox[{"(", RowBox[{"3", "+", SqrtBox["5"]}], ")"}]}], "\[LessEqual]", RowBox[{ RowBox[{"2", " ", SqrtBox["3"], " ", "#1"}], "-", RowBox[{"6", " ", "#2"}], "+", RowBox[{ SqrtBox[ RowBox[{"6", " ", RowBox[{"(", RowBox[{"7", "+", RowBox[{"3", " ", SqrtBox["5"]}]}], ")"}]}]], " ", "#3"}]}], "\[LessEqual]", RowBox[{"3", " ", RowBox[{"(", RowBox[{"3", "+", SqrtBox["5"]}], ")"}]}]}], "&&", RowBox[{ RowBox[{ RowBox[{"-", "3"}], " ", RowBox[{"(", RowBox[{"3", "+", SqrtBox["5"]}], ")"}]}], "\[LessEqual]", RowBox[{ RowBox[{"2", " ", SqrtBox[ RowBox[{"6", " ", RowBox[{"(", RowBox[{"3", "+", SqrtBox["5"]}], ")"}]}]], " ", "#1"}], "+", RowBox[{ SqrtBox["3"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", SqrtBox["5"]}], ")"}], " ", "#3"}]}], "\[LessEqual]", RowBox[{"3", " ", RowBox[{"(", RowBox[{"3", "+", SqrtBox["5"]}], ")"}]}]}], "&&", RowBox[{ RowBox[{ RowBox[{"-", "3"}], " ", RowBox[{"(", RowBox[{"3", "+", SqrtBox["5"]}], ")"}]}], "\[LessEqual]", RowBox[{ RowBox[{ RowBox[{"-", SqrtBox[ RowBox[{"6", " ", RowBox[{"(", RowBox[{"3", "+", SqrtBox["5"]}], ")"}]}]]}], " ", "#1"}], "-", RowBox[{"3", " ", RowBox[{"(", RowBox[{"1", "+", SqrtBox["5"]}], ")"}], " ", "#2"}], "+", RowBox[{ SqrtBox["3"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", SqrtBox["5"]}], ")"}], " ", "#3"}]}], "\[LessEqual]", RowBox[{"3", " ", RowBox[{"(", RowBox[{"3", "+", SqrtBox["5"]}], ")"}]}]}], "&&", RowBox[{ RowBox[{ RowBox[{"-", "3"}], " ", RowBox[{"(", RowBox[{"3", "+", SqrtBox["5"]}], ")"}]}], "\[LessEqual]", RowBox[{ RowBox[{ RowBox[{"-", SqrtBox[ RowBox[{"6", " ", RowBox[{"(", RowBox[{"3", "+", SqrtBox["5"]}], ")"}]}]]}], " ", "#1"}], "+", RowBox[{"3", " ", RowBox[{"(", RowBox[{"1", "+", SqrtBox["5"]}], ")"}], " ", "#2"}], "+", RowBox[{ SqrtBox["3"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", SqrtBox["5"]}], ")"}], " ", "#3"}]}], "\[LessEqual]", RowBox[{"3", " ", RowBox[{"(", RowBox[{"3", "+", SqrtBox["5"]}], ")"}]}]}], "&&", RowBox[{ RowBox[{"9", "+", RowBox[{"3", " ", SqrtBox["5"]}], "+", RowBox[{"2", " ", SqrtBox["15"], " ", "#1"}], "+", RowBox[{"2", " ", SqrtBox["3"], " ", "#3"}]}], "\[GreaterEqual]", RowBox[{"6", " ", "#2"}]}], "&&", RowBox[{ RowBox[{"3", " ", RowBox[{"(", RowBox[{"3", "+", SqrtBox["5"], "+", "#2", "+", RowBox[{ SqrtBox["5"], " ", "#2"}]}], ")"}]}], "\[GreaterEqual]", RowBox[{ RowBox[{ SqrtBox[ RowBox[{"6", " ", RowBox[{"(", RowBox[{"7", "-", RowBox[{"3", " ", SqrtBox["5"]}]}], ")"}]}]], " ", "#1"}], "+", RowBox[{"2", " ", SqrtBox["3"], " ", "#3"}]}]}]}]], "Output", CellLabel->"Out[57]=",ExpressionUUID->"87b806df-1614-476c-975f-fef47aff82f8"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{"RegionPlot3D", "[", RowBox[{ RowBox[{"ImplicitRegion", "[", RowBox[{ RowBox[{ RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}], "[", RowBox[{"x", ",", "y", ",", "z"}], "]"}], ",", RowBox[{"{", RowBox[{"x", ",", "y", ",", "z"}], "}"}]}], "]"}], ",", RowBox[{"PlotPoints", "\[Rule]", "30"}]}], "]"}], ",", "\[IndentingNewLine]", RowBox[{"Graphics3D", "[", "p", "]"}]}], "}"}]], "Input", CellLabel->"In[19]:=",ExpressionUUID->"7c1ead51-37e2-4320-b54c-9f48c36881b2"], Cell[BoxData[ RowBox[{"{", RowBox[{ Graphics3DBox[{GraphicsComplex3DBox[CompressedData[" 1:eJyEvXec5EXRP34KD0GRoCIK+CDhUaIoKiAqDYonDyJiOILkoB6giKgPEgQl PSJB4iE8gIcPUckikh6HI5xwdxxc4O64vHs7m8PMzszuYcDfTFW/37VVH+b3 3X/mNbU91dXVlbq7unrbE3/w9W+/fdKkSWfuPWnSOs3PTz175le333W8tGfr c87i0k+3POGJuzdblM5rfR45XjpPvxOO9oAf3PzyyQtfSfdsNu3cLc8eLx3f hE47d1ahPeBov3CD2Z+7cqrBDzxi+JSLyyvZvvXvh7Z+hXDgn35uC/HDBfz4 DvzLFzQxlK19xL9FE90Jn/4/7Wf5miT/nmztAQ94EvCE9gntAx8S6ArjJR7w Ge3iuDKdxA/4HjpfbH/qxeXbJl/dKLWw3ja5l3zV5vWSNJvcw3kD/KHWAN81 yHHL90+NEQ/gaD99cpPw9w5w3J9s/eObhfYJ7eX/W/dz3PL78wp06vjuqBOO ccnHsQ3MB+l/d4svt48Rjn6vag3gJIMD/1iLkMsND/C3yLn4XeOQD7Z/svVx 5hjhaI9xVVp0di+nnAAO+n7c+npyD/EDDvzy/d4G4REP5g94pN1LjTgum5c8 T2gf4AlwzG/gWwl0Ypxt+EB527f56wVXj/n5m0A/2qFfzBf4CboC/9lvmPcE PgU+oH0pjCthXEFOUhs5Yb+gf1jntzCurVWPSA/6rajcsl/oRYBTzgGP+gt4 YX5V71LUrz1Vv0j/oS379+yoysHFI5STHVrgpbWS2KGHBglH++7bmh3cNEx5 AFzGefsQ50umaVqNeor5PLGF7zrTX/AHeKTZAwOUC8Bl/v/Uz/mXcc4p4Gf7 FvSIffs4b4CvbTH8G2X+Tuj5Ro1yDjjaAz6p9fdqf0n4f2idcHwKX6oGx3iF 7+safsybo/PfywU42n+0+e3M3/YRLvPyTCfnB3D01/p25qrh0iMtebukTjjw iX0bqBEe+wV8Tqv5c/2EYz6EP4eNlFQvzI4Bj3x9wPCDTsCdnwP9Wxqd4D/w o32kE/2CztBvasOfBP6EfhP6DXxLcX4BB71C53OF9inwuUA/4JHPeX5Jf5DP 1EY+Uxv5LNAPOO1r1iPQF/UI7aMcZj0q0LOo9YPVPew3yDn5APsQ+o32p2Df chySov3J9qFA/6VqB1K0A2eq3Utt7FsBv/D1HtKTVrTivSsrSs+UKuUR8JY7 eWKTKu2nfP9Blf8HHN/l5+sNUP5ntcjdpcL/O33a0fDEftW+VmifZZ7eWaUe gj/ys9uq7A+fwIPv4r8f7ydc/OR/DlIuABf5O3SA8yl+ZetR4gHc4T+sn/Ms 8fMXjR7AIz0iH9sNJ+HP7CrtGsYX+SV0HWh8/H0r7t5/Bb9HPqrfrZainYHd i/OH9oDDXkU46AT9Mt4Xqmzv5OaCwrj4/3uU/kL7YPcif2hPAv4U8cvXg8sp 8hPzB3nA/AKOT8wjvkf8gIMPQf5TlEOxo9cN0Z4Eeaa+B/mkvrt+D+snPdDH 5fr/5OKfJ0ej/SEewJXezmgHUhs7QPzgq8xj36j3z4NFf472El/PH/Xrmr7B gpy69r8zORL7e+xwQR7jPAtd13QTLr87bLTk6P/QYEHe1f+M8HdBj0vbtcjs HCT/AMdny+yecv0Q4V0twNm9nB8Z74ZDxAs42mM8m7bazTA4+LKy1f4GzqvK 0TqvlZzfnRDvij+51eJgt/65tRAfJ8CvaAnC/wyXYpyN9uAX6BF92nvI7yNM GBf0RdcnlcjnFPkMuMSd5/Wp31x/KPKd/HR6O6FftIvzon5zuNAvfu/kZ0fT ryifWR5SlIcst9T3oBeME4L8E7/w5zcV9ot5C3qX2uhXcvYefnFlzcfPtf7C +gDtxQ7cUIxnJQ75MPWI/JNmp7efzzf/1fx7ZSRFvZJ4ZOpgwX9nv048oE/k 7IzRNF/0t4v0YRxxP0jkeI2t08BHjdvyuvq+vsI+TtzfQXtH56UvsT3GVVd9 TJEe6IXM9y8qBTjGFfUl8setTybwB3wHn9/SvuzXq/J6YjnaHbY/TOeR8CAn KcoJ4GI3ppRpV4HfrbfQ/vfVAjzLZwF/lkPKua6HuxhHO/1qfsq66K8NyoXo fb2b7eM6UuDHFfalSi6+XreHcNW7mt8HndNZWJ9F/w/+y/y/bvKK+QR+IeNN 88+AA0/2f7qv9ZWuaC9J51qNNzgPMo6TywU7p/tVqwtx81vO882jBX2EPDs/ vLqnIC/4FHn+UJ1w8P0dre8H1LNdsn067P8GOPeF474q9P2u1jz9sCfOJ/uF HICe0D61oT9F+rFOjO3dOrnJt8B/+im0x3fMb6Q7ymGWk+T8m8k59UX4sczm I+zfq3x/r5bCvmZpZ9Wj1EZf6F/wf+iX8PHhst83eq/tg+JTxnvnWCniUX/L fVbCJc7YvLgPJ3Hp7o14XqH7kQdY/As45DuvS9O3WuDzlxEe/bzY5bVF/+z2 3a6ra7xQXe351JwHty/4SFfBT2U/UrBPzt9vsNbvO37mOepF5Ov1rd+9YvMG vrTBQz2SuOH3HbRfoD+MK0X5kvHMt/VwkBeV24NNXrCfDDwhftfzleWDcR2Q 5HcrLd7BPGEehY5rV3OeopxkeaC+BD9SsAtZrqgvwW5znRjOlzQuOb7H9/ve sdRG/gt6NF/ln+ssJ2+n2/mhxIerF5fieSPay/pvZzuHiedgoNOtw04wPQVc +PAv2xcEXPzLUcX970Na/PmV7XvFfXH52j2s83Do66WwHiUe7EdFfcS5XtQv 50/+0/iq6+4OnYddxwv81n0Eg0u7771Mvso+6q1LyN94Huz23U41uDtH3H1t hKcId+usCXj2UHqS0/cXFnv5mjAuN2/NcYEvsj/7iVV+39bwpDb8SZE/mZ+F 9tB38B98ebz10T+U4v6UzOu/VRnvwg5jvtvY4RTXT9kvUN/Fjp2zjHoa5RD7 GxE/2kM+g5ynNnJewJ/1KEU92k71ke3E/hyyKPpr/n9Q9Z18lLh25LW28if9 7r+W390+x95rKY+Aizw8Zef5Yk+On0f74PZNX3y+FPMOnL15i/PJbPcL53sS P73K9VJh31r3s2wfS+j8n9G2629Zd3ywuA8t7FxvtLBfJXHSeYx3Sk5uRuuE Q2+EL1NNnjGvQsZKmx+3v7+7zYOsl+cuaGunc3viifYB8AsVTyG/xJ3TN/Fg nkV+upcU2rt985VF/RV/v2GtFPiQIh8wr5FvLh6dwGfMX5yXPL/UxyAPKcqD i0s26ysFuUpRrmQ9fJaNU373i4W0m+AX5BzwKOfnqJynNnKeopxnfSzIR9bH FPVxluoj4w38X+zbC0W/InJ7lckH4DJPR7zB7/iU86C3EU78wvdLiIdwlYO1 lK81rXbvejrGnX5f6sAi3O2PPNNfyK8Res+wczDh2zXtz+3FHr9n0I93idmT eN4ldvrMEcJhH1RfqgU7IPhPGyV+zXtZwnE/1OJLx58L/le+3/ks5wntgcfF F3cYXNC8uaIgj9E+RHlpA6fdiHk8gn1rrpMIj/REexLGmyKdmX7Co30I/KT+ yHw9Truh57LJ1tFOPpt2Ic4X2kV5yPLDuCLIQ4rykOWHdgNy7uZ1gjyLnJw/ xnG4/Jdme7VLq6P8pyjnem5mdinodfQH0OvURq8LdiPrdWqj17RvQX/jeFPQ 69Ki1rAXXJvi+hPtYTdivBvsDOHBLvl45IiCvUrB7hEOOxnGlYKd8fT8yfZz Hf7zi/liAV7An+1bcuP6hZ2bunGZvSI82L2CvZL473DGOZr/kQr7On4f7vF6 aTtxoLdyHQB5FP+8wzzGqYCDnmB//D54014F+5aCfWtnr9g+2rHgJ1Ob9v8v OOkPdqwU4YFOjCvGS9QHPT+0/QDZP/lDOeYv0o6IfDXs3AZ2DPPo5NDgUX5S G/mJ9i0FOxPlKgW5SktV/lMb+U9B/lOwD4V+o/wH+xP1PdqxFOxb1PdoxxLs Z4hPCnYJv5N16LNjhfV2WAf5edy7KGdhnUU41jtxP1rkZvJYgR4Z70+L+aeQ pxzfFvIcczxMPGE9pXZik+fjeW3h/D/H4Z4PzXUW/j9f92cK+QKu/Zphxlly bnT+PMpliOf9+nzU9EWaX9FBe/L+FjvGlhT2v3McQvlro6dYl/m84wl2LMdp 3l5Z3JKwXovwNvbK+/kJ8Gh/orygPehxdmlCv1j3RXhYx0V+FuzYfnI+39vW XuX1GuGzdH4pR4CHdVyUH8pLkNsU5TbEbynIcwrxP/eRo36FdVkJdiDEbzE+ 4fxHvn++1f7f7F5C2M+Jepqinob1XbQbUZ4S1qfo7w5dn6boX9156enF+xbY 721nT5DX9nPddyI8rhNkPG80CvsLYX9Y6T5unr8fMCG/O+z36j7gOcva5pFg P7kdHpGvk/oJx/5wzN8B3nxe4PPYbH+YcIz/N7rPSTj2jeN6F3KT11PpAd0f pn1ot39wiO7rFuJu2IG3jFsnwDGfEQ8+I/2gF3DErWEfOIXxFu4XhX3dQh4z 8uABd3kFO1bpR2K+QZjHFOcx7McW4JCHqI9t5JzzHOQ2RXnDfi/g0Mew7k3O Ttq+TcGeCJ71ZhA/9oHj/IX9XtWvVYvbxqM4P43zHc5bOX/S7M1C3rSPNx4u E47z1sgfFw/saPma4VzV7xfYOWwpn9NRryP+cK7q8zstryDf+1ldyHOJ+e6I ywCX+PMJyx+JefDip15pRH1hHHKAnpuwn//f/bAN1r71enoD02uJDzdeHuWU 8xb30SWf8AnLr3N54vMt/y3YQ5yf+vyGUctbO0LPX/j7cJ5LOOY32HPa3TDv hMs+/adWc5zgU5C3FPP3nZ9tyif0ol08FM5Po76kqC/hfDYFOrkuAN8Eflyj YB9D3hHOl4kH7fI5ciE/TOR9l+4Yb/l9ecs7KuStIy92B83vinE72yMvKOT5 cJ7y+TvO/eO+QeE+Rs6HKdzHADznFRTsjdip5T2Fff2c51PYV4v7LoL/Ywbv lrjvEW93m3KU8yva2nsBf68Wx1uYN3zG8Yb8Hx3vzmsK92TQHnngkf8h/6cU 5IR2TsZ3Xhfh8fwGcLGP6/ZEOUxxPFmeU5TnkP8T/Yi3TwfYPgjjGM1HinEm +RLyS/18WZ5qgY85zzDlPMPCuXLI1y8hz9jd17E81cJ9DpnP/Xo9PZaP6vMv 1xuI+Qtsn/M2U8zvy3me6m9/yPtFHN97JZ/Z2kMuxH7PHCicV8dzp5z/FuW/ FOU/5MFGOPJdoz4W9Cvko2a/zHsXhfsSmW8FONrHvPCQB87+Qp4q8eT85MI5 RMhTjXKb2shtaiO3BXiWW3++gTwju3dAOO5BRD8d7lMg/7ZgR5An2MaOEy73 hK7pLuSnT9d8ePJZ8i/mjsT7Gsqni4cL8wQ5z/n8bI/7DlEvnP+bUdH9ogdG CvlcMZ8i3y8gPNx3KJz35vsLSfJJ7+srnMPEfVC0j/tbgEPv4voD7UO+N+Eu f2Yb5rmQDzKv37A863A/gvwI95XYvlv5XNif4/jC/B6h8+vvJzbjhHb3JfK8 pzjvaA+5Ejn+Fe9T+jjX5NyvM02eC/ri/Fp1VdQL8jXfmyjc6wV94f4g7kkV 9qfQHvsJwIO8whgHixytPxT5xfnC+jOuS8J9Q8pvvo/p472uwn2gFO9POHnZ cKiQb45+Ac/31Dzc7i0W7lvE+zSARznEeKDXMa859ivwgy0POt/vK+SBOjnb fwV/n+8lFc6B8/2jwn25mDck/7/D8r/cvukEeLj/mIK9Yjt3X2j/FQV4uCcY +UA+Yh5jPBLkrbC/Hu4DRjksrI/DvcJ4LyfFeQc8+nXh20nG13xfib+L51vh /iP9V5AXfg/3DaO+p6jv2Edy8zZYyBfM+ZXF8zMXN1sdCdwDLdxnyvdG/f2V CfdhNO7uK+h7qP9AuHx9YCDWkUjIP8e48r3XqC++338vF+hB+131/nu7+xyF ewz5Pj77DfdzC/fZch0A75+tzkMhf1PoWTVcWM8AT75fTDjmO7aX/bPDRgrz Helx+21v0R70BD4XxpvHVfBbaA++QX7iugTyE9cZYR4LcBdHd/M+QQr1Cng/ LMbp7tzlG+UCPNQZiHLLecv3l2O8E+W5sF4J9QdQT6Bgj4P8e72uF+8h5foP hbx/td/F/F3Eg6Fek+VB+LpPhIf6UVwnyL78fOYjYl+c/YJ+XVcV6Ey5vkrh /ptbt1n9JcIF7eQe4s/1MeJ9hpTraRTuM+W6HIV7S7nuB+cV9AB/uM+Qcr2R eF9I53FLg4f6KimuN3K9lMI9G4zXnb+c3FMK46UeA0/cVwYel795st0nwHwD DjrjOi3gSWgfxkv9iutMtA988+sD4z/pz3VaCvvcgZ9t7RLsf5CH1EYe/P5F fdR/n6B3sf4J9K7dPRnAhZ4H5xOO+0FRX9rtC4d6UFF/fT7oqcX1X9DrFOMB XQeNFM6ZdL/dzn31/LxwPo26WDHPBnW0Cvk3uS5W4Zw71+8i312e8e2FfB3i D3DUGSMcfM51zwr3FnK9MsL/H/nQeh5/byPuS3IfF3UXI/54nyHeLxH7euEr pUB/rM+Wwr653z+2+oqEh7qIMe+D/YLOeK4bzwXl27pdnJd4LhT69fuCRn+K 9KBf0AM5HFa/wPa57p8/t52Q54I6im3ml+MK8pbayFtqI2/kB/Qi7lNCL+J+ JPDE/UjoRcCj8nZk8f6TnANNtXnEvMv91LMNjvby78l2jgt+SlxSHo/nVcQT 8x8DntQGD/Up0Jna0En8GK+rW4p+P2/3BDaR9dJ8nk8e2fr/sMHRHnCX53HK uMZld8/z9dK+bvdIIn60Rz1S3ee29vq5lP1qfDyfcIl3DxpXuZgzh3EF6otK HsPdMwr0XK3wFOm5OvMZ9Ai6uwyP8yMPxvy/pWonpxlcx2f5EbK/uHwm4aJH nx4vLW/N5xl/9ud2Zxs9bt1aznxolXYK9GQ6Uxt6EvrN8kY86Bf8uV7nJbl5 Nz5Q78N8pTgvYreveD61Ga/f3z3F+nV+/POWVxLlUPMyXtbz9Qnn6lNUPgvt AXfr4i809Bx0Zg/lUYYxrVFqIfvkznb/5Eo5J7F8TcgF8KA94PJxZ6P0pRYB 91u9ED1HsHqwmAeXV3HNAOEPtyb+041SC3zCx229IPatt0APz8/k/78hPak1 zOGX68QDfkt8s6nhAVy+75z7vaZccvs2O1qd1RN13jUer9fZHvAftci5r6H8 2Kyb+i0/v87wgP+oF4r24L+EV+cU4EnE/DTLvwffbmz9f6TQr8ZhF1p7zzej B3xoidm/tjA8se4u+mvDnwQ+oA5h0F/WX816UhgX4PidzOvjBnf5/Ystbxjj kh89Y3CMS76+2SAeZ2f2z+PasaN0wER9f7SheXLdKwhHfVqMM9IDOOiRfYBX xkqphe+IZSUXj21t/kj2T9+ck37b6mDHMbUn573OfgV+aINw8NvlCzThgnd6 me3d/eAmHHII/kIOQQ++gx79/Zie2++zqOTs6qlj9FOAo1+Hd7qdfwOOOsB6 f74R5ZP1h5XK6U+Dz6ATfASdoKdVy3zS8S8X+AO86Ffs2zZj1DfQifu64E9Y NxHeBk8CHowL7dG/8HHlGP2F2w97vkG5AR7IFeiMctXT0rMPLKBf2ErkdYx+ 2sVBv2B+P9ujX+hJnC/wPdaLxric/7d5TBgv9Br+Hb/D/ILOqEeBbxzv51SP OK6g78mNo6m/yo8VhfGK/3r3a4V8lk+oHqWoL2gH+YUdw7ja2GeON9ix1MY+ g296HnKqtce4xF/eT3vFOAT+S++zlP098KafAjz6KW3X7fcbm/79Uo0TUvRT aB/jBKw7MO/wX6E94wG0B3+Eb0dZe/BB2HKR0Qk+5HVTvD9Pvy/yevQazjvi nEM1bklObr9g8BjPHKjxTOE+W45bSD/av0fjjRTjk9M0PkkxPkF7jEvswyE1 PRfckvUFSxsKI2oaR3yD9bd1HqfWc92hQdo5nPvuJvddRggHHhn34kHqGdpL /PXBYcJl/fP7msLLA7Tfcv62udVBcHHRrtYecihx4Z/qag/Otf1kkcsX6oxL 0R50yjr7KNtPBlyndYD2EPSH82K1J3+sqTz+rc/n03+ppvsl5/eV3L7g3jYu 6Bfwi93YY4Bw4JGvj3TndY/lK8k8v9FHPRZ+vqOWzwO72A/g8IPjsk/Rx3lE e8BVrkYZp+FT4q55hgdw8csH1Pkd8ZHI8e31EJd26HhutvzLDfP/5eMP9RBn Lk3PtehZk/PPftb11vXPP9pDPXb5as32v27Nc62XeEAP4LLe2bumv/9AB8/1 AMd4hE8vDpFvaA+48PmxGscZzo/0+yE5b/OZAZW/0+psD7reJkpj90Mc/5tx b/YL/L/eo6uHuKuD7SEfLs/6S4V5UXt8ltHvziOeMjrRXoZ1mPFH8oUusfre aP+z1sfH+8ln6LPo6zp2jw1wsftbjbCOOsYFejFel+fT7Efk9iN14gH96tes zrzgfc3yRtEeddRBJ+wg6AQe2CngGWn1c23N14lt8gHtT872CO0Bvz7bTcCl 3y7jJ+wZ6tgjXo3jgj2K9KA96BHyHrBxRTmH/cJ4QY/jQ5MeyKfzT035BD3A A3rQL/S5jX6lqF9oD3nI5zvsF/oV+JYinYCDTsgJ8LtzosNjva3uKOcpyvlv sv+I8pPtQzy/JryN3Uht7HaKdjvbk9TGnnD/M9jt5ObL7DP16MZsH97h4Un8 7gkW/0Q7gO+wq/Bf4OO9rf4u64r2IcE+BP8Vz98JBx8kTrisVhJ5X1mO5+a6 frmpm+OFnwI97vyzGVec1JKH9/SSDyJ3TT4gXnVxyN71EB+av35S/XWK/voS 9VOpjZ8i3xDPaH92vqb5XzXCYW9CnJZiPCb9rhxgfAj4lRr/JKwzABe6ThxI Mc7ZSuOZFOOWkG9APqC9y//B+whv9FF+EJdur3EpxxvivRTjtxyv+nPGJv5d NS5NMV5VeR/ieIWspRXlf9Xy2IWeNyv6OdfqW4leH2z3Hl282vwu3exRJRx4 5Dz06grjZJc3P8/gMt6jKxofbDrMuEjiwt/bOwOQQ9CP9pBb4MG40F7i4UZV /dxHjH6Rn/ePEu7Wa3dXS69JfstI2I+v6rhOHvH7aXMqimfA6pfLeqO7qvzf aSiPd57O5+ZVjd/u6vP1DDe3dxw0H6jP1+G9q49wmbZ3jxK+4cS45ji7/wY+ gB75/+6D9AOAi178cSDEF1WVt+f6/fnClKrGzbP7aA+knx+Mapz7bC/tjewH 9uX604f0Me9C71dVw3qnn3mIgn9BfwEOPIL/lCGPH3w8Jecv7lplHCn8eXRA 5fljozr/c7r5O7V7FifDv7hxNdcjGK98P9HwY1yC90OjPq7d0e4foD3ecQCd kGPpd/ow6UH8jPnEvLi49s8jJfQLPKL/Tw5wHmVdfO/rin/rCvG4fed7TN/Q XpZF7zf9f0Puz+f8nFMND/Qq4gFc8zOq3q814zTBc9hI3jcwOOgEHtgv4EF7 977X1jn/difLqwb9YpfWs3cdICfg2+SJ+WRNvqG9O289xe5RAe7eJWn2u6ny je3wCTjoAd+0HsFKpeMfI3xnBOudKFfOr0ygE34XdAb58fnju2a927dD/W55 OMo/4yvQA7/VRs4T5Bz0QP+jPkr767tSlGfRz10tLxF8u0TtW4r2UPeVuxP0 GnqKOCTapafULjEOgf7ie7RL7vfn9tPOuPyi5rjcPP6oj3GXfxdmkHDYbYwL dlvo/suoxmv32b0QwLN9ZrwR7LbPQ1tj77ygPehEvI55A50yn+cNJjl/q3Ym +DXgEbqeXk37L/N9YH+Kdr6i9rlwL0jXJcwP9/exmu3BT/BH6BnsZ1wa/FqK 8cDhrc/DRhL0GP59lvr3FOMZl/fdtE+6jqtq3LHU6rUJm9ax9ohb0F741THM +ErijXur2Z4YXMzaHTYvYgfuWBLjsRTjsSc0HiP9Ie4i/cLXa6096BT43Fzn +DV7H0fkZmCwsA8BvZT4c8WoP4edM6hyO8vezZG487+HVK62MPsKuKv/s6e9 B4D2gEue0e+GC/4N9Eu/e5h/07pOOQ7byOhx9uyP9o4Y4DKOH1cZfwr81mHG q8jvEDqnDuo+/Q9pj1Uv9hsmPhnuaT16D/KokeD3OnS/csMK20Pfha/N9T3g iMdAj4zv4WGeV0Ifs57SHqM/wTtngPYMeEU+PzDIOAr8l5+/NKjysl3xfpHg Oy/Hp/vkeGyZ3TMCfnyX3109QLiguWUg3hNTPbqhv7RLC+HhI5o/vNmIr09/ 24j6l+WDJQEfb/dJ1D5U/D7sFYOlGS2FGhny/v31PN/LB9le9vXuriRHZ7O9 1MmYH96L2bdD7fp/Z/28tZ/xj/Nbddv3B34hd6rt48v+wh9GyR+3jt3a4nW9 ZzxP5Wr3WpCPWaW7ZT1n7fU+3GvEL/J65xDpAR7AIceAA487J57wThPaAy7m YukIzzdFzz9h/cJvAb+Mc6cRv3/VnF+013d15hXq9AAe+YC4DnwDHPGV7FNd Y+/2Ic7BPGKfDHol8MurUX4S5Af0Q69Av5vHZhwCOQR+p4d/Mnvh7mU09UX8 yLZDfr3UlHPohbuv0ewX8ob2opc35vtypqf+XnjTXrl7Xx12rwh2Qetz9FPf xW5tO8S4BfTL12m8j0s+ZHui9BzVo+e9m44o/osGfNy43PqFHRC2L7P7oLBL aA8+YLwYl4jNzXYfEeMCHON19O9p9wXRfrb6oxT91A2tgb2S6WvaeRnXz0fY HvGG4P92hX4f+gF7DrjkV2y8gv5lqEX3m3x/hXwAP6P9BBz8EbS3jcAeMS4K fjO18ZuMN0I8QDwibxsZfuzr67mg3S+E3wzxRrxvgbgitYkr/H2LW/rUvh9a fGdY4rR97HwGeif2qGTnCZJ/NTJQiuczaC/x4KPhfKYJFzL+q+btdJNOGfcV oyUXdzXpkX2/Y2slF3fh/sqn8jps427Vq3kDjGcwLvQr8H1HaS8F/ol+PS85 skq7C7js/2xn9/GBB3GByOvUfN/kAtMDzcfgfozyYTnfCaS8CT+PG6K+An+r twU7ml1x+1abDKvf3m+Y7YFP4rxHhhPowf9hP2Wa3tHHOMHdt3ytm+3P1f0y javv6Se/AXftYL/+NOzbNeEyvvVH2R7zIX72JruHifnAu2nw71q/4XV/PoG6 k02/LPkCF9Wynlu+I+CgA/Ik3V9XPNdXfhoc9EQ6V7UI221GXs832B7rGdGb m+08Xn7/thxXDOVz6DdsvMADOPY9AI/8EfHCu3UftXwCzes1/JnOwvt3gEf6 EVeAD4H+BPohZ48p/xPiIrQXPFvZPj7gEv/9binby3yUbN9T6LnA+Az/G+UH fkp+v03xvTzNM875uffY/mb2u1FfEvQl7pPKeuM5aw8/Jd+/YHoF/YEd0Omw eBrjk8+F3bAn9DvA81nV90I9jhtU3xP0Pdg3+lnYc/gXlVvL14B/ET7P7o52 m/5L/Ogl3DdivpDI9Yl27xbnzILun31sDzmC/RT4VuEe98JuwsGf4I8K9yYB x7iCPyrca8z+K7XxR/SPYmc3zfp1n71vofanrPHecfb+oKz3biozv9Lx7V1d bA848Ej7XRq0TxiftL/O4MCD8yih74yyriM/363r+VMtz8Kt0w619rqe6NHf zSzmfQj8b/UCPcKfOyyPAO1Fb9en/9X5+WZeB06p8fzF29uq+pvf9ei8/FcP 4ViP6zog35f6bJX6p/vQuV7n6gDH+vOFCvZBksz3QRZHix791PyT0PGt4juM R+q+lr4j8/QI/aBb3zTthvB1epfGG9sO+foLR3ZSvtC/7B/+ys4/tJ7GcAl4 0F74cV2VfEN7GffWo3o+PqWL48A6y8U178nn2Q+MJtmnuyvXC1hZpr7KPt0y e29Q6LwpvP/ZbC9xzQ9rxIP/Ay7oPt/pz8Oa84n2kHu038C16+D7jBiP+PFT 5ylfb63nOqzd9LPI5wYcflbk+4QxviMJO4V7JqF9QvsNJ/Jt2UzV9/XH8n5W R2kPOee1uuOYJ6yXhU/zLa7QOiWLCAefQQ/4HPKxdF/phSrftUT7NvOVgCfM S4p8dvtoTT5jvKInh3dznQ48yHOIdSKQtwC5wnjhfyGfaA88oCf6U9HP3+X9 PtOvFPUL7aEX4Jvo20vZbzb1GutC+TxmROOfmYPUL6wHodfiR3/b5ev2//dQ tFcJ9gr4Bb4mw5f2cd7BL8G3W9bbN3s0XvpnletTnceyytEWNeZLAI/ALx9l e9hDwb8n5UY/v9sZ1qH9HNe5ag99HR+znynaT7QHH4J/Ybvgj1Ib/5La+EfO X/A79L/BPxIOvkm/m9YZb6D9mPpZ9gs6AQ/6lt+5M/zCpyUd9OOiDzPt/WmZ h0saup68ppP2S+zxkMUD+BQ6j7b7NGgvcv/24ruo8vGdMa5L0F7Ifa5RgMs8 falBvww8Mr/3NXie6fKtBrBvaO9XilytV1f+/r2b7XV9yPqoSdZPq/I5z9pa zjdcmu9dd3A9hnNRORfbarnmKc6r0m7C/jh4M36W8ZzV6evK/bSf9Og+rJ3n uDoEU6t6r/Ti4eT8TRNPPifQOPfc1T4egD8/bBW/C39+kvet5q5mPAA7oftV q3UcCy0udvbht/30v5hnwHM+OtvDLgp8Wk33Id9YRv3I+eXa73c6fT7t5fUk +7A7rVK/+W57p1r2L76/TOfxPIu/gMed8zXxSL8fX0247BOe1CCdMp9PreI6 GvzP/lHXMTePR7/J+uqAw1+jPeRB9mVPmEn/DjrcvlLTfgQ8CXhc/nTzT+Zz g7Xqh65aTTjGFegv4NlJ6la8ovZzB4sT3D3Df+X9gec6fV705WbnsM6VdiM1 +hGJ85/qUPko53sLX7G8Z9jLMO8pzhfgwrbtGgnjBR7A8/pZ90+uyHXlmvGn y9u6psz2oBN5iTL+F2scl/6+X/eH/z7MccGvyP2wp0epL+58/E9W70nij7/3 Kd39NY0vru2gv4befU3uLVidOPk4uuLjAdSPa+q76MPbV8PuMf4QO7MX9STB HsI/wi/HvO9sf+hPYQ9lni4apT8NdinBLsG/ZHtLfy/N71oDu8p7OsHO098B LvJ6SJ3xQ7DPCfZZ6PvSKvpf2Re7zeLyB9V/kW7Iw7nq75TOU9ZE/5Wi/9pA /V2K/m6W+i+em6P94ervCvBPqv/COX5+Fzafe+9i9ztdnubBBkd7kc+vFN/j lDgY95tPsf1BwOHfAUc8IPsxv+z2+X37FN9Tln3pmeb38SnGodf8vtbnXKbz +Ht7Dx1w0e/deD/PxxFbNLi+xnil/eZjXI+jvdzbetzeVUf/4h/vzfnpC3rU L/4knw+srtGPAy7z/mHLCwZ+OcfrsTyRoBeFPGLg0XzGoeT43GwPuOYFLdZ5 +fFoOOdbxDwEkZdJlSTjfHEJ81Gj3UA8ALvh6Jlv5y3AI//f0OCgB/ED4gT4 WdAncjfF8nzl+8O9Gsf9wPL/dH3SQ/8Ov7+Z2uFCPSzAxZ9Pb7A94gHA0V7c 05871b48mfVyIJ87XbS6UH8HcJH/KeNsD/mOcMwb4MDj5PSCcd3fPXyx2oHa bMYDgLv7yV+2++RoD7joxUGd3D9HnAC/I2w4ab76t8ft3rjLU58zrveEZizD ep/0gG6Xh7RVfk9qyjLyQeof/8zsHOw12jv5nJTrREx4B/wlHVeK43V583OM HuHDN15Mkc4XdbyMTySevnJFuC+T6xO9sJhwzDva+3srY3HeU5xf3EPB/Aa5 KrwbnuUwOTm0/UWNH2Y3ohyyX9h1kZM1+f7M7KrXr2tyvYAJ8i/6dazlAR8/ cT/1K0OMW4Bf3rv4W8gzMPuQon1A/hjsjPNHC3M981ft3FXoeJedW0h+3sdW MH5wdZ93WhHOhc1+4hwZdk/9zRK2j3Y12/9CfcRs/xPsv56DLeW6vo39Jz1C x8dy/a/9YKe6SQ/ah7xIwkFn8Msp+uXt1c8W4hORqx6LQ/C5pfrfFP3vca3P 2VY/DO3X1/iBcibx6B9fL12kfpl5fYCX1S/zHETm66alGp+8p5Hgl7UO72ua J/OVcZ8fOG2e2rPHLG7BpyBdYnGL8G+SxT+gG/8Xf/3ZtbRzwqar5qv8P2L1 kFw95b+N+/PVxxcw/sE6B3BXR6EpJ6BH6J8Q56BfQfpj1kPSdeNnXmV8gn1+ 3f/7q/7unDHmB4EPQsfJPDfxduC0eiGu0Hv5du8K49V7XMU6ATIPGzeIR/z5 rXN5ziJ83bWffEC85M/P8jxeZe0B131Ae7fa5ZO+lO+fvTjMcWHdLh+dIzlu X8B1u/DvhMHS0y00T77s8x4ftHw14feD+f7E+ZZvq3Gi5dU6+bq+qnpzkOW3 Iv6R/59s7y24/KMZo36+Fg4qv7epEQ57p/fi7N4C+Ih6l4Bjv0L4Os3yPhAv yTjq1n6DifJ6xBjzZeT316728sv7Rvne3fam94h/JL64ZLywLpGPB8bT+1v/ OPupXK9mMeMH4d+lS6ifiEPQr8sTWs/eTRV7eemr+rv7zR6IPHx+HvE7+Uc9 hWacoHltM9WfVBYW2ru84cXj5A/sAuKTaCcAB57wbh3bQ88Bx+/Vukx/OsOT s29NOOgJ42L8c7ynM0V6DlH+xPfTSh9QfibwE+P/p5xvL2S8lO10aQ+dR8LR XvTkXXy3q1DnDvMY5CRBTsBn8VMfye+YbWn7uIiLpLtZY1GeE+Q5yG2Kcuvu eT5p+oJ9G+iL93vdGhfd30hePvt1/38v0y93r2A30+tz1T4k2AfAERfBnrh3 O8rDCXYD/ME5DuyY84drqgl2D/OC/Zxob7N9i3WmYQ9TtIeIl2Bvgz0k/WiP eEmm5w+9Xg+XY9/K6MH6Tc5H9u71+ntanXGUxivz1H5s10j+PjT9SGrjR1L0 I4ijhG/7d5WcXA1aXCTzvOpVlcMfjTOekXvXdyxknAO9hL9Ge1e3/8hXS1g/ uHqGzXHJedvxPH8hnsPV77O+DcaF+qZt/DX5hnFJfPU1W284/VpsdUB93VjT H/Ahx0uFd81zfJWiffyqxlHk2xQZx026b/JTW6fJe09HziKc/iH3o/G+2TX0 I0inmj1Fe/GvNbO/+JR5f5HvWfv6Oru+UajjJecNx9r7167+wnPEz3FrnrzB Xd30L63lvvjGrXHe8n86XzdbnTPMO+JDyI+rX3aP1dN6Vj4e03nZx95f/Fir w8En6Nc1/7m/1Nvi40svEC7juKiP52PS7p22j/8+2a+8S8+vzjC40Pns84V9 ARn3d2eEd6mXkj8C36FQBwt6reuHo6w+k9q3XPfxartPL+cAO9UY74E/0u6A HE8+PuDrZfQU8Qg9Cy3+RHvZx3q5pvtJmw0X7q+Lvr7X3rUXujcZZZwZ72fL OvTHFS8n1+d7XSsNjnhV/Nf/VHlPS+rl/GtE5/+KKuuYIM6Ur/vg/nq+fz9r iPtpkGvBf8MA40boDeJP+DVXHwv1bq6psV/db8/1nf+P72WzPfwm+CCd77ha 5XQ011vc8znGmfDvgCOeRJyJeBJ2Qfg51erSIs4E/J7W/Dz/qPLhzJWxPrXK wQZ5//5+W3cCP+IxP4/Zn/fFerjz2N7J7VvA437X1W3woB3mP+KBXYhxZnhv HetswkW8jrc6g7BHcVyI99rwM74DXJqq/EzgZ5jHhHnEuER+NsnnepuN0f6I Pj7fpfHqpHqUE8aB+wneXxKe5YrnIbAvqJcNuNQ9eSPHdQ/XyH93L+Y1Oy+S dcdV5ZTlnPRLfZDnepLkky41OPbNRE/XtXx5+GMNgwwu65G1fQnrQcyj7LNd mPNzzqz4+07lnM/aZ/cFAZf1+ZRR4kGcB3sS7GeK9nNc7RjjTLRHfCjTvn0l 2sMU7SH2AWH33PoH7889Y/ni2W7n+bJ7X9k+x/cKYM9TtOfZXxAe7HmCPQc9 okd7jeV7xGvovyDf0X99Uv1Xoe674H1tTNc1Yx30y8Aj90ovWhX9XYK/c+9Q PtnQef+w1VnU88i4v8z4J8X4p6zxUorxUo5/Uox/crzE/tw+2bFsn0K8RLlH +wUa/1B/QrxEeIh/3vo9+C+tZX5XiHMK7wnkuIjz5fIn9jH+I54J8ZKv63qP xTMYn/jfnkJcmhDX+XX7pEnC/8sKcWkKcSPbI/4M85JiXNqmPecnxL2pDT1s j7gafI7jdfVXJ+V93G3HuQ/p5neN1TEFfolvDmsw/nT+j/W8GaepXftAm3rY awr1pKEvJehLG/zJ89PubaK9xLWftHsagMt8X2b3OR09Fk/6d0ss/kxt8BOO OBZ2yfmL9XM9nqb9BxxxpuYfsq5SfgfT6p64e+Q4h236BSdEa/u4Dynx4B5/ Uf96VZnr9VvE7z/m83brdcJdPvWDDfhl5mUg3gNc62wv4/rgZGnwGM8ttJ8x /95FM07DPhVIF3rPNDxuvpr6iXgmxy0JcSDay77PVS9wnS/tv2LnFeg3xz+p DX7CQ/wW3ieYV2gf9g85jxGO9ojrQ9yYYnwY8Mf4MEU8aE87G/BA/0N8mEL7 AjyON+AhfDudR+5PAg/iScx7pTUR//u/hMOv5n1d2n2Jd/YfS5u2unvf/f6d yv1NrkQvpnQy/gR/YL/0/lTD8z/1Mm5Ee8mbGO2O+5+6P/XjfF7yaYMj3pN+ ltk9IdgF3Qcb5bwiflM+s25ECvuEnEe0F71+ruLrLq9fZTwJ+gEXNhxUjXYv RTuJuE71o+L9jsWN0b6laN+yPSy8P5ntc2pjbxkftsGTgh1OsMOAH6L+KMEf IQ6U/bS/jzGfD+271B8xDy34I9o54JHjmuPHaVcwj7Lf/vXxjG8Z5xfxp+bb r4n+K8F/OXiPxYEhbkkxbsl+P8aHiFtSjFsQ18U4JMRv7doHP/uG9zdFemLc kmLcgvGG+DAhvoW9we8QJ3MdrHFjId4DHPtv8T0H0dtvF/NOJM/kf8fjPmQK +4T+XY4J58hoH/YhyY9wTu35YfucbK9+2t6ZQfsR5QPjt6sn8vnvdo4MPNJs uwbr5wGPrNt/0f49FqFr9YDnW7n4Pol8f8nOzWUdvv/zat+esPxAtBd9uNjO za+eyLf7cv37apnzD3jezy/UZRf96LV36sL5MukP+4GEyz7AdrmO1/n2brbb n5w0qOvwL/6V9Tul39X96R8tvq55OiHeC+cUKZwve7naeJT7gi5vcX1rDzw4 1wad/a15636e+T2IG9Ee+4r5fKq0XPTqSdpf7k+2Brbu7bTXn9P9Dc/PG/L9 2qU1yrvL22fd4SwPfV1539TeV4Dc5H0YX1/v0U7Gk135PQzEq9iHkHfB5tm7 cYhj8z5SzsdazTgQcFcn/ZJxP7/N9oAvk/PO12j3gV9H+xzhsN/AE861OY9h v1E/z5rl49JmPJz3P1PY/6Rex/gTcRHOu/1+xqyE8/RzNb4iPJx3E67j4zk1 9fHqiXo2IY6N8SG+t9nPTCFeJTzsZ3JcOKfGuIBf8pGGFzNPT9YpJ7+i78Zv 8jrh6A/n4OAD+Ix+wWf3/sCZ+T22S4rvhGF+QY+uy1bo+emHG8Qj6Cevjufy kDfid3bpljWMV9FehltdrfuKi+vkg+jV/3bCDnG8sm7q7Crg+aqeF2AfkvAZ ah9wfk16EH+KPt7F/UDYq5BPSPvGODPYqwR7FextAY74U+/B8Fwmhf3MFOw5 7Vaw/zgXjvY8wZ4HP5Lg77z/5bk2+71L/Wbh/dLsZ1P0s2Ffke1xzgu7CL+J c2HaGx/npDZxTopxjnzttDwMyA/i1WNa8HcuSsH/Jvhf6Mn2mueWvqh5kNH/ Jvjf4K9T9Ndh/5B0hn1IwsN+pj+Hn3DuHOKo5PWWcVfBHuEcHHQ7O5XGeR62 s56PJ+QTgp6NNb8x4Z5FtI9Cj+Uxkp+4r4F2+Hy3nuMzrnt/62PmPMZviK8A l3m5ze5d/qNlB3dfpHrxU8v/Bn6J346x+5XuvZqlXCdzvEL/jy2+BV243wG7 CDwban4F4Z/RvEHGb8jreEDzDBm/zdF8EtWToxcyfoNeA3/IDyyJ/e9awngM 97vAH+AXvp5QLoEe5DHi3jbGhTxGyQuf0pckL3ajV9mvfP5qgO1xz0LYv7Ti 399aa/WLAXf5ijdW/f7rRqMat0yqlO5s2YGHF8Mesl+9FzSPcMSZjj+zhko5 75r4Ee+J31hn1L8/cW6/vmv3eK20Xgvd03OVnrVWv8Tt7zT5K+uP0+29sZDH SDjiupz3XvqznGO/5us2TcCP/MNuzXv39wx/3cG4DnDIvcafpjfh3gfbuzpI i8f1nGPdJYTLz9/RyO9tL2Q8tkDz4pLeE5vP+ArxyXUt/Icv5jp8ht5riHZF 91Pn2PoV+gY42rtzkt3XFuCgP+7fo33AnyJ+Z/8mwPG7iN/Z5QvGvR9pxldx vNiXi/PiztsusHMGfS9gBf1tmHfGUUFOEuQkzHuK857lkHDQIfboe3w3wu83 pHw/9AV7ZwXnyFH+Q34g2+NcGPqF9ojHop4i7oKeor2rG3xjrhv5pQVsr+fS +b7nky/79g9aXUDkB8IOBTvGusDBLiXYpWCHkTdIeqDPiNOCHUuwYxGP8Okz A9H+M65Te74khfsdJbSH3CCuC/Y/wf4Hf8H7wMEvpDZ+IcEvBP+V4L/Qb8j3 K53d+vjay1yfwG7Jfvfjs5S/P7e8RPjfmJd4bQvBd1+L65wS4hDYo2cEzROk fxe9N8F4z70HO9PyFYO/Zh5miH9SPA8IeYbEj3sfot8zXijAhS+3z9N+1y5K 4b5qmtea/48tov7DnqE97oOAjgtb9O27jPEP7KvMx8LsB4+0/BiZr/9ayvUS +Kx1Jlepns5tcD28vd5LVXvSa/YF/JMfN+EYJ+wg6mCgHT7D/VmeTwi/LrN7 H+5eyIPxPkh+x+hvdfV3M7uUzu2W+Pjq790p6BHumeZ8ghWEIy54Se9DMb5C /Il1gPDtmDrvH7p3AtazfjFe3MON7/mgLgf0C3DYKZmH31eIX/hv9S503j62 Qsd7kdXzzfdwCce4wE/Urcr38clX1LvA+y7ys31WMO6CXb8+6yPiK9hj4Jff H9jPeAx5JdLvE8iTrup9jx1eZzwG+43xyjx9uYt5lOAP1pP5/iDhIr8/Z92M vI+7vFDXB+1d3PUzk1PYKZmfuwtyqvt1VzU0j/n05WovNlrFfbNjW3gGQn5B 019P1vukHt7sV8e9guOGXuZ6Dj6/7KS8Dz1jGffHEKcBDv3PdS0K+SOz9b4q +wP+XDcjtsf91pg3pOdfT4xzvPh/jE/k466FOm8fG2P7AyfKY7M94IhzYP/A B5cvV5QH3CctOftzXjnFeUc8I/JSqSv+QzoIF3lcv67nZ59YSb+I90TxzgPq YMj8zagktHd1MF7N71ftudrfh/yT1b0TPPMGGc/kOhiMc2APpur9U8Y5iFuk /R4rCIf+oj3iHOAJdoPxRrAzqF8R7ST1NdgZwoN9Y/wQ7CrrkdVlX28V4YgH ZF129DLGG8j7lH36I2wfEPsVwd5y3oJ9TrDPwV8k5y/+aynjDegH/CDuh8Jf w2/KOdqvmZdJf434BPEA6MQ91ug3UR8DfjbiQfwAPNv7e7LJzePRFucEf5qi P71b/W8Bnv1sgp8FPYhnwAf5/Yadys9dLH5w9z/ebnGCzOPVXWzv6oJCn68z PQeeUHeL7XV+LE7IdcAYJ6BdrsfCOAHjEn2d0+nfzWv6AaH75tX0+4g/xT6t m9+rnmL1qMEH+f8ZrKPF/lFXE/wBH9De7UtO7Yz7PKhvw/gBcq7vbncyTvDv /tj7FXg/Q+Df7aR/h/7K+dlfaTeZnwb6ESdofukI6uoQv97L70+S7/v51YwT 9B7nYJJ3ym9ZTrujeQoWPwgd7+lFvSw9b/xQJ+0L2uc6SIwTMJ+AI06AvxD0 3+n0dSgvN7kQObG6l+xX/QTrW6qe75L7fYr1zyifrh7V2jr7BR9jv4DnOo3K 1+XllOtJMq4Qe3u33Q+Tcb0j12vavJPrItgtaddTDvcexnQff9vVPv+3aVeu 1PpaPs+0GT+onbI8DtGHj45zvIgThO5bDP6cqC3rdHk787ZZjAfAB7SP+LWe 8kLaaci7yNepeZ94D9bd4rkY4CI3z3X6vLbLC3LCuCLX4yI+ZydMflKcx1Bv k/BQDzPfT1qTXF3NCfXzhI7J9j6FvpfaFe6/Wdwuv+/sZ7wgv5+7OuGdJlef fnqXnq9ta++rgU60h14Df6ivVYJey7yux3dcov3x7479tot49Lx+KNof6res W+sdKegV6UFc8YjW76KdAR6hY2lf3v/o1njgx3ZPVfYx9+3i/oa7V/B/nZQz 2GH4Eeih1qUvRz9C/yjNjupkPAA/HvxgauMHCUf7UKeL8oc6ljEO3k79IH8f /CDbyXi2jnl++f3kqWW1b1bvWvl5U5ntgV/4eXpfwnsNIU9C6diG91LUf7+Q 34WbWffrrlt7CEe/4u8+3638tXrXtAPCT3ufgnDUwRZ7c1NXknv537P3gYXu ud0J8unzSYZ8ffmmvl2l9dKJB3DR4y/Ye3dYX8v496l4PJsM850Y0feF3apH 27EedeFdKck/uarfr0/e08v3NYFfz63ze52b23t7eu42yHMZ974L3pnah+96 Ug+Fr7/Lev2rbp5fyLpvxjDpgd/MdYnZL/ys7gfY/gfW45qPOlp6viVPe3UR 7uvqdFP/gUfi9GU9tOfoV+anVqZfhj3Q9VWPjuN3S+mvRe97+nz9zmZ7OY+e 10d7Ab2Xdzo366WfFbkaqhOe/Vop+inA0R7w8H5Efmepm/5X6DphLMJRvzrl etfkA/w48AMuw5vWoB939xg+av4d/jfiCe9EqB7eVaa/g18Dn1H3EnxGe+gt 2mN+xR/d20H7jfahHjXnHb+D/Mv7wY+Xk6tH/TGTQ5Gzw/PnVpX8bnw35D9F vcB7kdAjtA91qqMepahHWNcLvvcN+N/DHnx3MAU7QL8J/Hj3Ib4vJWy5eUjl r6NX99/v60p4n8K9d7Fxtp/XWh1t6W9aL+E49xN+9vbSbyIPeHiinXl7lf4X /QAOu+rqUzyb82d26875JuZPXVz23Z5Cfk/wU6mNv6B/DP4luX0W81/0j8G/ pDb+JbXxL3iHgn4z1KP29R7snaOU3zmi30ScADjef4znanhHyfnrpjzgHUnA XV0Pe6cJ74ak/G4U/ab0e0sf/Sb4ADj0EOOV38+w90WxnyPz/+G+EKfmeiJT BzUf44fIB31Y93PuGWR79Jv9sM7XUxbvAo5+ZZ24Z5njBXw/WTf0+Li56X9l vrezd5agbzK+R0y/JM5MuU7uRd1sL/3dxnfqcr2kPp2vfSqEY7yAh3c/lZ5X Rkovt4Z7WqCzCUdcAb3L+s71NfDIv4/v1TyHGyukU+x6yd7xdfYAeQjbWD4F 3oGSdebhI4Rr3vhAhveTTvh32de6yfDAj2v9y0pJ6ooc3U844gd9t87exxX5 nVHN72MN0E4hHhC7tvuwr6t3TVXPjT9jdebyu0KE430o2CHQGd5z9O+/2buQ HC/8vrBvv7r6p48O+P32g+pJ6ky+Yf4d9gZw+Hf4U+B3fvlmaw/7iPagE3ZZ 4oFbrd6ey2e81ejHuht0gj94vynyJ7wLmeR+2Xr9yeXRbGH96rrtdbUXFb7H hPMRwqWbvw0oHdNsfYn5dXre9NegX+zq7DUFeHgHytebbvofyCHWx4DLx3pD xCNMfqaP9gN4TlP9StAvl/dwQ3+CvgR7kmBP0C/+L3K3pekR/Hu0S4ernUnO nsBupIzvIrM/midZKbSX/v+jkqL9QZwA+wM8Mo8/rXB/HvTI/B1gdZEk7v7g AOMH1DsAHO8Murzept9xeRT9HYQj/oM9D36Hflblp1ftR1ctRf+Y/R39b/CP jAeCv6MdcvLzWs7TOG0V/TL8JvCong0nvGsMPmDewzvIGpe8WWF7l8f54gj9 I/iG9si7Q5wgfHvbCPPoXH73xcP0m+DDAj0XIh7Qj7rp4T1lvI9J/wj5FH+9 6QjzTrBexHhFH349xHgAcNlf3wh1vnKd91vzPu7DVkde6Dglv6fUEeqCNeVD 7HXPsL+f9kt7Zxj0C382LLw/rHryHYuzYQ/Urg/Tz8Ku5HdR6WfdO+7L7X02 2Afpd7MRwvXekr0jIfBD8jr9FOOn7gvyHWe2l/XFgv7CO3N4hxp+Nb5T59bb m9v7eMK/C/q4Xwi43kMY4HiBV8Z1t9lP+H1ZT8+3caG9wLcb9vCXulUeHh3w 9zxf4rvSKp+75nfgru8qOX/86pB/h6Zs7+PBP+p5bK7zvWse7772noDM+x6V hHelQR8+ZR117+taT/T91eT9Bd+P1vXt0hHaQbE3n8B7AkOMH/w7A0OMH+BP 8/vCtDvgM+AYF+DS3U4jhEOugB/6APyg353P3W70AA/agw+Iy4WuO6yunssr vMP4g/gBfACf1yqfU+Qz3o8Gn+H3YaeE3EVZbnai/0tRjxAvQd7Qr8zLcZ0+ TxBye33e/37bMOUcegL9ze9Es1/oO/Qa7SM956k8J8g58CN+AB7oe3ivmXgq ah8S7EOww6mNHS7k0axVu1GAZ7uRot2I8RTsBuDYB8n7HKQHcNhPwLEvAf7v qn7BxxUnjTCewbmZjGdORfl33iDXAWgv++pP2TpAz+eGGbfA/wr/5lWiHvB9 P5x3QP+C/ScfwDecm+AcBetQ/B9xi8zzMUOMZ9y+XZMOka+qvQsm/Ly2onI/ 1+4dBf/OOAf9CZ17GJ6wb+DzywcGGUe5uOVOoxN+E/xB3gjOZcM6nXwT+ucO +rzWZrwEOOIo6LfQ+f78PtKG9r498Mr6p+lXHP1nVdne5wNUdT5+intQ+f2B c0c1n2PA7tujX4F/xO5xyTwuqCbUMcZ4hc995q+dngKOuupNPdV3IszPQu8E PqXK+1H4v/DpB7k+6bP2TjLGJex9zt5JBn9FLt7oYxyF9jKOCwYIR3vh5x4D 3H9weTy7DJacHyvZORzmF+9Z6TmJ5RHi3T/Hh83yvtt6lA/yR+An2vuW4Kfj wyP27qXM14fsXUHRgx3tnVqRz5916Tq61ku4+IGP9pCfeT/YxzOX9xXeM5Tf HdaT97mtX7EvzwxwXK6+2in5HPMCg2NcoB9+Vuv0Ft/ZFTwf7y+hX5W3NSW3 jnzW4KAHcPn9BzryvW/TZ8Q54mf/MeL1sykHc7J8Rbj4g61GVP53qjIucvn1 X7D3zWS6tq6wvavL3vTv4EOOKxL4ADzKnelPAw/oAXyw9Y/DjB7EJ8DvznOa +DEu8MHdk7i7QnpcXhjoabZHfBLpceulJn/E7hxcJR7wGXICfYhyAjsb5QT6 FuUc7SEnoFPkYb2u1EZOEuTE2etm/NNGfhLkB/YN/i/qL8YF+mH30B72A3r9 pOo17UTQ3wT9RXt3njnN3tcEHsCh18ijCOdCSfYd53QTH/D0tOznTcXzCRn/ b7oS7APiH/we6ybHn2ac5vgwJe9Hzu4r3PfKcpmiPX9K7b/m057Qpeun7vw+ 9x8HGBehvb7/00f7gfbyfffBFO18tv+Eo72su+6zfdPgF3ye0bvtPRIZx2md Ou5da8qX3/an6JfxHgryXwGX86UD+xlHCd/ur+r4O6yOocB/Mcq4afpE+zGt RvrdumedaljHzKDfn6V+39+PfX+2/xuO+PucayuEHzBxXfKmxWnufrXFLbQ3 gU7uVwAu87Cl1ekA/yWO3HeYcZH45WUWJ0B+hP/H14Kcdah/+1JN9zfP7+M9 WWm/dz28x5vrgf8xv+f8tz7en5U44+W6zsvH+xgn4HxOxnsi741zn1vr+/Qz H1LaP1RX/e0c8HWOmnD53XGDvo5PE4/M/zWhfbNfkc8/2L13tNd37Nkv8rUZ t7i6C832sk92RS/5jPe4xL7M7GF7iec3N765c7ddDb+Dv78wL1qXZI3FLfg/ 4JhX2EORm39YfIJP2cc8oa7ye7S9z4f5Ahz7afr+hr076PZF63l+rymTfr2X aO/+gn7hw09qxAN/JfZoXs3He027Kvx/h8FhV0XODuP+rO6nXZLl6yx7ZxL8 EX3+YT3X2VtBPkg//8znxzvau8JCT9Xe4cR4xW49Ze8TY1ySN3Katce4pM7I odbejesxo9PlHexdYzwGvwy4ywtt+lnZP7i2RvsLPoh8fsTeRQYf1E7au3Cy j/NaD/VO60W/nt+9LpMPyNNw9y2qdcalkT++/krmz0l1xmORHrSP9MBeyNeT e9Rfdxkf3Hn23pb3L3K4Tl4n3295eBE/7EvEj/M1d+7+gMExLz7P7+EEPGKH tzT+xPkFH0An5hFwzCPod3UImvRDroDf7W9dW6MfjXhgjyIfgB/0Yx4xf/iU fZpLrN82cu7jqC6jJ86Xu9+8znDU6xTl2dWTacqPwA+3fqG/GNcnVJ4T5Fn4 sKKu+SXdK2hXglylOO8xTyLoI+Ne0A9+wQ7LvDxrcMH7l0znR0KeZTnvK+/f gF0iPNjV1Mb+pDZ2NbWxP6mN/eF4gx1mfKv7ivbeG/iJeAN4EZci3vB5kfmd 8j/YO3DunHFvy3cDHPxx64jjF9J/oT3gui6uJ7xrg/mEXwOe6NfwPqDTp8tq zCtz531NP451BPgKvmFdALrAH8Ttzr81466tNO6inUN8tYPGV/69QNTZOXEg xTjqPRp3aTw79Arby/7eSss7QPvTNO5KMe7K8VVqE1/5/YlpOQ7c0uoQhbgr xbhLjaTVCXJ5f/vaPXznp67o9Xbx0w3GmeCDhPGbNkIcNU/3G3oN7u433NnQ 8777+3jvRro9YIztMV7pZlpD49id+xl/irytKeDP+x4N3R/diHQSjrgR4xK2 XWR1jkC/2nPaB79vOWLtwQfh54VWRwnjFTafU6jjqXHBp4r1PTEuwN0+80uN Qp0mGf/ODcaHsPeybnu0wXgM9k3z/61+E8Yr43xmLMRd+b2ix609xiv6stjg GK+s366z+rWu3tCOkf6lOk+H2rug8COAI17C72R/9pUxrVtxxDKug6T9jmNs j/HK+cHnx9VODNs7lJpvP+7jmea4kFeL9mKf+uYrXVtb/VPB++YcXXcfa+N1 9Smet/e7MC6xEx8svCfGez+y/tpnEdcL8vOVY7oOmjOHcIxL+nl1PteJoBP4 QSfGBbjUo73wFc4j+IV5FDnchnWLSb+0+/R4Wt4i/Iw/k37QqXbjecLRr/qv maQfdCKuA52YFxe/TZC3+E6A2LvTxvz+8yR7Xxf6I1Q8avSjndBRMTpBT+RP uFetcnH7GPc1XD360ww+aeKfyQPjJfSb+ZlAT+CnH9/zdl/FyVXD7qNG+Zf7 Vse9TDj4D3kF/4Ff7O27X2O/cv571FjatsWQZ1d5PWjin6L6kpw+HjwW4tt5 nF9fb8L0Dnigd+A/4gbwX+j5V6iTzbpvjRC/FexYamO3C/OL9nF+3T5w8w/2 HN9hz0FnwJ9gJwFvYyf9ft1I8d01+GV3DtqMQ+B/AY/+CHii/433EjCu0J5+ KuBXPbuvQCf9FOI9d3+q6ZcRN8Z4A/GVuzd5Z87bvr+P9CNOOFTjBNIJ/NM1 HiA9kFvIK+RN7o0fNE57C3/42daAz7D36mBv5RzilPje4yJ9N+Xr1h745d/T 7P0iZ8/vsveg0K/UL3rQ7BX6lfuhZ4/7c64J/QKOfmH3wBfYGelm8nhcb0Y6 fZ5v2dpHOtEedAY+pEgP7B76DXxgPIJ5gT0EPWFeUuRPrHcLetx+YpMezCPg 0b5BXtH+CIUzTtpE4SrnXx8vQX7cevrrfHc5ob3eU4zvQOd7gr8cL8HPwg5p XvB4CX4W8GeV/8QPPHkeQx39bI8PH/dxM+r7nDBeqB+U9auEuN352TsbJawL nB0+qxHOy3N+4L8M7vaHDrD3V4Bf67qOxfaI2wkP9pO/d+csF9o7LsCT/RTh Ds8zVgfc1SnberyE+NDLy1hJ7NWRS3n+jvaIZw5TP8v2mEc9ZykTjnkHPMdj HFeb9glw9Ps5jZNTpB9+1p1fLLZ3dMAfWb8fn+ueX1Omncv2n/utIR4jHPRC fmC3AZd495Ca7qveOUR5kP32verMz0C/st+ymdWFD+cdOe7v9+cyf6ypPTu/ j/qV9wHUbzxr+/+apzJKuXJ5IrVakOd8rvdsnXDIi/jZD+f6Uz/r8vh/XuPv Mb68j1FC/gDgwpdP8d4s+8n7hyG/pAPnFPy+Uvf3Ut6fL2E9iPnJ+5YlrJsA z/tsHA/w5P0r8lEm8cUh7O9RPkG/7JtdZ/eHY7/YPwz7q2yPfkV/T8/3sj7Q kdrwjXBZbwySz1xP5/29krODTT7lfctS2LfE/hvv/eMT/WKfCvjl90sN7ub5 OqvrCv8C+ZR87LP6fR3tpnxi/wr0Bn2h3onYL61o/vfcCvUin5+q/Vs6Qv3K 58va/3h/4Ec1v4PW7+VkSrWEPCvs3+q6qkq5BP9znozKw2+6vB6vM6p694jd 18r5FdQXwPM5vj9POoX5M5AHje+nI6+8SrmV/YLaCOGww/JxTwX5LZS3H2l+ CPI9/Hnwk8zTyOcTVjcF7cFH2a/f0dojz0G+X9Dn6Tm0nNrwjXDZT5xr98Xb 8K1Qf2I3nV/dH6p2Jsw74M7vN+cX+RLAI3a/US3hXD7K1VdVrgpy+EQ+f0d7 kZu5gyXcl8T85PxG8gP6IvuKbzGf3Zpvqf332r1FkdctRvjuGOQF93HBR71n 3F9y9W7u6ivApf1FAzqO7YY4z6K+U/uYr67+aIR6EeHOj9zGOhwcp/itkyvs F3lcK/XeHOHIV8/52yV/j2Ie8t4JRxx4t9g7g4c8cObBIe9I5Ov1YbbHvWm9 59FbcvUO7upLkW8ynlvsHrW+12T3pSJ/IG+AAw/yfjUvpUz8n9T7KcnZm3VG VF82svy4ICft5JDtz9R7RornPvPP+d5TKdzDJd8kPrp+lPMAPJBb6W9js4vi t7cowqX5S4P53uKwzwe/oR/1Hwg/RfPV9XebWz4o+KL5+gaH/Aie+TX2i/uP uq6weAv6rPQYHHKV7z8SLnJm9xYJd/7jsvzu2D3t771sn/O6dT87j2fDPl23 vWl564FvKfJN5ncP3kcjPbOV/ynyX+AnWb5AmHfCZV/ii/2UH+SxC5rPd+vn zGK8pnEi6o/le/pv5vPhz/A9bOXHZWWN+z9r9h54hL/bsf6Jj2t+YfcY9fw5 x6mbGFzX12XSFfNr8Sn6dknOp/yExbuS13J7VeV8a1un5XoXvE+m68iZXJ+g PepUAI7+cj2QBPygE/hzPQrS7/ICH8h5Y8t6CI/5xLA/Qtf+lt/s7h1d1a9+ 7qQy4ZGfuAfq7kdtlu9HHVrTfZUzylEewnlLh473uIbK2TWdhAv9TzTo75yf aK5v9B5gno9tOtS+rYVcsX6R4nmhgjq0hKMunLtnWF6pcetk+mHCRT+szpva 4+90qvyutPc6NQ+yg/Ml/Lx5PL+/y/EpHZfXc37kMq4rXX2mJn5XF+dF6xdx NfqdrXmOnC+MC+NFHSq9T9Xj9fKFCu9h5jp+HI+Xj5Ul1IsQ+ClrPJ4nGvQj Lu68yPYP8CnjutfeuXD7E+vlddKCnpLzS3OqHJ+8+7jHCvXXUw0u7Qfs3EjA T1rdbsDldxvZuZ2o6dmzS9BH4dfhi2n/BX6/vVO3R2tgmzxdgGPehX1brSVc 5n/ZTJ3fLxfwJIenST/wlLXebBwX6uTrvuCUZYTLvH/Wxrtrricj/c6GHV2k +wAPjKC+q57Hv7jE3zufAIc+iJxMquj677xlQU8K85LcvNj8pji/WU4K8nOO ygnjFvF7k/I+9Vds3xGfwucFto8IuNjTY8aCfZiX3y22d08AF7/+Yb5PR3iO r9SenW9xPe4pC18PsjgLflV+t4HlmalfL/PdXsDxLobgmTWm+/Unv6L7B0+t Yt3IqDfC5gds/13sd2025RN41L/P5zsdaB/eHeO7Ou7d+N3Xxvb5fp7heUn7 pTwDjnWl7q8ZnVfm+skSn1xicNjDyB/4L5HL3hrhyN8WOdqmFucrxflCPT19 J9P21fK8410qn7/4k7FwDjCv1Gj19yOjW8a36lWN3x4bL5zT6rsRBT6qHJxk 75LjU/zDZfZOMOCan2x1+PGeu8jzPuPkN+Ky8G6j7stekt81OcP2ffHOu7R7 zfZB87tXKmfnFPZHlT/l4j4o/LWM4xS+U1nC+0GiB5sxf4frhfy+GNvjXUWR w+0rKb8rTfk/V+UN7wwW4PldOfId8gn8eC8GcMh9m/fySu79u6mGB++tAA/o xHyAnnjOIXHEevZOrOZlD6g/Pq9KfRT5/rLVwQYevO8m8ruS9wlKeIc3v4MZ +c93gYOc4H0xtsd7ZzL/YyYP4R20KA8pysO4yn9qI/8FfSmr/HOfHHIuw19i 51RB/nle874W/Oi7Cu/MOj/9ZdNHwKX9sOkj4LqefsPnMxTbp4jfnadMyuc5 l5qegs6gd/69iwPsvXvAhW899t493oXHOlLPj+tpRzFM08N6zM7pdd97MeX/ e1IH5Am+2x7bg1/y0Wf5IljXwV+gfXiXnPA9tN8U9I7vPGr+pfXr3h+f8P4m 4gzN17B3vTN/+A419Fru6U0rvB+d8A41zq2A5widr8L7znl+Uxv5SW3kh3jb tI/yQzkHnbrvYXIe6YzvHwhfOu29PMDb+JcU/BHxwH/F944F/2HF94uluxML /qUg53hXUfg/Ht8dzu9f7zWW78Ov4Tk3/Jruf7N+tK5vXy6+Lwx9ie9LQr/w XvDjcm57F/ePdZ9hhO/YunWM+ZG8z2dwvJfq9GXCO6cRjvHGd10x3uiPgN/p l/mXFPSOcOhRpD/zLbXhW+FdzuBfiN+98z5BHuAX1J50Ux42U3kI+jiD7xpI XsIThXlPcd6jvwjynKI8wx+BT3hHaQeN3wrvRY5rvEf5x3tSst+x3PYr3HuC zThH+TDEd690OHXW38O7ToiX8A6Fvl8zm3D3rg3eNbu+WnjfEPFSfBcM703j PAPwE/I6JcfVJSc3OM+7zd5T0/MbewcQdSLx3rGsQ3ewPDzEV/Edunbv67n8 iQnv68Gu4d26QA/fZwFc5vEd3Xp+P93od3XUNrD3EPHebuQP4qs2fC68v4b4 CvMe5je5+cU9ziZc34ez/KzbNO8g3yPuofyIvzsSeZ32TijWHXi/A/Ic1iPs F+sXfBf7+8fX+X4W6ADfsZ8T38ly779f00k43vGM70xhvYz3XwDHPg/OOfAe lszTRnZ+I+vGrZYrH+fZe0/A484jL676+BvnYRU7j8e6e6Hun5TwXqTL17+/ 6G/zPo+OZ8oyxsHAE/ATDn3RDUPW7U7uHRzbh+E7OG4f5uJcJ+y8ZYS34Rvh YV74joy8F/Yfy2lv4WfwvhvyUiE/wIP9mfj+C96zi3qLfZ428pMgP+Aj9oHj uzBal6bu1z9LOviuGdYdwIN9wnxewPWrrqdyXsrllg8h/PlKt1+/fpzvOime k+z9FtTrFjs6wn1gykneB2beBPb/5esFY3z3IewP8/0FV9/phzXdz3pXZ3L7 w8tzfs/c1bxXHt9HwL4c+AA9WqF6RLsY+Ml+pJujOvHuXqH+/7k6X5xX8YtX d7E+f6zbL3Hv34zveq8714+9y/wQ6ifL9J9q7VEPGePP51w+v+YXw/6c+Ldd fBcGcLRX/27nlqiX7u4DTKh/jvnN5z7sF/XJI1zP+yyuARx1yGW+t+C7l7zn hTrhqF+FeZJ2m1dZ71rm9bu9rBuGet2wJ8gDmKPnO4XzZvAH586AA7/Q95TV IQ3zktrMC+thQh5wjtBGHrwdfWgw4Xw5+u98Xkl5KPv6nKVYnxPwET339PXA 7+or1CXO5/6lWDcVfiSf55ZQHxjygPrA0vzJoeTPH6wOMOJ/GceEurWA53Pq WBeX9XtR19fZmYPqbA87Azj6dfe+JtQNdu/ZXlJje5cXVKl6vk3rYB08J5ew v7ubf0a+RBs+F+rTOn7VrG52riteuO+L80exH/0dUU4oV5B7NV8W5+V8G8oJ 8Gv+m9XZRtw+Q/NtUrQjOJcWPK+w/jb7Rd4C6vI5+NQ+2iX0i/wHp48T8iBQ 7yWe/6MOdjnXA4Tcol/5+u6KP7+9YlD9+jw7P3Tnw3tYfd5YfxJ1qnNeDetP Qj4BR3vUbQYc+F08OAE/4FrPo8q6lOAv5ErszKYjXh5PGSrlPBzCI59RJzny Ge3BZ7SfpvKA/smnT+X8nMg/5HXAjgOOfJ4oP6h7DDjqB0r/D1a5Tijn+nvI 83Fx1zpWl8/FoyNWVwl6EeoGF+rkyHpnF6sDjPpCWOdD7lBfSPo90PJxgEf4 848BnivL+n9/y9PBeIEfv3f1qdaxOmz4HepTIX8S8JyfWciDOFf9J+u7hnxC zh/qbuW8RMJ1nyTr+RdCHtU/rA6YSv/0pyHPzq69p1iPC3EixhvoYd0t4JHP 4zpZHyDnSVJu2vCHcOCR3x9qdhb8OU/5QzjmBfWjIp636bzzPj7kAXDMA+o7 hTzMEuosId/S38+o5nfHhgr1jvK60ufzLxtlfSHgx/337XMdoVhfaFfNQ+a5 QLjPXqgXpPJLOOv5SBxQHijU7cG97Lesm/SI5R/JfsxUy8NAXlHOtw/3r3P8 WLP2bj1zmdW3ETt7WA/r/IAvro7H7YV8nZTzyX1+TVO+cj4/4ZAT1CUQO3qI 1WdH/Qr3PsKE+iHIw3dx1v12fo66IjmvPsX1Pdojrx5w1J0Iefsp3y/w607k VZ1udSrajMvXc182yt/Lx1+6WacCdeFAj9jhZOsr2EOBb2HnZziHznn1KeTV c35107PL+5Fmv6jzEOUfdR4wD+79xrP6eY8SegF41Auxi0dZfTPoxbtVLwr1 GcS/fnuAenplrpuB+4nYH8H9R9y3ivUTUA8B8YUMY5rVPXD7v0dZnYF4bxpw 4Mn3tgj3+6FjCfebMF/yo2dintE83i/GPSl3TrSj3duNdQDc76eX9Zz11DHe c4/neLgnhfbS7vkG162A5/tT3N8BHHhwrxBwAW885vftmuOVryvH0g9lf21+ 4T417ltFPuC+FeC4dxzPjzEvk8LfLL3v5tcXTTzS/ca2ng736QgHHtxHDu25 34r8k3gPF/e2ohzivm2UQ8gz8OPeJe5FQl5wvxLjwf3KfP8xhfuP8R4o4bh/ CvqAX4Y5ze6ror3w4fDx4F/tPing7j7pCbav5+paH8JzAM0v+dlCvouu790v Ki2Vfe+8f73XuN6DO2Yx63WInp8wnu3KAsLl67eZ71LAr/I3t3Sw1itQO/M9 a6/7CMsT6NT7pgv1HHhyfqf8M+P5Pc+XWYdN/MjZGNfMAj0/Fz7cniI9R+e4 HPQIX//b8AC/2K9Z4yVf72u5xgGnG1zaPdtJ/DK+f8zK7zusVv+7x3jpnNZ/ v/kk68KBfsSfri53GfhvL9AzVQh4MrWhJ4Ee+dlkw+PuizX5o/HZXPJHh2/4 0W+YL/aLebld9n9msF/53K85jyL/j4b3+qxfjBfzju+gB3Iocd2bL+h6q2mH wOcDVD7ZHni+o/JM/OIfP9jQebq0h/Ir8zI538PdeoDzqf5pjHkamR/a7tSG /n/vPsqLfD+kofenjrf6PzL9BxuePA9891ToemWA8yPxx/sbJVmX32V1gWT8 j9h90twv8cj/F/V7ueisEw/4Lb9fWiee9ZQPKieb5v3y07ppJ8QffaHBOikj qo8q17W65nn/uUvf+Xtoeb4/1Mh1Mnqo3xLHPGB4YA9y3Qa2B/91n7QA1/js 0jHiAT/l3P+xQr8ah51p7cE3kdsZRg/4IHH3yjrxQH7k41i0X9COPwn8yXUR 0Z71AXK9DtiLwriyveC4pJ8rrb17x2d0rOTrSc5U/brJ4BiX7Eu+0CAejEvI /U5D1xsXdpaOnRh3H9YoyX7nd1aUoHe5LgrnO9KD8YMeiaumj+m7rNusYL8y 3h3MH8k51n5z1Y//uqH7+h9fxn5lHfGzhu4Xz1xMfkP+0V6G95cuxbN9g/jl dxd2Jy+HCyiHoAffQY/st13c0PFe/TrtvNiZd4zRTwGOfoEH/YJO2B2xEyf3 5PpoJp+wM+Dz+dm+gM+gE3wEnY6e4+cX+AM7hX7F71zeoL6BTt1HMP6EOnK0 U23wJODx41rAcQn+P4/pft5Ff6VfkPDnmAbtF/BArpBvArkSO/XPsdL3Zf09 i35BzynH6Kdd3d3LeJ+B7dEv9CTOF+IrjBf2CuMC/8I8JowXeo28Lug15hfx zVvr9dzCeOV98mtf9+MyfU8YB/T3YtVfjlfkeedcn2HHeSnKyWGqX+mt9WVN glzDjvlxFexzwnjlZ520b6mNfeZ4BX66tce4xO9/Peex/c+qfI6a348/oKH2 +M9dXI/Lzxp13X8/rZv2WdbXTzWyXHcxrxf+Xe6zr9ebop9C+xgn4J4g5l26 v6rQnvEA2oM/Qs9x1h58ED9YMzrhx3M9Q+JxeTCduU5C72rOu/iz7obeM9jb 6hEhLsrxD+mXbv7R0DoMf+M7k5QTkYuvD/j5bbZ/ewvP0+QD28v661v9HJec Lz5RZ3vMr8zP9bl+wreHfB2/r9aUrrEh6p2ge6iu6909B2ln8L6sfB40QvsH PGKHPztEfXTvQh81TDsn/Nwzv0f9pyHadeHjNy2OglyJnp5Q037f18/1nczH gfW8zrM652KvmvEG4lJXb6FJp8a9Vs8ccH13geMl/bJ/vAPrk+i6Y5+a+oWF Vrdc5m/dmsr1B/ppP0R/327jgh0Ffvl+xgDtFvCIHvSWSz/L63W0F34c3k89 lt935/e0G1a3XPKEduc7wbov0Mv3HXLeeJf+brd8z/igUcZp+BR/tFmdeLLe 6O+GamyH+EjWsy9Ze8Rfwt+tR0O83a3z+FmLD8Ef2XedP5rrznaVwjsRSv+e vdRjwNFe3he+pZd4QI/w5T/7VI/+OarjG7J73fL9R3yPWeluyrWT/8mrdR6+ MZzro9QYB2J8aC/iuf4aPWfcO79neEyd7UHXt3KeB/oFnxH3npPlGP8Xf7Ko Tr8GPqM94ie0F/idJg/PZb4J/HNGP/gs9uQbdc4f2os8b2T8kThuh37yH3gW teC9fQn8RHwrw/iW8RN6Lvq090gp18HGuEivH+9Kjlf81YZ14gf9sv/7yzr1 X+7pbWzyg/Z49wN0Ir8QdAIP4kzgEXu1M98LJx/Q/saMB+0Bh70DXOb5X8ZP vQfUV8p13RmvxnHBP0V60B70yNcHbFxRzt16rDle0IP2oMfL59wE+QQ9wAN6 0C/sWhv9SlG/3D7IP4dR753yAP0KfEtvTedK0in//2Kd9Li6idta+z3VDkU5 T1HOp+X9xig/2T74d8ufpZ3heOX/vTXa8TZ2O0W7Ld3esEbjtgMH1G/+lHrq 3/02u00+BPtMPRJ/fAnktoP7ToJni7rq5bwy2us7S7cb/bC38F+wy99rDeu9 PeQb2ku7c/oTxpv9UXyHCH6NfJDfDWa9W9EV3+tR/n2uh+OVz/+pkx5X57gZ V/y+Nb7deskHGe9v66qfl/YwvoUfd/XPm3KK8f5W/XWK/vpS9VMp+inZP9it K8EfCVnbNfReyAlW91LOU1+qqZ5NG+B+eYjTGGfqvcO6zufZjD8Z5wjffoF8 qHwfptle7HuJ76ir/u5aV/o7exP0xtl5e7dI82ovq7G9e7+r2V706pY+ylWI S329zPFRxIccL+gUP/EQ66Vz3vU+7HCK8arAdxjieAXf26qKv1Sh/Rb6X8jv i47w/UHt95gq3xWG/cZ3vQ9SpX8AHjn3v7bC+BntpV2lwvhZ0P24ovJ5Od87 1n3A0yr8HfyVo/+GEdhLnY8DKhwX2ov8HJXlsH+E9Iu+PZ/rWX3Lxqvvn1d1 3PtXuC4AXPzwdhXG8yL/91X0c90K7y+J/zo75wkODma9WaJyOK+i9B7WT3su 1B5Z9fZ9jb3nLOSN9eY4MufLfLVKPOCb2MXnLZ8e+gt65P9nDNLPAC5x+8cH fdy+Zabn0gFvR6t5/q60ejaStzA5+6+Le0vwI+JfnqrkvEa+U6l4zrXxQr8x Xh3PAO0B4MAjcvquIY8fdnPmkOrZeVXGkfL/PbL/7cnjvayHv5PPiy1Ohn9x 4zqvh+OVc8lvVEPcPqj7Bq9WiUfma9DGhfb5XWC1e8srjDOl39+M6HptQ/o7 /27jJ0cZLwnbvjxSQr+IP0UPPjXIeRQ7+5Nl2u83K8QD/ZfPnUzfBP+KxXqO e6zp/9dbP/v9CtWPcw0P9D/imTwxjr2jSrv0X3ndLnw/LNerunCU8ZuM668j xIPzNeBBe8RdaC/ycFaVcJnvBRW1Sy9V/HulTTkB33AOCr6h/cnZvqM96Mnx J+cR/R6gfGM7fC5X/pMe8E3il/Oynzg95+1fUOV6J8oV9DPS6fxuk07Ic15/ MR6DXgj5V3aq/s8eivLP+Ar0uPV2Uc4T5Bz0QP9BD+Rc2lf4LiT5oPkU9g4j +Hao2rcU7aHg/2WPxh97Dqhd/s0o45BolxapXWJ8K/PwQ9qHFO2SW2807RLs jFuHN8cF+uXdxnsZ55BOzbscJFzEaeGo+pMxe6dG7PTTGf6AvWMi+zXPjKod +aTFG9LumwaHXEgcc1aVcoP2oFPs6dv4ziPlVOg7aVDj2u+uSfBrwCPjPyGf mzxRzflEfcnZ+S0y32b1kp/AH977JhztwU/wR+Ltm/oYl0r49vdR5pPFeEDk cWvkR+d6Mt8f1byJ/pEU4xncl4F9Eru116jGlfuMML6S9i9X2N6dOzTbi39/ 3uIrkZc9RnXfeLbBRa7fb/Mi6I5YqXHmo7nO5/b2Pq3I5165/uT9fM/R25Nt q6Rf+HNDhe1Bp+BdMajjmG1+Q/jdP1jYh4Beiv9ZY/sEIg9/GVR7Ndf8hu7z Dmn8fIz5PelmdIj0qr/tIn75nF/R33eVS3J/7K9Db+3fSrnffvNvui7K71p/ 1+iBPZNu1mV9OcKlXbnK+FPgxw3pPF5VKe2X1/dC3xWDKg9dVdavE7u4wQjx yTy83pPHPczxgk5Bt2Ue56QK/Yzerx0iHOsL0CPz0j3C81PoY9ZT7m+hP5H/ qwZod4FX6HrU4ii3D/F/eZ6PGiI866faodF+lavNKio/XxxkvAT8+K7rjAHy Rc4J0iDlHfiFH78bKHW18P0k57+/i/eN1J59tKLjnTmo+Uff76X+yThPHWYc Jd/PGdT+TjD/LuN7Ie/n1AbZXrq5uZKcnDTby33zKXa/IvtH3S+/OM/f8iHG Py4+nj/I8zuxN49Wsvz0l9z6efoo+QZ51Xv0tAs6nmNzvPSdGttDjnWdbPVL xe9Nfk3PTx/L9XJ2wTnHk8Qjy8cP4d3WGTr+NwyPOye+tUY42gMu8vC5Cs83 ZRiDVeKH3wJ+kc+PDzNvAfOL9hfqeP15QLPfNXJ/ZQHxgA/unafVVcIRX0mc u4mtf4Qfq1Zpv7+qcD8P51gyv+tVo/wkyA/oR5wA+tGvwN/Zrf74tkGex0AP hYyrTM8RP0BftB7VEPFDzqEXaO/04n1Dnp5rK7qPcVKm/4wBxlGwV9BDIeP6 XvIZ8Y3Wne8vAY/8/ltDjFuc/frBIPJkqUdS/2HRoNLxb/n95HdU1O4M9fv4 qqmPsEciLnjHfKbZC9gl2AH37vYtlYRxCZ/+Y4jjxbjED24yzPGCfs0DHea+ Gdo/q/4rRT8l07FPRef3zW7V4x9X4L8Yb8h8X12l38e5qtqNEcIlfwr7o1dk u1Eh/fk+A+1zivYTcPBH8J+X9we2rHK/Dn5f5OOcUb+/t35F7chDFm+EeIB4 hC+bGP6b876vxNknD9Euw2/CX8v6ZBXfsSc/hU9LAv5lmc6Zo6RH7PWB/Ro3 bmjnNphnPSe3cyTotfx/ZztHEnk53eIcx4dmexHvHez8BHA5R/u3Os9bEf+I /fvhKNe1oEfreqJe/gLC5fcnVNWvfiTvN5w4gHnx/qrZr+xT7YG45Um1Q5/r 03PzZ6rMuwNcxOr1Ed7XBR6337awR/eXbuynHmgd8176exnPnawXTj8o8/Pd YdoJ4Bf9mj1MfcV4hT+lYZ2fnw6xPeZf/Pn+Iwn04P/w44J3rx7GCZAvafbB btrXvI+m99DO6iO/Z+k+GvuF/RK5W04+MR4QsZhv7TEf8rN1Rzku+HfNzxrV e4wHdKvf/d5yf96J9xmaflnab1fT9fyQ5TvKfHbZ+THkScb1VPFcX91ZreTp XJAinQ/K+u5Jpf/0BvFgPSP82aru+fXcS0rHaD6Hns68UuIRMr/BdyuVX9tY /qjL25jWyHURBpi3J/pUqxFPppP5HE6PjnyB+AMfEviA9iI3++b9+t465WyL 1ve5ryXEXdlf5fjb8g8wX1+RfJIlbC90XUR5UL82bvW64X/FD312lPIDPyV0 HhvqkDf1ROTwm/2ql0ssLi+r3436kqAv6BftRS0+lu/FNfkjfNh5RH//xV7y Dfqj7zt0q59+dw/hsBsa7/aUHlR7Qr8DPAK/hOuE5PTo+CHNB9og33/cn+s1 +lnYc/f+6j6Wr5HXfRrPbNod7Tb9l3xdOkx/BDkVPP/ex/a/zHD1XwNsj3Nj 2E/p98Qq898kPtgq169eaPwJ/ihFfyT6e2ON4wLfZDzftHfF3fppap3jQnvB /4Ua/aOskxo5D2WvGu9bCZ7fdamfva5Bfycfk/lONf2dyNd/dOm879Lw+Rq/ y+eEX2zQPmF8gv/+Bv2jsLGxxudP7dOt9n6/fN/oYct/cfbtxlrOH+9Su3Jg j9rHlcW8D4HvWqRH7MnbLB8W7fUcuMb8JWm/6Rq1J++s8fwF9GD9JviqPWof ti1z/wHnI9L8fzt0PfGvKvVP/v3L1dr/10Y9HO9U31vBPojGaQeXuT7W+lID pF/4N2G/DXgu0X0tvS/9rhH6Qdg52A3h675dyq9vWVwmcf1xHfQbbv15q/lN 4ff1Q0rv28uUR2HnplWuA5z9O2pU7egh3RwH1ssurtktn8vckeuRz8j3tFd1 U18lD/WuHv5O9pHvHyUf0F7s9wdqxIP/S3z2Yk3rGHzc6pRjPtEe+oD2+D30 QfT1Q3XKiZwf7jZX+T0r+8cNyvSzwq/bxvL5md03EHz/aGj99JrdK8A9k9A+ oT3O8cTf/eFFzUP6SUP7uXa1no/c/gzxYJ6wXpa4/KCan4/HlhLu+byAfEZ7 +DuxQ9tXNV77obVvM18JeMK8pMhn5PeCzxivfGxZTpAfebf18m7mOaBf4NE8 0ny+8LjRD/8L+XR2o4kH9CAeQFwr7ZvrlqBfKeoX9Fzk6n3Wr+jbH/K+z9Go i5Drhn6rouu1pwapX1gPipx+qqL1E/ftot7CbkAO4b9gr5x8fz2/A/EDi2vB LyF3Rq47vkmO579YZX6ssGt5l87H51GHaCb71f3LUZ8vvWnW20pV42DkK5XX kE53bvK2Muxhcvbtmbxu+4G1D/aTfJDfHZDj9R3qbAe/lvMjEvyLDGM053E+ UE9t/CP9r8v7fLGe3P0j84/0y7JfvSzf8z6lxnhD9OKj3fCz7Bd+c1P11+wX 45D2Zxt+mYc7V9OPiz58pkw/Kfq8b/aD25pdk/XIJLuvg0/N0x6jH0d7zeNk fTq2l6+XjvFcF+1l3scaIQ9ktcrXZxol8MGtv/tRh3EG7azQuWhU9W2K5c9K /tWVNeXH7T0lFx+trPt7AZ0Z//X10sF5XSzDO2A112M4FxU7/qf8nt/uVdpN 6JHAf5Tz1Jrxs+jncWWuo6HXoEfkYtTOc0C/iOGifB518xDnGXhk/pvxtYRP 26+gP3bnIv/o8PtS1w1p/HHlSsYDsBNCf8rn+t08T+W+lOj1nIES7CTmGfCc j8728O/Cj83ryrd/e73k4qb76hrP3NdRcvo6o673nZfm88xnbR5kXkv5nsSN ZX/u28QDuQAeGe81qwkXP7hbg+elwofupVxHg/+ntMax7LG8PzAe/SbfQZCP Bbwvp/w8abzk8M99nv4d84h+9L2cRgp4EvBQ77LfFz5vsFb3hyatZj6n+Pmb zE7Av0c8Yn/r8/Ue1HSLE7AfpPuGdY0v9+pknir4CT6K3A0sV7t6RM37qTmd CflnWo+jg+f+sJdh3olfxnXHKn+vZ6+GjntrwyPs3KjBda7QeUpvQvwJ+3Rl vncDPKATeYli74+zcYk8PZ7zAwdY75H+WuLgP4xSX6C3Erf8p+mFjGN6Xr+f Uc/9rqG/ht5JPsERy72//nHF52U34dB3kaeDVsPucf0s3b5jjffXU3Jc1Vxf CN7BUdYHwnhFbr5apT+FPZRhnzRKfwr5ken7WyXJevL7Izpv71yj9v38OuMY +XimrPuWx9R4TyfYefo70KP7zRY/iL9ZvpJ4vpbPK8Vv3beU/lfGcUE38cg5 6FLTB8iDfJ2T6y6c3uHvDzzUSNF/Cfqfj9Gfor3I0zWNBL+G9uKfvjTG83TA Jb74Pup2TP+s0P+9xRq/72L3O9G/yNdnxr3fvCSfkx9r9Qlc+681NM7+dtnf B1hvTP3I2zvIB8QDUodj6262l/k+JN7fzfivM7+P9qLnG9p9Wb1/97rK7QDr ABMuduX+Mfpxdz/pnQ2ur8EfaX877lne7vMIvmP7d84fXVjXOOlded/8C0t0 /GdYXjbgEi//f3S9d6CcVbU+DIoQmhgLouKlo5ciNoqIvEoTUZFOQAGRpogI cvmUouangKgELBQRKQGuIComXkQRdKiRThpJSD+9nzN9Dgj6zXnWep7F3iP/ ZDL77Nll7dX22qvMCL/gxE6wl94vc7pQf87LcSwOZEzj4Pxudfv8jHHPd7TM 1j8z9IfEX+OMquXjOG/C4jvbcHC/jlLON6gPkG8kcVo3x3sLx0H/dccl360u Zfg7QO+YMVF6BvbdiKOAvD033pshz+f22+/eEX4TmG/9Qcl3yn2c71dDX07w qt2O6T/dUH/qAxi/EXSJczzE/SG/53T5nSX+ftrl+kVL/dkOf6RPtNSf+I3z ODPaE7o5M8ZJ/IS+6/l471lifll/eFr6gOVFWprS50eDPmAX3PMpw4vjnb4P 7pP9nHHdlFMY9Yr5tt9vhH6d+Km/4vnmd1vO+77Ww3Unft5vnrT9z3pBcAB8 nm8WWf+C/Tlvkidit2j/l8GhyPebxIve0Erh+I/HinydW0913Hux9BOr57pc eo7rUcbXH1uqdp572n91wf7ZuRf5+V7r/Ijni/XMWGp43lhT5HgF+9AO3cbn a80isy8av9ioWST00h6H85Lfm5+c51PcJeqsUW8h/if5crYIvzePM7b+/x6V 3kK5gb//v/BT4fiY/7Rx+vPlfCb1H2j3BxgfHrX6PUurwhOrsxvvFpY3P/QH 8k/s7wi9bxU5/+Q7MrofVDZ96qtLS4m9ps0/CWf49W1YL3L+j/7z6wXqKf3S 30nvXUk7s+JK8P0OX0+9WlC/w/lsvcTu5X017sveE7Zerv7cVzJvPdaZ+OWs 35S+Qbhh/vc0O/QTrHde4A0/wZcnA8/YH/naL2wWuT4A/Dwh8Ax61GdWlpDX /yscf57asc67G0ViX/yfZabnv6FRUC4D7/oWm/19n5b8A4F/jyyyfZ0begvn x/dNJsUXAdcNXd7tHPwiyetQkL/M8zoPnk+uoTxAqX7xjkm9N1o+2oXSi3jP 4fqp/xBPoFdNev7ZF5vpe0F7XvDZ65QPaR/ks7v5Sekn9LvDfnefZ/te1JTf XfLOcJ3eTdRu9rO67hkJPAb0Xlsk8SV3deYJAJnv2kjfEa54Wu8suI9tPSL4 OL2k/nftczO+43HYHxnSOWLZ39H7qOYF3X/G6+M8MKZ9Jf5Y7y+bn85+83Vv B5z3dv+zzRdLnwH+zYk4e/T7i9tVvhn+tnYfqkovYn/Mu4W/145Ef+xrQ/c/ 2r2q/rSfYP2nVtXf+Z7J58/WpO9TbwP450R8AuEIeCyvaxx8nux5J/9f+H1Q X8J516I/9R+c0xebBeNgce63qs6q4JPcSx6L+4fLHes3t9VxL8HP57UKxO99 4EHPY7NE+oP5P61N43P/Vde85EPQy6otwROtjzxj6x+P+w386C+POpKEZ5JP 4QZ/j7jsccvPc9LiUp6vjesBWr9+UvAhX6B+kvMJtnPeJH/EbsFvSOds5+8Z V+LtgifjULiebF/Sf1I+Pa/I13PGFHwmn5NexP64X+y00PSZs6Ie3d64Tzwv fWmmr2+zKQT/wDLzc7uzqXyToMNbVhU5/pB/mZ1+MseTgnhCONt9stv8b6ZH XDf1Ilw7/tnM8bkgPqd+6O7HNjPwk36PoKOfVdO48cvcL7lZL5JzbXnc60Yx fvLOcnXQF/kX5N5RQdf2zjBu96KfBx/AMCXnX3cqf7bsOdDjtqoJPhhnwP0L 50R+Dr6zkO/xHEHX6/h7ZJvfcj3ApztCH+O8kD//6+81l5ZzfluQ3yZ+P2+q aP0c3+/LNv4Fg2m85lf8nrYg1sP7m8nFyFeHPJQv1aTXYV2vf65Euxv1LvbH PWhFrcjlCPjygZ4PeNGE+lOPAr9f3iV4wk/6gy3pRdjHu581f4frWtJnoKc+ 9oL0HOYhobzG8g5rpfUNjlxketclDcUpg89utNjtNnp/Mbp54xMl1OHZtqn8 NtwX7g9nNRTnkvC7ibrgxn1tMDXdqXHfIBxgv74t+GyCh5sF3eJc5yw0eHy9 pTiURF7vPVnk/BF4vCLg9jLgepbpiUfEPa061X7tQ2aHvKmV3Q/nGl63gr9z HuDzRcFP2d/shcF/2d/eCV9UvySOdr8Xpe+xP9Y5Z1J8nf2x327JgzSf0BGa t0je3U+flF382Knvt/7Z5NqCyHOW4Y/ySXAc0PuyyKc1d4qRfOIeO/dPyC5f bD0Fpct/Ir3U4rlHDL4HPK126D99g3ofwzmvDf12Zyzrd+bP9+am2q0e3B87 7AI/gn9USe3Ec8IHfPDwzvxhbn/nOtWOfY3VbbyZo0UiT5uh7xE+oMdht7N9 ONox70SMk+SvWhL6Z5L/9Ii64dEXxzri11Gn6pmIx7J8nBXDxz9MlJLz+rDn 19m8nOLJmzwuaf1Kkcej41xOqyhOC+d6rtcJek+1RH9n6pnmt8Q6Jn5/+ZjH kcxjnIbbd8aGpDeSbqh/wq78Qq1I9B7GDe4Q+VMA54t7TR8saqVMbpYoNwkH l+92nkc37PfL5knPBL+5vlnUp363Y0n6JMaZEfpk4od9SOSlpZ6J9stapV2m hj3iXvMj+e1q2XPYH9t9vdvvz2ql8XO087X1MfYnHzT/bvGDVI7tFvwvuZ+1 24m39J+mnka9MO/Pflkd25y/ahy2k4+wv9+z1Y579t8jH2KSF3VewJP6HuG8 /dTP9/g/o4u9Vhc5PM+Z+rbJMoufGW/l51jwHCkHgMcn9CjvZALfw1zvuqSW 40lBPPnLFN69cpf0Pcilq5p6D0n0w+0bqisNfLh5wOwvb6zp3SCJT+utKz+H 5bvoNX1v77rOBfL///k4hzKP/1/NfnvDmNnHPlXReVMeA2571UrJ+d7g+VnK VeEJ/DXuHTf97buM07vlgX9b4K7pS1tHvCD1RujJQ1XhCfU88pOMfxY5/wSd zq9Kz2R/6oc4hxnlnB8WOT+8z98JjF2UBX/qezjXwSHZf6Gf3VgvnD9rXoy/ sF7k/BnbXVP3epqjubzgOOqP8T5J/7yoMw7/4aVN07seWy35Rfym/OJ6oJc2 G4pT5viA511NG3+oW3KZ4wAfFq3RONRjIY8PizyFOMfj/P3+08PaF/TPuaG/ cRzwn6OiXnsij74Q+hv7A14zg68l8NnhxYwPznP/TvVP8ym+/UXRM/vjXjku fprmj7xdfNDsz089ZOOf0pKfM/vj/N47Kf+uhVMf591n+PyhluLKEz78rTiv xH/iQwH/dacAM+/mwtszf4i5hY+TvXPMNj17skMvLXyd2f1/tp3HDzr00sLh IPiyv8Mz10uz9tnqn+qrOpfCz7GUwn+28akrtB71dzyRXprkiVwSeinbcW7n tWSH5HrBX+Yqf7PGB11f2jD95DDRu/RP4OMuigOx9XxG+UHTuI65HfmkSS8l 0kued9zHLxJ4Hhtxm+wPvndZxGlwnZBTm9b0nslxnP+UnP+Ukv3e6OPsE3lD 8fueWqZnOjxPqEnP1DlPjfukv8OeGuu81Pizx7ePi54g10YmpG8medzX8Xfb hyuSX9ea3ClR7hhaPGp2n9P79b7xnilA/u4mnQftJGynXRFy8sgG5XLqb3JV s/T+qWVufqPn2V6u+8GfsZx5qZ/aJQ2d13mmV8juRzhAfvxlpcYh3JL3n3nS WwrXW9TfxPFTenfCvLfGewXndX0y43MaX+eV6W8pP2nzhax/amcK/bCjnef1 pbRd+gDzz6T66uzX0g9d7oV9kush/efjkP4z/VB8Od8vx3E9WfvNxtH4sEvs srxIz3Gu14tbKfvkLSDQq0psT+TqDY8qDxqO896m+f+ufVByAvT6VOAV8GGd XumfhH9if3lfQ3od7Mb7D0pvZH+Mf82A+E2S7/lnI6aPrdD9SPoe8OvQqs6X fAH2kuuiThv1N5DjI4q3L6gH+vuCzpH9QY/tT8L5JuMnBfkJ8QH0f4DrhSPl nO8VKd+bLT8PyO2HpO+5Hlwp/P6b87ci52/OD4uU385lXt4i57d+f5d+yHGc b+f6YeF2gMLtAGq/2uRRQXlEPRB25o+05M/H/l8xeVTk8gjHv3lLfI7jmF0u 7Ie8v+NcT2sVd09t65plOl/A8TqvH7V55MmmnpzKL/drWxJ6YMInl8W87O9y P9cPC7dHxXuu93e9ItcPC7d3ST9k/1QPDD0kHWd2ypd+oPWov9vrwk/P++9u eleuH9rvWy3xIf4O9swfR3/Xw4vMPlZyfdLw6pTQ95K8jH/u9DuBH9WHwg7J 9jebniy9JMk3sSKXT/MK18NTftfu73ZUrYP9Xc/XuMn4m4X+xv6TBgfxb+Lh xYbn0t84TmJ/mzWsdZo/ScTT5vnOgcbv1X3N+ML1nfVJ7FzCrgi6PfEffr8N /0D2xzinhX8g4/jpf4j79B+7df5sd3u+4MB1gj4u1nt34e8CJX8X0Pr9vpnn HzF6XVgx+8GlwYfRvtz1wBmel2Ht48rfiXknh0zP+PhDBe2W2TtFQXvgffae kuLV0VXZBTO+XSLf5jh+T9c6cW/sWiD/HuqN7E+7or9PlTaF/+Xj4r+Az5/K xX/DP+ER8esrzL6hcWhXhN56OuXgX4U3lhexluolH/V4uBvlv6n4HrfDSM/B tAf3yH6I96Cd50tfpR0C/ii7LUrjddp6rNuRjO+t3yU90O1URWZvTOuQVNeY vji3ZXJi3aXyd+b4dq97UvIg8SOmPtDmy/4emtG37I1mPzrp2VQvbevDbv9M 81Ac0pIcyfVP6kXmH/q87BBcj9WJWyj7J9uz9261/3+vpqf2+KTHma+WV2Gf zPXJUlKvo73e19B7O8bJ7JnaF9+puS/Oh7w9q5+Xnx7iD7sWGt++yusaXtLQ fE+YX4HsloQz5yWck3pTe8me2VEnzP0WSklc2qMrTb69saFxsIwD1+Tv8sRP jc/+oOfbQl/leyP46hnddp6P18UPgYdHryUf0n7h5zarX+OwHfR87DjtkGrH zw/yeJ7dq+JLtDfi45ly2Hum+j9eEb9J8G2LapHzK/fDKdwPJ+e3BfkY2+9z uyL+fvmE8CezZ2o9dozSD0uJnP1MvXD/otSvgvbDO0dyeVdQ3iX9P+f1S4+I vM4PTvW/oSF/Qvan3Q/DTRvS+NPtXUx8i/1hB76rIf0TftTb+Tvzoqb4Tabn FLmeQzsb+UoiH59rKX8O8Qd+/0WrmD/Vf9oS0bn7v5k+8v6hIslTf7X7Z/xe 732Cm+kvw6JTjoN7xm/61d/fT2VPZPvN9g4rvZTt/p5b5HqU++9J/2R/fy9W v4TvFJ38CP4Ad4WeyXZ8W6el97Az7H288Pdx6XUvmH+g4cc+Qc8cr2Xv7zpv whPrOCHqB7I/9J59Q6/7jPkPSH9jfBHbAf5DIg/D37FPH3/PhvxFOD7wZ+em 7BlsxzvfV/j+O8/qZ7772YJ+jLm94BbzL9U7NccB/74j6lYtd/hQf2M8BeT4 sfOlv602fxLjdyNLpb+RrgmnzD/Q/FN3W6486/QrJnw4PuB6ZnfpV+bHWNCP kXHb3Bf9GJFX9ZlBo/PNFmle/L01rP7M+431rlspJed+R+Qv5vr5HX9/rpLa X+Z4PvODyqU3WpyF8qdyXuDrd55XfmXqmZyX78Lud11K9tXW9xCHcE41zVN8 sucv2dHrNJw93/jmUZG/JJHTymsU9cbIB3Ev+W1d+7V3LPczrDWt/xcWKT9N Pj79Dwvze9f40Mt+GnodxyfeAx7zgm7cr0zzsn9SN+v1k2bfvHpxGne9TqPA /DNfkD62rfnL2f3+sefN3+eRZ6R3bW1xHLqHY/6PdvAV8xO/oZXygTa9sZ39 yQepL3H9rB/H9ef2e/ZnO/lRn8V9dPA5zpvXMc3H57zQS74b8KefIfebnUuR nwv5Aseh3xP6nbla8pbjQN+6MuqkJni4secF/kS0e7xP4fE+OR4y/oJxELbP 73cpzwP7o37GPm4PXB11VpI8zus2NH7mH6j+fBd+39S+Pl1Tf+pjiA99IuiR dj/w3Wsi71piJ2zzDegN+82Xnga95VC3/22+WP39nVf7cv9n8SHOi2PYrqK8 wAl/OMPzTZw3kfNh+g1qPbQfUk9DfeeZy6TXgT+9O/gVx4FceG7Y5NnT86W/ 6Z5u8RTq73FzJfanHky97nHzJ0z1kxmDxlevX6r+h/k9j3KK/o25XAB+vrdm fGLlUC6/CsovzovzvaaheyTW9bvHdG8h30Ic+TzP03xA2PcofzO/xNINWPZi jcO8TPtDL4v70ny46/5N64e+t3OrGJ762RujnrDHaYouKR+pv9EPk+vxeArp Ywl9bRJ6F8dHnNcJLaPL/3pc7YwHgZ1q0SKb96yl0qM4Du6BM54X/ZOfsf8c j4flOl6Zmu+OZQbPv8jub3zm5hXu3xz+MXhHOGeV7kuEM+h4Pa/r86WG6m+D /rdfZXg6ryn5RPhh3nY790k+iP4zm1ldppVmz3lP1L3k+wTw4NmG/F/IJ9Ht mIgH4Sf29XLd/CYO77V1XrJC+g/w95h+w8+vLpU+g2XMGLd3/SMiP907jW8x HiqtYzPd3w/vWGl0dFXkyUzqbH8n5k3q9pxe66jn4/7M0rsIJ/Ipq1NfLiXw fMntX1+bYByZ8bFTIp+vx+GqnfuifRTjD42WPB5fcAXfO39cdWKw393WpPns Tx4qPjQF4C8sVV5e8mOeF9bx1qES+Tz9SjDvZ4f0nov3p9ZK6WPk39wvhn9r L/1KSsl7WBvuHj8ovRvj3NinuozwQ1m8uiOvD/tT7wLe7xh4Sj4Fef2WVo6n tt8/eL7Ejbqs7sHWa2Q3G/kK4igLxl1Sr4M/0awX2G5y/Pmm5Sn5zfIii8cs eT4H9W9ZXg673xy5Su+w1NNgb2zfC0j/nteiw3/E41UzfxOvlzltMu/P+Fa1 kx/h+Na2tF/Cj/slP4AeVplvetczzQw+q9Wf7dRzyP88j4fo/jXwgfGkJeZv wL3qhl7JYfanPgM6foh+Dd1Fkkf61Jq942+7XHIR8m4r5ak1/HliyPSOO8oF +1P/4X3E6hp0S18CnmxTkT6GcbpGTa/595id3+FrpBeRH8Afsc3/SSe8f4GO N16tdsDpgOhPPSeJhz16ZeFx99I3eB6eV8f46y/Hcj6pPJWed0LjpPk0xd8K 8rfbp/5+7jLpIbzXQ95NLlc77yWQ788vk75Bv098/2SX+tPOw/Nl3CvPjfvy fEd2jrMHcnlRkG8bn1wqfYP3jDdZfobC8zZI7lv+2TV2L1gpv0zTHy5dIv0E 53TKI8LDN1leiCKXm/h6WVP6IuU+x8G7xZpnNQ76Hyr9qkjOca/Qc8j/jc5l ZxNdYT/7S39L/QYm3U64T5/2RT0nee+pdhs8D2zIns7xsIw5jfT+P9xr/adH O+nZ4m2CzjkOjmW57D/qD/y7JvQHkH2jR3oC+4H+No662dQfcD4XRd28i/we jGm+1CO5z3st+l/XVzDvJfku4YB17qI8Wprf7AZ16Vfg33v0qj/bwe+P7NG7 m9shmN+mYF4v4rnlpeqRnkC6JjyyvFge59sjuwrpGuNe3af23V1+JnBu6wlm Py+b/Dy1y+m5YvXozvJ3yc2i7hHOc8Go2W3f1iW+A71hZEz4yTyW5Lc4jn91 i++wv+etkp7A8/T8SNITKC/Q73dd6TvaQ4EXWP6qXuarNP/7/boMX5inti1H AO71/HzvUt4t0Qv1Bwx7SsPwa5uof4l1HNNZF9PzNNq5rfRzvne59ArwtYf6 0rjbdRp2/56M+Ga+BwFvuvqlD7AdfGqjbr2Lka/gY5H8HKU/eD5t6Qnot2tL 9Eg9AXR2uvxHij9Ogesh909c0CpY19fzeJhe8PPwO2Z/zLtbS/kOcewfzeXA YAE/512ftXO4uq7xPzoFj58sNTg95/4+e3ZLj+K5Z3givQJ/3yrqkiZ+AYE/ RY4/Xkes4DmyHfrCmn6jj3e43+WxPQXrgeb580zuR30K+Bcu6ZVeQboknPH7 5UPSF7CPWavtPLYsi+4xzb7OZ46P+mpcJ/ub38eExuc6yDdI19jny5GnGnQz vlb6Q8J/1u3TOPZe73V3htfKfpLqD2ulb9D+yvNgXi/kMTl6oNhmqnl4pfQ8 4PuBIwX40FEDZu/6bMSpWvxot827n+IizG/7gi7hGfkw5QjpEHxh7/5cjhSU I5hvYK30gdQOvtbw4MhmahfYo5dyU+3sj+HXCfnO88J5/D7iLtkO+L8/5Hif 5e2UHGc/q2/aJ/ymnAV+va/fzmvnkLOm5/SrP9eHcZ4esPXeoXoKqm8Avfb+ qvwhcK6XDZg+c3dd+iLsQtVoT+ohHzBgfhHbB12RDwCfvhzrYTvO+zrmzfZ6 vMdFvVycV5veAKc2XSR5oqpjkqu8r3q+dI1DOsS694u6u8wLzfouHAdy9Itj qhMDep81YHjzgurGdNSVgh31jCGND/R4acD48AUh/wHuZtQ35Tig59+M6F2G /THdOSNa50XOfyhn8fOSxyfeOKT3Ds8fqPsS5Sa+XlqVnkI5CzvTPbU0X3Cb nj2ffwl256371U4+wXEoHzkO9ILpvn7GqbXnRdz7v/oNbk93S15D739qyM79 +GWS18gPNhl1Adnf4jiGdb8m3b9uatxdBiVnAafButqZnyqXU+Cr+0Z/tnv9 hZLXXzD5/oEByV+g3csd7cxfXXi+a91PKMc5PuU18PnaRibH3V96V7dTdvcU i2E/ndsxDutHoPXsBvNOF8wvTX2JcGZ9B8KZ/Um37M/zBRxmhxxgf8rNpN72 9Kyu5IDX6Ty3t0jw64Kq8sEA7u/sMz7+2ITJjXf3F15nrcjpgnUwTW8pl9if ci6na44DNJleFt/Dfh4c9brbUZeJdAb+tGrM8PNd/bbvY5W3WePjnEvjZq/9 1pjePy0uxus2vc/rO93t+LbTRJHkyfmb2x92yvJo/7Bf7Ulex48M2bpvqCr+ kOsGH+yuSP5SL4Hc2db1lR8NFEld0oc9j15bf8XXH3Xr/p74PR/Tr3bGiWdy Svde6AEHDxRe1yCtAx7yRfIxk1+Sr4Drx/tMTs0N+Uj4m9+/8p+qnfUpcD7M q3Frb8G801wP4YPf91fdn2FB4XWODG/OrZYS/7IVo4XXaep4V/O6FZld3eud LKuqnf29LobkKc79E6OF142S3AS8Dh4usjpQaicdUp6aXXAgrRfN9/DbhiUf yUctr/io4f2/I64b/PT7Y+rPeV1PNLl5RKzT5bPmBd38MPRjtp8/BfCX+9VO +Yv3h8+P/ec6jZ+I+m2AZ5veoEduMqx8lsdPzX/vRInvaPjdqmHDrzeV1e51 x9ROu1ZSZ2zvcumBqX3/K9bp9FvC/eDAQdVx9Tprul8n9sQjB81P+FdlrRNo vmXUp+J+eU6A44nhT2F+7ENmV98y6mPgZ41Ru7d8bqjI62+Az60X/r/kL8Cv +7xe+2UjssNTfzD+OFgk572f5316LPJ5Ux8AnU2Myz6I9s0qxi/OjzxzXldI 7awPlbzfttcJOD37vPon/H265/d6MfLwJXlixmsmnyZGdL+Gnl2rFXjXOHKI clP6ANuT+MK23Of4lMteN8rw75aIn6D85ToZnwF43Rh5YhJ/zBtrKV7t+yTr Qwk+Rxt8ihw+rBeJr6d7XuH+8AMCHEajP/xOL1pqcDmuKrwFvrzo99HLK5YX dOthw4c7u4v8fEnn6H9UWevH9XZRj+Q48TCrA5XSr/Rfrw/dvh+zHXSzZkTj gP+fEnkjOQ7O6WuDrP+odsx364jDcTznJwX5CedN5PFXhvWd8h32rKGo13jM 1PiXTXTUqYK82GDC7B3/7Da83sPvEf+hrhW2c0BZ7+xJ+97lgvyHfAzL/VrZ 1tO3Os2396eogwx6PWpY+gPzrYBuBkYKr18sOU65k+iFlbVqp/4Nfbq3L5c7 rPdk9LGV34/OrgsfE/62U+gDCZ/sqUofgF5d0T1RfCjhA0+5X8fdaySXWd+Z chbwWjFh9oY2fhAOSTzbehW942P9j5XVn+2Y/jdlyUfa1b0+tfzuqCcAXBuU 5UdHODDvOOC2fdSx93ddvgeVkneIF+KdKbErzYt6mJSbgPsmro/OiDqs3C/Y /tdH9W7OdsiBncYU70y4od+3I488Pq+pFF7vO80L9mHXRx8fU3wapjk+6sRy /aCrb3bUHzb4/m/o2byHfNju5dSr0/tqLeQs4eT1UiVPKX/x+03H1e71ZNM6 cE96naZ5YyVoRxs53Y6pfp36Y3lXD3fUmTM/sRHFJaH5/VFfketnnUauB3Ko Z1D2QrZ7nVzWgZUcx77uiXd+yn2L4ynn93WDy7bjasf6Lh+w9j1GNK+983qd 15ucn64s2/hl1YUteL6cl+tI63e5H+hDZXuvvNjzdMzqVn98nFQuWFea6+Mn 7jvnr7C86IvKWmeSp3ZtxfDqY+U0z+VohXWW7VxOjDxzbKf+QL0CcF+o+mMF 4ex1h7Uv4M8vHc4fGE/b23jF8UkPHJ/rT97ntvX7385jitOlfCccqJej/fbI q5f4PbXbOT7rPxIOhPNhBucihzPGWbXU/M1PrEjuk08BX+d6//Z+SZ85HZ3q 70XEN/x8Pbd3D63V+pL8MmW3qx+nesfSH0i/+P3bwr5FeiddZ3WiU/zfuN/O 9YOjGp/6QxKv1uaf0GveGfyV42D8hUP2u03dTh58uHgNPlzk/MHwdqTDvwb4 sXHQN/jh0aFn5XyDchX635UDqtPF9dA+Qv7Jdsjxqwflr4n5/jAuexvm22hc +gzfzeAPMeL1t68d1T2A/eFH89CE9Bnsf/6Y9BbKC9DrPUHH9Bucbu8beu8g /d1k9hXeswSHBH+H/D7xuj7dQ/l33kPxLnzeiOxZ1OsJB+zv5KjzBXhe5fx/ oqx4DXw2xuSPSvnO+YB/B0R9MdoTqHexv9eblh5FuQ8+96kxrZNyk/CZbvqG /Low3LOxL8LN7L8xPu5n713D+tS0M4i+AfdHKwXzDJOvcFyc32nj0mdAT1v6 +tYdl97C/sC3n4yqbh7av1Gz9Twb8fbga1+rmn1qeEL6FfDkkGrBuk58hwac 316RvE7o9H7VK5UcB35fFHKW9Ih93ldRfBT/Dr+xg3z9l0Q9ueQ9bN1h+RkS vuj3qyHpUexv+jPt/PEuDXyuDcv+wHbsY2yklOQP3SXe4Xi+rGfFOlaED5b7 +aivQz6N+Z4IeU34YNxzo74l4Ql6+oXLycG+tN7w/Khri/lHR7R+bHdXt2N+ KurR4nc79guebg/WvKCrXf1ecXtVdgng3fV9nqct6hnCbnTwiPbl77zaF/jZ dyu0h4ufc/18dwYd7N5ZZxd4d+FwifMCbTbokf7D/kDja2I9bDe9scvgs0/Q M/jAxasNT86eUH/yTfCpR6JOcGJXeWXc8OObvv5VS9P6xt8Le/FJU+v9x4T6 s516FOHgcWWCA8dhHC7H4XqYRxr0fkyMT/2E4yf+9O3xuS/CIYmP+e9YD/kR 18P750rTA+1d9qhyB9+Ef/9eE3Y/3iD4GuFMPEns36/CE9qRczwhveV4nvQf HErz0P2mt8jxxPHH9IK9RlN+vZfX0X4V/uDzIL5L+7nfXy6S95D2+rGvIyva V3J/avM99iffI38DXl08kPLL9ryQe8/0Gv/9VfDD5D3z7IEUP9vjYDt/7xNd sz4p+Y+/C9n9/ocD6T4e9vGbfR3vEziHvXsL8gfqP/w9700JfBYOpXCouPye Naz98rxAd5eNFDk/B52uM+T5sXtNXlzgevQHot4h++Ocjh0W/2B/nOs5o0XO 57G+c6JuE/vj3nX3qOqmJHEmXxmVHgU8+1zUDcV6B3tsHSe7vfO8IdlViG8u T+1eUqyQfQf9Lh6RHoXv21bMbvHKhN6bzH4e94zEH3mdutbP/uZnG/cM2lWo b6D5eOX7Vvss00N0v8E9f5XzgXXH5ZdGuw31NI7DfeF3N5dTvWuXms1z16js FVy/5QUek/0ngX/XuPQi0MezLh/XkVw2ebFTTXhGfQD874c+b/eg4mSZh4j9 iSdY7i7+7rX1kPLD4F52n/t9PhB1L/g+Z/4Bw1meXH8nO175Vqz/orrdWy4a UbwJ2/HzPSJfEsfx+PO0f3tebGffkTTvRsvbvxPx7e4/6HFcQ2kcXbs/8ifs NiQ4e9yArf+ygTTu96iAG+UA8Z/jE/+NPuNcqFdb/YrQW/h32MMXhr5BfQbr WacmvYV6CuuGgX8NRt1OzN8d7bxn4Wc3RN1ByitM13A/7K/2a1+Qa09E3V+u 3/IlxXoor0AP06M/+bDVf4161HivHRw0ut2kJr6GdW8/bPrX3Jr4GuGDj/fV jZ+ftlpwgHy7sG7vlTesUT4/4Ekl6g0n/ktLoj4x92X17KM/94V3vjOjP/dl cjjWSfkAOJxXozxN3w/Oi/1ST8O8O9WkLxEOVhe3Ln5NOID/Xh514XDubxwU 3Vm+6KVmB/lev+BAv0TCge28L+XwYX/CB/LilLr0tHw9zNeXr4fyA19PdT38 3wEH2hUIn4QfHT9WcPzEj/xV49NvLx/f8ogs0PgY7+6a4nnTd8q6/PU5Ds7v nXXp7fn5Eg5cJ8+R+irPkevn/ZzrT/HqWeEVxyEfycchP8rhwPG5fp4j9Ub5 407Rz6Wxr9fAc+lRhCfXk59Xkifj+LGcrrV+8LMNww+D+IP2bWLe5L7W3hfe JT7gevjfew0O88UHUn4TeFXk557As5MeC9Ij10+4kQ/jXPaLdny8z/M/NcKP hPwW2zu9YfL3e93Kv5fx1SKRCyfU0ziJTr5aJHz10lqHPwr+/orug9pvxocL 8mHs+8tR743wpL7BcbGv23qlb7CdcgfyZp+69GnSMfUN9mc7frdl1PmwvDeL pG8k9PaR5w3ON9cL1rWhnALcxmoaJ4nTq9VNr/tzb5HI5R1q8isjPCjH6Y+d 1Nvp93tuI/zLCB/q7YQb5ON6no/7HcPic+i/t+frWjws/r2L+xVivjdEfZdE //n1kOl9H35G/c3/J+pGsL/5iUd+bfSfVTc5/4PRItev8PfnIp9vppdKf+a8 VldxvMj1LrMXDctumdzvusbTvFnt/qDPoQHxLehDn29IzyQcgG/L6+n7VFte ga7+GHmIkriblxvuHzuouBsc52ea6k99Evymv+FxUkPSP83fK/on+ZvObJhc +03kP2I7vq4/WEruEbXIc0R5aP5MDektHgdo72n/HXk5CQfoAd+IPErcLz6u 7Mjjaf5Qu3fm9+S+2J68R/9bcRjKwwU4H9Cwe+mfe6UPW/xKw/Dt9FXSM7HO syN/U1KX+fqI/0/yB3dHf+4XH9Vo534hB+7mOhcJr0Dn+8f6yR8Ah+2iLi71 Iuzn2w3pS/wd9vFK0+TAz17QPQjjXNWwd44PrNB+kZ/h0JbRxcyoQ4lz3jTy GiT1jXbxPFYnLDV58O3Flkdi+8h/iriXjz9r53ti7Jfwhzw5oZH6I7X3BTgc 21FPTPVgoS/3LiwlcP1z087/tqfS+nh7ejzQbgt0T+Q6OT7XyX3xXPH++r3n dI6UfzxH8IsfK2+x1o/5P94q9p0a74p7tH7IhTe0itlTE1/9kNo578ZT3x94 WOvnOllnhOvkuVB/y/FthtMD1wk8uCzoLsk7fElD/A6ruKLf3vE/GPmwsa+X Yp1cTw6fRJ6157U64E3Zkwknridtn13K8KEgPDnvhVP/HvVX06P6e3Tu2Nb3 /6H9cZykfgrx6pFmmufsVfgPe+gXF+qcCX/iK+HP8QG/lyOOH+CsOZ9Z01Uk dLSn59c5Yanaga8jEd+S1FHdNOLdc7o73ejU9LqjFwj+1BsSPvPOpu5H5JP4 3UMRr5bky53VTONoO/l2x/myf36+7M/zJT8nHyA/T9epulNFyid7XotPpvHD 93bWXcPHFg3pPfj9kQskf9nOfUHendHUOLn8zeMSuK+sv+QU+3NfYGM3dazT 88w2zP7/1f4ikVNtuXy/yWXBgfuifpXETR7q9Uu+OKz1Q287yPWTLbO6C+92 Of71yMNLuiC+ks8Dfz7asv3Vn5FdDvniI1+p+O2Kqf7nBr9N8P+06M/xzV4e 9YvID+14oh4U5wUfejLy7HBe5M25QHlY98nnZTvnTfneXPE9fB4U/JD0nq1T 9wjApy/6/+d1ztU9guuhvpKvh3yP8+Ke/4OW+DbH57m4fNF6snMpcvgk7/Sv gg/xjOuBv8LJeV7vJeKfxFf2d74nfXG58Svj16d5vdm2vCb9gp8UrRLtMOwP O/z/RB1o9gc3vLdVopzlfQf4fFyr5HJB7dBXr24pfo/j4Ovfon4F++O68LnI W0Q+Z3HirSx/mNc96Pd8Ki+Ffu76fIn3goQPnKm6ztIn8dkb7Um9n4/l9Vdm 2711RrRzfLTPjHzfiX/CJg36GQgf4M/x06b0qiQ/yu+iPYkDvT7ygBMv/mpy s0T9kO3M0wR/mltWKH8clve2lurtgl/87Sn15zkeZ3Jc7Tx3tmOdf2zqHLcz e4vy0JCO2M558bnVqvR+126nnGU75n0g6ugQPrArXtMo8Z6e8Ln7Gopf5DkC XIc1S6m8mE3+XEr59mzTv6/2+M+dou4X+k2ryz+D80IvPTzywrPd77+2/kNG dC74/S71Et9ZSBf+/lKiX0fiT9uv+EjNA3vsNsrvIL4N/+7f1oWHvE9AT3qh XuI7AuPksc7rasI37s/tGKZ/bdCjduhx71HcrOaBoL8l2rkef7/Qd+R16Rss 3D5fon2e5+N2yxLvWWzH+mfXhP8cx+1X6TvKkeN2Lk8wfulZvS8Df34b8cO0 j4FfLayXaD9kO/DkpYib4rw4l0drJb6D0//F7WYl97tQu8Vl1ITPhJvV2arn ecrsvj/seHL6KulfGGdxTXH/zBPL86KdingBPni61z1dFXGxkF9vi7yufM91 u5O9B141Inp0O1WJ9iuuF/6P02o271bj0hdwDswz9Puy+K37U5lddu8JyRnw saM8Tuydw4IH47twfE8NCx/cP8ro4clB2e3NzlIRXhL+6HeJ5+1u9Kod09/u 8R8XD5SSuJf5FdEL292/Kx1/U/nPlOhXA/5151iJ6yfeAr5bl9XOe6X5H3nd g/UiTgC/OtDj3s6tlniPw/6LyOtgfGiN/NnZn3CEvnNKxNfRzwF2iC2HtR6s 49A+0Qv4w4bVEv0c2G5wjHhxwp/z0k+D7Rwfy1s8YnR6ked5uSDayffcL6JE fwnCH3C+slLiu3xi33u0YvzwY/KHNL51j9eRnSin/gmrRkuMl+T5YN3rjgse pEeQ06NjykNHvopxNyjb/BdXxP/xs7+Oq+4Y6ZFx/ITjLIuPUz8Mf8yw2hmH gP7vHLXz+PyY4hOgV1YGFS/h/saiC7ZjnRuXU/1n7bjyC3OfGPe8stZD/3Z8 blbRehjvBny+sKp2ngfmOy7aaceAXWarqCPHODKOw/XgOPbyeNHxiXTeA0cZ v6x2nFdz0OjlpBG1A8+K8IPG9w3GRM+z3L+W8CG+sZ3jXOJ+v+tYnJHGBx4e PC5+js9J91s8o5rmmW+MGV0eXRXeYhml0RL9b4lXFufk8ZZbh1z1uKdSFocr v0i0n18VHno8lPD2Iud/xD/oCydU1E6+iM+/jZbon83+jPekPzf77+JxLvR/ Yn/iG/SNybLaiT/gk4dEPnLmNwA63lJXO+nZ8ltHu98rH8D+t2ionfmCOA7n Tfzz31axc1g2IjmIfSwoM96+xHh52EfuHbF75R4D9l63fvizc3z8fcmo/MK5 HvCZC6uM+9Y68fuFZaPD94S8wjnP1nud0fOXHG5Pyb/P/ehGhD88d4ubdny8 u1NfA17WmV9lrs2/mft1nlpRvXX0H+w3vnVhWfkReK7A02OV/0TtGGejcfGf 6ebvX2I8NduRD+7H/aXkd3+pZu+6nifkIveD+diA+BXoabrL42l9aV7aeU3Z 3aGnPPuo7ifszzwVbE/07Ls8T9gHqyWuk/Y9jPsO1tHtLSV+gbe7n/T0QbXT v5D7Iv/BOV0dcVDkO/j9n0aMX57SJ3jx79j/lQMlxoGyneMwzwD2tXe/2ak+ 3ldi3gPCj59W96jh9cm71A76vKIheUc8Yn65d0ztY323wze7Sqzj6XkXpW+C rn6jPLSaP8sfK3sw+m8leav2LM+bnc/vulye96b+Xj9bm9ZnW9Cycz+sR3qR vUvVLb7iDS+UaA/kuyPAuk1PKYn//UBN7dS3k3fWibU6L/CDA8qCA/NbGrwC j8GvusrMn2n9v92l91viDeEA/Ni5YfmqT+vTuWDf/Q3JHX6C/1zd1DmyHfD8 StS54N+Zlxjn+8u4R4KOf1rR/pAPZ8ZK049einhpjD9jqdZl9vqm1sV2q5Os fFRmR//G03x/svfxl5am77VnRZ062DFmP6j2vO4f5t1hspS8q/32ceP7x0f/ r0y1r7i3YH1Vrp/+Nrh/fsLf576zRPjj+fPNLvjuVWrHPh5tSJ6b/tZn98wz q7LLAl2vLTO/q+nP2y0XHNkO+8NZS0UP8EM8b8LvbSvUTj7g+V1LzKvGdsKN eU3BTzcdFByAf9+Ic2I7zmm4WST63YZLTP6eGHZHfmJ766u+l/TC7e2dQfyB 7VjfWxqqe8JxwE/rVdanS+vIzqkY3Vwaej3jnTHtnZV0vW25Cjr/bPiZ8Z0a 4Nk49se6GIDPP5vuX7vQ7rOf7Pb91LQvwgnkel28a+IY//C08BPnuN4TBoe9 F6tOR2qvd/+M3SZLzFOb1I1vt7M/7WJY3ysxDvrv+ZTwOcmnwvyIv411YtyN VW9L7eSHrGvMdsov+HGfUiuS8+0fZf0swZn6sNe3UjvrBYC/bh1xRcC3GTXW pfL3wwVmp98i7PocB+d1fqwb/PHdjocvy+4u+EIf2HayA+74ODTwlu2wR20b dYL5d8sH3pK+xHrumP9DLd3jk/jCqNto+/zjs0anzyovOetYGX3dFXZQ0OeJ /zB+vm20J3br68MOynVSXpveK39no6sDa4b/D6mOtu4LoL+9ww7Kuor484xy 4XWlhf83Gb6xzmBHu9eVS/05zmpp/Kwen/A+r+/M9Sf17y6LdwvWsyP+7zIF piPuFf77+Nov2wHfaryT4Tz/MGT6Qa0iekS/8ciDnax/C4+3+JPiCUqsw4t9 Pz6i/qzfAS7wxTHlw8Dvo76Y9gU8WtQ0vWW9rsLroKmd9hP2xzl9UP47agf+ 9Aa9sB30eUFH3TGT7+Woh33s1Li3/tna3xd1d9gOufWJeFffGeLud3Y/X9Ap p0EvXwt6ZDv46XYvah2JX/+6L4oe2Y5juW9Sdd2Ser47Rf3FW14N5zNaOv91 pwAz72bjX+u0pKdwHvS/sV7K6y+Dfta4XfnDo6oLz3sklv+LetE9Nd6mc1J9 LfKFW964DywT/r8fB3iVwXGv1R39CS97/56UX3JeJ53rz+qSqx12mHlLRC8c B/Lut3nd8Nlp/fFX1d9M4ua3ruhdhXWrLW/+iN6DUZdyh/Av47ysQ804mgT+ Z0T9Prb7+Qqf2e74IHxmu+OP9sN2x7eo4+jtjp+CX1Kntc1HyOfZH9P9OtqT OozfCLnO9vOMvnL5Ujg9Cp/Z/lWjX+Ez2wGfSxtGl9NkN7HzPireFVkPMcdz 1lXEONNDz+b54hyv87oqmw/qHd35ldu/JXfsvI+ol1hfMqnnO+F09Kr6ks4n S84nizfhPz+UPRZ85YJywXq1XB/pheOcbPipdkx72eNFQi9tebRy6vc/ubej nftlHAHlDvfL82c767EmflBnRb3UpH1e+AGg3sImy0R3iX/AJ2uF673al/MZ 5dFhf+dLBesssx3g2bHB+MK8PrXulayb6fqG7ufcP/nOB6b6P7A6zbO4ftPj V6SHeN6QkBdsd/1KcGH7JaaPib5YR+ldpr/p90l97/MD/1lPCnzjc3HPTd6v PlMvsR4W6x4Cn8bqyr/H+lZ8v2UdK/C7+/+hduq/SZ2vLap6b+C6vK6r8eHz JtL3+YPKJb5nJO/D146UXK/W+nlOoKODo54azmn9rhLru7mebHr5SYtNT7kz 6kI8ZXqR2bGOD78Tytc+u0ekcI56xxqHfG3S7jupP0J1jeqzsB3rqvV63cio h8j3Ib+XaV+gx3MnrP3z1VJCP2+qqI4J+7teWrAuZDLvgR7HMGNcdS1pJ2Kd EY7Ddsx7Wvhnge52bihuj/hj8KVf27K0fui5Ub+DdVHZnvMF8IFzWqn/w2dW qn4W6Y1w93t6KY1TWSk+DL+gbXrV3+u1lVjHhP15X/6c2ak0HsTBtHi/YV05 v8epHR9/Wu7xIpXUrtkeh+9IAOuysu5DxOekng7170N6zP7/qOPJParPKP6c y1u38xSsl5TkA7wn6jT5vV7trMsD+83XBhWXyzo4iT3lU1XVz2I/1tVCt29H vDL3zTpibq9QO/fr9VVVRwZwPni16nNTDrG+G/1SE/naHufXZscT/mR134rc f8rtgYIjP8nPLzU7sOB4nNkVtW76E1meonp6X/7ftaybk763zFKef9MnthxL 7bBv7VWdC7Zj2ZsPyJ+G9Tson9C8ayP1lzl+mfHJy2QHFp64HVjxS/7eZPhz v8vDw3qKZF3HuD/NnIinYj5qjPfdLrXzno3xZkV9JdDl7mXty+2lzAdk6525 yujovKr4IsbfuId14jQPppnfw7p7aZxfe/ybzG6vc2W9ANr5k7i6W3tV74a/ Z75ETHdoXXyN+ZNBF3Mjfz7z7fOcmN84ideaHBffYH2HS+1dVe3sj+XtE34J zJee3EfP9vOa1ic942P27qN5WR8E+3o5/IAhl09/THRGuGL5IyuVp5TtSb6I Czxv/JXh9/CUvXsqHz7o6HfDyhvGvP3kJ/QDwLvdqX1pfVL6Aezba3R9/rja zf4/7PVCxjU/6yDg+LaPuEDmqU7eRfbuVR0lviPkdRzw98mIU0zyYf5ftUN+ +3ul8MffqYvk/Hr7lD+T7V+yd0+NQ/8H5k2lPPF3/xLzprKdcsTfc+3e8MUR +eFj/E9UbLwHR2WPp72c+Wyp/+N3p9fM/3vHIbVjtOPrWifz9vv7sulJX5Mf odq5Tr4zQr+q1Syf7TpR35X59zh+Eud2QeTdTeTk5ZFnjXlxmQeP8xJ/F9v7 u+BGfwnmr0vyM5/jf98y2gkv4NPtfXle8SLPH873R/NjWJvWodlRcfDK0wG4 XBN6sPvbyK+K4zOv3aTlf5PeDj3tvIki5yMuZ5Qfm+3J+8qRnk9h7Xj67rIm /EuABxXl71V77gfh/lQd7/9Pm1+KnefG8d7LefF1PNqZ3xJ+E0fF+yHXh+lP ivy8gNqJ8c7D/NXuV1McC7pnXse/qp3jMW8z2Ndoxfa5Xln4hnUvKmt8tmO5 H68UzD9JfCP9Yl0blYWnzAuE+aeNqZ38jecLuv1BtEOeTA+8Zl4dngv46avg zX15/ljpC4mf1A5jykPIdug1z8U+XD4r7zHbAadpDp//qsguADht4O+4F1eK 5P42GXn5Ejo+O/IwJf5vkTdY9EX9Evh/UuQBBr+9X3mE9N7lfnSmPxwc/jgc x/JgjqZ5dL8e+WBJL+73KH7LPJMY53bm5xmQn437TypvCdtBFw9GPjeeJ/1u 7B2qX+3uT5jmLSpGlPeM7Vj3keMGn/XCjwr88EDP77OirDg+0kuW90z5uLC/ /Svyr+V+uR7KOcx7yrDgifYlPcoP4H6Saf2RNlw5Dv0k2c71WD3PvlTeHOfj XD6Qyt23+/vwtCHZDzgO8OSTQ4rHZ15Btif5YY6qWl6Hdw6LXrCOPavF96cW OjwhewDHdz+NtA7fnhXlgczzEc2xOHfZGxn/7nHustsw/h1UclX421OPgR57 QbxjYR2z/B1lMuyJwMs9atb/T2MdeXuaFoeldmxvsCp8Jp4ibvmX4YdBenF/ e7WTTt0/X3ie4MsOkd8Gf3/LkPL8EO795mdO//DcX8fz/Id/WOKfcl3kmUnu 4/2RJ5Dt7lcvOyrnZf4Q+uFzf+4nL70I53zjAP3qxde4b/bP/Opt369UU7vF kZ7n9T2hdyZ+VY8qT47wn3kqcBzX9Kid+EZ+DTC9b1B5KqDHDPbp3GAX6Iv7 lenZy42PrY48FfTbcL/6IvOrN346WlNeuEReDHoe0e7Ig8G8W1bfYCg9hzae A64nDSmOEuPsEu15fi3L+5DlN1vk9qwfRr4F+hWZXW80zQcz7nlOfqO4AMU/ erxMKbHHHKo4R71fMP6R9MV5wceObQruHAfbPizaOQ74/JmRD4Hr5L2N8U2k R+YNIBwJH8YXM06K7R6fpThZ4iPj/ZN62X/vNTvYRk3b3zmL5b9F+7jHPak/ 8GynZhon3G7Hdv7YlH2H7RyHcYVsx7Kebrg9Ya3wk3Hu0BPf+7zaAa+3eTz+ VqtEr2xnvBXbPR6t4/2Y58L7FM/F/IDj3kw4gd5ndL43gyw/Fu1JfGdvjEM8 AfyvaSgfS1K/4PMNv49HHDH+3L7fQ47vNaR7GPN1EJ+T/BWntZTHgHIH8Ngz 4mcZ943l3Rt5Bshfd2oh/pFx8amf7dXhX8Dxsay/Rfws+zct/lHrI16dO/Wf /4l2joP4+VPDrkd89/XLv4xxnfQzIv7jd99ebHLw0FaJ+SiSOpLnhj8R2xk3 Sv+IfHziAezj33tO8aTsn/jD7OnxgLstkD1qF4On4lUZZ2/voOHfka+H71T5 ehh3wPXYccQ4HJ/xqoyD/s/xqnPT+Nb2+FkeCTu3j0ecrMt5rZ/vhkle7r6I h83XQ3p4jfWk9bYPinE4L+FDvkn4gF/+IMbnvNl5aV6ei+O55gUf/GCrlMVN W1zyyTEv98tz53euh3jIvBDUJwln8iv25zjM85DF75s+vn7EYzJeOMvbo7hR sN1X5QXCft/tccRbhp7pfCaLO55bOH/TOEnd41a9lOWlNHz4fMQpE97An/+K cUj3HAd/jzyZhee/0jjJO9xBsS/yCeglBzTk90g+kcYp9+jdH/826iZfv9ov Pob7w/0RN036xtdvxTjkB3Msb0MWTz2X+Yjy9sLljsYhPD3fUT5vwXhq9k/8 J3aNdsIB+t7hsf4kL92JEa/9GvBJ9bRKXXEBzA/g+Toy/6HYF/l7ErfeHf25 L8ZBc1zuCz/vj3buC/DeK8ZJ3gW2bJSYP4rvN9jfW5qKwyXdgW42bZWyfERa D/ef+J280iwxD1KSN/VtIY8Ybw799aGm4nw5L/Bku0aJeZMIb+I/+zMO/UrT 0zT+dqYvFSkeLkr9XN8Wcorrcb2rlOU7Mjg81ZScSvJbtuflOJyX6yTfgb58 6kDBPAPEQ/IZwjnLLyS4EY5cJ9fzgyk6/tdjHfAhn+K8rmeK3rhOzP9EwCfL Iyc+9RrjKK4/3dci6TuTppeWqMdyna4Pi39xHOIV83ASr3DOt3j7v5dJLuDe tFX41yb1Li+Md13257ykk/y8+L7O/ZJfcV+EX3aOHXkGmAc18c/bNPwL/zNd P9uxX+rt3FdG76l/RtCv9ot7wAku7yJvkvbL+/h/ppfIU0Q+lu6rgz+nfj6z wi/5Nfhzkez39OjPfeEcpzXt/v095rek/0dDfumke8/fqLwQ5E8g65vCH5p4 TvnO/JC5nMrzEVFPeI38RXl/6QN5/iK//+b+2ab/vDXWSTluP495aWem3Me5 L+jTuTOvhestWj/1It6PuH6/v2d5MJTv0fYX+R7Vn3mQEv+gdv8sn2Th+aXV n+fLvAGg4+fGpT/w/dzq9yq/t/Xbpm76yA8yf+uHq/aOsnhc/I/j4M/fCD9d 9oe8WjMmPufxZPb3zYfF1w29atKjiFegi1a1RLsi4xOwvW0jDpX78vzb0kuJ t1wn8PnPI+KviR/BK6Hvcf2g751HxbfcLmT0tXXkLWdekUvM7iT+gf2cXde+ kve19vis/0K+leQnuXhAcTrsD/066svQLse8AZqHeSoSObir6okoPwPQaXDQ 4Hqb6n7rE/j0M9UbTuu23BB5UZL8kd+qqz/1L3zfIs6XdiSc27tCP0zy7dWq yguR1Ymw/e7Yn8aDPhz9ra637L1az8ensO1XyhfNvCKK63Z7qfbj9lLBLavn UvJ849IDuT/2d3sp68KUPJ+5+nNdGHf3uuZN/Lbaei/zUfDvzANDuZbYsyvh L8L+wO+hOBfmpUH73Fh/Utd8u4bGZX/mh+G4SZ6Wh6vpe8OFw8obk+Rx+H3A M6trU/I82Monw/Wm+12dxrUeWNf4XD/zzJD+32L2c60zq7OjdTIPOdfJcahn chzmq+H4hAP70++c/dnOuBO2p/lzVqd1qU6pS1/N90X5lK+H/bkefL27Vsry qwvPyb+4X66H/bmeFD+fzd8pNA7Xw3mz/N45fRU5fSX+cXtNMN+78IH0lcHt NdYZecuBXxuG/2OSx3pW9Kd9NMPzIsfzrJ6R8CfL7619ZXV8Sp4nXHz8Nfh2 kfPtk+1difWDDP9OCH8y0kvGtzvyILGddAQ770Z15Tsi/6A89boVeo/1fOyp HGrzW8ov8mWLlwz5xf6IZx4cUj4l5vHO+SffdwgHf9crZXnC1Z/1g7hf/G4s 1pPYDdp6Bf3NCAd/lykxL2Wi354deZzyfGKsf5TLa5dTeT0j5e2hPMLfD67r vZD6DGa/o1ZK8v5ctDzX01I9+XO1UpaHXHpO9m71APtnec4L5qfyd2S912R6 EeNFlbeK/Uk3iR4YdZGklz5peqn2i34n16gfar9cJ4ZtjknfTvDqEL2bqx32 0XePa7/48z1lk8vbVcS//T1debS4HsO/iuoKJ3mzZ3l90W0iHxHHAfyuLEt/ Zn/InT/Kn0T+4MDHayakF+H7UDn9HePb7/H8Qj9WfWTmddC+Ev+7Kz3v1vGd +cGyeouKRwU9f2xC9wK2Qy59f1z6vNcDLbGeo8OzYJ4x7OO0sdJMx0NMf5zn 32oOSl9yvxR9Z74s7h/THzNs++3xul2LqxqHcAOa/DPyGyX1Dtrrwd8nRkqJ H2a7HfN9eKSU2OeZZyzqPCofGsA+Leo4e51Eo691hnguymOGfUWdShtnoKL9 kr65X/z86mHxA7ZzHPfvSsenXNx0jPWaJae9vrOt64Kq8cM39afw3zD0ZMqX ZF+DfWk9nXMrwj/ui3nJOA7zoXH9yb1i23HjuxdH/i/mc3O/I+VFpDylPyv5 uOU3ijxsmf+SzpF1EjHePyY0Dunf+HTQOfNxYZ+Lgg5ZtxF4dFzklyP95+OQ 3rD82yviS8wLin0eM6F8dNTfAJ+jYl6+r3Ec9qfexf7uf6V2zH6i563bv5Le N9p4Qrid7HyWcGN/v/eqP9eT1Xem35fNf/6KrF6915GNutKCG+tQY1kHllmH sZTV69Q6SZ/5OjP/sYL4TH8V4g/pAni4JvL4Zfgv/Yrrod7yGniuvH9cD+mf 6yGeo/9eqgspOIBPXj+U1SUrK99azg8xftSzZn1G6SE5X2I+Sa7L60VKL8r5 En+f+b+l9L/pmPzLgef7DKd+4u114ue/GUn1sc/5uR9DP5l+yxPxoOtLd4Ue Ajn2QNX0ig+EvsF8hmxP6mQdWhU/Yn+uM6vzKDxlPWv0v6hbci0577dHvkTY wQ4Ov2/3C1VeO/6O46P/0yPMd6b2rJ54QfgAXh8fTfOUPko+M17k+gDjFygH AcdHI39jrs8wXibJV7Jt5HVM6pV8JPoneRza/bO6kA9gvK0jb1ESz7xbnAvw orJQ8YXT3Y+R/Bh62GORT5LrJ9xYXzvxy7oq+nOd4GulyONHuWF1CkY77BCk S9DFsrATAC4rIo8l14nhqmPMLyf+yrirpK58b5/GZz5AwPeHveZ/cvFEh3zD MTB/5oUh35gPE93mhBwjP8N+T65Ir2M7xlmvIv0TzSsnSutOff6sXJrpep3l tRs1fPt3WXlBbjZ/e42H9f6r3945XpgopXx/rd1zKpFXkvSO8T8T8UhJHGN7 Pej37TG9n5IenU5l3+J8GGdj6cOKT8B03xnN4iVHmT/Q7WLKW2n3hT7Pk7a+ 538+xc/1nBHpSxyf3wGXl0cEFyz7xWHhO8dnXkeAc8uy8mFyHOYLxT5qo8r3 SPqz+2noUR6/4Pl8R9J65OMTBq95cU+Af/E9Zck99gcZvDRecP+PmHw0fPlR 2fwYThqQ/kO9yuMR9H6HbfyybH5yB/SLrvDucW81w4Mlyl9K+DBfpcfpqD/x mHlN2R/n+uzzBodbXE/dmu8cf2W8j+1/Z+LtLQ/g56fHOMk78Y3Rzv5sB3j2 nkjrv14Y41NucXzMP51wXpSeb7t/j+1X92TOyziRZJw2HBJ73avyvlK/gt76 lrj/AA9nef7oS8qyL/IdC3rDm6o5/qT5YNvrp57A9SfxP5cPmL/LhaNpPATj ElcG/VN/IL1YPNlYGv8wK+iC/Tkv6GThqPpj3l+VLZ6wvU7mrU3o8ltjokPm syWck3vX70dKHAfraPMF6i1cP/DrgVHm8xUdeR5XO685vda+icfPvTPy4pIe yY96Lc6O8TVaJ/kS+QDh4PE+4sOQY5uNp/ZD4vMOYx35e61+eVl2M/ZnftRc TgG+O3l99xfcfrjFuJ3vCRXpG+DP50dcVxJvd1LkIUV8/k9ekHzBstdn/MJq xp0pv2vOP9lO+GBbB44rDoP8hnIf/GpYdd2VH5jxQUl9kNAHNA7W/8/Ij+l2 X9PHRifElyk3Ka8ZT5TU0Z3j/Lwnxsf5/D3yEnM9cyx+0/jRdfH+xnPGOX05 3pFI1zjfo+I9Af4E546UMvur+ntcYWpfarejX39V763UfzDfHVXda3N77U8c DokdZ6Oa8h57vCrPRfvivMC3Q6rk39a+k9tlauU0f0e7HXA61u+Xr3oHoF6A c3vZ80Kd3p/mz37viOQ9zuHNY4orZrvZLUfTerXX+ryXBl/hfpl31+KlI58z z9/e1Tx+qr0e/p1y3OIchqUnEL9wHldG3mLGKTGvcmZH07zkX9jOlaGvUB/A evepqj/PA/PuWtG+KN/NH9/jSa4YNj39oqXpe+f0fsll2Nd7a7afzXrT/Pzb xnsz8Qn4clbknabcZz7qdJ2LOtbJvNb4/VbhH8D7DPNXsz/wbd8nbdxBf88+ cij1H93K683cEn6oWPbZMU7iX3htw+DwteHUj/CWusZhPgT6c3Acxi9z/AwO BeHA/sy/jXGrdeEZ871T76I+AD/6q5YW+Xm1PB6f/XEOL4+k70frB5wpfzHM wshDTjmFdayN/N6kE4yz3qjN980hyUHGnWb0UpBeOC/7gy8eHfHAIJO9/ff7 Dab5vXnPXez0c+6w2sk3cM94Vz/5SVqPuD0O8hw+NV7k9M680IxDRvuXRpSH nPREfk75wvzkHOc+u/eZPLt0IOfbkl/o/n7lmVd8B373v9Gf9kisa3RQ/flu TP5pdvSy/N9MXxyw/l+qCD6ZPCpyecQ49DzvOv6+U9RpZ3+sa5N6+o7f7g+8 374u+Qj+u7Py80s+Is7off3Mz5zd6+m/ondR8wtp9Cj/NuUmx0H/6Q3xp4QP XhB5uXGf3UH5ry3O6Ne9ygOP6bYPPwvyN4eP3x+c71cjb3zu94HPx+sd6zH4 hR9Bop9eR7uE5yP7he/35preX7ge3t/MDuj5rp8akv2B7yO7+zsB89KT/jD+ g35uX6+k7e114qOrTDuI0cfBA7ofA15fGErru2wY9jaOw7zlwIPdQw4m8nS6 53d5nefnHhoVfWNZR/akfhVt+Q+59c3AX5zn2ISd576Bv4DT5pEnP3lnWVWx uI8TurUP3pcTvealAeXbZ3570xN7Ra9Y7/TBFG8uDf7B/p4Pp0jz5PcoTz72 dWSX7Cw8T/YnPbA/f096sHwnEU+Lc/37IsPfc+tubx2QnGXdMs8PIznLugA4 n1rEFTDOJOtf5HUEYG/d+DGzU1/vfrqLupU/nOPwnHhfhlZwfNTlgpy5f4Ha UzgvKgjnxSmdWfsZVbOrnjug/q9xXhonO5cihzP9ewln7hf7v9rrBLXxB3B+ qFd+DpyX47AeOusgcL+Jfb6Nn+zPcbge6gOJff/S0VJGX0VOX6Rz/PxNFcEN vx9wuXn1iM5xalvTNvD3oQWjoq+kXsWmfr9ct090S76R8asi4VcXLTf59T8V kwsHRt4Fwgvof73T21if2bH+VJV/7M5TCLKi3/jyaLVI44B6XQ+K/mi/rcvG v7haPOJ2DnwfXqt1Eq64r7b3y7oDCX+7fK2t9/Doz/Ni/4R/frzP4Dm3rn6U a+4foToUWFab37IOxWvIx7S+SXu/6L9L5NPP5KPkMv680uXgnyNOHfzx1l6z B/+8oXkpN11ea17uA/1/H+NjPxv3SI6DHg4PP1O88zzdWUcD8y8PfYCfGGZm 5KtM5p8TcS2J3+cno14D++P7TyMehe0A/5EN9U/ep7/WoB1xn6w+hdfzGEj9 Z79TN7gfE/za8tjXxS9xf165WnVADt/uVf5f9S7dx/guCjvfzFUlz3uW1fvp LzGvIPVn7H+rNbpHk665HtxHPlcRn0jg/FJn/RGOY8fr+vKp3Zn9f9Tkwz3L 9R39ZkzY+9DRUceEfML8qPzcHx6VHk3+A/w5b6hEPslzZjvrm7B/Ykfbombx EeOrSwk/WB31Soi/ON5jnA5uXG7vmV8KvzTk+32X++GePCC5zHGIFxwH74W3 r1E74H19Q3HnrI/AezThzzodgM8prVxuSv6iu+q2zFXdFuIDtlX7h+Q7zzHR U6/I67/MZd4/9aPcBzynTdrnll3y52xaXkHhD+V7Pg6Wcf4Tngc09ATag0Av b2yo7gz9VAlPwvGzU/s43vN0XlYvJed+11rzk1tU9bo44iu8p+fnrro2ni9R 7Rhvk4bnH1OdTo+nbRTMpwW96g+DBfVP8ifG3XAcrpN+iVjfByL/COyvT3ge wzeUJR8pryFfnqmKXpI8c9tURBdYx9Ejlj/j1Jrl0zt8jeQ16Y51T/id9XeI J2wnvZs/zRrV5SGdWd3hrvSe23R9q32/wDntV+P6tF/8vlqRPCU/BP+8NeQp 8Qd8ZElFdX88f6bqs1B/wnqu8Pfzq+sddbCdz0vecT2Qy6W69Afss3u1xvmM 4zvQqNwl+Qt98G+9GgfN66jufVrXYd/OOkTAiyObRS6/LP76NeoANWP9id/5 ZVGXhe2Wj6jBPNw2zqX+brdzxHdyfvNHjnwG4B9nLTX5tU/kJ2B/1unA+Z/d VUru/Ye7PN2mN32Hb+sDqP9dj/dF5CV+T8TpcnzgxWRnPSbgz7ym+sGetf0q o/uvNLVOtmOdd4ccT9a5XUP3a8IH/X/UML8P5qduz4/4hg3Dfsf5PT+t6kBh HXesNPl+eNShZTvr9RDPuR7g0zXhZ5HRhfon89bdj2nGuMbBcZ9SZR5vu+d2 LTE+c0Yt0x+WyA8BPz+orPpKzHuc8w3qA+QbHAfnfVq853Ac6AkbliXfAd+Z y9K6nz8fM3ouxTsG4PWRstaJcee4P+e8aMd0lw1IvlPuM36f9Mr+bPc82+qf 2Ps+3VB/1jnC/lifa8ZSr2uzxu+rLfVnO/Z5Zkv9id+sk8V2nhvbOQ7xzvzY WgXrfMHeuedT0geAp/csEd6zbhfHYX0lfP9oy/Dx+tWyn2NZN4VcZt0lrOtf 9ZQ/0E/9hpbh95GreN/XetK6JXNVX4z1vwgH5LHYsVlk/ZmnOviA6yEYfrdo Z/2mfL95vSeOj/v9mieLfJ3IY33FfOknVkdkrfQc5lHC98dU70x5ptP+kZc6 O/ciP1/GofB8WTfN/AO7ihyv7H2tR/XUMvui9b+ikerJ7XE4L/k9+n2xv6PO GvUW4j/fD7Gf28Mfzu0phlc3jElvodyAPleNfLwcH/1uLis/I/kD/cdSP7Ul qpOFe/oTka8Q/X4Y7xbQT45eKf2B/BPjrLta+knOP/mOzDpxZtdZrv7kn8l7 7+mh/3AczxuvOnH2TrFM+cZ4j8N+91+mul1J/tliid2zb6hTvzR++9Wl6p/s qz0v27lOtrv8lb6RvA8f2qmf4P6+YeBZMs7PO+vcYdx3R/2nhB4/Gnhm8V9L 7bxGmspzxXbg5e+jTo/xf3//36ZRUC5DP//980a/J0S+KIB38bMl1r8g/nF+ 6Hu3tVI/usnnjb/vHPyCfze+N5nmS9zzeVv/16P+FvtDfqyIfEKgj77F0ovI T60+6ELpPwmebLjE1n915AvhvJjusKjvhXvpjouknyR1ut74hOqd0e8uOYcP Rv53tiPf7UtRpyPhM7eq3ofOGXzjrNfIEzBRT/OUHjtf7yzmhzpUInxYZ4F0 xHPzOnelvM4d9rNCfl1pvNGBtY66h7y3m51iwvzTP71E93as44ejpXlT2/jk I9JngC9/iHga1nFj/cQEr+4Iv1r2xzbeVOmoq2h53Mf9/apaJPjz1JjRwVYd 9QFL/7E+IPMkL610+HHgPvrbusaxuiN9HldfTe1el/l7TjP6J+8JhzcLxsHC D2D9VY7/oV8ndbVndtRJtHW9qk4i+Q7gd53qCqmeF+Uy6GV0fspfvxHzkg+Z 39uk4JnXxUv8Eiaf66gjmeRTaOsJXp/I6Gvm86U8XxvXAzT/bUvwIV9I9ZPg E2znvEn+iN2C3+T1K/l7xpV4u+DJOBSuJ9uX9B+Ok9jHX10fcwo+ly+UXsT+ eX1A6gMPTnU7abH0JdZ1YX0085doMA7E7IkXLC9y/MnrCWZ4UhBPCOcG8jJ5 PZbtwr5LvQj3+OubOT4XxGfOm9hzHmumeMv8il1RH552G8tHUC+S+2WbD4Ie P9dQO/kg5PkLQdeJ/H5DTec1y+5HXv8i6t5j29tV7F1/JPgM7TnA61Orgg/4 0W/dn7LNxzjOff7OQr7Hc4S/yJKq6opyPZeaH1eR8zev06T6pBm/LchvE3rc oqr1c/yknstq5XXTOwjzwLE/72/4uD3khb1j1NO6CBstLtHultfJxTK/Uy9y OcL6kqyjyv7Uo6B//KZf8MR53RF6EX43ZyHldVqncMPnpOcwDwnlNeiijd/0 68C98W+6jylOGfLn9T7ONXp/sXXuPk91LekXzH1BD78r8oayHWJn14bgxn3B frFv6IGEA7a5SfBZfsK+dFdnPVmcY0P1Z1M+WESdQbaDnt8RddD+NLWube40 /Lwp7mmgqysXmF3oiFZ2P5xr5/CFznq1WN9RwU+TfEU7RN1M9ge/mzmpfomd /e1RT5P9sf5NJ+N9x/vbvSnqEibxzeNRh4/9wX/fG/U3WScX458Sec6IP/2G P8onkeTf+lbk0/I6hqq3m9xHV/xDeik+Dhsq/WWq441/Vzum3XY45bd7hH7L eqDY77PRjvN47/wOuwDes7Z4RO1J3hjmqW125g9z+7vhxWGRnwl6zPK6ndst o7pn8H2NfI/wwfpudH+7fZRPSPVJOU5yXgvrYZd7Nf58srMuMPVPfN0v4rHA V+dXbd9zxjQv9VJjD+V0nC3cj/dP0Z7EGc+vKE6L9fIwfrVM+4L0THTbpex6 xlzz7z7W6w29Q367Xn90THoj6Sbxq7m6rvXQ/o7z/VdV+VPw5zf7+//edY3D /pSbhIPlXXR/hKuaJa9fKT0TYPpnU3WTqU9i3LmhT5IvYJ7LIi8t9Uy0H9Iq sS6z2W9Wy46XxM1vEnWZud/EvrLbZEp3rNc8r5XavyjHdgv+l+gdr6rXTP9p 6mnUC/P+7JfXfc74q/Q9tid5J9v9Z2bt9i4f6//P9XDnSt8jnFk/mvVwc3iy Hq7r5/k5FjxHygH4m3xvlfJO0m8O4+/ZZ/u8qJ7jSUE8ef/Udja/UfIS/Pvo eA8hfwG9vKw6cvvg/ewI99s5qq53A8pR0Ms/hP+mr5zeb/K7qOlckB9kvUGz 459OvfGvpqf+2/1QHwx/+SRPyB+i3eICRkwP+GxNeAI6eY/795xaVt7kWUbv dr7/V5V8o96Irw9XhCdJfFqbn2T8s8j5p+UhrkjPZH/qh6aXdeTzKHJ+yHcC wGHzcpHC2fWxXygfsOqDO3/WvIa2oddxfNZT9jrUubzgOOqP3x8Rdca5HhzL df7uu/mg5BfxO6tfbPbMw5kPvkfjA5/XaakuOeUyx4Ed/8NrNA71WKz7tMhT CHBu2TT9b91+7Qvv8T8O/Y3j4JwuCv0tocdWZ31z8xt9scj1H6zywc6654Dj HPHBIpFr+0X96CQ/9BEaR/1BR91R95Z10rG8BS35ObM/0Of0qIfr9XlVV518 JcG3ZXldzLnqT/izDru3Z/4Qcwsfp6M+O/BjSYdeWvg6O+q2A7+v6NBLC4dD Rz13h2eulxZpe9R5T/VVnUvh51hK4e/1yn+g9aj/lwxPOurC4944GXppsq/5 YYdM8lhvrjraaZ7UHd2P67TI/039E/i4nviP4fFAQ3oE27PxSxm9lEgved5x H79I4Pm6uvQm9sf3nogvTfLovKGq90yOk9TvnhnrZ/1ujPPhUa0HcveyXM+c 7Xa6qvRMzgs8OcD9kL5bTvHq0KgDnr6HlbP8KfO0TzQPVYtM7pQod5D3a/4f ze/zT/Kjt7pp4w/rPGgnYXvyrrqx5LL8klwu273jlbus/uFpq3Q/eBAA+bLo kPdjwvNk0ytk9yMcQM+7LNc46b1tSYn6jOsthest6n/M1Pq+9PcisTdOxnsF 53V9Ms3vG+PrvDL9LX3vZLxH9M/thzrHvJ3nRb0+0xsL5p9J9dXZxWvoh563 68lsnbNF//k4pP9MP0z9bl+137zOO8fPxtH46P2XlUV6jnM76sKDfq78s9op VzHsZY8rDxrw8Km2PJ/6++9+Jv0Tf763mfKBu9ZK/8zqjpgcXxt63VlTC9hn UHoj+6Ne2KH94meE+w5TwxwzZPrYL6Kd+h6+frmi803il5ZXqcfKTge97wbl jZAe6O8LOkf2x+eL5ZyfFOQnxAecx5P+bntnJed7Rcr3Zut9F9DeTfqe3Svm Vwu//+b8rcj5m/PDIuW37qd4bD7v3MLv79IPOY7z7Vw/LNwO4Pdd6VeUR9S7 pP/j+B5oyp+P/U8yeVTk8gj35blN+Z9xHMDzqJbsh7y/4121cHy9aZXO9w9T +1ratLoej60W3Kgnp/Jrtn2fDD2Q63G7kOZN+MAPOvTDwu1R4lvs73pFrh8W bu+Sfsj+qR4Yekg6zmz1d72oyPUQt9cVqd1sttcT7NAPC7cHig/xd7C7zo3+ rocXmX2s5Ppk4fqn9D3SBc77rZ1+JyCvt77qfYXrNT051b/b+3P7p/bP/q6H p3oP+XUR/Jr9Xc/XuPy8xOy04t+JPjA39DfioeO59DeOQ/sb/j5tKH1PuqGj Poz4HYb9xUjKPz/YWZ8E/aaF/RB+19t5XYRqM7X3tPsj/uO28A+c6fCj/yHw 9v2RT53tbs/P4kXqbice1n79XaDk7wJav4Er4nW5X+jD33D//G8qD6Xh+Zjr gXd63OZdj6kOOOZ9fKQ4dGpdB/65oN0ye6coaA/EfCPlFK8ej7x10uuNb/M9 Wuvxe7rW+WH4W90p/x7qjUkdhoM8v9vu1dK3pr6v99M0D836FaPzve8VXNy+ oXFoVzT9tCZ7I/EG+tphIQdBX7/ot3iRmfLffIB443YY6TmYdutu2Q/hL7LB EumrtENA/77874rDoR7rdiTbR3WN9EC3U8lv5mSzU6X1iNbXe7f5tW2xSP7O HB/1eP98bxa3o/dE8WV/D83eDWRvNDvylfNSvbStD7v9U/3dLic5kuuf1Ise tfdc2SG4nqfs/Vf2T7Zn791q/07aLnr8eKoH6t6f6ZOyM3K9r6H3doyT2TO1 L75Tc1+cD/D91wvy08Nf13ui+OjUX3+ylPqe5jvU/ApktyScOS/hzPXQ/pnj Ce0O7reg/cJOv9tqo499GxrHzIFr83d54qfGT/S0q7ulr/K9EerYi6uNfw/U xQ9hD6/0qs4lxwed79mjcRI59bEx2iFLiVw4d6Jw/xbxJdobMc539H5h/Y6u it9wHPefkZ7JdvfDMbheWs75Ld+j1U67Iuh97zHhT2bP1Hr8fSfN80U4HFgr 3L8olVO0H84YzeVdQXmX+GF8xe3FC6IeCPTyMxrif+yf2P1mRV2LY+1dTHwr 4ZNnhf4J/D7xH8WXzR9M/CbTc4rX0HPEVwg36NWNlvLnEH+w/tNaxfBU/zcu EZ27/5v5N/6xW3QCPHuxafj3Mb33CW44t4uHRKccB/xueZf6H2rvp7KTJvSy abzHsN3fc4tcj7L3z/zePq/w92L1S/SBvTv5Ee5Zm4WeyXboGd9u6T1sub2P F/4+Lr1u/xnwbzS8OTHoOalXtknodYQn8PKjodcl/U8Nve5x8x+Q/mbj95fY DryvRtzl3lOjbb3E8PAvDfmLJHXaf9LUexTb4af76agbeYb5RZi+dFjYX5L1 /7ypd+qk/t4H4134V+Y/Kf2N8RSII7niaelv7k9i/Pzp+dLfSNeEU+YfWHrj 1MDXL1WedcZ3ET6Jfjhj0M6xz+uCfi/yynNf9GOEPF85VNw4Nexbn9S84H/v Hk3zdmxXUT7QpP7PIVXpdVw/v1u+okqaV+4Mz2d33oTpITOXKX8q5wX//r+n lF+Zeibn5buw+11n9wPP03ZNzIuPa0dK75vC60/XSh+aWsCvnrbzuiHylyTy knkj1m1ov+SDOLflde0Xyzu4x/1Gm+avtsVS5afJx8fwG3eZfviJVlrX8cou 6XUcn3hv/pKt9B30kJiX/amnQZ78tsV80+KboLO3NMzuc/YzqV/tnU3jp2+b X9BfMdFP7lmiezimOb6V8xXzE38l7q+kN7azP/kg9SWun/XjuP7cfs/+bCc/ 2tniPjr4HOfN65jm43NefH434E8/Q+43O5ciPxfyBY5Dvyfg29KVkrccx/Iu dUmP4jgep1OAgZ8Z7R7vU3i8T46HjL9QXgn4xx7TpzwP7A+9ev9B1eFI8FP5 FRsaP/MPVH++C2P8HYMuqI/h70uDTmn3w33qnKr60+5HvgE+8Okl0tPsXXqs eGxqfZ98RP39nVf7cv9n8SHOO93jOHAO6wZ/wDHOcX/og8o5H6bfoNZzn9sP qae90eLXpNeBrlvDwkOOAz3xDs9HNbJU+hv5P/j5V5U/y85zxniJ/akHU6/7 jPkTSj+BPnNmt+Xh2m25+tMvhnKK/o25XLB4s5rVo3lmMJdf9IcsOK/FKTR0 jzQ8X5jGI7X5FuTR8wsMb+6PPAyZ/JW97IfQe57XOORPL7hcIz+aM7Wvh/6k 9dt6WsX8qfGnLUnt/pPhr0j5SP2Nfphcj8dTSB8jPjQtXqPI9Ry8m+/TMv3/ lEfUzniQ/546hzVe1/rSJdKjOA7kxbSlon/yM/ZnPCzXgXNZvMrg0taXyF+B lhsuNLraKPxj7Fx0b5SeA7vFQWsMDz/SVP1txNvM9vvnRiGfCL83WzyO6Efv 2BYXLH2J/YGXh0bdS75PQCzvr/h/+YdaPL/q36b1sSfdXrdPn63zIeG/ybnZ AwbPrZdLn/H4o5LHW6mddHH7dMRDSb+ifQ/r2d/3u7Pn3Ys46MLjuzUv98s4 3Lyej/szS+8inMinoO9/tZzG6S2pmFz+5ZjXsV9ZMN5W7w4Wh6t27ov2Ucj9 48fMbrZNRXCF/rZlWXViQG4HrpA+Rj9x+LWft0h5ecmPk/O6eKREPk+/Esy7 Y9QhsHrNz0sfI/9O6hl+r5d+JcIj3ic9frCU1DM/ZUB1GQG/keUdeX3YP9G7 ng88TfKyfLQDTz3fYsPW/4TLuxdXy262YGqcGUsLxl1Sr7P6QKvYbna6HRW/ qX0zD4bnc1B/gOn6htlJdluud1jqaR7fKv1qF8tr0eE/4vGqmb+J52GfNpn3 Z3xrkfm9Gn/9aUv7Jfy436RO9fHLTO/6eSODz2r1Zzv1HPI/z+Mhun8NfGA8 Kd83TM85sV9ymP2pz2Cc/3I4f3Gt2qEv3UU/4q4iyTO5R433Sxv3LyOsR1Kw P/Uf3kdwXsUK6UuQC5+qSh/DOA96naxDPZ79oh7pRYndabvl0nN4/8K4M1aq HWD9n+hPPSepP7HRaruPnKL4U+E5wPBSufC8OjmflP7geSc0Duk4428F+Rvg fe9K6SG818NOtGO32nkvgZ7ds0r6Bv0+ESdwZo/6087D82XcK8+N+/J8R8bP junP5UVBvo188ueskr6R+A9tv6rYyfI2SO6DjtfzuuL7yy/zAehXZy2VfgI6 /a941wc85jWLXG4CXz7ZlL5Iuc9xwGcXLdI4u1g+Cv0+OceZoeeQ/+PPx0Rc RkJXz0p/09+x7pc9H83hvQX3RT2HcLB8+V0Gz+kN2dM5HujmyGYp0ZP28Hrd BzbUTnqGnP190DnHAV6t00z9INr9cV7vD/2hz/KASU9gP+Dd/66VnkD9AXJz y6inRznz46mN37ZCcp/3Wsx3Tm/BvJfku4QD5vk/5dFK51+3If0KH8O96s92 7PfbXXp3Y/yW57cpmNeLeA68H18rPYF0nZ6z8mKVPI9cWn+sTdfYz4t9ah93 euT6qSdYHMmE8cmNepTHGtPdO1JsM/U5vDKte3S/2202XSq+s4vF4ws/Md5L nhewzW+hl+7XJb7D/p63SnoCz9PzI6V5Y9vyYo7lU1I7lnVM4AXY15p+5qu0 ffyr2+Z9rEv6wzFTA/7a9/V0d543V/oD5NcVjl+/65L+gPU/1FkX0/M02ufK fru33r9AeoXVD404adptYK87dXUa13uT+9uO9RaJH2u7/ZUpde3rK7N4iBbz a6V+pgucb3WrHrzJmd1aRe4XCXxc2BIcFk8tsza38PxgBev6Yrx9/T38mfA7 Zn8sZ9eW8h2aXJkvPk1832Kq/e+LbJ/P1TQ+8iNctdzw4up64Xm6pEfx3DM8 kV4BOrs49A3iVYY/RY4/jB/lOSb0vqq38HyqBu85PQXrgeb58wxvsvoU9/VI ryBdEs5GxyPSF9Dt6O6CdZpI96Cj1/XZuEN5foyeIqnrtHtZ42f5tUqka/x9 WuSZtDjwHukPCf/ZtzfVT6per6ivR/YT6g843r16pG8w72dSJ3adWoE8hE2P 69+sW3oe9KuvD1pc79l9xi9viDhVxEvs1296yfKq6ADLWLdXeEY+TDlCOsS4 v+7N5UhBOYJu83ukD/CeTnhiO3MaRWJvGu6l3CwSvbndH/J7uewnwj/A84KG 5HtyjteEHMe+Gj2S46K3qf9cHn5+iV5yq8u1n+udxd7bRgQf4QfsnZuNGL86 N+Ky3N7t95ma/CEw7hv6C88XmuqLBw+oPbkPfbzP8Htu0BX5gPlfxnrYzjzY nifcvn+3W/QGPPjRgMFp3T7RA5a5ZdSP4X3V6oUPaBzSIfLjHjiourvMCw14 TI+6MvheGledGND7uzx/zbHKR91RVwrn/KcRjQ9+sKvn43hV/Tws55hh1Tfl OCZ+R/Uuw/5ev0brBPldNCw5i3kv9fvKN3v03tFr+QN1X6LctHq2VekplLNG d1XNy/cUHMPCiuVrOLQ7rZ/d5hMch/KR4+A8fs3xFxWcF18H/F53V+THBd4s 7bNzG1kpeY33jiXDynPJ/ljnkkHdr0n34G/NyCOC9Vaj3eVaKZdTXjdB/dnu 9RfMP+1sfw+f1if5i9217wdZe8F2z3et+wnlOMenvMY2rm1kcnyu5DjsGGM9 xR9hP51b5OOwfoTXpzB8uqK/YH5p6kuEc8vgLP7N/qRb9uf5mn9jt+QA+1Nu kl557sQ7fF5QtXehf/enddYHWP+0u2C+a+z/qLLJjSsdf86JercJvTcHVT+Y /SnncrrmOKzfRr4HO0aX573sUT041XNC/8qw5b2cNWB+sy9MSG4m9PLFMdML pk3o/ZP1mF43Ba+rB91vcq35c+5dVr4mfJzkebf/WZY8xbpuG1Y77eqA53XO Pz8rv23xB5DDtmXJX+ol0Hu63R97er/OKbEbXO/1KHcf0P2deIq/XzCodsaJ Z3JK917wjeqAwedu5Z0uMvki+ZjJL8lX6AEHeH2R7UM+Ev7Axy8rr6vawR+u Yx7sXsOb9/UbPHcOeU34QI94Q73kdcZtHStcD7sj3r28TlPhdZo63tWw/O1D Xif5VXuqamd/8MOdQp7i+5ccX58KPRLyraJ9Sc6ynXRIeer1TUQ/n/R7D+B+ 54DkI/mo1fEZNT2vt6L4D3x/Nuonc17XE23e7aMurstnzQv87+0r8rrWG0+N szjwk/IX6xzqrNMIfN9uXPSF7xtMmF/BP7sV74p1XTah+zLWt8eA0fspZbV7 3TG1067F8UGvO03Ye8ELsc7FRr8mF/cblB5l/uRjul9zHOh7X/P6Vz8ra52w f58SdXy5X8pxr5uj9WBft46YvDs/4AC4L/E8TieNFHn9DYy/a+TnphwHHf6m XMK78odUD1j6A+T5F6M+LujiExWzT1aHOvL7YtxzxmQf9PqDnvc48sx5XSG1 sz5Uep8Y9feu59U/OZcTPY/I6TWdS1Yfyub72rDu1xj+lrrpLbdIbkofYHsS n3p25DWhXPa6UfYef+SQ5DvlL9fJ+AzQ1415vr15Bds5Pus3cZ2Ez9sNPkUO H9aL9LqWBfIK7Tik+wnzJbM/6Pcsv99fXhHeIv546zV2vsdVC/j5LB6z312y tsjPl3QOdeCxCa1/bOrcH+6RHCceZnWghIeUP8DD+8ol3o/Zjm67jGscrH/L 4B8cB35CRw6a3etXWZ3mHwwZ39+ynPOTgvyE8/LvaH9qSN8p3+EP8PkxjQN6 vHdC+bs5LvSAb40VqKO7ybDXhxl2f9RyR3+g5/plvbNn/Kcg/yEfgxT6Xrmj DhbOe3HkUbL63SPSH8jngZZHDRdev1hynHKHeIZj6elWO/VvgOuHvbncYb0n w+/nvZ7352vCx2SdR9Ukf7lfr7MsfQBwP3iY98T0Xtzu73WcDW7vXSO5zPrO lLM435PGTN+4MvKK8tyxzj7Fr5rc3LOi/mzHuvcZl3ykXR10+1hZfnfUE/C7 xpj86BI/sF+6vnhE1LFn/mPmSU7fz8JORPrDPipZveK23MTsG7lfzp0jknfc L/jWH8bTuiztdqxjbDzNY36Sy/f+CeWRxzwXjHv8b5YXrH0/wL359WXFp+E9 6N6y7ssJ//jIRBr3wfo57wn7FO8hN9m9nHp1alefF3KWcMLPalGfjfIX825c TuNE1kYdCbQvHCp5HXbbxyZ+7u9UXdasDnrAme1ZHWrDu6Ojrh3X7/aAdJ1b DsteyHavk1twX5Tj6P/Lst75Kfctv/N4Kp/b/dG+bbTbO3u/2eE/OKp50f9y 9/++cNTw82KvI7RXr/gU5PPosOblOpL6Nm38AF4/5HXKV5YL1pVO/PrXKxes K53EldLvYNVSw+8TK0VCv1E/2vza954Qv/O6zLbPnccK1pUm32J74id5uueN 23xMfIdwNvyIfUHu3OPya3pZ7cQrjk964Phcf/o+VzM833pccbqU74QD9XKM c3tF7Ylf4e0BH9Z/JBwyOBc5nPF5/gqjz0Uh98mnAOd/enzw9LAD5XTk8SLC NyznJK8LsSTez/npeOX2IdU9L7J6x2YH2iX0BNI76Zr98/WwPjXWs0fQEfUH jkP+Cb1mbLjI6R3jP+lyb95YKePDxWvw4SLnD6Cbq4c7/GtAb1eOiF7R/P6K 9Kycb1CuIv7m3f2q08X10D5C/pm8B7xvSP6akAdfH9W7P/qdWJY+w3czkM3v nG+cMqp7APvj+72R5xrDTStLb2HeJehl4+UOOvb3Db13kP7MzjbBe5bgkPDt 48dMf963V/dQ/p33UOOnE7JnUa8nHCy+o6L3fdxLrymb3Pl95L/Azzcoyx+V 8j2ho20qad6CFaPSu9jf603n7ylmj1h3XOuk3CR8XN9I8zR+f0z9CTegRynG x/3s7jWsT007g+gbevPXPJ5q3XHpMxwXeHdz+OkSD1mXgetnf8N70s9a0xMu qRj+rRfx9sD7R72Oy/ERx4VpvuD1Zh8elZ8cxrs/5HVCp2+P+rSU46YPZ+2s T18pKz6Kf8f98xfuT7yO6thLz0G/y6JOcqI3HzssPYr9gVe9UTcrOe9zRmR/ SPLFf2VU+irgcES8w/F8Wc8K6zsv/AhZ94/7Sd4n9o96gISP1dOriO8Qnrgf HuTrvDjqXgJPzo06hNj3KcNaP/D3Ga8j96uod4tz3iPqTrs9WPOCLw46f/1L VXYJfL7F6xptGPMCrnuNal/+zltwX1jXdyu0h2tfXD/fnYEfRWedXfQfdL+G DT3/7DU90n/YH8eyQayH7fg8iPV5gp6PmGq/a5XB/cCy+pNvwp7zSMCT+IH7 +V4T8mvzeBHJD4y/XtQ3gx/PUWX1Zzv1KMLhWrcjEw4ch3G4HIfrYR5p3NeO ifVQP+H4CV20x+e+CIfkXrRjrCfxP2yvh/fPA0wPtDwZ/5jo4JtYxyvjhk8/ C39Vwpl4Qv0hxxPakXM8Ib3leM7+4GcXRj1m4MMpcV9lf8cfk6sHj6T8utxb 5PiD9Y11+f3T5VmbvyXvKe31m7039sX1k+8l/dt8j/wN8w32iU8k9TJ3db+A T0X/5D3z733qz3Gwn7MHRNesT0r+4+9C9v1N8S7EcYDPHxvoeJ+w+3RvQf5A uZPoh1sOp/B5cjCFw30V+/20Ie03qdO5btxjOC/yVF0yaOd+W6/pLUdVbb4P j0gvYn/s61dhH2V/6BETI0XO54GXtWHR/f/P11vHWVoc3eNYggcPEghOcIIG WXhwDRI8JHgI7pDgIdibFwsuwZa8CZJgi8vCRZdlsfVlXUZ2fO6dawsk8Ltz qs6p7ed+98cfzGfP9PTTXV1dVV1dXcX2dl/Uo7opSb3Z3u4sOXePj3ok8Jf0 zzI/Qt3H+Vm3/CqJ/nrf9f/nEZ+B+a7cKTvK3i14noMPe3XfBPzSOMdQj2Oc m5c1frZHs53ivJLkh2rYG1ZfTPm+hU8zO0TnG4x3Jbcbl4y4NPptaKexH84L evS0PskbjHMhjzd9rkf+Co4fcurLPvl/SH/gD/XKLsKvO1z+3BB1m9HvfVHf hfaA2T1l86Ot3qV3smh3XkXtySeg+85lo/94vt92PTanYnGaT3TKTuD9HOj2 A70/l58b59WJXWldktu8buEBkeeIOKbzP5Evif3g9192p+0b3wW/rdaX5ott tIc9f3K8P/f4QfJn7j2b17/pnCs6+7sB95d2pO9FJ5bTe5MXpuX5v5C8h5k8 oPa0q3FeHBt2C39v+efC3qA9g+/Mi3rLiT2zqsfjjon6fDiXvRE4/Wnovzfq DlJf4e/KlYz1xTgvy7sUdX+Tc8Hi0Q/1Ffjtrqg7TTmM/tpjXhjHFl32vcfl n7X7pjavi75rWXItod/LFasT+fvpooPlWXE5cF3URbd79ag3zPliQw+N+sSc F8Z1fLTnvEDn7aN9En97Y4yT+gG//q/0aXoP8V/ZG7LTsM7fqN6k6IB9tWQl S+oHNugAfT426sKB3R+Zq31n+aKnmh31TqvowLhE0oG4+5GyPH3YnvSBXju1 IjstPx7m68uPh/oD//yd6+tPYt2TelL/DfsT+/jZvoz9M4483z/j9vL93+H3 DewfzZ4r6z1vej9USfNINfqxek8V2e359SUdOE6uI+1VriPHz/M5x5/y1Rey W9gP5Ui+n+Td6nx0YP8cP9cxH8dv8WsxrwXweRpn9kk5fbc333pxPKRDbl9r /Ohnn4jDSM7Ht8V3k3NYY16Isx7h7xSvazc6dFVsv/9+enq+DL5qWnd+dwH7 MeN+5PhJN8ph/Nwz6An6H+z1438d7ygob/HvNatmjz00U/n3cnJVfwc/6WXR /wLkapbI1Y5yUzwK6HBxmedBzTcnhzPKYdOnUe+N9KS9wX4tH2Or7A3iSb3o n0TdDu5j2htsTxw/fl9Nz0c7TZC9kcTd/MXlR185Y12b5B3XQxX1k8SpVn1e Z7dr/UHPnrLiykgP6nHGY3NdrE6565edWzUu0od2O+kGu+1/y6an5ujdkdFz c79vX6czlfdnVuyeoqA8buJ/+BOHd5gdekS8A8B4L+9W3AHbY92P65JctPrS bs/sEHkk2d7r1ii+gHbpKLNLZT/zu5jObt1Z3u4Cfo3GIzv2U7Nj07xZdZ/v VpHnDn+2WlV2ZlIPZt/IN0T7E/dEP60JJx0wzEOqdv46qUvvbrBfd432tCex r/f1eMY1VVfD5v1GfJd0wH5Zq2r+7/M1TuHgm5vCnoRduHLkOaI+hHxaoia7 hfc5+Myr0Z50QPzQnXonkdrVp9fyeTztHLR9E655Eee8MP97Ik9TUvdnea+r eXa77GH83Uo1z3s8Q3Ym7LHfR/4mrhf+2R51HImbPzTac7445w8PnPMF+1zG cY4Tna3uRYyf8gFy6+pq6qdq2EWgz/pV2Uv8OwxraM3ur9eernMQ+nmvZvFC IyZpvpafyPNSHT9J7YEvG3lL0zoideOLayf6++0xtn9XifynwN/+1PjhhJgv 6Q/6bBr1wTgvvKdpqTbVx+M7RoznjsnyD4OPf1A3/3Plc50j8F7+EK93ccH4 tB72Krn6SY1xcl7J/rzuS60j9V+yji8qb7HGj163qWdXDP7+yDc1ftDltZrJ k+s/Fs7vYjz/ifp+HCfrjHCcXBfab3l+6/N5cpz4zmGx75J46kdVH9Tsrmmt Rtfdc/VA2mOcHE+ePuRXfhfy/fGa/MnJ+8HD8vjjeX7ISE9+d7fBn7e+bOP+ pkXr/vjg393zXurn3jTenSZ89bPIc5Pnf5z3v/tI60z6J/dVDfqzf8ibjcfo u4gH/KBm72o/nhr1IJwPf2/7RThm9UxN9g/5jutLfZ/fd3vbPvU8Z+NFf9oN ybq3at9JD9q7i3ivxu/ix5wYzwLkdtP65t7P5flNcdGU55QDSd5njVN1p7JU TrZkC5CTWeLH2KQmO4rjh3/kN9X0nc12n0v/Ek/qmtwe/eT1b/5dAueVay89 xfacF/j2rab6cKZH966anfRaa5q/r6GXf2V6WXTgvGhfJe8m/1N1OzDiNME/ 7VXPZxJxmuDjszzO+2n1k3FfJPK8IefB37+um331f5/KL3fh4HQuifrElLf7 DP7+5JC37A/v1rNoz/4xrLejfhHlIfT5/0Q9KH4X87on8uwk5+/L66kfdr7v Eud3U7k3LKPcw2f2DXnI/Z4bp84R6K8t2v+/xzksS+pAazxjsvx4KPeSc80I 5WGUPcJ1cf2i8eTWpYk+7CdPnyR/VWM8Uwd/Xhh5yBI74Rc5Odlob/mG62m+ wqvH2z7N6gXqa+5f/P801tUbpvb4+3OiDjTb4++PqxeoZ3newfd3qRdcLwjH z1F1vd9L7t/Pi/oVbG/5uiJvEeUcxn985C2inHY7vJDa7Y9nbs8XeC5gf9Az 10c9lcTOXKMmnHIJn/9l4EldjY+iH/Zv+eWr8jNyvJAve1Vlr5Mf8POimuwq 9mNxF8pHoH7cHtbfJ/Ebq9QLtA+Ju71hfv0VJyt/HM7jG9RVbxf5U3aP9lzH 9U2PC+e6E4deu6Wqdfy1+VuUh4b7iDi/i/PZXZOzxH++geeHaujZJK5jIPI3 JfljNqsWeE4nv9t7TuVbl35B/zcFznV0+VxI5fbjFje3RNnuV9fuKyT697SK 4jOSOtZjo843ceaBwr+u7dK6+L1JgfcsSf6RxcoFxnVwX0AfLT0gfuN3sO8+ Kgun/LE8shXxYXJ/d0m5wHsEvpPHufussviN83M/RoFxBcQxzj31bjb1q08M nOPx+wv9G+PZoCtz/3wh55+n/7bAcxZxjH+Zsvif/bj/Svcofh9tf/d9uUC/ JccPv/SV8X6Y/jGcr/9SKdB/SBz6e9Oy1onftTz15QLvwdcw/2HB/WZ23lu8 RTjouVNF/Ey6wa78JHDSCeMZXSn4eVn2F+RMS1nv/pknlutFPxX5AvM4xPl5 ZrvOxxZvWpWfmve57ncyOp0YeYrdT1Wg/4rjxXrcUza9vWmv7AX8eNnfNfVH fLvHU9n67Ko4dvve5SXTF+O7RQ++78Kw31e8U+bxUQXGWdF/i/3zbkl8Sfp7 nEzB/XLC0f8pnie3oy2tT3jhgPYLcY/vUv8eb6n33oyrAR8/0M97fPEt/uwf gfNcCTps4nGk18U7AfR3Xr+Ne7TnP2vYAZBH2/ek+W1fn614drYnHbEveuK9 HOMcMI8WxRvYOH7VpngM0PcGx6utWbKPnhSd5T/ndxmnkbyTafSP99Nr+H3e 6S2ZxxUIT+6P3vB36qM6FEeA89FvBgq8lydf+b28revO/ZL/4OuFPQ/os/EO BcMqeN67L2J9MO4DekUP7kfsp6v6lYeOctXfU9j3jxooJP1f3K+6Y9yPfMdP OqL5id1qh2HXOoTzHYLJGa9P3NmT5seZGe8o0G7p2BfEMc5l+zQO8MOWReXf 4TyxfkcXNR7Gt/u7OY0H7U7w+L+ekvAkvn1W4PRj4NfrRT98R8Z+OB6Qt+j8 9lGv2gO/oNv9jx3CsU+O9vcJh3YKx7y/Vry06d8lerWfGV9L+pDfiLMfxv2+ YO+M1D/iPL7sTeX54v6e4IWS7H/MY3Gn21Ul8a3HuxYYf0u+8ndG9ne/CP2M dT3F31vGO1zFD4IfXgo+fMHeQ4lvwZc/m5u+Nx1bFE65iPP6xJ4C47PZHsP+ e3eB8dxsz3cujH9ie/Ib/u73JeHkH4zyuIq+y/wGkLvlsvAkH1Ff4Kyjgf39 k+gH/e/meZvL5TSutiGvsL//4/Vd/9gpPYh+fl3ie/sC38tjuc/p5Ls558+I W2f/+Pl2j+LCOR7Ima4S331rnBjP8f7usRo41mujcnrO3aOnwPdlxLE+y3eK fxjH/qjlPykwL0reXsP87+C78lHGh71tprdWLKveOtpv5nz9feRH4LqCvyb3 M/+JcPx7XrxjxPdvn2t5QwqB48d7reKTJG64Hjjsj78OZKsP0mfTiF/Bd7bx upFbxzkN3/tP1AHAdih/rPMJ2zNPBfFk/J/NMTtgBa8/2Rgn/Xuel8ny897S Lr5ifDDOOU/MTe2Vy2NelD8WZxNxxpQ7dk/T6fn720Qv/h5/vlZ7ge9AiSfn 2/vLfj/mcTp7zy0w7wHpl/BX41yFv1u3VTjs+sY5iXKJfORxVTbe59ut/QGu P+6pFDzvouxN/PXsIvPQZsl5Zc1ige8M6Q/GueGcXsXjEke3kefN+GfdFpNf M9sVZwYyjJsjfsD8Tq2bXvuFzidG5/c873XfjAL9gUmcxzOztY7glxMDp73N +06zI1u0XtjvlxRFB+a3xPodFec2jONp5c80uXRE1G0i35AO8Bvd7fWaz5ut dUHzW6tZ4mdo/ATdL6ppHZN4z66oc8HfMy8xyL9sh3AMd4kBzQ/7cukZ9t2J JeHo/5qJGpfnk9e4Enm0mfy5tu+u9fsV5rN9Oeo8sw6m4gIG8amvCs/X/cP8 VpxXSOoZLP2R7btdoj3s8MffZf2jAsfPeBvI0bP8fu7YSYXkHqHs9wG3TRYO er9ckz5nPhm7Ly/JP4p13qqP+V3tHvqcSSl9GzjGvf4U7Qd0u2/R7lOvniqc cgDntGOn2Xnjm6Jw0o15TSFP/zZXdMA63RPrRBz6/cxa+l573gTzBwwJvyN/ Qg8+Hn7ExC5cpi75kNhBO0XdE/YDuXBsmfXp1J7vl70uktqjn/VL9rM73pdT rxrfldWe99TQq0dU0/zIB/o+frBm67LYJyav2j0+coWa5kU6YR1GxL0m7MNf fCr+xH6ePdbW5dbRqtORr08OeKt5BeapZRww8dS/73EGD0U/0EvPfyZ+5njo 9wDfLTpP42T+ZPgXhsX4KQ/BjkvH+lN/gW7nVoTDPn2/h/WzRGfaw8BvzOUD qLoc3ynihbFPKgOsS+X5jad4/q+q/PrsB/VwL4hxg19eGGty9cKoo8SfeD/U 2kx3yyekupPCYS8Vo04wfw8/2pd12Uus547v7lHXOZ52GeYTdRsLHYPrcOrj xg8rRr1Ir2Nl+2uhqCfu9SKNTuPCP8pxgr+j7qT8MdTX2NfvdGv8rB+E5if1 pn7TNfz89pd+0YF1FcFG0xp2CuKBXhX/O7+xzmAT7nXltM7cF+wfrT/4XDj5 Pl/fmeNP6t8dGPImV8+usMEgvMNL4v9HrX/NN1e3TvdkGOef/V3qYiXtR/DX UyW940jOJ8u7fP5hSePEuj/i9b/mqa6o4fuUVRc4kZNRXyz4cfC763l9nU7P s3zCx4VcHTR9F9v0war8mcTxd+vF/k/8doeo/pdwO7dHvWrsx0/fM71/Xdxf EYe9tW3cqy88SLARj5m8OLVZT4PfNg25RhzntzdiPxKHHF34a+1H4mDz9b+O uqHz23/nRj1C4vD/PxF1uDaDWn7G7Lt/xf0Mv8O69vn6y5hXv+fXGtKtuvA8 R2I7TS1nF2BBfp3aa5Ev3OOFJor/Lx+E//yx6rbn2yfytaF3eN+Wr5PO8efq kgtfDv72r7Rfknu7HfN1wx9P64/PV3+Tdgv4etGS7lUAz/Q8bNvF+xvUhVi8 rvxySVz18Jre0bCfNWy9ZJ8k9b7PDX4m7vwgfibu/KP5EHd+030TcedP8TnH ifU4UuNXe8z/9MDZH/bd4XXJEeK/tv2V1y+Z78dCem88wuJn1gt+Jo7PbeTn 3tv0nsbf8wY/sx5ins9dnhj/Tov7Rq4v1nFSrcA63bxHd3nl/m/JH/u5n9c/ GCc9wjrmhXx9SZeTBZeTlsf+2TfkPzY/g8fPfxX1Yblf2I/FrQQOO+OhD9P9 0tBHeAe49btNOOfLdwTUO5wv1584PnvTSN3XU79wPAm+TK6+4qLTtO+S9Tq8 krEuM/txOaM8OmzvciljnWXiGO+NXv91vnrWbidkOXvD/AULKU+38vFT7oC/ Vu5Qfia3Z/z9ytw0vq0Y+oK421eiC/GzzB7T/mIdJbffNG7+/iKz98T/rCfl 8TXSL2zvetb8N8f2qe4h2k+Je13Wt+L9LetYof1KXwqn/ZvI0+VLum/guLyu a4F1wYjjvHhhf4H3GcSTfPrnRh00rhP0QLmavj8bmFlgfTfmiQQ/XDvB4iCG VtM6YpuOtXukXYLe1K+sf5evo04+Zz+Ua2/aeUfjB1/9cLbqsxDHOXXdubbv D4p6iLwf8nOZ5gUyN8632Me3Bz29PrjqmLC926Web6Bf7d2+zVi/iXW76Cdi nRH2Qxx2/XJRJx33Vff6+fCNNvEPyLBUXXVG+F388z9Rv4N1UYnn5QLW49Kg +8GD81xjkupnJXlNG3T3c7rsliQupiGHoR8WmZ0l94ijvX7o0fG+gedl91Op P7DhnXF/w7pyfo4TbnEn0+3++eIB7Qv2k9wjbR33muRnnBd/GvWYvC5hwf0n hXUGF+SbSVlih57TrG/dz5OxXhLtYPz4MOqB+LleuN97m338D+UfzVgHJ/HH rltS/Sy2c3+mxwVPTev3NebNOmLurxCexCtcF3VksF8XmaJ4Yeoh1ndjXCr5 h/0cYn488Q/rv8Bvs1nwFdu7P1B05E/K8/3MDyw6PmZ+RY2b8USY16XVQnLO XLqFdXN0DmU/7o+ydWQ+f9aRua5VdS6IQ55d36Z4GtbvoH6C+Hgw6rcwXzf6 P1Z+4CyxE0+t6/2S3zfZ/ti7nrl/OMv5h81+OCbeU4FOzEf98BzhPGebfzfq ILDuCft1fynzAZl9/IrXadqqJLnIegHuj9V3MM+5s1h3T/GASZ279qrWFf/u amWeYa0j8w/j9/OC7syXiL//LvQT8yeD3BtE/nzm2+c6+T1Xmi9hqT7JDfzd bn6/e2ngiZ/96YhLYL508hnzmr5o9ziyM/zeJ/JNQF9G/nPiLYPzPPhN7TPS FXL3uK+Up5Q480UwTzjzWnGd/N5T+a4xzPXalTeMefuTfE6X9Vr+4FPbhFM+ sL7ADXY/IvxK949i3EdHflDWQcD5a1i8C2Seauo15sNkHSXeI+TrOOC7/4l8 10l+y0sHmvS331em+znycxb83lz5M5N4k2rEibzh8Q/Mm0p94vf+BeZNJZ7c Z/6nZD/f7VAcPthqT88P/XJflvhp1ygpn23ij/x6wOK/27uEY70OLKdxLruN 4j21yal+vYvjvbPiVnjPCHIOdXvk0qhHjWH9PvpP3v/eWdY4uW+ZFzfJH3vD LOXB43fJv37/LroxXoL569iP13fImM85WZcGvUCXPdvzecXFP8R5/wj51DIn S+KnHtc7ePkL8O8fB195vI3iqtg/+i15Xtb54mjAz2/2ZXk54npG+bGJ87tJ HuwtI98v8FIuvmREj8f5RnxJPg7iQ4unarr/v93iUhhnkubJ3NLvRc8KHP++ osf26SHKs5beKy4W+XlBpnFxz8P81fh+T8n2/a7MP/Im421EB+ZtZj5GwCcW xW/YBSfE/VJSP/N6z9sytkf8xv0LMi0T+ZKTvEaLh/yifOP6HmtxJsKxn04N vmZeHa4LxNvikfeY80J/vX2yF4gzroN5CImj2f59mgfjGrAem/YLhzwY7XE/ ewzIL8D8uh4PJrsL45gvL19i714Y+Y25L3J5g7W/aF9aXtx++QWwr1Yt6Zyf 8N0bHueyX8TjJPlnJnTrfSLOOStFPjfuF497lLxlnkmPn8wYP8n9yPxUjJ8k ju89HfEOSZ7xX5eU35W4xxOK/z3uUXnPkvvlIb2Zx09mSbzCeZ4H7I8lvePj fqFcw3z+NV35uPDzk6LiazlfjicXVyl6Wh2fWcoP4HGSsjtIV/bDOEniHA9+ f0hb3r5gXlzhXBf398l/kOi3/bv1Ht/jZoVzPT3+1vh9fLf2C/huvZLti+Mi zyT7B5nP6ZWfNpd3WvyP+XX4eWmO8tvo/Tv6WadTfhu037ziebIj3p52DOym veQ31Lt1szMinw/OVWv7O/cfdzXl7TF+7BAO+fdF8HMSl7RDWfRiXJHH2wtP 8r19FHlvknxsPZH3Bt9/sE15fhK6b9DF+PB8vE7m8eTCEzv7rMgzw33EvARY l3tbhHtcvfyo/C7zh+Ti8AseJy+7CN/5UQfj6tM86Y15sz3j6okz70Qubj/z 9wWSg8m8Visr71xi97Qrz2Gax6NjQPIa0z24TXkqwGdXKZ+bxyWV0/Pdk7O9 3nScJxi34XH1WS6u3v5uw7LywiV5Wr4YYH4trRvzbnkeLa0D+dzi3rr1jpJ5 t4jzvoPt8d0/x/0K8Nt47xh+YcYVWd6wrizxPz5Wsf11fiffBej9I6b/jfIb 6P0jutuxU/cXfP/I/cXvot8Ta7l9NILvdIQn9yjXR/6B3PumjO+bqL+wDO0R v0L64M9XiXf0SXzDXvFenvz4gr/3Zzv8uK7d/u5TH+dWYxS/Rf+4v3tSe4zr +GpaT7OB+/sp+XeIsx8M5/qPhdv66j2v+JPv3FFf8f0vhSP+cIN6xvdW3K/E +d6KuL9Ha7o/5rrwu8n6Xhv3ykkcz0fN980g0y/jnJ28d18j8OR+aLOq8rEk 78JWU74O0ZV5PMxei3MY83WQn6kX+O6S7yKpd/h+nHThu29//5jl3j8W/P1j lnv/aPEHoyK+IDl3nldP/RXvex6yk8KvR75aHPo1cPaD8R8ffr2E338R7wFx r9s5lu+LLZ6zb6Lee2LZ9sy9H2zgkP9H1+kfFQ76nhDxRMQxjQMD53cx30Pq Nr/PPpN+tH1RL/Bdc+J/PDnwk9zPiN+eFvfV/C5x3scRh3g4vF441vmJ40H7 W+RPT+tx/DviUIij2zsC53ggDxvjRDzLBa/JDwa+Pb3O94/C0fyvgfs+1fgv m/8+YL7x891EMv7TYl5sf6jxW+EO5yuOn7jHz6R5kJ6vq+4m5+X86fRcaCGO n3iOb91uDTyZ1y1xH5unZ/JutvFd0j9/zwGx96fAaf/gzx6Ne8HE7/mHwDke 8jP3S55viZPO5HOe69ge3zktcOoLyPNz476LOPTuGYFzvtyPzFPB73I/Eud3 2f4o27/p+IdXC9S/yXvVuwMnv9s43V++aeTbxHI8WjV596z0uPkNqtUC9X6y zr2Bk1+An181//fW8f4a9uGdVWs3PPIjQd2PCJzrjOVYNPoh/SBv+ytqz3UA P28Y/SR58jepFpivknIS8u5HgTO+EOy8nH/3zja1x3DvqtL/msavDY1338Tx 88bAKUfXN32nfpI6YGtE/F8SH/Z99MN1hHw8Mfrhutj9Z/RDHPM9NnCuF/Ti 9zEvrgv0647RPtnH+9fy49E7d/ZLuhFfIqen0GjjwEl/vtemHcPxY13OjjgV foftibM99ukj0Q/Hj899rLhJ4bATngmc88KPDaOf5J74xGif1Gu+KXDyJz7T 4BM0O3223uODPlf6vlt2lvOt56ObXLV9fPAstcePgZr4NYn/nRTx/Rw/2yfv FRvt3U5WP9wvxNmeOIj9buCcl9vJBea5Ah2Htpl/7LDA0e87rWpv9dInCwd/ /svpduN430czzO55pWbnyI0mFlivHfJkrZrdn0ydxDoOhg+rCk/s2elV9UMc 390tvkt9Qbo95fZGns4H+j7P05l5UBO+WjPyLeAc/N1nyttAHPk+3v5UOO0Z 4n7usPfyP408q8Thh9jtC40fwzurZv28O7ppvrjHq40U/UkfnAc3Gy2c9ESc Su+nWl+cu56L/Uu5h3/eHTjlHttz3yZx/LcEznwRufwSyiOB/bJ2Lc3HN9T9 J1M838WoiVmS72Llut0/3Ts+vbdesm5+u9bRGfcd5TDHn5fDxCmH2Z7jZ3vy A+NH8vxDOzbPP7QD2R78WqvZO8ljp6bxOh+7HF57unCLdws8ic9br2Z+sjsn yF9n+ayq5u+5arJw7Ief1Iwfvp0s+mCSH1YtXvy3npfkHa/nfXzV8nLdOUHr Qvy9wT/Yb5LaU26zHnRezhPPy/k73I5le8pz8n1yfnqklu7/+eQ8cdIf/L1c jfI2td9ekHzOKH9Ax6VrlOeqa037YUWzH7K8vXGb2RvSd7RPiCfnuH2inyR/ 3onRnjjW74rAue+YF8X9lel5uYHnzt329y1V4eRz2hXsh/SnHZI718veSO5R uI4PVD1feYvohvnuWjX9v+cc0Rlst7HL88a8uC60e5lfK3m/0bBvLc4t/AO0 h9me86IdyzwwHCft3lx+mIx28v5mJwu/1e1b5gcjv9EuJU59Cnm0U9XznKhO rPHFvZ5v5Kpe2YG2fyvGF5N7Uvtwatnmu0iv7EPIjVmO/zjy8+PzQwMnv6Gf s8sm59u6C8l9eKns71W6ZcdC3l7l77IW6k3fd71fNn45KOoEWX9lW4cHI26e 8SIm57qbcMin7XokX9kP9u8p3Wk+1UPLZr/HvYBwDGNEt+wZjONqf0d+TafO +/huoVzgPUVybq0FznNckrdnHvO1tqR4sV35dsDH+5VNP7w5V++pod+WKis/ CZp3dCifDHFM55ZO4RjXA9Ee/359QPY8/aZo/7uy7Hb+HnTYMPDk/fOaFbVL /NUXRX6hJG/EgZXceWe22ZfXRz/Je8jNK/oecXz3nMApJ+29TeCUA6DfRYFz XXDvODu+m8jzG8rGl1dHHiRM694y85YIh7z9RUU49QzzGhH/6+A+KXdY3GhL 4LtDznWoPb9LHHJ7x7LyxiT5i/47IBx0GRk4+Hv12Wpvfvyy6M57QOitzxWX Ixxy9sXAsW+u7DJ5fVhF/XA9LV+t4sOEQ37sGTjpzXxQ9Ksn78kbuPuphGP8 b1UkX/h9rzugd7hJ/YdS9JPHeW+R5A9ePebF9bX3XZEfgeuLnzMj7wbbW73n oJvVdfC4ltMDR9x4m9cD2iLWhTjy3ZxVkVwjPVGf+TDNV/Rke+Jsj+9Oruj8 SLsG7P5dRedNno+A31fRuZLyCj8vifxanBc+Ny1wjh+ff6es/UmcebR+6/63 X9n9oNnbz1ZcPz1ucXsTIu8W3/exvdc10DmI/RPnPT5xjO+uwDl+5gdjfQf8 +rjeAvcdcfD/on28l1T+XLYnTvnCfUc8icseEv0n+mNk5CXjuid5SSJfme7x 0U9r4Nyn+H1jP3I8SR2rrKLvJnUZLg2cdhzXnTjpxvUlTjqTH/hd4jm5lC1A jokOObmXtj+irH4wzPu6rf3t0Z442j8dOOlj51jtd90rQu79NOJWiUMvx35n HXrlZ2M/3N/E2T6Rr48HLj/WoKC5q2LjapwX+Hvo0yMr9n7j4Rb5qyE3HquY PNg42kP/P1iW3WD9tds5/dCy9jPs1nfazZ68syz5BTmyTWuWsx+yBdgbGe2N nH2i9pjXeZF3jnTDd58NPIkfONDlyYy29B54WOCUu+YPqagf4uh/18ATfXWw 580b05bRjwT5d33gPF/g//dXLC/Hb1syyknaaRjvKe2iG+068Nl+baIzcaNn m9YF9PxHvBeifsM4f8H8O11pPbWNKml+mIbdTrsXP9fsURwf7eQ1zH7OeP9D HP2+1s16O8ZXL5W9Dnenzl/MS2n1OrqY11w4xrtSt+6BaSezbkWSF/pqp9s1 nVnefmZ7yg/S+U2zhxm/J3oONfs5I/8m+Ly5GfkddLpe5w7RE/t0V51ThOPv LirbOebn3aJz7jylc2Lu/KVzZe68Jhz99xRtXl9EXjTMd8OSyYFni+l9wUqB c5zo9/2i6et7+z0/mteDesjf3yzfR3lg7a6P9pRLCV4oSm+zH4u7LBaSOKD3 o32Cv+jxuMfF+EH3xQds/D8LHOs1NNon9t0tJfv9bsX0fuqIkvkzdy/qnAu5 M6tk45ke+QjAVzuXzG7duF/3maDTr0tG/6X6pD9Bj4/9u/v2yf+G9V+lpPx7 mE+L8pkJx7j/1Ckc43qiU+2xHkcPqL3zp+3Pr6L/JC/V3SX1Qxzt/lCy897U bq0v/v1Iyc7FJ/WKH/BjxwEb12bKn2l039TzPV7bJz+A5f/ydxVr9BUSP9KI AZ3fue7M02jnsx75QYnj7zt6RGf02+7jfIbn8Ym+/0p+P9aV5nddo2T027+7 CYe8WbJb/ifzb5bs/dghkf/T5L/jozoKSdzx9YFT7nr8pPrx+OQUH+Xrdabj nYGzvdch1XmfdleCz5ur8eP75w/ID5DEy+zk+Ivt0gPYD8v7+7mrIj4W9J1S Es55YXnqkaeU4wc9t4v8qBw//HgblnTeIA5/4H4DygOM7+3Yo7ygxLFu73YL N3pGe64780mCz04pKs8IcQx/VuDwjz092fr7m8uPaknnAvaDv3u1pPsUtgd+ RuDsH/3sNSDc4skj/yr7B/t83C+c7YmDH6YWLR7n6cnGZ+OKwlkXGORezd8P blISzvYeD0z/tvK7Emf96CTv6zoDwiEf3uxmHWGXa2MYby/c5zWEOOj8w5Kf m7xeRoNPcuuYLWDdM657jk/UnuOnXcs8tMSTeynmp11HeS0zs39jXtT3+XnR bsjPi3YD50U+hD5n/GdL5MeEPO3saMJtX3qe5D95fHtj/9Juye932ifc7wne sGeSdwQPlCQXKK8sjrkkuUAc3y8Ezv3O/Zuc95aN/c7+iVM+JHLnTJdjrZ7v cOse3lOYPD9sQDjlOfTD4Z4P7qVutSedzT7P5ftt0BN0GNrdhJOPId5KcyS3 mZeV86WcJ57I/7UdP6QzjZNvyG22z8t54omcJ35Ip9pj2iv6OfeALr03wb8P db56uFvx3cSh777u0nmH9tIos5d0f0r7ivH2eTuKOO0onPtafB9NibzHoOex yrMtHPx2e+C0uzDOY/jOqsfspI+mun8ycAznR9PNvvogcNglv5mU0Y5lvmWO k3Yv8eReoMfl9BeBg88+7zE7cFTkZ4b4mqZ8uWk94vlw2rewh/6nV3lubV+1 Ml+pcHx2hzbhsGNXLak9xr1+n/QY7avewe9/1yc5QRzDujZwnk+hJx6PfpJ6 rSMi7zRxfP+jwDkvjHtan/174aLiMcAPWxTtXNPRJzvN/INFk4eLFnXPTBx0 ur83jaNo9IP5DOP9zoyM38X4P+1TPAbfs9Ivg59dncp3zXdcWJ9L3E7evU95 i8F/sx1fryj7lvaw5ZPydbqiT3Y1PneQr2u1R+2ZRxrypWE/Uw6Y/vN3aTs2 49BLf+iWHcV+cL9wR7fyb3M+2Efb9jThWM+Neoyv1+u1c/aS/bK70O6lXosz 275HOL77cZ/x26F672vrP7TX1qkeOO4pdynafp3dq34wj/19/33bJxzkfr3f 7Lon3a+2gfuzVnX5coafW471+55/lGw9L/JzzsVep3jlyNfN9qD/6UXh7B/j v6yo9WY/IPsf3E5drk9+Uc4L9Fi8X/cIHL+9A+kVzvlyXth3K3o82U8HjA+u 7yxsOUi//aYZ/27i9zHv9ZhfYsZUa/9wzAv9nuD5BM8aEB8Tx/p2BI75reN5 nYa5vvxnr+JyMdyt3E+xWa/iQDCP3wdOfzhxq4/Tr33L8Zj91af8TPwufu7T p+9ynOx/rI0z8/fOwq+zeWmcHD9xtid9mL8denDjoANxyO/fBf7q4DhunqDz D+XFEsY/5g9aUnrF6iztNy1DvsaG3mI/4I+VZhi+TOCYx/NtGfdXIl/Obc+4 jxL/8RFtGfcd5rV6n+wi5snHvfha/cKxvx/tN3t8wz7ZV2wP8izVm+J3Fc2f 1jgnsx/ozfv9ff/3Pel37/K8Ec/20w+gvPcwO47rL/C9NnF8964+4fj72V4n /VSXeyv36D0NcdDztR75bzG/nf2ce02057pDPj3fY+ea0XMlPzHO//Nzy0Zt wrHP/tfH+bD7fb91Ot/RrfwCFjYi+Skc8mWW5K1w6hfQ42+9ogNx0H/DXtGB eoc423NeGOfsfuX5J19hnk8Um3DQ62Rf74b9gH4PLgp3venj7lc/tAfADxsV 9V3i2H9Te5RPnvrF3zsLp34hjj//JNpDfi/i+dmXiXrpkHO1XubRFY71qwdO ewPTXdLPzb8pZcwbjx/LeH2KXeJ97Tx7j21ycmRJ9cNzdpr6z9l1Gk/ODhQO Oj7caeeFa+KeFu1LHTaPj5pxjLMc97HEMa4+9w/9qF041u0DP9dWW/VdTPOq HD6r28Z/RdRlwL46sUc4v4t/H+bz2ibam/888gtgXDd0mHz83dxU3y7TZfv9 lMhTALzY4fq62+sD9CtviL1HdntsP9qHXtfxjB6j25X9BcYBnuz3abC/Lu9t qgdhfpO+Jhz9ntNrdvDufXYeeqpD9SNcvpicK84V3ubv/I3unfbde7uacLwb u0J+WPWDcfylSzi/i78/t9PosErUoaC8g9/4ocBpL6Hf0VEPgji+87toT7sF v15sQO1pn+AY8GAppc80r1O+mOebOqajgHxxBY+jXq9sdFqv3dZr0a/s99f7 /eu27XY/uOMUtcc63tqlfnCv9eqA7Dq2J8727B/v7f49oDpjsDt+N8bt74iz wTwe9PzTS0f+PPDnUR439u+y4kpY1wP0vCjaE8f3ioHPHPzeFu8ZnUZ6HM/X 8f7E/E1er2Fo4KDneYEn69LA0f+ELt0TcDxov3KX3knxuxjXm52yozhO9u/j zDwfkXDmleI4OX7ibE/6QE7uNsre2+wTdCCO8dwXOPhp4VGmLx4KPLE3Rga/ 0a7A9+4Ofk78UEeWVL888afM7dY4eS6C3B0VeNJ+uW6TI3/sTPM49BRVb4X9 YBdcUzQ9/FSX2oOOT0UdGfDfK32m787qFH/i53H9tu5nRH4L/GzIHdgpf+3y vOSdZiff3Sf7wb7TYfJkh37h6KZ/rsUhPx54Tr5llG/EzzB5mFEe5uSncIj7 jbop/1UXBnLrtS7qC+H49zKBmzxpzeuRbAF6R3ZFTk+pPeh0ceSx8PzBPp4e 4Un+rU966cfIfuf+JfD7ET3KP8HzCprt0a323H+Y331R54Px3aD/p3MNH19U /Tus1w1+D/eTkuLSsb5XdKo9cepxe49SFj2J23mjLHpSvxNne64j5n9nOcvH 00H+/qcZBz2+LKf0v7ZN9VaS+h/jWoWzPc6tb3nc54nRHvqsN+r7sD36eahd eFInp+j3iiMCx7zf9n5WrMq/hPWZ5O1nVeSPsnO09z8vcOpFfH9bxiW9KRzn jAmMe7pjCPUu4o1OKysuDD+ebrP1Gjmg+0Tgp7V53YoB3SeafJ5r3y2V5O+y c12L6hbxHgD4lXOEJ/7vYa02ryEl9yt26DyE/b9bUXWOOC/IwTuacfz7kiL9 j6pzhPGu6HG/zw0IB7983V5g/SDkX37C84/MaxOe9DOjzdZ99bJwjHe6x+Ve WFY/xNkew1wz3g3ivHCy17tdoi19XzMicOpT4vS3Yfxbj7Rz1p+i7hLk/nkj Tf5fUZXfDv9+1O/plqkVWC+J62dxEAMmv6fOTf2YD0Z9JY6H7TlfticdWKeJ OOlAnP0QT/blMe32701Kum/H9NZoMz04UvdPwiFfNyoVOJ4dbB2z/Do+beve hBeNTzLyCftJ4p3mW3finC9xxlOxPeU9/v1Ryd/jdNDva/v9aK9bsAnt1xbD d3R8WdfHvb6+Nw/o/QKo2+P33CdKX9h3v+swu3lsSe8gsF8Kc8z+f0L5bwyf 6v7dMQOKR/K8Ktb+pAHFEeG88lir6ihxPyIPw26Bcz8SB5t/FO1zcjLlg5Cr 2QLksOR8Tq7qnJuTn8rnkJO3wnP6Qt+lXjA9X80WoEc0Hv4e5/6LqjbuO6NO L9q9UbX1XGS29Ank3hOBJ/HfS8f70eT7W9XSdyWM455eFZ7Ep2wX9aeSeKVV +K4r4sFv8/dJ+fbg98urjDtO3/3eWOU7kVQfvl71d2Yj0nF2Vgqs18L9gv38 QDNu9w4V+l+tn/3c3z2vrHv1Qz2OH/Q6vmx6r8HnwH86W/hEv0+hPMF6neD5 KytztR/xnQPc//sP1Zmz9sP9fq881+OsvH7pigOy0/HdJ2abHnm3lOI3ux9/ 64FcfOJsW5dtS0113LAfb2jGMY5VS/b9G/psX680K/XX3t1r/q7rpwrHj0v7 bP8fMU1+D7aHfbBO1I/D537r/oHTZwrHn13i/rmdZ1sc69H9wh/1fkC3Q/pk h4L+20w3+v68Xzj+buJUj3PTPZ7b+R5P95jX9d68LNzuOzyOdmg59Qte7O95 1gs7EX+3Uof6IQ49u0WH2rMf4uwf6/f1TP/7Nt034me382F9ju4V8b2Dptv+ 3a9VOOzOxUNOQB+/V7Hz4i9DTmB/1StmL/REXUHI5S2qRre7ZhW2GexwueHM w+xxA7NVx4042xM3vqobn3w8x+IHtnvf2j1ac/u71fJvfvyB2x/+LrejpXAZ 5lNQe36Xdg7753eJmx8pcNoJedzHqX5y88ry83I6CIc8WyLen6D/Bp3R3xTV 9xNufrE5aZz5LZ7PqxDvQMy+8jqBfbPUP3Hw90nRHmRbr2pxIFtGPUS2h3/o /OnC2R5+5p2n6r0q25M/4W9ap9Pqqe8Z+wIOklkedzE5cPivdukye/KIst+P zPZ76D7VVbS4zVmqm0kc+/m6wCkfsB9aIw8o6Lluyfp/aFpaL/mVUoZ7wdp0 fZftMc7+2arnaPdknldzzcBB15r7yybMMv9ad+A5+ZwtQA4r7iUnt9U+J28z ytucfGa+esmTFUyeC8d+f3KO2bNDK6pbZvakx7E+U1F+Ofz9e35uWiza054c a/aD6lTSfr7X7A3hrP/zutkndu46s0Xypc3shyxvP7i90YS7fZLl7ZPlza5Q XArxcWaHpHUBef5uqWYLsDcy2hvEwW6vVbO8XXGl2SFZYofcONHoOSTybBEH Px4c+bTMXvS6UEMCT96XP+N1bf87J43v/lXV5n1ba2qXNXCs09eBY57/CLuO OMYzKey6JP/IK8047JuZUT+Uv4ec+HmlCcd4jnG/wbi5/r7a/QqvhN2Cff2v aWYHjQ/7BPxz2RTDf1hWe/ZP3OuApPh413Of9opf+F22Z11OtDu3KHuAONqd 2y97APfSI7+yfnaJ9rhH/sFk06P/brd1m+H5wL+eaus6pk0420Pp9Ph73Y8C X8Hkra37QVXhzGvk+YnUP3G2Z51TjGcrP4e9WROO8Tzicrfs+6l7otvngbM9 5Of1fj7Zoy7c60vaPj6qrn6Isz3k4zGTVDcT/LVLXXVgiYOuBwWO8ZejPfbR 1/7u8e1Rsgdwrm7Ic8iZb0bJHsB4jphucvXVT4Wz/yQPwtvx3ST/7C1e16sx fuKg/1V1m+cqs+gPUf/gl5Va6D/ROLFPZsyinyQdZ4M/k/wXP5mnfZT4czac l8bNLeR5Vxp4Ih/u/zgj3dje4t1GNeGg/+mfZKS/xWdPkZ/Ox2nvCG+bnvrv VqhlbM/xsD35ge3JJ6y3S5x8Qpz9EM/xZ5bnT+fnJtz5PyP/5/gzWwA/a5w5 /k/bN+iGfqd0qP4v9QmObet0NdUFtnF6fPKnJdGf9hX4+uTwK9Aegzz7Q+hJ 4vjcK1W9c0I/e/SZnbfngHDo0yP6TF7sEjjsiXf7TQ8+53Jv8+k2j7+H3YJ9 sdgM4ZTP2BeL+3nn+mhPOQk2+GXUNaZchVl6TTOO+Ux2O2ehYpbTIxn1SE7v ZNQ7OT0lHO0O9/y7LzEvcofR42TXFz+q6D0a5nmDx5n+OfIHgynnTVEdW84X fPPIZLO3Nyqncd1fTlV70g2/H/GVcOoj2PlnTxJO/UWc/bM953ul6eum+uC3 mn5vwpcwe0B/z5/Ip/Bm1ANm+20H579MvQlHndZvw+7iT+ihCc11ou3d1rwm HHpxiXmSx6D3Mp+ZnN2/pnhU2EuXfW7991cV1wq+L422+523q4pr5XiwrCMr uhfgPsU0jq3oXiCpN/1KJc0n0Bin+f/ifSdxyItHKoVk3Zmn55eBY/yvjyuw bhf5E3qtbbxw8jlx/Hw62if0frq5jjbo8m0zjvZ/9PuakX1eR32M4pkxvr/0 FlAXZ9jHwrEOf+kze/Enn8nvALv/5MgTg38f7++crom4b/DrER4Xf2PEj6Pf RZpxLNOlzfW+sT4jmnHIw708nvXAknDzh/j7/7sHhOPf0/1+sjiQfre/18b7 XrQ/2e8J0W7tStrPyZ22PldX1E8SN3Fa4LQPQffDIw817UDQ91eB024EnZ4L nHYd7ONa7Ffab6DDkXV9l/Ye+Opndasjf8cIo89DU2Wf7DhIgDU/tPP7YdOE I89R8TPbPzsyT0ilkNCZebqnNMsJrE9/jIe4xf3UUzpc63WLn43zEL7bOpp1 4sT/iGMZ8qVwnNOfGW10HDdGddgX8vFjXVYfJ/xNtxetLlXgjGtL7MOt5ikP BeUXccbN5fH955/XfHXe2T6Ps3++FyO+b9rPcOiFReeJnvw76KtJQU/i+fa8 v8F++izoTBz0+G/gfE9LnP1sY/Rvqke/na1XE457uT95Xdtno077E7Yu5q94 qiZ76RZbR+Hkmzm2XnY+3KAmPwPO6cdMNX1wsdeVa/SPfNsfTjZ76ba4D0cc 8nKTzd+1VFXjTPIX9wc9+e6dfE46JPmX5+Nn2qvcj7n9m3H/5vZpxn2ayNUx nn9zPjmwsMmNjHKD/Vhdab9/nE/OUG/h98uFHEvqX71YVj/EYT/dXFa8p/k3 i+YPHNUnPgO+T9HzU/eLz3Eue8fj+9v6C4n8nN6bUQ4n9K97/M3dTfI5o3zO 6ZGMeiSnd5pw11NZXk+5fsmoX3L6KFuA3smodxJ/0tMu97MO8bnrd7un/GHo ceKg/0UeT/nqGMsPOaIi+xPf+3ac+QeGhb2K7rvH2b47uiL7Nqf3M+r9nJ3A esSpHfd04OaH8TrKlagXDv4+YILZV6NraT7AOZOMz38V7WGf/WaCcMoV8O8u o9UP751p1/G7bA9y3P+53fP1VpXfw+p5f2Z23b415QPBfJYbY/bwG/Jfa77o 55+x3/jT/PTNOOTYk7H/IXdnjjY58HLUB8C41nK5Wm/GMbqv63qvtzb229sm ty6L8znym9z2sd2PHB448pd895pwyjV+B+1+PE98Rhx6cv95eflu49w+cLbH /P4d9jlx2OHTVcdcv8e+uzfwpJ+p85ryqqL9R6qTLnpgXpcEnuQ1v0jjSfM+ ZlFXne2xH+8MnO0hBxbWeUTtsS7bzlMewiRf48pRnx34Lp7HYue69MDlg/Qd 7/dh2wZ+B+znd4VTz4AYJ70nuwp06u8sdAzS5ZNXhINOt3UVfj4I9DwtHOvw dVch8dP/2e/3N+oQDr31guflXXOu7rfx91OrZjfNbS38Fxv0STsnXlBTHMxK g2Q6+jk713xRS+8P1/9AOO8D3sf0XjV6Ll5XnSOvU2/7/UfNOPbxtMj/muQL Ga3xZ0le3vM8/+jukQcU57LrPf/oDh3p+k73PJRDe7KEb6cGzvbgj7aKnafu iPaQ64dUbB4nRZ4Y6MXDmnHz+3gd2RX6hINeU+OcldSreHhA5zJ+F/r4jAGd v5J8qJv5+4WD4n0w7NpHPX7g6XgfDL/Fuh6HcG0xe9jtTtyzX+R16Foijwvs hmP8vn5CkXF/wyGvWv1d3TUlq59xx6ueJ9z9TGfUhVue8EmGH1gvrDY47svf Sts38KcG6fHhy4b/YZrqRG8wyIc7vGR8s2szjnXcw/0iz9Yzfjexfz+N8VA/ o5+nYjwJfnPUC0nsgq3mpfzQaE88yRs0H37S/28/w9L8Ow2c+RDzeCovh+X7 acLZTxKPO993WZck1z7Lt+f7xnx72of/xfXseLNnRtRkh+88+P9rJ5g9sWfk VSeO9q21AuuuH2X8INzzXwhnP2y/jfGVvkt+aDV+yMgPxKcZ//CckpHfjjV+ E47995Xu/WS3E6f8op2P/GE7fCCc9jzXC/voyza7dz6govWC//updvv9p2Wt F+6ru9rN7qUflHHZfDf3bkl61e7D3Z6/akBxu7DnR3kd4x0H9E4V56Zt+83v umVJ7yLAb6v3mR1WL+n9Ktqf3mf35buUdM5F+1U93u9/e2T/Q17d5H7Ok3t0 XsA434z2OXmVUV7l5FtG+ZaTYxnlWLK/HvG6dqO7lFeUOOTtU92aF+T73l73 9vXuQk5fZAvQC1leL7geaWrv8j/Ly3/XFxn1RU6/COc9M3780v23989WvBvW 766anZuunqW4OejBksfrTIx6I1ivQ2sW59A5R+PBu4mrmnF7V1Gzfmqz83o2 y+tZ18sZ9XJOj2fU4zn7M8vbnxeZvdqE95l9Kzs8Z3/qezl7tQl3+1bj4M9H zf7M8van26tNuNu3Wd6+dXtV55fkHHCnxpO3Y4X/aJAPHn7b9NkbUR/smEG7 7O+vmbwqNuNYl+XmqV5Azv5UnG3OXlV+v5x9G3Wm3K5je8j37WbKfiMOOXZ9 4OyH7X88+PO3T/j7n7reHWwG988zJl8ubMZBn8frTfem4I8D4rxD3N5B5v1o fk95VuBsj/0zOc47Sf77eXGuYT/gq2W/Fp7Ema36tdoRx/lr86/VLok/WzXw 5P1bMc47xMH/78T5hf3YuT1wtsc0d56nvCIJfZaYp3o37MfezQdO+ufsc61L zp4vcH1z9n/6DuGFsuJD+V3IyRMDT/wHUyNPQeJvGCK7Xe0tv2wzbvJB9nwT 7vJf9GH/FtfcI/qwf+LU49B373rd8WVDn1re9KLdJ3xf1HtFtB/ieR//Vio8 DDvkCfPbru1xpM+Urd02z5kf6AN/J3FNOVsHC3Gb6fsuz6uydEXjt/PbV/Kr Ewcd354i/znnhTi9P04WbnbRP4wOA9PkJ39hcJ/MftL9U9OF744/vMziAp+Z KhzydIP3MtrzGMZWNYvHu/2VjHY7/nxKLTtn8K8ueTpL7Pzh4U/iPsePzrCv uJ/xvWVCHudxrss9qX2r96J5/KRETod/nv1zn/h4RGfi/l3h3Id5PNdPlu+f 419AP2q/qa2j/PBsv4+texN+sPGJ/PNL4Bz074x2MsTwqzWrs3n5WxntauLg 298VMtrP+Ls9atlq3s8Fg+u5jNcRPqNu54V/vpjiB9azIvJN3J3h3eUSU4Rz XRAv8IC/ozmyovGjrne1XTjtPfDhw3ONj4aVtY7g28u6TA7dFzjylR/XaXxU jbze6P94z397eDl9b3xkt/1caiCVw0d63eJnBvQ+En77ed7/1QOaF+TC4l4X fUbIB6zrKPe3Dwl5QhzLNrqY1td90vvZrajz2ht2n+vvi4saJ3GI29PUnvI5 W4AczvJy2OV2U3uXk7SH83I7W4B8pl2t9uyH8jYnn5tw9kN5znu1CxEPUKPf WPdwyPt1s+rlCgcfHst6uS26hwPZflOzOOTPWjLiFn9Z9Xx3bTo/bza4Hx90 //b9s0V/i+eJuKLELhjZjGMY99fTPBsLyZ7J8vaM2z9NuNtLkqPsx+2ZLG/P uP3ThLu9JPuV/bg9o/XI2T9NONsvlPvP7Zksb8+4/dOEu70kezuR/6vPk3zN 2T9NuNtLkq9cX7zPOtj9/99PE457nX3r9neHTNe6o07Wr+sZzlWjpmi84Kc7 6k315bB/vqwX/paeR2yc68wTntQT2zP0UFIv6+Qmv7qt19OBs729Ow87kzj2 1+FhT/L3Ji8CT+zQYtRTTX7/dtRlZT+Q56MDZ3vI/SFVj+ONuqPYP7/yemVL qA6q6cuzm3H0s0FN76zYD9ZvUtThJI4fPw6/N/RH5X3b51vG/QvOTSu/bfLi 2sBvHhQXzxWMD/ePcwrfzW9v53SL57l6VkY/2pt2rjf7sCEfWA/Y6p9UC35+ 1ztLxofD//Fsq+7NGAdu98+q1y0cfPHnwOmXNnnTJzrQv+33gKIn/dt5PPGr Hxv1mhK/+nx44ldfqCddlzEeN9kt/7PFn94SeML/hyj+Rzj46gTPX35jtDd5 6Hler4n+8e/Vov0ziLt/V/musJ6HFbP/HWT8qV8KB9l36M8OwvOqT6UXgW9c VD14/Li6zfjpomrqhz3V39OfWlXeN+Bftpj/fyGv77jDB26HzzT/x7H1gvsh hWN/3xg46PmnWWqP+pO3faH3Il5XwN75doyQ/iOOe9Ndxgj3ugX0f0oPga+n xHd5bsf/P6pr/MStbpjfj90xwvwFB42TPx/LddNIk4dvjW3C8e8fj5Gfn/vr Wpdr9Etzf+Vx7q875qd3A+f+yvu9ub/uybUnX+Vx3BP3f5YhTvL8iYqjvtDi lAz/01eKo/b4dfu776M953u0zVd+bOK3GH3kryY9Rxo9hXOc+PcpszLyA3GL T5yZkX+S+/Y/zVR70sfiPzz/83EV0Qf+ndW8zujn5VQv7N5if3dgRXTGj+dm Wrzr95UsGc8vvf5jf/QPc2ybWTbOVatqD/sh87zQK9Q0fsRJ7OfxMzdUC4le 62rGXf5keTmzhskZxnuk9ctvaW7v8iejPMnJmWwBcinLyyX6hylvc/K5Caef OS/PE3/1Qk3yOaN8zsnzJvwK07MZ9WxOLzfhrscz6nH2g3aL1bK8/r3X9HIT DrH1elX5O+6Yv58Zbm9PaM12d77Csu7k++e+2cIhx86pZasP4lfMyuvHjPox p08z6tOc/s2of3P2VZa3ryy+vxlfw+w32ak5+yq1n8Iea8LdftM4EjqPrmd5 ++oKs8eacLffZPdOsXgV639i+AuIY76vhf9oU4uHsfW7O9pDHi36Jd+XWvvx 7QXi4PNlPG7hvrmF1TCcMcIhTx5rLdxscVDmN/5X5B8YaXFQNt+uyCdwtMVT WR6utSK+EPgOE2x99ynzvZjFI945UbjH29s94sKef+STwNF+Ba+bcXTk7cK5 cehEO++MLQsH3Y7y/KonVZRXZReLD7f2e1asDtrnHUbntvF+X9KMY5yveP6B ozq1noyLNn9aUfY146vx2ZcjzzTjq/M447fx+32jH8Zv53HGgW9v7zjsXcFz Ps4nvd7LWj3mv5g2OuO7dOJYlxnjhINON3eLHxlvAH/oKQP6LuMT8C7lzMAZ z4Cf/ylpXkl+taMqak/c1jdwiJEru+w+YnS5kPjpGuuH/m+qCmfeMuix1ar6 LnHI+59XCzg3bjpe/lvm5TK5OUb+XuKPDNLtl2Mz+ofp7+F3Qcc/z7LxHxXn KsjDJWfbPtojzmeI31k8cLaHGbL+HL4HFI5xvqp3heoH+HrRHnTt/Ep23TiL 1zX5fswk2W8e3+t26njZe8Rxbj5wrNn5N422+85d6tm6g/h6E0xPffC58Hu8 H+I4fx8Uco5+CpihnwVOv0abxTmL3/J4/vyax5Pz/WfRD/F8e+ox2NH/Dvqz XiFx3eN5+y0s3lvtTc+NNb/s2zX1D/46cKLt+3VrGg/wncfbPnwucN7zwU// XPRPHP6/+wNP6n7d38RXWZ6vnA+bcOfbLM+3zod835fnt2wB/Jnl+RPyccO5 hm8T+xTyZGN/37VG4JA7P2o3efY/sX8ZFw299LeQA8Qxr4sDZ9w1zn2zyuk4 L+rPKJeIjzI5llGO8btLmNzLKPdycjuj3M7J+Sbc9UKW1wuMi6bczsn5jHI+ pxeE453YVRMo573OfbfdCzwznvLc+OqU7szuJ8YKx7y+6M5yejZL9GzoZeE5 Pc53c4WcfsyoH3P6NKM+zelf4bRPsE9Oqhr9GnYI7RPYaZtVbX/c0CJ7hjjI eGV7AfLq8DEmz9oVz1w4YZA/1h9n5+/3a4pfQZzTfb6/tq8pvsrOuRNtPCM8 zvmyKRlx9D+vlqHfvb4SDn/T17VszGD73b/KcnZalrfrnjS7TnZpzg5sun+C 2vy4bnz905GSP+Dbu5pxDOu6uunb9z7K/jH4c92JJgcOjnMp7oeGT/B70jiX op97Jgpne6zjvIkZ8yrQXp9ieRjsu0NCThFnfga2x7uRlacYfa6u6T4G+mS5 6cZ//eHHwXo/O83Oob+pyd+X1Eu8oKa4X+Lgz4P0jkXyFOM5MXDGuWNeDyuf pOLcsV+qyiepOHeMc3bgY+cfz3MeN7vmHPWP+R7lftdftKgfe0dc9fpvLZa/ bsZU1WPf3u0axOENn5yxviXPcfB3LB7t++ydQiGhwzFeT/XbdtGHeSfw8/G5 og/zThBnPXCMt+R5zR8qqk446x6yDiL7Ic56iqDL8jMy5ulK6nw+5u8GDggc brF/TcuYp4vynvm27TzZVfD318rDjX/3dhf8/XWB+U3R/pXugr/jFn3Q7ZZt Rs8lq8LtnOj5oMpRP9j8z56XbkpFdID8ut7tw86acOZtQPvvgk8T/C5/j7vO ZMkF9gP26ZiS5oVvtD9xsJ+XvkrxRv8g34XTiNt39vO48qNmCrc4Qfdn7zRD 37W86FU7H/xruvl5/up5s6+qmJ21k9dR/tD9jRdXjL9nzjT9OsnjGdrL6T5t /GfvY+cJT+IpVpwnPszlbTC52z2RdJOd030m8gkIp51D3NdF7Tlf7nNsm+er og/3M777YFX0JA65+rOQH7BzLmmVvmW/sNtumSOcddfwvbtbpM+x72+dkTEf NcZ/ZaWAe81joi41+P/gitF1u1nCMa7JUX8adBjT5XaX6ioYPrnb40/7lScS 9PjE62VsV7T4gJFfmd4pFGXnQF+cM0k47RziLh/UHv39fLrJpVUGmDfJzpdL zTA+qpaacJDrL8rL5HmFZlG+ZXwHgToru80Uznsl8MlPplNOKq9TTr5llG85 ediEu/zMKD9/OfidU74yO+GGqvYf7Iq+SfI7095YDuJsitrTPsH8Ppxqdvjx Nfm50ezG6RnssrUCx2fap5sdMroqPzrnNWSQ0UfG+YTjBx892Yxjnf8S55Pk feaJNbXL6dMm3PWv/p767lHTp9oP5MM205tZXm9OMz2b5fWs68eM+jGnTzPq 05z+zah/abesZ/aM7CXaJ8RpLxFf3uylpvbEN4Gd90VTP5dDbI1p+i7b+32P 6bUnquJL4hZ3Xk31d4N++DkucNxr/NDzNDxJf5e/k/5yDvPECQcdd5lj7dev KA4TZB7w9nMr8v/CTl3S8c8rBd7zsD3k0M2BY3zrt5h+/Eb5nD1PV+B2PnC8 0T+mc0ZJuMUrtMqvRT8efh4gOau8aZCXD0rOyi4iPZnfEv3d0i/7jjj4/QdF tWfeS/Ob+f3kkNm6lwT1/+1+s5luV9zm9VCH+vuAs2apTiN+3tRleuIffh9z kOelXqZaII7uV24t0I+LeW09Szjbe95I9bO55Tk0+/GXs9WeuOelFG50qKif JK/tFlW1J475ztc/7zdxLK97PfX3W0y/nPuV9L69J271eiPjZCdAjz3p/W84 UXYF5MViLVnCl4/WzL/8k9n08wjHj+9ahFPuQm58PieNF/td3c7/H8+RXYF5 nlb3ulGz0/e3D9Wlr9/FOnodimXrqqM+dvDHtm/adybW9G4Y7wt3es/s1/0V 95R9gG0+LON4yIcvQu4M03fZnjjHyf7xZ51jbf73xHtl3D/vOsH07zbKr2x0 HT5R7T3vpb5DvvK8l/o74p73Uu3Jn56HU+3Jb/a+d7baE8d+vXeOcPIh+Oj6 lox5vIGvXjb9+EJLxrzfeZx5wj2Pt9dfmGPzHdKnfWnx1m5vLRo4+PTns81f 99N+4bBvjppj+3jNoumd4f3CjzH5YP1tXzT+/2KW2hPPybcskXshD4Xn5Cfz b9u76ENn8Bxk671Zl8nn6iyemyw/1Lsdph9fmclzlsmd5b0u6/FeJ3zjyDuA 7xzUIn8O3xHh34e2WbuFy6pjZXVw3D+4V1VxAJjn/rOFMw4A81ttttcXqSqe AOerhZ0fOqryp1idpBav4xI46PsHx68KnPx3r+lH2SXks7GmT5twy4tfld0C +GjPF7ZZ6GXsg/cDZz/48Z9W258nBg49cG2b6cl5qjdh6zmuVTjHAf3zlueN /SZw20cdLl8GFJ8KOfHPdpNDO5cVn4r13Wmufb84oPdX0Idvddq+uL2svP7g i6EdRu+fev2exnkA/57ldft2qPg7qInGP9PbM9bL4Hxt/wVOulk+1rl2vh4R 7RGnW2w3OpwV87Vze5vRY1jg8Mc/1C6c9AQf79lufNSwZyyusNXiYPb2OKzp 5SYc47jP820+2KpzF9bnA6//1x31LrAfp7EeV+CY762dJgdPCNz0bI/qBSZ1 EK/pUb1AfhfnxNeivdsv1n5Gm+nNH8jfY/J/uuf1/21Z/RDHObfkfpRV2oz+ 7S2KU8Z3lmw1uk1gHuWSrcvmLn8Wakvze89xfltmpu7LkJ+w1/Nn3D9L/YDO 0zrMPvxwmtrjXDWmQ3qf5zacxybOlZ3Ac5vF5bXLrmB7fHeFDtsfu40yfTBQ yZBPafPAMfzewPHvhaM9+8H9wfiPCl5nSu0hZ+9vxhGgfNZ7Xse9avttzfb0 ncTJNTu/LtEmHLtuROC0T4hb3o0Wtcd6b1G38+HcwEHOLetqz37Y3vN7y95g /1jPRdpkVxAH/63aLpzjBx3ntKgf9k+c7TkejpM424N/32vPEvnV4Gese61d cdLkW/DBtDbpJ/I5+HOZDntPcdxXdm+8atnsme7A0b7H4+hL7Xb++vsU4fj5 RJvLB9UH8bzNrcJpVxDP1Qex/CET3F+zT0/G/Yt3DrfPFc79ThxsPLVb7U92 vyb46ZgOW7/tVA/L1vfWLvNfFbpZd8z91V22z27tMXk+vt34/N5+1fvE+4rb 5pqds2kzjv6u6MtY79P6m2vy5Acl+VWwL19vM/tv+VJGvzR+7OJ68JES5an5 LfdutXkdVZJ9An/EH+eY/Pm4KHsGfHe5j//SouwWjKu1XXYL35+Ab+9ul31C fwvo9NdW2TPUgzn9JXsgp6eyBeg12Qk5fST7I6e/ZGfk9J3wnD5iXa28/mJd rby+E047hPVNOP6c3SI8Z+ekfp+wQ1L7PewW4Tk7R3TAvn7H69PeEfepaP9Z j8mbf0ccCdtDLjw/0HTvi/EcEv5N3gOADm8EzvaWh6csOwT/frjT6yWHPYD9 W+oQTvoTxz45LNqj3cddRr9bFQ9tfNjt+/d7xi8+bnkBDux0PyzrmXoe+F29 Tu9uqmdq6/iM1+ndX/VPTV+s5vn3h5XUnv3QTwJ6/G+r2tP/QJz9E4efY4c2 0Q3z6O+zuK8D23XfAnxSn83nb51pPs6fef7KcTn8y36jw6S5Wi+sU0MOHj44 /oa+Z3vieK94VuDg50W9vtz9RfWP+S3v9VTvKmqckEMvNeMgz+dd5odZM/oB X23ajOPvd+y2ugrH9Kf9173+2J1RB4a42TWBX+lyEPhangd0+a6M9jfsmvc8 v/FJ3cLxvT0Cp34nbue+yFPrddhNfm4f+dq9nrvtz2960ry/mwzYuu7SY/T+ YgLrnJocuzRwr3MqHP3eHO3ZD+ucet1ztU/qnM6Hs14qpr1V2d4Zft2Rsc4p 7S7Yz0MDp91FnPVP2d7rlmbJ+6qLKuZfeLMzfedU9DxwK3eJzliHkZWM95Cs W5rHWZ+U/ZBPiPO7nO+2Nl/Wixe+t9GH9eJFz38aPYVDXq/S63ESs02+Hul1 PY7yOtZvuLz+idf32aXb7LwX5jS1t7iKWab3JhbVP3Gc14dFPxY/Ols458vz jcmD4H/i6K8j9hfPK8CLTfuX9dzTfpZvxueZfMjy8sH3b8b9m9vvGfc7v2v+ 7cBB3097ad/Y/nnV6dvWpzyA9o6yO2N7j2+0n3t0p3Ks3/+uIVdz8jOj/OR4 aiZvM8pb0OmzLuOXs1kPdJS9+3ix0/qdVlIdDatP3GXrs+iA6m5gPss4fkxZ 9z6gy56dtk+PKCs+G/ywdYfp51nRPqd/s7z+dX3dhLtelr3hdVqpZ40eLc6/ r3VRLwvHODbqFg412DU7r6+zBeh32Vc5e0DtMd8LvY7uwvHeyeylfs9/Gjjm uaPbqYvEuwW2xz3X/5UU98L+0WzrUvreo9EP6HlqKY3Du6tPej+5d3uqV3ZC Yte92iu7gnTGz37PS71BSfEqNp7AaW9gHD/w+mNvRXuMp+Z1/9bpVZwJ2n3b Z+ewj3sUr4JhzXI9NbdX9zLcR1ifz3v1HpD1h8Avz/WoPXGc03t69N4Q47+y aOtyb6+dN16YZnpvCa/n/Gyv3wtM9Dp2/bbfP+mjv0vtLb9Tn/L+sH/In0WK yvvDftB+Ica7jLL7+tf6dU9EOw3TXaMonHQGPx5Q1Ls2tgefj+ixeskndcie IW73oR2yi8DP0wJne4x/dm/az5Z+L1fvTdtv6eP6tk845Mqj/Ubve/xe/75u +bOgB8YFTrmOc+YizXWz0fyaonDUH2vpUL1rxocTh503X11r2CF/6sw4ftpX pi9jvuQb3O/tH/Mijv36er/4Cv184nVr1wk5j+//Za7xx496MrYnDv75u+vX G7yfc9vtnqxxHse/D3X9+Xyb9fNoj8n3xxw/InDc93/v+MVRvwvzfb5o+miD qNOFH38u2n4/NnDQc5tituXg3+03zezFcS5fTixaXpAZU5twjGPFKXbfuZrn Lfhnr/V3whey3zC+zQKnPUPc6DhG7TG+So/sW6zXk0Wj39jI+4L1ejlwtieO /pfrU3uuO/bf4v1sr/UF3/T2Cic/YP1O6lfeCPD/WZ7/bJ8+4fjRMWD75934 Lvh82ID0vsVteRz6fPh1Rh/1w/Ukzu+S/q8b/bOE/g38BluvjOvF9d3c1lc4 zhcdPbK7KB+sHlzglA8YzlK9sseIW3xQX9q+IR8wnrX6hVM+QP5u2Jf2s2XI pS1NnmR5OUac4yR+tskrtcfqLd9veuT7Lr+H7TV8qaLZ42cuAG/rtHGd2Vug nKH9Qn8c5QztFPr1KK+I59vzHEC5xP6JU46xH36XOPXjyaYfJZ+oTz81fSo/ W07/0g8oOfGC6dMsr08fM72pPBvE1zA9q+9a3vd+szM3jHp44J/M+e6EqFeK 767tdQL3jjp5GE7DbsEw/tYrusEPe5zr3w0DB7meDZz0f9T8lOoH/vd7OoSz Pfz4sztsn+7eJ5ztzW7sk9+SeXsxzh/2ys/JvL0rul+F/sykfVefycnRUZcZ dF2EclT2ufu5XZ5n9Iv6O5WF+62fb+J9Efbx4m7PPNaM45+3lWSHg56LuL2x zIDidPH5mp9HTg8ceqceOO3DnB8py/uLeA9EfxH9S8TZ3vivx+Y5YUD2P+TS NPePfxo4xj0fzvFgPxSiH/hDN54pnO2xn87299NfBM724NdZft91bn/6Du2I kq3vufEew+IRPD/mLvEeA+vx1+iH9MR8O4tqz/GDPotE/2zP8eBcukm8T+Z3 IVd/GzjHCflyfLxbhp3zluctOqSzQLmX4KM6CpR7wDsDZ3uM++CS3hXTLsPv rw+c9hfar13Se2PivN/DdjihS/WeiWO5h3cprx35DONbt7upPZZjpR7Z50n8 7OE9sufZD/bRzj2y/yEfrg37k/emppZLWTKfBo7PPxc49Rjs23oxfS99pte3 2a6U+gMb9ET7DUuyS4nj73byuggvtotusEeW9/1w1VzhkNdTSsI5D+y/BwZM /hXbC3zvmODz5hb4feyP8/27b85Ve+iTjQb0XhL0+8Lrp50WOPbny+2Gnz+g eWE/X9Bh9NqrpPxPnC9xjxsQjnH8MPBEL48uyU7Dftu+Rzjve4iDH9aJOhXg ize73S/o47y3xei4o9+/3RA47Ip3u4XbPor27AfzvtLrmQ/pVXuLv27GzV87 2/O99Jqf4boB+Wmhdm/pF05/7PODfPm0xxPtFTjYYVn3y21Ssnuu6ZNktwOf WhROu5G41Q+crPYYxqsl5VXCuP/m8UrVUvYHlztY/1O8/RmBwz6dVZTcX976 z9gP8b1tPGrPfUo86f+HJcWvkR/IP4yzy/MV4/KIk094rsa69HQL57maOPmH OMixcbfkDObzr5aM/EDcptGSkX84L/w4uLWpPcY/3OMxyQ/bOf/c4eMZ0qt+ wG/btginPKG9neyj7XTPmiXyp15Ue9IT43og2vO8bno7+ieO8RQCp/yhPJlg csnW77yQP8TNT9wu/E2Te2pvcXcD2TmDDS+Yq+/gx+UDdi54qb0J3xB+tbma B/Va0fRalteDxBM9SPyQzizRgw29Ns/0mvQA9eAlpgdTvXFw4KQP1xF2wo1d lt9nbdWHN7v/g84mHHExN3aaHXZyq52D2ktmZx8V9apBxyOdnhO7mnCrb9Il Oxx6+jGvS3mb+7mfnmn8d5br0zf93umS6aa/p/m6P9Vtds+vPO526bLZAyN7 KT+GAH/c9f6I3lQPrDpg59OWPrXHOI8tWb6R45Rn3PbN7YEn+dpaSrYPfhY4 5Qy63a7X9PqSc4Rj3t/2mB1x9hztL8xn2V7TPw06YB0X9v6fjf7BJ58WhSd5 4ka63Poi2ufsySx5h9yw99rMbswWYGfKngd93y+qnxPcngQdz5admfE9G9bv sOif7UGXn5Y9TqdDdpe9Kw6c/AO6rFC2/X9Np3C0L5SNP9bh/YTnRawFntRb vdr98t8EznguyLWh9BOOUB4s0Pu/XU24+Xe69U7B3kNX/Hyjfow+b7j/6dTe FF+/wnOu7GfIpX953Nme3ek7/B3K9t3ze5pw2Gsr9qbv1Wf5dy/ulJ2P5Rka OM8FWIez/T7jsS61R//rRXu+ewE9WwaE890L8N4B9cN3L9j/Y93PdLXXmX+4 o0Ac22OLVrOTyh1Wh7MlcLaHXHvR85A93CI/PL63VcXjUObID4992ubvw19r lT/f8jJXZDcm58HNK2m+Dp4Hzwk8qeOzZiW9T2/QAet3USW9f+c9xYGB0y7A eJ4tp/lGG/Yt7hXOC5z2sMVvBE671+L94l2ZxXP7+pweOPi4rcP87VuUs2Qf Ev9Fxfz/y86S3Q4+f7Ns8uv02bLbQY5K2d9xzyok9vtzlfQdR2O+OGfeHTjt Hcv3oXgd4fAL/zTaU8+in0UDp16Gn2ZMzIs47oEeCpz+MMzz86APcbMPAqef DHpqR3/Xt+8s2dv4zH8HhNO+Io5xrz5b7UHPS8qyq7lepu8C57qAbd4py24n jvX/JuLjiePv7wqc/bM97W22B/3/UtE7F9D/R4G7vykjbvdYlex3fv9kcbt+ XvykrHwm9FMSZ10X4qBna+CkM9pfXM6e8nMWpnFcr+jPPKrYj4v2qf2BHp/J 9sC3ryhuk/yA+LfDAk/s1kZ7+tXZHgewoarvKjud+B3z06eBg9/equi+gPzP daR8If257pQvxMknSfzfjW4HHh/xf9x35teLeEHiaH9p4Ik/4JPme3Hi7D+/ Xvm4N9I/uUcf0iuc7YlzHRM529gvlAOkI39SbpCOxCln+O9Eri4aONcXcvXD snCur+UvkXxI7fwjyty/KR1ulxzIkrirpwNP4khCDmQLkBuiQ07OqD3+/jdl nU8hrg5us/39pd4bC4cePLSscyvI8E67yaHRUe+c7xbx9z+MOpR81wx77tKK 6Mg6rMBnB065hX4uin4ot/Ddpyrpfc2+Xq9gWFnxzFwfNFulovhn4uhv18C5 btSPoOMDrfoO9Sn08M6t6bieDTyZX/uA+oH90dEhnO3tPX2n2W9LRT9sD306 dcDqMN/QoXMW5PAXgfOcRfytQXK9H+1pD//E7OFUnzf48yazn4XT3iZOvUd7 eAOzh0V/2s9Lmf2c6p9C4FzHJC9sT5f5+bb7XHYy9PABzbi9a+g0fuv9Mm9X p3WVzvT38P/t0nvKnN0unPY25nl9j859tLehn27s0bmPdrvJ0cBz9rnOWTl7 Xucs9vOm2f8pPs3l2xI9upfhexHM/9LeJhz7ZmxPluTVWtTzXW5NO9zrufa7 nhoe9WUxvg2rwtkefHRn1eb1TYfOLxAjIwJP6t6dX7X9/2yncNzXVKu2rjt2 Kg8k2vcGznhG9Pto1fbtpl3CsY2He33WpzUesyPvDjw5z57r/S8T+UbNP+n0 ObOjkNBzLa8Xu0mHzkfEwd6fRXv82Liq8wL9/BjHrlWdL5J4ngeqOo/Q/49+ zos8p6Sz5XkNPKkTdnZN+pg41MnZ0Z50xucPC5z0JM5+knz9z0YeVd4D4sfE 5ryr4NehgZM+oMsmVZNHDfrwnIh9+KPAk/uy5Xxd7mxTe+i14bX0vpZ1mu+s SU4RtziqWu4cMcbszfWrJndHTLL79aFtds9yWOC4j3ynVe2tHuVk4eDD9prk Gr9LnPmriWMR3g2c4wG5LqvK3uM5nTjXL8n7dne0J3/iHLxXtE/y+OwV7Ymb nzjwJG/DzVEPnPSxuODASQf8/tWoK04cn9nN6X/jePltsN7Dql4fZJLuy+DH ml41PbXRROHo51/RD+0KtH+lpva0K9D/WjX1T/sE+nW1Wrbb4Dre+rLmZfl5 A+f4QY9/1qwu6AWvCYcc+0Hd9NHLH2mcxOH/G/+J5guyzqgZ/z4zUu3NPqnr fIRxvv2pcO5/4hjvmnWdm/Bu+7vPNC/G+YA8/2rT+Fk3BvjYVs2X5w70O7LV /OqN/cX9THlCnO+Rkjp2kyKfC8cLudbl+eyu/zgjnTGPX9WEk5743GU121+3 fpjia3qeg81GM3+K+WmW97zmtZHa92jXWctw/9T7qXDw+Yeeb/q349Q/5Mzx VcsjeOcEjZM48rftN0ntsY86vT7iiEnqH/viOo/THzZVOH48WfW8WzM0fvDz cB/nbczrM87me6TXiflwlnD0/7K/szxypvYZfh4T+Ri4L8EP10keCsc41q3l zjt+33hd4Em9zDsD57oTZ/95vUN5ktc7xPN6h+2IWxx2VfY0xw9+K0u/pPXW 3w6c8wK/fluVvZ7Us9y6Jjyp2713Td9N6kruHe05XuinXQPn+Inr3Dg/Xmoa j5/bquk9V2P/YR0nBh2IY/z7eJ7xO9ukL7C/TvS8k6+1CgffXBE49QX1LPvJ 62W2p16gHieexI3s5O+Jh3fIbsefrRY47XbiK5ldqva0G/c3uzGlf8POXNPs TOG0S4lzfWk3HmZ2Y1oHrmFnDjU7UzjtUuJcX9qNQ81uFP1pZ+5vdqZw2qXE E/u/YTeebXZjlrczZ5idqXWhXbqS2aVqj3X/Rd3W59qJZt90ji0Qh93SN9H0 49XjTT/sGe2J4x77kLrxxWefqW4m1vl4l7f/96lwjOvkwGnv4O+Prmu/sX/k 92j0k9hnDdzyMwfO8cNff3Jdepb6EXx1el16mTia/zVwylvI6+dV/y0d5z11 xV3wfEqceo045nlaXedAjh91vw6vp3F1jfGzPXG2x3h3j/ynls+1RTj5jDjo slM9fV9fbDF+vq+e8jH1y9uB084lzv4Te3kn0U3jwXe2CZzfJe7rovbYL3+S faLvgq8eraseLXEs9x8C5/iR3+2CqDfC9ULdk0sC57oQ53fz68XzSX69uH/y 68X+2R75hk6LPNzsH3Hs50Y/yXjOCDy/L5J8yfPxf5LHujEe7hd+l+25r39v +1ftua+J59tb3r4mXOcNqyswhvJE9Q+IH2v9C7d8f2ONn06oe5zp6PRcdnTd 4uZ3GSt8fZuv2U0PjU7zqGZ15cPld4lz/xLvs3UUzvFcbPygczK/S5z+HeJ2 3xU4xwM6nFm3d7zrvZu+GxrMXz4475Pe1n0cxnNZ3eorrP5B7p6uXqCdn7xL 2qVe4Lkgj/Mcwe9ub3JJ9EnofA/rZwwdTvx9k3vCOS+XA4WcHBDOPDtJXfr7 Aud4MN/9RQfZg/Df7iG6Ccd6/0r0SfP9HVUv0D7nvbD5S+oF2vO8F8agG+tO +5/3wpjefVXjt275i8x+29fr80zvasJxHnysS/TAr/9ZNbvyfPmpzB45xOuo rdfVhKO/1qhPg3aHVW2fjWnTvsG6/KJq4/93u3B873iva9LTrn3p9p7uTcmn bh/qfpT4imZPCuc+cPtT/ZAOxNmeuNu3wkkft4fVD+ng9rPaEz/F7O38eDK3 z3XvnvjTyoFTjg4z+1/fJQ577sDon/3Avlk5cMpX8OfB0Q9xyIdlqpon7Rzi jNsk7n4S4ZTz7p8RzvX91PwzwnN+Hn2X7f08JTuG9CROu4e4n9eEk85+7lM/ pJufE9WeuJ8HhZOekFN9NcuX/cpXaX3Gj73eYdeUNK9FrWb5uNefLBx+yw3q Bdql2L/7jxVOuxR1Sl4e7flNA4ccW2m0tb+gZvfrk6cUGBdk9SxrBcTXPTZN OORZS9XosvY05cu+3fxCFo/WNVn4VeZHKsBu3/4r9XOW+Z3s3vcfgXP8XD/L k/+FcK43cc4rqTP03Wee9yTqD4FO17ULZz/E7T1wtN/N/BXqn/uf/XM89Bfl x0m/E3GTKzXpQfbPumfUd8l4Gjj1I3H3RxVon7Mf9zsJX9/8KnYO/WetQPuf OObZGvuIcg90+T7wJJ6qNfYX22PfvVgTzv6JUw4Sh/5au5bqD9K5S/PNiE83 v5b0Hfv5ifm1pB8XMF/hOfoIz9FT3wW9J9YKOF+f9LnyyOO7L/h+bOhN4lj3 p2qW5+ne8Yq7c3+X/PhcR+KUF8Tdn6b7AI7H/TniW9LP/UIFxkvk/ELKA5jQ u8HPn5g8kV3sflGrg9Q1RXY38Skmr4SzH9rJiTzZIHDKH+K0nxN5tXL0zzyN uNecUtN4iMNvsGSMn7j7UZWvkPKcOOlA3P2rpKfOPX4PIrstOd/cG3hyngj9 ovbYLzdV7bw6pi31Hzb01MJmnwjHNA6vGl/9O/Kc0T7J+alkz9Avl7dbiCd1 lg6rFXJ+M+Fsn+cr4uQrvy8TTnr6/Vr+u5nfoxVyfj+bX3/Mi/wOO+PaquKB SE+z5wLnfsrZnxpnzl5N66/f53Tulp+qQPvzOLNLNU7asVuaHZvl7dXM7FXN F/Q5xOv4zlJ8qb3fWcLrz93b14Tj53F9krd+72z79XXVcRcOPXtFb87e8fxz q0R73Nv8I+rhka/wvT9U9F6IfIjft0R74hjHplV/lxP32uh/Ma8XOGKu9Cfm 111R+8Tf/h/Pv3l4xPFiX/21Yvx7bsT9Gp9XjE/3jvhej0Owdpd3y34jHSzu skc422O+ESds57KRnif4gq5CUi9nd89XfV+ncJD/qIqtw9Jdqb39Utn4aHhn ei7euex819WE47vHdum8DD7er2x22jqKr7a4kMWcr4Y347AzT+iUHAJ/vzdg 63Zkm/JvQB494nWXXwzc3wXYO4Dz24VjPS4ty85P4ltHDuhcwHMG9Pt+ZeGM 74Xe/LCicxn9PPbuu6JzXBJ3NLWicx/PBRjfmZ43dr82xT/j91+Xbb1Oibhf 2KWvOd0eaON4jD77eJ7UK+doH4AOvy0X+D7L1r/b6Lau19fZbo5wjzsyeh3S Yny5VuCg270tti//6e/ylioLB98s2lXwODedL3SOtLg4nSOIexydcK6Px+Op n0Pnp/9N0Z4/PU5P/+bfeby3cMjdIZ2MGxeOOKa7AuffQ15O7WQcXSG5r7/Q 80buWBYO+rT5+5pG+2S9/9pX8HhOyTt+3+M5af/I/8n2xJN74YacedruE6V/ 8PtfVuzvfj5Nesbev7Ae0uRC8r7q2UqB8Qx4d1tut/ZjA8d+fitwxjlYHZY2 z/8TdOD7HqzLMoHj5wZdwkkf4qQn42zBnov2iZ6M17VxB854XeIcJ+U17kke ifkSt3f3czUv6gO2J8484Pl+aK/m+2FcdL4fnrPy/VBP5Pu5x/2ZSftPygXG M3P/etyscMoBtme8dNJ+bEX2eX481Af/7/GMUXvSP/GTXhjrQj1B/uf6JveC bb0aJ8fDcRJn/vT8fBM7j/PdPvYX5YzHY2sfUc6wPXG2h5wZ6vL828m6XwX+ uteR+Pk03Sejn48qdk81bKpw0s3qGU7OuF+IH+1xAtxfpD9x7kePt3f/wii9 n4Nc3bSscwH3EXG3e4RDng+R/Nc7PuB3SV/o3R/2/0nSLyke8j+j/M/pi4z6 IqdfMuoXf0+R5v1s0N/fX0j/Eff3GoXET71Cu/QC+6GcpB5h+7y+IE55C3/a ChV7PzStRfHOZq9WTD42+me8M+i7euCMm6Z8Y//UI8Q5Tuodyk+2p54i3XAv PKQ9fVfUwBEH/ECb6MN1sXjXwNHvci63WT+C7yhfLxdYh4I4/v76ciGpQ9Gg j+XdrOg8mOi9Ryo691Gu4+/2qeicyPawxxr75Sazt31/TZS9/ZbZ24pvAfnP DZz2Fe3wX5sdnuXt7SXN3tb5MWefqz3t6lycsOztXJyw7PNcnLDscMYtJ/GN DXubcctJHpWGfc64ZcpX2sOHmT2c5hkO+1l1o2hvn232tnCey26wc5nokDvH iQ65c18a/9w4r+H3V+g97HDSwfwQinMezvb48+8UL636adZ/sZDENb3seapW LDXhWOeFStLP4LOPPP/laOUPEQ57eZjyh9i4vyuaPHg+2oNPz/XzxSX9ak8c P5/vV3vY+av5uWOpYopvN2D25vd9ufsxr4f0937hbG/1t/qkr3h+gRh5oTut 39bu9c5L3Xo/yPagz0WBY3/+uqQ8EeQffGTnkt0zDlUeEuOXj0u6FyPO/tHt ZcpnIhzDm9iVnuMa48T93FHdwvG9axxfMvLjgQ/neF35fTtTv8jSvi43RH4S 0OuoktHn1k69p8OflYomJw7tasLRfvkuvf/C9C4o6bwBfbia2xvrltJz39+6 rN/TSun92n89Pv27ks6niT4dKOkcSr1p5/Y4txLH+t0w4Oe7Vp2niPu7D52/ 7HwaOPUp/r3igM6Jyfupl0o6Vyb5WN8r6Rya5C1dZ8DsmS1aXU97HtULA4fd tGzgfIdr9T06ma8gpduZvcznk9J5ROBcF+J2finpPGtyt8/o8UZJ51/w2VO9 tk/qJZ1ziXPf8b2k/b5PON9Xmpbq0/5N3l1u7vmxL4zzI85bz3SJbsRB9wu7 RR/qUaxXlXkLXD6sOMXG0ZArzFfOvIXgh70CZ55DjH+bosaZnE8n9Gteid49 M/D/r67rDrO7qNqhSBGQjmBCFUEJTenNASSgiDQJIAIJRaWqgCAlAhJANDQp oUPA0PsHQkK7aUAaIXWTzaZsu3f33t3b2yoI3933nPcMM/eBP9hn38zOb+bM mVNmzpxDPQ36/c3Pi/HTkgfN80PwjusdPy/GVbM9x0k5Dr7cpWjjJA56Pufn Fdxz71I0nPdQMU5/Ku6fcpz9Qy/MsvxWxlfE1T9yxNH/OpaX1vgW/VeLsh7H aN2jz/MiBy8oyjhWtUn88oiC4G8VE8xzSBz9/KQU1hPeSPMH3lQK/aPn84YH 78Nv9+sl2uPuQ0l/4szTGq/j/V+lwzua96KxX7D9v+yQ86Y5Wdtfco7WaTj3 I9rX2y2fa7Bf3tG6spflw323qdYJ7MyFejCp+uPUXCLaL477izj1CvcR5xXU q72sL9xf39J7h4bcJv9I/pOUo5wnDnm+oZ53NPQC6QMyV7rNbyIdsO6l7jDP zGTFx3s8ktvmB0Vy3vymSC+Yn0W6Yfzn9ZidTxz2fMNOphwlHdDP/F4XyGOu +zFJe08Kv2K7kuiDc1OW3xFy96emXwyP5L+j/I/0haO+iPSLo37RPC0i36b3 Wh4C6NEn1N9Z0Wv5HsF2K3S9bk+HeXCnKL/twTx/Cxxxta/odwg/fqD8tpdv T7sIdmNd/efjOs2Ows/FfVq3qcPsLuLo/kcdZhdF+W3Mjory2xge5bcxu4h5 dXjOQDuK5wK0l2h3MT8P29MuGhB7yfK4E4e/Njdj+eBpdzFfEPPBg12uKso7 3R2z9s4X9DiwJPc78/rsnS/W8TGV02vl7J0vfu6m5/A35swfxPc/0vqmP/f1 HMA/d5ckXvI7OfMTaZ9PFvvcxXb+aLHnm3C1/80/wr8foPzzvuXzeY845nlE zvwaObfRuiNn5a091vNF1Rddvj3OGfYrCZ0a+obvY7BO+yh/zvR45AfZvWrk NxkdIj/LcM3nI/Tx+XyEvmsUE1FeoITmBUpEeYFkHPP6VZ54+wJyJNEv69va jEOeLPZ2h9wnZeXcZZTVeRE5OVzPBZ/2OIZ1cFb0Wdbyt8s4F+TEbmst2v0L +G5lXuI2rvc41vulvMzjuKKNB+vUo3neDy6ZPSLndnoPun0pvGcsq/82r2g4 xr2u1s29w9s1xDXfqdlBKcmPmtD8qKF9NKQgeuFIX3+H+hb/fJ/H2R779Lve DgK9nlW7+Iqi+aHAxyqdG+vP+pXov+GXMs8/+RnzeDFn35f4k5TMsytr35c8 Win1x3KGQ39MTIrcPyhvOOW85pM3nHIedL0/b9+lnMev9+TMv8P6nZaRcZ2R l9+Hq949IS3jejkv6z8lY3hA52fUT+vzOMhS6xV5dFvGxkFc7AKPSz4DjSNd O2d2k7wv7tP6yh6HHPsiLXbidpoX8bOcjP/XvL/W/MQdWXkf1t1reY3Rrq51 pJd6HHy1qfL57F7ZP0fmRV5tUDAc87o5F+LHKx12VXl8gvfX8O9P9ale9v6a 5pNXvz0f5uv5Vn+C/bM9+Lzdf5ftiXP8wXcf1zzOm1m9AZH77+Xsu5QL+P3N vMivE7LWXs4vPZ8F+SQfLto6Esf4lhatPfNMUi+yPev7gG+/X0pwfVkPSPMJ Gs76QdDf55esn0CfDSvZd4O4vnY/HsoX4uyH8fDYb0/6fohL/LLHg3O6nVTv NuQwcezT32p8xtPMCzaV9X2sPXG2B/+MyCVY9wfjvFbrHk7JJVgniDjoODqf YD0g8PU+SrdNC/b+nHyC/n/Aczqt+9zgE7YvqD/F9pwv83Ny3Ykzz2e8vmxP fiC/4Xs/7tB3ZvkE+RPDvEPziazOGR8Sx3lXxfMn6HWgxkG15qwf4nLPlLXv Ar/P4xw/+r1N6xw+1WfjJ879yPb43izNS9LYv2yvclLrLqaNb1Wuih2T9vif RA7LOk708lDyV2hd30rGvkuccpX4LSKHHeUw+4H83qY/rBM5RM97y75OZNDP VX3WHv9e6rdzMcpbzG9Fv51/UT6D/iWPU55LHs1cgvn2KZ9Bvw3Vf/0yY3UR JL9KPsG8/cQp95ifk/I2wGcrfW728pA45Tnpg3G8rnUtJyZtXfAe616t59PQ y8Txrjmreesbepz6FOu7KGt+IvUp9OPZHqc+xTvLB3x9Evz9ukXTW7y/BZ9N 9nVIWEcbfsL1BcNph8h9R9HqU43FOc8Smcc1vm4V5tGq8dgNec/vVgcH+uul jnaOrGfO/DLaOfALlmb1/a2eczTsJcyzW+87HtU4h/1ztD/Nr4H83TVHe9X8 IMjFu/IiL0cVzd+Rd+552qsuOIcbWaBdav4O6L5ngXas4ZE9aXZ+ZH+avxDZ mdY+ss9tPJE9b/d3kf1vONb97YzIjcN9HJDWvZLf/233nDKfXfTe4liPo/2J /SKXlti5jvDxKK0bPcfj2K/tfYbzuzx3EXumHPoj12X0nMbjbM96mqQDcYxr Z9afbgnjDu4vm3/B9ljnb5RNb2vdT1nPu71/oXVCE6wTGrdnndBgfc9Jy3cu KlscCnHYH/N8PXSOE/jykvkLXBf6X6DTt1K2jvSz0E2129aLfhlxzhfnqd8u SrunkmF82ULlxxNS4T3JQrVf3k1J+8v75OeyosU1oH3Drod+nVtMBH7x8X0y /t8ULU5E9lm/3ktnSReTkzKu/gTPMYjL+zur5xXa7e95vcF5QT7MyJp+4Hdh b+3o8YBP3u8XvrgmF8a5vK98kckajmnO6pd3Wa9nxc56IGPyG/xxZzpBPKD3 2n0iT27oTXBcWN+t+kL+vD8j303l7bsgR8NuwPvbtfM2fuI4P27oEwzjn+p3 /bJXxrul1ieY1mc4fi4o6PuFPvFfRjfj1B+Q330F64f6Bvp6VcG+SxzT26lo 4xc9pfHok8rGb8Tx3fUrIb12WCD0+Ktvz7rnkDsjfDwx66SDbx/xOOuqYzzj fVwy9xvmfbj/LnFhv7Lh9NuJo91jGXsXgHa3a1745X2Ggxyba53qSX12r4z3 Bzv4+hD05+EPPezHQxz26FCP0/4nDj56x+ggenFCRdZjC6Ob4VqflPRhvlrr n/WhuF7EWWcqXhe25zoyzhfv+0ctd1qn1dqPG2SYRUubcNyzbLXMab1XW0f4 IzNWyHn10JL1L3ZOu9avLob8t+Fqrbuj/sskXx8O67SJX6/gHHYDzVP/mK/b gT+7uWj7gnKE+5H7gvKI+5f7gu25T9m+8NVz2xa/74hj37X5/UUc8/tO0eov Ybzf0zpFqzIhnzdw0GEdj6Pdw2oHT07b+kJ9H6x1li7ydT+Ig14tPdYe8/lU z0eWat7RyRl5x/9Fzux/sGuyV/bbOgXDRU9nDNdzp1jeOsrbSD47yudInjvK 8wB/WvOs/9Lf89NuRL9fuf+nfQi76ZIm/egC/ej1qaM+JT5H9K+j/qW+xnoM 8/mJqffBp2dYvtJQ72/u8ci+sn4ie8x9jf1meGSPua+xu0L709tp1h7fHa51 CQ4pWx1YjPdo5a/Xymbf4s9Ga5yKK5s9DH78e5/4ibNL9o4J331A7b2PPA7x eErGcObzED+7W87DrqkmAju5gWveHbMnQY4LNN/ViGr0jjip+eQqci74jNpX u+l775Vlw+G3bJwUfhhflnwcf9Tfj9L6aTf6OHri+Hmyj5fHsI7UdxEPVpri 9CG37y7bfTtx0GF3xj8uMP2NeZ/t46OD9xXT1e5NJA0H3+eK8v1lKesHP8aU tG6HxtFso/e3s6N6sjv1Cp/vbffe4qeu1yN8/aTZvdJ+lcqbVwsmd0VP9Ypf mSxY/nm5l9K8tpf7urH4u4TGk95ZNHkMvE3fRWzr60OPUXsZ85nj6zdzvpjO uRpPsL+v34n2n+TlXPlJj4Nf+vX8+0SVi1doPc6f5swPxjx+ldRzz6z52dhH 7yaF/g96HN9bonFRo7Nif76cF3lwZ4/hrG9HHN/fOGf18ECvS3xcFPb3JI3D udnXf0L7Z9RevrzbcDmH0LiCK1Jh+weLNn72D/45pWjzZXvIp6Vaf2Jsr/Ed +n9Xz1sv8HWk4Gd05mW9/+j5FPeivXnRHyuS1h5+z0MlqQ80NWX3E8D/VZK8 ODWPYx3u8nWn2A/46GiP8yfWY1NfjyrYNydqvYRDfB0C7IOJRRn/cV3hd7+t ++yopN27QB5sofF5m/bau2n83S0l0WNtPYajn4e0PvumvWZnsj3GO7Xb5AjG M7NsOOURceSreSZp7SVupBzG6f99ga57JZQ/z82T/TLF49BfF2vetw8rQr8f 9iS0Tr383eKq7JthKcPBRwfVrP3qwXHsMVXk6Eu+Pe/P0P85vj1xzOPzquGk D3Gs2+fdco//8XR7Vw/yftwp8nbfaXIO/7i+S+/tSlyNDhKGR/NynFc0fheP n+05X+6TbQaBx5fIeeix/v0bPrvbMsNpB4IfXlok8nRh2fgJ453bKX71G0WL GyOOfTfSx8lBb76r+V9+UkqQH4L718s8/1CvxHzF8wLirCMK/t435bivOX7J X97jKAe4TyAvLtM8/o39zn1Nex7t/qB1chtyIMjn/hu/34P3V7v4/cJ+MO6h Hqceghw40e874uCb80sm36hvsC4XeXkY5IvvKZheII5ler9gciY411izaDjj e6BP/+Dr/BEHHV8pumDdt9M6vWMz4bofqvgTvv4h9s+OWr/5BfXb10ya3qJe A50n+Lro1IOg3xpJw6k3IaWGqR1ybc7O59FPA8f5zP15O4fHOBv6Dn7ybh6n Xrtf9JqjXiO+r+hBq/NKvUmcepP0FH4uSj/7e/nOulj4fYy3f4jL/vf2D86j bvf1Umn/gK8WFcO8juupHXhUyd4XQN/t0CX953ydNAzntKTgz/k6cvj5uMrt c4oWFwR8nU7ZL9OLFj+GdmO7RB7sX7T6BaDvTl36btrjkX3raN9G9rD7GrvX 0e4l3XCOun5Z8kZ/6vU3cfx6nsclb4rW+1o7GdvD5gdF9nMTrva2+Ueyr3vk 5y8rLoiHbcgHiRf1/ovIDbVnbrF6IOZH1MS/MD8o8iPc1/gd5k8BX67ydpTq oWEab1PulPbDq/KdA7rEzpvSYTj47qWu8N3tM96vCegxxfs1pAd+LmrGYbec r+/Oh/TYuT7Oa65Wv+ZEj0OOFMsSL/JiysbJ9zpYx7uTNi/icn6VNDrw/Qru j5JqfxzcKXzyrL2nlHW+vlP0ReO7N6ofgfGf1yH9HFkxHPu02i7xeAs0vnKU +qW7dQm+l8bjn63+zJHtIX6trx+L+T6v9XbzudBff179lMs8jn30odYv/0ZO 9MbobrtfxfpcrfGl53bZ/Srw+/Rc+JqOsP19Xm7jvdWpefELti3Yd+FHDyuI vByXt31AHPvxGwXRI8+vTmh9OpOLWJ+Llf6f9cs+ZL3l9TtlPPtmDRd90RGe p76s99zrtZtfgN9n5oXPzl0Z3ufcrffvje+Cj57T9zKPFW2cfEcDubhbycaD 792Rsfqa8u6rXeT0f1JyLzFdzxv+sFLovVmPjOfAitzn/lDrWg3ofe1JWk9i R837v7Jb3y+VDRf/VeX0M2XRJ7/ttPYY776+H64P6HdqxdoTx/jG+fZcN7aH fJrVIe/LTlwtcmMntfcmdch6DV0pcbJjdV+uu1r+fqDd2mM/vtFhdjLW7+G6 2DeLOg0H/53ncdrPAT60w+xA8Nseml/7+Q5rj/1S1zou+3Vae6z3VC+nRwzi I+aIHtqqpnKhS84XtvxE6DK2anSBHk3MF3v7Hp+fDvZFYZHYYRdWzB7G31+6 TMbXUTY/DflEv9ci/f9Z/ZcTu+w8n/QnTvuWONh4OvMdaF7gcZ6v+E4Tv4+q GB/ynSZx8i3faWL+Mz1f8d0o8IWeD/luFHLoEI/z3SjwER5n/R3yLXHW2SGf 87vEyc+05zHOm9Py969njf74+8f1fde8rK0j5NUzaZEXq3K232l/oN1EL2do x4A+u5ZMDrA9+jvQywHan5Rvck/cZTjlIb5/a5fZt5SfjCPA+Mdo/fBN0vau BviAnl8M93Y11vN3Ja3P2xvm0fhQz/G/0aQvHPVFpF8c9QvsoR06qWfN7sc4 s6aXwziQ/UyPGy7n0518Pyrfa0uJ/N6py3Dsl3F6/nVwl9XhwTinJkXPTNW6 BLeVLX+R+H1dmr+tbO920e2zyj8NuzHI1zSu3fBAvz/TYf18U/cf8H+023db ZD1kHbdaTbtI5ntzt6zXMrOXZL3+1SX7egrPy7Wexm0+T8n9YheZ/cb1Wih2 VBM+Sewus+uC/JQPVuWc8J+dZpdh3cqa36ihL9ke69XejEO+/LGWiPvHeH9e s9/579Bbo2phv+8sE3pkfL436MM9WmWdGzjP1XGPmNc6qy94nP0J/X0/QbzJ szWLi+B4JK+PxyG/dl6p61Jj/ICcH5zbJnr/Eo+zvdzXVHn/aeNE/09Vwzyc jXlBXuxoeQEd6YD246vMUxLWubq+In7nnj02L+KId5qWCum6TkX45Xc9os9e XiHrdxvzjrTI/eTVywUfU0mQbyFHXlA+6S+LvXmHvt+6Uu9bGvo7qF/2k2Wy LzarJJjfgDjkxb/LFkcBO+DnbULXGf4+FXIz1Sr4Tv7+FXbhVq2yvluVrX0Q d/P9kvgFp+cs7gl/f4zeCyQ9jj/rL8r50eV5hzxoLW3iPzzs49GwTk+2qn9U NDkt7/yX67skj580SPcfrRQ6/Lcg+/jTvLwf3GCV4VmNOyUOsl9QlO+/mZN7 5sQy4f/xeq47rpggjvUZr++BOwvy7vbSNtkXYzSO44uC0OeNZSY/0M95Wjdo h1bzk0C3RxXvXR7GUY2oyXga9kAQLzVJ6xvtucrkDeTJX6tyrnZwW+jntVSF /te3GJ+C3y+qGx7sywaO3/t8e/Q/sm5xc+CHTeZrnd1qWA+nZ4Hw4fCq2VfA d/1U5Mtpmi8vvSzxw0H58GpC/YK6vGe4vVV+P2KGrMMldbFjtmtL/GUQv2ya 4Rzfjwb72fg9WYeJHr9wcB5tbwnfttVtnsRBr26P077FXw8dsH6IY39vNhDK 4cZ/xBF3ftAqs2PRrKB1IC5bYTj44Zia8PPI1dYPyPuO1xs6X9H3Y+ph3rIj Zsg+Gedxpafotfeb5us434g+jvSJ6OliesLPWGOu6NfnvD55ZXA+2y4Qubaz 10svD+J3zLP25CvmayJfkQ8ZbxPz54Mqr4lzH/GeDz+v0zpejX3HczHM6yd+ fxHHd9eqOa4X+8G+e7Vq68L3frBHH/LrSBxyaNea1QWCvlu3X+u956yOnMyz X+ztbxTMbsT/N+4zXOy4FpFr/1I7r5CzunP4zkg9L2jPWv9o/6K+J1micd6X LBU++5m+p/t30RHH/j1fz3t3LEpdk5laT+NHHoe822m5+f+U29jfHy+z80/K ediZOy43nHoB70VPU/votqKd9+L9/KlqJ2xZsnNd+Cc/XCl0qxYNj+S2o9yO 5LyjnI/0gqNeuEXtQ9Y7lbhzvc/+oJ36XezGZUmxnztM7zvUk5is56GTVZ5m yo76WvSH6serK2aXQr69p3bCrRVHe4D793KxD8Wev7ArPLdr13o4v++w/X60 2I2Gs/0dYu+ZXRrZh0242pNN9upwsd/sXJT4BWLv2fkn/+5QseusPeh8/VLN 01VzQb6XzqViJ29odTzkfOLbWj/kHatjJvdtx62gfWj1XojfLnag1YeBnfNG q/DzJVY/TeySOYvE3rnJ5/mGvHxC400+rpt9C7tzseaFv8fjkh+4RfTfL3w/ xDHsQ32+cOz3IS1yjv0VHHJi6EJZ92k+/zf+efpi+XmDr3chcTuLhX53exzL MvdT+fcWX2eDOMb1NutRPCn6886FMu976wnSE3ItqXX+Tqrqey6NP5i0yHDu C7aXODU9Z2n4U6QD1ucjrw9IBzl/qyWCOPlGe+ingVr4DvTqT2S8vZZ/Wt7l bDhX5MwMn49Z8u/Ml/OTg5gPuMWRbsRp55PO7Id+AdeF3w3r3iwQPhhRtTyf QfzR1czv3mU45nF61exzjOe1hdJ+mN5/H5QWfrhuvsXhY1y7Z4QPxmoc+pG+ PceDcVRKwr8j87b/iEMeLPXvsCFPdtG41Z+pnnlJ6zKuoXmzTtH4szFLZJzf 0vfiv9e44T8vlPV/pKT5NvrCd7EblsSOdYXw3cPv9H1uMe+CfdPAIe8PKLhg Xx6ieYOW+vcQ0HOX5mV865SiPGQFWberi6KnjvHvdLFc9+REzjTGz3N1uDVX 5hN3D9Jp6Nzwvek9+TDf8B0aT91aDun8jsYh/sbHr/G8Gn93r29PP0Li+/x7 YvodkF9r+fcH9C+wj7K+PdhynV75/gx/H0UcdGqL7rU+0rielb4967ein7W9 /CYOOfB51XDQ659Jzd/icdghb2u82rRa+N1ju4SP/+71BnHQ85++PfyE6mrx j26qGw4+Hqt1sC71dcvYHuN5uC7nkMMWi/5JLTe/A938fKnI7XdXC50P0/30 7zZrD7o9Vmk6twB/PVBv0ofE4/MPrOcrvj30YHlOgvY8cZwXHDAnQXue/RCn Pc95iZ+ncvfymo2fOOTuJD9f/DxvobVn/0F+vf/VQz5nve25Hg/yYv+vbnld qT8wzr0GLN6QeijGqYeIczxBHu2vjOfrcJ4ncpzs5z6hm/lBbE+cdCY+S9bF xeui8lvO8V/06xi8e3nRrzvzf4Kfl9Y13ni5yLWpq7Uui3+fJGZ1u/DrEB+n Cft1z1ViR67n64XofnHcR9G+c9x30f5y8f7SfeS4j6J957jvov3luL+o1zCN LzT/4b+i/Ar3az36oV6OSbxHj3zvSP9eivUrY3lyh8gfR/nDfojH8gpy/ZCM w8+0l7dwINp79X7Fyz34QztoHs/fezmpesRRjxBPit5x1DuRnnKxnsLPxZqv pu71FOYzrV/8gS98P8SxT3cpm1/AewfqZfbD+wXqX/IV7yOoryM966hnI73s qJcjPe6oxwN9NKwi/HyJz9+v9om8y3rC42rPiH8xyo8f/tJhZUc7h/PF/dHJ ev90UNrmBfvvXx5n/0mR1xavQhz++fuVMO6lMX7w93G+fWQXOdpFkR3laEdF dpeL7S61k+W87Cv1xNRO1jikLlsXtkc/h/k6Y9CzrbXwPJr6YoO68Uegx7f3 OPbBE0vFPp6gdU2TWifomiWaV5j1aVvEXrphoeiT7X29X+ittT4V/XUl96e+ y/hI32UdUbV8vGyPvz+1anl3OU68Dzq3Hu4T2hsnNOOorzjKyyMs208WCH0+ 9v6jnKvre4J7PA4+3ULzld4U1eXedh79JhfUv1g9n/6RC+69t1W+etvX58R+ u0jzuK30egj2xfR5Itcf8HoF5wFDPhI+/6BZ74q/MpAI8h0x/+vJA/Y7/x3r 9RuP86fU1xpoqqcEuXzOgJ1rsh+5n/c47OFDpghdG+NkfBrOiw6cLnLybx6H PJ04Q/p/sW5x/t8anN+j74tdeFHd8uedNsgvT70t9HqyGcc6X1a3vHpY19vn mr8Jevd0C1/uM9v8U5FPPYmXBuny2AeGQx/u0it+yXSVS4/ULJ8i5MLiedLv hVaHR8Y1XvMV/rhm8QH/GOzvlYTa+b4+zzWDdNjifbHHxlh9Nsn7XZkmcusE j2Ndih+KvXhtzd41gJ43z5D2i2oJ1k+Ud3rTDNfzx3AfTGqu54PxLW2u2yNx db6uTpB36j8VzU/m8zGDjltXRb5cnHHBe8g1q2IvXBnldR5bln6SVkclwboZ +PeNrI6K8Pkmmv/7n32Jw3H+MN3ixEDXqzLizzfWnTj4Ylla77FmWvwY9vOc jPE56DCiLHVht82H9BmhcW5XexzjmKXxNJf4fMwY/6uan+xEn5cL8neS+sU/ 83m5iGO/DvXtQbdNirJulxfDdbxP3zFuUQzpvIm+Bz/U4/RbMf4B30+Q/3Fc yfDAz92zFI5np37zT8dr/5Cj6/WZH6rn8vLvr/ab38p7DqzLORrvvFvZ6i5g XrsnhT+fLdt9APTrMSnxw7Yoh3UjLu2U9T2jknhYxwN9eZbmKfhT1XCM54BO 8XuWVuS9yP5W51Xkya51OUdf9lEieP92isd574bx1mruj4Pff/B98wfxzy/X Xf/gPNd/z+wX0D9Xl/vN309rwtl/UG94ucfpP0KufVh3HD9x6L2H6m7iYH/n J2S9tlpg92i4L9tlmuyPny+y+zKcmw2bof7vQsMDfXHrfOuHuJyTfSLrn4vP KZvx2L+zc1z1m2Jc/UTDec9/W9je3vPxO8R5/8/3b8TZbpzMV+z5f9RNzswU +gj+nMdPFXrKfpjj5zVL5us4X47/6/BthJ6O9CSfUJ9x3clXzA/O9SX/ECc/ sH/2AzmwzoDh1KOY13c8HWKc7fHjqk6xP+/wdU0gp9Kd5oeSvqI31W8dX9X6 QVbHXeJyzq65B4FPND0He2FqVfLBNOhAHOu1B8/1ZwtfXpQU/KxygvHXGN8t Wu9gv3LiTB0P49Yg75eVjX+oz6APHq8anxDHd35UNb6ivsR3GvYszzUg17ZP Kx0qZvdJ/rFe2bdjytYecQEHZaSfFy3uyeIVYvlMPJbDvCej3KZ8Ax33KAn9 X8ua3JP3fJpP5tWcyU/g/yha+0hPOeqpSK856rVIf7lYf6mectRTkV5z1GuR /nKx/lJ7QOj2pM+/oPaD+GvXelztBImPmRzVeZtVdrG+Vv3uqN8je8DRHjjz q3ze8Mvgn57ea3xIHN/5a4/lcaZ/J/nLkwnae6eJXSf8/6m3D9V+0/xW7Y72 JHHJj9ce23tWdzuyD62+Nu1Jfpf2ZGTvudjeu1/swyZ8kdiT9g4lsg8d7cPI DnS0AyO70cV2Iz433/t9bA96v9+Mi9ni/cHID7LvRX5TE65+lo0j8oPM7wvy rZ7TjH9H/CyTC/Sb5NyqbnUn6R9BDM82OW7+FOjzTN3qj0R+kKO8j/wmqy8f +VmGbzWInzle5NcUHy8yEsDfxU571eNLQe6bZHx/b46PkThQf24b1IFcbyDK jzpkCPbnNh4P6pYXvJ9LHHT7YCBc78Z/WK/3muwJsbO//R9rF9Tx2P0/1o7/ zvbE+RPr3mrjsXXGdwcG7Bya/YDfNvqP4cG7058NmF8c0OeCgURQb7Txn+i7 Zhz7/pS69/u0H+izNevmJxKHPNqvbv4gcdiBD3g/OqDHTO9387sihz0+fJDc LS85jUuzeG7iWI8/1yzeS/jtGTkv+5f3l9k/+OYx9de26A/rsTRwqQfRlwjo f5TiO/v22Bc9htu8oD/y1r/Ni7j2H573XFcWu3rTnAv4fIi+VxqdtX5A51fL hrM95Mxxmo9mtq8zA3k3TvMkz84bHbDfZhY1v76vP4P1vaAk8RRj8vZd8M+j Gm85148T+6tN83w39PKjsLvesvdzcj9Vkfid3DR7Xyv2m8eDeicHevw6kfv6 /qVq/ZMPsL4nV609cdD5lao7HIS8TeywhzUu+65aYu/Bbrd6TPyInnbN0181 HN8busragx8/etni4kGHm6vuR/jgBy6Iq2zgE/CHjxou86i5XQbHcfLb5t/B rr60JufrD35g8YzQv4fWxN753yuGgz7tVaO/1FtcmqB/QVzqM7Yk6F9wHYnT v9gE/d4k56eXr5L2j9fcFDxAuVDim170eO/gj9TbhnNegdzbcJngc+qhHFtv OcdpfMX2Ok5rT3mNX9P1cJ/yHH1Df77I9sS/pn1T/8TjfvS7jOuxOB76ifz9 vsh/ZP8xzv4pZ+Nxfh1OOU46sJ+Rso7mJ7I9ca478R8Jn5gfuuEgYbZ5jeso dtoRNXej7JcEccjVtxr8IBdSCeUTw9n/BbK+7N/wP8r6OvIDx088WneJ+/u/ Dst7QFziG9vDvAeN/7BaM1d5HOs33uolYP9so3ZodpLh2O8Tq24LpQP9R/Qz xvwyixdEPyNLlu+MfhPk4u0+72DkZ/F+2vrBPlhBv8b3I/Z2wfiNOLZnphDq 96TmKX6zaHwJfTcnK3rymJL1Qxx/93Qx1Dvj9B33bC//VY846hHSOSf6wkX6 QvOCqX83Om/rqPpCfo7O2bqrfpH31JvkY/3oYv1InPo00r8u1r+qTx31aaQ3 Xaw3Vc+6UM9OOPSxwX5rVZnfGinmvzsUeuajqtyDb9Bj7z/gv/2upvm7Oq09 9OKOdXvHRRzjzJt/ZP1gufaoWz7YIL/2LnXhyy9XWB0J+E2b1+V8Zuxqw8Hf vTWNU2238wHEVd7g7+nIP3hffo/HeY6Gv7uibveApOfRYle72K5WO7wJV7s9 vMcdYna1i+1qtcObcLXbo3Nns6ttXSM7vAln+yHRf2pXu9iuVju8CVe73d6X sR+1q82fiuzwJlztdsvDwP1L+tN+pjzhOtJOpjzhOsZ2tcQteDyyw5vwOWK3 23dfH5znEW869QftPHga/vktx/s14mzP+zXyD+kE7ri5Oc5GzCd/j0kcP1qa 24OMJw/Y+X4QL7nPgJ3v87u4551et3sCtgc/tHk9HcT9fNh0XynnIn/yeNDP i96PC94jrvR+XFBH9H6P8yf24VbejyMuefC8v8Z+5B2zx8k/2Effqiu+yvgE /Dy6rnFDnq/Q/3Ee53ehJ06tij2/ecbGK3JJ7/u2tfykIb4kE67vJ1XzD9ge dHvD42wPufZl1fwAPb8Suj1i954875L2d/j7Uz3XkvOvjz1OvgU7rVs3nHwL OfOtZhz6cYX/Lt4LHDFD8scs8+9SIH/P/lj4/PFmHON838cnU25DH/ynKv5g MWnyHHLm1zU5D5vbZfWCQLeHaiKnH+iwdeS9s54fWnvisDdm9Fr+dd5rQ0/d krR1hx/0l7L4hS05Wxe0e7YkcTRFq48qeqKudas6PU7/F3ZCwe5hQ/xAu4d1 9K+lrpjmY75qhuP9rLxD0bpvbdMc73nlfXqf22Dw54ZTHO95ibN/+vXAj/M4 zwGAz7dzQsMlz1LG4V7nuhmqz7Q+xLCc+8Hgemw/1+ocEsd9xM3vGI51+1ve TRpktD+Pd/SjiX8+yK9dL9GOsn7w7xu/6einW/86TuBTLA7Z8hoCP7TAuGXD Qb+xFuec6B6k4ycvhPUB9ii55wZ///k9YX2hh4tui8FuTn3d8mFjmpcVjQ+x T7NpWb8ZZbOHsV73a77SA8smd9meeSFwH3b9VI0/07wcLZrH6L0PZH8MaDzW eSWh89r/tPaY5j0ls5MpXyAvJvg68ZQvojcqFmfJ9vB7jqxIvq8j5ot9+e9u e6cuemuG4XynjnjKZ7Ru/Z1Ja6/3UyJX9+y08we9zxK+2rzDzh/03kraP+xx vacTOh+x3O5P9V5P3mtetcLuW/UeUOh/mMeDfbGe7yfQOw0/PbpvbcJ7Bvvf ZobZkej/vZr7GfyPqSG+vCZ8ueZMF9xr72XvZsyOpB/NdQniHxs4+Spur/fR 1v46mZfT+2iL1+P9uN5rN+ErBvn07rfCfuZ4PIijb/izWw82vObdEP+KX8y4 hvg8gXEN8XyDew/DX7d6GNE9tX0nxqlPontq3jvF9+PuHv33GI/6N/pTn0T3 41bPgzjbxeMnv9HuYf/Emb8spNvUJpzrG5yfNNaL/MD2XBeue4A31jEej57D GB6d2xg9vw5fIftO9N5Ddl8v37tqhdgjH3q8W/a1+NfL/b7j+Qn3HcfzdTjP Z7iv8c7tpfli5xzVJnLl0apDvGN+rpw7/LdNzxmqUg/nv7Pdq4MT+LBV9NAP aqF9+4sOO4chDjk+0GnnORw/7Jmib897KsjBy7UO2b0+Xy/Mp259nz/V47Cj TsuJf1AoJQI9eEFJ9Oo5WRsnzyUwrts8znMM0O02r0/VnnG0ZyL7x9H+iewl F9tLPK+gPRPZP472T2QvOdpLxKN7arvHi+6pDY/uqWN7xtGeiewfR/snspcc 7aXIznexnR/g23p773jxIxz9CPYzXOx/F9v/I8RfaMLVL7D8M7Tz95V4SDun p1+gcY+W74Z+xE4SJ2k47fzJYudbP5Ff4GI/Yrb4EYaf+VX+fL3mPhj8w8Qq k3u4X5lRc8fhu6tMDmI77FyT+4x3umL73NE+j+x5R3s+sv8ZPxD77+5r/HRf byj0660910vOxQZc7HdjHFsMuNi/ljjZAUd/nDj+/HJ/nkMccvKfpg8SAd+6 Zvxx8cdd7I+r/96Eq79v5yORP258H/nvTbj6+7YfIn/c9ADbXy7+exOeE3/f 9MyjEjfu+F6Y/S6QOHPHd8Hc56MG+/nJAsd3xMSXS9y4nPP/x/dDHO3qXk/s JvHnIiff9Dj1Iog12sddE5d8ufUEf+e/3yzx9oYH98zP+X6Io/3yup1j8N8x zqc9PlPi/J2+C7B8Xltj2guEH0b7vGxsj33+ZjMO+u/t/XHi2E+bev+d/YMf 3vf5KjkuqQ9et/Mo4uh2nr0jtnlDvj9as3Mq0mkzeX9h9+Zsf6e8s7D7cbbH fDbwOOICxy4wfx9xHkel5H7guvmGi3+QEvvgtYV2DoC4s427bV0Yh6zvU2xe jFvWdyg2L+J3yLsVoxv2S7YifuTkpNGZOOj3Wq/h6KerIucY66Xl/cZb8x3j qyHfe9NuR4hv7f+Esrx7+ENG9suUTwzHfNfsE7/s1FnWD/y7VzKSz7A42zGu G/HAH2n/a35iOPq/N230Ybw0lmszX38APzYpiv3/x6LRhziGdZDHGacN+dqw K9gP8ZS8nzKcceAD8k7K+oEdc7Tm+/jIj4c4+O4Lj+OdzJd5PS8vhePcqV/o c2Y5XPdX++X8Z2Q57H+9PhlPh8fR3V+SkmenpWo41Pqn+m7/N7VEYPefp3n7 dq+F371B8xde6uUB2pXsHa71Qxx8cpNvz30LO+0r8ibIW5b3/bA96DS9LnTd xOfPwL56oKr3qfMNx3HPUL3fn7DQ+pdzStXPDTsc73EKi+UcoGG/YLznfyry 5MYlhoN/t1piOMyNhr3AcTIuulvemRp/Etd3qYYz7hpsPcbj1MdJefdqOP1Q 4oF8tnwQvv1zqnclPt+fZx+rcnAPea9q9GfcaNyedg39RMo9+scxHsV123gY L006sH/iMd0YR036sD3lLPmB7YmTf4hTjpPfIv50MX8SJz9H/O/I/4zPAr9t 10E5p3mjW4Sv1usynOODHJncTvnnArk9SuMv94j23Zwu4ePfelzewyRlvq1V mxfyR52Vlv5/W7H2yItzhtYzvcHj8Nevzoi82cHj8i4xy3ephsu9dZbvW+27 bK/vW639VJFvjvIt8M+PLjjKQ/ZDnPIT5/yvf2z38vj+F5oPfujcsM7rLpr3 eLMF1h72xRc5F8l/R/kf6QtHfRHpFxfrF8ZLU/5H+sJRX0T6he9tbV6T5Vza /F+Onzj9Zc5Xz73Nv470Pt+rxnYC36saznhp2hXw385cLOu0sCzjOb1f7n3n zpd9cWqlCYd+Gq3+9ZB+iUeZ0GL8TfsB9/SbLqIed7Q3YA+PXGI47RPaRewH 8v1vabOv2B76YUja7CvikA/7eDuB/cCu2CVjOPcn5HsqY/QkjnW+LmPxvHz3 yvEH5yQN/xq/5nrCc5IrqyJPFqfETkzNETmRrZqfi/PrWTPlPuvomvmz8AsO mC/3p5OrhkN+j5ohfndLLdSrm02X9d7I+5U4n1p7rvD3T317+ME7qb67pCby Y9MW0ed7fyT75Id15l8V/fbQbJnPdnXTJ5Hd62j3Rvato30b2cOO9jD9Kbjn b9VFPr853fwvrEvDj0adltOmmr9GHPVY7vsg9qfM34v8ryZ8jvhr5k+SH9Yd /Idz63Iu0LrIBf7WCXXXN7hwLR6HvTy6Lr9PXGD9XCv+lPFf5H814TgXfNbr P9yDrN8q69Vr+U7l3dGPF6vesnNAeQd1RYvQ/Qd2Dijr2JgH+CVl8V6S//rp ZcI3+3kcdvgLav9M83Fg4Mtx+k631+snyU++TOT5N/27YHy3uNRw+suwC/LL ncbPmD+Gc6t3lgmfrO/9WZyH7tEq5xjf9HqdelbyR3s/LrAPltbMX+O/S748 j2M8J7SG/tpH3fLd7JLQv7skKeP8ztLQjzugS/jm5uXS37a+7tsOiEfVOLwM 65IuT3Ti/aSeI79QsXfK7B/7//mK2P9P9th4IIfne5zjJw75+VnK6KB5GNSP SBuu+RbkPumTXqOP5mdowiEPRxVlvp/m7d0a1Nce+l71cY9j9R4uir/5Zk7i nSe0itzsL9o9J/z8JW2yvt8v2b0o+O2z5WLHHONx8XM1n/vvSnIvdnpO/NmL lxr+muQtNBxMvGFJ/MTL87I+667SumQlq0sAflp7lfDVUz5fLvTg7isNZ3vs /62Uf35WMr8Ycu/nbaJPzy6ZH439m2oV/L2i+cu0M9HPWjmh82NF/w5g8O8P 1Trn6zMfyypZ9+3yog8KBdsHsmsLMv5vF6N3AAVpf6rHuR6wE2cULT4F8zw3 I37iUWXDZV3Swm+v025cJe33TMs5TIPv2D/PkSG/96qG+6/eLX7xo1UbP3Gs 41lViavbS9f3nLTVocD812yz+qjEQbeNWpvq/7B/0O+xDok/OatmfAt9umWH 3uPXwveZe2k+9aQfJ+TYsV1ybrCWlyvENU+p4cyjhfFcVxN5/oHKqwfa7V4b 90H/p+N8vSPM137eKpHPE9oNh/y5vTWM25tYF7ps12bnuZoPVuR2epnh0MPd qsfebLF+6McRpx9KP+7ewXanLTWcflwcH4d5fG+gKQ6OePx+BWQY6tsH9yQV HzcXnO9m4ng9i0cTvX19i533w4C+SOOw+lrM7sM6jqwn2J7jYXvi/H6Mk1/i /omzf2zr3uXkK/n3QzUPxA6t5EPhozdrCdhLbywj3xoe8ZUjX0V8yHy5Md+6 mG/5PpD7kTjfB3L/RvvUcZ+e+1U/fFrK/BjJf9Uh8+pImt/zU5Ub6HfXHsOZ t0bOrdKC71tkfIDYqWdmBD/e45CTQzRv1dSie3vw33da7lg3jfKKOPMHUb5h f+2zytpTjoFetZXmh2K8O2peh+52iwMnDr57ZIXhmqdX7PNLlprfivn9oSh+ 0Mxlhss9pm/P70p8XFHiZDpa9J5F489/kRc7/MaVYt/2qT/5ZdZtrXoH50rV nOGY16krbJ2orzGuH6609aB+x/dOW2E47QGMZ8fl8t3WoumTSUpn/P1xRdM/ Uwb55uNlYv9f7/FIXzvq60i/My9xbA842gORfrd60pEeNzzS+1ZPOtLvjvo9 0uOOejzS+456H+9D3ms1/5T6DfeQq9rMD2WdFdBnXY9Tv0GvNeQC+6G/9r9B trlhpfnF9O+wT9dqN5x+XGQ3OtqNkZ3paGdGdqnhkZ3paGdG9qSjPRnZn4bD fxneyngFO49E/vFftKn9ULPzyMogWX65zNrzPBL75b0lqve9nzhxkD92bDGc fiX02n0epx9KfwTyOOPPf+m/wF97vmb+G/0UrGfG44cgPkPrDA33fiL80Fs8 Tr+SOOyd4d4PJT2vE//F6Mift4u/04SvJ/6R/X3kvzj6L5G/4+jvRP6Ro38E sufapf8xrNOh98TLOgQfX00crnQA/73fLudevR7neyF8ZwOvn4iLvvH6Sf0q 6W9ltQlH+3erlsdd4w5kvs814+jnSruvdFrPTvhqoCL+Aue7vFN+/lfzip7U LXK03GntiWMc3Hd3lWmvy757o8Pw63SfgvsWrxQ9cVbF8G6lG777WsX8fcj5 51bLeCse7xpsv+lKab9v1c4BEIexf7e0/0fF1gvS4249j/6kYuvC9sB7PK71 iWR+Rea71Lwa+3U41hNkHROtW+RYT5C43De3O9ZVgb1wa8pw1mGhvaD1fQzX +tbGJ+C3C4qsu2frDLr+1+r32ToThzy9TNs3xin6sWj+HfALtQ7nbR5HP33K n1t6PxHrtUarxetiPxRyck5UW256Ed9ZkhX5cvcqa4/1aFc74oB200/QK5/l pN0bq0w/od03CnKe2L7c2hPnfKUedZL16Sw/C+iwRZJ17hLBvtgyxTp3dg8C /GdWR8/8UKzfb/mOuGJ+K/hl7x7W45N7uUdWif2Q6rJ6AlI3XddrSNL8Ndgn u3RoXsVOa6911iyuCD+OrMr958TVhuPn6R7nuQyGfbXWa96xy9rD7jhV9/1v Ow3H342rWHv2w/Zg66EdFpeDf9+jqvkmOswPwvLUK7Jv9uu09qDu1IramavD PJdDa7JvZ7RbfCzvQ7Fuq3yect574ue9q82/Q78P1+Vcbo1V5t9hnc6rC99k 2q09cXR7T7uNH3y1wOPBe68GDnnYkG9RnUHLH4nz+gc+FH483ec7kTwoH4oe q9q5uHtvcDgXTRV5Nqxu5yQwixbNl32/t8WRiXx4c77s43ur1l7i/hcbTj6X 94MrhL7Xli2fCn6c3iZybV3mj+2Sc9lWPZedWGZ9QMunSX4gHtUNFDkxvdP8 FfKVvJ/oND+L+w7jqXaan8V9CvId7HHua9hx23cYjvHfoPJySrvhGP99FY3L 6LDvgg4lfc/xWof5R9hvh5TEbz1xtQvq8R3J+IjOMO/qK0XZF79brXQtyHi2 Lci53Q7thoNvvqHvKg7uMFzok4/ltgvktpfzrKOXiPSCC/SCl/Pua+S5yddI /lt72gmsxwe/oC1ldgLr8YEu41JmJ6jeFP6e2qTXHPVapAfNb470pqPexHd6 2oU/P6uavUoc5PhOze4t8OPXnbLfXq2GcU4NOifFvjI7MrLHmnC138zOZD/D xR5zsd3VLXaXtSMudo1vH9ljjvZYZHc52l2RnWY47RnIjWv8+QVxOd/29iTt IuAjPI5+n+oWvtrT243EMa5zvJ0p71GTwp+7exzj+lDPUzaoWDwr+rtY64N+ XE4wbhXfm9Ar4zmvnOA5FvTHYz3y7w9WrH/kFSz1iP68sRnXOto2ftwznpa0 OC6w+RtJuUe9yOIbRL78Qe29kd0W3yW/J+X++6oee7fF+w7I96N67H0W88ag v3Kv4XyXjXn9ys6PRL78rUf0xCV6PrVvSc7lbutxbE8c/cxNmVyTeqxZGefL ebNDIQcfzIr9cIbHxR7JiTy6Jyfy8HR9L9ifs/sL6LMrUsKH5+btnkLqRiRl nT/xOObzRLdjXWbMe/+c2Ck/9rjUyfM46z5jfifm5d9P6jK6SZ7itNiHjnZx QfKgX6B50HfutnMW0P2ujNEHcLue83+naHn0QPexfU04+H0r1skuin3X4Aee z4PvVml+u32SJk+x3+ZlhW8u6LH2IM/rWUf6Q38OqF16YsnWBd/dTOv3DS2Z /8G6zxJvX5J5j07a+T/kTVbrA17Razg+PzUn++LYHrunYHvOl3Yg+OLNstGB diBxjoftQfefloVPvt1j9hXk/OKq1tFOGQ65dFBN1uvzlNlpaPeSxrMNS4Xn 5+fUHPIS/rDHcHz/86rhtN+Ic5wLB+mxzzuO3yWdp2C99by9MU7ivYN0OWiq 43iwDlO7LV4e+mhmOUGccVLEsU+eSRoOPr1M37/WUo51jSH399a6N1NTjnWQ MYxrSkK/FUnHesfEwR+zu915g/PZvNdw2CWPd7sXcF/pccm3kTSc32Vecyzj 8SmZ7ykFowPE1HpJw1mHE/y0qcrRoQWh/xKV88O1HtyCQgJxWneq/JmSacLB v5vo/tyymMB51TEpO5cGHZ8qyr4YkjQccqGvKPS8M2n2G/bb2awv0yXffbRX +PTOPM8dZRyjeuQcZ1g+tBcn6rn6FTk5H2rwIc+lKSdx/rckZefelKsAhnmc chhyYw29V98ub/4x5OCaSd6HmtySOM9uGd+hHqecPE3kpKOcJH6zyFVHuUo5 TJxyWM9Z5fejs7IOMzOUX2L/7a/16j5LGw46vZiVv3slLXbPn9W+ujhvdjHE 8lHdmg8lF9Y1uCYl8ufDnK0bfpzco/QtWt4SeR/SLb/vVjI5BDYYkTQ8qEd4 ndaVXcvXq8B4f98r/LvC7lFEz9ym/HSxr3uh8lrlVlH+/aAe43+sT6fe3/wl ZXxFHHo6rXbyvC47l6b8wHw3SxpOOwef/27Kzr15PhzZM2ZPRvaP2ZORvWQ4 lmFjs39Ej36alPXZLWW4xE2rHfD9pI0H67l2MrYbzU6O7MwmvCZ2qdnPkd1o 46SdebvYmU242qVGB/KX1EVnvt0W4y+p51JmvUlrj3F+o2z11yBPdumTn8PK ZjeCLm9nhF6b+/MjfG/DjKz/GR6nnIIc+NT3Qxxy5vOy2ascJ/jpnx7nd2l/ YFxPJW2ctFewT09I2XiIQ6++mxL5XOy1fiQ+zuO0J0G2/0vqvWjacJDnl17+ Sp6mrIzzmpzVsycOuZbJJtge3904J3ru9ay845+WFntv7QLtCa1/rfy8Z8Hy +UH+P9creriYNxw/J2fEnjy4YPFIst4Zyd96XsHyb+A7yV7DeT/F/Yufh+fM buR+B9805DvtTMoH8M+/c2aXPv9VufFMWvCWgtEBZKr1in5qrE8g/xq45G8o JILziBH9sl5r5xOB/mvgmO+9Hsf2besTOyqVNzkvfmu/2CsP9Zk8B7/c2C9+ y5+8/Md+KGTku2P6jD9pT8IOPKVo3yWOv7/X47Qz8Z2Z6g8dneE5kpynvaz1 qYenDYc9vk1J+KjWa3adxJPr+5WOjOW94j0t5j+n3/JkEcd6LegzPcFzV2zQ HfpMH6C/v5bFT/y1r8ODaUwqi548PGM4xr++3itukA7PJ0fp/WFjfxHHj/Mr Yu/2pe27mNfSsoxzSYbnhFr/qiL22BYZnhOKHzehInbkO2meNxpO+mP6a2hd kUcqIX/+eLbIvfG+vhBxyZNaEf7fk+90X7fxoH2+z/KB4RylXDaceb+IY/wN vz7Iv/X7qtzf/sfjkJfHVK09153tKbd5Xsr+ifN8NRhPY148j+X4ub48PwJf nFE2fgjOib7r15041PbxZaMn4sH/ru/62zwudpG+M/ixp7Oc/8wTedaj52eH 9Mv98Foar/orPf+/sl/ifxNLm3CEURywXOR0oSg/D1c5PGOF4RJnoPJ/6Qrr B/trnYy8a7hrueGUe9jXEzqEL13RBXLyQc1/OLfoAnvpTj2/P0/j1o7OmH0N vXV10fZ1EIcz4OUA/TbJ6+zl5DsiJx3lJOlMnHKV+C0ih10sh1VOOsrJSK46 ytVIDrtYDu8r+s5RDxK/X/Sdo74L5GejPfUj9eDpogc571jf2flBpB9doAdX ZoTv97L7MJEr66fFX/tVweIx2B6/Hl+wOHzaFZSPokeTZofwXgr81Ntt9gZx WW/vj2E/jyxK/MbolO1TyKUrC7KvhvUYjvl+XJC/f1X93Xd1/eb6d0f4brve r46sGP5NPT/E+h5WMTszsE/O0PuPWd5uVLtO+p3fbrjagfLzlSY7zezSyK5r wtUONHsV/X3QL99ZXLJzV9BxruZ7nu9xtsfft5bsXBf9js3KOq1heULFb5qa E3qsqfmjhtyN8OT1nlW/9AqrfyP9ljVeqli0uHSse09W6HZcyXDQrzUr6/ND /24K+IIc46Ns/BjPyjzjoAzHgF7KM27K5gU++qhf7htcTvbJsakEcXnnlZXz xkVpsU/bPA66PpxOcL7QC4fnLf6c9MHfj8rxHjdBekIe32tx3tL+fu+3U25h Px9YsHtt4vIuIG845Rn06gk5syeJQ168mDP7k+cvsCO6smZnEsdyDtN3a59q XPQHKcMx7oY9vPlgg5PUr/ubx8HnE5N2roHl6O7Vemt5q+eBv1vaK9+9ORfi v06LXNs1J3ZEe1b8vC/SiYBOn+VELl2ZsfNhuRbNal6bPsO5jnLu0yd8u3bO 1p045MahHgd97tdz3e3yEl/wzQLPoyyegTg+d2GfxTMA3ySveWF8+53kXMfO dTHfPpWnL3u5DPrcluH5kOEYfyWj9TqyZlfLPYTHaYdL/oO0rMfhObPbiWOd G/OlvQ09MlHj3Bs47W3gLxXkfGOFbw++fqIg9+0bFKw95ER7znC2J4712zRv eF7jJLGO/82ZXsGPSVkZ51b9hmMdFum7xsOz9l05J83Kfpmct/Nk8iXkSiJn +iyoM9PSb+2JY/xP5+3dND7/sMZ1/iNnONZnaVHO447N27sy4CO1DsxoXd+H 1E/ZpyTrMkX36fkLxD+6tiTzGZET+TBykeE8BwRf/mOJ8M8fPI79Nm+JrNf5 JduPxMHf3y8JHYfzfeRU2W+/1TqiT3sc+2evsrVnPmC2Bz8vZ93yqTYvyKXD fD0c/OgvGs58YsTZP/M0x+Oh/R+Ph/GLbM9120fo6dg/8aeF/oaTPkcJnR3H z3UP8tse5teXcemYd71g/EBczkeLti60q7Hvn/c47XCsy2Z+vWi3Y91na/tN Ld+24z7Crz/IW9w39xHbF75qx7TrOe0/9B3tdl12Xs15yblxp51vkw74/dou O8eGXVyx/egoB9D/Qo9TbhCnfqKc4bqg/atJtaP7bb3Q/lK9Nz2r3+iD9r/U 88SbVQ9t6M9/qUfkXiFvdhP1DvbhRjnDqacwvFK/6PeG/KXewfgbOOT5pWk7 P5c6Rf0in671OPWI5JNUP6OhRyK946h3Ij3lqKeoX/bQe5BA73j94mJ99Lro o/D+8Ax/no73rXunTb8QR39/8fooOO/8JO04zv3ELnK0izgv4rSjiI8Xu8vR 7sLffTMn3xmRt/e2xHEPMNbLUfw8Ly/y4C85a49+jyjI/p/v6xNjHo19MRZy PW/nIpjvzgXxT/vyjvWrgvcJi7JiJ16RMj7Efj5b7bh3k4bDH39A/bVf6fuM /XOif7I54/fL5V5F3yWZfhM75smcyMV7/b0R7atFYl852le0x4jTHiN+v9hv jvab+F9aJ+BFqyum+Qj6ZZ0OKhkOMqyj9v9hJXvfQ3se7bNFF9jnrWo3nlVy sZ2P+f/K4xj3KWbPWxwbpv1azt47MJ4MZB5ldr7FpUFuHddvfiLPyUG/XbPm bxIH/8/27ek3ge6j+jXOrmR+mdTB8jj9OIyzvc9w+n2Rn+ViP0v9siZc/a8w /mfTkpyjp1nnYMKh6P/xkvQzO2t5+SV/gJ6Hzc1ae/YD+TLB5wFke4lPyIX4 4/ru4sAob/KlmsfhGJ8fgbjwZc78NfSzdUn0zUu+Pf75S/XD6zmLfwX9nlb9 n89avCz8lD30vGBl1uJi8fNdrSt/QsbsbeKXy/2v2dvA04rfnjYc+qdT+eyW tOXZBb9uoPbR9HRYt+d6vbe7JWM4fhYLIh++2Wf9EMdyzM1Yfl/ag3KO4nHy K/bp+33mP5JfYQec3mf+JnH8+QN95lei3eF6bvJOn70vBb6/1lG8IyN17XgP NUvP4Z7rM5x04/jwdxdmjc7ERb57nPMnDrpspuc7DyZtvUCHNzQu8NxUGB8+ Vd+bHpM0HPPdQe2yPfR96wL1ny7zOPhqI4/j9790Sz6rt9NCp1LRxgm9upbe UxxSMv8C+vPpjIz7i6LhWP9t9b3Sb7SfS1N2Hgc588ci7ZNEcD61Y5F2juEa vyD9zNJzuq09DjrfpnR+OCPttiwajnX5X9pxvvRrMM6qpwP9GvDBSxmjJ3Gs x2V9cp9W13vr0/UepDMn37tI+WTndo3/V308Wed1RYfcF5yas/Ewf5zEV/l1 5DkR+ZTtg3qbjfb487eKYj9tpvmpRhREz15QdLciXqrNcMy/WnR7DtLvmBXi r32ucQ03lSwvJN6FfuxxlZvvEUc/P/HtIbaHafxsW8HmBa12tsqRHxQNx3e3 Llp73newPedL/yWmzwMqT2P6EGd79s98yMF4GjjzJ8fjDO5Nti6avpT4szax yzYqmL6cJPSX907P5w3fXegsenqcvr+8tih6ZIzq9c/1vCNRMJzrBT8lWxD9 srnHMex1aK9oHq+G/MG/zypYPRzKGeLXqx9EPNoXjvxPnOeq3C+kP3HuC44f eFr10GV+vsS5XzgvfHdUp+O+kLwqRc0D4OP7oKe3U/1+bsrOe+Q9q8lPwyP5 5ijfInnoKA8j+ekoP4N1L3U7yjeuL/Dx3Y7yMDivr3Q7ys/1JE5K80ymwvj3 Pt2/32qKw5J1n+Nxyjc5/9Lz+IZ8ozwkTnlIfIzIT0f5Sf31J9H75h9RTzFO LMYHxK6wdaHex3vMn+o97UFJsxPELkoL316XNLuCOOh0SirW+6Y/IzuhCb9F 7ArTV+Czj7WflZnw/c3Buu8m9BkOe+FXRcoR0w9Yj1O0ntblfWF+pFRR/IOi x9le7PQ+88uIyz06/fsW6we//r7fzsnYHuO9pN/8NeiVi0oSf7RnWuNuuoSv n1A90qAn+HB9jV9fUZT252q8xq1dxm/sh34Z+ZPt6ceRD9k//T7M3xWFv7py dh6G/mdpHrSPslafW/JQFoU+M7Pmb4IeT6qfsF8+zMO7gb6DuTFn+RjAJ98u SR7Qh/NhfZ2GXb2e2NXua+xw88uIS921fJjP62J997Z33tHew7inFUTOH58z HPM6sSj8vauekyX1HdoXyrftBetf6rHrediQYhOO+W7m/UfIi3nKD++lLd6G OPj47LTVmcT423S+O3gc/LZ2WcY1PmP5conju6dnLC+u7E+te934LnH8OLwi +GKOZ4HYjyP1XcTPMokgjmNmWebR73H8frDW3zipz/ohjv29eZ/VjcK83tB4 jYMyhuPn0RXZ1+3Mt/66tP9uRfVvv9VFw++TNZ/diH67vwPfLqrI/pncF9Y1 WaT53Aesvqzsy9c0D90O/U24+MN9YT7rRXo/+mwzDrpu7fPF6ztIme81GfMf 9b2jfOen/WE+wZO0zvyKjOEYx6qK8PPcXuuHuNg7vWH+4g8rYt9c6HHww2rv p1AOYzz5kvkjxEXOlMx/oXwmf8r0e8xPJD+Drwa+Bi/4fiTPajn0sxp8Dvm5 p8eFbbtE7/yobHqC/eOfH6iI/Dizy/xK/Byr/Lwgaf4j/u4XHqe/CbtkhtK/ PxXeL6+oyP5+MRXmPWmrCP83+uH5hsb72zh5PoPPHO3nRRzNbvU47Tj8HOrz QcBOOVXfz2zq+8f3H9J3HTf49sQR/9Dl/SDsg0PTck+10OPo/x6PU07Jemu8 xJOV8N1rY5yg3yyP064kzn6ICx+WrT3PD+X82PfDc0LEiQ33/QT4CJ3vdZ1h vMuZur9Gd5gfivHsqHk09u00HHyRUjvh+C7zf4njs/d3mb+M+Mtvlg2nfSj2 b9nsiZV67oLxbOhxeW+TMZxynDjmc5fGnb3elgj46LiKxFvtvcL2qdgVzNPR Gp7DvFzRvAxLZb3KKWm/0OPQn+96XOoat8r+aU0KPYoV0/fMy0Oc71hjnO+X ieN7LRXLM0x+IM44b+KYz7u+PfkN0/tfyegJPr9M7xcP9HTG/k5mrT3pjPne pe0X+nlBXj7WY3SgfiJOehJH/0t8e/qbcXu+04vb0x+Pv8v2cT98Bxj3wzh4 tsd8vyzbeOh3EOd5dxCX3F22friPSDeOE/F6L3s6X6XtJY9MztoTZ3vI+d3K xifkc+JqTxgOO/qesjtbx8l9xPlS/8X0oZ6L6UOc7VG36yLSf8gQyhPiyrd2 TwG/6ESPU15BfkxQvfBZq8lj4JPUrth7RRg/1tDLz8q+Npzj3Ef2neO+I36q 7FPHfcr5Eue+Jv2DPHaX+XWh3gr4/0AfH8b9QrkUxNO3eTnGfUh9QbkXvMtt 6BdMr8XjaH9Tj9h7t/t+5J1zj9xbbejfXYCuv9N5baz1VzZqNz2A76xZFXvn Fx6HnNxX6wT/roP3L8JXR/r+uY5Y17M8znWHHDzRvxshLvnYTI/YfgF+j+kd 21+Qb6NNT4W41yN2zhDpHTuXiPSUnWPQHuO5CulGu4vnMKRz4I88mLR1IS51 wFPm1xOHXB3TY+cA/C5xnhuA/97weRFIf/z8a8XyPXC9cD+4keZr/sq7Sfxa qti7OvEblkj/6/p3h1LnerHcX+/u3y+yPebzqOaVXpC0+AXw+2OqN19MhfdT Iyqy7/tT1h78sXHF3huSX9D/pLK9TwzsnLFle4dIPsK//53xy0njK/z798ry fu7QVBOO85wHk2G+vQb9LxY/MTz/nqf3I2c34+qHGp3pJ04QPzE8J1lb+fz0 TBP+jvihplfpJ4KP/6z649P55ldK3KC+ixu+0PxQ4vjO2k1+ounbyK9swo8R P9T0Od+JYVw1H19PHO3e9nH6fK+Fn8P6XexXri/+XVg/uIGfI/6gnWNE/qPh 6H7TiqzjgfaeQ/bzzWU5P1qzz96/yr1DWc5zWtKO77Bw7npMRe7FL+w1HPR6 Qt9P/KDX+iF+sfiP9l0Ma+uq1hmxemAJ4qBrd5r5mcXeOagqfPcHj0tcf5Xn deZ3E5e4mUxY7/Nplc99acPxvaOrEqfzRdr8aOLQm3f4OmdyDlIVffZIOhHU i5pcDf2jhh0q51C+nhlx7I9jq5H/tUDk0o41w4P8qf3V8N6wQQf8/F7Nvkuc +WzYnvSR9y4eD+o6XuH7IS5xn74950uc7YmDT7qq8fhlvU+smt8a1G88oGp+ bhDncFbV/GLaX+D/DWrUs5aXDP7ya6avJS/MYL2zwXXZuEZ9zXeF4gc8Vov8 wY/Er//Y14EjLvcbvj3XBaPtrtp7KOYVBz/Mqpq9R/sXdHjFtw/qRf2xJnK7 dbnlqUB3R9bk3u2JFYbDXmvQGePYfoXlc0PczLZaZzXTajj25b9rYnfst8z6 ATle0Hf2Ez2O9c3VZF//e5nxJ+bXoA/kfGa5naeJvKuJXvtuq+E499y5LnZH rkXzDyw0XOJpWzRfwXyh5zCPYzybzxf5UKrZezGuC3GesxCXeOiavTvjekn9 Wr8u1LPEuS7E0ej7Hqe+Bn0a/Mx54v8TkiKvvutxDPemlOFBvNRNej9/lPLz IQvt3BX74S81jRuabzjGMbEm++yR+XauS3ryu4j3OHye4fwucdKZ7fFO/Yu5 wueZqlsHTPu+zQvjvLrmTh4cx05TJO7tg27hw5Nqkjdzm+mGg24zqnbvzH6w nmd5nHQgznUizvWlXx+v+6OqR+N157zYH+i1fc38So4Hempc1XB+l7jV3VWc 9CQe05n+ckxn4qQz7Jhba9SXJm+JMw6JOOhzsW9P/sW4Hrd1kfvomd0J4rqO Mv6F3Sovbb0Ef8GvS1CX5ivrEtSxaeBcX7YnPbFvr6pp3t8Ws8PxY9+aQx7Z 7Vc6yhno14YcniVyw3Dw+SZ1h/yRkxcbjuE36Il8qz/3OPZLuiZ5DbdaaN8l /dk/9wH0zpZ10fuZ5fbuk/hykXuGs5/f6rwol7juxCnHiI8Uueco9yJ55WK+ JR7YRSWfxyrWR7T72Z76K/Q3PzJ9R3+AOPmKdir5inzI84eYP5WOhmPff6dm cpX2AHHaf8RxD/alyVWzbzHsc70/Rfsc63CY979oz0v8hcdp/wu9a+bPBPL/ QI+TDvAXvvTfje0otg/Ob67wOOlA+4r9EOd8o/EYfYjHdGM/QZ3dW6vmVwZ1 XK6umv9IHH9+ctX8Te5j2tV7il3tArnasMOd2OFN+Blitxs9aVfPFbvaBXaj t8ObcN6zk560qwfErrb50g5/TuzwJvxEsduNnsiDfFbd9Cbvx2GPnlo3PUsc dD62bvqUfiX47QCvN6HnRi4wnPqFOOT6kR6HvZleKO0vrJvepL4G/R+om57l u07cT19dN31KHPHWjXFiP7w003B8/5C6yJ3Fs5pwyR/9oX0X9Lmrbusa1Ccc 53H63bAnX7S6RIaj2fi4vn2H8Mnv62Hep4bdQpzrTRzyd7bH2T9x3o8SR3z5 qx7n+JFn0Pl+uC6g58l1iwfjurC9xh84tofa/Kmti9n7Upfd1tFw0OckWy8X 05n8ynGSnsQ5L9KffEwc4xtZ13zYc8z+xbyO1jyptZlm5+K7jfGgv+HzzS7+ f2r6oPY= "], { {RGBColor[0.880722, 0.611041, 0.142051], EdgeForm[None], Specularity[ GrayLevel[1], 3], StyleBox[GraphicsGroup3DBox[Polygon3DBox[CompressedData[" 1:eJwsnWWYVVcSRRvacBqHptG2h7Qr7u4SNLgFgrsHDxDc3d3d3Z0Edw8S3B1m 7an7Ix9r9uxT91y/D+pU5WjaoXr7hG5ubnc6urm58+emjG5u5fzd3EbyPx5l d3NrB+9O6uZ2F/4F3grfgivCm+B7cB14G3wbrgJvhh/ADeEd8EliNofnE/M1 +lT4KPph9PrwTPR/0ZvAO9Efwq3gXXCjFG5uM+ATeO6gV4e3oJ9jbEd4GfpF uAu8Uh74D3ngx/i7w3vw/wcPgvfBZ/G0gRfjeYY+HD6A/hIeAx+GX8GT4CPw U3govB9+Dv8FH5SfOOPlJ84T9F7wXvSP6LPh0+g5M7m5/Q1/gr3gVfANuC37 tRy+DL9h7Dz4GGPfw2vhk/B34iyEz+NJxNgN8C04V0o3t4kBzM/DzS0p+jb0 u+gfGLsZPsXYT/BO+AycGs8e+DGeb+jn4XPoCdCXOHPwhQ/Br+A/mNsJ+D94 PHwJ/gaPhE/D72EX/qvwDzgDvB9+Dv8g/m34AvFn4f8X9maeX9CPwn9rv+Ab 2i/4J3wPvghPw/8YdscfmtPNbYTLzc0juZtbafS+6OuJvxB+AafAU4/tZuQ4 hMOeObh44evESQh/xHMF9oLd0W/AKxj7BT0dfm/0xOg30RPDKeHbcDFivsOT AU8V2As9EE6EJxl8C08t4qSG9zOfNOjF4SfoHvB3xl6Df2VsZvRInSP0rPBd 9FboueFC6MnRc8D30VPCIfC/cBI4HXwH9oGj4IdwT8bmgysztg9cBK4Gt4PD 4RJwavyx8GP8vdELwlXR3dCfMrdL6OngsuhPte9cSz3hrnjm4m8Ld4N98dSE X+HJAFeAn8OZ4drwa3gk/spwY/xZ0BvAb9Gzws3gd7rG4Ne6xmA/uB76G3gq YxvD7RibDb0l/B49J9wH/gRnhKvBL+DscAf4A7yYsZ3hPoxNwfz7w73gHHi6 wR/x+MMD4c/wD85Xa7g1nm2M/RMeA2dl7Gh4BJwWfyn4P/wB8BD4i+LgGen4 A9HHwV/R9xNnCjwVPQzPLHgG3BRP70A3t/hkPAPx7EPfge5CXwb/YGw4/rnw TPRYeCU8Hz6CfwE8C86Dfz2cgDgl8GyF16B3g//TtQGfx78GXg6H4N8Eu+O/ jr4DXo/eFv9z+DIcjGcx/F3PQzwH4X3okehH4ESMfY9+Dj6J/hI+Dh+GY/Bc hJPiCYd3w15wPHwdTgF7+HKNw9fwF0R/BKdG/0KcK/Df6D/gW/AFOD+eB7AP nvrM8xR8BL0Q+is4DXoF2J/jmQPORvyfuk7wFEX/BqdHLwy/hdPCxeCE+DPA HYn5Qc8E/MXRPdEzoh9iDtOd8xVCzKTo7p5ubhPwJ4K/o5fCnwLOjH8Oeio4 MZ4i+IPgdGI8n4mTDk8ZOAN6Frg8nAXODleEc8E54UKMzQ6nYWwl9Lywv44n elrYC70KeiQciF4VjoeD4Hx4fOGUeErBYZobXBGOUXy4KlxAfjiasWeZWxLG VoMLowfDtfEUg0PwNIdrwPnhw+xjeTgcboheCY6GGzH2dziGsTXhqnBuxYFr KY7OHdwCjoB7E6cu/C/HsC56IzgMvR7cVPHhK3h+hUsQvzp6GdiF/iv8GxwJ z2YOE+AueJqh94Pzob9kbFe4HnoT9B5wHPpQ/J3g+ujP8LSHa2sf8QzQPuJp CY+FC8IT8Q+GW+NZi38E7Au3wDMKLoBnEp5hcBv039Anw4XRW8Mz4SJwN/gM XAHeg38vPAl/W/SlcHH0NvAcuCjcDl6hfYdX4p8PD8TfAX0dXAp9O/oWeCz6 AeZW0jlf7fGshkviye7j5rYR/gv9Np7tcHn4dzyL4GJ4/PDsgv9E74R+AC6D 3h3+B64Id4WPaSwcif8kPBv/IeZwGJ4B98BzAa6Epw98Da4G/wHfh3+B5+Of BvfAnwI9gGvvgd5Z8GX0ynj6w3fgmrov2NZNeKuOOfdjMP4CXDNvifMQ/Tj6 IPxP4Dra38zcN0Hcz+iJ4a/ot3VtEOcNfAbuDv+A78LueN7DV+HUsAdjH8N/ ETMJ3ISY49HHw628eMajJ4Abo/cljjf8CP8o9ORwU/Ql6IXgVPi9GPuJ+Dfw jERPj/4eHoM/E9wcf148gXBC/BPw+MHf8YzD44Jb4vkT3Qd+gz4TDoW98Mcy NhpOBueH88M+8HjG5tGcGTsBjoB/0zMQTxycFs9D4mSDq8HF0UvAGeG2cBe4 ODyHsa3grozdib8KHIQ+Gb00/Dv6dLg63EHPNMaWg7PjmYFeB+6IPhNuCHfS 8y0D92gw7zndC8T8BT0X/rqMrQ+HwQ3gJnAUPJex3eFu+KfAFeG2uk/xtIEL 4jlOnHZwNDwfTy+4h+5BPB3hIui94b5wVXg2nuZwFzxPGTsIroX+Fh4ON4Qn 4SkKt8HzL/ofztg/iTMUbgAvwvMX3BvPWDgn3AL+iH+Mrgc8S9AnwX11/TN2 oeaGnjAVxwhuBy/HMxv+A88GeCc8HF4Bz4MHwKvgJfAgeB28GR4Gr4aXw4Ph tfBaeKjGsq0NGkt8H7a1Cu4DL8UzFe6nbeHZpm2h34LvwZvgrXhOw6PxZGXs IXgEehB8FB4Pb8e/Hx4Lb8a/B/5LzyX4b+nwLvg2PAEuyNjz8FL8ReCr8Aq4 JHwDXgvvxH9J8fHvhv+FJ8KV8TyFt+M5pe9krp8F6Mf1TQ7PhQ/oex7PNHgv /AKeDB+Ev8DT4X36zoSnwIdhN8bOhI/CXvBs+B99G8NL9Q2gb3X8M+AjsDv6 LPgr+54Y/of57Ed/h2cq+jE4GfocOIEfzxT4Mp7T6Dnghegn4IzwPPgknBme D6/nmkkH++HPyP4GwIPhs3hyw4v1rCZmFPwGfQ/6Y7Y7Cf0cXNC5p87AwfAi eAhxwuGXisnYEPgFXDULzyx+NwUl4j/0Iujf0P+FfdF3enMeiFMZfZW+FfWt Dq+HL8IV4JX6rsNfE06B/zx6cXg5ehH0BnA69CvoteE16I/1bQzv0b2JZzRc BM9lfcPDq9GvwvXgtXBbPBPh4ngu6NsbXoF+DW4Mr4Or4+kJu/DcQm8Nb0K/ B3eDt8H34f7wdn1H4S8Le+FvCf8JF4T/xTMQ3onnBtwS3gA/gkfCu+EG+PvA UfibwUPgfHB5uC2cHf6E/zh8Rs8B+CB8Gn6u72r4oN4d+BfA1fE/Q58LH0B/ AS+DD8H/wVPgffBreBN8FH4Fr4ePKD7vwWe8X07zXviTmGvQGxDzJZ6V8GE8 g+GXeOrqWY3nCHoHPDe5NqbDZeE3eLbCx/AkSs01B3dB/4C+Dz6F/hk+BZ/V 9Q9f1PWv7wRizoIr4v+Bfgu+gP4NvgKfg9/BO+AT8Ht4N3wS/gKfg/+Gv8PX 4fPwHbgDvAW+C3eGt8I/4bvwRTgZv/1TcK3eg73gD+g3YHf4OXwVjmJfPut+ ZG57mOcreBKcCM9P+BaeJLAnce7ACeH/0K/A3vA3+CacGE6I57auT+IkgtcS Jy16PPwfugf8Fv81ODmcCv2+rkP8aeFt+Oswn+zwQV1vHP8McFX4FR5/+Aic lLFJ4buMTQnngv+FU8Fh8CM4DRwDP4HfMDYIPsZYH/S88EP01HAk/BhODxeG n+n6597vBHtx7+eF28MJYT88leA3eALgpvAXODNcHn6tdwFcA34HZ4CLwc/h nPCv8Cc4G1wLfq9nIPxAz0B4M/N8BP/FPLOgV8XzFj0HXBf+CGeES8IvYF+4 DPwK9ocbwZ/hIOb8G/yNODFwVzgp85/Asf0d/o4ej94DToGem7H9YLfkXOvo w+Cs6CHog2F39EC4BfxV9x3zzALvI0469ALwU32nwQN0rPC74N7wD/QaxBwL 5yLmDuYwAQ6Es/pz3PNyrPAXwL8FPRUcAc+BveFfGDsZzoM/En0+nAi9Lvo0 OAw9Bn2p9hE9Hl6t/dK+wHe0L3A0vAhOAsfBK+DkcD54HZwSTpyG6xHuSsz6 xJ8JR8C94O1wFbg/vAuuCRdj7DE4A2MLw3vhtHAJ+CScCc4Pb4R94ImM/Qdu zdjS6JdhP/RZ6Dfhzugl0c/Avuil4AtwZrgMfA3OAheBD8Dp4HLwQzgbXBvO lIvzBq8l5nv0ocRcDb+BB8Pl8TyBs+OpBH+C/eEK8DM4B1wZ/goHwCPgG8Rs BFeBE8CB8GZi/sDzFzGronugB6FXg73hYLgO7AeHwhXhl/hzwjXg5Oi54Jpw Gjg3fJVrIxtckpi/oKeH80hnWznhtejV0ZPALvSb6C54I/qv6KFwJPphdB94 Jnpd9EA4TNcD5zeP42+AHgFHoReFDzO39PBjxkaj78HTED0OjkZvAZeDC8CN 4aJwLNwMLgHng9Nn5ZscfsbYlmyrNPwPnBC9InwFTgPXh5/AXnAV+Ab8hG/+ X+CaxPmNmHXgwnBn4lSHb+JphF4IjkFvDTeEi+gaI85w2Ccx3/LoXeDS6DnQ 28AfGdsOvR1cAn0oMVvBr9Az4mkOv4AnoXeHf8Ld8Q+FK+LvBPeCy8Dd4D/g CrqPGDsITs52u6D3hcuhLybOX858eqKPhyujD4IPwXXgAfBmuJauK+LM1nWF vww8Cc4CV4Xn6bqCe+OfClfF3wdeAleD+8OrnOP2nHOXHz6o64exC3X9MLYf nuVwDTxN0NfCcejbmOcM2B/+A88G+BcdfzzbdPzRu8NHdRzgdvAeHUN4IP79 cG2dC/SdOhfoQ9BPwPXQh8F/w7/Cw+GrcEO4BzwGrgTf1TsoD+9unRf4NHp9 jSXmJY3VtuDz2hbsgjvCP9jHkfhvw43xH4QP5uZ7BZ4AJ4Z/g8fAr/E0h0fB j+Gm8Hj4HdxKzyViPoVbE38x/AXuA6+C3YgzCL4AR8Er4GRpuabw9IDTwN/h /nAG2N3xzyF+LNyV+KPhF3iaaVtwMvTWcHb8KeG/8E9Bzwy3RZ8Ep4bbwHvY blZ4Ep51sBc8DJ6OJwDugOcUem54Afo5OBxeBocQPwc8DZ6BPxjuqPsFPQRe jO4Pp4PHwHPx5IO74VkJt4UH6nmIpyy8Hc8d4peCt8Dz8BSEu+u5h6cCvAt9 PnoRuIeeJ/grw3vQ/0K/x3Fogv4CvSb6IfRF6NXg3uhv0GvDx9CXoNeD++oe JH4H+Ab6AvTicE/0ZXBjuD+8Am4JD4DXwJ3hIXCCbBxv+DJj16J3g4eiL4Ub wP3g1Hj6wI/xbEIfCI9EXw43g/+A18E9dfzhjXB/eITeBfAQnUd4B/PPCI8j zhb0P+FR6JHMfyQ8G30aPAt2T8J5Y7sTYTd4G/4pOhfaLp5NcFr07ejT4bGK g38unAi9ILwGTg3vxLMAHo9nPmOXwcnQd6OvhCei74IXwxP0PcPYcfBX5rMM /3o4Df7j8HU4Gj6M/wg8E/8+eDc8Re9Kxu6Dc+ApCe+AfeFi8FY4A1wNPg4H ww3gK3AUfIQ4p+BZxDkGn4PnwEfY7kU4As9R9LM6Vugn4FvwPF3n+lbUdQ7f gDPw3NigZwXxE8G/MvYs+itd2+hn4EfwIrgnnrdwZTxX2dZ/cEn4PJ7P8HI8 F+CfusfhrPhHw+90T6F/0D2F/oix3+DqjL2InpDtrtT1if85ehn0F3g80evC V/Akhdfg+YbuC7dCv4aeCl6H/gU9LdxCc0NPAa/Vc4yYWeDf0G+i+8Mb9Z2W jm9NuCv6SfS7bHc++jiuvX+5v1oy5x/EzI6nNZ5beHLBm/BMJ2YQ3AF9C7+V TgRxfer3FJ4w9C143qZg3iE8qz3YJ/Rf0Q9q3+GS8G44DXMoAPcnzkZiloFH wKvgwvAg+An+SvBe/P/BNeB98Cd4GHxGzwe4PLwHDiBmVXgsY0PhWvB0+CUx R8CH4bVwMXgofAJuBM/TMSdOU/gQcS6it9d5QT8Dt4AX6ZjDnXTM4Wf468IH 8L+De8An4Ad4+sE78HxEHwyf1jGBu8LH4Q9wb/gU/AT/AO2j5on+m+aJ/hke BZ+FE+nf8+Fb8A/0mfAF+Ds8DT4P12d/x8JHiPMTfQ58UdcGPAH+G26LZz58 GU9+Yg7it4MP58o7O88y9JvoHfEsgq/DCfGsgK8w1h1eDV/V9aM8Bfg2/JX4 k+F/YE/0jRoLpyXmdvg/4gwj5mH4NeytfAptC09S5RrAd2EPeB18DU6ufAH4 PjyVsRfghPo3dOVTwDd0rol/Ev5CzDzwP3ACPKHwZdgDLsjY3+GleGLRr8HJ 0AvAN+FUykkg5kv4MTF94IfwQ7gMnidwFjz1YG+OVTicCs8z9Ed4thD/DZwD PRN6Ajwvte/KTdC+wxngr/BzOKPyFOAX+tZVLgb8TN/PxL8PpyfOIWJ6ECcM 7oQeCpeBs+HPBL/H7wf7wG/gRnjSwDH6N3H05PBrdF84CfxK3wmwH/wBvkb8 PHAp/L8xNhtcWP++jCcQ/qxjC7vgL3BOOCf8Sc98OAL+CgfDcfB3vQeJ0wbu R5wpcH24LZwLTwn4p+4LtpsfroK+BU9peBTcFy4EV4fz4q8IJ+Sa/Ii/OtwU PQX6HY7PA+LkgcuhJ8ATAleB3eFQ+BfYA/6LsUW1v7oX4DpwG/17N56GsBee SLgdnAiOgJvD3vAi5fzAvfHPVi4Q3AWOxtMRToInFu4OJ4PzwX/AKeEgOBr+ xjzvc1/EM+ft8FridEEfSpx4PH3hFPjj4F5wcvge/hj82/AXQB+Kngq9fXqe wTxLrzL2b+XkoC+Bi+CZCqfDc0D5QvA07SP+GfBMuBCe8XAaPEXheXB6uDi8 BM4IV8Z/Fd6O/whxZsOz4GJ4FsIZ8JSEl8O+cBX8N/JaPlVh9ElwWvRS8AY4 s/J0lP8Dr8JTVvlKcFb00vA22A8uQ5xD8AY8+eBV8CK4HHwir+V0VYD/zmt5 VveJecmZZwb0o/AguDx8Oq/lelWEz+e13LAybGsnnIVtVUW/nddyut4RJzXH 8wT8C/qLvJaLVRN+mtfypqrB9/Ja3lct+HVey7mqDv+b1/LQasPv8lq+VkG2 NRxOrZwg4n+BD6HXwfMxr+Vo1YW/O3o92C3E8rsawemc+dSAH+e1PLH6sFeI 5X29JWYy+Djcgm1khP9251rGk9LRW6Nnhi+g14bd4QPwR8bmgE/j6Y4eHGI5 Wr8yNnGI5b81hrOGWK5XUzjA8TeDc4dY7lYpeA9zWwd/JmYI+lm4OXq4w4V1 bcHLiT9I90aI5WJ9xV8Q/gfP7/jrhVj+T0u4iKO3gkuFWD7YdMbWhD34fhgL l4W/EKc1nsohltPVBq4WYvlav8EVQiyPq4/uT/gh/plwbdiLOF3xDAyx3Kri 6G3h1XiWws3g1Hjc9Xfyzr3WFn/jEMsXypeJb1A4JZ6y+DvAGxnbBU//EMvF 6gB3DrGcq05wzxDL9eoM9wmx/K6OcLcQyw3rBg8JsdyqHvBI+B78gvi74bps qwe8Rrry9JTnAxdH74l/dIjla13BMz3Ecq56oY8LsX/v7gvPhR/Bl/Ashovh 6QdHhVgOXir2d5bj6Yd/QYjla3XAs0z7gqc3+sQQywfrir5SxxD9Ibw+xPK+ 0uvv8OFnePrj3xpieWh/wDtCLJdpIP5N8jB2IPpBx59J/5YBv4SHoZ8LsZyu ZOh/OsckD/pfXHtT4EHwkRDLARsKnw2x3LAh8CknTm2+XWvxTXuA79jh6BdD LB9svfIt4+35s5L/EoYyd+bvo1ymEMvj8oLvwp3gUYx9HmJ5XInQH8Bd0Meg vw2xnK6x8OcQy9G6SMy8xCyKZzT6qxDLH1vHufsAD1N+GnG+wcOVr8U+huH3 1N/noz9C74m+lTie6DnhIDyJ4G96n8Jp4Z/weOIndfTc6BlgN+KMQ/8ZYrlh edGzoCdEn4buH2p5WdPhXLAHPBn2dcZOhbM7/lDGBjmeCegpQi1fawYc6cy5 DXNuAV9knhH4i8He6NXQC8O70G+wLzFwGXgWY0s6njsck3h4C/ps9DKhlvf1 hrGuMO43T75h0SuhJ0aPIn55h+eiVw21nKJY9BpwMjihL88C+AoxZ+IpEGq5 YQvgunByOB/+RnBKuAD8O5wKXoSnqaMvgds7ehyeWs7YpehdQy2XbBncO9Ry w5oqjwg+zXY7wZ3gG3BK5tMj1HKQluPvF2q5YUVT87yN4hr05t5CTxVq+Xjp lAsEP9VzRjk2cFb8JeDJcCZ4Jf5RoZZvtgae5uir4LGhlm82njnM0bVBnLXo i2Bf/XsH8UfAr5SjiGcmPAouSfz5jqc0vBT2g3fiuRxqeVyriTMh1PLWyuFZ B2eDN6FvdLgs/r3wRuVwwlt0jhhbWTk/cACe9fhXOPF3wMdCLcdsJ3wm1HLM tjP2gvyM3Y5+2Blblvmf1DFBr4nnH3ivnmnwAPgx3By+CZ+FGyhnhmspirEd GJsALsXYX5TPgycPeg3lAsG54FrwMzgvvIft3nf0Ouhv4FB4APE/OedoBZ5h oZZ3tx9+6Yw9CL93/Bfxf9Uzge0eQ/dx5rMXfhhqOWyHYI8wy0+7gd8bLoN/ OJwGfqucTDxJwiy3rSHzSQ9Hw23Zrx/EKY7/MX4/9BrwSfw54Vg8u+BroZZ3 dxzO5IxtTJxsjmciYwPhH7p34Dxhlgf4Go6Af4VHKxcinPcl/tTKq0Hvp2sD TyE4I3ya+NFhlnfaSvktcCH4DHpcmOXOeTC2NNwB/wX0imGWw3YL/gMuB5+D Szhjz8PlwiznLYVyhOBejA1TXk2Y5YadxZM/zPLrLsJ1wizPbTXHpz48GM9l 5tkqzI7VJTwNwyw/7SrcJszy2Zbir+7s13X0jnBp9Jtwd7gs3IX96uvMsyPc zvF0hrs4njzMrRc8RdtlbJMwy8E7Tvyh8Fz0Kni2wTvge3gmhVlu2114fJjl xd2Gh4dZXlxh/FPh5fjv6J0YZvl+vdjuDLgKfAo9NMxyEf+F58FV4d7K/3H4 OnNYCK8nzi14CbxJ1w+8E94Dxyq/CJ4P92XsKrg6Y/vBG3SNwZ549sAd8fzg 2G4OszzGJ2x3f5jl15XBsxzegF4bPgofgAcq/weujecR/rVO/AHoh+BacD38 J+DD+J/rt0CY5eCdZ1vNdT2gN8VzPszyE4Yotweuh2e4clfghvArff/D9eFh 6Pd0PcPv9R0ebrl2fyoXSO8d+K1+CzhjRyi3B24Et2dbL8Isly9JZr7/4Ttw MvgjfE/5jXheh1k+3lDG3nC2+07f/06caXiC2a67F88S9NTOPfVB3+ThlhP4 EU4Wbvl+GYjvBT8nZj/GuodbDuFn/XYItxy/b/puD7d8vCD8GeFveCbizwr/ gL/iyRFu+X5f4MzhlktWFk9ueCOeaMaGw0mYm3cG5gV31jsdvSYcrFwy/AXD LcevOhwF72ZsCTxF4Ezo89Bj4aSwG3FKhVsu3zTl9sDt4ZfM4apzvtbiL47u i38qnrJwO3R3xlZ2/D/x5wu3fLmt+KvBOfF74KkdbvmBx9Bbhltenxd6g3DL CZylfB5nXzzR64Vb3mBj5twajsWfGL1DuOUizsPfE+6uZyMcAreGNzOH7aGW U50If9twy/FLAncLtxzCIcyhM/ySY7KYa3UXfh84KZ4+Tsy/8PQPtzzSZcrJ gfvrW0X5S3BPeCyeP+EveBaiT4R76X5nziPhKspFxDM93PIzfYg/F+6DJy8c FGE5YyngKc7YxfrmdzyfGbtA1w9jNylPBh6p5w/6aLgiehrGrnTmlhZeE245 hIlT8dzSscKzCv96OAOcAc/ucMshTAUvDre8xEzwQXiInsnM/3i45Z5tZLtn 4RH6ntHvCMezg5hH4EA865UXBP+p7x/lKcED4ezEvBJuOYFXiZkownL8rjP2 G3ppODfzfABPhk+iX3fO9UH8j+Dp8G74FjwR3kb85/AYYgYQ/2245RlWg88Q fxccSsz/nLH+6K8cfyz6B3g+ejB60gjLS8wB3w23vyffQfyf8Dg4ED1hhHEp xqaA1ykHEt0zwnIUXXCqCMtRvMz8P4db3mx55fagb4arwVk0Nzgb/ovOecwF p42w/L3csG+E5Su+IU72CMsvTY++1TmeeWD/CMtdfMExyQUfwhOBHh9heYmh cFiE5TqGwZERlruYljlUhf/AH44eE2F5j5FwgQjLe0zkx7zhW3ii0AtHWB5j DFwywvIV2xOnDHwVTzR6sQjLvXzFfPLCR9Bj0StFWE7jGPw94M/o+dGbRlge ow/bqgs/RM+H/muE5SvGw7UiLE8yDq4RYXmef3NeWsBLdL4Y2xX+yNgCeH5z 9IJw+wjL2xzGdjvBr/Fkxf87/A52wb3hH8pBxT8gwvIJq6FvhIP55i8DL4Kz wMXxjIqwvMQw9MGwJ3oJ9LERltNYFB4WYfmQpeDJEZaXeJM5z4Q3wg/hk871 WRLPhAjLbywNT4uwvMqy8BzHXwweEWG5l+Xg+RGW03hb3/+6ruBd7OMWZ84V 8KyOsHy5SvC6CMt7LA+vcPx78W+Hc+M/CO+FQ+EqeI7BO/QNA/eLsBzOFuzv P3ABPI85v7vgPRy3B8zhsOOvj+cAHIFnGmNzRFk+VXX4QoTlTGbKyb5G8ryF O7Hd++g3iDOYsZ/guoythf8OvB/PDTxP4DLoT9jWZXgven/8b+Ca6D3wPIPv EaclYwMjLRexBZwz0vIJO+N/GGH5jT3xv4Tv42+FxxVpeYk14WtO/Drw+wjL z2wEJ4+0fMV68I8Iy6VsCCdBP653E5wm0vIYnzLPm878m6H7RVr+ZxM4faTl T9aFv0ZYbmdzOFuk5VJOYm4+8E/m1hQ9U6Tli9aHE0RanmdnuGGk5SJ2hOvA 1/WsZmx+OCP7+Dt6HHwJ3Y1jHu1wO/RCkZbT+BucJ9JyLHcwthwcyNic/OYt DY+Gu3KuB/LMKa98bI5hCfTx6O0ZWzTS8iqTwUPCLce+E1w/0nIvW8OhkZb/ 2QGuGGn5kNHEbw7PJY4nc/vFmf9p4jeBF2q7+NtEWo5lGzgi0vI8e8BdIi3P sxvcLtJyNesytgocxtjDcHV4JtwFT6tIy+3sDneMtFzKX2GPSMuhfcv58nbO Y0/07pGWq/kHvDDS8jmfE/OvSMvVTMGcB8EP0HvjGRNpOZm94KGO3geeFGm5 l33hGZGWq/mYOH/Ae4jznmM+Hm4Mf0afqmsAbs7xme3wevTT8J/wL+jDIy0X cQAxl0RaLuJAeHmk5XMmw7MZ7oFnEPqqSMvJTJaFZ4COG3p/9HmRli86DN4T afmcw+FDkZaHOQI+EWm5nUPhnZGWe/knvD/S8kLTEfOo5kDMv9DPwx/0LuP4 eHHv/4RnMx93OFEi3p147kVaXmUYYz/Cnuhj0W9HWn7pePgx/A0eBV+KtFzQ icR5Df9gW8HEfwp/R7/OMewFl1a+N9wXLgcH4fnXiTOBOC8c/2j4aqTlpo6B b0RaHmkI83kHuzOfGWzruzO3SXgSO/sShccNToxeEE4Gp4bzKIcHTqB/A8Wf OcryQpcTJyOcFs80+IsTfwieDc4zMLvyppzjNgU9nRNnCf6UcCr8a+EA2BcO U24P7Kl/503HeyaWezEJ9xJjK0RZzudm/FFwdu0Lem7HvxM9Nsry/MOJEwJ7 oTdgXwrCUeiz8RePsrzTQsqfgdPANRibL8qu21l4ikRZzmoUnlI6JvAy9J6O fyYc7sSfp98FUZazGqv8HzgZfIGYDeAibHc+npqO3on5NIbLoM9BL+vEXwS3 jLL81SX6no+yHNqlcGedC/gGMZs5Yxejt46yfNSCbLeD41mAXjvKcmKH4u8D v2K/NumbOcryS1fAI6Ms73QY8/kT/pWYy9H7R1nu60p4dJTlUg7CMxCug6c4 2xoHZ0RvC3eKRoPX4J8SZbmyq+GJjmctPD3K8mDXwbOiLA92M7w+yvJXhxB/ CFyP+BvQF0RZfmySNBx3uBv6FvRNUZbXugD/SrincmLZx63aFrwez9woy8Xd gr5bfvTt6AejLA92I7w4ynKJt8I7oiyXdRu8L8pyaLOw3SPwcMYuRK8XZXnI O+DjUZY3uxM+FWW5ssfY1i3nGtvH3C7CU+DdeK5EWY5rQWJ+gJei70G/HmV5 s3vhu1GWN3sAfhVleb8niPMAnoe/Fsf5Pzgv+n48zx0+hecRvADPLvRzUZav W4BtvYWXKG8WzsI5OgQfwZMIjsBTTzlCeMLhw+gJo43z4/+Gvhj/QfTPUZb3 e4dtJcWzBf04um+05dO+YN9TwHXRqzA2LbwDPoYnQ7Tl5R6FU0VbTu8JOHu0 5b42YQ5BcBycibF14SGM9czKOxm+Dv8gfmS05Vo3Vf4PHI+/uf6dGs4PnyZm Xkf/yjwLRFu+rjcxi0VbPnYgfJZ9GQefxR/vjP0bLhxt+cAtlRcEF4Qb4w+D T+L/B08ZR2+lXCC4ENwHz6/wQzzn8dSItlzf9Oi14IHo59CrOv42jG0EF4UH 4GkBP9UzE24Pv4TfMH9/+BicKSPHLsZy/y4Sp6kz9hL8O1wM/l25Og7Xhz2d 8+siZld4ovKWiVOHOO3Qb+vbG708HMRxHgZ/w9OBsf3gUuhxjB0RbdfVNfwD HP06PDbacpI7K98GLqtvYOIcg12JuY7hUbAbnI84E+BFxLmp73/Hvxv9pOMP xD8Y/ornjr7/oy0n+S68KNrylovjWQdnxF+ZsUvh7fjrwRvhw3BX5SM5+7UB fXu05R4/IM5euIquN/TD8Cn899G3RFs+cy/G7nI8/6IfiLb85Hv6TRFt+b19 8ZyBq8Ov9L0aY/m9R4h5U8ecbTVgntd0zcN70P+Bc8GN0e/AsXA9+ILuNbgZ fB/Op+OGvwc8mbk9Jf6TaMup/g9+GG35zH3xPIMf4UnAOX0ZbXm2D9E9mE81 4jzGfznacqQHM+f3ujfhrmzrq44Pnj/RvfE3QH+pb/5oy3N+o29+R38Gv4m2 vOh3sE+MrR1YxLbSwymJ8wL9kxP/NXryGMtzfgenkR9+r+/8GMttroG+Otpy 8j/ot0OM5dB+1G+EGMtnHsfcIuCW2i/m7IqxXNzpcB64A/wdf7kYy4seiz8U bqF7Hz3aGbsMf4kYy2feyXbjYiz/fBF6Ibg37JOW+ynGcqS/MTZ/jOVRf4YD YyzXOhWe0nBfPLPZVke4i57Dyv+Hp+oaxlM9xnJlp+qb37nXJsNV4N/hH/qN EGP50tPQG8LtYW/OYzu4s7554CaOPhNPK7gTPAtu43jusC/N4Qps6yRz6ALP h+OZQy94IZyaOKtiLB/YG322xqK/ZOxQuB58lrF9Yyx3Oin+4TGW/1wI/x8x lnedHH1MjOUnp4Anwb3gT+xLzhjLA0+G/leM5UgvZJ7jHc9ieKqOLZwYz6AY yyH3gWc4ej22NQ8+zLZSwGs1VtcPc1sCn4BT4V8eY7nT9fEshI8oXx19Q4zl S2dE3wYPRl/NdveL9V4gTnfnmLRXriPXXkn0tIzdHGO50BngPfAgeBWenQ6P SM/zLsRqtmTEc8iJORL9VojVZtmqnHz00fpmwHMVHg6v13cv/CecFf1GjOVX +8HnHT07fC/Gcq2HMf/H8GvmuV/583z3TkXPhud2jOVv54D/jbEc7OzZeEbA H/AfwJ8V/zQ99+BLzhxy4n/nzM0f/hhj+djVlduPfzdjd+D/outW7wI8XrGW d52D+C/QP2qdAnqyWMu73qPfAvAkODd6RngyHAwnjrV87F+1FgA+yti9+NM5 nkA8351thcA5nDm3YVs14aJ854ejh8danvY65fbDmZWXCwfAWeEIPFGxlnd9 SL8X4Bn6jsITC+dWDi0xM8Tx/ysPXLn96HPxRDE2X6zlaUfDRRy9G2OLw3eY c1vG1oaLMzYMT24nfnetHYDv4jlNzMrwQvR8eOrFWm52PFzN0S/jb+DEiUEv FWu53/8oDx9eqpjK54crKi8UT4VYy3/+W2sB4CVwQfSWjr8Q3DbW8rcrEN8t 1tYvFEbvEGu534/RO8M1lNOOPiTWcrAvE7MPvFrvU/T+Dq9UDj+cHn8J9IGx luNdCv4z1vK6y8JTYi1n+zpxRsLr4TLo42Itd32K8v/htsQpjT7a8VzSWgN4 FZyQ33TT4XZ4auA5GGv50pXgNbGWc1geXgxv1j7Cy2Itl/u21gU4ejn0ubGW B/4AfT28Q9c2+r5Yy+uuAm9y9Id4dsC74Groux3+F30rvBPeyvyPwKOZWyDz PAWPg5vg/xlrOdJvlJMPH4Ofwlfg/fAZjuFZOB/+WvivO/o+Yp6Dp6DXQb8b a/nnr5TPDx+BB+LpBtfGUxvPrVjL5b5EzAdwMfT66P85/l/gi7GWf/6aOM91 r8EN0N86c7tLzIRc/1sZ+17rAtBPojfG883hhvCHWMsDv4/fE/92/EXZ96Rx lnNeG04LH4Br4j8eaznwvvDpGFt78khrFvDsxtMUPVWc5Zk/Y/4p4my/csAn 9OziWm2OxzfO8smnwD/iLIe2PVwyzvK6W2ldAHyOsd+0XkCM3hpPWJzlnLeC gxz9dzgGvgS3hQvAl+GecPs4y9928+d3hONJAMc7nnZ4CsdZbnnu7LxvYTfl 8qHnirOc9g5wmTjLCe8Il4+z3PIkxKkF34E7oVeKs5zwbnBdR+/GvhQTsy/J 8DeC76GnZ1st4Gfo/soPh8fA3Rn7a5zloveAmzr+QXh+g5/j6YxeNc5y10OI 0xV2V24b+tI4y+WejX8wnAg9Bs8AOKnyotF7xFmOekrmMwz+F38u9N7wJOL3 Js4IR28BZ4mzvP0lyu2Ps3z1Puij4ixHfRn6BDgNemm2NRn2U44cnhVxlnM+ E08/2As9DdudCT9BTwfPh5/q2mbsajgPngGMXeTog+F1cZav3heeFmd570Ph LXGWW55F+fzwW7g/+hwn/hB4Y5zlww+Dt8dZXvpweK/j7wLXiLN1DSPgA3G2 lnkkfDjOct1vMP/LcZYDPxr9TJzloo+B/4mzfHWXcvjhH/BY9Atxlrs+Dr4W Z/nqt4nzBC6v3Dn0m3GWpz0Bvh9neex9OA4P4Wp4ruK/A5eER+E5CX/UPYv+ DK6MnoBvkvTxlus+FU+CeMtdnwx/0vUMP8H/Fa6pPD2tC3D0iXjeOHOeBnvE Wx77TDhNvOWov2WsN9xQeXfoyWFP9G/oPnAr9DDl+Tu6h3J74A7oSeFscHd4 JWOrx1vu9xK4RLzlls+D88BJlROqPH84MZxeOSTwQMbOwRPo6Avg6HjLV18I 54+3PPYcWsfhHJ/56BHxlhufSTk/8BDiLEIvFG958jFaX+BsdzF60Xhbh7IU Lh1vedSr4F/iLf98OVwx3vLMV8BV4i3vfRlcLt7y20sQsw6cCV6L3jDe8tW9 mUMruDNzmIXuF295/i3h7HG2bmUNXN8ZG4+/ObxQeZvoTeItp90vFc+QCN7N Xrx30dvFW265aj98deo/7EOvxTymuPNOhSvDY+AtcAV4lLvVK5Wu/HbVN5Wu Gqc78FSDx8G7dV/AE92tFmkzf8td36XnDzzB3eqbyq+89z3oNZWLj34KbgEv gLfq2QiPhvfDtbVmwN3qp4qVJ39Czz2tDUA/pOcnPAPOxb41cGKq1qniKw// CJ5G8Cx3q6va2N/WAhzLaPOc4261VDVW9VSPZjTPbPi4nqvwXPgAXA+eBkfq fDieK+g94DXw3/DvWqvgbnVYW/tbTr5quMqvOq4xjG3rzD8W/s3RVVdVumqr qhbpVn+rRxqHp4NzfPLr/ed4VF9WunL7C6B3crZ7lTn0hNfCUSlsDtpH1Xzt 7G91Xy/j6eZv+eSq8yq/cvhVC1a66sFex9Pb32qHns9oY5Unr1qtffxt3cFt 9P46p+iX4K7wKvhGRvNsgG/B/XT9uFst0v5OzNwpeQ4E8uzxsDq4OraqhXsP /0AxnmfwWH9bF+Cp+pPwdfgB+hCdR3erLytd6x1Up1a61kc8wjNSxwfPY72D tI/wfXgwvB1+qPeXzpG71bKVX+sjnqCP1j66Ww3dWf5WR/df9GG6tuHn8Dj4 oLvVvhVrfcRr9MnwUfRX8AT4CPwGngIfc7c6uIqvdRbv9J5y4qu+73R/W+Pw IaNt95S71dPV2P+vrchonuPo7+GZ8En4LjxA1w3cgPM+19mW6uau8bfauQk5 hivhK+5WN3eBv9XOVc1d+VV394fep/62LqMpceY7uurpLva3mrot9SyD/3G3 msE6X6ob/C2jec7BQXo+wuPdrVau/KqX680c1sE34YYpbA7aF9X0Xel4UuFZ DT+CO+FZ78y/WQrblzPuVutXutaAtNJz1tluO3iTs49d4C3+Vvv3k971zthQ 9I061u5WG3iT42mfwu67q3AO5rAd/uhudYJ3+Ns6lErongF8i3lY3d8j/lb7 Nw36XvgJnAze5W/rIAoScx+8FE6Ovhu+D2eED8Av3K0G8EF/W3sSiH4R/upu tYc1VmsfeqUwzwM4M57D8Gt3q0ksv9ahqG6x4mv9ix+eY/AbPFlUjxR+6271 iU/5W41i1RWWrtrCA4h/Bn6K3jeF7ZeOv+oWn/W32sVD0M/BL+EAYl7wt3Uu 2TOZ5wPsD/8Df3a3+s3yq4ZzNvSTTpwRxLkMv3O3OseP/K3WseoiX/e32sh1 Uhjr/gpWHVT4OzwR/abjUX1l6aqxPAr9lnO+2qSw83URzsvYO3BCD6udLI/W 3YSg3/W3msmquyzWOp1o9CdwEvRc8DX4J3HC4AewJ/oE4j905hOD/h+cFD0q k+1LYg+rx/yfEz8U/b6/rQ+KhZ/DybSOgDgv4UQeVstZ8bU+aAb6M2dbqj0s v9Yf5WfsK9hHNXgz2XnUMVRdZ+mq7VwQ/Y2/rQ9aRZxP/laTuTj6ezgjXELr O+BMHlZ3+ae/rQNS/eYPjn+JvhXgVPAG+AecxcPqQ0tXjehS+raD17lbfWix akSXJv5X2M/Dahi/9bd1SWUz2bayoteEk3Mf5fawOtO6p7T+SLWoEwbYmqO6 eDzgMDwVMpmeAy4PJ4Czw1VhbzjIw+pSJw2wtUvV0BPBwejV4SSwC66RyTy5 PKxGtTyqU/0Lego4D7yX/fJx5qb609kDrAZ1Azx+cBR6bTgtHAKvxp8qwI6t 6ltLV41r1caWrjVcLfFngAviqQ9ngiNUszeTHZ80eg/C6dFDPayOtfxab3WQ +L6OvgVO4xwH1fCWrjreDRmbBY6Gm8A54Ti4EZwNjtH6rEy2L5U8rMa2/Kqz 3RTdH46Hm8GBcD74DNtyOawa3jo+WjtWXb8H/O3dqjrcGqu1XapdGhRg67ma ZzLO72G13uVXvfe6jM2FfsjdapeKVb/0mr5l4VIeVs87LMDWcKnmd94Aq/vd n5gRcE24NRwKF/GwGt6RAbam7Ly+1+HC8Ce4KdwMPp3CPNrHxnB0gL03VSNc ftUJH0zM0gG2lu1cCpuDtqu64Jqb1pr1wpMfroJ+G09huDx8Fy4AV/Sw2uHS VT+8K/44x3MTTzG4LDwAvQRcy8PqoJcMsDVofdGLwtU9rE65/FqzNjCTeWp7 WC1zbUv1zFV7u0yArVn7m/h1nOOp+t81AqwG+HDGVgyw+gbD4HLwr/Br/JUc /hO9PNwA/guuAjfxsDrlVQOsVvl+/DN0PjysrrnGal3bsxTm0dzew9Ud/3ji 1IVbeVjddMVX7fSx6L/ALdDHwbXglh5WH11+radTDXXpWis3AU99+Dc8L1PY ftXzsJrovwZYXfTJeBrBv6MPyWTHRJ6JmcyjGuaT4IZwGw+ruS6/1tndJ2Yh 53hOw9MEbu9hddZ1/ajW+jd9qzv7Mh1PC7iDh9VrF+vv/xegdwywNXEeWrvh eFSjXWP1bwHz8bSHe6DPgdsEWA151Vn/3ZmnG2PbOfsyJ4Xpeqd8hZs7x0r1 5hVHNeeT4u8Hd4eXEbM73B9eAneB+8ILGNsVTu5h9eA7BVhN+IWZjFUHfjnc A/4DTkLMvk581YaXrnWFadB7O/FV/763M/8VjO0FD/CwOvSaj9YSrkYfAA9G z87Y8fBfsB88Cv7Tw+rNDw6w9YmqST/Amc8Gxg4NsLWHKfEP0vY8rMb8sABb w7gVzwh4tIfVlZ8WYLXlN2Yyj2rUb4eHw2M9rIa9/KpLvyaTbXcIvAP+Cx7n YXXrRzme3egT4InwTngsPN7D6t+PdeLvQh8DT/CwOvfyaz3jPvTJ8BT0g5ls btPhVfAf8CA4r9a1OXPeiz4pwH4THYCnan88rGeF4qhvheqs63eTaq2rFrvG qh67ly/PywBbx7dG3+0B9n5X3fqlAbYWMohtzXPmv1F/JxJg7+IA9NnO8YmC l8Bz4DzwImf+qpG/JcDWYxZJabzCw+rxa1uqya8a/PKrDn8hPNvgZfBh9mWO 45mR0ubjqVrZ+ruPAHu/n8KzAl7gYXX9VwdYbX/V6V8XYLX61StgjrO/qvG/ McDq/Bcm5gbHc5I4y52xD+HNAbauMyalxZkHx6W0sdqWegtou1rPWAf9BHwQ /YW+n+FD8D14D7zNw/oD7AqwHgE3Mxlr/eC/+v6Hd2oO7Nd2ONbD+hgcCLBe BhVTGm+Ff8OfJ8DeU5XQ9zvx1R9AcbQO9J8U9u7TN4P6DGg+WnOqngaKr74G T4lzCN7vYT0HTgZY34Hn6EedfamR0vQ98Bv0M4oF34B3whvgd/puh094WD8B edRToCpjDzv7pb4HYvU++MzcTsPN4beM/Rs+Dp+BV+k6gM9msvO42MNq6iu+ 1sCqj8GdAOtl8BXPVf1/8Ef4UoCtS52nb+8Ae6Z9gi9rTvA3+AZ8zsP6J9wM sB4K6r1wIcD6L6hngsaqb8L3TOY5D7diX247Y924X17ClzysP4Piq0eDJ/q9 AOt90B7/ffiqh/VbeBhgPRfUq0G6+jX8huexE79xStsvzUE9HJ4E2NrbZKpJ C99DTw6/0Hg4ia951JOiNWOfOsdEfSqeOboPntfatof1cEgQaH0ccvgaf/Sw Hg7vA2ytblb07/A79DS+pj+B08OfFBdOBb+BH8EZ4a/wCw/r+fDJ2feGzOe8 c07rpbRjq+uqC/wRvgX3hb84cdR3QjG1vjg1Md8F2PpW9XlQfK05Vd+JHwG2 FjgnHnfm/wlPdtgN/gBPJqYH7Kb1m7CX48mLJzGc0NP6UXgH2tpeP1+L+QaP t6+do5se1rtD51f9O/5MaX551ONC8bXuOBR/Mv1vYk7Fk9yJH5+Zb6wgrisv njnombQ9T+tr4RNovS3U+0J+9b+Ygic1nACOJGZKOJGn9b5IE2j9L+LxpIcX MocKeILhHOg5U5pH768Y9HRwUk/rayG/1rQuxeOCU8OTUtocfnpY3wzNTb0z 8jM2c6Ct2yoIZ3P842A/uKWn9daQrrVg84iT0dnW4/TMI9DWSJZDD4A3eVj/ kMBA6yFSmDg54LSe1otDfvXjWJbSPGL12dC21GtDvT40Z/X7WMzY/HAfuDgc Gmhrb0vAIdoHuCicW/vsaf095FGPj+Va2+tstzSecG0DLulDPHitp/X0iAi0 vh5lfI2zwOXgKO0zvI440Y5HvUE0H63dVo8RxVefkUr4Y7VdT+sNEhdo/UGq oReEg+HKcL5AW+u9Q+uIdYw8rfeI4mtteE08ReDcntY/pGigrWXenNJiZve0 fiMaq7Xqv/iaJw9cBy6u/ZcHzgqngvcwtgScy9P6kIjV20I9QMoFWh8Q9bso 7ej1GFs20PqStNMa4UDrG1Lf1/wR8O/ErBBoz0D1LakSaL1LGuCpCEfBjeDK cAzcOaV5dH+p50lFJ34zX9tuPrgxXA2O9bReJQ2d7bZCr6N9ho8Q5xdnDuqj IlYvlRZ4asIFPK1fiuas9ebql6Kx6pnS3tdilsTTGq4HF/G03in1A612wWni N4Dj0f9JaXpBuBP+xoG2Vl39VZoE2hr2S+hd4FWe1rOlXaD1bbnJ2JZwWfSh cLNAq0XQA38ruBJ6F7i5zgHcE24NV/a0fixtAq0nS130UtqWp/V70Viti+/l a54q6APgtnAtT+v3opjq+XI/pc1HMR/CHeBqntazRXNW3xb1bOkYaH1bhhGn c6Ctfx+T0vTPegaidwu0OhXqA9M90HrBqA9Mr0Bbf93Z146J9tc3A8/QQOub MC2l+fWsG+lr/sbwO/SecCO4JXpt5ziPhvvCzTytF8rRQFvz/hP/yEDrCzMB zyD4N80T/kP77Gk9Z6RrXbx610jXGvzvjB3q+Cfj/xP+3dN6y0wNtLX209GH BNo6ffWokV/ru6egD4fbwgvg6XBPeDw8UOcDXkn8vwLt+aOeNmL1tZmJZxzc CZ4Kj9b1Ac+AxwfaWnL1uhnu7Ncc9IlwV0/rwzMp0HrxJPKxeYrVS0dj1U9n rq95uqHPg6fo3MBuWs/u7GNieIYTcyOelfAIeDk8V8fI0/rqzA60ugTqJyO/ esqswDMPHgAvhGcFWi0C9dWRrpoD6rul86UaCEc5Dgt13eL5hn8BfM7T+u1I V8+dNeiL4SHwBniV9h9e5Gtz6O1pvXSWBFq9gte8X5YH2hp29fCRX3181OdH uuoMbGLsGngkYzP42NhBnta3Z22g1TrYgmcDPAp9LbxM5xjO6mMeHZPN6OsD rb+P+gLJr95A6k2k46n+RNfZx01waTzb8G/W/wcHEGdnoPUPuqXfL4F2X6un 0DZH34f/YKDVSdgJ79C59LQ+QhqrXkI5iLPfmeduPLvhiZ7WU2hPoPUV2ou+ D54s3df0CfAOeCs8ztN6IimO+iKdRf8bXgyHE/84PBM+jH7E4SO+dq/N8rSe RYcCrW/Rfl/jqein4BPwAvgMfBZe5Gm9jKSrbkMc8U87HvU1Equ30Wn8p3Qd eFrvJs1H9RzOoZ+Hl6GnZOwD5xp4gH470OpFqA/SpUCrF6EeSvKrXkRx/Ffg 1XjGwRfhr57W++hqoPU/ukucG4HW80i9mzY757eoj3lWwnfwXIe3eFqfJfnV a+m8r21XNSjuw7fg7Z7WQ+m2E/O5fjvDB+Gn+v7Xcfe0nkti1YV4hn430GpB qHeT/Orf9CtzeAwfRW8IPw20HkwF4HPwEvgT11L/QHseviPOIx1r+D38H3zS 03o3PXbGqkef/q5G9Z3Ux0kxVUfiAN+lZ9XPxct6KH0JtLoNjdnWWyfOJ2K+ CrS+Tl/1HQ7/A3/W7wj4LOxBnA/wNU/r9fQx0GpEpFcPF+I/87TeUO+cOG18 zHMR9sbzGb7pab2e5Fe/J/XTUHz11KiD5xscyjy7MPY7fMvTeky5BVmfKfWh kq5eVD74E6I/hIN8bL90T6mvlHuQ1bvog+7leNJp7Tz8FE6V2TyaQxrYE37i aX2r5FfdiXaM/UnMK3AmPEmDrNaB+k1lDrJ6FOpVlTLI6lf4ZTZWbylfOBn8 Cs4Cp4LfelovLOmqfZEVPTX8Dr0H22oQZLU1sqGnDbL+VupVldqJOQJPOsev 3lxi1VUYhZ4F/ghnZmwK+DWcDz1jkN2nAei+QVZjoaBqZah/EByY2fZF9476 ZUlXzyx/9AzwZ7gI/hzqMQRPgv3hn57WgyujM89c+LM7unphya9+WLnRA2A3 OHlmO4/3Pa2/k3TV5QhBDwqyOiHTiZ8X9oCfwbng2nAontyOrh5cUUHWh0t9 vaSr1scL/CFwXTwV4Mggu6/Vv0u6aoZEqu4HnMjLen+J1f8rAj0M9vayHmLB QdZHbLaPbUv+IniK6bh7We8v/dZTbRD1DYsNstoUC/DHw8nhmMymqzZIVfQY eKfucfQCQdbXTP3NijhcEL2gzrd0uDCcBq7pY569ntaXTB71JiuKpzicHl6B p6QzN/UQqxlkdUK2o1fVsUYvh78snA2ui14KPuRp/cekq26JepdJV/+yCvgr 6FzCm/FXCrJ+ZEMy2/GpB29EL6/rxsv6lVVwPJXwVIb94bJwGcejnmPS1Xes Ono12IW+izi1gqzuSg30GkHWy6xmZtuX3F7WM01+9U3z4zuzdpDVyqiNp67O MXo9+FedVy/rOabjozoq6u3zItDq56hPWm0nvvqq1QuyGim1MhvnRW/gY/5j ntZLTfem+qktxrMiyPp/ncXTFs7vZT3WmgVZPRb1Z2scZPVYmuJvAcdLh5sG WW819UxrGWQ1VVqoNgtcAL073DvIapI0y2yefPLDvznbUh85+VW/pQd6H7gS +h8+Nof/PK2fm+amnm6/4WkPF4Z/hzvDxeB/8HdwPOrtJl393Vrh+R0uBLeH u8El5YF7BFm9EfWR6xlkdWDaoXeFS3hZvzv5VbujU2bzlPGynnIdnH1XTznN WWveR+EZHWT93fppvTxcA+4LD4Crw33gfkH2PFHvOHnUP+6BassEWX2YQXgG w3Xg+nAjOMLL+tENCbKedIMzG+v5MBweFmT96eao/gyc2Mt60Gk+6kOnHnf9 nW2NwD8CbuRlfe1GOmNHo4/VuddYeBTcBB4DjwuymjPqcaf4qkMyAX0C/JuX 9UKcGOT0Q8xsMRt7Wb+7cc4xmZjZPK3hSfBkXc9wG7gTXBT+xvynOHHUH0+s WjTqiTcryPriqU/d9CDrVfcT/0wnTtJUXNNwd3iZj/n1zJlB/DlwRy/rm7cg yHrnzUSfC3fScYPnB1ltnFmZzdPZy/rvyaP6Od99bLva3wV4Fum68bLeeuuD 7HfiEvSVmjN6MuazLMj6+qlHn1g1dhbiWQr38rK+f4sdj/r1aax69i3PbDFV myUFcVY7fvXrWxNk9+xKPOt0DWl/M5veH97GPDcG2fNKvf42BVm/vwDiHAmy 3nzqy7cvyOrwbGTs9iDr5bcO3gIPgw8TZ0eQPX/WoG/V9Qf7EmeX9tfLehLu DrK+hFPwTIPbeln/QI1VD8FNmc0zEt4K79V16WW9ChVT/Qq3ZLb5jELfAR/Q deNlPQaPOHNTX8GDzvx34jkcZD0H/VOZPgbODh/TfnlZT8Ljjkc1708FWT2f 1KnsmPRTfB97vul5uCuz+SfA+zKbfwq8Fz4ZZPWINmfkHeFPfOUsoZ9Bn4q+ Eb1jvNVMzkf8m+iL0M/juQgv1xzgc/A8L+t5KF19D9UXUbpqFl3Ec0XXAfpl +Bq82st6+v0XZHWBLqBfDrI+ieqLKL/qDl1Hv65rEf0B/EznAD4HX9D1B99j f28F2TNW/RXFqr90G8/9IKtNVJr533HiVOTd9CDI+qypN+N1Z7t38D+Et3hZ P8ZHQVbv6F5mm+c2L+sbqbHqHXk3s3m2KqZquTh8A/0uvEFx4OfwTvgN/AM+ BtfE/wbe62X9G18FWU0k9X6UX/0fD+F5G2R1P2r58W0L5/W2vo7SVR9JvRAL B1s/xOf6/tf1xNhn8Hv4gJf1bJSuGlwv0T/Bh9Hfwj91PcGPMtscdntZb8nP QdZf8oO++XWdeVl/SPlVZ0l9JqWr/lJD5pkg2OLUSmVj93tZz8mEwVZ/6ZO+ 4dUrEP01/BXPUfh9ZvOc1HZhD/UQ9LL+k/Kr1tM91RJxcX69rcemjq3qWX3R 7wX11JOf45M+2Oo1/dA3tnrzwU0YmzTY5q9+ldJV60k9LaWrr6UbY1PBl+A2 +NOo7x78jThJ1NcP/gn7OLr6cMqvelBJ8KeFu3lZ30v/YKvp9B1/cvX4Q09I /AzqtedlfS/F6n2ZGN0Pvg17wJnUUw/urDpa6sfnZX01FV+9NZPhyRZstYDU FzR7sNWMSuFn233gZT02NVY1qbqnMs9d9OR4cgZbXaDPzM1b/Q113vEEBVt/ RvXbjAm2npuZ8UcGW10p9djMFWx1q9SrU37VTEuHJw/8FE4Fu+BHXtbDM2+w 1b/qQ/ywYKt/pb6jOl+qwZXezzzP0AfgCXXiqG+n/OrdmQ1PHPwe7p3K5vCv l/X51NzU6zMLnmj4LTwCT3yw1b8KTGX7ouetepxKV72snOgRwfasDoMLwDNg f+IUCrb6XanhQPgxnBPOD3/ysl6+BZx7LcDP7rsvOj5wUfi7l/UXLRZsPUZb oY+CC3lbH9FKwVY7KwS9NOyOnkd1h+AEcChcBvaA88Ildf/AEXA52Nvb+nmW D7aeniXRf4V9va1fqMaqxteaVObJhB6Jp6KOu7f1GpVf9bjUv1TxVf8qWvWF 4CR4YuCquje8rU9pjWCrCab+qNJVpysfnl/glLpm/Gy/Entbf9RawdYjNb/q nsE+cGG4vq5jeEEq8ySHF8F1nDjqmyq/6ozFqsYRnAy9KNwQTu9tfUfbB1vv UfVEbRps9ceK+RlnQF8HN4KHwcXh5sFWM0o9WqWrT2sJ9BbO8RmXys7XV87X criVM0/1gJVH9coypeb7CB7ibb1SxeqXugV/RzgHui+eJvBQuLTqsMF+Ou9w O8dTEe4E54Q3pLJ9Ue019f+UrppmWYnTBh6BvhFPVzgrXIWx3YOthpX6viq+ 6qRVRu8CB3hb71D59V6rit4DDkKP87PzqGOuPrHSVTOtBnovOBd6I9VugmPg hnBfOFrXDHPoF2zvC/WAHRZsfWDVG1a6+sM2xj8AjoWbw0Ph/N7Wh1a6etEe I85gx6/es2L1n22KfxAc7229bXsHW3/bU6lsW3HwRXgSXNTb+tPqnlK9NfWz HRFsPW0Lctz+gpfCBVKbvgQ+y9jhznzOwWOC7X5Ub94JwdaftzD+sfByXWN6 1wTb87aNn3m0XfXvlUc9fNvhmRxsz/P2qm0Fl/S2nrdLg62uWj/0hXAN9Gv4 Z8KlNBZ9GlzC23rSSlfdNvW/la4euD3xzIEro/eC58FV4Jp+dnxU164HPDvY 3onqSSu/+tL2Rp8fbL1Wu7LdGcH2flHfXenqvfsAfZETcwj+5XA9nS/0JfAT PZP9bF9qeVv/Xvn1jniOZwVcBx6KZxVcHx4Or4UbelsfYx0f9TL2VJ9l+LqX 9fvVWNWFU8/e1cFWa26Yn/Gv3tYvWn7VYByBvg5u5G39fsXq+TsJfS/cxtt6 BW8Jtlpn6hW8MdjqyI3Gsw1uhmcUc94cbHUU1ft3e7D1/x2PZxfcCs9W+Emw 1YUb42ee5rpO4J1wS2/r6yu/auV9JOZpuCn6X342hybe1u9Xc1OtvMno++Hf 0afBh+H2OteqJQi39baeydJVB28i+h64NXpCrsljcDt4JvoJuJO39Vs+GWw1 92agH4U7eluvY/nV73iWn3k6e1tPY21LdfnU0/hMsNXiW47nNvyHt/UuvhZs dQLnoZ+Hu6N/YR//hlvA89EvBFvttbmqlwh3gxfCl+Be3tYn+XKw1Sd8ydgc Lruu1PdYY1WrcJGfeXqjL4avwn3gFfAdeIC39WRWfPVlXop+A+4HL4Nvwv29 rfey/Kq/p17K0lXrbyWee/BAPEv8bL/6elsv5fvBVmcvKcf2obOPs/3smGhb q/zMMwjeAP8LD/e2vr7yq7fvVPRDznnZAj+GR3lbv19dP+r5u0Pf6vA4eBv8 DB7jbf2WxapPeBT9IzwbfTv8Ah7rbf2cNVa1B/ejv4enogerRhw8wdt6O78J tv7OedDfwVN07aUyXc/PHOhPnbmpV7PiqD7hRWJ6uKzm/0n4O/p8+AT8BZ4H h6e2tYSqMahe05+CrebhMT9jrTE8Bf+AF8AXYHdirvC2PtLSVb/xb/QELnsO qwe1WLUKz6K7wYu9rde05qNaiFfQveE1OuZwRngHXJb5pIE3els/6iQu60mt Xtbyq0bidfzJ4PXo1+DE8Dpv6y+d3GV1EW+h+8CbvK3vcTaX1Ru84WeeDfBN OKWzLfXcll/1GIultu2uQt8Kp1YP3ETW+1pzU03FSuiZXNb/+g7nIj1cwdt6 Yqd39PvETwdv97ae2PLrWf0Qvx9cDa6e2ua2G76M3wteDddEzwnvlR89M7wL fgpnhfd7W097xVFfe/Vq1u8m9WtWL26NVY3HXFl49sA/4dds1+WyZ6/6aYe6 rK5jfbYV7LI+3W+Jnxs+Lj8cAB/VtQGHwKfgd/otAJ/wtj7ShVxWv9Eji/E1 b+vdrW2pf7d6fcuv2pKeeIrA19Frs91A+AD80c/mc1rXDxwLX4S/whHwP97W 9zvaZb2/1Sc8zmW1H9VjPNCZv/qW53dZrcsEbCsffFnXKvse7rLnv7vqBMJX YbcsFueSrs8sNvaKt/Uk13b/35ccvZq2hZ4arqI5wEmYfymXPRvVM7yEy2pU JspifAu9hWqQwn/DXuhF4Rve1gO8nMtqUabIYvwAfST7uyHYamn2RC+LXjmR 9Q9XHPUQf5PK3n16P6q3ueajOpbqha74qp+ZkrEVdMy9rSd5dZfVw0yFXln7 pWs1i+n/6fqEf9H8YW+4OHxT1xhcx2V1BdUjXR7V0vRBr6jrx9v6qItVezM9 ek3NAX0I+14bfgl/Z7+i4PPwDz87jxe8rae64quvunqVt3JZXc2sqp2obekZ qPqKcH2OQzb0JvLrvoYbar/g7HAz+IO39Xhv7rI6nOrBXt9ltTfVa11jVScz RxbzfMQ/ivgtHY5D767nSCLr/a74qrEZjN7aZX3YXXAbl9XwVG/2do6u/u3S 1cN9MjE7wG7E8c9i+/XZ2/rSd3RZb/pI9C4uqykaC3eDk8FfspjnbzgC7gx7 J7L+9vKrx30+9J5wykTW+324y/q/l89irJqZ6uXe12X93Eup7iKcGX1+atO1 raLof8Dp4bnoveAkcAn0QXCmRNZnXh71mu+Bp57L6q92T23H9i5cBH9/OB3+ NGl4J8P9E1m/esVUz/r8ePrAPoms57ziq76o+tUPdVmN5Qp4RrqslmM51auE s8Eb9c3v7GM19NFwMFwTHgfnhkfx5xiX1QUtncVi+sGjU9s5+sQ8u7rs/CZF 35ba/P7wCJfF91DtI/SJLnuWVoQnwVsZ+wf7tS8X9wt6Y+LPQ49NZL3up7qs 3/0El/kD4Xp4psPh8G7iTIFd8DT+nMF/YbrG8MyGI+EO8Bq4FFwrtXn0nD8E z3L86m8vv3rcd8S/Fi4NV05tc9C7Zo7L5qa6pk3wLIDj8LSAl8AF4BP4F8Ix 8CKX6aq52gjPXEdvBS+HC8HtVIcTLgGv4M9VLqs72hJ9GVwQfanL/KqP2j6L edQXfr7LtqVarKtdNmfV2ByIZz9cG093eDNcEe4Gb4IrwF3g9XA5XQMu86gO alf0DXB59K6qCwrf1jcYekLO0Rj0LWjbXFZbtUcW40rovfHvcNmzcTD6TpfV tNzrsvmoJuo6l8VXjdaBqi/qsmfaLv7cw3818T9j7EH4gK5neB9cCx4OH4Ib wttdFr8K/JY4RxxdveuPuqzm6ofUFrMJ+gGXjVW91pFZzNNY1zZ8HG4KN4cX w/l1bcMn4GbwMZdxBtUp4s+/XVaL9SR/nnZZvdavbOss3BL/VMZehdvpus1i /t/gSfA5uA18gT8vuayO62fGnoebo7txL1yEf4enZDFPW/gfl3lUw3NcFtuu tuWJ/wrcEb6vY89/XWF39Ntwe3gG/huO55rLWLVhp6NfhzugX3bZnFX39abL xqrmp1cai9kJno3/LtwFvsOf91xWA3ae6qzC3dHnZDFdc0iSlfchfAd+yJ+P XVY7dz2eL/Cf6G/48x3/DdZ1jv4c7genZLv/wb3hZegvXPbcWww/hfvAK+FX LqsR+pI/X7usDu1Y9FNwC11LLhurmrersphn0P9oOvN4n6r/+5O5wXUHwzXc ezPEe57uG81kTtIkDSJSkUKaNEiIkBJRRKJERWYqUVKGBlMhH2mkhAZNisLv ub7r/P44j/38rM/ar7PPtPd53+os9AXwH038rdQDTVxT39EtyPd4hqLnMv4j TfytyH+aeMz6tu1ftH+zjURfRJ2j8Ch4WZ71/5tX0f+Dx8D/0h5v4m/nnqAt w3P0OPrsej4nOsYI+7obvawyx+vZPxZ9RT37x8FFjO1kUHOGvpfbxN+afgtP OTzj4UtoL2XbBa9Hz4Wnw43pWwWeCL+NXhGeAFcKWdc3b8uHrOt7vGv1/Wp4 Cp734arwVLgubVHI37N9T9+zhZ/VtQ7Zr+/0RtlXTqB/jqcEfh1eDVcO+Xuq G+A8+Hm4Wsg8Dd6MXjPk751uhAvgGfAmuBb8EnxGyPX17d+t6LVD/k5vIW2d kL/9u72ex/kaeo2Q+0bQm+bbMwv9Mzz14FfhD+Hq8AvwTvhMeL7uWzgNr9Kz A58FL4Lr0zZkWwgXh+zXnPwFnsbwYvgC9tUgqN8oZD2hb2eFfL30DeSv8Ifh ZXi+55qG4MvgJiHrS+Gv8UTh5fB+OAOvlp7nMWiujui4A/9ePMmQv++aCtmv bwjHQ9b1DeEDeLLwu6qZ575XwKW0TUP+vuhBvefDa+BO+pYv/CZ8Rb49GsNV cPOgTrOQ/fqmcX7I51PfZP5F3xMO+fvJf7Gv80Kee//Q+zD8Ifybfr/AG+Dz Q2Z93/gE+sXwdvRj9G0Z8nPdIuS+TfH0Ygzt4U3oy+HWcAnPUSvaNhoTnv+o 0w7+FM/Reta3wIfhC+D1cNuQ6+i7xwOp0zXk7ydX4tm8DP4SrozeKeQ5sFyR n7X/wR1oO4b8DeQyRead6P3xXx54ztA3jUP+5nbnkPU9cBX8V8Ff69yGzP+3 L/Qr4a/gLiGP5yrqV0W/Dt6HPpaa/eC/dP+j3xLyN5Cvp72B7QB8Tch+fVe5 AE+P4F1riL69DP8Id9c10XnHsxrPTXpOOYfnhHy93sdzV749Gk99uBf8BNwz ZP9PehbyvV/NXcP1fWb4Z7h3yGP7BY6h3x7MLfXYV1/4D/jWkPkwfA96n5C/ 0XpbyP6/0RugD4CPwhOpMwg+rnOLfi28F17JNa0Q8neq66P3h//RPI//Tp1D at4Rcp1WHO+ms/zvjj7B+/zAkGuewJ/h9+A29BkVWQ/QhoX8XeUENR+AK1Dn Qn1zOJhnkugPwhXR4/BguDychofAleGHaB9m60CdC9Gf0nOCfn/IfduhZ4rs qYKehR+BT4OfDNmvbynfG3L9k+y3ub7/DFfFM5PxPBr4R9I+FvL3n4eHrJ+B Pl3fpoYrwU2LfFynw6N13diqwS/geQI+Fb4Az3i4AG6bb4/mt3bwOHgJ/HjI fvU9W9/EDvn7xgv1/Wq4tsZG+2LI3xCeRPtMyN+XXpxvrgu3oe/TcB14CjwF 7g9PCFnXt6Y7ok+Fz0SfT999cE34UvRpcEP42ZA9+gZ1K/TpcCH6cyFzA7gv fWeHPLeci2cynIt+E/oL8Gb0y9FnwY3Rr4ZfhqNw73wfi+aQl0LWI+hvoM+A 68Nd8b8Cx+Dr4ddC/sb18yHXbwSv0be4g75zQvZfzpi74Z8Hp9FfzPd11LV7 NWRd36bujud1uFTjgZfC58C99K1vuDn8MX0Xh/zd7DdpV7JdoOsSst4Mvhn/ MvhceJu++w2fBy8JWdd3s8vU4thC/g7z8pBZ39a+hb4rAv982gUhz1Fb870v 1bxP3zbXfQu/E/JvvVbw27Sr2S6E++N5F24N9yuy3hK+DV4Ft4D/R821gecD 2vVs1+jbknjeh9ugD4LXwe3hO4vsaQe/F7JH3+IeQ50P4T+5doPxfKz7SvVp v2DrrjULz+fwtegP4dkCXwF/i/4JfAm8KWRd3zD/KGRd3wAfiv9TnTc8k/Fv D/lb7j2KfH6y8CPwNp1DeGvI/m56TtF36LjQH4Q3h/xN8s9C1rvC0/TOH/I8 MwbPlyF/J/wxfTsdvgEeXRQcC7wzZL++Kz4W/Sv4RvgJfVMdvgker++owzfD G0I+PzrGu2jvCfl79XtC7qtvmH9N+23I3yR/ssjcG3+0yP5T4O9Cfjb1ffLN 6Kkwzxv6M/Af6LfDP9IeDPm75d/T7me7Bf0ffac9GNse/AfgJfAh2p/Z+sLH 8BwOxlyjgPcq6g+Dj+fb0weeRN9f4dvgX0L265vbr6OfEvb3ricWeQzy/xby 2PTd8hfQ/9Lxo1ek/lH4TnimfhfA98J/h6zfB59kv78H+5qD57+Qv3k+Dz4R CsZGezLkb6q/j/9fOK5jCdmv76h/kG9PAv4z5H3pm+plwh7zcPRixlMAj4UX U78y/BhcG70SPBJegF4eflTjD9szCv6Q+hXCnjfq4D810Cfg/0H7gqugnRb2 9+GXFJlHoy+Dzwj2uxyuCj8O54U9ntvwlwu7vsb5Bp5q8BNwDm1u4P9M38AP ey56E08+/CRcn/HUDPynh11f33uvjl4IP4Jei7Z22N+K35Lvmpr3qofdV3UK CuwZCj8A14W/h19kX/9wjIPht+F66BN0HsJmZQGcSduAbQp6EW0J2yRdF/z1 4ed037LfKHwlvK7I/ml6duBG8PNwY9oQ20Bqrkc/C56OvlHf5Idn6FoU2fMC 3DBszwA9a/ner+auBsWsD/BRuClt87C/A/8znnTYc0VTjjER9nfsY2Gzvkt/ CE887HkmHPaYX4STYffVN+p3FbnmAngHXArPgzO0WbbX4M/Rm8GvwzuLrM+H d8PnwIvgs2nPZbtHfw/Re3LYz3IbHUfY39n+G70F3Av+QjkC8GL4IsbfMqh/ IXxBsN8vlUEAL5WHtnXY39JvjKcYnih/2H31/fyviuxZhv4t3BZ+Az4v7Jr6 Pv/FBR7PcvR9eDrAK+GOYY9ZWQntaS9mewvej+eSsL/3XrbAuuauTnBn+E34 UtrL2N6BL9d9wfaA3j0KfE50bhfle37Tu82BIvvfhQ8W2b8GvlI5CEGdajVY z5ozJ5zGHIanS9jf+W+Ffif6AvTj6L3RP0M/AneDP4Gvps618HvwdWHr+v5/ 17D1jZpj9VsA3qz5B+4Jb4UH0N7JtgfuSZ3uQc0bwvYrE+Ff/L3gbeiVuT/v gr+C/1KmA/wx3AX9ZjhyKnNu2Ky8gH7UvA3eqTkT/63wDvgU/P3gXfCNYddX NsHt+O+AP0e/nbY/2zB9r7jA49S81DfsvvKUK7bnf3AleCD8JVwG7hPstwp8 N/y15hN4JPwLXBW+H94H36N7KuxvdA8K268cmTPwPADv1TPLGO6Fx8ODw9ZH 4Xlf14ptqn5z4R8CH8STDz8EH4AfDFv/UfOhMiN0j3KuCvGMgn9Fv6vAY9C5 fZj2kbBzEGrgGQH/hP5o2H7lIAwLW1feQW08o+HDeIYUuK/29ZhqhJ2DUBfP OPh3zZ/wcPgQPKLAHp2T4fDj8M/w2LD9mt96lnDuoswL+oZb2Of2EX0XGv94 +A89+8rOCOaHC+DJ8KuaK+CJYb8PPB22XoZjfyps/V/0KOOZAp+CHoOfg8vB 4+k7AT6GJ4L+LFwW/Zmw/cpomIhnGnwczyuaS9hOx3MW/knwf+iT8MyAT8LT w2bVn6GMDLgKnME/M+BSeDZ8Kjw17Prj9Tcl9DlB/Zdp54ad43BVgferZ/zF sPsqG+K5Ansq4G9O31fhqnAx/CT8F/5z4dfhXPSVtKvYasMt0N8KO2tggc4r Wx48L2y/MibKVGfN1vOAPkeZIEGdxbRL2fLhJHVWwBXhJ8K+Xn/qGhXbU4B+ Ibwcrg4vC9svfSE13wnGc3Gxx1ACvxH22GrCN+J5O+x5oC2ed+G66G2KfSzK pFgdtv4MY35J+SPBebhE3w+H30Bfgf4BfCb6OfSdD1eDX0d/D64FrwnbL88l xX7u6sNv4dkAN4TX024MOxdjHJ78CPML+qdo28POs1iNfxPcBP0KPB8FfCW8 GQ7Bb+L5GG4AX42+FY7CW2i36bmgzid49sLN0D8Ju6+yNroW2xNDX4vns4C/ Dduv3IoPw67fGL0b/p1wGu6P//Ow57RdtLvZMug7wtZTcA/8e+AsfE2xjysO f0H7JVsp3Av9G7g5fD81vwt7rltZYE8j9J54vg7G/1XYfuVudEf/X1DnVvh7 +Hz4D92zbJfC+2kPhJ3l0b/Y3Br9FvgH+Dx4gLJX4DbwvrD1F/U3W8bwE3wh eudiXy+NZxf6L3Ar+GDYHtV8FP3XsOfJn8Pmduituf//hhfCd1Dnx6DvXfDv cAcdO/wn3BneS51/gvE/UOxjuQw+EraurJBB6L/B7dG/wf8v3BG+kHv1OPwa nsNh138Zfgj/MfgKPEfD9itb5D70E3An3bcFvo5aH/8LW5d/CJ4yEeePZPFU hGdqTkYvB1+L/j16+YjHeRrtGRFnjpwSsT4P/kG/BeDL8TxG39PhG+AKEeuq 85Te/yOebytHzN3QD6FXga+GTzKushEf4+hi76s7+lQ8dbQ/ODfiZ0pZJ1Vp q0WcmfInnjy4B56xxdZvhMfAOYH+NJ7q8AnGUJO2MOI8lMPoNeDr8UzAXwu+ Ff67wB49vwURe26G/9V7PnyLauIvgvvCUdo4293wNPQwfCf8Iv76OnfwC3qf jHhuL4lYV996Eet94OfxNIIrw0vgxnA9+OFin5+r4GfhhhHnszSI2K/Ml+fQ m8AD0SfBZ8K3wWdFrA+Ap+s9Hx6kscFJeLDGBsfge+CZxT6We+FQxH5luExG T0U851fl/s/A98Nz0JvCD8G1Iz4/OofTGf8srmslOBFxX2XEpGlLI557Xy42 P6gxhO3Xsc9Fb4Y+RPdnxKzcmcXobeHH0M+lPZ/tYbg57Tlsb+GpxtguDGrO w38ePAy+gLYF23DdS3haBWP+XO9v8Ovw68X2jIAXwRfBo+CWEftHwk3oexX8 NFy5usdwl+aEiMemXJtC9Pbwo+jLqXMJ/Di8DO4Aj4UvjlhXtk4d/G2Cfa3E 0zniXJu34cvhCfBltFewjYffRL804iySThH7lfnyfoE9mpPbRbyvMfCVtF0i zqPZQt9b4JfRe9D21LMPr0e/Dp4Of0qdrhHPvRvQr4ef133OOK+Bn4XT8A2B 3k3Pa8S5OdXRX4EfQb824r7KytlYbM8M9I/hG+FZcAr/rcF+r464/lR4E56b 4Jd0D+DpHYzz5oj9s+FeEesfUP8cPH2D4/qk2Mf1ItxHzwHbOs3/6HdonkF/ r9jnRMeytdieOfBn8O3wq3C/iP1z4SLqdwzO5048A+D5cP+I7x9l8ZyL596g zlecw7siXgvujJgXaV6l78Pw2/AXyhWCF8N3R9xXWT9f6x0eXo6+Bx4ML4Hv 0zPH9pF+h6I/qGcT/cti60vhsxnDoOD8PBBxHeUi/aF37Ijn1UP4H4Xfgw/C w3Rv6D6h73Ddk1ojaIeyrYR/KDavgn/Sb5mI84auxj82qDMiYl25Qpejjw78 oyLmzei/MobH4Os0P0c8nnXwNfif1P0Dl+Wd/wX4c823eieHt8Hj9RywrYfH RexXPtFfyrSCP0Y/Sv2ndE/AE2knRZyJ84/e4TUG9Nm6PmxfwEeK7flEcz78 jMYPT47Yr7yPa6t7v8opu1nZWKoJT4l4bMoe6o4+U9cO/Qb4eXij1oKIWVlI J6k/Hd6BPiNi/w70ChzvS8F4cqp7bA/Ah/E/ERxvZTyvwl/B5eEX4d1wRfhl eA88K+I6Om81ov7dpHycuRH3/VLzJPX/CJ6pAfDCoM5S3WsR5yWdTs0F8He6 3/AsDvgReB58CK6GZxn8g9YCeAm8D16r88T2tf5+UmI+rnk14n0pN2pRxH7l NNXFsx7+Hc+p8PyIM5hySzye/XBNeHXEmUr58JvwAfgtPUNsB+FVumcjzlp6 LeI6yop6V/dmxJlBhfRdA/+KPw9+A/4RHslxvQ8fhmuVuM4vWstK3Ff6ioj3 q9yoR/HvCuo8De+ET8CjlUcG/wFv1DMacT5UUYn5T/QkvCnifKUS/BsiXhc2 656KOAOrUYn5X/RXuAfOjniNG49/C3xM82fEdcQVq3vt0/vG9ojHcwr110Vc /zfN29T8NNA/13VgKw8n0HfAFeB0iXVlUT1JzT3wUfrWQ/8wOK4Z6F/DVfDs jthzOjwR/bPgWm+LmJVd1Yy+X8BnwOfBX8F5cHV4ZXAvPVzd11HX9MuI6yu7 6iddh4gzpObj2Q/XRG9J330BXwT/CNeCZ+P5Hs6B26MfhIvgA9oPWz34G93L ulf17hpxX2Vjzapuj46lA31/hovhy+HjcGN4b8T1a8Ad0Q/DZ8Lz6PtboP+u 6xzov0as/0j9TviPwA3QLy7xcZXAf9H+rXsYz2Xox+Cz0N+m5n8BL6xuT224 M56jcCP4n4j9yhHrin4SjqGfwXOfE3V+1qrqZo2/LG25qDO2rsd/GpxCX1bd uo73DbgiXB9eApeJ+ry1h6tEvb6Uj9qTQJ+L/m1wTc8v8blVvlgr9Ap4Fug5 hSvDDdFPRFxTGWHX4j8lqFMp6vpJ+FTa06POC7sBTy6cQe8GV4XTcHc4Dy6F b4QL4KZwF/ZVM+q1LJ+2OlsWfWV119R5e726r5HumX8jvr7KPttY3X7tq1rU 9X9Hv4n6teGz0XvDdeBz4FFVeceKOQfkDvTG6K3Q69IWsR3RnBO1X9lkvalf Am9hbFvgekGdYtoz2S6A+1GnIdwSngpno87n6ltiz4XwbXADuAVcP2q/Ms7u RW8KX4J+S4nHcB7cKOqxKfusP3oo6pyyOxhDDN6ltQA9DLdBj0Sti29HPwu+ CB4EJ+H28N1wOup8tJTOWdS5afdSMwF/S8141H5lsd1TYk9HuEnU+1LmWmnU Y1a22kG9M8Nd8AyGz4P3at2h77nw1ejfoTeHO8HnRO3pLD+es6POWRsCXwBf Ca+Bx8DP6P7U+WO7Av6hulnZbcPwtIS7wsPhi+Br4LZRj2ec5rGo6yv3bRSe 1nA33ec6T2wn9TuUmhfDPdDH4GkX8BtwR/gJuEXU9Y9wXGPRO8E3ol+isUed B7e/umtqnB2i7qvsxcdL7OmJPg6+DO4FD4SjcFv4Z/peHoy/c9SsnLguOj62 8soHoL0q6DuRvlfDfeBp8I3wnfDTJfb3hSfD18L94Otpb4g6w+4f9nUdfBP8 LJ5u8B3wser23AxfE7XnNs2H1b3f6+Dn8PeAB+p+Vj22IfCL6LfAg+FyNagN 94d7Rs13wTPw9ILv1jwQ9ZiVf9c76r7Ka3u1umsW4HkZf5+o/xnHrTomtgfg qtTvB9+vObOGde03D+4fjOcOPX9slan5NnWGwRPQ71e9qLPtFinbER6Fnq9/ bgI/DFeH74EfgV/DMyjgxfB98GPwvdpn1Pl3T6JfCfdGvyvqviM1D5fYMxpe Cj8Aj9F1j7rmqcpcKvF4xqK/CQ+Bn4SHRj1m5eg9pHFFncG3Es8j8FN4atew rn2tQh8BT9SzQPto1Fl7IzXeqHMAF1f3OVF25MFaPPfwGubA1SX2P43+bon9 k+F34FHwJHgmfHPUOYNnst+xwfP1Ge2OqDPm1uGZAk+DP2RfT0U9z9fH/0Tw HD0ZtT4FfjxqXc94IzxPB8f1AXUmw8/BL9G+HHU+4PvoE+Gp6BOi9isTsDF9 nwmO/QT7nRvc/w3Rx8Pj4RA8NTiWZ6NmZQv+jn+Gng30T+Fp8PnwYfgF+Hp4 UtT1lUu4gTHMgp/XOaF9Meq8xY9KPM6Z6M9H3Xc6vLHEnhlwKWOYrf8PjsLT 4Wfhj/G8As+CP4ffgl+Ht8Cv6/jhV2nnRZ11OCdqfy1ltlBnQbDfTfhfizrT cH7U+mx4dNTXS3mLFfEvDuaKbfgXwXPhhVHrc3Qe0JdqH5p78a8MeHOJx6Ca S2iXRZ2ZeDqeN+D7dA9H7a+LvjxqfT76/+i7Cl6oe6bEfV+F36ZdHXXGYgvq rNFxop8LrwjGs7vEnkXwF/C7Gqvuz6j90p+L+nzq3tuDZy28BG5NnfeD/RbA H8JDtUbA64M6H0TN8r/Lc7FN9z/PRXs8G+Gl6Bui7jtcY8azJeqMtreUGap7 TBlhtJ9EnflYX7lgUWcyFle1rvzHLxnbuqDmpqjrKNsxqhyuqHMbO7Hfz6PO 9WuCvj3qjMhGVf2sKTtyK+2nUWc1NqhqVgZlBN4VdTZlUplfUecz7oxafwv/ +4z5i6hz3P4XNUtvjH931LmTe6IejzIfY+jfRp3heKmemahzAL+kzs86Fvg7 2n1R5zZ+HbVfWZbNlfmlexLPZvx7df8ov4x2f9Q5jLvRD0adh/Ve1NdL30Ta VsseZcC14H8fiDpj8ceo/cpe3FTL+1X9Vsr/ijpT8lDUY1PeYkv0P6LOWNyO /zD8mvK/omblHnZUpljUeXy/Re1XNmJr9CNR50K2U7ZX1PmMKfibqPMx32Ou GAdH8V+G/lfUWYeXK0cs6pzEP6Ouo5zERyL+W827+ttF1DWVaXhKDuc05tyc irSVY84u/IUxl405++liZYpFnR15CXxKzNmFh/CcjDo/qzN6+ZhzHsvRVog5 C/JM9Jox55OWibmvshdP1rJHuW/X4akUc+ZU9Zj9H+E5HnX9D+BueE6NOaux C3xazOvI6bRV2T7EUyVmXZmMJcoFi/n7V1dV9XEpIzKHNjfw90QviDm38V/G UyPmnMRjtezZCvdWhhe8Bc6L2a+x3cDzckbMmYwN8RTG/Dw2pg3FnD9Yh7Ze zPmM5QrNyissA9eGd8L96FsccK2Yde03jF4S85zQBn8/uA7XqKe+/x9z3mhR zB7lKlZRLhj8tc55zLxJ8z91IjHnopZXJhq8Wxl56GfFnMc6UNlhMed13qMc E/gbuGqhj0U5huGYdeUVnqrcscCTAyfg7+Gz6ZuK+VlrGHN9jaGa8r/gH9Bj Mfu3oA9WzlfMGYtHa/k66jwnY9bleUD5X0H96+FzYs7orKGsLvgn3TNw85jz EC+kbanrSN+mMevabyGec2POQxykeT/mXMuzY9aV5zhSGWExZ0SeFzOrzs2c 8/Njzl7M0GZjznk8v6r3pZzWyXBnuAzXqE3Mv/WU83gRbeuY81ifwNM25ozF x6paV+bjw3CrmPMoR8MdYs5/7EjbKeYMxLOU+RVzfmJYGWHBviKF9pSF28fs Uc7jCOV8xZxZ+aze42POVbyRtlfMGX+z0LvHnG+YVLYXXBF+UrldMedCXhWz rjzEy2PWlXuYVl5YzHmIzZT5FXNeVUGhz48yK1PwNTHnRXaN2a/6L1C/W8y5 jU/p90bMGZrXxawrP7G5MsJizklsAfeGa8DnKvMr5qzDCwp9LAXwDTH7c+AL lfkVc77hHcpojjkD8UL2dVvM8/ClMZ8f5UgeY475L5hnboq5rzIZb6Hto2dW c3KhuTb6lVXtV0Zt35ifTXmG43kTvgbPpfADcEN4AO2dMa9Zt9P2jznPt4My v+BiPIupOTDmHMZBtHfHnPN4iXK+4Pro93Iso2PON+xQ1R5l9S6D7w3q3BOz X5mMG9DHxJwb2K7QY1Au5OCYx6YMx5V61485V/Fq5X/FnBl3nnLK4LnwwzHr yhNcjv/+mPMcO8EjYs7/Xav3/pgzFh+lHRVzHuIi9OExz13DYvYrY/HNqvYo m/XBmPelLMjHYh7zd3B/xjNNzw+ed/CPjzkL8iP9/ok5J/FGZYHFnN/0RMwe 5Ru+jWdczFmTn8ATYs5YXAjfEVzHp2gnxpyBuKaqWZmS6+FJMWc+3qZcMLgF PDXm8Si7cGzM9TXOjfifjTlr8hnaKWwX6bi4Xs/HnFe4RXl8MWcsDlDGVsz5 iU/HXF/5iQPRZ8Jt9YzQzmLbj96v0DVbok+Pua/0PlXtUc7vdmWExZyxuBoe GnOG5p30na35CH4xZlY24it6DmJeC17WdQ7qf6Hfw8EYhtB3qZ55ZQkV2t8B /grP/IAX0C6KOT/3HmVIwR3Rv1FeWMD3FtqjvMV5MXu0Tn1b6P0qY+s7/Eti zrtcTftuzNmO+5XPFXPG4lD8K+Au8LKYWfP/Pr33x5zzuDjmMSuH8Y2Y+yqr cWSha16Pfki/z2POc1xJuyrmTMYD6O/EnFn5Y1XrOvZHuI7vxZyHuIZ2rfar 3xd6Tw7uz09oN7P9iv69frPFnCn5OPxBzHm7Y5RTBvdAP4i+LjiWEdT/KOb8 xw9pPw7qDMI/J+YMyvUx91WG47hCe3rpnoc3xZyb+X7MNTW2Jws9HmV+/c2+ tgb+T2Mes3Ibt9Buizm38Riez2LOeTxc1brO1XF4Z8x5jjtoP485h3GX7p2Y cyofq+FzomzHV6p6flNG6u9V7VdO5cmq9ivP8RnliMG3w38UMV+GOe4qPB/K C0MfqLykuhxTiuOtyD1L30Mxz+3P49kL36VnAf4GHgR/G7N+p+7PmHVlOD7O 2H6IOT9xJnV+jDn/9wjtP2yjNB7072NeQ/fF7Ff92dQ/EHOO4WL4WMwZiJPw fxdz1vBc9J/gIbqmMbOyAOah/wYPg/OYS38JPNXh32POXtwfc31lUC7E/yc8 UudEY485YzE3x+NULuThmPsqq7Fmjj3KJSxUzlfM2Ygv6zdFzLnDy6j5LzwW fku/meNej16Fy8S9bv7H/38i5tzGozH7ldXYmJpl485JXEGd4+jjdB1j1pWZ eDHtJWxVTue5wVM+7tzDJvQtF3cO4ylx61q7U8oIiztzMK0ML/h5eHmhx6Cs yQpoleJe7zainxp3vuFpcfv/Y7+V49bFH+LJgV/As6HQfVWzKm21uLMUN6Hn x53nNZX9Vok7R+yjQnuUM1iqXLCgTm7cfuUM7lZuS4L5S9kTMZ9bZWvGlBEW d+bjOcrhijs771O9Y8edpbgNLox7Da0dt16Gc1Uzbl28HU9x3PmMO+Az4Xm6 x7hva8En2dczcFHc+Yn14vafAq/jOtaPO1M4QZtiq4C+Cr1O3HnKO/WuDs+H G8TNyoX8EE847gziz/E0hl+H/6esQ3ghXBJ3fe2rBccYC8YWpY3HvSZ+Vej9 KoMsFHff8vh3F9qzCL0tfZNx5zBuRa8Oz9F+GUNp3GtlS9pWuvb0/RFPi7gz ELO0zeJev9Jx+3WM7ah5dtx5iG3gpsG+mtOew7YCvliZX/ByuCDu66Xz+XWh PdL3wufBb8Hnxu1XnmNn+raJOwtyf6HHsBq+IO6xKafyJ/SL4LXwzxxL27jf /brk+FiUvdg6bl3HdQD/hfC76Ffg6RDUPIzeMe4Mx9bomeD8/0nN9nGvF+3i 9itT8rdCP3cb0LvivzQYQyfazsHzOB79OfgY+rW01+v5QZ/JvXRV3PmJZfFc Hvc8fJSaXeAt8qNfEXee5iz8XeHT8V+t4wvqlFMeVtx5i1fG3VeeI4X2fIJ+ A3Wuizu/sk/c/l3wZXHXV75kBeV/xT3nn6Rvd3gH3IO2J1sOnm5x68qaPF3Z XnFn8pbL8XEp/7cXbe/AX1aZX3HnCRbg6Rt3Tm6PHHuUm1lJeWFxrx03x+3X fl/ieG+MO6fyZfj2uHMkH6B9KO7MxP4aL1suXCPHrHm+Mvu9I+68xVvQB8Wd ldkvbl3+Ksovg7/WGlTV10vZzacp8wv+Fr4zbo/yYe9WnlfgvztuVk7lg8qp iTtrcoCyxuLOuKyqzC94H3w/+oMB14aHxr2+1MrxsSjnd0jcuvIoBysjLO68 ywJlfsEH4aHojwZ8X9z1ld1WB31Y3GvoI3H7lSN5h/K/gmt9c46vo/I9R8St H9KapVww+FfVUVYX/Js8yh2LO+PyYeV8xZ2JOZF2Utw5kmPi1pXvVo++T8J/ wA2V5xXc8+Pi1pVf2UD5X3Fnq42Pm5UpOZb6T8Wd0TmKdnTc2ZeNcrwv5QuH lKsVd4bjlLifqUI8k2mfDbgY/9S419lGta3/Cx9Afwa+irXjKXh6oM+gncn2 H3yWcrgCbqK1Bj4BN65tj7KDp8Xt0fr7uDK/4s7fDCvbC1b+5lLa5WzFjGep /t4OF8EZPK/GnWsZgefEnX05N269Lp7Zceu14VJlhOnZxLNEf+ePO7OyZm2f n5/Zb5wxzIs7H/m1uP2q0xTPQs0D9F1E31fizt98PW5d42muXDA9X8pkoc4b ca8FzdCXaW5Rhk6Oj0W5tIvi9uu4ZivnK+7MypbwyrjXtYvg1XGvX7PiPj86 ll3MJ03izt5dEXdfHddbtG/Hna35Yo5Z+z0rbr/WrxWM/5248zRXxc3K67yY cW6KOxdyLe0HbA3xvEv7Xtz5wvOpuV73GJ439c8C4s7HXEe7IfBfqvziuNed jXp/izvDsWOOPVq/FsAfxp25uTFuvzIrV6N/obGit67tMSj/7uO4x1YEv4Fn S9yZmFcq8yvuPMpl6FvjztncFreu9Wgx+idx53V2Vg5X3FmZ3dB3xb3WfE77 v7hzMK9G3xF3lvH2uP3K2byitj0a2+a496Xszt20e+LO1lzDOfkZjsA/aM6I OztyNfq3cedjXq38LziqMSjnK+6cu3eVCxx3Xud78L7As5f2ex0jfR/Hn+Cd rSf6N3H3lX5Tjj3KJv4Q3h93hubHej+POwfzy7jrax3sqcwvuBl6L/hQ3DmV P8Xtj2pNj1vXsdxHncNxZwffm+Pj0nz+K+1vgb+Pcr7gC6jTM8fnRGvl+zn2 KEt0Lefhj7gzNH+P2x/XPYnn07izaLfAR+LO4vwr7vtHnn7UPw63RL8bPhZ3 zt0/cbPm3t30rcD5aYM+DP4v7qzhf+Pu2wJ9u97hE87r3AmfDGqe0HyDfhE8 kPqnJJzN91GOdWWP3oZ+NKhTNuE62teD6HkJZ2LeC58GXwI/St/KCa8F6zj2 KgnnaZanrZhw7ufwHLPmn3voezrckb6j0HMTXjtOTVhXXucDeHLgy/CckTBn 0DdQv2rCWZ/VEh6P9IfwV4ev0Hs+Nc+Cr9H5QT8z4bzOGrS12Erx5yfs17rz MJ7aCc/z++lbM6hTSFsn8A/HUxTUjNDGEs4LHpNjjzKgh+KpB3dRLljC/ivh IbW9X/FHjL8k4czT4oTH1hQegacxfC2ew9RsmHDeaP2EWZ5x6A0SzqFulLBf a02CvuGEc97H1PbYlBP6Pf6C4Bym0JMJZyuPhkNwd/gPPNGAmyRcR7mlzyf8 u+ky9htPuK9yS7/F/0Bw3Y/ATYPn9Bza8xLOEp2Fnk14HRnPvprDN6smejrh vOY58LkJ5+2+BJ+d8JrSQfdFwhmjS3PMmg9LE96XcjObJexXVunpythKOH9z HPvKwL3gYzkej/ZbTjlfcH94K+f/woSzKVvoOWA7H26lezzgVMJ1lOvalrZ9 wjmnr1C/HfwwPAW+IKhZUXleCeeWLslxHWUiv5bjvsplPj/h/SqLeTN6j4Qz fOdT54aE8zfnwFfCD2kO13OWcH7or7XN6+Bq7OuqhPOdT4MvTTjDtIvucbYh mt9qmLtyLC2VfRmsZavY79UJZytfkXAd+d+o4bVPuczXJzyeEeiXJFxfOacf 0PfahHN1u9PemHDe6Cfo3RKeY6tXs678063oNyWcL/wmfFnCWc+18dyScJZo z4Q9yiTNR78uOLfXJMzKS62B3ivhLNRFHMvN8CitfYy5ZcK5rtNr+zoOQu+d cH3Nz3fR3qPrp/VL/55Pwvmk/2M8/RLONX6DvgPgJ+BayiYLjr0OfGewr4Gq zdaWvrfS9k14/rwj4b7SP82xR5nLe9jX3QnngW5QTm7CmZ63JVxf+aoNqH9f wlmo39B3cMLz4f26tglnnt6bsK7xv0+dIfBU9FA1H5eySh/SOWProPde9GEJ 55luxD8CngHHqtkzBf6OfT2ScJ7y0IT96vsR/lHwTPRJ2n/C+aHnVzMrb3Q0 7diEc0t/oc7EhOerbDXr6tscfiLh3NKP9RsBnqXrpWzfhPMTH0/YozzTXZyr Pgln1C6u7XOrzNaD1B+X8Fx6CB6fcF7zyIRrvgDvQx+TcKbzkwnX174m0D6d cObpdmpOSTiH8VF4csJZzJ8rmzjhLNS9jGFawvmn++AZqgk/Rzs94HOquaYy YdfW9jXS+Rye8PVV5vKu2vYvgJ9NuL6yUP+HPivh/PS/GPOLCWc6L1SuU9L5 Vt8pkxf9Tc2H2g/bYnhmwn7Nw0fpOzfh7Oa/4dkJz3VzdH3YlsFfK7MYXg6f wphXJZyh/GVte5bC/9L3tYRz6l9N2L8EroR/dfAc7antMUifn/DYrmAM/9F3 UcI5zhfjXxbsqwO8OBjDkoR1Zdz/wPl8PeF82N+Ut5twfut++C14teYH2pUJ Z9d2os6K4DwsT9ivXOkfatuzSuct4X1pPG8nPOZ30NtxPrfA9Tifp1Ln/YSz nrvAa+E1uq+o827A7yXsUebsAc2TCedFHmTM6xLOnD1TGUNJ54R+gLZe96Hu /9pmZUGeQf2NCedcH9K/LxR4NiU8Hs3D7yRcXxnWufg/Tnie/4j2k4Tn9svR twXH+Dv1NyecpXgE/lQ+eEPC9ZWNu4ZrsT3hLPvPaHcknNV4uLZrrtc8nHBf ZdpeUsee+sq30r8vlHCG7Pf4lyacs3kM3gVvhXcmzNfh2UP7Fdv1mj9pvwj0 E/i/hLfrflP2VsLZr8dr2/8ZXMhxfZNwhvV3tPsSzqe+Gf3bYF8n8e9NOPe2 TB17dup+Ttij/fao5v0qz7escsHgz+HfaP9IOJ+3D56fg/3Wgw8mnJf9Y8Lc Xe/kHPsB+AYde8JjFh9KuK88leu4prJ061Pn14TXiF9oDyec4dsY/feEs6Qr 1LH+BXw3+l8J5+3+SXuE7Rv4YfTKSWfmlqE9Jem83arK3tJ5Qb8Hzz+BP0c5 X/D3Wuvhownn+Q7EcyLY13Hak2w9qFOAvjvhjPJjCfeVHq5mj/Kv74fLJr2v vxOuqfzcaDWPR7nVcbh80mtNxaTH/DNcjrZC0jm/j+CplHQucEEd68rQTKGf mnQudhXa05LO7T2dtmrSmb9NqvmcKKf7K3g4egfuyRHV7P9F83w1+5UFnIHP SHotK4Z/Sji7vD77zUX/B76OtlvSmaQt8RTD87UuwDWTzuQthQuSXjuqJ60r jzgvaf0mjY2ateETeCJwXbis8rNoo0nPn43RC5PO/K2VtP8/eIfe/5POyD7O PRZPOm93K3qNpPOpn2UMJUnn5BYlzdpXgpqNdH7RW+Gpn/Q60gY+K+l/flEn 6frK/22L3iTpNaIxbSjpLOBkHY9T+bwNk+6rDN+Rdey5Hv05+kaCfT0DNwiO MaM836QzPa9Bb5F0TvcLcCl8qurTpgOOJe3vq3dy+maTzvC9FH8q6ezvTNK6 5vmcpK+XzvPZ+JvDOfjL4m8G346nadK68n/nop+TdLZva/wtda6VJVfDY9B+ z6Y9N+m82jbK/4XrKPMraX8hfF7SunKHr6dmq6Tnxqurua/yxy+ibR3UX4Te LqjTkprn616B29axRzlxPfG0TXpObpO0X1nAZyZ9PpWtXLYm93XSub2X0vfi pDOFl9H3sqQzhXvDnZLOCu+YNPfH3wX/NXAEzy14OiedLX5p0n3luQzP1Uln +96K5wr4U60jtFcmPc/3Re+S9PzcuY71Rsq/Y2yXwHdQ56qk6yhH+AH8Nyc9 5wyGuyedPb2YvtfDj+EZUM3PmjLNu9Jem3Ru8u3VzJqT18A9gvGvhXsnnTV8 Q9K6cn7fQ++VdHbwjUnzIPRu7Kun7jP0m5Iej/QeyvPV/YS+nb73J529O0BZ unAbHa+uA1tTnbek/coX7onnDrgZ/BF9bwvq3K5zmXSm8HD0O5Oe69onfb10 foZVs0dZ7ZvggUlnEw9I2q9M4fereb/KYd8F35V0tu+gpMemDPRByimG26Pv xnNfMOZ7kmblAo9CvzfpLPLBSfvv1fqLPiTpXOC7lPOb9Jw5CP3WpDPia6Hn Jz1/jkZ/KOn89C/hocF+H0y6jmp+EfO/O/rnaaxNSddUNvq0Qtau4J/FP4E2 Puls5a+pM1rnBf4fPDLpjOPByvmFL4WfQB+V9Jy8F3480MfSjks6d3iqcnJ1 z8CPJd1XGestcu1RJukE+j6Z9Lw6PWn/g4z50aTrKwf5RzwTks4+HqqMYLgL /DTtZLb78TyVtD5Y1xHPs0lnoz9cx8d1leZA2imB/zA1pyU9T+bwjDyfdK7x 5Gr2KJN9FH2fg7vpWJL2K8f8DPyTgn29hH8mXBV9Ae2ipLN9X6SdnXTG8fg6 5pvhv/DPSjrLeDL6HN3HyghLWtexX4lnbtLvuh/i+R1+QdmI7PfVpHOKX07a oyzjZ/G8lnSW8StJ88P6uxzneUlw/p/C8xJ8CzwFfl3PA1wOz8KAZ6IvTTrv eF41H4vy0xcnrWtufBl9ftIZ688r21fPFFyBOm8mnYk8L+n6GkN1xrw86Xzk ZUn7h8GvU+etpLPUH6nj66gc6jeS1uVZgOftpOf2WtR5L+ks42Po7wTnc7by f3Xt4PW0G5Oe91YnrSsfea7yf5PO550Pb5AOr0lafxTPGYx/XdL5y+8nzdJX sK8Pks55X0m7KulM5xq53peyktfj2Zl0pvYnSf/WU/b6h7QfJ53XWYfxb0o6 m7hfNet6761JnY+C8dTDszXp7ONPabezjYWXM+ZtSWcQF+H5TM8Ser1ce5SJ vCVpj/R3qf950rnwG+D/JT3H7qc9wDYV/hT9+6RzzNdR/0vd3xo/+u6k588v ktY1x+5KWle+8zv4v4EnoYcYw3cBv1DH50d5rJup83XS+exfJe1/Gt6Kvjfp PPc38e9JOmf526R15SnX5xh/SPq7yp/hP5R0Pvt6/D/C0+Foro9FWcn7kvYr T/kD5RQnnSu6Af4Ffh7eQZ3fks4E35H0+dG5Habrk/RcdzDpvjo/P9P+qrHh 2VjHrO8531PH/o7w4aSfTXl6M54LU8513YanbMpZzEf4///Rsw3/QftX0rnM m/EcSzrT+RP4b/hF+Cjtv0lnxJdS80Tw7B9g/Dkpz2Ob6tjzEnwOnuPwy/B/ SfuVQd8BvVrKWclb63gMc+CTSY/tKcbwDTXLpXwsO5VLC8+Hz6Vv+ZT9FVLW lQc9F70MnFeJ+0H5vPACPF/Cp8NL4dNoz0g5I3g3ehV4EXrllP3Kht5fzR7l 15+S8r40nqopj1n+A/Stn3JG88/4a6ScX78XvXrKGc0H0fNSXgsKUvYoz7q9 coSD8fyKpxZ8Hfwxff8MrkVNtMKU86nfyTUri3M6/jo6ZvTLlAuWcn50Scrj UU59bsr1lU/9G/6ilNeIerTFbKs0NvbVEF4DX6E8vpTznf/E3wjuAddOub6y p4+gN4Z7op9F2yTlzOgrc13zHfQGKfdV9nSXXHtU/x/6huGb4AvQK6acD34N HEk5kzqUMn8AJ2hTKedHR2njbOvR/6VOMuU1oix9z0k5e/3aXPvV9wSeDNwX ztI2Szlj+k+OtxT+CP16/E2DmmVy7dEal07Zowzr2dW8X/0u6IHn7KBva9q2 KWdQVkZvkfL6UhE+H75T92fKrCzjXujnpZxb3TzlMSu3+oKU+ypv+tZc11SW dB/4opSzoVvStko5SzoHvU3K60ilXOuD4CWMs33Kf2tqR9sh5ZzrHOXqppyJ fKXuwZTzoPPpeyn8sO4TuCP8EDwQ7pxyFmcl5QKnnDHdlbnu8pSzQS/TM8E2 FD2GHks5B7xTyn2VK31qXXu+wVOdmlfBj8AXp1zzK/iuXI9HvJrxd9X9pOuY 8piVB321nqeU87IL8V8HP6rnt6515VbXQb8BHgV3o+2ecg51D92nKf9GqFjX 52SP5pBqnt9awvfn2q9c7Py69ivbtAC+ET4IXxVmHGwfVOEex98bfayOqynP J9vkMxg3+qCU144z4dvgcXp2qHMrfFjXNGV9jv7WlLIufgz/HSlnajeGB8AT 4SE6xynnL4eoczt8Er1fyn5lWA/HPzDlf6/1GXhYyjnRQ+G+wfhLlP8LH4Hv TJmV2Z3EMzjl9TQC3wM/AzdS5m/Kecf9U66vXOwJeB5MObf6Ad0vbCd0D+R6 nFPg+1Luq4zs0bn2KHc7TM2H4TLKOEO/N+AUPDzltXIO/DScq8w++LGU18QR tCPZKqA/krJfGdbT8YxOOfN6CvxoynnZo1LWlaO9Tc8Q27nKt8LzeMo51Fl4 LDyT+mNS1pVb3Qz9iZTXuPMZ8yQ4H/8TuR6DMr7H0T6Zcub1eXgmpLzWTEzZ r+zs8SnryqpuTt9nUl4HZ+a6r7KzJ9M+m3I+9Xz051LOpz6Xmk8F5+G1XHuU Sb2FuWtqymvolJT9yp5up9yWDM9+Zd75Uj63yrFto/xfuA5951FnXsoZ2Yvg lwJ9ITwz5XzwWSnryoyekbK+VP8cBM+clLOq21PzlZTzps9HfwF+hX1dBL+s cwLPTtmv3OoOyg6Gi+EVtG+yNVbuIf4XU17HW8HzU16jX0uZl7PfjuiL4RXo naizAG6grC70JQHPTbm+/J3Ql2kf+JdKC/bVOdf7XYm+KOW+yrZ+O9ce5V+/ S/034MnKWGROm55yfncXZfvCEfSNtB+pDnpP5eqmnD29ivadlNe+t1L2K3/5 ENdrDfye1jj8q+G49iUt4K6M4QN4LZ5pKV8vnfN1ufYk8XSj7/twGl6bsj+l fEbG+UnKGdld63oMMfR1KY9N4+xGnQ/1v6l/I7wJ/hjekOtjUc2PU9ZX6e9C 1Fyfch73TXi2wpvx3wx/Cm+Ff+C4Vqb8/nAD+hZ4I7w5Zb/q9M31c7cd/RZ4 B7wN3k67M+Vs7op5zJVpZxZ/g/adzgt6H47lC/gCZUcynl0pZ3D3o84e9dcc qFxguCWeLni+SjkX+0var4M6D+L5LeW81N0p930XfUBde5S1PYCa38K79Q6W sn8v/HnK9eW/E/8+uB3+gcr8hdsqX5X2x5SzufemrGt9uYeaB1Ne+7bn+riU CX6A9lBQ51v0X1LO494LH045y/ueuvYoE/Zr9J/hi+GfUvZ/p3UTz364g+Z5 +A+4C1yWc1ku7Wzrv9D+TgU547nmH+n7EPwnvB8eBh+Ff4J/T1m/ijrDlfOb cn73tlxfL+Wnj4D/0zj0Lpey51r0g+jHgzH8mzIrv/sweoW0s7+HUfMIeld4 JHqZtNfEsfAp8F/w43DFtNepX3J9LKpfPm1d+d2H0E+mnDk+Xhm+aWdPj4NP Sztr+0TK9ZUbfgP3RuW0s7wrpe3/EJ5IndPh4+zr7rq+jjrPp6aty/MPnqpp 54NPxFMA94H/RM9NO3P8Xzgv7ezvQto6aed0V0tb13r9LJ7q8CnKjeWer512 3nd+2rpywKfiqQWXR6+RNiuP+wR6zbTzvs+gzUk7W/y5XO9La+ILcAg+FS5O +5lSfndd2qK0c8BnMP4S+G6dt1zrxxhbecZTL+1M8BfxNIAHw41oG6ed0z0N f0NdA/Tn4bPgyhpPnj3y10/bo/zuHPRw2vnds/BHdU7hc2jP07HBr6A3T3tt zcefTDuzO1dZXWnnccfT1pXfHUlbV353dTyZtHPAX2fMWXgE/HSuz4/eSV6G 03A1vWOk7Veu9wJlBMOPor+EJwFXhUvT1nfiqUn9s9PO+K4DXwCPguvC58KP wbfX9LEo77tZ2n71XUbNC9Ne75bDLeES+A24NVxfObBpnx9lqbdDX8i9t0Tv G2n3VfZ3C9qL0s74Ls4zj9Xxpuxfgd4IvU3aGeKt0uYJ8HUc41Vprx0daDuy NYLb0rZPO79+LZ5O8BT4LOpcHPS9hPbStHPA38dzOTxV85Xe39LOM30v154o HKPvZUGdzmn7E1pT8PTSOYVX1/UYnoavSHtsyg2fTd+r086ijcPXBftaj78r PB2+Jm39C8bzAfqV8HPoH8I3wC/AH7GvHnAW7k57Y9rZ4h+id4NL0a9P26+M 8lSeParfJe19qX5PPetsL2nupf7d8HL4Dj0faWeIb6ZmH11v9E3wzXBzuDk1 +wZ9N9P3Fng2/CncD34Fvo329rRzzE/lnW2FaqLfmnZf5Z5/lmuP1r4Lqdk/ 7cz0Xej3wK3g3mnX17FfhOfOtLO/P8czSPcNfFfafuWSD0xbV775//DcB7fG szPXx6U19F49x2lnlLel5oNp56Q3y/M5UYZ7mzx7lJn+Dcf1ALwCvj9tv9bE 9dS8Nu33k4vxDwnO4UNp3z9asw7Q99G0M8r3w8PSzjEfmja/A/+CPg7+QPcA 52oEHFfmWtp99zHOn/CMTTsH/AD7HZX2+jVSz+j/96CPSXvduTzPuvLQf0R/ BL4SHp12HeW898QzNe288uvgifA6+D/2NV7PLPwHfZ+Cu8OP63lKOzP917pm +bvT9+m089D/QZ8Cb4YnpK0rp/sIdZ6Be8KT0mblqv+FfzL8MfqzaY9nC3wU /3S4t95DqP962nno5eBX4P6an3VfBP7n0vYri7wPnllp52gfp86MtNeymbq2 aeehl8Xzsu5R9CW0y9h+RT+Za89tuofxzE47Y/2ltP3KTB9S0/tVxvrteOam nZ8+J+2xKee9EvoC3YvoFeB58ED41bRZ+eP90V9LO2N9ftp+ZaNXUZ5v2lm9 VfI8Nq1lxzhX09LOST8Nzxtp50qPYDyL0s49H4R/adq55AvTrqPjapjx76ba ylVMu+99WguoUzbjPOvB9F2t50Lznq5z2pnp1dBX6b5Hz4PfhYdoTaTvW4G/ AH0tPFTPCLwm7az2rbqP2I5Qp04982/ob6e9L2W7v5O2X9no99B3e9pzRVV4 JXw//GCex6Ms9YWch4/hkfAQ9PVpZ81v0D2o8695Uvd12jnsb6ZdR3ncm3S/ pL2uDafv5rTz3GvA6/RMwmM5n9vSzluvVc91fkEvrOe+ymr/IO39Ki++IfoP 8DH0BtTZBz8JL2Wcu+Exmn9od6WdsV63nvl39EfwfxGMuR68Ax4N76H9Ku0c 9tF5ZmW4v8X92Q5uCC+j/pdpr5X/S7uOcthX1fXaNxH9u7THo7z4z9Kur2tR Qs1v4MfxfK/nhu0/9BHoe4PjbVTP+r86J+gH086UHwV/HlzHsHJ+YWW4/5i2 R3XqK1847Tzxr9NmZc03pO8BeDz6SfintDOUa8Eb0363GZrn63gQPpR2/eP0 PababOXwh/H8lfZv2BD8OzxJcwh8JO3s+IhygeGyWnPhf+Dy8N86r2wV4F90 Dwb1/0y7r+qvybVHv4Wn0PfftPOXz1VOLs9LrnJO066vjPu1+E+k/Zt0OmM4 mXYefRm8p2Sc7Xs8bV37TeApn/H6vqauj+sZzW9oFTLOu8/iqQzPRE/Dp8LP ax7Ls0f57E9zr1bKOL++Ysb+k/D5jPMMOB9PHf29JOMc+fl55proOTqO4Fi2 Mv7CjP92dEE96wXo2/RbAJ6L3pS+VeFZ8CtwzaB+XsaesvrbIPqvab//PJXn c6v7ZzLjzMdTBs856DXgl9FPz7hmHnXORq+W8btE9Yzrq2YtzVvBeFoztuJg HvuMsdWFX9W7gbKJ4VrK/EWvD89Hb0XNRvAC+EzaBmzlqHl+nmvqXSWa52v0 rObbjK+vzuGCPPsLqVmUcf15eKZyLE3g8tS5hP2G4Pp47svnHauUZ04ZsvTN oi/TM0Ib1XXF3zhjv7gTfeMak44LfwReiD9Gm2CriKcdehpegn4D3AreCF9a z56G9F2Cngr+JpbM2K++vfC0hpujL87zGOoqCzXjsZXAHdGbZfxuc7WyfTVW ZdfCzeEmui4Z63pX6YxeCjdCv5a+F2T83rIBbqF9o19I25KtEmPojv98uBT9 vIz9Gbhbnj0bdF9lvK+z0C/KeMyV6duXvlfDF6L3wH8x/BH+3XAHuI2ynuG2 Qf32GXuq0PcmZQTDZ6NvwnNJcB4mwM/C/1GnI20nrX34b8wz6z1kC9w54+z4 XvBl8Cb0qzIez+n422RcX/vqw76u0LEpY5T2ysBzO/o18EXoN1GnS8bvRbfA 18LbdB0zrn8a/l3o18Ot8F9H203PBvq2PNc8D71rxn3PQL81zx69p/WFu8Pb 4a7s9xw4hn8Heg+4BXxDxqzzeRPtzToG+EbaXgHfgb83vEvv1XB/+Ct4UD37 2+P5Ev3WgPvS9mOrxngGoPeBd+P/Cr4N7oDnzjx79ujYM/bk4O+X5/3u1Ds2 fAfcUe8htA9obsGzD/1uuDP6g4zhTvhyeEDGnIfnAfSBGWdt357xmHPRB2Xc V54f8lxTfR/Cf2/GGdn30N4X7OthPPfDB/ReUc/6lcoaRn8IvkpjoB3CdhjP k+jj4aPwY7RjdM3w7EUfDl8KPwYPzXit/wkeAXdFPwg/AneBR7KvkfD18KO0 o9iug/uh99SzBA/LuO81Wmfz7NHYHsMzGr4BfjjjmgUcy5g8j+dPvbfDj8NH 4CcyHnMNPGNpx7FVhx+nzpNwT+qMqWe9BzyfuW4CXBPPU7QT2WrBT9NODnho PZ8THUubfJ6JUueqP1nP/t7w73n2a5zj4UkZvy89BN8F79fvBfxT4FvxfEu7 N+PM8RfxzNE9j/4MPCPjNX0SPA0+qTU3Y70O/qkZ67XFeGZlvO5Pg1+CK2o+ pF3KVoJnMvudqfsY/YWM/XXRp6HP1n2G3hJenvG6+R91ng/G+QL6XPge+OWM uYi+L6HPh++Xjv9VPSPwXPj1jNe7FzOuXw//a+gLdS3QF9AuYitGn5fncdZA n5dxX2WOV823R/XnsK8l8EPwLPg13dNwLp4Vgf4G+oaMM74XUfNtnSvptG9l vG4uy9h/JvutTt9Vup/QX6Xvm/BQ5XFnrNfH80zG16sQro3/XXgknprwO/Bw eHXG+pl6x0N/T/cx/K7e93R94dPzPQaNeQ3tWrYG1FyFZx3cGH19xv7R8PsZ 6w3xnEnfj3Qfo7+V575aEz+k/ZitEZ7O6JvhldwndfB/oGdM+8qzJwI3QN8E Pwl/krH/LPq+kvH51PV9D//WjNfHVZyTbXoedCzw53oe4Hfg7fAk+NOMuTF1 ItT/Gn5G46fOzox/4+/IuK/0D+j7JfwcHML/v6DOLtrdbE2os56+e+AU+ro8 60l4LfxZxnP+FxnXCeHfQs2f4Je17lPzez0nev+Evwv29XGen7Wm8Fe032S8 RifzzdN0TvD8ADfTeWNOOKTzpvk5Y32m6rCvA3p+4P0Z84twljo/Bp6DGY8n St80+q/w8zp2apZh3kig72Rf/2Y87x2m/V3Hhf5zxn71/QzPnxmvuVvh3+Bz 4T9o/2Kbo/Ovd374FXhLxtdLOfLb6tkzF74N/jvj9fFIxn7pn+Z5v+fD5zPO Y0GdoxmPLc4Ydui3M2Oep3OO/wR6W80PGbPO+S48x+EF8MmM/Un6fqv3f/gS 9D14KpU6e30z+i8Zv7f8CT+X8TzcmjGUw7MQ/hy9YqnfK04pdR3VfDLtv9V8 z7trhVLXTGl9pO8h+Hv8BbQ12FbCl6DnwG9ovmUMpwf8HVwNfhP+mX2dUep1 Zx96XtA3lzafLU39btRpBG/QvFTqvtfCHfLtWQZ/T9/q8Nt61krt3wifVur6 K+Bf2VetUq99l9G3MPDXpq3LVsq+apZaz8C/UrMIXofn4nwf13K4Hm0x2wfw 1ej14ffgf6jfEL4JPpRnz9Xw3/CZcC+4pNT+LPUPUb9O0Pdj7s/GcFP0LG0z tnPgEG2ErTn8Vz3zx7p2cBP4I7grY4jBa+GzSq03w3+c/cbhPugPFDGXw5cp +5W+SfgT9GipPap/DXVS8Pt6fkvN2ld39LPhD/WcMs5wUH8zXAqfDf9Nzabw Jjxl8Z8D365zUs/HshluXmpdx3UDnkxwja5Uti8cYmzl0S+EB6CnS12/r+5D 9PPgO+BzS+3fpnue+i3gHfBveb6Oeke6oNT6uXp/pu9F8Gd6HuH2gf8OuA28 Cy6v/F94N9yJtrP2Qd/WpdbPg0/D3wG+V/cV/kvhb+F2pdblWYfnEj0vHMvF peYv8LzE2DrCVbXW07ZiG6S1qcj70m+6uvS9AX5M56TUv/UuoOZltFcE43mN 472q1OtmtXzrD8J58OXwEPh+uCu8D76W9nq2R+Ecfc8teE6rwdfBP8B35tuz R/dzqT3DVBNPd/hHeDvX+kb4QsbQn3Yg2696dvDcDh+GqytfGD4EP0zNnvAB uFep9Rb07VFqXVxTeb7wz3iG4e8L/6T7p8jn53O4Ifot8Hj45lL7Vf8uPLfp vHOeS/DcBD+O3qfUekudN73z6xlnXS7CPwj+U88I/gHwBLhOkY/lN7hfqf3q Wxf9Lvh39GLl1MN/waPpOxj+A+5W6vOjc1iZ9tRSz4d3lrrvRfDdul/Ynta8 WtMs/bs8+zuh31fqZ1Pr+wrqr4fP5Lh+wz9a9zP+IbRD2dpovqV9iK01HMc/ DJ5K3//hfzjQH6EdHvgbMv6R8DGtBXiegduhl+bb8wL6E/Cj8D/wiFL7/4Wn oj8Ll2c84/I9hr/RR5V6bP/Bjak/Fj6u9wr4SfgkPB7/48F+x5VaL0OdFPpj 8HTNCfAE+CV4Avx0UHMi7SS22XCMmk/B5eg7vtT+tno/zLenLPqYUu9L7wOT Sz3m9njOo++rcJ6+YYj/ebgC/JX+vRTdP3haoE8t9To7rdSei9FT9H0OroS/ FH5B11iZqvR9UM8wnhm0MwN/y3zzfOo8D78IV1YWOfwS/Dr63FKP5y14Sqnr a5yt8Lxc6nV8Nu0czR3ol6PPg1ehz4FfgXOpOReeHxzXrFLX76j5AX0BXB39 ddqFbO9oX/muqXP4Wqn7dtKxF9lTQxnceBbDa/A/DT8Bn9B8hWcJXFO55KXm WvAK2jfZLqXOUtrlpV4r2+J/A66rMVDnvcDfMd9+rcXt8ayEi9BXaYxsnfV3 M/S34Xz0DvBquFhzaZE9JfBbpfbUg1sXeb+14eupvwZer/WUdhNbE2Wv49kA N4AvgT+A68NrS82XaV6i7/ulXk/fLfWYNZ51pe6rtfJ4PdfUOnIz/g/hrfBG 9Qv2dRX1P4HDOq58643hH7hntsCXa91UP7Yr4I/0ngxn8eym3cOWUXY5+o5S z4H94E/hnZrPqb8TTihrXv9dQFDnPTy74Cj657T/Y7sSfQH6MrgQfXup+2pt GpBvj9a7tfAXcAx9W6lrai3ekO/xpOG74a/gr/F/U+oxN0X/UhpbShnoeL6F v8Fze5H1i9DvRd9X6rVyL+33bGfrnND+yNZF7x5FPidxzedFnt+O4N+Ub39z 9M359qvvYHg/vBdPof4ZcYr1qCLrA30Pop+Pp1fK/37py7yv7sJ/VM8s+k74 N7ilzgn8C3wh/Gup9dsZz0+l1vdr3sbzZ3AsP3POj8DX4Cmf5T2Z7XL0gez3 D81L8O+l9nfFs5u+f8Nt0A/ClfF3gZdwLx0u9e/NEXr/1/70vlRqvlZ/M0E/ GZyHUfB/pV6n7mdfZajTmTp/lbq+/PvwnBLoZWnLsV2vtaPI47wS/USp+16n 9/l8e45S8ym4QtZz/mPw8VKvfY/St4r89H0VvTZcAM+Aq8JV4FNpT2e7gZqV svaL/+Bc5cDd4ZHUOU3jwX9G1no3+BrVZrsDzyxq5qmWziGcqzpwtaz1Hvq7 B3oBXFVZ7XCdrOeKZ/M9hlPgfNrq8mvNYr+14F5wYdb+G6lTI2s9B30efetl PQc+XuS+PeG6tEVi/P/hORO+Ff0wXDM4lqP59vSGl8IlWc9pxVn7e2nMymdv 6ozdf0t9bi/GM5l9NcTTDz7GuUrDN+P/Hj0Mv42+jJqNs54Dm2Str4IbZa33 xn9KAc+uziH6NPom4Dt1TuCzAv05OAoPhCNZ+wcoyx49CQ+Cz6e9kO0BzbHs NwQ3hJ/Hk4Hv0tqdNd/Cfiuw3+ZBzXJwFu6vewP/2fDdcDzr+jquWejnwveh n0N7ns6nzk+R93s/erOs+54F35pvz6eak+ELsp5XT8AN4L6699jvRfA9cGc9 izqf1Fyh93N4HHor2jZsD8MtsvY/CG+kTrus59sc6rQOjr0tbXu2h+BP8HSE m8H1s75eN1H/1SJ7huq6wxfDY7RmZe3vg+cL+l6Z9ZzwX5HH8KnWoKzH1hfP Sa77ZfBt+nsUnqvgiTr/RT6W8fAVWetPwUWMs1OwrxDcFZ6keZh9Xatx692A vi3hIfC78NXwZK3vWfv1rK0p8nP3jN6F6Nst63fp6/XMsT0Ld6f+K1l///lW jVf3lf7WhN4r6LuWOj3gKfDXeg/P+t5+H/1GeCocxX9zULO37h2dI/hhPIN1 bHDPrPv217xay54BusfgPrrH4Huz9r+ksWVdX/6KePoFY/uOMdwOd8Jzh2ro 3ka/LWtdnGI8d8LT8SQKfFzPaQ7X/6/7HE9lat4TcDM898Ev4vmoyB5lrH/P vu7O+jf1XVn7Z8F70fvrGsM/wQ/ovMOjacey3UvNh3Q/sr2sNbfIPBduqCxg +Bg8Av0R+Fr4/qx1Hftn6MPgV+GhBb5eB+H/oY+AF0rP2vOK7nk8j8Lz4OFZ 892MoS36OHgx+lb6DoHn6Jni2B/T8WgOZ/xj4O7oR/ROmPXc+Fe+j+VGzZlZ 6/fpfZuao4JjaQc/BS+Bv6P+RPhNeGTW9bWmfI0+Hl4OP5m1fzB19qI/Db+l 95x8X8cr4AlZ6/fjKUP9yVnPn+XhaVnPaTmMf4qeZf2NhTpT4ffQZ+oasq3T 3Ji1/qD+fkvf6fBKze34Z8HrNWdmrcvzk97/4bWaD7NmzZk/o8+A34cn6ZkI xla5wPvSnNkDXgR/BM/J+pkSv6TrH+yrCp65Wc+ZlxVY1/z/G/Vnwxvg09Bf 0/0Dz6ddoGdcf3vBMw/epPUUz+vBeM4osGew1u6sPQ/hP4p/MbwFvReepUHf 99SPbQSehXjehUeiv6b3efgROA//smBuWZ61PhT/kqz1h/W3fc7/Svm1zsKr dC/ClxT4/LxB377wW/B2+M2s/SN0Hbn/V8O74ZvxrIC3wm9nrQ+nTiH6Gt3H WqPhdbqf4Ar0XQt/AVcs9rHsgd/J2q++A/CvD+oPhDcG/kHwx/CX8MKsz4/W o5Xce03hRvAHWffV+dlA+6HGAJ9abP4GT2nWfq2Pd1PzE/hrzRtZs9ajs9C/ gCfouaP9VOPHv0nXROdcf/tlv9vhFnjqKIMMHqW/S9PuCPzV2O8u+Aety3AF 3jEqKeu5wJ7v0AfDn8N74Z1Z+0frtz/6Ad3Hel6KPYbvNYdkPTZ5muD5Us8b ehj+Nut15CH4K3i/nt+s9bH4c6mzO9DjePZlPf8n4R/gaZoz9f/rPOhvFOh7 4UOaH7L2P45ep9ie39D3ZL2vMeg/0h4M9IbKK4THo/9Je4TtCb0zU/NX/W88 Y+Cf4D81t8CH4aNwBv4ZngE3YV+/wyf0rNH+EdS5Dv18zmeS8/lL1n3/1ppb bM9J+Fzq/JX1nBlH/w8ur0z2rOtrDJPx/AOXQW8JH4Xnox/L2v+Unt+s9Sf1 Nw08J+Cy+J8o8HH9g/+49hn4E+zrFMZWQZnOxT4nf+BpXWCP5v8OcFk8y+Ay Te1fAfdB/wbPZ/A0uDx6ReqUa+r7ZzV6M2qeBp+B3h5PZXipnqmm5gmMYT56 vv6bPTwz4VPh0+AqTd13on7LUycXzke/Fs8ZTf3f/Z1OW5XtaTxz0avBecq7 L7aeA2fhSkHNnKauozmwPXoJXKR8dvoWwht1XZQRBk/S31KK/d8SFiofnLYg 0C8qNtdC70Lf2vAavZ/Qtxh+Fk+tptb13yG2w18Proe/TlOzPBH8deFn4KKm Hs8U+CZqNoA3U/Mq+pbCYfpeCifghnBD2rOC8Z/Z1H71jVOzCTwV7oC/EVyM pzFtiO05/ZanfjQ4rrNpz2Wbgd6p2J4G6L3xRJp6bg83tV99Xy7wfqvhuQWO w9vwxJp6bHXQb9U7fFO/oy6G03BdZZ03NU/T31TZV0rHgJ5pav909BOsEc2b ej6/rcBj2wHPhusH1/R6+l4Ap+A0x9sMfp6+16Kfo3GgN23qOjpv85r6d1N/ +Lym7vsC/ifwj4ZvQr8Rbg031b1KezHbt+x3A/ttpXGjr4PbBs/yHXALeBee j+EOQd+bqNMOPhvu+v+YOvN4q8ev/dPZ+5w6nUIaSJOGc84+M+rsJGWqUClJ KkU0SsYUlSgkSoRQaKJSIcqYNFCGFBKpUESGEEqGpPze13ddz+v1++N6rWuN 97rve+/PZ598n2che4Az4FfWD346/IzyWEvP+TblET+Lft6lzsXwk4hZAz/d e3m/evTTHD4K3qU8ntX9qdlR96fPBrIzeFL/1oe8wLx1edTRfrsiu4HTiH+P Ohfq3HXX1OkAb6HZ69i7w3fpnVI96qj+FfUjtzW8fXmsO5uao7BfBT8f+zD4 lfD28Bbcy2XwucT0Rl7qc6hVP/hu6n+m3//wNtjHwnvBf8beF9kfPEXuF9WD tyOmMrkfNIt7OYX6/bDPI6ZPedQRz6kf7z69s64oj346kNuzPOrP0b8hUHMg /DdihuhzAeZj34Z9MPxs4sdXD/teYibodz78D73rqX8JvC0xt8JvgF+oednl EbNA72vsg/QZ0nekPLj28iV1rrX9HvjQ8ngXpNlLJ/gTxAyqH/fYipjry6P+ BTof5O1gkf59mPib4c/o313hI+BPw3dTczS8O/F3UGckvCd8HPxW+MW6X+QY fR+IH4a8EVykz1V55MresH7E6H2xh5q36eyIeQT+ALwC/KbyqK8e9mIfB++N fSK5d8Iv0xki7wbPE3NHedifg99HzETdMTH3V499/atzRt4DFhOTR8x98IP6 e4GY+13z7+oRo+/sZGLuhQ/QO6484pW7kJgp8BrYn9Cdg5ewz6gf/AbsDyOn ghewv0j8rPJ4Tu6tH/Z34Qf1t4DuD74H+0Pwd+BT4TP8PJlWHjFXwX8kfrg/ D2Pqx9l2g/8OfxS+Fv4fMdPhg+EPlkfNIfDDa3C+5o+XR/2a8Jn6noEX6fMl cufBG2CfTs0n4UPhWeQ+Bb9e3xH4Avhw+BxintE9wecjF4KX9Xdxjah5DfZ7 68cd9dN5lsf9LtG/sdSP+Buxzy2P+jrDJLnPwa/Fvkx/j5THM3w79i/SPAc1 Pxf769hT2BfrjMFreu+UR/yr+ncP6r8Ev1XPLj7DS+BLdRfq8f/iiVkKv4OY pfD3dMfwhfUjZoyeJ6z7Kvw2+CvlEb+M3OOxr9PnSe/uGtHDaPhr5dHb6/p3 EvpcAc/DXp2YN93PK9hXwhvCV5WHfbneWfS5zPXf0N8L8CJi6pD7Dnw8/G19 dsAk+Mv0ucY9rC6P+BVat37EPIB9eXmspX7WlkfPK+Ef6TczvCUxK4n/SJ8V eC5rbYDfD1+B/X34FPiH5RGj985yPSfhD+q9T/zHXisbXo87GgbfiO0T8DD8 zfrBp6oO635aHu+CAuI3e93Py6OfN+htfXnUn6x9kbsVPg2+BfmZY2qT+yV8 nN6bxHyh7wl8k343lsc7aFN51F+lvRPzNXwm9h3Ib8Bq7GvqR81H9Rkrj9w3 sRfXiBj1XAb/1vWXEP8G/C79VuS+voOvIX5neXC9f39E/gzexv49cpf5RnJ/ gs/XfvWbvDye8yfViPgZ8DT8F/gT8N+Qe3Xf5G4h91f4Iuy9WHePnhV6VteI mGew7y6PGNk/qh/rPoV9K3wf/Dk9H5CHc0friWlF7gH0BToT/f4vj3fZn+XB 1xLThpi/9L3Sc6Y8elY/+8sjdx18V/Wo2ZWYtsQfxL4Y/i/ykGPaYT+MmCXY v64e9o7wc7BnYH8RXgGZAK/AP8JeE96S73tV5JHpeI+sxl4JXqLZx/BM+MvY O8Gz4a+pvn6Tw1+Fd8GeA1+uZxeyCnha72vO8Ad9Z/RvIOnIVczO6hHTCf4D dY6Ar4An01FzKbxjjehH9T+AV4OfrDnd6ej5TexHIY8G7+u9SZ0a8NXYu9YI u2Yo34b9mHS8T2shjwVr4LWRdcCH5H5VP85Ee2xK7uR0fIb7HhPxHxDzR/WI 76N9EXMc/C34pcT8wx7f09+e1KmP/T3sg5CDwW74IezF8E/g/+j3PHwD/DLq NNTnBN4oHfaN1GmQDvtH+juCmHz1oLsmt0Ax8ObIFmAzMVWIyYPfpGdLOuJV pxf2wnS87y6Ft3Rv+6nTWHvX+xFeAv8YXpQOrvqD2ddJ8E36PUNumWMGw5vK Dk+lo/7HxFRowG9n+BbszZBp8Cn2Sg2izy+xn5iOXNkzGkTMVuzXU/Nk+Db4 YdhPUAy8JvZT4WPhQ+HnwbfrM0bMGfAd8FbI07QuNU9JR7zO5HLiz9Rng5g+ 8NbwdfDT02H/Cl43Hfe1QWdIzbbwb7BfTXwb93ZWOuxbiTmCmLPh3yqXmE7p eEbdUCN60B7b6f0JPiN+JPYOju+YjvgvsJ+bDvvn8BHEnA/fScx1NSL3C3hn ZBedCTG3Y78Q/gv2Y+Dt4bfDx9aImJ/ho+Bd4d/BL0hH/Hb9+0A6zvMT/abl Ti9Sn/p3FfbSHb6H+IbkXpKO993N8Ivh3+vZmw7+lX5PEj8A/jf20cT0hv+g 52Q6cnfoc0tMP/if2G8lpg/8R332kJeBr4mpT0xf+B/Y764R9n3w+vCe8Anw y9NRR/Ep4ofC/8M+npgh8L3we+BXwP/Sd6dBfNf2w/sjB/pMjm8QXDH58Kvg h+CTyb0efgB+ZTrs98InYL/WvV2dDv4NPeSSew38X91ROvo5jGfRCdiHw7Pg I/Tv5LpH/Xsa9tvg2dhvRI4Ah8NvSEd8BvxR1hoFT8KnwW+CJzRHG3lzOn4P nESdW+GVsHdLx33pLlo0iJgjsReSe0s6fgOMTkd8JvaTG8S6R8AfJ2as+xyT jt4qa84yMXfBa2iOM3wcvCr89nTwivAnyL0DXgV+Zzriv6WHmdgneo9z4fe6 nynwYb6vHPjx6fj92Yr6E+DViSnFPikdvwfuTkcd1dzVNP63o93g96Sj5nd6 px/Nc7Rp/Hf8x7BNB7v0NwJ1Hnb/i+APwo+Ft2GtR+DHaR40fAq8NvxJYqZ5 j1O1vj7n1OlCzDPwfOwPpSO3DvyFGhFTDz6a+31cn3mtm4743fAH0lH/aM2A ps5MeEPNNCd3Fnw2e5yNfBL8pL9f0mFX/62JmQtfSMxLNWJfDcidg5zn+Ff1 twC8EfYLqP80PAU/r0HENNbsZmLme79PpSP+Z3Jvpecn9B2EdyN+EbyImNeR K8Dv2J9HLtGzBd69QXC997vCn4MXwN+k/ovwYviz6bAXamY69pfgz9L/T/rt 0Zx1sL8FfwV7mc4wHTG/6rmn3/nSiX85Hfw37O9gXwU/UXN74YtdvwN8WTp+ q4xnL8v13Sf+POxvpON3wooasRedycp02LWvt7G/Bj8B+3vwNfBmmhHPvt6G nwJfmo76e/S+wL4a3lz7TUf8Pv1O1t8F8DT2U2vEPeq35VvpsP9BzER6Wwv/ Ez6AmA/hHxGzEr7eZziQ+u/DT4V/gvwU/EP8unTY/4J/rL8L4K00Sxq+KR3v wQ/SYf+bmE/1twD8dGI+Sgffj/0K7BvT8RvjXeR7rrmlRqx1pp5R9LAT3knz UtPxt94BYjYjt4J22DcR/zn8NPVZI+yt4UPJ3ZKOvw03Y98OPwP+FfJrcJa4 /l6At4fvgO+Ad9AzsEHEdIRvS0fMv6z7uX7zw9vKDv8efjb8D/UODqvKs4fc 3+E99f+7GP4TvKuek/Af4J01Dzod9nPh36XDfj78VmJ+gV+oZxr8N3gPeOca cT7LOKtF2HfD78D+czriz9NsaGL2uP4P8B/hF8B/TYf9kP4Nitx98Is1Dx2+ H95bz0A+D3/C/yPmlxqxF627Nx3xyr2L+H/gl2DfQ8y/8F7wSfD/0vGe/SYd 53NQ/96CvB8cRczf6cjV+RyQ32dyf4PgA+FnNoh4PQ8PpeO7eTjxJTW5B/g0 PetY64jm8S5LIDNBBjGHS4IK8MnUqQgfQMyfxCfhl8GzkJWaR/9TiMmBD4bP hteF3wi/r0HE9Nc7jjOpDE9QM7t5xCfhSfqpB79We28QPfSFV2kevSmmAjFH wa/Sc5seajSPd+hU4qvBr4Yf3TzsmcT/QUxVeB/s84g5Bn4zvBJ1asNvgB+L PA5co/cjMbXg18NrNo/4IfCZDSJmGPzI5rGWzrZO8+g5i7UqUrMMPlQztYlv DL8FPp39NoJXJGYW/TRoHu/chs0jphL2J4k/Hj4C+wJ4LvxWfQ6JrwC/CN4E mef4I2oGH6neqJ+CZ2N/mtwC+FjsJc2jH/H6zaP+cPhR5Bb5HAqRxeqH3GOw nwi/Xc926pSaH4f9JPid8PzmUV/x2dib+UyaIstBFezPNIiat+l3UfPIzcFe t2bE3KV+4M3hE+AH2WN1+CD4S+SeDJ8ITzcPru/jqcjW+hxQpwWyJagKr0Od VvDxxLyh3+TwR+CNakb8vfB68NPhd+u7gGwDjiI3F/sZ8PuxN4Cf5XXza0bM g/DTmkfMkcQvbRDr3oe9gJh28IfgXZBdQU1i3tffJs3j3bFOv891LvBzmgc/ mphics+FT8Xetnn0XA17h+aRWx2+v0bU7KffSMR3hj8K74Q8X59vYtbSzwXw mdg31Ai73mUH4N38Pb1Qnx1Qi/hNxF8Bfxr7Zfpu6XOP/UTq94JP173zWeqh zz32w7D3hl+JfT25PeFPwE/Cfil8BvwSfbdAbeKXs+4pzeO308XNI/dY7Oma EaPccvjl8Nnw7s2jpmJa1ox+nsLeCt4fvkDvyubRs76P/bQn8CS8BTGD4HP1 bmoQ9oXw07FfCX8GPljfXVCH+lfp+w3qwk+oGWfyuJ6TNeL5pt/zWxpE/CL9 nqkZ8c/CW8Ovdv2s0ph12E4zWdSXvv9V47836r8R6r85dmvEuYOHM7hPZEdw L7w98lxwT0bY5Otgm3zngPNBZzCZmAuQXcCD8MuRfcFl9ncCD2QEP99610aR MwV7f2Q/8ITX0jqT4Bc1iv4eyQh5kXvtBS4Gs7D3QHYHj8J72zfF/XR1T5eC S8DjGcH7WFeP6nVGRuT1dt0+zpnuvWgfM+E9G8V6U+EDGkXfirkRORwsgl+J HAzmwQchrwADHTvA+xzSKOJmOUb+2c4d4vyXwSvgJXANuNrnI3kVmGt+jfXr wLVe96ZG0dNzGbH+IO9RMdc7bhi4ATzr/m/yHm6wbygYCUaAxRmRp/wFGWEf Zd8tYLT6zIhc5T2TEX7FLckI/83gRfNbrGc34fMJHkrEufb0XY4FY8CrxN+H vBe8CR+PvBN8Dr8DeTt4LSNs8o2zTb7bwARwN1hOzD3IiWBFRsTIvzQj/HeB 180nWJ/UKHJWYn8M+Th41OtrnWXYJzeK/la7z8nu9SEwBbyD/QHk/eBt+MP2 vet+JrmnqeAR8F5G8GnWtabWXp8ReQ+77jTnrHVv6mtdRpzZreAV+Ezdudd6 FrlI9wKeBgvBFuyzkU+AWY5VznQwBzwJPnGM/O9nhH2uffPBU+AjrzvWa891 /saM8M/T/s3nW38ePAe2ZcT6s72Xhe5vQaPoWf1+j32xc77IiH3I90FG2Ba7 1kLnad0XkS94j/oe6Tu0PSP2ON258i/RWZq/aF3fOeVsxb4U+Sr4y/w168nG /B4EjTRPVncL1oCVYAXYRfzryGXga/gq+56CL28Uvm/gbyLfAL+Yr7a+SWcP DmRE3irXlV9xOzNiXa25JyNilfOxay/32u+Cd8BeYtZa/x2+DrkevGfbWsd9 oHsGP2XEnt7y+cv+oX0bdefgV6+rNf/JCL/i/swI/waw33yj9XVe8w/sm5Gf gn3w77QO+BZ8Bj7X+VtK1/drS6PIOQjfps8COOQ6W1xre6Pw6b50V7qzTfCv kF+CConwb3f+jkbhy0iE3OG4XeAHkJ2I9dXLf9TZqXvT/Sei52/dz4/OqZyI fchXKRG2H11LeV+DBPbdyJ9BjmY36/5BxUTE7HSc/D95LfHd1n9rFDlHJuIO 1/kMf7VPtfbqcwGqEfO3zgPUgv+hWHAM/M9GoR8LP6T9aS+2/em4/Y0i/yjH yF/XNfe77r/gAHg+I6T0f2yTrJOIfn53T1pHtephr8J3KAcUJOL7pO9VBjgc VACH+XsmW2kibPIdnwgpfwN4FjIT5GpGM7IyqAQqNg5fnu2y5SfCLz3l3IrO r9o4eirEfiTyCPdWX+uAeqAOOA6chL068mhQDD+qceTobGWTr5ptR7lWLVAT tCTmWMWCExJxNjqjoxPhrwFKzGtZr904ckpcv5rP4Vj7VKuu+2uKvaH8IO3+ 1XuzROxDesdExNb1fho1jpzmmt2MbAxOhufr/Myr+Ix0Zw82ineb3q0Nna/1 lJvr/FzrLRIRqxy9C1ONo+6ajJApr9Fc/YI2xJfoznW2ug9QpLvQeYEy0NUx 8rdOhP1E+5rpDEAr7JcjLwN9E+E/wXuU/6TG8d5s6hzpbbU+6JGI9bXGqYno S/2Vaz86D9AJeyv5wbnwU+zrkAibfC29p3LHnI48DZwNPxN5BuhmfpZ1+VuD Longp1uXX3EXJWKdU9yHem7nvrvLLx8xXZAXgPPVE2gPLsF+jtYHveAd7RM/ t3H4esM7Ic/T2Zl3tv4omKb7SEReR9eVv5N76+I1+8B7uKeBXvdcr32h7hD0 x97N+oBExPbwHmTr5riLQU8wKBF70ho9E2HvZd+l2h+4MhHn0dYxvZx/RSL8 vcFg80utn+q7Oi8Rn5c+4Grzy60P0j68l/7IfuCaREjpfcG1soGbEhE7wDED nS/9anAVuBH7YPUFbjC/0rr8Q7wX2eSr5LX6+qyuci3FjQY3g+HYhyOHgVvg Q5HXywe/oXHoVRLR53Xu9Tr3PQL7jY0j/9ZE1BulWq55o+uOVKzrj7B+k22S Y5w72vljVA/cjv1+5GQwEX6PJBgPv01+MNaxyrkFjAN3gLscI//IRNjvtO9u +cEk7I8gp4KH7Vfc3Ynwjwf3md9tXWuq7h2J6GWC+jO/x/oDjaPvB7Hfh7xX eiKk9Em2ST7gPT7gfT4EpqifRPSl/qYlYo/a323wxxrH9+qRRMQ+2Dj+JnrE +5hq+0P26W8m/e1UsUnkKV/fyW/BTvAF8bORsxrH+30e8ikw17aZ7v9J5BON 4108Hfm4z2eeY2fA5zSOOPX/EvJl8KKl9IWJqDnbdRU7x3VfBa+A+cTMaBxr PJaIXrRGUrOSkYsax/t9IXKBcuHPIJ8FTzeOmOcdpxoz3OsS8AJYbC65IBE1 5qsn96x+X09EDdWalYi8JV5L8Qud8x5YC1Zjfxf5DlgDX4Fcrj3Bl6keeM1S +gvYVzaOuGXwpd5/OfwN5JtglaX0VxLxXtM7rZVjVrm+aqz0enrvKU6/GdSL enrbtZf6fNeoX9VNRP/rvId3HKu9rPPeVsA/QL6vWt6L9rEE/hFyg+IS4Vfc evCW19C+1lhf7Rry90tE3oda13ene5uTiDuUPtcxHznuS/AV2A62gi3yEfMp cpNqwz+zT8+0zY3D9wH8C+TnYKP5Nusfg09kd95nriu/4j5OxLrbnfsr8hfV 9bqbvfbXYIdqYv/G+tZEfL++axzfMdm+cdwP4HvX/8p7W5cI+y77fgY/KS8R a+5WfiL8ivsqEf4ftQfzn63vAb9pbeyH8Z0/HPzXOKT0v7DvQ/8D/A4Ogn/B vkTY5NsF/xv5l+rC97ru9/ADyH90FonwK+5Pn+dG3+kn1t9yjPzbE5G333VU b6973edefnDMAcept0PuL4PeK4C/vS/t6U94okn4DtN8Z2TSMZX8zKtge5Z9 h1x3byLuR/e0zef8q89ascpRjGonvHYOqCydmlWsq/7Jufzey435mMdiO0br aUYw8khQ1bFVnF8NHKW7cYz8FZNhP9q+mqAGeJIe8pC54Phk+BWn95f81VUz Gbym9fwmkVMtGetrjf8S0Zf6qwWOA7XVn+ZQI+s5vo59A5Jhk6+u91TLazVU L+AC/f8fRjYCLyaCN7EufwP1kwze0Lr8ijs6GevUcR957lv7bAFOBqOIKUEW a/1kyCLtAV6ATGnPtpfYV9gkfFq3DFmqNeCjkCPBc7afYJ+k9LrYT0KeqD3D mzYJ/bhk9KKemrt2odcuB82032TwtPWW4BTtybnKaww/1b4mXqup12sNWql2 Mvhp1tNeo0Ey8k513dOcU4j9DOTp2r/vS3d1FPzMJuFLOeZMx50NzgHtQBvQ Fpxlu2xlxHdBnq+cZMTKdwK8PfLcJvEMPA/ZCXQEHZqE76Rk2GVrlgy/dH2/ 2jvuXK+ptU9OxjqdtU94b+QloBfoDi7SnrFfiOzqHiSlX2Cb5Cmu08W1LnJ+ N9dT3bOI6YnsobMzv9h6b6/ZPBk2+VrC+yAvbRL/TUT8MutDwfVNYib7EORV 4EowAPTXeWHvi7wc/MbeB9rXEXu/JuE7B34FcpDOyHyw9Ta+k9Jk5A10XfkV 18nras1uXquf11MvQ1zzGuTVustk9Ku+r2sS9mvtu962Xsmwybefnochb9DZ JIMPt34TGAFu9Hn08X53I38G43IiVjkZyYhVTp9kSOVdmow76uZzvrlJfD/7 wt9GvgPeAhPA3do39tuQY3U+8FuRt2jPybDJN8Y2+UarD3CH48cj79R5wR9G PgIesv927TkZfJz1u5pEjma4T0NO1R68ltYZCJ/o/vT8kZzoXieD+3Sm2Cch 79GdwO+371r3c5d7ehA8oLNNBp9iXT2q16HJyLvfdac4Z5j3on0Mh9/bJNbT Hh9tEn2r5tPIheoNPhM5Q2cEfxw5HTzm2Ee9z1lNIm6MY+Qf4dxZztdd6c70 PH0SPAFOTIac3STmtj9hn/S5YI7OG/szTaKnu5KxvtYYmYyYeY5bAOaDXjkR +4z3MN++p8Ai8KzuIBl5yr8tGfbn7FsCFusOkpGrvHHJ8C/ymcj/vO7PfIl1 neW9vr8XwQugLTEvWb8Xvgz5mu4F/irylSbxvZaU/jJYDd7UXSYjdqnu0nyZ 9TfAKve5HPm67th8hXX5V+q+k2GT7wGvpXUmJyPmDcdtAB/qXLCvRb6ru0zG 9+stc33PpD+ejD7XuNc17vsR7O81ifwnklHvA92Ra77nuu+D9Y5Zb32dbZJP OneD8z8GG3Wf2Hciv/Fn4Evkdp0pfBPyU/CJY5XzEdgCNut+HSP/gWTYt9r3 Bfhc95GMu3rJ97fV+U8nw/+Zzs78C+taU3UXJKOXbboj8y+tf9sk+l6N/Wvk Dp17MqT0r2yTfNN7/Nb7/AF8D97B/hPyR51vMvao/c1LxnNMzzA9DxX7nc46 GbG7dKa2/2Cf/p1G/16jf7tRzE+O+5DfpB/kxmzN/ej/gL/B72Cv6/yG/FX3 At9n30fwPU3C9yH8T+QfOh/zv6xXonZF8HMy8va5rvyK25SMdbXmtmTEKicr N2rv8dr/6g5BCX0etL6d+P+QhxF7yLaDjquA7XDwXTL2pDX0nZI9w75MkHRM Ra/5UzL8ivs+Gf4E2GWeaV3ras0t2CujZ4Nf4bWRx4Fj9VsfHAGqWErfS0xO buT8Bj8KeST43XVyXKtabvj2Ye+N7AW+hldHHg3+cG4159fIDd8+x9RwXF1Q B/yVjPXVyx74MchaufE9re1+/4HXc85TydiHfPruyFbPtZRXE+zHfjyyAVgI b4RsqLNJRswxjpO/vu3ix1tvnBs5h2XGHepMv3Gdxq6VC5rozogpQhbq/OEp ZD64CF6QG7rsJyJPAifYVuC44tzI7+EY+fW9LrJPdctAqT6vmSGll9gmqVnY 6ifPPWmdEx1/OvI0nXtm/J2nv/fSoBkoB01zwy5blcywyVc5M6T8y+jnFGQL 3T32VsjW4FTQMjd81WyX7ejM8Etf6dyWzj8jN3qqScxZyDPd2wXIrqAL6Aw6 6ayxn41sp3uBt8mNnDXJsMnX1rY2rtUenKu7JL4jsoPuOTPORmekOePynwPq mbe3fl5u5DTKjPptHdPRPtU63/1pXnM35IU6d/ev3lOZsQ/pBZkRe773c1Fu 5Iznt0EPZHfdcWZ8hy7Wvfq+zvCd6XfpL03it2k352s95fZ0fk/rRZkRq5x3 k1Gzt+suBAvAKGKGIK/UXcAvR/YFl4FLQR9wCegP+ulz4Rj5m2aGfYB9V4BB unvsI5EjdD6Z4VfcyZnhH+i1BjlH+qjcyOmYGetrjR+T0Zf6GwyuBleBVsRc j7wuN+ZWX2Nfy8ywyXet96S8U7EPQ96gzwX8RuRw3aX5TdblHwrOzAw+zLr8 imuXGetc4z5Gum/tcxK4R30TMxY5RvedGfJWfQ7go5E36+5tH2vfLbnh64T9 duRtusfMOH+d/Qm232GfpHQ9H+5EjlMcfHxu6JUyoxf1NNG1b/Had4O7cmOW vfgE6/eBe3NjHv09ztNc+8n29fNa473eA+B+3Xdm8AetT/AafTIjb7LrPugc zaB/CDlFd+P70l2dBn84N3wDHfOw4x4Dj4NHwVQwDTxi+6OuMxc5R/eYGbHy 6ZkzAzlda8BnI58As8DM3PBdZ7tsN2SGX/r1zp3p/GleW/vVOk+Cm+DPIxeD 58DTufG90uz4+cinwI2ZIaXPs01yhOvMda2Fzl/geqqrmfLPIp9xvPgi6897 zbGZYZNP8+tfQC7JjeeV+IvW3wZv6S6xr0SuAivAUvCq7gz7y8iXcmN2/Gv2 6fnzSm74NGv+deQyMM58ufWpvpMhmZH3muvKr7gJXldrTvJar3g99SKfZsS/ iXwDTM6MftX3mtywr7bvLdvuzwybfPfC30W+Ayaar7W+DqwH7/k8dC6jM+PZ pu9YaWbEKkez5tc7R/Pf1znvocyYe39hQfz/ENPv0Pe158ywdS2I/79k27B9 AeZg34T8RHcK34j8KDdmrMsm38e2ybcBbAGb9Tkg5jPk1tyYIb4L+SP4wf5P wcLM4Fusf54bOYux/4z8KTdmfH/idTSXfHtu9KdnrOR29/oN+Fp3gf0r5Jeu s9O+V3Ki9ufu6TvwbW7MIhf/3rp6VK+aOa68na77vXNe8V5+MN+RG+tp3uvu 3Oh7GfwQ8mBuzNHei9wDVsJ/Rf4GfnHsbu/z99yI06zVX+3XPNa99in/1Dze G6Al+BP9D7A6M+S+3Jg5Lv6n9b/BX+At7P/lRk9rM2N9rbE8M2L2O+5fcACs d///eQ8H7PsHHM7ah+VFnf1eQ/PQZa9gXxIk8mLO+AHnaV65/IrTvHL5M8D7 5knr9+fzvQEds+Jcd/guK+LLyot55TWRNcBWeFVklbyYS14ZmZ0X/csmX45t 8lUCR4Ej82Lm+NHIamBTZsTIvzEz/EfYfqRzpFfPi5xh2BsiG4Hjvb7W+Rh7 rbzob4v7rOVe64DjwJfYj0Uekxczyuvat839VHdP9UG9vJgPLt7AutbU2jsz I6+u6zZwzg73pr4091xnlgk+hOcim4AunG1TZDNwEjgRnAD2EJOPTIE8xyqn MSgEBeAnx8ivmeOyF9lXCkrAd163otcucr7mkstf7DolzpGeBuV5MTdc62uN bzOjL/VXlhc9q9/fsTd3zr7M2Id8et7K1ty1TnCentWnIFuARzPje6Tv0P7M 2KP2p1nq8p8M/jY/xbq+c8rRfO3TkK3zYs64+OnW7wETFcfZdkB2BO1BW9AG ZGA/E3kGOBzezj7NBz8rL3yaJ34O8myQZX6u9V7gYlA7K/Laua78ijvW62pN zfK+2Dk9Xfssr90JnJcXs8U7W68M74K8AJxvW2fHXQi6giOyYk9ao1JW2LvZ 1wN0z4vZ3Bd7zepZ4VdclazwX+Q63Z0jvYvX1DzxS5C9QU34VcirwRBwGbgc 9LGUXouYS/MiR7O8+yH75sUsctkuda3+eeHT+eiudGcHuLuByAHus5/jlD8o L3yaJz7QuuKuBdeA47NiffWi2axXIgeDOu55iGOuc47mg2sf8tXNCtt1rqW8 K/JiduoNyKGgHnw4clhezPhWzJWOk//6vJiLKn6D9RvzIic3K+6wi898uH2q NQLcBFLYb0XekhfztW9GjsqLmdqj80LX+2KczlXnYNtox43Ji3zNAR9nfwvX HOO6t4PbwElZIaWPtU1S87XVz0j3pHVUK419CvJB3VNWfJ/0vZoA7tI5gfF5 YZdN8zrvtm9eVsjx7ude5KS8+D7ej3wATAb35YVvge2ybc4M//1e917HKf+h vOhJz/NHkA/nxazteVofzAVPgifyYvb0Y8hHQRv41LzI0Yxv2eSbZttU15oB poPziJmFnAk6ZcXZ6IwKssL/eF68E6c7R/rsvMjp7PqqrffLLPtUa477U80F yPmgp/tX77syYx/Su2VF7BzvZ2Fe5HTH/gzyaXAx/DnkoryYlz3FZ6Q7q50X 77bPMyNvoddT7rPOf9Z6r6yIVY7ehc/nRd1LXf95r7ESrMiLWdUvIV8GL4Il 4AWwGLwKXgF9HSP/X5lhX2rf62AZGEjMLuQPut+s8CtOM7jlfw0MMH/d+vtg Pbg8K9bXGprxvcL9LQdvgFXgSuxvIdfkxfzuN+3TDG7Z5FvtPSnvCuzvIt8B V8HfQ64F15mvsy7/23kxX1v8XevyK04zuLXOm+5DPX/gvr8E2/NibvVW5Gdg C/gYbATDsW9Afgj6wz+xT7OzP8oL3zD4p8hNeTGrWnyz9eP5vdYgPz5XyvvE deVX3EivqzU1X/sr9zTG637ktb8An+fF3O1t1m/JitivvAfZtjnua7AjL+ZZ a09a4+assH9j33fgW+/xA5/L0KzwK+62rPDvzIuZ1N86Z6fvcLXvRZ+X78E9 5rus/wp+AZOx/4z8KS/mYktK/xH8Bf7Mi7nGit2dF7Ohf3G+9D/AvryYz7sH +VtezLYW32td/t/zYoaybPLle60f3ds+11JcgjvJyI95vgfR/82Lucb/IPfn xczlA3mhP5YVff7tXv923zOwH8qL/Ceyol4FsNA1D7nu4dgOy4/nsKT0//KC S851bsL5WSAzP2YWH4OslR+zC49GVgMvwCshs0FFxyonCXJAZbDYMfI/nxX2 KvYdCY7Ij9nE9ZD1QV37FadZw/JX9VpHOKeq11RdzVZWL0flx+xj8aOtH5sf fb9KTE1kDdA+K6T06rZJLvUej/U+64DjwPlZ0Zf6W54Ve9T+noU3zI/v1cqs iK0NXvdetI83bK9jn/5m0t9O9zmvob+TQ8CV+TE/NB+Zlx/P3mJkCSiyLRe8 jb0AmQJr4Y2RjfJjfnGxY9fDC/MjTnOKWyJPBadYStdsXNXMd13FFrpua9AK fE5Mk/xY482s6EVraAZxObIZ2AQ/AVmWH3OET0I2BSfmR0zacarRxL2eDFqA 5uaSm7OiRml+PP9but+tWVFDtTSft4Vztjj+BOecDzrnx8zcTsjzwA/wNsiz 8uPZeAbyTHC6pXTNFG6bH3Eb4Kd5/5oRfDbyHNDOUvrOrHiv6Z3WxzHya8au arT1enrvKa53VvSinjq69mk+3/bgXPBtVvTfxXs4z7GaRdvFe9MM+guRXcFu 70X72AbvjrwoP2YBy6+4C0AHr/FdVsgOXq+r/T9nRV438KvvTvf2cVbcofRP HNPdcQN0P6A/6AMuzY/Zvr2RvfJjdvBl9v2B/ZL88P0O74u8PD/m/4r3s95T eaCH8y5zXfkV91dWrNvffLjuMz/m8Kr2JV77CjAIHCRmsPVDWfH9uio/vmOy DXbcNeBqcFjF2JPW0Axl2a+1byi4HlSsGGveAHIqhl9xmusk/3Ugy3yo9ZvA jeAI7OORd4E7LaVr7vko5M1gJLgD3J4f83BlG+W1bkXekh+zd0e4bjb8NuTY /JgLL7/iRvs8dZZfZ8W5St+RFTHya7av8saobsWoN8K9jnIvRzrmNsept3Hu bwK4Oz9m6Y73nurDJ9pXDz4JeU9+zMzVc0/PvALb77VvnOtqFrzuR/f0d1ac 83CftWKVo9n0qj3Raz8IHgAp7FOsv0LuqhTPY/Aj9lnYZubHPNmHkY+Ahxw7 xfnTwNT8mF37sP2aNS/7o/ZNB4/nx0z5Rchn82Pm+6PO13Ne/sdAacXg060/ lx85mseq9bWG3jXqS/3NAE+A2fkx03Yecm5+zJB90r5mFcMm3xzvaYbtC5Dz 82M+7NPIhfkxt138GevyP5Ufc9vFF1iXX3FnVYx1nnQfi9y39vkGWJUfs8Jf Qr6YH7NiJV/Ijznpi5HP58eMddlfsm9JfvjOxf4K8mXwJXuvwP0cnooZx7K/ ap+kdM06fE3nlB/PxmX5oWuW6yr3tNK1l3jt5eD1/Himia+wvhq8mR8zT1c5 T7NW19h3idda5vXeBm/ZLv6O9RVeQ3PJlbfGdd9xTh/sa5Hv5sf81rm+qxbw 9/LD19cx7znuQ7ABfADWg/fBOttlG0D8VuSW/JhnusE+zWndiPwIDIZvQn4K PgEf54evn+2yaZ64/NKHOPdj57/vtbWW1tkMroXv1NmDb3RnYDu4GvsXyM8d Iyn9M9skr3Gdra613fnbXE91Ncd8B/IrMNT8a+s7vaZmp8om3w3w75Hf5cfM OPEfrP8D9ufHLNTfkfvAXrAb/Jwfc05/RO4CI+G/2Kfn3k/54dNc1N+Qv+bH PFPxPdbX+076V4y8X1xXfsXd5nW15h1e6yevp17k07zyP5F/5MecuP3u++/8 sP9l337bNBP8L/v0XP0XeQDcbX7Q+n/gML5Hh3we33uPN2Abmop5l4pVzoSK EasczSiXPOSa230/leAZqfh+ao5qR+R5oAM4ChyZilmclZAVUzFzPBOZTMWM VNnky7JNvgTIAZXBVGKqIqukYg5pXWQ9UMf+bPBIxeA51o9IRY7sDZD1UzEf s6LX0bzUau5P87slq7nXWqBmKmaDVkcenYqZ48fY96T7OcI91QbHpmJmt/hx 1tWjel1YMfKOcd3jnDPbe9E+FsBrpGI9zUs9PhV9a9bnicgTUjGjMxfZBDwP b4RsDBo69njvMy8VcYsd09D1c+1r4rvK8PO0AKRSMedaMh90Ni+wXgQKUzGf +qRU9LS8YqyvNfSsVkyx48pAaSrmkCr2JO+h1L4S0Aw01Xu3YuQpv0vFsJfb dzJonoqZoaXO01zvcuerB/nTrtPcOWmfZQ3f3ymgRSpmare0rmfvGcjTUzF7 ujWyVSrmgEtKP1V7A+eATypG7Gmp+F6Ln2H9bNAuFfOpz0KemYpZouJtrMvf NhXz5mST70OvpXU0V7SdaynuItAtFfOdOyM7gW3+fum7pWegvmfSt1aMPtu7 1/buWzM9z09FvmJU70Jwk2ue77pdwQWpmL95gfUutklud+5Fzu8JeqRiBvSV yMGpmF88QGeTitnNvZC9wcWOVU53cCm4JBW/tXrZrxnQsvexry+4PBWzgXRX LX1/fZyvfuS/DEwy72tda6qunl3qpV8qZkCLD7A+JBV969lyBXJQKmYuS0of aJukZsld6Rzt8xpwdSrmWl6PvC4Vs4l7eH+aGarnmJ5hkytG7FWpmH2s2GtT MZPuateST/+9Xv/7Uf03e8Vc7zj993f9t/cZmfyeRh8LbgUjwYhUzBq+ETk8 Fc+ZUfZlYr8pFT7NVh6NvDkV84LFb7E+GdyXinm+yhvluvIrTvM3x3jNypUi Vjn3uvZNXvt2cFsq5mbeYV3xdyLHg3G23eG4u8FdqZh9rD1pDc3llH2CfZPA PamYiXyf19Rs0AnO1/NN/olgifkk63d6Tc3ffAB5fypm+M5GPgFmgYfAw2CK pXTNFH4wFTnHwaciH0nF3EnZHnStaanwaY72Tt15KuYXP4Z8NBVzLac6TvmP p8J3rGMed9wc8GQqni0PuRfNX56JnJGKufaz3a/m/M51jubwah/y6Rki21zX Ut70VMwgno98KhWzdxciF6Rilq5iZjpO/nmgsFLw+dafTkWO5vOO95lWcZ2n XetZ8Axoiv0F3QNoAX8e+Vwq5uouToWueb5Lka+BV21b7LgXU5F/imPkb+ma L7ruK+DllOdvWn/Jtpccr34WuSets9Q130W+k4q5jfo7T3/vrQCvg+VgWSrs sp1VKWzyaYbv6/ZrVtqbyDcc8xbybbAGrE6Fr43tsmlWpvzS2zl3tfPXpqIn zYtfh3wvFfMcP0N+DraCzeDTVMxn/FCfhVTMKFyfipwOlcIm3/u2rXetjeCj VMwC/gT5cSpmoy/ynWketPwbQDfzjdY3pSKnu+ur9vmus8m1trg/PWe2Ib9I xTzcz9y75upqH9I123Gzc7Sf7anI0WzHr5Bfgr6V4jv0Nejv+1rrO9Pv0mGp +G26zflaT7k7nL/DuubkDnNOBdfc6bonFPDbA8zB/jv6XjAEvgv5I/gBfAe+ B9+Cn8FP7m2X/Zo1Kftu+34Dv7rnw6l9GBhbKfyKG1Qp/L+Awea/Wa9QEDma S6j1dzlefam/PeAPsC8V82f3I/9OxezdP+3TrEbZ5PvLe9rjtf5FHkjFnNlD yIOp6E38P+vy/5OKudji/1qXX3GaA651/nQf6reC91kdHA0mEFMRmVUQcxIl MwtitmMCmVEQsxRlr2hfsiB8em5kIyuBOyvF+evsB9pe2T5J6Xdhr4LM8bpV C0KfWCl6UU/VXDvptY8ER4BJlYIfZb0mqAFaOVd598Jr2TfJa1X1eseCYwpi TqV4betHeQ0995RXy3VrO0czfOsgjyuIGYh/+640N7NuQfjud0xdxzUEjcDx oD5oAOrZLpvmyRYhCwti7nYj+zQDsQmyMZgOz0emQB7ILQjf47bLphmF8kuf 6dxc5zfw2np2aZ2CgphvmEY2B+XgxIL4XulZUYosKYgZtZLSi22T7OY6Ra51 gvPLXE91FxHTFHlSQcyTFW9mPe01n60UNvk067AF8mTwvPkp1juCDmAA9rba B2gDTgOtC2Jm96nIlgUxo/Z0+1S/VUH4FsLPRJ5REDMKxc+yXt93onnKyjvd deVX3IteV2u+4rVaeT31Ip/m0p6DPLsg5sN2cN/tC8J+rn0dbNP8xHPt07Or E/K8gph7K97Zehd9LsD5Po8WPtvv/YzTbxvFKmdlpYhVjuYVdnHeikrx3w8P +L8p6n9Hqv+Nqf63pJVL+T6CDvrf7aNfDNYT30OfhYKYhysp/SLQD/QtiLmQ iu0J1pn3sn45uKwg5gZeguztmuKXWpe/T0HMbJVNPs1DvBZ5HbjGMZc7Tjb5 9NwYjLwCfAofqM9FQcwQHFQQuuzqs7977e++C7P5zVEQ+Vu8ltbZ5ppXuu7V 4CqwtVJI6UNsk9zsdQd57aHgerAd+53IceBX+HDkjWCYY25w3HDbNLN7BPIm sLNSxA53nZEF4dM81luRtxTEzLibkaMKYn6f+Gjra8BbYLXzRrruDV5bs2XH FEStH+C3IccWxExV9au+7ygI++32jbPtl0phk+9n9zPGPd0FxhfErL2JyHvA BHC3fb/YLptmAsovXXP37nLceO9D+9F86nuRkwpiHp/4fdYfAlMKYp71A8j7 C+I3gKT0yWA6eLwgniGKfbAgZs9Ncb70x8CjBTF77hHkwwUxR1V8qnX5p4GM 7LDJp7l493sdzd1+1LUUt1B9FcR38EnkE6AS8bOQM81nF4Su2bvqc4Z7neG+ NSt2TkHkZ2dHvfmganbY5rjuU2BeQcx1nWd9rm2SOdlxZjo7zXtd4P5UawVY DmoT85zOCSwCz4BnwdMFYZftKGKWIl8tiFl1z9un+XRLkIvBlfCXkC+DF8EL BeGrbrtsmtMnv/RM577g/Ge9ttbSOq94v8+4F80hXem+NWP0deSygphDKin9 Ndsk9SxSnaWupbyV3rO+H/qeaO7bG8hVBTHjVfxN6/LrO3R8dtjke4W/U8oL eW+BZuAdbG8XxJxW8Xetvw/Wg3zs7yHXmq8rCF1zVz9GfgI22rbOcR84P+UY +Yuzw/aB634ENti+wfqHtklqVt03yK9BOjvWUa2S7LDtKIjnzFbkZ2AL+BRs BpsKwi5b0+ywyadn4Kf2a0bqF8jPC2Ku6JfIr8B2sK0gfE1s3+4e5Jfe3Lnb nP+Z1yt0b9+4v7/AnwUxK20X8gdwFvw75LcFMS9PUvpO+xX3vbnkmcT8hPyx IGaP/oL8FewuCPvP9sn2P1+luMN33P/PjmvttbTOqfA9yN8KYn6o+F7rf7vv 87D/gdwHOmeHlP67bZKaa6Y85Z+THXl/e8+HwMGCmMv2D3I/6GJ+wLr8/4KF VcImn+axHnS+fIfxGf2vIOaKHl4YumbDZSArgB7wRGHonW1P2JcJkmCWfjMj c8Al2SGlVwaVQMXCmH2Zbf1ApZDZ9uU4VjNDs1xXM2Qls7zGEaAquBR7TWSN wphhKvuR9lUDRznmaOuXZ4c82r7jQO3CmKl9pOtqFpvqqW51cAyoBQZiP9a6 6kgea18Nx2rGt87scJ9jHa+hOaT1kHXBFfCGyOMLY/51/cLwZTumvuMKQApc lx2xDQpjNqh4Q+v5IK8wZm42RjYqjHmj4k2sy59bGDOmZZOvYnbY8+0r9Hqa E6p+6/hcikFRYcyFLLGu+aGSJfaVgdLCmBNX4Frq+wT79Jw/CXkiGJEdthOc o3ea3m16zzUtjLhR2fHM1PPyZuc2db6eo/JpXufJyObgFnitIu4D1ARtsbUp jJmbLZGnglMKI76Fc1qDVl6rpf2aByf7afadCc5wD12RFxTG3MzTnK9ZafKf Du40P9P6hYWR80h2rK81NI9Vfam/s8DZoF1hzDDtgGwPJsLPsU8zy2ST71zv 6Syv1Ql5XmHM2Twf2bkw5n6Kd7Euf8fCmEEm3sm6/IrTs13rnOM+urpv7XMg GAAeJ+ZiZE8wPTtkD9svQnYrjOeb7Bfb170wfNp7b2Qv585HPlUYs1llv8Q+ SemaodkHeWlhzLe6rDB0zdMc4J76u3Z3r90XXA6ezA7ez/oVYBCY69z+5oPt m+e1LvN6Q/Q5LYx5muJXWe/nNWZlR95g173KOZqxdQ3y6sKY49ned3U3/NrC 8D3rmGsdNwwMBzeA6/W5ANfZLpvmb96KvAW8nh2xw9zzTcgbC2MW5yjkzWAk GFEYvhdsl01zOeWX/pJzRzh/qNfWe0TrjC6MuUUT9BlU/2AcuKMwZmLehhxb GPM0JaWPsU1ylevc6lp3OP9211NdvQvGI+8sjNnT4ndZn+A138gO23jvfRLy HvC2+b3WZ4GZhTE3eRryUTAVPAgeKIyZjJOR9xXG/OIp9mkm5v2F4dO8zoeR DxXGPEfxR6xf7zuZkx15U1xXfsV94HW15gavdb/XUy/yaVbX48jHCmOu5Uz3 PaMw7NPtm2nb5uywyacZ008gZ4PPzJ+0PlefBfXm89C5aD6pnm16xul9oVjl fJ4dscrRrOe5ztMsSP1+0e8a/eZZUBjfT83B/B25D+wFr4CXC2Mm43PIRe7n GeTThTHvUjb5nrVNvoVgCVhcGDMoX9RnszDmSK7W2etzZf/z4Ovs4Eusv1QY OZoX+TbyrcKYz7jI6yj+Vfe3Kzvkq+51uT47hTEj9TXkUvATfIV9v7ifl9zT KrAS/Jod/A3r6lG9HsyOvBWu+4ZzfvNe3jRfVhjrqZ93CqNvPc+36G5df70+ m+B3+Frke7prx77jfb5fGHGat7jW/t+d+77zdVe6Mz1PN4APC2PupOQH4B/z DdY36vMIKlBza2H0pDmMWl9raFamYj523KdgU2HMtVTsVu9hk32f6LOlz0Jh zHD82GvorGT/wr4v9ZkqjFmTm5yn2ZRfOF+zNeXfBqpVDv6ldZ3lMt/fDvCV Y762rtmIP+gzAo6Bf4vcWRizKSWlf6O70dmD4ytH7HeglvkP1n/R56Uw5iT+ qDssjPmM4j9Zl/9nUL9y2OTL8VrfuOZu11LcQfAvyMP+J/KPwpi3qO+Xvlt6 Z+l79rv7V5973Ose910T+1+Fka9Zk6p3AOS65l+u+4/O0vb91v+2TbKJcw86 /zB+J/2HrIv9KPiR4CR4DrJyUcRXQGaAwx2rnEO6P2SiKOZZV7C/tHLYM+2r BCoWxftId/W1709+xWmWpfxZRTFrsqJzsrym6uqc1Ut2UcxbFM+xXq0o+m6K /Qhk1aI4Z0npVWyTPNF7rOZ91gDVvV/9ZtRvR81h1B61P82j1HNMzzA9NxR7 dFHM3qrl35irbK9hn2Y3nd0o5jfVRj+2KOZKix9nvYH2VBTzkesi64AWxNQr Cl3zsnO1D52/bfUcd7zzWztGfs1JbGCf6jYGjYpihmMj6w1tk9TsxXJks6KY n6h1VEszHGVrWhRz64qQxaAQpEAByC8Ku2yaq1hgX5vKIeXXrMZSZElRzFA+ UWesuwNlReHTHMYTbdNcRfmlt3dumfOLvd7/5j4XRd/q71xwDriU+JbIU4pi tvLJyOZFMWNRUnrafsW1MJfULNFWyFOLYvbi6TpLnU9R2FvbJ5t83YmZgLwb 3FM5/Io732tpHc2gPEtnWRTzFsXbWG/vvidhPxvZrihmR0pKb2tbW+9Lecrv Ujny2nvP54PO7qej7rAoZhGKn2dd/k7g8sphk09zFTs7X74LVLso5sF1ta45 mN3UV1HMzruoKPQrbL/Ivh5avyjmuPVRv+C6yiGlX6L9g4uLYq5ib+ua1SjZ 275LHav5jD1dV/MZJXt6jcvVe1HMVbxCfYGbKoe9r339tY+imEU4wLpiJAfY d7V6AaMrR57yNdtR9VR3oPYDBhfFzMQh1jVTWHKIfYMcO6pynFlXn+M1XkOz fa/TnopiVuMw9Q7GwK8vCt8Yx1zvuNHg5qKYLajYoUUxG1F8mPVRYGRRzDe8 UXstihmF4jdZl39EUcwllE0+zUYc6Xz5bvF64ypHv9f4XMaAW8Fk7GOta46h 5Fj7bge3gQcqR41b3Pcd9mm+4Z2qDaZUDtsdztF3SN8tzZ0cXxRxmnWo79Nd 4GHnjnf+AfAPWJXBO8u65oJNQt5TFN+j+9Svzu3/bGBiUdhl01zFacip7mey fXpfPKD9FXlWqdZXjPZQFL7JtsumOYnyP+S9P+A45T8F5hXFd0TrPAIeg89B zgVPgplgRlHMcn1c/qKYKSkp/VHbJE91nWmuNcP5011PdWcRM1uyKGYsij9h fc7/rVk5bPJpruIM19AM2fnuWzMTlyJfA6+CZ8EzRTEDcSFyQVHMRny6KPQ5 8EWOm+WYpx0n2yLnvwheKIp5i4uRzxfF80G2JWB+5bgv3ZVmRsv/XFHMalRf 832mL7iWcl4BLxfF7NfXkcuU4/7/13vl2MdS13/ZOS85T3Ie9uVFkf88/E3k G6rvmstddxVYWRRzLVdaX2Gb5GLsq4si/znXWe1ab4E16r1y8LetvwvesX2t dc1jlVxr30dggz5nfM43Wtecx3XI9eA98AF4vyhmL35oXbPbJD+0b51j78uI POkTMqLeRq/xGdhaFDMfNyE/KYoZkZLSPwabwac6X/rcYl0zKLcht4MvnKdY zZT83HU1r03yc6+xzbGPZUSedM2LVL0tXuNtn53O9ivkl0UxC1J8h/XvwLf6 TGL/Bvm1PpOa+VUUuuw/I3eDn2zb6bjvnf+UY+TXLMjv7FPdH8GuopiTtcv6 D7ZJPp0RtZX/guZ5IX/R5ysjelSvU23/zb69YE9RzDH83bpmL0r+bp9ilbMQ +x/IfUUxu1D8T+uS0jUvUs9M/RbRc/Nv8FdRzEYU3299v32a7ah/h9G/wejf VfQc1fNUz9Ypxdxbccy3qoA8vDjmEv6H7xB4IyOk9IMgG3+l4piZqNjDimM+ lHgF6xVBVnHMZEwgM4pj/qN40rr8meCtjLDJpxlwNZG1QA3HVHScbPJpzumR yCPARHgVZA54V7/5i0P/MCP6rOxeJaXrPXJUceRv8Fpa5yPXPMp1q4Oji2Oe 49HWq9lWzfW1TlWvfSw4pji+a0XIQvAVvA6yLjjOMbUdV8e2z4ipj6wHPs2I WPk007BBcfj0HGiCbOyaDZHHq7fKwRtZHwyuBFc4r4Hr1vbaqp9bHLU0gzUf mVccMzrVr/ouKA57yr5C2zRTNWXfTveT655KQDH4DvsJyBNBGSi171vbZdP3 VH7pmqtY4jjlNwUnOb6Z9R8zQjazrzlIF8fcw7T1ctACnFwcsztPsa65h6ch TwetwZngjOKY+dgKeSr4LSOk9JbFEa9Yzbs83fr8jKh3itc41bEb9NvedTW3 8RzkueBs0Ba0AX9jb2dd8x8l29l3jmM157EzslNxzJdUvbPcawfQHhzGd7Oj 9cMTITvap7zzHHOu6/7r89HZ/JwRMZ0ddwHoUhwzHy9EdgNdbZPv/OKwy6a5 lpciLwFVExErXya8O/IikAW/GNkL9AQ9isNX0XbZNMdKfunZzu3hfNXuXRwz FsUvtd7FvWgW5OXIy0D1REjpfUA/0BfUxN7feg3HyK95iLL1d9wgMBDUToQc ALZUju+QvktfZoR9kH36Pul7dVwipL5bej7r73j9Pa+/2Q/5uai5ulfhvxoM AUPB9aA+udcirymOGYvXFYeu+YwjkCPBTbZd57gbnK85vCPs1/zEofap7o1g uPpOhJQ+zLZhXvdu5F3gxESso1qNE2EbD3bQ/63IMeAWcDMYDUYVh102zWEc bd9TiZDyN4Hfhhzr8xmHvBPcAW4vDp/mAo+zTbMX5ZfeyLm3O3+M1ytyb3e7 v+ngcfCdfucj7y2OWZD3ICcWxxxJSekT7FfcJHNJzVK8Hzm5OGYs6n33UHG8 82R/wD7Z5DstEXeou9ScxwccV+i1tI5mRT2CfLg45kuKT7U+w31rNuJjyEfB WYmQ0qfZJql5i8pT/umJyJvhPc8BT4J22GchZ4K25rOty/9EccxVlE2+jzPC Pse+eWBuccwxfMq6ZlotQM53zYXFoZ9j+0L7ngFP2/4Ccgm4IBFS+mLwHFgE 2mN/3rrmKko+b98Sx2qW5bOuq3jJZ73GS+DF4pjV+DpymdeS/WX7XlXvoDv2 pdY1e1FyqX1vgFXgp8qRp/wLE1FPdV8DK8Dy4phNudL6xYmQK+1b5ljNfNSZ PeVzfNNr7KX+GuTq4pil+y7yHXAp8W8Vh0/rSr7luA3gQ3B5ImLfBp3N37X+ AXi/OGZ1vYdcC36pHHyddfnXF8esTNnec833nS/fR15P+3rDfetcPgYbi2Oe 4yfW9fmU/MS+T8Gm4pjhuMG11Pdm+zR3cityCxiSCNtm5+h7o+efnrGfFUec Zjh+gfwcXOvcz5yv/12o/jehayvx3i2OuKuI+RK5HVwH/1n3CUbDv0Z+A3YU R8xXjvsW7CyO9+PX9msWsOzf2bcL/FAccwn/Qe4vjpmG3zn/z8rh/744ZgT/ 4BzpB4ojZ0Ii1tcaQxPRl/r7UfcEdrvPvcg9xTFj8Vf7NAtYNvl+856UdwT2 P5D7imPO4F/qpThmHYr/bV3+38G4RPA/rMuvOM2O1Dq/uo9/3Lf2WaWEdyyY TszhyMNKYgai5H/F8W49iPwX3GP74fYdKg6fZkFmYKtQEjMWz0N2BG/anrBP UvoU7JnIJHgcnlUSunpQL+qpcknUPuS1K6FXLIk5X+LZ1o8AVcFM5ypP77Ij 7ZvltbK8XjVwlOPFj7aueqqrmYnKO9J1j3aOZn7VQFYH8+AzSqkBppfG3ene xjqmpuOaqBfwDPbjkHVAbXAMOBbUAvVAXZ1pTsTIr3nHste3ryE4HpQlIk/5 eufWd75mOMrfADxt3tD6SeBE8Fwi1tcamufY2P010nogFzyLvRBZ4Ph8+xYl wiZfyntSnmYCliCLwfPwMmQpWGx+gnX5i9ybeIl1+RWnOWU6M52dZmWq56bu uw04C7yGvTXyNNAKnAyal8Tcw3JkM/fQwr6X4OmS8C2Ht0SeApaan2r9GN/D f5Ujr4Xryt/SdVp7zZXwtu6pu9dNe+0zwOkl8Zk/0/qqRMS29R5kO9NxZ4N2 JfFe0J60hmY7yn6OfR1Ae/BOIs5D53JGIvxne1/ynwveNu9gvVNJfA81//d8 ZOeSeCZPQz6qcwa9Qa+SePZeiOwKPoR3KYkczc2UTb4LbOviWt3BRWA9MT2R PUpiHuUVyMFgkP3dQE5O8O7WLy6JHM3nHYK8EhyZE2tpncrwS9zfpkTIS9xr X3B5Scze7aPzA1WJ72ffe+7nYvc0APQH1yeCD7SuHtWr5kIqr5/rDnTOZu9F +9As3ctKYr0N8KtKom/NT7wFObokZjtej7yuJOZgXqNz1R4de5X3ObQk4r50 jPyfOXeo88/z/ekZOhwMc7zkDWCH+XDrN+k8SmIe5a0l0ZPeBVpfa+i5pJgR jrsZjCqJeb6KvdV7GGXfSOWAMeDOROQpf2ci7LfZNw7cAbYkInekY25z/o+J 8N/+//Fx1nWWl/n+xmsd8Csxd1nfDb8XOQn8Dp+InFASczAlpd8NHgYPga7J iL0H7EkEv9f6FPBgScwFnoy8D/xhfr91+R8A/yTCJt9+r6V1NFvzQddS3JPg iZKYd/k48jFwwN8vfbf0e0Dfs2muqT4fca+PuG/FTy+J/H8TUW92ScyFlG26 684CM8HBREjpM2yTPOTcJ50/D8wtiVmWryBfLol31hLkYlAV+3zkAvCUY5Uz BzwNFpbEjOP59h+XE/Zn7HsOLAI5ybiru3x/zzg/Oxn+Z0HdnODPWdeaqlsp Gb08D+rlBF9i/dWS6PsIYl5CvlgSs2glpb9gm2QV7/FV73MZeM32Fcjl4Pic 2KP2p5mkeqfp3Zbr2KUl8Y5W7Osl8R58zbXk07tP772mjlnhuFVgJahFzfXI 98E68DZ4y/bVyDdBI3p4x76XqbOmJHy1iVmLfLckZmiKv2f9T/AX+MN577iu /IrTu2y919Q8zS+Qn5fEM1m113jtD8EHoCExG6xrnuZG5MfgI9s2OG4T+KQk 5hFrT1pD8y5l/9S+rWCLzjEZa35m/qnzNU9T/s0l8f7a4hzpG72mZqduR24D RfBfkLtLYu7kj8hdIA3/GrmjJObZfVkSOZrLKZt8X9n2pWt9C3aWxKzh75Hf 6e6IL+O3WmlpzIGV/xuvu9M50n8oiRw9Y9WLevrZ62udfO7xp5Lor7n7/Mm9 /gZ+LYkZwbudV0j8Hvs0D/R7r6Gefgd7QXFO8H3WdZ5f+EyVt8d19zmnVTI+ G/pctEjGHepMNVf0L39uNPdzP/JvcBr8X+RBcKAk7P/Y969tmimcydkkS+PZ e9C+0zXzC3nIvAL+DHA4OKw0fM1sl03z+OSX3tq5ijvkNbX2uclYJwHaaK4W sho4EuSUxv/dYHv9zkdWBGU5IaVn2Sap94XqZLpWZednu57qas5mVWQVcGJO 8COsH+U19b6QTb7OmueFPPr/4zWs54Fc0ENztZDHg/qgNji2NN5BtZA1QRfN 87JPc5yPKQ3fBZrthawDLjSvZ12fzRJwWTLyjnNd+RXX3etqzWY5Ue8Yr6de 5LtI87yQDUtjrnSu+25SGvbG9uXappqN7bsYnkLmg0vMC6wXgWJQ6POo7j2q 5zL3rVjlaC58sXM0V7TIeao5GzmrNGb+nog8oTTmLI9CjgRT4c2Q5aApaAVO BVcnw9bM53MysnlpvMtOKo1al8NbIk8B/ZPhV1wadAQdwI3Yz9XnC5zjGmnH K69FaczqPc85w93nSe5VMS0d1wacVRpzitVna/cq25nuuR2yLbjF+9KectyD 1tdM0rNLI65GMmqo1ik50aPi6iWjZhvXVezZrns6OE09Ed9H510ac0J7IXvr TvW51OeuNGY3S3YBN8M7I88Hnezvap/2fZ7Pq4c+I6Ux97abPl/gQvBGSbz/ GuaE7X++nJDya86y/IrTO1J9XVIa84U7e03NaO7pNXQ+l+tuwdhk9K49aH6o cvs4XzF9HafeVestYvojB4B+pcEl70xG7Z7eQy+fh94pfV1Lc4oHOEdzSM/w mV6fDHmGz3cQGKjzZ4836nNRGvNGr9E9g0nwIcgrwe3JsMl3lW3yDVZd3Xlp zFC+ATlU95kTMfJrJrL817r/65wjfVhp5EzBfjvyDp2P19c6bahzU2n0p+en 5E3udbTuHExLxvdsRGn832XfYt9U9zPMPY0Bt5bGfGTxsda1ptaenoy8W1x3 rHMmuzf1NUO/D7UPMBs+FflIacwufAj5sPYC7gETS+N5+CDygdKYkXo3cgK4 yzGTHKd6qjsO3Kc1dRfmkpq/fIXvbHwy5BW+v0mupfmnk53zlNfSOprjrDWl z0pGL/eXxjP/IffbEz6tNPajmafah3zzvcdp3ufj4DGwKBn/VqR/M3o+GVL/ btQpJ+o/6DV0L6N8N3d6f+rhMdd61PUkzyP3idJ4nvbxc1W6nq3vl/HbB6wH z2p98Iz2CeaVxozmOTqD0nhmzrfvBfjc0vAtgS9ELiiNufPiT1tfDl4vje+I 8ua7rvyKeykZ62rN83MiVjnLXHuu134ePFcas5sXW38R/oKkerBtseNeVm3w ajL29Ky57K/Y9xpYqv6Ssa7W1KznV5yvGa/yv6qezF+z/oLX1FzIlcgVYBX8 A+SHOlfwJlgN3rCUrrnPq0ojR3Mh30KuARfmhG2Va71dap9+83A3R4K/4e+q r9KYZ/2W45S/tjR83XJCrnXcR2CD9/ime1Gf65HrlO+e1a9mJm50zvpk7EO+ uplh2+haynuvNN4Lm5CfgIbEbEZ+CnrkRMx6x8n/cWnMuxffZH1LaeRsSMYd vuDPw2b7VOszsLU0Zl5/hfyyNOZQb0N+odrw7aWhfwz/Dvk9+Na27Y7bURr5 Gxwj/2bX3OG6O8E3WjcZUvrXtklqHq76+dw9aR3V0pzZP5D7VAf+M3I3+Ans Aj+CH0rDLptmXv9on+Zo77K/N+f2K/KX0nhH7EX+DvaA30rD97ntsml+tPzS NW/3V8cp/8/S6ElzqP9G/qX9w7P4HFUEmSABMsriOf8v/gM6F/j+0sjZkQyb fP/Ytt+1/gOHSmOe9eHUOAzsTMbZ6Iw071j+g+75kHOkVyiLnEdcX7V3uk4F 10q6P83EzEZWKos511nuXbOAtQ/pmv+bcI72U7kscn7BXgWZUxbvF32HjiiL ebt/+Ix0Z7djuw20z4y8yl5PuVWdX9W65gLv9l1+7JpHue4loHdZzMltgKyv /Wi2F7IWqAGOBtVBNXAsOAYcTEaM/JofLXtt++qCOmUx87oEWQwG5YRfcYeS 4T9OZ5oZvK710rLI0XxMra81NBdYfam/eqAhOL4s3ju5yCZl8d5pZJ9qyiZf Y+9Jec8Qk0Lmg4s12wtZoDswL7Iufx5YnAyesi6/4jIzY51G7qPEfWufp4PT dBaa24VsWhbzeSVP0h1r5heyrCxmfMvezL4Ty8J3BWeVRpaDIck4/2r+bMje 3D5J6Udonhfy5LKY53tKWeiaD36ae2rt2id67VNBS91xZvBW1s8EZ5TFM/Y0 52nm+Fn21fFap3i9tqBNWTx7xdtZb+U1jsuMvLNct51zZD8Hebb2mBP31dh3 cW5Z+Bo75lzHdQKdwXmgA+gI2tsum2aI90B2L4vnZGf7NIO4C/J8sBH7hchu oCu4oCx8TTLDLpuez/JLz3XuBc7v6LU1o1zrXKTPBDH9kP1BX3BpWXyvZO+l z1pZzDGXlN7TNsnxmVGnh2td4vzerqe6er5dhuyj+8sMfrn1fl5T84hlk08z hQciB5TFDHTxQdZHghE6T2KGIm8A14OrdA/6PGEfrM8gaAa/2j7NW7+yLHya mX4t8pqymDUsfp31Dr6Tq3Ii72rXlV9xu5OxrtY802td6fXUi3xtsA9HDiuL 2eIj3PdNZWG/0b4RtrXODNtw596MHFUWM9DFR1u/FYwBt/g8BnqPerbpOzYz GbHK0RzhMc45JzPkLT43/bf6bf7v+noGj3XMV/5v8/pvMfdjm1wW84XvRt6l zyj8TuS4svhdJJt8422T7w5wD5hYFjNG70VOAv8SPx05Azxu/wTXnOgc6feV RU5XzcnSnkDVzFhL65yrWWBl0d+FmSEfcK+PgIfLYgb6FOSDOl/ucap9h7mf +9zTo2Aa6JUZ/DHr6lG9XpMZeVNd9zHn6Nk73fsYSf2HymK9bthnl0Xfmk28 BLnYdeYh5+qzAn8SOQc84djZ3udTZRG3Ihkx8g9w7lPO3wP2gv/H1HnA61j/ ///Wue9z7nGGBjknldN93ymEc45zDg0q7bS3qDTQQHvvnUplNEnRTjRVaGhQ Koq0B0mJNBQt6v96er2/j9//8ej1eO/xGdfnuq6bXL8IjwmPsldLTR9hr5Sb fyzkSayD0FI+z3R1T3y/mPrUOKnUPk+E35PClK7+Tjq+z8QYpoRtsvCc8Cx7 sdxxxA8ttX5q2F4UXhDalDp2cvhMjfizSm1/vqu/m/xCxDwfczkm1m+6ME2o ls+MkPm+52uiM7v6G7uvMGesRakp8kvCHOFt4cpS+74qXFVu/rWQ3xJmd/U3 jt8Qfb2rv+EO/2bI2GdFHnTYzo9aL8Uczo5c+H0sfNTV32F/X3SecH253/t4 57u23O9/yHzjmD7fiV7fib55Hv6gq+P51jD5Fnb1d7rRfRB5PxQWkL/UFHl+ 6KA3lDv244j/TPi0q8/JFaLLu/pb59+JLhVulv8Xol8Kn4cvMZ8IXwtfdfU3 1r8IO99ERr8obEuEb7r6++ys1YxYv0URP7rU9sX/H78kZGqS955S9/JtV39X Hf67kH/s6r75TugPosu6+vvIUOTvQwcdG2P8Mcb5s/BTV/87zFxDXEvjSz1G xse9iXOMM4xvuOO7UhhXal+uuZ1D/3PYOD95luUM/V34Tbifb4/W6Vyv8z5P iLYQ/pPtb+Gvrv528x+ia4QJ4v8J20Txf3a17SHx60TXCg8G/2/ILZWvSni2 1HH/RF7s62Jciai5UZl9iamsc+4/o3aJ5A3q/ByerLNM3VLRMiEVumT4ZYS0 8GSpx0SNh0utz4atQiiv8/foq6Im53k24ieX2p4Tngm+IuTSqMn3rDcS3bDO 53yt6FZCO6GV0FrYJCgy37LfuM4x5GwjuqnQN/JsHLmq62zjO5urY812kc9m 0tUw5oitjvi2dbZND5+24VcQ8sKrpa5PLy+K31J0C+Hl6Jl++Y5zMWKOLfU4 sPG9aXTFyEXc5nW+H20j2j7yd6Bf4YRS+2wZfti3FgaUmt8m5I51juHb02Ux p5MiT8fItZ3QSbhT13uDaL1wsny6inap832nrs7yG+J7iG4vdA9dXfh1q3P8 nPDpHnxD2MjbLDTV+d7XFHJj6KCzSt1P5+iJOuTiO+97ie5Z599DuJ64rnoK Owo7CTvUWY+ObyjvFLYzSk2x8w3rXUV3qfM3oHcX3UPYTehdZ9uZoUfHfQQ7 8vyI7R3xe9e5py+k31d0H+Fi8X1FjxaOEo4QDmc9pD9AdP86f3OzT51j+JY0 Omz7ha5P5DpYOEhYJJ9DRQ8RLi/13DBHvCthP1B4rdz8wSEfVueYryI/uS+N PIdFriOjP75D3Z+9Jlwb/dP71aUeBzLfdz4iYhjPMXWO4dvWx4keKywXf4Lo 8cLKWK+9Y824tlbHmdg/4qlH7ICIHxAy3zndJ6/YvP//oBPrnHe49ANFTxJ+ Fn8WayWsEX+y6CnC4Dr7DAq/09hrwn/hMzj6RD8kbKcLw6LnK5jjOn/3eUjE ryq1fagwMvjTQ76yzjHcX6hPjZtK3Rf9nSGcI5wt3C79BaLn1/m7xueGLVFm HbbzYkzEjZLPxaIX1fk72peKXhL+8JeFjP1CYW2p+YtDxo7fnaWuc270cUX0 zThHU0fYWDmvF72uzt+zhl5b5/vd1aJX1fm72OivD9s1dbbxDe7hojcI94lf KPqh8EHobwwbFJlvUt/MPNX5fjeizjLfth4VPY2M3NdE7VuFW4QNy8zfFvLt wpg63ytHRRw+d4StVdQaEfXuYj7qfA+Fvzvk26IG90fi7oi8d0cM37AeK3qP 8DTv+A06X4VCg9eOdeNZBZ9x4TdJeLzO97gJ9CjcL4xnnoR76UN4QHgifLBz PqN/KGyPCo8IW5Y5jni+Lf5QxPM9a+wP1/mb1I9EDPI04UVhRqnrU2OzMvdF f4/RH/WFPN80FH0q+Clhe7rUOmxPxpiI49vfz4k+W+fvWT8vOpV5C/6FkLE/ g1xq/rn/yXX2m1bqORsbvdHz9Oj7XeEdZM35LNHZwpvCq8IrwkzFvsT4hM6K nRm2ruJfrrNtO/Gvi74m1Af/RsjjYx0eKXXczMiLfX1MqetS80We2//XU9R9 OWq/LbxFfzzDh0wtfN+LMaCbE37zhLnwpR4TNfimNvr3w7ZAmC98WOr5YF46 ltm+Pr7U9g+ICX5ByB/V+TrcUf6fiH5Mr+q/Xb2eN4QthW+lWyLsKZ8vRD8n jmfgOsfsUmYdts9C92nk+lr4qs7fzl4suggfxf4i+qvwc9i/ZD3KzX8d8jd1 juml2N9EVwmHRS3q9BS/tM797VFmujR6XS78UOd74vei3wl7y2dF2PaNfr6J nlYKPwr7lJn/KWR6pFe+60rcisj7U8T0KbOdcfC972V1rkee3+vc9/fqIaV5 TNb7W9t/Sfcn+aVfI/qHsDp8f49x/l1nP77TvSbsR0Ts3xG/MNaPM3SdsDbm B/oPPZaaXxfyf8K/df4meGm9e+KeSH1qLCu1T6LefiWiGwhHldm3NMaADlsL IS2UCW+VO474X0qtz4StXMgJ60odS9zqUtvx4/vU2LP1/h53LmKQmctlsX6V kivq/U3wqnrL//IsLboJfUm/keiG9f7eNxS5pbC50FYYVmbfjYXBwbcKeTOh hnmRflPR1vX+ljd8m5CxV9f7m+DosCWjFnX41nlN5MKvg7Btvb+XnRfdSji/ zNcX19bZZb7OkPk+OH1uEb1uEX3/zTN/veNLy5xvG+YnchYib3th68i/dcjF 0EHTEdsh4rcTOtX7+9o9RXcSrhXfQ7R7vb+j3UW0q9A5fInpKNQLdYw5fLBX llnfELYmoVG4usxrVRXr1xDxfCscezfhquCbQqYmeflWOL001/vZA75HyL3q 3Tf3ux1FdxA+LjdF3j500OtijL1inLsKuwjDpd9ddLd6f++7U4yvvMz3NO5t 3PPw3Zl1KrNvb+a8zPpdw8a9j/ve1FL77B5+ewp7sE7yP0T0UOFgYT+hj3Cn 9PuI7i3cxvd/w9aJ7/DW2zZK/IGiB4Q//EEhX8I8sY4Rt3/kxY7fXVGXmnfz LV3R4+v97W9y7xu1DxcOq/f3Z48Ieax8jhLtKxwZuiPCr59wNOtV5jFRg/sp +v5hO044NvJQcwBrXGY7fuPLbD+GvRL8cSEfFTXrpD9J9ET2Jd97FT2buRV/ hujp9f6+9smig4WJfP+33jEPlFmHbVDoBkau04RT630fGSo6pN7fQH9edGq9 v4GL/RThkeBPC3lYvWO499ELPZ0V9anTQ/oz693frtHnmdHrecK57LmIJe45 nu3D9mT0Myx6ulC4gJ7KzF8UMvN5QswpcedH3osihm+pXxL7gvx9Y07ZD5fG vuEbuJeLXsb6ib9K9GrhynrrrwjbVaHrrL1xs+hNwptl9sXGN82vFb1GOFT8 DaLDheuF6+ptmxF6dNzLsCO/FrHXRfwVUZvvp1PnRuEN8XfSu3CHMEoYWe9v mt8qegt7pswUeUTooPMjz82Ra2TE3xb5yMs30MeIjhbeCf72kO+MmnPLrMM2 QPw9onfX+zvg8GNDnsx+ZL2lf5i9Izwk3C/cV+/vZd8rOq7e96AJYTtF/Ph6 25bpHHtAdGK9v5kO/2DI7M3nhEVljpsQebHjd1rUpebHUWt81KMXbEOlf0z0 0Xp/M/2J6HtSvfWPh+2J0PFt98fDdrr4J0WnCD+Vm38q5GeEZ4WnYz6YlxPL 3PPz0Te+xPBt32cjhvvgMxHHN8q30ftSeyFZoedp6V4Qlki/gXQthDvEz2CP CNPZi+wR9k6ZdTPC/1X2Zr2/wz6t3rkuEP86+67e3zrHjt/LwoesT8ztB+wd 1jdyYL+kzHEzhcvEL4yY68uce1r0is/r4fcue4q5KnOfs6JXdHOEa6SfK/pe vb/VPiPGdFH0QP3Vmud59fbj2+uzYsx8s54e8fu1zDnfjbz4zou8bwmz632f /Z5xC/+IX8LcCN+wxsJnwooy00+FG8R/LPqJ8FHYPw8b4174v/liPYUb5f+l 6FfCF8Je9b7/jSyzDttv4YOd+++e4bdH9LVU+DvqfhTjWhw1+N73D4xbuKXM vTOGEWWO/T7i8VkefvROrlXy+ZE5Zoz15qF8E5nci2MMS2I+WK/lkYtv06+M GL7//nbM6fIy07djfn8mrt73639F19X7vXINOYQNFPsbvQgt0tZh+z102H4V /mKs9X6P+4f5qPf3lFeFfXSZ7X8IybT5v0JeW++Y2+WT1bWSEzINrkUd3rv/ q3d/fIMe+l/0mpRfSYOfE7jOEg3+dnyqwbZc2rnXRk9l0pUK/5abT4dMTWpv mHZcKvJix+++6I2+xvF8KFoh3C9+S9EthBrFthXdXNhM2FjYiJ50JtSIVjf4 vtySOkJV+GwSfuQjb7nQWthUaBU89EHF/hJrxrUA/SXWb5PI9XCZ44jZOO1a 1OG5gprIm6TdSxthhzL3TL+Pim/X4PG0SXsc2DZNW9cuxpkXtmI8af9WxG9G m6dN+d1ocpnz10QN1mWDWJuKGB+9bRW5aiMfdJJit23webpV2nTbOFsP7abn OOEQoZvkRqFB6CxsRy75dxTtIExRni5hK/DN3wbb2oqvE+0aPcPXh7yb0Fvo nnZcl8iLHb+ny1yXmsW0fYnZNXJ3itrNQlODn3+6h7yN/LdnvoUeoesefjsJ Owrd0h4TNZ4ts75n2HYRdhZml7kuNd8qsx0/njew96LftPldQt4+am4n/R6i u0etw0QPZ16FvYV9hL2CIs/hrGtwTA/59xHdN+YH3Z6Ra78G23gOuVP0DmGQ fA4Q3b/B34jvE37EH9hg23tlpgeG35HCEYwt7fr0sjvf+RU9mHmInumXZ5uj IuaDMo8DW6+0dUdFLuIOYh75hq/o0Q1+vjpGtL/wYZl9Dgk/7H3ZB2nz/UI+ tsExO6e9hsxpp7R1x0auAcJxzLv0g0QHMgbxJ4qeIHzCe0GDZfRDRIcKp4Xu pPAb3OD4z8rsg33fyDk48p4qnCJ8UWaKfHLooHun3c/x0RN1yPWV/C8WvYh5 lM9ZomcLZwqnC2cIwxqsR/d9mXXYDkqbYue72+eKntPgb2FfIHqhcL5wXoNt h4Qe3Q9ltl8Qec4NP+IvaXBPh0l/meilDb73jRC9RbhZuFEYLqzhmV/0StZX /pc3OIZYdNiuCN3lketa4Zro53rR61ivtOeGOfqozParWf+0+WtDvqHBMb+X OT+59488N0Sum6K/Y6W/TfRWYdMK90/vA9IeB/JfZfa9KcYzssExJ8pntOio Bj9LcA3dLqyN9bok1iyrsy8j7Be1RkY9YsdE/JiQGePZsZYHpJ3zzsi7VPi2 wd+Lf1j0IdZC/Dh0wljhbuEe4S7hPmE8+yx8sHONo78/bA8IE9lD0j8n+myD 7x33Rzz3fewThNLgHwh5aoNjLk67PjV43qAv+ntQeFR4RGgp/ROik4SNxD8W tvPS1mF7PMZEXIX0T4pOYf+Jf1r0qagF/0zI2CcLrdLmnwwZO36t067zWPTx XPTNON8SZgsd5DNDdDr7L206TdhM/Auiz7M3Qz8jbC822Eb/L4u+JFyZ9vzf FfsK/SthgyJfI/1M0VeFq8S/1mCZ+93s6GlW5H4xar8hvC5cmzb/ZshzhLeF myKWOL5X/k7YOkat16Lee8K7woi0+bkhvxk12qcd907knRsx07Sf3xed1+Dz c1KsFevyQYNtI9OmH4TfR8LHwkJhgfChMD/06HjHXyT6tXBP2r7Yxoj/VPQT YbT4L0S/FD4XPmuwrWvo0dWlbUe+O2I/i/gPozZ5qPOVcLv4FaI/CsuF7xp8 XTVLv0T0G6EpbYq8OHSLIz95FkWupRH/beQj74PyWSb6vXBf8D+EvCJqdqyw Dtv98vlJdGWD79fwP4fcQmdGQnhc+r8l/yP8Jfwu/Nbg++Ovor8IO/CcH7aH eYZvsG0n8X+IrmnwfRD+z5AXxJrwjEHc6siLHb9Hou5fwZNvVdSjF2zcN9eJ rhUmp90vff/XYP2/YUuErkuFddj2kH+J9BsIU4JPhlwqlAmpbp4P5mVc2mcb 19h/ZfYlpk/avsTwrfbSiOOZhN9h+A2G35E4g9PCk9IvF10h/CC0ETYV+vLs LVolvCC+QrRcODJtHbbK0GHLCRsLGwnPyqeV6CbCdPEF0aKQD/uGwrS0+Y1D bt3NMc9J3150a6GpwrWo87z01dEfOaHV0esWwubCm9JvJlojzBS/ZdgOj35a R0+1Qjvh+LT5rUKmR3qdnXbclpF3q4iZGWNhHCeIb9vN9fqJ36ab+54jvodo d+Ft8duJdhJeE99BtKOwbfhuE+Ps3M1+g8MHe3OFdZ0j/nzhAuE8oU7oKrye Nu0ivBt8XcgNQr3wlvTbd3NPp6VdnxrvpO3TLfyamW9hbvS/fYyhKWyNwo7C DsKQtOOI71Fh/U5h21noJSxMO5a499K247dtxvaewrC0+Z1DZi7bxvrtKuwi LJBP75A/Fr+36F7CueL3EN1d+CxtirybcJBwoHBJ2r57Rj/we4d8gLC/8I30 +4ruwz4Lvk/I2PcTFqetw9Y141rU+SRtnwPC7xihv7BM+iPYd8K3ab/38c7H /ZT3v0OjLn0eHL0eHH1fJP2R3Ry/NO18/YTrIueRkfdooa/wRdoU+ajQQb+L 2GMifoBwnPCD9GeKniH8Ln4I+0KYrjPhBNEThePDl5hjhYHCScItaftgvzFt /aCwnSKczPxmvFa9Y/0GRfzKtO2DhR+DPyVkapJ3Rdq9nCr8EvyQkM/q5r5X SX86e0f4NW2KPDR00NtijGfFOM8VzmEPVfga4lo6MOMxMr5eFT7HOMM4Z/A9 W1idti/X3G+hPzdsnJ88y3KGXiRcyJiVZ7boLCGv/NeJXi9cK1zB+gt3Kc+l opewh+R/ZdjGS39ZN9v+EH+16FXCn8FfE/Idwu1CMuO4KyMvdvz+TrsuNcem 7UvMmMh9WdQeLtwgrJPPjSETe7PoCOGm0N0Yfrey/kJJxmOiRr8K628L22hh lNAi47rU3LPCdvwmpm0fKawNfnTIN0fNf6W/S/TObr7XPyL6qPAw4xHGCfcE RU7xnd9ujikTP170XtYmY93dkeu+brZNUs6LY83WiJ8gej/rGLH3RfzEbrY9 ET4Tw+9x4TFhRtr16WVvjfEh0Qdjfh6JfjcUPyliNsp4HI8Ej25S5CLugW5+ ZpgCFVrL5ynRJ4VX0/Z56H9+9CW0ypifEvLT3RyzacZryJz+l7bu6cj1rPCM UC2faaIvCluIf150qtCW7/N2C1mxr4rOFF4J3QvhN72b4zfO2Af7rLR10yPv y8JLQruMKfKM0EG3zLif56In6pCrjfTzROcKB1X4euK6elN4XXhDeK2b9ehq M9Zh2ypjip178duibwnvi39X9D3hHWzdbGufsR5dh4ztyAsids7/4ru5p87y mS/6gfCRfBaLfiMsEr4SvhS+lv4j0YVCF/kv6OaYgyusw/Zh6BZErk+FT7r5 XvY5VNgu47lhjmoytn8sdAr+05C/6OaY+ozzk/vjyPNF5Po6+ttVPt+KLunm +9ri6H1R2uNAbszY9+sYz9JujunOd+1FvyM+nht5Ztwp1uv9WDOuLa6xCyNu adQjdlnELwu5R8Z/J3Rg/D0WnkPJy72P7z2d0d3fgvlbur+En6T/RfRX4Wdh JTrhR+E3YZWwR8Y+2K9PW/972P4Q1gi7yyfdqDNDOCxj+28xP9hXC0dWmP8j 5EyjY/pmXJ8au2TcF/39KawV/unme1NCvv+JP0A+68LG/Qsdtn9jTMT1lk+J dBsIf8knJZoU/gm+NGTsLRqdE74kZOz4HZJxnXXRB/1mYpybCTWNvmarRCuF YypMK/CTPieaFY7OWF8VtvJG2zaQfkPRlkJ/8f3wbfR9H/1GYYMil0u/CTWp J75Vo+UBGfdCT9WRuzxqbyq0jh7g24S8udC20WdjTcRtIn6LsJ0YtVpFvXbC lo0+3+BrQ24TNY7POG6LyFsbMYOkz4tuJZzMGd6k81V4vMlrx7px78CnEH4N Qr1wlvy3Fe0gbCNsLbQXikInoaNwevhgL2Ss3y5sXYUuwpkZxxHPObldxA/J 2N5ZOCP4riHvIuwsXJJxfWpMz7gv+qsTGoVuwlDpe4h2F84W3xS2YsY6bM0x JuJO4jlfdAdhvsbeU3SnRp+Z8L1Cxr69cF7G/I4hY8fvgoznjLk7NeOed42+ DxEObvT1u5/o/kIfYU90jEH63UR7CxeK3ytsl/FM3mjbfPH7sB+FG4LfN+St Yx2YQ+L2irzY8WuOun0i9tDoaWTU3T1qHygcIJyiOTko5Fsy9j00xoDuoPA7 XDhMGJPxmKhxU8b6I8LWVzhKuD3j+WBezsnYjt/ojO1H0nfwfUPu3+jrcLn0 x4oeI9wp/mHRR4SHmGv6Zc+o5xNEj2fMPAM3OuaujHXYBoTuuMg1kPUXhil2 sOgg4XTx54meL5wb9hOFOzLmB4Z8cqNj7pb+QtafMUetATHe06K//TKmp/2v V+oIY6UfyrqxJ8SfGTa+gT44atDT2cJZjX62hz8nZHqk10Mzjjsz8p7zv5gY C+OYIJ9hja53sPiLGt333+JvEr1ReEr85ew71kz8JaKXCheH70Uxzisa7fdo +GB/KGKviPh+sX6coVcLVwmPZ0yvFKYEf3XI1wrXCA9Lf3Oje+Ispf4locfn uvAbLtzAWkb/N8cYbgjb9cItwgjhuYzjiD+nwvpbwzZKGCm8mHEsccdkbMfv 6YzttwkvBD8qZOZyWKzfGGF0o6/920N+XvxY0XuEaTy3i94pzMyYIt8hPCBM FGZn7Hs3eYMfG/IE4f5Gn8P3io4TXg9+fMjY7xNmZazD9lrUos6FFfaZEH5P CU8K8+TzGOvJXonri2uL85PrDJl/a50+H4xeH4y+OYcfb3T8exnnmyLMiZyP R97JwhPC+RlT5EmhmxRjeTJ6Iv5Z4ZlGn/lvir7B2ot/VfQV9o34qcwx6xu+ xDzNWrJWwofhg/39jPXTwvaSMEP4LOO1uj3Wb1rEX15h+3ThiuBfCpma5L08 415eFq4J/tWQZzW6b/K/zjoIX2RMkWeGDvp5jHFWjPNt4S1hkfTvir4jfJ3x GJ+Oeeaexr2tW/jOjjz4zhG+zFj/dti493HfOz183g2/ueQTFkv/GTmET5k7 YYGws/QfMH/CtTznh+0b6ec32rZU/MeiHwlLgv8k5KSeLVJCSZPjFkZe7Ph9 F3Wp+b345aI/CL9F3flR+0vmTxgl/Vch47+I3pmf0H0VfkvoUViR8ZiocVvG +m/D9j31hV8zrrlMGJ+xHT/uHdiXCvcE/33Ii6LmAul/pI7wu/i1ov8w7qye f0X/EBLifxH9WfhLPisbHXNvxjpsP4VuZeT6TVgl/Cef1eRu9BnbU/O4k1CX tf1X4d+M+d9CXtPomD8z7oWe/o761Fkj/V+N7m9SxvSv6PVfYZ3QIutY4m7R uv8XtinRz5roqYV6SQjPZsxvEDLzuTzmlLj/Ii92/FJZ7w32RWnWa8ic8izB fsFWJn0ZdiEnPgsVMk3Wp8OWDR0+m4huLLTJ2hdbhfgK0XLhDeVvKbqhUCVU NtlWlbUe3UZZ25E3jtjKiE9H7WcyrrORsKl8thRtJ2wh1AjVwqvy2VS0NXLW FLlV6KCjK5xnk8hVHfFtIh95t1BsW9HNhNsrzG8e8pZR844K69bb5L+VaG2M Cz4fcqPQrcnPk51FuwjbCdsI7YW7lKcoWiC3YrcNW1781k22tRTfUbRDk+8d 8J1CZm/uKHTNOm7byIu9Y8xD56j5Qcb5to569IKtIJ86cmDLul/6bmiyvj5s 3ULXIWsdtrbim0WbhHEV5ruHvL2wg9Aj5oN5mZtxzz2jb3yJ4d6xQ8QszJgS 14Vv2YtOFk4Xv7NoL+ETnh9ErxdOlL636G7CrkIfYV9yZa3D1iR+T9E9yCt+ lybnIv8+onvTS9Z2/HYXjhb6MmbpjxQ9Sjgicuwec07cXpG/X8T8mHHuXaJX fPYJv0OEg5mXrPvcL3pFd1CTz+fDRA9lDWJcjKk+eqD+DzzzN9mvV9Y5+kRO esRvl6xzHhJ58T088h4g7C9M0HoNFR0irFLOU0RPFU4WjhcGMM6s6XHCg/I/ RvRYoX/Yjw8b4+4X8zVIGCj8opwnip4knCDMi/sf9zJ02PbMmmJ/qML2eXGP pK/T6D/rutTcQ/zgqLGP+NNFhwVP74xh36xjh0Y8PmeEH72Ta6V6OEv0bOHM JvPQPzLOPTjGcErMx15Z5yDX6ozjiDlM+gNjTntmTQ+M+T1XOCd8rhG9mjGI v0T0YtZJ/IWiFzBvWeuwXRQ6bOcLlwuXNfn+cqXoFcx11j7YH6+w/VLWIWv+ 8pCvanLMWsXeJjpSuDXqU2eSYq9tcn8Dos9ro9cbheGsX9bX2XWsk/ibwgZ/ ZdSgpxHCzcxb1vwtIVOT2htkHXdT5L0lYtZFb7dGD2NERwuzxT/EvhPaiZ8o +oAwQbhbuEt4W/r7Re9jfcXfIXqncHv43BN+5CPvKGGccK8wNnjoKYo9L9bs 8KzpebF+90SuwVnHETM0alHntKxrIr+VdS/jm3yeT4x+zxL/cJPHc2bW48B2 dozx4RjnY8Kj1M76tyJ+M7oga8rvRhdG/vujButyQ6zN6Bhfq6xzkOuRyAc9 V/onm3yebh3nKjJn6+fNeo4TPhOmS54hTBOeE55l/8n/adGnhBe1Z6aG7XLp n2my7RLxL4g+z54L/sWQ3xHmsPZZx02NvNjxuzrrutScXmFfYt6O3M9E7ZeF l4T28n8l5K3EzxR9TXg1dK+E3xvC61GXMVFj26z1b4btLfaaMDLrutS8JWs7 fp2yts9inoN/K+SZUfN66d8TfZd1EP+F6JfMq/C+8IEwLyjyGPnMbXLMKPEL ROdHD+jmRq4Pm2y7k2cerc0WwhzxH0m3sMn3uAXhR/zHTbaNCZ+Pw+9r4Svh mqzr08tt4j8T/VS4O3qm33vEL4qYnbMeB7Yds9YtilzEfSLcJf0S0W+iz6Wi 30YefD4LP+yLhfFZ80tC/q7JMW9UeA1nxn5bGjZyLRO+Z83k85PoSmGCfFaI LhceEf9jk+V7xf8uulr4LXQ/ht/PTY6fHD7Yp2St+znyrhJ+FSZlTZF/CR10 doX7+SF6og65uDeVaH02EJ4V/7d0/wh/CX8IfwprmqxHN6fCOmx9sqbYnxS/ TnSt8JT4hPK1EP6T/G+TbfuFHt3TWduRD43YfyM+2eyepkpfKpoKvpVoa2ET YSNhQ6FHTs/vohlhmnzKmh3zQtY6bOnQlUWuCqFcOEA+VaKVwstZzw1z9HDW 9pzwUvAVIbdsdsz/8pO7c866lpFr4+jvFfm0Ed202ffNVtH761mPA3nHnH03 jvFUNztmruZ5M9Ea4c2sr6HNhXNivZKxZrcJtxKXc1x11CO2bcS3Dfm4rNeW tXw0cm4ZeU8TThVWSd9ZdDthgfiCaFHIC7XCVkI7ob2wtXB++GCfl7V+m7B1 FDo0+564o+gOcQ5sE/Fzs7ZvK8wPvmPIOzU75oqs61Pj/az7or9OQlehS/TZ TbRBWCi+LmwfZa3DVh9jIu5D6ZtFm4RPxfcQ7S58Gfz2IWNvFD7Jmm8OGTt+ X2ddpy762DH6ZpwHCPs3+4ztLbqr8F7WdBdhsfheoj2Fd0LfO2w7N9tG/t1F d4s+a2Puzwv9HmGDIi+Rfi/RPYWl4vdutvxF1r3Q036Re+eova+wj3BV1nyf kA8SDhS+jVjivhJ/cNh+jFp7R71DhUOE77LmDwu5T9SgH+IOjryHRcxP0h8h ejjjrfB6sVYLxR/ZbNuv4XNk+PUXjhH6CX2Fo4WjQo9umfwHiQ4U/sjaF9vN 4o8TPVZYLv4E0ROF44UBzbb9Hnp0q7O2I6+J2AERf3TU/j7rOicJf4o/U/Qs 4QxhSLOvq3+lP0X0ZOGvrCny4NANjj7JMyhynRbxp0Y+8v4nn2GiQ4W1wZ8e 8plR85+sdcOi/3NEz45Y+HNDvl64Tmilc+MK0SuFy4WLhAuFlPTns9eEpPiL w9ZS/AXNtlWJv1T0EuH2rPnLQu4bazI867iLIy92/DJRl5plUeuCqEcv2LLS Xy16lVCRc7/0fW2z9deE7brQfVthHbZK+Q8XvUHYJPgbQ75ZGCHcFPNxTvTA 2cY19m7WvsOjhxERw9hvjjiePVbGn73zdwA4g29p9nPCT/Fn8734jV26e4Wt FHsH8yRsJn606CihJmcdtjGhwzaSGsJdwhbyGSt6j7BMY3xcdJLwWNjvjPHe FTHI45od0076yaJPCJ2i1phY9/ua3d/9WdP7otcHhQfIL/0E7MJy/p5P2ArR z7jo6RHh4RgX/KMh0yO9bpNz3EOR99GIyedsZxzbip/Y7Ho8F01pdt8dpH9V 9BWhXvyzos8I24l/SvRp4cnwnRLjfK7Zfk9k7YO9Y8Q+F/H/CYnuujZFXxCe x5Y1nSp0zZl/IeRpwotCnfQzm93Ti1nXpwbPAPhMD7+XhZdiXPjOjDG8FLYZ wuvCa0L3nOOIfz5r/Rthmy3MEppzjiVuVYXt+DXmbH9T2CH42SEzlxNj/d4W 3hLW8J4S8nSeq0XnCT0V+57ou8JOOVPkd4RPhI+FvXP2nSt8kDX/fsgfCQuF 3vKZj73Z91n4BSFj/7DZ92V02HaJWu/EWi+MXPgtFb4V9pD+K9EvhV1zfu/j nW/nnN//Po/e6PPT6PXT6LuX9F83O37fnPMtEQ6InF9H3m+ExcJ+OVPkRaGD 9onYpRG/TPheOFD6v0T/FPqL/130N+Fo8ctFVwg/hC8x3wkrhR+Fq8MH+yE5 638K26/CL5GftZoT6/dTxB+Ws/1n4ajgfw2ZmuQ9NOdeVgl9g/895L+b3fcx 0v/Bvog8UOTVoYP+V2Hfv2Oc64S1wqCcryGupcNzHiPj2yvnc4wzjOdSfP8R +uXsyzXHvXJt5MLG+cmzLGfoBsrZQjhC/vuL7tfd10ilaJVQIaSFMmGg9CnR pDBAfCZsJ4kv7W7bCeJzoln8Ks2Xh7yFsLlwes5xmciLHb9Toi41j8vZl5i2 kbs0am8otBSG8Dwf8lDxm4i2EjYO3Ubht6nQWjgz5zFRI5Gzvk3YNhNqhHOi LjXPy9mO38U526uFs4PfLORNouZg6duJbsl4xHcR7Sp0FvJCQdgqKPKl8qnt 7pgLxG8tWhQuizy1kat9d9sulL6ku9eMZ5JtRbdhbittbx/xHbrbdkXOtEP4 1Qt1wlU516eXtGK3E+0kXBk9dw6fhoi5NudxYDsrZ11D5CKuY8xPk2ijcL34 7qLNwvCcfbYLP+zdYp7hm0Lu0d0xN+a8hsxpSeTpEbl2ELbv7nvcLqI7CzeI 7ym6k3Cd+F7dLY8Qv6foXsIeoesVfrt2d/xt4YN9TOTcNfLuLuwmjMqZIvcO Xe/ok352jJ6oQ647pD9c9LDuvl64nriu+gj7CPsKe3e3Ht1dOeuwNeVMsd8p /kDRA4S7xR8ieqhwsHBQd9t2CD268TnbkU+M2IMi/oju7mms9EeJHim00boP Fj1ZGCScRJzwqHz6i/YTThXft7tjJuSsw3Z06PpGruOEY8PneNEBwv05zw1z dEvO9mOEe4M/LuQTujvm4chP7nGR54TINTD6e0z6U0VPESbl3D+9P5jzOJAf z9l3YIzntO6OmSz9UNEhkYe/73l66A+POWLNuLa4xlpE3GlRj9hhET8s5Cdy /ndJ+fdJ+TdPyXlm5D2pSs941fLTUbNfXteb5ntEia7pSv/bps+10TVe6X/j 9FnxW4qfKrpBwj7YWySs3zdvWx/RrSTfrDzbiC5qp/MwYTt+w0ts/6qd88AT g3xw3jGjSlyfGjeVuC/6e175926tZ7A26z+7mjhAuvayjZTP/nnbns1Zh+3r do4ljh4OlK4o+Vbyy3da6OEPylvGPqPN+n96fz1PDDJ2/J7LuQ716IN+6Ztx HinaRfLdyn+o+H3lNzVn+rJ89fif2Fb2l9qs/2c81uvxw3ZI3rbRiu0ourid e3hXtu0la6nW6w/L2wZFvl3+nURfbbP+rwwkDs9bvqPEvdDTN+2cmxrU7qO6 M6MH+CPylreTzxui/HN6xBLHLf2ovG13Ri1qUG8/xb4WdeH75i2Tj7zP5xxH PHmx4/cC56r0b7bxuAZL95VsN1V67Vi3soR9js7b7zjRA1gzznnp+8d8MXf9 xM8RrZP8bTv3gw92xoj+mLxtx4rWSx5X4jjimXPs+I0tsX1Wm/X/1Md6nhjk 2W28HvRMfWrcU+K+6A97N+mWtvMcHi9dg+R75TMgb9v4Euuwvd3GsbMj5wnS HSh5usbYLJ93pG+ZMH9i3jL2t6I3eGKQseM3ocRzxtzdV+LcJ+XdN3P0fuzD gxR7cvRH3u/auVZTpcdM/kFR837lGZi3DZ56TeEDPzhsL0cN8hNHPHkHR4/M A3Wpqf8Sp8a60SfxA2NtdhDmSb+hfE7JW36oxL7EMAZ02ObF9dEY1whjosaM nPWnxVwMCd8HSzwfzAt7ADt+6LF/38514YlBHhrzx9we3NrzzFwdLv462VI6 Q3eRbqF8NpX+9OiRnoflHfNSzjps89tYNyzW7AzRnqKPyn8n0QWyb6w8u4k/ T7ZP2tjOmOmtZ8Qgn5l3zCOKPUQ5P40eqDU/1uKsvPubVGKKTK87i/9YVGGJ XcV/JH4T8efkbXs8+qEGPfUWv0zzIXY9f27eMj3S65QSxxFPXuz4TS6xnXFo qhJn513vCenPz7vvl3mPk/1rYTP57FlpGX4P8RfI74d29iWGcV6Yt9/TJfbB XhOx2D6P63VorPFFoocq/pWc6RfRDzw25L0rnYs8l0aOp0pcHz08PheHfAn3 Be6FJfYlhjHsE7avOG+5D4punnAc8c+WWH9Z3rbLORslv1DiWOLaJmzH7/kS 2xdz7ibME4PMXDKnrN++nNuireRzRd7yVMVexfkpfpr4K8XvL/7FElPk5Zq7 0zm7FNsxYd8l3N+CJx75Gs4oydMVe5jm7dsYF/zVecvYV7TzPkSH7dWca1GH PYYPufAbLnoE9xL5HCT9j+28LlxfXFv0wHWGPDPnPq/Nu1co8ufq5/q842eU ON/3MRZ02Mh7A9cj9+ASU+Tv2piHbpFwLD0RfyP7k7ONc1X05zbrPz2XuEX6 IyW/Lv2hojdxLbSxLzEreR5Qnh8iJz7Yt0xYf3PethGMXbbXSrxWrBnrhx2/ 13O2/9zO8wxPDDI1yftKiXv5sc36fwZ3PU9/yLfl3fcs+dwqvq9yvpkzRV7Z xjz05IR9iWGcI2MOmKtRxHLPLvEYGR/XJvc07m3c8/D9JeYcX+aUsX8fubBx 9nPfqwyfUbEe/YRf2nl+jhF/p/S/y+9o9bYq5ry/9L+KrxV/e962WRrLmLxt b6m3Y/FRHv23nr8jb3k657H4FtWOI5682PGbU+K61NxKseOkP0Hy3BLnpga1 +yn2t+jhrrzl2erhOPncHbnQYcNvgOTVohLXj4kab5dYf0/etrExVnqg5h/i iwnb8Xu3xPY10dvvEYNMXWoyXsbzZ8zVRNlPlv5D+m/tusSOl/548e9Jf2/M AfOGbnzMIzps5Lov737wZzz4MfYXpf9P8sIS21e1c89/RAzy/TEHjJde6Gld 5OgfeSbk3d9bOdMJMUeDhH/lu3XCscQVxD+Qt21+9HN/jGewsDbmGf7BvGXm c1yMgTjiyYsdvwUl3hvsC545WUPm9J0S7xdst4n/h14q/c5yGvdb2QZWWv9w 3jb06Ojh8dhrH5fYFxs8PZ0WPkNEH4vxPBr9Mq4hMX7Gjh35k4h9NHJRk9of lLjOBtH/mdyH2Vea/ydiDdnDk8RfLNv3JabIpdXmoZ0SzkPf5CKO+A2rnY+8 Xyr2jErPKWsNPzmuE+zU5HkDHbYvSpy7LPLDP5m3PFW0RPRT+ZzF/TDG+brq pqv93nFca+eh1tN52+6S/1N5297JudfOlR47/DN5y+zN2mqfh8QRnw47fp9E 3SExz+R7KvqmF2xflThmTbwHlUTf2NA/l7cN/VmR57moQ+wA5RwqffuE+efz lnnPeUF8LuaDeWGu6Jnrir7xJebdnH2J+aPElDj+6ZQ7uEbarf8nVBLnij+l 0vfK+fK/Wfyf8j+PezX7QH6Xit9IsdslrMP2jXxmiD+f+734aXnnWiz+JdZW PczN2Y5fueKvFH9Bpc/5SsmvSd+m2j7YOyQcV1Htc/71vGNWljg3NegVH2rg 96roJdwjS9zny3n3im5H+laeq0Q3rfZ46Z0xbRs9tIk5mZm3308lzkGuH0rc I37fljgn9ciLLzHk/YDn7mo/Y78t3Unq732N/XruLZLbyvZmXBNcR9DNqn3e XiufN2SrqbYev81irhg/83Wd8Hc7P9tfwz05rsnRed//ZpdYh+2XElPsXDv9 wo97JH1tXr3+U1br69YEPzvvGqsUO1z0MqFzwr0zht9KHMvYiMdnTt5+9E6u X+VzA+ef5C2rzUObE85NDcZAvraxl8hBrtUljiPmd/Gv5D2nD5eYIjO/mwhb RGy1aD7WdK7sNyp2jfzfE99K+hUl1mG7vNK696LevOiRuiO4v1Wv/1+J1/sM j7Fjbxf9wxOD/H7eMX8pdpDmZKHkYrVrUaeL/D/Iu7+fS0yR6fUW7jXtPOdc Z1dXeg8syNv2d/RDDXq6VXyhev3/4rCe/zBvmZrUnp9zHPHkxY7fP9FbMcb1 Ud7zxtxuI7qu3fo/bkmMku/neT/3bS19+6j1Wd7PdTyjjuT+E2uDzyd5+5GP vLexv4RP884NDyX/u3mv2fIS03ejD3KQa22J44j5L2pRhzmnJvK6EveybbWf M+mZfjmfv4ia/5Z4HNj+jTFiY5xfxrnIGchvRfxmtCBnypnItU9+xkwN1oVz kLWhV8bHfiPHl1EDflT08HXe5+kGSVNkztYfxffWg8fl8r2bM1L6zoxBdbcT 3ZHnOq5R8T3EL87b9qF6W5S3rUQ572Ju2nkd4b/JW14mOl5yNuk44smLHb9k 0nWpuX3CvssiL6AGtU9RbJfo4du85YU5r/FSyWMrrcOG372VXhfWiDFRI5W0 /rtYs+9F67h/J12XeuTHjl8maXuDsEPCPDENsQepyT68T7Sb5DPE14v+JJ+J lR7ncvGNQZGZqx/yjskl3SsPij0iDzZyrYhx0HNS6/OCbHnx91d6LMxVl/Aj /se8beXh82OM+UFhXKX7p35jrOlK2U/VfH2Uc88TI+fPece0THoc2NJJ67CR i7gm6XeS/y/Sdec+KJ+HZWuhXnZJ2Ica+GHfXuiZME8M8q95x2yU9Boyp1xH 6LCR6xHuj9X+DecJ8buI341nVCl2Er+z+N/ylj/WWCZxvkruXW0dNvx+zzu+ TdI+2HtFTmzkXS06WXJ10hR512rz0N4J97Mq756oQ65N5f+Zrs09qv3b0Q6i f4aNvH+I36DWenTU/SNqEgvFzriGqOeHKj2upzhr5fcY53jetk9y1qPbNWE7 ctuk7fgR/0/ePT2p+eyl/LtXeg6nskbaT/tI9xzXhOruIf06+e8p3ebKszbv mFZJ67Ala63DRq5/RZ/h7JHPMCXeixoJzw1ztHHS9qejz2ciBvm/vGM+yzk/ ufk9Ch02cvEyRH/tlOd06fet9u9F9E/veyY8DuTapH2JYTwbFBzzufK/IX2p dHslfA0dpdgDEp4b5og16yD/BbL1jFrEU4/YkoLjochdkl5b1nLDpHNyfZJ3 Dte0fPdR/ox0L3GPkc90epB8AGcEv/mI30/8DOkPFN03YR/sxKIvK9iWFp0m uag8Zyn2MOn6JGzHr33S9oOk3zthnhjkyoJjvsq5PjW2Trov+itTry+LPzhy 5qQ7U/5fyj9bsG3bpHXYDql2LHGXyb9culckd5DPq6KHVvu3O/iKgmXs6Vpf O/DEIGPHr2PSdahHH/RL34xzE9EVWqeZ2sMtC74GuX53jbzkpEam1nXRt4ye qqI+vZ3d2tc51xfzv1/sH/QbFmyDIn+d89ofXun9tlHsBfYYvdDTEdXOTQ1q v1bpfUhO+I1jX77OuGq934glrh3PbwXbOiedmxrU+4BnBsn7J8y3LlgmH3m3 SzqOePJix29H6c9R7wMjP+t1SOylTQu2LcqZIuNH3mrxR4vO4lwU3zf0R0cP baV7m3tb0r7Y6PnNGBvjekt0M9n6yVZTsK1r0np0RyZsR26I2JoYPzWpXZd0 nf7yP5h3PfXZTrbzJG9R8HXVKJ/Nxc8WX580RT6m2jz0oITz0Hf/uB6J55ok H3kXax6+kf5Y2fsmzG9ZsIz9vOgZHbb9VOtd9nOtrxH42oLl9qIn8Ewin3lc oyGfrzzHR/73pB8g/hDx+YJtS9TDVgXbuit2rmhl7GH4QsEyc8OaHJhwHPHk xY7f/+pSc0DUIi/16AXb9vK5QLEnRg/40vdJ1dZvXbAN/UmRBx22b9XnT21c i97gt4na73M2cO7FfDAvzUmfbVxjX+TsS8wbJfYlZoekKXE8J/M7DO+T698v pBvEtSV+4yrtV8XUah4u5B2i0nuyU8H8TsrTMfYy+x9dp7ge0GEbLLqd6Ifc c5POfXLk53fJBtla1tpeJXpYwjwxyJ0LjqEWufjdjOtrflyr9NOl4P6W5ky7 RH+s06WxB36QPIR4niFjDbtHP9Sgp08qvX6sEXx97A96pFd+ryOOePJix693 0nbGwaNg14LrHSp9t5gD7mvnst7V/u3ia9k3kn8/8Rep58aC5x5fYhhnU8F+ +yTtg/3QiMVG/BXcS8XfKNosOoxngKTp2cIRCfPYkC/hnh95ti+4pz5J16fG dzn7dC/Yr4fot5wz0T8xjOHbsJ0vfon4xZWuRRzxy3LW71Cwbcfw3T/pWPij E7bjhx7dhaGHJwaZuWROh8SYlkStnWJMzE8v8d9zHxXfU/xS7utJ054xjyu4 L2jOjkrY96Lq/+OJR95F9Dvu5Yo9U/LF3IcS5ncuWMb+ZaXPKHTY9opa1GFN 8SEXfnuI/sw5Ip9LW3vNjkn4vY93vv4Jv/8hH5F0n7sW3CsU+XDpdys4/oec 812l2GMT1mEj7+5c71zbSVPkTWrNQ7kWfo6eiN9T9DLFL1fOK0V/rfT87yv9 b5zpSev2ktyq1r7EXK3YVdJfy7mVsA92YtHvXbBtH9HLFbMi57XaKdYbO379 k7ZfJ9vxCfPEIFOTvP2S7mVT5T8xYZ7+kPcruO+Vyt8nauIPRb6+2vz10Se+ +0Xe/UXXcG9I+hpi/ph/xnh1rAvn2OC4p+M7nDM6Yd8bYx3XRC5sXKMd4sxa Xek1Jc/J0mV0np6t/H9z/UmuqXWd1eFDfJta5z845pg9c1DkPk78Va29fqw7 /CGxt45i7KxfznHEkxc7fj/lXJeanIH4EnNbtXNTg9r/yOcWxiyfwwqWB6ru NfI/XPKt1dZhuyXuV5vV+p7FmKhxUtL6Iwq2HSm6lvtK0nVvi/zY8eN+tDbu Z9yP4IlBpi41B/J+xHNFrffJ9dIfK58xsv3LnhU/stoU+WTl7FtwzGDx18l/ VLV/i0CHjVz9Crat4u8Kxpwxz/+Jbl7rPYMdP+L7F2w7JXyQ8SvR2t4h+2kJ 16eXU8QfIzt/aeTUpHseE/rjCo4ZmvQ4sP2Wsw4buYgbLXqq2AHS3cwelv8G 0v9Z6TnBhxr4Yb9TGJQwTwzy8QXHDEl6DZnTX3LWYSMXc7xFrXPewJ8tSh4i Plnl9Wa9TixYHpb0Gg4KGZwYe+WkguN/z9kH2+DIiY28A4OS53/ylrXmodSl nxMK7mlQ7FP2D/M3PuaQ6+nkWO/hyj849hl6dPigw7Y6Z7o29hi/H91b7d9k WNdTC/696ZSCbfzuhB4de+bUWH/2FXb8iD8t9iDrW14Vay2yoeiZsj3IOaG6 Exmv9EOly/JcJf8hBcecl7QO2/3V1g2JfTNMtEL0fPlUik6Q/fSE52b9dZG0 vV2tf1OqiBjk0wuOuSDyk3towjps5Dqj4P7W8PfBJD9U7d/Q6J/ez014HMgX J+1LDOM5q+CYCulb0lulf4/iuZFnRuZ2TMzR+DjnuMY4E5sjnnrEnl1wPBT5 oqT/Tih/N/TGEj+HkvfSpHX8XVGpExfGOnCu3sS7g+RHJW8i33PFPyK+VZX3 BPsBn0djXOjPj3P5gvAlfxvJk8iZsB2/y5O2PyacmTBPDPJlBcdclXR9avyR c18XRt+Mf6ta93BxwX8n9lz5XxRzw35Ad3HsD2KJYw4v4dpXzj/5u/pVsX4J 85fGGmPPiZ6VME9MLuz4XZl0HerRB/3SN+O8hutM8g3yuUL8A/SdNM3Xuhbr /UTsYfT4Ybs89gJ7rFo5qqq8f7qIdhIuTFh/ZcE2KPLV8h+hPiczdu5lBct/ 5dwLPT1d7dzUoPbm0hdU8/yE+asLlm9R3DPMXcKxxF3APa5g298556YG9Qry eSH84a8rWCYfea9POo548mLH7xbptxJ9sdrjukt8rqh3lRqv3fprOGGf6wv2 u1m0veSRii2KDmfeqowbxD8vn6eEacJ5Cftguyhh/Y0F226KHkckHYcPPHb8 rkva3rbK43ohYpBv5c9Aq/2bMPWpcWvSfd0ca7+1MKPav4veEuNmP4wo2HZb 0jps06sdSxzzfKt0z9GrfLbhLBIuSZi/rWAZe7HW/vDEIGPHb1TSc8bc3Zx0 zyML7pt99HrM+Xbib5d+puSO4l/hmpW+g/hto+7ogm23c4YXbBsj/mX5vlrt 30LhxxQsM5esA3NOHPGvhB2/0UnXpSa/ud1ZcE93JJ2bGtTuLLzGfpXPHQXL dyXtSwxjQIcNv8OFN6r9GxpjosadSevvKth2d4yVWswH8/JPznb8OiVtn1np 3mb+L0byPQVfh3cnvRe7xPV4kOiz1Kv1b/CsL+s+Trqu4u+R/9jYv+x5dOPi GkA3NvLe+78ek94TXWPv1Yk+EGuA/c0YIzwxyONjH7Gv3mI/xe/D5ChEnvsK 7o8/C4DeF3uR36ZnVfu3bnLxZwPkn1CwbYvoZ3yMhzXmt2/WHX5iwTI90uvY pOOInxV2/Ng/2BkHe+z+6J35ebDgvu8V30P2Js4j+YzU+tzNOccZqHPhIfk1 VNmXGMb5cMF+63L2wX5FxGIjnvm9J/bZIwXnvz9puk2tazWFDblZ/Duc5dI/ XnBPDyRdnxqplH0eLdjvMdFRqvdvzr6PRw102N6Vz/aS54pem3Ac8ROS1k8q 2PZE5KM3Yom7KmE7fg8mbZ8Xvb0TMfNiXzCnrB+/3S+o9u+ZkwuW+Z3/SfE9 6Vv8FPFz2AdJU2T+POD21u6N/Pg2VrkHeOKRn44x0T91OsZvwvBPFSxj7xmx 6LA9GrWow/7E5+no6XnR+ZIfkc+Hot9xrsX1xbU1IuHrDHlG0n0+E/MIRW5R rvOw4PjHks7Xm3tSwjps5J0qeqf8S8pNkXtVme8VYyeWnoh/QfQ4yU3KeaDk b7iW5TND+j0kPyX9J9K9yPpV2peYnWTbU/ic8zxhH+z8rot+WsG26VxrjCPp tZoc84Udv6eTtn8h3fCEeWK+iJrknZx0L19yr0mYpz/klwvue7p8XhK/H2NK miJ3rTUPpU98iWGcr4jeo3kp1Vy9GjpiGSPj4896OEe4t3HPw3cp9+qEfb+N uUJPLmzc+zhTLg4f8uK3uNp90MNhom9G34cLyznfpD9AfJ8q/470esG2mern tYJt05KusSJ6gH+jYPlnrgvxx0RO4peHHT/mh7rUpOc50i9j/pLOTQ1qHynU 13p/zipYfp21E50teWW1ddjwG8dvBtX+vYUxUePVpPVvFWx7O+LIsyziyY8d v3S57YxhZMI8McjUXRn6vuIP4V4p/n3ZjxU/J+kxd6u1z7vSj6AfzpOCY95M Woft6CrrsJHrPdH+nLvy+UU+q4RRyvOd9A+qt5bltv9V6ffl/hGDPLfgmFlJ 90JPv1W7FnX4fWZerMnb0ScyvY7n3bfa74DEEjda/AcF27Llzk0NesK+Onzg 5xcsM59zYp2II/73sONHXeaR2swPa8icvpH0fsHG/BwX88LcHi+6kPOw1voP Yx7Ro+O3i0+kGyj5g6R9sb0n/gTRP7jXc1/mz/ll+1PyRwXb5iatR3d7wnbk XLnt+BFPTWq/k3Sdv6W7g/d0zgrZ1kr+rOD/b/B9+Xxa8HsM70pQ5H+qzUN5 3yEPfZOLOOJ5HicfeRcodpBo91rPM/znBcvYqXlnwjps8+U/kftz9Ab/ZcHy EtFh1JDP6aKLJSdrvGbEkp98/0bOr2M9Ge9XMT7yn1zleWBd4BfFvLA3y5Tv /oTjvo6esOP3YdSl5tioRV7q0Qu2z+VTwj2f95KE+6XvoVXWf1OwDT063mfR YftUsWdIt32t5xb+24LlM8UvFV9a4/lgXirL3TPXFX3jS8wXSfsS82XSlLhx ytlJtHONn6mY0x1rPc//yf9G+a2R/zmiy2L9zqvy2JkrdNgWyecH8Q+r9kbq 4ftYH9Z6ecwHc4Udv6zqXaS4nWr9Xt9C8s/S85ce8MF+b8Jx5Gftfik45ruk c1ODXvFZHn2sFD2f+U26zxWxTuhOq/L78qmiFcp/T8IxgyM/PVCfa+qngv0+ SjoHub5Jukf8Pk46J/XIiy8x5KX38uh/jXRp8V/J/1F+95K8seRVoo9I3rjc dEPpXue3COX5VbaWNdbjt2HMFeNnvi4Vv5F0b/FbBGea9D2ln1nw/e/5pHXY liVNsfNejx0/7pH0xf4cG3WpOV787wXX+EGxV4ieVRX7v+AxbFLu2DWxv/H5 o2A/eifX90nv6T8lt4693zr2P7mpwRjIt3HUJQe5fkw6jhiunR9jv7DHoMjM L/PSq9bz9rjytJX8oPh/ZH9Mciv1+bf4q1ibpHXY2tRY93f0ulb0BnqSz3Wi W7AHE/bBTm/Yd1ath4InBnldwTGrFHuz6AZFvdfXuhZ1JrKHC+6vdbkpMr3e JP92oo8lfJ1tyXwkEuv/8ju2P6IfatDTcPG17IuE+RZFy9Sk9p9JxxFPXuz4 rY7e6Iv5KZG+A3s95ffqTnHt38GekG2k6FbS7Vrrd/Ay6Z5gPOp/kmhS8pjw SRXtRz7yomNspdETPJS6f8VeZm9AkVm/VMTRP3HEMJ/Uog5zQk3kTcvdC/Py cPRMv5PEZ4rxO0HS48C2QYwRG+PMirYXXZf0b0X8ZpRMmfK7Ee995GfM1GBd OAdZG8ZIn8xJ+8jF7w3wUH7rKI861IUic7ZewbUmfoT8nuR5R/xo8eOE3TUH H/A7RpV7ZiyVRdvSylNRtK1E/LbKUx97Br6qaLmV6Hsa58Sk44gnL3b8/ku6 LjWfSNiXmMYa566I+erIuRU+GxYtt0j595iNJN8ePtjwa6jxb0T8jsGYqLFZ ufUbF23bRPQ+0VzKdal5dcJ2/DIp27uKn5wwTwwydanJnN/DM0OV3+X/Ed1M PtvXON+m4vesNUWmVuuiY0rF19U47+TIg41cbYq2leFD/+QV/7TGMVb8lITt bWIM1UXbNi83RcbvAeHWGq8j9feM3wRqZH+QszXlnun3L+nbFh1TlfI4sA1M WYeNXMT1qPG75+bSPSR5Q/k8LLqD9E8n7EMN/LDvo7pPJcwTg7xF0TEbpbyG zCm/6aHDRq7nNJYda/yOfIlieor/kN8ZuEfX+H2wXdHyJsrzlXLkJe9bax02 /GqLjj+k3D7Yr4+c2Mi7legjitk4ZYq8rLV5KPNDP1sW3RN1yPUsZ3iV+2bs U+VTjFzULojfu8p6dOQpRF/UgmJnLFNFe0melnCN9oxFdOuibbUp6/eNOWkf vTCH2PEjfpuie2ol/eOifTTOZ+T/gnrozNkonyek780cS98h5oA53LbomNYp 67DtXGMdNnJ1ZL2UayvN52Tp95PupoTnhjlqV277ozEu+I6xTp2KjqmO/DvH mk4OG7m2K7q/NvJ5irNIPi9E//T+bMLjQM6X25cYxtOl6Ji2XC+ie0g3NeFr aM8YL3OzTey/I0Tns1ZRi3jqEdu16Hgo8uYpry1rWVvunFyf5H2rys9bPL81 scela5dyrgb2AH3LXi/+AI1xWmvH0w8+e8cY0XeLa76RMYrmlWeG6IE8eyRs x69Ybnsf6T9LmCcGeYeiY9qnXJ8anCH0RX/7cY5Rv8p1u0v3oviCfJqLtm2V sg7bgbWOXR8n/x7StWypM1A+09XLg9ED/PZFy9j3F30xYZ4YZOz4bV3uOtSj D/qlb8a5i+jrkjtzjeDP/k6ZTquK30zkd1DkR48fth2LthXl/4rkg9T7mITn n7nn9xP0PYu2QZE7yP9V0UMV+6V8ehUtd0y5F3o6osa5qUHtGRrHYbEu8DsX LR8iHFnj9xFiiXtF/K5F27aNWtSg3mviX67ytQ/fu2iZfORtX+444smLHb/t lOeNKvPEsl4Hxhh3K9rWJXx2ixh62UP8CaJzub7EH1Vj/QnR597SvaS625Tb Fxu13pT/wbV+H5klfi/Z+nJvKdrWNWU9uhkJ25HrIhY/4qlJ7R4p1zla/i/J fw7niWzHcM4VfV01sG+Lfg/i3Qe6T9SDh9IPeej76LgeiT818pG3MeW++kdv 8H2KlrFT842EddgYC++rx9b4XQN+/6LlQ6MO43pFdQ+WPETyO+yfWr9nvV3l d1reZw8s2tYk/wOKtnUT/4nocYp7OWH+oKJl5oY1mZ5wHPHkxY5f76g7JHom H3mpRy/YOmjt3pd8onxmJtwvfZ9UY/0hRdvQnxTzjw7bDso/r8prx1zBHxZr +YFwOHui1vPBvPD+ztnGNbZlyr7EbJ+yLzE7pkyJ45zkz9/5M3J+W+AMHsha Jvxn8tguU87jazxe5uco5fmQa0Z5jmQva4zblVuH7cIq67ANUlzfonNSt6rG tan7JXMu2xk1tp8cdQdGDPLRRccsVQ9vKOeZ4mclXIs6vN/1K7q/7inTfrE2 rMnQWJdPJb8nvCr+mNgjvaOfo2NevqB/zcmEhPlji5bpkV73SjmOePJix2/P lO2MY7Zi+xddbzfpBxTddxfNzyz+zgN7XD5fyX5Nld/Ta6Q7nr1ea19iGOcJ RfvtnbIP9okRi4349+R/sfibZT+Ra1Fy13LTs6IfeGzI5D261nM4qOie6spd nxq/JO1zUtF+A0W/4dpN2ZcYxoBuYMzLEqEffyaTcBzxzBX6wUXbThb9lmsj 5Vji6A07fvunbD+fazdhnhhk5pI5Zf1mq4cLpHtPPqcULder/9PClzynil/B tZEyRT6Wv+8r+3dVft/E9/KoBU888lDRi7ifKXZOa/fGuOCHRK/Yfww9OmyN 5a5FnV8S9iEXfmeJ/iJ6tHL+yrrX+B2N9z7e+Xhn5/0P+YiU+xxWdK9Q5L/4 ra/o+H4p5/uoxrXQYSPvmaK76B4/KWWKfG2NeejvCcfSE/Fni65ifuX/KftQ /b/PnEi/musz5XffcyRfV2NfYn4WvbrG74e8k+KDnXdk9OcWbTtP9AaulZTX ijW7IOz49U3ZPqDW71/wxCBTk7y829LL78K8hHn6Q76w6L6nyOcC8e/y54vl psjDa8xDGRe+xDDOi0T/5FpK+RriWupe7jH+HLU4xzjDXkvYdzfN45qEfbnm ngw9ubBxfh4R5x32E2rtc7t04ySfpVrr5HOF5Nu4vyjPCNH5/AZS5Vzkv6xo Ww/1c2nRthMVuxZaa3/4y4uWry0m1v8jVKemHEc8ebHjNyjqUnNBwr7EjK5x 7ktjLubxdzlq/A51ZdHy9uohKf+rJI+qsQ4bfuCu8GdM1Bicsv7qom3XiP7L 9ZxyXWry7nB15MAfO7H0Bn9N5KIuNb+QvoX4MeLXit9A/E3yOUlj/09+14u/ vcYU+RTlvK7omNNSrjmlynXRYSPXDTEH+F8S5yj7gfch8vBONDr8iB9etK11 +AyPeuS6I3pDphdib2RfiK9JuWf6XSj9zVGf9WIc2IakrMNGLuJ43+OdcYR0 72ved9BalMp3YK3fp/ChBn7YmV/GCD8i9sQtRceckfIaMqfDUtZhI1dK/D3K 9ZFCMi29Vz8W/wF/R0J82xbaO0XLO/IbL+soeXyNddjwG1l0/Nkp+4z//3KO jGtglGhW8jkpU+R7a8xDP0m4n1uL7ok65OLawT4hfMjFdXWfaI69IX5wrfX3 Rf/osJ2bMsXOe9OC1s5JbxWid8rvftawaFvPcuvRfZqwHfn8lO13RE93Re+M t7ylx0ndVoxdtkdl20T8KbXew/dIVyn5AvnfXXTMeSnrsJ1ca93dMY9jRatE L5TPh6r7QPTD3DBHp6dsn8h+TZgnBnlc0TG9yp3/5Bg7Omzkurfo/i5TnoXS P1bjZ136p/evEh4H8uUp+xLDeO4rOmZn5R8k/ePyb6990o/roMbvbswNczQh zkOuMc5E4oinHrH3Fx0PRZ6vWhOKzlWfMkUmb2vZZ1f5Obla/APSn1pr/cSi bejR0f/D0tVIviZlX2xXi5+kXJOFr+Xzkfp5SLZNZXuwaNuVKevR8S6GHXmX ctvxI/4T6Z4WXZxwndNq/Zy/OXMin2dke1T0Y3434c90xF/L32cvN0WeUmMe uijy0De5iCP+19bOR97r1dsWnBm1fr6Ff6xoGTs1v0lYh+2GlPOQgzWaVHTf vdXDZ/QveWqN456N2C0VN7TW8/NE0fJw5ZkcYyInOmz4ocNG/JOi7WS7UT5T xH+qGruVWzes1s/5b3LdiP8hYTt9Mhb6oj/mFH9yEfOUaC3nvnKeHjby0D+9 f5vwOJB3L7cvMc/VmIcukc8zRcfvkbLuhdCjeyb6flY0LzoiZYr8eZV56Kzo eUrM73NRh/EWJb/ImdTCz9zPyzatxvqpRdvQo+MZeFrobknZFxvP/IWWftbn HWFrcsr2teQXirbhjx7d0oTtyLdFLH7EU5Pat6ZcZ3r09pToy7LNEJ0hug1n sXymiz9bun1SptOjHjyUfshD3+Qijvi2LZ2PvNcptr3kl8R/lwi+aBk7NekZ HbaRsRbMI+vRgVyi37NPpOvK+SifbVt6LVkv1vyVWPdXY/+yNzrJ/rrkV2us w4bfzKLjR4cP9mUJ62bG3npNtKPo7SlT5DNqzUPfTri3V4rujzrkuiNlHbYx KfdL32/w7KJ98ob4mTXWo1uRsA7bnuWmM2O8dS19bXBddOGsk98sybOKto1N WY9uecJ25LtTtuNH/ETx3bfWucmahY45bG7pPuhhDntKtfdRD28XbZsQPm/H vM+usYw/vu/W+P0Lnnjkd4MS212+9cKPCfPvFC2vj4tYdNgmyv99niEkn1v7 f7neCx22h+SzvXzniv9JsT14dqh1/rlFyw+k3Od7MQYo8jjp5xUd/2DUog55 0GEj7/uiizSefctNkefVmIfOjbrUo/ZO4ncQfua8km4hz2rKv1j+CyTPr7HP /KL90KPjXam4me75tY7FF1sffj8p2vaP8nxDnhq/g/Tk2hV+DX5h0TLrybpy hhJHPHmpSe1HlOejonPtp/wfy//8WuekX/retaX1HxdtQ49uVcI6bE9EP+Si pyXc8+Xzm3z2Ff1M+osU+2nRtv3LrUf3Z8J25Kkp2/Ejvo+wSPn+ls/nRcvP p0yRsX0h+p1iDio3RV4s/f4RT+yXRcsvpmz7WvK3okdId2mtnxW/ku4AydNS pshLauyPL/9w+deRmx7I92X0hD++/8htUdF5X5PPD+rnG8krZDuc/S76r3wW Fy3PTJkiY8Mf33X8viHdkZxTKecjL73yTHZZrZ/xlhQt8+wHRcZGHM95PO9R n7yHxvwsjrHgQw38loou5/dx+Rwr+TvJv9VYh21ljfXoNlDsD9Idx3Wbsi+2 OeJ/lf33Gj/HHiPdMtn6iX5ftG12ynp09IAd+e2IxY94cl+pcZS0ME89ZPqh l1rpl0ePxK7vVfJq0ZWtnZP8K4qWjyy3z+roH92KqP2j6BTlvqbc9A/uYS18 z+J+xTMbevywrRRdxXWVMq3ZVNdUC/PYkI9XXP+W/rOGn4qW35P/iaJ/yi8p /xPEX1Xrfn4uWp6bco+rQgbY8Pul6Ph54YONWHT/j6mzjpey7L6+M3gmjjNw ijwz5zCDTB27MEEFE7A7sRAMFDsQbBERBRWDEFtQbAVE7G7EABtRQhEDkVJ4 19d1PZ/f+8d89l57rR1339d9eHzgqPuH7DJt25EpW/DqTvaxVdJvxH+EVff8 dKP7UIvjOEh1TqvxuyW1/hK3VrY/xz0cb+Jrw/zE4GZX2cJzvM7CqnZC/npp /5ZuQ+EVXc19WeU4sQMj5sGfVZlHR/5fYZvYJyu7er558s+T/Vf4XNnVXf1+ wfvMKvnncE1W2YJjzKHfEfqlItbGG/1ug08+eK3sa8rZLKZneI3fkX7awP6a rsbwSWk3izgG93XoFQv10VALHfMyN/s0KnxBOJeYn9l552E7wN9Vec5/unpW LPhbxdd1df7cKh87jlsy4hgcdddzb+YeVGULPrPGPjYe8TEnf740lyo2Iud3 mxHyOyveEHE8UjA3RH6N4tX0KhgvqrIFw/GrD5qqEFvI+anzrZVwrfBQ6etk W0uzYcF4SZUtGA492k0izgP3S7kedelxhfRt2X5pYopdxv2lyhbM7JfXeD7m iReMf6ly7aRwu0br0bLtiYLrLq2yBdMDfbswTzJsB9tOvXjYF5HQk+29WvYG 7bM2EfvVBeO/tR2dGv0Odo3iHdlnXIMF49+Ve51sa+HGRsfg0KUKzj8hZQ18 bcQxOOqmZa/luV9lCx6Zs4+lF7XJ/5PrSLmZRr8XMSOz/hbibQrmhtdYT6+a gvHyKtuaUAstOSdqtuuFs8qri9ivLRhjwX8pt77g82xFlXs0hRnw6wrGdaE/ c/L+wnvM5Crnkc85ehXHRP6dijU3+n2LOm3Z3/L/lr4h1KMvsbZhDmJw5LWT HcX9o8rvdl0a/b6Xk82IG1Njnt5cF/jtwja0LziH98nZrCcU+3UD96IP+6FD 6MP2YsHMyjvZxo1+T7uJHjnX71QwtzbMQw9mWt3O7228B+I3FoyZkVlXVjmP fOrCozs5ZZ7tqFf9jgX3WyN9tuC5H5J/m2K3so8itguDX+QYSbdzjbXksJ3N BevWV1kD//sGjsGRz7OOZx7Pv86Kfar8KVW25Ua/N+LDgS/Vr0eN90mXgmfi /8iE/vT4t8qaXMG6fMhbH+bvEmYiBneT9uka/qbKcY44j/wDY45vXDDXVfYO nlUx55LHbPDoTkmZ36TRfxPBJwfMvmSfcvx+k7+pYgPVq1AwPko1S9xbFD9c flH+7dw3Y7bgq3mW6DdaNVZsYO3NOc+MTz64IrtW8/RP+bxfyjkYsV8uGMNT izrlcH1sGHrRZ+eINdRCt7nsBO530vyj+DL5HSK+vu4M9bnOwEfGnNNS8Kwt oQb1Ny04/9SU622peMeIY3DU3Ux2PPfNmC14XI39caEvucxE/hayW8jGpL9H 8W05r6XZRvGf+NZQ5ff+LblOc9aSs1Wjf6wjWFOggef9/z+uYG5r2X8134CU jxXHbNPAo2OfwDMT24K/ddhf9KQu6xRm2Y5rcAP7zAferuC5U6qzrfxJ3NNj tuADauxj+f6Plhy2s5tsN+7rMa/LWZ+3jnkbmY3t4j7WHO6faLvrF4lYyzq+ U8RxasFNVmx7chTfoWDcELMFwz0kf6dGrzselL8j17/0OxaMa6V/WHaXgP/T FKzbqeD8uqCBI/e/mgXX3Vn2AZ4fMVvwzo3Bl81Kv7ti6/n7X8p9qFUfc2zX oKFWD3GHiFuifd5d/i6NjhNjfmJwL1XZwvO3iSnc63Jefz0ifzfuJ+J2LZhr G3OcWOeIeXC7mHl05PcI21QbZmNu5ttbv33166LcXpz76v26ZugZ+lAfC969 0Xyv0Bsfy2xTZY+s8Rrnadk9uSfmHN+jYI4YXJNqHif/Tc7NmHl0HUKv3cO2 PFPj+boEf6+C8T7BUmdv+fwfcJyesgXv02gfy7s9eeQ3x/4vn23uLfss93vF n6vxbPmI/X3DrPC9ue9GHIPLxUK8YI5aY3Oes0+oTc3pIZ/cvgXjLiHeN/SO aM6+0hekOUCxWYqVYrbgGbL7iZ9Z43XQ/gXjjWO2YDj0aKmzX8F1z0jZgulx gH4HcY+W5mDFXpK+EnP8wIK5FxW7U9sSk+aggnE5ZguGOzDo0JBHfiHmetQ9 mPus+h4iW5bmkILxWakQL5j7T89MEe8z9h378dCCexRV80nhF2o88+GhNvMc VjB3XcoWjK5K9Q/juopYm2nv+vjkg4+UfYVnpOq8KntXzus+/CMKxvCHK6cS cQxu05jj5MMdVXC/s1Oe99Cwv95Aw7NHuUcXjLeI2YLhUuQ3el1GDWox9zEF cz/oGnxd+gtrvG5KBY4czkuuLc7VYwvWbR7z9TQu531ODI78yxv9TOT5eHXB +DDpjw+zkBvTDP1CLWJwRzc6/nqY4STF3uZZFLMWbjDfV+kl7abSNMieKO44 2RMK5raJOU6M9RQ8+Ocq8+jI/1j+ybJbRtxnWI3XvB/JnirNRG3bKbIf8gxQ zZPlf8BzImYLnpCzj02HOsxNLfLIP7HR9ai7o3IT2o6T2A8R+/0LxvD0ZGZi cOemXIcaWyg+oOC5d1Kd/ooNEh4g+0mN8VasxZR3StAPLBifpzqnFazbJeYY 3CkhF478M2Rn87yR5vSC9w8zE2M+ZuN4HR3ON/hTwz5krgEhB/0ZYZvPlJ0j 2z3mYzI71KHfgDDzoNCfvnNCDscKH8uxPiscZ47v58wsf+uIY2eFuc+W/Yzn UMwWPLDRPnZb6QcXnL9bqAOm1qfyT6d+xP45BeO5bAvvCoqfWzDuGbMFw30l /+6cNRcUjPeUZp7secJnSvOF/EG8+0hzfsF495gtGA49WtbI5IF7xVyPuvSY L/+enNcsFyr2Nc+qmC34bOVXc600en16UcH4fJ0DP0hzifAFjdafHfbJxQXX 7ROzBdMDPdodIs4D9425HnXpwX5if/VQPMV3vrCN+JcWjC9u9PqC9Qvrn0sa vYYaUjBm3bGIa1D4pxrH4NBdVnD+/kEDv2PEMTjqDg15B8RswT8G7Y9BT23y D5JmMfV5J4p4xv/mTjl+ecHcf73DnFeEWaiPBcOhJedgxX+V/YXrK2L/yoIx FnxEuGfyLsJ9k/f+Kxv9bo9/VcEYC2ZN8ZH8vGa7MeX7KPdT7q2Nij3GfVW5 1yq2tfyk9NfIX06PmC34OnEr5F8v2yNi7fBGvwPjkw8eLvuXdMcr90/uRTV+ t8e/rmAMT93uEcfgjpW+DTMKj2y0ZniYgxjcJZr/b+H7c56BfiPCDCNCf2b+ b86CZ8WC+yl+Q8H5J4Re9Nkn4hgcdUfKruReGbMF39BoH7vr//oW3HtVjTni tyq2nnuKclfL3iR8Y9CMCnWJE9st4v6jwgxo4U5W7s1hHzDDOsXGyO/F+kj+ aPk9/+cXjGtqtcaQPzXnPPKpS096n6Q6YwquNVD+P7K3iN894nmZ+8FciBfM ESfG+zwxuFP/N0/BM9H71jBPrfbn2KC7LcyFnjgxesGDh6TMoyM/ovkfUq89 pLm9YHxGzBYMd0foOSBmCx4rW9fe+4IZ7iwYX5byWmRcOB63N3qNw1rprtCT Y4QFR2utR8v2kgdmTUQ96tIDPVp6jS+47pnSxBSbKHyXcBXHIue1wISC8dkx WzAcerR7SjNJsaTweTHXoy6zNqjvuEbvk7sLxsNStmA48qbkvH6hP3UHh/0z NpwzaOiB7h7ZuPA50rRVnXuFxzc6Bjex0XFieyn3Ae5p4i6MWQt3Of8WC700 fZhf9n5x98reVzB3UcxxYrzvwYMviJlHRz61N6r1+Y9PPzDzMMveij+oWGvh i2O24Edzzr8vzPBQqHdh0MD3jTgGh+5h2faa/8qUbSr0HR2OLecV8YfDNnM9 cV1dGrPl2qIX91Hup682+t7EfZH7WC3HQvEHwlzkoO8g/YM8d+Q/UjC+KmXd YxzrRsfg0D0a5mV70cDvF3Hs0TDTVNl62aEx26lhH+Fj2fanuW549sTch1ps CzHWcqzvGqR9QtwjirWT/3jBf38jTuyAiGNwV8SCJue/2fG3t8mN/nsc67Sn OMdknyyY4298xImxvoMHs5aER0c+/ek3LMzG3MyXrfXag/fDZxVrFL5Wmmc4 D+VfHrMF19WaR/dEzj6W9VdHfNU9OOLn3bSCn3nEnyuYIwZ3bcrHkGM5JGYe 3dWhF304jk2yTynv0OBPLxg/X/Dcw6WfUfC6hzUUFvx0Y1gLNXoNRR7518ec Rz7b/IJss/AIxR9n3+a8HsSfWTCG71TrZzcxuGtijpMPl9U2PaP44dLMKhgP 1zbm2Vc5rx1eLBjfGLMFw+XkT1PuEdK8olhX4ZtjtuAZ4jqr3nONXre+XDC+ IWULhkOP9khpXiq47siYLZge09l3+h0jzeuKFcSNjjn+asHcxop1qfV+e61g fFPMFgz3dNChIY/8UTHXez3sa2aZGeZ5I2wHdbBgOPRoOb7sM/Yd+/HNcAw5 Xs8GHZq3FS/KH6P4WwVzNwTNW2F7Wthe4aMj1nau9XHBJx/8rmxF9raY53gh zIn/TsEY/rmc10rvhHnZV5WQD/dewf3Gxjzvm2F/5TgunIPKfb9gPDJlC4bb hOOe83qKGtRi7g8K5m5XzU05BxQ7NuIYHDlcNw+E+9WHBevuiPme+WrYdmJw 5LPGY33I2u9trpGc12KHSn9HUc/WjNYV0s+WZutaaz4uWEec2PGssxTrzj07 Zi3cJM4N1XlXOf2k2UWxOeJ2lv2kYO6mlOPEToqYBz8cctGRv7tiPfQ7JeI+ nzC7/II0c6X5TPjzgjVTlPuZ/Nk8e2K24DmN9rHbhzrMTS3yyJ+Zcz3qjtZs u6Jp9LoD/4uCMfxnoQ4xuEdirkMN5pxX8NxTFf9K2u84f3LO/yrU3JOa8vvL /7Jg/CT60IdtIQaH7r/cgvO/KXhNxjrua/kf8h4Qc2yHWq/djpBdKjwoYr6X 8IkRzzUv7K8LQy1yvpWdJ/y46uxV697MRj9mZ+bvQn/mREsO60l8LGvM7wvO f0qafanb6L/LEPs+bOd8rlntxzEpW/DXjfaxp4aZ2Tbm/qHgWs+q5nzN8h3n rDT7KPajuD7tHV9QMEec2C3SLFKshJ+yFu4Z1ektOyvnXn3kLxT3vXJ/Kph7 LuY4sQER8+BpIRfdrNCT3tNS7jO/0evH/aX5Rdx+sktk+/KsUu7igjXUwYJf zNnHkkudRUHXN+T3CfWo+7xyy9L8IP60iP2fC8bw9CRODO7WlPcf+5HjcQD7 jetfmj8VO1LX+uZx3Re4T+YcX8C+aPTa9teC8Qzudar3u/CiRsfg0C0rOH+T uDXwrD2JwVH3N9mD2O8xW/BhGfvYMyKebWnB89GHWrelHIObGfO8zH0I+0a6 P7h/5hwnRh1icC/FbOF5V2zh+6Q0Z8o/XPYv5ha3vGBubMpxYmjgwa/GzKMj f0++0ek+2VM9VxR8vb0mzSaK/9roNelKxY9S/A3F/y6Yuz1lC0Z3DHk5X6do X5V/V/DJB6/mfs59mf9tnXJ+0++OiP1VBWP4w2r9N0RicK+o73GKrRP+M2io dViIwb0jzWbMI35f5Z6g2B/yB8tfWzB+P+Y51xQ8Kxb8luL/FJx/Z8r16HN2 xDE46v4reyzPkJgt+PWcfexZoS/96L05+7nR69Yq7eMtWRelHOP/NPaNnDXr C47xI4a+X63nYAa0cGxjpGjuPfknyr6Z8/puC9VZ0eh9jh8tGnM8Oa7cQ8kj n7r0pPddmqdV0bU+UM2TOF48IyOel7lXNTq+YdEccWJsLzG4D8M81GKmk9mv Oa9PT5EfV3y1cmJFcx/FHCd2TsQ8+OOYeXTkb6Vea8I8iaLxhJQtGC4peyrP 1JgteG2jj9k/4XyoLhpzDgyQJiX8tuoP5Dgq/ok0GynWn3eFmC2Y44keLetZ 8sBzYq5HXXqgR8v5li667qfSnCbbRvgd3ks087qwva2LxhNTtmA49GhZt9Yq tg1r9ZTrUZdZT+f4yZ4rTU3R+POYLRiOPP4PvNgu+lP3s7B/2DfnRayhB7q6 kIfmbtn6kEMMLpJxnBiztePdSv7cmLVw58s/Q7Fq3p2kGSTbVtyTfIsomvsi 5jix3hHz4HkhFx351G6lnudH7NMPzDzMwra3V2xP4UzMFhwVd5b07+a8jR2K xl8GDTyzEYND11H2bOGvYrYbSnNBxM8snlc8N4mjg+sku6323aSUbVXG62V8 OPB5XKM512ksGn+n+ttJc06t32/j0iX1u0h+pmj8jTQbyTYLpzKOwaHLFp1/ T8oa+IsjjsFRt0n2Qp6RMVvw+zn7WHq1Vd6mincIfag1X/rL2Ce1/neeF8nm xH2gnG6q31n+BbWOE6MvMbh7U7bwrNMv5lxVzUvkb694F+laC+eL5n6MOU6M 9TU8+L6UeXTk059+C6TfuOj5Fsu/XLYi/JHmKMhO1XG9SvGu8ofwHI7bgutk d+C7b63X72gX1fq7BD754JJsG2l/Up0h3M9ynh+/WDSGr9Xv0ohjcIti7kWf ryLWUAsd8zI3+/SKWu/3IRHPz+ysu9kO8C8xz1kuelYs+H7tk5ai85fGXKND qEMMjtgmsjtK/0DKFtwuYx97WcTHHC29ajLuywxd5Rf1uzLi+GZhpqv0u7TW 27t50XhZzBYM11H6Rv2GSrNV0fi3mNfkWwhfLc21tf4uwLeCLYvGf8RswXDo 0fKtgDww3xOoR116XFfrbwGsZ7dWbLj85TFbcCbjdX424+8A2xSN+eYwQprt hGfnrEd7Ndds0XX/jNmC6YEeLfuNPPCKmOtRNxv2E/troeJNXEv6DYvY71Y0 vlF5u+gYXKf4zrLXh/m3Lxo/pOP1ifrsJLx5rWNw6HYoOn9VzBp4/v54Y+Co u6Ps6zz3Y7bgfMY+9oqIa5P/sHqNqrVPHWZk1r9iju8cdDfJ7xLOh12Kxmti tmA4tOSsjnmOjTPeRvzuRePuYUb67lr0ebZW+jHcJ+RfFbHfo2iMBf8b8/sL 7zHjUs4jn3O0p2JHcq7Lv4NnbM7buLtiY4UjuvZ3kz9a/j8xx+Dm5ByDu1m2 p+ztslHpu3O9cD1E/B68j7gtM+ZbZK+J2CcH3KvonMmabZzij+k3I+Je9OGb xh5Fz9cqbgtm1h7K2yzUvJPjKf9a+XsVzU1JuTY9mGm8NFvIDo/Y37tozIzM 2jHuPPKpC48uHjfPdhyn3D2L7reh4vsWPXeMfaXcbTP+vjFRsa3kXy9/gvze 0n2Ws5YctrNP0bpk3Br44SEXbqvw7OOZx/Ovr+yufJtO2W6d8fcWfDjw3by/ 5Nz3gKJnejTl/vRIxK3Zr2jd/rKThDcK85PDNhCD20b+PbxrSDsi4jzyq+OO H1g0d5DsvTyr4s4lDz08ulTc/HaK3xCxTw6Yfck+5fjtrhm6yZ4gzcFF46ma /9Ci49Q/RP79ymkTtwVvL+6BWuOREWt3CHXwyQcfHiy599V6DubBPyxsA/zc nHOJwbUOvehD/f/VQneMbC/N+bjmnCzNPK77iK8vrq0bI77OwI+lPOcRYRuw 4BrVP6ro/Ia46/XK+DsYMTjqHi37uHCnuC24e8Y+dlTEuf/NJHys7CPi2kk/ VfYr1XhFmhMUf1S4veKNdTqvObcy1pLTQ/4U+U/IvhyxBv7miOPHF831Yx6u wbiP1cHhOMGjaxs3/2XOdR4POWB6UvfauGfpVOfZ8JkPfFLRc3eQ5kT5e6jH Eylb8G4Z+1j+nQZactjOk8N1xnXNupz1+ZMpbyPbx7cv7mPcw3jGod094/sP 2p7heidOLTj28dc57+f+Yd9zvLBguL2U21Gzv0ZuxseP8+HUovHV0j+p2Gk8 M+ocOzUc+wFF5z+VsgZ+dMQxOOoOlH2ae0vcFvxtzj6Wvmcp1pv3vrj7UCsT d+z7nL/jPafYGeL25R6o+qezjzKOE7s14hjcMylbeL5n7pVxLeo8K/0g6Z6S PbNoLht3nBjzw4M7x82fGeajP/1yYTbmZr6Z3H+Exyp3MFr+tqEZzpY/jXeg uO3ZIR8eXZ+Mfextyp1R629xfBvcW7Fzpdkv4/g5RXPE4JpU8wb5n/BsjptH t3HoRR/2Cd8Rn671t0T884rGFxQ9d0H68+U/L79r3Bb8Q84+ltnII5/vhDND Ptt8keyLwmXl9uWenPG6Cf/CojH8QRlvFzG46SnHyYd7Sf7BGf/7/IuLxhXV nMU9U/HVil9SNC6FOBjuHe4DsuOkuUyxt4W3jtuC+RbFN6bjMv7uNKRozHct LBgOPVq+pVxadN1t4rZgerwrf4H2yZ28z3N8tC0zUo4PLZp7j3sOz3BphhWN t4vbguGodWKYmTzyt427HnX7iftAsZ9y/gZyRdF4+7gtGA492gkR7zP2Hfvx yjAv++GA9t42tutqxT+Sv6PiVxXNzUzZXhX23clcKxl/00B7kvyJwScffK3s hzx/VOeEjHPQ419TNIZ/v9azEYPrFnecfLjrgpZ5jg1zs18+zrgffYcXjR+M 2w4P2zBbv510j5kdcQ1qMff1RXM7Sz9beFHOGmJw5HANcW2NUXxE0bqH4r6e dhbfKuoYHPkrFP9d9hHpnywa95N+JOev9t0s/tspPD+FB2YcgyPGjxjfJW4u +jsG30NuDDzX75yMe9P3U+7B3K81x6iiuclxx4ndGzEP7hFyR4V7wRe1/m7C 9xP6LM75mwnfP26V5jNxYzhHNN+L/FuaENs1bgvmeww+dlKow9zUIo/800I9 6vItCHwG718R+7cUjeE/C3VuCXn0os5pQX9b0XPvzn2Ma0L4S+G53KuF75dm nvyfc972sUXjXtLfXrSuZ9wxOHTE4Mi/s+jvKHyH4W+D/I3w5ZRj39T62wjH 69RwjOD5++F9Ec/FfOzTZKhFzl2yZ/E8V98fuB9yfkY8P7OTy3aA945bSw7v yPhYvhGNLzq/rzTzmSXjbyzE4Kg7gfuK8H5xW/CFGfvYh3gPLzq/T6gDptaP 8pfm/N0D/+6i8U/cK8SndL5NKhofELcFw/G7LGjuC7H9pTmcb1HCl3B+1fo7 CN9A7i0aHxy3BcOhR/tAxHngV1OuR116/ML9U7/J0txf9LcZvudgwcxeL92v OX+neqBovETH9AjW08KXZ6xHy/Y+WHTdw+K2YHqgRzsl4jzwaynXoy497g49 2d7fZJcp9nDE/sNF4yP5W0mtv8lcybtSxveHyUXjI5T7h/hHha/JOAaHbkrR +a+nrIH/LuIYHHUfkf1d9ui4Lfi3nH0s316oTf4x0hyl3GvDdjEjsx4V4lOL 5pZzz5V9lPe9ovFxcVswHFpy3tBsfyk+XLEnIvYfLxpjwceHeybvItw3/+Qe m/H3EPwnisZY8LHS/yN/O2nvifs+yv2Ue2tWsUhe54Zyn1bsaM3wpmZ4KsxF LhY8QvYY8TeE/YaW+sOC/3To96zs37InKDcn7R85/xsG/GeKxvAja/0dgBjc Sp1XaxV7nu0MGmqNDDG4/qq5WvZG6R9T7ir5f+b8fWNa0fikuOd8ruhZseC3 tF3Ti84/Oe569OHbFDE46s6QPZbnd8oWPCpjH/t46Es/ev8j/+ZwvF7hWaN9 eobqHy/9C8KjM9bMLFpHfHSYf53iK3L+RoEW7l31nVU0N1B1+il2q/RPSrNe sVs4HsF/sWjcRj0/l39fxnnkU5ee9D5VdV4qutZ7/O+YpP875+8hzMvct2Uc f7lojjixpyOOwZ0e5qEWM50gf2yYJ8qaRvGVyn21aO79lOPE+GYFDz4zbh4d +a0Uu53zQ5rXi8aD4rZguDdkT1TOBylb8B2KV0lzp+yzyn2zaHy2cjeUfTv0 i+m3KufvbG+FesyABd+VsR4tc5IHPivuetSlB/q7wpzvFF13sDQnsV+Fx4uL KzaO806ad4vG58RtwXDox4eZP1AsIe7cuOtRl1lHil8dZn6/aHxi3BYMR95K Hd+pEfen7odh/9wRjh0aeqD7UPZkcR9JcxPve6E3MbgJGceJUfMTxTaSf0Hc WrhT5FcrtqbW1wI5s8XdLftx0dz5cceJTYuYB58bctGRT+01Oa+p8ekHZp4J IXeOYilxF8ZtwZOYg2ei7PPSfFo0/jhlDfz0iGNw6D6TbS3u4rjt2pxzuYa4 lk4LcXRwXE9cV5fEbbm2Zkb8b5r4t00TY743jgj39v7q9YVy7heulf4B2RcU r5H/T865c4vGl6pmnexXwv/mHINDN6/o/CFBA08dYnDU/VL2VPX7JGULfjBj H8u3te8VG8j2p9yHWpfFHZuS8XeqAfK/EfewcL34r+U/lHGcGN++iMENjdvC z1K8Qf66nP228r+TbrK4b4vmhsUdJ/ZixDz48rh5dOTTn35zUp6NuZkvJ82z sm/ybqZYe+ErlTtffjv5V8Rtwetz5tE9krGPfYl3Y75xZvydjefdj0U/84gv KJojBjc87mPIsZydMo/us5R70Ydt4fx6Kpxj+D8VjRcVPfdI1Vko/wzOiZTt wnAt4WM5538K5zLXF3nks81LZDsL36B4Xva5jNdN+IuLxvDTuC9GHIO7Me44 +XDoonnn/hzymK1Lnfuxb38pGo8K8V/CNpzJN4OMv8stU6yrYjfHbcEzxG3M uk31X5fm16LxTXFbMBx6tG9Js7TounNTtmB6DJL/fMbfT/4o+vsE3xyI/1Y0 9wLnUdje34vGY+K2YLiXuY/n/e+RyCN/Xsr1qFvULOU6f8vg+8afReNb47Zg OPRo+X7CPmPfsR+XF91jrPSbiG/hfi3NCsXP4jrk/a1o7vagAaMbzDtFxt9D 0L4i/73gkw9eKbu1tBOVuxXPLfX8IGL/76Ix/FvSfhhxDG5C3HHy4VYV3e/r lOdlbvbLtnXWkbu6aDwpbrs69H5D+nd5j4i4BrWYe03R3Li48RZ13pY3AkcO 1w33P/6+sDbksS28e8bV//2IY3DkH1bR+3eDzp+kLfhw2X/Fd2PdrdxzVHOd 8PsZx+DeyzhOjG8+kZKeLcLfpqyF+4a/z0qfUN+PIv4GsYF0HylnfdHcA3HH ifG9Ah7Mdw94dOT3lP8Fz5CI+/BNhO8kuytepZxqaVrJ7sp9R7lR+T3kT4nb gpN5+9i7Qx3mphZ55H+acT3qTlXuedx7eC+L2t+wZAxPT9byxOC+S7kONeYo Hit57sdUZy/ZlPBX4vbgOSL7uTTncy0Gfbxk/L3qJErWPRF3DG5uyIUjv1q2 l/Dj0iTlf85zMO7YbszBPUGxQ3iuRMx/mfH3BOZiPvYpemqRs5HsnrJPqs4F nL9hnzM/s38R8XaAn4pbS85G+eDn/R0mXXL+fL5LK/4N72VRx+Co21p2b3FP x23Bqbx97P1hZraNuduUXOsZ6S/kXFNsrjR9sno2i0vnHa8pmSNOjP3coNh+ 3Afj1sLlE55rWp1nu0i59WGmupI5ZiNOjHngwQtS5tGRT096/5Bynx/EbRS1 7SDuR9l2sn3FTee5zLFWrHfcFrwgYx87L+I6zE0N8sj/vtb1iFFn/zp/v+B7 BX77kjH8j2EGYnDPx73/2oRtuyTU5RtFs2KHyn9ZmksVX5jxvwk5kPqcN/I7 lYxfkOYw2azwzxnH4NA1lpx/YNDAfxNxDI66GdkDxM2M24IX1trH8m2H2TqG /UUfar0SdwyO7zbMy9wH8dxWrEn+LxnHifF9hhjcrLgtfOuov0ccUedvF0t4 1yn520Hnkjm+IRD/79tHxDz4pbh5dOQfrPNojPzn5edLvt5ek+YY4d95F1Pu xoovlf8qz/eSubeCBoyO7xRH1/k7Bto/wn7DJx9cCNo349YeHvT4XUvG8H+G vsTg0F+ic7NF+K+MNdRCRwzuJ/4tKOdG3u/Sx9b5GwvfGUol47fjnrMY6mLB fIcpl5z/TuhFnx8jjsFRtyJ7vPC7cVvw8ox97PehL/3ofQLXVd7fKLZSbIDw HOWeKLup8N8ZazYpWUec2A+cb5phpfz5EWvhPlDuZiVzC7W9/eu8Nue7Ad8D avP+JoC/ecmY48lx5R5KHvnUpSe931fNLUquNVv+EGnWco5HPS9z1+Ud37Jk jjgxvicQg1sU5qEWMw3kOcs9Q3UuE7+N4uuEty6Z+zTuOLEFEfPgxSnz6Mg/ TX593t8Hti0Zfxa3BcNtJ3u68OdxW/B65Q5tz38I3DN0Kxkv4b1Rmh2EI+KG KRaV/Un1t1fsDJ7TcVtwQ956tAsjzgPPjbsedemBHi3r5R1Lrvuzep2l+M7C raQZJL9t3mv/nUrG8+K2YDj0aBdJ012xs7kPxF2Pusx6Oc/xMM8uJeNfUrZg OPLa5f19gP7U/TLsH/YN24uGHuh6yA7mOSvNFaqzq3As6xhcVdbxWJitp2JX 8i01ZS3cUvnncA/P+9vFufJ3FxdXzm4lc9/EHSe2JGIe/G3cPDryqZ2QZnHE Pv0SYZ6qEO9V8vcBvhVgwR2UuybjbwR8W9ijZPxx0MDzTYAYHLo9Za9Sj2Up 21PqfP5z7+Z5xfOFODq4vXjWye6XsO2kmr9E7MOBL5Z/keZcqvjeJeMfubfI NuYdv0Y1W2e9Nt+nZPy7ZrhWtg/3hKxjcOj2LTn/p7g18KydicFRtzf3B55D cVtwm6x97K98J5E9iud9nftQ6w/1Hca1Ju4PaS5j+7iHCA+R31d+Ju84sWUR x+AWxW3hqX+d6tVlvc4dqvgB0mXF7V8y92fKcWLUgQcviZtHRz796bdY8QNL nu9n+dfw7OA5x/OLc092qeIHyR+u/OUpW3CD6nTUrzl8o0bbJL9z1D754ENl r+e+r9wruXaU81vE/iElY/j2Wf8bEmJwv8bdiz58K0BDLXTMy9zs0xGKd5L9 PeL5mZ36bAf497jnPKzkWbHg3xQ/ouT8FSkfO44b352IwVH3SNmU7A9xW3Au bz8Xzk+OOfnzpRmp3AvYn4oXFbuxzuti4keXzF3DO2be58MxJeOjE7ZguOt5 B5Dtov15fMn4L/aJ7LE872VvVM1s1v9O47iS8aqULRgOPVrqkAdeHnc96tLj Bvkbs4ZWnX7sE+EVcVtwk+qMUs3mrL8nnFAyXq1eI6U5Sbhz1nq0f0pzYsl1 /47bgumBHu1fEeeBV8Zdj7r0YD+xv1byLVQ2l/X3EPyTS8aj6pxLHXDXvDWn BJ6aY8QPEC5kHYND17/k/NVBA78y4lj/MNOpsjfzzE7Zgrtk7WM5z6lN/r+q c0udjzfHmhmZdU3K8YElc6N5h5H9m29fJeN/4rZgOLTkrFP81jrXZzb800M/ LHi9NGeG2syQly1nfRzxzygZY8Gr4n5/4T2GvzuQRz7n6DP6XSt/b8UmyN9S 9l2+gXBvrtd9XufnIPmVLP8RWsfgbqtzDG4Tno+ytysWlWY87y2KreVbnPwL xHXLml8juyZinxzw4JJz4sq9n/eErL9L0Is+q+SfU/J8iYQtmFnv4b0l628j 4+RvJf8f+eeVzKXCPPRgpnt5n5FdH7F/fsmYGZl1o4TzyKcuPLp0wny3UP/c kvvFFL+w5LnbyJ/CftG5FuHvxfLv5jzhfUx5F0m3Q9ZactjOi0vWtU5YA883 KGJw5POs45nH8+8S2QeEaxK2pby/ReDDgdmeHcM2XlbyTG0T7k+P6oQ1l5as G8K5x7tjylpy2AZiQ8J+fIT3FmmjUeeRz74lPrRkbhjnBe+IaeeSx3GBR9cu YX7XrP+NBz45YPYl+5Tj97B+m6j/htJcXjIeqtwrOcd4v1T9K+Q/ppyOCVtw vc6XO3ivyPpbB9qeWX/fwCcffLXskzxflfuE7KbqtWXU/lUlY/g9pI1FHYNr DL3ogx4NtdBdL/uccE6aZ2X34Z4e9fXFtZWI+joDNyc85zUlz4oFt9J2XVdy fueE622W9wzE4Kg7XPZp7rkJW/C+WftYvl2Qy0zkjwjXN3r+rcQhWa+pRyk+ k/ug4neq/w2hLlpyevMuxfsG50zUGnjqEx9ZMnejbF/ZLgkfK44Zxw8eXTFh /kD9klH75IDpSd0N055lep2/KeEzH/jmkufm34fcJP8lrrGELZg1N/7BYZ+j JYftHC37orhywutyNPhsY+9wXLiPcQ/j3y6i5d+d8O9Y0LKOpyZxasHNzxij uaVkPC1ue0vod5ByDw37bX/ZPnX+NnVrybirZnhZsdtL/q5DDA7dbSXnl4IG nu82xOCoO7bk70J8v8KCZ9XZx/K9aLxib3FPTLgPtVoSjr1e5+8JfP+4U9xR PMMUu0P+kVnHifFthBjcFglb+DZR1zgs1CE2TrqjZe8qmds84fjRQT8u1CYO j458+tOP7znMNj7kT9B58W6dv11MLNnflvu//Dd5ViVswcdkzaPbMm8fS+57 8o8XX6cZxqvmJGn6ZR2/u2SOGFxc5+F0+Q/Kr02bR7dd6EWfGtV5n/3KOi/4 95SM7yt57oRy7w21mRkLPiFr/4QwD3nkd0s4776wnQ/Ifiy7k+IfyW6T97cL /PtLxvAnq0591DG4HROOkw93N+uvrOd8sGRcrdlmsy/z/jbyUMl454QtGO4T +f2V26DcKYrNFe6ZsAV3k2YS70hhhskl443StmA49Gj5rvJwyXV3SdiC6TFP /pmyHVRnqmJfcv9NOP5Iydy9qjlItr00j5aM02lbMNx98s8Odcgjv1fC9ai7 veb4Sv5Z0nSU5rGS8Z4JWzAcerR8s2Kfse/Yj4+X3KO1+n4rzQ55r9+fVPw7 7r88U0rm9knYgtHNl3++ajRGrT1Xfqfgkw9+WvZ74d7KvV99zlOsV9T+UyVj +B3zXrMTg2uTdpx8uGdK7tcn4XmZm/3yAOuU0PfZknFN2hYMl9Rvp7y/J1CD Wsz9XMncd7pOf1D8vDqv65OBI4drqF+4RqaVrOub8PV0Ydh2YnDk36HYxDr/ ze7bkvEg6WeUvL5mbb5M/PMlr8uJwV2cdZwYa/9Zit3AdZWwFu5I+T/yTFc8 G/Wa8wVxQ2Vnlsztn3CcGOtHeDDrX3h05B+uZ34PbV/XqPuw1mUtMFnb9Yo0 V/AM4j7GPVE1X5S/RP4hCVvw33X2sblQh7mpRR753fOuR90GHZelil8uXT5q /+WSMTw9WYcSgzs84TrUoP6rJc/9quIrFX9beDdxU5Q7POs11HL2n/yC9K+V jI/j/lyyrm3aMTh0xODIf1N2hbh+PBdCjFxi5FCT48Wx4jsG/K559/1vrpL3 Kfo3Q++3ZB9Rj3bqu4p3DOUUo56f2TeOejvAJyasJWdE1j6WbX+n5PyTpFnD fUu5+0Udg6Puu7KP8g0ibQu+MWsfW5L+vZLzTwl1wNRay7sH7xJR+++XjB9T 7s1Zr90+KBl3TNuC4R6XPybrc+njknGntLkPhXup/r91rkv9j0rGAxK2YDj0 aOn1YajdP+F61KXHOulW13lbZiu2Xv5pCVvwLdKM4t1DvxWq80nJ+GRpbpP9 VHiPvPVoWYvNKbnuwIQtmB7o0fJ3fPLApydcj7r0eD/MzpwRnQMb6FeJ2v+s ZHyXdHvmvX58QtsyNutj93nJuFH76knZecK3Zx2DQ/dFyflnJ6yBp/5dgaPu XNmo+pyZsAVX1dvHHhR1bfIz6rWhYnspryXqGZn1jITjX5bMkXdn1rlfhXrM gAXDoSXnLMWfau+Z2Eb8r8PcWHA27Xsm7yLcN7fWb3zWa0n8b0rGWHBSNctl PXNU/5mE76PcT7m3bqXYm8LdNdv3iiWEz5XmO/lx+eckbMGtZDfSL6nfplFr 99b2bRJ88sE/yD6t+ZrS1k7IWo8/v2QMPzHr9TIxuPPUq43sIuHqJmuohY4Y 3CUJ41i9c8fxfpb1/v+xZDw44TkXhLpY8AWK/xTq/a8XfTaPOgZH3YWy57M9 CVvwPnn72M2i7kM/ej+jOe/Pev27TLHn+D6VdmyJ8L55axaXHONHDH1Nvedg hiWBZxt/Lpm7VH6dbG/pt+C5rDoPZP/P/6Vk/DxrRB3jGVnn/Rz2Fz3p3czz ouRalyW8Tn0o67Uq8zI36zPiv5bMESfGWpsY3NAwD7WYqZ38PrJbSdNe/u/c o3lelsxdkXCc2NZR8+ArE+bRkT+N97Ss17N/lIzzaVsw3J+yHZVzdcIWPJXn HffWrM/D5SXjYdIMkWYF99Cs18a1TV6v/aVYB3FXJWzBDfXWPx7mJA+8KOF6 1KUHerRV0vxdcl3W7I2KrRLuq23pVO+1POvHlSXjaxK2YDj0aFnzrlFsOt8Q 065HXWbNSPOE8LbSrC4ZX5ewBcOR96TsNlH3p+61Yf9MDXE09EC3VrZJ3PXS NHMNca1mHYPbL+84sW7KXa9YTnhkwlq4EfJnqOYzYTa068Q9yz2oZG7jtOPP hjrrQp/rQy468qlNb9bC+OvDfPyYhfgGOq87C9+QsAU/p9wu8vfPe/0bKRuP Chr47aOOwaGLym4sfFPCdro0O0R9DXEtdU47jg6O64nrqmvadkaoyX2U++lP db43cl/ku2VX2Q0VP0C9Zko/M9QvKP68/H7yq8rGozXDC4olhGdlHYNDFys7 v5C2ZlbIJfYfJxyXLSnnloQt+MC8feyO0qcV24xnT8J9qDUm4djB0uwizSbs e3EHCb+g+kn5xXrHibE2JwZXTAcrLq34prKvqObO8mcpnpLuVeGNyubuSDhO jHngwaW0eXTk059+t4fZmJv5tpH/Nu8bvCsq9qJyy8ptHfLQY8GvZc23CbXw scy/pewb4neK+nlXW/Yzj3hN2RwxuAkJH0OO5c0J8+jGh16vhe3dQrG3yAt+ Xdm4oey57+YeK39r+RMTtuBD8vaxrPHJI39cwnnks83tZHcQvl/xl7Qt72R9 vPDblo3hD8372U0MrpJ2nHy47eV/KO3u3J/Lxvep5su8cyq+m+IdysYtaVsw 3E7SHp73Gr+RYytu07QteDvx70n3sX67StOpbHxPwhYMhx4t3xk6ll33wYQt mB7d5R+R93q2ieOpnM3SjmfK5nrIn6N6PaXJlo2nJGzBcLvJ/4J3xKjzyJ+c cD3qfsq+qPfan+8AzWXjqQlbMBz6T8N2sc/Yd+zHzmX3eDThbwqfZ/3NIR/6 0ytXNtcraMDo9lDekXmvc9HOC9uCTz54Y9lePIcSXs8zP/sEv0vYHni+C7BO JwbHtwXi5MN1LbvfEwnPy9z/7Rf5X8ruxX2pbPxkwhYM97q2/SvmjboGtZi7 WDa3uY7LJbxf8tyIOgZHDtcN9z/+jVmpbN0BCd8zuV+y1iYGRz7/1pT/vRP/ 3nRvab5VbG/u5w16vkuzXrF99Wspm+dXKVu3b8DoN1PsB56HCWvhnuUdQLHv eEZH3W9TcYvUc5OyuYMSjhNjWzYNcz0dctGR/7a2cVHWfzOlzzF5b8tB6rOV NAt5J+MeIN1W2j+by99P3IyELbhvvX3smaEOc1OLPPIXZF2PurOUe6DsseL3 idrfsmwMT899o47BvZBwHWqg37rsubfWPO/I7iD8c9bbsSRsyyHKWyy/t/xt ysYvqc62ZeuYgRjc4pALR363YNFvxz2b+27CsePyrn+OYjG9yxwZNc/czPzf XOX/m4Va5GzPfUual1XnSNlfxQ2Oen5m7xP1doC3SVu7fZgbH8u27Fh2/uuq c0S9vyPwzYEYHHV3KvubAN8oRgS8LGsfmwszbxeOx85l13pN+qNlj897nmPk dxf3e9bxXcrmiBPrK81ubJ/wOwlr4d6S/y7vt1l/x+Abwa7i+nGvK5vbNu04 Mdb78OBTQi468ulJ7zcT7sP3CNbFH0qzh7jV3Gu4LnQsOid1r+NezX05bQte nrWP3T/qOsxNLfLIPynvetTdQbknc53xzhG136tsDE9PvgkQg/soHAv2I8fj VPn9eRdRbp+y14WsPdfKnljvtflK+f/od4H8vcrGH0hzOueR8LqsY3Do9i47 f3bQwB8WdQyOuvvIDpT9NGELPiVvH3to1LPtWfZ89KHW5wnH4D5JeF7mjmrf fKzt7V3m/9jOcWKseYnB7ZS2hec7wKB6r5lZs5zJfUG6VuL6ls3NSzhO7PCo efDchHl05DeIf4kc2f3Lvt6+STgvHnIPVHyw4l8rfkDoMy9owPGgTQY92kFh NvwDw0wH86zh2aPcc+vdi+sa/6DQGz6hOpdGHYP7VvqLeL4LD8hbQy10xOAW SFMlnK733/fv5b7Q3mvtQ8vGFyU85yFlz3pImJ3tPazs/K9CL/ocFXUMjrqH yw5V/JC0LfjsevvYI6LuQz96X6xYWvlHK358mJdtmSPuKOHWTdYcWbaOODHW wnWy9eG+hxauu/oeXTa3WHWG1ns9xfqItdBl9V5P4R9TNmafcly5h5JH/n91 y+79o+ocW3atJfKHyQ7U9hwb9bzMzTlC/LiyOeIN4RgRg/s5zEMtZvq0vY8d 80/TPCco3k45/crmeqQdJ8bfi+HBNybM9wvHvqTneJ57qOqcWDa+JWkLhjtJ 9grZpQlb8CzVba9fhyZvy8ll41+luYr7hnBH4e/lX8O9WJpTFLta/m8JW/CV 9dajvSbqPPCyhOtRlx7o0bJeO7Xsur01ZydxA4WzssMVO1/2BGkGlI2XJ2zB cOjR8m/gTy977cM6iHrUZdZm8Tn9TlSd08rGKxK2YDjyRtR73UR/6v4e9g/7 5rioNfRAd4bsSNmV0tzI+wX3i7xjcKy3/ovnvZ46m3OGayhpLdwq5Y6SzSt+ ijRzdRzPEtdFeFDZ3OqE48ROipoH90ybR0c+tUv6XR+1Tz8w8zALa6jBihUV +zdhC14i7hb9xtT73fucsvG6oIEfHnUMDt25smNlI0nbs/Ne7/DM4nnF83ds 0MGdJ3u7cDRp2yLdqVH7cOCvWD/KDlD8/LLxntrGO+u93uC9nfXBrWHOC8rG rEfuUuxi7rl5x+DQXVh2/oZJa+AHRh2Do+5FsmX1XZ+wBW/WZB/bX/r5muU6 7omhD7WqVPNb3qk4h6T5Wv6l4rYQHif+EvmbNzm+RahDDC6WtN085E5gX+W9 hpoo/zLpthI3pGwukXSc2OlR8+Bk0jw68ulPv72435Y93z5pz3218CTZy2Xv kU0pd1iIbZS0BZ+vOtuqz/b6nRG1dtv/zycffKXsfcKtlfs97zVhNvwrysbw 3WRHRR2D6512L/qwHkRDLXTMy9zs0/sVvyDv84H5yUF/dTgO6aTnuKrsWa8K c7Et15Sd3ybpY3dvyCUGR91rQ0/qYME7NNnfIczMMSe/j2beUrEdm3z+zFCd 6WxD1PHhZXOsx8bXex13fdmYtR4WDLeNdHvVew07smxcrRkeUGxE2evCr7PG rBlvKBs/lbAFw/HbM2hGhFhN0vWoS48p+nUXPkuaG8OMaLDgu8VP5lrQ/hgk zaiycYM0P/C3M66RsN1o2fabyq7bNmkLpgd6tKw1yAP3TbsedenBfmJ/xZXb i2st77+l4o8uGy/g/Vn4XMWfUO7j3HfkjykbNyp3T/G3Ce/U5BgculvKzt8v bQ086z5icNS9VfZBaWuTtuC9muxj2Q/UJj8jzVOKP1nveZiRWTuF+NiyuVZ6 tl7CfY57Wtl4UNIWDIeWnKziz8ne0eTz5z+/bIwF57hflX2ebSz/J64b3h2j 9u8sG2PBB6T9/sJ7zH/fiuudzzn6sX5Pyz9Z+ud51tf73X68Yn0V68K9SP5j PLOTjsH1bHIMbj/5E2T7yOalWaU+0+q9ZuF9/z5xhzaZ37/J+6FPyAFPLDvn Q77p1fu9n3d+etGH9ebdZc/XNWkLZlbWNAc2eV3zgvAB8i/kXlQ2xxqH2vRg ppn1XvuwPsK/t2zMjMzKGoQ88qkLj66QNM92sH6ZVHa/ouL3lz33JvLfkj1a mkui1l6at/5lrknpDmuylhy288Gwb1qS1sBfFHLhyOdZxzOP599Dsq/yzE7a koMeHw68UPrDpb1Y8Sllz7RV0v3h6YXm4bJ1k2XfVHzLMD85bAMxuMs0w2Lp jwmzkUf+gWnHHymbe1T2He5hSeeSx/oFHt3BafO83/Nuj08OmH3JPuX4vSv/ OJ5v0kwtG2+rmo/L/0D+9vIfK3tNwNoBCz5eOR/xnFK9y6LWntD0fz754Cdl 3+fZozr9eO9r8t/78J8oG8O/V+8ZiMFtl3Qv+rAOQkMtdM/J3qa+p2uen6U5 pcnrFK4vrq2hUV9n4J2SnvOpsmfFgndU/Jmy8w9Nu15/5Q6LOgZH3WdlZ0u/ c9IWfHnePpa+5DIT+dNkf1H+Yar5qTSnN/nvbjMV/0x416R104UHNFlLzgYd 3I+61EQzIMxDfEaY43nZOTxLkj5WHLPjAo+O7Z0T7jXshzkhBzw9zMi2MMtA +ZdH7TMfeFbZc/eQ5gX5n8vfLWkLPq3JPvaKqLXksJ0vys4T7pX0upx1Fmsr tpHtoxf3Me5hPEfQnsn7S9Ra1vGXhji14ObWe43GOujlsnHPpC0Y7st651CH GlfkXeeVsjHzfCP+deEr847BoXu17Pw9ggaetRKxV8P2vCa7lOs8bQs+q8k+ 9iquL8XmS9sn6T7U2jvp2PX1Xu/8Kv2b4gbzLqrYG/LPaXJ8cKhDDG6vpC38 1Yr/wLOCdyP5TbJvS3eh7Ftlc32TjhN7IGoe/FfCPDry6U+/I9KejbmZ7xf9 rs3770TvBS3b8q78BRyzpC346rx5dBc12b8ozPZbe9dlexfKfiDNNXnH3w/7 iBjcgar5k/x/5J+aNI/uqLR70ec61Vkk/1LuE8H/sGz8cdlzH8Y1Lv935R6d tgUPabKPpQ555B+UdB75bPMnsn9wz+V+wnUt/Yio/dllY/hhTV4rEYM7NOk4 +XAVzr0mr/vmlI03kOZXaW+r97rj07LxESEOhlvKuSf9FGm+KHudwtoEC14m /ir2Mfd+aT4vGx+ZtAXDoV8Wen1Wdt3Dk7ZgevxR7zUP650vFVvOMyDp+Nyy uT/1G573OmJe2fjYpC0Y7i/O7bzXI+SRf0zS9ah7nXot1/4ZHmb+qmx8XNoW DIce7cio9xn7jv34ddk9jlfNFfRS7EZpviXOs0F1vimb6xc0YHQrxI9q8vs2 2hGhPj754O9lV/PMUO4q2RHalpui9r8rG8PfKO3NUcfgTko6Tj7c/LL79Ut7 XuZmv6yRf0PeuT+UjU9J2oLhdlP+TfqdHXUNajH3grK59tL/rfij9f62v1vg yOEa4trie8WPZetOSPt6upnna9QxOPL/lf+U4vcovlHFeID0C8t+H+d9fq10 i8p+lycGN7rJcWLct39WbKVyT0xbC9dfuXvpHXtk3n3/VWwJ9zLlLi6beyrp OLHRUfPgASEXHfls261hn9BnTJOPC38PW8Y+l2Zp2XFyfwnHgeOCBd/SZP+W cOyo83PI4bc0HEvqUfc05a6r9zzMhv9rmA+enmOijsENTLoONZjtt3BMOL4b aVtWCN8dtmNU3tuyqr2PPfP8XjY+Sfvwj7J1zEDs93CuEIMjfznnqriT0/7b IH8jPCPp2Fi2M+rjxbFifQTP3MzMXL+FHuipRc5fstXSna86/yg+SbE7o56f 2e+IejvAFyStJWd03j6Wv1/8XXb+qZptnPLu1e+2qGNw1F0pm1bORUlbcKrB Ppa+q8rOH5y0BVPrHu6FDV4r4a8uGx/Bs67JM6wpG2+WtAXDtZOuXr8JnJNl 4yukqZVdK/ya9lGN/AelHcfMZeNLk7ZgOPRoec8nDzwk6XrUpccj3Oea/L69 TrEj5W+etAXDP6zf66pzCOdz2XioNB2UH6m4HvpHQp0NKvaZGQumB/p2YbvI A1+VdD3q0oP9xP66UPH24qfKnxi1H60Y8+74WJPfvTs2mEPTqmJ8tXIfZ/8L P9HkGBy6DSvO3yZongh1iMFRtyrMe2XSFvzfWqTJlm2kNvnXSJNR3U6cf1HP SJ8rQzxeMdeo35PST5ImUTG+NmkLhkNLznVJzzUmH9YX8pMV42TYJnK5Z/Iu wn0zG3pQH7869MCChyf933fiv+3Ef6+J+yj3U+6tG+k9t0eDn3dpxTrLv0H6 lPxm+SOStuBb8l6vTGvyuzraZ+TfF3zywW1k88I3co9Sr2ebvM7Cb10xhieH XGJwA3U9rpdtCL3RtAkzEYM7TZouwrfmvdagFusj6teG2szPnDUVz4oFs4aq qzh/VNL16HNv1DE46taH7WDbseDpTfanh+2lD/3ozbqHfOZpVKxNs45N0r3b VbymQdM29CY+J6x3pod9Qc12YV72W/vQkzknk9vg632K/Of1Gx/8DhXjHcRv If+TMGP7cAzoSW/WXx0rrjVMflf2aYO/RTAvc4/NO96pYo44MdZNxOBuDvNQ i5kK1OBew3Wtcymr+EzxmYq50UnHifF3JXjwGWnz6Mh/QfyLYbuaKsZjkrZg uOaK1x2sNQYHXFRuucFrD9YdnSvGt0qzBeeQ8OvSvqrfG/o9KE1Osc3F3ZW0 BW/aYD3ah6LOA49Luh516YEeLWuWLhXXvUOaLRXrKvyW8FY8H7Tf3pRm44rx hKQtGA492oelKSq2NfexpOtRl1k31H56s8l/wypUjM9K24LhyLsr77UG/ak7 Puwf9g1rNDT0QFeS3Yb7lTRVqlPm/tbkGNzbTY6/E/bDJop14xpJWgt3Nn8/ Uux9nm3SXCbbwrmt86VSMbc66TgxZoMHH5w0j458ai+u99+J8OkHZh5mmaz4 phWvaVg3YcE7in+vyesi1oCbVYzvCRp41kTE4NBtzvXKMzhpu500H0R9DXEt XR7i6LYL1xPX1f1JW66tj6L+N038Wyb+3RH3D+6L3ENYq2ypnA9ld1X8U9mp iu/S4LUTa5ytKsYPJ33f3Vb48ybH4NBtXXH+I0EDz/2ZGBx1t5Hdjft20hb8 WZN97GPS76jYXPyk+1BrStKxL/V7XJqeinUT94Xw7vK3kz8x7zixG6KOwU1N 2sKzXckOrkWdPRTfQbq7xW1fMXde2nFij0TNg59Imt8+zEd/+j0WZmNu5kt1 CH2Vu7Nie/IclWYn+dXizk/b7hTy4dFNytvHsv5if30VjgXPu+5hXxDfpWKO GNwFaR9DjiVr3l3C/ma/0Ys+7JORnGt5/60Hv0fFeLeK575QdXYN+5X9hgWv rLePpQ555J+YdN5uYV/3lN2H56vie3P9hXUK/u4VY/hvlPtp1DG4p5OOkw+X Vs1vZZ+UplfF+CLN1kea7xV/imNXMZ6WtAXDfaff/CavL/ZWbH9xzydtwfvJ 9tZv3wbX36ti/FzSFgyHHu3T0uxZcd1nk7ZgevB+/2OT1wW9FTtI+llJx/ep mFvQ5HUCa4R9K8YzkrZguIVNXt+x7iOPfNYd1KPugQ1+Z1rU5P3Zp2LMehAL hkOP9tao9xn7jv3Yt+IeL0j/g+ziJm/X/oofIv1Liu9XMTc9aMDoDhV/MMc0 am3fBu9/fPLBBwbti0lrlzRZj39AxRj+/rz7EoNDT5x8uIMq7vdy0vMyN/ul jbblZ/Y/NSvGl6RtwXBHKW+Z7LSoaxwUehxSMfeGai4V/xvHLeoYHDlcN9z/ +C50aMW6V5P+b5Dy3x99LuoYHPn8bwn53xzyvyc8Tvyf7DdpZrTW2mVTzSn7 C9ei9MubrDm8Yh1xYrdLf7RiJ/BMSloL94r8YxU7rMHb20/2KHEPqteRFXNv Jx0nNiNqHvxeyEVH/incs/N+B6PPCtV/Xn6d9tvx0qwSPlb27ybPcIz8WnFD 0rbHBA4fe2eow9zU+jvkP5R3PepeptyTGqyjF/5xYTvh6cn+JAb3YdJ1qEH9 fhXP/bHip8n25znH+61y1zZ5e/srvoZrj3kqxrOlP7Fi3dC0Y3DoiMGRf7Ls y+JaqtVf/gD5c5KO/St+pmoOk1/f7Hch+Ml5v+MxF/OxT9FTi5xTZBvUY5j6 nq74esVmRT0/s78Q9XaAP0taS86hzfaxbMupFed/Ls0GikWavU4kBkfdAbJt +c6ftgWjxd8g6JmZbWPugYGn5pkNrsVsZ+CLizY7flroTZzYi9IMUqyd6l6R thbui6TneiTvXoMUOzNwZ1TMoRkUalEHHjwv5KIjn570npt0n1biXpL+XMXO EfeYNGdXvOZjPXiW/HN4fiRtwYMb7GNfjroOc1OLPPLjza5H3W+VG2v2GpO1 J/7gijE8PV+JOgb3dTgWA8O2nSdNotnvThcrdpHwAmlm8E6R999fOmqGZLPn Oa9ifLX2YSeesWEOYnDozq84/6akNfDMQAyOuhdU3Jf5seCNwyxY5mG2c4OO PtS6Ju0Y3HdJz8vcraW5WP5F8p/IO07s9ahjcD8mbeFfVbxR9dLNXjcNVfxS rnnhSyrmrk07TmxZ1Dx4SdI8OvIH6beUdxRxQyq+3n7m3Vu2odn/9mwo16b8 7rpOL6uYWxw0YHSX81zSbPdHrX1a/hvBJx98uWyTel+f9lxzGjwb/rCKMTx1 6TssbBO9rlbsGuEOzdZcHuYgBvcb3xkUb9fs+8YVirWV/xbv1RXjpUnPeUXF s2LBvyh+VcX5I9KuR593oo7BUfdq2auYOWkLfjZvH/tg6Es/endWbscww8iK 12us466R5jrh5/LWXFuxjjixd6Pu3ynMgBbud+UOD/uAGdo3e03IvTHXwXM8 GPzrw6zDwnHlHkoe+dSlJ71v0PaOqLjWr6p5HfPzXIt6XubONDt+Q8UccWKs PYnB/RnmoRYzjeBYCr8nTVZ2FPtX9saKuRVJx4mxvfDg5Unz6Mi/Xv7wBq/j bqoY/5W0BcPdzPUn7ZqkLbhrs98jbmrwu8ToijFrsdGK3SJc4RxUrNDsddkY xW4WtzZpC2bdhh7tx1Hngf9Juh516YEeLXVurbjuZN4/FRsrPF3H9Tb53Ru8 FrutYrxBtS0YDj1a1l93KNZFx2hU2vWoy6y388xkdmlurxhHq23BcORtEmam P3Uj1d4/7BvW3Wjoge5O2TukaSVNUfgu4U2bHYObkXec2GzlTlCsLH990lq4 f9n/qjlGOZ9EvQYbH+qOq5i7Ke04MdZ98OAnQi468qnNWo91Hz79wOQxC7kT w4zMjAXfKn6iflvxnJXm7opxMmjgmZ8YHLpJslvKxqttt272uz3PLJ5X/P1o y6CDu0d2Avf7atvxvEtE7cOB0c3Mu869IY8ZCtrGbXguM1uYlTnvqxhXS7O5 +AeFt2t27L6wDfdXnD86bQ087//E4Kj7gOw90qaqbcEv5O1j50o/hXu14pMb 3IdaVdI/IDxLmnnMI//hUKuo+g/Jv6vBcWLUIQY3Jm0Lz1qSNcb2zV53MOOU itcokyvmWOMQJ8b8U8K2MjM8OvLpT7/Wij9S8Xw1XC/inhR+WHiqbEm9b+G/ 3SH/QcVqq23BO0r7kPx9Zb+KWrtTs9cm+OSDH+deLl3nauOdgwb/sYoxPHW/ jDoG979e9CGO5vEwB/MyN/uUfb1BW73DRD0/szMP2wE+vdpzPlHxrFhwneJP hWPVUO1jh08dLBx1n5bdRXn11bbg7s32saxDOebkt5VmnGyPZp+3z3NNNfi9 l/izFXPkbRFynwv1mAELhntU+l1lv+EdqWLcvtrHb5rwbrKPhPOGc2Z6xbhd te30cIzR7xbOmWnh+HPcqUddejwufw/Z75i54nUP66z/1lLCvdhvDV5/sTaZ WTFurDY3S/jlvPVg1kQvVFy3U7UtmB7waNHMCrXRUI+6/cJ+Yn/FFH+ywfnM hv9iqLu78nrr963iLTrf9pT/vfyXKsZjdd4+J92rwn06OAaH7uWK8ztUWwP/ Q9QxOOq+Ijtfc05L24KnNtjHclyoTX6u2jmv5T0PMzJr5n/xirlpDdbT6/WK cb7a9vVQ67XQn5qbaa4+8hdE7b9RMcaC79Rsb1V8nnWVfj+4vPcV/psVYyx4 42q/v/AeMzLtPPI5R7dV7Hv5J0p3ELnKu0t13uE6E19S7tucmzxL0o7BHdjs GNz+vHPI9uU5Kf0LnIcNnv9V2Y/FHdZsnh7U7xtywO9VnFNU7laqeXiz15X0 os9C+e8HLfNgwcy6Jd9JhBex/xucg/7DirnxademBzO9wrbnrcf/qGLMjMy6 abXzyKcuPLpNqs2zHYuV+0HF/cqKz6547gn8b5SavR5kbfhag3PQs02fSPd2 3lpyiM2pWLdZtTH8CyF3TpiJZx3PPJ5/n8purfyJadsjxP0StQ8Hfks5b+q3 RPEvKp5py2r3pwfbiOazinWfV7ymZA2Llhy2gRjcMbLvCB8r+3PUeeRvVe34 3Iq5eRWv9/n+QC55rHnh0W1Tbf64Zt8bDw05YPblB+Gce7vB3yBYd3xZMd5a uV+Hc41z/iv573L+Vtt+FXp8oN8JzV7ToT1ev5+CTz74W9n3petW7d7Ph3s1 /jfhuoJ/V/t7adQxuG1CL/qwH9BQC90C2e10DO5Je635Xt7rTa4vri2OBdcZ eFLac35X8axY8PaqP7/ifNan1KMHMxCDo+4PIY/5seCLw3Zj2XZyF4Tt/FH2 E9ldpP9Sdp5+f0qzuGK/F+ew7E/CpzZbS8776tVNdfo3e12JBv63qOMLK+YW yc4V17Pax4pjxvGDR3dv2vyHea/d8MkB05O6O1d7ljObPRs+84F/rnjuPaRZ In8H3s/StmDW3PiDwvmJ9uewbb/IDlS8R7XX5WjYXraR7fs16vvY/uE8QXuW fr9Hrf00HGvi1IJjpsFhzl/DjGw7Fgz3dYPXvaw3WYuyzWz7soox6+tvFftD +Jxmx5aF/fhbxfl7VVsD/1fUMTjq/i77jeze1bbgj/L2scul/5t9wHO+2n2o tU+1Y5/kvSb9UbHl4i5SbEfthz/ln9vsOLHOrRyDeyBte27YPz9Jc7H8VfIX yF8h3SXMWjF3QLXjxFZGzYP3qzaPjnz602//MBtzM98PivXg+6xyVym2i/yH NcPKMC91sOBebc2vCj3wsfRdxL0077Xz+dKvkWZIs+OrK+aIwfVWzboW5Yk7 sdo8uoNCL/qwT7rz3GzwfsZfWzH+t+K5+0r/j/xPVXtK2vafUAsfyzzkkT85 7Tzy2eb1souFD672rBfqtyJqf13FeHGoRZ11YZuYk/j60HuJ/Mt4B9DMG7QY H1LtHkObvW8jLcbMiQXDLeMZkfffZDdUbFdxj6RtwT+FY3tVOL6tWow57lgw HHq0nCfRFtc9stoWTI93m4zpFQ95aIhXhZxLFdu2wd9JYi3GB1bbguFYi//S 4PU4eeRPSroedReKu1z+tZwH0iRajA+rtgVfG7ZpYTh/2GfsO/ZjssU9+Kbx R4O/U/CNYiPF/+QZqTrVLeaOqbYFo/uLe6+2dV3U2rl5f0/AJx+clu2p/fUY /8ZV8evU69+o/VSLMfzwMD8xuOOqHScfrnWL+x1f7XmZm/2yQr/rhdcrt02L cb9qWzBcL77bhb7UoBZz17SYezxt3Zd51yEGRw7X0JBwrtaGesywMmw/204M jvx6XU8LZKt1fm7fYjxU+nr5e6juE+pVkr5BeE2DY3Ajmx0nxveH9or9w/Op 2lq4dXwblL2FZ480N8lvJ+534bYt5o6udpzYP1Hz4FOqzaMjfzTHnPOglft8 nff3opsVb5TmTsU6yu6l+Z7SzB3CjNxDsGBq4GP/V4e5qUVex3DfoR51+yt3 s2br6IXfKWwnPD35LkQMbsNq11kZ9nMm9GSf3CKbF763wd81wHwzWSc8hvNe 82RbjAdK39RiHd9PiMGhIwZHfmfZ9eJOk6ZZ/r/yB1Q7Rg41OV4jw/bC8/2F 7zPMxXzsU/SdQ++cbDdxadWJ6lz4Rvsm2sr9mJ2Z86E/c6Il59Zm+1jWxV1a nH+mNHt38Lck1ubE4Ki7cYu/V/HdCQu+vdk+ljm7tjj/6bQtmFp7sf/1mx+1 X2gxrlL9pxq8Ji22GJ9dbQuGi8sfx/HSdlVajM+RZkPZkvBd3M/kf6sZW0lT bjEeXG0LhkOPFg154LOqXY+69NhI/t3Uk6ZFsX20Dc+kbcHjOcbSJPWrkmaT FuPzVWeiuM2EJzVbj/b/EXUWYFKX7RqfdWZW3ZmdWdEd2F2RXRZzUgkVsRBF wcIAGwMDDBAVVMRWTOzubsHuwg5sDBALVAyw8bPP/eN+vM51nTlP3PcTb/zr hQ85kykXnXdCgyU2NeDD5RyGOOzDG5yPvNRgnpiv7vI3yv5U41g6ab1atD20 m89wyMNZzPU9fD5TK9rmbKdJsrfsXLN9YPDWLDr+wUZzwLNJ+8DIu5bkDZJH NVhi832PjuQbn9zET2rwOcFNPfz9To/0emT4+xSNLSff5z39Dtm3aPuYBkts MLjEcLbQRf6buS8nrfcr2kZiT457Zpe4j2/FmWGsNfraRdtI7IeV8yTpwxX7 TIPvo9xPubduIH2Afisqtr98W4v/CO/PsUfYV0jsW3v4t0yz9ydc9lwy9P6x FwdwHYh3mGILza7HPRx9vbiPg9/Rw/sKH9gJ4rdJbix7Wg9zyAUPH9ip4nRr 9vyzdszvnTH/G8R8sy70uX7Rva4fvfPs2LDo+JOiFnVySfs2jHXdSLKr5IkN lth39bCObIy61KM2azM91mtz+XqId4ZiWyU3ifWGM7BoHn587Afsr3o6Fi7Y KYodFFzGu53m9h7peXFWbHbfudA3jXnprd/u3LOaHUc8eQfG3mG/bVZ0rif4 t5Hlu6+Hzzrol75bmu0fXDSGHx/jxQd2cvRDLnpaSfj9kk1JxwyRf4HqblE0 dnqD/fioNSRy4weHR3x7s23yDC3aPrPBcmjk2lJye9V+stES+wHFdgr7WvmX Y/8XbU9V7A58u8l+lHuwfL3Yi+xV+VaWfm6DJfbDPcyHC4c47KcanY+81IAP dwVxti0673nK84h82xV9NsM5y2M9fPYyrGibMxwkNhh8uJz/7CBfSXkuaXA+ 8tLrE+J809P9bF+0fUGDJTYYcavpV0i6PnnPafD8MDfMCRxqwNtRckdhTzf6 e3047wfN9oE908N+fHzL7yzfmtKvbDAXjLMCeHwn8438rPSdYgwjIgdjwV+K 3sCxL4tYeMST+7ue/mZEpx42/cAj/y6xr69qsMR+gRzivBjX765F2zMazQHv lrQPDN5uIcmDXNjTsVxDXEtTGv6fB8b1xHV1dYMlecnJfZT76W89fW+8NZ7X O6nWHvK/xL1XnFe51uXvJ/0V6S3SRxZtX6ec60juLXtRT/vA4O1ZdPz1wQHv mrQPjLx7SfaVfW2DJfZrPawjf9S87S/furJvbHAdct3QYB9zzZzvrJ5HRS5q 7yN9Zg/78ZFnn+iLWsiZMZb+wl+X3pb0fO8n3huS+xaN3dRg/xuxFvvFurGX wOERT33qPdfo3vaPPbexfrN6+Jt6tHzrcR9V7AFRh/xI7O97Gh8dtdGR9LaL cr/Zw884nncHFv3Mwz+maAwf2G0NXkPW8tlG4/Ceb3Qt6jCWDcV9h/tf6AcV bR9SdN93Ks/B0t+S75YGS+x3e1hHdk86jvjbGxxHPGMeJ7mR7DvkHyj5nnwd Setji7bB3+c+nbQP7K4G+4kHY35nxxodGvPNfuCcZt3YA+OLtrcI//jYN5s2 +1yI86UjYp6YfyT2HMnNxPm5p7/pDi/avqfBEhsM/pyY/8OKzju9wRKbGnt0 85rR55HybS79vgb7J8TaD9bvl54+l5hYtH1vgyU22BbSF/f0mQZxxL/c6Hzk /Uh9jJRvbqzdUUXbrzRaYoPBh9sz6Tlj7pjHo4uucb/qDmF+eP6Ic4z8e3Em qzyTisYeCA42vG2kf9nDZx1wP4n86MRjHys5TLzHFbut5Hzu9Unrk4u2wb+Q XC1pH9hjDfYTD3Zc0fUebXC/9M287Mizkvu+Yo8v2n66wRIbbAHPHZ6ZSecg F32fUDT2JM9W+bdv9jnDgsCI4brh/jdUsScWzXuqwfdM7pfw8YERz3cf34d8 +42Q/a1iV1XsrzzvS3p+dOrepZyn8FzoYc7JRfPw49tJ/NPk24c/m2k0F2wm f7+I+VbdP5fyGKZwr1CtU4vGdmmw//s4g5oSY2X+weERv1D6DzHn1GGu0XeV PEuc38U5o+jzFc5bTo8eed9GYn/fw/r3MUbynBbrTRzxwyMfeV9Q7C7NPsPh vAX9zKJt8N/jjAUf2PMNzjM81uXsovt+Vv695LtA9q+yp/ZwPLGj+HOiZvcz tWj7Df5tzKJ5oxrsA4OH75zo77yi54Q+z+U5Jv25Bvt2jvkZL7lMu56dSeO/ x1kKfZ0d8fzIRcz5knvy7FSefTnf7eHvU/qn9zWSHgf2aw3mEvNHT+vI1cW5 sOj4N/l7uew9xRaT9oGR9yL2ibCZDZbYf/a0jlwjemZs9H1x0bleF38/zpN7 +Pv0D8lLhf3d0/5Lisbw4+P79Ar5xvA8azAX7E3y8BzUr6Q8Byj2cnrgPalo 7K0G+/GVk8ax32k0Do94alL7rUbX+Ud1q+L/rLhrhNVpDa6SHM2fBYpzpfSf hL3UYIn9bw/rSM5VyEPf5CKO+N2bnY+8Lyv2IPaR8FrS+tVF2+DU5JwHH9j7 DZ4/5pH1GMP7UrNr3SxfWvw54oyTLyV9TZ5rzY4l/3VF27PFOZT3mqK5+K6L GteHb05w0MkzLjDy3hDzQT91YVMbPR0909u1RfdHHXJ91GAf2KxGc+k7D4f3 Een1kQMfefCBHd1gCc536+3snXZ/Fx8m7q3iNUveUjR2fIP9+DJJ49gfNxiH R/zr8rXoPtlD98nbir7e5orTLGypTl93d8h/hPyfEls09m1wsOExL9mYc7jH 69c7dOKx75KcKPk57zaag4Z2XyPodxZtgyeVr2/SPrAPNFdjOfuUnQsOueDh A5vd6PqpTvdwSDevK+s+rWj7w0b3eXfR3LtjPdkP08NHb+SjTr+kfWDkvUfy KJ6pDZb3xHjQkX2j7rTYZ5P0S3c6zyMxB8zbMTz/ZTe1m3Nf0Tz8+NZmvynP cu3+doYL9pViHygam8PfGZavizjr8ByXXt/pb3z0B4u2WU/WlXsoccSTl5rU /lI5Hyo619fsec7A435Lv/S9Qrv9DxeN4cfH+uID+yj6IRc9wWuOPMfxfhE1 Ho0c1MKPj/7Bsb9pMP5o7LMT5Vta41hXnMeLthc2WGKDPSF5kuxFDZbYXRU7 Xn11i3V8smh7Ls933llktwg7TL7WmPOneKYL+77BEnuZTvPhrpd0HPYPDc5H XmrAh9tfnGeKzvuxap0v/7MRQ51lO11rRtE2eZDYYPDhUut5+aZI/6nB+Z6J mMOlryo5QJznirY/abTEBiPu1GZzqE/ev2N+mBv6hEMNeC8U/b3PmUmb8BeL PjvBB7Ziu/34OGN5Rb4JqvdZo7lgP/L+wP1G4+gizunSXxbWXdhLRWM/N9iP b/2kcexfIhYe8eReKfY2OvWw6YdeOJd4NXKTE4ndS/KKZueih9eKtusz5vSK uvhei55mSp7Ds7/BsibORkk/s3he1SXthwf2etSBj2zsdM5egWGf2+wY8rxR tP2n+JdIFsXbhO8Uzvylbyz9zaLteZrPi8V5J9YMHxi8t4qOXypjzvmxT/CB kfftWH/WetWwS+3WS7FnbhX/M/lviTrkqlPOq5q9j9kbq4k7S1hV8nL53o3a +PFxfoUPLJ2xBGdc1Lkg9h7XzfviVSTfi17oH38lrqn341rkuisFj3jqU+8f +T8our9lFNtbvo9lD+DeLXm9/I3yfyj9Mp79GUvstdo9zvUkN0+a20/64NCJ x/5I8jrZWcV2cj+IawR9TtE2+FT9NkzaB/Z7g2tRZ9OkOeSCR78fxD3lZv2u 5nmcdP8DYo8xDuxlM+5zbtG9zo316SL/J0XHL5fx2uFnLPjAyPtpzAd8JHau 0zqSWqw58cuLc5T21frCtpB/qORd8g9J2v950did7N92++cVbXfNWGKDbaxf U6fX/cuibTjrSs4P+w7xb2z2/HxRtF3IWGKDrRu5yEMcdj5jH3mpcZ94g2Vv Kc5XRffcLWP5VfQ3Sf0PbPd514Ki7S8bvcbfyN48xnpnjPfrovOulLHEpgb8 zWOffBN7hL1BPvJSg3livuYr/73NXnv2Bvq3sZ8e0G8LcbfiOc4adrr/74q2 eyjngzxzeG522gcGb2HR8e3BAefcDB8YeRdJHqMevmq0xB7Sbn1I7ElyE9+R 8ZoNjTWlR3rtHv4fisYmd/PaEPtj0faCRssfY/1+iPVnHTnPIz+9of8U9ZDY nBn+ErnpgbnjLJE1Qv+5aPvnmFfWlPcX3mMWNDjul1jvF7nW9b7aprl4TPo2 wrZRnsXCB0lvVeyv0h8W1pmxD2yrdvvAVlDsb5LHaTzf8HdW2Y/yba08J8r3 t7Bh7canNfssAp0Y7P8VHbOy8s9gD3b6DI1aW8U19XvR/a2SscSm123Zm+If Ic4J3Wyj/1m0Dv/RqEFPjzfHOJPW/4q89EivCxsdRzx5weGtmjHOOLZV7B9F 1/tO/H+K7rsszgd8czf7bPCkbt4P7GGugX/FG9FuLjGMM1Eyb1GjOSPiesQH RjzPOp55PP/qSs5fzVi2dLrWc4Fhs493jmskVXJPdze4PjXYn3CWKpmXlDxZ 9b5vNDcVNfCBcQ1tyb2k2efnxBHPtYY/XTJWH/nojdglcUnj8HpmjD/U7N7Q icFmLv+INdtav13avX+WLtnupdhlpT/P+4T0ZUo+F+RMEon9iLBTunm9iYXL uWHP0InHzpS8d9hvLzCmTp8ZojeUbIPvGtcCPrA1M65FHc4q4ZALXpPkS/L3 zniP7Bb7hOuLa2vlpK8z7LUy7jNbcq9I7B/4+6glx7PfyLdip8/98IGRNy95 KveORkts9ij647G3iaUn4peTfFl2H+V8rdlni5w3Nsv/ivS+8k9RbBfZe7Sb S8zu0l+VPlJyx6Q54MOS9i9fMrZCcBk7a8WasX7g8PpljO+p3w5J68RgU5O8 PzW6F/pmvOjNMaddS+57beUplHyuyRkpEnulTusrxVy9FjGMs5vk6cr/S6O/ y/k+XzfjMe4e/XAfWyHuV3D34jpMmst3/PDwkwvsDfn3afc5Z2vJdv+MJTbY KP3aFbuzOGd0s43eVrL9q/o5k3dy2fu12wcGb8WQ5IQDztndfxh5u0u+pXoD Mpbdow90JL11yvee9I0zrkOuxY32jWF/887J85B63FP5swvpB7Tbj48zOnxg bzRYgnM+9o7w0Vyr0mdxnYnXk/tRydgGmfB3mgOOvVHGODziqU+9DTPujb7p 7xzOHNp9brayfO8LGyhOL+lnc97XaIl9YLtxeJ2d1pGM8QPpB3FNSp/Kt544 B7fbv0rJGD6w3/l7ldK/ErZdxji8TTKuRR3O/T6Ur1enc6KvVrK9Rsl9/6E8 q0ufzXM/Y4l9SLt15O5JxxE/KOM44hlzSXIpetScz2l2DHz0YuQFH6dfn6R9 YJtl7CcejFwHN3sOy5GbfjKSh7Z7fSsl2581WGKDzVXchGafS6wp3yfSh2Qs sVfWeD+SPl7cPcSplWwPzlhig8GHC6dact7NM5bY1PhUv8PFHSlOH/lSBfWa sX+tkrFzNT9HxL7tXbL9Z6MlNth50ifEWhNH/NCM85F3FfXxmXyXcT8Sp2/J 9pYZS2ww+HDphzlj7pjHfiXX+Et1J7JvOr0u68g/j+eO8qxdMrZVxhIbXqP0 49t9rgX382b3gE48dn/Jb7k/K/Z81TlS/L2S1tct2Qaf32w/PrC/G+0nHmy9 kuvNa3C/9M28HKXfkc3eMwNKtrfJWGKDLdDvGNn7JJ2DXPS9fsnY9ry3y54c 644PjBiuIa6tivwblMwblvH19KV+eyftAyO+UfN8reR4+fct2T6S92fp34k/ QvpC7mGyT2i3D+zMZvvx7cu7YtTnmoULtpP0dvlObPce/pHrWNjqWouBJWOL G+zHt3/SOPZuEQuP+NO5Vjo959Q5NeanQ/1uzjOJa0/yF56Xit1U+oWai38b LTeNewr6VzEP5KFvcv0S8Q+2Ox95z1Ke46I2ddEHl2yDU3NU0j6wHTPOQ47R 8m8RXPr5jfcC2WWN4WL18FC730t7FhwDf0jJ9tniDy2ZV5ezb0iMDR8Y8VtJ LmYfZvxng/wZ4Z4Z+84QPibp9WKtNkga588POZ+hL/pjTuGTi5itJS9RjaVy nvezYu3on94PTHoc2HtnzCXmzHbrZ8Z+2DbWjT3we7P5xOIDI+8wyUt5x81Z Dot9g44kz3Ylx4+KPNtF7ZPZ6/odl7S+fck2eb+Pe+YOUYc+kdhglyn/BbIP EmdEyXZKPfwtbEfZFY3zH+nns3fFGV6yPTpjiQ0GH+7ApOOwD8g4H3mpcaF+ /2v2WuwkX0JreWDGEvtfYWeLc1G752fnku19eI6Isyv7oN18uPS8S8l5x2Qs sakBH+4hScdhH5xxPvJeFPPEfO3C8441a/d1h75byXZacTWNa5D8ddL/UO6D eW8s2T5IsVdojHvKvqLdPjB4e5QcPy44V8Qc4gMj70jJetmHZiyxL2+3jhyb jNyKr9e6LCv/VTxrk+6RXvfN2L9Xydil+l0dz6+9S7YPyVhig8El5nC+XyST Bc8V+j4l20jsw+KeybsI982MfGvGnKCPKtlGYk8Qf3rMB+PiPsr9lHvrk/o9 r9+xit1fviZhk8TZT/qVGuPSOUvs68W7Qb9b4p4M90buQaETjz1aMi/76Ixj bqJu0voBJdvg9EGeAyI39/bNmBvZXQrmjI77Pj6wFTPGbuOdgOeIfDnZm0k/ sGR7hYz7HFNyr0jso+Q/KHJPjlro5EGCkffgiIODxF6r0zpyfNSlHrWv0vzc 0+yzhSPka5XvFMXeyr6Q3afTnLEl8/DjmyB+s7jLFxwLF+xYxR5aMna89DbJ acyPONcoz+3SJ4Y+vmT7FulnxLOBOOLJS01qL6N1PKzkXKdmHDM98tDvEVEP /+ElY62Ri94Ojzr/9UMuelpRer9O99Zd+kTGKP+EkrEpGfvxHZU0jn1axjg8 4q/jPCSuoyNLtrM5S2ywoyRXUszpGUvstRXbQ/p9wo9W7NEl22eI0yl5jOx1 Ot3rwzGHk9hvytuYs8S+v918uJOSjsOemnE+8lIDPlzezSbHHLDWK4tznOx1 FX9Dt5hTcY4t2c7lLI+N/QF/3ah1AtcN3+o55yMvva4izqOSx4hzfMn2eRlL bDDiHou5pT55z435YW7ww6EGvBMlVxV2vjirSZ4k+/F2+8D6d9qPb7JiT5Vv DdkXZcwFu0D6Tcr5RMz56ux3Yesp9uSSsaac/fjIA459YcTCI57cT8b9B516 T0Y/9MLYp8h3s2KWy1liP8U7lzgDxNlOnNNKti/OmAPO+w8+MHinl/z+w7sT 8ul4F+Ia4lpqyNkPD4zrieuqS86Sa4uc/J0m/m7TjAbfG6+P+9twyTOjD+J5 NyI/70PPNPud6qySbd6jOC85R3avgn1g8M6O+hcHB5xzFXxg5J0q+QjxGUvs Ge3WkeyrC+Wr8tzKuA65OOfBt0GnzzEq7Clh68sus3dKPv/Aj4+zHXxgl2Ys wTkbYf89G/vzVt5bYv+dH3uTfYgfH/2AYy+fMw6PeOpT77Lojb7p7xlhbzd7 fS/m3qzYFRR7UexZ9jAS+7l24xfH/kZH0ltNcsNOn7Gwty4t+ZmH/5KSsUtj 37E/WUPWspQxDu+KqPVcXBe3d/N+/k+/LPb3FSX3fYn4l0vfX/r6GcvLI9f+ UZt+iCO+Oec44hnzVZJTZO+eca+lgq8R9CtLtsFf4JmatA+MPvETD3aKfj8p 337iXF2yvas4ayr+h2a/o15Tsn1l+LHB1pK+UbxXXy/fHeqzkLPEfkm5eovz Is8Fca4r2b46Y4kNBh/uCeJcW3LeqzKW2NR4WfjGne7nJvnuVEzXnP03lIz1 Fb9PwXluLNm+NmOJDdav4Pdg3uuII/6ajPOR95V2v/sO7PT76s0l27w/I7HB 4MPl3ZI5Y+6Yx1tKrnGd+HeJ86qwk8S5jeeM/Dew50vGuuUsseH1556v38lJ cwd1OhadeOw7eKbw/MiZO7PdfPTbS7bBX4/5xAd2Y8Z+4sHuLLneTRn3S9/M C2N6I8Z1V8wHc4jEBiO+b8wzOe6MGndHbmoNkP0m+ytp392xHsPjvsw1O61k 3i0Zv3u+1e51wQdGfEM1kfgsr2/EtP/9Uf4d0peX1fsCzxPxblbs+pL3yt60 0z4w3sfx46OHByIffLhgt0rfQPJt+U8VZzrPbmHvyL6vZOy2jP3vxDqCY7fl jMMj/p5uzkkt6rwXYwd7RJz3JR9inzJfPF94h+H9KmP5YIwHHTk28tA3uYgj PltwPvLS/0DZm2mMU5LWHy7ZBn8/xoUP7K6M85CD59GjJfe9osYym+cd1xpz pt+Hsk8TZ5D0wZH/sZLtadzrSuZNz9gHBg8fGPFP0gvrIc4T0u9Vre45++CR /3Px5unHZyX47NjP9PVorBP8J6PeU5KzuGcoYLDszTv9fUHcRnHtMA5seoNL zJx268jDxHmm5Ph7xbmvm8fAGPGBkXdGjIPxIrE/arf+UcwPPT8R9Z4tOddK GuPmBeeiN2o+L2xuu/3PRW38c6Ofl3h+ST8uYy4Y80adzWKu4L4orKvsF6IX +sePjzwvRp37IvaFWANqUhv/bdEHvX0s/TVhPdTzK7xrSJ4j/8vcY7keM5bY KxSsI/k2Ic9LkbdXxG9RcD7y3q/Y+zUfj3Rb8j8LXqK/WrINTk3+p5/4wM5I ev6ejX32kPQhkilx3pHvCd4hxPlEsY/x7Sn/KpwxRZ7XS7bPY88Lf0v2U93s A4P3RsnxD2TMAdetZYkPjLxvSq7Be0TSEntowTqSf06V3maW3B91yDU1aR/Y 2Un3S99bivOp8r8tvTNnP75lEvaBPZixBGe8j4qzWuifsXfFW1n2uyVj5ybt x1efMI79UMY4POLbWrT+ZfUj/b2Sr7eHxXlanK0KS/4ZxcQH8m/NfUX+90vG Lk5aYsPjGn22m69TuMWoi0489mzJiuRlin28mzE46B9GDfBVc147fGDni/+C 5Ceytw0OueDhA7uSa1aylvO8PS99G3H1aEh8VLJ9RdJ9zim5VyQ245pbcvwl UYs6jQn7wMj7seR88R/NWGKXctaRDVGXetSeIX3N8H/Js4zvAOX/QvzPZJdz 5nxaMg8/vqz460oOU45cwlywx1T385KxG5XnS/lm8q0kzjrsYb41Qp9Xss16 vhfjJI548lKT2pcqz/yScz2ecb7tCs5Jv/RNPvxflIzhx0ctfGA3RD/zw/6K 5zXfXOw9yQXyb6/Yr0rGnsjYj4//rCM49h1J4/CI31R1NsotOSJMfF2yPT1p iQ32jeQCnicZS+zZiv1Avx0UqC2e+LZk+27Ffi3OQu6DzL1+O4rTXZzvuFcp 331JS+xNcubDbU04DvupjPORlxrw4cqVWFRy3geV5xtxf5D9ruwNuT/klvzP 1BPfl2zfnrTEBoMPl39i4iee7dLvTDofeel1nvThkquJ82PJ9iNJS2ww4rbO OQ/1yft0zA9zQ59wqAHvZ8lvhT0jzhfy/yJ7RME+sI1z9uPT52viN/aM7MeT 5oI9Jv1Drp2c1/Q7xS7mXi3715KxaUn78bEu4NgzMsbhEU/unVRrpYR16u0U /Wwc+f/HM07YvUlL7GHCFoozmHubOL+XbD+bMWdY1MUHBu8P5lXy6aTlImH6 vyXPLJ5X3P93DB7Yn+w35XoyaflNtyX/fPYSHQx7Z8VtHz38VbL9nHoYLt8Q /VbkmRI8OH+XbD+gnDtz0euevEvBvr8j/p+S458JDvjohH1g5P03eqQWEvvb btaRjGsP7ivK/3s31yHXc6yL7H/1W4v9KeJSwrYU9pl8ddIXdbMfH9cLPrCH kpbgW8k/n30SnDE8o8TbRjJZNvZo0n587GFw7FlJ4/CIpz71ntdY0mX3N0Oc H+XLlL0mS0t+zXNa/nr40p9PWmLvWvB67JbzGsHdJed9hU489rKSP8p+UbE/ KP8OwUdfpmwbfDfl60jYB/ZCxrWoU0uYQy549EvfzOlPXEc8jxPun95ZC8aB /WLGfTaU3SsSmz2ZLTv+pYzXjnWrS9gHRt5GyVG8vyQtsXcvWEf2THjNiX9Z eR7oZp08ixX/W7uf3fjzwduXHnN+N2sq234zaYkNtriba5B/+bLt15LuaTnZ f3Rzv7+0u1aX2Hf0icT+JeYGLvOzXIyJPsm3fIztQa6vbn6XW0G+kerxlYwl 9l7i7JezrdfzRHPZ9ltJ1+gquyNwuHAKZec9K2mJ/Wf0C5eeu0aP1CJfc9Rm npivM5N+Z9035gq9W8wXY+KGw7gOzPmewv2kpWz7PQUcwv1AdqrFPjB4rTF/ bwYHfNWEfWDkbZMcy/tQ0hJ7dM46slfCuYn/UJx/uL4Ut0rCPdLrOeHvXjZG 3j0L7nmlqEOfSGwwuMS8m/Q78oExLvQeMTYkNu/JHWXvs9c0h7+2+12Z92T0 9rJtJParGb+/8I7BewVxxLNHT5avP9d1znY1533bKd/e6mumjJ7SD+fdMGkf 2LIt9oHtxfeI5BGyPxXnOa67Fr93vSx9DWH7FIwTv3rCeq+osXLZMZcnHdcn 3tnAqAN/leiXfpDY9HqUfuNyfoamxZ0Q98DVysbmRz/UIHdGv5x+vRPWVy/b pkd6vSbpOOLJCw7vs6TxfeIdctWy682Rvxi5GXtji98L4UzS//u9fcl/GjLx P8lSzBFcYhhnuWzel0lzwFePWDDieVbxzOP5V5HvaN4dkpZNylVJWAfDHsW1 1OL3yTXL7mle0vWp8XrGnGrZvFrZ77Y3Rv/EMAZ8YHDp48icx1IN3xsZ+9cq G+sd+eiNWDj0sFaMAz745Jz96MRgM5fMKet3XC7GI06fsu1vlLOf9BOkfye9 r/QuilmQtMReQfIH1T0x9gPcSdEzer+Y63Vinpjz42UXpFcT1tcu2wZvjrnF B/Zt1KIOlzEccsFbX7KV+uJ0lWxhHyd8fXFt8SzjOsP+Puk+1y27VyT2C/Kv V3b8wqTz7as5XDNhHxh5B3Af03y+mbHE/rPdOnL5hGPpifgNuG/z3Sz+O6oz JWfOQPmXF+9r1VpacsPg7Rcxp4j3tvjj494CB0xbcYl/o7KxjaM++VmrPrFH weHdmjS+ftRFJwabmuSdm3QvG+T8jYNOf9iDyu77NnE2kb6isJ+SltjH5qwj WRe4xDDOTSV7Cvtf0t/lfJ//mPQ4GB9j4T7GPYxnAdz9pfdNmHt2rB1+coH9 pf5PzXldBpdtv52xxAY7T7/Top/uij0n+JuXbf+sHi6Sb6jsAwr2gcHbouz4 v4IDzv3qvMDIO4RnmmL+SFpir9JiHdlP/G15pqindzOuQy4OOPCdlPP+/Fv6 VsKKirlYvi15drTYj2+dhH1gdSlL8AEJy9EF692kbxM1to4c1MKPj/7BsRcl jcMjnvrUeyfj3uib/q7U74qcx7KdfJ2K+V2xw6SXpC+VssQeUzAO75Kc9Uti jP8q59Sc13Rl+XcQ57Kc/duXjeED+1P5D5I+SHpryji8WRnXos66Cfd1bvSG vmPZ9oiy+15ascOlVxSTSlli11qsI/snHEd8fcpxI8LeObj4r2LvcP0nrO9U tg2+VuTBB7ZMyn7iwa6X70D1vL44u5RtN4rTR9ja+h0q/65l2w3hxwbjxfya nMe7h3w38FxLWWJfx/h53rU4/+5l29mUJTYYfLj0uVvZed/LWGJT40buy1z/ cu8l322yV0jZP7Js7GbpB2ksG4mzZ9n2cilLbLA7pN/CPSnhOOLzKecj73rK U6e6G7SYs3fZ9vsZS2ww+HA3THjOmDvmcZ+yaxSU83bucdynxNlX/gE8c+Uf VTbWHBxseIcUvK84Q4C7YYvPYdCJx95fclrOe28p9ZPUb1DC+n5l2+AHxzzg A/sgYz/xYAeUXe/DjPulb+aFsxD89DC6bJszE+ToiJme8xkK5yqHRC76HlM2 1pZyH5u2uDd8YMRwDV0W19qB0S89ED8w57r4wIjPSX865+/c88u254t/MM8H 4cur1vv0LPvWnH0Hxxzhx8ccHlr2mRJnTXDB7uKe3+KzJD4b7pUcJ+weybFl Yyum7MfHOoJjd08Zh0f8Q/rdz/Mk4TqDW3x+tYXkEeKM488DJD8Wdr/qji+b 3yNliT22YB35Xx76JhdxxP+XD0lsSvOxRc610A8v2wanJuce+MBmZ5wHDP+E svvuqTxvyXeM7Ed5dnDdK3Yw78yK21L2ZtInlm3PUZ4jy+a1p+wDg4cPjPij JeuFfZTxf8OQ/5Zhr5R9WzPvCa8Xa8VeBee/c0gt+poQcwSfXMRMktxGcmXl WVr+AXm9UyTcP71vkfA4sG9JmUvM+IJ15BBxJpcdP1e9PaO4J3LOgw+MvMdK bqeY1VKW2IcVrCO3FP+4suNLKUtsci2jPMN5/0hYP75smz19eMHXxQmxx7le kNhgI1jjgs8rTi7bLovzOe+ucY0tq5xbxXVxUtn2JxlLbDD40+M6JQ774aTz kZcaGfGzHZ6TU4gT1pmyxJ6h+AbhD0tuI86pZdufqtZu4pwme0LBfLjsmSll 5/0sY4lNDfhwd0o4DnutlPORlxrME/P1sWInivuifMMS1k8v295WcXvqN1T+ V3PG4JxRtt1POUfybib7yIJ9YPDOLDt+leCA75KwD4y8Z0W/n2cssR/LWUcy V+Qmvi/vAJKvhP/0qEMs/qllY42KfTLnPXNO2fa8jCU2GFxiVlfOvSSP4kwz Yf3csm0k9top3zN5F+G+uaP01yI/+nll20jsovhzpa+ker9kfB/lfsq9tSD9 G8ldFXuhfLO4HsW/QPquil0zZYl9NGfdwl/KeR3hvsCahE489sWSuyumt2Lz yj9G+o4J6xeVbYMfxDtZwj6wL7i3y3cFz5rgkOug8IFtwjNU8oOc5+d93mFY P+mXlm0PTLnPS8ruFYm9sfyXlR3fP+V81NkzYR8YeS+X/FByUMoS+42cdeRe UZd61G5S78t1+IzrevlG8/xW7GxxrpI9qWDOlWXz8OPbgfuV5FjxRyTMBdtU sVeXjX2lOflb1+64Fp8vzcnZPyL0a4K3kOeQ9GMLtoknLzWp/aXyXFt2rneS 7uOAnHumX/qeXLD/urIx/JOjz+ui9//6IRc9fcR7Q87r20X4jdz/ea8rGxuc sh/fbgnj2AsyxuERPzfnNWJf3VS2vXnK8qZYv5t5zuje/FDKEnt8i9fgs9gD t8SasNYfK+a2sueJ87zDWvwdd2v0vlnKEpszPPhwmVvisLdIOR95qQEfLmtx e9l5OQ/8VL47I4Y6fDdS646ybfIgscE+jXrUupv7Mfe0lPPdHjGcb+HnzOeu sm3O2ZB3RQy/iTlzqE/eoTE/zM3whDnUgDeNcXCvECcr/3Tu4S32TYt4/Pg4 G7mP/St9WMpcsM/Vw0TJL2O9FkjeyzOGd6Wysa1S9uPjHguOvX3KODziyT1Z v50T1qk3Ofr5NObnfu5/8m2TssTmzIb71vy4dz1Qtr1jcMDpHx8YvAfLPr/h jAh5XIvPdq6JPcJ+wA8PjOuJ62qnlCXX1h4J30e5ny6V972R++LWXMvSH5b/ RMnjyS//7vIvz3WT8xgfKdv+Wvt/BcnHY17wgcF7tOz44SlzFsQc4gMj72Mx T8wnEvvbnPVvo9Yz8q2o+J8yrkOubzL2Ha8ce4vzg7hPCvua8Sn2CemLcvbj 496ID2yHlOWi6Ock3hP0Gym9mXf1sp8nT5WN7ZyyHx9rBI79bcY4POKpT71d U+6Nvumvq/TThY9S7LPytUtfrLWbwfrzZz4ZS+wpBePPBoaOXDvhtTwz57Wm l+djr+B/rmzs+eidnKwha7ldyjg89hX5pkTOo+U7seBxob9Qtv1S2X0vVJ4X pf+i3CNTlthf5KwjuR8SR/y2KccRz5hfkfxNnL05J5G/Rb99E9ZfLtsGP6ng +ccHtihjP/FgJ+t3lvLtx/tS2fb34vwvZx3/a2Xb+6QsXwve79LPVuz+4rxR dh76QWKfUnAfU1vc2+vRF/mR2GDwT4laM8vOOypliX127CP6Zixvy3cOOVP2 vxlz0drhfcKefKscdsbyrdhDbR1+TvOMfjP2F/uKfOQ9teBn/h+R55141+BZ j8QGgw/3gITn4tUY/7tl1/hRdc+XfZqwMeK8xx7knUV5ZpWNHZCyxIZ3Ie8z PK8S5v6d8zWITjz2B5J1uq8cpNjuXLusS8L6+2Xb4D/nfF3gA/s5Yz/xYB+W XW9Myv2+G+80p8n3b+ScXba9R8oSGyytPKer34MTzkEu+p5TNjZO/EtkX67f QQn7wIjhujkxnjsflc07OOV7JvdL9gA+MOL5u6b87534+6b1ws8o+M/ZB4l/ c0Xvrvq4XVr+T8S/osWcj8vm4cc3VvzP5VtG9mEpc8HGS+/Be1eLx7I6z5Wy c3xaNvZrxn581AXH/jdpHB7xffVrzPs8kzoX5nz+eRXPQe4h6md+2eeinIXO i34PTVliw0W/KnomD32Ti7j5MYYvg8tY2jt8rkpd9C/KtsGpSR58YIszzkMO evuq7L4zynOL5EL2sGKul36jfuN4Jxf32pzP+haUbR8t/tdl845M2QcGDx8Y 8d9KdhE2WZxvyj7P4zwNH2drnNetLn01OAnjTXmfB9IX/TGn8MlFzHeSNwmb pDz9W4yRh/7pfULC48CmLtzvwkZHwllUdnwTz3TlOJszmIR9i6Lv7yU7uI9m LLFvyllHrhc9Mzb6/qHsXCdwdif/HfqNF6cn1ynPtrz9P5aN4cfH/eFX+Tpl /54xF+x/3LuET+XPP3l/U8wvwqZJ/lw2dkrKfnyHJ4xjn5gyDo94alL7+JTr dM17fVeU/J37qTi/Sd4szjHiLJZ+t/STU5bY01usI+mHPPRNLuKIb4l85J3C vUVyubznHP1/Zdvg1DwmYR/YqbEWzCPr0UP6Pco7URz+MO1x6eeL0yF/d/2O lLuXeri/xfqfZdt/8PfG5ftH9gMt9oHB+6vs+LNS5oAflbAPjLx/c71Inpmy xH6wxTqSvUpvf5TdH3XIdVrKPrAzUu6XvjkP5lz4X2HnFuzHx/kwPjDOq5Hg nC2vrJ5Xzbu3J+RfquKz2LqKsT8z9uODD459Qco4POLrdX88TPqyksmKr7cL Uz5TfrLF55Zp+V+QfiXfFxVjheBgw6sofhXlPTZhLmdwm4ZOPPbSFZ/zcWa4 luqsmTcfvb5iG/zFFp/j4QO7KmVftuJzPjjk+s+HhHMe708tPhvsrbjLuNak L1uxfXXKfS5Tca9I7FQ6kWioOP6vjPNRhx7wgZE3U/E5IueQW4cNjo78ry71 qE2NtWKMy8u3mux/lL+PfDnZ5xfMaYxx4sd3Ivc36S8r70kJc8Gu4V5aMXZt yvgFBXNWVZ5XYuzoTRXbrCfryj2UOOKJa4w5YLzLhY/860Qf9EC/9D2zxf4u 0Qd+fCcn7AO7IfohFz2tJ9/qnN+JM0P+ZvnfZB9XjN2csh/f8Qnj2JemjMMj /kLlKsc5baFi+9+MJTZY1+DiR2KvEee78IjtVrHNue4w1WmVfRF/diXf4zmf B7aEj78ggsTmLBg+NufDxGGvmnK+btETOFw4bRXnvVWcovroLrvU4Z7ebvGc rBg9UguJDQYfLuelPeS7RHmXyjofeel1Q+kXy38K35IV27enLLHBiHuX+0XC 9clbl/X8rBHrAoca8Nq5rhV/h/LsIrtD9qwW+9qjD/z4OK/rJd/Gwu5MmQtW S7n353Pu/w35OoVdqtieMQeMBf+l0T849k0RC494cvfnnp+wTj1s+qEXxrUy 66+YZNYS+z3uWeJUZJ8mzioV23elzAGfmrAPDN6qkpvIvjtl+X6sEc8snle8 2+CHB7Ya17d6SGUtP2jxGTI6GPYeLbbxr16x3Sfleh+2uLdBXOM5n2GuUbE9 jfN8yXKsBz4weMXol7qbxlwwD/jAyFuKdWMdZ/1n56wjWbutFbee/FcUXIdc 01OOv7zg3uZIrwqrxvlrRfrslvB3+KwMHxjnvUhwzvG2UL7N9Ds94Xxrivcx +6Ni7P6U/R/HPIBjp7PG4RFPferdw/Mixsf8fMT9SPanzGn0SGzvis96Ob9F 9o455ezwqxZ/L8Pl7PXM0InH7ie5nbhPpDwOzhYZC3rfim3wTWPO+8Z8TI9a 1GEd4fSLOaXftWJsQ2QPzrsu/dP7GQmPA/velPtcu+Jekdicf65bcfwDKa8d 63Z2wj4w8vaXHMr7R8oS+5MW68izEl5z4h9J2Tcv/GdKjsj7bAr/gIqxWodr 0PP6Fdv1Wcv1o6cvxVsQ95mNKrYfV/4deO/mXim5vX5fcz2Is2HF9pMpS2ww +HC5NonDfirlfOSlxpUa9468F3JPqLjnGSlL7DU5nxLvO57HXOMV20+LM581 qjgHfLiMd5PwLZ21xKbG/KhHLeKwH005H3m/i3livlgXvlm3yfu7FX3Tim3O Yq4q+FubmpwDUnez6Je6a0luEfsPHxi8wRXHc/4DZ7vYe/jAyLt57Bf2LRKb 8yF0JHue3MQvo1q7KkfvOAuiR3rlfBL/kIqx3XjH5t1CnKEV2y+mLLHB4BLz An/WwPdDzDn6lhXbSOxlVXfrivfZXinPHX746FsFb6uYV9aU9xfeY/7OOG7r WO9/pe8vvU7vbX2F9+vwGcK2FZ8xcO6xTYyDuvjArinYB7ZY8zJMcpGw58Tv I//OvHspz16SI4RdVzDOmQhrh04M9nYVxzQo//XiLY65ohZ1OJ/ZvuL+MllL bHol7++8T4gzivc42RdL3zFqZrPOTQ16ImbtGCP68IpteqTX11KOI568w6MO ecDBqLVDxfXeEH+nivtuFOe3Fs/p5eJcKrl73ud1P0nfOXj8iGGcu1TMOyRl DtgFEQtGPM+61eMZuWv0Sy1kMu+xoINhc46zd/j3qLinmSnXp8ZLKXN2q5i3 O88dyVkpc4lhDGMC4zxpHeVfl/fHhOOI59wJ/8iKsT0l/5D/zZRjieOcBxxe Lmv8Bt6nEtaJwWYumVPW70b99pV9CPunYjuv2H24FhXzivLvzfpKn5iy3Dt4 B+V91jQ2YW427/2DTjz2vhWfIXEeRd8j8x4X+qiK7Stj/PQ/KsZHD9SiDr3B 2TfmbozkwZIfKOdt8i/V6m9w5pFri/2wf8wr80yf+1XcKxL7ffkPqDj+uJTz JRV7bcI+MPKOljyE52HKEnuFvHUkZyAHR0/EHyjZn28Y9f+n8hya99nL2IrP RTg/OYz9IvumgrnErMeZn+xllOPKhDng1yXsP7hi7BDJlOTslOeGNWP9wOEt lzWOTp5UxGBTk7wfp9zL2Oh/iV6xfWjFfb8lzrjoi5xIbM4w0AsxriVjrHic 4yUP55md8nc53+cfpTxGYuBzH+Mexj0c7n5570+4fMdfFX5ygU3Q7xb1fjX+ iu3PUpbYYAM6HEMecmQizxEV2/RzlPAjZR+Ztw8M3oSK47tkgxP7Gd+EGM9E yUZx56UssfOt1pFXiD9ZvibpX6Zch1zzU/bdph6v4VtY+tHCbpV9tPCjKvbx w/dswj6wL1KWYPjvanFOeltfvR0jXjfZkyrGTkrZj4+zMnDs5bPGJ0VPR0fN /3qjb/pjrx+X93V0nHwbKHYFxR5b8fkbZ3FI7El54/BaQ0dybsb52eTQyXdC xedf+I+vGMMH9o1yXia9l2r/kTIO79SoNSnG0kX4Cvq9FPqJFdsnxzXKfeCk 8JETid0ccc0RSxzxC1KOOzn6OFXyZMnv6SHv65n7APopca8Bv13zdEPCPrBv U/YTD3ai9BblvV6cKRXbC/m25bs+1vG0iu3mrCU2WDf9Wlud/0z5TuE9JmWJ fazk8owr7710RsX21ylLbDD4cBnv6RXnXZSyxKbGqcLvUL83iTNVvo24nrP2 n1Uxdpr0NnFvFOfsiu2fU5bYYFOln6HfrQnHEf9jyvnI212cHvrdqXy3iXNO xfavKUtsMPhwb054zpg75vHcimv8Lv7G4nS2uufz5T8n7z1zXsVY16wlNrxj 9dtE9i0Jc+8q/L9OPPaFkgO5ZhT7aIv3Ieex6BfEvgRfmessYR/YuSn7iQe7 qOJ6O6TdL30zL+fq9zVzzftVxfafKUtssLvVx8qtPuMlB7no+5KKsZasz3bR 4SDBVo7rtS2u2Usr5nE2S9+c0zIWfJdGrjvl2zzvb7enKra7qufLoya1yHtF xWfG+C6PucaPjx6ulu8C6f+kzAVjXOfFmBkvZ8lXCVuF51nF2F8p+/FxzgyO fVbEXhlzNE29npn3nqHOeZGznWtLnNV5Tkducl4j/Xxx/k5ZYq/Wah15Z+S5 OvpYJeJXjXzkXazYC/P+s7e7Etavq9gGp+btCfvA/k05z6oxlhsq7rtVc3gP +112b2EXi7tGq/fPRTE2xnVjxTb/Y7abKubVpe27MXLhAyP+FslN1Utb1n82 SF/UwreZfm8lvF6sFfscnD8/ZCzkoj/mFD65iLlV8mqeh6r7bIv7PjphSe/o jAN7xay5xEwvWEeS//aK4y9LOW+fVveD7/aIv0PyGsU0pC2xK3nryOPFvzP6 ohYSm1yDpW/e4TNb9Lsqtq9T3L3KPY3romI7m7bEBrtB+n2S0xlXxXYubd80 2f1anWuLyD89cq+UtcQGgw+XPMRhwyHfPWG/ztlHq8/97uV65Iwya4m9Dvst b/sece6r2G5Mu8YDstcNHC6c+yvOe2PKEpsa8OHS8wPRI7XId1/UZp6Yr+5Z n1VfE/OM/mCsB/N7Y97rtW6rz685P3yoYjufdr1HKz7LxAcG7+FYn4bggDN2 fGDkfaTic0vOWpHYDxSsI6cmnJt45mFIh8fA2OmRXjlvx/9YzBfnmDdFn49X bHNGisQGg0tMu8Y+tMNnppzXoT9RsY3E7sj6nsm7CPfN/tIf5Fs3Yf3Jim0k dlPa/zYS/7YT/z4S91Hup9xbRyjfTh1+J3xGvrnq6T719rT0LTkjzlpib6xc jyjHIMn7EuY+VPDZIzrx2M9yP1DuVtXdSrFbd/jsC31GxTb4w+Len7APrFO1 NuHdh+dWwRxywcMH1pL2ed6d8Vz4ryf6eT565BmB77mKe0Vi91L+FyqO5+yO fNR5IGHfC/GMeTF6hI/E5mwPHXlW1H0+8nJ+d3f432Bv8zxTD9uI/0rF54Bw Xq6Yhx8f54qbcT2zfglzwVZW3Vcrxlbk2hd3CPuYa4e9xtyF/lrF9v+Uf770 Z/KOI5681KQ255AzK861knJuKewx9T474X7p+6G8/a9XjOF/KGrhA+sZ/ZCL nrZVv/fHWIZyH634PPHNirFVsvbj49oBx+5IG4dH/JP6Pajfo+K8XbG9etoS G+ydis8vOatEYm+vXN8yvujh3YrtZzi/FfYec9rqM7LH8j4Hm8X+4h0hbYk9 PG8+3EcSjsPulXY+8lID/vDI837FeTmv21bcD2VvJ/lE3ud3nNV8ULG9WtoS Gww+3DnizKn4vIfzJfKRl17BHy+YMztykweJ/Xichz0RtahP3lXSnh/m5rKE OXOij48kh2neV816r8yt+HwFHxjnWPjxcVb2KXWFrZY1F6yk/Dso93D95iZ8 FvaJsKeEfVwxtkbafnyciYFjcyYGDo94cm/f4TMQdOph089eEfuZfC9KXytt if0E9zf9dosePq/YXj1rDvgTCfvA4M2LmvSPBCOWa4hrqT388yIX1xPX1esp y2diTj6Ov5fE3xfi3rhx3A/p+wvF7JP3t/rLeX/X7yH9Ke5H0r+s2O6jWq8J /1r2jh32gcH7quJ4zg3ggD+VsA+MvAuYZ/nXyFpic8aAjuT8YRHrpXylrOuQ a+20fa8G52np3wrbW7lnyvcNe6DVfnxPJuwDWydtuQRPuK/h0due8i2sOO67 GFMxaz8+8oBj90sbh0f8txEHn97om/5Gifus7GcU+4N8O8muKPZ76Vnpn6cs v49xgsObmLeOZP9T49m8++R591PFzzz8P1aM4QMrZ72GrCV76cfokTmk1jNx tvOOYmZInxH6zxXbv1bcd3/1+UvF/VeyltgHxJiQjIs44jdIO+7XiPkteiR2 d+7P4jyesL64Yhv8pbyf3fjAeqftJx5sVt7f/pwP/K9ieyNxPpEcI/4XXL8V 20PCjw3GOcThrf42/0u+94RtnLbEPkGy0Oqc5P+zYvu7lOWfUQ8+XM4G/6g4 L2cRSGxqUO/A6Odf+UZK75u2/++KMX4HBeef8NEPEhtsjuqMlXwh4TjiGS/5 /o0xvK/fK3lfj/xFY+yBaUtsMPjvRc+MgbljHuuqrrGZ+KPFGcd7gDhJ+WfL v6n8S1WNbRgcbHg7d/i8gPMWuO/mfcaCTjx2uurzFc5hGMdzBY8FPVW1DT47 YvGBURd/Ovqor7peNet+64LHOcVH0cPSVducIyGxwXbp8DkRZzvkIBd9L1M1 VlPOQxm3enkxYR8YMVw33P+4ny9bNW9w2v8W6Qviv5KwD4z4G1bWXmnS/ggO /24pvIzkp7KHyp+X/hLfePyZmvJnZR/RahzeBOm7yb+7fq8lzDki9gD+xqqx nOQXPHuV86u89ZkJ4/DWytr3YsF+dGKwV6g6Zru061Njzaz7or+jW33GhM0Z 1HLyfclzVfymqjHOmvCBcfYElzj4XaJHxoiPcyv86MtXbYNPavUY0YmZFDg8 xkWdppgv+l0hxtwquZKwX7g2pR/T6rEg9+jwWRZnWtjoSHhgzVVjnKctyDsv 87MXcyD/3Qn7u8YcIbG3V/6X1cfkVp+HdKva7pN1L/TEGRK5m6MnzpjgwEdv iRj6OD3v3ogljnODtuiRnPCoQb1v8u6BPtFXjJ7IR17Ovogj/vTA4e0o/0LJ 45Tjdc4ltDevZQ4LXjvWjTM9ON2r5vWU7JD8TfMzku9a2Xt2uI+VuHa4J3LP KXjt4ID/kLC/vWqsQ/JVvtuzjiOeOQSHNyJt/IRWn2G+GjHYnBud1OqzI+pT o2/WffWMvKdIPyvvc6Fe0SO1OqvGdk3bB/ZD3rHEUWvlGMdO4izKe/zMD/oq VdvgnFuxdujEXBA4vJ3TnjO45KHnVavuu6bf6bGXTpMsyn8F95G8bf6O3M/S f9LvDemrV42lyVM1tof0KeJWW/13EdHXqNpmLk+MfUgc8acFDm/3tG1qUqtc dU/1aeemBrV/ydumh1LV9si0ucQwBnyl6Gmxfq9pDt9MeEzUoE/8laqxquSV spdOez6YF84qweHtlTZ+ZqvPjtCJwa5VfR2uzd9t4B4T63uF9C2EvVMwjzMm YteS7zfpeyvnmlXHLJO2D+yqvH1g5OoteSr317TPk2bG2dQ+nOdUfZ4Efhbj TlgnBrtP1TGcca3HOwznSgnXog5nOH1jHIwRiU2vf7C/xH9bnL07PA/M4dpV Y/tGP9SYGedP57T6HAZ9naptelzSa9ZxxJMXHB5na+CMg3H1q7reOuL3r7rv 5cTZT779O/ydPqrDueiNGuuJd3PeXGIY54Cqef2z5oDfE7EDYgysG+vHPXR9 yaTuNYekLe/K+1wCHQx7X/EvFXeW/BtV3dOArOtTgzmBs0HVvA0lB0p2i/6J YQwDA3tTfS6t/G9xXlrnOOLXy9q/cdXYQMm3JdfPOvbNOLcBhzc+bfzK6O3t iMFmLvvFPqYnMDibRI+Md9Poi/yDpA/mmZC2HBTzcpn02/PeP3DvzXst0InH Hiy5Ic8SxS6vmJR+HyWsb1a1DX5rq88Z8IEdG7Wow5zDIRe8LdmPkhPTPk+p b3Jdri+urfcSvs6wD027z82r7hWJPZZzwqrjOXsh37uK/TBhHxh5h0oewPpl LbE5a0FHcv5zXfRE/FaS18qewJk8e6zV5znDuC6lH8X7J2dNsjNN5hKTlb4V e7/JOeFkQse/TdXYtpK7SD6f9lptEvsAHF5n2vjDedfdJWKwqUneDbPu5Xv9 /k1Ypz/s7avuexJnGtKXU/wxaUvsW1qtI4fWmUsM49xBsouwyXxLSh/GsyTt MTK+9xN+pvFs45kHt6nJZztwu4SOJBfYkmdy3s9lODtGjRPkfzzvc5gx0neJ fbMz+13z8VjCPX5XcJ87VY1V1c+IGAd9sp+ey3vvoe9ctb2ich0g/YOC44gn 786xB9mf1F0+9vNI9pf8x6edmxrU5rv8rlZ/m+9atc33flfF7Vb19z8+MHjd 5L9T8pOEx0SNjbL27141tgf3T+6jadd8Pe/xgsM7KW38vYK/r/eJGGzqUhP/ gbxHyv5Y+r7Cp4l3Cu+rTfEtzfuk/He0+ltgz6pjNs7aB/Z+wT4wcu3N/Yr7 r/gHcZaY9zf1JPmflv/itHG+LzgLQicGe5+qYwZm3Qs9TW91LeqsqnUcVXV/ p0af2PTKt3trk2sRS9yn0verGtsg+qEGPR3c4W9LvjfR96/aZj5Zy9cjJ/Hk BYe3SdZ7g33xWcJryJyemPZ+AZuS9nfvPa3+Lj5EcoywDwv2j64aw/9hnEEd LN9Y7ptZc8EGpb0nPsx7/xwi/KBY4wNjv7DW+PGxZ8CxB2WNwyOemtTmm5o6 4zr8jbw/98iY07GSc9TPZoo9RHpP+c5OW2LPLlhHzk84D32TizjiH4p85F0/ 7XUAYy3Qx0UNcGqyx8bFOrOm5Ho7797Qx1dtHyk5Xvbm6u1h7q+y53KGJf0j vqv4hu0w52Xph1eNXaich1WNDc46ZnXVnZewfkTVNntzhn4LEo4j/qPA4f1X F31e1DoseqIXsKlpf+N2Nvk7F4y++SbGP7FqDD8++sQHxjc138zFJvvRj6ra Lut3dNXf4uNjvlkjeua6mhFcYvhvi8Al5tK0JXF845/BXmr1O1tF/sN4xuia upB7vzi7pJ1rsuxneR7r93ne5wmTow45j5X+MX8WoR6OqTrXZfIfJ30iz7O0 8WOjj76MSf6vlec5yZPlf7HVHHB6mxg2+ilVx1ybdm5q0Cuc46L2iZK9hV2d dp/HV90rvqp+3/BeLfkSz4CEe3821pceqP+t9JOq5l2Vdg5ynZt2j/AuTzsn 9cgLlxjy0tPKTZ7DM6v+7uRb9XD5z4gxTJHsI3lN2vJVcRbyTss9TNgrrfbD AyOG8TNfYPM1plfFP0r6afJ/orEPr/r5NyJrH9g2actP4pwEHB7PSPr6tOBv Q+qSl5ynR33meWarv7WJpXfGMCTrWMZGPJyzqubRO7muY8+Le7bsdZqsI5lz clODMZCPsbEHyEGuG9KOI2aoap0Q68y+QmIzv8e3uhY9T+D9Xfoi6efGnNHD OdIH8F6Stg/srVb7wL5VD+dV/V3LN+8brf7+ZU7ggPOOAf5Zwd/s6MRgn191 zE2K3VD8S2RvEOv5VqzpBVX3t2XWEpte32bPtzon19nnBX+rXlQ1dmv0Qw16 msh7t+K+T1i/uGqbmtS+Pe044skLDm+rrHH6+lGxl8o/kO8W3ucl53MWzl4S 9yphR3N/6rBNP1dWzdlGed5R3st4Jraac3nVPPKR9135N5F+hfR5BevIn5Vn atVrNjxtOTX2CjnItXXWccTcnXYt6tADNbFvS7uXD1r/v+ejo8+rqx7P9LTH AUbP+K6OMVxT9fnQtlmfFXFmNC1tiX9xwjzGTA3Whfsga8MYGd9PCXPJNbvV OpLY66q+n+6ZtsTm3tqlLZFI1xKJFSQ3U56beI60+tt7Tqu/xxnHr3mP5Yaq Mb79r481oefBTf4m53sc/caq7dslh/BNlHYc8eQFh3dv2nWp+VvCXGL+zDs3 Nag9lfttq7+Xb67aHsX3FNeQ7N+DAwZvC/nnSv4v4TFR4560/bdWjd0meS7v TGnXpSZ//wEc3v1p4/TJuM6NGGzqUpO5pfdPon9qTxfnL2GT1P+d0o8JiT2M d9GYY8a+lfJ8qXXiH0PHB0auu6rGHhbnBe4H3EcV+xV/Fin8nYRxeMTfXTW2 XXCw4VGbsTAP1MdGnyb8POH7p90z/TK390S/5Jkec8k84Lsn5oU4atDDvfJt K99jaff9RcwDnGnRE/hkxb+bsE4M9n0xVvYGa8ic3hd5wMi1oOC1YV12a/KY mSvG9k/ePTwQY2WutmPOZG/TZB8YvAerjn8xOOB/Rs4HY64fkrxAMaPTltg/ tlpH8t1EP/fHnqYOuZ4Qf/smn2NwBjKfdxHWRXKYfI8wD63246N/fGCPpy3B 6+S/hDGzHgmffTwu3lLMb9XYwWn78XEGAo7N+Qk4POKfqLqnJ/m2lUw3+Zzh WM37s8IaeMa3GsP/lHw7SH9K/Cer9j+dDp/sb4ILRq6nJS+Xb1za2Neal78T nhvmaPus8a9bPSfoxGA/E/n+y49O7DeBkWtG1f0dwXuaej6+w2cd9E/vHyQ8 DuwdsubOiL6fqzpmR/l3Jj9n3HW+hhaxbxKeG+aINftO8m+uqahFPPWIfb7q eCT2c2mv7ZI1Tjsn1yd5/9Cvpcnfp6/Ktyvv1Wnnekl2o+zrxXlR+gjqtjqe fuCAM0b8L8c1/0rVZxWcabB3Fsa9AhzejLRxzk1mJ6wTg/1m7EH22EsxJu4h 9EV/nItwhvJDq89VZsq3O++g4r9WNca5DT4w3tGIJY4zitflu1d693qfHQxu sx/9japt8J+UZ2KddWKwweHxTkgd6v0Q1wd9M873JE9iHcR5W/qJ0nfKWi4W L6mcezX5+uHawQ8P7K2qsdfY/zyvmnz2wvyPiP2D/52qMSR2UfyH2N95/72O d6u2e9a7F3o6ucO534pr+DfFbamx9qqzPqtqe1/e+zSOdJ1jiVtK+vtVY29G LWpQ7/uC9xD7B/2Dqm3ykXdm2nHELwoc3i6ak9tarRPLerFWjPfDqrHj0pYf Rgy9zJE+Utxf5J8tfYUm+/HR58esibi7Zs0Fo9Zo4ad0eFwH8JzlHsv9sWrs 3bT9+OrrjGNzfYHDI56a1H4l7Tpcg5wJjOHeLexUvjtjDpirT6TfLf3ktOUn 0R86kljkx3E9E0d8S+Qj76y0azOP9I/+WawH+JKaCfvAGPuB8v/LvbzO+ryq 7a/Z/5KnKedPfNNzr9a6HyTOlA6P/Ueu1zafBX1RNfY+74pVY7sp/8HsX3GW rrP+ZdU2c8Oa8NwhjnjygsP7IOpSk7Md8pGXevQCtnvWMadFP/dG32D4F1SN 4f8pzogWRB1if5avO/OXsP5N1fb93Luq9jEfzMt7ad/buMaOTJsLvkfWXGLO SFviJydnK5zBMOesWY8mr+ONkmvrvbSOZ6T8hzb5bGpR1XzOeRZG7+THB3ZI k30LY899LzmOa1/8JO+6+i2jeXhC/F+FHd5knHMizojGRQz2D1XHfMg3o+zV mjw/1KIOPf9YdX/npy2x6bWeOvplVesw2auyrsxh1dhH0Q816GlZ/Rr0q9RZ /6Vqmx7p9YK044hfJnB4n6SNHx75f6q63sfyL66670+l/6J5zsfYJzTZz1io 8Zt42Tb7iGGc/6ua91nanGz0NiEwuP9TzuW0Rj2F/S7fRPZJ2jLDmOqsg2Ef Jf30Dp99/VV1TyOzrk8N+oTzR9W8PyWPZt2jf2IYAz6wXKwnGOMijvj5afv/ jhr/SD6lOboo7VjiSnXG4bE3wMfFHkD/J/YNc8mcrhq9r9Hk/v+NHum/TnPw jGIuUR7+AxHkpwck9q/q4bgmnw1x9gL3qMiDTjx2suYzH86mzlDuUpPPf9CX qtkGnxx+fGB7Zl2LOowLDrngLSN5ouRC5WwWp6t+jXX+7uObL1fn7z/sBWn3 maq5VyT2N+y9muO/TTvfsU2OxQdG3qUll5f8Om2JfXyTdWRDnWPpifhlJV9Q r1fybSj77A6fSzTK38q1IX83rgvZazaZS8xijfNMcU+SL19nDjhnNfgzNWPZ ms+9OHNjrVgz1g8c3l5Z478VfP6DTgw2Ncm7KO1eOFPjjA6d/rDzNff9G2uN rpx7Zy2xT2myjmyqM5cYxtmE5BpK+xriWton6zEyPmpxH+Mexn0bbodqL19n LtdcPvzkAuP+ybss99CT4vqEUxR+BXn0DtMpXkH2m63ug7M85pzzO8bLHK4Q PdLP8jVjnAeux7Vc8DkPenPNdpvkxbLr6h1HfJ/A4d2cdl1qcg4Gl5g/Cs69 fMz1VMVOFbaCeu5asz1KPZwvXzfZqwRnCSbfBdxX23wOxpio8Xva/paasVbJ 82T/lXZdahbqjMP7J218NXEH1FknBpu6q8ScbyS92ObzIs5fOsT5U7nOUT/d pc9qtcTelz9zqTnmDuV/r9W16BMfGLlWqhm7U5wusWfZbyVhGzf57AV8pei1 R83YUvWW2BtHX5xN0Rv16YWzoPYYB2Ok5z/jPK1n1Ge9GAcY51r4wDaJ+bik yXPSKd+5yrsf33TMpfJ0qzOHGvDAmV/mFr0z9kSvmmPS9V5D5vTvtH1gf8UZ VbXNZymcDV0aYz+vw2dk9LxKzfb+6qEs7upcX232gcFbteZ4znnggI+usw+M vKtJ/iC5a70lNmdD6EjOLuhn5Zp7og65kuJfTe/qt6XO11MxxgZvjZrPL/Dj Y37WiByMHQnOGDl7qrX5HOZ89V9mfbnf14xxBoIf3x8J49gHZI3DI75Sc0/L Kv8/6qs3+111r5evj7BrkG0+o+CsoybfPMU/ovzVmmNGZ+0Dg4sPjFxrRl9w yAVGfuaGOeI8E3zrJveJTgz2WlG/od75yU0P1wS2pN+oCYfzj7Xb/B1H//Co xTiwG+vNJYbx9K05hrOXiyWvbfL5Eu+NvDNyfsLcMEesGdcW1xj3ROKIpx6x /WqOR2IfpJzTuicST/bWvWZ5v4eSN68eRq2pb1eN8ybNyQD575S/q/wDlGtd 2f8qf1/p60hfl+el8t3S5PMNOODd6+zvXzO2nuSFyjlGOe+WPUi8a+uMw3sm bXx4k88K0InB3rjmmJZ616dGl3r3RX+3SU6Hx7WtnBvItwHPfnHWrxlrq7cP bNM2xxLXQ/wN5VuoHp5lTuTbqclnBegb1WyDb9LmMxZ0YrDB4bXWuw716OPu 6JtxDpa8SOM5kP/dlvR7hK1Yb8lZA+cJnAtMi7r44YENrBnjjIVcm8W8NfJO 0tXvn/gH1YwNipr0wxkB/6FbzhA2rdnmrIBeBse8kHtgjIF54Zuf/Ym+Wc32 xeJfwv2uzrHEMc+b14wdlHVualDvEXJIrlJnfYua7c1i7lkL4ognLzi8XvIv Jd7Wbf5ubV0ukZgprK2r127TuHbgDKmZt43kFjwnFPs7ZxQ14+QdKv1SyaTs UcqfqjMHnPz4t6oZ21ryT85U0o4j/uCscXiHZI2jkwd968A4AxjW5ncY6lPj jbT7or/9mtzH/U2ew2Hy/SXO2+JsGz2SHx8Y5yXEEsfabSffo9JXrveZyzZt PodB375mG3z/Jn+DoxODDQ6Ps50hMTeMi553qLnvFTXPafl3qPM3+U7y7yj5 uOK3lVxN/seafK7BvA2vGVtVOXesGVtF+tPMsfKsXmd9RM02c3lp7B/iiCcv OLxivetSk/OBXWruaUq9c1OD2pd1+IyAed65Znts1lxiGAM+MHgp5bunzWca jIkanEvg37VmbDfJyxUzLuv5YF442wGHNzttfGyTv7/QicHevebrcF7avR/Z 5P7HSp8g7FRs9fSM5Bryj5TvCsUfqlp7xBwzdnwjYy7wgZFrT8kXJdcSZzi9 tnmNlmZvCHupyfiVHf4mejFisPeqOaak2FfkH9/k73RqUYc12rvm/sZnLbHp le/PGTHeEW3G6H9UzRjfquSmBj1Rj29OekDft2abHul1btpxxJN33+hxSd02 j4Nvxn1qrldWz/vX3Hdf6QVqtTn/SMk94UjfXfKAmn1wiWGco8NHLJyRwUeC Ec+6sX7cQ8dI7sS7Rr3lKzFX6GOij1f1e7bJ5wMH19zTd2nXp0bvenMOrJl3 kORrkmtH/8QwhtcCW0Z1r9IcnNDkb1XiiO9Xb/8hNWNjJffmWVvvWOKqdcbh HZY1vqz8tTrrxGAzl/vEGvPtOjNqjavZ5nt5vPSDebdW/kOlX62ch2ctsfmW beP9RTmWqzP35CZ/c6ETj324ZIvs75VztuwPGHud9cNqtsG5NvhOxAe2ab1r UYdvbTjkgneU5Fz5Nxfnmg7z147ri2uLPBOCSx76PKLmXpHYP3JWU3P8EVnn e1e/PnX2TYw+juQeI/6G9ZbY13ZYR/atcyw9EX+0ZEZ1JihnuziHtfmb7lj2 YJt77i45KXj8jg7sUP1Oa/J8wgHrUmf/MTVjk6M++Vkr1oz1A4c3uN74R03u DZ0YbGqS9+e0653Z5Pzo9Id9fM19L+Y8RPrH8m1Rb3lczDv63JgruMQwzhNC wj9R+qfiDK33OKhBLe73PNt45sE9PObn08hLzv9ygfHs47nHn0fAOTF6+kS/ I9j/deZNkf+cJp8NfBj78BDpWdXuJ/2UmjHOHE6uGRuk3q7r8DkC37nop9Zs 5xR3kfTj2xxHPHnB4U3Mui416f8s+edL36beualB7XnRK32eVrO9tTi9xDld 9pFt9oHBwz6qzX8nZErMwZB6+8+oGTtTcpbkHfWuuZGec/3rjMMj/6zIS91Z EfN/TJ11uJTl9/WdUSd0RpmZo4OeQI4BIuKZQuzuwsZO7MJEBVGxsQEVxRYQ EVEUFAUBFSxABbu7u9t3fVj7e/3eP+basdaO+35inmfPQbGpOzDy837/Qaz9 WuF59TtQ6/pSvs/12UD+K+X/QvoezDc6HMM8AR8YMwN8YOS6SvJ02TuKP1jy Du3VCspzt/zjOBdzxs/RZ72EdWKwr+5wzO4p90JPQ5pdizqLZxQd7m/PlCU2 vVLnzqhFLHEbSR/eYYx1DY4a2F91Mg8O+ohYP/vJsWRP4RFPXnB4e6V8bnBe lBM+huzpn0v7fAE7U7W+jnMITg/h1ws7r9n+64KHHx9zgxs7/M7OuzlcsCVS rj2yk9f1g+Qozj/JG6IvauHH15wwjr1/xMIbGTWpvXfKdS5q9nygk/q4Rdgo vq8l7+I7m7/5kd6b6ydlic2cAB3JrIA89E0u4ogf09X5yHu28iylfVxe+nYJ 6zd32AanJu9Z+MBOVK0+zcbwo98aucZI8j9EPlacP1X/TtlXN7veL7I34fyX fWcnvzvfHr3Qw20dxg5W7F/C/9Bns4T1Ozpsc27erc9WCccR/0vg8I6IutTc PmqR987oBay/OFdyPjd7vfRL34Wy/Xd1GMOPb/OEfWCHp/y3CyOb/f6OPrbD 9lj1M67Dv9uzH+zLcqnoucN9wyWGv3mAS8ygnCVx/B1Ci2pOUuxu0pPqoSh7 C+mzxS/KHqycJfnukX19s/Pe0Ow9wQd2Dn/DI319jpP44zuc63jeu6UvKf2E lPEJEbNswceXPeGYP9Dh92w44G0Jx43p5PnA5A7HnJ5ybmrQKxxqwJvENcq1 k3KfEzvcKz545Bkv/wRxV0m4Dmtqix6ozzl2f4d5Q3LOQS7W+EBcE5yT5JwU a4NLDHmp11T2/jwi3+ayO4t/o+TDslcU9pDkPYo5N2c5oatnBcwCHhR2W7P9 8MBY9+S4Hoi/WfjW4mdkT5F/BfmGdvi7gu8FfGCnpCzBt0kYh8d3JH0tXfA+ UJeavKdPjR7Py7n2xE7ujd5Zw0kpx7I24uFM6zCP3snF/Id5x6OyswXrSPKQ mxqsgXzYrGVarJW6xBHDDOe+OIacP0hs9neZgucmzDcmKu4+fXaUPiOuJ667 6dJv4XkiZR9YuWwf2K2Sj3PvUa6zOFeV4y75dkqYA75twjjX8vahPx7X9swO x5yvnu8Q9ynZUzu5Vjnub7M63N/QnCU2va4kfJx4qyd8nXWWvYv0JzqMXZBz bmrQ0w7N9sNHfzJ41KT2wJRt4scFDq9ryjh9cXznRH3ydy74d2reefmN/Dn2 h2PKtaBPX/mf7bB+fsrY3A7PDOA8HRj5yJsveL7wDOdQ6EjmD491+JidlrLE 5viRg1znpRxHzOpRizrMKOZGX/RAvYnRGz3jh/N8h9czNOV1gPH7Oz4w1jlP 8n6e53KeFTEzujBlydxor4Tzs2ZqcFy4D3JsWCPr4xwjB7ke6GodydxjQYfv pxfnLLG5tw7Xp1rRu5h8D4q7UP6HJFfhnsS7F/e3rsa4D7/YYWyYenuhw9gl /Ptlcaco154J6y912H4t8l2WcxzxrYHDuzTn3A9FfiQxMzs5NzXAJzebT/5F HbYvUQ9d5HuZnAX7FkXe/ZqNrZXwmshBLfyvdBh7VXIP2T1SrktNegCHV0kZ n9vJcwZ0YrCJpyb5mR2sEnMn3snfEWdOs9+T3+jwPAOJzXv06x2OYR4ypavf h9eJPGDkerPD2DD+rkN6b9W6nd8EC36/5v0dHB7xb3UYuzI42PAO497S7PzU pxfmD28L7xDvppR7pl9mC+92OGa9lNcBxrs8PjByEfeI5P7ct+VbU/YIcbpz /5F/34Q51IAHvqCT3+vRicF+v8Mxw1M+huwp5wk+MHLx6Vp2zqla74uKq0jv H3nJ+WGH7Q2U52FxPpG9sJN9H0Z/H3U4/vKcOeDVyAlG3o8lj1TMRilL7B4F 60jq0s8HHe6JOuS6gn+/KX+vgnNWJD8T9qR8M/X5VHp72X585yXsAxuZsgTf j2cbzjd9Dkg43xfi9ZT8vMPY9Sn7e0YtcOxRKePwiP+ywz1tzO9Zwhd18vE9 Rr7vOVfK/jwjuyb/19Eveb7qcMyNKfvAnmq2D4xc30hWeT4Wpyb5tPCDEt4b 9ojzAfwR7c+BCevEYH/b4ZhbIv9TsSf4wMj1XfR4pfa2Lv8rnTwfoH/89Mw6 sDdN2UcM6/mhwzG3plzv2Wb3wDW0mngHJ7w3X8beraT733uyp6QcRzz1iP2x w/E/Ru/0w7HlWI5OOSfXJ3mnC/+sk99tf+f6a/Y1O03+X2S/KuxY+X4ObN2C 4+kHDjjrwv9rXPO/SW4gOTblPtYveC3g8O5IGZ/H/SZhnRjsf6J39oH61Lgq 59r09yLXufivdfLM4U/5+si+k98gOozdlbIPbEGzY4lj7vGXfMdJ35zvAsm3 Onmuhf53h23w+c32oxMzP3B4Y1KuQz36eDb6Zp1LVlyLtf8n34Yt+t5LWz7a 1es9qdnHjHMDPzywfzuMbc3vfcLH6XNYwvv/fPSPf4mKMeRinvir8/3U7FlE omL76px7oSfmOuT+N84znlnhwEdPRgx9cDzok1jiqLtUxRg54VGDeov0WSPy oC9dsU0+8jKbIo548oLDGy//ZrI31ufwhI8Xx+pQ6amKsXuDgw1vK30y0t8Q 7zHlTEt/tdl+fMw6lpVvW9kPpswFu5/nZ8k3eXYQZ0vpywh7XXa2Yuy+lP2v Rw/g2JMiFh7x1KT2NTnX6aa1Hsl3kLDlK56j5Cu+rq4VJyd9kLDdUpbY7zRb RzL/IQ99d4vrkXiuSfKR96GUZzeshTWiLxdrA6cmcxt8YMyR6HW7gteL3qli e0XJx1VjhHrbWXaT7DXL7oVZD/0w1+kec5ti9Mt+FirGmAvN6Oq+WTt6Kfad veGY9E84jnjygsMbHnWpeUzUIi/16AVsGrNN+T9q9t850C99f9PJ/hUqxvDj o098YP0Ue4Hk9gXvCXq5Ynt3XWudpX/XyfvBvnBucG/jGtssZS4x+6bMJWbN tCVxzHP4/Z3f3pkFcQ9+XLmfSfg3ebBlmTM0e0YEp1l5PuGc5dlYeoXzKGUf 2OhO9oH10D60SM7U2kbmPPfZteC6F/OdyznWbLyv/McmrBOD3VpxDLOpPWWv xW+OCdeiDvvZVnF/j0ef2PT6Gd8Znfz3J59K313x10tfpWJsRsq5qUFPe+iz mz7HJax3rdimR3o9IOU44skLDm9myjjr2FixXSquN53vxIr7nsUsVL5vmz1H mqU1/tzJ/EvlW43zqtlcYljn6hXzrsuZA75JxIIR/wc1pdf4jVxyGN9BKcue 8m2asA6GTY5fOznPmhX3dFjK9alxUMqcbhXzukvOVr3rc+YSwxrwdY+1fcN3 WSfX6hbrYL34e1SMrSW5j7hPpRxLHMcRHN6TKeP99DkhYZ0YbPaSPeX4PaHY 72XfKE7Piu0b1Fsv6fsJn6s8a1d8PvP3J0jstbX2J7s6L/nh8jcqzM3Qicfu iPXRJ3O7XmW/16OvU7ENznyP44gP7Ij/1Sr7GoFDLniNinumt4NU61/5tkz4 vW+dmOnx/od9dMp9VmK/kNijtMZaxfHPpZyvo+x9wAdG3rrkU+LfmLPE/rnZ OvLEhGPpifjeFc8LmZHexHdFwbOp9eWfq5jRyjNHct2KZ5Bwe8dek69Sdk44 4KwFf5+KsfUkr5N9XMrHqmfsRZ/oi7WAswb2BH29WCc1yXtTzr0kojd0+sPe sOK+B/AMJv036fNTltjVsnXkiwlziWGdG0k+rVw353wNcS29kPIaWR/nBvcx 7mHcQ+CmCp5HweWaOzn85ALj/smzLPdQZliHB7+ffPPFu1O1npXcQnZa2D/i 1JVnoTjPdPU8jlncZhVji5glVozdotjR8h0VHPTNK7a3lRwg+XbKccSTFxze ySnXpSYzqwERw78xIjc1qM0sqVH2jGvLim1mX3/zfV3xfAsfGLznFHukfKcm vCZq3Jqzf+uKsW0q/rdN/Lsn6lKTf98EDu+2nPETCv77JXRisKlLTa7BJfWd ldLnNOlLS+4sTknYWL4f6b/FEnuQam1Xccwb0k8Wr6DPzpEHjFw7VIy9I84m FR8z5qKnyJcWPjBhHB7xO1aMvRscbHjPax0nyT494fr0wrxuJ+F3yz4n5Z7p l73dpeKY23NeB9hbKfvAyEVc77J77ivf18KeEP80YXvz+0bCHGrAA28qePaF Tgz2rhXHvJ/yMWRPF6bsAyPXePmWafFxofcVCu7/HvnXLfvvr3av2D5XsbtJ 7iW7T9k+MHh7xHF4Nzjg3SMnGHn3lJyn/u7IWe4Ze4qOZM/pZ7eKe6IOubor 59nCl5fv7ISvJ66rZWWfzp5In9HJfnxnJuwD+yBlCc5a7lO+Ti2e6Z0l/77i rSS5T8XYBSn78e2eMI79Sco4POL3q7inT+W/n3tX2Xz+HugQzk9xzhHeJDle /gPkW076x+LvX3HMRSn7wJoL9oGR60DJBVrPXfy3Ggr++yRmXOwNezQkZfxM +c9KWCcG+6CKY76M/OTmWAwJjFwHV9zfFzyjSq6vmoOjf3pn9ss6sPkbqnMi hvUcWnHMN8zueC5t8aySv/fsUvDesjfsEceMa4trjHsiccRTj9jDKo5HYl+W 8u+D/K62SeTkb0nJe0NRzyP6/Cn/0fJNFf9y8S8UdgTHUXkukN5f+ouK20A1 Vo79hwN+TsL+IyvGjoo1sVfT+Y4Qtk/COLyxOePo5GmKGOwTKo65NuX61Pg+ 5b6OjmNAH10l+yn2WPlGSP9PnGOiR/LjA2trceyQONbHcazk+1H8S+W7uODe 0I+v2AZfk3UnrBODDQ7v55TrUI8+6Je+WeepkrNkXyfOSdJfEm9czpLjxPnA selW8PHFf1Ic+xPjuHEOMJe8qOA5Z02+RsHzKPwDKsaQ2MwbhxU8Z2SueHLF 9q8p90JPXVucmxrUbpa+Shw79FMqtnvos1bBsztiiSPnaRVjS6SdmxrUu1yf kfqcm7B+esU2+cj7Q8pxxK8VOLzfUp7RXlnwHO9byT/ZhxYfO47bkIQ5Z1TM GyQ5XPJf3gW4J8leXfJq+QZWPKNdQ3Z3fYYmzAE/P2H/WRVjZ0u2Sv6Uchzx f6WMw/s7ZfyagmfCrRGDzSzyuoLnmdSnxh8p90V/l8R+bFz2npwj3xOKuUGc wbE37CG+c2JPiSWO822IfIt0TozXObOWsE2U58KE9XMrtsHXjh7QicEGh5dI e8/YO+bh9HxexX1XWjy7ZOZ2o+SF8l/BMZB/HX0ukv/lrp4HMsMcWjG2pHKe XzF2j3prl++G4KBfULHNXnbEvhFH/DqBw/s95brUvFiciyvuKZ12bmpQm5np pmWf8xdVbDObhUtMNThg8F5R7Gj2MeE1UWPptP2XVIxdKvmcYm5LeT/YF2ae 4PAm5IxvFjNVdGKwL6v4Oswq56s8P5JPnHd5DhV2v+yx+mwh7hVcCxXPLJln Dqs45t6cfWCbl+0DI9cVkg3lX1b5X+M5Tr7LeCaRHF5xbnBmpPSGTgz2lRXH TFT+NyQ3EnZVwrWow7zuqshRSFti0+vrXT1nhMPccIMWzxWvqRi7L+fc1Lgt 8C3L5qBfW7FNj/RaSjuO+A0Dh0fdu2OP2J+rK67H/HNExX1P4t96s0/yzxZn kxbP/pi5MWMdKd5WZXOJYZ3XVcxbIW0O+LoRC0Y8x43jxz30esk3FX9/zvIe +WYlrINhM6vduhzXSMU9PZBzfWowT4ZzQ8W8UZwj3F/T5hLDGvCBMRd+W/53 2MeE44hnVoz/poqx0XEeNacdSxxrAYc3OWd8G96/E9aJwWYvr4693pa/iWjx 7PTmiu0H+Xc0HCv5V1b+W6QvVP67U5a3VP4vjrkqsXA3KvhYoxOPfXvFczxm sPQ9qeB1od9WsQ2+XdmzvttiffRALeqQHw654I2VnKy4Vs5/3llU74i4vlgn 6+U6w34o5z7vqLhXJDb7dlfF8RNTzveAPtck7AMj7xiOm2RL2hJ784J1JD0T S0/Ej5N8ULJN/Eckd1C/I8WZUPFMmPnwQ/LfzR62mEvMe+p1e/42ge+ohDng 1ybsH18xdg/3MMkV096bm2M94PCm5Iyjk2fTiMGmJnm7pN3LhLheFusV2xMr 7ntVce6NvsiJxGaGjY5kJvxIxLDO+zj3lGuy1jhJ+vviTc15jcTA5zuN7za+ 8+Du1OLZL9xtCj6O+MkFxncf33v7BYe88N4nVjmOkr+v8Ifgy/9hV/fEnhO/ Q8H5J1cC4++FIjdr/FB5dm3xDBn9wYrtpxX3hPT9Whw3OfYFHN4jKdelJj1M q3iWyeyR3NSg9nR9HtPnOnGmVGx3U90eeo6eGjYfMHgfK/fMFs9jWRM11kjb /3DF2CPRI3moObPguS44vEdTxncpeF27Rgw2dadHP7MKnvExm50pfC/Zs1Oe 9+3dYv9j8u/Bs55qPVpxzFpp+8D2bLEPbPHsVfJJ2b14bpHsJ/w55XlF/iOk b5g2zryYeR06MdgzKo5ZO+1eZkYualHnD/Efr7i/x6NPbHrdV5+veHZKOJY4 8s+qGOuIfqhBT3zmFNwb+uyKbfaTY8meEkc8eWdHHOvi3OC8GJXwMWRPR6Z9 voBVpX/Nu2SLZ55z5XuKPgv2P1kxhh8f89inOT78bpYzF6yiPB/p3Pu4q2vN k2+usJ3Fm1MxNi1nP76bE8ax141YeMRTk9pPpFznENUfIP4nwp7n2Ek+G33R /zPSfxD/6ZTlM9EfOpJYJH2Ti7jF8QXnI+9jOddmT+gf/bnYI3BqMht8Lnpk 7b8of9+Yr6LPq9heKPmv7JdTESf7MOX5ketX+EkJy4ML1hdUjD0j/vyKsenK /7t8BxQ8O0V/oWKbc/OIgtdF3IKIAYe3IOpS88WoRV7qvRj7R/4/xe3fYg79 0nf/gv0vVYzhx8cMEx/Yi7wnch0XPJNEX1Sx/Rfrlr5b2fvBvjyfcs+Lr6vg ErNB2lxiXkpZEsecsLP4+0gfJP0z9fuS+C9J/1b8HPc5fseR/zXZX0gu4toT /9aEfWCPa42vS39V2GY831acawbPkxXzZ+aMw9td9l7Mqls8o3tT/ne5b5TN Ab894bhjW1zrvYpjZuecmxovRS/UgPd29Egt+nwzauM7VvYpyvOl9K/0uSPh 3sFOiR6ofyfPIRXzZuWcg1wbp90jvK3SjqMeeeESQ94l1MdRLT5en1Q812QO /JZ4H8seIPsDjiHvZmnLEws+FktJfz/WeXTwwLBZP/v1dsFzW2aD1PtQ/pdl 31/x99/UlH1g7BUSnPWCw+M7kr5OavH8lrrU4Fh8VHGNbVgv52OL94TeWcPW aceyNuLhfFoxj97J9aZ6eE/+z2Sf0mIdOTbh3NRgDeRjP95IOAe5tks7jpjt eR6ueE9fTVlis7/vsGctnk+eHjXI/yX7IH0HjlHFM0tmrfjAmLPi+yLW+VUc E9ZLvjMKzrlM7DX7DH5a9IlODPbXFcfQZ17yB9lnt7gWdZgJf1NxfzumLb+J tQ2k94LnolxnH4T+XcXYztEPNejpU/ZNn3EJ699XbFOT2h+lHLc4PnB4u0Zv 9MVM8kfObc51+VeUb2iLZ0rf6Dz5TdhgYV/oM6hg/q/yFcX5nN/oJX+SPaTF nJ8r5pGPvOfQr/RfpPcrW0few7VW8THbNm35eewdOci1R9pxxOyddi3qMFum JvZnKfdyHudB9Ey/zEV/r3g9X6e8DrAnc/aBsc4/8NNT2rMiZkb7pC2ZG01I OD9rpgbHhfvgB7FG1nd3wjnIdV7BOpL7518V30+/TVlic2+dK/2gqr7TCp5v /sf1Kf3brs5LTtY6tOD1/lMx9hT/djj2m+N1Ls80sZ/o/1ZsL6XcF/I8nHbc P3GMweHtlXZdai6eu7Y4Zv+yc1OD2t919byUmd4SVdtz1EMXcRKy9yvbBwaP Pb2s4POHNVGDWSv+ZNXYkpLfK2ZuznWp+V7CODz2H5xjwP6jE4NNXWoyx2O2 +H309hvXsDgH8uwhfqrqmSIS+2nVWrrqGGaYP8r3U1fP9PCBkStdNfYMf4sr /Saefzg3hB2g3JMSxuERn6ka6x8cbHjdFHd5i+eE1KcXZp7Z6PHZnHtGnyj/ slXH/JPyOsAOTdsHRi64V7WYn4v65LmCc4n3qoQ51IAHfm3Ba0QnBjtfdcxh aR9D9vSXlH1g5GKm+XvEXtri+Sl7/nNXzxaZKy5ftf1czrPsouy/CvaBwetU dfxBaXP+ilh8YOQtSF7Nc1XaEvvngnXk/Qn3s1zVPVGHXMzne3HOFzzP7Cm9 iTWyj/KVpB9cth8fs1N8YEelLcEf4BlSPV8feYaLu6J4hwhboWrs+Zz9+CYn jGMfnTYOj/hy1T0tJf+v8o8qeP65mnytwpbSO8Ao9p53cPlXkm+k7GPF71x1 zLycfWCHlu0DI9fKVc8+mUP+1tUzSWae7A17xBwbfImi66ITg91cdcz8yE/u BxP2gZGrper+TlT+3+W/quBzmP7pnVqsA/vPlLnEsJ62qmMWKH9W3MPlezjh a+gWfaYmvDfsEcdsa8mdZa8WtYinHrFdqo5HYp+a9rHlWCbTzsn1Sd4HuCYK nu+tLl9VdobvOMW1y+6vPH8of1fpKfk6hN/R4rkuHPBHE/avWjW2Gte1Yl7k fsv5LN5jCePwUmnjN6nutIR1YrB7VB2zMOf61BiYdl/0d0TZNW4uuIduXDfi vyT+GlEfPr5uEU8sccyHu8tXl70MsynJWwv2o69ZtQ1+ZNnzXnRisMHhnZV2 HerRB/3SN+vs4PjwjKh+ekofK96gtOXtBefsLf0o5RuWsB8e2FpVYzmuL+Uo MEdIeP/Ze84l/GtXjSGxF6lWH64n5byc86Rqe7m0e6GnUtG5qUHtu6XfWXAP 6OtUba8v/ZiYmRNL3AzplaqxTmnnpgb17pE+puC66NWqbfKR95y044gnLzi8 c+X/j2tf+R9P+HhxrDiXalVjr+QsseGtpE9D+kTFd5Ze59pstx8fM8k+8t3L d0faXLALpB/LPb7Fc3jm1OtW7esd8tWc/ehwwLFL6f/jEU9Nag9Nuw4zdPZq c+kbCjtO3PWrvq4uFme96JH8SOxy0TpyZsJ56JtcxBHPNUk+8nbmu0b8FvGf SFjfoGobnJpcR/jAXmMuLf/xZc/S0Teq2t5CckfZ7cr5kORmsqeoVrLdc0tm ocxAm4uebW5SNfY6f0dUNcZsc3vJE5RvRML6plXbnWNtrIs44skLDm+VqEvN a6IWealHL2CXibOkYrvI91TC/dL3Yy32b141hh8fc0h8YG/wb+jke7jg3tC3 rNpeQzFbSV+96P1gXy5K+97GNfZCzlxirk6bS8w1aUvink54DsMMhrkT9+D2 ovftO+nXKOYXYbtIn9HiGeC21Jd+hfJsI70b/LR9YNNb7AObptjtYq3U7V50 beo+Id8uwvaJdT9a8NrRicHevuqY4YrtxT1Cn+cTrkWdOdJ3qLq/1dOW2PS6 V4tr8DeixJ1YduxOVWM9o5/tY1+W0n7PLniOir5z1TY9kueGtON2Chsc3ps5 2/tErR2rrge/b9V9j5JekbxLn3l8F0vO4Tta+lO8o4j3ZIu5fSN+t6p5N6bN AT8+YsGI5133WOkLJXeveh7J3BL5VItnlehg2B1FzygXzzyr7ml02vWpsU7a nD2q5u0puV6rvgsy5hLDGvCBLa31nxTvMMzriCP+prT9e1eN9at6/sl8klji OBbg8N7KGUcnz34Rg81esKccP/aAOSf7sE/sGXu7n/QDuZ9J3zf6Iidy3zgG Bwk/WTlGJ8wdUPY+oBOPfYBkSjFv8+9oFPOsat2UsL5/1Tb4s4qZn7AP7Na0 a/WK8xMOueAdKjmP5wxx0u3eR84B9oV3PtZ7UOwTx4I+D6y6VyR2Q/6Dq45/ J+d8zxe8FnwHx7E8RPJgYb3TltjzW6wjmffOi56IP0yyj+LuFD/Tbv0FcY6U /zDx1pP/UMnDY53gxKzLOaDP/ILnlnDA2Sv8/avGjog9YH84Vhwzjh84vLvS xhfEfqITsyBqkrdP2r2cov24JWGd/rCPrrrvd/k3ZbFW1oLEXlCwjmTtcI+O NR8juZHk3WlfQ1xLzPHA1o194D7GPYy/sYd7apn/OG3M8Fo8x9socoFx/+RZ lntott2zQeaTF1Y9H2CO8RrnuezTY365SdGcl6WfJt8i6SdUjTEvPb5q7B7p y7R7Bsr8E/3Equ3TJHOyP8w5jnjygsN7P+e61HwlYS4xrxecmxrUPk765kXn H1ANW3WXFf9k2a8V7AODt70+Z/A7f8JrosbEtP2nVI2dKnk833lp16XmXQnj 8Kakjb/X4lkiOjHY1KUmc8gTZA8sO5bZ4tnibK34N6WfIf2NgiX2/czTqo7Z kud/5dlK3FcjDxi5BlaNfaT9Oa7qY/ae9B2Knj8y0wOHR/yZVWNT05bY8OiV +ST9U59emKmeBS77gbR7pl/WMijWx9pZx2IsbR8YuYh7X5/XxB8s346KfTjt WekHLZ5nwqEGvB3jeHAs0AfH/p5TdQyzU44he/pBzj4wcg3W53N9cjq3d1fM Z9KXk76b9M8LnqedW7U9g9/yJIfK7tdqHxi886qOfzw44G8n7AMj7/mST8ru lbHEXq7dOvLNhPsZUnVP1CHXzLTnbnsW3Q/XE9fVmWV/LpD+RYv92MzNLgj8 45wlOP5PWzxXZIZJzYvF21V5L6oam562Hx/9XBw9kgccHvGXVN0TM8m9i55P Mn87UvqVws5SzX5FP0sxv7pMvi+lzxL/0qpjnkjbB/Z1i31g5BomuY/sp/he k/yWcyLhvWGPdk8b/6bF+4xODPblVcfMifzkfidhHxi5rqi6vyfFuUT23y2e sdA/vX+c8DqwF6bNJYb1XFV1zIHyL6+9+Un93hvPjb/EvI69YY/2jPsh1xj3 xEsinnrEXl11PBL7k5z/JpS/Df0u5edQ8rIWfPx9JH+feZ38ncT/VPzLhA+X faBq/ST92lj/wfqcrbV8kDAHnD7xj6gaGyk5jO9L5b9S8s8Wz/fA4T2fNv5L i+eT6MRg31R1zOFp16fGwWn3RX+/8j2rHH/I/5Fib8AnfZ4411eNLUjbB/Z7 i2OJY041Sr7DxXlBnP6Sg9RvS9L6jVXb4IcUzUcn5pDA4b2Ydh3q0ceV0Tfr vF1yhOQx4txc9XyMmRjy8MhZUD9/FDxXxH9z9DS6auwz7X+x3XM0Zmi3c+9u 9fsv/luqxpDYn+fcx+Cy9+TW6Is1joiejio6NzWo/Q/XtvgrJq3fVrVdEue/ gmdxxBJHD3dUjX0RtahBvf+4t0h+krB+Z9U2+ci7KO044skLDu8V+a9jn4qu 1UucbjU9M7f72HHcPkyYc1fVvPGSS2of3uCdV3Ks7HNVq0kxY6QnxLlB/OOK nr/BAf80Yf+4qrG7JVdQzFc5xxH/Zc44vBPSxpcU96GEdWKwy9LTRc/cqE+N 19Lui/7O47dzckTsBPlWVMzX/DdtqsZOStsHtnTRscR9xvs+PtlviTMabtHz TPSJVdvg54v/ecI6Mdjg8E5Oe8/Yu+PS7vm+qvteqd1zP+aHacVOlv8Cnivk GxrXQud28+DcXzX2nvJMqhr7NueYrOK/SFh/oGqbvUzE/hNH/NDA4X2Xc110 Yh+quhZ+ck8Km/njybHPD1ZtM6sEI4Y14AODd5o+OX0eSXhN1Hgnbf+UqrGp kqdLfpD2frAv3+SMw3s/bXwZxX6ZsE4M9sNVX4dniDOQWvJ9JU4X5XhR2CqS efk6FT3PnCbfnXx3iv9I1TEfpe0Dg4sPjFyPSp4h+0NxxvBdXPZ8r1l5Zwk7 s2h8uaLvA+jEYD9WdczZih0veXHZczNqUYd+pkdNekBi0+s4vn/LnuOt3O6e WNfjVWODox9q0NNyii0W3Rv6zKpteqTXH3KOI5684PA+ThtnHV8rdkbV9b4X f3bVfQ9Je1a3QqvndS3Czxb/G+md5HuCa7VoLjGs88mqeT/mzAGfEbFgxHPc OH7cQ5+SnCD7vLTlJWXPo9DBsIvirVj0Hj5ddU/M9KhPjU/T5sypmjdXspXv 7Jy5xLAGfGCDxWlq9fyLWsQR/3na/meqxp7lfsb+px1L3LcJ4/C+TBsfos8P CevEYLOXM+I8W1mfS8ue2z9XtX2hYudJbxPvZ/47DFyX5E9bYk9q8dxwpVbP EuF2lr5K0jrx2Au4lsX7jntLq+eS1EKfX7UNfj6chH1g30Qt6jB7hEMueIvi OuMavEj2Zer/+7i+uLboh+sM+5ec+3yh6l6R2MxUX6o6/oe08w0r+1rGB0be hVX7f81ZYjcHtzmufWIXBe9lycmcK2kf1wdbfH6+Ln9X9fNbzj2+wnlQNPfl uKeQ7/LoAQ44a8H/atXYa5zL8v+Y9rHimHH8Xo2+WAs4a2BP0F+Ldb4S9x7W Qi8tcV9Cpz/sN+N85Lx6g3OA8yNtiX1F2TqSuesKEcM635JsV67flf/tqmer zGBZI+vjfst3Gt9tfOfBPTfOT7hXlj2nxf9WnN989/G9NyU45IXX2uoZLz2s xnsVteWbwvMtczH5V5X/EsWsqnPyvaqxYern3aqxP/jdVvgqRc8z0d+v2l5d ub6rek5JHPHkBYf3e9p1qfkT7zXyXy3/X2nnpga1uQauLvu6+DCuCa6jR3gm jesKHxi81RW7atH9syZq/Jmz/+OqsU/oRfLPtGuupvhfEsbh/ZUzvgb3uoR1 YrCpS02uqWvKXicz4a+Fj5R/Cb0bjpCvW7tzfi7/NPZUtT6rOubvnH2fh80H jFxfcNzpJ+16lxXdQ1LPa7dIz2aMr1b0se4SMdhfRo/kpxd6+q/oWtSgz6+q 7u+Y6BObXq8V3qPVc3Jiiftd+jdVY//knJsa9MScGj989G+Dx35yLNlTbOLJ Cw6PeTjr5LygH44he3pl2ucLGOcAPZGLPXxc+A/Chhft/z7OFfzD49z7ueq/ F+ZvU+GCjeC5V/iaRf89bXfONWFrSf5YNZbI2I/v14Rx7H8jFh7x38c+sQ/U WbvV83b+Vvd3Yb2Ir/rfDS6pnL9I7ylfMmOJzd/OoiPZN/LQN7mII55/c0g+ 8vK3x6Nkr8OeJKz/VrUNTk3WhQ9sKdW6sei/UebvmdH/qNr+L+KWzvhviP+p Gl9Lnxvkf1b8JUvug3/z+FfV2HXq4c+qsRMy7nVWi9eO/nfVNudmz6LzEEf8 DYHDWzLqUvP6qPVn7Be9gPG30JVW/+0y83/6pe/RRfv/rRrDj489wQeWVv5b 5atJ/ydhfYma7dnKnZBeb/V+0AP7QM9cVz2DS8wyGXOJuT5tSdzi326Ej9I5 nU76N4mbi+6zWfyNpY8XvyHuUjX/1vEc52fZv5XgA1tW+ZeWXpWekb5kzbn4 rSQlvbvOsX9zxuHdpjx367Oh7ITqril8Wfk3aDUH/O+E48CY8eZqjillnJsa 9AqHGvCykk+zhrT7TNfcK74Rkgt451JMtej5Nr2zJtZCPPWptUzNvELGOch1 W9o9wvsv55zUIy9cYsiL3Si6VlG+HvSfd+4Ceyq5nOQ4cYoZy95F/wbxPM/b wjZqtR9e79gr1s9+jS96Vs+cn7n88tHrO1V///2Utg+MeT5ybKwXHB7fkfS1 Vrv3n7rUZMbeqeYaTeptQ8mRWs+SSfe+eA0Zx7I24uGUaubRO7lu5z7De7Xs l1qsI/lbZXJTgzWQb+PYc3KQa1zaccQktG+Z2GP2HInN/r7wv7wJ52DuT55y 9EXsirGXnDP4ynEO4QNbX3rnmv+mm7+75jcE/gZ78e8IrcbZE/DxsefonWOP Vqo5ht8sJsluk71p0bWow96uHMec/URi0+tmPB+2eG+5zq4ve0bdUjNWzjg3 Neipp3Ley/0wab21Zpua1F454zjiyQsOL5k3Tl/8ltFF/omsW/zJklsU/RvE 64pZLXJtxv2T51ael+Rbm1mG8rwiziqyN281p2vNPPKRd0v5t9CnXfqrLdaR rGuFmo/ZmLTlCnGMyUGue9OOI2aljGttHucGNbEnpN3Lfdw7k+55Uqxr9ZrX 05rxOsDuS9sHxjrXiB7ZK2ZFzIyWylsyN0olnZ81U4Pjwn3w+lgjsUsnLcm1 Tav1bcLfveb7aXvGEpt76ybKebn0S1tdp6f0B4S/wT2y7N9BkDu2Wu9RMzZJ /a9ZM7a0+tyaekUfF/S1arYrkm+LPzntuB4RAw6vJeO61GSNcCuxX/CoQe1H ZHe0+zeOtWu2V1XsNMlesncKDhi8m/iNLdbeM2Zv9Il/nZqxjtgnjsviHuN8 A4eXyhtHJ882EYNNXWpmk663TdG9zZBct+bffB7l+1H6lJDYq6tWNXok/7uq u0urf4vBB0aues3YQ9q3nfguFbaM+NuLu13R34ng8Ihv1IytkrHEhtdX+m76 LJN0fXrZX3rvmn8L4vcpeqZffsPqU3PMGhmvA6x7xj4wchH3WKx3PfmeYN/F mS25t/B80hxqwAPndx1+J0InBnv9mmN6ZnwM2dPVIg8YufhdZ69W/97E7xAH tvp3jWfFOYB7vvwb1mzXFbu/fJvIHl22DwzeRjXH8/sIHPBOkROMvBtLPsOx ylhi8zsJOpLfTehng5p7og65qhxTHZ9D8SlnRfpmYIr5QfxN+e4v2o/v3YR9 YE+nQxb9m8uPPCOUzZnPPZD+JTevGXsmbT8+fl8Ax+6TMQ6P+C1r7imT99pq 7d435PbCDlLMz+K/WfRvN1vzvcyxUZ6tYj/YT3xbx/7iAyPHNpK3MCdV/hNb ra+U9N6wR/yuh++wVvvRicHetuaYrSI/uTmOJwYGd7ua+3su7X29tey9pTa9 s5btoxd6gEsM69mh5hj2hN9d5sdecQ3xGw2/77A3WwbvFMkzJXfJ2CaeesTu GPuLxOb3HY4txzKdd06uT/IuxTNM0TP53eQ7QvaGyvkb1zjfMcIOl29n6bfx LMY5U/RvAXBeiN7w960Z25XvTM5F5XlN8g7FlZPG4S2bN95b+gpJ68Rg711z zOYZ16fG/LT7or+jJG/nOSV62KPm3yb4jWn3mrFc3r49wiaWuCbV2lO+lxW7 Scb1jm51D+h71WyD83sSv92gE4O9V/RIfvJSjz7ol75Z5wGS/zJv4rdL6euK n89bHlH0749/CT+u1bN9/PDA+tWMvcTfDAi/U/k6J73/7H0paf++NWNI7C0y /q3x9ci/X802v2nSywGxZnJTg9p92v27J9cR+v4128cIO7ro36EWryP24cCa sU2jFjWox369UvQeoh9Us00+8i6Xdxzx5D0o9pj9f1X2AL6Dkz5e7CnH9OCa sc2Cgw3vbemHSj9WcgnZh6CHHx+/efUP7jYZc8HQk8GDw/l+OHvHca4Zez1t //FxLYBjbxuxh0UualL71bTrnBz9n8K+CRujNRxZ83X1JudtzRzyILHvKltH Ekue/sEj7sioTT7ybqfY9bSXJxb9mxT6UTXb4NRcOWkf2PLa85T87wYf/Zia 7ZMkP+V6U84NxD2BGrJPE2cs81blWV/+AUX/nnVczdgO4h9bM9aJ9wi+04KD fnzNNnvDMeH8IY548oLDezftutTk9ybykZd69AJWUP5P+B7kuTzpfun7rFb7 T6wZw4+vLWkfWF/eAVXv7FbP6tEH1GwXOF41+9gP9uXttO9tXGPrZ8wFL+bN JeaztCV+cvL7+75xP+cePKjo30T4TR7sWX5jlf/usueupynPZ+LspvynRu/k xwe2Ubt9YB/LdzrfRzx/ZJxjcKvzfCnfIGFfFI0Pkr9L0jox2GfUHFNS/pVl D2n1jJpa1GGvBtbc3xfR58CI2Sj2FA77dU7R6z0reiQnPGrQ0zn6XFj0bwro Z9ds0yO97plx3FlxzoHD2yNjnHV0Va0z4/hwTg6uue/v1ds3wr/Wpz3pdTBn Zy3M0M8Rb3zZXGLAh4SkLhxwZu//w4jfQv3cIP0a+c6V3Fh2U97yy+gH/dxY w0Dxzm/1b2RDa+6pX8b1qcFvBHDOq5l3vuR5kntnzCWGNZwX2EesQZ8LWj0z J474nTPhrxm7MPaYc4BY4lgLOLz9MsYvjHNjcMRgs5fsKcfvuzhXOE8uqtne V7GXSG8T72d+y5D+I89nGUvsi8CkDyt69g734lbPmdGJx75MchXJX3kmFPfS ote1WK/ZBr9Hx+LnhH1g+0ct6qyWNIdc8K6S3FTHYEUdl1/FmVD2ceG9j3e+ 1ZN+/8NeIR991twrEvsg5b+i5vhDMs53ZdE94AMj75WSqyrnH2lL7GGt1pH8 pkAsPRF/teRmssuqu4bw+5TjN+UcEfvBHv4h3jWy7y2bS8zmkhOp1+p5NRzw 7kn7r60ZG17zXJzfHThWF8W9ABxe57xxdPKsFjHY1CTv4Rn3wm8SHC90+sO+ rua+/1b+kdEXOZEj4zxAR3Jc4BLDOq/nuUL+IzO+hriWVsp7jcTA5z7GPYz7 Ntxrip6Zw+Wa2zn85ALj/smzLPdQju2kso/vZM4BvkcynrvfHLW3VJ4RRe/5 mnGOcn7eVDO2svq5sWbsv7Rr3l92XfTRNdt3SHbITmUcRzx5R8e94cio+3f0 D5eYyWXnvjHOs63a/RsAM/Zbarab1cMSJT2Py36gbB8YPObxI1vNZ03U4PcF /LfVjN0uubViWvKuS03m2ODwmOGDM8/Hj04MNnWp2UPrTUm/qejZ7/p8H4mz jHzbiH+X9JtaLbFbVevOmmMG8B4t7MGyY/GBkWtMzVhenFE1HzOuNfLeIfy/ hHF4xI+NmqcFBxteTvqYoudR1KeXtaSPE74t31N590wMOcfXHHNGxusA65Sx D4xcxN0qf0/luadmnbrL0Zv0XklzxgXG5/bgoxODPaHmmDMzPobs6bGRB4xc zI7vbPVMchPJh7TWpPR8ybNm5s8Ta7YHKnY71b0/8uIDg3dfzfErBAe8V+QE I++kmmvRDxL7nqJ1JD3Qz73Bow65umgPx7Z6jslclOuJ6wpfgfNE+pSy/WOD gw9sUMYSvEP+7ZVvQtFrZE76kHhThT1YM7ZK3n58zFTBsZm7gsMjfkrUJ/8O 7a5B/nvke4xrk2tK+sNlz9Yelq9JnCHiT605pmvePjDmiPimRt+PxDHkPGHe yfnBOcbesEf8RgA+Po47OjHY02qOYZZLfnIzQ9s8MHI9WnN/zeLsyPePfNXo n96Zo7IO7HMz5hLDeqbXHNPOXsk/teg18v+s5/9XX0t6b9gjjhnXFtcY90Ti iKcesTNqjkdin5/x//eeXBeyt5Iri5tRzveX1/Phynou1VZMlH+WeI+UzZlZ Mw8/vrr4T3IcZF+UMRdsaMbzx84l78lO6ueJmudfs2vGmIPhx8eMERx71bxx eMRPpm7RMz3qTGOuIH0P6U+zV5JzyMl3imKfkr6rfN0yltjNJevIbOShb3IR R/z0ovORt4di28Vt1ad30vrcmm1wavLfl8AHdkXGecjBHPKZmvu+hLmi/Atk 78IzrnxdS+ZM5Virfh/pz9ZsXy7+czXz1srYBwYPHxjx8zgmPH+I8zy5VWP1 vH2PibsePcDX5/Ck8Vmqv2zSfdEfewqfXMTMl/xY7yOPpj37W73kmST90zs6 68BeI28uMauWrCPJ/0LN8cw8H5Wcrs/BSfvAyPuiZDfJazOW2MxE0ZH56Jm1 0fdLNee6OuOZ6fSyOWuKv6jmmSv+hTVj+PExj31Vvh6yR2bMBRvBuaH8jytm /aT/Nv8Vakm+XDPWLW8/Puai4Ni9Ihbe41GT2syHqcPf7vN38ruJ86awObJf Dy51X5O+lnjXZSyxZ7ZaR26QdB76JhdxxM8oOx95u6u3fVu9FtaI/kasDZya yyftA+uIY8E+cjz20+fxsjkfyPcUzyji7N5ufSP51+GcL3qG/HbNNpw5wt+L NeADg/dOzfFr5s0BZy343oka78Yes/ZZYTN7Rkeyz/T2Vs39UYdcN2XsA6tk nIu+Z5Y9+35fekfJfnz0jw+MWTcSnBnswa3um3Xtod4+Eu951f6wZqx3xn58 xaRx7B554x/GXuTa5K/73v1xzdfbLYo9hJolx34qf0P6bfJ/UjO2bnCw4a2r z/OyN02aO6/oOTA68difS/aWfXvG1/S8uK7RP6vZBieGWHxg1GUe/Q3XV9mc z6MnfGDMw9eXPYv3D8XuqbXupc/G0r+s2V4r7z6/qLlXJPYdiv2q5vgxUWt2 zMnxgZH366jfM2+J/UJwkStFXepR++lWz805Xj/Lt6FyjcsY+052tWTOtzXz 8OOj5/7yPxGz9O8iH3W/rxnbgHuIfAuLnvEeKd+LRc9L0X+o2X4mjiv7SBzx 5KUmtW/mnbTmXGvnPTPeoOSc9EvfzKrx/1Qzhh8f8098YBtHP+Sipxe5TuN8 YDb6a6z/l5qxsRn78ZEHHJtZKzg84jcqeZbKbO23mu27M5bYYL8Hl719KeyF rf48WXYPf4SP2H7q86+a56xblHyMOWf+rHmOxwwW+WfUgw+XuSVx2L3yzkde ahwbvdLn3zXnvS/j8+Jf2W8p/iTuga2eb/9Ts711xhIbDD5czqUldF1uqjwT Ms73d5yj+6j+vu2eW/5Xs71O3hIbjLineA9Luj55x8T+LIzjAoca8BKSc3ju VZ43hCfDnhPYK632Y2+h2KXrnqnzmwVcsEnST5fcsuTZLH0sJewDrWfJurEd M/bjo39wbOqCwyOe3Pu1+/cCdOphU59e6CEl3zbiTs5YYvO7xFxx3hZnG3HS dduVvDng/C6DDwxeRvJNyfszlmDE8p3F9xXfrW8GDywreYbsnTKWW5W8FnQw bHr9sOj+l4ne6YF52Qetnq3tKN770o8XZ9m67YczxpeT/W3RPjB4ubrj+wUH nDznB4YvL7mDYqZmLLGZyaEjmSseyL7WPZNaLuKou7/825U8xxgqXydhH7JO +ZaP/vDjg4MP7JGMJThr2YX7Gr8NSn9X3KJ4H0sW6sYezdiPb9ukceyHMsbh EU996u0jf6nu/qrawwMkV5Ldl3uH5HviTOH9JXyPZSybot4nrZ4rMQ+Ei/0/ nXjsct0zSOaE9LV9yb2hr1i3Df5M2bO+FWNNj0Yt6rDeCyIXPPqlb/Z0L32e 5Z0m6f77Bp91YNfy7qNz3b12jr5Yy8p1x8/O+Nj9EPNGfGDkba57rsiMEYn9 Vat1JHMqjjnxdZ67uI/oM0D+QyQP1qdv0v7WurFz2bdWnzNtddt7ZSyxv4vc v8XcrGvUpM9v2WNsYZdLf049dhNnlbrtQzOW2GDw4TLzJA77qYzzkZcaP3Bv LzpPu3wHaS2NvGV77NEV4vzY6hnjqnXbh/HsJGx1zqGS+XA5FqvVnffpjCU2 NeDD3SnpOOxnMs5HXmqwT+zXHPkPVs5DeG5MWl+jbnseM+BW7+1B4j4vexfp 3eq2n8t473vUzcUHBq97+NbNm4NOnnmBkXfNqANncX3Zh0Yvh0Y/5Cb+edWa zwxVcWsk3SO99s7bv1bd2NettuH0rNt+ImOJ/T8uso9ir5V/75JnmOhr120j sY9S7Dp1n2fzMu7rn6J7Q+9Vt90reicnzy88x2yUcdw6sYbbuGdIP0b6cOkL yv577Er0zho7uOfx3Z+xD6xfyT6wXyWrcQw5poe1+/hyrH+Sr4+wF8rG/y36 XPoxYrBrdcespz6vk//Akmet1KIO+1avu7+jM5bY9HoYzy2yT2ft0g9v99yy d93YguinFuccffze6nMGfd26bXqk12czjiOevOtG7+vnjb8Q51uj7nrzxV+v 7r6Py3gflyp5Dnm9fH+1uh/6Wl+8RMlcYljnBnXzjs+YA94jYsH+iu9tvvP4 /ttQ8nFx1sxaJvXZLWkdDPsIfXbXe8ju8m8Sx/aVjOsv7iNvzkZ18zaWHKU6 J0b/xLAGfGAvas39eRaSvWfSccS/lLF/07qxzTjvJBdlHEscvYHD2yBvPF3y 337/EzHY7GUj+jtO+lH67KHYzeu2X2PGzvrU7+s8v0kfrfiTM5bYiTb38VLZ fcI9QvnWDp147K3r5mzI3/DwHavP3knrW9Vtgy/V5jz4wN6MWtThb7/hkAve Dty7JDuyrrFsyXW5vo6J84HrDPv0jPvcJvrYJvaPY7Rd9Ehv5Luz6Fr4wMi7 vWQfnmkylthLt1lHMjfeN3oifkfJkxT3lvhHKk8nrn/101f+cYoZzHMm12vd OFxi5kiewfOScu2bNAecWPw7143tIrmQ9+u8jxXH7KjA4X2YMc67MbNNdGKw qUneDzLuBQwOet/Iu1v0Rf5dpY8RdnbGErtYso5kDgyXGNa5e93zTuaoe0RN +mGNrK9f0vcx7mF8d8NdVPY8Fi7v8ZXwkwvsqHaviz3Zs25747zlnrHms/Q5 k+dWcZZTnhVLzrlX3fbH6uFsnhlkr1SyDwze3nXHfxIccGaqZwVG3n6SE9Tb eRlL7OXbrCOZAx/IHkj/NOM65ELHV9RnH3Hu4/4ibICwFMc5YvDjY76ND+zt jGWniH2g1TnpbbDkAeK18D1fN3Zxxn58zGbBsT/PGN8/eqI+9S6I3uib/qbJ d27Js9CD5SvJ94U4B0k/Wnu9Sd4S+5h24/BeLltH0ucrkucoz7rSp/CsVLeP zyF1Y/jAhin/WdwDlG+LvHF4m0Yt6hyQdF+rRG/oh9Vt96+776u4n0dfxCKx V2izjiQPccR/lXFc/7CPDC7+82WvVvL8Fv2Ium3wcuTBB/ZNxn7iwVbU59h2 z6WPqtv+mvcFcc/T50DFHl23vV3WEhvsVa37FPEPEuc4+T7h71/TltgrC7sw eHCOrdv+PmOJDQYfLvPPY8K3Wd4S+5TosW/RfZ4o30WK/yFj//F1Y49xjsQ+ nFC3fU3GEhvsUn2O41kt6TjiqUU+8q7B9aR6zfQuzkl1299lLLHB4MNlRs2e HRW5BtRd42fxL5ZsEzZGnFPkf03r2Zy/+akb+zE42PBmtJpDTmRL2//pxGOf Vnf/5LlMsd1Lfl9GP7VuG7xLm9eID+yXjP3Eg51ed73hGfc7IPK2tnmOzLE4 o277p4wlNtgn+lyizyFJ5zg91jawbqxv1jPps9o8y8UHRgzXENcL19qZdfOY sXM9ndDu+SQ+MOJP5fgobmu+K+u2t9faz5Y+TP5fFfuG8g3i+mqzD+z1sv2r xD4Mke9N5jN5c8G2zLvmiVG3q7jnBDa4bgwOfnzkAcf+LWMcHvFXqe4VJeeh zuU8b0lvF3eoOKtLnif5rNZ2K+900p+UPipjeW70h47cMPLQN7mII75XyfnI +3vGtetRF/38um1wavZP2gfG2slDDmbdF9Td95/Ks5q4l8nuJjmX95U2z0Wv Lhm7RPqFddt/8c5bN290xj6w1SIWjPhLJK8R9jfnOdesetg/b98PWtuRSR8v jtVhSeOVks8Z+qI/9hQ+uYi5VPJa2f9kPL++KtZO7W7R52XRC+uCSwxzZ3Qk s7hhdcczix4h3/Dw4xsW+3I515Py/JuxxO7RZh15qfhX1B3/X+TBJtdIfdbk +TJp/cq67Rt4zuIZgTXWbS+ZtcQGY+/WK3n/r429ZA/nq7erZa/NfUh71Ydn KXGuqdveOm+JDQYfLrNW4rDvzDgfeakxQPyT9TlanOHyrSUskbUcHsdvgeKu i1oj6rbvUp5e4lwn++2y+XA5piPrzrtN3hKbGvDhsifEYS+VdT7yXhf7xH4t If874o4qefaIfn3d9uiSZ6nMWplNvhMz0hvqtpnfnqJ6N8X9Ah/Y4nx1x6ez 5oBzb8EHRt4bo99t85bYlTbrSPaK3MRvJ8468r3Ld1XSPVJn2/CPrht7T58b S469uW6b+xgSGwwuMUurt1tLxuCj3xIxSOxlsr5nnhX3qVd5523zrBX91rpt JPa9zHZ4dhB3r7zXzf2UeyvveJ+V/T54B/dy8SeKf7v0qrBM1hL7/bLPKebj nFdwb477Mzrx2HfVPV9nJn8a31clz+HR76zbBv+gbD8+sB3U20fyj5e9YZs5 5IKHD2yacm4gbOeS55+nt/v64ZoaW7e9Y959jqm71zFx3XCtjas7vpB1Puow G8QHRt67JcdJFrOW2GNL1pEnRN2xcQ1/qjwfckzlv1++L2XPyjj3BNm7Buee unn48VH3jHbnJeeEWDd1760b20lrmSD8Hp5RxNmEd/eSa6FPrNveQfqcuuc3 xN0ba6Amtaern/vqzrWi8n8u36a8BybdL31v3mb/pLox/PiY3eEDezzjHOSi p3v12bPkPBMlJ3NeKeaBurFy1n58JyWNY3fOGodH/BZtnu/xnvVg3fZKWUts sIckJ0munLXEvq/k2eiWbZ6dTqnbZk7IHP9h2VsLG9juuTycqfI9IL0la4n9 Udl8uJxXxGEz2ycfeakBH+4p4jxSd96d+btl+R+VvS39sg8lc6bVbbdlLbHB 4MO9Spzp8j0ku0vW+chLr9sI36jN58ZjddutWUtsMOLObPfeUp+8pdgf9ubk pDnUgDdDcorsVcT5WOt4XPb2bfaBbddmPz5mdLMjbpe8uWDo37dah8M5MkvY fsoxs25sbsZ+fJw/s+L84riDz4xc5OZ8oH/02XF+0A+97Cr/E3XPX5nfIrE/ UezDJc9wmbk9WbfdnjXnk5jf4gOD95TkWarRN2+5I8+YSV9DXEsrZO2Ht2Nc T1xXXbOWXFvk5D7K/ZR3bu6N3BeP5XyQPVf+qTxXqYfd2jzLYn6wU5vP7afr tpnNzhDvOdnTS/aBwXum7vgXgwN+RtI+MPI+y32F556sJXb/knUkc9oX5HtS eq+s65Cre9a+T9n7pGcx84TtobiZ0p8P3uIZW5vnbPjAemQtZ0Q/9MGcjjWe rT1ZIN4gyfnRI7Xw49sraRx717xxeMRTn3rMBumNvumPGcw+bZ7DvCTfEtJf FefFur+zdstbYvdrMw6PeSc6khkj9Y8tuQe+7xZFPP6FdWP4wJidcgw5lqtm jcP7Xy3q8F3JnI85GvM39Jfrtl+tu29mfa9If0r6OllLbGZg6Ej2ljjimWES Rzxrfr3u2SFzxb24L/OOlbT+Wt02+OyS55D4wHpm7ScebHC755PMMN+o295d a9lbnAPafA68Wbe9dtYSG2x/fZ4oue478mVlv5exxJ4r7Bl9ntbnLHHertuu ZS2xweDPjR7eqjtvNWuJTY3X9DlVn7PFeV++ZbiuMva/Wze2n3zHtbnWe3Xb lawlNtjzXFP6DEo6jvjNs5FP9sGSB+lzWsl/B/tB3XYja4kNBh8u80z2jL1j Hz+su0bvrOebh7V51vex/IdK78NzRd0Yc0sk9mHBHVgyHy6zzXVCJx77U8k8 MYpdIHs+xzBp/ZO6bfAvy54f4gNbL2s/8WCfRU38z0ff7MuQdvPJ+Xnd9p55 y88j10J9vlKOc5POQS76/qJubKOs54hHtnmWuDAwYrhuuP+dxnNF3Txmldwz uV/SMz4w4nnv4/2Qdz/sQSXnvFv+hxp6FmrSc7D830RtOF/XzcOPjz6/5zqW vVnWXLBNpBe4Nkv+W1D+FvM7rrfOSyzxbd3YZxn78fF3m+DY/B0mODziz1c/ Q9s9F6IOfxNJzvPk+znOsx8l35LcWnV/kH6dsOPyltivlqwjz4s89E2utyL+ 67LzkXfvvM/pk+KcR/+pbhv8tbhefopzn/OcPOQYKv8vdffdL++51V9cR6xJ +JusSZwT2dvg/1q3vZXy/FY3b5+8fWDw8IER/4dkZ/Jpr36Xfrz0LbL2vV7y 7LG39B9L/n48PmpTl77ojz2FTy5i/gwfdZl5MWtjDkb/9M7+sw5sZoBwF8eU rCPh/F13PHM25kDfxQwHHxh5/5F8T3L7rCU2Mzl05Jjo+ffYi3/rzsXc6eOS 5xfMLi5Q3SV0rp7ZZv9/dWP48V0szpLCL5S9X95csH3zxr8vm7Oq9GTDORKR b5es/R9HLXDsPzLG4RFPTTjwqXNlyfOfIeKkxblYvqUlP5d/d74jGp4RMc9B Yn9asv5pxJKHvslFHPHMe8hH3j35fpccrM+8pPVUwzY4NZkJ4APbNev9Yx85 Ht8p15f6XCbOcuJcIv6BPFtyLQgflrS8oM16tmH7gLxz52RfH1wweMs0HL9f 1hxwesC3TMQvK9mTvc5aYl/YZh3JuyS9ZRruLxf7R118YPtm3S9938I9S3F5 6T+U7L8lznl8YNmsJTizgou4ltXLvdIvlt5JvJ9lL98wtn/WfnyXJ41jH5A1 Do/4hdwLpC+SLDR8veXEuVQ93M5zhmJL8veRfzn5iw1jB+UtseGx7rtKXjvc nyMWnXjsFYjl+1N5fpV9pz5XJq03NWyDD9PniqR9YIdk/a6ysuzxwSHXsPCB 8c6ynuTlbc75W8nHjONebtg+NOs+V2y41xXjuHGsOzccv3zUog7vTfjAyLuS 5MaSTVlL7F/K1pEnRt1ynEOXtft9ine0ruSQfWje78YtrK1sTnPDPPz4eBe+ ss3vyeSEC8Z7d2vD2OFZv//9Vnb+Ycrzh/hXh97WsN07jiv3UOKIJy81qX2w +unScC7eMa9p83sm7570S99/l+xfpWEMP777k/aBHRn9kIuehnPfK7ufJfQd vKr8/yqmvWHs6Kz9+K5JGsc+NmscHvFXqNZI2deKs1rD9mF5S2yw1SWTij0+ a4n9R9nvf9e3+R1wjYZt3pF3luzO/Uqyr/jT4nmjG3urvIfnLbF594UPl3dh 4rBXyzofeakBHy7voWs2nPcxcZaWXEv2KPqQ/onkCHF6NGxPz1pig8GHe704 a8u3lOwTs85HXnql3o2xrp5Rn7UjscGIYy+GJ12fvCfF/rA3+OGsHXvXSzIl OUCctOQ6sm9qsw/sqnb78Y1UbFW+jOxTsuaCnSz9T+UeLc51ScdUuOdLdjSM 9c/bj4+/q6lEbvzg8IgnNzZ50KsRTz9XRWxNvr+YCectsW9W7A1ttjmm9Ybt E7L2gePHV4/4huQunEdZyyWb/F7PdxbfV/wugB8eWO9YE3WRj5bcDzoYNsfg sZKP0bpxTNj/vpK3tPn9N9vk48Kx7tOwfao4f/P3OdxX2+zrE8dvvYbj1wgO OHXxgZF3fcmcuGdkLbH/LltHjhK/Tfp28v9Tdh1yLcz4WbkTxzjpd/eNuE9K XqN1bSj9yJL9+Hj3xAd2ZD5kye+2yzX5PZ81Li99E+7titm4YezMrP34bkwa xz4raxwe8dSnHnODTRvub3DW75Zbyy7I3lxyjOyz5d9M+q0c36wl9ji+G1i7 5M1Jc5dpcp/oxGNvyfokF2a9vrtjjehbNGyD0yc9bxF7c1bUos4NSXO2jPXQ L32zp01NfqflOZz+6Z13Z9aBzTsvfW7VcK9I7HOY1zUcPyTrY8dxuz1pHxh5 t5Ucq7hBWUvs8W3WkRxTjjnxl4pzCPf5Nr/HNXXxb/P8Xo9/+4axa3VM55X8 LrxDw/ZReUtssOHSp4p7hzg7N2wfnXf8jtzz1WvXJtel550ati/PWu4UPcGH Sz87Rn36JB95qbGE3rGmtfl9bRf5Rgg7Jm+JPZLvBOX6r+x++jZsX5X1O89u sldvMh/uEHF2bTjvsXlLbGrAh8vxIg6b9zLykZca7BP7ta783Zr87sR7EPru Dds9uL5V6y75HxV3uj6jub4atq/mnqy6e8tes8k+MHh7Nhw/MjjgFyTtAyPv XpKP852StcSe2WZ9ZtQiN/HH85tUm3Xy0CO9Xpu1v1/w1pLvnXgP2qdh+7qs JTYYXGK2zbqPWW1eI/q+Ddv7Ro/U3b/h8+zLrP8mY3ab/64Dfb+GbSQ2fyvC 8wvPMYfkHUc852hv9XAa3z2dXWPJzq57oHxrC7uB+4P0nux71j6wG9rtAxsi eZBkL75rs87xZPQ/iu+iiAd/gmsoaZ0Y7IMbjjlBvZ3Gd21n/z3D4vrtfu87 JPaAfUMeEjHg78W7Ie+j7Cn7fFj0SE541Hgy9un9kvcK/fCGbXqk1xPzjiOe vIfHXrL2UbHmuYo9tOF6vKse0XDfO/Bdr1ofKu4icZ7i+UP2OOk3cj/nGaDd XGJY51EN827MmgM+L2LBiOe7ju88vv+O5rlCvgF5y3WavHZ0MGxyjI48xzXc 08l516fGSXlzjmmYd6zkGaqxU/RPDGvAd2zUG9hmjHUdE+ugB/zHR40TJAdx X8g6lrjF7+wN83bOGv+o5PdrdGKw2ctD49qgp89K7v/E6JH+B0hvCL+N+4/0 uVyPWUvsm9v94W9cOH/gVvS5O3TisU9p+O9Z+NsYzvvnpM9PWj+5YRv8+Tb/ /cPJcX2cknctapAfDrngDZTsw3ewcs4jnz5/JH19EUt+rjPs27POcWrDvZ4a vZP/9Ibj78g63zlt/tsGfGDkPUPyC54dspbY6zZZR/J8RSw9EX+m5HmSe4v/ Lc8BTf7df7D8G0ofJ/9V3Jtlf10y98xYD/VW6+K1wAG/J2n/2Q1jgyQ3EDY2 62PFMeP4nR39sifgL8Q+oxODTU3y/pl1Ly/KNyFpnf6whzTc9z7inCN9fc75 rCX2S23Wkcwu4BLDOs+V3FhyfNbv5byf3531Glkfe8s1PSSua7hD2zwHgMt7 /AvhJxfYltKzOqaT5D+/YXtS1hIb7Bbtw6ayJ4rzimLe0Oc+6UMbtifwnCPO RXEM8IHBu6Dh+FPz5oCzJ/jAyHthrJtjh8RmDoL+XcxwhvGdKfuBrOuQ67S8 fbnO7u0S6ZcIW7az5zUXS1+ms/34Fs9DGsaYsSye6XT2HOAy6T+VPA+5Tbkv E+8X5gkNYwdn7cfH/AEc+/S8cXjEU596B2bdG33T385a54c8Vyn2CvluV+wZ ir284VkFcwwk9tZNxuEx40D/NeYh2wvLK98D0t8W/yru7W32X9kwhg9ssnKO oy/pz2aNw5sStajDWu5Q/m2a/M6OfnXD9rUN9z2Nd3/pO0l/JGuJfWe7deTk pOOIH5h3HPGseUTD7+K8vy+n/j5q8zs7+vCGbXBs/PjQz8zbPyLsD9o8B2Am MLJh++Gs6+/Y5B6ui76IRWKD3cV3b7v3f5R8nZTv7Lwl9lc8H/EML3uKODc0 bM/OWmKDwYfLe9n1Dec9K2+JTQ3e0eHBGR0+auG/MWp/3OZ3bN61b2rYfjRr iQ22tz7fyJ6adBzxvO+Tj7y7CO/X5Pdr3rtvbth+MmuJDQYfLmtnz9g79vGW hms8kfV79ddtfqe+Tf79uIdwXTeMnRwcbHj7N5nzcNJy3/9PJx77Dq5jcedk /W79fZvfr9Fvb9gG5x2euvjAmBvgJx7szobrPZ11v/TNvjAT+aHNM5O7GraZ qyCxf4iazEeou3/koscxUZ818m78c5vfSfGBEcM1xLXF+Ta2YR7v4FxPvHtz fPGBEX+6fCvr2M7mO6Vh+wPx75Z+kPTnuIeIN152obN9YAc22Y+Pd/B7Y30c R7hgp0s/VLxlm/wuOVbHdIKw34Td0zA2P2s/vmlJ49iD8sbhEc+79R9tflel TrGzz7HDuQdEr/dJjlPsYMVO5LrmuSBrOTHOM/R+ce6Rh77JRRzx+chH3hey 3iPe4dln9EkN2+DUfCRpHxh7RR5ysCcPNNw384Hx8j8s+542v1sfGnvCukud vfbJsTfsyYMN85gP4AODh+/B2Lspkn/KfjHr3wb5jfCcvH1NXK9J93hg9AnO OzzvzvRFf+wpfHIRM1VyBb5rlfNf+Ts3ec5A//TO+xfrwB6SN5eY/k3W+0f+ RxqOf1l5JkquwHdy0j4w8k5jP5Tn3Lwl9tFN1pHTxX+04fihkQebXBPEubfd OdEfa9g+UXErCp8p//SG7Tezlthg93Ec2zwHmNmwfYE4ZWEzuI/pmWrlJtu3 ivN4w/aFWUtsMD5w4cwI3/l55yMvNQaIv7Q4s8SZFT3CQWKvJPwknlPa3fPs hu23mOHzHic71cV8uKz3iYbzvp21xKYGfLi3JR2HPTTvfOSdGPvEfp0n/wNt 5sBHfypiJsY+0g/ra2nyGufE3rCfp8n3TPSKDwze3KhD3dNibeTBNzeOx9PR L2tEYq/U2TqSvSI38e+Lc59il+niexQ90uvF4X+2YSzdxfMXZjLPNWy/k7XE BoNLzAXqLSv/yU2uhf58wzYS+724Z/Iswn2Tec2pTZ7DoM9r2EZiM//p3HuJ JX6U/kzW91Hup9xb35VvhyY//7zAeaEeLlQPC6SfwTNW1hJ7WfZbMct38W/i cHNdPCNCJx77JcmzFPOJYu+X/wF9nkhaf7FhG7yZcyhpH9hFqptX/KuyJweH XPDwgX2UdY1XSq57TJt7op9FDdubZu1b2HCvSOyLlf/l6JF1kY869IAPjLyv RI/wka/EXqAjn4i6iyLv2fIN1Ocp+d/hu0i5PlP+VmGv83zSxZzXGubhxzdH /EFho8NFv4T/1kTDGHnocY0m9/lYm/P3Dv3NqDdC+I/Su3dx3BuRi5rU/pTn 59hX8s9QbFtnzyGJp+/uTfa/3TCGHx+18IENj37IRU8Ptrse/f/D97v8XTiv GsYuzduP77GkcexFWePvxjqZnx3V5Hv4+w3bzOKQ2GAfSD6kmMvyltjM51ZQ n6so/9OK/bBh+yvFThHn44bnSXOUp2tnz5c+anjewzwKiX1uk/lw4RCHPSzv fORdJWZXcJlffdJw3puUZ6q4n3GuinuR8I4mz3Y+bdj+IWuJDQYf7nPifCHf JfL9lHU+8tLrs/+vifMOk6LavrZ2GZgqa0zdQ6tItzMmEAFFqlrBgCKiYsSc I3oxYc45i6IYMIs5YtZrvuacFQzXnDFiRFSQb72u/Xvu90c/O6y1wzmnqrpm N9rTMeSZOtD2xDbLqZGXuJX0uani+uQ9M/and/QJhxrwvoke6acn+8S6GvaB Ld6wH9+Liv0h8Olt5oL9Kv059XB61B0r+b2wAZLfDTR2RZv9+JjVgGNPj1h4 xJN7iaiFTr0lop/FY3+mydfFnKHNclrkOlOfcVXPH34caPv34IyNuvjA4P0k eZ7k322W92mPXqn4HuJeGh9+eGDcT9xXs9ssubder/jfNPFvm1aNZyPPRZ4J nTqzXxTTS3Znw7MMZhrMKcD4O/3XgbaZh/QW53fWVrcPDN5vAx0/Izj/4BX7 wMg7PXo8K7fEPivWhGRdM+VbSrHn5K5DrjlS+/pKf5N3IfH/EDZEMW+phxnS L6jaj4+5BD6wSW2W4Pzt/4A4D3Z61nGxfH+Jt6Ry/znQ2Nm5/fjeqBjHnis1 Du/BqE+9cbl7o2/666/PplX/PfL3QM8/mKXMkr6csDlTy1mxTnB4E6rWJ0T/ 1PhnDlPx990chb/z8M8eaAwf2D1tPkPOgb2dHT2yh9SiDvt2iWLW1Wdy6HMW tpPCfc+j3irSP+bvzTZL7H4N60j+viaO+LlTxxHPmueW/Eq8R/g7kfdWfaZU rM9V2AZfoeE5Az6weVP7iQe7Ur6l+R4QZ57CdibOB+IMbLj/eQvbd7dZYoM9 pHUPrzp/Kt/V0vPUMo1c8JapO09bxJEfiQ0GHy49dCucd3xuiU2Nh6WXinlH nFy+a+WbP7U/K4z9oN6Wrfvv4vkK20+1WWKDDW7471I4xBF/bu585N2a7zj5 VhbvXXHaC9vn5ZbYYPDh8nccvbN37OP8hWsspN5u5Nmsz3t8hxb++5i/qRco jC0cHGx4vRS/Jr//VcxdteFrG5147IUlbxW3rtghsv+jnu6pWF+osA0+SZ8P KvaBdU/tJx6sWrje+bn7pW/2hfhHI2ct8sFBYoPdFr3SJ5Jc9N1RGFtEtXrL v1bDf7vh64h63Dc8/3jWdS/MuyD3uyc6fCQY8fw/R/l/jy7RzZx6xCwi+Y3s x3iPkt6H+U/u/haVvXnVOLztpT8m/+M8jyrmgLNG/IsVxnpI3sX7lvqf0dNn zPmCw5uQG19OtT6uWCcGu7NwzCttrk8N1kVf9LdOwzWeiB4a8t2t+J6q1TPq 0z++RqyHD3Gf8N0n3/L8ZpX7+kPn+kRfIjA+w+O6RSdmeODwuF+oQz36oN/O uJeWlbxfskucJaXfQx+pJT3RAzG7Vt0//iVjDV2Rj95WUZ11+TtLnJXUw7Zc oxX7lyqMIbEXSN3fdVX3vHT0y57cHz31rTs3Naj9pPSnOn3toS9T2O4n3gYN z1iIJe4zrs/C2CW5c1ODeswO/vFXrPcOHvnIe3Fum3jygsNjrsJ1yQyFa/US 6bfBqXsvODP2Cs5yhXn9eabxnNW6/lKO5WXfUXXffeKeeUCfUVXPPeCAM1fB 37cw1k9ybd59UscRz7rA4S2ZGt+QvwEr1onBfqbT/x6C9VKfGq+3uS/666++ h4m3ccPX9oryPa2YS5V/hcJYj9Q+sDurEau4L8QfwDUvu3fqfzOxWcOzF/SV CtvgK4j/VcU6Mdjg8Pj3HsvFfc8zhJ4HFu77Oemjq56rPCW5svwD6p61rFi3 /9lO5yV/WRhjhlMUxi7P3QdzHHpDbxW2n4rnGtcVccSTtxW9sy7qUvNbcQYV 7umK3LmLWP9s5dpa/Ee45gvbU9rMJWZ0cMDgPS37+U7nZE3U6JfaP7gwtqrk M+xd6v1gXy7LjcPrnxrfRvm+rlgnBnu1wvfhRPErDevcjwtL31LY3rxbi/9s 1bFrRF/0sHrhmHfa7APbp2rf6pF3SPRI/u0annswM3lBvnW4ZxvGWRdrRB8S 61yzcMyKqrVTw3MH5iTUog57uFbh/orUEvvZWOvAuntmhkI8sWvHutkTclOD nl6peq/oAX1Y7B090uuVueOIJy84vJVT46zjO8UOLVyP2c7wwnXp7SVxXtbn +4rf91+u+p1/F56HsQa4xLDO9QrzmFfvEmfwdcSCEc/+cn48Q9eXfFW+VVLL ou5+0MGwX5O+W8M9bFi4p6tz16dGKzVnRGHeBvQlzlW5ucSwBnxgu/M3APeC cv9QcRzxg1L7NyqMbSzZkrwmdyxxzDrA4a2WGt+z4TlAK2Kw2cuhsY/MPFox 69iksM1cYmT0Rf5Noy96QGIzv5iiz79k/1gxlz6/D31k9L255GTJ1RW7o7ij G352oW9W2AZ/gXeHin1gA6MWdVjX5MgFbxveL4QNEOct2cdUvVfcX9xb/C7M fYb9dZv73KJwr0jsNRS7VeH4IanzrVx3D/jAyLu15NvcN6kl9l4N68ifKo6l J+K3lezgumWGLLlK3fuzY9z35HlF+7Od7OOr5hLzHO+sVeclJxxw5if4t48+ dpA8gX1u81ltEtcBOLxhqfExwp6rWCcGm5rkvTZ3L91jr9DpD3vnwn2vzfOB 61/863JL7Nc6rSN/qZhLDOvcRXIQ8xzxdw0uOmtkfcya+E7ju43vPLj/lf/n irmvR85BkQuM7z6+9z4KDnnh7R/xxGLvKf9B8i2qz2DmNBXL96vWRxXGftS+ 7V4Yu4H/h4Dwk6ueaaDvUdj+Vp9DpH9TddyoiAGHt17qutSk533k7yH95zbz qEHtA3jG6vMr33GF7eGK/VjYaNkfBAcM3ieyD5b8reI1UYM+8e9VGNtb8kvZ m6SueWTD/2YGHN6I1Piq6uP3inVisKlLTXp+Q7lPrfo6OTDWunnqWc/Uquc/ +8W+st59C8fcmNsHtlrdPjByjZFs0L/24U35z4g8p3Oesu/IjX8Ue44+JvZ0 /8IxN+XuhZ6YFVGLOvR8QOH+mCkhsen1aOnH6rNk4ljimEEdVBgbmTo3NegJ 7vHBRz+4sM1+cpbsKXHE/x+OZH+4Nr6J/Jwhe7p+6usFbAvp30keJ/6f4kxR 3cN41nTaf2hhDD8+5lFHBj4pNxfsFunTeFZp7TPEGSJ5hLCTFHt4YWyb1H58 f1WMY0+KWHjEU5PaW6au83bUZS51LNc865Vck99zFHsUzxn5tkotj4q86Ehq kYe+yUUc8d9HPvIyK/uxamxmxfoxUQOcmszE8IFtmzoXMzV6Qz+usH2K5Luy b+e/XZJ9kuyhyrM0z+Cq/83PKdLXqnvPTyiMzeTfDhXGtlP+d5RjfNWzO/QT C9tcm+PEmV1xHPHkBYd3W9Sl5qyoRV7q0QvY9so/nedZ5Kdf+h7bsP/kwhh+ fH9X7APbmb9/JddWvjkS66cWtv+Qfhp72vB+sC+cET1zX9E3XGJ2Tc0lZrfU kjj2n2fu3DX/rfEn3zednp1eLX43+Q9MzR0r+2zJc8U5p+E54dioT/4zpQ9T X3fy74IK59qdWOl/SR+VGj8zelpdcRManpW9r5rnyn9h1Rxw1vtX2OjnFY6p pc5NDXqFc1bUPif2lX2jz3GFe8W3Tt172yf2nbOg97NjH+iB+swMxxfmVVLn INesNvcI767cOalHXrjj48zoaZmG9/Bi+XbQHj7PHE/+izhrYRdIzin/3qnl T/LNqTVuJ/18YTdX7YcHxrpZP/u1fc0YfOwJ8g9XD7sV/v5bJ7UPjPxIcPYZ fLf4PqavCp+oS833xbmwcI3n2EO+x/Tplrh31nB37ljWRjycSwrz6J1czyr2 QtmXyp5VtY58q+LcF8b6ycd+0AM5yLVn6jhi9pF+dpwz1xUSm/09X59bqp5D fij/XMqXKM8VPNuEdSj2cumJ/Pum9oFd1LAPbLbiJxaehTBjubjheQpzAzjg rB183bpnKej/xMi+snDMfopdT/I62evVXYs6zP2uKtzfPbklNr220QP3XuL7 7CPWIP2awthB0Q816Im8VzQ8w0S/trD9T03JZuo44sl7bfRyb24cndjr5b+M 70jx28W/Vvp8qju/9Ftiv66Ub/3g38x3mXr7d+4eb5A9b3BuLMwjH3nvVZ/z CbtJelazjpxH+S8rfGajU0tszo8c5DokdRwxh6auRR32hJrYrIVerhJ/3uiZ fjmjSYXXc3jqdYAdEWsEY523xvlzPTArYmY0JrVkbsT1Q37WTA3O5eqozRpZ H9fARZHrmjjna+Ksby/8PGW+hMTm2fq74hcu9XeM9I2YT8m/kPTP5P9cn1R1 P+30HIe/g+4sjD2g9d5RGLtf+g3KuWH0iX5XYft+yUWU76TUccSTFxze0anr UrMtMZeY7jXnpga1q9EfnHsK28cqtiZ5r+ybGvaBwaPGzQ33f3f4Hszt/3dh 7D7JSXx3pq5LzTwxDg8++BfSP61YJwabutTMxN9YuW9reKY0QvI/4jxcNe9B 6V+GxH5IOR8oHIM+smGdWCQYuR4qjPVSb5OlL6d6E6RvwmxGub+sGH8ocj1c GHs4D1kETzXvq7p/6n8Za3kEvuKXSd0z/TILfTT6JQ/rAOtM7QMjF3HUoIfH 5FtcvZ2Wej/uij2B80j0BL4pv3sk1onBfjzOjXPkDNnT4yIPGLm+6vS5cu5b yP63PlNVdwn5RirHgvI/Wdg+U7F3Cn+GPhv2gcF7qnB8n+CAzx85wcj7tORU 1ftPbon9eNU6kjOinyfi+qMOuU5Vzq87XY9+OvmO4hpgf/nOkd6jZj++hRL7 wM5NLcHb5V9ScjP1u3Dinl4Q7wHJ5wtjZ6f2PxD78EL0ztrB4RH/YuGeHtVa esm/lD7VxDOq14U9KtlbvqVrrvWyfMtKP485VeGY81P7wP7TsA+MXK9IPsh7 hjgPNTwHY27G3rBHj+TGH2k4Pzox2K8Wjhkf+cndkdgHRq7XCvd3Qeo9eyz2 jf7pnbkW68Bm/gaXGNbzRuw9e7t8zfvL3nIPPSF/LfHevBjXzZ+Sb8p/U9Qi nnrEvhnnhMS+KPXZcpZnpc7J/UnetaSX+iyq/O/K10/6Jan7favwHI6Z2hTp mzO76XTf7A8ccNaF/+1Y/zuSfXmnUZ7bxdmy7rWAw3ssN/6t9GkV68Rgf1g4 5uTU9anBftIX/T0pewvuDcnuyvmefP2FXSrOfwtjj+f2vRc2sU/Geb0v3yjp g1PXe73qHtA/KGyDP93wvAudGOwPokfyk5d69EG/9M06Pw8u/Xws/TvuvdyS mRhzKuZxi9b83YQfHthHhTHmZisJ30r51k+8/+w9cz/8nxTGkNgTU5/l83Gd fBpny7nTCz0xbyM3Naj9faevDc4F/bO4Vn7o9N6xt8QSxz58URh7KndualCP +dzWdc/T0L8sbJOPvE/mjvsizgkcHvPAafL/qE89McaeUverwtjTuSU2vG2Z i3NGnJ/4U6VvU7cf3+KK/S64z+TmgqGvWrMO5zlxvxX2huQ3hbEbU/vxsefg 2Fekxr+JXNSk9g2p6wyouf+fWIuwnyV/KHxf3SbO99JfUp6rU0tsuOhI9o08 9E0u4ojnnvwxuM/yG4Rqv8P3Q2J9WmEb/OfIgw8M/lsN6/DRfwrs98IzMOZX xP1WeKY5VPW2F95MLIfUrP9SGLsdfmHsudyzzncbnmuh/1rYZm84kx6J436J GHB4w6LuezGDBSMv9X6L/SP/f8XdQdhiiful77Vr9k8vjOHHx9wPH9gdyv9L p2d0zPfQZxS2f5X+h/TfOr0f7Muk1M827jF+g4BLzPO5ucS8kFsSN73i2Qoz GP7O5Rm8o+ye6vMw9bK23kv3lXxf/p3l75R/Jnss+05+J5W+E991uX0zw+YD tppiZ0keKmyD1DU/rbru+ryfK/+6NePDal4jOjHYf8f6yD9C9sfClkpca6c4 l9mF+7srtcSm1+mK+7rqed0x8q9Tc905S2Mv5c5NDXr6UJxP9OlKrFdK2/RI r/9OHUc8ecHh3ZMaZx3UmqN0vc3kn6t03/dJ35T355rnchvUHAOfNc0t3mcN c4nBN09p3v2p7c9i7fjmiZ7+VD8N6b8Km1dyQ/keSC0/lW/pxDoY9lZNPX8k G/KnpXt6JHV9arBGON1K89okP5d8MPonhjV8HtiTNfPWqDknccT3zezPSmPz SR4ue6PUscSNTIzDowfwTWN/0OeL/thL9pTzm8Lzv+p7OS9t36LY+WN97FW7 9JG806SW2Mwxv+b9h+dyYu7U2B904rEXlNxV/a+ceba7QZwR+gJxHuC76Pra KrEPbMuoRR1miXDIBa+D+uI8wd6KsyXvQ4n/7uNvPvj8/Yf9cu4+FyrdKxL7 UcVWS8c/mTrf6zX3gA+MvDXJUao9OLPE/r5hHbls4lh6Ir576Xufme1E+Xev ++/xxeQ/g3uMZwjfaaXnuHCJ+YHvSfai7pxwwJnx4l+kNLao5DTeP1KfFWfG +YHDeyo1vlvde4JODDY1yftK7l62qXmOik5/2IuX7vtgfteQ/of4r+aW2L9V rSOZ08IlhnX2lNxROV5IfQ9xL72We42sj+chzxieYTxn4KY1z2Tgcs/1Cj+5 wHh+8i7LM5QZwai6ZxErCz9I+EeqtTvXFL2yX8qzs+ze4kxveL7B/neWxl5X P0uUxl5S7G7CZ8q/XGK9q7TdS3IP3rtTxxG/c+DwXo261OyTmEvMnnXnpga1 92AW3vCsb6nS9hvq4WrulbD5gMGbwZnWvEbWRI3XUvuXKY0tGz2Sh7rUXD4x Du+V1PiuNa8LnRhs6lKPfph1zmx4tjlLsp84/2K2zn6Uni0isd9Urd6lY5g3 /qvm2tTFB0auPqWxyeI0S58Z86U9+e6R3jcx3if2d/nS2JvBwYa3V802fOrT Cz33jTqcCz3TL/33Lx3zVup1gJETX/+oQdysWO8K1FHeyfxbVsk5usRLzOkb 8eBz6D7vl1gnBnvF0jFTcp8he3pYah8YuWbLN7ruWes+qr1X3XmQo2vWVypt v5U7ppSdNO0DgzewdPw7qTng/SPnwIgv4p3i3dQSu9K0jlwpcT8DSvdURo/U vaXh+417kPuJ++oArj/FtaTP2WU/vhUT+8A+SC3BmUftzRyr6fuX+3hQad8q Id/O7UeHMyi+Y3lW/B+P+MGlezo+de6OmvP/Lt+awjJxDpHvYH0GyL8azyRh L/IeHv1SCx/YPnX7wMi1etThuVGJtbEu9oY9mpIa36nmPtGJwV6jdMw7kZ/c PGfwrRHPoyGl+/tEeVK+1+JZRP/0zv3IOrBfTs0lhvWsVTrm49TnvG/dZ817 I2fJObI3g+M5y73FPcYzkTjiqUfs0NLxQ+Oa4trg3ZNcn5FfPefyD0z870X5 t6L898jriXOr8p4ozhHiriN7v7r5w0rHzKPP/E3PseGAF4n9w0tj60rOpZj/ aq/m6fKMjNkUOLz3U+P7y79CYp0Y7I1Kx7yfuz41vkjdF/2NqbtGveYeRsg3 t/jvib9+1IePb0TEE0scs9AN5Osmzoep53EH1jzfQ9+wtA2+f93XBjox2ODw mA1Sh3r0Qb/0zTo3J7/sD5lbct2J911qeXjNe94u/YDYN/zwwDYujX3O/aUc x3NPitNDvq6aZ3H4Ny2NIbE/4L8xF+dA7m9xRpa2v0zdCz2dWHNualC7Lv3I mntA36y03cY93eU8xBK3ivQtSmMfRS1qUO8U4QdJDk6sb1naJh95f0gdRzx5 weH9JP/B/A0nzgKJz+uI6Ger0tjHuSU2vAX12UZ6Q7x7eGcKHn58nO/2pWeh zLLggn2VuvZRNa9rIfm2415lPhB9UQs/vlZiHHtqxMIjnprUPiN1naPj2j5U cTsLO132jpJVxX4jzg48txT/SW6JzawNHckMkDz0TS7iiJ+vy/nI+6lie8p/ bM29oe9U2gan5qqJfWC/qu4ZgeFH3yVy7Sm5hDi/i3Om/KPop+l6zaafq2Pl b0hfjfei6IUedi2NTVfsWTVfu1zP6LvHtc7ecCacKXHEkxcc3oyoS83VoxZ5 qUcvYPTG9U2fXP9I+j6hZv8esQY+J8Q9skfcE9xr42rOQ370f0Xe7uKPlt7V 9H6wL7+Jf6Ds92RPCS4xf6TmEvN9akkc90I19ou92qv0/fmzONco7iTeCbgW u5yf/d9Hvvu1L+P4vpN+Hu9DqX1gyzbtAzuV573keN5ZUu/L0nEWvSQPErZ8 0/hhzGIS68Rg7xd7ybouk/98vrsS16IOM/Mxpfv7LLccE3sB95zgLyVu76bz H1Aamx39UIOeLqi5pzUT6weW/+sRCZ844s8JHN4cmfHlI3b/0vX+4plQuu95 xblO8hK+G8XpK3yC9EHSL5I8RLwVmuYeHP0dWpo3V2YO+NCIBSOes+LMeJ4e Jnkt929mebE+ayfWwbCX4xpsuocjS/e0QOb61Egycw4vzTtCsp/k3NE/Mayh X2D85sDvA6s0PXMmjvg5M/uPKo0dXXpmz29kxBLH2YHD47cM8EvjGYJODDZ7 yZ5yflfUPNNn9ntMabtNtY6L/WOfj5Xen+/2zBJ7gGSpz+Xx/Ic7MPYTnXjs EySv5Hmm2Ik1nwfXD/rxcZbgK4k7LLEPLI1a1IEPh1zwTpW8mZ7FWVF2q+lz 4f7i3lon8X2G3Z65zxNL94rEzuU/uXR8t8z5Dtf9sW5iHxh5T+E7V/fA57kl 9vxd1pH0Riw9EX8a7xSSX/A92OUz5to4s/S8n99HbpLv9OAdETGrN7221WIf 4IAdlNh/RmlsbNQnP2fFmXF+Z8TesG/gE2Of0cfGnlKTvNXMvRwZM3N0+sMe V7rvL5X/rLjWuJ6R2Pwego7k+oQ7Lq77s0vP9flN4Rzpt8m3SOZ1sD7WwnOM ZxjvA3Cvj2sPLr9HrB9+coEtxbuS5A7BIS+88ZKD+M5X/ttrxohdS74bpQ+X fm5pmx6of4HsYU37wOCdVzp+0eAMiz5vD4y850uuKv/CmSX20KZ1JNfMcVrj NaXn/RfEeXJ9Lqj+75ZvhDh3Sl4obG1hd0ifENcxfnwHJ/aBLZZZgpOfa/Go uq/z4dIvjuv7orhOuc7xXxPXPzh2z8w4POKpT70e8l9Sur+vdNYLS14pu+Ae lVxPMU1xLpW+kLCpuSU23Bd1RiOa/u0P7tHRGzrx2FdI3sd3ufIcI/te6Rsk 1i8vbYNj48eH/nXUos4iiTlXBEa/9M2eVqXX9NkwMZfe4V8ZPZKHPieW7hWJ fZWuz6tKx3+T++w4N37fwQdG3qtL/6bD7ztI7GPr1o+N39c4c+K/VZ7JDevk 2YZnSN294b82eA/w3lHzzP+60vaSmSU22AZxfXDuN5a2uzL3dL3sDZu+Xo6v +5q5Ia4prhkkNtg/e9N0D9fHmuiTfDfGdfaIPiNlb8IzR74Ocb7LLbHv5/uI Z6/ybcyzrrTdS7W6izNJ9qZN8+FS65bSeZfNLLGpAX/TuM6Jw/4+dz7yUoN9 Yr9u1p4/Lv/m8R6Ifmtp+zHpmzU9035U+hbSN+X5UNrunXnmfWdpLj4weLeH b7ngoJMHCUbeO6IOnM3DPrFuHUk/5Cae2Xu9y3N4ZvL0SK99wn9XaWxLfU6q +zlwd2l7+cwSGwwuMT9oT95mhl1zTvR7SttI7Fu1P/8ufZ31V55FFLdmzb/Z od9b2kZiT8v9vOTZNzyuT+K5RveU/qr0UTx3uvy7CL993C/forJ/VOx90j9S 3XtT+8DWq9kH9rT0ByS3Va4VMv+W80zNv+9sJ9+jwk6rGz9FcqPEOjHYD5aO 4bcbfnt5Nnqg1nqR56HS/f2UW2KPiOv31Lqv4R7yL97l3xoeieuuV/RDDXqi D645rud/9Lim6ZFeV8wcR/ypgcP7JTd+WtwLD5eu97P8j5Xum9+DdhZnd85c nJf53q1bp6/HS/9GBJcY1vlEaV4rMwd86YgFI56zGx/fZ09K7sj7Vma5iz6b J9bBsHsqzwuR55nSPZWZ61ODtcB5qjTvacnXJAdl5hLDGl4L7Az10BD/pZp/ 0yGO+F9z+58tjT0n2ZQ9PXcscVsnxuH9lhtfost+dGKw2cuHo78vtD9j4/eO 50vbD2lvX4x7lHv8BelnivN7bom9sWr+xd/3MfeGCzYy9Bcj5uWoSewb8Yzg GYL+UjxHwPdouk98YKtmjt84nhtwyAXvDcm9JIeI0yn/m+Jsk/j+4t7itwDu M+zVMvf5Sulekdiva42vlY6fkTsfM3HWgg+MvK+XnoUzS0dij6tbRzIb3yt6 Iv5NyS7F/6Gc+8s/ueZ549ul36/WVT/MryfLPrtuLjFvCdun6Vk5OeGcHfNq /FPKmK1LLqmYP3OfFWfG+YHDWysz/o642yXWicGmJnmZz9PL+/G+h05/2O+W 7nsd5XmHNfG9kFli8zc6OpI9h0sM6/yv5GjZa2T+Ox4O62WNrG/bxM8xnmH8 5g73nLr9cKfEOeInF9gdffQdoM/t+rxf+j31L/5bdeq09F0uziHSPxb2ruIP lv521Nqbe7nuffiwNLa++vmgNLam9KWV72Pxd0ysf1Ta/kJyGdmzcscRT15w eDNz13039hkuMe/VnJsa1P5U9if67CTOJ6XtDVR3X3E+lX1oMzileZ/rcy4z rMRrosaIzP7PSmOfS47hHTpzXWpunxiHt1Fm/PCm59XoxGBTl5rwD5A8sulr 4CDJb8U5RvIL5fhK+gchsTdWzi9LxwxHl+8InomRB4xcU0tjm4gzp87neJ7P 0o+W/CiuN3B4xH9dGhsZHGx4i3RoPbFv1KcX5jzfCP+a95LMPdMvZ/dd6ZiT Mq8DbL3MPjByETdVn13F/16+b3jvEecwcY9tes/hUAMe+G3y75ZYJwb7h9Ix G2Y+Q/Z0aOQBI9cPvJfpbEYp9ry610D/rPnE2LcfYw/Y2x+F/8L7SdM+MHg/ lY7/OzcH/NjI+VOczc+S07h3MsufIwYdSV36mVa6J+qQa1vxf5a8oO4+e/G9 Iax3l3m/8t7StB/fHol9YPSDBCeWXs+ve13k+710zemxjq0z+/HBB8eeo904 POJnlO5pe/F/kTxV2J6J55R/C5tQ95mPj3P/M/olzx+lY3bI7AM7rWkfGLn+ kjxFcjtxZsr/U83rmhb90if413GdnBIx2DNLx+wR+clN7MzAyDUr7iGuz+Oa nrUOjP4nxDst68BmBguXGNYzu3TMFsyylP/bmq9J7qELFbt74r2ZEXu3jO6v AeK1tTuOeOoRO0fL8UjsOdt9tpzl7Nw5uT/Je7H0iU3fa/PIt7w4ifh9kC3P NZkzVqR/J32s9IuiHzjgzCfxz9UyNrfkDPZQa5ktebF8eyfG4e2cGZ+uz+jE OjHYWcsxozPXp0al3X3R31mcSc3nyrXRTb4/pe8u/rwtY6My+8DOaTqWuL3E b2v57LhO+srfr8vzT/S0ZRv87DhfdGKwweHN1e461KOP2dE361xQMtFzZ1/l z6Wfwd5mlpfUvV7k+U3r+OHhmy/k3O2eG/4We8v+s/fMn/G3t4whsZnl0jdz XdYyf6yDPPRCT5WO/9Wg9oXNuJ4T6wu0bHMtXhT3F7HE7St9oZaxPaIWNah3 rnyXKu8JifWFW7bJR959MscRf1Hg8PbMPHueFT1zXpzVPtKrLWNJcLDhzate OqTPKdlfPdRanv/ix0fsIvJdoZiDMnPBDmBGJHmZ/AeKM0GyLux6ye4tY0dl 9uNjveDYe0csPOKpSe152l1nrg7v1SXSFxd2leRiLd9X+yl2UempOAdnltht HdaRYxLnoW9yXRzxEyMfeccodj76177un1jv0bINTs39EvvADhV/Bc6/I2bF 0nu2bC/J/tT93FhR/s54jrR3eP7LXJSZchaxzZaxw5Wz0QpM+pWS1+hzQGJ9 iZZt9oYzIZY44skLDu+QzHWpeUDUIi/16AWsm3pbWPbldc8x6Je+b2za39Uy hh/fIYl9YMcof7XDGH70pWLN14q7tPSbmt4P9mXedj/buMf4rQcuMcdm5hJz RGZJ3OmJ30Pfj3d61jF/h9fC7/P8Tv+unrHdO3zdcL31Up4O6ccrz7LSV+JZ 024f2MS6fWAD+b5lr+TL2n09onNN3sL+CuvWYd8tca2iE4O9XFzXXM+3cm3U fY1RizqH8txuub8TMss+cQ/UO8yDQx+TYm/7toydmDn3ctHf5U3XID96v5bt /tEL6yWub6wfHN6BmfFu8WxZPtbNeleIHNS6p+l3OL6bCuGLST9M+h3yrxg9 wSWGdQ5omTdfuzn1WAs+MOKflH8E1wB7HvcZ9yby6rproYNh39X0vcoay5Z7 OiNzfWqckpkzMO7zQrJUvbzdXGJYAz6wxbkn9Gnoc0TiOOJPy+xvtYyt3PL7 Ju+0xBJ3eGIc3tjM+L1Nv6OiE4PNXrKnnB+zwGviPlqlZZuZ4WDpLe579TlI +pLKeXZmic1McWXhXbKPTMx9oPk/nXjs1STvlxyn2Dslr627T/RVW7bBe8TZ 4QM7NWpRh5nS/ZEL3lqxDtb4EPdqrJ2/+/ibj33j7z/s0zP3uXrLvSKx59e6 hrQcPz5zvuvr3it8YORdU3IV8Rdot8ReusM68qjEsfRE/FD2RvZ5yrkT7xbi bCbOcPkHK2Yh9lNybdnLdpg7NM7sUek3RA9wwI9O7B/WMraOZB/5L8x8VpwZ 5wcO74LMeG+edYl1YrCpSd4F293L403PW9DpD3u9lvsulGdd6U/wfZ9ZYt9Y t47krHeKGNa5vuSqyrVwu+8h7qWLM6+xGdczzzGuP54bcF+seW4Gl3vuqPCT 68V4fvIuyzN0F3H6dpg/Sr6XuXaVf3VxNml51vWUfDfXvW+rdXl+x9xvo5ax S8TfsGWs2u75Wr8Oc9A3btneQvIZ2ZdljiOevODwBkVdajKbgksM733kpga1 V1KuWxR3vDibtmxPVOw48UfKfr5pHxi8NRT7R83voqyJGrV2+zdrGdu85Xch 3mOp+1e864LD62g3Pqnudx50YrCpS03+Thwi7god1i+QbztxVuSal38r6WuF xK4r55Ytx3SXXvJsVb4TIw8YubZuGbtavW3Q8pkxU71N3JekH5cYh0f8Ni1j i7RbYsOj9hwd/ruA+tjo2wp/VvjlmXumX/Zq++iXPKwDbK/MPjByEUcNethB vudkX5G53oAO++FsGz2B3x5nh04M9o7RI2vkDNnT3SIPGLmGdnmd7M/r3E8d fgd+UfodsW87t2xfpdg3ycEzt8M+MHi7tBx/Q3Ba/19OMPLuKrk233/tltiD O6wjT07cz05xNtQh102Z31mnNP0ewv3EfTVZcnXxduc+6bAf30mJfWA3Z5bg p8j/atPv0lxva0juyXNTco+Wsesy+/GRBxz7lsw4POL/1XJPvJO/JXln3f2v o/7341oU5+3oj7p7ce7SbxN/dMsxkzL7wIZ02AdGrr0lhylXj3av6a66+2Fv 2KNF242/w3dQYp0Y7H1ib26O/OTmfXtyYOTat+X+bs0cc3fdeeif3tFZB/bi 7ebuG3s6JuqwluuarkH+4Xz/dPjdkr1hjzgz7i3uMZ6JxBFPPWL3j31BYh+Z Oc8BLef6fxWrpbY= "]]], Lighting->{{"Ambient", RGBColor[0.30100577, 0.22414668499999998`, 0.090484535]}, { "Directional", RGBColor[0.2642166, 0.18331229999999998`, 0.04261530000000001], ImageScaled[{0, 2, 2}]}, {"Directional", RGBColor[0.2642166, 0.18331229999999998`, 0.04261530000000001], ImageScaled[{2, 2, 2}]}, {"Directional", RGBColor[0.2642166, 0.18331229999999998`, 0.04261530000000001], ImageScaled[{2, 0, 2}]}}]}, {}, {}, {}, {}}], {}}, DisplayFunction->Identity, FaceGridsStyle->Automatic, Method->{"RelieveDPZFighting" -> True, "DefaultBoundaryStyle" -> Directive[ GrayLevel[0.3]], "DefaultGraphicsInteraction" -> { "Version" -> 1.2, "TrackMousePosition" -> {True, False}, "Effects" -> { "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, "Droplines" -> { "freeformCursorMode" -> True, "placement" -> {"x" -> "All", "y" -> "None"}}}}}, PlotRange->{All, All, All}, PlotRangePadding->{Automatic, Automatic, Automatic}, Ticks->{Automatic, Automatic, Automatic}], ",", Graphics3DBox[ PolyhedronBox[ NCache[{{(Rational[1, 6] (7 + 3 5^Rational[1, 2]))^Rational[1, 2], 0, -3^Rational[-1, 2]}, { Root[1 - 21 #^2 + 9 #^4& , 1, 0], 0, 3^Rational[-1, 2]}, { Rational[1, 2] 3^Rational[-1, 2], Rational[-1, 2], Root[ 1 - 21 #^2 + 9 #^4& , 1, 0]}, {-(Rational[3, 4] + Rational[1, 3] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 2], -(Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 2] (Rational[3, 2] (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), 0}, { Rational[-1, 2] (Rational[5, 6] (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), ( Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[7, 24] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 3^ Rational[-1, 2]}, { Root[1 - 36 #^2 + 144 #^4& , 2, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), ( Rational[1, 6] (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 2] 3^Rational[-1, 2], Rational[1, 2], Root[ 1 - 21 #^2 + 9 #^4& , 1, 0]}, {-(Rational[3, 4] + Rational[1, 3] 5^Rational[1, 2])^ Rational[1, 2], Rational[ 1, 2], -(Rational[1, 6] (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { 0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, { Root[1 - 36 #^2 + 144 #^4& , 3, 0], Rational[1, 4] (-3 - 5^ Rational[1, 2]), -(Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, {-(Rational[7, 24] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), -3^Rational[-1, 2]}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), 0}, { Rational[1, 2] (Rational[5, 6] (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), -(Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[-1, 2] (Rational[3, 2] (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), 0}, {-3^Rational[-1, 2], 0, Root[1 - 21 #^2 + 9 #^4& , 1, 0]}, { Rational[1, 2] (Rational[3, 2] (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), 0}, { Rational[-1, 2] (Rational[5, 6] (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), ( Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[7, 24] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), 3^ Rational[-1, 2]}, { Root[1 - 36 #^2 + 144 #^4& , 2, 0], Rational[1, 4] (-3 - 5^Rational[1, 2]), ( Rational[1, 6] (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 36 #^2 + 144 #^4& , 3, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), -(Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, {-(Rational[7, 24] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), -3^Rational[-1, 2]}, { 3^Rational[-1, 2], 0, (Rational[1, 6] (7 + 3 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[3, 4] + Rational[1, 3] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 2], (Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[-1, 2] 3^Rational[-1, 2], Rational[-1, 2], (Rational[1, 6] (7 + 3 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 2] (Rational[5, 6] (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (-1 - 5^ Rational[1, 2]), -(Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[-1, 2] (Rational[3, 2] (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), 0}, {(Rational[3, 4] + Rational[1, 3] 5^Rational[1, 2])^ Rational[1, 2], Rational[ 1, 2], (Rational[1, 6] (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 2] 3^Rational[-1, 2], Rational[ 1, 2], (Rational[1, 6] (7 + 3 5^Rational[1, 2]))^Rational[1, 2]}}, {{ 1.5115226281523415`, 0, -0.5773502691896258}, {-1.5115226281523415`, 0, 0.5773502691896258}, { 0.2886751345948129, -0.5, -1.5115226281523415`}, \ {-1.2228474935575286`, -0.5, -0.9341723589627157}, { 1.4012585384440737`, 0.8090169943749475, 0}, {-1.0444364486709836`, 0.8090169943749475, 0.9341723589627157}, {0.7557613140761708, 1.3090169943749475`, 0.5773502691896258}, {-0.17841104488654497`, 1.3090169943749475`, 0.9341723589627157}, {0.2886751345948129, 0.5, -1.5115226281523415`}, {-1.2228474935575286`, 0.5, -0.9341723589627157}, {0, -1.618033988749895, 0}, { 0.17841104488654497`, -1.3090169943749475`, -0.9341723589627157}, \ {-0.7557613140761708, -1.3090169943749475`, -0.5773502691896258}, { 0, 1.618033988749895, 0}, {1.0444364486709836`, 0.8090169943749475, -0.9341723589627157}, {-1.4012585384440737`, 0.8090169943749475, 0}, {-0.5773502691896258, 0, -1.5115226281523415`}, { 1.4012585384440737`, -0.8090169943749475, 0}, {-1.0444364486709836`, -0.8090169943749475, 0.9341723589627157}, { 0.7557613140761708, -1.3090169943749475`, 0.5773502691896258}, {-0.17841104488654497`, -1.3090169943749475`, 0.9341723589627157}, {0.17841104488654497`, 1.3090169943749475`, -0.9341723589627157}, {-0.7557613140761708, 1.3090169943749475`, -0.5773502691896258}, { 0.5773502691896258, 0, 1.5115226281523415`}, { 1.2228474935575286`, -0.5, 0.9341723589627157}, {-0.2886751345948129, -0.5, 1.5115226281523415`}, { 1.0444364486709836`, -0.8090169943749475, -0.9341723589627157}, \ {-1.4012585384440737`, -0.8090169943749475, 0}, {1.2228474935575286`, 0.5, 0.9341723589627157}, {-0.2886751345948129, 0.5, 1.5115226281523415`}}], {{30, 24, 29, 7, 8}, {26, 24, 30}, {25, 29, 24}, {5, 7, 29}, {14, 8, 7}, {6, 30, 8}, {16, 2, 6}, {19, 21, 26}, {20, 18, 25}, {1, 15, 5}, {22, 23, 14}, {2, 19, 26, 30, 6}, {21, 20, 25, 24, 26}, {18, 1, 5, 29, 25}, {15, 22, 14, 7, 5}, {23, 16, 6, 8, 14}, {12, 13, 4, 17, 3}, {3, 17, 9}, {17, 4, 10}, {4, 13, 28}, {13, 12, 11}, {12, 3, 27}, {27, 1, 18}, {9, 22, 15}, {10, 16, 23}, {28, 19, 2}, {11, 20, 21}, {27, 3, 9, 15, 1}, {9, 17, 10, 23, 22}, {10, 4, 28, 2, 16}, {28, 13, 11, 21, 19}, {11, 12, 27, 18, 20}}]]}], "}"}]], "Output", CellLabel->"Out[19]=",ExpressionUUID->"e216f79b-0f80-4fe8-9bfd-970165b2045c"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["SimplePolyhedron", "Subsection",ExpressionUUID->"3789083b-2e30-43bf-94e8-43cfcf007b1c"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}]], "Input", CellLabel->"In[20]:=",ExpressionUUID->"d63f5801-e68a-4289-9593-3ff0ecd40fc3"], Cell[BoxData["True"], "Output", CellLabel->"Out[20]=",ExpressionUUID->"e8618438-5cec-4bc8-bd44-3893c0cf7135"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"SimplePolyhedronQ", "[", "p", "]"}]], "Input", CellLabel->"In[21]:=",ExpressionUUID->"18c9a69e-d911-4ee5-bfb6-6431dfac17cd"], Cell[BoxData["True"], "Output", CellLabel->"Out[21]=",ExpressionUUID->"44164773-11c6-4ea0-9aca-3120d6bb7663"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["SurfaceArea", "Subsection",ExpressionUUID->"346863f2-c3aa-4f0f-ad27-a641007a9267"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}]], "Input", CellLabel->"In[28]:=",ExpressionUUID->"8ba113c0-9638-4a74-b0a0-86e2604a7933"], Cell[BoxData[ SqrtBox[ RowBox[{"30", " ", RowBox[{"(", RowBox[{"10", "+", RowBox[{"3", " ", SqrtBox["5"]}], "+", SqrtBox[ RowBox[{"75", "+", RowBox[{"30", " ", SqrtBox["5"]}]}]]}], ")"}]}]]], "Output", CellLabel->"Out[28]=",ExpressionUUID->"8b24dc55-f0b2-4e16-b96b-18d60ef05d59"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"RootReduce", "[", "%", "]"}]], "Input", CellLabel->"In[29]:=",ExpressionUUID->"a5f573ac-283f-4289-b47c-614eea6a8672"], Cell[BoxData[ TemplateBox[<|"icon" -> "Root", "small" -> InterpretationBox[ StyleBox[ TemplateBox[{"\"29.3\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 29.30598284491198768364483839832246303558`15.954589770191003, Editable -> False], "approx" -> 29.305982844911988`, "interp" -> InterpretationBox["", Root[324000000 - 27000000 #^2 + 324000 #^4 - 1200 #^6 + #^8& , 8, 0]], "head" -> "Root", "big" -> RowBox[{ RowBox[{"324000000", "-", RowBox[{"27000000", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"324000", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"1200", " ", SuperscriptBox["#1", "6"]}], "+", SuperscriptBox["#1", "8"]}], "&"}], "degree" -> "8", "shortDegree" -> "8", "number" -> 8|>, "NumericalApproximationInterp", InterpretationFunction->(Slot["interp"]& )]], "Output", CellLabel->"Out[29]=",ExpressionUUID->"54e314ac-a6c6-4555-b4cf-ff41e306c4ee"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{ RowBox[{"SurfaceArea", "[", "p", "]"}], "//", "ToAlgebraicRoot"}], "//", "FullSimplify"}], "//", "Timing"}]], "Input", CellLabel->"In[32]:=",ExpressionUUID->"6a33198b-9f38-4997-8ff6-f997d3884a20"], Cell[BoxData[ RowBox[{"{", RowBox[{"2.52583`", ",", SqrtBox[ RowBox[{"30", " ", RowBox[{"(", RowBox[{"10", "+", RowBox[{"3", " ", SqrtBox["5"]}], "+", SqrtBox[ RowBox[{"75", "+", RowBox[{"30", " ", SqrtBox["5"]}]}]]}], ")"}]}]]}], "}"}]], "Output", CellLabel->"Out[32]=",ExpressionUUID->"ce6c8be6-dc28-4352-8841-4aed1424199e"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{ RowBox[{"Total", "[", RowBox[{"Area", "/@", RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}]}], "]"}], "//", "ToAlgebraicRoot"}], "//", "FullSimplify"}], "//", "Timing"}]], "Input", CellLabel->"In[35]:=",ExpressionUUID->"be2dcfaf-a01c-484b-b6c6-59170c2368ac"], Cell[BoxData[ RowBox[{"{", RowBox[{"2.366171`", ",", SqrtBox[ RowBox[{"30", " ", RowBox[{"(", RowBox[{"10", "+", RowBox[{"3", " ", SqrtBox["5"]}], "+", SqrtBox[ RowBox[{"75", "+", RowBox[{"30", " ", SqrtBox["5"]}]}]]}], ")"}]}]]}], "}"}]], "Output", CellLabel->"Out[35]=",ExpressionUUID->"c027f746-3119-4efa-a72b-9cba4d04438c"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Volume", "Subsection",ExpressionUUID->"cdabaee3-ad89-4b89-b6be-467ee9f3e0b9"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}]], "Input", CellLabel-> "(Local-Devel (5)) \ In[11]:=",ExpressionUUID->"1a1bd1d6-4276-49d1-9685-be3c8ba876dd"], Cell[BoxData[ RowBox[{ FractionBox["1", "6"], " ", RowBox[{"(", RowBox[{"45", "+", RowBox[{"17", " ", SqrtBox["5"]}]}], ")"}]}]], "Output", CellLabel-> "(Local-Devel (5)) \ Out[11]=",ExpressionUUID->"deba5ce8-5c4e-432e-b18b-4db4c2f98d23"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"Volume", "[", "p", "]"}], "//", "FullSimplify"}]], "Input", CellLabel->"In[39]:=",ExpressionUUID->"63eea8b8-6a48-4c17-9342-3ebd14315745"], Cell[BoxData[ RowBox[{ FractionBox["1", "6"], " ", RowBox[{"(", RowBox[{"45", "+", RowBox[{"17", " ", SqrtBox["5"]}]}], ")"}]}]], "Output", CellLabel->"Out[39]=",ExpressionUUID->"51db742d-48e3-483d-96d1-dd7e39205d37"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"PolyhedronVolume", "[", "p", "]"}], "//", "FullSimplify"}]], "Input", CellLabel->"In[40]:=",ExpressionUUID->"0a09bb6e-babc-4cc0-9bb8-c581f17217f5"], Cell[BoxData[ RowBox[{ FractionBox["1", "6"], " ", RowBox[{"(", RowBox[{"45", "+", RowBox[{"17", " ", SqrtBox["5"]}]}], ")"}]}]], "Output", CellLabel->"Out[40]=",ExpressionUUID->"36abad1e-beb8-4211-a888-216caad1d6f2"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"Volume", "[", RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}], "]"}], "//", "FullSimplify"}]], "Input", CellLabel->"In[41]:=",ExpressionUUID->"2bd61e3d-92cd-4eb8-8e8f-c00ec6a1c179"], Cell[BoxData[ RowBox[{ FractionBox["1", "6"], " ", RowBox[{"(", RowBox[{"45", "+", RowBox[{"17", " ", SqrtBox["5"]}]}], ")"}]}]], "Output", CellLabel->"Out[41]=",ExpressionUUID->"a03ed4f3-e463-4d0f-947d-144eb4bd72e4"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"Volume", "[", RowBox[{"ImplicitRegion", "[", RowBox[{ RowBox[{"Evaluate", "@", RowBox[{ RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}], "[", RowBox[{"x", ",", "y", ",", "z"}], "]"}]}], ",", RowBox[{"{", RowBox[{"x", ",", "y", ",", "z"}], "}"}]}], "]"}], "]"}], "//", "Timing"}]], "Input",ExpressionUUID->"db4d4be9-5b3a-4100-9f95-2169a91ef3f8"], Cell[BoxData[ RowBox[{"{", RowBox[{"1158.601057`", ",", "13.783716159251787`"}], "}"}]], "Output", CellLabel-> "(Local-Devel (5)) \ Out[12]=",ExpressionUUID->"ed653b34-124f-464b-833d-3d1151709d1b"] }, Open ]] }, Closed]] }, Open ]], Cell[CellGroupData[{ Cell["Properties: {\"Icosidodecahedron\", \"C5\"}", "Section",ExpressionUUID->"ee0c828d-6c23-4dec-9ee1-192f39fea5fa"], Cell[CellGroupData[{ Cell["Initialization", "Subsubsection",ExpressionUUID->"db58c519-a304-4bae-8c5b-913ecd23209c"], Cell[BoxData[ RowBox[{"<<", "MathWorld`Polyhedra`"}]], "Input", CellLabel-> "(Local-Devel (4)) \ In[1]:=",ExpressionUUID->"232935fc-51e2-46d6-955c-5a2785e8d9bc"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"p", "=", RowBox[{"PolyhedronData", "[", RowBox[{ RowBox[{"pname", "=", RowBox[{"{", RowBox[{"\"\\"", ",", "\"\\""}], "}"}]}], ",", "\"\\""}], "]"}]}]], "Input", CellLabel-> "(Local-Devel (4)) \ In[2]:=",ExpressionUUID->"bfdb3fba-34ed-44ce-a6fa-ca498f7cc8d7"], Cell[BoxData[ InterpretationBox[ RowBox[{ TagBox["Polyhedron", "SummaryHead"], "[", DynamicModuleBox[{Typeset`open$$ = False, Typeset`embedState$$ = "Ready", Typeset`spolyhedron$$ = Quiet[ Polyhedron[{{0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), 0}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], Rational[-1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {-(1 + 2 5^Rational[-1, 2])^ Rational[1, 2], 0, Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {(1 + 2 5^Rational[-1, 2])^Rational[1, 2], 0, (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, {(Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2], 0, -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2], 0}, { Root[1 - 5 #^2 + 5 #^4& , 1, 0], 0, (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}}, {{30, 24, 29, 7, 8}, {26, 24, 30}, {25, 29, 24}, {5, 7, 29}, {14, 8, 7}, {6, 30, 8}, {16, 2, 6}, {19, 21, 26}, {20, 18, 25} , {1, 15, 5}, {22, 23, 14}, {2, 19, 26, 30, 6}, {21, 20, 25, 24, 26}, { 18, 1, 5, 29, 25}, {15, 22, 14, 7, 5}, {23, 16, 6, 8, 14}, {12, 13, 4, 17, 3}, {3, 17, 9}, {17, 4, 10}, {4, 13, 28}, {13, 12, 11}, {12, 3, 27}, {27, 1, 18}, {9, 22, 15}, {10, 16, 23}, {28, 19, 2}, {11, 20, 21}, {27, 3, 9, 15, 1}, {9, 17, 10, 23, 22}, {10, 4, 28, 2, 16}, {28, 13, 11, 21, 19}, {11, 12, 27, 18, 20}}]]}, TemplateBox[{ PaneSelectorBox[{False -> GridBox[{{ PaneBox[ ButtonBox[ DynamicBox[ FEPrivate`FrontEndResource["FEBitmaps", "SummaryBoxOpener"]], ButtonFunction :> (Typeset`open$$ = True), Appearance -> None, BaseStyle -> {}, Evaluator -> Automatic, Method -> "Preemptive"], Alignment -> {Center, Center}, ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], Graphics3DBox[{ Directive[ Hue[0.58, 0.4, 1], Opacity[0.5], EdgeForm[ GrayLevel[1]]], PolyhedronBox[ NCache[{{0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), 0}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-1 - 5^ Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {-(1 + 2 5^Rational[-1, 2])^ Rational[1, 2], 0, Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {(1 + 2 5^Rational[-1, 2])^Rational[1, 2], 0, (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, {(Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2], 0, -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, {Rational[-1, 2] ( Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2], 0}, { Root[1 - 5 #^2 + 5 #^4& , 1, 0], 0, (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}}, {{ 0, -1.618033988749895, 0}, {0, 1.618033988749895, 0}, { 0.2628655560595668, -0.8090169943749475, \ -1.3763819204711736`}, {0.2628655560595668, 0.8090169943749475, -1.3763819204711736`}, { 0.42532540417601994`, -1.3090169943749475`, 0.85065080835204}, {0.42532540417601994`, 1.3090169943749475`, 0.85065080835204}, { 0.6881909602355868, -0.5, 1.3763819204711736`}, { 0.6881909602355868, 0.5, 1.3763819204711736`}, { 1.1135163644116066`, -0.8090169943749475, \ -0.8506508083520399}, {1.1135163644116066`, 0.8090169943749475, -0.8506508083520399}, \ {-1.3763819204711736`, 0, -0.8506508083520399}, {-0.6881909602355868, -0.5, \ -1.3763819204711736`}, {-0.6881909602355868, 0.5, -1.3763819204711736`}, { 1.3763819204711736`, 0, 0.85065080835204}, { 0.9510565162951535, -1.3090169943749475`, 0}, { 0.9510565162951535, 1.3090169943749475`, 0}, { 0.85065080835204, 0, -1.3763819204711736`}, {-0.9510565162951535, \ -1.3090169943749475`, 0}, {-0.9510565162951535, 1.3090169943749475`, 0}, {-1.5388417685876268`, -0.5, 0}, {-1.5388417685876268`, 0.5, 0}, {1.5388417685876268`, -0.5, 0}, { 1.5388417685876268`, 0.5, 0}, {-0.8506508083520399, 0, 1.3763819204711736`}, {-1.1135163644116066`, \ -0.8090169943749475, 0.85065080835204}, {-1.1135163644116066`, 0.8090169943749475, 0.85065080835204}, {-0.42532540417601994`, \ -1.3090169943749475`, -0.8506508083520399}, {-0.42532540417601994`, 1.3090169943749475`, -0.8506508083520399}, \ {-0.26286555605956685`, -0.8090169943749475, 1.3763819204711736`}, {-0.26286555605956685`, 0.8090169943749475, 1.3763819204711736`}}], {{30, 24, 29, 7, 8}, {26, 24, 30}, {25, 29, 24}, {5, 7, 29}, {14, 8, 7}, {6, 30, 8}, {16, 2, 6}, {19, 21, 26}, {20, 18, 25}, {1, 15, 5}, { 22, 23, 14}, {2, 19, 26, 30, 6}, {21, 20, 25, 24, 26}, {18, 1, 5, 29, 25}, {15, 22, 14, 7, 5}, {23, 16, 6, 8, 14}, {12, 13, 4, 17, 3}, {3, 17, 9}, {17, 4, 10}, {4, 13, 28}, {13, 12, 11}, {12, 3, 27}, {27, 1, 18}, {9, 22, 15}, {10, 16, 23}, {28, 19, 2}, {11, 20, 21}, {27, 3, 9, 15, 1}, {9, 17, 10, 23, 22}, {10, 4, 28, 2, 16}, {28, 13, 11, 21, 19}, {11, 12, 27, 18, 20}}]}, ImageSize -> Dynamic[{5.25, 3.5} (CurrentValue["FontCapHeight"]/ AbsoluteCurrentValue[Magnification])], Boxed -> False, Lighting -> {{"Ambient", RGBColor[0.4, 0.45, 0.5]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{2, 0, 2}]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{2, 2, 2}]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{0, 2, 2}]}}, Method -> {"ShrinkWrap" -> True}], GridBox[{{ RowBox[{ TagBox["\"Number of points: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["30", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Number of faces: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["32", "SummaryItem"]}]}}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> {"Columns" -> {{2}}, "Rows" -> {{Automatic}}}, BaseStyle -> { ShowStringCharacters -> False, NumberMarks -> False, PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, BaselinePosition -> {1, 1}], True -> GridBox[{{ PaneBox[ ButtonBox[ DynamicBox[ FEPrivate`FrontEndResource["FEBitmaps", "SummaryBoxCloser"]], ButtonFunction :> (Typeset`open$$ = False), Appearance -> None, BaseStyle -> {}, Evaluator -> Automatic, Method -> "Preemptive"], Alignment -> {Center, Center}, ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], Graphics3DBox[{ Directive[ Hue[0.58, 0.4, 1], Opacity[0.5], EdgeForm[ GrayLevel[1]]], PolyhedronBox[ NCache[{{0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), 0}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-1 - 5^ Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {-(1 + 2 5^Rational[-1, 2])^ Rational[1, 2], 0, Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {(1 + 2 5^Rational[-1, 2])^Rational[1, 2], 0, (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, {(Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2], 0, -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, {Rational[-1, 2] ( Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2], 0}, { Root[1 - 5 #^2 + 5 #^4& , 1, 0], 0, (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}}, {{ 0, -1.618033988749895, 0}, {0, 1.618033988749895, 0}, { 0.2628655560595668, -0.8090169943749475, \ -1.3763819204711736`}, {0.2628655560595668, 0.8090169943749475, -1.3763819204711736`}, { 0.42532540417601994`, -1.3090169943749475`, 0.85065080835204}, {0.42532540417601994`, 1.3090169943749475`, 0.85065080835204}, { 0.6881909602355868, -0.5, 1.3763819204711736`}, { 0.6881909602355868, 0.5, 1.3763819204711736`}, { 1.1135163644116066`, -0.8090169943749475, \ -0.8506508083520399}, {1.1135163644116066`, 0.8090169943749475, -0.8506508083520399}, \ {-1.3763819204711736`, 0, -0.8506508083520399}, {-0.6881909602355868, -0.5, \ -1.3763819204711736`}, {-0.6881909602355868, 0.5, -1.3763819204711736`}, { 1.3763819204711736`, 0, 0.85065080835204}, { 0.9510565162951535, -1.3090169943749475`, 0}, { 0.9510565162951535, 1.3090169943749475`, 0}, { 0.85065080835204, 0, -1.3763819204711736`}, {-0.9510565162951535, \ -1.3090169943749475`, 0}, {-0.9510565162951535, 1.3090169943749475`, 0}, {-1.5388417685876268`, -0.5, 0}, {-1.5388417685876268`, 0.5, 0}, {1.5388417685876268`, -0.5, 0}, { 1.5388417685876268`, 0.5, 0}, {-0.8506508083520399, 0, 1.3763819204711736`}, {-1.1135163644116066`, \ -0.8090169943749475, 0.85065080835204}, {-1.1135163644116066`, 0.8090169943749475, 0.85065080835204}, {-0.42532540417601994`, \ -1.3090169943749475`, -0.8506508083520399}, {-0.42532540417601994`, 1.3090169943749475`, -0.8506508083520399}, \ {-0.26286555605956685`, -0.8090169943749475, 1.3763819204711736`}, {-0.26286555605956685`, 0.8090169943749475, 1.3763819204711736`}}], {{30, 24, 29, 7, 8}, {26, 24, 30}, {25, 29, 24}, {5, 7, 29}, {14, 8, 7}, {6, 30, 8}, {16, 2, 6}, {19, 21, 26}, {20, 18, 25}, {1, 15, 5}, { 22, 23, 14}, {2, 19, 26, 30, 6}, {21, 20, 25, 24, 26}, {18, 1, 5, 29, 25}, {15, 22, 14, 7, 5}, {23, 16, 6, 8, 14}, {12, 13, 4, 17, 3}, {3, 17, 9}, {17, 4, 10}, {4, 13, 28}, {13, 12, 11}, {12, 3, 27}, {27, 1, 18}, {9, 22, 15}, {10, 16, 23}, {28, 19, 2}, {11, 20, 21}, {27, 3, 9, 15, 1}, {9, 17, 10, 23, 22}, {10, 4, 28, 2, 16}, {28, 13, 11, 21, 19}, {11, 12, 27, 18, 20}}]}, ImageSize -> Dynamic[{5.25, 3.5} (CurrentValue["FontCapHeight"]/ AbsoluteCurrentValue[Magnification])], Boxed -> False, Lighting -> {{"Ambient", RGBColor[0.4, 0.45, 0.5]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{2, 0, 2}]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{2, 2, 2}]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{0, 2, 2}]}}, Method -> {"ShrinkWrap" -> True}], GridBox[{{ RowBox[{ TagBox["\"Number of points: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["30", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Number of faces: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["32", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Embedding dimension: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["3", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Type: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Quiet[ Apply[Region`PolyhedronDump`polyhedronType, Region`PolyhedronDump`computeType[ Typeset`spolyhedron$$]]], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}, { RowBox[{ TagBox["\"Bounds: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Region`PolyhedronDump`iRegionBounds[ Typeset`spolyhedron$$], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}, { RowBox[{ TagBox["\"Volume: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Region`PolyhedronDump`iVolume[Typeset`spolyhedron$$], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> {"Columns" -> {{2}}, "Rows" -> {{Automatic}}}, BaseStyle -> { ShowStringCharacters -> False, NumberMarks -> False, PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, BaselinePosition -> {1, 1}]}, Dynamic[Typeset`open$$], ImageSize -> Automatic]}, "SummaryPanel"], DynamicModuleValues:>{}], "]"}], Polyhedron[{{0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), 0}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], Rational[-1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {-(1 + 2 5^Rational[-1, 2])^Rational[1, 2], 0, Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {(1 + 2 5^Rational[-1, 2])^Rational[1, 2], 0, (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, {(Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2], 0, -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2], 0}, { Root[1 - 5 #^2 + 5 #^4& , 1, 0], 0, (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}}, {{30, 24, 29, 7, 8}, {26, 24, 30}, {25, 29, 24}, {5, 7, 29}, {14, 8, 7}, {6, 30, 8}, {16, 2, 6}, {19, 21, 26}, {20, 18, 25}, {1, 15, 5}, {22, 23, 14}, {2, 19, 26, 30, 6}, {21, 20, 25, 24, 26}, {18, 1, 5, 29, 25}, {15, 22, 14, 7, 5}, {23, 16, 6, 8, 14}, {12, 13, 4, 17, 3}, {3, 17, 9}, {17, 4, 10}, {4, 13, 28}, {13, 12, 11}, {12, 3, 27}, {27, 1, 18}, {9, 22, 15}, {10, 16, 23}, {28, 19, 2}, {11, 20, 21}, {27, 3, 9, 15, 1}, {9, 17, 10, 23, 22}, {10, 4, 28, 2, 16}, {28, 13, 11, 21, 19}, {11, 12, 27, 18, 20}}], Editable->False, SelectWithContents->True, Selectable->False]], "Output", CellLabel-> "(Local-Devel (4)) \ Out[2]=",ExpressionUUID->"e3759091-cf1c-4da7-b926-acc486b0440d"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"vol", "=", RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}]}]], "Input", CellLabel-> "(Local-Devel (4)) \ In[3]:=",ExpressionUUID->"c69e774c-a9e1-4dae-b7ea-cc12e5402959"], Cell[BoxData[ RowBox[{ FractionBox["1", "6"], " ", RowBox[{"(", RowBox[{"45", "+", RowBox[{"17", " ", SqrtBox["5"]}]}], ")"}]}]], "Output", CellLabel-> "(Local-Devel (4)) \ Out[3]=",ExpressionUUID->"71912ad9-68f5-4eb2-af38-e9dc8bdac6f2"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["Centroid", "Subsection",ExpressionUUID->"aab960dd-8177-4f69-a501-5b0aa9e8c1bb"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}]], "Input", CellLabel-> "In[195]:=",ExpressionUUID->"22be7e25-eb28-4742-a722-91e638d9c89e"], Cell[BoxData[ RowBox[{"{", RowBox[{"0", ",", "0", ",", "0"}], "}"}]], "Output", CellLabel-> "Out[195]=",ExpressionUUID->"7e1af7ba-2f03-4390-9b2f-6948ae2a1336"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"RegionCentroid", "[", "p", "]"}], "//", "RootReduce"}]], "Input", CellLabel-> "In[196]:=",ExpressionUUID->"303fa38d-08fa-47ad-8ea1-ce9214cfd574"], Cell[BoxData[ RowBox[{"{", RowBox[{"0", ",", "0", ",", "0"}], "}"}]], "Output", CellLabel-> "Out[196]=",ExpressionUUID->"d5046bfc-e38e-4194-862e-9c09f3608e0e"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{ RowBox[{"PolyhedronCentroid", "[", "p", "]"}], "//", "Quiet"}], "//", "RootReduce"}], "//", "Timing"}]], "Input", CellLabel-> "In[197]:=",ExpressionUUID->"6cc3a483-13fb-4823-83b0-7ea74ab59f90"], Cell[BoxData[ RowBox[{"{", RowBox[{"0.387474`", ",", RowBox[{"{", RowBox[{"0", ",", "0", ",", "0"}], "}"}]}], "}"}]], "Output", CellLabel-> "Out[197]=",ExpressionUUID->"d7e82899-c377-4a9b-b270-05eadeb2f134"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Circumradius", "Subsection",ExpressionUUID->"e59f3ea5-469e-47d3-956b-20a32b90e08e"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}]], "Input", CellLabel-> "In[198]:=",ExpressionUUID->"1bfb5b04-75b3-45d3-8761-2235901e9699"], Cell[BoxData[ RowBox[{ FractionBox["1", "2"], " ", RowBox[{"(", RowBox[{"1", "+", SqrtBox["5"]}], ")"}]}]], "Output", CellLabel-> "Out[198]=",ExpressionUUID->"75f0f2fd-50a6-479b-bd2c-c8bd13ce3838"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{"Circumsphere", "[", "p", "]"}], "//", "RootReduce"}], "//", "Timing"}]], "Input", CellLabel-> "In[199]:=",ExpressionUUID->"8f376029-b884-41ed-b2b1-043d65c5c1a3"], Cell[BoxData[ RowBox[{"{", RowBox[{"0.144738`", ",", RowBox[{"Sphere", "[", RowBox[{ RowBox[{"{", RowBox[{"0", ",", "0", ",", "0"}], "}"}], ",", RowBox[{ FractionBox["1", "2"], " ", RowBox[{"(", RowBox[{"1", "+", SqrtBox["5"]}], ")"}]}]}], "]"}]}], "}"}]], "Output", CellLabel-> "Out[199]=",ExpressionUUID->"fae8c52b-63c5-4e33-800c-73288c0831c7"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{"MyCircumsphere", "[", "p", "]"}], "//", "RootReduce"}], "//", "Timing"}]], "Input", CellLabel-> "In[200]:=",ExpressionUUID->"5bbfaefe-50de-4449-98dd-3b2b9a902f3b"], Cell[BoxData[ RowBox[{"{", RowBox[{"0.092897`", ",", RowBox[{"Sphere", "[", RowBox[{ RowBox[{"{", RowBox[{"0", ",", "0", ",", "0"}], "}"}], ",", RowBox[{ FractionBox["1", "2"], " ", RowBox[{"(", RowBox[{"1", "+", SqrtBox["5"]}], ")"}]}]}], "]"}]}], "}"}]], "Output", CellLabel-> "Out[200]=",ExpressionUUID->"5707407b-cbbb-4fa6-bdc7-e6b88d253af5"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["ConvexHullOf", "Subsection",ExpressionUUID->"47ef866d-5a95-45cf-bc72-bde4a0fdae22"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"hullof", "=", RowBox[{"DeleteCases", "[", RowBox[{ RowBox[{"Select", "[", RowBox[{ RowBox[{"PolyhedronData", "[", "All", "]"}], ",", RowBox[{ RowBox[{ RowBox[{"PolyhedronData", "[", RowBox[{"#", ",", "\"\\""}], "]"}], "===", "pname"}], "&"}]}], "]"}], ",", "pname"}], "]"}]}]], "Input", CellLabel-> "In[201]:=",ExpressionUUID->"62ef8b88-3503-4243-95da-9461bc0a1bb6"], Cell[BoxData[ RowBox[{"{", "}"}]], "Output", CellLabel-> "Out[201]=",ExpressionUUID->"41b90e30-165d-4880-9dc5-2657c62039fc"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"GraphicsGrid", "[", RowBox[{ RowBox[{"Partition", "[", RowBox[{ RowBox[{ RowBox[{ RowBox[{"Graphics3D", "[", RowBox[{ RowBox[{"{", "\[IndentingNewLine]", RowBox[{ RowBox[{"{", RowBox[{"Green", ",", RowBox[{"Opacity", "[", ".7", "]"}], ",", RowBox[{"PolyhedronData", "[", RowBox[{"#", ",", "\"\\""}], "]"}]}], "}"}], ",", "\[IndentingNewLine]", RowBox[{"{", RowBox[{"Blue", ",", RowBox[{"Opacity", "[", ".4", "]"}], ",", RowBox[{"PolyhedronData", "[", RowBox[{ "#", ",", "\"\\"", ",", "\"\\""}], "]"}]}], "}"}]}], "}"}], ",", RowBox[{"Boxed", "\[Rule]", "False"}], ",", RowBox[{"PlotLabel", "\[Rule]", RowBox[{"Style", "[", RowBox[{ RowBox[{"PolyhedronData", "[", RowBox[{"#", ",", "\"\\""}], "]"}], ",", RowBox[{"Directive", "[", RowBox[{"14", ",", "Black", ",", "Italic", ",", RowBox[{"FontFamily", "\[Rule]", "\"\\""}]}], "]"}]}], "]"}]}]}], "]"}], "&"}], "/@", "hullof"}], ",", RowBox[{"UpTo", "[", "4", "]"}]}], "]"}], ",", RowBox[{"Dividers", "\[Rule]", "All"}], ",", RowBox[{"ImageSize", "\[Rule]", "800"}]}], "]"}]], "Input", CellLabel-> "In[202]:=",ExpressionUUID->"d30a03db-031c-403f-b30f-c7a3cfea0a2e"], Cell[BoxData[ TemplateBox[{ "GraphicsGrid", "list", "\"\\!\\(\\*RowBox[{\\\"{\\\", \\\"}\\\"}]\\) is not a list of lists.\"", 2, 202, 21, 21916742903341136843, "Local"}, "MessageTemplate", BaseStyle->"MSG"]], "Message", CellLabel-> "During evaluation of \ In[202]:=",ExpressionUUID->"5499ea72-be78-4bcb-b3f4-7181f4d01dbe"], Cell[BoxData[ RowBox[{"GraphicsGrid", "[", RowBox[{ RowBox[{"{", "}"}], ",", RowBox[{"Dividers", "\[Rule]", "All"}], ",", RowBox[{"ImageSize", "\[Rule]", "800"}]}], "]"}]], "Output", CellLabel-> "Out[202]=",ExpressionUUID->"ff661002-c1b1-4953-9628-726a1e45cc7e"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["DihedralAngles", "Subsection",ExpressionUUID->"396590c4-8044-446b-804f-0e8c75f858f6"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}], "//", "Union"}]], "Input", CellLabel-> "In[203]:=",ExpressionUUID->"328e181a-9141-4c1f-93bf-0168164ea539"], Cell[BoxData[ RowBox[{"{", RowBox[{"ArcCos", "[", TemplateBox[<|"icon" -> "Root", "small" -> InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.795\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.794654472291766111879951495211571455`15.954589770191003, Editable -> False], "approx" -> -0.7946544722917661, "interp" -> InterpretationBox["", Root[1 - 30 #^2 + 45 #^4& , 1, 0]], "head" -> "Root", "big" -> RowBox[{ RowBox[{"1", "-", RowBox[{"30", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"45", " ", SuperscriptBox["#1", "4"]}]}], "&"}], "degree" -> "4", "shortDegree" -> "4", "number" -> 1|>, "NumericalApproximationInterp", InterpretationFunction->(Slot["interp"]& )], "]"}], "}"}]], "Output", CellLabel-> "Out[203]=",ExpressionUUID->"bcf8e56e-7608-4672-90b3-5eb7a26b905b"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"N", "[", "%", "]"}]], "Input", CellLabel-> "In[204]:=",ExpressionUUID->"d109b2ef-e723-4f23-a667-95db3b464c3a"], Cell[BoxData[ RowBox[{"{", "2.489234513805425`", "}"}]], "Output", CellLabel-> "Out[204]=",ExpressionUUID->"350a6007-a17e-442c-9b5d-7dc2c0513f80"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"%", "/", "Degree"}]], "Input", CellLabel-> "In[205]:=",ExpressionUUID->"d0f89e16-d995-4c8e-99fc-876983cde541"], Cell[BoxData[ RowBox[{"{", "142.62263185935032`", "}"}]], "Output", CellLabel-> "Out[205]=",ExpressionUUID->"a4f2df6d-be78-49ce-9f81-922e9412ab59"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{ RowBox[{"DihedralAngles", "[", "p", "]"}], "//", "RootReduce"}], "//", "Union"}], "//", "Timing"}]], "Input", CellLabel-> "In[206]:=",ExpressionUUID->"2e279eb0-834c-4bfc-ac58-fb242641a858"], Cell[BoxData["$Aborted"], "Output", CellLabel-> "Out[206]=",ExpressionUUID->"9f1ecd11-8cbf-4dea-a611-f2f07bee9df5"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["Dual", "Subsection",ExpressionUUID->"c94c99b9-bca8-49e8-8927-fdb0a68900bc"], Cell[CellGroupData[{ Cell[BoxData["pname"], "Input", CellLabel-> "In[770]:=",ExpressionUUID->"91b42fe0-ba02-40ef-8308-78eac9ca0bad"], Cell[BoxData["\<\"Icosidodecahedron\"\>"], "Output", CellLabel-> "Out[770]=",ExpressionUUID->"ae99c3ba-86f9-491e-8395-51afd13030cc"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"dname", "=", RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\"", ",", "\"\\""}], "]"}]}]], "Input", CellLabel-> "In[771]:=",ExpressionUUID->"6a14badc-74bd-4169-b2cc-db5de14b3c86"], Cell[BoxData["\<\"RhombicTriacontahedron\"\>"], "Output", CellLabel-> "Out[771]=",ExpressionUUID->"942beb2f-0d83-4eee-bbc6-0d929796106f"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\"", ",", "\"\\""}], "]"}]], "Input", CellLabel-> "In[772]:=",ExpressionUUID->"3dfe86da-01de-42f2-bb0d-40645384172b"], Cell[BoxData[ RowBox[{ FractionBox["1", "4"], " ", SqrtBox[ RowBox[{ FractionBox["5", "2"], " ", RowBox[{"(", RowBox[{"5", "+", SqrtBox["5"]}], ")"}]}]]}]], "Output", CellLabel-> "Out[772]=",ExpressionUUID->"aa5a7dc7-595d-430e-bb57-37e6df1dca42"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"midrs", "=", RowBox[{"{", RowBox[{ RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}], ",", RowBox[{"PolyhedronData", "[", RowBox[{"dname", ",", "\"\\""}], "]"}]}], "}"}]}]], "Input", CellLabel-> "In[773]:=",ExpressionUUID->"1c87db78-e2bd-4eed-9a9f-67a96ec4aba8"], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{ FractionBox["1", "2"], " ", SqrtBox[ RowBox[{"5", "+", RowBox[{"2", " ", SqrtBox["5"]}]}]]}], ",", RowBox[{"1", "+", FractionBox["1", SqrtBox["5"]]}]}], "}"}]], "Output", CellLabel-> "Out[773]=",ExpressionUUID->"ed7c40be-b8ad-42d2-aa71-3f2dcdfe9f6d"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"Divide", "@@", "midrs"}], "//", "FullSimplify"}]], "Input", CellLabel-> "In[774]:=",ExpressionUUID->"e6f7f7f9-660b-4926-802f-0e9a334f0e76"], Cell[BoxData[ RowBox[{ FractionBox["1", "4"], " ", SqrtBox[ RowBox[{ FractionBox["5", "2"], " ", RowBox[{"(", RowBox[{"5", "+", SqrtBox["5"]}], ")"}]}]]}]], "Output", CellLabel-> "Out[774]=",ExpressionUUID->"3fef6978-777e-41de-bbda-5aa16ec980fe"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"GraphicsRow", "[", RowBox[{ RowBox[{"With", "[", RowBox[{ RowBox[{"{", "\[IndentingNewLine]", RowBox[{ RowBox[{"s", "=", RowBox[{"{", RowBox[{"Yellow", ",", RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}]}], "}"}]}], ",", "\[IndentingNewLine]", RowBox[{"style", "=", RowBox[{"Directive", "[", RowBox[{"Black", ",", "Italic", ",", RowBox[{"FontFamily", "\[Rule]", "\"\\""}], ",", "14"}], "]"}]}]}], "\[IndentingNewLine]", "}"}], ",", "\[IndentingNewLine]", RowBox[{"{", "\[IndentingNewLine]", RowBox[{ RowBox[{"Graphics3D", "[", RowBox[{ RowBox[{"{", RowBox[{"s", ",", "Green", ",", RowBox[{"Opacity", "[", ".5", "]"}], ",", "p"}], "}"}], ",", RowBox[{"Boxed", "\[Rule]", "False"}], ",", RowBox[{"PlotLabel", "\[Rule]", RowBox[{"TextCell", "[", RowBox[{ RowBox[{"Style", "[", RowBox[{ RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}], ",", "style"}], "]"}], ",", RowBox[{"PageWidth", "\[Rule]", "200"}], ",", RowBox[{"TextAlignment", "\[Rule]", "Center"}]}], "]"}]}]}], "]"}], ",", "\[IndentingNewLine]", RowBox[{"Graphics3D", "[", RowBox[{ RowBox[{"{", RowBox[{"s", ",", "Red", ",", RowBox[{"Opacity", "[", ".5", "]"}], ",", RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\"", ",", "\"\\""}], "]"}]}], "}"}], ",", RowBox[{"Boxed", "\[Rule]", "False"}], ",", RowBox[{"PlotLabel", "\[Rule]", RowBox[{"Style", "[", RowBox[{ RowBox[{"PolyhedronData", "[", RowBox[{"dname", ",", "\"\\""}], "]"}], ",", "style"}], "]"}]}]}], "]"}], ",", "\[IndentingNewLine]", RowBox[{"Graphics3D", "[", RowBox[{ RowBox[{"{", "\[IndentingNewLine]", RowBox[{ RowBox[{"{", RowBox[{"Green", ",", RowBox[{"Opacity", "[", ".5", "]"}], ",", "p"}], "}"}], ",", "\[IndentingNewLine]", RowBox[{"{", RowBox[{"Red", ",", RowBox[{"Opacity", "[", ".5", "]"}], ",", RowBox[{"PolyhedronData", "[", RowBox[{ "pname", ",", "\"\\"", ",", "\"\\""}], "]"}]}], "}"}], ",", "\[IndentingNewLine]", "s"}], "\[IndentingNewLine]", "}"}], ",", RowBox[{"Boxed", "\[Rule]", "False"}], ",", RowBox[{"PlotLabel", "\[Rule]", RowBox[{"Style", "[", RowBox[{"\"\\"", ",", "style"}], "]"}]}]}], "]"}], ",", "\[IndentingNewLine]", RowBox[{"Graphics3D", "[", RowBox[{ RowBox[{"{", "\[IndentingNewLine]", RowBox[{"p", ",", "\[IndentingNewLine]", RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\"", ",", "\"\\""}], "]"}]}], "\[IndentingNewLine]", "}"}], ",", RowBox[{"Boxed", "\[Rule]", "False"}], ",", RowBox[{"PlotLabel", "\[Rule]", RowBox[{"Style", "[", RowBox[{"\"\\"", ",", "style"}], "]"}]}]}], "]"}]}], "\[IndentingNewLine]", "}"}]}], "]"}], ",", RowBox[{"Alignment", "\[Rule]", "Top"}], ",", RowBox[{"ImageSize", "\[Rule]", "800"}]}], "]"}]], "Input", CellLabel-> "In[775]:=",ExpressionUUID->"0177cc9c-6d5d-44d6-b896-8e1c003aa934"], Cell[BoxData[ GraphicsBox[{{}, {InsetBox[ Graphics3DBox[{ {RGBColor[1, 1, 0], SphereBox[{0, 0, 0}, NCache[ Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], 1.5388417685876268`]]}, {RGBColor[0, 1, 0], Opacity[0.5], PolyhedronBox[ NCache[{{0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), 0}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-1 - 5^ Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {( Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {-(1 + 2 5^Rational[-1, 2])^ Rational[1, 2], 0, Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {(1 + 2 5^Rational[-1, 2])^Rational[1, 2], 0, (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, {(Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2], 0, -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2], 0}, { Root[1 - 5 #^2 + 5 #^4& , 1, 0], 0, (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}}, {{0, -1.618033988749895, 0}, { 0, 1.618033988749895, 0}, { 0.2628655560595668, -0.8090169943749475, -1.3763819204711736`}, { 0.2628655560595668, 0.8090169943749475, -1.3763819204711736`}, { 0.42532540417601994`, -1.3090169943749475`, 0.85065080835204}, { 0.42532540417601994`, 1.3090169943749475`, 0.85065080835204}, { 0.6881909602355868, -0.5, 1.3763819204711736`}, { 0.6881909602355868, 0.5, 1.3763819204711736`}, { 1.1135163644116066`, -0.8090169943749475, -0.8506508083520399}, { 1.1135163644116066`, 0.8090169943749475, -0.8506508083520399}, {-1.3763819204711736`, 0, -0.8506508083520399}, {-0.6881909602355868, -0.5, \ -1.3763819204711736`}, {-0.6881909602355868, 0.5, -1.3763819204711736`}, { 1.3763819204711736`, 0, 0.85065080835204}, { 0.9510565162951535, -1.3090169943749475`, 0}, { 0.9510565162951535, 1.3090169943749475`, 0}, { 0.85065080835204, 0, -1.3763819204711736`}, {-0.9510565162951535, \ -1.3090169943749475`, 0}, {-0.9510565162951535, 1.3090169943749475`, 0}, {-1.5388417685876268`, -0.5, 0}, {-1.5388417685876268`, 0.5, 0}, {1.5388417685876268`, -0.5, 0}, { 1.5388417685876268`, 0.5, 0}, {-0.8506508083520399, 0, 1.3763819204711736`}, {-1.1135163644116068`, -0.8090169943749475, 0.85065080835204}, {-1.1135163644116068`, 0.8090169943749475, 0.85065080835204}, {-0.42532540417601994`, -1.3090169943749475`, \ -0.8506508083520399}, {-0.42532540417601994`, 1.3090169943749475`, -0.8506508083520399}, {-0.2628655560595668, \ -0.8090169943749475, 1.3763819204711736`}, {-0.2628655560595668, 0.8090169943749475, 1.3763819204711736`}}], {{30, 24, 29, 7, 8}, { 26, 24, 30}, {25, 29, 24}, {5, 7, 29}, {14, 8, 7}, {6, 30, 8}, {16, 2, 6}, {19, 21, 26}, {20, 18, 25}, {1, 15, 5}, {22, 23, 14}, {2, 19, 26, 30, 6}, {21, 20, 25, 24, 26}, {18, 1, 5, 29, 25}, {15, 22, 14, 7, 5}, {23, 16, 6, 8, 14}, {12, 13, 4, 17, 3}, {3, 17, 9}, {17, 4, 10}, {4, 13, 28}, {13, 12, 11}, {12, 3, 27}, {27, 1, 18}, {9, 22, 15}, {10, 16, 23}, {28, 19, 2}, {11, 20, 21}, {27, 3, 9, 15, 1}, {9, 17, 10, 23, 22}, {10, 4, 28, 2, 16}, {28, 13, 11, 21, 19}, {11, 12, 27, 18, 20}}]}}, Boxed->False, PlotLabel->FormBox[ InterpretationBox[ Cell[ BoxData[ FormBox[ StyleBox["\"icosidodecahedron\"", Directive[ GrayLevel[0], Italic, FontFamily -> "Times", 14], StripOnInput -> False], TraditionalForm]], PageWidth -> 200, TextAlignment -> Center], TextCell[ Style["icosidodecahedron", Directive[ GrayLevel[0], Italic, FontFamily -> "Times", 14]], PageWidth -> 200, TextAlignment -> Center]], TraditionalForm]], {194.4, -9.625}, ImageScaled[{0.5, 1}], {360, 380}, BaseStyle->{Graphics3DBoxOptions -> {SphericalRegion -> False}}, ContentSelectable->True], InsetBox[ Graphics3DBox[{ {RGBColor[1, 1, 0], SphereBox[{0, 0, 0}, NCache[ Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], 1.5388417685876268`]]}, {RGBColor[1, 0, 0], Opacity[0.5], PolyhedronBox[ NCache[{{ 0, 0, Rational[1, 8] (-1 - 5^ Rational[1, 2]) (Rational[5, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, { 0, 0, Rational[1, 8] (1 + 5^Rational[1, 2]) (Rational[5, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 8] (5 - 5^ Rational[1, 2]) (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (Rational[5, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2] Root[1 - 5 #^2 + 5 #^4& , 1, 0], Rational[1, 8] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2] (5 + 3 5^Rational[1, 2])}, { Rational[1, 8] (5 - 5^ Rational[1, 2]) (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 8] (5 + 5^Rational[1, 2]), Rational[1, 8] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2] (5 + 3 5^Rational[1, 2])}, { Rational[1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], 0, Rational[1, 8] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2] (5 + 3 5^Rational[1, 2])}, { Rational[1, 8] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2] (5 + 3 5^Rational[1, 2]), Rational[1, 4] (Rational[5, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2] Root[1 - 5 #^2 + 5 #^4& , 1, 0], Rational[1, 8] 10^Rational[-1, 2] (5 + 5^Rational[1, 2])^Rational[3, 2]}, { Rational[1, 8] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2] (5 + 3 5^Rational[1, 2]), Rational[1, 4] (Rational[5, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2] Root[1 - 5 #^2 + 5 #^4& , 1, 0], Rational[1, 8] (-5 + 5^Rational[1, 2]) (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 8] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2] (5 + 3 5^Rational[1, 2]), Rational[1, 8] (5 + 5^Rational[1, 2]), Rational[1, 8] 10^Rational[-1, 2] (5 + 5^Rational[1, 2])^Rational[3, 2]}, { Rational[1, 8] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2] (5 + 3 5^Rational[1, 2]), Rational[1, 8] (5 + 5^Rational[1, 2]), Rational[1, 8] (-5 + 5^Rational[1, 2]) (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], 0, Rational[1, 8] (-5 - 3 5^Rational[1, 2]) (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[-1, 4] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[-1, 4] ( Rational[5, 2] (1 + 2 5^Rational[-1, 2]) (5 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] 10^Rational[-1, 2] (5 + 5^Rational[1, 2])^Rational[3, 2]}, { Rational[-1, 4] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[-1, 4] ( Rational[5, 2] (1 + 2 5^Rational[-1, 2]) (5 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (-5 + 5^Rational[1, 2]) (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[-1, 4] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[ 1, 4] (Rational[5, 2] (1 + 2 5^Rational[-1, 2]) (5 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] 10^Rational[-1, 2] (5 + 5^Rational[1, 2])^Rational[3, 2]}, { Rational[-1, 4] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[ 1, 4] (Rational[5, 2] (1 + 2 5^Rational[-1, 2]) (5 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (-5 + 5^Rational[1, 2]) (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 4] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[-1, 4] ( Rational[5, 2] (1 + 2 5^Rational[-1, 2]) (5 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (5 - 5^ Rational[1, 2]) (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 4] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[-1, 4] ( Rational[5, 2] (1 + 2 5^Rational[-1, 2]) (5 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (-5 - 5^ Rational[1, 2]) (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 4] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[ 1, 4] (Rational[5, 2] (1 + 2 5^Rational[-1, 2]) (5 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (5 - 5^ Rational[1, 2]) (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 4] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[ 1, 4] (Rational[5, 2] (1 + 2 5^Rational[-1, 2]) (5 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (-5 - 5^ Rational[1, 2]) (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 4] (-1 - 5^ Rational[-1, 2]) (Rational[5, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], 0, Rational[1, 8] 10^Rational[-1, 2] (5 + 5^Rational[1, 2])^Rational[3, 2]}, { Rational[1, 4] (-1 - 5^ Rational[-1, 2]) (Rational[5, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], 0, Rational[1, 8] (-5 + 5^Rational[1, 2]) (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 8] (-5 - 5^ Rational[1, 2]) (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (Rational[5, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2] Root[1 - 5 #^2 + 5 #^4& , 2, 0], Rational[1, 8] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2] (5 + 3 5^Rational[1, 2])}, { Rational[1, 8] (-5 - 5^ Rational[1, 2]) (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] 5^Rational[1, 2], Rational[1, 8] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2] (5 + 3 5^Rational[1, 2])}, { Rational[1, 8] 10^Rational[-1, 2] (5 + 5^Rational[1, 2])^Rational[3, 2], Rational[1, 4] (Rational[5, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2] Root[1 - 5 #^2 + 5 #^4& , 2, 0], Rational[1, 8] (-5 - 3 5^Rational[1, 2]) (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 8] 10^Rational[-1, 2] (5 + 5^Rational[1, 2])^Rational[3, 2], Rational[1, 4] 5^Rational[1, 2], Rational[1, 8] (-5 - 3 5^Rational[1, 2]) (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 4] (1 + 5^Rational[-1, 2]) (Rational[5, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], 0, Rational[1, 8] (5 - 5^ Rational[1, 2]) (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 4] (1 + 5^Rational[-1, 2]) (Rational[5, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], 0, Rational[1, 8] (-5 - 5^ Rational[1, 2]) (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 8] (-5 - 3 5^Rational[1, 2]) (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (Rational[5, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2] Root[1 - 5 #^2 + 5 #^4& , 1, 0], Rational[1, 8] (5 - 5^ Rational[1, 2]) (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 8] (-5 - 3 5^Rational[1, 2]) (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (Rational[5, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2] Root[1 - 5 #^2 + 5 #^4& , 1, 0], Rational[1, 8] (-5 - 5^ Rational[1, 2]) (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 8] (-5 - 3 5^Rational[1, 2]) (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 8] (5 + 5^Rational[1, 2]), Rational[1, 8] (5 - 5^ Rational[1, 2]) (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 8] (-5 - 3 5^Rational[1, 2]) (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 8] (5 + 5^Rational[1, 2]), Rational[1, 8] (-5 - 5^ Rational[1, 2]) (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 8] (-5 + 5^Rational[1, 2]) (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (Rational[5, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2] Root[1 - 5 #^2 + 5 #^4& , 1, 0], Rational[1, 8] (-5 - 3 5^Rational[1, 2]) (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 8] (-5 + 5^Rational[1, 2]) (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 8] (5 + 5^Rational[1, 2]), Rational[1, 8] (-5 - 3 5^Rational[1, 2]) (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}}, {{0, 0, -1.7204774005889671`}, { 0, 0, 1.7204774005889671`}, { 0.29389262614623657`, -0.9045084971874737, 1.2449491424413903`}, { 0.29389262614623657`, 0.9045084971874737, 1.2449491424413903`}, { 0.9510565162951535, 0, 1.2449491424413903`}, { 1.2449491424413903`, -0.9045084971874737, 0.7694208842938134}, { 1.2449491424413903`, -0.9045084971874737, -0.29389262614623657`}, { 1.2449491424413903`, 0.9045084971874737, 0.7694208842938134}, { 1.2449491424413903`, 0.9045084971874737, -0.29389262614623657`}, {-0.9510565162951535, 0, -1.2449491424413903`}, {-0.47552825814757677`, \ -1.4635254915624212`, 0.7694208842938134}, {-0.47552825814757677`, -1.4635254915624212`, \ -0.29389262614623657`}, {-0.47552825814757677`, 1.4635254915624212`, 0.7694208842938134}, {-0.47552825814757677`, 1.4635254915624212`, -0.29389262614623657`}, { 0.47552825814757677`, -1.4635254915624212`, 0.29389262614623657`}, { 0.47552825814757677`, -1.4635254915624212`, -0.7694208842938134}, { 0.47552825814757677`, 1.4635254915624212`, 0.29389262614623657`}, { 0.47552825814757677`, 1.4635254915624212`, -0.7694208842938134}, {-1.5388417685876268`, 0, 0.7694208842938134}, {-1.5388417685876268`, 0, -0.29389262614623657`}, {-0.7694208842938134, \ -0.5590169943749475, 1.2449491424413903`}, {-0.7694208842938134, 0.5590169943749475, 1.2449491424413903`}, { 0.7694208842938134, -0.5590169943749475, -1.2449491424413903`}, { 0.7694208842938134, 0.5590169943749475, -1.2449491424413903`}, { 1.5388417685876268`, 0, 0.29389262614623657`}, { 1.5388417685876268`, 0, -0.7694208842938134}, {-1.2449491424413903`, \ -0.9045084971874737, 0.29389262614623657`}, {-1.2449491424413903`, -0.9045084971874737, \ -0.7694208842938134}, {-1.2449491424413903`, 0.9045084971874737, 0.29389262614623657`}, {-1.2449491424413903`, 0.9045084971874737, -0.7694208842938134}, {-0.29389262614623657`, \ -0.9045084971874737, -1.2449491424413903`}, {-0.29389262614623657`, 0.9045084971874737, -1.2449491424413903`}}], {{16, 15, 11, 12}, { 14, 13, 17, 18}, {10, 28, 20, 30}, {8, 5, 6, 25}, {12, 28, 31, 16}, { 32, 30, 14, 18}, {6, 3, 11, 15}, {8, 17, 13, 4}, {11, 21, 19, 27}, { 13, 29, 19, 22}, {7, 16, 23, 26}, {24, 18, 9, 26}, {12, 11, 27, 28}, {30, 29, 13, 14}, {7, 6, 15, 16}, {18, 17, 8, 9}, {2, 22, 19, 21}, {23, 1, 24, 26}, {3, 2, 21, 11}, {4, 13, 22, 2}, {16, 31, 1, 23}, {1, 32, 18, 24}, {31, 28, 10, 1}, {10, 30, 32, 1}, {6, 5, 2, 3}, {8, 4, 2, 5}, {28, 27, 19, 20}, {20, 19, 29, 30}, {26, 25, 6, 7}, {9, 8, 25, 26}}]}}, Boxed->False, PlotLabel->FormBox[ StyleBox["\"rhombic triacontahedron\"", Directive[ GrayLevel[0], Italic, FontFamily -> "Times", 14], StripOnInput -> False], TraditionalForm]], {583.2, -9.625}, ImageScaled[{0.5, 1}], {360, 385}, BaseStyle->{Graphics3DBoxOptions -> {SphericalRegion -> False}}, ContentSelectable->True], InsetBox[ Graphics3DBox[{ {RGBColor[0, 1, 0], Opacity[0.5], PolyhedronBox[ NCache[{{0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), 0}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-1 - 5^ Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {( Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {-(1 + 2 5^Rational[-1, 2])^ Rational[1, 2], 0, Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {(1 + 2 5^Rational[-1, 2])^Rational[1, 2], 0, (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, {(Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2], 0, -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2], 0}, { Root[1 - 5 #^2 + 5 #^4& , 1, 0], 0, (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}}, {{0, -1.618033988749895, 0}, { 0, 1.618033988749895, 0}, { 0.2628655560595668, -0.8090169943749475, -1.3763819204711736`}, { 0.2628655560595668, 0.8090169943749475, -1.3763819204711736`}, { 0.42532540417601994`, -1.3090169943749475`, 0.85065080835204}, { 0.42532540417601994`, 1.3090169943749475`, 0.85065080835204}, { 0.6881909602355868, -0.5, 1.3763819204711736`}, { 0.6881909602355868, 0.5, 1.3763819204711736`}, { 1.1135163644116066`, -0.8090169943749475, -0.8506508083520399}, { 1.1135163644116066`, 0.8090169943749475, -0.8506508083520399}, {-1.3763819204711736`, 0, -0.8506508083520399}, {-0.6881909602355868, -0.5, \ -1.3763819204711736`}, {-0.6881909602355868, 0.5, -1.3763819204711736`}, { 1.3763819204711736`, 0, 0.85065080835204}, { 0.9510565162951535, -1.3090169943749475`, 0}, { 0.9510565162951535, 1.3090169943749475`, 0}, { 0.85065080835204, 0, -1.3763819204711736`}, {-0.9510565162951535, \ -1.3090169943749475`, 0}, {-0.9510565162951535, 1.3090169943749475`, 0}, {-1.5388417685876268`, -0.5, 0}, {-1.5388417685876268`, 0.5, 0}, {1.5388417685876268`, -0.5, 0}, { 1.5388417685876268`, 0.5, 0}, {-0.8506508083520399, 0, 1.3763819204711736`}, {-1.1135163644116068`, -0.8090169943749475, 0.85065080835204}, {-1.1135163644116068`, 0.8090169943749475, 0.85065080835204}, {-0.42532540417601994`, -1.3090169943749475`, \ -0.8506508083520399}, {-0.42532540417601994`, 1.3090169943749475`, -0.8506508083520399}, {-0.2628655560595668, \ -0.8090169943749475, 1.3763819204711736`}, {-0.2628655560595668, 0.8090169943749475, 1.3763819204711736`}}], {{30, 24, 29, 7, 8}, { 26, 24, 30}, {25, 29, 24}, {5, 7, 29}, {14, 8, 7}, {6, 30, 8}, {16, 2, 6}, {19, 21, 26}, {20, 18, 25}, {1, 15, 5}, {22, 23, 14}, {2, 19, 26, 30, 6}, {21, 20, 25, 24, 26}, {18, 1, 5, 29, 25}, {15, 22, 14, 7, 5}, {23, 16, 6, 8, 14}, {12, 13, 4, 17, 3}, {3, 17, 9}, {17, 4, 10}, {4, 13, 28}, {13, 12, 11}, {12, 3, 27}, {27, 1, 18}, {9, 22, 15}, {10, 16, 23}, {28, 19, 2}, {11, 20, 21}, {27, 3, 9, 15, 1}, {9, 17, 10, 23, 22}, {10, 4, 28, 2, 16}, {28, 13, 11, 21, 19}, {11, 12, 27, 18, 20}}]}, {RGBColor[1, 0, 0], Opacity[0.5], PolyhedronBox[ NCache[{{ 0, 0, Rational[1, 8] (-1 - 5^ Rational[1, 2]) (Rational[5, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, { 0, 0, Rational[1, 8] (1 + 5^Rational[1, 2]) (Rational[5, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 8] (5 - 5^ Rational[1, 2]) (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (Rational[5, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2] Root[1 - 5 #^2 + 5 #^4& , 1, 0], Rational[1, 8] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2] (5 + 3 5^Rational[1, 2])}, { Rational[1, 8] (5 - 5^ Rational[1, 2]) (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 8] (5 + 5^Rational[1, 2]), Rational[1, 8] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2] (5 + 3 5^Rational[1, 2])}, { Rational[1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], 0, Rational[1, 8] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2] (5 + 3 5^Rational[1, 2])}, { Rational[1, 8] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2] (5 + 3 5^Rational[1, 2]), Rational[1, 4] (Rational[5, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2] Root[1 - 5 #^2 + 5 #^4& , 1, 0], Rational[1, 8] 10^Rational[-1, 2] (5 + 5^Rational[1, 2])^Rational[3, 2]}, { Rational[1, 8] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2] (5 + 3 5^Rational[1, 2]), Rational[1, 4] (Rational[5, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2] Root[1 - 5 #^2 + 5 #^4& , 1, 0], Rational[1, 8] (-5 + 5^Rational[1, 2]) (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 8] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2] (5 + 3 5^Rational[1, 2]), Rational[1, 8] (5 + 5^Rational[1, 2]), Rational[1, 8] 10^Rational[-1, 2] (5 + 5^Rational[1, 2])^Rational[3, 2]}, { Rational[1, 8] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2] (5 + 3 5^Rational[1, 2]), Rational[1, 8] (5 + 5^Rational[1, 2]), Rational[1, 8] (-5 + 5^Rational[1, 2]) (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], 0, Rational[1, 8] (-5 - 3 5^Rational[1, 2]) (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[-1, 4] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[-1, 4] ( Rational[5, 2] (1 + 2 5^Rational[-1, 2]) (5 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] 10^Rational[-1, 2] (5 + 5^Rational[1, 2])^Rational[3, 2]}, { Rational[-1, 4] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[-1, 4] ( Rational[5, 2] (1 + 2 5^Rational[-1, 2]) (5 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (-5 + 5^Rational[1, 2]) (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[-1, 4] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[ 1, 4] (Rational[5, 2] (1 + 2 5^Rational[-1, 2]) (5 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] 10^Rational[-1, 2] (5 + 5^Rational[1, 2])^Rational[3, 2]}, { Rational[-1, 4] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[ 1, 4] (Rational[5, 2] (1 + 2 5^Rational[-1, 2]) (5 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (-5 + 5^Rational[1, 2]) (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 4] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[-1, 4] ( Rational[5, 2] (1 + 2 5^Rational[-1, 2]) (5 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (5 - 5^ Rational[1, 2]) (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 4] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[-1, 4] ( Rational[5, 2] (1 + 2 5^Rational[-1, 2]) (5 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (-5 - 5^ Rational[1, 2]) (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 4] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[ 1, 4] (Rational[5, 2] (1 + 2 5^Rational[-1, 2]) (5 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (5 - 5^ Rational[1, 2]) (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 4] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[ 1, 4] (Rational[5, 2] (1 + 2 5^Rational[-1, 2]) (5 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (-5 - 5^ Rational[1, 2]) (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 4] (-1 - 5^ Rational[-1, 2]) (Rational[5, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], 0, Rational[1, 8] 10^Rational[-1, 2] (5 + 5^Rational[1, 2])^Rational[3, 2]}, { Rational[1, 4] (-1 - 5^ Rational[-1, 2]) (Rational[5, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], 0, Rational[1, 8] (-5 + 5^Rational[1, 2]) (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 8] (-5 - 5^ Rational[1, 2]) (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (Rational[5, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2] Root[1 - 5 #^2 + 5 #^4& , 2, 0], Rational[1, 8] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2] (5 + 3 5^Rational[1, 2])}, { Rational[1, 8] (-5 - 5^ Rational[1, 2]) (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] 5^Rational[1, 2], Rational[1, 8] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2] (5 + 3 5^Rational[1, 2])}, { Rational[1, 8] 10^Rational[-1, 2] (5 + 5^Rational[1, 2])^Rational[3, 2], Rational[1, 4] (Rational[5, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2] Root[1 - 5 #^2 + 5 #^4& , 2, 0], Rational[1, 8] (-5 - 3 5^Rational[1, 2]) (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 8] 10^Rational[-1, 2] (5 + 5^Rational[1, 2])^Rational[3, 2], Rational[1, 4] 5^Rational[1, 2], Rational[1, 8] (-5 - 3 5^Rational[1, 2]) (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 4] (1 + 5^Rational[-1, 2]) (Rational[5, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], 0, Rational[1, 8] (5 - 5^ Rational[1, 2]) (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 4] (1 + 5^Rational[-1, 2]) (Rational[5, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], 0, Rational[1, 8] (-5 - 5^ Rational[1, 2]) (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 8] (-5 - 3 5^Rational[1, 2]) (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (Rational[5, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2] Root[1 - 5 #^2 + 5 #^4& , 1, 0], Rational[1, 8] (5 - 5^ Rational[1, 2]) (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 8] (-5 - 3 5^Rational[1, 2]) (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (Rational[5, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2] Root[1 - 5 #^2 + 5 #^4& , 1, 0], Rational[1, 8] (-5 - 5^ Rational[1, 2]) (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 8] (-5 - 3 5^Rational[1, 2]) (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 8] (5 + 5^Rational[1, 2]), Rational[1, 8] (5 - 5^ Rational[1, 2]) (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 8] (-5 - 3 5^Rational[1, 2]) (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 8] (5 + 5^Rational[1, 2]), Rational[1, 8] (-5 - 5^ Rational[1, 2]) (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 8] (-5 + 5^Rational[1, 2]) (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (Rational[5, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2] Root[1 - 5 #^2 + 5 #^4& , 1, 0], Rational[1, 8] (-5 - 3 5^Rational[1, 2]) (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 8] (-5 + 5^Rational[1, 2]) (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 8] (5 + 5^Rational[1, 2]), Rational[1, 8] (-5 - 3 5^Rational[1, 2]) (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}}, {{0, 0, -1.7204774005889671`}, { 0, 0, 1.7204774005889671`}, { 0.29389262614623657`, -0.9045084971874737, 1.2449491424413903`}, { 0.29389262614623657`, 0.9045084971874737, 1.2449491424413903`}, { 0.9510565162951535, 0, 1.2449491424413903`}, { 1.2449491424413903`, -0.9045084971874737, 0.7694208842938134}, { 1.2449491424413903`, -0.9045084971874737, -0.29389262614623657`}, { 1.2449491424413903`, 0.9045084971874737, 0.7694208842938134}, { 1.2449491424413903`, 0.9045084971874737, -0.29389262614623657`}, {-0.9510565162951535, 0, -1.2449491424413903`}, {-0.47552825814757677`, \ -1.4635254915624212`, 0.7694208842938134}, {-0.47552825814757677`, -1.4635254915624212`, \ -0.29389262614623657`}, {-0.47552825814757677`, 1.4635254915624212`, 0.7694208842938134}, {-0.47552825814757677`, 1.4635254915624212`, -0.29389262614623657`}, { 0.47552825814757677`, -1.4635254915624212`, 0.29389262614623657`}, { 0.47552825814757677`, -1.4635254915624212`, -0.7694208842938134}, { 0.47552825814757677`, 1.4635254915624212`, 0.29389262614623657`}, { 0.47552825814757677`, 1.4635254915624212`, -0.7694208842938134}, {-1.5388417685876268`, 0, 0.7694208842938134}, {-1.5388417685876268`, 0, -0.29389262614623657`}, {-0.7694208842938134, \ -0.5590169943749475, 1.2449491424413903`}, {-0.7694208842938134, 0.5590169943749475, 1.2449491424413903`}, { 0.7694208842938134, -0.5590169943749475, -1.2449491424413903`}, { 0.7694208842938134, 0.5590169943749475, -1.2449491424413903`}, { 1.5388417685876268`, 0, 0.29389262614623657`}, { 1.5388417685876268`, 0, -0.7694208842938134}, {-1.2449491424413903`, \ -0.9045084971874737, 0.29389262614623657`}, {-1.2449491424413903`, -0.9045084971874737, \ -0.7694208842938134}, {-1.2449491424413903`, 0.9045084971874737, 0.29389262614623657`}, {-1.2449491424413903`, 0.9045084971874737, -0.7694208842938134}, {-0.29389262614623657`, \ -0.9045084971874737, -1.2449491424413903`}, {-0.29389262614623657`, 0.9045084971874737, -1.2449491424413903`}}], {{16, 15, 11, 12}, { 14, 13, 17, 18}, {10, 28, 20, 30}, {8, 5, 6, 25}, {12, 28, 31, 16}, { 32, 30, 14, 18}, {6, 3, 11, 15}, {8, 17, 13, 4}, {11, 21, 19, 27}, { 13, 29, 19, 22}, {7, 16, 23, 26}, {24, 18, 9, 26}, {12, 11, 27, 28}, {30, 29, 13, 14}, {7, 6, 15, 16}, {18, 17, 8, 9}, {2, 22, 19, 21}, {23, 1, 24, 26}, {3, 2, 21, 11}, {4, 13, 22, 2}, {16, 31, 1, 23}, {1, 32, 18, 24}, {31, 28, 10, 1}, {10, 30, 32, 1}, {6, 5, 2, 3}, {8, 4, 2, 5}, {28, 27, 19, 20}, {20, 19, 29, 30}, {26, 25, 6, 7}, {9, 8, 25, 26}}]}, {RGBColor[1, 1, 0], SphereBox[{0, 0, 0}, NCache[ Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], 1.5388417685876268`]]}}, Boxed->False, PlotLabel->FormBox[ StyleBox["\"compound with midsphere\"", Directive[ GrayLevel[0], Italic, FontFamily -> "Times", 14], StripOnInput -> False], TraditionalForm]], {972., -9.625}, ImageScaled[{0.5, 1}], {360, 377}, BaseStyle->{Graphics3DBoxOptions -> {SphericalRegion -> False}}, ContentSelectable->True], InsetBox[ Graphics3DBox[{ PolyhedronBox[ NCache[{{0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), 0}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {-(1 + 2 5^Rational[-1, 2])^ Rational[1, 2], 0, Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {(1 + 2 5^Rational[-1, 2])^Rational[1, 2], 0, (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, {(Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2], 0, -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2], 0}, { Root[1 - 5 #^2 + 5 #^4& , 1, 0], 0, (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}}, {{0, -1.618033988749895, 0}, { 0, 1.618033988749895, 0}, { 0.2628655560595668, -0.8090169943749475, -1.3763819204711736`}, { 0.2628655560595668, 0.8090169943749475, -1.3763819204711736`}, { 0.42532540417601994`, -1.3090169943749475`, 0.85065080835204}, { 0.42532540417601994`, 1.3090169943749475`, 0.85065080835204}, { 0.6881909602355868, -0.5, 1.3763819204711736`}, {0.6881909602355868, 0.5, 1.3763819204711736`}, { 1.1135163644116066`, -0.8090169943749475, -0.8506508083520399}, { 1.1135163644116066`, 0.8090169943749475, -0.8506508083520399}, {-1.3763819204711736`, 0, -0.8506508083520399}, {-0.6881909602355868, -0.5, \ -1.3763819204711736`}, {-0.6881909602355868, 0.5, -1.3763819204711736`}, { 1.3763819204711736`, 0, 0.85065080835204}, { 0.9510565162951535, -1.3090169943749475`, 0}, { 0.9510565162951535, 1.3090169943749475`, 0}, { 0.85065080835204, 0, -1.3763819204711736`}, {-0.9510565162951535, \ -1.3090169943749475`, 0}, {-0.9510565162951535, 1.3090169943749475`, 0}, {-1.5388417685876268`, -0.5, 0}, {-1.5388417685876268`, 0.5, 0}, {1.5388417685876268`, -0.5, 0}, { 1.5388417685876268`, 0.5, 0}, {-0.8506508083520399, 0, 1.3763819204711736`}, {-1.1135163644116068`, -0.8090169943749475, 0.85065080835204}, {-1.1135163644116068`, 0.8090169943749475, 0.85065080835204}, {-0.42532540417601994`, -1.3090169943749475`, \ -0.8506508083520399}, {-0.42532540417601994`, 1.3090169943749475`, -0.8506508083520399}, {-0.2628655560595668, \ -0.8090169943749475, 1.3763819204711736`}, {-0.2628655560595668, 0.8090169943749475, 1.3763819204711736`}}], {{30, 24, 29, 7, 8}, { 26, 24, 30}, {25, 29, 24}, {5, 7, 29}, {14, 8, 7}, {6, 30, 8}, {16, 2, 6}, {19, 21, 26}, {20, 18, 25}, {1, 15, 5}, {22, 23, 14}, {2, 19, 26, 30, 6}, {21, 20, 25, 24, 26}, {18, 1, 5, 29, 25}, {15, 22, 14, 7, 5}, {23, 16, 6, 8, 14}, {12, 13, 4, 17, 3}, {3, 17, 9}, {17, 4, 10}, {4, 13, 28}, {13, 12, 11}, {12, 3, 27}, {27, 1, 18}, {9, 22, 15}, {10, 16, 23}, {28, 19, 2}, {11, 20, 21}, {27, 3, 9, 15, 1}, {9, 17, 10, 23, 22}, {10, 4, 28, 2, 16}, {28, 13, 11, 21, 19}, {11, 12, 27, 18, 20}}], PolyhedronBox[ NCache[{{ 0, 0, Rational[1, 8] (-1 - 5^ Rational[1, 2]) (Rational[5, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, { 0, 0, Rational[1, 8] (1 + 5^Rational[1, 2]) (Rational[5, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 8] (5 - 5^ Rational[1, 2]) (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (Rational[5, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2] Root[1 - 5 #^2 + 5 #^4& , 1, 0], Rational[1, 8] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2] (5 + 3 5^Rational[1, 2])}, { Rational[1, 8] (5 - 5^ Rational[1, 2]) (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 8] (5 + 5^Rational[1, 2]), Rational[1, 8] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2] (5 + 3 5^Rational[1, 2])}, { Rational[1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], 0, Rational[1, 8] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2] (5 + 3 5^Rational[1, 2])}, { Rational[1, 8] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2] (5 + 3 5^Rational[1, 2]), Rational[1, 4] (Rational[5, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2] Root[1 - 5 #^2 + 5 #^4& , 1, 0], Rational[1, 8] 10^Rational[-1, 2] (5 + 5^Rational[1, 2])^Rational[3, 2]}, { Rational[1, 8] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2] (5 + 3 5^Rational[1, 2]), Rational[1, 4] (Rational[5, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2] Root[1 - 5 #^2 + 5 #^4& , 1, 0], Rational[1, 8] (-5 + 5^Rational[1, 2]) (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 8] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2] (5 + 3 5^Rational[1, 2]), Rational[1, 8] (5 + 5^Rational[1, 2]), Rational[1, 8] 10^Rational[-1, 2] (5 + 5^Rational[1, 2])^Rational[3, 2]}, { Rational[1, 8] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2] (5 + 3 5^Rational[1, 2]), Rational[1, 8] (5 + 5^Rational[1, 2]), Rational[1, 8] (-5 + 5^Rational[1, 2]) (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], 0, Rational[1, 8] (-5 - 3 5^Rational[1, 2]) (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[-1, 4] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[-1, 4] ( Rational[5, 2] (1 + 2 5^Rational[-1, 2]) (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 8] 10^Rational[-1, 2] (5 + 5^Rational[1, 2])^Rational[3, 2]}, { Rational[-1, 4] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[-1, 4] ( Rational[5, 2] (1 + 2 5^Rational[-1, 2]) (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 8] (-5 + 5^Rational[1, 2]) (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[-1, 4] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[ 1, 4] (Rational[5, 2] (1 + 2 5^Rational[-1, 2]) (5 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] 10^Rational[-1, 2] (5 + 5^Rational[1, 2])^Rational[3, 2]}, { Rational[-1, 4] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[ 1, 4] (Rational[5, 2] (1 + 2 5^Rational[-1, 2]) (5 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (-5 + 5^Rational[1, 2]) (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 4] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[-1, 4] ( Rational[5, 2] (1 + 2 5^Rational[-1, 2]) (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 8] (5 - 5^ Rational[1, 2]) (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 4] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[-1, 4] ( Rational[5, 2] (1 + 2 5^Rational[-1, 2]) (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 8] (-5 - 5^ Rational[1, 2]) (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 4] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[ 1, 4] (Rational[5, 2] (1 + 2 5^Rational[-1, 2]) (5 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (5 - 5^ Rational[1, 2]) (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 4] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[ 1, 4] (Rational[5, 2] (1 + 2 5^Rational[-1, 2]) (5 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 8] (-5 - 5^ Rational[1, 2]) (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 4] (-1 - 5^ Rational[-1, 2]) (Rational[5, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], 0, Rational[1, 8] 10^Rational[-1, 2] (5 + 5^Rational[1, 2])^Rational[3, 2]}, { Rational[1, 4] (-1 - 5^ Rational[-1, 2]) (Rational[5, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], 0, Rational[1, 8] (-5 + 5^Rational[1, 2]) (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 8] (-5 - 5^ Rational[1, 2]) (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (Rational[5, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2] Root[1 - 5 #^2 + 5 #^4& , 2, 0], Rational[1, 8] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2] (5 + 3 5^Rational[1, 2])}, { Rational[1, 8] (-5 - 5^ Rational[1, 2]) (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] 5^Rational[1, 2], Rational[1, 8] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2] (5 + 3 5^Rational[1, 2])}, { Rational[1, 8] 10^Rational[-1, 2] (5 + 5^Rational[1, 2])^Rational[3, 2], Rational[1, 4] (Rational[5, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2] Root[1 - 5 #^2 + 5 #^4& , 2, 0], Rational[1, 8] (-5 - 3 5^Rational[1, 2]) (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 8] 10^Rational[-1, 2] (5 + 5^Rational[1, 2])^Rational[3, 2], Rational[1, 4] 5^Rational[1, 2], Rational[1, 8] (-5 - 3 5^Rational[1, 2]) (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 4] (1 + 5^Rational[-1, 2]) (Rational[5, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], 0, Rational[1, 8] (5 - 5^ Rational[1, 2]) (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 4] (1 + 5^Rational[-1, 2]) (Rational[5, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], 0, Rational[1, 8] (-5 - 5^ Rational[1, 2]) (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 8] (-5 - 3 5^Rational[1, 2]) (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (Rational[5, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2] Root[1 - 5 #^2 + 5 #^4& , 1, 0], Rational[1, 8] (5 - 5^ Rational[1, 2]) (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 8] (-5 - 3 5^Rational[1, 2]) (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (Rational[5, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2] Root[1 - 5 #^2 + 5 #^4& , 1, 0], Rational[1, 8] (-5 - 5^ Rational[1, 2]) (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 8] (-5 - 3 5^Rational[1, 2]) (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 8] (5 + 5^Rational[1, 2]), Rational[1, 8] (5 - 5^ Rational[1, 2]) (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 8] (-5 - 3 5^Rational[1, 2]) (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 8] (5 + 5^Rational[1, 2]), Rational[1, 8] (-5 - 5^ Rational[1, 2]) (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 8] (-5 + 5^Rational[1, 2]) (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (Rational[5, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2] Root[1 - 5 #^2 + 5 #^4& , 1, 0], Rational[1, 8] (-5 - 3 5^Rational[1, 2]) (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 8] (-5 + 5^Rational[1, 2]) (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 8] (5 + 5^Rational[1, 2]), Rational[1, 8] (-5 - 3 5^Rational[1, 2]) (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}}, {{0, 0, -1.7204774005889671`}, { 0, 0, 1.7204774005889671`}, { 0.29389262614623657`, -0.9045084971874737, 1.2449491424413903`}, { 0.29389262614623657`, 0.9045084971874737, 1.2449491424413903`}, { 0.9510565162951535, 0, 1.2449491424413903`}, { 1.2449491424413903`, -0.9045084971874737, 0.7694208842938134}, { 1.2449491424413903`, -0.9045084971874737, -0.29389262614623657`}, { 1.2449491424413903`, 0.9045084971874737, 0.7694208842938134}, { 1.2449491424413903`, 0.9045084971874737, -0.29389262614623657`}, {-0.9510565162951535, 0, -1.2449491424413903`}, {-0.47552825814757677`, \ -1.4635254915624212`, 0.7694208842938134}, {-0.47552825814757677`, -1.4635254915624212`, \ -0.29389262614623657`}, {-0.47552825814757677`, 1.4635254915624212`, 0.7694208842938134}, {-0.47552825814757677`, 1.4635254915624212`, -0.29389262614623657`}, { 0.47552825814757677`, -1.4635254915624212`, 0.29389262614623657`}, { 0.47552825814757677`, -1.4635254915624212`, -0.7694208842938134}, { 0.47552825814757677`, 1.4635254915624212`, 0.29389262614623657`}, { 0.47552825814757677`, 1.4635254915624212`, -0.7694208842938134}, {-1.5388417685876268`, 0, 0.7694208842938134}, {-1.5388417685876268`, 0, -0.29389262614623657`}, {-0.7694208842938134, \ -0.5590169943749475, 1.2449491424413903`}, {-0.7694208842938134, 0.5590169943749475, 1.2449491424413903`}, { 0.7694208842938134, -0.5590169943749475, -1.2449491424413903`}, { 0.7694208842938134, 0.5590169943749475, -1.2449491424413903`}, { 1.5388417685876268`, 0, 0.29389262614623657`}, { 1.5388417685876268`, 0, -0.7694208842938134}, {-1.2449491424413903`, \ -0.9045084971874737, 0.29389262614623657`}, {-1.2449491424413903`, -0.9045084971874737, \ -0.7694208842938134}, {-1.2449491424413903`, 0.9045084971874737, 0.29389262614623657`}, {-1.2449491424413903`, 0.9045084971874737, -0.7694208842938134}, {-0.29389262614623657`, \ -0.9045084971874737, -1.2449491424413903`}, {-0.29389262614623657`, 0.9045084971874737, -1.2449491424413903`}}], {{16, 15, 11, 12}, {14, 13, 17, 18}, {10, 28, 20, 30}, {8, 5, 6, 25}, {12, 28, 31, 16}, {32, 30, 14, 18}, {6, 3, 11, 15}, {8, 17, 13, 4}, {11, 21, 19, 27}, {13, 29, 19, 22}, {7, 16, 23, 26}, {24, 18, 9, 26}, {12, 11, 27, 28}, {30, 29, 13, 14}, {7, 6, 15, 16}, {18, 17, 8, 9}, {2, 22, 19, 21}, {23, 1, 24, 26}, {3, 2, 21, 11}, {4, 13, 22, 2}, {16, 31, 1, 23}, {1, 32, 18, 24}, {31, 28, 10, 1}, {10, 30, 32, 1}, {6, 5, 2, 3}, {8, 4, 2, 5}, { 28, 27, 19, 20}, {20, 19, 29, 30}, {26, 25, 6, 7}, {9, 8, 25, 26}}]}, Boxed->False, PlotLabel->FormBox[ StyleBox["\"compound\"", Directive[ GrayLevel[0], Italic, FontFamily -> "Times", 14], StripOnInput -> False], TraditionalForm]], {1360.8000000000002, -9.625}, ImageScaled[{0.5, 1}], {360, 377}, BaseStyle->{Graphics3DBoxOptions -> {SphericalRegion -> False}}, ContentSelectable->True]}, {}}, ImageSize->800, PlotRangePadding->{6, 5}]], "Output", CellLabel-> "Out[775]=",ExpressionUUID->"0286a4f4-1242-4bdf-be44-56c525aa5315"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["EdgeLengths", "Subsection",ExpressionUUID->"45084040-9448-4c5e-b3fa-e2447ec3bdf7"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}]], "Input", CellLabel->"In[16]:=",ExpressionUUID->"74952917-b76b-4874-9e3d-87ea9cd9077b"], Cell[BoxData[ RowBox[{"{", "1", "}"}]], "Output", CellLabel->"Out[16]=",ExpressionUUID->"121452e7-a35f-42fa-870f-953ff63cdaec"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{ RowBox[{ RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}], "/.", RowBox[{ RowBox[{"Line", "[", "l_", "]"}], "\[RuleDelayed]", RowBox[{"EuclideanDistance", "@@", "l"}]}]}], "//", "FullSimplify"}], "//", "Quiet"}], "//", "Union"}]], "Input", CellLabel->"In[18]:=",ExpressionUUID->"98fff98a-a46b-4be0-9ebb-cd24928e7856"], Cell[BoxData[ RowBox[{"{", "1", "}"}]], "Output", CellLabel->"Out[18]=",ExpressionUUID->"70ced73c-befc-43dd-81b5-0579db522e94"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Inradius", "Subsection",ExpressionUUID->"5d77a8e7-1274-4deb-b151-6426f5df9cbf"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}]], "Input", CellLabel->"In[19]:=",ExpressionUUID->"db7834b2-a308-4e70-a44a-d03931343248"], Cell[BoxData[ RowBox[{"Missing", "[", "\<\"NotApplicable\"\>", "]"}]], "Output", CellLabel->"Out[19]=",ExpressionUUID->"94d48bb4-cf1c-4c0d-be4b-12d22b760886"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Insphere", "[", "p", "]"}]], "Input", CellLabel-> "(V12.3.0 (2)) \ In[3]:=",ExpressionUUID->"d8855220-a947-49f6-9af8-41dd90b27c81"], Cell[BoxData[ TemplateBox[{ "Insphere", "indep", "\"Insphere does not exist for \\!\\(\\*RowBox[{\\\"Polyhedron\\\", \ \\\"[\\\", RowBox[{RowBox[{\\\"{\\\", RowBox[{RowBox[{\\\"{\\\", \ RowBox[{\\\"0\\\", \\\",\\\", RowBox[{FractionBox[\\\"1\\\", \\\"2\\\"], \\\" \ \\\", RowBox[{\\\"(\\\", RowBox[{RowBox[{\\\"-\\\", \\\"1\\\"}], \\\"-\\\", \ SqrtBox[\\\"5\\\"]}], \\\")\\\"}]}], \\\",\\\", \\\"0\\\"}], \\\"}\\\"}], \ \\\",\\\", RowBox[{\\\"{\\\", RowBox[{\\\"0\\\", \\\",\\\", \ RowBox[{FractionBox[\\\"1\\\", \\\"2\\\"], \\\" \\\", RowBox[{\\\"(\\\", \ RowBox[{\\\"1\\\", \\\"+\\\", SqrtBox[\\\"5\\\"]}], \\\")\\\"}]}], \\\",\\\", \ \\\"0\\\"}], \\\"}\\\"}], \\\",\\\", RowBox[{\\\"{\\\", \ RowBox[{SqrtBox[RowBox[{FractionBox[\\\"1\\\", \\\"8\\\"], \\\"-\\\", \ FractionBox[\\\"1\\\", RowBox[{\\\"8\\\", \\\" \\\", \ SqrtBox[\\\"5\\\"]}]]}]], \\\",\\\", RowBox[{FractionBox[\\\"1\\\", \ \\\"4\\\"], \\\" \\\", RowBox[{\\\"(\\\", RowBox[{RowBox[{\\\"-\\\", \ \\\"1\\\"}], \\\"-\\\", SqrtBox[\\\"5\\\"]}], \\\")\\\"}]}], \\\",\\\", \ RowBox[{\\\"-\\\", SqrtBox[RowBox[{\\\"1\\\", \\\"+\\\", RowBox[{\\\"2\\\", \ \\\" \\\", RowBox[{\\\"Power\\\", \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \ \\\"2\\\", \\\"\[RightSkeleton]\\\"}], \\\"]\\\"}]}]}]]}]}], \\\"}\\\"}], \ \\\",\\\", RowBox[{\\\"{\\\", RowBox[{SqrtBox[RowBox[{FractionBox[\\\"1\\\", \ \\\"8\\\"], \\\"-\\\", FractionBox[\\\"1\\\", RowBox[{\\\"8\\\", \\\" \\\", \ SqrtBox[\\\"5\\\"]}]]}]], \\\",\\\", RowBox[{FractionBox[\\\"1\\\", \ \\\"4\\\"], \\\" \\\", RowBox[{\\\"(\\\", RowBox[{\\\"1\\\", \\\"+\\\", \ SqrtBox[\\\"5\\\"]}], \\\")\\\"}]}], \\\",\\\", RowBox[{\\\"-\\\", \ SqrtBox[RowBox[{\\\"1\\\", \\\"+\\\", RowBox[{\\\"2\\\", \\\" \\\", \ RowBox[{\\\"Power\\\", \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \ \\\"\[RightSkeleton]\\\"}], \\\"]\\\"}]}]}]]}]}], \\\"}\\\"}], \\\",\\\", \ RowBox[{\\\"{\\\", RowBox[{SqrtBox[RowBox[{FractionBox[\\\"1\\\", \\\"8\\\"], \ \\\"+\\\", FractionBox[\\\"1\\\", RowBox[{\\\"8\\\", \\\" \\\", SqrtBox[\\\"5\ \\\"]}]]}]], \\\",\\\", RowBox[{FractionBox[\\\"1\\\", \\\"4\\\"], \\\" \\\", \ RowBox[{\\\"(\\\", RowBox[{RowBox[{\\\"-\\\", \\\"3\\\"}], \\\"-\\\", \ SqrtBox[\\\"5\\\"]}], \\\")\\\"}]}], \\\",\\\", \ SqrtBox[RowBox[{FractionBox[\\\"1\\\", \\\"10\\\"], \\\" \\\", \ RowBox[{\\\"(\\\", RowBox[{\\\"5\\\", \\\"+\\\", SqrtBox[\\\"5\\\"]}], \ \\\")\\\"}]}]]}], \\\"}\\\"}], \\\",\\\", RowBox[{\\\"{\\\", \ RowBox[{SqrtBox[RowBox[{FractionBox[\\\"1\\\", \\\"8\\\"], \\\"+\\\", \ FractionBox[\\\"1\\\", RowBox[{\\\"8\\\", \\\" \\\", \ SqrtBox[\\\"5\\\"]}]]}]], \\\",\\\", RowBox[{FractionBox[\\\"1\\\", \ \\\"4\\\"], \\\" \\\", RowBox[{\\\"(\\\", RowBox[{\\\"3\\\", \\\"+\\\", \ SqrtBox[\\\"5\\\"]}], \\\")\\\"}]}], \\\",\\\", \ SqrtBox[RowBox[{FractionBox[\\\"1\\\", \\\"10\\\"], \\\" \\\", \ RowBox[{\\\"(\\\", RowBox[{\\\"5\\\", \\\"+\\\", SqrtBox[\\\"5\\\"]}], \ \\\")\\\"}]}]]}], \\\"}\\\"}], \\\",\\\", RowBox[{\\\"{\\\", \ RowBox[{SqrtBox[RowBox[{FractionBox[\\\"1\\\", \\\"4\\\"], \\\"+\\\", \ FractionBox[\\\"1\\\", RowBox[{\\\"2\\\", \\\" \\\", \ SqrtBox[\\\"5\\\"]}]]}]], \\\",\\\", RowBox[{\\\"-\\\", \ FractionBox[\\\"1\\\", \\\"2\\\"]}], \\\",\\\", SqrtBox[RowBox[{\\\"1\\\", \\\ \"+\\\", FractionBox[\\\"2\\\", SqrtBox[\\\"5\\\"]]}]]}], \\\"}\\\"}], \ \\\",\\\", RowBox[{\\\"{\\\", RowBox[{SqrtBox[RowBox[{FractionBox[\\\"1\\\", \ \\\"4\\\"], \\\"+\\\", FractionBox[\\\"1\\\", RowBox[{\\\"2\\\", \\\" \\\", \ SqrtBox[\\\"5\\\"]}]]}]], \\\",\\\", FractionBox[\\\"1\\\", \\\"2\\\"], \\\",\ \\\", SqrtBox[RowBox[{\\\"1\\\", \\\"+\\\", FractionBox[\\\"2\\\", SqrtBox[\\\ \"5\\\"]]}]]}], \\\"}\\\"}], \\\",\\\", RowBox[{\\\"{\\\", \ RowBox[{SqrtBox[RowBox[{FractionBox[\\\"5\\\", \\\"8\\\"], \\\"+\\\", \ FractionBox[\\\"11\\\", RowBox[{\\\"8\\\", \\\" \\\", \ SqrtBox[\\\"5\\\"]}]]}]], \\\",\\\", RowBox[{FractionBox[\\\"1\\\", \ \\\"4\\\"], \\\" \\\", RowBox[{\\\"(\\\", RowBox[{RowBox[{\\\"-\\\", \ \\\"1\\\"}], \\\"-\\\", SqrtBox[\\\"5\\\"]}], \\\")\\\"}]}], \\\",\\\", \ RowBox[{\\\"Root\\\", \\\"[\\\", RowBox[{RowBox[{RowBox[{\\\"1\\\", \ \\\"-\\\", RowBox[{\\\"5\\\", \\\" \\\", RowBox[{\\\"Power\\\", \\\"[\\\", \ RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \\\"\[RightSkeleton]\\\"}], \\\"]\ \\\"}]}], \\\"+\\\", RowBox[{\\\"5\\\", \\\" \\\", RowBox[{\\\"Power\\\", \ \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \\\"\[RightSkeleton]\\\ \"}], \\\"]\\\"}]}]}], \\\"&\\\"}], \\\",\\\", \\\"1\\\", \\\",\\\", \ \\\"0\\\"}], \\\"]\\\"}]}], \\\"}\\\"}], \\\",\\\", RowBox[{\\\"{\\\", \ RowBox[{SqrtBox[RowBox[{FractionBox[\\\"5\\\", \\\"8\\\"], \\\"+\\\", \ FractionBox[\\\"11\\\", RowBox[{\\\"8\\\", \\\" \\\", \ SqrtBox[\\\"5\\\"]}]]}]], \\\",\\\", RowBox[{FractionBox[\\\"1\\\", \ \\\"4\\\"], \\\" \\\", RowBox[{\\\"(\\\", RowBox[{\\\"1\\\", \\\"+\\\", \ SqrtBox[\\\"5\\\"]}], \\\")\\\"}]}], \\\",\\\", RowBox[{\\\"Root\\\", \\\"[\\\ \", RowBox[{RowBox[{RowBox[{\\\"1\\\", \\\"-\\\", RowBox[{\\\"5\\\", \\\" \ \\\", RowBox[{\\\"Power\\\", \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \ \\\"2\\\", \\\"\[RightSkeleton]\\\"}], \\\"]\\\"}]}], \\\"+\\\", \ RowBox[{\\\"5\\\", \\\" \\\", RowBox[{\\\"Power\\\", \\\"[\\\", RowBox[{\\\"\ \[LeftSkeleton]\\\", \\\"2\\\", \\\"\[RightSkeleton]\\\"}], \\\"]\\\"}]}]}], \ \\\"&\\\"}], \\\",\\\", \\\"1\\\", \\\",\\\", \\\"0\\\"}], \\\"]\\\"}]}], \ \\\"}\\\"}], \\\",\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"20\\\", \\\"\ \[RightSkeleton]\\\"}]}], \\\"}\\\"}], \\\",\\\", RowBox[{\\\"{\\\", \ RowBox[{RowBox[{\\\"{\\\", RowBox[{\\\"30\\\", \\\",\\\", \\\"24\\\", \\\",\\\ \", \\\"29\\\", \\\",\\\", \\\"7\\\", \\\",\\\", \\\"8\\\"}], \\\"}\\\"}], \\\ \",\\\", RowBox[{\\\"{\\\", RowBox[{\\\"26\\\", \\\",\\\", \\\"24\\\", \ \\\",\\\", \\\"30\\\"}], \\\"}\\\"}], \\\",\\\", RowBox[{\\\"{\\\", \ RowBox[{\\\"25\\\", \\\",\\\", \\\"29\\\", \\\",\\\", \\\"24\\\"}], \ \\\"}\\\"}], \\\",\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"5\\\", \\\"\ \[RightSkeleton]\\\"}], \\\",\\\", RowBox[{\\\"{\\\", RowBox[{\\\"20\\\", \ \\\",\\\", \\\"18\\\", \\\",\\\", \\\"25\\\"}], \\\"}\\\"}], \\\",\\\", \ RowBox[{\\\"{\\\", RowBox[{\\\"1\\\", \\\",\\\", \\\"15\\\", \\\",\\\", \\\"5\ \\\"}], \\\"}\\\"}], \\\",\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"22\\\", \ \\\"\[RightSkeleton]\\\"}]}], \\\"}\\\"}]}], \\\"]\\\"}]\\).\"", 2, 3, 2, 19499521188987631859, "V12.3.0 (2)"}, "MessageTemplate"]], "Message", "MSG", CellLabel-> "During evaluation of (V12.3.0 (2)) \ In[3]:=",ExpressionUUID->"3bde8501-9ed7-4473-b958-33d67c6ef4f0"], Cell[BoxData[ RowBox[{"Insphere", "[", InterpretationBox[ RowBox[{ TagBox["Polyhedron", "SummaryHead"], "[", DynamicModuleBox[{Typeset`open$$ = False, Typeset`embedState$$ = "Ready", Typeset`spolyhedron$$ = Quiet[ Polyhedron[{{0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), 0}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {-(1 + 2 5^Rational[-1, 2])^ Rational[1, 2], 0, Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {(1 + 2 5^Rational[-1, 2])^Rational[1, 2], 0, (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, {(Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2], 0, -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2], 0}, { Root[1 - 5 #^2 + 5 #^4& , 1, 0], 0, (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}}, {{30, 24, 29, 7, 8}, {26, 24, 30}, {25, 29, 24}, { 5, 7, 29}, {14, 8, 7}, {6, 30, 8}, {16, 2, 6}, {19, 21, 26}, {20, 18, 25}, {1, 15, 5}, {22, 23, 14}, {2, 19, 26, 30, 6}, {21, 20, 25, 24, 26}, {18, 1, 5, 29, 25}, {15, 22, 14, 7, 5}, {23, 16, 6, 8, 14}, {12, 13, 4, 17, 3}, {3, 17, 9}, {17, 4, 10}, {4, 13, 28}, {13, 12, 11}, { 12, 3, 27}, {27, 1, 18}, {9, 22, 15}, {10, 16, 23}, {28, 19, 2}, {11, 20, 21}, {27, 3, 9, 15, 1}, {9, 17, 10, 23, 22}, {10, 4, 28, 2, 16}, { 28, 13, 11, 21, 19}, {11, 12, 27, 18, 20}}]]}, TemplateBox[{ PaneSelectorBox[{False -> GridBox[{{ PaneBox[ ButtonBox[ DynamicBox[ FEPrivate`FrontEndResource["FEBitmaps", "SummaryBoxOpener"]], ButtonFunction :> (Typeset`open$$ = True), Appearance -> None, BaseStyle -> {}, Evaluator -> Automatic, Method -> "Preemptive"], Alignment -> {Center, Center}, ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], Graphics3DBox[{ Directive[ Hue[0.58, 0.4, 1], Opacity[0.5], EdgeForm[ GrayLevel[1]]], TagBox[ GraphicsComplex3DBox[ NCache[{{0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), 0}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-1 - 5^ Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {-(1 + 2 5^Rational[-1, 2])^ Rational[1, 2], 0, Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {(1 + 2 5^Rational[-1, 2])^Rational[1, 2], 0, (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, {(Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2], 0, -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, {Rational[-1, 2] ( Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2], 0}, { Root[1 - 5 #^2 + 5 #^4& , 1, 0], 0, (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}}, {{ 0, -1.618033988749895, 0}, {0, 1.618033988749895, 0}, { 0.2628655560595668, -0.8090169943749475, \ -1.3763819204711736`}, {0.2628655560595668, 0.8090169943749475, -1.3763819204711736`}, { 0.42532540417601994`, -1.3090169943749475`, 0.85065080835204}, {0.42532540417601994`, 1.3090169943749475`, 0.85065080835204}, { 0.6881909602355868, -0.5, 1.3763819204711736`}, { 0.6881909602355868, 0.5, 1.3763819204711736`}, { 1.1135163644116066`, -0.8090169943749475, \ -0.8506508083520399}, {1.1135163644116066`, 0.8090169943749475, -0.8506508083520399}, \ {-1.3763819204711736`, 0, -0.8506508083520399}, {-0.6881909602355868, -0.5, \ -1.3763819204711736`}, {-0.6881909602355868, 0.5, -1.3763819204711736`}, { 1.3763819204711736`, 0, 0.85065080835204}, { 0.9510565162951535, -1.3090169943749475`, 0}, { 0.9510565162951535, 1.3090169943749475`, 0}, { 0.85065080835204, 0, -1.3763819204711736`}, {-0.9510565162951535, \ -1.3090169943749475`, 0}, {-0.9510565162951535, 1.3090169943749475`, 0}, {-1.5388417685876268`, -0.5, 0}, {-1.5388417685876268`, 0.5, 0}, { 1.5388417685876268`, -0.5, 0}, { 1.5388417685876268`, 0.5, 0}, {-0.8506508083520399, 0, 1.3763819204711736`}, {-1.1135163644116068`, \ -0.8090169943749475, 0.85065080835204}, {-1.1135163644116068`, 0.8090169943749475, 0.85065080835204}, {-0.42532540417601994`, \ -1.3090169943749475`, -0.8506508083520399}, {-0.42532540417601994`, 1.3090169943749475`, -0.8506508083520399}, \ {-0.2628655560595668, -0.8090169943749475, 1.3763819204711736`}, {-0.2628655560595668, 0.8090169943749475, 1.3763819204711736`}}], Polygon3DBox[{{30, 24, 29, 7, 8}, {26, 24, 30}, {25, 29, 24}, {5, 7, 29}, {14, 8, 7}, {6, 30, 8}, {16, 2, 6}, {19, 21, 26}, {20, 18, 25}, {1, 15, 5}, {22, 23, 14}, {2, 19, 26, 30, 6}, {21, 20, 25, 24, 26}, {18, 1, 5, 29, 25}, {15, 22, 14, 7, 5}, {23, 16, 6, 8, 14}, {12, 13, 4, 17, 3}, {3, 17, 9}, {17, 4, 10}, {4, 13, 28}, {13, 12, 11}, {12, 3, 27}, {27, 1, 18}, {9, 22, 15}, {10, 16, 23}, {28, 19, 2}, { 11, 20, 21}, {27, 3, 9, 15, 1}, {9, 17, 10, 23, 22}, {10, 4, 28, 2, 16}, {28, 13, 11, 21, 19}, {11, 12, 27, 18, 20}}]], "Polyhedron"]}, ImageSize -> Dynamic[{5.25, 3.5} (CurrentValue["FontCapHeight"]/ AbsoluteCurrentValue[Magnification])], Boxed -> False, Lighting -> {{"Ambient", RGBColor[0.4, 0.45, 0.5]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{2, 0, 2}]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{2, 2, 2}]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{0, 2, 2}]}}, Method -> {"ShrinkWrap" -> True}], GridBox[{{ RowBox[{ TagBox["\"Number of points: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["30", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Number of faces: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["32", "SummaryItem"]}]}}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> { "Columns" -> {{2}}, "Rows" -> {{Automatic}}}, BaseStyle -> { ShowStringCharacters -> False, NumberMarks -> False, PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, BaselinePosition -> {1, 1}], True -> GridBox[{{ PaneBox[ ButtonBox[ DynamicBox[ FEPrivate`FrontEndResource["FEBitmaps", "SummaryBoxCloser"]], ButtonFunction :> (Typeset`open$$ = False), Appearance -> None, BaseStyle -> {}, Evaluator -> Automatic, Method -> "Preemptive"], Alignment -> {Center, Center}, ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], Graphics3DBox[{ Directive[ Hue[0.58, 0.4, 1], Opacity[0.5], EdgeForm[ GrayLevel[1]]], TagBox[ GraphicsComplex3DBox[ NCache[{{0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), 0}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-1 - 5^ Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {-(1 + 2 5^Rational[-1, 2])^ Rational[1, 2], 0, Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {(1 + 2 5^Rational[-1, 2])^Rational[1, 2], 0, (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, {(Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2], 0, -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, {Rational[-1, 2] ( Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2], 0}, { Root[1 - 5 #^2 + 5 #^4& , 1, 0], 0, (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}}, {{ 0, -1.618033988749895, 0}, {0, 1.618033988749895, 0}, { 0.2628655560595668, -0.8090169943749475, \ -1.3763819204711736`}, {0.2628655560595668, 0.8090169943749475, -1.3763819204711736`}, { 0.42532540417601994`, -1.3090169943749475`, 0.85065080835204}, {0.42532540417601994`, 1.3090169943749475`, 0.85065080835204}, { 0.6881909602355868, -0.5, 1.3763819204711736`}, { 0.6881909602355868, 0.5, 1.3763819204711736`}, { 1.1135163644116066`, -0.8090169943749475, \ -0.8506508083520399}, {1.1135163644116066`, 0.8090169943749475, -0.8506508083520399}, \ {-1.3763819204711736`, 0, -0.8506508083520399}, {-0.6881909602355868, -0.5, \ -1.3763819204711736`}, {-0.6881909602355868, 0.5, -1.3763819204711736`}, { 1.3763819204711736`, 0, 0.85065080835204}, { 0.9510565162951535, -1.3090169943749475`, 0}, { 0.9510565162951535, 1.3090169943749475`, 0}, { 0.85065080835204, 0, -1.3763819204711736`}, {-0.9510565162951535, \ -1.3090169943749475`, 0}, {-0.9510565162951535, 1.3090169943749475`, 0}, {-1.5388417685876268`, -0.5, 0}, {-1.5388417685876268`, 0.5, 0}, { 1.5388417685876268`, -0.5, 0}, { 1.5388417685876268`, 0.5, 0}, {-0.8506508083520399, 0, 1.3763819204711736`}, {-1.1135163644116068`, \ -0.8090169943749475, 0.85065080835204}, {-1.1135163644116068`, 0.8090169943749475, 0.85065080835204}, {-0.42532540417601994`, \ -1.3090169943749475`, -0.8506508083520399}, {-0.42532540417601994`, 1.3090169943749475`, -0.8506508083520399}, \ {-0.2628655560595668, -0.8090169943749475, 1.3763819204711736`}, {-0.2628655560595668, 0.8090169943749475, 1.3763819204711736`}}], Polygon3DBox[{{30, 24, 29, 7, 8}, {26, 24, 30}, {25, 29, 24}, {5, 7, 29}, {14, 8, 7}, {6, 30, 8}, {16, 2, 6}, {19, 21, 26}, {20, 18, 25}, {1, 15, 5}, {22, 23, 14}, {2, 19, 26, 30, 6}, {21, 20, 25, 24, 26}, {18, 1, 5, 29, 25}, {15, 22, 14, 7, 5}, {23, 16, 6, 8, 14}, {12, 13, 4, 17, 3}, {3, 17, 9}, {17, 4, 10}, {4, 13, 28}, {13, 12, 11}, {12, 3, 27}, {27, 1, 18}, {9, 22, 15}, {10, 16, 23}, {28, 19, 2}, { 11, 20, 21}, {27, 3, 9, 15, 1}, {9, 17, 10, 23, 22}, {10, 4, 28, 2, 16}, {28, 13, 11, 21, 19}, {11, 12, 27, 18, 20}}]], "Polyhedron"]}, ImageSize -> Dynamic[{5.25, 3.5} (CurrentValue["FontCapHeight"]/ AbsoluteCurrentValue[Magnification])], Boxed -> False, Lighting -> {{"Ambient", RGBColor[0.4, 0.45, 0.5]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{2, 0, 2}]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{2, 2, 2}]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{0, 2, 2}]}}, Method -> {"ShrinkWrap" -> True}], GridBox[{{ RowBox[{ TagBox["\"Number of points: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["30", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Number of faces: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["32", "SummaryItem"]}]}, { RowBox[{ TagBox[ "\"Embedding dimension: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["3", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Type: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Quiet[ Apply[Region`PolyhedronDump`polyhedronType, Region`PolyhedronDump`computeType[ Typeset`spolyhedron$$]]], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}, { RowBox[{ TagBox["\"Bounds: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Region`PolyhedronDump`iRegionBounds[ Typeset`spolyhedron$$], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}, { RowBox[{ TagBox["\"Volume: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Region`PolyhedronDump`iVolume[Typeset`spolyhedron$$], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> { "Columns" -> {{2}}, "Rows" -> {{Automatic}}}, BaseStyle -> { ShowStringCharacters -> False, NumberMarks -> False, PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, BaselinePosition -> {1, 1}]}, Dynamic[Typeset`open$$], ImageSize -> Automatic]}, "SummaryPanel"], DynamicModuleValues:>{}], "]"}], Polyhedron[{{0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), 0}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], Rational[-1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {-(1 + 2 5^Rational[-1, 2])^Rational[1, 2], 0, Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {(1 + 2 5^Rational[-1, 2])^Rational[1, 2], 0, (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, {(Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2], 0, -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2], 0}, { Root[1 - 5 #^2 + 5 #^4& , 1, 0], 0, (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}}, {{30, 24, 29, 7, 8}, {26, 24, 30}, {25, 29, 24}, {5, 7, 29}, {14, 8, 7}, {6, 30, 8}, {16, 2, 6}, {19, 21, 26}, {20, 18, 25}, { 1, 15, 5}, {22, 23, 14}, {2, 19, 26, 30, 6}, {21, 20, 25, 24, 26}, {18, 1, 5, 29, 25}, {15, 22, 14, 7, 5}, {23, 16, 6, 8, 14}, {12, 13, 4, 17, 3}, {3, 17, 9}, {17, 4, 10}, {4, 13, 28}, {13, 12, 11}, {12, 3, 27}, {27, 1, 18}, {9, 22, 15}, {10, 16, 23}, {28, 19, 2}, {11, 20, 21}, {27, 3, 9, 15, 1}, {9, 17, 10, 23, 22}, {10, 4, 28, 2, 16}, {28, 13, 11, 21, 19}, { 11, 12, 27, 18, 20}}], Editable->False, SelectWithContents->True, Selectable->False], "]"}]], "Output", CellLabel-> "(V12.3.0 (2)) \ Out[3]=",ExpressionUUID->"ba8c21fe-ac47-425c-bd67-a4eddd1a107c"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"MyInsphere", "[", "p", "]"}]], "Input", CellLabel-> "(V12.3.0 (2)) \ In[4]:=",ExpressionUUID->"1337acba-fa16-4ba9-b496-c3d025de81a7"], Cell[BoxData[ RowBox[{"{", "}"}]], "Output", CellLabel-> "(V12.3.0 (2)) \ Out[4]=",ExpressionUUID->"fd65e990-f44c-427d-81b9-aed43e3f4ff2"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["InertiaTensor", "Subsection",ExpressionUUID->"4f1ab6bc-3d66-43bd-ba9b-c6ec6208f231"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}]], "Input", CellLabel-> "(Local-Devel (4)) \ In[7]:=",ExpressionUUID->"21c1e455-549d-436d-9456-26c30090e489"], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ FractionBox[ RowBox[{"690", "+", RowBox[{"271", " ", SqrtBox["5"]}]}], "1450"], ",", "0", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", FractionBox[ RowBox[{"690", "+", RowBox[{"271", " ", SqrtBox["5"]}]}], "1450"], ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", "0", ",", FractionBox[ RowBox[{"690", "+", RowBox[{"271", " ", SqrtBox["5"]}]}], "1450"]}], "}"}]}], "}"}]], "Output", CellLabel-> "(Local-Devel (4)) \ Out[7]=",ExpressionUUID->"32e9d3d9-1ff7-4ee3-b843-8213574b446c"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{ FractionBox[ RowBox[{"MomentOfInertia", "[", "p", "]"}], "vol"], "//", "RootReduce"}], "//", "Timing"}]], "Input", CellLabel-> "(Local-Devel (4)) \ In[8]:=",ExpressionUUID->"e54e8ed5-965c-4766-b21f-cbf99eb78448"], Cell[BoxData[ RowBox[{"{", RowBox[{"2281.207821`", ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ FractionBox[ RowBox[{"690", "+", RowBox[{"271", " ", SqrtBox["5"]}]}], "1450"], ",", "0", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", FractionBox[ RowBox[{"690", "+", RowBox[{"271", " ", SqrtBox["5"]}]}], "1450"], ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", "0", ",", FractionBox[ RowBox[{"690", "+", RowBox[{"271", " ", SqrtBox["5"]}]}], "1450"]}], "}"}]}], "}"}]}], "}"}]], "Output", CellLabel-> "(Local-Devel (4)) \ Out[8]=",ExpressionUUID->"6ad4cf05-0f1c-4185-b871-95e232ee36e9"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"(", RowBox[{"i", "=", RowBox[{"PolyhedronInertiaTensor", "[", "p", "]"}]}], ")"}], "//", "Timing"}]], "Input", CellLabel-> "(Local-Devel (4)) \ In[9]:=",ExpressionUUID->"b56a5560-0a24-444f-b68a-073382ec4282"], Cell[BoxData[ RowBox[{"{", RowBox[{"42.164214`", ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ FractionBox[ RowBox[{"690", "+", RowBox[{"271", " ", SqrtBox["5"]}]}], "1450"], ",", "0", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", FractionBox[ RowBox[{"690", "+", RowBox[{"271", " ", SqrtBox["5"]}]}], "1450"], ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", "0", ",", FractionBox[ RowBox[{"690", "+", RowBox[{"271", " ", SqrtBox["5"]}]}], "1450"]}], "}"}]}], "}"}]}], "}"}]], "Output", CellLabel-> "(Local-Devel (4)) \ Out[9]=",ExpressionUUID->"b537ea21-bb6d-432d-989f-7023f1f79792"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["MeanCylindricalRadius", "Subsection", FontColor->RGBColor[ 1, 0, 0],ExpressionUUID->"3f149308-4df1-4523-b1cf-4fc8419980c9"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}]], "Input", CellLabel->"In[72]:=",ExpressionUUID->"a1d071e7-f87e-4ebf-a7be-cf6cfcece023"], Cell[BoxData[ RowBox[{"Missing", "[", "\<\"NotAvailable\"\>", "]"}]], "Output", CellLabel->"Out[72]=",ExpressionUUID->"e4becd4e-77a2-4962-9184-337e078373ce"] }, Open ]], Cell[CellGroupData[{ Cell["Integrate over Polyhedron", "Subsubsection",ExpressionUUID->"ac79c30c-90bd-464e-a16e-34e105aa2621"], Cell[CellGroupData[{ Cell[BoxData[ FractionBox[ RowBox[{"NIntegrate", "[", RowBox[{ SqrtBox[ RowBox[{ SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]}]], ",", RowBox[{ RowBox[{"{", RowBox[{"x", ",", "y", ",", "z"}], "}"}], "\[Element]", "p"}]}], "]"}], "vol"]], "Input",ExpressionUUID->"46e08d94-9a8b-4e69-9c60-369c0ef2ae1c"], Cell[BoxData[ TemplateBox[{ "NIntegrate", "slwcon", "\"Numerical integration converging too slowly; suspect one of the \ following: singularity, value of the integration is 0, highly oscillatory \ integrand, or WorkingPrecision too small.\"", 2, 53, 10, 19499496763690361241, "Local"}, "MessageTemplate"]], "Message", "MSG", CellLabel-> "During evaluation of \ In[53]:=",ExpressionUUID->"61cbf652-9acc-4f0c-85c9-56bf83b02ada"], Cell[BoxData["0.8812884164570012`"], "Output", CellLabel->"Out[53]=",ExpressionUUID->"a840890a-b903-4f89-89a7-f4392281c218"] }, Open ]], Cell[BoxData[ RowBox[{ RowBox[{"(", RowBox[{"i", "=", FractionBox[ RowBox[{"Integrate", "[", RowBox[{ SqrtBox[ RowBox[{ SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]}]], ",", RowBox[{ RowBox[{"{", RowBox[{"x", ",", "y", ",", "z"}], "}"}], "\[Element]", "p"}]}], "]"}], "vol"]}], ")"}], "//", "Timing"}]], "Input",ExpressionUUID->\ "b0949b14-b7c8-4c7c-8fa6-36752b9bc8f7"], Cell[BoxData[ RowBox[{"N", "[", "i", "]"}]], "Input",ExpressionUUID->"88a7ad9f-5889-4917-b3d9-8269a2ffeb4c"] }, Open ]], Cell[CellGroupData[{ Cell["Divergence theorem", "Subsubsection", FontColor->RGBColor[ 1, 0, 0],ExpressionUUID->"47f4fbfa-d15a-476e-a871-42f0187847ed"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"(", RowBox[{"rxy", "=", RowBox[{"MeanCylindricalRadius", "[", RowBox[{"p", ",", RowBox[{"Debug", "\[Rule]", "True"}], ",", RowBox[{"\"\\"", "\[Rule]", "RootReduce"}]}], "]"}]}], ")"}], "//", "Timing"}]], "Input", CellLabel-> "(V14.0.0-Devel (2)) \ In[4]:=",ExpressionUUID->"a9abfba5-bc06-41f7-b49e-6c6ce060da98"], Cell[CellGroupData[{ Cell[BoxData[ TemplateBox[{ "\"\\nIntegrateOverPolygon on polygon \"", "1", "\"/\"", "32", "\" (\"", "5", "\" sides)\""}, "Row", BaseStyle->RGBColor[0, 0, 1], DisplayFunction->(RowBox[{ TemplateSlotSequence[1, "\[InvisibleSpace]"]}]& ), InterpretationFunction->(RowBox[{"Row", "[", RowBox[{ RowBox[{"{", TemplateSlotSequence[1, ","], "}"}], ",", RowBox[{"BaseStyle", "\[Rule]", RowBox[{"RGBColor", "[", RowBox[{"0", ",", "0", ",", "1"}], "]"}]}]}], "]"}]& )]], "Print", CellLabel-> "During evaluation of (V14.0.0-Devel (2)) \ In[4]:=",ExpressionUUID->"712ae5a7-2426-42b2-a5db-ab0de2f283d6"], Cell[BoxData[ TemplateBox[{"\"Integrating over triangulation \"", "1", "\"/\"", "3"}, "Row", BaseStyle->RGBColor[0.5, 0, 0.5], DisplayFunction->(RowBox[{ TemplateSlotSequence[1, "\[InvisibleSpace]"]}]& ), InterpretationFunction->(RowBox[{"Row", "[", RowBox[{ RowBox[{"{", TemplateSlotSequence[1, ","], "}"}], ",", RowBox[{"BaseStyle", "\[Rule]", RowBox[{"RGBColor", "[", RowBox[{"0.5`", ",", "0", ",", "0.5`"}], "]"}]}]}], "]"}]& )]], "Print", CellLabel-> "During evaluation of (V14.0.0-Devel (2)) \ In[4]:=",ExpressionUUID->"36b011fc-8293-48c0-a8a1-e016003b6ecf"], Cell[BoxData["\<\" IntegrationIntervals:\"\>"], "Print", CellLabel-> "During evaluation of (V14.0.0-Devel (2)) \ In[4]:=",ExpressionUUID->"3901ee86-83b8-4d55-89d6-521d4b32882a"], Cell[BoxData[ RowBox[{"{", RowBox[{"0", ",", "1"}], "}"}]], "Print", CellLabel-> "During evaluation of (V14.0.0-Devel (2)) \ In[4]:=",ExpressionUUID->"87b61f1d-5063-408b-b0f6-ae9d96a1a0ca"], Cell[BoxData["\<\" Polygon:\"\>"], "Print", CellLabel-> "During evaluation of (V14.0.0-Devel (2)) \ In[4]:=",ExpressionUUID->"8819eb99-c6ff-459e-8eac-105f97582c19"], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.263\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.26286555605956679615431426100258249789`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"20", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"80", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.2628655560595668}, "NumericalApproximation"], Root[1 - 20 #^2 + 80 #^4& , 2, 0]], ",", RowBox[{ FractionBox["1", "4"], " ", RowBox[{"(", RowBox[{"1", "+", SqrtBox["5"]}], ")"}]}], ",", SqrtBox[ RowBox[{"1", "+", FractionBox["2", SqrtBox["5"]]}]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.851\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.85065080835203987774661982257384806871`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"5", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"5", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "1"}], "]"}], Short[#, 7]& ], -0.8506508083520399}, "NumericalApproximation"], Root[1 - 5 #^2 + 5 #^4& , 1, 0]], ",", "0", ",", SqrtBox[ RowBox[{"1", "+", FractionBox["2", SqrtBox["5"]]}]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.263\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.26286555605956679615431426100258249789`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"20", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"80", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.2628655560595668}, "NumericalApproximation"], Root[1 - 20 #^2 + 80 #^4& , 2, 0]], ",", RowBox[{ FractionBox["1", "4"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "-", SqrtBox["5"]}], ")"}]}], ",", SqrtBox[ RowBox[{"1", "+", FractionBox["2", SqrtBox["5"]]}]]}], "}"}]}], "}"}]], "Print", CellLabel-> "During evaluation of (V14.0.0-Devel (2)) \ In[4]:=",ExpressionUUID->"f6e3ba1a-ad98-43be-ab1c-2d05a076a73e"], Cell[BoxData["\<\" Integrand and hence integral over t and s is zero:\"\>"], \ "Print", CellLabel-> "During evaluation of (V14.0.0-Devel (2)) \ In[4]:=",ExpressionUUID->"b2df3036-bd1c-4f7e-918e-e1912e5301d3"], Cell[BoxData["0"], "Print", CellLabel-> "During evaluation of (V14.0.0-Devel (2)) \ In[4]:=",ExpressionUUID->"c1d4de7a-de63-4fde-a969-40eca8fb59c2"], Cell[BoxData[ InterpretationBox[ RowBox[{"\<\" Elapsed time: \"\>", "\[InvisibleSpace]", "0.02416`4.834641923445069"}], SequenceForm[" Elapsed time: ", 0.02416`4.834641923445069], Editable->False]], "Print", CellLabel-> "During evaluation of (V14.0.0-Devel (2)) \ In[4]:=",ExpressionUUID->"df0bb9d5-e0bc-4791-871f-3b4843f4f689"], Cell[BoxData[ TemplateBox[{"\"Integrating over triangulation \"", "2", "\"/\"", "3"}, "Row", BaseStyle->RGBColor[0.5, 0, 0.5], DisplayFunction->(RowBox[{ TemplateSlotSequence[1, "\[InvisibleSpace]"]}]& ), InterpretationFunction->(RowBox[{"Row", "[", RowBox[{ RowBox[{"{", TemplateSlotSequence[1, ","], "}"}], ",", RowBox[{"BaseStyle", "\[Rule]", RowBox[{"RGBColor", "[", RowBox[{"0.5`", ",", "0", ",", "0.5`"}], "]"}]}]}], "]"}]& )]], "Print", CellLabel-> "During evaluation of (V14.0.0-Devel (2)) \ In[4]:=",ExpressionUUID->"cb69b723-b52d-4ce2-9b27-7ac09e946b4a"], Cell[BoxData["\<\" IntegrationIntervals:\"\>"], "Print", CellLabel-> "During evaluation of (V14.0.0-Devel (2)) \ In[4]:=",ExpressionUUID->"e1575508-0236-4a53-a6c7-163b1cc6fc4b"], Cell[BoxData[ RowBox[{"{", RowBox[{"0", ",", "1"}], "}"}]], "Print", CellLabel-> "During evaluation of (V14.0.0-Devel (2)) \ In[4]:=",ExpressionUUID->"b4dfe72a-6a45-4333-9dba-d4668c43e882"], Cell[BoxData["\<\" Polygon:\"\>"], "Print", CellLabel-> "During evaluation of (V14.0.0-Devel (2)) \ In[4]:=",ExpressionUUID->"e6513d40-0e2c-4873-9fd8-f087546023f7"], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.263\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.26286555605956679615431426100258249789`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"20", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"80", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.2628655560595668}, "NumericalApproximation"], Root[1 - 20 #^2 + 80 #^4& , 2, 0]], ",", RowBox[{ FractionBox["1", "4"], " ", RowBox[{"(", RowBox[{"1", "+", SqrtBox["5"]}], ")"}]}], ",", SqrtBox[ RowBox[{"1", "+", FractionBox["2", SqrtBox["5"]]}]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.263\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.26286555605956679615431426100258249789`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"20", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"80", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.2628655560595668}, "NumericalApproximation"], Root[1 - 20 #^2 + 80 #^4& , 2, 0]], ",", RowBox[{ FractionBox["1", "4"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "-", SqrtBox["5"]}], ")"}]}], ",", SqrtBox[ RowBox[{"1", "+", FractionBox["2", SqrtBox["5"]]}]]}], "}"}], ",", RowBox[{"{", RowBox[{ SqrtBox[ RowBox[{ FractionBox["1", "4"], "+", FractionBox["1", RowBox[{"2", " ", SqrtBox["5"]}]]}]], ",", RowBox[{"-", FractionBox["1", "2"]}], ",", SqrtBox[ RowBox[{"1", "+", FractionBox["2", SqrtBox["5"]]}]]}], "}"}]}], "}"}]], "Print", CellLabel-> "During evaluation of (V14.0.0-Devel (2)) \ In[4]:=",ExpressionUUID->"f72eb4f5-c18e-40f9-8820-423e71d64275"], Cell[BoxData["\<\" Integrand and hence integral over t and s is zero:\"\>"], \ "Print", CellLabel-> "During evaluation of (V14.0.0-Devel (2)) \ In[4]:=",ExpressionUUID->"7b48ed03-ab06-48f5-a5ad-98439b339006"], Cell[BoxData["0"], "Print", CellLabel-> "During evaluation of (V14.0.0-Devel (2)) \ In[4]:=",ExpressionUUID->"4c8ce74a-3667-4058-9bd3-87882080e8fc"], Cell[BoxData[ InterpretationBox[ RowBox[{"\<\" Elapsed time: \"\>", "\[InvisibleSpace]", "0.000765`3.335206428649591"}], SequenceForm[" Elapsed time: ", 0.000765`3.335206428649591], Editable->False]], "Print", CellLabel-> "During evaluation of (V14.0.0-Devel (2)) \ In[4]:=",ExpressionUUID->"b081f69d-c24b-4bcb-9a76-c0613f0e302e"], Cell[BoxData[ TemplateBox[{"\"Integrating over triangulation \"", "3", "\"/\"", "3"}, "Row", BaseStyle->RGBColor[0.5, 0, 0.5], DisplayFunction->(RowBox[{ TemplateSlotSequence[1, "\[InvisibleSpace]"]}]& ), InterpretationFunction->(RowBox[{"Row", "[", RowBox[{ RowBox[{"{", TemplateSlotSequence[1, ","], "}"}], ",", RowBox[{"BaseStyle", "\[Rule]", RowBox[{"RGBColor", "[", RowBox[{"0.5`", ",", "0", ",", "0.5`"}], "]"}]}]}], "]"}]& )]], "Print", CellLabel-> "During evaluation of (V14.0.0-Devel (2)) \ In[4]:=",ExpressionUUID->"149925e0-d5cb-4081-a617-bdacb9376708"], Cell[BoxData["\<\" IntegrationIntervals:\"\>"], "Print", CellLabel-> "During evaluation of (V14.0.0-Devel (2)) \ In[4]:=",ExpressionUUID->"72149f2f-8b6e-406b-9173-4cd20f624442"], Cell[BoxData[ RowBox[{"{", RowBox[{"0", ",", "1"}], "}"}]], "Print", CellLabel-> "During evaluation of (V14.0.0-Devel (2)) \ In[4]:=",ExpressionUUID->"d0acf2c2-81ce-48cf-aaee-c5bd77f55fa8"], Cell[BoxData["\<\" Polygon:\"\>"], "Print", CellLabel-> "During evaluation of (V14.0.0-Devel (2)) \ In[4]:=",ExpressionUUID->"cd4f4cae-dc35-4a77-8853-dd4f5c332915"], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.263\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.26286555605956679615431426100258249789`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"20", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"80", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.2628655560595668}, "NumericalApproximation"], Root[1 - 20 #^2 + 80 #^4& , 2, 0]], ",", RowBox[{ FractionBox["1", "4"], " ", RowBox[{"(", RowBox[{"1", "+", SqrtBox["5"]}], ")"}]}], ",", SqrtBox[ RowBox[{"1", "+", FractionBox["2", SqrtBox["5"]]}]]}], "}"}], ",", RowBox[{"{", RowBox[{ SqrtBox[ RowBox[{ FractionBox["1", "4"], "+", FractionBox["1", RowBox[{"2", " ", SqrtBox["5"]}]]}]], ",", RowBox[{"-", FractionBox["1", "2"]}], ",", SqrtBox[ RowBox[{"1", "+", FractionBox["2", SqrtBox["5"]]}]]}], "}"}], ",", RowBox[{"{", RowBox[{ SqrtBox[ RowBox[{ FractionBox["1", "4"], "+", FractionBox["1", RowBox[{"2", " ", SqrtBox["5"]}]]}]], ",", FractionBox["1", "2"], ",", SqrtBox[ RowBox[{"1", "+", FractionBox["2", SqrtBox["5"]]}]]}], "}"}]}], "}"}]], "Print", CellLabel-> "During evaluation of (V14.0.0-Devel (2)) \ In[4]:=",ExpressionUUID->"c21efd4d-0c74-4190-98f7-9603e654f96e"], Cell[BoxData["\<\" Integrand and hence integral over t and s is zero:\"\>"], \ "Print", CellLabel-> "During evaluation of (V14.0.0-Devel (2)) \ In[4]:=",ExpressionUUID->"eebeb9f0-cbaf-4287-b091-3481c1ea6351"], Cell[BoxData["0"], "Print", CellLabel-> "During evaluation of (V14.0.0-Devel (2)) \ In[4]:=",ExpressionUUID->"0e545e8d-d4ef-45a5-8f31-a9b376577604"], Cell[BoxData[ InterpretationBox[ RowBox[{"\<\" Elapsed time: \"\>", "\[InvisibleSpace]", "0.000527`3.1733556087085195"}], SequenceForm[" Elapsed time: ", 0.000527`3.1733556087085195], Editable->False]], "Print", CellLabel-> "During evaluation of (V14.0.0-Devel (2)) \ In[4]:=",ExpressionUUID->"3352c113-d462-466a-9204-57c54cd1da18"], Cell[BoxData[ TemplateBox[{ "\"\\nIntegrateOverPolygon on polygon \"", "2", "\"/\"", "32", "\" (\"", "3", "\" sides)\""}, "Row", BaseStyle->RGBColor[0, 0, 1], DisplayFunction->(RowBox[{ TemplateSlotSequence[1, "\[InvisibleSpace]"]}]& ), InterpretationFunction->(RowBox[{"Row", "[", RowBox[{ RowBox[{"{", TemplateSlotSequence[1, ","], "}"}], ",", RowBox[{"BaseStyle", "\[Rule]", RowBox[{"RGBColor", "[", RowBox[{"0", ",", "0", ",", "1"}], "]"}]}]}], "]"}]& )]], "Print", CellLabel-> "During evaluation of (V14.0.0-Devel (2)) \ In[4]:=",ExpressionUUID->"679647ea-185b-47e1-b6cc-ff26b3e6c30f"], Cell[BoxData["\<\" IntegrationIntervals:\"\>"], "Print", CellLabel-> "During evaluation of (V14.0.0-Devel (2)) \ In[4]:=",ExpressionUUID->"7986a119-0bf3-4eb2-a5d6-da799f7be884"], Cell[BoxData[ RowBox[{"{", RowBox[{"0", ",", "1"}], "}"}]], "Print", CellLabel-> "During evaluation of (V14.0.0-Devel (2)) \ In[4]:=",ExpressionUUID->"08cfa25e-b5b8-4a07-aec9-641c31b3d55e"], Cell[BoxData["\<\" Polygon:\"\>"], "Print", CellLabel-> "During evaluation of (V14.0.0-Devel (2)) \ In[4]:=",ExpressionUUID->"02b9c1a7-1701-41f6-96ca-5cea0ab7e07a"], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-1.11\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -1.11351636441160684043438777734991163015`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"100", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"80", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "1"}], "]"}], Short[#, 7]& ], -1.1135163644116068`}, "NumericalApproximation"], Root[1 - 100 #^2 + 80 #^4& , 1, 0]], ",", RowBox[{ FractionBox["1", "4"], " ", RowBox[{"(", RowBox[{"1", "+", SqrtBox["5"]}], ")"}]}], ",", SqrtBox[ RowBox[{ FractionBox["1", "10"], " ", RowBox[{"(", RowBox[{"5", "+", SqrtBox["5"]}], ")"}]}]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.851\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.85065080835203987774661982257384806871`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"5", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"5", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "1"}], "]"}], Short[#, 7]& ], -0.8506508083520399}, "NumericalApproximation"], Root[1 - 5 #^2 + 5 #^4& , 1, 0]], ",", "0", ",", SqrtBox[ RowBox[{"1", "+", FractionBox["2", SqrtBox["5"]]}]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.263\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.26286555605956679615431426100258249789`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"20", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"80", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.2628655560595668}, "NumericalApproximation"], Root[1 - 20 #^2 + 80 #^4& , 2, 0]], ",", RowBox[{ FractionBox["1", "4"], " ", RowBox[{"(", RowBox[{"1", "+", SqrtBox["5"]}], ")"}]}], ",", SqrtBox[ RowBox[{"1", "+", FractionBox["2", SqrtBox["5"]]}]]}], "}"}]}], "}"}]], "Print", CellLabel-> "During evaluation of (V14.0.0-Devel (2)) \ In[4]:=",ExpressionUUID->"42168992-a771-4c6f-8c7a-a5d4cc34a759"], Cell[BoxData["\<\" 1 integral(s):\"\>"], "Print", CellLabel-> "During evaluation of (V14.0.0-Devel (2)) \ In[4]:=",ExpressionUUID->"eab3bf27-818e-467e-86a6-c570ef08e7dd"], Cell[BoxData[ RowBox[{"{", TemplateBox[{ RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.425\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.42532540417601993887330991128692403436`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"20", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"80", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "1"}], "]"}], Short[#, 7]& ], -0.42532540417601994`}, "NumericalApproximation"], Root[1 - 20 #^2 + 80 #^4& , 1, 0]], " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", SuperscriptBox[ RowBox[{"(", RowBox[{ RowBox[{ FractionBox["1", "4"], " ", RowBox[{"(", RowBox[{"1", "+", SqrtBox["5"]}], ")"}]}], "+", RowBox[{ FractionBox["1", "4"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "-", SqrtBox["5"]}], ")"}], " ", "\[FormalS]"}]}], ")"}], "2"], " ", RowBox[{"Log", "[", RowBox[{ RowBox[{"\[FormalT]", " ", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.851\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], \ -0.85065080835203987774661982257384806871`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"5", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"5", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "1"}], "]"}], Short[#, 7]& ], -0.8506508083520399}, "NumericalApproximation"], Root[1 - 5 #^2 + 5 #^4& , 1, 0]]}], "+", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"1.11\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 1.11351636441160684043438777734991163015`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"100", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"80", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "4"}], "]"}], Short[#, 7]& ], 1.1135163644116068`}, "NumericalApproximation"], Root[1 - 100 #^2 + 80 #^4& , 4, 0]], "+", RowBox[{"\[FormalS]", " ", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.263\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], \ -0.26286555605956679615431426100258249789`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"20", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"80", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.2628655560595668}, "NumericalApproximation"], Root[1 - 20 #^2 + 80 #^4& , 2, 0]]}], "+", SqrtBox[ RowBox[{ SuperscriptBox[ RowBox[{"(", RowBox[{ RowBox[{ FractionBox["1", "4"], " ", RowBox[{"(", RowBox[{"1", "+", SqrtBox["5"]}], ")"}]}], "+", RowBox[{ FractionBox["1", "4"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "-", SqrtBox["5"]}], ")"}], " ", "\[FormalS]"}]}], ")"}], "2"], "+", SuperscriptBox[ RowBox[{"(", RowBox[{ RowBox[{"\[FormalT]", " ", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.851\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.85065080835203987774661982257384806871`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"5", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"5", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "4"}], "]"}], Short[#, 7]& ], 0.8506508083520399}, "NumericalApproximation"], Root[1 - 5 #^2 + 5 #^4& , 4, 0]]}], "+", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-1.11\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], \ -1.11351636441160684043438777734991163015`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"100", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"80", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "1"}], "]"}], Short[#, 7]& ], -1.1135163644116068`}, "NumericalApproximation"], Root[1 - 100 #^2 + 80 #^4& , 1, 0]], "+", RowBox[{"\[FormalS]", " ", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.263\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.26286555605956679615431426100258249789`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"20", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"80", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.2628655560595668}, "NumericalApproximation"], Root[1 - 20 #^2 + 80 #^4& , 3, 0]]}]}], ")"}], "2"]}]]}], "]"}]}], "+", RowBox[{ FractionBox["1", "2"], " ", RowBox[{"(", RowBox[{ RowBox[{"\[FormalT]", " ", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.851\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.85065080835203987774661982257384806871`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"5", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"5", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "4"}], "]"}], Short[#, 7]& ], 0.8506508083520399}, "NumericalApproximation"], Root[1 - 5 #^2 + 5 #^4& , 4, 0]]}], "+", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-1.11\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], \ -1.11351636441160684043438777734991163015`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"100", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"80", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "1"}], "]"}], Short[#, 7]& ], -1.1135163644116068`}, "NumericalApproximation"], Root[1 - 100 #^2 + 80 #^4& , 1, 0]], "+", RowBox[{"\[FormalS]", " ", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.263\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.26286555605956679615431426100258249789`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"20", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"80", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.2628655560595668}, "NumericalApproximation"], Root[1 - 20 #^2 + 80 #^4& , 3, 0]]}]}], ")"}], " ", SqrtBox[ RowBox[{ SuperscriptBox[ RowBox[{"(", RowBox[{ RowBox[{ FractionBox["1", "4"], " ", RowBox[{"(", RowBox[{"1", "+", SqrtBox["5"]}], ")"}]}], "+", RowBox[{ FractionBox["1", "4"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "-", SqrtBox["5"]}], ")"}], " ", "\[FormalS]"}]}], ")"}], "2"], "+", SuperscriptBox[ RowBox[{"(", RowBox[{ RowBox[{"\[FormalT]", " ", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.851\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.85065080835203987774661982257384806871`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"5", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"5", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "4"}], "]"}], Short[#, 7]& ], 0.8506508083520399}, "NumericalApproximation"], Root[1 - 5 #^2 + 5 #^4& , 4, 0]]}], "+", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-1.11\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], \ -1.11351636441160684043438777734991163015`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"100", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"80", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "1"}], "]"}], Short[#, 7]& ], -1.1135163644116068`}, "NumericalApproximation"], Root[1 - 100 #^2 + 80 #^4& , 1, 0]], "+", RowBox[{"\[FormalS]", " ", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.263\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.26286555605956679615431426100258249789`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"20", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"80", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.2628655560595668}, "NumericalApproximation"], Root[1 - 20 #^2 + 80 #^4& , 3, 0]]}]}], ")"}], "2"]}]]}]}], ")"}]}], "\[FormalT]", "0", "1", "\[FormalS]", "0", RowBox[{"1", "-", "\[FormalT]"}]}, "InactiveIntegrate", DisplayFunction->(RowBox[{ SubsuperscriptBox[ StyleBox["\[Integral]", "Inactive"], #3, #4], RowBox[{ SubsuperscriptBox[ StyleBox["\[Integral]", "Inactive"], #6, #7], RowBox[{#, RowBox[{ StyleBox["\[DifferentialD]", "Inactive"], #5}], RowBox[{ StyleBox["\[DifferentialD]", "Inactive"], #2}]}]}]}]& ), InterpretationFunction->(RowBox[{ RowBox[{"Inactive", "[", "Integrate", "]"}], "[", RowBox[{#, ",", RowBox[{"{", RowBox[{#2, ",", #3, ",", #4}], "}"}], ",", RowBox[{"{", RowBox[{#5, ",", #6, ",", #7}], "}"}]}], "]"}]& )], "}"}]], "Print",\ CellLabel-> "During evaluation of (V14.0.0-Devel (2)) \ In[4]:=",ExpressionUUID->"3bb5144c-2516-494e-a94e-571f0d2ee597"], Cell[BoxData["\<\" integrals over t and s:\"\>"], "Print", CellLabel-> "During evaluation of (V14.0.0-Devel (2)) \ In[4]:=",ExpressionUUID->"900e7d1c-63c9-4db0-b81f-5d23876017b9"], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{"(", RowBox[{ SubsuperscriptBox["\[Integral]", "0", "1"], RowBox[{ SubsuperscriptBox["\[Integral]", "0", RowBox[{"1", "-", "\[FormalT]"}]], RowBox[{ RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", FractionBox["1", "16"]}], " ", RowBox[{"(", RowBox[{"3", "+", SqrtBox["5"]}], ")"}], " ", SuperscriptBox[ RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", "\[FormalS]"}], ")"}], "2"], " ", RowBox[{"Log", "[", RowBox[{ SqrtBox[ RowBox[{ FractionBox["5", "8"], "+", FractionBox["11", RowBox[{"8", " ", SqrtBox["5"]}]]}]], "+", RowBox[{"\[FormalT]", " ", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.851\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], \ -0.85065080835203987774661982257384806871`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"5", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"5", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "1"}], "]"}], Short[#, 7]& ], -0.8506508083520399}, "NumericalApproximation"], Root[1 - 5 #^2 + 5 #^4& , 1, 0]]}], "+", RowBox[{"\[FormalS]", " ", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.263\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], \ -0.26286555605956679615431426100258249789`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"20", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"80", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.2628655560595668}, "NumericalApproximation"], Root[1 - 20 #^2 + 80 #^4& , 2, 0]]}], "+", SqrtBox[ RowBox[{ RowBox[{ FractionBox["1", "8"], " ", RowBox[{"(", RowBox[{"3", "+", SqrtBox["5"]}], ")"}], " ", SuperscriptBox[ RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", "\[FormalS]"}], ")"}], "2"]}], "+", SuperscriptBox[ RowBox[{"(", RowBox[{ RowBox[{ SqrtBox[ RowBox[{ FractionBox["1", "10"], " ", RowBox[{"(", RowBox[{"5", "+", SqrtBox["5"]}], ")"}]}]], " ", "\[FormalT]"}], "+", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-1.11\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], \ -1.11351636441160684043438777734991163015`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"100", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"80", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "1"}], "]"}], Short[#, 7]& ], -1.1135163644116068`}, "NumericalApproximation"], Root[1 - 100 #^2 + 80 #^4& , 1, 0]], "+", RowBox[{"\[FormalS]", " ", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.263\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.26286555605956679615431426100258249789`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"20", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"80", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.2628655560595668}, "NumericalApproximation"], Root[1 - 20 #^2 + 80 #^4& , 3, 0]]}]}], ")"}], "2"]}]]}], "]"}]}], "+", RowBox[{ FractionBox["1", "2"], " ", RowBox[{"(", RowBox[{ RowBox[{ SqrtBox[ RowBox[{ FractionBox["1", "10"], " ", RowBox[{"(", RowBox[{"5", "+", SqrtBox["5"]}], ")"}]}]], " ", "\[FormalT]"}], "+", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-1.11\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], \ -1.11351636441160684043438777734991163015`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"100", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"80", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "1"}], "]"}], Short[#, 7]& ], -1.1135163644116068`}, "NumericalApproximation"], Root[1 - 100 #^2 + 80 #^4& , 1, 0]], "+", RowBox[{"\[FormalS]", " ", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.263\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.26286555605956679615431426100258249789`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"20", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"80", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.2628655560595668}, "NumericalApproximation"], Root[1 - 20 #^2 + 80 #^4& , 3, 0]]}]}], ")"}], " ", SqrtBox[ RowBox[{ RowBox[{ FractionBox["1", "8"], " ", RowBox[{"(", RowBox[{"3", "+", SqrtBox["5"]}], ")"}], " ", SuperscriptBox[ RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", "\[FormalS]"}], ")"}], "2"]}], "+", SuperscriptBox[ RowBox[{"(", RowBox[{ RowBox[{ SqrtBox[ RowBox[{ FractionBox["1", "10"], " ", RowBox[{"(", RowBox[{"5", "+", SqrtBox["5"]}], ")"}]}]], " ", "\[FormalT]"}], "+", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-1.11\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], \ -1.11351636441160684043438777734991163015`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"100", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"80", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "1"}], "]"}], Short[#, 7]& ], -1.1135163644116068`}, "NumericalApproximation"], Root[1 - 100 #^2 + 80 #^4& , 1, 0]], "+", RowBox[{"\[FormalS]", " ", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.263\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.26286555605956679615431426100258249789`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"20", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"80", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.2628655560595668}, "NumericalApproximation"], Root[1 - 20 #^2 + 80 #^4& , 3, 0]]}]}], ")"}], "2"]}]]}]}], ")"}], RowBox[{"\[DifferentialD]", "\[FormalS]"}], RowBox[{"\[DifferentialD]", "\[FormalT]"}]}]}]}], ")"}], " ", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.425\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.42532540417601993887330991128692403436`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"20", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"80", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "1"}], "]"}], Short[#, 7]& ], -0.42532540417601994`}, "NumericalApproximation"], Root[1 - 20 #^2 + 80 #^4& , 1, 0]]}], "}"}]], "Print", CellLabel-> "During evaluation of (V14.0.0-Devel (2)) \ In[4]:=",ExpressionUUID->"3cf56959-ed53-479c-8c23-4ca6f71fc8d9"] }, Open ]], Cell[BoxData["$Aborted"], "Output", CellLabel-> "(V14.0.0-Devel (2)) \ Out[4]=",ExpressionUUID->"81b10f75-2f21-4603-9d12-28ed9bc24bf4"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["CAD over 1/20", "Subsubsection",ExpressionUUID->"1b4aee06-500d-498e-9a84-2ae1c2e39bc6"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"reg", "=", RowBox[{"FullSimplify", "[", RowBox[{ RowBox[{ RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}], "[", RowBox[{"x", ",", "y", ",", "z"}], "]"}], "&&", RowBox[{"0", "<", "y", "<", RowBox[{ RowBox[{"Tan", "[", RowBox[{"Pi", "/", "5"}], "]"}], "x"}]}], "&&", RowBox[{"z", ">", "0"}]}], "]"}]}]], "Input", CellLabel-> "(Local-Devel (4)) \ In[6]:=",ExpressionUUID->"457e9e56-2aa5-4da1-a6b4-d246bcc492cd"], Cell[BoxData[ RowBox[{ RowBox[{"z", ">", "0"}], "&&", RowBox[{"y", ">", "0"}], "&&", RowBox[{ RowBox[{"5", " ", RowBox[{"(", RowBox[{"1", "+", SqrtBox["5"]}], ")"}], " ", "z"}], "\[LessEqual]", SqrtBox[ RowBox[{"250", "+", RowBox[{"110", " ", SqrtBox["5"]}]}]]}], "&&", RowBox[{ RowBox[{ RowBox[{"2", " ", SqrtBox[ RowBox[{"50", "-", RowBox[{"10", " ", SqrtBox["5"]}]}]], " ", "x"}], "+", RowBox[{"2", " ", SqrtBox[ RowBox[{"5", " ", RowBox[{"(", RowBox[{"5", "+", RowBox[{"2", " ", SqrtBox["5"]}]}], ")"}]}]], " ", "z"}]}], "\[LessEqual]", RowBox[{"5", " ", RowBox[{"(", RowBox[{"3", "+", SqrtBox["5"]}], ")"}]}]}], "&&", RowBox[{ RowBox[{ RowBox[{"2", " ", SqrtBox[ RowBox[{"10", " ", RowBox[{"(", RowBox[{"5", "+", SqrtBox["5"]}], ")"}]}]], " ", "x"}], "+", RowBox[{"2", " ", SqrtBox[ RowBox[{"5", " ", RowBox[{"(", RowBox[{"5", "-", RowBox[{"2", " ", SqrtBox["5"]}]}], ")"}]}]], " ", "z"}]}], "\[LessEqual]", RowBox[{"5", " ", RowBox[{"(", RowBox[{"3", "+", SqrtBox["5"]}], ")"}]}]}], "&&", RowBox[{ RowBox[{ RowBox[{ SuperscriptBox[ RowBox[{"(", RowBox[{"5", "+", SqrtBox["5"]}], ")"}], RowBox[{"3", "/", "2"}]], " ", "x"}], "+", RowBox[{"2", " ", SqrtBox[ RowBox[{"5", " ", RowBox[{"(", RowBox[{"5", "+", SqrtBox["5"]}], ")"}]}]], " ", "z"}]}], "\[LessEqual]", RowBox[{"5", " ", SqrtBox["2"], " ", RowBox[{"(", RowBox[{"3", "+", SqrtBox["5"], "-", RowBox[{"2", " ", "y"}]}], ")"}]}]}], "&&", RowBox[{"y", "<", RowBox[{ SqrtBox[ RowBox[{"5", "-", RowBox[{"2", " ", SqrtBox["5"]}]}]], " ", "x"}]}]}]], "Output", CellLabel-> "(Local-Devel (4)) \ Out[6]=",ExpressionUUID->"3636dbe6-dbe7-4662-9beb-99d1684f1658"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Show", "[", RowBox[{ RowBox[{"Graphics3D", "[", RowBox[{"{", RowBox[{ RowBox[{"Opacity", "[", ".2", "]"}], ",", "p"}], "}"}], "]"}], ",", RowBox[{"RegionPlot3D", "[", RowBox[{ RowBox[{"ImplicitRegion", "[", RowBox[{"reg", ",", RowBox[{"{", RowBox[{"x", ",", "y", ",", "z"}], "}"}]}], "]"}], ",", RowBox[{"PlotPoints", "\[Rule]", "50"}]}], "]"}]}], "]"}]], "Input", CellLabel-> "(Local-Devel (4)) \ In[7]:=",ExpressionUUID->"0c8bb6b6-cc60-4d68-be7d-dabb53a3359d"], Cell[BoxData[ Graphics3DBox[{ {Opacity[0.2], PolyhedronBox[ NCache[{{0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), 0}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], Rational[-1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {-(1 + 2 5^Rational[-1, 2])^ Rational[1, 2], 0, Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {(1 + 2 5^Rational[-1, 2])^Rational[1, 2], 0, (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, {(Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2], 0, -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2], 0}, {Root[1 - 5 #^2 + 5 #^4& , 1, 0], 0, (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}}, {{0, -1.618033988749895, 0}, { 0, 1.618033988749895, 0}, { 0.2628655560595668, -0.8090169943749475, -1.3763819204711736`}, { 0.2628655560595668, 0.8090169943749475, -1.3763819204711736`}, { 0.42532540417601994`, -1.3090169943749475`, 0.85065080835204}, { 0.42532540417601994`, 1.3090169943749475`, 0.85065080835204}, { 0.6881909602355868, -0.5, 1.3763819204711736`}, {0.6881909602355868, 0.5, 1.3763819204711736`}, { 1.1135163644116066`, -0.8090169943749475, -0.8506508083520399}, { 1.1135163644116066`, 0.8090169943749475, -0.8506508083520399}, {-1.3763819204711736`, 0, -0.8506508083520399}, {-0.6881909602355868, -0.5, \ -1.3763819204711736`}, {-0.6881909602355868, 0.5, -1.3763819204711736`}, { 1.3763819204711736`, 0, 0.85065080835204}, { 0.9510565162951535, -1.3090169943749475`, 0}, { 0.9510565162951535, 1.3090169943749475`, 0}, { 0.85065080835204, 0, -1.3763819204711736`}, {-0.9510565162951535, -1.3090169943749475`, 0}, {-0.9510565162951535, 1.3090169943749475`, 0}, {-1.5388417685876268`, -0.5, 0}, {-1.5388417685876268`, 0.5, 0}, { 1.5388417685876268`, -0.5, 0}, { 1.5388417685876268`, 0.5, 0}, {-0.8506508083520399, 0, 1.3763819204711736`}, {-1.1135163644116066`, -0.8090169943749475, 0.85065080835204}, {-1.1135163644116066`, 0.8090169943749475, 0.85065080835204}, {-0.42532540417601994`, -1.3090169943749475`, \ -0.8506508083520399}, {-0.42532540417601994`, 1.3090169943749475`, -0.8506508083520399}, {-0.26286555605956685`, \ -0.8090169943749475, 1.3763819204711736`}, {-0.26286555605956685`, 0.8090169943749475, 1.3763819204711736`}}], {{30, 24, 29, 7, 8}, {26, 24, 30}, {25, 29, 24}, {5, 7, 29}, {14, 8, 7}, {6, 30, 8}, {16, 2, 6}, { 19, 21, 26}, {20, 18, 25}, {1, 15, 5}, {22, 23, 14}, {2, 19, 26, 30, 6}, {21, 20, 25, 24, 26}, {18, 1, 5, 29, 25}, {15, 22, 14, 7, 5}, {23, 16, 6, 8, 14}, {12, 13, 4, 17, 3}, {3, 17, 9}, {17, 4, 10}, {4, 13, 28}, {13, 12, 11}, {12, 3, 27}, {27, 1, 18}, {9, 22, 15}, {10, 16, 23}, {28, 19, 2}, {11, 20, 21}, {27, 3, 9, 15, 1}, {9, 17, 10, 23, 22}, {10, 4, 28, 2, 16}, {28, 13, 11, 21, 19}, {11, 12, 27, 18, 20}}]}, {GraphicsComplex3DBox[CompressedData[" 1:eJyEnQl4XlW1/lEUHBEVFYQr4sgg4gAqiomIXEdQHMEBvIA4XmcRFURxQAVF sSpXUUErqLcMQgBBpEBDgTKUtuk8pU3aNPOX5EuLOP3zrX1+e337XSf/6+Pz hLx9s87a05r23ufsd/Kn3v6hh++00063/3SnnXae+dn47GNOPPa2izsPf+Qh l/dumVP9nCs/wZsdyl9x7sKHHjh+fme9nO6AG33fRQFPchYH/MLnvHHm/0tn kd8T8N4te9x88TkrZ3numoC/8PLWX6ybRZ+N0g/9Hfyu/I5DW3/RO4v+m4Mc U/NnfYE/G179XcC/P33pnzoO3Rrkp34YmKV/BgLf1H9gW+CDKz/159As/TwU +Guv/++Z/w8HPrjy07iMBP4pZ31k3hO+Px34T2l12zsaAU8Ni3i9nDmdV8yA lz5ye8ZNvff9KqwL8FJOV5gn+tzZ5sNs45jm4fgsciblua7/kuP3ffrwgnmz rOcu+b3ZoXzmieL17Z0r/dbVeVlLwPuvDM8t8a6As04VL9ej46w7xct+dpz1 pXhr8nz2MWMBL+eV4/X94HYSu6jrXXHmeYnPnUWO97OJ+/F11d9dlf8dfok3 O5TPfFOccVccO6A4611x1rXitFdx5rni9LO2i34wfW+/OczHst+6cj/U87uC HP5ecfyF4qonOHqCv6KF33F90LPEuwJetl/53bPwFwccf6p4OZ+7Q78pTrts +B+6rZoHN+V2Kc7z6vndASdOqJezOOC0q15+T8CJE+qfuybgjHu9PhtneW5/ wFl39fxmwHVcwEt72935jKcPH3XKB24R+6F41yx4d8B5LuOAvTL00omA1/N9 noBLezsUh29W98I7gl2sx7sCzk/FGUfF0d/8wIF3V/Pp9vxc9CzxZofymYf1 cnoCzjxUnHmoOH5EceaV4thhxbHDiuMHFcc+K058pTjzpL5/Jmdp11TAn2AN a87SnxHXeQiu89D+7qE4vuClPV88ix93HD0VR0/FVb7Oq1bYddSCe2V9zhU5 3bPy6/XvFn+0uLPZmjYLFwb54MwfxZkn9XKaAUcf1ke93SDu0zi8P+Dab+DI nw3XfvhpqxkvfKBah3fmfoBf4s0O5bPuFCduVFz7ARx90vxbInbU9Snxyv4E fneQg59SnPhZceJnxQv704YX9qcNJ55UnHhSceJJxQs71oYXdiy0dzzgjEt9 eycDnugRL+xPG67jC67z0Fg/iuMLXs5vx8v5rXJ6Al7GDz3BLimufPxjuR57 gr3S9VXGjT1h3iqO/O1mL5ZV43pv7h/F8ZuKq/7gqv+a1nz6wP0SLzmOHJ6j /QOu+oPrcw2/cLnY47mZX+JVntLGL+xFG676gPPcew844/BHnrSyWucPhOeW eLOjnt8d5NBuxXm+4uhfL78n4OhXL3/jLPoMBZw4RHHtN3AdR8v391gS+q3E mwGv92te/1Fc+TqvwFVP+/3A1eLf5mZ+iTc7lM/6rpfTHfDCbwQ5i2fhDwVc 2wuu7bV+fSi2C7z0G46jj+KlXo7j1xTH7yiO31GcdpFnzJYflflLswO+jpfi 9M/+M9P5kB1rKr2X5f6BX+LNjnp+V5CDXvX87oDTnno5iwNOO+rl9wScdVX/ 3DWzyOkPOHmK4tiHej0nA06eojjxf70+Edd5As74grfS8bN6e8L4lnh3wMv4 yHHGRXHGpV5+T8BLP6fPXRNwfq/XZ+Ms+mwOOOu0Xs/+gBOX1us/EHDi0vp2 DQUc+1Df3pGAkzfV98N4wIlXFWc+K858ru/PyYAT39b381TAy7xyY7ZvZfyx Mdg9rV9hl+CrvbJfF6zL86/MTzcKHvnwFCffUZz5pjjzrV6f/oAXdfU2vKir t+FFXb0NZ74pXtTV2/Cirt6GM9/q+2c84IzXTq3//XBD1Z4Vof9LvNmhfOyA 4swnxZGrOOOlOOOlOONVr39/wBkvxRkvxRmv+vYOBZzxqu+HkYAzXvX9Mx5w 7EN9v0Uc+1Dfn5MBxz7U9/NUwNU+gJd1m42db29t7C6M8wqc3xWnXYqjp+Lo qTh6lvuHMf8t89Aqfp7ha5zG/NJ8Gb6uF8Xh237Mwb2Sd87Nckq82aF8bdf5 LfnzVgU54GW9gv1S38csce+fEvd9IrXn2g/oWdZDNod2KV7ERXtsqtahtwt+ iVfxcxsf/Y3+0CbJw1xOiTc7lM96VJz1qDjzVnHWo+KsR8WZ54ozzxUnLlVc xxFcx8XgC2P/gDPeipfrxHF+Vxy7Xf/c/oBjtxXHbiuO3VYcu604dltx7Lbi 2O36/hkPOPOkvt8izjyp78/JgDNP6vt5KuDMk/r+jzjzh3HDPog9DXaj5Lvd 0PqG2lW1A5qvg5947G33HNC7uRq/tXnewi/xZofyGV/F6R/FtV3gque//j3z vy+uC/qAl37H+43xBVf9Fee5yc95nlTWOfsFb3bU8/uDHNad4qo/OPq8odWQ ef3VOtkQ9CnxZkc9v2sWOd0BJ/9VnPxXcfx5vfyegDMf65+7JuD0R70+GwPO OqrXc3PAmU/1eg4EXMcLXPfdLL74QBwv8LKO5Xh5ns3x8jyh4+X5K5U/HvDy XJbj5Xk/x7Gfiuv6Asd+Ko79VBz7oDj9LP3RUY/P6bRocGpa/NvSgDNe4Pb7 hVvCuVX4JV7tG7bxmT/1cvoDXujRhhf7fW14sd/Xhms/gGt7TY/9ekO7SrwZ 8LLOP5D7H37LnJ9x5EDu/3r+nM4PtIifdzzpeVXAsVOKU/eolzM/4BdW+2vg pZ6+vw+u+8vg2EHFdb8MXPeVwOv3TQby/FQ9wZVPXqB8rYuW7e0JuOabZT+s DM8l/tfnqv8qx2tNGBf8rOLIUZx1urwl8FR/rtrhcj74OlW81ehzHz7d+Z3W ryu3hnXUKjNffsbWyj76ekFOiTc7lA9Pcewb/24/b8p6BvmtcuFHLml2frLV WycOSJ7t+pR4s0P52Nui//8W9YF/R2vY2nDr95n8T59b4l0BZ13W87sDzjqr l7M44MU50sDfGPAyf3a8zJMdx57X698fcOym4sV4t+HY8/p+GAo4+VR9P4wE nHigvn/GA048UN9vESceqO/PyYATD9T385TGNdm/lPiczr1aC6PpOH5EceZl PX9+wPEX9XK6A46/UJx5rDj+ol6fxQHHX9TruTTg2H/FsfP1+q8MOHZecex2 gV+0TfOgzLdueFbE4bdaceGfm2VcM2PPrXnvbnZubam37zbNa9L5gM9vy+sc O4Ycm2bv3RBw+OZfmlPpXNllwV+keX33tmyHa+fnGyNe+IUfTXXaecK/DwT7 X46v223F7e8OmUr7Rm/bFuz5yS1/dfS2ah26fVac+V7P7w4487ceXxNwxrP+ uRsDTjsUx94qjl2qlxNx7JLi2CX6+bmtX09zuwQOf6J1b+o+xz/Xuka1q987 Uhy7rTj6KI4+/F1Zr1ga8PIchePIL++Bcc52KvCZh3aeZ4fbVeY/uNSBRc6c zi+2/uPzzVBHYj5rnlXWqYayfOSAI2dTS/AnXR+Rn/pv02CoLyHHnnv7moDD /0tr3B/n8qUuFParrRl/nOp8XStQ/PBgxpH/iNaf3Two9QTv/2QP1gUc/uIW 4fVT6TzemNs95Bv9SUN5XTFvkTPSihcPjTh8q0tsmUz37o4alLzV9cFe2e/f mExx7EWDGUe+5eejg1Kn9ufa+F0fcfgWb+832Xlg6wH7uhzVv1jvt0ykdn5+ MKxr+7MDB8N9UeSUeLOjnt8V5DC/6/n9AWfeK07co3jht9pw9Facda44caDi xIGKEwcqjr1VHHuLXve01s0yt7fazxYnvL+qtz9xqBrXOC4lXu1btfGJUxQv 9k3a8GI+tuHopXixbxL07A94UVcKeg4EvIjb2vCiv9rwYt+kDWdc+LsbWrTx OC7wTc023OzIQ7H/wYlDFVd/VMrpCTjjpTj2W3HsaP1zN8+i53jA6R/1g8Qz Zp/nuf8q7Pa8oZxHKI5dUDzJvWkWfnfAyRfq5SwKOPlCvZ6LA06+oDjjpzj5 AnjZb3M6X9oSNxMnl+3qCXzyC+WDK5/5oXxw5RMntKzYibc7Hxy+3XM/wM+Z 4teQ00KffsrqgMM/uNXfH6zqJO/1OET1IU54bGsj65+Tnb9ptfIqjyuK+PyR fq4Nv4acljrDv1gbcPgtNzfvF5Npn+hlHocg34b1vcOyr+FyLE/qWR9w+K1w 5JTDJ9P5pfM8DlF9sLN/bym8ciL93jtU2t8Z+ZZPvWw4xwkal9qA7RJx+FYP +PxEqst92OMQ1R/7bnW8J02kfZmbPa5AvtUJnzgc8gXktNzXIc+OOHwb9qsb ad4cNRTyi91bhNOGg98s2tUZcfgfbck5pjpfdNFQ8LPwseepXjneeWvL8Y5G v2D/vmNI9ofnZjkl3uxQPnEC/Na26r/f15ftrcoxPZ/k+P+2umU0Phe8rCM4 XsbljpfrzXHiHMXLc6Ej2f6T/yrOPLe/O3kk2z3WF7ie1yrrbX6vrZQ/p3O8 ZY++MCXP7Qk48hXHHt7Z6p6nTqXzRvs4jj42zz8zku0h7UKOddPOEYdvT792 Mo3nb9zeanuxh9bvx02mffcdbj+Rb/PzmJFsD1m/yLF2HLEm4PBTXDPReU1L oa+6vS3G6zd+Lrg8rzuS7O4XIl7cA/j+RKe9FmXZcIm36YM9tKcfONH5kla/ 7O848i0POmsk28PyXPFI5ytb/37FhoDDtzrYXY1U77rK7a3qjz1MdYtG51DL QTzCceTbn50wUtaR3uHP/W5L/OciDt/W/c5V/P89t7fI/0SrP64ckTrPeJZj 7zu5IOLwU/45Xp0DGQ51Hj0fZPsZXx1L9+oPGwn5i62H741ke6h2wPB5s+Az fBN302jyx38ZlvzC9Vf7qbj5v+2Vfk8cCXbV1sX64Sqe6M92Ejkl3uxQPvLq 5fQHnDxFcfIUxbHPimOfFS/jlZFO+3FXn6w3b9dbWnbqxY7bvO+N/QBe1l8c L+OYfN4hvy9IzjXk+pjyy/0Iv29Y7O9n/py0rqYn5Zza0oATV4ObfVg/mu1/ YcfIyz8WcfgntdbJvY7jL+zfPzqZ7MCpo+G8sT3/xtEyf36jyzH799sVAYdv /bhrVVcZcr+jeuIvjmmN7+8m0rp+zWjGkW/r9yej4dwmciyOW7cq4PAtXjtq onO3VkMXuj9Cvv0YGs3+onivwoycZ7ae/5SIw7fu7m0kO7C3y1F98BdW3/pq dY7606MZR77Zg4Wj2V8U96Zn5Jh/O3Z9wOFbfXKfRue3LU5zv6P64y/s+Z8f T/34ltGMI7813PdcOpr9BfYNORYPnrsx4PCTfxpL8fAy9zvIT3XU0fI+fG7P WGere/fojTj8NM9G0/za3+WoPvgLy4ueN9p5Zgs4azTjhdylo6E+xr9bfeof mwIO36bXyZW9eoTLUf3xF19tKfDL6v1sJ4xmHPlXtxS6clTOObods/m3Z8Th W3esGuq8pLXKN7p/Qb6t553Hgt1GjsWXh0UcvtmRPYZS/HTYaLDz9mNBjp+z 3Ra7mu2n8st9Pudb/vzWwWSv/jBancPYEuSXeLND+eV5kWpdH7clPBe+1ePP c9zm97L4XPByP8Px8nzJePBHimOvSnxOqid8obonsqf7HewtOH4HvJTj7w0A h4/8i1rqP2883NOEb/3y2IjDt/huX9cHvF6fnpSf/XWi800tgfPcryHf8peH jYf7NUX89brlAYdvv75vItmll7p/1H2Hct+z2WH5+7vHs18r78VUefZZEYff Uvvwv1X5+3fcb6qe+MFftrrnp40qjnK/WcTVuzle+J2XjGd/h71FvvmZ61cH HP6XWg0+tJHswynuT7Vd+Lvftxoyt9L7z+4fka/7pPSn7Vvt5vcvkctPa9/Y 2oDDT/lAta463c9qu/CDNu32Hkt1rjnuN+GZfoPuH0t/OZ728Z6/IeDwzZ+9 ZzSth71dDjzbt+ocz36wzOuq+fmiiMO35144kvb3Pz1W4m364ActjrxvOL1f 4w73m8W+z9PH87iU9bvxtM/6lojDtx+PHk75+Vvcz6r++MG0vz6U1u+l7jeR b+tr+1jY70CO2eGPRhy+9cvXBtP62n8s7I8sbQ3Mm8dL/5jPeYwnu/OtiMNP +V6V75w1JvvYrg9+MNXLKv+ydCzkTfbvz/dz1uoXbFh/E3H4Np4vqc5ZHj8W /GbRb21+UHFbh5/cWtUdxoJ/NH97wZicm55bztuMNzuUzzjXy+nPcr7RavAt W+RcsstP/ntLua4XRn3AGZ96fn/I+2bLB6kHKo5e1m/3uV/Gj4Cz/wJeypmT 6nXbJ8RuLQ44+zUfbnXE8oksHxz55jde1sh+HL+AHJvH/7sk4PBtH+FzE8mu /trjAdUfP277Ak+s9tmb7veRv7Kl3XMa2Y/jR5Bj9rh/WcDh2z7CVVV96cse JyDf6n9vbYT7ufy0OPs/Ig7/sNZj39JI/uQBjxNUH/y15YXLq3X+pEaZ/87w 7BzQqxvZL5d2vNH5zlbA/+6IF/zdx6tx8nhA9ccvY3+t3rGT48i3PPigRvbL ZZ5WvZ/jgjUBh//a1nw4dzT5v3Pd76v++F+Lq2bi+F1aw7TO/XURT+/VyP63 rFc2Up34znUBh2950b+q/OIU9+/It/l7lN9XLveNKnynWXDqqIcPp3Msf3b/ rvrgf61O8YWhtO52cRz5Zk5f3Mj+F3+BHJt/F0e8OJfwp8GUb81x/676438t nx/ZluzloPtr5Nt62dfvO5bnERtpPd+4KeDwk3/dltbLp92/Iz+dd2yEcw7I sbxiecThp3EdSOvsDvfvqg/23eq9v6r8zOMdR76dn3t5I9Q5kWO/TvYFHL41 b03ldy4ZD3VRzYvxg3pfal2rYU/ZkvKp7e7Hea6dt3puQ/y1+ymrH+0WcfjW /uP60/if6f5d26X+2n5/m+P0H3w7t3NQxOHb887vS/WiJRoPVO3+wnga17Xu r5FT4s2Oen53kJPm26JZ5PcEHDtdL2dNwHWfFtx+vavajz3Yz7lru0q82aF8 4op6Od0Bp731chYHHL9dL78n4PRP/XPXzPLcjQHXfSSzN68fCP0JP9WhHLc8 +cbYn+Dqb8G1fgmu+1Ea7yle7Kff5nFacQ7htkau/4OXcuakePZ0xxk/xZGj OONqzztgIt3vudpxnmvrc63Hh/w9P1N8EHH4Nj53NjqPtrjPcW0X8+nHrZ8f aqR9xV85rvKJA5n/9uMux0s/V53L/tbSgMO3du7cSP70vxwveFMeN5b5cCPl w3+NOPx0T2w87Z+c77jqQ3xo54rOHEvnVK53HPnmRzd5fFjWrxtpX2L7ioAX +yZ/Hk154JcdV/2JD20dTY2k+s1cx5F/QkuhxR4flvu41X7yIasDDt/ixEOq /doPO17UZ//mcWN5/qaR4qmPRBy+te9jw53Xtv7hQsdVH+LJdB9jKM3HvzqO fIsz3uU4ciweGPB4krgF+ak+sT7g8O3fNw2m9fg1x7Vd2COLg/cZTPP3fx1H vu2DLfe4kTgHOSn+2Bhw+Navx1f3Ez7puOpf1H/mDKT9g4sc1/M2xF3FOfwF HmeW9r5al4+OOHybX4u3pvX1fsd5rvmRUY8ziSOQY//+3IjDN3UfszXFSd92 XPWhXbYf9J9bkp/4k+MqX/fxbZWvVbw/8+3c4WsjDt/ipK/3d+7dmkCfd1yf Szxp9aa/9qU8+NeNsI9v43W3x5nIQ4518IkRh2/z58HNSe+THeen7Ss2Jc7U 891fiTh8m2+Hbk55zvmOqz603+pEn6rOd9zQCHUk+3Wzx2Pq3219/yzi8K0+ +7+9KW/4ciPEe6Ud9vhNccv77tvY+Vbbx47xj7Xz0mof9QD/nhNySrzZoXzd H7Z7aF0e56gc8/Ov21Dy58XnghNHKK7+HBx7r7ieq9L4SvFyP8Dx8tyP42V+ O5HjK5vX2yu/crHjpd2ZyO2HX+63XDULPj/gF1b3PfW5nOvT54KrHOJAm6cb qzj1R46rHOJDm2dnNdI+9Dsdh2/24eyJPK7ab6b/6vsCDt/qRHtX6+dpE2F+ lPHgA2nefWa8sneOI9/Oa39iIs8n4hbk2Pp57pKAw7e63RVjqS7/SMeL+svP JnIcSByCHKsTnRhx+KbutuoczIscV32IA63+8pzRdL7vvY4j38bnWxPhfYPI sXr/z5YHHL7t0580ku7TP8Nx1Z840OzYL4bTOao3OF6cv/zcRI4D8evISfXO lQGHb/sxK4bS+b7HOo5888e/nMh2gXijkPOoiMO3H08a6tzY0vtljqs+xIE2 H44ZTOvlvxxHvtX9zvP3sKqdsfl6ZMQL/ne2pfX1HMdVf+I9q1t3D6S637GO I9/c3Jcmsr3GPxTj+OUNAYdv47PTQPJ3T3Jc9Sfes+n7qq3pXPwRjiPf8rwP T2T/hF8t+vmEiMO3/c0vVv58J8eRb82/cEL2efuzHNvPOD3ixTmca/pTfHOg 46oPfjrdJ+xL51Te5TjyLU+ZsYfEdcQbyLHnXBhx+Ol+SF+qq+85IfFwv9iT vjQfTt2cz52BF3Hff0/k+A19kWN186v6Ag7f5sMlmzq/3uqnXSbCOU/LRy6a kLizt9TznojDNzFrq7jlxY6rPsRvZs+e1pvW3fscR77lI9+ekP08P6ds4zOw JeDwbb3/bkPnL1rd/owJiY9df+I3s8/7rE/r7o2OIz+9J8bfP6Fxi8W5j4g4 fLO3P16b1tfjJkIdzPKOX03keAx7hhwT+8yIwzf4MWvSOn35RIgDzQ4/2e+F E9fU410BJ66p53fPwl8ccPxwvZyegOs5F3D7+bVVKW45dyKNzxmDnRo3lniz o57v+4E/aun36sHwXPjmZ3f4uaG/WV4VnwtOvymu+6ulHD+vpPGw4vSz4uW5 duWPB7zcp5nM8bD5p9MVnxtw4uF6flfA0zy+aRY58wNO/Fwvvzvjtn962GSO n7Vdtix+vzDg8O3HS1XP6jtjvxlP9vxBj7eRk+53Tea4WvvZ/v7p9wQcfjq3 PZbux/zF43PVk/E2/7LXWKr7bvV4G/lmT584meNq4sDiuecvDjh8q6e+qzqX /AePz5FvdvtVk3ke63yz/PhfSwIO387b/HAk2c0ej89VH+Jq28++ZziN8788 3ka+2e0DJvP6IQ5Eju0/vzzi8M0f7Tqc4qXbPT5X/Yv9/dcOJXs+4vE28s0O P83P+xMHIiedw1oRcPh2ruarg+kc89UenyPf9DtyMsfVpX2dTPPjDxGHb2bn xm0pDljj8bnqg7+x+TBd7cM80nHkW953yGRZj837SJPJP23W9/063/rjRQMp DrnL43PVH3/2g1Z/f2JrqotOebyNfNsP/Y/JHFeXdaDqnsHT1wccvs2Xy7d0 PrsFX+/xOfLt797g7y8v453Jzhe19HlnxOFbvNbXX90D8Phc9SEOt3z0GVW8 9ljHkW/+aa7H7cixuPllkznuId5DvtmPhREv4qQT+lId4n6P27VdxNu27/6T zWn/4m8ehyPf/Puz/T3H5c/JlB9v3hRwfrd+emBTOl94s8ftqj/xttW1Hrcp 7V8MeBxexPtPnJR6ot8Dtr/79+aAw7d58vrqfvAfJ0SPzalOe8RkjrcZZ+SY Hd074vDNDuyyMcUlyz1uV30YDzuvedb6tB7/7XE48q3ecuBkWV9tu49o9uYV EYdv+/XNtWndLfC4XfVn/tky/viaZG9GPQ5Hvj1vz8mwn44c6793Rhx+6uZV aR1d7XF78b6c1/p74LCjRbs+E/HCTp1Q2e+1HrerPsTbdv5o8fJU33ik48i3 +OFFkyHuRY7Vgb4fcfjmV/+zJ9Ux7o5xMnyNexW38wp/5T21MR62YXrI37NC 3FePdwW8Ni79g8e9pX8ZSvPq0CUZT/UAf2493h1w4jLF0Set/xhXK04cqjjx ST1/PPn9L3r8XJxj+KLHt+W5JefbPa2x8YwTJzOOiisf+YpfWMXP5neWuZ7g xfmt1R5X0y7kpGmyIODw7bm7VeePP+u4tpd42/zDG8eqerjjyDf7e6fE4W39 b+15310Bh2914m+NpnrBSY6r/sTbPS381pFkz7/nOPJtv/g6j8PL+72TqY5z 770Bh2/z/B/DnY9u2YVjHEd+qut7HF7up1bfN/t1xOHb+bpXDKc46gzHVR/W oYn5XPV+pd86jnyLo+7zOJz1ihx73qqlAYef7m8PVvfIHVf9sTv2+KFtyZ7/ 0HHk28+/eByO/Sv6efflAYdvdu+525K9e6fjyDe7vcXjcOw9ctJ8jXhhf/9r oLqv6bjqQ7xt8+Hircme/8Fx5P+2pd0yj7fxn8W4n7M64PDT+GxJdelPOK76 E2/bOZAnb0l1lZ85jvx0fsnjcOIL5Njw/mVtwOHbPZa39qc45L2OI/+vLf6I x+HEU8ixOl1zfcCL+Px7fWn/6JuOqz7EK3aecmF1fuwqx5Fvaq3xeJu4Djk2 zk+NOPx032xzims/67jqTzxn54KO2JTigF9OSpy3OcVLd3m8zb8jx9bxSyMO 334/ozfVEz/ouOrP73bu4sPVeZPzHEe+rZfrPN6m/5CTztdHHL6dZ9+wPvXj sY4j3+xYr8fb+n4jW70fjzh8q6u8a11aX19yXPUhrk72e02Ky3/rOPLNjt3v 8TbrCTmm73ciXtTJj1qd1teHHde6cRkfut8n3rZ5fdPKVPf4keM818LOmz0O L86FzcixexVztwQcvtUPXrwi1Tfe6TjyTcGtk+HcLHKsv2+LOPxUh+tJ8+Ps yXDOtrSrA2n/aN9l1XsxHUe+nVvr8XgbP4Yc2wdePxBw+HYf5idL0n7Qf0/K +QrXn3GxefK4B1Jc8bPJUN+2+OF2j7c1/rR2PLQt4PDNz+96X6orvs9x1b+M w5sdFp+MTpb+su276Lb/89SIw2+2hnn73en827f0vZ6Lc/9Y+xZ6fI6cEm92 1PO7A9/qe30L0zzrnSzrXG3yS7w6f96r7w/zuN2m1UuGw3Ph23JbsiDjyW/E 55Z4V8B5brIvUyG/UJx4r8TnJP84Ppb849sdJ14Fp96uOPqBI598QeWDK5/2 pH3mMXnu/My384dnTeU8Qttl4g+8LeDw033i0fzeKXDVh/GzZTBRvf/lNY4j 3/7s41M5jyjfmzOV4ptf3BFw+OZ/XzBSvZfIceTb/bmfTOX1wzxCjuUbj494 sd4+MpzOLbzQcdWHvMN+zh1K9vQEx4t1MDFZ8mfkmP/6xlRet6xj5Js9Pfv+ gMPvb/2+cTDFjfs4ru0iv0j11MG0j/V6x5Fv7ukzU9l+YS+Rk75fsSTg8NO9 t21pHj7GcdWf/MLs94+q9/4f6jjyr2s146SpbN/xJ8ixefanZQGHb+cq79ua 4rEHPU9Bvk2X702F75YiJ+U5ywMO3/rjUVtT/PEsx1Wf4tzO67Yk+3yM48i3 9z1/cSrnF+V5z6mURz874vAtDjy7P9Wvdndc9Sc+sP3uv/Ql//Uqx5Fv+e+H pnJ+QVyGHPMH71sTcPjpvvfmVL/+l+cpyLc47IdTUsfcnOWke/wRh2/qvmRz iqsOcFz1Ib+w98L896a07t7huMov9wuaHba/8FXHyzr9VJJ734aAwzf4971p X+ypjutzyTusvnHXxrQej3Qc+RZnfGIq/17mQ1OdB7XG8xsRh2/18M7q+zmP cJyfZvd+OiX3/f09o1b/+HXE4ds+yPXrUtx4iOOqD+03e3xwNS9OcLyoD0/K /sKMHLN735yS9wn4e15TfB1x+OZH5q5Odfv/cFzbxXwyv7T3qs7PtH6+3nHk m9377JTcH/T3Mtq6XNUX8IJ/4YqUHz52St7bs0bsW3+yf49enuLmwxxH/nmt P//glNw39O+Qp/ft9gccvvXH15alOs+Dk/LegJUpbsv207+rhpx0bzzi8C3O 2bEk4c92XPUh77A45JMPpPOTx07Jue6lKd44w79rhD9EjtmzgyMO3/zR3fdV ejuu+pN3mP+9YVGKQ17lOPJtHZ3m3wMhjkCONfdNEYdv6+iyO6v9Lc9ftG6v +UU6bzwl+wXdWf6rW4JOizh824+bU7036ADHVU+ea+v767dV55b1+xLdKd44 eyrnERqHm//5RsTh277/xpurc8tTIU8p/Y7nHYrbn910fXWeeSrkI/Zjxi/Y n+8xkvML5JS4yzf7/GvPO5Rv+dpPr8645aNfdPlpnefvHHb8//GugGMXFS/f twg+J8UJ46PJ7h3sOPEzOPkLOHLAkVPK70p+f6vK7wpyyGvsx7NG0znA7Z7v wDezs18zj5O2y/zv8psDDt/+/QMjab3d5PmR6kNeY+vsouHkH/s930G+xaVP aOb5xzxCjr0nY93tAYdv9dGeoRSX/t7zI+Tb74c3c17DekKO9e+xEYdvZmj3 Cl/q+ZHqw3q2afnmwTRe//R8B/m27p7fzPkLdgg5N7X8xK33BBy+5THnbkvx 3q2eH6n+xT7L7QPJDw57XoN883dPaeb8BTuNHIP3jDh8qzf+c2s6N3Kl50Gq P3bf6myHb03reZXnNUWcvzPfvVmW/RhyzC8ctzTg8NP3q7YkO3ux50HIN3/3 wmb2i/j5Yty/F3H4Nh+u7k/1wIWeH6k+5C/2+OG+5AcnPK9Bvvm7vZsSx/Rl OTbNFqwIOPxFrXF9fl86H9LleZDqT/5i43Py5uQHN3peg3z7u0c3c5yk9tD8 2T9WBRy+nd/41abkV34zJfFWX/JrhzZz/kKcjJz0HuKIw7fwd3VvWl/3eX6k +hB3ntoyeE/pTXHmDs9rkG/+61lNeb+Zf/fM/M0n1wccvom5ZENaX3/xPEj1 5+/tvt7T1qd1t8XzF36aHdu9Ke898+8g2fq/fGPA4ds96R9U71v9vec7hf6v bGb9GB/kmD8djzh8s/+PrO6pLPN8R/UhTzH7fOaqVEf6p+cvyLc4fn//fjvz FznpO1IRh29589SKqv7u+Q7y9dw48QZyyFOsHR9bnvZXhj1/4bmpjtws10nb 9zqs+ftHHH5q9rLq3oLnO9ou8hQ7H3h8tS+92vMX5Kfz9/49Z+wocmx9HB1x +BYHLn4g5S0Xe76DfGv+jJ0szzv5d1HSewUiDt/G/fz70/y7c0ruwy4VO7m1 s7vVMV++p3q/jOcvyLf4YZ9meJ8Jcqye+tWIw7d19+G7Uv32uim577BY7OpA mufvuqN6r67nL4X8xzRlXvl3acz+/Xwg4PDtfZ2vuz3J++2U3INYxDwN89bG 9bD4vU3kW13k+ojDt/33U29J6/E+/S6o66nnqRS3ffbX/Lk6Hz4l+z7+XM2n zE4+W/Gukr9ssB6f4du47X1NdW7c8yN9ru7LKG7ravTytL+5VfOgrmQ/d9fv 9ngeYXHcuO8H2fT+g+ZN1Xe2e2IexPiSL6BniXv+kubfDsG7q3m8PeQvKqeI h9ue+/6Wfg3F52bc2rnS8xSVY3WHgXkBh2/+8wcqvyvZw7uHk9/8hePIMf94 h+c1ko+mOOz4GwIOn+8D2fie6Hi9nvOTvX3NUBqn7ziOfPv1Ws9rZF6nczb/ cWvA4Zuf+spgmg9vcby4v7ne8xrZD0/2+oKIw7c65A3b0rmC0x1XfchfzA9N DSS/eanjyLf1dY/nNeX+c2VPdro74PCt3vLCgRTvneq46l+8F+ijW9M5gQsc R771042e15T1rUr/z94XcPh2Tvt3W6p9PceRb/603/Oa0h9W34ecjHhxT6S3 P/nTMx1XffB/6Xsz1XvJLncc+fZ3r3EcOfZjqec7ZTzSrL4rGHH49n7C9/Sl euPHHNd2EQfYPPnx5uQ3f+I48s2s3er5jtofG8dTlwccvp3vvX9Tip+Od1z1 J04yMY+p4sdvOI5882tXSL7j3wFOdeqLVwYcvp0nP7q6p/ufjiM/1Z0935H9 jfT3y1cHHL6JefjGtO4+47jqU+Q1X1qf1uMvHEe+5d0LPd8pz6k10zrcLeL8 bue3x9emdXeS46o/eY2N12lrkr/7ruP8XXrvhuc7tK+wY6/fEHD41n/rV6V4 7y2OI98GZENT7muvzHJsPr4m4vAt/nnnyuo8sOOqD+Nh3X3P8ur9wo4j3/Lu ez3fKesKzeo7nRGHb+v1tdV3qz7kuOrP/LN48Mal1XeAmrKuelIcc5PnNaVd aSb/dkbE4ds+7IuWpDryOxxHvsWfWzyvwY4iJ9mJiMO3/PWti9N5m7McV32K 82lH3JvqXb93HPmWVxzpOHLS91M939G42n7+aRZ8hm/z+sC70/7mxx3XdpHX WDyy58K0Hn/alPNpi1K/39oUf5C/J1Cds9sScPh2XuuRC9K6O6Ep59Ncf/Ia O081MD+tx282w/shS7vq7+2xfZYrHScOKsZlaGvA4d/e6vg7bqzeY6jyu5Pd W615TVeWY3Zo14jDt/l5ybUJ/0xT9olcHz1PqLj92YN/TOvzYuV3JT3u1Dxo bjmfn+24xcknKb8rxRvf03xnbopvj9E8ZW41b6ZD/J/G2+N8xl/5PEdx4swS r85ZNYaT3XyU48TJ5ne+Mp31UzmW549cGnD4Zs8PU/n+PSr45Au2fj8zlPq/ 03HkG/2j07l/tb3W/av/FHD4Zv/nDaZxebjjqj/5guW527al86MvcBz5Ns/f M53nH/MIOWa/br4p4PDtsc/elvqn4XkH8s3vnDOd8wXWE3JMvwduCzh8y89O qur2T3dc9WF9mpyfb03+6GjBZ+Sb3/nUdM4XdB6a+zpyYcDh2/nzFVtSHPUo x1V/7Fr6zuiW5I9e6jjybR/6A9PyfbH+LMfO5Vy7KODwLR58S386V7Pd8w7k p/PN09nu46+QY+/deG7E4Zv//E6F7zct/sP1IV+wcxELNie/82bHkW9+4vTp 7Ofw/8gx2j1LAg7f5sO/N6U60W6Oq/7FvskrN6V1d7jjyDd7dyrzpCfHR4V9 eETE4dt7BU+vvk/7D88vVP9iP+WUjWndPd/xIn4+bjrHT8SPyDH/9OoVAYdv fn/N+srPeX6BfPMXZ07L+53WZTk2v0+POHzb/zpuXXpvw1McV32IR60Oc9ea 5F86HUe+2bGPTcv7ndZkOek+0pqAw7d4rHN19b5Yx1V/frf9vutWpntSBzuO fBuP46fl/vjKLMfyz4F1AYdv9vIFK1K81PD8Avmm3TnTkp/0lOvumbPgM3yb P7+t8te9HVd9yAss/917Wdo3/M9puYfeI+s3528d1i2fdpx1Bt/8ybyIF/fQ f7Qk7Rs+WuX7c4vzYI96IO0nvnRa7rksFTvg7ym1etGJjhdx9Qw/3bvdFHD4 9v28f9+b9hN3eD7Cc+3vvzst58oWZTk2j7ZEHL7V8UbvTvru57jqg/2yflqz MK3TtziOfIsrvjgt+yndWY5Nt4dHvNiXuWtBWo9PcLz0S9vD++0lHkt10etv Tev3lY7rc8vzZs0Os5OnOk68AN/82DMiDt/2QV7/l9Tv/2yKfH+u1K06FDe/ +uzrUtyy/7Ts1/hzy7yjqsO/XfGuzDf4lREv7ss8/MrU38NN2ceZn+zrWdOS d3hcbfP0PY7bfa6nKL8rxSevmQ7vIzVvs/O05AsxPp8NZz7W8/sDjl6K8/wS r+L5tw2m+bmv48ST1q4/e5xP3FvKmZvyrD2r9zD3edyOHJs/j9+e43PVx+Ki 634f8GIf4Z3Ve5gv8zgf+aU+Xel84AXVe5gf8Li9OD//d4/Ptd/svGPHdQGH b2Zl0dYUz8xxOci3/cXnbc/zjPmOHJt3+90ScPh2zmiXral+dYvH/6oP8bk9 /rVbkv0f9Lgd+em9YdvzutX586tWe85ZEHD4Nj5n9ad7ZPM8zlf9i32BP/el 9bPS4/bCbj1se7aDOs/TezTuDDj8dM91c7VvOi11jcruvmB7js/xM8gxe3pa xOGb3Ttkc7rPfofH/6oPfsXs28c3Vft8Hrcj3+z207fn+Lx8T+T2tN/z8YjD t3Mal/Wm9XWtx/mqf7Ff0L0xrbv1HrcjP+XX23N8TlyDnPTdwaUBh295x6s2 pPV1icf5xTmWlzB/enLchxzbL18fcfg2X66p4sR7PP5XfYjn7XvWB6xN9nna 43zkW9zyA8dVjtRPO8zuPdPxIl6d4Vse8tSIw7e445LV1XcyPF/Q9hLPW571 tFXJX/R5nI9889O7bc+/Iw85dh70rasDDt/s2Q9WpHjmcs8LVH/iectzH7E8 /b7E43zk2/7XP6Zln6Any0l57NqAw/98a/58pbpvNMflIN/yzRn7Wd4TWVrO 89vWB7zIIyaXpPh7/rTcc++R9bsx2c+PPZD2y4Y8zke+/b7HdjkftTjLsWjh bxsDDt/+/bb70r31K6blvvxSWe+9Ke+5alFap6s8nq99btt3P23dPXy7nJvy ONP8w14Rh2/n6X5ZnW/9heQLM8+1PPTg7ZIXdGc5Vqc/LOLwLT86r/r+zh2e F6g+Rdx+xm0pDmlMy/5Cd7KHe2+X/YX5WY79eHvE4dt5v/tuTuvu2mnZR3T9 i3j+99enOGTDtOwvzBc75vG8/XiU4l2Zb/bpkxGHb/7hG1enusqlHv/zXNP7 pdvD95qRY/Ww8xxP37HXfKGrep+6xvNzU/3kAsW7Uv5zk8bnc8M5k9lw1rvi 2CXFsROKs14VL/zdrR7fFn78EseL+Odrjhf1vQ86Tjxm+GscJw4s9am+c/Sl zSJn7ixy5mY58Il7izjwa9tl3lTx2CscL/iXeBxLe03Nkx1HDv1WzLOZfkvv 4XIcObSX+JP2mpw/O44cG863Oa5yWIe27j64ufO7rcd9xXHkmD35ncef2BXk WB3vsDsCDt/W1y82pXXY4Tjyzf484PFnsd87I8fqZpfdHXD4to+9sjfFAx91 XPUpvjvwpN5kl34s+Ix82ze8xeNPnf/WX3veH3D4Fj9fvCHFA+9xXPUnzrT4 9snV+5+/7jjy0/cqPP7UdZq+T7wk4EVc+r21qc71uu2l352Rbwthhcefah8s nv9qxOGbG3tY9f7nTzleb096Uv+dsSrZt587jnzbx+/2+FPtmNVJb1gecPhW BxtfkfzpBxxHfqojPBjuw5bzdmWVxyxP+yznOs5Py4+u8TiTdiDH8pzxlQGH b/5x/bLkP97suLYLvW0dvYPv2zuOfLNjl2yXc/hLsxyrI+y/JuDF+f9FDyS/ dbjjyLd44J7tci5lcZZj+0P/FXH4Ns+/cX/6Xtspjqs+xJPPasGfvSfFAz/Y LvcCFqf86M8eZ7LukWNif74h4PBtv+6Dd6V1d5zjqj/xpO2fHnNH8u9nbpfz KpzL2yF16WaHDexl26Vu7OdF0z5qxAt78arb0/rqdJznmt1bsl3iyflZjtVL vh1x+NZPb78lrcePadzbLfZkc1gv4NY/B/851XvnOK7PLePM6r3o8xXvynxb Z7+JeHGu5tHXpPrAeyS+bXtuGX+6/sW5l7svT/WEc5Tflb4DNU/ryR53WV51 S1/GrT5wtPKrOOLTGq/Odq54brZXZTw2P/B1Hpb8xQFn3dU/t0fwOcke/ufK 1M9nO469SucuHMc+mf3sdJx1b/i+jrP+0nc6HGe+H9zCez3eY36BE+eAow/t L/SZeS5xSP1zu2d5bneWDx858Glv+V4Uby/jxHPpz/Kc7cpkb//u8Ynyy3Fd mc6xPNdxngu/vFdY1THe5jj9Y83c5nEIcsp56OfkmSfMJ+aJLYsvO85z7ceT HS/rLjty/GB15juXp/2+jh3lPnj2w4xXPs+X9vs+orjPZ4sX3xNxfrf3vXT0 pHz+YTuE588lrrD497rquxIHOc7fWdz77h3573XdWbf+cEXAi7rWC5Z0vqel 0LjW06r38X59h+xf+3o3/K5Z8Bm+nWc7ujoHsdcOOWfr+jBONgwvvTfZ+dc5 jnw7l7je4xPkmJ3/1A7ZH3d7ZfPrYRGHn+r6d6f66K475Pytt6t4H9/uC5M9 f8kO2R9flM45vH+H1K+6sxxzI69cH3D4dr7gX7endTe9XfbHXX/Wrc3nlfNT vvbMHRJ/Vvd93rRD6mBu563dn9sYcPim7zU3pnXSt13iENdf98ftfNEXFO/K fBu+FRGHb+vlB9em896P3yH1NNdT62mKm77L/pjywVcovyvFyafskDjE/ab1 3+SmjNsq/LvGLV3p/uDzdki8UZ2nG1S/H/3v/x/vqr5Tr3ayO+H/Vv9Yfcdj o/rB6jt48x1nHaX3MuwQ+T0iZ24pZyPz7aqMl/p0zaJP1yxy5pdyZtpb5kHd mU/do5Dza7f/6I8+6MFP8HK/YFHwR/b8Fy3I/Ya/0H4D134r9y+0/3tKf/Vj 54Pb/P+r64kcm8/bdsi+g+uPnUR/8/tPflDyu+40n//X7a3KwR7a/smVt1br dofkcd3Jv+/0oORx87Mcy9PWrg04fPv1FX9Jecv/7JB9iu7Mxx5adz/5ulTH 6N4heVz1vcoxtYdd5XP32BBw+EncFen9Fee6HOSnuvyDYg99/dr+z/McN3nX aB7XleoS69ROzk1x3a/VXs2tvmupdmBu2rc9SfGuhHc+KHZgvsiZW8rpfFD8 r/OZH/rccj50ZX7pB6tz0a9+UPzs/CynHPfq/TAHqZyutP/zbq23zE3z7LeX pnrQtm8GnH5I/+79Bx+8Xk5Xihduuzj0s/KxT8onn1D+8qoflE8eoHzkKJ+4 vl7/7sAv6oVtfJ6r/K2Vnatv76LAP7+yZ8pHT+Vjz+r7Z3Hgr6nmkfIrQYHP PKrvz6WBv0e1Xuv5mwOf9ap8/L/yiReUzz6P8rVOUMYJ/UEO+wIqB/n14z4Q +LpfxHPBVQ77ICpHz1shB7x+Xg0FOSfW3tvo7wBXOZyDUjncz1B+Ok42Mcv4 ToTn8n4klXN52tgOeBr3ySDH6oc7NQLf6rRHTQW+nUO4vBFw9FQ5tp87PDXL fPNzYOCW1949Heyn4unezv8EfwKudrXkdwUc+6k4dlJxtaul/O6Aq10tn7so 4GpXS30WB7xT7Gqp59KAq10FT/5tPPenTeP3/ao8p9nG1/kDzvdKFGf+KJ78 QsQt7z12IuA638B1XoEzfxh/9b/kFaWfbXaU86u/Y2sRdzuueRg49k1xvacF budqwnsd+jv2qPpTcdYX+us60nZZPfeR21O899s/yfrz+CL93a9zP6T04ffJ nj76N2XcuGBe/h1/qvzZcOaDygFXvt6/Qs/Z2kU/gNt0uvQP0o9dGacflF/2 Y1e6V/D+KzOu/PL+kPNZv8rfKnV6+EXdtY2v9Xj4xA/17Y184gflnyznPuAz z5Vfzmfn45eVn+zSZMBLP6X9PB74Oh9KPSfD+DIf5DxBXr/YaXDdP6lf746X /ezrdPdZ4ii9J/p/2QGzd6eMpnbk8xn5HmkHuK5f5bNe0n3o66p7Dlfmfzdz f/pNYlc8n0vy/pjlqxz+TnHWheL4L8XxX4pjh+v17wk4eZvi36niPRP34+uy 3puq+ofymefKJy5VPnGg8ok/lc+4K584s74/Ix89lc/8UT7PVT7+XfnEn4oT f6oc1qPien+VecX81HnI+jW/d9CN1fy4Js9b6+/H3yJ+3udtyW92qByeY824 /WbxM1fN8tyuwGe9Kc58Vjn4BeUzvsonHlOcuEtx/KnixF2KE3cpTtylOPmL 4swHxYt7g23jVcYtPl7MB/h2b3D5dXnc4YMz7vX8rpJ/x/V5fJVf1omdz/gq n7qs8vE39XIWBTnUMRQv67IupzxvpfKHghzmleK6HsHL+LknxM/gGj+XcVO/ xNPdgvcEv1zKdf+I/VH/yHwu+/uqrE9Zf//jrH6T+Vbux1/zf/rTUv8u6Yf5 +bmz8cHNTi+7tXoP1Z/zc8wcf3pBzlfL/md/7Ib8XJVDf9Tj81Od86Hb5Pxn 1yz6dAd+kRe38fH7yi/y4qDP4sAv8uI2PnZV+UW9sY2Pf1R+kRe38fHjyi/q jW38R1b+VPlFvTH0T+QX9cY2Pn5c+dQb68dlc5BT5O9tOH5E5VDHU3w2ORa2 HD4dcOyMyoGv85l1ofMfuwRu+0YdN3eqnQFnvSi/tBPd6Z7DB27JuPLLdav8 +bPo0x3wMv53OcSHyicOVBw7rzjzXHHms+LMW8WZn4ozDxVnPijOvFKccVdc 3ydStHdm3KnPYf+JcxSnTqK4vt9E6yfgarfLPLEr4KX9bMq5thtm5YPb+esj 7khx09pb8nw2fVbfmecZ8xn5aZxuzs+tl9OVzllceIfEN1cFHD+ncugXxal3 qRzss/KZV4ozLioHPu0FL/zpas6x3ZrH0eolJzpOf6bvzNwt4+/9WfKr+1Nt cui3evldASfe431gakeUX3w/uY2Pn6rXZ3Hg46eUj39UPn6qnt8b+NSd6tvV H+Tgj+r7rX8WfbYFPnUq5ZPPKv/8Km9SPnZM+eT1yrc06E9jgY/dru+fRuDT LuWTfykf+6988i/lX13Zf+WTjyt/TeUXlI/9VD79rHz7cWEz8Iv3s7Txsf+6 Hlm/4Na/l96e1y/rFJz1W8/vDjj2V3HkKl685ynI7wk4dctz29f9Q37vXvn4 R8XJuxVn3BWnvqo4+bji7PcpnuxMxJkPijPu9f0TcR13cH1vF3iZh8a8T/07 /aN5Je3FXoKjv/LpB+Wjv7wvrEPjFo0rqBMsr/wH/qs81+VxRfmegtyfHeW9 L/dTlgbsdr8838/lpfYsyHwzN5+5J9mXxoLcv9ZNC+7Ncor9/Tb+bLi+v4zn 0i7Vk/4Bt3vpK+6QOs/ijNMu5aMPfDvPvXBhOrd687rAZ30pzjpSOcQhymc+ KJ95qHztH/gqB/5s8x//pThx+GzzGf+v81lxfe+ezuflxbqYI/N23f85n8t6 yNIwz8v3YtwacJVT6p/fT5rvi+g8VD64nbNdU92HfM6duX/tz1+1RPrDz7em OGNhfq7KYR4qTjxg4/3CB7J89iOUT96nOOOuctZV/l35+AXFGXeVQ/yg7aXf tH+YJ2bH91ua7br2W2r/XbnfTO4eSwSfW/nRJXLOtqrHtPFnw9lvUjn4ceWj n/KJe5VPfK589lvr29UT+OwzKv/77XFs0L8/8Is4to0PrnzyOOUT3yq/iHvb +MSryi/i3jY+9QrlF3FvG5/4U/nXtMe9bXzqxson7lI+60j576zic+WDKx// onzWnfLBlU/cpfwirm7jY8913ZX1DV93aoetnHK8r1PkgLMeFWfdKU7+i/z0 XsJF2X4rv/QTzi/tvuOsO5WDH63XZ03AqbvW67Mu4NRdFef8teLk0YpjHxQn X1Yc+6A45xbqx6s/4NR1FccOKM56rx/3oVnkT4fxYr3rfGN+6nkM4hb45T5R +A5fjmfKc1sez5R+SM9N8X6fa8K6IA4B1/Pi4DxX4+3yfaY3BL76QfCyP1yO 1g/hl36hmd+DQp1wNj64fQdm12XpPsfl9+T1bvfG3t2T16fuA6b1c09+rn3H b+GyzOc5Kn82HP3q9ekJOPUufS51b+UzDxXX9wvTLvpH+4H5A27+6fz7JC53 nH5TPv2gOH5f8Vo9P3B/+G4zfPSkn3S9KK7vudb1gnydn7PNZ+ImnYc8V+ch eJln+36ujovyi3r79/x+FP2PnLSe7i/jzyOWV/eJ7s/jaPwLl0s9oLuznh/x Ip9qk0M8r/rMpn9hr86o3mf9jgeynoZ/emX2l9rekl/ZhzY52BV7X8lJLgdc +dRflM+8UD5+X/nFffHAXxr4xfmHNj7zT/ng9f3WE/jMJ8WLe0VtcqifKx// q3z8vvKpMyufOnZ9u6YCn3mleFF/aJsnpf/1ecI8hJ/uMS8p18U5jhd1pzY+ 8QZ8Oxe2h+PKJw5RnDhEcfILxckjFD+3vX/acPyC4tR/FKcOqXhRb2zDizpP 6J/p0D/wtZ/r6zB6Xt3jovK868pg/5m/9fHSmmD/iWfVniNH7Tm42m1wtUuK K79cX84Hh2/L6d2r0r7ilT5vbR/pd6uzfSn3Afnu65IsX+UwbxUnvzY9Dlwt cWtX4DPPlY+dVD7zX/nYW+WzLpRf1JHbcMZV5TDPlV/sW7XxmVf1/TYd+pnx 0nFhvoFbP166NI8jcsAZx3p+V8Dxa/X4oizf+vehpdnfKR//rHz6Wfnl+zid z/xVPvOqXv66wMeOKZ/5Vq/PRMCpY6sc6jDK1/GFr3Lgl/FkPB+odol5Rb6u 9gpc7RXrQ89LlP5+oeC9oc6M/hqnoSf2GBx9SjvQ7ABXO8O8oG4ym5zi3OB5 a9I4vNHvKdk96NVr8/4S66J4z0jD9VE5aT5flb4DtmONnHO9apbndgU+50mU z7pTfrE/H/iLAr84Txj0Xxz4xXnCNj79qvziPGEbnzxc+cV5wjb+8ioPV35x nrCNT76k/OI8YRv/CdV9k3r9ewO/uA/bhuMv6vUfD/I5P6B8e6/QvyO/uN8X 2tsIfOyG8vFHymefQvk8V/nUV5WPPVQ++8XKx/4ov9wv9nXH+tV1ir0Ct3L0 ET15XSMHnHWtfNZpvZyuWfDuLN/k9vbkdap81qPyWY/1+iwOfNaj8ss4xfms x3r9ewKf9ah84mDlsx7r27sm8FmPyseOKx87Xt/ezYGPnVE+9wfr+6c38LEP yicvqO/PyEeO8omHlQ+ufPJZ5RPnKB9c+dix+vEdCHzyQeUjR/nEUcrHTiqf uEj5PFf57OMrn/xd+dQHlM/+l/LZz1I+9lP5nKetn88TgY9drZ/Pk4GPPVc+ +1/KB1f+lqruoXzy7vr53Ax87Lnysdv183w62GHdXyMuxU5+pz3ubYtjy30E PZ+8eda8+3A5d4EdYv9C66WcO9J8ubzXUn0fqu07B7rvoPEqOP5rNry437eb f3ehPKe0sbIv/l5Es8bz16V52ed+UHH8lOLka4oTZ9bL7w44fq3+uYsCjl+r 12dxwGl/2jby72dwbkH5xIfKB69v7+bAx08pn/1E5eMv6vutP/DxF8pnn0L5 +Iv6/h8IfPyC8rHPysfO14/jUOBjt5Vf3PNt4+Mv6ufDSODjL5Rf3Ldt4+Mv 6ufPeODjL5RPnKx87K3ysauKU39WnLha8XQvvhlw7LDi2EPsBvYBe2jvD29u yO+1U3uS/n55tic2/n9YL3h1nqENZ/2aff+hywdXPuta+cW5gjY++im/OFfQ xsfuK5/1rnzWu/KL8wZtfNa78ovzBqHf+gOf9a581rvyi3MIbXzWu/JZ78pn vSu/OLfQxme9K5/1rvzi/lQbn/VeP39GAp/1rnzWu/JZ7/XzZzzwWe/KZ70r n/hQ+ax35RMfKh87oHziQ+VjH5RPfKh87IbysVfKx54on3YpHzujfOSondFz I9jPYr9sBrfmn+V2CTng2B/FsTOKY2cU53n8tHtzC1fk+EH52A3FsTOKYzcU x84ojt1QnLxVcd6XUt8/EcduKE5eqTh2Q3HsjOLYjfr+aYR+xv4on/lf358R Z52qfNaF8smDlM88V77O57I/p4Mc+Dqfdb+Y/IX8Qevz5DvMO813mC+a75Bn bZHzVMwLPa/F/K0/37g57D+ij9bDwcv9VM6TV98VnrEbKgf7AJ92pe5YMSsf 3L6jN6c39yt2g3YhB/n23Z81G9N7zZ+zMtsTxbEDirOuFWedKo5/V5xxtPdH HOz64/e1XZrPWruetiq3Fz447YJv63zeqiAf/mw4eupz/699KL1Pgd3Q84qs 9/IehM9/+lvnP/1dfx+Z7+H5+yvQf3fJl3WfX9eFzkP0Kdex70PRfsVVvsnd tcJv8fGy36/clOsT5fn/Kq48YFWWr3IYR8WLOsweLh8+8sGL81Qz+qQ4b3Xu Z4vv9tss5x1cT/joae91P3eT4HM7Fec8sIl5yPd7wZXfWY2T8onTlM94KJ84 Tfm0R/nMW+Uzn5SPP1I+81j5xGnKx54oH/9V38+RTzypfOaD8qkHKr94T1Hb fNB5Yudzjl+Tx51+BS/eR9TGxw7DN/EXOq788jyI8/EfysdfKZ95Uq9/T+Az 7srHXymfcVQ+95iUT/ym/LKO6XziN+VTV1U+8ZvyOb+nfPI+5R9S2XHlk/cp n/xd+eR9yieuUj55Xz1/PPDJ+5TPPRflY0+UT3yrfOyJ8oljlY89qZ/Pk4GP PVE+8bDysSfKJx5WPvZE+U+o8krlY0+Ujx9XPnGy8rWeD1/lFPP57ulcD6DO r3Ev8QN6lu8T1fvI/SGuYH1rXAHOPrHuF5TnDZv5vdp6Thu7q/cC0If9YI3P z58lfi7PAXHOvC/EIfDVX8PXeKDshzXhueDw7fuIr+rLdgQ7T/0s2QWXY8tm zuY0//7t/kJx7L/i2H/FsfP18nsCjt1WHPusOP2kOPZWcfpDceyn4tTHbJx6 N+e/x34qH3uoOOtEceyh4pxjUZzzKopzLkVx7KHi2E/FsTPaXuyk8rEnirOu VQ7xjM7D2eYtdgDcvlc7uTbPT+SA6zz/V6u7vrgux1cqZzYcO1//3GbAaa/q o/dQsHvnS/yveVlZr9P7ZdEeEqfofRbiHbUnRRzk45L5ah+wh9ir2eSAp3O0 fel+9s/X5fEytd8t5zXy/az+Kv5Yl5+rcogHUt3Hz5VgN5RPXKF8+kv5jKPy kaN60l5tF+N+jPnP6nsUp6zP/XBrC767P9sR7YeS3+xQOZybekNrQsxzOeDK Z9+5nj8/8NmPVj51BOVTd1A+/ra+H7oDn3NTyue5yse/1Ld3UeDjt5WPnspn 3dT3z+LAp56ofPym8vlZ359LA598Svn0g/LJp+r7vyfwiSeUzzqvlxNx/I7K 571YymfdKR85ul5Ku+pyWI/w7btYh/p3l+CDs+6UzzpSvDyH0p/qiB/w+7XK Z13U69MdcOZ5/XMXBZx5W6//4oCzvur1XBpw5lW9/j0Bxw7Xt2vlLHL6Q38S vymf/Fr51Dnr29uYpb2TQQ77p8onj1M+8ZvyyQeVj/9SPnmf8nX+l+MS+cQP yif/Uj5xjvLZx1Q+/aB84kDl0676cY989FS+5onlumuGdV3u+/CdE3/vEP5f 81PFeS5xIvmp2aFbp4U/J/XPPzwv1jgNOdy7t9Uy5efrdP8I+ax/5JfP7ck4 8qlXIx8+cZ3KKfcB/Lngytf4RHHll+cHnQ8O39rZtyXHv9hn2pXWm8uxZh6x JfXzWrfz9XhXwLFLpseFW8I+ufKJB5SPf1Q+eiuf9iu/eB9OGx+8Xp9tgV+8 96YNxx6qnNlw7KTi2AHFsXuKYwcUx44pznpUfPf2/LQNx/7Uj3vEdV0zr1gv Og9Z70Wd/n6fn/DBmYf1eE/Ai/MabTh1D8WLc7FtOH6zXv7WgFPf499Nv/16 Owu708bXfoOvcuDTb2We2d+Bnz2/XU5bnovdxt7aey8Ort6/d/JAtrfG+9p0 5ydbAm9y+4ye4PDRBxw7DF7Kn5vll35kbvIzn3c+dl75F1b7/srnnLPy088b Ah85yueeoPKxd8rvqN4Po3ziSPg2nke6PuW974FqPO/JcujP4r3Abf3JPUSV z31GHS/4Koe4VuXo+6aQA1/lpDzqgSCHOrDKga9yiKdVDvqrHPgqh/PqKofn qhz4Koc4XuXAVznwVQ7n4VUO5090PoDrfCj8ZZt89vdVPudmVT55u8qnHqXy 8esqX8/RIQe7qXKIo1QO+qsc4iuVA65yqNurHOIolUN9Qdc1/aDrmjqV8tGn 3g5EPnKUT/xmw3+Gt0vzeuSA23mcT+h635DbS7xTxmPN/J1VjQNtnr1goIx/ Xl+du37cQOarPuAt2ryXVu+j+9bW4Pft57u3prjnlf59avv7f27N5yTK99hU 54J36s16Wjp3hvOL9dEmfzacOr/iRR2+TT77BfSbnSP4d+7P8n2Ke1b3yBc0 Q7us2z7VzP2j8UDhF767MZ2DbzaTfp8eyOd66J/PtQQNb63yW+9PxYmrbZ6c OFC+92EGVz77JooTT9Iugy/rzfsdhZ2ZkW/vGe2I+pv8IY9PkEP/wLd+2nVT GUec4zj9oPwV7XHBOVWcsIfj9fK7Ap86lfKpAyufOpXyqQMrnzqV8pGj/CK+ aMOx6/XPXRzwznZ/2yanyCODPksDnzqq8sv32TmfOmp9//cEPnVU5RPnK5/5 rHzqS8onPq/vt/HAZ/0rH/ugfPJH5WN/lM+5FOUfUNWvlM+5FOWThyqfcynK p96lfPZhlc85EOXTz8qnPqZ86kj1820y8KnjKf+yKo9WPu1SPvm18tFT+eTd yid/V/4Wyb/gq5xivs3YQz1HzT6l1Gvzvqfi5H3MO3D8FHUO8jubV6NN4Vfn cQ+dznzsr8UbTeXPzfzifV0zdlblkH/Vy+kKfOyv8snX6p87P8ghX1M52Fnl k8/WP/fewCf/Uj75i/LJs5RPnqV88inlk9con+cqn7xJ+chRPvmO8sHr+3Np 4JPXKJ/8qH6+9QQ++YjyySOUT96hfHDlEy/Wz8M1gU/8r/OQOk0hp2tbip8+ levDWT64lX8WNzOfPKLAZ/hmR+5cW67fxzufOo+5wzO2Zb9u//6rZsLfv03r z+X7YGZwa8a5zeQnl3ieYtP0ubPnFwb/phrH1RtyfFiM7+qqTrtXsxN+Uaed we17aY93nPjcun3zgOYv5XeEXlLtS76pWd0L8LyGuBo7XMbPzXR+/77Kbx/b m+058sHtOXOmOuET54Ob/JMdJ362cOHl23Jeo/1j7dy+MdVR75jK+pMX0F5b VrcM1OcXeb17u0zvHzpu/FOm0vz6/rbcD9pecPv7D07l52r8b/IGY5xv7egb SOP5Po/nbZ6ety3HhcTzPDf5701Zf5WDn6nHq/e2Hb1N7mF0zaJPd+DjH5Sf 4v9FgU88r/zi/QDhuT0BJw5Q+djLevnrAh859f2zMfBZ38pnPJVP/K98/l3x LdW5rvp+3hz4xPP1/RZxzkUoTrykOPZLceyC4qwrxZmvihPPK845KO0H3gNT 3/+RTzxc3/8TgU88rHzibeUX93Nn2m2/v9rjZ9ptan+zmlcbJsO6vr0FnDeZ 7YPGycix99q8qNL/CY5b3aLH7QPywdWelHhXwMnfFSdPV5z1W89fHHDya8WJ j+r17Ak485N+sHrMrn4OVPm8n0355GXKZ14pzjxRnHlV367J8Fzmj44j86H0 T/0d2LFzq3UAzj2Icv/Iv/+l+Q7zk/xYzyeoHPIynkt+ZPXME6p75f2eN+F/ wcmbiMdKfG7A2ecCt3V83mCWY+pc4XzyJuVzngG+vS96x7aMq55PqeJ81Ye8 QHHifHD6B/lfbD3g86rn0iCH+F9x6kSKc8+xvj8jzn6E4tTFFCePAMef6LlZ +OQL2v/kCzpe4Mpnn8Ka90cfL7m/kPsZ3IbhMy6fvAP51s6dqveB7bk2x2PI AbdmP9f52BFwa/4nBjNOvI2ecp45y7d++3R1T+Ddridy0JN1R9xAP9s8WODv SzP706zus88dzOOi7QI3+Wun8nPJj9DTHrePy7f+/Eoz+a2xwZR/nLM++yPk g5td/dRU5hfnVGdwm37vchw788sWcOCgnP90/c2+rF2X1t8lU2l9bvR8jfxl tnje6l57DqXzDf+5Mftl5IPbnw1NdsIn/gM3uX8czDj20PapvjaY8yztnxta HfTr6nvk+7j+5F+015bhY1w+eQ3t0jjfxnHdYM5r7J7AjZOd1o3LB3PepO0F t37rmszPJZ9Cf9Pj0MEyLzuy8gu7DCX7s6o3+zXkgxv/sMnMZ1zAbZ18ezDj 1AmXtPr1fYM5n1L9/976+29V991Pm0zr8UEfd+Ii4soyr2l2vLL1827H7efO 1X26Pw3mftZ2gdu4j0/k5xKPoae1/1mDIa6z3/9Zzdv9N2e/Z8/53aC8325O fm7y367/xdV6gU9+p/Jnw/EPKgc/oPzivkMbn7xD+ZwjUj77CMrHDyifuE75 1JmUX9Tj2vj0o/KL+RH6bTzwiZOUz76G8tlHUD77GspnH0H55C/KJ15VPvGq 8tlHUD5xrPJ5Lv2U1PP4tvCbu21O52jPngjz2egHTeR1ofFwEU/eVMXVV1ff Cf1Vtc9zsa8Xm6cz9pl9L10vJb/6DmybHNaFPf+JQ3LfcVF4LnmN4sRxKgd/ rnzqEsrHz9e3tyfwsSv18vsCn5/18vsDn3Wt/OI9Em181rXyiWOUz7pWfrH/ 0cZnXSuf8VY+81X5nANUPuta+awv5ae4YyzwsRuKs+4UL+6h/67yvxf7+qV9 5q/Gq3n+UCPMfxvGy5yPHNYduMWP075ekAOu6wuc+h5yrFsecrxeTnfgkz8p n3qg8sl76vkrAx//pXz8i/LBlU/+oXzqhMonDlWc9z7V9+fmIB87oHzGWXHu byvOe8PqxyXirF/FqQcqzvpVnHVX38/bAp91oTjrQuXA1/nM/Nd7E8zzMv7j /cNrsj2Ab3osnErv83r8cK4z2Kzaq8qDTvO6B3E7OHzqIaWcuVmOxQXzhjJe L2dukEM9ROVQ91A58FUO54FVTlpXNwQ58FUOfJXDPrLKgV/frpuCHPaLVQ5+ FznlOYgbst9HPvvgKp/9ZZVPHaa+3+YHOew7qxzsl8rprPpH5bAfrXKo86ic Yt+lTQ771PXzKsop7ge1yaGupXKoIyGHdc+4aP/jD1Q+/azyseOq5/er+aBy OMerctjvrpezIsihXcjBPmyq/NNLW8PWnJL5vDLL533z6KP9AF+fi576XHB9 LnU2bRf+zOKZnVw+fJVfyFnr8pGD/PIchdSj3lzdX7xtda4bFPcaZ/BHt/7+ K9X7WN48nP0ruM2z2/y7TNSF7Ltu3/D6nupvy+Xpq1PeMq/aBznC5VBns2HZ bbh8H8ebpjqtbDcylOt1qj+4yX+hy6eOhz72Zx/2OqGpv2Qq7RsdPpzyw4PW 5foA8sHNrS2czPziPfozuNmXX/p3DKg7WT99zut7qr8N4zfXdp7amtc7JtN7 Ig50OdTT7DmnVu/tHl+f7SlywO2xR05mPnEPeGreUHk+8uLJtC9/11Cu72k/ 2PnXN6xPPz/relL3o102Dd7l8qmnmdznD+e6meG7V/to/zGc63LaLnAbxkdN ZvnU69DT+utrXg98ZqsZP5tM90KPG0558sG9OS9GPriN63kTmU89DdzUuH+o PJ8wXdWX5nq9TvU3+dduTHbn5olUFznK5VAfs797ynD5nsj3TnSOtxbY34Zy na1W/xncxuEol0/9DX3s7/7b63u2zjdNpHnTOZzu2Z/s+2jIBzf+8kbmE6+B 22P+OJTxYn/2bK/Lqf72uN02pfW+S3Xv+MUi5+qJ8nxoW93Avpv8seH0PfvX eVyKfHB70NsanfCJ78Gt3/49FOoq9rwer+9p/9jvjU2pHvr1RtafOgntte81 v28o1FtoF/lDcW7n4OGMG3/fqi50wHDIT9GnyHP3aeTnat5qv3875qfWD+cN Jbv1xr4c59r8fclwrl8U7wmceW6yd31Zf5VDHFQvvzvg5JuKU/9RvPiudRvO vrbixH2KU08wfMdQbi92hfGyXw/qy/UE+sH84Zeq79kfNh76zdr1g7Hc/5pP Icf86fP6kn25yOXYerzdx6VYp7f7uCifeix8+z7MqOPKx08qnzhS+YdU/kr5 9Jfy8Q/Kpx5bzx8L/OJ9g239QD+z3sgrie9m26/XfXbOser5ZOKX8pxnfwf+ lPeEkYca7SWVH7xgJOeh5k+/XX0PaJvnufhTcPjkv9YfJ4/kuBc+/aTfheS5 8HkuOHF1oc+M/sTz5oe+4PogB32QQ9yucpCvcuAjx/bpPjGS43Drt3dX+3Sd IzneLvrnZsdtHhxdxYHdHs8j34b3pyNpP+1jq8r44WbH7felk5lPvA1uw/8Y x4n37HEbPW5XPe28yYKVab9p56mk13eGy/2VmTjZ3j/13pEcJ9u+9aXVvueh I/KeW9cf3PQ+ZzLLJw5HH4vfrvE4v9lq9/5T6RzEN6t29fh7L5EPbvA+k5lf 7LPvw3tOPJ5nXVg3/cXjdtXf+u3g6r2px1T9fLrLIU42OVeNpPV+0Tr5zpfj Nu1+NpH5rHNws/uvEnwmrrPz0buP5Lhd+8Hiwom1Ke+/ayLrSTxPu2y8LvF8 gfj56lb7PzuS7aDhp02kPOJDIzkO13aBW7j5/oksn/gcPb/dUugej/8tDhid SHnqxSPJ7u/s739APrjxNzUyH/8Hbm7yqY4T79l8G/G4XfW3+fn+6n1ET6ru 0fzA8wLiZJPzwZEcJxt+daPzR632HTmS423VH9zyg581snzi8OI84Y0e59u8 e/lEOifxvZE0z27ozX4Z+eDGP6iR+fgT8DQMHs8TT1qcfqfH7ar/W1vL95Te dN7i/Y00j850OcTJ9r6s60aSvbhoU45DkANu8/LY8cwnrgY3e/B6x6nf2vLd ZyTH7doPNk+O3pTm3dXjWU/i+WJ/8zLPF4iTbd6eMZL9s52LGB7rvKOl18y6 IN7WdoHb320ay/KJw9HzzBZvicf5lgc8NJ7s3W9Hkr73+z4R8sGt3ZtHS37D cVuHzx4p4/OZuNHs4YPDYb8J+fbjy5vTOL5uLP37HI/zifeIg4gb8ePgGm/b 405zvq2fr42mfz/G+dpecPO7x49mfYg/0d/M7/wYx1p73zKS9yOJP5Gf6kR9 ZV7zu+H0vKf25zi2Hq/eJ7Z+OMsHVz5xhPL5qXzOPyiffRbl45+VT1xYz98W +NTplM9+ifKJt5Vf1O/a+MSvzJN0nqwvjwc/7e937u98dYt++kgYRxvmxcN5 3DUOR46pfXV1Dn61y7H1cIGPL3xw5ony8fPwrf7X67jy6X/F2ddWnP5XnPFS nP5XnPGq13846M+4aD/Qz8Qdui+GfyK/oD8Z3xLvnjWv4Tw1eHHe9pTRjOMf r5E8CP3oD813VA7xD/OFdpl6k8qfk+b3YZ6/sN9h6kxPynkW/+7nbPtKyEeO ymdfA/mlPt2Zb+utOZr83O/9+4PIAf9Ba9lsmMx87BQ4fFuvD+vJ/WDx1Vuc T55ow3XDaLZrZkevmEzxz6Wj4ftoyAe3fOEXVfy/u8tBvtFn/JjZhyevzHEj csDNb+4/mfnkU+D2Z293nPlgcc7zR3NepnpamPGJ6rtaJ0wmv7LM8z7yIws/ fjea7a/9vmMixSdnjuY8S/UHt3W3YiLLJ/9CH5tO//I8zubpVz3OR3/mlbmz xdX5r7NW53nJc8HNXn52ohM+eRa45XcvdJz1Zc/beVS+e+LtsmW5YlVaz7+d SHnIbZ4nkjdZnPLQaOdXW3KPXJvjMeSAW9w12sh87Cy4zbtvOE6cb3ZvJl4g j9N+sPnx86o+8gzXk/yOdtn+yrDnj+RTJu6vozlvMvzmRuqnK0ZzXqbtArd7 G1c1snzytULPp7p8w4+q8o5to2kezFuf48nCjs2r8rKXNzKfPAt8t5a+JzpO /G/PO3Q053Gqv3XvI9en+v1HG2mcV3ueSN5k8/l/R8vv5+3SSPWV747m/Ev1 B7f3Wa8Yz/LJy9DH9oMe4fKtW3/QSOtlRSX/sb05Pizkz+Am7xHjmY8fAzf+ Kx0n7zAr9YTRnMep/qbHp6v38JxWfTf2Ts8TyZtsWHcaS+thtDf/PT/B07mV 0czHf4JbvnvBaMaJ883Ofmg053HaD7Z+/qd6b8/7x7Ke5He0y8zypOeP5FM2 bxeM5rzJ8ItGk729aTTnZdoucFuf3xnN8snX0NPq4vu4/JRHVe8VGavG/Vmb sx1EPrjZhQtGMp88C9z69+OO41/tua8ZzXmc6m/+cfGm9HOiild7PU8kb7Je /9NozptMrxeMJD/101E5F+r6g9v4/Hs4yycvg2fD/BiXb/7wVaM57toqeZnV i9ZV/X18X44DkQdu4/Ds4U745FPg+7ee83rHeZ75jZnxIl/TdlmzHlHtX3xr uPPDrf+4b6S8p7p6JI9DmU81032yXcfSvDvc41vkg9v+6F7VfsmuY1kOuM3T i0dDPmLnCD4zmvNB7R/7u63V/sKZQ1l/8ouirvdgzFNs32X+SLr/3ed5hw3f aTkuzXE1z033grwfVA5+SXHiYPvnBTkOz/sp1syTRkO+oM81+JrBoKfdF9p9 MLdX8wvr15eNVu/Z3JLba+LXjOY8Vttb8psdKoc4yJ73B5dT1KdPq+Kuvbfk vAn5Nr0+tSW168ptQR/7+12cjxzaC9/652pvV9FvV3u7lE9eX+QRyxxXPnmi 8skr9bnoT/yi+Rr+QfM15q/ma/g9zbO4Pw3O87DfPNfG7aTJ1H9/9u8uWZ3y 2sk0X5/o+RdxLzh88hFTZ0/Pv+DzXPDHtsbtCy4HHDmse87jMd/Qk3Noqic4 cqyO2zme4rfjlnVqP4Bbvnqo87dU+7vglg/9eizj5Cm0l3xQ22t2+49Lcz+j J3LQ0+LTh4/nPM702nmyc6JlOAbH8nkz1R/cumtsIssnT0Qf69/3jWX55ge/ V50bOXg82aObl+f4Fvngxv/qROaTD4KbWj8fC9+zNj/5Kc8rVX9r/x7L0zq+ aiK14xkuh/yOv9N7qRanv2c82cuzV+b4E/ngNk4zOHzyRHBbL+NjGSdPsXHu Hst5nPaP1aFXrUj+8SDXn/wUvW1c3ujyjddT3R/fezzbR7s3c1d1TmOv8ZyH arvArTtm+JYPnj6W5aC/6f1mz2fR3+K7xzmffND++ejxlH8Mrc5xJs8Fv7Nl Xl7XyHzyR3Dz0/eMZZz8xeKWS8bKfca2dln3HLW684SWI/hCI+tJ3or+Jv/l Lp880abFo8az3zX8SdW5iOmxnG9qu8Btvu3cyPLJQ4tzO/81luXbPP15I/3d S6t9knety3L5CW52dJ/xzC++WzSD2/hfNpZx7Ls950zPT1V/m2ZXrk3nkb5a zafnuBzyQWvH9rGcD9oyu6ny60vG5HtArn/xfqSzxrJ88k30MbP2Vpdv6+Ou 8eTX96vsxq0bynzgeMdN3atHM5/8ETytn7GM4y8tvnyP56eqv9mfvTak9fbk sbTv9iSXQz5o3f2W8bTPdGRv9rvIAbf+uHwk88kfwc3urRwr8Zm42ezAFWM5 P9V+sGWybmOyn48ezXqSt8Kz8Xq1yydPtOc8YTzng1YffF0V58/4F/JNbRe4 1R9fNJLlk4cWdfuPeJ5rw/GOKu48fDzNhy9uKs+nHu+45cOvGs588kdwmz/X jmWc/MXa8R3PT1V/s1/Prt5L88vqXMJBLod80OzxP/1cj/nZ1UNpHWwYy3ml 6g9uv14+lOWTb6KP0d7l8s3/DAwnv/P88eTn5/m9IOSDp3rfYOaTP4Kbn7pg LOPFucZTx8I9OOSbPTthczqn8ZKhNA/3Giv3H7/l+w6an5odfPt4yid+0Jfj duSD2zxZuK0TPvkjeEpbxjJe3M+9cSznp9o/9rxX9qX27T+Y9Sdvpb0WNRwl 8mfyQWvfU8bLfbFTq/d5PWE855XaLnD7+xO2Zfnkm0Ve9smxct/ws4Np3b6m mucLfF8J+eDGf+9A5pPHgZu+t+a8oHy/3k88H1T9bb18usJvrt6b9uKxkCcW danve34n+Uh5PnPn8cw3OQ9uTXnSkOeJ2l5w83cPbM36aD6Y6oljIe+zdXXM WLovufPWnN/ZPG6Oyf2wOaVd7fV2qZzie81tOPfszA5e4PKL70238dG3nu/n Q62dd23J/46e1q9/q9o7tiW0y+oIr9+S+0fzUOSY/fjdlrQPcpzIP8v7B/ng 9GdRj1y4NecN9fyIY1cUZ33Uy+kPz4Wv+tMP5GGaR2teTLt0n5E8WvHZ9jeZ n8Q7PPei1kK7dyLFrf/RyHlxOnc9mfT+sefd5AXgxT7mTJ6IHO6RIcfm2X3j GVc53L9VOan/Fmc56I8ci9u3u/7IsXMwT/Dncu+M5xZx3wxuYcLWiawP98sK fY5uJL/10JIczyMH3J7+vYnMJ68HT/bHcfJNW6/X+3NVT+uGd1TP/Uu1H33m eJaDnru0huN5jZynW3xywkTnm1rEPRs531f9wa0dr3X51AHQx+zNZV5nsD/r ncjfL2K8insKRzRSHPWhnpyP8Fxw+62nuqdwRCOvT/DnWljidQbyRGvfDV5P 0HbZcrhlWYoPdplIf/9Rl0P+bvof10j9t/+K/Pf8BDc93tbIfPJ9cLNfeztO /viN1gTbpZHrCdoP61r+5OvL0/z4eiPrSZ2Bdtk6nON1DPJ3G5+XNnKebr/v Wz3vxY1cB9B2gZvd37uR5VMfQE+LJ+Z7/cH85mVVu95Q3bf48aps75Bf4IeO Zz75O7g179GOYwctj97mdQPV3/QdWZnyxJ9VccM5XpcgH7f45MBGzrttni8d S/tmz2jkvF71Bzf+lWNZPvk+PHvePK8nWH1vU5U/dlb7eP/y718X+3szuI3j 3aOZT54ObvnfuNcH8Mc2Dt1eB1D9zQ+8Z02O+23efNrlkHdbnXC/Rs67Tdxp 1X7Y4xo5f1f9wS0fee5olk9ejz5WH/i51w1s+X6hiuNfVt0f+uj6HMcjH9z2 dz8wkvnk6eCm76LxjOP/bPwu8TqA6m/1p9vXJT8wv9p3OdHlkHdbf7+58kcv 2Jjj9qKeMYPbOnrHcMk/3nGb1rs7Tp5o6k2P5zqA9kPKc6p7hdcPZz2pDxT7 fN/x+gP5uK2Dgxs57zb/ODGUxuG5jZzXa7vA7VzLyqEsn3y/OBd7rdcTDN+p Ogf22kbyw/f05rwD+eDpPMFg5hf3AWdwi5v+7vUB8kezc0u8DqD6m10+ozft +7+puhd9ussh7za/85xG+d6tb1Xv+XpyI+fvqj+4raZjB7N88nr0sfThUq8b JDtb3YM6vFqnD/P3URTr92HVe1HO3Jb55OkFvnI84+Sn5ubmSR2gTX+zz1dU 55Y3VO/HPNXlkHfbMB/bSHatz9+fgxxwWy+fG8h84mlwE/tUx8kH7e8f1gjv 20G+NeeCzWm+Lh/IelIfoF3mBy7w+gN5t+X1L2rk/Nrw3QdSvx3UyPm7tgvc +uNhA1k+eT16Wv/e6HUD+7N9t6X+PbqyV3v253yosP97Vt9t3nVr5pM/gJuZ eEQjnL+15673fF/1N1p3Xzr39NEqnzrT6wnk19avz/fvuhs+d0u6T7xXI+fp qj+4mYkztmT55O/oY/tTl3t9wPr92q3Zj+n+rMWZM3Gg2c1j8ndo83PBTc4v qnPNR/j3bMGt7tnn+T4/rb03el6v7bLfH6rqFf+s6hkfcznkp0WdO3+/sdlh zz2ustuHbM3zorDnM7j5nwv7OuEjB9y6dx/HGTez57s2pD7g/WPuYB15eF/W n/waedYPPxkPebrJ/3D13rgHPL+2du/ayPOvPK9bjcu53g8qJ63Tm1K8+wX/ Hhe48tlHVX6aV3cGPrjyyQvr9VkU+LznQ/nct1V+EW+28am3KB//rHzslo3r P7xuoPOHfjb7cWBfGJfkpzfn8dV6hSn8Gv++kI6j2etDBvI4rjQzNy743M56 vKvzo60JfrDLB6/ndwf+hdW9aeUzXspn3JXPeCkfXPnkr8pn/tTr3xP4jLvy yZ+Uz3yrb++awGe+KZ+4pr696wKfeET5e1RxXDGvnjiQ4wLmieUNH6rOkTxv c5hX5r/O9vtJyGF+wjf39UufV4X//aXPT+UzH+CbOb/RceUzvoozvopTX1Gc 8a3XvyfgjK/izAfFGS9tV5G3hXZtnKVdvUEO46v9zHjdXJ2/0Pok9QytT14t 9ybot9nuj+s5H/qNegM480jPF/H35D3g1IVUT3Dk0y6T/4rq/PMGr39aPnD+ RHXexPnUYcDhU0dFDn4LOTZutzmucsCRU96PvDnVTU53+bzXC/ng2DVw5MBH jo3/cq+vmj/50ESKb24kv74/61me174/xaNvm0jxzzkuB/0trx2q4u3fPpD/ np/gFrduamQ+6xDcxvlyxxlHe86FXr9VPdN9xMWpX5400XlF659PcTnUUe2c 1L1ejzX8qiquurmR67GqP7jllz9tZPlFnXZGH6svneHyrZ7x8ony+6Uz/Ymf tXHYVMXVuy3L65Pngls3HFTFAZu83gtu6/wnjrMeLM482+u92i7r9w8vTfnS +xsp/nyvy6GOmuLQZnifmLVzRyOdi13Sk+s/yAdP+09VnrnD673g1q75jhNn 23j9sZGfq/1j53wO7El256rxrD91YHhWd/iUy6fuav++yuu3Zr6Gqn3x5V6/ 1XYV3y/YOJblU9dFTxuHb7l8y6/+VtXFxqp5e4Sf4yzm8wxudaJNo5mP/wA3 O3OF40Wd8CKv96r+lgf9pHof3VHVuY7TXA71VWvPYq/T2nw5ezTFAQsauU6r +oMb/O7RLJ/6LfrYfs6ZLt/0//5Ykr+l0v/y1bnuhHxwez/KF0YyH38DbuPw C8epE9o6/rbXe1V/G6+dVic/uXIk5VEfcDnUV22YH6rG+eP+HhnkgNtzPjGc +fh1cLPfCx2nTmj7EFc3cr1X+8GWSXdVZ75/OOtJHZh2Wb3lcy7f1uV+1b2I tV4HNvzR1XsY13q9V9sFbvdnHjWc7nt81+Wg/0mt9n3e+ehv+1/vdD71WNN7 orK3y9fnOk9hh5dX72fbaSjzqd+C2+O6HKd+aBPtV41cH9Z22c8Xrk925eSh rCd14+L9Cx9z+dRprZ1Lvd5r+K+q95Xf3cj1Xm0XuM2XswezfOrA6Gn2/myX b2Z+3lB6zrZGsuPP7M11KuSDGzxnW+ZTvwU3+3ip49QV7Tnne31Y9Tdz+D8b k//bvi39/KDLoR5rdv5ur/fauLxkW7KjNzRyXVf1B7d4YPtAlk+9F31s3Z7u 8s1OHzlY1o/f6O8fs/2WjY1UB3nXJsn/HDc5Bwx0wiePArd1d4Hj1DnNf33Z 68baLqM9vKrTnjeQ/Mh7XA51Whu/ZiPV9V7u7z9HDrito323Zj7tBbf+usnx op4xt5HrxtoPBvdtSvp9fWvWk3oy7TK/8d8un/qtTZsVXgc2/K9b0vxY7HVg bRe4+cPfb8nyqQ+jp/m7c1y+zbN7tubvIVAv1fNC+n4J02u4ep/HJ/py/QR9 wE3+tf2d8KnXgNu4/t5x6oi2L3ah15m1vRaX7NWX1udTt6S491SXQ13X9LjX 68O2v3Nc9f6Hvzakvf1lvDeDm7x9+7N86sboY3p8yeWb3ftg9V7uzVU//6Y/ 64V8cOO/oS/z0QPczOZPHec5Nt5fa8h9pf5yPhzbn+zJH6t6/HtdDvVbyQf/ H13XHadldawtiT1iw95FTfRaYo1GXXusUWNUrNHYFYPXRGNvFzXR2IktGhsa C0ElKAiKNEGRtiywLLts7/0ru0uMxvvxzDwznPnwH/fH43zzzjlnzpw5z5z3 vDa+6KcBfR9xRJP5KfUTh18dVV9CeY4fcaif4jj9Dv32bq/xzLF/8Pv9m6RO 80q92U/+mfZint4Y9OcbpF0V4X7xKq1fLXZ+OLaLOORK60w/eeOEb3zA9Us+ rHWnbt1/fdxs8ZX6iYNnKqs1ecYX4oiHYxxnnAPv9LzznNF+xI+rlL8+WOWv LuY/Oe4pD5k/injkOTHPFrg8zkHcqN8vmt5bxLPRHuL450m1qT2r8GZo753F /BjG83Y9V5JxHgzTc26vrR/kYRL/XOL2Rz3kwVaPLxN/etX1897IKM+8hv2G +fmR8060B3+6W2R9nVddZL98j2q59UPkqagH5wn+1iLx6emg/zrvB+onHvuN ONsVcfJy1A/7Rvt3xaN88h7MKvLkFaI8v8sQ5fncKJ+cv1hFPuqhPPtzgd7D F/k68iWRr4v3opCfiDwb9wsR5zoa8ZQf8Xtd4Ddv6HmvlzPGm0F+he5DTnV5 6qG8+NnLJp++z/Sy5PH9Uf+oInnhDd8xeeIyruMNpz20kzwh9Ut/jTX96XPH FT1X2jOlSD/5PerH9HrR73uJ/cl6SWwv6x+xP8UtvzD9iMvPZywuwG26NI95 xuXjc4mjXtWh8fdE10P94LfuyBgPif/9ieYTN2WMh4z6iaOOO0b3OXu6HupH 3HhC7XlunvEqiZ0FHPurQ3tNnvwkcdSjT3WccQ32HpIxXi7aCTtOmSt6r9F9 4/quh3wjwt1NGYsLWD/X0Xzl0ozxltF+4mj3oh7TTz6T9uC9hR1dP+L0o5pn PKT3Po4vTc/rv+o42rt2j8lz/hPHuarDHCf/hmm/W8b4z2g/7N6kVM919sj5 kTVcD3lF2F3w89kr1807ytJ7ZF51HH787y6TJw9JHHzm5Y4zHmGcCnGPPGfs B0TfMm3XRd1mJ/lPtgv9Otj1k1cEr3B3xvhD4M/qe1K3ZYyfjO0ijr8Pdpl+ 8pa0E3/3cv34/Rvdwr89rd/LbVqcvr/zquO4R+DRTpMn30gccmc5Th4M7zke kTE+M9ov+e5i8fNefT9rI9dD/hBx9uaMrZfA9+6U/drVGeMho/3EkWd/22H6 yU/SHuzDd3H9ePzhXVpPyQjve+ZS40monzj4tV07TJ58I3HYW+I4+Susp3tl jM+M9qMb3y6XdWxEh74P7XrIH0L+ZY0TW/j3nKiHOL/3SXnmbcQxra7LpOda Z7bLe2e/zhifGfsB9gyrEJ70jnazkzwn2wW/3Nr1k1fEdLgvY/wh8I/0e5z3 ZIyfjO0ijnz6vTbTT96SduLf+7p+2DtD36t6Rr8HeHeV8QzUn+CjW02eeRVx /Huo4+S18LRjM8ZPRvvhd+WVsg4O0vePBrke8oToj1szljdD7ymtEhdvyBjf GO0nDvk9Wk0/eUjaA95giOtH3Dlfz0k+qv3WVm37DOonjscc02LyzOOJI+6c 4Djzd8yf/TPGT0b75f2Bapk/r2vdfh3XQz4Q/jY8Y3wg4m5Ns/B+F2aMV4z2 E4d9LzWbfvKNtEfey3L9+HlXi9XdyB9y3wRed4TWUd+ptf0un0sc/1zcVEJ5 7luIoz8PdJz7UYzTjhl7bmyXfA+mVuLDoc3yu2+dtyQf+BPNU37du5rv7b6g ddG/2PfETD9xDOMcPa/3AtdxxxHfLnE8OTd3csZ4y9g/aN/P9F6jfZvMfvKZ yX56M9dP/hD/vCNj+2TUHa5tFD/6fSZ8Z9bbRRz7oDMbU/0Ndel5uh+7fqzf t+r7ak/o+x9T/TuV1E8c8pc2mDz5HeJ4zmmOk7/CPw/JFH3Xkvox3jfUS9yY 1iD86fquh7wf78+jfcD/Wy/tvyxj/GG0nzj4iVn1pp+8Iu2Bm+3o+uFmGyn/ 9JDGw/4G6z/qJw75fJ3Js/3EYe/hmfQ9ul79DuGQTMpDrmI/3O117fdzld9d w/WQ9+M+N74vifn2ksovbbT5lORjBRzzqkPvq37J9suGY/yuyITxqxM/PyNj /GTsH7TrAeVhT68z+8lbsr1o/mDXTz6Q+f6cwFMhzN2dSefnn/U7rbdnjG+M 7SWOv7fV2nPJQ9J+7OP2dv2S3+o4jtTv/2zs5xipnzj68btqk+c8JI7n/cpx nkfCvuNIH8doP+L9xCapr0yvkfv8N8qk51kP9nu4I++H+HxzJj1Heni17COu zhjfGNtFXMxZbs8lD0k7Ee92df343d615p+Rr0P96BEdl+P83FcyXgVc7hWt KqE820UcefvRjjMvgNvsnQnnG71diLM9et61s0rWzbVdD/k32s88gPbDXV7R vGX3VssTk3ymgCMub6HfT3jF9RCHf1/vOPku/Psc77fYP4hnpXp+vWKZ2U/+ kO1FO7bJFPGQkFs3I/F1svOHwsNnLJ8gnxblRf97si/e3OWJr17/uCL5Pynf E3HykFEP+aHV2zP/e/TPLpLnvjzKk1eI8jz3GOWJr769i4rkyX8ijzotY3xm 9J+dpONlnTuhomhcMJ5rLrXxjTwqfne62jOkzcYX/E0hLl2seT/Hl89N5fNH RT0c39XrH1eEc7wizvFdvZ4Z34Mvkn30Q24/+T/2D+LEum22P2a7wCNd0Cbx /cjyon5AXOv2902ph/1MeZynecT7k/LE2Z+rlx9n8v9e2Y6Xvx+n365ez4zv wRcV6aF/RjvZXr6/HPlzvp8d+fN4DznnUcS57496uE8n3xN59Sgf742J8hEn n8n3tomTx4v6k+99r3K/H/a5V0b5kbL//MjlycNjf3dLlB9VJE8ePspzXkV5 8u1RnnEzypPPj/Lk26M88dXb81mRPPn8KM/5HOV5T2CU5/eqKI+6YUlW4t7g WSVxXIjj98e5POc/ccpjXZ31uY0j3L/D6wWsy+D5O2eNz8f5ic16xd4ts8b/ R3uIIz9YS/nwuV4XwPr8vO4DD9H75ju+Mn+lHuKAt+sxefL/xGF2j9cF6M/o xmVeR4h2Yl6+OFvaf5d+Z2SM6yGfjzi3VdbWUTkPrechf5C1ukC0nziG+Y5u 0896Ae0BvzjD6wWQn6XnUfbJ6n5ygfGc1E8c+et7XSbPdZq40EdeFyAfjrD0 hdcXVmv/TXpvw6Z6f9Ybrod8Puw4Vu+PHLLQeELqIY5/vtlp8oyPxBG21nWc /DPMzXp9IfYDrLmzVNbD9brMTtYdknZNCvWLi7qFBxmSNT4fdhzXKe3bIWv1 gtgu4vCzfTtNP+sItBN/F3i9AHH+V10Spw7T8XpskfGcSTwp4PDDwztMnusZ cfy7z+sCXG+w/az1+kK0H+a0lEn/vKj3ZY11PeTzMdzbZtPv0y1tl33Ehlmr C0T7iePvG+2mn/WC5Pths7xegHY3d4hf7K/fxf33EuM5qZ845Oe1mXxSj5+n 9481eF2A66zw1l5fiPbLvV96n8ZP2yVuvu16yOcjjp+gfvvp0pCnOw5/+rzV 5JkHEJdz/I6Tf0b//dvrC7EfMC8G6z0Ye7aZnaw7sF3w18ledyDPDz17Zi3P xr7wcrVzt6zVC2K7iON357Wm+odVmJ0YpzKvF+Df/9sm/X9EVviGPSvDe36O Q/78FpMn/08c7v6N1wW4nxM/8vpCtB/7zHuXyXyd1CLr3oeuh3w+/HTHrO0f UCceaJb+3dTvcY32E4cfzWs2/awXJPvI2V4vgP0/bJX3AA7Myvx9arnxGdRP HOPf1WTy3OcTx982rwuQh0Dev8jrC9F+/LOjSr7bcmaz8DajXQ/5fOzXTsrK e0Tn1hhfRT3E0c7GRpPnPpw44tUWjpNnwjh85/WF2A/4/+/p9xpObDI7WXdg u9DuqV53wLr7gr5fu1fW6gKo+96vPOdPsml9YZV2EQdfeW+j+FG51xdoP+yY 5nUK2o+48rrLk+f/rSSCdn96ch6VeV1trfGESX5bwOV7cno/W0nWeCjiGI+1 HCdvCj1dmVAH8fYiXjxaK3X4ygazn3UKtgv+PsHrHeT/4We7ZI0nBb5lg8Tn rbJWR4jtIo68caDe9LO+QDvx/+d6HQGPH9IoecEhOl5b1hufmYzjlnrOcqN6 k6cccbzH0Ov1AvLViJeVXneI9iPfmVYnfjpczzW/53rI88Mft86m9YJ36mQc f5i1ekG0nzj87Hd1pp91BNoDsRleR5D3Puslzu+j+4hTG2zckv1FAZf7SmpN nnqJY/irM4GvrxPe+guvO0T7Ee8G1M616yS/eNP1kOfHvC3kjcg79mm0eUw9 xGHffjUmT/9O8PUcJ8+M5+W87hD7AXIV+n3nfI3ZyXoE24VzCpO8HkGeH/46 xPbdMh+ur5b3m3bMWr0gtos4+vOYatPPOgLtxH5tgdcL4NfH18p6U8gboea3 TbbOUD9x+PfQKpNn/CKO9vQ7/891QN4z8zpCtB/mbdwk6+H2yyXej3U95O2h Z7tseu/E05XSjo2yxv9H+4kjb9+v0vSzLpDUq2d5XQD4+7ru7a9x6dlmy1OS /OpZlb+3wuSTexsKuKxjzvOTr8Y4z/d6QbQf8ez4ZsmDT9DvVr3tesjDwy0L eSP03ObviVMPcXTHDeUmn9Q7Cjji1SDHmQ/K+alM0T0D1A879tA87IClZifr BWwXxmOy1wvIw+O9hD2zlp+hrvO2fg+tMC/I58d2EUdcHrnE9JPnT/jhMufz sW7M1HvoC3kjeJH3nH+mfuIYh2cWmTzzM+L42TfFfDXW7xbnpaP9CIMXtkoc u2CxxJEPi/lq8j/kXROeua+Yf8bjdsyaPPSUlkl/bZYt4odpD3Gc77+/zOyJ /DDm6+xiHhjjPE/PddY434vx2CVreT/5Uj4X8/krtz/qIc8H+7/OmB7iUZ58 VZQnDxzlyVuwP1EfG0W+fWGaRzXquZ/Jpatv140LrH8iz0w9mEdPtsl+4f8W mh7E0aHt1m9JPj/U+y3Ksx8i/pTyixEnT079CNdPtVvdIcqT94ry7OfV2zO/ SD7qSdp1o77H31HMq0se47w0+yd+L4bjtfrvyCz63nshon7yS/F+XZ4H+kTv uyBOvVEP+SXKs13or9d75DzLvyg/Uvxhd31/6VKXT+7PutTlydPid3903nv1 8uNMnjh5b+K0h3qiPeTPKc/xWqz+x/lLPeTJqYf9QHnwVN09pp/y1P/r5B6O KUX6ybdH/dQT9VN+9e2dJvnOjt6ffO7gMO7Eoa/W9VMP9WO9aMzKeF89oyT6 A3H8PbDH5BmniGP9fcNx+iWa+QevF0Q70X3bTJf17696r/HFrod2ws9mel0A 7l+q79FPylrdIdpPHHnT6G7TzzoC7cHjbnL9cJsavae1Mqv1xS/Dd2cdh/ys LpNnvYA4nvO045yPGI67ve4Q7Ucc79Z1Yq9u8ZdfBz136T1cn3p9AXH9yi5p 11tZqyNE+4mjrrhbl+lnfYH2ID+71vVjXf1Dd8lbK/+5UP1ts3np99d7HUce flGnyTP+EscyfZ/jjG94zjCvR0T7sT+dMafkvpX4ZNVzqush/w+evFW/0ztn Qcor9joO//5Vh8lz3SWO/dNox8lXYwCfyabvO6zSD/CL3fW+7g87zE7WKdgu 6L3U9bMugHn2pdcXgPe2yzyYmrX6QmxXgi9uN/2sOyTfE7/F9SNuftchflmt +c+hZZZHUD9xyLe0mTzrBcRxH9fz2bSOMLNd8uERXo+I9iPePbFQ9hcnt8v5 //NcD/l/zNspXl8APqJN+bWs1RGi/cTRn6e1mX7WF2gP4sUNrl/uVdf3/Rdn Zd68ttjyYuonDvk7Wk2e9QLi6MeHHCd/jn66yesR0X78/j+aNyxvlf78pesh /49x7dD9+FXltr+hHuJo3/+2mDzzaeLIu8c6zv0K2v1i1uoRsR/gB59puxa1 mJ2sU7BdWO8ud/2sC8Bd5nh9AeMzSO8FnZW1+kJsF3GY9d9m08+6A+0Eb3ib 64c5O7aW7L9yXtRnpR9LK2z/Tf3EIb9Os8lzX0dc7m12nPtj/HnY6xHRfuFx KyTOXaP79QtcD/l/+O10ry9g+R3VJPeWfJi1OkK0nziec3OT6Wd9gfbgcTe6 fozb2GaZFxVZsePn/B5co+knjnnwQqPJc79NHOHvMcfJr+Cft3o9ItoPPxqp 93J/0yjz6CzXQ/4f8t3qn98tN36OeohjPJ9sMHnyRMTxvAmOkyfDeLyetXpE 7AfkIUOXy3zNNZidrFMkvPrVrp91AfjrfK8vyPsTDRJX52atvhDbRRz//nGD 6WfdgXZiPO90/cjLjlSerykr57MOrjWekPqJQ373epNnXYA4/OxNxxMe90mv R0T75R6mGvndQ/Uid4nrIZ+Pe4Rmel0A+9fpdRJvC/kh6wLRfuKgjV6uM/2s F9AetOP3rh/uWVovvHeV7oOuq7P/n+ynCrjcp1xr8uSXieN8ykjH+Rf9e4/X EaL9mBdb1sk8206///xr10PeHv3wqdcF5P4kvV/87azx/9F+4siHtqw1/awL UB/8+zrXj7h7pf7/Mv1uycv15l/UT1zusao2efoHceF7HCfvLfVaryNE+2HO aXp/+KU18rxTXQ95e/h/Id9DXfC+Bosf1ENcvn9WZfL0D+Jo32jHOY/Rjmez VkeI/YDn7av1iNOXm52sL7Bd8NfLXD/5fPjtbK8LSF5cKXF1WtbqArFdxMFn Pllp+lkvoJ3Qd0s2rbfVLZd5UaPjPr7R1iXqJ47l7YMKk2fcIY666guOk39G OH3A6wjRfvjn5Y363U1db4e6HvL2EJ/idQHgnUvlnHwhPyT/H+0njnhyz1LT z7oA7UFcv8H1Y9qsr9+lXKJ5YGeT5TVJftip8hVLTD55H6mAI478yXHmKYhb v/c6QrQf592e0zru38vld790PeTtwW936LyYF74n1eu47JsXmTzzGOKIV//K pvx/IQ+FH7+UtTpC7Ad04+363sQji81O1hfYLvjBFdn0PbQDlorfzvW6APC1 Fklc/SJbdL8xn0sc87OhzPSzXkA7Yddtrh98xk46LvW6j17bz58n++u19TxK T6nJM28mjva+EvDC/gZx55FseM/C7Ue3vK/nSMbpfZwXuh7y9pCb4XUB4Hvp fZ8fZY3/j/YTx7wtXWD6WRdIznPd6PoRj04qM776klAXwPhVaPw5rM3260lc KuBSF5tXQnny+cThBo85nvDkt2XDuXRvF/q3qbXkyZX4x/PFvl+5HvLe5EtT fj5/FHiMbl1/t203PiZZl7fV/fYGs0soTz3EkZ9/7Dj5FdgzyusOsX8Qr2e1 yTr+9FdmP3l7thfNubqY/+c4Qmy08/l4zhj/7jf5bT4Xf27yfoAdN7g8+fmo //tw8nyw92/Ot8f+5HORv97wRZGd6O/Gz629keeH2Js6X7btsPbCjtas7fNj e1P5/FFRD9sVcfKsiLO1rp88N+2Hnd94PyR5y5kdMv4XziiyE/H2s6kpj/GN 9wPlYd9t3l7KE2d7ozzrNQk/NsLx1ct/ViRPPj4+l/ZLPpEvqqcs0Pt/Yj0l 2RdbPWXa976nEOsd5HejHvKN8bnk5ZrC+xTCn3WLX/6B8vq9wyH6fYJdgvzQ HpNnfYHy1E8c61lPt+mhftZl0ueOMz3YJ/wql87noT1BzyjTk9QN7x9vfk79 xKN+1l+ifpkP7xTZyXkS9VD/6vVMLNJDP5P3/rtND+sp1MP+JC7d5P1JPdSP eurDOVnXPp5aEsedOPKC2i6Tp/8RR7g+2XHy/JJv5dK6zCp2ynmaKXrur1vq +mu7HtZH0C3DchYvgN+l5+d/k7M6S7SfOOLJ2V2mn/UX2oN1fGvXD//9S7es v/flJN98fKbxxtRPHP3yh06T53wjjnzmUMc57zCOu+asXhPth31Hfy79t6RT 1ruvs2kdfa9u4a2eycl71FvOtnhJPcTl/cwOk+d6Q3y3ld3+W8eT71+flrN6 TewH5CWzvpB+ndthdrKOw3ZhnRrk+mHHztoPt+YsD8Bz19P7Sf6Ys3pNbBdx 9MM6HZL/7B70FOxH/27i8rQf/pPx+g7rKVD/aE72SR3zLI/gc4kLf9Zm8lx3 iUPvmY5z3Ua/HJ6z+k5sF9rx0lyx97J2s5N1H9qPf6/j+llnQX4yPGd5IfCX 2mTfc2XO6jWxXcSRr9zVZvpZx6GdsGs714948m67tG9ETuJObanlxdRPXL4n 2WryzNuIY34f6TjzaPjLj3NW34n2w77D9N7+Pn1f9luv77Cegnz3qpzVUzAd f6r3FZ+ds7pMtJ+48A8tpp/1GtqD/Hsz1y/ZUVvJ6SubcUdO2nnqIttXUT9x OUffYvLcbxBHPNvbce574E9b5qy+E+1HXBul540ebhFeLu/1HdZTMK5PaHwe tMT2zUncHqT3OO3YbPKsvxDHvD7Xce5fkc8ek7P6TuwH+Pc1i5WPbzY7Wfdh uxDf18+l9aNFLeK3N+VsHwv8kyaJw9fnrF4T20Ucdr/ZZPpZx6GdePyOrh88 zmw9P/hQTu9vWGp8DPUTh/zYRpNn3kYc8ep4x5PvkO+bs/pOtB/mL1S+Yws9 77mG62E9BX56bc74BfjrmXrf8Pk5q8tE+4ljvuzQaPpZr0nOgQ52/bD7kiZ5 f+FujVeNy4zPS9a7Ao7+/kWDybP+QhxqD3Cc/Bx+v30ure+sYj/8+8hlEgfe bpD3Lwa8vsN6CuLH0znpr7eqjN+lHuKir97kyYsRxz8vygX+Tu/n/kXO6jux HxB/16ySdeblerOTdR+2C/6yUS7l43INEsdvzhkPi3GorBP/uyln9ZrYLuKY TfPrTD/rOLQT+eyurh/2tNVLex7WvGjzGuNvk3xpc33fpLTW5Mm3Ese8OsVx 8vpyL0jO6jvRfuQh11dLfD9Iz+Gv7XpYT4F/FPJJ1lPw8+H6Pkchn2RdJtpP HI8/sdb0s15DezDMW7t++OvdWq+4T+fj5Fqzi/qJw53nVJs87SCOvPJnjrMu gP7dLWf1nWg//Oh6ff/liRqZ9197fYf1FMTngjzOf7xSZ/5FPcSRZ3xcZfIc J+LyXloufX+k4C+IX6fnrL4T+wF+eLq+J3LXcrOTdR/ai3rBINcP3nQzHZ9b czYeWEfyleLHt+asvhPbRRz3K2YqZb+/h+uh/YjHm7o87Zd7lr0exPoL/PJR XaeW1Ftc5HOJA66vMHnGC+IYtzMdZ70Aen6es3pQbBfc4f562Qe8uczsZJ2I 9qOf1nH9rMvgXNXwnM1/rBM7VJR8vtKuQh7F+k5sF3Gcd6pdavpZ96GdqGNs 7/rRjMMrZR6N0Pm+YaOtt0k8J75BuclzPSAu/3ac6yHWgZ/krB4U7cdwT2iQ eTW/XPKzb70exPoL/PMq40/kdycukXEs5JOs40T7ics2YLHpZ32H9sDezVw/ 7L18qZzjL+SHmGfHNFkeR/3EIX/gIpNnPkEc9v+P46xfYPi2ylk9KNoP9+vS 97gGNJ/NZ9P36P5eLv33pMbhXZstH0/W/V31vMjOC02e+USCn+c46wVo1zG5 cG+Y9wPMn6/nKhoXmp2sE7FdcIP1XT/rMph3N+UsfwV+YanE4cI6kt5v7+1K 6j4HlJp+1n1oJ9b7nVw/2nFrmcz7P+Xk/cah/t1D6ieOMPrkPJNnnkoc43GC 49y3IU/bL2f1oGg/5H/QIvb9SM8DruF6WH+Bnmtz6b1M682V+H5Bzuo40X7i yPOOnmP6Wd9J9n9bun7gry6Qdece3bc+2mq8QrKffVTrPvVfmHxSDyrg+HuA 4+QDEF92yFk9KNqPdODwVhm362dr3drrQayzoB9G5mQ/N9zvvaEe4rDv0xkm z7oMcUyri3NF9wVhvp6UC/cUeT9gfmzXJv5y4kyzk/Ugtgvx4Eeun3UW3qsT 60HkjSOOuHez45A7cLreH54L75V4PxCHHRtON3tY92G7kH/v6voRh383y+xc bb3mEd0fjWo3HjTZN43S70ttP7mE8uRriGOcT82F7w5N0/vG43NnpPnMWe2S lz07Rc6V/CBXVMdhf6Z1k/xRX+t5fsonfPUwl0f3rT9J1tlLc1aXie0ljrgw 92OzJ9Zl5H7JXFH9BXFtF23vHK+zQOxm5Xm26LS6Bp+LeDS1o8h/ZB30OlGS Fy3rkPGdPLZI/xMrf7j+u2ZnrMsk+c+Der52wYemB3XyEzvNfsoTj/YT53PF 7uI6Dscr1nFY90nfQ3mvqC7D9TPWZcj7xfqR3K+ndZyDqX+kxKFvuiT/qve6 DPlY4pRnfQdxa5+89QvlU/tHaR2/K+gZZ3poD9tJe9g/sf6S2j9OeLUVXWYP 6y/RHuI4h9Hh9iR1loI9WMe3zVudBT97pkv8a7O8yUf9xDH+I7pkPZzl9Rrq xz/3z0uestXkkjhexGHHXzpNnv5KHO3v8noN6wWI70u9vhPtxL9vnyT929Mp ce0t18M6C6bhpnmLX8D36hT71s5bvSbaTxz2/KfD9LOOQ3uwfkz2Og7Wr8O6 5O+e+ty66RZXknEs4JDbpcPkGY+Iw/5Kr9eQ58fzZ3rdJ9oPB3xqmsSL/9N4 +bLrYZ0FZh+Rl7hxzSxbZ6iHOOzYqt3kuR4n+DqOM36jHRmv+8R+wO+2nSnr 9m3tZifrQUn94kOvK7H+gmmwQ97WSyznH7ZJHNsub3Wc2C7i6I9/tpl+1ndo J+bXbK/jyHeV2iXPPjAvecZRcywPon7iyJtGt5p8cg9YARd+PZeeC+E5l2qv 40T7X1lpR89svZenTXiBd10P6ynw2y3ylvegXSe3Sp63ft7qMtF+4lA3pNX0 s15DezAfpnpdRvizNpkXe6k//3mB5dFJXC3gkD+6xeSZrxMHP1Hn9Rfmxcij 53gdJ9qP9n2udajXWmTevOZ6WDeBvg3zln8DX94s7Rrw+ku0nzie/7dm08+6 DO2B20/w+g7WpU69p3YXnV/5hbYPS+ZdXuUXNZk86yzEhb/0+gv3VWj3RK/j RPvl3gf9nvIhzaLnedfDugnyz0PyMh4T+N3kRtNDHPnSV40mz/0ecfjT117H 4bqPfmnyOk7sB8SPTRfJfN+nyexkfYftgp73XD/rKXDjrfNWNwF+jb5HMChv dZnYrgQ/vdH0s15DO9GuGV6Xgd/8Uc9pFtZx7Dd3Kze+h/qJQ/43DSbP/Tlx xJ9Wr7+Qj5Hv0XkdJ9qPOHWHfpdkqvJPb7oe1k3knGveeCK089t62Q9+6/WX aD9x+P2MetPPugztwTyc5HUZrFcbNkrcGqJ6Hq0wHjHRX8DBt+TqTJ48EXHp dq+/kM/D46d4HSfaj35oXirz+By9J+cl18O6CX52WF6/T1lpfCz1EIcd7bUm zzoLceQ7azhOHhd2dXgdJ/aD3Be/TPz9tDqzk/Udtgt+MtbrRKynIH/bLm/8 I/CHaoXP3DJvdZnYLuLIH/5Ya/pZr6Gd4EtneV0G8+GZOmlPId/D7z5Zbrwr 9RPHOH1TbfLknYnL8Rqvv5D/x/hUeB0n2o88evByOX85tUbk3nY9rJvg72Z5 sw/qf1YteUAhP2T9JdpPHHly1XLTz7oM7ZF7pb0ugzrTXrUyLwr5Hs5Zb15r /Uf9xNHO3atMfvCq7S/g8Isqr7+wfbBnltdxov3wg3u03tRWJX76iuth3QTy hXwPftBXa/ODeojjuZstM3m2nzj8dl3HyefDXzNex4n9gPt3XtX3gMqXmZ2s 77BdUPeh14lYT4Gf7Zi3+YY88/QKwbfPW10mtos4zgMdXWH6Wa+hnVhPZntd BuHnukrxj0K+h/+/V32I345D38/LTZ7zirhsF70uk7wfWeN1mWg/5Ms1vnxX Lu0Z7XpYH3lTz0+yLsD9KZ4/OJ/e93XLEun/DfJWf4ntIg579ltiz2Vdhnbi fMJUr7/IfUpLZb4U8kCIXdpg6zn1E4f85YtMnnGQOPyg3uss5PmxHMz1ek20 H+fjNtL30368WO/Pcj2sj0DdRnlbj+G/L5eJX6zIhf50+4kjv9ihzPSz/kJ7 8HeC13Fg/yeLxQ7mgX9ttLyS+onjn38pNXmux8SRPy/wOgvrCxifSV6vifbD /GP0/MGZC8WuF1wP6yMyH/zeIfoVflfID9HuPzbZvoH6iYtb6r3Fh+QtXyQu +3Kv4yR5fZPXcWL/IN7s1iT11CMXmP2s77C9UPteLn1PtVHvzbV8sln47Gvn ih9ukre6TGwX8fNW2r32XNPPeg3tRFSc4XUZuTdJ6xf7aPwc3Wz70YSvGK31 muO+NPmkjlPAsS62ef2F+0XMjrJc+J6I2w//Pr9Z4sWc2VIPetP1sG6C8R6U t7wc/TVRz0X+Nxfu73L7icuyOtP0sy5De9Afk7wug37PfyW/K+SHyPfqW4zn oH7iOBf71+kmz/0kcdhR7vUX8g3wm6lex4n2w47HWmRd2+Fz6ZeXXA/rJuQ5 47wAfpiuU9NbjcdK9pvTdX9bPbmE8sm+t4AjH13TcfJSWO8643O9f3Ce4Ea9 73XFFLOfdR+2F+M/1utHrLOwXfEeLfLGlCeO8FDIS1l/QR41Z5L4/5b58N2K z9J+HqL3Kf9qktnDug/bhXj6hdd3EM93nmZ6op147v66v/i3f9+B8sQxj+/9 V0kiv1O74ei3Hq/X8P0I+M2yXHjf57PUnjfaJH946iNZH992PaynUD7WfTBu hTyWvBvW3d+9L3b9IMqPK9KD/txsjD2XdRzaiZ9N9rqMLPMTpF2LckXv16CZ e2o+sK/XTZL8pNLfP0IcXO56yKMjT52VC+/pjCvSg+dd+6bY94rrYR0E0/bD 4noN5LOxXjPK9LCewudGPayPEI91Fh2foroJ50Wsm7CuR5zzd/Xvy8ww/cR5 rxq/u0ec+U+sy3B9472+6XPrv1de1leX5/e5Y7vSe9C8H7D/JP/8lNdxYOXw LpMXP3i55KKVD+x1eX6Pg/KybvWbniTfqM5LHNt5TEm0hzjWxTf0eyXVXsch Tnnkh81vmf3ohkdcnvUpTKspXt9BvDi2U+Lvx17HifYQx3jvrXWNYa4Hvz+r S+LFYo0bkybEOqrh2Cce1mHyrOMQx6g/6TjrC3CfO70eFO0Er7fTR5Lv/U3n /S9dD+sysHe8132Alytv/I+81Xei/cQRbl5rN/2s+9Ae9Pflrh/rSpPeFzQn L+95Hjg11u0Nh/zcNpNP3uuZq98nvSfUj2bq+f/rvE4U7ce9ubM/k3Hcr13W hRNcD+synO/Mb5J8oE77f+KMuH4ajvg2o7WE8owLxPG4dxxnfQH6RuatfhT7 B9N+mL5ntEeb2c+6EtsLP7nA9bOOgzAx3etBWI9/2yp56Gd5qwfFdhGH35zT avpZJ6Kd8Nvhrh9h4Ua9F3Op5ntPfBm/p2c48oihLSbP/IY48obnHGceB/n7 vX4U7YfcMV+I3ET9futZrof1GvjzRK8HAe9vlrj6z7zVfaL9xNFPc5pNP+tB tAfiV7l+wD/Qesd83QddOc/2GdRPHPKdTSZP/ySO8XzQce4D8LgbvX4U7Yf4 VnMlDpyhdYqTXA/rNfj/Taqnf4HtL6mHOOZRQ6PJcx9IHPvc9x3n+oXH/S1v 9aPYD4hPZ+j3aE5oMjtZV2K7sP5c7Pqxjj6v/TDT60rA79Pz9p97/Si2izie d3ej5D+/dz3JPvgSl6f98J8Sl2d9B8NRlZd92mVlxmfwucQB/7HB5FkPIi7n HB0nP4F18M95qzfFdkHfxIUSHyoazE7WoWg/7P2162fdB3npp15XAj64Qfr/ X+RhFhW1izjWu75608+6Eu3EPLnO9SOf2E3Pzy7UuDFnsfFnSTwp4HIPeL3J sx5EHHnhXxwn7wW//aPXm6L90DdE73f4Xb3Mz1NdD+s78IdxXj+C3Nt18vfV vNWJov3EET+H1Zl+1o9oD/bFl7l+9NeEell3vtR9xCFLU/61yXHEq1dqTZ48 JnGYdbvj5FPx7yu83hTtx/r8uH43Z606WS+ODXrO0fPdNfmS91fKfV2RvofR 5DiGYZ8akydfSVzSdMdZj8Dfx/NWb4r9APmz9Rx5tsbsZB2K7YK957l+1n0w TFO8fgT111TL/mti3upHsV3E8bsjq00/60q0E/HuBteP/O445eOX5OWc4JVV xntTP3GcKzq3yuST8+7nKp//VD6tE21QLfP/Lq83RfvRDZP1+zvbar3ol66H 9R3YPT6f6n2yUvztH3mrE0X7iaPZe1eaftaPaA/suML1o1/HLJd5MTcv5zgW VNu4UT9x+NfdFSZPvcTBd93rOOsj2Mdd7/WmaD/+/Lha4shxy2Q+nOB6WN+B m9brvD651uYx9RCHH19fbvLJe0MFHOfO3nWc8wzz8695qzfFfpBzDzWSV+2/ 1OxkHSq5F/DCfHr/W7nenz/d60fox38skbg6JR++U+/tIo663ONLTD/rSrQT fMmNrh/2zFgq/lGh6+M9dbY+JOtmAce5h5GLTJ7xizjqSM85zv041rX/83pT tB/ie2tcG7pY2nFWPq0ff6d1ooleP8J4ztf7jsbkw/fo3X7ieP7dZaaf9SPa A/Oudv1yv9ZiiT8LNI6Nq7e8I9mnjNN6/CelJp/U6Qs4vP1Bx1mPgH3/mw/f o3f7Eacuq9f7hRfKenOS62EdB80oyGOePdMQ91uGwx/Pnm/yXP+Iy31mjjPv Q9x/MR++I+P9gP46tkH4g98tMDtZb2K7sK5f4voRngaXxXO2tk+Mfk4cz5/l 9SnYOXuu/J3pdajYD0nd6vO5er930FNoL/bPv3H5pL0lLs86Ee3/S5pny/0r VZp3fdVo+6SE1/pK73kbpfdzV3k9i7jQRI5z34Nw/XA+fL/G2wv8Vn2/ad+v zH7WudguxOFzXD/rR9LtfUXjgudP9roV4t12X8h+ZFw+3Efn7SWO+fbqLHsu 61a0H/56netHXn3OHOMT5iT3oeWPgh+V5eW+yDXZ/84fEke7+qaXUJ55OXGY 96jj3H+jv/6YD/fUebvAE/2zSey653NZT09zPawrIa5/6HUr4MOUd3ktb/Wp aD9xDPudU00/61a0B3ovc/14D+dNr19wn89+g7/O1nYd0mI8E59LHO16/JMS ynN/SBztusNx8kByj2Y+3F/n7cI+paFZ4vLLn8l4H+d6WG+iPOtTtB/uUaN5 y9b+PfdkH13A0fzj9DvgNV4XS/A3HGddA+19Ih/ee/L+Qf/OaJHzLOeMN/tZ L2N70R1DXT/rUNQT62XorqleV8Lf/T9Q3iXKjyvSg3rXY+/bc1n/ov2YRje4 fqzzb3ws69X9+aLvsONvIe9FN5zu351JeK2vW00e8fNp10P+GN16dz58H2dc kR74Vc8/ZD6e4XpYP8J0uMLrU3wu5sdbsf41yvSwDsXnRj3YNzw2Wp53oteb qF/OP8V606giedZriLOOQ3mZn/1FdZNYd6B8WB+tbsK6RCrfGOoFjUdtouvV JqHeQb406qfey0PdhO0jTvsxj97rkH32KZQfKfPvXP2Obb/XR8hvE6c86w74 3Yg+6bdrXzc+ls8lDjvP6jB59hdxSB/jOPl//Fmvz+ovtIf6H1wJ/+ZFa1dq 5yizE3qu6jP/lvpou4zjxX1Wx4n2Ewdc1m76WX+hPVL3dP349bcdsn7e0Sfr zm/+Zf5L/cTlvEibydPviePvwX3pfJip3+vZuc/qNdF++P+09/V9xXaZ13mv 47BugvdyL+pL70P7vzZZt07ts/pLtJ84Hn9Km+lnXYb2oB/Xd/2o1z/VLuvu TX16T+WnFueonzji+u2tJs/4SBz7qN0c53zBdzw37rM6TrRf3mOcqOcXNX63 ex2HdROIP9Qn82ajabbuUQ9xdOuNLSbP+U9c9ld96br7E23vYX1Wx4n9gPt4 Jk/R89YtZifrO2wX1K7h+lk3wTp1bZ+tc7B/4xbZ913eZ/WX2C7i+Nk3zaaf dRnaCbHBrh/P30HXmbv79D6FmZZnUT9xyP+w2eSZzxHH745wnHkT/HuPPqvX RPvlPJ+eg7m6WdaXAa/XsD4COy7ts/wM+cJrTTKOZ/VZnSXaTxz+9/sm08/6 C+3BfN3I9YMH/qBZ34vsk3EY/5Xl79RPHPLPN5o89xXEoXYvx5mPw7wt+qxe E+2HO147W+b7fxpl3nR7vYb1Efzz4T6JByXzbV9IPcQxXx5vMHnuExL8145z fwbzSvqsXhP7AfK9cyVuZBvMTtZxkrrD2q6fdRPMu2F9tm8Evo/WF67rs/pL bBdxyO3RYPpZl6Gd0Lt1X7oPP0LPId7XJ8/fYKHxFtRPHPJD6k2e+z3idSsN O9Zx8gpSl+iz+ku0H/P+8lLp1weV///a6zKsg0BPIQ6w3oF2Ta0TvuG8Pqun RPuJoxterDP9rLPQHqwDg1w/+KgFem73Vm3XzYuM90ryh5v1fO2EWpMnT0Ec +9D9HScvhfZv12f1l2g//jtX60fb6vnljNdfWO/Azy/os3oH1JxbK/P8hD6r m0T7iWM+bVFr+llPoT3Yv63j+uFFV9SJvw3vk3GoWWJ8KvUTR3OfrzZ58mXE 8ZgdHWe9AHoK6zLrL9F+3Cf9Mz1vfUmN3sfr9RfWO/C7EbpevL40fF/FcfTz g1UmT96WOLr9JMfJc4OHPbDP6i+xH9Ccb/R9pVOXm52sy7Bd0POt12VYB4Hf XtVnPCzwaZUy/pf0WT0ltos4+IG/VJp+1lloJ/5u5vrhlzXLZV4U8j2px1fa /6d+4oiv71WYPOsjxNF/hziefNdglz6rv0T7Ed+vVr7+98ukv/Nef2G9A/nb xX32e+DtS4VnP63P6ibRfuJyXmap6Wc9hfqwfq7v+o9dqWDdSpkXhXwP/MNt y83vqJ841snyJSZPvyGO/GyI4xx/8E2D+qz+Eu1HfCytkvzixXLpzw6vv7De AemHdN05osbiR7J+HaH3Pc1YlMoPdRx+cYbj5Oehr5Afsv4S+wH4X6sljv95 sdnJugzbhZ+v4fpZB0E8KOSHrHcgD1tjkcTVK/qsnhLbldRZaspMP+sstBP7 8cGuHzzGDkvEvrt1XpfV2rpE/cTxz65Sk+d8Jg75Ix0nbw+/3rMv8NJuP/Lq e/W+uLELpR8HvP7Cesf38dvkXVk3IY75dmlfWj/+caneI90XvrOzMM0HCjjG b+4Cs4f1F9qPZXcj1y/3X5XZucRQ9z0KPMPN2g/r11t+lORv6+v7k/8zr4Ty XJ+IY5+4l+NJPlUYX9ZxYrswHB/WSX784XyZj91ex2HdhP2Z1om0jvCIrgvt 9ZZHJ3l4AUd+uI5+z/eRPsuTiEP8HMeZ52LdPbrP6juxf/Ce17P1wjc8/pXZ z7pPUndY2/WzzoJ+GtZn+RDi1l16PquQf7JeE9tFHH8v/8L0s45DOxE3tnH9 GM/xc4T3uF/9audG258l/razvjd03gyTZ15OHDzhcY5z/wRz9+0L97m5/Wj3 HH2PqfZzsfdrr8uw3oH15nKvXwCfN03GY2hfeA9oRro+PqX1mpJppp/1FNqD P5u4fqzb682SeVTIJ7H+nNNk+37qJw77z/zU5Lm/Ig6//qnj3H8jPG7fZ/WU aD/sWEvrLD+dIs/LeD2FdQrWU8I5tqOoJ72HLX8UusXyVT13ddREWbdO7Avv B3l7ieOfB08we1g3of2Yb+u4frT3/KlmZ+T/qT+tm2jdcLjGk0eajZdK8v9H 9Hxh7oMSyifvExVw8CI7Oc66APxq/b7wPpG3F38ObZZ9xA8+lP5t9boM6x14 zk/7rP/JA2N+PKA82zC2d1TKH27j8oiTJ7se8oXwo4P6Qv1lXJEe5AN/eNvs ZF2G7cJ+4Fuvy7DeAffbvC+taxTsgd2F/DYdr1Gmh3UT2hP1oF82HyNxLO91 CuqH3l37Qh1kVJE86wjEWV+gvNQRB4p4+FD3NB6evD1x8o7xvQDmcZGHZ/wW /3accSvinK8Rpx9FPp98XZRnv0Z58r2UZz/gf2/SJnFmL3/vQM7F6ftMS5z/ 53PxmE7n/6kfw/Gayyfvwbzm8uTb4c8b9ts4wY4X22S81+w33j62lzji+0Ft pp98Pp8r76N6XQDnlN5plzxk536Zf+uONj+ifuJo11OtJs/5Rhzftaxw3p68 MfxqhvP/0X58B3Xum/K7fKvEx+ddD/l2uNta/TZ/gO/fKvuOHufto/3E119p UKbF9JPPpz343RivC2AYj9K62Vb9JRuvVDhmvMUD6icO+T1aTJ7zhDjCwizn 7emf6L+xzv9H+xG1Nv1Q4tOf9ftmT7ge8u0Yp336Jc59OtnWE+ohjmHZodnk Ge+Ig+fPOv/PeYd+XO78f+wHeR/vE4lj9zSbnawLsF2Ih2+4fvLw+PfG/bbe w75JTbJurttvfH5sF3HMz1FNpp88P+1EvJ3kfD787stmyWeG9Jd0rvz9QazT e1wiDvkPGk2e6zdxycuct0/yjq+c/4/24/7CZs1vtmiSdeJF10O+Hf3ww/6U tz+jUeJGn/P20X7imCfbNZp+8vm0B+441usC8LuLm6Qd26kfrv+l5cWJfxZw /D2hweSZLxKH+Dzn7Rn/Ye4E5/+j/XjcJL0n9K0GmTdPux7y7aj3798v5zyf nGP7IeohjvlyRL3Jc99CHGascP4/Ob/W4Px/7Af44bFfyd+/15udrAuwXThv +bbrJw+P8d+s3/Yh8n5pnfhbYV6Qz4/tIg53m1tn+snz007Mj8nO5+Pxrcp7 76nj9a8F6X3tBzkOXmVBrclzv0oc49nsvD3301i/Sp3/j/bD7zZaIHHgQN1/ v+J6yLdj3Vmv3/aHwH9XK/32jfP20X7i4MmPrzX95PNpD9anD70uADV31ol9 O/br98XLjO+hfuL42exqkyc/T1zu9+pL3784u1bm5WfO/0f70e5bFso68ViN 2PVMX/q+xrbKbx/YL/5Zt8j4P+ohDvPHV5k8eRDiGIfvnP9nXoc8os35/9gP yCcO1++83LHc7GRdgO2C+GjXj7rbprXit4P7jbc/cqV8tlL6ZYv+lP9fpV3E sc50V8r3Mac5/5/wlKO9jkD7ka8+6vLk55n3JrxhYZ+FeVTID8HnnVZufCDt IQ69NRUllCd/RxzqOr2OQJ4ZvF651xFiezH/3lgi/jxqmdnP+gLbBT9+3fWT z0d3bNRvvC3w7Sqk3YX8inWB2C7iWIcql5p+1guS9wAmeN0B//9nlfodt35p 1/gKs4v6ieNeg/XKTZ52EIfiZc7/8znw58+9jhDtx99NtN/nlAs/84LrIW8P fYV+IG8P/LglIt/r/H+0nzjuD/lyselnXYDPQTx8z+sLMP/SpRIntu7XfV6V zQ/qJw75/ReZPPudOPLtL5z/p/+iP//ldYRoP/KUOyr1vSq95+/JoOfFcvHP fdQfmpZbvEz8pIDD/h0WmjznIXHEvZzXEcgzI14s9zpC7AfYfdRyyVPrF5qd rC+wXfC7N10/+XzkgYP6bZ5geTi/VPYXhfWFdYHYLuLg+fYtNf2sF9BO/HuS 1wUgf0uZ8JeFvBFqf1xr6zD1E0ezH51n8uT5icOuOuf/uU4iDnzldYRoP37/ tt6btuEC6f+X+tLvvIxdaPt6rk+Me5hX6/RbHIc//GCuvrfpdYHYLuK4f+xn c+y5rBfQTjx2rNcd5P4lngsorhdgmhfyTOR/F9dZPsjnEsf5xuovSijPvIQ4 1rv5zv8zL8P8/LgvfOfF2wW5DepKGld21NWzZX6OdD3k5xFQCnmmvB9Zb3k9 9RBHfjBhhskzLyH+z5Vq/+31AubpGKbGvnBvmPcDznl36PeEjplpdrKOwHZh /r3t+snPY/3arN/yYMSR/aZLXlLIS8nzx3YRh1lrTjf95P9pJ54/2Xl+9Me1 s9J9Za+9Hyj3zBTyT0TPPzTYPpLyxGHfZpNLKM88mDjCb4vz/NwXQs1CrxfE dgHeRd/PfErvjX7F9ZCfh5+v32/7HLjvGpPk7zd94X0Nt584/GDix6af/D/t gX9/6HUEuZdpahpPnvL3F/DPHXUdfKfReI5kfXxH378YN7aE8ty3EIdfL3b+ n/ww9t2f9YX3MrxdaPe5WgeZ9aHE42ddD3l7/L7W+X/yk5A7UPPtv5A/H5Wu vz9zecTD71wP+STE1fZYRxhXpGcY0r93zE7WF9gunCMa7fqxr95ygvTDVOfz aQ/8a3B/qC+Mkrx3usvTzg1XPvCfsR6hdj7m8uTbYcbrztvzuZi/S2O9YJTp IW9P/VEPeXLi5M+pR+JQMZ8ceWDKf6X8c+STqYc443CU5zo7KPC6jFuRr07O xawiz7gS5ZmHR/lmnd9RnvlFlOf58yjPdTXiXDfiOXn0+2X6Pa7bHU/4h+sc T/iTJ5zHTnj1C1yefgSzbnR5jj/wU1yefBr86kyXJ58J+cNdnrwfccqTb0d+ Pddx8AnrNZg95LdpD557qeOrt2eU2QP8aJdfvT2jjH9Ox0XPjd9WH/pnVJE9 5LdpD/WT306ee4rz5/jT0SLj+773Q1IfeYL7oHfScbzX8YRXvMjtT8bxNOfD E/72EJcnz5yOyzgbF9rJ754ndr7iOP0Q5t7nfDjtx5//7TfeO7H/EOe9aSfk T3U95JlpJ3lg2oltzhRvL+cLBuJN571pP+L3M/3Gbyf2n+r8Nu2E/KWuB4+5 Rd8L/NJ57MSeT9zOhJcb4fK0B+vCcJenPZhXx/andfEtmiSvetd5aeHF6sX/ nu83/rkpxDHiWA5vqDf95KX5XKxH57l+rKMb6Ps1hX7GunfhzJIYh4ljOcjW mTzzV+LgbW7qT/PaQnw+eGXzL3IeO9qPuuyP9DzEr+vlfMVhroe8MfpjieZX DV/aPoN6iMM/22pNPjmHUcDR/BcDv12I2/J9zn7jsWM/wA9G6ncrTq0zO8lv s11wk1+6fvLJeMx456uBP6h82th+46Vju4jD/ptrTT/5atqJZewK14+85691 kgfN0bxlwrz0fuZKx9HfX1ebPPcVxOHXDzvOdRB52M3OY0f7Yd51c4Wv/axG 8t4TXA95Y/jtGOeloe6QasnjX+43/jnaTxwsSfly009emvZg3C9w/bin5Sfa /0sGNC6w/pKX+vN09atZpcajJP5WwPHv3apKKM/9MHG069bAexfyDeTRlzu/ HduFdu9UKuc2W6pkvh7hesgnw46Kfhm3h8uMp6Ie4rBjk2UmT/6ZOOLV644z j5J7//uN3479APsa9D6lxcvMTvLeCU97lusnz4x5NdF5bOCnKu86od/46tgu 4nLescL0k8emneivq10/hv+aSuGbFygv1LfYeCfqJ457In5WbvLkmYlD3xOO M1+FH97h/Ha0H37wy8WyPn2rvOhJrof8MM97kG+kf9Jv/6R6ieO5HzhfDT1/ 0HP6b/YbLx3bSxy8/V5LzB7y1bQf6+Alrl/udVla8n32oD9m9muetdTGgc8l Dj2X6fjM7E954QIO8bsdJy+K/rvW+e3YLqyLH+v47bFY+rHE9ZBPxu/ecr4a ++UXyySOjOwP3yV3+4ljHm1dZvrJV9MejOM5rh/z/uPF4u+fKs/21bI0flQ6 Dvk/l5o8/YE43H2Y4+RjsU6d5/x2tB/r5JBl8v9/qedOD3E95JNxTrlM4+dj VRa/qYc4wlv3PJPnPCQO/3jWccZj5Cv39xu/HfsBzWmplL8/X2B2kvdmu3CO 5VTXT54Z+d4457ER/6+cK3pG9xtfHdtFHPPi6zmmnzw27QRfdFl/yofP1/ef ZveLn/672vIC6ieOeVvypckzbhKHHz/gONd55GfDnd+O9ss56+qSRUhrZou/ H+t6yCdj/rzrfDXi6EezJJ6/0B/uEZqd+k8Bl/Ax0/STr6Y94IuHun65Dvcr u+c2PVev352cqvNrbK3lrcm8G6t6ntDvdU51fps41rXfO868Evnwxc5vx3aB BrtE32va5nNZXw5zPeSNE/9f5Zw5mrlE8/CRdbbPoDxxWR4ml1Ce+Shx/PMl x7lvQNz8U384bz8jXV+OrpN4kZti9pP3Znuh7wzXT56Z/E88f45/jnd+G/4z Xe8JH+vysb3EcY60ZJI9l/w27Ud7rnD9ck/LNLOHOO2h/pTH1u9lzNV17cv6 sJ92HPP0j/8qoXxyXqSAI34+Evjzwv4Vf27pD+fkvb3y3oCeI/nzR+LfJ7oe 8s9sF3nj2K6Ux84fhfg4xvlwxIUr3xc7Xony40qiHsT1rn+aPeTDaT/c6ULX L8vbBOFLb3Q+nDwh5vUMjSf/5XNHpevvuw0mn1mp/7b+9D6ioe+JPVfEfhhX pAfjct6bkl8e0Z+ez5/1oay7v+pP99uF58L+xyKvPsr0kN9OeNpV9JBPJk6e mXqY/0QedfX8p8un+LginPM98quMY9/Hu0ac95BHnOtvxJk/RH4YedSWS6S/ 76P8SMkzr9D3KfdxeeY/OHcw3OWZf0F+B5dnfoR170eOcz2X79Q7P8l1DP6z ievn/hTxo8vlGaehr9f5OsY/yC93+SQOLXd58rrsH/Iw8v2F8pJ9Vuqvdf5t 9XrGmR7EgTPcfu6/0G+/GZB8/Osp1j9Y9/dzeeYdxMmzJfhOjsd+S3i5s2P/ jCvqH/ol7ac/sB/oD9RP/ifRv8aA8YerH5cZ9lz2J/Wvvj9nGI/E/mS/sT9p D+dPtId20h7qJ0+VPLfLeSryQvRzPpd+jv4vGVB+9bP0+2+F8SLPE8eLfBTH i88lH0U7OS+4rmNdPabWxoU8CccFdt7j9sR5Sj6H9rM/ibM/5dzxgOWjtB/4 j7xdtB/7gg7nqcgL0U7Go2gnnxvtZH6Z1ImOdZx2Qu8Brof9T3vIU9FO5L9r uB74xejlZmdyLnEVO9nPtBP+do23i3YCH+rynNdYnrZ3edqPdXpdl6f9yIPr ndciXwT/uHvA9ie0E+v7XW4/7cQ4/MLlaSfm1U9dnnbyueSpaA/GfcB5KvJC OK9x6YDxP8DfWCLn7S4aCN9FLbe4Shzr74NLTD95J9qD9m/k+gFPUx7mZp3v f+c9lYtMP3HIP7XI5ClHHDzOwY6Tf8B8LMxT8lHRfgzfQJm8Z3DuYhmHbuej yP9gXM4bMP4H8WZumeTDpwyE76K6/cSxn7mtzPSTX0rOJ67t+oG36/8fNqDf Hy63caN+4vj3xFKTT9pZwDFMuzrO/AHfo/zRQPguqtuP/PG3mk/cs1DOrTQ5 v0TeBn52n8bDOUtTfvp+x5HnnDE/lV/gOLrrdMc5b9AvPxsI91p7PwDfXXmn YQvMTvJLbBfyyK+dX8L+c/My4RsuHzB/lWVmruybfjtgPFJsF3Epa82VeL3J QOr3X+t9Lf9xPor240+V807kecCH3Dog/ntopa0bfC5xzL9XvjR58kLE8c+f O864DnV7DIR7sL1dOPfwxDKZzz/5yuwkH0X74UYZ56PI/yA/u2DA4g7Wp62+ kH46cyDcw+DtSu61fm6W6Se/RDsht47rx/w8a469Z8d1gvsyzK/hGgdeW275 CJ9LHHE0M72E8lwviWM9+onjzC+wb958INzP4O2S8a+S/dMdn8v61ep8FPkf zIOzBsx+/L1G78c6asB4pGg/ccB/mGr6yS/RHvjNt84vIS68NtP2NZHnQX9e NSDjtk6t7UP5XOKQf+CTEsqTRyKOdm/lOPNTzNs143O9XRC7Su9/eE7fo6px nor8D+XjOUaM2x3q5621li9Tnji653DNo+8YsLyNOOLkMY6TZ8C56f8ZCOcz vX/QvyNrJe6fNt7sJ3/F9mL9yTtPRV6I+2vm2WwX9cf7HDBPLh4wecy7PT8Q O86N8t4PxDH97nzf7CFPxXZhmDYYSM9zvvixzL+dBiz/5v4a8/SmAWnPDuR5 /FwThnF2nckD3s/1kH+Af247EPiucUV6JBz8Q+ZDh/NR5HnQD2sMGM/D5yJu Hz8QeKpRpod8EZ8b9aAf7hwtcbPe+Rnqx/9fbyDwP6OK5MmfECevkp67WVHE Y6yer3B54uzPiNOfo36cJ/jdVOHxS32/T78F/zaIekZaPIT81MgbzJb29fi+ OLm/7YOBwBvMl3k+3+W5nkL+1YHAA+h5+PdcnnkO5J+M9i8ynPLkT2gnzzXR TuivcXz1do5K7XzS993Uj34a4v2Geb7hjNA/o4qey3NQyXM/c3n2A8floZmr npuaJfh3A4avflzGFT2X53yS55o9E4vsoXxiz04rSshzRf9J94+zzB7yD9Ee 4slzX/Z+TvLYIf5c9jP18DwS9fC5bFfy3M8GTA/bxfHlvzm+nEeDdT/I+Mz2 pvspHxeui6sflxlmTyq/sEie7Un4xkI/MP9kP9DOSuUB4Lb7T7d5RDs5j+jn 6XmYBSbP/V0i/7LrifOO8tx/0X7uR+K400/ivEvvtVtg48V9Xxwv7vsSe171 /SP4guPKZL3+2Pdl1A/8bX9usi9/2OW5b+K4p3XwWfodWt+XJeeP5nk/JDzK w74vS/YRr7ge7oOwXv9ghe13+Fzg+YHwPtps08P9VHKe6MOBVM/YOZLX7Lgi PT9R8CusW9usCHV5rX/V+P6I9qC7Zg+E98tmS779rMtzPwI3WGOF7TtEfJrk n/mBUE93PycOfqJnqunnfofPhZ+NHkj3NWvPkvk/eIX8/tQqy4uonzjWmZM+ NXnuU4ijf+b6/oXzHvnBeN8HRfvx+1Fa999nivz+MdfD/QXGqd/3KejfQyZK ++sHQj3d7U/eC9t9gunn/oX24Pmvu358D/qcqeI/G2k8/6ja1hPqJ46/7R+Y PPcjxNGOSb4PYjzGPRNvDIR6erB/ULXwa9+Mk+/hPOB6uI+A/8/z/QjzKIzz Liskfzmytijvwj57YY3Jwz+aXA/zK9R/F8R9zbgiPUhnL3vb7OR+h+2C2hdc P/cRaP97vh9J6ln/ifugUaaH+xHaE/Ugj19zjPTjk57nUz/smxz3EaOK5JmH E2d+TnmM869XhHzMceZFyf1Fwx1nP+P8w/FRzzg573GGy9N/IH/QipBnfmY4 5Zn3gh+6Z4Xle7ST9qR54Hvy3BJfT6N+4tRPO4nTTvYD9bMfaA/rAtGe9P1x tec3K/R89BzrH9rDuBrtYZyM9nBdi/ak/Kfbk7w/W7BHeE+P24n+o1YEPuoz yTMOXJGedyrEPepP45i3N42f40wP42cyLse7nZj3gyZYexln2F64/TkrLO7x uTDjhBA/C8/FNNzL5RmX5FSNxz3qx3p43YrA84wyPYxvSd1vFT2MJ8QZZ5J5 +vqr5v+crxHnvjbirLdH/CN9DyLifE8k4ry/KOIy/u1FOL+zQBz98crz2k/d Ng5xX8x2c59Le5J98PqvmTxx6ieOet/rH9h8hN9+2VckT5zy8l2it7XeuMD8 Xdx8jOknTnni8JcjPjR5thfT8JaJth/kc6Me4pTnvizhDVbBKY/59qPJ8t73 4g+tnRFP7q9bBWc+w78pL9FocSSNq3njIbg/xXu5P/R6NubHTRPMfuJ8LnH4 SdkUk+d8iTh/H3Hu8yLO/H/18u2y3t843fan7M9oJ3HKo/521CdW5484/Zb5 MvWzf4gjb6qcnMaTAk49xJFHHPG5yXN8V49/JvZXzLL9Mu2P+pP2FuT5fg2f C/e9xPHkfcBVcHl/1O/xof8QZ3/yfSj2A+XRXb3TU/6tgKMfX51mOMLyxvOM N6D9UT6ZF3bOe1zwz4WBf8jb+R3ilE/q6ENmmT3EwSMs+dzw+1Yaumy+yUt8 zmq9pdTORdDOqIc45Xlugfrx+y0c5zyNuOSzvUU4xyXq53PRj7vo+eWhs02e PEEcX+L0B/Yb11H6IXHKy3cuv7J2EedzieN857mLjMegnVGeOOvJlOdziSMe VM5L+7OAY936y9wUP2KxyTNuYB49vMT4jfhc6knmXUGe5w2S9etWx5PzY6vI Uw/381w3Iw43G1Nq+omjjrSu43JeoMLOIUQ9lCdOeYz7q86DRZzzMOJsV1qP mW3jwriC351cZnYuW3X+FvQk68Ujy0ye9kSc9kQ8WReK5KuKcPo56koVlcaP sX+incQpj2l4xCKLgxGn/RGn/RGn/RFPzgmsgtMvI87xjjjbs3q8owiX/WWm CJf6TzHOeBhx3reS7mPdzxdr3pzyk3l7XzzO9+T9sIZF5j/E+Vzi6KXPqkye eWDE+byIMw+POM/VRpzv/0ac+XnEmVdEnPl5xJmfR5z5ecRlP9RVhDOPjTjX l9ifSR67cbXtN9nPaMfbyw3n7yO+xap141Vw9n/E2f8RZ/9HnP0fcfZ/xNn/ EWf/R5z9H3H2f8TZ/xFn/0dc6p/Zon5m/4PXyut9T3f5/W8RF/6ptwin/ohL XTRn47OJ8hicj6zjkg/nfKQ8zqkNKU95vLNrTT/x3VaqWVZj8nzfHHX8kbWm P8mXVtGT5lf+nYYYN9DMyUvtucn9E1s5DrkxdcbDU3+UT9b9MXXpe23kIXep l/3i0GXGF0ac8yviHK+IMw5HnHE44hzfiHN8I/61HHQowhm3eS8I80PKc17i n98ts34gTj3E0byRLk+/jTjbG3EdXzkH8POGlB/7sq/oucQZJzhe9FviyM9f qEr3R0fp+wzZSsMlD2swefot0p5zG43vis+lHuKUJ09F/bhX77DGwKf1FMlT D+omXzYKn35Qdfp9QLtXaIT085T4vYGx4iffOI7HVTrPRpz6ieMxR7g85SJO e2BvQ5PxadEe6icOt/hti9nPPI3xO+5TKJ98l/Bex5M6bwEHHzex2eZ7fC7z qqiH/Q91tzrOdkHfL1x/bC/tR78f7vUC4hiWeTVFOOUxbtPzRfJ8LnGcU/6u xvoNdnzbbPUI6ofeG7W9hTjKeU0cetetk/eC7i8P3wMYIc/p8u8f068Qxw/q C3zJ+CKc+8qIk4ePOMcx4hyviHO+E8fjxrXaPI32E4/yHHfk7X9X+R85Dn/f Xe9H+7l+h6Ci2uInwsCtrRIPDnAc/l/q/oNm8HtXV7XqPRY+Lhje11rl9/01 hqPe+Z8W6bc/15h+dNfkFv1edq3h6Ja5reYPmIaX5+T/79EqcfdNfy7+f1ux n7DfUA+40OtTST61ruMYpYYWkyd/E3HupyLO/VTEuY5EnHnD6vXXF+HkASLO dTniXKciznU59g/ieXW2SJ7rdew3jgtx/PvIOlvHwbM80irxZpE/F/Y+0mbz lOPOfJbxkzjlOV/gr+/kJU9p5HfTl9l8oTzmw9aVJVEP5tGNnj/Ab9Zot/mF fsvnxP/Pb5P2zHI9GLbt9fvVw6vS71Q92Cbz4P7l5oeI+9PbZB5UVpUk+cn2 bek6e0pev6faJnHtxBrrTzSzu03OibxcbTjm0YltNn+pH/N1gzab78SRf2zd bnVn5CsfZ/U+qDabv9QPvziozeY7cfx5uU3y8KW15idQW9Umdb8HHKcezmu4 wyD9DtA67VYvBr52VtaL37RJ/W1/90M8b1f9PvMIx+k/mG8/rk/zgQJOP0zy 7W9bTZ5yEec+KOpHfnNPpkg/7Scu2yv3f8zvN9rsHGnCM//dceaLEWfeFnHm KxHnuhtxztuI0+6Ic18Zce4rI864hPlV8De8z9ZTjGN+9Pl9pBHnPgfu8aMO ixv0Z1mP2o1XxDw7P2/y3J8irm3jOPdxEWfehfauoXGpsV3Ge2qFPZfyaPe2 FUX2MF7Je8m6Tzm1w/YFwE/RODCq3eIS9WB9uLrd4hhx5PcL2+V9gr2rbD5C 7cb6fZsRlel++WqPb5B7Jaf3oLbL/+9ZbvMI8eewDqkjnOQ4v3POOEb9aOY5 7Rb3iMv74B2WP6BfNtE48Em7xTHqRzvvbbe4R1zuC23X76XU2jzCY/bsEPxf NYZTD+Mb/OmqrNTVzuqw+AP8goycK3yn3eIV9eDPDe0W34ijX5a2y3mw3/o6 i3k9uEPyso0dpx7GN/x9PyPxYq0O+Q7G8T4vMB4lHTJOvb6+47nPtYv/T3T9 eN/tQvWTjesNx/m/6zpsPmIcduqV8wvT9fvqq8xT/PvB4nnKeQ//O9nPqxPn PE3q1I+4PHmGqAfz7OCeIj20kzjiwt4NxkvAHw7okP6f1mDnGuAPj3dafKAf Mj4xr0jWr4J8cn7y3Jz0Y6vHB/jJzJz8e79OWVevW2r6sT8c1in5zvRyw+EH MzyeIJyP1nn6TKfFB4zHq1qn6/F4Qj3Yn4/tsPhDHMO8Q6c8Z5HzKogPFyjP t4/j1MP4c8VKhx7Iir5fdEp/Pldlfv7HlR02olPiQabScJi93OMM9SOveKXD 4hJxmPtep+U58OOrdJ6u12lxhvrxXt5XHRaXknz14E7xr7VrzM/xHtNN2p8X VRtOPYw/8JtPMnLv14udFh+Av98r+vs8nlAP6jEfd1j8IY50f7dO6cfxtem6 dmlnyRkr++lyxxM9/9D7bdbJSFz8Zaf4x3N15udwv4e1vSc4jvne4HGG+vH7 NzssLhEHb/Nhp70Xg3yvo1u/x9xpcYb68Z5jqccl4hjXn3fKejXP8yKM+62d Mt63O049jD+Yhs/1yHx+vdPec0F/3dsl4/dNh/zdo8H0YN591iH1wdsc57zG /NvS7wkhzvhAHH77RofJM/+JOPOfiDMexefiXqlbOovkKRftYXuJY99S2WA8 PObdaZ3Szsf9ucwH03MyXj9h3INfZLNiR77LzvsRpzxx2H1wzuSZLyFO/zMr 8+U0xzHvD8jJ72/vEvs3L7f5jvEa3yV+M8z5fLR7ky6LqzgPvHZO4l19l8VJ TK+BjPj/4V0WV6kH8+W/HoeJo3+v6ZL19q4Kixty/12X+PmSpYZTT/K+w+lZ ac/TXfL+9jGVNt/hr/O7ZF684Dww/P/HXRZvqR/zpcPjM3H87usuy8eQX3zS K889u8viLfVjv7Fll8Vn4vj9vTruvNegMN/hN592Sbt/6Dj1JPztZhkZl9au 9Lz0OhqvjumyuEo94J9+0GVxmDj693eqZ8NaixuIk+92yfy/scZw6mEcxj0+ F/XKful59ZOuWpvvGK8lXRK/nncc02LfLou31A//yHp8Jg5/WaPb8jHJq7pk fM7vsnhL/aj/bt9l8Zk4+vGhLumvXettXmHcp3fJej2/znDqYRxGtx3fLfvf 7q70Hqr/0bzkF10WV5N5u0GXxWHi+L7azV3S7qENad7zQZc85weOUw/jMMa7 olPi7MvajsM8/qAeVtUl/dXcYHjPyh8c3CXj835DGu9WdArvt3Zjej6zYC/o 3waP28QZ974PRx6/TXuRHuQL45Wv+U1XUfzE+F3VZd8dSPLYQxxP9sXLusQf hxfjWD/fb7LzDKhXTui2OMy4RH9h3E7qmwV51gXgp/9yHHHgrLKSKI/xfWeh 4TB7027jnxnnsb8q6bE4D31rZ4U/e65b/HPNRaYHdlzYLeP7luNw18+V//hk scUxxK21euR5WzhOPVwv8O/z1f7ebhmfe8rTfdM+PRJHly5J900PdNs6Qv1o 78ndtu4Qx/tY5/XYOoL91Re9+h5St+HUTz3EcY7j9YyMa3W37AvbKyy+YR3a rkfi2XEVKe/6+25bX6gf6+eh3bYeEYc/nNBjeTj6bzONz3/vtvUlqbde1m3r EXGYPadb8rtzqiy+wc3W65F2jKlM67mXddu6g/3utb0yPgf22LoA/5qo/vSX bltHqAfueka3rTvEMS8Kv4N/Tak2v0cz+9UftnGcepI61FU9Ehcbu+V89DG1 Ns/xZxf9/1U1hsPe27ttfaF+zOcju209Ig5zT+uxPBz5zfGdEndHddv6Qv3Y p1zTbesRcYzfQu2fP9al8W1Qj/jTbo5TD9cdzL+MxufDemxdwDytaJd5+1S3 rSPUA7Fzum3dIY75NaVb5uVo5+swv77tFn8833HqSfiBBzrEzwv7A8Tvxxos H8b82lPn++GOg/6+t9vWl+T8z3Hdth4Rh3//qsfuCYSeK7Te8263rS8J3/q7 bluPiMPPl+r8mu75PNoxuEf6+UbHqYf3B6K/NlH9G1h8tnMa6Naje2xdgPyK Znnucxo3tmtK63kXdRetF/Q78Cpr+3dhiHMdiTjlEda7m4rkaQ9xjMsXTcb3 4j2XHXptPWKcRH7zdI+tO2jfb7Imz/Of2L8Nysp+c1PlY74uNT2Ux37u7ICf 0GvrEX5/vj63ocfWL8qD73uzx9Y74tiXr9cr8+tKP++3zsr+36NX8o3JZYZT D9c79P97GZnPBTvxux/7uSPwY0f0yvcZ7ltsOPYlpb6uUT/6cWSPrYPE0Y9n 9dq+BvNtp1557n98XaN++P1nPbYOJvnzFrq/f3qpxVXoO1DHsbPccOrh+oV+ v7lX7ks+qdf2NYxTaGebr1/Ug3aO7rH1jjjkN9R16b/LzM8wL/bqlTh33rLU /0b7ugbg7h6ZDyW9Kf9cyMPgZ+W+TlEP1u0XemxdI45uWqtX4uG1yy0Ogz/b pVd4r2lVhlMP1zXEtc01XmzVq3l2jcVP+Oshun96oNpwdOPnPbZ+UT/i5p96 bL1L8tRTe21fg3mUUX6219cv6pfvQvbYekcccWbjXokDXzl/inHep1e+13Gr 49TDdQ1+8VKHxOdje9P62gNa51ru6xT1INy92mPrGnH48w913Nf0OhHm0RD1 23/WGU49XNdQPzhA16PteiXfbfA6FObRYb3S3487Lt9V7LH1i/qRvzzeY+sd calT9tq+Bv/epEXrmr5+JXXrj3tsvSOO4WNetnWjxVX5brXyczMaDKcermt4 zif6vfsTem3dAT5KzyM1+jpFPcjb/9Fj6xpxhNP1NK6c3mT1PozTnr3ih183 Gk49XL8Q187S7/vsqH6+X7PVExE/j9A8rqrJcLwHsbBH1v83wnP/2iN+92/H GT9g7wJf74hD/q7vxzGPn2oo0oNu3a9B61Y9Jk870b51NU/fr8X0l6+c5609 hvP8RsR5fiPiPN8ecZ7riTj3gxFnnQICR2sd5soWq28SRztfarH3iCLOcyMh b1E+cIbYVe3rPtcp4nx/BH50pZ5jfNhxjPecjPTneOVvXl9gevD8xb3CU66Y bziG637PH9CuScpTtfdafRZ/39N1/VnPH6gHPNCtnm8Qx3wZo/No4zJbN5En zNH18OqFhlMP8xDE33W0fjG9V79X6+fJ0R91vbIO7uU43OsxzzeoH3F5uOcn xOFfA722/8Uotnfr9/s836B+/O4Bz0+IIw+eqP18RHm6n1qqcfKvSwynHuYh iI/P9ki7u3stT0A/3aO84QueV1DPrJUCd3oeQhzz7QPV/48KW+/QnvnaT2s4 Tj3MQ6SOp+v4TG339ZW23mE+NOm6OWOZ4YhjT3q+Qf1YP37v+QlxjPfXnm9g nNfvKHl95fj+w3Hqpx7i8N/POuXvp+q3i5en+6ZKzdf2XZ7ua/7keQj1oz3X ed6S7BMzvWl9/O9t0u8veR5C/fCzezxvIQ7/H9crz9+51tZBPGdhr/jd8zWG Uw/zE7yXeUq7PL+11/IH6D+gVf6O9HyDejDet3h+ktRN3u0VHvGcunQd/1L9 YS3HqYf5CZpV3arfKesV3uNQP8cCnrJGx6WhznA89xHPQ6gf8+AGz1uIo7/y vbb/xeM/bZJ4+4rnIdSP/db9nrcQxziN13VqWEO6Di7RdW0bx6mH+Qnad22z PL+j1/IH5I1nNco68KznG9QDvbd5fkIcecwYjXuvNdr6CPvmaHt/6Tj1MD9B /3yrfOrZvUX7Yoz3dOXXRzRZXQrrS73ybfs7Dnd6zPMTPhf+dKPnM8TR7kL8 FDfUfXGV5q2ve35C/Thf8IDnM8QxTybqevRxs62z8O8K9f+rHKcefqdV8ns9 19DteQX2czfq98he0Hi4qa/jmI93Fq/vXB+QT2Q8PyHO9T3ilIdZ86qL5GkP cfTjRy3peykvZywfoBzXVeYPxCnP98wxH1c4zvd24b5d2r/PZ+w9OPzsE+3f Ex2HX/xMz71cpHqem2f2ID7ekRG5U+am9aw9M5afwM82U37giYzlG3CfdXQe HpGx/IR6MC92zFg+Qxz+fraeJxpfausvwsRNek5hE8eph/kM4shFOm+vzcg9 PXeUpTzkQ3oOt2yh4ViXDsxY3kL9GO/BGctziGMcXswYv4FufbZL2nFyxvIW 6scw7ZWxPIc41qdL9TxFk7//hXzjbu3/oxynHuYzOP91nPIJT2cs3wC+d6eM /9EZy0+oB+vBLhnLZ4jDD87NyD71zKXpvvjmjH6HqNxw6mE+g3lQ3in9NUzz xC2W2foo+a3627AKw7GOHJqxvIX60Y9bZyzPSXjXgv+T34A/ftQm439axvIW 6se/981YnkMcfn55Rvz07ipbN+HH92WkfeWVhlMP8xPY99t2GZdnMsZvYBhO aRX9x2UsP0nOpw7JWD5DHP59gb6n1Vad8qW3anuPdZx6mLcgz+5vFbsfzVhe Ab+uaZbnHJ6xPCQ5R75dxvIW4oizZ+l+5Z1aW2fBDw7X/cq5jlNP8h2oR/S9 mqsysp/5S52tj8grRmg8+ZnjsPenGctPqB/xdbOM5TPE0cwXMsZvYJ5d2yjz 6MSM5SfUj3n344zlM8QxfhcrjzjVz/eif+/Qcwc31KfvgxX0MG/BfNuS701l i+4Bhp89kbF8Q8496HeQjsxYfkL9mCc7ZiyfIQ7+5tfqh/0Nts4iHt6k5yxe d5x6mM8gz3xH76+9VuPY0sbU3odU/gHH0ayDMpa3JO/1FeIk8xzi8IOXMsZ7 oJ//XCvz6+SM5SfUj/myd8byGeLwj0KcxLTbuNnWU8y7u3U9ndhkOPUwb0F/ HFwn/T0yY3kFnn+4nkc7OmN5CPXA/3bNWN5CHP5/nrbruBZ7rwR+ebPG+Z5m w6mHeQv69eka8f9hGjd2b03vQXhEz5OWtqTfBynESTz/b/5c6NtG42q348wr 4BeTWy2fIQ756xyH3nVdnvc0RJz3D0Q9mJ9bLCt6Ltp/ZkWRHvIz6IfTXA/b i39foPJD2sxOTNfTHSdfFHHyQhjfkbreXVCM4x6CR4KePs/HuO4TZ/4G/vdK x5fo/UiIyx/1pnWend4pwmv1fbeI8323iJNXIg5eqCRr98nQHuLMD7HP2Uzz tw7PG+FfzyvvsJaeR+v4yvIcPGfnrH6/c7bhkJvr+ST68RrN0w7JWn6I+f6x 1i/rPZ+kHvnemeefxKH233q++9IF6fvvW6n+m+YbTj3MP4UH0nrPxvoezJCF ludgvuyj59/vLDUc8bDC80zqhztN8ryUOOw7Nmu8Fuqix2n9utvzTOqH3Qs8 LyWOcfhhVr/76fczYL0coueRW8oMpx7mnxj/Xs3TDstafgh8abvEpSbPJ6kH 83GW55/EIfeNrqf/XmL5EsZp26zWjR2nHuaf8KcRHbIubJqV/vt0qeU5WEf2 1/VxsOOIA1WeZybnLSd7XpqcUz8ha7wW4uvlrfLcjOeZ1I/2lHleShzq1tPz 13tWpu+p7qnnqe9dltYpyjz/xLwbpPXrI7KWH4IvG2iWedTq+ST1oJ9me/5J HPPqOx3fp5ZbngO/3DEr+6aOKsOph/kn8v/XW2TfOzgrdchzayzP2Xml2IFa Z37P38vG82s8z6R+/J3qeSlxjNdJWcszkZfc3yjrd7/nn9RPPcTR34fqvn/D rPhdba3lORj3vbLSjkcdx3gs8fyT+uGXEzxfJY75WoiH5LXk/GWDzK9Ozz+p H/NxruerxDGua2l7t/T3wtDvu2QlHkyrM5x6mJdivzCtQeJhIU4yb4T+d+rE X+s9z6QeiM3wvJQ48ph/63w5tcHyJcTDrfU90QF/b4t6mH9Czbn14ueD9Lzt Po2W5+B5+2j8qWgwHL+v8DyT+sEXTfK8lDjiYSFOktfC46/Xe4h7PM+kfsyX BZ6XEpe6QVbiwG+bLM/B3yG63m3sOPUw/0TdbLp+960QJ5kf4t9P6z6v2fNJ 6kE/zvL8kzj88lvdXzzbbHkLxmM7jZPHO049zD/hp51VyqNkBb/N61aSH+v6 vofjeO5yzzOpH+2Z7HkpcYzXCXpPzJIWOSf69hLxo6znmdSP9pR5Xkoc+fz6 WRm39/x9euyj9tTzlRc6Tj07ScKk34/R84BHZC1PA16q62Gbvuexrudp8KfZ xfkb8yLk+zUhP+zzvI44/Geey/P+yqgHvTa5tEgP7SSOc7ij2qwuyXOazBuT 80P/ylreyDwnyhPHPLk0a/kk8zrqYX6IebCjyxOnPMbrAz03dPUMey71YP5u M70kPpfnkagH49XoeSbGs1TPXT+p8XnW5+m5x5uyIjd4luHo7rey0s9Hfml5 FPplZlb6vXuW4dTDfBX4XXrOpjJr+SfG58ouiXt/8nyVejCvrvX8ljj87GXt t83mWT4GtZ9qPJ8xx3DqYX6LcdtUz4mO0/cz5iywPOqtleO7UOPw7o7D7e/x PJb6YcelWct7iWMdas0az4l509suvx/peWxyvvEWz3uJY7zfzer3yMosj4J/ fKlx9YmFhlMP81s850V936k6m95fPaJN8opHPF+lHvjHDZ7fEoc/vabvlb7m 92hhWkzJyvz8j99vRj3MbzF+P22XeDde15erytM61+Ksns9aYjiee7/nsdSP eXF51vJe4hivjqzxnGjfoBaJe896Hkv9mHe3ed5LHOM6Jit2l1ZYHoXumKNx 4CeOUw/zW0S9SS0l+68cl/qs5Z8Y51Fan3nM81Xqwby70fNb4ujfN/SeiZ9X Wb4EPnm6ro8jKw2nHua3j63sxzObRW6ivm/03XLLlzBeFRo3hjoOuQc8j6V+ 9MvVWct7icP/urPGcwqf2iDz6wXPY6kf43qn573EMW6FeIg65MG1lkdh/OZr HJteYzj1MF/Fvo3vhzVljeeU96LqZB496fkq9WDe/d7zW+Lw+7d0XbiuzvIl nD+Yqf28pePUwzwW7R5eL3GvKmt5ptTna+V5f/K8lHowHtd5HkscblaIh5gH L9db3oV59KnOr9Mcpx7msRjPtbVuXIiH2Ifc12D5EuZDmb5fvq/jmEf3eL5K /ejfy7KW3xLHuLRmjc+UOK3fpR3p+Sr14//f4vktcfj5uzpPxzem3zWerf15 uePUwzwW47P9chmXmqzlmcA7l4r+RzwvpR7Muxs8jyWOuM542Onvs8BdCvEQ /P5zjlMP81jsw09YJuM3XuP2vGbLlzANluh43e44fn+/56vUj3ZekbX8ljjG qxAPyWeiP9fSezGf9XyV+jEet3l+Sxzqxug6vnar5VEY97n6fuH7fu6LepjH ol8u0Hsl67OWZwLfq1Tm0WOel1IP+vdGz2OJY118Q/3qsDbjOWHHDM2Lmpz/ pB7msdjv/99COZcwSefvtu12jyuGuRAPkX/PajMc/fKA9ueT/lz409UaNxod Z96I8RndbvktccS7od+PQ88Gs4v0oJ/u+0LyswsdJy+KZv7N9dB+juNMmZD2 XPy+VfWc2WHn/Ygjvb2tI73vvZDvMB8W+YUynn/IWf7M/I3v38d8G/Nil5zx q4jLr/eYHt5HLXyGyxOn/BK9hwB6P56avuf4B7234PopJfG5zMMxH/7aI/uE h3OWVwO/S987PSRneTj1wK+2zlneThz+eXpO4tjjM62/0O/D9H6goz83nHqY t+PPXpr3Xp6TOtCWsy0/hH/elxMec9YXhsM/98lZfk798M9BOcvniSP/eCZn +Tn0rNdh45XgPNc9yHHcnz65U+w4PyfnsTvmWd6I9e9WvW/spbmG48+QnOXt 1I9/r5OzPJ84huPRnPHG8LeXtM57eM7yduqHfdvlLM9P3mc8Myf7ldpSyxsx z4frfZmHOU49zOcRt09uF30jcpZvozt/qvFs/5zl59SDuLNZzvJ54rD7F+o/ p/q9wXiv/CqdR6PKDKce5vMwa3mrxMGL1c8HLbG8Ee8D3KHz5Rq/Lxd8xJ45 y9uT8+Tr5yzPJ47ueyJnvLG8z9Ek8f/InOXt1A//3jFneT5xLOe/1vfXb19q eSPG/Sb124XlhlMP83nIXaM8ykM5y7fRL2c2yvw6KGf5OfWg3wfnLJ8njul/ is7HxmWWfyLeXavx5EjHqYf5PH73TaPux9Wf36qyvBE8yN0679Z0HHbsnbO8 nfrB026UszyfOPzv6Vx6P2FlneQBR+csb6d+zItdc5bnE0fac57Gpc1rLJ/E vLpZ48n11YZTD/N5nPd6SN+fezhn+TZ+P1zPTR2as/ycevD4QnxjPk8cfv5L vfdlcq3ljejfQpzEPvV6x6mH+Tz6aTvNhwtxEvzHK+H+wPu03053HP21b87y dupHPjYoZ3k+cYzXsznL2xE388rjHe849VMPcfjppTXy/v4FOc3v6tPvdNyq /nC/45hXu+csn6d+PL8QJ5n/E8f4FeIkeWPwvDtUiF8enrN8nvpxLmL7nOX/ xPHzs3TcN2xM758frvN3QoPh1MM8H/++ZZmM14ic5eH43Yl63/NPc5a3Uw/+ FuIb83ziWA9P0vsRj2myvBTz/qr/J+y94+ysiv9xBEIXRIkUla4gSlEEBTEr HWnSQTBABKUXqQIKgkgVpPuh947UBBAUSEiBkLopm+wm2d7bvXfv3YXQfnff M++ZPfPcfH//ZF+Zfe88c86ZM2facx7V894Wo5MP/Xzo00M1EveM1f2+ZZv5 k7CHZTsJ+OxWo0PubQfMnyd/DJN2ssfp2Fe3D1jeGGxOmCs/fzFg/jz5wy5s NmD+P+lYz7KdRJ3muHbzJ3EfwgXqL63qdPKhn49jc3y12MMbBswPx35bY6Z+ p2zA/HbygZ5+c8D8fNIlrtPz95YO8ydhD89QO7C708mHfj7uWfjPbNHzsp3E uXSe1/Gxv64akHX4ltOxfj8YMH8++a7xVwfM/ycd/sZdes5+pPca7Py+jKNs J+nPkz/2xZYD5v+TDr0/Vs+jJ7rMH8b+uljtyeFOJx/o+wV6303LFF3PAfM/ 2F8EOW4eMD8c4q75tsz7T/V8/8z5S7/RQMY/p58mfcruz5NOvz3Sicc+fedV 0dctnC757JcyfCgn6bKvuy0/H/38RM5dihYXJPX9bseTTrzQn5D9/Fmv2M+m Afs+keRT+wwvz3tV/K+PnQ/jC/z6Hq3vf6bn4IbvpPeNbFKU31/+ttGxv6Z5 3CF1V71fZaeixRGgb9cjP5d43EE+2H/veJxCOn4MqN1rfD/t21y/KP31d0xK 71F6x+MUPH+h3k+yRlHOkdOnpX2b2xRl/JtMNTr24TyPR8gf6zLB4xfS8fd7 FNPvE03Qe1Q7PB4hf6zXdI9fSIfd/1Lt25gZ5g9jvb5TrHpkGNg/3ejkw7gD P8fpe5c7Fy3PD//9V/r+eL3HHeSD+Z7ocQrpiPsGVQ9vnGN+L/b/BkVZnymz 0+/uTfR4BMd8Sf327YoWL+Dn0jY5pxZ6fEE+sMtvejxCupxn6g8Uq9O+zbX1 vudDnE4+jEfw/5va5bxZWe/rfXN+2re5RVH0Yn2nY5vM9LiD/KGXL3mcQjrs 3q5Fy/PDLzm9RfZRk8cd5I91muxxCunwPz7R82urmvS+1o30+wBXLDQ6+TAe gT5uoPfUb1+0eEHucWiSfbTY4wvywbq+7fEI6bAXOY07blmc9meuq/akbZHR yYfxCOLEZ5tFn0cV9b2UurQ/c+ui9nfWGh3Pn+NxB/lD/1/1OIV06N9uRcvz Q6+vb5B92OpxB/nDf5vmcQrpmJeyPcRz/rs07c/8VlHO79FOJx/GI3Lfv773 XLaHjBcA/9kyOVeWeHxBPtJf6PEI6Zj3sj1E/vIbDebf4jlfL8o4r6o3Ovkw HoH+3VYv+rRmUc6nUkNa9y/bQ/QZPNqQ1v3nedxB/vj1BI9TSMcwy/aQeX74 L4fovbadHneQP/bHdI9TSMc6fKn3TG/XZH4v1mNTPddqGo1OPowvoEdP6b0C ZXuY9KtcslD0u8HjC/LBvpvo8Qjp0hei/snJzen32EYXxX9cx+nkw7gD6zm7 RtalbA8ZFyBue3ie5GUWehyRfJ/hTY87SMe/ZXsI+3R3i/nJ+PU6RXnunk4n H8YdsFtD+l2vVfTe4ktbzb8F37I9hH3eyungO9PjC/LHvL/k8Qjp+Ktdi5bn x/l6xkzZR80eX5C/vJ/m8QjpsJvLNQ/2Qpv5t9C7jfRe9t84nXwYd+B5X50j dq9sD5P8/1vTZB/VehyRfJfxbY87SMff59W+Nfl739hH6xX1HgCnkw/jDszf WdNFn1fT8/H9DvNjoadle4h8xvlOh97M9fiC/KH/r3o8Qjr9beb56W9jHXcr Gh19tjPeFnnaPO7gc6GXH3icQjrU+3P1hz/xvhToa9lOSl3C6eTDeATr9q/3 ZL12Klq8APtx7svCf6nHF+SDYbzj8Qjp9J+xTDu4n0864wvOA/5fdDz9fPzd 19XO1HUZnc8lH3F3Jsi6ztd8+ER/LunQ/+ucP9RggtqZWqdvrd8BoP9Puspr dH7PjnjGEVNwv2FP4POEPO88fQ9rWdH6uoknnfEC5nWvHtmfNzsd+n243sP4 mK7v22+m/b3vFSXftdnrRge/sz3uwPT1qz+/oGhxBOg1XbIfr/G4I/nu2ClF i1NIx368tyh1rJ0nml8Ned8oynvk099Nv2t2iscpmI+/dct6vKhyvjU57euY od85Oft9o+O5l3k8krwvdnzR4hfSoTWNRatrYD/8Tr/7cqvHI+QPu3Cexy+k Y/xP6r3yt32Y9ve+r/7enh8YnXwYp8h7gdovtqhocYTcb6Lf1/67xx3kA3X6 Q9HiFNKhTg/oefH7WWl/71tFsQ8bzjQ6+TBOwfw8pnbxFaUPzkn7e2cXRa5f Ox3T+GePR8gf+j62aPEL6dCvVo9H4O9f3RK+3zg3/b7hWKdjGXdtE/v0TFHO lXHzzE+GGk8t6j121UaHHlzocQr5g99RRYtrku8vLClaXQN2ZbT2BdzgcQr5 Y/+c6XEN6fK+rerJDP/OIPyT/6k+bO108mH8Aj99ouY1q4sWX2Cdn22Ueb/K 4xHywb4YV7T4hXTId4/a+V0Xpf2949We/LPG6OTD+AX0o5tEz58vyr3dyxen /b0fqr4d6XSca5d4nEL++Hls0eIa0mH36ovp/Yqn672DN3ucQv7Qy3M8riEd +l+2k8hv/X6J+cmYxvf0O0jv1BmdfBi/4D7aifWyLguLFl9Aj26vkzj9Go9H yAd8Ty1a/EI65qVsJ8F+zjLzt7GeZTuJfbmt08mH8Qvmp3OJ6OuLuu6/ajA/ Ges1U8+jnnqjg91lHqeQP/TshKLFNaRj+pqKaZ/S03oP9K0ep5C/3H/kcQ3p WIcndZ9e1Zj2976v4/qB08mH8QuOqy/1PePFxfT+89nzZB/93eMR8sGfn1a0 +IV06NMDqofjm8xPxry/pefmOKeTD+MXzMu2C+T5ZTuJ9b+n2fxkPGaO6s9e Tsef/9njFPKHmTixaHEN6Rh3q8cp4DN9ptSr7gz05XOMD+mgHqbfT35G7fBH LeY/Y76m6Xn3J6djfi/0+IX8cd4dXbR4h3T6dfTz6ddB35cUrd4Bu/KtD2Tf 3eBxDZ+LeTzT4yDSgSvbT/SrfaXN/Gr8/p2i3hPSanTyYbyD9Z8xXezkvKLJ CfrZk8TuXOXxC/lgG4wrWrxDOvjeo/x39XuosD8m6LnQ3GZ08mG8g/31nSky T8/rObtRh/nP0NPpRYnHJ7cbHXXbSzyuSfphjitaHEQ61rG+aPUOLNdOr8i+ u9njGvKH2p3jcRDpPJexew7xfnjSY1wDrXjM8fSfMfyJej4u7zA6n0s+OJfu eF324zVFi1P43IT+pPPHsp5atDgo0hnXkE+k4zFnPKX6MWj+fBwv/X/Rh3bJ 6x9YMnzSl7JbyfCkE4/hnvF4VaTjexcnPWB0rNtg0fr5GS9A7GtLFkdAz/r1 +z07lcTOtD1jfCSeKkncuvmLRsf+2r8k++ik18xPxq//UJL5mfSy0cmH8Qj+ 7v5u2bdXlNK+qb91Cv9tShaPkA/kXrNk8QvpmIcx+t3dtf5n/rbcK1+S+tC5 bxmdfBi/wBztqHWtI0vCb51J6T1FF5Sk7/Wd94yO/bxpyeKU5H3DlUoW1yTv A15fSr8Huq7eE7NzyeIU8gdsdMniGtKxrgfq91qbpqbf1zxD5+fOKUYnH8Yv IL+l981cWbL4AvbjsVbZL9uVLB4hH8z3OiWLX0jHub5nSc7VNz5K+7dPLsk6 nzHd6OTD+AXnwa/b5PfHlsSuVs1O+7cvLsm4czPT75tvUbI4hfwx3auULK4h Hct9U8nqHfAjtm8WvfxpyeIU8oc+bVSyuIZ07IdDS+JvrFVtfjL+f3ZJ1uGU uUYnH8YjyNMsbhZ9v7pk9Q7o38RG2Uc7lCweIR+MZ72SxS+k48c+ur8u9u/F Y95P0efOnGd08mGcgnU6V9/7+1PJ4gjo8THqx323ZHEH+UD/VytZnEI6xvHz kviN9QvNr8bjji9JH/3PnE4+jFOgHyvrvUmH6355fJH5w1jf83TePqsxOp77 rZLFI+SPfp/PPX4hHetybcnqHbCTk+pk/X5UsniE/KF/ZTvG+IV0/DigpPF5 nfnDyM+V7SH0+7Rao5MP4xTM+yZLZV3K9pBxBOhdi2R9ti1Z3EE+2HdlO8Y4 JbnHoGwP4VdctjTt3x5b0nuBlhidfBinQN699TuZR+m+26M+7d++QL/fe/cy o0NvNitZPEL+0LOyPWT8Qjr05fqS1Ttgj1bS+55/UrJ4hPxRdynbMcYvpOPY PEjt1byGtH/7DLXbf3U6+STfYzpugch9ZcniCMi57VzZRz8oWdxBPtCndUoW p5AOfdpL+a/ZZH4v1vtktT8TGo1OPoxToI5XV8vPY3XfdTWl/dtle4j6zr+c jv21ZcniEfLHKFcpWfxCOuzFzaX0OyB/+UDk+GnJ4hHyx77YuGTxC+nQc9rD zVvM78VzztZzeUaz0ckn6bPa4SPRj2tKVu8AfdYk0YMdShZ3kA/2w9dKFqeQ Lt9xKYleH91q/i321ym631d2Ovkw7sD8XTXFvqfNuAD7fMxb9l1lxhHkg2kt 2zHGHaRDTfdQ+3xzm/nJGObxuu4/dTr5MO6Avj78rvmHkOtsvy+OdMYL9Kvl fnLHJ3np89QP3Lg9zWN/u2TxCOWBHf/c45fE/y/bSdZHKA/pjEfIH2J+o2Tx S6Qz7iCfSMe69D8t/aVjipn+HJB/MhjuxdXzejv3z+mPybq6v0069Hmh++f0 M8mHfjX+/4Dj6YcTL3VB99tJh370qn1Y/QWTR+qFg/Iez8yn0u+xvul+O+ze AV3i324+aH416DtpHDbT/XDygV696H476Zi2lpLcF/DiG+ZnQj9XHhQ7vf4E o5MP/XbM0xLtu/5E/Yf/vWP+IeZ3w0E5rzf/b/qd+Mnun5M/9O1J9+eT9xy3 H7T8P/7/dquc74vdPyd/6M/b7s+Tjvf0cqWqnuF1+8nktE973UF5/7VtktHJ h347+Jym7zluPWh+Nei/1u8OzXE/nHwwjFfdbycd+t2uftqaH5qfCfs1alD2 09vTjE4+9Nuxnp9q3/VnJckr3j7D/EM851s6b3t9ZHQs/zT3z8kf+aJn3Z9P 3nPcadDy/xh2rZ5jS9w/J3/si3fcnycdej6g/tVrc9I+7a8PyvjWcTr50G/H 86/T9xy3GTS/GvRzG8TOz3M/nHywLya430469KNL12XTeeYfYn+tMSg/L6k2 OvnQb8f8bKL3zn6pcU3j/PQ+rk0HxW/c3el47nT3z8kf8/qC+/OkY712HjT/ HN8fLNSZHSOd/MmHdPz/RP2+7qCe4wfXmN+IdR89qN/NW2h0uQfE/Xbyh3yP u59POtarbCeZ/4d78a3Foh8L3W8nf/zdm+7nkw697tW44I3F5jfiMesMir3/ mtPJh/489t+Ftfqe1KD526DvvVD210z3z8kH+/El9+dJl/fi9Lzbcknap122 kzifrqgzOvnQnwf9gRqZr0/UX21dmvZpbzSo9yY5Hfo12f128sc8PuV+Pumw h2U7yfw/fv5G7zGtdb+d/PH/t93PJx3nd07nYdsG8xthD9cb1HuT6o1OPvTn sZ9erZa8UtlOJt9fXnWm3u/v/jn5YF+86v486fh/u55fYxvTPu3VBuX/azmd fOjPQ+4Js0XPP1d/r6op7dMu20m8j9DdaHRIPc39dvLHPD3rfj7pUIiynWT+ H/q34/uCW+p+O/ljdO+4n0869LxYknzNRc3mT2J/le0k9tUWTicf+vNiNqbo PbqD5m9jGVZ6W/jPd/+cfDC/E9yfJx1uUpfmqZ5rMT8Q/syag3o/ktPJh/48 luFH75m9Auwf/v0j0umH04+Ffqw0aHj6jWC7qe7rnzkd8zjd/XzKg+9cvOBx QZKvbnA/n/KgjtfodPInH9KRh151guzrie63kw/p9PPJB/9/3OOCFfWTiP7z 3tPBDB32bKb7tzxnMf7Lnc5zHD/OdDr9EMnPOJ3+Evgd6HT6Y9DDw9wfJh34 3Z2On8UO40P/NsEfOGj+cEI/3/3bKA/psH83tov8tw2aXxrHRT+WfPDrgwbN 7yUdj3950PLDcd7ox5I/7OTJg+b3kg5FfMz9VfIhnnSYyw203vXhoPmZoH+m 63iJ+6Xks/bwL44dND+WdLkPYlD07oSppg+wO88PSt32q1OMTj70Y/HzGbUf j6ndaP7Q/CW5n39Q6mF3fWB0uW/f/VXyxzQeOmj+LekY38JBywNjPq5r0Hvy 3V8lf9irUwfNvyUd5u5etT9vzjJ/Cb9+Y1D205kzjU4+9GMRN+/cKN9JnzFo fiZ+vavW9y9zv5R8sA3LekU/lnSYldt03qbNNb8I++fFQbHPmzmdfOjHwnzc Wi/6+OSgyHXTvLS/9/1B8c+bq42O5Tvf/VXyhz06fND8W9Ih3+JBywNDroMW i/793f1V8sd+O23Q/FvSERc8oP5GaUHa3/uWzvOhTicf+qXo436iVuLAOYOW Bwb9IvUr/+x+KfnArTpx0PxY0oG7c1D06ORF5hfhPHplUPyA/9QYnXzor2I9 Zii/qYPmT8o9T/PE77nQ/U/ywb47etD8VdLx8ya1bx/Vpv29zwzqvUlOJx/6 q+jDL82Xffuw7otbl6T9vf9TvW2vMzrU8Uz3S8n/jOGFKts9+rHJe3zzBi0P jL6Y38+Udb3K/VLyx7k/btD8WNKh5/cM6r1Gy8wvgt0bPyh+xRFOJx/6q3j+ 2voe3/RB8yehj69Pk3P/Evc/yQd+wnGD5q8m92Dcouv4akPa31u2h+B3otPJ h/5qyzD5tOmiz4+pHb6rMe3vnah6/kunY17Pcb+U/PH7Xw+aH0s61mvhYHqv zvtvi/28xv1S8sc8lu0Y/VjSsZz3qh5+2GR+DtiW7aHkj51OPvRX8eOO96yu LfrRbP4Y5Jo5aH4m9tPvX5bxXOZ+KfljP54waH4s6eQPrfmi2fwl+b6D0+kX Yf+9qPv3eaeTf9KfP22C+GnnD5r/Sf6k018lH+znIwbNvyVd1mfI/K7rVX48 5+oh84u43yUP6/jkXprtHZ/0O33H6Un8+1Wn026D/rn7Yzx34D/0Op3no3x/ 0P0K0oFf6nSIc1ST8aGfkOB73a8gHf8vj1fmZXpGTvoJlJN0+hWRTn8A0/hu vc0Dz3Hyhz1YacjOfdLh3583ZOc45xlux+5O5zyTD+k4V9uXyD78/ZCdy+QD vR09ZOd4cl/6kJ/7yfsyVw5Zvgj+6pP6vdAfDNk5Tv6wo+sM2blPOszgXkOi jw/NN31DX+PJQ7Lfh+YZnXx4vmM8n9fIfF48ZOcv1nnmPNGTLYfsvCYfeY96 yM530jGcnw2JHV6zJu1/O3ZI7OjvFhqdfHi+47z/nvI7dEjGOWNR2v929pDe i+J0nGcbD9k5Tv7Qg+V+7pOOdSrvU57j4ubOFP3a0enkTz6kw0wdWi34fYf0 /pM6O19wTp4yJHHgbbVGh96sN2TnO/lDrLz7A6TjfPzTkOWLoGcb6vd2vjtk 5zv5A7fakPkDpGMb7qHr/thSO19gF44fkn68T5cYnXx47s9HWnm6rNd5Q3Yu Q8rTtV727SE7x8kH8/K5n/ukQ993HpLzZbWG9H3ww3Vf/6He6OTDcx/rv/EU wR0wJOvR0WDnCNbrD0Oij3c5Hc/9xpCd7+SPeK/o/kDSd1c3aPkinndYxyuG jI512eYV2XfbDtm5z+dC7LWGzE8gneeCvB/cZOcR6Tz3+Vz4Y1WOT/rfxqo9 md5odD6XfDBvN74u+3GzITvf+VzS6Q+QD+ZxpSHzHyKd5z75RDr23bGM7z8O 9bjxohdbf2znFOcf+3qun3fUH9AnOj25P+EVpyf9pY86nXYAedHZQ5aXIB6/ 7x+yfAL5A/8uz7Xn9PfVwv92t+fQp2MWGH8Z5/yMPLTPlId02vNIp32Gnbiq 2sZLu0r+EOsRt8OJnZzo9pPjkjym29vkvbnP3R5y/oknHT++/5HEZ5t+bHGK HP+ah5zu9pB8sE9ecPtJOs6jRj0HD1qSvr+2kurJE3VGJx/aSczLFVNkn43+ 2OwY7Pyub8nzJrrdIx/EVY+7nSQdci3Sff36srQuP6h2cj2nkw/tJN6D+r93 tS4+JOvwiwbbL9gnvU5P8n7rfCznQHW90ZFvedPtJJ8L/bvP7Wpif2YNWfzC 55JOO0n+kPslt6uRTrtHPpGO5y95Wu978X1NPvDn93E65SS+amTcyO/fnfex 5d8SPj/5OI2Lt38v5f9EnfEnnXoV6dQT+GefjTd5uL58Lsxp1cemD6RDv/d5 XOqNvRfZe3vAf+UR/f9dsi+Of9h+L///p/7dtRk+SVwz8QHjQ/kjnnYr4unX V5ZzfAbPenLEM58a8cyfRTzjo4inHx3xXOeI/5r6rREv96a8m8HTr4x45lkj nvas8nxOyuBpbyKe8xzxtAeV539yBv993a+V5WnK4HnOR3yrxusRz/M54lnH iHjGzdRbnuPMM0c+0n/TluGT1EkyetWewad9TP5c1lUiH9Hbjgwf9g1FPuxX qqy3XRk+fJ8g8sH0bN2Z4YOf53Rn+EyVBEUGL35SbgX7dyDzXN63E/mIPPkM XfZdPsMHcdIL/SuYh0IGj/rBX3IZupwD2efKeAcydPFrSsaHdPg1z5cMz3nA Y9kfU7arGP/e/wpyPCH+whf3m72N+CQPNoJO+1CZ/+QMnXYy0pO4bwSdeYVI pz8Z6YzXIz15D24EPXnPcgRd1rE2Qx+ldizS2Q/G+YQan/CQ+LVH5jJ4vgcT 6UtU/yMd63h6T4ZOfY505AdO7MvQ5Xzsz9CjXiXPbSd9fOb8ZV8d9Y3xV9Rz zlukM66K9KT/bQSddiDSeQ9BpKP/88v+FfAZMPnjPqJfwHH9e1ixRml9aOWX gz/ysM2P/N1jNg/iJj0ldvD+R+zvkPd7/wX7P8+jiK/TfF6kU/7Ih/SIT9d3 vI77PhsXyPu8Zny47hwv9uHeT4d5HC/nzZfP2zxEfKof48Vf/O2LNr8RT3sS 8YwLI5714ohnPjPieZ5GPP2HiP+HnssRz/WK+EeT9zIdT/8h4tP3+RzPczDi l+v7n5Ge9vU6H37PpfK8lTL4yId46gPtN/cRx0U9JZ1+FM+NiI90+kVxn6b9 LE6/Qf2NyGdjtZMR/y+1h/TH098Xx+yofnTcv6QTz/0Ce7P+BN1fL9rv4eeu +qbFIdwXC9XvFn4vGP/IJ4lHRtB5rkU6z69I5/kV6bTDkc79Eum0w5X56L3c d06w8VZpX03E8/yKePqrES/+QBZPvzTi4Y6t15vB0/+MeJ6bEc/zJeLPkQMi g6e+VV6XXAYvcU1fhi7zWczwof8Z6dy/1CvR66dNP+H/tnv8z/2L/570htpZ P8cg7un/C+e8663406+Z3kY+tPOQY9J/jQ/1OeKT+uAIPPdbpMv4ajJ8krzT CLxMTz6Db1wBH/pdkU69jXTqT6TT76o83v4MnXoS6YxHIp3rjue/9o6Nl+vL 9SKe+sD1RR/s2Am27sTLvXWv27pXxo9P8VNet/WNeOIinusb8bRjEZ/UVzN8 ZmT4jNW8RKTTHkY+zKtE+lEal0U+vxv5PsIIetyPpHNdxJ4tyfjPrPtG/zn1 P1vMn74hwbeMod2O53Ly3qXdp+Xf3Yjn4wYap9D/Sv224hjmxVO7URzD8zT6 k+SzIjzrCBFPPSOe5zvP5cS+lfWCeNKR56h6T/vF/ZzH+kyYZPm11G+frPP3 pj038uF6RDrXG/yWTzT+SZ9GRp7JGTzHE/HME0Y817uyPLMzePKpPK7qDJ77 IuIlzs1n8Mw3RjzPr4hnvjHi0X/wURbPfGPE085HfFIHHoG/QfMzEc98Y+V1 ac7wQR58aiFDl22U5c+4I9IlD5DlI+dLKUOnnYl8iKd+Sdzyuu0LPGe7yYan XeK+QL/EDm8HuzBZz4X/2X6J+NROTJa6wth3bL9EfLrPI37SCuSZnKGLntdn +Mi+yGXwrOdEOvtwIp15iUinPkQ6872RzvMi0pmPjXTmhSKd/kmko/63XnYd 0/hustHTfM7kkI/NB/vreZKIJ3/2Pcf8CesS0W6n59T4DJ36mfiZ5fMu6nPE k47nrT9F98s7ps8wf69PTe11WZ/JX+zjO/bcynzG6305U4wP9TzSk3hyBB/a +UgX/cxl+NDvjXjavUjnukQ+iT9cHi/Xh/OGv/+M/egTU3/yT1M1D/uezSfi rdM+TN8DHzGf5MP5jHw4b5HOczPSd1f9wzpt589Nvms2Ak+9jHieUxGf1NlH 4HlORTz1L+J5TkX8ArVXEf9nzSNFevJe7Qg+7PeLdNqxyId5kohf0XMZz1Ze r6YMnnFxxD+l9jPikc4Z1Z/BMy8U8d/XfRHxtMOV5z+fwS/X/tbK81PI4GnP I17kHMjgfyZ2MYNfVeP6iGdeq7I+Z/Hc1xHPcx/DaHI69y/3KZ538STbv9yn +DHL92/Ec39FetLvOYJOfzLSmb+KdMYpkc56SmKfl0+yekrE83yMdMbdkc64 O9JphyOd52OkX6/6E+niP2TpPE8jnXoS6XyfLdJ57kc69YTzRnp67nvcl9Y3 /dznvohxpdRZBizOIF3yJMUMnvnkiKf8jEuiX8E4N/oVtMcxH0v69eqPks5+ aO4Lnkd8bjyn5N7hmWmcZnmw2Xp+TDY81PGD6ZKfu/h9k0veP5hhfKi3Ec98 VKSn+QS+/z8pHe9rs4w/15fy46/HTgl5ntlyT9OhU21cEU85ice9x1Oncn0y eNbZI3251ikiH+bNIp52LOKlrpDlH+cn5e904lek/5usoF5wrp5rab2gZQzj O9q/qM+Mm6M+U9+iPrOuxfwP15fnedRn8qE+p/mTORk9Z59l1HPKGfmk43I9 p12PepiOd7LRQb53ttyvVZpq8ws/aPyc9B6ish6Sv+zjqfbcynxaMvzp58h9 SM6f9YiIZ/0i0hmPRz6492Stvgye9jDSue6RD+0hxyvx4RSbN6SPJ81N+87b 9Xxftzo9t0fMm5yXH9q84T3PR/kdow9s/uUcnWt8GI9HPP3zSGf8EvnI/Ndm 8NSLiGe9NeJvGem3j8Cz3hrxid8+Ak9/sjL/tgye/nbEM06PeNatIp71sohn 3SriZ4z8LscIPOtWlcebxYtf0Z3BD2q/VsTTz4/4zVXOiGfeOOJ5XkQ8/auI Z34m4pn3i3jRzyye+beIp/8f8fRPIj6xzyPwPEfAbpfqlE97yfYd+ST5hzJd znHfp9y/KMfvMd32Y6RzP0Z68v4j+55un27+VsSTHvGp3Xc64+LI54aR+jWC vuPIesYI+vMj86gj6IxbI5190JE+V/dvpLNPINIZT0U6+zcinfsu0mU9O1Yw D10ZOvddpF+j50WkM/6tvO65DJ36GdeLek468dTP6J/w3OF7EmldqRj8EPdn qBfRn6G/UblvqqlyPZr3SpbjWdJp16OfQ78l+tvE76B9FBGfnjvFMZQ/jUuc D78jGfmkdTn6P02Zuir5E086zM0z1bIe3/7I9jvuO153fvq+mdWh5mscOMOe i3mdOi+9R7683pE/+7ojnfs90rkekf47fW8mPpdxYsQzTx7paf55vrwnOnV6 6jc+6PNAveX84Hzaembwy+erfzXT5i3iOT+RznMq0qOciBfHzjI86cRTTs5T 3C9pfOr7hXr1//b/Q1yZy/rDzKtFPUzj3+kZOuc5rcPWZNYl4kkHft2FaX2x PP/kI/7BLOMv32tZIPP2wCxbR3k/foHx4XMinnn9SOd8Rj6s11MeOb9npvKv VmN4riPWY5Tej/vlbJMT589p/j5YHK/4r3NsvJEP/WecMyc5H57vlZ87PoOn 3Yp4xqURn8SZGXmqM3jah4in/kU87V3EJ/dvjMBTnyKd7w9FPnxvL+Lp90Y8 32eK+M203z7imYePeObZIp5xeGU5VX8ucz7UK+oJ8dRD6hXG/5W56b64Ru9V WXeu6VvEv6HzSTzswQZz5X3CF/ozePadRDrr3ZE+Wv20SD9K/bRI57kY6Yy/ Ip3+WKTTX4p0xuORTv880hP7MGJ+iE/sQxm/onoo41DiSed5x/cJov1n/Sfa /+s1Po72X/ZZ1p6TT7TnpEe7zf6p1J4UxxBPexXx1NuIJ514/HlPjfQ3j3O9 xTqftjjtI7E6YK36d3ONf+RDvY10xo+QYzvnn7y3PgKf9C+NwDNfEfG0DxFP exvxrAtEPO1tpLPuH/kwfxjxSZ5zBJ56FelRrySOmmvrhXxok/OnnnO9MC8X V4d6UK3o9Sxfx4hPvvM+gs5zLdKpv+SP7bO82vZbxPN8jnjOc8Szrybiea5F /Kaa34j4MZonjHj2Y0Q861MRz3x4pDNPGPkwDxPxcX2Jj3yI5/quqD8w+qXU K/ZJRXtFerRXSd17RL8E/YWxIQ/J50c7Rvnj+Uj7w/iV9Jf1nKc+kz/ljHaG 5w/7BsiHePJJ+vmPrtXvosyzfQH7dHqdvhc6z/YFz1V5zjx7buTD/qhtcU1F rfGhfxjx7NeMePaTRDz5RHzyXu0IPNch4rmuleWZncFzP1aWpzqD536MeOZ/ Ip5+ZsTTH4t46nfEs88h4qlnEc8+gYjnOR3xyfsFI+jil3Zl6PRzIv/nNb8a 8ewnryx/PoMnn4hnPTfiF2h9POLZ5xDxPK8jnvXriOf7dxHPPoeIp/2JePpv 3Hfih/n+RX/bgUsMT3vI/Yt16vR9TT5Qs1vn276OeO6vSOc5WJn/ZOMPORrm 2/kY8dyPEc/9GPFp3Ox47sfK8ldn8NyPleWfn8FzP0Y8/eOI536sPN7aDJ77 MeJpxyOedjzi2RcU8Yx3Iv5rmk+uPD+NGTz7giKeclaezyyefCKeeeyIp58T 8fQzI571qYgnn4hnfSriGa9FPO1exLNeFvHMk0c862URT78o4pm3j3j2oVXW zyyeefiIZ70s4hmPRDzz9pX3bxbPPGpl/c+vYP8WMnja84hnvBzxrJdFfKv6 qxFfq/FIZf0vZvD0JyN+RXTaefIhPX3PdJH5pbRjMR4nf+7vynWKhhXG3bHv gn5sfB+Efmyaj3a/l/5ZxEd/Vc7D+oy/ynwYz6+k/6E8LtITP/b0pWaveX6x L17Wab7xweP+p+9DNM63cUR6cp9DBj85Q0/ucxhBT+oGI+j06yM9qW+NoLNv MNKT+xxG0Dl+cX+X2Pww3xHxXI+IZ39CZTmbMnjWkyK+Vc+jiOd5UXmeWzJ4 nhcRz36GiKedj3jaw4jneVF5fTsyeJ4XEX+91kkjnudFxPM994jneVFZr3oy eJ4XEU9/O+J5XlTWn/4MnudFxNOeR/wo9Ycrz08hQ39a+0UjXeZhIENnniHS V13Bc2kP8Xev6f3l3W5vYRcnLVN9WpixJ6JPC8yeYF/uqt9l322B2ZNIpz1B ffo25899HfHsR4t4+nsRT/kinnazsjwNGTz3e2V5mjJ47veI536PeO73yvPW ksFzv0c893vEc79HPPd7xHO/Rzz3e8Rzv0c893vEc79HPPd7xHO/Rzz3e8Rz v0c893vEc79X1p/+DJ77PeLZRxHx9A8jnn1HEU//MOLpX0U8/cPK85PF0z+M +N213yPi6R9GPP2riKd/GPG0MxFPPtDH79UbPX1vvd7sAv0c0oF+1O0S7RXE Ps77wSOd/CKd/kOk83n8iXtqpy40/yHiaTcinfFjpLN+H+mMWyOddiDS2a8Y 6Yy/Ip12INK5ryN9rOa3I5358Ejnvo509ldHOuOmOM/sD4946n+k8722SGed JfJnfBTxjIMinnoe8dTnyutSyvAhnvRkftpLmb4s6g/1LsY71LsY7/Bcqpy3 X5Tpj+L5w3gnjYOarP8q7TNvyNQT6UfHfDjpaR+Zfl+1rO/YhdcvzPChfSCe eVk5t2oMz3kgnnTgxzVYvEi7QfnJh/yRJ75XvxtTcnsS6VyPSOd5F+k76vkV 6WfreRTpXEe8T7a9y89+JOCnOZ36w3FJfXCRjZfzgPHOrLFxEQ87+MIi4x/x fD8l0mN8Tfr/Xx0qvk/BOhrfRyX9PT1/Yx6A+k89j/pPvV1RX+KYcB8F5U/9 Mdc3znPU/6iHrGOk+QnvM/xH0GfSI3889yuNog8TFtl6wWyMa7T54PpyXGLH F6Xyj+CTrO8IepKH2cD5E0/+1HvKied8qt+1+GixrTvO/XWbLM8b5SQ+yW8c ot8R3XqxjTfSz9B8NdgsbzT+zNdF/J2aT4h4+mkRzzxOxNNPi/jku5Mj8Dyn Ip72L+Lpp0X87iPj/hF4+mkRz76piOf5FfFJnDECz/gx4mkHIl72TWkF8mg/ 5C6uD1FPUN/ao9bWnXqCv7vY9Sfik/foy3jg7qg1Pa3Mf3IGz/Mj4tn/E/Hc txGf9uc7nnFfxKf9+Y6nvxfxtKcRz7gv4nkfX8Qz7ov4HZ8e2V/sePqHEZ++ h+Z4noMRz7pVxDPui/jRmieMeMZ9Ec970COecV9lefozeMZ9leXJrUDfchk8 /duIpz2JeOaRIp72JOJZF4h42pOIpz8c8bQnEU9/OOJpTyJ+vVtGvtfmeNqT iGc9N+KTeHYEPn0PwvGRD/G0M3yfg3n+6PfSf2CejfXA6FcQH/0K7u/oVzyt cd5u2tdLeuxvIZ37PtJf1T6CFfntPIfie6PrBX+b8qTxBN+PaMn4IcSn57Lj oz9APO187MMhnXhZX94bWmd2nvkzWY8644Mf5zaJ/frQz4tIp1yRzudH+ijN K0Y6/dVIh9wrNWTofM800nleRDr91Ein31l5vC0ZOvNjGHZDk80nz4WIpz2M dL7fF+nd2u8R6ey3jHTat0jnPeeRzvf+Ip32LdJpZ+J4X1E7Vnl+ihk693Xk Q3+Geij5AtdbxB9nuN6m/kyznN8v15l+ks8E+EFLMnr+xXC4e+kSO18iH/pd kZ6eO05P8ocj6Bwvn0s65U/rm35/b3r/scdltLekx/Ml2kPmjeL7LLR70Z5w H3CeIz7aB+4PxkHkQzz5kI5xPN5cNX14ODf6veTSf+/9Glwv8hf/Y4k9N/Lh eSp5H+9Dod2IeM5bxHP/RjzXMeLJh3JKn2hdam8fCn0o7Af+slnvz11q84Bz +60W04s4D2JHlqZ2fgQf9j3ifusXnA/7qSKe9Mr4SSuQc3wGT7864pl3iPik r3gEnu8fRXzSVzwCz/xFxDPui3i+rxfx7JuKeNbRIp7+ROX5nJTBs44W8cn3 bkbgWUerPP+TM3jGUxHPeCrieT5WXq9pGTz9iYjnPo905skjnf5e5P+o5s8r 8yll8OSDvFyN09P3SlqMT9K/8Zbu081iX0mL7Pdf+b6LeO6XSA/5Nb2H1r+3 FfFc98p8pmXojCsjnfFdpHO/VH7uvAyd71VWlqcmQ6f+Rzq/Hxrp7LOJdL4X FunrpfGAzSf97IhnfB3xjEMinn22kS7n30CGD/29iGe/QcQzno349J7/KGcu g2cdM+Lp70U8/ZCIZzwb8fTTKuttIYNnHTPief5GPPPGEc94NuLpB0Y849mI j3Ei8ZFPMp/tpYx/JfFW3vpAY3yafr/C41P2BTA+xfH/VCng9btUH3tcHP00 8rlF79uEPRwo2XuWMQ4lf+5/8ic9yZN+7HIy307+xG+i/hXxnIf0PRV/Lvdz xKfnlOPpt0R86v86nnTiQX2r1ep4tM8cl+y3euODftX1W8V+PeB2PtJpnyOd 8wo57vDnUq6IZ94s4nk+RjzljniOP+KT+3BG4Gn3Ip79JBHPvGKk0x5GPqwL Rzrfy4t07qNIZ54t0tmXFelPa19WpHM/Rjr7siKddiPSaScjPe5rLPeJy2y/ YB+u3WbzhuHWOh5yrNpg+km9Bds7600PIz3Je4ygJ3mPEfQk7zGCnuQ9RtCT vMcI+uiR+YQRdOb3bhlpJ7dosPdQIj7OG/GRD/GcN8abtKvsZ2B/Ouk8N9lP QXuLeVtT648XtJu9xfuGl2ue4Ys2u/8/yT980WZ42m3SaYdJJ3/GV+RPeUQf Hpb+jYscTzsf8aRHPOOriOc9zBHP/oGIl/P17Qye8VLES17pvQyeeVHiYbf3 bM/cj0o+zDOQD+eT8WGcz+20nyHyJ5+4XnIeTs/wGaN1iMjnRH0vMvJhn3Tk w/d5Ix/eDxP5yHtfszJ86H9HPi8oPvLhPEc+7FePfNgHEvlQ/sjnDq3LRj7k H/kQH/mwHz7yYf9J1Ien9X2xqA+sy0f+Qq7J8GdffeQv9//Oz/CfoX0CkT/z XZE/+2zjPBAf+TDfFfmwPyHyOUDz+ZEP6/KRD+OoyIf+VeTD93TjvmYdIe5r 5qkinnnXynZjSQZPPhHP8wzrc66Pi35gXEeO6+3hvz/fx0s+HC/9IJ6/9Pfo B0U/ENN7bLvhwfe7JYlj8u43Rnl47kNPDy7JPL7oz6U8OA/21e907dBg5zum /e02u9eD/gD5i141pH7vnxzPczzyZx4g0p9SfynSGd9F/vS7OJ+Afc3kMTkx zlK9+DXzizKOX7YbH5jd69WPGuv+T5xPmIc/1ot9+rQo4z+t3fp6kv7SV9v0 PkSfz0hn3wXuiz3R+bC/K+JrR/ZJjqDTP+R6QY6/NFi9g/KD/ScNkm8q0xHX XubPPWRYkTZwPPlwfjhe2LGvNNq4kn20bqPNQ8Qn3/kq45E32aDR8lERz/fZ I35HPf8jnnwinnmqyvKPz+B5zkc882MRzzxwpPN7UpXlnJShU87Ih3nUyvJP zuCZR4145lEjnvu08ninZfDMo0Y85y3ikzrNCDzzORHP+DHiGX9FPO1mxF+g 9cGIZ/wY8X/WfuCIZ19KxNP+RDz7UiqvexbPvpSIZ79xxLMOG/G0nxHPPF7E s+4Z8czjRTzrRJX3SxbPODfiue4Rz/g94pnHi3jm3yKeebyIZ19KxEc+xNMe xn5p5m95HwzpzFfEPBvnbbOA5znFv2M8iHXpLAb8XRK3blAyPOM16E/R8bSz xJNOexr5MI6LfGgfI552MOJ5r0vl576b4cP4K/KhfYx4mcdJGXxy38EIPO/H jnjGXxHP/GTEM86KeN6jFfGMpyKe9wpGPOOmiOf9NhHP+CjiSa88n9UZPOOa iGd8FPHsC4r45L6GEfjHtD8/4hkfRTzpldd3UQbP+k3Es74f9ZB1/ITPUzr/ d1t+ONXzA/R+oFqlT+qwOALw94vpfryvTvJsOZXnSMczzwO+T3Skdc/Li+LP /6Ij1seNP+MLpNMeKWpe2eMU8B1VSvs0V2pI44ib1T5sXG/+IfljXu7TOtoP i2KP/9Nh8QL+frWi/H5Pp7O+g7+fnIlfjD/ix02XybwcVpR7Wh70uAbD6A3+ 6hyXH9Pyka774Q1mz8kf6n9wg+Tj7hkQOWZ3mJ+P+bpzQH7e43SJ/7TPeeMO i2vi/EAPnq6XfblkQOLBmzU/85iPF89f2p7GTce6ftLf5rjg/7/sdLhLvxqQ uODcDpuHOF76/5D/sgH5+0c0HzXH5Udc8x3nD7+0PF70h7zWLvL+zP159EGe 3mF1Svrz6b5rNPkjH/rhkc5zAPqzr/Nn/aKyPJMzePrJES/+2PQMnudDxNNv j3Tam0hnHSnyp/2LeO77iCefyvNTn8HT/494rmfE01+JePr5kc5+rciH+faI pz8f6eyXiHT2RUQ693mk06+KdL7vE+nsD4t05uEjne8VRjrrCHEefqP1o8rz n8XTH454xi8RT3+48j4qrGC/FPS81Dzq990/5z5FnuBifa+iXfu0X3Q+xw+P 6wW97+V1j9+jnYE6jdbxbhbsbZ/bB9oNTO/bWXtCOvd7pLNPqTKfyRk6/ZFI Z1420pkHjXT290Y6z9VIZ92X84A+1NWbrA4U8el55ng5D3IZPOuSkX6A1iUj nXoV6dSf+Nz0+1yOpz7wXijGKeyfkXnqMjrlJB/SGXczbiad8R3jY9J5/kY+ pPO5jI+g7wfr9wh6O6wuxvOXdMZNjKdIZ9wU6TJfjxkd4i7oND6Y59scL/Py dAbP/BTxOH+HOuw9sSgn6wJRnt20LhDp7H8gnfPD5146/IcXOZ55xsiH9YJI 5/tdkU5/PtJ5/kU66xeRTn2KdO5P0nmexH4M4lm/iPPP8zuuF+kRz/2P+7H/ 4esV3je0eWY9Aj8udP6sO5A/7FOuU877verMHyMfPL9X+/Z/rPnV9bosTsEu 2Uj94ac6077x011OxjtRTvw4QPvzf+dyJn3vncXQz+N+KWD5TvNjoBazB6r+ b9jOXNdp/cxxXKynyPYdEHlrOyQuKbmcOI/2cv4QY2xRzp/yukA/py6184j8 YZ+qtM/zbwOS91qty+z1/GHgCerf3thpdNqTA4cXbp1Oi7Oi/Kj3fKT3Az45 ULXasLhtHq9BnH2Kdv5ul+SHdN5Gd8l3JX9db+cy+WMdfqF9Mr36vbBvd5n/ Bzk7CvK8ZZ1pv9AmA7Je4zotzorzg8cdtUz6QH+s8c4itXv7LbPx4v/fc/7Y Zy8O2LjkvHE/H/WCzzstrsFjH9L+ljc6LW6K45X3QOqrTh1et5n6/buyHmIe tvS4BmrwB+eP5dloQM7z5Z3y+84GO9fIH/M4TeOsKj3Xvt5l+gz9+kFB7rV+ q9PozK9eOWwoftFpcVaUH+fl2ZpPv0jfn13b+UCelQbSe6oe9XmDnhadjjxN Y176X+7otHgqjovzj/2zRkHymi0dVT3D83mQ+3uQ/yDnD308syDnRHuH2JeN mswfgxqf3pm+D2f3rut4N2sy+fGY7RzP+C7yZ94x0llHiHz4vaeIZ7wW8Yw7 Kj93egbPPGzEs/4Y8cybRPyOmv+LeMbzEZ/swxF46kfEJ9/v3i6sS9lPqjw/ WTzrCBHPOCXiWUeIePa/RTzrCBHP97MinnWEiGe8E/Eclzy/U34ud/+W84o6 Ta5R7MhtebEPTc4H58M+efFXPvE4Je4vjOdF9avfyMs+O7VT7YLvF6jpBl0W D8f9IvUG3y+RD/cLfq7vfJiXjfhWzW9EOvdR5MM+1ojfWfdRxDM/EPHMn0Q8 8waV5WzO4FkfrDyfLRk893XEs98u4pN+38z8tGfw3NcRz3gj4rmvK89PVwbP fR3xzD9EPPd1xHM/Rrycz/0ZPN+7jPRu7W+MdOY3aP/xuAvcPiTnab/yX651 vW8FfZiTS+OyC3zfkY5hfuz7hfsI310pZPcX6awvkQ9+v9zPhYi/XvMJEc/+ tYhn/2DE832ryvLUZPCMeyKecUzEs14R8YxLIj65t3AEnvnASN9A/aZIp12M /HnvTMRz/0Y639+OdOZDIp3vJ0Q672GuPG8dGfoBeh5EuryX0ZsZF9Rqg54V 8M9l6NwXkQ/xpBNP/Zf6Ss7yD7J9r818x2eDkf5s2R4wj4E4o+xvSzzQbXkG xB2raxx0Y5fxp99OOvFJPqTMh/kN8oEevdBl/lnkQ3rkw3xI5CP599cyfFhH jny4zyMf9v1WHtf4DB9+tzHyYV048mF9OfLhdxsjH/brRj6sE5AP7SX5J3mJ Mn/OQ+TPPt7IX/Rozgrm/9UMH/bxVp7/LB+uV+TDPt7I50rtp628juMzfNjH G/kw3xX5sC898mEfb+Qjx+U848N+v3gvFvnz/Ij852h/b+TP/tsoJ/Uz8mG+ LvJhPq3yeBdm+BBPPrQPzI/DfysOGH+eN+TP7y2zL7fyPNRknsv+3vhc5vfi c1mXrzw/i2R/NA4Yf+blIn/yQX9sh/MnH/Ln+cD3Kjku+DW7d8v85xZb3oD8 Ude8Y7HkP2/Ufp7fdlt+7/5hQXmfVcm/y8S8EB57Xpfl/aL8GHdpkazbG5qH Ocj54Dw6sCh6Oabb8myThid8a70HclaX5eui/MwftgzT9x8Qe7FDl+Rl7q1N 5bnZ84ToXxqv+a7NuiWfdJG/10/+2F7NdcK3riBx1JHdln/D+r9ckPrb3K70 HoNNNM92VJfl/aL82F6X1VW9Ofzf5YWq+mHATs4HavqA3gt0Urfo4edLLS5L 1rFpqejLvgWpg5/ebfk3jOsX2of2Paczn4NxPttl+b04D1iflZfKPF1fEPvy 3S7xY7p9XNgO53teEW7OaprPPLDb8maQYyAvcfyXXZaXi+NiPzb+bnP9nsLu XVXVwxPXuczkxPNe9nwg6o/nF6pOGx7X3t2y73/ZYHEx+WMfbdwg+nKP9teV 55n5NIzzr3m5/2Flp7Neg3zl37ssjxflxzF1nd5v+2Fe7NTRXcYH+nlsQezU nt2WH4M+7arxfm2X5dmi/OxnwPr8Vvn/qEvW/0GXB3p2t+f3oF4T87Je26oe XuP1WfKHnd9L8wAdOdnHx3Rb3gz9N5P0u71Lu4zOuhv0Y1yX5eui/Pi7VTUv sU5e9Hj3rrTO+2ze6tVpXFwc87fh/5b1HHW6/dwvTdZ3T80XHZETvmd1m3+P 72z+Wt9n3Nnpm2udEb9/3fN7cX6gnh9qf/W9ObGz26o9nOrjhZ24rMv4Y59+ w8fFOJHjwnwc0p3G76PUf1q72/IncbycH8i/S07PHdWHKS4/5PuPPxdmsjxe 6ifOpS2azQ99cBi2QXd6X1Q5PuVzpR+02eSPfBiHRjr7BCOd/X2RzvxPpLOu Hen0dyJ9lMaJkc58HehDXTZevpfI9QLsG82WZ0j2y5nNcj7ur9+dP8znDXLO 6ZO/O8Lj/biOGM7azWJf3ui3+Yf9/bevC/Hgs8jXJeKZjyUeeeTeZlv/iKf/ HvHM20S8zMPsDJ55m4jne9MRz3xsZXn6Mnjmf0gnnvPM/BbjSsq5ono915d0 xgeM10nn+faK3hdHOvuoeW8E41a4v+sPyDnzZI/FoXhv5S8DYn+/22NxK89T 0oln/Ivn/67H7mEknvkt9vFyP/K59JP5XNJZHyed8tOfx3fgL3Z5+FzKQz70 2yMf8o98iCcfiHdXj/nh+Ltd1W/cvsf8cI6X/OmHgz5W/dic+/MJ/2v1eyYP LjL/gXwwql0XiX1u1HP52Z60Pj5J++R/4XT6e7BPE7vNn49yAv5Yjfi966g/ f7fHBfBHHxuQ9bu5x/xknEOX6b1V3+wxfzvKzzo77M/9Wte7vFvO4zHu/+N+ tAXu52M9yvKA3emqJ1vUhe9h6brcoPed/ljleaTH/GqcM6PUT97Y6fQzoY4P dJs/H+WHnN+rlZ+/LsjvL/e4APm0gYLs+2d6JC56bkn4zlePxEHX6XeuHsiL fk7oMb8a47sjL+fhuU6nXwf5Ct3mt8d5wPheqpP67JK8xMl/VH/gNh8Xzp+3 PF7A88YWZB/8qye99+mAfNV1ww/ev8f88Dgu9nVgnS/S/rfrdX1v9bjgt8Mb Z7n7+VCvaXnR51t65DzYoT58T61H7r9bpH57X0769V/oSevpC9TPOdDp9Pdg b2Z2mz8f5Yde7qz3Wmyal36Vhz0ugD14Sf3AW3vMT0b99mb9HvSWPeZvR/lZ N4ff/XJO/Mcru2X/NLg8iMuWdad9zhtrXeyCHslbLmqwc5n8EY/e3SB6WKV1 usd7zK+GH7Gh+pnfdTr9SYz/2W7z56P8OD9OaJB1GKf3YP/N4wKoxUp5Wd9X VX8ebDQ/hHywzndp392R/fL3b/aYX43/H6DfCb3C6ayDQI4vus1vj/OAddu8 UfoDlvSL/3yx6vnGHkfgGHrf4wX46Wfqd/ru6zF/GPtxQp/svyN7zN+O45L9 qf20X++XfXZTt/j3G7kfhfeQVnH+oD+r99vf0yN/V99kfgX5g/6/JpFvsFf8 2pd6zE/Cz1m9Ys+OcbrEqX0iV63751F+wMc1yTyM6xN78Yz7+ZDnT/2aX3G/ kec4/aPob+Mxt/cY/vZhQX7eK/7/jo6P4xU73Kx9P71yDlyt67in+7cYV4fL g+P24D4ZD+sGY1rC95r13qwNWtK45sZuoX+lxfzYSGfdFnIt7Tb+tGcRn/Sr j8CzThrx7H+IeNZJI579DxHPOmlleToy+OT9pRF41ksinv52ZXm6M3j629Qf 6HFLs60Hf8I+t2lcc2+PnOPX+jrC7q+k5/E9Hl9E/cEwH2+W87C9x/QBduM0 X1/iwedN15OIZ9yR+DMNLdYnHPH0yyOddbRIZ5400llHi3T2VUR60q8ygs51 ifJzXZL7g0/zea7T9yljXYzyMr7gfO6tdTzSWc9dUVzzcohTGAcx3iWd5+O5 GlfF/uQoD/26cwI+ycsxbivHQdhf+Yi/S86J0QOGZ71D8s4F+671HfqeI+3J iupK5D9K6z6R/9P6Hh/5E0/9Ix79gJ3aXzBtflUcF9bhxvlV3x0Wq12/9/0l x6XfwVrgeOyzGfMEV9T44m7HM07EYxp60+923VyQc/WaXquDRHkYZ30T5auC +Me7Ox/yh/81s1fsyYE15jcmfOoWyjn1M/Vjy+ch9QnTvqHmjf/udOoDxrdm r8VrUU7JiywUP2pcQexYvcd9eMAner9uTa/FR8iLzsrL+Xpir8VZUX7WTbBN +jWvO03fX2l2efB3mzl//DilYPdGxD5q1Ele1fmftdj8ST4X5+f2i+XnTXmp j/T2WpyFOPT4vPAf53TuL+zfVo/v4rggx7xFou9P6PsLkz1OBPwgjZsKvaLf x9aZP0Y+vx5e3x/UqR6qP7Zyn8VZ8Jfbte5v+ZU68/PxnLJeMY6L8wD78Vu9 D/xH6m+/o/H7Ln7fOP5uFecPuSfkxZ9q6U3vZ34wJ37eP3stLovjYh81+Hyg 74PM13Xf2eNE/Njb+cMP2ywvflON9vfVLTV/kvzhT/1F7wfeV/scPuk1vwTj 2i4n+/wOp9P/x7qP7rX4LsqP+W5YIvN3ocZfHR4nyvukedHX2l6Lm8DvvX7Z f2f2WvwV5Wc9BdO0it4jOr1H7Prfl6XybOv8YS/O17jmbd3vOzaYf5jM/2x9 v3UH9RtzvRZngc9i3f/nOp1xh7Q5enwX5cfPU/WeunP6Zf5nepyIus9xOalL fNorfkOxIf37tTTOaGsQfV5Zv1c7qs/iLIyrvH/gJ77fa3T6+bBb+/VaHBfn AXnbS/Q7adf1yft8E3skjj3Lx4VxfNX5Y16v7Rd9be+1uAl276ReyTPc32tx WRwX+58xf//Rc6umR/T9TI8TEfcd4vyhd8dR/3RcuzSZv0L+2Ifrad/Ukz0S B3zWa3EW5P+T+nkPO53+Cvhs2WvxXZQffN9srFpzWP61dX8WPI7DubxNn4x/ Wa/FTbALrd2SV7u01+KvKD/rIxjfTuoPz9K4+06XB/mDHzt/TNOnPZafpj/K cwH15ym6ry9tNj+Q/CD3z5rlOQdof/JAr8VTGM8XXZI3vdzp9OMRZ3/hcVwc F/gt1zj3do0TFno8CL2Y3pN+l3WMx2VgW9Z/qMce7t+SP869n2pc9m2tI67R Z3xgNzfUuvUc5898Ovgf2WvxYJwf6OE7zeKfPNclftcUzWP818eLvN43e9N4 7aFu2Rf/6xF/r9HjDpy/o80vtbgjjWN8HiIfrnOkMy6DfO/3GH/qC9zVr/Za vBPnU95HapH936x9em8GOXfqFP+t1uOmpK75WY/287XaeGFfJ/bae2BxvNL3 3GrjjXwY50Lfn3U+7GfmfOI5K/n7nImen6z4dzvEbyw4H4zjV44nH46X8kOe h3xcxOO/E31cEc+4Pjmv57XavakRz/pQxDOuJ514ys97Z2O8FuOpKH+M19gv GeOsHVXfSae/lNQby/EU7MNR2texRr/FU+gnuUvpG/SZnPR7SSeecRns3kZ9 FjcRz+cyLlt7WMyLnQ/x5MP3IdiPR32jnKzjRjlJJ59nhn/xYz1XL5pXFecB +2OHebKuYwoyzoP77T4W9BFtp+8BNfUZnXEKx8s+tzheue9N48QzXU7yoZyI k7bvtzgO50FDvuqhYXbT+6z/LcrPPj3o7ep6L99X1S7t6vEm3h+8ts/448cZ Gmdt2C9x5scLzL8lf8zHXxcI7jb1G/fqt3gQ4z+Hefs+o1MPca4c3mfxZpQf 5uLz+XIuva79DNs6H8h/uOO7ND9PfcD6HNuvecea8J3ifjm3rqyROG+51h3K dMaJ+PmJ9m9s5XTGKYhjnuqzODTOD+zwdQvlfN07n+6L6xem94+d3mf84Qa+ rXWf3fy7qXjv8SXNR3zaZ/FpHBfjU5nXnNSzn+0zPpQf5+r2zofyY32+6niw e0zjpj365fwc5d/R43MRl8xZLPHFQTmxV7/ut/gRccoeWmf5oi+l/0X7tq/p s/g0jgv2fq3FVZ8OT8x1+v3ctTVPstjlh94c4vwxDeto3mmnfosHsS9atR+j ps/izTgu2c+1VTsN75tvq/yb90kcUOPfBwSfWzzORZ3nkpw8d3Otk9ywxPjy J+otW2ocunu/+Gv79Vv8CHHK8wU7U9tndMY1kGNsn8WtUX7sw1vrqi4antfb dX/+2PlA7hP1vZJt+i0ehD91Zp/Ykdf6LK6M8jOPgX3yko5/wz4Z//c9zkXd 7YI+44/5uE3t4CitC61Tb+cZ+WNdL9S8/FL1e37Rb/Ejxv+3Xtm/r/cZnfEU 1GK3Potbo/zQt/X1feQNtb9hQ+eDvz+pX8axb7/Y4wMb0jx1mQ+Oqd203+8V rRce0W/xI+bvgR4539d2OuMX6MmtfRafxnnA4+7T+/930jzRuhoPXuHjgjoe 05e+t7uzxuc/6bd4EGq6psYpLX0Wb8ZxJfcajdN63lbqV//X5YS+3ONxLsax eq/Y5e36ZR7/4ffAJPKOa5S49yjtt/5Vv8WPGOeW2kfY3md0xi+wm2f2Wdwa 5YfdWE/vvZmg90D+3Pkg/lio/Rbb+ffQECf/s0vOzXf7LK6M8rNuKGZU+702 6ZN4q9Xlwd9d0Wf88ffPdYsfsV6/6MUsfy+I/KHfN2mcONQp6//LfosHYO+f 6ZT9936f0Rkf4Zzar8/i1ig/Hne4vv/78y6Zz82dj/gp3fbdhhif4vvMZTuP fNidzea3J37ITRq3fqT3fB3db/Ejjs+JHVW3Dg9kI6ezPoL/3t9n8WmcH7kP R7/vfZT6+evrObKux8vId53cZ/zx+0O0P/in/Rb3ib+l8uf6LK6M4xL90++F 3qTvLW6j6/7VEJc94vEs5NuiU/btzv1yzs9vsXghsduvaRx6rsYLB5v/L3nP /dpF3gHz/+2+AOjrpR6HRvmRXzm2RfZNreL3dT7Yj7kOs6OMs7juyfvHuzld +j/6DY95eq1N1neGx4lxvIwToedf0fvBN9V13NXjQcknujyY/8l63+wPNH/W 7fEd5JnUZ++vMr5L82ptJn/kUzXSno2gc9xYz386f/Z/RjzrvxHP9/g4z/jv rFb7PeWE/1en9eP122R/fK/fcNCvP+l87+zxbJxnnEv3tor+neT8gX/U54fz hnEc12bzmczbVL9PPeJZZ490qY81Zeisp1d+bkvmucSTTnwyDxOzcXSMizmu GF8zjo50+V7V5Ayd85z025bjaOzjN/Jyn83PchYXg89aBenHebnf5GRcQDrx jMfJh++RkQ9+zuy3e1MjH/Y9Rz6s15IP5Sf/acNyDbr87FvF9Bby9ly+d8bn kg/vTcW69uVNHnnfda7JA79+TE7tY7X58+SD83jeXIlX7lF5Ds5ZXI9z/irN C3zH6Yw3wf/5fnuvLcoJv2+bufLcD7Sv/hbPJ1BO2LFf5CxOx7m6S178pDVz Fu9H+VkXxnl4gt5vcGa/2PHaapMH8z7T8wzQ94n58N1su7dK3i/bSePCJ+db PMLnQk2/O1/8z/ac2JH9cxbvw55OylXtMvxnazmdcSLGfW+/5RniuMSPmSfj WDsv/t4Fnq/Az2c03j8sJ/f97LDQ/p4/4QdttVD6sw/PyXuPR+Qs3sf3Fg9V /C5OZ/yIdejrt3xCnAeowc4L5Dn/p/HaOD0Hf+j5DcBf9TwG1vPrGu/vnbM4 HfHNqjpfW+QsDxDHxf5h1Gd+ou+5XNIv7/Vt53kJyWd6ngF24y9ab9orp3It MntH/tIfp/T9tF/u0Fxad95Sz+mtnM74Ees6vd/yAFF+qN0bNaL3r+t++Jfn JbAPT9VxjslZ3I26Uvmcg3+yXs7i+ig/+4px/tdrneYcjVP+vNhw0P8azydA Tx5Q+XfR/sFd6ywe4d8hrz9V6+CdvbLvfpWzOB15i2e0Xr6+03keIz/2VL/l B6L82B8/r03jiis8zwD6Weov7p6zuFv6e3qlrvhpv8XvUX7WneG/HqP1p1M1 fzWrLo0T3va8AfSySv2PbXIS//xnqcUj5I/3AjdaWrXuMO4fGt/tk7NzHfq/ vdaDvvD8AONWjO/qfssPRPlhV99dIvM7UftWT3Y+sBvrah5wf7Une9Wb357Y mW9qX/HJGvf9mudXvfgv++l7s993OuNE7Iuy/jAPEOcB4hywTOsiWkc7oV/2 /ebLbFyYz0c8/4CfTT2yD36Zs7gbfaKv6ful38xZXB/Hxb5i8FlD+3HPV71e z+NxnJsNnjdAXPJ6t+yL3dU+NDdY3EH+yIOPV/91Fb2X8KCcxenwl2bo/SMb Op3xI/7/ar/lB6L82Ie/b5D+k5P0vaa/e54B0//3bjl3fp6zuBvH5G6dYudW zVn8HuVn3Rm4v6qcp2mdecS9svgxxfMG0Nvf6HukP8xJXPRdv2eG/PFjaaOc z091yLmzX87idJwDRyh+lNMZn2I/3tpv+YEoPx73dKPsl1a9d/JMzzNgnrbV e/rK/gz0q9Pvz0nWcYnmDS7Xe64Pz6X3Ap+lcdNOuTQ/UI4Hkf9r7rc8QJwH PP9sfR/wC/1+1YlqT8b5uHAOPOf5B+StPtP7HPfMWXwNfatpE9y3cxa/x3GJ XdXv2P9Yv3N2odrLkz2fgPXs9PwA/npOu8QxY1RPftBi8VCyvqO0rvqdNokv D85ZPI7pyLXKef6dXBqnX98m9f93+y0PEOXHsf9is9RJrtV46lbPJ2AeHtb4 /RcWd4i+jG2Vv1srZ3F6lJ/1XOjLs/p9zTM1z3+jy4N61izPD+A8uLDN4hTp u/Q4HX79j9TOn2N9nak/tkOr6ON7LeI/H5CzuBuwS1qkXre205O+2fv6Ld6P 4wI+p/mWNTXuv9DzBhjPXm0Wr/HvkzzD4XqP2o/aTC+Sdd++Tdb3rmZ5zhHO B+/J/LNZ7O+uTmd+Sx4b8wMtqV80vlXsxpaqX2V/EvP0qo8XuNf603j+m63i V5ysevKRx9eoM0zqt/dCGY/zufIens9D5MO6KPbFxc5H7PF7K3ju+Ayefe8R z/uaIl7Eq87g5d6IdzN4+bkwg6ecEc97fCJe5nXqCsbbkMHP0fuUMIznPO8R 9Qd/d6LST2gW/337nPGHHX2mSfT1UudDPYHf8NOc7c+4juI/tNs64r7nl7Q/ a1S76UOky9+9VHXGsCJs7/z5/mVlPpMzeN7bH/Fi56dn8NSHiK/Vvo6Il30z K4Pne9kRz/vBKss/P4Pn/WARz/gp4qlvlcdbm8FT3yKe/kXl8S7L4NnfEvG8 9y/Z74Nt5hckdvgYzW/+VPvRDnQ++DHR36MiH+on9RBqf5vrVeJfPe/6GfHc v8TDvP/Hv/8Z8cz7RTr1JNKZf4p06kOk8zvkkf47vVe7sjw1K5CnLjMu3t9Y Wc76DJ12JvLh+ib9mLf5esk5k81Pyj7L5ifv0Xg0pU9e4fvjtFOkc7ySd8sb ne+nbKZ5FNJF//W+7A16Aj2fkZP5IuYzmP+E3d04L+Pu8fwnpuVqvaflKb+3 jXkY0olnHpV8eM6RD543UfMo5fMg8iGdfCin/Hy5Cvd9XOL8+T0p8ied9ot0 8iGefLD+HZ5fxa/3z8u5Mz5n931RTvIR/Zup37nIi394r/Oh/Pi7Jp2H2XPC eHISj106R/yjXo3/C56/xXPma9/7RKdzHeEvXpOzvG6UE3H7M7NFD76Tr7ps GHaW8wH+xbzEEc2ej0V8dZO+3/rvnOVjo/zMD0OOF3MS/56g83bVXJMH9Jud P9LNG+n8P+18eM5i/y7Q/vQj5tn+5HMRp31YLfa8SuOiPs/3Qv83VP/1Jacz D4n1Pd/zwHFc0PPjqiUeO1n5nOh8sE1X0nlrKFnelfJD3JKub918y/8k6z5t vqzLERoPf+x53ZzeH4J822KnMx8IP+L+nD03zg/sVqPme2u17+FYPXfm+niR b7nS+WO9z1Q+nbn0fobXNG82JWf52zguvn8Ecb7WL/HBuJzkhWcvMDkBf9D5 wx9/VvPs7ao/J9VYPof89xoe/sY1sm6lXhlP0fO90MMZvaKv05zOPCHEu9Hz wFF+/P2pC2VeT+4T/uc7H4z/Uo0TWj1PC9xu2hf7Ws7ytFF+9n1hP1+v36sd m5O81BaeN4ae3ub8weZg7UuozUnetnmx5Z2S+T9rsdS3/0/7lfs934u8/xGa B5vgdOYJsQ6Xeh44yo956NB+s1a9d+N3zod9FdA/vkdydp3lf8gHcfwZei/E 2d2yXss9r4v5O6tb/PsGpzNPiDji0Zzle+M8YN/8sVb8oi/0vYDjtD51Ya2N a53hYV7j/JHv7+sRe9TteWDcI1aj9yXNyFkeOI6LeWDZB91V+eH/P+58KD/q OKc6H8qPvM3Rjsc8/0/7kXpUf3JLLc+TnONvL5V9up7eTzTo+WHMc65T5n1m oF+gebB/5iw/HMeF/5aW6HvCeo/VUTnt03f55ftJIS99e7eMo83zvRjP2E4Z z1s5y/fGcf1L31fCvL+s30s4UfHvLzM5Ye/vdv44f/+g97It0320W0P4fmdO 8g2rNcg+eVX70vOeH8awLtHvCL7tdOYVsc5/8bxxlB/7/LJ6ua9uzU45B09z PtinP9G8YpPndfH/Zv0e+TM5y+tG+dn3hfncpkP8kePV3t7k8kDe650/7H5Z Htk/3Vbv5/mFfti5qg9X+PeY+FzY/x0bZf8f3S7r3ON5Y9jPzzSv8qzTk76X szyfHMcF8hf6/e5/tou8xzsfyFmj39XLa53wl37/Ofng/N5B72f+vvZjDHl+ GMf/6Dapn893OvOKWNe7c5Y3jvMg9wFpX9wzbXLeHa11ztd8XDhXLnP++Lty PAc71+F5YEzP1a1yzr+XszxwHJfsW71vebG+93CynpuvNqX9JPc6f9jTv+p3 5Ub1Z+5nYB4v3i8Bf7NZ7ec1zZY/SfTh2GY9f7VPZsDzzJDjvhbZl5OczrgI 9vlv/tw4XqzHqnqf2w6tEr+f7XxQtzi0TfS12fPDOCdX13sgXsyF8bYEu90s 4zhM+1XKfizUoM7lQZz/D+ePP99S+54WqN81ucXkIn/403/VPPN5zfL7Ps8z w8xtrvP6ktOZ58Q++mMuvK/Uktr//VrkvbnXmmU+T3Q+mL98i/m/sU8M6lFS /bmhNa170C++SvF7N0mf8CfOB3ZmtybJg9c6nXYFavVAzvLMcX6wrmtrn9gM /b7BseoXrep5b9i1K50/pmeK1h86PT+M5z2l99BMzVl+OI6L+XZsh1X0Hrxx uu6rhHzjQ84fenyf3lvToXo43fOZiR9StgvQu7YGmd+i5ychz7sNkq/4wOkS DzXKfr3J88lRfpilQ9SuHaH4PzofrOvpfp8l7QLXnfmBmOfEfLU6HvvyBw2y P8Y7Po6X+TTIdbne2zRW5flhu8mP+bvd+ePPfqH3Zf5B791c4HkwiP8Gz9kO y4PxuXIfeIfJH/kw7ox0+tfQp0edP++NjHhZB3+fG79/w/NOlAf2cm67rP83 1K9pcf44X5uWyv1hp3t+L84n4uRb20WelwP/m30eOD/YXgd2ZOaNdI4r0sdq HpX88f8X/DvhEU9/P+KZD4x4fpch4mU+FmXwyX1pI/CRD/GcT/l9cQXfF/B8 GudngcZbMV+3ib7nS/oGGrfG/BvzfZHO7xMx/8E8G/Tmz7qfH8lb3gzjGVJ/ 8aK8yc9xEi96/JjhyV/8k/ukD3bQ8fxOQcTLvnva8KSzn5B0ykM5mSckf9GP N40/6aw/xefKPL6X4c/8Hvlj+h7geCel/pbJ+X5mvMxrx/lkvyX54/cP5q2O An5ter7elbfvDsTnkg/80bzar7OcD/lDvFvzlofE3z2geatT8vY9gsif+UnI PU37csY4H/LHtF+fl7jl41mWVyEf2LPdZoke76vn1r15y09iWst+HuKF3zud dg3cvpe3/GeUE/BVZordvVD7UL/mfLAMq6kcN3F9te/0Xe3vPDxvecsoP/tR Mb8ra75mZb13ZGvPo2KZdnL+8LPO13Po8rzEGytVp+8plfmjf+jcuSL/DtoH dlc+rZcs6pP37450OvNvsBsb5C0vGuXHeTdqrvz+LH1/YGXnA3GPVf28Ly9+ 0Y3z0vfhy3x+MQw8e56s/8p6X9zDectDYn/neyWO/YvTme+CHFV5y3PGecBy 31ot++hafT/tc90Hl1TbuNCnsKXzh7pfq/3Et+Utf4jnjO2V55+Zt/xkHNdy fe8Vfukbek/EGvmqrYbxF3m+FL/fy/ljPY/rk/uN/qH3UX11oeUfyB+PfWeB 5Cee1DxVeZ6Zb8T+u0TvxTjL6cyDoe9g+7zlOaP8OEe/vkD0aC19r22085E+ Ze2Xuzlv+UPoa3O35GGOzVseMsrPflT0++2g9yKtonZg6kKTB3Ls4vwxj5/2 iF5fpfvitkXp9wwe1T7Zr+n7mPvrfXH35M0fQn3kM+0T+43Tmb+C2N/KW54z yo/n31Mj6/bPbhnH6s4H2/tDxT+k77NuXGv5imQd1621732C/kje/A8Ma7T2 713rdOa1EA/tm7d8ZpwHyLOpvg/7jN5f8aXq+4aeX71keCDbOH/QH9L82O15 yx9i3Nd0ip04P2/5yTguka9WX1vplLz3mtrX/E3Pl2Jd93f+OH7K48K63677 8cEllmcgf2z/k5X+jtYNH8ibXwX6fR2SL/yj05nXwj7YOW/5ySg/5H2sTvz7 HTpF3zdxPth3e+p3UG7JWz5Q3jdUv/XEvOUbo/x8XxVm4tgO4TNK5/N0z38i 7t/N+WO6R+t3cP+mdnWL+tC/oOf7q8tkvX7XLnL8K5/68Zu3y7yf5HTmrzCf W+Qtbxnlx7b43jLxS8drvmsd5wNcs+YVb8hbPhC/vqVN9sdBecsrRvnZjwr7 N1v75VZSO/8flwf79YfOH9P2Zru8l11y/oybEI+wvlrdYPFusl+u1r7TVbWf 6M68xS34/1P6/tMhTmc+DeuxXt7ymXFckO9o7UfdrU1+fuF5S/y4rt3q7PG7 q5iPe9T+/KvR8gbkjz6Oqxtl3hZr/ubBfPq+6rv6ft6fnJ7U73fLW94yzg/G s7H2qR6h94V8pnmGUY1pPL2p88e8n6D5xlvzFidjf/6gRfbhqfkwXh8X32+F /Fdrn9tqyn9Vzx+ifjbG+ePnjq1iR8t6KPce+3cqk/P6Oc1bXqH3gN6bt7wi 9s8++p2BPzid+SvIs00+fPfT5Yd6nNAk5z+/Y7C+88F6ftFi9+pRPsj9in6X 74i85Q+j/Oxfxbp9rN9lXVnr59t7PpP31fHv8f/qZtHfy3W/bNKS5nHpr1br dyU21Xxz2Z9knhD7dbrmN450OvNjeK93dN7yk1F+1O0ebJb88NgmiRNWyaf3 LD3SbH0B8V4jyH2f+mP1LbafkvWt1v1Q0PrGwxYva71R6Vfm07zloY1yHv3S nxvnB+Map3nVS/S+sc+1/nKMjxd2cyvnL+/N+Pd+Y18l7PBtecsHov50mL7H f2be8o1xvHyPFXr3nNrdNdQuHe35T+j53vlwf1GjPOcWtQNbtKV2nf7Pp63y 84d6z8H9eduH8L+q9X2Fs50ucU991ZThB+2Qt7xllB//f7xV8tGf1Mv8jnY+ +LONGm3eeJ8R5w3zc3Pe8oSY/+eXij4el7d5juNivyXixr2XSRy0ir5feKXL iX21i/OHXIv8nni5B8blwTa4Su8vOaXd/IhEf7ZqV39Fvzd1T97sKczx0jrx x493OvvEMK3fylveMo4L9wu0tsnfr7pU7Oga+fR8utjlZx4vyZc+rHZsG8+P JfqwVYecW5vUij161PlgntarFbmudbrkA2pFjv3ylueM8wOxnmuX/b1rnfz8 Us/Np328mI9t82kedVN93+gr+p2rCSF/+NO8+RPMN0Y880yY5284nv1fES/y vJTB76h5o0hnvify+X/zn70C/jNWwKc6g2c+M+LZRx3x7HeNePZDRjz7XSFW 2e4xrxv1R/JmHXIOPb1Y9P1K5wM133ORnANrOp8kj2p5El9f/Pkt+r2FP3Xa +vK5kP/QTtPzyIfzH+nsc450+flehs48c6Qz71VZ/vnSr3K9y8/3p6m3sHs9 HWn/Du3JQZ1yTp9UI/bpfueD73BcuNDw5MN55ryBz9WdNp/JvN3t8xnx1H/i PxkW5OFOm7dIpz5HPtcrvrI88zN8qJ/JPFzt45XfZ/PnIlchkz+v/J7+5Ayd z418mE9gPi/m1SM+9vlEfKRTDr63TXrSRzeCP/NdxDNvjzrkb3MBf5fEn/c4 nnl41BEvifgnMnjm4SOe+hHxzJNHvPB5I4OXes/rGbz4yW9n8KRXlufdDJ75 /Ihn3j7iZXonZfD8XhXxqO/vrvfzHTytKq4L5mHZVPFHD9I86j4Fy//jHP65 43E+HzNF7MW5mjf+muNZl8HzdilYPh/bpFnvk1q9YHWBKA/rAqBuon2lTfmU zyVaD/5hQeL+I2dYnpN8cBxc85HYvd31PfmqgtlByPuZ3pu2ptOpz7BTH3l9 IcopeZfp4mfdpvfBTfD6wqna5yp59YLZHczvGXpPV8nrAlF+9kUjP/SC5p+f UX/+9pnpe18LvF4ANb1N32PcTPXq33Msz0n+yOt/Y4744Uv1/vGfFyz/D7/y Gr3/esjrAsyHYxu+6XWHKD/G9fvZ8vzRak+edj6IA07Se5Sq9J7LXastT0g+ sBfr63ecX1F7tW/B/AxM0/09Es9t4XTmn6GWzV5fiPMg77HPFf97B/3OweOa l9tkro0L/5/mdQfMy8763veuBcvn4zGr6/dg1i1YvSCOS+JV/f7iST0i34t5 ec9343np+9ftXi+AnV9d73/+kdqBt+ZbnpP8Id8p80WOo/Q7iHsW7DyD3dhc vwe2ntN5jmBe53rdIcqPvNe78yRuHa/PfcvrCzj/F+r3jX5csHw+xnFLl/hv n3pdIMrP/mfEhwu1D/M59dPOXJB+B6XW6wWw0891S9y0le7rMTWW5yR/xMMT tL4wpO9Z71Ew/wZ+z1Odsr6fe12A+XAs67ted4jyYx731vs0dtPvmr/gfCD3 Zd2yvnsXZJ6mLQr+vq7ja/pdho/UX96/YPl/zNO76t9t63TmnzG9nV5fiPOA HzNq5Lw4olPG/aTu0//6uOB3z/C6A+zYIcrnZwXzs7Gff6hyblCwekEcF+/B wPNuUPrLyv+txSYn9keP1wskD90p87er2tUD6yy+JH+syyjtZz5X3yfbq2D5 f6z/vu2SpxvtdOalsd1qvO4Q5cc4D9P+50XK/x2vL+Dvcuov71yw+AFxxytt 8pyVC1YXiPKz/xn270vtS3pe12Udr1MAtszrBeA7Wd8bK+uD3Jux1PIZ5I8/ P2apzOP6mocYU7D8P34/vVXvUXA688+472GK1x2i/Pi7eUukD/vENsnfv+L1 BeDu1HzDAXpeHFtv+Srygf9ydL3eS98i63VAweJwPKdZ84I7OJ15ZhzfOa8v xHmQ72vod/oubZXz7WmN+05clr4fOdfrDsgXnab3e+1WsLoA/IDDWiQvt0kh 1AV8XKw74Lx4pUXOq7zXFyg/Hvea1xcoP+R63PFyHwzvCStqfL7E4k3klcp+ IOTqbbA8IeVBPnme1jVuaBZ7sU/B8lCQ44xm+T7Pt53OvDTGsdTrEXG80Ofz G6QO/5nmlR/T99WO83HhvqT3vd6BYa/VKnq9S8Hy/NCDBXovxRoFqyPEcfE+ DYi1reat/63n2rFe18D4m72OgHNkmd7TsL3aqx2b0nz/r/S7Q581iv3+gebv qwqGA/u+RjkP13I689UwNx95PSLKj+Pl1Uaxp9foPRYTvO6A+f+39qnuVLA8 v9znot+1GPR6QZSf/c/4+4cbZR8+o/dg/dXlAW6B1xGwblc3yfm1mdqHPzbb uiVxynebJR6YpXWtnxeML/7uIv0eyMdeL2A+HOblP16PiPJj3ota31ldv+/x jPMB38OazP+H+Lu02D5O1nFrvR9yH6377VuwugDsxCb1ej+r05lnRr6zxesO cR7gL72pfd2b6755QvtqnvVxIX/wgdcjoBb8DsmuFl/LuVFcKn7cugWrF8Rx 8T4NiPWEfq/mRV3fZ1xO/L/D6wX4s1y9+Ec/Vrtato88Z5L1PaRV7PtNep/T ngXL8+P/31siceTXnM58MsZf7fWFiuuyvEX6SA5ZKvK/5XUEwG7VfKz5mW1y fn+peeDPPP8f5WffstjNOjkHntP3UOe6PIDVel0A/HZdKvt2a9WH/7SZn0L+ OCcu0efOWSzzu0fB8vkYxo8Wy/O/8Dw/89X4u/e8jhDlx7rt0Sbx2nG1Zt/I B3Znvr4vtY/6k1e2p30ujOsv1v7YP9XIeu1fsPMP/sQpNWLftnU6+06B7/K6 QJwH2LmV2mVf37RI5utJrZct93HBTsz0egH068+1Ms8/K1i+HX0ke+i98qML ls+P42J9BHIPLpR5eFnX95P2ND/c4/l87JutF8n7cbvqfY3veb6U/CHXQ5rP f2e+yLF3wfwzvKd07nyx9990Ot/fxz5bpOfg01n5oXd7dYi/dfcCGc+7nq+G Ok6qsXsfmXfluc+8UMw/48/LfinxyMvsP0/79yPex8u8Mc7pFn3/9Xldxy07 TX78fb3Lg/+X4zbwf1O/u/uu53thl79aML+f+d7EfpZc/siHdRPMx/J8iHNe zTyXdZCI53dPIp71C84z+qEe7bR8AOXE/pnGe760z3EXHxf2SfUc2Z+ve347 zjPEu7ZT5vmRapsfyLVHl80b8dhXF/u8RTznIdJZL4h01nfIH+bzji6rO0T8 NXr/ScSviD/zVREf+RDPeZPzLJtXF/8mm1dn3Tbm1SOdebsV3QshfpLzZ34p 9sOzD178JMczbxblXBjwzJPjnLlS71eq9jw59HNd7YM5q2DzwHwg6cQz346f l9L+vJnBs15CPOl1mscmnfIw3x7lYd2RePn7Abt3ifuXfJgnJ5903p6we07J X/TjHePPPmvmwyN/5tsjfz438ic+jvcOzcNj2Vf1+RS7MDHNx+Y8nw+/ut35 kw/5Y9rr1a4+Nbkq6gPckm0niz7sp/chdnF+Jot8W2gf+LtOZx4b+nxhQetR kzNywh94ZZLsr/F6z+Npzodygl+d5/kxrlv0u1PP05+ZmpGf9Qis01Ltuz5S 4+WfTk3vW7je+QP3gN7fN1fzVC9+aHlR8sf5MuMDiZM69ftYbV53QD/CU70y jn87nfsR59Z5Xo+I8iPv++Y0rSP0iT93vPPB/J2l770s9DqC5Nf1e5z3FqyO EOXnewo4N47Sew8O1bpG3XSTB/bqcueP47mqT76L9L76RRP8e8/kj/PqvJni n/9Dv8/X6PUIyPPDHuF3v9Np3/Ae/28LVqeI8kPu92ZUPTf8+3e1D/xg54N5 XbdP8ovNBYnTmudYXpF8IPfrc/S+CP0OfY/XI7B++2q/9xSnM18NPbq+YPWI OA8SZ8wWP3CR9mkfqHWWq2an30082/kjrmvSPvClXl9A2PeK9uW+WrD6QhxX cq/LatovfZR+n+p/c01O+Df/cP7w815XORfq/J82z/yIxE6uPk/0bZUuiU/b vR6B9ZveKfcWvuZ05rGh9hd7nSLKD7nPVnlO7JJ5OMn54M/+rvfHLvI6Aubj p51yHjxSsDpClH+5vr8Ae/yXTlnnw3S8681P+8yvdP6w57/pkvX6oCD2pXuB +cXkDzv1mwX6Hqv2rTR7PQL74bAOmf9Hnc78OeQ9pWB1iig/7FVuvvUhY54O dz7Yd9tq/r9Dz6+LatL4Jqfn+HE1sp8ub5d4odfrEfBXz2iX9+tnOJ35auz/ WwpWj6g4D5fpfeOftUte6iCtr41bmN53+kfnj3X7rEPWc5nXF6C3C9vkXHiz YPWFOC7e0wK92UnjyGN0fU/yegfisdudP/bNnPaqM4eBtQWZx48XW/xN/lCf ZxeLvfhOm/Dp9HoEzFi/9g++5XTmsWHnrvA6RZQf6vf5Ism3XNMmenCK88G+ e1jvVaj1OgLU5YRWyZc+VbA6QpSf7y/g51P6/vvh+txXak0e/Pyb84dduFD7 H2eqH3LFEsvfJH7Op3UyL++1iB60eD0C+/si7W992unMP2Pdz/A6RZRf8oDa J7dGq5z3xzgf6NNeiu/V8a66zPJzyTp+slT43KX0fq87QI1u0b7W6kL6nkJ3 s/gBdxWsHhHnQfKvS6XOsUWL/P0hWgdfxesjeN/iEuePv/+m9rE2eH0B07G8 Sd73eqdg9YU4rn/pvSuYz980i7zH6X78itc7sO53O3/Yka5m8T/q1T/fp8Hy hIl9/m6DftdH77Ho8noE9uU3tK/7vUJ6H8sDTSLfNV6niPLjvL1F7+t+qkn0 8nTnA/v/n2bJc9R5XQD6eJV+z+qFgtUFovy8dwX/n9ModvdI/V7lsy4PcDc4 f/n+nOaBq3X+r2tM35+g/3Noo373R79r3eZ1BMD+T+sPLzqd+WeM/zyvL0T5 oZdrNEoc/0O9x+V454N991v9/kuN5/9hB0c1iN99X8Hy/xXl/0j7j/fXPPmv 1X5WuzyAXe788WOnRjl3Jmv+6oMm0y/yx/pc2iRyLl8metHodQSIs8cyOXce cDrz3nju2ILVF6L82I4H6j0wp9SLPTjE+UDeLxtkfVs0bvpHs9mPZB4uaRZ/ +TH9jl9PIX1/4Tyto051OvPM2K83FKyOEOcB2389vcf77qWyPgfquD71cWGe zgn1i6fqRT+Wel0AdacD6sQevVqwukAcF+9LAbsBfS/taF3f5S4n6s23OH+M 89ClIu9C/Y7KrBY7l8gfcj/cIvakQ79H0e51BOjf5VqHH+905p/xuEu8vhDl x+MO1/caHtXz6qRQp+hZIuNZ5Pl/6dtaJPr2SMHy/1F+vl8g23GR8DlM12Ur r0dgHa5y/tDru2plvT5UO/O1NvNrEv4faP5/B/V3mr2OgOf9Xb+/+pjTmffG NjilYPWFKD/8jjtbZX5fqBE9ONz5wG78WPP2nTpv89vMz03WcZrWHRZq/06v 1xFgj99Q+gynM8+Mcd9asDpCnAfId6zyX7ZA5rEcx+Ee/oN9XDhv/uj8oT+1 NZI/XuZ1ASzLbfP0ftiC1QXiuHjPCerT+6q/f4zapYO8ToG/v935I59xzQLJ j9apffim95+TP97Tyqk/923Nx3Z6HQF8Jmmf11tOl7+vFv39cyHci+Ly45y4 t13sbGe16PGpzgf7bvMFMg+1nv/HuXH/HLHLTxcs/x/lZ7861nfnuRLfHlGQ 513k8iAvca3zxzn6QbX1hco54vlz4GaqPhznfdF8LuzXxp0i/+RZ8ncthbQ/ /P6ZYo+eKWT6xjEvZ3odIY4L+l/XUdWHX8+WfXiM8wH8D9WWL2V8QvkfUv0H +Ttdlo9J1n2jLtH/0dOFT7/zwbquNF3uFZzndN7bjPm5y+sOcX7glz3cKfp7 iH6v+xC1Aw/6eKVf1fnj9+vOsXWEmjzs+XzIW96n2FdTPZ+fPPcBnwfURc9x PPPzkT/z/5Wf+//Rdd1xVlZHWyO22GKLnxjFrthLLNhWRY0Vxdg+NaJRY8VE UYkVsRsFW+yxRRTsijQBqUsvC8sW2F3Y3tu9933vLorlu/vMPDN5z+b7h/3t cHbeOXPmzDxn5pR8+f+7vI4Q6lP+vkXO1x25SOyrwL8LO7lhvvjpK5wP9Yb4 9Q/Gfe8v5ktdxtb5YX8lL9Fq/Q35sL8hnfUd2FmV82eem3qGOqtdDwn7P03f DX0vX/rVlknmRxbOSeYBql0P7Bf0M6zV+ptYj4zw/obtWc9ie+RxHm+1cQzb M28dtmc+nnS2p/zcLxTWU8oSeXuvp8h4OJ375f+/cwph3aRc55esP3rXU8Lv Mi8neCuy+gjm1cAOmX9Psv0/xU9uqfn2AX7fOPOoyfYTrD35J+pGnR3Gh/xZ lyEf9p985PxsZOPH75IP6eTDcxasF9DOyT9Rr/kP/rxfKOTPcw2hnE+p3Yd8 yD/kw/YhH9qZnPvvMD6sy5AP9ck6C847Fro+yYf8Ya+PRbJe3XhOXjju0Mud s0WubLvgrhciq6fgfpkl7WIX1zudeX6M536R1WtCObE+2WqW7vvrkHi0tfOB XMO1PjIyMn8BezyuXebFhZHVWUL5Zf7NEfz3eLvkDb7XvNnIuSYPxDvE+SMc ntch+PreSP5+iwWWNyZ/tNt5vszn19vk9+ciq6fg3pCLtP1gp3PeIS7sGFkd J5QfdrvjPJlPdfqO9i9er0H/+nbI/qVXI7mPte9i85fkg/z/9oslb3W7+r/X Ios30PstrXJu90GnM8+PuvvJkdVrQj2g3X4LJc/yk+57zyou2neh9Qvxop/z h9/uaBN/9VRkdRbghBL16zdHVscJ+8U6Dtzjcbp/Pi9K1mty8iPubOx8KD/w d9rrO+DzndZTno5EX3sXGI5IjPvE5WIf27UIXnkpsriLfSOdzaL3W5zO/D/G /+DI6jthv9D+kGUi76Mt8v+MjwtdfrDb3vmDzYutorfHouT5kaubJc99WWT1 mrBfvLcK+PGLZvEzGzQP+WevH4H/kc4ffvHGFvnOA5HkZXcuNFxM/mj/2Up9 Z7JJ8uajI8Ntcl5e91df7nTWBaDnXSOr+4Tyo3999bzJFs3i9zZxPujX71tk HfBwZPUU/KhulP7n4izrMqH8Y/X8CHD/fnqetUvrLBMKTR7M+32cP+UZ2fNz qOrh9aLk+yo5/ujnz1rfubRR9P5MZOsNjP8Pus/uTKezHoG/2zyyuk8oP5ZT 76ySn6N133hXcA6lVNdPoyIZh71KbN2cGMcfi8U/9dd93f+MrP6C8dlR99v/ zenM/2Ne5OyH9Z1QD5B7/2KJTx/pPvmM7nPYzOtN8De/df6Y/5/qeffHI1vH YlgeqRd9Xh1ZvSbsF++tgj2X6nttPyp+6+P1I/iTY50//MGIhryiHrFGKE74 cLXlY8gf4zdotZ7/0HzS85HVX7AufUPzPdc4nXUBjEe/yOo+ofxYp3yi+wgP qRc5tnA+mHeD9F2sRyLLL8DeN62T+XFuZHWZUH6eH4E9D6oTOdYr/r/M60SQ 90DnD3vau17wzF2R2Gn/csvnkT/8zXtlYod/1Xzks5HVXyDOHrrv/Tynsx4B f7pNZHWfUH6o7bAyqS+Pr5V7zX/w+o7cR1cnuOUl9SfjKyy/mxjHdyqk/wNr RO+vRJYXw3eP033y9zqd+X/wPT6y+k6oB+hvstabluj7h5Guu8d5v5C/6ev8 0Y15teInn4ysnoKfY6olL/rnyOo1Yb94bxXsZSPNl/+cEX19tNbkxDw5wfmj 3Rs1un9O/cyxlZa/JX/YV0rrOw1VUl98MbJ8K+T/rkr43uB01gXQ//0jq/uE 8sO+TlwnOOgivcd9G+eDeH5zjcz/RyOrp8Dv96+ScbwosrpMKD/Pj6D/w/U+ pxyeRJ5+vcuD8T3U+aM/J1XLd+5Vv11RZXKRP+53er9K8iY7VMp4PBcl6ztP 6PuxFzuddQG5nyGyuk8oP+x/SJX4qVw/EKd+yST3o29VnfdeT/9e1f6+X232 lcB771XL30+tED2/Fln9BdNxcoWc73zQ6awLYBqcEll9J9QDxmdfrSut0/d+ s1rf2dfrTYgf/Zy/1AUrxR88Hdl4wF+/WC4/b4ms7hP2i3Uf2Rek70Kc6nwo P8ZvY+dD+fHdjNeDoO+rK4XfMxqXa2vML/K7ki9XP7KRviP9Etcvat9z18i+ qludznoB7CG3fmE9KOwX3MWNel6juUziGuuYF7j8YLu984d++6wVf/dYZPMf cvxrdd5bPc0ui6y+E/ZL/LC+x3r6GolLG3Qcz/d6E3Dukc4fw/tZmXz/AbWT /eos3pK/6Fv5n1Uq8z+HJxP1muUl8t0rouR7qf1Xi//pG1mdKJRfzk/rPf/Z UhnvPs4H9n+unr8cYfkTGb+xxWL/Z0RWxwnl5zkR6PuIEvGb3bpuusflwXzb 1/nDf2dKxZ7viAR331RvOC6B5/tqHeS5IpE3Z4es1yAMrFkl8fksp7N+Abm3 iKxOFMqP8Wmukzi3UbH0u8vrQbCbF0oN58M+D24wPJ4Yx766z+P3iqMNTzbI +nSrQuFzZxTshyiUfh0VWT0o1AO+90W9fP+oVTKeuXmK+PmO9wt2/Fvnj/l4 fLHkDZ+IrP6Cca1bIedj/hRZfSfsF++bkjTWSpkPP+n4vu1yIm9+rPMHuarQ cBrGZ6i/Y0j+P/eM7+mNou+s3mfwfGQ4FcNw6HLhd43TWS/A+OwZWZ0olB/6 TjVI/vnkFSL/ls4HPx/WfPsjkdVfED8ql8g687zI6jih/DwnIvUovV9hve5X nO/ywA77O3/My/1XyHfuUr/6ZZPlFcgf8/o2re+MXCTtno1s/YDxPUPv7Tnf 6axHSN0gsjpRKD/0eqSeE3lR6x0bvB6En08XiNw5fw67GdZseSbyQd7lNn2P Z2W++OEcnmRdBv52XL7mw5zO9wYxXwdEVvcJ9YDudDXJ/3fN1/N7Gvc7vV/w E7s5f7Bbs1jixcCoVz1I8iu96SA/6XT058o5en94FJwrcT1IHNf7Wwvmin/6 We2hw/uFcTnR+ePv+s83OcN6Dfz8E+q3J7ZYHjRh5//UOtHUGWKXOVzKOgvO Iz30nfjBG6NedR/0b//wu/lJvHS8vmO09WzZl7uN80Ee6UbN8/WNLM8S6ln+ vzWZr37U2wvsmCL6HRxZHSfs73St1wB3XDZN7PsHtYddWk1+uV/S+UMPE2fJ OnxLHa9xXmdBP27QebFTm9VZEn6+1eVnfzHsz5I+wdpjPKfrPtSV38j8eNL5 n9Qjb98v9H2dyOo7YX9lH7e+03bmJJMT0/rQNpOf7eFmhvSWn+35XYnrves4 fMchrONsp/dTkc66REOiDlJ3CtezHHfSmfcjH9ZlMJxbtEv7E8hf6yZd7WKX m7uczMeSzvas7yCvf2hsdRO253dFv++K3J3On3Uy8qE80v5Lk0f4dan+Pkva uck/Qfjk+FMe1l9CeVh/wd+3uzy8P4ryQJ2HxFZnwX9f3Z73Pz1+r09sdZmQ P/mg/j+xXeSu9HoN+cMOD4wl3k2ZkReOF/zvvd/perxN/Mxxsdkr7qG5p03G dXOns14Au13kdZ9QTtjd0qkSl3P2AP/ytdd95F5nrd8dGFudBXqpbhW8GHm9 JpSf9TLIfUibxPf31K8unmXyIK+x0us4krdsEz3upuN4fb75FfLHAFwzV/r5 h1bx+0fF5o8wrj/o/vOs12uY54e7m+z1oFB+9GvoHJnfo1tl3nzgfCDOIq2z nBjLuN6zwOIM+QCPXrVA/OxuLaLXk2Ory+A7O+p97Hs6nfl/9Kva6z6hHvB3 j8wTux+r5wveUpxzxzzrF8Z7rteVoNe39fzCYbHFS9jBI82yTtw6tjpO2C/e A4Y8fKXG/48iwde3LjI5MQ61XsfBeNypesjNU8j90FLDQeR/ec/4/LJE2s3Q +ymPj63+InmkJvH72zid+X98p8DrOKH8+P+nFoueD2kWvz/J60FYL5+qcbt/ bLgH/7+Znuv9wesyofy8HwzrhksVP76v47Lt8uT51xKvy2B8dtJ3rvvFEn/n rDAcTf5Q72A9p3qdvif/+9jqLMB5/RqlHrfB6y/M/wOHfuf1nVB+xJXnFeeN 13XAOOcDs6jVd5b2i5P7aZ7V8+JNXn8J5ee5G+hlqd4/87bG3/9dafLg7xd6 XQa/T24Ue9tBx/2sVbYOI3/k/T7Q90366Ltkh8dWZ4E8Y3SfY7PXX1h3wHB8 6vWdUH58/7xCWU8fr/cZv+l84Pee1DpLzi9hPAqKbF2eGMf39d2Q1XXiJyyu 6XvH3+m7fjs5nXl+qLfY6zihHkAv0nPjg7W/r+v65RPvF/hM9ToRxv1KfZ/t 4NjqJsBNB+n+2Y1iq8uE/eL9YPAPIzRv8YHa28fFJif0W+Z1GfA9TOXcV+fd xaWW7yF/xKWoRPz/A7XSv2NjW5/DrwzUcwe/cjrxEr421+s7ofxYj1+h8pTU Sjz+3Os4cu5E3xvcP7a6CfT4pd6n3eH1l1B+nrvBe7tZ3R/+jo7LDy4P9LbM 6zLweys1H7ZLrPKtsTwi+aNfZ66RvOweml88MrY8EfahLqwW+015/YV1B/jv r72+E8oPcrmeA7pa91+/63zQ//dqJd91nMbHIeWWjyUf+KGB5SJfRs8fnBRb nQXDVV0l69q+TmeeH3Gqwus4oR6Q379B76e4R/PKb6ofO7/M+gU/NNPrRFif 3633uh8SW/4Rcg6qknzmZrHVZcJ+pfR+MLQfVyX9GBNJnfJcrxMhXlZ6XQbq P1vvBcrFHbmPfq3lXRPx5ZW1su46SN/9yOmZdRbEteXrJJ5v4XTm/+FvF3t9 J5Qf/Joq5N3orNYrxnsdB/N7l2qZBwfGJh/C7bi1kr+Ivf4Sys9zN4K/1kk/ 39Nx+de65P1VhV6XQd2ztFLsNIcPsb/46CrTH/njfs/GShnXv1XI946Orc4C uyzTc1FdUfK8zPV6T/gUr++E8sv+mEpZX260VuLSGOeD9ndr+xw+BCxfX2Xz g3wwL3J2j/j0P0o/OU7Wa7Yqk3Ha0+nM52N8a7yOE+oB+PN+fX/5KD3vkMOH +/f0e7j3C/rP9zoRfvxO63iHxVY3gV+tXy0/t4mtLhP2i/d6QZ8f6D3eH2m9 +16vE2E/Up3XZfBn88pk3HPfhR0PqDG/S/7o/2418v/XlIocA2KbV5jWu5SK nWzrdObzEZ9XeF0mlB/jOV3fsTh5tfzdJK/vQJ9/5jtOmSCfrPu3+8dWH4Ed pvR+lQ1efwn7Jbi/RuzixRL5/X2tr73rcsK9lHj9BWFsq9V5dT3s9tT5+ECt xfME3jhDz62MKZLv/D5O+ve9db/Jj15nYZ4f3Z/hdZxQfpxX/blG9HdOsd6f 5Xxg5+NKRV853Mj6COLohkL5/yavs4Ty8zwOxm2E4qy3NW+20OXBMC/y+gvk H1wsfngH/e53dYYryR/xZGid+KWWlWKHR1geRuzg0JXi91uiZJxOFer7nV7H +a/yn1onuOmSQpH3LecDs+jwe8uZT6ZdDdB1LuiP1tu6ITG+t2u9Zr8CsZMT YquzQD0zl+v7UU5nnh/fL/E6Tqgf9L9PvZwnfHKFrE9zeBLxJO39BRyd5nUi qOfVQvELhicb8rbo4XfnUvE/G8c2j8J+8R4w5PEXLBO/94GOe8rlBL3c6zLo Z57eW7CfrmvyG2w9Sv747iu6H+XrRYIvj42tzoLPFy+U+P0rpzP/D3yS7/Wd UH7kQ89qyJvY03yfJcLnc6/joG7ybYHEqQNiw+Xw/0/pfvVOr7+E8vOcjvjb BfJ37+i47Or1IIzDsiiJ+7dcInx2URy7aZPlOcgf822GnqM5WelHxlZnQZ66 bY7El5TXX1h3wLiM9/pOKD/s7+lG0cOAeYYHyAe/n7nY8qVirz4vEA+O03XH 4ibLYyXG9zvdL7jbTL2XLbZ1Jsbt/RkSj3ZzOvP2iHdro2A+un4g1gVN4tff mS1yvKl57NO9v+A/y+tHwCGvztP8fu97tHif0tma1yAdajk0tvoL8vObTbV8 IOs7oR6kP3yPY7rg5g+jvKk96jytOZknq/L6DvBOwyzjE8oJu+qv64utWywv y/agNzSLfR49QeQ4LrY8COx++Xix4y2dLnY6We97j4LzPt4vkEdrXeyWyTLO 473uAzvay+UP6z6wpxyOZZ0Fctz4mdbzw3qN94vnbmT9/ZXY5Xu6v+hWrx8B FxZ6HQfzom6SzJeJXjdhXQDz7XeaxxjkdZOEPdf7+SP42W7nw3w8wtCUKDin 4/Ij7q5oEX0dPFbG4UPnA/u9aqKsxz/yegrlRPdqw3rNGBmvf+m67GX/LvxS vvMBXukea/xZTyEfHZ9edRPWU8K6Cd/1CM+/cH4l6yl6r8/vu4L2C3rVZRgf Jc47n6X63lTIJ7GfaFS2V71G4qvTv1K7CPvF/C31wDoO+DD/PN3rMqjzH95u 7flOB+7JS3l76edYay922m18OC/QjfJY8Of0L/JCeWDXj30u/L5qk+/VeB0H +xXe8PbwUw0f5b3Qw7hW99V/7e1Zn4IdrPL6DvS7WZvgyU+8vhPKw/oO9P4n PS/wmPPBPN6sXdbdy9SPDf02rKNqXNT66B+1TrjW60GY3/1axa986nTWF+A3 hnqdKJQT8/fRiYIDx7fK+efLnA+6V6znC5Z7fQffe1bt5PXY6juh/DzXA3Nb pXWQs2KZfwdMN3kwXvc6f6wXP24VuWdq/nDG7LBuL+vucbNk/Lp0f8EarxNh HMboPvw3nM66BvhdFVv9KJQf+ntxpoz38eq/z3Y+iLN/b1V8mTX8l4hHlVqP W5Fv8Zb88fuYfNF/Di9gvtd6/QgwZYbeG5rvdNYXIM8TsdWPQv2AXjZH1mWD 9d3Y02N5z3nyHOsvun+z88c8Ol/PcRR5PQjx/yDdb/9VbPWgsF+8zw36ebJJ xvP8WO8PmG9yCt5y/hivPXXfRGEs8aB0keFE8kf/z14kfz9U74ut9PoRxnug 4tavnc66A/z8MK8rhfKjXc0CoZfo+6dXOR+p8zYJDlvhdR/891d6v/o7sdV9 Qvl5Dgh48ifdh5Wzq0N7ml+xxOTB+D/g/DEecxtFL/maf6tcbusM8ke/2paJ /n/TIPG1zOtHyF8t0v137zqddQcM33Wx1ZVC+TGvm5dKPLta7wO4wPnATl7S d1frdHzXr7D1JflAT7HWlerqxD7qvX4E9dXo/RCL42TdZ0C94MLnYqsfhXrA OG8oED99j+6bG6j5qA0F1i/Zr+b8we4vDXqvmteVsL4apOvjSbHVlcJ+sa6E 73xZJ/cejHI+lB/z50LnQ/mxzszz9pD/mAaxr1LF1Q+usnwGv8s6FOz/KT13 UOX1JqxrbtJ706c4nXgAbvz+2OpNYb/QfGShzO8Nmv/PUzu5sNDkhxaHOH/8 2FLfBV3p9SM0L6oRvY6JrX4U9kvkWyXzZn/Nk58TS/3kAq9ngf8I5w/9r62V ebBI4/5GJZY/S+C614vFrxyk9xdVeL0J+aR2fX/4I6ezTgHxbvI6VCg/+G2q 54Ye0fdwL3Y+6NdntRInlnmdCPP/ymqZZy/FVicK5ec5IKzv364WvZ6p4/Ju icmDP7/L+VMexKlpGgcfW235V/JH/5q1/rVM88SlXm9CHuEufRfin05nfQRx 6tLY6lCh/JDrmVKZh5vp+wJnOB/Mjwv1nYRyzU9uXWZ5Y/LBvsQmvedtYKX8 XY3Xm9CPXTRvP8PprEfg+4/EVm8K9QC/usMa8dv9qsS+TtXxTa9O5n1vcP7o zz56X9Qqrx8BN6TXyrh+Glv9KOyX4JUysYf39DzKebHkvTrLTE7M+8edP+y2 s1L26eTwG/DmCxXJcz8c3wEVMq+f0Xdj1nq9Cfed7VMhfvgzp7NOIfs8vA4V yg/+r+g5oHPWSj8udz7Q2yi9J2q514mg7x/LZL7ncCbrRKH8PAeEeDOqXPjk cCZw/2let8I8udf5wzyPWSvjNUvpO1XauJE/5tWzrGfpebI1Xm+S94PXSN72 TaezPgLzuiq2OlQoP+xo13Wi90vKRJ/nOB/82aoKyXtVqTyDqmweJ9YLZ2i9 arjWmevi5Psv15ZK3TXf6axHgN+TsdWbQj3Av/1bz108uVrWH6crTn7Z+wW/ dovzh/09oPOvyOtH+PsBJXq/cGz1o7BfvP8NesmUCP189XsLXU74vWecP+j7 aD28UOPXC9UWH8gfdZShWvf5Ts+tVnq9CfZ1W5HUE8c7nfUI2P3dXocK5Ydc O2qd+6ViiXdXBXxml4p/XOF1IqjjDI3P78ZWJwrl5zkgiT96/+vZml9KVyf9 /QPOH37slmLxS/N0HAtrwnWM8H+1RvZRbKL7Tcq9rgR937tS8jnvOZ31CPD/ cxy8R+/yA+ddqvWmtxVfDHI+6P/mxTK/6nX9+Gqt4U3yQRx6pVbyhJdp3rve 60ro3+ACPafodOZVYDbPxcE7Mq4H6G/XWrHrAn3PcKDG2b5e54Ke7nD+8JNf Flr+hzib60SuH8/ReiXpwH0lXp/COGyyTOSdHFt9KtQD61PwU/9YLnxHOx/2 F79e5HwS+PRUbw+9nO/yL9F8E+WEnZUq7lpdZ+skyoOfM/SdmppFMk+qvZ6F +XXTIsEB3zqddQ34/ftjq2eF/YV7uErvl5u4RPxEnq6zBnq/wO5a5497V1sK tK6TNVzOfqHfK70+hVHadYHsF/kwDu6jW5z059spnxv1XYNz1E5O93oZ5H3E +cO+TvB7b5L3icWSz8utg7Ce6Ev7ybfvYqAa62W/39B8+V6F17lAf2iufG+s 01kfwTje7PWvsF+YV2/Xi/0vmSd2fLHzwTr5Xj3vsMzrU1inHaH5m5djq0+F 8vP8Eez3tDmCx87UuHObywN3d5fzh1zz51m+lOt86g3tput3r260PFNivH6j 7/xF34n/We31L5yXPWia+P9/Op11Gfx+WWx1sbBf0G+l3oMwV++zOdP5oD8b z7P24bjDzCoUH+5Fur2TIHJs1yRx658TBP/VeF0Mdpv+RuLLTKczL43+joyD c0+uH9jjB40Sh0dNEfqpmrf8p/cX8/NG5w87uNjuK+pVR4Y/WeV1Ltjl51+I P/g0bO/9Zd0N/nGX8TL/z1M7ednlhz0+4fwh75l6D9W1XrdiPp/4E/Hlz/7u DL8LvL2tvzOOex4+dz6sd2C+3xEH7+O4/NB7vd7XN+xjvVfR+cDup0+UdoO9 DkU5H9J8ZrL+pe+hn6X06f5djMNw5yPp3XEyf073ehP5w86vDutTY2R+nePt Mf/Hfmh8WA9ie7Gv7l51k7DuwPZh3YH2yfdSSOe8Fz/i9Q45T6VxfoDz71J/ EPJnvYPxl3RZh3lel/UOjNNozcPfxvZ6DmUffTfhF68TMb9NOtuzbgJ//khW 7PiAMZaP5Xch3if/ljg4pFXi/9NZ0y/oA1tlXK5xOvP/cIdbMC/9b5OH/KHf f78ueG5FayDnGJMT+OG+rNVHwO4rrTcOyur9cZ/1kp/1HfilPq1iJx26j6Lh E5MH8+5A5w+7mqjt71I97D3B7DeBl/41Xub9r1rEXzyeNbuHOSxqFr1d6HTm /8Fm+6zVcUL5EReO+0pw0NVaL93gdRzk1x9vFb95T9bqJpD/GH3f6aSs1V9C +XlOB599QNu367pp2iSTB/cs7Ob8oY8rdP7dkBX9HTkj6Udz/AUGThN/+WGT 6GlE1vwjfg5SP3Sy01lfgH/7xes7ofzIJ5yl97/V6L6Ddq/jYF4coHWT3LjI PtE5FvfIB3bUMVvkvU/31f8ja3UW4IKbGyWu3+z0RJzvn7U6TqgHWefPkvXm Bj2n0KTryo1nWb8wv7dx/tD/Bq2/PJC1OAf5ixpk3XdJ1uovYb9k/aLyH6b+ J9L4+NNckxP6PdT542dBo+Qrh2dl/XTUAsNZCX/14nz5/u8axC6e4LxbIOPa ru/bXuZ0rj+g712yVscJ5Yd4J80TvD9Sz3n/4vUaxId39FzGvVnDZwj/V9aL 3Kdnrc4Sys/zO9i3M0bfEejQPOH7C00eiNfP+UOuu/R+4luyEpcHLDVcT/74 7DFLxA5n1sl8G5m1egr20wyrE7sZ6HSuA/B3m2atjhPKj/E9Y7HMl830/umM 12vgP07Td5mfycr8Pr/A1oXkA/x6VIH485drRc/PZm2dgG4/Vyt87nA68/bo 1xFZq9eEeoB9XbZMcEG/OlmftiguOmOZ9Qv+cgfnD/vYWffxPZi1+gg+s17f sb0ya/WXsF+8nw1++XJ9fzbWdeV7Xg/CvDzK+cM+m/VejQfUj/UvtLwF+eP/ W1aKXzu2RvT4lNdh8b3ta/Ie6+n/1U5n3h563SNr9ZdQfvA/TPdffqjv3/Zx PvB/U2qlf3/PWr0D4/FwtXzn7KzVU0L5RY5C8Q/LNf+U0vVsptDkwbju6/yh p+c0f3OHxq/PiyzvlcAPJxUJnl5TJXp9lH6mSNaxr1VJXuVcpzNvL/u+s1aX CeXH/B+/SvR/kO6n7vb6C+S+Su9lGZa1egfCSR/N8x2btbpJKD/P78A+ztT2 rYo/zyg2eaC/XZw//Mrh1TJe12bFro8stXwq+WP/wGjNP36/Tto9nLV8GeQ8 YZ3063ins14Asb/3ukwoP8bx2BLxH9dWyu/NXn9Bv3+u0vsoVP6pqy2PSj4w xOdW6/35FWJPT2etPgK/crvut/+z05mfh/3n7If1l1AP0PNMfbf1Jc2vN+o+ 5Fe9X+CzpfPH332o9ZT7spaHxb6aM8sFZw3KWj0l7JfgjDWiv85y4ZPWvM0/ 15icGOb+2WQ95YK1Mj7D1K+eUp58zyfHH7hzXZnooXGN9P/xrNVHUAcfrvf8 XOR05u1hTjl/yLpMKD/scmCZnJ96W+sUG7z+AnlaKySO35O1v4d/uEjHIYcP WTcJ5ef5Hfmz1RJH23VcGlwexP/dnD/2s72s559uVP3PXmt2R/5Ynx6h96od Wir4bETW6iPYt/toiey7OsXprBcgLG6UtbpMKD/ysfO1rvSx1i07vP4C/R2p 9+09oXHn3ErzHwkcclil6KO4SPzdP7JmH1g3TygSO7rF6czPY14clLX6S6gH iHPROvn78mKxryZdxx2/zvoFM9jW+WM+rtH3EXJxKlFPGbVK7tu5NGv1lLBf vJ8N8+i0IrHzSOsIu3kdBP04zPkjjo8sFjmGq39urLK4lLCfWfoOzm56v+kT WZvPsIuZKwVvXOZ05u0xf/4na3WZUH7gtltUzgbdp7CR88G861ccnNe2euop vFeBdRPS0e7erNVHQH5d78MfmA3e2SlMzvd91e8fru/wduh+pDO87oM/39P5 I6wuKAz2dbucuD/1Vv1u/xrDR/yuvCem5+Xm6PuHI7MWn4DrXlkmfvyMbLJO /McV0n6zrNV3wn5Bn5/qObfaAslTZryOg3G+sdDuqWA9iPIDn/xD42x7jeHo hJ00aR1nh8Vi589lrf6CfSPfLxL/+VenMz8PPkdmrb4T6gfryL/pu/V/WCrz sEXrX7cH9aYdnD/GaZsVEu8ezBoewu+f6r3UV2WD+9y8X+K3a8W/HrhI+Ofw J+qRt3v9CKjhqGyyXnPbEplvue8iPhxeZ+sz8kd82L5O99vrvrwc/mTdBHhr u3zp/5+cznw7urlHNrjPzeWHXsbXCj79k97bvanzAf78aLGMy98tfyX16Dmz 9fxT1uomofy8zw363GSu2F9K1y+vuDxyvt75Y/3QPU/WXXeoH7uz3tb95I/4 ekK96OWSGRKnH8tavQPdPn+6+N3znM68OvhtnbU6Syg/5Ii1LjZslsTBbq+n YD4cNc/qKcxLh3W38Nwcvmt4Ve95+2qy3tudDc4HeX95PghyzPhW/r9V11nf ufywl12cP/r76CyTMzxXQv7Juonui75O/f83pE8weaDv6/VeuNv1PqKHs1Y3 QT/u/0ri9/FOZ94Vdv9DHJwn8v7ic8fo+fkdJ0o/m70ug7j+4Ez5/lZZW88z DzxK1+Po/3DWEcYk/dLxjZZvh/zXOx/m2zFP9mNcbuylB5jPD3qP8LRPxZ4b NZ/f4P3CvogtnT/2Wew+SebRj17XoPzMKybrNWNEL2kd93qXBz/6Z40P9PLg x7Leavc6BfljXuyYDeogY2Re/hgn80e3fmR8WKdge8EZvfPwjBdhHl7yQ+E5 gvF23xfpzD9I3c7br9A8/KjgPALbh3TmW0I681RhPp/9DtszHxi2l3jYbO2Z z4f/TWl+73Dy+afo5XF9l3ZD1vTGPCGsalNvz3wy5v3n2aSeh7Yane1ZR8Df 9euyccK0v7JZ4krG8/b8LuXneQoo4nR9d/61rNS7tn3Pvgv1LfO6ANrd0CJ1 7126xG6/+jwv1CfyKNd8Ivb9teaHD+qy/Dzm5bAmeS848rw988bQ/0SvC4Ty y3LwQ/F3mzXL9991Pvj/o1vEbnfrsvkDu65sFL5VnrcP5ef5C/R37ybpz8sa rwd9nbznb6bXBfBz82aJr1t2yb63xinmD8hf7sWaJO0u0Xzp/l2Wn4f7W6/v xlZ73p72id8/8LpAKD+myYYJefv0KPS5RllnvOR8oLcSzef375J+/HqmxRPy gd/46wyJSwc2iD87osv8HfS4Q4PYw9ZO57yDnS/LWv4/1APa9ZsmcfFD3Wc+ OivyvjLV+gV7HR/UHT5plDi4V5fl29GfhxUvrPd8ftgviY+zZD9csd4X+4bi jT/MNjlhp4Wez4c8D+t7d7/T747KN1xD/mf2jFv5XLHDJXq/+iFdFr8/7xHr tTpZD/zgeXv6MehhmtcFQvkxn16bI3ZzcH3e3T0fGuN88PcXNMj83L3L8u34 8z76Lm2D5+1D+Xn+oq3HAM/X/PY/FTe2zDN5YA/5XheA3e1VL/3YtkvfR1xk uJj8Md4jFkr8uqNW2h3QZXgR67TddT95k+ft6f/hnz72ukAov+x3W6DnuWql 3WvOB/M7VSf7Ww9T/Xy01NZD5IP9nw8sFXs7XddJR3VZfh58j9X85A5OZ34Y Zlbk+f9QD9Dz13qf2CLdN/6C4rHRi61f2D8y2esL2G+YXytxYp8uW4dAn//W 92Z/9nx+2C/e6wX7+rla5vFbihOeXW5ygl7q+XzwfV3fWd1T5S9dYet18sd3 n18h/r9e72U/tMvy81hvTdN3aTdyOvPGYDPH6wKh/JjfUwqEfqHub//Y8/+Y dzfVyDzZo8vWh/hxoN4X0uZ5+1B+nr9AnuSeKmn3qvql11Ym7ztfFJzbOlHv 7d9Rx+XKVZbvIX/YXbXeA7Z9paz/c36Y+XngtsfWaV3T8/bMG2NcvvK6QCg/ 8NS1hSLvx7rf9i3nAzv5tebbj9Z4WluU3H+b44N1e2WRjNe3+o730fRj+t7K hAqJV//jdOaNMS5lnv8P9YD42LxK1s/la2U99pKOe7P3Cz+neX0B98F9Vyl5 mn27LG+f36P30Xp/0qZdVhcI+8W6APKgF1XI/Krw/D/lh17e9voC5Uc+Z7S3 B464qtJwr/jVEltnwU726xJ7uqnU8oGUB+2PLBU/8Msa8RuHd1n+DuM9a43i HaczzwycszBrdYSwv2h2e4nc99Sged3cuuaYng6dUGL9wvz/wusUwB+baH43 N9+Zt4f63lgt34u8LhD2S9RTKvZ4yhrxy6+rnxngdQrwX+51Aejx0zLJD+Zw Juy4dY3JlRjHx/RenjNLZbwO6jI5kKdZUiL3fMSe/2f+GXY5yesLofz4Xmq1 yJ8pFX/ynvPBeJ6j7xHv1mV5e9jVmGK919zz/6H8PJch59ZLxK+9rHnvf5TZ d+AnZnl9AT/TpRKPfq3+7a8VNj8Sfr5Y33l5Vufl/l2md+C2klXix2o8/8+8 N9Q0xusLofzAxXeXSx38pyJ9h9j5QNznSyV/lRsXdGf9WvOXiXFcpe9hH10o +ckczmSeH+vtLQoFn23jdOaZYd/LvY4Q6gF6/Kki78eevz98lYzn89m8k3v+ rsL7hXAw3usUmI/HFcu826vL5gn4V68Qu/8+G7zP4v3i/WDQ7wsrJd6+oe3L 15mc8OOFXheAPVRq/fl3aicnV1kcTsTZHfS8RrRc9qMc0mV5fvz9AXqv5w+e /2feGH5tutcXQvnBd6Te/3XCChnvD50Pvv+Qyrkd47XnvRHXdu8yP44615ol Wk/zukDYL57XkPOtirNe0fXaqy4nxJjn9QL0Y78VQX3Q89iwy+10HEdUGx7k d7GeyMVv4KuHF0m8y+FS5vmxfjx5odhZk+f/mceG+/8kG7zzUpD087+qztux R/BnFYe+5nwQ/54qEPvM+X/M7zNqDNcnxv2EGvGjBfmil6O6DJdAD+/n513Y I8aOTmfeGL8XZ4N7w1wPmH/zqwUvdM6X7+VwKfJxM71f43rmxWSvRyA/X6rv +eZwKfPwiF+XzJF9579kg3Mc+YE/rNH9oXPFP7+l4z7D5cQ8KvU8v9j5fOPT kDw/eQra5eYv7PPJWltHsj2+d32t7G+fOEPkOLTLcDD82t++k3rjxk5nnhnT f67XEcJ+YTy20HXLprNFX594vQDz7Pp5op8cXmV+XmDTFPGP7dngvIbLz/Ma eN9r4DQ9b6Pj1ejyQNxFnv+HuN/MMj7JPH98Cn7N2Q/m08I6y3MkcOxzem5i 2TeCQ/pbPk2+/6+v5e87Pf/P/DD4f+X1hbBfGNdztQ5ynO5z/JfzEXev9z1M 8vw/85Po59G63n+u3vJY5I95fF295YflHF2X8WF+GD/LwzrChCTO2a5e7P+X z/U9Nc0//8brGvBr011O+NOHJ0l8GOv5fMrPPGGyvjBG8swV3p5yAue8E9Yj Jlhehe1hx9kJIt/r2eT9YLnvIj4tCusFYyResG41wPnDvr9wPsAPh441/szD k4/gwt755HA/NtvLvWDdRmc+mfvDSWdcE307vUHXPeE9NozzIrd/l/gwbC95 +qpe7YnDw/aMS2F7ri/C9shHZat7tee6L6RzvUw689Kwh0t1f9rbXabnRP7h Cacn8ieve146kVcf6u1pRxiGv3t75v1g15d6e+bT4B+u8PbMZ6L9yd6eeT/S E3nyVJPM5yKnY7hn15g8zG9THnz32i7Lh/93ecaYPKCf6u3/uzxap6lpMv0/ pfMQw3ifyyP2+G4veZjfpjxof1yX5Adnj01+91LPn4M+SetaU1wPifrI6y5/ Yhwf8fx2Iq94R1fSXzyl43t6l+XJE/nb47w91PZEo42L+PPpNi5JOcck5XzP +dAO8eMFz4dTfoh7a5flvRPyH9Ol9wJNNDnx35c7H3z2fxtMTuaHKaess50/ 5wvi3Dee36b8cBMvdVl+OyF/nrbf8zuTE+2HOx/o6TC9t7LQ89gJeaa6nIn5 +463pzzAbUO8fSLenuPtMY9+rBM7nOt5afD9okbw2T+6LP/M79LOuS8d5GG6 b/bErrzdehj+fq59F/sjb3H+wLcra+Xvv9H1aed8w4/kj79bqOcDd9f9oss9 j414sKBa8jbPOZ15V9SVLuiy/HYoP/LW3+u9SVfqueSTnA9w/ru1Yv+ruhT3 Lc4L/TnW6fmLxK7SVeJ/V3seG+ufqiqRa5LT6beh/793WR471APyL1stlLg4 rFr0cazOr9ULku8HXuX8Mf7DFEcv8rw05D+/SvDqB12Wlw77xfuFIP9HVYJP TuuSPEDREpMTZvCA88c0OLta9lHN65J+b1Fg61ryB669Wd8B718p+YMiz2Oj X0vWyffGOJ1xEJ//S5flt0P55Z35ZVJny1QK7hrkfNDv3+q9yPmef4Y9jFkr +dEXuiz/HMrPfelQ9wnrhM9Jut4/yfPhcFt3OH+sf4v1npDPurXuz33sel54 ssbBLQqTeZRy1fOTui/tr5q3KPD8NvxAabnMr5ecTryBz13SZXnvsF/4dZuV 4m9/qtD7SZwPfh+m+eTSLsmvvbjK8lQJ+3l8ld6Xovtnyzy/jfm8pd7fP93p xFHo18Ndlt8O9QD9vVoo/394uYzv8VpPHFVo/YJ9XNuVzJ/vpvuTl3i+Gu65 RvOaH3dZvjrsl/jZVYIv3l0j6/SBXVI3f87z5/jcI84f8zu/TNYHi3Wdu1NJ 8h0G+tWSYsHTfyoVOyz2/DbuP9xJ96F/4nTiVczT2z3vHcqPZn31PYsTNa/5 R+cDv3ddmeFw8UtrzD7FXtcrbrH7R06BPc33vDT2rbYXi75e67K8dNhf3jsk OFjz6Kd0CZ5YW2Ly47PDnD/m2a9X2zwinfJgfkzX+PX6ahsHfhdsD1wt9vyB jv9Kz28jX9lP77t+3enMi8J/X9llee+wXzCTt0tlH91ZxYIPznQ+kG+svhM6 x/PV6M963Wf7eJflpUP5ue8dDe9fJe0HdEn+4nDPk6N+e6Pzh1wXal73S8Ut vyu3+U3+wBH3ad65eaXEoaWe30b/D1opcjzpdOZjYU9ndwXvkrv80PteZRJX BxdKnu045wP7ay+Svy/QOP5hhfnvxDj+Xf3CPgWSdy/1/DbmwZTlsh7/uis5 P3PrRHz3ri7Lb4d6wN9/Ui5x4DHdZ3uMyj/S+1XaI9flzh/D9oqeN1ro+eqC Hr3epufD3u6yfHXYL95HhPrYzGWS9z5V/ckIz59j4Ic7f7j1k1cIfput+zf6 VxouSNjnIn3H/MtFIm+h57cxLwsWip9+1+nMc6KbOb+afBejIOmfD1uX90CP QLsvkXbnOh/0b7LenzfX89WYL4/O13pFV3CPkMvPfe/4/a0FYocn6risdHnQ /1udP/zIFkvEvzzV1Ws/Ocz3G61HlFQZbuV3YS+jdF/6ifnyc7nntyXtMkfi 2nNOZ94V+ZlBXZb3DvsFv/q/uq/+6HkyD07qSuKbgYutzkgcSfnRbpXuy3qr 2tYZ5I9zwKOqRS+76P0Mqz2/Dbt4eYa0n+x05jkxjveF++1dPxjP3fW+o9dm S3zJzWvEse093475d7XzR39fnmdxJ3lPUXwKyIs8j435uv5b+c4HXcG75N5f 7mPH3y2aLvHgNI07v6lJyv+g88c8rptl+xIf0rwM5SH/ZB5b98nP13laUWPr WraHGifWiByH6Xn0oq7kfUezxkv8+dDpzJfi1790Bfvkvb8IR0NqpN9XTZZ4 MMj5YL73834l36fwfiXz2PEpOB8zz/PeUOs5n4leXgzbT0j6576aP3/kK/n9 ZLWHAZ6Hx3jc4fwxjysnybr7Ys+HM0+I+2en6PjuQfnHJOfRxFrL677cM64v Ox/mS/H9S0I9uPxQ0/u6Xv3NWKmXnuZ8MA6XTZR4N9Dz3pQT8o8I8+pjxB8d r+uXPwd59eucD9YvHWONP/PV5EM8FuZRw/wn2xMvkc58Evkk85azeuVXxW8t 7EVnXAjph+u68P/L04Z0yTcUGZ35TEy/h7SePtLv95bzUaViL5d1B/nGUqmn DPf2xMlof0p3sC9X9wXs7/REPN/W6YxjkGsX58/1Kfxol+cz6b/Bb73n6+i/ 0X6dt6cfIp3tmdelfgS3T5JzdmeVyv2/VZ5/C/mQTj7o1+UuP9df0NuQbjtf T/0AFx7n7bmuJL1Y7SlB79dteadQb6RTb9QP86ihftie8tMeNtU8Bu2B/Jn/ SfDfqNv2f/73ccm371KfzIP993HRutog1yf1Rn1SHuaXQnkoJ+WBfBVaB99r XvK7XZ6nwnpkn2qzc+ZpaefQf1634Q/aM8eL+Z9wvJiP4niBbV2X7LvafVGy 3p6bF4zr8I8dlTYu3EfHcYGcI1yecJ5yXyLlpz6Z56E+JX52W96J8oNvH+8X 5Yd4keep4O6eczkFh/SWk98N5SS+pJzARYOdTjkxLw9xPtQ/1im1un6cvczk xP/v6HwQd3+/1uRk3iaUk3kqyom4P6w7uR8yJyf0cIm357wGnj7W21N+zgu2 p/yIe/We10LeYGWF4LFHum19Qjnxdw92B++o6vr3Om9POaGuvb19wj+v0/Xa USuT7xlu6nyg9/vLpN2d3Zb/wX74Y0tErgu6g3dRS82vSh65UPTQUCLrq2bN 2xzh+S7Q93P+sPe9V0ve9K9q53N4T6XHNajtft0vNV3vRXiw29rB3dxcJOM+ yOnMPyC/+ptuy1OF8mP6LliV931PB58vlvnQ7fko6G2W+snbuy3/A39z2ioZ 7xO7g3dRi5L8BxTLeqJC83x1mu99tNjkwT6aXZw/9HGz/v91mv88q9TGjfxh V0t1/+TGSh/ueR7of5ju2z3J6cw/jOwZl5+7gndRXX7s3zyvRMbpzcK8jh57 aPH8ktTdVc8jdbyWr7Z5mRjHxXqO/ZIC8UOkr1gt671zC2Se3+R04h+sr/t3 B/daux6gtqJS8QNLV8g+iyrF/0XeL3z3184f5vmF5o+HdZu9wg5+XCrz9I/d ll8K+8X8Etz3yOVy3+xBzofyw4+1eZ6K8gMPVnjeCfj+PM1r5eQB/r+43OJG Ytx/Vy7tKxeJPT3UbXkhyHntIunvpU4n/sTw/7Y7uAfb+4VxvVzfm/xC7wVl 3nX/MpMf+vnR81EI140F4o/u6Da/g3HfaYHQT+sO7mHwfvEeBoz3nxaKv2jQ fUf7el4LceJ3zh9yHa/5k027LU5wXQY9/KVb389da3iE30X7O9bK/LwtX+zo vm7LF2H+/X2u5JkGdif3W+biM/BcLp4yTxX2C8NeXiF6mqfvtHd6Pgq/371Y xv0Wlx9qPmi2jOPh3ZZHCuXn/knxN3Ok3lat43XvOpMH/dvW+WOdkz/P1jth ngf4/wrFOYdW2TqU38XPWZWCMzu/k3G5u9vySOD7u2kyn45wOtdN8JuZML/k /YK9DKmUdwAnz5T4Ve15Ktj/L/lJP7PC5Yc8f1f/nCZ9grWHfJWa73phguh7 RLfhNlm+fiP391zldOYZUI/bvTvYn+n6wbjdXSXzZMQUGe+1um/qBu8v3mPb 2PlDHRfNsvwV8z/sF/mH9zlgOv+t29rjx4tfiN/5Q9je9cD7HODvNx0v8bNJ 6zvXe34Mv+/l/CHuqZMlnv/keSGur1Hvua1b5u/RzPP4fZXA4euqLf+Az5zT bXyYf4BYW3UH+S6XH+0nVUv/rvhY/Gbk8kCPkydKvO7wPA/lxPmNY7qDPNUY kbtW88PP+XdxH0AOf5KPbBMZJ/5vnednyB/2vz7M/4wR+Rq8PfD6Ox8aH+Zn 2F7mSe88RpiXCNuTTn2GdNoz6cwnYJ/VqFliF+u7g31Q+ZK32WW9rXPpD9G+ KswbLBb/1O3rYsYjyLUwzBsUyDwv9faMp2j/VXeQByiU9pO9PXEO2r8eyl9k dLZn/oRycn8U5QT/Strnv3vJSf0m5Hzd8w/kj18PcL3h93fm2ne5Dyr8ruSJ Pkt+90tvz/17HBfKyXEB/Zdu29f038dlQq/vcr2c+G5lt/nBBL2g2/YFcd2D 7/Zbb+MR2g/rxZST8vDezlAe8k98913PbyTq1QewDjvd9Ew+3I9EPvwu+5X4 7pe+3qSeOb60P44v51GXnuuhf2Z/uV4Ix4W/h+PCPAblYXv2M2xP+dieeiD+ pB4oJ/UAvR4x1+YR130cN9o5z73Sztme67tE+3edTzjv2B7q28PnHdcj4bhz vRnOO+ozIc/M7uA+vULBZ8/oOuKAoqQ8X7k+oY/5hRIPlvq6jPyBG97x75I/ 1Pm8t8fvNxSanXP9wnGW/d6+LmN/kc+e73pI5FGe7JZ4dF+JfRfD/2Wwvtt6 hezf2n69rXf4XTkv2R2cR9P75F9U+nBfxwGfFvi6CT9vXiLzdt/1yXdBcnaF X3+7PqjL50sd+3tfH1Ee9HNad3C+bLHkFd7vTtb9xyiO3Wm9rTvAZ7q+w1vf HdTT883OeY4M+nlhjvB5TvM8i8rsu8Azs33dBDwRzxO+W62XPM5jFYaLyB/f 31Hr6RfNkPVhzu8l1imnTpdxb/T1C/EwvjPO10eh/OjWM+Xy/aF6b8/L3cn8 zhHzZPx+s97WF8AfYyZL/1Z1B/V0l5/1dOx7+fJbaf90t4zbbr5ugrzf+DoI fB6ZJfPlJ83jbV5p8YT84QZu1PeGbv5G1i27rbf1CLpxu94nUeTrFPrjyp6f r3YH9XSXH/3aep2s37aYKHI/6Xygn7/re9DjfD1CHIX/3329/P/ZVb1wF+rV m1cZXoUb/MX5MP5Dvtnhesr1ADz6SqW+M/WprB8f0/k+1PuFef6R88d833WS fP8NXy9Qfnid1nAdNEbscrT6h4kuD/jN707m04d9LPp/xnE++cP+vgzXEWPk 71739tDfdR8ZH+J8tsf3blkf4LEx8nue4yJ+F3IOdzr1jHOvg0M+E6QufLm3 p/2g/YD1Ac6caXS2J+7FfpIRjqMSuH240ykPvpvneCbkTzr5U87kvR+TTQ/E n9QD5eE8DOVh/jkhz5D1FteoH8pDvxrKQ/8ZyjNe892hPEk/7/Kw3kB5sC/k Mvfb5I914inrg3zUTLlX4nhvj7rKmpnGn34s7G/Sf04Q+Q5TPcwsT47LYPfP ck/XJOsv/Qz7Czx3q/tVfhe/H78+OFc7Qfge7O0xL9K6f//37vfIH3Hn2vVB nmeM/H6Q+uft1xl/sD3P+cC89hlr/OmvyAfzc+P3zP5ZvwvpgrNqetFZzw/p iXts/oPOcyIhnfcXhfR/6f1OIZ3vLCBPccYH0u+f39L2GRsHrlvpn9lvrnPP 1u++pOeiIPfwD5J+JkeH3Q58zejQ46++svkOO/g0a9+lPKTjc2d8I/78l0+T 97jm1iH4fdcvjT/p8KMDxxodcezmidZe7Ktd4nmfKbYe5Hc5n/hd0uF/G6cn 319gXqLPFFsPsj36/80MwRkXTErq5T/olDuky3fmmjzUP8/zJf3Cm7Y+Ij/K g/M9m3YZP5DP/tbkJx3f/dPE5HnGv8y29ty/EdKJu0I611shnfg/pDPuoX8T 59j6lPrkd6gf0mG/B+Ur/TtrF9KFX8rwMvlTP9xvAjl2nWl6IB31pcOmGV3e AZtn7WnH/50+Vex70nyLU5Sf8lDOBP3Hhcn3vnPflfnrdNZPQzrPyXM9RPsR u/Hv0g9SDyLfcsGvt+UH9+8tFxx0zxyjI1zevMz2LVB+fhfdXz7H6Nvpvhvu D0na5yo770N7pr2QP9uzjg4z++OC5DnWHB0//zQvmZ/cZoW1l3ZpwY0TVti+ CMrJ72Kf6CCnw9/PWWn7Fsgf0+Mpp9PPh3TZT9rZi87xojzc18HvotkxheLH 71ls7xIl80E+vqTTHqi3RN37P/TJ/VC4Z+TIpdYv0uV9mMVGx3mobYts/wPl 5HcpJ+msJ7M9vyt613v2+xYYf9KBQ/ZdlqTfVGzt6Tfgb7Ytsf0P4XdRh88u S/r5zUoN75E/9qW0lhg9sX8sx5/ncciH5xYYZ7H+aXQ65PxxpfEnHeO0sdOB O25aY/sQyJ/jhfm6rdOx76BmjdCXF5qfCumctyGd8ySx/ryiwMZFxqlC8hx/ W5WMdzm6vFNeaHSsE2eXWXv6l5BOvxDSqeeQznxMSOd8QT7j5nLLj1E/9Ivs L+nw4+fqfUWjiyz+hfSE3/8POvUZ0qnPkM75E9Jp3yGd9hHSqfeQDr/2dcf/ wyfdiy7xKNOLLvqLetGp5xV6T2po5zvpupp5Rfpt7jvjPKJdyfxcJ+uguqLg PP46WWc0u73BXmZXWHuOV0gnDg/pxOEhXdaRtb3oPP8b0onPQzrxeUgnPg/p xOchnfg8pEs+qb0XXerVHb3ojC/EhxzHBI79Zp3lXalnDNvvnM6/D+kc15BO /Yd06j+kU/8hnfoP6dR/SKf+Qzr1H9Kp/5BO/Yd06j+kU////btpma83r7X9 S4m4s3+l5JneLzG7D+nEqyFd8geZXnTxq5Hdi7QyUS+I7X4InoPjfGR7xP0/ lpo9kI6/u6LE6HDH23j7avXPGM/rqizfzv7SXihnEs9XGe6jnDz/gLi3YHXy HckcHfyXlSZx13XVlodP4LScPeK71zkd39lQbfmWBK44Rs9D31OWx3cYQ7rE 41QvOscrpNMPh3T64ZDO8Q3pHN+QzncgQjrfj2R9nfiQdPpziH1seRKH5OjI J53keSr4lak11n5njdchvUX9T0iXOpK+27ptreWpOC70Ewn95+j0E6w70G6F X53gu08rTE7S8fMr7xf2lU2ttfa0W8FVdZbvCr87EXp1OuR/p87yVOSPfU3D nC7j3mz8WRcgH8yf0jr5u3PWqf3qPclV9cm6fJm/98x1K/LaG3dZe4xr38rk uqxK33nrt87o+P0mb0++IT3hV6fWWz4N8+Yjl4fyk46fgxtNfq5Hku+I+zqF 7VnfR7snnU5cQTryrMMbzH6oH7Y/XvO0IR/qn+86kM59X7C7W51/4p69sqy9 I45x/YPXC0iHf3q5shed7TGtv457tcf/7+f8MZ8rKg13oZ+nNlo9gvzx//cp /fsq8wOkYzy3rZZzmzk/S/viuGB4U/7+NPNasNdLskanvYV0ritDOu8ZCOnE 5yG96j/n4X/Q6Z9JhxwfNdk8hTk1u/ykh+057vh9trZf2GjzFPZ+psajlL7T sGul+U/sbz9P36veY53RYV8fN5qdwIw26HuBRzTJuA72cUF3nm2ScR9baXSs y45vknlyp9bXbo7F/6xtlDzMsVVGh9hLmuzeQujhoUjPJ+v45uiCZyL5+92b JG7/4HTaA/TzsNenSIf/3NjpcL87eXvmA0M6828hnevBkE6cGdKJG0I61/sh XdZTDb3ooqdUL/rZitNCuthdupd+bugZuJJMr/bMn4d6Qxg6x/UMPDa42t6l wDT5oknGo6Pa8ADqQac12zylvRHPhnGc7bmPWu7P03cZy5qs3sT5zvawv9PL 80I++O7Zjh9gz6lm21cMe9tV7fPtZrGDN8vNPtGv05tlXfhKhdHx84RmiUvz 15r9A0e80ix+e0mF0dGuq8nmKfR4USz44v5m2ZdxYaXhIth3sb4vcck6o8Pv jGy2+Uv7h9z7N9t8Jx1/tnOLnfuGOMUZme+zm23+chyhpr8023wnHX5hSLP8 f3OV4TrApqn63dudjmH9VbP5eZD7RTJvfmi2/aX4/v4ZwTMfqT53djtE/Dqv WeLay07nuyL4cbzv2yQd/Z0WzndvT/sL6TK+bb34I48wNN2LP/xktdPhFqp8 3qG/Nc22j5TywJ5KnU68GNKJ20I68UpIJy4J6YwrIZ16COlcV4Z0riuhpxua 7d5RrhfQ7d1aZBw7e9PRn/X+7lhI57pI4kWL+Q3OI+yHOb3F1qGoh90UW3vS 4YcPcTrXiSE9q/vxoP5++v7xu/q+emqNfZftgSuyq3vJw/gu55JjsY8TWg3n w//cqfO0ocX8Eucp7OLZFvNjpCOePt4i65e7K8wP4P8rW6Q/95UbHf0f2GL4 Af7lQ42n+S2Cy35aa/MUech+rWKnv3I68nBLWsyP0Q9AjX9rMb9HOsZzSKvh T+jhkIyM51at5sc4f/Hjqxbze6SjrjquReLcqVUWR8C3j773/mSl0dHvC1ts Xw1+3p2R+6IGthqugJgPp2UfXarF/BXnKfT4Sov5N9Lxc5Tq+dFqW//Cjze1 SPzq43To5awW2w8DPzc5Lfv9lrXIucOzfF5Anwe2ih9ZVG102e/UIn73C4/v sOP7WsReD64xOt6HvbnV5iP+f0BK9lfs1Cr2laMTP6Bf37ZInEw5XcazVezr b75fnXR5/9D9GPQ4u8Xa36J545AP5tO+nb34QF+b+ncRpnLrdeb9QL+oVcZv da3hIvz4e5v5h8S8yPkn4grS2Z5+AOMzPJL59klr8p6ltZF8r7lV/N/bq40/ 5uMZbTKP/11qdOjhjVbL26Bfk3XePd5meAbrmYUZGfcj2syfcB5hfV7cav6H dOhrWat8Z69ym6dYr/ZvEzvY3/Mt+PsXWm1dOaWH7w8ZwU3btMn5s08qbB7B bnJxD+v4L8uNDli8c5v5Gc5T+IupreaXSIeex7XZOgVqfVzn16Vt5mc4v3Av 1w+t5pdIl3NArYJXDqu0+XVnz/9f0CbjfPQ6o6M+8q/W5D7ARZqnGtVm+Ad8 i1OihwFt5k84j+DP17Wa/yEdfrJU7XZ1lc1T6PGoNtH7VU7HecOXWw3/wI62 Touf3KVN/N/b1ZZ/g17uahO8u6fTIe8ebeZnOE/hV+e2ml8iHfocT/xSLfhs 707pxzVt5mc4v3COaZM280ukIwxvaJW/r6xRvXZKvunyNhnv65yOaf9uq+EE +PXJndL/V9vsPhPY07x2mScD2yRPslWt5Z9ht02twu9pp++quAzjeZDfE0I6 7PDz2mQeNecH2J74J6QT/4R04p/wu3gn5ZK2Xu3pd0J5cB7sxHajSzm01vLw iEc5/wD1TKkzP8h1Dv0Y65pDdb9PYh9UrH6gud32t8v5tox9h3TY5aWRtSde AtvlGZlHfdot/4/xvkRxy1G6z+jcUvMzkHaUynOR5/OByxrazK/C720dif9d 1m64C5/fU/3J/e3mV+lPMDz92s0Pkw58sovKuXyN+SvE77vaRW+rVhtd8Fub 4TTMhwsz4u8ubxd7u7zc/AnWI+PbJX5e7Xlv6GNIu/lb+iuM6ybt5p9Jx/zJ tCffEy9PiZ95p938Lf0M5BjYbv6ZdOzbOEnHq3yt+Rno77V2WddWVRgdfqG5 zdab0PseabHH0nbDacjfHpoSOR5rN7+ayDMc2G5+mHSMw57tEi8PrzJ/Bbt/ sF3+7oZKoyNuVrUZTkO++jrFJ9e2y/jEVeZPoM9p7eJH7nU6xL653fxtoj64 Tbv5Z9KR79rQbutNzNeVOh/GtZu/pZ/BvZwXtJt/Jh3szmwX/R5TY/MQ5v6e 2ueUaqPj79va7Hwi/Ot1HTpO7YbT8ONunf+j2s2vct4iPuXmHf0w6f/T08GD 2uV7w2vNv0COJ9ROfqgxOuZ9bZudN8R4N7bJ+uDWdvFnJ7n/wTv2OT+NcZhR a3T8e6fO0w9qze9hn89vdV7v5f6Q+kC8qnO/TTrM4ab/nw573aXlv/N5rFni +Nfenn4bep7Sbu8OkD/G78c2zUfXWz4L/iej/K/tTYcbnl1v61PMm5s7zA/T 79Fe6LdJZ3vWBbCPYqXTxQ5W5YXtJf9daHTM4206LP9M/4/3RI7qtP3k+O/9 1X9WdkicWbrK/CfuMXu8Q/5/QZHRgUsf7JDvry82/4k6VWmHzJ+ffN8F9HlU h8UL9Os6lX96h8gxstT8J+TdpVPyB0+WGB3jM7fD4gj9J/xLTg+MO6TjPOnl nRZHYI/VKeH/dofRyR96699h+BzzZExa4tP7HRIPN/W6J+T4sUPG/9drjI74 OK7D4gv9M/RyQYfFI9JhDyd1Wh4Afudo9atNHRZf6Feh11EdFo9Ih/xPdIi/ ebrC/Cr4VnWInxhdbnTkG47tsDwAvjNM/e2enYbPsf7YslP2yS/rsDhC/4k4 fleHxR3S0c9bO8Qut640/4zxmdchP7dfZ3T8OLTD8DnsYmin4K9POsQ/nltl 8xx2n/s7xMs3K42Ofo3vsPjC+YbxuazD4hHpyMee2Wl5AIzfI4r7Mx0WX+hX YWevdlg8Ih3+83kdl+eqza/iZ4vayXZOR/8GdFgeAOcUtmoXf3tQp+Fz+OF9 WsV+SzosjtB/otsPdFjcIR3z6+4OGb/lNcn1doHOo8FOx3w4osPwOfTyoq4P J3RI3H651vKYmF/b6Tjv7HT0f1qHxRf6W+j12g6LR6Tj/sALO+2dHYz3m02S 193QYfElkY99r8PiEeng97r6vaI6888Y57hD/NblTgefkzrs/kD08wjl/+sO q6tznwbs4OhOiwvQ68la983NL8y/jeptHYE61BNqzw87nfaO+srvgndhNlX+ 79T3orM95Fpa36s99PdNg9Eh79x6y/cij/OrlMUj+mfgtns77Rw0xu/WjLXn /k/o+5CMvq/ZKXz3KkzWcXLtgX8PWJmkn5JKnsN9SP38TimLX/Tb0OuyTot3 pGM+zu8U+//Q9/vBTn6T0nu7Vxkd/R/Raesa4JpJisNzcuIdhMN83xG+e4Tm oY8uNjr4bJayuEa/Dbw1vtPiIOn4/EUpyyPh/YYB2s/9UxbX6LcFP3RaHCQd +L+lU7+z2vw27HtvXd9PLjU6+vVsp8Uv6P3JlODb01PJ/NLOnXK/1K4pi1/0 2zDv0k6Ld6RDzwWdGjfKzc4g384aV08sMzrs6dFOyy/hHeUXdTyOSdl6B2aR w2EQe6uUxSn6Z8g/rdPiGun4MaFT8N23a83/A+dsrnY4s8LokhfttPWO4Ayd 53GnvkNcaf4ZOOWAlL67sM7o0PeGTotf9P9o/16nxTvS4R//kLL8EubX4Yp7 d09Z/KLfxrqnqtPiHelQ4xrVd22V+W2Mc9+U5MVvdDqm85Odll+Cnia2yvie kLL1DuQrbBb7+03K4hT9M+x+XqfFNdKxjvpO8dV+Neb/MY+21vk4ttro8IcP ddp6B+vzE7Xu8lOn6K+5xvwz5tEhaie3Ox32Sz822OtTo3sE+aTT4h3p+Pvz U5Zfwt+fo/s/9k5Z/Ers22jutHhHOsavRvNkB9fZ/hV5Vy4lecwvao2O/UrP dNr9t5imZY3iT05RP3Czvh/TVi/63CllcYp+G/a8vNPiGunyTov6yaH1tv8J 39k+JeOcqkvur3qk09Y7kGNIg+hpE8WJRzZY3MN5hyPVz0yoNzrsb3O15zfq rc6Idt90yvz4bYPR6Z+glhKPd6Tj5xX/Px3nGJ6v7cVH8Le+A3WAt2c9FPfz H6p2eEWj8ce4bO907t8I6dy/EdJ53iOk89xFSOd5hpDO86Ogn5sSPHVZo60f SYe9fdpo+0ZCOvetip21Bfsllsr8L/C4z/hIuvBdJv76sbS0+2vKzpUgTlSn 8x7vsbNXUrIeLFhhfOCv52q8GldgdPT71pTth0e3Fmr8rUnZ/aX4WZySv/vW 8QPjKfzhsynDG6RjnfJUSvp98SqL1xj3idrfKwqNjvXLX1K2Loa8W6XVT6Wk jlleZHZ2icoFe6peZXRMg08dbzBew789nDJ8QjrsJZuyPKr0o1Pm+RLHG4yz kPdtxyekY76/qeMypNTiLOx3ga7bbigxOr5/e8ryq/CPkzql340pW//i7/M1 r/Sd4wrGWfB5IWU4hHSJB1rHqF1jcRb2OVX3cTetNjrkuyll+VX8OLFD7hv/ TNe7t5dbnJV9iIqb7iwzuty74niDcXbrHn6PpgyfkI7x+8Hxhny3Ne/gHjnf djr5o5/Xp5L3Dc7W9eC7qrfUWouzwEVLFR9mK4wOvPNvxyGJddk9KcMtpCMe taUs7yp1Jt33M8dxCOMvzPGVlOEW0mH/L6b03ZIqi7+yjkrpPTCVRsef3ZKy vCvmwRCtl69L2boY7Uc2yXpgguMNxln8fCpl+IR0yPdYSuzggWqL45hfX+u8 +LkquW/shpStizGO9bpP+APNf5xaY3EWeeOVin/nVBsd6+ixjkMYx2GH96UM t5CO76VTlnfFvFiv74gucBzC+Au+b6QMt5COddqrKZmvj9Za/MV8mKt+rI/T YVe3pSzvCvt4vEH8XG3K1sX4/7fqRK5vHW8wziJ+PJcyfEI6fj6tfiy/zuI4 /NWklMTFs5yO9n9J2boY+GbLevXjKTvnyXUx6sbj1C89XW/76WF/xYont3I6 7O8zxyeM18gfPpwyPEM6xiOr/m2Svve6g+4PWur4hPujkLd4x/EM6dB7zn9i 39ziBouzsO+FGi8ucDr43M442CC4fpzeL9ik47up7tudWCV/N0P9QFeDncfA +L6odjis0eiMS1DrNk3B+WuNyy809qKzPfzuM+t6tYedHOx1ZsgzsdH2l0p8 SQfvgaYsrhI/kM72vH8e//G908VvLJR5F6dk3r2StnfuMJ7lKZnfe6btPCz0 ebnmAU5IC/5Yv9zkwX66m9LifzdZZnTM1+3Thk9A313j+FNpy1fAjxyicfma tOETxmXY+RFpwzOkQ3+HpOU7GxVa3Id+r9Q87qYrjQ7/tHXazrHC71+rcet8 3dfwzCqLy7Cb+9OC/0cXGh18L0obbknUp/ZOG84hHfPozbTl82HvK9qlH39L G25hvIb9n542nEM65nleWvS0TYnFa+j3dt2fuEOx0dHvHdKWz4ffuFbj+HNp y3vgO8N0vfzntOETxmXwPSZteIZ06OXItNjZC6stLqMeMUTx5qulyTzqtmnL e8Cd1+v+icG6P2vXMovL+PsRin/3WGN0xJFL04ZbGJfv7ennAWnDOaRjuN9J W94e49Oi+2LvSRtuYVwG3z+kDeeQDjsfmBa/9HaFxWXMozvVbv9dbnT0c6e0 4RPZH9Ai+nwxbXl7qbtrnvOmtOETxmW5zydteIZ0/DhW7XavSovLiHPXq93u 7+d3MO+2S1veHu+kb6n7dHPrCeY9YD9HaPz937ThEMZf6PWQtOEW0pH/PlD1 U1hl8R3DdpnOl0udDnvcKm15D8zn53W9f7baz2vVFn8Rr+/Vcd/V6ej/+WnD J4nzsHukDc+Qjvnzatry9rD/sXUy329PGz5hXMY9RaekDc+QjnHL+UOpU9ck 4/LNaVk3XOV02EnOHzJvDzs4rF7XqRnR81i/3xh28HTa8iFQ07m1Mg+vSRs+ YfyFfzgybXiGdNw/fKj6/751Ft/R75yfhFxv1xod3986bfkQ1Du+0X1/F6Tl Z2WdxV/Icb+2v87p8FuD04ZbGN9hjvukDeeQDvneTFveHvLM1vub70wbPmFc xnwZmDY8Qzru7835SczvvRps3Y2/H6r+6oN6oyMM7ZC29+IxXBdrXXhUWt+J 0rzHonWC269PGw5hvMZ8OSZtuIV09PMorR9e32jnavH5Ibo/pb7B6LCfbdPJ /MZXlWL/F6tdHdBk5+6hvhEaHz9pNDr+/lKNs6M9L4GfB6of3rrJ6MwHyDrV cQ7paHau06Hnbbw979UJ6bw/IeQD+96urNd3of+cXw/5MD8Dvd3jfHifAthw X/CgZpMTn7/V6bzfBX92hPL/ge+Xl0hd/y215/Oae9HB55Vm6xfrHsRjxBus qxC/If97R8ra874pqRc6HcPHe4D/g47+DJ3Wi87zbiGdeTHSr+xR2AkZu08G 9aGrnU58iPl2tK4z56ftHhisb6freq9S49cflxq+wv9vrf29ZrHRYReTHU/K O6aKuw7JWF4LbnCLTvFLv8oYniSOgrqLHX+SDjy8Mi3j8fkKw2mQ4xf1DzcW GB1ifJO2fBf81W2dYkfptNjfsYXJOnU/1c+JK42O4cs6ziROAw5Y4LiUdOSp 8zJWX8Pvj+g+2p0zhjMTdYpGx6WkQ0+1WteaWmT4Cn+/ve6Dm7nK6JDj27TV 17Af7de6r+nIjOW7MA32bpX5tXnG8GSirlHm+JN02HlJWvR0SqnhNIz3Jhlp N7AkuS98Qjr5LsnzWu/uSst6c8Fqw1Hwq/voPuilpUaHP/zBcSZxGvDDUsel pEOfAzNWX8Pfval+dNeM4UziK/SrzXFp4nxNk/rnc8sNX+G/f5uRcb2ozOj4 +6lpq68hfhzWLPo8NmN5Lej1ZMVXuXlEPJk4d7rO8SfpP/f499y4YB4sX2v4 CnawhdrtqgqjY7gnpa2+Bjw9Qc/N/qDz5fJKw1fQ54EZ3d+yzuiY7z87ziS+ wrRf6biUdNjZ2RnDmdDTBMULrenkvu4cf4TDr9OW70L/BzRInqc9Lf/fXmX4 CtbVV/X5N6dD72nHn8RvyNvOdbxKOtZxOX/IupvsR6mV/Pr2GcOfxFfAc7WO V0mH/VWqPzm8xvAV5u02GfE/46uT9x1MTlvdDe80rVbcdWjG8l1o/3216H2T jOFM4ii0K3ZcSjrwZaHinDtrDaehbvWLzrvYz23huzk/yXwXzO1Pms/J6Hrq mDrDUZhf/dT/TKlN1juyjjOJ0/AO+ELHpaTjz/IyVneD/6xZJ/aX85PEmcRX +LMmx6WkQ446nafD6w1fYXx20Dj4Q53R8blv01Z3Q57u+0rJCx+VsbwW9H9A hbTLzS/iSeIoNCtz/Ek61FqidvttQ/K+qj5qtyc5HdqbkLa8Fvx2n7Wiry5d xz3caPcywW721XMhGzkdee8fHGcSL8FelzkuJR1ynJHR+zLUL+xcKnL2zRjO JB7D/7c5LiUd+Lk5LbhnluMr5F1yfhJ6Ot3p4DNV15tjm8R/nrZa/MyxGcNp 8CdX6b1QOT8Jv9bWZHU94LNKtbdbmo1OPAY7+aU5ee6pn9rVSKejn3Vpa1+l 912GfDA/7lvZiw/ysX9YZXSZD81Wl+Q+TeJG4hM0e8VxY2J/4H+0Jx3yXpIx PEmcST6CU2cJ7hng7Ykb2R79e1H1/FG+fZd8IN/Xc/LC7/L+Q/KB3JUZe0cA 821nxW8T9bzgZfMMv+F7T2XEHs9fYHTEw8dVz18sMvwGf/q1xscpC4wu+cOM 4VXY9Qu6z2NlxvKciDtTdP/JWMerxGmwv/szhm9Jh53eq/F04nLDgTDLDxQv zVpqdPiv/81Y/hPjsLPW6V7NCM6tXWE47Z0exczNSFwvLEjW197MGI4lDgS/ 2zOGe0lHvqg2Y3Vb/P3hit+mOo4lfoOffC5juJd0tHtav3vTKsNvsOdJ6g9v LzQ67GdIxuq2su9HcV1JxvKfwImFuv/kM8erxGmwy4czhm9JB055ICP6ay02 HIif4zQup4qMDnu/KmP5T3x+QIus599SO7y71HAa9Lgwo/vcSowOdu84jk3s Y7kzY7iXdPjbpozVbdHvcxrF781wHEv8Bj+Zm3fEvaRDvlEZ6ff6NYbfME+m afz6aXXyPpfrMla3xd+vbsy7tUefZRnLf2K82nT/ydeOV4nToMfHMoZvScd4 j1C/8UCF4TTg2c81fzWy3Oiwm6szlv+Evq7Rety7Kk+fdYbTgOuW6XmjX681 OnDYB45jidOw7+3ejOFe0mE37Rmrz2JYrlecNtdxLHEa5u8rGcO9pCOP9pLe P31GleE0uJGZGcFXoyqNDn//54zh1ZN72v1YK36qMmP1WdjLZorTJjpeJU5D u9y8I74lHfI9rn74yerk/pPxGve3cDramT/U84OPKn4rzFj+E/bzsZ7PHue4 lHgMze7PGI4lHfNouO4bXVhjeE/242t8P9fp6E/OHzL/Cf+3udbdXlM/9lyt 4THMo3ydR9s5HfPozYzhVeI9zKOhGcO3pEOfdRmrz8JPn1oh35vqeJU4DfNh VMbwLemw82cyum+tznAa5sckjSODnY5uDslYfVbeW1X8VpKxPCf+7kldj37u uJR4DP0ZkTEcSzryY/SHv2kwvIf+fazx9OV6oyNMX5WxPCfw0RVlMl/fUlxR 1GB4DPpcpDj8cqdjOr/reJV4D/PqzozhW9LxozljdVj8fneRzPeZjleJ09DP FzOGb0nHz9Fqt79tyku8kz5N490bjUbH79epHjZqkvOxrxTLuq+cuEj3nU9d mXdqj1q/dlxKnIZ1wOMZw7GkQ62PqN+4otnuWQUO+SIj+i5vMjrsJOcPmYeE HO8Vynnu99R+dm+xe1zhl5Ypznm32eiY72NU/sc9D4nP3Kt5jI1bjM7zRhjv b1sM35KOYTnp/6fDf2+0uBcf/Dp+gcyPG5zOvCP8TL7z4f268CMFxAmtyfvf 2tSfn9Zq96mSjrgwotXuLd9D4zPxMPKF/dSer48MPyfygX2jXngb47JFZPeJ YZwXdRqfMs27Sj7D28t4zLD2sIdj9V6ljefkJfD89XpedqtZeeF3icMRZid0 yvuej0V23zjUmd8u5xmvjAyHJ/Z3HRIZbicd/vVAvRdhiwWGS9Gdy/Segx3n GR354D6R5Yfht07okPc5z9b7d/suTp5DvFfvadhvYfLc4vmR4XPiUvjVfpHh edKRB3g1Mnwu+8X0PPwAp5M/hu+XjOWTP+np/0zNo54YiV/Zu8BwKfzQzXru +ZBlyfpyXmS4nbgX47p9ZDifdKkzRbZvAX+3rlnG8ZrIcDvxKubDkZHhfNJh D4fq/Wc7FxpeBc67SuXpu9LoMJfNItu3AL7XtMg4PxBZPlnwl55zHBwZPicu RbzYJzI8nziP00/t5/Uiw73Q9wV6H9g7q5LncTaOLJ8MsWo1j5rTJ+Teq8Rw Kd6hHqrza/9io6NePzAy3E7ci+H5bWQ4n3T0e1Rk+xbkPIfu18rNL+J24lXE i2Mjw/mkYzyPisS/fLja8Crse4ja7SelRkc3N49s3wL08mhDXlGPPY2ILJ+M +PaW3pt5WWT4PLG/68DI8DzpyG/sG4m99y833IvfL44k/h5WZnSM+yaR5ZNB 36Je+n+G2s/4CsOlkOsuvU9ocrnRIV9uXhO3E/ci/9k3MpxPOtq9FNm+BakP KF7NzS/i9sQ+rhMiw/mkY9oep3Z1bKXhVdjlDZHIe+I6owMvbBkl7wP5SO/X ejyyvDHMaqKeX78yMnxOvAp5D40Mz5OO8eyvcaGiyvAq9Hy56n+I0yFnn8j2 LSCeH6L16HNUHr7Pm8OrcBc5Pwnx93U67CA3v4jbiVfxmX6R4XzS4YdfjQy3 C36rEBx+gtPJH3Fpo8jyyRiP6yvFvk/U+Vtbk7xP/5ZI/OuNTkf/8yLD88TD GNecnyT+Jx16fiayfQvQyzu6Hh0SGZ4njsV3cn6S+J90TKvDIr2HtM5wLPzY VeqvxtYaHeOzWWT7FhCf3lc88EBk+WTE1boS8Y+DI8PtxKswi30jw/mkwx73 jMQubqo3PIxuDorkO811RsfvG0eWT8b3PyuVesOpkeCpgxsMr8Jf3aH3b31R b3T8/RmR4XniYeAS+snfNBgddjY6sn0L+FG4UubVDZHheeJY7G85NjL8Tzqm fc5Pws6GNhqOBY6+Vu051WB0jMfmke1bwPqtuVD08Uhk+WR8/4jlYqc5P0nc TrwK3NE/MpxPOn7sp3b7ZZPhYcTXi9Vuj3Q61LdJZPnkDsDuAvn7MyPZJzmM 9xoulPl1l/rtriajA7fk5jXxPHEs+rFbZPifdNjLS8R1ep/l1vkyfrdEhucT 946eGBn+Jx3jn/OTmM4TWwwP4/9vVNx1vNOhxy2V/78Uf9wwX/13ZPiD+4vg f54gztR7v478Tv7uKo3L1S127gbz5VC1wyGtRk/cZ5lyPE86wu6w3nS2x30o n3wt43yC0/luUcgH41czxehynrjV8vNf6zoluT92ofiVI2NbFxD3Cr7zdQHp bC/2/K7Iv4meW57O9hNEH5M6rL188CsZl42dzveOMU4r9B6QctXnlBkmD+x5 i1jsZulUoyPOfOnrDrkHSveLHhhbnh/9GdYmfuoXX3cQbyPerfR1CumIz8vU 712fb3gb+t6g9jx0jtERtz6JLP8Pvda1ad5K58U9Cwxvo/+7xTK/H5lndODD tK9HiLfR/7m+fiEdf39ibPtVYK8tzSLn9rGtR2jvmA+1vn4hHcNUGcm9JA8t NbyN8dpG9fnUYqND2q8iW3fg56Mt4gcOjW0fi9z7oPmJTWJbdyT2bZb4OoV0 xKtCnY9zVhjehry/6D12zxcYHe0/i2wfC7q1hfqbfrHl/6GXIxRXd/n6grga YWOhr0dIR7fzI9H3WasMt6N/GfU/5xUaHXY6NrL8v5wP1nOXdZHEp4Ki5P3v O8QiX9Eqo2MaN/m6I/H+4FRfp5COzx0V2z4W8B1bJ3EqN4+47kjs2yzzdQrp wK+lGr8uLjW8jenXJ5Z4ekWJ0cH388j2sUCcQ+plPu0bW/4f43mu7rf8wdcX xNX4/2W+HiEd83tRJD9L1iTfuenW9Wn5aqNj/D+OLP+PevF4xVPNOh+HlBuu xrjuEsu8uKEsWfdv93UHcTvknunrFNIRH4+LbR+L3COp+y23iW3dkdifWenr FNJh5zl/KPu31xrexv1IW8a637vC6NDLl5HtY0E/LlIc3j+2/D+Ga6HuW/nF 1xeJ/ZmFvh4hHf1YHkme7ugqw9WYXxt0/t5eaXTo4dPI8v9YH3Jd0hFJvnp9 leFq6G83vRf/fqdDD2lfdxBXQy/5vk4hHZ/P+UPuV4GeJul9t9vHtu4grka+ pc7XKaTD31VpPB1QY7ga/nHbWOxjerXRYYdf+/oC9t1cJvo8LLb9KtD7j7pf LDePuL4grobZlPh6hHQMQ6HOxwdqDVcjX79RLPmqn2uMDvk/i2y/CsTMlsr9 V3vGlv8H7j5d75no8nUE8TM+v8jXHaQjzsxTPPZdneFzTBv6w1Prknh+XGT5 f9jhRsViN/WKSx+tN/yMebyDxrU+Tod6m319QXwOftN8PUI67CPnD7lfBWZx 3XKRIzePuL4grobfKvf1COnQS6nGnfwGw9X4701jyVuc5XQ55xbZfhXcG3Dy ChnX/WLL/8Mu2zRfuMHXEcTP6MYyX3eQDv6Ldd29qeNzqLdb149PNxod+vo4 Sub/X1ws9tyi+ZDFTYafIXbOH2IaXuB0yNvu6wvic8yjWb4eSeD2U2L1U02G tzHPjottHwvm6UvfiV/dJrZ1B3E17KnK1ymkw/4rItkfu3WLvdOKcfp1LHYz utno+Lucn8TfZfX859azRc/91R7O0XusPxkvv28U2/qCuBrn7Ap9PUI6789G t7drtfd5Sef6gnpA3F6u+Y1Brfb+LNaxPypeXdFidKj108jqBZiOZ06SnxmN m6/5d0mXfRy+joA/ydd8XbfTJS8QG/7ndyXOO53n9vn+ANcRL/Q0rG0zPuQL v/6l7hMuj21fN8ZpUZvRuV6APY7Qe0VviO3dE+COf+l57UdiGceh3xoOh/18 Hss8fHSi0cH30tjqGhivLdol/i6Lra6Beba34u0PfN2R2N97b2zrFNIh3l2K 32bMNjwP/b2ncf/FmUn8Pzi2egf86+hW8eMv6fpoRb7hbcg9M5b5VDbH6JhX r8a2HiGeB9ubY1u/kI6flbHtR8L/v6H7dSf5eiSxv/fp2NYvpAPOPR6LHKWL DIfj53jFezULjA67vzy2/UiQ4xC9n7YwTp67PEn3647zdQdxOPT+QGzrFNKh r+G67qhcbjgcahqj49u8NEm/OLb9SBBzvJ7Lfk3x1foVhsPRz/xY8OyGAqND 72/Gth4hDhd/Hdv6JXEOq87XI1DHN7rv8imnJ85zDYqt3oHwcrzuS3kmlnXw g6sMh0O/k1VvIwuT+0lGxbZOIc7HdBgS27qGdNhpaWz7lNCfyxSff+7rlMT+ 3hGxrWtIxzrqwVjqExuVGD4HPvtY/fymxUYHrrsktn1KgvcVpyyKrd6Bv/u+ WuLdu74eIQ7HMN8V2/qFdPzdHTpfHlttOB/z6y2NU8+UGh1w6sLY6h0Yn6v1 Xp/Riuu2LjMcjt+nqZ3vsMbosNeXYlunEOdjnG6IbV1DOka/PLZ9Svi9Svfp jPd1SmJ/7+OxrWtIx/dyfhJ+7oUKw+eYd1/o+3KvlBsdesj5Se5Twv0U2Uqp ty6Prd6B8d6/QsZrjK9HiMMxTjk/yfUL6bCzYeqfd6o0nI/vv6f4f9d1Rofd 5fwk6x3Qw0ZrZbxfVtw1qMpwOPQ5S+3n35VGhx5yfpLrFOJ8xOlbYlvXkI58 bVVs+5RgRzuVyvp9kq9TiM/hh3Lzkesa0tHPJ3Q+vlBt+Bx+7Bv1kzs6Xe5R im2fEszwZN1XXBhbXQN49soiWad/7OsR4nOMxwOxrV9Ix2eGazwqrDF8juH+ UOPypTXJ96T/GNs+JbA5R/el5PwkzOzVWsPnsN95ag+7Oh32/ZavU4jP4R/u iG1dQzrW6/W+TkG3X1wu70E87XTyR38GxVbvwPhfUig4+x+KW1bXGT5Hdybr e0dX1SX3mdBP5tYvxP8Yn2tjW++QzvffWNcgrgMOKY1tXxPm5+4a9z73dQ3x POZJbp5yHUQ6upfzn7C7vg2G5zEfP1F7frve6JDrktj2NeHdhX2WSHxfHFsd BP37eK7gmfd8/ULcDvnuim29Qzr+/q/qZ65utHUBfvxLcUtlg9FhdxfFVgfB OmjAPNHTaMWNezUZPke3c3gSv37QaHT83UuxrWuI/+FPboxtHUQ6hqMitn1N 4LvVN/L7eF/XELcjX/FEbOsg0olv4feObzZcTTrXLxx3xMWROi/+3Gy4HTDl C50X9U1Gx8/LYtsHhe/fMlnm3Yex1U343QR9dLPha4x3bl5zHRTSE+uaHB/I MTi2+gim08FjdZ2c1frE3da+XOsLyf1FLTJf+2cN/xNvc16wfeKeov76vvEB Y/JCOsT59+vJ9wk6YtvPz/UFfn9E2z86VvzLYa3S/8uygjcaPkru3z4wK35u +hdGxzTZT98V3HvC/xH21XF2Vsf7eHGKF0qxIsVCgRaKlC1a3K249FuCl6KF liIt0uLuVhyKBguaEIEQoptsZJOsu1zJvQvBfnefmWdmz7yXz++fbpk8d945 58yZM/ae1/xzxHdHlGQcO71qdOzPbzwegZ15Xb+X8JeS1TXw71P1Xtn9ShaP 0A/H+1M/LVn8QjrmYW39nvx2H5qfjz6EvUtyju870ugY/8BCq4Pg8b/R7zzt VJL13HK0+eE4l/9YkvH/+mOjY1/vWrI4hX4+/nmlksU1pOPx/yxZXxbk2E/9 8xNKFqck/dvblCyuIR24LfQ7wNuPN/8cuGNLYjd2G2t06Ou3C60vC9uPfeOX lawOgvO7u1XW++CSxSP0w/HzDUoWvyT3za5XkvzdzhPND8ff/XW8e08wOvh+ tdDqIGBzYpv4Abvpd2gPmmx+OObpLNWHY74wOvIaNSWLU+iH41xZrWRxDen4 2U38bvNk0f/T1Q8/pWRxStK/vX3J4hrSwW+YzsMW08wPx3yfqN/nHDY1fV/v e49HYN+/1r7xK0vWfwX9X1rfszuiZPFI0r+9ScniF9Ix7xuqffhfrfnhWO9D SrL+r083OtZ70ULrvwKbq5vkPD2/ZHUQrMtz2o9d2UeMO5L+7bVLFqeQDr6r 6/xvV2f+PPTldyXZHzvONDpw5YVWB4H/ukyj9PvvUBJ/c+Qs87dhX05VOT+q Mzq47ViyeIT+PPyf5UoWv5CO31XsIfuvsL419XLuVOwh4xH64RhXZd8xfiEd 87Sp6u3uc80Px58jS6JHe80xOs6ZbxZa/xXk3n+e2NWLSlYHgX78U/uxK/uI cQf9bdiBn5YsTiEd8q2t+jlqnvnzmPd9StIfOq7e6LAXFXvIOgiee5TKu5Pa kwMWmL+Nffh/JZH3sPlpv8quJYtH6M9jmCuXLH4hHev8r5L1X0HvL1J9rNhD xiNJ/3Zl3zF+IR3ztaXa2/YG88MR71XsId5nOsvpmJ9vF1r/FcZxp/rnFXvI Ogjs0bvaj31IyeKOpH97w5LFKaRDvvVUf7ZoMn8b+nKAnpsvNhod8/DVQquD gPzINJnH3XQeepvM30Y/+dkluefyz05HnFDZX4xH6G9Dv1YrWfxCOub73yXr s0Ie5xDNS51asniEfjX2xfYli19Ix/O2Lck+2LbF/Grxd0vid7zebHTgvl+Y 9lm9+bn4D38rWZ8V5mf2J5p3KlncQb8afzctWZxCOnAbqV5d2Gp+Nabp0JKs 58IWo2Pffr3Q4hHI8flYsavnl6wOIsN9376rzDiC/jPivcq+Y9xBOv6urvr5 Rpv551iGPUoSn/+6LfXnywutDiJifmTfG8dynd5ufibprI/Qr8b7iTuovl3W bv4z/pxWknVe1GZ0zNtOJYtH6M/j/seK/WT8Qjr0rrK/2JdFeUhnPEK/GmLR 763EL5HOuCPJw3+z0PqvsC4XPS99mXsVM/052N6/Khsd+/cWfR9/k7L52/QD 6bcTTzrkfi348xU/lnxE7gdlf87TOsnX7ofTL4Wef+F+O+nYCJ/pefHq/0we DH9A/bHZTxsdw3iyZPl/qMWJXTWbDi7b2mXL/8s53iHr2Ot+eNKn/ZH77aTj vHy/JH3H7e+Yf4vHdeq58/UIo2P/PFqyugDmvUnjs3o9H5f/yPxPyLtcWc7/ Dd5Lvwe/wP1z+reY39fdnycdarBF2fqUYGcHWmUdv3f/POnTnub+POnwcyep XbpljPmlWOZvSqJn9402OnBPlaxPCfJfo/2S65WtLgD8g9p3XXA/POnTHuN+ O+mwcx+rnb/7M/NvoTd9ut8fG5/6w4+VrC4A8jKtch9bg+rhMxPN/wRsZZXz tQlGh360uH9O/xb3gb/t/jzpOF+Gla1PCb9fVc+rpcrmnyd92nXuz5OO500v iTx1U8wvxf5arCzjeWey0fG7p0vWpwR5ntZ+5A3Llv8H+xF6ng+4H06/FOr7 mfvtpIP/WF2v46ebX4r9VSyJn3vqNKPD332iZH1KIG+p32VtVb1trjW/FOZi 9bJ+Z2+60TEPne6f0y/F/nzP/XnSce7sUDb/HOfEsfUyvzPdbyd//H24ZHUB 7LdT9V7QOo2jz6wzvxTn19JqT86daXScI3Pdb6ffC7v8svv5pAO3adn6lzDN j8yW/fO1++1Jn/Yk9/NJRx55Qkn8g+7Z5q/CvgyonudmGR3r+mTJ+pfw3d9H 5oj/V7GTrAtgHZtnStza5/550qf9sfvzpOPv+2o3Lqg3vxf2qkv9gYvnGh3L UbGTrAtA35/XfHi9noNfzjO/FPO0fFnyMd/WGx3HbYP77fR7sT1edz+fdPiF W5atfwnLMlXzvYuVzW9P+rSnuZ9POoY9We35bxvMX8W5+I3apWsWGB3z8FTJ +pewPm3qx1bsJOsCMMPDJsm5W3D/POnTHuv+POnYX6NUzn80mt+LeezX+HQJ p8t74iWrC0hbz2TR80Y9L/ZuMr8U+2uVsvgX4xqNDjla3W+n34t98bb7+aTD Xmxbtv4lzMPyYySerewv+u1Jv0ed+/mk4/fT1e5d32z+KqZx8bLM87JOB/7p kvUvQR1OGifzuVHZ8v+wd1t/IOsw4P45/VX8+cz9edKhz+NKEhd92mL+Kn5Q VH/jAKdjP1TsJPuX8PiLPtb1Kct4/9Oa+o0VOvP/9GNhZ9rUP7y51fxVsF1d 7cwqTsc8dLqfT38V+ve+xwVJ/0nFP6GfT3nqcO9dKe2DqvDHufNwyeoF2D+r vyn6X1+yegH5kE4/n34v1u9ljwtIj++Z6l+1K+7fyr7T+5/GuX/L8x3n1LFl 82PpP8CsHOp0+jmg/97p9NPwuxqn0w/EPO7n/jDpkkctW/4Z67RMp+jD0WXz b+nXkU5/OKEPd/82ysN8Mu65urld5L+xbPnkZFznlc2PpR9Y0vmh30s65u25 svW3JPP2L/dj6b9h/19WNr+XdPhR97u/Sj7wPw8oWx8L1H0r7Sv+uGz5YeyX /bVf976y+aX0x1B/PatsfizpMFv/p35a/zjTB8znXWXxQ78aY3Tsk33Llh/G vnhV7UFlvDgfF59g/hjke6Ms+dIVPjU67OpNZfNX6e9h+U4om39LOuZjetn6 WPDn4waxb8+7v5r0915ZNv+WdNiHy8vCd9nJ5qfBr3q6LP+9+hdGx3wdVLY+ Fvz3oeq/jS1bfhjzMX6+yPWQ+6X0x7DM55fNjyUd63+27sdlp5k/hnm+X8/3 laYaHXwr+475Yfg7z2u+7d9lqVveMd38Mczn22WJu++dZnSM79ay+av0x/Cc U8vm3ybv39WVrV8FuDdna3+n+6tJf+/VZfNvScd++Jvq/xozzR/DOF4oy3+v O8PoOO8OLptf+tDg79q0r3hC2fpVYJ6/1n7dx90vpT8m94CWzY8lHfv/grI8 5/5Z5o/h3x9WO/BIndHxs/3L1q+C+SvoPZHvly0/jPHsof26d5bN/6Tfhfs9 KvuO/irpGOdpGh+tN9f8OtiZ2/S822iO0bEOe5ctP4w+mG9ra5oGn3eN7tOn 683vgvyv6Hy+MNfo2O+V/Uu/lH4dzrVjy+bHko7nTS5bvwr06RTt133a/VL6 Y1DEy8rmx5IOPb+4LPtyiwXmj8FePaF6O2y+0eX7Z2XrV8G22EXvnRhVtvyw tIFqv+59ZfM/6XfheWeXzV8lHX/+pHHTzAbz6/C3Yg+xff7gdORXK/aQ+eHV B8f1nwmyrtfrOfVQY+p3vaH68DOnY37/XTa/lH4d/vnEsvmxpEO/K/aQ/SqY nls/EDmed7+U/hj4/q1sfizp0KfL1U+obzJ/DHb8mbK+F+B0/L5iD9mvgnN+ 6VFqn/S5vNeb/hj9jXXVz3xa+28fdr+U/hX28/ll82NJJ3/E/fObzV9Cnfcc nYf1W8zvAv5+jfefaDY6xK7YT+aT8byd3qpZYVCOW8uWTyZ/0umv0u/C9qvs U/q3pIu8A+Z3cZ6hT1cPmN9FeyJ5WMeTDjZLDZgfRXsI+jfuX9GeY14XOp3n Beg9Tk/uTWpxevKeTof7FaQDX1+2vBbYHK/3g5bdT+A5Szr9CtKhH5sPpHn/ 17T+s/KA+QlJf12FTr+CdI6LdWHUOQuK32zAzvGkL271ATv3SYc9OXPAznHO M9Tll07nPCOu7i1bfgnwip3D8h0/YPkl8sH5sMOAneM8B6FnSw/YuU865P/b gNV54d6uXqd9YgN2jif9b5sO2LlPOtZpowGxF6NrTd/w34cOiNzjp6fvlVf0 h3Ve2OVd9V7NCwYsX4R1/kOtyLHPgJ3XPL9QR1t7wM530sF/jQEZx751dn5h GvcYEDt64Eyjw7/qL1udF+/t7qvP+ZXqz6RZdn5huk4bED+9ts7oULOdBuwc 5/mF9V9+wM590vHcawbsHId9vm2SxLebOJ38YXe7y5ZHgp4ervW+ih7Crzxi rp1f8JOOGpDfHzvH6PjdlgN2vvN8xH74xv0B0jH+iwas/gv6Tz/T7wAO2Pme 9LmtN2D+AOnI2/5kQPtj59m+xD/vO6D9tPVGRz9kvmz13yvRd/e5zOefBiyP BHv47CcyD7sN2DnO8wvrUdnXPPdJh/6toHq1TYOdj9C73wzIvj9lQdoX11NO 723eQd/33UrnId9g5xfm97gBkfdip2Mehg3Y+U67je9ZLD5g/gDpopcDVv/l eYd5vtzpyAcs84a873/IgJ37PNcw3o0GzE8gXfr5dH2XbbLziHSe+8n7Pj8b ED3docnOO9i9Awf0/YNGo2P5CmWrI4PfCW/LOuwxYPkoPpd0+gM871CPWX3A /IdI57lPPvJ+YtnyTlDnHz+r6/elnYO8dwt2aOMv7dzkumMenvfzkfqJP084 nfsL+vqA07l/Qb/D6bQ/iJ/HD1i+gnjE4+0Dlmcgf+BfGbA8hsg5XfjfNGD5 /6/wHsMM47/K0Pf6mBd91e0z7RLptOekU37GR7DXDyr+U7ertBsYzituh0kH rsHtJ+0D9Gey29vEfy66PeT8Y7kfHjB7CH18+XP53U++tLw6nj/rE5mXPreH tAMwI6PcfpKO/fHBgOzX6+pNH6A+3QPy/JvmGh3Pv2/A8upY57FqH1b40uIX 4Mdrnb3R7V5Sl3/D7STpsOeVdcHy/WiB2RPg5g3I+qw43+hwJ+4csPgFduHt j/S9wS8lT7xdg+0XPGay2oH9Gmz/wv/+dkD813sWGB2/n+52kvYE6/WM21XS oe+VdWS+nc8lnXaS+xrPGed2NdJp98gHfx8YsLw6/h73vNBrvrR9R/nx7zs5 PXmv8KwvbV3JH3p75pe2HxM+235pcTH05byPpX5w+JemJ5wH0qlXpFMennc4 /5Z90+Th+nIeYA4O/NL0gXTo9+KPmx0TO/eUzNfe/9X/vtvuLeG/xz7hyId2 UvyAh42PnBOvZPDJ+55D8KRXl3NMBs/9GPG0AxFPuxHx/B5xxNMuRTzpEU97 GPGiD9My+KQuNgRPexzx9KsjXuZhZgZPfz7iySfiGY9EvPSBz8ngGQdVH29T Bs/4K+Kh5vc1Z/DMu0Y889URz3wy9Tb21UQ+0n/TluGT9DkMwct+bM/gmYeP z2X+v7p+dmT4sI4Q+bBOUX1dujJ82CcT+bA/J/KRvv/uDB/2/0S84Io/sN/7 M8+V+Lovwwf/vMbCDJ3vk0c+ore5DD59n9nxMs+5DF3yCfkfsANZeUR/SsYn eW57yfCcB/g/L5bMrsIef/dQkOMp2W973Wf2NuJpPyOd50t1/iMydJ4jkX6D 2u1I5/fCIl2+s/pRhk67XV3O0Rk6z8/q8o/J0G9ROx/pYh8KNp9Q4xMele+y X1uXwfM+30gXu52ls64Z6VO0ny/S+f5M9fFm6VGvSKf+cD3j+cv1p74x/op6 znmL9ClJfjTur44MnXYg0vn+TqRLXiq777i/KH/cR/RTOC58d3npstiJvd8I /sg/bX4YH3EeINbEF8QuX/Zf+x3yfp+8lPKp+AMRz3xjpK+r4418SI/4dH1H WFzGcaFPdYlXjQ/XnePF+fH9i2EeR4j/sdezNg8Rn+rHCIlfTnw57V8dgqe/ EfHcjxHPOn7Ei381N4N/Rs/xiKf/EPFt6g9EfPLe9BA869QRT/8h4tdN9Nbx N6s/EPFbqj5Xn4d8hg/Pu4iP+kB85EM89YH2m/uI46IdJZ1+FM+NiI90+kVx n079AftA/yfy4Xt2Ec95ZvyU/vvC3TmuuH/T8T5l+wVxz/A3xX9d5xX7d8xD +/smF/fFTD2vGvT9QfKPfLgvIp3nWqRz3qvLMyZDpx2OdJFrfIauDmKGTvuM x9/1po1X5J+Qwe+nfmDE01+tPg9dGTz90oiX87E7g6f/GfG8Tybieb5EPO9p jHjqW8RL3bU/g5e4JstH5Mxn+ND/jHTuX+qV6PVLpp8Y31LvGH/uX2mDGmn9 P4n/98aH4Zx3vWU+gXob+dDOQ49Gv298qM8Rzzg94rnfqvOZkOHDeDPiT1d7 EvFrioOVodPvinT6XZFOvyvS6XdFOv2uSGf8EumMRyKd647tN/wDGy/Xl+tF PPWB64t8zsFv2boTD/pJb9q6V8ePSPFj37L1jXjiIp7rG/FJ3+kQPO1edT7j M3ySelZG/toMH+ZPIp1+ReTDeC3S434knetyg+pv9J/FD63P+M+p/9mye1yv 9BwcnzmXSec+I532J56PPPeT/gvz2xbuLusz3/xG0nmeRn+SfFI743iOL+Kp Z8QzbqP9IZ56QTzpcHf+NEqOrf3etXFCLbYcY3Fm6rePsb5HPjfyobyRzvXA Py8aZfxpd6vLMyaD53ginnnCiGe+sbo8kzN48ol45gMjnvsi4um/RTz3XcTT f4545hsjnv5zxDNPGPG08xHPfGPE09+IeOYbq69LQ4YP/YRIr9f8VeTDPF6k 02+JfHifRaTTzkQ+6f0XY+z9Mu4L/PObow1Pu8R9Ifbqg2AXxkj/wrD3bL9E fGonxkif10kf2n6J+HSfR/zIH5BnTIYu65LL8En6M4fg6V9FOvr7DsnSpT6T pdNORjr6Zj7P0nleRDq/SxrpzAtFOv2TSOf7q5GexndOj/mcmM8kPuZJIp78 mZ+L+ZOkL2+I3b45yQONyNCpn7TDPDejPkc86XC7zxwr67TOR6bPwH/zqdlr 6jP5s1+dz63OZ4TM851jjU+i50PoPI8jH9r5SJ+r+Yrq/Cdk8LR7kc51iXyI 53gpB+cNx/tb46zfPs0bf2r99kneuekzy6vG+SQfzmfkw3mL9DTPHOmTxU/c 0p+b5o0dz/6BiE/6mobg2Z8Q8TynIp70iOc5FfGsQ0U87VWkSx6sJcPnxz9A Zzwe+TBPEvGMxyOe8WzEs74T8YyLI57nWsRLP1RfBk8+ES95uf4MXvzRvgx+ P7XzES/9Bf0Z/F/Ubke8fN8ul8E/q3n+iOd5VH0+ixk8z5eIZ/0o4rmvI57n vtgBp3P/cp/i76TRtn+5TyHGJb5/Iz7xU4bQE7s/hM66TKTT3kQ645RI5zxT Tox70Wirp0Q8z8dIZ9wd6VyXSBe1zdIZj0c61yvSxY/N0pP7i4fQuY6RLn5j ls5zP9KpJ5w30tNz3+O+NTQfEs997osYV76m/gntcfQTIp7rEvGUn3FJ9CuS uGqIX8G4JPoPpFMvSWdegfuC5xGfG88pkN+YZPOR5sEmWx848WC77kTpyztn jM0vxvfJRONDvY145qMiPZ2HydZnznGhDDD8C+PP9aX86A8+xOtt5AOuJ421 cUU85SQe99qMG2f/HfGss0c66xSRD/OuEU/9j/gN1A5HfJwf4iMf4n9I/3ke RTrjBfbvkM58LP2LqM+pfro+J/ZviD6n++7u4N/OzOgz9Zb6nOZPpmf0nPof 9ZxyRj7puMYYnnmCqIfpeJ2O+zNXmiL9NEeOt/nFdI+eanafekj+vA+Ez418 uK6RTj8H92oOm1KT5r8mZPD0lyKdfkvkwz6ZiOc5Hulc98iH8SPHy/dGOW84 P0c4nnqLx/x6Wsgj+rzJeD61eQPuhql2zwnnX87RqcaH8XvEU18jPXnPYggf rkvEy7/PyeBZb414OWfrM3jWWyOeecmIZ54q4tlnFfH0tyOefVMRzzxS9fnp yOBZt4r4xA8fgmfdKuJZF4t45qMiPvHDh+Dp50f83kP98CF45o0jnudXxLP+ FfHMk0Q8+6MiXvSz8APjLWTw9OsinnWZiE/86iH4xB9b2fcd9yP3Hflw/5KO 9uXdfJ9y/0K+SybYfox07sdIl7z5ROMPqe+YYP5WxKf23fE/RGdcXF2eLL1B /YRIp32IdFnfLJ3vhUX665q/jXT2dUQ630eLdNZXIp1xd6TTnkS62LcFGbr0 qTdk6MwbRzrtWPV5bsrQqZ9xvWjfSCee+km/Ifrh2ogY6krM79Vm/BnqRfRn 6DdEf+ZGtfcxX8fnMp4lnfoS/Ry+dxL9beLpz0R8et4t3J3yp3lH5xP9H/Lh fk/rcVpPGOL/kD/xST/Vn6bL+/XbTbT9jvE/Umt93mkdqtbuc+BzsZ7jphue 8XXkTz2I9DM0TxXp9C8jne8/xueyjhPx9H+qP7dk4+J7qZwf3O+xss8D9Zbz 0z+oz6Uvgl9eK++tbPKFzVvEc34inXFNpEc5YV9OmmR40olP4qzKPMX9wrxg 3C+tyXsa0f/P6hv18LWgD7RzUQ/53KiHpHOe076musy6RDzpwC/jcSHnn3x4 r10SR585Q/J96062dQSe98XSX9xgZE3E8/mRzvmMfFivpzzS9zYplX/lmYbn OqK/rHumvb9MOTG+v9aZ3Yrj5XvQHG/kQ/8Z8fwpzofne/XnjsngabcinnFp xDM+jHjah4inPxDx1L+Ip72LeNqTiKc+RTrP/ciH/n/1eWvK4HlPUcQn/bFD 8KJXPRk8840Rz/pgpFMPQT/T+aR9knWGpx5SrzBfK09N9wX30eJTTd8ivkv9 auLRt7nGVLlfsmKPIp75vUhnXiXSmbeJdPrnkc68d6QzfxLpjH8jnf5JpPM7 dpFO/zzSE/swZH6IJ534NC/k/g/1kPuG9Cnaj0p/Ntp/+hXR/jMOjvaf/ma0 5+QT7Tnp0W5zP6X2xP0c2quIT/1Bx5NOPObx41lih79xvUXerWm2zVNaB5xj 9z+Qf+RDvY3019T/x58tnT/rgxFPPz/iaYcjXs6H+Rk87W3ES5zbkMHT3kY6 9SPyYd0q4u/VPGTEU68iPeoV77/iekFPz3T+1HOuF8Y5aZqtI/nAz7vE1zHi Of+RznMt0qm/5I/9t4jPHfED/Cdn8JzniKeeRDzPtYhnH07E0y5EPPMnEc96 enX5+zN09ldEPszDRHxcX+IjH+Jj/yftD/OInKdor14NdD6X9GivuD9ivwTz zDFek//29y2on5Q/2rEkv7i8+29LVbXHes/DuKydYX6R+kQ+yb25FT6k476R UXOkDvPn6bYv0P90QL3679NtX9DeiN/g8kQ+3Be4j2ZgjvFh/0PEsw8q4pnn iXjat4gnPeK5HyOe6xrxnL+I536sPt5pGTz3Y8TzHIp4+pkRz/xPxNPPjHjm eSKeehbx7D+MeJ7TEc88cKSLmFk6/bHq8nRk8PS7Ip59DhF/pPqrEc96bvX1 KmTw9IcjnvXfiGfeNeKnaJ98xLNuHvG0PxFP/437boreH8L9C794+FzD0x5y /8K9urXW9jX5QOxO39cRz30a6TwHq/MfY/zlGolaswMRz/0Y8dyP1Z87OYPn fox47seI536sLn9tBs/9GPE8NyM+uf8qM945GTz3Y8Qn97cPwdOORzzzrhFP OxDxPJ+qz09DBi/uQHMGz3xs9flsyeDJJ+IZz0Y8/ZaIp52JeNqliGcdKuJJ j3jWPSOe9amI53v9Ec/6VMSLPenK4OkXRTzpEc/+sYjfVuP9iGfdP+Llvure DJ71rOr6lsvgN9T4OuIZ/0Y87Xn1/VvI4GnPI579w9Xnv5DBt2p/VMSL31vM 4NmPFPGM0yOefmakp/3DTk/zJ+PNL2Ved1vFRz+W+zv6scn7B1Xi7th3wbhQ nu/vaaZxsr+fkuLfNjrtR/RX6cdGf5V8eH6RznGRnvR7vDHf7HXap7TA7iUm H5wPo/Q7FS1+DkY6z6nq+BEZOscd6czrRjrrPJHO9Y10+rHV5RydoXP8km6v t/nhewcRn9z/OQTPc6f6c5syeNb1Ir5V9S/ieV5Un+eWDJ7nRcSznyHieV5U X6/2DD75XvwQPO1/xPO8qL7uXRk8z4uIn6vvy0Q8z4vq+tOTwfNciHjmWyKe 50V1/enP4HleRDz7waqPN5/B0++NdPaLVh9vlr6L1m0jnX5ypNMewv4Mn2f3 mib2drMFqk8zM/bkEL3vlPYEf9abb/fs0Z5E+ipaR0CZ/Pb5xp/7OuJZR4h4 +nsRT/kinnYz4ukfRnxy/8MQPPd7xCf3PwzBc79HPPd79XlryeC53yOe+z3i ud8jnvs94rnfI577PeK53yOe+z3iud8jnvs94rnfI577PeK53yOe+z3iud+r 609/Bs/9HvH03yKe/mH1+Slk8PQPI55xd8TTP4x4+mkRT/8w4tkPX33+Cxk8 /bqI53MjnnYm4skH9ma009O85QLrV6CfQzr27XEz0zpsxV6ByxMzzf5EOu1M pNN/iHQ+j39xj/a4meY/RDztRqTT/4v0LdXfqC5nln6U2plIT+rdQ+i4j7WU pdOORTrtUqQzLo501r8inX52pNOOVR9vLjPPfL8p4qn/kc58V3X5Cxn+7FeJ eMZBEU89j3jqc6SnfenOh3jSiaf+8/0/xi/Mc76ocUGMd6h3Md7hfMd4h/oo 9vFDO8d5/jDeSd+bmG99HWmfebP1aZNOPzrmw0lP+8gYTzWYHxL50D4Qz3uw +H0T4jkPxJOOPqTxvNe1zuwGn0s+5A/YSg3yuyPrzJ5EOu1ApHN8kb6L+oOR TjtXna7fj9zG5Wc/Etb3NKdTfzgu9Ct/4ePlPGB2Tptl4yIe/tZLs4x/xLO/ N9LT9xqc/v+rQ8X3KVhHYz6SdO476m3Uf/pfUf9pP6L+0/7J3yczejhV88lR 3zjPaR9jQ0YPI558KCffz4j0yB/n9kr6nfnxvl74+3Wj1ZXT/v8m+14k+Uc+ XN9IT/Iwazh/4smfdZqkfndao913nfTF/brJ8rxRTuLTfoBGux+b4430svqf YLOo0fifpe+rRDz92IinnxbxzFtGPP20iGfeMuJ5TkU8/dWIp58W8cxbRjz9 tIg/V/OWEc99FPGSb+rL4FnHifjkPbUheMatEZ/4gSu7PkQ9wd9L5ti6U0/Q D7Gb60/Ep/27eh/JnXPMPkc8nx/xPD8ifmnN00U8923E87yMePpXEc++8Yjn +R3xNWp3Ip5xX8TTHkU8476Ip78X8Yz7Ip5yRjzjvurr25LBM+6LeNZBIp77 KOJZB4l4xn0Rz7gv4hn3RTz1P+JpTyKe/m3E055EfPpemONpTyKedYGIpz2p vr5ZPO1JxNMfjnjak4hfRfNg1dcri2eeKuKZH4v49L0Dx0c+xNPO8P4V5vmj 30v/gXm2tF/F/Qrio1/B/R39CsZJsV4Q+1tIp16n/tFC+07pi9rPXN1vHx/e R2gKfYguD89x0pM4b4gfQnx6Ljs++gPE084Sz/khnXis21nNFvfQzjN/Jnrp fKAWI/Xe0B3n2nkR6bT/1fFjMvRbtM4e6ZzXSOf6RDrfM430uVqXj3Q53ydm 6NSLSGfdP9KZH8N6NDTZfK6p/nTE0x5GOt/vi/Tz1K+oLmdfhs4+xkh/Uf2N SOe9HJE+Q+1zpNPOxPGyLzriaU8iPblHcQgf+jPUQ7F3c01vxZ9xvaWdoT6/ CbtVb/pJPuD7albPvxt0Py6rN3878uG5E+m0q5HO+mykp++hOP2H6q2x7h/j shuTfe7vxf9QnMW8V3yfhX5EtCfsw0rzIo6P9oH2kHTyIZ58SL9s8AcjNY/x oq8X1vdR79fgepG/zLvLE/nQn5G8j/eJ0G5EPO+Li3j6dRHPdYx48qGc/L5P cp/Ayj4urju+13NRi33PhfOAeL+uxfzaOA/8ThDnIfJhHRn+y0vOh/1UEc88 bXX8yB+Qc0wGz76piOf8Rzz7piKe7x9FPPMUEU96xDMvVH1+pmXw7JuKeNbR Ip7nfMTfPLRuMATPOlrEJ/dWDcGzjhbxSbw7BM94KuIZT0U846mI579HPP2J iOc+rz5vLRk63w+K/Gl3Ip77LuLJB/ndkU5P3ytxPkl+sk6fs/9823eJndlg fprHG4LnPop08SvsvV+913e+9StGPPddpLM+Eun0ryJ9F92Pkc79GOk8byKd +7T6eCdk6PW6fyOd+zfS6V9FOv2rSD8juZfe55P3okd8+v0dxzM+jXj6XZHO 97AiH97/EPHsN4h4xrMRz3gz4hnPRjzrmBHPeDbiWceMeMazEU+/IuIZz1bX wyye8WzEs/4S8XxuxNMPjHj6XdX1pJTBRz7E0z7Qz6Ifxf5D5j9ifEq/IMan 7AtgfIppnlMK+LtFrxYvW1wc/TTyEXs9UfL6xZLVLWP9iPy5/8mfdJ5DpCdy Vvxq8id+P80PE895SPv7/Lnsp4v41E9wPP2WiE/7AR1POvFQxxXarI5H+8xx yX5zPtCXM7Wfd90FZucjnfY50mfocyDHna32XNrPiE/WaQie52PEU+6I5/gj PrkPZwiedi/iqd8Rz7xipNMeRj58jyDSZVxZ+tK63yOdcUqkM06MdO7fSOd+ jHT2ZUU681SRzngt0uO+HqXfx+R+wWNG+rzBLD3jePz8LtdP6i3s5lINpoeR Tr2KdJ7Lkc5zOdKZ94h05j0infFvpHPeOC7IvVGDvTca8XHeiI98iOe8pfm4 lt3Zp3R6ev7bPSrsq6K9xXF0WEn4Hd5u9hb74vqS9GVc1mb3/1NO0omn3Sad dph08pd1f8z4U57k+zEXO552PuJ5P3/EUz8inve6RDz7ByKe50XE36ByRvxw vR8m4ql/xGPf7MH3GF4K731rv9tiU4wP55NxWpxP5iUif/Y5xPXaUt+zjnzo d0Y+y+v9bJHP7kPvNxjCh/neyIf3w0Q+7CePfDjeyId9HZHPcK2nRj7kH/nw vfLIh+8jRz6MeyMf8o98iI982A8f+Tyr/SdRH/i+WNQH5oUif/azRf7sq4/8 mT+P/JkvivzfUvsV+bPPNs5DUo8cwod1/8iH/QmRz7qaF4p8KGfkw36AyCfJ YwzhQ38s7mvWEeK+Zp4q4ukfRjzzVxFPPhFP/w3m4DofF/3AuI4cF/Juw328 SX23Ml76QTx/6e/RD4p+ILb/Eo7H+p+t97Rv1m74KA/PfUzHT0tyb8lJ7n9S HvzszDbJo/7ez3fM4+/a7f6CpH+ywl/iPZcfen95W4qvnOORP+vLkc77XSOd /lXkz7oX5xO/rzd5TE6Me0e9f+E1zTO/53wwzmMXShz8svs/cT4hz5MLZL57 F4pf8Nd26+vh/ECuTan/DanfPoTOvgvEbSc7H/Z3RTzj7khnXMn1wvkypcHq HZQffyr8Yc4qdGyrM/250P9RRcOTD+eH48XzVm60cREPc7t4o81DxDOvSzzi kzUaze+I+OQ7X0Pw8t9vZ/BJv+4QPOnV5R+TwTPvFPH0IyKeeeBIZ/428mFc G+nMo0Y+jF8jnnnUiGceNeJ5DkQ886gRT7sV8cyjRjz7UiKe8WPEs94R8Ywf I36O+tURT7sZ8cyvRjzjx4hn/Bjx7EuJeNYrI57jinjWJSOedqy6PuQyeNZh I555v4hnHi/imfeLeObxIp72J+KZx6uun4UMnnm8iGfeL+KZx4t45t+qz38h g2dfSsRHPsTTHsZ7+djHEPNprI9Sv2J9M9J5TjHPwXgQsFzE3y124yjP+9Fu wn9Z6HjGd8Sn9FcyfBjHRT7sP4l41gkinve6VH/uRxk+jNciH9YPIp73h0c8 45SIFz95XAbP+Cvief9nxDPOinjePxPxjEci/iWNyyKecVPE8z6uiGd8FPGk V5/PaRk845qIZ3wU8fRLIp7nVsSLX1aXwcv9cVk86RHPOCLiec9vxLOOH/WQ 8VrCZ3SH7Pv96mvifsQ03FMv5+YnSn/G+xowHXMWpuMtzZV8QKfK86nHHczz IM93YIedr/j9KPXTruiI9XHjz/gCf89fKOfe8x6n4Dn7lOw8fCl5/0P7uN7t kH6XB+ebf5jYk3UWyHouo/7hfzosXoAd3FrfG53t8UjyPfTFO2L8YvzxZ1+t g++t9Yj/OB/87Gv3V+VcaTD5YW4nd4h9PqjB7Hmyfw/X90LuKsp6f95hfj7M /L1F0Y9hTmd9B30Rx3RYXBPnB3Zy4wZZn5f1XppHNB9yoccdUMvHPW7C72+I 9sTHhfH+ucPoWL6/6/sLL3bYPMTx0v/HuPcryvjmafz7d/f/sT5v+XMPHpzI ynihN2uovl3l/jzcuJc77D0x+vN8rpzfjSZ/5MNzKdJ5DkCP9nH+PJeqyzMm g6c/H/E3aD454unPRzz99kinvY909j9E/jx/Ip77PuLJp/r8LMjgk+98ZeRs yODp/0c8/fxIp98S+fBvxNOfj3T2S0Q6+yIi/Tda14z0pH42hM58eqQndbgh 9JuH1qeG0GkfI539cnEeWH+vPv9ZPP3hiKf/HPH0hyOefdoRT39YzssOef/o 8Ebr0+Y+hR2+q7Hmj4O/n1mQeGW484EfdHZB8iM/67D4PdqZnkGBDlR5FnM6 7OR7bh9oN6BmfVl7Qjr3e6QzP1Cdz4gMnXagOp/RGTr7T6rzH5Ohs54V6evr vHMe8F2KHzVZHSjiGfdFPOPTiOd7qZHO908jnXpVfR4KmedSf0gnnvpAf4tx Cu2M2Neu8D5dr+0z0vl90tDPsjvjO8bHpPP8jXykrlKw5zI+Qlx25kKZvzkd Vhfj+Us64ybGU6TzfIp0GeerRv960M7t0Wl8sE8/czzrWRHPvA/x2F8DHaG/ yvmwvhPl4XkW6Yw7SOf88LnIP1/seOpl5MM6V/V5yNKv0vgi0vncSGe9I9LF 7tdm6KxrkM7zhPl8+hvEs34R55/6W329ZmXwzKPB7f7U1yu8b2jzzHoE/vPP zp9ykj9gq3TJ+d3r77mQD9Zxz7kSh/1Ex5vrtDgF7LZfKPO+ndPpb1PO0M9s /HGOPKDvuRwQ9st5LifPN/aLcJ5xHt7j97FhP66j/u3oTqv7xHGxnoLtProo drdX/f8HbR3l3C57PIXxPqjvAy7TJedezTw7j8gfvxs3r6Z2kHBCUf59Rmea r7yuKHHWRk6nnYHc+3danBXlh5nt1jrXw0U5F2d5vAazd9hCO3/T94kX7o5z dr0uGfdvF9i5TP7oOzx0gcjRoe9Prdll/h/G11uQ+bis0+jirxbFf3y00+Ks OD/TBvWpc77Uf5Yp1iwzKFab+u3re9yHn/V6fAe3sb5o45LzxseFcYzstLgG 0zmjIPuh2GlxUxyv2LcG0fOH9F6FzTolfn52gcmPxyzh/CHGWepvrKbrPr7B zjXyh/p06r2NWxXkHFnUaf4xYDUFqbMc4XTedwd2V3RanBXlx+8e0Xjq2ILe i+TxGv5uULQ8Mf0rzttdg+THnI5xb1aQcU/utHgqjovzj/+uy0s8v0KnzMOa 7u/hnP3K/brjBxfwJf3u1RqdMv+/aTJ/DPPT1GnvW9B/S+2by4/HbOn4NL5z /vTfIp37JvJJ4y/Hs44Q8Wnc4Xi+3xrxaRzheNYfIz6NCxzPfG/EJ31oQ/Cc x4infkQ8/aiIp58U8aw7RDzrCBFP/zPiWUeIeNYdIp51hIhn3SHiWUeIeMY7 Ec+4SfSvU+a3wf1bzivs+1Z6X+p5eZFreFiX1fNybh7YaXFK3F94zjj1q5/P iz2s61S74PsF4vy0y/Qg7hdZpybbL5EP9wuev6rz4b2FEU9/KtLpv0Q+fP8p 4pP7yofgmR+IeJ7DEc/zLeKZN4h41gerz2dLBs99HfHst4t47uuIZ94w4rmv q89nRwaf1BWG4LneEc99HfHsA4x47uuI536J+OTewiF4sZO5DJ37N9KZ36D9 x7k2tsnyGBwf/OKc6m2FjnNvDZcH6/L3XHo+jvV9RzryEoWmtI+0so+w3l9m 9xfprLOTD56/iOv7dgbPvrmIZ14u4kmPeO67iGd/VsSzLhjx3I8RzzpJxPO+ pojn/o145gMjnedspNMuRv68HyriuX8jnesf6VP1/e1I531Pkc79HumM9yKd +cNIZ94vjovv3UQ891ekc19EPsSTTjz1n/aY+QfJTzyWyXuwnkZ7wDwGpnke 8/ZdlmfAdG6tcdCeXcaffjvpxDMfQj48b8gHcc9LXVYXjnxIj3yYD4l8SI98 2Ccc+TB/F/lIvuetHxjXUxk+sm8/zvBhn3Dkw/7eyIf5wciH/bqRD+ue5MP3 h8if5z75r6J16sifeZ7In/2iUU7WLSIf9vFGPrzHLPLhcyMf9vFGPuz/jHyY j4p82Mcb+TCfE/mwLz3yYd088pmodeQk7ze8x+x+nH/muyJ/9vdG/kn/7RA5 mR+LfJjXinyYj4p8uC6RD/t1yYf2ge8H7jD4Z2HR+PP8IH9+b5l9BXEeOK74 XK5vfC7r9fG5rMvHcdH+4TkbOH/OQ+RPPnjOZOdPPuTP71pXrZOe2C24O2db 3oD8sa1zs2seGlSA84piv3fx7y8hL3qT5nNu7TI680LvDZqX+7ss7xflh1y7 z5bvjjxZlHN+mPPBOpyu+aUFXWm+7kKtOy/fbfm6KD/zh7i3c62irPeBmvfe z/OH0Ju9nD/+vV/fKzyyW+Kl5rnpd/HO0+/SX6z9z6/q91k28O8hYDxztU50 tn9XgXknPPeOLsv7Rfmxf2+fK306Rc1fbep80HfwdFH8xeG6jk3zLC5L9PDb eSL/b/XeoVO6zb+Bfu1TEL3+qMvozOesPPj8ti7L78V5wDreqvcGnFSoWTA4 kF92SV7683obF+Tdxfnj/cvtixJvLtVteTOs+9YFyW/t2m15uTgu9mNj3/bn JZ/6Z40fj5pvcmK+D/V8IM6bDwuiD6foPT/reD8w+SN+/p32OVydrzlz8N/3 6rZ8Gubj3rzY04e6jM56DcY5usvyeFF+6GWDvvf3Sl5+t53zgXwXF6Q/paPL 9i/kuSpfs+cg27W7Lc8W5Wc/A/BbKf+j1Z851/N+OC/3df5St1T6Md2yjnt6 fZb8oS/XNkpeeHRO5v8X3ZY3A/8OjXcu7TI66274ztqjXZavi/JDz9fReuhi eZHrF11pnfftvH0XLo2L9b6mc3Qe9nC/lPxRv9u3Sdbh0FzNdYPrNbzb/Hvk YY7QPszPu4wu85qTeS16fi/OD37/kyZ5ztk52Z8V/Yfevuzjlby284fftLeP i3ECxwU1XsnpsOM75+S/9+u2/Ekcb5IHWConduuvavf+4nErhneEx6dw1yrj hd6MUnv152bzKyHnYd2Wv2B8mtrhZpM/8mEcGulyDozM0Pndikhn/ifSWdeO dPqtkc57qCKd+TrQB7psvPQvuF7Y7pX4babmCTkPWO4b9f6hTfrlO91r+Lxh /xzUJ/r0rsf7cR0x/j00b3t5v80/Hj/L1yU5p/7n6xLxSR6ugkcc29ts74dG POPNiGfepro8LRk88zYRzzg04pmPjXg5T/oyeOZjSSee8xzvTWK97ofq9Vxf 0ukvs3+BdL6PwDog6TLeguWfGLdivx9VFDt/eY/FobAPtxbFn3qh2+JWnqek E8/4F485vcfe9yCeeXH28XI/8rnUYz6X9OS+/VuLJj/9eXyP/RKXJ3nPZJ7z od8e+ZB/5EM8+eC82LvH/HCcI5cp/rAe88Nbk3iyx/xw7Kdt9L6sB7qND/lj Xp7v0XvJZpn/kOQLH5kl8o8uyPr9s8f0BeI26rk/s9vo9Pdwjn7bbf58lBP+ Y3OdrMNX2jdyhfPBPL1dFL9pix7zk3E+far+4ZE95m9H+Vlnh36erfWye7rl /CnNMnlgn253P//2QcLeRennfFzn/0a/95L8Ma8bzRV/dGntS6nElfSr8Xf7 gty38Xq30elnYt/Odn8+yo91/LXec3ug+ocXOp93Bv8sKsi+f7NHzoPr68N3 vnokLnmhXuS9My/6+Zx/lwzz9LDe2/kjp9OvQ51kWE/6PumQecA67lAv8r+Z l79XqL/0V48jgLvB4wXY6RsKNRcOsj24x/xkqO8/Vf6KvtEPj+NiPzPk3isv 6zyyW/4u4XEB8h0Pd6d+/upKf6lH3v+fNd/8AfLHeTBsgej9DL039ZYe86vh 1/SpX9Ts/jz9PcQFy/eYPx/lhx/9L82fLpOX313lfPD3s7ys3/Y95idjX1Tk aRnU31N6zN+O8rNuDv28Kid5qMf0+yfXLzB5YM/v6k7fizwmL/Haf3tEf+9p sHOZ/GFfZmn/89paF/hLj/nViONq9H2iD7uNTn8S69/m/nyUH32D5zTU/GFQ j47LyXxd4nywfVfMy3+/0yPrc3ej+SHkg3V/RP3V/fprThwc2Os95ldjnEf2 iz1d3emsg0CPd+0xvz3OA+Bna7/fP/vlv6/Tc2op95Pxs397vAD9ekD7P4/t MX8YuI37a34yOC2395i/Hccl+1PrOK/2id/6icbRn7mceNxj7ucfMPh/Ns2J nX6lR573QZP5FeQP+gKVZ1KvrNu9PeY/Ib4t98o69Lt/zns1YbfX7jH/PMqP fXiX+tub98k8X+N80Ofydr/2A/WY35jcbzMq62/j766Ox2PHap/huT2Gj+OV c0v9vc17ZR6f03N5BfdvoQf3uh+LeG9Kn5wXFXvFOgT9T/IXeZvTuIb3SW/Z Yn5spNNuwX7O6zb+7C+NePY/RDz92Ihn/0PEs04a8ex/iHjWLSKeddKIZ500 4lkviXj62xFPfzfi6W9Tf6T9sNnWg38hx0YtNWMGH3uU6usavo6wt49qfrDD 44uoPxDj/WbRjwk9pg+Y93d8fZN7c890PYl4rhfxGH9Di+WnI55+eaRz/iOd edJIl/MrS2dfRaRzvSI9id+GyM91IZ14zvMG2scR62Ksr6bvPz71g3HKD8U1 vCeAdN4fRntCOs9Hfv8h9idHPP06xmHp+54F0xfGQfj9woi/W9bx6KLhWe+A OKWC3Ucl8dsrZk9+qK5E/rdovSzyF37TjT/xzFMQD3m/75V/v6m2Jo4L6jRe v+s3oyD2v5Pjqq3ZdFAB2gvpvtlRvzucV39sKcczToR8t/RafAS9mFQQ/+ej XquDRHkYZ+G/ry1IPqrN4zLyx7lQVj5zZ5rfSD7QlwPqRJ/W1n65L3otnkK+ 6zf63vH6Tqc+wF7s22vxWpQTYpJ+uOZpx3vch3hnxaLUn/7Sa3qNYW+oeeyH ei3OivKzboIy2wf6HfYF6sc+WWfySF3G4zvYgQecD98npV7hv3t75fnbzDZ/ Mpn/SbMlDjw+L/WT13stzsLv/p0Xu7HI4zvuL8zDRr0W38VxQQ9naz/2k/od kw+dD+zboQXxU5boqzl0cMK2mmv+GPlA7GO1btKuflqh1+Is2ac5Oe8PdTr9 fOj5Zb0Wx8V5gH2p07xLxV+FPoxRf3IzjytBr/X4Ee/d1Odlne/z70Ljz9yc 7IvPey0ui+NiHzXysvflRK4l9b7PV+aanFiHTo/7cL4P1z6cr3olXv77PPMn yV/2i8ZZW+Zq7hj8W9dr/grk2Scn87OV0+n/47+P6LX4LsqP+GKLeaIPJ+dk H07wOBH7aX2dz7/1WtwE+7NNTuoFz/Za/BXlZz0F++HpfrE/Heqn7eDxIPIw DR73gc2L+j2anM7/5AXmH5I/9u+2+r2m2X0y3+/1pv3Jw/rlOcv0pnWQLfS5 w3otvovywz++UutHp/TLPhjlcSLi2tO0j2tpzbO2Ndjv+Rf7fmGDyF/Re+jr 170WZ0FPl9DvWp7odPr5UNfrei2Oi/OAcb+v99vs0Cd69YX6/yc0pN83qfP4 EeOv1/l5vDd9n26q3lM6q9fisjgu9j/jnDhW7dRKvRIHb9iYytnjcR/sWqlP 8qbf6HNWaUrjyQp/iPlrrUdcrv5iQ2/6neanNX7byemSt+iV939P6bX4LsqP vEtro9jNmbo/J3mciHPnNP2+8L96LW7C7y/uEbs3otfiryg/6yOI0yepn1ZQ //c0jwdx/jd73Ac7e0Wv+T/s3+K5gGkv9ood+Y3nzckP479M793/rkvWpxKf MZ6CXPt1C311p9OPhxi79FocF8cFsVbmfTHdYn/GejwI+9feY34O/XzKj2lZ tk/mfSf3b8kf/71bi9i7tbVPpbK/krhsvS6Zp+HOn34q8g+391o8GOcH676S +tsH63s+M9X+/NfHi7zQHI9TYL8W07ztKL0Hq8XjDuDeMb/U4g4+V/pifB4i H8Ydkc64DMP4xPxqq6fALr3Wa/FOnE8Zj8YpV3fK/lvT5YR+5jrE312rN42b GF/8Wff3Ga02Xvh1hV7r54vjlf6XVhtv5MM4F2bh+cDnvM9tPrFOO7am983y fLmqVXAPd8g5MMr5QM/GtKd6W+HD8VJ+iDfKx5XI/6iPK+IZ1xOPc3x6q92b GvHsf4745L0GxiOjXP6kDjwkXmP9MMZrvIcpxmvsl4xxFuUinf4S7TfjKcnD ab59eJ/FU5jPqeq3r9RnctLvJZ14xmU4737SZ3ET8Xwu47IVBhXyEudDPPlM UfvIfjzqG+W8U+9XiXKSTj4Y50H9su+HTa+J8yB2f3rN6EG927JQ89zgxG3f n95XuXtB1vWEPqMzTuF4n9U+tzhe2LM5Ks9RLif5UE58Z6Cuz+I4DH8zvU/p R/3W/xbllz7dWjn3Z+o9UWtoXm3i9PT99O2dP/LELyp9T9WHq/172eSP+f5y hozzPL0Hb+3+9Lvet+dlv/6pz+jUQ/z+1j6LN6P82CZb6z1Pz7n85IP1PY33 0i/UfI1/JwvsmF+8qi58p7hf86Nav/sqJ+t8bL/FiTBbi7R/472+tG5YiVPk uOyzODTOD/r2tqwTfV1N36/5heYrDvO4GL/fwvkjvujT/o1v+ix+xJ9Gjad+ 02/xaRwX41Po5Su5mmsG9XjPvjQOvVz7ZM7qMz6UH+f5Co6HOj6lcdOh/aI/ U/w7knwu/IKl9bt4u+XEXu3Wb/Ej6iYHat3nvj6jM37BOf1hn8WncVz477/N lvui/6jvJdHOTJ9l8gO3ofOHPdxO57+hz+JBTP8OWndYo9/izTgu8TPmih8/ Q/3zg/tkPCfOSessOzp/jOODnMz3vlon2bje+CbjulHrfd8p3w37LX6Ev7xL v+jFRX1GZ1wDvXmwz+LWKD/0f9JcwZ+j/SRrOx887yKdz7F9Fg9Cf5bTOk5/ n8WVUX7WDWHPDtL9ub36bw3+3SuEN9s4f/x8Ma33/bZf1u+i+XYukj/s6Yp6 H/t1es/e0v0WP0I/56lffkif0RlPQV8v7bO4NcqPPMWG80X+lTXPsrLzgZ04 T79HdkS/+GE7N5jfSD6IHw5okPl4WOPGffrTfr/XNE/9VJ/RGb9gHJ/3WXwa 5wH6uorGg009km9bW+fzjx4vYx5/7vyxHtdr/qKrz+JB+LdXq/wVfWO8GcfF PkDs7++1n+AYjZcvdX8I87Sz80ce4LFesff7K5/TGs3PJH9s25v13piNuyXO 2rLf4kfY+aO6xY7+o8/ojF+uH2TzbJ/FrVF+xIW/0Xta/tUt/v+6zme5wQVZ gXmHPosHYQd/rv2p3/RZXBnlZ90Q5+yl2he+q8aR7zSmdZFfOn+o56b6XeDf 9Yt+/9vfCyJ/7MNJ+j7Xc51yTq3Sb/EjhjGg92FW/BDSGR/hz3V9FrdG+SHf adq/9wvtR1/V+UCP7ui2PH+MT/HvR6sf8u/m9H6xCn/kk+5qljhkVEcN3r8+ tD/t9/tc79F4tc/orI9Ajll9Fp/G+cG6ndosduwbvT9uQ/UrFoX3/jZ3/rDP L3SJXVjYl9bFHtT7Nbbpt7gyjkvmo0XivF90yH46VfXqw+Y0LtvN+UOvPtH3 jiv+J/ynN1rMLyd/rF5ti9ilfdtlv+1g/rzsl/PbRd6bLS6w+wKwriM8Do3y Q59u0ve4HtN78dZ3PhD/l51mRxlncd0Zj/B9MNKl/6PP8NKfqvcGLttvcWIc L+NE7KfH2uTvPupfLebxoOQTnT/UYv8OGef5fZLnXa/N4juIt1m/vb/K+I7P le/0+LgiH8Z3kc59APlu6zP+7P+MeNZ/Iz7W+bHOn7Tav1NOrNNabTLfE1vl HBrdl+LWatU+GI9n4zzjfdLXWyWe2TPwP87nh/OGaXnC5zOJj8a1Wd084nnO Rzrjt0hnfbb6c1syzyU+iR+f8HlI/NwhcXSMizmuWH9kHB3p8rzJGTq/50V/ h3H0Lwf5NOZl3pfIWVwMdf9VQdbx0n6Tk3EB6cQzHicfvkdGPjg/vui3+2Mj n+F6r2nkw/GQD+Un//GD4yi7/Ltrnyd+trU/l++d8bnkwzoX/nle3uT5u95f RHng1x+UE79h+lTz58kH+2YjvTf1HyrP7jmL6yH/vUqf3m90xpuol47uT7+v MUROPO4f+tyX87J/z3Y+lBPnwo9zFqdjNv6er7l4cMI2z1m8H+VnXRj0LfIy nlt4r/M0kwf7/x+eZ8DxtVjB+NEe0V7hPpnfq3+9aa3FI3yu5M1rxS6Mzol+ /DJn8T78z3aNI17uNzr3z/2DEzbT8wxxXFI/oJwq32nOB/mpt/T+hyM0zv75 TPs9/6KPathMyXcckhN7eVjO4n30ux+eE7u7uNMZP+J3a+YsnxDnAf8+eYb8 +9k58TP/ovHct7U2LqjrpZ7HgF+3V17Wb+OcxemIG3ZWOX6XszxAHBf7h9F3 t6TG76/3i35dP9PkxPP/4/kHDGuy9ukdwn69WWbvyF/4KX1j9SP3zKV5g0r8 CT1Y0G90xo94XEUu5gGi/NiXG2l8fZnyOc/5YL9dr3KsmUv7itfsF/sxLGdx fZSffcWSv1H/+L5+2efLe54B6nSt5xPWGqSvlpN53D8n+Wze47l8n/1O4vK5 Egc+1yvn569zFqfj+Z0ap7zXb3Sex1LW8fxAlB/26qI5FlcgXv2j84FduKNf ztsf5Szuxjq/0yv+33o5i9+j/Kw7Yz4Wal3tSvUbb51r8sj7OP1pXfsF9Uf3 zkn/7E/mWTxC/lj2d+eJfm/TI/HW5jk7v/H+3s3aV3Rfv9EZt2K8H/ZbfiDK L/WiennOBz2y/05wPpI31PzXoXoerbXA/PYkn7Gnfg9u327Zp7/n+aX9uqdq v2OP5wcYJ8IeLZezPECcB6z3J/NlHu7QvthT+0U/VvW8BOh/dv7Qp1/2yj5Y N2dxN8zJtt2in7/KWVwfx8W+YsQPz3TJ/D/eL+v34AKTE+fm9Z5PwHGyv9IP zEn/+gi/FzKxD816X9bETvGbd8lZnI7nL6n9Y5/2p/d0rav9/f2eH4jyw67+ W7+f8it9H+xM54N1f1P5rJizuBvrN61T7GjFrjJ+j/Kz7oxz5GedYq/+pfZh FY/HYR//7nkDjHNyl5w7++o8zGu0OIL8Yfc21ffajugQ/dw6Z3E6pv8ZrTf9 t9/ojE+xDp/3W34gyo/98Ybe31XXIeM+2fngvYVd9X6xw3Ud6/3+HPKBXnQ2 ib05R7+LcFDO4gcM6wqNs770/ADjwVsHx/fjnOUB4jxg2l5vkvl7sV1+f7bm Pw/3vITk6Zw/5DyqU/Jf6+csvob9379d5N4lZ/F7HBf7hOV1oDaR84V+vVfN 427kP2/yvIGcQ3qPP+dh6RaLh8gferVVi+hjrlX8q91zFo9j3X6m39Oq7Tc6 v2OEXfC15wGi/Dj25zbLvX6HaPxxtvPBus7R7xWt6t8BBp+eVvF7fpGzOD3K z3ou4tR99TuRt2p95FjPG0idxvMD0K9im9UNyYd+I+zVfuqPDfPvIid9Mee1 yrxe2iLn+HY5i7uxrh+3yD581fMDfP8O61/n8X4cF/yKpTQezus6nOZ8sE6n tFm8xt9TfujbEbru27SZXpA//ne7Nnkv7DZ9H/HwnPGBPtzdLPt7Caczn4H3 edfKhfxAS7ruS2o8O7ZZ9PAizRM/4OPFeC5z+aEXl7dqfqBf4qOZHl+j/rZN zt7/YzzO58IfP7kt5Cucz+76virm75J+4yP25vUfeO6YDJ711YjHNB85JYNn P0PEM36KeN7XFPGyb2ozeN63EfFSN67P4OkHRbzEZ3qP0eY5y3tE/ZF7PNrE fn7VJHH8aOcP1HB93+INz59QT2CvDvDv/8R1hB1fut3WEfhV6c/4dzsjne9H njUo4Da5kN95JYPn+kY89STib9D4MuKpDxHPdY943icZ8cwfRDz1qrr8tRm8 TOO0DJ7xU8RT36qPd04GT32L+DXU/6o+3rkZvOQbGjN43vuX7Pet280vSPze i/R7lWvqfQM7OR+o0W/9/STyoX5SD3EOvuh6RTz8l9tdPyOe+zfxk99tt/fl I75N8xaRzn1dXZ4s/Yyh6zWEnnyHfAhdpj9LT+rqQ+iMP+K4eF9cxNPfj3T6 uZEP1zfxQ1709ZL8VzY/yXs3Y35ygvojpFNvf+j98T/o+9oxn8n7QUmnPVt3 aJxk71/wPinPl/K+0Cgn80XMZzD/CT7H6v32kz3/CbN9n/Y5XOD9TszDkE48 86jkQ3tEPvj9qJydc5EP6eRDOUUvx8h5f6nz573u5E8655F08iGefODPfuL5 VQzjOv1OxAc5u+8r6VtYlLP7o4DfLS926GznQ/mxyoWcvA9w2RT7Pf9ivJP1 vqxajbuaPH8LrezVfOAtTuc6wi98Imd53Sin3EMxRc7NZfLSH32C8wH+07zY tzc9Twt7OEPzZZ/nLB8b5Wd+GOd6Rc/+OqgI5+j7nZt7fhh6/ifnj319dN70 VsbzWfqeY19O8hWfuV1L1vGI6fK7tXNib2d4vhf8a3Kyjlc6nXlI+NW3eR44 jgv6c+k0wR+bEz061vmg3reCvn/xcMHyrpQf4/5S1318bdpHskjpc2slXvm9 xmklz/cCdoTmj55xOvOBmO93c/bcOD8/H5zmi2v1/gL1109W/XxhuuGQ7zrN +UOf7lc+4z1/K3l9lbPF87dxXHz/CPXkl/sk3r9K/bcdZpicsEvnBv6b6Lm4 UN9jWKcuzedw351SJ/7+xF6Z/3bP92I6SmpP73I684R4/rOeB47yY93H6XtS m/dJ/9tJzgdx71va5zPS87fSF9or+Gmep43ys+8L+ruJ3tPxZ91Hb9el9c4z nb98x0v7UPt1/s+ZbXkn8pe+9dmSNz9C++bneL4X+Z/7eyQPcI3TmSfE+0L3 eB44yo+89dqzZd9+1iNx43HOh30VGM8irQOcNdfyP+QDvufOlfk4R/sfFnm+ F1pyrt6f9ZLTmSeEff04Z/neOA9Qs7X0HrlHu2W9T9f87a6efwbuDOf/28Hf H9Ur+aiJubSPa9duiae7PA8cx8U8MPpZ6rok73aB86H8Nw3O13XOh/Jj2o9y POZ1lN6LUVY535tneR4+F/qWmyfzkeuU86LH88OwN6vovYoPOp35Q/i9/8tZ fjiOC7jh88S/2aNL9sHRauc/qk/vXzjZ+Uu/vr7//6HngbFv53eKns3yfG8c F99XQjx9SKfsr0sUv9/89D2Cs5w/5rWofR35nOj7Mg2WpyJ//Nm5Qc6BS/W7 MvM9P4z99rp+h+ZGpzOvCL16yPPGUX7M7rt670Rzh5yDxzsfrMspXaLnr3m+ F/yv6ZD5G5ezvG5V+adoH9fYdjnfK3YDdbj/8zwz9uEfnT+W/a+d9l4y+/55 fkHuHrXn2zaGeDQn9uJK/U7ZN21Sf5vqeWPMy9HtoleXOJ15TpxfN3k+OY5L 7pdR+vXtck4d7Xww3a36vZmBnNRvhjWleaNFep/Z7/T+5zX1++h5zxtjnFu0 iT/4eC7t+9pW44wROcsbx3mAPEs1Sf/ICW1y3h2vevisjwtynOr8Ma/fadzz ieeHwfdLfY9hvueB47j4HhPeF7qsVebrr2pPzvW8NPyHc3JpH9ra7fa+OfOl XHfej8o8cNJHVFR9ONbv+6I80L9rtc/jQX3PvtnzzHJet4gctzqdeUjs7yc9 /xzHi99vo/nn77TP5ATnA7vwT53/tzxvjHj/Ie3DmhjH6/KzTwz1x75m+R7I udoX8bLLg3P3T84f//5Iq8hR8VdxblzdYnKRP4Y1pkX86A01Xz7D88xQrwv0 O8h/czrznNi/t3n+OcoP+3aM3jPwuN4/d6zzwb8v12r+b3z/C++Jf6X24R+t pqeJ33Wj3ouxs97HX8ql/WZ7aX3jGaezjwj6OjJneeY4P/hztPZFXaLfST9Z +eR8vLBrpzl/2O2NW8Q+fppL+6xW03vcWz0/HMcl55TmJx9vlPP6KvXHRrSm +cZznT/0alfNJy/UcT3XZvaV/PH7CZpf/UjvDe3wvDH0rk3vDbrb6bTHiMue 83xylB/+2FVaP/iJ4k9yPpj35/w+S9oFrjvzAzHPCX0c6XhsmzcbZH2mOz6O l/k02P+1G0TuC1WesssPeznc+ePPKO0jvkXtzEodlgcD2xbWYTssD8bnwt99 yeWPfJgHi3TmA6FPTzh/kXN0Bi/5gHk2n/j5m553Svz8FTvEH79pvuzbt50/ 7Nz688Se3eH5vTif+Pusfu/6ksD/AJ8Hzg/s7n+y80Y6xxXpzNOSP+zBSx12 H0Z1/rUZPPPDEc/vMkQ8840RT/834iMf4jmfcl4WMvk65sNivi7dD56v2yDk zehnxvwb9SDSJV+ST/Nbx98mevOF2rtH8pY3A6OvNF/2c883JvbxEfaVPWh4 8pd1fVL8hrLjRS8fy+Bx3L3/kuFJl3G+Z3TKQzmTPOEj+r7Xtc8af9JlHl/I PFf+jsrwZ36P/LHfHs7bfS+Jv/VE3vKKcbzsc43zyfwS+cNe3JO3OgrM2ULd nw/kra8yPpd8EF+16j7c0PmQP+LsM/OWh4RaztW45dq8fY8g8md+EnbzXo3r VnU+5I/pqsgJu7XzJMurkA+W68tJ4gdsoXb5hrzlJ6Gv+2gcsp3Tqc9Q333y lv+MckIf7vhC7PjJ2j+3RODzM/398cxHThE/ZmvNC1yQt7xllJ/9qKA+qf2y P9Z823OTTR6Y/RWdP5bnBY2T79Z7BM+fmr53U+GPeV1smsRds/rkPLsib/lJ 2OVh/fLd7w2czvwb5Nshb3nRKD/kXHeqrM8pep/bt57/RLxyquZVH8tL3uHc 6en9Ebyn5Kbpsu/zvZJ3ejBveUjoxRJ9sp8PcDrzXZD3pLzlOeM8IE+xjuJ3 0HuRllB7dZznXSH3svk0/zlH3ws6N2/nAdBT9P6OG/OWn4zj4nuveM/iaL1/ Y2PFN05P+91Xc/5Y16K+b1CZB7D5cIblH8gffspKM2U/XdojfYg35y3fiDzG 04rfyenMg0GvDsxbnjPKD3U7W78/MlPvLVrS+WB8p/bJPj4lb/lDxPsX9Uif 86V5y0NG+dmPCjs1Ue9hWzMvfuwfZ6bvc63s/OX+UX1P6t686PePZ1meJKkP 3D5L4t5v9Lsd/8hbvhG433dL/WJTpzN/Bf9057zlOaP84P9+neYZ9L6C7z2f iZ+1Kv5xXceV56T9SxU+8DvXmWPf+wT90bzlG/ndUMzHYU5nXgvr88e85TPj PECekVpHPLhL+ih/pPPZMcvGBX1fzvnjXPpO34O7MG/5Q+hbV6ecS7fmLT8Z xyXy6XcfruqsuXRQwTfPSxxx4Zz0+x9rOH/sh7WV/rDan1PrLc9A/lCHR5T+ oN6rcEfe/CrQP9Tvl+/udOa1oF5H5C0/GeXH+q5YL+PI6XeFl3Y+ci+e9kme kbd8IFblFn0P6G95yzdG+fm+KsQpaV/Aunpfb6k+fb9sFecPO/lIp/z+Pj2v X59vfl5iVzdSf3rDdvE3rsubH4/9cHq7zMPWTmf+CvF0Td7yllF++Jv8nsVd 7WInF3M++N7scp2yP47JWz4Qcv9S+xHOzlteMcrPflTo5bn6/lPlHIQe/3WB yYP1XcH5Q56fd9g94ftr/o1xE2B36b64psHi3USvpun3Xp9plfP/0rzFLdD3 pbTfah2nM58GNtvkLZ8ZxwX5j9P3W3fU94e+8bwl4rXb2A9SMD6Un34g6gPX NFregPyxrvc1il5/1CLnxL30Sxvlv2e3SN/Y3k5nngrzcVze8pZxfiTvot+/ WL5V9tN3Wq/5riGNp5dx/tgnz2l+aXje4mScF8+2iF5cmw/fmfVx8f1WnGsb aN5rfeU/2uWEvVrV+UO9Run3Xh/Q8/cF/04l+cu9x3qP097Nsg9vzFteUfrd m0Vft3c681cQb9+85TOj/FiPq/U7d/9rFn9kCecD+zWs1e7Vo3xQ8wO0P/DP ecsfRvnZv4rf36Pv3a6q5+9Sng/E3xWdP+T4fYvo893qr05rtvlL9uO6LTL+ CZr/viJveTawX1/nY0OnMz8GvjvkLT8Z5cfyPa/fpzhMv/v3refx8H70G83W FzAq5HOwDI/p+k5rsf2U6O0CvU+1WfvNH7R4WexBQeshBzideSro9cl5y0/G +cG4nlM9qOwbxD9L6rm2r+dLsa+Xzaf5zYn8nirtoY8LenFePs03jtJ72m7K W74xjpfvsYLffnov3c81rlzB84RYl9WcP5antVHW4SG1J1+3ml1P4sSN2sT/ mjZf8tO35G0f4ndb6/nzG6dL3NMgftZBectbRvnBb2qrfpdrgfgjSzofrPcR jTZv4qf5vOExp+TT/tXP5ktfxGV5yzfGcbHfEn+umif+zpq67w72/CfUcOV8 ms88p8H0U+5r7jB5sP73avz783bzI/hczPcZ7cJ33lzRt3/kzZ5iX19YL/eX beZ0kXe+zMMuectbxnFJ/blN/MXaepnX70Nf5at+zz3zeJQf4+f5Ujlf6SeS P86TzTtkPlbR+vNjzgd+7LpzpP/icKcvpX2zmNY/5i3PGecH+vCV9lv+bY7s t2XVXt3q44U5Xc75o27XNE/83pX0vB7v+UMM96q8+RPMN0Y8+7bwvNUdz+9q Rjz7YyOe+cZIF736OMPnh+jMQ1TnP/4H5J+WwTOfGfE/1rxlxDOPGvHs94t4 9rtiP16St7xu1B/pB1S/rVn7q3dyPmA/WuO/Xzgf6gnkOlvvnT2k09YXw6jY sZP0/muub9pH1pH6h0P4cH0jfabm7SKdehLpXPdIv0H1pLr8tWKvbnD5+d0o 6i329cadFh9zXNhHZ3XKObSu9t3c4nzwnLNnpPZh406bZ84bcPf4fCZ5vGt8 PiOe+k/8V4P8H/N5i3Te1x35MC9YXZ7aDB/qJ+nEc7zy79n8ufid2fz5wuRc 8fx5pLNuEvkw3mScHfPqER/vsY/4SN9f8/536nvbpDOPF/kn+a79C5a3h56d H/F3y3rNdDzz8KhTXhrxT2XwzMNHPPUg4nlvQMRvq3of8TIv72TwEi9/mMGT Xl2ejzJ45vMjnnWmiP+x5vkjXvyEcYaHvdu7IPZn/riauC44Zw8aL+fqrjmp 1+9SMPuOdT/Q8fj9TuPkfaYTNc8/zusFrMugL2XFguXz8ZwdcvJe1WYFqwtE eVgXkPSovh/+ttcFwPd9rSPW6Pcer/3c8pzkg+P9yIny+2/0fpCtC7bP8XcX fY93htcFqM/YZp1eX4hy4ndzJ4h/fI6+J/Oc88F4L9I+jO89nw8uy2o/6hoF qwtE+dkXDT06QO8xfFPnYckvTB7o6xvOH/fwfafvMe6q301afUp6z36FP+b3 f1PEfl+r94NvULD8P+z0PL2H9xOvCzAfjv6rOq87RPkxrn9MlvVcWfst/+t8 xI/VftF99D6MVael/XsVPtC/HfW+i4d6xL+rKZifAT//tR45b/q8vsD8M+zF 4gWrL8R5QHz5wVSpbzRp3+Ozuo+W9noH5H3Z+UPR/6n3Da1asHw+5Lu6R+gV fWO9II6L92PAb/m2W/JP4zXuu3WayYlz8l2vF2CfP6LfM9ijIOtxRm1671OF P9RjZK3Yhw21r2+7gp1n0I+j9Hux9V4XYF4aebl+rztE+aGfq+j9nP/S7+a+ 4Hwwn8v3yvm9ZCG9v2Jj/c7QugWrC0T52f+Mx1+k3/scqXHlal6nwD4c4fUC vP/4c70Hf7eC5KHenGl5TvLH73evk/l+plPiw58XzL/Bugx0Sr7mM68LMB+O 8c/zukOUH/p8mt6n8Ysuec7TzgfDu03f3/+9ruMbs8wPJR/Ey+NnyTx9pP7y XgXL/wP3ueaBF3p9gf4A5mXZgtUX4jxIH/gs7T/Ue8Be0vjr3rp0XK86f8zX c8pnrYL52fjdgyrn9gWrF8Rx8R4MzM9mHXIeT1T+6882OYEb6fUCuQe5U+z0 ngXRu6XnWnxJ/pLPmivrv4++T7ZjwfL/WP/z22V+mrwuwLw0zuOS1x2i/IC/ Nkfv/dN7yV50PugfGtYpdbllCxY/QJ7fKn7DgtUFovzsf84P/vsj+j7oh1oP fXKuyQO9ecvrBZD/99ofu7vOwzHzLJ9B/nJPpt5vOUHvLftFwfL/mK9V20Tf p3hdgPlnqFOz1x2i/JiXJedJf/Oe2lf1rPPBuo9ol/21X0H8jqMXpO9zUz+P XSDjb9bvSu1XsDgc/k0Fj+Ev8roA88yoy61csPpCnAf4BYvrdxnWahW5XlM7 vJnXO3Acv5ZPn/uF5ufXLVhdAPZ/RIv2ExSs7hDHxboD3s84tMW+r5J8p4/f dZ3q9QvKD7GezKd91Du3ybrcUE7tTCXehF5U/ED0PUxvsDwh5cH4erXP+axm iZN2KVgeCnpwY7P0RXd4PYJ5aYjxTT7UEXy86Dt+Xu/xeFfvFfiv5ruO9voI puV/zh/reoS+l79SwfL8+OdjmuV826xgdYQ4Lt6nwT5f3D/widrhdTz/j3V9 2+sImPdztF5Qo/v9m0bLZyb+ybZN4t/0aR/3NgXDQQ+2apL9PNPrBcxXY9hd Xo+I8kOcaY2SlzpR+46fcz54P2lWs8zv957nB/+v9DsVaxSsXhDl57wgX/1b ndc3Nc92gtcvAH/D+UP8vH7fb1f1NzZttnVL4qAL9XtnF2t/5gYF44vzYlKD +ANjvF7AfDj821lej6gq/9f6399rP/5Tzgf74STt29xH13GTFtvH5INh/Vrv nVh3gcUXrAtAj/bWemBfPu1bflbvm1miYHWHOA9Yt0U6D88skPl+TvMnj/i4 8POXnT/kvLRRxrWaxd1iz5rmy/lQ0TfWC+K4eA8G5mHBPLk/9lPNq5zm9Qv8 /F2vF0Adb9P7bvfQ9T241c6Z5Jy9TOtem9WL37R9wfL8sKf/rpd9VO/5f+aT sX9yXl+I8mN9f94q+6enXs67F5wP8rxfLZDza6mC2RHo/+b6/aKfFiz/H+Vn 3zLqWl/MMX8D8/JflwfzMsLrAuC71XyhV/xMyHFpm/kpiV19V/P2282WfNUm hfTehimzZV9MyKf9zGvUi3zzvY4Q5cf9OQe1SXy4/Rx53tPOB374UvNkP/9e x3uJvydOPvK9CX2f/Yw60eO9C2ne/vI6/b6N1wX4/jjUZtmC1QXiPGCbHNgu csypMzuPOkOrjwvPfdX54+c76r1iaxUs3w7zsGadyLtDwfL5cVysj8BObj9T /vsLtZ8vtKf54ZGez8d4h88WfMXfxro96v265I981scdci6er/d47Fgw/wzs P6wVfW32PDPf35e+y7zmxzsy8sMfv7hDxreh3vP3ovPBub7HLLv3kXlXnvvM C8X8M4a5nOPhV59QK/w2KgS8j5d5Y8zLhtNFro+0z6rH5cf43vI8MOzORfod gBatk37v+V7Yn18XzO9nvpfPlXPZxxX53Kn5cGzPRXnjw7x6xIuf/nkGz/xc xLN+wXkWu8/n+n2WmLbFu8Se/HWqnCsr+biw/1aeIvO4wPPbcZ6Be6RTnv+n aTY/MAOXdNm8EY/5383nLeI5D5HOekF1+njjDzN5Z5fNc8Tz/pOIZ39xxDNf FfGRD/GcN1m3Yiavzn71mFdP64ueV490vr/wQ/dC8DsnpDO/xPe8SGc/LfP/ pDNvFuVkfon4JE/+md4Ldk/B8uSwd7tpX+5RXl9gPpB04plvRz7iMtrzZzN4 5smJJ515ctIpD/PhUR7qE/EynwtNX5O6+T2eJyefdN5GyLz39Rv/OdpXT/7c j+QT+XM/R/7ER/7Ex/HeqXl4HMs7+3yKXfg4vX8w5/l8/J3t/MmH/PG7Lo0j fjGmJuoD9OmZMYLfSPO6Czg/WsfaV+8r+Y/TmceGvJeq/5YbnZET9v6aT+Tv ZXpf8JHOh3JCvte8LgB/dE39Ls6EgtZfx2bkZz0C+Cv1+w5n6vwfM9bkQV7k ZOePPMeq+n5am55TEz9N3zev8Md0vvyZ+BHP6P2cU73uADvd2Sv5zL86nfsR x9MtXo+I8kPPN/lU/ntd7Zc+xPlAnNv1ftj/en0BeYB3emX+3ylYHSHKz/cU /jSoJ/ke8SOPVztw8gSTB/voD84f/WnP6/2rjZpPu+CL9PvrOR3Xm1pH2Lqn 5tHB//NJwewv/POb9Tv0Zzqd9g3/eaXXKaL8iLs/nSj//oF+//IA54P9sWaf +Ms9Kv9bUyyvSD7oO2meIvtqn265X7DZ6xFY51P1e+p3Op35arwf/XTB6hFx HoA7fYro4x2avz1I47L/m5z2pR/l/NEPNEzvy32rkJ7323bLvpji9YU4Lt7r gnl6qkvm41xdl12nmpzQ+1OcP/799z1if9p1P/5ouvkR5C/rNl3qPhM6Zf5n ej1C8nBdUne72unMY0Of7/I6RZQf4oyYJv7Kr7pkfQ5zPhj3iG7Rv+e8voBx TeuU/NuHfq9LlF/yR7WyLj9Vv7IyD8ibfjTd5ME2OcH5Yz2+6BJ6s+bx/jAj 9I9oX2v3DNknh2kfyqdej8C2f0bjifOczvw5nn+N1ymi/Hj+MjNk3us6JA46 0Plg2Dt3yfz26r4+ri7c66b28GKNZ85qF7+/w+sR8KOuaJf5vN/pzFdjHC8V rB4R5wHkpRT/Yrv47YdrvmIvr4/g+cc4f+zDI3Rd3vO6A9Zz/3aJX2Z6fSGO i/e0SHyt951eqOs+sc7khPynOX+s8zkdcr50ar3s+dnhOxIFsV9fzpZzor+1 5uzBdZzj9QjYnZ8p/nqnM4+Nbf+g1ymi/Ph7zGz5e0ibyHe488G6zWqXfP// vL6Af+5plXucxhSsjhDll32o91rvrfeJnqHfcz5sTtp/d6Lzxz7Mt4net6hf 9PVcy98kfsiV+t2ri1ukj/ILr0dgfj9ukfW72OnMPyM/f4PXKarK/9xcfa9K v/N5sPPBep+s+H5dx6/mWX6OfKTffb7kqW5Req/XI6Avd2uf8qOBfqf2mb9e sHpEnAfkQZ6ZJ3ZmbLP4K8eoHZ5eb+PCchzn/LHtL9O+0Y8KaX7qjGb5vs88 ry/EcfHeFejhgPaVX6r5qBPnp/cKnO78Ic7tmofrUvymzCc2GX/M+94Nss9W 1+/rLvB6BJ6/k/Y53+x05p9xfD7udYooP86NLxeI3gxvkn1ypPPB+3bfNMv4 Xvd6AdZ/mSbx6z739wui/LLftW5yvn6febjq258b0v7xk50/1HHNZqlztan/ c0ij/Xsy/9c3in7dr8+f5nUE2J05DTKuK5zO/DPeL7vV6wtRfsA20fcgVtB+ 5kOdD3DX6vecn/K6ANTiee0Df6dg+f8oP99HwHdCP1sg9v14zT+87vJgff/g /CHPQ41y7jRq/u2yJtMv8od//6nmx3ebL+fOGMYLTWIfFs2Xc2e405n3xvz9 zesLUX7o7cFN4r+eqHnaA5wP/L4fNco4e3QeLm02+0E+mL+b9X2JC+pFn1q8 jgD/+kmtr97ldOaZMcBnClZHiPOA9TpI71FZSuuWB2see6GPC+M92vnL9wv1 O+1veb0A5/XvNF891esCcVy8L0Xuu5wr832e+j/vuJx4/inOH3b/Iv2+X7vu i8da7Fwif/memtrHK2aLPZnpdQT4AR2z5Zy/2unMP+N3d3t9IcqPabmkRfp0 D5gj832Y80E/xsHzZD6e97oAxLx+tujfRwXL/0f5+X4B7Np6s8xPhh4scnkw LSc4f+k/0u9e0j/8tNX8msQ//HGbyP2vmTL/n3kdAb8fVqffHyukdcrLZ4v/ e63XF6L8qKM+2ir24/Y6ke+gQvoe0XFzpI7Zq+s4vs383CQfUqv3ib+t36vp 9DoCtt/MWrGHDzideWasU8U/ZB0hzgP+/ZE2meffzJD1p3+4m9c1MMxjnD/Y /VvX5b1CWhe4uFbkrSuEe1F8XKLfer//NdNlHiv+IfyAxTyfj+ecVkj9s/dn yrlVmQfU0XN+fy/5Y9utpf0oo6dK/Xeu1xGAW0/juRuczr50DPPBQrgXxeWH /Rqncl6l/WhHOB+8937PDLFLL3tdAOfEyKlyT+DYguX/o/zsV8f0XaD3m/5R /cA9PT8P+3Oi84d/OH669YWKf+v5c/xt0XNtnU6L15O48jjNez/0hfZ1er0A 8zFmksh1idPl3Jsq586NXkeI4wK9v0P43jhZ9tfBzgfr9Pg0y5cyPqH8iOf6 dd1/0mX5mMQv/VmXxP2LTZC8R6/zgf+35gS5p+ixkJ9ffpKcR2943SHOD9a9 T+Pt2RPEvhyj6/hPrwvg349z/rCn03wdMY/vej4f6zRZ47Vxns/nc4WvzwPs 63mOZ34+8uf7HdWfO0Z+N8brCHE+5X5Wnc/nxsv83erPRT37/8aK3lzqfDhv OIc+Yd9jt40X89NTsDg/jlf++ngjH4430jlebOMG5888N+cZuLW7bR74XMlD dMt5u9YYmbcW54M635sfp/pc4cN54Ligz//w8Sbx+EU+3ojnuIhHfuef3VbH iXjmrSM+eR8k53jKL3mZbD1F/KRipp4ieSKvX4i9+fQH31OIdROpJ3yi6+T8 mW+Mz2VeTvytotVHsD5v6feLzyD+bjkPdtfvQy3r42IeNcU/ZXjyZ90Bdre/ z/gk9ZTPnE9SD9td8+dHFO2+ID6XfEgnnzZ9rvgxL6X1iwp/qZ+9leEvE/9q hr/I82RGTtnPIzN8yD/yIT7yoZ7Je//Oh3UZ8uF8ss6Cc+i+vjAPHxl/pG1v 13m+cFRNXHeo0+Kja+4YHN/nvaLf1xWtngJ2pV6x19s6nXl+yXMVrV4T5cQ+ n/Cx9v31SbzwlddrsF9HaJ//MUWzF5i+MfqdtfOLVmeJ8vN9DWyfjbVuuGJR 5HtttMkj34lx/tCPL/T7vjcX5e+a4yxvTP7w15bV9/EO6xE7dGnR6imQ7/4e 8at+5nTuO+lPKVodJ8ov4xsr4/+sR+xqyes18j6Ffre4gsf5uOoEs5fkg/uc 1tXz8qxu6Qu4t2jnDfIM53bXXDP4/P2czjw/7NeJRavXxHnA+M/We6Ue4X0p en69M97Ghen93us4GPeRvcJ3eNHqLNCbXfU8ub5odZw4LtZxoC8z9NxewflQ fvxsA+dD+YHPeX3nhUGF/KhH4sA7dd3fnGR+BJ8r3xObLH5mf6feL1m0cxd6 sEqX9tE4nfl/TMcBRavvxHHhdytPEnl/p33s+YLYjY8nmvywA1+H+tGsbjkX TihaPQW/m6/vC15ctHpNHBfvrQL/g/T70asWZb9Nm2xyYnsv4/zl+0pdQr9V 6S9NNb+Y/OGPrzlN78lUf/zKYuqnvq556U2czroAZm+notV9ovw4P/4wVdat Wb+nVvb6Dvyvk9WfOrho9RT87poO4Xt60eoyUX6+PyLmpl3ipiWL8vfcaak/ u7jzhz5c1inPvakoftB309P7I+/Tebu/VuKDRW2yH88rWryBxx+t3wtb1ems R0APNy1a3SfKj/9+QfuHrm+XuLXg9R3Y8WaNG+5Web6ZkfY/V/hgPTaaKfZr dY2nbyla/QX+0hZtYr93czrz/9DHw4pW34nzANjz+t2m47VvvKx2L1dr40Ke /Buv+yCe/6Zd7N0pRYtjkV/4slX2xxVFq9fEcfHeKsTNl+h3v9cq6vdzZ5qc WL8fOX/IsabGo7cVZf0OmWX5GPKHfXxav2f6QEtN7eAw/lG0+ovUZzQ/tKXT WReAeu1etLpPlB/4RdoH9q1+p/1Lr+9A/65tEz06omj5BYz3If0O/PCi1WWi /Hx/BPu0p1nGU/Er5HmzTB7s6yWdP9b5Ie0D/Y/u38fnWD6P/CHXFnP1vpFm kesvRau/YNtfoH3RP3E66xFyL0XR6j5RfujzQVo/elzziMVCymdZzXvdo+v4 aL3ld8kH+vt6vfDfSb9/dGfR8mKY9720P31PpzP/Dz2p+DOs78R5gJ91QL34 8Rc3yX1LizQvcY3XmzD/33ndB/t5oxaxA38sWj1F3t/S779fU7R6TRyX+CV6 n8KjjZJHq8QFOP+X9/qR9DEG/rs0y7lzR1Hq1rn5lr8lf6zPjgtEXz5o0Li9 mOaF2/T+2F86nXUB2IO9i1b3ifLjdw/PF31bW/vqv/L6Dv4+0yS/P7Zo9RRs +ze1j/2CotVlovx8fwT+wZr6HsZKRdn/tywweTD/Szl//O4jvfe94k/ifqcn GkyuJA6q13tS/jVfzulLiyYH9GG1BdJ3s77TWRfAtGxftLpPlH+zQfEu0+de vEDWr+T1Hazb1vo+xX2qn483mn6RD+bniUbR57frax4fNEcVf5L1F+jPSM3D 7+901gXwuBOLVt+J8wC9vlTXbz3Vx+81P7ms12tgRxdz/jh39tF1Oato6yH5 3nrRuxuKVveJ42LdB/mt27QvccViuq6v6ftMGzofyg89yHk9COfMGQsEV7EP kuduMruY+HvNqsefzJb9dBPjGq0vLjZH7MKOTme9AGIdULR6UNX1eqxJzsXT 54ieF9TuHeD1KRyLX3udCMO7R+f/hKLtfzzm0dlSZ7ikaPWdOC7eW4U641Wz RD76k6t4XQb6u4zzx/g/nSv2/1b1ZwrNdt6SP7bjpvp90kkz5Zy8smj1GtD3 rRO7tkkxfa/k8tmif78pWp0oyg/6p80yz8/Vif0a8HoQ/LondD4PsfyJfmdo poyrEr+zjhPl53siePw5M0T/ltL5PNzrShjX4s4f9OmzZF1uUn9+3Vbz48gf du5MfZ9ttr73XImXWa+BXDfXin6t5nTWL7DOmxWtThTlh73P6/ssfbVidwuF lP9L+v7r3bqO6/r3OskHdm0r7atYYZrFEfQnMP5fqX/9W6ezXoBxHV4M31Gt Tdcx1yr6d6/GE2XNN97l48J0f+t1Iox//gyJ804tpvWXaVPFnlf0Lb3f3sfF +6bQBzFliuyHtVQfjvV6E+bvR84f6vJj/e5WxZ/8bnB992y3OI/8YdfOa5fz cZtJ8vuri+anYh1Kk8QOb+V01gswHxV/knWiKD/Wd512+X70u3rP8ZdeD0Ld unOa5B2OKFr9BeP75SSR66yi1XGi/HxPBPvgb5/L/C+n/uEDLg/WY0nnj/Ph p1PFbv5H8wDndFheIbGrr3SIfu/9qZxTfyla/AD+13wmermO01mPwH9uXbQ6 UZQfv9tT78nfZ4LWrb0e1IfXNvT+iYo/OXbwB+d0Wp6JfNDveFGnnOvPaR/x nUWry+DP1DGyj/dyOvPAWPdji1b3ifMwclCAPTrFDt87Vt/fUz2f6+MC/++8 HgS9OHii5atjPeg1zTNHOuz3/zke67PiGL0/vBjeK/F5gF9V6pRzaN/Rokc/ Lcr6PdZp44J+LOf8Ma+v/z+6rjtOqmLp6mfOOetDxRxQMQCmVcGsmMMTn8oz 54A5YU4o5vREAUVRjGRUcs5hd2EjbM5xdu7MoqB+s6fqVHl73/tn57c1PXWr q6urT1V1951vcob1Gtjf2xrfvefnTWJ5yPH1+h7AKWL3LyatzgJ7+GWq2MEx TmdeHf7lzPC53i/o8Y56Gdf99H24v3sdB/LdNFfXy6TlWSi/rPORve8olq++ yttDjmOmCC67N2l1nLC/rNfI5yTZh7CN+ocyl1/ul0zG96fOnyl6OFH5tHqd BWbzUlLfl9xodZYYrvvQ+8X+QsyPGqwOwPYI69obZHxHjZZ5dpPzx/uD2kfq +3WSVt8J+wszeVff09ZvvMkJd3J9o8nP9tDrkZ3lZ3s+l+cswjqO4InOdRzB DZHRWcd4R8/dkL5Y8yScX6Qz70c+rMtA3s+bJL93DPm/J3JtpPeiT/a6DPOx pLM96zvI9x8ZWd2E7flc1sMwni1Nxod1L/KhPKz/UR7Wx1kXoD3E5R8n/Dd0 eVh/CeXheRnYca3Lw/MylAfr1OaR1VngR5Y3iRxdIqvLhPzJB9PlsiaJk370 eg35Yx73iOT7h6dkheOFdpOmyr31DzXK/DokMnvFc0c0ip/M9XoN6wXQW43X fUI5gQMPniz9Wdko+HOY85F7nZtlXVzn9RrY6wDNJ+8Y2biE8vN8jbjhBrHP 0ZpP22q6yYM4bZTzh19/pEn03z2SOs91s8yvxMbxxtni73/Xc2x7ReaPMP/P Vr81w+s1zPNDvJVeDwrlxz36E2fK+vdog8ybT5wP+lWp9widEgke7TfP1hny wXMemif62KlennNSZHUZ9Hcvzds3et2H+X/0a4PI6j6hHvC7cXPldxfUi3/8 QuPTneZYvzBuXzl/sP+jQebdNpGtl7DL+jrhf1hkdZywX7wHDPp/sk7W7VmK nw+cb3KiFz95nQjueFe9l75nlHVVxzz5a5HhIPLHPH5qsYzzx4oTM/Oa9Rf8 P7VWcEmh13GY/wf/Jq/jhPIf2dH+6kUyPi2K+4Y7H/TnOdXnX16XgV7f0Pfx 7R5ZXSaUn/eDyXJQI+v4BOVzxBKTB3b6nfOH3X9SJzjtuEg+L1kev+ckwx92 O3O52EWXGpG3S2R1Fvyuf42sh/O9/sL8P+Zdkdd3Qvlhz+uWiR94p0ZwzqfO B/N3c73fsc3rL/g4Wt9nvmlk9ZdQfp67Qbs7qkVPX2u+dE+vB8GfjXT+qL/u p/fFHhVJvPJFtsVh5I9xPEvrJiOqxC4z/op1FtTlNq6W/o/3+gvrDrDfBV7f CeXH+F6ULfZ5fLXEdx85H/jvwTUyv0/UcRyea3E5+WD8luk+vCmVYk/dI4v3 5PyC5gNKvY7DPD/sIPI6TqgHjPOFuaLfLaqkv//ReOozryuBzxfOH/mjr/S+ 5I0jq5tAjyP1/Xv/iKwuE/aL94PJvlC9//wXXWcP8joR/v/e6z5oN61KxuGE SPBwcpXle8gf5nFpnviJ3hWi/wMii88xr56oEH+/1OsvzP/jceVe3wnlx/gO XSX+47sK8YOfOR/87Aits7R7/QV6PE/3BW8dWf0llJ/nbvD1u+WCA77X+GVU nsmD8f/G+cPezqwU/5fBP9DTmQXxfeYZ/pi3qwqkzjVf85e7RZYnwjL4D71v fLLXX1h3gJ9e7vWdUH7YcyJf5vFFet/Mf5wP8hhj9N6UkyPJi/QusnxsTM/X F8lzy/ScQY/I6izoZ1up2GO113GY5wef372OE+oB/rRF9z131XzwUM2rdPO6 Ep4/IqgfLSrP2r2j3RaR5R/h72aUSj7zwMjqMmG/eD8Y8rhn6fsrpmkdc2KR yYlx+tHrPiBX6j3zPXR9eX+15V3JX+6v1/fALV0jdnJoZHUWxDmHlYj/zPX6 C/P/eG6t13dC+ZHXPl3rPm/ofTjDnA/ywxeXiR9e5/UX2Mt8fc5OkdVfQvl5 7gbm8rg+Z4zGvyd5PQj28K3zx3y9vVT4HhvJezlqSkx/5I/9qcfq7wuLxI9n 8CHrLBiP+4p137HXX5i3l/3aXt8J5cc4vlsi8y9H78/5xPmgXvudtj9F7byt 1OYH+UD9a0vFL2+l9JMi6z/0u3uh6LMpGafvXCzxbQYfso4T6gH6ml8qccQT hTJvRqj9X+91JfTnK+ePzzWrxb9uG1ndBHY5Qf3B4ZHVZcJ+8V4v5J3X5Iv9 zNa8ygFeT8HPRntdBuOyfbH8vlck/nevcvO75A+776XndnbT9y91i2xe4fvr dD9/kddlmM+XPLTXZUL5IUeiTNbnGXnCb7jzgV+pK7T9kOTD+BTr/gaR1Ucw 7davEr+/R2T1l7BfvO8Lz12yUtadCZrHuNnrQej3d17fgb/du0DsjLixT4Wt 57F18wn14/vnSn5i38j8IL4foe83m+91Fub50Y9ir+OE8uP5GTq+3myl3p/l fKD+lN5P3uZ1FvT7DN23sllkdZZQfp7HgZp+ydb3hajdjnR5oL+vnT/kP3iV yHV0JPq6u9JwJfnjc4qe6ztyhawLO1oeRvxF/QrJw05Ixumn5gouWOh1nFB+ 2HNvfc/IBZoP/8j5wH9u4PexM59Mu4JaiCfvqrK4gfwRZzyn7/OdtlR+1z2y OgvWtwOXye/LvI7DPD/0kfI6TqgfNDujSs7d1S8TfX+iebA67y/08IXzx/h2 zxF73SQy/Af+/ZfK/MnEL6zLhP2Sdada/Mmpi0VPv+p8/MHllPdYe90H43DT CllXTlA+71dbPEr+sIvZindXzpd1+MDI6iyw29ELZN1floyf69lSz1lUJIP3 ibj80M+d1bIePbxQ/P1nzgd1k1OWyzrV7vUX2HvjfNH7NlFwf9fC+Ly+ukbn 5VzBS9+rv211eSDHN84f+ipZLHyO0Xzd1BrLc8TyWpvUSt6scabQd4uszoL6 zimzhd8Ur7+w7gB2y72+E8oPf/lejfxuwzmi7/8k4+d03l5o50147obzQs5B 6fhOqbU8Vmy9Xqj73oZPlXnYI7I4E/a31zTLm5HOvD3UtS4ZzMfZ8fF9V+tB l043vIRmx3idBR9fOn/g/vRcywOH92jJOhlZ3E46hnnLyOovGM93pohdHRhZ fSfUQ+z9FAt+lv2909UO094v/P5Hrx9hPlwzK8jvuZxo30Pji+o6y8uyPehb 1wtuWzpGxvHQyPIg8PvHjrO8HOlw95Mn633vyeC8z7S4/UzWc0+Tx8s4DXM+ 8Bdbz7D2Yd0H+Gm912skbT1G8NNOYftxcZwwRN8rucG3Yj9jNA/W0+spcEff On+BWb8IHmvzugnrAsiDHKt+cjuvm8Rw3XI/fwT9zHI+rBdg30teMjinMy7u V6vqhd/IL8VfDHE+kO/MCWJXs72eQjnRbsMoqNeMkHH+UvfZPu71Gkz/r5zP yR2K2PMH4896Cvno+HSqm8TvrfK6ifSz8/mXsM7CceH5DtKP0vxfvH5WeSrx tuRhU0aXvIu+b60qrNeUd5KH9RpZX1MB/8ZO/Yq/58PrOG918K8I278nfH9s svbv6HmTa3HdlLeXfn5n7WXdTRkfzgusB+UaNz3/fVYoD9hN/kHixY8bxU8U eR0H0+Mnb4/nVI+S9XaBvhf1Jm/P+hTm1fde34EbGtio8aXXd0J5WN+R7/Vc wBXOB+vzkCZ53mr1Y1tMCuuo4k/u/lnW2y4NgjuWeD0I31+m8/VRp7O+gPk0 yOtEoZzQ568TBDe+0CD+6iznA71t3iTjN8zrPvBv++v7AiZEVt8J5ee5HrjL ++slPrxS8fPiX0weyHeJ84cc+ym9QOPor6eHdXsZ56kzRL8jdH/BtMjqOLCz tObhb3Y66xqQ9zGvH4XyQ94Np4v8B+t50DOcD2DBYH+/7Su6vsbq4BW6vo+Y best+aN/y2eL355aK/O9xOtHsMOFup6/5XTWF/D8EZHVj0L9oNkfWrdaVyv/ n6P2dvdM6y/m3wXOH/H2yHrx52O8TsQ6CPS91OtBYb8ET86V/h2geOc2zV89 Myd+P9JVzh/58Ol1kg/M6AHz7JwFhhPJH/3PWyD231txXLbXjzCed9dIfPW0 04lfYJbveF0plB/ths+X+f+Z7us5x/lA3Ufo+wVGeD0I43Syvt92cmR1n1B+ ngOCGX6ieLyf2uHLC00e8L/U+WO/5pl6TqRQ8xuNSyzOIH/gmJKlem5O36M4 OzL8jTho+2rBA3c5nXUHPGeg15VC+SFfnyViN6frPQG9nQ/UPKZGPjlPo+UW X5IPfrd2uawD5foe1UqvH+H7ykqJcz9wOusOwDGjIqsfhXoAvhi2XO+B0fun L9Q4681l1i/0s6/zB85fpPc3TIwsroP/H6vx+kqvK4X9Yl0J+PvCSunfNc6H 8mN873Y+lB/jneXtYa899b23pV5XYj6DzwWufjJH4rhbK8TP5Xm9CfPlZc27 vOB01iOwbHwUWb0p7JfkwfV9e5P0PEKW5knO9/oX5s25UbyedYneb/GN15Ww jlxZId/Piqx+FPZL5MsVfzJb9/9er/TcHJMT+r7c+cOv3qF5l2LFLR+ttPwZ +SM/vsEqqes16XsAFni9CY8/TO81esDprFOA3Utehwrlh532WSl+sF+5zLsz nY/USSpkXn3i9SPI/VuZ4NSfIqsThfLzHBDan1Qmee2M3wDOuNrrVnDLFzl/ 2EOL7svO2An6U5dn+Vfyh909ny/x/AP63ulfI6sHgd0SvQf+BqezPiL3fHgd KpQffvoDvT/lz1LxK6c5H8yPa8uFXwYHop5cWxC/d71K85lba/1otxLRW5HX mxAH9C6RfNAgp7MegX5/Flm9KdQD/Pl7BTLOX5bIePbRdaQoP37v0/nOH7jg Ic3v/uB1JbAtXSPrzYLI6kdhvwSvFOm6ulrWiQxeRf3jpkKTEx9XOH/IMVjp q3V8exVb3pv8MZ/fKpb7hboWS55+qdebsM6/qnn+R53OOgXU97rXoUL5Mb7V +l77hmLR11nOZ+uO/1Oqz2FeP0K/DioWv5Dxw6wThfLzHJDkE/T9QsQVtcUm j9xn6Pwh7sFaZ8ngTOynHLTGxi2GY3cuEbvrViD6nx4ZX6l/Fch+2FuczngN 9vu416FC+fG4nmsE5x+j59vOcD5SX1kteqjU+din1OYx+UD+vlp/uSFP8mGl Xm/C7x/Jk3NXbzud9QjBqZHVm0I9oN1epeJnC7SOnfHzch67JN6vC5w/7LR7 kYzLWK8roX8750m7ZVHwnvq8ON5Yru+jP1LPQd6u+0Me93oW3ONVzh+44SY9 N1Gi8+XuMlsfyB/j+Zaed7pTz5Vme70JdjUlV3DxQKezHoGPd7wOFcqP+dOn THBGF70f9Bzng89T8kXvX3r9COvrNXpOYUoU1Hdcfp4Dgv73zhE77Kc4ZLLL A/1f5vwxH+5bJXZZpPw/KDfcQf54frbeb/bwCrHnOV5XQj5hIz0HcbfTWY+A WTzj9aZQfvT/Lr2P7uZssYvezgf9OHel4JZMe6xD71cY3iQfwMAPtL5zyTLx O1VeV4KdXrlM/MyHTmfdAXr8NrK6UqgH+MW7lP82uu8pgxuBG/70fuH7vs4f cdMTOZZvIW5gnMg8GM/rxfKZEyOrH+H7t5eKvCu9PhXqgfUpfL/hEvEf1zgf 9lfeR+F8Yvunsrw9/Pvl2Sa/4JwqkxNilynumlppcRLlwWd+pcyvW3W/Xp7X s8R8F4i+XnQ66xp43MeR1bPC/sLu39f75b5aKPKdpv06zetrMKdznT/6/xLf e5k2HMx+YbxHed0KeGmfBbJfZlYU3Efn/eV9dOIO54qfuEHHd2OvK8E8Lnf+ 8C/3L1E5IqvjUB4MW7HuR62h/mfbc3E/6J7Vcg72qVnS74Ve5wL97tmCNwZE 8f1Py/U8wstRcE/dwrgfnqJxVPc54j/OdD7jO/rZdZH0a4jXrTAO32geYnTY L5ef549gT5OmC969VNe1s7xehnl3sfPHvH15ntVlwjoF2ufreG1fY3mm2HOv rZF7TA/7VfhOjiw+RDycnCJ22N/prMtALw9Gwf113i/kZav13oEn9bmnOR/E a73mWPv4PXLRqdBbua5r27Ff4+L4YT+9nzoxVvpf7HUxrEvvjRP9D3K65F8n S3+HRsG5p2nxca+qkXHYZ4KM95m6br7i/YXaz3f+iKM+mxFfZ/9WR8Y8+sHr X5Bjq7GyHi0M23t/WXfDfaNb/iDz/2bNJ1/o9SbY/5XOH35x48myDn7pdSvm 88F3jeLMnv7emVi+oqrW6h3ALY85H9Y7YO9veP0rlB/2sK3eV3LHVzJuZ0Xx 81O3T5TvH/H6FOWEPU4M618j9Jye0gd7/QtyX+J85NzNT6KPc6N4vSnDH/HQ E2G9aYSMzxneHsvG4SOND+tBbC9553SnuklYd2B77mMhnX4pnn+qPJW4QPxI 2uhcl1YE94Yx3xvyZ73jxqCewroL6ax3wNyW67miQ71Ogce9qvf2NHudiPlt 0tmedRPo75WU2Mmozy0fy+fCvxw8QnAv77F7JmX6Bf36BsFfBzqd+X90b/OU 4sP/mDzkj7zjtsPEbgY3BHKOMDlh55emrD4Cf9JNzyPclbL3xYTyi3/5Ttaz z/X9OH9pvqX6K5MH8269118kv6X0F1ISjw8ZY/ZL/tDb/uNE/wt0v/oDKbN7 yPd/9bKe7O102gPs5KiU1XFC+WG+fUeLPztW66tNUZz/mAZZV/ukrG6CcVtR J3jzmpTVX0L5eU4H47pHnbRbp/Hmc+NNHui33esyWC8W1cvzB6bEjip+NT9H /pD7GH3vfF/NG9+UitdZvtR7abZwOusLuPdyn5TVd0L5EQe+/4vgnFXqv2uj eL25p/qb11JiB80z4ud9M3xkn+hMmc+36f6LzLizzgJ5HtPzZcc5nes81qNz UlbHCfWAPPjZM0SuUTVih00a17w9zfoFu0t6fQd+8BIdl6tSts5B/nNqJO7L 2BvrL2G/eJ+b6FP3AW2j9MKZJifw8B9ef8H0vUPrLC/qc9+eaziL/OX+jHky P5uqZF49krJ6Cp6zt57P3t/pzPOj2yekrI4Tyg84Vj9H7OZCfT9hs9drIP8q rXecmzJ8hrxDg+LfG1JWZwnl5/kd8DujSu9b0zxh+TyTB///5vWXWzt+3VIt 4/KsxiPHLzJcT/5YZ3stFlw9QM8v3J6yegqWz2mVYpfbO535ecz3A1JWxwnl x+8GL5Rxaq0UP1zv9RrY67XV0q9BKfEH3ZdZXEg+eM4Fet/a6xXi715NWZyA +fduhfA50emMV9Cvvimr14R6gB8dtFTyH7MrZD62ad22brH1C+ty5HUc+LGH 9BzEtSmrj8D//1vv238sZfWXsF+8nw3rbKT783dMCb5at8zkxPz5y+svsh7p eyheVj9Zv8LyFuSPeXWoxqU76P30T6TidZYTyiVeOsTpjL/xnJNTVn8J5Yd/ +3CF2O+tmhdp9boM5s063Zea0T/rHdDbJuXid25NWT0llH+53s8m92mUST82 Vj/2bLbJg+f/7vUUrNs7V8i8fE7H5eRcy3vF8MP3uVLP+lDzdvfQj+XKOBSU Sr5oV6czbw+9HJayukwov7w3K0f815aaZ2rw+gv+f0bvlTktZfUOzIuvNS99 ecrqJqH8PL+DeTxH84vtGvdt4nUcqDHt9RQ872PNtz2dkv0Dg1dZPpX88f0x eYLrTlwj+r8hZfkyiPXbGrGTjZ3OegGet3vK6jKh/Md3/HviKhmHfip/jddf EG9tqvcSZXAgFPJ6vuVRyQfP+SVf/MRdmnd/JmX1EbnXpVjs7SinMz8Pdmek rP4S6gH+oVe+2MNGq6W/dZH081WvB4FPIoo/t0up4LzLUpaHhb1k6Xta705Z PSXsF+9nw72BhxVJPLeFrgs7en0H+HW911Pk3ITWTTI4Af5oTaF9H/OrpxaJ Xh4pkHEekLL6CMa/pkDW8b2dzrw95D46ZXWZUH7kIV8rlLzQuYUid5PXX2Al 56o+z0zZ76G/FwpE7/1SVjcJ5ef5HcSFu+dLv9dpHef9IuMHPbV7PQX3hjxR JLgqgw9RFz56tdldTP8zVsu5yuf0/pybU1YfwbAdmSfjvqXTWS/AeP0jZXWZ UH6896VY77F6M0/ssdbrLzL/C2V+vKbrWrcS8x/kA/p5JaKHcVo3fjFl9gH9 rcyV5x/vdObnwSeDT1h/CfWAeV60RvxuD/UrzZov2sPrQXA3yaDu81K+rKsZ fMh6B8Z1gPrXjL2xnhL2i/le5I2eypF5s636vc9LTE485w+vp8A+J+n7Gl5U +5leautSDJ/U6Htwpq0QuR9J2XzGvNorW/rf1enM2+O5GXzIukwoP8btAz2v 9JTeU9Ts9RfZZ7PS2p+r9RHmf7jf75yAjnl5XsrqI/j9zytkXeqfCt6zkx3g SX0P+p3LRb4N1O/t5HUT2M9vXn9B92Z7fp50ygN7zeBMec9YmeGj2HMPLRc8 9f4SeT/jHSlbn/D7mbofZwenMw8PfgekrL4T9kven1wm+PLlZTJe9V7HAZtP s23/JOtBlB/6eF3tpLbccHRsnW0ql7jytwViv6+lrP6C8dxR7zM+yenMz6P+ cVHK6juhfjAOU8tln3feQok32zRfd0VQb4q87iN1weWan00ZHoK/6rtA7Ovx VHCfm/eL97mBPnSe8N9R1/E9vG4yWvMS5I9x2mip2OvLaj87VFp8Rv743VGV sv5vN1vkfTIVP0/0mdIPdXpsP/ApKau/hPJj3Gv0HNONc2RcW70ug/V3/CJ9 n5Tlr/R9srNEzxn8GT8H5PLzPjeM7+MzxF9sou37eR0H6+g6r5tA3j3mC/15 ja9PrLK4n/zx2PurZJwvmCw4LoM/We+Afi+fKvazm9OZV4cdHp6yOksoP+TY Xs8TrZ4mz2/wegr0vmiO1VNYL+C8iOUfJng9C/Z3esriIvxu0WSxwytSwfkg 7y/PB0keXffVtmt9/FOXX845eN0E/T1qpskpfGs6yRnWg+Dunlacc2O15aVi /n+sng96/Cf5P+M/qQfgibvGCs7bxOmsC4Dd7qngPJH3F+L3qpb1KzVO4vEa 17MMo94Tc1XK4nnmgfH5qsYX/2Z/Rxh/4Lvfqy3fDvd4lPNhvh36650K6i/j 4nbSs0bitSNHyvyr0/23Jd4v/CzhdRmse29MEvqhKatrxOS/JxXUa0bIefct NO77wuWBOOu9PgI/fsVomWfrvU5B/uj/MamgDjJC4rImbw87H/CN8WGdgu0l Duich4/vt/c8vOSH2o0u6/l0q5OSvp3iBPInXeLdcrVvpzNfEdKZbwnpsf2o f8vnF2peNGzPfGDYXvyrt2c+H/0/uk7ytweQz3uybjTUyfiNTpnemCfEfM72 /D/zyVi2PvT2zN+SzvaxOkK75+3h51bXiV/cPm15ez6X8r+j5yngXw6qk8/v dV58/lH83Mznzh/7l1rrxV4OS0s/rhtldkT+8Cc/fa/3LNXKOcvd0pafhzpH 10q9dHoqTl9UJ+thjtcFQvmRV54xUuZVea3I8a7zgTldq+/DrfO8veQTtO73 p+ftQ/l5/uLhjh9Or5Hvh+o60uMnkwd46jPnj2n8UJ34jYPSei/WBPMH5I99 cjWTJG5cq/ecbJG2/Dz+v7xG8mLfe12A9onxmeF1gVB+uRdrvOwzeLFG9DnY +aBdRm+oxx6dlnXy3qm2npAP7G7LaeLPd9R7SQ9Nm7+D/R9SLfsg8j3/z3kH +2z0/H+oB7TfV+/v+2e14JF3UrIP46xfrF/o9sfOH356XY34/fWez0d/2qvE f+6atnx+2C/BzTMkfh9QJfNkjPr546fH14cRzh92s7Peg3REOuvMjoEummW4 Jja/3pgtdvphpawbe6dt/YaZL9L7T+Z6XYB+DHFCodcFQvn36vjdcbNkfNYr XnvP+UD/zyouaPa8Pfj/R/e/bJy2vH0oP89fiJlXZD3YIfAI1f/Jc0we8B3q /DHv/6PvFz44re9HnG+4mPzx/XsLBDfso/uhtk0bXgSuuKdC3/vtdQH6f9jj fK8LhPIDl+bPE7w4VPOrbzkfsNlU71PqnpZzX08stniIfNCvrxZLfHZCueDM bmnLz0MfZ2jeeI3n/5kfhl9t8/x/qAfkZ3IXyfgN0HsdPtRx77PQ+oX+fuL8 kS/qUinrzgZpi0OYx0a/9klbPj/sl6y3SwV3DCkTPzxR8eeVS0xOPO5Lrxcg HulZIX7zSOXz5nKL18kfdpWn9//+qu8t3Tdt+Xn4+apS8X+LvS7AvDHGp9Tr AqH8WP9O1rrArvoe3Q+cD/zCl+Wy7iQ9b4/xHKf5la3SlrcP5ef5C+hvp1KJ 077RvGg3ryNgng53/hinqWVCz/hJ2EtZtuV7Yn7vGj3X8PwamWc7pS0/j+fv UCL284vXBZg3hh9a6nWBUH7o+w2tawwokXXqHecDNoeVif8+Ni1xe0lu/D2n GT6YXxX6/pFxuu/7WPqxXBnfn/U+8yrP/zNvjH/Xev4/1APqEK/nyjjvpfcA Zewc839MjvUL/IY4f8zr3vp+gE3SlrfHPL+qWPxe17TVBcJ+sS5wf0cHB2ne +GuvL1B+zMfJXl+g/Jgnb3h72OENJYZ7xa/yPjGNB49Sv3pMnuUDKQ/m8615 Yj/TC2RdODBt+TsM21/6/vkcryMwz4wBqvY6QthfSLl6leitf6HklwZrnH6C 1zUwTh85f9mXrOPS7nUBTJtPCwSP7JC2ukDYL94PBv09li/z7gfV57Q8kxP+ 4HPnj4/ZRWJ/h+k4Pl9gcpE/8EJDgeyrXbRK7nXYLW1y4Hdn5gkemO71Beaf YQe5Xl8I5Yd/PapA5BuZJ+3edT6oI3+q5zPqPf8PM6hYJfvk//L8fyi/4P4i kf/WlYKrh2kc2tvrETC/z5w/4pNl+eKfDlI/v7LI5kcMh9xbLH5wVY6M25Zp 0zvkHqT3rv/g9QXmvTG/Znp9IZQf/uXZIpkvTbkS57/pfDAPvtH3BR2t45iz 2vxlTA9r9f3Nm2eL3jLjzjw/5vOxem9igdcRmGcGvyavI4R6wP8DV+v7HbL1 Hnytv8wttn6B38fOH/O5aKXofb3XBWDXK1bIftnd0sH7WbxfvB8M/Vq8XNb5 MVpHuHiNyYlxGOH8MQ+2zpX8wRG6zu5YautwDJ+fouedDl4qnxmcGTuvkVwq 4zfP6wvMG2NdKPL6Qig/+K0oEb1OXCbz5n3nA71VZ2fxvm5Zr+3cjuyba/G6 ANxTt6XSn4zfZl0g7BfPa0BvDy6S+C6DQzC/b/c6BZoNdf6Yn7uvsHshwv3w WO8yuBR2fVKZ4cHYujywTPzkKfrev+3Sls9HneZpxa3jPc/PPDYeMz8VvOfF +4V1bQc999F7oejhrVT8PEiF7pvoruN+YrnhevLBePbR95UMny3z7qi04RL4 2WWzs7bq+L7E6wXMG4N/MhXcG7Ywjh+2L5fv350j+v1Q9fyt9wtsP3H+yM+f rffabpi2PDzsZMvZgjP/kQ7OcXi/eG8Y5tcpM7O+7vhhBpfCH9zndQf8/kuv I8D/fTs/7vf8fKDsx8zgVdjfjRUWR7I9xvOlCvEL900RvvulDQdjHRiv9xAs ScXPZXw4S+Qt8zpC2C+Mey9t32W6npNxPoAL/5or63jS8/xwo0dM0fum08F5 DZef5zUg3zG6H3CUjssYlwfzaLjzhz+eMdP4xPP80an4lzj29UrLc7A93O18 fX/bkNEi706WT5P1eYnuJ/81FY9nJk+WvP8yry+E/UJ//q11kCvH63vHnA/U MWC69H+LtOXtmZ/E/8R7g6osj0X++NiuyvLDGP9qryMwP4y8wm9hHcH1gOWy f5Xke5pHyjzO4FX418j7hXEc4vzh93/8WT6LvV5A+WGHB6SD+sIImQ/feHvK if0ik8N6hO4zfcPbA47vNF78xw+et+dz4d9rwnrBCMsj4d/jvV4Au/zI+Ui6 51vjzzx8mB8O88nhfmy2F/11zifLuu10+jfJ4zv9dcXp4i/8HhuOg8jtzyU+ DNszPxO2Jw4P28fqP39rz/gibC/4vXN7xn0hnfEy6cxLY17crfHpVZ63j+Uf LnJ6LH/yiuexY3n1s709+wV/cpu3Z95Pzn95e+bTMM3P8fbMZ6J9D2/PvB/p bM98O+x3rtPR74srTB7mtykPnnuD58P/uzwjTB7QT/P2/10efU/5pnWm/27q 1zAsj5WbPHx/RCgP89uUB+1P0bi74Mv4c7M8f464u0utjO/XrodYfeSVtOW3 Y+P4jOsnllc8L23zmXLKeUfnE8vfHu/tu3awe73GxuVl7S/HJS7nuLicw1yf tEOI9YDnwyk//j6atrx3TP7MuOD568aZnJpNNT7ACV9Wm5zMD1NOib99XDhf gFv+43lvyo99yp+kLb8dk/8qxVFdfjU50f485wNzm1ol8kxPW545Js9Ul5Py 4PF3eHvKgzjvaW9PeTCOJ3l7+L3Dq7Ru4nlp+I1zKwRnf522/DOfSzvnvnTM x1sU352rcceHM+25WP/Ocv7w7310X/HStOyrnD/H8Br5Y5xa5oofn1cmcoxN W54Zet2nXPI2VzudedfrO/z3XZ7fDuVH3LGf3jvUV/eXnuB88PlThfij/LTE ibMXWJxBPpBvw4Vi36X6HsYcz2NDnoTu53ze6fTbEOCDtOWxQz1s0UHfZ4H0 o6vu3zk5LXHd0HnWL9jR6c4f5AX6HsUvPV8N+aeXip+bkba8dNgv3i8k+tR9 tv1Un6MXmpz4vMD5wwzLy2S/fG5a/r9tabCfLi1+c3Pd771ojcRLczyPDb0f qvcW3Od0roP4eMHz26H80r8lgudeLxF/fLLzgdwXqT4/8rw0fj9vjej3x7Tl n0P5uS8debuHVos99dX+TloWj0fPdv6on95WqvcsrrXzO8TbsLtlqs+XVgT5 GF3fN88W+fKK5PcT0xYPY/7eWyz6uc7pxBuY7w943jvsF+oR3VdI/LuiWPrV 0/kAz39TInovVPt5IcfyVOSDfNbbOWL3WxRKvJbn+W3Y1W6FgmNfdTpxFPo1 JG357VAP4Hd0juzjerxQ73tJi3+5wfPt+L+38wcKLFot/RjleWzoZ3yB+K95 actXh/0SP6v75At1f/QNWs+tyzE54R8vdP6Y39sUy3xcqX511UrLO8X6tfMq uedw5zyJpxd6fht8/qX33zzidOJV+OPXPO8dyg/xntN8+PQ8iUdPdT6fdDy/ Wt+r8F27zq/VZp/1SqfcpEOuIZ6vxse6VSLH+LTlpcP+8t4hvJ9g/koZr8t0 vty1Kp6vPdf547G7F9g8Okr1TnnQnRU6Xw7Jt3GIrV8f5Yv9dcmVeTM5bfln 2NMXuSLfzU5nXhSPe9Tz3mG/EK/m6v3gm6yU3/dyPuhnm76n/U3PV8MuT9d8 4Bfp4L3kLj/3vQsMypb805mqn9Z8kwf22cf5w511XSX5vMVpycs+Vmjzm/zB b+8iPb+xQvT/Yzr+3oq6FTIOlzqd+VjsB7glbXnvUH7Y/0GFYhfnq/zHOx+s H3/kyv0beTqOjxab/yYffH6p/m7SUmm3LB33F101n/aU05n/RB3k7bTlt0M9 wGwPKBa91SyT+dVD97086Pl25DFOc/7rcY4iR/DNcM9jw9yvXyr9/jVt+eqw X3fLhkTxrycszsrr+P4qHcc/ik1O5J/Pc/5g11/PG2UrHl6wxnAB+SOPcqi+ h2LZfLHXGWnzm9DXjwtkHb0zHa97ban7kAemg/diLIuP78N6T9GDWm8/yflg OTpxucyHdz1fDXupny/5lm/SwT1CLj/zulDDjnMlz36e+u1nS0wejO9Zzh/j XLDY9knG99XrvvGlmm95o9RwK58Lf7ZK96VXzxR5x6ZtvcfvT5otfuWfTmde AvmZuzzvHfYL43eT1sv/Urzcw/ns1NGPQQstf3KY4iHKj88MXsX71t8osziD /OEuP9HzQu9OFb45nt8Gv900T/W805nnFHyfDvbbz46vjzfqfW0X672nJ+s8 /T/PM8NPnO784a4yeJ/5n/g9RdGpwNlfeV4X+h88RT5nevuwv9zHjrz9hJ8F F1+rfm+uyw+7uCAdx9+XzbJ9iSN1PyLlia3XDzgdj89VPz++3OLdWN6mWO93 mz5G9D03Hb/vqNs40fP9Tme+FHK+mA72yU+Lz+vXNZ6ZOF784SnOB2rYZIb1 i/nksF/xPLbeG/NROp6v/nKM6PHHsL33l/vn5f9Rkkfvq/N3c89jww7Pdv6Y Pzm/SP1icNry1cwT4nfLtD67psLyB3wuzGh4heV1L+qYt9c7H+ZL5ZxNqAeX H3ofr/t4PvtSxqWn84Gee2geor/nvSkn5P80zKuPkDj9dK2vnRfk1Xs7H+C/ v743/sxXkw/xWJhHDfOfbE+8RPormhchH9I538P8quRd5naic10I6bF4+m90 rr8hXew02+jMZyJu+kHx5DNs/57YywDFmxu3B/nGPFkfb/X2xMn4en062Jer 7xWKnM71HPRGp3MdQ7c3d/6MT6G+Sm9P/w1+tZ6vYx4A7Yu9Pf0Q6WzPvC71 s4nG6YiDzsqT90GWev4t5EM6+WD+nO3yM/6C3q5vt32w1A/m+8HennEl6cwv xehd2uUevat/7KQ30qk36od51FA/5E/5aQ9vaD6Q9kD+zP/E+G/Qrvy/+x/j MtueS30yD/bfx0X3bV7j+qTeqE/Kw/kQykM5KQ/W5zVprTvNjj+30vNU0POA MrNz5pFo59B/Vrv5O9ozx4v5n3C8yIfjBXnSile3mm9ycl5wXQfuf73UxuVb 3WfIcYGcA12ecJ5yXyLlpz6Z56E+4Ye2bre8E+WHn97V+0X5EUdUeJ4Kdbq2 EpNT8qXLO8kZv7/a5SS+pJw4V3qc0ykn/Gsv5xN7X1hS80g7LTE5kWds8jwV 5D5gjckZu2fgb3IyT0U5wf/adss7xfTZz9tzXkOs//P2lB9+fVdvT/lhH2s8 rwX2fyj9yXaLTygn4oun24P3qOp+sSO9PeUEDj7d21NO8KlSe9vG82OQs87z VLDXo4rETi5qj+d/dsrTezrbg/ei5plfXa73KiCPdfAqWb8z6ynWyQ+y4+fU I88vYVb31/dYZvQA9TzOeypzjT/kmqn7k27LlTzAve3WDsv05FyJa/ZyOvMP cEfd2i1PFcoPczs4V/D4P1ZKfyo9H4W850n54rdOb7f8D/zNP/X+hn+2B+9F dfm5fxJ+bjfN27WnZfz29LwW4oQWzy/Bvu/SPNAjam+LV9m4kT/6f5baxwC1 l/5B3mlDzYNu4XTmH7Cu7N0evBfV5Qfue0zzZjdpXrPU80vAG2etlHn7nI7j wnybl+QD+tJ88Xvn6XuGn223PA+m0eWazz7W6cQ/2FeR8W/MI4V6wDg+ou9j 3Xp5VnPHdKjXuP7TPOsX1pcGzy8h/ns0R/KSl7ebvWK83lwq7R9ot/xS2C/m l6CftYtl3NKeR6L8cLtbOh/KDzMt8vbAo5dky3x7Ssd97yJbN/hc5Ecv1fuf b1gg/RnQbnkhjGfJAn2/h9OJP+X8RntwD7b3C/52QaHM4xELJT4pVhy+X2Hc b1Wn4/s5n9f6wFnt5ncgx14LZN3M4KX4PQzeL97DIOnjueJ/1uu+lFFFJifW kYTnkSDOHVw3/N4AxmVo/5iuO/esNjzC58q98KtlPj06S+z5lnbLF8GO7tT4 fbv2+L0Ky+dLv7u2B/czeL8wrnvp/RRHzxE7KfN81BMdhrLPIvErPdtNfqyL IzW+vrDd8kih/Nw/Cfv/abroIeNPMH7d1sTrXY2eX4LfenaexTthngfPfVD9 xvQSi0P5XNj9kaXynL1/Ffu4ut3ySJC/ZYqM9x+eX2LcBPvbvj14rvdL7jku Eb09qudbVzsfmNGxc6x9/P6ESM5BDtT1qIT0cXH/nNDzAJVjRc+Pthtug1re Gif1xYOdzjwD2JzUHuzPdP3gc7zuw9xjgvSjTOPlf3reDLi21vNXUMeHMyx/ Fd6TELPbv93ngHE/39sjP7fpWME5t4Ttx8XH8dEywT1V32f90qHeDVX+fTxf hHne5vkoEe9XWadPbzf8zfga4/O4zvfNmecZYc9F+wllln9Av3dpj9dNM/gX /v3Q9iDf5fLDntaUyXP6fyX56ArPU+F3/SbKebmd2i3PQzkB2y5rD/JUI8TP JjUvcb3nqdDvZs8XwZy7/iTPq/b8DPnDn+zWHuR/Rshz13h78Nt+pPFhfobt Jd5Y2ymPEeYlwvakU58hnfZMOvMJWEcuminj/017sA9qtqzLm5HPe+YP8TG8 Pcgb6H11NR4Xcz3C6vFxe5A3WKZ1Rm/P9RTt324P8gDZ0n6ktyfOQftXQ/md zvbMn1BO7v+hnOBf0m77nUI55f+hcTlf9fwD+QNX7u96gx96dLY9l/ugwudy v03sucu8PeMMjkv83O58of/l/frv4zKu03PJJ/bcDJ12E6P/6HJWK97Hc7us tfah/Wyn+2QoJ+Vh3T+Uh/uaYs8d6vmNGH7P6Jn5MuqZfLgfiXz4XMoZe25G zyeq3NQzx5f2x/HlPLpdz8/SP7O/st4u7zQuzOeE48J8TuwemL88jg7bM+/B 9tQD8Sf1QDkZH0Geo2fZPGLcx3lEO+e+Dto52zO+i7Uf2h6858jnHdv/1vH8 N1ea/IxHwnEXmDm307xj/BWTZ1p7cJ9etsyTj7T9vJy4PG97/Ij3zM/IEb/6 lcd95I/4epw/l/yhz5e8PeLV/2SbnTN+4bgjb7HU4zL2F3FXnushlkd5s13q ded7PIjfve18gHcXLxdcnPZ4is+VfFl7cB5N31f7o9Jz8+y50OMQ54P+rV8i 82f3tRa/0K4w3/ZeG9TlZwu+muNxFuXB+l7QHpwv031hr3t7qOOHRaKHBo9r MJ3yZ4m+Nlob1NNnx9e1PYsk3rtohuS/hiteuqrQnovnfBjETTvOF/kyfgzj vlOx4SLyx36g53V/82mT5XlbrbU4Bfq5eKr0d6zHR8TDEG+ex0eh/Ph/WpHg 0QK9T/cV5wN558wRnLe6PX4ubN5k+T7RHtTTXX7W0+U9t+pf39U8Z1GxyQPc 8o7zx/n9Q2dKfLLXWsE7N6+x9YT8Mf6blYg/uOsnmUd/eLyDZreNld8Pdzr9 MeKmce1BPd3lR792WCP6S4yT/Mbzzgf39U2cJv4p6XEKcRTWoQPXynmaY0o7 4S7Y1/slhlfx/SLnQ3xFfxWPa1wPOGe5meavu46U+DDjN5BPut7jLNjZYOcP dgP13Mpcj0coP+btlmuDOGiE+JOvNL/6oMdB+N3Hzgd2cvZowbMfeRxB/pBn SRhHjJD59qq3Rzev/sb4EOezPfhlrQ3w2AiR43bHRXwu/N2tTqee8ZweIZ9x Uhc929vTftD+qLUBzpxmdLYn7pX9G2sN71FOykM65cFzM/2SeTG1E3/SyZ9y cp2inNQDcRr1QHnYz1CeeH5M5bl+rcnB31Ee+tVQHvrPUB6uf6E8zD+H8jA/ Tnlwjv2steZXyR9x6qlrg3yU3o/ezdvDv9493fjTj4X9jfvPcXJvRU/V86tF 8XHp4f4Z8+yLn62/9DOxOOu0teb3+FxMz0vXBudqx0le5jBvj3V58/HC9/y1 5pfIH3p4cG2Q5xkh8h2u/nnrNfHxP875YB0c9q3xp78iH8zbPl+Y/bN+F9K5 Pzyk8xxQSOc5iJDOcyIhnfcXhXRZnxs60fmeBYi74TDxY70/NP4cB8atMf/s 5yXsfdyMlyDHJ8NM/6RDf39+YnT8vM9Ym+94bE3Knkt5SId//7+fxP/1HpkV 3ycwUZ/7g/EnHXr861ujw453GG/tZT1pEX41ky3O4nM5n/hc0uV9LJMsjiN/ 8mEdlu1lHZ4i8+1f400vIZ1yh3SeOyO+o/65H4Q4l/4tnteaaPTv9fwz+SHu GzLR5Ccdz71wgtFh91nenvs3QjrHJaQfpfXPkE7/F9IvF8Ah/uuw2RafUp98 DvVDOubT+Jmy76rbr2ZPIZ37i6lP8qd+uN9E5JlqeiBd9DPF6HjODnOsPZ/7 3+kz5f/18y1epvyUh3KSjuGdMDd+boj7kR51OteHkC79TZmd0H54byzjZM5v 6kHkWyTz5qFZ9lzS8f/SmUYHeexS27dA+flc4J2HnC7rXJntD4nb53I770N7 pr2QP9uzjt7SwS411+QhHXmEvk4Hm4+XWXt5jr7PeOYK2xdBOflcfP7L6cDD 45bbvgXyxz7i4U6nnw/p8tnaic7xojyST15gz8VzttX7JE5eaPf/Mk8Qji/p tAfqjesV/RjpzO/geXsvip8LztDFHhYaHWw+zbX9D5STz6WcpLOezPZ8Lu+v wfo0ZKnxJ13Ga0mcvoO3p9+A39s0z/Y/hM9F+wOcjvbbrrL9BuQv+xadHts/ tmme5W3IR8Yv39ZZ5Cu+dTrgZH/He6TDH2zrdOyrKi8wHBhbRx4tkH5t6HSs 8rcW6Hsvss1PhXTO25DOecL8O/NyHBcZp0KRf78ck5N0PG9pdnydvcLb06+F 9Fj99G906jmkM64K6Zwv8JvnFVt+LLZe71xs/SUd+PO2IsEDdTm2/oV06jOk U58hnfoM6Zw/IZ32HdJpHyGdev/v7Ws70SW+THSiC27sTBf9tXWih/ethHYe q+/2zjG/TfxLv0q74jqM9b8sN17fydDhPgbnxv3MlGJrT/2EdPq1kE45QjrP sYZ0nv8N6cTnIZ34OaQTn4d04vOQHsPnf6NLPqmpE13q1S3/Qz+ttk+N4xib F7ettrxrLG9zgtP5+5DO/YQhnfoP6dR/SKf+Qzr1H9Kp/5BO/Yd06j+kU/8h nfoP6dR/SKf+Q/omOl/gd8ausf1L1D/mzUx9X/jVq8zuQ7rkn1o70SW+b+tE l34lbZ7G91NFus+6ws7BcT6yPdxaalW8npuhw98OdzrOoX7s7SWv1ir0eaWW b2d/aS+Uk3T6dd6XQTmJD8F/fL49l3RZT52O360rs7wN+dMe0d8lTgfu7F9m eXLyAV7ZtlzyKycXat1pRSc648eQzvEK6fTDIZ1+OKRzfEM6xzekS56mM13O AUSKxyoNH5KP+Pty0c+CQtMD6dD/Q07Hz+/x9rF7Ev5Gx/DPbetEF3vUe21u r7A8VQzPZPxETP6alPkJmef5ZrcyjSukDvFqsclJOt7ve7zTkR/+wtvTbqG3 zyot3xU+F58/OV1wW6Xlqcgfj/2rwuhcT8mfdYGYH/5Fn9tljdpvjb2vOpbn +Spl+ma+AnKt9fdbgz7E82yko7/nOh35mx28PfmGdPpVmOlW1fF75wpdHspP OtT6QI3Jz3iE/juMU9ie9X3sj3zc6cQVpGN5+7M67ue/8vas34V8qH++14F0 7vsC3wOdP/tL/rwvB/3t5vUC0uFfN+5MZ3t8nxt1ao95dofzh91sX2r4Fnr9 tdrqEbE44tYaqf8SH2f8AOmwjw3LNG+z0OyL44LH1UU2zowHgf92ThmdeZKQ zrgypLO+HNKJz0N6T60Xh3T6Z9Ih3sxam6foTqvLT3rYnuMO83tc219Wa/MU Ym2i8/olxdH/WWP+E9+P0Pc0n+V0mX81Zif4bIpk3flE5bnAxwV2/HOtjPv+ Tkc3p9WI3X1eYvsvMR7DasT+Uk6HvS6rtXsLoadzk4LDc/W+8OWlhtvxuwl6 r/xvTqc9wF/29PoU6ZBv27K4/xzr7ZkPDOnM04V0xoMhnTgzpBM3hHTGqyEd dYsbm/7Hc1s70SWuTvyPfrV10g/0XNPWqf0YXe9CvWF+PZU0OvpzaJnGj0lZ 527T+59+LTM8IPer1tk8pb0Rz9J/ks723Ect9+cp/myqtfwB5zvb47PJcQLp mBcfOx1st6u3fcXoz7KkrBe71IlfTxWZfWLY0rUyb84pNjriwJw6+cxabfYP dST0PeINxXE8c0adzVOYVZ9IztPU1kn/TikxXIR6+6b1WdkdHalbY3TAwK3q bP7S/sGvyec76RiXvevt3DfafdYm+tmvzuYvxxHD8X91Nt9Jx/8ldaKPeaWG 67Du/VEndapPnQ413VJnfh5+YYOk2O+O9ba/FO6mLCHjsHtdVmOH/Oe7HWId +U3v63rI6eJP68Rud/d9m6RD3uagTl1Ta+1pfyG9i+LekD/09laiE3/4x4Nc Hnz+7vMOfvS2OttHSnnwmJucTrwY0onbQjrxSkgnLgnpXFdCOvUQ0hlXhnTG ldBHXp3dO8p4Ae5v53qpA7d2psv7x8r1/OK0TnTGRTIfGsxvcB4BH7xab/cs obsXRNae8SnmwWZOZ5wY0onD0b2ypPTzkAapy75TYM9le8Q/pxZ0kofru5xL 1nX2Wr73vkjq0wckxZ7715tf4jyFHfauNz9GOvBEF82vVBSZH8D6fmqD6Ost p0Nfg+rj93IMSco6erz2q3y1zVPEuZdpvwY7XeLbevNj9APQ34n15vdIx/y/ rcHwJ/qfTIi/vMf9GOcvfndRvfk90tGPIxrET+xRausIhum8BsmPl5YYHeL+ VG/7amBPV7WJv7u+wXAF8PMJCYkfbq43f8V5Crs5q978G+lyf1iDjMMZZRb/ otunN0j/9nA6xu/9etsPAz/3TULmcU+V53SfF3jelQ0yPrs7Hc/rVy/9nOvr u+irXsat1emwjzsbbD6C7yatwvd+7e+ccsMP+LhU+9vidBl/nV/7+X510mFm a92PQU9XePu04oOQD+zx7JZOfGAnvfy5MJ+dKizvh7r5zg2yjn1fkaWCyvz5 sjHYJ5A0/xTmB9iefgBqOyEp43Vgo+V5oPcfkqL3hxpFTyfkG398vtcouKki z+joR2uD5W3w/eeKB75pNDwD+31M7e0H9yecR7CTt9z/kA67vqtRnvOK51Vg n4O0X8c7HfmClQ2Wl5D9bW2SB3u2UfzvS8U2j4BDhmm/jnU6/PyX7mc4T9Hu ZfdLpEPP4xstTgEePieh+QH3M5xfqAMMcb9EOuR+tFHfj7TG5hfqZx82Cl57 0em49+v3BotfkCb6MSH8v2s0/AN8MahV36Pl/oTzCH7iXfc/pOP39zaKfb9f avMUcg9uFL53Oh34bU2D4R+oY4OE2P2LjWIX75VZ/g2P+aJR9HWH0zFuX7uf 4TxF3PCa+yXSMQyTGu3+FnyObxb8OdX9TCyvPtT9EumYb082ynOm6L0x1zUr vmyU8X7X6XjP+UaNhhPw8WiL2O+PjXafCerEJzVJu3Har9MrLP+M8fxA+3WH 02U9axA72tDvCSEdes13fwW7fdXbx+L8v9GJf0I68U/4XHTj48ZO7el3QnkA c+Y0GR36q6ywPDz0sHOj2NmtleYHKS/9GPfvS/zQZH5Pzqu1Cf+/mmzfIP6P 2uw5pAOv7pK09rF8/qA26d/7TZaPAq7ZISnjMlPpRZ63x2dpk8j5stOxj/3E JvOrMLDf2gS3pJsMd2G+LU0I33XuV+lPIPdq98OkQx0/N4n/PrLA/BXkyGsS PRXkGx1uokuT4TT42fPbhO/SJrnn5vAi8ydYJpqapI6cVxivP7a5v6W/wnzJ df9MOtr/X7PFm9D3pzrvNmsyf0s/g/7UuX8mHf3J2JHcx7ba/AzmX2WT4OdD nQ7+vZss3oQaNk2IPf7WZDgN9jFd592f7lfpT1DHL3U/TDr6OVntelmJ+St8 X9gk5wmecDrM4pAmw2nIb1zdKnHPiiYZp+pS8ycYn1atE052OsY95f6W/grD k+f+mXTM002aLd6EvV3fJOO+ZZP5W/oZyNno/pl06Gm+zpftym0eYvxqmqRu X1VmdNx/cGGTnU/EvDu4WfIW65sMp8EfVzVIuw2bzK9y3kLeCvfDpIPttCbh 27PC/Av6uUafu63T4f+7N9l5Q4z3wkaZXyubsh7p6FcP9z9QV1L7tY3TcV5y repncoX5Pcz3wkbRV7XTqQ+4sTL326Tj+ZP+Nx12tnd9Jz4Sl9QJntkm4JPx 25i/uzTZewfIH+vNfeo3bqyyfBb81AydF093poPPZ1rHuHuRyLV5i/lh+j3a C/026WzPusAk2JfTob9uOVlhe+CIwuw4fedmyz/T/6N/F7TYPauVHYZfmhA/ dEmz9PuEXPOfmKfdm0WvrzodatmuRfg9s9L8J+5LObJF7PcIp+PeuReabb2A nV6ich6gfuXpPPOfeO4ZLXJu4zCnQ9/nNNs6Qv8J/R/abOsO6ejn1S22juDe 7R/Vn8xrNjr5Q57bmg2f4+PzhMyfvVoE/y4vMP8JPr1aBE896XSwy2q29YX+ Ge32bbb1iHSo5aIWywNA/ir1M5c32/pCvyrj1GzrEel4/I4tgnP3Lza/Kvf6 q56XFhkdz3mj2fIA+P+6VpHrrBbD58Avd6i+zm+2dYT+E+Z8ZLOtO6RjGmyh +zUGrDH/jO8PbhFcva/TgZMfaDZ8Dr97fYvY8T9aZH9tr9L4/D9F7Xk7p8O+ zmi29SW2b6Rrs61HpEMfl7ZYHkDkVpx9VbOtL/SrGL9ezbYekY75v4vy6V9m fhX9Oa5F/H3Psjhe/KDZ8gDwr6sUl5/bYvgc68ebmi/o22zrCP0n7PXoZlt3 SIc9b90i9vNauflnyHdYi9hRf6ejG080Gz5Hfx5rEDvfr0X0/VqF5TGh99MU d9/gdNjBmc22vtDf4uvM+sb1iHTUpa9osffsiB/R+tM1zba+EIdDvJObbT0i HXa+u+5TGFtp/hnj3KNF/n/V6eAzrFnz/pUSR7XW6v6uZqsnc58G6Bn/yXUB /R5bLXq6RPt7QlW8Pnes9vcGp9Pe8bwGX3dIx+NmdKazPfDKDtWd2kvep8bo iG+XVlm+F3WSnq3BeYqE4LafWuwcNOS+vM3ac/8n2rclZF501/pSzgrjw/b4 fmBAv6DV6tpYR45PyHz+zNcv+m3M24G+3pGO87Xd1N8cmGt+e3CH3Keov1nh +wChjyUtFtdgHL9O6H0prZJv7er7jrA+nN0q+y2WrTQ68O77vq7Rb0MtD/s6 SDrOI1/aankk+MuNNR4f5esa/Tb8yyBfB0kH7jtOn/9Qvvlt+M3eraLX/ZyO uKmtxdYvfH+T/r5vq+WXgBffbBZ8PdzXL/pt2NNzvt6Rjv4e1Spxx9xCszOs v6eqPQxwOtxxXovll8DnzhaZb+e2Wrwj8W2TyP2Rr1P0z+D/mK9rpEPvh7dm lXTY7+6rzf/Dfk9slTzunGKjww/+2mLxDuxu22bp//Ga79y1xPwzxqVPqzxv 1hqjw7ze9PWL/h987vP1jnT44YtaLb+EPMjYevEzI3z9ot/GvHjJ1zvSMT+P aRVcOK7U/DbG+TS129ecjnld2mL5JYj/YoPwPb/V4h1Zz+rEP33i6xT9M+zn KV/XSMc8OkLtenWZ+X/Mo5NaZZ6PdTrm55wWi3egr0PqRY89tF/F5eafMY/O Un8yxul43ju+fsX2nQ7w9Y509POSVssvgZxXLX55pK9f9M+Yd6/6ehfbF9Rd +7tJpe1fkbxYq/iHogqjQ0t1zEvpc4fWSH8uUBw3uVL827+0TveZr1P02+Jf fF0jHePWTf1YtypbrzD8p6h/2NjpOJ+8tMXiHfx/RrX4p57aryOrbT8Z6nPn aL82cjr4Zvwhvh9TZXVGsH2kRca/yOn0T8hPL/L3oJGOVsP/Nx128l5FJz4Y zxv1PdqjvD3robinbWaL3tdbY/yv6dDbj07n/o2Qzv0bIZ3nPUI6z12EdO5H COncD0r7x+MG1Fh9k3SM81vOJ6Rz36p8elz5su5XQT6k0dd9ro+k815QyHN2 Qs99t9q5EtjdRN23WaB1p0eWx/Ngta2i9wOcjjzLx63xcyU/JCSuamu194Bj nr/WKnb7kOMHrqdYp25xvEE6PnJbxZ8vyI7Xyyp0fj3sdPjDQa0WF2O8NkiI XZRov+blmp1J/b5V3r/1oNMxX+5zvMH1GvOpv+OT2Pq+ttXyqHjO2Gbxi084 3uA6C3nvcnwSy1MVtsq55D3ybJ3FuNVpf+euMjqe/2mr5VchR2Z+Qu6o1eJf /N+rSeL0RxxXcJ0Frr7VcQjpmO+rWmUc7iywdRbTo6pV/PBuTke/3mq1/Crw /p7NYpelraLX24tsnYUZt6hf2tXpmK8PON7gOot2Nzo+IR129rvjDbxXOq8+ a6+O/8c4nfy37tD3c63xfXdTGsXOi3Ue/bra1lmou6FV7Oi21fE4627HIVzH MZ7XOW4hHWpNt1reFf38V53eL+c4hOsvHnO74xbSYWd5rRJHbVpq6y/6Ua04 /OcSo8O83m+1vCvireMUnyRaLS6GPipqZNwfdLzBdRbjd5PjE9IhVw7xY1l8 31h5q9jXJk6HXC+3xu+LyNP9lKtbsx7s4NutPL7ONuo829jpwB/3Og7hOo71 9gbHLbH9l+2tlneFOM9WiT983HEI11/4wzsdt5COfhRof6+qsPUXz6nV/h7p dKj341bLu2L97KvxXbLV4mLg9s0qhe9Djje4zoLfLY5PSMewZvwk/OwzlbaO Y35UqJ1c6XT4nddbLS6GPhOVtr7cqOc8GRfjeSVaVxxYZfvpsb40q/1c4XT0 837HJ1yvUcfv73iGdOSFftP1YctqsdevFD8+4fiE+6OQT7jL8QzpMMeM/wT+ +bra1lnIV6f+6mmng89nrfaeVszr28rFDiKdd1fXCA45XO+DfETXhSNq7DwG 4tbbtF9XOp3rEtbzlY5PSIf9f9uZzvbox04lndpj3o33OjMeN7HG9pdC/mEJ wwNsx3WV+CFWJxqWsHPd0Hu70+V3C8RfVasdfJqw/VfQ+xCtB92ZsPOwgB17 JMTvDEyIXfVaavJgvRus8ry9xOjYz3BqwvAJ7GzThOj/44TlK2SfseYx90oY PuG6jHmxdcLwDOl43uMJyT/cs8LWfcj3WkLixj1XxOvyRyfsHCv4XKV2+WIi 65QOwl05ti5D7+8lJM7aw+l43m4Jwy2xutXmCcM5pONnQxOWz4ed/6tJnr9f wnAL12v8bseE4RzSMa2f0X2LU1faeg09vqX5+DucDn9wRsLy+RiPgzUP8J9E fP9Mha5T+yQMn8TyqNsmDM+Qjt89mRA73z7f1mUM6yDNo0/OMzryHscnLO+B /ixolHnzsvZr20Jbl/G7D7RfvxQYHfrbPWG4hesyxnuLhOGc2LnFYQnL22M9 eE73d3ZNGG7hugxz3TlhOId02Plzaj83FNu6jH6+rf3d2umYRxmcTnwCfHG6 7gcYkrC8PcZ7s1rRxz8Shk+4LsPct0sYniEd4/e0zusxfk4Hn28kxM9c53Ss V70SlreX/T56DuHDhOU94C7f0HMseyYMh3D9hR1vlTDcEtuP+piO17Oltr7D Hl/ReOXq0vj5kyMSlvfA716qkXn0QkLiwmfLbP3FOL2r8+gqp8MudkkYPuH6 Dj1tmjA8Q7rg7YTl7THPDq+U8d03YfiE6zLq/jskDM/EzjsN1H1Ao8ptXYYe B+u4P+N0zJ9TE5a3hx3+qed8h6u/+tv7ldAs4ydj7w8aXS7+be+E4ROuv/jd 1gnDM6RjPj+REPvKrrD1HfP6NZ2P3zgd7Y9JWD4E8g7T71/U/mZX2vqL7r2n 7b92OoZ5t4ThFq7vsK/NE4ZzSIe4QxOWt0dcenGp+Lf9E4ZPuC6jPzsmDM+Q jv48q3HwuiqLu8H2LY13Vzgdeu6dsPfFY37sXiafn2gefXS1rF/frhb97pMw HML1GvaY8ZPELaTD/p/UdbZrjZ2rxbwbpPr8vdrokOP4hOUf0K2H9P7vl7Vf XWvt3D3k+kD79VuN0WHee6h+RtbYeRaM5xbqH1Y4nfkA5JPH1xqeIR2fg2rj 9fcNvT1gxOTFnei8PyHkg302exZ2ei7MbmJBJz7Mq+AxXZ0P71OAG+mh/f3d 5cT/Rzs9dr/EHcq/b53dewB/+4buD7q9Mx3Pe7bO7qlh3YN4jHiDdRXiN+Do a1utPe+bgl/+wOk8RxnSeY9TSOd5t//efpbR4X/7tNm9B8gL3uN04kMMV4Xi pe3b7B4Y0B9WPH2g7kd7blH83PHxum+0aKHRMb/LHU8CZ1+ncVdWm+W1IMft Wnef6XiSOArDPNbxJ+nwc/vpPtadlhtOE7yn52MGLjM61LUyYfku8Lte6x+H az1th2zDUVDnSbp/YcoKo2P4pzjOJE6Den9wXEo6un9mm9XXMC82axS/NN9x JvEV/NjPjktJh14P1v0pN+YavkIcdILqczunIw9ak7D6GuK0VVqnOL3N8l0w uzfq5TmzHE/G9v+Mc/wZ25+9f5vkncavMpwGNXVXffZ3OuQoTFi+C/8/1iDr xZHar7H5hqPQ7ZO1X9c7HeM4zXFmrH79k+NS0tH+7Darr8H/HFErci1wnEl8 hc9fHJfG6heHtAme2KTI8BWe21P3XY4uNDrmY2PC6muQp1XrFGe0WV4L+sis M/h3juNJ4ivoZYLjT9LxvAN0/+OVqw1fwY8cq/NiI6ejH2sS8fsV362R+XVU m+S/rygxfIW87ql6PmzDkni9fbrjTOIrTOfRjktJB54+p81wJvzuxXr+fAOn kz/+XZGwfJfsp9F60GFtkv/JKTV8hfnYq03yu984HXhjsuNP4jfw/97xKunQ q/nDMpF7peK1eY4/ia+g94mOV0lHvw9Se1hfZvgKdnG82nO209GfioTV3SD/ 95r/yWqzfBfE6qf4d6bjTOIoPH+s41LSYS4ZP4l5cGCF4TSM69HKf52f24K9 rkxYvgv+82J9b8MR2q8DKg1Hge9J2q/fK4wOPlMcZxKnoZ8/OC4lHeOR8ZOs u2F+RKvFv813nEl8Bfv42XEp6VDrwdrfC6sMX0G9J2h/uzodfGsTVneDHgcr Psz4Sea1sKz+VSj+bbbjSeIoPH2c40/SMb+6tkl+6eFqw2l4fsZPIj95gdPh 9woTlteC384tlvl1pMrzUI3dO4Tnnqz+/HynY9ynOc4kXkJ/f3JcSjrcxNl6 P8QGtVkPd/A7We8jX+g4k3gMw/aL41LS8Xmo4pzPag1H4f+MnwT+f9Dp4NOo 51QuqxV7mZknfHu3GU5DPHG2vu9rjvZr/zqr6+FzgvbrfKcTj2F/wrQ6w4ek g//7Tsf8neTtj1K8F/KBfBtnd+IDf9sv1+i413t4ndUluU+TuJH4BLgsu81w I3FU2D62b/BOx5PEmeQj+HuG2OvGrdaeuJHtodflev71kNn2XPLBNHl2Vlb4 XN5/SD6Yp/Vtdt8C5tMbul/z7jb5vsdcw2/ADdfpOcU1TscysLhN77ufb/gN zy/Sfa8HzI/X1152vIrf36n5wOo2y3MKTtR9gLc5XiVOw3z5p+Nb0jHv5il+ uHeJ4UCMx6o2WQfnLza61CPaLP8JsbZtlnHKVv82YbnhNIxvmeKBfy+P72O5 yXEscSDG9XLHvaTjuY1tVreFfx2t58bvcRwb2394veNe0rGuLVF72yzH8Bvs fbXu2x2XbXScY3y9zeq2kPdFzQfWtFn+E3L1qBNccYfjVeI0DFM/x7ek4/cL FIf8c6XhQLib/Db53aZOR/efbrP8J84/HFIv9coc3Wd9dZ7hNPy+ok3838ZO x7jf7DiWOBDx1ZWOe0lH/5varG6LcV5VLeN+n+NY4jfYRX/HvaTDrJdpvPBN geE36G+NzrsrnQ6//Hab1W1hF0NrhF7XZvlPjGc/rWfd6XiVOA3yXev4lnQ8 Z6Ge911XZDgN/S9U/l87HWbwfJvlP7H/74xqmV8rtV+/rTachnGt1PNGXzkd 436r41jiNHx/teNe0qGXljarz8Kcfy+XutX9jmOJ0+D3/u24l3TYT8Yfws8d WGo4Deotbcua1yHA2hKjwx+932Z4Ffb/s+YD69usPgu+A/Vc4N2OV4nTIPd1 jm9Jh/0tVv/Tt8xwGvZLFKmfP8DpyKu+0mb1WdjBteUy76rbLP8JO95E3xtw m+NS4jHY/z8dx5IObc9TvPFIueE9zKM81duFToceHm+z/CfE+kvfn5ut/Xq4 wvAY9Fqm/brA6ZD7JserxHuYR1c4viVd4q82q89CH+cUCd97HK8Sp2Edud7x Lemw86W6Tg2tNJyG567W8X3I6Ygv32iz+iz8aqPeh1zTZnlOmMtl+TK+dzgu JR4DXOjnODb2Xlr6w/lVhvcgb8YfIj/5mdPRfmCb5TmBU7oXyvqeq/2aV214 DPOgQvv1qdMx7jc7XiXeA9srHd+SjnnX1GZ1WIzrW3p+8T7Hq8RpsN/+jm9J x7TM+EPk0Vtr7P5SzN+MP0Qef67T8by39dzedzXyue9KmXcZf4h1cmSt7B/4 ZLmM712OS4nT4PeudRxLOnDHIp1fe9RZXhHzt1D12eL5RujlhTbLQ0K/t+j7 l1Zqv3avt3tcYb2V2q/mOqPDnm5V/XxaF7+f9mo9lznP6TxvhPEYWh/cA9Am +n7of9Mx7rss7MQHcly8QObZpU7nfjzM77/xkfhpqfAbTNzoz8V8qNS44/oG u/+WdCxzAxrUjn60vDHxsHzO1vetJA0/Ex/y/H2ItzEfeiXtPjEM79Mtxkfk nqr5DG/P+9LZHt8/ovzvn2HPJR+4kYXTs8LnEofDHTyidd63knbfOPrRQ/cn 75Q0HE5cKvszkobbScfwP5CU9XiXuYZLob9n9X6Ce+YYHe2PSFp+GGLtqec3 n0qKHe6w0HAp+L6elHOEdywwOtzTdknD58SlUPtfjudJx/h/mDR8Dj+5iudo nE7+8KtdkpZPhn1M0XsZHtX+jl9quBSfL2t/t3U6urll0nA7cS+GZ53jfNKB b99J2r4FjOO1ui9rl6ThduJVDMOmScP5pMMeHkyKfX+3wvAq/NPzer/LPwP6 MUnbtwC/fZzerzE4aflk2FGZ4rftk4bPiUvR7Q2ThudJR3fuVfv5M8dwLz6e 1nEc5XSMd9dk/Hx6np6jeVz7tX6l4VLo5VXV2zdOx++3ThpuJ+5Fvm2943zS oY73krZvQfZbV4n/3zVpuJ14Ff3ZLGk4n3TI95COe998w6vwly9of3/PMzrm wwlJ27eAedFX86tvJi2fDHVsUinzb8ek4XPiUtjLRknD86TD79yv4zus0HAv 3Mszqs8LnA65DklaPhnrUqJS5skT2q/PiuP13EFJOc9yntPhj7ZJGm4n7gUe /NNxPumoc7yftH0Lci5C78faPWm4nXgV82KLpOF80tHPjJ+EHbeuMbyK+fWS 9neI02EvJyZt3wLy+reVSzz3dtLyxvCbh+p7ejN+kviceBXzYuOk4XnSMawZ P4n87fBSw6uwl+eSWQd19P8Rp2O8jkzavgWIuVWZrIdP6X0Mw8oMr8K/vq73 Tj3sdDlPkjTcTrwKPLZB0nA+6Wif8ZPE7bDLt4uE30VOJ3/8rEvS8smQ79oS GYeMn0Q8sKDc8Crs65Wk4KOh5fE85JZJw/PEw5hv6xz/k47nvZO0fQs4/zck X8Zzl6TheeJY9G/TpOF/0rGP8kH1M20VhmNh38+rnuc7Hb87Jmn7FuCnztP3 rg9OWj4ZX49UP7R90nA78Sr6s2HScD7psPuMn4QZ7FlleBjr0cCk2GNmHpIO OQ5IWj4Zcr+VJ3W2x7Vfe1YbXoW8r6r8rVXx91tk/CTxPPEwhvsPx/+kAx5l /CT3LWCfdaW+z3PXpOF54lj0c7Ok4X/SRS/JrD87+ntGjeFYrN8van/3cDrw a8ZPct8C3MzTisPfTFo+Ge/pK1kkuGXHpOF24lU8PuMnifNJh7+5X/HAnbWG h/H1M6rPM5yO8T40aflk9OcVfd/lk0l5D8uddfY+BcyvjJ/E+7FPdzq89DZJ w/PEsZgXfzr+Jx3DlvGT8GcpvW/vmpnib3ZPGp4nTsa82CJp+J908H1E17v3 6g0Pw35fUj3f4XQ8/yS9t/Xcepk/N8+R9bR30vAH9xcBV7xN/KD5tfJJ8ryd tb+7NcTfo7Sxri+nO1346rz+usHwPOmwl4Gd6WwvacqxggO2cLr0Y0wnPpgP x0wxOsZ/UIPl52X+O84v1fdOgX5iZHEBcS/v52P7+PnEyN6P9Ybed4N1cDO2 H6H3szRbe+7TAL3F+ci4ThIccW2T6HEfvTf04SkmD8Q/Qt9rcfBko8OeS5Lx 9zQdpPc49Ygsz4/flyn+/MXjDuJtrHejPE4hHea7RyT3+1w3y/A27OyQKGvX jm5NnGl04LoVScv/Q6wF+p6CrpH4pX7zDG/D7rtHIve4uUYHn/Eej8TuX/rK 4xfS8ftTItuvgnXoGb3fc7rHI7R3/P3J4xfS8dklyrqqw/z/WhS/D7RblHVk h76vdjrGvcLjDnyeVi967xnZPhaM06b6XrxfPe4g3sa8/M7jFNJhNntGosdL lhvexuMOVX2uWxbfb7AqaftYZB+v7gc4LrL8v8yPalmnJnp8QVyN8R/p8Qjp WMd21Xudv8g23A6/eKD296LseF56fjJ+n/ZLeq/3vtqv4bmGqzHvjorEHi90 OqbrGI87iNthZ194nEI6/OyJke1jgZ84TM8jTPG4g3gbfL/3OIV0tNs7EntP rjK8Df98uPZ3qNPxUZi0fSzo3x9a9z8hsvw/huFHxUeTPL4grsY0+MbjEdIh 126R8DuzwHA7nneQ6jORb3ToZ0nS8v9yb4LeG7R/JOeZexcZroZ4x+i9pC2F Rkf/xnncQdyOzxEep5COx50c2T4W8O2r54qmetxBvI1+/uhxCul43j563/P7 qw1v4+uMP8T6eLrTMc9LkraPBfazW5ngjh6R5f/h3r9eLeP6i8cXxNWYF996 PEI67DzjD7FfrabEcDX0foje8/qu02X/QdLy/3D3D+q9XF3VftpKDVfD3x6r 9+7PdzoeP97jDuJqPO8rj1NIx4f5wzK5l69K9+NP97iDuBp+b7THKaTDfjL+ EHLsVW64GvMx4w/h/xJlRn+pg1Glxxc4j/ZvzYf3imy/Cn7XulL0/qvHF8TV 8HvfeTxCOtjSH/apMFyN+XOo6nNPp0OOVUnbr4J+fZ0n7TL+kPl/6Hudvpds oscRxM/g97XHHaRjnDP+EHHu3ZWGzzHPDlS99XY6+rEgafl/9L9Zz3/QH95V ZfgZzzta+3WG07Hej/H4gvgcbucLj0dIhx4y/pD7VTbvEOT+xWLfUzy+IK6G vf/g8QjpWKf2Vj7vVxuuxrw9XP3tnU6Xc25J26/ybQebn5fJvMv4Q+b/Ie/L c8XvT/I4gvgZfL/xuIN0DMNuisem1hg+x9cHR7IOvOd0DMOSpOX/0Z8zF4o9 76/9mlJr+Bnz6Bjt17tOh77GeXxBfA47+9LjEdJl/Lnvos7wNvicHNk+Ftj7 pr+IPUz1uIO4Gs//0eMU0vGcjJ+EOqvr4u9pPVL1MNnpeFxp0uTBvNpvuvDv ofN6SL2M083fiZ5+8fiCuBpq/dbjkRBvw9/25T3fL8TfL9E7iDsyfhXmul2D 4Wt07xAdl6p6o2O/SHbS6gUYh37jxR7GMw/pzyUdP3/X4wiYQcZ/Ih6a7HS+ B4D4n88VPJIyuvhnrXvc5nEEnp/BveQjdj5U7PeoJulHeWT7ut/qeG5Fo9EZ L8BuN1V8Ozqy957I+wP0vNgsxflbTIrfE5gTiZ5+nWB0qOv5yOoaeMxK3dex OrK6BuxhUL34oxs87iDexu8v8TiFdPx+WpR1Xociv55ueB5mtjSS/NiGTkd/ H46s3oH14dEG2Z+zUOOjEbMNb+O5Bfqehz9mGR3j28/jEeJ54OMLPH4hHfOz IrL9SPBfh+n7Tm7xeIQ4HOJd5fEL6fBvcyKR45wF8ffW5CreGz7f6OjnK1F8 /3yL7usoiayuATl/0vtJ+nvcQRyO31/qcQrpSKfM0HW/cYnhcHnPiuqzj9PR /onI9iNBD+/UiL9bpO+NiZYbDsfvCiPxi8OcjuH8l8cjxOHg29fjF9IhbpXH I8gH9tV7KIc4nfzhH+6OrN6BcTpe7x2Zp++NOSvHcDiardJxbMuO4/OrPU4h zsd8OtfjGtIhRmlk+5QwjrnloqcbPU4hPoefvNzjGtIx7jMjkfejlYbPMZ9X RGJHfQL6wMj2Kck914o7iiOrd2D8rtFzSdd7PEIcDvO+yOMX0oFnpkZ6z02e 4XzMryWKZz5wOh73QGT1DozPReVi5/MjWY9qCwyHw47zFP+853S4u2s8TiHO x/w63+Ma0vFZHtk+JfiFxGqx75s9TiE+h31f4XEN6bD/2drfXsWGz9G/HO1v dZHRsV6+EMXfs/BGifDP+EnWOyDH+kIZ3xs8HiEOh91e4vEL6RjmjJ/EPUyD 1hjOx7xeqv3t6XTMu4yfZL0DesrRfixU/9+nNL6vo0D9wF5Ox7hf63EKcT60 dIHHNaRD7ZWR7VOCHfVaJeN+i8cpxOew46s8riEd8yvjJxEP3F1m+Bzjkavv 2+njdLlHKbJ9SqDP0PtESyKra0CsPjkyzv/2eIT4HPPjMo9fSAf/Gfqeog/K DZ9j+JerPu9yOsYr4ye5Twl62Wyl1D8yfhLx7PsVhs8xTkWRnN+5y+kwx395 nEJ8DjX19biGdJhLlccpkHejJVLf/NTp5I/9KvdEVu/AuF2QLf2Yp3hmaqXh c/jRVeo/36+Mvzf9nx6/xPaNnOvxDumjdR9yg+Jq4jqMf1lk+5rQfo954t9u 9LiGeB79uNzjINJhvzN1Ha+pMjyP/q1Q+5zidPjhZyLb14R4/uGF8rziyOog yAcdPUN+d73HL8TtsLuLPd4hHf2Zquvd9jXxfPsS9UvV1UaH/A9EVgfB/xvO ET3NV1y3Xa3hczw3X/tVVWN0qPcaj2uI/7HOne9xEOnofsZ/cl8T/Of3P4g9 3OxxDXE7ptuVHgeRTnwLN/7vOsPVpDN+4bhDjoy/hbw96wy3w05yVD/bOh3j 8yLxrb7navJ40dMNkdVN+NwYPRPXELdDT5d4HBTSGdeQD/r5SGT1EfizkV8q Xm/X+sSb8ThiQirYX6Tnfe5MBe8zarD3IrI96WyP/o76PCukQx/bDovvA/8r sv38jC/w9SspHafv9P2feq/RVimx/+pRhs9hB+s1Lnj+e6NDzDtSgmOHjDF8 jv8fS4m/7Dva6ND/ISmLR+CvXtD3T7yQsroG9Hm8xpebpiweIQ7HcLR7/EI6 fn5zSvpX8avhfPjzh1Iyv9//xejIf+2VsjoI5vfBes/5ffp+1OYZhsNh9wNT Ulc/2+kYr/9LWZxCnA//mPS4hnSMz2sp25eF/uTqvTVbpyxOIT6H/f3hcQ3p 0OudaidvzzV8Dn08kZJ1oH6O0TEMR6ZsXxb4fqZ+6MWU1UHweY2eX9s8ZfEI cTj6/ZvHL6TDLG7V97Uev8hwONzKw6rPwQuNjnnRJWV1EPjF06vF3zyQkv0Z 3ZcZDoe/fTYl9jJoafxeo41SFqcQh4Nf5HEN6fg7KGX7r6Cntbp/eduUxSnE 4fB7f3lcQzrm19363PoVhsMxn59Ue/vQ6fDj3VMWjyDvPKlC+vlyyvZfoZ9P 6/m1LVIWjxCHwz5+9/iFdNj57Tq/Ts41HA59Par9rcsxOuz9gJTtv8L//bQu 8FzK6iBYTjcuFfvZJGVxB/E2Hp/2OIV0jPNNKbH/wasMz4PvgFTW8R39O9Hp yPftlrI6CNr9qe+DvTcl6/jr+Ya38fm02kMvp0PsDVIWjxDPYxwSHr+Qjv9f Sdn+K+RVziySfm6VsniEOBz+dL3HL6Sj3xl/CLy5ptBwOJ6b8YfAe685HXZ0 aMr2X2H5aNDzuBl/yDoI7OHifBnfzVIWdxBvw++1e5xCOnDdLSlZZ49ebXhe 3puYkvPgxcVGhz/K+EPWQWCvxxTKPMr4QzynW4nhbawTGX+I6Vy0xugY94w/ ZDxCPI/+Jj1+IR3z7rWU7b/C5xs58vttUhaPEIdDX394/EI63PpdKa1XlBoO x2fGH+I5Hzgd8nZL2f4r2E8XrQuYP9TzCR8tFz+2ecriDuJt4I7fPE4hHdM+ 4w/l3EyZ4W30L+MP8btpTsfj9k1ZHQT9uFnPPz2g/aotN7wNs3lW+zXV6XI+ L2XxCPE2rD3y+IV0zP/XU7bPCnb07TzxYxl/yHiEuHq04grGL6TDzu/WdX+H SsPV4Pek9remwuhYPrun4vusvlqo9wGmbJ8V5tnMGTLPt0xZ3EFcLedjPU4h HXq/XdfrE6sMV2N+ParP3d7pUo9O2T4r9Kv7HOH/fMrqIHAbP0209yozjiB+ hhrTHneQDnVn/CH43Vht+BziDlC99XI61peMP2QdBPp7cpq9bxxyP1JjOJN0 1keIqzHv7lU//++arFhe+mnVQ0+ny30pKYtHiOfBLuHxC+nAEVulbF8W5SGd 8QhxNdzEeo9fQjrjDvLBczN+kvuvMA53fNUpr069YfodlzY63POp+h6Yo9KG t4kDZVy9Peno37qU4XniWPIRuT8Xf3KNntcb7TicuBT9+txxO+mIx7dPy/p/ 3SiTB8/pkpb7NmeMNDrm3ZKU5f/hJo6tF3x8WNry/xi3Ej2v973jcOJPrAuf OW4nHercOq35+QmGb7EM7ZXWfP54o0POaSmrC6D/q2plf+GuaRnHe6ca/oR5 HpQW+9x3itHlniPH58S3+PjY8TzpWD+OTts+JZjL07rPcazjc+JSqG+E43nS Ye87prPOxLndWYZLMe/2S8t9scc5HfMkO2X7lCD/hZonPyJtdQGoY+NKGZ8f HIcTf2L8hjpuJx162Sat53PnG77FtNonLfMyf57RoYfZKasLwL5a9T1Iu6cl r/jEYsOfeM7BacEVuYvi93eNcnxOfAv7/8TxPOnQQ/e07VPCPP9c7+8a5/ic uBTP+dLxPOlQ407K583lhksxP7qmBXee7HQ5D5iyfUro962a9z4ybfl/yHmI 3if3k+Nw4lLMi+GO20mHnW+Xlv2kZdmGSzG//pGW8X7D6TDHBSnbpwQ9bFkm 82vPtNStS3INl+K5h6bFP7zudIz7t47PiUuhlyGO50kH7jo2bfh8doe+But9 yQ2O28lf9kukrC4AP9FP5d9F7faYPMOlmI8HpGV9Xr0qjldHOm4n7oU9fuQ4 n3TMk4yf5P4lPP7jfBn30Y7biVcxzz93nE86hifjJyH/8wWGVzGv902Lvzkq oC9N2f4l5HvO1Tx5xk+yLgAcPULP8X3v+Jy4FPJ+5niedOhra52nK4sM98IM Mn4S+nvW6fiYnrK6AH7/Zp7Y827ar5zVhkvB9yBdjwY6Hf9/7biduBd482PH +aSjPp3xk9y/hN+XLdf7kR23E6/CH45wnE86zjHuqPN0x1LDq7D7/bS/K0qM jvmd8ZPcv4TfPaX3smf8JOsCuJe7YJH4tx8dnxOXotlQx/OkY35tm5Z+nFRm uBfzK+MnMQ93cDrEmpOyugB+//IykXt37deJ5YZLMb8O1vm+vdMxTqMctxP3 Yl584jifdPSne9r2L2G8L9c683jH7cSrGOYvHeeTDrF3Tsv6f2OF4VX0q6v2 t5fTMW55Kdu/hI8b5wj/jJ9k/l/Kk5PEPn9yfE68Cn893PE86fgd/eTrlYZX gWf+ofr8t9Mh1oKU7V+SMtg0zbMrrnu9yvAe6cz/E8fi3Oue6vcGVRleBduM X4XZ93c6xvk7x/nEqxjXIR4XkA57mOA4n/Lg/E+j08kf9jw5ZfUCxMupcdLP jJ9kvSCW9x7pOJ+4F/J95HEB6SEuBazvUqjz2+ky73Re5jq+5fqOn32aNhxL /IDp/aLTiXNAv9vpxGmwhyucHsOHVzseJh3tT0lb/hnilut55SzHt8R1pBMP x+iPOr4N5WE+GY99sUbk/yht+eRYv852HEscKOjLcS/pEHtS2va3xPR2keNY 4jf4yfMc95KOefK941XykXO+advHgvm5Xuty2WnLD+Pjh3LxL1c4LiUeg52f 5TiWdHR7XFrW5flzzB4wXrPSYr/7OR3tbk9bfhhxxNAKjavTsj7OXmB4DHh+ aVruI9rH6ZhHFzteJd7DcJ7u+JZ02Gt+2vaxyH5hzdP0c7xKnAY7u8DxLemY H7+kxT/dttRwGsxlgeKQGUuMDn0/kbZ9LHj+rrrvNTOPmB/Gxwi9L/lKx6XE Y3je2Y5jSUc/xqseXlpheAziztZ+dXc6xuuetOWHoccBJTLfp6cFh72QY3gM w7YsLf042ungc6njVeIx5BF6O74lHc8vTMf3q5TnC6661vEq8Rjs8kLHt6TD 2n9Ny7itWml4DP1flBY7e87psPNn0oZLYW/9C2U9W5m2/Sp4v3uT3vd1teNS 4jF8nus4lnTocaL6q0Py43hsrq7LuXlGh/8dkLb9KnK+T+/vWZG2/DDWybV6 Hu0yx5/EXdBrH8erpIPtmLTgsv8n7MwDPZ/KP24JJfuWLSJLIWTNOraQUCSU pYRs2SJDIVSIUPGzRfYlMRQihJmMMZYZsy93tjvr3e/3e+fO3CH0+877PK/z 3M/zuZ/f76879zXPfT7nc5bnPOc5zzmfy6Zmv07vOczqbSvn+p7x6YtzfFh6 O8encfQve69Lp2W/S+7Wu+YnbOFc7fot90vx6zT/7ed+LFx+8aTFOV9l9FKB c95N5fie+6X4Y5r3D3M/Fq6fDfupcT5yRvbHNH7fsve9xLkM9uDFOV9F7/OC rfMa9pD4sOKB17yZ7Nh33f/E75KfcLD7q3A9pmEPNV/fNCv7dRpHDXsoe3aa c9nxsxfn+LD+/sC3U39+bXHaP7ypuXi/xCgbR6c6V//4tvul+HWq7/3dj4Wr ficvzvkqshNL/pna/QT3S/HHZC4Odz8WLvfrJZsHn5+d/TEN+5E2T/3Oud7v 8sU5X0V6Nn3d4o+L87yFPyZ727CThe+sfePJ1O7Hul+Kf6X6OMT9WDj6Nb42 mZv9pVRuG18z5mS/S/kXwxenv3/eueqlYT+JJ6tej30+2bujF+d4Mvrh+Kv4 XRoGB7p/W8gHuKYv+11w/Xp1X/a7Cvc8H+/ycPXXYz1PAHsovq/zQn7XVs6Z L8RXc868pmZa7H4a87Lef4n7FXDJz1ic41qq9yNnJ/sx1/0E5lk4fgVcdm33 vjyeKaf+v8P9BOZHOH4FnPdiX1h2+Xd2/r7X53HmL/19p8/7cNmlwX15Hi/M O193Tj2rftbuy/ElzUdjpiX7f0Ffji+hR89Z4vN44T6lVp/34bJnV/XlfV59 r2O3icleLN+X53HmL423Xp/34Wq2H/Wldvr5+NzfVI4L+1L9bO08nSvpy/u8 Ktfrk1K/vrwvx4vUzvvbfR6f+HzN/KX1c7fP73BV30l96ee7E/P8lfaf+pKd ucy59sk+11f8TtkKpu9Me6+3J+f5S+NusL3XYOdyGz70ebxwn1K7z/twVXtj /DKPq10+ejfNy3s4R7/kV+7LcSSV95tj09+dau+7cVPxnPhF1q9GTs1c3XGR z+/MjzIn890fgKver+jL+7/qPuuMSP7tMn15fmdekz2suz8A1/j+QV+yQ+dN z/OausV5fWm9upFzPX7jvrz/q/e5+O2k/7K+HEdSf91maHr///g8zvyl+uvw eR+uev5+X2rP12fm+VE/zupLftC5zvX3DTtAHEn1/9830vud3pf8sJmz8vyl 8l9s+p93rvfr8/md+VHjo8X9gcL59OsW5/3fwj7aL/sy1/P+MCT1h2X78rzP vKb5oMf9BHjK57N23Hl2no/gzPs8V/Xww7407j89O893Gs8Nu6Ryz2jOXOXY rC/vI+t9Xng+9YePPR7Fc+H4A8xr6sdd7j9EzryPHu3frt2X404ad39+xOzl kjwPTrR7t9Tttl6S503aXf7bEp/X6J/is5wzvvTebzln/Io/4xz7o3j+pL4c ryjsv/f15TgD+iU/ui/HGdJP039nX47/S90mE7L+U83+ol/m8g9un7FLcOx5 IR7bKD/rI1XjaWOT/F1uV7EbGhd/cDtciKM+4PYT+6BmusftLVzj6tNLsj2k /mUPRrs9lNzDbyc9WyzJcXXJvzI0teujbg+xA+r3d7j9hKseV1iS3nftaUU7 sI71n9eaMle/HdqX4+ryj3ccnsq36ZK8ftH4fPiFVI4H3e4x3jXd/9HtJFyv veySNA+cPiPbE9XjGkuSnVzTucr1bF9ev6g8l75m5watnIfOKuaFfnZJurfz q7Py+NXfb7Qk3Xe4knPN0/e6ncSeqL5udrtaOE/3eF+OtxfO0z3udpJxrcfc 5XY1cuweevT/b/bluLr0nvJoqoezluRxR/n1/ZCjnFNv+n3QkuxXFfQPXpLm z4a/WtCzx5K8LpZfOeW1VL7dvZ9QD3D6FZzyMN+p/PXncnloX+pBenfx/gDX 7w89kN8r/bTv3Rz0UOYpnHlb5un3X2d5jddl78/yyV4+V+LYT56LHvjA8q+V ON+diXpolyg/z8ZF5KkehpX0oD/KJ/0jShw7E/Uw3qM89jnyFCd/u6RnfkX5 U/2MLnHsYdRDOaN8Ie7RjzNfRD3YvSifyjmuxAv7g/30VNVD4T78flzrmnnj S3p434Hba1KJ4/9HPevafBflT7L1S+SpHiaX9FCfkbPejHqqeNLTXNJD/DnK V/FU/7NLethfGHj8zi1x4vORF84P9uPJj5hXei7ykbN/EfVU8dSO80t62H+J 8lU82e+Wkh7yi6J8FU/zTGtJz5uWNxXlq3g6X9RW0pPW990V5amXeJq/u0t2 W/sxf11UsvOap0YuKs0LUV7td/9dpflCf3fgHXm+QA88zhdw5gvk0R/nBeT/ b/5aSU+cF5CPdh7OfBH1VMkzj0TOfBH1xHkB+Wif4YW4VD89cV5Annlk4PoZ XdJT9dxoV+HRvqEnzgvIM49EznwR9cR5AflCfKYfZ76IeqrKzzwycHtNKumJ 8wLyzCORM19EPXGeRZ55JPKm9ICSnqp6+JvFAwfW31Li5GdG/Sle0l2ST35s W0m+3exMlI92smAHNmwv6Ul2uFaS/7vZw8jVjOt0lPQUvifdT57zZZEfaPfL Ddyfy3qSH95RMV66Snq4pzvKp3VeZ4m/bvUf9aT5pawnxY27KsbXwgq7sbBi XNdL9px5Idp/5oVo5+GsM5h3mBfgxE+YF7Drkaf54eEch2Eej5z+FjnzsuJl 6z2Z+tlnHsz6lY+x2pAUbxr8UOb6u8efyZzyq7+/+0TmTWavkll5POuHR3nG e+Qpf7xW0pPGy8KSPFzyBz2b711RORcsypx4EVxx24f+ljnti7zGyQN/yfUA V7c58LFcD+iBI6/1/3LPZL6n2dvIU979rKyH565o+w5Rnv4f5fFzojzjMZa/ 6n3pt/G94Mzb9Cv8bfwCOP52+v2Nkjz9HI5fHXkap3OyfwRnPzPKY08i397s VdSD3Ut2/aXcH4jfFs55HH9fiUf5qEd5UissHhTlI0c/XM02xOJSU4fkfpWm 1RfSuNjg6cwld9hLmdM/NQ+f+XzmtEvk02ye1b7v3s/n5+5p66Aoz3waOXYp 6uH8RZTHXkWOvYp6mDejPOuFyHlu1MM8GOWrePLH2kt6OE8d5elvkRe+U99P D/0w8tQvukt68E8iT/HLrhI/JgXISvqxJ1Ge78xp/C14JcfvsJ/w5Ac8mbnc 6Eteyhw7k7Zr/1mMSzb6rezWPS/nuH1hfbT/K5nTn1P65EuZM84jL+yzbOvP hUd5xmHke5q9iHr4ObCeESV57GCUZ10Qefq72SU9yZ7PKMkzXmK9Uf+xnrHn sV0K/syzr6Z1woTnc7sU+EnP53aR2V3VecF/OPNfmdNekRf8oVX9ufAoj52N vLB/109PIZ7cTx7/JHLWF1FPGtfvluRT/KpekodHeexDrM9C/KFf/dMusZ6L fuawPK+l9ayfR4QT54mcOFLV/Fg1n/7f8+/ofN6N+ZH9tO3NPsBZRxb91t59 abfrbNwyP+KHsK8HJ/4Ruarj5qGpPD99MfdPufubWd7Mof/MXO7INOeFeM64 17Me+qGWHz8emuWreCHO008PcYwoX8ULcft+eujPUZ54SOTEKyInbhA5/T8+ txBv78dZ70c9VbwQb++nh3l84HqYXeJXWjw5cvzPyAvx4X7Pxd+I8mvYudTI 8UujHvyKKE/8eeB+MrekZ0PzH6I84z3yQpy5nx7GdZQnHhJ54b6UfnpYd0f5 qnr7e/+4bj89xD2ifNqf7ylx5KMe/JYoL7lTF1XU/6KSHuTVLbZ5I9tL/Bw4 5xTgWs5d8O/MsefI65zCvq9kOwNXXtX2L2c7gx448mq254dlTrkiZz2GHp6L fYzy2JkoD4/y2J/I8U8iJ68v6me9EOXXtXMxUZ7+GeVZR0d+jOVJRj0X2boj yif7U9aDnYl6sEtRHvsTOfYn6mG8RHnsUuTYn6gHOxPlsUuRY3+iHuxMlMcu RY79iXqwM1EeuxR54d6nfnqwM1EeuxQ59Rn1YDeiPHYpcuxP1IOdifJV+rEn UQ984HZZVLID+HvRblTZGeSjX0dcd4LZAzjrxCjPOjHKF+9Nfu7/5alZFmb/ jTgn5cRvIl7Ke2Hnojz+wjxb1xTjM5NKfibyxXVZb/5uZPQbC/dw9+OUP/ql +FOUN3LmhWL8Z0SJC//gzTRum14txnlusH2qDV4rxoefGpE584jWfXsPz3p4 b43LM4Zn+SqOfx/18P4Dy79W4vjxkXP+Meq/zvZZojz2MHLWWZGzTon6kZfd +uitfE6QeRzO+T54Sp8bkccB/VPd+k8jcr3QLrIHV7+Vzw/CFb55zTntlfYX nNM/IqeeZRZP9ucyL0d5+n3k7OtFPawjojzr4sjTc8eW9LAuiPJ7WDw88sI9 qP30rFNRzr+aXxH1cB4h8qvNPxn4vWaX9J9p+SdRnrh05KyjIycPJOqv0rOz xVcj38T8paiHeTzKE1+N/CSLF0U9g21ejvLEVyMvrMv66XnAzvlGeeKfkXf3 Xx/105P6/4KSPHGGyNN82lnSg58Z5fErIieOGvXgn0R55v3I2ReOerBvUZ55 eeD+XCvpGW5+TpT/js3jkbMPG/VU1T/+ycD1XOb4LdHuMV9HOwmP9hC7qmqa PTLpe2BYtp9wPe9nw7L9TPnCzpFP84Jz5nvk0X+d+R9RvooT54p6yCeJ8tjD yImHRD34DVEeex45+SRRD/kkUR57HjnnqqIeyhnl8bcix6+OetJ6rVaSv74w 78d66yrpSfVQ1kN+QuTkj0U95I9FefZVI9/U8iuinlT+npJ8mr/K5aT8UU+y q2U92IfIKX/Ukx5b1oM/HznPjXqSP7CwJJ/m/bJ+nhv1pPVpWQ/rqciRj3pk p/btLclXlTOtZ3tLelinRPkq/bZeKOnh/r4oX6Uf+xn1wKM8djXaN+xntIdV 9rNqv4B6w97E9VrkKe+oN9szOOWMnPcifhw5+uP6rnDfeWk9OKIkXyznw3k9 hd2KnPJMsHVO5EV/tXdf7GgxD8J5lFc/Ws/2i2r/zvOR+str76b7P855I3Pl 8Z3+XubMa2quDV2+2eytxseF72T98Ch/k8VnVMxnRxXrtbGugXO+GK5mXM05 9Y+87peYODyXH656OGl4Lj964MjLrTnzvcwpJ/Lo572iPDzqpz/E8lSVP8YT Yv9k/fH/cfo//Sf2T/yC2J/pP1G+8L2Oec/l/km+J3FeOOuqyOn/sX9OMP8l 9mfeK8qjh/4AZ/0XOf4F/S3qgcdyoqcYb3m/xDWdX/R+mqe3GFHMK7jN4kLf cS4/eqMxmdM/tY5c1eWJ90ae5vepaR05dXR+Luu4KM+6IPLzbP0S9RB/i3wN m4+inirO/Kt1wLAxxX63YFHmab3qXK+xl/NCfGPrMcXv3hHH+NOYfP88XHZv iHPqWd3tOuf41ZETj1K51/HnwqM8/Sxy4hhRT7PNH1GevOXIyVeMeuivAz+3 qcTJT456qsqf7Mz0Ek/+7bSSHuInkRN/iHqqOHH+yIlvRF74LnC/58KjPHH7 yFnvRz2cfxm4XVpKnPV+1FP1XOIkkZNXE/Wgf+D2bStx4iRRD/GEKM/+S+Ts 70Q9rJsix/5EPVWcdVnk2KWB679Wei48yrM+ivzK/vHYfnpYp0T5tI+2sKL+ eyrqp8yZxwced2XO/B7tG3Yy2sNC3KOf/YRLbNexqd73fjvbSbXPZs6xq8jL Dzr+7WI8ZDWXx66iB/lC/l0/+SrOuj7qIZ95YD1jS5y4a9SDPYzy2L3IuScn 6il817iffPJvZpY4+7xRT9Vzt7F4cuRpf3B2Sc/EiudyzjFy9mejnqrn4m9E jt2Oegr3M/eTJ+86cvZno56q8jOPRM58EfVQb1G+8B2cfrzX7HbUw376wP12 QYljz6Oe1W0/Pcozv0ROXCvqOdLi8FEe+x/5QbY/HvVU1UM6F9BR4sSxox7m uyhPfDty4lpRz6E2Tw08HrtLHDs58LheVDHuFpXsXpWdxN5Ge4h8PI/AuRLi BnDiXVH+Ioun4U/F9V3klJ/4a+Tss1XFK+J6kLjywPKTs30v7iNPyt/DgpOP Q94v/OT+fm4/PeTpRHmeG/XzvsmfeKu07mMdEXmxHXr35blx3Uo5Vw/rPsoT uer5W+PSPPzYO3l+1HpryLh0n/hX381cihY7Z/7VOZofO2e/V+N1JdcPj/Kp Xt8ucexV1MP+Y5R/0/Z3ZHbvHZ/jBKzX4Ny/Cte9fMc6p18V5H/3XjHfvsG1 P7fFe7ke0ANHXvcqr+ac9y08t6Gf+onyVRx7G/Ww3onyzOOxnIyX+F5V9VCM z0wsjV/iLf8fxz7gB8XxW2i/fuOddeTA8k2lfo7fFDn+URxH5Ffz/MjpJ3Dq YUD+op0zbhpVjPvNse+NbTi6yH8wMXP6lfgZLo8dkv69XT88yrN/F+VZp0T5 Ks66SfZoxUk5bs04gif7FPgNEzOnHdV+V0/McUHqQd26d2K+txAu+Y+dF84V tjunHiLHb5f+S/258CjPuf6B9Qwr6aEfRXnsd+TEmaIe4ouR0++jnipOHDBy 5qHImW/ic+FRnvEcOXHVqAc/IMoTJ4yce5KiHsZhlMf/j/LM61Ge+WXg57aU 9LDuiPL4q5HjZ0Y96I/y69q+Z+znBT+n37gonHPpN44K/DK733mlMcVxdJnd W7DsmDyOpP8C58irnGc4x54ij3788CiP/xE57RL14IdHedabkac4zKySHuJO UZ71ZuTMj1EPcacoT3+LnHVf1EPcLMqTNxU5fk7UU+hv/eQftXVi5Kyzoh7i Y1Ge9V3knOuMepJ/0l3R7uX6J98m6rnO4k5Rnvhb5OxTRz3sR0d59m1jP4/j BV6Yp/qNo+K+8Njsz+B3sR4p+j/Ts98Hxx5i56K/xDol8uL5L/ejGGfRL2Jd UMWjf0V5o7+0vb1f5OQPRj+K8nxi9wzDeV/20yLHT4DLrtxq31Ma4nZJ5/o+ npz8k4+ca52w15TMsW8aH6+7PPsXkVMOFeNYfy55+1GeeFrkBX+0nx7i81Ee exh5oT366cFORnnsYeTYvagHOxnliY9FefIGB67P1hIn/hx5Ib/u2NC+Gy5M cazZU7J/gz8J555quPyRR5zTn5HX+zwwNvcTuPyhn43N/QQ9cOT1Hmc4Z58Z efSTBx7l/2/+WkkPefFRnnEWOX5m5MRNon74wPrfLXH8/agHHuUZX5ETX416 rjM/MMqzrxHlufcmyuN3xXbE7sV2r+onyFOuaId5v8ijPcc+Yw+iHSZ/MNph eNU6l35OXAj5Yv6O8yhPO1xv8xL2ln2AicE+kz8eueIFH01N9f2NcXm8qF/s 1JTi5hc41/dsHnLOuFN7Dp2aOeMlcu4lUH3f6M+FR3nGUeTcVxD1sB4cuDyv lXjhftF+enhu5Iy7qKeKM66jHsZdlK/ihfPI/fTQX6J8FS+cO+6nh3lq4Pea XOKMk8jpr5EzDuNziYcO/L7TSpz5Our5xOJBUR6/OnL8noH7T1meeXPg92or 6fmU7V8M/NxaiW9q+xFRD3m5UZ75d+D2LevBD4/ynA8auP/US3qqyv+onR+M nH2HqKeq/PgPkZPnE/UwvwzcnxdVtGOZY+d1zvCwaTlugn8CT/7QuMxlV6c0 ZY79Rz7t44zP9hOu9Uir20/0wJFX+5/pHLuKPPqxn1G+imPfoh7sZ5TH3kZO PC1y8t2ifvjA5RlR4tjVqAce5bGTkWNXo57CffL95LGTkWNXox74wPUwrsRZ P0Y98ChPnDpy1pNRD3zg+pxc4qwnox54lMefiBy/JOrBL4nyxCUG1t9V0gMf +Ln1iveqV7xXWR57OPA46qkYdz0leexV5Kynoh54lCceEjnxk6iHPPwoTz5/ lCeff+BxVNaD/Yx64FEeuxrtG/5wtIdV9rN4vtv3oxkXMZ8ZfyPm4SO3QiHf 2P1/8hkjPzmsF3gvzvVGP5/4YuTEF+N6AX+K89cxf5jv18c85OL9Rr6/zL52 5MwfcOzBTUE/8nHdgV8W1yn4j1EePcyPxXzsmSWOH8f8C6fe4r4e9UxcHU67 RK56O316+rs544txpzOmp3yXuc6lZpUZmTNfq9e9Ni3rof1UvqHTsnwVN0Nc 4pQ7cvY743OreKG++ump4sSxox72WaJ8FSfuHfWQfxXlqzhx7KiHfK0oX8XJ 14p6iONF+SpOflfUQ/wtyldx9o+iHvYXonwVJ78r6iGPIspXcfJ4ox7OL0f5 Ks56J+rh/HKUr+Kss6KeoRYvivJVnDhS1MO8H+U5lxc5++mah6ZNz99Lwj6o Wr81I3+fDq4/u9o5dkO9dGPnzE+Rs4+s5v+LPxce5dnPjZz7z6Me/N7IsddR TxUn7h31sL6O8lUcuxf1YK+ifBXHjkU92KsoX8WxY1EP9irKV3HsWNSDvYry VRw7FvVgr6J8FS/kqfbTg72K8lUcOxb1YK+ifBUv5Kn+JYyvhr2K8lUcOxb1 YK+ifBXHjkU92KsoX8WxY1EP9irKV/FCvms/PdirgeuzXuLYsYHHUZmTFzpw uywsyRPniZxz01EP+7kDj7uyHt436uHcdJSfVqGfdVbUk9YDvSX51N3Kenhu 1MO6LMqzzhrYbvSW9CAf5xHWC3HeYX0R5ym41glb2Xcrj5+Y56NU3BmZM38h r+df4Vz6hrk88xd6kC/ce9FPvoozf0U9zFNRnnktcuajyJm/on54lGc+ivL4 21G+ihMPiXqYBweunzInLh31oD/KMz9GznwX9VTJMw9Gzr18Uc9jFm+P8uRf RU5+S9QzxsoZ5dnXjvwm29+Pev5T8Vzm2cjftXkz6mF+j/Iv2HwaOfNj1MP7 RnnyASLnPELUU1V+8nYiZ58i6nnA8r6iPPN15My/UQ/+RpRnXo58BZtno56q eiDfKXLOOwxcD7WSfvjA47RekmefYuB2KXPuJ4l6mJejPPsskT9m+ymRMw9G /fCBx/vCEp9q82PUA4/yzFNR/lM2b0Z5eJxfquajwn0X/eadqvsKivv65Xhg VdyP83kxvkf8KnLyJWPcj3VGjO9h/2J8Dzsd5bHrxNOK503sfuVT3yvxtN82 thTvSuWbkONmzDNVvHi+p3dfys/+QfG+gub8PXQ47zUg/8IsO48wKfsPKvd+ s9K5j+9MKp7LuMg5/om+Pz91ZtZDnq3Cnqu6fBVnXtDvI2bl92L/Dp7s16TM X16q7jbntGNB/j0vZ0H+PX+vwnM/N7kYNzjF5Sk/epCHR3neKz6XfhXLGcuP fuTxX2L/J04befG+Dh8X9J/Yz5nP47ig/1fFyal/+hU89k/8lChP/yyedyGu XubIF+2K3W9zTHOyT69OLsaNT7B4wwjneq3HndNPND+s6pz2jZz21Xuu5M9F XuX6T7OtzyfnfgtPec9TMtffD2nO+3/Uv9rx7ua8v1HI/xnfnL+vDU9ujfNi fqZz7rWO/Cyzc2qm6/y58Cj/hUJ+o3P8q6iH/YAoT5wh8sPMv4p6uE87ypO/ HTn+VdRDf43yTbbvGTn+VdTDuIryG1ocI3L8q6iHcRjli3mhzg+0c7tRD/58 lL/dzttGzr12UQ9+dZRPebC1Ep9o+epRD/Gx2G8L9wv16+eFPOp+/blwb9Ku Vt/HTy2e82pwvefeU3P/V3tu5hx5vcZqzgv3vffji83vRQ/PhUd56ifyNC5q JT3wKI//HDl+ctQDj/L4z5Hj90Y98ChPPCpy9tmjHniUx3+OHD856oFHefzn yPGTox54lCeOFDl+ctQDj/Lsy0dOvCjqsfmr1D8L94btGup5gP6PPOt+5n3e K3LKWfyunXPk47wPj34CeqI8837cN8deXmf5T5FHedb9nAON8px3gFOe/9r5 CDjr8tWDX826vHiPWu++xAOK51FcP/YKfwb7HTn2mPkdrnocNjv14/+6XVLx Wux80m5Nmev115uTOfZN73Wb6+E9Nf285HqqOHG5qOdv/dez/eSrOHYm6sH/ jPJVnHGhcXPWnLzOw1+Cp/m4KXOtc/ZyTv9EXnkrPV6fcDXvM16f6IEX5wvn +C3Io5/7NKI8/TVy4vZRT1PBXrk8cYnIqc+oBx7lqef4vozfWD9V9Yk8+RTY E/pDvI+C8wVpnpxV4sRZ4exfEF+EMz9GO8b+CPt79AfGL+OxGD9wHuXxg+K4 hqfyTc2c50au/r14TrLnd0/L/UrlWG5uirP/1bnytQ5zTv9M53mCnoZfqnvT X5qT5fG7IscPj7xKD/fMxOfit0R59okiZ30U9SCv7vDnuXn9yriGp31B5yrv sc4L+VqHzC3eo9Soz2uX/uPqubYv6Fx+9C3Oqee3l3bHi5yTnxU5ebxHaJz5 c+FRnnMNkZMvFvWkfvhcSZ5z9JGT9xv1/N/PHVHinKOPetgnivLkf0XO+cyo Z35F+TkHEzn7TVEP5YzyxO0iJ94Y9ZC3HOWxX5GTBxf1VNUD+2iRs18W9fC+ A7fXpBIn7hL1cO9PlOecVeT4KVFPVX2Slxk59jXqod6iPP8fuczBK9NKeoiP Ro5dGric7SVO3CBy5uXImXfic5GP9gS7FO1PYd7sZ68KccJJ9t3jXWYU45YN rul10xnZXmn+HOkcednTl5wXzn+NdP3YqyhfxbEDUQ/nuaL8DmZ/Imf8Rj3Y hyif7OEbJY6diXrQH+UZ75EXznn101Mlz37GwPXzfklPk9mHKM84jZzxEvVQ zijPemXgehtf0rNOxXMZX5FjZ6Ie7MPA7Tuxov4nl/TwvlEe/zLywrm2fnqq ys/+1MDtOK2kh3yNKI+fEnnh3Fw/PdTbwP1tRkW9zS/pYR0X5VmvDjzuOirq v1bST1wx2pnCPkU/u4S9ivYn7qPhn7PejusFOPtfxX3D+dmfjfEK3vv/48RD 0EO8QvHFRxfleq3ixD3UXq8vynHT9H4P5vUC8e8qHuMe6Mc+6s+W+HNTHsOb mVP+NN6GpnXlRy5fiN/2k0/DcFJJnv1B5OVfnGb3MTf5PKJ11S3z0jjZcGYx 7+hF58xH6gdnOMcORI7dVrn39udiV6M8+6mRs08W9dDPIuf9o54qTj1GTt5m 5NzbE59bxcnnjHqqOP0p8jSQaiXOPkJ8biEf8rPzs/1S/526KPOUBzkzc9mD OfMyZ1wgr+q61fsD8nD6D/Lqf6OcqxVecnnmL/Qgz/olylfxibZvGvUU8g37 yRfyq/tx1tFRzwtm56M8+wuRs98Z9dBvozz7oJETX4p6sAdRHrscOXm2UQ/l HLieF5TaF/sZ+0PsJ+hHXtX00wXZ3spu7Ow89Y9bUjsea98H+ZFz/X7SonTf 5kvzM0e/7vke7JzywHku8uhP7WHf1bxqUfr/oxbke3s0rq91jh8M159/Mj/L o59yop/yII8e5NGP3YzPTeu6kZlTfvJVKD/60RPLg3wsD/pjeVaw+HwsD/5u LM+Tdh9RLA96YnmQj+VBfyzP1eYfx/LwXrE87BfE8qAnlgf5WB70x/IgH8vD /kUsD+fjYnnQE8uDfCwP+mN5WJ/E8qAnlifZnTGl8qAnlgf5WB70x/JwPjGW h3VFLA/ysTzwWB54LA/643jn/GMc7/BYTtYtcbwXzl886rxw/qJfOckboZyU 5wHz02J5iCvF8pBXFsvDOiQ+l7yUWD/4h7G94PG5+Hmxvcj/ie212PzSWJ6L +ucn9CsP8a9YHngsD8+N5cEfjuVhXRrLQzw/lof2iuVBPpbnUKvnWB7m6Vie lF/bVCoP689YHp4b+3Mh3nWplweuOPuvop10jn7kY3kKcdqSPXR5/GX8RtZB +MX4W5FHecWHDlmQeYqj2T71xs71vLMXpd93X5D1w/X7HH8u5dR6caQ/t+Cf 3D+/5PeqXu+cn/ywPWdlP1b1/4T5+4fMKu77dDjHT9ZwPsM5/TFy5j09/1h/ LjzKc94n8pUtXhr1sO9Ge0ns87NSXG58b84r189VylzrtC/bc//dm/r1M+7v Uf/qHlPcP4RrfH5qQea0r/IBTir7jfAB/czfzC/5peonvfOL37dg/337BVbv ziW3u/PCOndL5+z/Rc48ILvW7s8tnO/82PzSK+y5x/Wmn/styFzi5zuXmkdd Xvuzl5m/ulJzcb+7wVVvyzbn8qu9L3BeWJed4Zz92shPtn1w9PBc4i9Rv/zH oQtL5ZGf0rawVH7kWWcQz+G7Y/S3yDk/AU/x5IV53UycR2KtvXmdXcVZF+hx nc6T/ofTfu06i7L+5Lffl/KAd1mU5eHIwwv3+/Tj3BcR9cOj/tTfXizpSXbh 5ZKe5P+/VNJDfD/qIe4U9cCjHtbhUQ/rnaiHPJ+oh3VKlMffjvKsU+JzWV9E Pawvoh7sadTDuiDqwT+Peihn1IN81IOfHPXgz0c9+OFRD3541IP+qAc/OeqB Rz34z1EP/nDk+M9RPzzqx7+Negr3LvXTg387cD+cVJLHD4zy+I3xufh7UQ88 6iGOE/Xg30aO/xb1c587+tXcw1qSn3L+tNQ+U3szl3n4n2nJTxlt/DnnUV7P 62rK9g2uattoWraH6FG33d+56vf2lmKew59703x6dktxf3moyV/fUtx/b3DN 47s6l9wKFq9er6W4D76C+ZPdC4r5BltW+5nMF8QBI1c6yZPO1S//aXZ+yozU H7frHQRXu2xgfssGvakcDzpHXurPdz2cR1azHu/ycHWDLZxzzkvPneJ+rMxQ o720L/Oy+71wif3dufp7b6/1i5Y0Px85K/Wj2xdmrm53lPkzty1M8/l7zpFX /7zL9aT1ysL0/DtdHi57dFrQ074w9acRFi/67cycT6s8s/dtPXKhc+37faol c+pH5bzR9VAPcOSph3ROxznyKtfTLdl/03g51b5DfbNz9f8rFqZ2eqol+3Xw lO7sfhr5w7LXa7Rkvw6udj/IOfUj+fvL/h48+oeyI68uKPmTKvaKLYM2WdrR TnB/T/1395a0/3elc9mF7zvHb5TZnLMg67ne/AiVfx2Xr+LkNUU97PtH+SpO vlPUw359lK/i+CkD80klTh5xfC72PsoX1uv9OPcORz3IR864j3qqOPvLUQ/7 rFG+irPvFvWQ5x3lqzj7DlHP92wfKspXcb6bM3C71yravczJ54l60rqmXpKv 4uS7DjwueirKX+acs2De1+MOt3NjC3qyn6C4yA/LXGb2fPtOxoyetJ76TEte T2GX1A77tOT1F1x28CTn2D3Z3X+U12XwuI7T37WW131aRg6x8/cvuz3R9HSj c+wP8oozjXeu/NEzXR57gh7kyXeK8v83f62kh/zMKE9eZeTkZ0Y9VfLYscjx 66Me8pqiPPmHkeNHRz3kEUV58hIjxx5GPeQvRXn88cjJP4x6WE9EeeJgA9f/ tJIe8jajPPmKkZPPEfVwr2mU/5vlRQ/cXrWSHu4lGPi9aiWOnYl64FEe+xM5 9iRy7E/UHznyspNn95TG77Clgjf2lMYp8tyTQRxmnsVhuE8CTv4k8SQ45yBk lya05jiM6u1nvZmzn6s//1Vvev6NztUu99n5rLktmbN+kd6pzlkHwXku8rq/ ZP/WfM+/3nOkc/J54JQHrnI/ZeewOltsnnsv66ece1q+I+VBnngL8ujnvKTc kye8PHDFG99yzr4DHP2sT9EPZx0ay8m6lXLqz1dvS+Nz/abkx+7kXP7NAU3J Tm7Zm+zZMs6RV/sPb816WB+p3P9ozfJwVcsvnLMuoPxv2vmOWH54rGfymJFX v2xuzecONO56F6b2eNa55BvrQZnFsa3Zn4PrXMUmrWk9N6Ipr2v0HckvtaZ5 6G7neo0fOee96J/oif0Zed6L94Ujr/OEK7al9es1tr7+1cLM5Sa9afnt5y9M 9dXVmjny6gYvtWY9rPvkrzzg8nC143nOWe+oHb/YmuMAMhsH9aZxskJrXu/D Vf8fe3xA739Yb7J7G7cNal5avoMtv6uzJ3PdR/atmcmetPWk913fOfKaP+e1 Zj3YK71Goz8gD1e7DXHOeVX9WLs1rR92mpHXfWrODVuTvdjEucbFkc6pH7X/ 5Jash3qAI089aH6e6Rx59d8P7Z6/L89K7fTPnrQ/Mtm5ijPB6qGvNe8HwDUu 9mlNz188M5+31fO/35rmocecS+3NzqkflauzJeuRXzzEOfKaPobbPLKy60Fe 7blWm72HrX8H9WSuYdVq6+tde+w7m86RT2HM1qyHfTHV45utWR6udvuj85SX 1ZPuLTi0NccHNC0uY/7wNq05ngCXuvWcq3+vvtDOh2K3zV9avifZq385V31s Ze3S1JrzxuDqt9u2Jju0Y3M+Zy2xQTYe13WucvzUOe+V7mNtyXooPxx5yq/+ ssQ58pp/9mpN7/2l2dnPV3mPsn74Nef6+5uds45I6ynnnF/APqAfHuVZF0SO /xw5+xJRfzHOEPXPLHHW71HPqRXPpR9FTp5h1ENeYpQnry9y+kvUU4xvuDz5 h5EX7lHqpwe/I/Lkp7SW9FRx/MWoZ6idJ43ynM+NfHvLk4+cdUHkaZ7pLD2X 78JE+dcryvOkrS8GrudaSZ77JSLnuVFPiguU5as45zQH7s9ledY7kSMf9bAO ot1k91eenez77+u5nTUPf9xc4pomNrL6/GU99esjWvO6A/u25dJud0lrcR3U 4NpfeMA59lPz3gfl9Qs8rnc0H2zeWlofqbwPtObxgL3SazeZvX3TeRr2zrFj 0jPJOfux6o5/dv3EDaI8cYDIWY9HTn511M/5oCh/ra0DImddH/WwHxjl8YsH Ln9TSQ9x18jft/sXop4qTnwy6uFcd5Sv4uR7RD2cI4jyVZzzBVFPIZ+mn3wV Z98r6iE+GOWrOPHHqIdxGOWrOOM86kl+cntJvooTb4l6OL8Q5SV3cleJH2j2 P+r5gtlD/Tit1fy5ak7cWOPvkda0Tm1w+aNr15PfPtu57Py2ztWf7nF5Vd9G 9v3hHrcDkl/feSE/pyEvv29RsCfruDz+SeScE0Q/euBRnjhblGf8RnnWzZHz HZGoB/8nynPPXeT4LZGneFdzST88ymMHonzB3vSTr+If2v0RUQ/3wkR57q2I fE+75yLq4b7cKI9dihw7E/VUyWN/IseeRD3kd0V58jUjJ94X9VDOKE++V+Sc E4x6Hqh47iZm3yJP8Yf2kh7sXpTnnHgcjzL/DfsQx6/e6tFaaZwiz7lG4pzM v9RH8fyj3ycNZ36M5ytZX/AdMDj7d/TTqEfl26c9xzllJycvzJy4qOImtYWp /lZtL8Zdl7N8hh+3FeOoh1t86QDn0v8954X8usNt/316W86v0zDazjl5dHDK A1etbdCb4ou/dT3op5zIUx7k4bE8rA9jeZJ9fLJUntSPHyuVBz2xPMjH8qA/ lmee5QHG8pBPGMuDnlge9MTyIB/Lg/5YnsJ3W/uVZ2fLS4zl4bmxPOiJ5UE+ lgf9sTzEyWN58KdjecifHLg872b9cPL6YjnJl6OcrM+mWh5mPBfMuTA461T8 ezjlJx8ivleaz4aV3ovnDtwPR5fKn+a5saV6Jk8y1nOKjwwvledrtn8Ry5PW 1a+WyrON5SXG8oyx/MBYHtYnsTzkc8Ty/MPOU8fypHXv66XysB8Zy5Pm43J5 jrF8y1ge8lFjeYgTxfLQb2N5uF86lifN6+MrxunYUnnIa43lSX7b26Xy0K9i edhnjeU50s4fxfKQ5xnLwziK5dnBxl0szxo2XmJ5qIdYHs5bxfJwT8TAdn50 qTz0/1ieU63/x/IQN4zl4TxXLA/1hjz6KT/6KQ88lpO4IRz9nNuK5SHfNZYH /yOWB/lYHvjA425iqTzkE8TykJcby4P+WJ5NLf9Wr7eMPxeu52zqnDgmHP3I x/LAY3nQgzx+Yred28Ju42/SH+Csj9k/hatcJ7bb95CnpPvUfmv5hA2ufl6b MugzSxX8wvy0bzpHXu39OdfDvpuG1YouD1e/GdeWOftNKt/FbTluq/npMNs/ +mFb3l+Gp7i9c/XTY3uTPfpKe95vFT/Mzn183Ja55tsLF6b90I3b83oSrr+7 wPaLL/B7WVW8X5qeQ53ruc865730Ptu7HsoPR57yy17v7Rz5dK99e8pj3XZa +vumnszlN19s3019syetS/Zwjrzm6RVcD/uJ0tPeluXhml9fcM4+mszXuW15 fa73v2dh8pOObMv71HD1j284T3mlC1M89EyLx3RPT+Py6z2Zazx+bPd37W95 IKc5R17zx46uh/0ytde2Lg9Xt+lry5z9JuX9ntyWxmHTtLyfqO8RnGb+xjvO z1hqsO9wTv2o+rZ0PdQDHHnqQXnI2zhHXvPB19tzfrXaZQ37vvDmziW3XU/S t197jnfApa9hTxTPvm9G3ndT/T1s9y8e41x2YpJz6kfP3dP16PkrLswceZVz Y8vr/q5z5FX/P2hP/thXZqV6ur2eueJi+81K/fjGeqqXo5wjr/Jv4nqSPagn +7KGy8P1GtPaMid/SeP+j21531nVd1xP2l+/CDvsXP7NKc41j/24J9ntndvz vqr49+179ys5Vz+4sp7665bteb8NrmYdbH7gb2blvCntLzTaUb//xPlqS8v1 inPeS79/1fVQfjjylF+/H+gc+WSf2tP+yo9sX7Wllrm6/TWWFzehlt5rkHPk ZXc+63rYr1H/6G3L8nDZmaHOyUOT3bmkLcct1Ax/qafxe3xb3qeGqzzfcq6/ e6ae/OBz2pNffZDFXY+uZa48pYNnp+/2ftu+H3S2c+Q1bnZzPcR19Xe7uDxc 7bFs0PNYLcUjT7N4xUuej6f+27C3Gj9DnKt+HnBO/aj/fyno+Yvzgvwz1j+/ GvQ35DW/N+Z94tuyJ5va/fDbOte42qOW/OnD2nMcE67+dEtbjkuzf6f+8lRb jmPDVR/Nzgv38e7TVopvw2M8XPPnCW2l+Ln62+Ntabx9Y06Ob9+7lM9oS/7K Bc71nh85J36u97rR9RBXvN76LfLcMx459ob9B7XDnnPS/x/SnfcrND8fXeaa hk6Zk+zQrt3JDj/q8UDqP50LCvHPPew+/w+d075qhqPLcUV4jEOqPa4txy1V zm/beB/m9QmXX/GU16fqeSfnhXZZxzlxyMiJJ6OH50aOvOr98K5SeVQ/N3eV yo98VXyVfQM49wHyfDjrZs1jj3Tk+KTG414LMyeemfxyy++6xbnW/adbPliL x0s1Xw5ZmOzkE85V7jed81zkVcxLO/K5Gr3Pzf5cuPrZtS7fbPGQgvyWztFP OdFDeZCHIy8/64qOvC5Tux9reXHfdS57Ndjixmd05PUgXHrWdo5+/f9yrgee lrG+DqWc+vu/dCQ7cvbk9LO5J3PNM/dOTu851vyx250jr+F7quvB35Z7+m2X h0vPxs7xM1Wuse15nSj78aD57c/6uhWufvSoc9nBJ81/a7Qj66mUx2DriEM6 iuuvtyy/6/SO4nqtwVWul9vT/ueGU7KfrGoc2W72ZHLmao6PnPNemgd+7noo Pxx5yq96uN458kcv7RD3d6S/Gz81zQM79WSu/raZ5btubPeK/9o58vr7b7se 1hEq7q4uD1c7Lesc/1nr8xd8van40MKe5Gfd6etWuNZLtzk/TfmRPck+PN+R 7NKd01J73FPPXOcOn7BzuHfUUzmfdo68yvmLoKfhJ6u9fhbkG1zDef+gn/NE f7H9kV83Fb+rMsT8wMucq780O6d+1P4Xuh7qAY489aB6ucQ58rJvv+/I+brq 3z+uDxq+VP4nzvWev66ner6hI+cDw/V349vTz0OnZ39b5em0/b3lnKs+N+vI nPpRf7zO9agaTurJHHn9/08tT/h+58jLv33S+tXyM5O/1lXLXP7X9jOtfmtp PX6Pc+Q1rs9yPfjbCot9z+XhKsdWzvEzFR9q8vWm5v2n68ke/svXp3CV50nn 6g+v2Lrsyo68nhJ/ppbWNd92Ljewsb7QODq/I/tPcNnTYbaeenZm9pP1/w07 KfFrneu9VuzInPfS/1/peig/HPlC+W92jrwe81BH6q8v2HcXB9Uyl7802e49 2baW+uUNzpFXfzzO9bCOUPvs6/Jw9f+VneM/y+697utNDYNl7HsfD/r6FK5m vdu5/mzFeuqPL3bYvUR2H8t3ujOXGbzXztMd2Z3uM3/eOfJ676tdT7vtY2k8 XunycBXjMOfkK+rHM1bO1fzck5qzYW/1tp9ynvLxnVM/mvd+5nqoBzjy1IPi Tpc7R17m+g78GctbaO9K4+JnzvX3m3encXRrR84jgatfTW1P9Vprznmbsht9 7am/jnSudt+mI3PqR/pucD1ad57tHHn1l6vtOxqPOkde83ZjHtHfjbK80MWd RT7T8ntnd6b16UPOkVdznu96yKdSe53q8nDZlx2ck9eqep7XXswPvrQ72c83 fX0K1zh61rns2Z3d+V7S5JfMKcXVyfOLPMqr3/za9ci+XNVpcSDnqpfhnal9 G34X+uEaxm+1J3uz1Zycb6z6mNae7Mtnnavfrd6ROfUjtVe7HuoBjjz1oOFx m/NCvU1vT+uN9ebmdZns8Ae2Dt3GuSpix47MWd+leI7Ls26KnP1V2YlH/Lnw KM96MHLmpaiH/asoj12MnLz3qIe89yjPOjBy4lVRD/575JtaflHUU8XZ7496 yJ+M8lWcfaOoh7hDlK/ixDUYXxr3S2w9fleH7QeYPe8uc9mhVeYO2mepmks6 UjnafD3OeNEwaKzvWL/D9X77OGc86u9vL6/r4TEOoHK9Vo4baD5tjHc19y3e /+GqxzO8/2t9cbhz5PWe6zjnngTk0U8+VpSn/0ROvlfUQ35vlP+R5elFTvwi 6iHvLsqTpxc58lEP/TnKE0+LnDy9qOcbdh44ylfpp/9HPfAoX9hP7cfp55Ez LqL+yAvt9ef2Uv/RumJ0e6m/Ic99FenYyMW5X5EfGjn5P8R/6J/UdzHfb3Tp vrt5lpeBvwJP7TI5fw8HzrqP946cdoOzHkzrsc5cfr1vvSefj6nivJfK0+Oc vCaVe92FWb/mu13+kezdrguzPBx5OPkkUQ95I1EPeSbIaxr4b2fyhx4fn86T LOjJXNUxYvygm5eqm9GT7F6v8yivZth0fH5fuPYTjhmf6wc9iidf5FzdfUJn zvdQMz3Vk+IiTzrX64yyOMnbnXkehct+DHaudl1zYVrHHe964Grm7Z2r++xk 8ZzF9v3htScl//NrPZlrPjlsUtpv+VJP8otmO0de8+0Q10N8RuPqbpeHq9/8 2Dn9UPW7UWeOH6qiP7D1/sceP4Qr/lZ3rnM9y1sewr87c/xN7dRn64U/OJdf 9wXbv366M9t3uNSuZPPevyfluIrKvVZnqscHnWteO9g57yW9IzqyHsoPR57y a9yPc458Ov9t/fAK+670DfXM1b6jpqRy/LSe/N3RzpFX+97jeog7KW5wpcvD lQfzTefEW/Tay3QWv1fyTdu/nu3xTLh+n+lc7XyEyS/Xle7v378ptVdvLXPZ 4eOa0nzXWbPzzp2ZI6/yvNmZ9RBX0TrlVZeH68eNzolLaHwtsnjIV/w7yFpX 9FkcbyvnivNs25k59ZOe63qoBzjy1IP0DHWOvJaX0zpzXofs3yu2//u8c/W3 JttXHdeZ80bgkt+0Mz2n3pTjM7JTu5u9etq56ucc59SP/LPxHVmP3PbnnSOv cr5VT/vR7c6R17T3gc0jT1r87eu1zFWMJvtu3e6Wb9/iHHnV13Ouh/iM4iEP uTxccYDznROXSPsjnTk+qXZb0fbBV+zM8Uy49h+WeJxT43Uty6MY2Znjb+Ir Wn++27n2ub9i/fbFzryOgqt+V7XxdaJ/76l36f9v3Jn6/c7O9dxvOee9VP63 O7Kewns1OPKUX/18inPkUz6ZlfOzdn/y9t2Zy9ztMCs951O2fzrROfKaBh50 PcSdpOd6l4fr92OcE29R/a/cmeOTulfieIuftHs8E65+NM+59jVPtHGxgq0/ Omel/rRcV+aaN3otT6NhdzSelnGOvObj9zqzHuIqas+3OrM8XPPGbc4L8YT/ dAz61tKOcqrf761us2xn+rsTnOvPdnFO/cifHOp6qAc48oV6GOEceeJM5HWo H99pftJrzvXeY8z/m96Z1+FwuR+N8SW7+fXmHFeRX7Cf+TNfcK72vtg59aPn TurIeiT36+7MkVc5n+lO66Ee58jL3f7I5uvN7ZzsIx2Za1ztaufCbulIf9fl HHmV/yXXw/lEvcZTLg+XfbvMOX6t/MiGn4a/r59b27n1NTpzPLPAP/E4p4b7 QbZv/n5njr+pXNt1pP7/UGcxXnexxfuGdRbjexfbPL228Z/7eXnxRjvqvU9x rnb+nnPeS+N0VEfWQ/nhyFN+8VnOkSe+0RTigcQx0nqpzFMc0bm668LO1C+O n5Pq49D2QXC9z+A5qV6/2J7m12nOkVd7Pe56iFfev7QD/cHl4ScufcDJznkf 9etGPROflD152/bJFnk8E659wQ7n8lca9lrN+umuNN/uYev6jdsyV7/be26a JzawfJqVnCMvtQ3/AT3kQ+s1xnRmeXi6J9g563SdX2vYK3XPZ+bkeJPeY2Ub Lw85V7/d1zn1o++3Du/IeqgHOPLUg/JF33OOvPrHmjb/zvG4kMq9to27uc5V P6c7Z/2ubja0I3PW/5H/3fafVW+vdeTncm5UP07pzHEG6l/lfLazGJ9pcPn5 zzunHVVv23WW4h6q18M6S3ESrU+v7CzFVdSvppbjHvAYJ1G9LinHVeTfHtmZ z5dSn8zvyS44V73e75x6Vr+6wDlxj8g5B6P32M2fW8WJ70nfRx0Wp/HvLkaO XVR/b6xbtQ5ZZl7yb2t27utF5+rOa7Rmns6Purzaq6cz1cczXg9wPffPXg/y F6Y6R17PG+qc+omc+QQ9PDdy5NUd3lhQKo/ef8Vy+ZHHD41xMPzQyFk/xfgY cTPiVMjda/Ymcu6XhbP+UrN9ujvrV/e/sidz8rX097/tSe32YlfmKy5V91hP GrdrOieeo3pe1TlxITjPRR79KuY676Z95md7kn94pnP1kzHOiafBVf51nKOf chJPozzIw5FXuQ/vTuuMo+x7WPs6T37AuGTHdulJ+zCDnCMv+/efrqyHOI/i Gd1dWR6ufO+/OidOQjnTObWxuZzw9+3cWXxfOO+ret2sO58jU7mWt3X04q7M 9Wdb2b1e63Tne0ngKtcxXWkfeNnxgwrx1eNtX+LdcZnLbv7JOe9Ff0BP7D/I U37eC468/v+A7mSnXpmQ/Irf1zNXf1kyIclfaev3rzhHXuPjg66shziPxuec riwPT/Ouc8aXxunpXTkOqXY7yuKih3TleCNc5dnHufrv9+xcSa0nc/y0FOiu 5faFp/OitXxPDVztenx3kv/lpBTn+9DyZo9nP3aS5ePWUvzyOOfIaxhu4XqI Fymu9EWXh+u+h+6uzImT6OfRXel5P5mY7Z3moxPJe3WuH793XrBj67ge6hOO PPWpetvEOfJ6vz26c/xT53/esntRNnQuM95cS///te4cF4Wn+/a7sjzvq3n/ h86JI2kd9Muu4nd8L7W8jsOca136oMWRtnM9cLX6Ns7l/z5UT+PlW90p/t02 JZX7m7XM5SeuMHXQiKX1cVDNzvs4R17VvabrIV6k9/u0y8NlL8Z3Zc48p/lx v67UDhP9fXXf0v5dqb+Oc57O5TmnPhUv+6zroR7gyFMP2i9YxTny6pdbk8/e ZPcnWt7Of7sy1zjZuZbG9ee7c/4kXL+e3ZXs5d1T83yvP7+6K9Xjic4l/5xz 6kf8C65H5V2lnnlBzyYWt9/dOfKqv4Mt7+m705L92LM7c+m7flrq3xt3p/Gx s3PkZYcb9YAe4k4qb2dXlodLzz+dE29Rec/rynFXjeuTa2mcfrsrx2nh6RyQ c51XOcvuI1q3O8cVNW2/ZO00tytzleMz5t8s153jlnC93/GW77PC9Bwv0nzd sNvqv7OmZa78i7uc81563OdcD+WHI0/5VQ9bOEde7bhPd/JDXrf7S6d3Zq55 dBX7DvIztk+zmXPkkx/ZlfUQT1Nxx3ZlebjszJ+dE0fSe3+nq3iO7wfdaf27 a1fx3F+Dp/M7zuW//Lg79Yuju1O97m/n5v7WkbnmmcNmpfZ5zPIgD3eOvMq5 ftDT8IP1+5pBfnXbN53RVdTf8IM1bg/uSvPYBTNzPE32+TDzu05zrjjZlc6p H/Wf1VwP9QBHnnpQv1wr6GnI62fDDyG/UftMB1nc/NPOlV97la2Tt+7OeUJw jYsLu9J4vWtWjjtJ7Iau5Fde4lz1+apz6kd2/ouuR+I7d2WOvMrVmKdlpvdx jrz69Te607gY3Jz882PaM9d7/6452dO9bD9+D+fIa3yv6HqIF6m9Fndl+cL5 8387J06ierq0K8ddNR9MtHye73flOC1c88Y3nKt/1zuS/dioO8cV5T9PaUvv 0dmVueahL9r5gVW683oSru71A/N7RzfnOI8ed77F1190rvZ9yDnvpZ8buh7K D0ee8iues61z5DWP7ded6v1Jy2/sa81c7z3K7hsc3ZrG1dbOkU/H0buyHuJg 8g+burI8XP7hY86Jt6geT+rK8YX03UTLi923K8dp4Xqf3Z2rPL9pz/VHXAl/ mPtQU9jHOfYjctn/73Ynv/Zmy2d5p2UQXH7ZrZav+GZLmr+Pdo686mUT10Pe idp9I5eHyw4v6Mqc/B8V6/CuNH9+ak6OX6m9jrFx+aHfN6jud51z6lnjfE3X Q33Ckac+ZX82cI687PYu5LFantJpdq/oWs71Xne3pH37HbtzPcPVToO7kt2d PyfnQckO3GZ26FXn6j8jnFM/qr6tg54j2jIvyF9u95UcGPQ35NWeh9u9s/+2 ON55CzJX8cfbfXPfX5D6/37OkZcfsorrIQ9N7bOMy8PVj9/typy8SvXba1in z81xM/WvU21/4BXn+v3bzom/Mf8T96OfM79FjrzFkTKX3d+sO8cbpX+JfWd6 cVfm6XysnT9t+G/oh8ssn96V44GFfLlLu3L8EK76edJ5oX426SrFFeExDql6 +2pXKW6p5zTWZepfy8/PcTlV4/1dKY6ysXO971jnxOv08zznv1JFzijx0yxO oP55hD+X/dsoT/tHzj2KUQ/3LtK+ilfNt3ta15yf/R1VY3OZ6xzlJxbn7JqX 7M+1XTnOSTtqXni6K8dF4SrnVOf0k7SP3lWKl8JjfDXt03eV4rGqjq1sPX68 17/8nN6uzGkv5NUfr3Cu8TvM5VPe3LSsB3nWE1Ge+5Yix85FPcxLUZ59k1h+ uYPrzSu9r+zVIfNK74X8MbZujnHmb1icJvJCPlq/+LP6zddqmev5s+qZE+/V eFpUT/HjzzvX665s9zzc6nFmFe+YnlQPlziXnfiBc56LvPr7cnbPwYevp3G7 i3O+IwynPPB03rwn9e9nuvN9dOiHp3llZOaUn/vEKCf6U/70+8nfW93LA5cf tp3zFLdzznMtobX03OTHjsnPRR79yKtdDq+lcn44JtXD7fXM1U6bjU395AZr r687R17P2db1EP/Uc7Zwebjqd2XnxOv03Lu68/2BlFN24zrnvJfOPT3Sne+p Q37Hpf1hN49/yh58rz7o8aXDdVPneq8r6oPGLv19+1qOn8OTvbI8iCfG5nij yjm02/wb5yrPIue8l/rl2a6HcsKR572S3+Ecee2rHGLxp9PHp/XaglrmKa9i fBqf4+0+kL2dI6/xvrnrIR6r563n8gX+QXfmxNn03097/F/z/uMWj/q97yPA JXa9c3WHpy0+fLS9x5cmpv2qo2qZH7ZUfPuJKa/42zY+j3KOvMq5u+sh3qju sZvLw/X8jZ0TZ9Nz77X19ToTcrxRduZRi3N8PD7zi5cqmuKc+lG/OMX1UA9w 5KkH/f9ZzpFXvzyglvN1Ve+bWlxoJ+dq1z0sbr9/LecDw1XetyyeMXlijjfK jZhv9vNa5xqfq9Qyp3704xLXo/G0Vj1z5LXe3tb6/23Okdd4OdLa7VaLkx/c nbne++/GG+sH+UeHBn6w5Ttt73qIN+r+tC+7PFzjcHXnxOuUFzDO4/Ya56fV Ul7B8x7nh6dz0M5lH39WSz8b9U2+ruziWFvHblEr3lewrq2rd64V7ytY18r/ j+70/AOn5Hij3vvt7hQvX9m5ivGJc95L4/Zc10P54chTfvXfa5wjL/3fsO9d fGL5Ga2dmcuP3q0ptftIi0MOco68xteWrof1g37fyOXhmr+WdY6fqnp70ePt qodzulO73u1xe3g6L+VcHf1K2+fbsVa8/+3HFj9cz7n+/kVb/29Vy/FquPr1 Q2bfhjRl/1jlbdhJNcfNzmUm5jjnvbR+Oc31UH448pRfdvUC58hr+jnIzuOe NT3tz/yuI3MtJ/85PeWpn2Rx1N2cI5/2AVwPcRDtK6zq8nC1W0t35sQP1f/v 9Xi7xs9qlpf4S4/bw/Xcy52nc3QWj/iWjYPtZqb2+mF7kR8wM9mv79j5/286 R1719FXXQ5xQv3/F5eGyi2s7J84mPX/oTvu5G8zIcVT154bd05+v6Vz97y3n 1I+G/wmuh3qAI089SM/JzpHXc/eu5Xxd+Zl1u5fqy85VLztY/t7Xank9CVd8 5BWLW0+bmeNlmk/Gd6f17t3OZbc/Vcuc+lF9X+B6VH+znSMvf+kzljd5vXPk pa7RjlqvvmN5vMu3Za7+O8fui2tpTeuXA5wjL71fcj3EG9P5FZeHq3lWdE58 TONumMfb1Q6/sXj1Qx6fh+v325yrPPfaPYDZ/tt3eX5j313byHm6J8LiWtvU crwarvZ9wu7Z/mJzju/JPfin2fPVnas/djjnvdRNz3A9lB+OPOXXuLvEOfKy 8wfb+YBl7fsRj7Zkrnl4S/vex+UW39vDOfKaDzd1PcQ/1U/Xcnm44q717syJ +2lcPebxdr3ul+we5Os9bg+XfbvGuc4P7GT39DX8TcVV5lie8M8XZC59rfad mosWpPc40jny6l+7uB7ie6qHnVwervpf3zlxLf240+Kl3/Pv0Wg4/9nmu6Oc qz7HOKd+1I9Odj3UAxx56kHtdppz5NW+g2o5z1bvv8aC5Kd/xbnK8Q2Lc+5T y3m8cL3nMBsve84pfv97utmTdZ2rfj5dy5z6UXNf5HrUrh85Rz7Zhda07r7F OfLqb4eb37K+ncP9/PzMtV7adm7qpyvNT+/xdefIq/zbuh7OI2tcb+HycPmB n3XOeWf143c8Tq73vW9BskdPeVy9wP/kXPXxisXfdqvlOLD4w/NSv/+Cc43z jnnJD9mhluOMcOl5xuIPF/g5bvFh5qcd51zNs9g576Xxcbbrofxw5Cm/+OXO kcefIh+VuDT+F/HnyE+1c+Zw9YdDbT10hMWBX587CK52PNfimX+am/zVvZ0j r/Gxueshzq117edcHq52+rA7c8ql+fcZj5MrrnGAxYP/6O8F19/91rnyC4+a n+IbR9v6eIf5qXy3zclc9umr89P+0h/nJH/4KOfIqzt9zfXQHzU/7u7ycLkL n3ee4gdz03v92fbrH5mX7wfQNPeY5Qvc5VztP9U59aNxdorroR7gyFMPev7Z zpHX+zxr52ze9ziw7MFLFk+b6Fztvnwt82Kc3+UVx9v0pRJP8cW/p3XYGf5c eJSfZ3msA+sZVtLDd0WiPN/3iDx9V+Stkp6q5xKHi5w4ZdSzi+mP8nxXIXLi c1EP3/uL8qynIycuEvVQTj3nE4+T08/VbF+q5bg6XO/djzNepO4t14O91LBd 4PF5uMb5qq6HcaF+Pbgct4fHOL/Gy/90l/YFhixV+J/ubH/pt/KXNrR1zfHO ZU+2cE5/1jyypvM0HJ8r8fTz6UGTdB2GP7eKk5cd9VRx+nnUQ7+K8lV8lt3b EznjInL6W3wuPMoTv488fd9tdEmP+sHKo0qc/aOop4ozjqIe+n+Ur+J8ByPq YXxF+SrOOYuoZx27v2jg+plZ4tfYPmnkafyW9XBfTXwu6yfNAytZvHSx3Qtz 5uxBHUvng684T+vSwNdckOX13MPMj73XxxFc8+/vfRypQvZzjrzmwd2dp/H1 RpZHP/0zyjMuIk/zztslPfTPKM94iZz+GfVg/6N8VTmxt1EPdj7KV5UT+aiH cTFw/ZT1p3oeX9LDd0uifJX+wj0c/fQU4vH95Blfkad159QSJ94Z9ROPHLi9 ZpTk4QO3V1kP4zRyxlfUHznyGn/7NJfGhX7+srk0jpC/aOV+5y367Uenflfm nC+J+9TEqyxfZV/6Z/J3WkrfHyQOBKf/8F0zOOvNVK85HyZ/54Y4PXwXe96G oTysWyLfwfLS+H/4ChZnaw/lYR8q2cHuUJ56jkdGrumwo1astwOds/+u5/3I 7kWZ4VzVc67tB93gXP7EC3Yu5nznWt++65znIq96Gm3fHzj+tbTeuMM5/jGc 8sAV3/9dPfWrR10P+ikn8pQHeTjy6pdTavl7WFrPnW77dCOcq1p/ZfrfqWW7 Cdc64gHn6Fe/vdf1wKX/WueUU720x/apHno/9dfOWuYq/+j30/qr2fYt2pwj L39yjOth/1ftMtLl4Vq3Pu2c/qY48A2et6DxOcS+1/Bzz3OAq3/+NPCXbTw3 1fK+v348bfn2bzjXcyfY+YhxtTwPwdWtr7D7Ub4zJu/bqp/9xu7r3XpM8XzN fc55L63vTnA9lB+OPOV/amkxTg18iOVFdFn8ZLVxqf0H1TJX+xw9Lv2+rcUL mp0jr37xluthX1v952WXh2u+esA5+7na37vc8x80Ty1j+/Xner4EXHb4LOey nyva90qW2D7qGLvv6+juIm8ab/lnlk/T5xx5vfd014Nd02s0uTxcrzHUOfue +v+Lzc68Oi7va2v8DTb/8AnnMq9/cE79yK4c53qoBzjy1IOWc993jrzqYUEt n9eT/W2zvNKJzlNejNXP/Fo+JwhXXuVva+nn1RPyvCJ7coetH3d2rnb/m3Pq R3GOU1yPuv/ZzpGXH3K17Zec7xx5vV9vLeWL7z0p9YtFnZmn8wx2TrDZ7rXo co687PZ418P+r/rrey4P17h6znnhfMrNnv+g+h1s+7+/9HwJuKrjEueK693R nfpJYx5hf1/285edyf8Z6TzlGdp9B5PZX3Oudr3K5rWOSYMK8ccbzI694FzP edg576V57CTXQ/nhyFN+9b8fO0de79Vt9fPYlPR9rzs7Mte5hTlT0j0UP7N9 vXnOkdf4eMf1sP+r8fu6y8PVXx51zr6nyn+15z9wPkHP/annS8C1j/AT55xb 0Ht+aN/nOce+d/CT9sxlN39i93T9xL7r2Y8jr/qd5XrY/1W8aJbLw2U/33TO vqfmqcHm3x43NftbikdfbvZ+r6nF+x9vd079SP5410M9wJGnHmSfT3KOvOxJ u+czyF5+pj3fcwZXte7VnuK9bZ7nAL9saX++0+V5X62vr3SOn72s8hJcD3z2 0vF4kXP5K//qGPSi5ZugBy77c6pz+Rev2f2Ai23enzA9vdfqbZnLja/Z9wuW se911Z0jr348yfXg96uex7o8XPb4Refsn2r+Pa+W4oDD/H2Vl3i++QOvOVf+ 4fXOqU+11zGuh3qAI089pHNRzpGXvZ1dK36n7892DmKUc+UPzGhN42I6fuaM zPW+vzL+mxl5H1l+6C21ZJcPda72etw59aN+dLLrkfQf2jMv6PmHnR852zny aoa65TN+YVayX39vyVzz+h6z7N7wlqSvxTnyet9Rrod9ZD13uMvDZa/+6pz1 nX7/jedRyE7uYu97ieddwFWeC5zr3oLD7LvIk2s5T0D1tpPtj7/uXObn6pY0 v4yuFfMQGlzjuuFvy0+/dFbe/1W3a9hb2dHTZxXP0fzJOe8lu/d910P54chT fv3+Q+fIq906zG5/tzn1p+8uyFx28BfNyd/5ssVdZjpHXuN3uOthf1zj+wWX h2vev9c563T5xZd6HoVqb1JLat+zPO8Crn36M5yrO89oSf2iz/JGd7dzcF+e n7n8p/3s3rNN56d+1uscedmNqa6H/V/1z0kuD9c89S/n7J/KXl1o+ZBPNef9 cXWbi8wvfcy56ucm59SP/MDvuh7qAY489aDxfpxz5NUv59Xy+TtV97/sXM5Y 5/qxxPb1mmv5fB9c/elaW8/dMrsYF7/V5rufOJfep5xTP6qvH7oe2fu/Lsgc ef2csCD5U+c6R564Srw/jfk83rd2u/mtyW9wLru20PZDf2L5Bu/OHQRX3t01 c1K7Pzs3/X27c+T1PmNcD/vDqseRLg/X4592zv6p7PINno+hfOoj7XzSLzx/ A674+UXO1X/Psn3RabWcb6A8tKPsHNtw5/q7P9k96ONreZ8Yrn51hY3fN+bk /V+1y7UWNxjiXO9/n3PeS+11guuh/HDkKb/mtdOcI6/27rL18oOWb3D+nMxV /jfmpnn3ULvXf7Zz5GWv3nI9vLemmVdcHq52f9A5+4Mq5xWej6F+Up+b+sW5 nr8B1/A+27nK8/HcvF6M+Q/r2r0xkW9qcYU9wrk/nZv+wPyiX5v8gbMHwdW/ rp+X7M6+dh66zznyKe3T9WAP9P7TXB6u+WiY81Rsy7e6uJbiGR/OzfWk+fRS e6+ac9mBPzqnnvX/x7ke6hOOPPUpO/Z958jLDLQQ9zM7Pq05zReTnKvca1ne 1vxa7t9wja8bzC+aNi+PV43vO23d95xz9Z+/O6d+ZFdPCXqGz8m8IN87J/kB FwT9w+27Lr0W9/vn/DS+58/KXOPj7fnJPo+zc4tdzpHXe453PczP6Ry4y8M1 Pz3nPMX/mtM+3S214vcezpyd7NVV+Ldhv+8S5+z3EQcq7nf37ktcjfkm8iiv 4s50Lr/6ArsvYaRztffz5n9Ncf1w+SFX+/4j+Yyykzf4fiVc8Z2HnRfq56Ty PmaB99v3VL2dUd4n1Xrz93Yup+77mPr5sPXbVVsyV7lecs6+jObxm5yzHxc5 +zXqjz/3586z/W7aS3Zi/ILUP9aeWTzXMrbMNa5rtr82akayn3/wfSjqX899 1Pet4Hrsy85pX7XXmeX9LHjc/5Lfcnl5v0zdY67FnQ7zepPe95xTz8jr/c52 rr97weXJQ0AP8uwjR3n4gM/dZHqpnLL7V00fuDwN+aSvp/Kew8jT+nJhaV9P 3fr+eubs38DZb9LzR5k/d1/go+1+nm86lznYwPaVvuhc087XnPNc5NFPfSU/ 1t7/3sA/cE5+GFzvcbHtS9SGZf2Uk/wYyoN88sdezvKaV+6p5/Oq6l+d1s/u dK7+1mvx7j/Vcx4AXGLnuTz6NV4OdU55VO4LXQ/y8n9usPvU13k3Pe8Vi3cM dq5yN5mfem0959nA9euJzgvtdYTrgasYuzmnnBr/d1k57xyV2vPrtcxljpaM Sv16d1u3/N458rJXl7ge5gP9fq7Lw1M8xzn2S/Zv+3reH5R9W9G+e7hpPe8D wlM+sXO9/1p23vDqet5f0/usaH7GWc4V79vOxsul9bx/B9ew+6Ldl7ZkdLab 0r+N3WP3uHO9x0HOeS/1o+VcD+WHI0/51T8/4xx59f/b7P9fGJPiLtt3Zy6/ cZmx6bnLW77sdc6R1/ue63rYV1Kc+ocuD5e/enDQs4z535vV8/6j6uE4q7e1 6nm/Ei79qztXXOBE1j8LM8d/4Dwx7QvHfvJcuPyjhv3RPXu/sP2p5eyeo/vs fX87LtXXB53J3tzjHHmZnWtcD/svaverXB4ue/Rj5+xfaFxvaPfSnTE2rzc0 f25sdvV45+p/uzmnnhU3/biW9VCfcOSpT51XWMb1IC/9N9XzeWSZjzvsHu1f OE/5ofa9hBvr+bwzXPWwQz2dl9tmfN7Hkd+1t71v87jMtb481jn1o3b8tOtR ebmf/9Mur3I+bfcrrescefk3d9t3j+dNSO32SEfm2ldZdWK67/umjlTOW50j r350methH0f+3k9dHq5ue7xz9i807Heu533MtB9u59q2qOd9T7jqYyPn0n+g nYv8dT3v04lv25H80vOcK55/UUfyY6+oF7+rfpHdZ7WV3VvwPxOL5/J2sHns NOcaV4c65700byzveig/HHnKL3u7inPk5SfcbvvG356cnndIe+bpPP3kFJfc vN3yVZwjr357gethf0rD6XSXh8u8f9M5+w4q11b1vI+p++xHdqT6W6+e9z3h ygdZy7n6wSQ7Z3q/+QPrTE3jf+O2zFWMDaYmu76+8fucI692udb1sP8i/huX h6t9z3HOvoP8h8/bPL/MlLz/ovvfNrP7YlsmZ6549l7OqR/Zxf/Wsh7qAY48 9ZDuUXY9yKd6r+fzyCr+P1qTXbrKecrXaU3yt9Rz/h887Q/Yd5LfmFq8x35/ u7/hQudq9xOcUz9qh8+4nvR9gvbMkVc5R7UnO7W+c+TVD+6x+1mvnJbs7ast mWv+vtf4kxaXvj3whrzG8xWuh/0XPX+wy8PlT5zknP0Ljf+v1fM+o+zb/nb/ /5freT8RrvJs4lzv+aO2ZJeuq+fzyPp5mK1Tf+pctXxTS7J319TzeWe4yvNl G3fbT8/7L/r7nc1eLZqWud7rCOe8l/yPFVwP5YcjXyj/6s6R13PvMH+qdUZq /x8tyFzl32xmar/9bb17k3Pk9X4XuR72X1SfZ7k8XO38LefsO2g+2qae9x9l F+bYvV4b1fN+JTzdl+BccavFLckuXVnP+2vq/jPtvMXpzvWeOy5Idvziet6/ g2u8fMH8tLtm5n0T+ZVb2XrrMuea//ZzznvpfZZxPZQfjjzll7oVnSOv8txq 65sn7Jzyp+Znrv4/1uJuE+z82a+dI6956GzXQ5xM9Xiiy8Nlxw5wzn6K7Mrn 63n/Ue16rcWTVq3n/Uq47OAqzrXevXFBXv8qnv275lSPU+Zmrma5ozn1/3fn pt/vdo68/v8q18N+h8p3ucvD5b/9yDlxbvXLz9m8s1xz8bzC+jbvfzKreK5i J+fUj/rdR7Wsh3qAI0896O8+do68quuGej6PrPn4LLtHcHDgj1m8+dp6jgPC NS62s3XKnOYcV9a65mvGhzlXux/tvHDObkXXo3jWCfOLfJjFJa+en+aRtZwj L3t+l8Uxhtr+2i/mZK7152T7PvsP56R+9XvnyKs+B7se9k3UXue5PFzlPMY5 cX7Z/YYfyL6C+sUntu/2hXrer4Srmdd3rmZYb17xHqx++32X2zou7ptwr9rf TA887efX8/6a9H8yO/lpZztX/zjM9psuq+e4P1z18kXrJxvMyfsdKs42lp/7 Kecq/kHOqR8Nm+VcD/UAR556kH3+jHPkVb7bbF5ePCfFPzaZnbmev6H1717b T77OOfLyE89zPYV2O8Xl4YpHHuKcfRD9/Wb13D+E77d9yLXqeb8Srr9f3bn8 xSfsvtL7bJ042exXz6zMVb8z7Tva7XZe6V7nyKt+f+V62O9Qe13l8nDV9xnO ifOrW21o/fnIublf6O8+b/P1wc41P+/unPpROT6uZT3UAxx56kHVvYzrQT7d U4NfZOcYf2v28nLnKs/QWUnPjfVsr+EaFzuYX72jf5dH5d3H5rXPOpf9Pc45 9SO7+2nXo3nkZ7MzR1797X7rn+s6R17xjz9ZXvBqdh57u5mZ6/mbzU/t/V/L b7rNOfJqv5+7Hq0X/jsztddFLg+Xvfiec87pqB53qWc7rnKs35z89C3reZ8R ntZbztWtdm1O7fbret4XUz3tOSON5/Ocq51Hzkj1cWU9+w1wiW1l8+yP5+fz QZoXdrD1zhHONV6+4Zz30n7F8q6H8sORp/zKP1rFOfLyY7i/8MAFaX68cFrm kjt1QVq/bz0t2dsbnSOvdeWFrgd/X2b8dJeHqz6/6ZxzWLKTW9WzP6H++bOZ yQ/8XD3vD8JlJ9ZyLrt1q+X3PWDjaMsWi7tNzVzNsnVLqvd17DsV9ztHXs+9 1vU8Y+tONc9vXB4uf/Ic52lesnutGnZGfsSfFmS/Xsu2ze07tzc713vt5Zz6 UTn/W8t6qAc48tSD7PPyrgd5tVtjvpMf9Krvi6nav2rrqRHO1S7HOGe/Seuq VZ2ndni6xJNf9kQq90r+XHiUT+eRXyjxdE/vcyU9nE+K8pz3j/JV+ifauago v4Ptt0b5Kp7e6+2SHuLTUb6Kcz40cs41R875lfhceJTnXGfk7DtHPZz3lJ93 RD3vYxbGyyX1vO8J1/MHO2fc6TE7uR7iE5oPD3B5uMbXCc4ZX3q9z7ge9lXh cR9W42ODemnfVuP8GHvfLVpz/9c6qmHfNK8f6Vxx4MHOGReq1iNcD/tI+nG2 y1dxzuNHPbSX2mlHa68PWyo55zdTHo7Z1Y6W5N8Mm5Ts9ZXOZS+WnZy59K7U muXV/I15XOcibvR6gKudrvZ6SN8pdo68evVNznnfyKkf9PDcyJFX/Z09oVQe zX9dE0rlR55zsnGfXf30njJPeY3l/Xf26zlPyn5N5OzvXFFcB5U4z9X5ihNr pXyAyCmP8sBOd57s2n0pf+9258luPpg5z4VrvP3D5bHXUU+yg0+W9MCjnj3M jkc9ap9d/lHSk8zgiyU95AlE+Sbb94/y6InPTfPrqyU98KiHeSXqSePu9RJP 9n1oST886k929o2SnlRvb5T0pPE/POtJ+8723bZ1RyQ/8pvO1S0PN/tyYC3t Hw1yHuVVzI+H534F137MeW/mfogeVfPDzmU/d+zJeREKK69l9xRv5FzP37mW zols25PzJeDqlss6V7kusX3QHs+7gKv9pjmXH3OX5VE1yil73/5Oas89uzOX v/udd1P/2sjuN9/NOfIyQxu7HvbH5fev5fJwvccH9cyxD7Iz4zx/Q3Ghk2sp HvWG52nA9fxXnct+nWn5FVv15P1xzaP/tP211ZxrXuT7pp/vyfkVcJXnLVsP HvZe3o/WPvJoy89Z3rnm+VbnvJde53HXQ/nhyFN+vc8Q58ir++/VY/EvO8c9 vTNzzQdPvZ/Ww0/b/bRfcY682mlt18N+vebJFVweLrn2euaFfeo3PT9E9fwD O+f7D88ngWs9+Hy9eP/86XZ//ddt3G0xNv3/3zoy1zjcbWzq9492pPIc4Bx5 +Qdfcj3sR6u9tnR5uOa9zzovnLN7rZ761xpj8n692m+o7Zus4DzlHzmnfmSm HnI91AMceepB4+UR58jrOTv35HPWWsccaN9X/oJz9b+r7LtgO/RkfxeucTHe 7gkYNzbva6vemi1v7Wbnquf/OKd+ZC+HuJ5Uvq7MkVc7nGj95GXnyMu872/z xc2W53BMe+Yq/0vmZ+9p3wXbwznyWgds6nrY11Z7fc7l4ZL7uJ45+7nSM9nz OuQnT7T7kEd6Hghc9THUucZPzb7nvY1/j1V8sn3nfW3nao/N25OezXtyXgRc 7fqO2Y19J+T9aP3/OIs7reVc00Gnc95L3fQJ10P54chTfpXz786RV7fYu8e+ f2t5C32tmevv9p2U6neU3UO7o3PkNV7Wcz3s18s+rOzycM2ztXrm7FOrft72 vA7Zt8vsHOvLngcCl1v1onP1x1/bPvgh5gf+a3L6+U5L5mqXEZYvMdzWnV93 jrzqYVvXw360xvuXXR6ucq3hnP1c+S/DbF32l0l5v155gm9avOt25/I3Zjmn fvR+j7ge6gGOPPWg+v+Lc+RVD415n3PWqr9TrX62dJ724ax+dsGfca7yTjY/ 9idT8r626nW+8U2c6/nL9GRO/aj6nnE96h98t+sZ16P3+UWbfcfQOfJ6zAFm P7duSv3rvAWZp/2SptRPv2fxp72dI69xtbnrYV9b43pjl4ervy7nnH1h/Zju eR2qr1pLKvd7ngcCV17bG87ll67emp7bmPfJW5D/2Wf7bp9zrvrZx/brG/4S 8QW4fo62/JlJTXlfW/PbZMvDfNC5mqfHOe+l/v5X10P54chTfrXP886R1//v 25Ps8x8tfrHm/Mw1j42anvyPznl2n7Zz5NWeG7ge4tOaT1dzebiarbeeOfu5 +n2053Wo/926IMWLXvc8ELj6+cvO5Yc8tCDtOx7ak87VHWv33M2bm7nq+ziL /86177b148jLbmzvetgnkdz2Lg9X+6zjnP1c1d9w64cHzMhxaPmD79g8vtWM 4nmXuc6pH8k/5nqoBzjy1IPa+UnnyKf7wHtynob8uWvsPNw2zuXnPGfnsPbo yfkbcJV3ged78L56jfecs08i93ea54HANR6HOk/fo5if/v7vrgeuebQf13jb fX4aNwfZd8hnzUrvf/2czNU/O21f5FI7VzXIOfLSu6XrYd9S683NXB6u9epK ztnP1fh/xfaJjvX3ld37l9mZ7zpXPU9yTn0qjPWg66Ee4MhTD/ILHnKOvJ6b 18u2f7me7V9v7FztceycNC4a8y/7oHC971iLY3ytOe9rKy90uvlFGzi/eWl1 9DmnfvS8p1yPfl95XubI6/+3t/uZX3SOfIrWWv9cb3aqt21nZ65i7DA7lX+V 2cnO7OYcefWLjV0P+9p6/touD9ePD+qZs58rv3q854eonzxl370c7vkkcI3P V50rbj7M+u3WPTn/QfX2RHOyY6s5V7t/YM/ZpCeXD65xP9LyFs6dXcxfGG32 5ATn6metznkvjZfHXQ/lhyNP+dVtnnaOvPTtZXGkb9q+9ahZmau+L5yT1jUP zEr98yvOkU/nzFwP/VR2ewWXh2v+7ahnzj615tE3Pa9D9vTb1k9e8DwQuH59 3rmq51jrXw0/VvbvK9a/D5qZueR2tfOxO9j3Nw5wXpD/kuthP1ryW7o8XPKf dc5+rsb965Yn89Cc3B+1rzrMzgnd61x2Y5pz6kft9rDroR7gyFMPss+POkde 6nbuyeejVd3n2P7jZs4lP3tGmlcb9go7Ald7T7B8kt/Mzfva+jnb4lenOFe7 f+Sc+lG7D3E9Gn5bNGeOvMpxhH1H+mXnyKs/7W/24Ufz0nx6w7TM1W6D5w16 eeljj7f80z2cI6/+t6nrwQ9Se63v8nD5RZ/UM2c/V+Wa4nkdqr+bZ6b2Gel5 IHCNo6HOtf/075mp/2/Tk/MWVO5bm9K8sLbz5KdPS37L5j15PoOrut81P+Sl eXk/Wu0w3vaVHnKuYdXlnPfS6zzheig/HHnKL7m/O0dexdvb4ud32D3t70/J XMX4p50Tv2qK5a84R17/v57rYb9e42lll4erXLV65uwzyj6+43kdig+Mn5bi la94Hghc5XnRucZbx7Skp7G+lp7L7P7bSydlrnq60vzLc+1+uK87R17vt53r 4byC+tM2Lg9XOdZwnuLok9Pv/66nvIDu+Xk9pPp6086pzXOu+pnlnPrRaz7i eqgHOPLUg/7sL86Rl3nZDT+2JX2f6y/2ncMtnat861o8YNeevM6Ep+MYlp8/ xu/lVn3Nt32uJ5xLbpmezKkf2dNnXI/GyeVTM0dev0+x/JBXnSOvYh/Yk+IW T1tc4NXxmes+j9dtfXv7+DQ/7u0cednJL7oe9n+VH7Gxy8PlDy/vnH1hdffp 9byOZZ9X430U+czOJf+Gc/aL2Ydi/7qQt/mO719HHuVVvw3/AS6xMeOSv7W+ c7XfCRYf3bon64erX432/WviZHrvKb7fDdc4Wui8UD9/Le+Dw+O+uert+fI+ u7pRcz3NDzN9H1zv3Wdx1P86l934bE/m7C/rNee6PPk2kbNPq/ca5c+t4pzD jnpSPbxZ4uxz0u7aXx9q94V9yr8Hm/avylz2rNnOe7w6JpVjlu/L046yG72+ jw8nXgqnn6g9/1He34fHfAD9/nY5f0Bhol1tXji+LbcLXO27d1tuF/XbzZwj n/L/ndNeyKOfdonyVZzz7gPreakkz351LKfm69XeH/i9Lni/VA/IJ/97YeW9 BJGn/YdyvsQ6dq8O+Q+pH44t3U/OOE12yuXZfyPuW8yjaAl2Z+6+P7J1Ovtg 8JR/siB/Bxz+uu1zsX8b8zRSPNvl2f8in+T/4+yjPWZ5JpHLXo/1vA71/zHO U/3ekuKAfd3J/j/rXOeI1rJ98x86Z19e7XRM0HO6c56LvMz+//TkfDv1w72d p3p8LHPKA5eeLe2e3nM8nwT9cL4/Dqf821s+CeWkv80zeeYR7smn38Op550t DwROOcnHULtu4u8Fl/uzh3PsIJzyw+N7oSe+F5z30n1TbT1pvJ7xRtoXPLg7 c+l/9I30/zt3J/1znSMvO/mO66Ef67nDXR6u8f1X5+zjqz3O7sl2h/JrGJzl +SpwjeqTnfNeKseEHpt330zjeYzd1/q6czXrut3J3xvdk+chuOQG2/fGRwzP eQhql6ttvXOsc/XjPznnvRRv+I7rofxw5Cm/Xv8k58jLnMzvSfPYPiPTera1 M3PV95CRyW6O6EzlanKOvPrBUNdDHoLq8QWXh6vd73WOnVE5L/U8GdmTc8yO neX5NnDZiVN7ivkzV9i+/7s9Oc9E8+rpnUnuWeeKM79o9wAM68l5LHDZ1fNM /p63c/6A8jsuNvtzsnPlBd3knPeS/Tsy6DmnO/OC/BX2veBjgn6+I9xs/Xyt UWld/7uOzNU+z49KcYATO9J9j2OdIy/z8aLrYV6RfX7C5eGaNn/vnLwCdcdz PA9H9btal93L53k7cPXz7zuXHVuzK/nlHWbf3n3f7Et75lqXzXk/9Zuj7d7a FufIK248yvWQP6D2etvl4VqHPOOc/feU32Hv9dPR/8vYWcdXeSX/vy603bZb 2wp12Xa3tvWtUN+21N1ZqEDdYLfuW3f3UoMKVaBIcXcJIUEChAQIXsi9N6H+ u3xmPvPhOZf8Xt9/yCtvJvOcM2fOHJvnPJFfATe71st/jTjkHxSnfcBPkx7a gZzytAP0txSnPOo9pT7uFcH8YJnfVzxUHOPb/ousX5TrXhFy9Iu7fZ/n3okx X4HbP+bte6Q46tFRnPaB3vOlB/5WI055lHMDv5/k3+KUhz/U+Xn0YZMsfqy9 MDiK33aSxc86v6d3pjjlUb+h0sM8BNizj+TJ8fuH4pyHITzdpzwc1P9/7oc3 K2+HHP3oWnHY4x2/D3l8feSZgD+6wJ7fQxzjfJmvn4bXRx4LOe4buc3zu+om Rf4A4sadvk7pL45x6iVx1gvx/mzpYfnJKc/yw38uEqc8mr/WzwU+nGz+2Wl+ cJzfLvLvDtzj33udLE55hIs+0sP8CtjtK8mTYxv6lUTPnb6eu0V5OIhvf11o 9fy38nbIUZ4r6rP3lhzo35Ve4u1ybaWN23fXBYfbtK+0fnqbf4dqkTjl0a8n Sg/3dWDPcZInx/ytmzjn//i9Xb2NP+dWZO95LsZbPOcEcdjnUXHaB/7ZUnpo B3LK0w6wy5nilEe/nl4f94TAvpv6d2lHicMNT/X1yNT62L8jhx3u87i01ZTY v0He7NNutzGVwXG/+sfitA/mcxdKD/7/V3HKY965l393+ypxymO8WFBv9Z/o eSbN5wVH/VdMtf613jwrZ4045dFtR0gP91mHr/y7gZInx/M7i/P8HfO5h5WH g/j2fp393e3K2yHH+Hu9ONzqhzqbh3Cdtd10k/t4boutV9qjjzh+Lp7b4tiV /Wh0fTaPZbF/r7U4z8G55YPTst8FLrYj5klniyNuvi7OeiFunyM9LD855Vl+ xKFLxSmP+FZcL0DuyCprpwFzgtv75FUWV96a4/cKiFMe7dZfeniOgb/rKnly zGPfFOe5OerXXnk4OIc+3veJr1HeDjni/78Tfrbf//CjryP+mGH+8UptcLv3 Yab514vOl4pTHu1SLj3MHwCfJHlytG8vcZ6bo38X4wzWp4uq4rwF9bzF+/Uk cbTrk+K0D+LYGdJDO5BTnnaAH5+T8OP9u7iz6uOeELjpfn5+OE4cclf5Pcyc J/B9xav8PfXiPA3roq9nxrkf3PT5eptnXS6Odv9MnPaB/S6WHrTH1nODUx7l PHmutVtbccqjngt9f/uQaqvHYTXBMY6eWG3xeI8aG4fnilPeli3Sw/N5tNdQ yZOjPF3Eef6O5z6mPBw8r5e/D/5f5e2Qox/dJI57aab7d6UruI7zezYGz7Zx YaC4fXepxuavE+rjHhJyxD2ul5+tjvNz/HjYx6lbxWH/d8RZLzTnedLD8pNT nuVH9a8Upzzae57vL13v+SHTqoOjPR6bbfXpVW3xpkqc8rDDIOlh/gB+9JQ8 OeLQe+I8N4f+u5Q/g98vr7F6Xq98G3LE9avFUe5bXH5sfeSHoL4XVZv/dhVH O35W7feA1Me5Pjnkb/b3FAbNjv9HfG7v+QbfiWO8fk6c9cL88CzpYfnJKc/y o5nPF6c8/L24Lsb4/36N8Z9nBkd/GVFj84S3PU5MEqc8zNtLepgXgfnM55In h9wL4swHQD+6QfkzeN4f1b4fo3wbcsTRy8QRR9eebe2x2N/TeajWzn8/rAqO 5z1Ta+vgJ/x7oPPFKQ//Hyc9PPeHPUZJnhz9/BtxnpvDDtd4HGisibwIzJfa +vw8L4553YPitA/84TTpoR3IKU87wM4txSmPODKV4/Ic86Mh083Ph4ljnD7W 5wXFdQrHRXLEqbu9vlNrYzxBfHjc10c9xVHujuK0D/rbBdID3mlWcMqjWHnP D22d6Onk+Tl1vo/dw+s1f2pwu2fd80m+nWp+O0uc8vh9qPQwfwD16it5ctjn I3Gem8OO9yl/BvOaxZ5/crPybcjhR23F8fc7zLC4NKE+8kPAF0+xca2nOOQe 83yJ4nqZ8zNy5K3d5uPLn+bGvAzTrbt8XvTznOCo18vimXsPzpYelp88o4fl v1ic8rAL18uLPT9kv8rgWM9u5ve6T62wdUSFOOXRbn2kh+sq9OuvJU+Oefyr 4swHgB1vVf4Mzg3/4ff/tVa+DTnUXSmOfKCTptn+9hLfJxnn87mK8uBQX+7r meHlto+xSJzyiBsTpYfn/vh9vOTJMV52F+d5N6rH9fKJ82L9BDfjevkocbjr /8RpH8SR06WHdiCnPO2AvztTnPL4+yq+v+zvIaxVbu0zShzlae/fz5xan/0+ e3t/X+p+P0fYU9+hxrz0aV+/rCEO//hEnPbBNuWF0gP/mFYZnPIo5z98PX21 OOXRjxb4Pvna/j7JDmXB0e+39nX4jxOtvWrEKQ//G5HoWVZm7TUwkS9yeGvn RP/rfv/uw/XZ70jtPNnqcYfybcjx83pxqL90srXfpPrIDwHfZ6LFh77i6Aa9 J1q/GlMf+xTk8JMOvu64TPdOYFy5399/P14c/eV1cdYLbnCu9LD85JRn+bE+ vkyc8sxzOC/JV2E+wxW+T5Rym4eJ2/sCPj4escDHU9+/n+PlvNj3ofYfZ/44 VZzyqF5/6eE5OMahbpInR7HfErfzyQm2/99B+TO231Zm66trlG9Djnq1Fsd8 65Ey6y8/+nxgu4UWZ7YaFRzmaL7QnttslJ2nLBWnPPZbyqWH50i/rqxnueTJ L13pOL3F+V0MuOWNHgdeXBD79/CLW33+8Kg46vWUOO0Ddz1DemgHcsrTDog3 54pTHuru8fG9i/JDoPd/Pj/vJY7nfyLOfAmMO1eL8/6DlPN8nv7M55LD399W Xgftj340RHkg5GivoeJsR7jBQ0l+SLNxNp94IckzKXLIf57mpYwxfnFpngl5 mpcC/W1L81gwLnxeH/v4tCfi7nCeL4ijX48Wp53hJ4PFmUeQ8mq/R8jOy/Xc Cr9HCD+/8vyH2QttvLtmqI2b48Xh73PEYYdfJQ87LPb7Lu5S+clRvztUfjTz fHHKo9hzxHkPR8qZR0Q9fG7KKY/5R/cBJeXBvKX/wJLyZ+QHluYLWT5HKbf5 Zr4kj8i6q/KCpnt8SPOF2K+tPZVfxHMP5pOQ81zSxs/6Ep7m8/C80r7ToXwn TK9fXxqc+TYY7yf49wXai6OUC/37AruIY7i738+7NxDHvsBH4nwu5RGvrspF /hmee4z4456HQ87yMF7YvQKeZ3IE7fNx6Gc5K/yeGZaH8uRpeeh/aXmY/5OW 5xm/HyYtD+uVlod5R2l5mEeUludgzwtKy8N+npaH8ml5KE/95JRPy0nOclL/ w37/DNxtwdIoDzn8bReVk3GKPFvfPiXloZ60POQsD+YjL+Rs/tBroPlLYUlw uP2ag6x9qpfYuu0pccqjnLdKD/NY4GfXS54c8eFsceaBIM7vk4s8K/z/f3+0 cWr7XORTkeN7bX8Wx89XfzT99+QiTwn8Pv+uwTXicLshnrfTPhd5UOSIH81z pm/bwZHHArk9c/b7t4OCwx7HirNecISf6kMPy09OeZYfeRdrSw/lMT4+k7N5 7vPDLF6/sTg44ugGw62d2nvewkPilEc120oP81iwn3K55MkxLztenPEQ/tQ8 F3lciKfbLbX//1Mu8r7I4YcbiuPP9llq8a44LmD+ufUoWx/euCg48nq3G2Xj zg1+b/9r4pRH+e6VHuaxzFlZ4XslT378yvq1EWf+Bvr9ljk791g6PPJYMAv4 S86e31Mc6v4hTvvAzQr1oYd2IKc87YB55s/ilEe7PJ6LvCxrh0UWX/4rjnod ucjWLUV5zqfJoffgRE+xvjYvF2d+C+LLPtJDjvpsKo769l1s/rKG9JDD71bh D630m36LrV4v5WxfatE4/27QwuBo113H+3mdr3ueFac8+u8d0sM8Fix7b5Y8 Oc5NLxBnHgj+v1nO12OyA9phI/fzAeJorz3EaU+4xbL60EM7kFOedsD0ZLk4 5VHc+3NxvxDi6bsLWjy2smNcL46/m7nAynVXLtaH5PCvnXP+XvWEmM/i//+W s/8vGx8ccfok8Uz+zy/1oQft8uKi4JRHObsvsvqvJz2UR7h8Lmf7FtUTzb7f zQ+Ofr5VmY1TL8+35z8qTnn48/XSw3wY1Ku15Mlhz3+JMw8E87ddc7FuRPw4 eKHZYQt9r4oc5dlYHH54qq/bOuQi3wlh4MD51i8uF8d+yUPzrR/dkIt9HHIU d5uclfuFsshjQXMX4y3G+RvFUa/DxFkvzBsb6kMPy09OeZYf8fk3ccrDr57M WXu0LDf/vKAuONzjjXJ/37CuxRkrH3+POOVh3tbSw30pjMvnSZ4cvx8hzvwW TMOK8Zn5YIhvlb4ftm4u8sfI0Q5ri6McM9zOr+SsfJtWWP33nhcc9t2lwuy7 4zz/ro045dF8/5Ee5rFg/+UOyZPDby8RZx4I/K04bkLvL+Wxf4Y4v6nPP5eJ 417ovcVpH5z71deHHtqBnPK0A/bx8uKURxwpzh9s37XS/KrPXIuft4jj71fM tX50fy72W8lRjt1yFuf6V8Q+Luy2v/vDXeKw86nitA/i+6/1oQd2+KIuOOVR znK/Z2ND6aE86vl8zux9t+/njpkTHH/3yRSbJ37n5x6Pi1MeebE3SQ/PW3Cu eI3kyeFXp4szDwTrpT1zcT4BPz5znvn3NrnIHyNHu20qjjjbzt9zvTMX+U7w v7PnmP+2zmXzo96eY3nfxXl7Jp/qbb9vhOvlvafGeQji267evr9NCY5mO0qc 9UL5VtSHHpafnPIsP8q5hvRQHvOQp309OMffz7ylNjj63d7TzS/+VWvvnd4v Tnn8/dXSw/NMxL+LEz2L/L38Y8SZ3wL7bJuLfDD49/I5dp7dLBf5Y+QIO+uJ 4/m/zrE48KrPNz6tMrucUBPc7lnxc7Wj/XsgL4tTHnrvlh6en+P5d0qeHP53 pTjzQOCmm+esXV+ZHueWeI+jGG9tfBJHfNhPnPbB+JGrDz20AznlaQecFzSK Ux7mfTQX9wvB/6bPtr+7Q9zudfPvYjySi/N4cuzn7On1vXhG5MNgv6o4H8Z8 uZk4zuPOFKd9YLff60MP/HRobXDKo/w5v79lY+mhPPIaX/T52xazTP+86uCo x6H+nvzEaptXPiVOeezj3iY9zHNBP79e8uSo39nizCdBO/0tF+f0mBe3q7G4 tUMu8sfIYf8/iyMf4vEai5P35CLfCf5xS7XFlWvFUd7u1eavHXKRT0WO5zb3 edrgWZEPAz/fy+f5z4rjx7HirBfGzZ/qQw/LT055lh9/trb0UB7zt2d8P6df tfnTn2cFRztVVdu6bsxMW3c8JE557Ku0lR7mw8A/rpA8Od4DOEGceSBo9x1z kQ+G5t3Iv4P0p1zkj5HDHzYUR/m29/uBXvd5Y8fZdm9M76rgWOYU7Yj39Hv5 dyJW4ZRHt7lPetj/ME+4T/KZfnmVOPNA4A9b+jpx69mRD4NxrRhvUe4NxDE/ PUic9oG+Qn3ooR3IKU87YJz8WTxjz8dzkd+FuJyfbv55pzjKfXGVjTuP58Iv ySF/iORZX8xLthdn/4Md95EecujZTBzD/+X+nYg1pYcc8WcNcXS/f88yfyiu ry2fwuu1xrTgln/h40qNfwfyWXHKw2/bSw/zYVDvWyRPDjtfIM58ErO389Nl B8wuNvLzgtPE8WMPcdoT/XZZfeihHcgpTzsgbi8Xpzzm1ffn4n4h7Ec0n2r+ cL04nvveVOsXd+di/CBHfXf2fdr9aiOvBubguntTcQzPJ4ln7if5pT70wP3X mRGc8ojHZ8yw9llPeiiPOPycx/mNfL57cmVw289w3szvK3004Sf7PZo3SA/n rQgvrSVPjrjzL3Hmk6B+u+ZivoV4cpp/t3OLXOShkcMaG4sjvvzH/bZDLnt/ 0ckV5gdXiCM8zKmwfnRjLuYx5PCHbbx/XTUn5sWIszv6/O0ccYwrh4uzXhjO GutDD8tPTnmWH3HgN3HK4+eTvs46bq755zPlwVHPtp5XfVC5+ec94pTHc9pI D/OF0O7nS54c8+F/ijNPBuXbKhfrGfj3C+4n6+YiD40c7b+2ONr1vUqbx73i 8/Bd55l/HlwWHOPl3zwfaWe/D/tF8Yz8f6WH+yiQby95cshfKs58Ejtnztk5 +RtzY/2K/97M5ycvi+PnPuK0D+xSXF9TD+1ATnnaAf0pL055xNuHOB/z70Nd NtHGl1vEMa8rm2jjVjFecX+BHP2iuO6G+989L/JqEM8O8PPEi8TR7qeJ0z5o 99/qQw/iy+GTg1Me4k9Ptji4ofRQHu1UXF9jnntxna0TC+OCY9y4yd8Te3Gc 3wcpTnn025ulh/ud+Hmt5Mlhh9PFeV6M/au9crHvgPa4v8ye/5dc5KGRoz9s Jo4w1K3M/P/OXORNYVzcYKz1pzbisMcB48xfbsvFPhc52mE7jyff1MV+JH4W 4yTa9U1x9K+jxFkvzGdX1Icelp+c8iw/5htrSA/lYeenfT/5Wd8ve2hkcPz8 2vOsakZYfR8QpzzizDXSw3MD+PnFkidHv28hznwSzAe2zWX3xZ4Yb+N3s1zk oZHj53riL65U2MvPAYrra+xT3rLA+ufEIcEx/t/h3+XpO8Ts8oo45dHd7pYe noOhfe6UPDnao5W4nScPt/68ue8LzZ0feTV47lY+v5ouDnX7i9M+luddH3po B3LK0w6WRy6esedNzB9YGHluzJdIOfMrUo5u9b+cxZvCAosLBw3298LEMZ5v PMTs8Ugu9rXJ8dji+h3rkOEL4v4DlOcQP3d7Xxz+c5Y47Yx6Fdfp1IN+PnVU cMpjvHp5tI2rm0gP5RFHXvT9h489T6l3v+AIz90XWv/aoZ8972lxysOPbpMe nntjXXOD5Mnhb+eIWx7HICvv33NxvsX8Ijy/uZf/HXEM31uIM0+J7c5zILYj 83ZSzjyf7D097g/35iKfCs254Q82Tl0rjr8/sK+9V/Qf6SeHvua5yJvi+Tzc fa9c5FmRY/w8Tpz2Qf//uTT/ijzN10L+5Dq5kvwulOcfbucxyr9C/23p9Vom njn3WaY8Lqu/6/96kcWLiV09/vl86ftSbsPxIpvP9fvO78HORf4V7YZ6n5CL fC1yqLlYnO1i36/NleRxkad5X/Z93FxJnhj8+TFf15+8OOxAjjC87+KwA8rT QZzyKcf5fWPnEj0vrKznhl+UPJfyth+ZbzLfLOUoV7vSPDT6OfPBmC+Xcubj sH3J6Z+Q/6f0w36XLwnOvC+Mb595vsEh4jaeL/H7IZQnBj84YanJ90nyze4V 53Mz8kX9vK8JYebXJbZeP1Acdlp7aXDmiZEjjqyfj3wz6idnHhc5y888tEw5 i+VhnhiWZytUHnL8XFPloR5yPpd5aOlzmW/G51Ke+imPOPzXfORx4TGvLTH/ 3Foc4/SEJXbus1s+8sTIcc6yWPlg1I+wWS7O8vwVcUn5ZpTH+HJY3tY32/Sz ceTjxcExzezZz+YXz3h/OkCc8qjH1tLDPB/IbSp5coynhVxw5regH41XHhr8 a8+lFq8GKN+M3O4NEof/H+95kjvnI48LfB/Pa2omjn5yh9+Lsm0+xkVy9PdB Hj9vGBD5OWiH0b4+2kgcbjBXnPWCXTpKD8tPTnmWH/o+Fac81uP/cP+cPdjG kX8tCg5/u2qIzTN3WWQ/9xKnPObPm0gP85fQ7mtKnhzjYF0ueObenkHKc4Mf j3Q/6aq8OHKY9ytx2LvC4/fReWuHdsNtHrf9wuBorg7DbR63zULzt6PEM/K7 Sg/nL5DfRfLkkF9fnPMOyzv0ddmxQyM/B//d1/c/txBHv6oUp31Qjrelh3Yg pzztgPHzfXHKYxqzbz7u3cKP7gusX+wgjvZb6PPcv+Vj/prh43K2Tho+IuZH 8PMZnpe4hzjs0yhO++D3TtKD9n93UXDK4+fYRVb+7uKURz88PG/r7mPG2PP4 /dsix7riPn9Po8t8/y6WOOXRzbaVHubnwM5bSJ4cZvkpF5z5LfCjcuWhYTw4 1vOUhirfjBzqfhDH37X2PJ/d83HvFsLDqX4v76biaOfi+hV22TEf6zFy+MNQ 3z98d2ysYzBvmuB+9XdxrLsXiLNeGI8+kB6Wn5zyLD/s/4U45WGWg30cfNLz tVrXBcf6aZDniR1bZ/sW+4hTHuPmZtLDfQvEq/UkT454tTgXnHkpKOcw5aeh urX+PeQeymcjt+92iePvC75O3S4f+Vf4MWOe+fua4ogjB9SZnTbLx74JOezZ x88RjpgY+wqo9yCfJ2wnjvGgSpz1gh+/Kz0sPznlWX7434filAff3+NhvszO H9eZFxz2OHmS9aNy3/fdRZzyKOf60sN9QTxnRS7kyWGWmeLMt0E/6qX8NMSl x+qsPT5XPhu53XMgDn94qs76aXF+i/r2LLd+M2VOcPjReL//d7S/h32oOOUx ru0gPdyHRnn/Inly+NnvueDMS8G8pqvPhz+eFPt/cN9uPs95Txzy48RpH/A3 pId2IKc87QD9b4pTHv1lr3zcuwW/bOfvT28hjrjTeY61U3GeyfdbyNEvRng7 tpsc+TnwU84z9xRHuy8Vp33Q3h9JD+p36bzglLf7ijxf7mtxysN+xXbEz90q bT5zT21wxKtzK81fW9Xa+mFfccpjGryF9PC8CPZsJnlyjHPLcsGZl4Lyjs5l 9/F/cz/so3w2cpSruzjqt6V/H6cY/5l/hfr/VmPtsF4+m691mt8vtFU+m99V 5Chuf9//KauM8yjEjeG+P/O5OObPs8VZL+h9T3pYfnLKs/xo107ilEc5D/Ry PjvV1tM71gRH/6vw+/Rznj+wuzjlbVyUHuYdod/+lgt5cvSDWnHm28Cu/ZSf Br0d/V6jr5TPRo5+1kUc/vOZ33dUnH+inc+ZbvWprw6OftDKv2e30PMsjhCn PPTuJD3Mq0F7NZc8OdaPa4szL8XWH36Oc/S0ODeGOXp5PNlvWvY8eZI47YP/ fkt6aAdyytMO8ON3xSkP+xfHfd67hfPyx6vt/Yi/iGOeM7Da3pcoxiueW5Nj /jAmZ/FszarIU0C7TvVzwx7Ts/kROXHaB/X+WHpwXte+JjjlUc73a2x+8p04 5WHP4roY/99nhudVzAoOu9TOsHOFX2fa/OEAccqjn20tPczPgZ5NJU+O+Uxx vUzOvBTsS01QfhrKu81s0ztQ+WzkaJ+e4rDvwbMtThbHfeZfQf3hM61fbySO sDFipj1vu3zkT5AjXg72dcENMyOvBnFitNv/SHHE07nirBfq2VF6WH5yyrP8 KM9n4pRH2CiuF5B/t4V/J+7WquCnrSz3Qf68PTz/cS9xyqNcm0gP7Y1us6bk yREH5ueCM58E/jZI+Wmof/tZ9pyuymcjR7m+Fsc+zAvuP0f7flrB8/n+Mi04 xt0V/tw/Oz9KnPLwg12lh3k14LtInhxusIE480lQnd45y7u8oTr8Anr7eXxo JQ77TBGnfaDtbemhHcgpTzsgvnYUpzzG91gve97VGVOtXzQXR3/7fqrJ/z0f cZYc7Tne+9cZsyM+wc9m+ji+uzjmhSvEaR88rpP0oD/sMCM45dEr7vO8zu7i lEe5i+MI/GUfv4frysrg+P0Ij+NHVvr3ucQpD3/aVno4j8DfbSl5cpTn51xw 5qWg/01W/hjieBu/p2Wo8sTI7Xtb4hjPOvm4URz3M9/F+0+FlW9TcYSNXyus HxXnSxzvye1Y1PfzH66JcR52mODv9Vwjjh8LxVkv1PMD6WH5ySnP8sNvuohT Hs892Pfb/+354h+XB8fvxfko5gFXlfv3ucQpDztsJj3Mq8G6YD3Jk2MeuzgX nPkk0D9ceWXw20/9/teeykMjR7/6Thxxe7zPo7fPR94Uzr3en2T9ei1xtNvx 5dbvNs/HfJoc8n09L6hnbcyj8ftgf0+nszj6cZU462XfpZMelp+c8iw/uvlH 4pRH+YrjNeLBq34f5cKJweGXfefY+fYzE01uF3HKo13Wlx6udzGe/pQLeXLU Y5Y482Tgj72UV4byLvX3cj5XHho57PSZOObVjeXmX8V1Mer937m2r7DH+OBo v4fnWtyr9/yZQ8Upb3FIerjvArtvK3lyNM8fueCZexW6+bppyZzIF0Ic6O79 boE46j9enPaBP7whPbQDOeVpB9j5LXHKoz/uxf23eZZ/cd1Yfy9MHP7aepy1 0275WPeSo1+M9Dz28XNjfwh+ONnPp74SR3l+FKd9MG/8SHrgJq+VBae8NXOZ xd+vxSmPcepQP9fo4vs1344MDr8e4nlWJ4w0f9hXnPLotltID/dHYZeNJE8O P1qeC858EswzxyivDOdYvcbbONJXeWjk6Efdxe3cYoLFsR3zkTdl+Q/DrZzr idu9diOsHFvnY/+FHHFpgJ+LrVMX+6+YXwz38XfZvODIl5stznphnvqe9LD8 5JRn+bH+6SROeVTzQJ+f1NTZfPPoIcHhHuvOt/f5Xx1sfHdxyiNcNpMe5guB /5YLeXKUY44481vgD/2UV2b3sI0y+3+tPDRy/F0XcbjDDf5+/FG+Xzp4vund vn9w+Nmo+Vafmf2sHY8QpzzGv52lh+d1GB+bS54c/WBt8Ux+Sw8v5z/nxzkJ 2qe3j+MHimNcLRenfaD3LemhHcgpTzvg57vilGeeTHo/mI2XuZL7xNb1fAOr 5/zg+L04f+C9W1hmj/nB2nlbcZT/pb72/L/m414vcsz3i/0UcXT7BXG+h/OS aR5vG+YHh51z4rQz2usT6cF+02tDg1Me+x0nD7N2/E6c8qjXYZ4P8JPnUx3U Lcs39vv0H+xqfn6AOOXRjttID8/DUd7NJE+O3xtywZmngR8TlVeGH7u4vw1U Hho5ytNTHOPh6wP8O2v5yJtCO9/8ja2nNxK3NIjv7Hnb5eP8khxuM9jXF+d4 nlifPva8MX7udrg46jNPnPVCc3aUHpafnPIsP+LzZ+KURzvM8vHrTOUpoZ/8 Ls48GVRnQ5/P7ycOc20izvwR+N1a+dBDDnvOl37miaAfDFY+GH5c1t3kuil/ jBz98Wtxm850tzg5lO8XqF4YVsrFWX60Z20uztEzvLfPQx5bFPkm6Mf9fL50 tzjKM0Wc9UJ53pEelp+c8iw/ht2O4pRHeO9emjeF9u1UmmdFnuZlpZx5U6ke 5lmlz6W8jaul+VQ2Dy7llE/zrBgn0zwrxts0n4rxNs2/Otzia3CuY5gPlvJ5 nt9IznOQEy3hPLjNlyL/MTjzB1ivlKd2wHNHLi6xW8ppn6Er/6NC3Pzswxa/ 4z7JJcH/6XlZ5HyuxcfO1n63+HeajijEfVkcj5j/lnLm9zLOkqN9ajxfaOev 7P+/WdyCHOr6fGXj0CeLrR/MFE/l8d7Ew59Ffclxb8EjX4R9qAfts1OX4Jh3 jlceF+L48Ys9/00c9X/A8zTGKH+MHP3/Q3F7n2qJ+e/L0kOO6ea94lifn7PE yjkjb+PADz0tvp+3KDh+v6mXjetHLDK5yeKUR/l/kB7GJ9Svq+TJcY76ljj9 EP/dXvlpKO7kxTZ+XaN8NnLY9wpx2OvHxTb/GJaPPC7wyoUWt74Wxzpq10W2 LuuXjzwxcsi3c/m7f4j8HLjnrb4vMaZ3cMwHnhJnvVDek6WH5SenPMsPPz9T nPL2HeG83ft50ECTa1gQHO7Qb6D52Vifj4wRpzzM9Z30cPzHuNNJ8pl87WfE mbeD9UBb5blhH+ZOv/fpIuXFkaM854uj/zzi92LVerv3HmLxe9T84KjfhCHW HkPm+3d8xSmP9hshPczPgV2HSZ4cw3EX8cx9O63ydv/ZS4NinEc7tPHy3yQO +9wrTvvAH46XHtqBnPK0A8L3SeKURz8uy8e9ZHDfNv6d2YHi6N9v+vpmQj7W Y+Ro//bejtsNi/kmqv2w+/+DQ4Ojv74jTvug350uPbD36QuDUx7j3F0+j75U nPKYt8zydeULI82+N9UFRzkqR1o9i+tvVHOKOOUxP+kvPVxfol/3lDw55g/v iTNPBv3+LuW5wU1/nG/+cL3y4sjRzP8Whz3+5PYZmY88LvAGv6e8qzi611F+ X/jgfHYf5CjPg7oh36LjymL/OCryfGDXYjui/o+L4++fE2e94O6nSA/LT055 lh+/nyNOeeyzTPP5wDXjzD83mxcc/WmW7/fxnvvx4pSHf3eXHu7foDd9Lnly +M2L4sxvwXNuUJ4b/OQlv8fpcuXFkeN5F4lD/Yf+fttc19Mwwfxzzpzg+H3F BOuntf79oFU45VG+0dLDPB+01yjJk2M9+q0453Xw/zaepzF0fOwzoX3a+v7Y 8+KIQw+J0z7Qe4L00A7klKcd8PMUccqjXSYrbw3x66E5Zo9h4qhX1zmmZ7Ly 2cih9xHJs76w23Xi3AeFHe+UHnL0xyvFEd8O8fupzpIecvzdmeLot4e6H1bn TV/rSX6PYW1w7G/cO8n6wX9rTX+VOOURVwZJD+ftaK++kidHvT4SZ54M4u0l vr90RlnUF/vWl/g+eUtx9Kc7xGlP9JcW0kM7kFOedoDcKpzycCPOH3hf2VZ+ vtRTHHHzwlqbLwzPx71n5PC3mz3/bfPyOH9APe5yPeWTgqPfvSyeyY86VXrQ LhvODU55lHNf3/8+X5zy6B9VHrfH+Hcq96kJjnvB1qiwdcPGfo5XJk55xM9e 0sPzQ7TX15InR77Gq+LMk0G5blW+HPbLunjeS2vl15Fj/LhUHH44sNbi7eB8 5IMh3n3m3636Ip/NH/vJv0PUO5/NN/vJv+9UnG8j/t5TEed7KN+NeXv/7GJx eOP/xFkv9IuTpIflJ6c8y4/ythTP1LfS96kOnWLj+tjq4Oivj0yx+U5H/57Y SHHKw/+/kR6ez6Nffih5clTvCXHm/8AvrlK+HOx1lt87dJ7y68hR/3PEoecC /25acf2Iev7s9zicMCs4yrnxNPt931m27pglTnmL79LDPB+01yDJk0PPp+LM k0HxLvfxaN6UOIdHfLjS6ztdHGa6U5z2wfzn2ERP0Q7kGfkL/Lz9+ET/Wf69 sAn5uJcM/bCd50H1FYf/Vc80/ynGK957Rg69t3m8/Xxa5AvB3+/P2/n61eJo 9zfEaR/8aCk9qO5us4NTHnY83e99ukic8qhHcX2N926v8TyPJ6uC4/6MF6ps fnBhlflthTjlEdf6SA/zhbAe6SZ5ctTjLXHmycDfOyhfDnHtWf+O1bXKryNH ea4UP2ulfwycZX9fnA9k8sRe9HvUvhZH8+xZZf7YLx/lI0e8b+fvWWw1I/t9 rlvdr+ZXBUe9nhJnvSB/svSw/OSUZ/nhL2eKUx76iutrmGfCTOs346YGx88t Z1n/u3+qxdmx4pSHf3WVHuZBYTztlOgZ5vmVz4gz/wdu2lb5cnjeJL/H6WLl 15Hj+eeL27FBlcW9OR6fT6223/9bGRzvzZ7p+aY3VJqf14hTHv4+QnoYFyE3 TPLk2AfsIs48GTynuO5G3uQDs8If0c+L8dbu0RZHPe4Vp30wDzteemgHcsrT DrD/SeKUR/tP4nrQv4PZucL6xSBx/Niy0v5+Yj7uPSOHXxXXa7in8IPqyBdC NR7xfcK7xVHud8RpH2g9XXrwHuY904JTHu+rV/p3ry4Tpzzm9bN8vvrAbM+b KQ+OdnjB819f8ftxp4pTHubuLz3MF0J79ZI8OeLV++LMt4Fd71a+HOQHVtp+ 8PXKryNHP2otjvH9j0qLS6PykQ8Gfxzv875u4piHXVpu8WZwPsYzcjz3Bt9f rZwd8yPEuw4u30cc5/7Pi7NeOFY5RXpYfnLKs/yIh+eIUx7hbLrHpW7+vc+1 y4LDDGU15md9Jtr8aoI45WHf76WH+UIYL7+QPDnCy4vizJNBvW9UvhziwPqT rd5XKL+OHGa/WBz6/zrZ9M/1ceS1Wus/F44PDnsUOfrDeePNTqtwysO/R0sP 84UQl0ZLnhzd81tx5sngZxsv58a1kS+EeNPW90t/rwmOdcdD4rQPtJ0gPbQD OeVpB5j7FHHK87yDdkvvtbD9f3Gbj3v+ars52XtRKpRHB3Wjxvr7buKIzy+O M70Vyq8jRzs8kugp2g2/Xi/OdTnORe6SHnL0yyvFoeZ0X9eeJT3kiGOrcDz1 7LI4/+K6kfUlp/40/6GNr5PJEUdm+7nY6Dl+r+DIFhk+xd93+nikjcdV4pRH dxgkPdzPw9/1lTw5yvGxOPN/ME0qrvdR3ONkT7T7pb5OP1Yc7dVenO0Cu7SQ HtqTnPK0p41a4pSnv/XwfSXabX8/12M+GznPHxFPv5ed4Z5jOd+b63k4I2w+ 3Uvc7jMcaT9H5GO/jBzjxS2+f7jb3Nj/w9/f7euIdcTR7q+I087od6dKD77X snB8cMpjvnL0BBt3LhCnPJqhys8B15xn8jcNCY7xejvnBf++yqSEF+Xhlr2k h/v3sP83kieHXV4TZx4R8l9uUz6h3eM3yuzWRu1FDv2XiSOujRnl35nJR74c +I2DzL++EMfffzbY/LF3PvZtM/wanxddMi/219FPb/R54MniiKOPibNemI+c JD0sPznlWX70y9PFKY9+N8Xtc6jfz57rG9z2j+ts3Hy+j9l7lDjlYa9vpIfn YJD7UPLksMsT4sxrQv2uUj4h/GtNf1//fOUfkqM854ojnjTnPQH52PdnvyNn Hl06Xti4KI7+UOP+8Bc/Z3qlWwty2HUXf9/4hG7mt7PEM/JDpYfnupAfJHly yH8qzvwKhJ3LPa/subrIE4O7tvL55BPimH3dKU47o37HSg/tSU552hPDyAni lLd7U/LZ+9wO+Nbar5842m+jrtaPxuaz728XOap3u687bp0f+VRol/t9nXiG OOLlG+K0D9S2lB7Y+9wBwSmP31cMsPh/sTjluY7GvKjNgsh7wXynizjzZHby fQbY+wxxVL+POPOpEAe6SQ85frwtznwktHsH5RPad5S7W9y4VvmH5Ph5pTji +Evfm1/dkY98OdYL/fAxcZYfz381H+eg5PCH65x/siDyL9B9bvN9wufE0Q2f Fme98PvJ0sPyk1Oe5cfwd5Y45aHuAuX1sV4Y3y5J8v34HcZ2Sb7fajjiVOdP SvSQp8+Fma7rZPmmJ3v8nyD98PfjxVlOcthreqk8OZ+b6mnquZS38amhJI/L xrmGkrwvGy8LJRzjxpVLI2+K+6hWf32HEXbZydfXuy8PzvWl7e8rX4vjM8b7 q8Q5z+L8n5zxw849C1EvtFPNouBW7uet/6zl+TOnieP8+xC/P6dB93cxTwl2 XirOfCdyPpfy8OMnCtZe131k8bPVouCIy3t9bPycRWb/RxNelMfvbaWH+UKI n1dJnhx+e7I4822wXvqD4+P7UU5y5qeR0w7krC/0dyh4/O1i9f/R7ztsLY72 3s/vn7m1EHGNHPF8i4I9f96nkS+E+dsOBTsPmtcpOPr3EeKsF+1PPWl7UZ7l Z73IKY/xqWh/xNFWXc3v11oYHPXbtZvVZ67ngdwjTnnYvbX0MH6g310s+Uxc OUaceTLoRtsWIm5ivHnU82GaFSJvjRzlWVscz3/b82FvLGS/a/nIghZXr+x3 54vj7yYusPeuin7F+Qc52muTgs3/dvo++92xrQrmvw93D4567SfOemG6tSQf elh+cspnyp8Xpzzs/YDbrVlfG6c/mR8ccfDAftZP7p5v9bpdnPJwr4ulh3lQ KE9LyZNj/DpQnPk/+F72RoXIl0N777XQ5tm/Kr+OHH/3szistr/f+/RUwZ63 8SCLF3fVBbf32wfZvtatdTZvfFyc8pZ/Kz3M84H/Xi95ctj5HHHOl+Ee6xRa DF/5/6P6x/iPedX6BT/PEEe/2kWc9kFx5udDD+1ATnnaAX65UJzyGHbuLMT9 ZvDTP3le0LUJP8XzOjoUYh5Mbn5aML+4cXDMQzFv2cv1TBsUHPU4Tpz2QXvn 8qEHdv9FnPJo5z39O+RrSA/l4X//8/GoZpj9/w7zgqPe/xhu8WBdHwfvF6c8 /P9q6eG6E+11heTJETdPEGeeDOL8joVYV2Ncf6/O6rVpIfLryO27geL40dv9 9pZC5IPBvz6ca8+/WBzvVS2aa3GhXSHWveSYJ2zu/e64EbEuRHcrxkkUs2Z4 cPj9QeKsF/rL0nzoYfnJKc/yY57ZKE552OWhgs0beow2/+w/Jzjym44YY+eO b87x+1HFKQ+3vEx6uK+Ddj9L8uQYNw4Rz+S9b1aIfTT8fpz7yZqFyK8jt+8G Ku8O3eGseRZXni7YuNdivOl7uTY44uLp462fPl9r9n9KPCN/q/Rw3xHyt0ie HPIXiDO/Bb9vULD59TZjs++Dbuz1XTAmOPxmD3HaB361MB96aAdyytMO8Mul 4pSHuuK4z/vN0I77ev7GDeKY57SptfhxdyH22cnRL5oXrJ+dNSH2a/H8v7s/ /DI+ONr9JHHaB+XK50MP4vBWc4NTHuU8aa750drSQ3nEh8c9DjTzfedDa4JD bm//TuXunrfwkDjl0a/bSg/PQ9BebSRPDjucIs48GQyLuxViPxfn8z1rLX4U 543MWyO3PCZx9I+pfo9Tcdy3fZ1Jtm4Y6PdPXCGO8WFdv4+hOF/ieQ85zL1l wcrVuyzyfPD/O3r7PiSO/nW4OOsFOyzLhx6Wn5zyLD/mJz+LUx52ftjnhx3K rT2nVgdHub7088ue1VbfO8UpjzhzpfTwvBHr//MlT47+8E9x5rdgfCvOA5nn BnyZ35OxXiHy4sgx/KwhjvHqZs83u64QeVz4/wurrZ+eLY6//7Ta+l2rQuSJ kaMfbuTjyO6T4zwT7bOZj1PrisP/9hFnvWC3RfnQw/KTU57lR3xZLp6xQ3G8 xj7prAobV36aGRw/D/T7RN70+3VuEac8+t0F0sN1N8xysuTJMV7vK868HfSj 9QtxXgu7/l5t+lcoL44c5WkUh53XcntyPfvRFBvvPqgKDnfoPcX84jH/jtKj 4pSHfa+XHua/wJ+vlTw58uHOEGd+C+q7lseT5ysjfwl+tLbH5yfFId9cnPYB r8uHHtqBnPK0A/TPF6c89HUoxP1mWIcOmm71aCOOuN/C83RuK0TeAzmqvY2P g+dNjTwX1H83l/+zOMxxtDjtg7i7PB968JhPZgWnPMpZ79/Z+02c8ijPo95/ /+T1qZsaHOP2MdNt/P96qs1z7xGnPFqhtfQwzwf9+hLJkyMOtRBnfgvsVJzP M88N9VvkftisEHlx5LDT2uLoz9vNsPlwMf4zj8u286ZYvzhfHP766FTrR1cV Iv+G3Orj+vtNj/9HPN7Kx51XxTF/3l+c9YLdl+RDD8tPTnmWH+2cF6c8yllc F+M85y7P+9q3Mjj8cOAMGxcqPR7cLk552z+SHuYv4fktJU+O5jhQnHk76Ocb F6I/I1/mQL8n7zflxZFjmPhZHM12wjTTU5x/Qu1Rs2w+Mbk8y0/zfckhPl49 Lk55i9/Sw/wctNcNkieHvnPEmd9i+WQFm8/+dWb0Y9R7fd8X2lYcf7+LOO0D /yzGE+qhHcgpTzvAjIvEKQ/731mI+80wH1rDvy/WVhz99I5y+7v/FOL+NHL0 q+18f3XxrBg3MK3Zy8flD8Xx3OPEaR/0i1w+9CD+T60MTnnsXx/g48Ya0kN5 2Ol/Xv5J1Tbf2r4sOPTVVdv4vmSi2fF+ccpj3nCN9HDeBz1XSJ4c/eBE8cw9 OTsWIs8Nfr2T5/NsWoi8OHL8up44/uziyd4ffD/q5+o4f+T7v5Qn53vEtk9R nT2vjHW359f+daLFh0vEUf9eE82v2hVinkcOseK6G///t9mR5wP7befr6y3E Uf+DxWkf9P+l+dBDO5BTnnaAXKM45WkHlj+TR1G02/le/tQ+qd1gh4e8vTb0 +08HjWtBDv1719h4/3d/76qDOOXRTS6XHq7zcL/e2ZInx37GoeKZvJTNC9k8 8mvKrH+vVYg8PXLY7Tfl78EcD5W1aKq+TdmnKXviuc+4vy30cv55VAtytNOS GsurWG+U9YunxSmPx90mPdyfQLlvlTw5/OVCcealYNjdwPefW9fEuhB5Hhv7 ucMF4pi37ClOO6O6C/Ohh/YkpzztiXFnqTjl8Zx7CnFvG8aF+0bEeRM57HPm SPOTewqxPiRHP23u84fjayM/B/zvvg+/rTj842Rx2gftls+HHpR/kwnBKY/5 zc3O15YeyqO+3AfY2e+Xe29IcIwD+/t9dBcNMbs8LE55hIN20sN9RLRXG8mT Yz1zijjzW+AHuylvDevfTn7/z5aFyH8jh52biWOc22+0xf/buT/vfNwga/cr xdGuUwebv92kPDpylGdL53fOiX1KdMOdfHy8TBx/d7g46wX/X5YPPSw/OeVZ fqj7WTxT30cKZtcL5lo7nd8vOOpxm98PfnZf/+6hOOXRf1tJD/NzYJcLJE+O ch8pznwSjBtbF2K/En77j6GWz7VeIfLZyFGeNcTRLx8YGvdgMJ+KcYmc+9fk vA+E+T/kiJPXFSKPCz+O6W1x5mxxCz99bLxuVYj9RHL0u418nvbl3DhPQHts 7nH1XXGU82/itA/Kx3nal7IDOeVpB7THcnHK0w5jfL87tY/NQ+tK7IN1Rpe6 bPy/3/d/nmY+m9+3wflSV7+/Lvet/d0t4pSHGS+UHp4forz/kjw5fu4rzrwd /CzGebYvynuvnyP9JH8gx7ytURzbHu/3tzhyiM+j/lsXeQ5ws8vEmc+A/lFs d/jjjeIozw3iPMeG37eVHnKY/wxx5rfADmv5uql2XuQv4f/X9nOWWeLwv+bi tA9+r8uHHtqBnPK0g723I055u8+jEPlvmTyZI8Qz+TCnFLLnhUWO/rWNnxsO qYvzatS/GLdRnY/EUZ6jxWkfuOPyfOjBuWnz74NTHvOnC3rYePGbOOXhh+sU It+M9YI/bCTO8mOcLc5jec7XFEf7Xd+pRA95+lz0yx8723qV4+9c6ce4uESc 5SRHe/1cKk/O56Z6mnou5a1fleb5oPxXlnKLI40l+UJp3o61Y//IFyLPxMOX lLfzrI/79rMhOMfblPvPEs5xhvNY8h293TZL7o/iOXUqz/PclPP8OtXD/I1U nnl5sN/+yrPCvOhEceYR4f+v9nyDfcTx8w0/L56tPCXmUeDvhhey8tv5fTJ9 lAdFjvb5sJB97nOLLK69Lo5+/rV4pt2fcz3bNUReEMr9jt9fuJ44xrcZbret GiLviJzlfGwlbvVO9ntYw31e+uEbwWkHctqB5aSetF6UZ71oB3LKY71QtD/6 7/pdLK59Oz846vnNl/bcl+bbvVc7i1P+l5XFXV96mDfyyEp3+a0Q8uSzV5aj Vpz+Zve6K28K/nmQ5418rTwrcsTNT8URJ05ZaPOHzRsiLwj8gPkWP1coXwj2 eNDLv0FDNl4/6PdQdvVxcNA3ke8Be/byedFh4ogDk8RZL8xjXpYelp+c8iw/ fn9TnPKIP3s22Dz4qx42bzu/Ljje96vr6e/P+nxnG3HKI+79Xgg9HN8QP38s hDw5wmGFOOMG6v2N8qbQDBWe9/2B8qzI8Xfvi8MPq+bbOHZAg9Wjbz9r17/O Cw67Netvcaf5PPOzfcUpb9+3kx7Op/C4TSVPjnIUCsGZL4Ew93nB1iE3947x EPuEXdxuJ4tjXjJMnPbBc56THtqBnPK0A+z4gjjl0U92bIj7slD/H+ZafNhI HPZq9HGhGK+4biFHv+jv+YT9BkTeCPSNKdg6/xBxjKvzxGkflPdN6YF9P68L ntEzyd+T+ESc8nju3xtaLF45Lzt4iNlt9Jzg6I/PDrHyf+vvV+0uTnnYoZn0 cHzEj7UkT459qvmF4MyXgP7ByptCO50xz+JeV+VZkeM8rksh+z3KtvPMn7Zs iLwg/DzL7x3/TflCiBdv+ftqGzfEvgA55L/3c4SXh8b6DPG5H/fth2bXbVPE WS/4xyvSw/KTU57lR396R5zyeM5e7m8bjrR10M21wfHzlZH2/yf5PSHbi1Me zbCm9HCfA26cL4Q8Odp5mjjzQDC/6K68Kfj7Mr+PqJPyrMgh96E44usvft/O PxrsfoAXx1i9j68Jjn7Zyb8LeZTnhxwgTnmUZ2vpYb4H2mtLyZOjP/5cCM58 CdjhS+8v142K/RjEgW89T+NEcbTPKHHaB+35gvTQDuSUpx1g55fFKY/+uEtD 3JcFN53m++WbiUPP5p43slND7N+R2/jnfrVsbOwLwg8m+L7EheIoz0Jx2gfj /dvSg3s1htQGpzz2G+trbXz/TJzyqF9xHME0ravnEc2tDo64XjnB/HZCtdlx L3HK2z6i9PA8Ae21vuTJ7RyzEJx5F+jFw5U3hfq3rbH1SU/lWZGjH30tjvo9 VmNx7C8NkRcEfrOXcy1x+F03P4fZvCH2kckRVnq5/qsmxj496jHY+91+4vCL GeKsF/7/Nelh+ckpz/LDbTqKUx7jzd6+Xthxkv395rOCwx8u9fujRvl5447i lLfvT0oP80Zg9p8KIU+Ofj1LnPkSaM7eypuCnzSbbXq/UJ4VOcrTSRzdZju/ b+CgBts/n11uP3tVBUf9a8vNv3r4/R6rcMrD3NtKD8+Z7Z52yZNjP+SPQnDm S8D/v/E8tLGTIm8EcasYb+0+dXHYZ7w47YP5w0vSQzuQU552QHu/Jk55tOfu DZEHdfRKwfrpNi/YUhxx7aIq60e7NUR+FDnsNlH5VKwv7NZDnPkkaO9hyrMi R/26iGO+cNks2x97V3rIUd9VOPrJle5vxXUx8itO9zycP6YGRz5a20qL77P8 u4X7iFMew8Bm0sO8ETxvI8mTo17LC8GZd4E43bnQ4tOVdj+8IuqL9yY+9XXx oeLI/x8oTnvi57PSQzuQU552QP1W4ZRHfCvOH2ye7XlQ20+1/rW+OPrhu1Pt 59YNkYdBDr/q4/3018rIP0G7jPB9+/7i6HezxTP5Nm9ID7aV154RnPIoZ0vP H/lInPIo3z4+P+zh+UUnVQbHPs4i/67YBpU2n9lFnPKw0/rSw3qjvYrrO8qT 4/sec8SZd4H+2U/5V/CLUz2P4mvla5Gjfp+J4+cd0zxfqiHyi8BPqLD48JPy jhA3aius/xbX3cxfIsd6oauff7WdFuXC+3DFeIt12AnieG+uXJz1Qr94WXpY fnLKs/xo/rfEM/Utrq/hr7v6dySfLg+Odr6lyvrVAX6v4V/EKQ///70QephX g2osK4R8m1XjTYU480kwfn2r/Cu0//OVNk/7UPla5BgfO4pDzzuVZucDvL/M nWH+dFBZcLTXihk2D2heZvPYfcUpj3nsFtLD8RDttZnkyaGnoZDV8/ok63ef e57/xKrIq0F8KMbbg1YaeJg44tUwcdoH67LnEz1FO5Bn5It2QBx4MdFflIe5 ivOHgX5fFtrjEs+r2UgccWjiRPOf7RsiPpLDTwd4PsmrMyNvBPYa4/nVZ4tD bp447YP/f1N6gA+bHJzyiHtPTjZ7dxKnPNa/xfU1/PSvfn9XblxwNNPR1Vb+ Z/2+3t3FKY/nNpMezlvRXmtJnhzz4QWF4MxPwLxisPKvUL/7yuzco5vytcjR j7qIw4++K7N+tlVD5IGgfdcZa/b4XXlEiDf7jbPxZpOGyF8iR/16+P7Gg9Ux L8bv/Qs27l0nDvtOFWe9ULxXpYflJ6c8y4849q445dEviusOu+fev4d4/8jg eNoD/h3fmSMsnmwvTnnoW1N6mH8COxUKIU+O+eF0ceZdIB59r7wp9J/Hx5s9 Oimvhhx+9JE4+k338ebXxfU1cIsaa4fxQ4JD/Yn+XeeeQ+z+9APEKY/9ma2l h/sosPtWkidH/PylEJz5CWjHr3z91X12rF/x/9/6+eYX4vg5Wpz2gZ1fkB7a gZzytAOK9Yo45REni+M+732Cf+8/2N97Ekf5mg0xfyiuu7m/QI6/K/Yv9O/X a2K/BN+RLc6H4Xe3imMfbZE47YN+/rb04PyhclRwyoM/73lNnyW8KI/+XxxH EMbb11qeRPd+wTEPeKzW2vXPfH9UnPKIM5tID/c70Y/Xlzw51hNLCsGZn4By jlCeEvr/VUMtfvZSXhM5yvO1uC13hvr9Jg2Rh4OwssYP1i/WEkf7/L2vPb84 X8q8J1bk8NPe7g9jamM/EvYZ7POB78RRrxnirBfmNa9JD8tPTvlM+TuKUx7j YHF9jeHp8zk2fxzbNTjWQSP8Xqxu39n8akdxyqN+60gPzw0wnv5UCHly/F4t znwAxP3eylOy9Gg/9/9CeU3kiB+dxNHvDxxg8aLa++kzc7P5AMVxjTyTD9DM 5zOrcMwrthPn+RX647bSQ47+vYY48wFg9289Tq41N/Ii8NzvPQ8wPyc42meC OO2DuPiS9NAO5JSnHfDzdXHKQ/9E5QvRPog7i8Qz+QM/K4+IHPdjlUme9cX5 YE9xnr99ubJ/DZcecsTzL8UxTy90s3K/Jz3kmH++K45zqXW6mx9+V4j8GdYL YaKvOMsPO45Vfg452uFTz189TOVHfP7U8+EPEUd/HSROO6A+z0oPy09OeZYf /ec5ccrj7z/y/I2fVU607xvirC85/GbbuhJ5cqxH9u1cogdxqv1nJc+lPPMo 0vwKu9ekNO/C7FGad5HmV3A9bu9FiFv/rrK/W+W+FO5Dtllt/sasku9tcfxM 5TmvTznnj6meiT6epPLcH0s5y5nq+cXHh1Seec3fuz3JuS+XcubXp5zzOJSr XPkbGG8+rQnOfAn4c/caG0fGiqN7/OrfwX5VnOcR6L/PijN+g9+u52byYe6T PM+zwDuIMx6At5Eecui7RvI8x0QzXCHOc0/Inys95LD3GZLnOS/4SeI8F4b+ 46Unw/8pedh52Xx77mHiKP1mC4Jn2mWZP7ed8kwy5SxyGw/eCo7n3ipOO6C7 nK08FtYL/BRxlp+czyXHc48WR/lrxKmHnHYgx9/lVS+bB3QuqRe/H5fWi3oy 7Vu0P/aZxnbKlvMk36+Y+kmWnyFOO9D+1MPyk1Oe5We9yCkP/3zCz4mK84CM 3z6h8mf4C+L0f/x6rfJbWF/w88Uz9rlS+S0Z3lIcuyf/c/8/Tnoy/Fhxu3++ zvrvpw32fePieJbp158yznwcHGb9RpzxAb8+0RD5IawvftwlTvvg3wcbYr6Y sdspfp61efeoL/ipDTbP/6Vbll8mTnuCHyI9tAM55WkH8EPFKY/fh7Hd/Tuv Z9cGpz3JGVdtnPvB5vcb+PsKX/BctV/YDWZ5T5x2tveKG+J+HnJY6dIGa/+d +4TdYOeiX2Ges9MPWTt3EGe72P9KD+pzybzglEf1HvB7JFqKUx4/BymPJWOf IcpjydhntORpH6yXXxanfbA/eZc47YD15RMN2fz+lzxPoK044u2vfj5+sfSQ Y753jji2sbb09wx6N0R+CHhxfMS+1ofiqM+pvv77tiHWdeSw7+UNts6YNyjK ifa+qsHq/bo4ft4nTjsgvh0pPSw/OeVZfoTF48Upj/Yf12D7xJf5fTvNa4Jj 2vPjMJsP1Pt7cgPEKY/1USfp4bzL8ogkTw5/fECc+QDYj7hU+TPY932/1uJP S+XhkCP/8BRx/N2n/t2ZKb4er/Xv0y+vDo559pqjrJ4Lqs1OFeKUR3zrIz2c X6G9ekmeHNV7X5zzQOybnOfrxB+Gx/4E7HaB639fHHa+RZz2gb0PlR7agZzy tAPm50eIU97OQxvi/hz0j8f8OzvdEj7A94mHNMR+IjnctJ33r+NHR/4A9Hfw fIlvRwVHuz8vTvvAT46THvA7aoJTHv//Xo350ZmJnqI88nXK/Ry5p7+Htves 4Pi7DcZbO/080/ZTx4hTHnq7Sg/zB2xfT/LkCC8vinNdgH5/o/JnYNetZ5vd rlC+DTn84XxxjGsHzbbzxr4NkR8CdYfOtP3GzuJonuEzbZ/m+4bYryfHuNOq wfx64wlx7o91T7EdUa6e44OjXg+Js16w91HSw/KTU57lR1w9SZzyaIfx7p/D J5q9bqkKjnFigzIr/25V/j0sccrjuZ9JD/MiMB96T/Lk6K6PivO8G/G0lfJn UO47Zlm7nKV8G3LMI1uKI04+N8ueM63B/OupSdavtpkWHN/teHGS+fdm06zc U8Uz8v2lh+f+kO8neXLIfyzO9bV9V6HBxsn/lMW5FsanS30c+bc41hXtxWkf xOfDpYd2IKc87YD9paPEKY/6jWyI+3Pwe8upti/SSxzl6e7n0iMasvfzFDn0 3dBg9f9neZyjws/v9nzpBZOCo91fEad9UL4TpAfdevsZwSmPct7j97qcI055 zF8me/8tTDZ/vaIyuOWTVtj55OGVlk88QZzy6NffJ3r29u+efZPI7+33e7wm znNze79R+TOI/62nWf5AG+XbkMONLxLHudHH02I/h887wt+/474Qn0du8/hG P9eYFhzWLs4feA8P9Lf38n4hjj//pcLuUfihIc6JyaG/jZ8HfVIR+QNYT97o 48iN4ojrj4mzvPD/Y6SHdiCnPO2APzxFnPJor4kNZu9/e3t8VB4c4/kbU8wv W5fb84eJUx7x6kvpYf4A/O5DyZNjPfCkOM/NUb2rlD+D/tPZ72c6X/k25Gie M8Xx+5jKuG/Z9hmSdvye72tUBed+VMpRjh4NkWeC/vjOJHvee+IYt44rt3Hi y4ZoP3JU+xI/d9hsavgF4kUrXz8umxIcxb5LnPaB/Y+QHtqBnPK0A6rbQpzy GJfH+LnzaP+u34KJwRE3d5hu/erJidaOfcUpj3b8WHqYX4Gfr0qeHM10jzjz CtCvL1QeDtpvSbnFsX8pn4cccewkcdi5UG75SpXu5895HsVu44Pj90+qbB6y dJzNdyeJUx7t20t6OB9Be3WXPDnOEd4W5/k76nt2g50P3DM98ivwsxiHMb61 F0fcuUGc9oG9DpEe2oGc8rQD4uCh4pRHvYc0xH0+yC+6ZqytT78RRzhrNc7i cv+GmH+Qw+2vcb86Zkb2u7i3+T7Db1XBYYenxWkf7CsfKz3Q+2pZcMrDvjVl La5bqa+lOOXxs8znMz/5/ODrkcHhn8X5MeJVC/+ezihxyqM5v5EerhvQPp0l T4751bPiPH/HerWd8nDQr3qMt/h4ifJ2yBF3zhWHvTeaYP26d0PkmWCc/364 lf8jcbTTwhEW775riDwWchTrco+Tn82KeT3G16t9/vmQOOLHfeKsF+LbkdLD 8pNTnuWHnuPFKY//H+dx8ju/n+fIIcERPis8L/yFwfb3A8Uz8p2lh+tvyL8l eXLIPyjOvAKY6zLl4aB5Txhl41FL5fOQox+eKj5npZq2o/z7ST5vfGW26dum f3A8523PR5/cz/ytQpzyiIN9pIf7QPjRS/Lk6JcdxXn+Dn8/z/ffms2O/ArU /0KPV2uJYz5xqzjtg3IcJj20AznlaQfE5yPEKY9yDW+I+3PQHoN/sHlKd3G4 4XN+v/iQhliHk8OvuQ+/aHbsV8Ev/+P7OcPEYdcXxGkf9OvjpIfvJ5FTHv34 uGH2d2eJU57zDZTrdn0HjdyeJ873wVlfcsS1crfbSP++237dWpBDrsq/7/bf rma/seKUx993lR7uT+N5XSRPDn0viWfuPbhJ+TyQ22mAxY0rlf9DDjtfkOQF vTQg3n+Hfw2sLbEPivF6KZ/u+S3k8L9+DZH3gnh5zTfWTzuLw18++c76Q4+G 2J8iR3la+bi2S23kM2Bd3M7j6gbi2C99WJz2wY+jpYd2IKc87YDynCxOecx/ 7vX55I5z4twZeVBvifOcGvGnk59z/V4bHOP95+LM92i/8u/fkx7yspUFf1Q8 kw/QSnlBaM8Lu1vcOFt5RORQd7o4/GB4d9vHa90QeS+sF/it4iw/9kUfaIh9 ZHIEqAt9fXfhnDgvwr32l3k+4WnimCe0F2e9MC4fLj0sPznlWX7sFxwlTnlM 1871fOxNlWcCfoI460uObnB4qTw58ieXdi7Rg32Uhs9Lnkt5rlubymdIud1H U5rnQM5zecYHW36I8zwnla/w+yhYHvLpPl9KOcedlNs51agSbud74//P+jPz mYdUX+yr7lERnOfdWA/09e/qrsKxfhjj+d5ninM9Dn6yONd/CGt76LmZdf2h kud+Dubh+4lz/wfxcCvpIUcc2VHy3O8C31qc81CUc5V7RcgRD9eTPPdLYcff lQ/A/VVbRisfgBzhYqnkuU8OPk+c47m9vyg9GT5D8ohXF3geSFWip7U49VAe fjpf593UD75MnOWkvPlPt+z91TPFqZ/lzOgvlofy5JRH+7ZtjPNW+gP4LeL0 K8q38Hke5TH/2KsxznPZjuQ8B8/w/cXpJ/ixQWN2HllsR3Ked5Nj/NqsMc4Z 6Se0J88TU3uSZ+w/X+eMqZ3J8fwzZU/qIaf9yVHc82ui/DxfS+vF9UBaL8pn zkGK/onxf5Oh2XLO83yMn4Zk+VJx2oH+ST0sPznlWX7Wi5zymKf+q9HGq/MG RBxA/z2rMebrjCeUZ70oT3+w/fdR4Q9ZvxpV4ld8b52ccQD7xK+MCHsybmB4 2EiccYacdsbPOdKDfcLdZgenPMrV0uPDEnHKo3gPNrbYEAUdYfPKOyqD02/J GedZX4xnV7t8Md7yPJH1hZ8V4y3X/xm+p+RpT0xj1pU8/OyZWfa8X3VeSY6/ y4vDbv1nRfnt3G58Sb04Lqb14vka6wX7/rMxe37H84XjGrPnfUWOee2pkqdf Qe5Xn6ddPzbsgGKs48/dQhx22Eqc9sG4Wis9tAM55WkHjM+LxClPO3BfKbUP 7ZDax86/J4Z90F9ukDzjMJ7zb/HMvv1VjbEPSA7//JvkaTfEh83FaWfMs3eR HnL8XFuc75Oh3+V1fkoO+y8XR/+oq7Lzifsb47yPdkDYfKAx9unI8fsDkqd9 YK8LxWkfzF+PEs/Mc1pKP7nlofi6bKeJUV+sX/7wcXMTceRRbNsYnPbEPGem 9NAO5JSnHfD8GnHKYx+0OP5O8PfiEU8+qbC4eaU4psFbVFqcvakx9rXJ4U6b e3yrLYv6Qm6nRrPja+L4eYQ47Yn+saAh9OAeibunBac8yjl5mn8nQpzyWA/d 6+PCe+Vm9z7lwTEODvJ72F8qt/lhB3HKI25fJj08x0F7XSB5cqyTjhTn+QXM WJyX8jwU84ABlfZz/cY4PyWH3/+mc1Wo/63S5nnXNsZ5H8bVsZOsnGeLY/y8 pNzWy8X+y/NEcpRrA497Z06O8xfEyc19vNtOHOe8fxNnveAfcxpCD8tPTnmW H+20VJzysO9/G20fa8NKG0fXLAtu+wcu19vvybhRnPKIg+dKD/0U/F+SJ7f3 nsR57nD8SoPFPKrC+vG6k1v8ZaX9f9K5JznmE3lxnBPv6ferP+zzyTFTbF/l /PFZPm6KzZPP8u9cPSROedipnfQwLqK92ko+E0fPEOf4gOL94fvtvSrj/AXr wnW8v78rjj9rLk774LylWnpoB3LK0w54/2yuOOVR/tsb4zzRpqd+f8xV4nju 8+NM/+2NEUfIMT3YSfKsL86j1xNnPEYc3Ep6yGHnX3SOiX7VsszsuUjnnuQQ W4VjPDjTvzd1nz/3sOl+j8TI4Kj3uX4+2NHfJ71TnPLov62kh/MpxLFLJU+O OHysOM8vEOcafJ9892lRX8T/Bt/n2UUcdi6uC8hpT3SH6dJDO5BTnnZA/KoS pzx+v64x3osH38b3Qy4Qh7tt7+dZVzfGuEiOam/k84S66TGPw3i+tcfDz8XR 7geI0z6Qn9cQeuBPdeODUx7/f+QE+7lcnPLwt7s8zn84w/z9hiHBEUcr/Nxw +WBrt1vEKY+fF0gP121nrPS30yVPjvHyH+JcD6HemzTGOSbq236U/f67zj3J UZ5G8XJsU42y9iyOIzyngze08++C/ksccazzYNN3UWM2P6nIMb9dy+ef586M 8xfMRzbw+cB+4qjXruKsF/JxZjeEHpafnPIsP+LzfHHKc7+d54ZpXgTcsMus kjyKlENP+0br3+v59z5+7NuCHPFkX9f/P8/7vlac8tB/uvRwfwJ/d4zkyVGP PcR5voP//0P1Qv/6Y4iVZ5nOT8lh16Xi+Lmt3/tdnA+j/ef7fsEL3YKjHsv9 Pfp/+veK7xGnPP6/jfRwfxXPuVLy5NBzojjPHeC3P3le4pXVsV+C8vzieSyX iMM+xThPTvugX8yQHtqBnPK0A+L8LHHK00/4fj39weYBjU1y5h+TW36S5KF/ r2+tvpeKY5xYr6uV8zrpIYef/8nndcfOjnOcy1f+/fY+j20u/vvKuHWwOO2M +ez8htCD5589IDjlEadyA+zezLw45fFzL2/3g2pivx3rvlPFuT+Pdj/b5xvN xfHcS8R5joN5wjnSQ47zgcPEeQ6C5/65MfatYOce3U1vMS7xXJIcf/ezzivh D0/696g3a4zzPtYLcWxX8Uz5/9EY54nkaNZ1G/17LzVxjoM4vonvV7cSR/za S5z1Qj1rG0IPy09OeZYfcWCROOUxz1iu80TWC3G7IM7yo7ty3nhC0xzzyfc+ KdFDnj4X/feiTmaHGo/zH0g/xtuZ4iwnOcajL0rlyfncVE9Tz6W8xdMVJedK PCdKOeXT8yaLsyvivIbtm/J/+r57yjPnU3tJP/Yrpw8MzvMCu5d3kPXP3cXx 2H0G2znsMp2DcJwFn5+e+4yweelInaeQ472JKZLn/AphakJ6XuN5OL2khxz9 bYDkOf8E79mYnLNMtH79mfSQQ/5TyXP9At5RnOsd6HlTejL8xeS590228fpJ cax3tq4IninPfb5er2uM9zRZX3K+H0qO8v4onsmzqmyM9zG57iOv9vc3M3x8 Y7zPSHvyuZRPy0P9aXmoh+XBufb6K+Lch/5ATvkM31Sc/kb9PA+ifpaHPC0n +w8560t51pf8WUvYzvL+jdn7IE4tMz/fdYXbf5TNR+4cEpzjKDn7F7mtT4Yk du5RUv5nvDypnckz7f51o7/HPyz8mZzPzfD+2v9nvVCfNxpt/r7lmPBP+jk5 /ZnynFel/szzuLT8PEdL29HOrX8IefoJn5v6TzM/10j9h+1H/6E8xtUjJpfo sfG3rEQP98eoB3brrP1PxgFy7h9l+NeSz8SZNyQP8+84OTjlyWl/csyrLpSd qSf1H55TpPannoz/FP2f9sn4/3DmD5RH/CTnPmQm3r7p+2ONsg/jKvQPT/in 4rQP4yT10A7klKcdaB9yyuP3b7X/yXJiHtZH+58ZPkTytAP0fSJ5uN3V/r22 tyRPDnO/Jo7zlQf8PtrifID7gWwX9L9Z2lckR73qJM/2wn+/12jnAG0qovwo z4eNNj63FLc8bXHWC/3nMelh+ckpz/Ljz54Sp7ydXzTGewfsR9hXXnNFvL+Q 4RuuCHn2L9jrG38/ZY8pYQeIFeMVwl657Ib1zXhx2gf//6L0oH9sPCE45RFH b/T27ShOeRR3+xWxj8d4jv6z44rYDyRHNXaRPOO8raO138j6Qn+5OO0De87R PiQ59rn6i9v7LL4/8430kONnJ3H82d6j7dxw0xXxvoANY4OsP/7cGBzlmDLY 1gvF9uL7COTwy299f+mFaVFOzOd/8PHlInHonSxOO8Cez0gPy09O+Uz5Xxen PMLRTitsf6hllbXL2f2CYx32iN9Hc0pfv59QnPKIQ780hp7M++jLG0OeHH5V Kc79BHTb77Q/ieceMNTWFx9qP5McYfldcTTDPUOtvddbEftv8NNDe1u7Lm4M jnIP72PnF79of48c9iyOU/b+VVWM26j3l95fpoujXMPFWS+M609ID8tPTnmW H/3yOXHKoxsX+xfs973fD96ua3CEr/U9D2Dht2b/jcUpj/+vbww9nE9h+Ktt DHly2GukOPc3UO2PtT+Jct7p3yl7VfuZ5NhneEUc+7lv+D1dZY22vjmlOru+ axTnehD+UWwvzB+PFkf7Fucn5NzHQHutvSL0kKObLZB+zltR3/d8vL52VswH sf/Q0fc9WoljuO8lTvsgr+IR6aEdyClPO+C9yv+JUx7l6sd5oOyDuDtZnHaA PxbjId9HIEf7d2s0f3+lOub7sNcA9//24hgvporTPogrzyV6tv0+OOXhB6f3 sHK+lejf1ufpHbUvx3ohTnQWz+xrfa/9uqY4frTuVKKHPH0umrGqs5XvRV8H fS/9qOeT4iwnOeo3qlSenM9N9TT1XMpDXwvtS1A/OdfLLA/qdb445dFurcXZ jmjfS8TZ7tB3up5LjntdT5U8/Rz8OHH2C3sPWnoy/GDJY/79rO9z7r8iu59w 88Dg1EN5tO91K2Jdz/rSDuQZvyrKc9+A8thv+deKuH+G5QQ/S5z1pTzzhikP OxwhznKyvtTDelGenPIsP+f3afk5n2P5yTPzhiJH/79lRZxrst0xH227IvKX 2L7kNm8fmv0uZFE/5+epne29lWkl5eT7sxn5kzWPot3ghydrvpThZ0qe9sdz jpA88vWm9vfvYEqeHL8fLI5z2X0HRH15715qB84ryGlPzHM2nRH2hF76+ceq F/QW+wUe+6Q45E4VZ70wfu0nPSw/OeVZfrTrQeKUh74zNP9h+fHj0hXZeyKK HMvLNpJnvez8SPJwl+V+X+XhkifHOvcwcazffvVzrgtWxLhPf0D7tVoR84fM PvBpK7Lzh6JfwS1beHk2nRnlh9+38OduLA53PV+c9YLefaSH5SenPMsPv1+F Ux72KT4X+/6vql547sHiLD85/LqsVJ4c887dOpfowfNaf1byXMqjPh99EHGS /QPrhBM/in117n+kfLrnxaV6eN6SyjfF+/i9Pake3uOUyjfFfZ++RA/vMU3l m+JWrXkleuy8oa5Evilu6/L5JXqwXtp9QYl8U9zmHQtK9FgcXVgi3xS39l1Y osfek1tUIt8Ut/XW4hJu+w3LSriNM8tKnmv9rr5E3u75XN6EHZaX6LFzv1I9 eJ9hdKkeO4cs1WPxPteEPUv1f+vPTfXY+4Wlen62g9sSbuNJvkQPOeUxjP/+ dkn7kjPvgHoQhzq+6fuBeg8vPRcj5zzKyvVodrxahR/h5xM8F7N61ZbweZn3 LMX5vl3Kbf1YV8J5b2HK2e9Sbv42v4Sbf5bypvTYuL2khFu7LC7hNo6Vytv7 E8tKuMWHUs5+lHKrWCm3/OtSfp73o7R9ob6uUOIP+H1koaTdKZ/h094L/+H4 adOljuEn5DDXve+U+BX89ITXg7M8TXH6M59r04xONt95u2ML3g+ccsYx22b/ 1OLyhh/6ec48iyuffhPlpB2g709fRb2wj/uFfwd96y5hB/K0nNST1iu1Z8pR zhP9PtM/voi/xznzR99afT74LHgqT70pn+v7Tqke7jul8pn3GVfh3EdPOfOx U/0V/r5IKs98kFSe8SSVf8nfa0855w+pHsaZVJ75ESnnc1M9dm4zt0Se85CU M16lejgfSOVt/3hBCWd/T/XYPKq+RJ7j5urtU1+ih987T+XJuc6AGxzTJfod 1yUIj/d1iX5Kbq9ZfZb0X9//O6FzcO4XNsVZTj7X3nfwfJm3vwr/Tzn9H/Px o7qbHac1Lc9+kXL6f6qH/SWVz+TzryJP/0/l2V9SzvcyUn6Fn0uk+nkOlcpz Pp9yzttTPZznp/L7+3o35VznpXp4/pjK8/3ElHN+svr2mlbCrV2WlugBvrKU 27rwxxLOfrH68uSbqFfefj+td/g547w1T4/oFxwXUK6vekQ/Ik/9nHrSfpEd r3uXcMyz6vrEeMt+RG5x5JvgmO/8p3dw9i+4aasewc0Rq0u45XHMs3j5t17x XJw73rSoRJ7jb8rX9XVEqmdnn/+k8vv7vCvlnKelerjuSOU5T0s5/SrVg3n2 7stL5G0fYmkJH+D+lurh+iWVt3sNfizh9v5lqZ7bfV2Tyu/UhN1oh1QP11+p PMeX1bdXvkQPeepX9OfUD5vyW3LEla797LzvjO+z86RVOOM5mnMT55O7Z+db JfK9Szj7W6qHPJVn/E85zytTPeSpPPPEUvnDPR8klWecT/lc3/dN9XA8SuX5 PlzKOY9K9XCek8pP9/7O/JV0nWj5SaNK1pvkqTzPRbl+oV62W3adODzueU85 24ec4xTbk5zjWso5fqX6ub+UeT+gyGkf+31ICWdeC88XmH/Off+U7+95Fjx3 yOSrF59r/9+lhLOfkNMO7HdZ/X0izxDfH1q3Iez8kucHklOe+YrkfG5m/3SV 8jAPMC1Pyqmf5U+fu5/XNy1nWh7qR97J7j3C3+hXkP+5R4m/Qb7L98m6dZD5 +RXdg7Ne/19e7C98LvYXWwzw7272iLiU8kx8mzTAynl7z2wcW4XT3qke5i2n PBPHVtHDcqfyTfFM3FtFD/vd6p9bypnXmephPEzlm+LMs0r1cJ6ZyjfFrTwL bf+1alD4A8cv/Nkug8J/OH/DePfcwPA38tQfqCf1H453qb+RIxzvM8Tjbd/w B2zz3TrY3rc4pk/wVJ5+lXLGtZTTT1L9R7hfpfJcz6ac8TbVQ8735/g89l9y 5t+S04+a4pinP9M3+h3PNeE3o/tGPyXH/Oy+Psl6c7jde7XfD8FZnqY468Xn Yh531FDfL+oX7YL23Xyo+1vTnO21ej29m9BTyk1P/xKeObdchXP/M30u86rQ /l8OD7tl/PmpYWFn+j/M2WpYtAt5ajfqSe1M/0/bhRzyv47IzrfYLr/ynpcB 2Xg+dXhwthfsdOew4Jk8n1U42wXj+ZXD47lNyTMOpzyTN7WKHsbzlGfuqV5F D+eBKed8L9Vj8stL5O28enEJ5/oC1asZaT/HDfJ7gKrNLz7294M/iHlWifx3 ft7E+MF5EddBk91Pybl/lcpz/UI/yZ4j5EvmY7bezIX/kKPd2+UjDvB7Q5yH kGfnffmYV6byLM9cn8+kcYztms5P0vkMx7c0HnJen+qhPPs/OfNzUY9TBmfz fJqNs3Fv8ODoF+TYr95BnHrQTB0GBWdeSFOc/pDJNxsxytb/HQbHvkHKeT6C 328bbevkZeLYJ7tmbJSTcQPvs/cfE/VinIH/by07kKflpJ60XowzqR3IId51 XIuhK81/JtvZ7wH70zh7f6PC8zL7LC6R5/lUyrneT/XwvDKV39Ltk3Lzi/oS PewXqfw8P69Mue17F0r02Dheagfy9ByK+yT/13Mu7oewP2bPGXMl6ztbR+VK 5LkvYf2qMuIK+wu/B/K4x3HyzP1Sq/CX/D0eM/ugZL0zoUmeXdfmj2H/JU/7 NfVk11lNcxuXh0W/4/iAPPEuw6KfkuPekXWHJeuXCfb/VwwNzvI0xekPfC7U vzm+xY8r/awwLPaNH0K613ibX+w+PPbDU/mmOPcZUj3Mi0jlmeeQcu4Dp5zn LKn+E31fMeXMN0j10D9TTj/EsdD2sj/jD/S+MiHai/EK4eAOtS95an/qSduL 8SptX3Jslw+aGP2G7UvO978y7X6kONsd492W0mPt6N+T+mBCyD/r85mUc16R 6kHe5FVLSuSHm6FL+M2+r5vqYbuk8mzHlLO90vrSzql9mrInOdz0ED9X6TAq 5uf4+13KbFy7eFTEg1T+WZ9PpJzjd6pn+qrj2SryvLcv5Zn3lVbRQ/2pPONI yplvkHLmq6T6T/V99XTfjOMRn5/dl8tH/VLO+EzO8YvlJbd+XYjzrpRTD9/f ZLylnpRTD+eh5M38vSzm65I/7PcRputZytM/Up7qpx5rvp4l8k2VMztO5o8h t3g6MjjziVNO/en4RZ6OUywn58/k1G/3eoyKeML9V6wTnxod8YcccbR2VLKP N8n2G44SZ72a4vRDPhfLg0/9uzE7jI55fMq5Pwt/WX+SnZt3Hu1xbEKJPP0p 5SxHqof1TOWb4twnT/XwfDmV5/iYcq7LUj3kcJyGSWF/xkPE3a8mRXtxnII9 zlL7kqf2p560vTLnRKu0Lzn8+91yH2fHxvoC34m40L9z9szYWEek8uR8rq2f h5XM3+Ym8zfK2/7+kOBsH+bDp/3o2cz6VfIcR1L5lFP+iqQ/kvNchZztz/UN +x057+PNrlsrmuRYzxw8LvoL9xvw4/Zx0b/IMY0fPTbZN6uwfYfdxVmepjjb MTPfOMrv+Zs+LuYbkN/c9bwzLvIcUs59S/x3K5WTfgheOznqldm/6jk57ECe lpN60npl9q9WsUNmv2u9yuy5IPcni5z38Wb4UxXBs/taFaGHfoG/W1fyjN8p p7+knPvkKee+Tfpc8rScmTyHVerVlB3I8dy7/L3iP030/D3fH7u10t/nE0/l rV/OLeGcJ6R6uJ5N5cl5jspzTJYz+77N8yVxLM235LiZ9jvmAaWc8mm/Juc8 L7uvNcXunfpjfMk4znsMUk77p5z3/ab6U57qSetF+bT8Kac8qnXZxPBzvqcN e386MfoFOdzgfHHqQfutKc7nNsXpD3wuire40u7hbS1/Szn9Dea9cIrNg79q Wp5+mPKMv62ihxzj9JGqL/0K5zG/TQn7MF5hPH5Z9iRP65v6J+1Df07tSY73 dmumWn8ZVxbjZ8q5z2r3H081v/mgLPZ3Vi8/poSzH6R6yFN5juspp5+meshT eX7XOJXnuX8q38nff0k580VTPdwnTOVP8fdEUs59s1QP9/NXX/4fSzj3G1M9 3D9M5cmz8w/lUVRk4pHyMdL1GveLjvG8M55HpOsIzotWv54aFpxxgH6Tcsa9 NM5Y+caW6E/lyRnvs/ty1bFuIuc94sCFsognPGeD+h0mRfzJ3Nc+sizZb/fv NXYQ535mU5ztyOeink9Ps3Y+dVL0O7TnBdMs/uwyKfppytmvUz2Ze3FXkW+K s31SPex3qXxTPJMPsIoe7v+m8k1xnpOm3N5nnVvCeX6aPvcZX4+k8twPSeV3 8vdTUvnHfd6VynPfO5Vnf08591Vwz/ZH08OvGOdRrH9MDz/kuIB56q/Twm/J U7+intQPOS6kfkuO893Tqmx99Fx57H+knOdjX6ws4FS/P+Uo5WmtXn54CWec SPVkzqFXkad/ppz+nOohT+XpnymnP6d6yFN5ziNTznVpqod89XaoKOFct6R6 yFN5xs2Uc96Q6iFfvT2nl3D6U6qHfPX2rC6R5/smqTzvvUg584VWb8+aEnme A6Z8or9vkur52d83WX37lnLOK1I9fM8llW+K832WVA95Ks957Or9Z16JHsbJ VP4Df9825Zz/pHqakud7gqv3t/kleqg/lWe8TTnnV6kexvlUnudQKWfcTvU0 9VyOCykf5ucdqR6+L5zK87ws5XausbhEj70nW6pnO88PSTnPxVI97zZRfp7j pJzva6T8Ec/DT/XTDqk8zx1W347LS/SQp/Kc96ac42mqh3z17VhfIk+eyjPf fvXtnmsizpfq53nW6uNAvoSv4+dcqR7y7L052sf4ws/HU/7/GHvrODmL5H8c d4IccNgBweXguDvcgnNwOAGCuwf54HbY4RIC4XDXu+AESPAQQgIhLus+67sz OxLcvrPvqnfVPjU7r9/vr3nNe3rq6a6urqququ5ngcbhYnyD8WnmIxgfYJxw p0T+Z+EePLdE/5846Qu/5hpOP7wcnszzLNyD+7YYlyAu56hnh7xPs8bNp5X4 /4gj3z8/mQcv8gePHT3f/PDEvfy7O046kKcu9/+5TyqHc74Sef9P9L0OzfOt bijid2jdENTZZ3Vi/1Ll23NfEHH6/5EO/bHYnv5VxOmnRTqJ+rWS/k8rwel3 RTqJ+1MHtOe+LeLcr0Y65fqfyK8PwJkvjHSYf4vtKacRp78X6XC8sf1OA9fb AJz+W6RDPkSc+axIh+t28HmsLDOPTSXt+Z6+iFPvRDqvaPwkti+H00+LdOh3 xfblcPpdkQ79pdi+HE4/KtLhPSSxfTn8fT23HunQP4nty+H0lyId+hWxfTmc /k+kQ38mti+HMy8Z6fD8YGxfDuf9JJEOzwnG9uXwEeq3RDr0W2L7cjjr3yKd Ho3XxfblcLFL2RKc95xEnP5MfC79isH1fL7MfOVL6DD+ENvTDxl8PZbSYfww tpdz+qV4nT430mHdzuByUkqHdUGRDuuEY3v6URFn3Uikk6gzWcHtPv0i7EvO qTc/gXEVzMNZ9eZXEI92n3Sin5DMQzWU4LAn4xrsXFqijqKIH6r3VBOH/hji OP0NiN3/6o0O7QLEfYd6a087EnHai0iHflhsXw7nfj/SoR2J7cvh9PMiHdqX 2L4cTrsT6dC+xPblcNqdSIf2JbYvh9PuRDq0L7F9OZx2J9KhfYnty+G0O5EO 7UtsXw6n3Yl0aF9i+3I47U6kQ/sS25fDaXciHdqX2L4cTrsT6dC+xPblcNqd wfmcK8PnUpz7U+oB7ucS57uLekP04/wSPZPQG8zvb9oo+vK5CtMDEU/UUy3U e/T+VWF6JrZnXCLijLdEOn/R+vzYnnYw4tzvRzqst4/tab8iTvsb6RCP7Wl3 Ynval8H58G3yPPeAujvi3F/FvBXrl+K+mPuQuI8W/eU49bHEPUvxn0N70qH8 RHwXlbdkXVaT3S8a+095S9btt1i8O1lvr+eZZleYXUvsS36vMDtIHMvtNcdJ B88f4Tj7Xw7nPPK5eC/kY40i399W2L414rqBHLZR/7BqGrWOqLJse9qF2J73 q8T2jIdHnHov0qEdjO2pVyNOvRdx6r1In/Yx4hxXpEO9F/HugX71ZT6P1GPI z+/p806/C+02cDlJ1OcPmEfSifNOvRflhDj6ObVJ6z2qhjWrPsR5gIeapP9/ dDy2v0/j8HfofMa6QfqHsY6R9wnF9lxHcT0m9cOCsuuROP0p+LkXVJmcMw+D bl9eZeuCOMRpA8cTdGZUJs8pHFoeJ9/4XMjRooq/53zD96X1uZ86n2N74uDL f72fCX/+BB9X4jzacOdDQq4G9DNxvmDAuBL1rs+V4uD3z83J96DznsYiLnbd cfT7DccTcctDHCd/Is66WejDO/y5xDGe7Vvk84qaZJ3h0BZZZyMcj+2p3yLO PGOkwzhbbE/5jjjjy5FOog54QPtazUtGnPUqkQ7rXmJ7rsOIMy4c6ST2VQPa s9414jxHE+mw3iy2p56POOUv0mHeNranXEacdjfSObnMvNCORJz500jnHZ3H weUtVYJzPxXpLKl1NrE986cRp92JdMrN7+m6/4o486eRDuUhtue+LOLMh0Z8 uuY9I33eExvbM74UccajIh3ig8tVKR3e6xXpEB9cDnMlOPN3kQ7x2D5xfnYA Tn8+0iE+uHzmS3DGxyId4rE99wURp/8f6RCP7Rm/ijjjXZFO4vxviZwvLMEZ B4t0iA++Lr4tsy6+LaMPv7V1yXwi7RTrzSNOPcc8YyIeVdRPrCck3XiOTNR5 e0n9oX7aPoI4+cN4GvFEnPC5ZsPJZ/ozpwd/iXrxfdXLxKn/kueVvT1x7l+o FyMe6URc9sNVJc+lfU2ec2kxux9x8jt5nitVgrM96cf+0B7E/sg6LH1uOVzO z/p7JXjPK87PpmpMfohj2u53nHRwrnY3x9mfcnhiXRSfi25d1CJ+2tfu50Sc fg7U5UMt0q/fy7cn/yJOPyfSoV8U29P/iTj9nEiHflFsT/8n4rSDkQ79otie 9i7i9HMiHfpFsT31QsTp50Q69Itie/o/Eec6j3Qo77E9123EKTeRDtdBbM91 PrhcpUrovFNmfqkPI04/J9KhXxRxzm+kQ78o4vR/Is44wODyky55brn2t2i9 UMQZF410LpQFXNKe9wMMLod9JXRIP7anHxVxkZNsCZ2JZZ67vvpFEd9C/atI h/GN2H4Pvd8g4vSXBpfn0vY8Bzr4uiilU67/9McifofGUSMd3v8TcfY/0qHf FfGX1X+LOO344OtiYclz2T7ifF9DpKN2qgRnnBbLbA23R4wDYLl2tpj9YtwA z5/k9o54tEekE+0X4wbR3hFHv85LDXsP/lqdxT2w/9hV61LztYbH9owb8Ll7 hPsnifN+lWjHY3ve689zGcRZZxrPvdJ/k3zMdMMZR2Tck34IcfoVxKkv6f9E HPeC7F9ndp969JD+ZXJsnfkJxFGXs7jjpIPf36o1nP0ph5P/fK6cB0vJPD7u 8wW5eSEl7wm8qzzO+YL+OMj7SfmBv7CYj4vyhmX5Xcr4QDz2k3TiuChvkQ/E oUafbjV7Qz4Q30ffq0Uc03qM4wk/8PeU4fQfIk5/A+Pc2Z9L/yS2534h4rSD kU5CPgbg3OdEOrw/LeK0L3G85HPkTzl+JuLPla0iDwf6+7AgJ1+3in+5XYPd axfb81xGxOmvRjqMg8f2XLcRZx454qzrjvQZD4ntmReI7Wm/YnvyefBxZUvo 0O4MPq5SOjwfHemwfia2p/2NOOt/Ih3GDWJ72t/B5z1fQkf2BaV0yo2X/Y90 uC+O7VkXFHHGSSId1vnE9nVl+snnRjq047E94yoRFz21sIQO7X5sX44+/YFI h/GT2J446zgYD8E6avjW9A1x3H+RcpxxEjx2suNc59gfLfqd4bJ+XjGczyWO 4f7i/WH9K/Ek/bkl9GXfON1w6lGZp1qz12zP9yoSpx7leaHYnvY99p/0Yz9l ndSW9DM+lzjPBxIn/aRdKO1/7A/bx/6QfuwP9XakL/uZ+pL+RDzSif1h+9gf 4rE92HlHg9lZ+mP4PqXB7DJx+GOXOp6Yl/Ud53PL4Yn1W3wu4tyrqHw+6e9t jPjOar+gR3dTv7HW20ec9ijS4T494vRTIx3ao9ie9ivitHcRp/2KOO1UfC7t WmxP+xVx2qlIh3p+8PGW0qedinRoF2J72q+I005FOrRrsT3tV8TZ/0iHdi22 L9dP2qlIh/Yltqf9ijjtVKRDuxbbl6NPOxXp0O7E9rRfEWf7SId2bfB1VIrT TkU6xLE/mOB6ANMy8VuZ//tdb2C4L2td05muZ4hHPRDtGvUG7WDUM7SbELvl 2yWOtkST6SnYj1Sb+OszGy0eEttz3UWc4410mO+I7Ylj376e5uvSlxsd8GlI h9lxtoe8f9Nu7YkzrxjzFxxfzFPwnGXMa+D90le16/5Q33tSo/d9feg455Ht Gb9me6ybS/39ingf8bV6r+zpHfaeC8z3Td6eONsT5/3JEacej/Tpt0T69H8i HamTGVdCh8+NdHiPX6TDfVGkw/gG6dD/EX3t5+N4/pL0iTMPzHNcifhJ8bnE Y394/17sD9/Hwf4Qv0XvLYzjFT04qcx4p5bQl3jP3BI6xCMd5huIU64YZ6dc EWe9X5RP4pRP9ofno2J/iMf+sG4w4vQzIy72pqaED/Qz43OJDz5ftSV0+tSP jXR4X0ikQ/8z0iEe551+KeT0eqdDHPuTKx2nP4n+Xup0JD7eIPmUU709ceif YxxnnAV6cHefX+Jx3kknzjtxzjvzvZiXlZvMb6T/BT/mT03mZxIH3Y7GcK9d u/glYxzneiyHU//zuZCb/fRekG2azM+MOM87YxzHaDx1lybT1/jo1feXHqD/ f2yhjH+s46By00IZ/6NOB/0cu9DGBb63Nwq/9/zW+AAz95qei13PcfRrcqOM cw3nM37+vdHi2+QDnlvkfzmc9g7j3rPD8naJ+F4Rl3oRx9HfX9sNJ5/hb7zj OONOEaddhB/S027PvVTPxcf2zLNEnP7q4HRyYi+3Ufs+u8n8N+RFF7ZLnu/l Jjt/jf/vqHye7Tj4d43qpZ+U/gAcariIY10XcfD3EsfRze6CtYe8DWm291mw Pbq9tOOxPe1txBknjHRob2N72smI8xxxpFOuPe+NiTjPL0c6pB/bt6n/EnGe /410WEc/+LimluC8ny/S4bng2P4jtYcRZ/1IpMNzE4P3p7IEZ5w20mH9QGzP eoOIs64g0vm4TP9ZbxBx1hVEOqwfiO1pfyJOuxHpMP4/uPw0luBcxxFnvUGk z7qCwfnTXdKe+d/Ynvo/4qzDj3Sol2J7nksafH31ltDhfie2Z/494iM1nx7p rKf539ie+fqIv6rxjcHXRSmdcnwjHyId5otje96DF/HVtJ450mF8I7Zfv8x4 2f9Ih3YhtmccJuKMtwyun/Ml7cv1k8+NdBgnie2vV7s2uF7Nl9B5W+MnsX05 +oy3RDqM88T2jMNEnPGWSKdG4y2xPfHl9Dwi4+fgz8rfWhyOOMRqW8e5H0c3 V3Sc+1zYi+HfGn3aUejz7bw9cbYnTnsZce4fI33ikT7tZaTDfWWkQzzSob2M 7blPjO2JD97/iSW4rLeJJfSJR/piP74poSNmZUoJHeKRDu1TpMP9aaRDPNLh PjHS4b4y0iEe6TC+HOmwDiHSIR7p0B7H9txvxvbE2R767OJO21dyXQA/rdP2 j5R/0F/H8bheSCeOi3mZ2E/i7CfE5t1O24fCLL+v7/Oa5Djm81XHE+fjH9T3 FH/l+1bojX98azjpoP3B2p8VnT72N1to3Oa4Ttnf3d5g9UKYjpU65f9fehwV cZatO2V+L3Ucbs3VnWKf1msQ+o/qe4tedBz0L3cc5vJvDTIfFy2U/dT/OpL3 D/3hW8O5L4Y6+LPGRec4DnFZQeuLbtX3Om7s+xTU8R3WKXZoM9+PYF1d2Cnj /rnRcCy35ztlX/SKxj8XWyj8/sBx9LevYDjG+V2j7Aer9H7LepWT+kbjM8Rn rU7Z909utDg2/vdzh9TzrdBkOMbzqeZVdvB9Mcb9rOPcRxOHHlvT98ugP6PT 9n1YN9cX5HmzOpP702sdpx8JPp2u41260/Z35DPkpihX3A8yTot53rXT9o+J OvOu0v0d5Ov90v0g8bh/TOjbvzbbPnp9PT8NfTW82fbdxEFvK8dJB/O0qONc 7+Vw2ms+F/7duA7hy06+D40496Egk+oQv/MEbx/xRH3LADrct0ac9jPSoR2L 7cvh3IdGOtxXxvblcO4rI877oCLO+0vjc8u1Z94+4on7owbQ4T4x4tSvkU45 nOcrIh2ep43ty+GM80Scdd0RZ113fG7iHqoBOM91DM63lhKc9Y4RZz1cxFkP F59brj3zBxFnPizSYf1EbM842OBy2F5Ch/Rje8YBI864YaRzVZnnUi9EnPol 0mFcNLbnPeoR5z2fkU6irmxAe8YDI857PiOdcv1nHCDi3O9HOtSzsT3jABFf Uvf7kc6BZcZ7WZlx/UXjAxHnPRuRDs/xxfblcJ4TjHS4Tx98vkpxnhOMdLjP HXweS3HGbyEuS3Um9fwneYkrHK9+4A3N4i+8p+f7dnQc8jYmX9If7n/jc8vh ojfyJu/g+4bNEqc/qmBygZ/X1XHt7Djy3zsq/S18n4tx7u77a8qp+LXlce6v kQd4Q/3zDNdjlaybe9Qfm99s92XE9tSTEee6iHS4TmN7xqMiznmMOOc90idO PcE8OOM2rN8hzvhMbN8zMP52c5fl5emvIl64Y5fFDej/Y51t4+2Jc75In/Uh 1E/EWcfCeSdOfxJwTafl0zGt2YXCn1bHQTa90NozjsH2xJkHj3SYZ490Ev7Z ADrMOw/enzdL6LDeINJh3DzSEf0yu4QO358V6Yj8TSuhI/plTgkdxh/YHstj QVfyHs/Rmse5x3G0e93b3znwPtPRkc/TS/oj8l3aH56PiOOS/eDMEjqMYww+ X7NK6KymeYVIh/f8RDrkf6QzXPkZ6fBeoEgn4V8OoEM/NdLhvSWRzss63khn tvY/0mH9QKSTuI91AB3mJyIdUYOldNjPSCfhZw+gw3xPpMO4U6QjeqKyhI40 ryyhw/xQpEP9HumIvqkqoUOc7Sn/jFNB377q8k8cZvB+xxkHw7K5z+mz7iL2 k+1jP4mzn+wP4lST/ZwX5G+vLrEXfX6eizj2S084Tjrozj/03OLT3n/iGNdN jiM+comel7x8oczfIt0W78J4V1D9v5LjWJaLOM54GtRWh+aRd+mS/f46dTYu dPeGLvFfMrUWD8E6PLVL9lF71RmOZb5ul6z3/9TJ+rtd68e+6zQc8viS47A3 F2uc8C2Ng73UJeP+S73FN2B3R3SJnF9Wb/GiSf0Ce1WX8GV9x7HevuiS+MM3 dbKO+/Qeg5zj8BOmOQ5zXFsn/PyyYP3k/hPjOtf7z/ge7MDNzofEuaEzFpo/ wH0m668S/tIrjtNec79KHHya1SV+ZMHrRTGfj6r8/NJgeQrwc3yX5Ev+6zja ZbpknMMbJL98XEH4tFS34aC/n+PIUz6jdcjbFoR/m3dZPJPzhfzPGV0Wt2Tc CcPar8vinMTBh+XUrq3lcTzwK91pOON+xMGX6gaLE5KfYt9L+cy6GeL0l8Rf bDYc411T33f6WqN8zs3Lebl1Hcc6meU470kB2fF5We9HdVlclPOF8b3QZfFP +s/4uK3L4qXEMZztlJ9HNMl63bsg+7bFHIf8n+84+neoxv1Guj8fx0s/sBzO uAZxzMMnXcOW6v/6RpPtOzAv/+qS9zp81pS81/cJHe/DjoNddTrvI/X+sFc1 T/er4wjzjHYc+vU2jdPenLfxMl6K/+3kfGB8Ffw/3PlJHOt3c71HsSjn5APw dfMiT6s6Dv6v6jj5g3n+MSfrfi/13473fRnGd2eX6Pdhvo+DP3Rel+j18xyH ft6wS8Y/xveJiM//2Gk495XEITe3+j5U7FmX6K3fPF7K+ATmYaUWi68m6pja PO5KOpD/jxxnnKAczn0Tnwt5+FXj2Ju32H0FIN+hdmHNFruXIOK8xyDSEXvU W9K+HM7zEeDLKL0Xdie9Z+XonPjNRzgOPu2u87trlz0Xv5+dM/6A/826T/wl Z/yE/E7VPHuN45jveRpXnOt0sP7Svt8kP/H5U3mc+1nIU0uXxRM5L8RFzhyn /SXO+cLnmY4zTh5x7sMgl0/7c9k+4rSrkQ792Ygz3hvpMM4Z25fDGS+NdBif jO3L4TwnEOmwTjG2L4cz/hnpJOoGBrQvh1O/RzqUj9i+HE75i3Tk9+6S9uVw xmciHcYhY/tyOOuRBpeHTAnOezbicz/X+p/YvhzOezwiHcZtYnue7xh8XrIl dIhjGmp1HzGlxeKcUHPPdYm+s/uWsiK/DV0SB5riuOTTuyUv1afyNgCH3cy2 iF0p4tADazqO+N8r3h7r54eWZD1IsT36863jsT3zVhHnvQuRDs9/xPbMN0Vc 5n1mCR3mv2J7xicizjhBxDWQV0KfcaPYnvvd2J54bM/6ycH5U1NCh/vR2J7v sxu8/00l+G+6n4j0uf+I7akfYnvG+WN72tmIc10Mzp9SeSMOu/RBt8U/ub+D X/Vwt8U/iUPddznO/Qj8+b27La6FeN45Cw3n+RTimIazuy1viuV+3EJZnyv2 WL2s1BPofnP3Hq3jnCL75qUdZ1yLOO9ZZLyFfvV3A/PaW/i9aon7Hgbcj83+ iF2pKOkP8dgfxoWIk04izrOitycO9fxTwXD2E3zOaB3dD8rnC6uN/1hn4/Qe /Serbb7Qva903g90nP0ROamS9futP5c45q/CcaiFtauFr9N93rl+IM5n+rwz joTpOcvnnTj+N0L58M8eO6eDvMsZul840fEj+zt+tONvD1yfuykfbuu2OBL5 g78X+cB4EffFiBuN7bb4EnGoy3M0nrN3rexHGnRfuY/joPez46C3Zq3QWWah xf/jvph5iogn6+4chxxlu0Weqmptn4v90vPdMr4N6iz+AH5N7JZ6n+m1huN5 Q3rEL7ymVvZLBxREb+zhOPYTGziO7t6qcao/BT6sVif69hPHGR9DnKLC+ZmI m31QEDlap0fiME/U2z4Oz2nplnX0v/rke/QW0Xzs0Y4jn7dzj/R3sXrZ37+t 91cc5Tj4+6Tj4Oc/6oWPd2h+8LJui4+Rz5If6LY4GOMGGP+oboubEUe7o7tF 7qfUWzwHz9vFccZ/iGO+bqm3eBHU+pk9Vg+G9b15XubnXMfB1o0dZ70Z9OIK eZGPp7strkU+4/d0t8WvuC/GfM/stngXccj3Td1yXvqwxmFn9o/78bzI12GO g+7njuOeo/0bpX9faDxhmR6JDyzu53QgH1O7Rf+v0ZSso25TvLrRcMzLZj3C p9v13NNiKj8HOY7l1J4zHP0b1yj+WHXO+sn4Eth6n/ef8SjEXV5yPhAHv27I S9zziB6Le2AeL82JfjrFcfgV5zjOuArYcGhO6ivv7bb4D/kD/2JOt8V5uD/F fBf1P+NCxPG3C/V8Q5fGhXr0Xrj9HQffl88bDv+1qkn4tnpe9MZ33fI5IL+P aXhN18UIr2/HMKd1y7xt4zj6vXqP6LUltF5iuN7ru5fjELdtHYd+GdIsdmJL 7z/jQqA723HGkeCndDofiEOev8rZvor5b+pb7qu4vyDO9iJ/jmN/M7RH7Nra vr/ANPToe9XW9X0E+LFcj3wW/DwC9OSwHhnX11ov96nes3eM41hnrzqO7mab 5RzmQ7oPurZb9HurzxfG/77qgSqv34Bf9Gi3yPGiLclzGSeon7aVx2fEH3Cc 8RziWB9DPG5DvnFfFvkperyU/xFHP8/vsXnB9530/WsX9CT3gzs4ntifrqd8 e7Hb9necL8jtd922H2SdDKa7qtv2j8QlLl+6vwMfjyzdDxKP+0eOF/TXT1lc iPVH8D/2TyXPXRZxfF/XcdJBvC/vcSfyuRzO/QKfC7k7Wu370JTtN4HfQ38y ZfvT2L4czv1pxLkPjfS5b43tuT+NOPehkQ73rbE996ER57410uH+NLZnHUHE mZeOdBLjHdCe5w8iznhdpFOOD8vqvmFw/teU0Ck33jsHth9Ah/fqRJx1jFi3 v6g8X5ISv6slI/apwXGQfzYjcvhffy7ks5AxeQa7Vtb5XSlr8o/1s2JK9FRP n+Gwf5unZD1O7zM6GP9WKYsvUf7hn/2hPM79Negf3iP9rErZvVkY7996RG9O cjy2Jz8jzvh8pMP4fGzP+HzEGXeNdJZUPz2253xFnPHYSIfx5Nie9wlHnPHY iLN+NdKn35rMh7XuwXsX4n0pifM9A+5X2VnXEezQkb0Wr6A/j2netdfiHtwf Yd/4W4+1J856UtKnn8/9HXHuRyg/xHk+jnZmD61Hp13jucZ43wj9PtE7EwxH /1/qtXgI9kX/0nEVccZPiGPY9/cm4yS3e3uev410WCcT6RAnHaz/sT16n+lU 0f/1ur/u7LF71TFPU7w9cbYnfcZVgF/k/SEOeTvbccZb8P9DnT5x0ieeoD+g n8TZT/gRh+j76NaoSuaXl+4VvXBQlckJpHGTXuHLd5WGI+41slf01/OVIt+H aJ3AQ47DL9vaceifLyrFr9yooOdgPC6EZTLZccaRIDazC8LeyY5Dzj7QOMDD vRaHwfR/oHWz/3Mc38c6zjgPxPABrY+d02PxKPIH41211+JOXC+wS4Uei1MR h3y90yP6KFst87tDQb6Pdhz7nyMcx/M/r5b/n+LrGuvy5ppkXrhX7cKMGosb oM59OR3XtY6j3uD4XtFLm9aIv/Z0Xvp1j+NQk1c5jnnZWuuRrshbPxmngrz8 wfvPuBbobeV8IA6+rqTtz+4d9vf++dy3zvaDC/vn9c+9Em87ps72xaB3UO+w B/r/uLjjGO+tvRL/eFPjSMvkJa72rONQa/mc4Yiv5GplvhpzMq+f9Vg8inyG vH3XY3Enxg3wc1WPxamIo9/P9gi/L6+zOAzm9Q7HGbchjnjRVnUW54HYvdlr dUHoxw05+f5eb/L+nGscpz0D/dM0DtDl8SjyGXpjh16LO3F/jX38mr0WpyJ+ ez+jvumR9ftrvYw/p+2fdBzL6Y95w7E+++qFr+vkZR0N75XzAG822D4O/19F 7VeN3++HefpLr6zP2x0H/Ut7RV/8vUHaHZ+Te4secRz93M1x/P9EvZ9tW+8/ 7TT2QS2OMx4Ftv3kfCCO/dCCnMjxk70WPwH+dVbovOY49rMfO874DOb3BX0/ UaXHkcgfDHudXosXcT8Luf21x+JLxLF+P1A6ezbJ+t1H+TnGcfDhNMdhT7du Er99ZE4+9+oddny/XN3XlMwzftszbGp/B95ssv0++PSHXtk/3OY47M+pvaKP TmiSuFlxvw95GOX4f/sn7HbHD+sf9xlNEpe7JZvs5ytaN7VJGNe/mvR+p8CH Ig79tr7Gc4r2C+y6uNn8Yfih26s/cJnfU4GnHdUr/T7QceiFu9Xf2EDPxaye 1Xotx0F+McflHiY9v1PVJ/L6ZY/Fo8hn6MlFei3uxH069Fxzj8WpiEMPvaxx 71s8foL5uNtxxluIQ25O9/gM7g8v6hNZ/xrPWbdP+jfBcaybPzrOc2voTntG +tnncSTyGXp+z16LF3Gf8my/Phraa/El4tDjRbsMvbG/xjd+7ZPnP+M4+rlp 1nDo0301vrF5VvT/8SpvL3o9D+KTayv+nuf3h/T/vJPeX3KP45Cvq3uF36e1 yO8zM6LnHncc25dHHUe7azXffV3G+sl4DuSr08eVqBNYMWt8II561q/7xJ8v ypX4HymRp7fTov/fdBzz/5Tjs3WfhvkYqe+Dru8R/h+WSt4HW/QDofe2TyXf e7KU2pGTHYce+0z16p2+L4acPew499HEIVfX+H6ZdRyYt16PI62leWPQWaTV 4j/E0Z8KjyORDuzv646zfqQczn0cn4v19lKP6Kc1Wi3OCn14V488Z9FW8ysj nqgbGkCHefPYvhzOeptIh/u02L4czjgC8rf1TgfrcL9eWdfbqj+wZeuwzfvb bdQrevXHHsOh3/M9Jf0hH+Nzy+GcJ37C/szU92b8X9rmV/JtKfH//uw45PHL lDx/vbTRwfhqU3aei8/Humwtj4s/lRb5u1X9/wn+vjc8/2CVw/sdj+15D1XE yf+Ic74ifeLJfL/HB7jvJc56BJ4/jni5OAPry4jzHEykw/hbjA/Qb+Q50YhT ronTLyW/Qfb4+0Xfrlaw+SGOv2/nOOMeILdqwfzcGGcoF5coF8eAnnw1rXGo +dYf6IVn03a+hs9F/0Y4HvvJeC78laMdl3n70nDygfUnWFfb6z50YdrODcEv +DIvcvu743iPzMeOUy7w+aL650s4jvU8vGA46RCHf3uw4xjH3/S+jsfSso4/ q7B9E9bbEbqevq9Ivm/i4rSshxcch7yN1/k9XN9r/6LGnZocB71/Ow67OFLf a3+d7i/aPX6C/m5cMJzxEPB3N60HWDltOOzcOgWxYy1pizPg95Xy0v47xyH2 v+cM57pE/5mfXTdt8RbyB/J1QtriKtw/Sr4pbXEY4hjfb73C56eqhN59edEX 9Y5D7v7rOPp5fpU8Z7zy7fa07Cu2rLZ1gv3h9ioP11Xb/hrthuu8b+Y45uGl tIxjnr6v97ucfK90HGpmhuOY7ooqkevpOesn7SW+n+v9Z9wG7W9yPhBH989S uSr6O+f1f0/7e10xD1ekJW6+RK3tH8Gnh9Iyf2/5e8fQflZa/LATtY781Jye 63Ic4/iH4/AzH9f3be2gcYbl0ha3IZ/hT+6ZtvgM9SH8zw3TFs8hjnnp0f3C UI9XwF+Z7zjjG8ShxubXWDwE/PgpbfUqx+GcWFbkYrGM4XjsTMdZDwM/833N 922XtrgN+YzPm9IWn+E+FHJ8etriOcTB9zXSMu6xdcKPA1X/d/Uajm5d6Dj+ /6ieF7tU8Wf0PXsj6m3fBH/geJXDO+ptHwq1cLXq5+0cl/Mpqueb6iSv87bm nVsdR/3Cg45j+EvWi56/M2v9ZBwGbsmO3v9EPOcw5wNx/G0r1SedaYszAF8/ K37Pj46DH6s4zjgG5Can+5eiXDHeQv7AjzsrbXEV7h9R37F/2uIwxDEfRbsA cdhGz1U9rvu4pl7DEVcc7zjkc/FGietP1rrl+/R+xy8abT8IPg5T+7hkk+2v wZeTdP1O8HvyoVde1fV7pp63WlzPy9c4Dj592Gc4+nlJo9jxcX3WT8ZhwJ9r vf+M24B/DzofiENfX5EVOR2v/P+iyfZNeM6NKifTmmz/KPo6Lf9/1nGs74q0 7M+v1PeM1mQ0Xuw49N9bjsM+PaZ1L3fofqpo1xi3IZ/FrqQtPsP9Nfq7Vdri OcRhP/K9ks+rarJ4Beax0nHGN4gjXjO+yeIhsHuLZKxeBfr6a/UblnQcj/3c cebN4JeMTou+3TVtcRvyGXrurrTFZ7gPxXMuSFs8hzjkfF2Vk6f0vprXMvK9 t9dwuAU/OQ77+aj6v7/r/r1oBzF9Pzab3wY9fGZa69Va7H2g0Ku3pMXPa2k2 HOv1Cx33BL1n5l9piQ93OI5+7+s4Pmfp/Tlbpq2fjMOA/w96/xm3AR8mOx+I 4+OKjPgXmbTFGUDupF7hxy+Owz4e4Dj3t5CvNXSfuEXa4i3kD+zBRWmLq9AP xvQcnrY4DHFM83Iqt416z9FhysdUr+Gwy6MCPlPr+Z9Pi94Yo/OwTcr2h8hT /CMt/T00ZftJPOectPR7Y8cx/2+rX/STzu8G6sc0OI51Xd1jONizhO4rZ/RY PxmHwe9rev8ZtwEfDnQ+EMcnv3+aFr21su8r8XFnWtbBqq1WTwA7/YrOe2fK cIyvLi3z/WlK5nmh1sMVHIc+nOU4+Nmu9QDPaZ1Z0a6BarXzWepUlQ8zUrbf hj3aXul8n0rGX35QP3aoxxmgh2scZ1yCOJbV4h7HoNzBT/2g1eI5XH943Ice RyIu92U4TjqYz3Mcp5yWw7l/53PBl080r9Hs8QH047NekZuUxxNie+JxXFhX nV0l/Yd+aesqGS++v9sl/nbRH4DeaG3VOt0u8Sv+4Dj05L56/n+VtPUT6+GR LunnKemSeAWev2K6JL4Rccot5HxC2uo2yE/icj9UW7Lu62zHyWc5P6v8Gd5m 593Ap0O1n1u2Wd0DPp5Vfbuf4yJ36s9f3KZ1eI6jmze0Sf+P1/N0NY5Dr63p 7TGPn/M9ctOsPfr7luOxPd+vGnHGZSJO+xnpc59K+UnGcz40OYl4Qv9ZvGiy nifOWJ0J97nQu2dmLD6T2O+f5u2Jx3gR6fD+MOLcF68d+kMc8ISM3ecDf2Sc 5m2X6TN8Qn8/HnKc9XnEpR4rYzjYuTAv87qKvpd7teniX+a9PXG2Z38wjF/n Gn9Q73luRu3HPOMDcbETcw0nHblneq7sR17x/hPH/u4uxzHcsXNlnd3g/WSd H/tJXPo3t2S8xDle+PXD+vRcyjyRw3V0n36w4/C/VnGc8TTkJX/Myb7hGvVH hs83/uBBEzNCd/35Fg/p7efD8+rfXTY/GT85ISP+4dT5Uqc6RvP4f3P83/3N 33Ucdue/80WePskLX1oz4mefuyD5PvHH1T96cYHFQ8DvDzRPcoTjeP5ifSLv v84XffaLvr9ja8chXtWOo1+raXxvbs76yXgdnnet959xOczfg84H4hDHS7Xu fUif2Mk/V9r+HeMs7jNgr7autHgI+PpDRuappiJZ9761nme9vUKed7b2c2/H IdfDHYferaqQ/NNuOT1Hk7H4IfkM/r2UsTgh4yGgc3vG4orEMcwDNV5xkPa/ LSf82MJxjPM3x7Gf+IPWFw1RPXNsn8X3IN/Nmocd4Tj2owNw6lOw5yve25ax 9uQz1sESTofxENBpzxgd4uwncYjVJ46TDugucD4Qhz34WJ/7S0bW4yPVFgeA n/mZ5uverrZ4CPhan5HnnOS4nG/qE7rL6fspJ2g+emfHoW+fcRxma59qiSON 0jz40RmLQ5I/iNPenbF4I/mA8V+Qsfhkov5hR81Dzqy2+BvkfAPHGa8jjvn+ V7XF92A+9+uzOiXkzbfKCj8Pcxxs2Mhx1kFBnS2f1XM0GYtDks/Ap2Us3si4 CuT71YzFJxP4abq/PLZW9v3PKp0dHMf/JjuOfu9VK+txWlbsRndG8miL1lkc APblxYz63XUWV8H6mKTrsbnWcDnf1Cf/H6XxxmWzst/e1nHEQef2GQ65fkPH 9Vmf9ZNxRayve73/jEOC3kvOB+Jy76HWafy9L/le8p6MrPv9HQf/ZzjOuBz8 oSdVDi7MWPyQ/MH3NzIWJ2Q8BPM9OmNxReLg12Eqt7X1Is+tfbJetnYc/RiS NRx8fE3jgeto3LVK5Xakv48V7e/SuvIJDRYvwvp9JSPjP8txOd+UkXW8it7L 9J7qkc36DIcdO9txsG0tfQ/p6RnrJ+OK6N/TPi7GIWGHZzkfiOP7I32iJxbX +NaaTeZ3yrklnYcNmszvxHx3qH+SaTQcfxuq7115XOOHd+v+YXfHoR5Ochz8 rGuU/u+g8bITMhaHJJ/xmDEZizcyXgT+XpGx+CRxzOvu6g/8xeNvGM9GjjNe RxzPW97jexhH0S9K3Pd+pcYfj3QcdvMCx1kHBX24i8atbs9YHDKRR5yXsXgj 96X4/b2MxSeJYz2eq/ZiYZPeL6vtd3Ycn684DjuS1rqvNzT/ns2I/j/E3xME +Xtd7cvpzbavwLinZyR+trPjoL+S2peV9Lzbn7UeZTvHpa6zx3DwayO9P7m6 x/rJfRHo7Ob9ZxwS47/I+UAceZ0NdV+0c5/FzaAXlusROTnQcfA7120443Kg M1HvEbg8Y/FD8gfzWPTzGSdkPAT9KfqfjCsSB9miPQXft28ROf9N66S3dRzz sGuv4ZDnDVtkH36E1ns0qD68xe9jgfw+mBE79GKLxYvAv7c0/nqt42DXrxn5 foTGD2d1Sz+27DMc9dO3OY6/H9ci/Lm+2/rJuCI+J/m4EucZC84H4uj++z2i N5ZVvXhmyupnsKzmZvQerZTdrwT7lVV7Pcxx+IebqT5ZXeudXtT77PZ0HPN6 veMY3y56vunwLun/6RmLQ5LPUp+VsXgj4ySQixsyFp8kDjdvH90/XuXxN/B/ M8cZryOO54/w+B7s9pFah/i5xt/+0yl1pUc7jvGOdlymW8/jnKz3ut6bsTgk +Qx5rc9YvJH1H2j/acbik8QxvIsysm53axW9coXiuzkO/k5xHHK8c6usp6/1 Xsjv1f4/3pp878t4lc9XWy3OA3uwQO3OzY5Df66u9v/YVpnP/TvF3u7oOPq/ suPQM5conUKH9ZPnlNC/07z/Es9oFbl40PlAHPpjry67x0juCW21ehXiGg8p wRkfIw51s2ef4aC/hfbzYMdhx1d3nHE5fG/Vc0/XZixuRj5D7j7PWJyN90HA nr2QsbgccanPzpTEzaSeO1MSZyMe43K05xhfjccD6R9h/5z3+CFx2b85Tjrg w9OO0/6Xwxln43PBj60yEg/o8fhexBnfwzI4JCNxkcXbrT3krqivsL9aV9/P /ESb6MVnHYf8nK/xyxudDvyMT9tsXPj8uE3vwWk3PsBfe7VN1ueLjkNPjG/T +3TajQ76VeQbz8eRD9gXzSyPs84My2HTPtEjz7XbPTp4zkL1v/7leGzPurWI 8/xgpMP1F9sTZz9j/JPjjTj9phgXRR1Be5/FPxP3P3zdZ/FP4qA/JGs44yGQ 4ys9Pol25+cNZzyTOOiNcRxyfYrG63bSc/xbfCVysZzGr/7kOOis7+2HaV1c bC/3zc6Sdf9Hb0+c91cQX03P8eE5P+m5hj+ybn2OjRfyl1a/buYc4w/Wxw9q Z6+dk4y/FfsD+7jZHLEnA55LHPanLWc45u8oxatyQme/rMU5wb9Ltf3BjmP+ znaccVTYw0M1TjW5z+K9HBfy60tmLa7L+BX42tNncWDiGO/LfaJnL58n/OjJ iR92o+PoV3FeiMNvPGKe7GNWV/yPKlerzLd4y3Ddp0IvHDnf4nvAF9X96G/z DEe8eVOtAxo7T+ZpeG7YqP5+7e445P8vjkt+cp7kU7f0/jMOjHU3y3HGjcGP DucDcfT/K5WTrbPDcv3DWbDA4i3Qn6uyHmSBxa8wT0OzYn/ucBzxkN1U/v+u dZKfZmW8BzgOuq86jv7erPHYhzQe8k6fxY3JZ+jlvj6LDzN+Jfco9Fk8mTj0 xUP6/ucfFli8FMO70nHGV4ljnj5eYPFYfB6RtfpG9HfHrMSJjnQc/dvBcdZP oh9/0nhdvceNE/dL/DFr8WHGrzDsZbIWTyYu5+w0DnNzpfD1Za3HvcdxjG+2 45j2GyvF7yS+UVb0355VFrfBOltC1+nJVRa/wvc/qFws7zi+/13/N17jwytl Rf73cRzz1N1nOIbTWyn8+qbP+sk4rfgF3n/GYyHu450PifrS+7KSl/hH1uob QWdxlZtDA57LGM76SUznRLVz3/RZvJf8gdwum7W4LuNX0GPf9lkcmDjWR/Fz Wv9zltTzpFm1l7c4jnW1dtZw1J11axx4Q33u2lp/N7bG7Ojc/nlNq31sqTE/ A8NcKqv3UTmO+d5S5WtXPZc6SeMIezgOdXyD45CrY2vkORdlrJ+M36J/k3xc jPdCfy50PhBHv9/sE/9qWNbik5DTR7R+7kDHofeucpzxT/R/f80Tf9BncVry p0ntHeOxCf+pps/it8Shfx7Xfe6ddbJuxygfrnEc4/zKcZz3OrpO9F6H4qtk 5X3Jq9dbHAnraK7a5bPrLS6H8465PjmvsKrjkM+han8/q5N92Vka39vFccnD OI74zyS9/3+VtPWT8VtMwz+8/4z3gk/XOB+IY33sq/m/zTR+X91g8RbI77KK 9zVY3An6c02tD33CcbTfQetA/6H32O+s59b2dRx6e1nHQec2fT9mm94f8Uqf xXsT9RxFfcu4buKcwGd9Fgcmjnm5s0/W5woe58R8X+I446LEIUcTGyyOiv79 M2v1jRDDDXtEDg9zHGK9uuOsn8T3Vr1Pc47HexPvBx+Stbgu41dYX7/1WRyY OMY/rk/2kQc1Cf+X03rT2x1Ht45yHHWJe+m515MVXy87bNv+z+ebLN6C9fG9 8ueDJotf4f/LZeU86v2Ow84X/Q349Wc1iZzW6XsO9nT8nP5xPOX4Jv2K++om kds7u62fjN9i/O09hifiwGv2Gh+IY/5n6rnKvbMWn0Q3x+s9v//MJustn3Cc 8U/ZJ+r5ss/6LE5L/qD9olmLxybOH6X6LH5LHOvnOa0nvVfjn6/r/Vz/chx0 Ox1Hd67S/i/aIzjP0VY2WxwJfmJdn/T7Z39fHtj4k/pRcxyHH7Gx+qWvNMv6 uVHfQ7Cr4+DH3xyHnL6u7x/cqsv6yfgt2DPS+894L6TkKecDcewzztB4b9F+ Sb2A378N/TlE7eRnLRZ3gtz8Sf2Fhx0HX3dW+zJSz5Me1Sn+yP6OQ89v7jjG c3+LjOP3Dvn+ep/Fe8nn7SGPfRbXZVyupZ+/X/VZHJg4+n+/7k9ntlicE+y6 zHHGRYnDr3qtxeKo0GOHZq2+EatjL40LHeE41vUujrN+EnK4TId8r/R4L/mM 5xf9QMZ1GXfCMJbIWhyYOPhUtMuQ/zEap91Y3zt1l+Owd5c6jnU3Susqr1Z8 qN7TlklZ3APzuYieO1u01d67Rj8UeqEyZTj8z22zYi/fUD581y7t9nIc4/nE cTxusp5jfb7d+sn4LeRlee8/470Sl+w0PhDHuDIdsk72y1p8UurXNb50sOP4 /pnjjLPg91EaL/yyz+K05A/075JZi8cyjvRLf7/TfRa/JQ59+4rK7fxWke+p el/TTY5j3Et3GA55/KJV/JF1FC/affh/G7fZvf3Qk21qr/dps/ubwOdFdf+3 luPgV9HfwP+zraIvHtO46e6OQw6OcBx2+Sflw35t1k/GXfGc0T4uxmlhhic5 H4hDbm5RfGv1/5f0+Bjs6Kq6H1rG42CwZ0W5hf1paDMc+/HddH/0bpvw88JW 0QP/cBx29ADHsc7r2kQfrNUq/SvaNeinWc5n6L2s7nO/aLNxg94cjVekHZd8 he6/1vD4J+hd5TjjpcQxrh/bLC7KfRL48Ep7Mn5b3C9inl5rD++hzsq+9BbH SQe/j3Cc+6pyOOOTfC7k71SNk3zTbu9/izj9YtiVc9Q/nN2u97bVlYwL57dO TZX0H/rv5FTJeKFXtk7JvC+ueqaiXdZlnd5b8GGf4fCnPtb7FcZ5fyCvK6e0 HsnHSz2E7o71eGw5nHKLOsCts6YfyU/i2Hct6Tjqj5Z2nHyuxPXVfUZH8iof y/mZ4j6P7Zv0HsiIy7nez0ro8J7G2L4czvh2pCP1vXNK2jOeGnGe1450eO9i bF8O5310kQ7jHLF9OVzibFVl+FxX0r4cLnxuFHldOyv69KAOq39+o//jZ22/ QYf5axD/jXV/t6vjsHcHKZ2zOsTutzqO513WIfZzbrPEwfd0HPM12tvD7r/a IXWsRXlge/ELHY/teY9oxHkuIOKM90T6xGN7kZOmEpzvi4t0iMc6cOY1ZB76 SvIg1GMRp9+avH+g0vZ5xOX8/eyS+wl572g5OuXal6PfHfpJ/5B6j7g077R8 K3H6ycDfzVp+h3Fy2KlHPY9DHN8nOc74MIbRm9X7Uierv6PnQBs0TnLfl2IP 7/X20q9PrT1x3sca8SW0Lj3SJ076xMWuzJD1cY3TIQ49c1Hsz0xZj8frfdoX Z02vYf/d7Ljc6zjRcNiFuxl/nqL3neZErqaofB422/iGew5e1HtxrpttfMa0 jdP462aOQywWZKUO+b+zxL4cr+e4Ox3HMHZzHHGtH2aJPG2r9ajnez4L+mWO 48x/8T52/H6L4/g+We9h6+Z+fI6+30LfV553HHb/I8dpD8DHF3RfdKfn0cgf yO//spYvS9TTPp61/Bpx+HtXq384dK6021vzYmc7DnV8muNyTnKO8GOk1m9/ ou8d+nCu5QvAj0d0f/r7XMu/wC6/zHpYx+FHTNfxjZgr+yLeE55yHPN7u+OY 13Pmil67OWv9TJx32Nj7z7we1t9uzgfimP/1cvb+DbEfc6yOQuxt3uaFOPN+ r+k9HsTRz7nZYRv1/+2G+cnzueN1f3TnfNNH4F9R/hFX385xzEezjrdZz1ms rvzNOA59uKjjoLPlfOF3cZ+MOP2Nnh/kfCHe9KTnAZnHgZ64L2t5Q+LIY16s 6+Kl+ZYXwz7uNMeZRyOOfp013/Ju+P37rJ1fwHPW1X3aD46DDWs4zvMRkM+2 jOx7HvL8IPkM+fzY84C0W6D3uucNiYMft2WHHdTfsW0qZD3+ovG4kY6DDZtm DUc8Z/MKGc/mOv6vVZ93VVicH/z9n8bZVqhMnhOfoHp1QkWyvrdK95tn6v2u MzOCdzkOPf2I4+DbfypUH2Ssn8z34XuHj4v5QczjClnjA3Hkd7/Suu6iXCXO HbylceyFjkO+nnA8cd7hfI3/3+N5PfIH+9M3PH/HfAf4/ozn+4gjz369rvd3 lM4zmhc4x3Hws9lx7EfHKF7IiP6ZqOM9qtri81BPT2j/7682Pwni9SrzyY4j XjZL7WCnvs/6/9Kyz29zHGZyK8fxuYjeI/antPWTfh7U2UjvP/ODmI+nnQ/E IZ8nat5kgdrfP9ZafB6C/5HKz5q1lu/AeYZpave/rDEcfkGb8u3/9P3U++k5 1T7HIdcbOi72r0bi9rkekaNbPD+YOGf7nOcBme9AfPKBrOUNiUOPXcbzBLUi V3vrufEzHEe+6wrHsb5+q5HzJw8r/pPn77Dsdu0RvT8Ah5zv4jjzetC7y2oc e7y3J5/B39mO008Fvz53OsTZT+Lgf77XcNJBvm4j5wNx+DVZre+drn7FLfUW 58e6fkPl8Ml6y3dAf36i++sDHYe+rVW98W2d1Ht26vtLehyHfXvfcTxuG70/ 9iF97jWeZyR/sK7HZC2fSD5AL92atfwjccjT+eoffVBv+TWsz5MdZz6OOPaJ 59Vb/g5yl8va+QV8n9Ul4//Ocfz/M8d5PgJ6dZTWFY/yPCP5DH0yzvOJzJvA Hr3o+UfiGN+Nut/cu1Hvu9b3Y53nuOiJniT+Z31v0Yp6//sXqj/TjRbnx/p/ VvX6yk2WN0F339T5mt5oOOZnrra/RvOJ93QJf9sdxzgPchzr4zG9/3bHLusn 84aoI3jAx8U8I/o5yflAHPN7nb7PqTNreTGsnzN0v5ZzXOpSHWfeDd9X65R9 5W2eHyR/oI9e8jwg8x3g58NZyxsSxzxcqfYlpfnQE7tkP3im43j8Q47Db/pG 71d5S/NZH6qfv1Wz5S/ArjHqPxzZbPthjOd51c+bOw49/7Xa/d90XNto3WyL 45C3hg7D0W4xfZ9OTYf1k3lDyNca3n/mGdHfA5wPxKE1VtLz20U7CHu+or/H Fv18R+uP1mix+BA+J+l5xN7mZByrUfkzSc+9L6Z5n17HMb4F7Uk81Sz8fUPj 3Nd7npF8xjp8NGv5ROaDsH+5K2v5R+KIb1+ofs4mnl/Duj7VcebjiGO+FvX8 HfTtwmzyfbWZNpGv7x2H3Lc6zvMR8FvfaZN1/YDnGclnyMkEzycybwK5+p/n H4ljvRXtMvzdLo3nztP2FzgO+ut3GA77k9J7WjbTuN0U1T/7pCzODzl5Se3F iJTlTZCneFf15DaOg36F+mNLpGQ8L2mdc6fjWJ/nOQ5+r5USPXBEm/WTeUP8 /p6Pi3lGLKN25wNxjPvxdlkvPVnLi8EM3KL1wwXHoZfOc5xxbdxrtJO+3+RO zw8m8k1jPQ/IfAf684TnDYljHNfoutuqVT6v1DzJ2Y5DjY5zHGK1pp7XmNYm 6+0T1W9Xt1q8Hf3j/v3xVssHge8v67nMSxyHvE7XfeX+mh/8h947knIc9RK/ pgyXPHCr8GdhyvpJupCGXbz/zDOCvyOdD8TRj23abN9MnPtxxjNJnzjjhPHc BL7OUz1wvNbDZ1skPzJe5fDkNpMvPHeK+g/bOy7vVVd/Znk9B7FuSuxbxnH0 d2GL4Vju27bJ51d6D9ONnq/kfEGen/K8JOUO470va3lM4si7XaLycKHn6RAP Oc1x5vWIY7yHeB4Q8bjv9bnv67mSor6Hf/2j4+D3Mo5znUOcK7XO4iHPV5LP 0OMfe16S+g/tX/c8JnHow9tUf/61XdZVWvGRjmN8e6QMh/75i+a/9tL3Jk3j vq/d8g7w88eqPD/bbvkF7AM/yAq/rmxP5h2qVZ8coucrPtN71rscBzfudBzP P1vPXVzQbP2kvpZ7JHxckIeT24Wvy6WMD8Qxjg/0PWkZz4shDvac3mO30HE8 f5TjtMdYtyc2yT73Hs+zkD+wa29mLS9DPwJ8eNbzOMShd64vzbPArpxbmpch Pmge5xWdl6me72N8EXKY8vwgcfgXHzpOOli2ox1n3KscznwKnwt+nK31xQs8 HxRx5oMg79eqXs2Vb898WWzP/WJsz7pXyOOHuu5W7JTnbtYg8vei45iWL+vF bxvt9DGukX6vJNqN7ZD1fLq//wH7uCc1L/knxxEX+F+H2KUh/n4J6K/3PQ9F fmIc48vjzHNhHK1q7+7ptPfcYT5mqD09v1Pq2bNzS9oLn2eV4G2aV4p0GD+L 7Xm+IeJsH+mcpHGd2P7vmj+NON8jFulw3mN74q+Gc0zM603U+GLEv9R9P3Hm l6F3rsxZPovzJ/di5iwvxvmG/TvE2xOPeTdJvGVLzmExTyHzHPN0qq+f1fzD +o+LPfjecbHzzxgOeX0mtP/B22Nf1vZiCR3JZ71SQkf48nwJHengWyV0pP/v ltCR9fya0YEfsJHTgX48Vvn4T8fRr51y1p51DGzP5zIvG/sj8vRRSX8knzrO +kOc9RBxvKyHiPT30HNkkT7PnUH8Ct6eOPR63nGuZ+jdXo2rP6bv7ZkyTdbd fPWPn3IcUjPDceZJoRff03qXDRwn34iTDnHYw/0dJ//FD9X+52Ykz8scqPN2 xEyTf7iZI3Kil8fOMBzr8Tqdr8VniD5+W8c7ynEshwcdRz8OmiH27Q7df66S s/ws2PrXnOHM52Id7KtyspnjYMcmORn36JzlMdHN9TRO/ZjjGN/KjjNPurHW dWF/sXXO8rnkD/TJoTnL21K/4+dhOcvzEoc+WE/X3Sx97+njys8VHIecjXcc YvvCbPl9surN0/U9WmfMsTwR9OWuys/X5piewrr6p7636jjH8XGpvud5Sc3P Lq55qbsdx7Kf0Gc46K08R8b5Tp/1k/lEsO8a7z/zwtivP+B8IA6//HLdL12t z91snuVTYDVO0PFuP8/yShCPC7Q/LXOT56LvUH0+aq7sP2v0vpSHHId/+abj CI/MmytycntG1mVRfzMvTD5DX+2Vs/wv827gz99yli8mDn20uubPj5xneUzx +x1n3pM4+DHE86RYtk/m7Fwh+PiV3kP7jONYJxMdp12Hn3i/5n12yVk+l3yG /39azvK2tGfQZ0fmLM9LHHzaUt+7Vat53lf1fp5VHYff9mPA58wXPfV7RvTG xbq+H1xg+RR8Hqry8MECy09BL5yk94qd5Tj2tzeoPVl1geibf+k9zKMdl3so HMd62WOBrPMt0tZP5mfx/Ae8/8znyvt2nA/E8f1yvX9kTM7yj/DTTtT3Ojzu OJ67n+P0t9Cv1fQe521zloclf/D7UTnLtzKvhP/vm7P8LHE8Z6jqy1Mq7V5R 0BviOMZ5n+Pwh3erlHX9vOa5eH/eL5XJ8zJ75kQ/7l5leTfo9cNUr3ZVGi73 FKlderhS5GsDfS/OPY5jfVf1GI7h/69S5Hp6j/WT+Vn0aw3vP/O5Es9xPhAH X5fV+1uv0/sFJ1ZbHgR8OTUn455SbXklzPPF2v5Sx6UuSPmzXrXGSTUv8LDj iL/MDPhIvf/t2W5ZJ5vlLJ9LPiP/sH/O8rbMK+H+4B1ylucljvW8pr53LlVt eUzM/7KOM+9JHHL0SrXlSaHfn8nZuULMZ4eej3jWccxjq+Pcv0GvjdP7VXbP WT6XfMb4z8pZ3jZxfueYnOV5iUM+tlH5H6n3EX/ZLfKxmuOYnzV7DMfzL6jV OKu+P+lS9U+2qrN8CvhxlNr9A+ssrwR9dbq+B+O7WsPBj5tzwr/nNU/6iOan HnAc4zjdcfy/Uu/N26fL+sn9T2s/4fd8XMyTQs7anQ/EIdZjukU+H87ZuUKM 4zrNHz0Z8PMcZ3021NBOej/wdjnLw5I/aDciZ/lW5pXQ7QNzlp8ljnFvrOsu Wy9x6XP1Xp2VHMf31xyHHC2oF7n6WJ97ntblPdyQPC+zX0700IyG5Pmj4eon XOs45ONq9Qc21XvkdumUftznuNzL02E45HXvBpnP9g7rJ/OqiO/s6v1nHhbr daTzgTj4tXmXyMF9Ocsbyvt+NG70iON4Tl+74cxLor+f6jmaLXOWPyV/wJeD cpYnZT4I/9s1Z3lV4vjfOqqXdm4Sv2X5TpmH5R2H2dvLceg7nos8pVPy7afq erypyfI74N+O6kf9t8nic5DH/bUu9QbHoacu1nk/Wu+Lq28XOb7TcfjL9ziO dXKMnru8q936ybwqujOxw3DmYcHWvPOBOD4+7pB7+N9Xe3h1s8XbWX8r90A7 vp7uA4RxTYYz/gA37fRmy6dgfRyrev7CZos3Y59ftL/QW/s4jva36rpbS9+P +bbG+8c4ju7d4jj6u5OeQzxJ4/1Dc5bP5Xxh/eyes7wt47jQU1vnLM9LHPNb 9Jfw9+s8j4nnLOU4857E8Xm050kxD4/n7Hwi5OEJvdfqKccxD6McZ/wa9vKk VtHbO+Ysn0s+Q8+flLO8LfNTmN9DcpbnJY72m2scZs8WGWeRn5iPVRzH9vIb x6WeQM8VVuj5qZEq/4+0WB4EbsRBKs9vtlieB5/H5fR9KI5DH1yneukExYfr /WGjHIe/v4bjmOcLW8Q/WKTV+sk8BOT1FO8/87nyfhPnA3HIxQFtVr8c14Xs t/vsPZTEGT8gHeL4PjqXfB/oX/Sc32OOI/7xB8eZr4J/3qLnRLfJWT6XfEb7 w3KWt2VeCX/fM2d5XuLit+VEjm7RPOkmmn9bwXGQP9VxqXtTute0Cl/P0P3a jJTliWDnd9O4RDZl48D8/FPt49RUcnyXqh54KiV6+Hudh7sdlziN49DLL+j7 Ul9osX5ynOhOa8pw5oWx/tdoNT4Qh76t1Tzz1eq3vNFq+RSIwYlqT99rtXUJ fXCB7k/vcRzPvUPpnKbv3+R55Yccx/p9znH0/zZ9PwXPZzMOdHWr8Rl6Z6+c 5X8p77AP3L8/7jjor670J7daHhP+4jKOM+9JXPZLrZYnZZxY/Ku2EvkXu9Fu eOJe7Tsch916Kmd5XgmPal3PM45L3ajj1F94/s1NIh+75CwvzPlCd07LWf6X eS78fGTO8sXEIfdb6Tq6U/O5TzaLHK/qOPR2j+Pgy62aV816/mu82pvEeF/R PN2SHYaTnxK/dRzPu1jjFa1tlmfBfor3SH3fJvv/ov2H3TpZ93EzHAfdG9Rf ekH5eVGT+I+jHQdft3cccvCh5nnXbrLx0k6jf/92PjC/DL696/wkDj6f3Szz XJRz5kNB7ckGmacnHIc/eYnjlB/o/RUbxD79NWd5YfIH5xqG5yz/y7wV6O6X s3wxcejVDTU+OU3Phw5rEn4McRx69EbHpS5Q61HGeH4tziPnV+L2HSXrQuod An627mvW0vsfl2sQOdhL4z87d5ifjv4crv7PSo5DrV2hcY+2dtGfGzaI3rjH cYxrTL3hkK8+Pbd7Xb2Nl/4r1t2yzgfmqeHX79Jk/CQOefq20c670C+PfBD/ v9NwnqeJOD6vUz3wc4fl42CvTtP96a+eh8XPl6j9muc41ss9ak/Hdoh9mlYr 8/2w41gHNzkOvTSnQ75vVCvzsrmeW/rS5wvzsL/K54SO5D06O6r8tDgO/buW xoVW8Pwv+r2s48wXE4d4ZTwvTL5JHUen5cHpz4hf2Wl5c+LQT5c7Tjp47kGO c77K4cyH8rnwE5bOye+fdtp9irDDi+p7O9/rtPxVxO/Tc7uRDvMbsX05XA1U CX8wH+9Ul/ABw3m9uoRv0GcHVcs62dL7A727st4TNlzpT9U8+H/1/MFfHQf/ zqsqGRfjprH/PC8ccZ7HhN9ysPP/LY1XQX9vlLN8dDmc6wjDvUFx1t0W55e4 8LEzWb9xvOOcd3zf1nHJ944twWXe3xS/6RB/brn2uwzM3w7AmReNdMRPf6ek PfO0g/fnsxI6ibzrgPaU54hTbiOdRJ52QHvWn0ScedFIh8+NOM+5RzrMQw4+ Xj03+X+6vx7WZefQoZ+K8oy4/+pdJp/Yf16Vk/3lto5j3E+ofTm+S/TxBMdh 787TuOTD+j7qhxxHvnEVbw85/0+XyQnbo57iHsdje+b5Iy7yMKkMnc9K2vMc 7eD9mVWCk8+RPuclnoNmvQf3lRHv0/h3rAOhv0Gc+RTmD4mzvoT+J/G1NX8R 6TysebHYnnikz36Xa1+O/v9fOutrvCm2J91If3WtU+E5UCyr4++XeOaorN3z Shx5wTccZ/0M/MjbHK/QOhZ8VjjOOhbifC5x8X9j+7EldFjfEukQj3SojyId 1o1EOsQjHdaHRDqr6TnxSId4pEN5Hbw/X5TpzxdGB/ul1fN2Dp38R7NsznDO F+KYa+dtXXF+8b9heatjkTiynj/Z13F0Y0PHWd8CeVtO66OmeN0L7N8kx0kH z/tK62R6HMd4ntHzeKvkxd7s+03yPGwmJ3nE176xegbojV9zsu6XdBx82kDf 53byNImnLqv1qds7jnXC+3qKOPzdJ6fpvf96X9t4r7fBua97soazrgZ65kXe m+w4zl3crHUXO+StXgXT0K3v0RnmOPj2jePUjxCjx/Ue+Xlet0P+YBtT8Pqc RB1Cq9fzEAc/Juv74n6Yafflwd0f5zjkacWs4ZjfR2eK/7SO8mEZfY/iCrOt rgDy3KRxreNmmz6CtulT+7WU43j+H/V+8bNm6XkHfX/Nto7j+1mOgz+XzpLn nZaxftKvlbiEj4v1P7DWM5wPxEHvYb2H60/6PsPZcyz/DjlYROW/ZY7VIUBu VsrL/NzvOPYpW+s62nWO7IPu0vfh7uo46ipPdBz8vH6O9GN7Pe85zet/yGfQ b/c6H9Zp4H8VXhdEHHL6ke4rF/G6F+iZNxxnnQxxjH/8HKurwfztnbf7B0D3 Cj2/uZ/j0DfnO877DXieEeNo9Pof8hnhrKXyVufDegboze+8Log45m229vOu eTIfx6dlPB84Dv6+7DjyBNfNEzv2hp5fXi2v7/Geb/l3/K+g++Wz51s9A7ZH i+Vl/H9wXM455MU/+2ye9O/PvcLXHRwHH7M9hkt+Xe8Vr+qxfrKeB3K/q/ef 9T9g90jnA3Hsl4amZT3tnLd6FbB52R7xx/ZyHPLY120462Ggjz7tFr+5wut2 yB/8/wevz2EdAtyvLq/nIY5+TdX70VeskPX4a4/M57uOw0/cpddw9K9N63OO 0HOyy+u9Fi9VWF0BPtvUP+musDoNLMuFqt8edhzruWgf0b99KqR/s7q1vstx +Om3Oi7vpamQflzXbf2kf491+bmPi/U/WO955wNxrIf39N7doXlZf8V9L/Pv GM+SOl+XVVkdAuxmUW6xPtZ3HPwv6kl8Tq+U/72g+9TdHIddv85x8HP1Ktk/ Hqb7pxle/0M+4/dur/NhnQbsQ63XBRHH+v9U/ajRVVb3gvXzluOskyGOeMHh VVZXg/4U9QnvDQB/HtJ6gAMcx/dRjp+s9etY3yfpe5ZbvP6HfAYflstbnQ/r GeBv/Ox1QcQxT/M0n7hWjeiRyzW//6HjaP6l46CzWo2s26+0fqZoB1FnMr/G 8vhSj6xxwu9rrJ4B7ZdS+/iC43jOZnnZNx5eI3pmf8V3chxyupLj4MdN+h7J fIf1k/U8yGee4v1n/Q/me7TzgTjU4Z58f1De6lXQzc01z7634xjPHxxn/BF1 pC3tIufVXrdD/mAd/+r1OYyboh9pr+dJ1D9M03j1U0rnj3qu9n3Hwc/jHAe9 GxS/QM8rDMnLeh1Wb3lz3Hverevl2nqLB0Of/aj1V5vVJ++ZW0/9gXkah+3S 98n83XHoiRccRz97FP9Pu/WTcVJ8tnUYzvofrIc1Oo0PxDH/8zv0XuK8yPFi jZY3h5wU14W8D7TR8hugt5b6Y281GI59x9+VzokNsm4/aZNzv3s4Dvfkccfx +aa+F/I8PUc42+t/yGesxz6v82HeA/auyeuCiON/nyt/hjaKnH+o9zW+7Tj4 nXYc+qBL3y85pEPk/R95q8+BPI5rlTzKAFzqpR1n3Q7yvnx/15LennzGfK3v OPN48ONWdjrE2U/ikMvzvf+kg3l70vmQeO557XreSOfl/XrLI/yk90qJvawt yTswj0IccrKO+rHvN1n+HcP7Re3vF01WzwB/sWjHsV963HHI1ZaqHy7R+xBO 1fY7O97YLx/bOA7/4b4mibetoM+d6vVI5DOG2+x1R+Qn4nVzvU6JOOzPBNUP c5usfgZq6HXHWW9DHH7w2CarzwG/ivs73j8A+3lASuRhX8ehr3ZynPlX9H/p lMxTndcRkc/Ql4vmrV6IeX7UG+a9voi4rBOVn0e0nuevrTJ/4x3HtFztOOTp Xq0Xuq1V1uGqeel3b3PyPGxG7fuSLVbPgGH+pnqyttlwWYfqh7+j90Usrvde b+84xj+pxXCMd5Lek/Bmi/WTdQbo57Lef9YRyftJW40PxGEuClp3UfTPWa8C /hT7K1kAx/G/TxxnPQE+7tV+zfP6H/IH07rQ63z4P6y3Nq8LStCbrHJbpeeK 52sd0DjHZV+eMhz69/MWkaPNU7JOltV9x9BU8jws7zssyiX5B/uf1TquP6WS 54jX1P3CQh3Xy83Cz20dh7wd6zj48b3WUx3ZbP2kHEAuRvm4WP+Dz4nOB+KQ vzv1+UV7Cju7eKvlu/GxqO7XinqBeX/wpahXocdbUkl8a92vTUiJfF2rdHZ1 HGw7xHE556zn2DdtkvFN8/of8hnxhHav8+H6Rvyo0uuCiON5H+k+aG2ve4Hc veE462SIwx58l7K6GvSr6F+trfcMSPipQfi9n+OQtwmOUy+D78c0yPpv8vof 8hnzW/RLWefD+gHQ/d7rgojLfVNav9Go9Wr/bBL79IHjoP+I46BfpfVVz2h9 6Op5WQ87tVl+Gfwv6L7y0DazV5Cz4v4d6n1jx/G/jTW++pPeB7GL1h3v4Djk bXK94eDTkDbxp8bUWz9pP8CXrb3/rNsBn09uMj4QxzmpVdXO7Jy3+hD470U/ F/3cy3HsKyc7Tj8M+dfTaqV/FV4nQ/7Azf7R62HoP+LfXV4/Qxzjnar7l6F6 3r9e/YV3HYfdGNFgOJ4zpF3k71atj15B92UXtVteFeuzXf2E+9ttHwDx+jYn fsLZjqNb66g/sJvWod5UK/39m+PQ4701hmNc+7bLuqqusX7SX4Scn+3jStTh fOV8II6/Har7gKL9AnsP9/ul8bmkys9wvw8Zn6vrPm5Lx+UejbzYoUU69H6e aunPbo7jf9VVhsPf2FTP+99cJeOZ4XUy5DPG3+P1MMx3Y99e5/UzxCUOpHVi Z3hdB/j7luOsAyGO4ezjdSNYd/vlrZ4H63p5jSsc4Dj2u4s6ntjXPa33Vqa8 voV8hpwsn7c6FtknVkn7X7zuhTj08Tzd526mdfPfKP6h45CTC6sNhxxt0qnv 19BzP2vqex1v67S8MPZBP2id4cNet4B8wtJ5sTMjHYedLe7fMX976/7/ogrx H3dyHHZvMcchBydoXcfUBdZPxgUwrhd8XKKvNY6wZLXxgTj025lVol92y1se HMtuO70Xdh/H8bcVHGeeHetj7Dx9D5/nwckfmQ/Pm7N+A/zOeJ6dONb9tNI8 OPj3fmnenHjMszO/ht/f67J6DL63E/HcBV7XQRxy/KrjpIN+3ew483rlcOa7 +VzwZ6bGeRq7rH4DcYLivuPEfnH9zOs0Is48Z8SZl4s480vxuVLvMV3oLa92 /3eNM/5R7w/+Pme4xC1ni15vdjr4fqK/NxXz96jeH/fuPOMn9p2jtP9bOg4+ Pd4l63vFeUYH8/Jil+UTyE+8r/258jjvXYf93V73U1d0Wz0DxjdU/ZYR3VaX EtszHxtx8jnSqdX8YWzPOpaIk/+RDucrtice751gnpl1ARFnviLWSxyo9WnE mWdk/jDWGwzXOABx1m0A/m/e7tMgHeiPu/NWP8C8Lfh6g7cnLvurfEl/Is7+ yT6pFAfd4XmrT4AfcVHWcNYhEAc7TnUccamzvL3ovbdK2otee7+kPddtfC7r byIdkacJJXTuU/psj8+53h/0d4jj7A9x6JVxedMXsFebOH0+N/ZH5Pijkv6I HH9Y0h/WjcX+iLx+WtIf4rE/pBP7w/axP8TZnvRZjwHx2dD7Q5zv1Uvyc6LI 6dJx3ieWzCPpxH4SZz8Rt3xH5X/iF7YuoN4ezEs+8PcvTP6xjh7SeOAIxzku bC/eniTPW8n7Txx6s6vPcNBb6wuZ52m+LqjX4rhErUwqGRdxjgt+Qmve3geB cS7WJ+Ppdhzj7MsYzroUqbvIyHzfkpf9wUVTku8Heln9nF+/NH0Eeg/run5x iuFYVpdqvPTgqfpcfV/tyY5LfiZrOPTa6lNlnocq/8dr3uThryz/jm6P0fj/ 0l9bPQP+/3xe/NxTvjIc8z1F8ywTpmo8JiP9rXUc8/svx+EWZqbq+a2M9ZP2 BvGKz31crKuBXc07H4hjXG9o3UWRPutV8PGw5t/bHUe8+grHWQ+DfMa++h7V a7xuh/yBH/to3upzWIcAe3FX3up5iGOfcl5e35c5XfymBzPCt+Mcx3xNdRx+ eM838r09I/L0hq67C2Yk70+4TfXekJlWpwE+PKT7snNmGI7vn6h8TpwueuVM rUOocBxysarjsH+Tp4ufu3La+kk7jXneP/T/jBmyT7/K+UAc4rOP8vMLjWtd Mzt5H/VL6qeNnm12/fL+gb2r/sNujuO+4Lm6n5o7S+8F6pX12uw4+rmM4+DT JrP1/QV6z/bFXv9DPgO/O291PqzTgDhdl7e6oAROPfn6bKt7AZ3hjrNOhjjo nzrb6mqwz+jM2z0zmMahPbKf7XUcfFrNcd5jI/vJbhnHbV7/Qz6jX2O9zof1 DODTE14XRBzr4UrNI+8wV8a9bK/w+xTHMT9HOg69tPFcGfdJvXq+SOMkrXOT 9yc8onGG1eZZPQPavaLyNnGu4fAnv9Z40ci5sm+q1fsE6h3HfW5POo5+jp4r fLqj2/pJPxt6rK3HcNb/wM9fo9f4QBx0ZmjdRUPe6lWAv6f7gw7HsUt8zHHW w6yk9wnATlzvdTvkD/r3lNfnsA4B30flrZ6HOPTYhTquDxV/Td8ze4LjiMu1 O47HjZov62SRHn1PeV7aHbrA6gqwbu/WdfTIAqvTwD75MbV3+zoOdk1UfZWd L3Jwg+6HqhyHffmr4/Crfp4ven/LLusn63lghy/w/rP+B89/0vlAHPrg9G7h /xTl/6qVyfuox6qd2qDS4g0S51Q9NqMiee/3grzI4zUVIl9Halwh5TjycJs5 Dnn4rELfx9wh47nM63/IZ/Dl/rzV+bBOA37lTXmrCyIOP+oMtV97VCbrXo5x nHUyxMHOHyusrgbkevJ2zwzka88Okfu049BDOznOOBT2zUvre1Tv9Pof8hl6 /k2v82E8DPGlZ70uiLjcd6/zPlXjPht1Cp9Ocxx68v8cxzg+qZLnX6XxpE+U /r+qLf8OtfmkyuGL1VbPAHvwquZhj3Ac62S62tlf9X0i3+q9sw2OQ09+5DjG u0W16N/n2q2fjJOif8t6/1n/A/7v0ml8IA756e2Q+/Rb8lavAn4saJN10OU4 9OCnjrMeBr/fq+/3vNHrdsgfPOc5r89JnMss+vms5yEOPX2J2tODakV+pyif T3Rc4nUdhoMvm2ldzdodoofeVf+ks9by3bCPxXUBv23zOssPoC77adVj82sN R7646G+AfzfXCt1H22ReaxzHOj/ccfz/Ib23Z9826yfj9Xjf0f0+Ltb/QO4n Oh+Io/3Neg//1xr3frU+eY/0m7oPfbve8lTo36caRzrJcfSzOi/+xHL6vo+R mv9tdRz6e3/Hwc8R9fL/tVrl+5Ve/0M+Q88/lLc6H+Z/cC/KbXmrCyIOfXyO xktn1lvdC+iOcJx1MsQx/gfrra4G9imTt3tmZP+h9w30OY7/neg4817o/lYp 8TPv8fof8hl25V2v82H9ANbdS14XRBzzeb3SP7ZR5onv8z3dcUjbaMf/3U// GH2fyAOtIpcTVR6Wb7K8Ofy/4vpCf9dusrwx/veW7mebGw3HupmVl33+fY0y 3pW0DqHJcchNbYvhmO8vGuX/H7VYP1lvA/pbe/9ZV4N5PaXV+EAc8rVCq9Zn 5e2eGfBxodYJdDsu97A7zntswOe3m2Xd3+L1NuQP+vOy19WwfgDL4JG81eEQ B38vU7lK63s3mlrEvp/sOPiyScpw/L2pSfTidlpnMl7b79mcvGdgjOr5E5uT 7z99QeXhb46jjmWKrvdldJzvNEt9aK3joHex49AzazTL58nN1k/m0bHuxvm4 WG+DcbQ6H4hj3p5tEf1fl7f6EMjfnU0S/2h3HB/nOM7xYNp20PuQrvE6GfIH 8/9Y3uph2F98vytv9TPEpb5e7dpf9F6Pf2sd0HGOw+/6wHHwm/fbVPKenrz4 WVe2WB4f/Lld193TLVYXAX78R9fX5Y5DP3+iccKD9L0bRzcJ3UrHoU8Xdxx6 +WCtq1m0yfpJuYT/sLP3n/U24Nf5zgfi6M52ytei/cK++tiU5buxfl5Wv+v0 lOk/uWdX96c7OQ4xmKfztZLWzRzVIP1rdhx8WVhvOPzGbVIyrqK9Av1LvN6G fJZzRXmrq0ncH3593upwiKP/p6ke/j+vMwE/jnacdSnEIQf/9DoW9KeTdlbv ndm0TvR8r+MP9I9/Rcep3xHfGFsr47jN623IZzznVa+rYf0A/J4nvQ6HONpf qfO4vdaBfFsvcn+K42DbnQ2GQ/621ntqnmzQ933rPui+Vst3Mx4FOXyx1fwR 1HO+on7UtY5jnUzT82JHtIo+f6xW+FnvOMbzJ8ex3s9oFbnL1Vg/6X+gO2/6 uFhvg/+t0mB8IA75v1HfJ9aYt/oQjPuwapn/DsexHtZ0nH6G7K+r9P0FXidD /qD9U14Pw7w/5GhU3upniIO/F6rduapN9PGuer/ECY5jnt92HGw4vU3O36T0 PsXifhlxqUltlscH/+7WeHh7m/n7mIfHdf1+7DjkY6LqtzFa39mg71eschzj 3c9x+HmP6ntldqyyftIPxrr4sMZw1tugn+vWGh+Iw8y/UiPnLKfmhd8vtlu+ G/pgrOrbV9st7w/+fqhycrPjeG6FysOx+t75OyqkXcpxTMvfHIceulbfL9W4 QPeHXm9DPmO+R+etrob7USzjm/NWh0Mc9M9U+/5Bu9WZ4PMYx1mXQhzy90i7 1bFgPfbk7f4T9PdMja+kHYfcH+0495PgV2GejPtOr7chn6En3/K6GtYPQA6e 8zoc4tBj16j836D3rmxRIfb2NMehL6Y4jvm8RunMqdD9ouqT6g7LO6NfTykf epXOHvOlH6/pvHzhOPo/Q/2Wx7S+Zfo88esaHIf+PMFx6KW3tL5lk3nWT8YF IOffLzCc9Tbg3/EVxgfiGPcnC0TOWvJWHwL8Pj0X2OU4vp/qOOM+6Ndvs8U/ vNHrZMifNfo/nvd6GMYXe/vpjMlb/QxxrKtLVG4ndsr4L54n83Gi4+Bjn+PY 777ZKfK0hsb53lX6K3XZ/SdY//ern7lNl8WJQedplbclHcf4Jmt+tlbrglad I3yqcRz8//dswyV+2il644LZ1k/Wz8g+zPvPehv8fNY84wNx8Ldtrjxvmtrr nNd1wE9+U+MVBa8Dgbx8qnmfrx2HfFZrvPQZrau5coasj1bHxY2dbjjyPlO7 ZFybTRd+Xql24UPnM9bLf9R/eKPLzu/i19vUvlc5Dj12jvrJi3Zb/Qnmb4Tj rFchLv6916WwTkD2T91WhwN+TtH293db3Q5x/P8sx0kHemk3x1mfUA5nXQef i3EeqXrgmW7Lq0ec+WfoxxPUXrzmeBwX1v3+X5f0H/pp169LxovnXqX3AVzn 9KXeTPOHL6l++EDzJX+fKuO8zXHI+bgpJf1kvjeOqxzepPeKQN6fcL4xDwn8 Uq+HKYdT/uF/zMonz4UW54W46BefL/DrDcc5X1gHdzvO+o6Icx7Bt5f9uWyP ffNU1c/bE58k63Gs8nP5nuQ9Nt/o/G7qOOS8V/l8uL5v9UjHsc5O0XuxV/xC 2nU6Dn9kiUnWHnGKG3vsHg62x3iucTy2r9B7ZiLOepOIs84t0id/mCf8/7rX hXVNsg5K8VgfRTqxPop6JtZH0R+T+EXB6pSY7wa9fxasrol5f4lreHviIgcF o086EU+c69+nFMf6up34i+IvL9tn+AKdD+LgwuXeXvKNXjf1d63/4Xmuy7SO jnU4xNlPTOsj4wyHnVrGcdjhr/uGEef7g4hDjoYWbL6lTtX7yff+wA4u5eMi DjnvdT6wn5CzWZnw3I9L+kM6sT/E2R+M76yCPG/Vz23eoT/3K8j6Pf5zm18M f3hB9OK4icl7MIrjwvOXn6jnjrz/xOW8o+OY/gsm6nlHHxf1PuT4Ix8X647g B0zycRHHND/ZJ3J+d8HqeTCtb6Yl3jDacXx/zHHqHSyLc9Mi35sVrK6J/EH7 gwpWv0S5xfN3LVi9E3Hwc00d18uTJa7+TEb8xSUch75qchx8PGey+Bn5jPC5 uE7lWsQvrT4BfvpOOr+nTbF6D9ifAwqijz/80nDMw8iC8O8PX4oeuyQt/b/Z cXR/S8fxueeXMv9/Sls/aecgDxd4/1kfhbjMk84H4njOCVrfcmlBzhlf/HXy PREjCqIvL/va9BfyDufovEz/ynCId7GfWCebfCX73H31Pod7HQf9DRzHfE79 Sv1Kff/FegWrjyKfYbd2L1gdFPU45HmbgtVNEQf9lQpiB974Wp6zV1r2i7/n DYffernjoLf71yLX/0mLP/pwweqX4J/v3CPz+EghvA/LcfoNqItYWu9hOMrb k8+Qq5GOs95D8kxOhzj7SXz3/r9lew0nHfBpqPOBOMbV1yt+0XkF0dP7zrQ6 B5Atri/JT880/wLjO07lf/4MwyGnV6t8/nmG9KujW8Z1h+Pw399zHGL4lNJ5 qFv6tXrB6qzIH/z/LwWrpyIfoA82KFj9FXGpEyqIv/PeTKsvQj9/zhvOeiTi GP6qM61+Cf24r2D3+UBeZur5gAcdh/x86jjtPfh7n75XfcuC1VmRz1BnhxWs nop1I6CzZ8Hqr4iDr+sUJI6Vmi3yVPSLMb6lHEee4HfHYX+nz5Y4wAoqn6fq eizut1nngH3pbsrnz+dY3Qj0wMFqRy50HPN5seqftfV9Xnd3Cf//7Tjm+UDH oQZ3niN6eMcu6yf3vRj//d5/1lmh/xOdD8TBz2v1npZbC1YXBH13eqfQGeU4 /MN9HOf+H7+vqvvpol1jfRT5A725d8HqoFjvAb4X/THWTRHHfnvVgsjpOfPk 9xN1H7yo4/BrxjgucUN9f9mbet7imILYpx/mJe+p+Iuu0/3mW1wEbNlD5TA3 z3D4x2fr+n16nvy+dafM+w2Og359h+H4+4vz5PeaDusn66Ygh6t7/1lnhfnf 3/lAHOI/RO+TGan25aMFyfdEHKb8n7kgef/xyQWhd63jh/RPz3UF4dOmC4Te oh1il+5yXOop2g3Hc87Ve13f0PsNivaRdVbkM+hvV7B6Ksa90P9NClZ/RRx+ zLIFybf0LLD6IuSDf8kbznok4pDX5xdY/RL4NLpg9/lgXtMa/37IcayrFse5 rwC/3tb3v29TsDor8lnilQWrp2LdCOat6H+y/oo49PB6Kv+XV8r6ndcu/V3a cfBlvQ7D8f3sStEPm+o5vDO0/aZVVucAOdtL7fsRVRYvx3weruv0t0rD5b1L BdHjYyu1bkjzErc6jn6c6zjGNbdS64narJ+MR2PdjfNxsc4K89HqfCCO7j+m 502Ldo11QaBzs55vvt9x1DWc6zjzDZCTHfT97RsXrD6K/MHj9i9YHRTzMDiH tmPB6qaIQ48U7Sn8tR+qRQ6u1Hs/Fncc0/uO4xJ31jqorzUfcnxB/MsHaqx+ A7Pwd/WTF9RYPgrraR9dX7c4jm3jeapPttE80AGav7rJcdirX1KGo93uNeIP LkxZP1k3JfeRef9ZZwX5ON/5QBzis7Xeu3+x7meH1yXf71D008DXk+us3gPP P0P5s7zjaHeDztf4WrFv6+j9Afc4Dr1QaDFczqPWiR7/SvPt6xSszop8lnOz BaunYr4UclH0K1h/RVzsvNrT6+qsvgjP/y1vOOuRiEu+rc7ql9BuTMHu88H8 rKD3K/ynkLznZynHmX+F/CzQ9zL8tWB1VuQz9OlxBaunYn5e3o9esPor4nLO RudxCa0XSmveflnHwe/dU4ZDjn7X+q49NV99ttrHzxqsXgL9Lq4v0acNVmcB sTla/dhRjuP/V+g87qr3FH2q9yrc7jjGd4fjcBsvaNC62WbrJ+sDQL7Sx8U6 K4x32ZTxgTj4M6FF/OW7C1YXhPl4tknW+QOOYz3e6zjrjqCeTmgSedy8YPVR 5A+m4Z8Fq4Ni3Qj4W/QbWTdFHPOxpu5n99V7bEbre0CWcBzrZY7jiJts3yTf U80iByepn/OfJqtzwHB2Ur9oXJPVjWD9Fvfdm/SP8y7HoS9Gqp45Remcpu8H u8VxzM86jsNeX6D4ik3WT9ZNwX87yfvPOiv8PMr5QBx6/mCtkynaLyyjq5qT 7y8Yofr8qmaTC8jfOSqHhziOdXWzxoU21vd2FeUL/LnXcTxnE8ch74eo/E3W esP1C1ZnRT7j/3sUrJ6KdSPwC7YpWP0VcfjXK6m9uF3rjf7WJPO6iOOQq7Mc B3vO1/tzbtf3qjxSsDoo7EOOrRP5HYDj3PPRjnN93t7Ph0Ktvv/S2yf4fKHj 1Fv4/WSnQ5z9JD61f51MaTScdKDXVmsyPhBHHeKkRpGX89T/ea0l+V77g5QP H7RY3QjWfdH+Qq/f7zjmqbjvhh0+q0X0zdtqH+50HHrnEMchd7e0iD1bTp+7 esHqtcgfLONtC1aXRT5APwwtWB0XcbEDun6/arE6Jay7n/OGs66JOPj0TIvV QUGM7ivYPTyQ7xurhY8POo7xnuY47THW229a/75Vweq1yGc0O7xgdVmsP4Fd 3qtgdVzEwad11V7cm5J91PBa0StLOS7T7DjW2c0pkcOf9R6VU9Vvb05ZvQT2 JbvrfvbnlPmDOCd3sO535jgOeb9Y/YFXtA7q+ypp92/H4Rdc6TimdYL6JYdX WT/pN+yNOjrvP+u1/l9d3x0nVZV8jxmUNWDWryKKghFMIK7CKq4JDLAiKuYs K+quWVAQ1oiKuKCILCogouQ8DAMyA8wAMwMzTGByDgxB0XndjQH5NafqVPl6 fv7Vnz79+r66devWrVt13n0yT0tND8Qhd5Hy1v/TbPwiuI0ZhaL/DxLwJx1n XAi5DtXnLU5vNp4V9YP48upm41MxTke7Fzcb/4o4/tdO7Xajtj9R9xP7OY77 H1psONa/pXX6PspiydcM1HX8+Prw+RJdNE67st72W5Cvp87rox2X9wrpvGuq k/tcWSj6HO446hGTCwzH/3dqHDa+wORkfC/7aO8X+Vrwm/9yPRCHOlsVSV72 Sd1H/FxvfInDNR+FeGK/BuONYP7cq/HVlvowPlT1NkefW6jXdt5xHHoZ7TjE 36TvHeuZp+/faTa+FvUMO7202XhZofM6zmw2Hhdx3If77iOdp4T77PnJcPKa iGPfvaPeeFCw/3hcxHN4sMqvyJU4ZJzjcHvfOM59Mtq5LlfiyPj6SL4W9Yzx HdBsvCzmn8B//Huz8biIw/7aa30tX9/P9bbmUQ5xHPdvn284/r+xQfKBXfQ9 7Q9pfHtBo/ElIO/VGm/0brQ8HOTrp/HGiY5jv/RvjSt2NYi+ztVzx99wHPdZ lGM42j+wUfzuqByTk3kcyN/H+0W+FsZpTp7pgTjqGsfpc4pvNxu/CPMzK1vk HuM4uvu448zX4PdpWeJ3zmw2nhX1g/l8XbPxqZjfhd+9rNn4V8Rx3XG67h+n 5+Fk50jd7ADHcfn1uYZjfTpAeTjP54rfuEvt/6GtxjeAHV2ifvUNf78M4oHe GicMchz3e0LjgQs1b1iTJfYwwnHcZ1mm4dgWXK750P9mmpzMJ8I8b/d+hXhc y1wPxOEOe+aI34ivX1hv/u7veYFfu61Z4rwb/ZwZ7K8f0nE/zXHMe/rJqObL LlondjvacehxXIbhuP/Jmo+uSxec69oRzmuCvD2ajZfFegvM6Zxm43ERxzz6 i8bJdzhPCevT7z8ZTl4Tcfyvh/Og4F7GMR/eJPnK3atF3+Mdh5x1jjMvD3W2 Xy16v7DZ+FrUM9R3Z7Pxslg/RLPx+JM8rtB7c07XuOuUbfL7SxkiZxvHcV3K OsPhp0/SOkf6Oslz9mZdfpvV94mzzkFc/GXL6yH/o5qHGbrN+C34/Vq972g/ VwfX3a56eNBx+KHnddwv0/rByjTR45uOS/ot1XCI22+b2PczqdZfyo/8VWfX D+VHHL4zw/RJHPnlb9J7sb/wX5Na6od1o0ScvCDiqMuMdhwfH6XIfcc6jvAr WG4463kw538my/06NxsviHrGPOzbbDwi8gUwT65sNt4RcfjVE5tb8ILg7w9s bsEjIp7IO8r5o/1M3W68KZl/Kn+G86+Iy3Pbjuf8UZ/POk7+yZ/h5BHxvj20 7gN1Zm0XvVw6X+b93bqO7NoudbIO82R+9XEcdtJ1tvS3g7dDHhT01Ebn+4w/ x8mPYr+E57hdxndcsukBeh6xXfb5Q5IMlzr8dpEjttTakfjceVbUA/ox+s/x t5Wflsg7ov2U6n2Js516tf//L35kYHwn8gHQftvA+FHkV8g5qM6PIp5431A7 f5CT/IFEeYhDP5cGdu4TzPy3neIvLncc62LUcfKjiKOdFOdTYXyWfG94iE8V x+F3axzHfYZ9b/LIfJunn35f4ohbA8fJj8K4/+j94vlOUFeGX08c+l7pOMdJ 9m07xQ4OUz2sS7HxwmXb1E6eWGHjgn3Bz+pXT04xHHo5KRB/nqV8x2E7xQ+f 5zjWl6sdh794ZbnEpWfvlH3wXOdrofmh3xse4oNNUH5URgJf6z7l0XUNjO8E exi0Q/xgd8exjl/jOP0g5G23Q/xItvO+qB/0+wfnd9He8FnlfDDiiKtXajy2 X5p8v3mnxCXfOo746T3Hof9lup59uVPio/0D5bWsDp9PUqb+M2W18XwwXXao Hz7WcbR3lLYzJE30136H6LOz4/BzhdsNxwT6KE30G/d/lJPrNPRzrMtP/pi8 h8L1QBxyH7JT4rzjA/Fvqem2fgL/TfW/Md3WPcQJcX+C+3VKwDsFYj8j1kqc 3KztXOQ41vFsxzG9TkqXPPsX2+T7GuePUc+4X43zxMhjQbt5zisjDrEWa5zT OsN4U/h9uuPkWRHHfBiTbrwsyHNFYOc4YR436PmRVzqOeVzjOONvzIv5Gm8W O3+MeoZc+wfGE2N8BK3+5Lwy4vBvG5plH3zSBsmvr9Xr5zkOftvx2w3HPD5O z5s6Qc/POTyQfcQnmcbfwGd8fj22zw4LMi1exnz8vVl4VBc4jvZP0Xn9lr7H 7eMm0ecFjsMfP+D4F/sU8IO+D653k8nJfQLmwULvF3lZyMfUux5C52h9tE3a uziwc5zgr17R/eVljmNf/Ljj3Afi/911X5jjvC/qB/MtcH4XeSyYV/XOByOO +6U2y/1O3yT+6XE9l2aW41L3cxxx63Z9PmS57pMO0vnSLcd4F/BL1RoPP5Vj +06Mzy71Pyc7Dv95TCB2N0bf49ZD94VnO455HW00HP9fu0n00NBocnI/j88e Lj95X5BrsOuBOO7TqUn80jmB8ZSAH9Eo6+oljsMOdjYYzjwL5Etp0Pc6OV+L +sH/GpyXxXwG5NriPC7i+EzSvN+x+p61w1RvXzsOt/Q3xxFuVOnzLffq+35/ 07rVl5vD55Pk6X7hp82W14G4tdrOZMfRj3icgH710XOrypR/cqbj0NO7jsNc b9L3vr3TYHIyX4Z+fddoOHlfsK9drgfiiFuWN4o+4+sX1suH88Pv9WjWOHlo vvFPYEcHBOLvOzkOuTqoPedrPmtevfjjLo7j6hGOY505Sp/Tu0fP31jpvC/q GXix87uYd0S/NzgfLITP1brAhHzjO6GdqY6TH0Uc/r1PvvGpsN52C+wcJ3T3 0zrZ117uOPzLe44/pPlZjOegOok/8pz3RT1DLz87v4t5buhzm/PBiOM+azTv 0UHrByP1OdrZjkNtGxzHfD2iUH4vqJffWwei302FxrvAutCgeae9hVavgFoj GkfNLAzXMU4IJM6+o1D8/T/qxH7PdRzPvx/rOMZpqOajW9WZnKwfYBzucfnJ +xI+guuBONq5tl7kPz8wnhI+L6iV+dfNcXnPiuOso+B7dY2Mxwbna1E/+Nzu vCzWkbCOlDmPi7g8T6Bx3VeKn6nP93/jOOqE9zkOvb5SJHnNl7TOs1fj4cuL jU+C8SxSvt/I4nA9sFHj4S6O47rDtb+lReIPolq3PMtxmOc3jkucpOe/T60x OVmfg7+urTWcvC98P6bO9BDCS2qVRxlIfLKnJPxej93Kh29bavVn+I1DdH1P KjEc9tgxkHjpYX3/2gY97+RCx+FXvnAccdS3JRInvFgtcV2q876oZ8hZ4fwu 8nOg143OByMOv7JA593ZpcZ3wvXTHCc/ijjkrisxPpWsw4Gd4wS/sUx5K1c4 Lv7WcdbLoc7hVbKvLHTeF/UM//u787vIY4F//975YMRRh83QOuACfR/cJOUv zHUc9rvNcfjRGfqeuB+qdVwDWbcfLzfeBfS0XfP/Y8qNx4J80i/K37vCcfip k9U+t5bJfBii/J3zHEfzlzgu/qhc7PekKpOTdX2ENa+7/OR9Qb8LXQ/EoZ5H qsVPxvfL5Cnh/hP1s7vjEP9Jx8lrQfx4qPKnsp2vRf1guu1yXhb5J7D/audx EYf8KzW+7VYp8veqEv3PdBz/f81x6Pdo5VN9pPyd+L4G9ppXaXwJ9Le8Wfaz baqsH5i/OzRf912l4YgP2wXSzycrxS900PfRdXYcco4tNxzx8/BKsbdXysPy t6oSP3CIy0/eF/znZVWmB+KS/tL24usXeFyZVcaXwDDtaZY64sYqm0+4T1td 96c5jn7E98vwA69USRywvlTG+2LHYb+vOQ4+9JdV4odOL9X3MTnvi3qGPdQ4 v4t2in7lOR+MOLqxWPNmZVXGd4Lc0x0nP4o4xnlllfGp5DmNwM5xwvjNKxb8 Sseht28cD/HkrtP1p9h5X9QzPvcPjN9F/gk+m50PRlzeA6XjGPdf8LNPqn+d 7zi+tyszHPvGuN8Hv+ToMrGvIwJZJ1vVGO8Ct/lB91lH1tj6Bjv+XXkaDdWG 4/6nBmIXKdrfI4plHbnAceQfphcZjva36LlLjxeZnFzP8H6Jvt6vEI9rTqnp gTj8dOtSmWcXB3aOE/pVpHFiD8cxPIsd57qF+OcfGj/mOF+L+oE8EedlMW5C u/XO4yKO6ZaqefVaPXdrQZH4s1mO4/+XFxsu57XUiD7uLJZ19+BA/Hi3WuNL wE/VaP6wf63Fj7jPj7qOd64NPx8QjzeQT/ldz+8aoOehnu04/NymAsPBZ+B7 4OYUmJyMqzAOA71f5GvBHyW7HojjvhcqT+mcwPhFwPdT3sIljsOvr8oznPEl 2rtXn1/JcJ4V9YN50+h8KvJGECcXOf+KOMwgSeO6M5WHvVvPu53hOPT5UKHh kv9W/HN9b/Mezf/8s854IPjI13zdf+uMV4N5V6v1ysGOoxttVQ9/0/MTP9P3 gZ/pOJaB3ZsNh3quqtPzADebnNy3wB886P0iXwvzcq3rgTim5Z0FYn/tdB28 qd74ElBfoPH2HfWWz8A8PUDzZhc4Dj/QQePtA5WP1FvzJV0dx/lH9TmGIy48 Q/fJk3Kk/ZXO16KeMZ+KnZfFPAHMaYPzuIhD/rm673jMeUpY36c6Tl4TcYzz Vc6Dgjbi+6nQe9YuUD7G5Y7jtr9kG848AtbBbtnyv3zna1HPsJufnZfFfBXs bJvzuIhj2q9RPtK5DTL+Dfqc4hzH0fxLuYbjbqc3yHx8P1f8RhvNA49sML4E xrNB81QTGyzvCDuK6v7uGcfxGY83cL7MtcrLapct8/NcxzHeJ2cZjnjgTuUX rck0OZnvwLh87v0iXwvzZ/9c0wNx2N/TOaL/+H6Z/CJ8DF8n37s5jv4c5Tjz WZCvb4a+B8N5VtQP9LLD+VTMB8O+yp1/RVzyo9rOkEZZX+/Qc2++cRzjf3W2 4Yir7miU+GN6tvS7lcYhSY3GA8H3Yo2vyhotrw/736rPqy5wHPP5CJ2/bzeK 3U/OkPnQyXH098l0w6GXDxolXro13eRkXhL2fXtmuF+zVM6TssJ6mKX8sS6Z Mm7x9Qt+beJW4ydATz/rPvSLrVZHwvWtA+Ebv+A49BTfLyNuvInnO6UJfqHj mK/XOi7nL26V8fwiVewu1fla1DPGs8J5WeTVYD3a5Dwu4vBjC9Q/z91qPCXY yVeOk9dEHN1533lQrHfL+G01fojwS/x8J+I8t0fi1SbD0a8egV0P+xiwQt+D 6Dj6cYLjPG8K69QYrcducd4Xxwty/+78LtZL4R9+cD5YiGeyTvfvzzaJn7sk TX6f6zjG6anVhqM+93ST+JNRzifB/iTi/ZU4489x1oeIQ874uozrNzUZ/wF6 3q7t1Oi5+Skpct9ftJ0kx7Ecnqz5/w/0HPlIstj3+Y7DrrssMxztfKX6vDPJ +ks5geemGk7+GOxjfJrpkzj2YYNSxU92DYynhPkSmy/tdHccarjGcdbzYP4v ztX3wTlfi/rB/XY5L4s8ArRT7Twu4rjPSn0+ZbG+r2LEMvEjMx1H+8OXG45+ TNsm68kpKRovan61o/N8ZP+q8h/oPB/iUM8v21pcn8jLIp7I4+J9E/lasKsD /L7k82C9r3A5ydfA8yU7m00e4pC3neaTc7Ypn2qezK/OjsPsp840HP8v3Sbz tvpb0xvr3/BbG5caTvnR3sBlNi7EESfcqdfns47v+sR4LHac+iTOOjdxrK9r NX6b5/qBn6pV/zbV+VHwM/la18h2HMvNYs27xpx/hWVluuPkaxFH+F3i/C6J gwPjBVGeRDx0ztVHLfH56m+JMx5GPm3+9wk8qC26z/b34jFelXy8t8/90GVi Xy1w8gyJs/5CuyVOfkIiD4p4Yn8lbtlu/UU37xojej59p11PHHp70HHyuKCH Y3cmtD9N/N5cx8mzIs77Esd4P63vk1qs63jKLGsfZvaB45QH6kgKzG4oP36v cD4V4pBnd8h1NY5jXX/ccc5PxFPdd8j9H3Ycwzd5p+FsB/b+xU7Zt492XOL5 nfp8v9avhyw1PgnikjGBzIP2ScbPQb8mq35ylhiO+6zSOsLIxWI35+4Qe8tz HPf7Ybvh0Gv7JaL3IuV7DnA+mNTfdxpO/hiGc7DynZ50HJ+n6bgUBMa/At5a 532541hXvt9mOPldmBYpuj7823lo1A/+Py4wvhn9DebjG4Hx04hLPBfIvjpp pfxvz3aRq5/j8A89dhgO/R+/Uuott+4QfzgjkPF+b5WtG/h4XfMYx6ea34U9 fKj53qdXGY7xXqp517HfSf826rmVGx3HMIxyHM8rbvhO5By6zeRkXIX+fuf9 Ip8N47/L9UAc83CR8oVXaP306DXh9+Z8qfXfs9dYPIKPeRqHv746/H6irEDW m5I0sZMpykMvdlzqgY5Dn0/quYS3NOn7zpzPRj1jnN4KjLfGOAX6ezEwnhtx 7Efu0vzGQ2uMxwV/09dx8r6ISxp4tfHEMGrVgZ27hf3Ff7eKPdY6jv3Fe45z P4B1cJDub4Y7n416Rj+nO2+N/Bx0+5PAeG7Ecf3TaufPZ4i/eE55PgMdlzy5 49DH4/rew4wmWX8XaR5g6zrjpWC9js8v3K/reuPnoDtT1V+9s85wdH+11qNr 9L2Ef98q/c53HP043HHc76p1It9PjSYn96vwB/e6/OSzwZ+OcT0Qh/320vOa igLjXwHv1Cj9rXQc+7J2jnPfjnGo1rzIC85Do35w/aeB8c24D4ZdvBsYP404 5sGjWqd7VfMIx+vzOv0dl/PwHIe99sxSf6vnAs3UeHVldvgcmDfVf1620fIZ mI/jtX76YbbhGLZk7W+TPieztUHkz3EccckUx7EsH6/vTxzfYHIyHyTP+zca Tj4b1H3MVtMDccy3PJUzvn5Bjik54ffmTNf8zFc5llfDvnSx+qt+juO+mwKJ +37dpOtIvfiTEsdhP586DnluyZH1/ol6ud8Q57NRz+jH6MB4a8xXwZ8OC4zn RhzDf4/6pbQc8QfJDXK/mx1HvWOH4+jOOzny/780yrpS73wz2NWCOhnHP+Do 7zzHGY9CL8PrxO986ddTz/i63HHyc7BezfJ2iFNO4jCrJ1x+toM8zkTXQ4gv 95i+z2up+qu/5BkvBfJO0HWtc57lueEXvtb8YcFmwxE2pOu69vpmiX/uq5N+ FToOP3++4zDbZG2nrebFHwqMF0f94H6vBcZ/ox6wHj0dGF8u9FzvbTofr80z Phjs4wbHyR8jDjsONhvfDPKVsT6idYJr9XnuKscRB3Zz/AitN2C+HqTPl7/s vDjqGXY82flv3F9IniIwvhxxyD1Y17tN+dLuhXUyT29zHHWnFx2H3Sfly/r4 H7XPObq+vFRgvBTY9WiNP2cVWD0K7UzUePVOxzGfGbccVCBxwP61or9cx7He pNYYDjvqWCB+YG6NyUmeG/zfIS4/eXGQ/7I60wNx6PMn5SNtDozHhetLtI5a 5jjsLcVx1vMwHqOrRQ/POJ+N+oF4HwbGW2OdE/Pq9cB4bqH65wMaP/dX/li+ no90i+PQ42G1huN/Z+j7HDtpvfEr9f+1W8Lnybyq87prkdV78b/3dP6WbTEc 1y/SuPodPZfsK60bZzsOv3O744gvx2yR7/2rTU7WZSHf+94v8uIwL1a6Hojj +1t63lGy5m2mFxsvBevL/7S/y4qNnwM5Zqk8jzgOe1yveex2yg94WfkUWxzH /OvrONr/h9bdz1K+02OB8eKoZ3yODIz/Rj4C9PtsYHw54rh+oOZvC4uND4bu 9XGc/DHi0Of7xcY3w/8qmQ8skfmeqecn1TgOMRc7Pl/5DVhP/1EhfmuY8+Ko Z+hpivPfyPPBuPw3ML4ccdx/iNr/faXKL1Y+zwDHYWcfO478bb9S0fvkKn3u QeOco8qMl4Lrx6hfvbLMeD4Yv88D2Y81lRoOe1ul9dnxem5YjwoZhzzHodfU csNh3ytLRU8flZuc5N+grnWey09enKwjVaYH4tiHHVUlfqkwMB6XpLtLpZ3y IHze1yrHybOBHu5VvT7rfDbqB/Ho+MB4a/wf5tObgfHciKOfDwfKp9Tzx8r0 vU79HIfeBlQYjvmQUi7jNEp5WTN0nR1WET4HZqTWYVdVmP4g71jt1xDHcZ+l yl86UXlow3V8NjouafESw7FOd1b5ikpMTtoBxuUh7xd5cVgf1roeiMOP9S3X 96Mpr/i0qvD7d6Zo3qBjlfFz0P583S9HKw2H/rM1fphSKePeSXmpxY7jHJst RYZDnzuUVzeiSN+b5rw46hnz6a3A+G/kL+HnlwLjyxGHmQ0K5D1mFzsfDN6y r+PkjxEHb+1o55vBTcT9Cc/dgl22UZ5yneMYpz2FhofO9fqsUPzScOfFUc+I P752/hvXE5hvPP4kX444hu8ZjRN263lkG4rkc6DjsLt/FhsOPxjRc9L+VSx+ e5Gu7wOqjd8Cexqn8+jRaosLIO5UzVNd6TjGg/vuo/U8sSF6jk2+47CzvQWG 47pzlX+VXmBycv2APF94v8iLw/juX2x6IA55HyiSfhcHxuOC3V+UL9dVOo55 38ZxxgcYv6/zxC5fcD4b9YNx+zQw3hp5Pmj23cB4bsTRnce0nR7Kgz9S38f0 D8fhN8c5Dr93jvLRlxbKuM3UeOndGuOlYD6/pX5jRo3xfDB/P9b82GuOw48k a756gL73cKGe75vjOMy3s+OIex+oEb20zTM5GefJOV0F4X79u0b0f3hhWA9x HH97t0DaTQ30PKHa8Pt3vlY/P6TW9nmYV0sC8UO9Hcfw5GjcfqK+33BQruin 1HHU7451HH756lrp7yLdZw9xXhz1DD3E40ny31g3QR3t1cD4csSh7nt1vIYq j//2PJnnNzsOe0hxHPq6X9+TuEfPda533prUwfWclj/gGNf3HOd+CfKsy5b1 ZIpfTz3jfimOk+eDbszydohTTuK4bslmw9kO9HRinumBOP63cLOM21Ldh06p M34LxvVTxefWWV4H95+h+ZA36sK8oAxdRwYpX653toxboeNod1iW4WjnJX1/ YiRT/MnDgfHrqB/M69cC49FRD7CnpwPj3RFHPD5A978r6oxXBj3d4Dh5aMQx zuPrwry17Tyfs8HqvKz3SX2qsQUudZPGMK+gLLDzuxDXVK2TdbvacdxvquPM I6DdigyJ2152nh7HC8M62fl4zF/CrscExt8jjv3QYF0fR9ZLXeztLH0viePw t9OyDYf9vKjPI23Rc/3nqJxb6sPn0ozWOGFXveVxEb5P1H1QRn04v7tSeTj/ 0/dXblL+Va7jki5MNxx6m63noY1INzmZB/x93/0aMw0nTw96mZVleiCOevHY TLlPXmC8MvT7Qn1vSVkCvizNcOb7sG4Eqfo+EOfXUT/o/9jAeHSsD+C61wPj 3RHHsD2g9r+mQfz9MRkyb251HOYScRzmOEt5dw+t03225lfbNhpvB/97TeW/ qNH4VJiv7+v+q43jmVqHhXyVDTJ/7koTf5DtONR0aqrhkKtWz+Num2pyMh+N deb3tYaTp4d+pLkeiEP8Gr1+uY77943GSwE+WdeRWKPxcyDfbOU/ZyfgG3Q9 nap5/IHLpZ0ix/G8wk/LDIf9rGmUc0GTk/Q9dM7To56hh1GB8fFYr0O89Fxg /D3i+Nsdaj8HOT8N/rSP4+SzEYd91TQa/w1hUCXrfXpuWPICiWdqHEf7jzvO ug7mWaWeRzLMeXrUM+xkqvPxWDfGOI0LjL9HHPcbon5jw1Ydx2Wip9sdh/+4 KsVwiXO3SrwyPMV4ArCbHk3GMxG/qHbbscn4KsQh7xEtr0/k1xGXfYTjvG8i 7w7x0gK/L/kk6M+HLif5Amj2c5eHOKZDqsZL9VslbnxqnqwDeY6jX51nGw77 /UXfQzB1pumN/D2hCyYZTvmxfgxNtnEhjv7/X5LENSMD45VRn1iX73ec+iTO ejBxfD7r/DrqB5/jA+PRka+BZt8MjHcX4ts8rHmztvq+mebZ0r9+jkt4NC+M /9wk8/7j+dYO+W/sF68nTvmJs678ZzjihZ7ftmgH6/6ts1vcF3oe9o2uQxHj z1Ae4uTb8L6y3kRb4Il8Hs67RP4ScfIhE893Iq+SOO1I+AuOsx6aeF+uh5iv V0fsHCfyN2Bnp3l/yWPBenSCX09c4qGItf+D8jokz+Q4+RWJOHlNUMONEZl3 WV+YPHCDZ0dErne/tPsSxziV/c9wtgM9Tpkg8dml+p6jfzqO9XZ/x5F/uW+S tFejvIvvne/04T411+4wXOx+ouGYnlHH1+77KFT+z3/0viO/lnl/mr5/6u0E vJ3jnFe4X7XyHzpEJO8xaqbpB8N8XUTeNzDyG+PVQJ7uEflf+1mGC48xIvXs lDnSfpsd4k9/CwyXvKzj8KOnzZF6+z36PqzbI9LuUQuMBwJzuETbz19gvBp8 7x2RefjmfMPRjUdVzu7zRO4SPT/vZceRZfjMcczrtHmybr+1zeSkv4b91243 nPwu/I/8unYRwzHOWXrOz9CI8aaAL2qSdv7jOOSf4DjnLZp7VP1ZfL6QP0b9 wB7i84U8MfonjOs5EeOVEYcdtInIeAxZJvm6WcrbjQWGt9nX33rHMdzLk2Qd 2LtNeMc36fxKWR4+l+asiNhBbYqtD1jfLo1IPDV+ueGws7sjkpe4NlnWtVeb xD6edxzj2tVxrL9PJcu8PafJ5CSvDNPsCZefPDTM64muB+KQ64FtkteL+xPk Gx9JNR4Iunet2s+oVIubsL4PUP9Wtspw7Mf/rfZ86SqRu79eP9xxyHeW48hz rFwlev29Ud8HFzEeGvWM9eLciPHNyBeCfP8XMX4acZhxq4h8rkw1/hX01RwY Tr4WcdR3L041fhfXqQXKq2FcJPuxiMW1iTz8h5Q3RRxf34rYOWC4rJe+7/1d x3F5N8e5P8H13Dd0jBifjeOF+dAnYrw18nMQb1wRMZ4bcTR7rM7HnDWi9zO2 yj5vT2A4zOsZxzF+yfqeyhe3yjjfpf7k8nTjk6Dfl+l8HJ1u+yHY3fUR2TfX rjVceBY6r69QPNIgfmJoAr7ccejlv2vlvl82hOW/RJ9Lae3yk8+GdbTHVtMD cfRnh/KIXosY/0rOnVL+wxuOw82kOM79P8ZvdL2eDxExHhr1Az/fM2J8M8YV sMcuEeOnEcdHW+3vlvUyX9L1ubGfA8OR9ziw0XCI+aG+X/JEfR7rVp2/R2aG z7c5V/3PR5mWb4BdXB6RPNL2DeHzhe5Xu71G3zv5iT7n94Lj8Mu3OA69PLFB 8h/X1JucofOL3/d+kc+G52ZWuh6IY5xHaF4hvg5inCZsDL+fqI/az7SNxqvB 7eJ2K/nQ7DAe97eSV9XnG5/Udl53HOvF3x1H+7uy9bnBOtFTfH0kn416xv26 Roy3xnwY/tchYjw34vg8ICL2WrnReFzwe0FgOHlfxGF3j2w0nhjm8bsROwcM 6rtX87ujHYed3uU484+ww7M1L94pYnw26hnX3Rox3hrzuLDTqyLGcyOO+5+g 6/5uzY9fqXnNvYHhWHfHOA49RXMk/h5bp3Vj9cNLco1PAv1fGRH7L8w1Xg36 0Tci8eJIx5HXeFLn6QW5ev5OrehxmOOYnyU1hsNvPZSr5+bUmJysH2B/fJ7L T54YxvGeOtMDcejpsDoZx7hdSR1ks/S3uVrmzVuR8HskqxxnnQDyzK2WcTw1 Yjw06gfzJB5Pkm/Gegvs+OKI8dOIo7/xdRnx07A8kbdKzw/4JTAcZnRGreHy HpQ80cfF+hz8bRHJ33TID59vE58XGI87861uhvnVS/t1sONQVzxukecR8+R/ 8/V9Xi85jnn9lOP4e7bq4d5qk5O8MvjR+d4v8tAwX2tcD8RhPp9r3SnePnlT sOe3qsTeRjqO/fKjjpOXBTu6VPFjI8Yfo34wj+LxJHlirGei2bMixisjDvs/ WOOrVoViD6P0fUHxfRZx7CuSHMd8ydLzFAr1vUx9VP/vFYbPtzld48PyQuML 4ePCiMSv7zoO9d6l6063QvFLt+n1zzqOcdjfcbx347JCiW/3qzI5WSeG+rq7 /OShIf5+3PVAHPJerLyg+zWevKXIeCCIg+P7evzv0SLjQWCe9dPxOtpx6OFp Hd/vtoh/6F8h8rzmONr/qdxw3P+3LeJHv9X3yMXXNfLQqGfgnSLGNyNfCO8X od/oWhTG96j/GVVk/Cu086Pj5GsRx3h0KzJ+F+73n4idAwb766jvFXzbcazb bRwnbwPj83Wpvg8uYjw06hn6vS5ifDPyavD3yyLGTyMOv9RO22mr54YF5eJH fwsMhz7erDAcccIv+n7JSRUyXwZGxM6SS4wHgnl9ie7vtpUYrwb+s7eu7x87 jnkTjzfg33qXSP8/KRV9vuw45DrJcfiNx/R8nF0lJid5ZdDfrIR+/btEny+o COvh3yrPMOUZDY0Ybwpy9y2Wef8fx/H/Yxxnf3D/BXo+zAkR449RP7B7xoFN pcaHwX7jnIjxyohj3W6j8eSHZfJ5ud4/FhiO54/mOI781yNlwtutLhV93BwR fvOZ5eHzbeLzAs/tP1Vudod+dtP1/STHZb2NSHycrueblReJH3zecanzOg45 cvW9k/H5QTlpl/hcWmI4eWjIK5xYanogjnzLVyVi5/H1C/bYVBF+r9B1iscq wufh3K7r+FTHMY/+rXmhW/X9jG8oP3e44/CvXR1HO+MrZJ5X6HmZR0SMh0Y9 Q87zIsY3I18I6+opEeOnEce8aqVx8jHOv8L1zYHh5GsRhxnmVBi/C/14K2Ln gEH/D+bLfvhdxxGf93ec54xhPv6QJ+vPmRHjoVHP0F/fiPHNyKuR81Yixk8j DvcaX5fB87i5SuZvZ13H9gSGy7kfjmPduUHl2aTvQ75L5fy2yngg0HsP1f+K KuPVoJvx/TK+/9dx/C2+Xz54n+KeqJL2sjSuGeo45sOdjsOuR1SJvXbMMznJ K8N1QYHh5KFB/7cXmh6I47rkAvE3r0WMNwV7Ga1x9BuOw57ucZzxCu7/q/JG /i9i/DHqB3rsGTGeGONciN0lYrwy4rIe6P7lQ+UTP5Un+v85MBx+eqfj+D5c ecbH5ovf6Kf79Mpq42+gv/H9MuLuvdUW72P+/lX7W+A4/Ov9uo7PrJb5dpQ+ v/KC4/j+eo7hkHNxtcyrwTkmJ+Ng2NXezYaThwYzfzDP9EBc6DKqt0c1/k+t Md4F5nMfndera4wPg/kzKCL8komOY1ye17z6M9rOc7oPft1xrCPlWYbDfj5R /MwsjasixkOjnmHuF0aMb8b9KK5n/DnDcej1AI27NtcY/wp4EBhOvhZx4e/X GL9LnleI2DlgeO79qvWyzr3nOPzDpY5zP4m86zP6vqHOEeOhUc8Yn34R45sx /5GpdSXy04jDj52o+/SPlce1LEvsKr6vJA4e6EEbDYccH+t7eVsr3+ketc9o rfE3IHZP3TcdVGd5LIzXTRpvlNYajvGJ75ehpwX6Hsy9+nzkMMdhtxc4jv9l 6flp89NNztDzOS97v8jvQvzdM9v0QFzqv5myfoxU/8n3l3+0WuLUtxxHP/s4 zrwPxufNNGm3fcT4Y9QPPntHjCcW4rFcEjFeWSjveKTW6Yr0XN2/Z8g4/BoY jn7evi6MZ9ZpXnOd9Ps23beeW2+8C9h9V933XVdveWLM2146j05xHPHhQ7p/ DDRfMzpN5HrJcaw3w1MNx7K+f73EI1emmpzMT0l+Md1w8r5g5rdlmB6IY3/S O13s6aWI8ZTghzKWSzujIuHzx9KSDQ89D9lDz5k5LmJ8LeoHce2lEeNlMU+P Zs+KGI+LOD7i+0TEayc12Lk0GN9oYDj0+XWa4fBv+ynefrXorY/WHx9oCJ8n c7ra4TsNxs/BfS7S9f0+x2GW8TgBvb1U33d5QbKM67OOw16/XGq47Icb5H5j l5qczCPDH01fZTh5X9Dz4FTTA3HIMW6V1anx+02NVpdnPRr96N1o9X3iGNeO jS3q+Il8QvzO90C1cv4Jzw/h+VrEoY/7/b7kXSBuu9rlZD0T/qW/y0Mc7T2t 6/svDXL/nHnS39cchx+ePcdweW+YnjP26Cx9v17EeGgcd4xP54jxzVjnxM8n RoyfRhzy71Ee+93Ov0K3f3ScfC3imBfdnN+F+X1hxPTGcYF/P8xxjgtx1oeI y/vgIsZDo54xvtdHjG/Gejv8YI+I8dOIw3yO1nWzgz5vv2SO2OtvgeHQ5/T5 hks+fau+/2u+tUN+F/vF64lTfuKsU/4ZjvjijVkt2oH/mDC3xX0xrvvNFP3/ 4Vwa+p8eCefbcHzFD0Za4DLfooZzXSIfhrj489oW14d42QdFjWfC+qnk+6LG S2E9GuNX6rwU4onys56e2F/yEBL7JeO+TdaB+d4+6/iJONuHeyh0/gxxzMtz osYPQfj5rfJ2ujgOe33BcfJP5L0zTTKOGc6ToTwQe7vzYUJ8qDLnz4T4UEla n+00TfIeSfo+ximOg8fyu+Owjyem6vvh9P2Bv0Vkng/+JnxuRpHGz0fPDJ+X tlXn3QszDIdfOCwq62LxV5p/bRJ52zsO/V7vOOLg7Omaf20yOUPnUr3v8pNv g3zJStcDceQ3Xt4mPIfTosYPAf7AVln/z3Ec+ZurHadfBk/mKJ1/K50nQ/3g e4XzYVj3h9ibnD9DHLebo+N4+iLx44OaJO6Z7Dim1UeOy/vVFsp+Y26T+Ivm iORV718SPjcjMyJ51QlLw+eHlGjceOMSwyHX/lGJi39dJHH/+VtF7pMdR3tl jYbDLo5aLOt3caPJST+C9o92+cm3gZ1f43ogLnUh5au0jiovc0X4fS7bdb+Q ssLq9bDvX3S9eCrFcMz/46P6vuflsi7u1yj6O8txXJ7XYDjuc1qK5BdnK797 sfNtqGfMxxzn1XC9wnxIdR4OcaynX2l+4MKVxjPBMHzqOHkpxGEPh64wHgvW 1fOjdr4QPnbUy/zp6jjmVZXjjC9xn7n1Mo4bnG9DPcPOdjmvhvEavlc7D4c4 /NhyjZPPSRN72qxx6zTHMU9OaTRceOppMo/OUn7I3kivtH3tvb/a6tSou5RH ej2x74L61RZ3Q587IvJcZE/H4WcPj8o8/kTflzetXsalg+P4fMxxrGMNafL9 1nqTk/sWyLnA+0WeDPpV63ogjv5NUH5Ix6jxOoCP0HrxeY5Dv486zv0b/N+l eo51qvNbqB+sE7XOY+F+CNrIc95LaJ+0QPNdF2VI/57X50s+dxzNz3cc/ahJ l/mwvl76EVX7fHBd+LyLHN0H7Vxn+1ropVL9z7WOYz8TjxPQ7uf6fMV1ej73 KY5jGv1aaziGZbm+D7u51uRkXgB2393lJ08G9vi464E4/nZevcRfh6l/a8q0 OjXet7NL5/XeTMuvoB971Y/d4TjG52Qd3/kb9DwbfQ6vk+PQ9081hkOfV2eK /jNqpP0k58lQz/he4HwYxl2wx3TnzxCH/N9oHaFHlvFDsD5/5jj5JMQRni/N NP4J4pe4P5F9VbbY5WH6foCLHIffP8hx5ukwTfOqZfyynSdDPeO6iPNhWPdH uw3OnyEOP7ZS2+m7Sebvjhr5/SvH0f4VtYZjnvXS99z9rVbPNYlKHHNfjtW7 MT9q1J5H5Vi+E+vTjxpndnEc92sXlfmRtEmfv9LndM9wHOK/6TjMsG2OjOvg apOT+UTYV6H3izwZqPuQWtMDcfxvqeo/blfkdQD/XOuq5zuOdfVdx5kvhr3f WSV6XeP8FuoH86nReSzMo2OdKHLeC3HYy2LNA5+tz1WOqZZ9wZeOQ085juP/ h+p5QbXV4jd+1vhzw2arU2NdyNe61SF5VveH/depXS3cbDjiw9bq/+/X9+49 UCXrw6mOY3k8yXH87wV9r99fqkxO5v3hVwa5/OTJ4Of3XA/EsZ72qVa+T1Ti 9Q/yw+9zCTQf+2G+1f3R3gFRsacr8sPnacTlRPzapDyZwRUiz9mOwz+c4Tj2 D5fni35WlyufyHky1DP8WYnzYVj3h11scP4McSxns3Q9nZ0v+eCL9P0/kxxH PP+w47jP8/o+vjeV73Fx1Hgs8KMDysQO/4DD//V3nPwWxF27SkXfPzgfhnqG 3bbxdlhfxbz8xXkyxCkncbzfdXWl4WwHeY12VaYH4ifsa3dVpdhtfB1EvnB3 odW7MY6Nmic8eovVyWE/UZ0XqwoNh50fq+vIk4XiN+aVSr86Oo5x7OM4pudX +n6ONnouxALn21A/yOtnOa+GesC6sMJ5OMQxflO1bnuh80xgdxMcJy+FOPRR WWg8Fvi3+L6M5wtB3a/qe+26OI55d4/jrAfDvn5VvkyG822oZ/y+w3k15A+g nXLn4RCHvElat03W9wD+o1Tm6RTH0W6l4/g+tUjm8S+lYp+/af7toeLwuRnF Gp98Umz8AbSzVeun1zgOPbVVP7BLeQlRff/eaY5LXcxxyHlksfiRm4tMTrYL +2nl8pNvg/D/wVLTA3HIUah8knhcTX4I4ofphdKfc6Jh3sjjjpN/AnkPLpR2 VzpPhvrB+FU4H4bjDH+6yfkzxIWHqPFAT+WlTNBzYCY7LvWpYsMRfx1equ97 LdbzSnWfu7E0fG5Gpj7fcXKZ8SJw+1KdvxmlhuP6eLwh54rq+Ut/LZR2T3Yc 6+qkAsMRVw0tFR7yuAKTk/MfaabDvF/k28i5Ja4H4tA330vZRufRR+Xh98Js V/7wtHKr+8O+ftX9yK2OQ18nREWOPWXS/zrlJ57lOOR5x3H0r6fyaq7Ik/sv dr4N9Yz5mOu8GvIiYH5pzsMhjuuna1yRWm48E8j7qePkpRDH/18uNx4L1v14 XPSJni8kz+Xkih12dRx6me4412PY1TW5eu6X822oZ+jtR+fVMI7AuNQ4D4c4 rluu9n9jpYzDm3ky76Y5Dns8JT+MX1Epcl6QL/FNq6jo/bdKq3fj+gpdf4+p sngQ8dZOrRPlVxoO+Y7Q/drrut6fo+9D7uA4pv2CHMNhj99Uiv8clWNykj+D dfN67xf5NrKO5JkeiMNOjskTOePrGvkhsi3Mlu/nOS7P7ztO/gn8/GQ9/yHV eTLUD4a11vkwjNMxnvnOnyEOP7ZA/Umjno+UlSNyfe445v21uYbD3+Tp+VTP 5YbrXzlVVodinUvkc5zPWbfX/hLHZVHdv1xcHT7vIkfrsLdX274N9lWpfMLz HIdcB0fFr+2v7/urypL16RTHsb9cnGk47ndotew3x2Zaf7lPgL5vc/2QtwM9 LXF9Eke3rsjRc0ajEoccW2N1c+QDdun6e1KN5Qnwv73Kp9pVbTj0HPe3mMfp 1RKvdtX8QSfH4bfHZBiO/MH2asuXwD6SnLdDPcPuCp2fQ36FtOt8HuKQ+xtd l892vgr6+1kCXu447LmN82HQwa5cf2vkfs2rpf2LHIeZlTvO/TamxwmrZXw2 Om+HegYvJ+r8HOaxoJcG5/MQh7pXany1s0b86AsZIsdXjsP7L11nOMZpW43y 3PS86gM0r9Kn1urvGIf4PEXe/+5ay+fBzH7S/fVFjsOPtNO4sXWtxEcpaeJ3 z3Bcplmq4Zh/HWplPg1JNTmZD4Icp3u/yNuBH2nIMD0Qh11OSxf/1ilqPBPc /x09v/98x6HXhuWGM+8Du74nWc/RcL4N9QO/utV5NcwTw56KnYdDHPNqscYD XfQc4f3SxF6/dBz9ab3acMzr0/T9ereulnjqF+VnjqizOjX0X6D7gsl1xkPA +lun+6bnHEddqo3O9xs1b/hhsuQHTnUcdv5QkuGwq9vr5P/NS03OUL7yslTD ydtBnPVbqumBuDyGuaoXn8eEXh6stzqv+EutL8Rx1ouJQ+4eLa/XOmb4vKND 1X+mOM77kt9CHOvaEX5f1s3Rr4jLyXoX9ncHujzEoZZTNT6Mt4/7dZ0v43W2 4/D/J8wzHPZwWb3M306z9T1lziPiuGNcSpwvxDoSzjHMdH4R8Wo8Z6Lr/r/q Zd978jLZR01yHHazMNlw3GeAnku+dLmMd5XzfDgu0OMSxzkuxFlvII7vu/x6 6hntxceLOOuZmLe/ejvEKSdx+LP/LTGc7WAdPSvJ9BCS8/0lYu+pzp9hv/D5 teMhPszXEavrEIeZLXAeEfuFeZztfCHKDzexwvlFxBGOT9X5tbDB+CrQwwTH yW8hLvxH58NIPB1N4Dks0H1VS1zOM4oZ/pbaW8eE8zqYp0qYdz2570jEua+U fYbzDejvyRcifrnO48Trua4Cneq8CLaDfr/uPAriuP+3jjN/DrsY6DjrBYk4 1wd04xW/L3H87Ra/nvWmRJx1JeCDvZ0Qfp1fzzpjIk67k+ezvB3iGK9efj3r sIk4663Qx43eDnH4hVudp8F2gN/heOj6O5y/QRz37e441sdjmgxnO/j9dH2/ xuWOY77u36Tvt9V9cXye4DO1xnCxk0WGY7nP9uuxPreutf6Sv8F+wc8PiBpP g/ITJ68jUW+wu3mzJV441PVMHObW03HEgYfMEnu6d6u08wzXqVk27rj+pajx NELj+1LU/EviuIfm+YpGw8nfgJzfu/zEkWdLbhS7+tDbCdnzBJczZLdxHGJ+ sjBcV+0fNd4F+wX8kajxKyg/bnNv1PgYIbyP5uEbk4xvIF7fcfITiCOvPWep 8Rmg73lR41FwvsM8klwPnNfEuY4Sx7r/iPMuqB/gI6LGr6AeYL9Do8bHCOH3 6z7i0O/0+WFt50bHYdfrHcf9Vuh7owrqZZ8yzfkM7BfOxZjvOOUHPtd5DqF+ 3eg4/ODdfl+2g3n5vstPHPby93qZd+ujVt/H8rm/nhu62XHcJrnGcO4ryOvH 749GjefAfqGe9FbU+AyU/7l9943PC/IfiB+2b+AHqj2/v0ba71gn+/ZrHcf7 rO51fMc+f3bJGtHDS7ouTIoKz2LR2vBz2c/rvLg+3dYdOScnKvb4xVrDEWfO VB7Xz/p+q6jWZ1c7ju8zHMc4/EV5EVNqTE7uD6H36lrDyZfAc0Xt6kwPxLHP Ltb93HzlL/11ffic/3Gar7trvdVthdcRlbzSgnXhOu+qqL6/YZ2eY6jPI290 HGqb7Dj88rh1Ese9UC3x2D1R40tQz7C7V6LGi2A8AP39M2o8CuL4vFn3L+PW G08A69xVjpNXQBzdabPeeAgY38KonV8BPS3V87OLHBe+mePMR+D6V6tk3/2s 8yWoZ8RvE6PGi2BeB/5ndNR4FMQxHg+rX5qeJXHeZzoufR2H3W11HO91Gpsl cvygeakZqrejNlq9EveJzy/o64GNVv/F94+1Dp6cbTjuvzQq349WfIieR74+ Ab/YcYzjYD3X9cQqk5P5Mvw+wuUnXwL6mO96IA47eLhank/Nilp9H92aUCH9 z3cc8e4TjjP/CHM7uELfq+I8B+oHn+9Fjc/AeBj5lVejxn8gjnG4S+fdlhxZ B3pWyTy+znF575bjWN4X5sg+8SN9LvBzXWefzQ0/l/2y7h8X5VoeHevn27qO 3O847HyOtv+XXH1Poj6HusZxzO8Pyg2HHbfPtXw/5WReG2HRQS4/+RKoU3er Mj0Qz8f5K/qc6CIdx+554XP+P9VxuTLP6jaI12ZofLVtcxiP+0mMw8ebRc/r tJ1NjqO/wxyHX6rdLHmvDqV6vnnU+BLUM+43PGq8iNBz7k9HjUdBHPrvp3Ha XXnGE8B+srfj5BUQx7w/1XkI+L2Yeao8iS/m6HP2JY7DDU13nOdjYLyv0Trv C86XoJ4xfpOdF8G6LT7GRI1HQRzz8THN79Xqe53+WSr+/ybHMR+PLDMc96vW dtqViT+ZqevLlAKrV0L/72n8n1pg9VX0+zOdj0Mcl/fmKC/oJOUnHF4s8zfT cVw3rchwXHez8hMeKzI5yU+Af7jB+0UeAubfzFLTA3Ho++BSqd/mRO38CsSh hYVy/wLHkeef7zjrnbD3W5QXMMR5DtQP7GJs1PgM3F/LedlR4z8Qx/SIx9Wo bz22Rex0fpHo5QbH4UcuKzYcefy+W3Rfp3Xeg2ImB/Nmsg+J2f2IS9wc03PY SgyHPU5R+29bFH6++zW1578XmT7QzvsaH/64xXB5b476pf9tkX3GbXq+SLrj GMfsAsPRj2VbxN/OLrD+Un7Mk9tcP+RLQI4lrk/i0HuXItFLetTq+5jve3W+ 5jqO61Icpx3DfuL+AHHmw1HjOVA/UOOoqPEZWLdF3u65qPEfiGMexfet8Gvb i0WvsQLxX9c4DrEeKDQc+l1aLOvvZB2XT5UP/GJJ+PnuZzRft67E6tq47wj1 5887Dv3N0DxzhxLp/8Q8qWemOQ4/EdlsOPxuxxI9T2mzyUn+A+S7z/tFvgTa SXU9EIe/H1gg8eEcjU/+Wmb1SsTJ8f0vtN6vzNY3/Py5xmm/lxoOO1uh8eS3 pTIvr86V+2Q5jvZrcgyHGhtL5f6f5cg4DIoaX4J6hn29EDVeBOva0MtjUeNR EMf+p4/ua54uM54A8r5/c5y8AuIYj9Odh4B5kxe1czBkfmyUebbFcayrQbbh XP/u3nd5V32u/BnnS1DPkOPjqPEiGH+hn29GjUdBHPmXB3R93K18qXo9b+xG x2FvL+QaDrnry5WflSt29pXq86sKqzNiXo3ScSmosDgU+7WP1A5HOg67X6Rx xQUVwjM5MlvkWuc4eG7HZxkO++hf0ev1fe2kZZqcjM+gnUneL/IloKffXQ/E oe4hOTJuG6JW38d8H6rv0d3sOMbnMMfJH5BzTDOkv485z4H6wf7z7ajxGbi/ QX7s5ajxH4hDn3fo+F6p+4rbs2Q/f63jmJ+9sg2H3+msfIZp2TIfJinP5+2q 8PPdz6vfmFVl9Wj06z9aXx6ZgMfjDfjvO/W9epO0ndWOI95+PN1w+O17lY94 c7rJSf4D7PzWTMPJl4D8x2SZHohDn+dlGj/hWN1XJNanEnkLsg5EW/AT4H/m Kz9tcLXVK9G/8bpe/Kva8iuIn6apfV7nOOwlVf3PKcoT2JEm9rLRcTR/teOY D3+rlvk6Weu8fM7x4mobL8y3+P6dvAjmLeAP/hk1HgVx9OMWjROGJ/AErnKc vALisId7nIcAeQqjdp4G+t13hT7P7zifHyLOvAbm5evL5fuzzpegnvH3iVHj RTB/hn6PjhqPgjjmwcNaj75GefwX6fMxfR1HfwevNhz20kvP+xuxWtqboX7j 8xqrDyI8ekvzUQtrrP4Lf/GJzq93HEc3l2r+/z7lwf+YLPHIescxvmctM1zO EamR+XFbksnJ/AvusyHVcPIlZF+ZZnogjnVwYKo9P8u8D+2cz8+y/UQ8V/Nr IZ5PdtR4AvAf38+X/Uq+45jH3R1nng76u1vrkoOdL0E9Y169HzVeBPPEsOPX osajIA49DNJ44019DmHYMhnH6xxHuy8sNxz6ek55CCemWF0P9ymotXolcawD mbUtzufHOAeO4/Nzb4f1BKwvr/j1rANgmN7x9onL+3d0XftS22mtz4mudRzm /+FMw+H+Zmpdrehb6y/ztjJdlhpO/gbUf+My0ydx2MutWu9+Jmp8A+oHee/+ jlMPxMlnCOEPRI13Qf2g/eFR41ewbovrn4kaH4M4/HJ/3Veuq7P6PvDejpMP QByf39YZf4D7rMT6rDzHGWtRz028njj0G8dZB+T+AuvKwJjVAbnPgn4viCXU JQtb3Jf7jsT7Mv5PxOUzX/bTB3r73F8m4tyfYb6d73ISx/W/eX2T+Y1EnHkM tHOKt0Mc3Qj8euZ/EnHGuVgP/uLtEMf1O/x65g8TceYJ0c4er8MSx//q/Hrm jRNx5ocxHXZ6O8Sh7tdjYleXLJFz+wZsMZxxAHH4xT9cj3XzYT3nsszrrZKP 0XprOeuDKZo/rrHrifN6jNtA3neh6Z+4OgDD4cdu8etD+avjYxJ/x+dn6Pma OM55Qhzh7pF+PccF8u1i/nml6Rn4bq8bUp/Exa6/M5z9pT75vkTirH/BTB5z vRGH3gfV2Diy3kR54B6jXlfifYmzDpVoD7DLH9KtzkL7Ic66DHGsp4PSrY6D 7/H5Xq/94rwA3j1m40v7Jy52siY8X/Z4vYn6x7gfHrO6EseLOOtQifMF8eR+ GyQuuNHnF3H46fGOy7K/XvQ9uUr2WS/GNA5fZf6EuJhZehh/OmZxLf0V2+f+ B82d4/dlnQjyDKoy+YlD/iNdHu4zE+WRdX5jC3mIUx7085CY1Xc4Xlh3T4tZ HYfjgrr7iTGr+xCHfK1iIl/rTTKfSsslr78zaji6/Y8Kw2FnSXquWXzfTDlZ f6Gc7BfxxP5y/08cf+vp19MPYL29yXH6DfT/Bm+HOOUkLnUe7xfbQT43zfVA HPPxBs1nPBqzugb7Jed8Ok75Ie6/YpY/Ii7nHsesvsN+Ic9wRszqOJQf9nNM zOo+of7GNL5t7XUNjH+T46yDEIe9ZORa3QT719di9twlvh+4RfI+IxzHOXuR QsOZh8L71cfre4FPjll9h/rBR++Y1XGoB6jlkpjVfYije21jkk8Zmyd2ul7t PL4uE4e6nyg2HPXAd/Vc9Gc0L9svJvFLn3yLf+CnusZkHJ7KtzgHcc3fYvJ5 suM4P/1+nV8ZeTJ/niyUfee/HEeef0+B4fh/LE+e11lbYHKyXgP5/+f9Yn0H +tjreiCOdfG+IrGH52NWjwDeJV/i9GGOYzwOcpz1Dvx/qtbZ2sWsLkP9wJ92 i1n9hfEe5kenmNVriMN+D1C7PUbzyEcUin39EDUc4zvWcYx/RJ/jWlIo9nq9 1hcWF4afA4rPC8QlPxVanhn9vCgm9jXZceg1HlcgT9OnUOoSC/Sc+ycdxz7x LMexH3uwUJ/fzzM5aQe4/4wCw0N1n0MLTQ/EkSd9W8+bvycmccDLRZYXhb57 Kz60KPx8eX/VQyfHoae4nBim/C1aR1D8Rcfx/6MdRztnaty8UN8X0SZmdRnq GbfpHLP6C+c3/MaJMavXEMf8+UXzhBOKRO8D9P3U2x3H+CU7jm3Z/UUSt/6m 7weIx5+sm0A/7+q6NNJx7P/fdJz1FHykZov/7ZnQTlzP0MsdjnMdgF+4wdsh TjmJQx8LNxvOdqDXY/NMD8Rx13mbxW/cFpP9Xl2J5Vdx/aUxmZd7S2z9x+y7 JiZ5/pmO4/tDuo4M1LrsVdnS3rOOY1xfzDIcdvqh1nd/ypTPVjGr71A/uA39 9vMlpgeY/WExq/sQx+ePGj//n9c1YF8NjrMOQhzxbmaJ1U3Q7ksxe+5SyvvK 63nVceh1kuPkAUCcogzp73Exq+9Qz1hv/hqzOg7jNfT63JjVfYij3YPVb39V JvPrzSwZvx+jhsN/fp5tOPr5QZn4w4JskbuPzpdbyi1+xO+dta46stzy1ZAv Hj9j/e7iOObHXTp/S8sknsvWc2iechxmuj7dcNzu1zIZv9fSTU7Gea2RBs00 nPUdeR45y/RAXPx8pujp6Vi4HnH+amnnZcehp4VphrPegfH+Xp8Dahuzugz1 Az9xfszqL8wPQ4+nxqxeE+LB7VG7Oluf02yXIdftcFzynI6jOz9XaD10nfiH q3X/sqzS8r3ox0kxWScOqLJ9HuzxbJ2/CysNl/OoNa6+r1LG8Q7lPz7hOObH SamG43aPKj/m0FSTk/Ua2PnutYazvoNxSnE9EJdh0HOP4usg4rmVVeFzLy/X eZ1RZflh2NsNGidMdlye81f/8JzWZfovl3F9znHoo2mZ4RjncVq/WJwk8dEB MavvUM9YP9vHrI7D/Hndvg7H9++s+xDH9YHm5QqrrB4BO93qOOsXxOHPF1RZ vYN5rcTnQ4kn1mX4PAWfryQOOx4aM1zoxQvk/sMdhx0Pcpz7dvw/d56enxyz +g7HC/Fmr5jVcZhnRj+7xqzuQxxmc6jOo8+qJW9Uvkw+f4oaju5dlmI41tdx yhd8JcX0A/tpU2P5Uub3IF5QbXlX4hj3ymq7ns+bsP5CvTGPnYhTz6zLEEf/ b/b7Mk8Lv3SeyxnKV//V5SGOeXSPzt8lWm8arHzwZxyHXo+bbTjm4Qat+0yc aXqjnLhfXZLh7BffD8lxIQ652mk9pX3M6iPUJ+xjj9dNqE/irI8QRz+OjFmd iPqB/V8Us3oQ89WYj6fHrH5EHPdrpf6wTOtW22aLfX4fNVy2ofMMx7it1+d2 xs63dlh/Yb94PXHKT5x1mT/D0e3Tv23RDvR/yewW94W6n/hG/enuhLz0IuX3 eL6aeku8njg+f/E8cIjPnud57NB77fc4Tr+Hdr5xnOtgIs71DvnFXL9v6Hnh L/16xj+JOOMctJPq7RDHtPvUr2d8mIgzDoR653s7obhxbKIe8lrg3EegnS+9 HeKIUzfF7PkgygN8i+O8L/FCff4ohH/nuOhf28/guE+zfRbwpX495YH873ie HPzKOYUi/1jHMd+PK7TraQe8Ht9/iNnzNRwvyecw3/i1jQvxkL+L4+wXrw/1 a5O3H9LbJm+HOOpZx++2vCjtijjUc0xWGD9it9kx7Rb/r+S6maT32WQ48/OJ OOxhyHLDw/39roUeqM/QOQA/xCw+SNQnvye2w/4ntiN2tSH8PohOu82O8X2y zveOu7UenSf+77A1dj3fS8vraVfiV3LCdp6h+b30DWE7/M7zmRxf2hX/f+W+ v31fYDjzdeAd3ez2SRz70iUF5t/KtP9cZ+kPeT1xXs/8EnHaFfOfifOUekyc p7Ju5ob9yZeer6O+MR7zPC/HfhNnHi/Rn8Be0/T8tyHuf4jj8m2Oo7uTtX55 TL7hzJtJvmKz4dQDDP7ePLsvcXxWb5Z95AzPa1E/uP93nr+iHmAHSz3fRRzD /4Xaz7VbLJ+D9Xms48z/EMc+rY3nizBMyz0fxfGBvks878R5ge/5nqciDrkW 63zfWCTze6me4zHJcXy22hjGs4pk3h+0UfxL3K6YPwnxvg53nP4Hch62O3we F/eJkzyfg+/PujxsR967nm3yE8f+9ftM0fupu41HivEarLypjo4jL7MnzXDy VBGH3J2m5/B4/of9grorPc9D+WFmOZ4XIo7bzdL4tn+p3K93htzvE8cxnfqt MxxxZvdSscOxek7LLp2Pu0vDvKYsjQ+7lpl/xTiVxsRuykoNh57i4wU53tFz tN5Jk/jsGMdx/6GphmP+TCuV/eJfU01O5nMg/zvphjP/I3y8DNMDcdhbLz0P +Njdlq/A9++Wy7i2dxz5gKXJhjMfgv5csEz2aQs8b0P94HOz52e4zkDeNM/n EMd1U3XfV6j33ZQq9aSPHIcfnJpmOPQ8RfkEp6yWcWnUOumDFbYfxHMa32m+ ZVGF7dNx341aT7zfcYgV1Xba6nvlzkmW+XzkbsNhJ58uNRz6OaJC7vPBUpMz 9HzRF6sMZ/4H59w8kmp6IA4//eEqW3eQhz+6yvYFxBFfNFVa/M/1CPZ3apXh GKc9MWuHcQ3mf6Vfz30f9Pd9zNonjo+2uyV/Or5S/GfmPM2LJuCfzTEc82lz pejrnll6HpHnkThe4NOu8XwR9+nIgyz2/BJxuPuJ6sfO9/wJxucDx5lvIY7h PtjzM3IeUcz4qNQz5s8Mx6lP4uS7hvb7Kz2PRD2jv3WeL+L+EfIXeH6JOOxm rq7XP1bJ/2bPkX3ap45Dn/+bbzj8wVZ9v2zzfGuHeRX2i9cTD+2LP/V8y5/h mDeDZ7VoB3odNrfFfbGP+uFbub7XbtvXUD+JOPWA+9y22/Y7xDGu3ROvT26B 004QX17j7RCHeC/utv0R2yfOfQ1xjPfTfj3lp5zkq4T03Mvj/5A+47jYT47h bD/MV5tr8tQrzydRTvJziIOvOND3I+wvceH15YfxW3ZbvTWkzy6qz3gcI3wj Pef+kt1Wb5Xn/lPt+lAd9pY0k/N6jR8S9Qn/92pRi/6SDxca9y4eP6C+f7jf l/EG2p2banISlzLRKrMHru/sL54L77fb1nHqhzjX/US7Qn5oVJnc9/hlZofE wduY6faJdbZPmeyHFi43nOssptnYJeHr4+uy5MOT7L7Eoac3loj/v3G3rYPU J/R1325b76hP9GfAblsfiWO9jtsn5vEh7rdxn0scp58njvaXVNi68P8A3nkD Xw== "], { {RGBColor[0.880722, 0.611041, 0.142051], EdgeForm[None], Specularity[ GrayLevel[1], 3], StyleBox[GraphicsGroup3DBox[Polygon3DBox[CompressedData[" 1:eJws3XfcjvUeB3ArhMjOXtkkJCN7hGQcm+yRmb15HjKSETKyQkT2SrKSkZWS LRnZe0QyQpz373X767xfn/P5fa/ffd3Xfd33U+d1riytutbuEitGjBhD8seM Edt/PiwXI8Y7zWLE6PpyjBjPuCL34VjlY8R4jwdwHK7OgzgGV+Z+/DUnbx4j RroEMWKcqh8jRid53YwxYpzmLlyPn5pZjnvpx9WvxdF8Uqct19FJLW/P4+WJ uBEP5wRcn4dyfK7DQ/ixmaW5B58xpxc3MGdn9hgxpvDH8t08jYdxQWujeDFv kA/j3ryJP+G+vI6HcE9eoJ/K68rgdf1pfnd5ffOv6wzgb3TOyvtyQ/lm+Sju L/+ZZ/II/oVn80g+od+Ka+vvk8/lUfJtPJ6jeAuP5YH8E0/kwfyHtc35f9Ym trcm/In8nHw+N5Kf09/As+Q3+QdexBd0tvMHOr2tPc235H35LP8VzqH+9zyT T/EanhaOy6t4Cp83Zws3NqeZtQf5mPyq/Ai3kA/N4Xhc2nlLxb/zIZ00fIKP 8kX9ndxEv4E5e3i//C95Gue8nXyqPA4nMee2PAF/KB8j/1s/tvwzvs8v8Sj+ i2PyEXtewhPMPMgL+TO+Zs5NbmnOMflynijfa+01Lm/tIL7M/8jn8CuOm1o+ l1/lNHzTnHjcxpwbHJNb8+c6T6x9WWc8P+J4PImfcUK+rP8bN9NfLU9vbW75 Sw1ixPiWo8LnRed97sV/c3buyJ2cw7ycU/+e/A3uJG8pz/XiWr0rz8od5F/L P+Xm8jvyTNxe/g+/xZ35MVfgHnzCft7l2vpP5FW5p/wBl+AufJ+L8ke8S79g 88h7fZZrckO+yPW4CU+1hz5ch8/La3Njvs7NuFV4f7lNeH/5P/PbcW/zb8lb clv5Nf6AW4ZzyA25Gf/NHcP54efWfsR9rZ3uuP25nnwmD+IG/K9OWe6uM0s+ mBvJYzj/PbmffJK8G9eUz+Gh/AE/srYUd9OZKx/BTeXzeQy34G08NbyPHL+C Y/AQ3in/ij/mYTyDy/BCHheun9C3hx9D3/yl8snhsyBfxJ+H643H8df8Hr9m /lqewGl5PU/kbLyNZ3JcMzdxtJkxeTH354Q63/AwnVjyZTxAHodX8iDOqbOb 5+iU4Ru8jvPzAV7ABfkYL+bC/Acv5QJ8mBdyUTM3tDTXzOzyHfJZ8pfl+8I5 keeW7+W58iJ8ipdzOb7NGziB/l0eql9KfpXXyivxP7yZi/N5Xh2Oy2d4Jb/D l3gNN3bN/PLivvSu/KH8x3ANO7eP+UtuIX+zRYwYx8O1J3+5ReT13uYkvCR8 pjgZLwv3BE7Ei/gqx+X53DunGVwwoetWHpvnyf/h13gVP+OcvDFch/p5+Idw /+T8fChcezoZ+Tt+wOn423D9c0pewQmdn8I8zPlJxMV5OI/wWhrzfzoZzXyb T3AneXm+wN24Cl/lnDrVXuRJzKnEI815hcvwCP5QvyT/Gd4v/Rp8lwfL/8cP OZl+Ux6tn5xb8Jhwf7Pn13m9Tgp5ax4rT8oNeBSXNLMuPwr3UjM/5HjO4WNr s/D38snyDpxInsrazjzO2q/kA/k1+TyO5rQ8nz/m9LyIR3Jm3sjzuBDP5n6c imdxb07Jac0fzhPNXyIfzVnlq3gS5+Jv+QvOw+n1F/Bk/XQ8nSfxMp3P+HWd 9TyH3+Tv+Ut+gy96jTH4K68xg7WLeIq1Hzknv3JunQ94Nafm5ryO03FL3sgZ uCl/x2k4tTldebw5abgHf84NdVZwCp2t9rCUi3Fr+WbOxF15P+fl7nyI83Mn /plzck8+ygW4Hf/E2bgtb+Us3IF3cXbuyye5ME/mc1yLS1V0DPeKtTxDfl1e nzPb8x2eZs+X7PMeN5Wf5VvckDPq/Mlf6DyXJzWnrzyT/Ip8qry4mRf5vnOb Rf6Ap4f3VB5f/0P9lZyQO/EPnIL7hfeLE3Mvvm3+0xaRflZz/uUZ5tyTP28R WfuIX9Lvxjl00vJsnaxeY2meIc8tz8Zz5fk4N8/nlDr5+DOdPPIcPE9+3rXx n3vUbPuPo5NaPkgnEWfm4ZxTPwPPCb+r5QV4vDwbl+OZnJ0r8qxwfvgdnhrW cuWwlvObU4QXhGtGXog/l2fgYjyFi+n8wKt0XudY/GV4LTrVw2vROeG8NeEv +BQ352l8mlvxdD7H7V/sp7q1w3gnH5c34sl8jOvzRD7DbV+8lgvc6cWey1jb i9dxAfvpywvtp6b8E94tL88DeCM/sLYLf8tv6g/hRfpv5fIdznfkb8jf42/k /7N2FP8c3jud5XyJG8on8gFuwtP4CCfQmcm7uJA5U3iJOYcctxaPkx/hOjyB 61k7nvdxHR7Lv4T315zZvCd8BuWr+FrYm3wNX+fkvIT3c3+d7/kuF3Hc+bw8 vC6ey8v4bV7IK3iI/hZ+pD+Ut/NjjpXHNdTG9+Mrzq3+3+Hc6r/Dv/Ca8F3M B8NnlsdZe4TjJnIPl//G38lL8J5wnrkzz2jlc8jD9XfKnzrWRD7BCaydzdc4 FX/FN/k1Lm3tX/y9tdPkZ/lV+Rd8mhPzBP6d4/M3fJ8zchnn5wk/caxq5qS3 h5/C/uWP5P/KK8jjyDfJK3EC3szv8iv8I1fkePwDl+eYvJHL8TNzNnBlflW+ hatwct7K73Mm3sHVOSvv5C/t87K1Keyzqf1kl6fh93TS8HadqpyKt3FznVyc TmeGtResTcaz5HnljXgOv8Ef8A2dUtyaa5pTlnebU4sr8B6uw1X5F/6A2/Bh vm5tCW5l7VUuyi34fzrv8s/hO13+PveS15fX49/C33fckPdzE27HR8L3Dn/A B7gu1+RfuTG35EPciJvxwfDdx7P4EjfljnyU2/M4Phv+Dgq/4fmPcI+t5DPA M+ynlXwQn5BnlvfhafKL9lyQm3ANnbd4Vzi33I1/52b8ER/j1jyYT3IH/pzP cUeezOe5HY/hM+HvNZ7KF7gtj+DT3IaH8qnwO4o/5T+5C3/Fl7krf81XwrVh z2+3dm34DN7wnh6WL7TnivJl4TrkKvxtuMbCNcNrwzXD7/LKcN1yeV4crlUu y9/weu7mWOv5qmPVkG8K50F+wbF28xy+xHt5LvfWT2I/t/SvyPfJv5af4W08 k0/zjzydr/EBXsDdrd3B18Lfd/JjvFgeL7fvtfB55L/kf/BSfsiXeA0/4Ru8 jnuYc5uvm/Ov/Cqvld/n87ya7/EZXsnP+W74XHNMx/onfK45B8fwWs5zZY7N sZ3nu/qndJbLuzgnceWXuZfjPpbfdNye/JBvcF5rX9a5olNPXlu+T97X2kTy v+TzdT7mFuYvlFfiTDyCM/J/OpV0XueY8nHynBw33HvlWfiJzgDz0/Hf5vfn 1/guV9PJw/H0J1mbnxPy4PC3AD/U+ZhL8r9hb5wy7C38swL9MpxOPyr8HcH3 5YP4Tf6HF+iU5ww6feTJ+LZ8sbwKZ5GPDL8z+Xn4G1ZejbPJ13ADzsvruCkX 4KHh7wJ+rP+9vDG/IV/NdTk3r+T/cU4eFv5eCOchfHfwh/yUPw2/aTlGJt/P 3DucQ15ubQ3Obu1oeT+OJf8k/L3Az8LfR9whnH+e4xwO5A/0V/j9NsFvuRy+ F8boRIdrw9rd4b7X1vniSbwunGceyxM4Do/nL8J7wRPC73+Oz+N4UnhPOeu7 ft/xDMdq4Hu2ue/Z5In95rDn0fL28pQ6c/gzzsgr+AvOxKt5Kmfj73gm/2L/ C3gkb+N5HMWfO+6X/LLjTuaNnIjzWbuV5+tU4HO8ib/Q2cyJdabzz5yUi+rs 55U6xfkQr+Yi/Csv56n6uziJ/hvyn/gb+Tt8lNdwKT7Oa7kSX+TNXJmv8Bb+ 3f6X8iSuKr/O27gc/8kbwueCT/I6rsa3+Cf+zdpFPJqry+/wTp5hb/c4mb39 oxPLOV8lf8Av8bf8iOPzd/yUE/N6/jL8PucU1v4tf27OivDemf+U9/NjeUKd 7/kZJ+WNHMf7m5a3clzOwNs5KefjfRyfM/MOjsEp+AdOzDl4LyfgbLyLG3Er TumaSZzX5yl0+Gv7qcPpeCQX4+f6Y7k0x5HP8VrKcWqvZTa/w6m4js4Dr+UX /Znh7xpOLp8V/hYIx+JhOoX4ic40rsivhuPq1A/H1Vklb8S55PPktTitvJ49 N+Gk8rnhdzWnkc/Qr8zJ5LO5etgPf6DfNuyTm3L70Od11j7hAtbOlE/jBvIF 8u6cQb4w/P7nTDxGZwBX1oniXlyc+3AXLsTNuFPYJx+yhyh+j8fLh3A1nsJj +X98Umc81+GElf2u4WE8TWci1+WJ/AnX4KP6w7g6/8lTuD4f51Fci8/xTG7E 663dzr3COeHZ3Di8Rl7CLXkxr+K2/Je1a7gd3+Tl3IaXhN/5nNV5WBz+FuAs vMza77m9zt/6G7gjP+ed3JeXhd/t/Lr+ovC3A2cO99Xw+5+z81Lewtl4pZk/ cCdrV4Tf/5xDfsM9bbhrqbVr5mXn6qD8Y51b8pHytvK28gTuq6flKfiCzlhO z9d4Mq818ybnN/OIY13mCfI18rOcV/6r/DR/Kk/gc/FX+LxwHXP+5l/CuQ2/ 1flN/Q3hN7zjFuTVfEKemzeGvwXkhbiBtY/k+639Xn6f35C3lsfTOSlfJf89 XPPydvJX5Gfkw/gtfsId+FU+xz+Ev0H4Lf3e8qx8S75Znp2LyHvKM/EN+abw twAXln8kT8WX5AM4F//NP+rk5bd1hsuL8lP5dnkJLiHvJE/OF+Q75KW4pHwb F+TivJXf4GLhe02/LMdJ4rNd32+OAe7JGVwj4W8HeanwndLI9d7Zd0oW5z/8 /pdXlO8Pv/O5Mh8Iv+e5Cv8W/i7gd7lCFdfXh16f+cfDb3V5LfmJ8Huba3Nd 72NtflXnG/tpyRn5mE4frqHzO/fnmnwo/I3A7/HB8HcHVw3XsLVtOLO1e8Pf HVw+fKfLR4TvdPlAx/qGi/IpncVcV6e5fBynk7flyZyF2/FUzsat+XPOxJW8 rpxe12b+WD40nCtuymM4DX/An3Jq7sAzODtP5mXhPPAZe1vJDfho+BuHq9vP af6W63Ff/a/CtaHTmWdxLu7PX4driY+Ev2v4ff3D4e8arhbu/zprubHOj7yX B/AFnX38gc5O+WH+WH47/PbmD+Un5Xd5qvycfDc3kj+z5x3cR35Wvo0byi/y AW7C1/g8twz3B77ErTmL8/YPTw+v1/yr/Dnf0rnBbXUS6hzjYfLL8j+4mbyy PI9zvkVenFPyan4UfjNzN52rZsbm+fIH8rjcJfwe4BjcmRfobAp707nqtazn FnxP5z/upHOGfwzvS/g9EP4u4I58J/xdwO35X85oZncuZz9ZeIM57/BrvIaL cjJeyYU5ES/lgvwyL+YinISXc3I+Y/4Yrsr55dt4Kf/E2V71W6ah64yjHDdB PvcD3qVTV6ck/8r1uQz/xv+FvxG4t/6T8Pufe3Jta6dzYjMfh78FuIe8sbWV +JC1sRyrLg+Qx+YGPJDjcGMexM+trcZ9w7XBVbgPNzSnPB8wJ65+C44O9z35 h3xDnt0eRvI5zsut+Qqn5K58kNNwbz4a7lHcj3/nl83swR+bmVzemffL48s7 8BB5BvlA/kOeiaP5JOfk0XyBq/FnHM95iGnt/7h/+P1vnxM4oTybznA+o5+F P+bTfIMn8UKdGNbW4H7hfeEveChPM+dLflVnNi/iVDyXV3AabmbOak7LH/BS Ts31eA4n5dX6+zk3N5Qv4BQ8Uz6Pk/N8/o7Tc3udXfw6r5D/zDm4i/wQ5+FO /Cvn5IU6GzkTJ7T/dTws3FflmzmzvK3+Vs7C3fk45+dfdZ5yRd7E57gwJzLn Cg83Z6D+dS4q78cX+S1O+577Unu/p5Lau7VH5fnkvXX+5IK8Xn6S3+RXzLzF I8xMws95JCflWO383uJf9P+VV9BPJn9JPlqemO/JP+Eh5t/hkjrD+QGX5auu 4VPhnhCuK/341o7hiToJuYZOdnk5niV/jdPyBJ6rk5mb6qSXZ+PJ8rScgSeG e4u9peYGOkOrulfyY06tk4LH63xjTm5uFa49eTGeKf9W/g53kT8ypzR340w6 BXiqzk15Pm4jzyDPwVPkObkiz+Fc/B5/xZnsoVNYG65hrsz9OJ9OHZ6vs8dx G/FweQF5E14oz8/1eQFv16nF0Tp55NV5nrwgN+fFXIhb8RIuwl14OV+ytjvP tTarvAjPCPeK/H4jcwHXxh867cNr0Sms05aX6rzNfXlF+H7hQjyd/9IfEDr6 RbyuqHAsLqEzlr/VKcnj+TsuxRN5Lcd33Gm8Q7+KfA1vlZc3ZxRvlBeXf8Kr 5aV5Cn/PNXRm8q7w+eX5vI8r6CzkTTrpzf+ej8sryZfwZnlZns3rw/cdr+It nFp/OR/WTylPyp/JW5m/gU/Ii+qc5ntcXWc77wzvtXwPXwyfff1f+DLX0NkZ 9qlz17ka8uL8FJMP41Xy93lLOA/8Hv/A27kW/8Z7wu9nPsv7wz2fL/CB8Pcg nwivPZxne7jMj8Ln2h6O8C2urXOQ9+rU4d/5l/AdxDf5EI/S/5tjugai5UPd Kx6E/Zj5RB5XPkknpjwhT+E4/Aq30H8WzrN+E/6Lj4T9W5tVJ5FOM/kj+TF5 U77PR3mqOfF0kui0k6fhM/IW1qbn9PLanJ0T8zf6mTgjt9J/hU/oT5cn4KTy 1vJX+aS8Lafi01zfnLycTKezvCZflHfgt/gcrzGnBOfV6Sgvxeflna0tyrnk x332E9t/Lee2rjyX/FV5Yy7Iqbghv8EpeKOZZbkQdzGzNl82syvX4yu8Q+d9 LqmzjxtyJf6R3+W3uZN+Bb4Q7gPyqlxCns69fR9P4jY6yfmUTg9uxte5D3/E t7kfd+M7fM6cntzI2oHy/nwv/O3Dk/lp+DtCpyPXDteA19WOa3J/nT58V+dr +SBuLl/EI7gN37b2U/4wfO/Ip3I3HmLtGH5kbRQP5vs8jD/nJzyUx/Fj7sYf 8FV+bOYM7mHORPmPnCCza9N5+Jr7y8fIF3Ns+U+Ou4wHy0fJv+GY8p7ckm+Y 2Yvb8E3+lL/iGDqf8Cx+Jv+MV/JL8km8LXwWeDLvCNc5T+BNHJ+POO5unuC4 e3gtD+dxOt9yXJ3E9ryeP5F/IT8QrnP5ND4crituUcA11slnIbl9mBO7g2tK f6bOKZ3kOrP4PKfkAmZe4oU6l/TP8FyervNH+IzofK+z1Jw3kvnu42PymTpz dW5wGp0H1j7mb+Wldf7j73mBTgxrM+jM47vytHxH/zYv05kjv8qp5ZWsjau/ OXx+5Yk4o3wl5+ecXEXnZd6qk+ANr4N38WKddJxFZyln5GxcV/81/jVcb/Jk nFke39okvEO+TJ6FX5cv59c5O6/mNzk3tzOnMJ/R/1r+0J7TydvL35afDfc3 zsPHOa35OfkYf6tfnPPoF9P5x9pV4TqXl5Tnk+fRL8OX5RvCb1cuKN8UfgNz 4bBWpy7/Ez7v4Tc/vy3fxb25NPcxvxrf1lkvr8JvyjeHvxe4CJcypyn/q7Nd /iGXCNd/+K3O7/Ae7sdleQd35pI8zPwW/MTa8dyD47k2qprZlV/idfIVXIC/ 4IGcmDvozAnnlhvycE7Bv5k/mt81v6n8M04j3ycfyZXCdcjlw3XI67hSmM+/ 8MdcgX/maC7HXzvuBE5nzkqeF64fPqazgGuEzx1/ye/zcV7EtfgQf8Hv8QGe xFX4ME/navwHr+b/8Un+jutwrEZ+K3T0W4evyy/KW/GfvJnrh/NpPz+F82k/ Z+W7uKE82mvfGt4L+Wn5Rq4n7y9fF947+Xn5z9xYfoF/5Q/4Ch/n5nzM/JPh Ner/I89sP53Da5T/GV6j/JL8EDeVX+T93ISv8TluyWMd92h47frT+UrYD/+l k9jMdjpnzLwubyC/yg+4BS/Vf8rt+K78OXfgm9b+y22snatzL+xBPoXvhPPJ t3Rimd9W5za/xB/yRp2k3CfMlKfgDuEeK79lbU353/LU8o7yx46bkHvI1+jE 5668ldPyoGD91tYW049Xzb1KPlie1vs4kSeGnOuHPFwP1hbgsTpPrS3CveRH 5cX4c/mT8LuXe8r/5XzcnR9y7rAHTudY7/Ak/Wfy0uF1yc+Z8x7PkufUqc5z ODHn4E84jv3UCvsP32VckftzDC7H/Tgu1+HocH82Pxt3Cfc9eSMewil4SHgt fMtxm/Bi80s4Vnv+lpPodOGROk91uvN6+SvyTjxCnojb8nBOwK14KCflXjyK k3FfHs2peBiP49T8CY/nwo7bnJea/5p8FE+QV5ZH8RZ5TN9xA3hz2AOP5Z+5 Rl73IH8nJkjideuPl/8i/9nfj+/Ly/lezmfmHvl8M9NbO5eP62SVL+QZ8izy JXxankU+n6fLM/Fsnho+I+Z38z3b0vdsBvlM+RT567yKvwy/GXS28A1zevF2 vsl5dHbyPJ2c/H14fzkHr+HZ4btGfzmf0R/Ev/A/XEDnIC/UqWOff3MSe8gv /40XyEfqn+Dn+mP4LMfW+Ywv8Es8ik9zTC5o7e/hfbe2tJlH+LG143Uuczyd z/kav8xv69/nFfoz5Y84ediDtT/wNWuL6jzhlTpF+C9eHt5fvhne3/Bdxs94 FefiDfxVuCeYGdO5TWPm1xyH0/FyTs7ZuZNjpeKcvEaehvNyY3kmTsVRXIKL c0nzX+XvzH+HX+E13FAnPafQacJZ+TVuxXk5I7fhNzgz73CsUlySS5tTkL83 p5lOdk4rLyMvyuvCbwP5W/y6/D15T94uL8tleT2/y234x/BdZn5VrqA/xtqa XJkPymtzVS6n/z5v0C/O8Xg1l+AE/C3Xe9NcTprC9W9tBS5n7Tgz6/F7XFm/ HW8Jv6m4I2/litySfwi/2fQ/4mb6FeQf8CZ5eW7IG/mU+c24rs778j68Q35X 3p87hPdCnqiz6ybcE953rclHhffO/KHclWvrfMp7ddbLx3Av+f/kI/hneU0e zLu5Og/infzMscZxH/268s/51/A9a84sHiJP4Lhf8VAuzpfCeQvXjP7XfEi/ AU/l/VyfJ/Nv3IS/4SPhmuEZfCD8VuFlfJTzmXmY55vZXL6Sf5e35k18ktvw Nj7FH/IO/jPcW6z9kaeGa0++nk/IW/Ja/iN8L3gtu3mWTnv5Xj4r78TH+AJ/ xH/wpfBbRf9bHq/fRX6KL8svyw/wPHkH+T4+J+/KZ/hKuDfyFJ/Hyfy3/nn5 inCunOdp8kM+4x/rpPOe/ht+c/I/Ore5Hz/mO+F3C//Hd8PvItfkw3Cdm9NL fpdvhs+C1347fBbk8XRimPkTV5fH5p0crZ+EH+gP5mT8MNxj+Ya1NziltSnl B/UHyl/me+GaMScu75Z/wK/xYe6uc9XaazrDOKP8CY/nShwvi+8zzsJP5dnN z8/nrB0tL8yxdPLI3+bL4b4qf5NjykdyHn5u7QjOyf9xN3sozlf1x8pLchz9 CVyF43MxM6vxPzqt9V/nkzxRpwYn0OkrL89/hc+1vAzHlQ+V/48fy8v73p8b /vmY774pOg3kr+h82sQ57u1cv+53rv6H8sTuFY0dtzOn4un6XTmp/lTuwEn4 OBf5yO8PnsufydPwQGsncFFra3JrTshtuQdn4Tn6Izm1/lc8ml/jmTyQk3NH /X6cQ3+GvDcnk5eRtwjvUfhekH/B6eTLeR1n55W8kXPyHq9rDpc1Z5F8AWeW jzZnEb8r/0Y+jzPKr8mLeV0L5NusnSQvzstc/19ye8ddoD+dM+gv4aWclVfx Zs7Fq3kr5+ZZPJxThtdo/k/cwMzxvJqr8VKdFZxN56jjfsfV5Wv5Y87PX+pE cwqdc/Jd3Ei+UX6SC8k38Z9cmO/rXOSPdHbJn3Np+W6O5TWWCfu3h+PyD3XW y4/ym/Lv+RC/Ec6nzjnupLOJ73FfjlndZ5H78275S2YO45+s/Vf+jrU7+SmX 4s18hYvwFr4erhMuYM471i60Nhvn4Jl8VCcfVw//jptTcEX+jVPzu5xKPymP C+dK/ms4V/I1/DPn5V84sU4Fvuqc7Je3CN+J8oTycvLE5sTnT+TH5AW4hvx3 LsQ1+TDn5mp82uvNxtP1D8gzcJXwuZCn5cnyg/LMXFW+je+Ea4lPcGl5bV7s uEc4S0rnQ96FW4X5XJnr8b9mVue1Zp6T1+JG8jP8HjfgouZU5JU6pQp6X/lf PqVTjuvqPDenPm+SX5W35RbyRPrteY+8jjmd+Be+qNOEm+hUkjfizfLz8jrc WH6Tu3MbvsV9uW249ngaf8QfWNuLD1t7Vz6EO8jbyT/hM/IOPIrPhXsFD+PT nMHeovgP/svaAdzO2ns8ljvxPzyeO/MjnsnduJC1s/m2tVfkrbh5OJ88l7tz d8eawtd0uvJEvsKPdeZzD53L3Jyb8RNeyD15hP5y/k//mXwD95HHaOz65n4c k7dz/3D+dX7gvvwfr+Le/K05ZzmPa2Acf89xubL9r+HYHMucnTxA/yX+naM4 Lp/gaI7PF3gIx+PTPJi/NvMXTmfOXN7DaTi2zm88UCcOH+RBnJCvhc8yj7WH V7q4tvV/tPZv+dv8qs4j/jR8xuVPuJQ8sfx++ByFz10h96Wu7vWpfFfJL8uH yvuZ+Re/pZ9IfpOHy5PyMx7Fh8x81XHf03lNnpwnhM87J+BxnJZT8cTwPWtm HK6gn1wek8fIU3I8/oy3Oue3fAaLcTp5GvkkTs/peTI/c9za3MecS5yXm3I2 nYI8U2ehY73FreVZ5G/wdHlmzsXTuC0/5tOckbPzF5yDS/BszstV+WvOx+/z fF5vfk3uZf7f9lCWO/IyeSluz9n1i/Is/Te4Hn8Tro0aPm8cpVNSPoi/k7/J DXlRuP+b04aH6bwt78grwj2EP+KVXITb8XIuzC15KRfkZryYUzhWNx5rTjF5 T14lL8WDeS2fdKyhPFUnj/xdnifPYu2IcN7kx3T6h/eRS+j04W/Ddz1/yus4 F1fgr7gcj+ENXJ7H8UauzLN4C79l/le8zMwq8q95q/yBYy0O8+XxXJ87+Ceu pDODN+vkt3YqL5C/J/+Gt8vf52W8I+xBZ23Yg05N+XreLa8u38075f+Tb+Kf Q84rQ851eBv/wrX5R97Lf3qvs3J9a+vJ9/I+eXszb/NZeUP5YT4QPgv2/wcf kjeRn+Ij8sZ8LORcgT/nTXzFa58crjf9umYe4F+5gc4+3q/TlM/wUW7Fd/kE t+Z/+CS35Bv8B+e2h4d8yZyWZl4KOaeTn+ffubn+1WD9Hjr/8XV5e3ls94ez 8s94Er+U1TWrk4j/0SloTjK+xWU5JT/lApyEb3A7a2PwGXOmW1uYk7rnvK3z Mv+t00EnLp8L9wqd1/i5vIZOHk6gP1Wen5NwV/23+Yp+F36TL/MYnYwcW6de Ya8zHCu1z4A8C8eRd9bPyRf1F8hLcgb5Zm7BRbiXTiW+qdPJHqpxTvlqnRqc m3vrVAmvXWea9y6T81bXnrvJi8uvynty+XAewncZl+Fr3Jf/x39xFLfm+zyY P+SHoeO4TbmwY+1w3A5ckgfoNAjnTac/1+W7PJAb871wr67peuVR+p3kr/MF +VDuyo/5oJnRXFVnpPzjcM7lo3g4x/Rej+HR4XzyZF7AiUJubwO5srUj5P34 P2tH80iOpTNV5zOuozNe/gXHk1903OncRD5FvohfkU/gLzk+n9aZwPV0vjFn HrfiiTpzwvWgM4Q78yPHXaqzlNvpzJPv57Q60/m7cA3wTN7IyXmd/mbuqT9D vo6TyT+R9+Dy8uHy3uF6Nn8qrw7Xns5de1vBHXT+463cm3dZe4iH8nz9o5xe /yv+lV/jBXw8XG88h3dxap7FP3FKjuO9+5kHmbNQfo4zyRfzRc7CbT5wjfVw T+G/HTdFN3vS/51v6Uzi5fr3OLvOSn4QrmHOYP4dnqKzVH6ds8mv8A/mNOcl fEWelVfz03DN85vWJtRZZO338sT8hnw9J+U3ObdOLJ6rc8F+nls7h1fp/Mu5 dDZyap1C/FAnA68J51BemkvLN3FaLsxbOAcX5W2cj4tzbJ/xArzF2q3y3FxM vpmzcREuZT+Zea1OVS7E2/gnnSL8js4eLsdlOZmZFfk3nbXy+Jxfvpcrc3mu Zc47vEdnp7wYl5L/wu9xBV7DL3FeTm1mdT6s39TaWnyUs8mb8xnuIG/F57gj t+XzfNScTlzdnDL6n/AT+UF5E64qP8CNuAof5vZcjXuY04Wv679lbV++wyd0 BnBtnbM8ihtytH4UP9A5Ju/ONeRneBg34FM8hOvyVd7CLfhTa8dyDPfbb3gV Z+TzOlO4sc4U+Ux+RX5BPps/kNewt2mcQL5PXocryfdzfa7M46ydyHF13tUf z7F4hnwuJ+PW8jWciRfLv+cs3Fy+nNPxZTM3cDMzG8sXcir5Rfl8biKfZ+0S Titfxds5F1/T2cktddL5DDbs7rPG/8rvy7vzLf6N2/IP1h7ht6z9S/47t5P3 cdyD4fqX35T/wm3kN3gPtw73GT7BHfgnc06Ha1X/gfwadwmfHb7JXTmx/RS0 n0/4kfwveTf+hy9w53Cv4LPckQ+a+Xe4fswcYT+XuRw/0XnEPXXim5nJzCE8 SeeJvKbOn9bGk9fnWDqv8IDweeRXeSDH4ATcj6dZG4fr6j8zPyb3Cfc6neQ8 iOfrpOIWOnfNz8od+GWd7Pyxzn/WPrOH3pxQnks+jONyeo7m69am4VbWrjEz L3fl49b2sraWziv6b8hH8Fv8NS/jjLW8P/yFfnJ5WR4j32HOu+E8yBPoVOWh nEKnAo8N9w0uxaP5VS7Bn3Iqfp/H8WtckyeEz6mZH/B4czLIm/EU+TP7LxrO jzyjvGXYjzwN1+PPOak91OZR4XWZ04Yn83p+i3txZv2OPE3/Df6cv+Gs/BHP 4Dzm9Od5+rnkg/kreUH5UF4szyEfxLPDd7f5fUJH/rq8J38Z7vk8gudyXv6U v+YCPJkXhnuXmVN5nbXZ5N14ZvhO4Rm8iPPzOF7A9xxrDK/ULySfxUvkT/zW +jb83eG3Vsy37EW+Waff/9z3erq/vWbP8j/k5+XFrf2WV1v7Dq/nNeH90tnE v+mUkK/lb+VFeWU4brhudT72PVvXzPftf5l8h34pnW28VieLzgE+La8oP8w/ yCvxsbA3bm7tbv5dp4x8RzgP8obyH/mAvDOf4otcVec8b9MZKY9tD8/lleVn 5FvkhRz3Bt+WV5ff5Z3ymvwP7+Z+1t7mOzrV5Ff5J/l7fIm382Cdh/xQp5b8 Me+R1+W4jvsr1+OXeR+X5306G7mKPSSSx3F+ynEM/s+c2jr/6ezVGW9+Enk8 nbLyvfL18gacTL6fG3FKPsjN+HU+xi04Jx/nVpyHT4TfUWa+yRnM7Om41bgA N+AsnJyb6GfkI+H8y/NzOnlLLvxibVudknxap5O8DOeUd5TX4PPydlyez/Ai x32bM+t0kFfhc/L2XInP8p86w7m+Tl8z/8eFuY9Ob76t8xE35kvclVvwFR6u 35rL6neRN+XL4XuKX+ND/AGn48Nhz9yAL/CPjluX37Z2L3/I5XmSmf24JvfT H8h39HtxD77J/Tma73JP7sw3uDt34Gvh+8LMrlzVnIHykXxPHsWj+T6v4Aw+ gzmyuUYdd6N8oP58nsQt+GOd6fyv/jD+kp+E+7b5X3ArncHyCfww/Cbhz/hB OD88h5/yCJ4XrjcexSs4puP+Z85q7m1OHveEBzyPR+t8x7F0Hugs4i7yVfa2 gDvzWJ114XrWGclLw+cu/PbgzRxXPoMvcjIez1vDtc2T+FdOyFP4EL/CB8w/ ymPNnyzfz4nkn/PP/DInsM9dPFQnFR/ncTxV5yQn0fmSr3AKPmPmdZ6ps4N/ 4iE8W+cWp9LJYM45niKfLv+Tk8rn8B1OzUX4G5/H5eHebs49+Vf6cXlxuD+E 71CdfN7TvPp35C/xMp2F8oScSb6YE3MWfttx4/MKnQXyWJxBPp+fm5+eS+kk la/VWSJPwVnlKzkz5+Q4RXxP8Fadr+VPw+dX/p61OeTb5c/tJy1v4mU6qfl1 ndWcm3PzXP7X2jT8HReQ5+OtXJ+L8VouxPl5A5fmgryJK3LhcD7tpzL/4Vgb 5eW4kHwdv8MFuIG9FeP9Oq35PT7Jm3WqcxGd7dyIS3B+M5vwNZ2kXIT3hfdU pzmX1OlkTh2+IN8ir8VF5Tu5FZfi0e+7V4R/15nCnsxpK7+tX/FN9w55DHlp eV/5Y/k+a6O4krX7eQhX5uGONYCf6rxa22+eXr7L07gedWbLa+mc4Llcm3/h XlyBx1o7jOPo13OsaZyUv5TP5BRcQz6WE/Aha0fxe+Ezwp9wFd7L3bk8n+KF XJcv8x5uFt4XM38J74s5Z+WruKH8An/PH/BF3sBN+Dyv4cb8ShP3MK9rBJ+U z5fX4T95Odfn1va5JFzb5nfhHzgPX9H5jZvrXOWD3IKP8RSuwdf4CLfkbtZu D9ebtd/Z85YXXss7w/XGR/UncnX9Izye3+furu3fQ8d78Zf8JrcLn0H+i9vz ZPPvh/fFnCfyV72unuHzKE/ObeW35Nd02sp/c9zL/K78pvwCt5Hf5b+5Q7g3 chxru/Ajjsfd+C9rU3E7a+ebn4Bb8GOdV7hHuDZ0HoVrQ35P/oQ7yZM45+/r jOT4XJSHhPsel+Kh4TNoZnbuHl6LObnCa+GYOlm5v851M0+b2Spc/zonwvWv E0Mnk04/+Q2ds/LW/JzTy/uG7wVOw705oX5ZHsaJuAIP5x32UCLszcy48rc4 Wv4Sv8FRHJvz8kCO5TNSkAfon7efmNw4XNvm1ORxXE7/Em/Q/1s+mFfIf+eG PIlT6DTjsTqpuGVYG+455n/AU3SSyevxaHlT+SY+Kk8qr82j5K9xO57Ab+r0 4UU6GeT9wxx5Jh7EUzm3zkc8V+eC/XTkOZxapw2P18nCQ3k6P9T5lNfo5Jcv 5gXyrDyCZ3AO/pxncy6eyl+F8/a2/563WJtTPjkcS/46j+Mvw/eC/YzhtTpV eRZv4zw6X/E8nQK8jBdyMjNX8m866eU9ebK8IH/Li7mWOd/wHp188q95vrwQ r+UlnJa78URObeZ6Pqz/lvxHXibPJt/LZ+Ql5Af4W3lJPszfcQfH2sfndN6W bwvvtfxj+V3+V15MvptXyYvyDl4Z7hU6x/iqTnn5Vd4or8A3eBNX5H/4Bx6i f5sf6ZeRn+J14RzyH+Echtdoz2f4tk4//fN8hyvIH/Nzrq2fsbfXFr5bOTZv 5wn6L3P8tD678kS8Q17V2rj8kvyi/GYfH7/X3VP4oZk/hg7H0NnGVfg/+Vau wUnku7guZ+FfubLr6nWObT+zHDcdpzR/AefkDFxLPyXv0a/JyXg317ef1ziZ zn2f8Wc++x/J6+nkke8L38ucn/dze27NZ7kJl+Qj3ILL83FuyZX4D27GZfgY f+RYxTm3Y82RJ/TaU3vtjflt+SGdfjrV+C2dD+WN+c9wv/JamnIpeTt5Cz4j b8v/49PchmvwKW7FVfgEf2rmh1zR2o7yznw+fCea+Rk3k//GHfhd7qLTmy+H e7J8INeWd5NH89Xw3WFmP64l/0jegy/JO3NXvsg9+GO+zj15ON/gPjyBb4fX y5P4DkeZ2YCLm3nLcb/gtvyVfDQ34V76I/mmfn+eznd5m37dF2sHyr/ke/KV 1s7hTvIh8hX8SD6UV/NjHsbf8RPeqr+RB+mPkx/luN6jx+Yv5R7y73QWcTce rrOOn1obt47fahwtf4V38QgepfMzxzTniLXHeYJ8jPzXcN3KP+Gt/Mycz/hQ +IzI9+vv5zH6jeSF+WC455h/kifKC/FzXsKTdC5yQmvPWnudv5Tn0LnFs3my zhVOpBPF8/i+mdG8gB/wRD7HCXQm8J/hsxz+t2R8hxPzlxzLNZyCZ/NLnIpv Ou5TnUWOVdxx48tX83SdB/KkOtP4Hr/KM/jf8BnkuZxYPw1/zSk4XTgPPJ8r h3uFmRn4RzMXybNxZvlizsFZ+BvOzBn5if0k5XX6a+QVOa88RlHnkX+Qz5en 5vTyJZybs/JKfodz8mouzbn5O67M+TidOeX4d3Nq21sB3suJ5Pl4Dy/TL8Sv 6zfSKcYHw2ecq/OfHMXd+X74THF9vsQbrW3Chax9w8zmfF2+Qd6IC8rbeY1v OofZ5Jl13pOf4vU6dfhNne+5Fr/BvcxvxTd1tsh7cVH5Nu7LxflNc7q86JTh AfyEf9Bpz2/p9DanLd+S/yjvxG/LP9X/iyum85mTF+Ec8h08hEvyzzyey/Fe nsjluZa1UziRtb/KZ4Y54bPD3/P7vIfHclnexaO4dLg+7WcaJ7b2N/lsfld+ gBdyFW5m/hJOq3NUvoGry+dbuzxcA/JZPJdT8iGdNfxeuK7kq8J1Jf9JHsXv yH/nH7gmn+Oz3IhP8k6uwz0d9xcuYO2f8t+4vvwU7+G6XFFnGMfQGe1Yn3As 7irfHq5b/kN/C/9P/wwf5Abh3OpfCOdWZxdfDueEz+qc5oY65/kaN+Z+Zv4e 3kedH/SPvPBmPsFF+JL+39xU/zLf52b8VVPno7/vzuw+0/LsfV0r8qv8TKcF 3+A48tbhnsDxuA1f55jcig871hP9ao6VvpjvW/lx/szeHsmr8hmdV+QN+J61 6bmTtYt0MoWZ8vvyrPyR/A4n5/Z8m1/lD3m6fgKup7+cc3EHfqTzBncL15W8 Jg8Px3LcvOFY/FSnKPfSeS4vxX3lz+RluY98g7UluLf8ifwt7hm+O7gg9wj3 HOetAvfjuHVdmxyt/5K8NkeFnOuFnO9amybsk/eZ35BH6cfWeZ8HymNyVe7P yc38gMfoXLbPVNyM4+s04yE6CbglD+XE3I0/4Ve5J3/KOczpw7OtTS4fFGbK 0/NUnsyZdD7iqeGatLeOPIWT6vQP+wzXg3wwz5enln/K4+VFrB3Dy+UZ5DPC WvlrPI4ncEoeyp/xQ3Mm8xr9tPLPeaK8lTkH+ER4j3Rm8XrOo7ON5+lk4W94 OmfjZTyT47veVvIO/azyxTxDnpDb8DBOxO3C9RBeL38dXi+Xd9yveKO1Nfhb 3hVeo5k7+DDn098dXrt+Lv6Rv+L8vJcXcE5ez3M4O6/lWVzPzE28z5wC8sO8 UF6Qj/FibsId+vnccjmOyxs4tz2c0blkbRH5pXCe5UX5Kq/kbuaf56s6heWn eKm8EP/BS7ivzg3+S6eY/Davkpfix7yWSzvWf/xYp668vD38Kh9hbQz+T15c 5x+d+1xC5y5/q1OGY+us45L8UP5dOLf8snwj/4/f5J+5AifiTVyZX+Mt/B5n 5O38PmfhHVyF0/FWrsQpeTNPtLdknCC9z4q9vc6puYZOTt6lU5sL815uo/M2 Z9apxkk4Hi8xpzhn5Vr6+XmPfk3Ow7v5Q/2SLzqp5CO8xnHypdaWkWeTd5V/ x1fkzbkf/871+X/8GzfkBnwg/H7gxnyQG3Bd3h+uGa7B+3it+dU4v/mN5U35 kDzKflpwcflenc5cnpvqdOWjOmvkVTiv/FP9HlwxnCudD/lw+K7Rac0l5fu5 N1fm1VyJc3ML/YF8XL8jz+PzfFQnmqvrnOTRXIfb6kzg0zozHXcSN5C3kX/G p+RT5CP5f/JW8uF8InznmvMFN5K3k0/nM/IF+gu4pfyGziJuzS11PuY/dDrz Ur7IHXgOn+P2/CWf5S68gi/zbn8ndvJ3Ypnwz2TMXC3vaObP8i7ycvKjjntd /rl8A//EvbmPOT/z7fD9y7/ynfCdYs4u7qvTS76Vb8rX80Tfs2/6nu3Jm+U3 5AP4EP8d7vn17JfHWDtYfpEfyj/mK/xvuI/pHOfhOjvt5yh/zP119vNdnWF8 i5/wCZ17/IXOdU5hD9/wcJ078qfhNx4/5Rj2Nopj6cTk0fwSx+Jcjvtc5ytr P5H/y8+szSx/wNPkV82Prz+fC8gT8kIer5+a45kzgdNyfI7mP619YM59azPI V+uPkyfluDpjOTHH4XfMzMxrdAbJT1r7T7gPcDZ5Ap3JnIMT8XQuwkl5Bhfj ZPxycbN4pzlfystxCvkCbsIZOI5OId6qM1VegJPIa9pDad4tny2vyKnkKfWr 80F5E51afIQX6jTnTDrzuA6n5TlcmVNzG/1GfEp/vrw+p5dXNnMKx87gNXEr Pq+zRucTzquTT96Jr4brzZzufJOX6fTi13V6yLvwdXl5zs0beYpOPn5FZwm3 56y8mNtyFl7BfTkHf8ejOB9/z2P5DS5pD8P4kZnr5OO5gHwVR3EuXskDOCev 5iGcmz+zn2n8ktdY1ZyZL7yA3xjg880rdX4Ja3kSz+eEvMmcJVzYnM28nIvw FJ2F4XXpbJTP5ULycfLZ4bqS/yhfxW/Lt/AaLsrzdbaE86/Twh62v/BvOvHs 512dhTo7w3sq3ybfwMXlW/l7LhbOoc6ecA51mprzA6fh7Tq/cQmdn3Xuczn5 T/KD/I58o/x02LN8t/wCl5H3N+dyeI3yXfKzXDrcT+QnwjmX75D/ziXD6zLn WnhdYT7fDPN5r84jLq8z0tonXEG+VucI5+d9/IwrhWPx3+FY/LO1f4U9W/sr x3ROKnJ3XufzeC38vuU48krhmvG53ijv5tr4U15KXl9+iFPxe+Fzag/puZ75 ZxwrEzfgwzppuFr4XOsk51ryA/JXuYr8KGfl6vw7Z+eafMOcgtxa/6T8La4j 38+vcGU+zUXDcfkPzsv/4+OcKxyL/zanBHc05wgn4Pf5rE5Zbqhzk9txm/B6 7bMCd9OJUd9euB9f0anHzXW26zTkaPkleW1uKr/I73MTvsBV+QO+xh+EzwJf 52bcim9zR/6Q/+KPuB2f53e5Md/hbtyeE9tPG/4kXFf20JKHhdfFPXkCX67p HtndMVK7N8n7yA977/4p5338wmfGnIdmfirvyv/yOO7Oj/lz7sGXrB3Dc838 sIT3c6D3KaPPXjOf5/Dadcraz7e8Xue+tSP4I/kTnsw9w7HMWcxrdF6ydhlH yZ/rzOK+/B/P4N7hvdCfyov0s5k/lGdyOV7PG7gh/8EHOLGZp8I5Cd8LvI0/ 5oS8O5wfTsR7eTgn4B08NNx7ubHXNZ+fOu7aF68lvvxHHiKPx5t4cFjrPOzj XTpJ5Gd4pLy1/Zznk/LY8m94oLyF/BIfl78iP8wj5LXkB3iPvB4f430cS+dr HqATk7/i/pzVca/ynzq99f/jW5xUJ4b9j9IpohOX78pH6mTh55xG53X+XOdV fmztp+E7RechX9eJ5n/4ASfTia0/WqeUmSn5X/kwndf4CafVyckTdVJzOh7P 5fQz8n86A/Vf5nucQicRj9XJz015Ab/OVfhLzsk1eA5n5Lf5C87MxXkaf25m YX45PG+Cb9vzKfMzOu4NPsHV+E2deOF5Fjp35efk6c3JL59sTjrOw5PC7yL+ H3/Febguz+McXI1n8yxzKnHK8AwOeRmeIc/CJXk6N3Dc8pw8POdInow/k3eU t+Ac8rn8gJtyEZ0JvFxnjfkdOK/8O+7K+bigTg9erNPV2s4vOm/KP+RF4T4T 7uPhvL3s+0PemhfKeuv344Lh+TjykbxMvtv80VxG/jN/xuV4M0dzEd7EA7kw F7K2Ny8Jx5FP4ory0eZP53fDM2t448DIM1Lf1v+CV+gf0Z/H78sn6iziGnxc vpRrcXH9BbxavxjPGRi5Rx3U+ZKr6ky2dsWL/hRePTDyzNDpvHlg5HmsM3jr wMjzTAubM5yXmjNT/tPAyHNUp/K6gZFns37B3w2MPLf0S941MPLM0/788Yvz cDZ8x4fr07m9GL57wnXCs3VODow8M/SE/Fy4VuVz5BcHRp5Jekj+J4+TXw7f l+G64pblfc4HuX/xLP3jAyPPOb0WvgvD50J+nq+Ea49T5PD54wN8xTl5ys3D c1vMecmck/KvzXn+Ir9q7a1wTwv98H3DX3Md/Tv8C18y596L67CdPKE5Z+Tl HKsA/8cfyVPwJe7Bafk6X7c2A7eytps8NV+V18hlXVTkOUfz7Sf+oMizUzvp JOULOh04MZ/jb3Qyv5hT3nEL8TN5BS7Cz7ks5+OnvFC/2KDIM0lLy3PwY/k7 nI0fchbOzad5sH0m8Rof+uzXlb8jfzWBcyMvzW3N2W4/vbiEvI1Odc7MH3Id zsrtuD5n47Zci7Nwa36PM/FBe0vvtX9mZit5ZXlGeQduwtl5g2N14oL8A3fh t3gzd+civMycVoMizzNdys0HRZ4b296cRvy6zhDuyyV5pU7UoMjzUr/n2YMi zzz9WGcAl9Kpz59wMl6tM3ZQ5DmnD52H8dyVR+qM4go6w3kYl+VV+kMGRZ6p uoYnvuiP1ZnCVXTWyecOijxTdT3PHxR5xusKbj8o8ozXZ461kPvwWvnMQZFn lX7H0wZFnj26kZe86CzntoMiz3u97/wsD3t2rE3yVYMiz0LdylsGRZ7puY23 D4o8Z/aQve3kcfo/yX/hweFeJ7/MI+Rb5D/wQHnsBt6bF47He170d+j8Nijy 3NKd/PugyDM9d/GJQZHnde7ha4Miz6OsUcF1x7vMP+FYB/kL3q1zYVDk+ZWv 5XRP4SPyJfKKgyLP/z2uf5Mny/fJX42KPC8yl/59+UX5r/In/Km8p2M94xvy V+350Yv8B501gyLPe93M3w+KPBd1L//Nn3Bi/b9euI85MR3rtjm/6SSPijzX cj+nioo81zKdPbzCv+uktDbNi+t8gLXx+G95P47Dd7iYfgL+hwtwpqjIPqtz dn45ofsSr+Wv+YhjvcETzDzGb0VFnkf5OxeNijxf8igXjIo827GQtVlf7LkS 1+OY5rxmb3lfzDmknysq8tzM41wiKvLMyhL67/MDa0/Ka0ZFnp9YR96Qk5hz Sl47KvJMxh1eV1kuKf9DXioq8szKXfIKXFp+Ql41KvJ8xtPcLCry7MUtZg7l gTpLuR234+X8EXfgVdyNO/My7sjtebE55V7co+bKP4iKPBfyjLwNz5Rn83pb vnB27smz+LzOiKjIMxlzyT/lr/hHcwbzAHMu6ox5kf/ntfTn3vJz8j4v5sSq 6LP1op/LvT1GtHW8W/9deRnOa/7n4X3Uv27tV1GR5wkWsPZrXqjzDn/Da/gn e1jGg/kv/d28VP+ifFbYj/yafEZU5PmMN3hxVORZh7t0VvJQnYKOu54Xy2/p bHrhO7w3KvIcwJfs+Ufeph+Tv+XNXNjaHS+Om0K+LSryfMNL1o6Lijyz8m74 nR8VebbgA74bFXnGXwev5Rif0+/Cp/gy/2tvZ6Iiz/fsLP8jKnKurlg7+cX5 ucpToyLPwWync5jP6PwtPxAVeV7hM3POR0We4fhQ/k9U5FmEj/hhVOSZg/f5 Nq/mf/lxVOQZhffC3whRkecRx/C6LvEP5hT3em+86D/WiR0dec5gWXlcXs/J 8rjGhrgHvOI9sbe35WV8jz/TTxIdeQ5gjHd8/qMjzweMya9FR54h+FwnWXTk 2YL/caLoyLMCs+v8GR15ltxT+csvjhVbnjE68gzBbY6Vn4s71k/8Jr/DO7kw l+JN/DoX5jjWZomOPHMwFqeLjjy78Ged4lxOZx+X4Ur8jfPQIjryjL9f5CW5 Ah/mKlyN45pTIzryLMJ4/L/oyPMTX+Jq0ZHnEh7Ur8RV9fdzea7MJ7ku1+H4 +g2iI89ATMitoyPPIkzEH0ZHnkW4RT8PF9Wv7fx34L3yBDpNoyPP6XuZG0dH np+YmDu/6Gy2NicXsXa519WVO/AK7sEdeQ1/zF35Ox7O3TiJOSOjI89ATMqf RUee45aWF0VHngP4rX40d9FfzQP5I35VZ3R05DmGyXhCdOQZiCl5enTkOYap +MvoyPMN0/HS6MhzBlPznOjI8xaT86ToyDMT0/CC6MizDl/jedGR5yfm4HPR kWcOHrCHFTzWHrLID0VHnjN4RL6OJ8iP8WaeyC2cz618XOeofCN/Ll/JvbkT r+J+3DlcA/wdj+dDvJrHcXrH+unFnKx8NDryHMNsfDw68gzEzLw/OvKsw9f5 ZHTkWY0Z+efoyDMZM/Cu6MhzGzPxr9GRZyzm5IvRkecn5uIr0ZFnhpbnAYMj z24rntu54/v2k1d+JzryzMT8/CA68pzBN/jf6MizAvPxvejIsw7z8K3oyPMW c/P16MjzJQvw0+jIc/3e5OfRkef9FeSEgyPPPSzEiQdHnn+3tZLrmou5J/Rz bpPyHXkf1+FLoePe0kknFl+wz7esTfGiU9D+44eZ8oyclk9wSZ1y/CicW3kG /lNeVJ6b78m3uwcW4Gjzi8kLDY48p2+kY+Xj5/oD7SfHi34RnWyDI88KjJYX 4QdcQl7shUtxxcGR5wN2ddzKgyPP7CvJmcN+zNxo/ntcSD7EnNIv9llB550X x/1Bpzq/pZPCzC+iI8/6/FFeS/62/Ef9nTyAL8pHcRPey624PP/G7fldPsCd uAr/ym25Iu/h5lyWd3ETLs2lHbfL4MizBctw98GR5wZW4KjBkWcUVuQhHJ4b uMPaRlzS2kryYYMjzxAsx30HR54PWJZ7DY48c/Bd/mRw5HmC262tzyWsjfIb dSwX99tpvde4hnvJX8nrM8Q/J3Zfks/kDvKVPJc78WfO53x+Kfz/28tncyr5 VPOncRJeJp8yOPJ8wKr2sPBFf618CXeXb+DvuTdv5A3chyvrT/w/S3cdJsW9 9H0Ydwvuzi4ugeDO4u6+MzuLBQjuuu6+7OLu7hbcCe7uHDS4BIfzqavqj7n6 fr+nurqn59c9s0nep6bqHMNd5LvxWPLteAMeibfhtXgE3o334XH4Nu/rEr+1 ZsrfYuQHyceTh8pzz5drRs+2+NtUnYd4mJpL2Ec+F3wD+8n3Jr6N/fERfBX7 4kP4PJ4q64rv2cV8z9bmWh0kPyPrnLwl/R9O1bmKuZrwmwBHky+n5uNUnS+2 An/GfXAr6p9N1dmLJ8gf4yBZM/geDsAJXPOfOCM1HahP4aNzD4fQvwR+TE17 8qQ+WtMZZ/TReYjpOc9s+Bg1Xchz+uhswbTkWXx05mAn8nQ4C/kMjpXa3JU8 j4/O1+vJsfLji9QPwyXxUzwCl8HPcRvqX3Oe6eT/3jt5efIX5N3Ii/roXMI/ yQvh++RjcCX8Csdx3Be27zjyKuRvyCfgavgd7kGfJj46B7AJ598cJ+P63+Na tcJzqGlB3gGnInfgv3x0zmB39m3ko/MBfehZH3+m/j77tsVz8QvcGa/ACzgf T5yb+l7s62V20nMYzk/PDriPfBa4Fe6G02BP6gf66DzB3ri/j84Q9KNmGa5L jRceiQvgZRxrOi5ITR/ySbgweT/sh4vi/jgQF8N98VRcBE/ivdTEHzjnKbgO /g97UzMeF6LGhcdIfzwAh+DiknNus+y4HuRzcRLyXfSZhivjI3gBroOd1EfJ e6d+Ceccbt5JTSyuRE0AfVbi+rgxXoOTYl9cz1f7bGLfW+Sl5f3Sc6uPzuzr h3f56BzAddTv9dF5f33Jd/joTEBvvMlHZyYGUbMeN6RmIz6A/8Kb8WE8FK/n WOewO/WD2PeiuUZTPk/OZ6O8R+qv+Oi8vwHUnPDReYL98TEfnRs4GF/30dl5 f+LTPjpbcAi+a++lHD1T0XMpfYaSP/DReX/D8CtcFheh5gOeSU0x/AnPxoXw Wzwdb5Hf+VZ/gXN7iqPIS1DzVdYqdsc/8HxcAafluMtxJZwBr8Tn2PeRj84o rEyemXw1LoOT48W4JE6CF+DhnGdWX51d2AIfn6pzYKtRk4N8PTX7uUdOkk+S +1d+b/vq/MFG1LjjXdQ0xeXwPtwcV8QHZD3g0ngPboCL4524Hi6Ct+OWuDI+ hFvjqvgIHsmxGvrqPM1RuLGvzkasQ01BvJWaYN5vM9wIj6Cmtq/OQGxLTQ18 jHy0/C3gq7MUa5Hnw5vJx8rfC746u/A4138cri/PIvJOvjoDcSJ24mp4svwt 4KuzCA/J739cC0+Svxd8dS7hPvLeVr+Fc+uBh3GsqfK3gNX74KG+Ot8wAE+0 4wbiKb76f397vPw94qvzFk/S01feozxPyEfjuvgo+QhzMHmA1XzozfEmcLwS rFlqgu178HB3nvUhHLcIzyu+92eS583M97v8zvfVWYRR8nveV2cUOqmZg/NT 85E+A/y418hHku+Xz4V8FD4knwuOkN9UvjpLcQD5UlycfDj+W9YYHoH3yGeE /8LrcCk8CK/G7jha/q7x1TmA4fJ3h6/OaoyV3+e+OmfwDufzHHfBs+Q3s/k6 +QXcHt/E13BHPF1+55sT5O8Cq9mIB9n7ipHf/L46izBe/kbw1bmNcfL731fn OV5g/dyR68N5ZuOc3/jq/M2c+D2+gIfh7bgsNbnxf/gS+Qz528FX5zZeos99 ORY1M6h5IjkeirfgMngI3ohL43z4C74qzwGcyU9nZZbCv/npzM1yOBd+hhfK b2/cm2M9kd/V2IFLUJPeT2d9FsNp/HQeaBGc0k/nnJbB2fET/EB+q+Me7DtP fuebF8vvc+s5H5f105mMj6ivYMetQJ+8fjontBIu4KezRD9RMwQPpeYqeXcc z3tcSx8H/pP8BTVNcR+8gryFeZn8LYBd+CXX8BfXpC/7FqDPd3yd/s/Zt4HV FCJP5qezUOvhun4683QJfWr56ay0ddjlp3MS1+O+fjpL8S19etn5rCbvgvvj lbidn858PEPP1jiMc3hNfUermSN/1/jpfMnN8jvf3u81nNpfZ6u5leVzIn/A vtvk70c/nWO4Q37/41HyPSu/+f10BuJ3+k+2fKv8/vfTGY5ZuvG54RB55sjf An46U/JvHOqnMw334Rl+OgNxP57tpzMQD+B5fjqTcTeO9tM5gLtwhJ/ORszA eQbh45xnSbwE/w+n5rir8FR5FlF/0k/nBpaiZrmsSWrGNeP94zf4MDU7/XS+ 4RTy3fg/8gl4G36Hx+AN+BU+RP1a6+9Dvg9/Jj9CftBP5ycew2f8dN7fcXze T2f27cUJfjr/cSTncwlXyMI9Tp/jOA2OxEdwSvwP9Vf9dDbfHvl7xE9nKZ7A N/x07t4pfM+u8zn8AkfgnFyHdzhKng/kH80HWBuv5dpyzqflbwQ/nfF3C2dj DczA2dn3mfU5Q/7YT+f9XcSf/XSmXkFq0lGfiG/I73zzbflt768z4wpTk8V6 Xib/yb6xOA/5N3M+nJSaeLnv5G8Kc3Hy/HgOLo/r42X4ATUl8Dy5H3kvZfAK 3kspasrjheQPqSnpr7P5NpBnCuT/XZhnpPwd4a+z8NzIi1qfe+SF7FiPcCXr 81x+q9txK1LfRI6Fn5LX8ddZfi9wc8uf4Gp4MS5DfRXzLj7rmngsn+lsagr7 6SzU38lb+eu6Oo3b4lBqvHGgv86OvIA9cRR+xb59/HXeXxX698dr5Jkjfxf4 60zA89T3xJHUjyjH8zeA6/Iba4O8G3kEedHmfLfIdcBtySf561zOavScitfT 5z09/cxu1I+Ua0VNcTxMrhV+I39f2Dm8p0+I1JNPwlG4Ov5JzXp//b9h/oE8 HG8gr8WxpuPN5J+pmeuvcwO/4AX+Ojfwk/xdYDUf8TR/nQ/4Acf660y9evRZ jLfjb+TLzB7km/BunKQ2/cxvqRnvr3MSm1CzA+/FP8jX4J24AflKczL23WU1 JXnvY/ACzj85+V5/nSfYnPoD+ABOS37OX2cFtiW/iI/h9ORXzBnxLfwP7knN J3wRpyE/7a/zAVPjE/gQbk/NdavPRH7XX2f8dSF/is/grOT/mnPhr9YzG37l r/MEO1H/AJ/COcg/4PO4O/lb81k+o844nPeYm5of/jrjrzguwlq6J/csToWv 4gI4A74uzwScOUDn9HnRM63lKckP2/VpSX7M3pcDJ7c+eahJEqCzAgvhrAE6 128l17w4LsIaLkHuHqDz+wawb0E7Hzfy0gE6v68feW58R54/5DkCdEZeUZzP 8pk8Nyriztx3++lfFVen/xz2PYqz86woTX29AJ3fN5y8MX6Gy5E3M5fBDQN0 rp87rhygM/smUd8Pf5DvHfLa+BH+i7yGuTx5ywCd2VcF9w7QOX0TqHHid7g6 +Z/Wpyr2tnw0Ne3xS1yBvE2AzrarhDtZXhn3wK/xVOqH4k+y5snjcTLeYx08 Dn+R+whPCdB5fIHU++IfuC75xACdzXeGtdGBzy6MtVGDfHCAzvLzpX609alF PsKO1QAHWJ8IahJxCo7bjHymOYw8xs6nOfmcAJ271wiH4V/sG0xNsNmDPBIn oWYw/s2e7WOp6WrvtyX5IpyaPIF8I86I25NvMU8n344z407kewJ0Bl8vfA3n xm3xugCd/dcGrw7Q+YMd8d+27yz67MdZcTfyf2z9zCM/hXPi3uQ3A3TWXg98 1vIu+JDtu4D6y3bcvjy3L9iajyafb+/Fk/o7ATqDrz9OFqgz8hq0YA2S76R+ OPu+xOXwcvZ9gwtR40X98wCd5RdLvhSnxa3JV5id+H84P15CzX2zN/l76zMA pwzUWXvrqEmD3XA/8l/UFMUDcXrLJ3A+XwJ0rmUf8v8CdH7fKvb9bvV/kWcP 1Dl9m8lz4TLy+fK34eBgzglPoaZpoM65G44L43J4JHYL1Flyo3CpQJ2XNwIX C9R5c1vpWcDqN5K/xn/hoTivHWsMroB/xxNxXVwNH2DfBrgGnkzuYR6H/8BV 8G5qfjf/jctan6nUtAjUeXy+uB2ug89TMxw3x0dwa8sDqOkeqDP7grADN8Sn qHFhD3wC97Lcn5ouuB4+Rt7RHELe1+pD8YBAncEXiUfZcaPw2ECdkbePfWvZ +40mnxCoM/LC8RDcFJ+lZpD5Mp6MW+Px1FQP1LmEsdjH8qvU+OO2+BaOw53w DGoSzDPxjECdkTcbz8NdZe3hndiJE3E07oBv0CfCfBfPtvr7eCHujudTvypQ Z+otwGsDdS5eVHk+J3m/WXmmU78Be5LPpWaJ7fuUfJsddxH5ZqvZhN8F6vy1 pXhfoM7XW4sfBuoMu/vcg8elD/2Tc6wzeB9rfgU15wN1Xt5jak5KT2riyYPs +kzDoYE6u3A5PoK98b+cz0HzSvJLgTpT7z35YzwIryd/Zl6D7+EB+CM1L2yd ryK/Eagz+D5yDlcl5xzeyN9oVv8Zf8TD8BbqP5sf4fAgri9Oy/1YEvvi7eRJ g3RG3k6cGo/Gv+TvAjwW/8ApLN9GzU96jsBf5fe/eRd5RqvfjbME6fy7lBwr P54s9yB5IfM13CdIZxsdxEWDdEZecupz4ol4D3m2IJ2pdwiXCNLZf/twHqs5 gsvYe7mAOwTpPLv09CmP/eVeI6+Jg+QexPVxCD6NGwXpXLws1NexPBOuZvXH qakSpDP1spE3weFyH5E3N1/EnYN0dl4earrhWLmXySvZOVzGPS0/j9viSJyD +lbmfNgTx+N51CwP1PmSV7GX5d/wlSCda/Ycz8LL8G08Mkhn5N3F4/FsXIKe k/BcXAyPsfwWNcPwDFyY/C/zffKpVv8A+wXpLLwy1EThxfgJeaz5Bh6IE+W+ w9OCdK5fKepDbL09JA8M0vl65cmn2zkXxP1t34p4Ll6BP1F/OEhnw73ACyyv Qs0avAa/Jd8UpPPs3uGtQToL7w1ebzWtK3C/Bem8vFfky/Aque/wjiCdi/cB 7wrS+Xef8bEgnU9Xh2OdwFvx73ix7fuFmtOW/4cPBOmst494b5DOgNvWkr8d cHmO24XfqJG+/DbgN+pXai4G6ay6MP5OiSFvIn8v1OG3d7DOa/tBzaMgnSsX y/n/i1vT5yf5qyCd9XaJ/k9xK/IVPKMe4D48B+rRZ0uwzs8KYN+75PWpacz5 f8B75H6kJjk1B3BL8lT4EE5NntacDH8N0ll4SfEn2/cX5/A2SGfPHeS4mamf wnHTUZMDH5X1jKvi87gN/bNanpG8YLDOj8uMi+OTuDM17vg07oiLWJ6Bmnz4 OG5Hntv8G3lpq8+KywXrbLie1NTAF3Eu8trm5uRJ7P3mJq8XrPPjupNXtvPM Rl4xWOfNeZI3xFfkWUT+I0hn8+XFjS13UtMMX8N9cVd8Gxehpoe5P3lvfBcX J/cO1jlxI8in4Oe4EHmnYJ1JVxC3D9Z5c8Ww0/YdSH0//ACXJB9qv6NK4RHB OmOuPPa1nqXx6GCdMeeG/7R9y+KJ+CkeRs9x5vrk24N1tloFHBCsc9x8qFmB P+OxOBK/lnuQmvhgnSs3gTwRv8OVyWOsJj9uadenAG4TrLPzKuEw/BKPZt9g c1XymdanNl5tx/WjZh3+imuSLw3W2XN18UbLq+P5+AOeRP0ccw3yRcE66zCI /G/8Ezck32NeQ94uhM+nCFvyl+QZcGN8NFjnxzXFp3BymZFB/VmcUuZQ4H8s 96DmEE6CQ8j3m5uTX7D6FvhysM6Gi6fmPk6P25L/z9wDl+J8cuKaFXnOyvvl /o2l/iZOS96SmmvBOhdvIvf4c1yNmtbkd6wmkfo3OBP2ok8uehbIzncjNe8t n9aK+1neL/kM6lNSk4W8EzVpzH70T4br0j+O+u/Up6M+Bn/BaXB3+qenJgfu iTPhXLgzffKG6Ny6LrhAiM6Pi2Lf/+Q6UNOVvHCIzpuL4VjZQ/SZ1ps+v+E8 1HSjpliIzlz7zvPnepDO65zHObvZtfJn31vk9dh3MPWOEJ0Bt4Sa6ji/XAfy uiE6M245eQNcCDvJa1mNJ/4D58WLqPnd7E3uYfUryZviIngAeUdbP+vIu2A3 3Iu8QojO1BuIu1veD7cO0Vl1fXEL6zMI9wrReXk9cdkQnc23iZ4uXBpPIA/F VfEQ3Nfy7dQMxxXwTjwWV8KjqZlgHolHWc1wPCREZ7QNw4NwWTwGTw7RGXa7 6eODq8gaI48I0Tlxk3B0iM5v2kLNANv3II7DNfFeHGTnOY56f+szBSdYzbve 9JrAtSnBcchn27833N+LdR1H/+J899JnFXlD8mBqNoTo/LiMrfldgANZG0Hk a63mbzw+VOd/xeLzITq3Lg5fCtFZcgF4Oa6PT9N/G26ML+GTsvZkHVJzxhyO 9+Gm+Cw1u82h5Dtt3+PkS6zndXwDt8cP8TfcE8+n/qd5On6IO+I71DzDXfAs 8hfmGfhxiM6M24UnherMsnh8NURn4d1k33vWJ4H8th33Hvlr3A1/4z5Kyr7b uVaPyFPg3nIPUn+cmhZ4IU5t+TvqP5Kvo34O+TvrMxd/DtGZdxfoc8T2jSA/ GKJz9xbhdKE6o20FLhSqM+kyVWK94xP0XEVeEvcj34wb4aGylnCTUJ0Ztxzn x974X46Vx5yGPjnxYfq8Ii9hfdZTXy1U59BtwDVDdQ7dVtw8VGfM/Se/7fEQ /AnXt+O+wWXwALyG+vLm3XhqqM6P24kHhuqcuDacwzCcLgffL7gb/sj5bKOm Z6jOqqtO3hl/IH9G/yzYi3wxNRlDdf5dNWo64PfULCXPZjVVydvid+SVcSv8 GrfFI3F6jtuFz2gMzkreCf+Fs+BQ7ov+OCk1O+jphUfJM1P+pjCHUNMHJ6Fm HTVV8EDyPdgvVGfkVenBcyuM64Gz4k3kYXJvUhMeqvPpDuLYUJ15dwhPC9U5 dwdwVKjOxduHQ0J1tt19/CpUZ6XtxYGhOkfvCJ6FfXFmjrUSB+OT5GvMp/D6 UJ1zdwwvCNW5eEfx3FCdZ5eWfadbnzPkW+2cz+FdOELuF3wLT8fZqd9h+UXy wzgaX8YncCy+gk+H6my7PNQfszwXPmD156nZG6qz7a7ic6E6z64ANRdxAr5F fjdUZ9IVJX+AZ+F/yJfhQHkO4EeWF6Lmup3ndfIr1qc4+VM8R56BeLHte4+a fy13J3+L5+PH5D9CddZbOfLkfKZL8TPyVOYnOEmYzr97iD/Yvu9x8TCdQ/cI fyVfiEvR55O5Ak5LzXK5j6jJZ2vmLS4YpnPr/mF9uofps/odeZEwnXP3AmcO 01l4/+IM1ud3embFq/Ar8hzmj7gc3oibUNMe78WfyauG6Xy9r7g23obrU1MP 78B1cQ3LY+pyfSO4r4qSkZe2np/YtzLejGuRVzR/J29ofZKxbyc7bnLcNUzn 3CXBbfBu3Jx9e+AD+Cf7NgvTuXg/cOMwnZfnQU1Lq3/HvVnJ7sGU9Olt+7ak xokP4dzkiWE6V64d+VB8XNYA+egwnW2XCY8L0xl2GfAIq0mHB+OjuDGuG64z v9rQ50/Ls5BPwadwDhyJz+Oe1MTgi7LmyePNWXEAPoO7UONr7oQnWh9PPBNf wU48H1/DA/F+/ADnpc8cqymIV4TpnLvCeB2+hftRvxHfwX3wassLULM0TOff 5ceLrH9RvMXqi+HtYTqTzg0fsuP6tuF94y88A7vTM8zerz/5P/gbeXHq94Tp XLyKv/MZ4hfkgdScwj9wNmqCw3RmXyuez2dxGnJ38gthOoutJ/l9nIu8I33+ F6az7XqTPwnTGaAO/DJMZ4OO43zS8Bm9Yd/u5HfIc5CXpufNMJ1/14U+z3FW +pQhfxOmM/LK4y/4udyb+HuYzqSrgtNbz4r4V5jOvCuL34fpDLvfcUpqXuEx nEMycxryfmE6b/EPnClc59AFUfM7/infd+S58AdcExfA/8l9hAuH65y7KdTn tfwvfJmej+R5Qs018yTy7NanKvlv4Tr/zpe8GP6CG5L/YccNIa+Ok7Ce65NX CNc5bh64luX+1JTC38jrkLtZn3q4rOVNcINwnWfXDDfFKfA4fBVXwS1xu3Cd bdcad8FpcTz9u+P0OBZ3tDwCe1ifbtSPxdlxC9wap5J5E9S0MLcl72V9OuMh 4TrPrgseHq5z6+ZRPwHnxHPwKOuZiF04E25HvSNc5/d1wH0t74QH4Sy4J/YJ 15l0a9h3CS6OF+NQnA87qYkO19l2y8jjcEHsII+wmtTY255RPfBkO7feOAjn wQvZ19/sIk+wPgPwcjvuOmpWYTfcj3xhuM6kG4jXWt4Hz8aF8QrqZ5j7ks8L 13l5sbhohM5Qm0HNAHu/g8k3h+tMuuH4YLjOettOzRFcAY8kP24ejc/gSngK foZr4mF4Hy6Lt7DvbvNOfNLqx1BzPlxn3u0lv4Gr4gnkt82HyV/g2ngi+b1w nXm3m/ySrbeD+LEddxI1D8N15t0gvCFcZ/z54NfWJwJni9DZcP74M3k9HIh/ 4gY4CCeN0Nl2/9D/m+Wb8DZcGg+hZqf5GPlH6+NL/i5c59+dIk9BHw98AefE LWQ9U5PHHI6zROhMt0vU5Lfv3DM4HW6CQ6hJbX3CcEbLr1JTAreV+4u8pLlD PdZYFOu5GN8n5N0idK7cTeor4Y64ZmWuZYTOtrtNXhN3Jp9OfRWrScDlcXs5 N5wkUmd1Xae+jOWzyOvjLngubou7yxpry3ngtLlYd+SdI3Tm3RzcJELn683G jSJ0jt4detaxPp04t544C/supMYL9yZfhf1wP/yIek/LF5EPjNAZdkvwsAid wfecmpHYJfcs+V8ROs+xM98L/SN07mp3jtUH5+BYy6gZY/XL8fgInT33hj6B eIA8B8hDzPfJW9n7XUseHqHz6V6RT7XzXEE+KULn2b0nj8KD5DnMcZvj75zD empiLf9IzTT8F/4qv13xCLyNmmXm7/L7H4+Se4p8fYTOgEvdk981eKrcd+QL InTm3WY8N0Ln4u3Aa2zfX/I3Cx6L95DvwuPlfsR7I3SG3SF82nruwwcidJ7d LrzV9j2Aj+HJOCXncNicFydnzcTJvUzNuQidnZeD/AOOxBnwdRwg9xo1dyN0 Dl1m8gc4GB8nv2U1G/F0uz6b8KwInf13FF/Bfjgd+140nyR/ZH3O40923FzU fMXR+Cz52widbXcR/7D8NP4Xh+LfqH9qPkP+KkJn213Bqew95qcmLZ6G03AP zsGHcVnyGngJLoSz4um4CM6NZ+Lb9MlnvolzWM11nDlSZ+Fdwxms/x1cMFLn 1t3FRSJ1ftxDXA7Px//DFSN1ht03PDpS56yV5riV8SJZw+TueC4uQV7c/Ji8 qtW4k5e2nk/Ja9t7+Sjfa5E6S+4Zrheps+pe4pZ4JX6N2+PVch/hTpE6W7Ay PdtYXgk3s/p/qWkcqTPyqpJ3xevwO/Ie5v/kt1akzqerTc2feIvc7+QNI3Wu 32c82PIP2Ik34OrU9zbXxUPxNpwU77D1/5X6EZYX5nN8EqmzZTPi1fgfnAQH ROpsu2Q4DO/FzegTiffjJjjY8l/09MW7cCPyKeYU7Btj9SlxfKTOuWtDzXx8 VNYz+SLzD/pMxDtxevKlkTrbrhX1M229pSJPjNR5du3JV9g5N8DjbN+OeB0+ iR34Mr4q9x37brS8URWeC5E6ay87+SF8Tu5ffDRS59N1Y9/9lmcl/xufwV3I t5tzkv8TqfPacuFTkTqvLR++Zsf1ov4mvo6zkG+J1Fl7BfAdy/PgC/gy7k39 WbM3vo9v4hE80/6z3/aFqP+f5V+oWRPN7xq+E8fiAnw/vpY1T81/kTq3bjD5 d/w/XJL8l9kNf4nU+XfF8ftInW03EB+J0vluxfCbSJ2LVxqnjNJZdRVw9iid Hzea/rnwS1nz5HnNZXF6/BQPoyaNuRR5siidi1cZF7ZznkCNG36H65M3jdIZ cFVwsSidZ1cdV8AfcE38R5TOjPNh3+r4M65B/nuUzqqbRF7W6quSl7L+tXEt q/ejpi7+ioNwC/wTN6Smtbk8/g0/xyHUtMNJuD71yD2idLZdXdzA+njgjlYz gvpMtm9j8i5ROsMunLw7To5j8ACcBreiZpA5jnwITofbko+K0tlzc8mjcQ7c grxvlM6ta45dOCVug4fbvu3w2CidSTeDfX1wFtyJ3N/cHcdZz844KEpnySVS P8F+d3Ulj8DZ8GzyUPMGfByXxD2oSYjS+XSryXfiYngRnofzYgc1S6J01psT L4/SmXGeeKHVNMW97PpEsq/D3lcv8tk4N15APsO8DK/CBXF/anbbcdeS78Ml cF/ybVE6w+5PfNDyFdRswIWxi3yt9emDN1s+GJ+097iJ+jO4tHwW5F7cg93x ZPyTvAYehq9G6Ry6Efg2Lo93sO89XBFvwzcsH0rNpSidwTcEn7f+o/BDqx+N H0fp3Lq97PsOV8UTyD+aY3HNaJ01NhF/jtJZcrupf4Gr4DHkz6J0tt0B8m92 zuPIX1vNIfKk9Kkla5W8ZLTOj5uKU1h+nJosuD4OJM8Zrf93lYNwnmid7xaA s1mNH86I6+Kj7JvOfArnxx44hJpC5vPkZXBzWQPk5c0+OHW0zs67SE0l3BKH kZfATfAZ8qLmaPIqVtOP/DnPtDvcjzHk1aJ1FltR/NLyRXhYtM6hS8DNcXs8 HbeN1llyt+nTAXeWe4S8VbTOy7tO3sTq2/3B9w3OkIfvMWo6W/1darrhrnge eZ9onVs3H/eP1tl28bg+bosfUT8Q98b3saett9nU9LQ+C/FfVnOVmjq272jO YSSuxDmso2YWHij3CN+DY3Cx3Nw75H7ROnNtBQ6J1plxr+gTjvvh5eSB0Tpz bSmeGq3z75bgSdE6I28VjrL61Tg2WufZfaDPXDxYnhXkC8yL8fhonbW3ES+O 1rlO76ifbue5hnxatM7C+0S+DA+VtVSH9yz/bprvxM3UrLTcl3weeR35Z7DU 7yIfQ76LmgPROiduNz4crbPk/sZ7rean/OaJ0ZlcR/GDaJ1bdww/itZZcjvw DjwKJ+vF/4Yn4LT4FvbFR6i5a96Pz+FJOAU1p817yU/Yvt85z63WMxM1/+Ig nAdn4Hxi8WXqM5tP4Q/UhOBs1HzF4fgs+Q/zafwpWmfG/cKRMTpf7Dh+Gq2z 8LKw71vrc4L8lR03B3kS6iNxPpwVx8u6oiaH+RC+Tv1UfA3njtG5bBdwqhid bXceJ7c+F3HaGJ03l5qeV2zfA+QXo3XuXkHyfNQk4hK4Ip4ra56ayuaHuEaM zpV7gTvhFfgl7hqj8+Du4nJ4Ni5Gn9Lm2+TuMTrn7gGuGqMz7J7iZjE6M648 9S3xMlwZ98Cr8XNq2lhekby9HbcUro0Xyn1KTT1zY/IYvAfXxRPxNlwf++Id +D31f8bobLga5IPxRln/5P1idK5cYfIieAa+QV7Qrs9b7I3X4lu4uNX8Qb3T 8tfkve38v+MAO+4PHByj8wq/4il2bp/xuBidc1eLPiPwZvyRfKid2yc82vIn uDFejJPWZ13Y+x3LvqViOT7ugg+Rn5H1T82cGJ0T15J8ET4k64F8qTklnh+j c+WS45l4H/6T+l/4Pm6KEy1PS81qfAR3JP8bn8SZyfeYs+D9MTqHLj3eGKNz 5dLhdTE6q641+66wPlnJj9o5Z8en8DlcCL/EN3E36v+xPBf5ZXxR7ll8E1/G Dmru4Ku4N75meU98wepzUH82RueF5cP3rT4//l+MzqorjN/E6My4Ivh9jM6S y4i3439wUfxfjM6h86b/czvPAuRPYnTO3Ui+C77gCnwXtKdmi+1bjJrvMTqr rgROFqvXuRTOFKsz48rg7PgJHs6+ufAzPBT/ZvkgnBI/xFWp/wO/wyVx+lid N+eO01hNOZzX+lTGZW3NVMEVYnXe3CR6Vscf8AT8u/WsQE3hWJ1VVx4XiNUZ dqOpKYZf4krkbua5vPe6uDvv3YPchZMUZ53jpvgTNXVwa/xF7lncLlZnz/nS s4Xld8grxusMmuq4lp3bVGo8rE8N8gaxOq+tHu4Yq3Prwqjpi5OxbxPyAeZG 2IF/URNBzSCcgrwBeXf8gzyQvIs5GPey+jK4od2DzagfYvs2x8NjdT7dAmqW 49y4DblPrM6MSyAPwhlxe/JQc1vsH6vz6VrjyTgtvkZ92ziuC47FEyzvSE00 zoznks/DOXB38oXmHnhJrM6e64wTYnXGXCccF6sz5qazb4T16UW+ys7ZE2/A efGf+DwugRdRv9ZyL/KduAD2xvtwIdwHH4zV2XPLqd9t+VK8zeod1GyO1Rl2 ffGRWJ1Pt5qa47gYHkh+KVbno20gv4pL4q7ks3E2PBjfsHwtNWfsPPuTn7Q+ m8hv49J4Np5h+w6h5p7lQ/HDWJ1/Nwq/i9XZcKPxx1idJbeLfT/jyngP/on/ wL7U5OEzqoNH4tfkFfB2al6Yx5J/s33H46Rxuu8knM7++6uD1GfENfExnB/X w1OoyWL5BJwiTmfJHaEmpx13Knm2OJ251hKP5VipsT8uZH2icSPcEp9k35K4 ET6Ny+PGOJSaSuZgXMZqtlLzmJ7l8HDyZ+ZAXCJOZ9UF4KJxOnsuDFeJ0xlz MbhJnM6nu0Kf5rgNvojr2/nEUdPK8vPkNXFzHE5eLU7nG0biOpZPwx3svkjE 3XAHfBQ/jdMZXjOxF+4snzvuH6fz4ObggXE6920W7hOn8+ZucNzO1mcZeUic zmK7Te5pfaaT94zTuXVz8V9xOs9uMZ6KHfgZ9X7YS9Y/eXicznpbigMtn49H 4p74IfXDzAvIx8Tp7Ncn5JOs50ryWNxXPgu8FQ/Ha/CsOJ3ptg4vwAPxB/Zd jAfjd3iu5dF4lK2NlzjKeq5m3+m4P35NPs28gXyZ9dmGd8TpvLbteFecznH7 Qv0mO58feC8ejT/hNXgo3kj9yjidQ7cZr7e8eG/uCZ7tc/BC8vFxOlPvF/se xmNxCmou4kl4PzVXzAfw9TidDXcI38VT8Sn8NU7nte3F5/AEnIw+p82p8S2r T4sfYF+576j/N05nnGUkf4UDcVb8A4fhf6h5a/kR/Mj2PYk/4WCcmfoP5p3k B+yanMFJ4rXPDVwcJ8qax2njdabbRZw5XufB5aFPVhyLL5BniNc5WbvwMbs+ u/GJOJ2ddw6noiYCZ2ff5ObL5DmsT2FydzwD3yIvbS5IXsTO5zZ5uXidDXcV 58PxOB81uc3XyAvG68y7e7iqfY5u1NTA8+QeacD5JnCPlOA5UZ3vEvL7+fid Q01DvJCaMrgZXixrnj4tzY9wY6t5iOvF6zy4QdT/No0MPyCvbccqT94eL8Ov yJ3xOq+tCrk3XoPfkPczVyTvilfg5+SdbN+nuE28zqerSs1gvA6/Jx8Rr3Pi fuL4eJ3F9g4PtZpa1E/Em/Fnct94nd1WlzwAb5P7gnyK1XzE4/BGXIOa0eav 5MFWX588DO/AHjgR78ZJuLYzzS+p7x2v8++aUDMH75X7kTwmXufffceR1icZ +863mhfkPew6JCdfFK/z45rTZyk+IPcI+RZ8BKfD2+N1Hlx6/He8znTLiPfH 60y6HPhmvM5ia02fjbZvavJ1+BDOgPfE62y4jtQcwidxFvJT8Tov7zd8Nl5n t+XEd+J1XltWfCFeZ8Blxkdt3+z4WrzOg8uGL8frDDh3nN3WTC58P17ntRXF KcnvYE/O4Tn5FVnn5G/idd5cfvw+Xue15cUvrSYlXmHXpyX7rrb3NZV1/gTX ys+9Qs3/4nUWYQH8X7zOViuG00zTWWzFcfppOk+tH32S2fmUIM80TWeuFcLf 2fcm9qbmi7kw+a94nQH3F3ku6h/hUuR5zd3xWpyDe7AGboE/kpfFxfBTuXdw KfwcV8Blp+k8tRH0dLN8GC5s9aWpKTBN576NJq+AX+JK5L+b/8B1p+kMtYnU NMDvcSwOwmk5n2rUeFheGVfHr/FYav4wT8ZN7ZyrUFNrms6Gq4lbT9N5Z03x KJxc/vt26tvhz+T1yHtN09ltDbAL/8DB1PTFv3Agdlhel5ru+Cv2I+9ibkQ+ wOo98CAs890e8lmPxfP5rCOpn4BTktempqOdQ3M82fJwaobbeTYmHzJNZ8O1 wD7TdEbbxGrcQ3ym1XhOtiT3n6az3objz7gcXkyf3TgfTsQJOBOegWfjLLgT 9fPMHfAMq2mH46bpTLe2OBqnx53xwmk63202fZbgbLgH+YZpOpetJ948Tees xVMTYfsuxNtwHjwXr7L11pX65danN95pNa1xqK0BB95n72UQfjxN55o58cFp OrttBT3P4MK4L/mlaTpPbTX5VVwM9yE/bzUufBIXxMuoOW7uT37D6teS38Yl 8GDyZ9N0ttom8he4tLxfmU02TWc2DaHmteUD8cNpOsftT3zP+gzF76bpLLmt 9fiusH9XuJWeH+2z20a+iXyE/A1LffkEnVM2BqdO0Nlq43BGXAWPx1kSdBbb bvqks3w0eQpcSY6FryTo3Kid1CS1fCJ5zgSdxeaqwTniggX4THFJnBNPoaZM gs5Qm4zzJ+j8tUk4T4LOX5uAsyXofLcj9K+E62A/8moJOjctHHdL0FlgvriK 1YzmWPXlfDjWZNxE+uOT9GmOG1ETSH2jBJ2DFoDr4Pr4ODU1zcHkraw+BLdN 0Flp56npiZvjSHJPcyD3ZlHpyWcXRe6VoPPRwnDnBJ09F4o7JOhstUv06YNb yb3DeRbCWTjPGGr6W36FmoG4jdx35ONxB3yLfBLuJPcg+VTzXfJA3BU/xQuw E9/AY2zfadSPTND5aDOxX4LOUJuNQ2zfeTg2QWeQzcfTEnSW2RK82HouwNMT dN7ZffqH2++uReRzsSd+TD7LvI38eoLOF1uKlyXoTLT/qDmBh+CXeD3ui1dR szVB56OtxjsSdD7aSrzJauLwX3Z94vGwBJ0ftxyvwd74X3quNL/Fu/Cfct9R c9qO+5n8HB6GN5AfS9D/+4db8EXL31NzAA+Se5l8r/VZjw9b/l1+5+NReAf5 XXMJT953ItdF1hh55kSdR5aE/Ck14/Ae8lcJOvNrL36boLPAduN/reZv/AiP wT/l7whzCvp8wJPwfmo+mQ/j5Ik6y+wITpWo89FyU98Sx+Cj5GkTdSbaQfwj Qee7HcBfE3Re2zGcIVHnqR3CSRJ1Jto/OGuizjU7jWsk6jyytDV5HuMjrOfs uEiizmsrgt3xbeyOS+OHODcuji/JfUqfgok6W+0Ezpeo892GduF5hp9QMwxX xE9xNt5LbRxOzVnq65kd3FO5cT5qzpE3TNQZZAPYtyq+R36KvHKizkTLSZ/G OAqPIP82TedjXsDNLB+Jf07T+ZiPsC/5QlyAfXvgBFwIO/F0fJMab/N13Ntq ruKuiTqD7ArulKjz1G7hfok67+w2/jNR54vdx6Nt/TzA4xJ1Ntll3D5R57s9 xBMTdYbaXTwUz8bFOJ/B5lJ4ip3zJWra2BooQx6AF4v5LFbbdX5CTbDl/+L4 RJ0v9hLPTNTZZK/wnESdEfYCJybqbLLnOAYvw+XpH2keQf/5uHxBvt+oWZSo s7r8ydcl6myyt+QbE3U+2lMclqhz+qrRZwteL9811K/A1ah/Q83SRJ1x9h5v t5os8v/X3l//72jVZN895Jvk+6Ula2sg351Z+ZxlzfC/jUzL9wrb+nKv4h+y ZvBovLmE5kNxlYZcK7wG7yZvhcfhFp7qCbgW2zpWv42aRtazKdvmVp+cPi3x RLyDmiZ4FP7FcRvjsbiBp+4r+ZcG2nM43kt9WztWRvr0wIH4KHlP7If34w54 Ek5LTSfsiw+Sd5Z1gNt5ao34tXyH4dU4JfVt8GScGrfHU3FrTz2u9OzoqX18 cHdPPW4Azkx9bxyM/y6h73cMPo49reYw7mb7pqe+K/bHXTw1l/NPSt4Mj8ce nnp9pE8vT+0ThLNT0w9H4By4v6wznBv/iWNwITwCT8eF8Ug8A7vY9vHUGXDZ GqrDybNibxyG+3pqT5kZN4jtX5465y4/NUPxNGqGe2pPmT1XgHwYTiAf4qmW +XTneL8D7TwHeKqjsb+nXnNZY1uomSr74Mr08bXPogQej+fisZ5qmVVXnHyc p86n+w174VCcBTtxCB4l18xT5985PLVGZucVa6j5bGqK4tF4Fn7JOfjhldjH Uy33xWRPPTfJf6d+Cl6FK+JJeAWugCfi5XiCp+bLcN6Get3i8B84GK+V+4Lt DjuHjxx3Ot6Iq1IThtfhUPlMbA1UI4/E6/HbEppLnyB5r3a/NKRmNf4bvymh udynEWyj7F77IL+B8AYc56mWtV2TfRPxJvyemlg7VnXyGKt/V0L7yLkleOo5 yz31H/ks2/es/L6xtVSLfWfizfgT+VxzHfL5eCv+LL+l8BY821Nr5F6uTc0c y2d4an+5R+Z5ar3cX3WpWYS34Xp4Gd6Ol3iqZbZgDfJ4u7YN8Aq8Ey9ku9jW zJcSajmfb/Iby/pEe+p1kOfAck/N5f76Qc0a67NWrpN9vr/kdxXehTd4quVe 8OC4G/FuvMpT95V7sxn5Hrwf/yyhfeSza0S+zvo0xlvwHnl+4r/xPpzMjf8d 75VnKd5r+U5PzeV+2Szvye73JG5qOYcm9Nlu+yZ103Uo/ZuT78cH5HlCfgqf l3WLD+G38vxke9hT5zx2of4oPkPepqHmR/FK6vs5eH6k43ieem5yj+yT3p46 O/JQQ3UtajrhY/gUNT3xaXwRn/RUX5DnJ9sTvM7KM5Cas/iSPK841j92Dkc8 tU8v+ndrqPUyOzIPHiyfJe6Nz+HL+Iyn2pP6e2wf8HpN3oeaK/iWPMfwNfwY l+RY1/H/8CVPrZE5j9nIL9u5DcT5eO9uvK/z8j6kjnwkfW7if/Fttnd5vcTj yO/jN/JscdNzeIVvyPHtPMu5qZ/hq556DnJNJrLv//B7/JDtI151Oa4H9W9x ElzVTfN31Dxm+5TXB/mOIP/XruEzT3VD6qfQ8zn+T56rblp/Wp6B5E/wRzwV v/TUuZM++BX+jF976nGT0ieC/D1OgSu66ft9IesZf7CaMGre4GT4haf28eJ6 vvPUmuTkY6i5Y9ckCv+HU5E3pc8nq4kj/47T4ZbkP3Bq/M1TnRa3Jk/iUM+m Pi3Ohj/zv3+1+uZu6pR4GjW/cAb801P3TY+Tsk3u0Fmc7alPiTOSp3Zozz7k M9g3lUNnbibgZFYzC6dx6DzKFA6tyYyzuOk6kfU/h5r05NnJneS5cH68gDwT zo0zyn68cuFF5L/hvLibm+ay70dPvT7yXmKo+YLT4HT87xkcOntxbkN1DvKe 7JvVei4jz+3QOZ45HeoCOJvU8sqH11OTF7vj3uybHeeR9+LQPuIlDbVezj+P Q+8LmenZnfqCdty78lsLd8WbcRFcBntSU8ze11by4rgcLuTQGpkTuom8AC5N Xkb+dzufXuxb2K5VfoceqxQu6tA+MluzpOxn72s/fcri6rhZKb7LcYqM3F9u 2rMa+XZq3HEF7CB3s+tQwqG5zPqc4KY9q5KXZ1vRofNJa7KtzWsIrsS2skPv 03/oWRU3wFUcapk3epz8D4fOIXXgC3x2V1kb4xtqT3kOT2qkfWTW5ATy3x16 j5/B1XET8ku4Lm6FL+N6uLU8lxrq+TTHdRyayxzSamxrOHRG6tmG6qbUnMO1 HDrztI9Dn+398D7yUnZ9ruKGuC2+iZvijnIfcU2a4Xa4iUPdAd+W3/+4M55D TSfcDTdi29ihs1yvN1S3J7+FW+BOcp86dF+Zu9rKoetH5q7ep6Yd7k5NB4f2 7CH3Hf3b4y74DjWtzQ9xR9wTt3VojZzDFfIG0hc/wl1wb3lGYZfc4/gJ7o4d ct/JcXh54qfkvbBT7lk3zXvh+g69PjL79Ro1HnZNOsvat5p5bmo550W4t/Vc hr2xC3s51PLd6inHsfw1PfvK/YX/xQ6pk/vaoX288FI3rRe/oWaA3Ef4rfy9 IPcFLudkjfO6IM9esnH2OUay72BbM7F4iK2l/+RvAVnbeKBDawbi9+SDZP3j 7KzVjTgC93fosUZzHT5TM1zWHvlIyRw6v/Ub+Vj5fOXed9NzGI6HybqwNbbJ TS3H/cuh5yCzcb+z7wRZD+Tj2U60NbaL+mCpkXvZTXPpP4ntFHv+7CT3lfPA Ux1qWUs/6emDx+Adblov/X+QT7b6X9jf+v9NTYDVBzr0uLJ+knIdQvF4/KWh vl95X7upD5P3jpNQE2T2c2gfWZ8hDq2R9ZZA/Si7L5JRH4En4D3kkdY/BXkc niT3KXm8XAv57BxqWcP7yROtJiOej/+R71m2MbZ+9rqppX9KeibgyXJfO3Rf WW/T2c60/BD1s/FUPNehPX3k+e/OfY4v47XUzLD1lpae8+Ray33q0Jp68v3i 0DUjM47TUbMQ+8n3C16LQ2Q9l+Q7RtZzBn6/s13KqwV5BmqWy7WT6++muTxj wx16feTeTE5NtF2TBWwX2TlkclOf4DqE4RUOfZb+Rv06HIrXONQTOLeVbFc7 dNZwNmo24HDpg1fhILl/HdrHH2dupPXBOCfe7NB5zTnwFjk//IDt/+T94wNs D/GaLdeQmu04FufDO+WzlGc75/m35VsdWhODL5Jvw9Fyvzi0v8yJ3uHQ+jj5 fqTPbofOXy6E9+Pp8rk71DID+l/6XMPLyYtTc1A+J7mn2O6R+4eaAo3UCfKM ddNznoULku9z6DxoN3wEz5PvR3wBL8N3qT9q7/GYrEFZN/J8lr9BzCcc6oW4 NPuelM8M33fT+rm4JPlxvACXwWfwYlwWn8VL8DmHHncprkh+ST4bfNih5yB9 nsvveTu3J/i89Tnt0D4yC/uiQ2vkmqRqpOt/Cv4dX8Wr5HsK/8QH8Cf6PMeb cVXy27KG8C22d3itxdXJ7+EN8jx303w1vs72pvmlm3qlPLfxfdv3rkO9Htem z2P5vPFHap7YWqpCfgOvwY8cmsv5vHfT9Sb71qTmId6E6+JneBu+4tA1IMd9 6tD3shU3peYz3ofr4xd4B/5GzzeyFnEj8nd4F/bA7/Fu/MqhNTtxQ/LXsi7x v2xf2r5vHVovM8d/0fOj9bmJv9ha/eRQ75XnqpvuK+fWjJ7fZB3jD2z/k/Uq 19NNLWs1Gc+l77ZvYkP9bZ8Jf3VoLut8IDUJfCe6peeZS88s+B95VrNN5tT1 loqalPigPFucalmfLalPgQ/J89Nd62U9NGbblFcw76sFNUlt39TUpLH6duQZ 8XGcnjwTPibPN6da1m1batJZnsqp+8o6b0WeGh+Wevb9zfp0IM+GT8gzhG0B p37WmZ1aI+u2IzU58Ul5LrHN5dS12ok8Dz4lzzd3zaVPVrbZnbquMrqr5fpk xnmtT26nWtZ2F/oUwmfkuUpNYXxavgvYpnfqvVnQqbms4Szuep5y3M7sm9/q u+Ki+Kzs6677HpHzwcWsfxGnWtZwdvJS+Bx2d6plvfWgTxn7zVOabVmnrs/K bP9w6vz67tSUxOflGShrwanrPIe71kueFJd36hrLiyvhK9jBvr87dY68N66G b8rzx6n5Ndyzkf7uuohdjfS4N7AXroKv4+G4OX6Gj7KGqzv1O3EwuQf+H+6D a+FbuD+ug+/Kc4b6ungGruHUmgD55yTUlLBrks1d35dcz7q4Jv4qzyunHkvO p7ZT+9yRe9apx32Ih9CnCX4sz3n2bYQf4KGNdJ0/wQNwA3xP7ilc32rqOTUP 5HyKs28Lq2nmVD/FC6mfhPNwDwbhnvin3F9sW9s5TCRvh9/jNk71W/kuoGdb O4ey7lovPUdQ3wo/xz64A/6MC1DT0a55J7ZdLPenphv+Jtec7RBeUZxzAHl3 /J3cF3fGX3B7p/b5JGvVqTWh1Bdy156yBorhXvYZ9WM7gFdq3mMPp+Y/yEPp 6YWTkjvZuniF0yecvA9OTh7WSPNkuDdbB68wah42Uvckj8B9cQrs7VRHUBNP PlDuPfI2nM8gnA6HkHviJPhPp+YZcAt3Pc9UOIaa/jgNTsB/4Yw4BTW/7Nmb 2EivVSbyHw7N5TfAFDIfeS6Qz6RmFP4Nz8Fj5JmCu9JnLM6GRzi1JpZznk3N SMuHsh3OK5p8tFPrc5DPp2Y8ziXXkz6TcU480anOjWc00n2z4MV4Ks6Hx7Gd YPXd3dXSs5e7nrPsO536YTgzXor9cAHcj5poXBR7Yn97jwFsg3jFcZ4u8lBc kDzYqS6MV9InBBfByxtpfSG8DAda/WocjovhPvSJsH0jnXrc4ng9NbHYHfs6 9Rzy4wHUx1nNWmqicAlZP07tI+cc49Qa+b7r2pxj9+eZkIXfENRPIy8lnyO/ vV+7+O7mt/cW8lnkZeVzZDubVzzvcTv5XFyBfGsjzcvh8ZzDXfwH3iO/1c1L nepp7JvIdgav0uTDqJ9n/RexXcLrd7ybfZfhKrI2qFmIy+Od5AtwJVlLTt1X 8sHu2rOkfL54le17gvqtuCEOJN8mzyN8QP7WwDXwQbwe18STqdlg+Wqn1lTH 1+T3mzx38F68ElfFnalfY2t7hVOPm8B7XOfUPrLOtzj1uPJ8O8m+O3AjPMpd 329Fee7hnXaeAXgzro//oX6TnfNGp+ay5neRL8aV5V5w6vWRPtud2kfW+Rlq DuAmOJSeB3FjfJb8MG6KL+DTuIWsMWrO4Oby2bHdZ+szxF3tgU9Tv9f67Hdq T1nPR9ket/V2npoT1ueUU3vKuoqgz0ncTN6XUy1rOIz8iJ3nIada1v8dp17z RK5nLDU3cGvyq/S/hdviaPJLuKW8F6da1uElai7iVnIPUrPbrvkp8l32Xs6y Pc+rDP7bqTVyj0e5ay7X5CL156x/HPlt3AbfdKrl+l9z6rnJmrxC/XWriaH+ qp3DZfIrdv6XnZrLvRPurtdNPosJ+IGtq9+8eP7xGosfyG9s8h7yGTXm9z1O mZHfBGwf8/rI8/Y2NU9xZzm3Rpp3xPfZPrR1+4U8FT2H4xuNNO+An7B9xms6 17ke5/Daqd+DL53qbnKvkb8118EvnPo9eJc+/+Ku8nk10j5d8BunnvMMejan /qOcM/k6nIRzGIgfU/+B3BM/l781sAv/i79ib/xCfufjPvg/p9bMpOcz8k/Y i/y9U/v3lvfo1PpZ1CznWD+szwf5Hc5xB+NfTvUguT7kr/h/d5f+ODn5EPyd 7Cevfvh1I3V//El+81MzVM7ZqddB3m8yL83ncNwVHDe1l55zGrbpvLTPNvKM eARO76WWc/hGzwx4JE7ppfsOE3vwXYQnyzPEXftI/pX6tNZnM3lmO5+k1OfA 4/Fs8pxe+rksxXm89Fpl99J8HM7ENguvUfhnI/UYnIQ+Wa1mpruuQ1lXqcnz 4ak4C3bHIfJecEHsjwuwLcRrPtfhGPsWsTyth+a+uAbfLwfwR5zLS89tEs7L Nj+veeybxkPtQ54RF8WBcl/gkjgUu3mpF1FfjG0JXgtxVmpK4zB5j7g4DsKF vbRPAM7sofXB+Bzv/Zg9l7KRlyEPx6W81EvoWYttHV7T5fkmv/9xpJwz9ZVx nDwryKvgaFzBS2vEuampiGPkuU3NGLuvy7Itb33yUVMVx+PqbGvySpBzJq+N Z+Dr7noOkv/BthqvpZxbfg/1NPLfvfQcYnER8np4Jq7Ltj6vWfgRfVrJtZJn hbvm8r4asG3Ea7ZcW/ZtIp8F9vBSz8X3qG8s6xwX99B68R3yhtb/AW5m+5ak pjlegFt46XGXcc7lyNvI+cvz3F3fr7z3s/J73q5/aWpayueLm3ppn/m4tZfW LMEFqamBE3FF3B6vkHuTPh3kWHJNyLviVfgleTe8EnfxUstn94q8p9W8xX3w WtxR1r59di/c1dK/Mj174NW4u5fuK9e/F1tPO58/qHFaH5eX9pTP4g19vPAa XIWa3uaq2Buvww4vrZHP/Yy7rhNZz9Wo6YfXy2eKR+Btsmbwn3gDHsB2oH1e NcgH443ynHTXXPZt56XXJwpXoqaTXZO+bPvbGnjnrpbz+YD/sv6HG/KswrXl 71Yv9VbyIWyH8dqE69NzNN4hz3n2HWqf4yAv7SOfY20Prd+CR3npfbFd1iH5 eLwT98Er8S28nz6T7FnRhHwK3otPkU+1Z9EEL635W57h5OPsHILkf+d1DDdi 34l4Fx7rpcdazpqc7KV93pD7y/OG1xG5VtQH4+O4Aw7DJ+SZVlJ7Sk0Lcj98 EDfHvvgA9vHSfIU800pqz8PkobLGef2DE+T+k7VHTYR8JrxOyvqkTyw+g6O9 1Kfl2UWfGKvJSU05+xzTl9Se8h4zltQ+0r8TNZH4FO6K4/FZ3BvPxJdxKupn 2fn39NDzuYhneGl+CcfJGud1DmctqZZz60F9Ir6A93nps/0zbkMegI/KM5D6 udYnE15k19BJzWJ8DS/0Uq+Rv6HIl+Eb5EPxevwEz5NniX0WeUuqr8j3EV5q 73GJl+67Vn4DeOn6WYcH0mc1fkDNWi/t+UieY+y7Bt+T7xe8wq5zLrzOrsMq L62R6+ZJnzl23BF4I36OJ+M9Xvq9NhJvwf/izXJ/WM0E8u34Hf7hrrms89le en3kWjmomY+v4g1yP/F6hr+5q+UeSc257cCH8BTq9+L/8G4v9Qbe705Z4/I+ sS81+/EXaibiv/F7vM1L+7zFkzy0/oOsf3wIf5P7lGMdts80hL8Lw3jdoed5 uTby3nBdao7hr3Kvse8/+CcOxifwL3zES2u+40Dyo/gH3oQz0LM0f28e9NJj SZ8Q8lM4CfkZWXfyrJB7hPwCTkEe6aHnkBKflM+N12ZqQj3UScmPe+k5bCKP Jr+MU5Nfks+QVyrcgfN/gDPhZiU1l/5X2V7nlQa3Ir9lvuGlTofj6XkTp8ct Smq99Iwlv4bT4un4Ds6M21NzF2fE97z0uFnwbGr+h7PhcA99v8lxJ+ofWc1M 8vv4N3zbS/vIOT/00pqsOIyaszgZnouf4By4C32eWs1C8pc4D+5B/grnxC+8 1Lnl37tR8xbnwy5qvuKC+Jmsa6vvVlKdHS+i/g3Oi1976b7b5L/5kTUl61bu R2r+w4Wo+eylPWVN1qTPJ1vDS6h5j/NTswJ/wYXxRy+tkXNI59I1s0f+PR01 38mLkDelTxqXXrcG+JetsZ+yjuSfaVDfiDyZS9fkKg/Ni1L/2Euvj7yX+eTP cS78TXrYvdCnpFrOZw01ydm3ON6A0+KSOLVLvZtjpWCbitcu+TuIfdO7dK02 xilduj6TurTP3/LPDTy03o28JTWZXLpWt5BnxmVxHbb1eHnj/GwL8jrEvtvk dzsuT96WfbO7dE3ukL8LcEWcxaU1+6hvTc1vLl2fGV3af6/8u06X1u/HHanJ 5dJ1e0V+/+M2OI9LfVB+y1FT2aXPqK64gEvXcE62uXkdoOaSh7oV+TUPPed2 uDP1eV26nrvjwi5dqw/kew33wLdwEdwJF5XrzesIPWdR7467kJdwqWU936Pe DXfDdzy0Xmp6Ul/MpZ/pffJSuDueQ17a6su49LiSl5L/Xgg/woVceg6HOe4w +T2Pn/J+vdi3LC5ATUmX9pH7pbxLa3ripR66/qXmEf6dvDdOwd/y3fEk/Iq8 Me4n9xeu7tJ/912NbQ1eTnmeUF9LPi/+9q9YUvMX8huSbVVeRzm3xx5qT+qX UFPb9q3pUrvwS2oa4L54ND0b4pfyTKD+Dzu3+i7Nj9Gzakldb/Kd9YJ96+I+ 1FTk+njIOeBKLl0DvXAjl76X4+ybhP4d8Tjyt+zbFP8p95T8tscj8Q/cGo/G 2zhWGzwCN3dpzUn6fKWmheVN2Dbj9Y/8N0IurR9F/pOadniM3FMctxMeL892 l/o09a89dN/+5Mmo6YInyP3Ctj2vU/LvIj3UY8mTU9MVT5TnvFP/XaH8M8bO Ls3PUL+Zvx+n2z9HykL9IPIQWW9yLXmdoyYtuRP7knu61OflNyG5A/vIc6Ox 1k/FC9gu4vWYmlTkvfAU8vTYG/vjTHgADsKZ8Z84GPd3qS+xbwbyvjiA3Mul +16Q/+6C3IX9yH/Dg3EozoqH4DA8Rj43XjPwQJfWXGbf7NQMxxHkw+Qz4XVV /t0H+Sg8nTxHY80j8V9sh/K6Is+Wxupw8gJ4NE7AI13q6/K3PPkEPFvufdbD RDuHPnJ/8LpIzXiX5rPIb5bU85TjFmHfsXgmLo4n4znyfGus+wbKswJPwXPx JJf6Bj1LkQfgheR+LvUt8tLkQfJ5kAfKNeZ1mzyKbQyve/LfHFLjjxdQM1U+ Z143ycs01vrF5GVxKF4izwccgZfhCjgSL8e/4zi8Sn4DuDS/K8/Yxvq7a6nc a431uCvlHsTReAWui5fgbbgyjsercS08H2/Gf+BEvBZXxTPwOnnO4Jl4PZ7m 0poHHNeN3AfPI3dvrO9rPq6CE/AaeS659Fj3qZ/u0j4P5b9BdelxH+Ha1C/E W+RZhOfhTfJd1ljX+VZcA8/BG3F1PBtvwLNcmv9P/vkk+VK8XX6fuNRP5N/h kl+Ve0q+N/E2fAgvk2vDawf+zjpZbV7pUv8tzyvqV+Fd+GtJrZdr2IB8uUv/ PUhjvBbvkeeM/F1g+66X8+W1V55X1GzGB/AxeT7ZtUrGc3KL1TSlZgPeJ78f XNpnN97k0pr9OEkp7Sl5Crzd8gPynuy+2OrS/CC+zvnstvtol5wjr6O4Hcfa h4/L862x5sfk94CcO6+n8mwppZY+6fF+q9nrUst9dJ/+R+x+6UCfo/gEboV3 4sP4sEvzZ/LMKaXnKcdtT81BuRa4Ez6OT+GUuAeeLM+xUnqtpGc3l+Zn5b8R lXvI1vBv1JzFp3FX9j0vNfK8Ir+Az+DTLq2Re60LNWcsPyHHtPv6nEvr5T7q Rs0lfA5np8818xWXWu6vLKV0XznnHtTfkP3xRbaX7Z7NVkot55OjlJ6zrMPO 1J+0c+6Jb+OLOC81z/EVnBPfsZ535R6yezA3+f/wJfzApZb7ojd9Hsqxca5S Wi89e5Hfs3pP/Nj656HmidU/delx5V5zUvNC3qc8Y116DvJMyEf9S3wVO6h5 Zn7k0j7yDPnXpTVyD75213/eJf8czIv6N+TXyd+W4Zr2o2dmntvkH8lvkX9g +5/dR8k51me7FwqV0vwmnkd9TW+uDb9zBuNk+H9yX3irH0h/at/bPduXmi/4 Nv7B9pfd+2nomdRb12d/ar6T35W1R/7N7tNPLt33X/nv3EppTzn/h/wGSOmt v9/GsW8W/AbH4d9wOs5tgfyt4a2/eYaRp8NP8SL5ne+tv8FSeWvNYzxffr/h XOz7F07hrb8th+LU+IlcE289bnJq0nprH8kze+txX8p3H/XZ8FvyYqX0/cr7 mkCenfwdXk2eCfenzyjyjN76Oy2Dt+av8Z/kP2XNyXPPpdfnhfzzc2/t8wq3 o09+nIE+AdQXwN/l+4K8EH6Po8lL4tTUlCYvZe83N9u8cp708W+s/kbuh/Pg r7LevLXnO2qKsC1mNfXpU8KO5e6tPVPRP4x93WQd4OLe6qQ4iLww/kl9QW/1 D/lO8dZr/on+M6n5Q64j9XNxNZwD/yG/8+16lvNWpyefRk15e+8TcS57v5Nx TvwRl2Zb1t57Dm+tec2xypbSXNZDDPVlZB1Q05W8Os6Gq3qrs+PK3npuH9l3 BvVVcBbyRPy7fGY4AVfCGeX3v7fmH6j3KKXXLQn5ImrqyHWXe4ftELkm1PSl pjUuQr6Emvo4P67HtgGvfHgZeSNcEHuW0lz61GZbl9cX+jjJvWzfBY01z40b svWQzxJ7U9MCF8LNvNVy3DXUt8LFsRc1Ta1+BXkT+cywo5T2kfNp6a3nXAz3 J29nHo574nJ4Hfu2lXWA/yTviEvgTeSdcWk8iLwLdsftvbVGvIGaDrgkbuOt /WXfTt5aXwpvoaabfMa4J3162f3bw1tdHq+ipjkuindgT1xRPmu23XmVkfu9 lFp69sIOu26NvfU6yLXq7a15BXxefp/j5nI92faV+4Lrf1l+88t1Ie/nrf5O 3oee/e0aOr1136/kg8lH2nu82Fj7tMQu8j72WffDA+38B+Jhdj1vyu98uV74 tvy2x53xUG/Nf9H/T7aD5F7DVxur21IzgD5/2Wd9vbGuw/Z4CPkY+1yekfth LzyMfLxd53FsJ8g9Xoi/Icgn2XW+31jz7rhQadZgH84R/5+ms4yy8ti2KAR3 d7cATTfdjUMgOLQDCRqcdm8kWLDgHpzgHixIcHcJTnB3hwCBEOBib66x6/2o seddWbVrV31Vdb5zmjdet1CrLRn+H4m9dCfANxsat8JzX98F4PZwEDmHuPP4 c6hxJ3gAcRAtBX2f4B+mdUR/CA/Us9E9EGp52sKPGppffUfBxd1dFEz+4aH2 PX1oqHGozjLxV90V5F+OZ6yeK/p/9B2vs6o9if4LHKe7LtQ8UfBmP74PaG9k 5Z7C8xe8Cn0EcZTL8548E/Vs4MnEqbTUjJW5Ee/lqgM9SyOrYQQ8gTiJlhLP 24bGiejjQq2GmXA2/DM1BjyDOEvrhv88NSyFJ6Jnb2T6aHg2ca7mjmc9ngUu 57xQ43Fwbvzz4fFwzkbmHwvngOfAY+B88CKX/xx5FsMT4CWhNq7qL4BnOTwZ TtXI5tsfvoB/heYG50f/zfHCUMsjz7JQ86jmlHimwP3g0/T93dVTEH0VPAW+ gr4OngZ/y95br/MF/xFqPF13BZ5NcBJcjr674UW6o4hrXd8+HsaVM3M28GyE Z6tvqPWdpWdN3ErLwBqWxrMdnoe+M9RyZkYvg74Dno9eCt4Cz9HnL7wLXghv CzVPRvzLytg+0e82Xnj2wkv0GQSfgFfD3vABrS+8n3iQ9ps+a9APw8u058ua vhheGWrro/X3R18Tav8uZQ9xn/M8KGusenzJ8ye8HH6OflLPAD4eaqz9fIR4 jJaNmqvhP621Q68AH3X+Q6GWJwueio3MvxL9VKidizXwa/Kfc5ybNU/JXXEG foN+Ef0PPUf6Xta6w2/Rr+hZwudDzSOugecsvE73D/Eubbs+E9EvwBvgM6E2 lnJeCrU8G+EbxFt6lnAD/Hf0POBG8H14F/yprOWU5z183fWtg+cavEX3cKjp m+EPZS2n+B7xAW0n/JL4Ss9M9xXxsfYKnIK5P3P8JNR4LxxA/qd6TnoWnP2R cAT8pazl1ByTe1ge5ffD/wjeo/sTfg4fgJvB/8JH4O/gN/BROI2H1bNfzyLU 9Ow8r7+JL5yeysNY9YTQ9x/4kM5smN3tGqse+k30bXAm/O/cWK3RP8Gn4RfU /NntgY+hxqd0n+BPHmacD04Pn9c6898/0HJQTxYP42PobciZDM9fWodQ66tz 8VWY7R/tw/Z4Urs8acMsp/ZAXvKkgc/B7fCkcNwBTgdf0HzDzKO91Bz9LWMc hzvCGdEvwqFwXve51gnOAl+CMxOzhtl+6IyeHb6sO9DDdPX9L9TWR3Npged/ 8Ak4A/89U5jt8/wexqqnIJzD5S8M54OvwHnCjLU/cxJzh9m+DSNnAfga3AXO 5fzZwiyPnlEhD/OrtnA8heHrcFH0Iq7vXeJ92ljuQE9i+TCrsxie4s4fSd+S 8E24OHop+IbyhJlHey8CTzGnJ+GJhD3JWSjMxtLejsFTGr4DlyWWo+Xkuf+M 7gW/R//Gw2p4C39NLBNme7ikh/EtuESY1aD9uZO+PmF2h3sTfeWHR6PXgr+C L5c1faruLmIl2gd4GJ6q8Ce4cphxLuqpw1hV4I/oi8qaX+8bQ/FXdPpC9Opw B/gaXAP+VfWH2bi5yTMOf204FTXENbL53sPTmPx14BToI9FrwsngamGW54vu wzDzpETPit8jzPbnNPz14MzoU+D6cEZ4FuynZw83x++vPQo3DjPODs/BE6Q5 wu3wtIDzwg2IjZz/ew/jLPBs/IF6RnBAmPXNx7yCiU00R/T5eJq5PN+HWc4C 8AL07+SH58EhcB54Idwczg83DTNPfnKGh9mekWc1nlbw1/AGONTtpabU9oOb bxtiW+0PeB2e9rAH/Ecj08vCdcNsffKQfwZ6Qzgbektia9WJvqaRcWn0ePJ3 cH0T4TDtUbhLmLHWrSOxs1vnjfSNgL3g9XAn528XZnk0VoKH+VXbJjzROmNw V/QY1/dX4kxaK7gXsY/OjN638cQ7fyyc6OrcQZ4k7WPpYebRem5Gj4O94agw y6/1TwgzfwV4N55u2utaH3L2dPu/R5hxdfTJ6OP1jOGT+Htrf6hmYndaIWrb 08i4GvqpRlZzY3gf/KP2MfwX/JP2HzyBnCO1h+CBcD/4G7g/cSAtAB6HPtj5 B4UZB8LnyPOz6zvaw/yq5yz6AOe5AA+FQ+DxeIa5nMPDbFzpl/GMhpvBfcOs BtU8Ef8YOBi+iGeEm/uQMMsjfVSYeZrCrT1s/+tcXME/TvsYfglvgKN0dvDM 1z6Dr6NP1tmAJxGn0JrDN9Gnuec+zcN05fmFOJH2vc64h7HGnQ5Pd/rUMOOW 8B3yzIZ/gGfimeP0a+gT3FizwkxvA8/wsP2mem7hmeHqvAvP07mCx4bZHtBa zQ2zuSj/33hWw+HwPXgh3A5+qHd7uCP8CF4Gd4If63uBzgy8OMw8xdg/C6hh CdxedwVxEa0o+tIw8xeHn9J3JRyqvvjXuJyrwozD4PuNrK/yPIf/gCPgFcTf 3biLPIxV21J4ncv5dSN7t5/L/l8bZrrm1agceyqcz44s3MuN+ZxB763zS9zi nu9K8myHI+GtYcYx8GtyboNjVYOH+VXPB50znU3m9Q+ezXC05oJnl+PP6Pt1 DuG16AfgOJ2pMOMeyoNnj86h7oEw66ux/kXf6fzN6HsYzgQnp/4julN0Holn aT/DB8PM0wvehf843Bc+RjxBK0Wdqeh7Cu6PnrKx6f3gP4lHaSXxfNXYWH1T w6fhAbo3woy/xpMR/Tw8FP0QY13Q2dZdRNxLK4HnXJjpQ9D3elidGjctfc/A g+BM8CWdSfhjI+urNcmMfhkervMbZlxGdxR5brqar4cZj4Rz4L+t86z9T7xD K4f/MfGpzid6b/reCLM79grxGq0snuyNzT8aPRd8Dx6ndcP/EB4BF0B/BE/W mqP/7TwPwkyfoDvTw967VMNJDxtXOQvR9wk8VZ8j8Bf4HFwJfq49DWdnf/4P Pgk3Rf8H/hNuDr+Gj+uZ6rsAXAV+EWaeQ3BWPFfdOuz0sHlpb1yAX8KT4Gdh NpYX830VZnmOob8Ls3FPwT+Q5yN8Rvch/F7PG27b2Pb5WbgF/Fb7SeNS83+u tjdhppcnf3s8yThr57X/w4x90GvirwC/Q4/Bkw2+o/1MTEHzxdMFPTV8Rfsz 3LgCemf0VPBl9E6NzX8J7gh/BV+Ew+C08DW4MGOlc3nSEzPSrsNReDLDt+Di xJK0v8X4s8A34Ag8GRynCbc8V7VXw81zEy5aznJqrJJwdpezILEwrRI1Zw03 /TZ6AjnzwA/g3MS8tPtwInp++CFcppzp97Sfiblod3WnlTPWWiXhLwA/gvOF G1dkrB7oReFn6OXxF4OfwHHoOV3OIuGmP4W7NbY65ekKF4Ifwz3hEvBzeBn7 Z6O7k33K2Vop//ow03VPVkKrQvsA96OvB/wv3B/2hN/AVejrBb/SHMPNI/4J T1n4NVyKWJpWmbmUCzd/FXggHm/4LZ7BcEX4f7BvuHF1PL0bW9+Xuj+puXK4 3e3lte9o1fAMamysvbffw2oeCPdC/xp+AQ+Dq8Gf4F/ghnAaPi+Gw9Xhz+g1 iDVpNcg5Gr22+0ypFW5cE70B8/0WToY+orH5v9C3Dvo38Ed4HHpdOBWe8XA9 7XW4friNW4s8k9Abw+nRq4ZbDepbnzx+Lqcf3ABOiadOuOURNwo3T23yhDZk vd3f/k4w9wD0Ufps7WJ/T3yiv4kwVlP0rPRtQmymXPS9iP/7cLv3AsuZrjU5 gX+qaoUXwO3hfHDbcOPG9A0ihtDqwk3o2xzOgKc18QdaI/T59G2n84A+C24F 54Bnwi11fuDvwq2vapvW2HJmhhfBnXQG4N/hWJ1neBUcB5eCOzNuKFwIXo4e rjMAd0GP0FmVJ9w84pHo0+AG8EL8HeH88FK4C1wE7hBu4/pRf1i45SmKHhNu 4wboOwj+BO1p9HmNbb554LVwIlwGXglHwyXgFXAUXByODDfdnzxz0dvAudFb hNv6NECPD7c8gfAuPL10XvDshnvDVeE9cF/tfzgj8xoSbp8pLeChcDb07sQf acHk2dnYuDL6DrgHXAnuGW45Q/D0Iw6gNYUP4hmkvYpncLjlFDcj/89wJnhg uPF3+Pfi/0n7GL1PuHET9CnhtuZ6LsPpO0F7Dz6Of5J7FkPRR8N19IzCjbWe R/CM0h6Dt8PddC/A2+CucAV4GHGEzgKcFG6eIMb9s7HpytmK/MPd3hsBT4br wxPDjfXcx4dbbdpvx+j7i/MMwz/O1XAUfayrf0y46ToX+xvbun0Dn4R/1f6H DxOP0NrovJNnmdYZ/RSeWTpHOgvE2W4/n0afq70Hjy5nuvJMJ85we+kJnh1w F3hUOdN1TucQ57m9NxF9iZ67zlG4sZ77Rfou1XOBf8GzUHsMPo++wPnHlLM8 qu23cKtZ++0SnpXaG/BdeBPcFu6Pf4V77lfQV2s/wLfgtXBrzRHPH3BLneVw 8yjPIPRVcE2d33DL31znK9z8rdBvk2e91hDOhn9zuL2fbAw3/gH9Ap7Fbm0f w1vhzvA64gZaC3I+aGzcQWefPNsczw+3ddC+2hJueietG56dcEd4F3GP6iHP J/Ls17lC3xtu3Bp9M/59cHft1XDrqxpS+7EndK7gD40tjzz/g3drv8Jf4INw Lzgl/mNwP3grOY+7sdKgn4IHah+Gm94XPkA8ROup7z5+xr11Ruj7p9OT+9k+ 7AOng//SudU+x3Nd5weuDp8Lt8/0s8TzzpMR/0Wdf9055UxXbbU9qTeCOenz Itxqa8s6nCaeobXTnVPOWONmIs8leJieI3wDHgVfCzfuhP8y8aqeC5wTzy14 rM4Rea7AQ/Sswy2POLOf+YfD+1jD/nANOBf6bZ1P+Ga48Rj4H+Jr2nStITkf ur4N4cdwcs0FfuJqux9unlDqyUfOB/BErSdz92TuO+E7aPf0rPEUxPMMnoL+ nPiSFqHf38j5Ck6n+stZDZPgp8S/aeF4CvkZT0V/FG41aKzi6G/gmfC/xP90 F+h8kecrapgNl/AzfRb8lvieFqW/f6F/1L2g/RZuHIN+m74f4DnoJf3MrzzX 0d+5/GXRP8MLYA/4i86J9liEjRtHnsH4U8Lfop8pZ/Mdr/sBThVh43rSNzm8 GP4Ubnli6ZsiwjzSi+B54Z5LeTgN+m+wN5wWXgpXgjPBv2ttyZ8ZXqH9GWG8 En6Bns3xGzg//If2PDEDbTlcwc9YfavAWeHVcJYI66t/c5U9wv791Rq4Bp7c 8Do4b4TlXA+/Jn8e56mGJwe8Fq4J54M3aB9GmEc15PazfaL1qQUXRN8IN4LL wLt0puAi8Ga4MLEorStrVQ+9OLwNvY6f6Vt0t0TY+iTob+7Uk96tWwFiIVoS +rd+xpt0/+Ap4fJ/gcvC2+HSEcbazyWJXzvdj77l4D1wA7gUvAMuFmF5tuqZ ljO/2CPCzsVuOAVnxNtxLH07wnfhILgCfAAOgSvBh3TWyFM5wvabT4R5ulF/ AJ7y8D6trfYa7TgciO4L74e9ImysvXDFCMvTnb7Vid/QftTfqqinFnwMTyv6 1oFPwS38LOcJfXZQQzV4CTwNrhphn2VVIkxXnc38LOcRPS9iXdpJ1UMMpvXS 8yI2oJ1Gz8m4jR03jDA+A7clTyP4LHyKse66Oyqbp+VUPdk9LY/yt8FfH/4L bgf7w+fgTnAT+BLcGW4KX4Y7+lk9F7XOEab3pjY/YgCtp77L+xmfx9MBDoIv wD9G2N0uvSl6DfhPOBT+Hr4KR8Ct4RtwJNwGvqm1jTD+ifzR6O3g2+jd4HD4 Cdyc2JLWV39H8DO+jh4Ft4VvwT9EWN9+qjPC9k9/2IM16Qw/UD0RlvOhzgJ6 F7dPYsjTAb6js48eBh/UWkWYZ4B+i8DzHXxFn014It0zzQN3d88lKxzj9ls0 MZY2SH//om88/B79Jz/TX2tvRNj69NF3B/QW8DWtFTGK9hTu4Wf8DP6G/Anw W3gIeo8I+zztFmH8M3kSdQe45z4MT0/4EzwYToL/B8dFWB7t51qe5ldtw/H0 gT/DddH7ur7fRrL/aUlZ+exHG+WeUT08/Z1/JH0Hwsnw1EcfBH/RfCPMoz02 Ak8/p3fBsw8ujL93hI2lvTcKz2A4OfpQ4nC3T8agj4RToDfytBq+gn8mDnH7 oYGnsWoYEGE1aO+N1b/ngVOijyaOdXfLVPRf4UzojT1NV/5xxF9oaeCr+t6h 54R/QoRxBvQn+CfCv8ET/cyfDvZCHw8/1vOl7xTtE96RpnNmp7o80yJs3ME8 r+n0nQlnoW9DT5uv5j4H/6wIe4+dgmc6nBF9coTlWQrPiDBPZs0LzzC3JjPg OXA2uBk557o5zkZfBOeEm6MvhrPCCyOMc8At0ZfC2eEf4LVwbngecYHL+b2n sWqeQ87f4Fzwkgjrq/zLiCtc3/l4fofzwqsjLGc+uA15Vrm+8/Ash/OoHngN nB9eGWEe6XsibM8UgxfhWQcXgJfDu5y+BN4IF4I3EDfRCsKdGWuL09t7mq4a ZkfY+mgdZtJ3vpv7H8T1roZ2nsaq/zc8W92+7YS+2+XfGWFcFN5G3EErAq/A vxcurmcRwOek9kM2PlMjLM8Q9sD1suafkYl1wn8ALok/jPwHXc7XxDc6D/jP EM/RPNAj8Pzp8q+h71G4NByJfgwuAR+KMI9yrsJzGC4F74+w/PIciTD/1/Ba PCfgMnAMef5y+qkI47LwbjyP4arwevgsXA4+Tjzpaoj2NNZYcZ5Ws3Kuw3/a 1b8RvgB7wT3w3IV94Hj4ohvrEvGK8yShX4c9dTYjjOXfSp5rsC+c6Gl+1bMJ /TJcXs8FvglXgLvhueX02xE2bkU9Rzz34crw+QirQWP1xP/A9d2B5w5cCb4R YXk07r0I80hv5Wn7X2dqF/5HcBX4MpyFu7SZ7ig8H9Br6FmgP4e/gf8mvqAN 41kfQv8H/hb9gJ/pNXX/EJ+59e/jaaya+8Ov4Orwywhj+Y/S9y1cDx6M553L uRf9qfP/F2F6HfhPP9tv4sPwv3Bt1e/PZwjcjD38MML2wFDqfB9hc6mP5wL+ dMwxBD4Bf0JvqP2jd3v0xvBYakgB+8Fn0FPCAfCXCPOMIOdIPMngBugf0T9H GH8Vaf5ReM7SNzUciD4Gf3qXP22k8Rg8J/2sbyPtW/1Wj/4T92oqYhraaP19 ys84CM948mRy9fiH298K9btrhkjTNa+p3O3B4fa71nH9xo4+Uu9jxBy0ceS8 oe8CcEv8OSONf0H/lfy54Obaw37m/153L7E1bYl+B8OTHW6q/anvCHAb+D5c GG4PT8dTxPUtFGk8ib6z0AvArdDzRFpf8S365tUYuuvwFHe1PUQvCXeEPYnl aWFw0UjzaKwneErDXeCviWVoU7VuzN0DnsDc53qa/gOeEsRStCl4HvkZd9Ld jqcc3AEuG2msnMvQfdy4L/SuDkfC+YkFlZ883pGmT4ef+1mdETovsBccDv9O nopwFHzHz/qqnlf67gDHwBUijWeQZyX+Gm6sapHGs9DvMK+a8Fy9dxFr0RLw NCA2os3D8x85qzu9MrEqbSb6ak/za6z3eGrDXfV5hF7PvUd90Ps53B1Ozpny g/vAdSNNn0Oe//nZe1c39M9+Nm5PeAt5GsI94PLwD5H2nvwVefzhvujp4Rbw YDgFHKQ9D6eGQ+AB8Gb6NnE1BESaZz7jvmasKnAs+r9+Nq843Xv4A+HecONI G0scHGl5FtL3+0gbd7H+LsxYreCheNLBzeGfdQY9bZ+rnm3wd25eGeBm8GF9 j4g0XXXuR28LD4TbRBor52f0cfA27VXyx8G/wu20v2hL9TsMemd4InrHSOPl 6HnRO2lfoWfxN/8IODPcHh6uvQeH6kzBBeAweDIcrv1CW6nfaqghOtLe/fqr RtoqfZ7quwA8TGeTvhE6L3CXSMuzgr5RkeaRftDTcmp9jsHxrp5e2he01fhj I02frs9EPN10vuCueoa0BbAXY/2oOwQu52/6IjhB+061kaesv7H8j8jTU89L n7+Rxt7c7ZXw/AT/jt4UT79Ie/88Dye69ewbafpKnSl/q3MF7Av31jrDz/EP cPoV/X6i5wpX9be1WqM1jzRdd90vyk3bQJ218QyDN+u8kGeE47roI+Gt8JBI 86zVbxfoQ+FN6IO0992zGB5p/j/w1MczGt6O3hAeD+/U51Gk8To8Lz2tr+b+ lRd7BN4FjyKOcfutgb/xDtjP32reA9eAf1YefXbAk+G9cDN4PnxEZw2eAu/T 54iep2pm3JSMNdPl+TXS+AA8jnpm6LzprvAyv2oOIs8052kCz9bZ0fOC58B/ wnMjbdwt5M9M34XwUfRJkVbDRvTm+BfBx3Vv4JkHH4JnRVoe8YJI82zD/64u d2MH+/8x15K+S9BP4vkPfY/7/43YFn0l+ln0FVpL1ax/p8dcVuuOQM/kZbrW pB78Ev4M54W3wOfgTZHGl+Cl2lN6dvp7Op41rub1mofWTX9DJP9muB16B2pY B1+A28N/wOfhVZHWV7W19recp+EweDt8DY6DD8H34GKMdRi+rrOPvstxcfQ9 8A04Cn0vfEv3ZKR59ukdBv0fOBlnKhTeBl/FU5i+O+Er8NZIG1e8O9LyHNDf 1CJt3EPwKuZ1BI7Gk9PL5quaS8JH3bgx5D8A34Gj4f3wbXhfpOkHydMJfYNb z7WRtj679fevSMuj+ZYn5xn4ie4E/GfhZ3BP+Dz8XDVTzw34R9gH/03nOam6 tPfI2dXf+DG6B55T8AP4r0jLeVR/UyZeph2Df8J/FX6N53qk5RR70feay3Ml 0vgE/l74L8Av0M9FGv8Nv4i0NT+HZyiep/BH9G/J8zf8P7gSfB9+Cd+NND6t fxuA/x78Dj0JPgE/ghPh4/BD+JbWmHYK/7FI82heA/xN/0+fBfBt+A08DH4O f4KfRRqf0b9HirTaVM8QPE/gD3A1ansE/wvvZZ0fwv3hB5Gmq7be/rZuqn80 /Br+ij1WPIo9QcsIh5AnBZweHoPnPzwp4DfEtzoL1DAe/T2cGn2sv+kp4Vca n5YcXoCehzz54OOepo9k3HeqXetOngl4kuFJi+dzpPElvceif+XqaUA9n9xZ uEKej/A03edelkfrkzzKas6Apwl6asdzyJMNzgVPg1PBmeFmeNLBmeCZ6Bng 7PD36BnhLHCaKPOIf8WTFs4Kp4yy/OqbPsr82eBZeDLDOeC5cHY4N5w1yviq /j6L/iXS1nYenBM9D5xJ49Cu4Jntb5wTfT6cC84Lf4i0ddCa54gy/Rr+hXjy wvnR8xEL0G6iBzKXwnAa9IJRxgX1/Ys1LBRln++5o6zvdfy/k6es9gGexl6W R899MXp+13cpXBQuAq+Ev4ZLwBH4S8PF4UjYw+mlokzXmhchFlMdcJCXsZ77 CvKUcH3DvGwfFoVXoXvCpeCO6NU0N3g1ujf8NVye6OPWag16BY0HR3uZrr6F Azg38DS4TJTVpudYjujlnnuUl7HmHgNXdPnXkbO6+sBVo4zL6D2HWIV2m3Xb gOcb2BO9HX0ru+flG2V5tAfW+ptffX3xXHJ3TgjPoqbOmt4BoozLaX2IIfrf sA9968HL9F5H3wbKi74DvSFcCa4TZZ4K8Hb0us6zGP8IuBNci1ibdkf/jgJP Y80H3Z8YSKsBH0QPhmvBh/ythm/hRkQ/zRnu42VcGa4fZTXcJedh/E01hs4g sRntnv5Wq3dj9Ucf5GW65vUdsTntAZ7jeueHG6C3iDJ+iD4cf0vNDf2ov/nF R+Dv4brwSbgN3Ag+Bf8AN4bbRtm4j8gzjjwdYX/0/l42X839rN7nNX94FHo7 zQduHWV5xB2izPOEPPvxB8DfoJ+Du8BB8Hm988PBcAryRMG79V4KR7v8kVHG TeBr+t6h+cN39e4Nt9X+J0bQnjHWWC9jrdtVPLHw99qfUdb3OziemEh7jn8m /q5wS/TuUZazDXyLvt3g1roD8SS4vnfQe2iecFKUeV6SZ5O/7ZPyuj/x93J5 nqEPgcN0h8B94Y7aD8SfaK/19y/8/eFjzH2Gl+kt8HSOsvV5qs9u+oa7dehJ 7E37B/2ev3E79Nn0HeBqng8PdfrgKOP/8A8k/kx7A+fGMxw+w7iPyTMI7oy/ X5TlUZ1P/M3fBR4WZedCc3mpd3s4Snc1d8U2eCT8D/o4PTPdOeT/BY6B/0Wf oGegz8co87yjhhfoo+BI9OnEGbQk3W/0HavnCo+MsrHE46Msz//0eUecRvsI l8D/K3xT31/IOQvurjvEy3Jq3P/0HQFO0OcyPAmOhydGmf5B735ellP1zyTO 1jOGf9NdQktelOdLnEf7jD8Zc1+o56E1jzJOhmcbeRbAPdE3Mta3sBf80d9y 9oA/+VueH+FN+Oe6sb4i52K4rz5P4RXwQHgrnpXOnzLA6ukHL48yPQXjLiIu ofXRmQow/gneSd+lTj8dZXd7ZvzvqGGqW/MdeFa7uWSk73rtG3gP+gY31roo 49T0PYC+GR6EnhP/HnisPlOIf9BS4UkfYDwYvQr+TfArntHGKOur/FuibP8M 132FZ4fjXVGWMz15spFnJzwKPQu8VXtR9xj+3dofusOjzJMWvzf6Kp0dxsqF f5/2nD7T4ZPwFDgvfFD7CT5APETLSN/69P0T/kLfE16ma9zfo2x99CzS0Xet zhK8l7ifloG+uQOMx2ud6XvErUkh9FPwVPhElPFkzZd4nDYJvoj/L6c3go9F 2Xvm4SjLozqDvcyfTvcbfA6eDhcj/3mdH3hGNPufFkg9d9Du0XLBpfBcgufg uUnfK/As+Gv0q/Bc+EKUeaSXRL+oMwC3gguR85Tu/ygbKys5y6JfhxcoJ/G2 43Lod+FFsGeA1bBYdzjxBi0Hfa94Gesd43KU1ZAN3Qf/A5039PvEh7Sl2j/o r/UMdC95mf4b/Ij4hJZH89X3DjeXp1HG+dAr0fcZ/Dv6bS/zax180R/Dy+EE 9BdR9t7yQN+RdZ51p0XZuPnJUx3/G+1v9OteNl+t+T/wf/AquDKeV46fR1ke jftvlHnW6m7HfwsuJB1+5/Rn8Hs399rk+axzAr9C/+Lm/inKeBNcD89XPJdt 8I94MsC+8P/47x9p6+BaAcYbde/hSR5t9SeLtr6FmFcKYiqXpxH+NPAu7fNo y7kHTqRv2mh713oHp4Q3wP7408N74dTR5tkJF4i2PVOM/AF4MsH70FvA+eAT 2s9wVvigzjUxG+0A/B16Dvgo3NvLdL2zvY2y9SlAzhfoH3T36b7iv2emFUYP DDDejx4C54QPwS3h/PBJnf1o4+NwLmIe58lanjvC6U3x54b/hLNHW56i5E9X 3vyqOSdcBD4N/4C/KHxG4xKb6lng9yJ600rD7fCUgM/h6QCXgi/AOcjztTtf xaLNUxJ/WzzF4bPohaMtfwn0ktHmLwUPYR3KRNs7ZBf8nvAV2CPa+BLcFb0B /Fh3IGOVd3ppYllXQ+7yxqo/NMBqvqq9CpeDL8NF8fjC1+Ai8LfOE4GnAnwD rkisTLsJx6BXg+/o/EYb34Kj0avCt+GpXubX37lSB/Kc4QHZmSP5azh/LP5v 4LtwzWgb15O5j6dvHTgA3SfaaiiLXpy+dV09CfStBT+Aq0dbHg88taPNI71B gO3/HXASXB9+BI+GY3ROqMeXnC3hvzUW7A8/g/00Ps2HnL3wB8EvdB4DTJe/ IbGx9gGeHgHG6tsbDoZfwoHRxs/hfujfwf/C3oz1PfwU7o7eyHGzaNMrkrNP gO23f9Ar4G/i8sxifVrArXRXRNseKI+/ebTNRflr4w+DP8ADyNMa/k/3GHo7 l3MheTrAHbSG6B3hN9rz0eapQs6f6dsWfq/PC2Ib7QP09tHmlz4UT2f4Izwc Doc/a79FG1fDPzDA+r5Fr89YkfAXuBOxi6tzWIDxJ3gUHAUn5xld97d3e70/ R0SbXoOcK8iTPAYNz3T8/dCzwHHEBFpNPA3xdHV5EqONU8FrmHsSHKs1LG9+ 1fwHcb32LX3HkTPe+SfCPeB0cBP8feAM8FT0vnAmuHe0cR3dV3h6wmnQu0Vb X/EE/N3htPCvcH84K/wd/oFwZngEcRStIXl+ijaP9Nn4B8M54Z+JQ2j18Wxn LsPgXrqjypueHs8A4iCdBzwzAoyzoTfDM9zVPDTaWDkX4BkD54Nb4Bnr/D8q t84neUZHm94InhdgdebBMxceCeeG91HPeJ136pkUYH1VTxty/gLngsdFG2us 3/BMhQvDk6ON/cgfin86XAR9GvFXnUmNS1xAK4XeEc8UuIDWljjJ8fIA8xeD V8Az4eLwKniO69uFvnPduGvRF8FltM7Rpgcx1soAe+8qgR5e3sZVzlPMcT48 hjnuxLNR5wL9D73nw2XhrXqfhH3hdfBS2EP7kDzL4XLwRn0XgL3gJdHmCWHc xegT4YLSA2xeheBY+v4Gl4YXRttY4mXRlqcpfVdH27je6N3xr3O8hTxrYB94 W4Dt8wrwDb1XwzP1rqi/KUTbu+vKaNPL40kgzyZX/4Zo4+8ZKxn6o2i7YwfB h3Xu8GwmbnVrsoexduge0LjRxi3ou1v/ngeuit61vPm1Dtf09ws9b3Luw7NL 5x29J57druY9xH1OP4jnAFwLvkS8QutI/kP6LqB9i36PnHvh+Xpe0ZanJZ79 0eZRzX3LW84q8GH6/gnXhs8Qz9HaK2e06a3hY3hO6AziOU48SWuLfgL9tM6v 9ADTG8BHiMdoP+A5GmBcD/0k/JfOlPZVtHE7PO+p+UK0veMNp7aLzj8UPqp7 Bj4fbbofPKS81amaT5PzrNPPwJd1duAxcCycAj4bYGsVCEdHm/4N4z4hPqO1 Qp9Ezlvak/AV/Hfg7+Cr+i6gPaD9E22epvBl9JtwM3mI113f29Hm70z+63ju aw/oHiD/Y9gffhhtLH1ieesbDP8CP3V13iM+oHUhz6jyxlrnWwFWc2v4InwN bgLfhZ/rucDP4Q/R9nkxl74v9Czgl8RXruaH+i6g/QO/jjZur7sa/79wc3he efMr5z38/+h5wY/ht5ojnBzPu2h7Z34fbeOGUfNLPJ/gKDx/R1sNqjM1/s/R 9i79N57/weHo/0Vbnk7wx2jzRMLZ2BvL9LcTvs++wp+Mz8EY9IHe1BXHc8xB X/TU6AnoqYhp9FmpfYWeDu6K/jbA9ES4KjUEwq+pYSOcw3myxRj3hL8ipqSF k2cNnvRwLHpmYlZapO4E3veyw71Vs74jwD3gD3BGuDucNsb6atzXAZZTeb6i b264L7yf/MXggXB69OLwYN2r6PngH+FccAH4L2reofd8N26eGPPEaL+hB8Ez 9FzIkwvuA6eE88L94JwxNm40/vwxlkd60RgbNw79MHlKwkPQPwXYfFVDJvKU gofB6eAi8M+aI1wYHgQXijFdc9lEnixwNzhDjK2PuESM5UlgrJz09YLHoh/S u72bezHYB77OfMvC1eH78F96r4bH4SlLLKe11W8sgcaj0I/i8YCHw54xlrMr ngrESnoucD78VeCJeKrFWE7xCfpWdXkqxxj3wH9E3x3c3L1jjFVzQIyt+RzN i5yN4FlwKdjP6YXhOvA0+NsY457kvEjO2vBk9Kx4ysAj4SxwaXgE/A2xlvN8 HWMezatQoOlT4YJwTXiK7i6927uxGscY92WsBjFWWx99v8DfEJ6pdYbruz1z lb714Olw3RjTe+PPE2jr9gt6GTgEng/313Om7dadQN8O8BLdRXAzeB7clPid 9hh5HqI3hxehewSavhAOJjb5fz+ebnBGPd9A0xfA3xNb0AaQ5wGetq5vmxjj QZojens4mZ4RfVvDS+HycCv4N9gr0PKoznYxVvNyPWv0zvAq3UXkiYPXwZXQ O8G/w1XgMHi1zjKeCHgNXB09Ev4D7hJjnsH6jo8nFF6J3jHG8ovDY8w/FM83 9I2G16PXguPhjXBsjPEwPL7oP7g668CJ8BY4Sufe1Vkz0HgD/Ipxk1ydLWNs HQaSJyHG9BHwGzzdXc09tB+153Vn6p3f1dArxni0vl+Qvze8E71rjPVVDWm4 h4fC++H6gZZnO1wP/hHeBrci509wDjgF/p/dngnAMxjepz0AD4MPwoNiTB/L uH21d9y4n8obb4X98A+A98D+gbYP98Ih8Aj4kM4RY02Gj8HN0EfDR+BRxDG0 CeQPI+c4uKg+m7xNVz29YK9Yvp/y+TIkxmobj3+4zqjOAtwk0Piw7kP84139 LdGnwCfhSTHGk/D/ojvG1ZMD/zT4FNwc/wT4ODw2xvKozhaB5j8B54Yr6r9p z8PT4b/gqTHGU8i/VHtE51rfW/HMgc/j6QTPgy/B2Rl3vqttVox5puq3X/TZ 8Bn0hvAdODlz/1X5nJ7EWi2EPeHFOk+6N+gbTv5l8HX0fN5Wg8ZdoLPuxs3l baya58ZYDdPp25ucK+FK6Ct0zlyeRHJugR/qrvM2/TK8SmeOdhOOwbMOvgOv jTGeTc4S+P9wnuhA89/WeYFXw7fg0ng2wHfhePSN8H19ZsXYuPPI0xV9G/wY PTTQ5ntV9zB9t7txE9A3ww/g9TGWZy59t8aYZz7cBc8S+AqeYcx3J1xX9xt5 drlxf8SzH/4b7gkfgJ/D+2KMn2lPoh+GX8AD4dPwW3i39j7tKTyhvHEQ7EP+ Q67vwRjru5B6/iQepS2G+5PnOPwGz8kYy7kEfQD6Cfg/3YHkOQK/1GclfAr+ Fz4WYx5xu0DbJ+fgwfAZ+H/waPgG/BV7aSa1nYdbop8jXnCeoXguwR91x3qb /greEWPro/UfSd89Mfb94i/iWdpS6qzobaw1GUaey/An3UXoN+Ev8PUYY+3n K8RrTh+L/zacEn0kfBVOBl+MsTzLyV/H2/yq7VaMnYsUeBqj33ccCefirigB +8OP0FPBk8j5BE4PB6I/hdPAD2LMIx6P5x6cGn6ltaRlgSegP4TTwndjbCzl fBxjedLBL4j/0Fbpb2esz+sYe5+fSd//4Ox4antbzg/oNeDn7plOwfM3nBHP sxjTV+rzyNtyal+9UaStRk/O/FLQ8uF/p+dGywHPJc8nODf8IcZ4jf7OiP4R zoXeFp6hZ0bOXwMtZ1b0lt6WR3XORn8P54TnwV/gPPBiOBXjFoTb40/tamjr bfXIkzLW9ALwZz1DeC01zA80zou+EP4Kzg+Xi7W7vTA8Hf2lW/Pf4HROXw5n hovBK+AscHE4U6zxevL/rvd/uCR6c+opEGvzSk/MSFuHZ1mgcVH0lXA2t0+y xlrfDXhyxNr+KYX+HXnywJnhfLGWsxy8Tu/wsAe8Gs4Jfw1vgPPDnnDuWPOU hpegp4ULwZvhQrA3vB0u6z7XtsBFYR+4iOYaa89xK3oJ2Bfu7m26+qaJtfX5 Q581eDLARdALas1i7dl19Tb2gnvAJV3+nrAHXAEuE2usZ1pK9brnsoOcnnAl eBv8tfMXj7U8eo4/eptfte3E4w1Xhnuj+7i+/xL/oz2nzlrE2rSa6Lv0GQpX gffAleFqcF/6VnG6b6x5NtE3Ar2Ce+4v8PeGI+HysTaWnmkMnmruWdTQOLTq 8EH838K1tIfLWw36bltV/522mfx7A43lrxRrNWgvHUKvC38L1yHWo23BfxI9 BG6EfjjQ9NpwfWJDWl14OPX4qQ/cKNY4W07usMbcWXDzLMQK5k+Rm7MfwJ0K h1HbcXIGwA20N/y5szRPvnMFxdq4W6nhNJ6myotnf6DNV9/Bl+udP9a+y59A D1ZNug9jLU99uEmseRrD8dT5DVwWPoP/ezgAHo3e3M3xEnobuCl8Gf5B/eHW scbbqOcqenv4e/Q7cIT+G9yC2MrlHOttrJqnwu1cnrax1nc7eTro+Wh99M6D p4vjsFjLuQvPTfKHKi/6dbgj3EJ3F/5wuDXcOdY8O/D3jLU9cwC+iz8Kbquz ib8H3FmfBeixcAftJWIcbY9+69Zv9XAvvad5m65xv4u19fGHz9K3pdZXn0HE aNpu+t4LNG6n+5m+iW5NnqH/qGetcx1rvA9/ErGbq2c5/l56jvAT/F3hLnpe sZZHdT4NNH+oPrPgvnAM/Br+CY5VHuJK2ih9thJH044y1r94Bmie6G/hQcoL L9P3Aldbv1jzHMS/Cr2/5obeJ9byiwfGmv+w3mf0twB4KGv1P3KO0HzwDIs1 PoJnD3nmwf3QP+IZBfeAB6ufq2Glt7HO+Fpvq1l1vsc/HO4Kn9LfC+Ax+r4Q xOeaatU9jH8cnKTPdOIEWk84OZ7JcB94YqzxcerZhn+S8yQLMn9v+Atj/aLn rvsKz1S4rz7j8Exz9U+PtXFPkSct+ix4EPqYWKtB89qp93k3bio8v8L94Smx luckfWfGmuc0fCPQ9n9LPNf09wL4V+ZYir4H4TnoR/ReDQ/THQUvhgfDi4hL aGf0ey/6Uni4PiuDTJd/PnGh82cMMh6qz0F4GTxSn7+xxuf02zJ5Vrn9kxPP angsnAFeAA+Bf481/bw+Q4Nsv41Bzw6v0J6D88Br4V/gObG2B7RWa2JtLhfp WxTPbs0X/RFzXw8vZu750TfDk/QZB2+Fp8CF4G3wVHhjrHku6zcl9E3wRH1e Eze4cbfEmv8KnsvMa4frWwz/Hj1LPetY4+nwcW/rqzW5Cu9z+nbiTtpV8hQO Mp6mz0d4PzxT+yfa/lYYTf17Y02/pr+VMK8UMfbb6SNyXtQc9Tmi8+Gebxny HIfnw0djjW/RtzT6Ma0d+hVv82vcjHG8p9De6FyT/0/0teS/oe8Irh4v+p7T /tDnJnwe/k13V6yxavhA37+0jvrsiLW+t8npgf+k9g0eb/gSvFT3GPmvaK/o zife0z6AL8Sa566+F+C/Dq/UfibeoD1Ar4J+y/krBZn+uz5ftK60+/qdMMh4 he46xrrtxr0Za/wQTw08D+B16N/AD+H18GmdA1fz/VjT/4Cfe1udypkWvgsf 0Ds2/Nh57nhb37lwTXI+0R7Snow1fsy49dBfaj8pZ6zxFt1p9H3l+B/ia9oz /P8jfpQPrkvfF/BWzYv4N+0pev0g82/XOwP8Bt6lc0fOd7ofqPMD/F7PCD0Q z2ftLd3hsabL/87b3rtUs3+QjbsX9oM/aH/DLeGs7JmT2qv4v7hxv0PPgH4U TuHDuzq8Gw5BTwkfgruxT1LF2d/pksWZRzW8J88z8myEawfZvFRnAfTkeC7q t6NYG+sf5psizvIcxJMuzsZ9jZ6FcTPBx3TPwOnhw3CLINvnJ+BmcFr4CNwU TgP/CaeOM13+VujZ4FNwljjj//RbB3p9+CV6VWorrnH1mwwxJ+2tfsdm3Dxu rFxxxn/pbOLPDd/Dn9nH/FqrNuTM4Tzt4HzwObg9nB8+r3UgFqK9J38B+hbR mqBXJFbWOhbjsx9/Ufiy7kw8BeGzcN44yyMuHGeeD3pfCrKcF9C7wCXgKzrv RG/abd1vcaZ/xF+EnGXgq+iliWVpn9Cj6VvO+SOCTL8BlyR+7fzhQcbX4fzk 8XTjesQZfyFPLB5f+C56HFxBawWHwaXga7BPnOnJmW8hH6tT863M2paH/9Hv OfgrwQ/QL+n3E3fnF/extVJtB2JNv6HfRdEa09KQsxt9v4Gf4PHEXwt+BHdH /xZ+ClePM4/0rug14MdwFWI1N27NOPOnJKcPeerAz7QPqaeB9hNcL874Bfy1 j/W9A/chZyPNRWeBWJeWmjw9g4yfo/cNsppfwbXIWVV7g7n3Q/eH/0UfDreE P+vuJX+Aqz+QGOw8A/E01b7VOY0zTs9YA9CbaM+jV/Axv8ZNYKygOPsOOwTP d9pLqgHP96oBbh5n42Ykz0g8reFkfH/xi7Ma0qJXxt/GzXEYnhbaSzqbcZbn fzqDcebJhH9xJJ857m+I1enbDv2NPoNCeBdIZE58DxpLns5ac8bqROziaquP P0x7DG7sY3oKPCfx/wY3gkcxr4Q4+74TF2ecG709saPOFzwVf7jqgaOJsbQs qg09Hi6IPog8UXH2XXU6eqQ86KFx1jcDPCbIcqqG5XBXuBj8B9xP5wpeB/fX OsNh1NwDLgqvQu8Jl4JXw710xuBuceZRnkH4l6oGeCWeJLgE/DvcHS4JJ8bZ uNmo/8c4y5Md/inOxs0BJ5BnoKthTpDNNxe8AR4Ee8JRePq6nGvR+8Bl4N5x pqu22egxcE44Is7WJzM8IM7y5FQN5BkJ+6Jvxz8KrgjvgMfAleB98BS4Brwf nqpzCA8lDldt5NkSZOyD3pWcw2AveESc5cyDZxzxF1o+eA7Pa6L2Gc9rcpzl rI6/F30nuRomxBlXhXeSfyxcGR4dZ5yXPEvibM2LwkfxLIDrqTbyLILrwIfR Z8G14RlxxoXw/4xnJlwLfTOeIbA3vAkeDJeHpxF/pRWQP848mteBINP1rPuT Z7qr/xj6Yrg+vDDOuDB958VZbarnCJ75cF14MeswF+7EOtxuxrpoTfLx7OJM j0Lv4WPrprVdob8RwBG6Y4lXxOiXyLkVbgqfhn+H/bQPiatoxanhLPoaOBD9 ryDT/eFlxBVxdh4XMNYJuD08xMd0rdtq4lrtZ/JcpO8muIn2ZJxxMDwR/xbH Y+D1cGOdKWpeBydQ8wgfy6P12RxnNZci51Vy7oC/R78DH4Z/0NnHvx1uBl9H 3w23gG/Ce+FW8BQ8+9zcd8aZpww5r+HZBTdH3xZn+Uuj74kzf1l4N7UdgH+i trv4/4Tb4j8UZ9wGvoC+EQ7ReWSso07fTzzoapjuY6z67+E/BrfT3RJn66A1 PxJnejnGfYjnJNwR/RTxL+0B+Cn6OTgUPhNnXF53HfnPOs/xOOvrhf4a/004 Fv1JkOXpAj+GT8Od4efwBbdPXsLXtK/gf+DrcDS8lPy33LhX40yvQP7zxIva e/B8H2PN6xjrdhkewbot8rF9qLmc0d+/4PF6ryb/c7gH+n/wfe0BrQ/xAS1e 60PfR47fBpmeCBfz5V6Kpw74RpzVVpEabhPvuvmu9DGOhN/R9zGcBH+CX8A/ wn/HGVej7xPiM1pV+Auef+BeeDaS5yncFX4YZ3kq4/kQZP7u6Lvh8XF2F23A /8qN9TLOuDr+r6g3Ja02nCKYmrSvtCfx/w/uA6dE/wD305rEmUf6V+hv4b6w L1yLPMvh12hvXJ17yfMJ7g9/ISbH8y1jZcCfAh6CvsfHalD+j3g+02rhSRNs PBD9fZzV8A363/q7gMbieaUipnF58uLPAU/QPvcxXX3TEtPThsPZ8GSCR8EZ 4o3r6h7Gn9F5sgabfyScBU4Hj9A7AJ4s8Gg4J3pWeKxyxtu447WX8ORynC7Y 5vsznA/ODU+E88DZ4V/gzPGWpz415Iw3TwM4LZ5k8CA8BeG88BT4BPnzufoL oxeGp8FF4CLwdLhQvLGfzgL+4m7cr/GUg+fC+YkFXc7TPsaaSzE8xeAZcNF4 6+tPnhLEUk4viac0PBsuG285A/GUQi8Dz0FPTs6S8E59j4Y94FmqId484s0+ tk+0V+/CXujztP5wdfi43pPJ6QOvRvcm+tJCGMsDvSK8EL1ZM9OP5GVt4219 GuH5n/5GA2/S+zmxPC0YvWyw8QL6loMrwYvg+4xbw+nV4o2XwJWJVWlN9X6O vya8DN0LruI8FeItTxM8d3zMr3X+Jt7OxVJ58NeBV8At4ST4pPLD9eFVGhdu CK+Fq8ON4D/guvHmaU7+p+Sv7XIGa0zaRvgFej14JfxtvI31Hf4G8ZZnDXoA MYjWCr0g/hD4EutTh7GawVt0x/pYTtVTA90fXqdzje7n8jSON70FeZ77WE7N q6nGpLVBb0fsQGsHfy8v7Qc9F/yt9Vy0DvHG27Wv0FvBt6jnlv6Oyd6YDdcN tpxbdf/4WB7VUx+9uevbCP4B3gWn4h7uBO+FA9E7w/thv2CrZw/cMd70DtTT hthWe1XzCjberT1MnvZOHx5vd/tNuBaeQLfmIXAYfEh3ILVFw39Tcxr6xrhx o+KN/4Rb4I+HT8Dt4Z7weTicGEnrRD0pfY1VZ3M8cToLcGy89T0GJ8Tb/umC Pwf+bvAp9B7xlvMs3Ia+3eG/dI/hSXR926H/CJ+Du8abJ4w8weih8EHdUfh7 uzwR6EPhG3Bn+Cf4MtyX2E9107chcx8AJ0fP7mu69naXeFufjnia0jfCrUMv Yh9aOHqHYOML6LnoO9DVXAQeBl+Fh8Qb67N1EHEwLZq+UfQdoT2DHgr/7Pz9 4y2P6gwLNv81uAQ5R7vnGIM+Br4DN0lg/9N65OIdGW2m1pr8cXjGw/fwxMMT 4Ptaf3gi/AAeG2+eWPyx6OPgu+jL4LNwUXKOirexbqMnoU+GH8FTidNpj+Hu 6DPgp/q88LUatDcmEafQHuq+9TVWDb/EWw1x+r5P39nwc/RZxDnaH+jl8S+H n+jO9zVd6zyXON/5e9N3EfwSXhBv3JW+vdAXwi/0WeNr/iu6b3nW8+Ltu+1A PEvgt3ou8G/wO3hpvI3bnTy+9F2pc6H71tfmq7kMxf87/FH3JPoyl2dxvOXp Rt8V8eZ5j94N/zQ3l+HwavgzXIm+a1z9teEN8Ad4HJ6NcCrWf328cQr4O73z x9v3ytl49sI50dcS19F+ZNwxwcby/wJvhtPAm+Ktb2p4K3G7zhv+5oy7E86K vjvecvZGn0HfXXA29OnwNjgLPAveA+eAd8Sbpxf+v+Jtz/TT9008++FceJbA p+BC8Dz4EJwHPkg8TOuLfyH6ETg/+vxg0/PCq+JtfT4x35rU+Yd7RvuIB2h9 6Ds32Dg3/nZ4jrq+v6GfhgvDJ+ONf8J/jHiCVgB9KZ4zcBF4MXwcLgj/GW95 8sEdfM2v2lbgOQ8Xh1fCF+AScErOX2paffiu9jhtEGOF0/cyXAx9Nf6r8Nfw GvgaXBq+GG+e/vh/R78El0Q/F2/51fdKvPkH6JyS84bruwH/HdgTvhVv7AEf QP8fXBNOwH/P6deJN2kDyfNHsHFZ9I3BVrOX9ht8Gy4Hd6PvQ7g8vAf9X7ga vAV+BPvAj4lPaUPI2RX/c5fnWbzxUPQd+P+GK6FvCzZ/Be1D+AnsC/dkb7+U rs8C8vzj8r+Kt3GrwH3R/3P8IN5qGEz+veR5C1fXHoZfw1XhF/GWR+O+iTfP cPy/Btv+154fQM73cA14GjUU5Tl+pzOOnhGug/4z/AVPLfgzMRn6KO0l8nzl nvufwabL/0F71vkPBxvXhvuTJ0WC1Zk8wXgMeU7gSQs31F6F08GN4EPwR/p+ C6dJMH0c/kG+tt/0fAdTcyr4W70P488A+6G/i7c9MBJ/+gSby3j4Mp78+szQ 3U7fzBqXvufQs8NB6OPJnxMOgM+j54KD4awJ5pF+Fj0bHAhnImZx4+ZIMP8E xppEnjxwiPYw/gJaWzhfgvFk/Xbqa30boF/DUwhuDucm5qVNwnMp2Lgp+kT8 hV09l33s3X6qvmskmD4Ff/0Q7j14O56n9K0Ah8LFiSVpLeHb6KXhNnCpBONp 9J1J/q+d51aw+VvDkcRo2io8N9FLwK3Q78EecDt4AX294fbwI3QfuBNcPsF4 Bn0foHvCHdDLJFjfX3WP0bcs/AP6HLiiq22hfs+XX+9vxNq0KHTfBPPM0vdK claDw9Gran/R5qC/RP/G+Z8Hmx4BVyJWcWsy39dY9S+Ga7qaayQYz9XvHvSt C8ei/wvXg+PgckQvN986CabHwMt8rc4weDn1f6vaqH81egPneRhsfTvqbMIN 4Xi4foLxfL1vowfC3dD9E4wXoX9ED3bvPEHaX7TF6C30TGi/we/xBMBd8TTS 3qQt1L3na36NtYnamio/tX3B/z3cCz0Z+6c53Bvehb8N3Fefvwmm99Td62vv XUk6yyE2bh/db+gtnScreiw8Up8R8A9wP92leCIcp0FvDw+E96J3hPvDadE7 wYPgtgnmkb4OT2M4QWc82OalGlLjbwcPgFsn2FjL9I6aYHmWw2EJNu4QnVn8 UfAweB/rEK6++l4fYvt8OPpOxgp188qA3sX17Zxg+kpyZkOPg0ehxyQYr9ae pO9cjYteEE9/nU04nphIW4MnN3o3eDx6UoLxWDgXeld4HJw9xPyj4RPkTHBj nYZ7OH8ePD/Cv+hzRM+Nto78p/S7PTyGeY0nTqBtQz9J359czvz07QVPgrsn WJ61ePokmEf6cV/LqedYCP8AeCo8Ujlom/H3SzB9g36zZdwh8GTGHUwcSpuu +4e+w+GZ+tz3NX0yPJD4M22jfjf2NdZcSuAfAc+ChyUYz9DdhWcsPAcujWcc PA8uAg9yY41JMH0rOUuGWJ2z9Q5A31EuTxn0X3TW4CnoxRLsji0bYmu1QDkT TNedPF9niPY7fBf/NDduefy/6tzB3vAMeKlyJphnke5J1mSqxmJNJmretO3U Nj3B/Ev0LkHOWY4rkmee9pjuwwTj3fhv+VpfzaUyngXwKnimNNpO/dYRYrwM vUqI1bxa9xU8ydXzkjyL3Vxe691Se1L3J54ljn9TDto+cr7QdwFXz/IE43XK o9/tlYd5PfM1v8atQZ6lzlMTXqW9AdeCV+tZw2sSbNyD5H+n3/DlIc+iBKth D/pbfS+A1+OvTd+12m/w7wmW5wCedQnmkf4NeTrE2d866+HfpD2P/kOc/T1R f6NMXoF3Mq0V+nZF2hHy+OHfrXHRG4eYvhvuASdPZH5wE/gI+mH4cILxQXiL xpFOHn88e+C96AeIh2j74RD0P/W/dcdSw354BxyIvs95diVY36P6/SfEcsrT FD4O/6m5wBfhM3BG8lxy+vfop+BjcAv4L/gE3BI+A5/UHZJgnlP6exz6V8zr b/R05Dnm5pIJPqm5wUcTbNwT+E8nWJ7j6BcSbNwz+v2TZ3QFPs3apqhg89W6 ZYGvunpaMdZ5javPBfRzLs/ZBNNPkyc1eQ5qv5Fnb4KtzzG9syVYHs23IJ67 Glu/dZDnHnwWvQv5H8BX4Gj4BXxbZwT/S/gf/DelaTz99lLBWPV0xH8Lvgjf SbCc4kfEJ2L8xfA/g6/rXSLBct6CI+n7N3wTfppgfBl/KPpD1Y1+P8H4sp57 oq35TTxJeD6iP9LdC3+Gn8JFGes/+Br8b4LxVfzxeN7A99Hbwzc0F7gdfB0+ B/9DfK110N+kEsxzTt+bQky/q88p+BV8R3cCY31RffCnBOMn8P8SrLbr9E3E /8F5SuB/7+Zbh7V9l2C/A7xNMF21hYXYuqn+XnBK5vtCdxqxMi1bbu4H8uSE /0PviycN/Eqf48S0tNs6R+RPn2i/A3xdwXTVnEIa7RaeCfQtoz7k7B1i+kvt Z2IGl7MafbPB/2pPJhprnQfizwG/hT3xZE60Z9EfPRP8BvaoYHke6LM40WrW eRmOJw/8GR4HF1dN1FAZf274H/QA6s+faL85TORdpSCcDm6Ep5D2Af68ieb5 os9T8uSDk6HnSrT8H9ELJJo/Wx7ewRrzmQQfzcz7F/lLwJnwFEs0TknfAeTJ 6tZ2PFxKNaAXJhZNtH9P/nMV41r5+QzE8zWcBj1joq2D1qpkoul3WeeJeMqq fjweRE9aejiYuXg73SvROAs8BX95OCNcOtH63tP7GP4amjN6C1/Lo99YJuMv p2eG3hSPr+u7AL0qnA9eCFdzfRfD38AF4SqJpj/UZx+xgp4XPDXEOBOefl68 98uXjc/TENuHudB/g2vBheE1sD9cGu5MDXW07nBtYl3aY/2mgV4fLoa+LMT0 onDOJqwTPBaunmi1PcJfk/ity7M0xLgIvBJuoGcGh5EzwOXxSzT+W7/NEhvr c0e/l7JWQYn228jv9G0kxl8v0fI8xbMqxPyl0AuR87G7cyLhYDdWYKKx5tie 2JFWEd5A3+/1XOGu+FvAXvBm9JZ6rnCzRPO80F2E5zs9V/S7eH6F28IhxKZO 34LeGvaBfyC2o72mb3fm0kE5de9VsBqUvxWxjc4snq0hxr7ozROthn/Qd6F3 hqugdyJ20Z0CH0ZPgGvDu0NMrwqHEsN1lum7Hz1KzwY9ItH4LXp/aoiEq6Pv CTF/NbgPepjLfxA9RucFPgTH6rnCcYk27jv9LRI9Ca6HnlTB5qv17Ad3dTkH wfFwTTg60fKIExPN8z/ybCdPW/dcBrJW3VWz7iv69nD1n8LTR/sDHoLe1829 d6LxJ/KMQO8P10e/iH843AT+kdhLd4t+ewkxbog+XL//q37G+inR+ir/gET7 91f+8DhyDnY8NNFyJi/OZwx5hsBB6GfggdrH8ET8w7TndOckmucL464PsX1S Dv0SPFL7Bp6BfwrcAr6KPkZ7Dh6ts0VLwViTqXO85kKdEyqYrnG7Jdr6aP2P 07enzgY8gjiK9hV9L4cYN0OfTN9f3JrcQp8Kt5aeaJwK/wTiJFfPHPzTtUfh G/gnal9qTRItj+q8GWL+VvC0RDsXacjzAH0W3AE9NXfFMXgA/BB9rs4h/ASe rz0Nz2asBa6e2YnmSUue+3hmwu11/xBX0DKhz8c/R2dMa5hoY4nnJVqe9HiW EJfSMsIvyLMcjtQdyHr+rnFZz0UVLKfqmQcvdud6Hp5FYjwLE01XnX+HWM5w 3WnEVS7nZuJWWnbGWk1cS4tG/xf/ejgO/iPROAueVYy1znnW4WkCe+jOrGA5 Q+HXIZYnFn4Fr4FjlAfPRjge/oC+He4Or9V7vhvrfYjV0xXelmh6DsbdQNxE ywa/DTFOxPMO3gInwbcT7W4vgucZ+m9wGPp68u92/q3wAfhHOBnP9yDcG96f aJyLvinQ/4R/Qt+B/y/n2UPc5/p+CTHuBe/Ecxjuozsn0frmIc+RRNs//dQX zwnHpxItZ348aRjrJDwQPRV8VOcZTg+fhgfrjCSaJy/+9TzfXZoLz3c3fFZ1 6p0H/014tN4N4AvwUPg88SKtIH2zoF+GR6BnamL6MNWfaOujZ/GZee2Fe+p+ IJ5zNeyuYKw12Q9fcTXnIM8teIzOWqLxKN0JxOturBP47zj9EDVfU05qvpRo eQpR2+EK5h+C5y/4PjwOzkP+Bzq38Iok9j8tP+9Xr9He0ErRNx+ex/BEPAXg p/Bk+LS+CyTaZ/3DRPMUx58XzyN4AvpHPOXJuQW+l2hjFcNzXn8jUE59dya+ ok3Fcxn/v46LNrEaftX5Ir5w456tYKyanyRaDSXIeR39LTwD/T/iO1pp9HLk SUkNi9BLNDF9ls4C8QOtDJ5r9P3sxvqYaFwWvTT+T/A89FJNzD8HLgn/D54N 32Euycg/l7ncJE/yJMv/VZKNuwC+j57acZEmNt/psCecBn0x7AGngBdq/yda Ho2bKsk85ainMJ5/+G/T0B+TMx36EtgbPT28FH6GngVeBldEzwqvhDMnGZcn zyM8Ody4L+CCzpOBmMn1rdDEeAVcBc4Or4azJVlfH/LkJOZ2ejU8eeG1cP4k y1kRT3X0fPAf6M9Zq1zKqd8o0AvA67UPk8xTAb9nku2Z6vAb/c6vvvgb4PeA d+D/Fi4Gb9I+IRanbdQzZS4lHdduYvpmOG2SrY8XOX3RM8LL0QsRi7gaXlcw XgPXwVPK7duGcDl4J1w2ybgaeb4mlqFVhRvj8YJ34/lEntLwVu23JMtTGU/9 Jubfrr2Bxwfexby+6D3f6R2JnWk3NUdiHdq39A2kbyV4v/ZDRZ4HvBcOQq8K H9DzSjKP9AD0ivA+7Y0ky6/aKieZ/xtypiNPdfgg+nf4a8FH4W+SjP+EO6G3 gC/p3sNf2+nViDXkI0+TJsaH0b9vYjUfg5vBNeEjcEu4HnxSdxp5msCn9Fzg +q7+BsRGztMGvz/8F9w4ybgeY7VG94NPa69WNL/Gzaz/G2HVz3q2xRMIn0XP gifI1ROcZONK74CnGXwBrptkNdQhf0f07+CL6LnIGaIa9B02yfLUx9M0yTzn 8TytYPtf5y4fYzV3el/y/AS/guPgSPgeHAb/AF/THIltaX7kjERv7557eBPT r2vdiK1pjfGENjG+il6QsTq459IuydgfTynqCU2y33y89N4OP4YL4W8FX8bf Jcn027qLKtp+U87i+DvBN/DHMlYEfPf/aDrLMK2OrGsDwR2COwR36KahG2/c 24MHCK7tjgV3d4fgBA0QAsHd3QZPcEIgaND3Xt+u70dd+57Fql276tSpc57T c83omobaHmhA/m6hNpd76LF4ouAXcHHy9HJ6KHo/+BEcAQ+An8KRcCj8DO4T ap4W5CxN377wA/SexN60Zuj9Q83/BL08nnDHpeBo+L5yhhr74e/XyvpKr8pc YuFXzCWMGEFriSeqlfHfOnvJE+fq3Nrf/la4Q99qQk3XvD5z/uxw+hj6TkBP yvNxIHEw7S2eiuT5yc1rSKhxEGMNwT8Ufq/z08P82g/7td91digPnkHwG/RK eEa42oajj4U/wSPgcfBneEyocWvy+zLHUaH27WVYqPX9Hn0Y/uHwR/z1yDkR /qrzBJ4Mf4BnE+fS0lLD+FDzJIEn0XcanAqeSpxOSwk3oO9MN/e6HqarnknE KbRk6BNaGadQX3iWyz8j1Lgttc1Enw9nRK+nd/VQ++Yzkjja1Twv1PQMeKa3 sjrTw40Zdw6cHJ6FvgjOBFfxsL4vNS/0xXBm9IWhxu0YdwH6Cjg7+s+hxu3R l6CvgnOjrySupuWANxI30wrA8/Esh7PBS4jLaFnh5pXNr29uy/CshfMqP7we zgd3oLYNLv8q9F/hQvAvoabL387D3rtywh09bFy9g63EvwkuCPdFP+z2TCd4 q8u/Ac8+uATcBf03V3N3+He4CLwWz074O3hbqHkKw/PQl8Lfam0r27z03WwN +nbXd0uojaUadoRano6s255QG7cTvAn/AbgUnl6MuxcuBm9uZfu8tOYL73b6 OvgPuCi8K9T0H/TujX4ELoN+KNS4M/oV9P/gVuix5L8Ke8JHicdpP+L5Dc8p uCL6iVDjrujb0U/CFTT3VuYvD4eS5xhcFv4d/QxcGR6AftbVcI54wel/4LkE V4EfE5/S+pN/N/pl2Etrzhqe17qxhqdDLU83fRMINY9qDvewnKphD32vwVXh P4n3aX0131DTe8AH8dyCa+C5SbxNqw4PJs9dx4damV4Tvk68QetF3/2tjH3Q D8P34FrwnVDj3njCqfmh6qHmQeR85PyJ8P/gavCDUNPrwgkeVqdqPkbOv5x+ An4C15MHToRfkfNkK1ur+ujxoaYHMO5HnR/ump7VOy3cGD4Pv4Kbwhfg13Az +J9Q84TSdxw1vIAboT8jPqcNQP831PxNdBbheet4LPwBbgi/DzWOwH+mlfVV nkGswyfNnZrfEN/RwnTtWhk31znpYTWrztPof7uc1+CvsD98V++WYTzbdS3g JHAAnJT4DS2anNPJkxL2Q08eZhwEj6CGFHBdapjsYX6Ne4M8yZznNpwa/l7X EU4Dt4bThtm4seRfSN+McFv0L6FWQxT6X/gzwe3R5+JJB4fAqcIsjzhDmHni 8bf1YQ/N5DwswDWnbxb0DniuhHDvo7dCn0rNOdFbUnMOYi5aJzxP8eeBf4QX e5iucXfre6Dy630bT1G4D3qRMONe8LfE7LREfWfQbwS4K3pBYmHaEF1r9O/g 3uh/wwXgbvAKxsoPd4Fzh1lf8QIPy6nr8hp/Cbgv/AmuDEfqzMfj4fTVcGmX cyE1l9V6UvM69HJwT/SSYeYZRj0n0TvAo3XWwcXdXN6RvxQ8AC4WZuMO1W/S MMsjvVKYjTtS36YYqwrcmbFetLL5aqxf9c4Ph8If0CvC4fB/cAU4DC4fZvoI 8qzBXwjujp4vzNZnELpnmOXRfHfjqaVroX3ox7u91hxOAdeFB8Lp4KaaI5we bgYPh32INTRfcib1M47TWUrO6trncM0wyzlWv32IDWjj4c3MsRHcnzk2CbOc P+HfS9/GroaGYcZD4JTk91X9cJ0w43HkaRdmaz4JPRue75Ufzgm3cXpm2N9d l1ZhxpPpe5yx/LTm6EnweOvegb+yntXgGD3fta9pE/FXDTOP5pXBz/QROlfJ 08LVfwxu6/TWYcbT6BscZrVNgU/hCYHHaJ+TJ0hzgbPCgVorOCDMdHn+8LB1 09rmxvOD8sATNQ/acnIWRR8Az9e1hrvA0+HOuv9oM/EcYs27ae+x5mc9TNda ddT9SpuBpzJ9h8Fr0PP4mT4V7qp95HIWRu8Lz4F7hxnPpu8tcvaH56IXwtNL uu5ZuCc8C77oYXkmw/3CrOa5+h2NJxxeqGcNnoHwUt0v6GHwAj370KPcuOeZ S4yuC3O5gx7r5h4RZp755CxJ30h4sZ71YZZ/Hnp0mPmll8ETDy+Dy8GDtJ56 9oUZL8R/nfx9tIboT+Ah8Ao4jpjg6izrZ/wzXBEeCq+Ce4TZOqjv4DDTF5PT A89weK3OfOIo2hL0x+Qf62oYHWa8THsP/xh4A/pPYdZ3te59/DPgrbCnn+VZ p/MQfaTz3NLfBbTOrFUNPFPhX3VvwtNc31rwTHgbPCXM9BV6zhInuHGfeRhr Xt74J8GbdA742T7crHsTng3/BjeCf4b3wB/pOw/erueOro/ykL8BnoXwH+i+ fqb/Dq+Ha4WzL3Kx58KstpX4Z+n6uzx1/Yx36JlO/kVuXo3Rl8N74WVhxuv0 dwFdKzdWUzwr4f26pvr7gubL+iwIszxr8H/wML/WJDX++u4s+oK+ytW5Isz4 F71/SqNtgVviXw8fVl9PnivwQZ0/6JvgI/C6MPNIb4H+C3wIToBfwa/0DNIe cXWmJ88W+Ci8VWugNWesEPw74NM6qz2tBuXfrPXQNcIT4Gd8HH1DmNWwAf2L /i6gupn7Tq2Ny9MZ/zH4GpzR03T13a11pZ2F2+E5AF+A94UZb9X3QPz7naet n/nPw23gPfA5OBeeQ/BFnT/oh+HL8JEwG/cKnBfPCcdBfjbfk3AX+CR8He4E H4WvwgfDLM92ne1h5vkNDsSzDT6Bpxt8Gr6pZwT5z7j6e6BfhG/DPeFL8B34 QpjxLn13xX/VjTsAz134IXxW83M583gaay698VyB78GXw6zvH/q7G/F/Tu+H 5yZ8H74dZjn36LsH+i34AXoW9tt1+BTXqCT578B/od8IM484maftk906i+A/ 4Uc6o8jzD/xSZyP8AH4K31ft2lc6D9Efw8/RI/1MfwafCrP1+R1PWmo4p/XV t26NSdun3w5+xk90ljLuE7cm8egv4H/h52HGL+CnxL/dWJ74/3V6AfI/09qS /1GY5TlA/vKe5lf+l2F2XxxCH0T+t/Bb9IVwcc6KHJwVQ+H/0P9Dr07fj/A7 nZnon+AP8Lsw80ivhucN/Br+hhwpaF/hIfjfo7+HX4fZWEd0JoRZnqNwErzJ aJ91VuNPDiehhjFwKjgpXM7Dcj7W9yjG+uru6xF4voRZ389hph8np4+n5dS8 UhJT006iZyVmo53RN1tiOtopff/BnxH+ovMh3Dg543owbgb4H8Z9qb9j6oyC x/pZzmR4anlaHq3JePS0ru9kOLPGhlvhyaHx4BnoOeEM8FQ/qyctnD3c9HP6 +xcxCy0V+hQ/4zRwM/J86/Qa4Xa239Q7MHUmhR9S2yz8eeBMeObBBeFv4Zb0 LeTGKhBufJG+/ujfuXqC4LJwZjgvMT/tAp45fsZZ0JswVpFw+zZVONz6Kn/R cNs/l/WMwF8SzoVeOtxyXtc3IvRScG70BXAxODu8DC4D54VLhJvnqr5xoefW 9UD3Y9zy4fb9ag26D1wEfQVcCS4AVyRWVt1wR+biCeeB23qarr2dK9zW5zz5 Z9M3n5tvOWIFV0NrT+Ns8Eo8VeCCcGQV7ge4Ym6e3eHGN8jjRaymNcXzC/6a cDF4NVwVLqy9FG55VJu/h/n1XW4jnjpwSY2LXjfcvo+liOA609bp2qH50e7p G5GeoVoj9H7U2dDxFvRGcBnYN9w8t/H/il5P1wD9rt5/4DZw7XAbqwS8Db0J XF57jNhCawH/jt5Kawrv9LMaPODGxKa0u/ou5Gcsf4Nwq+EO+h/oAZqz5ksM dH0P691bexeO8jS9kvYeMYTmBe/T7w7YG/4+3PhPcsbjb+08e/3MXw3eAwfD VeFBeNrBPvBB9PZwDbhDuI37gDxH0TvDddAHeNp8tW4D4S5u3EN4OsI1tX/C Lc99+nYKN89DeAee5q7+MK5dV7iczj3ydHPjjoR7w77wKfx94AZwr3Djx+Q5 i94fbqxzD3+M83Qn9nR9T/oZ14fH4ukHN4T7hlvfp+QZQAyjNUGfgCfCcVS4 5Xyu7zB6n4ebo5+HQ3Ut4StwNNwKDg83zzP8o8Jtz7yCB+o7v9ZHz1n8I+Dv 8V+DE2F/OIE4kPZCfwtGHwwHoV/3Mz0A/jHc1kfrfwK9B1wPjiXGuxrGexpr TSbDQ1zNd/CPhFvDw8ONQ/TMIg5zY83FP9rpw/U3BY1FzYPCLc9LfTvyNL8f noXwOLgt/Bf5x+t6a/8Td9ES4DnEebT/6PtA7+1wR/RH8BS4k8408kx199eE cPO8xX8fz0S4g65duOV/gz453Pzv4Kn6WwDcUr8R9P4Pd8U/M9y4C/wJfaOu jc49xprr9GnEGa6GxZ7Gqv9vP6u5G/wUngX/CK/BswDuDr9HXwOHwi/0O0J7 Dl5EXEL7RG2r8f/s8iwNN/6M/hr/Mrgv+r9+5u8Nv4QXw72Uh3mtgNvpXZ08 K13+VeE2bn94M/o6x/PDrYaP5P9P7/Pa0+jv4NXwAHh5uOXRuGvDzfMV/wU/ 2//NdKaRcwMcrvOBGi7rOlLDLr1Xw7HoO+CtcBT8K3EbLdl3vMP4887rrnsS f9Pl30Tc4vxf/Yxj4K3k2eHq3B5unJw8Kei7W/cDekp4DzwI/kLfzXA0/Ee4 6Snx/+Zp+03Xdy0174R76LcPffdp76KvD7c9kBT/3nCbSyo4C56zule1nvQ9 qPXU+wz6UXi4zl7yH4d/gjOgn4BHSA83j/R06Ed0L8EHiIfcuMfCzZ+GsY6T 55TuPfSs+M/BY+Ez4cbpVZun9U1Ez4bngva9zjHiaVo6PJn9jUcrP/6Lrp4i nvZuf0vfKMJNz4A/AX8/nomv8HwHP9I9CV8lXqdNhHOj34SnwP8LN85E3/Pk vOE8ufzNPxnOT76CtOJ4cqJf032Lng++A0/X+Ubf+7rH4ELoD3RP6qwIN85K 3wLo9+CZ6LfCrW8W9Mv0va37HP0S/NjVdoJr9BQexRxf6TygLUZ/GG6ebPQt Rs7n8ALdy8R/aDnQS6K/dP7i/qYvhJ8Qn/3/NfE0Vv039BvB1fwi3DgnecrQ 9x28DL0s/F73tt4TiH+6+b4NN32pzl5Pq3O+nh3U/1rrqW9N6B+cp6C/9Z0F l4M/wsvh/8KNczNuZfSkrPka3UfhxvnQPdG/ce88yYjJafnR0xEz6DrBlfAk gVfrPKTvF1pe9Mee5tdYt/V3AXgetVXFnwbegF4NTgtv1LzwZ4I3w6kjTF8P P/O0965VsLe/jbtJ5xt6eudpjF4Y3gvXgDPDv+osxZPPcW30b+Htmjt6dngr XAc9B/wbnCXCPNKf4PnMXFbAFf1tXqqhFpwVzzY4Y4SNVZj5ZouwPEXgPBE2 7k48DfAXgP/Qmc865IVXsg4N/W2f70Z/w1i53bzqoedyfXNGmF6UnJ/wFHF1 FoowLoHeF38Q/Bd6MOwBn9L9SCzm1qQ5ekn4oPZnhPF+uBl6CfiAztUq5t+l taXOolpb/V5DL+38LfCXgQ9pfxLL08pQQwB6Rfg4en1iQ5oHeiB6JfgEelry lIMPw6UiLE8pPBUizFMW9vO3nEfxpMHv6caqRawjn/ZqhOnl4Nb4veGz2ktE H9oZ+Fv61nDcxt/0c3AVYlW3PumrGGustnhqwufh6hHGFcjfEd0Xvoz+A1wP vqK14lp4aa30vS7C9Mr4O/hbnZd07chfG74Ad0ZvAF/TeUvfK+6MzVHF1krj Xgo3XWdyCFprWjVydqNvc/im7mX8LeH/wd3RW8G34KYR5pHeFb0ZfANuRGzi xm0RYf4q5PyOPP7wbfR++IPh+3BghPGfOrerWF/NpQT8vdP9iAFaR/L08je+ i97f32p+oGcZc2wMH2N9wtDbwo/Ry5OnB/xEzxS4nau/PbGj80Ti7ww/05pH GNdgrAj0TvBT9GJVzK9xczNWB9XJWNF4foSfo5fG09XV0y3CxpUeh6cX/FJ7 I8Jq8CF/PHpv+F/dX+TsrjXUd7kIy1MTT88I87zAUyCEd4d4ni/52Q6M1dfp GQN5XkfxLM7DuzY5w9HfoYcRI2i+5PkJPQr+gD7E3/T38EZ4u+5Pfs+OggfD X9EHRhg3oG9/YiitLlyVcaMj7PkbT0ykfdKZhj7IsQ8cB7/V+c+8YrXO+iYW YX3rkWeQv+WUZyz8E5xMv6nxT4Df6Lwiz0SnT8QzAk4JN0YfBSeHJ6GPhlPB wyLMI32T3t90v8P18Q+Fk8AT0IfDKeAhETZuI+oZGWF5GsPjI2zctHim458M p4dH+tt8v1DzDHgKnAG9HvnHuXWbij7W9R0TYXpTco5AT4A/44mJsPXRtZgU YXma46nD3OdoDfV9m5xz4XTkWUDf+XB2+Gd4OZwPXg6vgPPDM4izaC3J06yK sdZkDp6ZcBZ4doTlFC8kLqb54W+PfymcS/kjLGcg+lL6LoPzoC+JMA5AX4i+ AM6BPi/COBu8LcLWvB2edXg2w0XRe5H/V7gY3BFe53KuiTAuCPvpu6vWmTWZ Rd/pcCb0mfA0OCO8kriaFkT+qRHmaQG3q2J6Tnnwr3I5N8Bb4RLwlgjjtvg3 RlhtreHu9N0EF1E9+Dc4Xg2vhwvDv0SYHoJ/kb+tm8baDP8Ol4Yf65ygddM7 PPrxCPtG1Enf/HW9mNcu4m7n78u4e91916eK6apzB3EnrT15jpLnFlwHvWcV 07Wee4j7aGXhruQ/EmHfnQ5FGJdD307fY3AFeAB9D8Jl4B/xH4iwb1ldPC2P vpsdjbCaOzLuWn6bnIK/Qz9InqtwDfrugk/CnqpBvzXgqnAC+c873qv3fLga fDrCPD+Qczf6GdgL/USE5feAz0WYvxOe/XguwT7onT14hmhvcy9ciTAuRz3b 8ByGy+M5DP8PrgVfJF6mdSbPAX/j6uhH4BtwbXh/hK2D1u16hOk14aHUf9vx HeI92o/kOUXf+3AD9D8jjLuij8L/F1wP/WaE9e2Cfgn/C+1JzdHf8shzHL4L +8Jn4IdwI51p5Plb54Pq13u+zgH4st7tdS/DzyJM70H+B8RHtIboZ/2NG8Nj yfPE6ef8bR82ga/Cr3SPw3PxfNUehgdz3d9qffQeSHznPP/D/5/ufXhyFdNV zyd4TiT7Gv4nwmrrST3/El/TesETqhhr3Bvk+aD7VOupd3X6toa/RBj3w/8R /kzrA/+JJxl6O93v5PmkcwZ+H2F5xDf9zR8Mt8azyJ05f+n3An3bw0kjjdvC 3xKz07rpDMSfJtL6jtO3ergRc5+Pnt7VlirSPKHU84icqeFO6Mf0/gOPgJMT U9L643mCJyPcBT0zMSstQucS+bPBLcm/vIrV0BlPBmImWjiep/7GP6KnjbQa NNYL9JxwTzgHMRetB7yePEXh3vBLf9N7wbmJeWlR5Hyjd36tLXq+SOMY9A30 zQ/3Qf/X3/zKsxY9j8v/Fr2Q5gW/0+8aeABcJNLGjdO5x7yK6xoxryVVbL4d 9JyFS7hx/6Pvd3AYXDDS8sTqN2ykeaT/jSeLuy6f4FJwJPwZLq25wDvJWUH1 65oGcI6qBrh8pPFAciZH94AT0f/Qu7fzlCGWoyXg+eJvHI3+Df7K0uFKkdY3 HvYketEG4U+Npxo8BN0n0nKKfye/t8uzG67i+q5lTaprDVmTqpHmGUKe+/62 T7Q+aclZC/4JPknfpvBo7Qf0um5f1SH60obpuwqe+vBI9IwBpotLRtr6ROhs x1PWcU1ibeXXb+QA42HomeAG8CjdC3AzeBzcJNJ4BP6GxMaunhx4WsAT4Sxw I3gMXC/S8gzHnzXA/GPRm0fafTEK/YTe7d1YT/WuBa/U/sQfBE+B88Ih8DSd gXq3d/UERJpnDHm2s55+mhfr2VH3BG08ei76BsKT8beKtLFUZ3Ck5RmrdwCt N20G+jXy/+D4JtwFngMXCrCcs+EL6G3hSbqmjNtG15RxW0earjoLBljOWXoe 6X7VuIzVT/cHbYmev8TuyoN+g5y9XP4ekcaT0UuQpye8CH0hnhSRdkZ9F2A5 58HFAizPArgo3A2er+cItfXR2lLbffqGuXHL4gmHf9aeD7B6lsGhkaZPZdze xL5u3NtVjDVWafz94aXwrEg72xfr+xV6e3gmegU4yl3HZ/SNh1fBHugJ8Fo4 LtJ4hs5Mvf+7ev7R+7nzROsMcH0rBxivgb3ggfB6ODHS+s4iz+BI2z/Sq+EZ Bm+ER0Razrl4vNGHw5vQr7A+Q3S99DsafSS8Bf2nSPPM0Xch6omEl6Pfwj9G efTdAP8MeBd6LXg8vE3PCOIE2ladafSd5Lh2gOnb4YhIW5/p+h6FHgOvRh+t /ehqeFXFeIPucTyTI+0Z2gCeCf8BT480XkSeKZoHbSHcCM9seI/ORvJMhXfo nSHS8szHUy/A/Dt13zGvebpe+p6Gf77TO/G7sAvtNv7VuiZaB/1GoO8i+ACe FF7sKXif7mv0pfBBeEGkeaQ3RV8I79fZpfefSPvfWJ4baWOpzjTk+Rk+BK/Q NacdhdOjr3EcGGA1nICXqRbtGeppFWB8BH1xpNWwFD0E/Rf4NPo67QvNEf1b cv4On0FP7WW6at6gfeH8bej7K3wO3hxpvFrfcNC3wGfR03mZX+O+Yw036tox r3Z4tsEXdJbi2e5q/i3SxpXeEc8u+LLOsQCb73H4B/gP+Ar8hZw71IecWyMt zxpq2Blpnkt4/PGv1HrqzGSsPU7vhL4XvqpzBj4E34C7wYfhm/DBSOMN5MxH 32PO3xfPefgveJ+us9YOz48Bxv/TGQUfhW/DRyKt70Y9g4gnnd4bz2n4Hnw2 0nJuxtMH/Qz8p9aQ/XBCa6jvJNRwDr6LfirSPOJ7kbZnXsCl8FyE78O56HsH vqjvFeS8Aj9Gv6x50B7prMN/3XF4gOlPdG5H2vqso578ePbD13S2a/10vdEH BBg/1D0L/w9+qjMT/12n3440fg7fIN7SdaJvHP4/4Zc6x+CbznMt0vJs1Xd4 L/NrnePxPID/hRPgh/ArODv3X07aUfyv0d7qzNE3EDxP9J/x+JDnmePB6H/D 7+BHkeb5Hf9A9MfwG/T7kZZ/h94nI82/Ex4exPkLf8rL2Yn/FfwR/8tI4//g qejpqCdtHt4fGPeN05/r+tDew55exrpewwOs5k86V+F/4Q/wKPg9/FXnG/4U Uebxhv9zdX5QP+cZg/8rnJRxP0ca76XmSehf4FTo1b3Mr7kXZW98hO/oGxGe pORPhmccnAz+Bv4mysbdT56y+FPBj/C/i7QadqPXJ2dq9CT4J9A3ufrASaIs zz48KaPMI72gl+1/3SNT8KdFT4PegPyV4KToi9Dz67qi++HPDKeHMxGz0A6T cxaeb+FM6DMDTM8Ip1ekHcQzLcA4HfpsOBucGc4aZXxEzzvGzQ2/YV4BjJXH 5WkOZ1DdcK4o07PCrbxsvynnXHLmcPpCOB+cA04TZXtAffNG2Vyyw53pW0b/ GW4DF3T6Mvp+B+eFf4aLwfng+XBx1QoXjjLPSX2Xpm8RODd6AWIh2nH0olHm /0bPCPqWhAvgWQWXlQ8uHWV8Cv/iAOubC30tXF5jwCWIpVydKwOMC8LtGbeC 8/eJsL8V1iZPuSjTz8DVWM8B+u3Kekbgr6d/w+9BrEI7h6crejVXj1eU8Xn0 TYxVVWOjbwgwfwk4lhhP84PXo3tqnnBP8lSHi8KhcB3NDd6m93+4PFw7yvgy +beg14TLoHtHWV+N1YKafbQPWbcdeOrDldB/hxvCleGWGp92gzy+Uea5Cu/C 0wT2xNOY2JR2XdeInM11jXSuepmuehoQG9Gu6TkVYOyBHoWnhRu3WZSxciag B8BV4b16V9d6wTWItWgXyeMfZfpNeE+A1Sn/brgV7AXHkyfY8a8B1ldr1YM6 Q3TdqTMoytgb/YDeV7VGcNso41vkj8bfUWuCvwPxhyj736TqTuypdYH307cd 7AN/T2zjciZWNX81zs/DeDprDujH4a6wL3xC7+dwPfgM3FvrBf8YZfodajgS YO9dtZWzio2rb2Kn0HvADdD/BydqXeCzcB+4sc4o1iEGbgKf07u644noobp+ 8EX0MLg53DfKPPf0zs9YrbX39F7tZfPStRgL94Mbwr2ibCzxgCjL8xd9o6Js 3Ad6jpAnLsq+PV5lrGi3tyd72T7XuJfRI+GW8CU4QnsCDo8y/b5+E+k9Hw7S PokyDtD+J88GOBx+iGeirhM8iDiE9oi+d/T+D7dGHxpl/AR9Ln1/0j5Avxlg /mCdseiDXf676CN0XeF7+l0At4VHEcfQnum5wxzHwc10nhOXaF10ppFnvBv3 L/qO1t6Ch0dZnqf0HRtlHulzvCynaniEfxLcSTpxHu2lvo9Fmd4RfQX+6XAX eBpxBu0Fnuf0nQV3R38WYHpXrTlxKu25fssEGHdG/0e/EeAemnuUcTf4FfoC N5fljLXQ+ZfCU1wN86NMf0XOFwFWZ0/01XjmujzzWJ/F8Pd6p0WvHGXn/yov WyvVVjHKdJ3Jm4hbaB/0/R/PSpdzGXlW6/qSZ6N+C8B9VVuUed7if08NK+BQ 1Un8mfYGfVWU+aV/xLMOjtD7A7wRjtJ5G2X8Hv/bAOvbX2cjY22Go/XsIP7i 9tunAONIvQMEWs2x8Bv0ZXA/OCn6VjhOz0p4PzwUTgZvg+Ph7cQdtE86Yxlr l8vze5RxIryRue/UfHVue5lfNScnz2/OkwreDQ+GU8N7dA/oLI2ycb+Q/zB9 D8I/6WyMsho+oqfHfwgerjMNzz54EPxHlOURH4gyT5KivN8E2PeugfpdQ9+j 6KPwnK7GnotlX+fjnQX9FPo49JPE07Rv6LuLuZzVHOl7yMt0rckT9KzRXD/9 RtC7uu4N9KtRxpPhY8QTtKTkOarfCK7mS8QrtJToB8hzTetAnhzUcBGeiCc7 fAGeoPM2yvqqtsyBlnM0nA++CU+Hi8KP4PnwNcZ6rHsMzo9+x/F19HvwTLgQ +p+6f+BbUeZJTT2v8XzLvDai58VzA32azj3027ondYZH2bjiu1GWJy19H0bZ uOnhc8zrqepnXie9bL6q+Ybe+d24Rcj/AJ4LF4bvw3N0/kSZno48udAvu/U8 H2XrkwL9SZTl0XwfkPM1vBQui/+N7iW4HPwOXg57wEmY11rYE04Kr4Nf8O// 0jKSs1Sg8RKdn+R8qfNCZ0uU5cyM5z/tQVpW+BZz/Kz6mePXKMu5Ruchfb+4 Gj5FGa+Cy5P/PbwCfhtlnIU8WaJtzbfr/QFPBvhXuDacyenV4FTuuqSINs5B 338ZKyW8Hr0knn/IuRguAT+HF+n+5d+T07Lh/zvKPJpXlUDTf4Gfk+cbV/9L vds7PWO0cW76pou22nLCb/CkhzfhqU6etPAW2AdOA2/WfR1tujz3vWzdtLZ1 8WRH3wHXJzaklSFnc/Ri8EHpcC54F5xT49Py4XnJmudVbaz5ey/TtVbZtB60 vHja0tcbPo/uG2j673Ae5XA5m6AXgffpXog2LkDflLwLFYX3ozfGUxDeCzeC C8B7dE29LM9v8HfRVnMh+rbEUxI+rHUjjwd8HG6BXgI+pGuHXsaN+4W5lFNt +p6DXt7NvVS0eYqQ04++peGj6MWjLX9h9LLR5pceiKcifAIOhj3hU3DlaOOi +JORvzC8Gz0r7AWfhisQK7k6gwKNT8Kt4arwWZ0h0bYO6lsl2vTi5GyHxwe+ oD1ArEkrof1M/jquhlrRxqXQf8BfG76i/Rxtfc/BWVjPZvKzDu0DLc9FnYHk qeE8afH4am31XQhPY/gGei48TZw/H9wcvqrrFW16WcatS6znxs1W1Vjz6kye BvA1uEug7cPrcA+4JXwbHgC3hR/qvKKvP3wL9iMG6BqQvzh6EHwPvVeg6Xd1 bsOv4Ua8VzeNttpUcwtiK5enZ6DxHbgvHAz/BYfC7eBHcJto40qMFUJsTbuP Ho6nA/wE7g9/Dz/Qfoi2PBXx9woy/11qqIjngzuLilFzR1dn+2jjyvj7E0Np z7QP8XR1Y0XTtzv8HI6Be8D/aN2izSN/Nfw/wq+1D+HVcBbG/YHY2dVZCb0X /Dfch9iP5sW4Vbi+A6Ltu1NioNWgPD2JvbWP8cQGGr9A7xZtNSjPIPRw+C0c RoygvYFHog+Gv8CDA01/B0cSo7WPyelJPXEuZ0y0sTf6MPyx8Ef0IYHmfw97 449y+UtTc4LWnJqroifCr9AHRtu41ckzmr5D4SSsQ0KgzVeeGvh/cjlHoA+C P8Px0Zbn/40bbZ4aWh/8fbU+WkPGHa656xsU+gj4E3pDeCycjLEmkHMcnAIe E21cizyT0SfCqdGb45/leCRxtOs7PtA4ufYtnglwSunR1rcOeSYRp9DqwtPx T4PT45kRbTnFTeg73dUwBc9kOA3sS/0zdV30XS7aPL7kKVnV9on2/yz8c+BM +BfBy+GccACe+XBGeB5xAa2+7gv0RXBW9DmBpmvvDYu29dH6j0MfBX8DzybO dXlmBxpnhufDi+Fs8GJ4BZwL/jnauBFjLSEuo2VHX4pnFZwHXggvhXOIoy1P Q/zNvMyvb30ro+2+aIzemprXubEG4bkRbb/N26BvcPlXknMTXBBeBW+GC8G/ RJsnH+xP37VwBvruIO6ktSD/cvzr4fx41kTbWKpzY7TlKQBvI/5Ga47/F/y/ w8XQe1PDH3BxeH2g5RSv1m8EuDDcBc+vLs+WaNObkmddoOUsir6LuJvWSu/A xOO0IHgPcR/NH+5JnoPOvz/auAzckXkdUM3MqwDcCb6u31OBlrMknm5VLY/q 2YK+1/XdCh+Gy8Hd6XsSLqJzFf8puCx636pWj/KciDa9AnyIeIQWSG3bAo3L o2+HjznPv9F2tnfA050825Uf/Xc8Z+HKcBT6JbgSHEYNl1UPNVyMNvZEj8Fz DfaAD9D3ns4N+BzxAu178u8MNJYnkjxX4YrkuRJtfZXnerTtnyrwHvy34Krw nWjL2YY8O/x5pqke/R0Bz/9gL605fFd7D74ZbZ7W8qOfcfUfgv+Ca8Kn4Bdw A/gI/BCuDT8gPqLVgo+iP9FZAQ+tarr6no629QkhfzT6ebdWfxLv02ronvUy 1nekY+R5CtfVGYX+Mtq+R/0TbVwf/RnxOa09OU/jf6X7TtcU/huuBz+Otjxt 8ZwMNL/6noPfwk3gUdTzzvl3xrD/aafg5MSUtB/pOwbPBzf3i/T9pHsHvgR/ 1n0Hv482j3JOoub/4GbUnJRncW3yxKG/ibaxOuosJedXedCT8u/f0LqgXydn CjgA/X+BVkMg/AVvErgTnsuBxi3RP0ZbDcpzEz01ejCcipiG1hX/fb17wx3Q p1Y1XX3TEtM7/1397oDbwBlijL/XXkLPCLfWOV/V/P46h5ljOnmY4zz0LM5/ D39WuC38bYyN21O/E9Fzwj+gXwu0+SrPI73za14688mTDW4HZ46xPN3pmyPG PB3Rp+FJBrfSOQzncfpj8uSFO+v8pLZCunbUtkTvwG7uBWOMu8L/4C8K99B1 gcvB/eB8xAK0Poy7sKqx5vIcz3eqBy4SY3374SlGLEHrD69n3FJwb8YtE2M5 ++j8JE9puBv8kjzF4V7wa7gs3BcuGWMe6TVjbM/EwBvoW8Hl2Un+6tLJvwW9 MjwAvRLRgxZODR/IWUWM/l+g6WFw7hhbn154nqHnd+tQnliRFor+NtC4v/YV 7AVH6FzVO7nL4xNjHAVXJXrTIumbhH1eC45F/0zfas7jGePy4Nlc1fzKvxOu 6+aYjL6+cDwcqtppI/G30h6hDUdPgacBPFB7G24ED4ZTw43hIXC9GPPE6llD /vpwAnqdGMsfjd4wxvyDdAbiaep4N9zS1dA8xjgBf17yd4en6dxj/f3gYfot SWym+xpPmiDjoXj2VbWaVWd69Bau/oxwoOYF54A7wRPhTHAQPAoO1j2kesh5 jDxt4RHorWOMx+gspYY28FhqOFTV/Bo3C3lCnCcb3B4eD2eHO8AT9GyNsXGH kP8CfbvAk9ADYqyGgei58f8IT0E/g+cHeBzcLsbyiDvHmOcnvW9Utf2v+y4P fbvBU2EveDy8XnsbjoUX60yj/j7wLOrvrb1Pm4FeCE9/eLbO1aqmq4Ye2rNa Q8Y6X9VY61YY/wB4DtwvxngWfBtPJDwPLoYnCl4A54d7urEiYkwfTc4iQbbf 5qo2+oa5PCXQY+BFcNcY2wPD9PyKsbks1H2HZyS8WucefeOdfgse5HI+ZL5D 4GXM9y76UFdPYox5xul3PXkGwj+jx2nf6TqiD44xv/TyeIbBK+DK8Ch4DTwi xniivmUFWd8lOq8Ya4zz/KT10x7AUyHIeCW6BzwWXqvnQqC926eFR8eYPgm/ fzXOvVieCfk4W5jLQvRtzGUicbKavi8x1jS3DlNijKeiVyf/VHgLerUg82+E LxAvqQZ926HvJPgXncnwTFdPHfzz4N90TqLPd33nxhjPoG9NPLPhrejTY6yv xnpFnTPgDdT5nr6L4F91PuBfAu/UmaxxdI3IsyDGPBrrC/6f4d/hZcTl2g/6 lsI6rIR3ozcIMv0PeDFxqfPXDzLeBTeGV8F74RUxxnP0vQv9F/ignvvkXO/y zNK/06brXTrG9Hlw0yCrcz+eJvAaeJ/OQOrcCB/Q95Yg67sNPTk5N7lxN8QY ayx/PNvhYzrPY4wXkD8j/h3wcfTfNA+tBfo+5dbc4LR4tsGH8WzWWjoOCjL/ STgE3gWf1lmEf0+MvUe1Rt8Ln9X7ADUfgs9Q8+4Y0xeT//sge+86o3ePajau 6myHvh++oGcu+hX4lt4N4MNu3K54zsM3dL7Bx+DLcCf4BHxV5yH+k66GIzHm +VnPFzxb4CPofkE2r6NwB/io9ih8MMbGUg3HYyzPcvqejbFxr6MXIP9Fxz/S 9xz8P7hbkO3zm3AuPGfgizonWYfTqpN1OBVjuursif8qfAe+HGO8mrHGo6fl HkzOPViRPI/Rn+G5pnF0j+MpjH7LjXUjxngtej/63oTvo/cJMv+fcG/4OnxP Zx313JFOPUXJc9fVcI/4F+0RXBb9geMPxE+678gfQZ6H8FP0MPhP+LHO4RjL o3Hvx5jnF/zhQZbzCXo0/AR+rnuc+Jb2Bn4UY/oG/B6M+w/8j8404gudA+gD 6fuv88cHmf4v/JT4t/PHBRm/hCuQ55Wr82WM8WadsXjew+/Qh8D/we/hWPiZ xoPfxZj+K/7K1axO1ezFur3RuKzbT/g/wh/Qq8ITVL881WytVNu4GNN11qXn emak7STnKPzJ4K/odfEnhz/rHEZPASfhuieJNY/0kehJ4S/wZ/J9deN+E2v+ 7eRsQJ5UcFL6TsCfTv8Gp4k1/h2PTzXr+5a+k/BkQE+FJyUxNW0HnnFBxt+g 169mNaueWsz9i8Zl7s3gzOqr8xl/fjgrnkb4s7i+WYnZaGnhGXhyumdK9ljj P/QtHX8O55keZP708DT4W9UNB+DJrbWDZ6PngTPDeWNt3L36LoSnoKshU6zV oHnNx19IdcBz4Hz6NzhXrOXZQ98CsebZr3cwniPHo3jGMsdF+IuoVvyHo+zv idKXoJdEz41egliKdpi+y9DLwHnRlwaZngc+AfeD68E/UGcV5/GINT5O36LE 4m6sn/GXhfPp3idWph3DswrdU7WiL4craP5wJ3KWd/7Ssdb3CP6gapZTa9UZ rub8G+hbDy4Bb4TrwyXhPlzT6tK5pv3hmnBpnWn0rQUXxuMda54i8BD0/nAN uAf+qvB3+Lug+8AF0L1ibVzVXCPW8qivb6yNe1K/EaihocZCXxlk8y0I9yVP I1dbHPnrxtp3j3V46sBF0WvHmv4dvAK9khu3XKytz1HdF7GWpxT6djyt9G/w b7AfXBHeAQfAleDdcDvYC96j92q4KtyM2IJWDg6tZlwW3oanOVwebhlrOU9p /YkhtDPwLn2fhz3xtI21nOfQ/0Bvo3mhfx9rfBb9gH47aK3R/WONT6P3jbU1 90U/ovdbuDY8jHp6Ox7OWnWJtW8ynWKNvdH34+8M+8D98Td1a/4rehM3lw7E H2jnGatxrHnKoO8LMl159sIddV3ho3AfjQX3ijW+qG9lsVbbBfgwnh669nji GbebW9tD6F3hmvCPsaZrL+0MsnXzgE/Codor8CLiEtpdco4lzxC4oc4N5huh dWe+4cRI5z9L32i4sdakmumqcwAxjHaJPCvpOx3+Ue/M1UxXnVHEGO0b+ILe 1eFmcEKs8VV9k0EfDLdEPw/Ha73gc3Ac3ASOrWZ5dN0HxVrNLeCrerdXzfBN eCIcDF+Bf4Jb6Qyn70iXZzF1jta+0bmNPsbVMzzWPNep5xp9R8D+6ENjLf81 PWtizS/9Bp5xcBB8C56kPaqxYo1v4J9I/kQ3l9t4psDfw2OJ47UX4cnVjJvr rIanuppjY20druhvELGm34Rn4pkBB+CZSZytvQ7/pXd+zUvnc6zxbfx/os+F 2yl/rPVVDb+yDivgUL0/V7M8quce/llwW60V+gKX8zH6Mriz9g/6zy7nEngl 3EFndazp9xh3PnEh7Y6+oQUZy/MAXgx3hB8G2T78AX4Gr4a7wuvJuRXurXMM Xqd9Ba8l/kL7i5xr0TfAPdCfB5neHc7izfrFcW7obI+12lTzKuIal+fvIONu 8Et4I9wLfgNvg/tpfWKNHzLWJuIWV897PL9p3eBX8Gbdq6o51vI8wP86yPx9 0U/Dwe7+WkPNO1yd22ONH+tZSTxBew5/xL8HjsDzGd4HR8Gb6Lvf1fZHrHme 6psVnt1wuJ5Zwbz/MPel8O9ou1ydR7jWB7WPudaHiUd1T+p8IOdxx8mCrYZ4 +ADxkBt3azXjMJ1XsVbDM30jQj8FJ+hsIZ6mvdBvIvJc172EniLY9IHwGeI5 2ks8u+l70Y11Ptb4X30Lwn8BHoqeKtj8g+GU8Fl4EHyRuVyGJzOXfeS54vJf jbVxh+ssRb/hOGmwzTcOzgTfhEfBGeBr8Aj4Uqzl0bj/izXPa32Xw3MEjtUc yXkbHg1nRb8Ta/89qDPo9+FxcA70B/BE3Y+xxu/IcwLPYzfuefhf57lL/NP1 zR5sPAHODT+Cp+geibW+/5HnSaz996+k58XzHJ4Gv4i1nJ/w5EP/B56Ofoe1 egrP1+8s9JfwTO3/WPN81N+wqtk+0f5/iP81vAz/CzgJe2mdvhfR9x36HDxv ie9ps3UG0veD4yLBps/VeRhr6/OW/NnQ78Hjdb8Q37gaLlczngp/h+cjPA8u ASdl3EXw11jjxfAn+AstSTHeP/B8g75EcyTPZ80R/i/W8nxh3OLB5l+ovR1n 90VS+t7GnyrOxmqGpyp8QOceeto481dETw+vgivBGeDVcOo48/wMl0VP6Tgb MQdthdaHdUsDb2bdUsTZWMkYN12c5VmpM4r4LS0l+plKXHt4XHae5eTMBa/H c8zbco7Iz3scemZ4DfpT6szk8mSMMz05eaoEW85f0HMSc2ts9O+IxVQ3nIeY j5Yafkmegs6fP854E/wNegF4D/XvZS47WcNE/S4LtpwbdN5Wszyqxxs9r+tb Ay4M/wp/xFMC3g7XRS8J74BrBVs92+Dicaanp55CxCK0Leg1g423wu/IU9Tp LeLsbD8H/4OeFV4L18dfBt4FN4YrwnvhD3gqubEqxBlnYqzP6J6unhSsc014 n64psbyuE54GwcZ/6NzA7wGf0PfDOOur/FXibP9kwd8Cvzd8CL16nOUUJyW/ j8vTFI8XvF9nBTlrwOf1fS/OPFnJUw9PaXgnHj+4NnwUbgM3c3NPR05f+IjW lliPlo2+mdAbqE70gGDTj8Ol4mx9foe/MG45x7WIdVwe/2DjY3Aw3NA9QzOS s7nL0zTOOBdjNSI2oeXUHiNnS/i2vmXRtzF8WtclzvLkwPN9sPnPoHeA/eFL cEc4AL6sNYknN60p/h/QOmtfivEEw1fw5KOe7+GrcBf01vB1ODDOPHnw58IT BF9E/57a5up+03rG2VjSu9G3LXwTbk/sSMtP397oneB7OmO9rQaN24bYjnYD 7h5sfAsOibMa8tG3EmP9CP+t327Eri5PX/yh8F9wAW/TVXM3Yg9aYa0hem+t IXrPOOMi6KH07QU/Qu8fbP4HcD+4O3wfrsa4feHX+h5Fnn7wn/LH2bhP4Cj8 4aoN7hFs89VY0XAE/ByOgAfAT+E+cZZH44bFmecZXIj8Hdw6VISjnB5D32j4 HzgBToBfwYlwomqD4+OMSzCvQeiD4bfow+DR8EflIcbRiuOJDzb+F30gPAh+ I46zviXxDCH+RCsFN2QdhsPJ8IyMs5xl0L2oc4TLM4Q8Q+H38E/wKPiDaogz j/TZcbZnUnD21qbvWFdbIPlnwplgX/QJ8Bd4PHEirTxjjSHnZDgpfUcHm54E joyz9SmKx5O+sfAL+o4hjqOVRR8RbPwZfSw8RXOhb338s1yeGXHG38BTidNp FXVe4Znjxh1H32nOMynO8lTAU9fb/MrflrnM172pMxN9AZwc/wniKV0jeA1x Hc2Dvj3wL46z7wOTyb8UTo1nCrwMTgMvjDNPSo2LvghOBc+Ls/xazyVx5q9M zul4lsPp0f2oYbXjlXHGGeB1ePZp3eBZ8FqtP/wzcQUtHdzS2zgtPDvYas4M r9ffEbSXqHku+no4q2qAd8K5VRu8Af4W3kjcTPOitgXoW+Hs6FvijKuir0L/ FS6EPj/Y/NngFfAmuIDWAd6utYUXwb/BOeEdcTauN3mWov8B50H/Jc5qqIIe xTrvjrPvJ4vx/A7nwrMtzvJUw7Mrzjyq38Pb9r/uu/bwXuffQp6H8AD0LXqv 1r2AHoLnsFuHQ8QjtIK61niOwUVUZ7DpleD9xIO0fHBHb2PV3BU+7tbhaJxx YXgTfc/ofoQ3670dLg0vhw/A+eHTcab7aF952377TuuP56Tua7g/+nnXd0+c 7QHVcC7O5lKdvjvx39X+1PrAl3QPwv3oe83VsI51+B/ck3UYgH7DrcOVOPPU IM92+l7VPYJ+kXiZVg6+Hmd+6aH0vaX7FN6ld1rYE74TZ1yLPH28ra/unT/w /KVrCt8k3tae13oGG/vAYfjvu7EKx9rfCg/qN3uc6bX13OQdrBj6t5ztJ+j7 H3o9/I+JT7Un4RjyPHfr8CzOuDp8EP/fmiPc29v8xeHyPGMr0jrDe/E80b7S ftBvBLgmfBx+C/vCg+j7ztX8Js64LnwEzyvVCf8TZ33r6kzG/8KNOxj+4OrZ y7X4BCdyLZIzfkpaA/zv48zjC58m51e4If4vxCTywGfQk8GN4J+8Ta8Ff8Tz 2a3JUG9j1X9WvxHwNIaTxhvXJ/9EPKn1joF+AU8auBn8L/1ex1nOVPGmN8R/ PtjqlP8cnAJuAl+C08Et4ARv66trMQZO72pOG2/cHJ6AntX1zRxv3Jj8p1iT bPAY1uRbYnaaH558xAK0YPgqY2VxegZiJq0DfSd5m1/1X8eTEw7QfoPzuL5T 8eSFW2qvoheCW8O5401vRp7/Bdt7V6CeL942rr/uBWrLD0+mtmd4KsNd0e/q PR9uo7MOfzm4LXwPvajjRejF4XbwffQScAe4SLx5WjDuZfSMrrYrwTavVjqT 6fsd/D1cMN7GEheLtzyt6Fsm3sb1h+9SZwV4AXU+Jk9Zt7eXeNs+17gP9V4N /wA/gEvBHeGS8ab7kedvdA+4G3qleOMf4UwhaPAo+AVj1YfXMZYn0Uvrpt9T ev+He+GpGm8cjL6WGqrBPdCfB5u/u55x6FVc/lfo1eE+8Gu4BtwXrkmsTQvR PYJeFw5FD9Z6aC7oa8jj63Kuh2vBvWGfeMsjrhNvntb43wRbzn567uBv4Gpu pbWkxcL14k3XWJ/xN4Wj4CbaL7qm5Pmdvi3gaN2nwaaLG2pfaw/g+RhsHIH+ FW4Jx8DN443b61lGnkA37jescxCcAH/A3wgOhwPiTe+AP1mI1Rmv+xr2g+Pg lHAIPAiOJOcj7seKepZ521qp/gdxputM7qF5az+TMw19O8BD0dPBP8DD9Nyh bydXT7t483TGnxpPe3gIemvN1Y3bMd78XfB8Q98u8B72SWb83eHRem7GG4+E d3pbX63Jcbin0ztrX7gaDngbD4azhFjNY+BP7MM28G/kP42nDzxW5wOe2Hj7 bpAN7guP1zOROED7UGcO/nCXJzTeuKd+N+EP0/2OniPE/BPh7HB/eILOLvpG wicZ9ywc5fJHx9u4F/QbDX88PF3PnXiroTv586MnwDPQ88Ax8FQ4It7yaNy4 ePNMgx+1Yg5h9v9veIWxBjo9Sw3u82HMoyBnCXmGoc/Xc4E4nDYPvo1/pONi IaYvgJvBR+EDcFl4MvwzPDHeOIw6B2svqG64OJ5R8EI847QGtCVwGfRJ8DKd vYw1Nt7+N1dLoY9xnhHx1rcfeQqHWM45ev7C0+AVem7SdyG8Fq6Cvgj+RWcp +kw3bjF4NnyXtX0Az4GXok+PN08E+ZvT9xh8EL0cPBVeDleEZ8Cr4CnxNm44 /lnxlkf6gngbNwb9X/IvgdfrOeJt81XN1cizFN4Ie8DzXc2V4XnwGnhuvOlR utb0HQ9fo+bR8bY+A9AXx1ueOH2zwrMGfonnNbzW5a9Jzl/grTqL0LfBX/VN Cd4Ob0dfodq1V3T2ehtr3arTdyW8BV4dbznFG4ibdJ/i/w//Fpd/a7zl/E3n JPqv8CfG2hxvLL0WOdfD2+B18cYDyXMk3tZ8GNwYzwF4r85J+BC8D64P/wHv 0v0ebzxY33nQd8E7dVbDy+HNsDf8s2qFfyP+TtsBL4s3Tzx9m3qbrt9Zvvh3 yAc3hQ/D++GD8cY/4d8Xb7UN1XcbPPt1LuEJgvfqXoYbwHtUH7w73vQh+GuH 2LppzVvAJ+BDOp+1TrTROut8eIdwOVvhOQ0fgU8Rz6gO2B/9nNYLDvQ2Xb/j jmt83bfkyUeef+Cr6C1DTFffs8TztKNwejxXHV+ONz4Ft8F/HT6n5wV8CT4O Z8V/ET4Np/CxPLou1+Kt5rM62/Hfgi/AXeDH8HW4LXxTY8Md4LvwJZ3z8J/w ZZ2H5PzLreHtePOMYi7t8dyBL6LfiLf8I9HvxZv/fzrn8TzQPQLnJs8Tl/9R vPEtOATPFVd/D/gZfBu+T3zo1iqHj7HqzAT/DZ+AL8TbOoxg3Kfxpmte3cjz Ar4JvyS+Ut06Z+j71vHreOO3cF/8b1Q3/Dze+t6AY9CTJnDN4Lw+lueKznz0 f+F7Otvh9/BTPSPgL/BznZP4v8L34Vj0ZOR5AX+ON/1v+B3xP62Fzmof40dw BfijyxkZYvvwmZ4dcHLyvISHwJnh9/Bi9lsquD2ckpjaeRLxpIVf65z0MV15 JsFr4GYF+J2RYLWN0T4npqCNhcv7GKs2DzidW4dKcJYEqz9TgvE77VtiRtp4 +g5l3G/h/3Su4s/gakiTYHlewQNDzP9G9xr1b3TnT1X82Zwna4LxBHIWJRan TYF98ORJsGs3gjz54M86G9Hzu3pyJZjnIzwcT274E/wjnh/ggsw9OzGnq3ML NRSEB8CFid/RvsJj6FsMTop/bIjVkAwuQCzkxq3lY/xB+yTBapik73XoJZ2/ BLEUbSr6NPJU0Vqgjwsx/Ru4NLEsbZq+d9G3ghu3XILxdP0mwl8eToU+IcT8 KeDxcBk4ObyPuVSCB1JPI/JUdvk9EmzcNHAL9KqOS/vYfB/omUueanB6/X8x w55wWrhiguXRuF4J5plJPaPxFIGToPuTxwfOAM9Crw5ngufBdeBvYT88dV3+ 2gnGc8kTiF7f+ZfhbwHnhWsQa9Hm4JkTYpwF/QxzrAeP0zMiwfoqfwNiI1p2 uA05mzhulmA5F+oZTZ6mcC70hXDDBPv/pO6AvzmcG26cYJ75+L19bJ9or/6M vxWcD886uB1cFO6MJ0DXXutADKQt1u8XPMFwEfSVIaZr73kn2PrMxjMbvSac Gb0l0Y+2CH15iLFytid/iKv5F72fw8XgtgnGP+tbCrGNG2s9no66Z+AbrFVr jaVnYoLlWaq/O/iYX+vcIcHui+X6ZoXeRfcA+gm9a8H14E36nah9DPfD08Px ZvSecGn4xwTzrCTPX4zbWevAuAOIYdrfeDbi7wqXhDsl2Fiqs3uC5VlF377E /rQy6J/JE5pg7wnb6BsBl0ffGmI5y8Ev9BsBXqfznNp6u/y9EkxXnv4+llN1 hhMjaav1rZ44RPcGehQxhrYGPSn++AR7Z4hNMK6E53fGjdP9oD3AuDlUN57t IZazAvqOEMsj/29wNFwRDiNnoqt5N/pPsBccjT7M5dwTYvVUhYcmmK7aEnRP 0zzgvSHG1eBI+g52+Vcl2NneEn5Fbf3gDdS2D/9I2Bv9J/zjdF/BZ9HHw411 viUY19a4eCbBNeER8Gzdq/Ao4hitM+tzIMS4OvpxeCLsq3MpwfrKPznB9s8v +l2GZzrcAH1mguVcjz6c/DPgOugj4Skuz2n8s+CG8LQE89SHD6OPcPUH4J8L Z4Qvo69wcz8PL9A9DM/XfU9rAk/Ev9jpo31MV87hCbY+a6lnP31Hwz7oc4jz XA2jfIx1L1zAsyTBnqET0Fe6/MsTjDfpG7juS1pz9I54VsN54Ev0XQa3gBcl WJ6N+Mf7mF/XYjK8zvXtAv8CF9D+SWT/06qkZR+i7aIFaX3wbIRb6VqQa7Pm k4bzujjPNvgAvD7BPH54uuHfABeGg3052+BTeNYm2FjynCTPVng0+nbdf7RA zV3fpnWN0fP6Wg3T4F+J22gBeJr7Gh9E35RgNfhr7vTdDU9B/4O4hxas5yP+ E/Ai9AK+ps+E9xL300LwpGUuh+DD6AcSjL9H/x85D8Kz0Av7mn8OfFW/DeDp 8C39noHnwq3wHIWPwMcSbNz5cCn0U7oecA5fm+9EuCR8Gl4MF4ePaz/BhxMs T2utVYJ5VP9pxvoNHguXwX8WXgaXhs/BS2F/+DJ8DC4PX4FXwJcSjJfDH8hz XWsKt8Dzp+YMnydedHnK+RrLXwe+Bv+muSdY3zZaH+JNWls4NWt4212XuwmW U+vsiX4HfgFvZdwbcBh8Re/07vreSjCP1uRVgu2ZDuS8iee+W/On+r2qewBO R85Hbp0fEh+7dbuv93W3zlWLm/4KPpNg66N1LstcLuj+gf8iPqC1Y6w0xY21 Dn54nukawAHwv/Bx+EWC8Qn4b+I/Ls9i9vxruD150pPnuev7JMHy6Bod8TV/ be6vlHjeaf+hP9c3SniN9gD3X0naBzgFMRXtf3Ab+n7UHOCljPUZ7shYOcnz Bb6A/l+Cec7Cn8j5wV2vtwmWX+v5KcH8P8DJ6ZuE/HvxdCJ/cvgqnCzR+Boc hp4Pfgznw5/Seb6SI2mi5clU3Fhr0sXXar4O50H/Br4Md0NPA9+E+8I54L90 P+JJ6/zpiBlot+GeeDLDd+CMicZ34SL4M8G34O6+5hcXQk8P34CLwlld3954 voXvwdkSbdz7ul/w5IIfwKkTrYZOzGUA/tzwQ10LPNld3yyJludPOGeieR7B TX1t/+s6lsGf1/WtAPvCT+EReMrDn+Fq6IXh16qZWITWhXHzoxd1a563uOlX 4PzEgs4z1Nf4P/Sf4GJun3yXaPwOHo5eGv4E1yZPGfgjvJw9UwDuTJ5Siabr Wgzztf0mT0H8Jdx++w4u565FnkTbA0907yTaXJS/PJ4aTi8GV3TXaBQ5PeGv OvfQvdyaj0avCidh/1dONM8X9BJ4PNzaViBWcmtVJdH8ytMKjzecjr5zyFMT zgJXTzTODI/0tb7KuYr51oa7Mt9qRB/aj3DZ4sa6dsFwHZdnUYi92+fEUyvR 9G7wRTzX4Ml4WsJB2itwfWJDWne9ezNuE10n9EaJxgXghvgbw8ngGsXN/55x xxDH0eqhL6RvA+1LeBXcHC4EN8fvD6eG16AHaK/AfonGheGmeFrCKcWJ1lc1 NEZvpnsYXkvfYPg79UX/Hk4P/6C9QOtB/YGJ5lH+ADxt4YxwG2I7WlE4EL0D nAn+xdf0YnAIsbXLv87XWP71cEe4ONw+0Vj+X9F/hMvC/cjZFS4FtyC2cnPv kmh6T73P+1qdJdG/x99J9yG8Db279iK82tf6ak0G4Omh/Q13SzTupfdqPP3g yuh9Eo0rwdH4Bzi9PzFU+xKOIcbRasARePrCFeCexN5q5Nzpa34P+fGEO96H HgV7wynQo+F9XPdI9AT4mTjRdB88u33tvcsLHlzcxq0OH0KP1f6G+6JPcOvQ DD0x0d67TsKj4frolfAMhv9GHwQPdfm94Z/gN+gDE83TR78d6NsLrognrLjN qxzsAQ+C/8Efn2hjqYYhiZanr96lE23crOht8Y91e3gkPAr2hU/52j5vAJ+A R7g9XxPP8EQ7x4Ylml4HfTT6RDeX8YnG/fT+g75X46FPhRfBLeFJxCm0Afr9 hT4dLi1PorH0MejTXA3nfc3fFN7M+TAZ7o8nFM9Mtycv4JkFN4NnE+dqT+id Gc983WPoG4mbaTH6fYS+wK3hJHiO6zsj0fI0huclmidMvw2LW07t2yh4sduH a4jrtCf03SDR9HB4Np7lcBCen4kraJH6DUj9q+AoOK646XpvX0JcRotAjy1u rP28Bl4Nd4dXJhprrPXo67Wf0V8z9w26vvBM9KU6a3S/J5reDx5X3OpsBCfC a+Fq8Dv6btKawz7o9eC3XN+NxW2tlLNuouk6V/cTD9IGwkfx/AYP173AvH6H 49Gz1uMeg8fqfk80T5x+F+PfrvMBfQtxKy1Wa5Jo/gQ4A33/0N7Cswn/Plf/ nkTjRDy/Fre+oehn4APwOHgXcbfLs6G4cR+NVdxq1hw/MN9fdY1UG/phx4UZ 9wI8B84JH4EnwUeJx3Xv6bsH/lPwKN0XicbS96OfhAehXy5u/qnwftbkmHQ8 hch5Bp6t+wvPWXgMfC7Rxp0pRr8ET9AZkmg1TISL0Pey9jR8Fs95eDx8OtHy DNHzLtE8qv9//MYfEs8+1jdz/FfRl+g5WIozYjDPwQw8n0rw/qVriX6TeJt2 GO7AWHfhSzrb65l+CJ4CfzeQd8F01EXOp+jD0B8nGg+nhuvEGzpr4FT472l9 8DwgPnLX9Dh9n8Aj4XzUcB++Ch9E/0tzge8kWt+L8JXilnOangvkfA7f1Prr 27iuhd6LyPMBvo/eC89L+K7WDf0VfAv+Bn4N74H/STTPSPo2Qy/KvFIxr0Lw 35oDnmPkf6Ga8TxLtHGno/+baHnU932ijTta7/P0/aRriSeyvs33GTnroH+G P+m5SW3vXJ1p0d+6NX+TaPpfuqbM96G7d/5MtPUZRv6PiZZHY1Wibwpq/lvP L3KmhP/R+Y+e2nFhOMtAW6tlJbkn4R/S875P/Ib2XOdYPWPlqYg/GfwMTj7Q cr5QncT0tNdwR/wZ4ctw5oGWcwz1DELPBL9FzzDQ+Aoch54GfgmnGmj8r67L QFtz1VCOcQvAj+GJ+AtpbNatHnou+Ct6joHG4xirNHpO+IHWGX8SV3N59K+s zxP4W7TstLH4vySa5yl6sRKma2/UhbPBn+FGcGGtC+MWHGgsf76BVtsE8tTH kx9OgmcC4+aFU8Bn9XcHeDye3ANNl799PVs37WFP+hZ36xlM/J6WlL7N0b3g 1LAfXEprDZcklqZN1HcV8peFJ8FeJUzXGhYjlnD34zXGagr7w1PrmZ4WLkMs R5tM38b09YCTo1caaDwFvRN6FTgfekO4IpwMrgpXgF8xln8Jy5MB3XOg1TyV vq3QveF06IPh+nB1uD9cTXOAA+AacEY4CK4FZ4b3UGdtuCrsM9A80/XNE091 uLJqGGj5p6HXHGj+GdpveOrCPngOkacBXFN7ZqBxLXguemXtUXgo/kbOU4fo q/HgA/WMVfNRuDFcBy4/0NZB69ZwoOm10aeRpxncSteO2NLt+dno/nAQequB xrPoWx3dD36Hp8lA6zsTPQS9vavtRj3Lo76z0FvAgfAo9EC3/xejt4Hboz9E b6t7GX4Ed4A7wf9HwzmG6bVzYbi2bWOmw7qnxhi1bdua15zatm3btm3bbr97 XWt/P3LlPk+frKxkJ9nZb3udpnGqp5c5l3iU6fQ1p7hyM/S5cGPxwY9r6TqU mCPQ2xjPwgb3MObwrvzmD88kTjvqDpRZ8GI8nYx+39RSvRNcgnMmqYm9CbeI 09xawa3FS5lB20XFlSX/kXBnuAL8gTg94W5w9zjlrnAX0ShdYDv+3sazsMBd jefYMU7jSG7va6lf2sbBqeEvcm7DfeDu6L3ilKUvM7WVMhzeQMxBcC94KjwE rg8vhYfC7eEBceqZQ1/3mZ+B8Gx5j3Dm74QP4elL3V/GAG+j7XB4gIyX2mT0 NQ/dAreAE4doDiPgYVJLH/DvWsoD4cFxmoP0u5C2dri1PC9qh9F2B/p4o+2K 4qrLc3FSuylz5fdS+oqHbeieOOX56I8YixeeBx8orv44PBthF9wbTkbb0TIG eAv6GLgfPDZO+11A26fEmQgvhGsW1/H+lfc+PAl24T8Bj4Od8Kg4jSM5TIhT zyJ4EH3FwW/w7MQ/BR4MH4anwhb4CjwLniD7F54tcyF7P055idwNiDNPcpNz Bl4Ob5S9JuuRshjPkeLKVvRT8FyZL3hOnLadD8+XMVGW4n+OZ7G0lbURpzE3 yblB/CXigc/gWQB74S/wMngDvChOPctEr6XrRNabDV4J/2SuErGPtsJ70f/R dg28C15NvZZihkPpaz28Bw4JUX03PDlO50fmMAv6dHi0rAfqVdIv+p7iysPQ X4eSF9yRO2EE/m3wfnm+ccqLZA1Qbzb6es3z3SFjJs554mwy4q+L0ziyrsJD 1L8P3h6n+2IF/hf498j4Zd/heQN/k7MU3g8fhr/hOWjMZzP0Q/AFeG+ceg7I fmF+dhvxT1Kfpqwm/iva7jPmdlec9iX9HojTOOfl7kp9QuZCzjTin4JvoHeA z8K34Nw+GvManBU+auTwlrEfgVfS9nCc6hIniY/GlHk7Q32Osgb9hsSjPJZ7 AvVFeX7onenrCnwX/VKc8j24AHEuw7fhKYylX5y+0/P4aMzrcD4fjXMT7kSc C/AduBD6NSNmcfgO/EjOOjx34SdwjxDNR/TbcarLWX1VYlMewF1DlO/DxYhz E34oc27Ss32r3HvJ7bisCfSf8AN4K1wa/1P4HTyUOM/g9/CTOGVZn0F8g7yE X3EXzYv/kzH/D2WeZK3AQ0KUJU42PC9k7uR9F6dt18mzjtP1swEui+cd/EHe I3Eac6Pcx9Dfy/yif+bZvYbXo1dH/wj/lmcapx6J449+H36OXhP+Av+VZ0E+ CRl7WnIOQf+OngD+Rv1D5kHuCei/4EToBX1Ul+dyL07nZwtcCv0R/Fbyof4q 65y2+X2UZe0Vhn8b66EunIh+0xAzgUlZ1tIf/vwfJRV6SzxJ0HPAReG/xnP8 GadxthB/coj6Jc4v5iE5/m3orfGngHOhn6Y+S7mFnpU6O2W3/AaLJzX8mZir iJMWLoy/E3o6uCCc0qSe7fj90FPBz/CPh+vCMXiSmbQv8awhTga4KHom6iyU Xegb0LPBvujdfTSHYnB66oyUnbJ3fJQLoacxaQ470DfRNifsh55DxkTZg74T vRhcCr2nj+o+cG7qvJS9ePqiF4D90fOZlPehb6NtfjgIvbeP+kvAW9DzwAHw DrgQXBLuj6cwHAgXMWm/peHB6D5GDl19dLxF4N209YXLwAPRi8LBsn5MGmc/ ORQ3qacs+jr8meHi8FD8fkbbvej+cDl4JHpJuAJ8EL0UXBEONilXgg+jl4Ur wyfhqnBNOEDGSvkP3h+iLHFMxCxjxClt0rZV4HLy55RqsA1PRbgqXNmkMWvB x4lTCa4OW/CUN/p1wFUM/T+TemrAtU26Zg4ydhee6kZuV4gTA8fCHvRacAhc U2pKOByPHgaHwWdDVBcuYdL5KQ8PxxNozFU16ZMSKus/RFlinofD4Qh4LP5Y OAqONikfILcI0SjR6Nfw14HrwKPxRxptQ00aJxK+GKJ+iXMDrg/XgyfibwDX hq3UdkofuC11eynwTfyN4frwHbgp3AieSttmht7QpJ4G8GT0RjKPcD2Txj9E zk1M6j8M3yNOC7gJniD8beBX7NlWJuWjeD7jGQL3xFMSTzuT3seaU7ekHMEz 3Ue5IZ5+oZrzC/gZbVub9DeHZXg6wh3gj+j94O5wJfROJr0DdKbuSjlOzPd4 esh/4+lmUj6JnrYS7eATcHkf9X+ibVu4C5wH/wq4F9wJ7gD3hvPDfUzabzeJ iT7ApOdPB5PmcIyYn+h3oPSH3gVPX5OedT1NGkdy6G9Sj+R/NETXv6z5HvgH G3vzMDwHtsBDYK9xDvSBR5r0jBpBHUfpJfOGbjbpefI1RPXessephxvz/yVE WfzfYIuxTkwmZfEPIo7TpGfRDzwuGTPcC32YSc9Vh0n1vvD3EF1vwgPw2Ex6 1m2BPUbbQSZdAzInbpOO5RTzsB/PNHgk+nZ4lMyLjAseZ+y13fAEeCgcB080 6dkyxqSeM8TZiT4WHiz7l3o05TT6eJP6z8J78UyWuZA9Ak836fkz1aR8Hs8w H20r5+RBeCZsgidRT6Gcw2P2UZYz0A7PMunZdW2k/l2hFc8Mk+oX4D/FeB+i 75DfP/GvM+n5M496AeUSHi/6YpOeIQtNypfRj6Mvgh0ybz7ql/PwMfVTyiM8 R9Hnwzb0UfAyk55jZ+HVcDw8Dl5j0nNmlUn5Gm1Po6+APehLTNr2CvpJ9KXy jNGzsR/Xw2NlHtA3mvSM2km9mzIBXmtSz2h4Cp4tJj2XNlNvlecET0PfbtKz JUeo6uPhDdSbjPjZQ5XFnxPeYcTfZlIW/yzi7DXpmZMbzz54EryceiXlKvnv Mak+ET1XqOYpPIO2u0x67uVBPwBPlrXko23ljL0GHzRi7jcpXyfmKvTjcBfZ syblG+h30U/CM9FPyLqm3ES/KM+QcgfOR1/H4Kl4DlEfMWJu81H/APT78Bl4 NvwQPg/PhXfBF2T/wE/hq/BC+JxJ9dvE2eGj965B6Ht8tN9hsk7gS/B8OTPh 5/BaeJ/c8+ER8DG5T8J2+IDc1eE4+CV8G14qOcu3AGyGr5vUc49+56Ifhpuj r/TRcXWGn8M3ZB3LO9ekfd3Ff8ukce7DD0za70P4Pf4n8Gr8b+GH8ixlPn10 nTvhI3Kvhq3wa/gevBy+a1L9AXFOyT0fdsu7w6T8WPYs85/bzJmH3h7+KWOQ MVK/pjzBc07u//Ao9Dcm5afoX9HfwhvRz/io3wt/hl/JupczEP4Ab4YvyHcB PAb+RP2F8pw4Dej3m6wP9NTkkpbyBj0t3zLf0U/I3NL2s7Em35s0zjPJwaSe F3BsqMY8ImuYtr9kLcFJiZfcrN8FP0yqv8TfFX8C9Pt4/qElhF+jF6VtYvgB ekFf1e/Av/H8pbzCU8BX+TZ6d+IkwfMQTmRWfgSvJueUZn3PDsaTSnKAO8N/ 5LnDKcyqv5F3RKjmKd9ugcRPBr+ES8FpjLZOYs416V3upo/Oleyd2SbVL5Jb XrT8Zo0/kpiZ4c9wGeJkhd/DqeBs8FE4o1k972lbmjtAJvgdnI46g/QLZzGr XzzpaZvDrM+rIpwH/irniVlZ1k9pX237DraQQz74u5xj1DkpX+TdGqosbSv5 as6yDlPC6c36HIvABY1n5MEfCCdIy1qHC8E/0AtTF6V8ILeq+H3gn+jFzMqf 0MsxruLwR7i4r/rlGVWBixhxfOAS8GO4HOwnftjfrP3+g71h3PXhhOlYA2bN QcYVgL+kWe9mNeEA+C/sa9Y4kkOQWT3y+97I4dSU7kW54+AvYzyjSD/unzbW bHreE+j/yX5gvBWoK8pcEWcWY68szwy9hq/qf2h7G90EN0RvhB4GZ4RDzMo/ aFuWurwRpyGeKvKMJQ51LRkL+gLihMpzQm+KpzqcBa7EHFaTZ4SnklnbypzM DNWYmfBsgSPhAHgYbRvCZeF96I2kb3gHHCNzAQ/CU9vgXeh14NJwlFk9peAp eMxwPbgZHAFnhQfA0XAQHG7Wfv3gWLPGKQM3MGu/FeAR+JsYOTTw1fGmhw/Q b1P4P3gPXN/IeQieekY+dc2ql4PD0GvCieCqZp0fmbfGZo1TUdYnnrYyR/Ax YraDq8F29A4Ge+GecCh8Dk8vOBxuSd2aUhU+Eqosccz4W8GV4DZmjVkd7kTd hRICu/F0k2cJ9zBrzAj4DHG6G311NSuHwSfQO8I14PZm5ZpwnFnn/B/jmkDM YXAs+k38I2Qu4DHoA2Te4X5m5V/4L+PpL88P/RDcwsg5Dn9zY557U/eVfYq/ mVk9ldFH+aou83CRtn3gKHgS+kh5rvBws/Jf2g4xa25/4Ov4h8J18YzDPxiO hq+iD4JrwwPNqv+Wd2KozpvM1V3YCjeG11NvlPHAo9EnwEng+7BDnrE8R2qn nAP5OffR3XBz9Bm+qjeCLdQ2SgI8EeydJRIHnuaregM8LmqPrCX0iRHc9eBU GejXrCz/ViovZ854eAr+R/Q1SuYLnkOceLgZPMtX4zSRsZs15xOcUbfQJ8PT 0NfC8+TZy/6CJ8HJ4A/EnAZ3g+ugz4BTwx/RZxr+KWb1dIXr45kKp4MnmjV+ YvKfbla/7KnGeGYbZ8Jn4syHe8JzzcrZ4KfoY2Stw63wLzTrmTOLeo6Rz6dQ 5R7wF3iRrGnZO2adh5bwArPq4vmOZ6msLXgZ9QpKUnL7ib4a7o++0qzcDx5M v6vMes4sNmtb8ZvQtxl7eaCvxgmGN8DLjRyGwmvNes6MhDeb9Zz5Q19b4EHw X3i7rDl4k1n1gfAa6nVGPr9ClWW9DSfOBrOeM79DdR2K34K+09gjHviosd9t 8B7jrNhNvZcyBHag7zfOhwRhqg+V5wi3tfBOYW1sNWtukucO6l1Gnv9ClSVO QvwHZI/BieFj8Ag5l8zKw+GD1IcNzz76PWF4XPAh4zzZZ9Y4kkOiMPVLWyee zmY9f+Lhk2Y9l46blZPxLG5S35a9hJ6ctudhMzwe/0WznjMp0C/BFvisWT0m eCyec8YZUhdPVsZ+HD6FdkbOEVnDeK4Y58M16hsUKzwV/ZZZz7rUYZqDHb5M fdXoK2WYsvgvmDUHyW06be+a9V18h/qe0XY++itj3aYJU90hZwv1Q4Nn43li 1nPmkVk5OfNwAv0x7ERPG6Z+4ZnoD8x6ds2Fn5n1LMqA57mcL/ALs/abgjix nEVv4JRwqjAdr8ztGdq+hb3wafl7BKPtU7PGccGvzepJRdvJeK6b9bxdAL+H W8Eb4Q9wb7gA8b/C0+Gl6N/g9rKXzcod4IJ4fsIz5MyXuzfPaKycP2ifKePg HGHK42X/4vkBd5b9bta28vdrv6j/UFKTW13G+A9OAye0aMy0sC9xEsAL8J8j zm85R+B7cCL0WbJnzeoRf7IwXSeylh7hSYo+D34GZ4QXwQ3oKwWcHn9y6pSU DPB1PKnhyXhe+qq+FH5n1vmRObyA/gkeg56EP09GSYd+yVdZxv5Q7v/wXDmf yScTfEyer0X5iKwH6Z+SkbYv8GeBl6CXwZ8OXg2nsmgcye2xr/rno2e26L6Q mK/kbg8vg2uW4L0F/5XznDi54bNwVvS88AW4OXo++CKc06KezMRPgye7sdeK UhenPIXfED8XvALOZtG+MuHPY9E4l9ALURehZEH3IU4x+DG6L+wLP4F7hWlM 4a5wQfg+XBhPAfgenN+i+gO4WAmN+RD2oS5BeS7zQ12O8h72ow6gvIQHyD0f fgUHWpRfwwHECYJfwKMZy2mz3q/6hGnMZ3C/MI0jHj/8/oYeBJcyYpaGK8Dv 4GH4/4M/wEPCNB/Ry1tU/wiXpC5NeQsPClN+Izpxyhrc2qJnew7mrQeewvAj 9BFwZfgT/B/+GvAX2IxeE/4GV7cof4eXMK5QuB38NZxzEe7N90gV6mqUr+hx YcoSxwWHGOuklkXbZiWHMIuun2zwKDxRsg9578RYNOZs2Qu8a6LhLnB/ONyi 37xj8cfKfsAfaVFPIrgs+Vcy5ioSrgsnRY+FW8reg5+QfwNjj9enbmjEicbT GE4Ojw9TPQVc0aLz81nmHE9VY67qUNejzIHHhSlL2wlwE6OvSXArODXcwqIs e6QpdXMjfgvOhzZwdubhPbk1M/ZjI4vGWS7voDD1p8JfmxzaG5wF7gCfx1Pc yvqn7ELvi9afkgeeRtvOsv/hxvi7yp6Ci8LdjPXf0aKedOjZ0TsZe+0kbVfJ s0dvZ9G+ZP00x9NDnh16L+o+srdhf/R+xt5ZEqY55EXvTt2Tkou2xUsoy9rr YtEccqIHog/8//6iHmS0XUkcK1wIXhqmej54MPVQg5ejj4ALwMMsyvnhUsQc buyLZWHqFz0YfYixZ8vAccYeX4HHJOcCHrNF+xWugMdurIHFYTpemdtVsAMu DJfDYzH240iLxpF8bBb1SP4l8PS26FlXEXYZ+2U1cdxwETxtWA+jZT6Zk254 xsBF0UdZlPOg10Efb6yrA7SdIWcB7KGON+KsCVOWtlXwj4N/yJ3Hom0lzgTq SZSSeAbimQIHy5qxaMx8eHYSZypcCn0AnolwkKwH8pwuz0je9Rb1lEZfYdE1 Ux2uhn8W/It+TxBnGVwD3YQ+F64Iz6GeR0kAH8azQPYbfChM9Uqw06LzI/Nc mbZei55FM+WcMPIcXkK5HJ6R8EK4AnycOMuNfJZalKvCi6iXGH2dwrMSrgUf gxfD1eD5Fo1TBT4apn5pmzaQ+YVPZKQNfa2F/5HPbeq7lBLks4t6jzx3+DRt N8Ah8ozwbzL4PPpmOAJeZ1GP7LUz6OvhUHi1RePLb0obLerPT8w5xNkKN0Of B++EW8DbLcoF5b7B+XwRNstY8OyGW8JbqLfJ+sTzNEy5NfrLMM25PRyBfwec BP6Kvg/uDScm5mnZY/AX9P1wL1mH1IcM/oF+FO4nz9Si3Af+iX4E7g9/C1O/ 6N/hg3BfyY1+jxtt/6CfkLMAPmnRfouQc3c8Z+Fi6HstmkN3eCf6OXgwvA0+ BQ+QZ2rROIVpe8ainqLw9jBd/7Lmu7OeL0hM9Nu0/Q5PRz8IP5b9DA+Crxn7 5Sr1dTkj4PTMyU1Zo3CqcNVt8CXqK5TixOxZQtlH8oFvwXb4hkXZR+7w6Pdh J/oQ+IGxp3bBl+Eh8D2L6rLGMobrevPKOUz+d2BfeZ+iP4IT814+b9E1IDk8 tOhY/OT+ScyP8GR5RvBT2CLnP21fwuMkf/TXBudAfyNnB/zcop6xsr/wvIAd 8m6lfkYZDb+yqN+fvnLS9h08AT0f/EnOC/iDRXkanC1c20rMm8T8YnjeUr83 4uQKV56IXgD+ajyju756t5/JHvxsUX2GnC14xvFOzMo8PCdmKnixrEP+/Ddl DlwMzz94rqw3i/I8+D7+v3K+wEXC1S9cjRg1rHom3MXzC30m7IsnEfoC+Cl6 cnihvBPRUxj9JrMqL5G5wpPE8Cewatv58EP0hFbNJ5C2qeGlsjfR0xqclTo7 ZR2c0qqeZfBrPBng5bImqTNSVsFliZMZXiPvxHDVV8JpqNNRVsg7MVxZ2r4l ThbDk8mqHMD8f0TPCa+VdyL+XPB6OROok1IWyTqxqr5B3onhmqf439M2G7wa /gznMdqWCNe2MlcV4bzwRji3VXkTXBW9MLwVLmhV3ibPkThFDb0IdTHKDjiA OoiyT84WPIXgzbL2qAtQtsDVw9W/Hf6Nx8fgv7AfvBMOweMP74YT+bHv4b2S s1X1PXDNcL13iT8sXPsVTwL8gUZbOzFrWfWdEoGnFLwfHiH3Sbg8HIVeFj4o 64S25Q2OQa8AH4ZLW9VzSM5k2uY35qpyuI5LxpiEtmWM+MFW7euAPAurxjki fqv2G8gzzYK/OnwevTFxqsBn4Wbhus4vwLXhSvBROAX+ikY+/1lVPyZrEj3E 8Ne0KgcRvyb6YPgv+lJybmTV90sodTglGE9r4kfBV2V+rMryLs5J20j4ipxL fuq/BDuJE2bVu4QXjrHquzIXnlgjTm3qujJ+4i/EU9+q77jO1F0p/6GXwN8A foo+Gk8dq76Lo60apySeelb1lJbvUD+NeV32NdwYfg63lTHJc8TT0Kp6GbgM nhbwezzNqVta9R03nLO6NVwOz7Bw1T+gN6FuJs8YvZSf8lt0E5428Fe4lVVZ +qqApyP8Gd2KpxP8A97IWJpa9X3dwap6Bfxl/TRP6WsrnnZWfRfvgLtY9T1b iDg/jDOtop/OlfT7zaL6LHgo2nBKdWJ68feGE3LG7iNOX6veDarSth/8E+5p VU8l/JXQe8Hf0LtR9zD0Plb1V4atzM8AuIrcUYk/BE5J/EFW5aronnBtmwDd jn+Y7C/0/tQDDc/4cOUUeGL8NGdhk/xbJrginkl4RsKp0WfDXjgLfFK+C2CX zD+1RdYb/vrEscPp8FityrXQXcS0wTXhaeHqT48nCr8ZTgbPQHfCGeErcv+3 6jvRbdV+Q+UujWcUnAbPCKvmIPN8A/9oeAp+D315ZI+hO6waR3KIt6pH4vyH pxzvxC/y7wdoO9aq79lSZuPvE9Gbk9tk9Gz0NUliy56kbUv0aXAO9HslVJfn PpWYN+D6eJ6hL7DqmT/Pqhwpc049kRIGP8Az3arv2dnUcyl5iNmR+PPhAvBi xjvL0B/hn2nV9+9Uq7aNIM6dEhpT3ukv4MVWfYd+gNdZ9b22kTjr4RLEWQsv g4vB3elrhcFv8K+06vtuiVU9RdCPyv1N1gzcGf8iuBD8Cv9Sq75bF1q13yjy WW7VONHwWqv264v/E/6NVn0vLwnX8eZF3wRvgv3gDfAaw/8O/2qrvqNXWVUv jv4YfY5V7wMzrDo/uaStVePIGH/g2WXVd9lWYu6GA9F/oe+16vtxEGM5BpdE Twgft+o7axv1Doo/+pZw5QD4G223W/Wdu9OqMUXfT32QEgT/w3PYqr8zHLVq zBjmYQdxjhh9HbIqB8Pb0PcZbfdYlSXP61ad8wa0PYznsux99JHkeVXOKzgp fNaq76/TVuXa+Iein4HL4NlM263GWL6Q2xar3j1OUJ+ixOLfbFWPzH9iP9Xl bjAYPgmXQk8JX7Pq+/GKVbkebS9aNTfhyaz/S3Bd+bbCf8Gq7+Lh8Hm4HHHO WVWvI98X4TpvMg8mPLflzIFT27jLUR7IfQ/Pa/Tm6KPx3JM1D9+lvi/rDR6D /lD2F3whXHXhW9R3jDn8jp6AmH0lvp/q8l5+QP1InhG6je+dF/BP+Y3aqtxQ ziXG9QpuJOchbZ9K/ug3iPlExg5fCtc40fBLq+bcGP9s/O/gpuhL4Z9wezg9 /FaeATk8pu1HuCX6fPTPBj9B/wK3gt9b1XNOzhM8H+AWsmetGl/6+mRV/0U8 C/B8M9q+Is4vuIPsC6vyNTx30J/LuNCX4f9jeL5Sf5fniudZuHIb9NfwX7ij 7EGrzkND+v1tVf0G/sXEScg8t8WTiDoJ5Rb6O9omh7vIurUp30FfiT8Z3Fn2 jlXbdpIzCj0T3B1+G65xxLMcPbFNc1gFpzRiroHTw93gj/gzGG0/yd0e7gGn s6n+SO5p1Kko9+TuHa7cFc9q4qQx+EO4rkOJuQ49qxFnM1zQWEvr4RxwTzg7 dU7KC2JuQM8N95J9F666cFl/zgb4A5zRprk9wZ+FOhvlmdz/w5Ul5jc4D9wH /g0XggfCBWzKTZj/vNT5KW/kDky/ReB38CY4n9E2l03jvEL/Ea7+fuh/OBMO WPW7YAv+ooZe2KbcVO5F1OUpbeDEEZwT8Ag8u/EHwEPhFOiBsAX2tamnOf6t eErA/dGD8fSFl8PFqH0Mz3z2VzDcUu511GUoreReKu9ouDWcPkJzcNM2iLqk 4Tnkp2xG97dpDi3QD6L/B5vQK1BXNPLPQZwweDx6hgjVPXAl6iqybvEkRa8O x6FXtSn/km899GpwvLwT/dRvk9/24co2vVsuIeeacDviZMdfCx6HJ8Sm/bZH X4YnAu4Al/fT8X6i7SW5zxv+E3Ao7IRr2DSOtA23qacjnIr4pY0ccsHR8ETx 0zYG/kPMC3A9eAx6Pjz14alwXZtyJ7k74WkET0Eviqc1PAeOpa5jjDd3hPIk eCX5N5T9SNsGNm3bBW5s039/JVyXmM1tek9radOY3dCbyp3fpnfIAsRsAk+X fUfMVrLv8DSzqUf6ShSh62S4vBNp2xaeDAeg94SXwA3QO9j0Ptle5kb2PnHu oXeGZ6Hf9lNd+oqy6fzIHIaj17bpb0Ft5LkZeRaLUJ6L7gd3gRfBZrmfw5Xg HjblXvi7Sp8Gb2QsfeDe8Hq4m+xluJNN4/SQ3xX91L+QOL1tui/6oNvRB8DV 0HvS7yL4MTxWvhNt+r77AQ+Ft8Dj4WE2fX8NtKmnr/zdH237w/PRLbJG5NxA /4Z/ELwJvZ9N+5J+h9g0Tj84TvaT4U/OeWWFD+GvT0wHfBKe4qcx5d2XFM9I +ICsGTwj4CPwcJvq/eU3+QiNeQzdLuuaMgh9HPUEOUPkG0H2IuW4vO+IPwpe DXttyoPxZKOvePgi+hz5d4lwM/RXfhpzmayHCI1zSt6P6G54BZyDtmPgy3Ae eBJ8Xd53cs+HN8Kf/TSf9fBEm+rDiD+aeixliPzO46e8VvYdccbDV+EdNj3b LXi2kZtJ5lfuHvK9AG/GUwj/bPiunOfoc+Dt8Cyb8kj8f+X+D++UtcFYVsBP 4enUMykj8Pz0U96KXoSY8+D78Fybto3Ds8Cm6+eh7CM8S+C98q63acwncC/i LzU4AZ6F8G44Cbwc3g8vtqlH1mE+9KnwTfggY1wFm+irNPo2+B16X2KuhZ/L e5l6nawnPMF4NsCvZe1FqP5C1pJN52c4ngJ4ZsC35ZyR52+07ROh/Ax9ELwR fgMPg7fb9H261ab8Ed4k+4PyHh6JZyf8GS5J/M1G2/U2jfMWHhKhfsm/PJ49 8Cc4Dn0v/AW22Vn/lHXkcwrtjOwr2IznAPwNjwM+BP+WdwdxDsM/4X029XyH /0Pfb8Q8LvcfiSvvU5v29RWOwHMUTpIBj+w5Sgp4KvFPw+ngWX6aQxP8R2Rv UZKij41QTgYftGkOVvJcgf+cTe9XZ6nPU+zyuzr+23AN/G38Vc8NX6C+RHHI +xTPVbgi+mWbchC8kZhXbPp33Psj1F8BfQhxLsKl4eHwdbgcfATPDbgKfNOm /bpkPllLd2G3nAkROt7keM7D9+AI2EycW3Al+JpN4zjl+9emHg8cheeEMXY7 /ACuJmMhzkM4Eo5HfwaHwVfQn8Ox8FObcrx8p+N5Bceg38bzGW4IP5K9QvHK eeWvXBP9HPm/lHMK/YVN246GX8v6Mvgxc/XepmfyR5vGHIvuJs4HuJaMi77e wHUkZ2J+gsfgeWdTj9xJkth1zUySuaLtV/Ro/FfxJ0KfKN+M9PXDpvex77IG KePQL+P5DY+Xbxl/1aWv+zadH5nD7bR9bNN75hdZ10aedyKUG8k8wH/gFvA8 4iS2Kye0K0tuf/nzBPAEed/hTwq3ljWM/x9/Vh/+ZdM44nkcof6W6HPwpICb wS/QU8Lt4PLU/1EWybuAOgdlBrwYfxq4LZ5X+NPBHWT9yHcBPJqxpLKrZ6rc eZiH1PAUecfZNf5kOK1d/eK5hScjPA3+QMyscDdiZrYrT5ffGGO4i8DrM7Oe 6Su7Xe9XGagzGZ73EcpdabvMX3OW3BbBWeA28Eo4F9wZ/oO/ODwI/gLnhnvB eajzUWYT8658g8Az6Su/XVn0b/gLwH3wr/dXf0/4HmPJC8+S353gwvAc+XbD XwQeiKeoXfudK79fEd/XrneenHbNYSb6JmKWMOKvg4vBPeBCdo0jbX3s6pkH 7/LT9T+EOP/oyx99CP5ytG1g17M6dSR7FLajb0UvBfeHS1KXpiyQ9UPOZeGF cj+PVD0OTyB1sOFJEqk8En0/ccoZXMauLGsmHXolu95hUuCvDFvwPCZ+EDwf T0W76pJnCn9db4fxJ8dfATaj70WvCg+H/ey6BuS7popdx7KYOBnxx8JeWcPE rwEvQfenbahd34+v0MPhZegZ8EfAHvy17OpZKmsSPQR2olenrmnoYXb1L5f9 TswoYywn4dqwC46xK8s77qi/trXJnMB17fp+jKSONuIE+Su/Qs9Ev/XgePxj rPp3hZnQ69hVl3E1k/uSVf8OMQ/+TrKP0BtRN6GMgrOiN4fHwE3tyqPhivTV zK7vuyyR6hd9pqxlyibZX3ga2/XdnQ1PK3gsnkvo7eFxcCTcwa7vvnZ25RW0 rY7exq7v4hZ2bSs5VEZvadd38WW4Mzwe/R3Poiu8irZ9ZQ1KHugd7epZiX4V fw94Inp32VuU1XJWoPeWs0Lm3F91eV93kTPD8OSLVJ6KXhDuA8+Ae9mVZ8o+ pe1A2aeyH/EMkn0Kt6Zua4x9gF31uXDhSM1T/Hdo28+I+QAeYrTNHqltZa6K w0Nlb8KD7crzZR+hm2RdwSPtyqnhj8yJBV4r9xxqq13vPx5ZF8KytukrTtY2 PIx6BGWN3Akj1b8K/W44+xtuzJyXQ3dJTPR9sBsun5HnAo+GN6M77arnh1/7 671rOVwhUvtdD/8He+EN4scz1653mEroY2T9wGHwDHgvXAUeD2+Bv+GfaHiq o0+Ct8vdya4eucOUQB8uZ4687/x1XDJvX+Fx8EZ4lF37knwm2DXOesY+za79 yhr+iX8WvFXayr8Lkrby7Rmp63wf+g+5Vxu5WeEpdr0jTbarvgH/H7nnwzvk /WhX3ix35gDuCvBtyQHPerveZ+ZL7hITTzI8S+CD8t6xK2+T3MhnseQGR0eq /xCeBPgXwLvhWPRl8BHYK98FcjbBK+TZSj5yJuNfAx9APyAxhOX3AdquhU+h /6avlTLP6EvtGkdyWG1Xj8SpH6kxT+JPScwNRr+7qPfIc8Szzq76TjgNnq3w cTxbJJ7kjJ6wMvGkDdw8UvWLcl+VOTM8zSKVL8gZRZydBm+3K0tfmdH3wefQ 2+DfD1+D/zGWTfAuPHvtqu+Dp/hrnvXwtMS/G74MJyGfg+KTmOgN7Xo25grQ uboK17erLuftJeorlGP4O+M/Ad9Fz4n/lPyZnC3op+F78DG7eg7Js6av4/Ks 5b1AfdR4Fift6hfPEvI8a9c7VQ/iXIQfyX3JrnwEz2x/bdsUPRUxL0ss9DMy H5TDcN4A5Rt4igVozg/lHCbmEUPvBV+Dn8j5AD+GP8j6ke8CuBN8g/qWjIGY A/DchV+h37Yri16U+HfgB+j9I9X/Ek5DbjdlDeDZQMz7dr0v+eJ/YPT70K79 npb3L/pT+Dn6VbvmIPM8nJjP4I/o6Yn5SNat/I5k1zgn4Sd29UicDP14H1JG FOJuQsyXxriKlCPWePLIyRmI/g79Hfpb6vcyd7TNQvyP8Hk5VyNV/4ZnD1zG QTzOQzf8G/0f+k+78iX5rYP6DeWs3FWI/wn+Kmca9Q/D8x/6L/iLxJRvBHiY nC3E/CI++INd217Av8VfY/aTc5K2/wxPHvJMRT7X8UygbWo4JbmNgRPBSeFc eJLAV/FE0DYpnAQ9gUM9V9DfEL8svELWKvzXrve96vgTov+G/9i138v4Ezs0 zjU4pUP7vQGH4k8LJyS+K1LH+1fWCTHToU+Hr8m3AzwJHocnOZwcfzKH6hIz Gzl/l7UOf7br/Mg8pHFoHOmrGX1lg7PS9iExszv0nVuQtjnhO3ha4SkE58Tz FE9hh74vMlFnodzCc99fWe4STfBnhjPjz+rQmLfx5KbOS7kLFyZ+fvgeXNCh Me/LnmUsBcRH23wOZdEXoeeCc6PncChLnNIOnfNHsubxBMGLyWEgOZSEg/H3 gH3h4nBxh/ID2Uf4feS/0e+Sf0aH3k8a4c8AZ0QvQl2MUhBO71DPTdouj1S9 AHp7/EXhfPAO9FJwSTjYoSx/9xTg0NwC0bfhCZT/hvvS1h/2h0eFcs+GE6fl vexQ/aF8M/rrvMkdZgT+8g69S3Sm7kr5jOcCMcPhSHQf5rYi/Fj2CHUlyhP4 C3GqOPQucTxS9er4y1FXkAKPJ34LOAb+6K+63GEqU1c14jjwhBhtazqUn8n8 028Y/Bw+RfwacC08NvzVpT1sDtA4leBQh+b8Av9F/FFwFPp1uBFcF3bij4Rr wB44VvqTuYLrSHv4Kv66cG042qGel/LdR/4xDr3zRDg0vvRV26H+V3AwOdeH X8P/5B4O78Lf0KH8Bv07ei2H3tlK4W8Kv0WvR93A8EwIUI6VtUQ+zaQ9XM2h 8/AUTxOH6u/kvMXTEm6CpxV1G8p7OXvR28Ot0Ns6lD+il6XfdvAHedc7tK3E mUe/veAW+CcHaByZt+Rwa4fec6bDHeGG6M+J3x1uC6dG7wEfw/MKvTfcAb2b Q3VZVx2oOxk5PI1Ubo2nPPl0gT+hLwjQdSg5V0TvC3+V/Y4+0qF3iTe0HSCx 8PSnHkj5hqcy/sHwdzhTgOpn8ecO5Fxy0hZ/T4fm9gVPH+p+RtulAcrtZa0S fwjcHV6BHmf0NcKh/BP/UOrhlB9yH8Njlv2DZwk8DG4HD3JoHPF8ilR/D/QW ePLA2eFv6Ba4D2xyKP/CP556IiVRAc42/C74FmOpyRg98F88f+U+Dw+mrcOh nj/oP9CdMjb01nL/gXPBVmq74dmAPgruJe8m6nGUBPQVSvwJcEI4aZTmEIcn nno05Z+s7UjlIfLOdWgOom8n5mR5HuiTqKcY+R+VuzFsk3dKlOomeCr1dEoS PH54ZsneZ4wzHMqip8A/U+YF/4EA9Us+4eQ5DU6MZx/6HHiErEP8c2Wc8DyH 9pscT1r0RbATfUuAjlfmpxS8WPYg/UYRcz6cDP9sh8ZJCi90qEfiFMc/1qF3 vxj8S+EU6JmIvwyOJ2YlPKsdej85Ifd8o99VDuVU+LPjXy/zjp4f3gFPg5dT r6SkxJM5SnkU+mnirIM98FqHtk2NZwP1JkpaOCf+LfAEeS84NGZ69Gpy55d1 RT51yXkjnAa9PrwdTgdvdqhH4mwM0HXSmzgX4F3wGLgJ/mNwZjyR6Hsdep/Z Q72PkgG9EZ4DcEb4SoDqks8Sh86PjOsI+grYir6TereRZ4Eo5enyboUPwvPg R/iPG3zUoZwF/yHqI5RMcAn8J+GFeG7gPyzrD97v0Dji8YlS/3z0Ew7dFxIn AP0svAS9KfwXPg93kO9EOD8ciH4JXgo/Q78ML4LPOdSTjTjNGPsZOCt8i/oO JSdciLbn4ZnyHB3al/gvOjSO3AeuU9+k5EB/Q/zb8Ao5G2l7D14H9wrQmHLH KIV+TdaKnCf0e1XOE5lzh+oS51WAxlwm7xHq+3IOoL+kfk3JCz+QtUzJA1cm 5lN4M/7HDmXRK6E/kXWGXp2+bPBv9vvzAI25WM7qKI2zEW6D5yGcm7Y/8TyX tYWeiHP4LbxX9i/+d7Ju4N8Bms92+I1D9QCZZ+oXso6l3yhl8dSCX8G74CxO Pdt96as0+g30Vegx8Ef4sLy/6PcbfAiug/4dPgZ/dSgXoG0D9F+yJuRuhj+J U/kT2hdZA3IeBiofQE8D/5S1CP9waNtyMhaHrp9C+NPhSUCckzJ2p8YsLOuE vhLCF9A7MVd/ZA2gm5iHxOgV0f851CNx2uP5wH/nk3OGmMnQz+LJDmeCL8l7 Fk9KuKicmdSpKMXgNvSVxnj35QhU/TL83qHzI+MaTL+f4VLoSfnz5JQi6K2i lK/Iu0O+I+AqkjN6ZvgOnNGp7CPjpc5gsBt/Vqfe2XqQW3q4OHpqp8aR3DpG qf82nt54csAl0Hui54Qfo9+hvkfpil5MYlOC4F548sBP5N5L23ywv+xxxpjf aJvLqR4/9HzoueGb6LNo207yzsQcOrUv8fRBLwg/w1NY5pISKGc+bYvDj9AD AjWHF3ABeT6UADzxAcph6HmdmoPoE9FLOPU+6Sv9UILRp8ndG26A7heouvTr L31SSuEZQT4l4U/oQU5l0f3xB8PP0YdHqf+j3DeYhwDx4RkCl4ZLw+XwlzE8 ZZ3abxn0Muj/we/lHhWl430JW+CK8Hc4Di4Hf5Ezx6lxpG0Fp3rKynMhThH4 oeRDv5XhcnJuoFeBv6GPRK8JV5C1Qcxa8D/0Gk7l/9A96GFwAp5LOG3rwInh qtTVJW88cwOUm8uZgycU/gqHOLWtxAmnjpT84Bp4ouE/eGKdGrMK+mj6ipE9 SfxlxIxw6n3VQp614cp4opzqqST7yKlrpiY8lrb14GS0deJvBddAt8EN4apy nlA3olSDw8ihCZwI/6Qo1VPDlZw6PzIuG3o1+Cc51KWub+S5KkC5i9zJ8TSF 09B2JtwazgS3dCpLbs2oW8h8wbH02xZOiWcTcZo79Z7Z2KlxJLeoQPXLWNzk 30GeB3pj9I5G/InUkykN0ftRD5D5hbcRs4v8NzEb4u8m+x//fHLrDueAOznV E4J/DnpnOCt6e6fGF72rU/2hso/Ioac8S3gv8fvCw+V8cCqHy12FOB7Z78QZ jb8/HIHeg7qX4WkRqJxdnm+U5pwfXgj3gXPBzfEMgrPBp+jLBrvlDoZnMFwA fQj1MEoUMVejj4SLoA93KkejtyPOCDgveutA9Uv8Y8Qc6tS76HjyNMl6wt8F jxkujMfi1H5j5azA45CzAh7o1BxknjfRr1PODvxrYStcDI5zahxpa3eqpw5c NVDXv6ylzrAbLoTfBq+V9QkfkHu17Bd4Cv2OgevJvqAeK+tPzlj842FfPLui VC8Ne6lHUeri6R6oLPnsxjNBzgd4nFNZ4uxFnypnAvp15mSarCdyuwTHO/UO PMWpuqyxIYG63qSvaeQ2CW6APgh9BlwS3eXUNSDjne7UsTSC3xJzuVPvRTNp OxtujH4ffT48G302+kLZA+jH5btA9gsx5zrV00TulujzZO+jz6KeY+gLnOpv Jucz+SyR/YvHDK8w/Mucys3xjAzUthXQX5DDKqfeMxdTLzXinIhSroHnk3w7 OPW+dzFA7/Zj4ZVO1VvgD4lmr7iYb/y3abtf5g1eT71RzgI832i7xal3tk1O ZdEv4N8s6wp/fKD6w+Av1N9kj8kYmZ8NcCv4Mv7tsm7x/CHmHqfex66g75W1 J8/dqRwlZwgxd8oZAm91atu2xFlEzG1wG3gyngOyfvAsRT8Et0c/RX1G8kTf 51RPO/Sp+I/KWkI/Qn2M0gF9NvoJeY7o/wJUlzvhQerDhudulHJjPA/lG0Ge C3zcqdwMXkKcc9IX/FLu6pIPvEPiGfmfdaou99UnUZpnKznraHsabgm/Q78I d4F/BWjbbfiT4LkE75fvKadyR2KuQb8Bd8N/zancS54j+i24J3yT+jalM/5H 1E/ED3+mr+uG5zL1VUon9O9R6u+Lvoq5vSv5yDcdMR/AvWWu8DyEh8h5gucZ 3F32iFN1uWv9jdJ712A8iaO13xHwduI8hgfKs4B/wFZ4L/wcHi5nC/wZjoMz wq/kuTL29fT1RnKWeyAx38J22RdO9fQQHf8Vp97PVwfquLriSYr/pRHzqVP7 Ev9rp8bpBX90ar+95cykr69wHzgncT459R6bKVrXeTxx0sAfYAe8B897eJg8 R6fqEjMznp/wKPTvTmXZI6XQ/dmDK9F30ldqeDD6L/78D6U/nFfu/+g36Pev U1n0rLT9x3+Poe3ZQPVLPluI8xvuh+c0eiL8HvQc+BPD4+Ek1Mkog/DkQk8B T0TPQ52PEodelLYp4Qf0u52YSeGB6AldGmcAnNylHolzKVBjjiNOfmKmgafB 2ahzUEbgSeVSfQgciD+jS++KGagzUYai30DPAk+h7dVA1SW3tNTpjbYFopWn oxeBs8Kz4cwu5WFyn0TPBc9FLy33dvidnIdwOngsek6X6pLbvUDNc5asQ8ab HR6Ovh/OC4+Ez7Ge1zG34Xj8onWuFsFrnKq3lHGhBVPs8EO50xo5PIGLwQvg YNoWh5fDhVzqMeGvjKewS+/M+akL/v9ZuNRvhg+Tjy9sgavjD4B/y/3fpWyV u320tl1M/KP4g2CbfNdQlzA8rwKVl+EpH605r4PvoheAZ8o5BpeCl8I/4Wrw VrgC/tLwergMdTmKQ+4M6P8ZnvIuZZe8m8ihAuyUd2ug+mXNR8BlXXp//gBX gtfA1YhTGd4GV3Fpvx65h6PXgHegl3RpDjLPMbStCaeQOxh9VYXd6BVdGkdy qO5Sj8SJrMtZPoYzJjtzTdsQ9M3yjIJ4X3t4Rpl5n9FXFPpe9EjqaMoo2p4n fiw8Wu7ngaqnl/MEfRy8EL0ubZvAx9EbuZTHyR2eOsKIE42nNnwIT33qhrIm 0ZOSQ2P4AHoMnnrwYfgvfdWFd4ru0rZj8P8L1Ji70FPTtjl8DO6K3sml98x0 6J3hk3Bb9FZwHtlf5NxG9hdxmtBXW/gceguXeiagD0UfD7+XdwT+ZnKGoNdH b2nEbOrSfsXf2qVxJsEdXdrvZNnXtO0q+xpOFKTjlbltTZxu8FWJA3eAz8Op 8LSHj8LtXKpLzJbk38Cl3wV1XDo/Mg9dXBpnqtylidMPvoGnJ/7+sI+cgcQc CF+G75NPnJwbcufHb4Ifofei7iNni5yNQcqS2y38veFp6H1dGlM8g+XcknMD 7kyc4fBd/CNdGnOO3MPlbi/nAvowl7L4O+IfBN9GH+BSnoE+1qVzvgj2I4d4 +Bme/vhHwy/l3EB3GH3ZXMpz8cfRl92ld/I2+HvC1+Qdir8HfEbumXIGGLl1 d6lH5q1ntOqP8eTDb4FvwlZijoGrwKNcygvwe1yam/Bj5scLz5f5IY4bfo6/ KHFc8APY6VJ9Hp78QTpvt9BLwBPhp/Lelz1B2YhnGv0uhBtIv/AUl569kyVf ymI8L+h3OrxEzt4g1WV+Jsh6MeZwBvlshTOyr4dFq/4BzzSZb8pSOXtl78Pf 0ee4lJfLNxH+BfAvmQd4NvwDLoV/FvwWtkRrHGk736U5S1sX+hL4L/pUeD2c jhzekPNieAWeWYxruZwR0i+80qX3yUn4V8Gp8S91qWelfC+gL4M/4Vnk0vii r3CpPyX+d8RfI/+NXoc8Nxhx1rmUV8v5j2cuvEzOKzyb4DR4VlOvNTxTopXT oi8kt80uvVfPdOk8yLxtdKm+Rs5n4myD/8gdj3onZZ2ce+h74ETE2eVSXo/e DH03nBV9i0vbrkXvhH4cLogeEqRxEsBN4B1wZrgNvA/ODXeAj8D54Rj4KJwC rg2fgFPBh12qbyL+Xur9MhdwRJByEjzt4INwXjgqSNdhMrgbfAouCh9kTq7B FeH18Fk5W+Az1OcoW4jZB/8F2A99Q7TqvnDJGM4lN88KPubS3DbjP0l92mi7 Llq5uMwJfBEOgEcS8zpcAb7qUt4m9y7qK5St8FKe0U2Xfnfso+1luDz+8y6N EyjrP0j9ZeG7rIEh8EzaWtFvyR5Hv+FS3i7rhPoNJRZ9mdz/4Q6yl/E/gmug n6Svx3BN+J5LPdXhoEjOWVljGZg/uf8wdjdtb6PdpVTDc462T2Vfw89l71Ji 4Gvor+E6Mt5ozaE2/IT6GWWHnD9ByiHoD12aQ0fiT0R/Z/jfUr+XtSjnCfpv OU/k341Hq14f/iD7ibJLvl/Qv8JN0T+7lPegJ6jC9y28Gx4XpP5oeb6M66NL v7kmo3+H66I/IM4P2cvwT5f2u5e2M/H8hRujjwnS8UbKuOQ+D7eCNxPzl0u/ v765NI7k8Melnn3wFfwvjOeShNwSMrf70ecTMxHcEj0ZenL4IPobuefDnUR3 Kx+S+xh6argz+hc4C9wLTkydlHIAz7ZA5QHkM4/4qeAWeFK6ta3ESUOdjnIY fk+cDHBXPJncGvMo+nP0jHBb9H3ETOvW78GU5JkZPoInvVs9JvRXUbpOZL0t o99s6B1omw5/IfikfOvBOeFjcA7qXJTj8Hf6ygP3lWcUpLqMK4Fb50fG9QxP ErgNelbq7EaeX6OVe8u5QZ55YQs5bCVOYbg/ekG38in8+agLUE7IM6JtUXiQ nLf488M94NxujSO5/YpW/wD0Im7dFxInEeeDLzwcvTDcDJ4lzwL2l7mCL5NP oFu/43YQP8joq4RbPWeIk4E58YFPw+WoK1AuwFvw+8H98Bd3a1/iD3BrnLNw aeqyhj8l/ZaHrfizEbMifBH9eqDGnEwOyfGUgs14dhO/JDwUDnarfg7/wSCN aUL/j7oS5RJ6KHU45aq8f6mrGvoR/DWMfqu5lS/L3qTf6m791jvOHN4xzpl0 MRrTBaeP0Thu+ABxqsBxcE7yrwVfIU5uOBK+Bl/AEwWPkTHGaD5j4Qi36tfx 1KQOMfLMGqMs/uO0DYMdcB+3nu2P8WQhfhn4vNyLyDkWnk/O5/HXh0fLmQY3 gCfC9dzKN/Fflvu/PF85S+E2xhqoTV2XckPyj1GehP6a+I3c+i3Z0K1tb8l9 3q3r546cFcRpAU/A38qtMe+hFyFOS5lP9ALk3BS+jV4Ibg3fhZu71SNxcuCP MXIrBreD58pawt8LfoTnDn11hGfIe1nOG8p99KJ4usAPYN8Y1eU7K9qt8yPz fI62deBR6G2p2xt5vg9UXs0YH+PpKvMpa4w4vWXscE+3ssx/N9lzlIfwI/x9 4Xl4/PB3hxfBnd0aRzzfAtW/ifgJ8A9w6++iz+R7wfBX4LuwIiVPQdYlmp3y krZliTkEXiPxGeMw+JnkTNvhkjP6ILd6nqK/RB8ML0XvQtvdMka4v1v7eoKn PPpIeB26Sc4eo693tLXBq9CrxmgOW+ERssYpz/EkCVLeT/5D3ZqD6GnQnW79 JnXIXqG8krNC7t5yVqB/ClJd+nVTeylvZJ/S12h4D3q8W1n0b/hHybzJPS1G /bvluTAPHvg1nlLwWPitvEODeXcanvFu7fcd+l/iTIZ3oleJ0fFukTsYPAU+ CIfDE+B98t50axxpO8mtnvdyjtGXGX4hzwWeBn+Ak9LvdPgAbcujz4E/oTcg 5lz4FPpst/Jn9IboC2RO0DPTdiV8Dp4he5HyEU/2IOVL8nsanvky53jmubWt xFlIvZjyBU6LZyl8As9yt8b8jt6UvpbJWSF7kJiL3Po9WIk8V8Df8Cxxq+cr vNOta+av7E3aroYvyruY+NvhIzKHtF0H/8Czlno95SecCc9G+Kzcn2NUvwZP dev8yLhi0GfCh9FXybo28iwSpHxffkPAs0n2rNzx5E4uawl9m1v5N/7NsjYp v+S7gHx2wX9gf/xb3PptuMGtcSS3bMHql7HkhPfCV+Cu9LVP+oXfyDOnpGEP npZxUBLDhfEfNPZRd/yHZV/LfVu+C2St0td+t3oS4K9FPgfgf/S7x63xZT4P udUvnoLEPAbfIY4PfErOFviEW1n6tdDXI5kfOf/hM7L34aOyzygJ8fSKUX4i 774gzfkL+YSRw0k4EZ4I+DycBC5HX3fkWeAfSNsLso/gi9SXKUnx+OG5ZvR1 xa2cDL0e8a+69XttUIz638j5jP8S/AgOhG/IeSLnBp6bshfgW27tNyVx4tDv SZ5yP3drDtJvT+Lfd+v3Tgw534ZToF93a5zk8F23eiROimBd/7KWauN/CKdC dxMnJWdpLTnf4C9u/Z7qDz9363fKM9nHsuZhB/m8knUFW2NU/wE/pn5KSU3M vkHK/nI20u9rWVfwS7eyfAfVI4cPMj/4vcT5KM8oC3ce/E9kbeF571Y9HZ7q wbrepF83/reyZuAa6J9lPcs9361rQHL45NaxSNsGeBIzxvTEj4C/yfOFxxHn l8wVHI3+x+AJ6H9l3uAfbvWkgCPx/JT5h7/KWpNnDf92qz8VHIsngUfbTidO EjgDnMijXFXOzBhtK3EaMA/JJDfy/CdzAKdBnxSjnBqeCyeHs8G1XPp3hV45 Sz2qZ6DtWb4fw9Hj0duTQ270fPhTU6elZIUXECcDnBNO51HODi9ETw/ngufF qF/0utT1KUWIPx89DZwDfQmcGc4LL4NzwPnhpXBOo9/sHmXxtCWfrPK+hjN6 tK3ksAh/Jjg3vBLOAxeCu+DPBxeGi1H7yNjJIZdHPRnhbngKwkXxFJB2Ehd9 EmuviEe/VTfFqO6HJ6/kSMmEZ12McnH0nsQpKn3AhT3KWeSsQC8B+6LvxO8H l4KzSC4e/S729aguue2I0TxL4mnGMy0uc44+lXwCPPptuzxG2xbA05f4gbA/ 7O9Rzo5/GHoZuCx6KY9yLvT9tC0HV0AvS13e0KtSV5d5hlvRb2mZWzhIcpHn Bc8IUn8jedfg+U/mHH0ofVWWPoh5lPhVZH3C7fHUlOeIp5JHdblrHYnRe1cV PCODtV/JZwHxq3n0e/kynoYyP+in4VpwCHwRrgNHwWfgMDgU7khfETInxPcQ M9Lwh3jUkx99AHowHIS+N0bHVQ42o4fCleAaHu1L/OEejVMQjvVov4XgLvRV T9YV7KJtbbgmbccE6zqPlDXMWGLg9nLe0lc0HI4e5VFdYq7F0wjujqeBR1n2 yDDiu+XZwfdp2xluStvGUlOKod9EbyHrQdaJR1n00eTQHI5AvxGj/npwN2I2 kXWJZxv9tvLot+p4/K2NeW5D3U7WsKxb/B1k3cJDqIfJOpA1gL+j5CpnC9xW 5gVu6dE4xfG096inhLw7YjRmYzy76LcLPIR++0n/8izwdPKoLv7pxOwJN8Tf g7qXrG30Q/K7vUe/SZ/GqN4aT1eZP8PzJEa5Ffps4vQ15q23RzkAzzz0QTJf 6G/wD4Y7wX0YbzfZh3gGelSX3F7HaJ4d8fTH01/2mHjgoXAw3ISYqeTcwLM8 WOdK/Ck8qsu56qUeJesN/khMs+SNZwhxrHBp9DW0tcHd0OM86imFvhTdJGsJ fTj1SONZWDzqLwN/JqYD7invGtgD94NdHmXp91iQtrUzh6uJGQ93xWOndhpx zgYpx+P5GaM598fzDh4hzwm+hmeMR79Vk8Zyt4Tj0NcTc6yRwzjqCbKv5UxD nwwPQp/oUa4odxLGPgn+D/4bo/7BeDbhHw/3gRMQfyo8FL5Nv9Pg6fQ73aP9 Vqbtdvyz4YF4Rns0h/LoyWg7BzbJHqevGbLH0ad4NI7kMMujHomzKEh/75Lf jnbL/d/o93Ep7juj+O9szBVxlqBXw7+YeimlOpyGvpbDDvxHglW3wjPwv5T9 gue43NUNz3qPci30BdSLKFXhF+SwAl5CDmuo18nZgv5BfvP36DdpJvpaLc+I OE7ir4Jr4Fnm0baST6pYjWnDkxXeAo+R9xe8H54idw9iHpA8iJkLfTs8Uc5b 8twp6wbOjb5LnjW81aOeUDnP0V/Bm9A/E2ezR//fHR7y2QaH4Nnk0X6deHZ4 NI603efRfsPhy/R1CB6PJ3OsjneUvIvhw/Ks4avy7WDkFk/8PXAYbXd7VJc4 h/GshS1yB/Do/Mi8HfRonAh4HG1Pw9FwceKfgefhv0nbc/BU+AF8XdaEvE/x 3IAXw8epT1KiaPsnSHkH4y2E54SsRTynPBozBs8F6kuUWGFiXjHm/5pHY9aR Z4R+FT4q7zuPcm10H2Keh+fjP+tRlpgvPDrnjeEyeJ7IOOUuQZxnHv3eTAPf g4/DdzzK9fAH4r8r6xX/LfkOkj0g7yzm5CgcKe8U6tuG/4hHPTLeZ8GqL8I/ Gf8tuC76S/TnRsynHuWG6I88mlsD+Cmex/BCuZOTw0N4FTyVOA/g+vKO86gu /rvBOm8yn2/gN7Km4Txe7hGUDjL/cseW+UefRZz3cBP0d9QfKE3lPkNfn+Ct eL4Fqy5r9TX1W2MOF9M2IzHbwpVjVd+M5yP1ZyNOTfSf8E707x7lZuhzafsb bg5Xw/MN3oYnH319hW8y/zmCNc5l+JdHc26Bv4Dc7en3ttz94NRe/ZYMIc4/ PLuJEwMnRj8Mz6evpHBL2kaiJ4MPoCf0qkf6rSl/R+DVv5f869H40lcSr/pb wb/pKwW8Xc7VkqwVr/aVyqvcGs8XPD9ovwE9MZ506Pvg5NQpjThRscoH0evA 6eFj8BePzsNaOK1X9TayzomTCT4qe5w6K6Uden3a5oBPomfzKst4y5BDdvg9 c5LBq23FXxm9sFe/zQOCNc4L+QYkThb4hNy7mKtccHv85fEU8Oq3cFpyKGh4 muMvAl+E83tV74g/J3VuY401iVU+hyclbfPCR+CmsboOz8Mr6KsY3Ene3XAp uBucEb8vfAaPD3UJSmf0VXj84S5w21jVr8uZAJ+G62TlPPFqbjInRamLG23b xCpfkzOZ+AEGd6/HvoIf5uCRepW7y36nDqZ0hbPhL2uMtz1xguCbsJ9X44in ZrD6/zJXyeCLHv2NLgwuh55InotXWeKHUUdQ+sIxcv/36rftBsZYFe4ldyT6 qga/Rq/oVU9POXvJpxL8SO60sFWeMWMvT/0fpQeejcSpAfeGa1GHUvrI9wj+ cPgVbesGaw7ynVuduqbhGRSr/Aa9ildzkDjD0KPgD+iR1NGUfnIPQW8Cf5H3 TknVb8sepK5NeQePwFNP1pKsea/yR7gI/rrwfbmbxapf9ELosfBdeY5wA/gB PBJPQ/gz3Mir/QqXwNMMfgrXDtbxyu8AJvzN4a+ylvA0hh/D9b0aR/Jp6lWP 5B+AJ0T2hcw53NJo6w+3gp/DNmK2h3/K3Q/uAP+C23mVBzInbvTO8D/08XAf eb48o9ZyXhoea6zyDzw1iN8J/gN39GrbBPi7yJ6gJIRH4+8BJ4F7eTWm/KYR RtuessbQa8FdjX6j4d5wcvTuXvUMkvMnWNeJ/GYyiZj94NR4ZsJxxlqaDA+U tQEPkHaGpy4xhxj6zBjVMxGnhVfnp798H7H22sAD4L6iybPAPyNGOSP+KcQf CqdFbyr3cziLPF+v8hBZb9QjKIPhlngsXv3dYxZxhnv1e2GwV+NIDvVLqj8d Mc1e3RdDadsU3SHx0U/Q72a4Btwc3Q1ngzsQ3+vV30/aosfDedCdXvUMJ05r PHav/j4zgXqS5CpnC7rLq7+f2Lza1zD5jvZqnBHwWOrxlDj5/iX+RLgw8XvQ dopXfwNZH6sxfdDb4xkD54M74xnt1d9kRnlVH0mcjiU1ZgF5XtRTKWb0+dQL KXZ4GvUMmQt5LsSfDQfJs/Mqi96dOLPgYujF4ArwQ/rqVlJjFkXfGqtxAuHD PN/psIW2fchtrld/2zmOvljGjz6YtkvgUvh3xWo+peFFXtWdeOZQz6PY5Hu5 pLIvnr7wAtgfPunVs32CvCOIM87Ipz/9Lpd86HcQ/jVwSfRDeNbCleDVXmW3 rCU8G+Cy8kzhncYaWEG9yvAcjFWuiD6c+Ou9+vvGOq+29ci56tX1Ew+PJM5W uAL+7V6NORr9JHG2wTXRzzAnm2Av+jl4BzwK3uJVj8TZg3+ZkdtpeDccAl/G f1zWDR47fe2Dq6Hvpd4v6wD9Ip6D8FiJH6t6OJ6lXp0fmeeTeFbCLngX9R4j T1OwckX5LiD+ITiMtlflTg7Xho95lWX+D1MfpYyT73H8p+BQPBfwH4Ej4QNe jSMeZ7D6axB/LHzWq787jaHtOcM/KZ71T7mE/zbaXco0+BYxL8IN8Fwn/8vw ZPSptL0C10c/71XPJPTx6BfgGPRUtbn/ENMm8+/VvibiuUPMa3Aj9BvUt4y+ ptD2DlwP/VGs5tBC5oH6OmUKnonByrXJ/5JXcxB9Jvp9r/4+c4/6AWW63G/l 7g03l2/YkqpLvw+pH1Nmyv2fvp7B7dGfeJVFn43/KdwU/UWs+tvBd5iHR7Kf 8dyDX8Cz4CX4XxqeV17td7Z8j6O/g9tIv7E63ubwO/g93AV+Db+GO8LPvRpH 2r71qmeOfNfQ1005X+CH8Ed4LryS+J/gzrR9jP4dno/+lZg/4N7o37zKC9C/ of+G+8h5QtukPKP+8Ge0r3IWyFiCldvJ/RDPL7gTnp9ebStx/lD/oyyE1+NJ SJyeeBLHa8wl6L/oKxE8AH0tMf969fei5+SZBH0xngTx6lkEZ43XNbNS4tM2 OTyItm/k3+HAK+R5wangpXBK6tSUZbKXySEt3A9/otqqD4c/eHV+ZFwfiPkF 7oaejD9PYeS5MVi5t3wv0DYdPAJPSjgLbIUzxStLbumpM1KWw7vpNxs8FM9O 4mSI199/0sRrHMltR0n1y1jeyb8LglfJ9yl6LiN+BHUUZafcLal94/U3h73E zCtjgQ/hzw+b8acntwKwG84dr57VtE2Dngd2oOeI1/ii54tX/xo5Q4hTCLbg OQ4XM/xF/sfSWcdZWbRvnEZSkC7pLtleupHaZYNGGiSkeWmka8/Zc/acDVok RJAUkQYBBUVAQEQa6e5u3u/1uZ8/5jNfL6+555555pkzz6y/9xdnvA7Pcfqt DXv1vUPMcrALT3HqkpS12tOqGU9HL1nFcv4vJ/uN/o4QZ/c2TxlvRXi9ciBO GJyi3OBKcAJcmboq5Uc8/xAzwNE/izP+SeuZONXgDfrGiTC/T2cJ/FU0V5oH 9CA4ET5IDsGaH3IIibN+N9L2lf57IfhnuEKc5aB+T+s8r32Qtn/DobAHDoyz OMohPM48m/Q7WM3Wv9ZSMfqthT4HrgH3lB++SA6t4AXkcAp/AzgJvT51Q8oW 7bd4GsfZHVGZCNO/wVOHup7jKR1hvBD9nL4dnL4axRlvxfOBcbWAt8PXdG6H F+N5g14X3ozePM70HRp7hK23JXj+w98Ung9XQo/UuwnXjLM1oPFGxNlY1PYO /s5a23hS1+Z3AN6JHkDbNnpHtI8xrnZxdu90U98FTszYOPPswn8VvTX8LXoU dYyjt40z/y9wOuJ3hHdr/onfRc8L/xdxxnvQq0VY25V6r/F3g/eid6Du5HjC IozXa6+j3+4Ox7W0s73O7V3jTP9V+yr+N3CJvOxbjGVEnN2f9KbuQ/lNa4k4 /bWWaNs3zni/9iVy6Afvg2tHmH8TnlV6/yjn0B/T9ku9R8qH+AOVj+5n0Idp raI3pu1wzYnOWnHGf9A2C/EHw7/DX8VZW/VbF/8ArRn8b/WN4PAHeLTWBjyJ egrlL31jxpnngPY0Yo6DD8JjqcdTDum7mJgTNF7apg8wfQ88SnsS5U99y0QY 79XeS18TlbO+++KMFScdbafpOeKJxj9dbeFB1EOccU2NM125RUVYngfw5CS3 yfBhjZ34M+PsrqZRhLXdiecj4s9y8pwRZ3wEf3s8XvgYenycw+h5iemD/9a5 hdofZ+efuXoPKP+qL2J61JfWCbXbaZs7wPxH0TsSP0lt9RuBPlv5w53R5yiO 1hW8ED4Fp8SZ/g9xclSzc9chxlIgwPo9gacAuc0T4xlI23Xwde2Z+L9RW/xf of8AX0XvBS+Gz8tDnKXy6JsFfRl8AV4UZ55Typ/4LuWv77IIG5fGUgj9W/ik zj9x1pfmYUmcxVHbFXHW7xm4KP7V8Fkx/a4UE6dsgK3zK3Bh+Htn7J+R//I4 u0v5Ls7003pH0NfH2bf82jhjvSPRtL0MZ+cdLE1fe+BL6D9S/6RxwfV1/off 03ZjnLH0UrT9Gb5Iv0MizH9Lv1/E2aC5wlMFzxb4NnpD4myNs+/9bdQ7lCc8 mra74Ef6XdC8alza62j7C3xf+zBtt8fZ/cDmOIvzn74p4sxzUd9iERZT/rHw XviJvjW0Xijv4N1xpl/GX4P4v8Mv0Pfr/aC80p6M/if8Ep4YYbr4V+03TtvP qxnrjmIynoOaW/1Wxhm/0XiJc1TjZW5n4Tmm/OFA/Z0IfoDnSJzpujOZGmF5 voVr4znsxExh/zweZ9/7d9nHesErdDcVYHOVnpg94kzXvnpVa5nyMXpzPGfg jHBbcj4H5yJOJPp5OAv6qTjzXKNtDJ7TaovnhNapo5+NM/917Ru0/Q/ORts5 5HwFzgFfijPOR1t/hLXNjD4fvqZ+4Qt6VpQ8GleEsdbevAjL+RO4HOvnX713 9BVLXzed+J3gZ3B+eAH+W3Bu+LbWkdP2W/QHjudenHEh+mpH2/uO/5sI8+eF F8F3lDPcAc8jR1+K/lht4Sdx1u9N8qlMbi+0zuEbcZZDAeKvxP8SLo6/G3P4 FC6C/jDO4tzQ+SrOPLfhX3iOS2ayTnmOX9Dva8VRbjPt74m18PRAT+XivUf/ oLUD39VvMTmkhe/BayNML4OnCXojOG0J3lH0bHAV9Cwu44f43+o9ptyB+xI/ HXppPB9RZ3Y8fdCzwqXQezOWjHAJxrKemBngcuhpXNb2Pv6uARazMPpXcA7H E04+heBnePbozAyHo2+Dc8EBcCiePPAT/VbSNi9cDT2nyzyP9d2K3hiOUnzy +dhld0eD0D+BK6Jnd1m/j7T3uizOU7igy/p9Dg/H/yn8Gf6fI2y8leG9cFG4 OjyI+AUUk/g70PPDQej5XKYrZiA5Z4IfwOldNj+ahyIui6O+xtJXWTiUtgd0 tofrwbVpWwF+jaceHAi/g2fhD4Ib4SmpZ0J5hf5HhHFd9Jr4S8Ev0cu4LKY8 lfScKW/gycT5DK6NP8BlMd+j/0WcanBj9Kou47c6D+Cv6MQv7zJWnIYum/N0 rCU3nrrw53i8cH24OXyCmNXhlnCYyzgV/gbkGQ5/IM4o/CWcORypv6247H4s WHPj5FbMZZ4Xyr+a6bXxHCV+iNPvGbgBHA3Xcxmnoa/aLsstNeyibR2X3Qv9 q+8FOAL/THKoCTeEa7hMV55jq9m8herMj/9zOFZ5Uo+m5MZzC70d3A29KeNq DqdHb0bdgpIBTiJ+BNxKe2CE6e31PlI3deZwBZ6v4J6aw2qmN6ffltSRTpyb tG0Nd8UT4zLOhD6ftm3httpv4Wgnz9nEiXLZ3dHlCIvTAb2Ny3JW22X4Ozox H+LpDfeBIxhLB73ziq9vDcUnzhL8XeHOeO7j7wb31t7rMk8W/HfQv4B7oLd3 WXzpXVzmzwpHEb+H9h14ic7haq9zlMs4O3oLPLHwR3AM3Bf+GO6ueXI8KwOM e9HXM/rtBw+AW7lsHjLi6eMyPQf8XOdzeCCegdSDKTnRX6MPg4eiD3EZf4K+ jvhD4f7o/V3WVnE2on+t9uirAyyO5m0VYxnksjultuT8PzgX/vbwWDgPnDqS c77WkPZJeAI8Bh7jMj0vnuHUI5w19nOA8RA8b8lzFDwcXlfN1mF/nXn09y+X 3fNkIWY8PEXPhX6nwvmJM4V6GqUAvJ2YM+CR2tsjTZ8Ij4DLunm28HiX5aZ8 JlJPpuSDtwQYK4dM+GfCk+Dt5OBRTHJwu4wL4Z9F7XJ4L20T4K/xdya3OLgg +nSXxVFuvwWYX/kcZLyV9T5rD6cvHzxd74jLuDD+xdRLtUcoPjnMVnxy6EH8 uXBR9Dy0nQfH0zbZZZ5P0XOgp6hv7RvwOXgr7KdOcjx/kM8CeKp+f6m/pRRH P4K+RGNDLxhpOfh1nqFeSCmGJ2+ksUfvpstykP4luX0Hl9Q7SL2cUgo+RcwN 6lv7Z4DpPvh76pWOpzgxV8Nz0X9wGZdB70vMVXBp+Fg188fr/I9/hRPzH2Ku hRPgEujrlBO83mX9lqXtWTwbNUfohwJsvJqfMvh/hr/Rfqu/I7jsHmmNy+Io h59c5ikHH9TfMlx2PzaA3DbD5dEv6cyvOdLvKfpOuCJ6ZeLvgr9D3+EyroRe BX2P5gg9GP4TXgNvpd5OqYDnQjXjebrzIf5ueAGeX1zWVnH2uuy/v6oMD6Xf /XAVPV+XxawKBxH/d80pba/rbwEuu5+5QcwDWmfo+1zmkf9AgK2TaejDiXkI /gy9JnFOwRt1hoGPaI7gv6iPUqrhuU/bv+EfdEatZvpy+trksvnRuMrRdpvL /puxg9SHnbYPA4yVZ3U8x/X84Ec6n2t+iHPSZRyE/x/qfx0eTZ5n4WB4JHwC DtSacVmcAPhZgPl/1LN22XsRgl6fvv6Dt6F3hz9mrzgDv9R3ojPeN/BVeDPc GM81PUv4oss8ocR5iucCvB79LvV9Sk3tw/obgcvuas67rC/1e8VlccL0m0t9 h1IdnkD+9+AacKpA5gXeQcyWkRZzH5wa/Sa8U3sa/htwOP7rLtMV5301i7lN 98PUj5x83lC/o9SDH1M/pdSCY4n/Aj6k3x2XcR30ycR/DteGu8GJcBE4ItJi 7sefLtDi7IYzMA9PXHZvkxH9Ffwrelv8H+AjcGad85nn/XhyBFo+6ve9y3Tl 9hJ+7eTQOtL4MJ6p5PAWrote2m17eyT8OZ7bTg4d4LTof+v3Av4I/kdnbPrN BB9Wbm7jhhoXnqzwaZ3/4TzwBY2LOoPjyRNofAx9FjlkgRuhZ3Zb28ZwNret H3FB+srptruaXG6L+Tl6fuJ84uSTG84OH4ULwbnhk3AOt3ma4M+Ongb+Ez2e fvPBTfUeEb+k2+5q+pBzQfgingLUhSjN8HjxF4Gbw58GmH5G96tum5/66DPw pIcbaG+nzu+0LR5ofF7nCuJ/Cl+HS6GXcvoq4TZuib8odXFKC9hPzDJwBFwM fzH4HP7Cbosjz6BI899AL4envMaisyh6BfiBzmPUDylx+EOpwynPdc7HX9n5 TR+Nvyr8CA7St4DaMMaKbvNE6bxKPpXgVvqdou1QuGQ++nVbX1o/KXgC4Gjt mdQhlBi4FjHD3HZPMiHScnhBX9WoAx3PuEjjp+hV3JaD+p1DzBpwLFyduial tcZCDp/DT/BPijT9FVyLug6lDZ46+u5w271KXbex9Bq0refkMDnS/K/hufRV 24lfE09D+KXOAMRp5La7oMZu67cdnnA8zeBneMIDbLzPdM9JzObwB/TpcBP4 PdzAbXHa0rap2zxvdbbEEwzfghsSsyWcirmNQ4+A08DN0GP0LsEJ6LHwR3C0 2zgT3AJPW0f/Bk9XOC8cqbmktNd3WaRxOvREuA2cBW7ttrYd8LRTTekIz8XT Cc6Jp7PbYn6BHqfzvHIj50aMvb3b7qm+ZQ67wJ3wdHSbJwdtB7ttzXTVdxD+ 7hoL/l7kPFDrHs+39NVL7w/ck7q33nm4Pf4+YvyLIk3Pp/G6bX40Lhd6K72T 6N2oezh5tg00zoX+HZ6+cBF4LTwILgMPcBt3wd+P+itKZ+VPv0Pcds/TFu7v tvuoL90WJyfcM9D8xRSfsQ+Hu+lbgPj/gyuhL6X+TuPXbwH1VI1NZ3g8o/SO 4elC/DFuuzvqT8yxcFn0EW7zdNc3C/pI7Rfow9wWX/pot/l7wAPxjNc7iWc4 PEnvEjzBbax+B9LXXHl0PieHKXoP8Yyj/prSE8/WSONq6N0DLOdP8a9kjBPh XnhWwdPhL3Vewp8I18W/G54Bh8EztfdQ+uhcQT7xTl8ut3FfzTnx3W67j9oT af5wjRH/LLiqnhd9eeF++H/Hk6D3HN3ntn77o6/Hk6znB09zWw7qdwpxUhz/ GNgPh8Aet8VR2yS3eQbA0YG2/rPj+ZO+5mjv0Puou2W33Yf48KyCW6JPhr+B a8MLqRdpPRFnBP7FbruzmhloekM886gXUAbiORxp3Ah9Op4lTl/fuo0H6/cF /Xu4Afq/Ordr3cOT0OfDteDlbtO1xk5E2npTbj8zJ8vgIeib4R/gYfBst60B jXel28YyHN6BZ6vWnL47iLMGbkWcs/CPcAy8Dc9P8Ajt+eSwEY5GX+c2z//0 u4m+Hm6Ovpp6rRN/g9v8I+HzxNwEt8ZzWWda7TvwFrfxaDxjAqxtiL7RiLkD jtK4qDc7cSYFGNfCc4U4O+GOeF7F2d8KdXe63W26YvbgXPcOvajuk2l7zG13 RHuof3Xb/6+oJfS1X/sAcX5zG49H383Y98Hj4BuR5u+CJ0M8+y7Fj76AtnvR 22mN6RsBbkb8xeh/aV9Cf6Dzv94d+LDbeIK+R4h/UO+h1rnb2qrfW/j/0N6i fYY4fzu8D/8/erfxnKO+oP0FPuo2z0R4Bf6Teq+1fqhPUSYrPm3PwFPg55Gm D8RznPqE43kWaTwA/UfinHX4tNtYfa1Dv6j3CP0N/ktaY3p3qA854/rPbfo0 eF6A5dlG3wj4z2udy08+V+Dp+g6KtLa90TcR/6rWttaJ23gGnjSteLbwGPSb buNZ2lfx39WaR79Dfc/Rn1I/174DH6KvW/BM+Br1DSdm2lbmH0vbH8jzgdvu snYQ87HeC/SMeJ5oXHAm+KXmH37kNt2l/TPQzl3/Q98baP1+DR+l32ewG89J ODNrJhFeS1+v0PvRVx5ipkePx58dfqs5gfcQ573WA/wx+gflDL92m8dLnHfM 23Wn38UBNq4viPk3fb2BPXheuK0vzcM7t8VR27Tx1q/W8B/0lRGeSpwTtE0H +3S+bWXr3KO1p3N1vI19E32ljre7slTxpifgP4YnizOWTPHGSehhxKkFr1d8 PIUVH85Knd3xFMKTU/Oj8cYbJ6MfwZ8DdmkvCjD/CPrNjz+b+kU/Q8654BT8 /+q7QONCz0OdjzJb7wueAvAcuDJ1VcoiuARxCsLz8BeB86pf+JN4i6O2+ePN MxfeE2Axx5NDSfxF4Pn4y1KXpyzUWOJNl/8c+ZRQv3iKU5eUH/0i+ZSGF8Bl W5m+CM+n1MWUD/rpQGPlcxkuA38Dl4o3Vl+XiVNROlyFOJXg5Xq/yLNovN2V VYg3XeP9K8DyjEMvj78cvBj/JeJXUUx4Lrzb2aurtrK5+h7e5TZ9jM7baPUo 38HBeILhNXo3aRsKL4ND0MPgtXBgvHmW6B0k5yD1C39GHUD5Fg6JN788N/BU h5fCZ8i5tp4vOdeMN16mOIHWVvk/gOvCq+Bw6hqO51GgsXKr0cpy/kl7IzGr xdt93UM8DeDV6B/gVvB2+Lm+C+ANcCPqJpoHYjYgTjPH83m88Ur0u+TcFF6h /SfQ/Frzl/X3qXi7N3uG3gL+Eb0hcVrCO+CIeOt3FW0bo0fDu9Drx1sOy9Gv EydG86NvPfqKhH9Abx5vcZRDVLx5FGdcU3KaQi45ePfptzX6Vj2jKfb/G1H/ /wqb01dH9F/RO1B30vOi7RPid4bXwfcCTF+p+946PCt4H3pr2vaBD9O2d7zx Bp3Dqds7cVrh6QL/gacHdS+NHT1zEL+H8H70KDzd4QNwWvRu8C/wF/HWdj3+ dEEWczd6Drg/fAhOw7hGxNv9Ui70kfAR7ZPkPBDehP5K/60O/DNxOtHXEPgf PF/Fm2ej5gp9MfwU/YX+2yGtE40FfYATs2+89Sv/oHiLswn+X7z1uxl+S9vR 8BY4Y5CNV3Pbgzhj4LMaFzwcPqG9Ds8w+CA8NN50xXyuv2vE251e13ibH83D qHiLsxXuTZzJ8AWdSZiHKfBe/EWIOQ0+rfnkeXk0n/gH4/fCN9G/pp6oNYxe NMhYub0n/wnwNp214i2mPDOoZ2me4f7EccFX8MfHW8zd6NnIwa3nSA5x8cby 98U/Hb6Ef2q88Q70RfE25/u1D5DDfPgunpH4F8IPtK+iJzt9JcYb79FvE30l xdudVU/84+FzePLiHycdTtD77eQ2Nt48mrchrUy/hackfh/8H1xQZ3v4X2Iu iDf+Df/ceMtNnJH5nKdnqudOnDnwPdpWIM5s+DqcEm/6XjylgmzeLmovhZfC d+C/tQa1BrT/0+9PGqPuiODl8Xaf9p32G8rveLLS70q9R3BgkOmanyXUy5w5 rEXb3+PtbmR8K9Of4VmhfULPRfs2bdfDb/SdFW98EH06/g3wez0jeA38Vns4 /tXwY3hKK4ujtj/GW85q60LfBKfNzztInnv0vigf2v6sfPA3hrfCafDE498O p4er6pyvOSHnzfHm+Yu2OYmzRXsLvDHe4h+Ct8WbX54w2u6Kt3ukRGLuhbMQ c3e88VE82YmzDv4TbkQOv8Gp8ezUO0H5oHN7K+MM6EnwPjgrvCre5kHz9mu8 6YrZlDh/OPkf0BxovemsS9u/4E/QD8UbH0dvif8wnAl9f7y1PYYejX4azo5e P9Di6O6oGfqfTj75yf+o1gr+gvC/Wp96d+jrJJwPT3PanoEz6nwVb/pJnZ3U j7PGWgcZ58S/gLbH4dxwk0Bbh7pLKUz8c/Ap/DG6M4c/Rm9P2//gPPgvaC1r b8HzKf7L8BmNMdB03U0VjGJf8vCO4T8Vb7kpn7PU5522S1oZF8SzDL4CF4Z7 0dctuDh8I974HP6rercoZ+Hi9HtHsbSf478G58d/Kd7iyBMZaH7dd6XGPxPe qe8X+roLl8V/O974gvZtzT3lKrwBz2O4Ap5OuquPt3uqr+jrGVwO/WG8ef7D 3w/9EVxGOdM2lLF3ge/pHXXiD8bzAq6E/krvEOWy3n1ye6e84b2tLIfqeJ5T v6RcQt/Syvgz9CfxlsNF9BHETEVfAegftK49lv8Acs4GlyfnX1uZXgNPGup0 lGt4fkfPCNdBT+8xvq7fQWJmgMPQRweZPxjuR8y0HrtDq0jOmeAb+CfjyQzX xpPFY/3e1Bkbz8fwLXhHKxtvEJ6/4BzojfXuwFnhevBHHoujttk95rkNDyX+ a9pWwTMJ/gS9FnyEtrngJvBn9JUfvov/BHoBuCV6Po/xPX0XoBeGI9DPwqXh GDg3dV7KHTzTgoyVz0y4ENwQLuixtopThLoo5QF8ijjF4VZ4Snos5kP00Trz a96YqwBy+xS+j+4lZim4Of5iHvMoTp8gWyel0IPxl0V/hD6LOIEeuy86T18V 4NZ4ylNXpDzGE4q/MvwEnhhoek38OT02P5rD/6Hn8dj9Xhnqck7blCDjaGJe Jn4VuAM8Fz3I6SvAY/wMf1XFoDyFF+AJgdvhSYY/g6PgSh6LI8+VVubvqHF5 7L14rncff3W4M/peuB/8Newhz1pwM/KsxbjqwK/w3ydOXbg3nhoe87xEr4En HH4BN6FuSnkL38JfE+6GP8xjfclf22NxXsMNtQYpb+AV5PA53BN/PWI2h9/p DNzKYvZHfwA3gL+EF+OvD38hv8d0xfwuyGKq32bULSjv0dtoniipS7IuqSMd /bXO+fBQ/K08xqnwNCCHKPiD2jIn9/Wbot/rIIvZD//8QIvTFv0ZcSLgAehr 8MTCfeHGxOkApyFmavbkjvBo9B+DLB/523tMT4snRs/cyeFNK+NheJbqbw0e u/ua6LG9PQee2eiNPHZPmIb4neEx+NPBPeBx8Pd4esI98HT3GKenbUY8X8IT 8GSHB8PT4S6aP8ezM8hYOW+He8Mj9RvhsbYZ8PTx2Pr5CM5EnK/gSXgGeixm ZvS15DBAPnJozpz0hTPqWcCD4Exwf495FGcjfX2h9sTZAw+Fx8N5iP81HA9v Jub/PHb3NZx6BCULbf/APwqeimdfkOnKp5PH5kfz/Dn9doXTwUMUw8nz4yjj GTpHwaNhl8ZOXxM0dvoa7zHOjn+M5tjhGGJOgj+Go+CxcDZ4pMfiZIX/CjJ/ HDEPw1PhWXAh+poGJ8JNvcwRJQq/Hy2Jkgc+hn+mM/Y2xI+DP0EvTlsXPBd9 usc8OdF/JecZHrs3uw8fhn/QGdJjfWn9/EPMeDiBtl5qn9NXKWImwgvQfw+0 HKbQ1k3toeTCUyLKeB6eWR7LQfpZYqbAs7UvqabkRa+Kfyn8PXrZKNMXwXMU g5Jf80NfCzU/9DXfYyy9PP4F8GLtk0Hm/wbuyDzMhfPh+QJeBBeAq+D/Fl6u vcJj/RZEP0n87zx2x3U+yMarebsGL3fiX4KXqG/4G4/FUdtlHvMUgtvRVwKc G76JfwW8DH8g/a6EV2m/hdfCa/R7R7/rNBf0u8Zj/Cltq+PZAG/QPgZvh7fC P1Cvdjz3g4x/QO9Bvz/CRdHXe6xtMfgn6p8dvkJfmz12l7XVYzFLoj8izhYn n3vwRngl3JuY2+ASeDZ5zFMcPuixNVMOfop/J7wef3/8B+Cyevfh3XAp+Bfq PZTScEPG8iu8A/+7INM1ru89Nj+F8XSj7Sq4CLyDepeTZ/0o4206yzGW3/T8 tL8FcyaXD/0Pj7Fy20f9O6UM3JS2h5QHnjf0ux/erN84j8VRbk2izP8L+gBy OAKXR49APwrvR39PnYp3MBz9PPwfpQociee4+sPzgtxOeOwuKz25/ev0e8xj ngra89H/hnfq3OWx+NL/8Zi/IvwRnlPKD8/H8Dn4IHzGY6x+v6Tfp8pD7z58 Af4LPkl9mlIJT2yU8SH0t4GW8xZyG8IYz8KV8QyDL8FV4UL0dR8+qfeItpeV N3yF+hrlMzyf4Lnp9HXdY1wNPT1ze8Nj/z96OkWZ/x/9juC/qmejvRq+DR+D u+K5A5+C73qs3yDidEd/CJ9Bv+ixHNRvJp3n4X26iyDne3Ag+i2PxQmAH3jM ozg1omz9/6QzM/4ncDB6CDkU5Dk+Vj46V8PHdDaDX3ns3uwl9WtKKP5xtH0L h8GfBpuu3J5Rv6CEaM1HGV9EHwS/g29ovXmMtWa+Jk4a+qoOVyROWq95CsLP 9ezh1F7Ta+AZHGXr7SZ6cTwf8JyHh6KnR78NP/bYGlAO6bw2FrWtij83fEfn Uvgj+JrO5HBW+C48kjjZ4QdwYcb+MXyKsWf2mqc2cSaRcxa4ls4G1JkoNeFs XvPLMwVPTrgOPJ6YeeBn+q30GtdF/1+Utb2HXpq+8nnt3ikH9SeOZ1yU8VPt meSZ38nNF2Rne3075PWaXg//DPQf4QbobnKoBH+OXpj6U0pD/UbgKa6x01dR r7H0KfRVDH5D25rB5n8Jd6PuQWmv+MQsovjwTPyl4FQFWOvELO+1+6U6tK3g xCnnNW6itYdeBn6BXsJrbRujzyJmSbgRnEDMyvBHxKyPvyr8Hn+o9hhKC60T r3mawh7aBsDN4GrUgToTwInECYazEKdFsOmKWYX6M6etL8o4E3qwvhHgR+Qf 5DVWnGa0raE1hGcO/ppwDrg0dVkn/+pe01vCpQMtz0t5+Z3HH6a1i99PnrXh CI03ytqmRo8hfh2tG7iW1zgSz3w8jeBc6A28xlnhJOI0gVvhaaxn65x/IlVT YvSbwlga6rkwb3Wp6zsxv40yf37iRNNvMzg73AR/S6/dibVBj9D603jpKwaO pW0Lr+nR8OIoO3cVwLM8yvr9FO5A21ZwXriN7pO9dr/UDT0WLoK+Bn9XuLSe C562ei545tFXe7gN8Vfh6QCXxNPaa57W6PPQ6zm51Qyycb3UnSF6G7iYxuW1 vuRv57U4beHOXutXa7gr+XSHC+NfQL9d4HY6e0fZOi+j56JztZ6LvinQO8GF 0Dt6TVfMnsTp7fTb02vcAX0NMefAfeFReEbCQXi+lEbpiD4A/Su4PHo/r/EX eka07Q93gjsGmV/3Zr3w99G7iv8n8hkIV4S/wDNIzwLPYOqhlM603YZnOByA ZyZ1HKWnviOqse9ozev/3pO2Q+AS+n33WhzlMMxrnmq0HRpsMavAO4k5Cg6G J1NPpXTHP8Jrekl9g+AZr3cVzzjqrzXveAbq3t5r91R9g0wvrd8g6rGULnim hhjXLUgM+p3kxJngNe6mPQp9ut4T9EP0NQNuCK/W3yy8di8xzWt6D/wTgi3P GngO4J8C14OH667ba/dUk9ALwa/UNtjmSp4CXtPra+1RL6D0g4/jT9D+gGcU cfxeuy+aRdtEvavoHq95euOfju5VHHQXdbyj+7zm/xJ240nW+6y9Ap6r9w2e 7TVWv39HWdtm6Kfh+XrntSdQp1D66NweZRyJPjbIcg4lt5WsKzfcC886+Bu4 P3wD/yrNP/4L8CK9g/C31Eu0LvEkk893Tl9LvcYD9CyIv8xr93L/RZm/LR4f /sVwS3gDfX0PD8R/Hc8KrU/0lV7rdxD6Rjxr4MHwQq/loH6XEGet458D/6B3 W3uO1+Ko7WqveYbo3F6b91j34LpXoa/1WjP4A0P5HfDzu8m62kxfm9CH4f+Z ejNluL4d8G/Vc8H/fbDpPeC/8L/R+4PnB/RfHc8er/FI9A3UG/Xu6feIOdmm Z8Sc7KLeTRmBPht9r9fu8Z7Q107NP3G2En+H3jc8W7zWVvncjbKYPfG8hPdr fjSf5HBM8wmnimZN6N3TnoB+QHMCv8Z/UPnA8+n3kJ6Lvk+95hlD/BP438I+ 7cnwPu1NesfJ5w94NJ7fvNbvKPhPr8VR26Ne63ccvJT4/3jtDvlplI33K+Js IuYJJ4cP6Ec0V/AvxP9L7zxtD3tNV5zl+H/RfoJnu9fmR/N23Gtxxisf2p6H J8J78V/Q/oI/E/NwUXsEvE538l67B9unc7Wjn6Y+S5mgM1u0w5p/PGc0//A5 r8WchOcy9VXKZHgPnuvKAc9Nr8Wciv47+g14Cvo1r8Po35PDJa0fvRdeY8V8 7bU5d8E/4Xmu56XvHeK81BojTh5ye6g9Ar7vNZ6Ofz+eB8oHPQOeU87Y9zIn J8V47lDfc/z/es2j8eaONt2tPRD/XXgaekH0V7Af/YXXeBb6U6/lNhPOh+cZ 7MVzlByeOHEOEucxPEPvndd0+bNG27xNxVMYfg8nwZUTOMtR5uO5RJzs8ELF JE5q2I2eijoNJV7ffXjSwQl4ikebPhd+R7wPzhyepW0J9Nn6vQsyfQTzmRYt vROnDG2zwN9onSQYexWfttkUHz6lb4EEy/NX4mRMsLu+EtEWZx561gTL2afn jicnPAXPaeIUhpPRy+HPAX+r8cK54e/gi8TPCy/Q+RM9H7wc/iTBPIl6XsTJ BfvhjxMsvvrKk2B+eY7Qb4EEu2cLIk4ReDVxCiUYp2hO6Cuz5gT9BlwUXgrn py6oMeK5GmysPIOJUwxeo3WVYPPg0TddgumK+RB/SaevUtRlKHN07qVteXgD etkE47naS/GXg3/Qs0uwtvI/RQ+C16MfD7I4Xp3tiVMaXqffIOahouYc/0W4 muYNrocnAN6q7wI4GN4Gf5Zg+kI8FagrOWvsWbDxjzor4q8Cb4TPBNk6TNH3 OxyaYHdr1+mrAbyEtm9oWx3ejD+cuoY8mjc8tTRvOntHm74LTxT+83A2/dYk WG7KJ4Q6TGsPfhlsrBxSc86pDe+EWxKnIbxP40owXoq/DnU9ymK9F/gbwzvw fI6/Lrxb40qwOPLcCDL/Usaym76uaF/FE4G/Cfp+uFGCseK3pW5PWQnH4mkJ H8KTkb4i4V919kZvBR+GmyeYZzn+W8xDC61teBoeP/xOuVE3oyzTXoQnGv5e 8anbUFbA2YnfDv5T3wvRlsPfmkPqGMeTI8RY+UQkWA7q9z4xO2pdwR2oO1FW wfnx94H/0f4ZYvoxnY2puziebvTVHT6N3jXBeI3WNjG7aW1rfw4y/ybdgePv 7MTMTcye8FG4O3ov+AzcO8H6XUvbQnj6wSfRnwTZeNfpzhB/f/gCelqey5cJ dp/WI8HiKIe+CeZZp+eCvzV8BP9Tchug9wW9OPEHwufRn6MP03un7wj8w+Fr OqsnGP+k8zb6SPg6+v/gifA9eBD1EL0X+h0MNv6VfIoRfwR8Tv4Ea6s4o6jH aN3Cr+h3HPwz/HWCxdwEDyf+ePgubXMQc3SC3a2VJeYE+IrOognmkT9diK0T reE3xJysdw29MG09CXb3NZKY0+AHeKZST6dswVOFtjPh23ouwaYfxf9Vgs2P xtWHtoPhi3gmUU9x2n4WYqw8x+GZBT/VO4vudfqKTzDejj+O2q19Ru9gXfZj vYNwVfwu+A7+GQkWZyt6aIj5n6AnJNh7sVPnf/pKht/r3Avvg4tzFq2Hf47z 7sxEnwenQi/GuObrWTCulATz/KL9BH8S/Bj/Er1nenboachtNrwLTkywvtTv 3ASLo7aLtE9Q9sAZ8C+F9+q8Sr/L4Qz02yTEYqaFy5DDNwn2v7FcE30h/JJ+ FySYvlvfLNEWMx3+7/SuO/n8qLVD+R1eofeVsk/fEfjXwNnwr0owlt6Y+Kvh NOgPeHeaJtjfBcoFW8yrcFK0xcmK5yPyXwn/RttqeNYl2B1aVvSf4T+05xBz E5wD/9xoyycnvDHB9AN41urdouyHm4UYax4i4A1wZvhsgu3tJ7Qno38Lv9Hv Jv1uhR/Rbwz6Lvhj/Evo6xe4ILwzwfig3ms8e+Fc6L3gg84a2KY15XgWRxsX QK9F/D0J9k26O8HaHsLza4Ktn7/gjsT5Hc6H/0CCxTyq7xTi/AGXQM/JnPwG H0bPBf+pvUXnyQTzKM58/Fuc3FbDh+FScH78p+F/8PSgr6NwUfQj1MdU0PPi OQ7/Da+PNr2cvrMSbH40z9nxbIf/hA+pTyfPesHG7/S3EuL/A5el7c/EOQNX hk8lGGv+T1CfpByH1+A5B5fGswH+F64A/51gceRpGmz+9DyvguTwH/wv+mZ9 L8BV8S/zsf4peUuxhrQHUM7i2YLnCvwZnljiXEuwe7+B5Hnd6etSgnlO4u+H fhkug+7S+YeYTXSeSbC+5BmE5yZcEc9t7UNOXzvp6z4cjN4+2HLIo/Mb9S3K aa2fYGPdB15NsBxOoY8g5iM4gLYPtTdo30Afjf99gt3VdAk2XfdXT6ifaU3j majvDrimflMSjC+gD0F/oflHHx1ifuXWHf1pgt31TUB/DddA/4383ygO/DbB +v2POKWY81TMw0V4ZIiNNxDPIfyp0RvC/pY8/wT735p+lWBxquqbMcE8l3QW Jc4drQN4jP5GgB6CZxox08H1iDMDzgQ3gI8TPzPcXHuFz/gKbWfhyQY3Qp+s MzlcmzjpqTM6nr+jjZvh+Vp/F4Cr48nis7ZXtZ6pc1Cu6cxJbp/A1/Wd5bOY N2A/feWCI4jjhj+GP4dPEz8PHKV302ce+cv4bM3cgysRMz98U79ZcCn4Luwj TiG4JW0LUhem3EKfqbt6n92D/Rdtels8aXw2P5rDMsTJAF+G81EXcNpeiDZu gz+Z+EWd3L6BS8Md4JI+Y+VWjLoE5Q58jbZl4S/wzMFfHI6Fi/gszm08V6LN 3xE9gBwqwPfRb6NXhLtrzevfU96hh2m+KU91htS5He6BJ5Exfuaze63F9FXN 6beSzzwP8C9Erwy3Ry/vs/jSq/rM/xAOJodA+BH8mPihcD/8wT7jx+gf0CPh keih+MPhJ+gB1EGO51G0cV88a0IsZ/EyOATuCj/FUxP+Cl5E/k01TvKfDdeC Y+Da1HWVs77B8TeAB+ls4DN+Rl+riFkf/lJ7YyvzV2bPzNKa3yR4SmH6J89G 8HP8G/S9AA/Ub7rP+n2BXhNPc/glXMNnOWie39NvC3gE/lfw5/AQuKHP4qht M595XsEno239R+L5kb4i4AFwM+L/D87AXpolhnO1ckPfgicWHg7HULemvCFO Xfxt4bdw2hjTx+JpRR1NeY3+c4ix8tmlbwd4DNzGZ6w1U584X8Dv4czE6QxP xrOCeY7y2R1aJ5/pH/CsDrb11kfvPv4O8Hj9XhO/KzwabumzNaDxdvHZWNQ2 N/5BsFtnCeL08Nm9XE70L+FZ2g+J0xeeCH+C3g+O0+++zzxpmJ9G5NwbTg13 V46UVHAfn/nlaYLnKzgtvIW+BmsO9RvkM06HvifE2ir/g/BQeAbcX8/E8RwO MVZu+chnGOyF13ntb4W6Ox3iMz09/m/p6yf0TvTVihxmoGdFH6m5oWSEPyXO ODiFOGN8xpnQW+AfC38E/xJs/rHE2UG9S/sCegHajoJ9tC0KT4Bn67eePKfC Sdpz0KfB8+EpPuMstP1Dfxfw2f3SeJ+1Vb/HaPs1HI//gr4R4HlwaeLEwQv1 W6PYlBz4p/vMkw2OJud4ODvspvZQPobPEycBnkvbCjGmL4FnUbuctoeDjWeR T0U8PngpHq/PWHGuEicF/ha9Kp7Z8PfwRK1TSmY8yT7Tc8KXQixP5fyv/qbg szu6NuQ5F/4Ez4kQa6s5vA3Pg5drH/YZ58ITQl/fwmu1n/uM86Dfwr8E/g59 sfJ19B+oV1Pyw+3oaxGcG56vXJyYoTHmX0fby/q7gM/u1jriXwHnw1MLz0r4 ZzxfoK+FC6B/7zNd8e+F2LlrJZ7aMdbvJp1h0FcpD/gdvBveqn0JXufEvEe/ 29WWfq/DG/RctH/i2Qj/hKcBMX+Gt8PrfeYpSL/V0Bc4/Z4JtnGl0LYu+o/w Fu3nPutL/p98FqcQvNVn/RbRO8u4dsKf6l2m7TZ4p/bAGFvne+H35LMF3gZ3 xb8ZLox/k890xWmOfw/8K55ffMZ6R/LS9onP7kYyhVLD+/Dspf6NUgxPJG1/ h39H3+czLo6eDv9+eDd66lDzK7fn+vuFz+7repPPAbgE/sx4/oT3aw+hPkwp qb0IzxG4FHyF+hqlItyGfo/Cf+GPgg/BB+A/fBZHbf/ymac0/DrYYm6i37b4 j8NH8J+n/o9SQe+vz3T5+9PvKbgsfJL6NKUcnIM8z8KHtK5iTD8B/0P9L6UM nmyhxsqnM55z+nd61j5jxemKfgk+hZ5B53Y9L3JLA5/w2Z3eRZ/pyq1AqOWp vgaQ2wW4PHo+9KvKW98duj/R3gH3iLG5OgsP95muPfMZ9QtKNeWJ/47y1L0N Me/BVdD70fa++qbtLZ95KqP3Qr8Nn0e/Tn3T0e/6zF8VLkI+DzVfeIrDTx3/ Y5/xZ9q3Q63tGfRS8HP4IvyA+pETp3+M8RX0ITGW8y14MHnegCvhGQG/ggPg qsTJ4CdXncfg18oPfkP9jhKIZzRxUuF5pPfCZxyMPoo4H/jnILhgiPn/ZU6G 4X/rs5gViZkG/w391qCnhR/D6fzWbwhtxxLnIzgUfumzHNTvJPyZ0F/hL0H8 9H67i0vttzjKIaPfPGFwbDzrm7Ja//cCtM2K/pq2fcOZv2TWZxF+e9Bzor9F z0H9CaU6bWuQZ274BXqZENMv01cyubWBo/B4aPup8i7EXuA3rqP1QP2xE2cG njzwB+IUoC5EqYU+mThF4NpwffrKD7/X7wh6Prgmei6/ta2hfTjUYmrsXmIW hzPSbzJcCc4G19aZWWPU/TD+UnBq9M/hMnA6OBF/WTgLXMJvnrrEH4CnLVwe vR5cDH5HX2HELOm3u7WifutXYyzttzj14Ip+67cBPJP8q8IN4cohNt5btJ1H v59pfokfQfwKcGZ4Ov7ycH385fymK84s/AWd/PP6bX40b1X8FqeRni9xwuAc eBbjD4cLwG5i1oA/x9MRT0M4H/oqPI3gknCQ1hqlMZ6oUGPN4efkHOy3e7BQ v8VsovnXuClN9dyJXw9uBjfwW8zm+s0lfn24BHHq+o2ldyJ+TY0BvbrfWHFa +23Oo+EfaRvlzH9P/DFwMXgdenPNNdzUbxyB30cOzeCW+k3HEwjnwtOStgF6 B+DGmgNKC/1W+s2jeesSanohPK0ZbxO/3adtIE6sngF6tN+4lX6b/JabOJF+ W8GROlfoewHOrd9EYraEC9O2hd905dkyxOYtk87YxG8PV8IzkzqO0h3PcNr2 1XNF7wt3gkvDHam/oMTgmUO/XZST9vwQ0wsTsx11B2cOl+AZD3eGO4SYnle/ HdRdKa3R+6L39ttdU0+/cRv0r/R3B7/dd3WHe+h91vcOOXd3chsaanGqwF/6 Lee2tB2D/pXWE/qBaM7WfrvHmEic/n67SxmPZ5DWE55vyHOI8qbtn8QfqrWC PsBvnvbaH/Q3Au0PtO3nt/jt0Af7zd9R52f6Gu63/8ZmOvFHOXFG+I074RmC 3kvvJ/o0eIxyg4dR/8+JMyXUuA76UfIZq3UDd/PbPGjeRvtN/wJ24f9a7wWe CdSTKF30+07bqVob6JP9xt3QlzHeKXoG8Di/tZV/BboX7qmYIRaniX5/iTNR 7xdx4uhrut5T2Ae7tebhc3jitR7g2egJWiewy296D2JOo57h5HAqxriV9kD6 muW3b15PqK1D9XUBj1/rAV5Dbt/oGeu9hpO1VuAk6hTKl3AKbedo7eG/EmN6 Rzit9qVEzoCK77fceumdpU50eHaIcQyeq7Sdq+dF29vwIr0X8EK/cT/886gX UPrAC4m/WOsEzyLizPfbncxsv8VRbvNCza+xLCVmbed9vwMv0fzA3/qNFX8D 9UbKEHgpMVfoGekOhDg/6Nnhf0jbVcoBXu43z1c6/6N/r3HpdzCWf4aT1C/1 d45nA3O4Bh4Ir6P+UWsd3oj+EzwYfhFjOQyi7WrqtY5nVajxl+gr/ZbDAD0X 9E16Lug/U2928t9M/r/Cw8j/ZYzpg/Fsod6m9wfPW/Sd8HD07X7jYdqHiblD 8dHXhpq/H/wTMbf67T5nCzn/orbqC89utcWzx2/9/g99G5598AjlGWLj7U3b tMzPfr1L+N+Tw1554F1+i6O2v/nNMxJ+jGe9k8Mm+vpD+cPpiHMAHgfvpK+/ 4NE6/6MfgSejH/Ybj0HPgv43PAU9B3wWngn/SX1I+4VyDjVWPjvhY4qpPcFv bRXnOPUJ9atzDnFOwtPwnPZbzPHovzLeU/AEfQeR2z8ar8ZFzDPwRPz/+s2j OMtDbZ1oze/Ff157hPoizi2/3W98Ql8X4Tg8/1FfUnzFxH9FMbWXhpg+Hf/v fpsfzeEv+huN3+6jzlFfcNoeDDWeQcx8xL+qvuC/0G87fd30G0/Gf436BmWS vnHw3NVeozmEr6tf+LLf4siTP9b8CXrv/PZeTNE+qbO99gL0OniKsVdshk/q O1E6ef7JuJ4pJv6SeJ7D8/E88ptnmvZ/PA/gqfA76g/KWd8F+B/DKfjv+60v +Z/6Lc4M+DX1W60B+DBx3sOz4PPklpp85tK2QqzFXAKXgl9pD9Kzw/MS9sMv /KYr5plQi6l+UxEjTaLlk5U6O8UDp6VOT3HDVxjvR/AifbslGkuvTF8Z4e90 /iG3ZcTsr3NmrMVcin491OIotyN40sEuPFfRM8Pfas6JnyPR7mduoed0Yt4J tXy+hz9ONN1L20zUWSjx8GexxivwXMOfDV4MhyTa3r4Az3/Ef+O3e61w/LnR f9T8kE8B2I/nGW0LOnr+RONE9Ae0LQKv0rc8XAbeAOehzkfx4akea7yBtjXh wvBGuFCitVWcTxNt/STBp+m3BJwMl0q0mCl61uRQEt5E2ydwUXidzvnELA1v hYsnmkf+f4iTC06Az8Ll4NkaLxwEz4dfEaci/LPWCXUlyhz0D4ylSqLd1TSJ Nf0XPJ8k2vxoXLdpmxdejl6WurzTtnGs8S70d3iqOrllCONMDu+FAxONNf+f UQdQ5umcSdtQeJ/WHv5q8A64cqLFmYuneaz5f0W/xFiqwwvRo9FrwH+if6BO ncQ+gf453EzrDY7BUxs+iCcLudVNtLuaTPRVz+m3ZqJ5vsGfHr0WvAd9Em2n wK/g8ETrS56r5NBAaxVuRN1Eawy+jt5UaxvOE2Y5HKNtfeqGjqd9rLH0OomW wyJ9a6C3gP9Bb07d0sm/N3p7+ILWfKjpB8k/groVZRmegvQVA/+LJyrReDn6 LfKJ1rujb4dY85/Ekwt/JHxEZ0X01vBpfa8Rvw38N/HbJlq/K2hbAH9H+ASe DrE23r91loY7wf/p3aSvdno38ccmWhzl0CHRPIqTlTiN4T/wF6Wvzol2P1ME vYuTwwPi9NT7hb8sei/4CnqPROPV2ldp20f90vZ/5DAEvoenK3V3yg/6Log1 voo+EP4Svg73TrS2itOXuj/lkvZn+h0Ar0EflGgx1+obh7YD4bt6X+i3n+Lo boHcBsOX0b9KNI/8kxJtzWzUfoh/WKLd23xNnAnwc/xP6WsEvB7P/6hHap+B qxBzNHwbz9hY05/AXyTa/KzEUwxPN/icvmuoh2tPQK8QZqwxjqPtGPgpHEAO E+H7yiHR+Cf8Y6nHOxxM28nwI/zPyW0cvAF9VKLFUW6hYeZXPq/wTNMegl4T fTr8En0j9Sa9U+iJ1MmUbdoPyWGWxq77KNq64M3os8jTrfe2ML9DiebZpO8a 9JnwG2JOTbT40uMSzb8FrkG/HviF3iPY7/gTEo236t1kT/tB8XUXjScJ/oAn ntrrxImLNU5DDp5YyzkD3ICcfYl2//NB/20PvB1/C+Isgz/C0xSeA6eH51LP p+zQ9wVxvoGzoy9INN6Fnroe+xa8E24Sav60yhn/PCfm58T8Fk4Hz0ZfDH8M L0m0fn+hbTriLId3q69Ey0H9zsf/PZwLfyTxlybafdGiRIujHL5LNM8erfNY W/839I0Gr4Qz0XZkMGdHOLAA7yj57IALoreC18FZ4bVav5RfifMR+WyAf4O/ iTU9L55Vep8cz8JY4zzo7Ynzk8M/JhprzbRG3wLnRO9A/lsVR78jxF8N79W5 PdH0/drbQ229faxvIuL/DOenbTvibIdzwysSbQ1ovNsSbSy/w33w/AmXwvMF cXYl2h1UN3gvXATOTr+/wX/i74F/H1wU/+5E8xxA/wJ9j9qi79Tzofyhs3Si +Q/CK8ntd7g4njXwQbg0fCDROJS+OoVZW+W/O4azHRyGvl/xnDg9Qo2LovfD /xdcBv/+UDvb69vhUKLph3SWaM2+x2/iAjzj8F9WTPhv6n/kwzMC/SQcgH4i 0fgI+te6w4er6/soxvy6A8lHvAKUa5pPxnLcaTuSOGe0ZuDJuquHa2sfQ7+o MaJfSDT+m7YT8ZyDa+I5lWhtj6JPQD8N19DvL22vwLVo60a/lmj3G/eoH1D+ xX8p0TzH4QPkcxOuh/8G9S3FgQvwHO/AJ3RGijW9BfpV6uuaC403zLi69iL4 LtwAvp1orL6moz+C6ysf+LHygc9Sn6ccw/Mw0fSTcEKo5dlC33T0ex9uhH+O /i6QaHcgo8OsbTD6LPiZ43mSaHyKOEnob+BW6K8Sjc/q3E7Md3A0+lvq946e nueTkXJB50zG/lrzCz+nfkk5DS8INX87vfvET4W/JXGK408Ln8czDz0d3Eb7 G5wJbg2nSTJd8eeE2bkrFn1pqPXbhZgXyS0D3E57F55CcGf4Gzgz3AFer/Mk /BX+BejZHP9C+GO4PXyTODngrnCWJPNcpF8Xnhfk3wTdH2bjioBXEzNrkt11 fJRkff2HP3uSxbkE506yfq/A5Rhvfviqzrf0lQfuTpwHsbbOv9S4iJ9L44LL 4P8Evow/Z5LpivNQ53z1i6dgkrHekVPkE5Fk9yrriVNZ48VThLoo5bqeC21L wAPRiyUZ39R3E30Vh2/Ay8PMr9y2EPPTJLsDWYleCu6F/kLfBfAg5UldjnJb Z370CvAQ9NrUdSmP0HfoWwAepfM2fZWFb+l8lWRxlEP5JPMozoYwi6k83xKz inKAw6irUx7gqZRk+h34PZ5AeASeAOogyj30APoKge9rnww1fQI5VKWu5ng2 hxkPo21a9rFQeCwcnGSsvg7pfj7J7kO26dzu9PUZ8T+D7+qckGT6Q/1utrY8 x+HZhD8cHqp9G64Dj4aHwsdYS1Xgj1rbXE2EjySafpg4rdCiKS/ho+TQGHaT Qxj9fg4/Rc9B26bKjbYNk8zzBD0zeiN4Mno96gaO3iTJ/M/gveTQHP5ae7vO 6o6/ZZLxc81bmLWdgF6DfqPgF+jNqFs4cXK2Np6FJ19ry9kLh+CvDz/G8ydx YuHp6Kd0ttRahfPjbw0nwG30XlJe4z/HeDvCcxhv+yRj6QXxd4D9+I+HmV99 1aKvtvArPMfQv4Djtf7xd4aT4S5J1u87PEXRe8Cz0WOSLAfN8xX67Qkvot+6 xOwKv9V3U5LFeQN3TzKP4oznzJad38RwuD7+3ujvNf9++3ui/s54V/f/SXZX 0J96ACVVafY18hwEz9PeHma68ikE/5hk31BVyHM0vFy/fUnGi+A+1P0oH/T+ 4hkML0UfrrVJSUv8IN6LUfBq3YcQcxi8BE9j8hwKp8EzMMnapoZLt7aYC/EE wuPgVXAL/DPgj/A8Ic5MeB16EJ4Jig+/YYyTkuye6pbO+fB36OOTzJOetpnD ebfh/Tp/EnMsnA79Gv6v4cXoY5KsX/knJlmcDPD0JOs3E1ydfuPgDfgfh9p4 1+rbHHbB2/WO4JkGr8dzj/hT4ZXwlCTTMxKnMp7/OXkOSbL50bzNSrI46isj bROT7E7guc72Tr9R5J8CZ8PTlDiL4D367dC5Gv4dv5faR8mCp25r4y3KGU+C ctZvSpLFzIpnjtYCJTscQ/wF8MfwN0kWMwechjlcCO+i7fwkY+mNiT/b0ZOT jBVnfZLNeV7FxLMaPognA3HWwnvhjPByjRFelmScC38bcvgO/gSuQ1uPni+e CPR4ODP6Yq07Sk7YnWQejbdFa9N/w5+K+EvgHXAs+jr4kM6oScZ58P+QZLmJ 2xF/FZwb/oS5Wgn/xXxG0HaFs36+TzJdeTZpbfP2C3o2+toIH4CvUF+jlMGT F/03+G/0TsTfDOdH36RnQikAdyDONseTK9z0I/BP1D9T8uHpTdtTcAnl2dr0 o3i2at05cbqh74FPo/+SZFwIvRxj+TXJ7gq64tkFn8LTmZg74YJ4ioZZnLO6 606ynAuj98D/u3T8/eG/4StwRfz7k+zbqg/6n/BFnQ3I/xD8L9wX/TB8Cf4j yTyfKk/6PQAXgfclWfzjeA4mmV+eHniOwEX1vtDXcfgWfR1LMi6mZ0Rfu/WM aFsCPgFfgP/S3DieUuHGym0Q+fyrnOEdSTYPmp9/kkwvDlfAfxq+jucM9TlK SfRRtP0Pfoh+Psm4NHof8rwAl4JPJllb+QOIcxu+r/0qzOI8JP8hxDmrsaCX x3NJawWuAt+Ab8N18d+E3+KfgP8O/AL9epLpZYl/kfqyk8Po1saP9HtE26tJ dqdXOdzWofoaQJ734PL4w9Ffwc/QJ9H2ofw6EyoGpQKeqehPlAN6/TDT3xPz LXpiMvt9EeImWW7l8N/VWJ221cONn9M2FH4KP9F3B21fwx/gl0nGlfE/0/gc bkZfb5PsjmIwOT+HK6E/TrI4FbUntzb/e30v4J+r90Rjp693zljeJBlXwZ+N fD+mBGm/wpMWTkP+buKkh9PBkcTJAGehbepk81TDP5wc0sCfwX/g/xyui/89 sVPBVdH70vajZPvmzUyd1emrP3p2uCx6dLjlkJ22GakzUQLwNA83zoieLtly UL8DaJsTLk/bHNSfUILRO+L/FM6Hv3W46TnhXNR5KCHaH9Dzw7nR8yYbh6IP IWY+uDIx24abPxeeQei54Yrow+CCGhfcHk8hxcVTONn6DSfOUuahGFwIfW5r G69yWAsXh8vAw4lTRPNGnALJFidM+0yyeXLgGcncZoEDtSfQV0m4CPoa4pRy /juo3ujl4RLwKvQKcEm4XLJxXvgrPJXhcvAK+g2Be9Jvac298kbf2Nq4EtwH fyW4FFwx2dpWJ4cqyfbfX9XQGYDcAuCaOs8kW8xa8FDaBsJVaLuMvqom27fb FuIHqz16tWTzyN8yzNaJ7p160TZM48ezBb1hsn1fTKGvGnAdvTvqU2sM3kXM 2uob/6hw04PgEsk2P7oH6IFeBi6KHqrnQ6lN2xHhxgHo63T+h/vrnIPeyInZ INm4ns4J1PW19tCn4GmifOBxcD09O7hWssVRbntamz8cvXGyvRfi6fibKxZ8 nn7HwnO138IR8Ch4Kp5WznsUB0fBjeEWyeZpoHecOWmmOFrP1B0oTeBD9NsS boi/abL1JX9kssVpCLembquYsIv47dVW7zsxOylXdF+4xWwpHY6VDk+DYzQn cHSy6Y3wzwy3mOq3I/UXlKboX1L3pbSAO2stOPo58uyh9vi7JRs3Q08gTnf5 0WvDH7QPMieJ4RYzEv1AmMWZhn6aOF00NnQv+ffSmJU/3F/5w1fwfAV3xHM0 zPJx07ZfsukReHpS93bynB1uHIP/Am37wG1gX7Lt7R3w/EacNsn2bXgVzyC4 E56FtB0Ot4dvov9PY4aHJRu30v6AZxTcBf0hnklwH3gw9VCNEc+8cGP1m8xY RmqMWrfJ1jZav2vJtn7Es/GMV87whGSLGQs/IP7X8JfEuQ2PgbvDS4g/Ee6s NZxsHvlT0AcqJvoNxjgl2b5fXtHWCw9Bn0df05Ub/mnUM7Se4JW0nQX3wvO8 tekD4QHJNj+a59PEHJJs332TqadSWqMvDzdWbi9oG6c28F2dyeEV+D3Jxu21 bqnjHV5PW7+eJf4F5OaG22lNJlsc5bYh3PzK50c4GR4Ab4ZT4GFwhxSeISVZ zwjtOz07+Gc8c52xLyb+fK1v9HRt6A8ehz472Tyd0J/q7wLJ9o1zm7YX4OV4 kpKtr44636J/o+eN/i31EqevjMRcBk9AfxlmOWwkzkLqRXpeeNK3MR6vZ5Fs OUjfRczv4THoyzVnlG7oufBvhF3omduYPhleSb1K7x6eD/S1Ft5OX6uTjaVn xb9Gzwn/vnDzT1J85uEHPS88K+D1cE+dOfH/qHnHsyHZ+u2F/hFtNyXbd8fu cBuv5u0PeLMT/zf4J71T2pOTLY7a/pxsnt56LvS1WO+O9jr8W+GZ+PPR7zbY CxeAf4F9cFadgeE/6HdXsnFf/c7i+RWejacsfEjzC2+n3ul4/g439ui3m373 wv20tydb2/7aB6j3O5wb/x/J9t3xZ7LFHIh+Av2Ak88xeJ/WrtYhMQ9qHeL5 Pdk8X2lvTLY1M1zvC/6/9L7gvwSfgRfCP9H2mN4RPEep/6YM1vmcsfyj9YTn SrjpGteWZJufL/Gspu0OuA98mPqIk2e5Nsbfag71vQCfYCxV0c/C36OfTjYe iv9f6lN6L+DNxDyv9wgugf8kPA//8WSLo9yKhptf30rV8FyEV+IprnM+fB79 Y96/nJSp+O+jPaSM1hkD/1V4tfYl/NfhpTrn6LsAvkrby8nmGYF/K/lcgf8H /5ds8TWf15LNL892PLfgkXAo8e/B64h5J9l4lM4nxE9PPpl0FoIfJNv30U3q 244npI3xWjz3wi1njesWfFf7CHwffgz/oPdav2t6N+Cq8BP4DjGfUj/Xe0HM avoGUR7oL5KNpdekr5dO2+fh5t8A/8JYnsFj9b2A/kbvD3oY/BZ+Spx3ydbv 13haoKdmXB/heZRsOYxBf4+eBn0beg34fbJ9W71Otjjj8aRKMc8EuFgbW/9z dM6B06Hv0nOpznzBV3X2hvPBR/QdQczMcBY4k2rKZOJEoWeDs+mcX9303XAG 5UiZhCdNdWPFzwBnh/fqHU8xnqL9Ez0X/Ct6Njg3fAD2t+bfwZnhT1JMn6Z9 qbqtt9/QU/DkSLFvkOzoeeE/4bQptgYm4s+TYmPZh14ET2n4NJwFLgD/DueB i8DH4LbMSVFn7PnQi8HH4UIp5plOzJzoheHD6PmpC6bYt8OnKeafgacgnhLw v+jF4DLwObhUivE/cEwba3sQLoOnHHxZ7xd1ScpRuEsb45Nwf7g8fAXulWR/ K9S9ZdkU08+jn9R5CT1R9wassVroceRTmboq5QaeIcQJgG/Bn6UY34R7o1eD L8BFq5v/LDyUejhlIXEG4qkCX0cviScY/g+uDFd3YgbANeD7cHiK8SztmeQW mmL/t7eBKdZ2Jvoc1lJQip0tg2hbG34Ij6GvuvBj+HPqZhSP3qkU87jgZbRt kGJntvrUDSlu9GOMvTEcr/e9uumKU4e6ntN2QbhxO/SaeJrAL+FGKcbq6zhx WsBefVPgaQm/xRNCHUa5CDdPMT1Bv63hlmdP9Mnk3xR+DU+HI+H38NUwa/st 87BO3w5wf/SIFGPFqU9fbRx/bIqxH70Bejv4g9YqdXtKInpX6u6U2fAWYrZO sTuNKOoYig/d08b8GT5lX2dcHeEkneHRO+u9Rd9J2y7waM05ffWE06F/kWK6 zlpNq9u5Kz16chvrNxt8hpjd4BQ8sXhGwDnQU/D00nsKHyT+EL0jxG+Bp4/T byTcD84Cz8PfH/4E7p1injnErIMnGn5D24bVbVyp8Own5pcpdkbqkWJ9aR76 plicufCgFOt3PnyRPIfBC7QG6GswnJs4i9vYOi8Atyb+QDgnfAH/AHge/q9S TFecJfhH6v3H878UY70jE2i7UusefRWemXqf4VHUYyjf6LeYnMfrmZLz2BTj RTpX4x8Hf4q/XXXzK7fj+Een2HnpKvlM0PrResM/ES6GZ5LeLcpi9Ot4psFL 4LnKl7JS303EnO74O8KT4Xzw1ykWR22npphnqb4R2ljM4loz+l7QmiGHRK0F yvd4ZqSYLv8t+vXA38HxypeyHF5HHB9cljh9q5teGo7T+0pZhudCuLHOIRf1 jaBnBCekGCvOHfTZKXa26U+cOU7MrrALLqz1lmL6Cvw3wy3PZfj74EmCS+H5 gD4P3q7vHXKrBF+DB1e3uaqEp0KK6dpvV1GvSbH9cwf+xXAQnnH4l8JhcCl4 WYrtCYtSzFMFfST6t3AgvEDPn/KD1k+K+VfBo/Asd2LuI/4PcC14RYpxKDys urWtCo+BV8Mh8HeaD8pq4oyvbhyO/lsby7kmnAp9IbxDZ3j0dXBddBf6DriJ 1gC8Hq4O/0j9k8ZMzFnom+BG6BtTjNehP+ZZ/wyvhSdWN7/6agZvSLF95gh9 bXHiR6BvhTPD21Ks3/U6/xBnF/wjvDbFcqiDx4f/F7gl3AbenmJ7wuYUi6Mc dqaYZwNcsSFzOp7nkYWzCNpeR9f/tpb+97j0v8tVpzO/HZRhmYzrOv9cn1KP 8r9MpunfDYKnUk+hrIZbUDenjMpktf65GaUmpRalBqWBE2sons+pm1KaOO3k HYvemLoRZXgmqxtSRmaydg2cPGo5cYegR1JHUMbAHajbU6bBHTvbP0+Go6mj KOPgWOoYyiS4dWf7568z2b+Xr5Xad7axrcpksVtSxjse/fsJjh7p/DvFaO3E VZ8dnTy+oHSizMhkY9WYR8CdnX83FW5H3ZYyMZPVbTSnDrdz/vlzZ55GO3PS 2JkXxejs9NGb0ovixvOl88/xcF/qPpQEeKjmjDIbHtbZ/nkO3IO6J6W7U+uf XY4uLS6TxfvS6eMrygBKf60DykBKkhN/mNPHYOffJWeyerDj69fZcnI7ufVz 8pvqzLvW0wQ9E7XBM0lz4zyL0VpflIWZrNY/j3Q01QvQu1F3pczKZHUXykz4 f5p7rSvn33dz/p00/bv5jkf/fh48ubP1vdLJYbKTx9dOfuMdVv3D/5k483Ad qK/9G4szP+c5hopMDSgqadAojVJShiThHOPhUFGpUKlQhGRKSZJIpgZSGTMP GZIxQpSQlFSS4ve5f+v+Xtf7x+e611p7rbXX3s92zhPf9yWnN9oL3i8Z+jRM tt3bflff3WvEB6D9YTr2HPQz+FSfDYyCj4gP1Dlghu1B9gfr/mBmyYgNdB/1 fMl9p2ou+KJkxLSmP6eqHeL6ETAcPiwZKv817z8SPiY+TG/He0mHOn+I59Bs ozy3at6AMa59D53ot6TY6/AJ9lv6rGy/jY6D2djjW4U/q2SsK+9N577p+Bjv 8bpzx7t+AryjOyRnUqvYe45nmOQ5hvt8utv39fnA5yWj9l3Xv+temmdKq8ib 47MP8/kVm+L6ab5r9Zmhe9JnofNrH5hbMlT+h45J55WMumn+nOYrBotKRo8Z /uxmuJ/6zNKdKRf7C+0JC7Hntgp/AfYC91ronLnOU+1s18+2P89v71PX6g3O cf9F6gFfYn+FroGvsZegi+Go7aX2l8MyWFcyYlpbrp8brfmZIVJirgX/O6d6 /28P+9eSs8K9vqJ2bavY+xvPsNZzrILVsBLWa0/YVDLiKz2DeqzwTKtds6Fk /PnTz61h2Btcv7lk6Ab3+h72wh7YonXYSc42dCvsx97eKvwfSsa68jY5V7qe +Dmc+2y4gHNt1Dl0h7ADvoWfydmF7obvvK/2/K1k7C//SMnI3+mana4/6Hm2 e6YfYB8cKxn2j/aPqh8USomY1n4n5yf0gM6iOeCQ7/CQ/YOOSf8qGbmqWeta 1f2J/Qt6GI5jH2kV/t8lY0/t/atm0p5QLCXOqjMfJucPrxVOiXzlFkmJHkfc V+t/uH6X70l38pf2hzPIP94q/KLY/6InIQX7v1bhn+n4f14rxGdyGi1JvCR2 CUhinyD2j+a3yi+eErmnIM226uUXQYtCYSgOxSA9Jfqp75lwhteyUiK/8P/J 0Xp2Sqyf4Xq9kY1+/6n4KZBDThm0NJTDzlAPKGs7035C++jNpUQsw7W6m+O+ rxM+X4mU6J/mPaTySxHPdq8y2GVbx97neoayniNHubo3v/Gz4MKUiCt2Vkr0 yPZMpVyj+ZV/jmvOhfLetyF6N9yPXQmtCBdhV0Er+1zntQ6/RkqsK6+Ce5SD 6sQv1rpq3aOC76q89yvnHue5bzXVQdXWUau6q8m/BK2pzyU9+mntKuIX6s80 XJISer7OY/tC+9Xd90r3udS9roXr4BqoBZfDZcqDK+CmlFD5tR2T1vXPEP38 2Foy+qmvfg5f7l5/pISqn/6MX6154TbiN6DXw13YN7YO/+6UmEUz1XfOjc5T bR3X17F/e0rkavY7UuLnun6+t/NZq/p+6ukccA/27dofGmPf0Tr8Ro7f4bUG cCc0Jd5EudAc+xb0VrjZKv/elMitD01sN7Cvt6M3dJf20P7wQEr0U9/7VO+1 ZimRf5ftxl5/MCXW73W9zlFXfYk304zwEHYemquzYz+geaG17Rb2W6oftEmJ mNZapkTPeu57i8/XyP3v9x5S+S2IP+RerbDbto698zxDW8/RWvsop3V8LvpM OqZEXLG2KdHjof/N5Jpc4p2UC52w81uHn49dsw1vDGpAT2JPwhNQAF38Zrqh Xf2WHm4dfreUWFdeZ+f+fyX+EfohvOJ98733o/CIIP4Y+jj0aB37as8eKbG/ /EdTIr+7a7q7vpvnedgzPQ1PwWMpYfeyPwD6q1dKxJ52/z7oM9Ab+sJzmiMl VP6zjkmfSIncPu7fx3XKfwF93v1fbB2+8vt7737wMrykeVLirI/5XAO99qTz +9lWjxfdV+sDXf+Y70l/Ll5BB+k82INbh6/+r6HDNB/28Nbh93J8uNdGwUjn vI2Og1X8DBmKvgpDrEPdX7kjdH7bo+y/DmNgNLwJb+i+UqKf+r4FY722OSXy R/u9jfN635RYH+t6vRe9m5nwDozXPZAzHZ2me8CeiL4LuWlhv2d/MkzS3aVE TGs3+a4G+76G+ny6E/Wf4D0meL/V+u8F99LP0hmtY++XPcMMz/EBTIUpnlnz DkqJuGL9U6LH+55pqmsGEP8E/VhzYM9qHf5g7H3oD7AXFsMS+BLmwKf67Mj5 HP1MnyX2F63DV/xT5812rnSo95rl/ZT7hevnwVx9juQsQhfqs0kJlb8AtsFW 3UVKzKNZxqZE7XzXz3evkSkxr/LecB/1GIW9DF2qd6bfa+jXuhPs5a1j7U3s lXqDsAK+gjV6Qymh8lc7Jp2QErmqecu1qhuPvQ5dq/eAvb51+BNTYk/tvQE2 wTf6bDzbcs+32WuTnL/BfdRjvftucp7q9fb1pp9JiXvaos8Y+xT6n+4L+xB6 UJ8x9nfoTr0h27vs74HdekcpEdPaVOxv0R2w3Sp/CvHvXTM9JfR71++HH/V5 E//J/kfuox7TUiL2k/P01vTmZvrt6d19nBLzHtA78rm2+WyKH/La33Bc74ac w+jPelfYv6G/6i1i/44e1TvBPtY6/Hkpsa68I86VfuE+v7iXco+5/k/4w31O eG+9VekJz6E61c8mfhL9BxalRO1frv/LvfRW/20deQtS4nu9vq9nuPZf14/k d+EIuCCV77VoJqwipzBaBApBcSgGi1NC5Rd1TLokJXJVo/dwG3o73OpYIdeW QM90fjqaBiuxM9qEv8LxDK+lQEnHVaf6M9xDupR4ok3MrT5JNBtWY5dDy8M5 Xk/4bKWhFKxJCbuM/bOgLHyVErHS7qOeOe4rTfp+znaN+kjPdn0FOBfWEa9o f21KnCXV51GsovM0YznvW87zKr8yWgnWp0Sd6pdhV2kTa+ucU8V51aAqbEgJ lX8hXATVYWNK2Bfbrw1XwOWuU+7X5JyvtwDnOfcix2v6e9N87MvQS2ELdq02 4W/Fvgq9EnY4p5bz9J1L9d+kxJ7a+9uUUO2/Hbs+egccxL66TfTS78Rb0Jvh B+xr0WtgJ/b16HWwG/uGNuG/nhLryqvTJs5ynu/kAvvrnaP1fzzz1Z5bPW5w X+2pveu1ifest7w/JeKK7U2JN661n7BvQuvCnpTQG50j+yb7d7aJc+7xee/0 mXtDL70n/gw+iLaAU+Tchd4NDaAR3APHUkLlN3SsoWdQrmoOuFZ1h7DvQ++F v7Ebtwlfd94UbQZNoDncDyeJd0W7QQE84LV/na/cE+7Z2H2bO+9+92vqN9Cy TZxHn1FHtBN0cKylz5kLbaBwath59ttBWyiaGjGtFcFuhbaGh6zyHyTe3jXF UkPbu74z5EMq8S72U9xHPQqlRqyL8zSjZj0jNVTzlkiNO9F9pGOfbh2///Sz V/ektYzUiJ3278VniT0Hz8Bj0AMS5DyBPg452D3bhJ9MjXXldXdud8cfQR+F h53b0/VPwZNQhpw+fkOlU0P7+D2pTvVZqTGPZjknNWqfdv3T7lUqNeZVXlnv qz0zsZ9H+0J57KHoEKiM/UKbWDsbux/aH16El+ElODc1VP4Ax6SVUiNXNRVc +6LzB6EDoQr2K23Cr5gae2rvwTAMXoULPdsLnu81r53nfOWe756vuO8w56l+ Uke+Q8P6rPgdOByqkf9rHr+v4XO+e79BbAxcnBr2m/bfgrFwSWrEtFYDeze6 C67Anqw9bEvlvwej4XUYBePcS/3fRSfCBNcptzbxd9DxUDM19G24LDXqxnmO 1923KvEP0CmunY3OgnrYn7YJ/ybs6eg0qIM9E50B12B/2CZ8xbWuvKmwp02c rVFq9H4frnSO1hOOf+A19fjQfbXnp57jM5gDN6fGWXXmS7E/95rm/AT9GOqm hn7kmWV/Yv9d39PlvpN3fC/q8bn3+BIWwW3kLLZ/K/ZSdAncjr0W/QruxF7X Jvz62AvQhTDfKv8Wx+e7j/ot9h4rYCUsh9Wwyn3Ub533WOO1O1JD1zhvWZuY 6TbPtszz7fa96z19C9vhbnJ2ojvgHuxN6DfQIDVU/kbHpHcRn4fO9Z1Lv/BZ NqBfw3qvz/OaYht8Jxu8rv7ftYm9G3qG7zzHds+3zfY252xFt3gG6WbPL3ur /ZW+O30We9Hv/a6yc/n5Bwn4ndhRaEH8R/QHKJ4e9n77B+AnaJoaMa01ds99 7nsGvYrDo6kR09p9qVF70PW/wpE28XvwiP1fvP9v0Jz8w+jPbeL3oPQQ3J8a PdSrWWrk/+6aP+EPzUy8EPufxu6cGrFj0Ar7b/Q45GH/o97QFvtkm/Dbpca6 8v5yrjTXff50L+WedP1/8K/7FM6NvQs8Q2HPccTne4B4UWJFoFtq1J5y/Sn3 6ki8WG7kPZwaZz/s8ytWzPVn5sZda+aSaAqUgHRIg+6pofJTHZP2SI26M/05 lYUy0Cc1eqjXI+5Zwn0y0QzPUwrNgaewS+eGr8/lLPfKdU5p56k2y/VZ9p/w 29O7ezI13qB8vatz0LPhWewL0QvgJexz0fLwgu0K9itBRccV01pf/dxAF8Gf qTHXWT6n+pfzHuXsP0dOZffqh101N/Z+2TNU9RznwflQBapDNRiYGnHF+qdG j8qe6XzXDEiNP3/6uaWfSxe5flBq6EXudR1cD9fCZXApDCbncrQWvIZdOzf8 oamxrrxLnCt9lfgT6OPQE7sGWhMuhivhChhOvA56DVztfbXn66mxv/yRqZF/ lWuucv0Iz1PbM90IN8CY1LDr2r8LGsA7qRHT2mjseujNcBPcBrfCuNRQ+bc4 Jh2bGrn1bNdz3RvYd6C3u7Z+bvjjU2NP7X0nNIS74b3UOGsdn/0erw1yvnIn uGd999X6Pa6v43saRc69aCN4H/u+3PAnYd+PNoMPsJvnhj/F8eZeexBaOKcd 2hamYzdBm0JjaxP3V+4DMNX2g/YfglbQEtpAa/dRP/XNg1yvTUuN/Ja223p9 Rmqs57peb0RvRe+5A9oeZmJ3Rx+FT7Hz0U7woe3O9gugC3yUGrF81+pu7vN9 NfH5prh/R+8h7eB5urqX+vfIjb2vSwnt4TkehkegW2688cfgs9SId/PnqB5d PdMjrpmVGvlPuOYpeBI+Jz5F9w07sXujvaA39jNoH1iA/Wxu+PpZ9P/X4Wn3 6OkZBmgd+ruH1uemRs5TzlOPZ933RegHL+RGrepWkj8QfRlWp0Y/rS3Dfh7t C4tTQ5+DL20/b7+f+y51n0HuNQpGw0gYDEPgFRgGr8K61FD5Qx2TrvHPEP38 GJIa/dR3RWr0UK9VqaHq9xX2cPQ1WI89Bn0dNmO/kRu+5h/tmb5xzhvOU+0I 14+wr9lGefaNqfFzXT/fF/qsur/lxN9Cx8Im7AnoO77Dd3PD3+b4u16bBO/B t8Rn6g3CT9hvo+NhnFX+ltTInegzvuf6iX47ekOTYSp8AHtTo5/6TodpXtuT GvnKXeuc6b6Hqc77wOd40/t+hH4Ih7Dno/Ny4/faLPQT+Nn2bPtz4FP4PTVi WtM7V8+33Pdtn2+r+3/sPaTy5xD/zL2WYC/Ijb3/8gwLPMcXMFf9c+Nz0Wdy IjXiih1LjR6feaa5rvmD+BK9BTiJvTQ3/L+xX+a/CwfCS7BRdwNf683pc4Z/ yFmFroRT2Ktzwz+dGuvKW+Zc6X/6LkSvVKieFvss9d5fwRooRHw9ukHvLTf2 1Z7F0mJ/+cXTIn+ta9a6vnBa7L/aM23WG4Qz08LeYn8vfA8ZaRHb7P7b0O36 LGAn7IASaaHyv3VMmpoWuao5w7WqK4m9C/0OMrF354afnhZ7au898APsg2Ra nFVnLor9o9eynK/chHvudl+t/+j69b6nIuT8hO6HUtgHcsPPxv4FPQxnYR/J Db+040e8dhR+g3OI/6O3A+diH0J/hoNW+TlpkfsrnG37qP1jelPwu94o/AkV 0qKf+v4Nx72mN3zMueWco/WKabF+3PV6L3o3KfCv3ilUIqcE/pl5cW+n9Qb9 xmQXygu/CFo4L96kYlqr7Ls64Ps65POVSYv+/3kP6b+ep2he9DoPu2Re7F3V M5T0HMXhDCjmN6559VaLO6b3qR5FPdMZrrmAeAaanhdvNTMv/Iuxb0BvhOuh PJwL5SAbElCTnBw0mRdvslRe+JemxbryspwrLem9Mr2fcku5vgyUzot3ew56 NjRMC5V/FlwOteBgasyjWfSGVVvW9WXd6660mFd5jdxHPfSeK6IV8uKt1tBZ oQV2pbxYa4JdRfcNleFC3RM0SwuVf75j0uZpkVvFOVVcp8+0mj4reAC7el74 ytee2vsiuER3CT96tkqe71KvHUiNfOWWd8/q7nuJ81T/h/8MKEf3dBk8hP2A 9oTe2Leit0AH7KvRq/Li375l17F/LVyjzys9Ylo7zAxXoFdCbav8VtRe55o2 aaHXuf4mqAvtidez/0ta1NX2bIrVc57emt6cfmfd4HfXLi3mvVkz+FyX+2yK 3+q1xnAfPEnO7ehtkI/dAL0TemDfrXcBj2M3zAu/e1qsK6++c+s7rj53uJdy G7q+EdwDT5DTxHs/lRbaxHOoTvUdiTdDm8LTaVF7r+vvda+exO/Pi7xeafF3 pPr3Qv09qWL3u15/76i/y7yI++mC3xleIr+l7hIe1GcAraFvWqj8Vo5Jn0uL XNU8i/0OOgHGO6YezxBvi+bBC9iddA7oj52fF/4Ax/O91l6fFbyYFnWqz3UP 6fPEC/Ji7pexu6FdYSB2T31uuk+vF/hsj8Ij8Epa2N3tP6bPU/eRFjGtDXbP h91XKn8Q8cddMzIt9HHXP63PDd4k3sv+62lxlg4+j2K9nKcZe3rfnp53DHYf tDeMTYs61ffDfiYv1t5yzjPOe1H3Cu+khcp/XverOn0eaWEPsD8UXoUhrlPu eHKe0+esz9G5qnk3Lb476XvTROxXdAcwCXtwXviTsV9Dh8EHzhnsPH3nUv17 abGn9p6SFqr938eeqH3gU+zhedFrKvbb6Dj4BHuU7humY7+uO4MZ2GPywp+Z FuvKG5EXZ9E5xqXFmeS/7RytT/PMwz23eoxxX+2pvd/Ki/estzwrLeKKfZwW b1xrs7HH6jOHj9JC34APbY+1/15enHOOz/uez7wVtsDXxD9VP1iCPVl3o3vW Xehe4bO0UPlTHJPOTYvcyb7Dya7Tv4NM11lhPvaMvPC/wP5Q8+redL86E3xJ fCW6ClbozF5b4HzlLnTPGe77ifM+dj/lzSNnTl6cZxH2Yp1J/R2b43PO0+x5 8edI9nz7C7UnrEyLmNZWYH+u2XUPVvmLiS9yjXKki1y/DJbmxZ+X5fZXu496 LE2L2HLnacbF3nex513lO9F9fIXdIi9+//VJi3ta6Z6KaU2/F7+FHbAd1sM6 WEvO1+gGxbA35oW/Li3Wlbf2f7mOr9Ge6u/cja7fBN/IJmeb35Bs6Ta/J9Wt 8czfepaNaVG72fWb3Uvz7PDcX3vf1Z75O3Sn8rEPoQfVH3tXXqyp5x70e9gN P8A+9U0Llb/XMenmtMjd4557XKf8/eiP7v9TXvjK157a+wAchp91Ts+2y/P9 4rWtzj9gWz1+ct/DzlO9/q5Lf4elvwf7LS/+7XA7+Tkd+A4I0zP5vk7sD/VP C/sv+3/D8bz4s6CY1nZgX9OW7zdQmu85RdDC8ENaqPxC8Du5x+AonHCv78g5 hZ6G//IiX7l6n//in9QdpYX+kxd/Tv92/XH3+93zF6euGDyInYVmwm/Yibbh pzBbCfRMaEk8BS0JB7BT24av72BaV94ZcG3bOFuZ9OhdtG18tzzT6z+lRby4 19Qj1X21Z8JzJCEbjqbFWU/5XDle+x07A02HjumhaW3je5rsDPunfE/f+07+ 9b2oR473KAfnKJ8+5e3/S34F9Fw4hl0VvVB3QU61tuHvJ34WejaUtco/6bhi /6RFv/LeozJUgUpwPpznvdSvmve4wGtF0kMvcF7FtjHTKc9W0fNd43vXe7oC auseqb0KvRJKYV+C1vR9SuXXcKyGz15G79HnlZaCP7EvQi+G6l4v4zXFLvJ7 uMjrJehzddvYO+kZrvYctT3f5balWeTUQi/TZ5Yeeqk+V9u17Ffx3RUifj16 ne4buyvaDQrgbrhLd0u8LnqjPkvbN9m/Gerp3tIjVtd91PMG982FNq5VTGtl 06P2FtffCfX1eaSHyr/D+zfQ50X8dvQ2ffbpobfqM0uPHup1Tnrk3+2aRnCP zkr8QbSFPpv0iDXUO8BujN6n94HdFG2ie8du1jb8C9NjXXn3Olda1X0auZdy m7m+Odyvz5Oclm1j7zKeoaXnqO/zVSbeCn1In0t61D7g+gfcqxrx1m0jr6zP frvPr1hr1+f5ruuT0w5tD22hE3TUvaSHyu/gWAffYa7r9Tn1gO4+o3qoVwP3 bOvPujOa7/kfQR/2fT7aNvzG2I+5V1PnPOo81XZxfRf79/jtFfiz1huUfy/2 E+jj/lyeR/vqnNhPoU/6nmU/bb839IKa6RHT2gPY5drxRmBHesz1mM+p/j29 R0/795PTx70ewn6hbexdwjO84DmehefgGegHL+oe0yOuWOv06NHHMz3nmjbp 8edPP7cKY/d3vf47XdrfvUbD6zAKXoFB+lzJGYIOhm7YQ9uGX5Ae68ob6Fzp JVl8t0A3wHRyXkJfhgEwDF7VZ0N8BDoShntf7dk/PfaXPyA98l9zzWuuf9jz DPVMb8AY7ZEe9pv2J8Mk1aRHTGsDsd9Cx8FYeAfGu+d4+287Jh2SHrmqecW1 qhuE/S46wf0ntg3/1fTYU3u/B1PgfZ0xPc6qM/fB/sBrrzn/PdvqMdF9tf6B 60f4nnqTMw2d6nmmtw1/BPbH6Ee6R+xP2ob/j+OfeO1TmA2PEF+ILtDc2DPR D2GGVf4VGZE7S2dOD/tT+5/B5zAH5sIXuq/06Ke+82Ge18anR75y33KO1iek x/o81+uN6K3o722+RBfpXshZi36l2bCXokt0v7aX2V8By3VX6RHT2kTf1XTf 10yfT/+7FPVf7D2kX3qele41BXtd29j7A8+wznOshjWwqm288fW6s/SIr3K+ eqz0TGtcMzU98r92zSb4RnPpuxY/J4rCRuytxLbo88Lejm7TvWN/2zb8T9Jj XXmb3WOjPm/ie9F98L17aH1WeuRscp56fOu+u2EP7Gobtaqbp//dDvqD3kd6 9NPa59jfoTv1htJDd+gt2P7O/h73neM++93rKPwOv8EBOAg/wWH4We8mPVT+ Iceki/0zRD8/OqRHP/Wdmx491Gt+eqj6LcI+gv6id4D9B3pMnw32n23DX50e s2imJc7503mq/dX1v9r/Mj1yNfvy9Pi5rp/vZ7eLs+r+viD+N3rce/2H/qs3 gn2qbfhTHT/ltcLUF4L1xFPQkrAZ+x/WTsIJq/w16ZF7Wm/IdmH7ejt6Q0Xg DCjuPuqnviXgTK9tSo/8IrZLen1Leqyf6Xqd4y+9eeJp+KmwFbssWsa/1zLR DNhmO8t+NiRge3rEMl2rnn+77z8+31r3T/ce0jTPk3Qv9T+rXez9rWc4y3OU gtKQ49+3+kx2pkc8x/nqkfRMpV2j2c5Fy8N32BXaha/aH9AfYR/UgJpwMVSG Ss4/D62izx/7/Hbh70qPdeVVdG5FxzuiHdQnI/ap4L0vhAtgLznV0YugmvfV nifSY3/5x9Mjv6prqrp+j+c53zNdCpe0i5/hsi+zfz1cp88+I2JaG0nt5Wht qAVXwZXwX3qo/Csck/6bHrmqae3aWo7XQa+GVtjXtAv/9fTYU3tfCzfCDXpj GXFWnfkHcup6rWhG5Cu3UEb0uMZ9tV7X9dV9T3qf9dCb9PbIv7ld+GnYd6C3 67PHrt8u/CzH63vtLmigN0G8KdpE7wz7VvQ2uMUqPzMjcu/U27J9l/2GcA/c DfdCI/dRP/VtDPd57ayMyFduGedo/eyMWL/P9Xovejft4X5ops+dnLZont9S C/QBn1f2g/Yfgpa6p4yIaa1aRtzNzb6vW32+REb0b+49mnu/C4m3ci/VtmsX e1/kGdp5jjaQq/fgmTVvjYyIt3a+erTyTLmu0Wz5aCeoid25XfiqHYO+ofcD T8JT0BO6QoHzH0a7ec5H2oVfOyPWldfFudJLvFdn76fcR1zfHR6Fq8h5An28 Xbx/qfzHYAgM1mecEfNoltsyoraH63u419UZMa/ybs+IPupxDXYv9Gm9P+yX 0AF6Q9i928XatdjPoM9CH3ge+jq/r/3nHHvOtcp9xvM847oG2C+iL0BD7H7t wr8zI/bU3v1hILwM93q23p5vkNfudn5/n109+rnvQOepXm9fb1p/LnRPr8B9 2LPQT3Tn2OPRt/W+sIejr0FT2yPsj4KRen8ZERvuPq+iw2CoVX4j4qNd0zgj dLTrx8Kb0IL4W/abuY96NMmI2FvO01sb43nG+N1pTs07Dh70uYb4bIqP99oM mA7tyZmAvgMtsSeh70Fr7PfRydAGe0q78HMzYl15E50rfch93nUv5U5x/VT4 ANqSM9N7q6d0pudQ3QT3+Qj9EDpkRO00109zL832cbvIU099r9f39XHpEfvY 9Q3a83agSCbfgfCXwZPkz0E/g09hLnwBHTNC5X/umLRLRuTO8Tz/ov/BScfU I5/4AnS+7SXoYngCe2m78AscX+q1RbAQemREnernucc8569oF3OnY69CV8JT 2BvRb+Brr6/w2b6CNfB0Rthr7a+HddAnI2Ja6+2eq91Xusq1G1zzTEboBtdv hk3wIvEt9p/PiLN86fMotsV5mnGj993oeZ/D3oZuhX4ZUaf6x7C3t4u1/s7Z 7rzdsMsz77L/HXwPe2BQRth77R+Cn+Gg65Srn7E70J3wrXNVMzAjvjvpe9Ng 7J/Q/TAA+0C78Idj/4Ie/j85B5yn71w/eIafvbd6HvL+I7FPo6d0J9hH2kWv adj/oCd0t9hH0d/0WWAfQ3/X54T9R7vwr8yIdeX92i7OonO8lBFn2uG38ZvX X/PMRzy3evzhvtpTe//dLt6z3vLGjIgrtiEj3rjWvsE+jv6l95QR+qdnk33c fqH2cc7NPq98nbkWehn8TTyBZsFe7CJoUSgMZ0Bx+DYjVH4xx6TbMyJXNdtc q7qt2CXQM2Endsn24atPKpoGKZAB6bCHeBX0PKgMmV7b5fwU2+pR0n0znJfu fqneK7t9nEc9y6PnQjnHsn3OMlAa9meEXdb+2XAW/JQRMa39gJ2DloKkNcd3 dY5rDmSEnuP6ilABDhOvZP+Q+yTdU7FKztOM5Z1T3vMe9J3oPo5gz24Xv//a ZcQ9VXF/xbSm34tXELsSakN1qAZ/kHMxehH8iV2jffi/Z8S68qo6V3qM+AXo hXC+c2u4/hKoCcfJubx9vKF/MkIv93tSnep/y4h5NIt+tqv2Utdf6l56e5pX ec96X+35K/bV6FXwH/at6C363Pl9Uad9rJ0ifi16HVwDN8IN7eN3yg32r3dM WigzclVz2rWq+xf7JrQuFCenXvvwz8iMPbX3zXA73Ka3mBn71/F8d3hNPW9x brHM6FHPfW93nup/97/j6d/+9DuwPrycEf+WqH9T1P8tYiNi9+itZoZ9r/3G cF/7+LmnWCPfyUh0hGbFfghtqXeYGSr/QbgbGsJd0MS9Usl5AG0BzV2n3LLE 70eb6b1mhjaF7Myoa+I5GrpvBvE2aGs4B7sL2hnOwy5oH/752G3RPCiP3R5t B5WwO7QP/9zMWFdeLoxqH2e7JTN6t4KznaP1Co638Zp6dHBf7VngObpBV73N zDirzlwG+2GvVcXORztBlczQjlDZdr79B3xPpX0n9/te1ONh79ETnoAryXnS /lXYT6NPwdXYL6DPt4/fKS+2Dz9B/DH0cehhlX+F44rVzox+T3qPPvAM9Ibn 4Fm43v1f9B59vZaeGdrXeb3ax0x1PFsvzzfS96739CoMhXrkvIYO82cxEH0Z 6maGyn/JMelNxLujj8LlmaGPQC3s/ugA6Of17l5TrL979ve63t7w9rH3zZ5h uOcY6vmG2B7inMHoK55BOsjzyx5s/xnf3bXEX0dHw23YK9FVsALeh8nQkPib 6Btwu+2x9sfBW3BHZsTedB/1HOO+82Au5GVGTGv6c6rat13/HkyEuzND5b/r /SfBPcQnoO9Ag8zQ8c5/23NotsmeWzVT4QNoRPxTdDY8mBmxKf7cZ6DT4T7s D9GZ0Bz7o/bhN8uMdeVNc670OveZ6l7K/cj1n8DH8AA5c9rH3vp+Ip3jOSb6 fLrbz9HPIDczame5fpZ7tSL+RfvIa+WzT/D5FfvC9fN9163JWYguggWwBBbD 45mh8r90TNojM+rm+3Nap3n1RjKjx0LnLHS/7tjL0KXQE3sNuhp6Y3/VPnzt td69nnXOV85T7XLXL7f/pN+e3t0TmfEG5T+F/TW6Afpif4fuhAHYm9Bv2sfv dNmb7W+FLfBiZsQ2ebaeHegNJzNjrvU+p/pv9B4b7Wvfbe7VD3tX+9j7Zc+w y3N8CztgO+yB3fBKZsQVeyEzemzzTDtc0z8z/vzp59Y12N+7fnBm6Pfu9Tsc g6PwE+x37UH0ABTGPtQ+fM2233k/Olc6jPjFnPsimI+9j9gPsBcOw88wgviv 6G9wxPtqz5KZsb/81zIj/xfX/OL6kZ7nkGf6E/6ANzLD/st+EfYvDGMzI6a1 N7H/Rk/AcfgXTsLbmaHy/3FM+lZm5KpmrGtVNwb7FPofvIN9un34EzJjT+1d CIpBUbghM86qMw/BLu61t52v3Inuedp9tV7c9b/6nkaTcyb+GTAJu0SH8Cdj p6NpMA07o0P4Hzie4bUEZMFU4mejZ8FH2CloKpS0prhWuZkww3bCvv63V/rf YGVDaSgFH2dGP/UtC2W8NjMz8pX7oXO0Pisz1su4Xm9kn++nHP45MBu7Knoh LMCugJ4Lc2xXtF8ZKsEXmRHT2me+qxK+rxSfb5L7l/ceUvmfEq/iXupfrUPs PdczVPMc58MFcJ7feHVYlBlxxeZlRo8qnukC13yeGfkXu+YSqAkL9Z0KbQX7 sGuhl8FS7Nro5bAc+4oO4eu9aV15l7pHDVhM/Hq9NbjOPbS+JDNyLnGeelzh vtfAtVCnQ9Sqbg35ddEbYX1m9NPaWuyr0avgvczQKzvE7zLZV9u/1n1Xuc9N 7nUX3A0N4Ga4BerB7XAbbMgMlX+rY9Jv/DNEPz8GZUa/up7nFvdalxmqfl9j 10fvgE3Y96ANYRt2ow7hb8+MWTTTVuc0cp5q73T9nfY3Z0auZt+SGT/X9fP9 cZ9V97eSeGPdB+zAbo7eD7uwH+gQ/m7HH/BaS3gQvifeHm0Hh7Cbos2giVX+ d5mR2wL22G5pX29Hb+ghyIU2sD8z+qlvW8jzmt5JK+fudY7Wl2XGep7rdY57 4VviHdEO/kx7oN39uXRG8+Er213sd4UCOJEZMa0dy4yejd23qc+30/07eQ+p /MPEu7nXcezHOsTeJz3DY57jEXgUHu4Qn4s+k/8yI67YP5nRo5tnetQ1mu0p 9Ek4hf10h/BVe2NH3hjcAC8RexkGQB/o7fxn0WegUBbf8zuEfzoz1pXXy7m9 HF+MfgnnZsU+T3vv56EvFCbeD+0PL3aIfbVn0azYX36RrMh/wTUvuF4zaP/n PNMgGAjFssJ+xf7rMBrSsyI2yP2HoENhMLwGw/Q5ZYbKf9Ux6aSsyFVNSdeq 7iD5I9Dheid8RxrZIXz1Ge29R8EbMAYys+Ks/Xz2N732gPOVm5YVPUa6r9bf dH0/35Pu5C10LCSwx3UIX2d8F50AOdgTO4Sf5fhEr03WmSCb+IfoTCiNPR59 B962jvfMyn0PStmebH8KfADvwzSYCmWzop/6zoDpXlPtFOeWcY7Wz86K9emu 13vRu1kEH8NHcA45C9D5UAl7NjoLytv+1P5nMMdxxbR2lu9qnO9rvM+ns6v/ J97jE++n+T93L73bhR1i73KeYaHnmAvz4AvPrHkrZ0VcsVWJ6PG5Z5rnmjH6 3wKhS+A88pd1CL8i9h/on3AMvoFNsBFWwgr3X63ecCH2mg7hV8mKdeUtd670 /Kzovcz7KXeN69fCV1BV//s3dANckBUqfz0chANwVVbMo1kuyorada5f517a a5Pnruo+6lEdewu6GWpg70P3wqXYWzvEWjXs7ei3sA2+g51wcVao/B2OSS/L itztnme762pi70Z3QS3sPR3CV1x7au/v4Uf4Aa7wbFs9336v1XK+cmu75x73 /dF5qtfb15tOZsU9/QRXYmfyMzQD7sU+SewfuAb7CPoLXGv7V/tH4Te4ISti WrsO+2f0MByy/uyZf3dNnazQ311/HP6CesT/tn+D+xxyvmJ/O09vTW+urt+e 3t2NWTHvCbg3Eec66LMpftJrJTlfCWhI/n/4/8Kt2IWJFYLbsYuiReAO7GId w78zK9aVd7pD2NJb3OeUeym3mOvPgOLQgJyUjrG3+ktTPIfqVH8b8TT8VOiV GbVnuv5M97qLnPSOkad59Hek+vdC/T2pYumu19876u8y9fdalfAr6ncjdjaa hASUhlLQLCtUfo5j0iZZkauaxtj3o82V75h6NCJ+FloWHsA+Fy0PD2FX6Bh+ Y8creO0cOBvuz4o61ZdxD2lz4pU7xtya7Ty0CrTGroHWhIu9XtlnuxAugLys sKvarw7V4NXMiGmthXue775S+W2IX+SaVlmhF7n+UrgE2hG/zH7HrDhLOZ9H scucpxk1awfPrHnbY1+O1oJOWVF3juep3THWOjuntvOugTreq479q+E6uBbG ZYZ9vf1b4Ta4xXXK7UbtlehVcIVzr/Ne+u6k702PYtdDb4JHsG/uGH4P7DvQ 2+Ep59zsPH3nUn33rNhTez+RFar9H8NuoXfRMb4n1+8YvZ4m3lTvC57Hvgtt AL2wG6J3wzPY93QMXzNoXXl3doyz6BxdsuJM8guco/UnPXN9z60e97iv9tTe jTvGe9ZbfjEr4or1zYo3fr/nuQ+91+eSNoIVmWHfZ//BjnHOZ33eB33mwfAK fEG8QPPC69gP6X1BS8jVu4NhWaHyWzsmfTUrclUzwLWq64/dFs2D17DbdQx/ OHYHvRe9N8jXW+sY3/2e0YzQR5+91/o5X7kj3bOd++Y7r5P7dfD9dO0Y59E8 T+pdQE/Huvqc3fWmYERW2D3sP653Ae9lRUxr72I/rHcH3azy3yH+hGsmZoU+ 4fpeekcwjXhv+2nu0833qVhv52lGzfqBZ9a8U3wnfRzP6hi//+7LinvS2kz/ TtSafi++qt4wVHentwNzyBmgz8T2Sx3D/zwr1pX3gnOlnxLviz4Pzzn3JdcP hJdhLjlD/IbmZ4UO8XtSXV+f/VXPsiArage5fpB7zcuKeZW3yPtqz4+xh+vt wJfY49G3YRX2iI6xthh7FDpabwPegDHuM8b+645J62dF7ijPPMp1S7HHom/C Cuy3Ooa/Miv21N7jYII+c1jt2UZ4vne99pXzlbvcPd9y3wnOU332o/xuglZl 4v+n6URYlxWxLHiI+FR95vBNVtjT7M+A6dA0K2JTfSe/ob/CKezP9DnDpqxQ +Z/C+3pTMFnvxr008yx0NnziOuW2JP4x+hFsyQr9EDZnRd1MzzHFfTcQn4t+ ATuxl6PL4AfsFR3D/w57ge7e9iJ0IezC/rJj+HuyYl158+BoxzhboUT0/hx2 OEfr32ZFfK7X1ONL99WeKzzHKn2ekJ8VZ53lmVd7TfsuRZfA3qzQxfC97aX2 Z/metvlOPva9qMdq77ERvoZD5Hxj/zD2Zn0mcAR7l+4AHsfe3TF85azXXHoP VvkHHVdsf1b0+8Z7bIPtsFX3ovuAY+6/23vs9Jr67LCvvC0dY6ZfPdsWz/eb 713v6WedA/4l5xfNCP9g/6jPVrlZofL3OSb9m/havS84kBW6Bn7C/l53rDv3 +lqvKaa1v5yj9T+xj3SMvf/zDEc8xyHPd9C29CQ5B7QP/JEVuh/62D5gf7vv TvMfQ3+HIryxKp34rgWVoSgUgRTif2kWKGr7uP0TOiuckYiY1ooloucf7luG HqXhrETEtPZSVtT+4/pCrJ9GSyRC5Z/qGPsXhjTi/+lz6Bh/FqQnYVRW9Djh +yniuVVzBhSHVPITaBaUSkSsGGRgl0RLQDp2qs4K2dhpncLPTMS68s50rjTL fc5wL+WmuT5D/SBJTnan2Lu0Z8j2HDqjzqe7zVEulElEbabrM90rh3ipTpFX 1mf/z+dXrJTry3aKuz6bnLPRc3TncC6U19yJUPnlHJPq93sZ1+tzqgZV9Q4S 0UO9irqn+pXDrohWENgXoOdDFewLO4VfGbu6e1VxzoXOU20l11eyX8Jvr7Jr 9QblV8S+GL1ItdhXo1fpbNiXoDW1n+1L7deCy7RfImKXuHYj+jWMSsRc1X1O 9a/hPWrY19kvdy/1r9Mp9q7uGep4jivgSqgN18I1qk9EvLY/L/W43DNd6Zqq ifjzp59bv3D/17k+JSv0Ove6GxrCXVAPboL3ybkFvVl96XNrp/BrJ2JdeXWd W9c5A9D+0Ab7BvRGuB5uh9t0HuJ3og2gvvfVntcnYn/5NyQi/w7X3OH6KxKx /62eqRHcoz0SYd9r/yFoqbpExLR2HXZjtAncB/dDM50nESq/qWPSeonIbWy7 setuwn4Aba7ZsFt0Cv/2ROypvR+E1tBKZ0zEWe/02dt4rYHzlXure7ZwX623 cf2dvqdryclDc3Vf2G07hX83die0Iyzk88rvFH4Dx/O9VgBddH7ij6OPaW/s 9mgHaGdt73tTbmed33aB/W7wMHSFR+ER3Vki+qlvD+juteaJyFfufc7ReotE rHd3vd6I3kpN4j3RJ3Sn2C+gz2s27KfRp3Q3tnvZ7wO9YU1WxLTW1HfV1vfV 3ue7x/2f9B5S+S2JP+NemvnFTrF3S8/woud4DvrCs53ijfeDjVkRVyw3ET2e 8Ux9XZOXiPwBrhkIL+tz0nct9HN4CXsw+oo+M+yh6BDdOfarncIvSMS68ga5 x0v6fIm/jo6B0e6h9Q6JyBnoPPV41X1HwigY0SlqVbebs7yJvqHPKRH9Xve+ w9HX9PknQofpc7U93P4o99X86jPWvSbD+zAJxsHb8BZMgHf0OSRC5Y93TPqE f4bo50eNRPRT38cS0UO9Hk+Eql937Inou3oH2B+gU/TZYE/tFL7y3/dMvZ0z 1Xmqfc/179nvlYhczf5UIn6u6+f7Bp9V9/cI8RnodJ/lE/RjvRvsWZ3C7+34 LK/NgU/1PogvQhfqc8P+EP0IZlrlP5+I3Nnwe1bYc+zr7egNfQbzYC70T0Q/ 9V0A8732ciLylTvAOVofmIj1+a7XOabBz+y1GP1Sb46cdehanRl7GbpU78n2 cvsrYQWczorYMu+rnjPc90Ofr28i+i/xHlL5Q4ivci/dyfpOsfdIz7Dec6yB r2B1p/hc9JkMT0RcMX3PVI9Vnukr15Qkvgn9BkZjb+4U/hjsN/J5YzAG9hH7 AfbCNtiqd0bOt+h2vUXsHZ3CH5eIdeVtca50rL4L0ascrPe+m733d7AT3iG+ B/0edneKfbXnu4nYX/7EROTvcs0u14/yPDs80374Ed5PhP2T/WN6O/oMEhHT 2iTsg+ghOAC/wGGf5bD9nx2TTktE7kHfw0HXTcH+FT3SKb63/NYp/AmJ2FN7 H4U/4Q/4KBFn3eM7/8tr051/1LZ6/Oa+Wv/L9Xt8T+XJ+Rs9rjeFfaJT+Dr7 KfQ/mIN9ulP4Mxw/7bUifCaF4QviqWgKXIZ9krV/4R+r/NmJyC2UH/PLLmK/ GBSHonAmnAELEtFPfUtCCa9dlIh85c5yjta/TMR6CdfrvejdnAPpkAaLyTkL LQtrsbPQTFhmO2E/CdmwOhExrdX2XZ3wfZ30+aYmon+G98jwfkuI57jXcuyz 82PvdZ7hbM9RGspAKc+seb9KRFyxlYnokeOZyrhGM1dAz4UN2BXzw9+IfQ/a CBpCTbgEakAVqAybyDkfPQ+2YF+QH77+fFV2XiXnSr/xXhW9n3IvcH1VuDA/ vkNerM8Hvk2Eyq8Ot8DNcDAR82iWbYmoreb6au6l+S/x3DvcRz22Y1+GXgo7 9XsNvd45tfJjbRd2bfQKuByuhqtgbyJU/pWOSb9PRK5q7nWt6p7J5js9Wgf2 EL82P/x9idhTe18HdXVuuNOz1fJ8N3ltl/OVuz8RPa5137rOU73evt70vETc Uz04gN0ZzYcizNMMbQq/EK+P3gGHbd9p/y5oAL8mIlbf+beht8Ot1ttce7dr fkuE3u36+3Qf8AfxxvZ/dp9bbSvW2Hl6a3pzR/329O6OJGLeJnC/z3WLz6Z4 M6+1g7ZwkpzmyoW/sFuiD7pnK/QhaIXdOj/8PxOxrrwWzpWecJ8H3Eu5rV2f C23gX3Lae+9TidD2nkN1qj9OvCPaAU4nojbP9Xnu9R/xTvmRVzg7vtfr+3pT 13ZyfeHO/JyDDuT0xu8Fmdhd0W5QAI/CI+7ziP2HHZN2SURuV8/8MfoJfOSY ehSn9jG0B5TEfgp9ElKxn84PP93xp732BDwOZ2ZHneq7u4e0BPE++TF3Fvaz 6DOQgf0S+jIM8Hofn+156As52WG/YL8fvAg9ExHTWop7Pue+UvkJ4v1do5ml /V0/CAbCWcRfsa98naWnz6PYK87TjJq1jGfWvKWxh6CDtW8i6p7wPEPzY62U c4Y6bySMgHOzQ+UPh9EwCipkh/26/fHwDrztOuWeQ84w9DV41bmqqZQd3530 vaky9lvoWDgfe1x++Nr3XXQCVHXOOOfpO5fqq2THnuPdc7z3H8QZZ6Oz4Ari E/OjVzXsD9GZcBn2ZHQSVMeegr4PF2F/kB9+jexYV957+XEWnaNcdpxJfnnn aP1CzzzRc6vHB+6rPbX3jPx4z3rLl2RHXLFLs+ONa60W9nR0ms6ZCJ2qe7Q9 3f6n+XFOzT/bvs58AH7Kj5+xK9DlcB05n6GfwxytwVy4OjtU/heOSa/KjtzP fA+fue51ei5A58M1xBfmh6+Zv0QXwyJYCkvgeuLb0W9hGyzz2g3OV+5491zo vkudt8T9lHcl+Svz4zw3Yn+DboKNjq30OdfCV3Bzdtjr7G+A9XBrdsS0dgv2 anQNrLLKr0f8a9fclh36teu3wOb8+I631X4991GPutkR2+o8zfjN/5lZ897h O9F93IndJT9+/xXNjnvSWoPsiGlNvxd/hsNwCPbAbmhIzl70e7gPe19++I2z Y115u5wrvZf4TvQ72OHcfa7/EX6ApuQc9Buqnx160O9Jdaq/OzvmOeQ5Vbvf 9fvdS/d82HM3977a8x7sI+gv8CD2SfSf/Ph98Wt+rLXAPor+Dr/Bn/AHtM4O lX/MMWmT7Mg96p5HXdcS+zj6F+Ri/50f/vxE7Km9T8B/8C908my/er5TXlvs fOW2d8+/3fc/56le/+amf8dbmxW/A0/rcyX/wQLOBNcm+b5OvDh0yw77TPsl oQQ8mh0xrT2M3QC9E47puzGa7Ryp/AQUhWJQBFLcqws5mWgWZLhOuU8ST0fT 4LHs0FTokR11KZ6jmPuqT2m0FDyNXQmtCM9iV+4c/vPYZ6Fl4XHsc9Cz4Wtm Ltc5fO2rdeWVgbs6x9nGZEfvHHjKOVrv7Xhpr6lHOffVnpU9x3lQBV7IjrNm eobzvdYPuwJ6LvTNDi0Pz9muYD/T99Tdd5Lue1GP871HDbgYXiGnpn2d/VL0 EviO89ZBr4Yf9R24c/iDyamOXgTVrPJfdlyx/tnRr6b3uBxqQy24Eq6AYdnR 7xrvcZXX1OdK+8q7rHPM1M+zXeb5Gvje9Z5ug1vhTXLuQG+Ht7DrojfCqOxQ +Tc4Jh1OvCp6IbyUHXoBDMC+Dr0ervV6Va8pprWRztH6COz6nWPvUZ6hvue4 1fPdYlv6Bjk3o/X8ZqQ3wWjbN9uv7bsbSrwhejeMx34GfRb6QCt4CN4jfi/a CN62fZ/9JtAY3s2OmNYmuOc97tsdHoW07Ihp7Z3sqG3q+gehhWtb2H/A+7eE QsSbo/fD5OzQZjApO3o08ZwPeW7V5EIbmE68AO0CH2dHrDVMw26HtoUZ2B3Q 9jATu2Pn8D/KjnXl5TlXOtV9ct1LuR1dnw+d4BNyunaOvWd7hq6eo4XPN4X4 w2g3+Cw7aju7vrN7zSL+SOfIm+GzN/f5FXvE9T1815r5cfQJeAyegic9w5P2 ezomnZ8ddT38Ob0IL8CS7OihXnPdU/2+wO6FPg1J7L7oc7AQ+/nO4S/G7ude y5zzvPNU29v1ve1/7rend7coO96g/C+xB6D9YTn2cPQ1WIM9EH0ZVtkeZH8w vAIVsyM20PPU6MLPDLg8GXP18znV/yXv8ZL9FeQPcS/NP6Jz7L3OM4zwHK/C MBgKo2AkrM+OuGJfZUePIZ5pmGvWZsefP/3cGoI92vVfZ4eOdq/39UZgMrwF Y2EzOW+j42Ab9vjO4Wu2sc5707nSjfr+g34PhTn7GPQNeB0mwDtwMTnvoZNg ovfVnt9lx/7ve1/lv+uad13/tecZ75mmwgdQOzvsafY/gznwU3bEtLYdewY6 E6bDx/AR7M0Olf+hY9Ld2ZGrmu9dq7o92LPQT2Af9uzO4f+YHXtq70/hC701 OJgdZ9WZd2DP9dpe5yt3v3vOdl+tz3X9e76nb8mZj86Dm7AXdA5f+y7Ru4Nf sJd2Dv+I40u9tgKWw6/EN+jtwHHsReiXsNAq/67syF0Gh22vsL8KVsNKvTlY A39mRz/1Xac357W/siNfub85R+t/ZMf6WtfrjeitbCK+UZ8z/IO9S+8CivCW NmsdmmWHvcX+NtgK/2ZHTGu/+64W+L4W+Xy3uP833kO60Xey3b3+w97dOfY+ 7Rl2e44dsFOfRed443ugWDLiihVKRo/tnmmnazSb8ve65kf4AYqSX4qfEzlQ BfsAsZ+gOPYhvR1Iwf65c/hnJmNdefvdYx+cQfyY7lVndw+tl0hGzo/OU4+f 3fc3OKqzd45a1en7/F/6PCE7Gf20dpL4Eb0vf6bSw5CWDPuI/aPue9x9jrtX Ec5XFArDCX228LfuWncDpZOh8k86Ji3lnyH6+fFNdvRT36xk9DjhOU+4Xw72 afQUlMEuzn7FoJy+53cJ/6xkzKKZ/pdzhvNUW6hL1BeyXzYZuZr97GT8XNfP 94u6xFl1f5nES+KXgHOxM9B0qISd2SX8yo5nei0bEnAe8XPUu0ucKxVNgxSr /IrJyM3yO0m4PstvR28oqfNAae2XjH7qexaU9Vr1ZOQr9wLnaP3iZKyXdb3O cSaUJ15e9weXYFdDq/r3WkW0Alxqu5L9KjorXJaMWEXXqmdJ9031+Sq4/7ne Qyq/BvHz3Ev9q3eJvWt5huqe4wK4EM7371t9JrWTET/f+epxnme60DWa7RK0 JlyBfWmX8FX7J/oX/AE3wI1wvc6sfnAlOVcoF67GvrJL+IrXct5lzr3Mn/uT aE/o6H0v9d5Xw1X+LK5Fr4NrvK/2vD4Z+8tvkx35dVxTx/V1PM+VnukmqKua ZNj17DeEu+G2ZMS0diP2LeitcDPcAberJhkq/zbHpE0yI1c1RUuHqq4ds92J 1tcatQ26hH9pIvbU3ndBI7hHfZNxVp1Z/w1+r9f03/J3O/fWZPRo4L5av9f1 1/qeqpHTGL1P+2E36RK+zvgA2lx12C26hH+v4y289hC0VA3xDtpfa9jN0Puh qbWZZ1bug+7T0vXyW+vzgVaQB7m6q2T0U9920NZr9ycjX7lNnaP15slYb+t6 vRe9myegk96O9iLnMbSHcrC7oJ3Vy3aB/W7QVT2yI9bF++pumvi+mvl8DZLR P9975Hu/lsQfdi/dyeNdYu92nuFxz/EodIdHPLPmbZ+MuGJ5yejxsGfq7pq2 xJ9Gn9LM2L26hN8F+wN0KkyBl2EgvATPQB+dk5zn0GfVF7tvl/A1Wx/n9Xau NN979fJ+yu3r+hfgeXhR3//R/poxGSq/H7wN49QrGfNolseSUfvi/+rdS3/G B3ruAvdRj0exX0EHCfYag76uWYkP7hJrj2APRV+FITAcXtPMyVD5wxyTPpGM XNU86VrV9cQeiY7QnWKP6hK+5tee2ns0vAlv6D4822DPN9ZrTzlfuX3cc5T7 vuk81evt6003S8Y9vaWzccZl6FL5xD9CP9RdYE9E39W92X7P/mSYpM8gGbGJ zn8HnQDjrfJfJP6+a15Khr7v+ukwTZ8B8Rn2X3Ef9XghGbEZztNb05sb5Len dzcwGfPO1P36XG/7bIp/5LWFsEDnJecT9GPNre/26Kf6rIh/jn6me8P+okv4 I5OxrrzZzpUOc59Z7qXcL1w/D+a6dpH3HpMMXeQ5VPeJ72Qx+qU+v2TUznf9 fPcaRXxJl8h7Ixl/R6p/L9Tfkyq2xPX6e0f9Xab+7nQr/hadkfyV6CpYAV/B Gt1vMlT+asekbycjd6X3TS/gewqkFURMPT7UfyOg6zzPJvQbvQ/szV3Cn+T4 Zq99DRt0j9lRp/q17iGdQP62LjH3ZOxv0e16K9j70B9gr9e3+WzfwU69i2TY u+zvgd16N8mIaW2ae+5wX6n8D4h/7xrtK/3e9fvhR32+xH+y/0kyzrLR51Hs J+dpxn3uuc/zLuW8B9EDeovJqFP9OOxDXWJtVjL0kPN+g1/1npKh8o/A73BU bywZ9jH7J+Ff+Md1yv2cnMPoL/Czc1Uz19+d9L1pAfbf6HGdhTlPdAl/DvFT 6H96W8454Tx95/rTM//rvb9Mhmr/RdhZvJVMWId9ukv00r6pxFJgNXYRtDAs xC6GFoXl2MULwq+ZHevKK1QQZ9E5ZifjTIc9Z2Gvb82OfU57bvUo7r7aU3uX LIj3rLe8JhlxxVYk441rbS12CfRMWJUMPUNv33YJ+4mCOOd6nzfhM98M9eA3 4pXRSnCM2ZJoDmRDGSjtvUrbL+WY9IfsyE36rpKu+xr7LLQsbMI+uyD8zdjl 0PJwDlSAc3UnxGujV8DlUNFr252v3G/c82z3reC8c91PeVvIqVIQ5/kWuyZ6 CdRwrIrPWRUuhB3JsKvZvwiqw/fJiGltF/b56AVwnlX+d8Qvdo32lV7s+svg UthHvJb9H9xHPXYmI1bLeZqxps9b0/MezY470X3sJ768S/z+08983VNtz6aY 1vR78TZit8OtcC1cA4fIuR69Dg5g31AQ/s/JWFdeHedKDxK/Cr0arnTuDa6v CzfCYXJu8RtKJENv8XtSner3JmMezXI0GbU3uf4m9zqSjHmV97v31Z4n9G8H 6B3wB/FmaFM4hX1nQaxp/rvQu6EBNIJ74HgyVH5Dx6R/JSP3Lu97l+v037D3 offCSezGBeGfSMae2rsJNIf7oVBO7H+n53vAa0edr9z/3LOx+zZ3nur1f3s4 qWP83x+2LIh/O/yT/Oce5vsjNOC/g3KJtYFiOWHn2W8HbeF0MmJaK0rOJPXV PWJ3Q7sWxH/vSOUXQCtoDQ9Be/dKJ78z2gXyXafccsQ7oR31uSdDO0BmTtS1 9xyt3VczPIo+ApWwe6O9oBp2n4Lwq2M/hvaAithPoI/D+dg9C8K/ICfWldcd JhfE2a7Lid4PQxXnaP08xx/1mnr0dF/t2cdzPAvPeAadVWcuhf2c1y7Gfhp9 yj2lT0JV20/b7+x7ysmJO+nke1GP57zHSzAALiPnZfuXYw9CB0Jt7BHocLgG e2RB+Ndi90P7w4tW+Zc6rliNnOj3svcYAkNhMAyDV/XOktFvpPd4zWuaYZh9 5b1SEDNd4dle8XyTfO96T+/AeKhHzrvoBKiL/Sb6BtyYEyp/jGPS64m/gD4P l+SE9oWa2KPR12GU11/wmmKj/VmP9nod7IkFsffNnmGi5xjv+d62Lb2JnHHo W9AmGTpWd3JW2OPsD/Xd6W6noO/rcyR/O/otbIPP4TNoRM40dCrcYXu6/Zkw AxrkRExr9d3zA/ddC1/BQzkRm+J7U+2Hrv8UZsM9OaHyZ3n/OXA38U/Qj+H2 nNCPoFsyesz0/XzmuVUzD+ZCY+Ir0OXQIidiX8C92AvRBdAU+0t0EdyPvbgg fJ1d68qb71xpE/eZ517KXez6pbAEeun7fEHs/aBnWOk5Zvt8DYmvRlfpM8qJ 2mWuX+Zemn9NQeS19Nk/8fkVW+P6db7r1uRsQL+G9bAJvoG2OaHyNzombZMT dev8Oe2GXdAlJ3qoV557ql8u9hZ0s94M9k50B3TC/q4g/HzsPe7V1jnfOU+1 W12/1b7Otd3vbkAy3uB2n2Uv+j0MIX4E/QUeI/4j+oPegO399g/AT9A1J2Ja e1g/N7rSG77Libn2+Jzqv8977LPfkZyD7vUI9q8FsffjOaG/eo6f4TAcgqPw G/TMibhij+ZEj4Oe6bBreuTEnz/93LoK+3fXay/p7+5VlHmLQRH4G/+43hU5 /6An4CnskwXh986JdeX95Vzp08Svp/46mIL9B7E/4Rj8B/9CH+KFWC8Mp72v 9nwhJ/aXr/7KP+WaU65/1vOc9ExnkFtceyXDPtN+ErLh1ZyIaU21JdEUKAHp kAYv54TKT3VM2j8nclXzkmtVNwA7E82AgdhZXcN/JSf21N4JKAU5MCQnzqoz 98Uu7bVhzlfuUPfMcl+tl3Z9Id/Tc+SUxS4DI7DP6hq+5j8XLQ+jsCt0DX+0 4xW8Vhkqed+L0OowDvsctBycbT3HZ1FuRRhju7L98+B8qAIXwgUwNif6qW81 qOq1t3IiX7nzk5Gj9TdzYr2q6/VG/vBbrYF/MbyNXQe9Gr6i9lL0EpiRE/Zl 9i+HWjAhJ2JaW1U27uYs39c5Pt+nyehf03tI5b9DbW33ehf7mq6x9zue4RrP cSVcBVf4jV8L7+dEXLH3cqJHbc90lWt0z8q/3jV14Ub4QN+p0IdhHfbNaD2Y jn0regt8iH1b1/A/yol15d3kHjfAZOIN0XvgbvfQ+tScyKnrPPW4zX0bwF1w Z9eoVd027udetBF8lhP9Gnqe+ugd8HFO6O0w03Z9+3e5r86lPve510PQClpC E2gKjaE53K/PJSdUfjPHpHuS8S7082NsMvqp7+c50aOJ52nifnOxW6APwALs Nmhr+BI7t2v4S3JiFs20yDm5zlPtg65/0P7CnMjV7PNz4ue6fr7391l1f7OJ t0PbwnLsfLQT/MLMnbuGv8Txzl7rCgWwlvgT6OOwGbsD2hHaWzt4TuV2ga9s d7Wvt6M31A26w6OwPif6qe9j0MNrX+dEvnLXOEfrm3JivYfrdY48WEb8SbQn fIP9IvoC7MLuhT4N2233tv8M9IHCORHTmt62erZz3w4+30r3f8p7SOVvIf6s e2nmfl1j7x2eoZ/n6AvPw3Nd43PRZ7InJ+LPOV89nvVMz7tmJ/GB6MuwG3tQ 1/D3YjfqxhuDe2AMsTfgdRgCg+EHcl5Fh8KP2MO6hr8/J9aV94pzpfv0XQjd CBVLxT6DvPdweA0OkDMKHQ0ju8a+2vPnnNh/jN+G8ke4ZoTrf/Q8wzzTWHgT juSE/Zb9KfA+HMqJ2Fjf89voeBgH78IE+C0nVP47jkl/zYlc1XzrWtXpv23f QyfCcexJXcP/Oyf21N6TYSp8AL/kxFl15p+wp3ntX+dPdh/1mOS+Wp/m+lG+ J51lBjodTmHP7Bq+5p+FfgInsWd3Db94qdDZXvsM5kAGOV+iiyCHnI/Qj+FD q/yipSL3UzjT9mf2v4C58DnMh3mQVSr6qe9CWOC1RKnIV26mc7SeLBXrC1yv 96J38zUsgcVQipz16Dooj70cXQZlbK+wvwpWwtmlIqa1sqXibmb6vj7y+fQZ qf9S77HU+5Umf7V7qXZD19j7XM+wwXN8BWthjWfWvBVKRVyxcqWix2rPtNY1 mm0zugkqY2/pGn4V7OL82TsDisEPxH6EfbAdtkElcnboDcIF2Du7hn9hqVhX 3lbnSs/zXlu8n3J3un4XfOfavej3cHGpUPl74B84AdeVink0S/VSUbvb9bvd q1qpmFd5NdxHPS7C/gndDzWx/0CPwdXYB7rG2qXYh9Cf4SAcgV/c5xf7hx2T 1i4Vuaqp5VrVXYb9G/qr4vqe3zV89dee2vt3+Av+hCs92wHPd9xrdZyv3Kvc 86j7/uU81evt/z+mzjzO57L7/0WLGYrKfOazzdCiSCIKIYpEtqJS1hYKWcY+ xqBFtihSlFCIlEralDZStC8qWiktqAgtUpHv8/U7r/vx+P3xfLzOOdc55zrX 9X7PfD73uL/fW++03nnd035ohF2V51cFOuk7Nloezid+iPX/4Dzbhw0Kvwx6 OLTIi5jWlH8APQj/WuU3I152UNRoTmlZ15eDo6El8Rz7F7mPejTNi1iO8/Su 6Z1r4ndP713TyjFvLrT2uf7x2RSv4LU0pPSZQc6x6DHaV9/t0eOgHfHK6AnQ BjtvUPjt82JdeZWcK23rPhXdS7l5rs+HBHQgJ+O9O+WFZjyH6lR/IfECNAuX 50Vt0vVJ97qUeOGgyNM8+l6v7+uzKkes0PXPw0p4iZy66FnQC/tk9BQ4CU6D U6FLXqj8ao5JO+dFrmquwu6L9oM+jqnHlcRPR2tAd+za6JnQA7vOoPCvcbyO 186AmtAzL+pUX909pF2J1xsUc2u2c9Czlc8Zm6LN4Dyv1/PZGkIDuD4v7HPt N4ZG0DcvYlq7wT3ru6/0HM/fxDWaWdrE9RfA+dCfeHP7A/LiLLV8HsWaO08z atbeeaGa93rmvxBtATfmRZ3qr8ZuOSjWBuaFtnReW72DMDQvVP7FevbQDobn hd3Bfmc9E7jCdcodQk4rtDVc5Nz23kvfnfS9aSizXYZ2gmLilw8KfxR2Fz1/ GJ0Xscudp+9cqh+cF3tq75K8UO0/Eru/zgqTsbsOil5jsG/QfdjuobuHm7Cv 1nOGsdjXDAr/5rxYV163QXEWnWNQXpyplWfo7vVxnrmr51aPa9xXe2rv3oPi fda7PCEv4oqNqxzvuNYmEu+FXudzSa+F8bZ72R8wKM45xecd4DM/APPhUeJj dVa4B3sQWqT7173r+cCdeaHyBzsmvSMvclVzu2sHeq/h6DCYhj1iUPjTsYv1 3HT/emaaHaZyrunoDO0FpV673fnKnemeI9x3tPNK3K/Yz3HcoDjPLOwp6qG4 Y+N8zvFwK9xdOezb7E/UfcP9eRHT2t3YN6O36B2w3uyzTHLN3LzQSa6fpjPp fonfYf9B91GPe/MidofzNKNmneeZNe+cvLgT3ccC7BMHxeeffsfqnrS20J+J WtPn4kJYpHyYrTvwvvdpT3gYe86g8Jfmxbry7nGudAF3MlPnhrucO8f1c3U3 sITaB/0OPZYX+qDfJ9XN9FkWepYn8qJ2nuvnudcjeTGv8pbnRZ32fAh7sRQe x34KXQFPYi8ZFGuyl6qHzqU5YJnnWWb/Ucekj1eO3KXed6nrnsZ+QuvwLPby QeE/lxd7au8n4RnlKqdy7L/E8z3rtWecr9zn3XO5+z7jPNXr39z073j6t059 Bj4HL+bFvyXq3xT1f4v4MrGX4JW8sF+xvxpehTV5EdPaauzDi/h+Azux3yb2 FryZFyr/TVilfeAF1bvXa+SsQ9fDG/+rk0/8dXSt9sgLfQ1ez4u6NZ7jRfdV znvou+qB/Rm6CT7G/nxQ+Ip/iH6gPOwN6EfwPvbHg8L/IC/Wlfc+lCmKs+3K i97vwDrnaP1tx9/zmnp87L7a83PP8SV8oXjlOOs639tXXtM8G9FPtXde6Cfq a3uj/XW+p7WV405e972ox1fe43v4TnuT84P9T+izDf1Rudi70V9hK/aeQeHv Jf9bxeAb67ee51vHPsuLfj94j5/gZ9gBO+EX2Oz+e7zHLq99kxe6y3nbB8VM X3m27Z5P913G79MB/H/Vn5z/0IOqxd6H/glf54XK/8Mx6Y/Et2gW3V1e6Ne6 X+zf0N91Xq9v8ZpiWvveOVr/DvvQoNh7u2c45Dk0l+b7x/Y/zvkb3e/zSv8a FH8HkP23/Z99d5r/CM5ZFnZjn42eA/WgMpwA+4gfjR4Fv9kuZz8Xcori7wCK ae079zzSfavDaapJRExre/Kitrzrj4NK8EdeqPyK3v94+Iv4segxRfEspBXg z7zooV7b8iK/smvyIQH/ET8JPVEzJSKWB3uJp9GUzoKdRTOaB7ugKPwyiVhX XtK50sPcJ9+9lFvg+ipQCO8cy/fwotj7GM9wsueo5PPpbquhp2iGRNRWdX1V 9zovzXf+osg7OhFnP9bnV+xU19fwXeeQUxM9A06H2nCm42far+WYtEIi6mr4 OTWCc3XmRPRQL/2Npab7lSd+FlrHtQ3Q+rob7IZF4au2sXtlndPQeaqt6/q6 9o9JxLun967hcfEOys8jfh7aRHeCfTHaWnNin482073bvsB+C2iue05ETGtV sb/XuwnTEjFXY59T/Zt6j6b2q+i/z+9eJ2O3KYq9q3qGNp7jImgFLaEdtC2K v41c5NgpiehxoWdq5Zpqifj50++tL8hv73rtJW3vXj3haugBl0EnPVdyrkAv 1/PD7lwUfu1ErCuvo3OlNYjfh94L3bAvQS+FDnAVXKlnQbwb2h26el/tWTsv 9u/p/srv4pourj/L83T2TNfCNXrWibCvsz8IBuoZJSKmtQbYvdHroRf0hT56 NolQ+Tc4Jj03Ebmqaeha1Z2DfSPaT88Pu39R+E0Tsaf2HgCDoUjPIhFn7eb7 HOK1hs5XbhP37O++Wh/i+m6+p3rkDEOHamZ9Py8KX/OXoKP0zLFHF4XfzPHR XhsLY/SeEZ+IToBLsEeixTDCKr9lInJLNX9e2GPt6797pf8O1ji4FW6BixPR T31vg/Fea5eIfOW2cY7W2ydifbzr9Y7oXalJfDI6STHse9C79c5hT0Vv1ztn e5r9O+EO1edFbKr31d0M932N9PkudP8p3kMqvyPx6e6lO5lVFHtf5RlmeY67 YCbMKIp3fDZ0SURcsc6J6DHdM810zZWJyL/PNXPhfuhJ/F30Hd0R9gPofLga ewH6IFyHvbAofM2jdeXNc4850IP4o+gyeMQ9tN49ETlznaceC933YVgKS4qi VnV9yH8cfUz75kW/Rz3PYvShovi5li6SnRf2YvtL3fd693nCvV6AVfA8PAkr YDk8A0/DgESo/Kcck/bz7xD9/jg9Ef3Ut1cieqhX/0So+t2I/Rz6LAzEfgl9 EYZhv1wUvvZa5ZmGOOdl56l2petX2i9KRK5mH5yI3+v6/b7VZ9X99Sa+Gn3V +W+gr+udw15XFP4ox9d57S14E0qJb0A/cs5r6FpYY5VfnIjc9VBi+y37enf0 Dr0N78N7MCYR/dT3Q/jAazclIl+5Y52j9VsTsf6B63WOV3QWnu8n6MeaE/sb dAvcTv4mdCPcZvsz+1/A5zApETGtTUhEz9Xu+5rPNzIR/T/1HtJPfCdfupdm /rYo9p6aCP3Wc3wNm+GrongueiZTEhFX7Na86PGlZ9rsmvHk/Ij+AHdgbysK fzr2Y4N5x2AZ/EHsT/gdfoIdcBc5v6A/w93YO4vC12f9Dudtd650hr4L0asW vOB9t3nvX2GXejLnXvQ32FMU+2rPWYnYX/59icjf7Zrdrp/ueXZ6pr9gH8xJ hL3f/hHsXxYeSkRMa3Ox/0H/hb/hPzjovQ7aP+CY9MFE5KpmvmtVNw/7MHof wn5A/xl5cPjqrz21dxk4Co6EhYk4q858L/bRXlvsfOUucs/D3VfrR7t+r+9p Njk5+OVgCXbu4PCXYldEj4VHsCsNDv8xxyt57QQ43vtm0YxzKqDHQHmr/GWJ yD0Olts+wX4eJKAyJCEfViSin/qmIeW1pxKRr9xleZGj9WcSsZ5yvd4XvTdn QCEUqJb809Ea8DL5J6JVYaXtk+yfAifDc4mIae1531Wu76uCz/doIvpX8R5V vN+TxKu5l97bmoNj71cSoTU9x2lQHU71zJp3dSLiiq1KRI9qnqm6a14iXget Da9yrrMGh6/4Nei1cDU0g/OhKZwN9eB1cuqj58Br2A0Gh/9GItaVV9e50rXe 6yzvp9wGrj8XGsI6cs5Dm8A7iVD5jeEKuBw+T8Q8muWtRNQ2cn0j93ozEfMq 7133UY+3sZujF8AH+lxDO8CH2C0Gx5rmb4leBBfCxdAaNiRC5bdyTPpRInJb et+WrnuH+2yLtoFPiLcbHL7m0Z7auz10hEthk2dr4fk6ee0z5yt3g3u2c9+O zlO93n290/q50z1dBhuxS9HR8Bt2H/QG+AG7K9oFvrbdzX4P6A7fJCKmtc3Y V6JXQWer/K+I93SNnou0p+t7wXWD428+ve3/lBd16vFFImK9nad37Rr3vMbv 3Za8mPd6+N7nusJnU7yP10bAcNhDTj+0L3yHPRAdADuwi9BB8Av24MHh70zE uvL6O1e6zX1udC/lDnb9UBgCP5Mz0nv/mAgd6TlU18/xUWgx/J4XtcNcP8y9 dpFTMjjyNKf+Rqp/L9TfSRUrcb3+7qi/Za7S39jxp8Hh+XxnRW+CsXAr3OJz 3WL/Zsek+xORO87vw+voG7DWMfX4k/gE9DbPdjs6BQ5gTx0c/kHHp3ptEkwc HH97UZ3qx7uH9F/y7xwccx/CnoFOh3+w56D3w31ev9NnuxtmwtH5Yd9jfzbM 8tnvcd5B97zLfaXyjyTnXtfk5ofe6/p5MBeOJT7f/qG8OMtkn0ex+c7TjJq1 Qn6o5j0C+0H0AaiYH3Wq38s8CwbHWiXnLHDew7AE8vJD5S+GR2AppPLDftT+ U/A0rHCdciuTswh9CBY6VzXl/N1J35sy5CxHn4As9pODw1f/Z9FnoKpznnSe vnOpPj8/9tTe6fxQ7V8Fez26DqpjPzc4eqn/a+gaOA37BfR5KMR+EV0FJ2G/ NDj8k/NjXXkrB8dZdI4T8uNM8o9IRM5K12qf5zy3erzkvtpTe68eHO+z3uUa +RFXrFp+vONaOx37VfQVx6Uvwym2X7X/5uA4Z02f902f+W/YD5cQ/xz9DM7G fht9B96C9+E9qJMfKv9dx6S18yNXNWe6VnVnYH+IfgB1sT8aHL5m+Bj9BDbA RvgUziH+M/oL/ASbvFbf+co9KRE9PnLfjc771P0+9gxfDI7zNMD+Af0Rvnfs C59zC2yGJvlhf2N/K3wLjfMjprXzsL9Cv4YvrfIbEf/ONU3zQ79z/XbYpnn0 Hd5+I/dRj4b5EdvhPM34w/83s+a9wHei+2iBPWZwfP79noh70tqF+RHTmj4X D8BB+Bf2wh5oTc7v6G/QBvuPweG3zY915e12rrQV8V3or7DTuX+4fh/8CReT 84/foYvyQ//x+6S6Xe5zwLM0SkTtX67/y73a5ce8BzznLu+pnofQ/6AjdoUh fLeELtiHDYm1TthlsMvC4XAUHAmX5ofKP8Ix6QWJyFVNO9eq7nLscujRcCV2 zpDwr8qPPbV3LhwLx0BXz6Y5NF9Fr3V3vnI7u2eO+2q9ouv1/3Prbf//ttL/ BqL+9xH1v4O4cCy/K2AB5OMnoEMi7KT9NKSgV37E8r1vd7QbjNZ3Y/Rk6J8f Kv8kqAx5cAJk3Ks3OVXRE6GK65R7I/FCtACuzw/NwnX5UZfxHHnuq+dyGnoq DMCui54Fw7HrDQlf8dPRGu55BlpT98nMtYaE3zc/1pVXHXoMibNNzo/e1aCf c7Re5PhpXlOPWu6rPet5jnPgbLg2EWet6r3qe20wdh20NgzNDz0ThtiuY7+q 7+kG30mh70U96nuPpnCengU5zeyPwb4APR/GYrdBL4bx2G2HhH8bdmO0CTSy yi9xXLGR+dGvmfe4EFpCC2gFF8GgRPRr6z1ae00ztLKvvOZDYqZxnq255+vu e9f7dCV0hmnkdEGvgunYHdFL/Vyk8i9xTDqR+LloQxiVH9oAirHbox2gndfP 9ZpiWpvgHK3fit11SOw9wTN09RydPd8VtqVTyLkcvQym5od2gtttX26/pe9O d3s12hPuwp6OzoA79W7pLmEe8ev07sA9tnvZvx56wy2JiF3nu1LPa9x3vM4B y/IjprWZ+VF7g+sHQH+Ykx8q/0bvPxDuJ94P7Qv35Yf2gXvzo4d6zciP/CLX DIUh8ADxsXr+sCg/YoNhPvYIdLj3Ldb7pbPre/6Q8HV2rStvmHOlC9xnqHsp d5TrR+te4SFyxg2JvZd4hnGeo7/PN5v4zehN8HB+1Ja6vtS9FhO/ZUjkPeKz 9/P5FbvF9bf5rh8jZyI6Se+Mnr3eC88wxf5kx6RP5kfdbX5Os/Sc4bn86KFe j7un+j2KPU3vl54LdzVT7w48S/zuIeGrdrZ7rcyP2N3OU+0drr/D/iN+9/Te PZUf76D8p7Hv03OGF7AX615hNfZc7Q/P255n/wE9W3glP2Jae1G/N4byOwNO TcZcs31O9Z/jPebYX0X+g+6lcy0ZEnuv8QxLPMdCvVN6H2CpniGszY+4Yg8n oseDnmmRa3Qn+vnT762bsR9xveaUPuJeqxTT2WE5PAHryVmh5wZvYD81JPw3 82NdeY87V7pO33/Q3+B37GV6R/Qc4RndMbxFfKXuUs/O+2rPD/Jj/1Xur/xn XfOs69/xPE95ppfhJc2dCPsV+29rH/giP2Ivu3a17hVehdd1f/BJfqj81xyT fpQfuar52LWq24C9TvcBn2KvHxL+pvzYU3u/Ce9qT/gsP86qM7+H/Z7XvnS+ cj93z/Xuq/X3XL/S9/QuOR+g78Nm7A+HhK/5P5XCN9gbh4T/reMbvfa5ZvG+ W7UO27E36Hw6r3WDz6LcTfCd7c/tfwlf6W41B3wNP+ZHP/X9BrZ4bVt+5Cv3 /UTkaP2H/Fjf4nq9I3pXXiX+vfaEHdi70V9hL/Y27QO/2N5u/yflKi8/Ylrb 6bv60Pe1wedbn4j+P3gPqfyfyf/ZvXQne4bE3r95hj2eYyfs0gxD4h3fq7X8 iCv2ZSJ6/OyZdrlG/f/fz4Rr9sGfUn2n4vdENUjwu+JvYvvhb+L/ov/AX9gH htjP97ri7vGHIH4EPY6EskMjR+v7872P89TjgPseTl4ZOGxo1KruMGY4Gj0K Dk9GP639xLkOUfPfkPi5lh4Utg/ZVz/11bnUp5x7nQCV4XjIhfKQA8fCMfBf fqj8Co5JdyfivdDvjycS0U99yySjh3rpTnLd7wjildCK2hs7geZpP+z8oeEf k4xZNFOuc/Kdp9rjXH+c/Zxk5Gr2o5Pxe12/35v4rLq/7cyWRlOqJacKWqg9 sKsODT/X8apeOxlO8jxnoDW1H3YWLYCMVf5xycg9cWj8beok15/od0fv0ClQ HU6DZDL6qe/pUMNrqWTkKzfPOVrPJGO9hut1jqSeB/Ez0VpD4+9XjdBzNTfx s9A6OovtuvbPhnqQTkbsLL/b6pl236zPV8n9a3sPqfzKxM9xryrYjYfG3nVS oY09RwNoCPWHxnPRM6mWjLhiJyajxzmeqaFrjuEs56PNdC/kXDA0fP197Khh PGc4Ei4hdil0gAuhhe6I/IvQlrZbDQ2/ZjLWldfcudIziE9BJ0OXZOxzgfe+ GFrrzMTboe2h7dDYV3vWTcb+8uslI7+Na9q4vrbnaeWZOkFHnTkZ9mX2r4ae 0DQZMa2dhX0F2hku13xwle42GSr/Ssek9ZORq5qGrlVdA+xuaFc9J+zuQ8Nv kow9tXcPuBau0V0n46ztfG/Xee1c5yv3PPfs7r5av8717XxPmr832kvvj77n Dw1f+96I9tMzwO4/NPyWjvf32iAYqPskXoyOdE4ftC/cYJV/YTJyB+h52x5k fzAMgSIYBkP1bJLRT31HwHCvtUtGvnLbOEfrlyRjfbjr9b7ovZkEJTBK98MZ J6C36XmQPwYt1fO1Pdb+TTBOzyYZMa118l1d7/vq4/O1SEb/0d5jtPfTndzs Xpp54tDY+6pk6ETPcSuMh1s8s+btnIy4YufnR4+bPdN411xKzlT0dj1f7GlD w++O/RL6MrwI98NcmAPT4U7oSc5d6Ay9D9gzh4avn687nXeHc6U9vNc076fc ma6/B+6GDvr+j96rdygZKn82rIAn9WySMY9muS4ZtbNcP8u9NP9cz329+6hH L+z56DzdO/Yy9FG9O9gPDI21vtgL0IXwICyGh9znIfuLHJMOSEauam50rer6 YT+MLoFu+p4/NHz1157a+xF4HB6DQZ7tAc/3hNeGOF+5Re651H0fd57q9e7r nW6bjHtaDkOxN6EboVTfsdHX9I4Rfw59FkbYXmn/BXhe+cmIPef8p9Fn4Cmr /GLiq1yjOaWrXP8qvAJjia+2P8591GNkMmKrnad37SU/35f83vXJj3nXwM0+ 1wqfTfG1XvsIPoQp5LyBvq771Hd79E24jfg76NtwK/a7Q8OfkIx15a13rnS8 +6xzL+W+6/r34T2YSM4G7317MnSD51Cd6scQ/wT9GKYlo/YD13/gXpOJfzo0 8jTPV/5+vyU/Yp+6fiCfhQPgd3J24G+HudhfoF/C57AZvoa7kqHyv3JMemcy clUzA7uQflWgYFjE1GM68W/Rb+Ae7B/RH2AW9rah4d/n+DavfQdbYXYy6lS/ xT2kM4n/NDTm1my/oD/DJM74B/on/O71n3y2X2EXzE+Gvdv+XtgDC5IR09oD 7rnTfaW/eP7fXKOZpb+5/i/YBw8R329/cTLO8r3Po9h+52lGzTovGap572T+ f9C/YVEy6lR/L/a/Q2NtSTL0X+cdzl0fBsuSofIPES+LloHHk2EfYb8CHAPl XafcR8k5iP4HB4ZGrmq011H+3jSX2XLQcvAk8dxh4a/ArogeC08nI5brPH3n Uv0jydhTez+VDNX+y7FPRKvCGuxKw6LXs9hZNGP7BPR4eB47D60Mz2EnhoX/ QjLWlXfcsDiLzvFwMs4k/xHnaH2lZ67kudUj4b7aU3unh8X7rHf5lWTEFVua H++41l4lnkKTPpc0H16ynbJ/0rA45ws+70k+8+VwGfxAvB5aF97HPgWtBidD dTgN3kiGyj/VMenrychVzcuuVd1y5jwdrQFridccFv467FromXAG1IHa8A7x luhFcCGc5bV3na/c9cnoUdN96zivtvsp7y1yzh4W59FezdDzoaljZ/uc50JD +CgZdiP7TaAxfJiMmNY2YNdHG8A51vre6zzXfJwMPc/1zeEC2ES8hf3P3Ec9 Xs6PWAvnaUbNutEza95PfCe6jy+wPxsan3/6Hat7aul9FdOaPhevJHYVdIZ2 0BY2k9MBbQ9fYV8yLPwtyVhXXhvnSr8m3hq9GFo59xLXd4RL4RtyrvA79GMy 9Aq/T6pr7bNc6Vm+T0ZtJ9d3cq+tyZhXedu8r/Z8W/92gHaBn4j3QW+An7G7 DYs1zd8D7Qnd4Vq4BnYmQ+Vf7Zj0l2Tk9vC+PVy3kb16odfBr8R7Dwtf82hP 7X099IO+sDcZ+3fzfDd67TfnK/dr9+ztvv2cp/q3RvDZDJPS8RnYH/YkI7Ye JhIfSmwI/JUMe5j9ETAc/klGTGv7sZ9HV0J1/vPsTeg4OJQMlT8WimAwDIKR 7qXP31J0DIx2nXIPEC9BR8G+ZGixnkV+1I30HIPdVzm3ordAGWa4A50Gf5J/ 57DwFZ+A3gZHYU9CJ8IR2JOHhX90KtaVNx5eGBZnq5GK3jfDYc7R+pGO3+o1 9ZjsvtrzTs8xA6ZDhVScVWf+j5nv8toxxKeit/vepFMgNxX2VPulvqeDvpMS 34t63OU95sB9ukPOfr/98vSZh86FPOwl6GLIYj88LPwC7NnovTDLOtt3Mtux 41LR737v8SAsgAdgESyEpPs/7D0e8lo6FfqQ8+YPi5kSnm2+53ve96736Wl4 Ck4h51n0GaiG/Tj6mHtK5S9zTFqB+7kHvRsqpkJnwrHYj6CPwlKv3+M1xbSW 7xytV8F+bljsfZpneM5zPOX5VtiWnkTOk+hy29In4ETbT9pf4LvTXi+iq+B0 7J/RX+AneAfeHhZ/I3oFfVnPKxn2q/bXwOph8XOn2CueUz1fct8tsBnOT0Xs Rd+nal9z/ZuwHqomQ+Wv8/5vQW3y30Bfh5qp0LXD4m9Zr3kO/d3sbc+tmvfh PTiZ+OfoZ9AkFbF34Wzsj9APoQH2x+gG258MC79hKtaV94FzpfXd5333Uu4n rt8In0Ijcr4YFnsX5Id+4TnW+3xnkvMV+iU0TUXtJtdvcq/GxL8eFnnNfPY3 fH7Fvnb9N77r88jZin4H38KP8AO0TIXK/94xaYtU1H3j57QHdkP7VPTY6pyt 7tccezu6DVph70J3QhvsX4eF3w57r3t1cM6vzlPtDtfvsN/a757eu4tS8Q7K vxj7d/Q3uBT7EPofdMbeh/6p+0mG/Zf9v2E/XJaK2D7PM2c4vzPghVTMtdfn VP8/vMcf9rXvP+51OfZhw2PvqzyDfM1xAA7Cv1CG2OHQLRVxxTqlosc/numg a65Ixc+ffm9Vxi47POq7p0LLuldlyIMTIAfKDY/a8mgutNL3+eHha7Zyzjva udJriHdA28ME7CPRo+AIOBaOgeuIH4ceD5W8r/bskIz95V+bivyKrqno+l6e p4JnyocE9E2FnbR/CpwMN6YiprV+2Gk0AykohAIYmAqVn3VM2j8VuWn3Sbuu D3ZVtAoMwj5xePhFqdhTe58Ep0I1PaNknFVn7kHOaV4b6HzlDnHPE91X66e5 /jjf0/Xk1ECrw3Ds04eHPwK7NnomFGPXGR5+ieN1vFYP6sIY4k3Qxs45A60F Na3yR6Yi9ywotV3P/jlQH86GhtAAbk5FP/VtBOd6TX3Oce5o52i9TzLWz3W9 3pEjfT9N0fPgVuw26MUwGfsC9Hy/V7Kb278QWsDEVMQusK27Od33dYbPN8z9 m3kPqfzxxFu61yTstsNj76meoa3naAWt4aLh8Y63gztTEVdsSip6tPRMrV1z eyryO7imI1zqvW7R/cFS7MvRy+Au7M7oFXA39pXDw9c8WldeJ/e4ROfiPq9G r4Ge7qH1GanI6eg89bjSfbvrvqHb8KhV3Szyr0OvhTmp6Ke1+7C7ol1geir0 Kj3TZNhd7fdw33vdp5d7DYIiGAjXww3QG/pBX/fva7+PY9IH/TtEvz+6pqKf +s5NRQ/1mp8KVb952P3RG3W3zDYEHQwLiQ8dHv7iVMyimR5KRWyo81Q7wPUD 7GuvQZ59USp+r+v3+70+q+5vNvER6HA/x9FoCTyCXTo8/MccL/XaOBjreSah E51TjI6CkVb5y1KROwaW2x5nX++O3qGbYDzcCitS0U99J8BtXnsqFfnKvTsZ OVp/JhXrt7le5xgGS4hPQSfD/eTPQu+Bl4lP0/sIK23fYX863AnPpSKmtedT 0XOE+xb7fI+6/+3eQyr/SeIz3EufobOHx96vpEJne46ZOgfcNTyei57J6lTE FVuVih4zPNPdrnmJ+FydSc+Lc80bHr7i1/KfC6+Da2CZnonm1LsID8Dr5CxE F8Br2IuGh/9GKtaVN9+50rX6LoR+Pzz+fyxrn3nee7HeQVhHzlK9L/Dw8NhX e76Viv3lv5uK/CWuWeL6Nz3PIs/0BDwOH6TCXm7/Rd0HfJiK2BOeeYXeC905 PKt3ATakQuU/7Zj0o1TkrvC+K1z3DOdaqWcOnxB/fnj4mnmV935B743uGDal 4qw68zvYr3jtM+cr90X3fN59tf6K65f6nt4mfzX6KmzEXjM8/M+x1+l88DX2 +uHhb3Z8vdfe1h07/2OdG37AXqvnrOdrlf9VKnLfhG9sv23/XXhPZ9G9w/vw XSr6qe9HunevfZ+KfOW+mYwcrW9NxfqHrtf7ovfmO/hU9wo/kvOt9ldMf6fS XcJPqbA/t/8lfAE7UhHT2s++qzW+r7U+3xep6L/Re2z0ftuJf+Vev2BvHR57 b/cMWz3HZtiie/bMmndvKuKK/ZqKHl95pi2u0T1v05ngN+ztw8P/HTvBz14+ 5MGfxPbBHzqDziqfnJ2ay/au4eH/lYp15e1wrvRP77Xd+yl3l+t3a0Y4kGFv zQL/pkLl74XyzJEr0jGPZvk7FbV7XL/HvfakYl7lHXAf9fgHe79mhEP6XKPf ESMi5+/hsaY5/1Wd8pUH/8Hh6VD5Bx2THp2O3H999n9d9y3vxuH0PgzKkFNm RPhl07Gn9i4LR8NRsCMZ+//t+cp57TDnK/fIdPQo475aL+f69/wzoJ8R3VOO IP8stI72Jl6AZvVciVdCK0IF28fZPwGOl52OmNaOxT5Gqnyr/PLEK7umUjq0 sutTkNS7w7nS9v/XRz3KpSOWdp7etYR7JvzeHZ+OeTNaS8e5yvtsihd4rSac Lp+cKmih6rFPRk9SDnY19BTV6f/Pz4jwK6djXXknOleacp+q7qXcU11fHU5T nJwzvHfVdOgZnkN1qk8SPxOtpT3SUVvD9TXcqwrx2iMiL+m/kerfC/V3UsVq u15/d9TfMv/Q39jxm2uN/LPRc6AeNIQGnqeB/fqOSWukI1c1p2GXoKNhlGPq cSrxxmgjnRf7fLSZzoZ9wYjwz3T8Aq+dB010F+moU/257iHN0XfyETH3WeRc hLaEutiXoJdCB69f6LNdDK01VzrsNvbbQVs9o1TELvY86tnKfaXy6xFv7xrt K23v+k7QUXdD/DL7DdNxlqY+j2KXOU8zXuL8Szxvfewr0MttN/Vd6K46j4i1 k1OhnZ3XHbrpjtKh8rtCT+ihO0mFfbX9PtAXbnCdchtRexXaBa50rmoaZuK7 k743NSWnN9pL94l9/YjwW2DfiPbTPTnneufpO5fqm6VjT+2tv4n18f4tiY9B S3Uv2P1HRK/W2MXoSD0P7EHoQNuD0SI9P+whI8Jvl4515Q0YEWfROU5NxZmu 8rMY6PWLPHN/z60eQ9xXe2rvESPifda7rL89jnTs0nS84yXedzg6TM8vHTpU 74Tt4fbHjohzXu7zjvWZn4TlyiF+J3qH7h77JvRmGAfj4VadIR0q/xbHpJ3T kauaK1yruk7YE9Db9FyxJ44Ivyv2ZHQKTIKpcDu05YwL0IXwIEzz2lXOV253 95zovlOdd7v7TfYM00fEea7Bvh+dC3Mcm+5z3gN36x1Jhz3L/r0wW+9HOmJa 6419FzoTZljlX0v8Ptf0SYfe5/r5ME/PmPgD9q91H/XomY7YA87TjJq1r2fW vNen4050H1dyP3VHxOeffv/rnhZ4NsW0ps/Fp+EZeAqWwsPu+Sj6iJ4vfZaN CH9AOtaVt8S50sHEH0IXwyLnLnP94/CY3jlyVvgdGpEOXeH3SXWqH5SOeTTL yHTUPuH6J9xreDrmVd4o76s9B2I/hz4LJdhr0df0zmGvHBFro7FfQFfB8/Ay vOQ+L9l/0THpgFTkvuCZX3DdGOxX0VfgJuzVI8K/OR17au818Aa8Drd6tpWe b53XbnO+cse552r3fcN5qtffuvQ3rLGp+HdD/Zui/u3wl1F8j4Sf4Uv8L2Aa fd5H34Optj+w/xF8qPOmIva+7+cd9F14G44fyfceeDgVMa1NTkftBtd/Bpsc 32R/o/f/XHei7/PoJ3BnOvRjuCMdPT7y2ZX/pWs2w9dwD/Ed6HaYl47YV3A3 9rfoNzAL+zt0K8zG/n5E+PelY115W5wrnek+m91Lud+7/kf4AeaQ89OI2HuW Z/jJc2zy+WYQ/wX9WWdJRe02129zr/vJ2Tki8u7z2T/1+RXb6fpfYRc8SM5e 9DfYA3/A77CI+J/2F2P/he6DJdiH8XwOYT+WjjrVL3Qf9XggHXV/utf+EVH/ MPF/0X+cL5X/Nxw+Mvo+Tvwg/gGdJRV1+7234v957T/7mu2EkfHerPBsh3u+ CugxUB7KwhFQBo6Go5x/lP0jHZMuJ77bd7QgHbrb93WEez2RDlW/Zdg5aDl4 Grsieiw8j11pZPjK1yya6VnnVHKeanNdn2v/mXTkavanfFe6p0fScdYT/HNy EbSEL4nnoQmoDNXgFHiDeBLNh5dtp+xnIK3ZUlGn+hfTsZ70nFnnvYBdiBbA auwT0arwKvZJI8N/zfGTvKb9T4a1xKuMjPo16eiX9d7nQkP4OB351VxTHU6D 9cRPR2vAW+mInQrrsGuOjDXtWws9Q/NzljNHhv+G86u7RrEznVcHasO7+jyy /x52PbQuvIN99sjw3/fZq/j8ip3tvAZQHz5KR4+z3Fexc+CDdNgN7DfymT8h 3gPtCd2hLbTRXszfBD0PGsP50MwzNLPf1DHpZ+nIVc2n6VDVbcBujl6gO6Rn i5Hha86Wfm8uhNbQCr5Ox1yN/Dwu9tqnzlfuF+7Zwn1bO6+V3x29d6vIaefz fI59JXoVdHasnc/ZES6FLemwO9m/HC6D79IR09pW7A7oJdDeKv9b4le45od0 6BWu7wpdYDvxbvZ3uI96fJOOWDfnaUbNujUTqnm3+Rnp+fycjmfVw/Ncg14N X3K3v6N/wG9QBINhEPSGXvAj+Teg18Ov2H1Ghr87HevKu8650j/0/Qd9BI7L xF7Xer9+0Bd2kTMAHQj9va/21N+dBttXH+Xf6JobXb/H8/TxTENhCOxLhz3M /k0wDv5LR0xrf2GPQEfCcCiBUe45yn6xY9J/05Grmv2uVd2f2KXoaN0zM48Z Gf7v6dhTe4+FW+BmOCwTZx3gnFu9tt/5yj3onmPcV+u3un6A72kvObeh43WH 7DthZPgHiN+OToEy7DV1ZPhHZkKneu1OuAPKEb8XnW17EjoZJlrlH5GJ3Glw lO077c+Au2A63A0zoUIm+qnvLLjHa5phhnNznKP1/1Kxfo/r9b7ovVkKc+A+ qEj+EnQx5GPPQ+fCsbbn238QHoDjMxGb53dPdzPB9zXJ5yubif73e4/7vV8l 4gvcqzL2wyNj76RneNhzLIKHYKFn1rzpTMQVS2SixwLP9JBr9Le+x9BlcIy+ n48MX3t9hX4NX8KL8BKsgidhOeSR8xS6AqpgPz0y/KqZWFfeE86VFmSi9+Pe T7lPu/5ZeAYKyXkBfR5OyYTKXwkfwYdQNxPzaJZqmah9zvXPudeJmZhXeae6 j3qchP0K+rLj76BvQ3XsV0fGmuw16GuwGt6A1z3P6/bXOiZNpyN3jfdd47qa 2OvRdVAL+82R4Z+ZiT2191vwHryr2dKx/6ue732vneF85dZ2zzfd9z3nqV6f 2/r8ruF7+gDOysTvOf2+0+/z79Ct0Jj4RvRT58jeZP9z+AzqpCOmtVrYH6Of wAar/HrUfuEa2dIvXL8FNkMD4t/YPysVdRv8HBX7xnl61/TO6W9BX/m9q5+J eb9VPBPn+shnU/w7r+2B3dCSnB/Q7+E87B3odts/oz/B+di/jAz/gkysK2+b c6XN3OdH91LuL67fBTuhBTl7vbf+HiXd6zlUp3r93UmfZfocuygTtb+6/lf3 ujATn3XKa4W9djZn7cnPRjU+P4j9CRdnwv7L/j/wt89brpifY7giEzGt7YeD cADaZ0Ll/+s6rbdNR1yxduQcQv9T3PZhxeGXQcvC4XAkHAGdyDnK/mWZ0KO8 Vsa5l2Sih3p1wG6K3QzOg5zimFvx8mguXJkOu4L9cs7T2Y6FY+CqTNgV7R8H lVSbiTrVd8Q+3mtdM6HHO68ynADdMmHn2c+HBFydibOWcZ+k167BTqMp6JmJ OtX3yMR60vWZ4si71vkZ1xRAFnoTr4pWgV76bl8cfg/HT/TayXAS3JAJ+xT7 6lPoXqc4rw85p6LVoB92LfQMGOj4aV6rAdXhxnSsK68mnO616zMRV2xAJupO 9VlqOK+6717PoAvx2uiZ0B+7MdoIitMxY4Hvvx5aF4Zgn4OeDUOx6xeHPywT 68o7y7nSIvev4z2UW9/1DaEBjCCnSXHsPcQzNPEcqlP9IL97eu9GZaL2XNef 617K0bupvBLsC9DzdRbs5sXhj3a8uddawoUwlvhlaCeYmImY1lpAa2gFN2dC 5V/kOq2XEm+DXgzjsNsWh3+L42291gHae4b29tu5t/rdRPxS9BIYnw67o/32 zr0tE7FLPfMNeuZwdyZUfm/oDFfAlEzYV9rXGS/3ObvAVXB7Ouyu9rtDN5iW ibrOPksPr92RCe3hvKuhJ0zNhH2N/ev03sH0TOypvSdh9/LaXZ5Z887MRJ3q 78zEei/XT1NvWE68L9oHZmHfrDuDh5i/P3oj3ItdrHcERsKA4ljTXoPQgXAf dlFx+HPcs5/7KlbkvCEwWD3JGWr/fuzh6DCYiz2iOPz5mdhngOdQbITzNItm WpCJHkPdt9gzPkj8Dp/zyUzM0tf3MFrvF5To3dIz9wyKaW1hJmJaG6PnVBz3 Mt/3c4vvaKzXFxMfj94KD2PfVhz+Usdv89okmAjLMqHyJ3hPzfIA8SnoZOfI vt3+ROc+momY1h7LxPd6fV/PzcRZ7/Bz3Q174Fe9KzBDZ9e9aB94lvyZeobw jO277c+Ce3Rv6ahT/YpMrM/0DLOdpxnu0/OE57Dn6i7hBex5xeGvcHye17T/ fFhJ/znFUb8yE/1me+/PYBNsyUT+g65ZpOcDLxNfjD4EL2YitgBewl5SHGuv YC/VM4FXsR8pDn+N8xe5RrFHnLdM54PXyHnM/lrsJ9DH4Q3s5cXhv+Kzz/H5 FVvuvKd0bu+lHo+5r2JPwuvpsJ+y/ww8DW+S/6z9t7Cf193A25lQ+c/BKt0x vEP8RfvvYb+sO4APnK/c9ZlYf9E1rxRH3of6TqVZdF5YrXuC94mvsf8R9jqd W/npiK1xnurWeraX3fclx9TvEz+jJX5O64ujl+b8GN0AX2firM/6/G+pn+5B efCuZ3jX/juOST/PRK5qNmVCVbcR+wOdQ3Fm/rA4/E8zsaf2/ki+ZoQvfcb1 PudGr212vnK/cs8P3fdT56n+8+J4X7/NhMrXu/slfAHfZcL+yv7P8BP8Snyz 7gB+tL3F/rfwDXyfjjrVf0/OVq9pL+nW/+VpH/XNhP2D/W3qDTsy0Xuzz7Xd a79kYpYdsDMTdar/ORPr213/LxyAf+A/OCib2XapDvZm4neOft/szkTsF9iT id9DWvsN+zflwp/YvxeH/4vzd7lGsd//lwd/KMZe++zr3vajfwnsv4vD3++z /OzzKPa38w74DJpBPfa5778+0z+Z+M8Q+/yfXw75nPuw80fxHRaOyfL9Fz0c DhGvhFaEozMR09phcCQcITsbKr+s67T+H/lHo0cpRk65UeGXzYaW81p5yFV9 NlR+jnur30H6HINWUH027GPt5/4vNxuxYzyPfpfrc+CJTJzvkJ/lCawfrz2y YVe2rzMe53PqDvLUOxt2vv0UJLV3NupUXwE77bVK2dC087KQUd9s2AX2q0Ch 9s3GnpV8J1W9Vhn7JPRE7Z2NuqzztV7V9e/43/cm8M6cPCpq9OyqoadoPs5e A62umYjXRE/XDNhnjAo/m4115Z0Gg2AgNCF+NnoO1IMGUB9OzkS+clPueYb7 nu3cqtmoO9t7nYnWhlpW+QWO1/IMmvlUz629Gnq/C6GFzpANld8cGkFjOBea wnm6r2yo/CaOSU/PxJl0tgHu3cAzNHav0zKh6ldI/Hy0mebBvghtqT7YrUaF r3nOQutCHcdaOU+1F7j+AvvnZGJ+zX5aNupUX8V96njfi9HWulPsS9FLtJYN ld8BLoNOOj/x7mg3nScbKr+r65Rbm3g7tD20tbZzf/XoqDmwr0Kv1DPD7jIq /HOwe6I9dGfO6eK8bt6nvvtc5l5XwOW6D+KD0SI9M+w+aF+4AfrDjboX4tei 18E10Bt66bllI6Y1/a1Gd9LG9yK92M/iWtc18hl1vjM989WeWyr/3Gzsqb37 jYr3Qe9CC8cVa5aNGfvY1jzXe6brPV99n0XnaJqN83b2mYeMijMr/hC6SGfA vgm9GcbBcBjms49ER+hc2MWjwtf9D3PeUOdKL9X3RvQePXvf7RDfbwmM0r0Q H4OOhdJRsa/27JCN/W/yc1H+aNeMdn0bz1PsmW6FW/QeZcMeb3863KkzZyOm tUuxJ6AT4TaYApP1PLKh8ic5Ju2eidwJnnmC6zpiT0Vv131iTxsVfrts7Km9 74C7YIbew2ycdYz3mum1S5yv3Cvcc5r7an2m68f4nnR23evdetaZsGfZvx/m QLds2HPtz4d5Oks2YvfbvhedDV2xl6IP6z10/D6vSeVfRvwB91LO4lHx3nTz +7PY75B6qNcS29LBzLkAfRB6ZqPHA55p4ahYuzobutB5y+BRuJ74SvQ5GIj9 BPo43ID9JLoc+mCvGBV+v2ysK+8xvU8l3DG0L4l+j0Bv52i9Vzbiy7ymHivc V3tq72fhBXheZ8lGXLEbsVd5TfM8gz4NA7KhT0F/28/Y18+ffg7rZaNulfu+ BC/qOXNX76Pv6XmT8yq6Gl6BtfCa7+E1+2sck47IRq5qhmGX5cxHQJmSiKnH UOLr0DdgCPY76NtQjP3uqPBHO/6u196E9TAqG3Wqf909pOP1PXxUzD2WnI/Q D2Ec9hfol/C51z/w2T6Bj+GWbNif2t8EG2FGJmKfeB713OC+Uvk3Ef/MNdpX +pnrv4av4Dbim+1PysZZ3vJ5FNvsPM2oWSd6Zs07AfsbdAtMzkad6kuwvx0V a7c751vnbYMf4c5sqPwfYAdsh7uyYf9kfy/8Bntcp9yp5HyHfg9bnbvD8+u/ c6X/vtU87udXdBfcTXz3qPDvwf4D/R0ecs5u5+m/q/WLZ/7Ne2vOvd5/djbe w5f9Lv45KnrNJH4479Bh8CD2fmJ/wf3Y/6B/w33Y/44Kf2421pW3b1ScReeY lo0zyb/DOVqf45n/9Nzq8a/7ak/tfWhUvM96lxdmI67Y45l4x7W2iPh/xA7C A9nQA7or2//ZP4rcI2FxNuyj7deHBnAO5EAulINjoIJ+f2RD5Zd3TPpINnqo l86eRPNheTZ6qJfmyXG/p5m5InosLCWeh1aGqXl8hy8Jf0IB31lLoteTzkk4 T7WVXF/J/jJyjkePg8dsn2A/A2l4ivhp6KnwPHYhWgCrM2FXsX8iVIVnsxHT 2hPZeC/0fvTzGVM+p/pnvUfWvuY5yb2ew65eEnuv8gzVPccpUA1OhtOhBryU jbhiz2Sjx0meqZprVhLviF4KG7Nx1uM9p/rUdK+zoI7z69ivDfWgLrybCfts +03gPGjsOuWuobYWeiac4dx6Pkt9vy9rsc9FG8I67EYl4b+C3QxtCm85p5Hz Gvidez0be2rv17Kh2v/jTJxD53mZ+Pkl0ett7HZoW3gHuwXa3HZL9EKdC/ui kvDfz8a68i4oibPoHC9m40y1PGdzr7/pmc/33OpxkftqT+3dpiQ+W/W5+k0m 4optyMbnbQfvezHaGj7MhraCD2xfbL9TSTzLTX6mnfxc06N5x+AKfhZ64V8H u/Q3dvQKuAyugivhy2yo/M6OST/PRq5qPsOeg94P9zmmHp8S74Z2hS3Y16BX w3fY15aE/5nj13qtB3SHr7NRp/ou7iHdTLx3Scyt2W5Ar4cfsYvQwTDI6719 tn7QF3Zkw77R/gDoD39kIqa1b9yzj/tK5W8jPtA132dDB7p+KAzRHRIfZv/X bJylp8+j2DDnaUbN+oNn1ry/YI9Ah8PObNT18DwjS2Jtt3NGOm8MlGr+bKj8 0TAOxsKf2bBvsj8JJsNE1yn3d3JGoSVQ7FzV7CN+C3oz7Me+DR0PZbAnlIT/ G/bt6BT41zkTnHdrSdRr5sneWzmTvP8/2PPQuZDAnloSvQ5i34vOhsN4P+9E 77A9A50Oh2PfVRJ+mYJYV960kjiLzrEnG2ca5Tnv8Pp/nnmq51aPu9xXe2rv WSXxPt/nvWY7VjEb77jWTsC+B73bM0tnQtmCsO+xP78kznlEQeh8n/lD+ABq EF+OPgHHYz+ILoAH4CFYBDkFofIXOiYtVxC5qjk5G6q6o4kvQRdDBeyHS8LP xX4EfRSWwmOwTOcivgZ9DVbD416r5HzlnpqNHg+772POW+Z+j3ivJ0viPCdg v4i+BKsce9LnfBaegaoFYT9n/3lYqfehIGJay8N+Cn0aVljlVyb+gmvyC0Jf cP0r8DKkib9qX3/feMo9Cgsi9qrzNKNmTXlmzZv0nay2rXdZ7/TNvietnUJ8 B7od6mB/jH4CG+BNWK99ib+NvgUnYb9TEr7Ovt5565y7zu/A6+gbsNa577j+ PXgXqpPzkd+h0wtCP/L7pLrXffaPPYtyVPu+6993r5MLYl7l1fS+2rMAeyP6 KZyJ/R26Fc7G3lQSa6dhf45+AZ/B1/CV+3xl/0vHpH2zkauaGq5VXW3sLehm OAP7m5LwGxXEntr7W/gBvodzPNsmz/ej12o5X7n13PMb9/3BearX30f1d1L9 XVXPbRsUZePvjvr7o/5++w+xv6ExfXahO6GJ7V/t74Hdjiu2y/v+jP4CP0Fd PmPPgt4FEdPaqQVRu9f1f8E+n3ef/T+9/35oQfwP9HdoUBD6GzQriB7qdV5B 5P/jmoNwwPFy7H80tCmI2L8wRt/ziR3Cbkq8DPbh0Aq77OjwWxfEuvL+Kwlb epH7HHQv5ZZ1/ZFwBFxMTs7o2LutZ8jxHPt8vubEy+PnQvuCqD3K9Ue5l2au MDryWvrsf/j8ilVw/bFwDHQg5zj0eKgEleEEmKLv+fY1Tz6agE7YVdEqcFVB 1B3n+Y9zj0sLoi7PvZKjo/4y4pnR8V1K+0oz/l514ujo24V4AZqFGdmoS3pv xQu9Vmi/I/n1Rsd7c71nO9HznQG1oCacDKfASXAanAo9CkLlV3NM2o14Rd/R JQWhFX1fp7hX14JQ9bsSuwZaHXpi10bPhPn6nj86fO1VyzN1dU4d56n2dNef bv/qgsjV7NcWxPnq+WfjHDgbehG/QeeGydgt0QuhH3ZDtAH0sX2u/cbQCPoX RKyh89WzvvvW9x43EG/imgEFoU1cfwGcD4OJN7ev/C56L+CFbMSaO68ZNIWB BaHnwY0FMW8LeDwb8WZeU7yl1y7TewejyG+FXgRDsduibWAkdnu0ne0Oo8Mv Loh15V3sXOkI92ntXsrt4PpL9cyhhJzLvXdpQejlnkN1qh9GvDN6BYwriNqO ru/oXqOJXzk68rSvfn/u8O9Qxa50/c/+/deQnP66G7gdu7veHb2TcI3eC89z tf2ejknHF0Suam5xrepuxr5O7xGs5p57jQ7/poJ4d/QO9Ya+el9gop9jVz/L fl6b4nzlTnLPXu7b13l9XNfF9z9gdJxnGnaxnqGekWMDfM4heo9gRkHYQ+0P 1x3De9mIDfEMg9AivUtW+XcSH+Ea7SUd4frRep5wD/FS+7PcRz3uKIhYqfM0 o2ad4Jk170zssegYuLsg/vcD9b9JeE0+z350rM0mfrPuFe7Fvk3PBOZjT1Q/ mIs9aXT4DxTEuvJuhbfhLXiD+HTdh86lveEuWOJ85c5zz0nuO925DxVEnfzF 2FP0HsFk6xTPOcWxhZ75Fs+tve72fg9qRniiIFT+fN2deug+YQ7cB4sKQuXf 65h0azbOpLO96d7a4+GC6DHL9zDL/R7BnoveD8uwF6ILYDn2otHhr8CepucG Ux1b5DzVznP9PPuPef75tlWn+jnuox5fMOdi3R88Rfwx7e+9pPIf1Ry6D1hJ /HkpPF9ghedcp9y99FyqM+m81qW+T/V4XPnYz6BP2352dPgHqF2FvgAvOudZ 5630Poey0We5e62AJz3bu+g7sA57Lfo6vAbrFYO1xF9GX4GXYDW8Kr8gYlp7 uSDuZInvRSr/adeq7qWCOJPO90xBzPzi/+YeHf5RBbGn9n5jdLwPehded1yx 1wpiRs26piDmWeOZ1ni+93wWnWN1QZz3KZ/5vdFx5vXE/0MPwq/YX6Jf6fnC h/DB6PjPbhvQj/ReYn88OnzN8IHz3neu9E3ie9DdsNl3+57v91P4RLnEP0M/ h02jY1/tuaEg9v/SMyt/o2s2uv4dz/OxZ9oMX8svCHuL/Z/hJ9UVRExrn2B/ i26Fb+AH+N539b397xyTbiqI3G/d51vXfYq9Df1Rc+tzanT4muEn770DdsIv qimIs+rMb2Hv8tq7zlful+653X21vsv1n/medG+61191d7b32P8T/tAZCsLe Z38//KU+BRHT2lbs39C9Oid2mVK+X8Mex3/3mlT+Z8T/dq8d2IdGx3vzo9+f Q36H1EO9DnM/6W5y/mXtH8+gHn97pgOjY22ncw4470jqjoCfiR+HVoJd2OXQ o0sjPxfNgT+wy5eGr720rryj4FFYBo+4X1nY6xytdy+I+JFeU4/y7qs9tXdF OAGOh78LIq7Yfn2uee137GPRY+DPgtAKnk32sfb186efQ/0OVF1l901AHvQl Xh09TfdYyHd9NA1JKIAs/FUQKj/jmPRgQeSqZh92T/Rq6OGYehwgXhWtAv9g V0NP0bNir1NLw9e+0lO9dhKcqGdZGHWqL3QPaRF9apTG3GXJqYmervvGPhs9 B+p5vYbPdibU0rMsDLu2/bOgDowtiNiZnk09z3Bfqfwjidd1jfaV1nV9A6iv 50i8of0KhXGWk30exRo6TzNq1vKeWfPmYjdCz9VzLYw61W9jtsalsVbROY2d dwGc773Ot98MWkBzmFoQ9oX220F7aOs65Z5A7XloU2ji3Bbe6yK0pd4X7IvR 1npvsNuUhp/EvgTtoPfCOW2c16o06vMLY0/tnSkM1f6pwngP8/0uXloavQqI d0e76f3AvgztpOePfQV6ue4Fu3Np+JpB68rrWBpn0TkqFcaZ5B/nnI7uf4n3 6+Aend1Xe2rvrqXxPutdPrUw4oqdUhjveE/P0wW9yueSXgn3FYTdxf61cA0s KAj7Ovt3wUyYAb3heugFfaGP3r3CUPk3OCatURg91Otk7GHoUDizMHr0dk5v 96uOfSPaz/ZgtAhW6ft8afi1iA8vjV61nTPEeart7/r+9h+ndiA6AJ60Pcj+ SBgBdehzK3oL1McuQUdBXduj7Y+BUs+gmNb0PUfvhd4P/X7TXMN9TvUv9h7F 9s+idqx7NcQeXxp71/UM4z3HTXAzjIMJcBs0LYz4OM+sHmM9082uaUD8cfQx aFcYZx3oZ6Q+E91rGkyF1oWh8m+HO+EOaF4Y9nT79+p9gdmuu93zTEanwCTn qua8wnhnZrjPPejd0BJ7Vmn452Pfj86BY50zy3kz/c61KIw9tfcFhaHa/6LC OIfOcy723NLopfyl6MNwMfYD6Hy4EHsB+iC0wV5YGn7bwlhX3rzSOIvO0agw ziS/sXPmuVb7zPXc6rHQfbWn9l5SGp+t+lxNF0ZcsQ6F8Xn7qPddjD7k+5cu gva2F9t/ojSeZaGf6RN+riPG8I7Bubl8r9U7qPvK4f1GV8ByeAaehtdzQuU/ 5Zh0Yk7kquYS+v+B/gm/O6YeJxJfiT4Hb5D/EvqinjP2y6Xh3+34y157AZ7X +5ETdap/1j2kk4mvLo25Z2O/hq7RO4H9DvouvO311T7bGzqH3oOcsNfZfxPW 69nnRExr691zrftK5c8h/pZr3swJfcv178N7epbEP7C/ICfOssrnUewD52lG zfqgZ9a8D2B/hH6o55oTdaq/E3tDaawtcs4G530Gm/Tu5ITK3whfwOeqzwn7 S/vfwfew1XXKfZucT9BP4WPnqmYl8a/Rr2AI9jfoFj/Hb0vD34P9I/qD70ex b523uTTq1+bEntp7XU7oVj/3v9B9ztlWGr2U8xu6V3eE/RO6Q+8V9i/oz77n naXhv5UT68rbXhpn0TkW58SZ5C9xznY/O+2zzXOrx0731Z7ae09pvM96l7sX RlyxpTnxjmvtfezd6K/QLDd0l+eRvdv+/tI45zKfd7/PfDo/fzXgAPEctBxs xv6HtX/hb/gPDuoMOaHyDzgm7VkYuarZ4Nq//dwPo98h7DXYh48J/13ssugR UAaOgiPhc+IZNAtpONprXzpfuZvc83D3Pcp5R7pfWffJHRPnUW0emoDKjuX6 nBXhWNiSE3Yl+8fDcfBtTsQq2q6AHgPlrRVce4JrvssJPcH1SciHbcRT9re7 j3p8nROxlPM0o2b9wTNXds+M72O7fxY2++dB96S1n4i3QJvDPuxa6JlwBpwE J8JnxE9BT4YvsKuNCf+fnFhXXlXnSv8gXohWgQLnVnP9aXAqfEVOzTHxDv2b E1rT75PqVP+359Es3+REbXXXV3cv1Wpe5R30vtrzWt6rOmht2Er8PLSJ7pb3 /KwxsfYf8Xro2VAXGkB9vWe5ofLPcUz6Y07kquaQa1X3Pfa5aEM9G2objQl/ R07sqb0bQzNoCr0921me73yvabYmzv3ZPRu5bzPnqV7f0/V9Xd/19dwugF/I /1zPR88LroDLdef0bI22gjK2L7bfFtrAEbkR01oV7JbaAy6EO2Ca7js3Ylrb nxO17VzfCTrqPcgNlX+p978McolfgnbQO5Ib2h6Oyo0e6lU1N/KvcM1VcKXe HeK90Ov0HuRGrDNUwO6GdtW7hd0D7Q4VsXuOCf/U3FhXXhfnSo91n6vcS7k9 XX8NXA0nkNN7TOxdwzP09hwdfb5yxG9Ar4czc6P2Wtdf6166tz5jIq+mz36J z69YH9f3g756L8kZgA6E/lAEg/SeER9svx72UHSI7VJ0NOzMiboBzh/gHrVz o26wew0bE/X1iY8cE9+lXssJla/vVWPGRF99dxqFFsN53neY91a8xGsl9huT c6ffmws92xjPNwkmw0QYBzfBWLgVboE/c0Ll3+yYtBF9bvQd1coNvdH3dZN7 7coJVb/d2Leh48fE75Db0SmQoHbqmPBb5sYskzynYlOdp9oJrp9gv0Vu5Gr2 5rlxPp1TPxszYLrulp/r19A1en7kLEAfhLOw70Znel/Z99ifDbPGxLutmNZO z42ed7nvXd6jDfF7XdM2N/Re18+DudCO+Hz7epeeRZ/R886N2Hzn3Q9zxsR7 K73PPTXvA9DB8fu9pvgCry2HJ/QMyFmELoRO2A+jS+Ac7EfQpXq3uJNHx4R/ Q26sK2+xc6WXu89D7qXcR13/GCyDhuQ86b0H5IY+6TlUp/qziT+FroCi3Kh9 3PWPu1cr4k+PiTz10e9Pff5d4NjTrtfvuQv9zqxH1/kOn0dfgJXwEryo9yk3 VP4qx6SjCyNXNbe5VnV9sV9BX9b7pf/8Mib8/rnx7ugdWg2vw1qY6uf4nJ/l G14rcr5yJ7vnq+77uvPWuk71g8l5c0ycZzr2x+gnsMGxN33O9+BdGJcb9vv2 P4QP9D7kRkxrk7DfRt+Bt6zyZxL/yDVTckM/cv1G+BTuIL7J/v3uox7jCiO2 yXmaUbPO8cyad1pufN7ps25hbvybm/7tTf8Opc9Arc0gfvZN/I6EPyrwHYLY Fp2R+Fb0W+2N/d2Y8G/KjXXlbYZTxvL5CUeX5/MY/xf4CXbBTvja+cp9wz2/ c9+fnTsxN+rkj8f+Af0RvrfK/9xxxW7G/kq94Uvv9av3+wf+Vl1uqPz9sAf2 wm74A37XO5EbKv83x6RbcuNMOttJY6O39ticGz3Ua2tuqPpN4FnsQ//UO0L8 APqvngn2wTHhH8Deju6AbY4ddJ5q/3L9X/b/N79mn1QYdarfWT5UPfQzdQj9 T3eHfRSzHgm7c0PlHwE5UA72Ej8ePQ6urhAqv5LrlLuLnDJoWTjcWsZx9Tja /Y9Fj4FN2BXHhr8PuzJ6Ahx0TkXnHed9NrtPjnuVh1z4k/ipaDXYg12AFkIW ToSqmoWz56NJSEAaUjCtMGJaO+Q7OWxs3ItU/s7cWFfdNp9R59vpmfM8t1S+ nm9V713F77jehZzyEVfsqPIxo2b9KTfmyXimjOc7snys6xyHlY/zVvCZTxsb Z84l3gW9Crpjn4PWh7PhdKgBv9H/DLQmTOe8tcaGf0z5WFdededKKxBvi7aB S8rHPqf5fmvDmfA7Peui9eCssbGv9syWj/3llysf+XVcU8f1ZcrH/rU8U0No oDnKh32u/ZZwIZxXPmJaK4/dGG0CjaAZNFV++VD55zkmrVQ+clVzrGtVVxf7 AvR8+djNx4bfuHzsqb1bQCu4yDPorDrzEditvXa+81u4Vj2au6/WW7u+ru/p +PJxrxdDR9tt7V+q+4a/csPuaP8y6OT3s6PzLqe2PdpO69g99PzhGsc7eE3a 3vmXu1cX7K5j47252u9P1/+9Q2OjVzfb3TxzZ/QK5ZWPHpd7pivHxlp351zp vGvU2/0HoP2hH3Yv9Dq4Hvt6tLdnvmFs+A3Lx7ryrtVdj+PnAMqOi349/ayv 8/r9hRG/xmvqcYP7ak/tfSMMgoF6P8pHXLGm2EVeuxG7H9pXlA/to/fMdj/7 +vnTz+GnuVFX5L5DYLCf6Xj01v9j4szDtRy7909I7OHZc6baQyKKhGhQGpEI JaJCMpNUSkp73u0xRCgNEpVZKkMDicoYGTOmZMrQiBLV73N+1/kex++Pz3Gu ta611rWu+77389x75301D/bt6EgYAaPhDp0/KVT+KMekvZMiVzVDsBehi+EV x9RjGucdi45RjJxitEj3CbtkXPhjHS/x2ji4C/5IijrV3+ke0hHEy8fF3Lov 49EKXRfse9B74W6vl/ts1VAFjzQOu8Z+HdRCYVLEtFbqnpXuK5U/jvgE1wxL Cp3g+vtgIsyi//32xyfFWQp9HsXud55m1KwjPbPmrcB+AJ2k65sUdarfq3f7 cbFW7JwHnTcNpuqcSaHyH4YZMF2zJ4X9iP258ATMcZ1yJ5IzGZ0CDzlXNY8S fxSdqeuC/Tj6GDyOPXtc+HOwn0KfhN2HRmy282aNi/rHkmJP7T0/KVT7v5AU z+FwP4tPj4tedxJ/GX0JXsd+Dn0WlmLPQ5+HV7FfGBf+NSmxrrxnxsVZdI66 pDiT/JKkyNH6Es/8tOdWjxfcV3tq7xfHxfOsZ/mJxhFX7LWkeMa19ib2QnQB LEsKne99ZS+0v1R7Okf2q/Z/hz/gN63prOqvvvAGfJQUKn+5Y9IFSdFDvWZj f4Cuhq+Tood6rUgKVb+52CsV0/XlLO+h78KXxN8fF/5a7A/HRa8vkiL2vvNU u8r1q+xrtrfRt3RO2+/Y/wjWwLfEv0W/gY3Yn6KfyLf9mf218DmsS4rYp7b1 XOj5GOIzfuhzqv/H3uNj+1+R84V7rcdeNy72/tEzrPMcX+k66ezKg+/gl6SI K/Z9UvT4wjN97RrNfzCf6fXh5cZx1rf9fKrPBvf6GX6CrUmh8n+ETdpH8yaF /av97bADtrlOuVvI2Yj+oHmcq5rfkuOZ0fMyjxm2oJtVS/7WceF/hv0X+ifs TYrYVuf94WduZ1Lsud3PwHbv/19SnEPneQn773HRS89VPc69PyQzwz/Edvn+ /ovuhnrE/xsX/ndJsa68nePiLDrH5qQ400afcZfX90uOff723Orxn/tqT+29 X2F8t+p79bDkiCuWkhzft1r7iZ77dO5xMad0j+5NUtj77DcojHt5RHJoA9/X NfAhzCB+uPaB5tiHoklwCKRqT8hPDpWf7Ji0SXLkquZP9r0AvRB6OaYePxNP R9OggPwcNBuOw25YGP4xjjf0WiZkwLHJUaf6hHtImxI/ojDmboZ9FHoknIDd VP3gaK8f4bPlQmNomRx2nv0CnQ9aJUdMay3cs5H7SuUfT7yJa05MDm3i+maa F04mfpz9U5PjLFk+j2LHOU8zNnV+U897EnZz7ePaLF+Lo7FbFMbaac5p4byT NTu0Sw6Vf5Lq4RTHZbe23wE6whmuU24bck7UtdE1dK5qziB+uva03Q5tq3rs 9oXhd8LuhJ4JXZzT3nltCqNe+R29t3I6eH/V9kYvEtidC6NXN+zz0fPgXOxu aFc4C/sstLvtswvDPyc51pXXpTDOcoKvVUv7bZzTxf21T2fPrR5nu6/21N49 C+N51rN8QXLEFTs/OZ5xrZ2HfS7aw3NKz/E8/xez36cwztnL5+3jM1dAuZ+9 a9DBArsveglcDJdBP9Unh8q/1DFp3+TI7eucvq67ELs/ernysAcUhn8x9hXo lTAQBsFVhfH+OQq9A0bC1V7b5HzlXumeA9x3kPOucj/l/abfHQrjPPrsvQ0d BkMdu9bnvAluhHcah32z/SFwi/KSI6a1G7Cvl8J1Vvk76H+ra3KTQ291/QgY XhifFbfbv9l91OOo5Ijd7jzNqFlvSg7VvPp8G+Xrcax/FvRMn+brpLVbiM9A p+t5wq5Cq6ESxsFdmol4EVpYGJ9RxYXhD02OdeWNda5Un8N3omNgtHOLXV8K JYXxOTbez9Cw5NDxfp5Up/ohnqfSOaotc32Ze92WHPMq7xTvqz31+VyL1uga YU9GH4IO2HWFsdYa+270HpgA98FEaJscKv9ex6SjkyNXNae7VnWjsCeh92t2 7AcKw2+fHHtq7wfhYZii6+DZ6jzfVK+d6Xzl3uWeD7jvw85T/df+++KiQ+O+ TdP1TY6/O2rtfuLziD2vWYk/hs7StbX9uP05MFvXPTliWuuOPRN9FB6BX+Bn eC45Ylrrmhy1c13/LDwDPZND5T/t/Z8rjM+cp9AnoUdy6BO6Z8nRQ73OTo78 ea5ZAPN1b4i/hr5aGJ8Dir1QGJ9pL6Ev6t5gv4K+DH2wFxWGPzE51pW30LnS i9xngXspd5Hrl8DiwvhcWlYYe9/vGZZ5jmd8vhriy9HXdb+To3ap65e6133E 3yiMvPt99qd8fsXecP0KeBMuJ+ct9G1YBe/CO7r/xN+zPwJ7Nfq+7j325+hn uqfJUaf6691HPR5Mjrr33OuDwqgfSfyjwniXuiM5VL7eq9YWRt+xxD9BP9a9 974feG/FP/Xap/bvJGeTn5tKz7bW830PG2EDfAlfwRfwLXwDRcmh8r92TDqH +Epfo+uSQ1f6en3lXuOSQ9Xvcezv0HW6ztg/oj/ovmH/VBh+RXLMopnKnPOT 81S73vXr7ZckR65mfyo5zqdz6mfjN/gV5hE/qoh3Lvgb+19iuzUT9mb0D5hv e4v9bbAVFiZHTGu1ydHzd/f93XtUE9/umgnJodtdvxP+1j0mvsv+O9gJZkmF lckR2+W8v+DPwohLdxTGM6x5/9F1dfwvryn+r9cOoV+Dovhe24P/n64V9v7E 9oNvsQ9A68EG7AOLwv8+OdaVt68wbOl699nrXso90PX14SD4lZxDi2Lvzcmh h3oO1an+G+LJ+EnOUe3Brj/YvfR7WUpR5OnnQp+f+v7TZ6hiKa7X55w+/0rJ ycfPK4o5M9BMSIccyIZVyaHysxyTbk2O3Az/G1aG67Y05p0ebVgU9+vwovD1 zOjZ0TN0BDSGRrDL9zHN9zLXazudf4Rt9TjcfRs7r5HrVL+FnIKiOM8/2Ceg J0ILxwp8zmPhGNjeOOxm9o+H4+CH5IhpbTf20WhTaGKVv5F4c9dsTw5t7vqT oKWeg1TeHe1vcp8mnk2xVs7TjJp1v5RQzbs3Of5t8GQ9BynxvzvU//5Q/7tE xU/12qWlvGvCJdAOvy3sofYMtL3uJbUdisJPS4l15bWBIiiEi4h3R8+CbnAO nK377HzlpqREjw7u2925h6dEnfx07DPRTtDRKj/LccV2cs1PQ0+H1t6rh/fr CxdrLSVUfh/oCefBuXAB9IJTUkLln++YtFVKnElnG+fe2uOElOjR0zk93a8l 9kXohe55KXqJZ+hXFH5b7C5oV+jsWD/nqba363vbb+35+9hWneoT7qMe9bAv Ry9z/0HoVbpeKaHyr4RrYLBqiA9Bb9G1SgmVf7PrlNuB+ED0ChhgHei4elzt /jeiN+g82DcVhd8deyh6q66Lc25y3i3ep7v7XONe18G1nq0ELdY1wR6N3gl3 wF0wVveJ+HB0BAyDkXC77ltKxLTWw9ekv6+LVH5716ruPJ9xgOOa+TbPLR3q 6zPWe48piudBz8LFjivWOyVm1Kznp8Q8ozzTKM/X02fROS5MifNe7zOXFsWZ +xBfiC6ANtj3ohPhHqiAcuhLvBIdr/NgVxWFf2lKrCuvzLnSfsTnoLN1Jl/b Ul/fGqjW9SE+Ab0b6opiX+35QErsL//AlMivdU2t6/t7nirPdD/cB/VTwp5k fyY8ovufEjGtPYT9oFR7wcMwRc9KSqj8yY5Jk1IiVzU3ulZ1qdjT0KmQgT29 KPybU2JP7T0DZsGjRfE5o7PqzIem8S7vtSHOn+EZ1GO6+2r9MddP8HW6IiWu 6+O6Prlhz7H/NDwFJ6eE/Yz95+BZODUlYlobjv0EOtczvIK+rGfH8Se9JpV/ EvHn3WsE9otF8dyM9PPzop8h9VCvl2xL25HzAjoPTkuJHs97pvlFsXa7c+Y7 bwkshjuIv4WugrHYr6Gvwmjs19Fl0Al7eVH4d6bEuvKWwpXFfL7AFcXRbxGc 4Rytd0yJ+BKvqcdy99We2nslvANve4ZVjnXDftdrZ2GvQN+EMSmhb0AX2yvs 6+dPP4f67FLdu+77PrwH5xBfh35bFD/vH6Jr4AP4BD6G4pRQ+R85JtVni3JV U4SdxZmzIbM4Yuqhz8bP0c+gBPtr9Kui+Dz5pij8Mse/8doXsLYoPkNUp/pP 3UOqz8DvimLucuwN6Pqi+Cz9Ff0NNnn9O5/tB9gIFSlh/2j/Z/ipKD5nfnRe P/f83n2lG1z7i2uqUkJ/cf0f8Dscksu7pv3qlDjLlz6PYpudpxk16wDPvMk9 t6JbYGBK1Km+FHtbUazd6pxtztsJf8PVKaHy/4J/YJfufUrYu+3X494cAPsX R75yJ5OzA/0TtjtXNVOI/4f+C7XY+9C9kMwZ9ysO/1HiB2EfCI84R2vK21MU 9Q+nxJ7a++6UUO0/NSWew9V+FusXR697iGeg6fAW9iFoA5iDnYQeCpOwk4vD n5ES68o7uDjOonNMSIkzyb/XOVpP5MY+9T23eiS7r/bU3mnF8TzrWZ6dEnHF HkuJZ1xrb2Mn0FSYmRKaAs/YTthvCDnOl32Y/bPhHDgLjoAj4XBoDI3g45RQ +Uc5Jv0oJXqo11zs49Bm8GNK9FCvD1JC1e9J7Dw0F77DPgZtCj9gH1scvmqP L45ePzvnWOepNt/1+fbXk9MELYCNto+23wKau08b9HTYgt0SPRE22T7J/snQ Cn5LiVhL26v9OVXoMx7vc6r/Cd7jBPvqeYp7/YHdtjj23uYZ2nqO1nAanArt oZ1zWjumWvU4xTOd5hrNfzU6SM9JapxVZ/4+Jfqc4V5doDPsTAmV3wm6QVfY mxJ2d/vnQy84z3XK/YucjuiZ0MG5qhmUEs+Mnhf9/nsu2gMOYJ6exeFfT86F 6AVwUGrEejrvHD9zmqGX9741Ear966fGOXSeHeRcVBy9DiY+EB0ASdgXo32g AfYlaF/nXFoc/iGpsa683sVxlg7ueaZ9nbGP1x/1zBd5bvW41H21p/buXxzf rfpebZgb8f7e6yqvpWBfjl7meyTtVxw/j7Ivtz+4OO7lGt/Twb6vzUt4xmAx tbfjj9B1Juda9Dq4Bm6EG2BDSqj86x2TZqRGrmoS2E+hT8OTjqnHJ9Tegt5c HD87w9Db4Bfs4cXhN0oNHe61W2EI/JQSdaq/yT2kOeSPLI65G2PfgY6C38kv RkugyOsjfbYxcCdsTgl7rP1xcBdsTYmY1vLcc7T7SuXnEi90TX5qaKHry6AU /qRPuf0mqXGWoT6PYuXO04yatSA1VPNup3Y8WgF/p0Sd6o8ip7I41o5ODa10 3gSog6apofJr4R64G/5JCfte+5NhCjzkOuUeyTNWjdZAlXNVo+f/PnQitMR+ AJ0EJ2E/WBz+ydhT0Yfh35SIPei8+4ujXvlTvHfb1FDt34h9n0WfgXfSeT8v jl6nkfMEOhc6YT+CzoD22I+iM+EM7FnF4bdJjXXlTS+Os+gcu1LiTNW+PjO8 3s4zT/Pc6jHLfbWn9p5THM+znuWuqRFXrHNqPONa64I9G30cOqaGPgZn2p5t /7niOOe+lNDnfOb18J3uI/nL0Nd0v7HnoS/A87AQFsA5qaHy5zsm7ZYaufNs z3Ndd+yX0BfhMuyXi8O/AnsRuhhegaWwBAYQ/wj9GNbAq1672vnKPdA9X3bf pc5b4n7K60/O68VxniHY76Hvw7uOve5zroQVMDw17FX234a3YFhqxFbafgN9 E5Zb5Q8l/o5rRqaGvuP6D2A1HEP8Q/uj3Ec9bkuN2IfO04yadaxn1rwjfE10 PY7JjWdZz/REXyetFZHzj541PUvYG9Ef4Hv4AtZCKfGv0C+hEvvr4vDLUmNd eZ87V9qK+KfoZ/CJc792/bfwDRzHPBv8DJ2SGrrBz5PqVN/M82iWAxJRu871 69yrOjXmVV6h99Wed2D/hP4Ixdg70O3wIPbPxbF2N/Ym9Ff4Bf6A3+He1FD5 vzkmvSc1cjfZ3uS6cuwt6GZdW+ytxeHflxp7au9t8Bf86Rm0/8+e72+vTXa+ cie551b3/ct5qv/P7+t619d92+nau/k+vAcmQBIcCnOI72V9D0yzvc/+/qzv BzNSI6Y12f9qD9gNXVnvUhKfCYr96z6qref6BnAwPJ4aKr++9z/E8YPQA2FW augB8Ghq9Njf9qGeWzWpkAJPED8cPQyeS41Yss+VjqbBU9iZaAY8i51VEr7i WldewrkJ90zxHsnOzXJ9DmTDM+QcURJ7z/MMR3iOg30+neUo9EjnqLah6xu6 l2ZuVBJ58332g3x+xRq5PhcaO6cAbQL50BSOhpeIH2P/Fexm6LG2W6EnwWup UVfg/AL3WJgadce413ElUa93pxYl8S61NDW0hd+rTi6Jvq8TPxE9wTnNXK+9 FW/ptZb2NUO3knhuPvJsJ3u+DtARzoBToTWcAm3gdFiRGir/NMekbxDP8zXS WaR5vl6t3Us5p7qfZm6HtnXPTuiZsAa7c0n4mq2jZzrdOZ2dp9r2rm9vf1Vq 5Gr2D1LjfDqnfjbOgu4l8d16BzoKDuHz6hK0L/xCvAd6Dnxm+1z750HPkvi+ U0xrn6dGz7Pd92zv8Qnx812jHOn5ru8NF5XE92Mf+z9h34TeqDPkRqyP8y6E C+CL1NBeJfEdrXkvLonvzQuc18vnuMRr18Bg+JOcfuilJfG9PwDtD9uwr0AH 6v6x75Ul4f+dGuvKu9y50q3uc5l7KfdK1w+Cq0rie/Za7/1Paui1nkN1qt9M /Hr0upL4PlXt1a6/2r002w0lkad59Pn5jz9DFbvB9f/680/fiXfhj4Uk7ukQ nRVugWFwG+xODZU/1DGpvouVq5r9Xau6ncRH6Ex6/rg+t5eE3yARz46eoZFw J4zWM5kb9/Fm38sxXvtfvnL3uuft7nun80a7TvX7kT+uJM4znvwqtBoqHRvn c5ZCCXTJDbvMfgWUQ3oiYlpLxS5Ci6HQKj9BfLxr9J0oHe/6WqiBZHLq7D+Q GnXqUT8RsTrnaUbNmpUI1bzdcuP7Tt91D6XGv7np397093Z9B2otOxEx/Vvc X43Zg9gkmEr+Q+iDcBg5k0vCn54a68q7H76CL6EjOTPRR+EReAxmQUEi8pWb k4gek913pnPzElEn/zH6P6z9YYpV/lGJUMUeIWcieh/c670e937z4Hk4PhEq /zmYA3NhNjwFT4rUUPlPOCY9JhFn0tm+cG/tMTs1esxxzhz3m0v8GfRpgT0f fUFzYC8oCb85+dPRGTDNsQXOU+2zrn/W/nGeX7Pr+1p1qm/kPuoxk/iL6EL1 wV6KLoETE6HyF8MyeA1aEn8bfQteTQ2Vv8p1yn2R+CvoInjZKv+ERPR4VXFy VqBvqg57ZUn4rch5F30HTk5EbKXz3vI+rdxnmXsth9e1D32+Qb+GduR8gn4K H8Na+Fy9yFmNfgDvwxr4EE5LRExry31NXvJ1kcpvkYh11Z2aiDPpfAtSY+b3 PLdU/rLU2FN7f1YSz4Oehd65EVesTSJm1KxnJGKejzzTR57vzdRY1zkuzI3z vuEzf1sSZ36LnEQpnxNwI31+I/Y7/Arr4TvoQfx7dIPtjSXh90zEuvLWOVd6 DvH96bcfXJWIfb719f0RfoCLiP+CboKfS2Jf7dk3N/aXf3ki8n9yzU+uv8Dz bPRMm+EPXb/UsLfY/xd2w+BExLTWD3sbuh22wl/wJwxMhMrf4Zh0QCJyt9ne 5rr+2DvRv127qyT8KxOxp/b+B/bAf55BZ9WZd/MZuNdr1zhfuVe75y731fpe 1//i69Q3Edd1H/Zttve3Xx89CK5LhH2w/UOgAVyfiFh92weg9Upjhkw0A252 /ECvSQ9wz0Pd6wbstNJ4bm5KhKb5GVIP9Uq3ne6cZDTJtepxqGdKKY21G52T 4rwcyIZbiBeg+XA79uHoYTAE+0j0CNtHlYY/NBHrymsIi2EJLHK/LJ/xMK+r f7b3y3KPo9xXe2rvPDgamsCW1Igrpuvf1GvDsHPRxraljTyP7Fz7+vnTz+FJ iahr6r7HwjFwGc9/W7QNFJJzPNocjoMT4QQoToTKb+GYdHQiclUzFnuoZoRb HVOP4cRboSdBkb5/0dZwBfueXhp+peOne+0UOBlKE1Gn+pbuIR1AbbvSmLuK nDPQ9qXxHtgdPQu6eb2dz3YmdISaRNid7HeBzjAoN2JaG+eeHdxXeobn6eqa exKhXV1/DpwNg+nTw75ydJZTfR7FejhPM2rWexOhmrcCuyd6LtyXiDrV79C7 fWms7UkNPc95veEieDARKv9CuBj6wHW5Yfe1P1DXXtfQdcqdQG0v9AI437mq eSAR/82V/nurydiX63kpjfe0/qXh6x3sKvRKmOSc/s7Tf6ul+oMSsaf2np4I 1f435MZz2MzP4qDS6DVD78boLbr+2NfounqG69BrYSr29aXhP5aIdeVdXRpn 0Tn0N6IL7N/vHK0nPPMgz60e17uv9tTeN5fG86xn+dbciCs2OxHPuNaewL4J vRFmJUJvUI/csG+yPxyGwcxE2CPsz9Ls8CiMhFFwO9wJo3WPE6Hy73BM+mIi eqjXmdjlaBm8m4ge6nVuIlT9FmCPRcfASuwStBjexC4tDV/fjxWl0Wuuc0qd p9q7XH+X/eXkFKLjdJ7csIvsV8J4eJKc+9H74AvsGrQaPrZda38C1MGniYhp 7ZlEPBd6Psb4jBU+p/pXeY8q+++Rc7d7Paf38NLYe75nmOQ57oWJcA88CA/A V4mIK/Z5Inrc7ZkmumYe8VfRpbAjEWfVmd9KRJ+H3Gs6TINXEqHyp8IjMAPW J8Keaf8JXSddc9cpdx05U9CHYbJzVbM4Ec+Mnpel2LPRx+E17Dml4f+I/TT6 lObLjdgc5z3mZ+6HROypvX9KhGr/1xNxDp1nIfYzpdHrZ71Doi/DNuzndY1h E/YLujbwO/b80vD/SMS68p4tjbPoHN8k4kzyX3KO1n/xzM94bvWY777aU3u/ VBrfrfpe/TMRccW2JOL7drFne1GzOy5d4Hlkv2j/tdK4l3/5nr7m+zq+jGcM nkvjvRb/A7iWnNfR5bAMVsCbsDsRKv8Nx6T/JSJXNTuxD6JffTiwLGLLvO9b 6Cqoz17vo+9BKvbq0vAvTYSu9to78LbzVaf6le4hPZD4mtKY+0jsj9GP4BTs r3Xt4Suvr/HZPoNPS+PfkWV/bv8LWAunpUVMa+3c8xP3lcpvQ/xL13RIC/3S 9evgW6jkOfzO/jlpcZZ3fR7FvnOeZtSsnT2z5m2PvQFdD2emRZ3qD8b+vjTW ejjne+f9Aj/D+Wmh8n+CX2ET1OaG/Zv9HXqmYLvrlHsWtT+gP8JG56rmPOJ/ oL/DBdhb9ayVxmf7ttLwuxL/W/cZejpnm/M2l0b9HYnYU3tfnBaq/ScwWwOe lYPhMuI7S6NXX+wDiNWD/ti7if3jGf5D/4V7qd1TGr5ytK68XaVxFp1D77Q/ 2u/iHK3rHU/77PTc6rHHfbWn9t6/LJ5nPctXpEVcsfty4xnXWrl+R0D3UTcg LXQv9LatNfmHlMU5B6WFHuIzt4d2ZfFddgR6OFxHThKaDIdCAlKhLhEqP8Ux 6eC0yFXNVa5V3QPMmY6mwUPYGWXh30BOFpoNmdAQcsrinaoFegI0h8O8Ntj5 yr0yLXpkuG9D5+W4n/JuJOfIsjjPEOxj0GOhqWNH+px5kAtD08LOt98ECmB6 bsS09jCzNUIbw1FW+bdQe7Rrbk8LPdr1x0GzsnhfOt6+9mrkHlNzI3a88zSj Zh3pmTXvzWlxTXQ97vDPwmb/POg6aW1eJs802gdqyemIngkd4BQ4GcYRb42e CrPY97Sy8O9Ki3XltXKudDjxluhJcKJzT3N9Gzgdisg5w89QcVroGX6eVNfS /Tt6ljFpUdvW9W3da0Ui5lVemffVnjOZszPaCWZj90LPh/HkdCmLtVLsbmh3 6ArnwNlQlRYq/yzHpHNzI1c1+h7s5roK8s9Fe/gsPcvC/y0Re2rv8+BCuAC2 JmL/Lp7vIq/VpEW+cqvds6f7Xug81etvjPr7ov5GqvvWG7Yn4u+OWpvC7x3X EbsW7qXPZWg/+DsR9uX2B0B/2JWImNYmkH8Jein0hRkwvSw+5xXTWl1a1A50 /WC4Gg5KC5U/yPtfA5OIX4VeCfekhV5RFt+/Az3H3WmRf51rboQb4EHit6Mj YGpaxK6Hp/Wej94MDYjfig6Bh7CHloU/JS3WlXeTc6X3uc+N7qXcoa4fBre5 dmRZ7D3dM4z0HFf7fDrLHego56h2uOuHu5dmHl0WeY/47Ff5/IqNdv0YuBNm kTMOLYS79DxBETzHeUvsP01OGVqq+8E1rENrYWFa1Kl+jvuox+y0qCtxr/Ky qH+CeGVZvEudnh4qX+9VE8qi7wJyqtEqeMH7lntvxWu8VmN/HjmP+LlZlBY9 Jni+ybquuke6dnCv7jvcr3sCr6SFyp/o2ETPMNbXSNdQOtbX6173ejEtVP3m Yz+g564s3nOmog/DS9jTysJflhazaKbXnDPNeap90PUP2lf/yZ59fm6cT+fU z8ajMBOW6r0L/Qg2Yr+g6wErsR9HH9MMuWHPtj9X98o5imntjbToOct9Z3mP N4k/4ZruaaFPuP5ZeAaWE3/O/nvYK9EV8GVaxJ5z3tPwFLybFvqkrn9uzPt8 WbyPPeW8J32OF7y2TNcMPiRnga4HLKH2ZZ0PPia+SP3gVeKLy8L/KC3Wlfei c6Vvu89C91LuYtcvVW/4lJzXvffatNDXPYfqFrj/G7oGWsuN2ldd/6p7XUTO m2WR93lafH7q+6+3Y2+6Xp9z+vzT7y9rlQs/kv82+g68Be/rGsN3aaHy33VM +lla5KpmnWtV9wazfYCuLot3qg/Lwtc90rOjZ2iNzgyfwKrcuI+rfC8/89r3 zlfuN2nR40P3/dR5n7hO9f30zl8W57kWeyP6g/o49oXP+a36wYa0sNfZX6+z lsV70Trn/Yb9Ffq15rfK/1Xv+a7RdZNucP1PisEveue3v9191OPt3Ij97DzN qFm3eWbN+x45m9RD58U+4wreIeC2Q9i7LNaU/7tm1H3Uuz26BXZib9e6rh21 O8rC/zst1pW3GVqX884CTxL/F/8/2A17YU9ZvG9sce4W99zhvv8696+0qJO/ D/sv7aN5rPLvdFyxfzzzH55be+3zfknMcigckh4q/xDYH+rBfnAQHCjSQ+Uf 4Jj089w4k852Snn03ut967nXQemh6vcf8YPR+nAw8RQ0WXnYqeXhTyZnl3ro 2pZFLNV5qm3g+gb270/zOeCL3KhT/V73UY+PiaexnoB09mqI5sCMtFD52XAE HA5HktMELSiP71Cp/HzXKTebnEw0CzKs8qelRY/D4Fv2zUUbw3fYeeXhN6K2 KXq01tIjlue8Au9zeHr0OcK9jtJcmpX46ehp5fE9eyLaEk6Ak6GVIN4MPQ6O heZwvO5ZSsS0dmx6XJP0/12X8vAfTvO66n1GnS/TMx/juaXy89JjT+19kp9x PQutHVfspPSYUbM+nhbztPBMLTxfC59F52iZHudt5DO3KY8z6+8zN6E3wlXk nIWeDd2hPbSDTsQ7oGeUxztGx/Lw26fHuvLaOlf6g/67dLQ/XOpr28bXtxOc CR2Jd0W7QZfy2Fd7/pIb+8vvkR75nV3T2fVdPU9Hz9QDztF6etjn2r8E+sKS tIj93xo556HnQ0+4EC6AXumh8nv9L6ZrkR65qunmWtXpXag3ehH8zsx9ysM/ Pz321N4XQz9dA9icG2ft6ut5mdcucb5yL0yPHn3cV+uXub6rr5PeIXVdL9dM 6WEPsD9I9xC25YZ9tf1rYLD2SI+Y1gZiXyEtj/eWW9EhynP8Sq9Jr/Bs17rX Fdg3l8dz85afn5v9DKmHet1iW9qf/OvR62BHbvS41jPdUB5rA51zg/OGwW06 A/Fx6F2qwb4dHQEfsO8odCTsoucd5eHflB7ryhsO2RV8vkBWRfQbCn/nRs5w 97zN+w11jzvcV3tq77FQBIWaLz3iiuk9p9hrQ4mPQe/UtUgPHa1rbXuMff38 6edwZlrUFbtvKZTAf8w2Cb1fZ6C2Ah0P5VANVZoxPVR+pWPSvbmRq5qv6f8u +h6845h6DKO2Dq3VObEnovfC/nm8z5eHP87x+7x2N0woj3dm1am+xj2kQ8h/ oDzmLsR+CH0QDqDnTPRReMTrD/hsD8MUnT897Kn2p8M0Xd/0iGnt57ToOdl9 pQ95zhmuKUsPneH6x2CWzk38cfub0+Is9/g8ij3uPM2oWUvTQzVvfeafg86G BnlRd7ev4dzyWKtJD53rvGfhGe/7jP2n4Xl4TvcqPex59l+BRfCy65Sr958n 0afgCeeq5h5q56MvQDLzvIgu1D0j/lJ5+P9SuwRdrDOmR+wl5y0oj/q702NP 7f1Qeqj2T82L57DMz+LS8ug1mZy30bd0XbCXoa953+Xo65BO7Rvl4StH68p7 tTzOonOUpMeZ5Nc6R+t6n1ni/Ra7xxvuqz2196ryeJ71LM9Kj7himXnxjGvt COIr0RW6l+mhb+qZs73S/mp4H7Lzwv7A/h7YC//BGvgIPoRP4RM9L+mh8j92 TDonPXqo12zs79B1umfp0UO9ctND1e9h7M/Rz6AhM3yDfq3rQvzb8vD1nrC+ PHo9nh6xb52n2rWuX2v/KXK+RL/QM2T7K/vfwwY4kr02o3/o/pHzI/qDngvb P9n/BX7Wc5MeMa0tTI/nQs/HrT7jep9T/Td6j43255Ozyb1ewd5SHnsvSw/d 4jl+g9/hV9gGW6FxXsQVW5IePTZ5pt9do56H8ZneEI7Pi7PqzHPTo89299oF O/UcpYfK/xt2wz96ttLD/tf+AfQ7EOpVRL5y3yTnT/Qv2OFc1byXHs+Mnpd8 ZtiPmn16FvV+XhH+R9j10YPgg/SI7e+8vX7m1qTHntpbPQ/w/u3S4xw6zwrs gyui12d6h0Qz4Fv9roEeAp9iJ6NJsFa/C1SE3yE91pXXoCLOonOcnB5nkr/c OVpvmhf7HOy51SPFfbWn9k6viO9Wfa/qfSzDsU/S4/s22zOkoQn4Jj00FY7N CzvN/uEVcS9/8D093Pd1A6yHWzO4x+hxFfGediR6FBwBudDYtY3tN3JM2iIv clXzIzlXoYPgSsfU4yviBWg+nIV9LHoMbNQ7f0X4mxxv5rWjoQl8nx51qs9z D+nPxJtXxNyyT9As0Ip5TkNPh9Zeb+6znQQt4Zf0sFvZPwVOluZFTGs73PNE 95XK3078VNfIlp7q+rbQBrbqvd3+rvQ4S1OfR7F2ztOMmrVPeqjm/Qv7DLS9 1vKiTvW/6p28ItZ2OqeD87pCF9iXHiq/M3SHbvB3ethn2e8FF8D5rlNuG/Y6 E+0EHZ2rmv14Ns5Bz66Id9ee6LmwR+/qFeEfSM5F6IVQPyNi5zmvR0XU706P PbX3ARmh2v8M9h2MXq25sXtXRK/r9Z6MDoQM8vuiF0MS9qXoJVAPu19F+MkZ sa68PhVxlo7et5P9y9MjR+sd82Kf3p5bPfq5r/bU3gMq4nnWs3xIRsQV65wX z7jWMon3V2+fXXpZRbyvyu5v/5qKOKfOMti+zvwgPKB7TXwkejvkYF+nawDX wk1wIxyWESr/BsekaRmRq5oR6aGqyyZ+C3qz7iczD6kIvyHxoehtcCsMh2G6 T+RUolUwXr28lut85R7hnkPcd7jzhrmf8sYww6iKOE8e+SVoKRQ7NsrnHKtc aJQR9l32C2GcnqG8iGntaHJGo3fCHdbRnqfINU0yQotcXw5leuboU2G/ufuo h95pFatwnmbUrJXpoZr3mIy4JroeBf5Z0DN9tq+T1loQfx59TnHsKejDMBnu hglwCvF70XvgOOyJFeGfmhHryqtzrvQiZq5Ba6HauRNdfz/cB33IecjP0KT0 0If8PKmuxvNP8SytMqJ2kusnuZdm07zKa5sRddpT78PT0KlwCXs9iT4B7cmZ XhFrbbAfQWfCDHgMZkGnjFD5jzom7ZcXuaqZlh46wz1no4/D6dhzKsLvnBF7 au+58DQ8VRHvgdp/uud7xmt6J3zCuXpnU4857vu081Sv93S9r+tdX/ftWejI Xt3G87kHXWE5sdfhQuIL0QW697ZftP8yvARX5kXs//LY9wXtAfPgH9ilZysj Ylo7KyNqX3H9a/AqnJ8RKn+p918GFxNfgi7Wnumhi6BrRvRQr/MyIn+5a1bA m7p3xD9EP4BBGRF7A65m5rfQVRXxHvgO+rbuETnvVoR/eUasK2+lc6W93WeF eyn3Xde/D+/BAHLWVMTeV3uGNZ7jVZ9vEft+jH4E12dE7WrXr3avgcQ/qYi8 1332JT6/Yp+4/jP4tCLeRb9Av4S18DV8BbfQ5xv7t2GvQ7/VvlyHn9Gf4Ka8 qFP9jRmha12rum/c67uKqB9F/PuKeJe6IyNUvt6rfqmIvmOI/4BuhNu973fe W/Efvfaj/bHk7PZzU5sRPX7xfDvgT9gOv8JvsAk2wx9QlhEq/3fHpLdwrs99 jW7ICP3c1+s391qdHqp+48jZim6BO7H/Rv+CofTZWRF+TUbMssP5iu10nmq3 uX6b/fKMyNXsesfW+XRO/Wz8B//CMPqfwM9eC/hP79toEjxE7T7W98IE2/uN D78euj9UZURMa1+mR8897rvHe2jmA8ZHzb0ZoQe4vgEcDPcRP8T+Bvrkobnw cEbEDnFefTgI7skIPRBuz4t5D4VReRGv7zXFk712BBwOM6hNRVPgbuwMNN0z ZKGZ8AB29vjwp2XEuvLSnCvV+6H6JNxLudmubwg5MIZ5jvTeW9JDj/QcqlP9 ZPo3Qo+Cu/Ki9jDXH+ZeU8lpPD7yHsuIz099/+kzVLHGrtfnnD7/BtLnZPxW MIf8JujRUADHwjHwREao/KaOSR/NiNwmvlZNXKf36uPQZlBM/+PHhz83I54d PUPNoSWcCKV5cR/zfS9P8trzzlfuUxnR43j3bem8E12n+sfJOWV8nGcedkf0 TOjg2Ck+Zxs4HSrywm5rvz20g2czIqa1l7Bbo6fBqdbWnucM17ycEXqG6ztD J1hEvIv9Bu6jHnonV6yL8zRjR+/V0fNW5sX3nb7rFuodewLfFXDxhPgO1NpS 4jOr+J6G0Vm82xM7V88L8fPR86COPr3Gh/9mRqwrrwfcC/fAVuKXoJdCX7gM +mk9L/KV+5p79nLfS5y7PCPq5L+NfSF6EVxglb/CccUWY5+NngNnea/Lvd91 cC28mxEq/xoYAAOhP1wFV8KHGaHyr3BMel9enElnu9u9tcdbGdFDvY7KCO3v va5GB8Eq7BvQ6+EB+tw4PvzPifdBL4bejt3oPNUOdv1g+2s8v2bXu7Hq+vga 9nEP/b5wM3oTrMYejg6DZhmh8m+DkXA7fKP3Z3QcbMwIlX+X65T7JfFb0aEw xHqr51ePEfAp9hj0Tlind/vx4Z+EXYwWwVfOGeu8cd5nWl70Geled8AoeFh/ P0cnwk/UVqM1UAUT9AxCB+JlaDmUwniogA0ZESvzPLomt/i6SOWvda3q2vqM Ot9DeTFzieeWyv8hI/bU3rXj43nQszArL+KK/ZoRM2rWnzNinkrPVOn5fvFZ dI6ZeXHe0T7z/ePjzNvIWYmugNxMPhO1j/LhQT1H3muy5oXZ9JkyPvxdGbGu vEnOler3lJfRl2BPRuxzv6/vVF1v2Ex8BvoITB8f+2rPfzNif/l9MiJ/mmum uf4fzzPFMz0Oj8GTeWHPtv8CzIOkzIhpbS+1c9EnYA48DU855yn7TzomvSwj clVzqWtVtwP7WfQZ1bDvc+PDT8mMPbX387AA5kNyZpx1hq/bQq9dkRH5yk3N jB7Pua/WF7p+hq/T3Ly4ri9CembYL9tfCksgOzPsV+0vg9fgyMyIaa0e9iL0 FcjEfgd9Gw51fLHXpPL3I/66ex2IvWp8PDcNMkNX+RlSD/V6y7Y0n5w30OXQ KDN6vO6Z3hwfa/Wd86bz3of34FjiX6BroQ32h+gHcBz2R+gaaI798fjwT8iM deWthtsq+XyBoZXR711o6hytN8uM+PteU4+P3Vd7au/P4Sv4cnz8rrHWsXbU fu21DtifoZ9C68zQT+B025/Z18+ffg6/zoi6r933W/gGOpG/Bd0MvbDXoxvg O/gBNkKXzFD53zsm7ZwZuaoZTP+mnPkYOLoyYuoxV/9dEPoTdCP/d/Q3uAD7 j/Hh93L8D69tgl/g/MyoU/2P7iE9m/jW8TF3b+zt6DYYwgz/ov/Bbq9v9dn+ gj/1LOaF/bf9XbATLsyMmNb6uecO95XK70n8H9dclhn6j+v3wh64hPg++wMz 4yy/+jyK7XOeZtSsfTJDNa9+j9ufa7cfvJ4XdarvQU69ylgbkBlaz3kN4GC4 NjNUfn04FA6B/plhJ9nPhCzIcJ1y32CvA9GD4ADnquY6alPQ5Mr4PS4NTcAN xNMrw78KOwfNhsGZEUt3Xmpl1F+ZGXtq7yGZodp/ZV48h+v8LDasjF63ktME LYDh2Eegh7v2KPRIuA27UWX4xRmxrrzDKuMsB3jfg+yPcI7W38qLfRp6bvVo 5L7aU3vnV8bzrGd5ZGbEFXs3L55xrVXSMw/NVf/M0MZws+08+83gWHg/L+zj 7PeDy+BSaA4t4HhoCSd63xPtn+CYVL/rHee+Y8hph7aFj/Oih3qNzQxVv2HY rdCTYDT26ehpUILdpjL8SXonr4xe453TxnmqPdn1J9svIudU9BRYkxd2a/sd 4AwYR04P9BxYS04n9MzK+L1Pdmf7XaELfJYXsU6ebZ0/p/TZorna+5zq39F7 dLRfSX4395qAfW5l7D3BM5zrOc6Cs6E7nAc9dT0zI65YeWb06OaZznbN3cRH 6HmsjN8jdFaduTAz+pzvXn2gN9yXGSr/IugLF1fG74ayL7F/BVwJA12n3Dpq L0AvhF7O7es5+/l5+YZr1R+9HCYSH1AZ/jTsQehVMCMzYgOcd5mfuamZsecV tq/w/uvy4hw6z0y951dGr2f0DokO0fzkX4teA49iX49eBxuovaEy/JmZsa68 wZVxFp2jNjPOJP9+52h9ime+2nOrxw3uqz219y2V8d2q79VHMiOu2Ma8+L7V 2pPEb0ZvggUZoTfCY5lh32z/9sq4l4/5nt7u+3oGvxe2h1P53bBCz0Jl/I42 Cr0DRsIYuFPXJDNU/mjHpD/nRa5qniVniZ4XWOyYeswhPg69C16nfylaAk8T L6sM/6XM0DKvFelZg015Uaf6se4hfZ788ZUxt+wqtBJ+J3+inkc9P14f77PV Qo2uVWbYdfbvhgmwOS9iWnvVPavdVyp/KfF7XCNbeo/rJ+k+6+zEH7D/Rmac pdjnUewB52lGzfp+RqjmXUb+Q+iDsC0v6lT/IvHJlbG23DmTnTcDpsN7maHy p+m51LOja54Z9qP2n4Sn4AnXKXcHez2MToUpzlXN+9Q+hs6qjN8x56Cz4R3i cyvDX4P9jO4nfJwZsbnOe7wy6ldkxp7a+8PMUO2/k31f0/WGz/R+Xhm91rPX IvQV+E3v8LrPsJac+egL8AH2gsrwv8iMdeU9VxlnmeJ9p9r/JCNytP5PXuzz rOdWjwXuqz2198uV8TzrWd6TF3HFVmbGM6617/Q7gu6Pzy5dWBm/G8p+yf6y yjjn+szQZT7zNtgKKflcR10bOBB7uZ4d3Tvtp3PAHxmh8t90TPp9ZuQu9zzL XbdP/0aAroJvib9dGf6P2O/qedF9hNW6z/Az8e/RjbBB19drf2VEvnLr5UeP t913tfPedz/l/aDfHSrjPL9jf6P94WvHPvI5P9c9r4zf6WSvtf+l7if8mhmx zz3bJ+inus5W+X8Q/8o1OzJDv3L9d7BO8+s9334z91GPjZkRW+88zahZt3tm zdsgP66Jrseh+fEs65me5euktV165+Rz9BDI5LP0T+2peWCTngU9b+T8pjPB f3r/rwx/d2asK+9n50pPJP4j+pOup3N/d/1mnVv3V+/tfob2zwrd7udJdapv kRnzaJY9mVG7xfVb3EvzaF7ltfO+2nML9k70bz2T9D+Q8x0Aadi7KmPtIOzd 6L86I+zVPnBIVqj8/xyTHpwVubtt73ad+uxH732u3b8q/KSs2FN714P6cBAk 8mP/XZ7vYK/lOF+5Cffc3321frDr9TdG/X2xJi/uWwPomhl/d9TaEp75o4gd CQX0SaCpcITtNPsZkK68rIhp7XDsZDRF88PF0AfOy4qY1hpmRW2m6w+Hw6Bx Vqj8ht7/CMdz0GzIywrNgqOyood6NcqK/KNck6s6OJb48ehxIitijaAJdgGa D82xj1asKn5XbVoVfrOsWFdennOlTd0n172U29T1x8IxmpV71Lwq9j7ZMzT3 HIf5fLnET0BbVMXvtqpt5vpm7tWKnBOrnOez5/j8ip3o+pOgpSDnFL3XaF84 DVpDG+Kn2+/LXm0V0zVmzi5oZ12v/KhTfWv3UY/D86PudPdqVxX1HcjpUBXv Uh2zQuXrvaprVfTtRvxMrVfF78htXa+9Fe/ktU72NWdfPzc3ZUaPrp6vl+4P nA/d4Sz1hx5wjvc6x/7ZjknzmL+Vr9FpWaGtfL3Ocq/uWaHq117/XoCeq3rs i9ALdX/p07sq/B5ZMYtmOtc5vZ2n2vNcf579qzMjV7N3yYrz6Zz62bgULtEz RP8qtBKGkXM9eh3cQe3l6GU6U1bY/e0PhAFV8TupYlrrnRU9+7lvP+9xEfEr XKOfR+kVrh+sGeE4ZrjGfl9yxqJj4PqsiF3jvEFwlfpnhV6pe5MV816rPR0f 5DXFr/faSLhdZyDnRvQGaM6+Q9BbNBPxoeitVfG7521V4aun1pV3s3OlF7vP Te6l3NtcP1zXEk6k/yjvfW1W6CjPoTrVDyQ+Wtdbz0p+1I5w/Qj3uoacO6si T7Y+P/X918CxO12vzzl9/h1GzgS0rip+DyrUmWAclEKJ9s4KlV/smPSU/MhV zU1Zoaq7GrscLdM10O8vVeHXZMazo2dovHyo1jXxfbzL97LWa8OzIl+5rfOj R4X71jiv2nWqL9M7f1WcR/tOQR+GyY7d/b9zwn3QNj/sSfYfhAeq4t/jJjlv JPa96ES4xyp/FPGHXDM5M/Qh10+Dqbp35Ey3X+g+6jE0K2LTnacZNes4z6x5 2+fHvw3OqIrfbfW3K/0NS3//Unym196s5V0T3oA5+LN1f+jzBDpX1x37yarw Z2fGuvIeh9/gV1hAzgvofJgHCxWriv8Ph9nOPTM/ejzpvi84V79XzrevvZ5G n4GnrPJrHFesM31moY/pXN7rRe+3HF7XHJmh8pfBy/AKvARLYLHuTVao/EWO Sauy4kw62yb31h4TsqKHet2XFap+3ZjnVXQpnIX9JvqG7jE5K6rCn4z9HPq8 zuvYCuep9jXXv2Zf/V/37A9kRZ3qa91HPYqxV6EroQf7rkbfh0eyQuW/B2vg Q91v4l+iX+h+ZIXKX+s65fakzzvou/C2Vf6izOjxATxI7Wfop74mn1eFv4qc r9Gv4ML8iH3uvC+8z/Ss6LPGvT6Gj6ri9+g/0N/1fJDzA/ojbIRf4Gc9c8TX od/Bt7AB1kPv/Ihp7e3MuCZv+bpI5T/k2m/d5x2f7+GsmPkbzy2V/1hW7Km9 f6qK50HPQt/8iCum34s1o2Z9Jivm+d4zfe/5nvZZdI5ZWXHeT3zmzVVx5oXE 86p5V6qO33H+I7YH/oVtsLUqfr52oNv1zOl3kKrwP82MdeVtca70UubMoF86 rMqKfTb7+v4Nf+m81P6D7oZdVbGv9rw8P/aXvygr8ne6ZqfrX/Y8f3qmfbAX lmaFvV91+MloUnXEFdPaN+xbD/sA2B/qw0GwPCtU/oGOSQfkR65qVmSFqk7/ FtkAPRhe0fdUdfhvZMWe2vtQSIUUWJYVZ9WZF+s932tvOV+5+t1ZPQ5xX60n XP+Pr9MLWXFd0+Cq/LAz7DeEHNiaGfZh9o+Aw+Hq/Ihp7V36ZKGZ8I7ez9Em 8LHj2V6Tyt9EzyPd60O9t1fHc/OOn598P0PqoV4FtqX6HbYRehSszIoeR3qm xtWxtiYrtLHzjoVjYK3ek9GT4fvDeM9Hj4MviLdAm8P1nOuE6vCVr3XlNYP3 4H2d1/2awrX5kaP11VkRP9Zr6nGC+2pP7d0KWsOpvj4nO3aj3tu9Vk/vvWhL PRuZoSfCV1lhn2T/E3/u6Gdfdae5bxs4XWckfi7aA7Zht0fPgHZwJnSE37NC 5XdwTDokP3JV04CcYrQEihxTj43Eu6Cd4Q/ss9Gz4De921eHn+z4OV7rBl31 DGRFneo7uYf0VvbtWR1zf0PO+eh5sA77EvRS6Ov1nj7bhXABrM8K+yL7faA3 bMiKmNZ2uGcv95XK3673fNf8mRV6sesvg37wk97n7f+dFWfp7vModrnzNKNm /csza94fsAeg/V3b3dfiUL3bV8faL84Z6LzBcDX8mxUqf5CeObgG9mSFfZ39 W2Go7p3rlLubnCvRq+AK56pmH/Eb0Ott34zeBAdm875YHX497GHobZCUHbFb nHdjddQrZ6j3bpAdqv0Pzo7nsK2fxeHV0Std78boOMjSuz16O2Rg34GO0jND 7ejq8FOyY115I6rjLDrHiPw4k/x/siJnhGuHeb/b3GO0+2pP7X1XdTzPepb1 zj/OsYzseMaLbY9Fx0Bqduid1fF3M9lj7ZdBaXX8vUV2uf0FsBDmw3iohAqo gWo4KjtUfpVjUv2dodx9s8h5AJ1UHX8bqXSvnOxQ9dPfc+rQ2ur4+8996ERo Qs791eE3w36wOno1zY7Y/c5T7QTXT7DfmJx70LudL/te+5PhIV0jrv/j6GM6 M/ZU9GE4JjvsafZnwPTq+LuNYlprmR3PhZ6P+lkx14M+p/pP8R5T7J9I/iPu dRz27OrY++Ts0Nme41GYBTNhLsyB1tkRV6xFdvR4xDPNcs0pxD9AV1fH3wd0 Vp05Lzv6POFez8Gz0D47VP4zMA+er46/V8h+wf4iWAyvuE65rah9Cn0annTu PM+5wM9LNdfzJfRFXSPiL1eH3wV7KboEumVH7GXnLfQz1zk79lxke5H3r82P c+g8JzLnq9XRq53eIdG3oRf5r6PL4GzsN9Dluu/6XaA6/LOyY115r1XHWXSO 8flxJvntnKP1Mz3zq55bPd50X+2pvd+qju9Wfa92z464Yvfmx/et1i4gvgpd qXNlha6AHtlhr7L/YXXcyx6+px/6vj5UwzMGHxBfj/9ddfw95CP0Y1gDn8Gn 0Ds7VP4njkkn5UeuavqQk0O/hpBdEzH1OI/4F+haXU/6f4t+AxcRX1cdfv/s 0HVe+wq+hAfzo071n7uHtC/5G6pjbtkb0e9hCvm/o3/Ab17f4LP9BD9Cv+yw f7a/CX6BqfkR09rV7vmD+0rlDyL+q2tkS391/RbYDFcS32r/+uw4y9c+j2Jb nacZNevlWaGa9xryt6PbYEZ+1Kn+cuI7qmPtOufscN4/sAtuzQ6VvxP+hd1w bXbY/9k/kHtzEBxQE/nKnclef6F/w5/OVc1Qaveie6rjbzj7U7Mf3EK8Xk34 I7APRuvDyOyI1XPevuqovzE79tTew7NDtf/j7Hs4ehg8jd2gJnrdqvdkNBNK yE9CD4Ux2CloMgzDTq0Jf2x2rCvvkJo4y5/eV2eSPygrcrQ+Jz/2aeC51SPV fbWn9s6oiedZz/Lo7Igr9mR+PONaKyWejqb57NJETfz9R3a6/SNq4pw6y+H2 debzoCcs0d/b0eNhHvZRaCM4EvIgFyqzQ+U3dkxalB25qhmTFaq6cuIFaD4U YzepCX88dlP0GDgamsGxUEu8A9oRzoDjvPZdeuQrtzQrejRx32bOO9b9mnrf FjVxnnuxT0fbwGmOtfA5W8FJMD8/7JPtnwqnwP3ZEWvlPieiLeEEq/yJxFu7 pjIrtLXr20FbeJH+7e0/4D7qUZEdsfbO04ya9UHPrHnv9jXR9Zjsn4V9/nnQ ddLaPXrnRK+BJ7AvQC+EXtANusIMas9Cu9fE34vOrglfPbs6r4tzpZOId0I7 w5nOPdv1PeAcmErO+X6GHs0OPd/Pk+pUPz075tEsj2dH7bmuP9e9ZmXHvMqb lhV12vNl/XsBehG8in0legW8QH6fmlh7ErsveglcDJdBP+/Vz/6ljkn1tynl quYp16puJnZ/9HJ4nb0G1IQ/Lzv21N4DYRBcBW94tj6e72qv/S9fuXPdc4D7 DnKe6vWervd1vevrvg2GBeTvRv+Ff+AOGAWvEL8JvRFW5od9s/0hcItzFNPa i9jXaw+4Dp6H5+Cn7Ihp7aXsqL3V9bfDCHgtO1T+cO8/sib+pjEMvU33Ijt0 KLyVHz3Ua15W5N/hmjFwp64V+RVoua5tdsRGwxLscehdsBy7CC2EFdjFNeG/ lhXryhvrXOl7+dFnjHspt9j1pVACq8kZXxN7v+sZxnuOET7fQuJVaGVN/K1G tWWuL3Ovd/R7QU3krfDZh/n8ilW7vhZqYA373o3eAxNgItwLHxO/z/4a+kxC 74dPsKej0+CL7KhT/UfZoerxVnbU3edeD9RE/fvMPLkm3qU+zw6Vr/eqGTXR 91NyHkanwGf5UfeA91Z8qtem2v+MPvP83Oh31enupfmehKfgCZgJj8Ij8Dg8 BuuyQ+XPckz6KfE6XyOdXVrn6/Woe32bHap+a5lzDjq7Jv4e8gz6NHxN/Nma 8Ddmxyya6YfsiD3rPNXOdf1c+7q2T3r2r7PjfDqnfjbmwwuagf4b0e8hLYdn F10OO8h/Uc8LrLf9kv1X4GX4NTtiWtubFT0XuO8C77FJ7/+u2S87dJHrX4NX YZve1e1vxv5c90RnzI/YMucthSXOkS6G/bNj3tdhQ37El3pN8Te8tgY+1Ayc cQX6JmzRe76eNdiF/S76ju33asLfnR3rylvlXOnO7Oiz0r2U+57rV8P7rv3I e++fE/qR51Cd6vW3jk/Qj2vid3zVfuD6D9zrP/0uUBN5B+XE56e+/wY79qnr 9Tmnz7/nyP8F/dn39Ev0Kz0Put/wDSTlhMr/2jFpZnbkquZg16ouQfw7dB2k EF9fE35qTjw7eoY2wI+6b+qTE/dxre/lT17LcP4G16rHevf90Xk/uE71h5Kz qSbOk4X9J/oX7HBsk8+5Gf5wjuwt9rfBVsjJiZjWDsP+Df0dfrX+5pztrjky J3S763fC39qPZ2yX/Xz3UY+GORHb5TzN+Kf3+tPzNvL3nb7rDs+Jf3PTv73p HU/fgVoryImY/i1urN7/a3lm4RjiB6D14A9mOLA2/KY5sa68fdSfhXaHi4gn oymQBAlIrY2/w+zn3Fz3PNB9k517dE7UyT8Ruz56MBxklV+QHapYM3L20G+v ntWa2CvN+x0FR0LbnFD5R0AGZEI65EA2tMoJlZ/lmHRHfpxJZ+vm3gnvm+le J+eEql9z7MPQhnAqdmO0EZyEnVsbfjvsQ9BDoYFjuc5T7eGuP9x+8+yYX7P/ lR91qj/BfdRjC/F8NK82/p7TDD0WOueEyj9GveB46ET8VOXqnuWEyj/Zdco9 nfjRus/QxHq0a9XjONjNviehLaEj8Va14Z+FfRraGs7JiVgr553iffbkR5/m 7nUCtICu5J+Dng0XY5+pPdVfa9AFehNvq2sJbeAMaK97lBMxrZ2fE9ekwNdF mu/70tZ1+/LjTDrfrvyY+XTPLZXfMTv21N6da+N50LNwQEHEFeuZEzOe6fNq ng6eqYPn6+Wz6Bz6+5LOe6LP3KM2ztyT+Fh0jJ5B+l+K9oNL4Dytw2X06aXz wYXYF9SGf3lOrCvvXOdKD6LPEPQWuNXXtoev70XqURt/z7kY7Su7NvbVnpfm xP7yB+VEfm/X9Hb9xZ7nAs90uWaEQwvC7m//ergOrsiOmNauonagYjBAeyim vJxQ+Vc6Jr0iJ3JVc2l2qOoGEx+MXg0p7HtNbfjX5sSe2vtauBFugERBnPVi z3CT14Y4X7k3uOc17qv1m1x/sa9Tg4K4rjcrLyfsIfaHwzDZOWGPsD8SbofM gohpbTg5Q3V/auPvSEVooZ4Dx2/zmnSoZxvlXsOw76qN5+bOnNC7/Ayph3qN sy29jZzR6B2aIyd6jPJMd9bG2s3ZoXc6rxRKnH83OkFxveej5VBMvBIdrzh2 VW34JTmxrrwyOKaOzxdoWhf9imvjb0rlXj+sIOKlXlOPKvfVntq7Du6Fe3Sm nIgrVoY90WvjsWvRGs8mrYYjCsKuta+fP/0cnp4ddRPd9364DxqRPxt9HJpg P4g+BA/AwzBFc+WEyp/smDS3IHJVU0j/r9Fv4CvH1KOK2unoNJ1N37/oo5pP 39G14d/n+GNeewRm1MbfiFSn+qnuIS0nf05tzD0R+wl0LkzCfgGdD/O8Psdn exqegqYFYT9j/zl4Vtc0J2Jam+KeT7qvVP4Evee75uGc0OddvxAW6NoRf9H+ jJw4y0yfR7EXnacZX/j/Zta8+lvNy+hLcFxB1D3ia/hKbaxNzwl9xXmvwas6 a06o/KXwOizTNcsJe7n9d+BdeNt1ym3OXovRJbDIuaqZkxP/zZX+eyv9XWUV ulLPFPlv1Yb/DDnvo+/BSQURe8t5+m+1VD8zJ/bU3s/mhGr/x3LiOZzkZ3F1 bfRSzy/RL5TPvmvQDzUP9sfoR7p35HxSG/78nFhX3ge1cZZF3neJ/YezI0fr z3vm1Z5bPT5xX+2pvdfWxvOsZ7l1QcQVW5gTz7jWFuk9HP1M9zIn9FM4pSDs z+2vg291j3PC/s5+Kp8RCUiBDfjfw3r4EX7QvcwJlb/RMenLOdFDvRZjb0W3 6F7mRI8NnnOD++nvMz+jP0FbZvsD/R3aY2+uDX+l3slro9eqnIhtdp5qf3H9 L/ZfJedXdJOeFdu/2d8B22vjbzX70L26f+T8jf4FHQvC3mn/H9ilZyUnYlp7 PyeeCz0fFT7jNp9T/f/0Hn/a1wy73Wu13tvrYu9VnkG+5vgP9sC/UI/Y/vBu TsQV61QQPXZ7pj2u0TzHkdsMfsiJs+rMi7OjzwHudQg0gNXZofIPhiQ4FLoX hJ1sPwuyIdN1yv2U/geh9eFA56rmy5x4ZvS8rMFOR9Pq4m81GXXhq7YhmgM9 CiKW4Tw9a6r/Kif21N7rckK1/9qcOIfO87He8+ui17d6T0abwHr9roEeoT76 Wz16FPRkr8Z14f+UE+vKO7wuzqJzdC2IM8n/yDmHu6f2Ocxzq0dj99We2rug Lr5b9b3aqyDiiulvNcd6bbPeh9E8+DknNBe+sZ1v//i6uJdbfE+P933dDttg dEN+NtB2cDF7tUBPgOZwErSErdmh8k90TLotJ3JbeJ5h6HC4zTH1uJCep6An w5/ktEFPh3/o2bYu/J2Ot/VaazgVNuVEnepbuYe0Nz3PqIu5/yGnI9oB+hI/ Gz0HzvL6GT5bZ+jkvWR3sd9N9wp25URMa/9mR88z3Vcqfzc53V2zJzu0u+vP 1TMIf+m93f6+nDjLaT6PYj2dpxk1646cUM27F/t89DzYr2HUqf4v9upVF2v1 Gob2ct7F0AcaNAyV3xsu0fWApIZhX2r/SrgKrnCdcuuTcyF6EVzg3Evc8zK0 X1383WkA2h/SiQ+sC78e8avRQerjnIHOu7wu6lMbxp7aO6dhqPYfwP26HR2h euzBddErk5yh6K1wDPZ16LXQEPsG9HrIZq8b68Jv1DDWlXdNXZxF5zigYZxJ /oHO0fphDWOfwZ5bPW50X+2pvYfUxfOsZ1l/k7nVsfyG8YxrrQn2LejNkNcw 9Ka6+JuV7Fvsj6yLc7ZoGDrSZ54Lc/T8EB+PVmgGrsMd6GgYBWNhDBzbMFT+ nY5J9fcl5armhIahqjsaexx6FxyPXVgXfivsYrQEiqAMSuEU4pPRKfAQlHut cU7kK/faguhR6L5lzit1P+WdRJ/KujhPG+z70PthomOVPmcd1NbF36NkT7B/ D9yt61YQsTrPVo3WQJVVflvi97rmzIah97r+AZike6D3fPtnuo96tGwYsQed pxk1ayfPrHlP8zXR9ejinwU90/18nbR2vN450WXQl5yn0KfhSXgEZkA34o+i M+vi70uz6sJXzxnOm+5caUfiU9Fp8LBzZ7n+cXhMzx/nesLPUK+GoU/4eVKd 6rt7Hs0yoiBqZ7t+tnud3zDmfcr2VO/ZAftZ9Bm4EHsxukjnx36uLtZO4yzz 0BfgeVgIC6B3w1D58x2TjiqIXNX0aRiqup7YL6Ev+hq+XBd+h5zYU3u/Akth CVzk2Z7zfK96rX/DyFfu6ILo8bL7LnWe6vf474u52XHfXquLv3Hp745aOwr7 Y2IfwSB6rkRXwF0FYa+y/zb8P6auPN7m6u0eU3WPKUPuOeeee9WdUElpQkqu REoyXaLOuZXmIlNlKEQpufNA5ohSopSEQpRQkopmhJIyZCbTu5a1+ry/P9Zn Pc+zn2nv7z7fve9X7/v73D60cSwGeQV4JfAJEMzFvQgoTpWNY/FExa5x/Hrg K+DBRDH1da7/9Vh9H/sS/AXwQKJ4LfBsqnIwV7s68v/GMRuB74DH4b8VvAV4 NFG2b4ERvOeDvwd6w/4T+EdgJOw/j5XOWI7Tb5N9yb2cZ6Nz0fdnx/8K/AI8 AZ/fxqp2f/fwm/v4yvO7G/bt4G3AC6mK3ez4zc6Vzb8Lxsqvn+f+pedP2w7H /wH8DgyEzy7wX8CfwG7gb6Av7HusD4G8D7x3rL5NHQMf5ZokKo7xg52HOV5M Vdwe5/pnrOJZ6+BY3aWGJYqp8151fKzyPoL8h8GHgLGpivvHtWk/4rEj1p9F nsq52je5icpx3P1VhK0SUAE4Af0k8C9wBjgNjE4UUz9lG/kZ2Hd6je6uI97p 9WIO5nohUcx8eeizHGoEcvUt61zwOcAo+JyXKz0vUb1UdJ+0nWc/xpZ3fHnr XNuK7r0wVfOr7N9GVaAKUACfG8DXA2WomwyOAhNhPx9cHXjZcg3rtYCa9E+V jWPFicpZzXmrucaTvP87pihRXNvxYSAEjEeeiPUJ8LkCfHmuvtvQFrFfIlAH eKaO+AKgNFH9JnGOibIneoz2ZI9dAlwMTEGtuuCUXH3jSgOnAlMRmwFOBybB JzNX+pREjdPvIvuSxycqz4XORd9Mx9cH6gGvwudS156VKL7UfTCurvu/DNwQ mJyo2AaOb+BcY9Bno1z5vZ6o9yfPP75DaWvkeL7n+P7rDp9W0LOAOZCvAl8N XAk0Aa4F5iaKqV9jG/m1RPky5m3HMu5VrEkzcFNgBuTrcqXTh3uHe6g5cCPQ AnjLz7Gxn2VLj71nf/q+k6gc1znvjfZr4bgrvIY35Wo+8yF3AN8B3G7bTZ7n LUBb4I1Uye2s3wbcCrybKBvHlkC+GdwGaG2+2f20d8xHieL2ju8EdASW8s5v fXodxTEHv8XR1tl+7LGDa3Vwv2+m6v9/Kf9/ly5K1P9+IP93BPuer/+fphz7 hGdZGRiok4L7Omw9gdnIHwPfDcxDnniu9NWJGqdfD64XMA04BPuD4IeAB4BH gIe5/qnyp+/KROWIO++D9l2VqDjq6yDfA74XyDFTX2M7bcsgdwffCXRzrUdd 7yngSWB9opj6QOBxoDfwGNAXeAL4LlFMvY9t5AWpmhPnNtW5WePLROVgrg/q iB9zrf7gfsAXkAeBnwY+RJ7BudJ/hr0X+H7gPtsG24+xAxw/wPpG98/e+d2M cb28hr2cg98Jh4KHAN/APhL8HLCijpj6COAF4HngN96fwXnAn4li6rmOo+9m 2IeBhwPPmoe5f+YYBfwI+WXwGGA75LG50tfwez64ANhin7H2y3OdZanK84Jz vQiMBj6GfQZ4OvA3YieAJwKvAFOAycAmfkMDlwLFwDigDPgjUbYS98M1ecbr Qqb+S6LGGcdvQcM8v8Wp6rnIfZOp70pUTdaelKv9wL3wWarstO1LVI/sdXei +hnvnsa7vz2eC+exMlXzfclzfi1Xcz4Mn0185pwjfOaD3wPeBV4HZrnWbPAb wGr4vJkr/USixuk3075kfgdbDf4cqBRSnde8vnOAt4ADiJ0HfgeYm6u6rHk6 UfWpb68j/7cd87bjT7qfN93TAuB94Hii5A+srwA+ASqHZONYBcgfghcBC4GP gCV87nXE1Bfbttj905cx5R3LuHVYh6XcO7n67rQsV/o5IdVk7eXAp1x7oFxI c53ndfvMY1XsT9/1zrnMeTn+mePneZ3WpmpdV+Xq2xTl1dbXAV8CCSHJX1n/ mrmB71Jl41hN+KwFr3HPP4F/BM5NlP0Lj5Gp89vRBueqAf/vc7VvEkPi772H mIO5frBMrgafb8HfALVDyrHhv55yNcZvKd9ap9+vwC9ABP67wH8CF0HeCt7C OcJ/G/g31sO8tudKj4Y0Tr/NwIg8vF+A4XnK9zN7SpUPxy8Iyf6rx5hju/Oy Jmvv5P4A/qJfquy0VUcPuz1WD3n+AP+eq29i5B1AKCT5D+v8/fF3uDVRcbud dy+wh88F9gB6PQO5MWL3gw8A/wCHudeA+iEx9YO2kfndib6MuRg+1yDPtcDV ebIxRybsx8BHgcshnwKf5Jwxr9O50pvZftpj/3KvAZeFFMf4I85BvhT2cnnq +zrIFcDl8/RtrQq4KlDZ4+U8t3PAlYAmIcnnWk8AzgN2psrGsRbOWdF5ydSv hj3omBtC4qDjqwPVgF3Ic771m0OaywnPh7bz7cce2WsD98x+W8K/JrgGcH1I cYy/CnKtPI21sU8t+4WBENA+JKaeCCQBEeCmkOSo9XQgA0hzHH13o+cLwHWA 2vZlzO2ITQEnA3vhcxH4QuAO2FPzpF+N/utx7fnM7ZNqv7p5imdvGa7dOSRm /VtD2of7vBfr5ylXJ9ivAl8JdIV8CfhioDlqNQRfChxErcvypPcIaZx+DfI0 F86D3wbrWG9pnwbOyTr13TdzXOa8rMnajfO0n7mXu4dkp43foK71WBz2K8CX Az1D4kZAR8tXWG/KfQccTZXczPrDwCPAQ5wbnzlwHXAj9yDwQEhM/QbbyMdT lYO5YvC5FdwOOJWqHMzVLlHMfPfAJ4trANwNuS33EdAL8i150h+FfFuecj1i n1vsx9hWjm9l/UH4tOb+ytO3L8o3W7+dzxx4HD49wHcC5dOwLtw7wJlUyZ2s d2EOrkdINo71C2lfcH+ke463eZ7M38E1Oljvhh66Old/+PfMU+1B7qGn++jG 5wlkcy2Au4AnQrLTxm9ZzNHVPXV3DOcyCjwSeCmkubb22jJPzLl6AfcRiWLq 9/JZAvcDT4UkP2i9D+sDvR1H36HwyWFu9mNfxgwLac9wv5yL9XyMzw0YAfvj edIfQd1+4L7AMyHZHrffI95zz4ZUk7VfCIlZPyFN8+B8BsPeP0+5RkMexjj2 z7s6eKDrPk0bMAryoDzpL4c0Tr8BeZoL51ExTXPK8XMZ6PH+7rm/+2aOQc7L mqz9TJ7OVp6r1dNkpy03pPOWY0WQh4KHAGNC4sFA1TTJQ60/n6dnWexn+ryf a/t87LF83dnKoJcC4yCPBr/IteLcmBt4JSSm/pJt5Jpp8h3t3r4ErwO+sI05 +G0tj+PABPgUs3dgEuSSPOkjE8UlHisA8oHaaYpj/FjnIBcgdlye+p4K+RXw eCAR/tPBM4BXPT7Oc5sETKQ9JHmy9anAFCCcJhvHxiQq5wTnJVOfgthpjpkV Ek9z/EzgtTx9v5plnbU4l0LPh7ZZ9mOP7PX1kJj9Tob8Bm30CSmuwOs/O09j b9lntv3mAXM5z0Qx9beBd4F3gLppkudbXwwsARY5jr5vI+db4DnAm/Y9GwP7 ++D3WA/yQvAHefrG9WGedMZ+DP6I+e3zof0W5Dk+pJqsvShkBlLR23rwV0AD yEvzlGsx78/gNcBS3uHByx27EryC9SB/mid9RqLG6bcsT3PhPJLTNKezekg+ HE9PU52l7ps5PnVe1mTt1Xnaz9zLn4Rkp61emvY4x95E3c/Bq5g3JP6M62L5 c+tf52meq0Lirz3n8vj9lQOaIedv0LcCjSB/A/4W2ABsAja6h43Wv7ONzO9g 9GXM5yEx4z6G/AP4e84N8o950r+E/DP4F+AnYDPwK/uB/SD4EHAA2OKxDxPl T9+Gacrxo/Nutt+vzke/L5BnW57m8y3kPeC9wG7btnmeO4E/8vSdivKf1v8C dnEOIdl2urcd4N+B7Wbq38H+t2N+CIn/dvw/wD72zXu+9c8SFccca0Oy7bcf e2Sv37tn9ntlmtaE63F1mvYy9/R7XieObeGdE88wAhyHXAl8DlAR+Bfjx93D SfAJoAnynMqTvjOkcfodsy+Z38qOgI8Ch+17yvFngNNcc97b87WHmIdcwfuJ cYzf6n7Yy18hxQbyFU+m/mdI/dJvg+uy5ibYz4PtXOB3yBeAawOH+bdAvsb2 QK4MrgIEgepANeCHRDH1qraR94Xky5jdjmXc9ViTGuDzgRaQa+ZLPxRSTdau BSQCdfL1vYv1E9xfyGP77E/fv0PKUdN5E+3HeN7TeV/nXZ/PLQwcgP874HeB eUBD4FLOM4z7PbgucCIk+SLraUAq0DpNNo79jt6SWQOIAvcDvfL1TYA2jh0L KTbd8RcDDZy/gfX6rn8J0Bb564Ez+XzD4gw+55ByMFcgLP+GjrkcaMQ1gv06 vmO4L8OyXcY9wHs+uLHneDX4Kj4byNfkS9+fqHH6XWFfcrs05bncueh7jeOb ANdyLyJP83zVPt89NHcfDTw/fkO7gc8fuD1NsU0d39S5fquDPZEvv+qeez3P n7YWjm8J3Mh1hs9NfCZAK6ANcDNwB/K3tR6CTzvwLdybkDuDOwFd0hTH+FrO wxyBkOLaOtet+YoPw+f2fN2lWJdMnfeqLvnKmwz7HeAO3Huue6tr097RYx2t p8DnAe+bC91bF/cXB3KAGJANdAO6Aj2AO7kPwmLq3W0jZ2NeWV6jY4niLK9X N+c6LyTu6rp3gXsCSZDvBd8DRCHfly89M6xe2FOGfe6zH2Pvdvzd1quH5Mve u6dpfpwnfxsPAQ8CFyHPK+DxXEfIT4Of4v6C/Cj4EeZKk/yY9d7A48AlYdk4 1iCsnA8778Ouwe9pfRwTDon7OH4A0B9ojNiB1hP4f78JfpnPI022gfbrB/QF LguLnwBSQ+r3SeAq2/t5jPanPfYC8DzQAj6DwYPy9Xffs+BnuJ6Qh4OH5etb 04h86U3DGqffUPsOtZ15hjgXfUc4fiTwHJ89fEa79k1h8Wj3wTjG3xjBvR78 Yr6+XzF2lONHOdd1iB2TLz/m5PuT51/YtjGO53uO779WWLcp4Ml8NpDzwQVA HlAMFAGtw2LqhbaR+S2Ivoy5NSxmXBbkUnAJ0BZyWb70DmHtHe6hccBEYALQ MaznmOtnOclj14bkT9+H05SjzHkn2m+C4xjfDnmm5ms+2ZDfBL8FzLZtquf5 GjAjX9/WKM+0/jowi/svTbbX3Nur4OnANDP1brC/4ZhYWPyG498G5nBfIc9c 6zHnYY72Ydnm2o89ste4e2a/XcI673jW3RPWv7nx396WJ+oM5FgrntdFOBOA f7E3FsL2AXAf/BeBPwQegLw4X3q7kMbptwA4CZzgs4TPCvBK4BPgM+BTrnlY /vTtn6Yci513hX35DW2lddb6CPwxsMRM/VHbaRuIPO+B3wfmu9Yq1/sG2AA8 HRZT/xpYDawBPge+BL7g+ofE1NfaRu4X1pw4t3+dmzWeCCsHc/UJi5lvEPr5 CrwOGAL5O/C3+fqetjFfOnMuAy8Hltq20X6MXe/49dafcv/svXdYcYx/zHmY 417I34M3Ac+i7mbwr5TDYuq/AL8BW/lMeX8G7wJGhMXU/3QcfYcjz0/gn4Ef zdSHhZVji2P/AP8OPAN5Z770kZB3g/8Gnk+Tbaf9drkOv8ttdU/MtR3YBgxF 7GnwKaAE8mHwEeAQcBw4BhTBvg/8D7AXOADsB0anycaxXK/JD14X8vdek32O ey6sOXF+A93zHvdNpj42rJqsfTRf+4F7YUya7LSNCatH9tonpH4OuqeD7m+s 58J55Ic13x2e85l8zflJxF5RgPcxMAn5q4KrAVWA8kA54BXEVgRXAAogVyqQ PiGscfoF7Eseizxp4FRgjtf2jNf3XNjOKdD3tyC4MpBQoLqsWZCm+tQnh+V/ nmPI1EvcTyX3dD5QHZgWllzDejIQdQ817DcSdWuBawM1gUSgDjArLKZ+gW3k SWH5MmZmWMy4IvQZBocK9I0uUiCdPURdOwmoC6QAM8KaK+c8hXd+j71tf/qW OmfEeTl+oeODXqdxYa3rRZTTJKdZrw/UA94MS25g/RLgYj6vNNk4Nh8+GeB0 YB7v5+CrgMW2Z3qMTD0fc7zUud6FT+MC7ZtFYXFj7yHmYK4rLZPfgc9l4IbA +2HluNQ9NSrQWFlI3Mh+TYBr7X8TuBXwGe/54GbAUsjXg5tzzTGvGwqkfxzW OP2aAr8AvwI/O981Bfqm18zjC8OyN/EYc9zgvKzJ2lnAzUBr4KOw7LRNR902 HlsFe0vwjXzWIXELYHlYckvrO/zeGRVWXBvnvQVoW6Dvbz3BPfgckf82cHvg VuAOoAOwLiymfrtt5JVh+TLmS8iF4CKgwDbmmImcncGd7NMd3A1YyzO6QPo3 tt/psa5AF2B9WHGM7+gc5NeR864C9b0BPjHw3cB3kB8EPwQ84PG7PLd7gBxg Tprke633Au4Dvg7LxrEfnTPuvGTqH2Ct7nfMT2Hx/Y5/BHgY+J53e+ubw5pL tudD26P2Y48P/k/P7Jff3B4HPwa8k6Y4xs/j3b5AY7+Gxb3tNwDoD/weFlPv BzwJDOR+DEt+yvowYDjwrOPoOx+1ngD3BfrYlzF/IHYQ+OkCfWcbCh4CLID/ MwXSd8PnOfAIYGGabM/Yb3CB4reGVZO194TFrL89rH3YzntxZIFyMWc+OA/Y x7s9+Hk+I/TwIng08BfsLxVIPxTWOP1GFWgufVy3r/WVIfmMcs7nXG+Ec7zk vKzJ2rkF2s/cyx+lyU4bv8sVeewU7+Hgl4GDYfEY4G/LY62XAMXAgbDkUuuf Ap+xN2AcMB4oAyYCE/jsQmLqr9hGDkSUg7lOI+cs8EzgnIhyjHNv45xvKf8t ADwJOAb7DPB0YAXsrxVIr4DY1wuUa0dIttfsx9gpjp9inf9/nqeBpwInwpJf tT4beIPzQ/4F4PeB1fx2DX4LKB+R/Lb1ecDcAn1/o41jVSPaF9wfyz3H1z1P 5n/TNd60XgX+7zgX1+GDAtU+PyL+wH3MB94D3gU+BBYCtSKy0xaMKMc77uk9 x9SAfQt4M7ApTXPlnCtGlGeRcy3jegORiJj6x8AnnEeBvqlSXmF9LfAFsMZx 9K2O2CXcd8Bi+37iPj/1flmHHj4HrwISYV9dID0V8jrwl0B6RLbV9vvMe+6i iGqutbzW9denaR6cz370+VWBcp2C/BP4R6Ah/DeAvwbqQ/4W/A3BvwUKpNeL aJx+6ws0F85jbZrmRD1sH47Xdc9fuW/m+M55WZO1fyjQ2cpzNSMiO23fpem8 5VhV3of5fIBKYfFG4OKI5O+tby3Qs2zkZ7rVz/WNQuwxIDEd84f+D9AYPtvA 24HfgD+A353zd+s7bCPz2yB9GXM5fOohX30gs1A25siEfRf4zwJ9l9sL3gNc Dfu+AukX2L7PY38Df3Et0hTH+J3OQb4EsQcK1De/cR0CHyzQ97dT4NPASY8f 8NyOAkf4TMOSj1n/l/sUuC4iG8eaO+dh5yUfcs8nHNM8Ij7h+ADmfIbri57L FUq/KaK57PZ8aCtnP/bIXq92z+w3eAHeTRgvD1wTVhzjr0SeioUaaxkRV7Rf EEgAbo2IqZ8HVAEqA83CkqtavwCoA9R2HH1bIfYc8LlAJfsypjXs1cHVgLaQ a4JrAH9gjrUKpd8Oe4j7CPgzTbZa9ju/UPEdIqrJ2jeExazfEfaLwQ2Avbyf FypXNuwZ4HSgB+QoOAnoBjkFnFyo72B1C6UzD8fpFynUXDiPbWmaE/V29uF4 e/ccdt/MUdd5WZO10wq1n7mX747ITtvuNO1xjrXh3wvgi4CeEfGFQBfLqdYv KdQ87/V8L/Gc7wbuAk4jZ3PwdcBj8GkIvgy4FLgCuNw9XG69kW1kfjejL2Pu cyzj7oR8JbgxsB/5ryqU/jDs14CvBa4GmgJNgIPwuZ35uD7cNx77z5++Oc55 lfM2tV8T56PfI/C5vlDz6Yze2oJv4VrZdr3nmQW0BB6MSG5lvTWfLXAkTTaO 9YFPC/CN3D9m6g3xrr7ZMb0j4psdfyufOXCM93zrTzoPc4yMynab/dgje+3p ntlv34jWhOvxuH8L3NPVvE4cewr2J8EDgTzIOeB7gDjQlXsBGAJ7N3A2cBL9 dC+UPjiicfp1ti95AOwdwZ2AO+zb3fE9+GyBZ+AT8x56LiKOeT8xrqP7z3Ev gyKK7en4ns71UFj90m+k67JmL9jvA99bqO9jT/A5sDf+LVCoMfbwAJ8hcD+f PfcLMCYipv6QbeThEfky5iXHMq4czqDHwI8CFSA/XiidPqzJ2r2BfpwTMDqi +r3cX3+P5dufvmMjyvG48/azH+P5jZHfF+8K67kNAM5J13dHjnHuL7IOMAF5 hvBZAeelSx5q/VmuAZAbkY1jZZCf5npzbwDLgWXAoohsHBsSVuwwxz8PjAIm RsTUR7r+C0AV1H0OPAIojIiHF+rv3GHuY1xE/i865mU+B64hfMrApcC0iG3A ZMh57B2YDrmA6we8ArmwUPqMiMbpN9a+5GrpyvOyc9G30PHFQFGhvumNK1Tt 1yPice5jlOdXAvsr4PFAzXTFlji+xLnY54RC+c3y3J/z/Gmb4PhJXD9gNnym cq7AFM4NeBWYCfsM6/MgzwS/VqjvRXPBbwPhdMUxfq7zMEftdMXNcK5ZhYpn rdmFukstiIip8141r1B5aX8L/CYwx3VnuTbtc/4bs/4BfD7xvlkZUY557m8x sIR7CXgXmA+8wxrA+xyLiKm/Zxv5Pdgne43KwuLJXq/5zjU9LGa+D/nvBewF iGLuH4M/AlIgLy2UviKiXtjT7LBsS+3H2A8d/6H1xRH5svePI5of58nfxkrm K9R3s0Pgg8CvvG+DvwHWQ14F/ozrYvlz62uA1UBqumxnxyLK+anzfuoarLvW Masi4rWOXw98BaQjz9f/6fDZCf4DuDRdtq/ttw74knMMi79g3oj63cDeIrKv 8xjt33rsN2Ar8AN8NoK/K9Q3tx9pAzbC/jP4J9aA/Euh9E0RjdPve/uS66Ur zybnou8vjt/MtQQawGeba68Ii7e5D8ZtdP87wNvZa0SxWxy/xbnY2++F8vs5 ovcnz78Btv3ueL7n+P7j++o4+BjQGD38Bf4b2AXsBfawj4iY+m7byJely5cx a8LiXd4b/4D3cS0g7y+Uvj2ivcM9dAA4AhzmHP0c//SzPOqxXfanL7/LMcd+ 5z1iv8OOY/xPvPMXaj5/Qq5UhHMDqFgk27+e5xngNHBVuuRAkfTy4HLAzohs HNsP+ST4FHDCTH0T+qlQpJgDEXEFx58HnAtci/wJ1o87D3P8HZEtwX7skb3+ 7Z7ZL7/X8d8Gg8C+iP79kP93e2+nyl7FY41KcdcELgNqQq8BbON3e3At4Chi LyiSfiaicfqdD3QDsoEGSbhbg1OAKHAhUBc4ZX/6nowoxwXOm2zfG9IVR/0c 5EkEh4A6ZuqnI2LamsO/Grg6UNW1LnK9hsCl/PfQsJj6JUAakA6kAvWATP67 aZKYeoZt5IpJmhPn1tW5WePcJOVgrnJJYubj97oG4PpAFnprBL4MuAny5UXS a8I/Ak4CwrZdbj/GXuz4i60Hk9Q/e6+apDjG7wqLw+6hMfgK7gPITcFNOJYk pn4t1wu4jmsJe2v2xTkkiam3chx9z4f9avA1wFXmq90DczQD2mJeLcE3Au0g ZxVJT4VPG/DNRfq+RFuW/W5ynUTnae5cNwDXc11gvxPcnc8P8h3gjkAHoAvQ mWsDezvwrcAtQHvgNu6hJNk4Vs9rcqXXhUy9lmPPxqVrTpwfv3ex57bum9zG /XR27U5F2g/cCx3TZaftwiT1yF65/9nP7e7pdvdXO6JxzqNDuubbwnPuUaQ5 14HPWPDLjEGeh8APAw8CdwN3cY7wiYNj7Al5coqkX5akcfr1tC85A/Znwc9w Pl7bHl7fe4F7uP9gvx/8ANCrSHVZk9/BHrZOH/rf55j7HJ/ifnLc06PAI0X6 ZkL5MetPA09xHyTJxrFrIPcG9wEeB/oBfe3T1/oTtpF7pMuXMU0dy7gbUGsA uH+R/tuYgUXSWySpJms/CQwGBgEtkzRXzpnf3IZ4rK396dvSOQc6L8eHOP5+ r1PDJK3rUM49XfKz1kcCz3Fd0iWPsv4C8Dz3WJJsHOsAeTh4GNAOcgE4H+hs +wiPkam34f3fue6AT26R9k2XJHGu9xBzMFeeZXIv9PMS+MUifathjtHuaUyR xtjDS9bpVwwUsR/ek8FT+OzhUwYu5T6DPB48DugE+ZUi6XclaZx+JcC1xXi/ ANcUK18hkG0fjj+QLnuxx5jjFedlTdaeDLwKTAPuTJKdtod5b/fYfbBPAk90 fvKEIn23oTzJOn9//B0mRBQ33XlfA2YAjyLnB+AF7A15Xge/AcwC3gLeBB5K ElOfbRs5J0m+jIkj/27wHuBv25jjfvjMBb8NPAj5PfB84An+fVokvY/t73vs HWAe8EiS4hg/xznIvRG7sEh9PwGfReAPi/RdZQV4JfCJxxd6bh8BS4DHkyR/ bH0ZsBQYkC4bxwY452LnJS9yP8sd0z9JvNzxnwGfAk8izyrrQ5I0l3c9H9pW 2Y89stf+7pn9Pgn/1eDPgX5JimP8A7zbF2lsqH3W2G898BXwXJKY+jpgA/A1 MChJ8jfWfwJ+Bn50HH0HoecvwF8Ca+3LmJGI/Q78LecCn+/Bm4DnYf+hSPow 9PYr+BfgWfv8YL+NRYpnbz+79otJYtYfnqR9ONN7cXORco2G/S/wLmAM5N/A W4EXUGs7eBtjUWtHkfT8JI3Tb0uR5sJ58DvVl9aftM8W5/zV9X5xjh3Oy5qs /WeR9jP3cm6S7LTxm8wej5XAvhP8B1CQJP6dfVreaX0fsBcYlS75H+t18Y64 EEgBDkA/COwHjgCHgYlJYuqHbCO/kK4czFUMn3KIDwCvJCkHcxVHxMxXBvsx 8FGgCPJp8CngJd7ni6RPh718sXLNsM8Z+zH2uOOPW58EnxPgf4v0nYfySesV kaMC8DLynw+uXqxvJueCzwFmJkk+z3oQSACmJcnGsakR7Qvuj3s9x/KeJ/NX co1K1tl/Zed6A3KNYtVmLXIN91EVqAZUAWoBNYGCdNlpezVJOSq7p2qOeR32 ZuCmwOR0zfWE15Z5ajtXBAgD7yaJqYeAKJAEvJ8kOdl6BpAJpDuOvkXIXwec CFxgX8a8FdGe4X6Zhzyp4IuAUvinFUv/APb64HrAuHTZ0uzHvcb4hUmqydrz I2LWX5SkedRy/w2KlWsp78ngq4AVvKuDLwGWQb4M3LBY32oaFUtnHo7T7+Ji zYXzmJWkOVGfbx+OL3DPDdw3czRyXtZk7SuLdbbyXP0sSXbaJqbrvOXYMvTQ GHwFsDJJfDnwkeXG1q8r1rNc62d6nZ9rhRLsMeBX5LwN+q3Ad/C5HnwD0Bxo CdzoHm603sI2Mr/V0JcxX8DnOfBIYIRtzPEJ/x4BtwI2QL4F3BaYjrrtiqX/ Z2/nsZuB1sDqJMUxPss5yNMQ275YfX+BHjqAbwfWw787+E6gm8fbe26dgI7A zHTJna13BboAPybJxrFNScp5h/OSqX8Pe7ZjvomIsx3fE+gBbOS93fqWJM2l jedD2132Y4/sdbN7Zr+vo7cY+O5ifZ9p47X4Bj7xYo2xT3LcfvcDvYDtSWLq 9wEPAg8AfyRJfsj6E0BfoI/j6PsW6t4DvhfIsS9jtqCHR8APMw/kx8GPAW/D v3ex9N3I3x/cr1jfZGjrbb9HixW/M0k1WXtPkpj1t0F+HjwKWICcA4qViz0P Bw8D9iLnU+AngYOwDwI/DfwFeXCx9ENJGqffwGLNhfP4JUlzor7DPhx/J111 Brhv5hjsvKzJ2s8Waz9zL+9Pkp22I0na4xw7zr8XwEPdG3kIMD9d8jPWXyjW PI95vi94zh8CC4EaUby/wGXAEsS+CH4JGA2MBV4GykXF1MfYRl6YLl/GHImI GXcCtfLAucBRyPnF0ssjTyG4CCgASoBi4Ax8ZoPfBN4ASj12jv3py29EzJHv vCX2K3a+QtcdX6z5VELsDPBrwHTbxnuek4FJwMfpkqdYnwZMBSpGZeNYNcgT wBOBV8zUK6DWq46pHhW/6vhZwExgOfK/br2W8zDHeVHZXrcfe5xh+wz3W9lr wvVIiGovc08/7HXiWDmsyQbw18Bl8FkC/ghYzH0GzAPqwD4f/C7wKfp5r1j6 BVGN02+ufclVYJ8Dfht4y77vOX4B8D4Qgs8i76E6SeJF3k+Mm+P8S9xL7ahi P3D8B85VPUn90i/iuqy5gv9ewOdTrO9OX4DXAhnwWVasMfbwCX25zsBnnB9Q NyqmvtI28tp0+TImOUnMuDD8PwevAi6CvLpYet0k1WTtNcA64EugSZLqL3N/ X3ksMyp/+qY752rnXWc/xn/n+zrv+nxu64Erw3g/4jx8ELgf2A7bNuB65NkE 3gg0S5L8vfUfgR+A65Jk41hj+H/LGsA3QBJyRYBYVDaO8VsHY39y/FZgC3Bt VEx9s+v/xvnC/iv4F+DqqPhnoHmScjDXlVH5b3fMH8Dv7Bn2/eB/gKyobDuK 9W1kF/hP4DbY/wb/xXnhGe0ult4qqnH67bQvuaXz/OFc9N3t+L3AHqA1fA4U q3Zb93DAfWzx/G5AD4fAB4v1rYOx+xy/z7lu498FxfJr7bn/6vnTdtjxR4Ej QBv4/As+ARwHTgEngU6wn7beHTkDeCZnILeHPQHyeUDXqOIYf4fzMMdP6Yo7 7VzlShTfBT4VS3SXyo6KK/peFSxR3h6wnwOuBHSPKq6ca9N+rsfI1OO8M5do 3zzk3oLu7wKgDlAbqAJUBSoD5wPVgZyomHo128h3wn7Ma3R7VHzM61XVudhb FefjN5Ca4BrANsw9BE4EdkAOl0h/MKpe2NNjSbKF7cfYWo6vZT0elS97vzeq +UX920gBkkv0LaID+HbgOfhcBm5IO+SLwBcCO9Mlp1pPB9L4m43KxrHeUeWs 67x1XYN1MxzTJyrOcPzFQAOgL+yXWH8a/WSBWwIH0mW7xH71gXquRc4EdqWr 30u5JrbX9xjtl3msOXBdib4PXA5uBOxG7FXgK4FhsF8DvhrYC/u1JdKHRDVO v8b2JT8ZVZ4rnIu+1zq+KdAE6Aef612b/uTr3QfjGN8f9hbgG4BBUcU2c3wz 5xoK+40l8hse1ftzg9+htN3o+G/9/uP7sAv0zsALkFuDbwZuAm4B2nIdomLq bWwjH0qXL2PGJolv8t64FdwOeBbybSXSX4pq73APtQc6AncAR9P1HFv5WXby WL796cvvG8xxm/N2tN8djmP8MPh3LdF8CiDngO8B4rZ19Tx7AHcCRVHJPa3f DdwF5EZl49h41O0G7g5km7u5t5hjSqPimOPvA+4FxsHey/pU52GO4+my9bIf e2SvJe6Z/Z5M13nHs+50uv7Njf/2xn+L5BnIsUlR2fhvcU353/bA9pjr9gH3 BiZAfqJE+oyoxun3KDAfeBdYBfvT3FPAU8AQYDBQMUP+9OV3DOZ4wnmftu+c JMVRn4U8/bhPgb5m6tNtp608cj4MfgR4yLWGut6LwGhgXlRM/QXuIT5b4Bnu LWAEMDMqpj7cNjK/J7zrub3j3KzxVlQ5mGtOVMx8r0IeBR4JzIY8BvwS43mf L5G+BDkHgp8EBtj2sv0Y+7zjn7f+jvtn7+dlKI7xc51ngPvPBY8FgvApARe7 Lpl6EZ8lUAYs5f2Z+wj4PElMfYrj6MvvDAXgQu5PM/UPo8pRClRFrUngiUB1 yJNLpDP/dK4H8FFUtsn2m+o6nzjPOOd6BRgPLID9ffB7wBrIb3GNgTf5LDlv 4EvYZ3KPAK9xPwGve+/RxrGVXpM8rwuZ+kLHMq5mhubE+c11zzPcN5n6p1HV ZO23S7QfuBf4fWCubSui6pG9fhFVP7Pd02z391WSxjmP2hma74T/5lyiOX+N 2J3gP4C/IK9kfebnurN3YD3si8GLgG945y+R/nOSxun3gX3JIdT6EfwD83pt F3h9P+bzASLwWc5nAiwrUV3W5N/Rn1pnLfovdcxSx//gfpa4p1XAZyX6DkD5 c+vfMgewK0k2jv2M2DXgtcBqYB2fLfBbVEz9C9vIm6LyZcxWxzIuGf2v5xoD dSF/XSKdPt+49gZgI/AdsDmquXLOP/LO77Gd9qfv9qhyfO28HN/k+OVep6+i WtfvgdQMyT9a3wz8CqRnSN5i/Tf2BfwelY1j/0D+GfwT14f3cz5/4Kjtv3iM TP0frOE259rPe3uJ9s3JJPGf/+2hEuXaZZm8F/47OL8SfdNgjm3/9VSisV32 +d1+e4E9wBHekxkHnOE9n70Ap/l9HnyAPcB+qET6wajG6bcPKCrF+wUoLFW+ 3UCDDPlw/HhU9r0eY45DzsuarH2MNYATJfpecdy2w5BPeYx5jrJf9hYVHwYu zZB81Dp/f/wdLosq7pTznmEc68FeA72eDzSAXB5cASgHnANUAipHxdQr2kau mCxfxpSH3AbcFrjZNua4HP0kgM8DzoVPNXBVoB7v9qXSq9le3WOVgSBwZYbi GH/ufzlK9Td7zVL1XQOxtcG1gEtgTwanAFGP1/TcEoE6QMOo5JD1CBAGGkVl 41ht57zAeclna8Ce5JgLksVJjr8QqEsd9ousZyZrLlU8H9oush97ZK+JyWL2 ezl6SAOncixZcZU9x/RSjWUki9PtdzGfG8eSxdTrA5dyPeiXLLmh9auBa4Cr HEffVPhk8pkwv30ZUz9Z/80V/3sr/i3WGHwF0BzP5cpS6ZfBpwn4Ws4tWbYr 7cf/VquRe77GtXtFxax/ebL2YaBUe7FpqXI1hr01+Cb2Crk5+DrGQL4BfL3t LUqlPxrVOP2alWounEfdZM2J+qXJ8uF4iwzVaeq+maOF87Ima7cq1X7mXm6R LDtt/NutrcduhD0L3JK5ksU3cg6Ws6y3A26hniH5VuuDgSHAIKA9cDtwG9AR uIO1k8XUO9jWwXVvdd4syHeBewJtM5SDuZ6OipnvJvh0Bndir5DvBHfnHCD3 KJXeHvLdpcrVwT497MfYLo7vYr0tfLLBXUv1dxPlbtbjQIx9w+dR8CPMj97u Bd/DnpIl32f9fu4LrkuGbBzrkqx9wf3Bb5Xs627Pk/lzXCPH+vPwecC5OiP2 sVLV7ukeHnMfDwEPAw8CvYHHOa9k2WnLTlaOB9zTw44Zi/yl4BLGJGuu2V5b 5unjXAO5R9hXsph6f+Ap4EmuSYbkp60PB0YAwxxH3zsR2xfcD3jCvoyJJ2vP cL/cC/kZ8FDOFzmfLZX+IOwjwc+V6u8X2p613xDvuVeiqsnaDyWLWT+WrHlw PndBHlWqXKxVAM4H3uBdHfwC/WB/Cfwi1x3ymFLpfZI1Tr/nSzUXzoN/9/Wz nm0fjmdnqM4o980cY5yXNVk7r1RnK8/Vx5Jlp61vss5bjg2AnMtn5d7ILwPd MyTnWi8r1bPsnywu83ONlWGPAeel4F4LfRbXCz7juWbAOGASMJHrmSymPsE2 8t0Z8h3v3n4FbwZ+sY05+PfOVPAUPjP4vMZnxWcAeWap9Pej4pkeexWYxj2Q oTjGT3YOcj/EvlGqvp+D/CZ4Np8d/N9jPmC+x9/w3N4G5nDdkyXPtf4OMA/o lSEbx5ZElfMt5yVTH4HYdx0zJln8ruM/ABaU6u+LhdZZi3OZ7vnQttB+7JG9 vpwsZr/DIS8Cf8j9kKy4V73+i0s1lm+fxfZbDiwDVkfF1JcCK4BPgEcyJK+0 /gXwJbDWcfQtRM6PwB9z7vZlzDjYP+OcuJ8grwZ/Xqq/a9aUSmfsV+B13Gf2 WWO/VaWKH5+smqw9NVnM+o+jt63gLVxn2NeXKtc0yD+Df+IzhPwNeINjvwN/ yzWFvLFU+saoxun3danmwnk8lKE5Uc9Llg/H+2Soznr3fTaH87Ima/9Yqv3M vdw/Q3baJidrj3NsFuQfwN+X6m8f8iZgQrLkH6z/Vqp5/hoV/+Y518Lvryaw Ev4HoO/nPoO8HbwD2AbsBP6gHhVT/9028oxk+TJmjmMZNxA97wL/CTwF+a9S 6XPhsxu8B/gb2AfsLdXfShXRSyWgAvCPx2bbn74zk5XjL+fl+D+OZz76zYPP wVLN52/kPA0+A5yy7aDneQw4CryfLPm49RPAv8C7ybJxbA/yHAYfAQ6Zqc+H z0nHHIqKTzq+HOYQ4PsNPuXLpC9OVhxzDMmQrbz92ONp93Pa/R71mnA9lvq3 wD3N3wPXiWMJvHOCLwF+h1wHnAhcAFQGgsBy2KuCqwBVef8vk74iWeP0S7Av uTLs57J34Bz7VnP8+UD1Mv0dUbtMe2hNsri29xPjznXPddzL2mTF1nB8Def6 NFn90m+967JmEHIYHAI+550ZnAH8wr8FyjT2BeQoOBlIAi4E6gLfJoupp9iW 4vz0ZcwGxzJuHeRU8EXAJt75y6R/n6yarJ0O1AfqAdvcW8T9NfDYdvvT90fn THPe+vZjPL8x8vticVTP7WJgR7K+O3JsMuw3wHY9fwewXwG+HNhsubH1q4Ar y3R/o41juyBfBm4ENASeBAZyrVNk49jPyYq92vHXAc2Avcli6k1dvzkwhnd4 8LXAtKj4mjL939Je7T62JMv/Bse0BG4EusN+G/hWID9DthbAAd7zwa0s3wxu DeTCp02Z9GPJGqdfln3JvO/d6Bot7NvG8bcAbYF/4dO+TLVPuof27qOZ58e1 6gC+HTidrNh2jm/nXL34d0GZ/B5N1tybeP603eH4TkBH4AR8uoKz+Vw4f6Ab cIb3fOvn4Fn0BPcASjDfXuD7gIopiuvqfro6B+9ajLvTue4qU3wl+MfLdJca lCymznvV/WXKWw0+93DNgLIMxd3l2rTf67F7rVeF/1PeN5EU5bjf/T0B9AX6 AA8CDwEPcF2AR4CaKWLqD9tGrgx7Z69RIEXc2ev1kHPxHvig8/FO9Tj4MWAC eu4P7gdMgjygTHo4Rb2wp9HJsg2wH2N7O7639Rop8mXvtVM0P86Tv41BwNNl utu8CZ4NXA+fl8Av8hnBPhQ8BEhJkfyM9WHAs8C0DNk4VpSsnIOdd7BrsO5w x1yYIh7u+OeBUcB05HnBOn0mc97AR8myvWC/kVwn4KIU8QggMUX9jgbSbB/p Mdpf8tg47oUy3W1eBo8BovDPB+cBGZALwQVAPchFZdInJWucfrn2Jc/MUJ6x zkXfIseXAMVAOvKMd23mJI93H4xjPO8tE8CvAEuSFVvq+FLneo1/C5TJ79IU vT95/l1s20TH8z3H998f8J8HngvcCP9p4FeBqcwFzAC2JoupT7eN3CRFvoy5 yrGMuxLyLM7b9tfLpDdN0d7hHnoDmAO8BVzj5zjFz/JtjzW3P32vc87XnXeO /d5yHOMbweedMs2nGeQl3BfAYtve8TwXAO9TzpD8gfUPgYVAmxTZONYa8nzw e8C75vnubZFjginiRY5fCnxMf+RfZr298zAH32+0LbMfe1ziukvcL98V/N85 XA50gLxrJO51wJ8jZV/hsS/r4z1yL95p3dBTDD2jZt8E9Ak+3hLvK7xSro9J 75Ogcfodw1hn8GfQR8D+Ac8e+y0CTmK8YkD+9C0f0BhzMS/9qTM/46j3Q56F 4Bug/9tSTL2/7bRVgP/7kK/D2NGWqtUypnqtzQMS/l8/01JxWZBPgVuBP8yQ D7mVa1P+wP1wTpzbeVnKzRoDE5SDudgn+ZT7WYLx05ArQV7sXMxzc0z6kwnq tQX0Ey1lu9l9MPammOLJ1J9y/2e8hi081z7OwxzlYP8YvgH0eA7oFvh8BP3p BPEtrt0OvAw8BPb2kD/hezRBTL1ilvwXu2f20Rb2clli6uyfOcrDdi58lmYo hv63xaQPTtB4pf/xuc09sRbrnBdQHvZEX/Zewf2fA04gAvLtCJ9zwZ3AK/hN CAPLwR1cb2WGYwKycWxogtakTUy5ydQHOXbp/8yR8+PzYh+3x9T37e6Lc2HN Ts7L/cC9EAzIvtx5Onr9WJf93BFTT2TqwxI0fq7nzp5ujWnOXezLeX0N35+z cQ+GyxrId2KsCsa6gj+FPhw+n4ODsFWGT3ZM+sgEjXf1GlFe4d5yYFsH+aUE 1WE9ri/nUdlzWYXx7q7BuqxZJaD61J9PkH+3mGK6+TfxXz/sgz0RVd0b5R4x 6THwWp63CbJx7DnIq3lPiqn+XeAvwKMTxNSrZUkmVwvIlzGjHLvKc2S/1d3z 3V4z+rBmzDFfAj9ibflT6e6a7CEe09iL9l/9PzmZi3k5Tj/Gr/L60ofrej5r W+ZaU/+K3xHge35A8r0x6esh18R4jYBsHBuDuqXNYPMcH4B9A+y5tt8T0xiZ eke8w++LKdfL8Lk/pn0z1vuHOvcQczBX7SzJ5Jr8Exg5arln5mAu9tQrprFO KWLq9HsQPA56Z9gfhbwRMYWo9RDk7yAXJCh3yPkfdk32w3H6JUI/DnmKnzHz XeB1oA/HawVkZz2OMQdzMS9rsvYvmNcmyGHYLgjITlttyI/FNFaEuo9A/hZy foKY68LfFOVHvF63+t3A9yTjGM+849FDxP1MgHwhZP5PI/4An97w+RX1+nAv QC9NEFOPZkmO2p++jClJ0PnwPPR9GbIxRx34PAHbK6jRFWv7C+x1s87+T1UE +sWkj08QU+fYz5A3Z5/9n1w4G8f45CzJyV6T/jH1nY2cm+G/Jfvs/4vHwFae Jxjbmq1x+nFuW2BPBfM/t6Q8MCZ9InzS3A9tHJuYoJwDYspLpj4B9idjiumW IqbO+N8wng7G1S/wdEz65ATNpW9M86GNY/Q72yP0SQli9os/fwOTkDPDfTKO 8ePgMyimse4pYur0GwLeDZ83EsTUG8F+GXC5+6E8NCZ9D9/TMd0p6E/fi+Dz N8802P/KkC9jZiHnXuhXQE4N6F7TOEt3m2dj0p9I0PPmfaWCfThGv2diin8z QTVZe3aCmPV5pnMfPh7TXhzuvfMWfEZBvjJL8oiYemAs7wJ7HPuc7xe8L3F8 hGM4F87jwoDmRP11+1zpubAO67Fv5njO/XGcta/K0n7e53nRfpVjucc5xjvS SMj/wGdOgph3J95hKHOM+v4M3XN4/lJ+ISa9KfKVQW7m3KMhXw1+Maa7EO9F 5Bddg/I/zs8czPU2fA5m6J7Be8ho985+yFe75wMZuhvw7sG7wH7383JMOu8M Y2PKNS9Btpddg7Ev+W5Bpj43QbmvcX7KY2LSiWtt5z3joHvjPeCAe6Cc51yH MnRn4p0hz/cF3t+4L7g/uqQoB/vjPJk/N6Yaua7JfvJjyvUO5MKYavPuRy70 3BhTALkJ+HCG7i28U9HexD0zB3OxpwLX4Zo0B19vnzF+Vlx/5imKKVdJTPcf 3oXIJe7pSIbuVbyHUC6NST/K919M9wv6H/I6sJfimPYIfRkzP0F6M/eQ4Dmw /3Ex6fzbhOPX/Y8Px+hX5nzvJqgma7+XIGZ93meK7EufV7w3WXdyTHcc3pEm xHQ/4n3sWIbvUoidGJP+foLGJ7hvzqWp+yn22r9jnyNeE9ZhPfbNHMzFvKw5 2b3ybD17TwrIftQ987zl2ALknOQcnBe5uetS5hj1qeb3E/5f53O9EodnYwBb LnAiQ/cGnt28G03z3F4F/wv+IEFMnXciymTeN+jLGN7xWoMXQr85S7ZjXqvp rsmeef/4LVuxr/k+8rLt1DnGu9Fxz51xjL/B+/EGz3FmTH0v5PPCJFrAnhbQ PWO2xwj6cW6nMnRn4n2G8usx6Yxr6VjaOLbIOWfFNE6mfid+m2/Yxrpk6ow/ naF7D+8Yb8akL07QXGb4mdHGMfqxR/bKOyH5hNefubLcD+MYz3v+W67D3sjU 6fc235985yaIqfPuw7FWzkN5bkw68S7km7LkT1/eMXgnm+P5z3Vu9h/x3Dgv Xrh4H+Jd6J2Y9I8SdE854zy0cYx+83zW8f72ruuzT/JN7o33iXKZupPMjykX 72AfQC4P+1J+r4jJ5+MExbV27PueB3vgOP14t+JcTvlZc07UC+zDcdZinfle O+ZgLuZlTdbm3Yj6za5FO228qyy0L/tZENOdi/c6MufP9aG8wGv0YUzz5F2L /KHnUxuoman9zPtKhUzdYciLYrpDLfbvietApt7GfbVxb/RlzLIEMeOYJ8Pz Yc9LYtJ5T6vI5xbTnYg52jrPVOzxT2G/nXNznWX2p+9FzrnEz6aN/RjPfPRb Dv+lMc2H97RB4BXQt2fLttS9DgNugZ4ekLw8Jn0KeliZpb/FaOPYdXhpVuL8 oG/LFlP/hN86YorpkSKmzvggxq/O1D15ZUz6qgTFMUfTgGwcox97ZK/73fN2 /83ONeF68H7OvTzPv22uE8d6ou4GyElw/p7vMfBa6N3huwp8PvQvYZ/Gsx22 S5Dn85j0u1I0Tr/sLMnkiwPaF5/BviNbvoxhPMe72WdNTHvo6wQx9f/iyF+5 H/ZyaUCxq2OKX+2a9GG/9FufoDjW5J68E+M9HLsePmGMbeTf8jGNbYCcyPnx XQZeB64D/iZBTL1nlmRyw4B8GfOtYxnHvRcC/4G6Dfj3dUz6dwmqydp38RzA OtztPKzPPtjf1zGNxVLkT9/LnJO5mJfj9GM87+m8r/OOzOcWAzfi+x8+FeK4 O0D/HuMXsye+AzP1bLjmlL/1c+U6/pktO20c25Sg5/QN9HiWennW/XzjZ8j9 wNjvYorfBH4NtXNSxNR7Zak+147z3cj3DN9fCWI+Lz6X7/w8+ezo/72fwQ/g x2DfkeA1cx7aegPXQP7R68fn1ShTa8c+f4pJ/ztB4/Srnym5vusyD2swF31/ 8v7oC70/0AQ+v3i9N7oH6uyDc+T8Ggd0BxmYpXsIY3+OKZ5MfRdif43Jb6/n vtH7lTaOMX4A8GSWvgVdwXc130Hgq4CnsvRb3hqT/k+CfJ+2/2DwkCy9KxjH +D0JYubIDSiO8cz1W0zx7GdbTHepfQnibe51R0x5D8B+LfTngHoBxTGetWnf HtMYmfpB+P/l/c79zxzMxf6aYPxP3gn4zoD+O+RruEfBTcGHE8TUh2ZJJjdH 3c0xrdHuBPFmz4E5mOuGoJj5roN/V8jPZOk92YzvNMjXQ94Vk34kQb2wp0MJ snGMfozdGVM8mfq6BPmyd74DOT/Ok7+NFzL1W+Vv/wTPH8hB9PMP5Bd5pkK+ jvmz9TulvDsmvTnPEvYfkI1jRxOU82+/R8jUs5BnT0wxxxLE1Bl/M+SXwDfy 7+WY9PLwv4XnXKZ+L7RxjH57wTP5LS9FPBy2FgH1O8b90E4/jtHO+XCsHfdU 1tlPVYHWkG9y/gM8SyFXDKrGWPdz0DXLBTVOv5ezJJNbOs/+mHLRlzGMZ++t nf9wTLXPCYqpsw/G0Yf5mS/PORl7yGNk6hXgc8T1KfP9yfOP71DaOMZ4vufi Pu/aw+dW93Ab1x4++Rg77vqVgmLqBVmSC7w+9GXMeUEx41oFlO8W5/w3Jv3c oPYO91BhlnyL7E/fo57DSdf/z5++Nzknc93iOvRj/FHb2OepmOaTALkj1wzn xd/Zsp1yH8xX4pyUz8Skd8iUH3s+4x6Z5w7YTkMvzhJTr8I/FOOKqRwUU2d8 J6CUe5b30rj0as7DHK0DsnGMfuyRvVZ1z+z3Wp93ZfZPQbOxe7C/6+kM5Nh9 2NtfQv4dMa/yDga5C89CyJ3B47m/EHtOXHr1oMYruV4U3JvnJuxvIF8C9ImI 6c53ebZ+I/SnL/thDuZiXvpPdH7GUe+FfrL5nKHvzhZTrxkU08Z3FOdcEWPj XCsYV71q4Emw1Q6KqU8D38k19lgV8Juo9UCKmPrkLMnkdgHNiXN7N0u5WYM5 mYO5LgiKme8WvusgT4V8K+SemfLn3KvHpSfCvxv3OPQJWbJVd17GVo0rnkw9 5P6nOT/jGF/LeZijLewxPjfIt/E+CZ+7oYeD4pquXSsuH9rrQH4NcjQopj4z S/493TP7qAH7dDN19s8cM1wrnqn49vx7PC49CT73gnOch7YLXI+YaX/mYU/M Rd+77c+1n+/1n8uzGj7zwEngt/hvDHhe93BtoM+C/VG+q/HMOwRk41hyUGty vudMph4Japxxt3uO0/282HNiXL2QqacEVZO1H8nUfuBeuCMgO23ct+yRvWYG 1U84rp7I1OsFNT7PdVmjtp9Tsvcd99JY/EAPZusewr5SMbYfegr4cZ6bQe2F f7K1H+p6X3OfcDzF+5IymT4NYFvK8z6oOqzH9e3jPce5z8FcLoL9Pa8Ha9Ke 6ufPdaP/hd6XZOqXuB/2wZ76ZmqduTcop3nd63F9uF4psnGsIWLfhi0d+gLk yPBe4P6ZYf1AtmQyc9KXMQ+niBnXCfb+mdpn3FeZcemNgqrJ2gvhNyRTz57r z7lyzg8hT/24xq61P307O2em9zTH63tvMY7r1DGgdV0GZFvmWlMfmqnnzj1J +RLvA44ttz9tHGsS1G9isPtvFNffqfz7lPaL4xq72L9R7u1LXYc9XxbXvqlY VUyde4g5mKttA8lk3nvneS24DszBXOypoX9n3KvzrNPvctox50exVldBHgXb jfC5Iq47JO+9Terp/sr8jePSDwU1Tj/eN+dAfhDyqWzl49/ePOrow3HeRWln PY4xB3MxL2uy9iHEPg95NWzdArLTxnvv1XGNtUTdK+O6a/OuSx7aSndyyhyj Xtu/db4DGcd45n0HPawBP1YOvxPIGyBfDnkM9wh8DqNeE/DL/O0HxdS/ypJM 7h6QL2Nuhs+H/LYAfUuWbIf9929Tni38tyKsbS7sX/OM4r03Lv2WoJg6x8ZC PpKt9w/jGL8+SzKZ+615XH33Rs4C+B/L1m+kiM8NY8ezNU4/zq0Q9u/APQKS b4hLfx8+G90PbRxrH1TO6+PKS6Z+G+wt4op5IkVMnfHFGN/Esw55Wsaldwhq Ls3img9tHKMfe2SvtwfF7Je/xwXI+b37ZBzj28InK66xvili6vS7CVzKO0dQ TP0H2D+Az4/uh3LruPQy5oNckil/+t4VkN4K9n+z5cuYfqg1DvafeGYG5Puz /du4zh2oOx4+JxDX1T4co9/NccV3Dqoma3cKilmvS0D78Jq49uItceXqAp/2 kCdC7sa7PeRXIHeFvBD+v7qfW+PS+6donH6/ZCk358H8rTxX9kkfjuNKerYO 67Fv5mAu5mVN1t6cpf28xf6004ahs3ucYwNQ9zbecTCWHRSfzNZ7jzLHqE+G vJXnf0Byh7j0XcwH+e8s5b4D8m9854Inwa97UNzRNSifrRVQDua6k3cV8A7E 3RtQDuZiP+Tf3PNU+GyDjCtxYIpzMU+XuPQe8O8aV667g7J1cR+M7RRXPJl6 z6DmsN3zotw5Lp1+v7vWdPhOcy3ylP+Ru7n2DOAP+N8XkI1jdwW1L7g/HktR X+xvh/Nnx1Uj232x/+5x5YpD7hFX7VhQ3MN5GX8n5J28p2XqGfQKyL7Ta8gc zPWHfTnGft6G/R/IDwU0V86Zz4h5esaV626eXzyDg+K73cfrwF8Yvz8gORaX /gZ9Ie/Jkv90rw9r3wX7n1nyZcx9QdX42z3PylQM/XPi0u8NKu9u16Itxz3F 3SN7Y03W7hUUs/4DAc2D88nh/dY9MucDkN+E/QHI90GeDfl+3hvBe+HzIGJ7 xaU/GNT4fe6Jc/nTz/cur2vMPrPc/9k6cfXNHMzFvGdruh7PVp6rPHdon+1Y nrccewg57/dasjfyPs/rrC0u/aG4nuXDfqbU+Vw/xl6r3krPd36mzgK+hxfx Lgaf/fB5hPcE2B8NiqkfyJJMfjggX8YMxL49Bdtw6KezZNvvtXrU5xLPPp4f Z7J1Bj3u86S97dQ5NjdTZyR9GMf4g1mSD/rs7h1X370RuwS1jtAvoHOin8fO jvucez9TZxLPCMpP+Nxi3DHH0nZ2zDn7xDVOpv4U5tjXNtYlU2c8zxteYJi/ v88fnlOcy2M++2njGP36+UzjuUme7/Vf4LOK5w7jGP8IfAbENdY3KB7gs/BJ ngvg/kHxkz6HjiPnCd55ApKfiksnBvNdnSV/+vJ8+YjPMP7/vmTW4tm2wP18 mKlzhWfEoLj0AUGdJQudh7ZBPsOe9tnIM3Gw67NP8kn3xnf2oky9t4f4XOLZ NwzyYs4H8tC4fAYGFXfKsc94HuyB40N9jnIux+3DOVF/OkU+E12LdYZ47ZiD uZiXNYf5vKF+2nlop43v/+H2ZT/PxnVu8uwmf+j1ofys12iEzzqeX+QRnk8F /P4qtlJ+vt+XZOocIT/ns2ekf09cBzL1M+7rjHujL2OeCoqnOs92z4c9j/J5 xbPsI9ie9/nHHAH3wPdWLuwfw/6C6zxlf/re65yj/Gw4Tj/GMx/9nob/aJ9X PFuXwvay37O0jXavjCnnupRfikvnufSRa73k3MzJnl70mfeiexwE+xifbzwH yWPcB3OVd/6xzj3IeZiD72faOEY/9sheB7tn9tvLa/Kx/bmXn/bvMNfnFc+O CZDPRY5hQb3Ti6Evg0++czMnz7GlzlkQl84zjuP0q+B+K7hnxuf5LKRvgftb nqkzjO/5IscNCYqpcz/luf4Q90OZ5yNjC30WkqkPDapf+vF8XObzm/6fZPqM 4x0SPisgPwufkrjGngmqXin0SuAynzk8E8llrkF5uXsudY9DHVvJ8+VZ8Ylr jfP5wzOLNcf7DKPvOfanb4nP4Fdc/xn7nz3nnHOce+U4/RjPb4z8vnhzQM9t ZKb+luR3R47xW+s0yKv4O4T8OWxhONQPSJ4Ul/4Zxs9DfO+AbBxrwW90sE2E vhLjG4A60AcEZOPYxqBiJ8cVPxX8KfThQTH1qpmqTz/mnwJbR+RfkyBOaKX/ bpA56DMiKP9p1l8Fd4LfWvh/k6W/h/n3NW3BVvpbdXpceRi76ybsm0ydrTPi 0u+ponH6VcuUTL7QeViDuejLGMbzb5uZ9fW39sy4arcLiqmzD86R8+N6rgZX Ro4+AcW+Flc8mTr/9p8Vl9+ooOY+xX3TxjHG82/0Kq10X/qcv5G4/i5fy3dB N+WfHZf+AvJ8Aa4G/76wr4N8PuR+AcUxfmRQzBxcK8YxnrnejCt+NO+Ecd2l BqWIqfNe9XZceV+Cz5fg8t10X2Ic41mb9jlxjZGpvwj/9+LaN7lB5WAu9rcc +d+FXBvyUshzIdeAPA+8nu/ZoJh6xW6SyY/wHh7XGvHbBZk614s5mGtwipj5 TsD/a8TWgtwf8jf8/XTTHWl+XHpeUL2wp6EpsnGMfox9J654MvWxQfnW9jpz fpwnfxuf8L8/d61PYduGsSk80/k7g70QciI45N8R5QVx6Rvh+22m3gm0cSw/ qJzvx5WXTP0Z9PlBXDHMSabO+O+BCHyf5B0mLr2Yv0fE1eUZFJCNY/RbCP4O ekFQzD4HBsRJlmlf6DkQnA/HfuJ7o5vWYVOm+mD/SzD+A99ryPkjOArfMbyb xaWXBjVOv3O6SSb3dZ7Fnht9GcP4Ffxv0T2vpXHVLguKqbMPxjG+iPc9cAr8 nwoo9uO44snUn8UaLovLb1xQ70+ef3yH0sYxxvM9x/ff47zjgbdk6tltBX8C nzT2Bk5lfFBMPb2V5HT3QF/GTAqKGTcooHybnXNlXPrEoPYO91BGK/lm2p/P cXlcz/Iz1//Pn76DnZO5NrsO/RjPOMYPx9xXxTWfyYj9g+8X6A1aybbKfTBf feekvDoufXum/NjzavfIPDtg+xx6vVZi6tNgXxNXzNSgeI1r0+9invt8nzhu qvPUs53MMfqxR/Y63T2z36EB/dvgdvfDvwP4DYvfv2j/0rWLcM79gAvkQPBX vPPA9hrPL6zHpc6zPi59RIrG6XcJxn4HH4P+Ps8X8DfQL4N9N+RGvC8F5E/f ZwLKwVzMS3/6PhtQHPWZQfl+Db2hmfoM2xs6z074ruMZ0U21vo2r3vfm14P/ rzdupTrfQb6c7xPw35nyIVP/K1Mymb9rzolzu66VcrPGG0HlYK5ZQfHl7n8v xq+APJx/mzsX8/wQlz47qNwb4uqdth/cB2M3xRVPpv6m+2/sNdzgHmc5z07n /wd8Jc933l3hsw/6W0Hxz679C/gAeC7/foF8iO/uoJj6ta3kv8c52cdPsF9l ps7+meNqyM/x3pWpGPpvjkt/O6jxJv/js9k9sRbrjAwoD3uiL3u/xv03BTcH RgXkux0+zcA7wIcR8y7yH+Tvy/WOZCqG/rRxbF5Qa/JjXLnJ1Oc4dv//zPEq Py/2sTWuvre6L86FNXc4L/cD98LzAdkPOs92rx/rsp9tcfVEpj4/qPFmnjt7 +jWuOf9hX86rAn57N0N+GT4nuX8w1gL6TvBRnqPw+Rd8PWwv8DcVl/5BUOM7 vUaUD7u3A/HA2UvvR0HVYT2uL+dxg+dynHveNViXNUcHVJ/6h0H574orZpd/ E//1wz7YE3Gje6O8Oy79H/Ap+C0KysaxBfw+wP0WV/294NM824Ji6i1bSSa/ GJAvYxY69rjnyH6z3PM+rxl9WPMfx5wBgt10Pv7lmuxhf1xjS+x/4n9yMhfz cpx+jD/u9aUP17UVxl+yzLWmTrS2nfKhuPRk52IPh+zLuqvwPrzJczzms2uc 7QfjGiNTfw7v3sM+q3lPOBrXvlnm/UOde4g5mKuNZTLvNuXq6d7A+wZzHPb8 j8Q19nFQfMR3kePg8tCXcn0gV4L8CZ875IqQlwdVr6337QnXpz/H//W5HuN7 EudLTivl4x2C5z59OM6zm/bjvnMwB3MxL2uyNs9w6re4Fu208fw9bV/2c9L3 C94l0l2PtSif9Hx+9buB70nGMZ55eQ9gT+yHZ+o59XTOkgM5OnvL5ciX60Cm 3s59tXNv9GXMiqB+54nQq9WTjTmYs3yO7gu8AzDuVsdWdL4VtlPn2Ln1dK7z LGYc47kG9b1GXIdKOeqbd4Dz6unc5VlZGXJCjs5Xjldyf8x7m+uerZEj/VLX Y61zXX+lc56To7xk6p/SnqMY3hnI1BnfHnIHYCzyBHOkfxbUWIUczYc2jtGP PbLXz4Ni9suzlWd+Qj3NpYJzs5/KORrjnYFMnX5VnY95yNTvaKWzmnmZk3I1 1+MZWwNylXryv8M9U6+So7OfvozhHaBqPZ3RPDvo29H+57vO6qCeN8+dEfbh GP2q5yh+TVA1WZtnPZn1eNZzH57xb6ym985a+NSB3KmV5FrOxzw8x5iT/dTO kc7zjuO1HMPcnAfzV/FcV9unk/uv5nrsmzlqu1eOs3bnVtrP9OO8aO/sWO5x jvGOcQHk6vD5Iijmec/7AGWOUT+/nu4EIwOSQznSuyNHfch3OncYchdwJEfn M+8tTawzH2Uy8zMHc30Jn5r1dGbzjAu7d/ZD7uKea9TTGc37A89nxrKf5Bzp PLtTcpTrq6Bsya7B2KQcxZOprwsqd1fnpxzNkU5k285zlDnZG89jxo6yfKFz 1aqn85XnKW0c4x37jP9emeI5sj/Ok/nr5qhGXddkPxflKNd6yGk5qs07AznN c2NMKuRufOb1dO7zPKW9m3tmDuZiT6muwzVJgj0C5AU0V86Z68886TnKlZmj uwDvEuRM93RBPZ3xPPso18uRXgfyxZB5rtKfvlwH9pKRoz1CX8ZsCEq/031m eQ7sv0GOdN4rON7jf3w4Rr/6zvd1UDVZ+5ugmPV5jqfblz6XeG+ybqMc5aT/ pTk6q3nX4nlfx7ENc6TzbOX4pe6bc+nufjK89uvtw3GuCetc4hrM0dD9UWft nq10tvJc5Xc22ns6J8/b/2PqrMOkLr82vrOKwcQKKPYsKrKFYhcWbgEiKgqD qDBpYHe3iIJFqIAgCiIIotjdXYgFitiN3a3v/fE+Xu/vj7lO3aee71MTC9gW 8z5F/Jrye7WjKWc8dwB4bMib5/0sl8QzRea5vq57x2T2vSp/Dlhq9mdl67Fv CjNC8pai63O36GiKnMyZh15WZSw+bwhziHz6ST6m2TpigNlKuqzkpcLU1pm/ XPpt8pbfCv02gXtatRWb/dkpMv6FZvNQfLfNu24+4wXL56fgn5Fvb9nKzbaD o7dz2Stz7hF++7zlboq5s15Tq6zD9nvE3C7vuFBk6t8hb59lHU2R8d9Ir4OE Gcd6z1t+t6N72Tr80WEDR43Uen7WlHr5LKib6MHN/hwPP/zPE2anvG2TOpoi g9tFtAd3po6myGn11V38SNnHV5nfNW+5Xnxz+PACyz1hQ8ZB+mU9jMXnPT7H 2MHPdUKV/Q+LmLtFPPLWCXt487//1dO/Omzg+uTtPyrrnOT+qKMpucnbs865 iNmSd6wPub+J34S7AutOfCP3JNap6JHN//7Tz1VtecufdrQdXE3OvdAHd2N6 Qn4nMNivqXIe8lE3MYhFXHKS++hm931M9I4e3ZVVnuPYGJ928c+rx9FZ06Ni HOCxIffPu8/POpr2j/Hl+V0Qz/oU0dP0miJ+U9l2j7EYELXgC0U+ttn8sVEP WHyWdzTFjxp4Bj1jbPeIZ8LYUtNAyVvLtm2d+2c8z+YsizW5Z962HwK/9f/E 3CP62TZw+A+MXnkWe+Xdz3fid5JtX8k71lmHjT5Zx2fHWoYflLfcu877C/vG oFj37D/47y35rGZT5F859/P2+aWj6T6xZ7Hmz4k9bXDsAW9FHGJcXWUdNnDU SK2/Rc3gro4xqY39irncJ579kKiXGkri24VZISm76AGx/oeK7sq5K8yLrPVm 78/75S1flLUd3HnN5qHMz104S6TvlDMWH/x3k36U6OPC7B97APsMFJn5hB/+ f3R0PdTCvoTvsLz9och/d3S94P7qaD9yTmM9iu+c8/wvCNMmuVo9Hpi3jT+M ny46XPKFijlCdKFqHZM1Rf6w2fyHUTNYfPYPX/yekL5VfBflmi4+n7ecSDon uS/iHCV2rH3yUwf1FfO2jc0aD/baiEks4mIHhz93X+7r3PV5bqvnvI4OZx2w r4keKron55xqWCTfi+U3o8p8JW95APNUdGaVdf/iVENf6cuSx/Is9bpOr7lV 1mFbMWnfg/L2P0R0d8krJ02R+9c5/0TZr5fvwdJdKn6lpOnlxK1yDGKtkjSe uvEZKTqeM1D6V/h7k4iDbkLUfJgwe8knJczeol1z3n8Oz1tOJ20HN7DOPHRy xCEHscDig/8gxlC6WcIcmXfuS7OmyNRBj/R3lTD7iK6Z8/PC94i8/aHIGdVw VN64muidsaB/dNjw35d40t2gOK/y+1PpJ7EWpF8757E6Nm+5i+IMZn3LPrvK dGrw+OF/WdZ0UvSCH/7EOi5v/06Kc3zed6lxWVNk7lUn5h2XXEOFnSb+xir7 HRc29CfkbYMiry786XnPm65J44hFfcNkP1X8fnV+nRT9nCy6P+OYND05/OGv ibl3dN5jtFrSFJnxOinirZE0JR5jRU3To+YDpbtW/Dzxp+Utr510LdREneiw gcP3lLz9T4n+iD8s6iY+ddEna+OAOtvQXyLdoeI3Fv5c8TNkX0f8iDrzN1WZ PzNs5JsZtaHDtm7SMc+I+qDIa0l/VtQID0XGvyD79aLzFeecvOX1hSmLFuu8 XtBhA3e26PA61wY9IOqnpllRJ/qzIzd6+sFWkTxH9Bb2ujrj8D0/71xZxSyJ 3iDMzdKPyluuTdoObp2ceejMiHNe1AQWH/wXa07Ojr5G5517g6QpMnXgh/96 SfvcGHnxvSBvfyjyeM3zCyM2dbJ/lvLeQ9Fhw599bmzsUYew18UYHiw6Rpi5 so2N/N2Spsjzms3Pi/EBi89GSVP8FlQ5XjliXpy3vGHSc4c5dFOzsfMDD/ai GN9LI/9/eLC3RkxilSMPOPwvCh11XpZ3P93FHyE6QfKCZusuizqId0vEhB+X t8y5ckjUPC5qJM5h0l0u+eZmU+Q66cfn7dMjaTo+coO7Va/bFGdi+PWIODeH HooNHDVSa0PUTL23V/m8Gxn1vBjfX/F9HGcgtvqkdXwXx2fjV0Wv6I+sMwbf SXnLjUnbwd3OHBI9U/odpF+iuXO15DulP066u0Tvqopaoh5iTIrc4MHeUWU/ 5Amae0dz/kheN2eK3DNpio4z7ijxV8p2W+Samne+a4Numvx/+V5ysGeJv5vz WvTYOmOg10QOeCjx6enm2K+JTY5eSccgFvVAiXdnlb9/vQdZ/PERizjX5S1v JvwxolPCH911UQe+0/P2hyJvHvXfG2OIH/6bRJw7Iu9J4u8Tf4/464U5UfIW SdPrI/cs0ZNFt2INij9V/DZJU+T1c8YfHzVTx0zp7w+KTP3EWC/ns/INfnsQ eWfnLU/Us3tAuoeoOzDYwJGLPPdVOQ41EeuUOvuAf1T0Mb3uF38Gayzvs3S+ 6Omi26mGNxVzbvTDGfxIsz/fQIftiqzHZEbe4wJF3jJ8/80dPd4fz4v8N+Zd NxSZsTo9clMX84G5wFmJ/tGokxqpdfuk65mXd01QZO4P2OljdpX7vSFy3BKx 8R1T5/2a/fACnm/e5+2CvO8F3BlG1fm856y/NW+5T9L2BVEH/BmR637pnpfc nHQe8jG+z+j1LM+pyuf37dKfX+e85OScJT/ybknjb8vbB4q8a9RDHdSE7bmI CX9n3vK9eZ+9nNd3Rgxq5k5wV/Rwt+joOtc5OmTOeHgo5yxYfNYO31ExDuR4 PvLeEzmpeWbkpocL63yucz7SKz1zj7ovb1tL4C+I3olxT4wddnD443d+zAFs L0ReeMYa+aI6n82crfAP5i1jezHw6LC1Jn1XGB09Ppo35j/9AzEuUGTuKg9F Hmp+JO950xbzB5k5RAxiLYycCyPv7OiHcfi39sj3cN427h6zQwb3WN7nPHeJ p8RfLF1f8Y+LHyu+PenYL0X8JyIn9WAHx3k+W6/fxG+Yc7yLYnzAYOfsRv9Y jAsxiEVccpKbMxx5UeRCj47z9+nAUs+Ted8ruEtAx8Sagn8yxov1xzrcOmk/ /InLPWBs1MOZekmdz1nos3mfvc8FlnGAIr8cdb383/zP26efMEu157zH/hjx DouYz+d9X+AOgN8r4ftixOsXemRsl9b5XOcMxe/5eB63xBgxDgvzrps7wGV1 PiM5Wy8XfSXvcwP7wqiPuK9GXvhFecu3Rz5yLYr8/SPmS3nHhSLvTp15+zQl TZHxJ9ZrEf/ViA0e2wt594MOGzhqpNYBSVPq5YzjjnBZ9PJCxKae1/K2cSZC X4uaFkc84kCRX2/2WX15xIRfEvk4Y5eKH1dn/OtRM/LreZ/9YPHhDsBvrjij OTvALg78m5FnD2Em1PncuScw2MDxWy38Byadk9yc9VDycdYzD5+JNfZW3rH2 FOZd8RPF7yV+WcQjDufY+Kjn7bxlzjvs4JZE7OMi/uvR6x6BWRL1T4h81E2M t6NWcr4ba4b5zFx+uMp6dJzdzHFsV+r8fSfvM5/1Bc3mPA7w2JA5ayeGL/z7 0ds1en0nfqrolXp9kPfd4cNYQ/QORV7abH5p1EMMYnG3mSyfWuV5pMoxiDUo aUo87iH9GnT21vlvqM+Q31vN/i7mk7zln3RP/jTvWIOT1mEDh+9HeftDkTuk dS+WfEmr88J/nLc8Rfzb7MvSv9Pszx/57PGtHSz/x3+eD7nOPuDRYbsq63nB /Ng4eqQ++gT7Wd45oMhDhFmed6yc+C8jNnooMnXw2egX4t8VnSb5PfbiKuvR 8fkqMZZHXLDY+Bx1DjJ7aJV7ped9ko7zVd6xvonnOTRpirxL5OmWcy74b/OW Z8j2g/iPm40Hy2eVfG76tfTvBxYfYjJnpgZmmcbpg2Z/xvh93vIk/tabZ9fs zyHRYQPHXMN/WNI5yT08aUr+J6vcB/3sJ/2PecfqIP5Xxpvv2Phtj/jrhDmQ s1t0g/h89ee85ULSdnD96twLffA5MD0h81kuGOx8Dkke8lE3MYhFXHKSe3mz z1bOVe6i6NExtzlvsZWU9xfxN4gvJk0/F+apKvPYkH/P+1mWk6bIPNe3xL/J WSH8AtGb67xXvKNcfwjzpTB/BpZcX4T8dbP5r2NugMVnStZztDN/ANViHTGK iaqqv4SZp/gHK8730v3APijYP3nLI0OPjG0ucykw+P0VPcNDGRP+0Iq6D5fv LaI/Cv8s8015V5Ttl2bbwdHbbXp1z3l84KsLlm9n/IV9rso6bEdGzETBcaHI h0m/QsE+RyVNkfG/U/yvnN+K06Fg+Zike/k7737QYQNHjdQ6NWv6S9TPmP0W 44Yf/gcpzkoF23iOUGRwq4jeJcyxSVPkuVHL71EP/KoFy7xS4v9oNh4s43yH 6MoFz5FVo8ajk37O2HjWd9d5HKgzWbB8XNLP7K6Igy4Z49WxYH/qT0V+6oT+ EbXdX+f9jn01XXAsxrmT+AekP1l8Jp4nY35fnced51VTsHxi0nZw99S53jlR Mz0hHx2Ye6J+8qRj7IhRE8+VnOT+p9nzmbnMXo0e3YtVnuPYODtWE/+n+OOT pn/r9UKVeWzIXQru86SkKTI9P69XRvFfFf6ROu8F7C0Piq4e/a9R8F7NPg9F TrSYh7KHg8XnlKQpftRJ7VfHWdM11iXj+ah0a0pescV7RIcWr4sP+ZsL6VeV vFbBtkLgwS6MmMS6OvYbcPgTD9wZwq9dcD+ni39adH3JdTnrsNHnE8w3+b1U ZX7dguUPVMMqLX6+6LCdzXsT0XUk98iZIp8l/XoF+1yTNUXG/0nmoegixckW LJ8TcYhBL+iwgaNGaj0vaqbe52NMGI+XqzyXO8Z8YpywTVfenuJfke5S+X4s 3caSa+Szgeiz0o/ivbZousX77YYFy+cnbd8gcsNDyUtN3aRPtRiLD/7PiW/I eY51L3gOjU6aImfCD//zop6ayIvvRgX7Q5EvSLpecNdl7ZeKcXtB9sacn1Gj MC9JHit8j4JtF4p/kbGSvJp86kU/UZwZWVPkTi3mO8U8B4vPReGL32vSLxTf M+e8DQXLY5LOSe7Own2mOF1EF0dt1EF9TQXbrs8aD/b1iEks4mIHhz/vc/h8 kfcdPLc1pFtS5c8dsfF+ZwthF4sfz/ugOseiNvhNo77XWEfyfaPKOmyXJJ1/ E8ldmc/SvRfn7CbRB33h26tg/81FX5V8WdJ084hF/rVlf1O+mxVcJ/Gha0XN xCDW5UnjqRufLSM2MT9nXUQcdOtEzVsJ87p8xgmzRHSTnOvcumB5QtL2raI+ +FdjHNaMHMQCiw/+b7CWpVsqzLYF556VNUWmDmK8HHGWsj9I91aVfbcp2B+K PFE1bFcw7sronbGgf3TY8McnG3m51+wQPSxjrUq/TPreBcuTkvbpFnmxbxAY /PC/Imm6JJ4dfviD3TFygtmp4LvUVUnTncJ/l8Cif5v1K/7tKvvhT270Oxds gyJPFr614HlzTdIxiEV970rXzL2F+5X4XSN3n4gxJWmKvFGL+Y0i7/YxrjxT KDLjRQxi4Qt9K/plzr4TPPk2Jifbf+SfmnQt1HR10jps4PDdLeJCkcGD7R5x 6K81bO+zlulP+iHcGSTPFX539irpr0vaXhcY+PaC5Y/qHIs60WFj3IjZFjIU eZr0fQv2uTZp2jfG+hPWtebv+4rTv2B5RtJreHmd9xN02MD1Y/+XPD1pWk/f Va63MXj04LChpx9sX9Z532H9Lte6+LjOe+MerBfxs5LepzaJvW5g7FvsvdjB 9WwxD/0g4gwoOBZYfPD/rM57IvXvVXDuOUnTveLcwg//G7RON2V96fVhlX33 jH0finy9fPcuGHdD0v49Y29Chw1/9rmusQ+zR3xV5z0Huk/sWfsGlnqgyJtH /s2jBrD43Jg0fS3irBXjyBgOjv2APZC5MyT2bmJsEXGoZVDBzzIXeW4MPNg3 I+bgGCPs4LYIP/w534fGnse58K1wB8TehG5o1IrPlpEXfljBMnvf15FrWMRm nvPvh+4X+x0UeZ70+8d+yR4I3T/WBrG2ivgHRux5EYcY7IHosIGjRmq9KWqm XvY91v83gef/D+T/3OH/6xkeewP7LTr+j72EMPmIRxz2r28jTiH2M/ZV7OC2 Fj1JdFfRe5Lev8qSv5PPD3XeC9gHwG8dvRCjELWCB8ueXI79j73xe+mKsVdC kW8OPTr2OvxGxF5PrkrsU4eKbqs4tyRNkbfjrNHroLAdHHsne9pGIRMb/vuI v2v01ivn2OQgJjGIRT3QbaOvH2OPY+9if/wheh8Z+yX7EmNQCn90IyMuvofE /gVFXhD1bxfxSzHe8yPONqH/qc57EHvREbFfsl9Bj4hYR8aexF53jPjfpbsr aYq8U+y7P0b95Dxc+u2DIlMPMX6OXDtwxrE3iz+6YPk2Yc7uoXOuxf8mJzps 4MhFno+rHIeaiPVr7MvsyX+J/olc5fdhJ8TcOlH0D+nvVvzfRI+T/MRuxu7S Yjw6bHcmPSaHxd4NRb41fPHrHj1uH2NIzccWXDcUeceOzklu3s9RB3OB91zo 0fF+lhqplfd91HN8wTVBkVkX2PHHl36PirPn5IJ7vpf3v/XaV9lDhakWfwbr UPQU0S/4Llb79j+ctcJ8KsypBcv3J20H16fFPJTfS58v3QDxTySd5+Soifd5 zS1+f/S35NMLft9GXnJ+VuX8yA8ljT+tYB8oMu/7yE8d1MQdv63F93z4MwuW z2WvVU1zstZh4z3FyaJnFXzHP1u0g3I9mjRF3ixnHsrZBxafb8MXP96zrCRM P85J8ecULD+WdE5y95eto3R7MDZV7pWe7xPmvIJtTwUe7PKISax+4QsOf/wY J96/M64DIy88Y42cEn5Pzq0q8xcULOO/V9SADtszyruq6Cr1nodjAvt06EcV bIMiPyn96KgF/qKC581zMX+QmUPEINag4AdFPcl6xyEXMYhFTRcWbCMv9MLI N1Y0Lfqs9JeJ30fY58VfzHOU/oWk8+0b8/aSyA8e+8XhswvPRPy5LY6XjBrA YP+6yvqxUQcxiEVc7OQeLNpZtprwRT84fC8v2LZQeS8tGEOd0HTg4S+Nflh/ rMM7kva7PHw66TWE85LPATQf9me+ie8i/XhhhkqeUDCGXENCzrWYz4UvWHxe 4sxSnBsll1usGxoxJ0q3uuRFwqwpOoyzkPenBcuvhh4ZW1fxW+S8NvGbGD3D d44eryq47rlaa2tLdwDnGXcz8VfHXMcOjt6Y7wfGnIefXLC8Vr3XAHN7cqwh 1hQxJxUcF4r8uvRTCvZ5LWk6JdYhuOFRw9TwA0MvVxTcDzps4KiRWhcnTamX 9TIwaqIe/PB/RZhpseZYv9BpUcf0iEccKPKIWH/rREz4ayPftxqTmeLzUe+I qHld2a6JtXptrBXWLOtpq5zX1Hr1XnvM/xkFy28kPXe3zlmPbkas1etiXbJm yUnum7Km5P+hyvNwXMyz62MdsNbmiO8m2zLxs8RnxS8V/x2/neb8lu8NBcvz s7bPirVKL/RBzfSEvCRpDHbW0b6Rj7qJQSzikpPc1MV8Zi7/VGU9OuY8cxzb zco7O9bri0nTbXKOD48NuUe91wNrAX5urJnt9LpP/GnCHqLXPPEjRW+Kdcaa yoXcvd5896iBGMT6QJhNRY/h3lHlGMR6L2lKvF+qvAYaooYjxB+l12/ibylY /lj4BQXHWp60Dhs4fOcX7D8/1hNrtqne65a1DH9zrGfuBMe2+K4C/SvuOZvU +z7xSPC3xV2nV73zUj86bJ8nPS8Y8xejR+qjT+LfWnDsW+MOwn3p9oJjfSH+ zrDTC/TOuH9wX7hD/HE8K+4con9WWY+OuwQxbo+xuCPuGtxbzhY9Ty/ePNAr PX+adJy7Co51D3OKMUmaIq8sui0vzYVywvy9Bcvbi39A/HY548GyR+1OT9Kf 2hJY6X9Ies4wX/4S5gfNwdNjL72/YPkWzckdhDmDMzww2MAx1/D/Memc5P4p aUp+9gH6oJ/vpX+w4Fg/i39U/I7ifxX/kPgfFXcBfwtW73FhTB4uWP4taTu4 M1vcC31MTbgn5McDg/2fKuchH3UTg1jEJeejUStnK+dqImE9OmrmvMX2h2I+ EjHoC3pOjAM8NuTHI/av8UyRea7/sKZF11D8ZsW7QPwK4ncW/0T0/yTzQfSv pCny+S3modUJY/H5XZjLpXtL8oQW63aMmp+KOwKY3aTbIef98JmC5b9Dj4xt 13r744sf/qNazI+KMXm24Lr/ke/P/B1Y1POL+Bdlu6jFdnD01iK+d857Kfzz Bcut4i+UfcWEddj4TxyJ+VzBcaHIt/H/gxTsk0iZIuPfRr85758LC5arU+7l 6RgjdNjAUSO13p41vSjGv12YMeI7JOyH/5/q8aWCbSukTJHBvSzaV/KKKVPk nfiMS/zFsq+UMP9KwTKv18Vf1mI82J95/6IaFkk/tsVYfDoo5m/SXxL17C7d peJXFv9awfLKwvSvdyzioMMG7tWC/e/MOie5qRN6WdQ2UPgB4bu44FgrCbNU /J7ik+KXiN9D/Kopxx0XNbwRecBjB8ccpJex8UzpCfmOrDHYV0k4z+IYO2IQ i7jkJPf4FmMnBB49ulUTnuP/xlHeNwuuHx7aP3qBfzP6WVZwnx1TpsvC5xrF uE6vjGLuK3kQew53YNG3hblStndErxBNp0yRr2oxf1XUAxafmpQpfh0Tjrd3 xHy3YDkjzGDR9yRPajF2cuCHSv+Z9ENE34/8/+HBJiMmsfaOPODwJx64TsJ/ UHA/q4nfT/QTyVNbrPsg6iDe1RET/qOCZXLvGzV/FDUSJyfdh5KntJgid5H+ 46i3c8r048gNbppeKcX/NPw6R5wpoYdiA0eN1LpG1Ey96RiTIVEPc5k5zXpg nLCtLvxP4kvia8UfIPq15GGcbdE3GOShEeeLsHdN2Q5ueov56ZF3f9k/L3iO gP0i8h2o17XS1QjzVdiJA0VmPuGH/5pRz7DIi++XBftDkddOuV5wa6Xsd03M yeHswznfnX4QpiB5fWG+Kdi2jvgRot9KnsHZLPq7xuiurCnyzBbzM6NmsPis G774rSZ9njMv57P++4Ll9VLOSe7rhfuD76MCT37qoL4fC7bdnTUebKeISSzi YgeHP/d07uvc9XluNzA3Eh67uqLmBeer7BXRDVRDsd5nNmcr/C8Fy+V6n9/c B9Bhy6Z8zv8sebbo0fWxTyas+9eWtO+vBfv/XvBZzV0C+nvEIj9nPefdbwXX SXzonKiZGMTqljKeuvH5s2AM+r947yi+S8K6G8P3r4LvAtwlOFf75Jzr74Jl zn3sf0UO+HL0Sxxy3BhnMj74H1Tv+wFnMf8gMbnvzZoiz417SjHGk/N1t5zx +P5TsD8UeUPVnygax1lP779Fb+iw4X9Ivc97ztC/lWsF6W9qiXtAzvoVi5Y5 u0fW+/zmjDi83mcqZxx++N+XNSXG6gn74U+sDkX791CclYq+S92fNUXmXrVK 0XHrUz6LWnLOhR/+5Ea/ctE2KDLne6boedMz5RjEor5Eb+1b4m9rqfr3P4pZ VfwC9u5inNEpU+TWnHkofVUXPUbdU6bIjBcxiPVA1pR4XYU/st53AM5ozuq2 nPl00TLnPrVQ04NZ67CBwzdZtD8UuTFlLLWvmXB/9MnaqJb+DunXkr626P2Y fXh18cfLvlnKZ3N7zusIfrWi5WPrfa5zRqPDxj2BmDVFx4UiP6Q6OxXts2nK FBl/zvm+OcfpUrTM3WMl+S0W35CwDhu4zqIryPZw1vQu2dZOuF7uCpzL6MFh Q08/2Dgv++d85q4ozD2S1xHftegznXP88nqf5WDWLFoekLIdXL+ceeiqEWeN omOBxQf/DtK/Jl29MGsXnZszGopMHfjh/4h6GV/vc5xzGd+1ivaHIj8qzDpF 4wamvH/+FHsTOmz4s8+x//F+ZxX5LRPfM+Ezfj2eu/KuLzpR2L1Spsicz/BQ zmiw+HDWQ/GjtpUV8w3JjeKzRcuPZz13mEMDhJtU77Oc85TnuG7Rz7Jb0bZ9 U8aDTUVMYhEXOzj88cP/McXfoOh+nhA/VbaNiz5H0WGjT84PzlHOUPiNipZX FeYd2TdJWIdtSMpn/obMw5wpMmd396J9nsyaIuPP672I0yN0/8UhBv2iwwaO Gql1aMqUemvivJsSdfKdG9+98T0UZyA27gbfit9UuZerhoaIRxzO86kRp7Fo mTMdO7j3RXcVvZFzLGV5E8kfiB7RqlpZgwnj349eiNEYtaL7IPSbRLz9Uj6/ m9gj6k2R1w89Ou4G0Pqi7xfk2rTofFsU/ZkKn7dAkT9mXsrWS3xDg/Ya0Q+l 2z9linx0i3lo9yr3RG975hybHB+nHINYnyVNicf3ZdeJ/0i+vVTbtfX+zIfP hbYsWj6A+xv7fdH3F3TYwOG7edH+UOQDU66f2vkcCT/8h0UcYnD/wT4wZ8w2 wnTUc3wqa4r8iezbFv1vh/Pvlu/AHFTNq6ZNkZe3GA+W70dmCLt11AFFHp5y jM9a/G+YX8+eXe9/X2X7ouV8yvZxrf+PwQaOXOQ5MuE41AT2+Bb/O+n8++qb C/MVY5Dw5ys7C/Ol6C6is+VT4l4kumPkm6PXF7KXEtZhK6Y8JlsVPS5bxfM/ MHyvj5pnxLjzvKijd9F194666IWc5ObzI+YDc4G9Dj06PmejRmrl8yXq2ano mqDI5ZTt9MHnRfS7XdE99ylGz8I8wJ7MfinMfPFtsu0teTfRpJ7N03qmx6u+ veIzt+ai5S9TtoM7odU8lDHZQ7rflefYlPOQj/Gdy7OTfJQwKeFbpf+6xXnJ yb2R/MiHpoxvKdoHinxQyvmpg5rmSfcd6y1hvr1oeXfRGuV4PmsdtoPlm5au r+RvON84P+tdJxR5n5x56LoJY/F5NmuK35bS313vHrcS379o+biUc5L7D9nu 5VmJbp1wr/T8DP9vV9G2EwL/R9RPjP4xdtjB4Y8f48S6w/ZX5IVnrJHv48xR zeslzO9ZtHy/+L9l3yZhHbYTlfeeevdJj/tI/6D4U0I/MMYFiny89HsVHesk 8YOKnjcnx/xBZg4Rg1j8J7jw0G25O6n+f2IciEEsatq7aNsLWVNkcPuKdpL8 ovRDxT8in9P5rED8Q+JPFf+waLXib6eYQ4qWT0vZDm6I6lkufqz4g3OOl2j1 OIDBnk1YTz5sxCAWcclJ7pxwj4pfUbrtE9ajqxW/X9G2M3jvL76zYi3Mmq4Q vcNjQ2b9sQ6/TNoPf+J2EaZD9LIGd2/xO4h/jLNemKF85yX6uOSzUqbIK7Wa XynwYPE5U5h1FedYyWu0WkeMbsIcKN3qsi1SnU9yt2Dv4YwuWj4nZYqM7Qnq lO8GCfvhv3Kr+ZVjTPJF1/0y/x47ZwV3DemfYR/ifpKzHRy9PS19R9EdE+aL RctdhUlGPeiwnZdyzELRcaHI53I/LNrnlawpMv7Pyp4S3UlxKkXLo1LuZXjR /aDDBo4aqfX8lCn1bsTdWDHTUSd++J8tzEFF217NmiKDO0T0eWFGp0yRM9Kv xfuFqAf+0KLltcUfzlxvNR7szsI8x14l/QE5Y/F5jc+HOZ+l21iYF7mPCL+L +MOKli9S3oX0yHdlgcEGbmTR/hemnJPcr2dNO0Ve5uGwoufiEUXHGsN9QPzL 4i8Rf6T4l1hX4tcRvkvUcFTR8uKs7eA6t7oX+uiecE/IF6SMwb5rwnnIR93E IBZxyUnu1Vs9n9cIPHp0fRKe49iW8O9IiF8k28Up0xGKV5cwjw35LeZSzvst /HFFyx8z18TXK+6b7Hnia8WfILq+4r+ZNf1XbjUPbU44BrGuUt53RTeUvjXh GMS6ImVKvN2kf1t8N/Et4pfV25d6Ti5aniT8KUXHujpl3cmRA98Ti/aHIk9O OfYGER/+pKJlcBtFrqxq3jhqe6fecbcI/rTI/R7rMefzBR22KSnPC+bHS1nX RX0bRvxTi85xatRF/acXHWsqn1kVnXtp1hSZOt5n7xTfXfwH4ks5nxHo0bUl HINY1AQW2zTF/EJ0U2F2T7hXemb8iXNW0bHOQa98b2VNkeuE+4h9KeezAP7c ouVP2CfEV3LG10UNH7Lupe/Raiw+16Y8Z5gvfYXpJnyD+Hbx5xctL1PeT4Vp lL5fYLCBY67hf13KOck9I2VKfs4O+qCfa6S/oOhYM8WPYex5v6f4o3nO4t/m /3qQ/aCcz5ELi5avT9kOrqnVvfSIOukJeXpgmqIX8pCPuolBLOKSk9ybtPps 5Vxl/0e/SfTIeYvtBsW8SPzn4melTHsK0z9hHhvyxUU/y9nxTJF5rtTSqcH1 fMM8lbwH722V6xJhekm+VPRL2eakTJEPyZmHciaCxeddjc8fjIfknVut6xX1 XCbdV7LdyOfVoofmfAaNK1qeG3pkbN3lu3nMPfzw36zVPHSA9OOLrnuefDcW fsvQ9xB/pWxbt9oOjt6+FT8y57MGfmLR8nfit5J9YMI6bDdFzAlFx4Uiv68e ryjaZ37KFBn/7zkLcj6DripavjnlXi4vuh902MBRI7V+kDXdOsb/B2G2Eb9n wn74vyfMpKJtt6RMkcFNEf1R8oKUKfLhfJcpfjveVyTMX120/AvzXfwOrcaD 5WyqU57J0m/baiw+typmvfTbRz0/c47kfB5NK1q+TZgGYXpHLnTYwE0t2v+j rHOS+/aUKfn3Fr5J9l3EDxI/vehYHws/U/zvwt0l/LXifxV/h/jfRHcM/HVF y3embAd3ZM69bBvPlJ6QP8wag50zjjzko25iEIu45CT3UTnPZ+byPgnr0XEm Msex3a28M1jHvMfOmu4UfcFjQ55VdJ+fZk2R6bkvc1yvocL/rXh/1jv+X6xv YXaVbXasJ8Zh55D7tJrvE7WBxefelCl++yYc7/eIOado+R5h/mEtSt6t1djm wFdrP7hVev64cW7k/w8PdnDEnBPPBjs4/IkH7n7h5xXdz33iV1CsWyS3tVo3 L+ogXmvEhJ9ftEzuv6Pm+VEjcRLS3yS5pdUU+UHpb456H0iZ3hy5wbXrNURx FoTfAxGnJfRQbOCokVofjpqpNxdjQlzqYS4zp1kPjBO2h3hPJD4l/hk+cxa9 W/KKordH32CQqyPOHWF/JGU7uH6t5vtF3g6y31b0HAF7R+RbWa/+0u0nzF1h Jw4UmfmEH/6PRj0rRl587yzaH4r8eMr1gnssZb++MSdXEX+05vww8Q8Ik5T8 NO9hi7Y9kXKseyUP4Dlx5miMPsua3hdx4VeKGu6N/I+F74DohbvewLjv3V+0 zL2OnOTmftdR/J7S7x+1UQf1PVi07anAg90tYhKLuNjB4c9njHy+yOeNPDfu eNzf+NwRG59VPlH0HYq7EPc84hIT/pEYi3SD72rc99Bh465Ijocl78U40p9e BySsw8YY4vto0f6PF32/4y4KfTzmE/mPyTn+YxGPOQbdO8aBGMR6NmU8dePz pGhG+udSvmfBc9eCcseDf4q7hp7N53w+0OC7CveWp4uWX0jZDm5Qq/lB0Qtx yEEssE/HXQf7voF5tujc06OGZ6MmeqQ/xpw7CPc07iH4PlO0/zORk/qfKxr3 YvTOWOwd9xds+OMzOPJy/3sheujc4PsWd6cXi5YXpowdEnhoLnj88OfeCCUG Y4If/sRaWLQ/9bxU9F2KeyP0paj15aLjkqtLg+9k3IXwWxg29IuKtkGRXxJ+ SdHzZlHKOGJRH/ep1wPHffCV6OdV0dUbjF89ZO568FDuUc/HuPJMoc9HD8Qg FndIKPEYq1zMXcZkjQbfvbhfLS5afjnlWqiJuyU6bODwfS16eC1qp69e0TPj gI0+WRvcjaiVOj+Tbl3xS4R/W/wwahTftcH3Oe5I8G8WLeM/LOpEhw08Md+I cYEic/9cGjmpH7o0cqzZ4Pscd4ZlRcuvprzXr9Xg+w86bODeKvpuyP0TSv+M D7H2j3rQvxXjhZ5+sK3d4PsV9yXufdRMX+8Wneu1VMSIOO+FH/VgB8cdEB66 Z8R5J/oHiw/+20Zv9PVB0blfT5kiUwd++HOnxefAyIvv+zEWUGTunx9GbOpk HXP+sYeiw4Y/+9xesUdxB1qnwfci6MdF3wE/CSz1QJGHR/7hUQNYfBanTPEj Tu8YR8bw06Jl7pbMHeYQdzpijIg4PMePYnw/jzyLAw92UMT8NMYIO7gR4ffv mS/88qL74c7J/etrycfmrFseteKTj7zwXxYtc+cjH7m+jNjM8/VYp0XfKaHI b0j/VdE+3DOhX8XaWL/B9zzubN8ULb8ZcYjBnRAdNnDUSK33Rs3UC4bvBguM dyL+5i/+7g893x1iW71R97WS1nCb3r+Ejlzc+chBDT8ULXP3ww6uJLqq/Hry PFK+2/0sfW2D71vH5XwHA1+KGojxQ/QDHiz3Q/yQue91k+7Hou9xUORloUdH TPy+K/o+Sq5fis73B+cs6ydl+kfckzbQ69ei732/saep/y+ypsiVVvPQ4Qn3 RG9NDY5NDu6NxCDW2ylT4nGX4053fM78ZopzMPOSu3TR8pdZj8FPksut1mED h+/vRftDkR+N+qmde9pPMd5vpUzLMZ4bx32R+9U/Rd8Nue9B/4mx4D/65g7G XW6Fkr/35PtQKHJ7g/EbRS5q+lu+hwZFZjyJ0SNyjRR/OGuA+3PJ8gcpf4/7 73e6gcEGjlzk4ftW4lATseobfM/j/sl3mEe3+ntMvk9dWZijJK8i2ijMJ4o/ VnKHkr/v5dkcKbmQsA7bCmmPyV9FjwsU+f3w/TC+I6anQ+MZUfOKJdcNReb7 ZXKSm+97mQ/kIxd6dHxHTI3UynfE2FcquaaVYu58mrKdPvi+kn4TJffcseSe +X52ouyn8vssYbaSrUa2E/gtRYwBcfgO76TW+O6vZJnvELGD43tReCi5ukq3 LedHynnIx/h+0+rv//guckvZM9LPa3BecnI/Jz/ytynj0yX7QJEPTjs/dVDT QPEni1YS5lcrWV5ddAu+e8tah62jfDfnM3PJ44XpLLo16zllinxizjx0WsJY fL7KmuLH96TbCHNKq8etS8ny9ynnJPepsm3PuOV8TtErPX/DfaZk20+BBzss YhLrlPAFhz9+jBP1MK5nMA7BM9bIO1NPzusCfq2S5V3En8ucS1iH7XfuFcp7 mvSHSL+e9LtK/2fo1yzZBkX+hu8aSo71B+dayfMmlTZFZg4Rg1h7NZiHHs39 QTHOi5qJQSxqWqdk23dZU2Rw6zOekr/ndzXiW5m7ypWNuphXuzW4f2LWliz/ nbId3CjRIzlDxN/a6njnxziAGRW9oycfNmLUxtwl5wbR84WyXaTXYQnr0RFn w5JtVaqtm/g+rPuU6QXSj0yYx4bM+mMdfpSyH/7EpeeW6KV/g9c5a5yaukf/ G4u2iVanTTeOZ9YWY804d48+eI69+dyMPaXVutaouUfkZDzZLy6Lfaw+9g/2 Oigytt3ld6noEQn74T8mxmNMjElDyXWvpJgDGuwDnue/iWwTWm1viP2UveDy 2G/hm0qWydcz9rqm2DM434nZWHJcKPIqytUzalw5Hb5xJ2D9TIy1uWmsJ9Y4 /nUl94Nu05jHm8ScZT5DqZfx3LPBewHrri7yk6tXybZk2rRX7CObiw5iX0ub Il+hWNvxuXHsG/BblCxvz2ez4ie3Gg/2GGH2Fr+Z9KfnjMXnR62FfVn7Oc+r weIncddh3y5Z7qS8+4lOlf6EwGADt2XJ/qulnZPcP2VNyX98wvNwo5Ln4jYl x1pD+B3E7y9+TfHbir9auC7ih3IHafAc2K5kefW07eCmtboX+mCt0RNyOjDT ov79Ih91E4NYxCUnua9p9XyeHn2hR3dOwnMc2y/0In4Ye2La9Cx+B5owjw15 uPhzcs4Lv2PJ8o2KN0D8TaIHSL8T5xr7quhO3NWypsjXtpqHnpRwDGKto7xF 0VnMr4RjEGuttCnxTpQ+L36m+JO5wzfYl3r6lCyvK/xuJcfKpq3rEznw3aVk fyjyemnHvj7iw+9asgzuhshVYm1FLuiI/+FbIndZr9ncCRLWYVs/7XnB/GD/ py7qmxXxm0vO0Rx1UX9rybG6iW8vOXdt2rQ94uLfJn4Oa7XBz+C0hPVzYgyJ QazZgcVGPbeI3qbXmQn3Ss+MP3H6lhyrv2iFfTxt2j/qOITzVPbTE+Z3L1ke KX6g+PmtxpdifMjdT/q5rcbi0z3tHDdFzQc32Af8HiXLG6Ud9+bIhW6PqGlA 1Eht5CR3j7Qp+c9IuA/62ZB9Jmok5j7iD2MvY78SfyjngfjDGzwujMneJcv1 adv3iproZW48334xrrWBOTjqJw/5qJsYxCIuOfeJfJytnKtnJaw/NHw5b7E1 sgfGWFIbdEH0BY8NeXDErotnisxz3Z3fXeh94XUJr/tjGrz2jxAdEv3nOCNE e6ZNkW9vNQ89O2EsPg3CXMG5FM8P3WFR89C4I4C5U/Su8B1WsrxJ6JGxHRX+ +OKH/x2t5u+IMdk/zl72zGNjL2O/Oo51F/sCdnD0drxed0s+N2H+wJJl9ph7 Yp9Bh22ziHlA7MtQ5E2lHx77E3sOFPme2BvOzcX+E3sD+wa97BdjhA4bOGqk 1l5pU+rF95LYg9hP8MO/SZhCybZ+adNC7E2l2BvYx6DI5yn+ZQ3eR1jj8OXY 78YxD2PvAA+WXDtrPhSlf7nVWHx2V8xd+C0P94mE94zzc455UOwr7D+78nsZ 8eMCgw1cpWT/P7LOSe490qbkZ43sxu9H5DOBvaLkWH8Kf3icFewDh8bewDqd 0OA1y54wsmR5z7Tt4Ebl3At9XJZwT8i/Z43BTl7ykI+6iTEy9gJykvuCnOcz c5m9BT068jLHse2tvIeJ76NYf2VNlwg3PmEeG/KRJff5d9YUmZ6vV4xPRadw FvA7BfFXJLwvHCXMaOU7WvQq9oW06dGxl8FDWe9HxV7C/gbFj5qb+X2H5Ini jylZ/ifrfeFYyRcKN7nBexB7WhvvlaR/n3tDybbBaePBnhExiUVc7MfFPnhs 7Dfsh8eX3E9VrdfryZLH5KzDRp9Xxx7HWoY/Mfa1Vn6PIPuVCeuw5dLes06Q fFHOFJk98KSSfRK1psj4T2vwPsU+c0rJ8n4Rhxj0i+6U2ONOjj2GvQ5KvWfF mDAeVyU8l5nTrAfGCVu18o5mfjIvOYulO1vyZ5xJotex10j/oeSP9ZqkOGeU LO+ftv302F/gj419jH3wNPa4BmPxwX+m5LGqbbYwZ5U8h/JpU+RPww//TaMe auH9Ar5nluwPRR6Rdr3gVqi13/QYt1kNjsv8HFXyb7H5jfo5JdsKab+vOFfy 5+wl0Tf1fBYy7yXgodQAFp9Vwhc/3qfcIPsXzAthzi9ZLqadk9zLRWc3+Dfr R0Zt50T/F5RsKwUeLL91JwaxvghfcPhzT+e+zl2f5/YV598K2kc0BvdK30Pn 4iXMMXJxD2nw78Z5fwF/UcnycT2rqr6Vb6HaOmyVtH9XfqHkr2X7Ra+uindt wjps/P4c3zEl+1/MXsdekza9OGKRf0P5XiPfsSXXSXzo3X1dMzGI1Ws146kb n0tFf2QchO/b23VQA7qfWz3HLhPmHZ4v5y95cz4fLy9ZPiZtO7gFDeah0yIO OYgFFh/8bxf/G3NImPEl516x1hSZOuiR/hjPR0Qvld8lCfuOK9kfinwUe37J uNOjd8aC/tFhw/9R8SvGfaa/cl0hfQfJz1F/zvvJlSXLFyjO86IZ2WdIv1B8 J/EzE/bDf6VaU2LQC374E+uqkv1HK86kku9SK9eaInOvmlJy3DHCvMj45Lz2 8cOf3Ognl2yDIl/EvSLGid6JQSzq20PxrxG/uvgB4q8W31n8VNGX2BfSpsjj cuahzJ+JJY/RGWlTZMaLGMRapda0c4zJImG6iL9e/Cvi1xA/i7tiyfKladdC TavWWocNHL7TSvaHIl+cNnb1GOd/52PJa+PlBj9rxvlW6bLSXcl9Rvza4seJ f73BdfN84WdEP2u1GXNDwjps4Il5XcwhKPIl0s8s2efytOnMyLG4wc+G3meV LI8XZl3Z1ov46GbFs78+5hfjCX0t6ifWOoFHDw7bvzWWbGMMljR4HJgrr0df c0rWT0gbt27EuTH8qAf7nJhb8Av/J87s6B8sPvh3jt7oa17MHZ4FdF7kmx1z lvn8RoOfF88d37kxFnNjrjGfbyoZNzHt/XN07E3obornzT7H/sff17wleedG n1n8/x83xzO+RfRB0a0zpsj83yHwUP4vErD48P+JQPHjs7ulnN2KOUx774KS ZeYMduZQrei5bdaDYSzml/wsbyvZ9nvga/8nJrGIe27g0M2PseS53F5yP1eJ f1/0bskTctZho89fube2+VyAv7Nk+V1h7mjwPowO29GK8x56yRu1mSJPlf6u kn2uTpsi4/+BXhvzjBXnnpLlayIOMeYkrMMGjhqpdVrUPCE+e+e86xFr/Lv4 fo/voTgDsSVrreO7OL7Lu1/6j6if98Wy1zOHpH+gZDlVazu4Otle4XzgHOO9 quwPS26S/nPpevI8EsaDnZtwDGIRF3xT6PFDzij+J8wPyVfmTJFnpE3RsV4+ FH+fbBNzzvVIyfmeCHp9+v/lXqKNej0qfhPRx7jDNBgDfSxywEOJT0/0tn2b Y5NjVtoxiEU9UOLdJPwXsm8q/mbxyyMWcZ4sWb5B+E9FHwp/dE9GHfg+XrI/ FHl21N8rxhA//GdGnMbI+yXzNOd58oww+/Cev9YUeXPhnuWewvqW7wvivxd/ c9oUees24zeP+r+S/mnpN2szRb4x7RiTc35eg/lNL+uQ865kuZPybiHdNnot CAw2cOQiz20Jx6EmYn3TYB/w24ruoNftCWMXCbMdZ4foD8Ldohq+Yz+Mfn5s sA94dNjmpz0mT5U8LlDkOeH77zhEj/R3S8L5Xyy5bigyY0XOlyMu84G5cEfC +u8izqIYP/JSz0sl1wRFXpC2fbvonX6fixyvBpa+qrWntIq/T5jfhXlDtp04 c0R/knyrML+K9pbuTs7HkuU70ra/FmME/0PU9q50u7A3pJ2HfIwvfewYvfzC GRM5yEvOuxLOj3xX2vjFJfssjjXxXz3UQU28do7a4N8sWX5b9I8G1/BmYG8X /5t0S0vO/5bon+xladO3om74f+tPGIvPneH7S/RIvbtGzctizMCQ8+3w+Vuv PtLfk3Cv+FLDOyXb7gv8b/8Tk1jExQ4O/19ifMFQ125RGzxjjVyl59gsem/C /Psly/i3RA3osD2gvH81ODcxPw7s/aF/L8YOinyv9B9ELfAflTxvHor5g8wc Igax2oJvi3r+aXAcchGDWNT0Yck28kI/jHyfiCYU90Hpl4tfSfxj7D/iVxT/ SNr5+sa8/Szyg8cOrl3yBuLXL9ufeP9EDWCw35+w/pOogxjEIi4+5O7XZmz/ wKNH9wB7b+R5WHk/F79Co/kVIh+54D+Pflh/rMN5afvhT9wOjcaBX1V05eBX Ef1KmN2F+TpqeTRtijygzfyAqAcsPk+kve5XVO9dG60jxoPsAyXHfzxt3cDQ fxd5/tMjY+so7B6iDyXsh3+HqLFD1Pl9yXU/Kd+06JSc9/PVxP/M2dBm+/eR O6PX3oxbwvyPJctD+B1p5EKH7bmI+UPJcaHIz7L/lOzTudYUGX9i7Rvxf4nY 4Onl25L7QYcNHDVS6wtpU+p9hHtvo3PRC374P8X+U7Lt+bTpr1HT79Ereijy YNFcb+OIA/9H+HfR6++YE+AHR95O0v8m/dU5Y/HpUuvfXPF7q8cSPtuGxjn4 V5x1zKs1Gn3m3RYYbOD4rRb+i9LOSe6X0qbk5xzkeX4Z8/ifkmO9zHzWPBqm GK+Iryq7Bnw5t/DHN1G2zPmOHdx+be6FPh5NuCfkFwOzX/SyRuSjbmIQi7jk JPcBcY4xl+kLPbrHE57j2DjvqsWvJcxraVPOQc5oeGzIazf6TOUMgu9QtlxQ jDXEFyP2SuIPFF257LOLe+YOIRMPHkp8YhDrdd7TNcb5lXAMYlEP9MCoeZ1G n2GcWZxt+FJPx3Kcj8Iny461JG1dx8iB7ypl+0ORF6cde3jEh1+1bJnXiNBz rhCT2jgj8b0z+HTEWq/R5x/nCzpsnMVfxrp/NHqkPvokfqrsHKnIST2ZsmO9 wZoqOzfnLHS16A2fGvF50fUbfeZxTqHPR83EIBY11UQexqQsWgnMqvGsGH/i dCo7Vpeyz0bOWWiXqCnb6HOQswl+9bLlWr3WLPtMAw+WcaCWzmXPEbD4LE1b LkYNLdED9XctW+acxV76Hww2cGtEvDfTzknut9Km5Odc6xRYMGvF3CTvemWf UZyDa5d9znIWd2v02cY5tU7Z8rK07WtH3fRSiHo6x9i/EZhsjAl5yEfdxCAW ccm5XtTK2cpZyLmDvjZq5rzF9jbzJGLQF7QceeGxIWeDLkv/v8xzvVqvI5nb wh8k/uDw5bysjd66iW4o+k7aFJmzbsM48zjXwOLD/aGPdNswFxut6xZjtUHk pOaNGr3PcwZtVLb8buiRsXHebhC944f/QTEfD4o6u4eO2jhHN4x6OJ/qZeve aDs4eusR5yJnFnyPsuVDZBup1xMJ67B9EDE3jv6hyJxNdWX7vJc2RR4Z5+HU nOM3lC1z3tHLhvHM0GEDR43UyvkL7R5jUt/oM5JzCj/8uW80lm37KG2KDK6n 6E6cZ2lTZM6As+R3DudIwvwmZcvr67VZ2Z/TgAfL2TGU9+zSHx5YfH5J+8zs HfXw2UqmyZ/J9Cpb5vOfQe1aQ7yHDAw2cJuW7c95RE5yX5E2JT+fEe2nvKPE vyzfzcuO9Zxibi3+fOn/FH6LmFPwfEeCnu81tixb5nsQ7ODOa3Mv9PFkwj0h r15rDPZFCechH3UTY8vIx4vc03Kez/iAR4+OvMxxbH8p71bidxH/R9qU72X4 rAweG/K2Zfe5Rq0pMj1PinXIGhwm/Zg2//7zE9WznTCjJW/PWgSbNkWe0WAe ynclYPEZnjbFr+PKeo/A/tTg71x2KFv+R5gW0d6Sr1E/beIvFP4VYfZXDc3S T5S8Y9m26ozxYHlGxCAWcbGDw5944KqE36nsfrqq30HS9ZE8PWcdNvocq9cl bf4sC36XsuW+wrc3uh502FZQzH7S7Sz54jZT5A7S71q2z4oZU2T899LrSmFf U5zdypZTEYcYryaswwaOGqk1kzGl3sdiTBiP1xOey8xp1gPjhG1N9bgX9xDp 1pLvENF+rH/RVtGrOIMzlvdp9N7VFvbVMraDm9xmfnLUPFj2lrLnCFh88M/p NYUzmnMh7MSBIjOf8MO/U9Szb+TFt71sfyhyl4zrBdc5Y79JMSeHir8u571x IPsW57Mw/cu2we8nunvYBnBP0JisXWuKPK3N/LSoGSw+a4Qvfm8wzswxzmvx e5Qtr5mxndzTRYc1Ou8TURt1UN+eZdu6Bn76/8Qk1jXhu2fUzWeMfL7IdyI8 txk57xV87ohtutbIEPZ1zgnFHK76r4va4AeVLQ9nvXP+JqzDtg69S7+35Gtl u1Ovuzj7EtZhWztj333K9h8sOkLyuhnTwTGfyD8z57m6b8RjjkFn6LU04RjE WidjPHXjkxM9THKd9IeL3ho1oLuZ+wBjSF7VvG6t5/iCmOf7xR7AesEO7pY2 87dEv8QhB7HA4oP/EbH2mMP7l527PmpApg56pD/GnDvI4LiH4Dss1ioUuUG+ B5SNa4zeGYsZcX85IOY6cW+LHllDw8P/qFgzzL0RZctNGWNvDzz0juCHx1pk 7UyOfugFvxGxZvJl+1NPIdYc6whaiFpLZccl19GNnuvMSfzyYUNfjPUARe4p /KFlz5tNMsYR646Y1wcHjvVUjn4qosc0Gn9MyMx9eCjz9sAYe8YTemD0UI41 ynqEHhVjdUfMXcbk2EbPW+bbIWXLm2ZcCzWxTtEdEvMb34Oih4OidvqaHj0z Dtjok7XBWjom6jyVc4A9VPijxJ/MOSr+uEbPc+Ye/GEx7/G/+7+5XbatV8Yx R8a4jIz1yro7PHJSPxQZf+b1iRH/yJjvrJ1H23zWcwdAhw3cETEHWXfQY2N8 qJe1wfpCf0SMF/qjYk2eqdcZer3PniPMA3q9K/4Y2U+TflvFPF30Yek/YPzL lrfL2A5uVs489L2Ic3TZscDig39Ba/aRNuc6vuzcO2RMkakDP/y3yPhe8lib z3p8jyvbH4q8vvaKE+L+wv2Hdcz5xx6KDhv+zINrY496SfSs6HeM6EnCzOa3 a5zvnEkZU+SFbeahnyWMxactY4rf17zH6e24xDylbLm21nPn1Ij7OH20+S7B czyx7Gd5Wtm23hnjwX4WMYlFXOzgXg4//LfnuYSdmi+X39mSL2u0DttZUfur UT/8mWXLlza6B+o/M3qlL/zPkPxKmyny7tKfVbZP/4zpWTEW1PRa9HVO1Ngv 4hDj84R12MBRI7UOiJrBgaGmS6L3c6NG8kLPjXU4Xq/XJS8XZrHohRHr/KiX 2sY1uj76GlW2vEfGdnD4wS+O2q7mTGaPzzj+eWXnmBD5yEXdo6VfEn6XR80X RryBGeMvKNsHirxn1DMqxu4K9hvhv0iYv6hs+ZKIDR4dtr0zrmOM5DeZh5yD zO+M6djoDX5c9Dsmat8jfN+MsboycpP34rLlQRnnJPfSwE6IfkfHs+IZXRr5 9w780njWxLg4asV+afSM35LATGIPE/+l+MvKlvflnhl1U/O4suV9Qj8u+hzP 2Sc6WPorONc4OzMer8slLwuKzJiAJT65Joc/MvVOEP92m32ujHEgHnHfkW5i xKM28G9H/WCwf5WwfWKMHfOFefN+m/t7N3qETo4apjS6n6//46PPqY2OS0x0 2IZkXCtjRLw3olbqRL6y7NhXhp2xmlR2rKHip4Sd8YFOibGjj8ni32tzzdT7 TcL696JHYkyK8Z0c48SYT4h5wTxhDD6Icfhc9CbZZgo/rdH10+O1otdJP4ff BJRt249zNsaLvNeULe8fMaeWHRfstBiLf/GxJqdH7fR4bWBZp9Bro3/ykvPb hPMjH5CxH/4fRq8fRr9zOK+EKXAui34k/XcJ8zPKlmeKlrX/dqu1DtuBGeuw fSzM9UHR/yffmDPm4xhnxghf4s+KMRuRMZ0VcW8Qrchng1pT5E9jvKfGPLle dC7/nlPws8uWwYPlTo4OWz7j/j6T/vuEeXpGrmnXe3LWtnQ3hw787EbjwMPP jTEi9hcRHx22kvAHKe+NZc8FKPKGqn9e1E6PUGT8b2RNiP6gOPPLlisR5/MY f3TYvoz5hZ5nBJ0ZY0i9X0VfU2PtsnbQ0w+2m5hroj/yrBs9JozbAsZM/EEZ 1/R19HVr1Ehf2BdEffDQHyLOLTG+YPH5OmqZHeN2e9m5D8mYIlMHfviXM+7t 2xgHfG+LMb0tamdM7ogx+A+PjM+8RsehlzvLlg/m3ih+vvhDxd/caD0YdHdF TXdHvfQORf6uzRjsjBX672JMyDc3eoe/J8buFr3uFf99m3v7Icb5vuiVeqDI 2MCD/TnhGMRifA7Vc39R8oqaj/eXXfdI6RdEDvDwD5QtY78/eqbGH6NO+AfL ln+IfqgHP/wPV8yHopbDMqYPxXjdzVjx9/QJ8w+XLd8j/g/h/ki4V/Lj+0jZ tuN5r8HfFkRf+OF/XMZ2cPg/WjZuo1pTZHzua4wcCdf9d/TyePRBzVBkbPgs iDGBfyJ6I85jUdMTEZvaHpD8D37CPy39/ZJPCv2TZduu0KtKY1+sth3c3qJP lW1LZ6xHx3tw/PA/OWM7OPwfjHnE3HuQuaTx+0v4R8Q/pNffCddIrScK82zZ +lPFH8Jv3ts9Ds+VLXevtR1cot08lDjEf6bsHGDxwZ/X/JzjvFB27tMzpi9E PvzwPyXmHvOO90T4Pl+2//MRj9qYm+A2rvWcuzPW8KPMxZzf38EvLFt+RnyS WjSej4l/SfoOkheJjuS3cbWmyCu1m4dWVRuLz5kZU/z+UfwnxK8qPiHMy2XL Z2dsf0XyKqJPRk3UQy3wZ3BnLtt2TuBX+Z+YxFo1fF8Nn1eiXnxfK7uf88U/ J/qG5HS7ddjo82nmil7vJMwvLlt+lv0zZz06bOcpTkf5vC45FRT5XO6TZfuM ypgi4384v9ETZkX1/mbZcn2t/VIxJuiwgaNGar0gaqbeFYR5QfytOb+f5Uzm fOZcXlq27cKM59dqMceO6O15whxeVrbcUGu6LOYQ72nxJSb82xGLOG+VHQsd Nj4rYK7xfpv59p70L4kfG/p3yrbh80isF+zgbqfuiEed6NHxHN+JvZN5jv3d mPfUQW/0vFB8F9k6aBwWNdof37dibbEWPhB/FN+1qMeXZV9d+pWF/7Bs+ZKM 7eA6t5uHrlTt+O+XnQMsPvgjrxF5Py4798UZ04+jf/zwH5PxnYT7CGsH34/K 9v8oYjNW3FnAjWbOCPt8o+fGp2XLE0KPjO0z0bWEv1z6bxtdH32hw7au6Oei b0p/RcYUeb12Y7CvUm09uo7V7nv96B1+ednyG8J8Ef1Q95059/5l9MEYQpGx gQcLZnmMK+OwdpOej+QDJH9Vdt038Rmaxnwr6bpWm/+6bBn7V/Gc1qHGJvcI /03Zckqvxewj1fbDfxM962/Ltj2TMUUGN1C+e+m1UbX578qWVxNmH9Hu1e6V HibK9/uybS+IP1W6fdv9+Q9++D+VsR0c/j+Ujdsm8Mj41AjzUJu/q0K+Kz5H +insxIciY+vU5LjUA/9z1EGcH8uOhQ7bi3weqL4Hy39j4X+Tfoj4haH/pWzb 6sLmRHtU2w5uqOivZdsWZaxHx+dg+OG/aa3t4HIx9jyD8cJ3kb5zk/OuJXoP /y5ptWuk1ueF+UN8V/GviF+T7zPbjfmzbPnVjO3g7s6Zh1In8X8vOwdYfPA/ TnXtzxpSnX+Xnfu1jCkydeCH/0sx95h39dX2/atsfyhyr1rPTXCvC3+8dAfK /rHiV1Usb1ZriowtIbqu8EuEP1H6YrvfJ6LDdq9qqBZdT/IbGVPkEe3GYKee E+Sbl+5T+a5Qsbx5rSkythVF15fPmxlT5Ptyjkm8BsXJii+Ibwy+Q8UyeLBg 0GFbyroQv4H4tzOmyN2a/CrJr6na/MoVy/S4UsV98ipHv/CrVCzXNjk+Nawc 8ZYp/qoV297KmK4adWyoV0V+PavNd6xYJtZBEZ+c5N5CY5KMPMuiZuJTJ374 v5OxHRz+TdLdr943E6a7+IOl20R8nfgefGdebdwhkWtj5nPF2EzEIOZGUSt1 1lQsv5sxLl1xXHQ1UQexD213/NUqlj/IOM/IyNWpYvm9jPNkQuaFDRy1UNP7 GccgFnHRkZte1q64z08zrgU9MetFu0g+jLUf8agBHbaPMtZhO5wzreJx+TBj ukbUDebwqLlR8hHtHs+uFcufZEyRsa0Z8Yh/eMhHtjsntfSSb0OT5f/4taIm 8EdGLnTYPlac3cWP5wyoca/0zHM9X7odxD8mvqf064g/inkoupnkL+V7kubO 0e3+/AR+3YrlTWR/QH6bV9sP/88ytoPbUvNtvYpxn0u/qegx8ttC+JNlP7bd 70OzFctb1ZoiYyP/caJbCr9+xf7LM45HXHLvLH5HvXaoNp668ekWMcD3arIv edEdH3k3qNj2hTBbiJ4g/Vaso4rlrzPGEwsfdNhOiBgnRpyNws5Ybd7kOqi5 e8XyV9E7PdA/uu4xvhuLbin6TcYxiEVcdA/mXM+WgftXFn+S7FtL36Ni+Vvm m/hTNHZb15oinyzctrKfChW+vmL5B+G3Ez1N+u2qjQf7S8J2cPg0VIz7Ufjt 2SckP6QathF/uuzbyLexYvn7jH3OiFzosIHDD/+fIi9xyY2OePTCc9ggnnHP yE/MzYih+rarda/0TP+nck+J3JuK9hb9JWOK/EjOPHT7amPx2aY2aJPrZ+6c 1e7506ti+deMc5L77Ha/Hs0ZT13UR5+bh/0//Nnt/x+TWGeFLzj8t6h4vv6e Md0i8p0h33Pb/TkD/JYVy9uJ7sZ5nPF76fPa/X4cfquK5ZXb/b6b9/L44b+9 ety6YttZGVNkcLso3uONfl8Jv03Fcp8m7wU7Vjs2OXgvv23Ftr8yrmWU9DtV 2w//PzK2g8O/TfzO4ltEz+Y3Qu1+r7S9dLtK92fGOPYbcqG7QHLvau9D2MA0 N9mGvnfF8j8Z64iFD7reEfdM5Rot3c6Mf8XyDhqHC6V7Iufnu1PFclWNe2F8 6QcdNnDUTg/VNY5BrNHRFz0Rn31098DtUnGfOypXe2D/rVN8P9k7KM45sl8m /W7V1mG7WHIf0f6SV6oxRb6k3RjsuwrfV/yl4ncRv1vF8oo1psjYmiMe+otD fjLnmMTrI9/dm+yzS/AtEQs8WHKhw7ZyjfdyzgH2dvqjT57lQOmfzvm9M3xb xTI9tlbcJ2MwPp4FfHucPef1jmdWbT/8OY/6Vmzbpda0bzzvTpGPXPD9woc6 Xoz34OQk9078DXXUyLMb/99crLYf/hdlbAeHP3cu7l7c5fYW9ln+3Qg+S5E+ 0Vf7ouJcoNh7x7jsITpINCP9KOmvjOcysGK5T63t4K5oNw9tFaYsXYU9rsa5 BlScb1/xz+X8XpKx20v6Se3Ou3s8L/Ij71Zr/J4V+0CRV4t6qIOaeG+Knpjw gwI3RDQn2qXGOmy8L54guk/F74/3jfzEhCLv2WQeyhwGi0+yxnRJvNceIvsL Ob8XHlyx3LnGOck9hbWmOq8WHbuCe6Vn5luuYltLrfFg2yImsYiLHRz++E2K NTVMmIWyp8QPrVjuqphjhJ8ecYZVLLfVmiJj21/0AO5Pwg8XP5w7kPj9RfeT fE27KfKaNca+pFzpavP4Ix8o/gDx19Ibv79i3lc7HnEXganY1l5rPNi+gcGe qbYdHP7MF+bNHPEjxM9gDQhTFF/guYu/mO+bIg58vmK5JPsNzPVq67D1rfXY MEaMFz1dE3USf0TFOaDI66rfQsWxasWXKs6drTFFpo5ZnEviZ0fN1Lt7tfWz o2ZiEOuGwGJbv8ZjxlisXWPbjVHzONV7AnceyeUm56PfQ0RHSv+K6j+oYls3 +R4k+jLv+4U5uGJ5w4hZqTgu2IOiB+zg8DlE9GDJGwl/KHuwcverNUWe1+68 5Oxc7fzI3Wvsh//cdvPQAXwOwz1F8pbEFL1J+j2qzR9WsXw4+7dy9K+1DtvG NdZhmy/MEaKHSV9XY4r8as6Y+ZHrcOlvYa8Uf2TFcn2NKTK2o1hr7Cm1psgL 2t3jvHheJwr/mmJngz+6Yhn8gqgfHbYtatzffewL1ebpGXkq9Yh/V/xJoqdx PxD+ZNHXFa+22vxxFcuniH+Ava/aOmxbCX857xEk399uijyAzxAq9tm6xhQZ /1PFL1a8btRfsbxNxLk/xgcdNnDML+bZHrWmD0Yv1PuQ+L2rPXeYQ8x59PSD 7UzxbyjGhtwH5Ptw1H+K7KdztxD+DNFH2H/JW7G8fY3t4JbkzEM3iDgnVxwL LD74T+C7oajn9Ipz71Bjikwd+OE/UL2cJf1j7OnV9j2tYn8o8p7CnFExrneN KTI+E2V/nH1fvmdWLO9FTM5Z4XYS/knZBzf5XEOHbalqODvOvXSNKTJYMNj5 zBD9k3EmXtnbZ2FL8OdULPN54rmRb3K7P3/k88nzKpY71ZgipwIPlvjEINag Wq/5KzlXZDs/aqF+zo+n4wyCH1WxjB0cvZ3f5HOIswP+gjg7z9PrGfqvth/+ nKejK7btUmOKDG5Uk/dZ9lj4C+MswfZsxKFXeuCz1ovCb9can0/nRw344d+n xnZw+I+Jc2zNwCP/W2+T91XOBXDPRa6Lw484UGRs10Wt1Al/SeQjztjYoy+J c4m9enSTzwj29svjzFk39JfG+UHc5yMvdnDEuyxy7lZj/QVRJ374N9fYDg7/ C6InxoRnyVnCGfGCbC9G/LERm5jjw484nD+jo84JcUZxlmEH90LU+ELEIf64 OPPAToiaLmry2cY+eUX4tdSYIlPHuJhr6Jl7F0ad+E6s2B+K3FrjuQmOOyHr jPXG2hvT5LOEvR3+qjifLm7yns4+Rr5JnOOik+OM4vyaFzI54C+KmidFjeSF Lvxv3Jp87rC3T6lYbq+x/WruNu0+Z8ZEPdQC3ybM1DijNg78S/8Tc0qcZ9in hs/VUS++0yrup6/4V5l/nAXt1k2LM4wzZ2zUBj896hvX5POGvXp6nGOcd+S/ RvKioMj0cm3FPnvUmF4bZzNnwmUxnjPinNky4iyKXtBhA0eN1Lp71Ey9Ofbt Jp9D7P+c0ZzPqzPnK7YNrDF2ceA5Z8ZF/bPijsNZBp0VtU5o8nnDng9/Q5yj xLm+4ljosO1ZY3lJxL8x9vvtQz+7YhvnyvioEzu4Zap1Tpw5nNHo0ZF3duSh fuxzoh9eM+MMntjks4oz7g1hluo1tNo1UitjPk/8JM3vfbUnP9FuH/A3VSzv WGM7OGLAvxFxwM6NsxMsPuiu1OvsJp9TN4ffXjWmyNQxN7DouZNwHzmw2r7z K/aHIg+q8Z0F3FDx7wj7Xru/b1pQsTwk9MjYbmX/55yo8fdDH7b7exx02KaI 3iY6TXS/GlPkt3PGYD+g2np01DZD/PuKkw/+9orlyRqTO8R/wjqQ/hq9hgtz Z8Xy/jWmyNjAgwVDDGINZ45x9ki+T/Suiuvm+68P2v1dGN+Xwd9dsYwdHL3N kvyZ6Ihq8/dULJPn88iFH/7DlOveqJe8UGRw1ze5HnqEvy/qu6HJcYlPr/Qw WHPm/optRcX5VP7L2/29D37452tsB4f/AxXjRgQeeXnUODPG7S7mA7/FE/9Q xfKxNabI2O4W/7t8KtXmH65YJs6DFcdCh+047hWq9/+YOuswKcv37ePMGiC4 M7MGKDIjiAG7i9jKioWyodgyK9ju1FqooKKiYqLYgYHdIgYiFiAiYjciIYqF iYrdvufH8/oev/ePOa46r7zvuZ9n53nQP2M+s6V/UvqRoZ/VZhufpUONwT47 /J8NO3HQoyMvfvgPzdoODv8notfD2ds8jxvs31H/Ef1I9mLCNVIrmDmcb5yb 4qeL/it9SZjn2yyfUm07OGLAQ4lD/OfanAMsPvizhzo06m8pYV4Iv1HVpsjU gR/++az3Hj7goXPb7D839iO+7E1w/PZy0wD/DlPmHqbNcmvWFBnby6KzhD+d /S/9qlEPOmwzRV+J2lkLKHJVozHYiZ9o9NyZ+attlkdXm74aa/ma6GzRMdWm yJ8MdUziMf/npF9FfHvwr7dZBg+2krAO25lcF8R3lP3satN3o5/n9fl0qH9L h3+zzTI9vtHmPum/Y8wH/q2IdesAz5A54Ic/8d9us2141vTtmDW/ZYMhF/w7 4UNP/EZPX+Qk9zD5zov5nR41z4oZ4oc/v/NjB4d/jfgvVfsIYV6UvLrkY/ju K1660b/PvyR9Z/HHcu5Jv1i+a0h+r82285TrBdEu0h3NtabN8jnVjjm/zXHR YQOHvGyocy0MO/iX+xpHnEVtls+vdh7yUQe6RZGDWqjpkKxjEIu46KjxOM7M Nvd5cbVroaZzxVdL9z7nJO+Eib4m/bhq67BdUG0dtldEP2jzXA7LmiIzIzDY yfVmzJR5fthmeXy16YdRx1LRtyRfUm2KvGajc1IL+/MN6deSfHzwH7VZBg/2 hIR12OhrzUKHDj+Kf6jaOeiZdZ2rNU/K9oVsb7PPw+cL0XGyrST8Xeplbfmc mDD/aZvld4X7Op4F4If/pdW2gztcc/iszbgrqj3vbjHzewZ4nVjHz9ssH5k1 /TzWlfz4En9Z7CnWGh1xyf0JvXPmJIz/IvJ9GbNnvbrFGpAX3W59vW+/arON 2hZIt1zxTpL+6zbLV1cbTyx80GEDt1B8d9lGCv9Nm+Vr+NtB9a8f67K8zXJb 1rUvi3zosIH7VnSxfCdUOwaxiIvu2/ht/z++zTJzz8ZafBfrwMy/F3+/4hay pt/Helwx2P7EWdFmuaPw68pvz75+HgQeLDVjXxE1/dBm3JXcO0n+SfIGkX9+ X9fwY5tl6v9Qup7iT0lYh21++OF/Q+QlLrnREe/khOfyVXzHfm5zrBuF/138 A6qvlHWv30W+JbL/Ir6X+F+jruurTZG/H2oeSnyw+ICB4jdK+qV9LcP/1mZ5 YrVzkntD4XpT81Cv9YdRH33+0WbbTYEHe2rE/C3y9Q4c/n+2eb/eUm2KzN59 kGe+jf4tBf6vNssrFRyTej4T7kfFGJ0w/3eb5WXiNxXmtIT98K9oVv+02XZ7 tSkyuIdk7xO9w//bZpnv/09D/bsTsclxm3w7xNlwZ7VrqY0e8cO/PWs7OPy/ Fr+q+HrhpsjeT/QMrtHSPcxvo1mfOfiQC93SmD/nELaB1e5/bF/PpKpgmbmB JxY+6LCBo65P4hxYuWCZmr9inwz134OrFCzfHb2sFDh02MBROz3cU20bsYiL jp5OT/j5D7918VvZagX3eaz6SonfQphJXFtjBuT6ju9vX9eADlt/0U4F6++v Nu0U9YHpH7mWS95c/Bjxqxcs31dtioyts+j3kh+oNu0cdRDzq8gLbsuIA9+l YBk82DMT1mGjHs6DN+JMoD/6ZC1/4J5C9KyE+eqCZXpcI/oh3tYRE565IK/o axz14If/g5yxBdsmV5sig/tJn224v0qYzxQsk2/bqGGNwDLzmqiFOFzrVkQu /PB/uNp2cPjfXVSuOp05KVPkoU26jrIXhJ8i/K+i60r+WXTtyM81FPnHiL9O 2B+pth3c9o3mt4/666RbpVb3ktWOTY7tZPtN/ADubRKWu0nf0Oi8P0d88iM/ Wm1814J9oMhTo5514hr/O+eP9vKBCfPrFSxnRf+S/ES1ddgeE/8H1zLJOyjm +qJTtd7HZ02RBzaaHxh1gsVnWvjid670f5J7qH/H6FGw/Hi1c5J7R+EeU5yd At8tZsDccgXbRmSNB3texCQWcbGDwx8/5jSWv5uE2Zl7A/EbFCw/xd8Lfe1P Pb0Klp8Mfa+ob0PRDlqX6Zw54hPiZ1Y7f0/JuwRFphewu3LvlzCPPzL5e4sf JPpvX+cgL/GIu5v0GxVse7ra+EFRMxjsFyZs3yhqZb+wb5oanWP3yJuUfqVa x4f+2/f/+E0jR5X4wdz/JKzDNqPas2FG5KenXWLOxN+k4BybRE/U2afgWLM4 DwvO/Uy1aW3Epfa+4hsbXTP1XpSwvjH6IgaxBgcWG/X0jlpYF2zNUXNK+IGy HcAZXOt89NhJdAvWTvuhX8G2Z+W7qugfsfc2K1h+LmLWFxwXbL/oATs4fPqL riZ5jvCbi5/Gs6usKfIejc5LTn7XIj/y3Gr74d/SaB56sTDbS9dF8kvVvu4O iWs0/JYFy1uJPq4cJ2atw8Y1Fx02rsFbF/x7GL9xQbeO3GCwcz9Q1+jfwfg9 bZuC5buqTZGxbRs5qRmK/GVf90h/4+XbWXH/HurrDvx2BcvgwVI/OmwvVru/ vWW7JGGenpF3EX+K+PVEd4o1fE34/UT3Dzx8Q8FyWrjqWl+b0GF7hd9SVNsA yfs0miKP1Kx2KNiHmFBk/Gv0OVDYyxVnx4LlNyIOMS5NWIcNHPuLffZqtSl1 XpYwHRp8fexZ9jx6+sG2jvAHiV7J9aXWdVD/LrKvJf6taudojXp2jZyvV9sO Lt9oHnpFxNk5egOLD/5r1tpG/N0Kzv1OtSkydeAHhvjEGxYx8R0UNijym8Ls HvnfDDwyPmvXGkOuwQXLbwvTKL6r+Hn81qR5HirsVQnrsP2jfdIk2k3yu9Wm yMMbjcHO/QD64eH7FO9LxAzhmwuW1+V7xDk21HvoEOmu5r4r9tR71abIhwQe LPcDxCDWKO2TZ6lTcrswexZc98m81yp8h7yvy/BDCpaxg6O39aU/TPSahPm9 Cpan83dt1IMf/gtUz94F207JmiKD68FZnfd1Cn6fguWs+CP43ibcKz3MV5x9 C7YtFj+Dv4mjBvzwX1RtOzj89ysYd2rWFBmfnDCJvK/XG4g/SroJ7O2C5SXV psjYZvJ3atQDf2DBMnH2LzgWOmyjlasnZ3Le1/FW6Z/hWXXohxZs6yW+oBjX JWwHV5ScL9j2YbX1xagNP/w/qLYdHP7MnjVYyH27aFXe16yNxVdkvyHhGqn1 fWGGie8t/iPxs3gPJGoYXrB8etZ2cKVG89DrE45/UME5wOKD/0bSr5z39fqQ gnN/Um2KTB344b+02nuvPWLie3DB/lDkj6u9N8GdkfX3bHB8P4/lOpp3X/CH FSxzhp0Y5xjXs8Ol78M+Ep3NM8isKfJ/95oDTLkWHx7XQO4/ofhxnd2T63Fg jixYfl6YevaM5I6ix0l3gj43JlwLNS0Tpq1g2+eBBzs+YhKrb/iCw5944L4S vhDnOtfHbVjHOIvRYaPPfpJPEr0pYb5UsMw1Y7W8ryPosH2tOJuJFuO6C0X+ RvpyXGc456HI+M9hz3LNVZz2guWzsvYjBvHRYQNHjdT6Y9RMvVwjdohrD+c8 12iuz9wnHF2w7Xfhz5T/2frckfD1Y0D4HhvXE65TUGRsA2t9beAMhz8urivE OabgWOiw/VFteWzEPyHO8ndCf3zBNq4lO0Sd2MF11BxGxHWGaxZ6dOQ9PvJQ P/YR0Q+fo+P6umOtr0Oc4ZzdOwZPjdT6q3xPEv8874hotjvX+hrA+T+yYPnv atvBndNoHnpnwvFOjGse2JFxjcF+XmBOjusG1x0o8v/8oH9W+56EawbnNr6j CvYfFTnBcM8C7p9q286P+KcG9u/QI2MbHdcKrkcXiF4Y+EPDRr2nie7K9ana 9LQ4y8DsHHNAj45znrgXRBz40wuWuZacEfUNqvU1gLN6TMFyh5TpmLh+gN8l +j096qWvCfwmKPkr9lLEpjauGbtGDfBnRd3YwdHbbrW+ZnBWw58d1xJs46Lm s+L6w/VrbPhRGxQZHNeVQVE//DnRw+61Pvc5q8+I6ydn/rkF2xIp+18Uuc6J axTXMuznxnXlvMizUuCR8SlGD9Q/uNbnPufzBQXLyZTpBXH9wOfiyAV/YcEy cc4vONaFEZvauE7sHvVfHNhk6MdFD421vmZwtmMHN56eCrZVpawfH3nHxfWH axn2i+Lac3bkp0euM4Ojl/om7SnJ9yRcI7Vynb1E/AjxX4rfU9g6fSYKc2nB cseU7eBaas23RJ3EHx8zAosP/pdJf4U+dwtzecG5706ZIl8Vfvh/EnuPfdea sO9lBftDkVdNeW+C20/4vYRdrPP0Em2hKwuWV0+ZImO7ivNe+JfW0N82Ojeu UZx7E9Zh+5rvQGCJCUXeZ7Ax2PlvyfZrcl5qu6Zg+Z6U6TVR07WiewvfOWWK 3CnvmPtEnfuQTzVMTZifULAMHizvDKDD1kVxbubaxLUkZXpz2PbTZ99a9wJ/ fcEyPV5XcJ+8WzCh0c/i4W8oWL620e8l8E4CfvhXK/6NBdvWSJkigzuAPSv5 voT5iQXL5Lg+5klOco/lGW7k7xI1Uy/94od/OmU7OPyHSzdMn0nCHFhrDLkm NlqGp+4bopeh0t0Zc7k1eqJ+Yu0XM7ktYpOLGLdEbnS3Rc95fW6UfL/wtxcs r5lybxOj3zuiV+ZPHvJRBzps4KiFmmpSjkEs4qLbP3qfVHCfXVOuhZoy4ltF 74rcd0ds9OiwrZWyDttNfG8jJ3VODJlYYG6K+TDLmxs9z3sLltdJmSJjuy9q pOYbQ76l0TmphZkcVOsepgZ/f/QJ/paYGzpsayvOEvEnid8s5V4nRe6j9XmV 73mta3xA/K2ij3B95Lqb+r/cxISfHP0fos9t+CTshz8zmRz10teDBePWTbm3 26P3g2tdG/U/XLDcLWX6cNR9aOQg/kMxG3pBR1xy30t+fR5MGP9I5JsSfbCm t8c+Ji+6O2ItHi3YRm2Hs2/pTfqpBcvrp4wnFj7osIEj913R+2NRC/UfVuse 6GtawXL36P2hyIduWvT8eMFxyEWMx0Lms3re8eHBIR9R6zqo84mC5R7yfVL8 C9x7ZU2R7+Z7Xq992Oj/zvNTBcsvpXXt313f/eYOHTZNGg/2yITt4PB5umDc 9V10rVaeGQXP+0jxSzb1/5tyesFyNuW53BczRIcNHH74b5ByPOKSG929sXbM 5dH4Hs6MGTO32QXHxJden4i1OUqfZ2K+s0QLoj1TprMiHzyU+GDxyaVMD4s1 ou/7o/dnY2bMk5yzY74l9g7rl3BdM6Om5wq2bRj4I2JdiEEs4mIHh/+cmB81 3Bsye7cY/VAP/PNR68vh14v7kKiDGuDnRm5yTI768cMf/AuRn5lAkSfHd6UQ M4F/MWbH9/9ByQ8nHJscveX7UpwNG6diBjGHF6N2escODn8+b4qfInqM9JXo 65WC+Y1SPnPwIRe6YmA4h7BtknKtD0dfr0Xt1AP+legTHbaHo65yzOf1gmVq PpYzgfNM+jcKlvtELy8HDh22R6J2eqBObK/HLNBNiflwjnKeHi/6VsF9bir8 QvGPCtNX/Nvij6s1D+6Y6BHd21HHO1E7/ULfCX8w/9WdcM6jY1bzYq7UD50X 83pXdIRoXcoUeWrM79GYIb09FnOAn1+wDB7slIR12OiFs/zWOCePiT6Z/Qm1 9gEPvyBy0+N7MQtyTou88MxlWuQ/LvrCD/965VoUtVA/dFHMbiTfd3pImF9c sEy9T0bN78U61Mr3/egb/qSoiZnjh3//lO3g8Od5G+/W8KxxVOQj15FFxRV/ lfAni34S184Pow9qxv+EmMPSiEd87OCeihk8FXP4Rbrzhd8l5VwfRE2n6PM0 s0m4t4+ln97ovCdF/eRH3iJl/EcF+0CRt4x6lsZMT424xIT/NHBfiJ4muk3K OmxbpVzjZ5JniC6L/MScHjL1wo+K+XwW/W0evjOix9Gyd9Y1apr4zwuWt045 J7lnct7wb3ai349jPbkn+bJg27lZ48E+HjGJRVzs4PDHb3rsjTNq7QP+q4Ll 7VLGnRpz+Cb8tgn9N9H/ctEzRQdI/734seIHptzT15KfDYrMrMB2US1PJMzj j3yW+G/FPyfcS6pzTtRPPOJi/65g23lZy2CfDAwyPHZw+LNf2Dfn1rqOuTHn l4V5MXzBnRG9w/8Q/Z+jzxqq66mEddgaUrZ9FfuAnp7937VPdEXBOVZE38zw x4Jj7Sj+54Jzn581RaYO6vuJ+4+oGfnphCk6eGIQi5p+ip52Snlm9E5t5H45 6nmdd0r1PZzX6BxjYz7jRP+Sz6vS/Rb5iXNNna4LzEL3JL8XLO+TdsxfC477 YvgQCzs4fP4QnS26veL8Kf4C2XdNmSKPqXVecs5IOD/ybin74b+wyTyU+6Kk ar9UmGZhLhJ9TbaZCfN/Fyz/I3qh5EEp67DtnrIO2+vC/Bu9gnk15Oq8Mdin 81tErWX4DkXLg1OmyNhWEn1FM70ga4r8RqN7pD/++wZvSk7nvV7wiaJl8GCf SViHrTHl/sbXWg9Pz8i/yb6z+N7y7Rh5qOcy2TL8Np8wv3LR8uVcC9mLCeuw tQj/mvJWSX670RR5nOpfpWifPVKmyPhfKb4m73enVytaHhJxiME75+iwgWN/ sc8uyprOi3lS7/zo99f4TnAmoKcfbNdw7RN9DvwAzxrf1WVPSn9atXM+09d5 O0cf7Afsq0d9yai7GHE6xfqBxQd/8l0ac16j6Nz7pEyRqQO//+pQL9dKv1C6 OQn7dom92CVqZybVReP2TZki43O1+EWis+WbKlrem3dsIg/8O7wf2+h3qtFh W0vzzIhOEH6/lGkm/MFgZ1bo0RH/Ld43lu354GuKlt/XZ03x6/AcRdjrao1Z q2j5wJQpMjbwYNk/xCDWJZrDQtFNJN8szNpF132Z9BO5lsvnhYT5dYqWsYOj t5ukX8qZkTDftWj5Rq6/nMUJ++GfVz3dirYNTZkigyNu17xzwa9btExN4IhD r/Swv3zXi3oPEj9P9XzM9SRhP/yJj329yNe9aNzlWVNkfG6Tbd2838Fmpp/F nHvEjFkjKDK2+QO8NqwLfDbWkjjrFx0LHbYreV8uchC/Z8Q4OGV9rmgbc3y1 r/cJ9p6xfhvEjFlH9DfE+uKH/4XVtoPDn9mzBq3C30HPquXlhPv8KuazfuSk hg3F3yn+MPELVO8XsV69i5avztoO7vNG89BXEo7fq+gcYPHB/27mkPe73xvH jFkjKDJ14If/oSnvvZtjffHdqGh/KPIRKe9NcNdk/Z3g+8Z3r2vkIxf8puHz jfisYrwm/TLxfVh7zadv5CcmFPn2WvNQ5gMWn0NSpvjxzv99EZeYtUXLbfzN KFonebls93Jvw1omXAs1Xc5zw6JtRwUe7OsRk1jfhC84/IkHriB8v7Dj+6B0 W0h+IGrBRp+LuReS/EbCfP+i5e/ZG3mvFzpsE/jvwcp/s6gJilxU/M2L9iml TJHxXyK/Hxr93viWRcvXRxxi0C86bOCokVorUTP1UttDoj0V782Er9Fcn7lP 2KpoWzt/33H/I9tb0n+gmD/FPLcpWr4ha4qMbQr7MO/3n+G3LVomztZFx0KH 7diU5/JLzGqA9BuJv7na+u2Ktn04wL2RF/uA8N++aNuNWevRkXe7mDczxL59 zJSe6I2emcvHfT3DqdL/IfnthGuk1qPlu0Pkp87H4v7gHWEGFi2PSNm+Q8wX /sGYLfEbis4BFh/8p4n/nX0szE5F5z4+ZYr8R/jhz3rhw/0IefHdsWh/KPIJ Kd+zgCPO47WORS+7FC2fGPpdIt+unPGay038t5G5x9K934KEddj+VKxBon+x x1KmyBvnjcH+bsJ6dOyNpxTniVrr4XcrWv5E+N3F/yPsDMkdlOs9YQYXLZ+a MkXGBh4s75gRg1ijhFlVtoOKfpbfWHTdo/lbTzQh2/yE+aai5ZmBozfibpJ3 XvjmouVnau2DL37wpyhmS9G201KmLWH7VLUl5b8wYX6PouXZsvXJ+x08eqWH WzTbPYu2jUl5Zqs0eT744X9r1nZw+A+J2Z8YeGR8lg3w+rGmezXah1x7Fy2/ UG26d+RjfqvXeobw+xQtE2ev2BP7xJowW3I8FWu3v/RzxY8N/b6xBs9zNqrG RQnbwXWUfb+ibWenrEe3OGE//OkdOzj8m2OdmfMX3DfG2vGuxou1ft+DGqn1 dv6/zEXrz0151p1j/kNj9qwRdnB1efNQ4hD/gKJzgMUH/y8HeF3J21p0bt4P gbZGPvzwvzPrvce+4z0TfPOxP6DId2W9N8GdmXKO52pd57DIeW7okbENF31Z 9HzplytGN9neT1iHrR/v7Yi+IvmClCnyGk3GYOcdla/lWy3dEvGHFC3fkzVF xnYo11v5XJ4yRe6fd8w1Iu+74ruK/yD4w4qWwYO9K2EdtisUp8gZy7mcNS3G Ppivz+aBhz+iaJkeDy+6T36jWlf0w4R5frdC/laY9USXJuyH/5X87l207f6s KTK4hVx/834WDN9WtMweXD/2ITnJfZ98C7Fn2avUTL3sZ/zwvyZlOzj8v+Ts rPPzWZ4ZgyHXCvluyvdSfJcmP5/mufZi0WNizcpF285LOdZLta6nErHJRcxS 5EaHDdz7+mQlfyR8e9HydSmvZS7W+uhYW/YGechHHeiwgaMWapqQcgxiERcd NbLuJxXd510p10JNPJdnnY6VvJXmeZzoZ8LclrIOG3sA3XGxJ44vei6Ts6bI zAgMdvZV95DhRxQtX50yHRE5ThD9XPSOlCnyglrnpBZqJm7fmD/8iUXL4MGy f06M/NTMv33g3X3eh6RXemZdV9PnGvEDFbdW2JGcIaKjRb8X7gGum5K/EP95 wvyoouXl3M/I74uE/fC/M2U7uH5p3YsUjbuP34v4Hkn/DfcGms/m7C/xpxYt P5g1RcZG/u9qjTmlaP/7U45HXHKvpPr/kbwiYTx143Na0c//eWdgiya/B8A7 AOi2bPJvs6cXbZuUcr6top4zIj+5wBMLH3TYwP1Y63roZUzR8kPCrxDdRvav pD+zaHly9E4P9I8OG7izRH+RPCXlGGOiT3TgiAN/VsSiju2j/rOjLtZobNRF LujYWL8/9NlWc/pO+HOKlqdxbRUdyIwTxn8fc8YODp9zi8Y9LvyOwpwveTt+ AxxgmdrOK1p+WGv3d63xxESH7X9+0McjL3HJjY54xGEdWA/W6YKiYz3J72BF r+9TKfdKz/T/s+JfKH5n8eNE/xXm6ZQp8i5N5qE/JIzF55GsKX78DtxB+2dX 1lP8RUXL01POSe5BTY6xfd5x/o766GN85Hkq8GBXRExi7Rq+4PC/pOj9OiNl ekn09ovq2U24nxLmLy1avor7B+FmC7+75Ia8Zwt/WdFyleyJOvvih/8U9Xh5 0bZZKVNkcL/J3tjk35bhryhaXlm2HRTv54Rjk2OmfK8s2vZsyrU0Sf9Lwn74 T83aDg5/Yl0v/hL1tUeTc1Pb1dL9LvxjWZ85A+PvLHTNMTfOIWxzUu5/j5jJ tTEP5gaeWPigwwbujwGeKXEmFC1P4/+/0OiY5LquaLkpemG+9IPuush9fcyD uRFjQqwZOnpibh/EcxWeodwQ+an5dvEpYV/ldyTxq4t/gb8dFGcfakxYh22I 5IminSW/mDJF3qvJGOy/Cd9J/N7ifxV/U9Hy3JQpMrabIx76ISHvlHdM4v3O NbrOPr8Gf0vEAg+WXOiwvZTyWc51gHer6O+G2E/7sqfz3gPwtxUt0+OtRffJ DNaoc7/wzAX5H2H2b/JvyPjh/zK/CxVteyprigwuI58DRP9KmL+zaLlG/IGi fyeck9xPyPeuom1vpPzvCvk3hX8m7If/6ynbweHPe1u8v8V/Z4a4u+ada2ZZ tTRrfTNa+wadrzGXe0XXFH2Tc4Z7YPn8w28mRctPZ20HR354KDU8I11B+A9S znVP0fnWkX23+H2V2U2SfliT83aJ9SI/8oys8fcX7QNFfifqoQ5qWtJoPTHh JwfuEdF1ReenrMN2QMqzflDy9VzDIj8xoQ/Fnh4W68qaPhjr82r44seadpN9 sOr6V/zDRcvvppyT3AcLm1Qfh8S6TIr9wn6bUrTtmazxYDskHYNYxMUODn/8 hsV3qjvfz/id9tGi5QWcew1eA3I9VrQ8K2v6WKzlNNFPNYfhwj8pPivd4pTn OFXyYUGRWXewxCcX/LTIN5zrm/hba+3Ttc57g3jEPYLrTcSjNvBg5wQGeyJp Ozj82S/smz3UW07ykcxPmFVUfxtnq/ge0h/Ffgn+6aJl4jXnHRMdtkUp18qM mBc9HRZ7mPhPFZ0Divw+vy1E7fjOLDr37KwpMnVswPkaOaiZelk79OiojRjE oiaw2JakPDNmMY/ffqXrWee+Oiv+m7KNkG018aUm/268iezPc97xzKBo2xz+ XYn0e0q3snxnFy1/FDFnFR0XLD7Ewg4On+dEN5L8sfBzxHcU7vmsKXKlyXmH xO+35Ef+NGU//MtN5qGrqIZXpauV/EXKMzo61gt+btHyC5zByjE3ax02ZoLu hZjRi6IrtM/KKdMXIzeYDWK29DO51vN5KfpbmjJF/s8WOakZisxs6LES+6ev 5GOZd/CvFC2D3zDWBR22z1Pu7zjZOibN0zPygdRX0rkg/m3pNpP8Tcqx9s47 PvzrRct1svfRZ9WkddiWpax7TfLxTabI6N8o2ufLlOkbYTtBuH3znv9bRctf RRxiEB8dNnDsL/bZi1lT9lqnpOutrzM/K+bEPNHTD7aRwu7HNVaYNeR7UpN/ Q54n++ayf8vfHaKjpO8izLtFy9+lbAdHjM0j1v/ivFN0LLD44N9f/MncFwjz XvgtT5kiUwd++L/Mv2mtsw946Pyi/aHI+C4oGvd9ynRB2KoV4xRh15DvwqLl VxRzkfhtZP9R+NOaPAvmgw7bAfzmH99X1gWKDBbMAfH7LfrTYs7pBq/fqsG/ H+v6t/b5ksjHLJ6s9Ww/iNmwl6DI2MCDJT4xiPWaau4qukLyhcJ+GLVQ/3bc G6ie6qT5pUXLpwWO3rbX5wyueUnzHxUt1yjmmFgL/PD/WTE/Ltr2RtYUGVyD 7Pn43RX+k6JlZnxWzJle6WEk15eibazLmg1eG3Lhh/9vKdvB4f9Z0bg3s6af xbquHLnJe7r4Z2v9e/vnRcs/pUyRsRFr2zrXA/9F0TJxlkXuLyInNewoeSz3 aMJ/Lf1A7g1C/2XRtp3En8PMkraDO5fvZNG2v1LWo0sn7Yf/nynbweHP7FmD X1KOe1DeeQdJtwv3WUnXSK1n8PuA+J3ZR+LX1kzOazLm26Llt7O2L4+64aHU QPxvis4BFh/8z9dneN774fuic3dImyJTxzfRN3Ng77Hv+G0N3++K9oci/5Py 3gQ3L+vv2cJY+90Va5zoWknzPxQtN4s/JO/fDFPsZekvYi1Fd+NakDZFfrXW PJTfysDic2HKFL+Dq3Rfxb0WvSrXz0XLScVpZN6SLxaum2obH2tELdSUEObX om3vZo0Hu07SMYhFXOzg8CceuCr5/lZ0P6ukPae/JC+qtQ4bfa7b4LUhL/wf sa49YhbMAR22+Vmv0++SLw2KzB74s2ifa1Omf0ZucINi//wdftSD36WxZ6B/ x3r/FWdJh6h5Ufx2OkS2w/L+rZJrNNdn7hP+KdrWSfg9RK+UT1fF7K56L2eu 4juULC/ImiJj21v4q0TXTZpfqWSZOP8WHQsdts5py1dH/Crp9+W7HPpEyba9 6lwPdWIHd430yZJtq6etR7de0n74Uz92cEMiBr3RMzVdG3XuJ/0+EZ8aqXU1 +a5Ssr6L+P1FJwjfXfhVS5ZTadtXiTrg94o4xF+55Bxg8cGfGq+LOjuWnLs6 bdox8q0cM6Mv7km4H1k/ad/VSvZfLWZAbdyzgMukneOGqHP1yFkdemRsnUUP YH9Kf5DoTdJlk9Z1jpq6iA4VrUmbIh+RN2a/6BE9uo/F58XfqDg9kubXKIWs vVEtfqL4VumPFP4TzoGS5bXSpsjYwE+MfolBrDWFuVe6XpLv5/tcct1rS58V /ubIC58pWcYOjt6GiT9KsT9NmK8pWR4u/hbZc0n74b+Y61HJtq5pU+T/cLLf GrOCX6tk+WBh2hTvs4R7pYdF/Bvtkm3dFOcQ0duE3SBpP/zfz9oODv91Ssat G3jk/3yEvV20J39nSV/M+/fzbiXL3dOmyNg4z+6MMw1+3ZJl4nQtORY6bJyZ vRp89nGWri/9ZdKvGvr1SrbxGz05yIsdHL/Zdy/Zxm/+6D+P3/Dxw//DrO3d o1Zmzxqsk3ZNLXWus1DnM4HvIzVS6xL5ZtkX0mfTPl/uifMnF+cN39P/7JLv bjIP7ZV0/B4l5wCLD/5H1Pk7zpnTs+TcPdNB42zqETPrHnuPfbdh0r4blOwP Re6R9t4El0v7zDoq4m8YZ1jn0CNj681aifZK+/sMz5lQDBvn2Uax36kNijwp sPsGnvOlEHPbOM4bzk/oxtHbJqIl0Q3TppvE+UXMSdEX9IH/j9+0ZBk8WM6T TSM/NW8W32m+m1Dkcp0/nEV8f+H7xtlEj32iZ+JOjlzwtSXLN0Q+cvWNeL0V vy7OLc43aF30U6nz+cB3H74+zgtiPRjx+8R5yVndL/L0jprLUSd++G+Uth0c /iPIwftTwrTX+Uzhu/+wbFOIkzTuocjVW3t265Ltm0cMYnIeVaLOLeJ84uwi Zv84y9BtEXVwppTzzrVlnDGcRUfX+TzivNqqZHmTtPOQjzrQbRXnF7VQ00dZ xyAWcdE9HPXvUHKfdWnXQk0bi79D9m0ix7aix4r2SVuHbb20ddgOFd0u+qYe KDIzAoOds+t40UebPM/tS5Zr06bI2AZw7da9SKeUKfLUJuc8Ono/jmt5rf99 GXxDyTJ4sBt2sA5bX8U/Tvzm3BNn3Ss9s65vCXuI+BPEnyD9QPGPSber6NOs h3w3kt+0Jv+eDL9jyfLJwj9Fv0n74V+fth3cx8q1U8k44nxT65g8cxwl3WZN /u+N71KyvHnaFBkb2PZ4Rrlzyf73phyPuOS+UPz57KGk8dSNzyDRU6TfUjE3 Vi3T+e4lrcOfmncr2fYJ/38Q6WYK05f79pLl7dLGD4oe0GEDN0OfZ5v8DHFw yfJWwo8W5tQ652osWd46et85ZooOG7gm0TNFB6Qdg1jERTebcyFpHtzsyPlc 5G0OLHW2iB/DHkqbtkQPZ+szR5h6xdmjZHkHYcaKPs/3PGk8WHrHDg6fPUvG DRT+HNG9+C7wby7Ez+UMEn5IyXJD2j4vRC502MDhh/+OkZe45EZHPHpkHVgP 1mnvyE/M/cX3kW1Z1r3SM/1vIt0+kXtf0fNEd06bIh+bNw/dLGksPp9mTfGj fvbOS03eP/uVLO+Sdk5yv9zkz3F54+dEffR5QNj/h3+56f9iEuul8AWH/4El 79dBadMDI19f+b4q3LcJ80NLloeLjmevCH+R6Gt8H5Pm8yXLF4t/nXMtaT/8 P1ePrSXbBqdNkcGNE/8GZ2XS/EEly8Q6Pu/4xCbH7vIdFnl2S7sWfPDFDx49 dnD4XyHdEeLnsbf4+zJyHSxdreQvsj5zOG+YObo3+e4kfQ5ha1LMyxTnkjrr Dy1ZbkkbTyx80GEDV8/vb01+Vn5YyfJXPEuV7UTl2lpxDi9Z3iN6GR49oMMG jtrpYc+0YxCLuOjoaZukz1HO0yWSjyy5z6/5f1pxneVeQb5Hib+K74z496JW ekGH7STlaos+WF8oMlgwJ8Uz680aXCszLJQsf5M1LcT+KIoOlt8zKdNi5Cbm ezFbekjWeT7wpZLlwZGPXKXolTlzlnMd4N0h+qNP1nKC9Is4c5LmKyXL5CnH OjGDxZK3T5pnLsjXin9fdNuk/fDfj2t6ybZ906bI4Ig7Ku9c8MeULF9fZxxx yjEz5nxsybYD0l4j1mdA0n74Ex/7sZGPe67/7vek/0D0lLzX92fpt2rWfZD0 Nwk3UvIn3AuJTuS7J/2Wir+0yc/cTyhZ/j5rO7gb6sxDqeFC6SaxVpHr+JLz 3SzdR5J3EOYW1l36j5ucl5wNSedHbk0bf2LJPlDkg6Ie6qAmbKfmHRN+VMny 6NizzGdUxCDmrVwTI8cp9M5vr1lT5E+bzEN3TBqLz/DwxY867xA9LZ5Hn1qy fGjaOcn9Od+fBq8Ba0ev9DxMmNNKtv2YNf7zWDtiEIu42E+LNcaPOQ3k3G4y jrynlyy/knKMiTH/MZGfeqBjYi3PFL2L7z/XJvH38v1Me45nSK6uM0Vm3cGe oVp2SprHH/lu8WeJ/5LvBmdPrB3xiDtGmLNLtv2cNR7szoEZE8+vsYPDn/3C vvm2ybP/JuYPvbPO/PYNXoOG4M+NtTmoyXGJiQ7bL1nP5vRYG3qiP/Yw8c8p OfY5seas73klx3pb87wg7MwHikwdX4g/X/zada6ZendNWo+OdxiIcV7MFyy2 w9KeGbM4QvwDnE/SD5Lvb6LXy/awdPfr8z3XWX7DFL2U+xLN66KSbYW0c56V d96LY2aFiDmu5Lhg8SEWdnD4jBedLFtZ+EvEN2hWv2VNkVc0OS85WS/yI1fS 9hsfdUyOWqnzmvAjJj08yLUyaf6ykuXLRQfy22jWOmxHp63D9hPXHdFHpD8m bYp8Tt4Y7Dyvn8Iaih+s+FeWLB+bNkXGdpXojvL5M2uK/EuTe6ROapsq/Lnx 3Bn+6pJl8L/E/NFhOz5tv9/CF56ekbM6O9/hWsh7zKJPcK4JX2yyL/HhJ0Qs +uhV517QYfuQ5wjKe22sDRT5L9V/XcyGWUGR8X9cnz+4f1D8G0qWT0zbb3Ks Czpsf8T+ol56gT4ca0S9f0puTnrvsIdKaevpB9s/+lyY98yn8T3jOi7+poh9 gvBP1tmG/uaS5ZFp28GdnzcPbYo4E0uOBRYfdLuo/r+5Lgtza8m5R6VNkalj YmDJO130qTrj8b2lZH8o8j+a4W0l404JPDI+g/gdu9nP4m8vhZzTeSF+puyj hd9Nuiph9kpah20lyXeKPsM1IG2KnGg2BvueSevRDRE/Q3xS/B7B31WyDPZu 8ePU16w628DcU7J8etoUeUbEBkv8u0J3qjAvMwfJKdnvLbnuldTLc9JfHM+y 4e8rWcYOjt6Y16rNniH8/SXLgxu8NqwpfvifqVyTSrYlc6aTYr1PbDKGXPAP hA8z7lfnOd8d86PmySXbWBfyTY91xA//r1O2g8P/wajrzMA/GOv6vD6XqKe9 5TtXfEfZ9uH8KVkemzZFxtakmjvFWsA/UrJMnIdKjoUO28rq8UXpL41n6FOl b5Z+ldBPKdnGHDvHPsE+Ndbv0Zgx64h+Vqwvfvifm7YdHP73x/7luzO6yRjy vipaLfv+SddIrWcLM038atKflbb/nDrX8HjEIz52cFvXmYfyLgTxH4s6wOKD /yv6rCF5P2GeLDn3hWlTZOrAD/8fUt577Lt9k/Z9omR/KPIFae9NcOen/T27 PdYe3OV554J/umT5LWGv4u9I6V8TPz38Z4juIf/VcqbI6Wbz0AOSxuIzLm2K H7VlZL8y770xs2T5Iv4ekf0Zya+LDlGcNZv9zP3p6IOaZ5Vs65QzHuwBEZNY xMUODn/igRsv32dL7ueStGt8XnLXZuuw0ede8l07Zgj/XMnyPK5N8RwZHbbV VcPb0s+WvFazKfKl/C5Rss/laVNk/Pdu8CyIP7dkuXPEIcbQpHVzY3bPx1zH Rc1dY7YXNDku9XCN5vq8u/gXSrb9m3L/u9Z5hvi9GbN6KfqmNuhLMSOe8a7b 7Oe88C+XLBPnxZJjocPG89wrmvxsl+fOr0m/gBmF/pWSbfP12bPOzw6wg1tP 8V4t2XZl2np0rUn74d8xbTs4/OnphZjpQn26C3+Q8PtqVj3ED0u6Rmplrd8Q /x57N+3Y1+Yd/83Ijx47uPWbzUPzScd/veQcYPHBf1GdcWDeLjn3GjlTZOrA D/9r0r4n4X6ENcX3ragJinxt2vcs4CbwN4t0i+vcy7yS5etDj4ztXdH9lS+l vB9L/lCf4UnrsG2gWPNFl3JdT5si92o2BjvPm9CjO5i/18RvKP6Q4N8rWSb2 AvG9m429Pm/8woh3Y9oUGRt4sNRDDGLdxG+50n0jeUvRRSXXfbP0BzTYdmjS /OKSZezgiPeZPjfm/fwO/v2SZWa9aaw7fvinNZMlsQ7MFooMbmiDZ87awX8Q a3BXk+MSf0HkpK8PS7atn/bMDq/z3PDDvyZnOzj8l8bsrw88Mj7kXhJr+jnz yPsZ2ccly3ekTZGxfSG+r3wOS5r/pGSZOB/FnkCH7U75tqqWWuoTfpn09dzH hP7Tkm3fCNtP9Iik7eA2E/2sZNu9aes3i7z44b9WznZw+L8fvd4m/NeiX9X5 +cv36PJ+rvFRzBvMF+KXc6+T9r7oH3vjy9hT7A3s4G7Jm4cSk/ifl5wDLD74 D2vwvmKvfl1y7gfSpsjUgR/+98Te2zL2GL5fxb6EIq+T894Ex548uMH7jzqX lyx3y5kuj737bcnPWHgucwjPnuTblrTu26jpO9E+0t+eNkXmmQwY7MyKupbV ubbv4/tBL1BkbCtEV9T5d6EVId+ed0zi8Xznhzr/dnRU8D+ULIMHy5qiw/ag 4vwu/lCeMedMf4998LM+28qvkDT/U8kyPf5Ycp/E3S5ywfO7FfJPdc5HLvzw f0S5finZ9nDa9Jfoh7h35J0L/teS5c0iFnHISe51VedvsWfZq9RMveznX6NG 4mP/LfIl6nVvLfloYbYQ/SXwh8t3F8nt4n9nnfQ5Uvwfov/GjP4s2faYYm4v 7A76FIX5q2R5Stox/yg5Ljps4P6UPFC0zD18yfLjac9ux9gn/8Qs/1uLyEcd 6LCBoxZqmpZ2DGIRFx01Mv9Vyu5zZtq1UNOktNejg2x3aZ4rif4j/FNp67Cx LuiwsU6Jsueyfs4UmRn9E3uCNWoIGT5Ztjw1bZqMHFWiHVTP9LQp8m91zkkt 1EzcQTF/+JXLlsGDLSWtw0bN24rfULalafdKz6wrz0I2Fr9uvZ9frip+d+k7 i64i3WzhV6r3s0ieV8KvVra8svhGYY9J2g9/nldiBzdDfMeycc/yNzV/3zf7 uWGVdCMVY2P5rl62PCttioyN/HfnHb9T2f79045HXHKvLX5NfUYljadufLqI rir5OeGP0Fq0CHtc0rpmvvPcn5dt66H16khf9cZUly0/nzaeWPigwwaOZ117 NvtZYapsmeeVezT7uSPPKNNly3Oid3qgf3TYwGVE11C8l9OOQSzioruX57pJ 8+CQO4nfV/bjpa8pW54r3zXFH6VecjlT5CGsY70x4NcqW34x7Rx7R/3gh8R8 sK8VcdeOWphDWnJXyfs3G9sxZrVO5KGGjHQHiB+ZtG6dmCN++L8WeYlLbnTE OynpdWA9WKduZcd6Xfj1xbdxv5VzTfRM/ynx64o/UPx6UderaVPk+/LmocQH iw8YKH4nMsN6y/Ddy5bfSDsnuYcKl+c8yHuG1EV99NmjbNubgQc7KmJ2j3z5 wOGfLXu/vp02RWbvFuV7ULOfpcLnypZ7R37qWUe4BxTj5KT5DcqWu4ofxp5L 2g//XppVz7Jt89KmyOBKsg+P3uF7lS3z/Z+c9/NfYpPjHfluGGfD/LRrOSR6 xA//DXO2g8O/h/i+nIPCdRd/hOipwm8kXVn43jmfOfiQC11NzJ9zCBvPmumf Z8zMZJOYB3MDv1GsEzps4A6Js4DaNi1bpub1pTtM/Gjp+5QtL4xeegcOHTZw 1E4Pi9K2bRprho6eTkv6+Q/PgQ4UprbsPhdwv1H2f8uO/4ZeXcRDfwzP+5r9 LBsdtoeYtWhWvovTpvURCwx2am7n+Z3k08X3K1veOGeKjG0zvvui76dNkR/J OybxmH9P0Vy948D3L1sGD5b9gw7bB2mf5VwHeNeFGPTJWs5mv4qu2tH8FmXL 9Lh52X0yg1Va/N/0g2cuyL3q/d8Q5L83iB/+YzK6/ynb9mHaFBlcb/ElxTsz aX7rsuWNxJdFz0o6J7k31Uy2Kdv2cdrXuoowY5L2w/+jtO3g8H+5ontm+d6Z 878L5N8H8v9G3C7ycK08XvaBsU7bi24s+on0x0rfLszZij+gbLlPzvbt41oL D6WGfaTbVvxPaccmxxTuP6WbGs/uWcsdiNXsvNlYO/Ij1+aMbyjbB4q8LOqh Dmp6u8l6YsLvGLhdRetEv0xbh6057TXbSfKlmvnOkf+/mM2W2RPwPWP/7BTr /EH44sferpV9muoayz1J2fIXaeck9/HCnqA6R8S67BD7l/0/qGxbfc54sOdE TGIRFzs4/PE79n/fC2Eezxu/W9ny14p5ovAnxRoNLlvulzNFxtYY9BvhW8Rv Id/vuAcW3R2fZlNkMGCfyDvm//yR+8veFLiTFH9ks99bIB5xR0luLtu2Wc54 sOcGBvv5SdvB4c9+Yd88rfhbij9ZuguEGSnMqeIvZP9Lf4r484Lfs2yZeE/m HRMdtm/Tng0zYl7kpz9qIP4eZeeAIn8v/JCoHd+9y87dP2eKTB1bCbtX5KDm p+O5P3p01EYMYlETWGwr0p4Zs1iedi2nRz07cu2Q7TzJJze4btZ3e9Gh0s/g N9aybVuong+bnJu8+5ctD42Y+5YdF+x+sT+w7x/fyQNi3tRwYGD5nkIPjPrI S85xSedH/iVtP/xvrDMPZd0Pke4MyT8LM4AzQPxFSfP5suVW5qeatspZh+3X tHXYzhTmINEdpP89bYo8M2/MmbHurMHZsR+GxZowWygytuGio/kbO2c6PNaA HvvHPlzW5Bw7BH9w5Aa/VawjOmyHpN3f7XV+VwSenpHLwk4UP4+/VUR3kfyP 8DuxhsJdkjR/WNnyzuTnHElah+2vtOs+VPJ29abIzOHwsn3+Tpsi40+sWXnH PzJi/xlxiMF80GEDx/5in4GBstfGJ10vMvy+cQZwnqA/Knx21+c5xbhcmNM1 n/OFuUx8QfYLxP8r/G6ce/XWF8uWV8rYDm523jz0oojTVnYssPjgP0b6cc1+ b6Fcdu5ExhSZOvDDf1ueYUl/kfBXJO1bKtsfiry9MJWyccmMKTI+Z8p+ccyh vWx5gPBHi28SbmXhL4n66Asdtjn8nRa1s9ZQZLBg5sTzffSXxKzOavBMxwd/ bOyVH7W/jot81P1QnXs/PvpghlBkbODBEp8YxGpQzReIniN5iGwjohbq34Pa xV+VNH9C2TL2EbFOe+pzueSrk+ZPLFtuEX+F6JVJ++G/mmKeVLZt1YwpMjji zs07F/zIsmVqAkcceqWHds1tVNTbSXHGqv4r5XNN0n74Ex/7qMh3ctm4gTlT ZHyu0ufFvPfAPpzP9Y5zatlyl4wpMrZz5XtNs599wI8uWybOKWXHQodtJ+Xa Tz7XyjaB7770+0peI2P9aWXb9hc/QfS6pO3gruOML9uWyliP7tqk/fCvztgO Dn9mzxp0zDjuS3nnpc+JMR9qpNbVhTlT/AHCp8Wfp3qvl/569ljZ8s4528+M uuGh1ED8MWXnAIsP/nnZX4ln/WNjxqwRFHli+OHPHNh7Q2J98T27bH8o8poZ 701wu+b8PeP7xnfv3yZjyAV/bvgcrM/r8ayctTmPewPt//MjPzGh58caw+8T 635erCfrDsWPtT5I9tcU8wbxF5Qtry3MMM5LyTcLO0613RJrRC3UdLL26riy bbvljAd7Y8QkFnGxg8OfeODWUfyLyu6nm/ibOPs5D+usw0afFzV4bcgLPz7W dZVm45gDOmy757xOF0u+LSgye+CSsn3GpE0vidzgWuu9Ny4LP+rB77bYM1Bs 4KiRWteKmqmX90wOk+0OyTclfb2cGe/vXV62rbvwh4veKczN0h8q/i72Lnu4 bHm9jCkyNuK9mXdM+KvKlolzRdmx0GHD94h6+xPzWunvkT4b+qsjx3jN6W7p b0naDu5txbymbFtjznp0rCN++PfI2A4Of3q6PHK3iT+y3jEvE2ZS9EWN1Lq+ fK8Tfyn3tYpfkO4dxb9VmOvLlntmbAd3X7N5KO8/EH9C2TnA4oN/Ufz9rJMw N5aduyVnikwd+OG/Qcb3JPPiuTy+N5TtD0XulfE9C7jeGfc5OWZ1U/TdI/TI 2G7mmqB8eyjvMfJ7WLo7k9bdHLO7RbSG/Zg2vSVygDki1gs9Omqj7zfq3Dv8 rWXL5Lst+jlan4fYI8LcXra8ScYU+aGovS3W5daYK3OYIvqY5Bn4l133ptK3 iz4i3e1J83eWLWMHR2/EnZ93Xvi7ypaPrbcPvvjBb8ysyrb1yZjeHbYrG1zH XUnz95QtP6rPgrzX9LaYMWtxb9m2vuJHyP+4evvih/+QnO3g8L+vbFxd4JHx uVrYx5r9DgbP46c1+xn9pLJlnqFDkbH1bPazc565wz9Qtkyc+8uOhQ7bDfI9 QTk+4PkH85F+pOT+Gesnl207Sfzjwt+TtB3cE5IfLNu2WcZ6dPcm7Yd/fcZ2 cI/H7FkD5nyi9E+Kv5vru/jF8YyeGql1b83nkfDrJ/yoevuAn1K2zH9zCTu4 hXnzUOoE+3DZOcDig+6aBv/3mu4TZmrZubfKmCJTx8OB7Rd7b0asO76Plu0P Rd4n570Jjj0zocH7hn01rWx5v5zptNhbj4vmuMfQ/K+XflbMAd3jUdMTsVbs Byjy+3XGYGdW1DUi9tWT8f2gF+iTsZ+eEj1NdJuMKfKSvGMSj311uvTPsIeC f7psGTzY+5PWYdtWcWZz3ZN9+4wp8mjZxrCX4j0B+Blly/Q4vew+md3smD/8 zIh1Q4PXiTnghz/xnynbdmDO9JlY+02ajSEX/KzwmSn+0zq/H0JOch8g32fL tm0dNVMvNeCH/61p28HhP072T3kHTZizxc/hfBJ/s+K93OznhmOlf57vgfiJ 0r8o3xckzynbNlC5zhKdy3dOmOfLlhsyjvlc2XHRYQOHvDTvXHPDDv6ceuOI 80LZ8o4Z5yEfdaB7IXJQCzXlc45BLOKio8aHFOeNsvvcLeNaqGkH8S/K/pLk j4V/WfR86XfJWIdtp4x12M4VfaXsuRyUM0VmRmCwk+sC0U/yfgb6atnyrhlT ZGyviV4oeVDGFPmVZuekFvbnLYr/arPPK/jXy5bBg304aR22YapnpYpmKVs5 417pmXW9Vfz3fIdFL9LnTfGvyf/dsp/l8vz3VuLH2sG/VbY8XvjP8n4ujB/+ u2dsBzecd7rKxjVmPO83Y+a3NXidiDmvbPngnOm8WNcdIgfx34k9xVqjIy65 32r2c1Oeme4QdWOfH7Nnvd6MNSAvut/jefd7Zduo7VLZP8/7mfWCsuXmjPHE wgcdNnCXUQPnn/ALy5ZbhL9D9b8j/VTpF5UtH5pz7e9EPnTYwC0WvUq+e2Uc g1jERTef+SfNg0N+V5/3Iu/7Zct7yncJ11PhhmRMka+o97ou4Hop/Aexzvtk HGthxAcPtpK0HRw+H0ZOYl4r/UeSv1TvV9fbB/zSsuW9OfNFF3F2J61bGjXh h/++kZe45EZHPOIwl/fiO/Zx2bH2E36Z+Lu538q5V3qm/7uk+4TrFOcc55vw B2RMkb/Km4fynB0sPofnTPF7Ium9vkSfKeI/i73POUDOZXEu8GyeWMSZEPXR 5+dl23jWDx7sIxGTWMQdFDj8vyh7vzZlTJHZu+AuqXcN8F+WLX/L2SP5oIz3 yoexr+C/KlueWO99w374MnIyh6/LtuUzpl/HHr2RdeG6mDT/TdnyLfXeZ+yH r2Jvsp+Xl20blnEtn3DtStoP/6EZ25fHPr5Dn5/EX8fZQO/6PC38d7Fu7PNb Y1+yJ9HdHPVzDmEbnnGeTyPXirJlagBPLHzQYfs09vItUf8Psb/Y5++L3ha5 fixb3j96+TbiosN2W9ROD4dmHOOH6B8dPbFnOEc5T+8X/bnsPg8W/u+y3zXg vYtf2G+yH849sPbGt9I/k7QO2xeSfy37PQ7etdgt5C+bjcE+nXvyer+Pwfsb v5UtH5YxRcb2u+h9om0ZU+Rv8o5JPN7/odblXNeD/6NsGTxY3uVAh62Q8Vn+ 2v++F83uk7V8QPpJ9e4F/q+yZXr8s+w+mcH3zX5PA565IH/X7Pc8eCcEP/xL yvVP2bZixhQZ3IP6rJA8K2n+37JlcvwQ8yQnuY/S97pDxTbqZ43ohX7xw7+S sR0c/jzf492aSsRbnnfMC2RfvZ/ObOHvV+xVJf8qe1L0Ic4B5iz9j81+x6Oq YrktZzs48j0UPVD/utK1Cv9W2rkSFeebwvdc9DlhHhW/ivS/NDvvr9E7+ZEL OeNXrtgHinxs1EMd1PRYvWPNSZpfrWK5s+gToidlrMM2ImOfjpJ/F+0UvR6X Me0UPcM/FL10jDzt4ft7zOFx9pX4ueJXr1g+MeOc5P6T6xB7RvT5pHulLnJ1 qdh2QuDBvhAxifVH+ILDHz/mRI/Yvss77xqBJc4kzeRv8S9Kn6pYLuZMkbGl Racr1inCryl+hvhTxT8pWh01QZFHZox9qt4x4fFHZgYZ8R1atH9jDaiNeMRd ofpqKraNyhgP9oTAYH8paXtNrA37hX0zS/xMzgHhX+a70OB6mOFk8YmW/+PX rljG54d4fwYdtnLOs2FGzIsY0yIO8deqOAcUebTqXCfyny6+W8W5KznTbjEX 5thVfFWLawZPXvTomBU6YlFT15g988zEvmMfMo+16j2TRxW/r2zpFseYHjNf VXxO+p8Up3vkpLY59ba9Ksz6FctnRcz1Ko4LtnusN3Zw+PQQfV7y2cJnxT8n /syMKXLHFuPISfxc+IHBD//VWsxDXxNmY+lelXyhMHPrHeuVpPkNIkdP0YfV 59E567CNzViHrRPvXXAWiZ6TMUX+JW8M9tcV8yX5vVBvfsOK5fMypsjYenNW 8Dd5zhS5S4vroD9qe0X8GuLfDH6jimXwYHl/CR22CzLur1r6t5Lm6Rl5G33a xHdu1d/t0Qd9EevXvOPDb1qx/Jp8X9bnjaR12M7PWLeJ5FSLKTL6PhX7jMuY 9gnbm3wP492b2orl8RGHGMRHhw0c+4t9dlzOlL32dtL1rhmzXS++05wP6OkH 29ucUYrxDmdsg9eOGfaTvU37eUnaM9ug3nPbLObNumDvF/XBQ0dHnPrYB2Dx wZ98L8X6bl5x7kszpsjUgR/+I9TLO9KvLZ95Sfv2jz3RP2pnJltUjLssY4qM z+OKsU7MasuK5RMVcyvx7wp3BecAa17vWaHD9pdq2Dq+r6wLFBksGOy8C4S+ W8z5iQav3xvBbxPreoxmsm3kW4t9Uu93t7arWL4kY4q8aeDBEp8YxDpJNfcW Zg/JS2TbPmqh/gWS1xM/P2l+QMUydnD0tlCf7pLfS5pvqITMuUFPSfvhf7Vi 7lCx7aqMKTI44v6Tdy74gRXLi+qNIw690sNnPMuu2Hat4jylPnrIZ0HSfvgT H/uOkW+ninGjcqbI+GT16dDqPUD/i+sdZ5eYx/UZU2Rs0+W7QYvf/4HftWKZ ODtXHAsdtlOU6wOuR9ItFH53rpvSnxr6QRXbPuSMk/+ipO3geknerWLbjRnr e8U88cP/hozt4PBn9qzBNdJ/JJpo9bsx1LdNvWumRmqdIExjzIAZzmzwvIjf VLE8Omc7OPYIfO+YM/EHV5wDbFOsx2nNtpG3JWbDDKHI24QfmJsyjrckZo5v c9igyD+mvTfBged7xveN796nnKWi7yfN71mx3FefVVo9z8+kHyL9JtLtJfqJ 5FsypsibtpiHLk4ai89tGVP8liQdt6rVufaOPMRZJsw+EXeWausj/QdJ10JN twqzb8W203PGg10cMYlFXOzg8CceuNvlu1/F/dzB36rSDZVcHz1io8/Z8q1r 8Xs78AdULH/FtZ79lbQO2xjV8KX0+0v+PCjyXYp/YMU+d2dMkfF/Tn79Yj75 iuUzIw4x6BcdNnDUSK33RM3Uu1SY5Vz3W/3uCtdors/cp7VWbLsv4/77xwzn NHgO5B1WsXxWznRYzOjCZvsSE354xCLOQRXHQoetQ8ZzGVTvWR0q/ffiHwj9 wRXb8Pky+sIObgvpDol41Ike3cdJ++HPDPsHDn/qoDd6XiF+S/Ya9zaqf2v2 b9I1Uitrfbj474SblHHsTq2Of0TkR48d3FYt5qEfJR3/sIpzgMUH/x/qjQNz VMW5x+ZMkakDP/wnZ3xPwv0I64XvkVETFPnBjO9ZwD0k/mfpfqx3L4WK5UdC j4ytKPqi8p2rvL9L/kWfz5LWYdtOsUqiv0r/aMYUefsWY7DzDhJ6dMvE/8b1 SPznwZcrloldEd/QYmyXVuPbI96UjCkyNvBgqYcYxJoqzMr6u3aM5EbZjq64 7se4V1Q9O0j3RdL8MRXL2MER7y99qlv9Pgz8sRXLzHqnWHf88D9PMzku1oHZ QpHBvdLgmbN28MfHGlzd7LjEr0RO+hpRsa1zxjPbu95zww//C3K2g8P/hJj9 I4FHxofcP8ea/iOaVu1fij+pYvmpjCkytn+5PnLeJM2PrFgmzomxJ9Bhe5p7 Ua6bMfNTYn6PhX5UxbaVNP9Mq9+BwQ5uN9GTK7bNyFi/W6wFfviPy9kODv9j o9cnhH+9wetE3iphBsv3m6RrpFYwo8XfqBnViN+Zs6ze70edVrH8ZMb20VEH PJQ6iX9q7BWw+OBPjX/Xu84zKs49K2OKTB344X9RznuPfbc8ad/TK/Y/PWZA 7+xNcM+KT4o2Sf+18GdWLD8TemRsZ0Ue9G8rz54tfh9mcNjW1KzO5noin9kZ 07MjFhjszOpN+TZL/lb82Irl8TlTZGzniLaIPpcxRV671TGJR50dRVft5zjw 51YsgwfLXkKH7XnFuVj8POW4PGd6cdTaSZ91hP8uaf78imV6PK/iPvmNaojo 90nz/G6F/I4we8Xc8MN/rnJdWLHtspwpMrgusndt9fsq8OMqlul5n5gJOcl9 qXwvinkwT2peJXrHD/+XMraDw38d6Q7iDBPm3mZjyDWf55nS/5R0P0fVe+2q Zb9CvgdId0n0yqyI1TFme2nEJhcxx0dudJfGfFP67Cf5B+Evq1h+lb9NRPeX /kfpL69Yfi3jPOSjDnTYwFELNb2ScQxiERcdNa5QnOsq7vOdjGuhplzGuCsl r8u5yXdXmNcz1mEjJrqrIsfVFc/lypwpMjMCg51cQyV3b/W6X1Ox/EbGFBnb taJrCf9WxhS5JuZBLcxkgeK3tvh9HvgJFcvgwbIu6LBdnfO/fZgSf8fRKz2z rnXinxS/ieJ2FX+9+GHS30wtkheohrVFh3P+Js3fULGM//qt3hv44T8vYzu4 tzmXIg98t37WE2chzwyl/038TRXL1+RMkbGRP9vq914mVuz/bsbxiEvujaTr pc+fSeOpG59bYvas1+IGrwHzR3dY7NtbK7ZNUN6pzfYn120Vy7UZ44mFD7rb Yi7M+vh6z//2mD3rdVisAfHvCL8F0fvEmAu6O2KN7xTtIboo4xjEIi66DdTH 70nz4JCz4o8Q7g/p76pYXizfu8UvUS/X50yRjxRuA9l7tvp9knsqlpdkPN+2 mD/4I2N9sYPD595YB2Y+Xb3fH/4fNLgf8PdVLN/Av73lmljvd7HQ3Rdrhh/+ W0Ze4pIb3X/5kl6HW+M7NqniWAuFf6ji9f0w417p+Yio/QH2gHSTRTcUXZox RS62mIf+lTQWH3qH4kfvvUVLXAvFP1ix/FHGOcldbolYrY5DXdRHnw9Hng8D D/bPiEmsUviCw/+RivfrxxnTR6K3pfwuK9w/SfNTKpYfF+0r++fCt0veqNXr Dv9oxfKmsm/cz7744T+R/Vyx7bOMKTK4j7k/bPH7MPCPVSz3IY7idahybHJ8 It9pFduWZVzLsdwHVdkP/5tztoPDn1gzxJ+n+YxocW5qe0K6T4S/Jeczh/OG 90PQHRdz4xzC9mXG/Y+ImTwV82Bu4ImFDzps4D5t8EyJ83TF8q3K9VKzY5Jr esXyztEL86UfdNMj94yYB3MjxtOxZujoibnx/IfnQDyTmhn5qXmu+C2E/U78 MxW/08F7IJtJN0qYRJV12E6UPEt0nuQ9MqbIvAMCBjvvh/TjWlbvZ8fPVix/ nTFFxjZbtL/k5RlT5JNaHJN4vE+yufQjpauqMv9cxTJ4sMkq67B9m/FZznXg 16T7mxn7CWyfVuPhn69Ypsc5FffJDJDpF565IC/TPE+WfeUq++H/jXK9ULHt 9pwpMrhT9Klt9X6Df7FieWvF2rKf48yJ2MR5qWLbDxn/+8LRLX6mjx/+32ds B4d/ZoTWYqDuiXuaIi/bS9d12bfjfBP+S8V5U/KZ8n9VdHvpf5F+W9Ex0q2q Gl6rWP4pYzu4M1rMQzsK84l0zZJXqXFscpze4k+delpNmAHSvxGxyEvOTlXO j3xXzvjXK/Z5PWL8FPVQBzUNFN+v1e9ywL9VsfxuxTNhPuiw/ZHxrN+WPJb7 T9GvleuenOk7safht4g1fTvW57vwHRtr+kGzY5J3XsXygRnnJPcN9cZuHWtH r/T8qzDzI/8fgQfL2hFjXtSKfX6sMX70zPx3Eu3f6vci3qtY/ktxlnO/LZ/O wiysWL4vZ4qMbZHoIOE7aF2WiN+dHsXvzL2P5HNbTJH/zhh7gXRdqszjjwxu Md9f0V37uQbqIR5xx0n/fsW2fzPGg129yhjsa1TZ/n70wH5h31zS4hwXRd7B 0u8W8aG7/n/8h5GjUZ+Lha+usg7bSjWOy4yYFz2dGzUQ/4OKc3wQPVHn0opj Vcn344pzJ2tMP4641P6R+PEtrpl6U1XWj4++iEGsiwOLjXoWx4xZL2yXRs0T 2Ney7Si/pn7OR49D+G5IfwVndMW2lRVnD9HLpEvLd1nF8mo1jvlpxXHBfhY9 YAeHz+cxY+J8Ib6FfVVj+kXkIC85M1XOj9ypxn74X95i/vLo/fs4M9jb5Lgy aoP/qmL5a9E9FadjjXXYyIvu66jjG9G9RTvXmCJv0WpMS8yE7/zVcRYtjzOA MwqKjO1b0e+07yflTL+Ns6wl5kuc/US3avU7P/DfVSyDB8s5hg5bdY37mxBn FDw9I58qe327/hbjrJRuf9FUjd9BwZf48D9ErHNa/I4O7+egw8Y7PCuUd0Wc EVDkyar/x4p9/syYIuN/oHBbt3o//1yxnKmx34A4K9BhA/dT1EsvUPYavVDv DZLXrPLeYQ+x5/ePfrC1it+m1d/HHxT/OunWEv+b7HnZ1qwxbmLE+T38qAc7 uBtbzEPXjji/VhwLLD74D+3nuunrz4pzr1Vjikwd+OH/oOZzkPQ3yW+dKvv+ EbOAItfI96+KcWvXmCLj8yP3dFHP3xXLDynmP+KHCbeO8Af3M8/3GoptW35z Ex0uuWuNKfItLcZgB48eXVfxP3GPFnXCd2i3fAhnlfjbWoy9PfCJdsvUAEW+ PfBgu1U5BrEeVs1l5iS5yJnV7rq7yfcw0TuEX7fKfFW75YMDNyzi3Rkx4Vdu t3xoP+PoBT/8uyvmKu22rVdjukrkO1yf7Vp9psGv2m75CPF3Kd56Ve6VHtaV 72rttvUQ/zN/x0Wd+OG/fo3t4PDv2G7cIzlTZHyOFGb7Vp9FfA/vka67+NXj e5mrMUXG9ot874164Du3WyZOp3bHQodtinK1cQ1u9ZlWLf2v0j8a+i7tthXE 36cY61fZDu5+rgfttvWssf7+qA0//DeosR3cfTH7/9a3xmvZ0OpzeJJ0D+rT o8o1UmtWmLT4kvgNxf+m+A9EDZl2y1NztoMjBvykiEP8VLtzgMUH/4r0k0Wz wqwZfr1qTJGpIxV7DT17D5468a1ptz8UeaMa701wvWv8PeP7xnfvWn3awxd+ 7XbLJ/bzecF381i+i9Lvy/dN9CHhNq4xRZ7SYh6aqzIWnz41pvjVSH+86KPC 9BTfrd1ybY3PoHUlTxU9rp/PPs4xaqGmNYRZr922voGfGmcgMYj1aPiCw594 4LgWdG93P/3EP06Nkp9osQ4bfXL2jYi88D3aLZ/Uz2cW5wa6/85YxXmMdW53 PChynfTZdvtsVmOKjP/NkY95btAe517EIUavKus2iFpzEft/NT8RmJH94tyr 8jWa6zPvvvZst61/jbFPBp4z7qSof8N2y5yZ0A2j1lH9fCZw/sD3jjPiv5zt joUO2+Y1lp+K+JtIfzJ1hH6jdts4K0dGndjBcX5t3G4b5w96dJw5G0Ue6se+ cfTDh97ombhPR17OnZPDt1esJzPv0+6zk3PylH4+vzhn+rZb3rLG9j7RD/yo 6J34m7Y7B1h88EeeHnnr2p2bMxNaF/1vGn0zH+5JOO84Z/Ctbbd/bcRmVtyz gNuqxrYZEb9fYLcMPTK2zdp9RnKWzhSdxfpVWbdZ9Na/3ecbZx0UeWCrMafE HNCjo7bR/Xz2rR/85u2W/+Dvr3bnOb2fzyzOqy3bLW9bY4pcCvzMqOf/EXXW cVKWXxtHmbEVYQIL3Vm72EBRxAUUFZHdRSycMbF1kjAQUUQMEEwMVOyfgo3d gp3YIjaIiYXdvNeX6/h5/5jPOdc514n73Pc8M7M8j5KDXD3FeVG2AcIfDNA6 Ix92rnEnR130nhGDHx5r4xrXN++66NsVjcc2+JrGtZE44rn2bl+0r1fKEgzv L/U2h/ObsN6raDxrkHnkYa2s4X5dq3co2rc53znlL/MZkXAc8Q/U2b9D1Otd NK938MHEUOOpqHu68NO8N6S3FI1bUiGL9nEf9zODfC83ep+iMXl2LDoXNnzc 1z2uwfd2c7/3TrKfIdw3ZXvfon3jpffLuy5+eM8qT7+ifX1StmObtpzjiN8x FbFFxzN79oDPkb/5m8kg/39nLt+yQ4d9G/UdZnn3SK/Mvz9nVfWP4HdWu35H qOeCOLsUjTtm7Yf3wiDryMc7Ov/ORdeASwzxZ6qfAc2y8Ru26Nr7dLIE0wdx xD9Y57PHuaMusbsWHY8E75Ty2YS3s/RprR06nNXg/LsXjTunLcH4BkqeI7mL +P+ozlzFbpawDd9LwntIjuK/ldTZEvzyIHPwb8rvX66tAz23QUXj/ilLML5W yYn0nbIE75R3TvJxH/4k2V+RvkXCelvRGD5camHDtxu/KaRPodeU5T7hm8y6 G7wW9MFFY9bYXvQ6eQbgtUG+Tx59z6Lxq4P8bAD9EEf87so/pGjfgJQlGN55 8r/O+ythfa+iMTXeiHlSk9oP8d+giPq7Rc/0y3qJI36PlP3wiP9Ar134GyG/ fxvModZS5Xtfvic7uu83Yy3/yl5Q7Hzh/WJN9E+uyTGToZGbWuTcN2pjGxpr nqrXztzHKv7+ReM9xb9E8l3xusueLxoPSbkO9egDGz549EJPD9c5B7nIi21+ zG1Y0evcJ+Ve6GlQyv4DhPuLf6DkZbLvnbINH3WxHRh9HFT0XB6pswQzIzj4 6Xlag2sxz4OLxvumLA+OPg6RvEJ4v5Ql+MNBrkkv9Hy57B8JN4R+aNEYPtym hG34WNfF0tds0Vmvcw3WzL6uJn289HvEu5LP94g5WvIayQMU20FxH4vXnLB+ eNH4E85R3usijvihKfvhPcp/V7No3v6yXy3/VQ3Os7z8Cwf5+YujisaP11mC 8VF/gPL3EP/IouMLKecjL7XvlO1H4R0T5tM3McdIXsveiN9RORfFrLB9Kn0b 6ccW7XtCda/nfZb3swzHFY0PTplPLmKw4YPH+j+PmRRjHqw90eI5UKtUNJ5d 595ZA+vHVop5lTkzev+f2MU5yEVebNSjH/Ry9MRcHunuuVViTsykGnH0jKzG vG7S6yvh7fhuXzQ+TJybJb+WffuE+VfHvuCHR8zwonmHp4xHCu+htf9PtsXC PcUfUTQeJs6MBuvYkfgWRxzxw6IueamNjXz0xj6wH+zTqKJzHcF3Tukryfd0 ndfKmln/CrIdL/0b2U6Q/FbyyJQluDVvHclewyXmyTpL4nrxO1R1ZjZYP7Fo fHTKNan9vXh3yLZEsnfCfY2KNY8u2ndc8OHyLAk5yEXeO4JH/MlFn9diyhLM 2b1d+k+SOySsjykaj4v1MQfi2/LuAf2UovFdDY4hljj0Y/nOVrSvlLIcG76V 1efPim9JWD+1aMz7f3Dez1mcEv2S57S4NlRT7uW3mBtxxD9TZz884u+Xfpb0 P8RbXf4/Y12ny7aq8HN1vuYQQy1sM+LMcB3CN6GLZ/l8d8/zjNgH9gX+6XE+ sOGDR1+3xj5OKBrT8318PqivPrKfWTQeHmsZFzxs+ODRO2sYkbJvQpwJbKyp b8LXUa6ny+m7zNlFr/MF/jsq0h8V7yTFniP9Qc4K3/EUd2+DZ44N316qNTFm zx4hwXDh4F/2vEaL948ZTioav1hnOSn2+FzJlOLO7RIyapPz79jr3yVf7e5n ZNAnF41TUY9a2PDVUr42XR7XMdbHOtnLR2T7V3KnhPXzisbUmVL0OpnBUuGd E9aZC/hh6R00s34JxxF/ompdULTvhJQlGB5598m7FvqFRePHGswjz5SYGXO+ qGjf6JT3iP3pn3Ac8eTHf1HU4zsX3714fnN5cffLe3/XLuml779vi59Snmlc O+S/RHK24k6RvYvsiVY/h3Jp0Xhunf3wHm+wjqSH22TrLP7ElGtNLbreHD4z JXcR50lmLnuy1XVXiFlRH/xqnfmXFR2DBI+NfuiDnp7me07ezz6gX1E0vjr8 9I8N37iU53Sl8EqSV0mmleu1OsurYqboj8XMr4yzPzpiV4o51w1yTupOLxpf 3sU1qf1Bd3Nnx0xYK2s+lb8JR336gQ+X2ZJjevSK/5rYA+KY067K85z0VaQP 4PO9aHyG8jwruZrsu8l+fdF4fNjB+G4oOhb7Tby/+N0i/XlxruOa1WoJnpAy t5B3rVUiHvyC/DdGjaxmtbp8AxPOR94D+dws2vdGnflwdwsOftaCHx7xnBfO zUFcl8V9scE5X5FMybeH9LXEX7PVz4Ogzygaz21w/KCEbfjeqvNsro01sybW t3vC+W8uugYSfI7WO7PoXJP4e2nRtTnDSDB9vCr9Ft4D0TP9Uhc7ttaEc8yM 9wBcfOemPDNmcSbf4Rucl3VtwHmTb33x15aelmyTfSudh7tlf5PP1qJ9b9cZ HxLPU9wZ/vMj5+3RN1xiyIUfHjF3xbzpYZb0dcWbV2c5K/qjLjHkpz74xi6O I75rq/Wuse8PyTafa0HK+/Fld+8R+j1F43sjjj7viX1j5tjujT24T/JtyQtT luBheXNejvPwDmsTHiz9/qLxRSlLML4HJLtpPfPrLMHrtHqNL8Q5fFfysLzz oD9YNIa/Tpw3bPimpry+9WTfM2GdNYP312x+k768rqFPSH4o3zTxu8l3eN77 iP5I0fi9BseTBxs+5ra+6j4cGAl+T/0/WnTMpSnLR2PWH+i1gbh7Kc/jRePL I0+3OD/Y8MHjfHHO3q+z5KzxbAv91knfO+GzwxmanLKd9eBbIP2oeJ7ifek5 2YaIPydyXyb+Rw32YX+yaHxFyn54R+StI+kZ7uyic8ElBludequXbR9xni66 9vSUJZg+ZgeXuuzBxrEvxD5VdDwS/IHW+0zs1dTgg4mpb/H+cgaeLRp/xHVD +vba17u4T0+2zWK92J6Lnp6P9yv7ggT/3N0c/MwKOzbmTL33Yt/RX4h9/ZRr nfRjtK5F0jfls1mcl4rG16Yswfjgw9034RzkYj5b0LvwNrxXiu77E+5TEv/Y eI4D/ZWiMX54rI15bREzR59bNN64xXvD2okj/nr+JlO0b0Gd5aux330HmUMt 9NciZhPl+qu7n99hrazhGuV5vWjf1SnXW9jgHogj/oEu9sMj/o3o6/rgg4n5 imsW70XFfi19a+l56W8VjW9KWYLxfSm9u+TQhPW3i8bkebPoXNjw3ZgyLuad /132QWv+tM72d4r2LW4wn5z44TXIP69o380p27EVEo4jnvz450W9uXF+ee80 SpbzPg8/yNeDz86Ee6TX/3FNkP4dn0nSN1f+5lY/b/J+0fizOvvhfdNgHUkP 5J9fdA24xBD/vfwV2Q4Q58Oia9+WsgT3iDjiZ8TZ2ybmSewHRccjwbemfDbh fV7n99mzcW39Ua9qPB+B/nHR+FfpvZTzkIRn9onsPbkWSW6p+C/qLBfEfNEX x/w/idkzc2TPmHnrINeg1sKi8dNdvOZPhVdqMPe7mA+9wL+D92DUR4cPlzmT Y2Hw8C+K/fg0Zsm+fFb0eu6W/jtxwr802IaPdYJ7Sx6csP5F0Rjf8Lzn8EXE zeL3Gu8z4R1aLcH3yP5l5IODBBO/teazo/Aw3iNF46/qHEeOQxO24YNHj/R6 b/RMXXprkW9k3ueQz2g+n9ulLy7ad5/4f8n+R4NrNShn31Y/Y/Jt0XhxnSUY 3z/i9uPzMmH9u6Ixeb4pOhc2fA8p/7+SO/FZwt8Hgvtg2L8v2ve39J0lD0vY D28UzzMU7YOPHRt1iSP+4ZT98IhnTayNNS9tsI+czS2eCzOhR3p9QLE/8b7g by51/k5wQjwH8XN8R3g8ZT+8/q3WkUcmnP/H6A8uMcSzH7vF3v1adO3v6ix/ jX0ijvhHUv5OQjx1if2l6PhfYm/ZU76zwHuti/cg3eA9+j32hLUgwfj+iBz0 T7+Domdsf8T6/5RMqO7slCX4pLw5f8V5wI7tKOlJ6bvLd3TofxWNt9G6/pY+ UPqKso+OZzf+KRo/lbIE44M/MPaaHOSaw+9ZyTVLun7K92/Mm/ls2+JZwV+m x+z6B4+1HTLINaiL3qFkPIDvkQ1+roc44pfw3FzJvidSlmB45OrY6FmhL18y XkWvNuFjEl4ra/hBeTqW7Hs25f/GaHur/xukxBHP2vHDIz5RMo///icSTMzK jf7vgnJv9mrSB8t2nPKsUDJ+PmUJxre69D35nEtYX7FkTJ5kybmw4XuBv01J DpH/WH4byr6G8IthX6lkH3nH5F0XPzz8K0fN51K2YyPPSuHHjh8e8cyePZjH M7aa017ylcTvIu6p3MufcI/0+gzrkr63OC9J7yxbp0bzVy8Zv5KyH97YvHUk 55D8q5ZcAy4xxPeSfd9WP+fSqeTac1OWYPogjvif6nz2OHeVhGPXKDkeCf6l zmcT3qvKs4NsQ2OenUvGv9ZZgvF1kcyI/7r4+eiPdWHDd5p6SEXv7AUSDBfO afFsSO8Wz51a6ZLxb3WW6djLjGRJM1/UxTITtcmZj/mzns0aPBP0bMl4Gb/R tbKxbmbeTXqLavxRZwk+WL61+HdgyVrC+lolY+p0jT3jb1QHCg9PWOfvVuCu 0g+SrCYcR/xbqrVOyb43U5ZgeOQ9Pe9a6OuWjNdpNI88XWNmzHm9kn3vpNwz /Y5IOI548uNfL+ptrNfZ8dzBIfKfkfcZ2IBrgPBIfg9KX7fRefop54aKPUy+ DUr2zefaK/uwVj/nUlcy/qvOOdcvOS82fPDGaOYT8n7+Ilcy/kl7t77ybac9 WYHv9iXj91KuQz36wIYPHr3Q0991zkEu8mI7LK5XW5S8zgUp90JP86TXybaR 8OHCG0vmhD9M2Ybvg5Rt+I4QZ5OS5/J+yhLMjODgPz7hXGfyb9d8r47c8JFg fJtJ1ivmo5TlZpGXmvCI3Yl/a5N+Quibl4zhw2VfsOH7R2s/UPo5zD/ttbJm 9pX71AZJ377RZ2FL6cdKNkpuKtunfD62+ExwltC3ijM0epBzcTa2jLPPucIP bynPHJXMW9LF+7ptg88ANbrFmWmImswf2RDnhvoT1eOJ4nSPc8FZIt/WsWfT pJ/U6mcN4NM3MU28d4UXib8r/2YXZxVbUfpJfOcp2bdcTvOQfVI8D9KjZPx5 ynxyEYMNHzxmXYn5bxOzZ792a/EeUGvbkvHyOffOGlg/tm1jj3vyftUa/uji HOQiLzbq0Q96z+jpOPlaGvw80XYl44Wqu33E0TMSvIn4W+tVEz6Z63bJ+Ctx uksO532WMB8ua8EPj5gdSuZ9nTLeUXiy1r4V+yY8WvzeJeMv+W3SaB07Et+I iCP+y6hLXmpjIx+9sQ/sB/vUUnKuxeLvJH0P/p6e81pZM+vfXbY+0kfK1ldy lOQ3KUvweXnrSPYaLjGJnCVxp3AGODON1vuVjL9LuSa1T2BPZDtRcmzCfbXE mncu2fdD8OGmIie5yLtN8IjvX/J57ZyyBHN2e4izb4Pv4UTfpWQ8MNbHHLaV /Xyt5dSE9V1Lxj2ZtzinJRxH/Pecw5J9P6YswfAGqc+TY+/QB5SMef9fkPc9 q+SmxhLF7h7Xhp9TMbOYG3HEr5izHx7xvaUPln6qeO3yn8ZZFn8P2VqFV8r5 mkMMtbA1xJnhOoSPe2WZJffLMs/W2Af2Bf4ecT6w4YNHX82xj20lY3reQbaL 8r7Ptr1k/GusZWDwsOGDR++s4beUfW1xJrCxpnEJ//sP/w50sjh7lrzOVbSu /WPGzG2I9L6K+QuO/GfJPiFhG77xwnvx3pf8I2UJPqPVHPzjObect0bfD7l3 yfjPlCUY3z6SO0n+k7IET8075xnR886ynwkOfd+SMXy43K+IDd+/KV/LuRZz fWZ9rJO93EX+S/K+lw99aMmYNe5X8jqZwTlxJtGZC3hIi88VZ5g44vk8ypfs Wz1nmY/zx31+cKiFXoiYsa2+v5B7EalJ7dUUe0DJvl9Srter0T0QRzz3JeKH R/x3Zf1uUOyEnCV4eJO+V8VaOQPM7zDhAXw+huyonneTPFe+M/leVDJePv3/ PM7LgDg3zP942Y5lLWnnpsYkyd0bY78TzjdM9smxbwMi9rA4F5wl+IfG2UKC E9EPfZDjbL0GR070w0vGR5d8fyX3NGLDt5SzyvcT4f6SR0peLPuqaUvwJa3W kRMT5hKzetqSOM723pKXijNJ+lEl405p16T2ZZzxRt9Xyb2aw6Jf5nlMyb41 gg93k8hJrksjFh7xxE2O+e8v+2U6g1P4XlEyTivP3trT6eKcL3uxZNwpZwnG V5I8VPz1xK9KP5r3GmeSz1rhq1otwZm0uYVG50QnHsy9hmXpN4p/davvO+Se Q/KRdxrfm0v2ZdPmw90iOPgvSdgPj3jOC+fmCvmOlH6rfFPFmSl5RPSwb4vx f/rwkvExjY6Bjw1f55xnw4yYF2tifeclzK2VXAMJzqnPESXn2kj6qMiNHQmm jxnSR0q/rdU90++lCduxbZlwjhGRFy6+urRnxiy4t/M4+W6X/TLx81wz5XtQ eD/+7S/WXhZnjOxX8r2wZF8XravU6HhiTyoZb5a27YSS88Ilhlz44eEfHb2z xpPDv0na8uRYP3WpeXnC9cGbpx1H/F2x1rtiveNlGylOgzgVyVmyT0tYP6Vk PFZyqHpK5WzDt0XaNnx3i3NqSOz/4avy5twds6o1Opb8p5WMt0pbnhZ5x/G+ 4PdwzhJ8b6vXeEyckxGS9wlfGfrpJWP4cLdK2Iave9rru1/2qxLWWTP4Sumz WaP6PEfyROEeaeeannd+9Akl41HyD+fcJGzDt3XatjOEH2i1BGM/s+SYxrTl meF7SLxr8p7D2SXjpshDDvJjwweP88U5y+QsOWvTE+73+EbrJ8QZ4TxgZz34 xuh1Xdxbe4BiH2n1/a6T5D9Jvm3EHy35KD1xbS8Zb5u2H961eevIqyPPxJJz wSWG+ANlfyz6n1Jy7e3SlmD6II74rjmv44lYC7GTS45HgtcS57x4bzFDJJiY g1o8U2qdXzJeW/wLpC/Q+zTPZyifzeJem7DtgujpwuidvUaCpzeYg59ZYcfG rKh3YswZ/aI4K6fqdbH0ObKdJv1Jyev53lUy7p22BOODD/e6hHOQi/kcod5v Fh7Hd5aS++6VNveGvPnol5aMxwaPtREDZo3ol0X8Icr5NPEJxxFPzstL9q2b swTDe0av/+V9BtCnlYzP4P3V6DyslTXsoDxXlOzrK32Y8jzX6ntoiSO+JW0/ POKvLJnXLWcJJmb6troeNfj/W/2l5r9giP//1NNLxoemLMH4fuDzSPxtE9av LhmT56qSc2HDd4xiz1Tt51mb+NfJPkG4X9r2a0r2nSX9BcmbEvbDe5FzU7Jv 57Tt2G5MOI74ndL2wyP+stjDHdPOe1PedZnv3NgLeqTX/NrC0s/me4n4h2km L4lzszg3lozXz9l/Q/SNjqQH8l9fcg24xBA/ic+5uN/1pthb+kGC50Yc8f3i 7I2L80Ps/0qOR4J3S/tswqvL+X12flzXvhtkDrXQZ0TM+XwHiPtI2eOZst/C v5VGfXIib4kzhH5GnLGZcS44V0jiOFeT5b9FOWdIv7VkvLs4UyRvE35N3KPU 2+uxR/RCT0fpDNxesq8+Zz7cmZGTXOTFD4948sEbyGdryesZJP1V+e4WvrvB Nnys8+gW7w110e+Kff11kHnMARu+DXPepzuF3wwJ5gzMKjmmkrKcFbXhndvo s3FPxNEPcW/GmUHig0eP9Drgv54bfA/2RfK9LXxrwp/JfD7zuXxvyb52vktL vsMMZL9Q+jz2QPr9JeO2tCUYH/luzzsn+gMlY/LcV3IubPiIndroeHI+LPt8 2YeE/cGocazm9C55E/bDu1M5HyrZt3HOdmzsI3HE75m2Hx7xrOneqH0Z18xG 5yyJ82Gsix7pdbBiH5VelG9T5b9ctruU/w5xHisZ75O2H977rdaR3PdL/kdK rgGXGOKnSf+AXvnsKLn2ZjlLMH0QR/zeaX8nmRX3oxL7eMnxSPC+aX9ngTc0 7XV+HLOaE+veM+xgfE9Klvnbq+peo7iFnImEbU/G7J6S7Cj7mJTlU1EDztTY L+zY6I11P9HgtaM/XTKm3jOxnqv1WiA8S5xnS8aFtCV4QfR+WezL0zFX5vCF 5HzeG8r5XMl9HyD7dMlP5bsrYf35kjF+eKyNvPfkXRf9hZLxtY2OIZY49Lxy vliy78C05Yvhq2rti8iVsP5Syfgzve7Le0+fiRmzFy+X7DtI+g18jjQ6ljji t8zZD4/4V0rmHRJ8MDHDW7x+7tf9n/CX1JP+asl4WNoSjO8m6V9J3p+w/lrJ mDxzS86FDd9hir1R8mvZ7uW6IfvNwoeH/fWSfeS9P++6+OHhfyNqHpq2HRt5 Xg8/dvzwiH8h9pk5j1A/i7keiN+J91+j73GlR3rdWvN5u2T7UWnP+ruY/zsx e/YIP7wH89YfjHtlyf9WyTXgEkP8qBbvK/v+bsm1z05Zvhv1iCO+e87z4twx f2LnxflAghtzPpvw2Dtq3BB7/V7UPCrs78Uevy95m+QxfD9v8eyY223he5j7 diRv5/qXtgT/0GoO/gf5nq/YJbF3H5aMm3OWYHwfSd6pmGLaEvxI3jnJ91DC M/op9gL945Ix/Efi3tqPY5acjc+lz+J6kLYE/yZfNmLgoy+I2qzxkzhb33Me GnwPMPrCkjH1bm10D8QRf5725dPohf6RYHh36/WL8CMJ64tKxvfwWSv5aMI1 qd2D91rJvmr0TL8PJxxHfCVtPzziNyJ3o++TJO9jedc6hX+bith7G50LfYzs 3yj2L94vJftq/J6S/XfixfmqZLxtzjm/KDkvNnzw/tDribz35euS8XDleYDP 0EbnWVwyHpl2nS9jP7Dhg0cv9LRdzjnIRV5s9Mj9Qj+VvM6rUu6FntjTBxX/ rfBs8b+TfEj4+LRt+EalbcP3t2K+L3ku2+cswcwIDv4nEp7lnLjv9IeS8Ylp SzC+JTED5oYEL211TXp5XLFjW7zmh0P/MWYNf2nMGRu+Xupn43KHDrk2fV6m vdafonZWtrR8L+c9j59l/4R/R5dcTr7Raed7IGaO/kvM/fFGc+YkHEc8e/FL 9Mu6fi2Zd7L0JySXF/9Jvj9I7yh9tvTfS8bUQoLxkfupvPP/VnL8mLTz/Rr9 vcJnE5+dCWP6JuZP9k32U/i9yb8dkSthGzWo+1fJvt6aT1L+Z/Leo79LxmPT 5v8Z/WHDB+8p9rHROf8pGZ8m/un8u0qb74n9t2TcknPvrIH1Y8MHb6nk0/KN SzsHuciL7VnVeTphHR74Gekr0avsHcrGpyt2Oenj+Xe1nCV4ZfGe4ztA3C+6 fNn4jLTnsWrMBP7KsRf4l/G4b6BsHjNs0n4m/4tv8VzgJ8rGfXNez7cNXjs2 fPCII35myvnIS21s5KM39oH9wL9C2bmY5ypl7+9Zaa+VNa8Uva9Y9sxWknxJ 8uy0JXiNNuvI5xLmEsPal6079u5lyU7Cz0tfuWx8Tto1qb1mm3O8kI880R/r XDXqnBV8uM9GTnJ1ilh4xK9W9nmdmLZcLdZ2Jn/fpUbC+upl4y6Sb8l/gfhd WE/e+46+Rtn4NfnnNjqWOOJ30l50Kts3OW0Jhnc2f0ds8/206GuWjd+Ma8FL CeemxiTFdi7bd37avXSV/eWE44jvn7MfHvH0vZb09Yhv8TqZSUq2N6SflzaP 6w21sK0l/GLC1yF8cN5utA97pmx8Ydo2chGDLRN5z+FvXVwP+MwtG++i3t5l PnHPatey8dRYC/NlPdjwwVsrZs8ekYNca8e61os94jrK9XS+4tYue527qVYu uPS5jvQ+Ot/368xPln+DWCO2daKPdWP27BES/GeDOfjpmZqvxf6uF3Olf+R6 scfdJN+TvDRtCX4t75zkY6/fl3194Vf/08vG8OHOTdiG77K0r+V8DvD5yPrW jrP7oV6vx32q6HVl42VrLHudzCAXe7FMLxtPafGeMQfiiOfzqL5s38CcZX3s 966t5lALfcOI6aZcyzX6PmFqUnt3xW5Utu+StOuxP/RAHPGPpeyHRzz/zsi9 Nfxb4yd6bSjf6/wtRf5+TbrWK8/5/EYR3kS+TSUXiDdd9o8lN2ZvxN+sbHxl 2n54G7VZR77BvsvWIP3mtGttUnY9Xm/mXXeh7FtELupS882E64MH5czfvOyY zSPHldEPfdDTprw38t5r9K3Kxo2Sq2+rs7SWbfiuUexnit1a+FPJ7pIXqlZb zhK8eZt1JPfKwiXmuogljj5/lHwn7/uyGsrGd6Rdk9o9FX+R8gwZonms4LWy 5qv5fCnb154zH+78FZyDXOTFD4944lgz8/9ccp78b0lvLhtfz99t2LvYo23K xoNzlmB820p+Jf7/xN9e+j46Ey/zPVC2HsJbtFmCb0ib+27cR4pOPJi96il9 a96fLe6PuuTbPmpsV7Zvz5z5W8f+wsFPTvzbxVw4L5yb9/Ke/ZqNnv9iySbh dxLO8VnMH32H2JtvIn5ewjZ8rJHZMCPmxZpY39sJ5+9Vdo1esefsb++yc82Q 3lJ2bc4wEkwf30rfUXpjm2vSL3WxY3s34Ry94z0AF9/MtGfGLDgD3zU6L+tq kW2wfEu4rvF7jvPA90zhXWTfTrhf2b69NM8ewh/kvZadysa3Rs6+0TdcYsiF Hx4xO0ed28XvL/1y8fbJWYK3bXNdar6fcH3wXWnHEf99o3UkfQ6KOrfwfVi2 7ekvYX3XsvFukj8J35m2Dd+stG34eokzINYKZ7vAH+bNwf+ecv7aaIy+e9n4 7rTl7lFjoOQ0rWffnCV4hzavkfVx3/IfvKfiflT0PcrG8OF+mLAN331pr68l 9gWdNYOP1mui9GMlh0j+I/5D4h/a6ljyo7dFLuqv1+gesOF7V+/BK1W3tew9 RIKHqv/22BP2Cwkm/m+9Fqjfj5Rnz7Lxg2nHfRfnChs+eIOjX9aCXBJ7R7/9 hD9O+OwQyz5iZz34juF3VqPv55zOd67Yi73Ltj+S9sz6x9z2iXmzL/jhLcxb X5j//zx7lZ0LLjHEX93ivST/fmXX/iRluV/UI474vObTRzEbNfr+ZGL3jTOB BBfEGVo27/60JZgY6v3Z6J73j/qsJS99eX0mPs7fA/m8lf3ThG34dhUuSHYU fiJtCd6tzRz8CxK2Y1vI7zXpA6R/EvoBZWO4B0pfpLkkmuyDc1DZeHbaErxc 5IZL/gPC9pg4N6nPmvB+8h9cdt8Hau0DhT/Pe3/RDykb44fH2lZUjmST14h+ aNn4ej6H23xfK3HEz1GtYWX7Ds5ZguGtrJgvlHtRwvphZeNVpLfJ/1nCa2UN 9Hx42b5n+fsnn4cxH+KIfyZtPzzijyibd0jOEkzMauJ8Gfdnsp49Y7+OivUx QyQY340tnim10I+OWZPnyLJzYcN3qGod32of+Y+LHM+nbT+mbB/rb2r0rPDD Y5bHxmyeStu+YsyZOOK/TdkPj/hDIw7+mpJ7y/cFv4Okd9Lr84R7pCY9lKR3 lv5K2v5928wpl41fStsPb58268gvE85fLLsGXGKIB3+dd91q2bXnpi2rkZc4 4l+Os8e5+yrh2ErZ8ZXITQ+cTXiH5fw+4/3Ge2+o9G/yPhvow8vGB0j/VnIx v4lUZ4TsKcmRkjPY+5wlON9mHck9e3CJeT1tSRy9rdXkvOQcVTZ+S5y1JY8X PlC+rrzXWH/CvdDTq+KcULbvzeDD/SZykuuAiIVHPPngvc3fe8NPLHMaIzys zTZ8rHMm7yfWnLA+umzcTTm+z/t+SGz4jtTa15H9pOgJCX5H+U8uO2Z+2hJM /K0t3j/Oxill46MjDzlYL7ZTYr/HxLVkbvQ8LPZ3Yqvz0g+f0Xw+8z1hbNm+ 5dLeh10bvRfEZWL+p8W66Q15WuzTBnotyfseOfRxZeNl+1l2Lmz43ldsHdcE +b7jby+y1wt/FPbTy/bdzhmRfDtpP7wjhceX7Ts2Zzu27xOOI/6DtP3wiGdN Y2Om5D0q6m4onGtyz6fGGeS8nVm2/UP+9tjk7wc/iHNW2fiTdMTFenKxfvKQ f0LZNeASQzw9HhN9nlN27Y/TludEvQmxbuZDzLFRl9izy44/O2ZAbxMjN3k2 aXIuephUNl4Y9klR71zJjSUXyL4F1wrF/pSwDd9xwpMlN+X6lrYE/5Q3B/+S hO3YzuK3JNcR2X8MfUrZ+E7N/zzpJemby/6z+GeLc37Z+LO0JRgf/FLkJwe5 FomzDZ9hwifKd0HZfX8u+13iV6Iu+oVlY/zwWNtWXOskf05Yv6hsjK8WayeO +BK/syKO3pBgeFs2uVf6R58aa+iu13D5f0l4rayhqDyXlO37Ou16I6IH4oj/ Im0/POIvjb6+CD6YmK2bzKdug+Qv3OMm/fKy8eK0JRgf16yRbb4OoE8rG5Pn sqiNDR/XtFktvr5xDbwqrlXvhP2Ksn3Nev2e9724+OGdIHll2b7v0rZj47pH HPHlnP3wiGf27MGX4t/b4msWffaQ/CPv9yM90utX4lxd9j3A3Pd7WJvv/eW+ 32vKxu+l7b86+kBH0if5p5ddAy4xxNPj+k3u87qya3+ftgTTB3HE13I+e5y7 3xKOvbbs+GtjBqydswnvB+n3Ke4k2X8X/4ay8fCcJRjfjZK9xf9N/AdafA44 P9jw/cl9O5I7Mve0Jfi0NnPwc5buV+y46O2msvGInCUY380RR63TAv+Vd07w HwmfM/L+HPqM6A8/XDgz4jxynu+UvpP8/6Qt74z1Hy9/S6wF/ZayMWucGe8H /kbVpNevCev83Qp8uvgT9Poz4Tjiv1X+28r2/ZG2BMPbmeuc5N8J67eXjZnv WTF/alJ7pGZyR8z+h+iZfpkbccT/m7YfHvGX67U073u8meM/efP3aPJ94dxP PqDJc2Q+54pzn2KnSM4q29cxo9+QLfYtFefusvHxOee8q+y82PDBO6PNseS8 p2z8l3obKFtfvf7ibJeNkxlzZ8VZwYYP3n2Rjx7IcU/0hG1K9PNo2etcM+Ne 6InzNki8+4XPE36g7HvhuU8eG74VM7bhO1+cB8ueywoZSzAzgoOf+/P3Zsb8 +4w+xx8qG3fKWILxPSy5T5P7QYIva3NNeumg2Idb3DP7gv5IrAE+3ETSNnwn 5PzsA8898EwQPNbMvt4p/UPpKxb0XVmxj0XtJyXzkhn18IhyTBMvmbT+eNl4 qPwdCrYTR3znjP3wTuTfzsrmpWTfn2ug4lYQ/1H5r5J+gfqZUzY+KWcJxkf9 5Qrmzy47Pp1xPvJS+2jpt4jbKWk+fRPzlGRBOCv+Y8p5tTgXJmybLn1F8Z8u 2zeaZ1hkX75g+zNl464Z88lFDDZ88A6Ufo1sK4n/bNl4LdaufNfKfpFqPVc2 Pjnn3lkD68eGD97zkgfLt07GOchFXmzXSa6ctA4PTMz1kf+FyEHdF6UfJN7a GcsXo6dD9bpBnFWU56Wy8XoZ57gx8sCHy1rwwyPm5bJ59DZM9rnCHbX2Q5rc E729UjZeV5zDuD6Lv2rStldibcQR3y3qkpfa2MhHb+wD+8E+vVp2rvXFf1P6 bL7H57zWF6KnJ2R7TfpN0l+XPFz8DTKW4ETBOpJ+4BIzJmdJ3MVa+xHi3Cx9 NXHeKBvXZVyT2jPkO0q2mZJrJN0X/bHOt8r21Qcf7iWRk1w3Ryw84t8u+7xu mLEEc3aP5PovuXrS+jtl4/cli8Kbin8M17mC+0SfVzYm723RG3HE58R/N2qi I8Hw5rSYQy30+RFzHNct5Vsz6dzU2Eix75Xt2yTjXu5Qjs5JxxE/Nmc/POJr 0hdIv0e8CtdhyS7ifyDbk+KfmvM1h+sNPWC7M9bOdQid9ZabXI9aH5WNN8+Y /0HwsH0UM3pK9lltfv7l47LxaapVle9u2VPK80nZeMtYC/NlPdjwwaN31rBV xjnIRV5srCmd9L//8O9AV+mzYGHZ69xC/K+lnyC9WfqnkQ/7s8rzYJufYcGG byWtf1HZz71tnbFcFLng4KfnpxV7n3BG+mdl43E5SzC+zyXvl+yesQSvUnBO 8jH/UZIjmpwH/YuyMXy4zBkbvsaMr+V8DvA5Qg7WyV4eL31V8bNJ61+VjVnj l2Wvkxk8JNk1aZ25gJ8T5+E4D8QR36Rai8v2nZGzBMM7Sf7VCn5uBf2bsjFr fjRmQk1qj1fstzEP5slzhcNj7cQRv03GfnjE8/9MfDH+H4EPt5pDrRVq8jXr GpWVT7afuQaJ/0Osj/kQPyrmuSTykf/B4J3QGLNo9L6vWNH3cfF3zbjW99HT GL0eF29t5TlF+k9cp9pcl5prJV0f3DNj/o9lxyDB20U/S2L/8K1RcE70X8rG f0iOk3/HjG34yDlWtl+jxm+SL2p2Z+UswXParCPXTZpLTK+IJY4+n5R/zYL3 /fey8Q4Z16T2qZIvc51v83M3rJU1by/On2X7zsmZD3fdyEku8uKHRzxxzGkd ccbzuSy9m/S/ysZ9lPN0yedkX0/2f8rGLWEH4/u37Fjsy2mPzpavP98VJf/m bLVZgvtmzO1ccK1nIh48Qf6lUeMV9fm8fBsknY+8KXE6VOybmDMf7nrBwc9z MfjhEc954dxkCp79SzF/5LiYz6st3oO1Qu9YMX621XnJiQ3fuTnP5q9YM2ti fesnnX/5inMjwexvouJcfXStWyH8zAcJpg/2Iyl9fKN7pt+6pO3Y2GtyJGK+ cPFxDpkZs+gnfRKzkz3HZ5n6XUu8d4Vflz439vEVfgfLPpnvHxX7puSMswU/ n7JK+HePnCtVnBcuMeTCD4+YVWPe9LCa9Df4e03OEkx/1CWG/NQH75p2HPGv tVl/LfY9LduF4rcp58vsZaOfpUJfo2LcKeLoExu+XTK24TtH8WtKni85KGMJ fiPq4KfWBZJvCm8kvXPFuDVjCcbXRfI84T0yluC32rzGCXEOybuW5rFh6KmK MXy49Unb8JGH9eHDjp6OGo/otZf0f3l/Sl4KFv8dcCH2V3q2YjxV/ov02jhp G7528d9Sbxnht9sswRdoX7pWHLNnxhJM/CW8J5RvE+VZu2I8JPKQg/zY8MHj fHHOLspZctZ4Hod+50vfNOmzwxnaLWM768H3nvb/8iY/JzJPse/FfNar2L5P xjU/iLrdYh2cB/zw1iuEXvj/POtWnAsuMcS/2+L5kn+DimvvlbbcIOoRR/zF Oa/j0kavhdj14ywiwVPFqYv3FjNEgomh3tTYi1zUZy310q+UfSjfCZVjgexb Jm3D95HwhpJXCe+fsQR/3GYO/s2TtmPbQvoVfO+SvlnoG1WM4W4sfX3NZXqT fXA2qRjnM5bgKyI3XPJvFLb9xFmgPnsJf8deVtz3pVr7QtZb8P6ib1Yxxg+P tV2rHFc3eY3om1eMPxBnUZufoyGO+IJqbVGx7/KcJRje9Yr5THLrpPUtK8Y3 SP9csnvSa2UN9LxVxb5DpF8n+YXsWyUdR/zBGfvhEb91xbyDgg8mhhq5guve 2GQfeRoqxodmLBsi/kO+vymmIWm9sWJMnu4V58KGb5rWeDP7W/AzKT3YZ9mv DHtTxT7muDjOCf4esX/NMWP2Efv02F/iiD88Yz884pk9e3Cg7J+3mkPdWyS/ lb8p6R7plTlsG7OHvzj2kh56Rj7y44d3fWPsU6P3lPzbRB9we0btmbwnmIHy bF9x7aMylmD6II74g9M+e9/F3hG7XcXxSPCRGZ9NeNNzfp/l4rp2G2e74GdV 0HeoGN8p/UfxeiS9N71l/4HPUc4hf+PIWe4Ye4x+Y+x779hP9h35Q+z1t62u Qa2WivGR6v8b+fvQa6O5M5rMpxf4xyhP36iPDh8uz2GRoyV4+OERTz54R4jf r+L1FKXPktxF+I4m2/CxTvDPnIOk9Z0rxvg2K3gOO0fccfztTnIn4Z/aLMEl 2ftHPjhIMPGLNJ9fOAfKs2vF+Nqc48ixTdI2fPDokV7L0TN16e1XrmcFn0M+ o/l85DN0t4p9FfHvlf3uJtf6XDl/b/PzL7tXjK/PWYLx3ceZVc6eSesDK8bk GVBxLmz4hvO7T/IPxW0nfqvsDwqPCvseFfu+4PtzzBM/vK2Uc1DFvhtytmPj ORHiiB+RsR8e8ayJtbFm5vJ3zBB5b6yRHtFrim3n7HEWlf/PVtcg/+CK8Yi0 /e0xX/RZMVvyt1WcG+7gWBszur/RMxwSftaLHBK122Lf2C++k/B9pFfSsXtW HL9nzJs++c4C70R+T0kulX0H8feuGJ8UdjC+fSQfFj6Bv/9IPq5X76Rt+Dq0 63d0xXXhIMHdC+bg3z5pOzZ6e6zJvu1D3y9qfK2ZDJW+nGKW16ux4L3ev2J8 csYSjA8+XPohB7lGi/MK7znhNeXLV9z3Kbx/xU+0+/kU9ELFGD881vakXknZ WpLWD6gYPyV9Bck+SccRP0N7fWDFvtMylmB4c6SvKLlj0vpBFWNyNRWcn7Wy hpuU5+CoM1Z5nm5yDLHEoWPHD4/4QyrmjQv+IcH7VvlWEq+vYp8T7lHw8ynD KsZnZCzB+JjfqjFD9MMqxuQ5tOJch8WeMNvvWzxn9u7ImN8pYT889mCFNteg Ln54T+ocHlGx79S07djYC+KIvzVn/xHRK7NnD07NuKfZcfZeluyp3ndKukd6 nanYo6W/IN+Z/K1YcvV2c46pGJ+VsR/etgXryH5J5z8qzgpcYohfotxrxD4e V3HtczKWYPo4KmZ2Rpw9zt3OScceW3E8Enx7zmcT3kSu1bJ1jv0qVYzvyFmC 8ZVDwn9NcVnp/ZP/79tOPVQk58o3KWNZiRpw8JP/J+Xs0u5ndqoV4ztzlmB8 NcnXFTclYwlOtzsn+VjXG5IZ2XYNfXjFGD7cXZK24TtPeU6S/iv/7pWzPCnm CHf7gvnoIyvGrHFExet8s8mY9aKPqhj/rDxd5d8t6TjiJ6vW8RX77spZguG9 w3eMgp+RQT+hYsxerRP7NSJyk+fEuH6w1/RMv5wl4oi/KGM/POI/ki0nuQe/ H9vModYfLe6b/pnvq42e/+/8nVix3biuxezZu3Vi1vQzJnJTi5yjoza2MbHf 73Kd0DoG8Le1ivFU8edLrife7rKPrRhfknEd6tEHNnzw6IWe7s05B7nIi61b nLczK17nFRn3Qk/n6r38Ptc/4Rbxx8W8z8/Yhu+yjG34NpA8veK53JezBDMj OBvEnq7b5liewRlfMb44bTk+8p6BXfyLM5bgeY320Qux5JvX5JzoEyrG8OHy XNWE6Is+H5D+j/wPZbxW1sy+/ir9Jul7KO/HXEuk18t+ruTGktPF/1D2DaUP TFo/u2JMfN+CzwZxxF+ZsR/eNOnnRB30T5psJ89fms9GsrdKn1QxfiBnCcZH /Z0K3uuJFcdflXE+8lL7ez4b9NoraT59EzNZ8lPZrxH/H34btvtZG2wLmlx3 SsW+h1R3EWdTcW2yn1cxvjZjPrmIwYYP3mfSN1POdr43Voyv43uC8m0es7qg Yvxwzr1PjLlgwwfvQskvZLsh4xzkIi+2/gU/n4IOD8xctoy5XRRzYiYXS1+q vI/kLC+OeW3W5njyTK0YX5v2PBY1eibwP4l9wT81erqkYh4z/JrzLrx11P80 ZnhpxZj+F8vWXfqQpG2Xxh4QR/xNGecjL7WxkW/PpPdhStS7vOJcN/O3COnL 9dHnb85rvSjqfcX5kt4g/Yro638ZS/CuBetI8sMlBg6SuMGyf9NkjH5lxXhG xjWp3Shek14DCt5r+qI/1jm9Yt/M4MPdK3JeGfWagkf81RWf11szlmDObkfF 9mj3czTo11SMb5T8Sf47xV8iuY1s+yStX1sx/pHPesl9k44j/gnN6rqKfXdk LMHwfuA7huTeSevXV4zJtXvB+clNjdv5e0XUuS3jXoghljh07PjhEU/ft+DT /u7Q7nUyk//JllBvs3O+5nC94VkVbNuJt1/S1yF8d2c8yx1injfHPrAv8MlF DDZ88Fbo47mzjzMqxk9y71Obc1JrZsX4trTXcmOsAdvMqH1LzJ49IseMOBPY WBN7xHWU62l/eFGfnu+R3lv6PdJvk/67ePdKX7mP6zE3bPhatf7bJf8Qvi9j Cd6x3Rz8Q/kbpmJbYr/uqBg/nbME47tT8i96yliC2wrOSb79k55X35gz+l0V Y/hwuW/2rpgr541rOZ8Dg5Je361xdndscwx89LujNmucFeeVGfze6OePls2j Yky935rcA3HE38t9dNEL/SPB8P7lu4lwIWn9vorxUq7VkgckXZPaz3DPWMW+ RzLeI/Ynn3Qc8Q9n7IdHPN+5+HzmM528gwuu1VLVd/dmfXZm9V2Zaw/vX/kf kuwg+6N8b5d9F9kO5Ddjxfi5nP3wqI+OpIfXZOss/ErUerDiertKH1LwHnUk t+zLNbsuNXmmhvrgF3LmP1JxDBL8WPRDH/SUUPxe8h+UtP54xfjJ8NM/Nnyz +f0l+QTvX/lmS66hXC/mLMED260PjHnCJWZOxBJ3sOwrSt+74OdB5lSMn8q4 JrUHSXbq47mQh7Wy5if4jVmx76Wc+YNituQgF3nxPxV7QBxzgrNHm3nUfbpi /GTaOToG59moTz/IZ6P2c5KrSD7LbyveN/I9k/Hsn+E60mQJpk+4cA5NWn8u YlaV/rz0dukrSx8seUjSPvLuy++yin3khw93WHDwkxM/POI5L5ybfaSv1mwf OVOaw97tfrals/Q9pR+WtP5yxXiIXkML3hds+F7JeTZPx96wJtbHGSP/S9Ef Evw8v/sqzvWC9Fcrrv1qLmTFfXQSdy5ntNk90+8RSdux0Rs5yEVPcPG9lPHM mMVzfIeX3Fe8I8VfW/kXUE+2NfXaT/bDZc9Kf0f2gvK8UbHv5Yxr7l9w3Tdj Zi9HztcrzguXGHLhh0fMW1HnVfHflp5W7ddyluCh7a5LTZ5DoT74jYzj3oo+ /uuVPj+UbW3pb2e8H4XYI/R5FeN3yaMab+Rsw8fMsb0bezCfHrVnr6Ut50dt OKvFeWAP0k0+D+/FnjBbJBjf+1GTnpHvxx6wRtZ3lPKsxXuF+/JC/6BiXIg9 pn9s+N7KeH0HyndM0jprBrfxO0TX0H176PufbAcwa37LiHNQwc+8oH9cMab+ IdEDNnzzxF9LvX0Ep90S/BbfpWNP2C8kmPhD2xxL/oUV43fTjjsozg+2hVGD 88U5eztnmYq9o9/1mvxcEmeHMzQ3YzvrwTeMntX7cUnX7trs/j+Tf33p74m/ ATOTr8jfjSvG72fsh0cOdOR/eRZVnAsuMcR3oy/JY8X5MuLmZyzB9LEoZsDc 6podAx/5RcXxSDCxX1XM+yD4X4VvXc3hCHFLiv26YjxP81ks/UjZPxR/I/G2 bfL9ydjwDVMP30huyL5mLMG5ZnPwc06wYyN/N+U+ut33UaN/WzHeWP7vpB8j fbT269h2PzvzfcV4SdoSfGzw4ZaTzkGu+TyzL7m8zuHx8v1Qcd+fqLdN2Bf+ tpS0vqRijB8ea9tU+nGKqyat/1gxXl85i7EXxBG/kO/GFfvey1mC4W3O3hV8 Tzj6zxVjZlyOObNW1rBAeX6p2Me+bNDHe0Mt4oj/LGM/POJ/rZj3fs7y19hX 7i+HT11myn3qzPn3mDF7hATjI9eGsS/of8Rekue3qP1H1KSHLdnXgu9d/5t9 Vu0Pc7b/WbFvK+lV8WtJ++HVhP+q2PdlxnZstRUcR/wXGfvhEc/s2YNPZW+Q HCHbcOVskj5K+oike6RX/tsR/0Ycebo3Oyd9Lq0Yf52xH97Idusjo0/y/1Nx DbhLo6dGvY7Wmv5RnuWqrv1txhJMH8QRvzjjs3d89Elsh6rjkeBvMj6b8D7O +X32dex9D86zuP8mrHesGnPPe89m3/e+jWRC9hPFT0pupPhPcpbgk9qtI0cl zSXmh4wlcSOTzndswTlXqBr/mPFZX1H4ZN5ffXzOeb/QCz19L85KVfsW5Mw/ Od4v5CAXefHDI5588Hi/rFz1erj/n/1fXXhsu20rRx/k26LZOdFXrRr30usU 4eOTtuGj54rkKlU/Q4AEfy77alXH/JKxBBO/fbPPGfu+RtX458hDDp5TwIYP Hj3S65fR89g4tzs0e9/Zaz6j+Xzme0Knqn2/Zlzv1Oh5ZNSmbueqMWcG2Tn6 6N3ss8XZRu8SZ448a1adCxu+3zLGp0X+jOyjpS8Je6oavnb3Q5/44fXjO0Bc IznP2PtF3VTUoX/86VgPL9bGmnfms6DZZ6x/s5+d4LmSNWPGzLOr9AnS/+a3 gDhnc13nO0bVuEPWfnhntVtHnpR0/mzVNeASQzzPUpzT7ucp1qm69tKMJZg+ iCP+34y/k/B9ZLmkY9euOh4J5rkPvrPAW1n6JPkulH3acvq8rxovn7UE4+sm OW2w9qxrhw6XCE+R74DlbcO3m2qvL7nGlvoNsIYl+Nx2c/CfnLQdW0Gxz+yl 32oDXBd9g6rxAHHrpJ/eU2dT+mTxx3BdrRons5ZgfPDhnptwDnK1rKPfXbJv w95srd/3Vfe9uta7u+xDtPblk9Y3rBrjh8fa9pC9WHBd9I2qxoOknyf/KUnH EZ9QPxtX7VsxawmGt6muCee3+zka9E2qxq18/hSch7Wyho6K3bRq30rS2yQv 4KwnHUf8pzn74RG/WdW8lYMPJmYzcS/kfavYwbK3N1vfomq8atYSjI/nZC5u 9zMy6FtWjcmzedW5sOHj2ZmL2n3vNfdddw8/PWDfqmrfnsp7GdeCpP3wpkpu XbVvtaztU6NP4ohfJWs/POKZPXuwgux7N3udzGT2QPXT7vcgPdLrIs2nMeqQ f0izc9FDU9V49az98CoF60h6IH9DzBRuU/S6hXJf0u5nfHpUXXv7zpZg+iCO +E5Znz3OHf9NdWKbq45Hgj/P+WzCy4i/r+R0+ccp/7ZV485hB+PrKXmQ8Nqy b6UcN7b7mRFs+Kr8W7vkwVwXspbg69rNwX8Gf69W7PWxL9tXjb/IWYLx9QpJ nv9wreCc5JvA74tm4//0HaI2fLjkx4ZvPeXZSfrWqvFVzhI8Q9zD5P8f18Gk 9R2rxqyxd9Xr5G9UN0menbTO363Aw6TfLHlm0nHEr69afar2dctaguGRd3jB tdD7Vo2PaDaPPNSk9pfqs1/Vvrqse6bfc5KOI578+PtFvYpes2SfLM5MvncU PJ+mPuaR/2jJI5udp5G/fSn2dnH7V+3bUDkbZL+13c/R7FI1Xpxzzp2rzosN H7xj+FySbaL4u1aNN1KeYyVvk3+S7LtVjTfOug716AMbPnj0Qk/f5JyDXOTF dnvMub3qdW6RdS/0lJNelG13Pl/FHxh7y9yw4ds0axu+O7nGVj2Xb3OWe8Ss 4dwZc+ZZIGJ5bmhQ1ZjnfZCDIm9rzIC5IcE8F4SPXogl39Exc/S2mPWy2TV5 zm3RF32O43NA/oFZr5U1s69n8T6SPl55q9IHS79b9n0k7+PaJn5Z9nukn5u0 vmfVmPgTCz4bxBG/ZdZ+eJtzvYo66LVm28nTQ/O5l+8CXKOqxt/nLMH4qD+6 4L3eq+r4rbLOR15qn8bngF5Tk+bTNzH7cqa49om/rXI+0O5nrLANb3bd/ar2 LVHdUXyeK+582YdWjRuz5pOLGGz44B0v/UHlvIDvjVXjJvF7Kt9DMat81fjH nHvfK+aCDR+8AuuQrUfWOchFXmxjCn4WCR0emLk8EnM7IObETA6Uvh2/XXOW B8a8HmhzPHkOqho3ZDyPkU2eCfxa7Av+g6Kng6vmMcOThQ8Vfizqj4wZHlI1 pv8xsj0u/eKkbYfEHhBHfM+s85GX2tjId1HS+7Bf1BtWda7txD9Sei/5fsl5 rQdEvdHyHyb9Ca6l0de2WUvw2IJ1JPnhEgMHSdyFsp/SbIx+RNV4+6xrUnu2 eHP4zlLwXtMX/bHOo6r29Qo+3KmR84ioNyd4xB9d9XntnbUEc3Z787fxdj/b hX5M1bgseYb8fcU/XfJp2S5NWj+2ajxe+jOSlyUdR/xv/Kar2tcnawmGN076 s5KXJK0Xq8bkGldwfnJTo0WxpaizY9a9EEMscejY8cMjnr5Hsk7t74vtXicz qci2o3r7PedrDtcbnpPC9px4lyd9HcK3c9azfDHmWYt9YF/gk4sYbPjg9enj ubOPw6vGf6rWU23OSa0RVePeGa+lHGvANiJqj4zZs0fkGB5nAhtrYo/49x/+ HYj7MUZFfXo+RfpLfO7xXpZ+juJ24XtCH9djbtjwTdD6T5CcyGdS1hL8crs5 +KeJ34+//cd+nVg1/jtnCcZ3kuS5ihmQtQSfWXBO8l2R9LxejTmjj64aw4fL c1WjY66cN67lfA5MSXp9o+LsvtjmGPjoY6I2azw5ziszOKvJz4ihMxcw9c5u dg/EEb+zZjg2eqF/JBjeeXq9LnxV0vqpVePzpb8hOT3pmtT+h2ftq/YNyvqz 7k1xrkw6jvg9svbDI75Xg3ob5P/nLM8F8nxgM/+dh6jDZ+Wuyn2W8Dzea5IX 8Pkse3/+ni3b1cp/RtV4ac7+8fFZi46kh2myXSf9oKxzU+Nszf1t6RML3qOL 2QvZL2x2XWryPBf1wcvVmz+h6hgkuC36oQ96mqr4SfJfk7R+dtX43PDTPzZ8 e0q/hO8Rwu/Si+Ru/O213hI8v936/JgnXGKGRCxx18p+GZ8hBd+DPalqvHfW Nan9Pnvcx3MhD2tlzYPFmVy1r2O9+e/HbMlBLvLinxx7QBxzgjOvzTzqTqka D844x8XBOT/q0w/y/Kh9geQVkvvJfrH0D+XbN+vZnwenyRJMn3DhXJ+0fkHE XEk/0j+SPk36x5LXJe0j7xQ+h6r2kR8+3BuCg5+c+OEti2/2uVnEe6DZPnIO 4ndzu5+3GsjfDqXfGPolVeMFrLHgfcGGL1nv2UyJvWFNrI8zRv6p0R8SvL/6 vLTqXHnpl1dde8V6SzB9XCPuZdKnN7tn+r0paTs2eiMHuegJLr4Dsp4ZsxjK 7zLJz8S7Wfwhyn+LfDfIdq1en8v+P9lvkn6N7Bcpz5VV+w7MuuYFBde9KmZ2 YOS8ouq8cIkh17KZVh0zPeocIv7V0lv5u2e9JfiLdtelJs86UR98WNZx06OP /3pd1qdsM6UfmfV+fB17hH5t1fg6yXbVWKXeNnzMHNt1sQfXM2Pt2QEZy+uj Npyr4jws24Mmn4cbYk+YLRKM78aoSc/Leok9YI2sb4ZiZ7D3WuPM0P9XNf46 9pj+seE7Iuv1fSPfLUnrrBmcGaz5sn7F3ia5mO9k/JbhM7DgZ6PQZ1SNqf/9 fz1U7Tua3xHq7Wbhb9stwatpVjNjT9gvJJj4r9scuyx/1fiwjOO+jfOzjBM1 OF+cs9XrLW+IvaPfm5riWbmqz9DBWdtZD74lfOdifUnXvrnZ/d8h/x183xL/ Tskf5bud32hV42LWfnjkQEf+l+f2qnPBJWZZvPSfJG8VZ1bEHZu1BNPH7TED 5nZXs2PgI++qOh4JJvbuqnml4N8dvr01h5/pS7H3VI07aT73Sv9F9rL4+8n2 R/SDDd809XCf5D3KUc1agmc1m4Ofc4IdG/n35btqu5/tQr+/anyv/A9wXSan 9N/pne9dVePhWUvw78GHe2fSOcjVWT3P5ruI8Ao6jw9V3XcX2R/gOlDwc0zo D1eN8cNjbczgr5gD+iNV46F9PC/WThzxI9XPo1X7UvWWj8Z8f2szh1roj0UM 67ynyWtnrayhpjyPxwyYIfXuiVkRR3w1Yz884p+IvkYG/4nYg4f1+kf4bn6L Sf+XXNLnVI1PzFqC8T0kfSnnKWn9yaoxeWZXnQsbvuOzxtMLzv+M7HmtOVNv +1NV+x5tNp+c+OF10F48XbXvpKzt2O5NOo548uN/Ouoxe/aAs7qcuNcUfB6e lC8p/EDSPdLrCeI8J/0J6WOkH8B3isF+nuv5qnHXevvhPdZsHUkP5H+26hpw iSF+jvwJyfv53lt17VOzluBkxBE/Ouuzx7m7L+nYF6qOR4LHZn024Z2S9fvs nlgnvGsLroX+ctW4o3zPNvt5packX4n4uZIHKn6tekvwioOtIx9MmkvMaVlL 4uiNfNcXnPPVqvH4rPfkNeFVJA/u4/1gH1+OddDz61X71qk3f5XYR3KQi7z4 X4/9fi32n31/o+r1jNF5fkG+d4RXG2zbG9EH+Z6IfUF/K/b1eT6LlPuhpG34 6Jl9ehNOkyWYM/B21TETspZg4g/l2h97NK9qvF6948jBmcGGDx490uuZWUv6 fZjfOHxuFPz8FJ/RfD7zPeHdqn1nZ70PnWIvhvXxHlD3vapxt3rL92KfVml3 LDnR349c5JlfdS5s+MZzTxrnr8nPzX0k+1xxJ2Vt/6BqHzHPNbsH/PA6y/Zh 5KNP7NgeTTqO+DOy9sMjnj5YG2t+VXoX+R4T/3D1n5b+eNI90ivn7RPpr4g3 MevcNxecf0HUx44fXmqwdeQjSef/uOoacIkh/rVm8+B8WnXtDeotwfRBHPHn Zv2dhO8j7BexC6MnJHhy1t9Z4E2R/qZsrzd7LZ9Vjc8POxjf55JHql6u3vXW jbVjw9dV+AvJt8S9IGsJvqVgDn6e88KO7Qnpb0tfS/bZoX9ZNT6Kf2eQvrb0 eXz+FPyM0tdV44uzlmB88NeOGZKDXBeKUyfbP8KbSi6OObH2o/t4DvDRv4m5 pIPH2tZudw3qon8btVnH201eC3HEb6iZfBczYG5IMDxyvRmzRf8+5vueXt2E n0x6rayhXnl+qNp3Kb/dJNcX56mk44hn7fjhEb+kat5lwQcTM1/6BpJzkubd XnCtnyLukqwlGN8HzY6Bj/5z1ZjXj1Xnwobvcv5too/n+zSf9bJ/zPeMsP9S tS+n150F7y9+eB9K/lq1b1rWdmzkIY74jevth0c8s2cPLtR7v8i8B/t5q0+5 Thf8XM+P0S/r+kP6J9Kvkr5AciOuF+L8WTWenrUf3l0F68hnks7/e9U14BJD fIm+Yp5/V137mqwlmD6II37Teq9/05gPsX9VHY8Eb1bvswmPeZb7eLbk/7dq vHm95b8x96WSm/C3Ap7BEd5Ssc8lbVsaPXWouXf2Agle2GQOfmZFXx/HzJer GbMWJBjf8pKf83mZtQRvPtg5ycf8v5B9C+EXQu9YM4YP9/mkbfhuUJ5VpA/X erautwQ3DDb3noL56MmaMWtM1LxO/ltZYNaLzn8/C1xVnq3kfzHpOOKv4zOo Zt+W9ZZgeFvrdV/B5wF9pZrxYuX6qtl5EpGbPCvX7Ls5657pl2eviCP+f1n7 4RH/s14P81khzrfSG8V5WfqoPu6b/r+TbJL9FekjZF9TsT2EV6vZd4tyfiPZ LNtL4qxeM56Rdc5Va86LDR888P0F11oj/PC/bzaPPJ1qxrdmXYd69IGtU9Sg F3rqXu8c5CIvNnqcqzxda17nXVn3Qk8zpf/I56nwg+J3iXnz3zfDhu+OrG34 ekqmap5LY71lKv6baHB6xp42tzuWZ6PSNeNbMpbpyJuJc8QeIcHfNdlHL8SS b3HsL3o29hU+XPY0G33R50DpZ6mnneu9VtbMvrbJv730Z6T/wueX9O1l6ybZ i98U6u0ExfWKvUNfu2b8G585BT+7RBzxs7L2w2tWrXVq5t2T9bx7x8xP7ON9 Iud6NeMe9Zbrxb5Sn1jyrxtnir3GRl5q95dt+WY/swO/W9RbX3I7rtdZ1/yp 2XWx/dLkZ+U2qNlHb3/yfU36G7LX1Yzvz5pPLmKw4YP3l/Q+fBaKn6sZP8C1 WrKv7K/LXl8zvi/Wvm7Uw4YP3oaRDw45yEVebI8V3E9L8MB/Nzue/BvVjB9U 7MbSR2t229Zbgvspbie9nuA7F9fVmvFD4i9V3D96vZU0Hy46fnjEbFoz7xF+ U/TQtUh4Nvch9fHcmflmNePtVHc5cXaRfV7SNnzwiCP+0ahLXmpjI987Sc+F /WCftqg512Pid5c+lvNX77VuFDM9hWuh9F0Vt5VkR/GfyFqC5xSsI3m2CC4x 29db7hp7xLoHxNq3jpkxT2p2j/nu1u5c5KEv+mOdDTX7Hs+Y/3fz/+ckF3nx N0R/jTEP5okEc3bhLY29QG+KufeUXElxT4u/guRA+eYnrTfXjFeUvofke0nH Ec8cetTseyprCYaXlD5I8t2k9W1qxuR6quD85KbGk4rdNurMyboXYoglDh07 fnjEryHbjtKHcP2XvpfkB7zvZDtNM+pd72sO1xvOCbZW4feTvg4t83EdVuzK PWzvVTN+Lms+uYjBhg/e6bIPHuxnr3aoGbeo1ury7Sn7h5yxmvELsZaesQZs +ODRO2t4Mesc5CIvNtb0UdLXUa6ned6nNa/zefF3DS599ol82Cf0cT3mhg3f s1p/X8lOsr+UtewbueDgp+fxit2b7zecq5pxn3pLML6dJLsobm7WEvx8wTnJ x/yZ134xZ/Sda8bw4fIM1M4xV84b13I+B7hukIN1spd7tTsGPvouUZs19o/z umxezd4LdOYC3i/2jB6II/5FvXd2i17oH7lb7HeafeD7bNL6gJpxRvr+4i1I uia1+2kmu9fsez3rPcrH2SOO+Ney9sMjnn/f494a/q2xK/tQ8HNMr8p/j/xb du3Q4QDJwcIp3jcxb/br7D6e77LZ1oz719sPjzj0A2LvDqv5mQmeNaDWHjXX y0dt6g4Vt501NDuOmsQOjnxvZs1vqzkGCX494/qtcZ7W0esg8T9NWt+zZryP 5Hqcw6xt+N6Rvi5nW/hg9ldybeG3s5bgQwZbRy5MmkvMvIglblHSNV4puO7e UZM81Nwn8k5Un4fK/lnSa2XNr4qzb82+XevNh7swcpKLvPjhEU8cc+I5vmHk KPg87Fcznq+c54p/+GA/V7V/zXhAvSUYX16yjn0U/0DpGzJz6RtIDhXuFhL8 ftbc11Tr86R14sE5Ph+kH6Gck5X/yJgV+cj7On+TrNm3e735cL8IDn6eRcIP j3jOy7JzM9hrPjrmhqQf9Cl9PK+FoR8ce3xUu/OSExu+gfWeDTNiXuToFnnI f1DNuQ+KGXNODqk510c89xR+5oMcFnNhjodKr292z/TLc0PYsTF/chwS8z00 Zs88mRmz+JDfI+1+HofniS5SvyPlO168jeXfutn3/B8nfIzsb/Jerdm3gN96 Pez7ir/h1Iw/jZyH15wXLjHkwg+PmKMkNxNexLqkb8I8s5bg0mDzqEn+YyIO DnHEFwdbR34tTlW2RuFvxNm8h3N9mbR+bNQ4TvJ8rXNQvW34Psvahq+sXEXJ iuTnWUvw2wVz8C9Wzq34TtLDeqlm/GXWEoyvLHmhYtrqLcG1we6D9dFbg/QR 0r8LvVIzhg+X51Cw4Vuc9fpGyv590jprBh8q/XauG5LHxzpYF7neKTg/+vCa cZN43fX6Nmkbvq+zttWERw22BGMfUXPMt1nLEeHbhmtbwc/XjKoZ/xB5yEF+ bPiW8Wo+Z+31lpy1H5Lu96SYLWeHM/RVxnbWg6+n8rxX8HMfU/t475jhifKP Ef+njGe2XbPndlLMm33Bf2L0h44cGXlOiHMAlxjiqbdV7O/JNdf+MWsJpg/i iN9Ta9kOu2KWJB07Os7E6OidmYypmfdT1hJMzKXKMUbyR8WeUjPeSznHSu8l 3i/iX97H+82+Y8N3qmJOjRz0dnLgsYPNwf9T0vax0dsOPbyG40M/Lda2o17j pH9Q8L6Ni707Pc4C7ykkGB98uCcmnYNcv4qzh+RU4Z0kx9fc9z5aS1+u8QU/ 54J+Rs0Y//h433IWzojzgD6hZnxlnzh7SccR/5dqnVmzb2i95ZlxRnmeBg61 0M+KmNGD/YwMz++wVtbwO98ravYtybretj3cA3HE80wNfnjEnxN9/RV8MDH9 9Pqk4Dmz/gny/SJ9Uszjn6wlGN9V9Cz5a9L6uTVj8kysORc2fPtrjbvKfo78 v4l/nuy7CHfoavvkmn1n6zUx6uKH119ySs2+pVnbsXE2iCN+ua72w5sYs2cP eL+P5/th8Onv/OiZHun1b3EukD5QelJ5JpFHr9/FubBmvHxX++H16WEd+XPS +c+vuQZcYogfRP+Sf/4fUecZJmW1bGFQ6TZgVjqIqRsDiokJKCqDOSHMDEa6 xYhZmU6ImDAnVERURAQUETEhCqKYMYMBMSEiZgXFnPNdr6vOc3/MU7WqVoVd e/fX3wzuc8S5LmbDDJHgayKO+D/i7DFf1k7sqDbHI8HJlM8mvETKnzM+b2fF zD4e4Fj069uMW8W9nrq8O0m/IeZ1o+R4xQ/IWYJH9bOO/KuDucSsmrIkjr0b 0c8YfUyb8UriNMt2k/C+dc4xOvJcH3vCHo2NOqsGH+7vkXNM1MMPj3jyweso /s1tXs8a0g+SnCB8Yz/b8LHOljrfK+NODfotbcb9+W4f4Dlgw7d6yvfTxvHM 6mcJ5m7a+DbHrJmyBBM/QfMZ0893via2GRdyjiMHd+Ww4YNHj/S6VvRMv9xr O1T6WOn/dPB3NN/PvNfd2mbfuinfDbu5n+9wHVLnu1rc+ZrUZrxOyhKM7zDe RwY4J/rtbcbkua3NubDhW0+xh0uO4zMl/hTZjxDOhH1ym30TtZZbJNsl7Ic3 QPKONvuKOduxwSGO+PVT9sMjnjWxNtbM/a5b+/kO1EDZC/pZMeEe6ZX7aFM5 n+J0Svmd4DbmJs5d8Y6wQcp+eNwnQ0dyH438d7a5BlxiiJ+gn0mxlnvaXDub sgTTB3HEc3+NdxLiqUvs3W2OR4JTKb+zwOuccr3bY133Rf1M2MH4pkUO+gff GfxJ4WOW90seK7lxyhJ8R/R+RMwZO7YVEl7blJgP+vQ242PEeSDWeVydY+A/ 2Ga8ScrywagHf2DsxfSYGfMZLNvzwqdKzoh1sF5qHBXzQZ8Zs8APj7UdLzyV 50PC+kNtxvR+V/Q/M/plvbNirRulLMHwBkV/9Ib+cJsxvs8HOM8DYSP2kYjL ST+hzrXpgTjiN03ZD4/42W3m5YMPJuY2neG7eW/gHV74C3E7KM9jbcZdUpZg fCdxlsRPJKw/3mZMnkfbnAsbvs0UO0n2e2M+T8l+iuxbhP2JNvv4WTrAHPxP RfyT4ScPdmzUJY74I3P2wyP+oVgTM7ld/mnyXaB13S+5TP6VE+6RXgcqdo70 08TvKv7pktPFW0WcZ9qMt0rZD48c6EjykP/pNteASwzxnKEHJJPiPBdxW6Ys wfRBHPFH5Xz2iIGPfLbN8c/GeSSWswmPv71M7uW/w6wq/gttxkfnLMH4XpSc IdlN/Dtlfzj6mRG+r9TDS5Jl5dw2ZQluqzMHP3OeotiH+vlO4tw242NzlmB8 8yQritsuZQlePsA5yUefVclZ4nYM/eU2Y/hwV0vYhm975XlD+mz5u6cs34he h+jn6wG+G4j+apsxa3ylzetk/bNjPuivRa6pvTxD5kAc8eSf32bfoJzl/Jj1 XX3NoRb66xHDmo/v7plQk9rHKXZBzGPb6LkcayeO+Fwn++ER/4z0H/g3NHHO 5PMlvIb0e5VvTj/fExzG50v6mrLfLfu7in2S79I2+xpVa6jkE7KtLs7bbcb1 Ked8s815seGDB/52gGu9E374Z9WZR56FbcY9Uq5DPfrAtjBq0As9nZBzDnKR Fxs9rqU8H7Z5nTun3As9NUh/SrZFwt+L/57kubL3TNmGb8eUbfjOllzc5rmc lLMEMyM4+Kk1vM61mOf7bca7pCzfjz6WSJ4vvGvKEvxsP9ekF87nebI/J7x2 6B+0GcOHu27CNnysi7sP3HvgTgc1WDP7OobvjZLeVaRfIP2jiPmcc6KYbXUe 7tNanlfMegnrH7cZXyzeTwN8D5E44nul7Id3subwSZt5u6U875di5vf38j6x j5+1GZ+as/ws9pX6xJL/0zhT7DU28lL7VfaUd4CE+Z9HvS9i9uzXS7EH1MVW 7u5zu7TNPnq7VP5f+Pu0OMvajPdImU8uYrDhg3cZzxDei8T/ss14T/EfUP8v x7581WZ8es69fxr1sOGDt1zyCsXunXIOcpEX268DnB8dHvjKOq+Z9X7dZryP Yr/hmcqzI2cJfq2ff34b4L37NmzwR9Q5ljzwX4v9RcIj5rs28/YV/2rJH4Rf 552C508/39n8vs24TXWvEWcB7yoJ2/DBI474/aPud9E3NvJlEp7L0viM/djm XAeI/6v0mcpVyjmGNbP+qzh70t+Q/nP0tV/KEvz7AOtI8sMlBg6SuLTsI+uM 0X9pM+6Tck1qvynedbL9OcD3Ga+J/ljnb2329Qs+3A0i5y9RDz884n+P3tlr JJizO6uX95i9Rv8jzsS/kjdItnIO+zoXPaD/GbWZ77ndvRfEEV/h31tj9uwd EgyPeiNi39H/jj2+Xj9/q8fOCeemRk999v9ps68l5V7eVcyGCccRz9rxwyN+ oWwd9Dy5WLUWSx9d55m0k+0R/k6X8zOH5w13HrEtir3gOYTvoJRnuTjmuULJ mH2BTy5isOGDN7uX506eFUvGQ1Trpb7OSa2VSsa7dfJamC/rwbZS1KZ31tCc cg5ykRcba+KOLf/+w7/h8G86iahPz2tInyh7UXpS+s3SD5X+mPJ8JM6mCdvw LeH9THKc8GEpS/AH/czBv7H4Y6V/KH0j6auUjA9JWYLxrRr5sC8J3K7gnOTb RLG31Dlmo9BXi1zw4VILG77DU36W8z3Ac4z1sU728mNmXvAZQF+9ZMwaO5a8 TmYwvs7rRWcu4CfE+bSf71cSR/wA1VqzZN+wnCUY3q2KWVG5cwnra5WMb5P+ mfz5hGtSe6hi1y7ZN5DvGtk+j7kRR/wRKfvhEf/xqXrW9dG7wXp6z5V9pYK/ H8tn6p1rJz1DO+uZxNmMfV0v1sd8nurlWZF//ZLx2Tn74RGHvjT2fWvWq3M2 oJNrrVtyvbf7GlOXNadkH9XdcRNjhunId1TK/E4lxyDBfTu5/vqxf1P4HhF/ s4T1TMl4Q8mpwoNStuE7lndvyazwV3zeJO8QPiZlCV7ezzqyS8JcYo6LWOI2 T7hGouC6naMmeai5YeSdoz6/ln2LhNfKmvm8bFSy79yc+XC7RE5ykRc/POKJ Y06cpW/4LBV8HjYuGR+vnM+K/10/38fctGQ8PGcJxpeTvE+1ThZ/M+nfy3aS 9Htk20T4rpDgE1PmwumasJ6LmGnS89J/kH4v3xGSWybsI+8q6q9LyT7yw4e7 VXDwkxM/POI5L5ybB2W7v84+cr7QyzNiPs9J/0ncrUPfomRMzGoF323Ehu/8 nGfDjJgXa2J97AX5N4/+kOBT1eeWUX+w9K1Krn1hznKrOE/sR1fpv0bP8KmL /dfYa2zkoqeusYecQ2bGLE5JeT/Gd/d+vaz8u8jXvtk57ok+H5bcQfY1lGeb qElvM2VfXbZu4mxbMi5Fzm4l54W7TewlfnjEbCf5kHBZ/O35juDv6TlL8B/9 XJea3HOkPriachzxv/ezjtxGPezIc0l4aMr78VfsEXr3knGd5FzVuCRnGz5m jq0u9qBecplmenQny/qoDef+OA+/KW5yd99pbSgZt6UswfgaoyY9I8Ez6rzG P+KsPsr3svTtQu9RMoYPl/6x4Tsj5fX9K9/2CeusGdxJP0P4bMvWi2ej5Nkp 51qr4PzoPUvGj8s/m/1I2IZvSMq2nfgua7YEY9+55JgzU5Y7h28F8dYpeP67 loyHRR5ykB8bPnicL87ZZTlLztoOCff7RJ31bvGc4LP/VKwH37N8HxR8f/BV xa7U7PubveV/Wr5zeGfjfUL2OuXZrWR8bsp+eOsWrCO7J5ynqeRccIkh/jXZ E9H/HiXXHp6yBNMHccRfkfM6Vo61ELt7yfFI8JXi7BmfLWaIBBMzv5dnSq29 SsYjuJMu/Redv9N1Dp+Xv6O49Qnb9o6e9one2Wsk+IHu5uBnVtixMSvqPRVz Rt83zsoL+tlP+qqyvchzTLJRnP1LxhelLMH44MNtSDgHuZhPSvII9lj+A0ru +4KUuZ0K5qP3KRk/HzzW9lKdMWtEPzDiF2geq8vfI+E44snZt2Tf1TlLMLw1 9JMu+Ayg9ysZ09PcOudhrazhQuVpjn4v4x1YedZq9v1K4oi/JGU/POJbSuaN zFmCiXmV9xw+N5wB6etI7ym9f8n4ypQlGN8rnEPJHRPWDyoZk6e15FzY8F2e Ms4UnP9Q2d9S7Wtzth9csm9+nfnkxA9vPfkPKdk3ImU7tp0TjiOe/PgPiXrM nj24mL+58U5S8P1H1vlEd8+HHun1CnEOj9nDf6eXY9nHASXj63L2w+OMoKdi T8l/WMk14A6I2iv0s4+6xZgxe4QE0wdxcK6Js/dy7C+xhfAhwcM6+WzCg8/n bK94rr3F+xLPp4T1gSXjVRS3sM73E9+WPJI5K/4oyXcVf33OEpxttp6NPYVL zKiUJXG7Jpxvo4JzHl0yHp3ynhwj3FlyUS/vB3nohZ6uFefYkn035MzvHPtI DnKRF/+xsd/HxP6z78eVvJ7zNYfFvFsJb9xs23HRB/nerHNO9ONLxu/Rs3Dv hG346DktOUj4ue6W4JH8O0LJMTemLMHEL5K+iWST8pxUMr4h8pCDe7vY8MGj R3odk7Kk390SzrVJwf3wHc33M+8JJ0cdcr5f51zUWsz7J89j6aeWjMfkLMH4 cvwUvEfop5WMyXNK9PqfTb6xyv+h8JI652yT/SPpt4T99JJ9S5S/S7Pvb+KH l1fOwSX7xuZsx7ZHwnHEj0vZD4941sTaWPPH8m/G9wd/R+3l/lgjPaLfxN/t pX8g3805vxN0KfgeYiXeESam7Ie3ebP1zWNfyF8quQZcYohnRlvGDGsl1x6X s6xFbeKIH5/yOwnx1CW2WnJ8NeZNn7yzwLu6k9e5oLtndUasmzkgwfiGRg76 X6bcn+tnr4RtQ2N2Z0p+ITkpZQneKnr/MPYLO7a9pS+VvjXfnaEPKxmT+yzp 3ZrN3bxg/tmR77aUJRgffLj0Qw5y3S7OLzyfhHeS75yS+57M32w1t234Dk5Y P7dkjB8e+bal74L3Gv28kvFy+b6scyxxxI/XXgwv2XdnyhIM71Peq5t97xL9 /JLxN7wLSO6f8FqpybouKNl3l/RvJbuLc0DCccRPzNkPj/gLS+bdHXwwMV9L r5PcL2Fe14JrXRxxU1OWYHzf1TkGPvolJWN+Lio5FzZ89yj2M/VSz/uE+JfH /CaH/dKSfT+yvwXff8QPrwffJSX7pqVs7xF7QRzxt+bsh0c8s2cP7uBc9fI+ sdc/S24j/4EJ90ivrOtKnhU622M7edZLunv+I2L27BH+K6MPdCR9kv+KOCtw iSGeHpfHvl9dcu3pKUswfRBH/KSczx7nrm/CsVfF+bgqZsDaOZvwHuAzpbie sV8jS8aTc5ZgfNdK/ib+DPG/kr1Xs+9OYsO3rXoYJfm78MyUJXiXZnPw08+X it019u66kvEdOUswvtEhyfM/vF3BOcnXT7F/1Bn/T78+asOHS35s+B7i737M QDXuzFmCdxf3L56jki0J6zeWjFnjDSWv82/Ze0u2JqyPKRn/KX03yeaE44h/ WLVuKtk3K2UJhkfe7QuuhT62ZPxPnXnkoSa1p/DfyJXsm51yz/TbP+E44smP /+ao18Dfhep9H7C9ZPeC71d+p9h9o0/mt1fMEHlbzGh87BX7+00v7xn7NaFk fFfOOW8pOS+2CXEmtu1nH7Umlozv6OTZfdnd5+TWmCV7QR3qUR8bPni3he3x lHOQi7zY/oi9nlryOu/t5F7ww19RchKfffV2u+RKwk+lbMP3ZMo2fPvwvCh5 LvfkLMHMCA7+gxOeZUPB87yjZDwnZQnGNyXOEXuEBO/f7Jr0chB/d+rlfWoO /c7YV/j7x55iw3ev+nlP+smyf5zyWqdG7SNlm8vZ4ztJ+l3E8F4u2Uf42ZTz rVDvnOh3l4xXqTfn0ITjiH8iZT881nVPybzn+N1N8kDZD+N3Rul9pR/C3+JK xtRCgvGRu0fB+e8tOf75lPPdE/2lpK+nn2LCmL6JuV9yNdlfEP9HzaCffIcn bKMGdaeX7Jum+TTLv1PBe/RAyfjFlPn3R3/Y8MFbQ7hjvXM+WDKey/NT+Vqb fW93Rsl4es69swbWjw0fvJmSa8o3L+Uc5CIvtp6qMyBhHR54LfZBcQXZHyoZ v6zYWTx7lfeBnCX4IPHWkX/ngu8zPlwyfjXleRwSM4F/UOwFfnjEPFIyjxnu rjPzaMT/2stzgT+7ZPxgzuv5p7vXjm127AFxxM/u5HzkpTY28tEb+zA96j0W s2GeT5W8v/NTXitr7h+9Px5zf0JyfcnXU5bgw5qtI49ImEsMa0euEXvXCSk8 UPqTJeMFKdek9oBm59i14Dyt0R/rfDrqzA8+3GLkJNfhEQuP+Dkln9c3UpZz Ym2/a+0F8Y5MWH+mZPyi5Ibyvyt+kWd9wfuO/mzJOCt/ut6xxBE/U3vxXMm+ t1OWYHh/yj+w2Xc/0Z8vGXeOZ8HRCeemxpuKfaFk38KUezlK9mMSjiN+Vs5+ eMTT96vSB3EWenmdzOQl2TaQ/k7KPJ431MJ2tPBRCT+H8MHZqN4+7PNKxotS tpGLGGzzIu9fqnWMbMeK/3LJ+GHu+8i3e8H3K18pGb8fa2G+rAcbPnivxuzZ I3KQ65hY16DYI56jPE9zinut5HXO5n8nMLj0OZ9nmM7389zhbdLvn7FGbPOj j9dj9uwRErxqnTn46Zma2djfBTFX+kcuiD1+QzIv+UHKErxnwTnJx153kf0E 1pCw/mbJGD7c4xK24fsw5Wc53wP8bzKwvtfi7G7Od2fBdyTR3y4Zs8a3Sl4n Mzg59gL9nfjuad/kPWMOxBHP99HCkn2P5ywXxn4f3M8caqG/GzHHK9fadb57 S01qP6bYRSX7lqRcj/2hB+KIf6WT/fDWjncu3r0eEb+ruKfKd4L4R5f1meX7 IK3vXOX+SLzBzF1yK/E+F39LydNlO178JSXjT1P2wzut2TryRHF+ku1s6T9F rcUl1+Nnn4Lrbs3sIxd1qXlSwvXBT+bM/6DkmA8ix6fRD33QU5t+9it4r9E/ Lhl/Lrm9eMtTtuFbynuRbJ8Id2MNkh1U6+mcJbjcbB3JnVC4xHwZscTR53aS +6vOydI/Kxl/lXJNalcUn1CeasyNtbLmL/g9qGTfnJz5cE+JnOQiL354xBPH msnTXfKAgu8/Li0Zf6OcySbz4HxZMn4mZ/ll1P6Kz6zOxiL+tyykN8j2fcqz XyY8JCSYPuGSn1roX0U9ZrOcc1vnmG1jJuQj71DZvo589AYfLvOEg/+0hP1f x3z/Oy98J2ptjcJnCp8uzirq/yzpg6XXyz6McxT6dyVj8h1YcE5s//lS7pUZ MS/WNCTOGPm/LbkGEvyD+N9H78T+WHLt53KWYProATdq0DP9snfYsdEbOchF T3Dx/ZjyzJgFZ6mnbDvWe117SHbQ53AbzWg11Tq32Xc/z5P8QzHNyvNLyb4X 1M8u9faVFftryfi3yPlzyXnhEkMu/PCI+Y3vZ76H+R2Tdx98KUvw+c3mUZP8 f0QcHOKIH95sHVkRp33ZdX4Rp1e9c5US1v+MGn9JdlRPL+Zsw/dHyjZ8Fyj+ b8ndZP87FVK4tWAO/mrCe3BxnId/Yk+YLRKM71/JNRQzN2f5b+wBfbA+ehvc zzW4a4nermwMv0fsIzZ8X3Ty+rau876gs2bwqeI2ST9FMim5t+QKepbuKXkp PSWsr1g2LinfZc2+Z4oNX7u0+16h7D1EgpnDSmXHLOtkCSZ+L/EO0mxq/J5V Nm4feXrGucKGDx7ni3P2b8qSs7a8g/u9nM9GwmeHWPZx71gPvjNUd99636lc S/O5Ima4Stn2ldLenxGxR6uWjdlf/PAOLlhH/i/PymXngksM8Ws3+WyQv2PZ tb/tZNkx6hFH/Mva30sUU1fn+7DErlZ2PBL8Cv+GUjbvn5QlmBjq7V7vnteI +qxlTel9qCN9XeUYJfuwhG34rhFeS/JA1pa2BI9sNgf/0ITt2M6UfoD0a5ll 6GuXjeGuI/1Q/r5Tbx+cdcvGq6YtwQdEbrjkXztsSXGy6nNz4fHyr1d2369p 7dcJH17w/qKvXzbGD4+1tShHv3qvEb1T2Xh9ca5v9p014ohfTbVSZftez1mC 4bUqZkDBd+XQ02Xj/tJvkP+shNfKGug5U7ZvTemdlOfG+LwQR/waafvhEZ8t m7cgZwkm5iBxCqpztmIPlj5GtnOkdy4br522BONLKfam2Av0DcvG5Nmg7FzY 8L3B/16r7MWC7/dtInta9jfDvlHZPuZ4c5wT/JvE/m0cM2YfsfeN/SWO+HXT 9sMjntmzB6unfScQDnUHSN4i/7kJ90iva4mTi9nDvzn2kh7ykY/8+OFxBxEd yZ6Sf9PoA24+ah+un4EF30PcrOzandKWYPogjnjuP3L2OHfnJRzbpex4JHj9 tM8mvLdz/pzxeeOzV9TPUeL+2cH6FmVj7vIdWe/7gEfw/iP7RMV1lezMe3PO Enxrs3Xk+QlzicmkLYkbnnC+YwrOuVXZeIO0z8TWwpN4T2nybDlL9EJPaXG6 le1blDN/UpwxcpCLvPi7xd5sHWeNPdqm7PVwJ5E57SB8R7Nt20Qf5Dus3jnR tysbH6OfyTwjE7bho+dxvHeVfdcRCV5P9u3LjtkobQkm/uh67x/np3vZeMPI Qw7uVGLrHvu9QzxL2HfkHbG/t0Uu8vB9yfcz36F1Zfuy4h/L+an3XlB7SvTf EL1QFwnGN0jcOyUvTFhvLBuTp77sXNjwbZr2vc2pzb6buZPsx8ueC3uPsn3H 1fvOJvc68cM7Tr3uWLZvk7Tt2KhLHPHc8cQPj3jWVBfzerilXbu7hC8Sf1Pt 9X3SL0u4R3rdWDl3lr6JfIv531uQbZDyX8LfjcvGm6Xth1dtsI7kjif5e5Zd Ay4xxJ8s/V7ZLuWdquza7+cswfRBHPHbZ/xOwvsIvRG7a9nxSPDmab+zwNsy 7Xub9zf7XmfvsjH3PZFgfLtJTpPcQvzBijuN94aEbfi4I7q7ZJvs3dKW4BMK 5uDnnil2bFcknGNGs/Og71E2zmtde0qf3uyfEwtey15h65q2BOODPz32ghzk gnOO5GHCwyT3LrvvrWXvIv6Dzb4biL5P2Xhw8Igv6+ck5b4yYX3fsnFF+kO8 6yQcR/yH2ov9yvZtl7YEw9tM/lmxRvT9y8a1evPIw1pZwwfKc0DZvh3S7umR 6JM44j/K2X9A1OsTvW8dfDAxs2I91B0iebJ6v4q/yZSNu6ctwfjOkD5bMVcn rPcrG5PnwJgdNnx1PM/Vy6Mxh9aouUPYm8v2nVlvPjnxw3uc76iyfQ1p2x+P NRJH/Mc5+1uiHrNnD7ZNO28t5vaE9FPU+8iEe6RX5n+Q9LPE6SH9bMknZb+W d4Oy8Y5p++GRAx1JHvL3jz2ASwzxnKGneF8T59CIa0xbgumjf6y7Ls4eMfCR h5Qdf0icR2I5m/D428sWTf47zCi+Q8vGn+QswfgGSM7hsy7+VrI/H/3MCd9p /M1UcjjPjrQl+Nx6c/CzF10V+2yz76UWy8af5SzB+I6QPJ9nR9oSfHrBOclH nxdIPsf3WOgDy8bw4V6XsA1fL+UZJP1F+XunLQdFrxfpZ3DB90DRjyobs8Yj y14n638x5oN+dOTauskzZA7EEU/+Y8r2fZGzPCZmPbOfOdRCPzZiWHOpzjOh JrU/V+xxMY9doufhsXbiiN8mZT884l+XXlXvY8W5VNy5wjfw3a1885t9N/My 2edJv1H6NrKfothXhE8o27enal0i+bJs14tzYtl497RzHl92Xmz44IFLBdc6 KfzwL683jzwnl433SrsO9egD28lRg17oaVnOOchFXmz0OIbnYdnr3C/tXuhp D+mvynYqzyX+FiM5gs9u2jZ8e6dtw3cFZ6TsuXyVswQzIzj4qXV1vWsxz8Fl 4/3TloOjjzbJa3gmpi3BC5pdk144n1fJ/obwTaGXysbw4d6csA0f67pd+m7q 6e+ca7Bm9vVt7fl10m8XbyTP8IgZymdUvp34GyC/HyhmXMJ6tWx8nXhDCr4r ShzxfdL2w1vOs71sXr+05/1OzLx7k/eJfTyjbPxNzvKM2FfqE0v+IXGm2Gts 5KX2ROnj9XNbwvyhUe/MmD379U7sAXWxnVPnczusbB+9Xc+ale8W/iZTNm5J m08uYrDhg3eD9HflGy/+2WXjVvHreaeOfTmnbPxdzr0PiXrY8ME7V3IMz+60 c5CLvNjOLPi+Kjo8MHNfHHtxXuwDMx8uvUF5v89ZDo/9eLGf48lzftm4N3+3 572vzneH4cOlZ/znR08XlM1r5ncxnmvCS6L+6Hr3cGHZmP7HyfaB9FsTtuEb HXHEH5p2PvJSGxv5JiY8l2HxGbu47FyH8XmX3oO/V+a81vOi3lieA9I/5D0y +jokbQk+q2AdSX64xMBBEjdB9lvqjdEvKxsfnnZNan8k3secmYL3elz0xzqv KNs3IPhwb4ucl0W9j4NH/JVln9di2hLM2d2Jv9U3+w4s+oiy8bVRn35u5Qwo x6SE9avKxrdJ/0yc2xOOI/5nzerqsn0D05ZgeD35Hoi1o19TNubzf17BdzbJ TY0jFDsyng1Hpd3L0lgjccT/kotnR9nxd0q/UfpX4t0hfbnkZPFHybaz+L/m /MwhhlrYbon58xzC1zfl9Y+q80xGxzyYG/xRsU/Y8MGjr4nxHLi+bEzPU2T7 kl5kv6FsfGys5drgYcMHj95Zw3Fp+66PPcPGmqYk/O8//DvQZ+pzTNnrPIY9 lX4f3z3Sb4p82Jt4BjT7jic2fOfznSo5VfxBacuxkQsOfnreVbFfC98p/eay 8e85SzC+cZLfSB6ftgRfWHBO8jH/eyTvqnce9FvKxvDhcn6w4Tsx7efBVfFM IAfrZC/v5fNM7oT1CWVj1ji+7HUyg+8l70pYZy7g3uL8EOeBOOJP4myX7fsr ZwmGdz+ftYLvSKLfVjZmzT/FTKhJ7T8VOynmwTz5rpsaayeO+FPT9sMjvrGq 90j+fSJvCe7Qqhj5P+G/Hdf+PsDchH/jDMX6mA/x98Q8p0Q+8n8XvAl11pHs ++N8n4p/Ttq5J0dPD+rnF3KJM0P6VNl/bXZdat6dcH3w6Wnz7yw7BgkeHP1M if3Dd2nBOdHvLhtPk3xY/mraNnzknCnbPVHjXsk9+DeGnCX492bryPsS5hJT ilji6PMP3r0Kse9l43LaNan9kORe7HOz75ayVtbcJs79Zfva582He1/kJBd5 8cMjnjjmdK84s6X/zXmRPr1sPITfxST/lX2a7A+WjWthB+ObUXYs9lnSn+Q7 nt/LWJfwP82W4DPS5l5RcK2/Ix78mPwzo8be6rNdi+ISzkfeEeI8VLZvhbz5 cKcFBz/3N/HDI57zwrm5uuDZr9jimSAfjvns2+Q9uDv0R2Jvvu3nvOTEhm+l vGczPdbMmljf9ITzP1yO3LHn7O/ssnOdoM/CY+FnPsjH4jyxH49Kv7vOPdPv gwnbsbHX5Jgd83009pBzyMyYxVDpcyQ7KO8M8fup31flW0t4f+mJFs/qF+V5 RvZnxX2yHL688TUF3+V8KvzDI+cTZeeFSwy58MMj5umY9389SD9AvGTeck70 R11iyE998Omp2CfhlVusrxz7Ple2l3h+KedK2Op8Vxf92bLxcxFHn9jwnZ22 Dd9Tin9e8gXJC9OW4FWjDn5qvSi5mvAs6S+UjS9KW4LxvSj5vPAFaUtwxxav 8bE4h+S9lnMa+ktlY/hwZyZsw0ce1ofvP3u91wz+UT8rV/Q8FW++bK8KXyH+ GsLXFby/6C+XjV8mVj8PJ2zDd4n4B6q3ecKrt1iCV9G+vFJ2zGVpSzDxr+hn NP/tm/K8Vja+PPKQg/zY8MHjfHHOVstbcta4x0q/a0ufnfDZ4Qydm7ad9eBb Ued3fr3vVDYrdp2Yz4Ky7SPSrrle1H0j1sF5wA/v+oJ15P/yvF52LrjEEN/S 5PmS/62ya5+Vsnwr6hFHfMe81/FknddC7JtxFpHg1cV5Oz5bzBAJJoZ6L8de vBP1WctC6W/wGZPeXzkysj+RsA1fJ+F3Jd8UHpm2BKdazMH/WMJ2bI8zK+lp 6Y+GvqhsDPc96TdqLm/V2wdncdn42rQleEHkhkv+RWG7WpwB6vNb4c3lf7/s vtfU2rPCNxW8v+hLysb44bG2hcrxdr3XiP5B2fhgcTq3+N4occSPUq0Py/at nbcEw1ukmA35rCasf1Q2fk/6Rjw7El4ra6Dnj8v23Sj9XcmN2cuE44i/IW0/ POI/KZt3ffDBxFBjbMF1F9fbR57PysZj0pafRfwh/BufYuYkrH9eNibPp2Xn woZvHa3xA8WMK/gu5zLZD5N9vbB/UbaPOebjnOBfFvu3NGbMPmJ/K/aXOOJv TtsPj3hmzx6Mln3NZnOo+zHfbzxPE+6RXpnDVzF7+PnYS3pYHvnIjx/evDrr SPaU/F9GH3CXR+2P9DNea3pGnG/Krj0+bQmmD+KIvzTls7f5//ZOnK/LjkeC b0n7bMLrlPfn7J14rn2qnwkF3/FE/65s/IX0rcR7PuG9+V72LSV/kCwoTypv +UPsMfri2PfvYz/Zd+SWsdedml2DWj+Wja/mvpX8P/FZqjP3w3rz6QX+ROX5 Oeqjw4fbGDl/DB5+eMSTD9448X8pez2TpC+T/EP483rb8LFOcDe+CxPWfysb 47u14Dn8FnG38fua5K/CW7dYgm+X/ffIBwcJJv4IzWcbvhuV58+ycSbvOHK8 kLANHzx6pNfJ0TN16W1b+SYVfA75jub7ke/Qv8r23SH+ctm/rHetI5Vz+xbf M/2nbLxB3hKM72t6V86XEtb/LRuT5++yc2HDN5Xf+yR3UNxc8VfQd+93wveE vV3FvqOUv3vMEz+8ycrZvmJf57zt2LhTSRzxd6Xth0c8a2JtrJm51McMkctj jfSIfifvP4o7WvEbKn++2TXI36FifHPKfnjMFX1ZzJb8K1acG26HWBsz+qDO M0yGn/UiwdQmjnj2i3cS3kdeTjg2UXE8EkyfvLPAm8bvU5I9ZH9F/FUqxveH HYxvVckfhO+T/TfOrX5eTdiGb0dxVov3IDiNgacUzME/L2E7Nnr7ud6+eaF3 jBrH8r0tfSdxe+pnasF7vUbF+IG0JRgffLj0Qw5yTRent2ybCu8ruWbFfc/g 3zLE36XF90/R16oY44fH2v7Qz6680yWsr10x/lN6L8nXE44jflPt9ToV+2al LcHwfpfeJPlawvq6FWNy3VVwftbKGjbm2Rh1ZirPX/WOIZY4dOz44RG/fsW8 h4O/fvCOb/L6Fyj2Xz4fBd/lTFWMH01bgvExvz1ihujpijF5OlWcKx17wmxP bPKc2bsNYn4zwp6JPdiu2TWoix/eVzqH2Yp9U1K2Y2MviCO+S97+bPTK7NmD h9Lu6bc4eys16PwWfL+SHuk1p9gNpbeX73HxV5DcSzFvirNRxfiJtP3w7itY R76RcP7OcVbgEkP8ycq9d+zjJhXXfiptCaaPzjGzR+Ps7RvzJ3bjiuOR4M3z Ppvw2LtTmrx/5M9VjLfIW+Zij/N8vvgbAfewVLePYt9K2JaPnrpI7in7Y2lL 8A915uBnVvTVrsG9bRafD9aCBOPbXDIp+UzaErx/i3OSj7vDK8t+AN/loW9R MYYP9+2EbfieVZ5tpQ/WerbOW4KbW8ydXjAfvWvFmDVuWfE6V2kwZr3oW1WM T1OeA3nvSTiO+DmqtXXFvq55SzC8vvp5sODzgN6tYtxRuVZtcJ4tIzd5tqnY 92LaPdMv916JI/75tP3wiD9UtlnK9z7PK+EZ0hdJP7jFPPKvKdkq/J70knLW V7ym7Sv2zVPONtn7x/7uUDHulnfO7SrOiw0fvLVln1nw/cruFeNX0l7zwTGf upjBc2nXoR59YMMHj17oaZu8c5CLvNhWifnvXPE6X0u7F3qay3nTGWuI2o2x t8wNG77HUrbha8d3TtSkT2SPmDUc/Mx5vZgp89yxYjw/bblj9LGT5PrCr6ct wYe1uCa9MJN1JQ+XbXHoPSvG8OEuSdiGj3WdJv1Crbkp7xqsmX09gr/N810r Xif97BIxu0lmJd9WbEVxA/jOTljftWJc0M8jBe87ccQvSNsPbzvV6lUx7w1+ L5A/1eA8NfmPaPGdyt4V4x3ylmB81J+t/B+K01Rx/Ftp5yMvtbvKdqrw0oT5 9E3M7pIbCL8j/hDlPDJmhW2g9I94Nlbs684zVvZHC77zuGfF+N20+eQiBhs+ eKz/6JjJXjEP1n5Gk+dArb0rxnV5984aWD+2vWNe+0i2aA9eSjkHuciLjXr0 g75P9MRcVq/33PaNOTGT/SKOnpH7xbw20c+xwp/wLKoYLxZnU8njZP80YX4m 9gU/PGIOqJj3ftr4QOHH+Zu+bIOEPxa/T8X4PXFyDdaxI/ENijji34u65KU2 NvLRG/vAfrBPfSvOtUT8Vulnydcj77WyZtZ/pmz9+I6UrVnyBPYibQl+smAd yV7DJaYhb0ncZ3xfqE6+wXpLxfijtGtS+yTxtpTtFMkvEu6rb6y5f8W+T4MP d0DkJBd5twwe8QdVfF4/S1uCObtb8NyX/Dxh/eCK8YBYH3Mg/qmCe0A/pGK8 VYNjiCUO/RPxD63Y93na8tDwna0+T1f8soT1wyrGfP7nFHzX8pDolzyHx7Nh Wdq9lGJuxBG/Y95+eMRvL/0oPv/iDZe/GusqyHaucM+8nznEUAtbLs4MzyF8 b6U8y0y953lE7AP7Ar8Q5wMbPnj0tVns48CKMT1vx3e1+vqS390qxl/FWgYE Dxs+ePTOGpan7RsYZwIba/oq4ecoz9OzeAZUvM5dtK6TeJ8R7wfFHiO9u/Rv eP6It22DZ44N33O858fs2SMkGC4c/NzTPL8p9lH6cRXjXfOWx8UeD+LzxL/t pywHRW1yDom9LktuUu/7tujHV4zhw6UWNnxfpv1sWjeeY6yPdbKXDbINlfw6 Yf3EijF1Tqh4nczgTOFvEtaZC7he+jDJ5QnHEf+9ap1cse+7tCUYHnlfKLgW +ikV4x4N5pHnhJgZcz61Yt+Pae8R+/NtwnHEkx//qVGPf2fkv63h3xrPlv+l gvf3R/lf5xmaadfuEnEq7LHwYMmeivtFeS7m3x5bfH+zrWK8W95+eDs2WEfS wyWyjRB/pYxrnV5xvZ1515D8ju9Q6WXZz2tx3eExK+qDd8+bX6o4Bgn+Nfqh D3rqxTtXwXcb0asV46Hhp39s+P5Ie0414QvYR8lLeRbnLYfETNF7xMxrcfZ/ jNgLYs6lZuek7hkV42Up16T2NvXm9oyZsFbW/JvynBn16Qc+3OMi5xnRK/4z Yw+IY07fi7Ob9IvoR/qwivHf/M4ieYnsP/Csqxj/FXYwvnMqjsU+XPplvKtp j3YX5yz2tcUS/E/a3FcKrnVRxIP3kP/cqHG5ZnWpfD8nnI+8r4lzXsW+vfLm w/0hOPhZC354xHNeODfz+V2Xd48G59xX8mr5fpV+pfhXtPjuJ/oFFeP9Ghz/ W8I2fPvkPZthsWbWxPp+Sjj/+RXXQIJX0BwurDhXB+kXV1ybM4wE08f+zF/6 VdEz/VIXO7bfE85xYXwG4OJLZDwzZvGvZntAg/OyrlHq98aKbSOkX8PZkP0c nYcRsveV/bKKffvmjRcUfO/y8vCvmnH8pdE3XGLIhR8eMVfEvOnhStYk3v55 yyujP+oSQ37qg39OOY74US3WR8W+Xydbf/HXzHg/dqr3HqFfVTG+OuLo86rY N2aO7erYg2skmyU7ZizBbxbM2TvOQ4vkaOE/pY+sGK+esQTju1ZypNbTJ28J vr7Fa9wjzmGr5FvK/VfooyrG8OH+krAN3xoZr+8G2f9OWGfN4Cf187r0pYq9 SfI64dXEP1ictwu+y4l+fcWY/bgp9hcbvrXFv1Z1Rwvf2GIJPlD93xB7mMxY gom/qNmx5B9TMf4r5bgb4/OCbUzU4HxxzvrmLQ+Is0e/vet95/fSOIPUws56 8I2TvlC9t0u6dr8G93+z/IdLX1/8AZK3yNdenHEV404Z++GRAx35vzxjK84F lxjiD5M+nvOp/OMjbr2MJZg+xsYMmFuhwTHwkbdUHI8EEzuhYl4q+BPCN1pz mMA5VD8TK8bNms+t0ifKnhb/RtkmRz/Y8C3iv2eTHKgc2YwluNhgDn7OCXZs 5L9BeW5r8b1R9EkV46Pkv136e7wDocvWQfzJFeMNM5bg24MPd6Wkc5CrVT1P kHxYeLo4d1Tcd3/Zj+W9puB7i+hTKsb44bE2ZjAl5oB+Z8V4TJPnxdqJI35j 9TO1Yt9BecupMd/RzeZQC/2uiGGdzfVeO2tlDZ2V5+6YATOk3sCYFXHEd0zb D4/4e6KvjYN/T+zBIP0sKfie4/HSp8qXUJ77Ksa5jCUY31j1fBefqaT1aRVj 8txbcS5s+A7J2/dhwfwHOJP8LhH2+yv2ndjgGtTFD+8e+adX7OuSsR3byknH EU9v+KdHr8yePeCs3iv5ccHn4TT57hdeJeke6XVTcWZIP0X6FtLHs5YW36Gb WTEekLcf3kkN1pH0QP4HK64BlxjiT5X/k4Lvnc2quHbXjCX4/ogjfrOMz970 mDmxD1UcjwRvmfHZhFfI+3M2MdZ5uvyfFnxPEP2RijE1ZsR6mdls2R+QfJTP puKLectHY77oJ8b8Z8fsmTnygZj57c2uQa3HKsad017z45zLenNPifnQC/yt lOeJqI8OHy5zJsdjwcP/ROzH4zFL9uXJmBlzeFDymYrvrWHDxzrbGnxvkPt6 6E9XjLmnB8aODb1bxvcCn4r5IsHcPZxTcQx34pBzIoYagxs8z2ej5v/ykIO9 xoYPHj3S69bRM/1yr7As30y+45L+jub7mTv1z1Xs2zbjO4QPtfh+X6nB9/q4 D/hCxXibjCUYX0X65wXnRH+xYkye5yvOhQ3fdhnf25vV4rt782QfKlwf9pcq 9t3W5Ht53BnED+9R4bkV+wbmbce2etJxxHOPDz884lkTa2PNJ6jXxyQvVs5J Tf7u544hPdIrdxtfkX6GYuqUZ5jkF1rHVcr/asW4MWM/vLubrSOvXMn5X664 BlxiiD9L+hOyraE88yuufWTeEkwfxBGfTxvzPkJvxL5WcTwS3CPjdxZ46Gc3 2E7+BRXjHcO+IGLe4POiekep7mT+G7MW7yk2fE8Jvyl5rrg9M5bgZQVz8K+Z tB0b+nnS58i+VuhvVYwni/+29GekD5e9pHW1X6Vdu3cqxrtkLMH44MPlbiM5 yLUz75mSXwpfIbmw4r431DvSTM376DrFrmj93Yoxfnis7QL2XXKdpPVFFeML pT8vuW7SccRvw3/rUrGvKWMJhnc+55x3laT1xRXji+it4LWzVtZwtGb7fsW+ 3hnXezF6II74XTP2wyN+SfS1a/DBxNzRZD51L5H8Stz1pH9YMd49YwnGd6n0 uYpbP2n9o4oxeT6I2tjw7cH3r+zzYl2fyn657HuF/eOKffwsL5iD/9OI/yT8 5MGOjbrEEX9s3n54xDN79qAXzxb5X2nx/dBXJb+WP5V0j/R6jGI/l36l+PuI P4Lzz7ucOF9UjPfN2A+PHOhI8pD/s4prwCWGeM7QfMlO4iyLuL0zlmD6II74 4/I+e8TARy6tOH5pnEdiOZvw+NvL1Cb/HSYj/lcV40F5SzC+5ZILJPfne43P SPSzIHzf8vcjyZHK2SdjCb66wRz8zPluxb7Z4nup31SMT8hbgvF9K3mt4g7M WIK/Kzgn+ehzFJ9ZcTcI/buKMXy42aRt+Poqz6/SF/IumLH8NXodrZ/vC74H iv5DxZg1fl/xOln/wpgP+o+R694mz5A5EEc8+X+q2HdS3vKnmPUzzeZQC/3n iGHN59V7JtSk9omK/SXm0Sd6HhlrJ474ndP2wyP+Y3T1vqk4N/LcEN5Q+nTl +7DFdzPH8HyQvpHs02T/W7HvC/9ese8g1bqBZ4VsncX5o2LcmnHO3yrOiw0f PPCPBdf6M/zwb2owjzx/VYwPzrgO9egD219Rg17o6ZS8c5CLvNjocWPlWanq dQ7IuBd66i99iWz/CP8s/r+S42Q/LGMbvkMytuEbK9mu6rmclrcEMyM4+Kk1 ocG1mGf7qnEhY9k++lhBcqJwMWMJ/qTFNemF8zme54/wJqGvWDWGDzeXtA0f 6+LuA/ceuNNBDdbMvn6iPd9M+kzxbtVPh4hZVfI1/u1K5+EBniGKySetJ6rG t7N3Bd8VJY74IzL2wztdc0hWzTsq43kvjZnPaPI+sY+rVI3b8pZgfNQnlvwr Vx3PXmMjL7WnS5+mn65J81eNeqvF7NmvpbEH1MV2Zb3PbceqffR2B2dP+bqI s3rV+JiM+eQiBhs+eFP4vpNvM/HXqBofK/5DPN9iX9asGpfz7n3lqIcNH7y1 JKcqdlDGOchFXmx/FnxfFR0emLl/HXuxduwDM19H+iz+3p23XCf24+1mx5Nn 3apxX/47OsWNqvfdYfhw6Rn/utHTelXzjub5zDNJ+NuoP7nBPaxfNab/e3lO St8yaRu+yRFH/IkZ5yMvtbGRb4uk58J+sE+pqnOdJP4G0h9Rf7W817p21Ltb /rT073mGRl8nZCzBfxesI8kPlxg4SOI253fqBmP0bNX45IxrUvsHnkP6+bfg vb43+mOdnav2nRJ8uF0jZzbq/Rg84jes+ryelrEEc3YfVezPLb4Di75R1Tgf 9ennAZ4vRf2+lrS+cdX4Qem/iLN10nHEn6FZbVK1b3DGEgzvMfl/jbWjb1o1 5vPfvug7m+SmxumKzcWzoZRxL7/HGokjfmjefnjEP8JnUfpf4s3i+SvZTfwu sj0u/pl5P3OIoRa2+2L+PIfwFdJe/4R6z2TzmAdzg98l9gkbPnj0NT2eA1tU jen5YT5H0reRfcuqcTXWkg8eNnzw6J011DL2bRF7ho01bZv0v//w70A/8e+z Va+zIn536U9JP1v61pEP+9PquX2r75Biw7eiZtVNcrb4QzKW3SIXHPz0/KRi /xHeTvo2VeOz8pZgfNtyviTPyFiCOxSdk3zM/3HOWYPzoG9XNYYPl/ODDd+Z GT8PxsczgRysk718ku8jrWWHpPUdqsascfuq18kMVpTsnrTOXMBPSF9Jcvuk 44g/S7XqqvYNy1iC4ZE3UXQt9Pqq8dMN5pGHmtQ+RzNpqNp3Tsb3CrlTWJd0 HPHkx98Q9fjvtvjviPhvkJ6VXLnou599h+iM9dCzPyub4naJuewY82a/nm2K PVP+narGw/P2wyMOHcnM+3EedLYrUatH1fW+bTamLrPbmedGveMej/3aJfIN z5jfs+oYJPiEtOvvFOfpeb6/lbs+aX3XqvFuknOFL8nYhu8C6S9I9oKjGk3Y +beovCV4tVbrq8XewSXmwoglroG/OfC9W7Teu2p8ccY1qb26eC8ozxqxLzvH eeG87V6178K8+XAbIye5yIsfHvHEMSc+U+CORefcI/ys8UW+Z1t9Z3avqvFF eUswvr0lX1GNy8XfT/pasl0mfZ5se8a8kOBLM+bC2TFpfe+IeVX6PtLXlv6y 9HUkeyTtI+/q6m/fqn3khw93p+DgJyd+eMRzXjg3C3gXarCPnPOaPJf/Zi59 XXF7hn5A1ZiYNYu+i4oN38V5z4YZMS/WxPqYM/n3j/6Q4CvVZ5+of7X0vlXX vjRv2Tf2mL06UHqn6Bk+dbF3in3ERi56OjDOAmeDmTGLKzLej1n13q/5/G1G vk0ix7zo8x3Jg5mP8rRETXp7k3nKtrM4rVXjkZGzueq8cFtiL/HDI6a/5FvC 14p/EOdBtS/PW4Izra5LTe6fUh98XcZxxKdbrSN3UQ9F2d4TvjHj/dgg9gj9 kKrxoaxdNa7I24aPmWM7NPbgMJ5deo4MS1seFrXhvBbnIcWztd53cg+vGl+T sQTjGxA16RkJfqPBa8zEWV3EO4n0XqEXqsbw4dI/Nnw3ZLy+jXhmJK2zZvB2 6nMsz/xGvUNLfiDfzRnnWq/o/OgDq8aL5X+X51TSNnzXZ2w7QnjjVksw9iOr jhmTsTwyfJtyVoqe/9FV45siDznIjw0fPM4X52xE3pKz1jvpft9vsN4czwk+ +9hZD75P2Oui75ssUGy+1Xdvj5P/Q/nGif+RZBfZd1eeQVXjWzL2w0sVrSN3 SzrPsVXngksM8W/Ivln0f0LVtSdkLMH0QRzxV+e9ji1iLcQeX3U8EnyNOCfG Z4sZIsHEvNnkmVLrpKrxSPFPZg7a10t1Dj+Tf2ueI0nbTo6eTone2WskeF69 OfiZFXZszIp6H8Sc0U+Ns/K5fk6T3lW2L/ieltyL966q8aSMJRgffLh7Jp2D XMynUfJ84a/kH1x137dmzM0WzUdvqxp/FjzWtrTBmDWilyL+bc2jG98bSccR T85y1b5ReUswvG3007noM4BeqRrT07IG52GtrOE2/uYf/U7h7zPKs12r79US R/zkjP3wiK9VzRudtwQT8zXvR5L7Kv83vKfxPST9jKrxXRlLML7l0rtL7pO0 PrRqTJ4hVefChu/OjPGGRec/i8+fal+ft/3Mqn3fNphPTvzw6ngPq9p3d8Z2 bPsnHUc8+fEPi3rMnj24nfd2PstF3zllne/Uez70SK9TxTknZg//vSbHso/n Vo1vzNsPjzOC3hh7Sv6zq64B99yovUGLfdQdHjNmj5Bg+iAOzn1x9r6K/SX2 vPAhwdelfTbhwedzdlI8137iWab6ByStX1A1zvE3xgbfLf2Z9y/Zd1T8RTyT +HtK3hK8U6v1nWJP4RIzPWNJXJ+k8+WKznlx1fjBjPfkEuGdJZc0eT/IQy/0 dL84l1btG5s3f+fYR3KQi7z4L439viT2n32/rOr1jOWOknwjhHu12nZZ9EG+ HxucE/2KqvEfPJ+E+yZtw0fPPSQvp6d6S/A0/jZedcxDGUsw8b9Lb+LdRXmu qhrPjDzk4K40Nnzw6JFeZ2Us6bdf0rm6FN0P39F8P/OecHXUIedfDc5FrQ81 k968l0gfWTUel7cE49tNP5sXvUfo11aNyXNN9IoN3yP83if8d4Nzjpa9nb57 Hwv7qKp9Hyv/Hq2+S4sf3hbKeV3VvvF527G1JB1H/KMZ++ERz5pYG2tuL/6e wq3if9rk/lgjPaI/zN9++X6Qb0Le7wRbFn2H9MZ4R3gyYz+8vVqt7xX7Qv7r q64BlxjimdE+McObqq49MW95U9QmjvjHM34nIZ66xI6pOn5MzJs+eWeBNyXt dX5V71ndHOtmDkgwvnGRg/5XVu4O+umftG1czO4WyYTsczKW4P2i939jv7Bj O0h6Uvr+0g8OfXzVmNwTpB/Qau5WRfMnRr6nM5ZgfPDh0g85yPWMOOtLPih8 GN9bVff9rOyfa259ZDskaf22qjF+eOQ7kGdl0XuNPqlqvJp8qzQ6lrj/4rUX t1fteyFjCYa3VP5+rb5jiz65ary6fM2ShyW9Vmqyrjuq9r0kfQ3JFnEOTzqO +Nvz9sMjfkrVvLnBBxPTUXqr5KFJ87YputbUiHsxYwnGt2ajY+Cj31U15ufO qnNhwzePv22ql/6yDeDvhDG/Z8N+d9W+dcTdrug7p/jhHSJ5T9W+VzOxD7EX xBE/OW8/POKZPXvwHO8DTd4n9no9yR3kLyTdI72yrmk8J3W2H0x71r/We/73 x+zZI/zTog90JH2S/744K3CJIZ4eV4t9f6Dq2vMzlmD6II74KXmfPc5dMenY 6XE+pscMWDtnE97r0r9W3OGxXzOqxlPzlmB8MyVT4r8hfkF43UbPHxu+7ryj x+zZIyQYLhz83Hv9psn7SK1ZVeO78pazYo8fltxdc5mdtnw4apOzEPt+qOQ/ 9b6/jP5I1Rg+XGphw/ea+nlK+neqcU/eEnyUfFlxj5AcmLT+aNWYOrOrXucG +hkofGTS+mNV44z0IyWPSDqO+Lf522nVvrcyluD/ePqpL7oW+hNV486N5pFn dsyMOT9ZtW9hxj3T71FJxxFPfvxPRr3N9XOS7MfxexnvWkWfgZ+azCP/xpIb NjrPj7I/r9hB4s6p2vce7378ftTqu7HPVI3vyzvn01XnxYYP3iaK6yHb0cr5 bNV4sfJsKnmc/MfI/lzV+P2M61CPPrDhg0cv9DQt7xzkIi+2QTHnV6pe58cZ 90JP7/J7EM8/4R3FfzH2lrlhw/dBxjZ8J/BMrHou9+ctX4pZwzkh5tyvxbHc UZ1bNX4hbTk38s6LGTA3JHi1BvvohVjybRwzR385Zg0fLnN+Ofqiz3+lr9Rb ZzTvtbJm9rX3jvqcSB8ufQueYdJPZp8kT5P8TLGbyX6K9GOT1l+rGhPfs+iz QRzxn2Tsh/eR9PlRB33LRtvJ84vmc6rsx/O7c9X4gbwlGB/1dyl6r1+vOv7T jPORl9o9ZBsmfGrSfPom5k3JreX7QvzflHNwq+/PYuva6LpvVe2bwV0q2drE OVH2t6vGyzLmk4sYbPjgbSu9xAz4u1bV+Evxu0mW2W/ZF1aNl8baX4+5YMMH 793IB4cc5CIvtl2L7qcteODtIp78i6rGX/G7kvTftZaZeUtwRXHd5W8q+t7r 4qrxNxnPd0jMHz7ck5P2w/svJvaBmRd1Pj+I+D+bvB72cUnVeFbeM043eM7Y lsSeEUf8m2nnIy+1sZGP3tgH9oMcH4Zk7z7leSbOdxmvdVHMlPiPYo8/lmyQ /D5jCR7aah151MrmEsPakVvHGWhRD2cK91IPn1SNX0q7JrVX13oape+meZyS /P/+WOdnVft+yJgP992Ec5CLvPjhEf951ef1x4wlmLP7N79fx5lB/6JqvJzv ffF+FX8nyd2LPufoS6vGPaWfw2cl6TjiH9FeLKva90vGEgzvH34vjr1G/7Jq zM8eRdvJTY2feT8JP3nohVzUIo742Xn74RHfxDykX8D5lX6h5Onify3bv+I/ mvczh+fNj0nbzmv1XWOeQ/j+2sD7dtFB3rtvYz85A/DJRQw2fPB2afQeMP/v qsa/id9L8nzxBqvW91XjP2Ity2NG2PDBo3fW8GfGOb6L84eNNbUl/RzleXo5 a6h6nb/ze2X0xX79FPmwr9Db82TvsOHbU7P6mfXK/lfG8ufIBQc/PbdT7EXC JZ6ZVePH8pZgfL8ye8X9m7EE7110TvIxf/b+0jgn6L9VjeHD5S7wb3FG2Hee 5XwPDEo6B+tkL09scQx89D+iNmv8Pc4NM+jS4D1FZy5g6u0c54c44j/kf28k eqF/5F9x7g/Qz77q7a0O1v+uGu8l/RrOZNI1qf0E/35Xta991nt0eZwx4ohP Zu2HRzzvXLx7vaO6e0vup9xl8S+u6fcu4QHiJ5SnQ82zbC+5j+SKsneQ/co4 2yvUjJ/O2w/vilbryIo4adnO4b8BSrtWu5rr7Sd9/6LvF7OXK8l+Vavr9o69 oz54Tt78FWuOQYI7RD/0QU9tLbaTEz0RvFUl+yKztuFbqn4uU0xSuJv2aOWo T04keM9G60jOIVxi2mUtieM++4HyjxSuibNKzXiVbNQUvla+PtJHSVaTXitr 5vyvVrNv5eDDHZKMHDXnxQ+PeOKuis/Ff76i63YMLnlW1kyuk36G7GvUjJ/N W4LxrSk5WrKj+OtI768aa0rvx/M8ekKCV8ua27foPR0d8eBW+deS3sxalf+G Vt99Jh95+4mzds2+5/Pmw6U3OPiHJu2HRzznhXNziPwH6edG2c5kjb3dDzNc TfqY1v/X16sZE9Nc9B1ebPheyHs2zIh5kaNP5CH/ujXXQILX0nrXj/rrSE/V XPvFvGUq5sIcO0kfGz3Dpy72sTF/bOSip04xe+bJzJjFGlmveacGz+1o2brK NyVytMasbpG+ETHKk42a9Dag0b6z+X2qZtwpcmZqzgs3G/XwwyOms2RBOCX+ htIPp9esJXhCq3nUJP9GEQeHOOLHt1pHnsN7smyHCa8nTrHRuc5KWt84amwi uYbmODdvG7501jZ8E5VrU8lbWUPWEnxQ0Rz85yrnkYo7otF6rma8QdYSjC8v uZZiXs5bgie1ug/WR29HSd+nwfcN0bvUjOHD5a40Nnyds17f7bIPS1pnzeBL pB8r/UT+2xTJ41ir+MdITpZ/eNL6FjXjY6XfIXl+0jZ8G4l/Jf+NkPC4Vkvw irxL1xyzcdYSTDy5Di46/1aRe8PIQw6+R7Dhg8f54pzBQXLWzku6XzB6Jj6L nE/sW0fM5fw3a42+j7y25nOnOBeIv03N9nzW+3N37NG2sZ/sL354hxatI/+X p1vNueASQ/y6vX022KPta67dPmO5fdQjjvhX8t6rvRq8X8RuF2cLCX5NnB1i /zknSDAx1DsyzlL3qM9a6qSfLPvm0jv19iyYDzZ8h/PfrEiewr5mLcH3tZqD /6Kk7dgulr6+8kyLmaM31IxPE6eRz3DRs5ges+0Rs+EsIcHTgw+Xu8/kINfr WuNGkvsLl+Xfsea+F8h+bYtj4KPvVDPGv2Oc13uU98AG39FG71kzpt6Jje6H OOJX4X0yeumatQTDG6yfYtF3hNF3qRm3SX+Qz0rSa6U+sbvW7OsmPa1+ZvDe lnQc8Vtn7YdHfK+aeW/mLcHE8DOw6FjWTwy1esc8ts1a9o56WcU+pJjLktZ3 qxmTp6nmXNjwvc1/pyr7UUXv456yd5Z9Ydh3r9lXU95Ko3Pih/cI75w1+3bI 2o6Nu8/EEb9d1n54xDN79qCL7EP4bBb9/xFJf49Fz02xbua2t/QzOJc8z5X/ 0ZjzPjXjd/P2w5vdah15edL596q5BlxiiB8q+zFF3xfeL2bDDJFg+iCO+O5Z n71yzJzYfWuOR4Lrsz6b8Bbl/TnrHs/uW1vMoRb6ARHzpDiDiu6TmfXh2a4z eWDUJyfywJgvei3m3ydmz8yRxDHzYfIfx7ukOH1rxo3inMU7ifATfN56uzZ1 6YWeMvy9vWbf4rz5cK9IOge5yIsfHvHkg9dD+VvChn43/2141MaGj3Vuyt+r Wn2/GL1/zZg6T0ctbPjeVw9nK741aiDBOyr/QbEO1oUEE3+O/Cc0+C7tITXj nbKOIwf5seGDR4/0ms9Y0i9zu6/FPPLwHc33M+9ph9bs2zzjvk9u8FqofXbk Pzx6oS7y8Oj7XP0cX/RdM/QBNWPyHFZzLmz4eir2PMk58l3J34E51/xtJWN7 oWZfTnN6ptV3G/HDe064WLNvSd52bDe1dxzxO2fth0c8azo05vVUf5159dJR OfO8Y8q/Qgf3SK/M/0jp5/PMkn4BMy/6nuNRNeNeWfvhnd3DOpJ7iOQfWHMN uMQQf6H055V/BO8SNdf+IG8Jpg/iiN9xA7+T8D5yddKxR9ccjwQ3Zf3OAm93 6ZdKzpX/Gt4HasZ7hB2Mb5BkF9X7UHVHyP6abNclbcM3T/h4vq95pmQtwZc1 moN/ZNJ2bOjcTXyl1XcS0U+oGb/M907N9yCvFPdV4VHinFQz3idrCX41+HC5 R0kOcnGPcgyzFX6P81hz3/sq9grJ+bJdm7R+Ss0YPzzWRt6Ti66LfmrN+KpG xxBLHPreynlazb79spanhW9zvp8VPzpp/fSa8QJyFj0H1soa9lTs4Jp9+0sf qfirGx1LHPEf5+2HR3xbzbw+wQcTsyXfk62+53gt/Yh7Pd+PNeMDs5ZgfKOk vyX+DUnrlZoxeUo158KGr69iu/LdGDMcEmvaL+zVmn2jxT296HuU+OEt5Dld s685a/vCmA9xxH+Wtx8e8afGPjPnrXp7vtS9UXKR7GOS7pFeP+V+cc13MbnL Sd/c22QOZ8Y6mBX+odEHOpI+yX9G7CVcYoinx5GxF2fVXLt/1hJMH8QR/3ne Z49zd1PSscNin4bFDFg7ZxPeQfzuJrlY9ht5DteMW8MOxndu1MG+LZ/FVt8t XRS+Ns3qPMmbFHNw1vK8yAUHP7PqxneI8Fjpw2vGS/OWYHznSy6RPCRrCS4X nZN89DlOcmyj86BfUDOGD5ezhA3fYTwTpG+vGsvzlpdHr7dw3sS/OWn9opox a7yw5nXyN6qPJMclrfN3K/B2fCZibsQRf7hqXVKz76u8JRjeRPmrRd85Rb+0 ZsyaP42ZUJPaXyr2spgH86Tnm2LtxBFfzNoPj/i7ZPta8jZx3mgxh1rdFbuM +kmv55oG791t8l+j2KV8n8VamRW5xsVsR0RuapHziqiNbUTMd5J+PmdO4l9V Mz5S/Nslv5B9guxX14yPyroO9egDGz549EJPA7POQS7yYqPHW5TnhprXeXzW vdDTARnzRvL9pXleKzmZ756sbfjIie3aqDGq5rl8k7cEMyM4+Kn1Je+jRe/7 dTXjY7KWYHyjJe/kuyprCb4j5kEvzKSec9fqu7Ho19eM4cNlX7Dh+47/9l76 S5yzrNfKmtnXp6TP4pmgvHdzFqR/w15JTuO7RPypkt/KdmvS+piaMfFnFn02 iCP+hKz98AbxmY066Pc02k6eBvqS/XbpN9eMv89bgvFR/6yi76KOrTn+xKzz kZfaj8j2kH6mJM2nb2JuidmzXz16ew+YP7Yf49yOr9n3o+p+0OJ4ak2oGR+a MZ9cxGCbEHNh1jc3eP4TY/bs14+xB+S/NeJOibWPjblguzX2+DbJ6XyfZZ2D XOTFdo7WMTlpHR74Aek/i3eH7JNqxqfzuZC+k9byc94S/It4M+Q/t+h7r5Nr xm1Zz/e3mD/8X2J/8cMj5o7YB2b+hdZ+Z8T37O31wJ9SM/6FfzcXd1KD7yNj mxJ7RhzxR2acj7zUxkY+emMfxsdnbGrNuU5V3Xtr3t9y1mtlzT9H73dJv1+2 uyVn8czNWoL/aLWOvDNpLjGsHUkca39Y8k/hqdLvqRlXs65J7b9anWN40Xno i/5Y531Rpxx8uFMiJ7n+jFh4xE+r+bzWspbTYm27aO1/s56k9ftrxjMln+A7 Vvx/hC8oet/Rp9eMH5N/dqNjiSP+N+3FAzX7hmYtwfB6yd+uv+/boj9YM35c vgt5BiSdmxpDFDujZt+ZWffSXtx7ko4j/o+8/fCIJ9ej7Ivms1J/16a3h2Rr Ev/PvJ85PG+4H4pthf6eG88hfGdnvX7iiX045sHc4JOLGGz44PXu7ZmS55Ga 8V+cyRbnpNbsmvGpGa+F+bIebLOj9qMxD+b2X87YM2ysibnx7z/8O9AKzDbq 0/Oz0l9kbdIfl/4M7yvSd1eeVYhP2oYvIfyE5LPCw7OW4GR/c/DfJ/4c6StL v1f6kzXjc7OWYHxPRT7sicCXFJ2TfNMU+1yjY+4N/enIBR8utbDhOz/rZznf A5OSsY9xnlaVflnRZwD9mZoxa5xT8zqZwfONXi86cwHvKU7H/r5LSxzxF6jW czX72nWxBMObq5jVJR9IWn++ZjxP+hqSDyZdk9r/aK9fqNl3adbfdWuKMz3p OOIvydoPj/gBZ7Rrt/ZBem/bwPcCudvHXb+Xog7flfso96sxl7mSL0teJvte sq8lzgzln1czbt/F/rnxXYuOpIePZNtI/Buyzk2NyzW31+S/sug7p8zuFdnX 7e+6z8V+UR+8YhfzX645BvlffPRDH/TUrtV2cv6nB+8NyQW8G2Vtwzc041nP Z3+1/tejPjmRr8eZXjf2lT2dH/vDOUcSx56+Lv9V6mum9AW1wFnXpPb64u6n PjvFvrwS54Xz9mbNvg5dzIf7UOQkF3nxwyOeuHXjM/Umayr6vupbNeOR/I2u t/eAWu/UjBNdLN+JvVzIZ05zOI//Dkf6O7Jdl/Uc3xZOhwSz73DJTy30hVFv Pfnf5TPf4Jj5jT4b5CNvVrZFkY/e4MPdNjj4H07aD494zgvnZpTWtlB4A+FH xOmj/jeUPlv627J3lj4r9PdrxuQbWXRObPhGZd0rM2JerCkdZ5j8i2uugQSP 5nel6J3YD2uuvXIXSzB9vCvuB1GDnumXvcOOjd7IQS56govv+qxnxixGSF8s 26JGr6tV+X+Qr6t8faVv0t/3aj+U/wvZR/PfPdTsW1X9vM++yfaoOJ/WjG+K nB/XnBcuMeTCD4+YzySXCI8V/3Pp/cRbrYslONffdanJXVHqg8dlHUf8pv2t Ix8T5xvZPhWemPWMusR+oS+tGS+TbOaZ2MU2fMwE27KY0Zd8bnTOrspYfhm1 4bwbs2U9rzd4Pl/F+sZkLcH4lkdNekaCmQ1rzMX5+UR4c76XQv+6Zgx/cewL NnwTsl7fFvI9mbTOmsG7q89uQ7SuHvpulW0p71pZ57qh6Pzo39WMP2OP+F5M 2oZvfNa2b4W37G8Jxv59zTG3Zi2/D99WrLvo+f8fUecd5mTZdHGsm0UQLIhs EhBMEBugwhaw7GIBUVHYguJmFStiR0lbe0WwK2Iv2LFg7xWxISj2il3sBUVF EP3OzzPv9f2Ra+bMnCn33PfzJFny6G+TjWdGHnKQHxs+eJwvztnaGUvO2jMV 7ndxtfXPY07MEzvrwfcD56XVz1Q2KXaLRj8D+4f838p3M9/puAfLPkf2Pycb 31JlP7wrWq0jn408v092LrjEEN8se//o/6/Jrn1blSWYPogjvmvG6xgYayF2 2WTHI8HriLM8ri1miAQT01LvmVJrxWTjdcX/m+uAvyfw/Jr8g7h/Vdj2d/S0 Mnpnr5Hgjwebg59ZYcfGrKj3TcwZ/Z84Kz/r9a/0rTkj0reRfJ73srzxnVWW YHzw4c6tcA5yMZ8deI8QZ6n8q+Td96wqc69uNR991bzxT8FjbUuqjVkj+moR v7fmMVj+FyocRzw5V8/bt37GEgyvmrPc6jOAvkbemJ5+rXYe1soa7uDzW/R7 j/RxylPb6GdUiSP+7ir74RFfkTdvg4wlmJg/5KvjPZuzJ30Inzn4jJE3vr/K Eozvd+lDJV+ssN4xb0yeRN65sOG7t8r4ulbn7yz7vqrdPWP7Wnn7llWbT078 8LaVv1PevgeqbMc2r8JxxJMff6eox+zZg7tkX8F13+pnSFnnd4M9H3qk1/vE 6RKzh5+rdyz72DVv3CNjPzzOCPoOsafkXzvvGnC7Ru3+Y+yj7roxY/YICaYP 4uA8HGdvaewvseuEDwm+pYfPJjz4XGcr4r62Uq8bVf+VCuvr540HK65DjZ/9 /Ef2brI3KH4Dyf0Un8xYgoc1Wh8WewqXmMeqLImbX+F8N7U6Z/e88RNV3pMN hXeS3L/e+0EeeqGnR8XpkbcvlTF/p9hHcpCLvPh7xH5vGPvPvlflvZ67NIfV xe8pPLzRtqrog3x/VzsneipvvJp8uwi/WmEbPnqul0yyX4MtwY/w/pt3zNNV lmDiV2WWkguUp1fe+KnIQw6efcaGDx490uszVZb0+1qFc93S6n54j+b9mc8J G0Udcq5R41zUOkAz2VX2hdw/88Y9M5ZgfCO5h7V6j9A3zhuTp3f0ig3fHOVP CK9Z45x9Za+U/nzYM3n7DlL+3Rv9fCt+eLcrZzZv30YZ27G9XuE44udW2Q+P eNbE2lhzR/n3EH5D/EPq3R9rpEf0ZxXbT/rB8vXO+DPBrFY/s7lp3vilKvvh jWq0Pir2hfyb5F0DLjHEM6O9Yoab5127T8Zy86hNHPEvVPkzCfHUJXazvOM3 i3nTJ59Z4D3Ww+v8Z7BntWWsmzkgwfj6Rw76X0e519brzQrb+sfsBkh2kXyl yhI8JnpPxH5hx/YW9yjpjdLfDn1g3pjcW0lvajT3zlbzt45886oswfjgw6Uf cpBrvjg9JXcWHi/fNnn3vUD2CZpbs2zvVFgflDfGD498Lbz/tHqv0QfnjdeX b90axxJHfEZ7UZ23b2GVJRjeRPn3bvSzrug1eeMN5NtH8r0Kr5WarKs2b98b 0rtLjhPn/QrHEd83Yz884uvy5r0ZfDAx3aTvK/luhXmzW11raMS9XmUJxrdh jWPgo2+bN+Y1JO9c2PC9pdjD1UurbB+Iv0PMb0HYt8vblxT33lY/Q4of3n6S 2+fte7fK9v1iL4gjfpOM/fCIZ/bswaviH1nvfWKv05L3y/9hhXukV9bVwLWl s/1CD8+6Y7XnPyxmzx7hb4g+0JH0Sf76OCtwiSGeHtePfd8p79rvV1mC6YM4 4jfN+Oxx7j6qcOyOcT52jBmwds4mvA+kH624A2K/dskbb56xBOMbLrmR+B9x j+I9osbzx4bvAd7bYvbsERIMFw5+nkU9pt77SK1d88ZbZCx3jT0eyZ5qLgt6 WI6M2uQ8KPZ9f66Zaj9HjL5bPvAYc6mFDd97XLPSJ/H5PmMJPoz7vbiHSH5S YX2PvDF1ds97nfy3sg4V/rTCOv/9LHAf6RMkP65wHPGfqNaeefs+rrIEwyPv Q62uhb5X3jhbE/wK16Q2cx6dt++zKvdMv59VOI548uMfHfUO0Nr71/g5x4m8 J7f6DExW7DHRZz/ej2qcZ1PmxByadP7y9n2pnMeLf0Sjn7FtzhsPzDhnY955 seGDt5nijmz0cygteePF9FbbocNRsi9SnrF548+SrkM9+sCGDx690NNXVc5B LvJio0eeP9ov73V+0MO90NPn4m/OPU34UfU2TnIL4W+qbMP3dZVt+I5mbXnP ZauMJZgZwcH/RYVn+Vir59maN/6uyhKMLxfniD1Cgic1uia9fK7YfL336ePQ 22Jf4U+KPcWGb2v1c5H0M6U3ZLzW/aL2TnqdIn1uq+e+P9ewzvzBklvL91OV 8/WL/UUfH/t6gvTj9fqywnHEs9fjo1/WdUDevKVVnnttjfd0YI33gPkflDf+ ocryoNgz6k9WzGLlPzD2jX0kH3mpXdTrdL2+qTCfvok5RHIb4Z/F30qyQGyF bXnpX0s/NG/fj1WOeaLVtSZEDuzwyUUMNnzwBtU4lpyH5Y1/Eb9Y757oZ2Le eFDGvbMG1o/tP59sh0uWJJdUOcdh0RO2p1p9ZkrBA9fIN7jG+Y/IG//GbKWX lbc6Ywlub/SzcANjzkfljXlejz54To+9gA+XZ37xHxX7cXT0y94NkTxW+MTY 8xNi34+JfWDvhopzkvTvK2w7JvaeOOL/qHI+8lIbG/m+q/Ca2Q/2aVLeuf4U P886+JyR8VpZM+uv0+s46SfTT/T1e1X0J/x0q3Uk+eESAwdJ3Leybxu50Cfn jZdVuSa1T+F9XrZnW/28LX3RH+ss5O1bEXy4P0TOyVEPPzzii7Hn/52TRmPO 7on13nvOEnopztNJksMk/xH/qDHORQ/o5ajNvm1WHXuXd3ydZtUe+8/ZQILh Ua8mzg/6CXGGGvR6Tj3+WOHc1FjMfxcob9/KKvdypmJ+qnAc8awdPzziz5Dt DM6wak2RXl/jmZzMXqm3oRnfc7jf8IwttrNiL7gP4euQ9CynxDxPjX1gX+CT ixhs+OCdUu+5k+e0fGDuw2Ock1qn541/7OG1MF/Wg+30qE3vrOHvKuc4Lc4E NtbEc3ncR7mfXizbmVGfns+Tvru4CX73KH249NWknyb+eeL8WmEbvqnCZ0uO EF49aQme1mgO/l/47CT9XOk/S5+SN141aQnGd07kwz418Autzkm+JXwuqnHM z6FPjVzw4VILG741kr6X8z7A+/WUWCd7eb70l1p9BtDPzRuzxml5r5MZjKzx etGZC/gMcS5s9PO8xBG/pmqdn7evPmMJhreHYl7m720V1i/IG4+SfhHXe4Vr Unt7xV6Yt69j0nt0ccyNOOIrk/bDI55/3+O3Nfxb416yz2v1s5/dCx063MT7 lPiXyjcj9vWSWB/zOavesyL/pXnjYRn74RGHfmns+yzZpuucda5yrYvzrnfW GGPqsubLuOarHbd7zHBG5OuUNH963jFI8D89XP/S2L9GvS7jeqmwfnne+GrJ ZuF1krbh6yK9SfIK4RniXCk5RnjtpCX48kbryD8rzCWma8QS91eFa8xvdd2r oiZ5qHl15J2iPq+QfXmF18qauV6uydu3U8Z8uH9GTnKRFz884oljTpylK6W/ 2urzcG3eeF2uBfGvbvSzpdfnjXfJWILx3SA5TrU2EP8m6ftK7y59b8nrhFtC gtdPmnsN970K68SDea51pvRrpe9T4+deee6JfOR9Tf3dmLevW9J8uDxLCwf/ 3xX2wyOe88K5aZOtlT7EX8m1U+8ZMZ9prKXx//Vb8sbELGz1s5nY8A3PeDbM iHmxJtbHXpD/5rxrIMEbqs9bo36V9Nvzrj0iY3l7nCf24zbpMxvdM3zqYp8Z e42NXPR0W+wh55CZMQueEWY/Rld7vy5S/sfluzty7B19Hih5j+y3yHZn1KS3 8cxZ+j/i3JU3Tied8468886MGHLhh0fM3bGH7Mts6fvLl0pazo49oy41OyRc H9wr6Tjib260fnOcjYdlmyBORpyDWLvsqySs35s3vk/yAOGeSdvwbZS0Dd9t 4twfa4VzS+A3Ws3B/69qHVxjjP5A3rh30vKBqPEg91vNdGTGEnx7o9fI+jir s4TfavUZQ38obwwf7qoJ2/D1SXp9h9TYjs6awefp9bv0xYp9UvII4X7iH0ad Vj+3iP5o3ngie6GcqyVsw5cV/0LVfUT4zkZL8O7q/7G8Y/omLcHEc1beVb7V leeJODt9Iw85eM4XGz54nC/O2R4ZS3zE0i956eeOuE9w7WN/MmrP1Jk9usbP pV6i2Ht4XxD/6bztmyc9s/tjbs/EvNkX/PDeb7WO/F+ep/LOBZcY4qfXey/Z 3zl5166qspwT9Ygjfs+M19pW7fUS+2ycCSR4tDjPxVw5n0gwMdSbEHs6N+qz luelHyv7lrx31HsWzAcbvg+1hhckJwn3T1qCH2w0Bz/Pt2LHtqZiZyjPQ7Hv 6C/mjY8T5yXpH7V6Fg/HbF+O2XCWkOCHgw+X50/JQa5GrbGEPe9ndebl3XeT 7LPGOAY++it5Y/zz4rw+oLyHVPuZYvT5eWPqHVPjfogjvo/2YkH0MiBpCYY3 Wa+P1dvpFdZfzRvnOf/iVSS8VuoT+1revq2lX6l+HotZEUf8Vkn74RG/MG9e S8YSTAyvT1odW6hxDLXeyBtvk7R8I+pdxf220c+Kor+ZNybP63nnwoZvbMa1 n4j+35G9qByDkra/lbfvwTHumbXjh3cs74t5+7assh0bz0u+FWtijfjfjjUz e/ZgC9kfGeMY+Dxb9VSjn716PdbN3N6L3lkjfRRi7e9HX/SJH97x1daRrJ38 78Z64L4f8ypz7fNZRXk+zLs2z38hwfRBHPEDq3z2OHc8R0bsB3nHI8HVSZ9N eIOTvs7mxntGu16ftroW+qK88anS54q3luyTB+scyf40+8w9ir/LZyzBj462 juT/kQeXmK16WBLHs2MnKednyl2pnJ/mjYeon5Oxs07e15TnuUY/80Uv9FQj zud5+/bJmA+3Y8I5yEVe/PCIJx+8oYr9Iu/1bMe9Rb6vhV9stA0f6zylxs+I URf9q7zx6dxb6D9hG75tk3727Mu88yHBPF+2OO+YHZKWYOJPq3E95vlN3nj7 yEMOnqfD9k30+nXk/l/PLwbnDPk+b3U/vEfz/sznhG/z9tXzfYR7mnydZb9W M3lZ+trSv88bj8tYgvGdLf6Xreag/5A3Js93eefChm9H5Z8i+YpsXfjv9sh+ jvDOYf8xb9/1yj+/0c/i4YeH/6e8fa0Z27GR58fw75S0Hx7xrIm1sWaex1vQ 6Of1bhDntVgXPdJrg2KXRBx5prKP/H5NnF/zxrsk7YfHc4DoSPok/y9514BL DPHTuJfyGVJ5luZdO5exBNMHccTzXCGfSfg8wjN0xP6WdzwSPDzpzyzwdk16 Xq/HPP+I+e0YdjC+P3kv5m+vfH5Q3Ft8TkjY9mfszTLJN9XDblWWy6IGHPzM Cjs2evtvltWeJ/pfeWPqLY99vVCvN4XXU+yKvPHuSUvwm9H7ObGPf8X8OA/X ULOg61P477z73oPvI3w2k23dhPWVeWP88Fgbeb9pdV30f/LGF9c4hlji0HdT zn/z9o1KWv4bvpu09ncU3y1hvUPB+F29vmv1ni6PGbMXqxTs21P6dMVfUuNY 4ojfP2M/POJXLZg3OvhgYm4R9/1GP3t4mfD34m6gPKsXjMckLcH4ZnDfFr97 wvoaBWPyrFZwLmz4GvmuJPuHMcNErGlU2Ncs2HcF13Krn33DD28R76MF+5qT ti+K+RBH/IEZ++ER/0/sM3O+rd7zpe7Vkp/I3iPhHun1AMV2lP6JztnYKvd9 VbXnsFasg1nh7xh9oCPpk/yVBdeASwzx9Dg99qJzwbX3TlqC6YM44g/K+Oxx 7qoSju0U+9QpZsDaOZvw9pF+Fe9Bsm8ofpeC8diwg/F1jTrY71Sdrxr97N4n 4fuJ8yR5rWLGJS3XiVxw8DOrWbxPCSelr1swPiRjCca3nuQXkvsmLcG/tDon +ejzBsnrapwHff2CMXy4nCVs+HLKk5R+F/8Ol7EEfyvujdyvJNMJ6xsUjFlj t4LXyd+ovpbsmbDO363AM6V/I5lKOI74/VRrw4J9bUlLMDzyLml1LfQeBeOb a8wjDzWpPUF9VhXsG590z/TbK+E44smPvyrq/cpvhWr8rNltkr+1+jm4exX7 c/TJfH+I+SN7x4zSMXv2bna9Z82cexaMD884Z6rgvNh6xn5/P8Y+avUqGB9Y 5dndWu1zslHMkr2gDvWojw0fvN5hOyjpHOQiL7YbYq/7FbzOiVXuBT/8WZJ9 hH9XbxtL3iF8aNI2fIckbcP3k/JlCp7LkRlLMDOCg793wrP8o9XzzBaMD0ta gvH1jXPEHiHBSxpdk142Up776r1PqdA3iX2FvyT2FBu+ozJ+9oHnHnimg7X2 i9prNuk+LX2VnD4ziLOp9Ls1t/7sifDhSee7vcY50TcrGN9TY87GCccRf3DS fnisa/OCeUfwdxLJpcxJ/NmsRXof6VsWjKmFBOMj97JW59+i4Pgjk863efT3 lPTH9eqXMKZvYgawdtmPEv8BzeAP+bIJ26hB3YEF+47RfP7kPbrVe7RVwfjo pPkDoj9s+OA9KHx/jXNuXTA+VvyHlO+vRj8/uE3BeFLGvbMG1o8NH7xBcOSb lHQOcpEX2wrOQsI6PPDD0pcrbhPZBxeMj1NsNbryHpexBK8Q71H5/271M3Q1 BePJSc9jZcwE/orYC/zwiKktmMcM/+U7U8Q/Uu+5wK8rGB+f8Xoer/basdXF HhBHfKHK+chLbWzkozf2YWDUGxqzYZ47FLy/haTXypqXR+/bxty3k3xCspi0 BP/baB25acJcYlg78sHYuyclO+ga2Ez69gXjUtI1qb1Kk3P80+o8f0V/rLM+ 6hSCD7df5CRXh4iFR3xDwee1nLRsiLU9prWvKu7mCevDCsbDJefKf4r4qwl3 yHnf0XcsGD8r/9M1jiWO+Dz/Tlew78SkJRjeE/Kv0eTnDdF3Lhg/F/eCLRPO TY12xe5SsO/kpHupkL1/wnHEFzP2wyOevveQ3kny6Xqvk5mMkG2O9JOS5nG/ oRa2hPAWCd+H8MF5vsY+7CMLxqcmbSMXMdhGRt4n+Zwj2wDxdysYl9TbS/Kt lvNzdrsXjM+ItTBf1oMNH7w9YvbsETnIVRnr6hR7xL//8G84/JvOqILX2a5a LcGlzz2lr6W9P11n/ln5u8Qase0ZfewVs2ePkOAXq83BT8/UfDb2d3TMlf6R o2OPx0jOkzwraQleI+ec5GOvX5F9beGtEtYbC8bw4Q5M2Ibv7KTv5bwP8Lw/ 6xsVZ3cB5yTn9xH05oIxa2wqeJ3MYJ3YC3TmAp5T7z1jDsQRzzOAYwv2nZSx HBv7vW6jOdRC3ztiOivXq9V+vpKa1D5RsfsU7Dsz6Xov17gH4oifWmU/POJn nqizPFafs3vq8+Cx+hy2jb6PdNdnRPkXKvZczgnfUYQ3UFyr5Ouyn8ff+iS7 yba18ucKxtOS9sNbv8k6cpA4x8m2sfSrks5NjfWa/Epoftvw9z3Z94tc1KXm 4ITrg0/JmN9WcExb5JgW/dAHPXXXq2POe40+vmB8sOS74l2StA3fBdLflu0A 4TclD5R8QbVOy1iCezRZR/KMIVxiLopY4ujzHcm1VKeafyspGF+cdE1qV3Ee +Zwcc2OtrPl8cQ4p2Hd6xny4NZGTXOTFD4944lgzed7nWsz5mbtDC8bTlfOl evPgHFYwPiNjeVjUnijZS2djBr/Dkf6RbJcnPfsJwumQYPqES35qoU+Meszm cOkfVjvm7ZgJ+cjbS7YjIh+9wYfLPOHgr0vYf0TMl/PCuemqtS0S3kh4iDjz 1H8f6UP5e6bsvaXXhn50wZh8a+ecExu+GUn3yoyYF2tKxxkj/1EF10CCrxD/ mOid2EkF1z4rYwmmj4/FPTZq0DP9snfYsdEbOchFT3DxXZn0zJgFZ+kz2T6p 8bpeZ6/kGyDffOnZJj9j2FeyxP1EeSYX7Juifr6osW87xeYLxtdFzuMLzguX GHLhh0dMQfJL4evFL0r/XPq1SUtwvybzqEn+UsTBIY74TZqsI7cX55Soc404 X9U417YJ6+Wo0S65QD2dk7EN3w1J2/BtqvgTJL+R/aakJXi9nDn4d0h4D7aI 83Bi7AmzRYLxncR9RTHTMpYnxR7QB+ujt80bXYPnBNFPjtrwP459xIbvxiqv 7+tq7ws6awY3S3+KuanPsyR/Uuws9fOdZDfZ6hPWTysYfy+9v2IaErbhuyXp vk8teA9PjXUwh9MLjrk1aQkm/kfpG+Sc58yC8e2R57M4V9jwweN8cc7Oy1gO iDnQ71bShyV8dohlH7GzHny/cn1L7sx9W7Fbx15MKVhnvT/XOIY85xSM70ja D697zjpyh8hzdsTDPSdm9ybfF5r8rOK0gmvfnbQE0wdxxJ+vtfwme7VsuyQc O7XgeCT4An4DUDBvdtISTMwS6TWSOyn2vILxXeKcH3XQ36n3HJkzNnwbag0X SC6V/Z6k5QURDwc/s8KOjfxvKU+tfMNDv7Bg/Kf8F0mvynnWQ2MvLo7Zs6dI 8NDgw+W5QnL8l0tr/JDvyMI7i3NJwX1fzG8RGx0DH/3SgjH+S+LcMK/fqj1z 9OkF46GxN/RDHPGzdS1cFr3cn7S8LPb7L71S6m1EwvqMgvFy6duJt2vCa6U+ sZcX7HtI+nvqZ/vYC+KIfzBpPzziryiYd2nGEkzM3+Kkc35OkJnWx5yvihmz R0gwvvfrvTfUQr869pI8VxacCxu+6aq1faN95L8ucjyStP2agn3byra82s+Q 4oe3TPZrC/Y9kLQdG70RR/xDVfbDI356nF+unX+ZvfTdxF+lVt+rhEcm3CM1 6eEG6R3keyJp/05N5swsGD+WtB/ejk3WkbsnnP/6gmvAJYZ4cK+c695UcO0n k5Y3RV7iiH886bPHudsj4dgbC46/MXLTA2cT3oyMrwmuN669XfTqnfPZQL+l YJxQrY1zft5tdem3yr6q5G2Si9j7jCV4RJN1JM8zwiXmmaQlcfS2hmQf5Rwl /faC8bN8R5OcJbwr7+/KMzJmSC/09BR/+yrYd2XGfLh7Rk5ykRc/POLJB28O f+8teD1zk+7xHuGKGtvwsc5P6j1f6qLfHXPfrdE85oAN31UZz/su4d1Dgtmj 2QXHPFdlOTtqw1s95nBvxNEPcbvH3iHvjdndE3N9JnqmX2a7lnyjhEcn/H7J +zPvofcV7HuR72uSe4ozRpyO0veSvpf0BwrGLyQtwfjIl805J/qDBWPy3F9w Lmz4iO1cG3nFf0T2MbLPC/tDUeMzzWm07I0J++FtopwPF+y7JmM7NvaROOJf TtoPj3jWdF/U7ip97VrnXIdnN2RrSrhHen1JsY9J/0Lx1yn/urX+fNAszuMF 41eT9sNrarKO5FlI8j9acA24xBC/nvQWyRb+3lJw7QVJSzB9EEf8/KRj+DxC XWKfKDgeCX4t6c8s8Mizfq1zsZanC8YLw/501HtG8kv1en3G/a5X456x4dub 92zJ7uK+mbQEb5YzB//YhO3YeK6Q+e4be4Q+p2C8WPznYj/GNjoG/tyC8WtV lnOjHvzOcR7mxL6xjxnZ3uXalHw+5s189o29pC76CzE7/PBYWw/hLdTn3gnr LxaMq6TnxNsn4TjiWe9LBfveSVqC4X2j3trinKC/XDBOibNlzs8GslbWMJPv GgX73kt6ZvvH3Igj/qaM/fCIfyVmvzD4YGK+rff+UbetMXLyd4yC8TtVlgui Xqtiqmr8TCj6qwVj8syPM4EN31tJ19iw1r29LvtG0j8K+2sF+3rpdQB7nLAf 3oH0WrDvw6Tt2FoTjiOeteOHRzyzZw/elr2n5EGyjRP/EMmtct4LeqTXmzWf NyPuA/F71zoG/lsF40VJ++ENyFlH0ifcNwquAZcYbN8r98Gy5fieXnDtj5OW YPp4I7gfxNnj3MEn9u2C45HgWzM+m/A+5W9Qsk1o8jOV7xWMb89YgvG9L9lX /M/5vF3v/lgXNnxbq4cPuM8Jf5G0BE9sMgd/G5/5FXt4zPDDgvGsjCUY30eS myrmq6QleJucc5Jvv4TXc2TMBH1RwRg+XJ71WxTrZuZfcg3J903SEjxJvsMb HQMf/ZOozRo/jj1j/ZvUeD7onxaMqZeJORNH/Bc6259FL/SP/CxmvaVexwgf kLD+ecG4v/RjJQ9MuCa17+C7dsG+76Jn+h2fcBzx3ybth0d8nfQhOT+fRd7B OdfaRvaS8MHSB9Q6F3l+U53vFJvnvlew73vlXMK/b8h2kDhfF4zvyjjnVwXn xYYP3vF61eS8L98UjH/g+5fyDax1nm8Lxj8lXWdx7Ac2fPDohZ5mZ5yDXOTF Ro8807ek4HX+nnQv9MSeDqJ34QK16VF4SdI2fL8kbcNXFOfHgufyc9ISzIzg 4D804Vy1qn8I5zZyw0eC8f0sWa2YX5OWP0deasIjdqn6L0ufEPovBWP4cNkX bPju0do3LupzU4PeYzJeK2tmX/fkvVm+i5s8919lP1HyT8mh8v2pHv6o93zZ X/TfYl/Ljc7F2fg19o29xg/vPtVaWjDv1yrPu7rGM6fG1rGPf0RN5o/8I/aV +tuqx8PE+T3OFHtNvqWxZ7vqda7sxySi34JjliGFl4m/jL+/xlnFdrL0iXyn K9j3AN+JZN8u52fWlheMlycjR8Ex/9kK5jHr02L+K2L27Ndf9d4Dav1dMH4w 495ZA+vH9nfs8UrJ0/j3yyrnIBd5sVGPftBXRk8n0UeNn6P8p2D8B9+tIo6e keAh4g/T60zhI9RPh6LxP+LsKHkW97uE+XBZC354xKxSNO/fpPFqwjvwNxrZ zuY+J/6qReOV4uxUax07Et/ZEUf8yqhLXmpjIx+9sQ/sB/u0etG5OqR0ZqWv lO/RjNfKmln/CtnWkG+KbGtKnkO/KUtwQ846kr2GS8zDGUvijpJ9uOrsXGu9 omi8Wso1qT1NvBHMUXmOTriv1WPNlUX7Vg8+XJ7jIwe5yDsieMR3LPq8rpGy BHN2/+HvWDFP9LWKxl2jPv3sJv6OOT8vht6paMw6Loi1EEf8Y/xmIGbDDJFg eP/Wew3UQl87Zn1Bo/OSn9zoFYrtUrSvIuledqvxGokj/vGM/V0iZrReG0gf xT7rfjNdMZP5fhH1yck957/7TcK24TF/7kP41hJnL8lLeB/gM3/RuFPK/HVi n7Dhg0e9SyUnib9+1O+Ycp2dc67VLe5z2KfFfFkPNnzw6J01dE45B7nIiw1M fu6jGweve9HrfFJz6CV9b2IUu6H0yxS3tvTV5b9SeiFhG77hqtVDskn8rilL 8Jhac/BzT1tNsZc3+Vm8qqLx0xlLML6kZLPi1klZgkfknJN8zL9F8gpx86Gn isbw4fI8FDZ866Z8Lz8x3q9ZH+tkL1nHyJzXgt6zaMwa00XbmAF5qIXeK/Ku Kc7V8hcTjoNLrY2K9s3JWILh7auY3XN+rg29d9GYPq6Lc0VNaj+j2D7RI3vH Ho2O/SKO+O4p++FdF5+5/vvspbN9VaM51Lpd/tulHyx+R+XZVHimeNmYN/tF fFPMtm/kI//lwRtbYx3J3m0r2338/iZqZaKnHOcq52eX2qT3k/2GJtedGftF ffALGfM3KToGCe4R/fSN87SfXnvKX0pY36xo3F9yvHA6ZRu+pPT9JTcXvlE5 tpBcS7VezFiCb2qyflPsHVxiUhFLXDlh/145c7aMODjU7B8xnZTn5iY/c8da WXOVOAOK9r2UMR/u/3KSi7z44RFPHHNijQdw38n5GbSBReOeytlZ/FuDs3XR +OWMJRjfNpIHib+R+NXS7+A3UdqjA2XbSviWJktwr5S5Y1SL35mjEw9mBoOk 38Y13+DZUpd81VFjcNG+eRnzb4u5wcFPTvyDY284L5ybQ2q95kNrPDfw4TV+ Zooc42NW6LWxx/Q9S6/2hG34WCOzYUbM68DgwSF/TdE1amLGnJO6mAHzHBq9 9ElZguljtvocEnOnZ3z0hh0b+0IOctETXHybJD0zZsE5vJ33sRo/r3es4vaQ 75haxxxc6z4PlxzGOVf/20c++pkg+x3STxBnh6JxJnJuV3ReuMSQCz88YuqL fkaE50EamIF8G6cswTwrQl1qfptwffAmKccRf2eTdSTPj+zK9S59M3GOEHc2 99OE9R2LxjtJdtV+z8/Yhq9fyjZ89/DeRe+1zoME39tkDn7+n0HI+0LfJeLI g9wl+hgueaTiN01ZDo96rJH18bwMs75f3JMT1kcUjeHDpf8RsSdbpJz3gaiL zprBX2oOZ0ufzn1I8njOnPiTJB+U/5SE9d2KxsQ8FHmw4esv/tGSI2P9SPDm su8edegBCSb+OPmbc84/qmg8IPKQ46SEbfjgcb44Z1umLFkXa6ffh5Xv1ITP Dmeod8p21oNvqvSxynEan220F480+f/xNFr+ydw7xD9Z8lHZz+ZvtkXjoSn7 4bXkrCOJJc9eReeCSwzx68r+XJNrNRVde5eUJZg+iCN+gc5SQfZXxT894djG ouOR4Fd51rto3jYpSzAx68n/eJOfJ2opGr8m/ljpRfEGid+NzyBNfn4HG769 +dsi14rw4JQl+Ikmc/DTD3ZsZ/A5jc9NTX7OCH2fonFZnHHS91FMu/SnZDuT v20WjWtSluCngg+XnOQg10L1fBb7LnyKZGvRfb8u+wnkzzkneq5ojB8eaztR 9mckz0pYbysabyDOs01+5og44mvVz35F+97IWILhnVTrePKg71805jmiOU1+ Lom1soZq3iuL9vHsEvE880Mt4ogfkrIfHvEHRJ26lCWYmFPFnSs8JeEZPR8z PChmRi0kGB8zogdmiH5w9ESeA4vOdXDMclvFnsb8c84/QfbuWvObGdsPKdp3 uvQXFHdOwn54L/I+VrRvh5TtL8aciSN++5T98Ihvi5mxRritOfPp6ZVYIz3S 63biTGQG0uv5HM5niiY/93R40fitjP0Tow90JH2S/7Cia8Alhviz5Z/HdS/O kTEP5oAEvxJxxLMuzt4pMU9ijyg6HgneMeWzCW9YytcZ1xvX3hTOZM7P+6Af XTQ+V/pr3CcTnssxss+XPFayh+LfzlgeG3NERzKfY2KWzBY5P/blvUbXoNak ovFeSa/5OOFLa8w9I+ZDL/B34n4Y9dHhw+0aOScFD//xsR/HxSzZl8lFr2eE 9PMlS8KvN9mG77911vrewX0DvVA0Pk+v/XKeAzZ8w1O+r+SFF4YEc78qFh2z a8oSTHyS6zX2tFw0fjfjuIVxj8KGDx490uvI6Pm/fhP27Z9zHt5neH/mvaY9 4uBfUOsY+CmulSY/A3Vi0fi9jCUY38Xivi15XsL6SUVj8pwQfWDDNyrle/c7 cc8/VfZLZN8z7CcX7buo1u8ZvI/ghzee98uifXukbMdGXeKI570GPzziWRNr Y82XCr8rfD7f6Ro8X/aFHul1N65l6Wn53s/4M8EBOT/7c0bReHTKfnjvNVl/ L845+U8rugZcYohn9u/H/M8quvYHGcuzYr+JI36vlD+TEE9dYs8sOv7MOHec DT6zwGtNeg+ur/EeTYk9YS1IML5zIgf9X6nci6RfmLDtnFj/VMnLJZtSluAP o/cL4jxgx3aB9LckP4r3evRpReMZcKVfKHmFXgflzD+vaNycsgTjgw/3ooRz kGt3cW6U7XrhxexZ0X238B1cc/s4zhv6BUVj/PBY21XSD875eSX0C4vG7M0n cQaII/4jns2MfeMcIsHwejf4nFEL/eI4r983Oi/5WStraORMFu07UPvygeJv rfGzbMQRvyhjPzziLy2aNyZlCSaG2pfVus9rJT/jOuNvMkXjcSlLMD725PPY F/QZRWPyTC8614zYT/q8ptY9M/MrOSPSW8N+eaznOr0OzbkufnhfKP6Kon37 pmzHdknCccTvk7IfHvEXxlrHyr6xZvBlnL2Zsh3GdZlwj/QK5+qiOfRzQ61r kP+aonEuZT+8CTnrSHKS/6qIh3tNrC0j+1dNfqbpuqJrt6UswfRBHPGfZHz2 OHfTE469tuh4JPjTjM8mvP2UJyvb17FHNxSNP8tYgvHNlLxZ/PHifxv9sS5s +Cby3TxmzGyRYLhw8POMUt8Gz5daNxWNP89Y3hR7c7PkMp2zY5KWN0dtcn4b +8V6HqjxTNBvKRr/x691rVti3cz8Lun92L+MJfgn+W7jeuDMJazfVjSmzq2x Z/yN6gfhyxPW+bsV+FbpP3LWE44j/iDVmlW078CUJRgeeY/IuRb6HUXjWbXm kefWmBlzvrNo3yEp90y/VyQcRzz58d8Z9VZnJrV+Budn6UflfAY2V+zvwtdI v0v+O2qd527J+xW7VL7ZRfsO429W4i9p8nNV9xSNF2ec8+6i82LDB2+24n7l viX+vUXjw/leLPkbZ132+4rGR6Rch3r0gQ0fPHqhp4kp5yAXebHR45XK81jR 6zwh6V7o6dCUeQ8IH63eHpS8VzFHpmzDR05sD0aNh4qey9cZSzAzgoOfWszy 2Jzn+XDR+JiUJRjfI3GO2CMkeFmTa9ILM9mywft0WeiPxr7CXxZ7ig3ft+rn B+k9mnV/S3mtj0XtTrJ9KP2EnOf+uPRndOafkXxU/skp57sr9hf9idjXh/Q6 TnHXJhxHPHv9RPTLup4smjdJ+sOSy2W/TvwB6mtFzP/povH3GUswPuofn/Pz Sk8VHX9cyvnIS+1V1X+lXjcmzKdvYp6N2bNfAxu8B9TCtjLO7ZyifT/w99Ko R63nisanJ80nFzHYnou5/CX9xRo/vza3aHxsyrwHa53/+YibHGtnDcujPj54 L0g+IVlMOQe5yIvtX+6JCevwwE9K76D1zuT7TtG4xGd46Y9LL6Qswas0Oyaf c56XIwecp2rNuz5hCRcdPzxi5hXNK4u/mvzzhYuyb93guTPzV4rGP2mGz4r7 dK3t2PCtGnHEt0fdedErNvJxHtiHOXGNLSg614nivy59MPeOjNfKmln/IP4W In0N6a9JzpHvpJQluJSzjrwpYS4xv2QsiePZq+fEWVP6zdIXFo1PTrkmtSvk e54Z5Pys0LPRH+t8o2jfqcGviBmSg1xrRiw84t+MeTBPJJizW93guRCL/lbM /X3JeZJn8V24ybnoAf3tqM063qrxWogj/let8Z2YDTNEguFR79nYI/R3Y9Yv x73g1oRzU+NCfgtdtO/MlHvpLM5tCccRz9rxwyP+VemfSJ8vOUS9rNvs55I+ kO0l2c5Imcf9hlrY1ha+JeH7ED44r9Tah/2jovHZKdvIRQy2jyJvrWp1ke12 8RcVjZdqDl1lOynn/f24aDwl1sJ8WQ82fPDonTVMTTkHubrEulgT+fn3H/4d aD3N59Oi1/mHan0TXPr8TPpC8c/lb+/ybyD7XQnb8K0n/Lnk68LnpSzB6zeb g/8O8V+T3k36LOlfFI2npSzB+L6MfNjXC3xyzjnJdyffc2sdMyv0ryIXfLjU wobv/JTv5bwP8H7N+lgne/k25z3n55vQvy4as8bFRa+TGfSIvUBnLuDtGrxn 7ClxxPN+9G3Rvr8ylt/GfmeazKEW+ncRQx+f1vhcUZPaf/I9Inpk73rEntED ccRfnbQfHvEnlfW+rNiJWUtwzxZ9rpL/XcVeojz1XE8xl58k35O8VPYdZE/F vvxcNF6RsR9estk6crY4a5Q0B+GbUs5NjdP5jRzXRM7PNzG7JbL3bHbdN2K/ qA/+O2P+L0XHIMGXRT/0QU+bN9lOTvTfgven5MeSV6Zsw3cjvxFVzFLhrzWT 36M+OZHgd2qtIznDcIm5OGVJHM/HLZJ/I+F7pf9RNL4i5ZrU7i3fR9L7SN6T 8FpZM+dtWdG+y4MP977ISa6NIhYe8cT1jGsK31k51/0ruOQZpplsLP1+2VcU jf/JWILx/c3ZkLxa/H+lD9JM7tRMPlGt5dETEnxVytwpOe9pJuLBn8u/knMl uZPy923281bkI28/4X+K9nXImg/3/uDgr6i0Hx7xnBfOzVTl/4J915x3FH9n cTaLGX4p+ybSHwh9lZLxV9LP4XNrwjZ816c8G2bEvFgT6yMP+TuUXAMJvo73 qZJz3cDnxpJrr5K1BNPHYvlXk75p9Ey/PHOEHdtDCecgFz3BxTcz5Zkxi2tT 3o8tYr/6s8fivVzXocMuDe6VPn+QXEv2AcyrZN+q6mdIk2tTN1Eyvi/pnGuW nBcuMeTCn4hrsrLkedNDx+BynSLB9Eddaj6ScH3wbSnHEf9HjXUk+76ubEu4 XsT5UXKgfI8mrHcqGXeW/F741pRt+G5P2YZvK3HWjrXCGRD43Jw5+B9Wzp9q jdG7lIxnpSy7RI2ukiPYs6wleOuY9+dxDrfhWsx5v9DXKRnDh/tYwjZ8d6S8 vp9rbUdnzeAe2rO9pLeKt6Hkb7LN5r1plO7FtT7n6OuXjDvrnvvaVv7v7WPD N61bhw4jVXc94cHNluA11X+3kmPOTFuCif9VuS5Qv4+rn+4l47tTjiMHz4Jh wweP88U5uyVlyVnjOqLfauEnEj47nCGufeysB99wnZ/fa/1c0m7KXxN7UVWy /d6UZ1YXc0vGvNkX/PAuzFlH/i9Pj5JzwSWG+N0bvJfkT5dc++mkZTrqEUd8 RdZrXa3W6yU2FWcCCU6I0zPmyvlEgomh3pLY015Rn7VsJH2Z7A9IH6Uc28v+ TMI2fEOFe0v+JfxgyhK8bbM5+J9K2I7tael/8h4l/cnQ+5SM4W4s/WLNZXmt fXAyJeOHUpbgPyM3XPL3Cdv94jSzL8xF/mzJfXfU2ncQvjTn/UXvWzLGD4+1 rVSOFbVeI/omJeO9xGlo9nNbxBH/MH9LKdnXKWsJhvevYoZJzklY37Rk3EFn bUfJ5xJeK2ug581K9j0h/R/eS2R/NuE44h9P2Q+P+M1L5j0WfDAx1Jiec91V 6uwjz5Yl4ydTlltG/Gj1vLNi5ias9y8Zk2eLknNhw9dZa1xdsTNyfk5qK9kb +fwd9gEl+5jjiDgn+LeK/RsYM2YfsS+P/SWO+GdS9sMjntmzB4/CbzKHuhWS I+V/IeEe6ZU5bBOzhz8i9pIeBkU+8uOH16XWOpI9Jf/W0QfcQVF7TeErtKbn +Y5Wcu3nUpZg+iCO+FeSPnu7xd4RO7jkeCR4TspnE946WV9nveI9o1L+K3N+ Zgq9tmTcSfqe4r2U8N7Uyb6H5BDJFr5rZS2HxB6jI+mhLvaTfUfuEXs9rsk1 qDW0ZPyG+t9V/m2FN6g1d4068+kF/vPKs13UR4cPd0zkHBo8/PCIJx+8Z9nf ktfzkvS1JYcJr1VnGz7WCR4t+WLCen3JGN/VOc+hPuJeVJ7OkjtwHTZbgl9m ryMfHCSY+L01nzHC85Rnx5Lx+lnHkePlhG344NEjvc6Lnv+ry5nhs0PO55D3 aN6f+ZywU8m+V8RfR9wuda41Tjmbm/081y4l4w2ylmB864p7nfK8krA+vGRM np1LzoUN36u8t7Lfipsv/kjZuwm/HvYRJfv2Vf6xMU/88K5Xzl1L9nXP2o6N 54+II/61lP3wiGdNrI01M5d9YobIdWKN9Ii+QLG7S29V/IbKf2iTa5B/j5Lx J0n7d4/5oq8dsyX/biXnhrtHrI0ZbVzrGe4ZftaL3DNq7xb7xn7xmYTPI68l HDuq5PhRMW/65DMLvLf5XiOZk30h98OS8TthB+MbI7mh8Ft8V5JMMfOEbfja mFXJdeG0Bp6ZMwf/qwnbsdFbss6+V0NvihptnBnp+4m7v1435bzXLSXj91KW YHzw4dIPOcj1rjiHynaY8DGSY0vu+wNixT+g2c9koe9dMsYPj7X11usg2d5M WN+nZNxH+sGsMeE44lOc55J9H6cswfA2kn6I5BsJ6/uWjMl1c875WStrqFKe 1qjzEd8R6hxDLHHo2PHDIz5XMu+T4OeCN77B63+b927hW3N+Hmq/kvHnKUsw PuY3MWb439xLxuRpKznX/rEnzPbABs+ZvTsw5vdB2MfHHkxucg3q4oe3lc7h ASX7fkzajo29II74Xln7D4hemT17sCjlnnrG2dtCclbOzxnRI72mFXuw9E3l +4rPGJJHcmbEOaRkvDhlP7zbc9aR7yac/6A4K3CJIf5g5T4q9nFCybW/SVmC 6eOgmNnncfaOifkTe2jJ8Uhw76zPJjz27pAG7x/5J5aM+2QtJ8YeHy55guay lGffhI9o9v+fC9vh0dMRkofL/kXKElxbaw5+ZkVfm9S5tyPj+mAtSDC+oyQH SH6fsgRPanZO8vG8Xj/ZjxN+J/SjS8bw4b6fsA3fl8qTlz5B68lkLcEF9l/+ 4yU/TFg/tmTMGo8peZ1bc564LhLWJ5WMB0rPc/YSjiP+R9U6rmTfDylLMDzy 3plzLfTjS8bb1JlHHmpS+zvFTi7Z93PKPdPvooTjiCc//slRb6rmvG2dnxUq yn93zmfvCP7mFn1Wyz+oznkOl/0E9lW+Ysm+Xznnspeb/UxZqWTcN+uchZLz YsMHr0Zxs2X7rUK4ZPwbf9eVbJf/Y+VpLxkvTbkO9ejjP07JPHqhp02yzkEu 8v7XZ+zp6SWvc9WUe6GnX6TXiX+i8D3inyQ5RPiPlG34fk/Zhu9ExZxc8lz6 ZS3BzAgO/k8TnuW9Oc/zlJLxspQlGN+pcY7YIyT4lGbXpJdPOOcN3qcPQj8t 9hX+KbGn2PBtqn4eZB58p8p6radH7b30ukn6Jc2e+xnSd+HvT5KnC69IOV91 7C/6mbGv2+t1f+zRGbFv7PWZ0S/rOqtk3nL+zil5muyfcR01OP/n0qeUjDfP Wk6J2rweyJlzdsnx9EM+8lL7XHHG1fp5Jfj0TcxUyQbxVnIfUM4zuYckbCMP PUwr2beF6p4l/0M579G5JeN/UuZPjdrY8MHbSXhYnXOeVzLukNZ1TP/Nfmbt /JJx/6zjWQPrx4YP3gWSO8u3Sto5yEVebA+rzrEJ6/DAu0g/R3Ffyn5hyXhV xV4k/TjlHZC1BE8Vb7j8j+T8HNbFJePV0p7HtJgJ/KmxL/jhEXNJyTxmOIPf j0T88Q2eC/xLS8YDs15PY63Xju3S2APiiO+Scj7yUhsb+eiNfZgW9S6L2TDP K6XvKs4aaa+VNZ8Tvc+IuV8eNmaIBJ/XbP28mNWMqMnakTvF3l3V5Pky5ytK xuulXJPaY/n7ZpMxz15Nif5Y51Ul+zYIPtxC5Lwi9hX/VbGGq0s+r6unLcGc XXocUec+0a8pGc+U3EOyUvzdJM+X76uE9WtLxjxHcUGzn7+4JtbNrK4r2cfz FEgwvJF1fvaA5w7Qry8Z7y79sZzzk5saFcpzQ8m+RNq9XKgcixOOI37NtP3w iL9U/tuk362ao+P+8o34N8qW52+RWdu432DHdlGz/98c3IfwdVLOi5udC/vN JeOOafPJRQw2fPD2VNwovb5WzltKxmuJP1Frm97s50duLRn3TXktzJf1YMM3 PXr/r27aOchFXmysiX64j3I/vUa220teZ2fx75W+t/T1pc/ijEjvIr0k/lXN /m0qNnyP8+92kk3CXdOW4BnN5uD/TvyCYi/nfVn6nSXjbbKWYHx3SbYoZt20 JfjJnHOS73vFjuU8S/8x9LtLxvDhkh8bvvXSvpfzPsD7Neu7PfbmAL2eyjkP +j0lY9Y4u+R1MoNbJH9KWGcu4LI4Vzf7WQ/iiO+pWveV7KvOWoLhHST/0znn Qb+/ZLyP9Nt4f0y4JrUHK/aBkn3d0t4j9odnUogjfqO0/fCI598Z+W0N/9Y4 TvZncs45tKz+hI8Q/0TleVz8G8R9WHJf2bvLfoLs1zX7WZVHSsa1WfvhXdts HfmLOK/KdqTwpmnXeqjkeq3Sn82Zk+MalP36ZtelJs+nUB9clzX/0ZJjkOAN ox/6oKe2OudakrD+RMn4GckJkpm0bfiq0n7W5UnhmYp9KtbaI20J5lkZdCT9 wCWGZ22QxPGsDX3f1Oy6T8c66G1C1KbX/fW6k88JCa+Vvqj1bMm+VPDh/hI5 yUVe/PCIJ+76qDU+8pJzTsk4nXZMW8xhbuRIhX1urP/5uA64dl6SfohsfdJe 03PCN4cEMyu4t8Z1hE48eLLiXojr8ED2SLbfEs5H3tuFXyzZ1yttPtwfgoN/ acJ+eMRzXjg3c3I+r7PizB8u+6F15h9c57P9U+jz4qwfodds8X9P2Iavd9qz mROzZk03x96R/+WSa7wc1wfXyysl5+onfUHJtTdJW4Lp4w5x50u/J3qmX+pi vyfOPznINTu4+DZOe2bMYivpR3GvkP0P3hekf8LauW9yT4gzM0n2t2R/UHhh yb4hWfufy5nzesl4s8j5Wsl54S4MHy94xLwhebR4m4v/pvSTxRuatQTf3+y6 1Pwz4frg/mnHEU8ddCT9fxhx5GTND8VeoL9dMn5H8ljxt0zbho/ZYnsnZv2u 5HGSA9KW4Lk5cw6PM8DaHo65vRdr5T6DBON7X/IUrWfbrCWYvWKN9Mnvln9p co0ZoX8QteHDpX9s+CakHHdnrWPRWTP4Cq5p3UPfVJ+fyVYUHqR+HhDnsXhf QF9UMj5J/mPqfL1gw7dF2n1/FHvzUayDOXxccsyQtCWY+ALXoGouU55PS8bb RJ6jY1+w4YPH+eKcbZ225KwRS7+PS/8r4bPDnnKWsLMefH9qBqU6/57zNM3n ibh+vyjZPjjt8/JknJkv48yy1/jhvZizjvxfns9LzgWXGOJPb/B+k39xybWP TlkujnrEEb+99vcRxdxf698nE/tVnDMkeAdxvi6ZNzBtCSaGesfXuedvoj5r +Vb6CbLXSj85Zs2ssOF7WrzvJO+W7Ju2BD/TbA7+5Qnbn4nPM+2yT9Rr1Urr 35eMT9HrB67NZs96buzFjzF79hQJxgcf7oqEc5Crhu8Ckh10Dk+T/Knkvoem HfNyzjnRfy4Znxw81nZq9EFO9F9Kxmdqfs83+3ezP0f9bZVzScm+hqwlGN7p nEnJvxPWfy0ZM48XYyY/RG7y/BazpH/6bo/5EEf8Dmn74RG/tGTe9sFfGus/ S6+X5V+Z8LmeF2f7j5Ix1w4SjO/MOl9LXIPof8Y1Rp7fS86FDV+DYs+WnJfz b1OXy36W1jwsa/uykn3sySuxL/iXxx78FXvLXmA/Oc4SccTvmLYfHvHMnj3Y TvbVm82hLnN8NWZLj/Q6TJy/Y/bwiT819nFl5CM/fnjP1FpHsqfkXxF9wF0Z tafqtUD4H3H+jT1k5kjwqxFH/Akpn73TYu+I/acU8SXjXdI+m/B2Tvs643rj 2pum1/yca6GvUjZ+g/XmvKfnklv212RbTXKK5rhT1hK8sNn6wvgcApeYEWlL 4v7l+ybryllfvWy8qzjnS64h/Lp45zS4NnXphZ6Gi7Nm2b6ds+bD7VDpHOQi L354xJMP3kjFVoQNnbmsJfx2s234WOdU3n+b/Rtg9Mqy8UXK8RbrrrQN3y7q 4QLZE1EDCd5N+TuWHbNH2hJM/IV1nj971KlsvHvaceRgLdg6xT7RI73uHD2/ HefhYuaZcz+8X/L+zHto57J9o8S/RPId8VcXZ5r6fTfm36VsPDxrCcZ3qfgL c/6dLXrXsjF51i47FzZ8e6U9+/di/uvJvg77lrJ9nbJ95zZ4b6iLf72IX7ds 34is7diou07sP+cB/7pxPlgTa2PN7MeCWu/R+eJ8GPtCj/S6p2K7RX36vEy2 NxS3hjgblI3HpO3vFnuGfkHMn/zrl10DLjHEz5D+gXxrirNh2bVHZi3BH0Yc 8ZwBPpPweYTfyhLbvex4JLgx7c8s8JrTnu+i2K+qmPeosIPxJemX3wqo7jWK +1S2jpW2JWPvU5IbctZSlqmoAQc/s8KOjd7el/5WrX+njZ4uG1Ovp/Tp4l2t 1yfClYrtVTbeO20J/iR6h0v/5CDXaHFul21r4R+ENyq7731kv0ryM9kSldZ7 l43xw2Nt5H0757rofcrG19Y5hlji0Mcq58Zl+8alLTcO30V8zuGar7SeKRt/ ode7Oe9pz5gxe5Et27cv30kVf12dY4kjfo+s/fCI71s2Lxd8MDGX8FlIvLs1 25mcM3E7KU+/snFb2hKM70bpi8XvXGl907IxeTYpOxc2fPsp9lLZv44ZbhFr Ghf2zcr23Szu+zn/3hU/vG8lNy/bNz5t+7cxH+KI3ytrPzzi+8Q+M+fpDZ4v dW+T/F72LpXukV73VGx/6Vn2M+W+P6v1HAbEOpgV/v7RRzZ6pU/ybxl7CZcY 4unxhtiLrcqufVDaEkwfxBE/Ouuzx7nrWunYgbFPA2MGrJ2zCe9g6bdK/ij7 2uJvUzY+MOxgfIOiDvYr+NzV7N/Nfh++DzWrwZKzFHNI2nJw5IKDn1nNUOxP 3CulV5eNG7OWYHw1kj9LHpq2BC/KOSf56PMuruM650GvLRvDh8tZwobvMOXZ QfqVqtGStQT/Lu5s+X/lHl1pfUjZmDXWlb1O/kb1G/e5Suv83Qp8t/SlkutW Oo74w1Vr27J9E9OWYHjk/TjnWujblY3vrTOPPNSkdrP63L5s35Fp90y/3Sod Rzz58W8f9f6R7cucOQ9wn8z5NzbXKnZF9Ml8l8X8kTvHjBpi9uzd1Q2eNXMe VjbeO+uc9WXnxTYs9ntQs33U2rFsfGfKs/ul1udkp5gle0Ed6lEfGz54O4ft mLRzkIu82O6Kvd697HXm0+4FP/yHJHfhXqDehks+LHxc2jZ8k9K24Vuu+BFl z2Vc1hLMjODg765aj0r/Imd917Lx5LQlGN9Iycfq3A8SvLLZNellA8Ve1+Ce u4W+W6wBPtwNK23Dt2/Wzz7w3AP3DXismX19nbPAtSH9cT5nRe0xkh1a9L1Z PVyvHP82+/e96KPKxk/WmVNV6TjiC2n74bWq7p5l80qyPyW5ivhJ8Z+Qvqr0 HtJHl42phQTjI/dXOeffq+z4ctr59oz+5kvvItm70pi+iWmUfFq+dt5H+Fwt X6rSNmpQt6lsX059zpHt65x/y9pcNj4pbX5j9IcNHzxmvGaL59wS+8M+3tjg vWR/x5aN98u6d9bA+rGNjb3fW7JesY+knINc5MVGPfpB3zt6Yu5/13ov9ol9 YObjIo6ekeNiP+bq9a36TauffcvGp/Adivcc8XpWmg+XteCHR0xr2bxTxX+R 91jh72S/mc/zsXe5svH4rGe8VswZGz54xBF/etQlL7WxkY/fyrIP7Ac59gvJ 3h1Ydk5iWStrZv23iL9/7PF4yeHyPZ2yHB/10JHkh0vMAVnLp+MMVCj3anX+ XfQBZeOT065J7efke4X7lvBGlf/fH/6DyvadHXy4qchJrtUiFh7xB5d9Xqek LcGc3XnSu0r2qrR+SNn4cMmFwuemHf9Dzj2gH1o2XlDnGGKJQz9L/All+85J W04I321a+zqK71Np/bCy8bp6/ZTzeTg0+iXPxLJ9U9Pu5dU6xxJH/EFZ++ER T65jpW8oeWeDa9PbEdzXhQ/J+p7D/WbjStvWb/Hve7kP4TtPtd6Q7CZ7Rpyj ysbnp80nFzHY8MG7Q/YNYoZHl40PVa23xPkl59+sHlM2vjDWwnxZDzZ88I6N eTA3cpCLvNg2jLnx7z/8O9AG4kwqe50T+Pcv6e/LPl3246Q36fzN5zeczX5e gucssB0XfRwf62B/keCudebgp2dqLoyZT4650j9ycpyPvOQ7khenLcHd65yT fMyWZyyqWvycBXqhbAwf7oKEbfh4voP7wWNxT2B9k+I8vadXUnF9K62Xysas sVj2OplBSnKTSuvMBfyu9LRkttJxxF+qWu1l+y5JW4LhkffXnGuhn1A2/qDO PPJQk9pv8tuesn2Xpf1cIc8U9qt0HPHkx39i1OP/mTiu4P9vYi/5l+Z83i47 Qd/x+ur9s6M+p4t3hvhZ+U+RXCR8hfLco/y9W/w74VPLxkdk7Yf3YZ11JD3M kO0wPrunXOvksut9Kv/GwpuL8xn3SNkzLa5Lzc0qXR98Vdr808qOQYKvjn7o g57w/Z5zTvQzy8bnlD0T5nNm5CDn59wzosbZkvfybwZZS3DfFuvILSvNJeba iCWOPr+S/DPn39NOKRvfkHZNam8qeX+D94C9Y62s+RpxppbtOzpr/qaxd+Qg F3nxT409Jo45bSHO+GbzqDutbPx+yjkWxfzPi/r0gzwv9vJ83s8lb5T9It73 pN+c9hzP5RzWWYLZd7h/5fxbx68jHvyN9Aukby7eg+pzC9ZQ6XzkXS7OhWX7 js2aD7d/cPAPqLQfHvGcF87ND7xP6rWlbAPFebjBc2fmD0nv3/L/+iVlY2JW 5PybXmz4JmU9m2mxN6yJ9XGGyX9x2TWQ4Fv4/hv1b5N+Wdm1j8taXhbngHMx XfrA6Bk+dbEPjDODjVz0ND3OFOeHmTGLm6Rvxr2hzr/9flr5b5NvSZ1zLK5z nm2kX8PnHuW5ImrS20/yr8z5959Xlo1nRc7Ly84Llxhy4YdHzFWSPwvfwfcU 6Y+q9uSsJZiavKi5daXrg+ETR/zWLdaRW4lzk2x/CN+X9hrwYUe/NupdJ/m4 ahSytuG7K20bvsHKdb1kteTdaUvwKm3m4N9GOZcq7tc66zeUje9JW4LxzZR8 UjGlrCW4tsVrZC2s63fxVm3z7yrRbywbw4fLb5Kx4bs37fXVyT6o0jprBlcN 0bmQfqD0WVGHfv4UZ7U2/94V/ZayMesYGmvBhu9+vi+o7s3CQ1oswWX1f2vM hlkhwcSXmh1L/tvLxktSjhsS+4Lt9qjB+eKctWctl8Qe0e/gOq+Xs8MZmpm2 nfXg2176mm1eO7WXxvzv5H4g/UHxl0tuRy7+nlA2fihtP7w12qwj+U0see6I /YNLDPHPNrgetWaXrZMHCaaPO2IGzG1FxFOX2LsjBgk+Ueu9p2zew8G/J/qb w98xWvw71XvLxifxb/TRC+uqb3EM+bHhw3a/5Bl8P0lZ3h+zgFMfc8COjfX+ LVlf59+Ioj9QNj6bvwOVbaOXHevcz0NlY3pGgncM/t+R54GIe4TvLOr9ZeHd iYkesf8jf4P06krrj5SN64PH2vh93rAW/6YO/dGy8co6/3aO3+ARR/xjfE8v 2/do2hIM71+9KtpcC/3xsnEHXSM7Kl9NpdfKGv7V3J4o2/eE8jzHvwu1+Dd7 xP0Xnw5/2fFPls07OWsJJmYVcRJtju0qfWfZhvP9t2w8P20JxjeX71+StZXW nykbk+epsnNhw3cK3/Vkr2wz/znZn+fzR9ifLdu3uvThylFXaT+8EcJzyvY9 k7YdG7/9I474p9P2wyOe2bMH/F5xDdk7tjlnQvpu3Dsq3SO9PklOrgnipb/A vy20+PeKL5SNT8vaD2/XFuvIIZXOP7fsGnCJIb5C9rXazHmp7Npz05Zg+iCO +Gfj7HHu+O0isS+WHY8EP5f22YR3etbX2b1xvivl79TmdaHPKxt3lr6X/NvJ 3lH6K7LvITxf8iXFn5G1BI9qsY7kt4hwiXkhbUnctsqz1hBj9AVl4xfT/u3h q8J7tjgHv2skD73Q0/PivBZ1Xgg+XH6vSI4FUQ8/POLJB4/fVS4sez0v891W 8i3hdYfYho91dhriebLX6G/EfFvk69zmOWDD91Lae/i68OiQYPbizbJjXk1b gol/WfMZE+fn7bLxmVnHjY7zgA0fPHqk13nRM/1uX2nZ3GKd92jen/mc9k6s ibqspyX2bp0h7pl1vVc2XpC2fC/W002vvcXfodL6+2Vj8rwb68GG7/W0r5N9 4lr7SPYNmFfYPyjbt/4QX19cs/jhrc37cdm+hWnbsVH3g7j+uB7xfxjXJ2ti bay5u/Rx3DvFf4W/+cS5ejf2kH35WPo8+c7SbDcUv0ub+Z+Ujd9K2w9v3xbr +8Y8yb+o7BpwiSG+h/RW2Rr43lR27bOzlmD6II74N9P+TMLnkWGVjv207Hgk +O20P7PAeyfte19b3A+/KBvPDzsY35eSvZhL2vUOiLVjw8f99SvJNPuXtgTv 32IOfu7J2LHtWOl1jo95oi8uG6fE+Tr2tadeffTaSZxvysYfpC3B+ODDZR8X x/w4DwNlWyE8QPLbmBNrP6TFc2Ce6N/FXPDDY20bR23qon8ftRvlO7TF/xZP HPEfK+cPZfteSVuCD405dRniWaH/WDZmBgfFHFgra3iPz/YxM/TesTbW9WP0 xdrxwyP+57J5i4L/c+TaSK+D48z0lX6Y9J35TF42/jxtCca3n14T4xpE/7Vs TJ5fys6FDd+7is3KnhziM/Z75Pgs7L+V7eun10my71JpP7wjJJeW7fsybfsR 0RtxxJMHPzzimT178InsQ4aYQ93j5Ova5j2iR3r9iM/eseffSz+mxTw4y8rG 36TthzepxTpy10rn/yP6gEsM8f2Ft9BrhDjLw0Z+JJg+iPsvPs4eeclJ7F9l xyPB36V9NuH9IH2+ruXjW/x7g7/LxlOylmB8KyW3Fv8n8RfIXmxxP9jwTRb+ R/JIya/SluB8izn4R4q/lfRNh3hf/i0b/5i2BOPr0K7P+JyntCV4nTbnzMe5 GiR7Qfpuoa/SbgwfLrWw4fuFzw/SS/IvSVuCWf9gvdZt87/Xo6/WbswaV233 OtmfUuwR+uqR69UGz5M5EEc8+ddot29q1hIM78tmc6iFvmbEMN/r6zx/alL7 HMVWtNv3Q/Q8MPaUOOJb0/bDI/4X/l1yiP+ttlayXb7d+d40xPNl5szohJjb QtVZW7EnCneM+THzmiGeIzNcq934t7RzVrY7L7a1Yp/It36bc3ZqN14qft0Q x9BD53bj39Ou0zF42PDBoxd6OjdrH7nIi40e+R1Ct3avc0LavRBHrW1Zt/DJ XJftPm+cK2z4lqVtw3eK5DrtnsufaUvwVnFOT4mzyiy7tXme67Yb/5W2BONb L+bBfJDgU1tck172UOzrDZ7XyNDXj5nCPzX2CBu+87T24dL3oXZPr7Vb1L5I 3GrpPds8jw2k36l9T0o2cB2mna8uZo7ePeZer9fpwqMqHUc8e9E9+mVdG7ab 93fa974z4v65wxDfW7jvVbUbr0hbgvFRv3ub/328R7vjuReRj7zUPkevC/Qa XWk+fROTin1jL95s8H5QF9uZMcN0u30XaD5/NjueWj3bjY9Om08uYrD1jLmc Jnx/nX9T0avdeHnavO2HOP9GEbcy1s4azoj6+OD1ltyJ+1FP5yAXebGdLbxX pXV44KP0mtLiufVpN16s/BtL35H7XdoSvJnkznr1aHOeTLvxKqq1yxDPjrnB h7tnpf3wiMm2m7eq+FPF3US4Sva3G4zZ977txhdxxoaYT05s+P4Xh1w16pKX 2tjIRx72IR3XT79251pN/C2kv8vfRrNeK2tm/e/Itqn0adI3kxwh/uo9LcHJ NuvIMZXmEnNx1pI4/i1+V3HOld4offN24zV6uia1z+O+Jluqzf+WPTz6Yx1b tttXEfzzYr/IQa5zIxYe8f1j3cwfCebsvtfguROLPiD2aZDkntwTxV8jctED +sCozTqerfNaiCP+Uq1xq5gNM0SC4VFveOwR+tYx61FxL2iudG5qnMh7Zbt9 HXu6l4tlb6l0HPGsHT884hu5rqWPlvxIvcxo8b9fD5ZtD+71Pc3jfkMtbJcI N1X6PoQPzl5D7MNe027cqadt5CIGW03k/YB1yzaW96l248s0h+lca23e37p2 486xFubLerDhg0fvrKFLT+cg16WxLtZEfu6j3E+vk31ou9d5uWrt2O71Erut 9Cbxukr/uMG9shZs+HrzHViymfeJnpbgy1vMwb+3+IsUe0XMZ/v2wFlLML4d JMdy7+ppCe7T5pzk26fSa7gq5oNe3x54iLn823R9rJU5cy/nfYD3R9Y3NNa2 XsTARx8WtVljQ+wTvNfqvO/ozAV8VcyRHogjfprO2E7RC/0jd4o9GKfXNcL7 VlrfuT2w9GslWytdk9pXaia7tNvXvaf3iP0ZV+k44jfoaT+8a+MzF5+9+OxK 3kybay2Q/Uvlu17658q9h/CN8u8q2cp7j/J8Kvv1suXEGdlufHXW/l3jvRYd SQ/7y9ZP/Ouj1oh217tBet8279F+vMfKnhviutTk39mpD742a/5u7Y5BgntE P/RBT/srfpM2/7sw+qh24zGSBwr36mkbvpT08dz7hW/impL8gn/DyFqCb26x jtyv0lxi0hFLXFul/f3azBkdcXCoOSZivlSeW+mx0mv9P6bOOk7K6m3jM/ZO rN06KMru7Cp2wK4Bu8varayiYqEgSkkYk4oCKiIqomKLiYDdjYKA3d2Iiq1g x3t9uW4/7++P53PXddd5znOec2ZmgZ7XF+aggm3XdTEe7H8xiUVc7ODwx49x YvxPYM3v6++aDy5Y7qyYC3v6HjD+vQuWb+hi2jvuZQfPveJdrvvSR/wA3n85 j+MhkqcFRea+gyU+ueA7Ih/36lDWgu72OSpqIx5xN+ceRzxqAw92k8Bg5ztH 7IfFuDBfmDcDxZ+oa7rkY4T5qqfHiPH5UvyM3v/PH1GwjE/Xvv4eGR22G7u4 VsaI8aKnaTGHiX94wTmgyF1U55GRv078UQXnvqmL6VExn7gffcXP7O2awZMX /cy41+iIRU194x4yDw+NZ4s5cLvogu7+7cFQ4YfJdl/E6N/kOHcx/tJvpTjH Rk5qO1n2Lfv6O9njCpbzEfOYguOCxYdY2MHh0090kOQG4Y8X/zVztIspMjm5 yMn4nxA68Pjhf2dv89BjhRkk3d3sTYQZ3GQbevj+kW+A6Dd8V9rFOmzg0Q0I /xMjNr3cGfI9vY3BzvfO2/V2P/Q+sGB5+oamA2MsThIdwn3JmSL/0N093hXz asfetm0T/MnhwwUWPTpsd2zo/D93dw3w9Iz8uvjb2YuIDhcdzr3J+Xuae3v7 +xT4IQXLw5r8vQvfy6DDxncx9Dk4xmVw9E39Qwv26ZozRcb/FPFb6x4dx5m6 YHmLXMSJ8UeHDRzzi3m2ec6UuYYv9d4vvl+N5w5zaJOc9fSDbZT4kbqOF+Zb jeEDvf190EjZR0i/Vc72B3sbM6pgeeuc7eC26Wse2i/ijCg4Flh88P9O+od6 +/ug0wrOvU3O9LSIix/+t3Xxd0IP9/bnk/ieWrA/FHmaMKcXjOM7FygyPuD4 LoZcZ4QfNRfiWWTMT5f9CZ7JGuuwPSJaFC3K1i1nWoz7BOaRGFv06LjXp4o+ yfMcfKlgmZ7L4h8jdpPHiPGpFCzvmDOtxFiDfyzGmRjE2laYH9nvS35OtmrB dW8v/RlN5qkf/sywcYF7Isbv8RhD+LMKlh+Le08u/PDfQTFHR73Eh46O+3QW tfT1b7fgzy5YLomfI9yAGvdKD8yZcwq2dRf/vep/KsYHP/x3ydkODv8xBeNu 72KKjE9ZmO36On5F/CzWDvHjCpabc6bI2H7gO76Y8/DnFiwTZ2zBsdBhm97F uZ+N+sdLP1q4XXPWn1ewbXz0T+/Ywb0s/fkF23bPWY9uYI398KdH7OdHz2fF 3GTOj5E8T/xJwo9tsryUL7jWJmEmiJ8tzM6MJ/e3yb1fWLDcM2c7uPm9zc+P +Uy8CwrOARYf/LFv39eYiwrO3ZozRf7PD9oSc495x9kT34kF+0+MnGCYm+Bm dPFzxvPGs3eurudZf2vMX1KwPJmxbfK5aa74SdK/IHqp6Djp23KmyGc3mYcy tmDx6ZEzfSHmA/F2iLPY5ILl9pz7v0zyi6I/9fRYgKcWauolzOUF22Z2Mf7F uC/EIBZxsV8e435ZjCvjf0XB/dTm3NvVkl+NHq+IOog3Nu4v/JUx7hN0vcL7 psY6bNTMeE+RfGCTKTL36KqCffbMmSLjf0GMEeNzTcHyHhGHGNw7dNfE+F4d 96Etan417hG0W1/zvKPviT3AtdETeS+Muql5scbktd4+311fsHxnF1NkbBc1 +T06uMb8DQXLxLku+kGHbZ+cn6E34jm6SfqLpd839FMLtk1s8nPF84gdXHfV fWPBtr1z1nePc9DUeF55TrHfGM8tPdEbPTOOb8a9eDPqg6dG+L3ke4v4Jewz 1OMNvZ2D+LcWLK+Xs/2WuAfwF8R9If7NBccGe2v0xhj1bfIYTgs7/UKnRe6b 4z5zTxm7t2M88b2tYP/bYryp8/YYY8bh5hgvxmp6wXIu9NNjvGaIThLdX/q9 WvRc8+/gJqzDdqzoTNHb5LNxznRm+HBh56yEflLwb/Eea/LZFv6OgmVqv1P8 JeJrletSqHLdVbA8psYU+dLAg6VfYhBrP859wjwj+T1+F1Rw3U8L847sK9Yt /W8WlvL3FCxjB0dvq4ifrJgrJ8zfW7C8knDPd7EvfvgfoFz3FWx7psYUGdy7 jLH8V0mYv79geTVdlyneqgn3Sg+M7QMF287jWeP7jy72xQ//A3O2g8P/wYJx EwKPjM97wq4lnEpJrC16ubCri3+4YPnCGlNkbG/J57UuxsM/UrBMnIcKjoUO 2yV8TiL9+tKtIfzj1Cb95NA/WrBtXV1XKPaaCdvBvcHv+gq2XVRjPTri4If/ wTnbweHP2HMPxvEZEXNT/FrCdxK9UvZ1E66RWg+S75PiN5BtEnjFfruL8U8V LF9RYzu4KU3moWsnHP+JgnOAxQf/D5nX0q0jzNMF576sxhSZOvDD/5CYe8w7 8PjOKtgfitw757kJbo7ifCRdSoO/nvCzC5Y7cqbI2OaIdqZW4TcVrW9Z+s/X LdVhu0o1PCuaFvbZmqDk62IM9vWF/5jnQzL/VPzcguVDc6bI2OaJfsrvPWtM kT/u4pjEo87PmC/UEfz8gmXwYImPDtu1rG/i8y3+rAmK3Cj6eRdjiAP/fPjQ 43MF98lnVA0tS786WMrzuVVDjEE+xgE//K/nHRp+5IW+GLm/6GJ/4sC/VLC8 UNdmsndKOCe5r5LvywXbboiaGyMXfvhPrbEdHP4826/GM/tlxCXmJxrbP7p4 PflKdHPqFt9V9C35biH6WsG2m2qcp2vkej3GiRqI+WrUhA4buGydfYn5RsHy POEXSXeA7BtJ/2bB8s01xpKPOtBhOyBqIR41EOONqAndFlHPh7GGsdZRCzXd KP4vnjXJV2uevSO6izD311iH7cEa67D1EH234HE5LGeKzBiBwd5ZuX7ns8Am v2veK1geVmOKjO190RVU66waU+T7ujgntWwi30/Zm7Qs/a8RlvIfFCyDB7tM wjpsfVTPKkWt8bJ9UuNeP4x1dnfx/4qfqrinif8o1v0F8XyztrBWblfntRT+ 44Jl1sR3Y63DD/8famwHxxr+SaydrLE1dV5vicN6tE+se5/F+sR6C0XGRv5r m7zmfFqw/+wax/sk1uhtomf6BU/d+HweMcB/1tu+5N0n1kHyLizYdnjOa8Sn 8Yx/EWsGaw74z2OdRfdFrCOFFq8drBtfFiz/XOP1Ysc6P/tfxfpxTfT+abxv 0GEDtyiee55xYnwZ611DPNs81/CL4vnM1HlNIP7XBctz5ftNPK88v1Dk/Vt8 fRnP7LehAz+6zr7E2SxwYKDfxjPwXcG4XVOJxJbcW8kHtfgZezae9+/jmeN5 qRX26y5+NtFhezb88L8l8n4XdaMj3sYJ34eFcY9/LDjWfOGXiL9e9/PInH2+ jjVxZfE/iT+QcWfNk/8ROVPkz3ubh/LcgcXnuRpT/BqkX1X8dYq/mfjFBcsv 1DgnuQ9p8XOFzLNWG/XR5y/xzM0K/CHxPBKDWMTF/kv08GvB83Vajemv8ZxT 43ddXCf8bwXLf4sezjpa4/VjjTpj4H8vWF6zzusCa8Jv0Tdj9UfBtldqTP+I NetQ+R7GPUyY/7NgeaH8vujtMfk91jPWt78KtvXNuZYb1EfXhP3wf7nGdnD4 b6Bcy2qtWU90Q11HC7OV8P/EGnNUzmvO1FjHoGvXmWcdwvZkjefFcnWeG4mi Ze4deGLhgw4bOHJzX6k/WbRMrr7CHKNrS+mXKVp+s8a9ML70gw4bOGqnh7dr HINYxEVHT40Jf//D90D8HmO5ovt8R/iM+M7sJ8QvX3TvxPmSPV74osN2HOtW 0fp3a0xXiNxgjotx6yT5WPFbi1+xaPm9GlNkbCuJbiz5gxpT5BubHHODyAvu +IgDX1O0DB7sNgnrsFEPa/lKcaagv+Win366+rcYD58uWqbHVPTDGGxU5zkG z7ggb6LrBGG3TdgP//d5Lxdt+6jGFBkc14mBh68tWt40chCfnOQ+Wvdi5aJt H9f4XTeA91bCfvhzX7CvHPfp5R11hjjY/8cofxfI3wdexu+Bi/YlToNwa0k+ WfJqonWs4+zBRAdKt73ir160/FmN7atFHfCbRp0N0vXgWa1xbHKc1OIYgyJO nuc5cpCXnDsknB/58xrj1yjaB4r8Xz2rhzxY19DwhV+7aHl90a7sq2qsw7aQ 94V060huFF1XdHPRL2tMkYe0mIfy3+WBxeeL8MWPNQH7KYFZL/zAkHP98NlC 1zDpuyXcKz0v4PxStG1R4Df7n5jEIi52cPjnY3wZ26903xb19jO+YdHyMZz3 +fxQ2J14joqWjw09MraNRIuii5l7sQbwLO+s2DnJNzWZIv9eYyz+xCyGP/JR PEviu9W5lvXrXA/xiNvMnC3aRg3gwW4WmObAYweHP/OlIZ7tXWI9ZU04S/jR unYRX2mx/B/fpWiZ9WOXwKPD9muNx2bDqIOe6G/XhLGbxloGRf6D+RxrFWtO PmKjhyJTx67sI2JtombqZX1Aj441hxh1ERcstj9rPGaMxVs1jnV29PK16muK uXh85CAOz/+W0vdk7GINY91jDeoReTePNemjiNlYdFywm0Vu7JvHM9k14v0t /BaB5TmFIp8T6xAY1qItYx1iL90z/Fm3esYaB2YH6drqWKASiZY6r0esRfBb xV5864hNXnTY/qmxDtsY1tlYJ1hbTgoZHJgxMVatdX7+WUO2LVr+t8Z021ib tot4xIcij43xPifisKa0Rpyla1LEAj82MNvH2sNa1BbrFOsM/A6xTpV0jRA/ i2dP9BDJq2ocLpF8C58/J8x3K1pmbdov4qDDlk45546SxwVFpq/usZ6xRkGR 8WeNOLjO609zrBmsJ/iNi/rRYQPH/GKeHZcz3Tx8D4l1ijWqMeY4cxX9TrFO DZfutiZjLhd/ha7deI5k/0ax+uWsu7XJ+l2LlhkH7OC+7W0eunPE2TlwXPjg T55Dop6eRef+usYUGTt++K+i+GWeEXpI2NYj7kGPwB6v2lqKxv1SY4qMD7U0 1bme1qgRfJv4PrwLFf9m7qOufRPWYZvGfRWtSv9bjSnyNS3GYN8zYT061pzv FHunOt8X+Pai5fMYS/Yi4o/T1U7t7LuKljulTJHbA39sxCEGsU5QzdOlP1zy DNE9iq47J9/xLfYnJvyeEffmwNFbP+LzTCfM71W0jO3W6B0//JdTzL3Dj9qg yOAmRCziwO9TtHy8rj11SbW0V3pYRr77Fm3bOGX/2yIXfvivkLIdHP77RZ6N Ao+Mz8QW44h/gujeulrFH1C03DlliowNn2mRC/7AomXi7B81HRixqe3iFvsT 85DAdg79QZGjP3UyPxK2g7udZ7Ro2yYp62+PvPjhn0rZDm7fGHvGjB4ntdhG zBOpifmRcI3UupIwHeIH8B5LOfb0iH9o5CcvdnD715mHsi4Rv3fUBxYf/Ce3 GAemT9G5u6RMkakDP/wzKfvMiLz4HhY1QZFrU56b4KiT54znjWfvshbHpS/4 IyLfUF3T9RwdIP1A8UdKf5Bo35jj1ANFnhn5Z0YNYPGpS5nix7p0JeMfa9RR RcurC3Oy7EdL7hD9nu8vmFsJ10JNKwtzTNG2/jnjwe4eMYlFXOzg8CceuLx8 jy26n83F38Ncknx/i3XY6PMHvpuSvEfCfL+i5VN0zeA7voR12Aaohrt4riXf GxS5geelaJ8tUqbI+P8ovyHML8XpX7R8YsQhxv4J67CBo0Zq3Sxqpl7uxQjZ ZireQQm/o1viXT+gaNtWwt8n/YMtrvknxRzGM8l9LFoemAtatO0BYR9qcUz4 k4qWiXNi0bHQYdtS8UfxTtK1D3t+6R+WfpvQn1y0bWSd9TryLKXgHhUdVLRt 65T1jwYGP/yJg31QxKUneqPnU+uMIe/poo+3LP3nwJbWSK1d5TtU/GmMifhH pHuMtUCYYUXL26ZsHxoy/COBIf6QqAMdPvifUWcbeYcXnXv7lCkydeAHhvjs SdiPnJy07ylhgyLvkPKeBVx38XsI+xTPpuKPLIZcY4qMbRTvUPYRKX/fNqLF 52V02JanRtEzeZ+mTJGrdcZg5/Mi9OguEP+0Ysxu8efD8KcVLT+j63TxFeZT nX3An1G0/E2N6RmRDzxY6icGsZpVw/OiF8RzWCi6br5DJMdekRe+WLS8YuDo 7VRddzT5c1T4UtHySO5h3dI/j1/qhz/9lou2fVtjigzuZ02QraN++ErRMvfn zibfI3qlh50Up1q0jXEutXjsGDf88D8pZzs4/M8sGrekxvTMuE+Lhe1e57Mb Z7+zgx9dtMz5DoqMbWydz0jsVeDPLlomzllFx0KHrVW1zZXvc7o6wEs/jvdU 6M8p2jaf56PO+yvs4MaIjina1pKyHh2fZeGHf4+U7eDwZ+y5B9+r5iktvq+s vayzdzV5raZGaj1Z43Nu0fsu9m/n1nlPxn7svKLlXinbz41+4MdG78QfV3QO sPjgTz8vRL/jY41nbYciUwd++K8Wc+/keEfge37R/ufH2DCGF0Qexm1Jb48F 4zChaHlQznRCjO+For/w2wDpf4XWed1Ghw3dRNEJ9JsyRb67yRjs4O/htxHR y0VFy0NypsjYLo56GasXQsZOTOJtpXl7d4wRYwt/SYwveLDER4etUXGmiP9N NQzNmU6JdxXvn/HRC/ylRcvUO6noPi+MPQHvIPjJ8U59WfjX2HMk7Ic/79nL irbtnjJFfi2w9zYZD3950TLvtwsj/qQYS8bkinhX8z6lZurlvXZ5xOPf78IO Dv+/hfmH72SFeZ13mGL3Ef9nb6/1rPO8zyZGnD+kvy7eSVfFu4536O+9/e7h nXh10fKwnGNeWXRcdFfHe/dN3tH8XkX4a4qW9035PXpxxLk23qu8+8hDPupA hw0ctVDTKTnHIBZx0VEj78pbiu5zZM61UNPeivmu6PW8p/nNT7xveQ+iw3Zg yjpskxVratHjMjxnOjXenWAmR6732UvwubX4G4uWD06ZImO7Kd6TvBOhyJfX OSe1HCnfv3r7fdk7+JvjPQr+8rgv6LCNUD3viK/RBD4z517pmfu6gnRzeZeI fiffWxlTfkcj+pPkgewrJE+LXPC3FS0/2WIZPX74n5CyHf0o5ZpWNK6b9C/x bqrz+kbu8+s8r6ZHLeChyNjIv0TXicLcXrT/binHmxY5sD9fZwx46kY3kzWN /ZPwd7Hu00vCupl1fl7uKNo2iD0hexTFOwlM0fKQVOCL9kGHDRzxfo2YdxUt k+vf3vYh/t1Fy6fmXDs90D+6u6O+e5iP7GVSjkEs4qJ7lPdpwjw45N9k+6PF dd5btDyUPap4FqjTcqbI98rvB9kfk98A4hQtDxA+o8Pf9Bh/8GB51rCDw+eB onFnC7+MMA9JXlY0yZxhfHj2i5ZPV94XpXtcfn8mrMMGDj/8z8g5HnHJjY54 3Dvuwx0xjg8XHes85X08chZy7pWe6f8J5XlE/GqK96joPOHPSZkiY4eHDk0Y C08cKH7of2bf1Or1/7Gi5ZNSzknuOxRjFdmflM8pCddFffT5RNG2cYG/I+Yh MYhFXOzg8H8y5ibzDYrM3F2uw/0zl+Cfink5hzWZd4XwqyvOU4oxPGF+VtEy c+Wl8MUP/6J6fDrmEXMYigxu+Q7PY+YP/DMx1xnTV0NPbHKcL9/ZMd7MT2ph LjIn8cO/lLMdHP4ry+958bPqvKY8JzpM+GelW0u2CSmvOdjQo1tb14iE1yFs ZcVcjx5ZQ6SfV7R8ccp4YuGDDhu4p3W9GbXNL1quKM4KrebRP1e0XI5e5sSz h+658KF2ehibskysN6MveuI5Yh1lPX2dvUGsneR6Q/yH0k2R74us7eIvF5+T 78a6Tk1Yh+0ZxX5JdFXpz02ZIm/Uagz204RfSbFfqPPce7louZozRcb2iuga 8hufMkV+t84xicfz+AF7izrPH/hXi5bBvxvx0WG7IuW1nPdA/4T7o0/u5Zqt xhAH/vXwocfXiu6TMXilzvcUnnFBxtY5xgE//C9QrjfDj7xQZHANumY3Lf2a eCn/VtHyOuI/j/jkJPdk+b5dtG1iyveI+zMyYT/8r0/ZDg5/PsfntzV8p9dT +jnsefkspZRIfCH5qHQikapPJD4SZh/J74muL3qJ4qQU/606z8/3i5bPytkO 7u86839HDT9JdwJjk3Kud4vOt7f4fXnWmFfK9SH3uN55yTk+4fzIc1LGf1C0 DxT5maiHOqhpXWHXqfdvPOA/LlpeIHo0/aesw/YG81w+n0g+UrZPRY/gvqZM kVdsNQ/lNydg8amEL36DmKs8m+ppsPjPiparKeck9zPCplXnBgpyYcK90vNs YT4v2jY6ZzzYfMQkFnGxg8MfP8ZJt2rpWs5az3q+MN4JvDtYf0e0eW3/Mtbj c0KPjO0r0VrJY6T/Rnw/nj/xWyn5F/EegiJ/kzZ2bpPXLnj8kdPiF4mfL3xG dT4bZx/iEfdtyV8XbTs7Z/z8eIeCeTvWSezg8Ge+MG/mK/7G6nUjXVclLJ8o 20XiNxA9nn6D/65oOas4tR2eV+iwTUp5bBbG+5Ke6I/1gfjfFp0DivyB8N8X Hesc/rYiahmTM0Wmji7C/kDMJteMjdrQo7sk4RjEoiaw2D5JecwYi9Hid2N9 qPe6t43osrq5I1vts2y9e1lZ/G+8d0UXRzzq4XnIB2ZJPB9zIubPRcetDR9i YQeHzy+sD6Kf864UfzLzNWWKPKjVecl5TcL5kcfm7PdLPJ8N8dzyzP7LnBH/ Tcr+z2kcJiXM/160/Afvf9acnHXYqOH5sBHvT9HDWVtTpn+GD1dD5Dqbd2i9 58BfRct/pYIWbfs7xoxcUOQe9e6RvNR2iuhw1tLg/ylaBg+W3tFhW5Ryf1vU 2xeenpEvl31n3bt3VOPyottK9z2f0Uk/StdlCfPJkuWt6+1PHHTYGLctWWxC hiJ/zV60ZJ9vU6bI+DNXTtN1OfuomDvfRpwRkRcdNnDML+bZdynTkeFLvVtH Pcwd5tATKeuXj9zddXWr928ItxM9lfcX78qSefrdvt4+xFmpZPnHlO3gzmg1 f0b4EmeF8Ae7UozdDrpOl26KMKmScy9JmSJ3Cz/8f0h5rS+1ev3Et6Zkfyjy T8KkS8a9HnhkfIqx1jP0mZLlxayZ4teT8k32KpoPUxX86oR12Nbn+RJt4nlI mSL3bTUG+4SE9X2jtqNEy61+F8CvXLLM+rWK+Bc0f75o81rEurdqyfJRGVNk bODBMv+JQay3Up5bm0reS5jVSq77XP42TfoX2TMmzK9esowdHL2xrvWs9zoG v0bJ8modXrtY0/DD/2/lWrNk23k5U2Rwg2V/SbEvTZhfq2R5rPjGeKbolR5Y b9cu2fYve37FaRXm2oT98F+Ysh0c/uuUjDs/Z4qMzxrU0OFneQ/JL/MZBver ZHn5tCkytld0XcB7N2F+/ZJl4qxbcix0S3H8vVurefC5sP+n3yBww8S3xVhh B9dV8oYl275KWY+OOvHDP5G2HRz+jD33gPfFnvV+nnmWL+QdqGtqwjVS63jV sJH483m+016/dov4G5css4ZgBzeh1Tz0+oTjd4q1Biw++O9T7zWC9WGTknOv mDZFpg788F8h7bm3V9SJb+dYa6DINWnPTXCsPzxnPG9HxBq2T+SC7xI+a3N/ dV0n/b6S6+KZr4/8xIQiXxxjc3GMD1h8UmlT/FhzJsn+qu7VjeLzJcuZtNek Bsn7C7dWh9cN1p8usXayzjSWbJuQM37//4lJLOJib4x1pyHWPNafzUru50L5 nifdlpJ3jB6x0efrfF8aeeG7liwXWi2jRwc/UXEulX5zya81mSJn1csWJfv8 nDLdInzI0V7v8dwqcv4Xhxg3JazDBo4aqXWZtCn18lz3Fn1D+FsTfkfzbua9 vHXJttWEH8/63epncF3F3L3e823bkuWLcqbI2G4U9k0+h0uY365kmTjblBwL HbYNFH+i6NERc0fp72Z9Cf32JdvWU/y96z0fsIN7SzF3KNl2cc56dPcm7If/ SmnbweFPT/RGz5fIPjhibiDMgfUeN2qk1uXk2533g2yXKP7D0r0tvwd5F5Qs b5O2Hdx+9eahzEnidys5B1h88J/MXiIwO5Wce1LOFJk68MM/nfae5J24p/g2 l+wPRa5Ne88CbhXxBdkO1nWz8LuULO8YemRsu4puqHyXKu+Zkiu6bktYh+0J xeohOou606bIz7Qag/3hhPXoHkk4RjniwPcsWa7qahH/dKuvOboeFaY1dM1p U2Rs4J8ODDGIBeY67p/ka0TbSq57Z+nPEp0t/GMJ871Kls8MXCXszwYGvr1k +ex646gZP/x3UczdSrb1SJvuFvlG65orv8cT5ncvWb5U/Lt8rpZwr/SwE++p km0HiH+L+xi++OG/a9p2cPjvWTJuv8Aj45NjDtZ77r3X6r0I+5C9S5YPSpvu HfuYy1m/dT2ZML9PyTJx9io5FjpsB6e9d3m/1fuZ/Uvm/9PvG3JF13uq8cqE ZXDN8t+vZNuvKevREQc//NlTYQeHf3vcH+5dpw7XQJ2fStcr9gzUSK2TNT8P jH0B+4pPWr2HYO9xUMnyYWnbwb3fZB5KHOIfEH2CPSj2KBtJf7V0s4Q5pOTc fdKmyNSBH/6X5Tz3mHdXJ+x7cMn+UOTLc56b4I5QnHMVZ0Gr1+eOkuVk6JGx HRoU/OeiX+qanfh/20GKdZjo1Hp/njM1ZHKAOSjW/8ta/ZkPz3ufkuWV06bI 2A6PdZf1fErI19c75nXR142xPt4a/BHxDgAPlvUfHbajFec48R8xH3KmyN+2 em34oMnrA3zfkmV6PLLkPqmpEGvU0s+rYp3auMM1UU/fWIdYu44u2XZFzvTo GJfO4jfp8PoDf0zJ8m2yfaicxyadc2luxTm2ZNvxadf8bYw5fvhPydkODn+e vTvr/cxSNz7gfxD/o6654p9s9Zgwbt+LP7Fk+/El27qlXVOx3nWeEDUybsTs F+OIDhs41tTbA98/1l3Wk+mxnrI2DihZHpB2nuPj3izVxRpELdTUP+0YxCIu uh+i/qGxxrBG9Yv7w/1lLR4YOU4SnUG8tHXYWCdnhI118+Tom3qgyIwRGOys vc+GDD8o1mDWQOigyDFYdKbowLTp4FgryTk9eifuT1E//JCS5ZmxRnO/hkR+ auZzUn4jxe+j6JWeua+N7F/Eb8b3GJKHxXo9ivVYuAPlu1h0ia55CfOnlCxv ynlK15yE/fAflLYd3Mns4UvGXZWzz8dNjvNJk/G8L0aWLF+dMx0Zscj/SbxT RkRO4hOPuEtzC/cZZ6CE8aMi1qmiiyQfmzbu5nrXiW5yvZ/N0yIGef+U/m9d z0l/esny8LTxxMIHHTZwD0p+oN69nFGyPEL4h0T/kv156QslyyPTrp0e6B8d NnBF0a31Ivs27RjEIi66Zdr8/MKDQx4jn5Ft/tyvVLL8j94LZfGP4582RW5h bFotP82epGT5cGGe4D1T7zMg9pbAYK9ErGrJuILwC6U/K2TqWDZqOzPqIi9r yQ31Xh/QYQOHH/59Iy9xyY3uiaiB+8D94D6NjnWUNWqs+Do+u8u5V3oeGfnP jrXsHNFfZBucNkX+tMk8dH7CWHzoBbp0jVP9y4u/O+bGmJLlUto5yf2UbPXi 8x2eG9RFffQ5rmTbtTnjwb6YcAxi3R2+4PA/t+T5elbaFJm5u0BXSj4Ny5o/ r2T5wphrzJ9Z9baBgT+/ZPl32VeIe3Fe6K5TPeNLtg1LmyKDo4776t0L/AUl y1nZPpfvqwnHJkdZvhNKtp2Tdi3zwveC6Ilc2MHhv5L4S8U/XO815RnRl4Sf KF2D5OtzXnOwoUfH88DzwjqE7QZhahVnoeK9Jv3FJctj0sZPjOcKHTZwX3Cf I84lJctT+U1Cq3n0k0qWR0UvjC/9oJsUPtROD9W0ZWIRFx09MZf4/ofvgR7S czc51k5yXcMYCHM9ew/xL4sfL76r7HPrPbbosH2p2JeL1vCcpE2R12gzBvub wm8u39mSXxZ/RcnyjTlTZGxTRNeV30VpU+SvmhyTeKyNGdE3Ig78lSXL4MG+ k7AO29lpr7+XxvpMf/TJvVxZ9gXRC/zVJcv0eFXJfTIGz9X73sEzLsh55riu jxP2w3+scl1bsu26tCkyuFV1LYo5AH9dyfIXivWCrtcTzknumzQm15dsm8rn Bswx+XySsB/+56ZtB4f/6H6aP43ap9caf0PJPlMZZ9Ebhb+RnOzTxH8tuoX0 nynmTSXLt6RtB/cl+xXR3YR5Qvpf2RNJbpK8i/ivm/xZKHiwbyQcg1jEBQ92 QcJ+yPdwBpfuZsnNQZHvCn1z1LN51L1l5Lqt5HwzSomlB6VH06bI/8qeFG4a +xb2Wfip/1typsiP1ZuHvpBwT/T2bZNjk+OPlGMQ6/S0KfH47qxV/NOxHq4o vq3Nz/vMkuUKazXjx3u93jps4PCdXrI/FPmRqJ/av0jYD/+7Iw4xmFfJvNdW 5vxdsY6y3kKRv+kln3jOeDbvE98u/vG06X0xh8CDZb29VQ3dKX2vNlPkflnH IB+5sDFGV2kdvjewjynmcrzHdX0ZmHtjfpDri5jDxKEmYi2b9/PPs9+1zTL8 iqIPUT/niv/uQ87z9QHJu/Ndqe7X1ro+TVi3dC6nHfeOePfcEXmoDfvu8YzQ U6+on5rvL7luKPKTaeck917RKzJ46F7hS43U+nTa9TxYck1Q5FtzttPHooT7 uyfWykdL7vkmzsXS/yjM4oTn+FPcM+qOePTOXF8+734fj7nP84gd3Ff15qFg 5sY40Qt5yEf+lfJ+DnmO9sAu/d7xbJET/VPx/PE8gn8inn8o8jNp56cOaloz 7+eXZxl+VjzPc0S/V1+356zD9op8D+V5kXyY6DOi26juaTlT5G07zEOZS2Dx eTl88fshYfpdk/nZEY/45JwT+XZqs0xt9ErPT3EGKdl2b+DBLoiYxCIu9mej B/wYp68SHtff6j2X4Blr5A0V4wdhf06Yn1+yfJQwx+j6KWEdtnfS7m+5eF5e lP5oYd4O/byYi/NiPBjD50qO9ZYwL5Q8b96L+YPMHCIGsY5rMw+lnu34XoS5 mHAMYlHT8yXbpudMkcG9JLq95BnSvya+n7DvK9fL4jeW/QPO19Id3+Z5+0rJ 8rtp28H9pHp2VYwVyolEjw7H24D9f8IY7EsS1pMPGzGIRVxykru/aGfZNtL1 fcJ6dPi+XrLtQ+V9VfwOijUzZ5qT/ruEeWy5eP54Dnhn4Yc/cTfRdYJi/sLS K/4k7nHCujeFOZFxF91Uto/Tpm9FbvjOURtYfKhnCZ85SK60WXdixH9bui7C fyJMvWhd3nP43ZLlz0KPjG2g/E7mnZmwH/4D2swPCP17Jde9IO3aB0f9Q0U/ ku33etvBYW/IOwd54T+I3I26Bsn+e8I6bJ9HzPdLjvt+xKDOD0v2WZg2RcZ/ F12b5/33Fx+XLN+fdi/vlNwPOmzgqJFav0ybUu+m8t1Z/B/ssxL2w/9TYT4p 2XZf2hQZ3Gc8L9yLtCnyNqItwpza5vcp/IKSZd7BX4g/rc34beJ5HEUe6f+p Nxafh9P24d1MnO3y9gG/sGT5B2H68Mzxu5PALIyaPo+c1PZFvP/Zq0BPiz0D 8/CNmENflhzrVWG+YU1mnRX/lfjhel9/nUkkdtTc3pJ3tN5Hi0qW78jZDm6t vHuhj6sT7gn5u7Qxa0X9fSIfdRODWMQlJ7kXN3k+M5f/SliP7t+E5zi2u/gb Z/Hd5H9nzrR7h9c9eGzIp7cZTxz478J/f8X8J56NIxkn1iDGNPyID0VeN28e SnxiEOtH9TWGZ0Lxlk06BrHeSJsSj3fx2TyLwiwjTFOH12TWyZ9Llu9WrsUl x/onbd3PsXbj+2PJ/lDkv9JeT3tEPUvX+5Jl1uCWiL9Th9c+1q7mDq/di4P/ Jdb0cTy7ir1c0jps9+Q8L5gfH0WP1EefxF9Sco4lsfbzXvi15FgJzZPfS859 b87091jHWWd/Yy6KP4/njt/CJK1vi9qIQSxq+i3WZtb/G0T/lG6VpHulZ95r xPmj5Fh/8ZxyDs+Z/hU9sBbum/d6CP93yfIBuhJlr1XgNwkM6/2fwrTnjcWH 9ZM5w3xhDbxYukm6alTPvyXLqYx1l4YeHTZ0zDX8MxnnJHc2Y0p+1k/6oJ9l pE+W7Qd+efG7qL771dcyZa9nrL3X0bv6Xlm5li1bXidjOzjy0Ut7zIE/4/3G PQWzf/RCHvJRNzGIRVxykpu1lncr79W/E9ajY93mfYvtAdW2XNlrNusz9Ijo Cx4b8opl38v1MqbI3NcLZXtVcr16uU30dl2rif+Lzz6E6St7jegQ1tC0KTJ2 eCj1rBS6B1XPvdJ3kvxA2PtGzSnpisxpxenPPZZtdeXKlC1vkjFFxkbf3fLu HT/8N8ubh7L2Zsuue2P59hT+eOmTitkiflXZTsjbDo7eTmT9Uew1kuZXLlue JtuMNteDDluXiFlbdlwo8kP8bq1sn84ZU2T8TxLuX/aairNa2XJ9xr2ky+4H HTZw1EitD+dMqZf1arpi3dHmOtOxt2JsVy/btmnGFBncmqKD5NuQMUVONGuf JNtdba4Hfq2y5Tt1rSv+njbjwa4lTKvyrCH9gLyx+NQpZpv0A/Ner4YwxsKv LX6dsuXNhOklzMl5ry3osC3Fle3/aM45yZ3PmJKfvLvJPpR5Kn69smM9JnxO /HDptxR+ffHDxHcVfzf7gjbXsEHZcmPGdnDLNLsX+uAdQU/Ij+SMwb5O0nnI R93EIBZxyUnuZZs9n5nL4NGjWzfpOY5tc+XdUHy7Yj2eMx0s3ApJ89iQNyq7 zydypsj0XGZO5712nSr6sGKuL36k+I2FWU75OoveL/0WGVPkh9rMQ6kHLD5b Z0zxW0/63ZXrFMkrid+kbPlJ1fAg80jyI6KjZB8RNRREN5f+cem7lG3bJmM8 2P9iEou42MHhTzxwWwlfV3Y/24p/lPsj+Yk267DR52nhT174fOQ7PW+fDZLW YdsuY596yY8FRaa2hrJ9ts+YIuN/Rt6+xN+sbHmHiPNYjDO6zSJHY/htFzU/ ETUwJozHhknPZeb0wBgnbDsK3138HGF2EV9hzCTP4p6VfX+7SV8SfVK6nOJs WbbcPWP7FlEf/BlRMzm7Sv9Um7H44M/1dMTZuuw51JQx3TrydY17uEPUQy2d kvbdqmz/rSIetVEvuOaM/Z6KfvGbHb47CnNW3j1uG/2Rt8r9iTq2Fz2Td3vG FPmZNvPQjZLG4rNT+JajX+zPBmaH8ANDzh3DZ3Te47xx1EYd1NetbNuuga/+ T0xiERd7t7hP7NPZryci3ryIWavn5iRhfpC8q+h80RbFPEe4uTx7SfPNZctc z4UeHbaewp/NPYnxelP2d3Q1JK3D1iNj353K9t9FdKz0rRnTXSI31wu6NpHv ztKNybse6NnR405RCzHnR9349BAdJ0yb9OeLvsgznbRuTPj2FOZc8b2EeV72 l1gXeIeWLeOLvWfI8M8Hhjg9oiZ0+OB/Xt424reVnXu3qAGZOuhxfvSF/ErU hm9r1A1Fbuf9En7t0fvOMY7osOE/Pm88eS8gp/Qvt/l6jXcZa1fodlecCXn7 gGcf9Eab90L44b9HxvTl8F3qV3asPcr231OYPcveS+2VMUUm3t5BwVzEu1Fz K5+0H/7kRr9X2TYo8j7CH1j2vNk38/+xqG9PrT/7i59IDPH7RB37il4iul/G FHmFZvNQ5l575KR3aHuMLzGI9VTOdEKMyevK91aba75UuhUVp1H8AWXLB2Rc CzXNyoWubBy++5XtD0XeO2MstaeS7o8+eTb2kv5i6dPSHyfd19IdJ/yh4t8F J/5t0ffaXAP8wWXLk+U3SVcmaR22/TOOeVDZcaHIT6vOQ8r2ISYUGf8reE+q 9s0Vp6Ns+RBh9uUMLv6PhHXYwPUWvYzYGVPq3Cxp+kHw6HtHD1z0g43fdqea fWbfu8N1UH8f2a8kh2K+L9xHba7n8LLlgzO2g6tpNg/tmnScw6I3sPjgv4/0 l0uX5fczZefmt+tQZOrAD/9nND7D2/y7dr7fwfeIsv2hyLOF6Vs27uu010/e f6yh6LDhz/N5Vsyl/Tr8mQKfJ/Cd99HC3Cz5GNGuDYnEVxlTZH4jAA/lu2Cw +PC7Aih+/GZgkfhhvbS/EubYsuVjMzF3JKeb/XnGLXl/FsF9PKrse9mvbBuf t4AHe1wyYpQdFzs4/PHDf456P77sfp4Vf4DoiZIP7LAOG30W6DHv8wt8/7Ll /YXZMe/Pc9Bh+5nv5kRPkJxpNkXeQL0MKNtnbs4UGf/p3E9ht1WcgWXLAzL2 I8aqSeuwgaNGap0XNVPvavG+4123tfhf29VfVee1dr8Dsc0XfruK9hTCLxY/ iPFgP5BxjOPyjjM4xgA8dnC38Y4qe4/KvvRH7pfkn9p8XpqZ95kL/G0xN4hB LOKCB7tN0n7IJ2Z8lhsieUbeFHmT0M+Ier4Vf3L0QK5Tys43SvRO0ZMzpsic ye7QNbzss9+IqHFgxhT556jl56iHnujt3rxjk4MzIzGIdVLGlHic4zin3RE8 MRZHnFMjNnjqG1r2ORgdNnD4joy4S2mbz5XUT+2c74ZGfwMjTv8Y26XnvcCc EfHoHYq8RLRQ9lmMc1y57DMQ5ywo8t1545dEzXdJPr3ssyMUeVDGMeA504H9 JfClyLMUk/cZbJ3AYANHLvJwprsnaiIWuiGhvy/vsw1nEMb9rLLPZKNFf2VO ZByrGjLntnsiVzXyDM54TE6LeQBFbgjfX/+nx0HRCzEqZdcNRSYXWHL/1ub5 QE2cxdD/FnHOijkyNON6zgx/KDJnW+zDw5d+i2X3fE7ZPQ8TZjmtR2toLnfn 8xn5nSfbKpLHRH7i/y66crPzji1bxhf7mJDhf4/aLip7n88Z5L7Ix/hyzrsv xvkgPY/nln1uIy85t086P/KIjPHjolYo8rZRD3VQE+etB/M+c8GfX7Z8oegh yvFCzjpsnOMOlm582ee5C0T/kX5UxhR51Wbz0B2SxuLzfM4UP85unOEeDn5C 2TLnNXKSm/Mb/yDfaoqzY9K90vNzijOxbNtpgQe7YcQk1sPhCw5//E6NHhnX RwMPz1gjLyP86sJ2S5q/pGyZ89jjeZ/p0GE7Q3l7d/jsh/6yss86O4f+4rJt UOQXVfOksmNxjptc9rwpxvxBZg4Rg1hP5s1DOd91dPgMCE8MYlHTpWXbXsqZ IoO7XPRQyS9Lf5X4lZSjqlxXiF9BfDnjc9esvM90U8qWOaNhB7em6qkT/5L4 jZod78zAg8HelLSefNiIQSzikpPcazV7//FM3uc49OiaxV9dto1z2ZXiD1Os V3KmowMPj210PH88h6wV+OFP3D4dPt9x1juiw2chzkEp5bpWmLWV77qyz3Oc 46DIc/Lm54QvWHzOEmZt0fslr9PLOmLsJMz10h2uHK/lfJabm/dZaWrZMuc1 KDK2jHzXke/OSfvhzxkLfmz43lh23a8rZq3w6wq/i/SriL9VtvWabQdHb5zl 5keP8DeXLR/Z4bMc5zV02DjfEfOmsuNCkcdIf0vZPm/kTJHx58z2fMS5rWyZ Mxe93FB2P+iwgaNGah2XMaXeXeXbt8PnNM5o+OF/Np/Nlm17M2eKDG562Wc4 zmtQ5BfZ43X4/MYZEH5G2fIaincnc6yX8S9GrtUk3y79+s3G4vNWzue0lyPO q3mf6ThD3VG2PCHjc9GroYdiAzezbH/OgOQk9/iMKfl7Jj0Pryl7Lt5VjjMW a7j416WbyGek9Mj6mrHf2uF7T/RBDdjBcUakF/rokXRPyOcFBjvnR/LcFT0Q g1jEJSe5Of8hrxO50KPjvHZ/YKnn3rLPfJwfoa9FfPh7o27Oda+HL/wD0dv3 4p8Vn1OsNyQ/WPYZ66F4hugdirxu1LJu1EMMYnFe41z0Zt5nK2IQ66KMKfE4 u3FOeyN4YqwXcR6N2OAfKzsW5zV02MDh+3DEhSJzliTnFZEX/pGy5bfyPstx jtug2TI8sdaPvPBPlC2/LfvRmgdDktZhuzjjecH8eDXnuqjvzYj/eNk5oMiX CP9k2bEmiZ9Vdu63c6azAke+p7CJftpmG7Wh3yBqIwaxqOmpqJH4/wr/ad57 hkeiFuokztORb3b4kReKPE24d3l/8ll+0vycsuXOij2POdBsPFjG4TvWf+mv CSw+kzOeM8wXzkrHCH973vufuWXL7yjvn8J8GHp02MAx1/Dvn3FOck/JmJK/ V9J90E8fPn8rO9Zw8S+KP06x3lP858QfK/5d8ZvKt5N82+X7fNnyVRnbwT2Q dy/0wTmOnpBPCAz27ZLOQz7qJgaxiEtOcj+U97uV9+puSesfinvB+xbbNbxH xP/NGSNj+nHEh8eG/HLZ9/LUuKfI3NftFLuoOMcLv6zowrz3Uf14xwrziORX RfOyXZcxRd642Tx096Sx+Lyv8VlZ+i8l/5S3jhjs8V6TLinb6YrTKNpZvntI /0bZ8g2hR8Z2PN8jRT344b8gb35BxHyz7LoL8j2B72fy3pv1517J9lTednD0 trn4TRR7z6T5t8uWl6fm8EWH7caI+VbZcaHIH6rHd8r2KWVMkfHfQvymfBbI ule2fHPGvbxedj/osIGjRmr9KGdKvZwRVhRmUfD44f+BMO+XbatkTJHBfSi6 FfuAjClyF8WvEf9N3nsw+I/KltOsBczLvPFg9xZmAHmkfzpvLD5nKuaJPNd5 78e2ka5O+H3Ef1K2PE2YgXymkvf+Bx02cB+X7f9JzjnJPTpj+l3EPJlnJ+/9 zGdlx/pU+C/E7yDcTOEXiN9O/HTxWdEfItfnZcvnZGwHV9/sXp6O3ukJ+eOc Mdj3TToP+aibGMQiLjnJnW/2fGYuszdDj26/pOc4trHKu1D8ScTKmc4LPDw2 5K/K7nNBzhSZno9WjGN1HcHnMOzT836Pd2MOCNOgfF+Lrir53Iwp8uK8+cUx bmDxuTNjit/+0g/ifJb3XuubsuXPVUOTMN/y7Am3uvhfAjNU9iXS78P9Kdt2 fsZ4sAdETGIRd/XA4U88cHezbpfdz8Kc3zM/81w1W4eNPteU/rfoF/7HsuUh rD95v5vQYbtAMXfivkverNkU+V4+5ynb54ucKTL+NQ1+t/F+WVy2PDviEOPA pHWL4z36c7wneZ9CqbdnjAnj0Sfpucyc5nlgnLB9qbzLVGRj3sv3FOn+JJZi /yp6AO886YdJn23we+e3suWvcraDO6iXeejhwqws7C/Sd202Fh/8c7q2kO5I Yf4oew69nTFFZj7hh/9zUQ+1HJS07+9l+0OR3824XnCLcvYjJ3Oys/gtxfcV n1CPx7M/Ev6vsm0fiu8n3d+sj6L/iA5XnK9zpsgbNZiH9k4ai8/74YsfvWwq +1bKdZT4f8uWP844J7kHiI5QnI2l74jaqIP6khXbvskZD7ZvxCQWcbGDw5/P GPl8kc9OuW8n9XJePnfEdrzyrlTx56t8Nlsvn4HCHJ00v1zF8im9/Js9vgtA h+0z4etEl5XcRbTMmq2rf9I6bJ9m7Lt8xf4rVvz7Rn77B0XmN4BLP99tcJ0r VPy7P35bCN0ifltIDGItyhhP3fjUEFP0O+lHdnhPxX4MHZ8vs6dKCTOStUCY UaJbx2fp6Yrlpb69jEOGhx4XcchBLHT44M9+DRvxsxXn/jZnikwd9Eh/Xyb8 bG3T7OcL30zUDUVmH1hbMW529M5Y0D86bPif2svPM8/7KOVaRfptJZ8q/rQO P1OrVix/r3q6USPvCun3le92DR4f/PD/LmdKjKuT9sOfWKtV7L9Y9axe8V7q h5wpMvuqNSuOO0eY03rZxl4LP/zJjX6N8Ici/yD8+hXPm18yjkEs6iuJXzds 1LGW+JT0a1e8bvC8Q5G7N5iHLl1PKh6j7zOmyIzXWtET9UNTgW9q8FrAOtAc 6w7P6XoVy79mXAs1LclYhw0cvutU7A9Fphew5XgWoPRZiXdgU+TaXLoxrCXC byx+Z9Ys1u0GP/M81/AbVizjX42Y6LD9lnHMDSI3FJm1Lhc5qR+KXI01Y6eI v1GsN6w/O/JZS4OffXQbRY5OFa9drIHQ5hgf6mXdYT1B3ynGCz39YDuDzyR1 nZB07jOj/k0q5umXNWnniLNpxTJrC3Zw2zebh/aPOJ3DH+ymMXand3hdov66 inP/lDNFpo7OMQaM21miO/C9U9K+XWJdgyL/KN/6inF/ZLx+LhP1ocOGP+sc 699hitMqOo66WGPZn1Q8ro3Uwx4rY4qcbzAPZU0Ai8+CjCl+9ELdOzR4DDeL Pn7Oee4wh8aKtsne0uDxwS9f8b3sWrGN//AAPNiBEZNYxG0LHP75qJf4W1Tc z7+q52LWLtaCZuuw0SffQZ7b7u834beqWOZvX/l+lO9G0WHj+9NejVrXKv57 VyhyslbracU+/A0sFBl/1pd9G7yebBvrzeKIQwz+XgwdNnDUSK2prGm3WOf5 bpD1iDWQz674DIvPv9BvF2tcSXX3qGp+iO4gXW/WL8VpUowp9MrYViz/krMd XHfOCaIP8V4RvqyYTZJ78v5u8HgxH8CDHZF0DGIRFzxY7gt+yMS/lPojHxQ5 mzVFRz0lYbcPH3I1xz3bVfQq1tysKXKzfC7n2Rd/Jc9czB3u79iQD24wf3DU Q0/09mgvxybH6lnHINYqWVPiDRe+ojqquk5h7eKz8ui9R8Xyb+rrHNZqyQc0 WIcNHL67VOwPRf415/qpfWTSfvj/nTE9IO7peb0ci1ytEYNcUOSDmOeiR4qu q5p3E38175usKfKQBuPBUv9l0rdI395girxy1jF25j0szJnCH9Lg3tsrln9X 3mGsBw2uGR02cOQaEvgjoyZiXSH99b08N07FT9eopOle7JFE9+Z9zRxXDfcI u4fk+0Qf0PUwa1LSOmybZT0mPWPcocjLhC9+1eiR/oYmXfPuFdcNRe6adc69 Y35zMRdGJ61/KHhqpFbmP/XsWXFNUOQts7YPj77ot1fFPe9bcc/bCjNb8lzW FGEeEz1ItidF9+PdLcx2wjwi+XFdZwuzf8Uyvtj3Cxn+kcD0YS7xbGSdZ9+o 9fQGy9RzhuiBFefkIuc5SedH3j5r/AFRKxR5+6iHOqipEHGJCX9w4A7lGWW/ kLUO247ii6KHSH5Cvr2Dov9PntXLPHRM0lh8uoXvE6EvNTgmeTsqlrtnnZPc T/Xy9QzvgKR7pecdhDks7P/hnwoMMTqiVnTg8MfvsRgfxrUUeeH7RO6nZZ+j a1zS/BEVy2c2GAceHTbuSzV8wB8t/WjWsNAfHjgo8k48gxXH2ln8URXPm51j /iAzh4hxdODgz4y8ZzUYxxxDd2TMj74V23bJmvaNuMeIni25h/THi5/HcyX+ WPHP9nKd50QO4h9XsQwGO7j5opfoujzWEeJhOy9pOj949MdEXGIcF2NBTnI/ z71psI1c6NGdzx6sYlur8vYTP4Z1K2s6LzDw/aIHnj+ew1Wz9jsh6h6n6znp xws/XvxL4ickrRsgzIuiJ/Kel61X1vTEyA0/NmoDiw/1jNUaWOEdFrFfjPgD WZekaxfm/PDH9+SK5d1Cf3Lke0F+L+u6IGk//NGdFzb0gyque3f5TuB+av27 UPqJ4ofJtmuz7eDojevV6BF+SMXyWR3OTT1DArtbxBxccVwo8p7SD63Y54+c 6dDo4RX5vd7LNZxSsbxH1vWeVHE/6LCBo0Zq3TtrSr0T5Tua7xAln5a0H/6M //CKbX/mTJHBjRR9TZi9sqbIbzL3+A6RdSppflTF8jniTxd/UYPxYMl7seQR 0vdoNhafv5RrEnNcuovZUwn7tq6LxJ9WsbyP8k5mDgpzSWCwgTu1Yv/9s85J 7r9zpuQ/I+l52D/m0BkVxzqQNUr8O7z7xRfEv8X7gXku30tYB9nvVSz/k7Md 3Lu93At9UCc9Ie+bNWapPek85KNuYhCLuOQk9/u9PJ+Zy8Wk9ejokTmO7V/l LbFH4h2QNW1VvElJ89iQp4hvE700ab5asby7+IniN9Re9D3WTfEfMidFxyl+ opMp8mUN5qGlpGMQq7fyXsOzpXiXJR2DWAdlTYlHPVfxHAszWfy5inOF5LL4 cyqWk8o1puJYfbLWYQOH7+iK/aHIhwrzgWJ/3Mt9wZ9dsfyRrk97Odd1wn7G msizrJhX8m4IflzF8ieyL+jl+tFhW6aT5wXzoy16pD76JP7YinNAkTuoueJY h7GeVJz7iKwpMnVcK/488VeL3tDg/yOP/6MNPTr2S8QgFjWBxXa44swU3a/B n5/QKz0fknWc8RXHmlDx/6fH/7sHRb54d80fYbKbaTyT5i+sWJ7AfBS/W7Px YDflN6Kb6/mWfmEvY/G5NOs5w3xZT5gDdlPeXv7b54sqlufpnNVJ9j0b/O8f osMGjrmG/3JZ5yT3CllT8g9Kug/66Sv9JRXHukz8ZeJ/4N0gfhJrnu7RsrpH k6Wb3uDz16UVy7VZ28G91+Be6CO1ontCTq1iDPZbks5DPuomBrGIS05y/xjv Vt6r7GPRoztmGb9vsaVZi8TP4F2VNT2wwWcoeGzIV1R8LwfGPUXmvqZUQ1rX 9cLf2WAb95qzwhRhflKOKys+z3FmnBIyseFnRC6w+HCOeFD0ror3U+iIwbnj KunukHxS1ro+DdZfE3kGhh4ZG73+HP3ihz9nTXgoZ4prK677ZJ4XYRezpiTt N1W2Jb1svzb6Z19+R/jCXx813dXgcwtnH3TY1o2Y11UcF4q8FvO/Yp9BWVNk /MfzLuvwmeXGiuXlOrmXqyuuCx02cFNDx5hAl0S/9/Ke5zdNSfvhz/29qWLb 0KwpMrhbolfqgSLvIf2DvVwffcHfGnXfr+v2is864MGSF3qz9L8FFp+tsq51 RIP74vxzX/DTKpY5u/0u+gfrTWCwgbstel2+k3OS+5SsKfk5Z/0p/F/hO73i WMOEubPi8wf7+RkVn9E4Kz3Q4LMQ56CZFcvDs7bPiBz08luM580xHtQA5v7I Sx7yUTcxiEVcct4ZcZnPzGXOBY8HjrzMcWwjlPeOiEFf0D+jF3hsyHcHpc7/ ZHp+vMH7V/axf0v+J3w5q90TOe4VfYi9T9YUmXMSPJSzElh8OENBH4yayfF3 xLwvclIzZ6/7I+7DDT4jcT76l5qk5z8wfqBi26jAPxS5iEEs4mIHhz/xwHEe fDDs1MwZ6VHJjzRYh40+kTn7cD6Cf7hiGdu//82l8Ds163PaQ1ETFJlz0yMR jzqXxq3Y/9EGn3mWnrsrlk+LOA9Hv+iwgaNGat0lan4kaiMW40E9zGXmNM/D 45GH2p6reM/L/jwp7DOSlxF9UvQxYU/POkYy4jwVY0w92MFxToKHcm7ivPdE 1A0WH/w5Vz0WmKcrnkNnZE2RmU/44d8j6lkm8uI7K2qCInOeeiZiU+fcGDvG 7fmYo8zPeRWfcTjXzK7Yxl7lCdnnVLx3eTb6ph4o8rKRf9moASw+hfDFj3MT 9j2bjZkbfmDIOS98JnT4XHRB1DY7+p9fsW2FTsY/8T8xiUVc7ODwZ5/Ofp29 PvftyYh5CXt26T+U/ErFZxfOLMvx+W+8K+FfqFjmTDWrwecsdNiKWeuer/hM xh5xXoP3jeiwlbP2fTHklyMeeijyiu3O/3SDz1kvVcxXsqYTQk8MYnFeA/9K 4F7lGeEZk34lxaqJ+tFxBuMc9FrkISZno2dC/3rFMucI7OCIAb/S/8QhB7HA vh75Zjf4DMJ55M3w+68G5JoYyxUjDmen2YGHvlGxPxT5TM4yFeP2j94ZC/pH 91bg5sR95bxDjncq3uNwBpoT+ncrljlzPdvgcxFnnLkNPsNwdngnaiQvNBV1 4oc/sd6r2H+0MO9HnrOypsjsqz6sOO7ZWZ+lno1cz4Y/udF/ELGgyJytFlQ8 bzh3EINY1JdR3E/FZ2Pv9lHFuo8rPvtwPoJ+HLnh50Zfb0ft1AlFZrw+inrp BZqJfpmzU2Lekm+vZus/i/znZF0LeHpEhw0cvp9U7A9FBg82G/Hpb0HYLuzw OYsz1BLGgfsh/KKKzyWcazj/zA8M/MKK5ecbfF7iPIUOG2c6Yn5ecVwo8opa H76o2Gdc1hQZ/1VU196q/QbF+apiGczF8rubHEnrsIH7UrRW8pisKTZ8qff5 qAf9lxEL/aLI/TnPVrPPiRM7fGaD/0b2iyTXqM5V5bOPMFOl/7Zi+dys7eCo Cx56TcT5uuJYYPHBnzwvRPzvK859ZNYUGTt++K+kvL+wN27wXhrbdxX7fxfY lDA/VIwbnPX6yfuPNRQdNvxZ18bH2vi19DeLv1L8mqrtJ2HWFv2ZNZY1J2uK /EqDeSjvArD4XJA1xe8m1i7Z1xF/s/jFFcsXZj13mEO3iC5S3o3afeZlnH6s +F7+UrHt2MCDHRwxiUVc7ODw/zHGm95/rbif4+S7umx/St6v2Tps9PmBrmm6 hi1r/veKZf49yI3b/R0fOmxXKM530v9W8b+hCEU+gf1kxT78W5FQZPw763op 5uRfFctTIg4x+HcU0WEDR43Uen7UTL03xvuOdx3nPr5z47u3JTm/A7GlO1nH d3F8d/Yv80f46xXnAMVoUKxbpU9ULWc72Q5uf8lrSb8/72DhL+UMLflV2eul O1D2aUnjwd6edAxiERc8WO41fsjE34R9VOSDIl+ZNUVHPZP4nKxiH3ItV3W+ lUS3YM5kTZEPavacWl78Z8q3guhk+dV2MkVmXsBDmW/0RG+9mx2bHNdmHYNY zEPoZ1H/ZfK9nL2j+IPlsyji1FQtr6Jca7FPkvxRg3XYwOG7YtX+UOSVO7l+ ap+ZtB/+E7KmxOD8uEG7Y5ErEzHIBUX+VLis6A+i0+W7ivjN5DM1a4pc02g8 WOqv490j/dsNpsjXZB3jEOW6S5grhF/Q4Pu7ctXyqsqbVqwvyBUYbODIRR7w P0RNxMpLv12758aWvJuEmZE0XUOYr4RdU3Q/9pqqYR/R1ULu2u585EKHbXbW Y5KKcYciTwpf/B6PHumPZ4QYq1ZdNxSZXGDXjPnNxVzAd7+Q4amRWpn/1LN6 +EORb8raTh/0Rb+1Vfe8dtU93yLMINGhuuYIc5joBrIdLrqO6BR+06Sx3Vpy R8yHdauWb8vaDu7rBvNQMJtIN5D9RNZ51o5aV9P1rTB3CHOl8Oszz9udl5yz ks6P/ErW+PWq9oEiv5h1fuqgprWkW1PX3UnzG1YtbyzaRfSTrHXYXuXZEc1J 7qMYnUT7M6ezpsgntpuHPp00Fp/XwrdP6DcVv0mj78VGVcsfZ52T3AOEqxd/ qGqcnXSv9Ly6xrNz1bbPAg/2mYhJLOJiB4c/fozTU0mP60mBh2eskU/WNbjd ueC7VC03KE5e15NJ67AtUN6r+J2P9E9I38CzyfMT+k2rtkGR11DNdVXH+lyY fNXz5vOYP8jMIWI0BG4pH3kbG41jjqEjFjXVV21bmDWtj7iNoptL/pK1VPww 9kasG+KHtLvOrpGD+JtXLYPBDu4U0Yt1HSP+iGbHw/Zs0vSU4NE3RlxibB5j QU5yjxDdstE2cqFHN5d1o2rb19TD+i9+UdZ0WGDgu0YPPH88h9dl7bdl1L2V ruHSzxN+O/Gnin8uad3WwowS3Ybnjucna7pN5IbfMmoDiw/1XKP7trvklog9 KuJvK9020n0nzLbhj+/2Vcvfh377yDdSfqfpmp+0H/7otgkb+h2qrvuHrGs/ I+o/XbRJtmK77eCwb9/oHEvzinaL3Ds02uf5pHXYfoyYO1Ydd8eIQZ3dq/b5 KWuKjP+OjfYlfnPV8s9Z17td1f2ga44cTeFHLmjxvxpkK4h/IWk//Bn/naq2 Lc6aIoPbRbS75CVZ010id1Ojfy/1YtL8rlXLO4lvEV9pN37HqJlYO0tfbjcW n1+y9qlGnOZG+4DvWbX8a9b3+zDN91cC0zNq6hE5qY2c5P4ta0r+l5Keh1vF HGqNufOPMLuJH9Nuvo13I59/ir9ac+wm1n759qpaXrOT7W3hQy/lGMOdY5y4 F2Cw8xtp8pCPuolBLOJiJze/Y2Y+g6Mv9OjwZY5jW0t526v+/S+/eYb2afZv oeGxIe+mGO28C5Lm96ha3pdxi/3K7br2FH++8uwlep7oMrWmyN/3Mg8lPjGI tawwF0j/Sex7iUGs/llT4i3V865o8H5yU+l+2c2fJ+9btXwVe4CqYy1fax02 cPjuXbU/FHkFYe7mOzDhjl3G/D5Vy3vRI++vpOWJgekiemG7913wB1Qtsz8m JrWhw3Z11vOC+fFN1nVRH30Sf/+qc0CRV1Q9B1Ydi/38wVELdUKRqWNvYQ+q ep9O7m9iH4geHXszYhwYfYLFtpLiHNrue8aekF7pefDKjnNI1bE6qFnyrVlT 5IvavQciDvHhD4242A6PfQZ4ZPYq+0juHb2BxYc9LfmZL9QwMd43jG2f6I86 92u0/2uBwQaOuYZ/qtY5yVVTa0p+8h4S94TxPKLqWGnxR8c7bR3N+SOr3huw L7qW836H91F9q5bX7mQ7uEvaXcteUQ89IZMXDHb2GOQ5ImzEIBZxyUnuS6NX ZPqFXhq9HxP90ddR4g9QjGyt6eHCvZE0jw352Krv5ctZ02NjXJ5hv8CzlPRe rHej913UcZwwa0juV/W+kb0ZFPnARvNQxuG4qJ2x6ifdGfH+Q7dGYI6X7iDx K6vOKYyV6npL+v5Vy6uFHhnbZPGX6Xo9aT/82RvCrx11Dqi6bvaf13d4n8ee 7QbxJ1e9v8MOjt6uEd9Xsd9Jmh9Ytczerk/4osO2Vq1jnlh1XCjyuurxpKp9 2FtCkfFnL3hUo/eHg6qW2XfRywlV94MOGzhqpNb1OpnWh+/Rjd6rsZfDD/9a 1TO4atsGtabI4IZWvTdkLwcdGrhjGr33Yg8GP6xq+VhdI6reN4E/OnJNFT9E +hvbjcVnw1rLN+l6L+k93TERc3jVMvsx7Df/D2Z4+J8S8aiZnOTO1ZqSn/3b Lawf4Tuy6ljkPb3qPRX7qFFV7wlZG49r9DrJXuvUquVOtbaPihz0cmPEpCfk 9QNzbOQlD/momxinxvpLztMjLvOZucwebFTgyMscx7aRYp4WMegLekvkhceG XAhKnf/J9DyDOdNs/G3ip4Uv+6di5CiJHi+6ca0pMns9eCj7QLD4sD+E9oua yXFbxCxHTmpmn1eJuCc0em/Hfux26cdKP120WrWtc+CPj1zEIBZxsYPDn3jg 2CueGXZqZm9yjuT+jdZho09k9nbsW+BHVy1juz1qHh1+m9R6z3hW1ARFZn94 dsSjTigy/gMava9jLzemannTiHNC9IsOGzhqpFb2geWo74UYk+lRD3PqlJij YyMPtU0S/6D4rXg2dT8vYG2S/7lBu9Q6xoyIc16MMfX8h2OfCA9lr8g+dFzU DRYf/KfyO4QOv1/Gh474UGTmE374s/+knhMjJr7nV+0PRV6/k+sFt0En+w2I cTuz3Xp8L+YZbHSPE6q2/Z71O+1CyTvLNjFiEwc6Md6p8PvFO/HCeE/ynoXi xzvxAfEP6fpA/EVVy1vWOie5h4uObPQ4fxi1TYi6L6natnXgwb4XMYlFXOyX xH3iM0Y+X+TzPeRHIiafO2LLqP4pwo6W/k/OR/J9WPxHSfOTq5ZvEvZmXR8n rcO2rWoYJXppjNdY4bJb+DdF6LBtU2vfy6r2v4J1S33kOpkiP9Xu/MgvK/7l 0pXk273W9Jhmv7uJQawNOxk/JWJdKfq45B2EHyf6dLv35Oh2bfRvma6K/OSd JX1bo/f/V1ctN9XaDu6MRvPQjyMOOYgFFh/8K7rKja7t2qpzJ6IG5KejJ/qj ryrvPd6nSfteU7U/FLlZvtdVjdspemcs6B8dNvyfbPeehrxnSn8DawTrSqNx xJ9atbyr4pzFe0z4BdKfzbou/vOk/fDfudaUGJ8m7Tc16rixav9duI9V56U2 KDL7qluqjttD+nMajSfXWeFPbvQ3Rywock+e5arnzb9ZxyAW9c1lbRQ/v905 bq1adxt44VprTW+L3PBQ+rq+6jHqVmt6fdR9a9RLL3MiB2M4hvVe/EL2k3v6 b5z47mN61fK8VV0LeHpEhw0cvtOq9ocit9QaOz/i0x998mzwN1qtjf4e53Hp 7oYX/h7x48XvLv7ciEs98HdE3HGs0/L/Imkdtl61jjmz6rhQZP62686qfdpq TZHxf573ezxTd1ctg7lNc/5a4b5PWocN3F1xH+hrfvjjOz5qoh70d0Us9PdE 7vG8T5u9Ht6i+C9L/k78fbJ/Iv4wxbxBuKsbrb+/arlvre3g+jWbh34fce6t OhZYfPC/VfqF7A1Y66rOvVytKTJ14Id/J60Dn0m/e6PXCnwfqNofiryRMA9V jTu8NtbTqtdQdNjwZ50bEevwT9Iv4d0qfgHrLe9x5X2U9UeYY2tNka9rNA+l ZrD4HFFrit+P0k9TLYuIK/6xquXOnTx3mEMzRe/S9YswvyZ9Hx+u+l4+UbVt UK3xYJdETGIR967A4Y8f/hsr/pNV9zNQvvcL84zkexqtw0afyL/x/k2an1W1 jO3XGIdZ4TdEce7lHRg1QZGHSv90xKNOKDL+98n+B+9fxZldtTws4hCDftFh A0eN1HpK1Ly0vqRj/R71/Lqz3kvn6cy1tf9NU2zUtmi0zmc7aT+g3ufyLuU9 LP3t/N5GmD/kO69qeZNOts+Nmj7i+d5N6xr7H9mfl7ys5JnyO1H38f2k8WDp hRjEIi54sH8n7Ye8qeL/yRoieUCzKfLwWlN0fybd07Oy9W92rheqzvcK7x/e UbWmyAOl/0eYF+Gle0l0BufJTqbIDzeahxKfnuhtcLNjk6Ou1jGINarWlHg8 4zPl+39MnXeYU1XXxTFRsU6SsaOYiBUyM4igKBOxOwWwC4Ni7wW7oghI2lhR 7L0rNuwg9i7YC2BXlKJiwYYgIsq3fq7N871/5Nlt7bX3Offk3ptzBn14kN9t TlBOR+UvkT51tO3NVesF7reyJ3Wzjxg4ct8f7Xwk9mZZ90/vHRLOI//cGks4 uC5LdzcXtT4MDmohsU8U7qPRfj/i3elT7tk8N2ossU9sNB4s/T8i7HS+790s sbeoMcdrgVlZfa+iz3Lq7ZPRtovCrCqZ0ieRsI8YOGpRZ/mEeegJrsnd/N7G uxn3lzdCf4c6wgxVzoy4Dt00rkfU5+c8W/ke8Lcfg/zOho/YFlnPybSYdyT2 sBrHpwQ/Y2J87KXQ82ej3TcSu1zjmtTONHk9YCcTlvjQ6ZFeL6xxP1+Mdk9I 7K5ZxxkH65zxfjzaY/467qm8T24gvixzKs6VJL/hPi/MzOBj7E15fV/Fs6Iw s0bbTqYcB8e7KTqSOflJvunSx9a4DvWY3xXFf3GT19XjnAXL/3I316Xm0uVc H3t0jfGzRzsHiT2qxvXpg56mcp/s5vWA/u1o2z9Iri38pTX2EUNfU77vIjZX cjXJSo3l3MChTw1OsORcErnkdZR/Gveibl5v34+2fVmN49Rep8mfCYOMZ6yM Oa/5/DHiy/Dr/A8nXPDiA0c+eS/H/DCv06Iu+k9R+0Pu6/wtQ8L6z6NtfyR9 PXGtnLCP2OU1jq3bZPzv8n8m/zXhnzfasXnBUaeefxltriuE+W20181VsX6w WUNwwPVJN+vIFRIeQ6cYIxxw0dOvMT74kdjg5kt+Lty14v9Tek6+66T/IX3D Jvf5RdSAf8Fo22CIg9tIcmd9uhX1ztZkPmKrJiw3Ch3//OCFY0HMBTWpvbHk jG6OUQs/vtWkLxrt2A2qu1D6l9Kvr7HMBQZ9YYyB7x/fw1KN8xZF31/p04Xv uvCzpW/GvSxh32JhNpX8W/JrxW6qsfw7aqPPiN7AkkM/v8iX0di3arJv0+Bf IsxMxW4WZlbkk/vvaNu3hP/fqLeJ8jbXpybhPPLxzYwY/qWj3fetNe59i+i/ K/cq9ZBvchwc8W+6uQZ10Zcr2p7TzTnphH3Ebg/ODkXzIrHpM1F0zm01ltjk f9vNufAvX7R9R437/We0x4Nv+aiRjDxqIfPRw3eKdZOeSTiPfOZ/haJjd9ZY YoPrKDlX9l01lh2j9vf61Clem7C+UtH2j9JXld7QZPy30TNcK8pf32QsOXfX OKd78PzQzTngVynaHldjrh76rBGYVaKnlaMmvVGT2vfUWDYEnnX4V6yh1aIv ONPSf1bsfumrS/9J+r3S50luKcyayq0p2r6vxvHVoyfGUh9zuGLM0x2B+SH6 b4h69A0HXPBSMx31WM+s5bUS9v8UuaxxYg+IMxV59IbsGb2hE8P+TdhT+duT hPXaou3FfAelL4o6a0jfmnzJibo31Wct14y5QP85eoADrgdVdxvlbMc9PWEO uJg35NbRfy/J3k3uYX4354Bfp2j7YeHXLdr/UI1964RN7lpF5yOxxwvzuzC/ dvM9Fn3tou0/utnG/6dkH+HX454pfVvp64beqWibT2P48RF7tMbrgvVxY4yR /hgn/OsVXQOJ/Ygw6wcfeueiaz9eY4lNHwulbxA52NtHbwujb3qGAy56Akvs MfF00DvAv4FZO+ozV/BsWDRXTvIvrlWNJXahyZ8d9OmUsL5R0XZffTaRvlOT 8YXAsCayUXuj4JhQ4zWzKHr4u5vz15e+cdH2JGGWdDNuGYYYONYa/idqXBMf OnKn4Nkw5onxblo015Pco6Qvlf4M90bp/0h/SvqOwu7CPCl386Jt8MQ3C5t+ F0Y/2VjvEwKzY+RSZ9PoDx9c8FKT2jvHs5XnaueE/TuH3i3iT4tzi6KvETpy SdRF3yLGky/6Wj4b1zQfOa/o+3Uh14p7uPyJvHOXk6wTZlfuKyHJXWY3NVlH bpgwlpznhBnM/BS934Zv18A0FM3/vDC7y9eiT5b7RtH2Mj82sWTeNhjyGmIM 6B2izx5F9/0izwvJZtaj/B2lb61Ya5PjPaI28X6BQe9ZtL1i3jg48RFbxrlV 2Ejsl+TvVXTOyzWWvaIP6g1grYtnm6gPhrF0j3HiIwaOHun1lRrL1shdKW9e +iGP/BeE6V107NUay97Rx3aS/ZvsR2LvKblK3jh40PtE/gv6vbC99IFNxoPt wm86xbYNLrDkTOZZJrmHfBtzH5Z+mu7lm/K9Ltp+l30JraVzu3lvGR8xcI1F 50+pcU1q966xpD57s5P4uxhhNhNn36K5GvQs2LnofVb2e3eQ3ib8+zXGrhn4 HYu2P6hxHBz7voylf4yLMWG/Fhji1KUO9egbDrjgpSa1T2/0emYts/+MHx/7 wKxxYtTdqeg9bPackfjBo+8UuF2LHmf3rOWu0fcpTd4vY6+M/daDm7xHyn7x bsKcoXq7Sx4o/7QaS2z2mtGR9AOWHPafkeSxb/wkf+OgOptrHpqKtrfk7yKU 21z0HnMnxdfTZwthnlZ8L/k3kN1SdOyjGuPBLuOEC95OgSMfPnAfCt9a9HjY 02ZPcw/ZZzXaR4xx8mG/l/Gi9y/afmqQeemnf2DpgX3efrLPbLTEZq94QNE5 PbKWA6LvQ5u8b8te7p5F258EDxz48REDR4/02hw90y/7t8wJ89E14bXMmub7 wDwR24r5lP689G2kP8vfo8quE3YfyZO4pvxO57e+fFuKZ9+i7Z5Zx8Gx74uO pC77tnvLP6zRWHLIZ3/z7Ebvee5f9BqaW2OJzXoij3z2nOmHXnoknLtf0flI bPZv6Rdcr6zzqMmaZP/0nEbvSR4ozNbi+U34QUXH2Oc/S3Xbit6LHSz5nHi2 zlpib5W3juyVMJacnyOXPMZydpP3QKl1QNH2rzWuSe1eee/DntPk/U/q0wf9 DSk6dkrgwW6dMAdc8BIHRz7v6byv867PdXthkPE3yL5M/pslj5AcwfuXOM9V jVFN3udEP6Rom/1ZbPz40Htr7H1U/2DZw2UPkL6zPtsn7CO2sMa5h0bO4UX3 QC7y8Jhr6o9QfBv+dih6Z/6R7AUzD3DAxf7wiGV987d9ktuL4y/5XxrkuvDg 25aP9KOEeVGxbbPetx3Z6L3Ho4u22SsmDq7YZB25XfBQAy6w5IyMeWJfmDk5 tuja22Utj43x/zffcY1eHuR3Ed5DyD2m6PxjYo6Zq+OKxvXJeuzMBePHR4z8 XcU3SvX7iuc8/jZI/guEPa/Jdh/5Tyza/lOcu/FdznsspSbvvTJ28sA3Zi3h IJe8EyM2tOj85VL6DkR98Ehs3qtOKZp3cY33wkfHPiF55FMb/8lFx5DY7AOf VfS6WTllDrjoryTcGdLH8rxXrVOl9+WZzDNI9vZZS+zJg6wjd1T/xxc9Rx1S ltjMFxxwFbKW8DHe/pJFxXeW3t7k2o3Szyza/rfGveDvm7XvzLDJPb3ofCT2 SinH6B0exsc4+W7Q4+VN7vN8+d7meopzhPQa+dtVa4p8rw/y3iz62UXb8JWj N3zEdsiac1jRvMNiPujznJg/+kFik7+n+qjEeM8t2l5VmPPl20f6bgn7iIEb HnLHrCVjJJd+r2zyfvgyHDH8jIfYm+rlrUHeG2QMb3bzuEYpfinvpKq7L++E +uzE2ivaTqUcB1dttI7cIXhGFs0Flhzy3+BvFXgHEaZYdO2ds5bYb0Ue+Yzl GuY7OMkdXXQ+EnsnYUpF42pSvn8eFPcvfMTI53s+PO5dF0rexG8D6fszz0XP a7XofUr2S5HY1zdZR7KnCpacTMqSPK4FfbPXyhy2xzh2yXrtsIbekWwT/gLh L046r1z0tbyg6NiaKePBrhKccMHbFrgLIo98+C8sejy7Zb0nO0b2wLx9xBhn Z32uavJ+PvrFRdvU+bSba+EjdrXGvpfyLwpeJPZq6u2SGAe1kNjkD857X5X9 1UuLttdKOQ8O5hkfMXD0SK/s9yLpd5V43vGs2z3hMzfO3jiL5BlIrFacbaUO HX5R7WPUw+VF7+uyB/vuIO+9sgd7RdH27lnHL4+e7pV8SPZm4nlP8auL3uO4 jXcz9dmcMB4sY4EDLnjBg2VPlTzsJvHfwvdL9sWNlthrpyzxNSU8prGKXdTo WtcUXe8GyUNVa4OUJTb7puzdXit9iHzXSb6vWs1ZS2z2YtGR7McyJsZ2WaO5 qbFuyhxwsfeLhI/+2Q89OO/cO6TfpU+L9BuLtjulvOd9lewD8vYRA0fu9UXn I7HZB6Z/emcfmDzy2TtCwsF1YT8XHJhbgo+xI7HvhkvyXsmc/HdIv196l5Ql 9qWNxt8dPR8mvpuL3g9GYndOmWMM7+bCfDDI+7bsSd5etN2S9T7l0Xn78RED Ry3q9E+Yh57gYp/4yLz3itm7PD7vfVTkuGLssUqOV2wT9TBVnHcVvZ/Lu92x ee/l4iPWmvWc3BTrAInN/jZx8mpjjIyPuvR8Z9F9I7HZK6bmPbG++bAWBiTs x0anR3pl/dPP3UX3hMRmf5g442BcjPe2osd8X9FjZr+XvbZT8967Y4/zIcWG yr5fcpr67pf13usJee/HPlC0zZ4tcXDs+6IjwUyU7xTh61JRJ3qFl/1e9lEf lv9B+R9tcl1i+KmPzX4svvFF54yPvrqmon7RPZ2U9/4t+7HoDxdtPy75mHDd UvYRQ6feIxF7tOi9WPZse4cNDh0J5yPRY9fIJW8P+U/Ox96u9MeKtvMpx6n9 eJP3WPGDYayMeXNhJhQdY2/2P/z/cMIFL/EJwUveo4FhXtnXXTd05hqbPVZs /OiT4hpwbdm35friI8ZeLjUnBOcz8p8mXEPK/ieKjj0R42BcTxbNVS/96aLX zcRYP09HDA642H9FR7IHC9fEqAUOLnp6KuqwTpDY4J4NSa0Xi95TZY/0uaL3 etmbPT3vPVn2Wp8v2u6ecvy5GM8c6fOlr5033xPRAxji9LasHjE44IKXmi8G 7xl577Gyv7pT4Kj7UtGxLVX3heBgDpGTohY6sUnx/eN7yNkTeeTDS+zJwE8f 5P1N9jbZt30larwqeaZkj5QlNnu36Ej2b8GSw97ytbpnfCZ7cpN9cND/a0XX omf2gMknd0rRNnutyClR7ymed43ujTzyn4p+n4qeXy+67/66Vzwt3+W888r/ rPS3Fbui0XFwjI393bNijOhvFm1/OMh7kuzN4iPG/iScbxTNi8TeSv2/VXTO gKwlNvns854dPO8UbbO/Sr+Tix4PPmLg6JFee6Us6Xcv5X40yHuz7OtOjnEz /+8WHdsja4kN7v2i933Zd0ViD5f/40Heh2UPFv2Dou2rmRfprzYZPzxqPS/9 PfmvbDSWnD1V6xPe8QZ573G0sFex1yJ9WtF2ge9Lk3n3CQwxcFOLzt8r65pg 9s5aUh886/DlWB8fFs21rTg/lV4SV1/pHxW9x8yeJ72w/0k/Hxdtw0kc3Ii8 x8I49k54TNjbpIwZEXPyYtSjFzjggpea1L6m0euZtbxvwn58/O5gjRPbl/mR /pny98lafj7Ie8voxLBfbgp8wvrnkX8Lz0rp1zd63/oL6aPk+zLy4Edis1eH joQfDrj6aFwfSE7XZ2DCHHCxR40cFXP1vvSp+uzPO3beOeC/LtpuFc/Mov0t Kfu+DpvcGUXnI7GbhRkjzCV5fx/RvyravixvG/8X6vnKvK/FWNaGcgeFPrto +2reUzUHbQn7iPVPeV2wPrrHGOmPccI/q+gaSOx+wswpmmtv6d8WXXu/rCU2 fXys/G9YN5LXU1efAxP2fxq9wQEXPYEltqc4b5f/Nn0OTnis1Geu4PmuaK7v qSv8filL7JJ+h3ypHmbw2zJh/Yei7X2FmSf9hkbjwR4gTF/dX+fK/2WTseTs n/WaYb3QAzmzFN9E+k/BMVCYr+VL5f139fiIgWOtkX9AyjWp/VaNJTh4GAfj 2V+Yn4vmapP+u/RB3COE/yV6p9Zs+dbI+wzl16LtA1OOg7sp77EwDvphTNiL VzeGOHNCHerRNxxwwUtNavNc5cNzlbOSQWGjz4/4ENX9rehrhI68Na4XOjHs P4q+lgfFNf0jcu7UHKSa9Y4n/D2yx+lziPQDxL1AmG8kF4Ykd5m9bt46krMJ sORM1Vw9KN9q+s05Pm8fODB/CnMn/OL5Qb718z4j+Kto+/DwYxMbIv27JmPI +zPGgH57jHFx0X0fodxDuN5N3uc/TPJfxX5qchwcYyPeOW8M+pKi7XvzxjF2 fMSWcf4dNhL7Y86Ci845MmX5T/QxQZ955IpnadH2KSmPZVHR48FHbF70SK+f 1ljSbzflzgXf5H7II386578lxw5NWWKDS5ScSz8/hZ1VnftjbPCgJ0u2H9Bn xZJ94MFS9z7J5eS/K7DEjxbnEaxVffIJy43y1lco2QZzlOQv+tQFhhi45UvO /7zGNal9TMry/ujtOMV/06dBeseSub7k7FL6r9KPFX6lkvnJHR9jIHflWGtg iIPbOO+xMI5DEx4T9lGBIU6f1OkYvHCsHP1Rk9qb5r2ex0ct/PjqE17jxI4T 5yrSj1HsqxpLcGDQV4kxrF7yOGfWWGIz5onieDz4h8qe3+QzJmI1wmyuWEry IcnjU5apqP1Q9EduTfDRD5I85vME7ic8U6SnS7Zn19iXkd1VuIeDC55T5V9P /gWStSXHTkgZD7Z7cMKFj3ht9JcJH32uUfJ4vlGtPyTXkV2ft48Y43wkalMX fa2od3KTczjzwkfsxJRz1pSdz1ti09vaJed8V2OJTf6jeefCv27J9tDggYN5 xrdu1Fgn8qiFpN8eMSfMx1YJr+XlY90zT8S+5+9MpM/kzEzPiDP5Tsn+i/tc ydf3ZHGeLvtPfXqKZ4OS7R9rHF8/+kN/NHqmZif5u+eNJefP4OiRN8+GJa+h U1OWG0a9TnENGS/90Avnd+R2Ljm/c/DRG/2Cm1fjPGoyXu4vNza6n01iTNTK xb2H+9uTwm5U8r2ti+RXmodBWUvsJU3WkUcmjCXnjMglj3vmMMVvavS50sYl 27/UuCa1ewr39SCP85DojT7ob9OSY21Z48H2Ck644CW+acwXe4zsL7J3ynWb xR5pwvuOxNiPrRO2g56PZ7M/KWxC+lEJ61uUbC9uso0fH/oB6uF5no2yb5b9 Et+RZu9j4yM2POXcrpGTL7kHcpHYyWbXv1Xxo8XfTb4XlHtuyvKJvOcTDrhO SxlP3+TUS74qzGie+7JfyftZj+9Z7pnSG4SZrXoHqu4cyW84x5S/e8n2kKzj 4FZqto48PnioARdYcsjvqPht0XOPkmsflLXEpg/GyPiY88l5x+iN3C1Lzkdi n6f+tyoZV4qxMxeMH99WUeNc7rfNPhulj17y91b8W/Yz9Rkq/9Yl2wern7cU u4OzO/nflv5y3uPqFeOg5//mI+85IY98uLYpOf989dO75HepQ7KW2LxXbVcy 7wXCrNjsGGMkj3xq49828pHYo9hjKXndjEyZAy76m8s5YcwFffSRnlZOY8ln u5wXI7HvarSO5Jy0Z8lzNL/GEpv56hNjon8kfMwVsf/Om6W/K7lD3v82oW/J 9kUp90JPh2btIwaO3ELJ+YWow7UDOznWIeNjnHw3yrwzNPu/s7GXfGtJH8P+ ifTpwo2V/j2/I/Q5NWF9p5LtaYrfzVllwj5ih2XNuWPJvEjsvzX2nUvOuSxl iU3+6sKNkzxRPLuWbFd5p6JW3mfc+IiB2yXk4VnLdZqdS79v6HNS4v9xxPAz HmIf6XNv9MwY1m32uJoU/1H2EVnn3BP9NAcHPRMHR1/oyELw7F4yF1hyyKcO 46RWa8m1r0hZYhPfPeaSsVR57jT7bx6ItcR8tQT2SGH6lYz7p8b3z83i/oWP GPnc57j/HSeeeYptKN8ZCf97lQGxhvaQ/FjyypQlNv9+BR3JGRxYcvg3Nch3 Yx2ybtaP++qesY5Yk6wd1tB97M8J+4E+pyU8T/1LvpZ7lxy7JvBgTwlOuOD9 LHDk94/5Zuz7lDyeo/itrdhA2Q802keMcXbW5/7gRN+vZBvcp8o5M2Efsav5 7clv45LP6pDYR4t//+Dm/A6JTf4Ynn3NPl8eVLK9QvDAwVk8PmLg6JFer0tZ wkUPYFvyxnN+yL/b498k4ufskNgndRp3Wdw820o+I+XslTninJX5PzDmjOtI HBznmadKzpG8Tf4H+R0ve1PhNmi2TQ/gwXLuCQdc8BIHC4Y87OM0D7/yXJL9 W0jsY8OPb1jC57WDY21R65DIPyLmg3lAYnPePkufQ6V/InlYcFMLib1Zs3Uk /HNibI83mpsaV6XMAdctKUv4WPOcwT8U+2m/D/I1YFxHlmwfr1oz5TtI9vhG +46Ma0bu4SXnI7FT0T+9swbII//mlCUc58i/sTAPSz9L+jHCzBfvCVlL7Lzi x0r+IftE/hs73D+5n6YssR9tNB7scPF8J//R8n8VEvvOlDkWDPK+Hznf8q4i /fjgGMrf2PBe3ew9VXzEwFELGzw89ARXN2Efif6nKHeL+L7/xDu1MI/xHYvr cHLWOUNln6f4Qul/DvIe4NDgowfm5KiS5wWJfWPKcfL2jTEyvrMT7vnEkvtG YjemXJPaWzZ7PWCPTFriQ6dHer035X5OKrkn5H921nHGMTLh8R5X8phPK3nM Oyi3Rt/Bp+S7VJjtWYOKTeT5EXyMvVH+CfKVhTmjZPvxlOPgynnrSOZklHyr indKynWox/yy7/lnYBYJf1bJ+6PUpWYl4fr/2Snjzyw5B4nN/ir16YOe2Mf8 K+89WPSzS7ZHSC5WjdOy9hFjL/Qv+c4peW90uOTK6vO1lCX2E43WkZckjCXn 1KwleexttqiHATwXpJ9bsv1SyjWpvYI4/ua3ySDvxzJWxnyKeEaWHDs9azzY ZZxwwUscHPnkXRpjZF4nNfr7gs5cY/dTzpOSFyesjy7ZZi+2Y/DjI/ZKyrE9 m42vyN+dd4Lwn1dy7LzgOEN9FkvmYk+4XPK6eTPWDzZrCA649mm2jmTtMQb2 gpkHOOCip1KMD34kNriq5D+yz+TvaqQfwNpRrXbpPXimSk8pf56wo8R5fsn2 WynHwa0m+1zpz0of1Wy+H1kXCWOIo+OnHjE44IKXmtR+WuPqJX3tOtfCj+8K 6ReVHBuvuhdI30v66ynLfXnPTFgntm98//ge3pFyHvnw/qseflXN84Tv0Kb7 lPSi9CHCXCLMM6o3RnIb2Q+lLLHXrbOOJBcsOdOFOZ7fBbJPbLYPjiuFuVS+ pTzLNLfbyt9JuaPlH1uy/UjKEpvYwcyhcq9KOI/83/PWkeReXnLfZ4vzUOGf E/5q+Q/nHUSx5xsdB8fY+vCcrvMY0a8s2V5OmIX8FkvYR+yxlDmvKJkXif2J /FeVnHNO1hKb/ILiG9aZ55qS7Qkpj+WykseDjxg4eqTXz1KW9HuNchPiXJT3 fY888j8S5tqSY8OzltjgrpfsK8wTKUvsnPiTwizO+/6GfkPJ9vLSb+Y7kDce LLWO5D1C/hcajSXnXNU6Wv4X5btOmB2ld6kz500l20+q7rHch4S5PjDEwN1Y cv6MlGtSe0TWkvrVhNfhxSWvxVtK5vpa+Du4f4tjjvRbpe/Md0D6Csr9V9h2 5d5Wsj0y6zi4Teo8FsZxbcJjwv4iZQxx6lKHevQNB1zwUpPaHeq8nlnLNyTs x3d+wmuc2Cz2IqTvynpNWW5W597QiWHv3ux8ctHvirH11GcC9xfJrvrczTWW HBffIcaOxB4avQyNfuCA63l+j6v/jm32wwHXNylL+C6Qv7nZNjocJwXPfcEN /v6SuUZl7SMGjtx7gheJ/aLw3WQvr8+FCev3lmzn9Xm50c8p+jo1ar3Cew3v J6GPL9muq7ONHx/6eVmvC9bHWVn3RX/wwf9AyTWQ2N/xTl4y11zpDwcWHiQ2 fdQr/pD0U3ie63OWPjcn7Md3U8IcD0YfYIl9L87tJHvrc1nCY2XM36bM80jJ XI9JbiX/zylL7DOb/TmbNZew/njJ9jC+u9KHNxt/ZmBYE4/Kv2Wdsfjnpbxm iHGf71Xn/FulTyzZ/lWYrWNtLcMQA8daw/9LyjXxoSOHBw/jYDw/yT+pZK7f pD8jfSXN42jN55PSt5H/d+7bkq9qnm5X7lMl23+kHAd3TrP73TL6eTTW+7zA EL8t4TqToj844IKXms9EHzxbea5SC//Wwcnzlth8cT4dNekZOSL40YlhP1fy tVwQ1xSb67qeOOcoPkX4Eu8VPM+k91HseWFGcl8JSe4ye3SzdeQdCWPJWSjM KMkPS/7v3uIbGZgX5WuU/acwO/I+qLHeJf/LJdtLwo9NrMDzNvoh78UYA/p2 sSZfKbnvxbxbaix95b9c/hbeixW7tNlxcIztEp7pza6L/lrJdqvwzXX+zuIj tnzanK+WzIvELvL37SXnrJi2xCafemP1uVs8r0d9MIzlpZLHg48YOHqk1xXS lpdGbr8689IPeeQv0hjfKDnWMW35RvTxluQ+kjVpS+zJmsOv9B54TbPPrNHf Ltm+U5/3Sj5XAw/2XmH6874p/2XNxpIziDMyjftGYYckfPY5pdF7/u+WbHM2 t6owhyh/fGCIgXun5PxS1jWpvX7akvqc8U2S/nKz/98x75fMVebvcEr+b0vz 30/+QPozwvRU7gjuAzxLlDu1ZHvbtOPgXm/0WBjHuITHhL1SYIhPTLgO9egb DrjgpSa1T6/zemYts7eJHx//TWzWOLE+4pwmfTVxVbKWL3KPS1gnhv1RyePs nrbEZsyXi+Mivm/C1wj/Bt9bvlOSHwvzhnr9RLIozPZpS+zhddaR1AJLzjZp S/Imyb+6OF/jvUX6pyXbVX7L8y4m+03hqnzX6oxJKz5L/g8U/7zk2E5p48E+ FZxwwUscHPnwgWsU/ouSx9OuWlN4x5H9dqN9xBjnJaxV+V5IWJ9Rsg3ufcWf SdhHrFmcKeV+WXKPSOzzOasK7guyltjkj1Feuc7zObNkuyV44HguYR8xcPRI rzukLeF6JuaE+QDPWmZN832YFb1Q95eSf3+zV1Yr31zZH/JOwxxL7izODPNR Z85vSrYvzDoOjvM0dCTfL87cZsv/TqOx5JD/rjDvyvesMN+VvIYGpC2xWU/k kX9G9EMvLyac+23J+f9J2bun3S+4i7LOoybnU2vIt2abz3rmCbNUsWHsL5Uc u5jvqTh+kP2ecn5k7vldn7XEHltnHflSwlhy+qct34uxXBk4MD+VbO+Zdk1q f9zsXp7Jux/q0we+n0NSFzzYY4Pzp+hpGY583tN5X+ddn+v2UuyFbiLMRmWt O9kLFJ+mWL+0zyHOr/N9AP23ku21hF9bn1cS9hHj3OctyV9L3lu6W7ib9Xk9 YR+xXdLO/b3k/D8kp7JHlLXE/qLZ9afGnMyX7zrx7Je2/ED+1xLmgGtM1vgF wbVQ8nrh9hd+nTbPBTz4Lqvzevgz6lOXs8FpjT5HW1SyzfkjcXBfNltHvhI8 1IALLDnkM/ecLzL/i0uufVnWcnFcV/pjfPSzbpvfRXgPIfevkvP/imvOGvi7 ZNzYrMfOXDB+fMTIv1X+6fK9wf1Z8h/5Z3Ofa7b9svz/lmzvI87bhL+GZ3vC uI8CQx74y7OWxPCT92/ElpacP0Q8HcquDx6JzXtVouzcA4XpJP/6bT6bI498 auNfruwYEvsKrkXZ6+awtDngoj9wK0p/nXMW2cmyx7285B2SB6ctsYmjfxxz sqRkLP0gsacHB5grs5bEwK/GvaLZZ2EzJT9RbLL0jmXbg9PuhZ7IxUcMHLkr lJ2PxK6kjKV35oHxMU6+GxvwXeYZI/96nFdIP1r8NdLX5Fmh3M7CbNjmszb0 Vcq25yr+afSGj9jVWXOuXDYvEvsq+VctO+fQtCU2+ffwDJN8i2dc2fYRwuSU 95tw7yTsIwZutZDXZC3vqnMu/f7Y7HOrZThi+BkPse/0+SJqMYb38x5XWvEs +x3iHM+zVZj35M+UbR+bdhwcfaEj3wmeVNlcYMkhnzq/NrvWGmXXPiRtiU08 FXPJWB5U7p11vhbEasvOrw3sdcKsWTbuuLTvnzz/uIfiI0Y+9znuf+yldxH3 AtnvJ3zGtrYwX4prnZgP5hmJzdkd+mdx9geWHM77kORxLrNRm68H41q3bPv6 rNcOa2iGcI8qfj/PzITnaa2yr2WnsmND08aDfTs4141rTxwc+WvFfDP29cse zw3SH1csK/vrRvuIMc4/9PkqONE7l22De4R7d8I+Yieqh42Vu0HZzx8k9o3i 3zC4b8paYpPfRXl/NvuMI1e2fUPKeXBwzoWPGDh6pNeT05Zw0QNYnnXgOXPj 7I1//7hR9EJdfB/Hee7G8j+p/DPEM0scS5qDp2z7lqzj4GbK7lP2HjX72JuJ b3PZ/zT7PGp27LGDB/thwhxwwQse7LSE87Dhny/fplEPiX1C2nJWjGtTYbtE DrW2KLteHXPeXXO4hiX20pjLrmWfHXWT3JznSdayW8wd+uNx7RgTY3umztzU 4Byta8w384z8Ls6hwHFWxF4950vb9vf3or5smzOmp4TZTPbDdfYRA0duvuz8 fNQclnb/9H7Q8s4j/8y0JRx817ZQz131+Zi6wnzD3kXWEnv5lg4dekgu5n6l 3F7Suwl/R9YSO99mPNip4nlR3N15xjVaYo9ImwMcGGqu0OK6Pcu2qQvHt/+D IQaOWtThrASeHtHrS/y+4bku/6t1PgvhHK0/cyhMR+VuFz3eyd/AKGeb6OmV OtufJuxDB8OcNERPSOzbIpe8T2OMcyKXnrcuu++tY84YLzWpvVKd1wPXheuL Hx9joUd6fTXlfnpHH0js89KOMw7OwhjvVmWPubHsMY8W5p0675exV1Yv/h0V a5AsxPplPSTEMVfcHwmzfdn28LTj4FZqsY5kzTTJ97Y4L0i7DvWY3yn8HuV3 pnjqVGMH+VdtcV1qsm9Jfey7s8b3LTsHiV2OfuiDnlaR/n30hr5T2fZuMY5x WfuIlZT7g2I7y54srl0k35Cspi2xiaMjP08Yiw4Pkjz87HGu3uJ9zl3Lttkv pSa12fvsLn3LNu+LMlbGfJd4di87dk/WeLA3Bidc8BIHRz55zNNnCc/rj+rj y9CZa2zm/qdGzz96S9n26c2+BqztlrhWXHdi6bheA7g+0tvD31x2rDk47lWf rWVz/agx9i973VwY6webNQQHXJkW68gvEh5D9zrPAxytsf76xfjgR2KD26Ps PWD2fvcpe0+VPdI9y97rZW/23TrvybLXulfZ9kVpx/eM/n7n2ko/os58b0YP YN6JNY+fesTggAteau4TvO/VeY+V/U/870bdfcuOXay6e8e4mRNkbYwdnRg2 3z++hyPTziMfXmJrBH5NybVCZ491/6gxUPJ9yUvSltjs76Ij2csFSw77xr00 nyeWvT+F773of1DZtej5gzrvpbKPOrhse0z4sYmxT/x+8JNH/prR75rR5wHh ozf2bj8ITvZGD1Zsap3j4BgbNnuP7MGiDynbJrZ2cA6JvEuD88DoD4nNvuVB wUfPSGzyp9V5z5f92EPKti9LeyxtMY/4iIGjR3plrxg5NXqDa53ohzzy2Ys+ NOrQGxIb3OFl7/uy74o8PGr3aPM+LHuw6EeUbW8l/Wjp0+uMnxY9w3WY/PMa jSXnvqz/5oq/t/qa91JhNtBnhvSjyrbHqm7PNl/7cYEhBo6/1SL/qrRrUvv+ rOX06I11uF+sj2PK5nqAv/8pe1+Zfc5jpX8m/DXSf+W9UdivlHtc2fb4rOPg fmn0WBgHc3hYzBPXAgxx7mnUoR59wwEXvNSk9kd1jrGWGRf+j6LnEyOPusdL 76S8K9KWcNEb+vHRX1Z6F31mJqwPLdv+ge8lzw7JL/U5SfrnvNdKzpC8IW2J vVGLdeSshDngupb3bcnN9JmdMAdc16ct4WMeyNskcr+ucw7408q2bxL+9LL9 N6btOy1sck8pO/+U6AX+r6Jv+NFPjdoz62zjnyO5ufDf8D4sfVPpc0I/s2yb zxbhx0fslrTXBevjohgj/TFO+M8ouwYS+2Zhzgo+9LPLrn1b2hKbPmZLHxY5 3+rzG3uHCftnRs9wwEVPYIndKp5z63XvlO/HhMdKfeYKnnPK5jpXcmutjQez ludGfr3y9uQ718H6iLLtbYQ5T3rvNuNnRw/0Olz+boEl5+601wzrZbAwV2pN Nsh/j/RRZdurCvMLzyH18n1giIFjrZE/Lu2a1H4oa0n9uQmPg/HcwT2wbK4H pFeix4f52x7p8xut35C3znlKqWx7YMo+cD1bPJZusQaGx3VgPsEQJ5c61KNv OEpRg5rU/imerTxXOVvBj4+eed4Se0icZZ7v4rw3bTmjyf/+EZ0YdnvZ17J3 xhKb69qxoPuUZAfx/8nzQvrP7JNoDs8X5gXZF0guUOzRtCX2/DrryJ8SxpKT FWYn5dxS9tkCPjj4/0BdKN8f8j0izKI66/OUe3HZ9oTwXxy43srblntGwjb5 27VYR5J7Sdl9P542tjHwnNmMVWz7FsfBMbY+LT4r4uwJ/dKy7b/0WVjnXHzE HgvOMWXzIrHp/7KycyamLbHJB/dHo3kujzx6YywXlf+/R2Lg6JFeOf9C0i/n QUvq3DfXgjzyHxbmirJjT6Ytr4jxX1X2eQ5nTEjsBY3m45wJTvSry7YTWgPX 0XOj8WA5P9qWvUCe14ElhzFu1+ZxMq4+0hvZ+5Z+bdn2Y/pe/CmO3XkeBIYY uGvKzn8065rUfj5tSf0/hC+wV1Dn3OvL5npc+JvLPmviDOsG6X2ZH+lJ5S7m 2Sb8jWXbL6QdvyHyGQvjAMOYsB/JGkOcWkjq0TcccMFLTWovavR6Zi0zP/jx cSbFGif2lOreFGOlZ2RTi+cHnRj2rWWPc0LWEpsxD2jx2Q9niH+Le0Xmhd87 8t/GOuM3v2RH+V9JW2J3qLeOnJ8wlpxn05bk/cZ1551f9gLpd5RtT2Qe+M0t ewfJVsUXB/4fyQfk30e+u8qOvZw2HuxzwQkXvK2BIx8+cE+I/+6yxzNJ+o68 WzFfbfYRY5zvNHv8jB39nrJt6lxY51r4iO3Gmb5yxgUvEvs1+e+NcVALiU1+ jeJLhF0snvvLtt8MHjiYZ3zEwNEjvT4ZPdPvopgT5gP8drGm+T4wT8SeYt9M +m7MD3/fxXqP/h6UTEm+lTbfvi3mfCjmg9xU4Faot47kerUIOz5qgCWHfM4D /230GdAjMWfMAxKb9UQe+S+l3c/Ksa7IfbjsfCQ254/0C+7prPP+ifnZRb5d 9Vki/Qlh1hbPVOEfKzv2jPBryfe47KXKmcDa1HPl2awl9uAW68g/E8aS80Ha krx/+Y0ZODATy7ZfT7smtVerdy8HtLgf6tMHvkkhqQse7F/BOTF6WoYjnz1G 9hfZn+S67d7mczH2HYndzL8llD5I2Pe4XxXcK32iPx1jWLfeNn586M9nPdan ZC8ne3Nhcvokk/YRY+zkPhM5z5XdA7lI7KvrXD+p+N/if1a+T3W99k5bDmnx +RcccE1PG0/f5Lwgub78H3MGKrtTvZ/1+NbQ5x+eldyfVO8F1W3mN1Sbz/Je Ktt+Mes4uENarCOXJsxDDbjAkkP+wYovHz2/Unbtl7KW2PTBGBkfc9653jF6 I/flsvOR2B+xx1U27tMYO3PB+PG9GjW+lv+wFp/V0sdk+W9SjVbugfokxD+l bPtl9dNFuSsqb3n5N5a+Xr3HNTnGQc9IOJgT8siH6/Wy82ewr1X2u9QrWUts 3qveKpv3K2EOivctxkge+dTG/2bkI7E/ZH+g7HUzO20OuOivv2q/F3NBH29L P0Y575R9VsaZIxJ7pYJ1JOdBr5U9R21pS2zm6+0YE/0j4WOuiHHOx3weKX1l 8Swn//tl21+k3Qs9vZq1jxg4ct8tO//dqMO1A9s51iHjY5x8NwbIf4IwK8g/ i/uc7Lc405Q+T70epdw95Nuzzedl6NPKto/nHTN6w0dsctacU8vmRWK/xt88 lJ0zK22JTX5X9bGq5Iri+ahs+xv2nZR3unArJe0jBu7DkFOylpvVO5d+h7b4 3GoZjhh+xkPsOH1Wj1qM4b46j+tT7nusL/YtuY8Js4own5Vt/5B2HBx9oSNX Cp5PyuYCSw751DmtxbW+KLv2zLQlNvFPYi4ZS3flblrva0Hs87LzPw/sG8J8 WTbux7Tvn0/G/QsfMfK5zy0X9/O05Dl8B5I+Y/uK5zHf2ZgP5hmJ/d/ZXosl cwiWHM77kORxPrJPm68H45pZtv1m1muHNbQfvzF5pgpfk/Q8zSj7Ws4uO/Zb 2niwqyXNMTOuPXFw5M+I+Wbsc8oez9vS9+d3pOyBbfYRY5zbKLdOn5WT1r8t 26bO8BbXwkfsd/VwCnMQvEjsuZzzxjiohcQmnxqZgufz+6j5W/Ckw4+PGDh6 pNd3oueB8ezj/3PIOJkf/htaU+O/dYX/h5ijcf11z75Aedvr9558f+kanJo2 x8Q688yLOeD/mUgc3AieXRXdw+X/SP5Bkr/Kf578bdIHt/mMCTxYzonggAte 8GBTSedhvyeeYfxO5blTsMT+JW2Jb1Xht2Vtlj0Oav1Wdr0Fkssxf2lL7KLk KN7Zpa8p/HzJtSQ/yFpi96m3jkwnPSbGdkhwU+P9rDngWpi2XDP62T7yyaWP 5+o89oXRF7UahflFds96+4iBI/eP6AmJ/Vf0T++c9ZBH/p9pSzhWV60DxHOg PrXS/xJmHXFMy1pit/PuLzmSuVDuP2Wfg3AGhMRet2A8WPrfWdyL5F+7YIn9 b9oc68QYqXl+i+suKdumLv1yxkTP+IiBoxZ12KscGT3BtYu4t6v3GrhE/k7y ZaS3yLec5n9H3r8kDxLXh+IfIrk05qgi/HqBx0dsetZz8mf0hMSeGrnb1/// GBnfmkn3/G/Zff8b64X5pya1x7R4PbAW2AvFj2/tpHuk1xUy7qdDxT0hsZek HWccayQ93r/LHvPyFY95eeXeLJlTXlaYQ3mfV+wwyRUk15f/Y57d9dbXEWbF iu2OGfvANUccCSZd8b4s+67/1al4fteXflmL98AZ00ryf1znutRkX5f62J9k je9YcQ4S+8q0668Y/Q2QvoHkeknrq1Rs18Q4Ps3aR2xl9dyZ743sy7lXSl7I syRjiU0cHblW0lh0eJDk4c9J7lbvs7zVK7avS7smtb9g71i+DZXTOemxMmbm M1VxLJMxHixjhwMueImDI/+/vDqvAeZ1/3rj0Zlr7BulZ4XdMGm9tmKbveZB 9d6vxkdsDdU9vM374PjXrng/mL1i/JmKY0jsz9TzGhVzsb+9VsXrZq1YP9is ITjgGlxvHcne+BFt3gdHhwMuelqz4tjnWUtscOtIHsm8sAak38r3X7XWlX6U /F/Kf4jyN1LNLhrvehXb62ccB3c093Tl7SG9e8F87IezNw6GOPuo+KlHDA64 4KUmtbsUvH99YL1z8ePLqe4GFcfYG+8U2BlZyztbjEEnhs33j+/h0rTzyIeX Xthbp59j27xvzF76MdI3rNiXZT0L2zljib1xwTqSewJYcr7i3Id3FNnz6uz7 j5c1xnXk/SjrveSD6l23S8U2+9VIbGK3txi/UdKS/LvDh8S/cfQI5zj57tNn Y/mHKn9zxTYtOA6OsR0p/+H8xk1a37Ri+yh97oU7aR+xXMacm1TMi8TeUP7N Ks7ZKGOJTf7DvOMFzxYV25tnPJaNYvz4iIGjR3rtmrGk302Vexy/Hep9bySP /PWE6VpxbGbWEhtcXnKCMHUZS+yLd9NvAWFOob+k9bqK7SeE6S69rsV4sJvo Ft7UVdeA72TBWHJmqdbpyjmt3mcWczWPk5TznfSGiu27dO2ebPF///DAwBAD V19xfveMa1K7IWNJ/TEdvA47V7wWt6yYa0theknvwXUVfw/pZ4qnR8b/TcSn WnwusFXFNv/dxf/iss+o91gYB/yMCTu5ujHEN09GnYr7hgMueKlJ7edavJ7n xTkFfnycEbDGic3W/PSUfg7v1xnLzVW3W9I6MWzODV5s8dkB+jYV22PYO+Ba FHyG0bviM41tJUcgMyErPiNB/z3OUOCAi3MQzhC6FnyOAAdcnKcg4ePM60T1 O5R1kDT29RbjGyu2v2Evt2IuzkfwEQNH7nYV5yOx5whfEfcWwtUnrfep2H6l xWcqzNVJ/PZlrpPOP6/ePaD3rdierHi34Okbdeinc9xTub/RVyF6hX/7imsg sRs1DztUzNVX+k4V1/42a4lNH+fzfiK9VO9zlHzBZxP48XVPmgMuegJLbBdx XiF5sT69kh4rY94xY56dK+baVfJkfttkLXcN3CnST9WnZ9L6bhXbbyi3WXp9 wXiwzAPzvkvF50hgyZmb9ZphvWyddM4HrFnpTcHxvTCXClOt95zjIwaOtUZ+ S8Y1qb1TxhIcPIyD8XCG1VIxV6swA6Sfph5+4G97ondqcS7RUPDZRL+Kbc50 iIOb2uKxLIozsl1iTTFvYIgzJ9ShHn3DARe81KT2BfV+tvJc3SppPz565nlL rEmc/aW/LX3XjOWSOHtCJ4a9Z8XXco+4pthc1915t2zV3PDuKvwnLT6POJ29 CWE+kr039xjZP2Utsc9ss47krAQsOT/y943KOUZ274J9cGzDb3P5PpQ+QD1c xTgU7y3/fhXbe4Ufmxify+uNIY/8LQvWt4w52b/ivp9Ju5elde6np+KDFZvR 4jg4xnaWMMP4TietD6rYvkF1tuL7n7SP2M9Zcw6smHdgjHue/G0V5wzMWGKT P73Ften5gIrt/hmPZd+Kx4OP2LIekb9kLemX3BuFG1vveds35oO6B1YcG5Sx xAZ3UMXnOZwxIbF7FTxmzpm4pugHV+IMSp/DpG9dMB4sZxbMxRD5vwosOVyX s9t8bejtHPZA+K3Fb5mK7d84ly/42m8bGGLgDqk4/9esa1L7oIwl9Xfg937B NvrhFXP9LvzRPB+UO593V+lfiH8/5d4h7HXcf3m3qdg+OOP4EZHPWBgH13pI XGfmGQxx+kRSj77hgAtealJ7RJtjvQOPHx9nQMdEHmM5KsZKz8hvWzw/6MSw j614nH9kLY+NuXhYn7u5Bwg/ku9Qi/W75Dsuco6X3FP+KWlL7Lkt1pGclYAl 59CM5bYxt/S7ar17PiHGRA+zec7x/BPuHsVv1aev8Ofx3Za/VvbQimNHZIwH WwhOuOC9J3DkwwfuQOFPqng8C1TrPt6pZDcW7CPGOH/Qp09wop9SsQ1unHJ2 StpH7HBxjlLuyRX3iMReKP5Tg/vPrCU2+QN55rf4rOT0iu13086Dg3MofMTA 0SO9HpWxhGunmBPmA/zZsab5PpwRvVC3yHMPTnS+I7Lnc8+RfEjY48W5Peu6 xZzDKrb/yjoOrlCwjtxNmNHcYyvmA0sO+d+32IbnnIrX0AkZS2zWE3nkL4p+ 6GWXpHPPjtpI7MMy7hcc/ZCHDp7zor4Fn62cJ8zj4j6Zv0WpOMb5FHM3ouIz pZG8ayh3cdZyZMwp+n1xTUfEfDPPSPK4Rr/yHqJaOwszqmL72IxrUnu8ZJn5 5tkevdEH/Y2uOPZ31niwuybNARe8xMGRz3s67+u863Pdqm0+N9lbuMd5jst/ vmS7/P/yN9LyP8a7dtJ6uWJ7Yr1t/PjQ/xF+oWqUeD/gPUf6Sq3eT8ZH7KSM cyuR015xD+QisbP1rn++Pi3Krcp3hHI/T1v+1eJzSTjgOjUT+IpzLpB8mrWV sb20xTz4dubeL/1CnqFcX9Vd0GKdsVxUsT00Yx+4fyOObAoeasAF9qLgekb+ R+t9jS6JXuBHYtMHY2R8zDlnPLsWfGZB7sUV5yOxh6mHMRXjZsfYmQvGj48Y +dicSzEnF4j/spiXC6VfxHuV/GMrtpfLdejwkmK7KW9P+V+W/iTvfknnkd8h Zzkxrjt55MN1ecX5I3mnqvhdKpGzxOa96qqKeUcJs6TFMd61yCOf2vivjHwk 9hm8V1S8br5LmwMu+msW7rqoTR9XS19Rta6RvFh2MmeJfUmbdSRnTJfGnLFO kNjM19UxJvpHwsdcMYam6PnVqM1cXV+xPTrjXvAvn7Pv+rDJvbbi/GtjPpgr YvQOD+NjnHw36DFf7z4fqPjsgP3w26SvonhJuUnJFuX3T1q/qWJ7ivJe4P02 aR+xczPmvLFi3htjPujz5opzyhlLbPIvZc20+Xzn1ortFYUfoBq14tw7aR8x cLdIjpFcIWe5qjB7Jd1va/Q5JnDE8DMeYmNZQ/rsK0w/2ZPrzX+H4m/we0a9 naU5WL3VZwF3Vmz/nHYcHHnoyL2D5/aKucCSQz69blXvcd1dce2VcpbY9HF7 8HWU/11h+0vfP+ncuyrOvyvGDWZcxbiLMr5/FuP+hY8Y+dzndoz7+RVt7pU+ V1ZP91Y8r/dJvsd3PWOJ/Vq9dSTzCZacYsZyQIyXvtdo9RzeH+NYOee1wxra o+Dxc6bCHJJ3T8XXcnzMDfMMHmwqOOGCd/XAkX9P9Av/gxWPZxXpV0k+Kvvq NvsejOs3TZ+3+T2TtP5wxfaVwqwj3oFJ+4hdph7S8j0ke8+CJfYF8j9Scc6q OUts8tdmrQm7j3geq9i+NHj2DD8+YuDokV5Xi57ptzaedzzrBknvP7hDh5rz tW66+xlIbHXhR1TVp/D9pE/kOav5+jttjh3qzfNEzAF44uDWU/23JW+Wfy35 9xXfUzzX5F+r1TZ1wYPlDAUOuOAlDhYMedgp8VwjzCTZ14bErgk/vsH8ZlT+ hBgDtZ6O/Oejr8szltic4XyhzzPSP5B8NriphcTOtVpHws+YGNstbeamxpiM OeC6LmMJH9eaM6X9Ct5Dvq7N/TGuFyq206r1Oc8g2fsU7CMGjtznKs5HYq8Q /dM780Ye+ddmLOE4kHu1eG7Q5yCeccIM5F6Ws8TeXByvSHaWvFq5k6XfyPcq Z4l9U5vxYNvEM1v8L8m/f8ES+9aMOcCBoeYWra77WsU2deEY9D8YYuCoRR32 ujtHT3DNEfen+hzAu6vkYPkO4z6pOXhTmG7CvhU9rin+NsVfj56+rbd9SNI+ dDDMyYvRExI7E7nkHRJj3D9y6XlKxX1PiTljvNSk9sH1Xg+sBfbk8eNjLPRI r50y7ueN6AOJfUfGccbBOQvjfbXiMb9T8ZjvFma+5MHKO4rfStKnVrwf/67k Aawr9T+j3vpSYd6r2L4hYx+4+lbrSDCfytdd+j0Z16Ee83uP+unS6vM+xvSB /EfUuy412fOnPva4jPHvV5yDxM5mXP+96C+vWIM+hyatT6vY/lhyiOLr5uwj dmfG5xDTZX8njg8lb+W+mbPEvq3NOpJ+wJKzUeSSx7X4WfJA8R8s/aOK7fsz rkntrVTvl3rbRyQ9VsbMfH5SceyBwIM9Ijjhgpf4JzEG8o6IusxrT30OD525 xu7Bd0LYIUnrn1dsc0YyL+YWH7H7Mh7fj+H/Sv46+e8K/2cVxz6L+WAOv6iY i3OWGRWvm4dj/WCzhuCAq3erdSTfqdvb4mwmaQ646OnLimPr5SyxwX3N2pbd Sf450v+U73HVmin9TvnXl38h36eC52FWxfZjGcfB3SX5GNdWz5jH28w3t97r BAzxo5P2U48YHHDBS01qHyp9kfRGjeXYpP34jpH+TcWxCexjBHaDnGWfVmPQ iWHz/eN7eFvGeeTDSy+FVvdzt/Qlih0pva983wmzk+Tciv1PZiyxF9dbXxx4 sOQ8IczR/J7intBqHxzHca+T7x/hnxJmR/l20ed4+X+s2H4y/NjElgp7mLhO SDrv+8Ch7xi5P1Xcd2d+p8h3ar3Py8bJ9yvf2zbHf4oxJBv0m0CfE5PWf67Y nsjvv1afkeEj9kLGnPMq5kViPy//LxXn1GcssclfSXmH8/tY/L9VbL+a8Vh+ qHg8+IiBo0d63TBnSb9DlXsE79ri2yLpPPKfEc/vFceyOUtscH/wzJd8KWOJ fVa9+VZoMCf6gorte6Uvkr5nq/H/YZfTc5/98qixIOaPWv2EOTLGtaryO+pz EmuyYnuK6u4lzPB6n53hIwZuYcX5r2Rck9q5nCX1T0t6HX5b8Vr8q2Ku14X/ R/qa4nhf+mLpKelvSX9efe4rTF65f1dsb5NxHNxqDR4L42AOGRP2VoEhfkrS dahH33DABS81qX1UweuZtQweP76zkl7jxLpoLEu4V/Osz1ner88ZSevEsPdp NR4e9KWRnxNnSveKE3ivk95Beo3kclXnwY/EHtxqHQk/HHC9qXEN5D4hjtOT 5oDrg4wlfMzzy5xlFHx+90Cb54J+lq/a3li1Vqia692MfcTAkZuoOh+J3Sfj +RpV72uBnqzaXk85tfqcKf/xPA+lny19PO9uwg0LvWPV9oPSH9KnIWkfsU1y XhesD+5v9EV/jBP+FauugcT+UP2sVDXXpsKvUnXtzXKW2PQxRDwrSz9OvvUb HKM3/MfFHMIBFz2BJTZd/Fuw9oUpJj1WxsyahGfVqLd65FEXiV3kucXvHX2G J63XVG0fKI6M9BMLxoNlHl7THK8m/yGtxpKzec5rhvUyIumcI1vdfzo4thBm I2HWafA84yMGjrVG/hcZ16T2tIzliTEPjIPxfCx/bdVcX0pfW/qj6qGr+NeI 3qnFuezQgs8r16za5ryVOLijWj0WxsH5LGPC3j4wxJkT6lCPvuGAC15qrh09 8WzluXpe0v71Y13xvCXWTf2sFXNG/0jOf6mLTgx73aqv5Zy4pthc19fF0Sr7 cuaN771857C3w5qr2tdJ8nDJzzKW2MTRTw78euHLq5/e4ttSdl2DfXCAWV++ rvJ9w99+qO7ENp+ldq7arstZYk+McQ9t9djJI3/DBuvIc+XfMHpkXKcWPDbW KvldFLuo3nFwjC3fYBwY9FzV9rua/5NbfVaOj9h3wZmNucsGtp71VnXO7hlL bPKP5x4vzCjxbFy1PSvjsWxQ9XjwEQPXJcYKJ5J+mZMG1dtMn9FJ55HP3G5S deyHjCU2uM24p4p3dsYS+3Txnyp98wb3859etU2v3ao+TwZ/eszJE9xL6C2w 5Hwvzkn0qLxy0mfCZxR8vtm1apuz6SfbPG/FwBADt0XV+d1zrklt5hZJfeb8 acXPld3Odamaa0vhu3PdeC8Tvk76U/L3kH8b7rXivkD4+qrt3zOOg4OPsTCO UtJjwm7IGUOcWv/1HNcbDrjgpSa1zyp4PbOW4cGPj3lgjRObz7UI7FY5y+Gt xqATw+4RfYFBYjPmXcQxQrjLhH9W/mvrfe75DNiqfT2DgzEisYdFnWHRD1hy euYsyYPn7ILHxlz1qtruJcx28m0d9ue6XiNbfSZ7ruzt5W9kTqqO7Zsx/uyY 8/84Yt6JgyMfPnALhO8dvVPreclG2S9EX8QYZ0HYXvqcn7S+XdX2c8KMFt+F SfuILeIsW75tZZ9TsMT+Vf4+VedsnbPEJv887rXCVuGv2v4zeM4JPz5i4OiR XreJnul3+5gT5uOipNcya5rvA/NErLfwrdKrvLOLf6R8u3Dvlb2D5CzN0QEZ 891Sb84dYz7IJQ6u1GodyXluX9XoGzXAkkP+i9Jf0meMMDtXvYaWZiyxWU/k kb84+qEX+id3p6rzkdjb5twvuO1yzqMm+FGt9qM3R49w7lp1bCG68LvJ7iO5 e3DDg8S+oNU6kp7BktOh1pI8rjXnyqMKPkNvqtrm/Jqa1Oa8+uU297est12j 75aqY31yxoPtG5xwwUu8JeaFvTn2F9nH47qdJ/2SpPcdibHHuFfVz8cV1ecr yr1EuLFJ6/2rtl+V/lqbz1vxEWtUD83K6yd7J8kbeC6L/4qkfcSWr3XugKrz 95Qs8t3LWWI3Nbg+Ns/oPeS7mPfOWsvR0TMccBVyxu8VXHtL/sJ7sMZSln1l q3nwXdrqM9Z9oj51J0tO0edK3m+rtvvmHAf3QL115C7BQw24wJJD/p7cL1Xv amH2r7r2DjlLbPqgv6Z497io1TF0cverOh+JvarGO7BqXCLGzlwwfnwDo8Ze rL8GXyP6aJP/qlafGVcKPtMcXLXNOTh9c97MPAxUXlWY65POI5+ekXAwJ+SR D9cBMW7WxoFVv0vtmLM8MNbNQVXz1grzhvxvcn9POo98auMfUnUMib0Tv3mr XjfkDgwu+gN3mPQbeV7KPjhwh0hezrt+rSU28csDx9obVPUcrVZric18HRzY nXOW8P2HV2yAPldJf0t1327zGfThVdu75NwLPZGLjxg4cg+tOh+JvUatsfTO PFCHcfLduKDgcTL/Z3CfU2xt4Y+TPoR3VumDG4wDg35U1fbfui43t/r8Fx+x tWodOzKuwZGB3VV9Hl11zukZS2zyr+OZI8w14jm2ajstnvfU8/P1PlfFRwzc MTFWOJGT6j0/9LufPtcl7QdHDD/jIXawPheL40Zh3hHmNvHeIP0Exd/lvsl+ Kffs6OfEqu11ah0HR1/oyAHBc3zVXGDJIZ86Bza41klV1+5Ua4lNnDzyd1Pd hHLvaPWZLLGhVecPDWyTMCdXjRue8f2T5x/3UHzEyOc+x/3vUvF8IO575btZ +vvST63ad5rkEbxf11piX1Kwjrw1aSw5zTlL8uAZo/g9rR7X6VXbLTmvnTPC PlI8BzR4bpmnU6q+lmdWHcvVGj8mrgUSLniJgyP/lJhvxn5W9E6tu5kD2ZcV 7CN2b8wf59PMIfrZVdtT2zzv1Do75olrwRnzMO4pBUtszrjPqTqnNWd5Tly/ Y/U5TJ9beD+p2t4keODg7BUfMXD0SK+day3p96akzwbHy74t6b0r9rDY/8LP 2SGxLQbru9Oud3rJUTwH+A3DfYbvgLhv5z2qantAznFwY3kGSA7nXVL4D8VZ 4t7BHrz0j/W5M2n82OgHDrjgBQ+WM2LysOE/nt9GUQ+JvVmtJT76mS7syMih VrnqeudLnsI7fa0l9tH8JtKnIv0K3gt5RvEMzlliP95qHQk/Y2Js1xXMTY09 cuaAK19rCd/dwt8f+eTSx4RWj/2C6ItaKZ6Lsh9qtY8YOHLboyckdpfon965 duSRf37GEg7Orzlvvqrgc8yLhflEvHvlLC+OubtE8lPZe8t/mfRHldO11hL7 moLxx8e1hvuiqs+/L4p+mX84PtPnnqRznuF7wPMuOPYR/9ncR/S5KzDEwFEL Gzw89ATXMOZZ/vv4LSzM860+TyTnSmGuVeyquA775ZxzuexnFf9c+hdtPvO9 PPjogTm5sOp5QWJzjk+cvHtijNPibwDoeWzVfSOxe9W6JrXpkfVwXfSJxId+ ZYyvZ637uaLqnpDY++YcvzbGTt6Yqsd8TdVjvirj86tbCj7DmsEzVLGveJ8I Psb+lDDXCzOOHqq2e9Q6Du6TeutI5uQO3mVUb8da16Ee8zuS+54+9wrzpfA3 yP9Sq+tSk3Nh6mMPzBl/fdU5SOztal2fPujpRZ5v0Rv6TVXbt8U4BuXsI7at cm9U7GbZI7jH8WyRbKy1xCaOjnwgaSw6PEjy8G8ivldafYZ4a9X2TRnXpPbX nIVJn6nPg0mPlTHvz3lZ1bG2nPFgDwpOuOAlDo588pin+5Oe15vUx8OhM9fY L/AMjJ7R76rarnKvbnAuPmK9ax17vdX4e6NmY/jvrDp2Z3AM5nlUNddOwtxT 9bq5P9YPNmsIDrg4C0VHMj+M4Y1WzwMccNHTuBgf/EhscPdJzpJ9AH9XI32y fH1V9/6qz6k5++Z8kvNpzigfqNrmTJM4uFvVz0LmkWdNwXznxbUDQ5zzbvz3 xTqAAy54qUnt23jP4XeHPg8l7cc3nu9y1bEm9TZe+mze0XOWnK1yLo9ODHtM fKf5zpJHPrxzeNfiXiX8t20+p/zvjFL6I1X7HpV8V5jday2xby9Yvz36AUvO QerhR35zVX3uhQ8OOB/j3YD3+5zPLz9o9dnohKptzmqR2MTGNBj/WDKk/BeF D4l/YvQI53eSc9t8XvmW8p9S7K6C4+AY21jl3SnfhKT1SVXb4KYr55GkfcT6 15rziap5kdiHqNaTwX1ozhKb/B14XjV4/p+u2p6U8Vgej/HjIwaOHul1l1pL uOiBen/Xeyzkkd8izDPRC3WR2OCe492B3za1ltictU4V54fMbdL681Xb3/O9 5nnRYDxYzmQ5731W/ksbjCWnlecC3x3GKcwn8n2hzxPc96q29xLmhzZf+xMC QwzcC1Xn71frmtQ+LGdJfeqyDh+uei2+XDXX4fx+r/o8mfPTV7i/Cj+Q+4B6 mcHcKvfVqu0jco6DG1fwWBgHc8iYsDm/BkOcNU8d6tE3HHDBS01qX9PgGGuZ ceG/JnqeEnnUfY1nsWL71FrCRW/or0V/X0ufSQ9J669Xbf+mzyfS/+B5KO43 uK9Kvsk9UHJwrSX2rFbryKeT5oCrTZjvW332zfk4HHAdUGsJH2tgjjDfRu4d 8n3D3PI7q2r7YL7jVXMdVmsfMXDkvlV1PhJ7iDC3877W4PWA/nbV9jjWjD7P yv+T5mn5Bv/bT87af2j1eT36+1XbD/B85nmStI8Y5/isC9bHkJz7or9k8L9X dQ0k9uHq54OquY6RPq3q2kfmLLHpo1k8U6X/0upz7PsKPmPFj48zdzjgoiew xF7kb+q497DOkh4rYz6o1jzTq+b6SHKe6h2Vs8QeL9wj+ixgjSetf1y1zbX/ TPr9BePBMg+/8v2t+kweLDkn1nrNkPOiMI/K96A+L/GeWbU9VJgJUe/lwBAD x1oj/7ha14QHTiT14WQcjIe/Dfi8aq5ThPkqnmnH8rc9PG/V69HSf5H8VZ/J vF9VbR+TcxzcolaPhXHwtweMCfvYWmOIM5/U+TzGCQdc8FKT2v+2+tmK/WrS Eh86z1tiJ4lzhvSnxXFWreUDvHMkrRPDnln1tRxWa4nNdV1RvwlnSX4mfKKf npXCvpZ0H7N4rqnGbMklkmfUWmI/WLD+YOBnRe/M1Xvi+0v2aw32wcFczZHv Bd6TxPM7z+42/23At1Xbx+cssYn9pk9SPb2RdB75TzZYR06R/7uq+x4uzofV y/PcO5LO/1GxTIPj4BjbSw3GgUH/vmp7f/W4Qj//DQA+YiODc27VvHMDe4L6 /KHqnHcyltjk/6G6C/R5m/tA1faJOY/lm6rHg4/YguiRXuFE0i9zMoX1zHtH 0nnkH8f3q+pYudYSG9wvksuJ+5xaS+xHWQc8Hxs8h+i/Vm3T6/yq/xYB/KMx J8if+Q72M5acSq17Xa2fx8XfQDxW8Hn971Xb/D3DwjbP25uBIQbutxjr0Jxr Upu5RVKfOV+k+Bqy35f+R9VcJwm/SPrK8hfpgfca+U+W/13u8dyrhF9YtX1R rePg4GMsjIN+fo75oAcwxKlFnT/iesMBF7zUpPaEgtcza/mdpP343kp6jRO7 mLqBPSVnWdvPGHRi2IujLzBIbMb8uTie5je68Ivl79zgvzH4i/eiqn1LgoMx IrEnRp2J0Q9Yck7NWZIHzxMFj425+qdq+zRhPpDv37AP0/Vaq5/P5Z+SvWK7 nh+KL6069mnG+CdizpH/xLwTB0c+fODGqM8O7e6BWkt4Jsr+J/oixjin8wzl 2ZO0nmi3/bcw64pvWtI+YmPFmZZvOdmTCpbYF8ifbHfO6TlLbPLX0edJrqF4 Vmi3fVnwTAo/PmLg6JFez4ie6fe8mBPmY3rSa5k1zfeBeSJ2Jn9nwpjku5p7 rHyryc7KXknyON6HMubbtMGcK8d8kEscXKd+1pH8/cBHwnaMGmDJIf9f7qs8 a4VZtd1r6NpaS2zWE3nkXxH90Av9k7tKu/OR2Gfl3C+4YTnnURP82v3sR89E j3Cu3u7YpexRCF8je6pkKrjhQWLn+llH0jNYcq6LXPK41pz5P1vweX263TZ/ L0FNavN3Ex0Gu79lva0efde2O3Z2zniwo4MTLniJ18a88J7O+zrv+ly35yQ/ ZIzC7CbMrtyf2v18vIX7qvybyPdp0vpa7bYT0pOD/TcJ+Iidox6+Vt6asj/l HqoeturnvXR8xG6qde7a7c5fV/IF9XBuzhL7qwbXx+YZvY58G4vnxlrL56Nn OOAanjN+veDqJDmM9zzN4Uuy8/3Mg2+zfj67Xz/qU3d5yRX0+UL+Ddptj8g5 Dq5ng3Vke/BQAy6w5JD/neIv8rtFmA3bXXtkzhKbPujvq3j36NLPMXRyO7c7 H4l9p8abbTfuhhg7c8H48WWjxlzeeRp8jehjI/nr+vnvCV4u+Jy6S7tt/iaB vvn7BObhJ34j6PNl0nnk0zMSDuaEPPLh2jjGzdrYpN3vUqNylpvEutms3bz3 CtNV2FeU93nSeeRTG/+m7Y4hsW8Xvq7d62ZJxhxw0d9rwnWT/iP3BtXaXPqW ytlCciXZo3OW2CsPto7k7D7X7jm6q9YSm/mCA67zcpbwfSV8d8lXo+efo/bX 0vPttu+vdS/4izn78mGT27Xd+Ujse2odo3d4GB/j5LtBjzs2uM/t5UvJPl+c W0n/g/ch5a4i36q8syatN7Tbnq/4ZPHOSdpHrJQzZ327eetjPuize7tzHq61 xCa/QX1MiTH2aLc9jnNP+fpKn5m0jxi4LUOWc5a9+zmXfn9o8BwuwxHDz3iI rc6/+dLn26THsG0/j6tXu/82gb8xYF44h+O+sXXME3NOHNzrBevIscHTs91c YMkhf7XBvjb01rvdtas5S+yayCOfsSzmnZHvU9K528T1RmJXhNm23bgnan3/ 5PnHPRQfMfK5z3H/+z+mzjvMqarr4ggJIjacJGMBNcGGosxk7EpQFFGczCCI wowFsSsoil1sqKRaUMQGgr33gr3x2nvH3rAr9q7ot36s7fN8f9xnt7XX3ufc k3tvMufCfL4/RgzOjYXfouR53ZJ7t/x3N1hi/zDAOnJBN2PJuanBkjzOBX1v 1eo5HBjjKGW9dlhDvTp83p4NPHmbl+wbFJL+wYOdHpxwwfsf7tnIIx/+rUoe T0X6QGG2lf38QPu2inmZpvMyuNV/f1+sl2xTpzjAtfAR66EeFsm3dfAise+V f5sYB7WQ2OR3adI1TPJz8Qwp2X4geJ6Lc4ePGDh6pNc7Gyzp99O433Gv+7Kb /+bG396KWd8DiVWz9vG3OP6Wt7382/JMwN/WxfEva53fE0q261nHwb0ge0+e GcRzLs9Ikq2yd+beyD1UxzfdjH8h+oEDLnjBg2W/AXnY8HfVuIZFPST2Qw2W +OinQdihkUOtYsn1duI6KdxjDZbY/3Atld4m/SXlt0u+LHlm1hK7tdU6En7G xNh6Bzc1zsiaA67/NVjC963w20Q+ufRRbPXYR0Rf1LqA3yBlD221jxg4codH T0js+6J/eufckUf+8g2WcLCHgf0Erwz039BHCdMo3rOylqNi7naRHMY9WLlj pK+k2LSsJfbKHcaDpX+4dy55T8TO0S/zD8erXN95VmGu+S4qfXTJ9tniHM5z 6P/DEANHLeqwNwAeeoJrGdVM6lgof0ryDfl+ln4lv8kJM1LYPaLHc8T/uuKd XMuEXa7J9vfd7EMHw5yMLHlekNjsUSFO3vcxRsbHHNJzR8l9I7GfbHBNau81 wOuBtfBjN/vxMRZ6pNc+De5nt+gDif1Mg+OMg/0AjHfXksc8tuQxv8g1VvJd 5f3ezX/X31exN2XvJTlfcrrG1d5qnf7HlWw/0WAfuNERR4IZz/oV7/wG16Ee 85uW3rPJ544x7SP/mFbXpSZ/s6Y+NvsWwO9dcg4S+6UG1x8X/TE+9jQwRvT9 SrYPknxb8fOz9hFjTvqo7v4xRwdIrip7RtYSe7UO68hfuxlLznlZy+XiPK4i +VbM24El2280uCa192Sttdr+oZvHypiZz4NLjj0feLA/BCdc8BI/OMZAHvPE GmBeV9DxU+jMNfbqwmQ7vH8A/ZCSbbjfiR7wEbsg6/GNbfUYD5f/Vs15vwb7 J5QcmxDzwRweGmNijIeVvG7eivWDzRqCA65xrdaR/E2fGGNjruCAi54mRt6F WcuJMY+Tonf8R0vvK/1i6UdwbeBzrrpZ4VbS8Zs4jyzZfrfBcXDvDfTfBq6T 3tZkvgkDPD9giP/SzX7qEYMDLnipSe01WKfCvx94/PjYD3BMybF3VPco6Tn5 L8pa7iv/H92sE8Pm88fn8KkG55EP7wd8j5b/T+E/kj6+1Xpf+Y4rOX685D0a T3ODJfb+rdaR/F0eLDnv83c3nt1kH9tqHxxwTo4xzVSf68j/ofz/cI8u2V7Q YIlNbE1h19LxdzfnkX/kAOtI5uGkkvu+RJx7t1qnFn/3PlWxjwfaB46x9RP/ ak2eH/RTSrapM6HVtfAR+6TBnCdHDST22/JPKTmHukhs8pkP9hswJ6fFPDEn jOWEyMFHDBw90iv7E5D0y9/c1+7w3DEW8sifxX6ekmOzs5anx7yXJNeX/KLB EnstyXWEOUz1uiSsl0u2P1WdmvT+TcaDXaRaByk2Vf4FA40lZ07We67Yb8Xf 4icK84nif0mvlmx/rroDmsy7RMI+YuDYq0X+pVnXBHNZ1pL64Fkjx5a8Fusl c30lzrOlb8R1j+8I0h/XHBUa3MuUAe7nzJJtOImDm9TqsSyIPhkT9kcNxhDn 7/IDoh69wAEXvNSk9mcDvZ5Zy/SJH18y4TVO7ArVPUv6esq/PGvZX0e3hHVi 2Ie2Gg8P+jmR/476uUz6aXy/Ef+5cElOjzz4kdjHtVpHwg8HXJ9pXBvw/VFH j4Q54PqhwRI+1gB/o/1ioP9+un6Hx08/55dsX8kzW8lcV2XtOz/OB7nnlZyP xGYPA3O5eF9CN+szSrYHKudLYXsm3NeUVvf2lXynSO8a+kUl20e32saPD/3q rNcF64PrBn3RH3zwX1hyDST27+rn4pK5vpU+K7DwILHpoyDsTOktkk3yN3f4 b7748SUS5rg4+gBL7A/+Vtjkv+Pyd9gZsdZYq/BcUjLXHMlvlHdt1nJO9LdV k23mBP3SwOU5z/TTYRssGOZltvxfDzSWnL8avGZYL/xNn3oXDHD/l0d96m7D MybPmwn7iIFjrZG/c4NrUvu6rCX1+Rs342A817BHomSuf4S/Nnq8nr090r8d aH3TJuvdVevqku2fGuwDV2r1WL6O8zs7zvnvgSFOLnWoR99wXB01qEntmQN8 b+W+Sp/48aFzvyXG39yvYc1IH91gObnV+0bQiWFfX/K5XDplic15fZ1nDR3r qp/pkufraOCzJnlDyb4bJTdU7RuyltgbdVhHsjbAkrOU+M+SnMfzSZN904Pz JvlGyLesMCO5zmmsKflvKdleLvzYxDhmtBpDHvnfDbSOXEr+W6NHxkUvjI1+ NpZ+Z8n7AoiDY2zn8Qyo3CUT1m8v2WavwE6Ri4/YMsF5W8zdbTHuGzUPd5Sc wz4EJDb5u+j4UXwZ8d9Vsr1CymO5ueTx4CMGjh7p9aasJf2yz2GqcBe1ej3f HPNB3bklxxY1WGKDu4f1wlylLLF/4n4kfTTnPWH93pLtmvQHpHc0GQ+2UZhN uDbIP7jJWHK6iHNT+Ydw7oS5RL6fhV9R+v0l2xlhNhNmKOcxMMTA3Vdy/i1Z 16R215RlR3BuofiO0ntJf7Bkrlv5zVn6VcKtKvxD0q+Q3lv6GZJjo9bDJduJ lOPgfhnosQyOsTMm7JuzxhBfJeE61KNvOOCCl5rU/nWg1zNrefmE/fh6J7zG iXVX3Uekb85ayVruEHh0Ytj/K3mct2ctsRnzg9TVsYbwA+Vvb/Ln5Rr5HhPm N9V7XHIa95SUJfY+Tdb3iXkDS87qKUvy+si/pTiLrEPpT5Rs36EerhPmSdm/ C3cu3+kCU1D8Rflvk++pkmM9U8aDXTU44YL33MCRDx+4nPBPlzyeO1VrgmLP y/5joH3EGOd4HQfFeNGfLdkGd4t4sgn7iK0jzpvke6bkHpHYa8n/XHDflbXE Jv8Q5d1KP+J5oWR73eCBY/WEfcTA0SO99ktZwpWNOWE+wLOWWdN8Hl6MXqj7 rvTT5dtauYPke51nGNkvSx4uuYH8k/jsx7l+pWR7QMpxcBObrCPTwtwh7Evy z201lhzyJ/O8zPcGYV4reQ1tnLLEfjjyyO8f/dAL64HcV0vOR2JvmnK/4OZm nUfNvsKfxH1Y2LWkvy3M48yd8G+UHNuC9S/ffNnzJN/k3s11JGuJfUKTdeRq CWPJ2SxyyWMs7K/6e6D3XL1Vss1eKWpSm71TW/N8JZ61ozf6oL93So7dkzUe LHu64IALXuLgyOc3Rn5f5PdJzttpOi5awr87Eqvx9zjpT4trsPp8knt67AdD f79k++v1nU8uPmJb8Rnk71Gyn5I9i2fSgu7hCfuI7dPg3A9i3XwUWNYP8qPA Uf9ayYfU54dRc3GuZNMw9wMHXNf0Mp6+yVnA84i4txHnYI2pwucoYd9Uvg9I /0SYb/hNSpx1vhtpnvrJ/2nJ9vYpx8E902od2dnVPNRYzNXkHPKfU/zFVu+j +7zk2vdmLbHpgzEyvgeFOUf2a6zVhHM/KzkfiT1EPXxRMq4t5bEzF4wfHzHy X271Mw3PM9P4XiX/mXy/aDIO/q9LtoeL51zJ+cKvz/eCJtvo5JFfTFnCsV7C eV9HH9+UjG8XZmHJdekNic1z1Xcl845M2f5noHs7N/Lnx/PXtyXHvo08OH8p ed2MSZnju6i3rebwJ+lnc16lfy/9bZ5rSt6jx546JPa/A60j2V/3ZclzNCxl +WX0DQdc92Ut4dtAfb7a6j157NkbIv92fH+Q/+eS7Qey7oWe7s/aRwwcuT+W nI/Ebk0ZS+/MA+NjnHw2ltDxoTAD5O9e1r1RuHnsCVH8Hfl3Vu6brcaBQf+t ZPsS8ZzX5J7xEdsp5divJfP+GtgH2cNTck5HyhKbfPb3dS14j9+fJdvsJ0zK d6niGyXsIwbujxgrnMiPWj0/9MseQeYcPzhi+BkPsR3kH9bh/XVDuQ41eVyL FH9fuF3V22XyXawjL/8/Jdt7pBwH161gHdmUMM/fJXOBJYf87eX/VLgNhelS du1HspbYwyKP/Ifk/4TnqeAk99+S85HYDwuzRNm43VO+fnH/4xqKjxj5fL75 nPMZX1L2wlbPIf9WZrey5zUh+Zfm9IgGS+zPW60j2SvYLf59zbEpS/Lgoe+7 B3gOkzGOR7NeO6yhVr7vCd9d+M0Tzuta9rlcsuzYfinjwW4anHDBe13gukce +fD3KHs8/8t6X+AysnsU7CPGOK9X7pwmzzl6z7Jt6nzb6lr4iO2vHhbIt1Tw IrF3k3/pGAe1kNjkMzfsp2R+lo05Gxs8S8b84CMGjh7plT2cSPplbyH/fukV sbb5/wP5fwR/7uV/05TYY1n7+H8F+T8Te8l/pfB7qVZ38XzR6v9rZoWy7ZMa HAf3PfcAyVHieU48PVUzLfsX7qWttjdJGA9244Q54Poi4mDBkIf9BH+nE1+D 7PaQ2I+HH9+Wwt/IM7hi8wa4VibyV476h6QssZeW/3bhG6VfI7licFMLif1r q3Uk/IyJse3SYW5q7JMyB1yHpizh20z44cLt1OF9mMuo3m3yF+RfpWz7qax9 KdlLFewjho/clcrOR2I/mXX/S8ccpgLLuJBwwH9nk7nQVw0OaiGxH9P8rCb5 k7jGKzcnfSTP11lL7J2jd7D030PYPvL/HhL7lAZzLKtaW/CdXfi/ZA+Sni3b fpr9CfIt9/8wxMBRizrs7YSHnuC6W/3fomOg8A+xruTbVvryPPsLs0hy7ejx WfYPKL6G7LnC3ttke6uEfehgmJPeMe9I7MNSjpMHnjExPvaO0nPfsvtGYk9K uSa1nx3g9cBaGJyIXgZ4LPRIr+UG97Nm9IHEPirlOONgLyXjXb3sMfcre8zH C9Mpzt10bJ/w/sgNFGsQz7qSK0g+z3efVuv0v17Z9uEp+8B1LVpHgtmIz6z0 k1KuQz3m92G+pzT53DGm9bl2FF2Xmuz3oz42ezvB9y87B4k9OeX660V/jI+9 oIwRfUDZdovkaL5zZu0jxpzsKl9TzFGzZBfVPzZliZ0qWEdunTCWnBeylvfG efyf5AM8K0nPl22fnHJNai8pjjHSOzq8v3H9+EwznxuWHXspazzYIcEJF7zE wXXE+WeeWAPMazp6Q2eusR9XTkZyu4T1Tcq2+3D9L3q/DT5iU1KOzWsyfgv5 n5FeCv/GZcc2Do6X+X2ybK7zdF42L3vdvJK1xGYNwQFXY8E6cljCY3hzgOcB DrjoabMYH/xIbHBbSq7IeuC7Xtl7KtkbOZB7pfJOVJ/Piv/RJs9boWy7nHJ8 YOSzh2WS9HULtpcrerxgVoy5QlKPGBxwwUtNaq9UcK8fxp4l/PjYT7h1jIP5 HBRzQM/I5Yv+TKETw+bzx+fwiJTzyId39w6fF/rZU3qjYq3S95C+Tdm+bSVf 5jtDyhJ75YJ1ZFvCWHJe5++Y8nXIXqNoHxxwDpFvFcXeEOYVvi/p2IFnvLLt s1KW2MSWKRo/NGFJfiZ8SPzbR49wjpXcq8N7I1/juYR1U3AcHGMjr3dwog8r 2+4T42Esw6IO44Vzh7J5kdjzeR4L7jezljvGHPXjHBW9b7NYtn1pg8eyXYwf HzFw9Eiv01KWfWI+qffJAI+FPPJPF6YteqEuEhvccMn5fC9MWWK/KDlOmN7K bU9Y36lse2/uTdLfaDIebJF7Llj5Vy0YS85bqpWWf7XobRXpLwm/o/SRZdvn prxPc/WC9xniIwZuRNn5Z6Rck9pvZy2pPzzhdTg4rhGjyuZin+oY6R/IN1O5 u8ScMVf7dHi+6GfXsu13so6DY48qY2Ec9MmYsOspY76JvbXUoR59w7FrnA9q Ujtb8HpmLdMnfnyjEl7jxN7jWip9X9Ze1nI/HSMT1olhr1w0Hh70zsjfUj0c LL0/n3Xx7yb9dcndIw9+JPaaRetI+OGA6xyN62PlrBG9wQHXrJQlfKyB/ZV7 QIf3doJlPODHlsNmXZXNNTtl39g4B+TuUXY+Evv9rOemb4wLfc+y7Y14jil6 z+SBwq7LuUk4//sB7gF977LtnOJrKm9Ewj5i9MO6YH28lnVfe0Wv8I8ruwYS +0b2SJTNdZH636/s2h9mLbHp41Px7Cv9PcmD5D+4w/s28ePbOWEOuOgJLLHL Uj5P7GVkr+OecZ1jfcKzf9lcB9KX8j7OWmJ/Qk6T7V0T1g8K3HjlTJA+ocM2 WDD9xH2A/GsVjCXnipTXDH3QA/V+G+D+x0d96n4j7DrK60zYRwwca438Oxpc k9oLstGDjjEJj4PxfCT/IWVzXcvvutHjJ+zt4fpWsL5O0To9TyzbnpOyD1xz 0WNZK84vY8K+NDDEyaUO9egbjolRg5rUzhd9b+W+yj5D/PjomfstMfadHiZ9 obiuS1kuaPLaQyeGfUR85q6Ic4rNeT2N+2Cz+uZ5Uv7+qjWa39XlPzLOwVGS AxS7OmWJvV7B+nqBB0vOp/y2IL46899k3+dxfo+W7wfpN4lnovyHdXgf5rFl 259nLbGJHapjY9XYLeE88r9qso7skP+4svu+UZzrq5fvuZYknH+iYokmx8Ex tp+ajAODPrlseweel4re64iP2C3BeXzZvMcH9gv1eULZOY80WGKTf7jqTtIx lt+3y7a/zHosx5Q9HnzEJkWP9Aonkn6Zkz8kN1CtcQnnkf+ZMCeXHbsrZYkN borkhuK+IWWJPUD+P4X5rslziH5q2Ta9Ti17rxX4ATEnyFPkLxSNJWduyr0O Knpc7BltKniP4ull2+zXOqLD87Z7YIiBOy3G+lXWNanN3CKpz5wfpfh2XIP4 fbtsrq/Zh8PnV/47hC9LP5I1I38XrbFmce8nfKVs+4GU4+DgYyyMg35Oifmg BzDEqUWdUpxvOOCCl5rUzhe8nlnLeyXsx7dnwmuc2IOqWw3swqzlkKIx6MSw z4i+wCCxGfPy4tiUzz3nWv5eTd7HeLT0M8v2nRUcjBGJ3RJ1WqIfsOR8m7Uk D54NCx4bc3V22fZ3/PYl37SwR+l8bV/0nslNZF8of1Lxc8qOPddg/IYx58iz Y96JgyMfPnAP8/t89E6t4yTPl3189EWMcXYX9h/uTwnr55VtHyvMjuLbP2Ef sXni3Ea+6XzmC5bY98k/o+yc77OW2OQP07GxsHuL54Ky7UeDZ6Pw4yMGjh7p 9YfomX5/jTlhPg5IeC2zpvk8ME/EfmSfifQR8j3N39Plmy17Z9kXS+6mOXq1 wXwrNplzZswHucTBFYvWkezb7KGaF0UNsOSQP1n6CdzL1c8lZa+hZ1OW2Kwn 8sh/LPqhF/ond1bZ+Ujsn7LuF9zPWedRE/wORfvRr4ge4ZxTduwR6b2Ev5Tr reRlwQ0PEntU0TqSnsGS81zkkse5Zg/o5gXve7y8bJs9q9SkNvtPT+xwf//1 Nif6vrLs2C9Z48Eyh3DABS/xK2NeeE7neZ1nfc7bFjx3iPMsvvdwvxDmhrLv j6+oz5N4XhDukIT1a8q2T5Z+Sof3ZOIj9ivfI5R3texlJdfUsbKOwxP2EXsp 5dxry86/XnKgevg9a4mdanZ9bO7R18k3WjVfTFluGT3DAddvWeNvCK4bJQ/U +D/UHA7i+bZoHnydRe+lvCnqU3eK5Kncm4W5uWz7j6zj4NZsso5kvPBQAy6w 5JDfWz0UVG+SeG4tu/afWUts+qC/VDx77Fp0DJ3cW8rOR2LP53fRsnEvxNiZ C8aP77ao0UfYhmafI/q4Q/69it5LuhXXQX5TLdtmDyp9s6+UeTiC33Ca/e8m 3RHjoGfkYo6E88iH664YN2tjbtnPUn9lLefGurmnbN6vVatN2K15Pk44j3xq 47+77BgS+3F+0yt73XyYMgdc9LeNcA9IP4Dvyap1L/dZ8dwnOVX2oqwldqnD OvJI1b297Dl6M2WJzXzBAdffWUv42Ie2hmKDVe9oficpuvZE6Q+Wbb+eci/4 /8na92DY5N5fdj4S+4OUY/QOD+NjnHw26PHAovt8Ub4zeB7K6VrDfVPjX6g5 LMtX6fCeUvRHyrbh2zZ6w0fs36w5Hy6b9+GYD/p8NOaPfpDY5K+tPobEeP9X tv2xMNvzW4b0YxP2EQM3L2SXnCVjJJd+Dy56f+Z/OGL4GQ+xmnqpd3ivKWPI N3lcTyi+n+Lvqe66ysmRJ/+TZdufphwHt13BOvKI4Hm8bC6w5JBflf8Q4Y4R 5umya3fNWWLXI498xjJB2KHBSe5TZecjsZcQ5pmycZ+kfP3k/sc1FB8x8rnO cf0bz31W9pFFzyHX1ufKntfnuW5rXn5psMSeWLSOZK/gc3E9/jxlSR489L15 k+fwhRhHt5zXDmvoTMlm4XcQ/oSE854t+1y+VHbsm5TxYI8PTrjgbQ7cDpFH Pvwvlz2eZM77Al/neaNgHzHGmVfuOs2ec/RXy7apc1TRtfARW6gexnMtCV4k 9gJ+K4txUAuJTT5zw35K5ueNmLPPg2dYzA8+YuDokV7Zw4mk31Tc7/rH2uZv bvzt7cCU74HEuqvupRWtD+kF6W/xfCH8T8KcLd9k1ThJuW+XbS+ZcxzcAMnv qSv/svK3qeZ7PM/Iv3mz7ZMTxoOdnDAHXPASBwuGPOylxDNNmHdknxMSu0f4 8bHva5Ly31SsteBa70f+x9wbZf+essRuL3gP2QesReV9GNzUQmKzpwwdCT9j Ymznd5ibGr+kzAEX+9CQ8LGH7Vzhpnd4X9ZwvmexxqUvKNteWrWOl+9d2cWC fcTAkftR2flI7J4590/vUxLOI//HlCUcx/Gdomguan0WHNRCYh/GbzVl7xlj P9tX3IvE+3fKEpt9ZuDB0v+dwn4q/4bNltjrp8yxRXPsPeOZQMcp0r8s2/5V mFO5b/H9MjDEwFGLOuwlg4ee4Co0e/8c++62kz6i4PUGx7dc6yW/kzxP/S2T 8/65b3geEHZbHTsJf3rCPmLsl2NOPol5R2J/l3KcvDVijIyP/cD0/HXZNZHY f6Zc87uYL9YDa4G9dvjxMZZvI4/5pJ+FZfeExP435Xg55oTxflH2mH8oe8xL pPUdhXiT986dwVzy+eR8S44U33Ia+9Si9dP4faNse1HKPnDViCPBLOIzIf6l 0q5DPeaXPX2Do3/G9EvZ+/WoS82pCdfHTqSN/7nsHCQ2ewup/1P0N4zrcLPH iP5b2fZfrHfJHmn7iCWl78hnlGufOP4Iif8/e1rROrKUMJac7pF7Zvhbm81J 3T/LtpdMuya1zy76OJdzkPBYGTPz+XfE/8OfHRg4/oxe8YEjnzzmiTXAvLZG XfRFUfsc4c7TUUlY/7dse3izceDxEeO8tEcO+G66Do+S3Sv8/wQOid1T/i4V cy0tvWvF62b5WD/YrCE44Nq52Tqyxu82ktOFqybMARc9LVFxbJm0JTa4hOQT fGZ0rntIf1b6tvx9kLqai+U1h53w83sB3/ErthvTjoO7UPIBvstI36tgvguL 3pMJhviZCfupRwwOuOClJrVHSZ/J+eH3rq7242PP5FIVx1Kqu2Rge+UsZxeN QSeGzeePz+EfKeeRDy+9jG52P3Pkv6zoce3OfAvTwRxJ7ia5YtoS+9KideS0 hLHkrCTMTO4Jsu8o2gfHWcIsK98l8mWE2UO+y6Wfwz26Ynvl8GMT27PZNeAn j3x6RJ8TffYKH72NbXY+nFfKl654vyRxcIxtnOJX8NlIWG+o2CZ2VXDiI7Zq cK4Q/SGxe8ufCj56RmKTv6/iezWbJ1OxnU17LMvFPOIjBo4e6bVP2pJ+2dvJ /tFri94jSh75qwjTWHGMvaBIbHArSe4tzGppS+xrYkxXx7jQV67YvkjnqI/0 64vGg50uzD6c5xj/yjEm5oGcXWLN79/sHPC9K7b7CnODMLsKc15gekdPq0RN eqMmtVfIWVJ/RsLrsGfFa3HVirnWED4nfaJ8/aWvJn08z6DSLxb+Fq5Pyl29 Yrsh5zi4A5o9FsbBuWZM2KunjSFOXepQj77hgAtealL7oGavZ9byhQn78VGX NU4spbpZ6TcJs1bacrT4LkhYJ4bN/toxBe/pRV+jYvtBYTZkjfHMJn3Nivf2 riU5S/zpnCX2hGbrSPjhgIv9w7dxHeF3soQ54OqXtoSPtXSJcmfzu1vC2HuL xver2G5UrXUr5lo3bR8xcOSuXXE+Ejsj/FF8xoW7JGF9nYrto6Uf0ux5m8Oz VrNrkX9f0T2g96/YZp/vbgXvm+0fdeinZ1xTub4t7it6hX+9imsgsVvU8/oV c7HPeUDFtVfMWWLTx53i2aDivcx3c53i/Cfsx8c5ggOuxT1VHFtf/Kcq/1gd sxMeK2POp83TVDFXnmuk6q2Us8R+iOuM9Ms7vC8XvaVi+wRxbMznvGA8WPiP l79Z/iOajSVn5ZzXzB7RMznHKT5H+kbBsYow7/H3nKL36+IjBo61Rv7Gadek 9mZpS3DwMI7F45F/k4q5dtF8bhH3tD58J4reqXWF5JU6LlPuZhXbvXOOg7uo yWNhHLMSHhP2JmljiDMn1KEefcMBF7zUpPbjRd9b94o+kfjQud8S20icm0uf Iv5C2nKscFckrBPDHljxuRwU5xSb83qf6v0onnv4/YFrnbDXJNxHgecDxQZV vAeZ/c9I7HEF60j22Raid+bqR+7dXLuL9sHBXG0VY2X+r5b/Gh1XyT+4Ynu1 nCX24lisFcZLHvnsrUZHcq63qbjvIeLcR708p9ilCecPVez5ouPgGNv/isaB QR9SsV0V5mTu0wn7iG0ZnNtWzLttYFdXn9tVnLNdOmTF+deq7nUd3mO8fcV2 NuexbB3rDx+x66JHeoUTSb/MCfX2jT7JI39VYXaIXhgvEhvcjpJ1cW+ftsTe T/6vdC5eLHofLHprxfZZwrRLLzUbv1+cd+SwmFOw5Oydcq9XN3lczyh/f+Gu 5Nm4Ynsb1b1emFekXxsYYuCKMdZczjWpvWPakvpXC3+j4jc3eX/v8Iq5+gq/ M881whR5duVeKf8a/IYj/gOihxEV28PSjoODj7EwDsY1LOaDHsAQpxZ1qEff cMAFLzWpfWDB65m1zD5Y/PiuS3iNEzuY72iBXTNneWazMejEsHeJvsAgsRnz v/zGX/Q+yZv5/UT6DdxPpe9asW+05AxxjEhbYh9UsI68KWEsOWvlLMmD52DF 3yq6nzEV22sL85J8HWGfL54zmn3ublXeOPnf5x5bcWxk2viDY+xIuOAlDo58 +MDtwPNz9E6t+fKN5Z5esI8Y42Re2e/H3KLvUYl9xx2ea2rtEdcS1gD7lXfn 2ahgic1ewT0rzlknZ7lnrJuLeXbTcSPXz4rtXYMHDvbZ4iMGjh7pdXjakn6v jzlhPm5OeC2zpvk8ME/E+qnuoRXvU2WP6+3yHSD7fmH24Z7CM6U4D+WZRXVu Ec++Fdvr5RwHd0jB+iFR9zbx7F0xH1hyyJ/VbBue/SteQ8ekLLFZT+SRv27O +fTC/lhy94vaSOwxafcLjn7IQwd/h+SdOm6TPoH7IPdO4Q+sONZf+MtYh7In ivNgnjt49stZYn9atI6kZ7Dk7JG2JO8O+d8NHJjxFduj0q5J7Qub3ctnRfdD ffrAd0hI6oIHe3Nwjo+e/sORz2+MrfE7G+ft8IL3yvK7I7Gv2JMg7ALpu6mH uzo8V/SGfljM3Vzpd+u4K2EfsQ1yPgcTK96zfJdwx/H8m7CPGHNO7uEV5x/B s48wTTlL7G+Kro99q3IncU/he1XacpL8dyfMAdeAnPFHBtdRXHs538IfVXAO eHxzdNwu/eioT917JO/t8L7cYyq2m3OOg1tYtI68K3ioARdYcsin7yOj5+Mq rp3PWR4XY6A/cGBuaHaM3vAdW3H+sTEHjPf4inEH/Df2iseP7/iosbSw3xW9 X5c+TpD/SfYcyXc051/+Eyu29xbPzdx/OIfy/yDfMYE5IcZBz0g4mBPyyIfr pIrzDxbPyRU/S7XkLLF5rppSMe9Bwtwv/wMd3mNMHvnUxn9KxTEk9obiKVe8 bg5PmwMu+gM3VfoL7LWQfSrXfeFO41rE5yRtiU0cHXmv6k6ueI5OS1liM1+n BnajnCV84BsU+7noPbcP8qzOdUR6qWJ745x7oSdy8REDR+7pFecjsWspY+md eWB8jJPPxvE6/ii67oV8brhH83eT4GBc3xeNA4NerdieyzW+2c+x+IgdmHas UjFvJbCb8LezinMmpS2xyWfP8eSC96CeUbHNXuWTqKn4wwn7iIGrx1jhRP5Z 9PzQ7/zYq4wf3J8xl4yH2KPyz+vw/tiHO3yeGNfZiv/GtUO93SffHToe4Nmj YvvotOPgTihYR94XPGfFOgBLDvmPyP+PcA8Jc27FtTfPWWLPizzyN5V/Ees8 OMk9p+J8JPZm/A2iYtxRaV8/uf9xDcVHjHyuc1z/eLY5RXayzXP4gHqaUfG8 ni+ZFe7ClCV2lzbrSPa4giXn2LQlefDQ97tNnsMLYhxb5Lx2WEOPST7Ksz3P /gnnnVfxubyo4tiJaeMXY4MTLngfDdzJkUc+/BdXPJ6BOe/TnS17SsE+Yoxz Huux2XOOPqtimzrd21wLH7GT1MPf4pkZvEjsI+W/JMZBLSQ2+czNp7EHeE7M 2bHBc0rMDz5i4OiRXtkbjKRf9pryt8EHYm3z90Pe21tyKfsvjXm/Vzw3Vrt0 eVY5l8v3hHynqtYTwvRU7DHlXlGxPSjnOLiHyZXsJUxF+NOVf7Xsx+V/qtn2 4wnjwc5LmAMueBfHm40hD3tr8T8pzJWynwqJvVX48bHPtpvyL1Ps1IJrXRP5 N3Dt5DOftsSeyu8efHeRvozyrgtuaiGxv2yyjoSfMTG2asHci8eTNgdcV6Us 4WO/69PKfYZ7CddP5TS0eVw3Vmxvo1pLyXeV7NMK9hEDR+71FecjsQfn3D+9 P51wHvlT0pZwPCJ/jzZzUeuW4KAWEjul+K0V729lf+8d0jfjvpyyxF62zXiw 9P8iz1asy5DY9bQ5ygXvWX22w3NC3dsrtrflu5t8P2sO9wjM7TF31KLOid3M Q09wMX8/xJ7h+cI9x9qR/gbPMsJUhLknzsN24n9a/rtkZ5T3nPif1/Fswj5i U9Oek5ti3pHYp6QdJ29Qd4+J8bG26fnOivtGYp+Zdk1qr9Lm9YD9RMISHzo9 0uu5afczt+KekNhDco4zjucTHu9tFY/5vorHPF25rwr7mo6XhXmLz4tideXc H3yM/QXJFzu81/eBiu2hOcfB9W6zjmROnpBvdekXpF2HeswvvddiLNR4KMZA 3Xr0SX3sGWnjH6w458GYD8ZLffqgpy10Tldt815c9Ecqth+TfEnxHXL2Ebs9 5ZxHZf/KNUlyJWGnpS2xzyhYRz6TMJac7XOW5DEP76rH11g3/OZTsX1h2jWp nRXHy9Jf6fC+4odiXuF5vOLYsJzxYF8ITrjgJQ6OfPKYJ+aHeT0zekNnrrHf V/wsyRcT1p+q2B6scfdt835afMQuTjv2TrPxz8m/gGf38D9ZcezJ4NiR9V8x 1728A1jxumnNWWKzhuCA6+yCdeSrCY9hUZPnAQ646OmZGB/8SGxwz0tOU26R z3XF+3bZ6/uC9NWUd776/ET8bzd73l6s2L407fgLkf+JOBO6v3zaYXudNo8X zLSYKyT1iMEBF7zUpPY5BffKfmPmED8+9qa+EuNgPl+KOaBnZL82f6bQifWL zx+fQ67n5JEP7+sdPi/0M5/vmoq9lvA14zVhzlW91yXbVfuJlOXrcb1AR3Ld ey2uT1xDLlbO17K3bLMPDq4/b/CZU4129fmF8j7S8QrfTyu2r0xbYhNbS7nT lftSwnnk92y2jmTv4lsV9z1cnG9KvtXhPb1fKf6eYjMKjoNjbP11nBec6O9U bIP7nPlI2EfsirQ5366YF4m9k2q9G9wjcpbY5O+kORnQ5j1m71dsP5XyWOZX PB58xMDRI71enbaEix6ot0yzx0Ie+ZcI80H0Ql0kNriPJL/j3p+2xD5fXBfo 2LDNnOgfV2y/o9xPpW/UZjzYt4R5W/4PK46DJWdn1VqvzTo83wv/WbPXyScV 2zemvf/4woL3u+IjBm5BxfmXp10TbjiR1J+f8Dp8Na4Rn1XMxZ7kr6T/xncG 5X4ec8Zcvdvh+aKfLyq2R+UcB8deP8ZCDfgZE/bIwBDnHFGHevQNxxdxPqhJ 7YsKXs+s5TcS9uN7L+E1TmxXcX4p/T3l75KzfJ/aCevEsPNtxsOD/k3kD5b+ t/TZ0n8X/0LpCyW/jTz4kdgD26wj4YcDrus0J3/yTB69wQHXneng5HMl/wec 3w7vHwbLeMD/ULE9hr93VMw1N23fD3EOyP2u4nwk9uic52ZmjAv9+4rt3TW3 g9q8z3wTya10vNXd+Ss1uwf0nyu29xb+x/hc/xx16Id1wfpoy7mvH6NX+H+q uAYS+zWtmV8q5npb+m8V1745bYlNH3+J51eu6ZKb89kS39sJ+/Hx72rCAdeP gSV2t3iSeV3vuc8kPFbGzPqE5/eKuf7kGqaeO3KW2Nso/jH3qg7vK0b/q2K7 izj/kT6nYDzY94X5RzX/kP+XZmPJ6cx5zcyOnslZxPmRvig4dhNmX/U/pM37 dRdjKsax1si/N+2a1H4gbQkOHsbBeG6T/9+Kud7VfHarev6Yhy5V904t/i3S v2Lelqja5t8+XTw22dlmj4VxvJvwmLDvSxtDnDmhDvXoGw644KUmtYttvrdy X/0oYX8x1hX3W2K7q5+u0ntoPI+lLfk3Uvk3MNGJYSerPpePxjnF5rz+3uF9 Rew7og/2LjOHlynWXZhh8i0pubXkPWlLbOLol8Ucdg/fHuonLf5VZS+Vtw8O MD3k6y7fvLT3NF9e8B7dnlXb7K9GYhNj3Du2eezkkf93s3Uka2bpqvvmnH4W a4tan0tfXrHhbY6DY2zbc6/jt42E9WWrtpdWXjcdHyfsI/ZwcC5TNS8Se0+N cbmqc55MW2KT/wXXwA7vMe5Vtb1XzmNZqurx4CP2ZfRIr2NzlvT7iXLbJa+M PpeKZyvmdoWqY0+kLbHBpSSXVf2n05bYV8l/uOZzRJv396Knq7aXE2ZF6Rs1 Gw/204Rlg/w988aS82XKvW7Q7HEdW/TaYo01Vm1/n/LaHBnrE19jrMtMjHVc zjWp/Uzakvrsj/2a6x/3M+krxdpnPfeR3sZ3bekrS/9KuL3Fk1Lu1er1S+FX qdp+Me04OPgYC+NgXA0xH/QAhji1qEM9+oYDLnipSe1rCl7PrGXOC/5rYq5Y 48ReUt3egd0nZzm6zRh0YtirRV9gkNiMucTv2W3eK0sfnTGH7MNeXZhrxZGN 88b5RWKzdxsdyfkFSw77w5HksV/3mw6fY/rJVW3vm/P+5r5xPhrz3tPMfuZv FV9P/r3EvUbVsVfSxoM9MThzseaIgyMfPnDs8V4z5pVzvYtkP9nXF+wjxjh7 K/c6+RYmrK9dtQ1urOKfJewjNl88C1V3rap7RGLvp7GsE9z75yyxye+jvBX4 XIpn3artN4MHjq8T9hEDR4/0+nz0DNdnMSfMB3jWMmuaz8N60Qt1N5V+MPc9 fuuWr5lrrzDrRy/0f2PBY2G8G1RtH5hzHNwNMe4bou534ulfNR/YDWIuVsvb hqep6jX0T8oSm/VEHvkH5JxPL+w9JndA1EZiv512v+Dohzx08D9I/tjhvccb C1NTja7C56uOHST82ht36dIi+yaewSVvljw4Z4l98IjwjfDaBkvOxytZkvd6 0msCHJiNYo2w9qi5caxFehna7H6oTx/4NglJXfBgWc9wbBQ9/Ycjn+f0BfHc z3m7hec/4bdT3kGMU76C5C/KOUScP3V4fzN7m9E3r9oeL9ytcCfsIzY+5/3a mzFO8W2qY00d3yfsI8Z+aXK3qDp/oOTPyp2Qs8Rm7zP1f+3wPuQtq953zZ5t 5Dp59wMHXAvSxtM3OYMkm4X5Rv47VOMoYX5J2Heb7G94rhDmdumH5pzzW9Ta OjjwEwd3ZJt15K/BQw24wJJDfj5vHJhtqq49MWeJTR+MkfGxr/vwNsfojdzB 0RMSe6H637Zq3JcxduaC8ePbNmqwF3yDvDnpY7uq92cfIcydin8l/9Cq7a/T 3v/dlPd495XvuDavw+1iHPSMhAMMeeTDtX3V+ezN3qHqZ6nDcpbYPFftWDXv u/y+qjp38cyVcB751MY/rOoYEvsH9sxUvW5+SpsDLvo7Rke79OMl/1CtVulZ 4YqS+/MsnbbE3jBvHfktz3hVzxH71ZHYzBcccB2es8wGfhPJvjq+k35gm230 4VXbH6bdCz19l7aPGDiOtqrz28L3Y9pYev8t4fExTj4b+CaHf5x8g+T7U/hd pW8u/RfpB7U5h88R+siYo810rJX35xcfsY/S5hxRNe+ImDN62LnqnJ/Tltjk T2izDc8uVduf8H1Tc7I++IR9u0T+qODmHCFPiP7pt1/e1wT84IjhZzzETpI9 t2A8sRMjd4zih3LvE+cWwq3HGpC/o2r717TjY2JeDg3eH4NndNVcYMkhH/uk 4N+tah0eJDZ9jI4emZPDIp+65HZGTmdwcy52rxr3RdrXT+5/XEPx7R69cp3j +se1+m/uJ6xZvnvyHF21b6xkQZg/0pbYdxes3x3XBLDkHJGzJA+eexSfIs4/ pe9VtX1kzmtnXNhbST9VmL8SPo97VH0u96469lfaeLB/Bidc8G4VOPLJI3+S +PeJ3qlVVuwA2dU2+4gxzm25juU95+j7VW0PyTtnUcI+Yv+qh6ny7Su7EhJ7 EZ/lqnO6ZCyxyR+ady78B1Ztd804D46/E/YdGDUOiDxqIavRA/c77nX/JPw3 N/72NjnteyCxJTL28bc4/iY1Pu6N1FrU4Rr0MKFq+6ic4+DOIK/q9yR4L4B3 SCZyD+M6obx2ek4af0b0AMeEGA94sLyTQh427+CcLd8hVb9Dg8ReMmOJj3dq dlD+wYrdW3Ctw6qud6TkrsI0pC2xz+MzLf1w6dOlT+I6KdkzY4l9UdE6kn8D nDExtgcL5qbG0hlzwLVC2hI+3ovZKW8M48V3cdH+o6ImuUU+z7Jb8/YRA0fu EVEDib1Mxv3T+xkJ55HfI3jg6JJ0HByYY4OPsSOxZ3Dfq/qdBt7TOYH5UW5D xhL7/oLxM2IsI+Q/JvpAYi+bMcd9Bb+n8w+/QcrfTT1Mrto+WmtjlngubvO7 NviIgaMWdZJJ89ATXOe3+V0g6s5q8zsmvGsDxylVv7szRbJLp8Yj/n/FeZLs Mc1+7+eBgvH4iB2T85wcHevg6Dj/zCdx8uifMe0U54ueT6y6JhI7nXbNKTFf rAfWAu/14MfHWE6JPOaTfk6uuickNu8iEWcczAnjPb7qMZ9W9ZjTGb/v8b+C 3+ngPZiKYg/LPl1yCdU7Lud3hB4q+F2SqVXbvAdEHNyYvHVkd/V2tnzXij+b cR3qMb+z2/wOEWPpKnxZ/s6861KTd2qoj827KuBLVecgsRszrk8f9HRlm99t oTf0atX2mZIJ1TghZx+xPlxz5KvJ3kt161W/g8P7O0jsRwrWkbwjA5acyTlL 8npqjFe3+T0fej6janu1jGtSe2+e93U8Kp5lkx4rYz6eZ/iqY2sFHuzSwQkX vMTBkU8e87Rk0vN6U5t7Q2eusW/QMS9qoZ9TtT2Ba7SO5ZP2EVtDdZPi3JfP u/wzgmOt8E+rOobEPlE9n1s1Vz9hzqt63fAuEhKbNbS4r6rfMUJH0md3cdwq u1fSHHDR0/SqYyflLLHBnS+5pOyT2Vcj/Wb51lbdC6T3kP8U+Scp/zHVzIjz wqrtARnHwS3V6T3cz0t/o2A+5pT5AUM8lbT//DgfcMAFLzWp/bj0I7jm590/ fnwrSJ9ZdaxJdS8K7JSc5dw2Y9CJzY3PH5/D5TLOIx9eerm7zf0sLf1+1nnS 711dIswT4pgteZv862YssXkfCx3J5xcsObwv9oJy7pT9dJt9cCx+F0m+nqpx qvo8hvuXjrRqXVa1vWHGEpvYncp/kt/vks4j/5C8dSRjvLzqvk8T5zKSy3b6 /abjFL+aHgqOg2Ns9+l4KjjRr6zaBne0clZM2kesJWPOK6rmRWKfrlpXBffU nCU2+XO5Zrb5XZtrqrYHpD2WS6seDz5i4OiRXjfOWMJFD9Sb1OyxkEf++sJc G71QF4kN7nrJk5S/RcYS+5mC90jNazMn+g1V28sr92Y+O23Gg+0tzHLyX1d1 HCw55Zz3XD0bvZ0s/FF5r5Obqra3zPjdqecKfn8KHzFw7NUiP59xTbjhRFJ/ 5aTX4ayq1+ItVXPxjtId0qfy3KncW2POmKtenZ4v+rmtaruScxwc7zgxFmrA z5iwS4EhzjmiDvXoG47b4nxQk9rPF7yeWcsrJe3Ht3rSa5xYjd8TpK+g/GrO skHHqknrxLAfaTMeHvS7Iv9p9fC49Je557CGpJ/Ad4XIgx+J/UybdST8cMC1 meakopyXojc44NomYwnfKvKnlJvu9DtQYBkP+Puqts9Qrfur5hqSse++OAfk 3lN1PhK7nvPcvBjjQr+3anse66HN7zFlhH2R+3LS+Sc1uwf0B6u2n1T8ZeX1 SdpHjH5mxTWV6xt93R+9wv9A1TWQ2FtozTxUNddW6v+RqmufmbPEpo+6eB6W fhrrWP4VO/2uE358qyXNARc9gSW2fcbnifeFeFfo3rjOsT7hebRqrv9Jvqq8 s3OW2DXln5m3nUtafyxwKynnSekrd9oGC+YF7q3yv1IwlpxhGa8Z+qAH6k1t dv9PRH3qnivsa8pbK2kfMXCsNfIHp12T2tNyltRfI+lxMJ6z2HNYNVe76j4X PZ7DeZf+esH6823W6fmZqu3tMvaBe6PNY3klzi9jwh4aGOLkUod69A3HM1GD mtSe3+Z7K/dV3g/Cj4+eud8S432uZ6VP5/tJxrKa99pDJ4b9QnzmhsU5xea8 NovzXsU3Ff5t+d9Urb7SV2ENxzl4iR4VK2YssecXrM8PPFhyztX8XK2cz2TP ytt3Zpzfl+W7QPrO4unDNaPT70m9WrV9Xs4Sm1hvHe/wTJJ0HvnT8taRa8r/ WtV9jxTnWzxfy79O0vlvci6bHQfH2C7KGwcG/Y2q7Tc0l++1+X0lfMR2Cc7X q+Z9PbAz1Of8qnPa05bY5K+muqvrWFf8b1Vtn5/zWF6pejz4iK0ePdIrnEj6 ZU5mq97bqtU/6TzypwvzdtWxzkxgqsa9S2/iHpGxxH5H/jnCzMh7DtHfq9qm 1w+rfgcL/DsxJ8h35P+4zVhydsu41wVtHhfvY71b8Ds+H1Rt825XttPztk5g iIF7P8Z6Qc41qc3cIqnPnPdV/CvZGyj3o6q5LuRvr9I/lH+M8B9Lz1GDZxLG IO4m4RdUbY/LOA4OPsbCOBaPK+aDHsAQpxZ1PorzDQdc8FKT2u8XvJ5Zy+sl 7cfXL+k1Tmxv1f0ksBfnLL9sMwadGPbn0RcYJDZjvl0cnwi3sfBryj+72e9Y rSH9i6p9XwYHY0RifxB1Poh+wJIzM2dJHjwfFjw25uqrqu1Zwlwr39dhf6zz 9U2b30taIPsn+a9X/JuqY51p4z+MOUd+FfO+OLfqfPjA7as+F0bv1Fpb8gfZ 60RfxBjnDcJewXeKpPXvqrbXEuY78TUn7SN2gDg/l+9b2R8VLLHHyv991TmX 5Cyxyf9Wx8fCri+eH6u29w+ej8KPjxg4eqTX2dEz/d4Vc8J85JNey6xpPg/M E7E5wnepdenys3wTxP+pfH8o9qvsXzh3mqNxafNd1WzOX2M+yCUO7oc260je jbpJNX+OGmDJIb8f1xgdG6qf36teQ4dmLLFZT+SRf1D0Qy/0T+5vVecjsS/N uV9wl+WcR03wC9vsR/8neoTzz6pj+0m/Q/i/ZF8n+Xdww4PE/q0t6rW5Z7Dk TIxc8jjXvLv1WcHvEy2q2uY9L2pSm/e31ut0f//19mf0/W/VsctzxoNlDuGA C17i/8a88Bsjvy/+m/B5+1x6S9K/OxJLqLfuNd8fj5LeX7l/CbdJ0nrXmu31 uZZ0+v0jfMSuUA93K28J2bfy3bNd61H8myXtI3ZExrndas5PSn7JZzVniT03 7/rY3KMT8v2pmpMyll9Ez3DAdWXO+O7BtaTkrxr/oZrDr/mNo908+Ba1+f2m HlGfugMkm3RszveUmu2rc46Du73ZOpLxwkMNuMCSQ/5D6uEr1duS79o1174m Z4lNH/Q3N549/mhzDJ3cnjXnI7GP5/tpzbjDY+zMBePHt0zUeFjYu/I+R/Sx nPzd2v0O1TcFvxO0fM0273PRN+9rMQ+PK2+hMFslnUc+PSPhYE7IIx+uXjFu 1sYKNT9LXZuzXCHWTapm3inC5OVv0VFIOo98auNvqDmGxL5OPCvXvG7IfTy4 6A/citJ7Kvat7HTgMpJdJI/NWGIT7xI41t6yNc/R5IwlNvOVDuz1OUv4wD+h 2AN815a+oepu1On3p1aq2b4h517oiVx8xMCR21hzPhL71Iyx9M48UIdx8tn4 vuBxMv/rybeZcLeKc3Xpz8pfVu5TeePAoPeu2e7KGmj3e0z4iJ2ecWyVOAer BPZGnjNrzjk+bYlN/pI6fhBmoPhXq9k+WTybdpqTuviIgVs1xgon8qFmzw/9 /k/HoKT94IjhZzzEeM/qp4Lfc9lYmOXFu7XwOcV7SD9FdZeTfCzvfvrWbJcy joP7sWD9x5gTeLI1c4Elh/xN5H9GcjDPGDXX5j0yJDZ9kEf+TTnPBe+GMZ/k rlFzPhL7Zu6zMWfMM9dP7n9cQ/ERI5/rHNe/jVT3F777tbuHF3lOrPm9n36S B+yo55gVLLFT7daRvBMHlpx6xpI89urz3tIaA/zu0ro127xnxNphDW0u+Rr3 UNUemvR5XDvWR/+aY9MyxoMdkjQHXPC+FjjyySP/Fo19/ZrHc5v0LeRrlr1l p33EGOfr9Jn3OUUfULNNnZXbXQsfsXPUw7LybRC8SOyp8jfFOKiFxCafGr8W PJ/5qDkteH4JPz5i4OiRXm+PnumXd8p+K3iczE9LzfYdfMfJW8e//hDV1fGx TvNA5W0m3Gri3oi1pvkqp833bLM5N475gIc4uN7t1pG8R9Yq37bcN6PWhlG7 UfHfJbflOyn3B/lfybsuNbdPuj72nTnjN6k5B4l9Vsb16YOeCtIHdfrdK/TN a7YLkiuqp7PT9hG7i+9i4tiC+w33MO653Ktylthv5a0jd0gaS86MjOUf0f+7 gQMzsGb7woxrUjvb7j5ebXZvjJUxny/MoOiRuuDB8i4VHAOjJ+LgyCePedpO tbaSf2sdO6LXbN8tnr/5jaTd/Qyu2b4n/NjEtpHsI3meetiu5neveG/rI9ay 7L8KltiXZIz9O8bYJ/KxP1Z8W+lv5t3L2u3uBz54FwkzpOYYPYAHu31giPPu EnFw5LNeWDdDOj0fvA/GnGzD5112G+Pq9BztEPr2Me9r8BwgzmFJ+4jdm/Pc bBV9MCbGV0yaf2jNNYbGueLc7VAz10zpO9Zc+76cJTZ9fCaeYdI/yLtn+uVd J/z4WpPmgGtxTzXHLs94zpiL2dLXFebf6Dk5qEuX3bkvytdF+qfCtMu/nbhH yD9Usq3m2APq54u8dTDtNdtXBmexZl7i5MBFvD3yh0uuqXMwi71MMd9wIrE/ bHZdau6UdH3sB3POI3/9dutI3p8aEz56WMizseqMTFofWbO9M/dlyYdy9hG7 LmMfsbzyR0n2k7w0YzkqcjiIM95v+U6d93rYpWb7+owlNrFdY86ohcRuafcY GR/ni3exug3yO0Too2u2wYNl7PiI8V4Y4+PdMMaLzpixd5V+Ptdo5e7JNV71 b2MtiWeYjlFJ65012z/z/UPYXZP2EXtEfW4v2RHnEon9sPy71Zxza8YSm/ym dq+b4eLZo2b7mozzvoj1g4/Yf+sL+WjOkrVGLv1+rWNE0muHNXRZxn7GQ+w3 HUtGz4xh83aPay/Fd5Q9L2e+7tHPuFjL9EwcXGundSTvQ8EztmYusOSQTx3G Sa19aq59R8YSm/jYmEvG0qzzs2W73y0itnfM196B/Z8w+9aMuzZtiU0OvXzT 7H72ix7B7y99E8VvVt2e4vhDfGOS9hHrId8BXKfln5uxxP4xbwzxnZP249uF ueV6rtjo0A+s2W6TfpD0du5ZspeK3INrtu/KWGITAw+Wd6/ggOsx9dxLsRM5 xy1duoyvue8nuP7nrdM/+oSIcYBjbJtpTrZu93sx6IfUbFPn52bXIo/8e9TP odEv/EhscMO5ZrDWk9Yn1mwvoZ6WZg0mPVbG8LhyD6s59iDfARXfrt19kkf+ kznHwZF/eM24p3KW2OQMbLdNblfhf897no+o2X4oY4lNjJ6GtrtP9CNrtuGZ FDWOjN6pxbtQyw7yuy3HyD9C/qfDf1TNMebrn3i3iPgxMV9Hx1wyb/j/jrVE Hvm8f0QcHPnMPefgVvbW8qwv7g4+dzxjhU6P9Honf2/lc6OxzZM+ks8Yn3lh jq/ZfibnOLh/89aRuyXNf2zNNcCSQ/7OXLc6/Y7PCTXXfjRjiU0f5JF/f8Zr j3W3Z9K5k2vOR2I/m/PaBPdczp8zPm989nq02E8u+kmB20HcDeEfqvk4mbXO d6fghgeJ3TVvHUnPYMl5KG1JHu8Q7cK9gOuROKfUbD/P36BV91TZKwxyzRHt rksv9PSYxnhazbEXAg9276Q54IKXODjy4QP3tHJPr3k8j2TcS6Xm95PwnR68 5I9sd2/opZpt3j1KDfJ7LqWoQw/LiXsq94KQ2M+Iv1xzDu9AIbHJH93psTCu as32i8EDB2sGXzXGXIn5fix6pl/mcAz3KR37Jn2P7hrPIbWaYy+JM638tPz7 y5/hcyncWOln1Gy/nLPEJja83TYY9DMDB0+9Zi58xJ5UPxmuJzrGCT9N/k7V fSVn/1k1x+ixo919Ege3m+TZNcfoAT8+3jkij/yXM44vxrV7TLXIodfG6JO8 XnnnLu5RuS+xL1H6isK8yrN9i3XmYXrN9qsZ+86NnBVjnGDgP6fmGmCnB9co ncfd2v2+zIwYB/xIbPo4J+aSHngm4Xlkn6Rzz6s5H4n9XNrPLOBeEH4V1WrQ sZ/wF9RsvxF+bGIXSu6ueq+p7u7i2Kvd7yngI7an7Isk95D9es4Se89OY4gf kLQfH+/s7CHfytEn+sU126vomImuun1abB8ozKya7TczltirBB4sGDjgej3j /cG3yD5U9iU19/1a2vVXyrsH9Nk128TBMbaxXCd0HJy0PqdmO6c6vVVvQtJ5 5L+h8V5ac+y9jCU2uD469mt3b+iX1Wzv3m4b/8wYBzyX1xx7TTx9xbNSi+eN PPBv5hy/POwrasa9H3hscuh1/3b3z3shqw7yex9X1Wzz7gkSmxhjXvxOSsL6 1TXb8FxZM9fVMTfM/7hOnwP6v07+ftI/Cf81cZ72EXY1cR+UdBzc6pLX1hx7 J2M/vvFJ55H/Vs5xcOQz95yD+fLvLTlBsUP5LVF5WcUnJt0jvTI/N8DPM5L0 8cKuHj3cWLO9IOM4uH07rSPZZw7/9TXXAEsO+dRZp8W1bq659mcZS2zi5JH/ ds5rj3XH/nZiN9Wcf1Ng3815bYLjfQrqL363Qvhboy8wSGxit7F2ZL/HM6rk NnnvJ8dHDN/tkhuozpcZS+zcIGOIg+/Ls5N6O0RjuaNm+/2cJTaxOyUPlPww Y3ln4OCE77Duuh/xG2OL351Bv6tmGzxY+PER+0djfIC1x3UjY4l9NM9cOtag p6T1u2u26XduzeNk7/yAFvePfk/N9gGd3n/PnnnyyP9K/PfWHPsgZ4kNjv31 zS3Go99Xs93S4n317HWfG3PJnNxfc+zb6Hlxv0nnkc8+fOLgyD9F8dPA8Zut /GvyLMnzfKf/9sTfpOA4LnjWVnyecifLfijmg1oHdpqXfh6u2f4wZ84Ha+bF 93D0d1Cna8D/SM32R8Jvqthag/x5ebRm+6eM61CPPvARWyt6oaePc+aAC158 9HiEeJ6ueZy/Z9wLPf0g/Rj5/hf5j9X87gB/a8NH7LuMfcQ2VM7jwU0tJDZz BGbDGPvJypui4yj+ZlGz/VvGEpvYk5IDW9wPEnvLFtekF3outLjno0N/KsYA HiznAh+xP8TzF2tJPX2VM44xc153U/wr7p2Sg3jmitovSlYU79LYpctWPE9K PyZp/dmabY6p4SeP/D8zjoP7i71JgcW/ddSgt8GSp/O8Lv2Fmu1FGUtsYtTn HQPeL3i+5vy/M+aDl9qj5BvJc3bSePom5yXWr/xLNPrdjmq73+/AN4TvD8K/ XHOMdxl4N2CdQX6P4JWabfblgoeLHHzEwJ3Z7r27vC/was12UrXGa46HCTtZ PK/VbC/IuffnY47wEQP3Otdm2Z/kzAEXvPgO0XFC0jo47Hbl9OO7sfxv1Gz3 VN350tflt7acJfa54rugzXZC+DdrtpfXuM7me1He4yUOFgzxN4PrrZpxS4p/ JntvuE8Mch+tLe7t7eiLutOFHZ33+wj4iIEjj/xU1IWX2vjg4x0BzgPng/P0 bs1cS6vuh9IvUSyT8VgZM+M/lPuG9OE8K0jOEH7ZRkvsjrx1JPxgyfksZ0ke c8jaGRHr54Oa7eUaXZPa57f72C3v/fbToz/G+VHE/8OjLxmccMGLDxz5H9e8 Xns1Wn4c9ebwu7VwPZLWF9RsfyE5hu8ewo+W3FnHyUnrn9Rs87mdyTUl6Tzy V2QfRXymGxotscFdwHNpu8eL/lnNNvX2yLsHuKmRUu7n0Qs908uomCvyyF++ 0XFw5O/OvSX6vkK9XNru9yO+lO8y2StnfM2hJ3rGN0uYpZK+DhFbUZydzAvX GPm/rtlubDQeLnLwEZsTY5od4/omxsTYwY3Nm39h5KVjLF/E+cBHDBy9M4aV Gs0BF7z4xsTYuY5yPb2ee0DN4+zNb3o8z/A8odzvI4+eD+t0Prn4iPXXGv6B mjx/N1r+EOMEQxz8ROVewT1Y+o8125/nLLGJ/SR5Fc/EGUvs9QeZEz7mkPMw Lu9zgf5zzTZ4sLxvgo8YY+c6NTCu1Yzvu4gd3unxl5LWf437CmP8JeaOOdhA nJWkdeYFe4CO68RxetJ55H+psfxec4x7ExIb3GXttsGj/xG4/cW5R4vnhJrU /oK/edUc69vonjg/9Eke+Ss3Og6OfJ65ePbincdrJJsG+f2XKXXdZ4Q/Uvgj xbOE7JtlLxL+Sr7nyH8E36da3Ns/Ndtf5xwHt0/eOpK5TYtjsjA/5Vzr75rr XcP3FMmpPFOJr4tw+7S4LjWrSdfH/iZn/L815yCxV49+6IOejpJ+tI7lkta7 1m13l7xetftm7CO2kD1U4ugmO899QrJF8tucJfZBLdaRtaSx5KzVaJmP/icE Dkyybrtfo2tS+9Z297F/3r0xVsa8tjBLRo/UBQ92+eBMRk/EwZFPHvNUFuYY +Y/VcQa/udVtf8c+B+Xc1e5+etZtfx9+bGJLS94ouaZ6WK7u9414p+lwcS8l e8NBltgbNBq7UYzxxsjHnqT4MtIPbHEvc9vdD3zwbizMsnXH6AE82GpgiPM+ EXFw5LNeWDcndHo+eFeKOTle9n2yz5Z+XKfnqBZ6r5j3OxTfRJz1pH3Efsh5 bnpEH4yJ8Z2VjPmuR404V5y7Ferm6i89VXftH3OW2PRxNPcZ6RNb3DP98u4S fnxnJs0BFz2BJdbS6DljLgZIv5dn9+i5ILmWYk/Jt5n0o4SZJv+J4l5F/pMk G+uO/ax+jm2xDmbFuu2NgjNTNy9xcuAivmLkr8QYdQ7667yvHPMNJxJ7Yt51 qXlu0vWxf8k5j/wH2q0jeX8qFz56OFG1Nled85LWe9dt95Hcgt8xcvYtxjXa R+xR5a8qeQ/XiEbLVSOHgzjjPYnrRYvXw2p121s0WmITWz3mjFpI7HntHiPj 43zxLtaWg/wOEXq2bhs8WMaOjxjvhTE+3g1jvOiMGfsz7rnSd+I3Bsmpqj9Y /Zwinik6zk9aX6Nu+3TuNcJemLSP2O/q82TJvnEukdi/8XfbunO2brTEJv/h dq+bc/geWre9aaPzjo31g4/Yf+sL+UfOkrVGLv1O1jE96bXDGso32s94iJV1 bBU9M4an2z2udRU/ld9ecuYbFP2sF2uZnomDO63TOnLl4OlXNxdYcsinDuOk 1vp119620RKbeL+YS8bysM7Ps+1+t4hY/5iv/oH9i32SdeM2zVhik0Mvk/Pu Z0D0CL5J+hOMR3W3EUdVfBcn7SO2tXzNkjX5hzZaYp/aYgzxGUn78V0g/XRx v8D3stDzddtT+a1AeknyedmDI3fDuu3tGi2xiYEHy7tXcMD1t3reQbGhsmdw Lai773/kP6PFOv2jbxwxDnCM7QnNyUvtfucIfZO6beqcmnct8sjfQf1sGv3C j8QGV5Ze0TEraX2zuu1zOIeqNzvpsTKGReybqjvWJs4hir/e7j7JI//fnOPg yN+iblyXvpbY5DzXbpvcc4WvtHieB9ZttzdaYhOjpzfa3Sd6oW4bni2jRiF6 pxbva203yO/vbM2c8ZwU/kF1x5gv3s9iDolvHfO1Vcwl84b/jFhL5JHP+1zE wZHP3HMOBsn/qvxDxT1T+Lekbx86PS4eM+tT+vniHMk65Huo/HOE2bZuu2tf x8Gd3WIdeUnS/IPrrgGWHPLr9Nnpd5q2q7v2iEZLbPogj/zWRq891t2lSecO qTsfid2tr9cmuERff874vPHZu7DFfnLRtw/cm+LeMfyvaj52kP9d+YYFNzxI 7LPz1pH0DJac1owlebyXdKYwZ+m4XPqOddtJ8Vyiuq2yhw1yzY/aXZde6GmU xlisO9Y98GCvDE644CUOjnz4wHUot63u8ezU6F5G1P2+FL624CX/43b3hj68 bpt3k1oH+V2h4VGHHmazrmWfFxK7U/w71Z3D+1xIbPLP7vRYGNfIuu0lgwcO 1gy+kTHmETHfo6Jn+mUOp/F51nF10vfoLeI5ZOe6Yz3EeaXyi/JfK3+b5Bd8 v5G+S932Un0tsYl90G4bDPqugYNnVN1c+IiNVj9XyT+T79zCd/AZV92efe0f XXeMHr9sd5/EwU2XHFN3jB7w4+P9KfLIH9foODjyGdPOkUOv7dEneTPzzqVH et1LubtJH853TPFf02Kdedi9bnufRvt2i5zhMU4w8HfWXQPs7sH1Afvw2/2u 054xDviR2PTRGXNJDzyT8DxyVdK5e9Sdj8QenfEzC7g9+c6iWpfruEb4veq2 9w8/NrFxrDXVW0Z1PxPH9+1+PwgfsW9l7839h2f6vpbY53caQ/y6pP34eM9r IZ+F6BN9n7rtkTr2lX6d6t7YYvt6vl/XbR/YaIk9MvBgwcAB137C/KQ+j637 ++3+dfe9Z8b1L8+7B/QD6raJg2NsF/B50XFj0vqBddu3qc7Oqndz0nnkL6fx HlR37JBGS2xwo3T80u7e0A+u2/6m3Tb+fWMc8IyvO7aveG5nXbR43sgD36uv 4+PDnlA37tDAY5NDr7+2u3/eudplkN/lObRum/e2kNjEGDPvc3FO0SfWbcNz SN1cE2NumP+LOn0O6H+S/HOlTwr/YXGefuKzLO4bkhGX/xbJw+uOjW+0H99N SeeRv0Jfx8GRz9xzDpaX/2KeNxW7heuP8sYofmvSPdIr83Mknwm+l0n/g2tG 9HBU3fbhjY6Dm9VpHck7UPAfUXcNsOSQT527WlzrmLpr85sJEps4eeQ39PXa Y92xx57Y0XXnHx3YdF+vTXDjM65/S949HBd9gUFiEzuee4rsDNdt7u3Ddc6T 9hHDN1nyQdU5rtESu2OQMcTBd8peYrjHckLddmNfS2xiJ0r+rv4Pa7Q8MXBw wnench+SfmeLzwX6SXXb4DvjvOAjdjzfKaTvIf/KfS2xewz3+1q7DfL7Qein 1G3T78l1j5O55L0F5hOd362w53T6HFCLPPJ5h+vUumMr9rU8Nc7ZpdIv0zE3 af20uu3HuN6q5j1J16Q2c3J63bFTGt0z/d6WdB75K/V1HBz5V3Fv7PR7NP+2 Owf8FfLdn/f7So8Lf7+OO6SP5TeAqFGuOzal0T0tNdx9VqJH5g3OUswjPmLg Lu90Dfirddur9HW/e0YPtZhvxvJ41KMPfMT2jF7oqXdfc8AFLz56ZH7OrXuc q/Z1L/R0jDifVPyMyD8Tv87FMRn7iJ3WaB+xpVXzrOCmFhKbOQJDnPebukvu xWeP55O67ZMaLbGJTZN8RvylRkvseS2uOTbO6ZVcp5Vzb+jn1G2DB3t30j5i fTinfF65T/X1WBkz53V15dwhfYJ4l5U+Xfo4vhtzfycu/N6ynxbnfUnr59Vt P9diGz955E9tdBz/atw368ZVGKPmtddwv69E7Xl5r6sLohfwSGxi1L9WxwPc 1+rOPyljvhlR4z3uTZzLpPH0Tc5Fki8rdqbq7qt4Zrj7xLeP7Ie4NtYdy6ru MsOtg5lZt316o/FwkYNvZuS8Iv9TLZ7/WXXbZzW6duNw93xJ9AI/vTMGxo+P GLjZdb9HxXtn/0fUmcdLPX9/POrOKGvozkz2Gfte995ku1N2UXeRrbmWLNnX EFkTwp3NGiH7VrKTLQqVpSRbCQnZEolk5/d6ep3v4/fH53HO65zX2d6fz3zm 85nbG3KQi7zYjm30vh50eGDi2d/FGt4e+VjbO3i+UN6NspZ3xLqvJf8QxT0v /p3txu3ifyDfLB2TasyfEecXPzxi7mo371rxx4tzD9+DkuP4LIr3EveBduOs 6mZkOy5qYcMHjzjic1nnIy+1sZGPPUqsKeeD83Rvu3Ndo7oPRs2Ns56VmZn/ ePHvk/4+z3mSc3nur7UE40dHTq4xF508SOKwd9Partvk/SwPtBuXurkmtWer 1gTpD3O91rgv+mPOce32bZI1H+4ekZNc5MUPj/jx7b5eb661BHPtnqhjoyb3 g/5Qu/FjkYO50k32wUGf0G48X3ne6+lz8VDYNlU/D7fbN6bWEgyPPrJNngX9 kXZj9jyd1Oh9MeSmRlWxj7bbx14hemH/D2v1SMxELfzwiN9EnInST5F+Ku+e qjlN/Mf5zhd/s6zvOdxvptTYNjfOBfchfKNV93PZPtLxiuxPthuPrTX/8Tjf 2PDBe5ReFDtV/KfajTdXrcfgD/KeoKfbjbfIehbWl3mw4YNH78xwW61zkIu8 2E6Jnvn7D38H2kBr8ky759xSOSdLX6Re7uO3a+kL+X7mb4jyb9PkdcD2bMQ8 x9rzG1E3S/DmTebg/2/d1MP8Hu7/+eiRWkgwvhcknxDeKmsJfnKQc5KPfUDf KudpyvlG6JPajeHDfa3GNnz31vpePji+p+iFOTmXGzd5HnpDf6ndmOPFds/J Gizo6XOBzrqAqbNtk2sRR/ytqjUl+t06awmGxx6nMxq9vwb95XZjZvoq9je9 GPWJfSXWjzXnu25hXHvEEc++J/zwiD+opOevgj43WUvwvs3qW/6n6VX2iZJv CDdw/iR/5B2Ov9mpZr1s05V/ervxdln74Z3ZaB35ljifyNabZ9Ra56YGubdq cix5lor/uuxf97SPmjNqXB9MfvivRT0k+O7ohz7o6Rlxnx3kfUPob7Ybz2Jd +Q2hm234ts86ZobwWcoxU/JsyR5Zy5kx89kxD7PMiDqsA/Ks6P/n4MF5q934 kVrXpPYOTe5jUQ/3xqzMPEGct6NH6sKH2xI534qe8MMjnjjW6XVxeop7jvxv 8v3ebjxOOZ8Tfyfps2R/t924Z9YSjO89yed5V5J9jvTfuE4Vu1zyHeEfQoIf rzX3hUHec4ROPHhH5Xpf+jD1cS7vyOK/XeN85MX2Qcj6rPnDomc42OH/j0c8 1wvXzXDZGrQmuzR5/w64b5P51F7aw/2gf9huPEn6izreqbENH3VZG9aI9WIm 5ptZ4/xz210DCZ6g62Reu3M1KPbj6KVX1hJMH39zr5Z+XqN7Hh6zYMf2Xo1z kIue4OJ7ttZrxlo8Jv0f2Zb19Pm6RHE/yNe/yTG7NXmWvOQXsl8g/6eRj37Y v3R+o/faLGg3Zj8UOee3Oy9cYsiFHx4xn8XcnPfPpb8k3g5Zy8/jmqAuNWfX uD54Yq3jiGd/FfofscdqEXW4p/P3+jq9xynHuzXWF7Ybfyk5WTV6Z23D92Kt bfj24j4nOYXrK2sJfnmQOfg/UM49eb+N3r5uN55UawnG943kRZI7ZS3BK9R5 xt/iWu1UZ9+c0L+NGA642LHhm1zr+fZp8v4ddGYGn6xj86LeCbhnyNZF/Gni v8J7KddojfXF7cad5b9Y3I9qbMO3c9Zzfif8Tw9LMP1/3+6YqbWWYOL3aPJ1 Q59L2o1fqHUcOdhjhQ3f/64v5C5ZS641Yum3Q53XlmuHa+i5WtuZB9805Zyu 45MazzCgyXP91O59S+yBYi3Y48T6/Bxrw7rhhzei0TrysMiztN254BJD/NRB XnN6+6XdtRuzluDpEUc8s6wh7qV8PmocuyzOGRK8qzjL282bUWsJJmakjoHc AxT7a7txXvzfpO/Hdye/ezQ6hvzYfgve75JdZZ9ZawlO1pmDn5zYsc2rcd8H NnkN0f9oN35N+p/SXx/kXi6L2L/ajekZCcYHHy77lf6I9aDntyRX13V4FPeo dvfdV/a16qzTP/o/4eP4O9ZlAL+zNXlfD/q/7cbU6dLTtYgjfpb66VC0j/xI MLxWxVzBvbLG+gpF41rFraZjfo1nZYY+il2xaN87vPvLNkgxC2ocR/wbtfbD I75j0bzdspZgYt7knW6Q9xwdKjwqeqgpGs+utQTju5J3ZOX7rMZ6omhMnk5F 58KGbw/VStdZh985/P+zJ4N3oNatrcl7efDD68rvM0X7ZnazHRt9Ekf8e7X2 wyOeteccTBN/5iCf1y/EX1/cteu8PvRIr7urh5Wlryf7h/wNUX0MbnKfqxSN 98raD++qRuvIL2ucv0vRNeASQ/whTcbkWa3o2vNqLcH0QRzxe8a1x3VHn8Su GrWR4LdrfW3Cox8+H7/G9c3+pPZG77VBX6NoPJvv80HeR8O6dC3GfinJWbLv nbVcM9YRPR3ntGusJWuLJI7zcoT0onJ/zmehaDxHnCxrK7yO5NvKM4Tvohr3 Qk/syepWtG+frPlwF0ZOcpEXPzziyQdvPtdw0fPsy+9Lytdd+Pgm2/AxZ5n3 YvG/rrGeLhpvXGeMHRt6P+U5VvEp4VKjJfgT1coUHbOg1jITMdRYv6fXc52o +b88pVgTbPjg0SO9zutmSb/sFXqX50Ad39b4O5rvG75r1i3at59ybqm6FeX8 TvYq78ZN7n/9ovH+WUswvmOajOGgbxA88qxXdC5s+D7WXFvJvmGdz1G26D1D 7IH6z160jx5Pa3Kf+OFdwxoX7aMH7NjYo0Ec8V/X2g+PeGZaN2JYA/ZNsQ58 358j/E2Ne6TXr1hz6e+L25/ffyTn6PhBnE2KxgOy9m8c5+k/Pc47+XNF14BL DPE95b+W5wtxNotnjaasJficiCOe884zCT56I3bTouOR4B9q/cwCb6H0Otk2 17FI/C2KxkvCDsa3ZfRC3XO1buc1eX8NNnzDhLeSnMu7WNYS/GGsAX7WATs2 9obQ9/XRJ/rWReMb+A0hem2oM2b2bYvGS2stwTcEHy6crWM9mJF9I32Fd5Zv u6L7/rGb69f3dA/o2xeN8cNjtnk8uw/y/hf0HkXj3sp1o+r9VOM44lt41yja t6zWEgxvtI4LlG9xjfW6ovE2dcbYt4k5yFNftO9b/j0evwk0ec8XcfAPyNpf H7ihaN4v3SzBxNDrjj3dP3t1dqqzvkPRmL02SDA+1og9OOzTQe9dNCZPr6Jz 9Y61/JV/s6caF/PcBh8uz0Bh37Fo38c8Mw7yvhv88G7iubxo38Cs7diW1DiO +OW19sP7JNaec9Aq/s3ijhBnWY1rjGl0D73i/LA+u0bcgbwr1TkGfmPR+I9a ++HNjx7nR59wdym6BlxisFHn0pi3T8zHOiDBYyIOLnW59lgr1hNfvuj4fHAP yvrahMf+I+qzF4kedou+4CDB+HaXvIRnUNVdwHsbn4Ua2/DdwvNK0fuN2KOE BO9SZw7+78X/dJD3L7Gnac+i8cFZSzC+vSR343mx1hJ8a6Nzko8+z+d5r8mf BfS9i8bw4S6vsQ3fz8ozQPptsh+atQRfzfscaxizoO9bNGbGfYqec3cdO9Z5 /dH7FY0v43lPxy81jiP+F9Xar2jfX7WWYHhX8nykvL/WWN+/aLyXcu0R+alJ 7UP4ty5F+1ZMuWf6/a3GccR3SNkPj/gDdQzUsQKz1zkG/ud859S5z30k2xX7 u/T+8Pm+E24u2tcp5Z6KTe6zJXpk3cjZFOuIDR+8so5reCfn2btonEi5Zr+o e0DReKWU61CPPrDh6xe90FPnlHOQi7zY6PFP5SkUPWfXlHuhp47ozC88lus7 ZqIWNnwrp2zDd53kwUWvy6Cs5cHRH5zrohb7rG5v9J64Q4rG7JVDgvEdyr1W /NVSlmD2w1GTXv7idwzuH8J/hz6oaAwfLvvssOErqJ+S9KXST8h6VmbmvD4u /gXSH+DZWnFtfOZ5d2LN1VNCvd3E8/MA94x+WNF4ofJ9yft5jeOIX7HWfnhr qP/Di+a18Td91btDdTro/n+n5Ngm72U7smh8WNYSjI/6YDhHFB1fm3I+8lL7 dNnuFadLwvzBkeso7h88y6bMO7jOfWLr19P7BI+OHNRtk/9QHf/yzFY0TqfM Jxcx2PDBKzCLfB1V99iicYrPlGy3N3nGIUXjbin3zgzMjw0fvOPgqO9utc5B LvJiO1A1L6mxDg88mD4lz+io56Oi8XrKfwLnTbyutZbge5u89+yuRu/5OrFo zP6yB5q814x9bfDhdknaD4+Yk4rmbaj8D0qeIny37F/xbso9RDOeXDQ+XGt4 Iv3XeU2w4YNHHPEbpZyPvNTGRr5OCZ8Hzgfn6dSic20q/pnSv+H3gaxnZWbm /5rnYekP8zxR9F409q8hwfc0WkeyDwsuMUdkLYmrUd3xTd77xvqcUTTOpVyT 2sfx7CJ9kY6VEu6L/phzaNG+wVnz4XaKnOQiL354xJ9V9PW6dcoSzLV7n44n ub8lrJ9dNB4u+YjkZuI/1GQfHPRzisZnsCZ1nuXssB2lfoYV7dsmZQmGRx9P NXkW9HOLxuxnu7/Re7vITY2NFXte0T72ytELe9tYz3NjJmrhh0f8M+JcwvmW Pk7HWaq5Cv+/Y9m+4xxnfc/hfpNM2HZSnefiPoRvS9U9m3Xmvi37hUXjHinz yUUMNnzwFsv+rGJXFv+iovEx/N7I+8og70e7uGh8bNazsL7Mgw0fPHpnhu1T zkEu8mJ7MHrmPsr9dJjqjih6ziHKeRXf13yvK/bS8Ndx7uSf3OR1wHZpxIzk fGnt1q+1BD/fZA5++PR0VE/3f1n0SC0kGN/lkku4/rKW4B8HOSf52Kt1gXKO 57e/hPUrisbw4a6WsA1f75Tv5XwPDK9xL8zJuZzY5HnoDf3KojHHqKLnZA2G 1vlcoLMuYOpMaXIt4ojfTrWujn6Pz1qC4bEPb0Kj92qhtxeNmYl9aMw1KuoT W4z1Y805R8Pi2iOOePa74YdHPH9n5N/W8LfGn6T/rGNN8dcqdejQvVnvmCnb rhP/NcVVJEcqZ172R1Rzumyril8tGp+UtR/ew43WkWvzuZbtTZ5rU65VLjr3 i02OJc9l4l8r+/A6+6hJP9cFl/zwr4l6SHCv6Ic+6GmZuL8M8j449OuLxjfx +dI6bFlrG76Ts465QfhR5bhR8jHJU7KWN8bMj8U8zHJD1GEdkI9G/1cED87o ovFuKdek9htN7uPUnu6NWZm5jzg3R4/UhQ+X/WvkGB094YdHPHGs0+qqNVXc x+XvKn1M0XhX5Vwu/ky+f2W/tWh8atYSjO82yWm8G4l/R9H76tgfd5Vy3yI8 IiR4z5S5T8SM0yIePEP6WOmX8j6p/FfyrJJwPvI+yfdR0b7TsubD7Roc/Owj ww+PeK4XrpunG70e7N1jTcDvNzn/b4O8RmuHfles++/S/9CRSdiG7/Ss14Y1 Yr2YifnWSjj/nUXXuDPOFefu7qJzncG/PYtezsxagunjGuW4h++RRveMj96w Y1sn4Rzkoie4+PqnvGasxR7Sr5VtVJ3P17/iTWT9ezrmgybPcr38D3GPVt4H Ih/9/Cn51yDvlXuwaDw065z3F50XLjHkwg+PmHExB/2Mj9xnZS3HR6/UfSZm oT64OeU44ifGOZkYsz8h2zzeN8R5kb/PNnlfG/qEovHDUZ9a2PD1qrUN33D+ Bi/5Lu97KUvws43m4Gfe0dxzdHRX3UeLxgekLMH4HpP8WzFnZy3BHzV5JuZj rn8Ged3ZT4f+eNEYPtx1E7bhOyfr+Z5TfDphnZnBHXTvXCp9lvRnJccq/yA+ 45LPy7ZewvpTReOpmvuTJu9Nw4bvwJR9TwrfWGcJHsa1V3TMrrWWYOI7FPQu pWMD5X+maHxu1nHkoC42fPAmxnzkRHKtMTv9vqCYjRK+driGBqRsZx587Jd7 sdF7uyZJft7k/M/L/6H0FvFvF/+GOq/bC0XjQsp+eMShT4o1QT5XdC64xBBP r180ea4Xi67NXr//eii6j+ci33lZrwX7/VhPYicVHT8p5obzUqwZ64wEE7Ni wetPP5OLxsP5+7X0BeIdIv4U1blLnFzCNnwvyfay5N2856QswbfWmYN//YTt 2DaU3lG5v5YvG/orReNO0l+VXiP5lfDkiJ1aND48ZQnGBx8ue+jIQa7z1XMX ybnc98WdVnTfF3Ifq7NO/+jTw8cBj9ne0dp+2+S9aeivFY2pU+7pWsQRP1j9 vB79kh8JhpeQntSxScL6G0XjcayP6m2W8KzMcIFi3yzaN0Q5X5H/hyb3SRzx F2Xth0f8jKJ5F2ctwcR82WRM7Hjx76zzOr9VND4uZQnGR09Lmtwn+qyiMXlm Ro1Z0Tu12Jv3aqP3ar0j+0qyXxL2t4v2sV7s8WMN8b8T6zU71pJ1w35vXEvE Ec/+QfzwiGftOQf9+DcDBZ/XLbgXKe4B3hMT7pFeD1PO93he4L2T72ueG3iX Eef9ovGlWfvhTW20jtwq4fzvFl0DLjHEL24yJs+comufmrIE0wdxxI+Ia4/r jj6J/SBqI8HHpHxtwqMfPmeT4963svRVCt5/h/5h0fhnxb2uHJsn3NM82acL fyT5muRlWcuPYv7XYjbmmhdzsCbI6THLk8GD83HR+HRx5nNP5rmhybXH9HQ/ 9EJPI/ktN/qiLny47IMjx8fRE354xJMP3kE6j58WPc9JqvWH5Bc8czTaho85 V1Xsn8JbJ6x/VjReTfrqBe+nw4bvcv69H/ca4UdCgocq/+dFx1yRtQQT/6Zq PM07svIvLBqPijzk2DJhGz549EivZ0bPb8S5eLbOPPLwHf1sfCd+WbTvbH6D 4jfsJu9ro/adPd3/19ELdZFgfGtI76pju4T1b4rG5Pmq6FzY8F3Je4HqzFDd HrxTy/67/GekbP+2aN9MHSs2u0/88LAtCnlV1vaZMQtxxA9P/T+PeGb6Mtbr Jb7H63yO1izYRyw90uthOtffR+/kZ+/dW43eR/ZD0Zj9ffjhdWy2jmR28i8u ugZcYohnfvYEsp4/Fl376qzlj7HuxBF/fsrPJDyPbJtw7JKi45fEWnKOeGaB dy73Xr5/dWwv/k9F44vDDsb3s+Raqteuuj+pt87N3juGDV9SeJnk2sLFrCW4 W8Ec/D0TtmNjf1xCtrejT/RfisazdSznns+9qs64Tpxfi8YjUpbg2cGHC4cc 5LpInG6SXfR+O0f+34ru+8Ra13+4p3tA/71ojB8es9XKntLRkLD+R9H4Db4v lW+HhOOIL/FMXrTvipQlGN67OlZrdm/ofxWNa5qNsS+POcjzd9G+C5XnTb67 67xuxMGvZO3/O/A/RfNGBR9MDL2u3uz+2VP3XqP3i3UoGbNnEAnGx8zsCeSc oq9QMibPv0XnwoaP9U8XfA7ov5Pss6WXwr5iyb6M9O46dkzYD+991epYsu+a rO3Ydk44jvhq1n543WPtOQdl/i7f6PNaL/46sq1b8N66f+P8sD4Jxa0izmXq 5x3u+Tp68V1fMi6n7IdHPnQkOZE1JdeASwzx9FHb7Fk6l1z7uqwlmD5qIt+1 WcfPiZzErlRy/EoxE5wuUYd1m9votWAdVi4ZX5+1XDnWdxXOlWRV/PWUYx3F 7pKwbZWIWVXyH53Xc2otwelmc+bGOtPrcz29bqtF79RCgvGtLrmW4tpTluAP G52TfOyhm6Ocs3TslLC+RskYPtzeCdvwXac8KekbqMborCV4imqtXzBmzx36 msFjxq4lz8lvVPMiJzq/W4E/4jlD+XdNOI74G7n/lOyjFhIM78M6Y/jo3YJX wztNs/ejUZPaNyi2tmTfhbXuiX7pkzjib0jZD4/4jXn+LXhf1YaSG+noo1rZ gvnUnc8zg2rulrB/PcXmFJsp2TeG9xT5s83mdy8Z35x1znTJcdjwwcs0G8Nf p2R8jfJ8yuerztfJuiXjW1KuQz36wIYP3nqRm1rkWCdqY6NHZtm45DlvzboX erop63196zOD+BvEerA+2PCxTxAbPvb/bVjyuozJWm4YawoHP+diQ+mfKl+e tSoZ35SyBOPLSn6huNtTluCP61yTXtj7llP+zRSze8J6rmQMH27fhG34bsl6 7wN7GdjXwKzMzHllj82e0r9T3k0Vv4n0BdK3lNxU/rGK/Yx3ZOXcI2F905Lx l3XG2IkjfmzKfuy3KXazknl3yr4mz9TN3vtG7bd6+rraInqBjwTjo/5mOvZS /s1Ljr+61vk2ixrry9a72fuV4NM3MVtJLhLvPtaQ7+Rm94ntc+F9pG9dsu92 6jZbh7NNyfi2lPnkIgbbNhHzHbPXef23LRnfn3Lt7Zrd83bRC/npnRmY/z9O ybztS96rx14/cpCLvNgWNnp/GTo8MPHs5WMNe0Q+1ran9M2V946sZc9Y9y1Y Ex391E9dyfhOcZZy/pRv/4T5X8b5xQ+PmPqSeROUf2vV6SX8VaOPBuE9xW8I 2108R4n7jY69E8EpmUcc8feknI+81MYGjzysKeeD87RDybkeFn9n6d/Id0/W szIz89Nfb+m9+A6T3Er47qwleOuCdSR77nrHTPSJJI41ob+vo4edol/mpebO Mf+yOmPWir7ojzl3Kdn3aPDh7h85yUXeZcHDv2vJ1+uNtZZgrl16nNfTfaI3 lox3l9xJ/seVv07yW+XYN2E9XzL+VfmX6Ngv4TjiWas+JfueSFmC4W0j/86K 75+w3rdkXK9jUcxIbmqMV+xuJfseSrmXH+vcA3HE35u1Hx7x/+KXvlj69zp2 l2+A+Htwbnnvy/qew/2GfWrYlteZw30IH/sNWRf2GfK53ivWiXWGTy5isOGD t13Ba03/e5eM71et7SV76GiRfZ+S8QNZz8L6Mg82fPDonRmeTznH3nGOsTHT AQn//Ye/A52oPP1KnvNB6a1cY+r/Lv7Nj/QdVeMx5VkS60Istv0iZn/JDvW6 B6Yswb/UmYOfNaGnPZrdf//okVpIML4Bkj2Fx2UtwXUF5yQf55rz8EPkRG8q GcOHy95AbPiYnXv5gvieopd+4Vux3vMwC3pLyZijOdaONdir2XvE0FkXMHW+ 6ulaxBH/omodEP2Oz1qC4fXleiNvwvrAknGN4v5WndaEa1Kb2ANL9k1JeV8h ewoHJhxH/LMp++ERz7/b4t9v/cu/4eSeUPD346kV3SN5Bknb1sb5Uj+HSO4j +2T+Dqiancil/IeWjB/O2g9vaaP1pdH/abLtqlxPZV3r4JJzJ+sdS54eWquC 7Ps120dN+mkLLvnhD4p6SPAr0Q990NMO3BupkbB+WMl4sOSq8r+esg3fI8q5 imyHC/+sHEdwvUs+mrUENzdbR9InXGJeS1kSdyifu+DBObJk/FLKNandsd59 tDS7N2Zl5ge1/kdFj9SFD3dg5DwyesIPj3jiWCf20LGf8JdG7187umTMnsEd Y33p59iS8WNZy2Nj7YZIDlCeafw7HO6F8j2Rde5jSt6rd0ycE9YZ7nLVOihh nXhwV+U6TnoXyZ2U40D5BiWcj7y7SB5fsu/xrPlwDwkOfvbZ7RQ84rleuG4a JQcK/xp14f7R0/zfZFtDeQoJ6yeVjNeqN8aODf3JrNeGNWK9mGl57EMk/4kl 10CCZ2jek0vONUv6qTEHeZBg+mjkt0npB0fP9HtYwnZs7L8jx8nRB1x8T9d6 zViLmbxrS/7ONafYfyUvkW8D2f6Q3tbsWdh7d7bsf8p2Rsm+p9XPAc3W4ZxZ Mn4zcp5ect4/IoZc+M+M+KGSGfHeF/+sWG9yIsGHNbsuNdmbRn0wewaJI371 eutIzvsFsm0o/eOU14A9hqwD+jkl42GSedWYmLUNH+uMbVis+7mSfYSfyVqC +xbMWSvOO2v0l3o7Wvp5sWYfpSzB+IZzz+PdIWsJPro5zlWzz9egZvvaQj8/ YjjgYseG752U56vl3pGwzszgfXU8J33NfIcOl0r201q9zL/dVa3dC96vh35R yZjc/0RdbPiey3rOC4WPabYE0//F0TszIsHEZ+t93bAOI0rG81OOI8fghG34 /nd9IZ/PWrJexNLvkGbvlePa4Rp6L2U78+Dbk/eSgvfQMUOiznNdJv9gfi8Q fxPFrafjKOW8vGT8Wcp+eB3y1pFHJpxnZMm54BJD/B7cQ7gfiTOq5NqTspbg vSKOeGY5XtwVIiexV5QcjwS/IM6VJfMWpCzBxKyoY2PVPFaxV5WMXxT/aumb yf6F+J1kO73ZHGxXB6+dezN/56i1BJ/UbA5++Nixsf+Ovlet8xqiF0vGe0sv 8V3L8zvfBYo9geeukvE3KUswPvhwj0s4B7nouYt8dwpfoHqVkvueLPtxzdbp B70aPg54zLaN8ufqvebo15SMqXNGs2sRR/yn/PuH6Jf8SDA89gTW5L1XDv26 kjFrwH5C1oFZmeElxV4fa8Y671vw2tEnccSzPxE/POJvKJk3JWt5Q5ynU8VJ qM4QniuEt9RxvPTRJePvU5ZgfP0UezbfAQnrN5WMyXNjybmw4XuZ70fJ/Qve Z3eL7CvJ/2rYby7Zd5Zik9EDfnjbq9aYkn2LU7ZjOynhOOJfydoPj3jWnnPw Le9B9Y6B31t6Z+mnJdwjvX4lzm3SD+fvdrXuo3ud+xwbfdEnfnjDmq0j2UNH /ltjHrjEEN+f52odp6jWHSXXXpayBNMHccQvSfna47qjT2JvLzkeCZ6a9bUJ b1rWnw8+b3z2hjbbTiz6XcFr5tlJx5m8R4h3t+zbSd4TucmDBF/YbB1Jz3CJ +SVlSRznmv2BK+e9f+3ekjH7BFmP+0reN9hU8Fz0Qy/09J3y3F+yb3rWfLis ITnIRV7898e63Bfrzfo8UPI8r/G9Jt9Dwr3qbcPHnKsqfqT4JyesjysZD282 xo4N/XXlySv+QeFV8pbgP/lbeckxP6Usx0cMNS5r9npOiJr/y0OOsxK24YNH j/T6V8qSfk8Vp5V3loL39/EdzfcN3zUPl+x7I+u+V4ueV8+7BvkfLRm/mbV8 NPrerd4YDvpjwSPPIyXnwobvH/VzEr9HNnvf3JOyj5D+e9gfL9lHj5vVuU/8 8NZQnidK9tEDdmxnJBxH/Be19sMjnpkejpi9VX9XrtmEv+/3kn5Owj3SK+v/ tPSBvFvxjiZ5UMH77yaWjGdm7YfX3mwdeXbC+Z8quQZcYoi/Wv6u0eez8azx VtYSvFfEEd8x7WcSfPRG7DMlxyPBK6b9zAKvRvpQzV1q9l6w50vG39VagvG9 EL1Qt4lnbuUbnrAN33Zaq0kl77FjLx4SvHu9OfhZB+zY2H/Xr9579n4K/cWS 8SjepaSXeXdS7CE8C6rW5JLxrKwlGB98uP8knINcibT32LwrfKt8U0rue2XZ 11bv1zV7fdBfLhnjh8dsVzXbBwf9lZJxszh71vt8vRy2t9XPqyX7VklbguHR 3/XN7h99asmYfW7d8t4fx6zM8C//DqRkH3v6WHf26XFepsas1MIPj/jpcX44 j0gwMYcWfH7pn7WpzXt9Xo91ZX2QYHzsH2PdOBfob8Q6kue1uFaw4WNv2qCC 95ux12wm1wbXXNr2N0v2XaP8KeUelrAfXn/JGSX7Oqdtx3ZewnHEv5O1Hx7x rD3nYAXxC/KPkX4B68l7iPwXJtwjvc5W7CzpbdLfk36zuOno4e2Scde0/fAO K1hHsl+M/G+VXAMuMcRT58B613qn5Nprpy3B+Ikj/t2srz2uO/aa4Ztdcvzs 4L6f9bUJjz1c1Gc/Fz28F33BQYLxvc93vfAHsh8huV+d951hw4ftA3pQnVTa Etw9bw5++OsI3847j2aZUzKekw1Zsm+u5I3cx9OWc4NHTvJdrNgKv3fV+xpA /7BkDB8u+bHhS2rGBdIH806UtQSzv+3IgjH7ztA/Ch79zit5zsOVd13lHJGw /nHJeD0dd6neRQnHET9X+T8p2UctJBjebc3G8NHnB4+9dofWe33mxVqyJp+W 7GNfHj3RL30SR3y3tP3wiB/DvxPMew/XUbzvFbwP7hjJY+Ufye9FkuvnfQ3j /6rkPXOfl+xbVzk3kP8e5b+EvxeUjD/KOudnJcdhwwfvjmZj+AtLxum09/O1 1bvnL0vG7AekDvXoAxs+eF9FbmqRY2HUxkaPzPJ9yXOumXIv9DRP/NGyfS28 ofjfSD6o+I3StuFbPWUbvgP4bi55XT7OWoJZIzj42TN4rOxDeK/TXItKxp9k LcH4vuO7W3GbpS3BG+Vdk17YE8o5eaTZ5wV9cckYPtwrE7bhm8/fuMt6jpO+ JOtZvw/fGaq3mnxnSj6k+B+496nXn0veD8dePHo6vt49oy8pGT8sfi5qEUf8 xmn74VH3x5J5m8p+Ks+tOkbx7ib/47Jfzd9lSsafZi3B+Ki/cd772paWHL9l 2vnIS+2R/HbBO17CfPomZpnko+JtLv7xynlyvfvExn5C9hv+UrJvgeo+Kfsm fE+Ks7xkvHXafHIRgw0fvLOU7/R69/9ryXh78U9QvmfEa+c3vZLxZ1n3zgzM jw0fvN8ln5bcNu0c5CIvtk1Vp5iwDg98rnxn1jv/HyXjesX+SW7l/TxrCX6B 64HZdVTF/6tk/IU4F3F9Kd+1CfPhlhL2wyPm75J5O/F8xfe58OZ5Hy/zjCL+ P2FbyG87fD/XOw82fC9HHPE9085HXmpjg0cezgPng/PUoexcO4vfSfop8n2Z 9azMzPz0t4J8r/D8V/a+QvYtIsFb5K0j2aMHlxj6RBLHmkxq9t5CrrGOZeOG tGtS+zzVmizblvy+kHBf9MecNWX7egcfbjlykou8+OERnyj7es2nLcFcu6fy HibedQnrybLxKpKPMYPmOk320wveP4i+Utl4mnhbRW/EEf+VZuxctq8xbQmG t7WOS1Xz+oT1LmXjy+uNsZObGl8rz8pl+/qm3cvrzd4bSBz8b7L2rxy4necm 6SPqfU+ZxW8QvANGv/C55+DDju2UOs/FfQjft/xmpfht+N2Cd66y8V5p88lF DDZ88LbleaXZ/a9RNl6kPFObrWPvWjbeNWZhfZkHW9eIoXdm2DttTC7yYmMm zhH3Ue6n1/DeEPdOaq0j/VrZBvBMXvb+RfZO9uD5SDluSNiGbzvZukV91hYJ Zm8lHPzs4xta8PrSf23Z+LusZW2cm5TkWcKLs5bgswvOST7OF71uz+8coafL xvDhjknYhq9/2vdyvgdWrPF8zMm5nNHseZgFvXvZmCNT9pyswZU6Riessy5g 6nzQ7FrEEb+Haq0b/X6ftQTDO0f6sIL3LaKvVzamRs/oIRP1iV0/6tM/54hZ mJc44n/I2g+PeJ65ePbqLv719Y6Bfy/3j5YOHe6U/VzFbSL8Ed/93B90bhpS 7uO8OveWjb74bsUPb26zdSR75XpzTxPn16xrbRjfx+/KXy95M7/vyb6x7JV6 16XmbQnXB/+YNT9XdgwSvF/a9emDns6TPrzgPYzom5aNt5R8VT3tkrIN31Ll nKccmwk3cG+X7CX5U9YSfGO9deTYhLnEtKYtG6L/m4MHZ4uy8YFp16T2J83u 45I698aszHyAOFtFj9SFD3etyLlF9IQfHvHEsU63iHO+7BfouIN7Wtn4Z+Xp rZjPm93PtmXjZWEH49tO8kPJFvXQs+y9iew3HMv9R3iHvCV4UNrc3jHjhxEP vp3Pl/Qb6t3LF83uh3zk3ZHPSNk+eoAP97bg4Gf/HX54xHO9cN1cUvB6sG+Q NbmIe7Pw3dIvLHiNxoZeH+u+QP6d6CthG75fsl6braMPZmK+uxLOX1d2jbo4 V5y7hrJzHSJ9h7JrL89agv/rg/Mu/dZ690y/7BnEju3OhHOQi57g4jsi7TVj LQrSvxJn5+j5MuXYV76fZduFHsW5R/YRsjfynSW5U9m+39TPvfXW4excNh4c OXcsOy9+YsiFf+eI30XyHX4v0HnfNdabnEhwuc51qXlfwvXBv2cdR/y3zdaR 7AfcM2z0ME61dlWdBxLW82XjPpKNkn9kbcM3JG0bvh/4bpD8UvKwtGXfiOHA z7zjWeN6Xw+7lY2PS1uC8e0ea0YtJHhJs2dkPs4Xew3zee+bQ9+jbAwfLrNj w8c+R+ZjryPzojMzuKvunSOlD1TsfpI/8YylfhZL9pHt3oT1vcvGj6i/B3Tc n7AN3zE8I6nuXnEukeA/+RtN2TEnpS3BxF/Oe1XB+/X6lY3/zjru3rh+sOG7 Iq4vrrO/spZcaw8m3G/f6JNrh2vo8LTtzINvlPhX8s7EmvOsqfzjpPeX/zHp p4j/Kf+2odl77gaUjQ9O2Q+POHTkuMizf9m54BJDPL3eUue5msuu/W/WEkwf +0e+f2R/mvNNTwnHNpUd3xRzw2kpm3dm2hJMzB5cj83up7Vs3CGn8y19qewn iH9VwX3DwXZA8AZKTpR9aNoSPKHenD1iRuzYWGf6/rPZa4h+YNmYvYgHSd8z 7/nZu8gaHhzrwdoiwfjgw2Wf3YGxHvS8v2wnCr+seoeU3fcKsl8t2a7j0YT1 Q8vG+A+J8zeJa07xjyesDyob7837t67v8QnHEb+ichbK9nXMWYLh/dZsDB+9 LXgvKueTrEXCszID+zcPK9s3PO2eVmxxn8QRf3rafnjEHx69UxcJJqYovVTw vkL62Cd6ODL6Oi9tCca3b95zMi/64LIxeY4oOxc2fDWqNbneOvxjwv8/+1HB +04zdWrxPkH88O7X+Tq6bN/RKdux0SdxxF+QDn/Z8YOiF3r+V2vQj3uG+An5 9gudHum1k3oYIv0Vvov4TZj3KfGe4DeHsnEiZz+85+utIx9LOP+xZdeASwzx FenVgvcVnlB27YvSlmD6II74YWlfe1x3TyYce3zZ8UhwMudrE95KOX8++Lzx 2Ztabzux6CcFr0a1BoT9J63PybJ3lu2UyE0eJPjhOutIeoZLzIkpS+LYZ3eN ONfqeJp3z7JxZ+V5Q3VPE+6fd83VWlyXXuhpBO9iZfu6BB/uM5GTXOTFD494 8sG7QrFnlD3PhWn3cnbZ+/+wnRF5iV+9xb2hDy0bsxexKe+9b0OjDj28yf1M eEpI8Ch+Vyk7hj2JSDDx1xU8C3OdUzZeOfKQg2sG2zkx89mx3iOiZ/plDVeR 3qx8TyX8Hd0YzyHDyvZdJv4sxb+mY6Ls1/M+JfuzPJ+XjVfJWYLx3SD9xoL3 4qEPLxuT59yyc2HDt6pi11RMS/Rwoeyz5S+lbT+/bF8r78iyP5ewHx62C0Ku lrMdHQ5xxF+d/n8e8czEbMz8L3/3afF+Pb7vu7c4lh7ptV2xF0fv5B8teZOO F8S5pGy8es5+eM/XWUcyO/kvKrsGXGKI/4D3Bu6j4lwazxpr5CzB9EEc8cNS fiYZGHMRO6LseCT42rSfWeBdJX2ObDPrfY4uKxtfF3YwvsujF+p+InwQn/mE bfjWUa4ryt5vyB5GJPjAvDn4WQfs2Nhbx5zsddw+9FFl45t53ojzOobnAR2T xbmqbLxmzhKMD/7sONejYv3+ux5U69ay32+vLrvvm2U/WPU3ku35hPX2sjF+ eMyWbrEPDnqxbDxfnPf4zkw4Dtta6qdUtm9M2hIMj/6yLe4fvVw2vlX6bQXv E2RWZuiqPJWyfWvn3NMh0UM5ZqUWfnjEV6N35kKCiTk073k4RwvqjdGvLRvf mrYE41tZa7Vxi/froV9XNsZ3TawdNnwjU649vc793yj7F/Lfnrb9+rJ9G/B9 pviXEvbD+4h3wbJ9o9O2Y5uScBzx3XL2wyOeteccVMUfK/9mXDfcfxTXJv+r CfdIr8TeJP128VLSNxW3ED3cXDYem7Yf3h0F60j2GJJ/dNk14BJDPHU+r3et W8quzW8mSDB+4oivzfna47pjjx6+MWXHjwluOudrE97VKdd/q8493BZ9wUGC 8Y2VvJP3Tdnv4n6p/NMStuHDdrvkItW5L20JPixvDn74h/ObQItnuaNs3D1n CcZ3p+QmkrelLe8MHjnJ95piv5P+Wb3PBfpdZWP4h8d5wYbvfuV5UPo96mHd nCW4rsX7DI/Ie68c+j1lY/q9u+w5WUv2M7Ke6PxuBb674HNALeKIZ8/jfWX7 1slZ3hfnbGueA5V7asL6/WXjJfJ9o2N6wjWpzZo8ULZvfNo90+/rCccRf0/a fnjEs7ft2Lz3W91L3YL37h3D+7j4b0jvKTk4esD/CJ8LzTK+bN845TyKd956 8x8qG6+fc85xZcdhwwdvab0x/All4wn8LZLfIlq8z+7hsvHolOtQjz6w4YP3 SOSm1n85ojY2emSWp8uek31/9EJP64l/P+8Zwg/wziS5nGfstG34NsjZhu9o nqfLXpcNc5Zg1ggO/rdUq0eLfcz1RNn4wbTlExH/pOSvPMOkLcHf17smvcxI WO7c8v/6U2Vj+HA5p09F7/TzjfRnpffIeVZm5rzuz3Uo/fS812ti2XsZX5Ds zfsL13nBa0fP6M/E+RgnfbyOtxOOI55zhB/eRqr1bNm8rPS/eW5XnXd4npfs K/6b0p8vG+dylmB81AfDea7s+GfTzkdeandp0DOzOHMT5r8QuSZJ/sN3aNq8 3VrcJ7ZlPB9IfzFyUPchyQkF7x98qWy8cc58chGDDR88+js+epsc/dLbCXn3 yYxTysabxOzMwPzYpsQ8L0t20AwvpJ2DXOTFdkKsFfrLkWsr3sdbvNfvlbLx 3bpuX42+qIUEf63zmBf3RMXN4n2kbDxRtToq55+qPzthPlxmxw+PmGll817i txpxXhN+lPcSHXuL967408vGm6ruXrKdFLWw4YNHHPGb5ZyPvNTGRj72A3Ie OB+cp9fLzvWi6s6MmpvnPCszM//JfIakr6h8b0rWSE5JW4LxoyPfS5iLTh4k cdh7Kue+Ld7HN6NsPC7lmtT+QevymPTHeW5NuC/6Y863yvZtkTMfbr/ISS7y 4odH/Kyyr9dpaUsw1+6pvKe1uB/0t8vG70cO5tqzxT446LPLxisrzwoNPhdv h21L9fNO2b7paUswPPpoavEs6O+WjdmLeFree9bITY1Jin2vbB/7Genl19jz +G7MRC388Ig/QJyPpJ8h/Uwdq6vmRzy3y/aE+FvlfM/hfvN+wraaOBfch/C9 qrpryLaSjjmyzy0bz0ib/0Gcb2z44D0p+0DFzhP/w7Lx1qr1lOTTBe/jm1c2 3ibnWVhf5sGGDx69M8ObaecgF3mxnRE98/cf/g7ULM7HZc+5rXIulJ5mFtk/ kb6m9Ld4h5W/0OJ1wPZJxMyX7KO1eyZlCT6oxRz88Onprzr3/2n0SC0kGN8C yYk8P+Uswc8UnJN87NdLKedQ5fw09M/KxvDhfpKwDd+7ad/L+R7ge5ZemJNz 2drieegN/YuyMcfnZc/JGqzW4HOBzrqAqdPW4lrEEf8Gz5zR7/Y5SzA89hGe nfd+NPSvysbMxH5C5vo86hP7dawfa8533Zpx7RFHPPsT8cMjfnhVz2htOs85 7wtkf+CEbIcO38p/KJ8x/obIc4vwOsq1SHJdrjn+TYW4R4qzgGfFsnHPnP3w ujVYR84XZ4WK7uHi7JRzbmqcw3edbC8UvC/vCNm/l31Y3nWp+VnC9cH1OfMX lx2DBNflXJ8+6Gn9BvOJRV8S8T9L5oQ/TduGb570/lqbH4WPUuzSyE0tJLhz vXUkfcIlZmrKkjj2003iHq7jC+k/lY0bcq5J7fPUw3Adx7W4N2Zl5jnqYVnZ vl7Bh/tl5CQXefHDI5441uljnv9b7CPnL2XjD9KOOb7F/fwaOciPBOP7rew9 f+yD+1P6ZPl6i7Oxelgu3D0keEHa3PPz3muGTjyYNfi97D11LxW8tvRDPvJO kfyjbN8OOfPhHhIc/F8n7P8jzg3XC9fNK9w3hS9QnW8T5p7eYv6Fsp0m/fPQ /y4bH9tijB0b+o45r80vsdbMxHxcw+T/q+waSPDXmvefsnN9Ir1DxbXJgwTT x9bi/iveRtEz/bKvDTu2hQnn+Cf6gIvvm7TXjLXgOqTvi6LnyyTXVP4LZLs4 736Y/RThpOyXyNaxYt/O6mfbButwOlWMF0XOFSvOe3HEkAt/p4ivkTxU53K2 roFErDc5keBu9a5Lza8Srg/+Mu044s9ssY5kX95qsh0pPJd/Q6JaWzBvwvpK FePOkq+qxi452/B9n7YN39nK1UVyqvCuOUvwtII5+Bcp51mSI6K3lSvGi9OW YHyrSF4q2ZizBG/f4BmZj/NV12Dfd6GvGjEccLFjw7ck7fmGtXifHTozg9lD sL/0GxW3tuSO4v8i/nSeIXV8n7C+RsW4t/wjeWdN2IYvn/OcqwuvW28Jpv+u FccsS1uCiR/a4uuGPteqGH+Xdhw52BuCDd//ri9kn5wl1xqx9Ltdg9eWa4dr iM8CdubBN1y2KxSzOOEZLmzxXLUV7/ljvyFrwX5C1icVa8O64Yd3ed468pjI 063iXHCJIf71gtec3jIV1/4pbQmmj26xlsyyq7i9dPyQcGw6zhkS3Fec7hXz fk9bgol5Q/4Ryvsjv11UjHfje036m9J3lz6DZ95678XDhg/benwuuaemLcGj 8ubgh499VKzblfxGoppLQ1+/YpzXsUHFtlP4fa7Fe+g2rBh/mbIE44MPlzzr R9we/PYoWSe8P/eh6BH7TJ7JdfycsJ6tGOOHx2x7KOYqxf+SsJ6rGF+t48oW 1yKO+D35vqjYt1fOEgzv4hZj+OibBG9P5dy5wevMrMzwp9Zt04p9K2Tc01Ut 7pM44n9N2w+P+M2id+oiwcSwh7A9771mrBF7DlnDLWLNqIUE45tVcA/0ib5l 9ESezSvOhQ3f3qr1tuRsHb+Jv43sJfn3DftWFftY96LsfyTsh1fl+yLOyUoZ 27H9lHAc8fvk7IdHPGvPOegg/hUtjoFPXDl0eqRX9lduJ70/99eM+7imxX1u H33RJ354uzVYRy5LOP+2MQ9cYoh/h3elgvf09Yw56B8Jpg/iiP8n7WuPGZid 2B4VxyPB/XK+NuHtl/PnjM8bn72mBtuJRa8PXlm+ayR/lf08fgeT/TrZekVu 8iDBDfXWkfQMl5ilKUvi2EO3t/JXlXO59B0qxh011wlNurdy3nkvVZ5N6vz/ IKMXelpZnB0r9u2fMx/u+zXOQS7y4odHPPngfVar5+CK50koz2jJRuFrY0Z8 zPm+Ym8S/ithfZeK8QfS5xS8fxAbvv78/YjPlHC/kOA1lH/XimMG5CzBxF/H +6o4f/O7R8W4KfKQ4/eEbfjg0SO9rh49Xxvn4qAG88jDdzTfN3zX9KnYt6b4 l2jNx7R4vx61d6l3/7tFL9RFgvFdKX5zg9ccffeKMXn6VpwLG74O/A1Ivj3q va9qL9nnKldzLuwV+65XzC189hP2w/uQ+1fFvlUytmPrkHQc8Wtl7IdHPDP1 ifVqk349v6ckHXdni2PpkV5/0/W2j/QbxGnhb4Ut1lmrfSvGq2Vsg3dH+JFw yL93xTXg7hu5DuNdtMHXxn4xB/mRYPogjvh0xs8kPI+wV47YfhXHI8GZjJ9Z 4LFvkfVlDyPnq3+sN+cRCcY3QHKe6rXyO7bsN/Fsm7BtQJz7Jsmx8tVmLMGj 8+YcFNce9tERe5Rsg7j/J603V4w/Yj7p94n7sfRPCt7H11oxHpizBOODD7dT 0jnItb56eIB3g4r3uh1Qcd/ryX6z6g8WpyZpfWDFGD88ZjumwT446AdWjKvN zsu+uYFhO1D9HFSxb6W0JRge/e1f7/7RD64Yz5f+acF7tZiVGQ5QnkMq9h3E 78OqO0b5k0nHEU8t/PCIP7RiXi5jCSbmFh3jVb+jYo9oMEYvVIzXyViC8Y3m t9UWf6bQ2yrG+AZVnAsbvtXTrn1Avfs/gnudcm2Ssf2win0LpH9WcP/44d2q fIdX7DskZzu2lZKOI/7gnP3wiGftOQcbKv9t4k5o8Xlhr+DYvPdzDYo5iB0s /R5x1hX/RMUd2eBr46iK8aYZ++GRD/22ONfIIyuuAZcY4unj4RbPckzFtdl3 iQSPjTjiD8353HPdcZ0Qe3TF8UfHTHCOjWuEuT4veEZ6GFIxHpSzHBLzHyf5 oPgbiX8nz4t87ydtw3e7bMdXvI+QfYhI8LEN5uBPiP9FwfsJ2Ut4QiVwzhKM 70TJhcJtOUvwlwXnJB/n/THlvCNyop9UMYYPlz1x2PBtoZ7PlP4V5zVnCT5T uU5r8DzMgn5KxZjj5Irn5L+V9USL9yGi89/PAlPnsHrXIo74rVTrtOj3sJwl GN44xd6lvJclrJ9eMX5auYbUe5/gyVGf2DMq9m2biZ55Hkg6jvhs2n54xLMf 7N6891udwzOljlXE/1qxl/XSs5b0a/p36PBci/9/eePFP1exk4TPqtjXuVuH Ds9y7+3hPXRnV4x7ZJxzaMV5seGD9wLXAP/Wg7oV43rxzxPvXN5vVXdYxbgh 4zrUow9s+ODRCz3l0s5BLvJio8f2TrpuKp6TPW70Qk89M95rdx73Dc0/XPK1 Vn13drcNH3vusOFj38b5Fa/LETlLMGsEBz97Oi5U7nuUb3X1f0HFeMeMJRjf hXxexd8kbQme0uKa9MJ+wG+4tuv/X7+oYgwfLnv9sOE7Uv08Jv136WfkPCsz c17f55qX/mjecZdUvGfucsnpvJ+pt28L7o+e0UdE35fruE9xXZOOI55Z8MMb zO8VFfP6yv6K/K+3+FpaJP/FPOMp9rKK8VE5SzA+6t8f+UdWHL9zxvnIS+0P ZJsgWZs0n76JuULySp6fxP+O90P51k7aNpLnIumjKvYdnfOewAfy3t93ZcWY fYXwyUUMNnzwmIN9g8xyVcWYGRcX3B89X10xPibn3kcGD9vVsS7tkt8LH5uz j1zkxfaDjlTSOjxwmXuf6mdkL1aM+/EuxudX9iE5S/A7yvdGi3E38csV493E rzBXg9cEP1w4+MuRq1Ixb7+M9ylew2cp7z7ebXFv1eiLujNbvFeQNcSGDx5x xLNfknzkpTY28rFvkfPA+eA8XVtxrj1V90bpP8p3fM6zMjPzL+EdQPpVPMNK vi3+PhlL8EN56w/FtQGXmONylsQx73Xk5DlT+g0V46aMa1J7Dr8XSP+p4H2L M6M/5hxdse+EnPlwu0dOcpEXPzzib6r4eh2QsQRz7T6s41qeYZLWb64Yj+V7 WfIgnrEb7IODPqZi/JLW8MMW78O9OWwnqp9bKvbtkLYEw6OP8+s9C/qtFeOf pS/TsV7SuanRwvNJxb6Tcu7lEeXfIOk44qmFHx7x1Lin4n2WvxSch55vj3vM yTnfcx6NWZDzW6xzH8LXX3VvUdw1DV7POyvGB2fMJxcx2PDBo/anLe7/ruiF WuznfCzv/YN3V4zZBzom1pd5sOGDd0+sE7OTg1zkxcZMrDP3Ue6no4TvrXjO U/jbPc8D4h2u2PukL5f9VNl/lfya55ykbfiw3c93dYP5SPDjeXPww38i75zr Sn+gYnxazvKBqPeg5MeSAzOWDwaPnOTLKfZu6TfxHhH6uIoxfLjkx4bviIzv 5XwP8D3CfPfGNfFbwfOzhxT9ofheod/xFc9JT09GTnTWBfxU9EQ/xBF/umZ5 uGIf303Ih2Nd7m0who/+SPDe1Pn6tsX7HMfHWrImj1bs2z3tnjg/9Ekc8YMz 9sMjnr8zfhN/610o/LRyb6haO/C3RX1nPyn+M7JN5DtFnCe490seI/sfil2s mI3Ff7JifGbOfnh3NFhHZrmvyva09DMzrvV4xfX+VNxfBe/N/I4eZJ+Yd11q bpJ0ffBZOfOfqjgGCR6ac336oKdxDeYT+58e8S9wvQuflLEN3xDp72hNnuU+ rtjnIje1kOByvXUkfcIlpl/akjj2A/4tzj86NlPd5yvGZ+dck9rPqofndPzc 4t6YlZmPVg+TKvadE3y4WySdg1zkxQ+PeOImxvla1GIfOV+sGB+VccyyFvcz OXKQHwnGN6Xi/Z7shXyV+7lsJ3CfUQ8v8YwREnxyxtzn894/iE48mDV4ueL9 kf8WvLb0Qz7yviDOKxX7huXMh8u6wcG/adL+V+LccL1w3bwo35PSJ+jYPGn8 BO8F0ju06XOk+C1Dn1YxXkH6im3eC4kN37k5r82LsdbMxHz/XcOSUyuugQSf rnmnV5zrPJ5PopfhOUswffyqnK9Jn5R3z/joDfukmIsc5KInuPhOy3jNWAuu w0+1nn+0eN9iUryP5Eu2OuaWes+yXP63ZZ+svDMiH/10lOykYxvVmlkxPj/n nG9WnBcuMeTCD4+YtziHvDOoh1mR+4KcJfjfFtedHHNRH3xqxnHEv5S3jtxO nDmyvSx8Ec9O3IcbfI7QZ1eM34n61MKG79yMbfg6aPZ3K97ryZ5NJHhK3hz8 zMts7Otk3d6LWbnPIMH43pesUcyFOcv3437ETMzHXIk2r3uP0D+oGMN/Oq43 bPguynm+lxVfl7T+38zCG6uvbrqHzpH+CfxWr8PfqvOKbFsnrX9YMX6Fz7uO bZO24Ts7Y9/ciJ8b3ItVd17FMRdnLMHEr6S+Ord5v+THFeNLco4jB3Wx4ev8 v+urzTmRXGv/zS75avTJtcM1dHDadubB10n6NMntxZma9/ysw6fyT5U+gvcO xXVu9f7KBRXjo9P2/8fLW58aa4icH9cNXGKIp9f76z3X5xXXviBjCZ4WccSP 0CyvcV55h0069rOK4z+LueF8UTHvsowlmJgu8q+ivPWKXVgxvpTfHLh+ZL9Q /FXa3Dc9Y8M3necUyZWFR2YswVMazJkeM2LHxrqtzD2B9/fQv64Ysx/0G/rL e372mrKG38Z6sLZIMD74cNnbSA5yjVTPs2T7S/h95VxUcd+Xyb6q5Go6eiet f1cxxr8ozt/bOl5X/E5J64srxm/oWLvVPRNH/OXK+X3FvitylmB4XVqN4aP/ ELzZyjmtwevMrMzAvtolFftKGffUrdV9Ekf8pRn74RH/Y/ROXSSYmNWlr9Hm PZ708Wb08FP0VcxYgvHNyHtO5kX/uWJMnqUV58KG70r+VtVgHf7y8P/Pvix4 v/K7Xav3WuKH9wTvBRX7Tkvbjo0+iSO+krEfHvGLoxd6XlN4pnLvoLoZ6W+F To/0Oko9/Cb9A/GvFb+rbN3F21mc3yvGV+Xsh/dWg3Xkjknn/7XiGnCJIX5N 6Wu1eU/onxXXviZjCaYP4oi/OuNrj+tul6Rj/6g4Hgm+OudrE157zp8zPm98 9uY22E4s+t/BS8s3O+z/aH3+kX1d2f6N3ORBgp+rt46kZ7jEnJO2JI59l2tz jelo5PmhalxUnk9UdwXht/OuuVGr69ILPV2vGVes2lcKPtw+SecgF3nxwyOe fPBuVmzHquepZtxLsur9oNg6Rl7is63uDb2masy+0Hfy3idYE3XoYb5ydxJ+ LyR4jPInqo5hXyoSTHxtm2dhrpWqxuXIQw6uGWz44NEjvV4fPdMva7gB39PK t2vS39F8P/PfBOhctW80v4cr/iMdeXFSyrmp7H2571WNKzlLML609Eyb92Ci r1I1Jk+XqnNhw1dV7CaKeS96WF32hbx7ZGxftWrf+zo+k323pP3wsK0W8pqc 7ehwiCP+tsz/84hnJmZj5pW1npu3en8l3/fbtDqWHul1LJ/B6J383SXX0bEH n4uq8bU5++FNr7eOZHbyr1F1DbjEEP8tn1vV24vrLZ41rstZgumDOOJHpv1M MifmInatquOR4HszfmaBd6v0RbItaPA5qq0a3xd2ML5U9ELdH4U/VL5+Sdvw bct5rHpfKfsxkeC5eXPwsw7YsbHnkTnZvzkx9EzVeF3uY3Fe15O+vo59qFU1 viFnCcYHf2Gc60ysH9fD+vz2H++361bd90Oyz1P9etl2T1pfr2qMHx6zbdVq Hxz09avGS8X5WseeScdhu1H9bFC1b0LGEgyP/hpa3T/6hlXjDdDbvDeTWZnh euXZqGrf6Jx7+ih62DBm/a9Wm3nEZ6N35kKCifk473k4Rz83GKNvXDV+JGMJ xpfSWu3Q6v2V6JtUjfHlYu2w4aukXfvdeve/uezLee7P2L5p1b6ePEMqfu+k /fB+kNysat+4jO3Y9k06jvibcvbDI5615xzcLf5G8u8kfT/xf+PZUv79k+6R XondknuneGOk7yju/Ohhq6rxYxn74eXarCPZK0r+LaquAZcY4qnzS4NrbVN1 bX4zQYLxE0f8zTlfe1x37K/Et3XV8VsH95acr014N6Zdf169e9gu+oKDBOPb ns+s8K3cAyV3U/4BSdvwYesh+TfvGBlL8IK8Ofjhfybct9Wz9Kwa35azBOOr k+wt+WjGsi545CRfM9/LPP80+Fyg11eN4X8W5wUbvueUZ2fpm6mH23OW4L1a vefz87z3M6L3qhrTb0PVc7KW7FllPdH53Qq8aZvPAbWII579sL2r9o3NWfaO c5Ynj3L3T1rfsWq8Yi8928jflHRNarMmO1XtezHjnum3Jek44idm7IdHPPsU v8l7X9vmXEtt3vv5NTXFb1XsnpILowf8fblXaJZdq/ZNUs4v5V+hl/mNVeM7 c865S9Vx2PDB69TLGH6+ajxZebbibwWt3l/Zp2p8d9p1qEcf2PDB6xu5qUWO fNTGRo/Msk/Vc7I3k17o6Q4+d1yT1JDcXbKz4qdmbMN3V842fF8p5x5Vr8vd OUswawQH/0GaZY9W+/5bt6rxCxnLPSN+L8kuipmWsQR36OWa9DIwaTmg9f/1 vavG8OFyTveO3umHvQ/se+Df7TMrM3Nej1DMCdxD816vfavehzpAcj+ek9TD 1m1eO3pG7xfnYxu+B3UcknQc8Zwj/PDuUd39qubdK30NxXyrOoP43U9yoPgH SO9fNb4vZwnGR30wnP2rjp+RcT7yUns92X4U58ik+QMiV5NkV/lmZsw7sNV9 YkvqOFB6c+Sg7nbcc9q8r7Olanx/znxyEYMNHzz6+y56a41+6W1x3n0y4wFV 4wdidmZgfmwHxDwDecaQnJVxDnKRF9viWKu1ggfeQefu4FbvozywavyIrtuD oi9qIcE/s1dH3O8Vd7DyHFw1fkO1apVzNR2HJs2Hy+z44RFzSNW8d8TvKc4g Pifck9HFKyj20Krxg1xjvCNHLWz44BFH/Lic85GX2tjIx/5QzgPng/NUqDrX bP5dUNQcn/OszMz8S1SnTXo35TlMMi35XsYSjB/9P17SXHTyIInD3qicba3e j3l41fjptGtS+w+tSz33bR2HJ90X/THnkVX7HsqZD5dZyEEu8uKHR/zgqq/X DzOWYK7dpToGt7of9KOqxsdFDuY6pNU+OOhHV43XV561e/lcHBW2CernmKp9 8zKWYHj0cVSrZ0E/tmrMftGf8t7PSG5qvK3YIVX72ItKL+wjZa2OjZmohR8e 8ceKcwrfmzxf8O6pmkep1vGy9RL/4ZzvOdxvDkvalo5zwX0I3xyeZ2RbR8cR sp9YNZ6fMf/4ON/Y8MHbQfYhih0s/klV40dUq7fkjm3ed3ly1fjRnGdhfZkH Gz549M4Mn2Scg1zkxbYseubvP/wdqE2cU6ue8zHlPIfvBe71/Jsfnm2kL+D3 EPlPafU6YDstYk7nHsvvqmlL8PGt5uCHT0/JBvd/RvRILSQY35mSOwk/nrME 79zmnORjL+cWyrlcOYckrQ+tGsOHe0zSNnxfZnwvXxL/HQN6YU7O5TGtnofe 0M+uGnOcVfWcrMGGvXwu0FkXMHVObXUt4oj/WLWGRb9P5CzB8Nj/+Vve+xnR z60aMxN7UJnrrKhP7Hmxfqw5+ws3jmuPOOLZx4ofHvF1VytHD70DdjN/eJyz 8yV3FX5KOS/gvsq9mN/kmZHPnnJeWDV+Omc/vN95j5UcLs5P4jcqxyXCZwvn pfdp8x5M+HBPTDoHucgLH+7xSceByX+SbBdFPST4i4wlNvqh3/Mjhlojqq53 OZ9l/u6StgQPa3W9S6X/qfiRkn9JPpOzHBkzoyPpk5mYbYU+zk2NiTnnIBfr g/wz+qmLeGLpY+0Gz35F9EWtHuJcLLxZL9vwwSP2sugJCV6Scf/0zr5O4oj/ PmNJjmNV60z5/1bccdKvEqev8j6bswRfIP/VkkP5/ubf3lS9d5O9pUjwv3nz 4Z6kPL2V+0qeFUKCl2Wc45+YcTfxd5D9ZOnFqvFzOffLflR6xoYPHrWowx7A odETuc6Xvl0v97+bZK9e7qGv5DXidND6XxvnYZLy766clVijPaTvqeO0pG34 ns95TUZVvS5I8KKM/XVxfpmJ+U5Iuudy1X2X43ph/VeI2pe3+noAMy8SGzo9 0uvfGfdTrbonJPiFnP3McUbS87ZXPfP1Vc/8D8+QPKeJM5RnZuk3c68WviHy MftePPe2eZ/pjVXjF3P2w7ui1TqSNblDtn14t+juOtRjfel9xZiFGjfFDNTt GH1SH9yhu/mjq44ZHevBvNSnD3o6Ruf3ylbvwUQfUzUeSw/yT87Zhu/jtGNu 4T6pNb9V8hJxf8tYgjv1sY78OWkuMS/lLIljHU7kPZ1nDOm3VY0/T7smtTcV b6Ty1CjPqUnPyozkub1q358Z8+Gyr4Qc5CIvfnjEE8c6sT6sa17H6aGz1uB+ fA+1ec8s+l1V43blSUQP2PC9rB725TMi35my3yf7yaq9MG37nVX7kOAp4t9d da6OOi/3Vn3dJLpbgrmGyEGucqt1JHtC8e3dy9cYOchFT/dE3Cs5SzC8+6N3 7OOlX811o1oPSN9f9ldlbxZvJcUMU84Hq8ardLcfXn+eI3XM51kn1mbzBq8P HPxnJ22nHj5ykIu81KR2Z+ktvBv28lph7xyfl4eq9q2quuOCOzVneX2rOej4 ro/PH5/DnzOOI5689HJDq/tpkn6z9HOT3v/6sDhdlOORWFfWHAlmPy06knWG Swx7bNekF+EHW2OfbR/v93xUtgGqMU19HqjaA3hu4Fmraty1uyUY37WKX1mx ZyUd92ice/R+cU6fqLrv6ZwX3t3avFf0YPknyrdqH/vhMdtNOlaJnOhPVY3h DVTMeUnb8K3R3TmfrDovEvyaaj0duV/PWYL/i+ff2rR6f+gzVeOlac/yWNXz YMMHjx7pda3uluSiB+o1NHgW4ojvIs6z0Qt1kWB4z0sepvhMd0vwasq1uo47 W50T/YWq8QHcV6Tf1Wo+3It4z+U7rWo/XGLeVK3RrdbJc7j4B/TydfJi1bh7 d++vW6OP911iwwdvUjXiu7smucmJpP4FSV+HE6q+FidXnYv9s69KP1Y5NlLs lFgz1mpgm9eLfl6uGs/I2Q+PfbfMQg3yMxP4jeDg5xxRh3r0TY6X43xQk9pd +/h65lo+P2k7tkuTvsbxvcW/YeAaVvzMnOVBPBcmreMD395qPnnQp0V8ST18 IP1x2YYo/3TpBcnXIo78SPC4VutI8pODXCmtyfG8J0Zv5CBXtrsl+S7k9wHF HtLmfa9wmQf+m1Xjt1VrRtW5Nu5u25txDoh9vep4JHhWzmuzVsyF/kbV+HLN 9VCr934eyudX+mVJx/dtcA/ob1WN75e/m+IuTtqGj34mxD2V+xt9zYheyT+z 6hpI8N/8N0WrzrWB+p9dde3ZuZBV93Gy8rwt/WjJQbIX2ryPFTu2EUnnIBc9 wcW3uXIO5XqX7cqkZ2Vmrk/yvFN1rvckU+K8m7MEn6S4U3sZX560/n7w2hQz l89wmzFcOI8o97uy1/Yxl5gtu/ua4XphHyX19m1w/3OiPnXPEDetuFFJ2/DB 41ojvibjmtR+L2dJffYwMsd/88j+YdW5tlHdT6LH9/l3PtIzfayf0Mv6SNX6 qGq8SXfb4D3V6llq4/wyE3iz4OAnljrUo29yfBQ1qEntlgZ/t/K9ylzYsdEz 37f4PlA/H3Mv0YyrZiwntHofLjo+8KdVn8vt4pyCOa9Ded6U/5ak15g9q6zz OvItEGeibJ9JPiy5aXdLMH70deL8LgjbHPXzqur+yjo22EYOOJ/LdpZqb9/d +2/X7eN9lwurxuyxRYLxMfczrZ6dOOJP7GUdyefry7iXcJ0c2eZrhlqDpX9b 9b5T/PCY7Qnp6yn3FUnrX1eN2Y96Wi+vLTZ8W0XOr+JaRILnasZvqo5hTysS TPxR8h/d5r2ri6rG83Ke5Yuq58GG7+jokV4/zFnSL/sEnxdv/eiTOOJZ2++q 9tV1twTD+57vX9Vv6G4J3kD22/h3j63eB4r+Q9WY/YdLpZ/Ty3y4VyUtF8s+ rJe5xHTLuNdDGzzXc4rfMPg/Vo17qu4xbd732DE4+OAtiVk/yrkmtdkjiaQ+ 8w7hO4R/59G5Q4efqs71sfjL+TyJtw1/D616Lyr7T5mBvajMtSxmYnb88Dbq 41mYgz4Xx3rQAxz87FukDvXomxzkIi81qZ3t4+uZa7lL0nZs7FPjGse3i/r5 he8NPrc5y/OiLvovcW5+q3rO+TlLMDNX5BuloyL+cW3eM8aesle45/G5Ff4D rji7dLcEX9zLOrI9aS4xO3e3JI4+J/Lvflu93+3PqvF26nlAD33+hHN9vP/s 2v7/x9RZx0lVf/8fc2ftAJEJA2YMECzY2cXascAAlA1Fd7ADG8VuVCyMqbUF wcIAu8UOREVFVMTCQlQUAzt+r6ev83l8f3/M45zXOa9T73vnzp2d+wbvQRul HpYt6X3E994r7RsQfLjsHSMHuciLHx7x5IO3Qjcd1ys9z8eadzrPvCpnrtk2 fMx5EZ+9sl1ZZ71LyRjeq8q9Sp1t+Hbkc1+x/17pHpHgT5R/qcg9v5clmPgZ fLcf4L2By5SMC5GHHJfX2YYPHj3Sa0MPS3LRA1zWAz7nMuc07wfWCR91V5d+ DNcL/sYluYLwbL5LSF7Od0fV3VD53hrueetKxp/1sh/eBs3WkVX+Vqw8y5Wc Dy4xxM8cbkye+pLPod2SlmDOJ+KI/zT6oZdynWMTURsJ3iHpfuHRD3Ho8J/V OmzU7P1xq4pTUe5h4q9Ysm+g1uo1vmsIn8W5K3mUYj/vZQm+uME6kp7hErNT 0pI49vS9IX1j1SpJX6VkPDjpmtQeL3k010LZa9EbffzXX8m+L3qZD7cSOclF XvzwiOc+nft17vU5bsfqtQZ/C5XcQZxfudeUPE74K+XsI15ZOTvrrK9ZMq41 GGPHhr5A/He4BxbuLXyrOFtITqyzDd/QpGO7RsxaJfdALBI8doDrj9brasV2 k+1FzbxtD8u5w71/kBzk2jNpPn0Ts7bktbK3J40/Hu482DZRzWul9xCnr/SF qjtnuHVmSZaMhyRtg/dR+JGdkYca5IKbjFzXyV5q8DFKRy/kR4LpgxmZjzVn r12/Zu8BJDZVcjwSvJd6yJTM2zFmZy2YHxs+4sHsk2RNjlf+dWNdPpB9U/mv kn29knGrck6Q72q9ruH+RLbNgkMc8V/3sqzFcSeOeHKtX3L8vsrTs+R7qW96 WYK5r8qWnHcfccbIfmKH9yoSRzy1sfcq2YcEf8vv9SWfNwcmnYNc9AdvI+mX 8vwI10rpN3LNkLxJspi0BONHR16vuuvEmnGeIMGsVy64i3pZkg/+LK3tF8O9 J/Ek1T1Zrxulb1wy/q6Xe6EnYrHhg0fshiXHI8GDephL76wD8zEn740t+dvJ cNfdSrZ7uGaoz80iB3PNH24eHPRNSsa3iXtDg+9jseEbkbSvT8l5+wT3e/XZ t+SYg5KWYOLZN9m/2Xv9Ni0ZswfzNO4TlGNSnW344PWLWcmJ/Ga414d+2XvJ umGHhw878+D7SnoD92jinNLh48RcW8h/qvAPfB/knk6cm2XfsmQ8Kmk/PPpC R06KPJvHeQCXGOKp88Nw1xpQcu39k5Zg/MQRv1h1pyr2Zr0m1NnXv+T4/sH9 UZyGknlHJH39XD2uX9jwEc91rndcz8+Q76oB3hd5uvTGkm1NkZu5kOB89JuP 9YFLzE+9LIkjT2Oz52R9BpaMf+7lc2erwPN0vH4e7v2GrFO+5GO5dcm+lh7m N8Y6IwfGWuOHR3w+1pvZt4neqfU99xTCTc224WPO0f312dTme1r07UrG85Xz wT1kW8Y2fH35d+0adV3nPBxgCT4v3aVLc8kxI3pYgom/X/3dqddk9bx9yfjY pOPIUVdvGz549EivhyUt6fem+Lzjs+4W6UsXdP5WdK1r9WcgviWacaVyly5P c8yy+syW/Rfxj1GerZTjPuW+VbE7l4x/7WU/vIF835ccxz2f7GdL7sJ1U/2d I/1cvW6vM39g9EMOcpEXPlz2nxIHJv+D8g2Kekjw6KQlNvo5S9wdI4Zau5Zc b6jk4+KdnLQE3yv5GPdQ0rdW/O6S20j+3ssS/M9w60jyMxOzXRi5qfFbL+cg 10lJS/LdIf6SiCeWPv4d7tmHRV/U+kzHd7Dw78NtwweP2CHRExJ8dPRP7xw7 4ojft4clOdjvyT7MbZu9t264OGOV949elsNj7Vok/xJ/jHK2Sz9fvr96WYIv 6DD/wTjW5N6z5H2le0a/rD85tuN6LM554i/TonOPvw2WjP9UzqVla/7/OPjg UYs67JEkDz2R6ynVfESvKfwNkPNZtnv47qm59hFnOcXuGz3+ze9x8u8tPF3c ZxqM76qzDR0Oa7JHyeuCBLOXFj9xd8WMzMca0vNeJfeNBJ+WdE1q3zXA5wPn wtQ627ExCz3S6+E93M+I6AMJPjNpP3Owp5J5W0ueuVjyzGPFeUNysOIeqPO+ ygPl21F4pOQOkv/yPajFOv3vVzI+NWkbvBXCj4QzSrbXlfeSpOtQj/V9SfqT DT52zHQA164W16Um+wepD/5vb6a4+5ccgwSfl3T9/aI/5mMvJzOiH1QyPkxy Z75XZm3Dx5pcpLoHxxodInmx8FJZS/AlHdaR99WZS0yXrOUzcRxfk9wp1u3Q kvHFSdek9uqql2gxvrvOszIz63l4yb5zgg/37shJLvLiPzxmII514hxgXZ/X a1rorDX4UnHGd3i/JPqRJWNyD4oesOFbJuv51mjxjMfyPtWaj+lh+xEl+46I 9WANj4qZmPGYks+b8XH+gDmHyEGuri3Wkex5xMdsrBU5yEVPR0fcslnLo2Md j4vesY+Rfrn05aWPlr6q4i9U3dnizdTrfu7JS8ZXJO2Ht4vyTVDcbdInxto8 MsDrAwf/vXW2Uw8fOchFXmpS+wq+M4m/a/CxY2Mf5Ykl+y7n75/SL5N9uaxl d9kfrLOOD8z7j/fh6UnHEU/e3fj+LvtD4g+Rvk6L9Tl8npTsP4Xrma4dp/ew BPdosY5kLyRcYkrK38J3fuHeLbaRg5ynxkx16vN92XeX/THunUrGnUlLML4r xS2xdnWOI/6pAdaRrMMZJfddr5zdWqxTi71e58g3tNk2eMw2T/nfbPD6oJ9V MqbOui2uhQ3fVUnnPDNqIMGXyX52yTHURYKJZz3Y88manBvrxJowy2kRgw0f PHqkV/aKIumXfYvlDq8dsxBHfEK1xpbsWyFrOTbW/XzJj/m+kLQEv8ffC/gO pnqP11m/oGS8p+pcJP2jBvPhPsp3W/nOk31Ys7nErKhaVb4zdni/ZE9x9pD/ Ya6lJeNr+S7T4LxPBAcfvHElx6+UdU04K2ctqQ+fc+Skks/Fi0vOdQO/lUj/ Uvok6ZdwHdAaXdzDvbw2wP1cWjImJ354uRbPMiz6ZCZwNWkOfvYkzo969EIO cpGXmtQe3uzzmXOZPrFje7rO5zi+VVV3vPROxa+StbxKr+l11vGB128xnzzo V0T8j3wvkb639AXSr5T+IedkxJEfCe7TYh1JfnKQ6xrNtZFkm3I8Wecc5Jqc tCQf5wD7LVubvf/u6g7PTz/VkvFqqlUrOdfEpG3VOB7ElkuOR/6He3gt2efJ eqJXSsbfKOZzvZ6SfS++C0t/Vvo1yrmpeM+EflXJ+Frp13V4TyI2fKtnfV5w fnDdoC/6Y07yd5ZcAwm+jZ5LzrWG+NeWXHvNrCWYPvqxZtLb+RtBg330hr09 1pAc5KInuPhuVf7fxd9XnFfqPCszc66S57qod0PEURcJfp9nh9D1er7O+o0l 477KcZP0Ec3mw2Ud1uHvB7Jv3mIuMV2zPmc4X16sc0xDi/ufGDm6ifOTOAsb vM7Y8MHjXCN+atI1qX1L0nJErANzMM8U2SeVnGsav0dIv5HPJeWfHL1Ti32V +zR7T9/NJWP2J+KHl2/xLMzBPk1mAncGBz9rQh3q0Tc5yEVeat4aPfHZyufq y3W2L4rzis9bfN3Vzy2xZvSPZL8kddHxgW8v+Vg+GMcUzHF9kGtJg/cjbCN+ UbbnpHdITinZdodkf+45k5Zg/OgdwZ8StrXVT11e1wzhvxtsIwecO2X7g+s8 x0J1J3V43+LdJeMeWUvwpJh72xbPThzxixusI1+QfWr0yFwjmz0b5yrx93E9 HWA/PGb7q8E8OOj3lIx7a/2bW7z3EBu+RyLntFi7acFNqs97S46Z1MMSTPxW 3DNzD64895eM7096lrtKnuc/W8m8+2JWciLplzX5V/V+1WtGneOIZ20fKNn3 eNISDO8hyZvFSWctwbdIbq9a+0c/6A+XjDdXz49J36nFfLjso5zM90TZdwgu MY+p1gF8d1adV8VZKm+M/mjJ+Mmkcywa4DzY8MF7JGQm65rUntLDkvrsT7xN sbtJf13649E7/KekF2R/VPmfkH6r7OvIvrzyH6icb4j/ZMn42aT98MjHLMwx s84zgVNZc/BTizrUo29ykIu81KT2Qc0+nzmXyYP9oJidcxzfc6o7PbjrZi13 bTEHHR/4megLDhLMzGsqR71eb/I+kn1Yi3X2ST4rzsG8x+JYsc5IMPs70X+J PZ5wiWGvKJI49g/e3uHjQT/Pl4zX47uAYl8QPkS8FeVfVq9ZvE+53+C9qrwv lux7KWk+3Nci5/Nx7PHDI5588J7mb1klz7O+aq0s30zhw5ptw8ecQ/U6NHKi zygZw1tBMW/V2YbvRZ4h5FpYco9IcE/lfyVy98pagonflr91tHjv4asl44d6 OI4c7NnEhg8ePdLrjKQlud6KNWE94P/vnOb98Fr0Qt33uV/guCv2btlm8/ko PEtyDeV6XfZRim1vcc43Ssa5rP3wDm+2jnyH9z7nacn54BJD/JAWY/K8VfI5 NCtpCeZ8Io74bNbx9PJ2nWPfjNpI8AtJ9wuPfohDh8++zCOavY/vPXF6KPcc 8d8u2cf+TdZuTsn7Nd+RnKrYDbKW78Saoq8cx3ROrDfrjCSOYzRNnHv0ek/6 uyXjDbOuSe0j1cdRehUVMzt6ow/6m1uyb6Pgw30/cpKLvEcFj3j+xsjfF/n7 JMcNHzn5uyO+X3p16fKJ9DS1k44f2eLe0D8oGd/LZ02H9z9+EHXoIam4ecKr SR7S4v1m7HHDhu+dpGM/LDn+Y8lj+CzKWn4ca039Y2KWj6J31h95dPRMDnJt nDX/k8g1n2sP1xEdo/vlP4jvhXW27d/ivYefRn3q7ivbsYp7V/bPSsazk/bD W77BOrI18lCDXHCJIX5d9dBdr7nifFFy7T5ZSzB90B/zMdcDHb4X4T6E2M9L jkeC56mHL0vmbZL17KwF82PDR/yBsh8X/Y+W/Er2dRS/ft74A9kXlow/5Nwb 7mPDcdlAtuNZszrHwe+btSQHscQtDN/XJcfP0Np+E/XhI8HcVy0qOe+nqvWQ 7A9znOscRzy1sX9bsg8J7sc9bfjpkxzkoj94P/BekO8E4e84/6V/z+es5Nyk JRj/AcGj/wUlr9H7SUvwcZEDzqZZS/LB31B1M3mfM+yfHNPs/X0/lozZj/lD 9E4sNnzwiF1ccjwS/FnSXHpnHZiPOXlvPNLh9aXusmXvdWOf3e/0KN5XPPsh eSLfpeusLykZ91VclvO+zjZ8nySd8+c43kjwZurzl5JjFiYtwcQ/xv1Ah/ck /lYy3kL8U1XjVM7vOtvwwftV8lHJzbOWo7n/rnO/J0WfjwYPH3bmwfeE7E9y 7opzsvAmeef/U/5NpX/D/afW4IQW7z38q2T8Tg/74RGHjvws8vxRci64xBBP r8kGz/VPybX7Zy3B9PFH5NtS9gGKP4X3T51j/y45/u+YG86/JfN+SPr6+X5c f7HhI57rHNe/OcozvcO90uex4i9V9rouLdkg+49JS3CfvHUk6wmXmAVJy1Nj Xvo+rcVruEzZeEDW5w7n0GnNnp/9mawhcV3KPpbLle1jneHDPSBykou8JwSP +C7RL/mXL3ueBukni7OC8BnNtuFjzm30Ol22b+usJ8rG8M5VzBd1tuH7XT08 pdi6+K0OCc4rf33k5vc7JJj4bRW3pV4LlGfFsvEfkYccX9fZhg8ePdLr90lL ctED3LEt5vO3K/6GVYsc/HaIL1nU94+K7p8lV4n69HxWs/tnxlXLxgOz9sM7 k/sbyfHCy6b0OaScawhvoPU8W7az5V9YZ/6Z0Q85Vo11gQ+XfZrEgcnfzHkV 9ZDgv5KWZ8WaP8P9RsRQa82y63WXHCf8T9ISfI7sOyi2q/StJLtJPqe4rbKW 4AtbrCMX1XkmZrugOXIL/5p0DnL9m7Qk3zfceyv2hQ7vqTxXMdvL/p30tcvG 26jWEToPVxc+v8U2fPCIXavseCR466z7PyfWkDjiP+1hSQ72Ie6Udy5qpSIH tZDgvlrftOSLwtvKvi4zKfbvpCX4vGbz4dL/aOVPyn5xiyV4YQ/neEmvxXWO ubzFddeJHNsp/27qp5D3GmLDB49a50Wf5KEncu0q7ljZf5R9mPTBXHPqXLtX 2fsFs5Ivi9ucdcz6wle0eN/k+c3et7h+5KMH1qRHrDsSvFTKfuIWx4zUYB8i Pa9Xdt9IcF3KNbMRz/nAufB9ne07xfHtFetEfvrpWXZPSDD7N/EzB7WYN1P2 zBuUPfOKir1anEtl+5X7B66NnJN8zkrOUL0C34MkZ3Z4j+FGZePts/bDq7RY R/4szhay7aVca6Zch3qsb1n+cTELNXrLPjTvuuAlda4PXjll/sZlxyDBK6Rc nz7oaaxmrbV4Xx76JmXjzVgfxe2UtQ3fHz0c05frGn/DlHxVeMesJfi1DuvI 3+rMJWaHrCVxrEO7eryIz0Xpm5aN10i5JrWvVQ+lFmPm6h3rSp7Ny/bVBx/u kshJLvLi3zxmII51gsO6Dsl7ndFZazD7Bi9p9l459P5lY9aC/YqsDzZ87A9l vutaPGOj7EXO3ZTtW5bt2zLWgzUcEOvKccmXfd6sFucPmHOIHORqzVtH/q78 r3f4mNI/OchFTw1l+3bOWjbEsW+SnCU8SPZtpO8nW0q1Bkp/Q/bBsk9UnvFx 3m5VNl47ZT+8N/luoddx0j/rcL6bxPmrzhz87PvDTj185CAXealJ7cs4Flqz yS3er4cd2998Dpbtq9d6bh3cXbKWHXlz0PF1xPuP9+HyKccRT156GdLgfmZL v1O2LgndB3PtKdtWkDxUsT1TluDLm60jl06YS8yu/IYi217CR+dtIwc5t+ca Jt9u/E1Dvn3zXpMdy8a9UpZgfBNazGcWJPF3hA2JfafokZzsM7yy2fvj5si2 i3zvRH14zMbM7HVkPdEHlY3f7vD6knNQrA3HnZw7l50XCWa/5OCyY3bPWg6O c+VIvUriLqt5dy0bb5jyLDvE/NjwwaNHeh2StaTf09RDWb5pfKbXOY747sqz W9m+oVlLMLwhktert65JS/D+eefbu8E50YeWjauK3VP6vS3mw2U/8s3Cu/+v Rqwftd6VfK/Dc3FcK/IvJ32POM4bq7fbW5z33zrb8MEbVnb8sKxrwtkja0l9 +JyH25V9Lg4vO9d6ytkePZK/Rfoxyts75V7ua3E/rWVjcuKHd3DeszAHa8hM 4HTKHPxLJVxnePREDnKRl5rUrjX7fGYe5sVeixk5x/ENV9026XO51mQt3+/w /kd0fODj8uaTB33viH9EOQ8ve5/bjToWI6Q/INs+EUd+JHifhtAbnJ8c5NpE c30g+4cd3p9IDnKtlbQkH/sQ75a8SjWXUQ/zxN2/wfuzimXjFtUaWXau1qxt +OARu2/Z8UhwTnVvVv5ReZ9j6B1l44fkvzpq0deBDe7tGj4ruBYlrO9fNh6T N8aODb0t6/OC84PrG33RH/nIv1/ZNZDgfurngLJzbSb9oOCSBwmmj1vV54Fl r/2Del0bdbFjYx8iOQ6IPuDiW4d7bNlvlG2VhGdl5nTSeQ4uO9ehkh+pXnvW Esy+OvZAXtfs/WLoh5WN2btyBO/hZvPhsi+P/XKHyD46by4x7IWkR84X+vy4 w73S/6iy8V6qO73Fe3IuDc6oWJfDY27Wh5rUZi8PkvrszWEO5ukrzpFl52qQ fqz0+co1gmd7pH/C9UX6i4q9QbHjee+XjbdN2g/vtLxnYQ7ON2YC54KDP5Fw HerRNznIRV5qUvvMvD9b+VxdKWE7tvqEP2/x7cN1QPozytWUshzb4H1M6PjA o8s+ltunLMEc1wf5bBdvfeV8pcV7ctizM4HztmzbCWX/H1b8v1dIMH50JPzj w7av+nmL+7Gy94JgIwecMbK9JH27lPf0TGz2vp6TysbsD0KC8TH3eXnPThzx /D9a6Ej2Q50cPTLX5x2ejXP1C+mny/dGi/3wmG2G9JvifEY/tWw8XnEXcD+c sA1fIXKeEmuHBHdoxtPKjhmcsgQT/6X8Czq8f+eMsvHIrGc5sex5sOFbED3S azFrSb+rqYdZkpOiT+KIZ23PLNs3KGUJhne25OV81qYswZNlnzXcx4P9OOjn lAOLcx7v52bz4a6esDxL9kvz5hIzKOleL23wXF9JX6jXmuKPLRvvz2/Zin23 xXmw4YN3bsy6X9Y1qT0sZUn9buJ/3eE+iD2/7FwH8BxO2XuG2Pd0gfTXlX9n xVbFvSTvtRpXNt4jZf8FEc8sl0bOs2I96AHOLTEvknr0TQ5ykZea1L61Odar wWuIHRv7ay6OtWTNL4xZ6Rn5XovXBx0f+JKy5zwwa3lJHLOPWrwvhb0wU5T7 Ktm6K3YO3xnFuY3zk2s/9/opS3Apbx3ZNWEuMUNSlsStIfs3qvWB8FrSLysb H6QevmXNhRdJzpP/9uDfyX0A5xz3n2X7WlLmw2UfEznIRd55wSOefPAOVv4r y57nEOnfyVYV/r7DNnzMOW+452d29HLZmDpXNbgWNnwtOgeuZd7IiwS3cy7F HNRCgomfIP8d4qY0V61svG/KceRgnbHhg0eP9Hpo9Ey/PWJNWA/4C+Kc5v3A OuE7jOdMpP8k35HSF0teH/1dzfVMsiPlfJ+3OOc1sR7ETgxeZ946kuP1Pvcw UQMuMcSzx+muZu+7uS7WjHVAgjmfiCN+eMr9XBvnFbHXlh2PBLOXin7hHZ51 3J2xPj/I9qNeGek3cT4qz0HKeUPZvlH8Ls99Ap9zipkgOVXyiKwl+OsW68i1 E+YSc2DKkrh1+YwLHpyJZeMRKdek9g159/JNi/uhPn1gmxSSuvDhJiPnxOjp fzzi/7tPL/temOP2c4f3ED0t3hzZX+Qc4fom7v7q4Z5m90qf6LfEDFPyxtix oR+V9aw3C0/jvlece/XKJmzDx+zE3hoxt5fdA7FI8OQG179X/rRib+NaquO1 X9JyUYv3CpGDXIekzKdvYu7gOHMfJPv9wnfm/VmP7Wa91uHcFmeJ6h3NbyuS v3Z4T9NdZeNjsvbDW9xiHble5KEGueASQ/z38t8XPU8tu/axWUswfTAj87Hm U/P20Ruxd5cdjwQfpv6nlc07IuXZWQvmxzYtanwn+48t3ptDH/fyvlaN36T/ rlcv5b+vbHwc/Sj2AcXlZH+AWfKe696Yg56R5GBNiCOeXPeXHX+s+nmg7Hup 0VlLMPdVD5Wd9zhxvmuxjxmJI57a/9kjHgk+VPwnyj5vxqScg1z094dqPxZr QR8PM49iHil7PxF7kZDgh5qtI9mrck/Za3Ro0hLMej0cM9E/knysFT72MrGe S+ApT0/ZHy8bH51yL/R0fNY2fPCIfbTs+EejDscO7tQ4D5mPOXlv/Cn7X+Js IPtrsi1V1L2Ycj4r/U/1egL7XMT5u8P7d9Cnl43/ZP7oDRu+MVnnfLLsvEjw CTybVHbMCSlLMPGPqY9HJTdUnmfKxieJ86/ilm3Vd/OEbfjgPR3yxKzlw3nH 0u8/Ld478z8ePuzMg+8P1ipqMcPDDZ7refzCJ9GnYh4Tp484L5SNT0/ZD4++ 0JEbR57nys4FlxjiqbNMq2u9VHbt41OWYPzPxVoyy9Ocb3kfC3wvlh3/YnBP FuflsnlnpHz9nBzXL2z4iOc6Ny2u59MlV1COjRLed/SKOE/INjPWg3VGgtkD gI5kDeESw74AJHHskelS9PFgrlfLxqdkfe5wDi1d9HX8SfE3TXidZpR9LF+P a/zYlPlw+yac49U49vjhET8j1pvZZ5U9z2nSlxF/NjmLtuFjzpeoq1fvhPU3 y8bUWbHVtbDhO48eZHsj8iLBp8r+VsxBLSSYeGo81ez1fDtqjo0808OODR88 eqTX06Nn+p0an3fMyfrwmxu/vTVl/RmI74ysbfwWx29578pep2NwdtI5nmtw nvdiDeDjh7ey6n8nuZLs58u+nOQ84dVkX156XdH7a+DDZc8OOchFXvhwN0s4 Dnym8iRkm0uvzZbgc1KW2Dbh+51meidmoNYHZdf7RHIV1RuXtASvobhV9fpQ +rP8XYL6fK/KWoJn5q0jN094JmZbOXJT46ysc5DrwpTls9HP6xFPLH280uDZ 50df1HpVnPeFn8/bhg8esR9HT0jwJSn3T+/s8SGO+ItSluTop1oJ5anXa0vp n4vzgnKcm7UEd1f8F6yJ5DjuH8rei8NeIST4xWbz4dL/bOX+jD6bLcFXpJzj hZiRmmu3uu6CsjF16Zd9RPSMDR88alGHPS+rRE/kelu5X8n7HEjJ/rJsW0h/ T7ZvxXlTchHvCeU6T/lXkPw61qgb78PgY8M3Nus1+TR6QoLPidjX8/83I/MN SLjnhWX3vTDOF9afmtROt/p84Fxgbw52bA0J90iv1ZT7+absnpDgy1L2M0f/ hOf9suyZvy975oo463PNUlyjOKso/8+cZ5KLJWfIfgH37Xnree6Ny8adKdvg vRt+JJw/ZVun1RzqUI/1TbXYzl4bZvqJ2AbXpWZTwvXB47Lm/xi5kOBK0vV/ iP4+5jhKbpWwvqRs/HvMcWHWNnzXqZ+Z8v0i3Es5f5VMSpZTlmD86DNj3l/C Rh4kcdg/4TqQ97H4rWx8fco1qZ1t9V6jV5u99+SneE+znn+U7WO/Eny4TZGT XOTFD4944lgnzgHWgj1Lj4bOWoNXF2cNvbZJWP+7bPylcr2mHNslbMN3sXpY reh1ZJalKnq/SJ+csv2vOMZI8EXi/1N2rknidKn4vLkmzh8w5xA5yPVh3jpy YMK+3q0+x8hBLnr6t2zfJVlLMLylK+4d+/LSFyrmFtVaRvqasl+aNW9WnLfL VozpDT+8rpI5zinpG8Ta9Gn1+sDBzx4i7NTDRw5ykZea1H6Deykdi76t3suD /Y1Yz7qKfRN0HJcL7visJXPCQcf3Zbz/eB9emXIc8eSll88a3M9a0r8Rp6DY jeSrF+dN7nEkv5X99pQl+PO8deS2CXOJmShOWnnWE96u1TZybC3OirJ1k+8y 9bkp18O87StXjG9LWYLxbSz9rZiXOOI3a7WObOa6UXHfl2e9l2l2s/fdrM26 y9ejaD88ZmPmb2JvFPpqFePuRa8vtVaLteG4k3PVivMiwex1Wr3imCuylqvH ubJEr7fFHcSxrhjfm/IsK1U8DzZ88OiRXq/MWtLvTvytTL6mVh8L4oi/SXm6 VuwrZS3B8NaS/EV570tZgr/OO9/AVudE714xfpdrTfQHHy7r2Y/1jRrdY/2o xTNXPG/FXiHqvdPs3npEfWb8Le+8zI4NHzye1SK+nHVNOJWsJfXhcx4mKj4X UxXnekA515X+p/SHOa+kb6n1vzPpXr5vcD+ZijE58cPbutWzzIk+mQl8a8oc /OzZoU4qeiIHuchLTWr/lPf5zLk8OGE7tp0TPsfxVVV3Hel57vdSlu8p344J 6/jAGXHXKXoPEfr6FeO6Rn0+S+/Cv9shfk/pc7neS74v2Zm1BP+Rt47cJeEc 5KrxrBTvO712SzgHuR5KWc6Nfv6OeGKp/UuD+9kgeqHWhhXnuiprGz54xGaj JyT4UZ6v0HoWWr0/CD1XMV5a88wTd0jCfQ1qdW8fyLZzq3tA37hivE2rMXZs 6FdnfV5wfoyPGemPfOTfqOIaSPB09dO74lwPSt8kuORBguljGXH7SP897305 HzZ7Tw12bBxrcvSOPuDie4p7Qsn5srUkPCsz35d0nr4V59qUzynVuyZruWms 147K+ZH8uyasb1Yx7sX9rPRs0fy/4/iyjv0q3l8Fl5gnUj5nOF9251hzzGUf Kn2LivG1qrsrn9dRCxs+eJxrxD+Xck1qX5e1pD57kZiDedjb1b/iXM+K3xg9 Xs+zPdI/abZe32h9mGo1VIxfSNkGb/lGz/Jv7CPrF+fIo8HBTyx1qEff5GiI GtSk9jJ5f7byubpnwnZs9MznLb4b1E+e46z+n0paDmn1fiJ0fOCBFR/LV+KY gjmuv3L/JXx4wjz2FBH7Kfd64gyXbWvJXfhulrIE40f/NNZhq7DdyO/ysg/n M6LZNnLA2Ua2VVVrZsp7kD5r9n6r7SrG7HVCgvExd0urZyeO+OUarSM5B5pj PtZ/w6LXkVpfcA2Qb0Sr/fCYbSNxNtarLWF9+4pxN8V9rpi9Erbhm5h1zkIc YyR4guw7VBzzZsoSTPwera69h/LsVDF+OeVZtq14Hmz4/tcj8qasJf0Su5Zy rqTX8ITjiGdtd67Y91bKEgxvsGRvcSZlLcF9is73ZfSDvkvFuEXrvLv0jlbz 4bLniLUYJPs+wSWGGRc0e07WZ+1GY/TdKsZvp5xj1bzzYMMHb9eQk7OuSe2Z SUvq84z613xGK2YE52H0Dn9P6X2l3yJ9qPS9OLf5viPumnq1iz+sYvxuyn54 XzV7FubgWA+K48w6w8HfmnAd6tE3OchFXmpSu1/R5/PC4GPHxl4kznF876ju HtI3kf3mrOV+su+dsI4P3FLxnLdmLcHMfCTf3YT34fum5KGtXoeMfK0R08Yx 0Xq9lbQEH9BqHcl+H7jEzE1ZEkce+l0r757bYyZ62FRyL+HNJHuK/434RfE3 p//ItXfFvo9S5sPdN3KSi7w9g0c8+eDdpvwjKp7n9qz3HRWFFzXbho85eym2 R6PXCn3fijF1Dmt1LWz4PlYPRWaOvEjwHNk7Yg5qIcHEszbsY2J9RsaazY08 38b6YMMHjx7/26uVtKRf9uCwJpk4P/93TvN+YJ3wTeE5E+kDpN/Nb4jiHML1 QpwDuJ5wfVHdLeQ/inrKc2DF+I6s/fDWa7SO7BDnYHH3l/27ZnOJIX5L6f2L 3stzcMXn0GcpSzDnE3HEf5ByP/SyX8KxB1UcjwTfmXW/8O7KOu67OCd7N9pO 7BG8N3n/K+ehFfu+lH6Y1uow4WMUd3jkJg8S3CtvHUnPcIn5OGlJHHuIjpGe U84PpY+qGH+ZdE1q91b8KHGP1Wvb5V3/0Oj7yIp981Pmw90/4RzkIi9+eMTz N0b+vsjfTjluDaxvwn93xHeB8hxf8f4h9iv9KO6YVq8D+jEV4yNajbFjQ5/K eah6Rwv/IHyOOL9zTiRsw/dtyrHHRszoinsgFgk+sdX1f2qO/U2cb4pdlLLc oNHnEjnI9WnKfPom5oQ4JhyjJcKn855I2Mb+K9Z8jDh51Zumuo2STXodKs6J FeN7svaPieON3jvOJfJQg1xwiSGee4qfm31fcXLFte/NWoLpgxmZjzU/vtU+ eiP2pIrjkeCf1P8pFfO+jtlZC+bHdkrUaBTup9dBCfdxmuxncP8jfaui9yud XjG+L+s+fom6J2ndzmr1vp7TYg56RpKDNSGOeHKdEXPQ25kV30vdn7U8M/o+ u+K83+n8GdhoH2tCHPHUxn5WxCPBv/CcVcXnzW8p5yAX/W2t2udJP7fVfZzD dUTrf67kqbL9kLIE/9Zs/bc4906teI1+TlmCWa9zYib6R5KPtdpGvgF6Hcb9 G/cwRe9XOr9i/GDWvdDTA1nb8MEjdmzF8Ujw7ylz6X1UwvMxJ++NP/Tamve5 7J2y7SDe48p5qfSdZF8qrXvDRvPgoF9YMT5L63Neq/f7YMP3Z8q+cRXnHRfc h3g2qeKYX5KWYOK3U81mrtHKf0nF+GHxC0Xn/K9u0T54F8es5EQOzHt96PdP rhEJ2+Hhw848+NjP9Hez9+P8JXlxq/NfJv/Z0n9V/zuLv1Wj1+ryivHSafvh EYf+V6wJcnzFueASQzy9XtLqua6suDb7pJDgvyOO+EeyXgv2ULGexF5RcfwV MTecUqwZ68z186i4fmHDRzzXOa5/B6tul4LuKXnfSr9QnIo4/8hXldxV9uXT luAdGq0jj06YS8y/KUvijuReXfUu5xoqvVYxfizrc4dzaEfJy4gLPsexHOfH VRX7lkubD5f9R+QgF3nxwyOeOOIfVf6rK57nCek78R2RY1O0DR9zXsratnrP FPq1FWPqDMq7FjZ8y2iu3RVzTeRFghPq7bqYg1pIMPHDeU+Ie6LmuqFivEra ceRgnbHhg0eP9Ppk9Ey/JyT875fyb5fC598xBU8XZ3yrdez834L8v4LsQRvE fW70N1Gyhe9kaee7qtU5b4r1IE9L8AY3WkdyvB6W7RrxV0+71oSozR6pZQre v8N6Ta54jxR1d4/zh/rgp7LmT6o4Bglm3xb16YOeBkvfRa9f6qzfUjGewntl uNYnaRu+p/mOoDq3Ci+rnLdJLif5TNYSfF2rdeTohLnErJm2JO5kvss0mgfn 9opxfdo1qV1qdR87Nbi3yXGOcNzviB6pCx8u/+8bOW6PnvDDI5441onzbVfZ dyu6hzsrxs/y265ibhDveNnvrhg/F3YwvqmSVcmV1MO9HGfFPs/9vOreJbx8 wRLcLW0u8eSsRjx4H/mnSd+j0b3c2Op+yEfeIdxbVOyjB/hwxwQHP3uvdgse 8ZwvnDcrxByJqAu3JW9+fcG9nZKwfn/02tFojB0b+gtZr82d0Qe85YND/vsq rnFfrA3zPlBxrrWlPxRzkAcJpo+rdA4+KH1i9Ey/JyVsx8aeL3I8EH3Axbdq ymvGWqyl/DfK1tboc6NF+V+W7yDlHyp9H8k/67wv60nZV1KeRyv2vah+rled FWOWxyrGXSPnIxXnhUsMufDDI+ZxyUnCSfGf4P0n3ktZS/DIRtelJnujqA9m fxxxxO/daB3J7M/Ldhvfx9JeA/a/sQ7o0yvGT3G+MGfWNnysM7anYt2fppbs PdKW4JUL5nTEcb9FvRQbvT7PVIwzKUswvmcl91TMjKwl+IC8Z2S+U7l+Fr3u XUJ/rmIMHy57drDheyXr+VYpOBadmcGHyL90VfeQ8GQbpfw59X8I1075T09Y f7FifJv6nNLqvT/Y8K2ftu8FzoFGS/BM1X2p4ph1U5Zg4u/S6/S89yzMqBhn Iw85qIsNH7yXYz5yIjnXmJ1+D9frjITPHc6htVK2Mw++x/fUtbzg/QtPyX83 1xDpr8p/Bt8PxJ/K8Wqx/bWK8QZp++GtVrCO5P9VIc/MinPBJYb4VvV2hGou VD+zKq69ZQ9LMH0QR3xedR/i2jPAOYl9veJ4JPhVfk+smNcvbQkmpk3+47lH Vq03K8avif+W9JNk34JrftH62IQlvjXUw+yK932wvwMJfqzVHPzwsWNjb0h7 0Xs/WEP0tyvGz+o1R/qaBXPPypv/TuSjByQYH3y4KyScg1yv8zyMOAuF35Z8 t+K+Z2EXv2vB+2LQ36sY43835nxcMWfnnRN9bsV4bz5n5D8v4Tjit9K871fs eyNrCYb3vPzdlHvFhPV5FeMnlfOcvHtgVmYYqDwfVOwboBlHKM+pynF+wnHE b52yHx7xH1bMezNrCSbmRc7ZgvekPCX+2Lx7+LhinE9bgvHtw3c9xV2QsP5J xZg8H1WcCxu+t1TracV2l22c+J/Jvq/ss8M+v2LfC3zvi5z44Z0r/GnFvm3S tmO7KOE44hvT9sMjnrXnGGyZ9r6TtQveT3GlfDO4/064R3rdVuvzBevJ92Dx O5T/rEb3+WXF+O2s/fDYE4OOZE8N+T+vuAZcYoi/gO+3fAcT56uKa++etgTT B3HEs9eGc4/zjnOe2AUVxyPBhbTPTXhbpf0+4/3Ge6/INbnofRnoX1eMXxE3 pb4ukX0m3/9k7yH8rWRS8p2sJfjCRutI+HCJ2SFtSRxrfnHw4CyqGO8kztua 4zvh11pd+8q8+6EXepqjWt9HX9SFD7dr5FwUPeGHRzz54O3O3+gqnmf7tON+ rniPCDZ8zLmfYsfz3SJh/ceKMXs50gXvO8CG712uaXz/EB7XaAkerPw/VRzD nhQkmPj9i+6V2ZdUjN+LPOPifYdtSazLz7EeO0XP9Mu8s6RnCu6Tz+iV4zPx l4p9g8R/R/LSuG4cwPcy6ZdJ/61iPDdrCcZ3IJ9HRe+/QP+9YkyeXyvOhQ3f +4p9T/Z1ooe/ZO+Uf3ja9j8q9q2rV5XvyQn74WH7M+S8rO3ocIgjfo/0//GI ZyZmY+ZPtJ7vt3r/wsHq5Wr5r0i4R3odqth/onfyz5FtvYJn/7diPCRtP7zr 89aRzE7+vyuuAZcY4j/gfR+fQUtVXfuDrCWYPogjfu+U70m4H2EvBrFdqo5H glvTvmeB96HyfCTb+tHnMlXj9rQlGN+ykj0lPxL/U+59Y/ae4buW70OS10vu nbZcLmJ44b8yYTsYfYH6/aTV+x3Ql68a03ud9Mlc84V7BT9RNW5LW4LxwYfL vOQg135ah7tUKyU8ie8HVfe9j2IP4zuLbOWE9RWqxvjhMRt7KbIF7ztAX7Fq TH/sr6Bn4oj/WGuyUvTO7Ejwf3s8ip6Z/tFXjjWaL06u4B7q4v6RtV2lat8I 5bmZ7/iNvuYTR/wnWfvhEb9q1bz9gw8mZpS4X4lXVewR0o8seu/A6lXjT7OW YHwLuF+LftDXqBqTZ7Wqc2HDt59qbSjfZNWpid9N9p+1RkelbF+zat+tjcZw 8MP7mutm1b4D07ZjYw8OcfA/y9rfNTBrzzFgvwy93pP3LF8qbuPIT4/0Op9n maQfJf1z6Xcqz0b83UWctavGh6Xth3d00TryqoTzr1V1DbjEEE+d71tdK1l1 7ZFpSzD+tWIt6Z9zj/OO9cfXo+r4HsH9IutzE97haddf3Ooe0tEXHCQYX6bq PRPsPdlEOX6RrTNhG77esq0Ta8zaIsHs54CDn70DxxS9vsyybtX4y6zlunFs 1pM8lvMiawk+ruic5ON43SdeH76vh75+1Rg+3OsStuE7Rv1sJL2f/F9nLTcK 36JWz8Ms6L2qxrx6Vj3n/eJN0evqhPVs1Zg6v7a6FnHEH6Jauej3q6wlGN5o 7vmL3peBvkHVmBp9o4eeUZ/YDaM+/dMz/TIvccQvzNoPj/iTuGfW6yZxHmx0 DPzNJR8WnsDfS8X/vdV7EE4Qtx/HFVy175SUe3oi7z77RI+sGzk3jnXEhg/e z4rblOus+JtUjY9Sz4+If49e18vet2o8Ju061KMPbPjg0Qs9fZN1DnKRFxs9 3qg8A6qe87use6Gn0co5RrZNhU+U3EzyT/FPSNuG79usbfg2U87Nq16XRVlL MGv0HydmeazRPtZti6rxSWnLLSJ+S8k6xZydsgT/0+qa9MKeDuRz+f/T+1eN 4cPlmfz+0Tv9HCZ9B+X+N+tZmZnjeq5e7dLHSj6lHhqkbyHeVlXvieA5/y2F l2lzz+j5qvEfrcbYiSP+9LT92L/nd7qqecfL/rT8DzV6zam9bJvPq4HRC3wk GB/1+xf8TH5T1fFnpJ2vMWqs0Obn2nmmHT59E7N1rBlre0rR60uf2Ni3wPps U7VvseoupTwDFDdR9m2rxqemzScXMdjwwXte+Z7kmij+dlXjc8Q/VfkS4t0s e3PV+Iese2cG5seGD15B8jTuj7POQS7yYju96H0N6PDAdYppiD63rxqfze8C 0vOy/5S1BD/Hd8BG41vE37FqPFb8rq1eO9YNP1w4+HeMXDtVzRuvc+AM1R4k fGb09Ubeve0cfVH3VcU2Km5KwjZ88Igj/ues85GX2tjId1vCx2GbeD8MrjrX RfxGEDWXZD0rMzN/k167cI7Ktqvk8pJnpS3B+NGbYvZdwkYeJHHYX1OdZxt9 vHarGl+cdk1qr97mPRYDC362/9XojzmHVO1jzwV8uLdFTnKRFz884ofG3Kw/ Esy5e1bR604/6MPiOLVKvs29Fr+jyX6OXncmrO9RNZ4t/1bKfXfCccT/wt8J q/ZdkbYEw9tar+6qfWvC+vCq8SptxtjJTY1f+dta1b5xaffyil63JxwH/7es /S2B19O8+0hPtvma8kHeexnaol/4XHPwYce2dpvn4jqE7/ese9om+tkremQW +OQiBhs+eNsWPCfrsHfV+A/leafROvYRVeNyzML6Mg+2ERFD78xwdcp471hH bMzE/gWuo1xPs8L7xrWTWgdJ31C8CTznI72b/JepVkH895RjWsI2fNvJVpSc y31L2hL8ZqM5+O8Q/zy+9whPlT6yavxn1hKMbz/J8/k8y1qCLyg6J/nu4h5M vObIib5/1Rg+XPZBYMNXTftazufA5ITnY06O5bxGz8Ms6AdWjXkdUPWcrMG6 bd6DgM66gKnzWd61iCP+KtU6OPr9O2sJhjdO+oV63ZuwfkjV+BPFba969ydc k9rEHlq17/q0jxHHhz6JI/6frP3wiOeei3uvY8VPtTkG/iLeR8K/yH4R99LR 6yjJ+dwvpd1Hrs29HRF98dk6P3jvNlpHcuzOqfp5dZ6Zp9bhVddjz8SOBT/n zxodVfUeDurOi3OG+uAuOfOPrDoGCWYPCPXpg5566rWT/PckrB9TNT5esrfw pLRt+K6VvoA1EP6I+0/Ji5VrqZwluE+bdeSDCXOJmRyxxN0n+yXiXFr0vobR VeOlc65J7Z3VwyC9vuQ+IOFZmZlz4ISqfcsEf+fonxzkIi9+eMQT923sc1nY aB85x1SNb0k75se8+zkpcpAfCcZ3suRiybu0hqdJH899iTgNWtcThfu2WYKn psz9TPl3SFgnHvy1XqdI7y/ehorpp9cDCecj72WSp1btm5A2Hy7/jycc/I8k 7IdHPOcL582u3EvxuSP5WMLc/m3m78L9YptnRz+jarxxmzF2bOjL5bw2Y2Kt mYn52DdB/tOrroEE38nnYNW5buIzKOYgDxJMH4vFPUv6F43umX55Vh87Ns4Z cpwZfcDFd1faa8Za3Jp2L3/GPo6K8pe4Rsl2edF9M8uV0sfJXuIzpGrf8upn c/F24zsJ18yq8ZTIeW7VeS+PGHLhh0fM+ZI/871C/AukX8F9Vs4S3NjmutRk rwT1wYmc44hf1Ggd+SjHiJrSH+Z+WPG7R2/oF1aNL5IcIlmfsw3ftLRt+H7i XkTyF95facuLI4YX/if4PNKaD2zzvoNLqsaPpyzB+C6NNaMWEvxv3jMy3+OK LRe97tNDH1+N41A0l9mx4Vsh5/mGqo+nE9aZGTxS+WZKP1B6JerTf4PksIJ7 Rr+iavyXYn9sdA/Y8E1N23c51802S/CKqntl1TGPpC3BxLOPYo+Cn7cvV43Z T0EcOaiLDR+8UsxHTiTnGrPTL3sxWM9z4xrA9QQ78+DbRvpw5XhSnGrRx4b8 Nflrwisr59JNuu/iu4LsnVXj6Wn74XUWrSOfjTzVON5wiSGeOju3udbVVdd+ MG0Jxk8c8Sup7jKK/V05nkrYd1XV8VcFdxVxrqma91TaEkwMvQxqcz/XRo/w r5N+lfRVpV/NmjV6vwM2fNiujzrMiAS3FMzBDx97S6xba8FzPh/6DbFGy+l1 Y9W2YTpeu7R5f8GEqvFLKUswPvitsc43RNxq6vNG1bxPeAX5J0aP2HdUTJs4 zySs31Q1xg+P2RKK6aLXcwnrk6rG1/C9QDEvJBxH/BOad3LVvtVzlmB417I+ RT/bj35z1Xg3+dqjB2ZlhmeU55aqfc/xW638dbK/mHAc8Wvk7IdH/K1V89bM WYKJYWYwse1aq6Ft3oNwe9X49ZQlGB89rdHoPtGnVI3Jc1vUmBK9U+t6yRv0 eln8u2QfIX+3sN9RtW9Vxe4t+ysJ++G1cK9ftW9m2nZs9Ekc8V1z9sMjnrXn GDzPc3dtjoFP3+yFYK7b4ji/KM5U6atJfzXtPlrb3Oe06Is+8cNbvsk6kmNK /rtjHrjEEM++iH0Kfv7/3lgzaiHB9EEc8c+mfe6tEMeO2HuqjkeC2QPCuQlv rZzfZ7zfeO/tyfcKcV9KWL+/aryW8hUlX5W9q/QHZF9Z8kHJCYrvnrME791m HTkzYS4xb6QtiZsh+0Rxbip6/8JDVeO1OZcU97BwR8E112xyXXqhpxn8La5q X4/gd0TP5CAXefHDI5588GYp9tGq53lLelrySeGRMeOjkZf4dRvdG/rjVeNJ vL/0mpWwDR89HKR1fYx1brMEz9M6P1F1TDJnCSZ+P9XYv81zTa8apyIPOdjX gA0fPHqk1/eiZ/p9k/dXm3nk4do9JD7jnqra97r4GfHXaPKxoPYBbe7/meiF ukgwPvZO7F/wM/Poz1aNyfN01bmw4WO/Bv2yH4OeX6h638CCsD9Xte/moteX PvHD21f+56v2pXO2Y2PPwnOxlhwj/M/HMWOmp2K91m3yHgb2L/B5fzjzJtwj vc5V7EvSu0ufzfVNeW7Va7Y4L1eNMzn74R3UZh35WsL5X6y6BlxiiM/KfoDq zRHnlaprr5OzBNMHccTPS/ueBB+9ETuj6ngk+JO071ngvcPf22VL8n7hbz5V 4/lhB+N7LXqh7mit25Ftfp4fG75RrIXkbZzHOUvw7bEG+FkH7NjYX0DfB0Wf 6LOqxgfr9Ub0umGTMbO/WTX+LG0JPjj4cOHMivVgxtGSn1f9jPtbVfe9MOX6 fRvdA/rsqjF+eMx2qF6HKO9bCetvV437qE5Pvd5OOI749TTvnKp9C9KWYHhT 5D9W8e8mrL9TNb5D+p1F7194I+Ygz7tV+3pKP4Y+ogfiiF8/Zz884t+rmvdl 2hJMzGF69eb9q9i+Tcbo71eNF6YtwfhOafV6sacAfV41sHxzq86FDd/ilGv3 b3T/H8neX/7Fads/qNp3l/S79ZqXsB/e4cr3YdW+bM72/2wJxxHfK2c/POJZ e47BR8o/il7bPAv7FY4o+Dn8uTEHsZ9IP1qcL8QfoPwbN3n951eNf0jbD498 6KNifZAfV10DLjHE08epbZ7ls6prs28CCT4i4ojP5bx2nHesJ7GfVh3/acwE 5/NYY47F1KKPBz18UTXeIGf5RRyzLyWPF/9r8e/hO6n0jxO24TtStRdInq+e /kpZgvs1mYN/LvcG3P83+rnlr6rGG+YswfgWSp6kmO/SluCjCs5JPq6BW0lu odcHoX9dNYYP9/2Ebfh+VZ4fpN+nGr1zluDtVeveojH7INC/DR4zflP1nPyN 6ujIic7frcDH6DWQa1rCccRvrPzfVe2jFhIMb5smY/jo3wdvnOY6t837GqhJ 7Y0Uu7hq3z8p90S/9Ekc8b+n7YdH/Fi9TlC++eI0y3+s9E+lP6jYC9usny55 Puez9NHy/0oN4Z+q9v2knPeLn2/yMfq5atwn55w/Vp0XGz54DxRdg/xLqsab iL+9fMeJ+xmf11Xjf9JRp+o+sOE7Lnqhp7455yAXebHRI+v2T9Vz/pF2L/T0 F38/ke23iP9dcgfZ/03bhm9J2jZ8TZJ/RG5qIcGsERz8nNvs9zi+4L0Jf1aN 2ZOCBOP7K9aeY4EEs0+FmqPjWD9U9PH6n/53HD/4cDnu2PD142+PNd0TSN8q 51mZmeO6n2LWla+1yc/+/yv7ttKXlW0wMqN7v6L3A7C/AL1LzfgR6Y8WvReD OOLZd4Af3qaqtVTNvM2kX6K6Y+JcOpHvxcr/ufRlasab5yzB+KgPhrN0zfFL Z5yPvNS+njVRL2cnot/ItZxkRf2smDZvWKP7xDa+zc//Lx85qMuzvycV/Mxw Xc2YZ6fhk4sYbPjgXdHm55J5VjlRM65Tb4/x/VB9fCF7fc14i5idGZgfGz54 K0g+LrxlzjnIRV5sT+j1dcI6PHCbYk5Wjm9lX7FmvLrqriT9FNn75yzB1yjf tFbjM8VfuWa8oebq5PrZ6Geb8cOFg3/lyLVKzbxVlP9e2VcTPrXgPoY3ubdV oy/qkuPoRufBhg8eccRvHHXJS21s5Dsr4ePA8eA4rR69M1c36dPla8h5VmZm /idlWyPmX1PyfuXqk7YEn1awjuTcgEvMgJwlcazhdapzbKN76FozXjPjmtTe i+9oynN6wc9m/9dXzXOuVbOvb9p8uIsiJ7nIix8e8d1rPl+7ZizBnLtP8V1P sd8lrK9dM85IToDHe1B5zlCOcxPWe9SMb+D63OjeiCM+rxmTNfu6ZSzB8J6W fwSfEwnrqZrxI8p5ZsHPhJObGpvyXalm32Zp9zKm0T0QR3xjzn54xI9Srl7S D2jys7l3t/mZsXVke0b8ppyvOVxvvknYti/3Wglfh/Cl1PMRkpN5z9TrPrJm vEHGfHIRgw0fvKv1mtrmY7p+zXg18W9p83O/PD/cs2acyXgW1pd5sOGDR+/M kMs4B7nIi42Zfkz49x9+B6poTbI1z8lzxZtIv0f2jRSbk36b9HWl3yh5Z5tn xIbvQOaRPE5yk4wl+KAmcw6Mc+lW6Q+0+dzYsGa8TsYSjG8jyTuYIWMJ3qfJ Ocn3k2IPkzxUr59D37hmDH+fOB+w4euV8bV82/i8Zj7m5FjepddZBa8Dep+a MTP2rnlO1uDwOKborAv4We6JJJckHEd8VrX61uwbmLMEw+M5v7MLfm4NvV/N mD54vpDziprUXkt5No0eOXZ81o2K40Uc8TyXiB8e8ewFZE/gsmnzN4tjv7nk 88Jbq58tpD+kmH7Kea5qH8+9n3JuWTPeJmc/vHOEd5F8hfsq2V/guiV8u2pN EWdswesPHy7rQA5ykRc+XJ67Iw5M/jHy9Y96SPBmGUts9EO/m0cMtfI119tK 8gnh/hlL8Hl8BklvlH4I9yaSLypu25wl+KQm68jfEp6J2WYWnZsa62ecg1xb ZCwPievYS+K9XPSzcOfzHYf7JOlb14ybVetbrf0Ari9ttuGDR+zAmuOR4O1y 7v+8WEPiiD84bUkOnsc7rcm5qLVd5KAWEjxN69vMtYv51fMONT9LxnNoSPAF BfPh0v9PvBdkn95mCT4y7RwnxufIo9KfafN7bfua8eYZx/BM2/XBwQePWtTh eSry0BO5ztTrDO4lWXPZxxW8/ufLNohjx31R5GhS/hnqc6ea536pzfHEYsNX yNm3Taz7NsFtiNjT4rgwE73SJ3LHmvveMeaGT01qv9zm84FzgWfAsL8cs9Mj vTZn3M/ONfeEBG+XsZ85/krYV6h55l1rnnl7cd5Q7jeLfiaH3MPku0j97yZ5 oeQOmuuiJut/i7N7zXjHjG3wxoUfCaddtlfbzKEO9VjfLm228zwYMw3lPdPo utRkrmExN3PBHxK5kOBT0q6/e/T3epvnZEb0PWJdWiVf45jlbMO3s3K+Ktue wpeIM5xjJ3shYwm+uGD94pgXLjE75iyJ+4e/vYhzQVzzW2rGgzOuSe3xTX52 7ZKCn5saGu9p1rOtZh/PwsGH+2/kJNcFEQuPeOJYJ84B1oJn4CaFzlqDZ0m/ tOA86HvXjOdgj56x4RukPl8veh2ZsUP2dzn2Yd8rjjESvLN6HlFzriHi7Fvz eTM4ZwnmHCIHucYXrI//Xz/ylZRvmXrnIBc97VOzb1DOEgyvKHkZ13jZD5D+ tmJ2V92R0mvy7yl9Zdnmtvk5q/1qxhek7R8Z8Utkq0qfUDCu8L2l3hwwOpJ6 +MhBLvJSk9qXy3+1fFc2+R4JOzZmObBmX6v62T/WgJ6RMxr9nkLHBy7Ee5Tr CXHEk/ctcT5Q3uXIL/2NRj/rNVv6wTXbDpGcx/mRsQRfUbB+RfQDl5jd1MP7 kqcLf9hoGznIeSg1xd9dnK6K/ajNzz4dXjMen7YE47u2yfzl6y2JvypsSOyj okdyzpF8R6962d9X/NHylQv2w2O2CXwHlm3FeutH1ozhfdbmnNjw7ZtxziNq zosED1GtoyL30JwlmPiJiuts8noeUzPuyHiWw2J+bPjg0SO9Ds9YlmNe6n3e 5lmII75dnGOjF+oiwfBGx5rB+Sgwz5e9W3QsOdGPj1zvST9R+ldxHObGc2g8 r3Yc52TBXGKGqdZ8zmfZEspzs+Jv4Hut9DE14/1Vd27Rx55nrrDhg3dCzfEj Mq5J7T1yltRfqd7n4UE1n4sn1ZxrTz7XpK8v2zU6N06WvoD3ifJ0qpfJvG8U e0rNeHjOfni1gmdhDp7vYiYwz/LBqcUs1KEefZODXOSlJrW/brOPc5m5sGPj earTI466p0q/lfdVxpJc9IZ+avQ3j/eaXqvWWz+jZvwL577068W5k/sDznO+ M/Mel2zNWYK/b7OOJD85yNWS8/Nf1xT8PA85yHVYxpJ8q4v/ZcQTS+3Fbe7n 3OiFWmNrzsXzY9jwwSP27OgJCR6p/Hcp/6QmH0f0c2rGrNOCePbsuoLnXEWc D4tel5VDPz/W7iPpH+u1Zr1t+NpyPi84P3aNGemPOcl/Xs01zotjxfpfUHOu dp7bqbn2XjlLMH3cp3rjeC/ItqjNPnrDjq1bvXOQi57g4jtG+f8U/17pa9R7 VmY+POM8F0W9SyKOukjwr/J/In1+0c+GoV9aM35QOS7n/VIwHy7rcL/sF8s+ pclcYvbOeYbro2di6I2eL4scI/h7oDi/t/l5J2yXxQzjYw2YhZrUHp2xvCFm Zw7mOUT2K2rOdTt/K5P+KZ+XPOcTvVPrZ/lvLHhNSjXjozL2w/u20bMwx2r1 ngl8bHDwsybUoR59k4Nc5KUmtf9q82frhOgTO7a16v15i+9o5SxLf4RrUMby Hr261lvHB67VfCxPiGMK5rj+XvTvkvxe8LTkTaqVVuxnXCPEeZj3U83PZfFM GhI8sWAdybNScInZV+uzg+x3C6/Ubhs5uivn1TEr6/+F7F/qlZT92ppxMWcJ xvd5nCvMThzxPNf233rFs23X1dz3Gco5iXuNdtcifoJ8y7XbD4/Z/mgzDw76 DTXjZ8R5qMlriw3f8ZHz+przXh/ckTzPU3PMmRlLMPELuM4X/ezWxJrxfjnP ck2cf9jwfRU90is5kfTLmlBvcvRJHPEd4twUvTAvEgxvsuRzyn12xhJ8M99B NUddu5+/Qr+5ZvyiOLdJn95k/s1x3JGTYk3hEvNA2r3+1ui5llb8LeL14Jpf Mz5NdReKs4L0TL1t+ODdErPun3NNao/NWFI/Jf438v/b6Ge9bq851wH8zij9 Zb4Diz+F657sB8peT/7o4Y6a8bkZ++GRj1mYg7kmxXrQAxz81KIO9eibHOQi LzWpfVvB5zPnMs9fYce2Tr3PcXyP87tqcA/KWb7QZA46PvDU6AsOEszMeyhH j3Y/A7OIzwTp6yn2W+nTarbdI/m6clySsQTfXrCO7FlvLjEH5yyJI88UrlXt 7ufemvEh4iRkuy/wLOV5vsnH7nvFPSZ7d/nvr9l3acb8KTE7klzkxQ+PePLB O0f8B6J3aq0m2yPCdxZsw8ecrCvPU7G26A/VjL8req2p9VBcSzgHeI7tQeE7 CpZgnsV6uOaYQ3OWD8d5M1uvV7nHUZ5Ha8ZXRB5y8JwVNnzw6JFeL8pY0u+6 sSasR696n8uc07wfWCd8h6nuSzU/48RzTT/I9jR9K+cTkmsp9nLlvFv53pIt qzxP1oxH5eyHd1fB+l1Rd7HyPF5zPrjEED+nyZg8T9V8Dr2ctgRzPhFH/OE5 x9MLz54ROz1qI8GljPuFRz/EocP/UfInvTZQrRfE+UD8q7nu1ew7Qvx5sj0r PFU5n5OcJnlkzhK8brt1JD3DJeaqjCVxG8neLXhwnq8ZX5ZxTWq/2eRe1mt3 P9SnD2wvhqQufLi9Iufz0dP/eMRzn879Ovf6HLd7Cn4matmR+oyRfXPFvyaZ EbemHn4ueq3oDX1GrN0S6b/o1afeNnxH5XwMXq75GbdDlH/zdj+X8nIcH9ac 2Fdqjn9V8j71cEzOErxhu+uDc8o/k89Z5ZuQsbxX9r71zkGuo3Pmvxa5Xuez Q7yJvB8LjoGPba5eG0qfFfWp+yvX+aKfB3ujZnxszn54G7VbR/aJPNQgF1xi iKfv+6Pnt2qufVzO8q2Ygf7gwfmyyT56w/ZmzfFvxhow7+yaeZNidtaC+bHN jhpFrXPvdj8rRR9zWGvut/V6UP6N+b5ZM74242e7erb7+a5vZJuv1yb1jiOe npHkYE2II55c79YczzNd79V8LzU6Zwnmvur9mvPeplo5rm+K613vOOKpjX1u zT4k+AbxP6n5vPkw7Rzkor9HxPuIz0Lpf6jWPOmbKuYDyT+FT8hZgv8qWkfy fNfbNa/RnLQlmPUiB7mOz1mSb1P12U/y4eh5UdTeTPrHNeMpGfeCfUzOto8D E/thzfFI8K0Z++idPMzHnLw36HH9Jvf5g2xb8Hks/pfSjxLvc/X8tzj/6PVO wvqnNePFXMOVd4t62/CdmHPO+TXnnR/rQZ+f1RxzV8YSTHwf1XyM3pXni5rx ZHG66JqQb3d+bPjgfR7ypJxl/3bH0u+CuK/+Hw8fdubB15drfqwnM2zU5Lm+ kv9f4ZOV80fZHhdnS3EW1oynZuyHR1/oyC0iz4Kac8ElhnjqNLS71jc1174l YwnGvyDWkll+IrbJ5wC+r2uO/zq4p3CPUTNvWsbXTz7/uIZiw0c81zmuf9zb LK0eN23yM048Y/edOE/y/T6OP+cSEswzeuhIrplwieH5PSRxPDO21Eifc8y1 uGZ8as7nDufQdPFOoFasLeu0qOZj+WPNvm/S5sPdvN45Fsf5jR8e8YtivZn9 p5rnOY3rA9c+4acLtuFjzoHcd0dO9CU1Y3i/yN+/3jZ892n2ZRT7c82fP0jw 6Vx7I/cZuYitOf5E9bZ1u5/v+q1mvCjtOHLwLBw2fPDokV4fyFiSix7g8lkH //eoT60mxTwTHH6P47c4fstbnnMucv0peYZq/Ky6y8ne2OTnpv6qGZ+Zsx/e kibrS+IcWKOzS5fduK/OuNYfNdfjebJnC36+iL7/qfkZNer+FutGffBZOfP/ rjkGCf41+qEPerpStuf4rEhY79JpvKxkSbg+Yxu+hPTtVXcp4d0Vu7RknXKd nbME/9NkHdlQby4xj0UscTwzs/RArR3flcVZptN4esY1qb0z97/KM6TJvf0T x4pjtFynfefkzIfL8zzkIBd58cMjnjjWifNhKPdLvKc5Xp3GKyhn/UjH00+i 0/jcnGUi+quXrKjeiuKvJL0mfeWM69cJl9sswcwC90XV+iphnXjwYPlXkD6M 2pyTyt1U73zkfUmcFTvtG5szHy49w8HP8zz44RHP+cJ5M0O+XaXv2eS6K9G/ /Fsp/4rSl5c+MPRVOo15duflgp/zwYbvvJzXhjVivZiJ+Vhn8q/c6RpI8LOa d9VO5+I5otU7Xfv8nCWYPnYXd7VOPx9Ez/RLb9ixMRc5yEVPcPE9r5x7ss7R /5qdxjO4xvL9Q3g/1kmvtTv9fElXyZVV+wL1MFz2+liHbp3Gr2Ts/4830Dpy m3rnpgb14BJD/F7SV5HcVpzunF/CL2QswWvKt67kvsKzM+6HXngGhti1Oh2P BM/KuF94L0Uecmyt/KtKrhh6hjj1N4775077Zmb8TExSuEVxKck2ydcyluBX CtaR9AyXmFTEEsfvSiMkV4/zMN1p/GbGNandbaD7mln4v97og/7WiblnBR/u dpGTXKtHLDziOfc5p5/OeJ1YB3rbXZyifHO5P5Y8mGu4OCMlu8Z7E339TuOU Xkm9tq+3Dd87nIfqYT3h7gMtwRdq3Xp2OubdjCWY+AM4ZySblSfbaTw38nQP OzZ88DjXOOfeiHOP84556Tcj/w71nmvdOMbYmQffUdI3lNxJnA7p60kvcG8v /xHCn2bs3yA4G3Uaf5axH976A62vH+tMng06nQsuMcQfIvuR7c7fu9O1P89Y 9o68xBH/tuwbE6vXzvWO3bjT8Ujwh+L06TTvC+lLyXZlu/9OhQ0f8ZtEHD33 ld5bti+lbyI5WvbB9bbhO1a4n+RBkvMyluBj2s3BP6zedmwc6z68x/QaFPqm ncY99dpM+nHi9ZV+aMy+eafxwowlGB98uDvWOwe5FojTVcd9R+EG4S063fdX Gf8u9WrBv+uhb9lpvEnwmO2wdv+2ynsKvX+n8WrK2WugaxFHPL/bDui076Kc JRjeivIfrvil6q03dBpvxPW/0XvSmZUZPlKefKd9E3lWTbbPG723nTjiz0vb D4/4xk7zPslYgolhhtcKPkYnxTqyhgM7jb/LWA6MNV2d+2vJXeutb9VpTJ6m TufChu9izbiG5Joj/ZvmtrLPkv/SsG/dad8pin09esAPrz/X5U77Fmdsx7Zb veOIvyRnPzziWXuOwccZH0ti4J/W7t8m+e2yKY4b50az9E+0Rntn3Mf1Te6z EH3RJ3545EBHkof828U8cIkhnt823yj4d7EdIu7HjCWYPraLc+3HOPcaYi5i t+90PBLMb6ycm/DG5/w+4/12tGQ32dYa6d/y0HfqNO6u19oj/VvSOeLtLPub yjlI8i3Jy3OW4K0HWkcOqTeXmN8ylsRxrLcNHpzBncZ/iPOtetxFeGy7a9/e 5H7ohZ4uU61doy/qwoe7WuQcHD3hh0c8+eAdrPy7dXqeK/iuIdsw4XHttuFj zrcV36xcQ+utD+k03n6gMXZs6Fcqz/mK3114dsES/JdqDe10zD8Zy6ERQ41p TV7PPaLm//KQg+snNnzw6JFej8xY0i+/Q50nOSf64TgeHderPTvt+1P8iyS3 i8+4HlyXpO8hvaXTuJSzBOPjd7B3Cv69Br2105g8wzudCxs+fhejF34Po5+9 ZL9Q+N+wt3Xal/x/NZ1XrBVVFIZ9UOPRxBajEbljY+xiAcF71OhJNAZiiQgj Al6QIiCKXRAEO6gU5QKLXgWkI4igcgFBjSbG+KQQe4kFsbdX/b/8y4fJqv+/ 19p3n5k9s0loyf5rjpO3R5xVONZa2o+P2nrl34R5I17lPNITvdFzd56Tdd/b ed53k35jzTVS6wGF9g/STxB+uvjbsw9p8RlQn7A9o3ScvKmVdWSPmvl7h8cg Fwz4KYrvzTr7hceeWVpid0sc+IML70mIURvYvmE8EvugwnsW8g6R3meU6hnl /++pJfyMfEjzsEWyTddgemSd110nNfVX3na+iUgWsqO0xD6xxTqyV825YKi5 RRwPyu5Ztw8O5udW+W5gP6t6JmvMT7L+QWH7wPRjE+OaWTkHHPiPG9aRN7G3 Cdd9eOFaonI9J0kflv0TJ4/eODf6tOFzE/Tbwjb7Bc632DPgI8aZF5xDwrxD su9Z6nFoGMPcIrHBT5f+mfh6imd42D6scC8Dw/3gI0YeNVLr7NLymlxvFWtQ V1UzDjzj3h6OHV1YYpN3h+Qpws8tLbFPlZyjsT7PetDvDNtHSL9b+vzK+eRy 9nSy5Aj552YumKM01hfs1zXOzcrpXbeNflfYPqYwx3vN5sFHjLyRKeeVHpOx JzZZMj5nPaWwS1nH0u/J2sl/QPps+Y8U/73SO/D8k/8W9gh8P1b+fWH7+MJx 8uCjF/roXXNP2HNK5xBnLMZhPOqGAy54GZOxv2p4PbOW4cH/VfbOGifWTuPe n7kLSssllXPQiWGPyrrIQWLTc3tdayp/2z9d/o+a/X2b86vRyvlaHA/l34p5 RmJzDoaOZA7JBcN5GRIc5ymntfjvQT1jwvZC1TBQvrGyv1FeO+WvqLw3O5P3 bPlXyX44HGttcj65/ZNzTP7t22UeePjIK1TnuHA/izTWIsUek/1twz5i9DmY PaF8A2rWHwnb5K0Upk/NPmInifMMYceHa0RiLxb/o8m9pLTEBj9EuL66+onn 8bB9cvLAQS/4iJFHjdR6XGEJFzWQy3yQ//+a5vfwRNbCuM9LH8G7jrBns6+U vVc9PpW1UP/3DfdCvxPC9gul4+R9l31/l+OexbeKMB+5E3IuhtZtw/N0eA3N aLLEZj2BA7+0NJ5aOIMDOzHHRmKfWrhe8qgHHDr5y8T1A78D6VOVs052qfxn w7H2hc9FJskeIK7JkucIu6y0xOYcBh3JmQ65YDjTQYJjzZ+rnI4tPquaEraX lx6TsffxPUjXcJ4HWRt1UN9z4diKzN+XNcMBF7w/Zh54noE8C7l/83cjBiff Nfm+uVG1RfhshfMg8F82uzb01rC9VvH9iW3Ncaihg/zTZG9g7bO2dQ2v2Uds fpOx08P4mYwl7IulJfYPzR7/p4a/7c9gbmUva7IcVvd8wgFXh8L51A1mVo7P mrxAnHcrf1DNvv15djZbOeezJ+bfAsn/s3BdeV6E7W1Njs/O9Y0+IucfHsaA i1ww4DdL/ze/tc4Lj72qtMSmDnqkP85frlT+L/m9F+zcMB6JfQ73vXBeW/bO XNA/PmLgt0o/oO76L+Q+J/99srfJf2/2vihsdxLnaPlG8U5e83vsw3W/24ID v7q0hIM9EjjwcC0O4zuLZ0l4L9WxsMRmX/VCmJf32Tckf214rNGJZ2z8S8Mx JPbF4lkVXjeXFeaAi/o6s0akj5Peid9Z+F15eY5JPUjs3xrWkdS/IDxH5xWW 2MwXHHCtKS3h41mwq3Kt1Pym9LE5DyvD9iWFa6GmtaV9xMgDuyLnCIndXDiX 2ofV3B998tvYqfjbuobK/3r42c0+Z4P03dLr0ndU/h7CNxb0NWH7UV1j6sbi I9alMOfqMC8Su6v8a8OYSwtLbPBPck9nXyWe9WH7CuX8qfl7hn1WzT5i5K0L fwvi+wzyrcrvDtT7buXfO37yiOGnH2JdNA9dc//8juzxOScbw+8L7PPBdM/3 kU3JQc3Eyfu9YR3ZI3leCnORCwb8RS3uk/nZHB57fWmJTR3gwF8u/vcl/2i4 frAv53whsdcJ+0o476rC9wOef9xD8REDz32OewT3mYuFm5RziNwantdXJVuV c2hhif1BZR3JHphcMFcXluDgoe7r6p7D17KPDaXXDmvor0Zy5F4a3Jbw33Jb jgMn+eT2Tk644CVOHvgtWS/8beF+XpI+nd+w7H8a9rVlrR8K+3fDawl9R9gm b5riI2v2EbtWNTQLu112PSX2RvHvTO5NpSU2+IXC7am8t9kVto9Nnnrub/ER I48aqfX6whIuaiC3T9356LvD9n+w6bQd "]]], Lighting->{{"Ambient", RGBColor[0.30100577, 0.224146685, 0.090484535]}, {"Directional", RGBColor[0.2642166, 0.1833123, 0.04261530000000001], ImageScaled[{0, 2, 2}]}, {"Directional", RGBColor[0.2642166, 0.1833123, 0.04261530000000001], ImageScaled[{2, 2, 2}]}, {"Directional", RGBColor[0.2642166, 0.1833123, 0.04261530000000001], ImageScaled[{2, 0, 2}]}}]}, {}, {}, {}, {}}], {}}}, ImageSize->{360., 360.}, ImageSizeRaw->Automatic, ViewAngle->0.43233215253463686`, ViewPoint->{2.228068272775068, -2.546674021222395, -0.01277503362389716}, ViewVertical->{0.40224119821098114`, -0.36695010053016014`, 0.8387786610201166}]], "Output", CellLabel-> "(Local-Devel (4)) \ Out[7]=",ExpressionUUID->"079533ba-c2d8-4801-ac7c-ab2d368f56a9"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{ FractionBox[ RowBox[{"Volume", "[", RowBox[{"ImplicitRegion", "[", RowBox[{"reg", ",", RowBox[{"{", RowBox[{"x", ",", "y", ",", "z"}], "}"}]}], "]"}], "]"}], "vol"], "//", "ToAlgebraicRoot"}], "//", "Timing"}]], "Input", CellLabel-> "(Local-Devel (4)) \ In[11]:=",ExpressionUUID->"d1d54447-7dee-4807-96be-4cce4b391ac9"], Cell[BoxData[ RowBox[{"{", RowBox[{"3.533865`", ",", FractionBox["1", "20"]}], "}"}]], "Output", CellLabel-> "(Local-Devel (4)) \ Out[11]=",ExpressionUUID->"b1bfd693-8b4c-420b-a8a4-9caf8e8535ad"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"cad", "=", RowBox[{"CylindricalDecomposition", "[", RowBox[{"reg", ",", RowBox[{"{", RowBox[{"x", ",", "y", ",", "z"}], "}"}], ",", "\"\\""}], "]"}]}]], "Input", CellLabel-> "(Local-Devel (4)) \ In[12]:=",ExpressionUUID->"2a5d10a0-8c1b-4cc0-8201-d9b247a6b5a7"], Cell[BoxData[ RowBox[{ InterpretationBox[ RowBox[{ TagBox["CylindricalDecompositionFunction", "SummaryHead"], "[", DynamicModuleBox[{Typeset`open$$ = False, Typeset`embedState$$ = "Ready"}, TemplateBox[{ PaneSelectorBox[{False -> GridBox[{{ PaneBox[ ButtonBox[ DynamicBox[ FEPrivate`FrontEndResource["FEBitmaps", "SummaryBoxOpener"]], ButtonFunction :> (Typeset`open$$ = True), Appearance -> None, BaseStyle -> {}, Evaluator -> Automatic, Method -> "Preemptive"], Alignment -> {Center, Center}, ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], GraphicsBox[{{ GrayLevel[0.93], RectangleBox[{-1, -2}, {3.5, 5}]}, { Hue[0.6, 0.7, 0.5], Thickness[0.02], BSplineCurveBox[{{0, 0}, {1, 2}, {2, -1}, {3, 0}}], BSplineCurveBox[{{0, 4}, {1, 3}, {2, 5}, {3, 3.5}}]}, { Thickness[0.01], ArrowBox[{{-1, -1}, {3.5, -1}}], ArrowBox[{{-0.5, -2}, {-0.5, 5}}]}, { Hue[0.6, 0.7, 0.5], Thickness[0.02], LineBox[{{0, -1}, {3, -1}}]}, { Thickness[0.01], Dashing[0.03], LineBox[{{0, -1}, {0, 4}}], LineBox[{{3, -1}, {3, 3.5}}]}}, AspectRatio -> 1, GridLinesStyle -> Directive[ GrayLevel[0.5, 0.4]], PlotRangePadding -> Scaled[0.1], FrameStyle -> Directive[ Thickness[Tiny], GrayLevel[0.7]], Axes -> False, AspectRatio -> 1, ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}], Frame -> True, FrameTicks -> None, FrameStyle -> Directive[ Opacity[0.5], Thickness[Tiny], RGBColor[0.368417, 0.506779, 0.709798]]], GridBox[{{ RowBox[{ TagBox[ "\"Number of variables: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["3", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Number of cells: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["30", "SummaryItem"]}]}}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> { "Columns" -> {{2}}, "Rows" -> {{Automatic}}}, BaseStyle -> { ShowStringCharacters -> False, NumberMarks -> False, PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, BaselinePosition -> {1, 1}], True -> GridBox[{{ PaneBox[ ButtonBox[ DynamicBox[ FEPrivate`FrontEndResource["FEBitmaps", "SummaryBoxCloser"]], ButtonFunction :> (Typeset`open$$ = False), Appearance -> None, BaseStyle -> {}, Evaluator -> Automatic, Method -> "Preemptive"], Alignment -> {Center, Center}, ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], GraphicsBox[{{ GrayLevel[0.93], RectangleBox[{-1, -2}, {3.5, 5}]}, { Hue[0.6, 0.7, 0.5], Thickness[0.02], BSplineCurveBox[{{0, 0}, {1, 2}, {2, -1}, {3, 0}}], BSplineCurveBox[{{0, 4}, {1, 3}, {2, 5}, {3, 3.5}}]}, { Thickness[0.01], ArrowBox[{{-1, -1}, {3.5, -1}}], ArrowBox[{{-0.5, -2}, {-0.5, 5}}]}, { Hue[0.6, 0.7, 0.5], Thickness[0.02], LineBox[{{0, -1}, {3, -1}}]}, { Thickness[0.01], Dashing[0.03], LineBox[{{0, -1}, {0, 4}}], LineBox[{{3, -1}, {3, 3.5}}]}}, AspectRatio -> 1, GridLinesStyle -> Directive[ GrayLevel[0.5, 0.4]], PlotRangePadding -> Scaled[0.1], FrameStyle -> Directive[ Thickness[Tiny], GrayLevel[0.7]], Axes -> False, AspectRatio -> 1, ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}], Frame -> True, FrameTicks -> None, FrameStyle -> Directive[ Opacity[0.5], Thickness[Tiny], RGBColor[0.368417, 0.506779, 0.709798]]], GridBox[{{ RowBox[{ TagBox[ "\"Number of variables: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["3", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Number of cells: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["30", "SummaryItem"]}]}, { RowBox[{ TagBox[ "\"Dimension of solution set: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["3", "SummaryItem"]}]}}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> { "Columns" -> {{2}}, "Rows" -> {{Automatic}}}, BaseStyle -> { ShowStringCharacters -> False, NumberMarks -> False, PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, BaselinePosition -> {1, 1}]}, Dynamic[Typeset`open$$], ImageSize -> Automatic]}, "SummaryPanel"], DynamicModuleValues:>{}], "]"}], CylindricalDecompositionFunction[{ Or[ And[ Inequality[0, Less, CylindricalDecompositionFunction["Variable"][1], LessEqual, ((-15) 2^Rational[1, 2] Root[125 - 50 #^2 + #^4& , 4, 0] - 5 10^Rational[1, 2] Root[125 - 50 #^2 + #^4& , 4, 0] + 15 Root[500 - 50 #^2 + #^4& , 4, 0] + 5 5^Rational[1, 2] Root[500 - 50 #^2 + #^4& , 4, 0])/(- Root[8000 - 400 #^2 + #^4& , 4, 0] Root[125 - 50 #^2 + #^4& , 4, 0] + 2 Root[2000 - 100 #^2 + #^4& , 3, 0] Root[500 - 50 #^2 + #^4& , 4, 0] - 10 2^Rational[1, 2] Root[125 - 50 #^2 + #^4& , 4, 0] Root[5 - 10 #^2 + #^4& , 3, 0])], Inequality[0, Less, CylindricalDecompositionFunction["Variable"][2], Less, Root[5 - 10 #^2 + #^4& , 3, 0] CylindricalDecompositionFunction["Variable"][1]], Inequality[0, Less, CylindricalDecompositionFunction["Variable"][3], LessEqual, (5 + 5 5^Rational[1, 2])^(-1) Root[2000 - 500 #^2 + #^4& , 4, 0]]], And[ Inequality[((-15) 2^Rational[1, 2] Root[125 - 50 #^2 + #^4& , 4, 0] - 5 10^Rational[1, 2] Root[125 - 50 #^2 + #^4& , 4, 0] + 15 Root[500 - 50 #^2 + #^4& , 4, 0] + 5 5^Rational[1, 2] Root[500 - 50 #^2 + #^4& , 4, 0])/(- Root[8000 - 400 #^2 + #^4& , 4, 0] Root[125 - 50 #^2 + #^4& , 4, 0] + 2 Root[2000 - 100 #^2 + #^4& , 3, 0] Root[500 - 50 #^2 + #^4& , 4, 0] - 10 2^Rational[1, 2] Root[125 - 50 #^2 + #^4& , 4, 0] Root[5 - 10 #^2 + #^4& , 3, 0]), Less, CylindricalDecompositionFunction["Variable"][1], LessEqual, (15 2^Rational[1, 2] + 5 10^Rational[1, 2])/( Root[8000 - 400 #^2 + #^4& , 4, 0] + 10 2^Rational[1, 2] Root[5 - 10 #^2 + #^4& , 3, 0])], Or[ And[ Inequality[0, Less, CylindricalDecompositionFunction["Variable"][2], LessEqual, Rational[1, 10] 2^Rational[-1, 2] Root[125 - 50 #^2 + #^4& , 4, 0]^(-1) ( 15 2^Rational[1, 2] Root[125 - 50 #^2 + #^4& , 4, 0] + 5 10^Rational[1, 2] Root[125 - 50 #^2 + #^4& , 4, 0] - 15 Root[500 - 50 #^2 + #^4& , 4, 0] - 5 5^Rational[1, 2] Root[500 - 50 #^2 + #^4& , 4, 0] - Root[8000 - 400 #^2 + #^4& , 4, 0] Root[125 - 50 #^2 + #^4& , 4, 0] CylindricalDecompositionFunction["Variable"][1] + 2 Root[2000 - 100 #^2 + #^4& , 3, 0] Root[500 - 50 #^2 + #^4& , 4, 0] CylindricalDecompositionFunction["Variable"][1])], Inequality[0, Less, CylindricalDecompositionFunction["Variable"][3], LessEqual, Rational[1, 2] Root[125 - 50 #^2 + #^4& , 4, 0]^(-1) (15 + 5 5^Rational[1, 2] - 2 Root[2000 - 100 #^2 + #^4& , 3, 0] CylindricalDecompositionFunction["Variable"][1])]], And[ Inequality[ Rational[1, 10] 2^Rational[-1, 2] Root[125 - 50 #^2 + #^4& , 4, 0]^(-1) ( 15 2^Rational[1, 2] Root[125 - 50 #^2 + #^4& , 4, 0] + 5 10^Rational[1, 2] Root[125 - 50 #^2 + #^4& , 4, 0] - 15 Root[500 - 50 #^2 + #^4& , 4, 0] - 5 5^Rational[1, 2] Root[500 - 50 #^2 + #^4& , 4, 0] - Root[8000 - 400 #^2 + #^4& , 4, 0] Root[125 - 50 #^2 + #^4& , 4, 0] CylindricalDecompositionFunction["Variable"][1] + 2 Root[2000 - 100 #^2 + #^4& , 3, 0] Root[500 - 50 #^2 + #^4& , 4, 0] CylindricalDecompositionFunction["Variable"][1]), Less, CylindricalDecompositionFunction["Variable"][2], Less, Root[5 - 10 #^2 + #^4& , 3, 0] CylindricalDecompositionFunction["Variable"][1]], Inequality[0, Less, CylindricalDecompositionFunction["Variable"][3], LessEqual, Rational[1, 2] Root[500 - 50 #^2 + #^4& , 4, 0]^(-1) (15 2^Rational[1, 2] + 5 10^Rational[1, 2] - Root[8000 - 400 #^2 + #^4& , 4, 0] CylindricalDecompositionFunction["Variable"][1] - 10 2^Rational[1, 2] CylindricalDecompositionFunction["Variable"][2])]]]], And[ Inequality[(15 2^Rational[1, 2] + 5 10^Rational[1, 2])/( Root[8000 - 400 #^2 + #^4& , 4, 0] + 10 2^Rational[1, 2] Root[5 - 10 #^2 + #^4& , 3, 0]), Less, CylindricalDecompositionFunction["Variable"][1], Less, ((-15) Root[125 - 50 #^2 + #^4& , 3, 0] - 5 5^Rational[1, 2] Root[125 - 50 #^2 + #^4& , 3, 0] + 15 Root[125 - 50 #^2 + #^4& , 4, 0] + 5 5^Rational[1, 2] Root[125 - 50 #^2 + #^4& , 4, 0])/((-2) Root[2000 - 100 #^2 + #^4& , 3, 0] Root[125 - 50 #^2 + #^4& , 3, 0] + 2 Root[2000 - 100 #^2 + #^4& , 4, 0] Root[125 - 50 #^2 + #^4& , 4, 0])], Or[ And[ Inequality[0, Less, CylindricalDecompositionFunction["Variable"][2], LessEqual, Rational[1, 10] 2^Rational[-1, 2] Root[125 - 50 #^2 + #^4& , 4, 0]^(-1) ( 15 2^Rational[1, 2] Root[125 - 50 #^2 + #^4& , 4, 0] + 5 10^Rational[1, 2] Root[125 - 50 #^2 + #^4& , 4, 0] - 15 Root[500 - 50 #^2 + #^4& , 4, 0] - 5 5^Rational[1, 2] Root[500 - 50 #^2 + #^4& , 4, 0] - Root[8000 - 400 #^2 + #^4& , 4, 0] Root[125 - 50 #^2 + #^4& , 4, 0] CylindricalDecompositionFunction["Variable"][1] + 2 Root[2000 - 100 #^2 + #^4& , 3, 0] Root[500 - 50 #^2 + #^4& , 4, 0] CylindricalDecompositionFunction["Variable"][1])], Inequality[0, Less, CylindricalDecompositionFunction["Variable"][3], LessEqual, Rational[1, 2] Root[125 - 50 #^2 + #^4& , 4, 0]^(-1) (15 + 5 5^Rational[1, 2] - 2 Root[2000 - 100 #^2 + #^4& , 3, 0] CylindricalDecompositionFunction["Variable"][1])]], And[ Inequality[ Rational[1, 10] 2^Rational[-1, 2] Root[125 - 50 #^2 + #^4& , 4, 0]^(-1) ( 15 2^Rational[1, 2] Root[125 - 50 #^2 + #^4& , 4, 0] + 5 10^Rational[1, 2] Root[125 - 50 #^2 + #^4& , 4, 0] - 15 Root[500 - 50 #^2 + #^4& , 4, 0] - 5 5^Rational[1, 2] Root[500 - 50 #^2 + #^4& , 4, 0] - Root[8000 - 400 #^2 + #^4& , 4, 0] Root[125 - 50 #^2 + #^4& , 4, 0] CylindricalDecompositionFunction["Variable"][1] + 2 Root[2000 - 100 #^2 + #^4& , 3, 0] Root[500 - 50 #^2 + #^4& , 4, 0] CylindricalDecompositionFunction["Variable"][1]), Less, CylindricalDecompositionFunction["Variable"][2], Less, Rational[1, 10] 2^Rational[-1, 2] (15 2^Rational[1, 2] + 5 10^Rational[1, 2] - Root[8000 - 400 #^2 + #^4& , 4, 0] CylindricalDecompositionFunction["Variable"][1])], Inequality[0, Less, CylindricalDecompositionFunction["Variable"][3], LessEqual, Rational[1, 2] Root[500 - 50 #^2 + #^4& , 4, 0]^(-1) (15 2^Rational[1, 2] + 5 10^Rational[1, 2] - Root[8000 - 400 #^2 + #^4& , 4, 0] CylindricalDecompositionFunction["Variable"][1] - 10 2^Rational[1, 2] CylindricalDecompositionFunction["Variable"][2])]]]], And[ CylindricalDecompositionFunction["Variable"][ 1] == ((-15) Root[125 - 50 #^2 + #^4& , 3, 0] - 5 5^Rational[1, 2] Root[125 - 50 #^2 + #^4& , 3, 0] + 15 Root[125 - 50 #^2 + #^4& , 4, 0] + 5 5^Rational[1, 2] Root[125 - 50 #^2 + #^4& , 4, 0])/((-2) Root[2000 - 100 #^2 + #^4& , 3, 0] Root[125 - 50 #^2 + #^4& , 3, 0] + 2 Root[2000 - 100 #^2 + #^4& , 4, 0] Root[125 - 50 #^2 + #^4& , 4, 0]), Inequality[0, Less, CylindricalDecompositionFunction["Variable"][2], Less, Rational[1, 10] 2^Rational[-1, 2] (15 2^Rational[1, 2] + 5 10^Rational[1, 2] - Root[8000 - 400 #^2 + #^4& , 4, 0] CylindricalDecompositionFunction["Variable"][1])], Inequality[0, Less, CylindricalDecompositionFunction["Variable"][3], LessEqual, Rational[1, 2] Root[500 - 50 #^2 + #^4& , 4, 0]^(-1) (15 2^Rational[1, 2] + 5 10^Rational[1, 2] - Root[8000 - 400 #^2 + #^4& , 4, 0] CylindricalDecompositionFunction["Variable"][1] - 10 2^Rational[1, 2] CylindricalDecompositionFunction["Variable"][2])]], And[ Inequality[((-15) Root[125 - 50 #^2 + #^4& , 3, 0] - 5 5^Rational[1, 2] Root[125 - 50 #^2 + #^4& , 3, 0] + 15 Root[125 - 50 #^2 + #^4& , 4, 0] + 5 5^Rational[1, 2] Root[125 - 50 #^2 + #^4& , 4, 0])/((-2) Root[2000 - 100 #^2 + #^4& , 3, 0] Root[125 - 50 #^2 + #^4& , 3, 0] + 2 Root[2000 - 100 #^2 + #^4& , 4, 0] Root[125 - 50 #^2 + #^4& , 4, 0]), Less, CylindricalDecompositionFunction["Variable"][1], Less, Rational[1, 2] (15 + 5 5^Rational[1, 2])/Root[ 2000 - 100 #^2 + #^4& , 4, 0]], Or[ And[ Inequality[0, Less, CylindricalDecompositionFunction["Variable"][2], LessEqual, Rational[1, 10] 2^Rational[-1, 2] Root[125 - 50 #^2 + #^4& , 3, 0]^(-1) ( 15 2^Rational[1, 2] Root[125 - 50 #^2 + #^4& , 3, 0] + 5 10^Rational[1, 2] Root[125 - 50 #^2 + #^4& , 3, 0] - 15 Root[500 - 50 #^2 + #^4& , 4, 0] - 5 5^Rational[1, 2] Root[500 - 50 #^2 + #^4& , 4, 0] - Root[8000 - 400 #^2 + #^4& , 4, 0] Root[125 - 50 #^2 + #^4& , 3, 0] CylindricalDecompositionFunction["Variable"][1] + 2 Root[2000 - 100 #^2 + #^4& , 4, 0] Root[500 - 50 #^2 + #^4& , 4, 0] CylindricalDecompositionFunction["Variable"][1])], Inequality[0, Less, CylindricalDecompositionFunction["Variable"][3], LessEqual, Rational[1, 2] Root[125 - 50 #^2 + #^4& , 3, 0]^(-1) (15 + 5 5^Rational[1, 2] - 2 Root[2000 - 100 #^2 + #^4& , 4, 0] CylindricalDecompositionFunction["Variable"][1])]], And[ Inequality[ Rational[1, 10] 2^Rational[-1, 2] Root[125 - 50 #^2 + #^4& , 3, 0]^(-1) ( 15 2^Rational[1, 2] Root[125 - 50 #^2 + #^4& , 3, 0] + 5 10^Rational[1, 2] Root[125 - 50 #^2 + #^4& , 3, 0] - 15 Root[500 - 50 #^2 + #^4& , 4, 0] - 5 5^Rational[1, 2] Root[500 - 50 #^2 + #^4& , 4, 0] - Root[8000 - 400 #^2 + #^4& , 4, 0] Root[125 - 50 #^2 + #^4& , 3, 0] CylindricalDecompositionFunction["Variable"][1] + 2 Root[2000 - 100 #^2 + #^4& , 4, 0] Root[500 - 50 #^2 + #^4& , 4, 0] CylindricalDecompositionFunction["Variable"][1]), Less, CylindricalDecompositionFunction["Variable"][2], Less, Rational[1, 10] 2^Rational[-1, 2] (15 2^Rational[1, 2] + 5 10^Rational[1, 2] - Root[8000 - 400 #^2 + #^4& , 4, 0] CylindricalDecompositionFunction["Variable"][1])], Inequality[0, Less, CylindricalDecompositionFunction["Variable"][3], LessEqual, Rational[1, 2] Root[500 - 50 #^2 + #^4& , 4, 0]^(-1) (15 2^Rational[1, 2] + 5 10^Rational[1, 2] - Root[8000 - 400 #^2 + #^4& , 4, 0] CylindricalDecompositionFunction["Variable"][1] - 10 2^Rational[1, 2] CylindricalDecompositionFunction["Variable"][2])]]]]], {3, 3, 30}, 2901223168}], Editable->False, SelectWithContents->True, Selectable->False], "[", RowBox[{"x", ",", "y", ",", "z"}], "]"}]], "Output", CellLabel-> "(Local-Devel (4)) \ Out[12]=",ExpressionUUID->"b463dcff-f761-4b65-980a-7e76a3b4338a"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"20", FractionBox[ RowBox[{"NIntegrate", "[", RowBox[{ RowBox[{ SqrtBox[ RowBox[{ SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]}]], RowBox[{"Boole", "[", "cad", "]"}]}], ",", RowBox[{ RowBox[{"{", RowBox[{"x", ",", "y", ",", "z"}], "}"}], "\[Element]", RowBox[{"FullRegion", "[", "3", "]"}]}]}], "]"}], "vol"]}]], "Input", CellLabel-> "(Local-Devel (4)) \ In[13]:=",ExpressionUUID->"55cf05eb-f312-405f-baae-7cf7d439b8a2"], Cell[BoxData["0.8812884222529994`"], "Output", CellLabel-> "(Local-Devel (4)) \ Out[13]=",ExpressionUUID->"6182c640-0422-496d-b26a-f797ee59c99d"] }, Open ]], Cell[BoxData[ RowBox[{ RowBox[{"(", RowBox[{"rxy", "=", RowBox[{"20", FractionBox[ RowBox[{"Integrate", "[", RowBox[{ RowBox[{ SqrtBox[ RowBox[{ SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]}]], RowBox[{"Boole", "[", "cad", "]"}]}], ",", RowBox[{ RowBox[{"{", RowBox[{"x", ",", "y", ",", "z"}], "}"}], "\[Element]", RowBox[{"FullRegion", "[", "3", "]"}]}]}], "]"}], "vol"]}]}], ")"}], "//", "Timing"}]], "Input", CellLabel-> "(Local-Devel (4)) \ In[14]:=",ExpressionUUID->"7f8a734a-1a36-4893-b3cb-6180d975826d"], Cell[BoxData[ RowBox[{"N", "[", "rxy", "]"}]], "Input",ExpressionUUID->"c2abaacd-b851-4546-8dda-81d1dec1f5e4"], Cell[BoxData[ RowBox[{ RowBox[{"ByteCount", "[", RowBox[{"rxylog", "=", RowBox[{"LogSimplify", "[", RowBox[{"rxy", ",", RowBox[{"Debug", "\[Rule]", "True"}]}], "]"}]}], "]"}], "//", "Timing"}]], "Input",ExpressionUUID->"9a8605e7-af32-4a5d-9e8c-890da13ff72f"], Cell[BoxData[ RowBox[{ RowBox[{"ByteCount", "[", RowBox[{"rxycollect", "=", RowBox[{ RowBox[{"Collect", "[", RowBox[{ RowBox[{"TrigToExp", "[", "rxylog", "]"}], ",", RowBox[{"Log", "[", "_", "]"}]}], "]"}], "//", "RootReduce"}]}], "]"}], "//", "Timing"}]], "Input",ExpressionUUID->"14c290e5-b0be-4518-a159-\ ea0f32acca56"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["MeanCylindricalSquareRadius", "Subsection",ExpressionUUID->"b1294ac9-e7bc-4f74-9eb2-3d00c8879aab"], Cell[CellGroupData[{ Cell[BoxData[ FractionBox[ RowBox[{"NIntegrate", "[", RowBox[{ RowBox[{ SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]}], ",", RowBox[{ RowBox[{"{", RowBox[{"x", ",", "y", ",", "z"}], "}"}], "\[Element]", "p"}]}], "]"}], RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}]]], "Input", CellLabel->"In[32]:=",ExpressionUUID->"21efd536-71de-4f6e-b35b-b4a8952b0d6b"], Cell[BoxData["0.8937754633809952`"], "Output", CellLabel->"Out[32]=",ExpressionUUID->"c2b4708b-c84e-4dd5-9174-46b0ab0b6640"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"(", RowBox[{"i", "=", RowBox[{ FractionBox[ RowBox[{"Integrate", "[", RowBox[{ RowBox[{ SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]}], ",", RowBox[{ RowBox[{"{", RowBox[{"x", ",", "y", ",", "z"}], "}"}], "\[Element]", "p"}]}], "]"}], RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}]], "//", "FullSimplify"}]}], ")"}], "//", "Timing"}]], "Input", CellLabel->"In[30]:=",ExpressionUUID->"d420e116-2b47-4691-adc7-a5793b633fa3"], Cell[BoxData[ RowBox[{"{", RowBox[{"13.776031`", ",", FractionBox[ RowBox[{"690", "+", RowBox[{"271", " ", SqrtBox["5"]}]}], "1450"]}], "}"}]], "Output", CellLabel->"Out[30]=",ExpressionUUID->"3835c912-f74f-4e52-9a95-6cc612fffc3b"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"N", "[", "i", "]"}]], "Input", CellLabel->"In[31]:=",ExpressionUUID->"bc7bb041-808a-415f-beee-ecd33e01a60d"], Cell[BoxData["0.8937754633809951`"], "Output", CellLabel->"Out[31]=",ExpressionUUID->"a531769f-5052-40b0-80d0-cbac87a2d747"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["MeanSphericalRadius", "Subsection", FontColor->RGBColor[ 1, 0, 0],ExpressionUUID->"2b46a554-96e8-419a-af1b-48d7bdeeaf66"], Cell[CellGroupData[{ Cell[BoxData[ FractionBox[ RowBox[{"NIntegrate", "[", RowBox[{ SqrtBox[ RowBox[{ SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"], "+", SuperscriptBox["z", "2"]}]], ",", RowBox[{ RowBox[{"{", RowBox[{"x", ",", "y", ",", "z"}], "}"}], "\[Element]", "p"}]}], "]"}], "vol"]], "Input",ExpressionUUID->"a40dc46e-b27f-471a-9888-d77b6ccdb3bb"], Cell[BoxData["1.120289061834151`"], "Output", CellLabel->"Out[54]=",ExpressionUUID->"3900a967-4b67-4978-a891-11ae276d591e"] }, Open ]], Cell[BoxData[ RowBox[{ RowBox[{"(", RowBox[{"i", "=", FractionBox[ RowBox[{"Integrate", "[", RowBox[{ SqrtBox[ RowBox[{ SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"], "+", SuperscriptBox["z", "2"]}]], ",", RowBox[{ RowBox[{"{", RowBox[{"x", ",", "y", ",", "z"}], "}"}], "\[Element]", "p"}]}], "]"}], "vol"]}], ")"}], "//", "Timing"}]], "Input",ExpressionUUID->\ "3c8df1f5-2efb-4c0d-bf6d-d3a1d384f315"] }, Closed]], Cell[CellGroupData[{ Cell["MeanSphericalSquareRadius", "Subsection",ExpressionUUID->"ad15bf9e-2d73-4396-9140-51348387a1f9"], Cell[CellGroupData[{ Cell[BoxData[ FractionBox[ RowBox[{"NIntegrate", "[", RowBox[{ RowBox[{ SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"], "+", SuperscriptBox["z", "2"]}], ",", RowBox[{ RowBox[{"{", RowBox[{"x", ",", "y", ",", "z"}], "}"}], "\[Element]", "p"}]}], "]"}], RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}]]], "Input", CellLabel->"In[27]:=",ExpressionUUID->"1dd0cf6f-1da6-42e6-99ae-a3fb6ad2db55"], Cell[BoxData["1.3406631950714927`"], "Output", CellLabel->"Out[27]=",ExpressionUUID->"deacbc79-0335-49dd-a0be-ab38a38eedba"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"(", RowBox[{"i", "=", RowBox[{ FractionBox[ RowBox[{"Integrate", "[", RowBox[{ RowBox[{ SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"], "+", SuperscriptBox["z", "2"]}], ",", RowBox[{ RowBox[{"{", RowBox[{"x", ",", "y", ",", "z"}], "}"}], "\[Element]", "p"}]}], "]"}], RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}]], "//", "FullSimplify"}]}], ")"}], "//", "Timing"}]], "Input", CellLabel->"In[26]:=",ExpressionUUID->"cf3da11a-5965-4a47-b8eb-a5a0b70aa019"], Cell[BoxData[ RowBox[{"{", RowBox[{"13.755455`", ",", FractionBox[ RowBox[{"3", " ", RowBox[{"(", RowBox[{"690", "+", RowBox[{"271", " ", SqrtBox["5"]}]}], ")"}]}], "2900"]}], "}"}]], "Output", CellLabel->"Out[26]=",ExpressionUUID->"c45140f1-2ba0-4ae7-a6c1-1f49c183f2cc"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"N", "[", "i", "]"}]], "Input", CellLabel->"In[28]:=",ExpressionUUID->"971f1478-8306-49a5-9247-c76e015c95b5"], Cell[BoxData["1.340663195071493`"], "Output", CellLabel->"Out[28]=",ExpressionUUID->"a614e505-1cfb-4845-b524-220a8ddefd18"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Midradius", "Subsection",ExpressionUUID->"6439790d-5558-4fb0-9178-8c6534b839c4"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}]], "Input", CellLabel->"In[55]:=",ExpressionUUID->"c2f5ed05-f00c-4779-bb1a-56b4f974356f"], Cell[BoxData[ RowBox[{ FractionBox["1", "2"], " ", SqrtBox[ RowBox[{"5", "+", RowBox[{"2", " ", SqrtBox["5"]}]}]]}]], "Output", CellLabel->"Out[55]=",ExpressionUUID->"b1e3a224-6db8-48b2-bf6d-7396c21115f4"] }, Open ]], Cell[BoxData[ RowBox[{ RowBox[{"Midsphere", "[", RowBox[{"p", ",", RowBox[{"\"\\"", "\[Rule]", "FullSimplify"}]}], "]"}], "//", "Timing"}]], "Input", CellLabel-> "(Local-Devel (5)) \ In[8]:=",ExpressionUUID->"24bf29e7-56e0-4ce7-9473-3e446fc5d46b"] }, Open ]], Cell[CellGroupData[{ Cell["Polygons", "Subsection",ExpressionUUID->"001314f8-3730-49af-aa31-fc349d03fc7b"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}]], "Input", CellLabel-> "In[210]:=",ExpressionUUID->"213bb3e7-6f68-4fdf-b003-b21cabcadfde"], Cell[BoxData["32"], "Output", CellLabel-> "Out[210]=",ExpressionUUID->"601231d5-00d9-4d6d-b6bb-e8432ea03e5c"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Graphics3D", "/@", RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}]}]], "Input", CellLabel-> "In[211]:=",ExpressionUUID->"abfcc2a8-9025-4413-9ca2-3341814eb829"], Cell[BoxData[ RowBox[{"{", RowBox[{ Graphics3DBox[ Polygon3DBox[ NCache[{{Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 5 #^2 + 5 #^4& , 1, 0], 0, (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], Rational[-1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}}, {{-0.2628655560595668, 0.8090169943749475, 1.3763819204711736`}, {-0.8506508083520399, 0, 1.3763819204711736`}, {-0.2628655560595668, -0.8090169943749475, 1.3763819204711736`}, {0.6881909602355868, -0.5, 1.3763819204711736`}, {0.6881909602355868, 0.5, 1.3763819204711736`}}]]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 5 #^2 + 5 #^4& , 1, 0], 0, (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}}, {{-1.1135163644116068`, 0.8090169943749475, 0.85065080835204}, {-0.8506508083520399, 0, 1.3763819204711736`}, {-0.2628655560595668, 0.8090169943749475, 1.3763819204711736`}}]]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 5 #^2 + 5 #^4& , 1, 0], 0, (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}}, {{-1.1135163644116068`, -0.8090169943749475, 0.85065080835204}, {-0.2628655560595668, -0.8090169943749475, 1.3763819204711736`}, {-0.8506508083520399, 0, 1.3763819204711736`}}]]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], Rational[-1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}}, {{0.42532540417601994`, -1.3090169943749475`, 0.85065080835204}, {0.6881909602355868, -0.5, 1.3763819204711736`}, {-0.2628655560595668, -0.8090169943749475, 1.3763819204711736`}}]]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{(1 + 2 5^Rational[-1, 2])^Rational[1, 2], 0, (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], Rational[-1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}}, {{1.3763819204711736`, 0, 0.85065080835204}, { 0.6881909602355868, 0.5, 1.3763819204711736`}, { 0.6881909602355868, -0.5, 1.3763819204711736`}}]]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}}, {{0.42532540417601994`, 1.3090169943749475`, 0.85065080835204}, {-0.2628655560595668, 0.8090169943749475, 1.3763819204711736`}, {0.6881909602355868, 0.5, 1.3763819204711736`}}]]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), 0}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}}, {{ 0.9510565162951535, 1.3090169943749475`, 0}, { 0, 1.618033988749895, 0}, {0.42532540417601994`, 1.3090169943749475`, 0.85065080835204}}]]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2], 0}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}}, {{-0.9510565162951535, 1.3090169943749475`, 0}, {-1.5388417685876268`, 0.5, 0}, {-1.1135163644116068`, 0.8090169943749475, 0.85065080835204}}]]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}}, {{-1.5388417685876268`, -0.5, 0}, {-0.9510565162951535, -1.3090169943749475`, 0}, {-1.1135163644116068`, -0.8090169943749475, 0.85065080835204}}]]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}}, {{ 0, -1.618033988749895, 0}, { 0.9510565162951535, -1.3090169943749475`, 0}, { 0.42532540417601994`, -1.3090169943749475`, 0.85065080835204}}]]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2], 0}, {(1 + 2 5^Rational[-1, 2])^Rational[1, 2], 0, (Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}}, {{ 1.5388417685876268`, -0.5, 0}, {1.5388417685876268`, 0.5, 0}, { 1.3763819204711736`, 0, 0.85065080835204}}]]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{0, Rational[1, 2] (1 + 5^Rational[1, 2]), 0}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}}, {{ 0, 1.618033988749895, 0}, {-0.9510565162951535, 1.3090169943749475`, 0}, {-1.1135163644116068`, 0.8090169943749475, 0.85065080835204}, {-0.2628655560595668, 0.8090169943749475, 1.3763819204711736`}, {0.42532540417601994`, 1.3090169943749475`, 0.85065080835204}}]]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2], 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 5 #^2 + 5 #^4& , 1, 0], 0, (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}}, {{-1.5388417685876268`, 0.5, 0}, {-1.5388417685876268`, -0.5, 0}, {-1.1135163644116068`, -0.8090169943749475, 0.85065080835204}, {-0.8506508083520399, 0, 1.3763819204711736`}, {-1.1135163644116068`, 0.8090169943749475, 0.85065080835204}}]]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, { 0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}}, {{-0.9510565162951535, -1.3090169943749475`, 0}, { 0, -1.618033988749895, 0}, {0.42532540417601994`, -1.3090169943749475`, 0.85065080835204}, {-0.2628655560595668, -0.8090169943749475, 1.3763819204711736`}, {-1.1135163644116068`, -0.8090169943749475, 0.85065080835204}}]]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, {(1 + 2 5^Rational[-1, 2])^Rational[1, 2], 0, (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], Rational[-1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}}, {{ 0.9510565162951535, -1.3090169943749475`, 0}, { 1.5388417685876268`, -0.5, 0}, { 1.3763819204711736`, 0, 0.85065080835204}, {0.6881909602355868, -0.5, 1.3763819204711736`}, {0.42532540417601994`, -1.3090169943749475`, 0.85065080835204}}]]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2], 0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(1 + 2 5^Rational[-1, 2])^Rational[1, 2], 0, (Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}}, {{ 1.5388417685876268`, 0.5, 0}, { 0.9510565162951535, 1.3090169943749475`, 0}, {0.42532540417601994`, 1.3090169943749475`, 0.85065080835204}, {0.6881909602355868, 0.5, 1.3763819204711736`}, {1.3763819204711736`, 0, 0.85065080835204}}]]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2], 0, -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[ 1, 2]}}, {{-0.6881909602355868, -0.5, -1.3763819204711736`}, \ {-0.6881909602355868, 0.5, -1.3763819204711736`}, {0.2628655560595668, 0.8090169943749475, -1.3763819204711736`}, { 0.85065080835204, 0, -1.3763819204711736`}, { 0.2628655560595668, -0.8090169943749475, -1.3763819204711736`}}]]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2], 0, -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}}, {{ 0.2628655560595668, -0.8090169943749475, -1.3763819204711736`}, { 0.85065080835204, 0, -1.3763819204711736`}, { 1.1135163644116066`, -0.8090169943749475, -0.8506508083520399}}]]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{(Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2], 0, -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}}, {{ 0.85065080835204, 0, -1.3763819204711736`}, {0.2628655560595668, 0.8090169943749475, -1.3763819204711736`}, {1.1135163644116066`, 0.8090169943749475, -0.8506508083520399}}]]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}}, {{0.2628655560595668, 0.8090169943749475, -1.3763819204711736`}, {-0.6881909602355868, 0.5, -1.3763819204711736`}, {-0.42532540417601994`, 1.3090169943749475`, -0.8506508083520399}}]]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {-(1 + 2 5^Rational[-1, 2])^Rational[1, 2], 0, Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}}, {{-0.6881909602355868, 0.5, -1.3763819204711736`}, {-0.6881909602355868, -0.5, \ -1.3763819204711736`}, {-1.3763819204711736`, 0, -0.8506508083520399}}]]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {( Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}}, {{-0.6881909602355868, -0.5, -1.3763819204711736`}, { 0.2628655560595668, -0.8090169943749475, -1.3763819204711736`}, \ {-0.42532540417601994`, -1.3090169943749475`, -0.8506508083520399}}]]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, { 0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}}, {{-0.42532540417601994`, -1.3090169943749475`, \ -0.8506508083520399}, { 0, -1.618033988749895, 0}, {-0.9510565162951535, -1.3090169943749475`, 0}}]]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}}, {{ 1.1135163644116066`, -0.8090169943749475, -0.8506508083520399}, { 1.5388417685876268`, -0.5, 0}, { 0.9510565162951535, -1.3090169943749475`, 0}}]]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2], 0}}, {{1.1135163644116066`, 0.8090169943749475, -0.8506508083520399}, { 0.9510565162951535, 1.3090169943749475`, 0}, { 1.5388417685876268`, 0.5, 0}}]]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), 0}}, {{-0.42532540417601994`, 1.3090169943749475`, -0.8506508083520399}, {-0.9510565162951535, 1.3090169943749475`, 0}, {0, 1.618033988749895, 0}}]]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{-(1 + 2 5^Rational[-1, 2])^Rational[1, 2], 0, Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2], 0}}, {{-1.3763819204711736`, 0, -0.8506508083520399}, {-1.5388417685876268`, -0.5, 0}, {-1.5388417685876268`, 0.5, 0}}]]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, { 0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}}, {{-0.42532540417601994`, -1.3090169943749475`, \ -0.8506508083520399}, { 0.2628655560595668, -0.8090169943749475, -1.3763819204711736`}, { 1.1135163644116066`, -0.8090169943749475, -0.8506508083520399}, { 0.9510565162951535, -1.3090169943749475`, 0}, { 0, -1.618033988749895, 0}}]]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2], 0, -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2], 0}, {Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}}, {{ 1.1135163644116066`, -0.8090169943749475, -0.8506508083520399}, { 0.85065080835204, 0, -1.3763819204711736`}, {1.1135163644116066`, 0.8090169943749475, -0.8506508083520399}, { 1.5388417685876268`, 0.5, 0}, {1.5388417685876268`, -0.5, 0}}]]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), 0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}}, {{ 1.1135163644116066`, 0.8090169943749475, -0.8506508083520399}, { 0.2628655560595668, 0.8090169943749475, -1.3763819204711736`}, {-0.42532540417601994`, 1.3090169943749475`, -0.8506508083520399}, {0, 1.618033988749895, 0}, { 0.9510565162951535, 1.3090169943749475`, 0}}]]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {-(1 + 2 5^Rational[-1, 2])^Rational[1, 2], 0, Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2], 0}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}}, {{-0.42532540417601994`, 1.3090169943749475`, -0.8506508083520399}, {-0.6881909602355868, 0.5, -1.3763819204711736`}, {-1.3763819204711736`, 0, -0.8506508083520399}, {-1.5388417685876268`, 0.5, 0}, {-0.9510565162951535, 1.3090169943749475`, 0}}]]], ",", Graphics3DBox[ Polygon3DBox[ NCache[{{-(1 + 2 5^Rational[-1, 2])^Rational[1, 2], 0, Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}}, {{-1.3763819204711736`, 0, -0.8506508083520399}, {-0.6881909602355868, -0.5, \ -1.3763819204711736`}, {-0.42532540417601994`, -1.3090169943749475`, \ -0.8506508083520399}, {-0.9510565162951535, -1.3090169943749475`, 0}, {-1.5388417685876268`, -0.5, 0}}]]]}], "}"}]], "Output", CellLabel-> "Out[211]=",ExpressionUUID->"2d4f42ab-c279-49c9-a4f5-ea7b644fd55e"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Show", "[", "%", "]"}]], "Input", CellLabel-> "In[212]:=",ExpressionUUID->"74a5cb71-2dab-4e84-8763-26cfb1314007"], Cell[BoxData[ Graphics3DBox[{ Polygon3DBox[ NCache[{{Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 5 #^2 + 5 #^4& , 1, 0], 0, (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], Rational[-1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}}, {{-0.2628655560595668, 0.8090169943749475, 1.3763819204711736`}, {-0.8506508083520399, 0, 1.3763819204711736`}, {-0.2628655560595668, -0.8090169943749475, 1.3763819204711736`}, {0.6881909602355868, -0.5, 1.3763819204711736`}, { 0.6881909602355868, 0.5, 1.3763819204711736`}}]], Polygon3DBox[ NCache[{{Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 5 #^2 + 5 #^4& , 1, 0], 0, (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}}, {{-1.1135163644116068`, 0.8090169943749475, 0.85065080835204}, {-0.8506508083520399, 0, 1.3763819204711736`}, {-0.2628655560595668, 0.8090169943749475, 1.3763819204711736`}}]], Polygon3DBox[ NCache[{{Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 5 #^2 + 5 #^4& , 1, 0], 0, (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}}, {{-1.1135163644116068`, -0.8090169943749475, 0.85065080835204}, {-0.2628655560595668, -0.8090169943749475, 1.3763819204711736`}, {-0.8506508083520399, 0, 1.3763819204711736`}}]], Polygon3DBox[ NCache[{{(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], Rational[-1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}}, {{0.42532540417601994`, -1.3090169943749475`, 0.85065080835204}, {0.6881909602355868, -0.5, 1.3763819204711736`}, {-0.2628655560595668, -0.8090169943749475, 1.3763819204711736`}}]], Polygon3DBox[ NCache[{{(1 + 2 5^Rational[-1, 2])^Rational[1, 2], 0, (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], Rational[-1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}}, {{1.3763819204711736`, 0, 0.85065080835204}, { 0.6881909602355868, 0.5, 1.3763819204711736`}, { 0.6881909602355868, -0.5, 1.3763819204711736`}}]], Polygon3DBox[ NCache[{{(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}}, {{0.42532540417601994`, 1.3090169943749475`, 0.85065080835204}, {-0.2628655560595668, 0.8090169943749475, 1.3763819204711736`}, {0.6881909602355868, 0.5, 1.3763819204711736`}}]], Polygon3DBox[ NCache[{{(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), 0}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}}, {{ 0.9510565162951535, 1.3090169943749475`, 0}, { 0, 1.618033988749895, 0}, {0.42532540417601994`, 1.3090169943749475`, 0.85065080835204}}]], Polygon3DBox[ NCache[{{Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2], 0}, {Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}}, {{-0.9510565162951535, 1.3090169943749475`, 0}, {-1.5388417685876268`, 0.5, 0}, {-1.1135163644116068`, 0.8090169943749475, 0.85065080835204}}]], Polygon3DBox[ NCache[{{Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}}, {{-1.5388417685876268`, -0.5, 0}, {-0.9510565162951535, -1.3090169943749475`, 0}, {-1.1135163644116068`, -0.8090169943749475, 0.85065080835204}}]], Polygon3DBox[ NCache[{{0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}}, {{ 0, -1.618033988749895, 0}, { 0.9510565162951535, -1.3090169943749475`, 0}, { 0.42532540417601994`, -1.3090169943749475`, 0.85065080835204}}]], Polygon3DBox[ NCache[{{Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2], 0}, {(1 + 2 5^Rational[-1, 2])^Rational[1, 2], 0, (Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}}, {{ 1.5388417685876268`, -0.5, 0}, {1.5388417685876268`, 0.5, 0}, { 1.3763819204711736`, 0, 0.85065080835204}}]], Polygon3DBox[ NCache[{{0, Rational[1, 2] (1 + 5^Rational[1, 2]), 0}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}}, {{ 0, 1.618033988749895, 0}, {-0.9510565162951535, 1.3090169943749475`, 0}, {-1.1135163644116068`, 0.8090169943749475, 0.85065080835204}, {-0.2628655560595668, 0.8090169943749475, 1.3763819204711736`}, {0.42532540417601994`, 1.3090169943749475`, 0.85065080835204}}]], Polygon3DBox[ NCache[{{Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2], 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 5 #^2 + 5 #^4& , 1, 0], 0, (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}}, {{-1.5388417685876268`, 0.5, 0}, {-1.5388417685876268`, -0.5, 0}, {-1.1135163644116068`, -0.8090169943749475, 0.85065080835204}, {-0.8506508083520399, 0, 1.3763819204711736`}, {-1.1135163644116068`, 0.8090169943749475, 0.85065080835204}}]], Polygon3DBox[ NCache[{{Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, { 0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}}, {{-0.9510565162951535, -1.3090169943749475`, 0}, { 0, -1.618033988749895, 0}, {0.42532540417601994`, -1.3090169943749475`, 0.85065080835204}, {-0.2628655560595668, -0.8090169943749475, 1.3763819204711736`}, {-1.1135163644116068`, -0.8090169943749475, 0.85065080835204}}]], Polygon3DBox[ NCache[{{(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, {(1 + 2 5^Rational[-1, 2])^Rational[1, 2], 0, (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], Rational[-1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}}, {{ 0.9510565162951535, -1.3090169943749475`, 0}, { 1.5388417685876268`, -0.5, 0}, { 1.3763819204711736`, 0, 0.85065080835204}, {0.6881909602355868, -0.5, 1.3763819204711736`}, {0.42532540417601994`, -1.3090169943749475`, 0.85065080835204}}]], Polygon3DBox[ NCache[{{Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2], 0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(1 + 2 5^Rational[-1, 2])^Rational[1, 2], 0, (Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}}, {{ 1.5388417685876268`, 0.5, 0}, { 0.9510565162951535, 1.3090169943749475`, 0}, {0.42532540417601994`, 1.3090169943749475`, 0.85065080835204}, {0.6881909602355868, 0.5, 1.3763819204711736`}, {1.3763819204711736`, 0, 0.85065080835204}}]], Polygon3DBox[ NCache[{{Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2], 0, -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[ 1, 2]}}, {{-0.6881909602355868, -0.5, -1.3763819204711736`}, \ {-0.6881909602355868, 0.5, -1.3763819204711736`}, {0.2628655560595668, 0.8090169943749475, -1.3763819204711736`}, { 0.85065080835204, 0, -1.3763819204711736`}, { 0.2628655560595668, -0.8090169943749475, -1.3763819204711736`}}]], Polygon3DBox[ NCache[{{(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2], 0, -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}}, {{ 0.2628655560595668, -0.8090169943749475, -1.3763819204711736`}, { 0.85065080835204, 0, -1.3763819204711736`}, { 1.1135163644116066`, -0.8090169943749475, -0.8506508083520399}}]], Polygon3DBox[ NCache[{{(Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2], 0, -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}}, {{ 0.85065080835204, 0, -1.3763819204711736`}, {0.2628655560595668, 0.8090169943749475, -1.3763819204711736`}, {1.1135163644116066`, 0.8090169943749475, -0.8506508083520399}}]], Polygon3DBox[ NCache[{{(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}}, {{0.2628655560595668, 0.8090169943749475, -1.3763819204711736`}, {-0.6881909602355868, 0.5, -1.3763819204711736`}, {-0.42532540417601994`, 1.3090169943749475`, -0.8506508083520399}}]], Polygon3DBox[ NCache[{{Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {-(1 + 2 5^Rational[-1, 2])^Rational[1, 2], 0, Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}}, {{-0.6881909602355868, 0.5, -1.3763819204711736`}, {-0.6881909602355868, -0.5, \ -1.3763819204711736`}, {-1.3763819204711736`, 0, -0.8506508083520399}}]], Polygon3DBox[ NCache[{{Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {( Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}}, {{-0.6881909602355868, -0.5, -1.3763819204711736`}, { 0.2628655560595668, -0.8090169943749475, -1.3763819204711736`}, \ {-0.42532540417601994`, -1.3090169943749475`, -0.8506508083520399}}]], Polygon3DBox[ NCache[{{Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, { 0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}}, {{-0.42532540417601994`, -1.3090169943749475`, \ -0.8506508083520399}, { 0, -1.618033988749895, 0}, {-0.9510565162951535, -1.3090169943749475`, 0}}]], Polygon3DBox[ NCache[{{(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}}, {{ 1.1135163644116066`, -0.8090169943749475, -0.8506508083520399}, { 1.5388417685876268`, -0.5, 0}, { 0.9510565162951535, -1.3090169943749475`, 0}}]], Polygon3DBox[ NCache[{{(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2], 0}}, {{1.1135163644116066`, 0.8090169943749475, -0.8506508083520399}, { 0.9510565162951535, 1.3090169943749475`, 0}, { 1.5388417685876268`, 0.5, 0}}]], Polygon3DBox[ NCache[{{Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), 0}}, {{-0.42532540417601994`, 1.3090169943749475`, -0.8506508083520399}, {-0.9510565162951535, 1.3090169943749475`, 0}, {0, 1.618033988749895, 0}}]], Polygon3DBox[ NCache[{{-(1 + 2 5^Rational[-1, 2])^Rational[1, 2], 0, Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2], 0}}, {{-1.3763819204711736`, 0, -0.8506508083520399}, {-1.5388417685876268`, -0.5, 0}, {-1.5388417685876268`, 0.5, 0}}]], Polygon3DBox[ NCache[{{Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, { 0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}}, {{-0.42532540417601994`, -1.3090169943749475`, \ -0.8506508083520399}, { 0.2628655560595668, -0.8090169943749475, -1.3763819204711736`}, { 1.1135163644116066`, -0.8090169943749475, -0.8506508083520399}, { 0.9510565162951535, -1.3090169943749475`, 0}, { 0, -1.618033988749895, 0}}]], Polygon3DBox[ NCache[{{(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {(Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2], 0, -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2], 0}, {Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}}, {{ 1.1135163644116066`, -0.8090169943749475, -0.8506508083520399}, { 0.85065080835204, 0, -1.3763819204711736`}, {1.1135163644116066`, 0.8090169943749475, -0.8506508083520399}, { 1.5388417685876268`, 0.5, 0}, {1.5388417685876268`, -0.5, 0}}]], Polygon3DBox[ NCache[{{(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), 0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}}, {{1.1135163644116066`, 0.8090169943749475, -0.8506508083520399}, {0.2628655560595668, 0.8090169943749475, -1.3763819204711736`}, {-0.42532540417601994`, 1.3090169943749475`, -0.8506508083520399}, {0, 1.618033988749895, 0}, { 0.9510565162951535, 1.3090169943749475`, 0}}]], Polygon3DBox[ NCache[{{Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {-(1 + 2 5^Rational[-1, 2])^Rational[1, 2], 0, Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2], 0}, {Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}}, {{-0.42532540417601994`, 1.3090169943749475`, -0.8506508083520399}, {-0.6881909602355868, 0.5, -1.3763819204711736`}, {-1.3763819204711736`, 0, -0.8506508083520399}, {-1.5388417685876268`, 0.5, 0}, {-0.9510565162951535, 1.3090169943749475`, 0}}]], Polygon3DBox[ NCache[{{-(1 + 2 5^Rational[-1, 2])^Rational[1, 2], 0, Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}}, {{-1.3763819204711736`, 0, -0.8506508083520399}, {-0.6881909602355868, -0.5, \ -1.3763819204711736`}, {-0.42532540417601994`, -1.3090169943749475`, \ -0.8506508083520399}, {-0.9510565162951535, -1.3090169943749475`, 0}, {-1.5388417685876268`, -0.5, 0}}]]}]], "Output", CellLabel-> "Out[212]=",ExpressionUUID->"c29148ba-28ba-46b3-815f-7726e201d81f"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Polyhedra", "Subsection",ExpressionUUID->"863dfab6-a44f-47db-afed-617bd2407955"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}]], "Input", CellLabel-> "In[213]:=",ExpressionUUID->"a96df64e-b2d1-4f27-bc3b-334193ca2462"], Cell[BoxData[ RowBox[{"{", InterpretationBox[ RowBox[{ TagBox["Polyhedron", "SummaryHead"], "[", DynamicModuleBox[{Typeset`open$$ = False, Typeset`embedState$$ = "Ready", Typeset`spolyhedron$$ = Quiet[ Polyhedron[{{0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), 0}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {-(1 + 2 5^Rational[-1, 2])^ Rational[1, 2], 0, Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {(1 + 2 5^Rational[-1, 2])^Rational[1, 2], 0, (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, {(Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2], 0, -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2], 0}, { Root[1 - 5 #^2 + 5 #^4& , 1, 0], 0, (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}}, {{30, 24, 29, 7, 8}, {26, 24, 30}, {25, 29, 24}, { 5, 7, 29}, {14, 8, 7}, {6, 30, 8}, {16, 2, 6}, {19, 21, 26}, {20, 18, 25}, {1, 15, 5}, {22, 23, 14}, {2, 19, 26, 30, 6}, {21, 20, 25, 24, 26}, {18, 1, 5, 29, 25}, {15, 22, 14, 7, 5}, {23, 16, 6, 8, 14}, {12, 13, 4, 17, 3}, {3, 17, 9}, {17, 4, 10}, {4, 13, 28}, {13, 12, 11}, { 12, 3, 27}, {27, 1, 18}, {9, 22, 15}, {10, 16, 23}, {28, 19, 2}, {11, 20, 21}, {27, 3, 9, 15, 1}, {9, 17, 10, 23, 22}, {10, 4, 28, 2, 16}, { 28, 13, 11, 21, 19}, {11, 12, 27, 18, 20}}]]}, TemplateBox[{ PaneSelectorBox[{False -> GridBox[{{ PaneBox[ ButtonBox[ DynamicBox[ FEPrivate`FrontEndResource["FEBitmaps", "SummaryBoxOpener"]], ButtonFunction :> (Typeset`open$$ = True), Appearance -> None, BaseStyle -> {}, Evaluator -> Automatic, Method -> "Preemptive"], Alignment -> {Center, Center}, ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], Graphics3DBox[{ Directive[ Hue[0.58, 0.4, 1], Opacity[0.5], EdgeForm[ GrayLevel[1]]], PolyhedronBox[ NCache[{{0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), 0}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-1 - 5^ Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {-(1 + 2 5^Rational[-1, 2])^ Rational[1, 2], 0, Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {(1 + 2 5^Rational[-1, 2])^Rational[1, 2], 0, (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, {(Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2], 0, -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, {Rational[-1, 2] ( Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2], 0}, { Root[1 - 5 #^2 + 5 #^4& , 1, 0], 0, (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}}, {{ 0, -1.618033988749895, 0}, {0, 1.618033988749895, 0}, { 0.2628655560595668, -0.8090169943749475, \ -1.3763819204711736`}, {0.2628655560595668, 0.8090169943749475, -1.3763819204711736`}, { 0.42532540417601994`, -1.3090169943749475`, 0.85065080835204}, {0.42532540417601994`, 1.3090169943749475`, 0.85065080835204}, { 0.6881909602355868, -0.5, 1.3763819204711736`}, { 0.6881909602355868, 0.5, 1.3763819204711736`}, { 1.1135163644116066`, -0.8090169943749475, \ -0.8506508083520399}, {1.1135163644116066`, 0.8090169943749475, -0.8506508083520399}, \ {-1.3763819204711736`, 0, -0.8506508083520399}, {-0.6881909602355868, -0.5, \ -1.3763819204711736`}, {-0.6881909602355868, 0.5, -1.3763819204711736`}, { 1.3763819204711736`, 0, 0.85065080835204}, { 0.9510565162951535, -1.3090169943749475`, 0}, { 0.9510565162951535, 1.3090169943749475`, 0}, { 0.85065080835204, 0, -1.3763819204711736`}, {-0.9510565162951535, \ -1.3090169943749475`, 0}, {-0.9510565162951535, 1.3090169943749475`, 0}, {-1.5388417685876268`, -0.5, 0}, {-1.5388417685876268`, 0.5, 0}, {1.5388417685876268`, -0.5, 0}, { 1.5388417685876268`, 0.5, 0}, {-0.8506508083520399, 0, 1.3763819204711736`}, {-1.1135163644116068`, \ -0.8090169943749475, 0.85065080835204}, {-1.1135163644116068`, 0.8090169943749475, 0.85065080835204}, {-0.42532540417601994`, \ -1.3090169943749475`, -0.8506508083520399}, {-0.42532540417601994`, 1.3090169943749475`, -0.8506508083520399}, \ {-0.2628655560595668, -0.8090169943749475, 1.3763819204711736`}, {-0.2628655560595668, 0.8090169943749475, 1.3763819204711736`}}], {{30, 24, 29, 7, 8}, {26, 24, 30}, {25, 29, 24}, {5, 7, 29}, {14, 8, 7}, {6, 30, 8}, {16, 2, 6}, {19, 21, 26}, {20, 18, 25}, {1, 15, 5}, { 22, 23, 14}, {2, 19, 26, 30, 6}, {21, 20, 25, 24, 26}, {18, 1, 5, 29, 25}, {15, 22, 14, 7, 5}, {23, 16, 6, 8, 14}, {12, 13, 4, 17, 3}, {3, 17, 9}, {17, 4, 10}, {4, 13, 28}, {13, 12, 11}, {12, 3, 27}, {27, 1, 18}, {9, 22, 15}, {10, 16, 23}, { 28, 19, 2}, {11, 20, 21}, {27, 3, 9, 15, 1}, {9, 17, 10, 23, 22}, {10, 4, 28, 2, 16}, {28, 13, 11, 21, 19}, {11, 12, 27, 18, 20}}]}, ImageSize -> Dynamic[{5.25, 3.5} (CurrentValue["FontCapHeight"]/ AbsoluteCurrentValue[Magnification])], Boxed -> False, Lighting -> {{"Ambient", RGBColor[0.4, 0.45, 0.5]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{2, 0, 2}]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{2, 2, 2}]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{0, 2, 2}]}}, Method -> {"ShrinkWrap" -> True}], GridBox[{{ RowBox[{ TagBox["\"Number of points: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["30", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Number of faces: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["32", "SummaryItem"]}]}}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> { "Columns" -> {{2}}, "Rows" -> {{Automatic}}}, BaseStyle -> { ShowStringCharacters -> False, NumberMarks -> False, PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, BaselinePosition -> {1, 1}], True -> GridBox[{{ PaneBox[ ButtonBox[ DynamicBox[ FEPrivate`FrontEndResource["FEBitmaps", "SummaryBoxCloser"]], ButtonFunction :> (Typeset`open$$ = False), Appearance -> None, BaseStyle -> {}, Evaluator -> Automatic, Method -> "Preemptive"], Alignment -> {Center, Center}, ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], Graphics3DBox[{ Directive[ Hue[0.58, 0.4, 1], Opacity[0.5], EdgeForm[ GrayLevel[1]]], PolyhedronBox[ NCache[{{0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), 0}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-1 - 5^ Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {-(1 + 2 5^Rational[-1, 2])^ Rational[1, 2], 0, Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {(1 + 2 5^Rational[-1, 2])^Rational[1, 2], 0, (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, {(Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2], 0, -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, {Rational[-1, 2] ( Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2], 0}, { Root[1 - 5 #^2 + 5 #^4& , 1, 0], 0, (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}}, {{ 0, -1.618033988749895, 0}, {0, 1.618033988749895, 0}, { 0.2628655560595668, -0.8090169943749475, \ -1.3763819204711736`}, {0.2628655560595668, 0.8090169943749475, -1.3763819204711736`}, { 0.42532540417601994`, -1.3090169943749475`, 0.85065080835204}, {0.42532540417601994`, 1.3090169943749475`, 0.85065080835204}, { 0.6881909602355868, -0.5, 1.3763819204711736`}, { 0.6881909602355868, 0.5, 1.3763819204711736`}, { 1.1135163644116066`, -0.8090169943749475, \ -0.8506508083520399}, {1.1135163644116066`, 0.8090169943749475, -0.8506508083520399}, \ {-1.3763819204711736`, 0, -0.8506508083520399}, {-0.6881909602355868, -0.5, \ -1.3763819204711736`}, {-0.6881909602355868, 0.5, -1.3763819204711736`}, { 1.3763819204711736`, 0, 0.85065080835204}, { 0.9510565162951535, -1.3090169943749475`, 0}, { 0.9510565162951535, 1.3090169943749475`, 0}, { 0.85065080835204, 0, -1.3763819204711736`}, {-0.9510565162951535, \ -1.3090169943749475`, 0}, {-0.9510565162951535, 1.3090169943749475`, 0}, {-1.5388417685876268`, -0.5, 0}, {-1.5388417685876268`, 0.5, 0}, {1.5388417685876268`, -0.5, 0}, { 1.5388417685876268`, 0.5, 0}, {-0.8506508083520399, 0, 1.3763819204711736`}, {-1.1135163644116068`, \ -0.8090169943749475, 0.85065080835204}, {-1.1135163644116068`, 0.8090169943749475, 0.85065080835204}, {-0.42532540417601994`, \ -1.3090169943749475`, -0.8506508083520399}, {-0.42532540417601994`, 1.3090169943749475`, -0.8506508083520399}, \ {-0.2628655560595668, -0.8090169943749475, 1.3763819204711736`}, {-0.2628655560595668, 0.8090169943749475, 1.3763819204711736`}}], {{30, 24, 29, 7, 8}, {26, 24, 30}, {25, 29, 24}, {5, 7, 29}, {14, 8, 7}, {6, 30, 8}, {16, 2, 6}, {19, 21, 26}, {20, 18, 25}, {1, 15, 5}, { 22, 23, 14}, {2, 19, 26, 30, 6}, {21, 20, 25, 24, 26}, {18, 1, 5, 29, 25}, {15, 22, 14, 7, 5}, {23, 16, 6, 8, 14}, {12, 13, 4, 17, 3}, {3, 17, 9}, {17, 4, 10}, {4, 13, 28}, {13, 12, 11}, {12, 3, 27}, {27, 1, 18}, {9, 22, 15}, {10, 16, 23}, { 28, 19, 2}, {11, 20, 21}, {27, 3, 9, 15, 1}, {9, 17, 10, 23, 22}, {10, 4, 28, 2, 16}, {28, 13, 11, 21, 19}, {11, 12, 27, 18, 20}}]}, ImageSize -> Dynamic[{5.25, 3.5} (CurrentValue["FontCapHeight"]/ AbsoluteCurrentValue[Magnification])], Boxed -> False, Lighting -> {{"Ambient", RGBColor[0.4, 0.45, 0.5]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{2, 0, 2}]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{2, 2, 2}]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{0, 2, 2}]}}, Method -> {"ShrinkWrap" -> True}], GridBox[{{ RowBox[{ TagBox["\"Number of points: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["30", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Number of faces: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["32", "SummaryItem"]}]}, { RowBox[{ TagBox[ "\"Embedding dimension: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["3", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Type: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Quiet[ Apply[Region`PolyhedronDump`polyhedronType, Region`PolyhedronDump`computeType[ Typeset`spolyhedron$$]]], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}, { RowBox[{ TagBox["\"Bounds: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Region`PolyhedronDump`iRegionBounds[ Typeset`spolyhedron$$], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}, { RowBox[{ TagBox["\"Volume: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Region`PolyhedronDump`iVolume[Typeset`spolyhedron$$], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> { "Columns" -> {{2}}, "Rows" -> {{Automatic}}}, BaseStyle -> { ShowStringCharacters -> False, NumberMarks -> False, PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, BaselinePosition -> {1, 1}]}, Dynamic[Typeset`open$$], ImageSize -> Automatic]}, "SummaryPanel"], DynamicModuleValues:>{}], "]"}], Polyhedron[{{0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), 0}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], Rational[-1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {-(1 + 2 5^Rational[-1, 2])^Rational[1, 2], 0, Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {(1 + 2 5^Rational[-1, 2])^Rational[1, 2], 0, (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, {(Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2], 0, -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2], 0}, { Root[1 - 5 #^2 + 5 #^4& , 1, 0], 0, (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}}, {{30, 24, 29, 7, 8}, {26, 24, 30}, {25, 29, 24}, {5, 7, 29}, {14, 8, 7}, {6, 30, 8}, {16, 2, 6}, {19, 21, 26}, {20, 18, 25}, { 1, 15, 5}, {22, 23, 14}, {2, 19, 26, 30, 6}, {21, 20, 25, 24, 26}, {18, 1, 5, 29, 25}, {15, 22, 14, 7, 5}, {23, 16, 6, 8, 14}, {12, 13, 4, 17, 3}, {3, 17, 9}, {17, 4, 10}, {4, 13, 28}, {13, 12, 11}, {12, 3, 27}, {27, 1, 18}, {9, 22, 15}, {10, 16, 23}, {28, 19, 2}, {11, 20, 21}, {27, 3, 9, 15, 1}, {9, 17, 10, 23, 22}, {10, 4, 28, 2, 16}, {28, 13, 11, 21, 19}, { 11, 12, 27, 18, 20}}], Editable->False, SelectWithContents->True, Selectable->False], "}"}]], "Output", CellLabel-> "Out[213]=",ExpressionUUID->"807e7701-dbdc-4d02-ac4d-639c5a3d97b0"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Graphics3D", "[", "%", "]"}]], "Input", CellLabel-> "In[214]:=",ExpressionUUID->"b20b4fa2-2cd2-492c-992a-2f24ebabb6b9"], Cell[BoxData[ Graphics3DBox[ PolyhedronBox[ NCache[{{0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), 0}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], Rational[-1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {-(1 + 2 5^Rational[-1, 2])^Rational[1, 2], 0, Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {(1 + 2 5^Rational[-1, 2])^Rational[1, 2], 0, (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, {(Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2], 0, -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, {Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, {Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2], 0}, { Root[1 - 5 #^2 + 5 #^4& , 1, 0], 0, (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}}, {{0, -1.618033988749895, 0}, { 0, 1.618033988749895, 0}, { 0.2628655560595668, -0.8090169943749475, -1.3763819204711736`}, { 0.2628655560595668, 0.8090169943749475, -1.3763819204711736`}, { 0.42532540417601994`, -1.3090169943749475`, 0.85065080835204}, { 0.42532540417601994`, 1.3090169943749475`, 0.85065080835204}, { 0.6881909602355868, -0.5, 1.3763819204711736`}, {0.6881909602355868, 0.5, 1.3763819204711736`}, { 1.1135163644116066`, -0.8090169943749475, -0.8506508083520399}, { 1.1135163644116066`, 0.8090169943749475, -0.8506508083520399}, {-1.3763819204711736`, 0, -0.8506508083520399}, {-0.6881909602355868, -0.5, \ -1.3763819204711736`}, {-0.6881909602355868, 0.5, -1.3763819204711736`}, { 1.3763819204711736`, 0, 0.85065080835204}, { 0.9510565162951535, -1.3090169943749475`, 0}, { 0.9510565162951535, 1.3090169943749475`, 0}, { 0.85065080835204, 0, -1.3763819204711736`}, {-0.9510565162951535, -1.3090169943749475`, 0}, {-0.9510565162951535, 1.3090169943749475`, 0}, {-1.5388417685876268`, -0.5, 0}, {-1.5388417685876268`, 0.5, 0}, { 1.5388417685876268`, -0.5, 0}, { 1.5388417685876268`, 0.5, 0}, {-0.8506508083520399, 0, 1.3763819204711736`}, {-1.1135163644116068`, -0.8090169943749475, 0.85065080835204}, {-1.1135163644116068`, 0.8090169943749475, 0.85065080835204}, {-0.42532540417601994`, -1.3090169943749475`, \ -0.8506508083520399}, {-0.42532540417601994`, 1.3090169943749475`, -0.8506508083520399}, {-0.2628655560595668, \ -0.8090169943749475, 1.3763819204711736`}, {-0.2628655560595668, 0.8090169943749475, 1.3763819204711736`}}], {{30, 24, 29, 7, 8}, {26, 24, 30}, {25, 29, 24}, {5, 7, 29}, {14, 8, 7}, {6, 30, 8}, {16, 2, 6}, {19, 21, 26}, {20, 18, 25}, {1, 15, 5}, {22, 23, 14}, {2, 19, 26, 30, 6}, {21, 20, 25, 24, 26}, {18, 1, 5, 29, 25}, {15, 22, 14, 7, 5}, {23, 16, 6, 8, 14}, {12, 13, 4, 17, 3}, {3, 17, 9}, {17, 4, 10}, {4, 13, 28}, {13, 12, 11}, {12, 3, 27}, {27, 1, 18}, {9, 22, 15}, {10, 16, 23}, {28, 19, 2}, { 11, 20, 21}, {27, 3, 9, 15, 1}, {9, 17, 10, 23, 22}, {10, 4, 28, 2, 16}, { 28, 13, 11, 21, 19}, {11, 12, 27, 18, 20}}]]], "Output", CellLabel-> "Out[214]=",ExpressionUUID->"f5a749e7-63bc-4efe-9cd0-d3787f73fcc6"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}]], "Input", CellLabel-> "In[215]:=",ExpressionUUID->"fb4aab5f-30b2-4946-ad38-5f3fa63bef06"], Cell[BoxData[ RowBox[{"{", RowBox[{"{", RowBox[{ "1", ",", "2", ",", "3", ",", "4", ",", "5", ",", "6", ",", "7", ",", "8", ",", "9", ",", "10", ",", "11", ",", "12", ",", "13", ",", "14", ",", "15", ",", "16", ",", "17", ",", "18", ",", "19", ",", "20", ",", "21", ",", "22", ",", "23", ",", "24", ",", "25", ",", "26", ",", "27", ",", "28", ",", "29", ",", "30", ",", "31", ",", "32"}], "}"}], "}"}]], "Output", CellLabel-> "Out[215]=",ExpressionUUID->"48d1b194-b36c-4f67-bd31-f385a934b9e8"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["Region", "Subsection",ExpressionUUID->"5378cbb1-4728-4305-9d99-7241d333f8a1"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}]], "Input", CellLabel-> "In[216]:=",ExpressionUUID->"eff52445-557f-477d-8f60-3f394807fafd"], Cell[BoxData[ Graphics3DBox[ TagBox[ DynamicModuleBox[{Typeset`region = HoldComplete[ Region[ Polyhedron[{{0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), 0}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {-(1 + 2 5^Rational[-1, 2])^ Rational[1, 2], 0, Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {(1 + 2 5^Rational[-1, 2])^Rational[1, 2], 0, (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, {(Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2], 0, -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2], 0}, { Root[1 - 5 #^2 + 5 #^4& , 1, 0], 0, (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}}, {{30, 24, 29, 7, 8}, {26, 24, 30}, {25, 29, 24}, { 5, 7, 29}, {14, 8, 7}, {6, 30, 8}, {16, 2, 6}, {19, 21, 26}, {20, 18, 25}, {1, 15, 5}, {22, 23, 14}, {2, 19, 26, 30, 6}, {21, 20, 25, 24, 26}, {18, 1, 5, 29, 25}, {15, 22, 14, 7, 5}, {23, 16, 6, 8, 14}, {12, 13, 4, 17, 3}, {3, 17, 9}, {17, 4, 10}, {4, 13, 28}, {13, 12, 11}, { 12, 3, 27}, {27, 1, 18}, {9, 22, 15}, {10, 16, 23}, {28, 19, 2}, {11, 20, 21}, {27, 3, 9, 15, 1}, {9, 17, 10, 23, 22}, {10, 4, 28, 2, 16}, { 28, 13, 11, 21, 19}, {11, 12, 27, 18, 20}}]]]}, TagBox[{ PolyhedronBox[ NCache[{{0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), 0}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {-(1 + 2 5^Rational[-1, 2])^ Rational[1, 2], 0, Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {(1 + 2 5^Rational[-1, 2])^Rational[1, 2], 0, (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, {(Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2], 0, -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2], 0}, { Root[1 - 5 #^2 + 5 #^4& , 1, 0], 0, (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}}, {{0, -1.618033988749895, 0}, { 0, 1.618033988749895, 0}, { 0.2628655560595668, -0.8090169943749475, -1.3763819204711736`}, { 0.2628655560595668, 0.8090169943749475, -1.3763819204711736`}, { 0.42532540417601994`, -1.3090169943749475`, 0.85065080835204}, { 0.42532540417601994`, 1.3090169943749475`, 0.85065080835204}, { 0.6881909602355868, -0.5, 1.3763819204711736`}, {0.6881909602355868, 0.5, 1.3763819204711736`}, { 1.1135163644116066`, -0.8090169943749475, -0.8506508083520399}, { 1.1135163644116066`, 0.8090169943749475, -0.8506508083520399}, {-1.3763819204711736`, 0, -0.8506508083520399}, {-0.6881909602355868, -0.5, \ -1.3763819204711736`}, {-0.6881909602355868, 0.5, -1.3763819204711736`}, { 1.3763819204711736`, 0, 0.85065080835204}, { 0.9510565162951535, -1.3090169943749475`, 0}, { 0.9510565162951535, 1.3090169943749475`, 0}, { 0.85065080835204, 0, -1.3763819204711736`}, {-0.9510565162951535, \ -1.3090169943749475`, 0}, {-0.9510565162951535, 1.3090169943749475`, 0}, {-1.5388417685876268`, -0.5, 0}, {-1.5388417685876268`, 0.5, 0}, {1.5388417685876268`, -0.5, 0}, { 1.5388417685876268`, 0.5, 0}, {-0.8506508083520399, 0, 1.3763819204711736`}, {-1.1135163644116068`, -0.8090169943749475, 0.85065080835204}, {-1.1135163644116068`, 0.8090169943749475, 0.85065080835204}, {-0.42532540417601994`, -1.3090169943749475`, \ -0.8506508083520399}, {-0.42532540417601994`, 1.3090169943749475`, -0.8506508083520399}, {-0.2628655560595668, \ -0.8090169943749475, 1.3763819204711736`}, {-0.2628655560595668, 0.8090169943749475, 1.3763819204711736`}}], {{30, 24, 29, 7, 8}, {26, 24, 30}, {25, 29, 24}, {5, 7, 29}, {14, 8, 7}, {6, 30, 8}, {16, 2, 6}, {19, 21, 26}, {20, 18, 25}, {1, 15, 5}, {22, 23, 14}, {2, 19, 26, 30, 6}, {21, 20, 25, 24, 26}, {18, 1, 5, 29, 25}, {15, 22, 14, 7, 5}, {23, 16, 6, 8, 14}, {12, 13, 4, 17, 3}, {3, 17, 9}, {17, 4, 10}, { 4, 13, 28}, {13, 12, 11}, {12, 3, 27}, {27, 1, 18}, {9, 22, 15}, {10, 16, 23}, {28, 19, 2}, {11, 20, 21}, {27, 3, 9, 15, 1}, {9, 17, 10, 23, 22}, {10, 4, 28, 2, 16}, {28, 13, 11, 21, 19}, {11, 12, 27, 18, 20}}], {}}, MouseAppearanceTag["LinkHand"]], AllowKernelInitialization->False], "RegionGraphics3D", AutoDelete->True, Editable->False, Selectable->False], BaseStyle->{ EdgeForm[None], Hue[0.6, 0.3, 0.85]}, Boxed->False, Lighting->{{"Ambient", GrayLevel[0.45]}, {"Directional", GrayLevel[0.3], ImageScaled[{2, 0, 2}]}, {"Directional", GrayLevel[0.33], ImageScaled[{2, 2, 2}]}, {"Directional", GrayLevel[0.3], ImageScaled[{0, 2, 2}]}}]], "Output", CellLabel-> "Out[216]=",ExpressionUUID->"d6c76245-a375-44c0-b762-9d0454afee7e"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["RegionFunction", "Subsection",ExpressionUUID->"05cf617e-3d8e-4012-b242-e33e2095628b"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}]], "Input", CellLabel-> "(Local-Devel (5)) \ In[5]:=",ExpressionUUID->"dc99606a-bb1c-4801-9737-365250971b40"], Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{ RowBox[{"5", " ", RowBox[{"(", RowBox[{"1", "+", SqrtBox["5"]}], ")"}], " ", "#3"}], "\[LessEqual]", SqrtBox[ RowBox[{"250", "+", RowBox[{"110", " ", SqrtBox["5"]}]}]]}], "&&", RowBox[{ RowBox[{ SqrtBox["5"], " ", RowBox[{"(", RowBox[{ RowBox[{"5", " ", "#2"}], "+", RowBox[{"2", " ", SqrtBox[ RowBox[{"5", "+", RowBox[{"2", " ", SqrtBox["5"]}]}]], " ", "#3"}]}], ")"}]}], "\[LessEqual]", RowBox[{ RowBox[{ SqrtBox[ RowBox[{"10", " ", RowBox[{"(", RowBox[{"5", "+", SqrtBox["5"]}], ")"}]}]], " ", "#1"}], "+", RowBox[{"5", " ", RowBox[{"(", RowBox[{"3", "+", SqrtBox["5"], "+", "#2"}], ")"}]}]}]}], "&&", RowBox[{ RowBox[{"2", " ", SqrtBox[ RowBox[{"5", " ", RowBox[{"(", RowBox[{"5", "+", RowBox[{"2", " ", SqrtBox["5"]}]}], ")"}]}]], " ", "#3"}], "\[LessEqual]", RowBox[{ RowBox[{ SqrtBox[ RowBox[{"10", " ", RowBox[{"(", RowBox[{"5", "+", SqrtBox["5"]}], ")"}]}]], " ", "#1"}], "+", RowBox[{"5", " ", RowBox[{"(", RowBox[{"3", "+", SqrtBox["5"], "+", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", SqrtBox["5"]}], ")"}], " ", "#2"}]}], ")"}]}]}]}], "&&", RowBox[{ RowBox[{"8", " ", RowBox[{"(", RowBox[{ RowBox[{ SqrtBox[ RowBox[{"5", " ", RowBox[{"(", RowBox[{"5", "-", RowBox[{"2", " ", SqrtBox["5"]}]}], ")"}]}]], " ", "#1"}], "+", RowBox[{ SqrtBox[ RowBox[{"5", " ", RowBox[{"(", RowBox[{"5", "+", RowBox[{"2", " ", SqrtBox["5"]}]}], ")"}]}]], " ", "#3"}]}], ")"}]}], "\[LessEqual]", RowBox[{"20", " ", RowBox[{"(", RowBox[{"3", "+", SqrtBox["5"], "+", RowBox[{"2", " ", "#2"}]}], ")"}]}]}], "&&", RowBox[{ RowBox[{ RowBox[{"2", " ", SqrtBox[ RowBox[{"50", "-", RowBox[{"10", " ", SqrtBox["5"]}]}]], " ", "#1"}], "+", RowBox[{"2", " ", SqrtBox[ RowBox[{"5", " ", RowBox[{"(", RowBox[{"5", "+", RowBox[{"2", " ", SqrtBox["5"]}]}], ")"}]}]], " ", "#3"}]}], "\[LessEqual]", RowBox[{"5", " ", RowBox[{"(", RowBox[{"3", "+", SqrtBox["5"]}], ")"}]}]}], "&&", RowBox[{ RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{ SqrtBox[ RowBox[{"5", " ", RowBox[{"(", RowBox[{"5", "-", RowBox[{"2", " ", SqrtBox["5"]}]}], ")"}]}]], " ", "#1"}], "+", RowBox[{"5", " ", "#2"}], "+", RowBox[{ SqrtBox[ RowBox[{"5", " ", RowBox[{"(", RowBox[{"5", "+", RowBox[{"2", " ", SqrtBox["5"]}]}], ")"}]}]], " ", "#3"}]}], ")"}]}], "\[LessEqual]", RowBox[{"5", " ", RowBox[{"(", RowBox[{"3", "+", SqrtBox["5"]}], ")"}]}]}], "&&", RowBox[{ RowBox[{ SqrtBox[ RowBox[{"5", "+", SqrtBox["5"]}]], " ", RowBox[{"(", RowBox[{ RowBox[{"-", RowBox[{"(", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"-", "5"}], "+", SqrtBox["5"]}], ")"}], " ", "#1"}], ")"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"-", "5"}], "+", RowBox[{"3", " ", SqrtBox["5"]}]}], ")"}], " ", "#3"}]}], ")"}]}], "\[LessEqual]", RowBox[{"5", " ", SqrtBox[ RowBox[{"3", "+", SqrtBox["5"]}]], " ", RowBox[{"(", RowBox[{"1", "+", SqrtBox["5"], "-", RowBox[{"2", " ", "#2"}]}], ")"}]}]}], "&&", RowBox[{ RowBox[{"15", "+", RowBox[{"5", " ", SqrtBox["5"]}], "+", RowBox[{"2", " ", SqrtBox[ RowBox[{"5", " ", RowBox[{"(", RowBox[{"5", "+", RowBox[{"2", " ", SqrtBox["5"]}]}], ")"}]}]], " ", "#1"}]}], "\[GreaterEqual]", RowBox[{ RowBox[{"10", " ", "#2"}], "+", RowBox[{"2", " ", SqrtBox[ RowBox[{"5", " ", RowBox[{"(", RowBox[{"5", "-", RowBox[{"2", " ", SqrtBox["5"]}]}], ")"}]}]], " ", "#3"}]}]}], "&&", RowBox[{ RowBox[{ RowBox[{ SqrtBox["2"], " ", SuperscriptBox[ RowBox[{"(", RowBox[{"5", "+", SqrtBox["5"]}], ")"}], RowBox[{"3", "/", "2"}]], " ", "#1"}], "+", RowBox[{"10", " ", RowBox[{"(", RowBox[{"3", "+", SqrtBox["5"], "+", RowBox[{"2", " ", "#2"}]}], ")"}]}]}], "\[GreaterEqual]", RowBox[{"4", " ", SqrtBox[ RowBox[{"5", " ", RowBox[{"(", RowBox[{"5", "-", RowBox[{"2", " ", SqrtBox["5"]}]}], ")"}]}]], " ", "#3"}]}], "&&", RowBox[{ RowBox[{ SqrtBox[ RowBox[{"5", "+", SqrtBox["5"]}]], " ", RowBox[{"(", RowBox[{ RowBox[{"-", RowBox[{"(", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"-", "5"}], "+", SqrtBox["5"]}], ")"}], " ", "#1"}], ")"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"-", "5"}], "+", RowBox[{"3", " ", SqrtBox["5"]}]}], ")"}], " ", "#3"}]}], ")"}]}], "\[LessEqual]", RowBox[{"5", " ", SqrtBox[ RowBox[{"3", "+", SqrtBox["5"]}]], " ", RowBox[{"(", RowBox[{"1", "+", SqrtBox["5"], "+", RowBox[{"2", " ", "#2"}]}], ")"}]}]}], "&&", RowBox[{ RowBox[{ RowBox[{"2", " ", SqrtBox[ RowBox[{"10", " ", RowBox[{"(", RowBox[{"5", "+", SqrtBox["5"]}], ")"}]}]], " ", "#1"}], "+", RowBox[{"2", " ", SqrtBox[ RowBox[{"5", " ", RowBox[{"(", RowBox[{"5", "-", RowBox[{"2", " ", SqrtBox["5"]}]}], ")"}]}]], " ", "#3"}]}], "\[LessEqual]", RowBox[{"5", " ", RowBox[{"(", RowBox[{"3", "+", SqrtBox["5"]}], ")"}]}]}], "&&", RowBox[{ RowBox[{ RowBox[{"10", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "3"}], "-", SqrtBox["5"], "+", RowBox[{ RowBox[{"(", RowBox[{"1", "+", SqrtBox["5"]}], ")"}], " ", "#2"}]}], ")"}]}], "+", RowBox[{ SqrtBox[ RowBox[{"2", " ", RowBox[{"(", RowBox[{"5", "+", SqrtBox["5"]}], ")"}]}]], " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"-", "5"}], "+", SqrtBox["5"]}], ")"}], " ", "#1"}], "+", RowBox[{"2", " ", SqrtBox["5"], " ", "#3"}]}], ")"}]}]}], "\[LessEqual]", "0"}], "&&", RowBox[{ RowBox[{ RowBox[{"5", " ", RowBox[{"(", RowBox[{"3", "+", SqrtBox["5"]}], ")"}]}], "+", RowBox[{ SqrtBox[ RowBox[{"10", " ", RowBox[{"(", RowBox[{"5", "+", SqrtBox["5"]}], ")"}]}]], " ", RowBox[{"(", RowBox[{ RowBox[{"2", " ", "#1"}], "-", "#3"}], ")"}]}]}], "\[GreaterEqual]", "0"}], "&&", RowBox[{ RowBox[{ SqrtBox[ RowBox[{"2", " ", RowBox[{"(", RowBox[{"5", "+", SqrtBox["5"]}], ")"}]}]], " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"-", "5"}], "+", SqrtBox["5"]}], ")"}], " ", "#1"}], "+", RowBox[{"2", " ", SqrtBox["5"], " ", "#3"}]}], ")"}]}], "\[LessEqual]", RowBox[{"10", " ", RowBox[{"(", RowBox[{"3", "+", SqrtBox["5"], "+", RowBox[{ RowBox[{"(", RowBox[{"1", "+", SqrtBox["5"]}], ")"}], " ", "#2"}]}], ")"}]}]}], "&&", RowBox[{ RowBox[{ SqrtBox[ RowBox[{"2", " ", RowBox[{"(", RowBox[{"5", "+", SqrtBox["5"]}], ")"}]}]], " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"(", RowBox[{"5", "+", SqrtBox["5"]}], ")"}], " ", "#1"}], "+", RowBox[{"2", " ", SqrtBox["5"], " ", "#3"}]}], ")"}]}], "\[LessEqual]", RowBox[{"10", " ", RowBox[{"(", RowBox[{"3", "+", SqrtBox["5"], "+", RowBox[{"2", " ", "#2"}]}], ")"}]}]}], "&&", RowBox[{ RowBox[{ SqrtBox[ RowBox[{"5", "+", SqrtBox["5"]}]], " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"(", RowBox[{"5", "+", SqrtBox["5"]}], ")"}], " ", "#1"}], "+", RowBox[{"2", " ", SqrtBox["5"], " ", "#3"}]}], ")"}]}], "\[LessEqual]", RowBox[{"5", " ", SqrtBox["2"], " ", RowBox[{"(", RowBox[{"3", "+", SqrtBox["5"], "-", RowBox[{"2", " ", "#2"}]}], ")"}]}]}], "&&", RowBox[{ RowBox[{"3", "+", SqrtBox["5"], "+", RowBox[{ SqrtBox[ RowBox[{"2", " ", RowBox[{"(", RowBox[{"5", "+", SqrtBox["5"]}], ")"}]}]], " ", "#3"}]}], "\[GreaterEqual]", "0"}], "&&", RowBox[{ RowBox[{"2", " ", SqrtBox[ RowBox[{"5", " ", RowBox[{"(", RowBox[{"5", "+", SqrtBox["5"]}], ")"}]}]], " ", "#1"}], "\[LessEqual]", RowBox[{ SqrtBox["2"], " ", RowBox[{"(", RowBox[{"15", "+", RowBox[{"5", " ", SqrtBox["5"]}], "+", RowBox[{"5", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", SqrtBox["5"]}], ")"}], " ", "#2"}], "+", RowBox[{"2", " ", SqrtBox[ RowBox[{"5", " ", RowBox[{"(", RowBox[{"5", "+", RowBox[{"2", " ", SqrtBox["5"]}]}], ")"}]}]], " ", "#3"}]}], ")"}]}]}], "&&", RowBox[{ RowBox[{ RowBox[{"2", " ", SqrtBox[ RowBox[{"5", " ", RowBox[{"(", RowBox[{"5", "+", SqrtBox["5"]}], ")"}]}]], " ", "#1"}], "+", RowBox[{ SqrtBox["2"], " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "5"}], " ", RowBox[{"(", RowBox[{"3", "+", SqrtBox["5"]}], ")"}]}], "+", RowBox[{"5", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", SqrtBox["5"]}], ")"}], " ", "#2"}], "-", RowBox[{"2", " ", SqrtBox[ RowBox[{"5", " ", RowBox[{"(", RowBox[{"5", "+", RowBox[{"2", " ", SqrtBox["5"]}]}], ")"}]}]], " ", "#3"}]}], ")"}]}]}], "\[LessEqual]", "0"}], "&&", RowBox[{ RowBox[{"10", " ", "#2"}], "\[LessEqual]", RowBox[{ RowBox[{"5", " ", RowBox[{"(", RowBox[{"3", "+", SqrtBox["5"]}], ")"}]}], "+", RowBox[{"2", " ", SqrtBox[ RowBox[{"5", " ", RowBox[{"(", RowBox[{"5", "-", RowBox[{"2", " ", SqrtBox["5"]}]}], ")"}]}]], " ", "#1"}], "+", RowBox[{"2", " ", SqrtBox[ RowBox[{"5", " ", RowBox[{"(", RowBox[{"5", "+", RowBox[{"2", " ", SqrtBox["5"]}]}], ")"}]}]], " ", "#3"}]}]}], "&&", RowBox[{ RowBox[{ RowBox[{"5", " ", RowBox[{"(", RowBox[{"3", "+", SqrtBox["5"]}], ")"}]}], "+", RowBox[{"2", " ", SqrtBox[ RowBox[{"50", "-", RowBox[{"10", " ", SqrtBox["5"]}]}]], " ", "#1"}], "+", RowBox[{"2", " ", SqrtBox[ RowBox[{"5", " ", RowBox[{"(", RowBox[{"5", "+", RowBox[{"2", " ", SqrtBox["5"]}]}], ")"}]}]], " ", "#3"}]}], "\[GreaterEqual]", "0"}], "&&", RowBox[{ RowBox[{"15", "+", RowBox[{"5", " ", SqrtBox["5"]}], "+", RowBox[{"2", " ", SqrtBox[ RowBox[{"5", " ", RowBox[{"(", RowBox[{"5", "-", RowBox[{"2", " ", SqrtBox["5"]}]}], ")"}]}]], " ", "#1"}], "+", RowBox[{"10", " ", "#2"}], "+", RowBox[{"2", " ", SqrtBox[ RowBox[{"5", " ", RowBox[{"(", RowBox[{"5", "+", RowBox[{"2", " ", SqrtBox["5"]}]}], ")"}]}]], " ", "#3"}]}], "\[GreaterEqual]", "0"}], "&&", RowBox[{ RowBox[{"15", "+", RowBox[{"5", " ", SqrtBox["5"]}], "+", RowBox[{ SqrtBox[ RowBox[{"50", "-", RowBox[{"10", " ", SqrtBox["5"]}]}]], " ", "#1"}], "+", RowBox[{"5", " ", RowBox[{"(", RowBox[{"1", "+", SqrtBox["5"]}], ")"}], " ", "#2"}], "+", RowBox[{"2", " ", SqrtBox[ RowBox[{"5", " ", RowBox[{"(", RowBox[{"5", "-", RowBox[{"2", " ", SqrtBox["5"]}]}], ")"}]}]], " ", "#3"}]}], "\[GreaterEqual]", "0"}], "&&", RowBox[{ RowBox[{ RowBox[{"8", " ", SqrtBox[ RowBox[{"5", " ", RowBox[{"(", RowBox[{"5", "+", RowBox[{"2", " ", SqrtBox["5"]}]}], ")"}]}]], " ", "#1"}], "+", RowBox[{ SqrtBox[ RowBox[{"4250", "+", RowBox[{"1810", " ", SqrtBox["5"]}]}]], " ", "#3"}]}], "\[LessEqual]", RowBox[{"5", " ", RowBox[{"(", RowBox[{ RowBox[{"4", " ", RowBox[{"(", RowBox[{"3", "+", SqrtBox["5"]}], ")"}]}], "+", RowBox[{"8", " ", "#2"}], "+", RowBox[{ SqrtBox[ RowBox[{"250", "+", RowBox[{"82", " ", SqrtBox["5"]}]}]], " ", "#3"}]}], ")"}]}]}], "&&", RowBox[{ RowBox[{ RowBox[{"8", " ", SqrtBox[ RowBox[{"5", " ", RowBox[{"(", RowBox[{"5", "+", RowBox[{"2", " ", SqrtBox["5"]}]}], ")"}]}]], " ", "#1"}], "+", RowBox[{"40", " ", "#2"}], "+", RowBox[{ SqrtBox[ RowBox[{"4250", "+", RowBox[{"1810", " ", SqrtBox["5"]}]}]], " ", "#3"}]}], "\[LessEqual]", RowBox[{ RowBox[{"20", " ", RowBox[{"(", RowBox[{"3", "+", SqrtBox["5"]}], ")"}]}], "+", RowBox[{"5", " ", SqrtBox[ RowBox[{"250", "+", RowBox[{"82", " ", SqrtBox["5"]}]}]], " ", "#3"}]}]}], "&&", RowBox[{ RowBox[{"5", " ", RowBox[{"(", RowBox[{"1", "+", SqrtBox["5"]}], ")"}], " ", "#2"}], "\[LessEqual]", RowBox[{ RowBox[{"5", " ", RowBox[{"(", RowBox[{"3", "+", SqrtBox["5"]}], ")"}]}], "+", RowBox[{ SqrtBox[ RowBox[{"50", "-", RowBox[{"10", " ", SqrtBox["5"]}]}]], " ", "#1"}], "+", RowBox[{"2", " ", SqrtBox[ RowBox[{"5", " ", RowBox[{"(", RowBox[{"5", "-", RowBox[{"2", " ", SqrtBox["5"]}]}], ")"}]}]], " ", "#3"}]}]}], "&&", RowBox[{ RowBox[{ RowBox[{"5", " ", RowBox[{"(", RowBox[{"3", "+", SqrtBox["5"]}], ")"}]}], "+", RowBox[{"2", " ", SqrtBox[ RowBox[{"10", " ", RowBox[{"(", RowBox[{"5", "+", SqrtBox["5"]}], ")"}]}]], " ", "#1"}], "+", RowBox[{"2", " ", SqrtBox[ RowBox[{"5", " ", RowBox[{"(", RowBox[{"5", "-", RowBox[{"2", " ", SqrtBox["5"]}]}], ")"}]}]], " ", "#3"}]}], "\[GreaterEqual]", "0"}], "&&", RowBox[{ RowBox[{ SqrtBox[ RowBox[{"50", "-", RowBox[{"10", " ", SqrtBox["5"]}]}]], " ", "#1"}], "\[LessEqual]", RowBox[{ RowBox[{"5", " ", RowBox[{"(", RowBox[{"3", "+", SqrtBox["5"]}], ")"}]}], "+", RowBox[{"5", " ", RowBox[{"(", RowBox[{"1", "+", SqrtBox["5"]}], ")"}], " ", "#2"}], "+", RowBox[{ SqrtBox[ RowBox[{"10", " ", RowBox[{"(", RowBox[{"5", "+", SqrtBox["5"]}], ")"}]}]], " ", "#3"}]}]}], "&&", RowBox[{ RowBox[{"2", " ", SqrtBox[ RowBox[{"5", " ", RowBox[{"(", RowBox[{"5", "+", SqrtBox["5"]}], ")"}]}]], " ", RowBox[{"(", RowBox[{ RowBox[{"2", " ", "#1"}], "-", "#3"}], ")"}]}], "\[LessEqual]", RowBox[{"5", " ", SqrtBox["2"], " ", RowBox[{"(", RowBox[{"3", "+", SqrtBox["5"]}], ")"}]}]}], "&&", RowBox[{ RowBox[{ RowBox[{ SqrtBox[ RowBox[{"50", "-", RowBox[{"10", " ", SqrtBox["5"]}]}]], " ", "#1"}], "+", RowBox[{"5", " ", RowBox[{"(", RowBox[{"1", "+", SqrtBox["5"]}], ")"}], " ", "#2"}]}], "\[LessEqual]", RowBox[{ RowBox[{"5", " ", RowBox[{"(", RowBox[{"3", "+", SqrtBox["5"]}], ")"}]}], "+", RowBox[{ SqrtBox[ RowBox[{"10", " ", RowBox[{"(", RowBox[{"5", "+", SqrtBox["5"]}], ")"}]}]], " ", "#3"}]}]}], "&&", RowBox[{ RowBox[{"10", " ", "#2"}], "\[LessEqual]", RowBox[{ RowBox[{"5", " ", RowBox[{"(", RowBox[{"3", "+", SqrtBox["5"]}], ")"}]}], "+", RowBox[{"2", " ", SqrtBox[ RowBox[{"5", " ", RowBox[{"(", RowBox[{"5", "+", RowBox[{"2", " ", SqrtBox["5"]}]}], ")"}]}]], " ", "#1"}], "+", RowBox[{ SqrtBox[ RowBox[{"10", " ", RowBox[{"(", RowBox[{"5", "+", SqrtBox["5"]}], ")"}]}]], " ", "#3"}]}]}], "&&", RowBox[{ RowBox[{"15", "+", RowBox[{"5", " ", SqrtBox["5"]}], "+", RowBox[{"2", " ", SqrtBox[ RowBox[{"5", " ", RowBox[{"(", RowBox[{"5", "+", RowBox[{"2", " ", SqrtBox["5"]}]}], ")"}]}]], " ", "#1"}], "+", RowBox[{"10", " ", "#2"}], "+", RowBox[{ SqrtBox[ RowBox[{"10", " ", RowBox[{"(", RowBox[{"5", "+", SqrtBox["5"]}], ")"}]}]], " ", "#3"}]}], "\[GreaterEqual]", "0"}]}], "&"}]], "Output", CellLabel-> "(Local-Devel (5)) \ Out[5]=",ExpressionUUID->"9cd1a783-08ba-4ee9-80d5-2eb0efa4347c"] }, Open ]], Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{"Collect", "[", RowBox[{"#", ",", RowBox[{"{", RowBox[{"x", ",", "y", ",", "z"}], "}"}], ",", "RootReduce"}], "]"}], "&"}], "/@", RowBox[{"PolyhedronInequalities", "[", RowBox[{"p", ",", RowBox[{"{", RowBox[{"x", ",", "y", ",", "z"}], "}"}]}], "]"}]}]], "Input",ExpressionU\ UID->"421827d9-64d9-4b4b-a999-3f29789d4e77"], Cell[BoxData[ RowBox[{"FullSimplify", "[", "%", "]"}]], "Input", CellLabel-> "In[149]:=",ExpressionUUID->"177afe5f-fe52-481d-b518-9f1feba1b35f"] }, Open ]], Cell[CellGroupData[{ Cell["SimplePolyhedron", "Subsection",ExpressionUUID->"f62cb597-a6f8-4ad0-9cb7-65bf16a22d73"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}]], "Input", CellLabel-> "In[217]:=",ExpressionUUID->"feefe486-51b5-4737-aadb-6d39c0921dbe"], Cell[BoxData["True"], "Output", CellLabel-> "Out[217]=",ExpressionUUID->"5a009a03-1ffd-40d4-a2ae-1588a77882ee"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"SimplePolyhedronQ", "[", "p", "]"}]], "Input", CellLabel-> "In[218]:=",ExpressionUUID->"aac10be8-aa22-4aa5-b13e-f759d3a02596"], Cell[BoxData["True"], "Output", CellLabel-> "Out[218]=",ExpressionUUID->"ce0e37e2-8b4e-4748-ac54-e641a24fa593"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["SurfaceArea", "Subsection",ExpressionUUID->"452c20b7-9eb5-4b96-b74f-a2472ef6b495"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}]], "Input", CellLabel->"In[34]:=",ExpressionUUID->"6d742df2-c6cc-40d0-8fd1-0a55c52ad55b"], Cell[BoxData[ SqrtBox[ RowBox[{"30", " ", RowBox[{"(", RowBox[{"10", "+", RowBox[{"3", " ", SqrtBox["5"]}], "+", SqrtBox[ RowBox[{"75", "+", RowBox[{"30", " ", SqrtBox["5"]}]}]]}], ")"}]}]]], "Output", CellLabel->"Out[34]=",ExpressionUUID->"8b5b6358-6ebc-4a42-9b35-6ce222d69fb8"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"RootReduce", "[", "%", "]"}]], "Input", CellLabel->"In[35]:=",ExpressionUUID->"45db3811-0af8-4f5e-abd5-fa7557b1db1d"], Cell[BoxData[ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"29.3\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 29.30598284491198768364483839832246303558`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"324000000", "-", RowBox[{"27000000", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"324000", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"1200", " ", SuperscriptBox["#1", "6"]}], "+", SuperscriptBox["#1", "8"]}], "&"}], ",", "8"}], "]"}], Short[#, 7]& ], 29.305982844911988`}, "NumericalApproximation"], Root[324000000 - 27000000 #^2 + 324000 #^4 - 1200 #^6 + #^8& , 8, 0]]], "Output", CellLabel->"Out[35]=",ExpressionUUID->"031f6481-bf2f-4e99-8472-91b8a532d296"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{"SurfaceArea", "[", "p", "]"}], "//", "RootReduce"}], "//", "Timing"}]], "Input", CellLabel-> "(V12.3.0 (1)) \ In[1]:=",ExpressionUUID->"ccfab756-0aad-40d6-aa89-4b260d1500c3"], Cell[BoxData[ RowBox[{"{", RowBox[{"304.049849`", ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"29.3\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 29.3059828449119912363585171988233923912`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"324000000", "-", RowBox[{"27000000", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"324000", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"1200", " ", SuperscriptBox["#1", "6"]}], "+", SuperscriptBox["#1", "8"]}], "&"}], ",", "8"}], "]"}], Short[#, 7]& ], 29.30598284491199}, "NumericalApproximation"], Root[324000000 - 27000000 #^2 + 324000 #^4 - 1200 #^6 + #^8& , 8, 0]]}], "}"}]], "Output", CellLabel-> "(V12.3.0 (1)) \ Out[1]=",ExpressionUUID->"271ac4ea-5304-4020-af04-9d255b6111ef"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{"Total", "[", RowBox[{"Area", "/@", RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}]}], "]"}], "//", "RootReduce"}], "//", "Timing"}]], "Input", CellLabel-> "(V12.3.0 (1)) \ In[2]:=",ExpressionUUID->"b7e0803e-e529-4bfb-82e5-e6b8bef8bf62"], Cell[BoxData[ RowBox[{"{", RowBox[{"305.34378`", ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"29.3\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 29.3059828449119912363585171988233923912`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"324000000", "-", RowBox[{"27000000", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"324000", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"1200", " ", SuperscriptBox["#1", "6"]}], "+", SuperscriptBox["#1", "8"]}], "&"}], ",", "8"}], "]"}], Short[#, 7]& ], 29.30598284491199}, "NumericalApproximation"], Root[324000000 - 27000000 #^2 + 324000 #^4 - 1200 #^6 + #^8& , 8, 0]]}], "}"}]], "Output", CellLabel-> "(V12.3.0 (1)) \ Out[2]=",ExpressionUUID->"3babf7af-b86e-4189-bd48-23fb015709af"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Volume", "Subsection",ExpressionUUID->"671ac800-b2c6-4756-a671-5f41534bb14f"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}]], "Input", CellLabel->"In[37]:=",ExpressionUUID->"18805b67-f8d1-4e55-a52b-69a3b7bd26be"], Cell[BoxData[ RowBox[{ FractionBox["1", "6"], " ", RowBox[{"(", RowBox[{"45", "+", RowBox[{"17", " ", SqrtBox["5"]}]}], ")"}]}]], "Output", CellLabel->"Out[37]=",ExpressionUUID->"5b9a8606-c4ed-4e3e-a15d-699dd43336be"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"vol", "//", "FullSimplify"}]], "Input", CellLabel->"In[38]:=",ExpressionUUID->"c1e46f86-a1ec-446b-b50a-30db2343dafb"], Cell[BoxData[ RowBox[{ FractionBox["1", "6"], " ", RowBox[{"(", RowBox[{"45", "+", RowBox[{"17", " ", SqrtBox["5"]}]}], ")"}]}]], "Output", CellLabel->"Out[38]=",ExpressionUUID->"90e9827f-7b98-48ff-8d23-004b463c054a"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"PolyhedronVolume", "[", RowBox[{"p", ",", RowBox[{"Method", "\[Rule]", "\"\\""}]}], "]"}], "//", "FullSimplify"}]], "Input", CellLabel->"In[39]:=",ExpressionUUID->"c46ea563-aee0-4b4f-9f66-8041e81bd033"], Cell[BoxData[ RowBox[{ FractionBox["1", "6"], " ", RowBox[{"(", RowBox[{"45", "+", RowBox[{"17", " ", SqrtBox["5"]}]}], ")"}]}]], "Output", CellLabel->"Out[39]=",ExpressionUUID->"20beafe6-5b3d-4a55-b089-77ea657ce8c7"] }, Open ]] }, Closed]] }, Open ]], Cell[CellGroupData[{ Cell["Stellation", "Section",ExpressionUUID->"52751a43-fc14-4343-ac44-d5a0dca013af"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Graphics3D", "[", RowBox[{ RowBox[{"Cumulate", "[", RowBox[{ RowBox[{ RowBox[{"Normal", "[", RowBox[{"PolyhedronData", "[", RowBox[{"\"\\"", ",", "\"\\""}], "]"}], "]"}], "//", "Flatten"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"3", ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{"5", ",", "1.4"}], "}"}]}], "}"}]}], "]"}], ",", RowBox[{"Boxed", "\[Rule]", "False"}]}], "]"}]], "Input",ExpressionUUID->\ "de524a44-e42b-41ac-b2a7-97d3b6fffbcd"], Cell[BoxData[ GraphicsBox[InsetBox[ Graphics3DBox[{{{ Polygon3DBox[ NCache[{{ Rational[1, 3] (Root[1 - 5 #^2 + 5 #^4& , 1, 0] + Root[1 - 100 #^2 + 80 #^4& , 1, 0] + Root[1 - 20 #^2 + 80 #^4& , 2, 0]) - ( Rational[1, 12] (1 + 2 5^Rational[-1, 2])^Rational[1, 2] + Rational[1, 12] (5 (1 + 2 5^Rational[-1, 2]))^Rational[1, 2] + Rational[-1, 12] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2] + Rational[-1, 12] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2]) (( Rational[1, 12] (1 + 2 5^Rational[-1, 2])^Rational[1, 2] + Rational[1, 12] (5 (1 + 2 5^Rational[-1, 2]))^Rational[1, 2] + Rational[-1, 12] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2] + Rational[-1, 12] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2])^2 + ( Rational[1, 12] Root[1 - 100 #^2 + 80 #^4& , 1, 0] + (Rational[1, 12] 5^Rational[1, 2]) Root[1 - 100 #^2 + 80 #^4& , 1, 0] + Rational[-1, 12] Root[1 - 20 #^2 + 80 #^4& , 2, 0] + (Rational[-1, 12] 5^Rational[1, 2]) Root[1 - 20 #^2 + 80 #^4& , 2, 0])^2 + (( Rational[1, 3] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0] + ( Rational[-1, 3] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0] + ( Rational[-1, 3] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]) Root[1 - 20 #^2 + 80 #^4& , 2, 0] + ( Rational[1, 3] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]) Root[1 - 20 #^2 + 80 #^4& , 2, 0])^2)^ Rational[-1, 2], Rational[1, 6] (1 + 5^Rational[1, 2]) - (( Rational[1, 3] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0] + ( Rational[-1, 3] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0] + ( Rational[-1, 3] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]) Root[1 - 20 #^2 + 80 #^4& , 2, 0] + ( Rational[1, 3] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]) Root[1 - 20 #^2 + 80 #^4& , 2, 0]) (( Rational[1, 12] (1 + 2 5^Rational[-1, 2])^Rational[1, 2] + Rational[1, 12] (5 (1 + 2 5^Rational[-1, 2]))^Rational[1, 2] + Rational[-1, 12] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2] + Rational[-1, 12] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2])^2 + ( Rational[1, 12] Root[1 - 100 #^2 + 80 #^4& , 1, 0] + (Rational[1, 12] 5^Rational[1, 2]) Root[1 - 100 #^2 + 80 #^4& , 1, 0] + Rational[-1, 12] Root[1 - 20 #^2 + 80 #^4& , 2, 0] + (Rational[-1, 12] 5^Rational[1, 2]) Root[1 - 20 #^2 + 80 #^4& , 2, 0])^2 + (( Rational[1, 3] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0] + ( Rational[-1, 3] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0] + ( Rational[-1, 3] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]) Root[1 - 20 #^2 + 80 #^4& , 2, 0] + ( Rational[1, 3] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]) Root[1 - 20 #^2 + 80 #^4& , 2, 0])^2)^ Rational[-1, 2], Rational[1, 3] ( 2 (1 + 2 5^Rational[-1, 2])^Rational[1, 2] + ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]) - ( Rational[1, 12] Root[1 - 100 #^2 + 80 #^4& , 1, 0] + (Rational[1, 12] 5^Rational[1, 2]) Root[1 - 100 #^2 + 80 #^4& , 1, 0] + Rational[-1, 12] Root[1 - 20 #^2 + 80 #^4& , 2, 0] + (Rational[-1, 12] 5^Rational[1, 2]) Root[1 - 20 #^2 + 80 #^4& , 2, 0]) (( Rational[1, 12] (1 + 2 5^Rational[-1, 2])^Rational[1, 2] + Rational[1, 12] (5 (1 + 2 5^Rational[-1, 2]))^Rational[1, 2] + Rational[-1, 12] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2] + Rational[-1, 12] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2])^2 + ( Rational[1, 12] Root[1 - 100 #^2 + 80 #^4& , 1, 0] + (Rational[1, 12] 5^Rational[1, 2]) Root[1 - 100 #^2 + 80 #^4& , 1, 0] + Rational[-1, 12] Root[1 - 20 #^2 + 80 #^4& , 2, 0] + (Rational[-1, 12] 5^Rational[1, 2]) Root[1 - 20 #^2 + 80 #^4& , 2, 0])^2 + (( Rational[1, 3] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0] + ( Rational[-1, 3] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0] + ( Rational[-1, 3] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]) Root[1 - 20 #^2 + 80 #^4& , 2, 0] + ( Rational[1, 3] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]) Root[1 - 20 #^2 + 80 #^4& , 2, 0])^2)^ Rational[-1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 5 #^2 + 5 #^4& , 1, 0], 0, (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}}, {{-1.233467716129494, 0.8961667526897215, 1.9957926887232285`}, {-1.1135163644116068`, 0.8090169943749475, 0.85065080835204}, {-0.8506508083520399, 0, 1.3763819204711736`}}]], Polygon3DBox[ NCache[{{ Rational[1, 3] (Root[1 - 5 #^2 + 5 #^4& , 1, 0] + Root[1 - 100 #^2 + 80 #^4& , 1, 0] + Root[1 - 20 #^2 + 80 #^4& , 2, 0]) - ( Rational[1, 12] (1 + 2 5^Rational[-1, 2])^Rational[1, 2] + Rational[1, 12] (5 (1 + 2 5^Rational[-1, 2]))^Rational[1, 2] + Rational[-1, 12] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2] + Rational[-1, 12] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2]) (( Rational[1, 12] (1 + 2 5^Rational[-1, 2])^Rational[1, 2] + Rational[1, 12] (5 (1 + 2 5^Rational[-1, 2]))^Rational[1, 2] + Rational[-1, 12] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2] + Rational[-1, 12] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2])^2 + ( Rational[1, 12] Root[1 - 100 #^2 + 80 #^4& , 1, 0] + (Rational[1, 12] 5^Rational[1, 2]) Root[1 - 100 #^2 + 80 #^4& , 1, 0] + Rational[-1, 12] Root[1 - 20 #^2 + 80 #^4& , 2, 0] + (Rational[-1, 12] 5^Rational[1, 2]) Root[1 - 20 #^2 + 80 #^4& , 2, 0])^2 + (( Rational[1, 3] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0] + ( Rational[-1, 3] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0] + ( Rational[-1, 3] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]) Root[1 - 20 #^2 + 80 #^4& , 2, 0] + ( Rational[1, 3] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]) Root[1 - 20 #^2 + 80 #^4& , 2, 0])^2)^ Rational[-1, 2], Rational[1, 6] (1 + 5^Rational[1, 2]) - (( Rational[1, 3] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0] + ( Rational[-1, 3] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0] + ( Rational[-1, 3] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]) Root[1 - 20 #^2 + 80 #^4& , 2, 0] + ( Rational[1, 3] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]) Root[1 - 20 #^2 + 80 #^4& , 2, 0]) (( Rational[1, 12] (1 + 2 5^Rational[-1, 2])^Rational[1, 2] + Rational[1, 12] (5 (1 + 2 5^Rational[-1, 2]))^Rational[1, 2] + Rational[-1, 12] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2] + Rational[-1, 12] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2])^2 + ( Rational[1, 12] Root[1 - 100 #^2 + 80 #^4& , 1, 0] + (Rational[1, 12] 5^Rational[1, 2]) Root[1 - 100 #^2 + 80 #^4& , 1, 0] + Rational[-1, 12] Root[1 - 20 #^2 + 80 #^4& , 2, 0] + (Rational[-1, 12] 5^Rational[1, 2]) Root[1 - 20 #^2 + 80 #^4& , 2, 0])^2 + (( Rational[1, 3] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0] + ( Rational[-1, 3] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0] + ( Rational[-1, 3] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]) Root[1 - 20 #^2 + 80 #^4& , 2, 0] + ( Rational[1, 3] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]) Root[1 - 20 #^2 + 80 #^4& , 2, 0])^2)^ Rational[-1, 2], Rational[1, 3] ( 2 (1 + 2 5^Rational[-1, 2])^Rational[1, 2] + ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]) - ( Rational[1, 12] Root[1 - 100 #^2 + 80 #^4& , 1, 0] + (Rational[1, 12] 5^Rational[1, 2]) Root[1 - 100 #^2 + 80 #^4& , 1, 0] + Rational[-1, 12] Root[1 - 20 #^2 + 80 #^4& , 2, 0] + (Rational[-1, 12] 5^Rational[1, 2]) Root[1 - 20 #^2 + 80 #^4& , 2, 0]) (( Rational[1, 12] (1 + 2 5^Rational[-1, 2])^Rational[1, 2] + Rational[1, 12] (5 (1 + 2 5^Rational[-1, 2]))^Rational[1, 2] + Rational[-1, 12] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2] + Rational[-1, 12] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2])^2 + ( Rational[1, 12] Root[1 - 100 #^2 + 80 #^4& , 1, 0] + (Rational[1, 12] 5^Rational[1, 2]) Root[1 - 100 #^2 + 80 #^4& , 1, 0] + Rational[-1, 12] Root[1 - 20 #^2 + 80 #^4& , 2, 0] + (Rational[-1, 12] 5^Rational[1, 2]) Root[1 - 20 #^2 + 80 #^4& , 2, 0])^2 + (( Rational[1, 3] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0] + ( Rational[-1, 3] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0] + ( Rational[-1, 3] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]) Root[1 - 20 #^2 + 80 #^4& , 2, 0] + ( Rational[1, 3] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]) Root[1 - 20 #^2 + 80 #^4& , 2, 0])^2)^ Rational[-1, 2]}, { Root[1 - 5 #^2 + 5 #^4& , 1, 0], 0, (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}}, {{-1.233467716129494, 0.8961667526897215, 1.9957926887232285`}, {-0.8506508083520399, 0, 1.3763819204711736`}, {-0.2628655560595668, 0.8090169943749475, 1.3763819204711736`}}]], Polygon3DBox[ NCache[{{ Rational[1, 3] (Root[1 - 5 #^2 + 5 #^4& , 1, 0] + Root[1 - 100 #^2 + 80 #^4& , 1, 0] + Root[1 - 20 #^2 + 80 #^4& , 2, 0]) - ( Rational[1, 12] (1 + 2 5^Rational[-1, 2])^Rational[1, 2] + Rational[1, 12] (5 (1 + 2 5^Rational[-1, 2]))^Rational[1, 2] + Rational[-1, 12] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2] + Rational[-1, 12] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2]) (( Rational[1, 12] (1 + 2 5^Rational[-1, 2])^Rational[1, 2] + Rational[1, 12] (5 (1 + 2 5^Rational[-1, 2]))^Rational[1, 2] + Rational[-1, 12] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2] + Rational[-1, 12] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2])^2 + ( Rational[1, 12] Root[1 - 100 #^2 + 80 #^4& , 1, 0] + (Rational[1, 12] 5^Rational[1, 2]) Root[1 - 100 #^2 + 80 #^4& , 1, 0] + Rational[-1, 12] Root[1 - 20 #^2 + 80 #^4& , 2, 0] + (Rational[-1, 12] 5^Rational[1, 2]) Root[1 - 20 #^2 + 80 #^4& , 2, 0])^2 + (( Rational[1, 3] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0] + ( Rational[-1, 3] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0] + ( Rational[-1, 3] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]) Root[1 - 20 #^2 + 80 #^4& , 2, 0] + ( Rational[1, 3] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]) Root[1 - 20 #^2 + 80 #^4& , 2, 0])^2)^ Rational[-1, 2], Rational[1, 6] (1 + 5^Rational[1, 2]) - (( Rational[1, 3] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0] + ( Rational[-1, 3] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0] + ( Rational[-1, 3] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]) Root[1 - 20 #^2 + 80 #^4& , 2, 0] + ( Rational[1, 3] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]) Root[1 - 20 #^2 + 80 #^4& , 2, 0]) (( Rational[1, 12] (1 + 2 5^Rational[-1, 2])^Rational[1, 2] + Rational[1, 12] (5 (1 + 2 5^Rational[-1, 2]))^Rational[1, 2] + Rational[-1, 12] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2] + Rational[-1, 12] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2])^2 + ( Rational[1, 12] Root[1 - 100 #^2 + 80 #^4& , 1, 0] + (Rational[1, 12] 5^Rational[1, 2]) Root[1 - 100 #^2 + 80 #^4& , 1, 0] + Rational[-1, 12] Root[1 - 20 #^2 + 80 #^4& , 2, 0] + (Rational[-1, 12] 5^Rational[1, 2]) Root[1 - 20 #^2 + 80 #^4& , 2, 0])^2 + (( Rational[1, 3] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0] + ( Rational[-1, 3] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0] + ( Rational[-1, 3] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]) Root[1 - 20 #^2 + 80 #^4& , 2, 0] + ( Rational[1, 3] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]) Root[1 - 20 #^2 + 80 #^4& , 2, 0])^2)^ Rational[-1, 2], Rational[1, 3] ( 2 (1 + 2 5^Rational[-1, 2])^Rational[1, 2] + ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]) - ( Rational[1, 12] Root[1 - 100 #^2 + 80 #^4& , 1, 0] + (Rational[1, 12] 5^Rational[1, 2]) Root[1 - 100 #^2 + 80 #^4& , 1, 0] + Rational[-1, 12] Root[1 - 20 #^2 + 80 #^4& , 2, 0] + (Rational[-1, 12] 5^Rational[1, 2]) Root[1 - 20 #^2 + 80 #^4& , 2, 0]) (( Rational[1, 12] (1 + 2 5^Rational[-1, 2])^Rational[1, 2] + Rational[1, 12] (5 (1 + 2 5^Rational[-1, 2]))^Rational[1, 2] + Rational[-1, 12] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2] + Rational[-1, 12] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2])^2 + ( Rational[1, 12] Root[1 - 100 #^2 + 80 #^4& , 1, 0] + (Rational[1, 12] 5^Rational[1, 2]) Root[1 - 100 #^2 + 80 #^4& , 1, 0] + Rational[-1, 12] Root[1 - 20 #^2 + 80 #^4& , 2, 0] + (Rational[-1, 12] 5^Rational[1, 2]) Root[1 - 20 #^2 + 80 #^4& , 2, 0])^2 + (( Rational[1, 3] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0] + ( Rational[-1, 3] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0] + ( Rational[-1, 3] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]) Root[1 - 20 #^2 + 80 #^4& , 2, 0] + ( Rational[1, 3] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]) Root[1 - 20 #^2 + 80 #^4& , 2, 0])^2)^ Rational[-1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}}, {{-1.233467716129494, 0.8961667526897215, 1.9957926887232285`}, {-0.2628655560595668, 0.8090169943749475, 1.3763819204711736`}, {-1.1135163644116068`, 0.8090169943749475, 0.85065080835204}}]]}, { Polygon3DBox[ NCache[{{ Rational[1, 3] (Root[1 - 5 #^2 + 5 #^4& , 1, 0] + Root[1 - 100 #^2 + 80 #^4& , 1, 0] + Root[1 - 20 #^2 + 80 #^4& , 2, 0]) - ( Rational[1, 12] (1 + 2 5^Rational[-1, 2])^Rational[1, 2] + Rational[1, 12] (5 (1 + 2 5^Rational[-1, 2]))^Rational[1, 2] + Rational[-1, 12] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2] + Rational[-1, 12] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2]) (( Rational[1, 12] (1 + 2 5^Rational[-1, 2])^Rational[1, 2] + Rational[1, 12] (5 (1 + 2 5^Rational[-1, 2]))^Rational[1, 2] + Rational[-1, 12] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2] + Rational[-1, 12] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2])^2 + ( Rational[1, 12] Root[1 - 100 #^2 + 80 #^4& , 1, 0] + (Rational[1, 12] 5^Rational[1, 2]) Root[1 - 100 #^2 + 80 #^4& , 1, 0] + Rational[-1, 12] Root[1 - 20 #^2 + 80 #^4& , 2, 0] + (Rational[-1, 12] 5^Rational[1, 2]) Root[1 - 20 #^2 + 80 #^4& , 2, 0])^2 + (( Rational[-1, 3] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0] + ( Rational[1, 3] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0] + ( Rational[1, 3] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]) Root[1 - 20 #^2 + 80 #^4& , 2, 0] + ( Rational[-1, 3] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]) Root[1 - 20 #^2 + 80 #^4& , 2, 0])^2)^ Rational[-1, 2], Rational[1, 6] (-1 - 5^ Rational[1, 2]) - (( Rational[-1, 3] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0] + ( Rational[1, 3] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0] + ( Rational[1, 3] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]) Root[1 - 20 #^2 + 80 #^4& , 2, 0] + ( Rational[-1, 3] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]) Root[1 - 20 #^2 + 80 #^4& , 2, 0]) (( Rational[1, 12] (1 + 2 5^Rational[-1, 2])^Rational[1, 2] + Rational[1, 12] (5 (1 + 2 5^Rational[-1, 2]))^Rational[1, 2] + Rational[-1, 12] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2] + Rational[-1, 12] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2])^2 + ( Rational[1, 12] Root[1 - 100 #^2 + 80 #^4& , 1, 0] + (Rational[1, 12] 5^Rational[1, 2]) Root[1 - 100 #^2 + 80 #^4& , 1, 0] + Rational[-1, 12] Root[1 - 20 #^2 + 80 #^4& , 2, 0] + (Rational[-1, 12] 5^Rational[1, 2]) Root[1 - 20 #^2 + 80 #^4& , 2, 0])^2 + (( Rational[-1, 3] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0] + ( Rational[1, 3] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0] + ( Rational[1, 3] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]) Root[1 - 20 #^2 + 80 #^4& , 2, 0] + ( Rational[-1, 3] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]) Root[1 - 20 #^2 + 80 #^4& , 2, 0])^2)^ Rational[-1, 2], Rational[1, 3] ( 2 (1 + 2 5^Rational[-1, 2])^Rational[1, 2] + ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]) - ( Rational[1, 12] Root[1 - 100 #^2 + 80 #^4& , 1, 0] + (Rational[1, 12] 5^Rational[1, 2]) Root[1 - 100 #^2 + 80 #^4& , 1, 0] + Rational[-1, 12] Root[1 - 20 #^2 + 80 #^4& , 2, 0] + (Rational[-1, 12] 5^Rational[1, 2]) Root[1 - 20 #^2 + 80 #^4& , 2, 0]) (( Rational[1, 12] (1 + 2 5^Rational[-1, 2])^Rational[1, 2] + Rational[1, 12] (5 (1 + 2 5^Rational[-1, 2]))^Rational[1, 2] + Rational[-1, 12] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2] + Rational[-1, 12] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2])^2 + ( Rational[1, 12] Root[1 - 100 #^2 + 80 #^4& , 1, 0] + (Rational[1, 12] 5^Rational[1, 2]) Root[1 - 100 #^2 + 80 #^4& , 1, 0] + Rational[-1, 12] Root[1 - 20 #^2 + 80 #^4& , 2, 0] + (Rational[-1, 12] 5^Rational[1, 2]) Root[1 - 20 #^2 + 80 #^4& , 2, 0])^2 + (( Rational[-1, 3] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0] + ( Rational[1, 3] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0] + ( Rational[1, 3] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]) Root[1 - 20 #^2 + 80 #^4& , 2, 0] + ( Rational[-1, 3] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]) Root[1 - 20 #^2 + 80 #^4& , 2, 0])^2)^ Rational[-1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}}, {{-1.233467716129494, -0.8961667526897215, 1.9957926887232285`}, {-1.1135163644116068`, -0.8090169943749475, 0.85065080835204}, {-0.2628655560595668, -0.8090169943749475, 1.3763819204711736`}}]], Polygon3DBox[ NCache[{{ Rational[1, 3] (Root[1 - 5 #^2 + 5 #^4& , 1, 0] + Root[1 - 100 #^2 + 80 #^4& , 1, 0] + Root[1 - 20 #^2 + 80 #^4& , 2, 0]) - ( Rational[1, 12] (1 + 2 5^Rational[-1, 2])^Rational[1, 2] + Rational[1, 12] (5 (1 + 2 5^Rational[-1, 2]))^Rational[1, 2] + Rational[-1, 12] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2] + Rational[-1, 12] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2]) (( Rational[1, 12] (1 + 2 5^Rational[-1, 2])^Rational[1, 2] + Rational[1, 12] (5 (1 + 2 5^Rational[-1, 2]))^Rational[1, 2] + Rational[-1, 12] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2] + Rational[-1, 12] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2])^2 + ( Rational[1, 12] Root[1 - 100 #^2 + 80 #^4& , 1, 0] + (Rational[1, 12] 5^Rational[1, 2]) Root[1 - 100 #^2 + 80 #^4& , 1, 0] + Rational[-1, 12] Root[1 - 20 #^2 + 80 #^4& , 2, 0] + (Rational[-1, 12] 5^Rational[1, 2]) Root[1 - 20 #^2 + 80 #^4& , 2, 0])^2 + (( Rational[-1, 3] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0] + ( Rational[1, 3] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0] + ( Rational[1, 3] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]) Root[1 - 20 #^2 + 80 #^4& , 2, 0] + ( Rational[-1, 3] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]) Root[1 - 20 #^2 + 80 #^4& , 2, 0])^2)^ Rational[-1, 2], Rational[1, 6] (-1 - 5^ Rational[1, 2]) - (( Rational[-1, 3] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0] + ( Rational[1, 3] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0] + ( Rational[1, 3] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]) Root[1 - 20 #^2 + 80 #^4& , 2, 0] + ( Rational[-1, 3] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]) Root[1 - 20 #^2 + 80 #^4& , 2, 0]) (( Rational[1, 12] (1 + 2 5^Rational[-1, 2])^Rational[1, 2] + Rational[1, 12] (5 (1 + 2 5^Rational[-1, 2]))^Rational[1, 2] + Rational[-1, 12] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2] + Rational[-1, 12] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2])^2 + ( Rational[1, 12] Root[1 - 100 #^2 + 80 #^4& , 1, 0] + (Rational[1, 12] 5^Rational[1, 2]) Root[1 - 100 #^2 + 80 #^4& , 1, 0] + Rational[-1, 12] Root[1 - 20 #^2 + 80 #^4& , 2, 0] + (Rational[-1, 12] 5^Rational[1, 2]) Root[1 - 20 #^2 + 80 #^4& , 2, 0])^2 + (( Rational[-1, 3] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0] + ( Rational[1, 3] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0] + ( Rational[1, 3] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]) Root[1 - 20 #^2 + 80 #^4& , 2, 0] + ( Rational[-1, 3] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]) Root[1 - 20 #^2 + 80 #^4& , 2, 0])^2)^ Rational[-1, 2], Rational[1, 3] ( 2 (1 + 2 5^Rational[-1, 2])^Rational[1, 2] + ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]) - ( Rational[1, 12] Root[1 - 100 #^2 + 80 #^4& , 1, 0] + (Rational[1, 12] 5^Rational[1, 2]) Root[1 - 100 #^2 + 80 #^4& , 1, 0] + Rational[-1, 12] Root[1 - 20 #^2 + 80 #^4& , 2, 0] + (Rational[-1, 12] 5^Rational[1, 2]) Root[1 - 20 #^2 + 80 #^4& , 2, 0]) (( Rational[1, 12] (1 + 2 5^Rational[-1, 2])^Rational[1, 2] + Rational[1, 12] (5 (1 + 2 5^Rational[-1, 2]))^Rational[1, 2] + Rational[-1, 12] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2] + Rational[-1, 12] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2])^2 + ( Rational[1, 12] Root[1 - 100 #^2 + 80 #^4& , 1, 0] + (Rational[1, 12] 5^Rational[1, 2]) Root[1 - 100 #^2 + 80 #^4& , 1, 0] + Rational[-1, 12] Root[1 - 20 #^2 + 80 #^4& , 2, 0] + (Rational[-1, 12] 5^Rational[1, 2]) Root[1 - 20 #^2 + 80 #^4& , 2, 0])^2 + (( Rational[-1, 3] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0] + ( Rational[1, 3] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0] + ( Rational[1, 3] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]) Root[1 - 20 #^2 + 80 #^4& , 2, 0] + ( Rational[-1, 3] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]) Root[1 - 20 #^2 + 80 #^4& , 2, 0])^2)^ Rational[-1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 5 #^2 + 5 #^4& , 1, 0], 0, (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}}, {{-1.233467716129494, -0.8961667526897215, 1.9957926887232285`}, {-0.2628655560595668, -0.8090169943749475, 1.3763819204711736`}, {-0.8506508083520399, 0, 1.3763819204711736`}}]], Polygon3DBox[ NCache[{{ Rational[1, 3] (Root[1 - 5 #^2 + 5 #^4& , 1, 0] + Root[1 - 100 #^2 + 80 #^4& , 1, 0] + Root[1 - 20 #^2 + 80 #^4& , 2, 0]) - ( Rational[1, 12] (1 + 2 5^Rational[-1, 2])^Rational[1, 2] + Rational[1, 12] (5 (1 + 2 5^Rational[-1, 2]))^Rational[1, 2] + Rational[-1, 12] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2] + Rational[-1, 12] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2]) (( Rational[1, 12] (1 + 2 5^Rational[-1, 2])^Rational[1, 2] + Rational[1, 12] (5 (1 + 2 5^Rational[-1, 2]))^Rational[1, 2] + Rational[-1, 12] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2] + Rational[-1, 12] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2])^2 + ( Rational[1, 12] Root[1 - 100 #^2 + 80 #^4& , 1, 0] + (Rational[1, 12] 5^Rational[1, 2]) Root[1 - 100 #^2 + 80 #^4& , 1, 0] + Rational[-1, 12] Root[1 - 20 #^2 + 80 #^4& , 2, 0] + (Rational[-1, 12] 5^Rational[1, 2]) Root[1 - 20 #^2 + 80 #^4& , 2, 0])^2 + (( Rational[-1, 3] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0] + ( Rational[1, 3] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0] + ( Rational[1, 3] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]) Root[1 - 20 #^2 + 80 #^4& , 2, 0] + ( Rational[-1, 3] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]) Root[1 - 20 #^2 + 80 #^4& , 2, 0])^2)^ Rational[-1, 2], Rational[1, 6] (-1 - 5^ Rational[1, 2]) - (( Rational[-1, 3] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0] + ( Rational[1, 3] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0] + ( Rational[1, 3] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]) Root[1 - 20 #^2 + 80 #^4& , 2, 0] + ( Rational[-1, 3] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]) Root[1 - 20 #^2 + 80 #^4& , 2, 0]) (( Rational[1, 12] (1 + 2 5^Rational[-1, 2])^Rational[1, 2] + Rational[1, 12] (5 (1 + 2 5^Rational[-1, 2]))^Rational[1, 2] + Rational[-1, 12] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2] + Rational[-1, 12] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2])^2 + ( Rational[1, 12] Root[1 - 100 #^2 + 80 #^4& , 1, 0] + (Rational[1, 12] 5^Rational[1, 2]) Root[1 - 100 #^2 + 80 #^4& , 1, 0] + Rational[-1, 12] Root[1 - 20 #^2 + 80 #^4& , 2, 0] + (Rational[-1, 12] 5^Rational[1, 2]) Root[1 - 20 #^2 + 80 #^4& , 2, 0])^2 + (( Rational[-1, 3] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0] + ( Rational[1, 3] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0] + ( Rational[1, 3] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]) Root[1 - 20 #^2 + 80 #^4& , 2, 0] + ( Rational[-1, 3] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]) Root[1 - 20 #^2 + 80 #^4& , 2, 0])^2)^ Rational[-1, 2], Rational[1, 3] ( 2 (1 + 2 5^Rational[-1, 2])^Rational[1, 2] + ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]) - ( Rational[1, 12] Root[1 - 100 #^2 + 80 #^4& , 1, 0] + (Rational[1, 12] 5^Rational[1, 2]) Root[1 - 100 #^2 + 80 #^4& , 1, 0] + Rational[-1, 12] Root[1 - 20 #^2 + 80 #^4& , 2, 0] + (Rational[-1, 12] 5^Rational[1, 2]) Root[1 - 20 #^2 + 80 #^4& , 2, 0]) (( Rational[1, 12] (1 + 2 5^Rational[-1, 2])^Rational[1, 2] + Rational[1, 12] (5 (1 + 2 5^Rational[-1, 2]))^Rational[1, 2] + Rational[-1, 12] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2] + Rational[-1, 12] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2])^2 + ( Rational[1, 12] Root[1 - 100 #^2 + 80 #^4& , 1, 0] + (Rational[1, 12] 5^Rational[1, 2]) Root[1 - 100 #^2 + 80 #^4& , 1, 0] + Rational[-1, 12] Root[1 - 20 #^2 + 80 #^4& , 2, 0] + (Rational[-1, 12] 5^Rational[1, 2]) Root[1 - 20 #^2 + 80 #^4& , 2, 0])^2 + (( Rational[-1, 3] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0] + ( Rational[1, 3] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0] + ( Rational[1, 3] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]) Root[1 - 20 #^2 + 80 #^4& , 2, 0] + ( Rational[-1, 3] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]) Root[1 - 20 #^2 + 80 #^4& , 2, 0])^2)^ Rational[-1, 2]}, { Root[1 - 5 #^2 + 5 #^4& , 1, 0], 0, (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}}, {{-1.233467716129494, -0.8961667526897215, 1.9957926887232285`}, {-0.8506508083520399, 0, 1.3763819204711736`}, {-1.1135163644116068`, -0.8090169943749475, 0.85065080835204}}]]}, { Polygon3DBox[ NCache[{{ Rational[ 1, 3] ((Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^ Rational[1, 2] + (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2] + Root[1 - 20 #^2 + 80 #^4& , 2, 0]) - ( Rational[1, 12] (1 + 2 5^Rational[-1, 2])^Rational[1, 2] + Rational[-1, 12] (5 (1 + 2 5^Rational[-1, 2]))^Rational[1, 2] + Rational[-1, 12] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2] + Rational[1, 12] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2]) (( Rational[1, 12] (1 + 2 5^Rational[-1, 2])^Rational[1, 2] + Rational[-1, 12] (5 (1 + 2 5^Rational[-1, 2]))^Rational[1, 2] + Rational[-1, 12] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2] + Rational[1, 12] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2])^2 + ( Rational[ 1, 12] (Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^ Rational[1, 2] + Rational[-1, 12] ( 5 (Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2]))^ Rational[1, 2] + Rational[-1, 6] (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2] + Rational[1, 12] Root[1 - 20 #^2 + 80 #^4& , 2, 0] + (Rational[1, 12] 5^Rational[1, 2]) Root[1 - 20 #^2 + 80 #^4& , 2, 0])^2 + ( Rational[ 1, 3] ((Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2]) ( 1 + 2 5^Rational[-1, 2]))^Rational[1, 2] + Rational[-1, 3] ((Rational[1, 10] (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])) (5 + 5^Rational[1, 2]))^Rational[1, 2] + ( Rational[-1, 3] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]) Root[1 - 20 #^2 + 80 #^4& , 2, 0] + ( Rational[1, 3] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]) Root[1 - 20 #^2 + 80 #^4& , 2, 0])^2)^ Rational[-1, 2], Rational[1, 3] (Rational[-1, 2] + Rational[1, 4] (-3 - 5^Rational[1, 2]) + Rational[1, 4] (-1 - 5^Rational[1, 2])) - ( Rational[ 1, 3] ((Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2]) (1 + 2 5^Rational[-1, 2]))^Rational[1, 2] + Rational[-1, 3] ((Rational[1, 10] (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])) (5 + 5^Rational[1, 2]))^ Rational[1, 2] + ( Rational[-1, 3] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]) Root[1 - 20 #^2 + 80 #^4& , 2, 0] + ( Rational[1, 3] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]) Root[1 - 20 #^2 + 80 #^4& , 2, 0]) (( Rational[1, 12] (1 + 2 5^Rational[-1, 2])^Rational[1, 2] + Rational[-1, 12] (5 (1 + 2 5^Rational[-1, 2]))^Rational[1, 2] + Rational[-1, 12] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2] + Rational[1, 12] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2])^2 + ( Rational[ 1, 12] (Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^ Rational[1, 2] + Rational[-1, 12] ( 5 (Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2]))^ Rational[1, 2] + Rational[-1, 6] (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2] + Rational[1, 12] Root[1 - 20 #^2 + 80 #^4& , 2, 0] + (Rational[1, 12] 5^Rational[1, 2]) Root[1 - 20 #^2 + 80 #^4& , 2, 0])^2 + ( Rational[ 1, 3] ((Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2]) ( 1 + 2 5^Rational[-1, 2]))^Rational[1, 2] + Rational[-1, 3] ((Rational[1, 10] (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])) (5 + 5^Rational[1, 2]))^Rational[1, 2] + ( Rational[-1, 3] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]) Root[1 - 20 #^2 + 80 #^4& , 2, 0] + ( Rational[1, 3] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]) Root[1 - 20 #^2 + 80 #^4& , 2, 0])^2)^ Rational[-1, 2], Rational[1, 3] ( 2 (1 + 2 5^Rational[-1, 2])^Rational[1, 2] + ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]) - ( Rational[ 1, 12] (Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^ Rational[1, 2] + Rational[-1, 12] ( 5 (Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2]))^ Rational[1, 2] + Rational[-1, 6] (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2] + Rational[1, 12] Root[1 - 20 #^2 + 80 #^4& , 2, 0] + (Rational[1, 12] 5^Rational[1, 2]) Root[1 - 20 #^2 + 80 #^4& , 2, 0]) (( Rational[1, 12] (1 + 2 5^Rational[-1, 2])^Rational[1, 2] + Rational[-1, 12] (5 (1 + 2 5^Rational[-1, 2]))^Rational[1, 2] + Rational[-1, 12] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2] + Rational[1, 12] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2])^2 + ( Rational[ 1, 12] (Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^ Rational[1, 2] + Rational[-1, 12] ( 5 (Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2]))^ Rational[1, 2] + Rational[-1, 6] (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2] + Rational[1, 12] Root[1 - 20 #^2 + 80 #^4& , 2, 0] + (Rational[1, 12] 5^Rational[1, 2]) Root[1 - 20 #^2 + 80 #^4& , 2, 0])^2 + ( Rational[ 1, 3] ((Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2]) ( 1 + 2 5^Rational[-1, 2]))^Rational[1, 2] + Rational[-1, 3] ((Rational[1, 10] (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])) (5 + 5^Rational[1, 2]))^Rational[1, 2] + ( Rational[-1, 3] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]) Root[1 - 20 #^2 + 80 #^4& , 2, 0] + ( Rational[1, 3] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]) Root[1 - 20 #^2 + 80 #^4& , 2, 0])^2)^ Rational[-1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}}, {{ 0.4711427435357599, -1.4500282654395904`, 1.9957926887232285`}, { 0.42532540417601994`, -1.3090169943749475`, 0.85065080835204}, { 0.6881909602355868, -0.5, 1.3763819204711736`}}]], Polygon3DBox[ NCache[{{ Rational[ 1, 3] ((Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^ Rational[1, 2] + (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2] + Root[1 - 20 #^2 + 80 #^4& , 2, 0]) - ( Rational[1, 12] (1 + 2 5^Rational[-1, 2])^Rational[1, 2] + Rational[-1, 12] (5 (1 + 2 5^Rational[-1, 2]))^Rational[1, 2] + Rational[-1, 12] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2] + Rational[1, 12] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2]) (( Rational[1, 12] (1 + 2 5^Rational[-1, 2])^Rational[1, 2] + Rational[-1, 12] (5 (1 + 2 5^Rational[-1, 2]))^Rational[1, 2] + Rational[-1, 12] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2] + Rational[1, 12] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2])^2 + ( Rational[ 1, 12] (Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^ Rational[1, 2] + Rational[-1, 12] ( 5 (Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2]))^ Rational[1, 2] + Rational[-1, 6] (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2] + Rational[1, 12] Root[1 - 20 #^2 + 80 #^4& , 2, 0] + (Rational[1, 12] 5^Rational[1, 2]) Root[1 - 20 #^2 + 80 #^4& , 2, 0])^2 + ( Rational[ 1, 3] ((Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2]) ( 1 + 2 5^Rational[-1, 2]))^Rational[1, 2] + Rational[-1, 3] ((Rational[1, 10] (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])) (5 + 5^Rational[1, 2]))^Rational[1, 2] + ( Rational[-1, 3] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]) Root[1 - 20 #^2 + 80 #^4& , 2, 0] + ( Rational[1, 3] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]) Root[1 - 20 #^2 + 80 #^4& , 2, 0])^2)^ Rational[-1, 2], Rational[1, 3] (Rational[-1, 2] + Rational[1, 4] (-3 - 5^Rational[1, 2]) + Rational[1, 4] (-1 - 5^Rational[1, 2])) - ( Rational[ 1, 3] ((Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2]) (1 + 2 5^Rational[-1, 2]))^Rational[1, 2] + Rational[-1, 3] ((Rational[1, 10] (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])) (5 + 5^Rational[1, 2]))^ Rational[1, 2] + ( Rational[-1, 3] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]) Root[1 - 20 #^2 + 80 #^4& , 2, 0] + ( Rational[1, 3] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]) Root[1 - 20 #^2 + 80 #^4& , 2, 0]) (( Rational[1, 12] (1 + 2 5^Rational[-1, 2])^Rational[1, 2] + Rational[-1, 12] (5 (1 + 2 5^Rational[-1, 2]))^Rational[1, 2] + Rational[-1, 12] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2] + Rational[1, 12] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2])^2 + ( Rational[ 1, 12] (Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^ Rational[1, 2] + Rational[-1, 12] ( 5 (Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2]))^ Rational[1, 2] + Rational[-1, 6] (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2] + Rational[1, 12] Root[1 - 20 #^2 + 80 #^4& , 2, 0] + (Rational[1, 12] 5^Rational[1, 2]) Root[1 - 20 #^2 + 80 #^4& , 2, 0])^2 + ( Rational[ 1, 3] ((Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2]) ( 1 + 2 5^Rational[-1, 2]))^Rational[1, 2] + Rational[-1, 3] ((Rational[1, 10] (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])) (5 + 5^Rational[1, 2]))^Rational[1, 2] + ( Rational[-1, 3] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]) Root[1 - 20 #^2 + 80 #^4& , 2, 0] + ( Rational[1, 3] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]) Root[1 - 20 #^2 + 80 #^4& , 2, 0])^2)^ Rational[-1, 2], Rational[1, 3] ( 2 (1 + 2 5^Rational[-1, 2])^Rational[1, 2] + ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]) - ( Rational[ 1, 12] (Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^ Rational[1, 2] + Rational[-1, 12] ( 5 (Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2]))^ Rational[1, 2] + Rational[-1, 6] (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2] + Rational[1, 12] Root[1 - 20 #^2 + 80 #^4& , 2, 0] + (Rational[1, 12] 5^Rational[1, 2]) Root[1 - 20 #^2 + 80 #^4& , 2, 0]) (( Rational[1, 12] (1 + 2 5^Rational[-1, 2])^Rational[1, 2] + Rational[-1, 12] (5 (1 + 2 5^Rational[-1, 2]))^Rational[1, 2] + Rational[-1, 12] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2] + Rational[1, 12] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2])^2 + ( Rational[ 1, 12] (Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^ Rational[1, 2] + Rational[-1, 12] ( 5 (Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2]))^ Rational[1, 2] + Rational[-1, 6] (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2] + Rational[1, 12] Root[1 - 20 #^2 + 80 #^4& , 2, 0] + (Rational[1, 12] 5^Rational[1, 2]) Root[1 - 20 #^2 + 80 #^4& , 2, 0])^2 + ( Rational[ 1, 3] ((Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2]) ( 1 + 2 5^Rational[-1, 2]))^Rational[1, 2] + Rational[-1, 3] ((Rational[1, 10] (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])) (5 + 5^Rational[1, 2]))^Rational[1, 2] + ( Rational[-1, 3] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]) Root[1 - 20 #^2 + 80 #^4& , 2, 0] + ( Rational[1, 3] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]) Root[1 - 20 #^2 + 80 #^4& , 2, 0])^2)^ Rational[-1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}}, {{0.4711427435357599, -1.4500282654395904`, 1.9957926887232285`}, {0.6881909602355868, -0.5, 1.3763819204711736`}, {-0.2628655560595668, -0.8090169943749475, 1.3763819204711736`}}]], Polygon3DBox[ NCache[{{ Rational[ 1, 3] ((Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^ Rational[1, 2] + (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2] + Root[1 - 20 #^2 + 80 #^4& , 2, 0]) - ( Rational[1, 12] (1 + 2 5^Rational[-1, 2])^Rational[1, 2] + Rational[-1, 12] (5 (1 + 2 5^Rational[-1, 2]))^Rational[1, 2] + Rational[-1, 12] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2] + Rational[1, 12] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2]) (( Rational[1, 12] (1 + 2 5^Rational[-1, 2])^Rational[1, 2] + Rational[-1, 12] (5 (1 + 2 5^Rational[-1, 2]))^Rational[1, 2] + Rational[-1, 12] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2] + Rational[1, 12] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2])^2 + ( Rational[ 1, 12] (Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^ Rational[1, 2] + Rational[-1, 12] ( 5 (Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2]))^ Rational[1, 2] + Rational[-1, 6] (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2] + Rational[1, 12] Root[1 - 20 #^2 + 80 #^4& , 2, 0] + (Rational[1, 12] 5^Rational[1, 2]) Root[1 - 20 #^2 + 80 #^4& , 2, 0])^2 + ( Rational[ 1, 3] ((Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2]) ( 1 + 2 5^Rational[-1, 2]))^Rational[1, 2] + Rational[-1, 3] ((Rational[1, 10] (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])) (5 + 5^Rational[1, 2]))^Rational[1, 2] + ( Rational[-1, 3] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]) Root[1 - 20 #^2 + 80 #^4& , 2, 0] + ( Rational[1, 3] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]) Root[1 - 20 #^2 + 80 #^4& , 2, 0])^2)^ Rational[-1, 2], Rational[1, 3] (Rational[-1, 2] + Rational[1, 4] (-3 - 5^Rational[1, 2]) + Rational[1, 4] (-1 - 5^Rational[1, 2])) - ( Rational[ 1, 3] ((Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2]) (1 + 2 5^Rational[-1, 2]))^Rational[1, 2] + Rational[-1, 3] ((Rational[1, 10] (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])) (5 + 5^Rational[1, 2]))^ Rational[1, 2] + ( Rational[-1, 3] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]) Root[1 - 20 #^2 + 80 #^4& , 2, 0] + ( Rational[1, 3] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]) Root[1 - 20 #^2 + 80 #^4& , 2, 0]) (( Rational[1, 12] (1 + 2 5^Rational[-1, 2])^Rational[1, 2] + Rational[-1, 12] (5 (1 + 2 5^Rational[-1, 2]))^Rational[1, 2] + Rational[-1, 12] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2] + Rational[1, 12] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2])^2 + ( Rational[ 1, 12] (Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^ Rational[1, 2] + Rational[-1, 12] ( 5 (Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2]))^ Rational[1, 2] + Rational[-1, 6] (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2] + Rational[1, 12] Root[1 - 20 #^2 + 80 #^4& , 2, 0] + (Rational[1, 12] 5^Rational[1, 2]) Root[1 - 20 #^2 + 80 #^4& , 2, 0])^2 + ( Rational[ 1, 3] ((Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2]) ( 1 + 2 5^Rational[-1, 2]))^Rational[1, 2] + Rational[-1, 3] ((Rational[1, 10] (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])) (5 + 5^Rational[1, 2]))^Rational[1, 2] + ( Rational[-1, 3] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]) Root[1 - 20 #^2 + 80 #^4& , 2, 0] + ( Rational[1, 3] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]) Root[1 - 20 #^2 + 80 #^4& , 2, 0])^2)^ Rational[-1, 2], Rational[1, 3] ( 2 (1 + 2 5^Rational[-1, 2])^Rational[1, 2] + ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]) - ( Rational[ 1, 12] (Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^ Rational[1, 2] + Rational[-1, 12] ( 5 (Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2]))^ Rational[1, 2] + Rational[-1, 6] (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2] + Rational[1, 12] Root[1 - 20 #^2 + 80 #^4& , 2, 0] + (Rational[1, 12] 5^Rational[1, 2]) Root[1 - 20 #^2 + 80 #^4& , 2, 0]) (( Rational[1, 12] (1 + 2 5^Rational[-1, 2])^Rational[1, 2] + Rational[-1, 12] (5 (1 + 2 5^Rational[-1, 2]))^Rational[1, 2] + Rational[-1, 12] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2] + Rational[1, 12] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2])^2 + ( Rational[ 1, 12] (Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^ Rational[1, 2] + Rational[-1, 12] ( 5 (Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2]))^ Rational[1, 2] + Rational[-1, 6] (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2] + Rational[1, 12] Root[1 - 20 #^2 + 80 #^4& , 2, 0] + (Rational[1, 12] 5^Rational[1, 2]) Root[1 - 20 #^2 + 80 #^4& , 2, 0])^2 + ( Rational[ 1, 3] ((Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2]) ( 1 + 2 5^Rational[-1, 2]))^Rational[1, 2] + Rational[-1, 3] ((Rational[1, 10] (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])) (5 + 5^Rational[1, 2]))^Rational[1, 2] + ( Rational[-1, 3] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]) Root[1 - 20 #^2 + 80 #^4& , 2, 0] + ( Rational[1, 3] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]) Root[1 - 20 #^2 + 80 #^4& , 2, 0])^2)^ Rational[-1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}}, {{ 0.4711427435357599, -1.4500282654395904`, 1.9957926887232285`}, {-0.2628655560595668, -0.8090169943749475, 1.3763819204711736`}, {0.42532540417601994`, -1.3090169943749475`, 0.85065080835204}}]]}, { Polygon3DBox[ NCache[{{ Rational[1, 3] ( 2 (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2] + (1 + 2 5^Rational[-1, 2])^Rational[1, 2]) - ( Rational[-1, 3] (1 + 2 5^Rational[-1, 2])^Rational[1, 2] + Rational[1, 3] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]) (( Rational[ 1, 3] (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2] + Rational[-1, 3] (1 + 2 5^Rational[-1, 2])^Rational[1, 2])^2 + ( Rational[-1, 3] (1 + 2 5^Rational[-1, 2])^Rational[1, 2] + Rational[1, 3] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2])^2)^Rational[-1, 2], 0, Rational[1, 3] ( 2 (1 + 2 5^Rational[-1, 2])^Rational[1, 2] + ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]) - ( Rational[ 1, 3] (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2] + Rational[-1, 3] (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]) (( Rational[ 1, 3] (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2] + Rational[-1, 3] (1 + 2 5^Rational[-1, 2])^Rational[1, 2])^2 + ( Rational[-1, 3] (1 + 2 5^Rational[-1, 2])^Rational[1, 2] + Rational[1, 3] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2])^2)^Rational[-1, 2]}, {(1 + 2 5^Rational[-1, 2])^Rational[1, 2], 0, (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}}, {{ 1.5246499451874687`, 0, 1.9957926887232285`}, { 1.3763819204711736`, 0, 0.85065080835204}, {0.6881909602355868, 0.5, 1.3763819204711736`}}]], Polygon3DBox[ NCache[{{ Rational[1, 3] ( 2 (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2] + (1 + 2 5^Rational[-1, 2])^Rational[1, 2]) - ( Rational[-1, 3] (1 + 2 5^Rational[-1, 2])^Rational[1, 2] + Rational[1, 3] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]) (( Rational[ 1, 3] (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2] + Rational[-1, 3] (1 + 2 5^Rational[-1, 2])^Rational[1, 2])^2 + ( Rational[-1, 3] (1 + 2 5^Rational[-1, 2])^Rational[1, 2] + Rational[1, 3] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2])^2)^Rational[-1, 2], 0, Rational[1, 3] ( 2 (1 + 2 5^Rational[-1, 2])^Rational[1, 2] + ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]) - ( Rational[ 1, 3] (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2] + Rational[-1, 3] (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]) (( Rational[ 1, 3] (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2] + Rational[-1, 3] (1 + 2 5^Rational[-1, 2])^Rational[1, 2])^2 + ( Rational[-1, 3] (1 + 2 5^Rational[-1, 2])^Rational[1, 2] + Rational[1, 3] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2])^2)^Rational[-1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}}, {{ 1.5246499451874687`, 0, 1.9957926887232285`}, {0.6881909602355868, 0.5, 1.3763819204711736`}, {0.6881909602355868, -0.5, 1.3763819204711736`}}]], Polygon3DBox[ NCache[{{ Rational[1, 3] ( 2 (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2] + (1 + 2 5^Rational[-1, 2])^Rational[1, 2]) - ( Rational[-1, 3] (1 + 2 5^Rational[-1, 2])^Rational[1, 2] + Rational[1, 3] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]) (( Rational[ 1, 3] (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2] + Rational[-1, 3] (1 + 2 5^Rational[-1, 2])^Rational[1, 2])^2 + ( Rational[-1, 3] (1 + 2 5^Rational[-1, 2])^Rational[1, 2] + Rational[1, 3] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2])^2)^Rational[-1, 2], 0, Rational[1, 3] ( 2 (1 + 2 5^Rational[-1, 2])^Rational[1, 2] + ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]) - ( Rational[ 1, 3] (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2] + Rational[-1, 3] (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]) (( Rational[ 1, 3] (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2] + Rational[-1, 3] (1 + 2 5^Rational[-1, 2])^Rational[1, 2])^2 + ( Rational[-1, 3] (1 + 2 5^Rational[-1, 2])^Rational[1, 2] + Rational[1, 3] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2])^2)^Rational[-1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(1 + 2 5^Rational[-1, 2])^Rational[1, 2], 0, (Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}}, {{ 1.5246499451874687`, 0, 1.9957926887232285`}, { 0.6881909602355868, -0.5, 1.3763819204711736`}, { 1.3763819204711736`, 0, 0.85065080835204}}]]}, { Polygon3DBox[ NCache[{{ Rational[ 1, 3] ((Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^ Rational[1, 2] + (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2] + Root[1 - 20 #^2 + 80 #^4& , 2, 0]) - ( Rational[1, 12] (1 + 2 5^Rational[-1, 2])^Rational[1, 2] + Rational[-1, 12] (5 (1 + 2 5^Rational[-1, 2]))^Rational[1, 2] + Rational[-1, 12] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2] + Rational[1, 12] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2]) (( Rational[1, 12] (1 + 2 5^Rational[-1, 2])^Rational[1, 2] + Rational[-1, 12] (5 (1 + 2 5^Rational[-1, 2]))^Rational[1, 2] + Rational[-1, 12] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2] + Rational[1, 12] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2])^2 + ( Rational[ 1, 12] (Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^ Rational[1, 2] + Rational[-1, 12] ( 5 (Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2]))^ Rational[1, 2] + Rational[-1, 6] (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2] + Rational[1, 12] Root[1 - 20 #^2 + 80 #^4& , 2, 0] + (Rational[1, 12] 5^Rational[1, 2]) Root[1 - 20 #^2 + 80 #^4& , 2, 0])^2 + ( Rational[-1, 3] ((Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2]) (1 + 2 5^Rational[-1, 2]))^Rational[1, 2] + Rational[ 1, 3] (( Rational[1, 10] (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])) (5 + 5^Rational[1, 2]))^Rational[1, 2] + ( Rational[1, 3] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]) Root[1 - 20 #^2 + 80 #^4& , 2, 0] + ( Rational[-1, 3] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]) Root[1 - 20 #^2 + 80 #^4& , 2, 0])^2)^ Rational[-1, 2], Rational[1, 3] (Rational[1, 2] + Rational[1, 4] (1 + 5^Rational[1, 2]) + Rational[1, 4] (3 + 5^Rational[1, 2])) - ( Rational[-1, 3] ((Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2]) (1 + 2 5^Rational[-1, 2]))^Rational[1, 2] + Rational[ 1, 3] ((Rational[1, 10] (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])) (5 + 5^Rational[1, 2]))^ Rational[1, 2] + ( Rational[1, 3] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]) Root[1 - 20 #^2 + 80 #^4& , 2, 0] + ( Rational[-1, 3] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]) Root[1 - 20 #^2 + 80 #^4& , 2, 0]) (( Rational[1, 12] (1 + 2 5^Rational[-1, 2])^Rational[1, 2] + Rational[-1, 12] (5 (1 + 2 5^Rational[-1, 2]))^Rational[1, 2] + Rational[-1, 12] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2] + Rational[1, 12] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2])^2 + ( Rational[ 1, 12] (Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^ Rational[1, 2] + Rational[-1, 12] ( 5 (Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2]))^ Rational[1, 2] + Rational[-1, 6] (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2] + Rational[1, 12] Root[1 - 20 #^2 + 80 #^4& , 2, 0] + (Rational[1, 12] 5^Rational[1, 2]) Root[1 - 20 #^2 + 80 #^4& , 2, 0])^2 + ( Rational[-1, 3] ((Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2]) (1 + 2 5^Rational[-1, 2]))^Rational[1, 2] + Rational[ 1, 3] (( Rational[1, 10] (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])) (5 + 5^Rational[1, 2]))^Rational[1, 2] + ( Rational[1, 3] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]) Root[1 - 20 #^2 + 80 #^4& , 2, 0] + ( Rational[-1, 3] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]) Root[1 - 20 #^2 + 80 #^4& , 2, 0])^2)^ Rational[-1, 2], Rational[1, 3] ( 2 (1 + 2 5^Rational[-1, 2])^Rational[1, 2] + ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]) - ( Rational[ 1, 12] (Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^ Rational[1, 2] + Rational[-1, 12] ( 5 (Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2]))^ Rational[1, 2] + Rational[-1, 6] (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2] + Rational[1, 12] Root[1 - 20 #^2 + 80 #^4& , 2, 0] + (Rational[1, 12] 5^Rational[1, 2]) Root[1 - 20 #^2 + 80 #^4& , 2, 0]) (( Rational[1, 12] (1 + 2 5^Rational[-1, 2])^Rational[1, 2] + Rational[-1, 12] (5 (1 + 2 5^Rational[-1, 2]))^Rational[1, 2] + Rational[-1, 12] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2] + Rational[1, 12] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2])^2 + ( Rational[ 1, 12] (Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^ Rational[1, 2] + Rational[-1, 12] ( 5 (Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2]))^ Rational[1, 2] + Rational[-1, 6] (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2] + Rational[1, 12] Root[1 - 20 #^2 + 80 #^4& , 2, 0] + (Rational[1, 12] 5^Rational[1, 2]) Root[1 - 20 #^2 + 80 #^4& , 2, 0])^2 + ( Rational[-1, 3] ((Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2]) (1 + 2 5^Rational[-1, 2]))^Rational[1, 2] + Rational[ 1, 3] (( Rational[1, 10] (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])) (5 + 5^Rational[1, 2]))^Rational[1, 2] + ( Rational[1, 3] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]) Root[1 - 20 #^2 + 80 #^4& , 2, 0] + ( Rational[-1, 3] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]) Root[1 - 20 #^2 + 80 #^4& , 2, 0])^2)^ Rational[-1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}}, {{0.4711427435357599, 1.4500282654395904`, 1.9957926887232285`}, {0.42532540417601994`, 1.3090169943749475`, 0.85065080835204}, {-0.2628655560595668, 0.8090169943749475, 1.3763819204711736`}}]], Polygon3DBox[ NCache[{{ Rational[ 1, 3] ((Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^ Rational[1, 2] + (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2] + Root[1 - 20 #^2 + 80 #^4& , 2, 0]) - ( Rational[1, 12] (1 + 2 5^Rational[-1, 2])^Rational[1, 2] + Rational[-1, 12] (5 (1 + 2 5^Rational[-1, 2]))^Rational[1, 2] + Rational[-1, 12] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2] + Rational[1, 12] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2]) (( Rational[1, 12] (1 + 2 5^Rational[-1, 2])^Rational[1, 2] + Rational[-1, 12] (5 (1 + 2 5^Rational[-1, 2]))^Rational[1, 2] + Rational[-1, 12] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2] + Rational[1, 12] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2])^2 + ( Rational[ 1, 12] (Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^ Rational[1, 2] + Rational[-1, 12] ( 5 (Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2]))^ Rational[1, 2] + Rational[-1, 6] (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2] + Rational[1, 12] Root[1 - 20 #^2 + 80 #^4& , 2, 0] + (Rational[1, 12] 5^Rational[1, 2]) Root[1 - 20 #^2 + 80 #^4& , 2, 0])^2 + ( Rational[-1, 3] ((Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2]) (1 + 2 5^Rational[-1, 2]))^Rational[1, 2] + Rational[ 1, 3] (( Rational[1, 10] (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])) (5 + 5^Rational[1, 2]))^Rational[1, 2] + ( Rational[1, 3] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]) Root[1 - 20 #^2 + 80 #^4& , 2, 0] + ( Rational[-1, 3] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]) Root[1 - 20 #^2 + 80 #^4& , 2, 0])^2)^ Rational[-1, 2], Rational[1, 3] (Rational[1, 2] + Rational[1, 4] (1 + 5^Rational[1, 2]) + Rational[1, 4] (3 + 5^Rational[1, 2])) - ( Rational[-1, 3] ((Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2]) (1 + 2 5^Rational[-1, 2]))^Rational[1, 2] + Rational[ 1, 3] ((Rational[1, 10] (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])) (5 + 5^Rational[1, 2]))^ Rational[1, 2] + ( Rational[1, 3] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]) Root[1 - 20 #^2 + 80 #^4& , 2, 0] + ( Rational[-1, 3] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]) Root[1 - 20 #^2 + 80 #^4& , 2, 0]) (( Rational[1, 12] (1 + 2 5^Rational[-1, 2])^Rational[1, 2] + Rational[-1, 12] (5 (1 + 2 5^Rational[-1, 2]))^Rational[1, 2] + Rational[-1, 12] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2] + Rational[1, 12] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2])^2 + ( Rational[ 1, 12] (Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^ Rational[1, 2] + Rational[-1, 12] ( 5 (Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2]))^ Rational[1, 2] + Rational[-1, 6] (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2] + Rational[1, 12] Root[1 - 20 #^2 + 80 #^4& , 2, 0] + (Rational[1, 12] 5^Rational[1, 2]) Root[1 - 20 #^2 + 80 #^4& , 2, 0])^2 + ( Rational[-1, 3] ((Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2]) (1 + 2 5^Rational[-1, 2]))^Rational[1, 2] + Rational[ 1, 3] (( Rational[1, 10] (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])) (5 + 5^Rational[1, 2]))^Rational[1, 2] + ( Rational[1, 3] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]) Root[1 - 20 #^2 + 80 #^4& , 2, 0] + ( Rational[-1, 3] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]) Root[1 - 20 #^2 + 80 #^4& , 2, 0])^2)^ Rational[-1, 2], Rational[1, 3] ( 2 (1 + 2 5^Rational[-1, 2])^Rational[1, 2] + ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]) - ( Rational[ 1, 12] (Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^ Rational[1, 2] + Rational[-1, 12] ( 5 (Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2]))^ Rational[1, 2] + Rational[-1, 6] (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2] + Rational[1, 12] Root[1 - 20 #^2 + 80 #^4& , 2, 0] + (Rational[1, 12] 5^Rational[1, 2]) Root[1 - 20 #^2 + 80 #^4& , 2, 0]) (( Rational[1, 12] (1 + 2 5^Rational[-1, 2])^Rational[1, 2] + Rational[-1, 12] (5 (1 + 2 5^Rational[-1, 2]))^Rational[1, 2] + Rational[-1, 12] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2] + Rational[1, 12] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2])^2 + ( Rational[ 1, 12] (Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^ Rational[1, 2] + Rational[-1, 12] ( 5 (Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2]))^ Rational[1, 2] + Rational[-1, 6] (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2] + Rational[1, 12] Root[1 - 20 #^2 + 80 #^4& , 2, 0] + (Rational[1, 12] 5^Rational[1, 2]) Root[1 - 20 #^2 + 80 #^4& , 2, 0])^2 + ( Rational[-1, 3] ((Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2]) (1 + 2 5^Rational[-1, 2]))^Rational[1, 2] + Rational[ 1, 3] (( Rational[1, 10] (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])) (5 + 5^Rational[1, 2]))^Rational[1, 2] + ( Rational[1, 3] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]) Root[1 - 20 #^2 + 80 #^4& , 2, 0] + ( Rational[-1, 3] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]) Root[1 - 20 #^2 + 80 #^4& , 2, 0])^2)^ Rational[-1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}}, {{ 0.4711427435357599, 1.4500282654395904`, 1.9957926887232285`}, {-0.2628655560595668, 0.8090169943749475, 1.3763819204711736`}, {0.6881909602355868, 0.5, 1.3763819204711736`}}]], Polygon3DBox[ NCache[{{ Rational[ 1, 3] ((Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^ Rational[1, 2] + (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2] + Root[1 - 20 #^2 + 80 #^4& , 2, 0]) - ( Rational[1, 12] (1 + 2 5^Rational[-1, 2])^Rational[1, 2] + Rational[-1, 12] (5 (1 + 2 5^Rational[-1, 2]))^Rational[1, 2] + Rational[-1, 12] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2] + Rational[1, 12] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2]) (( Rational[1, 12] (1 + 2 5^Rational[-1, 2])^Rational[1, 2] + Rational[-1, 12] (5 (1 + 2 5^Rational[-1, 2]))^Rational[1, 2] + Rational[-1, 12] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2] + Rational[1, 12] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2])^2 + ( Rational[ 1, 12] (Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^ Rational[1, 2] + Rational[-1, 12] ( 5 (Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2]))^ Rational[1, 2] + Rational[-1, 6] (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2] + Rational[1, 12] Root[1 - 20 #^2 + 80 #^4& , 2, 0] + (Rational[1, 12] 5^Rational[1, 2]) Root[1 - 20 #^2 + 80 #^4& , 2, 0])^2 + ( Rational[-1, 3] ((Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2]) (1 + 2 5^Rational[-1, 2]))^Rational[1, 2] + Rational[ 1, 3] (( Rational[1, 10] (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])) (5 + 5^Rational[1, 2]))^Rational[1, 2] + ( Rational[1, 3] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]) Root[1 - 20 #^2 + 80 #^4& , 2, 0] + ( Rational[-1, 3] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]) Root[1 - 20 #^2 + 80 #^4& , 2, 0])^2)^ Rational[-1, 2], Rational[1, 3] (Rational[1, 2] + Rational[1, 4] (1 + 5^Rational[1, 2]) + Rational[1, 4] (3 + 5^Rational[1, 2])) - ( Rational[-1, 3] ((Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2]) (1 + 2 5^Rational[-1, 2]))^Rational[1, 2] + Rational[ 1, 3] ((Rational[1, 10] (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])) (5 + 5^Rational[1, 2]))^ Rational[1, 2] + ( Rational[1, 3] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]) Root[1 - 20 #^2 + 80 #^4& , 2, 0] + ( Rational[-1, 3] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]) Root[1 - 20 #^2 + 80 #^4& , 2, 0]) (( Rational[1, 12] (1 + 2 5^Rational[-1, 2])^Rational[1, 2] + Rational[-1, 12] (5 (1 + 2 5^Rational[-1, 2]))^Rational[1, 2] + Rational[-1, 12] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2] + Rational[1, 12] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2])^2 + ( Rational[ 1, 12] (Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^ Rational[1, 2] + Rational[-1, 12] ( 5 (Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2]))^ Rational[1, 2] + Rational[-1, 6] (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2] + Rational[1, 12] Root[1 - 20 #^2 + 80 #^4& , 2, 0] + (Rational[1, 12] 5^Rational[1, 2]) Root[1 - 20 #^2 + 80 #^4& , 2, 0])^2 + ( Rational[-1, 3] ((Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2]) (1 + 2 5^Rational[-1, 2]))^Rational[1, 2] + Rational[ 1, 3] (( Rational[1, 10] (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])) (5 + 5^Rational[1, 2]))^Rational[1, 2] + ( Rational[1, 3] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]) Root[1 - 20 #^2 + 80 #^4& , 2, 0] + ( Rational[-1, 3] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]) Root[1 - 20 #^2 + 80 #^4& , 2, 0])^2)^ Rational[-1, 2], Rational[1, 3] ( 2 (1 + 2 5^Rational[-1, 2])^Rational[1, 2] + ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]) - ( Rational[ 1, 12] (Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^ Rational[1, 2] + Rational[-1, 12] ( 5 (Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2]))^ Rational[1, 2] + Rational[-1, 6] (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2] + Rational[1, 12] Root[1 - 20 #^2 + 80 #^4& , 2, 0] + (Rational[1, 12] 5^Rational[1, 2]) Root[1 - 20 #^2 + 80 #^4& , 2, 0]) (( Rational[1, 12] (1 + 2 5^Rational[-1, 2])^Rational[1, 2] + Rational[-1, 12] (5 (1 + 2 5^Rational[-1, 2]))^Rational[1, 2] + Rational[-1, 12] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2] + Rational[1, 12] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2])^2 + ( Rational[ 1, 12] (Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^ Rational[1, 2] + Rational[-1, 12] ( 5 (Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2]))^ Rational[1, 2] + Rational[-1, 6] (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2] + Rational[1, 12] Root[1 - 20 #^2 + 80 #^4& , 2, 0] + (Rational[1, 12] 5^Rational[1, 2]) Root[1 - 20 #^2 + 80 #^4& , 2, 0])^2 + ( Rational[-1, 3] ((Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2]) (1 + 2 5^Rational[-1, 2]))^Rational[1, 2] + Rational[ 1, 3] (( Rational[1, 10] (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])) (5 + 5^Rational[1, 2]))^Rational[1, 2] + ( Rational[1, 3] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]) Root[1 - 20 #^2 + 80 #^4& , 2, 0] + ( Rational[-1, 3] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]) Root[1 - 20 #^2 + 80 #^4& , 2, 0])^2)^ Rational[-1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}}, {{ 0.4711427435357599, 1.4500282654395904`, 1.9957926887232285`}, { 0.6881909602355868, 0.5, 1.3763819204711736`}, {0.42532540417601994`, 1.3090169943749475`, 0.85065080835204}}]]}, { Polygon3DBox[ NCache[{{ Rational[ 1, 3] ((Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^ Rational[1, 2] + (Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2]) - ( Rational[1, 12] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2] + Rational[-1, 12] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2]) (( Rational[1, 90] (Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])) (5 + 5^Rational[1, 2]) + ( Rational[-1, 12] (Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2] + Rational[ 1, 12] ( 5 (Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2]))^ Rational[1, 2] + Rational[ 1, 12] (Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2] + Rational[-1, 12] ( 5 (Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2]))^ Rational[1, 2])^2 + ( Rational[1, 12] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2] + Rational[-1, 12] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2])^2)^Rational[-1, 2], Rational[1, 3] (Rational[1, 2] (1 + 5^Rational[1, 2]) + Rational[1, 2] (3 + 5^Rational[1, 2])) + Rational[ 1, 3] (((10/(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2]))/( 5 + 5^Rational[1, 2])) (( Rational[1, 90] (Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])) (5 + 5^Rational[1, 2]) + ( Rational[-1, 12] (Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2] + Rational[ 1, 12] ( 5 (Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2]))^ Rational[1, 2] + Rational[ 1, 12] (Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2] + Rational[-1, 12] ( 5 (Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2]))^ Rational[1, 2])^2 + ( Rational[1, 12] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2] + Rational[-1, 12] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2])^2))^Rational[-1, 2], Rational[1, 3] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2] - ( Rational[-1, 12] (Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2] + Rational[ 1, 12] (5 (Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2]))^ Rational[1, 2] + Rational[ 1, 12] (Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2] + Rational[-1, 12] ( 5 (Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2]))^ Rational[1, 2]) (( Rational[1, 90] (Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])) (5 + 5^Rational[1, 2]) + ( Rational[-1, 12] (Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2] + Rational[ 1, 12] ( 5 (Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2]))^ Rational[1, 2] + Rational[ 1, 12] (Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2] + Rational[-1, 12] ( 5 (Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2]))^ Rational[1, 2])^2 + ( Rational[1, 12] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2] + Rational[-1, 12] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2])^2)^Rational[-1, 2]}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), 0}}, {{0.7623249725937341, 2.346195018129312, 0.4711427435357598}, { 0.9510565162951535, 1.3090169943749475`, 0}, { 0, 1.618033988749895, 0}}]], Polygon3DBox[ NCache[{{ Rational[ 1, 3] ((Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^ Rational[1, 2] + (Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2]) - ( Rational[1, 12] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2] + Rational[-1, 12] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2]) (( Rational[1, 90] (Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])) (5 + 5^Rational[1, 2]) + ( Rational[-1, 12] (Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2] + Rational[ 1, 12] ( 5 (Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2]))^ Rational[1, 2] + Rational[ 1, 12] (Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2] + Rational[-1, 12] ( 5 (Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2]))^ Rational[1, 2])^2 + ( Rational[1, 12] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2] + Rational[-1, 12] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2])^2)^Rational[-1, 2], Rational[1, 3] (Rational[1, 2] (1 + 5^Rational[1, 2]) + Rational[1, 2] (3 + 5^Rational[1, 2])) + Rational[ 1, 3] (((10/(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2]))/( 5 + 5^Rational[1, 2])) (( Rational[1, 90] (Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])) (5 + 5^Rational[1, 2]) + ( Rational[-1, 12] (Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2] + Rational[ 1, 12] ( 5 (Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2]))^ Rational[1, 2] + Rational[ 1, 12] (Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2] + Rational[-1, 12] ( 5 (Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2]))^ Rational[1, 2])^2 + ( Rational[1, 12] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2] + Rational[-1, 12] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2])^2))^Rational[-1, 2], Rational[1, 3] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2] - ( Rational[-1, 12] (Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2] + Rational[ 1, 12] (5 (Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2]))^ Rational[1, 2] + Rational[ 1, 12] (Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2] + Rational[-1, 12] ( 5 (Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2]))^ Rational[1, 2]) (( Rational[1, 90] (Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])) (5 + 5^Rational[1, 2]) + ( Rational[-1, 12] (Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2] + Rational[ 1, 12] ( 5 (Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2]))^ Rational[1, 2] + Rational[ 1, 12] (Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2] + Rational[-1, 12] ( 5 (Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2]))^ Rational[1, 2])^2 + ( Rational[1, 12] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2] + Rational[-1, 12] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2])^2)^Rational[-1, 2]}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), 0}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}}, {{ 0.7623249725937341, 2.346195018129312, 0.4711427435357598}, { 0, 1.618033988749895, 0}, {0.42532540417601994`, 1.3090169943749475`, 0.85065080835204}}]], Polygon3DBox[ NCache[{{ Rational[ 1, 3] ((Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^ Rational[1, 2] + (Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2]) - ( Rational[1, 12] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2] + Rational[-1, 12] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2]) (( Rational[1, 90] (Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])) (5 + 5^Rational[1, 2]) + ( Rational[-1, 12] (Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2] + Rational[ 1, 12] ( 5 (Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2]))^ Rational[1, 2] + Rational[ 1, 12] (Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2] + Rational[-1, 12] ( 5 (Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2]))^ Rational[1, 2])^2 + ( Rational[1, 12] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2] + Rational[-1, 12] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2])^2)^Rational[-1, 2], Rational[1, 3] (Rational[1, 2] (1 + 5^Rational[1, 2]) + Rational[1, 2] (3 + 5^Rational[1, 2])) + Rational[ 1, 3] (((10/(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2]))/( 5 + 5^Rational[1, 2])) (( Rational[1, 90] (Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])) (5 + 5^Rational[1, 2]) + ( Rational[-1, 12] (Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2] + Rational[ 1, 12] ( 5 (Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2]))^ Rational[1, 2] + Rational[ 1, 12] (Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2] + Rational[-1, 12] ( 5 (Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2]))^ Rational[1, 2])^2 + ( Rational[1, 12] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2] + Rational[-1, 12] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2])^2))^Rational[-1, 2], Rational[1, 3] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2] - ( Rational[-1, 12] (Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2] + Rational[ 1, 12] (5 (Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2]))^ Rational[1, 2] + Rational[ 1, 12] (Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2] + Rational[-1, 12] ( 5 (Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2]))^ Rational[1, 2]) (( Rational[1, 90] (Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])) (5 + 5^Rational[1, 2]) + ( Rational[-1, 12] (Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2] + Rational[ 1, 12] ( 5 (Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2]))^ Rational[1, 2] + Rational[ 1, 12] (Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2] + Rational[-1, 12] ( 5 (Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2]))^ Rational[1, 2])^2 + ( Rational[1, 12] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2] + Rational[-1, 12] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2])^2)^Rational[-1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}}, {{0.7623249725937341, 2.346195018129312, 0.4711427435357598}, {0.42532540417601994`, 1.3090169943749475`, 0.85065080835204}, { 0.9510565162951535, 1.3090169943749475`, 0}}]]}, { Polygon3DBox[ NCache[{{ Rational[1, 3] ( Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2] + Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2] + Root[1 - 100 #^2 + 80 #^4& , 1, 0]) - ( Rational[1, 12] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2] + Rational[1, 12] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2]) (( Rational[1, 12] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2] + Rational[1, 12] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2])^2 + (Rational[1, 12] + Rational[1, 12] 5^Rational[1, 2] + Rational[-1, 6] ((Rational[1, 10] (5 + 5^Rational[1, 2])) (5 + 2 5^Rational[1, 2]))^Rational[1, 2])^2 + ( Rational[1, 24] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2] + Rational[-1, 24] (Rational[5, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2] + Rational[-1, 12] (5 + 2 5^Rational[1, 2])^Rational[1, 2] + Rational[-1, 12] Root[1 - 100 #^2 + 80 #^4& , 1, 0] + (Rational[-1, 12] 5^Rational[1, 2]) Root[1 - 100 #^2 + 80 #^4& , 1, 0])^2)^ Rational[-1, 2], Rational[1, 3] (Rational[1, 2] + Rational[1, 4] (1 + 5^Rational[1, 2]) + Rational[1, 4] (3 + 5^Rational[1, 2])) - (Rational[1, 12] + Rational[1, 12] 5^Rational[1, 2] + Rational[-1, 6] ((Rational[1, 10] (5 + 5^Rational[1, 2])) (5 + 2 5^Rational[1, 2]))^ Rational[1, 2]) (( Rational[1, 12] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2] + Rational[1, 12] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2])^2 + (Rational[1, 12] + Rational[1, 12] 5^Rational[1, 2] + Rational[-1, 6] ((Rational[1, 10] (5 + 5^Rational[1, 2])) (5 + 2 5^Rational[1, 2]))^Rational[1, 2])^2 + ( Rational[1, 24] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2] + Rational[-1, 24] (Rational[5, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2] + Rational[-1, 12] (5 + 2 5^Rational[1, 2])^Rational[1, 2] + Rational[-1, 12] Root[1 - 100 #^2 + 80 #^4& , 1, 0] + (Rational[-1, 12] 5^Rational[1, 2]) Root[1 - 100 #^2 + 80 #^4& , 1, 0])^2)^ Rational[-1, 2], Rational[1, 3] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2] - ( Rational[1, 24] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2] + Rational[-1, 24] (Rational[5, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2] + Rational[-1, 12] (5 + 2 5^Rational[1, 2])^Rational[1, 2] + Rational[-1, 12] Root[1 - 100 #^2 + 80 #^4& , 1, 0] + (Rational[-1, 12] 5^Rational[1, 2]) Root[1 - 100 #^2 + 80 #^4& , 1, 0]) (( Rational[1, 12] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2] + Rational[1, 12] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2])^2 + (Rational[1, 12] + Rational[1, 12] 5^Rational[1, 2] + Rational[-1, 6] ((Rational[1, 10] (5 + 5^Rational[1, 2])) (5 + 2 5^Rational[1, 2]))^Rational[1, 2])^2 + ( Rational[1, 24] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2] + Rational[-1, 24] (Rational[5, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2] + Rational[-1, 12] (5 + 2 5^Rational[1, 2])^Rational[1, 2] + Rational[-1, 12] Root[1 - 100 #^2 + 80 #^4& , 1, 0] + (Rational[-1, 12] 5^Rational[1, 2]) Root[1 - 100 #^2 + 80 #^4& , 1, 0])^2)^ Rational[-1, 2]}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2], 0}}, {{-1.9957926887232285`, 1.4500282654395906`, 0.4711427435357598}, {-0.9510565162951535, 1.3090169943749475`, 0}, {-1.5388417685876268`, 0.5, 0}}]], Polygon3DBox[ NCache[{{ Rational[1, 3] ( Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2] + Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2] + Root[1 - 100 #^2 + 80 #^4& , 1, 0]) - ( Rational[1, 12] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2] + Rational[1, 12] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2]) (( Rational[1, 12] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2] + Rational[1, 12] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2])^2 + (Rational[1, 12] + Rational[1, 12] 5^Rational[1, 2] + Rational[-1, 6] ((Rational[1, 10] (5 + 5^Rational[1, 2])) (5 + 2 5^Rational[1, 2]))^Rational[1, 2])^2 + ( Rational[1, 24] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2] + Rational[-1, 24] (Rational[5, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2] + Rational[-1, 12] (5 + 2 5^Rational[1, 2])^Rational[1, 2] + Rational[-1, 12] Root[1 - 100 #^2 + 80 #^4& , 1, 0] + (Rational[-1, 12] 5^Rational[1, 2]) Root[1 - 100 #^2 + 80 #^4& , 1, 0])^2)^ Rational[-1, 2], Rational[1, 3] (Rational[1, 2] + Rational[1, 4] (1 + 5^Rational[1, 2]) + Rational[1, 4] (3 + 5^Rational[1, 2])) - (Rational[1, 12] + Rational[1, 12] 5^Rational[1, 2] + Rational[-1, 6] ((Rational[1, 10] (5 + 5^Rational[1, 2])) (5 + 2 5^Rational[1, 2]))^ Rational[1, 2]) (( Rational[1, 12] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2] + Rational[1, 12] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2])^2 + (Rational[1, 12] + Rational[1, 12] 5^Rational[1, 2] + Rational[-1, 6] ((Rational[1, 10] (5 + 5^Rational[1, 2])) (5 + 2 5^Rational[1, 2]))^Rational[1, 2])^2 + ( Rational[1, 24] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2] + Rational[-1, 24] (Rational[5, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2] + Rational[-1, 12] (5 + 2 5^Rational[1, 2])^Rational[1, 2] + Rational[-1, 12] Root[1 - 100 #^2 + 80 #^4& , 1, 0] + (Rational[-1, 12] 5^Rational[1, 2]) Root[1 - 100 #^2 + 80 #^4& , 1, 0])^2)^ Rational[-1, 2], Rational[1, 3] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2] - ( Rational[1, 24] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2] + Rational[-1, 24] (Rational[5, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2] + Rational[-1, 12] (5 + 2 5^Rational[1, 2])^Rational[1, 2] + Rational[-1, 12] Root[1 - 100 #^2 + 80 #^4& , 1, 0] + (Rational[-1, 12] 5^Rational[1, 2]) Root[1 - 100 #^2 + 80 #^4& , 1, 0]) (( Rational[1, 12] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2] + Rational[1, 12] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2])^2 + (Rational[1, 12] + Rational[1, 12] 5^Rational[1, 2] + Rational[-1, 6] ((Rational[1, 10] (5 + 5^Rational[1, 2])) (5 + 2 5^Rational[1, 2]))^Rational[1, 2])^2 + ( Rational[1, 24] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2] + Rational[-1, 24] (Rational[5, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2] + Rational[-1, 12] (5 + 2 5^Rational[1, 2])^Rational[1, 2] + Rational[-1, 12] Root[1 - 100 #^2 + 80 #^4& , 1, 0] + (Rational[-1, 12] 5^Rational[1, 2]) Root[1 - 100 #^2 + 80 #^4& , 1, 0])^2)^ Rational[-1, 2]}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2], 0}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}}, {{-1.9957926887232285`, 1.4500282654395906`, 0.4711427435357598}, {-1.5388417685876268`, 0.5, 0}, {-1.1135163644116068`, 0.8090169943749475, 0.85065080835204}}]], Polygon3DBox[ NCache[{{ Rational[1, 3] ( Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2] + Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2] + Root[1 - 100 #^2 + 80 #^4& , 1, 0]) - ( Rational[1, 12] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2] + Rational[1, 12] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2]) (( Rational[1, 12] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2] + Rational[1, 12] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2])^2 + (Rational[1, 12] + Rational[1, 12] 5^Rational[1, 2] + Rational[-1, 6] ((Rational[1, 10] (5 + 5^Rational[1, 2])) (5 + 2 5^Rational[1, 2]))^Rational[1, 2])^2 + ( Rational[1, 24] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2] + Rational[-1, 24] (Rational[5, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2] + Rational[-1, 12] (5 + 2 5^Rational[1, 2])^Rational[1, 2] + Rational[-1, 12] Root[1 - 100 #^2 + 80 #^4& , 1, 0] + (Rational[-1, 12] 5^Rational[1, 2]) Root[1 - 100 #^2 + 80 #^4& , 1, 0])^2)^ Rational[-1, 2], Rational[1, 3] (Rational[1, 2] + Rational[1, 4] (1 + 5^Rational[1, 2]) + Rational[1, 4] (3 + 5^Rational[1, 2])) - (Rational[1, 12] + Rational[1, 12] 5^Rational[1, 2] + Rational[-1, 6] ((Rational[1, 10] (5 + 5^Rational[1, 2])) (5 + 2 5^Rational[1, 2]))^ Rational[1, 2]) (( Rational[1, 12] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2] + Rational[1, 12] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2])^2 + (Rational[1, 12] + Rational[1, 12] 5^Rational[1, 2] + Rational[-1, 6] ((Rational[1, 10] (5 + 5^Rational[1, 2])) (5 + 2 5^Rational[1, 2]))^Rational[1, 2])^2 + ( Rational[1, 24] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2] + Rational[-1, 24] (Rational[5, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2] + Rational[-1, 12] (5 + 2 5^Rational[1, 2])^Rational[1, 2] + Rational[-1, 12] Root[1 - 100 #^2 + 80 #^4& , 1, 0] + (Rational[-1, 12] 5^Rational[1, 2]) Root[1 - 100 #^2 + 80 #^4& , 1, 0])^2)^ Rational[-1, 2], Rational[1, 3] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2] - ( Rational[1, 24] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2] + Rational[-1, 24] (Rational[5, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2] + Rational[-1, 12] (5 + 2 5^Rational[1, 2])^Rational[1, 2] + Rational[-1, 12] Root[1 - 100 #^2 + 80 #^4& , 1, 0] + (Rational[-1, 12] 5^Rational[1, 2]) Root[1 - 100 #^2 + 80 #^4& , 1, 0]) (( Rational[1, 12] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2] + Rational[1, 12] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2])^2 + (Rational[1, 12] + Rational[1, 12] 5^Rational[1, 2] + Rational[-1, 6] ((Rational[1, 10] (5 + 5^Rational[1, 2])) (5 + 2 5^Rational[1, 2]))^Rational[1, 2])^2 + ( Rational[1, 24] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2] + Rational[-1, 24] (Rational[5, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2] + Rational[-1, 12] (5 + 2 5^Rational[1, 2])^Rational[1, 2] + Rational[-1, 12] Root[1 - 100 #^2 + 80 #^4& , 1, 0] + (Rational[-1, 12] 5^Rational[1, 2]) Root[1 - 100 #^2 + 80 #^4& , 1, 0])^2)^ Rational[-1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}}, {{-1.9957926887232285`, 1.4500282654395906`, 0.4711427435357598}, {-1.1135163644116068`, 0.8090169943749475, 0.85065080835204}, {-0.9510565162951535, 1.3090169943749475`, 0}}]]}, { Polygon3DBox[ NCache[{{ Rational[1, 3] ( Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2] + Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2] + Root[1 - 100 #^2 + 80 #^4& , 1, 0]) - ( Rational[1, 12] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2] + Rational[1, 12] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2]) (( Rational[1, 12] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2] + Rational[1, 12] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2])^2 + (Rational[-1, 12] + Rational[-1, 12] 5^Rational[1, 2] + Rational[ 1, 6] ((Rational[1, 10] (5 + 5^Rational[1, 2])) (5 + 2 5^Rational[1, 2]))^Rational[1, 2])^2 + ( Rational[1, 24] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2] + Rational[-1, 24] (Rational[5, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2] + Rational[-1, 12] (5 + 2 5^Rational[1, 2])^Rational[1, 2] + Rational[-1, 12] Root[1 - 100 #^2 + 80 #^4& , 1, 0] + (Rational[-1, 12] 5^Rational[1, 2]) Root[1 - 100 #^2 + 80 #^4& , 1, 0])^2)^ Rational[-1, 2], Rational[1, 3] (Rational[-1, 2] + Rational[1, 4] (-1 - 5^Rational[1, 2]) + Rational[-1, 8] (1 + 5^Rational[1, 2])^2) - (Rational[-1, 12] + Rational[-1, 12] 5^Rational[1, 2] + Rational[ 1, 6] ((Rational[1, 10] (5 + 5^Rational[1, 2])) (5 + 2 5^Rational[1, 2]))^ Rational[1, 2]) (( Rational[1, 12] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2] + Rational[1, 12] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2])^2 + (Rational[-1, 12] + Rational[-1, 12] 5^Rational[1, 2] + Rational[ 1, 6] ((Rational[1, 10] (5 + 5^Rational[1, 2])) (5 + 2 5^Rational[1, 2]))^Rational[1, 2])^2 + ( Rational[1, 24] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2] + Rational[-1, 24] (Rational[5, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2] + Rational[-1, 12] (5 + 2 5^Rational[1, 2])^Rational[1, 2] + Rational[-1, 12] Root[1 - 100 #^2 + 80 #^4& , 1, 0] + (Rational[-1, 12] 5^Rational[1, 2]) Root[1 - 100 #^2 + 80 #^4& , 1, 0])^2)^ Rational[-1, 2], Rational[1, 3] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2] - ( Rational[1, 24] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2] + Rational[-1, 24] (Rational[5, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2] + Rational[-1, 12] (5 + 2 5^Rational[1, 2])^Rational[1, 2] + Rational[-1, 12] Root[1 - 100 #^2 + 80 #^4& , 1, 0] + (Rational[-1, 12] 5^Rational[1, 2]) Root[1 - 100 #^2 + 80 #^4& , 1, 0]) (( Rational[1, 12] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2] + Rational[1, 12] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2])^2 + (Rational[-1, 12] + Rational[-1, 12] 5^Rational[1, 2] + Rational[ 1, 6] ((Rational[1, 10] (5 + 5^Rational[1, 2])) (5 + 2 5^Rational[1, 2]))^Rational[1, 2])^2 + ( Rational[1, 24] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2] + Rational[-1, 24] (Rational[5, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2] + Rational[-1, 12] (5 + 2 5^Rational[1, 2])^Rational[1, 2] + Rational[-1, 12] Root[1 - 100 #^2 + 80 #^4& , 1, 0] + (Rational[-1, 12] 5^Rational[1, 2]) Root[1 - 100 #^2 + 80 #^4& , 1, 0])^2)^ Rational[-1, 2]}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}}, {{-1.9957926887232285`, -1.4500282654395906`, 0.4711427435357598}, {-1.5388417685876268`, -0.5, 0}, {-0.9510565162951535, -1.3090169943749475`, 0}}]], Polygon3DBox[ NCache[{{ Rational[1, 3] ( Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2] + Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2] + Root[1 - 100 #^2 + 80 #^4& , 1, 0]) - ( Rational[1, 12] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2] + Rational[1, 12] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2]) (( Rational[1, 12] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2] + Rational[1, 12] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2])^2 + (Rational[-1, 12] + Rational[-1, 12] 5^Rational[1, 2] + Rational[ 1, 6] ((Rational[1, 10] (5 + 5^Rational[1, 2])) (5 + 2 5^Rational[1, 2]))^Rational[1, 2])^2 + ( Rational[1, 24] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2] + Rational[-1, 24] (Rational[5, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2] + Rational[-1, 12] (5 + 2 5^Rational[1, 2])^Rational[1, 2] + Rational[-1, 12] Root[1 - 100 #^2 + 80 #^4& , 1, 0] + (Rational[-1, 12] 5^Rational[1, 2]) Root[1 - 100 #^2 + 80 #^4& , 1, 0])^2)^ Rational[-1, 2], Rational[1, 3] (Rational[-1, 2] + Rational[1, 4] (-1 - 5^Rational[1, 2]) + Rational[-1, 8] (1 + 5^Rational[1, 2])^2) - (Rational[-1, 12] + Rational[-1, 12] 5^Rational[1, 2] + Rational[ 1, 6] ((Rational[1, 10] (5 + 5^Rational[1, 2])) (5 + 2 5^Rational[1, 2]))^ Rational[1, 2]) (( Rational[1, 12] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2] + Rational[1, 12] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2])^2 + (Rational[-1, 12] + Rational[-1, 12] 5^Rational[1, 2] + Rational[ 1, 6] ((Rational[1, 10] (5 + 5^Rational[1, 2])) (5 + 2 5^Rational[1, 2]))^Rational[1, 2])^2 + ( Rational[1, 24] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2] + Rational[-1, 24] (Rational[5, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2] + Rational[-1, 12] (5 + 2 5^Rational[1, 2])^Rational[1, 2] + Rational[-1, 12] Root[1 - 100 #^2 + 80 #^4& , 1, 0] + (Rational[-1, 12] 5^Rational[1, 2]) Root[1 - 100 #^2 + 80 #^4& , 1, 0])^2)^ Rational[-1, 2], Rational[1, 3] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2] - ( Rational[1, 24] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2] + Rational[-1, 24] (Rational[5, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2] + Rational[-1, 12] (5 + 2 5^Rational[1, 2])^Rational[1, 2] + Rational[-1, 12] Root[1 - 100 #^2 + 80 #^4& , 1, 0] + (Rational[-1, 12] 5^Rational[1, 2]) Root[1 - 100 #^2 + 80 #^4& , 1, 0]) (( Rational[1, 12] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2] + Rational[1, 12] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2])^2 + (Rational[-1, 12] + Rational[-1, 12] 5^Rational[1, 2] + Rational[ 1, 6] ((Rational[1, 10] (5 + 5^Rational[1, 2])) (5 + 2 5^Rational[1, 2]))^Rational[1, 2])^2 + ( Rational[1, 24] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2] + Rational[-1, 24] (Rational[5, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2] + Rational[-1, 12] (5 + 2 5^Rational[1, 2])^Rational[1, 2] + Rational[-1, 12] Root[1 - 100 #^2 + 80 #^4& , 1, 0] + (Rational[-1, 12] 5^Rational[1, 2]) Root[1 - 100 #^2 + 80 #^4& , 1, 0])^2)^ Rational[-1, 2]}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}}, {{-1.9957926887232285`, -1.4500282654395906`, 0.4711427435357598}, {-0.9510565162951535, -1.3090169943749475`, 0}, {-1.1135163644116068`, -0.8090169943749475, 0.85065080835204}}]], Polygon3DBox[ NCache[{{ Rational[1, 3] ( Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2] + Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2] + Root[1 - 100 #^2 + 80 #^4& , 1, 0]) - ( Rational[1, 12] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2] + Rational[1, 12] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2]) (( Rational[1, 12] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2] + Rational[1, 12] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2])^2 + (Rational[-1, 12] + Rational[-1, 12] 5^Rational[1, 2] + Rational[ 1, 6] ((Rational[1, 10] (5 + 5^Rational[1, 2])) (5 + 2 5^Rational[1, 2]))^Rational[1, 2])^2 + ( Rational[1, 24] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2] + Rational[-1, 24] (Rational[5, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2] + Rational[-1, 12] (5 + 2 5^Rational[1, 2])^Rational[1, 2] + Rational[-1, 12] Root[1 - 100 #^2 + 80 #^4& , 1, 0] + (Rational[-1, 12] 5^Rational[1, 2]) Root[1 - 100 #^2 + 80 #^4& , 1, 0])^2)^ Rational[-1, 2], Rational[1, 3] (Rational[-1, 2] + Rational[1, 4] (-1 - 5^Rational[1, 2]) + Rational[-1, 8] (1 + 5^Rational[1, 2])^2) - (Rational[-1, 12] + Rational[-1, 12] 5^Rational[1, 2] + Rational[ 1, 6] ((Rational[1, 10] (5 + 5^Rational[1, 2])) (5 + 2 5^Rational[1, 2]))^ Rational[1, 2]) (( Rational[1, 12] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2] + Rational[1, 12] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2])^2 + (Rational[-1, 12] + Rational[-1, 12] 5^Rational[1, 2] + Rational[ 1, 6] ((Rational[1, 10] (5 + 5^Rational[1, 2])) (5 + 2 5^Rational[1, 2]))^Rational[1, 2])^2 + ( Rational[1, 24] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2] + Rational[-1, 24] (Rational[5, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2] + Rational[-1, 12] (5 + 2 5^Rational[1, 2])^Rational[1, 2] + Rational[-1, 12] Root[1 - 100 #^2 + 80 #^4& , 1, 0] + (Rational[-1, 12] 5^Rational[1, 2]) Root[1 - 100 #^2 + 80 #^4& , 1, 0])^2)^ Rational[-1, 2], Rational[1, 3] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2] - ( Rational[1, 24] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2] + Rational[-1, 24] (Rational[5, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2] + Rational[-1, 12] (5 + 2 5^Rational[1, 2])^Rational[1, 2] + Rational[-1, 12] Root[1 - 100 #^2 + 80 #^4& , 1, 0] + (Rational[-1, 12] 5^Rational[1, 2]) Root[1 - 100 #^2 + 80 #^4& , 1, 0]) (( Rational[1, 12] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2] + Rational[1, 12] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2])^2 + (Rational[-1, 12] + Rational[-1, 12] 5^Rational[1, 2] + Rational[ 1, 6] ((Rational[1, 10] (5 + 5^Rational[1, 2])) (5 + 2 5^Rational[1, 2]))^Rational[1, 2])^2 + ( Rational[1, 24] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2] + Rational[-1, 24] (Rational[5, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2] + Rational[-1, 12] (5 + 2 5^Rational[1, 2])^Rational[1, 2] + Rational[-1, 12] Root[1 - 100 #^2 + 80 #^4& , 1, 0] + (Rational[-1, 12] 5^Rational[1, 2]) Root[1 - 100 #^2 + 80 #^4& , 1, 0])^2)^ Rational[-1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}}, {{-1.9957926887232285`, -1.4500282654395906`, 0.4711427435357598}, {-1.1135163644116068`, -0.8090169943749475, 0.85065080835204}, {-1.5388417685876268`, -0.5, 0}}]]}, { Polygon3DBox[ NCache[{{ Rational[ 1, 3] ((Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^ Rational[1, 2] + (Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2]) - ( Rational[1, 12] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2] + Rational[-1, 12] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2]) (( Rational[1, 90] (Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])) (5 + 5^Rational[1, 2]) + ( Rational[-1, 12] (Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2] + Rational[ 1, 12] ( 5 (Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2]))^ Rational[1, 2] + Rational[ 1, 12] (Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2] + Rational[-1, 12] ( 5 (Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2]))^ Rational[1, 2])^2 + ( Rational[1, 12] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2] + Rational[-1, 12] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2])^2)^Rational[-1, 2], Rational[1, 3] (Rational[1, 4] (-3 - 5^Rational[1, 2]) + Rational[1, 2] (-1 - 5^Rational[1, 2]) + Rational[-1, 8] (1 + 5^Rational[1, 2])^2) + Rational[-1, 3] (((10/(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2]))/(5 + 5^Rational[1, 2])) (( Rational[1, 90] (Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])) (5 + 5^Rational[1, 2]) + ( Rational[-1, 12] (Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2] + Rational[ 1, 12] ( 5 (Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2]))^ Rational[1, 2] + Rational[ 1, 12] (Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2] + Rational[-1, 12] ( 5 (Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2]))^ Rational[1, 2])^2 + ( Rational[1, 12] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2] + Rational[-1, 12] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2])^2))^Rational[-1, 2], Rational[1, 3] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2] - ( Rational[-1, 12] (Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2] + Rational[ 1, 12] (5 (Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2]))^ Rational[1, 2] + Rational[ 1, 12] (Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2] + Rational[-1, 12] ( 5 (Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2]))^ Rational[1, 2]) (( Rational[1, 90] (Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])) (5 + 5^Rational[1, 2]) + ( Rational[-1, 12] (Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2] + Rational[ 1, 12] ( 5 (Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2]))^ Rational[1, 2] + Rational[ 1, 12] (Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2] + Rational[-1, 12] ( 5 (Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2]))^ Rational[1, 2])^2 + ( Rational[1, 12] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2] + Rational[-1, 12] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2])^2)^Rational[-1, 2]}, { 0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}}, {{ 0.7623249725937341, -2.346195018129312, 0.4711427435357598}, { 0, -1.618033988749895, 0}, { 0.9510565162951535, -1.3090169943749475`, 0}}]], Polygon3DBox[ NCache[{{ Rational[ 1, 3] ((Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^ Rational[1, 2] + (Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2]) - ( Rational[1, 12] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2] + Rational[-1, 12] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2]) (( Rational[1, 90] (Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])) (5 + 5^Rational[1, 2]) + ( Rational[-1, 12] (Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2] + Rational[ 1, 12] ( 5 (Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2]))^ Rational[1, 2] + Rational[ 1, 12] (Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2] + Rational[-1, 12] ( 5 (Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2]))^ Rational[1, 2])^2 + ( Rational[1, 12] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2] + Rational[-1, 12] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2])^2)^Rational[-1, 2], Rational[1, 3] (Rational[1, 4] (-3 - 5^Rational[1, 2]) + Rational[1, 2] (-1 - 5^Rational[1, 2]) + Rational[-1, 8] (1 + 5^Rational[1, 2])^2) + Rational[-1, 3] (((10/(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2]))/(5 + 5^Rational[1, 2])) (( Rational[1, 90] (Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])) (5 + 5^Rational[1, 2]) + ( Rational[-1, 12] (Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2] + Rational[ 1, 12] ( 5 (Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2]))^ Rational[1, 2] + Rational[ 1, 12] (Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2] + Rational[-1, 12] ( 5 (Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2]))^ Rational[1, 2])^2 + ( Rational[1, 12] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2] + Rational[-1, 12] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2])^2))^Rational[-1, 2], Rational[1, 3] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2] - ( Rational[-1, 12] (Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2] + Rational[ 1, 12] (5 (Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2]))^ Rational[1, 2] + Rational[ 1, 12] (Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2] + Rational[-1, 12] ( 5 (Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2]))^ Rational[1, 2]) (( Rational[1, 90] (Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])) (5 + 5^Rational[1, 2]) + ( Rational[-1, 12] (Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2] + Rational[ 1, 12] ( 5 (Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2]))^ Rational[1, 2] + Rational[ 1, 12] (Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2] + Rational[-1, 12] ( 5 (Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2]))^ Rational[1, 2])^2 + ( Rational[1, 12] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2] + Rational[-1, 12] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2])^2)^Rational[-1, 2]}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}}, {{ 0.7623249725937341, -2.346195018129312, 0.4711427435357598}, { 0.9510565162951535, -1.3090169943749475`, 0}, { 0.42532540417601994`, -1.3090169943749475`, 0.85065080835204}}]], Polygon3DBox[ NCache[{{ Rational[ 1, 3] ((Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^ Rational[1, 2] + (Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2]) - ( Rational[1, 12] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2] + Rational[-1, 12] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2]) (( Rational[1, 90] (Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])) (5 + 5^Rational[1, 2]) + ( Rational[-1, 12] (Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2] + Rational[ 1, 12] ( 5 (Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2]))^ Rational[1, 2] + Rational[ 1, 12] (Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2] + Rational[-1, 12] ( 5 (Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2]))^ Rational[1, 2])^2 + ( Rational[1, 12] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2] + Rational[-1, 12] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2])^2)^Rational[-1, 2], Rational[1, 3] (Rational[1, 4] (-3 - 5^Rational[1, 2]) + Rational[1, 2] (-1 - 5^Rational[1, 2]) + Rational[-1, 8] (1 + 5^Rational[1, 2])^2) + Rational[-1, 3] (((10/(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2]))/(5 + 5^Rational[1, 2])) (( Rational[1, 90] (Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])) (5 + 5^Rational[1, 2]) + ( Rational[-1, 12] (Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2] + Rational[ 1, 12] ( 5 (Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2]))^ Rational[1, 2] + Rational[ 1, 12] (Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2] + Rational[-1, 12] ( 5 (Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2]))^ Rational[1, 2])^2 + ( Rational[1, 12] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2] + Rational[-1, 12] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2])^2))^Rational[-1, 2], Rational[1, 3] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2] - ( Rational[-1, 12] (Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2] + Rational[ 1, 12] (5 (Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2]))^ Rational[1, 2] + Rational[ 1, 12] (Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2] + Rational[-1, 12] ( 5 (Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2]))^ Rational[1, 2]) (( Rational[1, 90] (Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])) (5 + 5^Rational[1, 2]) + ( Rational[-1, 12] (Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2] + Rational[ 1, 12] ( 5 (Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2]))^ Rational[1, 2] + Rational[ 1, 12] (Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2] + Rational[-1, 12] ( 5 (Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2]))^ Rational[1, 2])^2 + ( Rational[1, 12] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2] + Rational[-1, 12] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2])^2)^Rational[-1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { 0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}}, {{ 0.7623249725937341, -2.346195018129312, 0.4711427435357598}, { 0.42532540417601994`, -1.3090169943749475`, 0.85065080835204}, { 0, -1.618033988749895, 0}}]]}, { Polygon3DBox[ NCache[{{ Rational[ 1, 3] ((1 + 2 5^Rational[-1, 2])^ Rational[1, 2] + (5 + 2 5^Rational[1, 2])^Rational[1, 2]) + Rational[ 1, 3] ((10/(5 + 5^Rational[1, 2])) ( Rational[1, 90] (5 + 5^Rational[1, 2]) + ( Rational[1, 3] (1 + 2 5^Rational[-1, 2])^Rational[1, 2] + Rational[-1, 6] (5 + 2 5^Rational[1, 2])^Rational[1, 2])^2))^ Rational[-1, 2], 0, Rational[1, 3] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2] - ( Rational[1, 3] (1 + 2 5^Rational[-1, 2])^Rational[1, 2] + Rational[-1, 6] (5 + 2 5^Rational[1, 2])^Rational[1, 2]) ( Rational[1, 90] (5 + 5^Rational[1, 2]) + ( Rational[1, 3] (1 + 2 5^Rational[-1, 2])^Rational[1, 2] + Rational[-1, 6] (5 + 2 5^Rational[1, 2])^Rational[1, 2])^2)^ Rational[-1, 2]}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2], 0}}, {{2.466935432258988, 0, 0.47114274353575974`}, { 1.5388417685876268`, -0.5, 0}, {1.5388417685876268`, 0.5, 0}}]], Polygon3DBox[ NCache[{{ Rational[ 1, 3] ((1 + 2 5^Rational[-1, 2])^ Rational[1, 2] + (5 + 2 5^Rational[1, 2])^Rational[1, 2]) + Rational[ 1, 3] ((10/(5 + 5^Rational[1, 2])) ( Rational[1, 90] (5 + 5^Rational[1, 2]) + ( Rational[1, 3] (1 + 2 5^Rational[-1, 2])^Rational[1, 2] + Rational[-1, 6] (5 + 2 5^Rational[1, 2])^Rational[1, 2])^2))^ Rational[-1, 2], 0, Rational[1, 3] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2] - ( Rational[1, 3] (1 + 2 5^Rational[-1, 2])^Rational[1, 2] + Rational[-1, 6] (5 + 2 5^Rational[1, 2])^Rational[1, 2]) ( Rational[1, 90] (5 + 5^Rational[1, 2]) + ( Rational[1, 3] (1 + 2 5^Rational[-1, 2])^Rational[1, 2] + Rational[-1, 6] (5 + 2 5^Rational[1, 2])^Rational[1, 2])^2)^ Rational[-1, 2]}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2], 0}, {(1 + 2 5^Rational[-1, 2])^Rational[1, 2], 0, (Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}}, {{ 2.466935432258988, 0, 0.47114274353575974`}, { 1.5388417685876268`, 0.5, 0}, { 1.3763819204711736`, 0, 0.85065080835204}}]], Polygon3DBox[ NCache[{{ Rational[ 1, 3] ((1 + 2 5^Rational[-1, 2])^ Rational[1, 2] + (5 + 2 5^Rational[1, 2])^Rational[1, 2]) + Rational[ 1, 3] ((10/(5 + 5^Rational[1, 2])) ( Rational[1, 90] (5 + 5^Rational[1, 2]) + ( Rational[1, 3] (1 + 2 5^Rational[-1, 2])^Rational[1, 2] + Rational[-1, 6] (5 + 2 5^Rational[1, 2])^Rational[1, 2])^2))^ Rational[-1, 2], 0, Rational[1, 3] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2] - ( Rational[1, 3] (1 + 2 5^Rational[-1, 2])^Rational[1, 2] + Rational[-1, 6] (5 + 2 5^Rational[1, 2])^Rational[1, 2]) ( Rational[1, 90] (5 + 5^Rational[1, 2]) + ( Rational[1, 3] (1 + 2 5^Rational[-1, 2])^Rational[1, 2] + Rational[-1, 6] (5 + 2 5^Rational[1, 2])^Rational[1, 2])^2)^ Rational[-1, 2]}, {(1 + 2 5^Rational[-1, 2])^Rational[1, 2], 0, (Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}}, {{ 2.466935432258988, 0, 0.47114274353575974`}, { 1.3763819204711736`, 0, 0.85065080835204}, { 1.5388417685876268`, -0.5, 0}}]]}, { Polygon3DBox[ NCache[{{ Rational[ 1, 3] ((Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2] + (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^ Rational[1, 2] + (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]) - ( Rational[-1, 12] (1 + 2 5^Rational[-1, 2])^Rational[1, 2] + Rational[-1, 12] (5 (1 + 2 5^Rational[-1, 2]))^Rational[1, 2] + Rational[-1, 12] Root[1 - 5 #^2 + 5 #^4& , 1, 0] + (Rational[-1, 12] 5^Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0]) (( Rational[-1, 12] (Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^Rational[1, 2] + Rational[-1, 12] ( 5 (Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2]))^ Rational[1, 2] + Rational[ 1, 12] (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^ Rational[1, 2] + Rational[ 1, 12] ( 5 (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2]))^ Rational[1, 2])^2 + ( Rational[-1, 12] (1 + 2 5^Rational[-1, 2])^Rational[1, 2] + Rational[-1, 12] (5 (1 + 2 5^Rational[-1, 2]))^Rational[1, 2] + Rational[-1, 12] Root[1 - 5 #^2 + 5 #^4& , 1, 0] + (Rational[-1, 12] 5^Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0])^2 + ( Rational[-1, 3] ((Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2]) (1 + 2 5^Rational[-1, 2]))^Rational[1, 2] + Rational[ 1, 3] ((Rational[1, 10] (1 + 2 5^Rational[-1, 2])) (5 + 5^Rational[1, 2]))^Rational[1, 2] + ( Rational[-1, 3] (Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0] + ( Rational[1, 3] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0])^2)^ Rational[-1, 2], Rational[1, 6] (-1 - 5^Rational[1, 2]) - ( Rational[-1, 3] ((Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2]) (1 + 2 5^Rational[-1, 2]))^Rational[1, 2] + Rational[ 1, 3] ((Rational[1, 10] (1 + 2 5^Rational[-1, 2])) (5 + 5^Rational[1, 2]))^Rational[1, 2] + ( Rational[-1, 3] (Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0] + ( Rational[1, 3] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0]) (( Rational[-1, 12] (Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^Rational[1, 2] + Rational[-1, 12] ( 5 (Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2]))^ Rational[1, 2] + Rational[ 1, 12] (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^ Rational[1, 2] + Rational[ 1, 12] ( 5 (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2]))^ Rational[1, 2])^2 + ( Rational[-1, 12] (1 + 2 5^Rational[-1, 2])^Rational[1, 2] + Rational[-1, 12] (5 (1 + 2 5^Rational[-1, 2]))^Rational[1, 2] + Rational[-1, 12] Root[1 - 5 #^2 + 5 #^4& , 1, 0] + (Rational[-1, 12] 5^Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0])^2 + ( Rational[-1, 3] ((Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2]) (1 + 2 5^Rational[-1, 2]))^Rational[1, 2] + Rational[ 1, 3] ((Rational[1, 10] (1 + 2 5^Rational[-1, 2])) (5 + 5^Rational[1, 2]))^Rational[1, 2] + ( Rational[-1, 3] (Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0] + ( Rational[1, 3] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0])^2)^ Rational[-1, 2], Rational[1, 3] ((-2) (1 + 2 5^Rational[-1, 2])^Rational[1, 2] + Root[1 - 5 #^2 + 5 #^4& , 1, 0]) - ( Rational[-1, 12] (Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^Rational[1, 2] + Rational[-1, 12] ( 5 (Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2]))^ Rational[1, 2] + Rational[ 1, 12] (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^ Rational[1, 2] + Rational[ 1, 12] (5 (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2]))^ Rational[1, 2]) (( Rational[-1, 12] (Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^Rational[1, 2] + Rational[-1, 12] ( 5 (Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2]))^ Rational[1, 2] + Rational[ 1, 12] (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^ Rational[1, 2] + Rational[ 1, 12] ( 5 (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2]))^ Rational[1, 2])^2 + ( Rational[-1, 12] (1 + 2 5^Rational[-1, 2])^Rational[1, 2] + Rational[-1, 12] (5 (1 + 2 5^Rational[-1, 2]))^Rational[1, 2] + Rational[-1, 12] Root[1 - 5 #^2 + 5 #^4& , 1, 0] + (Rational[-1, 12] 5^Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0])^2 + ( Rational[-1, 3] ((Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2]) (1 + 2 5^Rational[-1, 2]))^Rational[1, 2] + Rational[ 1, 3] ((Rational[1, 10] (1 + 2 5^Rational[-1, 2])) (5 + 5^Rational[1, 2]))^Rational[1, 2] + ( Rational[-1, 3] (Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0] + ( Rational[1, 3] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0])^2)^ Rational[-1, 2]}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2], 0, -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}}, {{ 1.233467716129494, -0.8961667526897215, -1.9957926887232285`}, { 0.2628655560595668, -0.8090169943749475, -1.3763819204711736`}, { 0.85065080835204, 0, -1.3763819204711736`}}]], Polygon3DBox[ NCache[{{ Rational[ 1, 3] ((Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2] + (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^ Rational[1, 2] + (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]) - ( Rational[-1, 12] (1 + 2 5^Rational[-1, 2])^Rational[1, 2] + Rational[-1, 12] (5 (1 + 2 5^Rational[-1, 2]))^Rational[1, 2] + Rational[-1, 12] Root[1 - 5 #^2 + 5 #^4& , 1, 0] + (Rational[-1, 12] 5^Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0]) (( Rational[-1, 12] (Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^Rational[1, 2] + Rational[-1, 12] ( 5 (Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2]))^ Rational[1, 2] + Rational[ 1, 12] (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^ Rational[1, 2] + Rational[ 1, 12] ( 5 (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2]))^ Rational[1, 2])^2 + ( Rational[-1, 12] (1 + 2 5^Rational[-1, 2])^Rational[1, 2] + Rational[-1, 12] (5 (1 + 2 5^Rational[-1, 2]))^Rational[1, 2] + Rational[-1, 12] Root[1 - 5 #^2 + 5 #^4& , 1, 0] + (Rational[-1, 12] 5^Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0])^2 + ( Rational[-1, 3] ((Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2]) (1 + 2 5^Rational[-1, 2]))^Rational[1, 2] + Rational[ 1, 3] ((Rational[1, 10] (1 + 2 5^Rational[-1, 2])) (5 + 5^Rational[1, 2]))^Rational[1, 2] + ( Rational[-1, 3] (Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0] + ( Rational[1, 3] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0])^2)^ Rational[-1, 2], Rational[1, 6] (-1 - 5^Rational[1, 2]) - ( Rational[-1, 3] ((Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2]) (1 + 2 5^Rational[-1, 2]))^Rational[1, 2] + Rational[ 1, 3] ((Rational[1, 10] (1 + 2 5^Rational[-1, 2])) (5 + 5^Rational[1, 2]))^Rational[1, 2] + ( Rational[-1, 3] (Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0] + ( Rational[1, 3] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0]) (( Rational[-1, 12] (Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^Rational[1, 2] + Rational[-1, 12] ( 5 (Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2]))^ Rational[1, 2] + Rational[ 1, 12] (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^ Rational[1, 2] + Rational[ 1, 12] ( 5 (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2]))^ Rational[1, 2])^2 + ( Rational[-1, 12] (1 + 2 5^Rational[-1, 2])^Rational[1, 2] + Rational[-1, 12] (5 (1 + 2 5^Rational[-1, 2]))^Rational[1, 2] + Rational[-1, 12] Root[1 - 5 #^2 + 5 #^4& , 1, 0] + (Rational[-1, 12] 5^Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0])^2 + ( Rational[-1, 3] ((Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2]) (1 + 2 5^Rational[-1, 2]))^Rational[1, 2] + Rational[ 1, 3] ((Rational[1, 10] (1 + 2 5^Rational[-1, 2])) (5 + 5^Rational[1, 2]))^Rational[1, 2] + ( Rational[-1, 3] (Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0] + ( Rational[1, 3] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0])^2)^ Rational[-1, 2], Rational[1, 3] ((-2) (1 + 2 5^Rational[-1, 2])^Rational[1, 2] + Root[1 - 5 #^2 + 5 #^4& , 1, 0]) - ( Rational[-1, 12] (Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^Rational[1, 2] + Rational[-1, 12] ( 5 (Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2]))^ Rational[1, 2] + Rational[ 1, 12] (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^ Rational[1, 2] + Rational[ 1, 12] (5 (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2]))^ Rational[1, 2]) (( Rational[-1, 12] (Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^Rational[1, 2] + Rational[-1, 12] ( 5 (Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2]))^ Rational[1, 2] + Rational[ 1, 12] (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^ Rational[1, 2] + Rational[ 1, 12] ( 5 (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2]))^ Rational[1, 2])^2 + ( Rational[-1, 12] (1 + 2 5^Rational[-1, 2])^Rational[1, 2] + Rational[-1, 12] (5 (1 + 2 5^Rational[-1, 2]))^Rational[1, 2] + Rational[-1, 12] Root[1 - 5 #^2 + 5 #^4& , 1, 0] + (Rational[-1, 12] 5^Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0])^2 + ( Rational[-1, 3] ((Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2]) (1 + 2 5^Rational[-1, 2]))^Rational[1, 2] + Rational[ 1, 3] ((Rational[1, 10] (1 + 2 5^Rational[-1, 2])) (5 + 5^Rational[1, 2]))^Rational[1, 2] + ( Rational[-1, 3] (Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0] + ( Rational[1, 3] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0])^2)^ Rational[-1, 2]}, {(Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2], 0, -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}}, {{ 1.233467716129494, -0.8961667526897215, -1.9957926887232285`}, { 0.85065080835204, 0, -1.3763819204711736`}, { 1.1135163644116066`, -0.8090169943749475, -0.8506508083520399}}]], Polygon3DBox[ NCache[{{ Rational[ 1, 3] ((Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2] + (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^ Rational[1, 2] + (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]) - ( Rational[-1, 12] (1 + 2 5^Rational[-1, 2])^Rational[1, 2] + Rational[-1, 12] (5 (1 + 2 5^Rational[-1, 2]))^Rational[1, 2] + Rational[-1, 12] Root[1 - 5 #^2 + 5 #^4& , 1, 0] + (Rational[-1, 12] 5^Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0]) (( Rational[-1, 12] (Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^Rational[1, 2] + Rational[-1, 12] ( 5 (Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2]))^ Rational[1, 2] + Rational[ 1, 12] (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^ Rational[1, 2] + Rational[ 1, 12] ( 5 (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2]))^ Rational[1, 2])^2 + ( Rational[-1, 12] (1 + 2 5^Rational[-1, 2])^Rational[1, 2] + Rational[-1, 12] (5 (1 + 2 5^Rational[-1, 2]))^Rational[1, 2] + Rational[-1, 12] Root[1 - 5 #^2 + 5 #^4& , 1, 0] + (Rational[-1, 12] 5^Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0])^2 + ( Rational[-1, 3] ((Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2]) (1 + 2 5^Rational[-1, 2]))^Rational[1, 2] + Rational[ 1, 3] ((Rational[1, 10] (1 + 2 5^Rational[-1, 2])) (5 + 5^Rational[1, 2]))^Rational[1, 2] + ( Rational[-1, 3] (Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0] + ( Rational[1, 3] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0])^2)^ Rational[-1, 2], Rational[1, 6] (-1 - 5^Rational[1, 2]) - ( Rational[-1, 3] ((Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2]) (1 + 2 5^Rational[-1, 2]))^Rational[1, 2] + Rational[ 1, 3] ((Rational[1, 10] (1 + 2 5^Rational[-1, 2])) (5 + 5^Rational[1, 2]))^Rational[1, 2] + ( Rational[-1, 3] (Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0] + ( Rational[1, 3] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0]) (( Rational[-1, 12] (Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^Rational[1, 2] + Rational[-1, 12] ( 5 (Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2]))^ Rational[1, 2] + Rational[ 1, 12] (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^ Rational[1, 2] + Rational[ 1, 12] ( 5 (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2]))^ Rational[1, 2])^2 + ( Rational[-1, 12] (1 + 2 5^Rational[-1, 2])^Rational[1, 2] + Rational[-1, 12] (5 (1 + 2 5^Rational[-1, 2]))^Rational[1, 2] + Rational[-1, 12] Root[1 - 5 #^2 + 5 #^4& , 1, 0] + (Rational[-1, 12] 5^Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0])^2 + ( Rational[-1, 3] ((Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2]) (1 + 2 5^Rational[-1, 2]))^Rational[1, 2] + Rational[ 1, 3] ((Rational[1, 10] (1 + 2 5^Rational[-1, 2])) (5 + 5^Rational[1, 2]))^Rational[1, 2] + ( Rational[-1, 3] (Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0] + ( Rational[1, 3] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0])^2)^ Rational[-1, 2], Rational[1, 3] ((-2) (1 + 2 5^Rational[-1, 2])^Rational[1, 2] + Root[1 - 5 #^2 + 5 #^4& , 1, 0]) - ( Rational[-1, 12] (Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^Rational[1, 2] + Rational[-1, 12] ( 5 (Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2]))^ Rational[1, 2] + Rational[ 1, 12] (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^ Rational[1, 2] + Rational[ 1, 12] (5 (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2]))^ Rational[1, 2]) (( Rational[-1, 12] (Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^Rational[1, 2] + Rational[-1, 12] ( 5 (Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2]))^ Rational[1, 2] + Rational[ 1, 12] (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^ Rational[1, 2] + Rational[ 1, 12] ( 5 (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2]))^ Rational[1, 2])^2 + ( Rational[-1, 12] (1 + 2 5^Rational[-1, 2])^Rational[1, 2] + Rational[-1, 12] (5 (1 + 2 5^Rational[-1, 2]))^Rational[1, 2] + Rational[-1, 12] Root[1 - 5 #^2 + 5 #^4& , 1, 0] + (Rational[-1, 12] 5^Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0])^2 + ( Rational[-1, 3] ((Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2]) (1 + 2 5^Rational[-1, 2]))^Rational[1, 2] + Rational[ 1, 3] ((Rational[1, 10] (1 + 2 5^Rational[-1, 2])) (5 + 5^Rational[1, 2]))^Rational[1, 2] + ( Rational[-1, 3] (Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0] + ( Rational[1, 3] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0])^2)^ Rational[-1, 2]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}}, {{ 1.233467716129494, -0.8961667526897215, -1.9957926887232285`}, { 1.1135163644116066`, -0.8090169943749475, -0.8506508083520399}, { 0.2628655560595668, -0.8090169943749475, -1.3763819204711736`}}]]}, { Polygon3DBox[ NCache[{{ Rational[ 1, 3] ((Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2] + (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^ Rational[1, 2] + (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]) - ( Rational[-1, 12] (1 + 2 5^Rational[-1, 2])^Rational[1, 2] + Rational[-1, 12] (5 (1 + 2 5^Rational[-1, 2]))^Rational[1, 2] + Rational[-1, 12] Root[1 - 5 #^2 + 5 #^4& , 1, 0] + (Rational[-1, 12] 5^Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0]) (( Rational[-1, 12] (Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^Rational[1, 2] + Rational[-1, 12] ( 5 (Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2]))^ Rational[1, 2] + Rational[ 1, 12] (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^ Rational[1, 2] + Rational[ 1, 12] ( 5 (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2]))^ Rational[1, 2])^2 + ( Rational[-1, 12] (1 + 2 5^Rational[-1, 2])^Rational[1, 2] + Rational[-1, 12] (5 (1 + 2 5^Rational[-1, 2]))^Rational[1, 2] + Rational[-1, 12] Root[1 - 5 #^2 + 5 #^4& , 1, 0] + (Rational[-1, 12] 5^Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0])^2 + ( Rational[ 1, 3] ((Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2]) ( 1 + 2 5^Rational[-1, 2]))^Rational[1, 2] + Rational[-1, 3] ((Rational[1, 10] (1 + 2 5^Rational[-1, 2])) (5 + 5^Rational[1, 2]))^Rational[1, 2] + ( Rational[ 1, 3] (Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0] + ( Rational[-1, 3] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0])^2)^ Rational[-1, 2], Rational[1, 6] (1 + 5^Rational[1, 2]) - ( Rational[ 1, 3] ((Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2]) (1 + 2 5^Rational[-1, 2]))^Rational[1, 2] + Rational[-1, 3] ((Rational[1, 10] (1 + 2 5^Rational[-1, 2])) (5 + 5^Rational[1, 2]))^Rational[1, 2] + ( Rational[ 1, 3] (Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0] + ( Rational[-1, 3] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0]) (( Rational[-1, 12] (Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^Rational[1, 2] + Rational[-1, 12] ( 5 (Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2]))^ Rational[1, 2] + Rational[ 1, 12] (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^ Rational[1, 2] + Rational[ 1, 12] ( 5 (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2]))^ Rational[1, 2])^2 + ( Rational[-1, 12] (1 + 2 5^Rational[-1, 2])^Rational[1, 2] + Rational[-1, 12] (5 (1 + 2 5^Rational[-1, 2]))^Rational[1, 2] + Rational[-1, 12] Root[1 - 5 #^2 + 5 #^4& , 1, 0] + (Rational[-1, 12] 5^Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0])^2 + ( Rational[ 1, 3] ((Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2]) ( 1 + 2 5^Rational[-1, 2]))^Rational[1, 2] + Rational[-1, 3] ((Rational[1, 10] (1 + 2 5^Rational[-1, 2])) (5 + 5^Rational[1, 2]))^Rational[1, 2] + ( Rational[ 1, 3] (Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0] + ( Rational[-1, 3] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0])^2)^ Rational[-1, 2], Rational[1, 3] ((-2) (1 + 2 5^Rational[-1, 2])^Rational[1, 2] + Root[1 - 5 #^2 + 5 #^4& , 1, 0]) - ( Rational[-1, 12] (Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^Rational[1, 2] + Rational[-1, 12] ( 5 (Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2]))^ Rational[1, 2] + Rational[ 1, 12] (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^ Rational[1, 2] + Rational[ 1, 12] (5 (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2]))^ Rational[1, 2]) (( Rational[-1, 12] (Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^Rational[1, 2] + Rational[-1, 12] ( 5 (Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2]))^ Rational[1, 2] + Rational[ 1, 12] (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^ Rational[1, 2] + Rational[ 1, 12] ( 5 (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2]))^ Rational[1, 2])^2 + ( Rational[-1, 12] (1 + 2 5^Rational[-1, 2])^Rational[1, 2] + Rational[-1, 12] (5 (1 + 2 5^Rational[-1, 2]))^Rational[1, 2] + Rational[-1, 12] Root[1 - 5 #^2 + 5 #^4& , 1, 0] + (Rational[-1, 12] 5^Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0])^2 + ( Rational[ 1, 3] ((Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2]) ( 1 + 2 5^Rational[-1, 2]))^Rational[1, 2] + Rational[-1, 3] ((Rational[1, 10] (1 + 2 5^Rational[-1, 2])) (5 + 5^Rational[1, 2]))^Rational[1, 2] + ( Rational[ 1, 3] (Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0] + ( Rational[-1, 3] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0])^2)^ Rational[-1, 2]}, {(Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2], 0, -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}}, {{1.233467716129494, 0.8961667526897215, -1.9957926887232285`}, { 0.85065080835204, 0, -1.3763819204711736`}, {0.2628655560595668, 0.8090169943749475, -1.3763819204711736`}}]], Polygon3DBox[ NCache[{{ Rational[ 1, 3] ((Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2] + (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^ Rational[1, 2] + (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]) - ( Rational[-1, 12] (1 + 2 5^Rational[-1, 2])^Rational[1, 2] + Rational[-1, 12] (5 (1 + 2 5^Rational[-1, 2]))^Rational[1, 2] + Rational[-1, 12] Root[1 - 5 #^2 + 5 #^4& , 1, 0] + (Rational[-1, 12] 5^Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0]) (( Rational[-1, 12] (Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^Rational[1, 2] + Rational[-1, 12] ( 5 (Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2]))^ Rational[1, 2] + Rational[ 1, 12] (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^ Rational[1, 2] + Rational[ 1, 12] ( 5 (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2]))^ Rational[1, 2])^2 + ( Rational[-1, 12] (1 + 2 5^Rational[-1, 2])^Rational[1, 2] + Rational[-1, 12] (5 (1 + 2 5^Rational[-1, 2]))^Rational[1, 2] + Rational[-1, 12] Root[1 - 5 #^2 + 5 #^4& , 1, 0] + (Rational[-1, 12] 5^Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0])^2 + ( Rational[ 1, 3] ((Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2]) ( 1 + 2 5^Rational[-1, 2]))^Rational[1, 2] + Rational[-1, 3] ((Rational[1, 10] (1 + 2 5^Rational[-1, 2])) (5 + 5^Rational[1, 2]))^Rational[1, 2] + ( Rational[ 1, 3] (Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0] + ( Rational[-1, 3] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0])^2)^ Rational[-1, 2], Rational[1, 6] (1 + 5^Rational[1, 2]) - ( Rational[ 1, 3] ((Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2]) (1 + 2 5^Rational[-1, 2]))^Rational[1, 2] + Rational[-1, 3] ((Rational[1, 10] (1 + 2 5^Rational[-1, 2])) (5 + 5^Rational[1, 2]))^Rational[1, 2] + ( Rational[ 1, 3] (Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0] + ( Rational[-1, 3] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0]) (( Rational[-1, 12] (Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^Rational[1, 2] + Rational[-1, 12] ( 5 (Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2]))^ Rational[1, 2] + Rational[ 1, 12] (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^ Rational[1, 2] + Rational[ 1, 12] ( 5 (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2]))^ Rational[1, 2])^2 + ( Rational[-1, 12] (1 + 2 5^Rational[-1, 2])^Rational[1, 2] + Rational[-1, 12] (5 (1 + 2 5^Rational[-1, 2]))^Rational[1, 2] + Rational[-1, 12] Root[1 - 5 #^2 + 5 #^4& , 1, 0] + (Rational[-1, 12] 5^Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0])^2 + ( Rational[ 1, 3] ((Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2]) ( 1 + 2 5^Rational[-1, 2]))^Rational[1, 2] + Rational[-1, 3] ((Rational[1, 10] (1 + 2 5^Rational[-1, 2])) (5 + 5^Rational[1, 2]))^Rational[1, 2] + ( Rational[ 1, 3] (Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0] + ( Rational[-1, 3] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0])^2)^ Rational[-1, 2], Rational[1, 3] ((-2) (1 + 2 5^Rational[-1, 2])^Rational[1, 2] + Root[1 - 5 #^2 + 5 #^4& , 1, 0]) - ( Rational[-1, 12] (Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^Rational[1, 2] + Rational[-1, 12] ( 5 (Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2]))^ Rational[1, 2] + Rational[ 1, 12] (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^ Rational[1, 2] + Rational[ 1, 12] (5 (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2]))^ Rational[1, 2]) (( Rational[-1, 12] (Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^Rational[1, 2] + Rational[-1, 12] ( 5 (Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2]))^ Rational[1, 2] + Rational[ 1, 12] (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^ Rational[1, 2] + Rational[ 1, 12] ( 5 (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2]))^ Rational[1, 2])^2 + ( Rational[-1, 12] (1 + 2 5^Rational[-1, 2])^Rational[1, 2] + Rational[-1, 12] (5 (1 + 2 5^Rational[-1, 2]))^Rational[1, 2] + Rational[-1, 12] Root[1 - 5 #^2 + 5 #^4& , 1, 0] + (Rational[-1, 12] 5^Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0])^2 + ( Rational[ 1, 3] ((Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2]) ( 1 + 2 5^Rational[-1, 2]))^Rational[1, 2] + Rational[-1, 3] ((Rational[1, 10] (1 + 2 5^Rational[-1, 2])) (5 + 5^Rational[1, 2]))^Rational[1, 2] + ( Rational[ 1, 3] (Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0] + ( Rational[-1, 3] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0])^2)^ Rational[-1, 2]}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}}, {{1.233467716129494, 0.8961667526897215, -1.9957926887232285`}, {0.2628655560595668, 0.8090169943749475, -1.3763819204711736`}, {1.1135163644116066`, 0.8090169943749475, -0.8506508083520399}}]], Polygon3DBox[ NCache[{{ Rational[ 1, 3] ((Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2] + (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^ Rational[1, 2] + (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]) - ( Rational[-1, 12] (1 + 2 5^Rational[-1, 2])^Rational[1, 2] + Rational[-1, 12] (5 (1 + 2 5^Rational[-1, 2]))^Rational[1, 2] + Rational[-1, 12] Root[1 - 5 #^2 + 5 #^4& , 1, 0] + (Rational[-1, 12] 5^Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0]) (( Rational[-1, 12] (Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^Rational[1, 2] + Rational[-1, 12] ( 5 (Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2]))^ Rational[1, 2] + Rational[ 1, 12] (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^ Rational[1, 2] + Rational[ 1, 12] ( 5 (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2]))^ Rational[1, 2])^2 + ( Rational[-1, 12] (1 + 2 5^Rational[-1, 2])^Rational[1, 2] + Rational[-1, 12] (5 (1 + 2 5^Rational[-1, 2]))^Rational[1, 2] + Rational[-1, 12] Root[1 - 5 #^2 + 5 #^4& , 1, 0] + (Rational[-1, 12] 5^Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0])^2 + ( Rational[ 1, 3] ((Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2]) ( 1 + 2 5^Rational[-1, 2]))^Rational[1, 2] + Rational[-1, 3] ((Rational[1, 10] (1 + 2 5^Rational[-1, 2])) (5 + 5^Rational[1, 2]))^Rational[1, 2] + ( Rational[ 1, 3] (Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0] + ( Rational[-1, 3] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0])^2)^ Rational[-1, 2], Rational[1, 6] (1 + 5^Rational[1, 2]) - ( Rational[ 1, 3] ((Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2]) (1 + 2 5^Rational[-1, 2]))^Rational[1, 2] + Rational[-1, 3] ((Rational[1, 10] (1 + 2 5^Rational[-1, 2])) (5 + 5^Rational[1, 2]))^Rational[1, 2] + ( Rational[ 1, 3] (Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0] + ( Rational[-1, 3] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0]) (( Rational[-1, 12] (Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^Rational[1, 2] + Rational[-1, 12] ( 5 (Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2]))^ Rational[1, 2] + Rational[ 1, 12] (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^ Rational[1, 2] + Rational[ 1, 12] ( 5 (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2]))^ Rational[1, 2])^2 + ( Rational[-1, 12] (1 + 2 5^Rational[-1, 2])^Rational[1, 2] + Rational[-1, 12] (5 (1 + 2 5^Rational[-1, 2]))^Rational[1, 2] + Rational[-1, 12] Root[1 - 5 #^2 + 5 #^4& , 1, 0] + (Rational[-1, 12] 5^Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0])^2 + ( Rational[ 1, 3] ((Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2]) ( 1 + 2 5^Rational[-1, 2]))^Rational[1, 2] + Rational[-1, 3] ((Rational[1, 10] (1 + 2 5^Rational[-1, 2])) (5 + 5^Rational[1, 2]))^Rational[1, 2] + ( Rational[ 1, 3] (Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0] + ( Rational[-1, 3] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0])^2)^ Rational[-1, 2], Rational[1, 3] ((-2) (1 + 2 5^Rational[-1, 2])^Rational[1, 2] + Root[1 - 5 #^2 + 5 #^4& , 1, 0]) - ( Rational[-1, 12] (Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^Rational[1, 2] + Rational[-1, 12] ( 5 (Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2]))^ Rational[1, 2] + Rational[ 1, 12] (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^ Rational[1, 2] + Rational[ 1, 12] (5 (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2]))^ Rational[1, 2]) (( Rational[-1, 12] (Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^Rational[1, 2] + Rational[-1, 12] ( 5 (Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2]))^ Rational[1, 2] + Rational[ 1, 12] (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^ Rational[1, 2] + Rational[ 1, 12] ( 5 (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2]))^ Rational[1, 2])^2 + ( Rational[-1, 12] (1 + 2 5^Rational[-1, 2])^Rational[1, 2] + Rational[-1, 12] (5 (1 + 2 5^Rational[-1, 2]))^Rational[1, 2] + Rational[-1, 12] Root[1 - 5 #^2 + 5 #^4& , 1, 0] + (Rational[-1, 12] 5^Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0])^2 + ( Rational[ 1, 3] ((Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2]) ( 1 + 2 5^Rational[-1, 2]))^Rational[1, 2] + Rational[-1, 3] ((Rational[1, 10] (1 + 2 5^Rational[-1, 2])) (5 + 5^Rational[1, 2]))^Rational[1, 2] + ( Rational[ 1, 3] (Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0] + ( Rational[-1, 3] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0])^2)^ Rational[-1, 2]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2], 0, -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}}, {{ 1.233467716129494, 0.8961667526897215, -1.9957926887232285`}, { 1.1135163644116066`, 0.8090169943749475, -0.8506508083520399}, { 0.85065080835204, 0, -1.3763819204711736`}}]]}, { Polygon3DBox[ NCache[{{ Rational[ 1, 3] ((Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2] + Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2] + Root[1 - 20 #^2 + 80 #^4& , 1, 0]) - ( Rational[-1, 12] (1 + 2 5^Rational[-1, 2])^Rational[1, 2] + Rational[1, 12] (5 (1 + 2 5^Rational[-1, 2]))^Rational[1, 2] + Rational[-1, 12] Root[1 - 5 #^2 + 5 #^4& , 1, 0] + (Rational[1, 12] 5^Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0]) (( Rational[-1, 12] (1 + 2 5^Rational[-1, 2])^Rational[1, 2] + Rational[1, 12] (5 (1 + 2 5^Rational[-1, 2]))^Rational[1, 2] + Rational[-1, 12] Root[1 - 5 #^2 + 5 #^4& , 1, 0] + (Rational[1, 12] 5^Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0])^2 + ( Rational[-1, 6] + Rational[-1, 3] 5^Rational[-1, 2] + Rational[-1, 3] ((Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2]) (1 + 2 5^Rational[-1, 2]))^Rational[1, 2] + ( Rational[-1, 3] (Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0] + ( Rational[-1, 6] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0])^2 + ( Rational[ 1, 12] (Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2] + Rational[ 1, 12] ( 5 (Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2]))^ Rational[1, 2] + Rational[1, 12] (1 + 2 5^Rational[-1, 2])^Rational[1, 2] + Rational[1, 12] Root[1 - 20 #^2 + 80 #^4& , 1, 0] + (Rational[-1, 12] 5^Rational[1, 2]) Root[1 - 20 #^2 + 80 #^4& , 1, 0])^2)^ Rational[-1, 2], Rational[1, 3] (Rational[1, 2] + Rational[1, 4] (1 + 5^Rational[1, 2]) + Rational[1, 4] (3 + 5^Rational[1, 2])) - (Rational[-1, 6] + Rational[-1, 3] 5^Rational[-1, 2] + Rational[-1, 3] ((Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2]) (1 + 2 5^Rational[-1, 2]))^Rational[1, 2] + ( Rational[-1, 3] (Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0] + ( Rational[-1, 6] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0]) (( Rational[-1, 12] (1 + 2 5^Rational[-1, 2])^Rational[1, 2] + Rational[1, 12] (5 (1 + 2 5^Rational[-1, 2]))^Rational[1, 2] + Rational[-1, 12] Root[1 - 5 #^2 + 5 #^4& , 1, 0] + (Rational[1, 12] 5^Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0])^2 + ( Rational[-1, 6] + Rational[-1, 3] 5^Rational[-1, 2] + Rational[-1, 3] ((Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2]) (1 + 2 5^Rational[-1, 2]))^Rational[1, 2] + ( Rational[-1, 3] (Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0] + ( Rational[-1, 6] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0])^2 + ( Rational[ 1, 12] (Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2] + Rational[ 1, 12] ( 5 (Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2]))^ Rational[1, 2] + Rational[1, 12] (1 + 2 5^Rational[-1, 2])^Rational[1, 2] + Rational[1, 12] Root[1 - 20 #^2 + 80 #^4& , 1, 0] + (Rational[-1, 12] 5^Rational[1, 2]) Root[1 - 20 #^2 + 80 #^4& , 1, 0])^2)^ Rational[-1, 2], Rational[1, 3] ((-2) (1 + 2 5^Rational[-1, 2])^Rational[1, 2] + Root[1 - 5 #^2 + 5 #^4& , 1, 0]) - ( Rational[ 1, 12] (Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2] + Rational[ 1, 12] (5 (Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2]))^ Rational[1, 2] + Rational[1, 12] (1 + 2 5^Rational[-1, 2])^Rational[1, 2] + Rational[1, 12] Root[1 - 20 #^2 + 80 #^4& , 1, 0] + (Rational[-1, 12] 5^Rational[1, 2]) Root[1 - 20 #^2 + 80 #^4& , 1, 0]) (( Rational[-1, 12] (1 + 2 5^Rational[-1, 2])^Rational[1, 2] + Rational[1, 12] (5 (1 + 2 5^Rational[-1, 2]))^Rational[1, 2] + Rational[-1, 12] Root[1 - 5 #^2 + 5 #^4& , 1, 0] + (Rational[1, 12] 5^Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0])^2 + ( Rational[-1, 6] + Rational[-1, 3] 5^Rational[-1, 2] + Rational[-1, 3] ((Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2]) (1 + 2 5^Rational[-1, 2]))^Rational[1, 2] + ( Rational[-1, 3] (Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0] + ( Rational[-1, 6] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0])^2 + ( Rational[ 1, 12] (Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2] + Rational[ 1, 12] ( 5 (Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2]))^ Rational[1, 2] + Rational[1, 12] (1 + 2 5^Rational[-1, 2])^Rational[1, 2] + Rational[1, 12] Root[1 - 20 #^2 + 80 #^4& , 1, 0] + (Rational[-1, 12] 5^Rational[1, 2]) Root[1 - 20 #^2 + 80 #^4& , 1, 0])^2)^ Rational[-1, 2]}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}}, {{-0.4711427435357599, 1.4500282654395904`, -1.9957926887232285`}, {0.2628655560595668, 0.8090169943749475, -1.3763819204711736`}, {-0.6881909602355868, 0.5, -1.3763819204711736`}}]], Polygon3DBox[ NCache[{{ Rational[ 1, 3] ((Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2] + Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2] + Root[1 - 20 #^2 + 80 #^4& , 1, 0]) - ( Rational[-1, 12] (1 + 2 5^Rational[-1, 2])^Rational[1, 2] + Rational[1, 12] (5 (1 + 2 5^Rational[-1, 2]))^Rational[1, 2] + Rational[-1, 12] Root[1 - 5 #^2 + 5 #^4& , 1, 0] + (Rational[1, 12] 5^Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0]) (( Rational[-1, 12] (1 + 2 5^Rational[-1, 2])^Rational[1, 2] + Rational[1, 12] (5 (1 + 2 5^Rational[-1, 2]))^Rational[1, 2] + Rational[-1, 12] Root[1 - 5 #^2 + 5 #^4& , 1, 0] + (Rational[1, 12] 5^Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0])^2 + ( Rational[-1, 6] + Rational[-1, 3] 5^Rational[-1, 2] + Rational[-1, 3] ((Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2]) (1 + 2 5^Rational[-1, 2]))^Rational[1, 2] + ( Rational[-1, 3] (Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0] + ( Rational[-1, 6] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0])^2 + ( Rational[ 1, 12] (Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2] + Rational[ 1, 12] ( 5 (Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2]))^ Rational[1, 2] + Rational[1, 12] (1 + 2 5^Rational[-1, 2])^Rational[1, 2] + Rational[1, 12] Root[1 - 20 #^2 + 80 #^4& , 1, 0] + (Rational[-1, 12] 5^Rational[1, 2]) Root[1 - 20 #^2 + 80 #^4& , 1, 0])^2)^ Rational[-1, 2], Rational[1, 3] (Rational[1, 2] + Rational[1, 4] (1 + 5^Rational[1, 2]) + Rational[1, 4] (3 + 5^Rational[1, 2])) - (Rational[-1, 6] + Rational[-1, 3] 5^Rational[-1, 2] + Rational[-1, 3] ((Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2]) (1 + 2 5^Rational[-1, 2]))^Rational[1, 2] + ( Rational[-1, 3] (Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0] + ( Rational[-1, 6] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0]) (( Rational[-1, 12] (1 + 2 5^Rational[-1, 2])^Rational[1, 2] + Rational[1, 12] (5 (1 + 2 5^Rational[-1, 2]))^Rational[1, 2] + Rational[-1, 12] Root[1 - 5 #^2 + 5 #^4& , 1, 0] + (Rational[1, 12] 5^Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0])^2 + ( Rational[-1, 6] + Rational[-1, 3] 5^Rational[-1, 2] + Rational[-1, 3] ((Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2]) (1 + 2 5^Rational[-1, 2]))^Rational[1, 2] + ( Rational[-1, 3] (Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0] + ( Rational[-1, 6] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0])^2 + ( Rational[ 1, 12] (Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2] + Rational[ 1, 12] ( 5 (Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2]))^ Rational[1, 2] + Rational[1, 12] (1 + 2 5^Rational[-1, 2])^Rational[1, 2] + Rational[1, 12] Root[1 - 20 #^2 + 80 #^4& , 1, 0] + (Rational[-1, 12] 5^Rational[1, 2]) Root[1 - 20 #^2 + 80 #^4& , 1, 0])^2)^ Rational[-1, 2], Rational[1, 3] ((-2) (1 + 2 5^Rational[-1, 2])^Rational[1, 2] + Root[1 - 5 #^2 + 5 #^4& , 1, 0]) - ( Rational[ 1, 12] (Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2] + Rational[ 1, 12] (5 (Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2]))^ Rational[1, 2] + Rational[1, 12] (1 + 2 5^Rational[-1, 2])^Rational[1, 2] + Rational[1, 12] Root[1 - 20 #^2 + 80 #^4& , 1, 0] + (Rational[-1, 12] 5^Rational[1, 2]) Root[1 - 20 #^2 + 80 #^4& , 1, 0]) (( Rational[-1, 12] (1 + 2 5^Rational[-1, 2])^Rational[1, 2] + Rational[1, 12] (5 (1 + 2 5^Rational[-1, 2]))^Rational[1, 2] + Rational[-1, 12] Root[1 - 5 #^2 + 5 #^4& , 1, 0] + (Rational[1, 12] 5^Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0])^2 + ( Rational[-1, 6] + Rational[-1, 3] 5^Rational[-1, 2] + Rational[-1, 3] ((Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2]) (1 + 2 5^Rational[-1, 2]))^Rational[1, 2] + ( Rational[-1, 3] (Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0] + ( Rational[-1, 6] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0])^2 + ( Rational[ 1, 12] (Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2] + Rational[ 1, 12] ( 5 (Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2]))^ Rational[1, 2] + Rational[1, 12] (1 + 2 5^Rational[-1, 2])^Rational[1, 2] + Rational[1, 12] Root[1 - 20 #^2 + 80 #^4& , 1, 0] + (Rational[-1, 12] 5^Rational[1, 2]) Root[1 - 20 #^2 + 80 #^4& , 1, 0])^2)^ Rational[-1, 2]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}}, {{-0.4711427435357599, 1.4500282654395904`, -1.9957926887232285`}, {-0.6881909602355868, 0.5, -1.3763819204711736`}, {-0.42532540417601994`, 1.3090169943749475`, -0.8506508083520399}}]], Polygon3DBox[ NCache[{{ Rational[ 1, 3] ((Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2] + Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2] + Root[1 - 20 #^2 + 80 #^4& , 1, 0]) - ( Rational[-1, 12] (1 + 2 5^Rational[-1, 2])^Rational[1, 2] + Rational[1, 12] (5 (1 + 2 5^Rational[-1, 2]))^Rational[1, 2] + Rational[-1, 12] Root[1 - 5 #^2 + 5 #^4& , 1, 0] + (Rational[1, 12] 5^Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0]) (( Rational[-1, 12] (1 + 2 5^Rational[-1, 2])^Rational[1, 2] + Rational[1, 12] (5 (1 + 2 5^Rational[-1, 2]))^Rational[1, 2] + Rational[-1, 12] Root[1 - 5 #^2 + 5 #^4& , 1, 0] + (Rational[1, 12] 5^Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0])^2 + ( Rational[-1, 6] + Rational[-1, 3] 5^Rational[-1, 2] + Rational[-1, 3] ((Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2]) (1 + 2 5^Rational[-1, 2]))^Rational[1, 2] + ( Rational[-1, 3] (Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0] + ( Rational[-1, 6] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0])^2 + ( Rational[ 1, 12] (Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2] + Rational[ 1, 12] ( 5 (Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2]))^ Rational[1, 2] + Rational[1, 12] (1 + 2 5^Rational[-1, 2])^Rational[1, 2] + Rational[1, 12] Root[1 - 20 #^2 + 80 #^4& , 1, 0] + (Rational[-1, 12] 5^Rational[1, 2]) Root[1 - 20 #^2 + 80 #^4& , 1, 0])^2)^ Rational[-1, 2], Rational[1, 3] (Rational[1, 2] + Rational[1, 4] (1 + 5^Rational[1, 2]) + Rational[1, 4] (3 + 5^Rational[1, 2])) - (Rational[-1, 6] + Rational[-1, 3] 5^Rational[-1, 2] + Rational[-1, 3] ((Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2]) (1 + 2 5^Rational[-1, 2]))^Rational[1, 2] + ( Rational[-1, 3] (Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0] + ( Rational[-1, 6] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0]) (( Rational[-1, 12] (1 + 2 5^Rational[-1, 2])^Rational[1, 2] + Rational[1, 12] (5 (1 + 2 5^Rational[-1, 2]))^Rational[1, 2] + Rational[-1, 12] Root[1 - 5 #^2 + 5 #^4& , 1, 0] + (Rational[1, 12] 5^Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0])^2 + ( Rational[-1, 6] + Rational[-1, 3] 5^Rational[-1, 2] + Rational[-1, 3] ((Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2]) (1 + 2 5^Rational[-1, 2]))^Rational[1, 2] + ( Rational[-1, 3] (Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0] + ( Rational[-1, 6] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0])^2 + ( Rational[ 1, 12] (Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2] + Rational[ 1, 12] ( 5 (Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2]))^ Rational[1, 2] + Rational[1, 12] (1 + 2 5^Rational[-1, 2])^Rational[1, 2] + Rational[1, 12] Root[1 - 20 #^2 + 80 #^4& , 1, 0] + (Rational[-1, 12] 5^Rational[1, 2]) Root[1 - 20 #^2 + 80 #^4& , 1, 0])^2)^ Rational[-1, 2], Rational[1, 3] ((-2) (1 + 2 5^Rational[-1, 2])^Rational[1, 2] + Root[1 - 5 #^2 + 5 #^4& , 1, 0]) - ( Rational[ 1, 12] (Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2] + Rational[ 1, 12] (5 (Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2]))^ Rational[1, 2] + Rational[1, 12] (1 + 2 5^Rational[-1, 2])^Rational[1, 2] + Rational[1, 12] Root[1 - 20 #^2 + 80 #^4& , 1, 0] + (Rational[-1, 12] 5^Rational[1, 2]) Root[1 - 20 #^2 + 80 #^4& , 1, 0]) (( Rational[-1, 12] (1 + 2 5^Rational[-1, 2])^Rational[1, 2] + Rational[1, 12] (5 (1 + 2 5^Rational[-1, 2]))^Rational[1, 2] + Rational[-1, 12] Root[1 - 5 #^2 + 5 #^4& , 1, 0] + (Rational[1, 12] 5^Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0])^2 + ( Rational[-1, 6] + Rational[-1, 3] 5^Rational[-1, 2] + Rational[-1, 3] ((Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2]) (1 + 2 5^Rational[-1, 2]))^Rational[1, 2] + ( Rational[-1, 3] (Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0] + ( Rational[-1, 6] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0])^2 + ( Rational[ 1, 12] (Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2] + Rational[ 1, 12] ( 5 (Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2]))^ Rational[1, 2] + Rational[1, 12] (1 + 2 5^Rational[-1, 2])^Rational[1, 2] + Rational[1, 12] Root[1 - 20 #^2 + 80 #^4& , 1, 0] + (Rational[-1, 12] 5^Rational[1, 2]) Root[1 - 20 #^2 + 80 #^4& , 1, 0])^2)^ Rational[-1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}}, {{-0.4711427435357599, 1.4500282654395904`, -1.9957926887232285`}, {-0.42532540417601994`, 1.3090169943749475`, -0.8506508083520399}, {0.2628655560595668, 0.8090169943749475, -1.3763819204711736`}}]]}, { Polygon3DBox[ NCache[{{ Rational[-2, 3] (1 + 2 5^Rational[-1, 2])^Rational[1, 2] - ( Rational[1, 36] (1 + 2 5^Rational[-1, 2]) + ( Rational[1, 3] (1 + 2 5^Rational[-1, 2])^Rational[1, 2] + Rational[1, 3] Root[1 - 5 #^2 + 5 #^4& , 1, 0])^2)^ Rational[-1, 2] ( Rational[1, 3] (1 + 2 5^Rational[-1, 2])^Rational[1, 2] + Rational[1, 3] Root[1 - 5 #^2 + 5 #^4& , 1, 0]), 0, Rational[-1, 6] ((1 + 2 5^Rational[-1, 2])^(-1) ( Rational[1, 36] (1 + 2 5^Rational[-1, 2]) + ( Rational[1, 3] (1 + 2 5^Rational[-1, 2])^Rational[1, 2] + Rational[1, 3] Root[1 - 5 #^2 + 5 #^4& , 1, 0])^2))^ Rational[-1, 2] + Rational[1, 3] ((-2) (1 + 2 5^Rational[-1, 2])^Rational[1, 2] + Root[1 - 5 #^2 + 5 #^4& , 1, 0])}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}}, {{-1.5246499451874687`, 0, -1.9957926887232282`}, {-0.6881909602355868, 0.5, -1.3763819204711736`}, {-0.6881909602355868, -0.5, \ -1.3763819204711736`}}]], Polygon3DBox[ NCache[{{ Rational[-2, 3] (1 + 2 5^Rational[-1, 2])^Rational[1, 2] - ( Rational[1, 36] (1 + 2 5^Rational[-1, 2]) + ( Rational[1, 3] (1 + 2 5^Rational[-1, 2])^Rational[1, 2] + Rational[1, 3] Root[1 - 5 #^2 + 5 #^4& , 1, 0])^2)^ Rational[-1, 2] ( Rational[1, 3] (1 + 2 5^Rational[-1, 2])^Rational[1, 2] + Rational[1, 3] Root[1 - 5 #^2 + 5 #^4& , 1, 0]), 0, Rational[-1, 6] ((1 + 2 5^Rational[-1, 2])^(-1) ( Rational[1, 36] (1 + 2 5^Rational[-1, 2]) + ( Rational[1, 3] (1 + 2 5^Rational[-1, 2])^Rational[1, 2] + Rational[1, 3] Root[1 - 5 #^2 + 5 #^4& , 1, 0])^2))^ Rational[-1, 2] + Rational[1, 3] ((-2) (1 + 2 5^Rational[-1, 2])^Rational[1, 2] + Root[1 - 5 #^2 + 5 #^4& , 1, 0])}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {-(1 + 2 5^Rational[-1, 2])^Rational[1, 2], 0, Root[1 - 5 #^2 + 5 #^4& , 1, 0]}}, {{-1.5246499451874687`, 0, -1.9957926887232282`}, {-0.6881909602355868, -0.5, \ -1.3763819204711736`}, {-1.3763819204711736`, 0, -0.8506508083520399}}]], Polygon3DBox[ NCache[{{ Rational[-2, 3] (1 + 2 5^Rational[-1, 2])^Rational[1, 2] - ( Rational[1, 36] (1 + 2 5^Rational[-1, 2]) + ( Rational[1, 3] (1 + 2 5^Rational[-1, 2])^Rational[1, 2] + Rational[1, 3] Root[1 - 5 #^2 + 5 #^4& , 1, 0])^2)^ Rational[-1, 2] ( Rational[1, 3] (1 + 2 5^Rational[-1, 2])^Rational[1, 2] + Rational[1, 3] Root[1 - 5 #^2 + 5 #^4& , 1, 0]), 0, Rational[-1, 6] ((1 + 2 5^Rational[-1, 2])^(-1) ( Rational[1, 36] (1 + 2 5^Rational[-1, 2]) + ( Rational[1, 3] (1 + 2 5^Rational[-1, 2])^Rational[1, 2] + Rational[1, 3] Root[1 - 5 #^2 + 5 #^4& , 1, 0])^2))^ Rational[-1, 2] + Rational[1, 3] ((-2) (1 + 2 5^Rational[-1, 2])^Rational[1, 2] + Root[1 - 5 #^2 + 5 #^4& , 1, 0])}, {-(1 + 2 5^Rational[-1, 2])^ Rational[1, 2], 0, Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}}, {{-1.5246499451874687`, 0, -1.9957926887232282`}, {-1.3763819204711736`, 0, -0.8506508083520399}, {-0.6881909602355868, 0.5, -1.3763819204711736`}}]]}, { Polygon3DBox[ NCache[{{ Rational[ 1, 3] ((Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2] + Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2] + Root[1 - 20 #^2 + 80 #^4& , 1, 0]) - ( Rational[-1, 12] (1 + 2 5^Rational[-1, 2])^Rational[1, 2] + Rational[1, 12] (5 (1 + 2 5^Rational[-1, 2]))^Rational[1, 2] + Rational[-1, 12] Root[1 - 5 #^2 + 5 #^4& , 1, 0] + (Rational[1, 12] 5^Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0]) (( Rational[-1, 12] (1 + 2 5^Rational[-1, 2])^Rational[1, 2] + Rational[1, 12] (5 (1 + 2 5^Rational[-1, 2]))^Rational[1, 2] + Rational[-1, 12] Root[1 - 5 #^2 + 5 #^4& , 1, 0] + (Rational[1, 12] 5^Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0])^2 + ( Rational[1, 6] + Rational[1, 3] 5^Rational[-1, 2] + Rational[ 1, 3] ((Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2]) ( 1 + 2 5^Rational[-1, 2]))^Rational[1, 2] + ( Rational[ 1, 3] (Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0] + ( Rational[1, 6] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0])^2 + ( Rational[ 1, 12] (Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2] + Rational[ 1, 12] ( 5 (Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2]))^ Rational[1, 2] + Rational[1, 12] (1 + 2 5^Rational[-1, 2])^Rational[1, 2] + Rational[1, 12] Root[1 - 20 #^2 + 80 #^4& , 1, 0] + (Rational[-1, 12] 5^Rational[1, 2]) Root[1 - 20 #^2 + 80 #^4& , 1, 0])^2)^ Rational[-1, 2], Rational[1, 3] (Rational[-1, 2] + Rational[1, 4] (-3 - 5^Rational[1, 2]) + Rational[1, 4] (-1 - 5^Rational[1, 2])) - (Rational[1, 6] + Rational[1, 3] 5^Rational[-1, 2] + Rational[ 1, 3] ((Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2]) (1 + 2 5^Rational[-1, 2]))^Rational[1, 2] + ( Rational[ 1, 3] (Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0] + ( Rational[1, 6] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0]) (( Rational[-1, 12] (1 + 2 5^Rational[-1, 2])^Rational[1, 2] + Rational[1, 12] (5 (1 + 2 5^Rational[-1, 2]))^Rational[1, 2] + Rational[-1, 12] Root[1 - 5 #^2 + 5 #^4& , 1, 0] + (Rational[1, 12] 5^Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0])^2 + ( Rational[1, 6] + Rational[1, 3] 5^Rational[-1, 2] + Rational[ 1, 3] ((Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2]) ( 1 + 2 5^Rational[-1, 2]))^Rational[1, 2] + ( Rational[ 1, 3] (Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0] + ( Rational[1, 6] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0])^2 + ( Rational[ 1, 12] (Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2] + Rational[ 1, 12] ( 5 (Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2]))^ Rational[1, 2] + Rational[1, 12] (1 + 2 5^Rational[-1, 2])^Rational[1, 2] + Rational[1, 12] Root[1 - 20 #^2 + 80 #^4& , 1, 0] + (Rational[-1, 12] 5^Rational[1, 2]) Root[1 - 20 #^2 + 80 #^4& , 1, 0])^2)^ Rational[-1, 2], Rational[1, 3] ((-2) (1 + 2 5^Rational[-1, 2])^Rational[1, 2] + Root[1 - 5 #^2 + 5 #^4& , 1, 0]) - ( Rational[ 1, 12] (Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2] + Rational[ 1, 12] (5 (Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2]))^ Rational[1, 2] + Rational[1, 12] (1 + 2 5^Rational[-1, 2])^Rational[1, 2] + Rational[1, 12] Root[1 - 20 #^2 + 80 #^4& , 1, 0] + (Rational[-1, 12] 5^Rational[1, 2]) Root[1 - 20 #^2 + 80 #^4& , 1, 0]) (( Rational[-1, 12] (1 + 2 5^Rational[-1, 2])^Rational[1, 2] + Rational[1, 12] (5 (1 + 2 5^Rational[-1, 2]))^Rational[1, 2] + Rational[-1, 12] Root[1 - 5 #^2 + 5 #^4& , 1, 0] + (Rational[1, 12] 5^Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0])^2 + ( Rational[1, 6] + Rational[1, 3] 5^Rational[-1, 2] + Rational[ 1, 3] ((Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2]) ( 1 + 2 5^Rational[-1, 2]))^Rational[1, 2] + ( Rational[ 1, 3] (Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0] + ( Rational[1, 6] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0])^2 + ( Rational[ 1, 12] (Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2] + Rational[ 1, 12] ( 5 (Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2]))^ Rational[1, 2] + Rational[1, 12] (1 + 2 5^Rational[-1, 2])^Rational[1, 2] + Rational[1, 12] Root[1 - 20 #^2 + 80 #^4& , 1, 0] + (Rational[-1, 12] 5^Rational[1, 2]) Root[1 - 20 #^2 + 80 #^4& , 1, 0])^2)^ Rational[-1, 2]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {( Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[ 1, 2]}}, {{-0.4711427435357599, -1.4500282654395904`, \ -1.9957926887232285`}, {-0.6881909602355868, -0.5, -1.3763819204711736`}, { 0.2628655560595668, -0.8090169943749475, -1.3763819204711736`}}]], Polygon3DBox[ NCache[{{ Rational[ 1, 3] ((Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2] + Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2] + Root[1 - 20 #^2 + 80 #^4& , 1, 0]) - ( Rational[-1, 12] (1 + 2 5^Rational[-1, 2])^Rational[1, 2] + Rational[1, 12] (5 (1 + 2 5^Rational[-1, 2]))^Rational[1, 2] + Rational[-1, 12] Root[1 - 5 #^2 + 5 #^4& , 1, 0] + (Rational[1, 12] 5^Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0]) (( Rational[-1, 12] (1 + 2 5^Rational[-1, 2])^Rational[1, 2] + Rational[1, 12] (5 (1 + 2 5^Rational[-1, 2]))^Rational[1, 2] + Rational[-1, 12] Root[1 - 5 #^2 + 5 #^4& , 1, 0] + (Rational[1, 12] 5^Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0])^2 + ( Rational[1, 6] + Rational[1, 3] 5^Rational[-1, 2] + Rational[ 1, 3] ((Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2]) ( 1 + 2 5^Rational[-1, 2]))^Rational[1, 2] + ( Rational[ 1, 3] (Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0] + ( Rational[1, 6] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0])^2 + ( Rational[ 1, 12] (Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2] + Rational[ 1, 12] ( 5 (Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2]))^ Rational[1, 2] + Rational[1, 12] (1 + 2 5^Rational[-1, 2])^Rational[1, 2] + Rational[1, 12] Root[1 - 20 #^2 + 80 #^4& , 1, 0] + (Rational[-1, 12] 5^Rational[1, 2]) Root[1 - 20 #^2 + 80 #^4& , 1, 0])^2)^ Rational[-1, 2], Rational[1, 3] (Rational[-1, 2] + Rational[1, 4] (-3 - 5^Rational[1, 2]) + Rational[1, 4] (-1 - 5^Rational[1, 2])) - (Rational[1, 6] + Rational[1, 3] 5^Rational[-1, 2] + Rational[ 1, 3] ((Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2]) (1 + 2 5^Rational[-1, 2]))^Rational[1, 2] + ( Rational[ 1, 3] (Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0] + ( Rational[1, 6] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0]) (( Rational[-1, 12] (1 + 2 5^Rational[-1, 2])^Rational[1, 2] + Rational[1, 12] (5 (1 + 2 5^Rational[-1, 2]))^Rational[1, 2] + Rational[-1, 12] Root[1 - 5 #^2 + 5 #^4& , 1, 0] + (Rational[1, 12] 5^Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0])^2 + ( Rational[1, 6] + Rational[1, 3] 5^Rational[-1, 2] + Rational[ 1, 3] ((Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2]) ( 1 + 2 5^Rational[-1, 2]))^Rational[1, 2] + ( Rational[ 1, 3] (Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0] + ( Rational[1, 6] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0])^2 + ( Rational[ 1, 12] (Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2] + Rational[ 1, 12] ( 5 (Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2]))^ Rational[1, 2] + Rational[1, 12] (1 + 2 5^Rational[-1, 2])^Rational[1, 2] + Rational[1, 12] Root[1 - 20 #^2 + 80 #^4& , 1, 0] + (Rational[-1, 12] 5^Rational[1, 2]) Root[1 - 20 #^2 + 80 #^4& , 1, 0])^2)^ Rational[-1, 2], Rational[1, 3] ((-2) (1 + 2 5^Rational[-1, 2])^Rational[1, 2] + Root[1 - 5 #^2 + 5 #^4& , 1, 0]) - ( Rational[ 1, 12] (Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2] + Rational[ 1, 12] (5 (Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2]))^ Rational[1, 2] + Rational[1, 12] (1 + 2 5^Rational[-1, 2])^Rational[1, 2] + Rational[1, 12] Root[1 - 20 #^2 + 80 #^4& , 1, 0] + (Rational[-1, 12] 5^Rational[1, 2]) Root[1 - 20 #^2 + 80 #^4& , 1, 0]) (( Rational[-1, 12] (1 + 2 5^Rational[-1, 2])^Rational[1, 2] + Rational[1, 12] (5 (1 + 2 5^Rational[-1, 2]))^Rational[1, 2] + Rational[-1, 12] Root[1 - 5 #^2 + 5 #^4& , 1, 0] + (Rational[1, 12] 5^Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0])^2 + ( Rational[1, 6] + Rational[1, 3] 5^Rational[-1, 2] + Rational[ 1, 3] ((Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2]) ( 1 + 2 5^Rational[-1, 2]))^Rational[1, 2] + ( Rational[ 1, 3] (Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0] + ( Rational[1, 6] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0])^2 + ( Rational[ 1, 12] (Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2] + Rational[ 1, 12] ( 5 (Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2]))^ Rational[1, 2] + Rational[1, 12] (1 + 2 5^Rational[-1, 2])^Rational[1, 2] + Rational[1, 12] Root[1 - 20 #^2 + 80 #^4& , 1, 0] + (Rational[-1, 12] 5^Rational[1, 2]) Root[1 - 20 #^2 + 80 #^4& , 1, 0])^2)^ Rational[-1, 2]}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}}, {{-0.4711427435357599, -1.4500282654395904`, \ -1.9957926887232285`}, { 0.2628655560595668, -0.8090169943749475, -1.3763819204711736`}, \ {-0.42532540417601994`, -1.3090169943749475`, -0.8506508083520399}}]], Polygon3DBox[ NCache[{{ Rational[ 1, 3] ((Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2] + Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2] + Root[1 - 20 #^2 + 80 #^4& , 1, 0]) - ( Rational[-1, 12] (1 + 2 5^Rational[-1, 2])^Rational[1, 2] + Rational[1, 12] (5 (1 + 2 5^Rational[-1, 2]))^Rational[1, 2] + Rational[-1, 12] Root[1 - 5 #^2 + 5 #^4& , 1, 0] + (Rational[1, 12] 5^Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0]) (( Rational[-1, 12] (1 + 2 5^Rational[-1, 2])^Rational[1, 2] + Rational[1, 12] (5 (1 + 2 5^Rational[-1, 2]))^Rational[1, 2] + Rational[-1, 12] Root[1 - 5 #^2 + 5 #^4& , 1, 0] + (Rational[1, 12] 5^Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0])^2 + ( Rational[1, 6] + Rational[1, 3] 5^Rational[-1, 2] + Rational[ 1, 3] ((Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2]) ( 1 + 2 5^Rational[-1, 2]))^Rational[1, 2] + ( Rational[ 1, 3] (Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0] + ( Rational[1, 6] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0])^2 + ( Rational[ 1, 12] (Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2] + Rational[ 1, 12] ( 5 (Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2]))^ Rational[1, 2] + Rational[1, 12] (1 + 2 5^Rational[-1, 2])^Rational[1, 2] + Rational[1, 12] Root[1 - 20 #^2 + 80 #^4& , 1, 0] + (Rational[-1, 12] 5^Rational[1, 2]) Root[1 - 20 #^2 + 80 #^4& , 1, 0])^2)^ Rational[-1, 2], Rational[1, 3] (Rational[-1, 2] + Rational[1, 4] (-3 - 5^Rational[1, 2]) + Rational[1, 4] (-1 - 5^Rational[1, 2])) - (Rational[1, 6] + Rational[1, 3] 5^Rational[-1, 2] + Rational[ 1, 3] ((Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2]) (1 + 2 5^Rational[-1, 2]))^Rational[1, 2] + ( Rational[ 1, 3] (Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0] + ( Rational[1, 6] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0]) (( Rational[-1, 12] (1 + 2 5^Rational[-1, 2])^Rational[1, 2] + Rational[1, 12] (5 (1 + 2 5^Rational[-1, 2]))^Rational[1, 2] + Rational[-1, 12] Root[1 - 5 #^2 + 5 #^4& , 1, 0] + (Rational[1, 12] 5^Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0])^2 + ( Rational[1, 6] + Rational[1, 3] 5^Rational[-1, 2] + Rational[ 1, 3] ((Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2]) ( 1 + 2 5^Rational[-1, 2]))^Rational[1, 2] + ( Rational[ 1, 3] (Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0] + ( Rational[1, 6] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0])^2 + ( Rational[ 1, 12] (Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2] + Rational[ 1, 12] ( 5 (Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2]))^ Rational[1, 2] + Rational[1, 12] (1 + 2 5^Rational[-1, 2])^Rational[1, 2] + Rational[1, 12] Root[1 - 20 #^2 + 80 #^4& , 1, 0] + (Rational[-1, 12] 5^Rational[1, 2]) Root[1 - 20 #^2 + 80 #^4& , 1, 0])^2)^ Rational[-1, 2], Rational[1, 3] ((-2) (1 + 2 5^Rational[-1, 2])^Rational[1, 2] + Root[1 - 5 #^2 + 5 #^4& , 1, 0]) - ( Rational[ 1, 12] (Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2] + Rational[ 1, 12] (5 (Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2]))^ Rational[1, 2] + Rational[1, 12] (1 + 2 5^Rational[-1, 2])^Rational[1, 2] + Rational[1, 12] Root[1 - 20 #^2 + 80 #^4& , 1, 0] + (Rational[-1, 12] 5^Rational[1, 2]) Root[1 - 20 #^2 + 80 #^4& , 1, 0]) (( Rational[-1, 12] (1 + 2 5^Rational[-1, 2])^Rational[1, 2] + Rational[1, 12] (5 (1 + 2 5^Rational[-1, 2]))^Rational[1, 2] + Rational[-1, 12] Root[1 - 5 #^2 + 5 #^4& , 1, 0] + (Rational[1, 12] 5^Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0])^2 + ( Rational[1, 6] + Rational[1, 3] 5^Rational[-1, 2] + Rational[ 1, 3] ((Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2]) ( 1 + 2 5^Rational[-1, 2]))^Rational[1, 2] + ( Rational[ 1, 3] (Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0] + ( Rational[1, 6] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0])^2 + ( Rational[ 1, 12] (Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2] + Rational[ 1, 12] ( 5 (Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2]))^ Rational[1, 2] + Rational[1, 12] (1 + 2 5^Rational[-1, 2])^Rational[1, 2] + Rational[1, 12] Root[1 - 20 #^2 + 80 #^4& , 1, 0] + (Rational[-1, 12] 5^Rational[1, 2]) Root[1 - 20 #^2 + 80 #^4& , 1, 0])^2)^ Rational[-1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], -(1 + 2 5^Rational[-1, 2])^ Rational[ 1, 2]}}, {{-0.4711427435357599, -1.4500282654395904`, \ -1.9957926887232285`}, {-0.42532540417601994`, -1.3090169943749475`, \ -0.8506508083520399}, {-0.6881909602355868, -0.5, -1.3763819204711736`}}]]}, { Polygon3DBox[ NCache[{{ Rational[1, 3] ( Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2] + Root[1 - 20 #^2 + 80 #^4& , 1, 0]) - ( Rational[1, 12] Root[1 - 5 #^2 + 5 #^4& , 1, 0] + (Rational[-1, 12] 5^Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0]) (( Rational[1, 72] (5 + 5^Rational[1, 2])) Root[1 - 5 #^2 + 5 #^4& , 1, 0]^2 + ( Rational[1, 12] Root[1 - 5 #^2 + 5 #^4& , 1, 0] + (Rational[-1, 12] 5^Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0])^2 + ( Rational[-1, 24] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2] + Rational[1, 24] (Rational[5, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2] + Rational[-1, 12] Root[1 - 20 #^2 + 80 #^4& , 1, 0] + (Rational[1, 12] 5^Rational[1, 2]) Root[1 - 20 #^2 + 80 #^4& , 1, 0])^2)^ Rational[-1, 2], Rational[1, 3] (Rational[1, 4] (-3 - 5^Rational[1, 2]) + Rational[1, 2] (-1 - 5^Rational[1, 2]) + Rational[-1, 8] (1 + 5^Rational[1, 2])^2) + (Rational[1, 6] Root[1 - 5 #^2 + 5 #^4& , 1, 0]) ((2/(5 + 5^Rational[1, 2])) ((Rational[1, 72] (5 + 5^Rational[1, 2])) Root[1 - 5 #^2 + 5 #^4& , 1, 0]^2 + ( Rational[1, 12] Root[1 - 5 #^2 + 5 #^4& , 1, 0] + (Rational[-1, 12] 5^Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0])^2 + ( Rational[-1, 24] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2] + Rational[1, 24] (Rational[5, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2] + Rational[-1, 12] Root[1 - 20 #^2 + 80 #^4& , 1, 0] + (Rational[1, 12] 5^Rational[1, 2]) Root[1 - 20 #^2 + 80 #^4& , 1, 0])^2))^ Rational[-1, 2], Rational[1, 3] Root[1 - 5 #^2 + 5 #^4& , 1, 0] - ( Rational[-1, 24] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2] + Rational[1, 24] (Rational[5, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2] + Rational[-1, 12] Root[1 - 20 #^2 + 80 #^4& , 1, 0] + (Rational[1, 12] 5^Rational[1, 2]) Root[1 - 20 #^2 + 80 #^4& , 1, 0]) (( Rational[1, 72] (5 + 5^Rational[1, 2])) Root[1 - 5 #^2 + 5 #^4& , 1, 0]^2 + ( Rational[1, 12] Root[1 - 5 #^2 + 5 #^4& , 1, 0] + (Rational[-1, 12] 5^Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0])^2 + ( Rational[-1, 24] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2] + Rational[1, 24] (Rational[5, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2] + Rational[-1, 12] Root[1 - 20 #^2 + 80 #^4& , 1, 0] + (Rational[1, 12] 5^Rational[1, 2]) Root[1 - 20 #^2 + 80 #^4& , 1, 0])^2)^ Rational[-1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, { 0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}}, {{-0.7623249725937342, -2.346195018129312, \ -0.4711427435357599}, {-0.42532540417601994`, -1.3090169943749475`, \ -0.8506508083520399}, {0, -1.618033988749895, 0}}]], Polygon3DBox[ NCache[{{ Rational[1, 3] ( Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2] + Root[1 - 20 #^2 + 80 #^4& , 1, 0]) - ( Rational[1, 12] Root[1 - 5 #^2 + 5 #^4& , 1, 0] + (Rational[-1, 12] 5^Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0]) (( Rational[1, 72] (5 + 5^Rational[1, 2])) Root[1 - 5 #^2 + 5 #^4& , 1, 0]^2 + ( Rational[1, 12] Root[1 - 5 #^2 + 5 #^4& , 1, 0] + (Rational[-1, 12] 5^Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0])^2 + ( Rational[-1, 24] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2] + Rational[1, 24] (Rational[5, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2] + Rational[-1, 12] Root[1 - 20 #^2 + 80 #^4& , 1, 0] + (Rational[1, 12] 5^Rational[1, 2]) Root[1 - 20 #^2 + 80 #^4& , 1, 0])^2)^ Rational[-1, 2], Rational[1, 3] (Rational[1, 4] (-3 - 5^Rational[1, 2]) + Rational[1, 2] (-1 - 5^Rational[1, 2]) + Rational[-1, 8] (1 + 5^Rational[1, 2])^2) + (Rational[1, 6] Root[1 - 5 #^2 + 5 #^4& , 1, 0]) ((2/(5 + 5^Rational[1, 2])) ((Rational[1, 72] (5 + 5^Rational[1, 2])) Root[1 - 5 #^2 + 5 #^4& , 1, 0]^2 + ( Rational[1, 12] Root[1 - 5 #^2 + 5 #^4& , 1, 0] + (Rational[-1, 12] 5^Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0])^2 + ( Rational[-1, 24] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2] + Rational[1, 24] (Rational[5, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2] + Rational[-1, 12] Root[1 - 20 #^2 + 80 #^4& , 1, 0] + (Rational[1, 12] 5^Rational[1, 2]) Root[1 - 20 #^2 + 80 #^4& , 1, 0])^2))^ Rational[-1, 2], Rational[1, 3] Root[1 - 5 #^2 + 5 #^4& , 1, 0] - ( Rational[-1, 24] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2] + Rational[1, 24] (Rational[5, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2] + Rational[-1, 12] Root[1 - 20 #^2 + 80 #^4& , 1, 0] + (Rational[1, 12] 5^Rational[1, 2]) Root[1 - 20 #^2 + 80 #^4& , 1, 0]) (( Rational[1, 72] (5 + 5^Rational[1, 2])) Root[1 - 5 #^2 + 5 #^4& , 1, 0]^2 + ( Rational[1, 12] Root[1 - 5 #^2 + 5 #^4& , 1, 0] + (Rational[-1, 12] 5^Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0])^2 + ( Rational[-1, 24] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2] + Rational[1, 24] (Rational[5, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2] + Rational[-1, 12] Root[1 - 20 #^2 + 80 #^4& , 1, 0] + (Rational[1, 12] 5^Rational[1, 2]) Root[1 - 20 #^2 + 80 #^4& , 1, 0])^2)^ Rational[-1, 2]}, { 0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}}, {{-0.7623249725937342, -2.346195018129312, \ -0.4711427435357599}, { 0, -1.618033988749895, 0}, {-0.9510565162951535, -1.3090169943749475`, 0}}]], Polygon3DBox[ NCache[{{ Rational[1, 3] ( Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2] + Root[1 - 20 #^2 + 80 #^4& , 1, 0]) - ( Rational[1, 12] Root[1 - 5 #^2 + 5 #^4& , 1, 0] + (Rational[-1, 12] 5^Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0]) (( Rational[1, 72] (5 + 5^Rational[1, 2])) Root[1 - 5 #^2 + 5 #^4& , 1, 0]^2 + ( Rational[1, 12] Root[1 - 5 #^2 + 5 #^4& , 1, 0] + (Rational[-1, 12] 5^Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0])^2 + ( Rational[-1, 24] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2] + Rational[1, 24] (Rational[5, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2] + Rational[-1, 12] Root[1 - 20 #^2 + 80 #^4& , 1, 0] + (Rational[1, 12] 5^Rational[1, 2]) Root[1 - 20 #^2 + 80 #^4& , 1, 0])^2)^ Rational[-1, 2], Rational[1, 3] (Rational[1, 4] (-3 - 5^Rational[1, 2]) + Rational[1, 2] (-1 - 5^Rational[1, 2]) + Rational[-1, 8] (1 + 5^Rational[1, 2])^2) + (Rational[1, 6] Root[1 - 5 #^2 + 5 #^4& , 1, 0]) ((2/(5 + 5^Rational[1, 2])) ((Rational[1, 72] (5 + 5^Rational[1, 2])) Root[1 - 5 #^2 + 5 #^4& , 1, 0]^2 + ( Rational[1, 12] Root[1 - 5 #^2 + 5 #^4& , 1, 0] + (Rational[-1, 12] 5^Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0])^2 + ( Rational[-1, 24] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2] + Rational[1, 24] (Rational[5, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2] + Rational[-1, 12] Root[1 - 20 #^2 + 80 #^4& , 1, 0] + (Rational[1, 12] 5^Rational[1, 2]) Root[1 - 20 #^2 + 80 #^4& , 1, 0])^2))^ Rational[-1, 2], Rational[1, 3] Root[1 - 5 #^2 + 5 #^4& , 1, 0] - ( Rational[-1, 24] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2] + Rational[1, 24] (Rational[5, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2] + Rational[-1, 12] Root[1 - 20 #^2 + 80 #^4& , 1, 0] + (Rational[1, 12] 5^Rational[1, 2]) Root[1 - 20 #^2 + 80 #^4& , 1, 0]) (( Rational[1, 72] (5 + 5^Rational[1, 2])) Root[1 - 5 #^2 + 5 #^4& , 1, 0]^2 + ( Rational[1, 12] Root[1 - 5 #^2 + 5 #^4& , 1, 0] + (Rational[-1, 12] 5^Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0])^2 + ( Rational[-1, 24] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2] + Rational[1, 24] (Rational[5, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2] + Rational[-1, 12] Root[1 - 20 #^2 + 80 #^4& , 1, 0] + (Rational[1, 12] 5^Rational[1, 2]) Root[1 - 20 #^2 + 80 #^4& , 1, 0])^2)^ Rational[-1, 2]}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}}, {{-0.7623249725937342, -2.346195018129312, \ -0.4711427435357599}, {-0.9510565162951535, -1.3090169943749475`, 0}, {-0.42532540417601994`, -1.3090169943749475`, \ -0.8506508083520399}}]]}, { Polygon3DBox[ NCache[{{ Rational[ 1, 3] ((Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^ Rational[1, 2] + (Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2] + Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]) - ( Rational[1, 12] Root[1 - 5 #^2 + 5 #^4& , 1, 0] + (Rational[1, 12] 5^Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0]) (( Rational[-1, 12] (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2] + Rational[-1, 12] ( 5 (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2]))^ Rational[1, 2] + Rational[-1, 12] (Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2] + Rational[ 1, 12] ( 5 (Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2]))^ Rational[1, 2] + Rational[1, 12] (5 + 2 5^Rational[1, 2])^Rational[1, 2])^2 + ( Rational[1, 12] Root[1 - 5 #^2 + 5 #^4& , 1, 0] + (Rational[1, 12] 5^Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0])^2 + (( Rational[ 1, 3] (Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0] + ( Rational[-1, 6] (5 + 2 5^Rational[1, 2])^Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0])^2)^Rational[-1, 2], Rational[1, 3] (Rational[-1, 2] + Rational[1, 4] (-1 - 5^Rational[1, 2]) + Rational[-1, 8] (1 + 5^Rational[1, 2])^2) - (( Rational[ 1, 3] (Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0] + ( Rational[-1, 6] (5 + 2 5^Rational[1, 2])^Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0]) (( Rational[-1, 12] (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2] + Rational[-1, 12] ( 5 (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2]))^ Rational[1, 2] + Rational[-1, 12] (Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2] + Rational[ 1, 12] ( 5 (Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2]))^ Rational[1, 2] + Rational[1, 12] (5 + 2 5^Rational[1, 2])^Rational[1, 2])^2 + ( Rational[1, 12] Root[1 - 5 #^2 + 5 #^4& , 1, 0] + (Rational[1, 12] 5^Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0])^2 + (( Rational[ 1, 3] (Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0] + ( Rational[-1, 6] (5 + 2 5^Rational[1, 2])^Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0])^2)^Rational[-1, 2], Rational[1, 3] Root[1 - 5 #^2 + 5 #^4& , 1, 0] - ( Rational[-1, 12] (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2] + Rational[-1, 12] ( 5 (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2]))^ Rational[1, 2] + Rational[-1, 12] (Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2] + Rational[ 1, 12] (5 (Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2]))^ Rational[1, 2] + Rational[1, 12] (5 + 2 5^Rational[1, 2])^ Rational[1, 2]) (( Rational[-1, 12] (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2] + Rational[-1, 12] ( 5 (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2]))^ Rational[1, 2] + Rational[-1, 12] (Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2] + Rational[ 1, 12] ( 5 (Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2]))^ Rational[1, 2] + Rational[1, 12] (5 + 2 5^Rational[1, 2])^Rational[1, 2])^2 + ( Rational[1, 12] Root[1 - 5 #^2 + 5 #^4& , 1, 0] + (Rational[1, 12] 5^Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0])^2 + (( Rational[ 1, 3] (Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0] + ( Rational[-1, 6] (5 + 2 5^Rational[1, 2])^Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0])^2)^Rational[-1, 2]}, {( Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}}, {{ 1.9957926887232285`, -1.4500282654395908`, -0.47114274353575997`}, { 1.1135163644116066`, -0.8090169943749475, -0.8506508083520399}, { 1.5388417685876268`, -0.5, 0}}]], Polygon3DBox[ NCache[{{ Rational[ 1, 3] ((Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^ Rational[1, 2] + (Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2] + Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]) - ( Rational[1, 12] Root[1 - 5 #^2 + 5 #^4& , 1, 0] + (Rational[1, 12] 5^Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0]) (( Rational[-1, 12] (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2] + Rational[-1, 12] ( 5 (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2]))^ Rational[1, 2] + Rational[-1, 12] (Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2] + Rational[ 1, 12] ( 5 (Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2]))^ Rational[1, 2] + Rational[1, 12] (5 + 2 5^Rational[1, 2])^Rational[1, 2])^2 + ( Rational[1, 12] Root[1 - 5 #^2 + 5 #^4& , 1, 0] + (Rational[1, 12] 5^Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0])^2 + (( Rational[ 1, 3] (Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0] + ( Rational[-1, 6] (5 + 2 5^Rational[1, 2])^Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0])^2)^Rational[-1, 2], Rational[1, 3] (Rational[-1, 2] + Rational[1, 4] (-1 - 5^Rational[1, 2]) + Rational[-1, 8] (1 + 5^Rational[1, 2])^2) - (( Rational[ 1, 3] (Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0] + ( Rational[-1, 6] (5 + 2 5^Rational[1, 2])^Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0]) (( Rational[-1, 12] (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2] + Rational[-1, 12] ( 5 (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2]))^ Rational[1, 2] + Rational[-1, 12] (Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2] + Rational[ 1, 12] ( 5 (Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2]))^ Rational[1, 2] + Rational[1, 12] (5 + 2 5^Rational[1, 2])^Rational[1, 2])^2 + ( Rational[1, 12] Root[1 - 5 #^2 + 5 #^4& , 1, 0] + (Rational[1, 12] 5^Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0])^2 + (( Rational[ 1, 3] (Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0] + ( Rational[-1, 6] (5 + 2 5^Rational[1, 2])^Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0])^2)^Rational[-1, 2], Rational[1, 3] Root[1 - 5 #^2 + 5 #^4& , 1, 0] - ( Rational[-1, 12] (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2] + Rational[-1, 12] ( 5 (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2]))^ Rational[1, 2] + Rational[-1, 12] (Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2] + Rational[ 1, 12] (5 (Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2]))^ Rational[1, 2] + Rational[1, 12] (5 + 2 5^Rational[1, 2])^ Rational[1, 2]) (( Rational[-1, 12] (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2] + Rational[-1, 12] ( 5 (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2]))^ Rational[1, 2] + Rational[-1, 12] (Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2] + Rational[ 1, 12] ( 5 (Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2]))^ Rational[1, 2] + Rational[1, 12] (5 + 2 5^Rational[1, 2])^Rational[1, 2])^2 + ( Rational[1, 12] Root[1 - 5 #^2 + 5 #^4& , 1, 0] + (Rational[1, 12] 5^Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0])^2 + (( Rational[ 1, 3] (Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0] + ( Rational[-1, 6] (5 + 2 5^Rational[1, 2])^Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0])^2)^Rational[-1, 2]}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}}, {{ 1.9957926887232285`, -1.4500282654395908`, -0.47114274353575997`}, { 1.5388417685876268`, -0.5, 0}, { 0.9510565162951535, -1.3090169943749475`, 0}}]], Polygon3DBox[ NCache[{{ Rational[ 1, 3] ((Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^ Rational[1, 2] + (Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2] + Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]) - ( Rational[1, 12] Root[1 - 5 #^2 + 5 #^4& , 1, 0] + (Rational[1, 12] 5^Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0]) (( Rational[-1, 12] (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2] + Rational[-1, 12] ( 5 (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2]))^ Rational[1, 2] + Rational[-1, 12] (Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2] + Rational[ 1, 12] ( 5 (Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2]))^ Rational[1, 2] + Rational[1, 12] (5 + 2 5^Rational[1, 2])^Rational[1, 2])^2 + ( Rational[1, 12] Root[1 - 5 #^2 + 5 #^4& , 1, 0] + (Rational[1, 12] 5^Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0])^2 + (( Rational[ 1, 3] (Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0] + ( Rational[-1, 6] (5 + 2 5^Rational[1, 2])^Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0])^2)^Rational[-1, 2], Rational[1, 3] (Rational[-1, 2] + Rational[1, 4] (-1 - 5^Rational[1, 2]) + Rational[-1, 8] (1 + 5^Rational[1, 2])^2) - (( Rational[ 1, 3] (Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0] + ( Rational[-1, 6] (5 + 2 5^Rational[1, 2])^Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0]) (( Rational[-1, 12] (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2] + Rational[-1, 12] ( 5 (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2]))^ Rational[1, 2] + Rational[-1, 12] (Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2] + Rational[ 1, 12] ( 5 (Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2]))^ Rational[1, 2] + Rational[1, 12] (5 + 2 5^Rational[1, 2])^Rational[1, 2])^2 + ( Rational[1, 12] Root[1 - 5 #^2 + 5 #^4& , 1, 0] + (Rational[1, 12] 5^Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0])^2 + (( Rational[ 1, 3] (Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0] + ( Rational[-1, 6] (5 + 2 5^Rational[1, 2])^Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0])^2)^Rational[-1, 2], Rational[1, 3] Root[1 - 5 #^2 + 5 #^4& , 1, 0] - ( Rational[-1, 12] (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2] + Rational[-1, 12] ( 5 (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2]))^ Rational[1, 2] + Rational[-1, 12] (Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2] + Rational[ 1, 12] (5 (Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2]))^ Rational[1, 2] + Rational[1, 12] (5 + 2 5^Rational[1, 2])^ Rational[1, 2]) (( Rational[-1, 12] (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2] + Rational[-1, 12] ( 5 (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2]))^ Rational[1, 2] + Rational[-1, 12] (Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2] + Rational[ 1, 12] ( 5 (Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2]))^ Rational[1, 2] + Rational[1, 12] (5 + 2 5^Rational[1, 2])^Rational[1, 2])^2 + ( Rational[1, 12] Root[1 - 5 #^2 + 5 #^4& , 1, 0] + (Rational[1, 12] 5^Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0])^2 + (( Rational[ 1, 3] (Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0] + ( Rational[-1, 6] (5 + 2 5^Rational[1, 2])^Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0])^2)^Rational[-1, 2]}, {( Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}}, {{ 1.9957926887232285`, -1.4500282654395908`, -0.47114274353575997`}, { 0.9510565162951535, -1.3090169943749475`, 0}, { 1.1135163644116066`, -0.8090169943749475, -0.8506508083520399}}]]}, \ {Polygon3DBox[ NCache[{{ Rational[ 1, 3] ((Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^ Rational[1, 2] + (Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2] + Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]) - ( Rational[1, 12] Root[1 - 5 #^2 + 5 #^4& , 1, 0] + (Rational[1, 12] 5^Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0]) (( Rational[-1, 12] (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2] + Rational[-1, 12] ( 5 (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2]))^ Rational[1, 2] + Rational[-1, 12] (Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2] + Rational[ 1, 12] ( 5 (Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2]))^ Rational[1, 2] + Rational[1, 12] (5 + 2 5^Rational[1, 2])^Rational[1, 2])^2 + ( Rational[1, 12] Root[1 - 5 #^2 + 5 #^4& , 1, 0] + (Rational[1, 12] 5^Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0])^2 + (( Rational[-1, 3] (Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0] + ( Rational[1, 6] (5 + 2 5^Rational[1, 2])^Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0])^2)^Rational[-1, 2], Rational[1, 3] (Rational[1, 2] + Rational[1, 4] (1 + 5^Rational[1, 2]) + Rational[1, 4] (3 + 5^Rational[1, 2])) - (( Rational[-1, 3] (Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0] + ( Rational[1, 6] (5 + 2 5^Rational[1, 2])^Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0]) (( Rational[-1, 12] (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2] + Rational[-1, 12] ( 5 (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2]))^ Rational[1, 2] + Rational[-1, 12] (Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2] + Rational[ 1, 12] ( 5 (Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2]))^ Rational[1, 2] + Rational[1, 12] (5 + 2 5^Rational[1, 2])^Rational[1, 2])^2 + ( Rational[1, 12] Root[1 - 5 #^2 + 5 #^4& , 1, 0] + (Rational[1, 12] 5^Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0])^2 + (( Rational[-1, 3] (Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0] + ( Rational[1, 6] (5 + 2 5^Rational[1, 2])^Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0])^2)^Rational[-1, 2], Rational[1, 3] Root[1 - 5 #^2 + 5 #^4& , 1, 0] - ( Rational[-1, 12] (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2] + Rational[-1, 12] ( 5 (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2]))^ Rational[1, 2] + Rational[-1, 12] (Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2] + Rational[ 1, 12] (5 (Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2]))^ Rational[1, 2] + Rational[1, 12] (5 + 2 5^Rational[1, 2])^ Rational[1, 2]) (( Rational[-1, 12] (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2] + Rational[-1, 12] ( 5 (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2]))^ Rational[1, 2] + Rational[-1, 12] (Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2] + Rational[ 1, 12] ( 5 (Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2]))^ Rational[1, 2] + Rational[1, 12] (5 + 2 5^Rational[1, 2])^Rational[1, 2])^2 + ( Rational[1, 12] Root[1 - 5 #^2 + 5 #^4& , 1, 0] + (Rational[1, 12] 5^Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0])^2 + (( Rational[-1, 3] (Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0] + ( Rational[1, 6] (5 + 2 5^Rational[1, 2])^Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0])^2)^Rational[-1, 2]}, {( Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}}, {{1.9957926887232285`, 1.4500282654395908`, -0.47114274353575997`}, {1.1135163644116066`, 0.8090169943749475, -0.8506508083520399}, { 0.9510565162951535, 1.3090169943749475`, 0}}]], Polygon3DBox[ NCache[{{ Rational[ 1, 3] ((Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^ Rational[1, 2] + (Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2] + Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]) - ( Rational[1, 12] Root[1 - 5 #^2 + 5 #^4& , 1, 0] + (Rational[1, 12] 5^Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0]) (( Rational[-1, 12] (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2] + Rational[-1, 12] ( 5 (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2]))^ Rational[1, 2] + Rational[-1, 12] (Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2] + Rational[ 1, 12] ( 5 (Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2]))^ Rational[1, 2] + Rational[1, 12] (5 + 2 5^Rational[1, 2])^Rational[1, 2])^2 + ( Rational[1, 12] Root[1 - 5 #^2 + 5 #^4& , 1, 0] + (Rational[1, 12] 5^Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0])^2 + (( Rational[-1, 3] (Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0] + ( Rational[1, 6] (5 + 2 5^Rational[1, 2])^Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0])^2)^Rational[-1, 2], Rational[1, 3] (Rational[1, 2] + Rational[1, 4] (1 + 5^Rational[1, 2]) + Rational[1, 4] (3 + 5^Rational[1, 2])) - (( Rational[-1, 3] (Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0] + ( Rational[1, 6] (5 + 2 5^Rational[1, 2])^Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0]) (( Rational[-1, 12] (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2] + Rational[-1, 12] ( 5 (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2]))^ Rational[1, 2] + Rational[-1, 12] (Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2] + Rational[ 1, 12] ( 5 (Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2]))^ Rational[1, 2] + Rational[1, 12] (5 + 2 5^Rational[1, 2])^Rational[1, 2])^2 + ( Rational[1, 12] Root[1 - 5 #^2 + 5 #^4& , 1, 0] + (Rational[1, 12] 5^Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0])^2 + (( Rational[-1, 3] (Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0] + ( Rational[1, 6] (5 + 2 5^Rational[1, 2])^Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0])^2)^Rational[-1, 2], Rational[1, 3] Root[1 - 5 #^2 + 5 #^4& , 1, 0] - ( Rational[-1, 12] (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2] + Rational[-1, 12] ( 5 (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2]))^ Rational[1, 2] + Rational[-1, 12] (Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2] + Rational[ 1, 12] (5 (Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2]))^ Rational[1, 2] + Rational[1, 12] (5 + 2 5^Rational[1, 2])^ Rational[1, 2]) (( Rational[-1, 12] (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2] + Rational[-1, 12] ( 5 (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2]))^ Rational[1, 2] + Rational[-1, 12] (Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2] + Rational[ 1, 12] ( 5 (Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2]))^ Rational[1, 2] + Rational[1, 12] (5 + 2 5^Rational[1, 2])^Rational[1, 2])^2 + ( Rational[1, 12] Root[1 - 5 #^2 + 5 #^4& , 1, 0] + (Rational[1, 12] 5^Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0])^2 + (( Rational[-1, 3] (Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0] + ( Rational[1, 6] (5 + 2 5^Rational[1, 2])^Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0])^2)^Rational[-1, 2]}, {( Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2], 0}}, {{1.9957926887232285`, 1.4500282654395908`, -0.47114274353575997`}, { 0.9510565162951535, 1.3090169943749475`, 0}, { 1.5388417685876268`, 0.5, 0}}]], Polygon3DBox[ NCache[{{ Rational[ 1, 3] ((Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^ Rational[1, 2] + (Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2] + Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]) - ( Rational[1, 12] Root[1 - 5 #^2 + 5 #^4& , 1, 0] + (Rational[1, 12] 5^Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0]) (( Rational[-1, 12] (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2] + Rational[-1, 12] ( 5 (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2]))^ Rational[1, 2] + Rational[-1, 12] (Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2] + Rational[ 1, 12] ( 5 (Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2]))^ Rational[1, 2] + Rational[1, 12] (5 + 2 5^Rational[1, 2])^Rational[1, 2])^2 + ( Rational[1, 12] Root[1 - 5 #^2 + 5 #^4& , 1, 0] + (Rational[1, 12] 5^Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0])^2 + (( Rational[-1, 3] (Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0] + ( Rational[1, 6] (5 + 2 5^Rational[1, 2])^Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0])^2)^Rational[-1, 2], Rational[1, 3] (Rational[1, 2] + Rational[1, 4] (1 + 5^Rational[1, 2]) + Rational[1, 4] (3 + 5^Rational[1, 2])) - (( Rational[-1, 3] (Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0] + ( Rational[1, 6] (5 + 2 5^Rational[1, 2])^Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0]) (( Rational[-1, 12] (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2] + Rational[-1, 12] ( 5 (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2]))^ Rational[1, 2] + Rational[-1, 12] (Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2] + Rational[ 1, 12] ( 5 (Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2]))^ Rational[1, 2] + Rational[1, 12] (5 + 2 5^Rational[1, 2])^Rational[1, 2])^2 + ( Rational[1, 12] Root[1 - 5 #^2 + 5 #^4& , 1, 0] + (Rational[1, 12] 5^Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0])^2 + (( Rational[-1, 3] (Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0] + ( Rational[1, 6] (5 + 2 5^Rational[1, 2])^Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0])^2)^Rational[-1, 2], Rational[1, 3] Root[1 - 5 #^2 + 5 #^4& , 1, 0] - ( Rational[-1, 12] (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2] + Rational[-1, 12] ( 5 (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2]))^ Rational[1, 2] + Rational[-1, 12] (Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2] + Rational[ 1, 12] (5 (Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2]))^ Rational[1, 2] + Rational[1, 12] (5 + 2 5^Rational[1, 2])^ Rational[1, 2]) (( Rational[-1, 12] (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2] + Rational[-1, 12] ( 5 (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2]))^ Rational[1, 2] + Rational[-1, 12] (Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2] + Rational[ 1, 12] ( 5 (Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2]))^ Rational[1, 2] + Rational[1, 12] (5 + 2 5^Rational[1, 2])^Rational[1, 2])^2 + ( Rational[1, 12] Root[1 - 5 #^2 + 5 #^4& , 1, 0] + (Rational[1, 12] 5^Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0])^2 + (( Rational[-1, 3] (Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0] + ( Rational[1, 6] (5 + 2 5^Rational[1, 2])^Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0])^2)^Rational[-1, 2]}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2], 0}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}}, {{1.9957926887232285`, 1.4500282654395908`, -0.47114274353575997`}, { 1.5388417685876268`, 0.5, 0}, {1.1135163644116066`, 0.8090169943749475, -0.8506508083520399}}]]}, { Polygon3DBox[ NCache[{{ Rational[1, 3] ( Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2] + Root[1 - 20 #^2 + 80 #^4& , 1, 0]) - ( Rational[1, 12] Root[1 - 5 #^2 + 5 #^4& , 1, 0] + (Rational[-1, 12] 5^Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0]) (( Rational[1, 72] (5 + 5^Rational[1, 2])) Root[1 - 5 #^2 + 5 #^4& , 1, 0]^2 + ( Rational[1, 12] Root[1 - 5 #^2 + 5 #^4& , 1, 0] + (Rational[-1, 12] 5^Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0])^2 + ( Rational[-1, 24] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2] + Rational[1, 24] (Rational[5, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2] + Rational[-1, 12] Root[1 - 20 #^2 + 80 #^4& , 1, 0] + (Rational[1, 12] 5^Rational[1, 2]) Root[1 - 20 #^2 + 80 #^4& , 1, 0])^2)^ Rational[-1, 2], Rational[1, 3] (Rational[1, 2] (1 + 5^Rational[1, 2]) + Rational[1, 2] (3 + 5^Rational[1, 2])) + (Rational[-1, 6] Root[1 - 5 #^2 + 5 #^4& , 1, 0]) ((2/(5 + 5^Rational[1, 2])) ((Rational[1, 72] (5 + 5^Rational[1, 2])) Root[1 - 5 #^2 + 5 #^4& , 1, 0]^2 + ( Rational[1, 12] Root[1 - 5 #^2 + 5 #^4& , 1, 0] + (Rational[-1, 12] 5^Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0])^2 + ( Rational[-1, 24] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2] + Rational[1, 24] (Rational[5, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2] + Rational[-1, 12] Root[1 - 20 #^2 + 80 #^4& , 1, 0] + (Rational[1, 12] 5^Rational[1, 2]) Root[1 - 20 #^2 + 80 #^4& , 1, 0])^2))^ Rational[-1, 2], Rational[1, 3] Root[1 - 5 #^2 + 5 #^4& , 1, 0] - ( Rational[-1, 24] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2] + Rational[1, 24] (Rational[5, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2] + Rational[-1, 12] Root[1 - 20 #^2 + 80 #^4& , 1, 0] + (Rational[1, 12] 5^Rational[1, 2]) Root[1 - 20 #^2 + 80 #^4& , 1, 0]) (( Rational[1, 72] (5 + 5^Rational[1, 2])) Root[1 - 5 #^2 + 5 #^4& , 1, 0]^2 + ( Rational[1, 12] Root[1 - 5 #^2 + 5 #^4& , 1, 0] + (Rational[-1, 12] 5^Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0])^2 + ( Rational[-1, 24] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2] + Rational[1, 24] (Rational[5, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2] + Rational[-1, 12] Root[1 - 20 #^2 + 80 #^4& , 1, 0] + (Rational[1, 12] 5^Rational[1, 2]) Root[1 - 20 #^2 + 80 #^4& , 1, 0])^2)^ Rational[-1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}}, {{-0.7623249725937342, 2.346195018129312, -0.4711427435357599}, {-0.42532540417601994`, 1.3090169943749475`, -0.8506508083520399}, {-0.9510565162951535, 1.3090169943749475`, 0}}]], Polygon3DBox[ NCache[{{ Rational[1, 3] ( Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2] + Root[1 - 20 #^2 + 80 #^4& , 1, 0]) - ( Rational[1, 12] Root[1 - 5 #^2 + 5 #^4& , 1, 0] + (Rational[-1, 12] 5^Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0]) (( Rational[1, 72] (5 + 5^Rational[1, 2])) Root[1 - 5 #^2 + 5 #^4& , 1, 0]^2 + ( Rational[1, 12] Root[1 - 5 #^2 + 5 #^4& , 1, 0] + (Rational[-1, 12] 5^Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0])^2 + ( Rational[-1, 24] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2] + Rational[1, 24] (Rational[5, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2] + Rational[-1, 12] Root[1 - 20 #^2 + 80 #^4& , 1, 0] + (Rational[1, 12] 5^Rational[1, 2]) Root[1 - 20 #^2 + 80 #^4& , 1, 0])^2)^ Rational[-1, 2], Rational[1, 3] (Rational[1, 2] (1 + 5^Rational[1, 2]) + Rational[1, 2] (3 + 5^Rational[1, 2])) + (Rational[-1, 6] Root[1 - 5 #^2 + 5 #^4& , 1, 0]) ((2/(5 + 5^Rational[1, 2])) ((Rational[1, 72] (5 + 5^Rational[1, 2])) Root[1 - 5 #^2 + 5 #^4& , 1, 0]^2 + ( Rational[1, 12] Root[1 - 5 #^2 + 5 #^4& , 1, 0] + (Rational[-1, 12] 5^Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0])^2 + ( Rational[-1, 24] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2] + Rational[1, 24] (Rational[5, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2] + Rational[-1, 12] Root[1 - 20 #^2 + 80 #^4& , 1, 0] + (Rational[1, 12] 5^Rational[1, 2]) Root[1 - 20 #^2 + 80 #^4& , 1, 0])^2))^ Rational[-1, 2], Rational[1, 3] Root[1 - 5 #^2 + 5 #^4& , 1, 0] - ( Rational[-1, 24] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2] + Rational[1, 24] (Rational[5, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2] + Rational[-1, 12] Root[1 - 20 #^2 + 80 #^4& , 1, 0] + (Rational[1, 12] 5^Rational[1, 2]) Root[1 - 20 #^2 + 80 #^4& , 1, 0]) (( Rational[1, 72] (5 + 5^Rational[1, 2])) Root[1 - 5 #^2 + 5 #^4& , 1, 0]^2 + ( Rational[1, 12] Root[1 - 5 #^2 + 5 #^4& , 1, 0] + (Rational[-1, 12] 5^Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0])^2 + ( Rational[-1, 24] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2] + Rational[1, 24] (Rational[5, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2] + Rational[-1, 12] Root[1 - 20 #^2 + 80 #^4& , 1, 0] + (Rational[1, 12] 5^Rational[1, 2]) Root[1 - 20 #^2 + 80 #^4& , 1, 0])^2)^ Rational[-1, 2]}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), 0}}, {{-0.7623249725937342, 2.346195018129312, -0.4711427435357599}, {-0.9510565162951535, 1.3090169943749475`, 0}, {0, 1.618033988749895, 0}}]], Polygon3DBox[ NCache[{{ Rational[1, 3] ( Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2] + Root[1 - 20 #^2 + 80 #^4& , 1, 0]) - ( Rational[1, 12] Root[1 - 5 #^2 + 5 #^4& , 1, 0] + (Rational[-1, 12] 5^Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0]) (( Rational[1, 72] (5 + 5^Rational[1, 2])) Root[1 - 5 #^2 + 5 #^4& , 1, 0]^2 + ( Rational[1, 12] Root[1 - 5 #^2 + 5 #^4& , 1, 0] + (Rational[-1, 12] 5^Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0])^2 + ( Rational[-1, 24] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2] + Rational[1, 24] (Rational[5, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2] + Rational[-1, 12] Root[1 - 20 #^2 + 80 #^4& , 1, 0] + (Rational[1, 12] 5^Rational[1, 2]) Root[1 - 20 #^2 + 80 #^4& , 1, 0])^2)^ Rational[-1, 2], Rational[1, 3] (Rational[1, 2] (1 + 5^Rational[1, 2]) + Rational[1, 2] (3 + 5^Rational[1, 2])) + (Rational[-1, 6] Root[1 - 5 #^2 + 5 #^4& , 1, 0]) ((2/(5 + 5^Rational[1, 2])) ((Rational[1, 72] (5 + 5^Rational[1, 2])) Root[1 - 5 #^2 + 5 #^4& , 1, 0]^2 + ( Rational[1, 12] Root[1 - 5 #^2 + 5 #^4& , 1, 0] + (Rational[-1, 12] 5^Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0])^2 + ( Rational[-1, 24] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2] + Rational[1, 24] (Rational[5, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2] + Rational[-1, 12] Root[1 - 20 #^2 + 80 #^4& , 1, 0] + (Rational[1, 12] 5^Rational[1, 2]) Root[1 - 20 #^2 + 80 #^4& , 1, 0])^2))^ Rational[-1, 2], Rational[1, 3] Root[1 - 5 #^2 + 5 #^4& , 1, 0] - ( Rational[-1, 24] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2] + Rational[1, 24] (Rational[5, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2] + Rational[-1, 12] Root[1 - 20 #^2 + 80 #^4& , 1, 0] + (Rational[1, 12] 5^Rational[1, 2]) Root[1 - 20 #^2 + 80 #^4& , 1, 0]) (( Rational[1, 72] (5 + 5^Rational[1, 2])) Root[1 - 5 #^2 + 5 #^4& , 1, 0]^2 + ( Rational[1, 12] Root[1 - 5 #^2 + 5 #^4& , 1, 0] + (Rational[-1, 12] 5^Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0])^2 + ( Rational[-1, 24] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2] + Rational[1, 24] (Rational[5, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2] + Rational[-1, 12] Root[1 - 20 #^2 + 80 #^4& , 1, 0] + (Rational[1, 12] 5^Rational[1, 2]) Root[1 - 20 #^2 + 80 #^4& , 1, 0])^2)^ Rational[-1, 2]}, {0, Rational[1, 2] (1 + 5^Rational[1, 2]), 0}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}}, {{-0.7623249725937342, 2.346195018129312, -0.4711427435357599}, { 0, 1.618033988749895, 0}, {-0.42532540417601994`, 1.3090169943749475`, -0.8506508083520399}}]]}, { Polygon3DBox[ NCache[{{ Rational[ 1, 3] (-(1 + 2 5^Rational[-1, 2])^Rational[1, 2] - (5 + 2 5^Rational[1, 2])^Rational[1, 2]) + (Rational[1, 3] Root[1 - 5 #^2 + 5 #^4& , 1, 0]) ((Rational[-1, 3] (1 + 2 5^Rational[-1, 2])^Rational[1, 2] + Rational[1, 6] (5 + 2 5^Rational[1, 2])^Rational[1, 2])^2 + Rational[1, 9] Root[1 - 5 #^2 + 5 #^4& , 1, 0]^2)^ Rational[-1, 2], 0, Rational[1, 3] Root[1 - 5 #^2 + 5 #^4& , 1, 0] - ( Rational[-1, 3] (1 + 2 5^Rational[-1, 2])^Rational[1, 2] + Rational[1, 6] (5 + 2 5^Rational[1, 2])^ Rational[1, 2]) (( Rational[-1, 3] (1 + 2 5^Rational[-1, 2])^Rational[1, 2] + Rational[1, 6] (5 + 2 5^Rational[1, 2])^Rational[1, 2])^2 + Rational[1, 9] Root[1 - 5 #^2 + 5 #^4& , 1, 0]^2)^ Rational[-1, 2]}, {-(1 + 2 5^Rational[-1, 2])^Rational[1, 2], 0, Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}}, {{-2.4669354322589885`, 0, -0.4711427435357598}, {-1.3763819204711736`, 0, -0.8506508083520399}, {-1.5388417685876268`, -0.5, 0}}]], Polygon3DBox[ NCache[{{ Rational[ 1, 3] (-(1 + 2 5^Rational[-1, 2])^Rational[1, 2] - (5 + 2 5^Rational[1, 2])^Rational[1, 2]) + (Rational[1, 3] Root[1 - 5 #^2 + 5 #^4& , 1, 0]) ((Rational[-1, 3] (1 + 2 5^Rational[-1, 2])^Rational[1, 2] + Rational[1, 6] (5 + 2 5^Rational[1, 2])^Rational[1, 2])^2 + Rational[1, 9] Root[1 - 5 #^2 + 5 #^4& , 1, 0]^2)^ Rational[-1, 2], 0, Rational[1, 3] Root[1 - 5 #^2 + 5 #^4& , 1, 0] - ( Rational[-1, 3] (1 + 2 5^Rational[-1, 2])^Rational[1, 2] + Rational[1, 6] (5 + 2 5^Rational[1, 2])^ Rational[1, 2]) (( Rational[-1, 3] (1 + 2 5^Rational[-1, 2])^Rational[1, 2] + Rational[1, 6] (5 + 2 5^Rational[1, 2])^Rational[1, 2])^2 + Rational[1, 9] Root[1 - 5 #^2 + 5 #^4& , 1, 0]^2)^ Rational[-1, 2]}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2], 0}}, {{-2.4669354322589885`, 0, -0.4711427435357598}, {-1.5388417685876268`, -0.5, 0}, {-1.5388417685876268`, 0.5, 0}}]], Polygon3DBox[ NCache[{{ Rational[ 1, 3] (-(1 + 2 5^Rational[-1, 2])^Rational[1, 2] - (5 + 2 5^Rational[1, 2])^Rational[1, 2]) + (Rational[1, 3] Root[1 - 5 #^2 + 5 #^4& , 1, 0]) ((Rational[-1, 3] (1 + 2 5^Rational[-1, 2])^Rational[1, 2] + Rational[1, 6] (5 + 2 5^Rational[1, 2])^Rational[1, 2])^2 + Rational[1, 9] Root[1 - 5 #^2 + 5 #^4& , 1, 0]^2)^ Rational[-1, 2], 0, Rational[1, 3] Root[1 - 5 #^2 + 5 #^4& , 1, 0] - ( Rational[-1, 3] (1 + 2 5^Rational[-1, 2])^Rational[1, 2] + Rational[1, 6] (5 + 2 5^Rational[1, 2])^ Rational[1, 2]) (( Rational[-1, 3] (1 + 2 5^Rational[-1, 2])^Rational[1, 2] + Rational[1, 6] (5 + 2 5^Rational[1, 2])^Rational[1, 2])^2 + Rational[1, 9] Root[1 - 5 #^2 + 5 #^4& , 1, 0]^2)^ Rational[-1, 2]}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2], 0}, {-(1 + 2 5^Rational[-1, 2])^Rational[1, 2], 0, Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}}, {{-2.4669354322589885`, 0, -0.4711427435357598}, {-1.5388417685876268`, 0.5, 0}, {-1.3763819204711736`, 0, -0.8506508083520399}}]]}}, {{ Polygon3DBox[ NCache[{{ Rational[1, 5] ( 2 (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2] + Root[1 - 5 #^2 + 5 #^4& , 1, 0] + 2 Root[1 - 20 #^2 + 80 #^4& , 2, 0]), Rational[1, 5] (Rational[1, 4] (-1 - 5^Rational[1, 2]) + Rational[1, 4] (1 + 5^Rational[1, 2])), 2.7763819204711737`}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 5 #^2 + 5 #^4& , 1, 0], 0, (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}}, {{2.2204460492503138`*^-17, 0., 2.7763819204711737`}, {-0.2628655560595668, 0.8090169943749475, 1.3763819204711736`}, {-0.8506508083520399, 0, 1.3763819204711736`}}]], Polygon3DBox[ NCache[{{ Rational[1, 5] ( 2 (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2] + Root[1 - 5 #^2 + 5 #^4& , 1, 0] + 2 Root[1 - 20 #^2 + 80 #^4& , 2, 0]), Rational[1, 5] (Rational[1, 4] (-1 - 5^Rational[1, 2]) + Rational[1, 4] (1 + 5^Rational[1, 2])), 2.7763819204711737`}, { Root[1 - 5 #^2 + 5 #^4& , 1, 0], 0, (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}}, {{2.2204460492503138`*^-17, 0., 2.7763819204711737`}, {-0.8506508083520399, 0, 1.3763819204711736`}, {-0.2628655560595668, -0.8090169943749475, 1.3763819204711736`}}]], Polygon3DBox[ NCache[{{ Rational[1, 5] ( 2 (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2] + Root[1 - 5 #^2 + 5 #^4& , 1, 0] + 2 Root[1 - 20 #^2 + 80 #^4& , 2, 0]), Rational[1, 5] (Rational[1, 4] (-1 - 5^Rational[1, 2]) + Rational[1, 4] (1 + 5^Rational[1, 2])), 2.7763819204711737`}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}}, {{ 2.2204460492503138`*^-17, 0., 2.7763819204711737`}, {-0.2628655560595668, -0.8090169943749475, 1.3763819204711736`}, {0.6881909602355868, -0.5, 1.3763819204711736`}}]], Polygon3DBox[ NCache[{{ Rational[1, 5] ( 2 (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2] + Root[1 - 5 #^2 + 5 #^4& , 1, 0] + 2 Root[1 - 20 #^2 + 80 #^4& , 2, 0]), Rational[1, 5] (Rational[1, 4] (-1 - 5^Rational[1, 2]) + Rational[1, 4] (1 + 5^Rational[1, 2])), 2.7763819204711737`}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}}, {{ 2.2204460492503138`*^-17, 0., 2.7763819204711737`}, { 0.6881909602355868, -0.5, 1.3763819204711736`}, {0.6881909602355868, 0.5, 1.3763819204711736`}}]], Polygon3DBox[ NCache[{{ Rational[1, 5] ( 2 (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2] + Root[1 - 5 #^2 + 5 #^4& , 1, 0] + 2 Root[1 - 20 #^2 + 80 #^4& , 2, 0]), Rational[1, 5] (Rational[1, 4] (-1 - 5^Rational[1, 2]) + Rational[1, 4] (1 + 5^Rational[1, 2])), 2.7763819204711737`}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}}, {{2.2204460492503138`*^-17, 0., 2.7763819204711737`}, {0.6881909602355868, 0.5, 1.3763819204711736`}, {-0.2628655560595668, 0.8090169943749475, 1.3763819204711736`}}]]}, { Polygon3DBox[ NCache[{{-0.7673730896680909, 2.361731524942793, 1.2416357411349919`}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), 0}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}}, {{-0.7673730896680909, 2.361731524942793, 1.2416357411349919`}, { 0, 1.618033988749895, 0}, {-0.9510565162951535, 1.3090169943749475`, 0}}]], Polygon3DBox[ NCache[{{-0.7673730896680909, 2.361731524942793, 1.2416357411349919`}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}}, {{-0.7673730896680909, 2.361731524942793, 1.2416357411349919`}, {-0.9510565162951535, 1.3090169943749475`, 0}, {-1.1135163644116068`, 0.8090169943749475, 0.85065080835204}}]], Polygon3DBox[ NCache[{{-0.7673730896680909, 2.361731524942793, 1.2416357411349919`}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}}, {{-0.7673730896680909, 2.361731524942793, 1.2416357411349919`}, {-1.1135163644116068`, 0.8090169943749475, 0.85065080835204}, {-0.2628655560595668, 0.8090169943749475, 1.3763819204711736`}}]], Polygon3DBox[ NCache[{{-0.7673730896680909, 2.361731524942793, 1.2416357411349919`}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}}, {{-0.7673730896680909, 2.361731524942793, 1.2416357411349919`}, {-0.2628655560595668, 0.8090169943749475, 1.3763819204711736`}, {0.42532540417601994`, 1.3090169943749475`, 0.85065080835204}}]], Polygon3DBox[ NCache[{{-0.7673730896680909, 2.361731524942793, 1.2416357411349919`}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), 0}}, {{-0.7673730896680909, 2.361731524942793, 1.2416357411349919`}, {0.42532540417601994`, 1.3090169943749475`, 0.85065080835204}, {0, 1.618033988749895, 0}}]]}, { Polygon3DBox[ NCache[{{-2.4832714822699837`, -5.646369700726436*^-17, 1.2416357411349919`}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2], 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}}, {{-2.4832714822699837`, -5.646369700726436*^-17, 1.2416357411349919`}, {-1.5388417685876268`, 0.5, 0}, {-1.5388417685876268`, -0.5, 0}}]], Polygon3DBox[ NCache[{{-2.4832714822699837`, -5.646369700726436*^-17, 1.2416357411349919`}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}}, {{-2.4832714822699837`, -5.646369700726436*^-17, 1.2416357411349919`}, {-1.5388417685876268`, -0.5, 0}, {-1.1135163644116068`, -0.8090169943749475, 0.85065080835204}}]], Polygon3DBox[ NCache[{{-2.4832714822699837`, -5.646369700726436*^-17, 1.2416357411349919`}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 5 #^2 + 5 #^4& , 1, 0], 0, (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}}, {{-2.4832714822699837`, -5.646369700726436*^-17, 1.2416357411349919`}, {-1.1135163644116068`, -0.8090169943749475, 0.85065080835204}, {-0.8506508083520399, 0, 1.3763819204711736`}}]], Polygon3DBox[ NCache[{{-2.4832714822699837`, -5.646369700726436*^-17, 1.2416357411349919`}, { Root[1 - 5 #^2 + 5 #^4& , 1, 0], 0, (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}}, {{-2.4832714822699837`, -5.646369700726436*^-17, 1.2416357411349919`}, {-0.8506508083520399, 0, 1.3763819204711736`}, {-1.1135163644116068`, 0.8090169943749475, 0.85065080835204}}]], Polygon3DBox[ NCache[{{-2.4832714822699837`, -5.646369700726436*^-17, 1.2416357411349919`}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2], 0}}, {{-2.4832714822699837`, -5.646369700726436*^-17, 1.2416357411349919`}, {-1.1135163644116068`, 0.8090169943749475, 0.85065080835204}, {-1.5388417685876268`, 0.5, 0}}]]}, { Polygon3DBox[ NCache[{{-0.7673730896680909, -2.361731524942793, 1.2416357411349916`}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, { 0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}}, {{-0.7673730896680909, -2.361731524942793, 1.2416357411349916`}, {-0.9510565162951535, -1.3090169943749475`, 0}, {0, -1.618033988749895, 0}}]], Polygon3DBox[ NCache[{{-0.7673730896680909, -2.361731524942793, 1.2416357411349916`}, { 0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}}, {{-0.7673730896680909, -2.361731524942793, 1.2416357411349916`}, {0, -1.618033988749895, 0}, { 0.42532540417601994`, -1.3090169943749475`, 0.85065080835204}}]], Polygon3DBox[ NCache[{{-0.7673730896680909, -2.361731524942793, 1.2416357411349916`}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}}, {{-0.7673730896680909, -2.361731524942793, 1.2416357411349916`}, {0.42532540417601994`, -1.3090169943749475`, 0.85065080835204}, {-0.2628655560595668, -0.8090169943749475, 1.3763819204711736`}}]], Polygon3DBox[ NCache[{{-0.7673730896680909, -2.361731524942793, 1.2416357411349916`}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}}, {{-0.7673730896680909, -2.361731524942793, 1.2416357411349916`}, {-0.2628655560595668, -0.8090169943749475, 1.3763819204711736`}, {-1.1135163644116068`, -0.8090169943749475, 0.85065080835204}}]], Polygon3DBox[ NCache[{{-0.7673730896680909, -2.361731524942793, 1.2416357411349916`}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}}, {{-0.7673730896680909, -2.361731524942793, 1.2416357411349916`}, {-1.1135163644116068`, -0.8090169943749475, 0.85065080835204}, {-0.9510565162951535, -1.3090169943749475`, 0}}]]}, { Polygon3DBox[ NCache[{{2.009008830803083, -1.459630354716766, 1.241635741134992}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}}, {{2.009008830803083, -1.459630354716766, 1.241635741134992}, {0.9510565162951535, -1.3090169943749475`, 0}, { 1.5388417685876268`, -0.5, 0}}]], Polygon3DBox[ NCache[{{2.009008830803083, -1.459630354716766, 1.241635741134992}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, {(1 + 2 5^Rational[-1, 2])^Rational[1, 2], 0, (Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}}, {{ 2.009008830803083, -1.459630354716766, 1.241635741134992}, { 1.5388417685876268`, -0.5, 0}, { 1.3763819204711736`, 0, 0.85065080835204}}]], Polygon3DBox[ NCache[{{2.009008830803083, -1.459630354716766, 1.241635741134992}, {(1 + 2 5^Rational[-1, 2])^Rational[1, 2], 0, (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}}, {{ 2.009008830803083, -1.459630354716766, 1.241635741134992}, { 1.3763819204711736`, 0, 0.85065080835204}, { 0.6881909602355868, -0.5, 1.3763819204711736`}}]], Polygon3DBox[ NCache[{{2.009008830803083, -1.459630354716766, 1.241635741134992}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}}, {{ 2.009008830803083, -1.459630354716766, 1.241635741134992}, { 0.6881909602355868, -0.5, 1.3763819204711736`}, { 0.42532540417601994`, -1.3090169943749475`, 0.85065080835204}}]], Polygon3DBox[ NCache[{{2.009008830803083, -1.459630354716766, 1.241635741134992}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}}, {{ 2.009008830803083, -1.459630354716766, 1.241635741134992}, { 0.42532540417601994`, -1.3090169943749475`, 0.85065080835204}, { 0.9510565162951535, -1.3090169943749475`, 0}}]]}, { Polygon3DBox[ NCache[{{2.009008830803083, 1.459630354716766, 1.241635741134992}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2], 0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}}, {{ 2.009008830803083, 1.459630354716766, 1.241635741134992}, { 1.5388417685876268`, 0.5, 0}, { 0.9510565162951535, 1.3090169943749475`, 0}}]], Polygon3DBox[ NCache[{{2.009008830803083, 1.459630354716766, 1.241635741134992}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}}, {{ 2.009008830803083, 1.459630354716766, 1.241635741134992}, { 0.9510565162951535, 1.3090169943749475`, 0}, {0.42532540417601994`, 1.3090169943749475`, 0.85065080835204}}]], Polygon3DBox[ NCache[{{2.009008830803083, 1.459630354716766, 1.241635741134992}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}}, {{ 2.009008830803083, 1.459630354716766, 1.241635741134992}, { 0.42532540417601994`, 1.3090169943749475`, 0.85065080835204}, { 0.6881909602355868, 0.5, 1.3763819204711736`}}]], Polygon3DBox[ NCache[{{2.009008830803083, 1.459630354716766, 1.241635741134992}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(1 + 2 5^Rational[-1, 2])^Rational[1, 2], 0, (Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}}, {{ 2.009008830803083, 1.459630354716766, 1.241635741134992}, { 0.6881909602355868, 0.5, 1.3763819204711736`}, { 1.3763819204711736`, 0, 0.85065080835204}}]], Polygon3DBox[ NCache[{{2.009008830803083, 1.459630354716766, 1.241635741134992}, {(1 + 2 5^Rational[-1, 2])^Rational[1, 2], 0, (Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2], 0}}, {{2.009008830803083, 1.459630354716766, 1.241635741134992}, {1.3763819204711736`, 0, 0.85065080835204}, { 1.5388417685876268`, 0.5, 0}}]]}, { Polygon3DBox[ NCache[{{ Rational[1, 5] ( 2 (Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2] - (1 + 2 5^Rational[-1, 2])^ Rational[1, 2] + (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[1, 5] (Rational[1, 4] (-1 - 5^Rational[1, 2]) + Rational[1, 4] (1 + 5^Rational[1, 2])), -2.7763819204711737`}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}}, {{0., 0., -2.7763819204711737`}, {-0.6881909602355868, -0.5, \ -1.3763819204711736`}, {-0.6881909602355868, 0.5, -1.3763819204711736`}}]], Polygon3DBox[ NCache[{{ Rational[1, 5] ( 2 (Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2] - (1 + 2 5^Rational[-1, 2])^ Rational[1, 2] + (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[1, 5] (Rational[1, 4] (-1 - 5^Rational[1, 2]) + Rational[1, 4] (1 + 5^Rational[1, 2])), -2.7763819204711737`}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {( Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}}, {{0., 0., -2.7763819204711737`}, {-0.6881909602355868, 0.5, -1.3763819204711736`}, {0.2628655560595668, 0.8090169943749475, -1.3763819204711736`}}]], Polygon3DBox[ NCache[{{ Rational[1, 5] ( 2 (Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2] - (1 + 2 5^Rational[-1, 2])^ Rational[1, 2] + (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[1, 5] (Rational[1, 4] (-1 - 5^Rational[1, 2]) + Rational[1, 4] (1 + 5^Rational[1, 2])), -2.7763819204711737`}, {( Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2], 0, -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}}, {{ 0., 0., -2.7763819204711737`}, {0.2628655560595668, 0.8090169943749475, -1.3763819204711736`}, { 0.85065080835204, 0, -1.3763819204711736`}}]], Polygon3DBox[ NCache[{{ Rational[1, 5] ( 2 (Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2] - (1 + 2 5^Rational[-1, 2])^ Rational[1, 2] + (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[1, 5] (Rational[1, 4] (-1 - 5^Rational[1, 2]) + Rational[1, 4] (1 + 5^Rational[1, 2])), -2.7763819204711737`}, {( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2], 0, -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}}, {{0., 0., -2.7763819204711737`}, { 0.85065080835204, 0, -1.3763819204711736`}, { 0.2628655560595668, -0.8090169943749475, -1.3763819204711736`}}]], Polygon3DBox[ NCache[{{ Rational[1, 5] ( 2 (Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2] - (1 + 2 5^Rational[-1, 2])^ Rational[1, 2] + (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[1, 5] (Rational[1, 4] (-1 - 5^Rational[1, 2]) + Rational[1, 4] (1 + 5^Rational[1, 2])), -2.7763819204711737`}, {( Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}}, {{0., 0., -2.7763819204711737`}, { 0.2628655560595668, -0.8090169943749475, -1.3763819204711736`}, \ {-0.6881909602355868, -0.5, -1.3763819204711736`}}]]}, { Polygon3DBox[ NCache[{{ 0.7673730896680908, -2.361731524942793, -1.2416357411349916`}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}}, {{ 0.7673730896680908, -2.361731524942793, -1.2416357411349916`}, \ {-0.42532540417601994`, -1.3090169943749475`, -0.8506508083520399}, { 0.2628655560595668, -0.8090169943749475, -1.3763819204711736`}}]], Polygon3DBox[ NCache[{{ 0.7673730896680908, -2.361731524942793, -1.2416357411349916`}, {( Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}}, {{ 0.7673730896680908, -2.361731524942793, -1.2416357411349916`}, { 0.2628655560595668, -0.8090169943749475, -1.3763819204711736`}, { 1.1135163644116066`, -0.8090169943749475, -0.8506508083520399}}]], Polygon3DBox[ NCache[{{ 0.7673730896680908, -2.361731524942793, -1.2416357411349916`}, {( Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}}, {{ 0.7673730896680908, -2.361731524942793, -1.2416357411349916`}, { 1.1135163644116066`, -0.8090169943749475, -0.8506508083520399}, { 0.9510565162951535, -1.3090169943749475`, 0}}]], Polygon3DBox[ NCache[{{ 0.7673730896680908, -2.361731524942793, -1.2416357411349916`}, {( Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, { 0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}}, {{ 0.7673730896680908, -2.361731524942793, -1.2416357411349916`}, { 0.9510565162951535, -1.3090169943749475`, 0}, { 0, -1.618033988749895, 0}}]], Polygon3DBox[ NCache[{{ 0.7673730896680908, -2.361731524942793, -1.2416357411349916`}, { 0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}}, {{ 0.7673730896680908, -2.361731524942793, -1.2416357411349916`}, { 0, -1.618033988749895, 0}, {-0.42532540417601994`, -1.3090169943749475`, \ -0.8506508083520399}}]]}, { Polygon3DBox[ NCache[{{ 2.4832714822699833`, -5.646369700726435*^-17, \ -1.2416357411349919`}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2], 0, -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}}, {{ 2.4832714822699833`, -5.646369700726435*^-17, \ -1.2416357411349919`}, { 1.1135163644116066`, -0.8090169943749475, -0.8506508083520399}, { 0.85065080835204, 0, -1.3763819204711736`}}]], Polygon3DBox[ NCache[{{ 2.4832714822699833`, -5.646369700726435*^-17, \ -1.2416357411349919`}, {(Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2], 0, -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}}, {{ 2.4832714822699833`, -5.646369700726435*^-17, \ -1.2416357411349919`}, {0.85065080835204, 0, -1.3763819204711736`}, { 1.1135163644116066`, 0.8090169943749475, -0.8506508083520399}}]], Polygon3DBox[ NCache[{{ 2.4832714822699833`, -5.646369700726435*^-17, \ -1.2416357411349919`}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2], 0}}, {{ 2.4832714822699833`, -5.646369700726435*^-17, \ -1.2416357411349919`}, {1.1135163644116066`, 0.8090169943749475, -0.8506508083520399}, { 1.5388417685876268`, 0.5, 0}}]], Polygon3DBox[ NCache[{{ 2.4832714822699833`, -5.646369700726435*^-17, \ -1.2416357411349919`}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}}, {{ 2.4832714822699833`, -5.646369700726435*^-17, \ -1.2416357411349919`}, {1.5388417685876268`, 0.5, 0}, { 1.5388417685876268`, -0.5, 0}}]], Polygon3DBox[ NCache[{{ 2.4832714822699833`, -5.646369700726435*^-17, \ -1.2416357411349919`}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}}, {{ 2.4832714822699833`, -5.646369700726435*^-17, \ -1.2416357411349919`}, {1.5388417685876268`, -0.5, 0}, { 1.1135163644116066`, -0.8090169943749475, -0.8506508083520399}}]]}, \ {Polygon3DBox[ NCache[{{0.7673730896680908, 2.361731524942793, -1.2416357411349916`}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}}, {{0.7673730896680908, 2.361731524942793, -1.2416357411349916`}, {1.1135163644116066`, 0.8090169943749475, -0.8506508083520399}, {0.2628655560595668, 0.8090169943749475, -1.3763819204711736`}}]], Polygon3DBox[ NCache[{{0.7673730896680908, 2.361731524942793, -1.2416357411349916`}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}}, {{0.7673730896680908, 2.361731524942793, -1.2416357411349916`}, {0.2628655560595668, 0.8090169943749475, -1.3763819204711736`}, {-0.42532540417601994`, 1.3090169943749475`, -0.8506508083520399}}]], Polygon3DBox[ NCache[{{0.7673730896680908, 2.361731524942793, -1.2416357411349916`}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), 0}}, {{0.7673730896680908, 2.361731524942793, -1.2416357411349916`}, {-0.42532540417601994`, 1.3090169943749475`, -0.8506508083520399}, { 0, 1.618033988749895, 0}}]], Polygon3DBox[ NCache[{{0.7673730896680908, 2.361731524942793, -1.2416357411349916`}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), 0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}}, {{ 0.7673730896680908, 2.361731524942793, -1.2416357411349916`}, { 0, 1.618033988749895, 0}, { 0.9510565162951535, 1.3090169943749475`, 0}}]], Polygon3DBox[ NCache[{{0.7673730896680908, 2.361731524942793, -1.2416357411349916`}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}}, {{0.7673730896680908, 2.361731524942793, -1.2416357411349916`}, { 0.9510565162951535, 1.3090169943749475`, 0}, {1.1135163644116066`, 0.8090169943749475, -0.8506508083520399}}]]}, { Polygon3DBox[ NCache[{{-2.009008830803083, 1.4596303547167662`, -1.2416357411349919`}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}}, {{-2.009008830803083, 1.4596303547167662`, -1.2416357411349919`}, {-0.42532540417601994`, 1.3090169943749475`, -0.8506508083520399}, {-0.6881909602355868, 0.5, -1.3763819204711736`}}]], Polygon3DBox[ NCache[{{-2.009008830803083, 1.4596303547167662`, -1.2416357411349919`}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {-(1 + 2 5^Rational[-1, 2])^Rational[1, 2], 0, Root[1 - 5 #^2 + 5 #^4& , 1, 0]}}, {{-2.009008830803083, 1.4596303547167662`, -1.2416357411349919`}, {-0.6881909602355868, 0.5, -1.3763819204711736`}, {-1.3763819204711736`, 0, -0.8506508083520399}}]], Polygon3DBox[ NCache[{{-2.009008830803083, 1.4596303547167662`, -1.2416357411349919`}, {-(1 + 2 5^Rational[-1, 2])^Rational[1, 2], 0, Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2], 0}}, {{-2.009008830803083, 1.4596303547167662`, -1.2416357411349919`}, {-1.3763819204711736`, 0, -0.8506508083520399}, {-1.5388417685876268`, 0.5, 0}}]], Polygon3DBox[ NCache[{{-2.009008830803083, 1.4596303547167662`, -1.2416357411349919`}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2], 0}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}}, {{-2.009008830803083, 1.4596303547167662`, -1.2416357411349919`}, {-1.5388417685876268`, 0.5, 0}, {-0.9510565162951535, 1.3090169943749475`, 0}}]], Polygon3DBox[ NCache[{{-2.009008830803083, 1.4596303547167662`, -1.2416357411349919`}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}}, {{-2.009008830803083, 1.4596303547167662`, -1.2416357411349919`}, {-0.9510565162951535, 1.3090169943749475`, 0}, {-0.42532540417601994`, 1.3090169943749475`, -0.8506508083520399}}]]}, { Polygon3DBox[ NCache[{{-2.009008830803083, -1.459630354716766, \ -1.2416357411349919`}, {-(1 + 2 5^Rational[-1, 2])^Rational[1, 2], 0, Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], -(1 + 2 5^Rational[-1, 2])^ Rational[ 1, 2]}}, {{-2.009008830803083, -1.459630354716766, \ -1.2416357411349919`}, {-1.3763819204711736`, 0, -0.8506508083520399}, {-0.6881909602355868, -0.5, \ -1.3763819204711736`}}]], Polygon3DBox[ NCache[{{-2.009008830803083, -1.459630354716766, \ -1.2416357411349919`}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}}, {{-2.009008830803083, -1.459630354716766, \ -1.2416357411349919`}, {-0.6881909602355868, -0.5, -1.3763819204711736`}, \ {-0.42532540417601994`, -1.3090169943749475`, -0.8506508083520399}}]], Polygon3DBox[ NCache[{{-2.009008830803083, -1.459630354716766, \ -1.2416357411349919`}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}}, {{-2.009008830803083, -1.459630354716766, \ -1.2416357411349919`}, {-0.42532540417601994`, -1.3090169943749475`, \ -0.8506508083520399}, {-0.9510565162951535, -1.3090169943749475`, 0}}]], Polygon3DBox[ NCache[{{-2.009008830803083, -1.459630354716766, \ -1.2416357411349919`}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}}, {{-2.009008830803083, -1.459630354716766, \ -1.2416357411349919`}, {-0.9510565162951535, -1.3090169943749475`, 0}, {-1.5388417685876268`, -0.5, 0}}]], Polygon3DBox[ NCache[{{-2.009008830803083, -1.459630354716766, \ -1.2416357411349919`}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, {-(1 + 2 5^Rational[-1, 2])^Rational[1, 2], 0, Root[1 - 5 #^2 + 5 #^4& , 1, 0]}}, {{-2.009008830803083, -1.459630354716766, \ -1.2416357411349919`}, {-1.5388417685876268`, -0.5, 0}, {-1.3763819204711736`, 0, -0.8506508083520399}}]]}}}, Background->None, Boxed->False, ImageMargins->0.], {0., 0.0029946139294168006}, ImageScaled[{0., 0.}], {360., 414.}, ContentSelectable->True], AspectRatio->0.959409594095941, Background->None, ContentSelectable->True, ImageMargins->0., ImagePadding->0., ImageSize->{271., 260.}, PlotRange->{{54., 325.}, {85., 345.}}, PlotRangePadding->None]], "Output",ExpressionUUID->"4df19cf7-9358-4e30-977b-\ ed1b4a2b4647"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Graphics3D", "[", RowBox[{ RowBox[{"Bevel", "[", RowBox[{ RowBox[{"Cumulate", "[", RowBox[{ RowBox[{ RowBox[{ RowBox[{"Normal", "[", RowBox[{"PolyhedronData", "[", RowBox[{"\"\\"", ",", "\"\\""}], "]"}], "]"}], "//", "Flatten"}], "//", "N"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"3", ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{"5", ",", "1.4"}], "}"}]}], "}"}]}], "]"}], ",", ".2"}], "]"}], ",", RowBox[{"Boxed", "\[Rule]", "False"}]}], "]"}]], "Input",ExpressionUUID->\ "e370b335-badb-41e0-8f05-8d89384e36b3"], Cell[BoxData[ Graphics3DBox[{{{{ Polygon3DBox[{{-1.233467716129494, 0.8961667526897213, 1.9957926887232285`}, {-1.1135163644116068`, 0.8090169943749475, 0.85065080835204}, {-1.0782408403971804`, 0.6462583960474213, 1.1873434149521855`}, {-1.121913455250341, 0.677988408047441, 1.6042736085468043`}}], Polygon3DBox[{{-1.1135163644116068`, 0.8090169943749475, 0.85065080835204}, {-0.8506508083520399, 0., 1.3763819204711736`}, {-0.9825351561882094, 0.35170658734337756`, 1.3787547833701277`}, {-1.0782408403971804`, 0.6462583960474213, 1.1873434149521855`}}], Polygon3DBox[{{-0.8506508083520399, 0., 1.3763819204711736`}, {-1.233467716129494, 0.8961667526897213, 1.9957926887232285`}, {-1.121913455250341, 0.677988408047441, 1.6042736085468043`}, {-0.9825351561882094, 0.35170658734337756`, 1.3787547833701277`}}]}, { Polygon3DBox[{{-1.233467716129494, 0.8961667526897213, 1.9957926887232285`}, {-0.8506508083520399, 0., 1.3763819204711736`}, {-0.7937926880633989, 0.35170658734337745`, 1.4954040437918041`}, {-0.9331709871255303, 0.6779884080474409, 1.7209228689684806`}}], Polygon3DBox[{{-0.8506508083520399, 0., 1.3763819204711736`}, {-0.2628655560595668, 0.8090169943749475, 1.3763819204711736`}, {-0.5797882723390114, 0.6462583960474213, 1.4954040437918041`}, {-0.7937926880633989, 0.35170658734337745`, 1.4954040437918041`}}], Polygon3DBox[{{-0.2628655560595668, 0.8090169943749475, 1.3763819204711736`}, {-1.233467716129494, 0.8961667526897213, 1.9957926887232285`}, {-0.9331709871255303, 0.6779884080474409, 1.7209228689684806`}, {-0.5797882723390114, 0.6462583960474213, 1.4954040437918041`}}]}, { Polygon3DBox[{{-1.233467716129494, 0.8961667526897213, 1.9957926887232285`}, {-0.2628655560595668, 0.8090169943749475, 1.3763819204711736`}, {-0.6381129025498498, 0.8257631502591526, 1.3787547833701277`}, {-0.9914956173363689, 0.8574931622591723, 1.6042736085468046`}}], Polygon3DBox[{{-0.2628655560595668, 0.8090169943749475, 1.3763819204711736`}, {-1.1135163644116068`, 0.8090169943749475, 0.85065080835204}, {-0.9478230024832082, 0.8257631502591526, 1.1873434149521858`}, {-0.6381129025498498, 0.8257631502591526, 1.3787547833701277`}}], Polygon3DBox[{{-1.1135163644116068`, 0.8090169943749475, 0.85065080835204}, {-1.233467716129494, 0.8961667526897213, 1.9957926887232285`}, {-0.9914956173363689, 0.8574931622591723, 1.6042736085468046`}, {-0.9478230024832082, 0.8257631502591526, 1.1873434149521858`}}]}}, {{ Polygon3DBox[{{-1.233467716129494, -0.8961667526897216, 1.9957926887232285`}, {-1.1135163644116068`, -0.8090169943749475, 0.85065080835204}, {-0.9478230024832083, -0.8257631502591526, 1.1873434149521855`}, {-0.9914956173363686, -0.8574931622591724, 1.6042736085468041`}}], Polygon3DBox[{{-1.1135163644116068`, -0.8090169943749475, 0.85065080835204}, {-0.2628655560595668, -0.8090169943749475, 1.3763819204711736`}, {-0.6381129025498498, -0.8257631502591526, 1.3787547833701277`}, {-0.9478230024832083, -0.8257631502591526, 1.1873434149521855`}}], Polygon3DBox[{{-0.2628655560595668, -0.8090169943749475, 1.3763819204711736`}, {-1.233467716129494, -0.8961667526897216, 1.9957926887232285`}, {-0.9914956173363686, -0.8574931622591724, 1.6042736085468041`}, {-0.6381129025498498, -0.8257631502591526, 1.3787547833701277`}}]}, { Polygon3DBox[{{-1.233467716129494, -0.8961667526897216, 1.9957926887232285`}, {-0.2628655560595668, -0.8090169943749475, 1.3763819204711736`}, {-0.5797882723390113, -0.6462583960474213, 1.4954040437918041`}, {-0.9331709871255303, -0.6779884080474409, 1.7209228689684806`}}], Polygon3DBox[{{-0.2628655560595668, -0.8090169943749475, 1.3763819204711736`}, {-0.8506508083520399, 0., 1.3763819204711736`}, {-0.7937926880633989, -0.35170658734337745`, 1.4954040437918041`}, {-0.5797882723390113, -0.6462583960474213, 1.4954040437918041`}}], Polygon3DBox[{{-0.8506508083520399, 0., 1.3763819204711736`}, {-1.233467716129494, -0.8961667526897216, 1.9957926887232285`}, {-0.9331709871255303, -0.6779884080474409, 1.7209228689684806`}, {-0.7937926880633989, -0.35170658734337745`, 1.4954040437918041`}}]}, { Polygon3DBox[{{-1.233467716129494, -0.8961667526897216, 1.9957926887232285`}, {-0.8506508083520399, 0., 1.3763819204711736`}, {-0.9825351561882094, -0.3517065873433775, 1.3787547833701277`}, {-1.121913455250341, -0.6779884080474411, 1.6042736085468043`}}], Polygon3DBox[{{-0.8506508083520399, 0., 1.3763819204711736`}, {-1.1135163644116068`, -0.8090169943749475, 0.85065080835204}, {-1.0782408403971804`, -0.6462583960474211, 1.187343414952186}, {-0.9825351561882094, -0.3517065873433775, 1.3787547833701277`}}], Polygon3DBox[{{-1.1135163644116068`, -0.8090169943749475, 0.85065080835204}, {-1.233467716129494, -0.8961667526897216, 1.9957926887232285`}, {-1.121913455250341, -0.6779884080474411, 1.6042736085468043`}, {-1.0782408403971804`, -0.6462583960474211, 1.187343414952186}}]}}, {{ Polygon3DBox[{{0.4711427435357601, -1.4500282654395904`, 1.9957926887232285`}, {0.42532540417601994`, -1.3090169943749475`, 0.85065080835204}, {0.4924540095435818, -1.1566080895647641`, 1.1873434149521855`}, {0.5091354640399057, -1.2079483274442377`, 1.6042736085468041`}}], Polygon3DBox[{{0.42532540417601994`, -1.3090169943749475`, 0.85065080835204}, {0.6881909602355868, -0.5, 1.3763819204711736`}, { 0.5881596937525528, -0.8620562808607204, 1.3787547833701277`}, { 0.4924540095435818, -1.1566080895647641`, 1.1873434149521855`}}], Polygon3DBox[{{0.6881909602355868, -0.5, 1.3763819204711736`}, { 0.4711427435357601, -1.4500282654395904`, 1.9957926887232285`}, { 0.5091354640399057, -1.2079483274442377`, 1.6042736085468041`}, { 0.5881596937525528, -0.8620562808607204, 1.3787547833701277`}}]}, { Polygon3DBox[{{0.4711427435357601, -1.4500282654395904`, 1.9957926887232285`}, {0.6881909602355868, -0.5, 1.3763819204711736`}, {0.43546382947930934`, -0.7511162416156746, 1.4954040437918041`}, {0.3564395997666622, -1.0970082881991918`, 1.7209228689684806`}}], Polygon3DBox[{{0.6881909602355868, -0.5, 1.3763819204711736`}, {-0.2628655560595668, -0.8090169943749475, 1.3763819204711736`}, {0.08919741109468826, -0.8636250210928622, 1.4954040437918044`}, {0.43546382947930934`, -0.7511162416156746, 1.4954040437918041`}}], Polygon3DBox[{{-0.2628655560595668, -0.8090169943749475, 1.3763819204711736`}, {0.4711427435357601, -1.4500282654395904`, 1.9957926887232285`}, {0.3564395997666622, -1.0970082881991918`, 1.7209228689684806`}, {0.08919741109468826, -0.8636250210928622, 1.4954040437918044`}}]}, { Polygon3DBox[{{0.4711427435357601, -1.4500282654395904`, 1.9957926887232285`}, {-0.2628655560595668, -0.8090169943749475, 1.3763819204711736`}, {0.03087278088384976, -1.0431297753045934`, 1.3787547833701277`}, {0.29811496955582395`, -1.2765130424109234`, 1.6042736085468043`}}], Polygon3DBox[{{-0.2628655560595668, -0.8090169943749475, 1.3763819204711736`}, {0.42532540417601994`, -1.3090169943749475`, 0.85065080835204}, {0.2814335150595, -1.2251728045314496`, 1.1873434149521858`}, {0.03087278088384976, -1.0431297753045934`, 1.3787547833701277`}}], Polygon3DBox[{{0.42532540417601994`, -1.3090169943749475`, 0.85065080835204}, {0.4711427435357601, -1.4500282654395904`, 1.9957926887232285`}, {0.29811496955582395`, -1.2765130424109234`, 1.6042736085468043`}, {0.2814335150595, -1.2251728045314496`, 1.1873434149521858`}}]}}, {{ Polygon3DBox[{{1.5246499451874684`, 8.822436917596723*^-17, 1.9957926887232285`}, {1.3763819204711736`, 0., 0.85065080835204}, { 1.252176318277307, 0.11094003924504585`, 1.1873434149521858`}, { 1.3061586389909803`, 0.11094003924504584`, 1.6042736085468043`}}], Polygon3DBox[{{1.3763819204711736`, 0., 0.85065080835204}, { 0.6881909602355868, 0.5, 1.3763819204711736`}, {1.0016155841016567`, 0.2929830684719019, 1.3787547833701277`}, {1.252176318277307, 0.11094003924504585`, 1.1873434149521858`}}], Polygon3DBox[{{0.6881909602355868, 0.5, 1.3763819204711736`}, { 1.5246499451874684`, 8.822436917596723*^-17, 1.9957926887232285`}, { 1.3061586389909803`, 0.11094003924504584`, 1.6042736085468043`}, { 1.0016155841016567`, 0.2929830684719019, 1.3787547833701277`}}]}, { Polygon3DBox[{{1.5246499451874684`, 8.822436917596723*^-17, 1.9957926887232285`}, {0.6881909602355868, 0.5, 1.3763819204711736`}, { 0.8489197198284131, 0.18204302922685617`, 1.4954040437918041`}, { 1.1534627747177366`, 3.1335420937526876`*^-17, 1.7209228689684806`}}], Polygon3DBox[{{0.6881909602355868, 0.5, 1.3763819204711736`}, { 0.6881909602355868, -0.5, 1.3763819204711736`}, { 0.8489197198284131, -0.18204302922685622`, 1.4954040437918041`}, { 0.8489197198284131, 0.18204302922685617`, 1.4954040437918041`}}], Polygon3DBox[{{0.6881909602355868, -0.5, 1.3763819204711736`}, { 1.5246499451874684`, 8.822436917596723*^-17, 1.9957926887232285`}, { 1.1534627747177366`, 3.1335420937526876`*^-17, 1.7209228689684806`}, { 0.8489197198284131, -0.18204302922685622`, 1.4954040437918041`}}]}, { Polygon3DBox[{{1.5246499451874684`, 8.822436917596723*^-17, 1.9957926887232285`}, {0.6881909602355868, -0.5, 1.3763819204711736`}, {1.0016155841016565`, -0.2929830684719019, 1.3787547833701277`}, {1.3061586389909803`, -0.11094003924504575`, 1.6042736085468043`}}], Polygon3DBox[{{0.6881909602355868, -0.5, 1.3763819204711736`}, { 1.3763819204711736`, 0., 0.85065080835204}, { 1.2521763182773067`, -0.1109400392450459, 1.187343414952186}, { 1.0016155841016565`, -0.2929830684719019, 1.3787547833701277`}}], Polygon3DBox[{{1.3763819204711736`, 0., 0.85065080835204}, { 1.5246499451874684`, 8.822436917596723*^-17, 1.9957926887232285`}, { 1.3061586389909803`, -0.11094003924504575`, 1.6042736085468043`}, { 1.2521763182773067`, -0.1109400392450459, 1.187343414952186}}]}}, {{ Polygon3DBox[{{0.4711427435357596, 1.4500282654395904`, 1.9957926887232285`}, {0.42532540417601994`, 1.3090169943749475`, 0.85065080835204}, {0.2814335150595, 1.2251728045314496`, 1.1873434149521855`}, {0.2981149695558234, 1.2765130424109232`, 1.6042736085468037`}}], Polygon3DBox[{{0.42532540417601994`, 1.3090169943749475`, 0.85065080835204}, {-0.2628655560595668, 0.8090169943749475, 1.3763819204711736`}, {0.03087278088384976, 1.0431297753045936`, 1.3787547833701277`}, {0.2814335150595, 1.2251728045314496`, 1.1873434149521855`}}], Polygon3DBox[{{-0.2628655560595668, 0.8090169943749475, 1.3763819204711736`}, {0.4711427435357596, 1.4500282654395904`, 1.9957926887232285`}, {0.2981149695558234, 1.2765130424109232`, 1.6042736085468037`}, {0.03087278088384976, 1.0431297753045936`, 1.3787547833701277`}}]}, { Polygon3DBox[{{0.4711427435357596, 1.4500282654395904`, 1.9957926887232285`}, {-0.2628655560595668, 0.8090169943749475, 1.3763819204711736`}, {0.08919741109468798, 0.8636250210928622, 1.4954040437918041`}, {0.35643959976666184`, 1.0970082881991918`, 1.7209228689684803`}}], Polygon3DBox[{{-0.2628655560595668, 0.8090169943749475, 1.3763819204711736`}, {0.6881909602355868, 0.5, 1.3763819204711736`}, { 0.4354638294793092, 0.7511162416156747, 1.4954040437918044`}, { 0.08919741109468798, 0.8636250210928622, 1.4954040437918041`}}], Polygon3DBox[{{0.6881909602355868, 0.5, 1.3763819204711736`}, { 0.4711427435357596, 1.4500282654395904`, 1.9957926887232285`}, { 0.35643959976666184`, 1.0970082881991918`, 1.7209228689684803`}, { 0.4354638294793092, 0.7511162416156747, 1.4954040437918044`}}]}, { Polygon3DBox[{{0.4711427435357596, 1.4500282654395904`, 1.9957926887232285`}, {0.6881909602355868, 0.5, 1.3763819204711736`}, { 0.5881596937525528, 0.8620562808607204, 1.3787547833701277`}, { 0.5091354640399054, 1.2079483274442382`, 1.6042736085468046`}}], Polygon3DBox[{{0.6881909602355868, 0.5, 1.3763819204711736`}, { 0.42532540417601994`, 1.3090169943749475`, 0.85065080835204}, { 0.4924540095435818, 1.156608089564764, 1.187343414952186}, { 0.5881596937525528, 0.8620562808607204, 1.3787547833701277`}}], Polygon3DBox[{{0.42532540417601994`, 1.3090169943749475`, 0.85065080835204}, {0.4711427435357596, 1.4500282654395904`, 1.9957926887232285`}, {0.5091354640399054, 1.2079483274442382`, 1.6042736085468046`}, {0.4924540095435818, 1.156608089564764, 1.187343414952186}}]}}, {{ Polygon3DBox[{{0.762324972593734, 2.346195018129312, 0.4711427435357597}, {0.9510565162951535, 1.3090169943749475`, 0.}, { 0.7037705414218408, 1.5768793918748272`, 0.0905318612412538}, { 0.6350560175697063, 1.9545014504583642`, 0.2620683657042566}}], Polygon3DBox[{{0.9510565162951535, 1.3090169943749475`, 0.}, {0., 1.618033988749895, 0.}, {0.3575041230372199, 1.689388171352015, 0.09053186124125387}, {0.7037705414218408, 1.5768793918748272`, 0.0905318612412538}}], Polygon3DBox[{{0., 1.618033988749895, 0.}, {0.762324972593734, 2.346195018129312, 0.4711427435357597}, {0.6350560175697063, 1.9545014504583642`, 0.2620683657042566}, {0.3575041230372199, 1.689388171352015, 0.09053186124125387}}]}, { Polygon3DBox[{{0.762324972593734, 2.346195018129312, 0.4711427435357597}, {0., 1.618033988749895, 0.}, { 0.24085486261554329`, 1.689388171352015, 0.27927432936606444`}, { 0.5184067571480299, 1.9545014504583644`, 0.4508108338290672}}], Polygon3DBox[{{0., 1.618033988749895, 0.}, {0.42532540417601994`, 1.3090169943749475`, 0.85065080835204}, {0.3957099125822223, 1.5768793918748272`, 0.5889844292994226}, {0.24085486261554329`, 1.689388171352015, 0.27927432936606444`}}], Polygon3DBox[{{0.42532540417601994`, 1.3090169943749475`, 0.85065080835204}, {0.762324972593734, 2.346195018129312, 0.4711427435357597}, {0.5184067571480299, 1.9545014504583644`, 0.4508108338290672}, {0.3957099125822223, 1.5768793918748272`, 0.5889844292994226}}]}, { Polygon3DBox[{{0.762324972593734, 2.346195018129312, 0.4711427435357597}, {0.42532540417601994`, 1.3090169943749475`, 0.85065080835204}, {0.606730407066304, 1.5083146769081417`, 0.5889844292994227}, {0.7294272516321118, 1.8859367354916787`, 0.4508108338290672}}], Polygon3DBox[{{0.42532540417601994`, 1.3090169943749475`, 0.85065080835204}, {0.9510565162951535, 1.3090169943749475`, 0.}, { 0.7981417754842461, 1.5083146769081417`, 0.2792743293660642}, { 0.606730407066304, 1.5083146769081417`, 0.5889844292994227}}], Polygon3DBox[{{0.9510565162951535, 1.3090169943749475`, 0.}, { 0.762324972593734, 2.346195018129312, 0.4711427435357597}, { 0.7294272516321118, 1.8859367354916787`, 0.4508108338290672}, { 0.7981417754842461, 1.5083146769081417`, 0.2792743293660642}}]}}, {{ Polygon3DBox[{{-1.9957926887232287`, 1.4500282654395906`, 0.47114274353575963`}, {-0.9510565162951535, 1.3090169943749475`, 0.}, {-1.2822243636142867`, 1.1566080895647641`, 0.09053186124125377}, {-1.6625982387576426`, 1.2079483274442382`, 0.26206836570425684`}}], Polygon3DBox[{{-0.9510565162951535, 1.3090169943749475`, 0.}, {-1.5388417685876268`, 0.5, 0.}, {-1.4962287793386742`, 0.8620562808607204, 0.09053186124125379}, {-1.2822243636142867`, 1.1566080895647641`, 0.09053186124125377}}], Polygon3DBox[{{-1.5388417685876268`, 0.5, 0.}, {-1.9957926887232287`, 1.4500282654395906`, 0.47114274353575963`}, {-1.6625982387576426`, 1.2079483274442382`, 0.26206836570425684`}, {-1.4962287793386742`, 0.8620562808607204, 0.09053186124125379}}]}, { Polygon3DBox[{{-1.9957926887232287`, 1.4500282654395906`, 0.47114274353575963`}, {-1.5388417685876268`, 0.5, 0.}, {-1.5322753831902411`, 0.7511162416156745, 0.27927432936606406`}, {-1.6986448426092096`, 1.0970082881991923`, 0.4508108338290672}}], Polygon3DBox[{{-1.5388417685876268`, 0.5, 0.}, {-1.1135163644116068`, 0.8090169943749475, 0.85065080835204}, {-1.377420333223562, 0.8636250210928622, 0.5889844292994226}, {-1.5322753831902411`, 0.7511162416156745, 0.27927432936606406`}}], Polygon3DBox[{{-1.1135163644116068`, 0.8090169943749475, 0.85065080835204}, {-1.9957926887232287`, 1.4500282654395906`, 0.47114274353575963`}, {-1.6986448426092096`, 1.0970082881991923`, 0.4508108338290672}, {-1.377420333223562, 0.8636250210928622, 0.5889844292994226}}]}, { Polygon3DBox[{{-1.9957926887232287`, 1.4500282654395906`, 0.47114274353575963`}, {-1.1135163644116068`, 0.8090169943749475, 0.85065080835204}, {-1.2470024953095897`, 1.0431297753045934`, 0.5889844292994227}, {-1.5682270046952371`, 1.2765130424109237`, 0.4508108338290672}}], Polygon3DBox[{{-1.1135163644116068`, 0.8090169943749475, 0.85065080835204}, {-0.9510565162951535, 1.3090169943749475`, 0.}, {-1.1878531295518815`, 1.2251728045314496`, 0.2792743293660642}, {-1.2470024953095897`, 1.0431297753045934`, 0.5889844292994227}}], Polygon3DBox[{{-0.9510565162951535, 1.3090169943749475`, 0.}, {-1.9957926887232287`, 1.4500282654395906`, 0.47114274353575963`}, {-1.5682270046952371`, 1.2765130424109237`, 0.4508108338290672}, {-1.1878531295518815`, 1.2251728045314496`, 0.2792743293660642}}]}}, {{ Polygon3DBox[{{-1.9957926887232282`, -1.4500282654395908`, 0.4711427435357596}, {-1.5388417685876268`, -0.5, 0.}, {-1.4962287793386742`, -0.8620562808607204, 0.09053186124125379}, {-1.6625982387576421`, -1.2079483274442382`, 0.2620683657042566}}], Polygon3DBox[{{-1.5388417685876268`, -0.5, 0.}, {-0.9510565162951535, -1.3090169943749475`, 0.}, {-1.2822243636142872`, -1.156608089564764, 0.09053186124125388}, {-1.4962287793386742`, -0.8620562808607204, 0.09053186124125379}}], Polygon3DBox[{{-0.9510565162951535, -1.3090169943749475`, 0.}, {-1.9957926887232282`, -1.4500282654395908`, 0.4711427435357596}, {-1.6625982387576421`, -1.2079483274442382`, 0.2620683657042566}, {-1.2822243636142872`, -1.156608089564764, 0.09053186124125388}}]}, { Polygon3DBox[{{-1.9957926887232282`, -1.4500282654395908`, 0.4711427435357596}, {-0.9510565162951535, -1.3090169943749475`, 0.}, {-1.1878531295518815`, -1.2251728045314496`, 0.2792743293660642}, {-1.5682270046952367`, -1.2765130424109237`, 0.45081083382906717`}}], Polygon3DBox[{{-0.9510565162951535, -1.3090169943749475`, 0.}, {-1.1135163644116068`, -0.8090169943749475, 0.85065080835204}, {-1.2470024953095897`, -1.0431297753045936`, 0.5889844292994226}, {-1.1878531295518815`, -1.2251728045314496`, 0.2792743293660642}}], Polygon3DBox[{{-1.1135163644116068`, -0.8090169943749475, 0.85065080835204}, {-1.9957926887232282`, -1.4500282654395908`, 0.4711427435357596}, {-1.5682270046952367`, -1.2765130424109237`, 0.45081083382906717`}, {-1.2470024953095897`, -1.0431297753045936`, 0.5889844292994226}}]}, { Polygon3DBox[{{-1.9957926887232282`, -1.4500282654395908`, 0.4711427435357596}, {-1.1135163644116068`, -0.8090169943749475, 0.85065080835204}, {-1.377420333223562, -0.8636250210928622, 0.5889844292994227}, {-1.6986448426092091`, -1.097008288199192, 0.45081083382906717`}}], Polygon3DBox[{{-1.1135163644116068`, -0.8090169943749475, 0.85065080835204}, {-1.5388417685876268`, -0.5, 0.}, {-1.5322753831902411`, -0.7511162416156747, 0.2792743293660643}, {-1.377420333223562, -0.8636250210928622, 0.5889844292994227}}], Polygon3DBox[{{-1.5388417685876268`, -0.5, 0.}, {-1.9957926887232282`, -1.4500282654395908`, 0.4711427435357596}, {-1.6986448426092091`, -1.097008288199192, 0.45081083382906717`}, {-1.5322753831902411`, -0.7511162416156747, 0.2792743293660643}}]}}, {{ Polygon3DBox[{{0.7623249725937344, -2.346195018129312, 0.4711427435357597}, {0., -1.618033988749895, 0.}, { 0.3575041230372197, -1.6893881713520147`, 0.09053186124125377}, { 0.6350560175697068, -1.9545014504583647`, 0.26206836570425684`}}], Polygon3DBox[{{0., -1.618033988749895, 0.}, { 0.9510565162951535, -1.3090169943749475`, 0.}, { 0.7037705414218407, -1.5768793918748274`, 0.0905318612412539}, { 0.3575041230372197, -1.6893881713520147`, 0.09053186124125377}}], Polygon3DBox[{{0.9510565162951535, -1.3090169943749475`, 0.}, { 0.7623249725937344, -2.346195018129312, 0.4711427435357597}, { 0.6350560175697068, -1.9545014504583647`, 0.26206836570425684`}, { 0.7037705414218407, -1.5768793918748274`, 0.0905318612412539}}]}, { Polygon3DBox[{{0.7623249725937344, -2.346195018129312, 0.4711427435357597}, {0.9510565162951535, -1.3090169943749475`, 0.}, { 0.7981417754842463, -1.5083146769081417`, 0.2792743293660642}, { 0.729427251632112, -1.8859367354916792`, 0.4508108338290673}}], Polygon3DBox[{{0.9510565162951535, -1.3090169943749475`, 0.}, { 0.42532540417601994`, -1.3090169943749475`, 0.85065080835204}, { 0.6067304070663042, -1.5083146769081417`, 0.5889844292994226}, { 0.7981417754842463, -1.5083146769081417`, 0.2792743293660642}}], Polygon3DBox[{{0.42532540417601994`, -1.3090169943749475`, 0.85065080835204}, {0.7623249725937344, -2.346195018129312, 0.4711427435357597}, {0.729427251632112, -1.8859367354916792`, 0.4508108338290673}, {0.6067304070663042, -1.5083146769081417`, 0.5889844292994226}}]}, { Polygon3DBox[{{0.7623249725937344, -2.346195018129312, 0.4711427435357597}, {0.42532540417601994`, -1.3090169943749475`, 0.85065080835204}, {0.39570991258222243`, -1.5768793918748272`, 0.5889844292994229}, {0.5184067571480303, -1.9545014504583649`, 0.4508108338290673}}], Polygon3DBox[{{0.42532540417601994`, -1.3090169943749475`, 0.85065080835204}, {0., -1.618033988749895, 0.}, { 0.24085486261554317`, -1.689388171352015, 0.2792743293660642}, { 0.39570991258222243`, -1.5768793918748272`, 0.5889844292994229}}], Polygon3DBox[{{0., -1.618033988749895, 0.}, { 0.7623249725937344, -2.346195018129312, 0.4711427435357597}, { 0.5184067571480303, -1.9545014504583649`, 0.4508108338290673}, { 0.24085486261554317`, -1.689388171352015, 0.2792743293660642}}]}}, {{ Polygon3DBox[{{2.466935432258988, 2.2909643237321893`*^-16, 0.47114274353575974`}, {1.5388417685876268`, -0.5, 0.}, { 1.7171784784939002`, -0.1820430292268561, 0.09053186124125381}, { 2.055084442375871, 1.722074841347785*^-16, 0.2620683657042564}}], Polygon3DBox[{{1.5388417685876268`, -0.5, 0.}, {1.5388417685876268`, 0.5, 0.}, {1.7171784784939002`, 0.18204302922685622`, 0.09053186124125383}, {1.7171784784939002`, -0.1820430292268561, 0.09053186124125381}}], Polygon3DBox[{{1.5388417685876268`, 0.5, 0.}, {2.466935432258988, 2.2909643237321893`*^-16, 0.47114274353575974`}, {2.055084442375871, 1.722074841347785*^-16, 0.2620683657042564}, {1.7171784784939002`, 0.18204302922685622`, 0.09053186124125383}}]}, { Polygon3DBox[{{2.466935432258988, 2.2909643237321893`*^-16, 0.47114274353575974`}, {1.5388417685876268`, 0.5, 0.}, { 1.6811318746423334`, 0.2929830684719019, 0.27927432936606433`}, { 2.019037838524304, 0.110940039245046, 0.4508108338290673}}], Polygon3DBox[{{1.5388417685876268`, 0.5, 0.}, {1.3763819204711736`, 0., 0.85065080835204}, {1.6219825088846251`, 0.11094003924504588`, 0.5889844292994226}, {1.6811318746423334`, 0.2929830684719019, 0.27927432936606433`}}], Polygon3DBox[{{1.3763819204711736`, 0., 0.85065080835204}, { 2.466935432258988, 2.2909643237321893`*^-16, 0.47114274353575974`}, { 2.019037838524304, 0.110940039245046, 0.4508108338290673}, { 1.6219825088846251`, 0.11094003924504588`, 0.5889844292994226}}]}, { Polygon3DBox[{{2.466935432258988, 2.2909643237321893`*^-16, 0.47114274353575974`}, {1.3763819204711736`, 0., 0.85065080835204}, { 1.621982508884625, -0.11094003924504572`, 0.5889844292994229}, { 2.019037838524304, -0.11094003924504577`, 0.4508108338290673}}], Polygon3DBox[{{1.3763819204711736`, 0., 0.85065080835204}, { 1.5388417685876268`, -0.5, 0.}, { 1.6811318746423332`, -0.2929830684719019, 0.2792743293660643}, { 1.621982508884625, -0.11094003924504572`, 0.5889844292994229}}], Polygon3DBox[{{1.5388417685876268`, -0.5, 0.}, {2.466935432258988, 2.2909643237321893`*^-16, 0.47114274353575974`}, { 2.019037838524304, -0.11094003924504577`, 0.4508108338290673}, { 1.6811318746423332`, -0.2929830684719019, 0.2792743293660643}}]}}, {{ Polygon3DBox[{{ 1.233467716129494, -0.8961667526897217, -1.9957926887232285`}, { 0.2628655560595668, -0.8090169943749475, -1.3763819204711736`}, { 0.5797882723390115, -0.6462583960474213, -1.4954040437918041`}, { 0.9331709871255305, -0.6779884080474412, -1.7209228689684808`}}], Polygon3DBox[{{ 0.2628655560595668, -0.8090169943749475, -1.3763819204711736`}, { 0.85065080835204, 0., -1.3763819204711736`}, { 0.793792688063399, -0.3517065873433775, -1.4954040437918041`}, { 0.5797882723390115, -0.6462583960474213, -1.4954040437918041`}}], Polygon3DBox[{{0.85065080835204, 0., -1.3763819204711736`}, { 1.233467716129494, -0.8961667526897217, -1.9957926887232285`}, { 0.9331709871255305, -0.6779884080474412, -1.7209228689684808`}, { 0.793792688063399, -0.3517065873433775, -1.4954040437918041`}}]}, { Polygon3DBox[{{ 1.233467716129494, -0.8961667526897217, -1.9957926887232285`}, { 0.85065080835204, 0., -1.3763819204711736`}, { 0.9825351561882094, -0.3517065873433775, -1.3787547833701277`}, { 1.121913455250341, -0.6779884080474412, -1.6042736085468043`}}], Polygon3DBox[{{0.85065080835204, 0., -1.3763819204711736`}, { 1.1135163644116066`, -0.8090169943749475, -0.8506508083520399}, { 1.0782408403971804`, -0.6462583960474213, -1.1873434149521858`}, { 0.9825351561882094, -0.3517065873433775, -1.3787547833701277`}}], Polygon3DBox[{{ 1.1135163644116066`, -0.8090169943749475, -0.8506508083520399}, { 1.233467716129494, -0.8961667526897217, -1.9957926887232285`}, { 1.121913455250341, -0.6779884080474412, -1.6042736085468043`}, { 1.0782408403971804`, -0.6462583960474213, -1.1873434149521858`}}]}, { Polygon3DBox[{{ 1.233467716129494, -0.8961667526897217, -1.9957926887232285`}, { 1.1135163644116066`, -0.8090169943749475, -0.8506508083520399}, { 0.9478230024832082, -0.8257631502591527, -1.1873434149521855`}, { 0.9914956173363685, -0.8574931622591724, -1.604273608546804}}], Polygon3DBox[{{ 1.1135163644116066`, -0.8090169943749475, -0.8506508083520399}, { 0.2628655560595668, -0.8090169943749475, -1.3763819204711736`}, { 0.6381129025498498, -0.8257631502591527, -1.3787547833701277`}, { 0.9478230024832082, -0.8257631502591527, -1.1873434149521855`}}], Polygon3DBox[{{ 0.2628655560595668, -0.8090169943749475, -1.3763819204711736`}, { 1.233467716129494, -0.8961667526897217, -1.9957926887232285`}, { 0.9914956173363685, -0.8574931622591724, -1.604273608546804}, { 0.6381129025498498, -0.8257631502591527, -1.3787547833701277`}}]}}, {{ Polygon3DBox[{{1.2334677161294942`, 0.8961667526897217, -1.9957926887232285`}, {0.85065080835204, 0., -1.3763819204711736`}, {0.793792688063399, 0.3517065873433774, -1.4954040437918041`}, {0.9331709871255307, 0.6779884080474412, -1.7209228689684808`}}], Polygon3DBox[{{0.85065080835204, 0., -1.3763819204711736`}, { 0.2628655560595668, 0.8090169943749475, -1.3763819204711736`}, { 0.5797882723390115, 0.6462583960474213, -1.4954040437918041`}, { 0.793792688063399, 0.3517065873433774, -1.4954040437918041`}}], Polygon3DBox[{{0.2628655560595668, 0.8090169943749475, -1.3763819204711736`}, {1.2334677161294942`, 0.8961667526897217, -1.9957926887232285`}, {0.9331709871255307, 0.6779884080474412, -1.7209228689684808`}, {0.5797882723390115, 0.6462583960474213, -1.4954040437918041`}}]}, { Polygon3DBox[{{1.2334677161294942`, 0.8961667526897217, -1.9957926887232285`}, {0.2628655560595668, 0.8090169943749475, -1.3763819204711736`}, {0.6381129025498498, 0.8257631502591527, -1.3787547833701277`}, {0.9914956173363689, 0.8574931622591725, -1.6042736085468043`}}], Polygon3DBox[{{0.2628655560595668, 0.8090169943749475, -1.3763819204711736`}, {1.1135163644116066`, 0.8090169943749475, -0.8506508083520399}, {0.9478230024832082, 0.8257631502591527, -1.1873434149521855`}, {0.6381129025498498, 0.8257631502591527, -1.3787547833701277`}}], Polygon3DBox[{{1.1135163644116066`, 0.8090169943749475, -0.8506508083520399}, {1.2334677161294942`, 0.8961667526897217, -1.9957926887232285`}, {0.9914956173363689, 0.8574931622591725, -1.6042736085468043`}, {0.9478230024832082, 0.8257631502591527, -1.1873434149521855`}}]}, { Polygon3DBox[{{1.2334677161294942`, 0.8961667526897217, -1.9957926887232285`}, {1.1135163644116066`, 0.8090169943749475, -0.8506508083520399}, {1.0782408403971804`, 0.6462583960474213, -1.1873434149521855`}, {1.1219134552503411`, 0.6779884080474412, -1.6042736085468043`}}], Polygon3DBox[{{1.1135163644116066`, 0.8090169943749475, -0.8506508083520399}, {0.85065080835204, 0., -1.3763819204711736`}, {0.9825351561882094, 0.35170658734337745`, -1.3787547833701277`}, {1.0782408403971804`, 0.6462583960474213, -1.1873434149521855`}}], Polygon3DBox[{{0.85065080835204, 0., -1.3763819204711736`}, { 1.2334677161294942`, 0.8961667526897217, -1.9957926887232285`}, { 1.1219134552503411`, 0.6779884080474412, -1.6042736085468043`}, { 0.9825351561882094, 0.35170658734337745`, -1.3787547833701277`}}]}}, {{ Polygon3DBox[{{-0.47114274353576, 1.4500282654395904`, -1.9957926887232285`}, {0.2628655560595668, 0.8090169943749475, -1.3763819204711736`}, {-0.08919741109468804, 0.8636250210928621, -1.4954040437918041`}, {-0.3564395997666621, 1.0970082881991918`, -1.7209228689684806`}}], Polygon3DBox[{{0.2628655560595668, 0.8090169943749475, -1.3763819204711736`}, {-0.6881909602355868, 0.5, -1.3763819204711736`}, {-0.43546382947930923`, 0.7511162416156747, -1.4954040437918044`}, {-0.08919741109468804, 0.8636250210928621, -1.4954040437918041`}}], Polygon3DBox[{{-0.6881909602355868, 0.5, -1.3763819204711736`}, {-0.47114274353576, 1.4500282654395904`, -1.9957926887232285`}, {-0.3564395997666621, 1.0970082881991918`, -1.7209228689684806`}, {-0.43546382947930923`, 0.7511162416156747, -1.4954040437918044`}}]}, { Polygon3DBox[{{-0.47114274353576, 1.4500282654395904`, -1.9957926887232285`}, {-0.6881909602355868, 0.5, -1.3763819204711736`}, {-0.5881596937525528, 0.8620562808607203, -1.3787547833701277`}, {-0.5091354640399057, 1.207948327444238, -1.6042736085468041`}}], Polygon3DBox[{{-0.6881909602355868, 0.5, -1.3763819204711736`}, {-0.42532540417601994`, 1.3090169943749475`, -0.8506508083520399}, {-0.4924540095435818, 1.156608089564764, -1.1873434149521858`}, {-0.5881596937525528, 0.8620562808607203, -1.3787547833701277`}}], Polygon3DBox[{{-0.42532540417601994`, 1.3090169943749475`, -0.8506508083520399}, {-0.47114274353576, 1.4500282654395904`, -1.9957926887232285`}, {-0.5091354640399057, 1.207948327444238, -1.6042736085468041`}, {-0.4924540095435818, 1.156608089564764, -1.1873434149521858`}}]}, { Polygon3DBox[{{-0.47114274353576, 1.4500282654395904`, -1.9957926887232285`}, {-0.42532540417601994`, 1.3090169943749475`, -0.8506508083520399}, {-0.2814335150595001, 1.2251728045314496`, -1.1873434149521855`}, {-0.29811496955582384`, 1.2765130424109232`, -1.604273608546804}}], Polygon3DBox[{{-0.42532540417601994`, 1.3090169943749475`, -0.8506508083520399}, {0.2628655560595668, 0.8090169943749475, -1.3763819204711736`}, {-0.030872780883849815`, 1.0431297753045934`, -1.3787547833701277`}, {-0.2814335150595001, 1.2251728045314496`, -1.1873434149521855`}}], Polygon3DBox[{{0.2628655560595668, 0.8090169943749475, -1.3763819204711736`}, {-0.47114274353576, 1.4500282654395904`, -1.9957926887232285`}, {-0.29811496955582384`, 1.2765130424109232`, -1.604273608546804}, {-0.030872780883849815`, 1.0431297753045934`, -1.3787547833701277`}}]}}, {{ Polygon3DBox[{{-1.5246499451874687`, 0., -1.9957926887232285`}, {-0.6881909602355868, 0.5, -1.3763819204711736`}, {-0.8489197198284131, 0.18204302922685617`, -1.4954040437918041`}, {-1.153462774717737, 0., -1.7209228689684808`}}], Polygon3DBox[{{-0.6881909602355868, 0.5, -1.3763819204711736`}, {-0.6881909602355868, -0.5, \ -1.3763819204711736`}, {-0.8489197198284132, -0.18204302922685595`, \ -1.4954040437918044`}, {-0.8489197198284131, 0.18204302922685617`, -1.4954040437918041`}}], Polygon3DBox[{{-0.6881909602355868, -0.5, -1.3763819204711736`}, \ {-1.5246499451874687`, 0., -1.9957926887232285`}, {-1.153462774717737, 0., -1.7209228689684808`}, {-0.8489197198284132, \ -0.18204302922685595`, -1.4954040437918044`}}]}, { Polygon3DBox[{{-1.5246499451874687`, 0., -1.9957926887232285`}, {-0.6881909602355868, -0.5, \ -1.3763819204711736`}, {-1.0016155841016565`, -0.2929830684719019, \ -1.3787547833701277`}, {-1.3061586389909805`, -0.11094003924504571`, \ -1.6042736085468046`}}], Polygon3DBox[{{-0.6881909602355868, -0.5, -1.3763819204711736`}, \ {-1.3763819204711736`, 0., -0.8506508083520399}, {-1.252176318277307, -0.11094003924504585`, \ -1.1873434149521858`}, {-1.0016155841016565`, -0.2929830684719019, \ -1.3787547833701277`}}], Polygon3DBox[{{-1.3763819204711736`, 0., -0.8506508083520399}, {-1.5246499451874687`, 0., -1.9957926887232285`}, {-1.3061586389909805`, \ -0.11094003924504571`, -1.6042736085468046`}, {-1.252176318277307, \ -0.11094003924504585`, -1.1873434149521858`}}]}, { Polygon3DBox[{{-1.5246499451874687`, 0., -1.9957926887232285`}, {-1.3763819204711736`, 0., -0.8506508083520399}, {-1.252176318277307, 0.1109400392450458, -1.1873434149521855`}, {-1.3061586389909805`, 0.11094003924504577`, -1.6042736085468043`}}], Polygon3DBox[{{-1.3763819204711736`, 0., -0.8506508083520399}, {-0.6881909602355868, 0.5, -1.3763819204711736`}, {-1.0016155841016567`, 0.2929830684719018, -1.3787547833701277`}, {-1.252176318277307, 0.1109400392450458, -1.1873434149521855`}}], Polygon3DBox[{{-0.6881909602355868, 0.5, -1.3763819204711736`}, {-1.5246499451874687`, 0., -1.9957926887232285`}, {-1.3061586389909805`, 0.11094003924504577`, -1.6042736085468043`}, {-1.0016155841016567`, 0.2929830684719018, -1.3787547833701277`}}]}}, {{ Polygon3DBox[{{-0.4711427435357598, -1.4500282654395908`, \ -1.9957926887232285`}, {-0.6881909602355868, -0.5, -1.3763819204711736`}, \ {-0.4354638294793094, -0.7511162416156745, -1.4954040437918041`}, \ {-0.356439599766662, -1.0970082881991923`, -1.7209228689684806`}}], Polygon3DBox[{{-0.6881909602355868, -0.5, -1.3763819204711736`}, { 0.2628655560595668, -0.8090169943749475, -1.3763819204711736`}, \ {-0.08919741109468826, -0.8636250210928623, -1.4954040437918044`}, \ {-0.4354638294793094, -0.7511162416156745, -1.4954040437918041`}}], Polygon3DBox[{{ 0.2628655560595668, -0.8090169943749475, -1.3763819204711736`}, \ {-0.4711427435357598, -1.4500282654395908`, -1.9957926887232285`}, \ {-0.356439599766662, -1.0970082881991923`, -1.7209228689684806`}, \ {-0.08919741109468826, -0.8636250210928623, -1.4954040437918044`}}]}, { Polygon3DBox[{{-0.4711427435357598, -1.4500282654395908`, \ -1.9957926887232285`}, { 0.2628655560595668, -0.8090169943749475, -1.3763819204711736`}, \ {-0.03087278088384976, -1.0431297753045936`, -1.3787547833701277`}, \ {-0.2981149695558238, -1.2765130424109237`, -1.6042736085468041`}}], Polygon3DBox[{{ 0.2628655560595668, -0.8090169943749475, -1.3763819204711736`}, \ {-0.42532540417601994`, -1.3090169943749475`, -0.8506508083520399}, \ {-0.28143351505949993`, -1.2251728045314496`, -1.1873434149521858`}, \ {-0.03087278088384976, -1.0431297753045936`, -1.3787547833701277`}}], Polygon3DBox[{{-0.42532540417601994`, -1.3090169943749475`, \ -0.8506508083520399}, {-0.4711427435357598, -1.4500282654395908`, \ -1.9957926887232285`}, {-0.2981149695558238, -1.2765130424109237`, \ -1.6042736085468041`}, {-0.28143351505949993`, -1.2251728045314496`, \ -1.1873434149521858`}}]}, { Polygon3DBox[{{-0.4711427435357598, -1.4500282654395908`, \ -1.9957926887232285`}, {-0.42532540417601994`, -1.3090169943749475`, \ -0.8506508083520399}, {-0.49245400954358176`, -1.1566080895647641`, \ -1.1873434149521855`}, {-0.5091354640399056, -1.2079483274442382`, \ -1.6042736085468041`}}], Polygon3DBox[{{-0.42532540417601994`, -1.3090169943749475`, \ -0.8506508083520399}, {-0.6881909602355868, -0.5, -1.3763819204711736`}, \ {-0.5881596937525528, -0.8620562808607204, -1.3787547833701277`}, \ {-0.49245400954358176`, -1.1566080895647641`, -1.1873434149521855`}}], Polygon3DBox[{{-0.6881909602355868, -0.5, -1.3763819204711736`}, \ {-0.4711427435357598, -1.4500282654395908`, -1.9957926887232285`}, \ {-0.5091354640399056, -1.2079483274442382`, -1.6042736085468041`}, \ {-0.5881596937525528, -0.8620562808607204, -1.3787547833701277`}}]}}, {{ Polygon3DBox[{{-0.762324972593734, -2.346195018129312, \ -0.47114274353575974`}, {-0.42532540417601994`, -1.3090169943749475`, \ -0.8506508083520399}, {-0.3957099125822223, -1.5768793918748272`, \ -0.5889844292994226}, {-0.5184067571480295, -1.954501450458364, \ -0.4508108338290672}}], Polygon3DBox[{{-0.42532540417601994`, -1.3090169943749475`, \ -0.8506508083520399}, {0., -1.618033988749895, 0.}, {-0.24085486261554329`, -1.689388171352015, \ -0.27927432936606444`}, {-0.3957099125822223, -1.5768793918748272`, \ -0.5889844292994226}}], Polygon3DBox[{{0., -1.618033988749895, 0.}, {-0.762324972593734, -2.346195018129312, -0.47114274353575974`}, \ {-0.5184067571480295, -1.954501450458364, -0.4508108338290672}, \ {-0.24085486261554329`, -1.689388171352015, -0.27927432936606444`}}]}, { Polygon3DBox[{{-0.762324972593734, -2.346195018129312, \ -0.47114274353575974`}, {0., -1.618033988749895, 0.}, {-0.35750412303721973`, -1.689388171352015, \ -0.09053186124125384}, {-0.6350560175697063, -1.9545014504583642`, \ -0.2620683657042566}}], Polygon3DBox[{{0., -1.618033988749895, 0.}, {-0.9510565162951535, -1.3090169943749475`, 0.}, {-0.7037705414218406, -1.5768793918748274`, \ -0.09053186124125391}, {-0.35750412303721973`, -1.689388171352015, \ -0.09053186124125384}}], Polygon3DBox[{{-0.9510565162951535, -1.3090169943749475`, 0.}, {-0.762324972593734, -2.346195018129312, -0.47114274353575974`}, \ {-0.6350560175697063, -1.9545014504583642`, -0.2620683657042566}, \ {-0.7037705414218406, -1.5768793918748274`, -0.09053186124125391}}]}, { Polygon3DBox[{{-0.762324972593734, -2.346195018129312, \ -0.47114274353575974`}, {-0.9510565162951535, -1.3090169943749475`, 0.}, {-0.7981417754842461, -1.5083146769081417`, \ -0.27927432936606433`}, {-0.7294272516321116, -1.8859367354916787`, \ -0.4508108338290673}}], Polygon3DBox[{{-0.9510565162951535, -1.3090169943749475`, 0.}, {-0.42532540417601994`, -1.3090169943749475`, \ -0.8506508083520399}, {-0.6067304070663042, -1.508314676908142, \ -0.5889844292994224}, {-0.7981417754842461, -1.5083146769081417`, \ -0.27927432936606433`}}], Polygon3DBox[{{-0.42532540417601994`, -1.3090169943749475`, \ -0.8506508083520399}, {-0.762324972593734, -2.346195018129312, \ -0.47114274353575974`}, {-0.7294272516321116, -1.8859367354916787`, \ -0.4508108338290673}, {-0.6067304070663042, -1.508314676908142, \ -0.5889844292994224}}]}}, {{ Polygon3DBox[{{ 1.9957926887232285`, -1.4500282654395908`, -0.47114274353575997`}, { 1.1135163644116066`, -0.8090169943749475, -0.8506508083520399}, { 1.377420333223562, -0.8636250210928622, -0.5889844292994227}, { 1.6986448426092093`, -1.0970082881991923`, -0.4508108338290674}}], Polygon3DBox[{{ 1.1135163644116066`, -0.8090169943749475, -0.8506508083520399}, { 1.5388417685876268`, -0.5, 0.}, { 1.5322753831902411`, -0.7511162416156746, -0.27927432936606433`}, { 1.377420333223562, -0.8636250210928622, -0.5889844292994227}}], Polygon3DBox[{{1.5388417685876268`, -0.5, 0.}, { 1.9957926887232285`, -1.4500282654395908`, -0.47114274353575997`}, { 1.6986448426092093`, -1.0970082881991923`, -0.4508108338290674}, { 1.5322753831902411`, -0.7511162416156746, -0.27927432936606433`}}]}, { Polygon3DBox[{{ 1.9957926887232285`, -1.4500282654395908`, -0.47114274353575997`}, { 1.5388417685876268`, -0.5, 0.}, { 1.4962287793386742`, -0.8620562808607203, -0.0905318612412538}, { 1.6625982387576421`, -1.207948327444238, -0.2620683657042567}}], Polygon3DBox[{{1.5388417685876268`, -0.5, 0.}, { 0.9510565162951535, -1.3090169943749475`, 0.}, { 1.2822243636142865`, -1.1566080895647641`, -0.09053186124125384}, { 1.4962287793386742`, -0.8620562808607203, -0.0905318612412538}}], Polygon3DBox[{{0.9510565162951535, -1.3090169943749475`, 0.}, { 1.9957926887232285`, -1.4500282654395908`, -0.47114274353575997`}, { 1.6625982387576421`, -1.207948327444238, -0.2620683657042567}, { 1.2822243636142865`, -1.1566080895647641`, -0.09053186124125384}}]}, { Polygon3DBox[{{ 1.9957926887232285`, -1.4500282654395908`, -0.47114274353575997`}, { 0.9510565162951535, -1.3090169943749475`, 0.}, { 1.1878531295518813`, -1.2251728045314496`, -0.2792743293660643}, { 1.5682270046952371`, -1.2765130424109237`, -0.4508108338290674}}], Polygon3DBox[{{0.9510565162951535, -1.3090169943749475`, 0.}, { 1.1135163644116066`, -0.8090169943749475, -0.8506508083520399}, { 1.2470024953095895`, -1.0431297753045936`, -0.5889844292994226}, { 1.1878531295518813`, -1.2251728045314496`, -0.2792743293660643}}], Polygon3DBox[{{ 1.1135163644116066`, -0.8090169943749475, -0.8506508083520399}, { 1.9957926887232285`, -1.4500282654395908`, -0.47114274353575997`}, { 1.5682270046952371`, -1.2765130424109237`, -0.4508108338290674}, { 1.2470024953095895`, -1.0431297753045936`, -0.5889844292994226}}]}}, {{ Polygon3DBox[{{1.9957926887232285`, 1.4500282654395906`, -0.4711427435357599}, {1.1135163644116066`, 0.8090169943749475, -0.8506508083520399}, {1.2470024953095895`, 1.0431297753045934`, -0.5889844292994229}, {1.5682270046952371`, 1.2765130424109237`, -0.4508108338290674}}], Polygon3DBox[{{1.1135163644116066`, 0.8090169943749475, -0.8506508083520399}, {0.9510565162951535, 1.3090169943749475`, 0.}, {1.1878531295518815`, 1.2251728045314496`, -0.27927432936606444`}, {1.2470024953095895`, 1.0431297753045934`, -0.5889844292994229}}], Polygon3DBox[{{0.9510565162951535, 1.3090169943749475`, 0.}, { 1.9957926887232285`, 1.4500282654395906`, -0.4711427435357599}, { 1.5682270046952371`, 1.2765130424109237`, -0.4508108338290674}, { 1.1878531295518815`, 1.2251728045314496`, -0.27927432936606444`}}]}, { Polygon3DBox[{{1.9957926887232285`, 1.4500282654395906`, -0.4711427435357599}, {0.9510565162951535, 1.3090169943749475`, 0.}, {1.2822243636142867`, 1.1566080895647641`, -0.09053186124125384}, {1.6625982387576426`, 1.2079483274442382`, -0.26206836570425696`}}], Polygon3DBox[{{0.9510565162951535, 1.3090169943749475`, 0.}, { 1.5388417685876268`, 0.5, 0.}, {1.4962287793386742`, 0.8620562808607204, -0.09053186124125384}, {1.2822243636142867`, 1.1566080895647641`, -0.09053186124125384}}], Polygon3DBox[{{1.5388417685876268`, 0.5, 0.}, {1.9957926887232285`, 1.4500282654395906`, -0.4711427435357599}, {1.6625982387576426`, 1.2079483274442382`, -0.26206836570425696`}, {1.4962287793386742`, 0.8620562808607204, -0.09053186124125384}}]}, { Polygon3DBox[{{1.9957926887232285`, 1.4500282654395906`, -0.4711427435357599}, {1.5388417685876268`, 0.5, 0.}, {1.5322753831902411`, 0.7511162416156746, -0.2792743293660643}, { 1.6986448426092093`, 1.097008288199192, -0.45081083382906734`}}], Polygon3DBox[{{1.5388417685876268`, 0.5, 0.}, {1.1135163644116066`, 0.8090169943749475, -0.8506508083520399}, {1.377420333223562, 0.8636250210928622, -0.5889844292994226}, {1.5322753831902411`, 0.7511162416156746, -0.2792743293660643}}], Polygon3DBox[{{1.1135163644116066`, 0.8090169943749475, -0.8506508083520399}, {1.9957926887232285`, 1.4500282654395906`, -0.4711427435357599}, {1.6986448426092093`, 1.097008288199192, -0.45081083382906734`}, {1.377420333223562, 0.8636250210928622, -0.5889844292994226}}]}}, {{ Polygon3DBox[{{-0.7623249725937347, 2.346195018129312, -0.4711427435357598}, {-0.42532540417601994`, 1.3090169943749475`, -0.8506508083520399}, {-0.6067304070663043, 1.5083146769081417`, -0.5889844292994225}, {-0.7294272516321121, 1.8859367354916792`, -0.4508108338290673}}], Polygon3DBox[{{-0.42532540417601994`, 1.3090169943749475`, -0.8506508083520399}, {-0.9510565162951535, 1.3090169943749475`, 0.}, {-0.7981417754842461, 1.5083146769081417`, -0.27927432936606444`}, {-0.6067304070663043, 1.5083146769081417`, -0.5889844292994225}}], Polygon3DBox[{{-0.9510565162951535, 1.3090169943749475`, 0.}, {-0.7623249725937347, 2.346195018129312, -0.4711427435357598}, {-0.7294272516321121, 1.8859367354916792`, -0.4508108338290673}, {-0.7981417754842461, 1.5083146769081417`, -0.27927432936606444`}}]}, { Polygon3DBox[{{-0.7623249725937347, 2.346195018129312, -0.4711427435357598}, {-0.9510565162951535, 1.3090169943749475`, 0.}, {-0.7037705414218409, 1.5768793918748272`, -0.09053186124125381}, {-0.635056017569707, 1.9545014504583649`, -0.26206836570425696`}}], Polygon3DBox[{{-0.9510565162951535, 1.3090169943749475`, 0.}, {0., 1.618033988749895, 0.}, {-0.35750412303722, 1.689388171352015, -0.09053186124125387}, {-0.7037705414218409, 1.5768793918748272`, -0.09053186124125381}}], Polygon3DBox[{{0., 1.618033988749895, 0.}, {-0.7623249725937347, 2.346195018129312, -0.4711427435357598}, {-0.635056017569707, 1.9545014504583649`, -0.26206836570425696`}, {-0.35750412303722, 1.689388171352015, -0.09053186124125387}}]}, { Polygon3DBox[{{-0.7623249725937347, 2.346195018129312, -0.4711427435357598}, {0., 1.618033988749895, 0.}, {-0.24085486261554315`, 1.6893881713520147`, -0.2792743293660642}, {-0.51840675714803, 1.954501450458364, -0.45081083382906734`}}], Polygon3DBox[{{0., 1.618033988749895, 0.}, {-0.42532540417601994`, 1.3090169943749475`, -0.8506508083520399}, {-0.39570991258222243`, 1.5768793918748272`, -0.5889844292994225}, {-0.24085486261554315`, 1.6893881713520147`, -0.2792743293660642}}], Polygon3DBox[{{-0.42532540417601994`, 1.3090169943749475`, -0.8506508083520399}, {-0.7623249725937347, 2.346195018129312, -0.4711427435357598}, {-0.51840675714803, 1.954501450458364, -0.45081083382906734`}, {-0.39570991258222243`, 1.5768793918748272`, -0.5889844292994225}}]}}, {{ Polygon3DBox[{{-2.4669354322589885`, -2.082694839756536*^-16, \ -0.4711427435357598}, {-1.3763819204711736`, 0., -0.8506508083520399}, {-1.621982508884625, -0.11094003924504585`, \ -0.5889844292994226}, {-2.019037838524304, -0.110940039245046, \ -0.4508108338290673}}], Polygon3DBox[{{-1.3763819204711736`, 0., -0.8506508083520399}, {-1.5388417685876268`, -0.5, 0.}, {-1.6811318746423334`, -0.2929830684719019, \ -0.27927432936606444`}, {-1.621982508884625, -0.11094003924504585`, \ -0.5889844292994226}}], Polygon3DBox[{{-1.5388417685876268`, -0.5, 0.}, {-2.4669354322589885`, -2.082694839756536*^-16, \ -0.4711427435357598}, {-2.019037838524304, -0.110940039245046, \ -0.4508108338290673}, {-1.6811318746423334`, -0.2929830684719019, \ -0.27927432936606444`}}]}, { Polygon3DBox[{{-2.4669354322589885`, -2.082694839756536*^-16, \ -0.4711427435357598}, {-1.5388417685876268`, -0.5, 0.}, {-1.7171784784939002`, -0.18204302922685633`, \ -0.09053186124125379}, {-2.055084442375872, -1.513805357372133*^-16, \ -0.26206836570425696`}}], Polygon3DBox[{{-1.5388417685876268`, -0.5, 0.}, {-1.5388417685876268`, 0.5, 0.}, {-1.7171784784939002`, 0.18204302922685622`, -0.09053186124125377}, {-1.7171784784939002`, \ -0.18204302922685633`, -0.09053186124125379}}], Polygon3DBox[{{-1.5388417685876268`, 0.5, 0.}, {-2.4669354322589885`, -2.082694839756536*^-16, \ -0.4711427435357598}, {-2.055084442375872, -1.513805357372133*^-16, \ -0.26206836570425696`}, {-1.7171784784939002`, 0.18204302922685622`, -0.09053186124125377}}]}, { Polygon3DBox[{{-2.4669354322589885`, -2.082694839756536*^-16, \ -0.4711427435357598}, {-1.5388417685876268`, 0.5, 0.}, {-1.6811318746423332`, 0.29298306847190203`, -0.2792743293660642}, {-2.0190378385243046`, 0.1109400392450457, -0.45081083382906734`}}], Polygon3DBox[{{-1.5388417685876268`, 0.5, 0.}, {-1.3763819204711736`, 0., -0.8506508083520399}, {-1.6219825088846251`, 0.11094003924504586`, -0.5889844292994224}, {-1.6811318746423332`, 0.29298306847190203`, -0.2792743293660642}}], Polygon3DBox[{{-1.3763819204711736`, 0., -0.8506508083520399}, {-2.4669354322589885`, \ -2.082694839756536*^-16, -0.4711427435357598}, {-2.0190378385243046`, 0.1109400392450457, -0.45081083382906734`}, {-1.6219825088846251`, 0.11094003924504586`, -0.5889844292994224}}]}}}, {{{ Polygon3DBox[{{1.8399485650886665`*^-16, 4.296013357829913*^-16, 2.7763819204711737`}, {-0.2628655560595668, 0.8090169943749475, 1.3763819204711736`}, {-0.35261256661099005`, 0.5353858626570367, 1.5558688492790274`}, {-0.23386263369922308`, 0.16991114909382557`, 2.188321075308978}}], Polygon3DBox[{{-0.2628655560595668, 0.8090169943749475, 1.3763819204711736`}, {-0.8506508083520399, 0., 1.3763819204711736`}, {-0.6181454889252407, 0.16991114909382535`, 1.5558688492790274`}, {-0.35261256661099005`, 0.5353858626570367, 1.5558688492790274`}}], Polygon3DBox[{{-0.8506508083520399, 0., 1.3763819204711736`}, { 1.8399485650886665`*^-16, 4.296013357829913*^-16, 2.7763819204711737`}, {-0.23386263369922308`, 0.16991114909382557`, 2.188321075308978}, {-0.6181454889252407, 0.16991114909382535`, 1.5558688492790274`}}]}, { Polygon3DBox[{{1.8399485650886665`*^-16, 4.296013357829913*^-16, 2.7763819204711737`}, {-0.8506508083520399, 0., 1.3763819204711736`}, {-0.6181454889252409, -0.16991114909382507`, 1.5558688492790271`}, {-0.23386263369922342`, -0.16991114909382535`, 2.188321075308977}}], Polygon3DBox[{{-0.8506508083520399, 0., 1.3763819204711736`}, {-0.2628655560595668, -0.8090169943749475, 1.3763819204711736`}, {-0.35261256661099016`, -0.5353858626570364, 1.5558688492790274`}, {-0.6181454889252409, -0.16991114909382507`, 1.5558688492790271`}}], Polygon3DBox[{{-0.2628655560595668, -0.8090169943749475, 1.3763819204711736`}, {1.8399485650886665`*^-16, 4.296013357829913*^-16, 2.7763819204711737`}, {-0.23386263369922342`, -0.16991114909382535`, 2.188321075308977}, {-0.35261256661099016`, -0.5353858626570364, 1.5558688492790274`}}]}, { Polygon3DBox[{{1.8399485650886665`*^-16, 4.296013357829913*^-16, 2.7763819204711737`}, {-0.2628655560595668, -0.8090169943749475, 1.3763819204711736`}, {-0.02942235553723027, -0.6403967278645712, 1.5558688492790274`}, {0.08932757737453681, -0.27492201430136, 2.188321075308978}}], Polygon3DBox[{{-0.2628655560595668, -0.8090169943749475, 1.3763819204711736`}, {0.6881909602355868, -0.5, 1.3763819204711736`}, {0.40021893789931257`, -0.5007978093120569, 1.5558688492790274`}, {-0.02942235553723027, -0.6403967278645712, 1.5558688492790274`}}], Polygon3DBox[{{0.6881909602355868, -0.5, 1.3763819204711736`}, { 1.8399485650886665`*^-16, 4.296013357829913*^-16, 2.7763819204711737`}, {0.08932757737453681, -0.27492201430136, 2.188321075308978}, {0.40021893789931257`, -0.5007978093120569, 1.5558688492790274`}}]}, { Polygon3DBox[{{1.8399485650886665`*^-16, 4.296013357829913*^-16, 2.7763819204711737`}, {0.6881909602355868, -0.5, 1.3763819204711736`}, {0.5999614731741488, -0.2258757950106967, 1.5558688492790274`}, {0.2890701126493731, 2.577129957015667*^-16, 2.188321075308978}}], Polygon3DBox[{{0.6881909602355868, -0.5, 1.3763819204711736`}, { 0.6881909602355868, 0.5, 1.3763819204711736`}, {0.5999614731741488, 0.22587579501069688`, 1.5558688492790274`}, { 0.5999614731741488, -0.2258757950106967, 1.5558688492790274`}}], Polygon3DBox[{{0.6881909602355868, 0.5, 1.3763819204711736`}, { 1.8399485650886665`*^-16, 4.296013357829913*^-16, 2.7763819204711737`}, {0.2890701126493731, 2.577129957015667*^-16, 2.188321075308978}, {0.5999614731741488, 0.22587579501069688`, 1.5558688492790274`}}]}, { Polygon3DBox[{{1.8399485650886665`*^-16, 4.296013357829913*^-16, 2.7763819204711737`}, {0.6881909602355868, 0.5, 1.3763819204711736`}, { 0.4002189378993125, 0.500797809312057, 1.5558688492790274`}, { 0.08932757737453682, 0.2749220143013606, 2.188321075308978}}], Polygon3DBox[{{0.6881909602355868, 0.5, 1.3763819204711736`}, {-0.2628655560595668, 0.8090169943749475, 1.3763819204711736`}, {-0.029422355537230355`, 0.6403967278645715, 1.5558688492790274`}, {0.4002189378993125, 0.500797809312057, 1.5558688492790274`}}], Polygon3DBox[{{-0.2628655560595668, 0.8090169943749475, 1.3763819204711736`}, {1.8399485650886665`*^-16, 4.296013357829913*^-16, 2.7763819204711737`}, {0.08932757737453682, 0.2749220143013606, 2.188321075308978}, {-0.029422355537230355`, 0.6403967278645715, 1.5558688492790274`}}]}}, {{ Polygon3DBox[{{-0.7673730896680908, 2.361731524942793, 1.2416357411349916`}, {0., 1.618033988749895, 0.}, {-0.29812356321363565`, 1.6484794096730553`, 0.1591838470531306}, {-0.644785576610825, 1.9844459541431896`, 0.7200947673382541}}], Polygon3DBox[{{0., 1.618033988749895, 0.}, {-0.9510565162951535, 1.3090169943749475`, 0.}, {-0.7277648566501785, 1.5088804911205407`, 0.15918384705313074`}, {-0.29812356321363565`, 1.6484794096730553`, 0.1591838470531306}}], Polygon3DBox[{{-0.9510565162951535, 1.3090169943749475`, 0.}, {-0.7673730896680908, 2.361731524942793, 1.2416357411349916`}, {-0.644785576610825, 1.9844459541431896`, 0.7200947673382541}, {-0.7277648566501785, 1.5088804911205407`, 0.15918384705313074`}}]}, { Polygon3DBox[{{-0.7673730896680908, 2.361731524942793, 1.2416357411349916`}, {-0.9510565162951535, 1.3090169943749475`, 0.}, {-0.9616274903494018, 1.3389693420267155`, 0.3378390018022039}, {-0.8786482103100482, 1.8145348050493642`, 0.8987499220873276}}], Polygon3DBox[{{-0.9510565162951535, 1.3090169943749475`, 0.}, {-1.1135163644116068`, 0.8090169943749475, 0.85065080835204}, {-1.0350189850506437`, 1.1130935470160186`, 0.7221218570282217}, {-0.9616274903494018, 1.3389693420267155`, 0.3378390018022039}}], Polygon3DBox[{{-1.1135163644116068`, 0.8090169943749475, 0.85065080835204}, {-0.7673730896680908, 2.361731524942793, 1.2416357411349916`}, {-0.8786482103100482, 1.8145348050493642`, 0.8987499220873276}, {-1.0350189850506437`, 1.1130935470160186`, 0.7221218570282217}}]}, { Polygon3DBox[{{-0.7673730896680908, 2.361731524942793, 1.2416357411349916`}, {-1.1135163644116068`, 0.8090169943749475, 0.85065080835204}, {-0.8904839287259573, 1.0080826818084838`, 1.0111919696775944`}, {-0.7341131539853618, 1.70952393984183, 1.1878200347367007`}}], Polygon3DBox[{{-1.1135163644116068`, 0.8090169943749475, 0.85065080835204}, {-0.2628655560595668, 0.8090169943749475, 1.3763819204711736`}, {-0.5062010734999396, 1.0080826818084838`, 1.2486918355011287`}, {-0.8904839287259573, 1.0080826818084838`, 1.0111919696775944`}}], Polygon3DBox[{{-0.2628655560595668, 0.8090169943749475, 1.3763819204711736`}, {-0.7673730896680908, 2.361731524942793, 1.2416357411349916`}, {-0.7341131539853618, 1.70952393984183, 1.1878200347367007`}, {-0.5062010734999396, 1.0080826818084838`, 1.2486918355011287`}}]}, { Polygon3DBox[{{-0.7673730896680908, 2.361731524942793, 1.2416357411349916`}, {-0.2628655560595668, 0.8090169943749475, 1.3763819204711736`}, {-0.18301086242617964`, 1.1130935470160188`, 1.2486918355011287`}, {-0.4109229429116009, 1.8145348050493628`, 1.1878200347367005`}}], Polygon3DBox[{{-0.2628655560595668, 0.8090169943749475, 1.3763819204711736`}, {0.42532540417601994`, 1.3090169943749475`, 0.85065080835204}, {0.1278804980985962, 1.3389693420267155`, 1.0111919696775946`}, {-0.18301086242617964`, 1.1130935470160188`, 1.2486918355011287`}}], Polygon3DBox[{{0.42532540417601994`, 1.3090169943749475`, 0.85065080835204}, {-0.7673730896680908, 2.361731524942793, 1.2416357411349916`}, {-0.4109229429116009, 1.8145348050493628`, 1.1878200347367005`}, {0.1278804980985962, 1.3389693420267155`, 1.0111919696775946`}}]}, { Polygon3DBox[{{-0.7673730896680908, 2.361731524942793, 1.2416357411349916`}, {0.42532540417601994`, 1.3090169943749475`, 0.85065080835204}, {0.18308797704874596`, 1.5088804911205407`, 0.7221218570282217}, {-0.355715463961452, 1.9844459541431896`, 0.8987499220873275}}], Polygon3DBox[{{0.42532540417601994`, 1.3090169943749475`, 0.85065080835204}, {0., 1.618033988749895, 0.}, {-0.009053450564262875, 1.6484794096730553`, 0.3378390018022039}, {0.18308797704874596`, 1.5088804911205407`, 0.7221218570282217}}], Polygon3DBox[{{0., 1.618033988749895, 0.}, {-0.7673730896680908, 2.361731524942793, 1.2416357411349916`}, {-0.355715463961452, 1.9844459541431896`, 0.8987499220873275}, {-0.009053450564262875, 1.6484794096730553`, 0.3378390018022039}}]}}, {{ Polygon3DBox[{{-2.4832714822699837`, 3.4755478145461817`*^-17, 1.2416357411349916`}, {-1.5388417685876268`, 0.5, 0.}, {-1.6599223320045744`, 0.22587579501069688`, 0.1591838470531306}, {-2.0865699568240283`, 1.5656773691970196`*^-17, 0.7200947673382541}}], Polygon3DBox[{{-1.5388417685876268`, 0.5, 0.}, {-1.5388417685876268`, -0.5, 0.}, {-1.6599223320045744`, -0.22587579501069688`, 0.1591838470531306}, {-1.6599223320045744`, 0.22587579501069688`, 0.1591838470531306}}], Polygon3DBox[{{-1.5388417685876268`, -0.5, 0.}, {-2.4832714822699837`, 3.4755478145461817`*^-17, 1.2416357411349916`}, {-2.0865699568240283`, 1.5656773691970196`*^-17, 0.7200947673382541}, {-1.6599223320045744`, -0.22587579501069688`, 0.1591838470531306}}]}, { Polygon3DBox[{{-2.4832714822699837`, 3.4755478145461817`*^-17, 1.2416357411349916`}, {-1.5388417685876268`, -0.5, 0.}, {-1.5705947546300378`, -0.5007978093120569, 0.337839001802204}, {-1.9972423794494922`, -0.27492201430136, 0.8987499220873278}}], Polygon3DBox[{{-1.5388417685876268`, -0.5, 0.}, {-1.1135163644116068`, -0.8090169943749475, 0.85065080835204}, {-1.3784533270170292`, -0.6403967278645714, 0.7221218570282217}, {-1.5705947546300378`, -0.5007978093120569, 0.337839001802204}}], Polygon3DBox[{{-1.1135163644116068`, -0.8090169943749475, 0.85065080835204}, {-2.4832714822699837`, 3.4755478145461817`*^-17, 1.2416357411349916`}, {-1.9972423794494922`, -0.27492201430136, 0.8987499220873278}, {-1.3784533270170292`, -0.6403967278645714, 0.7221218570282217}}]}, { Polygon3DBox[{{-2.4832714822699837`, 3.4755478145461817`*^-17, 1.2416357411349916`}, {-1.1135163644116068`, -0.8090169943749475, 0.85065080835204}, {-1.2339182706923426`, -0.5353858626570367, 1.0111919696775944`}, {-1.852707323124806, -0.16991114909382515`, 1.1878200347367007`}}], Polygon3DBox[{{-1.1135163644116068`, -0.8090169943749475, 0.85065080835204}, {-0.8506508083520399, 0., 1.3763819204711736`}, {-1.1151683377805757`, -0.1699111490938253, 1.2486918355011287`}, {-1.2339182706923426`, -0.5353858626570367, 1.0111919696775944`}}], Polygon3DBox[{{-0.8506508083520399, 0., 1.3763819204711736`}, {-2.4832714822699837`, 3.4755478145461817`*^-17, 1.2416357411349916`}, {-1.852707323124806, -0.16991114909382515`, 1.1878200347367007`}, {-1.1151683377805757`, -0.1699111490938253, 1.2486918355011287`}}]}, { Polygon3DBox[{{-2.4832714822699837`, 3.4755478145461817`*^-17, 1.2416357411349916`}, {-0.8506508083520399, 0., 1.3763819204711736`}, {-1.1151683377805757`, 0.1699111490938253, 1.2486918355011287`}, {-1.8527073231248052`, 0.16991114909382538`, 1.1878200347367005`}}], Polygon3DBox[{{-0.8506508083520399, 0., 1.3763819204711736`}, {-1.1135163644116068`, 0.8090169943749475, 0.85065080835204}, {-1.2339182706923426`, 0.5353858626570367, 1.0111919696775944`}, {-1.1151683377805757`, 0.1699111490938253, 1.2486918355011287`}}], Polygon3DBox[{{-1.1135163644116068`, 0.8090169943749475, 0.85065080835204}, {-2.4832714822699837`, 3.4755478145461817`*^-17, 1.2416357411349916`}, {-1.8527073231248052`, 0.16991114909382538`, 1.1878200347367005`}, {-1.2339182706923426`, 0.5353858626570367, 1.0111919696775944`}}]}, { Polygon3DBox[{{-2.4832714822699837`, 3.4755478145461817`*^-17, 1.2416357411349916`}, {-1.1135163644116068`, 0.8090169943749475, 0.85065080835204}, {-1.378453327017029, 0.6403967278645715, 0.7221218570282217}, {-1.9972423794494918`, 0.2749220143013604, 0.8987499220873275}}], Polygon3DBox[{{-1.1135163644116068`, 0.8090169943749475, 0.85065080835204}, {-1.5388417685876268`, 0.5, 0.}, {-1.5705947546300378`, 0.5007978093120569, 0.3378390018022039}, {-1.378453327017029, 0.6403967278645715, 0.7221218570282217}}], Polygon3DBox[{{-1.5388417685876268`, 0.5, 0.}, {-2.4832714822699837`, 3.4755478145461817`*^-17, 1.2416357411349916`}, {-1.9972423794494918`, 0.2749220143013604, 0.8987499220873275}, {-1.5705947546300378`, 0.5007978093120569, 0.3378390018022039}}]}}, {{ Polygon3DBox[{{-0.767373089668091, -2.361731524942793, 1.2416357411349916`}, {-0.9510565162951535, -1.3090169943749475`, 0.}, {-0.7277648566501785, -1.5088804911205407`, 0.1591838470531307}, {-0.6447855766108251, -1.9844459541431896`, 0.7200947673382541}}], Polygon3DBox[{{-0.9510565162951535, -1.3090169943749475`, 0.}, { 0., -1.618033988749895, 0.}, {-0.2981235632136358, -1.6484794096730553`, 0.1591838470531307}, {-0.7277648566501785, -1.5088804911205407`, 0.1591838470531307}}], Polygon3DBox[{{0., -1.618033988749895, 0.}, {-0.767373089668091, -2.361731524942793, 1.2416357411349916`}, {-0.6447855766108251, -1.9844459541431896`, 0.7200947673382541}, {-0.2981235632136358, -1.6484794096730553`, 0.1591838470531307}}]}, { Polygon3DBox[{{-0.767373089668091, -2.361731524942793, 1.2416357411349916`}, {0., -1.618033988749895, 0.}, {-0.009053450564262914, -1.6484794096730553`, 0.337839001802204}, {-0.35571546396145115`, -1.9844459541431887`, 0.8987499220873267}}], Polygon3DBox[{{0., -1.618033988749895, 0.}, { 0.42532540417601994`, -1.3090169943749475`, 0.85065080835204}, { 0.18308797704874596`, -1.5088804911205407`, 0.7221218570282217}, {-0.009053450564262914, -1.6484794096730553`, 0.337839001802204}}], Polygon3DBox[{{0.42532540417601994`, -1.3090169943749475`, 0.85065080835204}, {-0.767373089668091, -2.361731524942793, 1.2416357411349916`}, {-0.35571546396145115`, -1.9844459541431887`, 0.8987499220873267}, {0.18308797704874596`, -1.5088804911205407`, 0.7221218570282217}}]}, { Polygon3DBox[{{-0.767373089668091, -2.361731524942793, 1.2416357411349916`}, {0.42532540417601994`, -1.3090169943749475`, 0.85065080835204}, {0.12788049809859608`, -1.3389693420267155`, 1.0111919696775946`}, {-0.4109229429116023, -1.8145348050493648`, 1.1878200347367007`}}], Polygon3DBox[{{0.42532540417601994`, -1.3090169943749475`, 0.85065080835204}, {-0.2628655560595668, -0.8090169943749475, 1.3763819204711736`}, {-0.1830108624261797, -1.1130935470160188`, 1.2486918355011287`}, {0.12788049809859608`, -1.3389693420267155`, 1.0111919696775946`}}], Polygon3DBox[{{-0.2628655560595668, -0.8090169943749475, 1.3763819204711736`}, {-0.767373089668091, -2.361731524942793, 1.2416357411349916`}, {-0.4109229429116023, -1.8145348050493648`, 1.1878200347367007`}, {-0.1830108624261797, -1.1130935470160188`, 1.2486918355011287`}}]}, { Polygon3DBox[{{-0.767373089668091, -2.361731524942793, 1.2416357411349916`}, {-0.2628655560595668, -0.8090169943749475, 1.3763819204711736`}, {-0.5062010734999395, -1.0080826818084838`, 1.2486918355011287`}, {-0.7341131539853619, -1.7095239398418292`, 1.1878200347367007`}}], Polygon3DBox[{{-0.2628655560595668, -0.8090169943749475, 1.3763819204711736`}, {-1.1135163644116068`, -0.8090169943749475, 0.85065080835204}, {-0.8904839287259572, -1.0080826818084838`, 1.0111919696775946`}, {-0.5062010734999395, -1.0080826818084838`, 1.2486918355011287`}}], Polygon3DBox[{{-1.1135163644116068`, -0.8090169943749475, 0.85065080835204}, {-0.767373089668091, -2.361731524942793, 1.2416357411349916`}, {-0.7341131539853619, -1.7095239398418292`, 1.1878200347367007`}, {-0.8904839287259572, -1.0080826818084838`, 1.0111919696775946`}}]}, { Polygon3DBox[{{-0.767373089668091, -2.361731524942793, 1.2416357411349916`}, {-1.1135163644116068`, -0.8090169943749475, 0.85065080835204}, {-1.0350189850506437`, -1.1130935470160186`, 0.7221218570282217}, {-0.8786482103100484, -1.8145348050493642`, 0.8987499220873276}}], Polygon3DBox[{{-1.1135163644116068`, -0.8090169943749475, 0.85065080835204}, {-0.9510565162951535, -1.3090169943749475`, 0.}, {-0.9616274903494018, -1.3389693420267155`, 0.3378390018022039}, {-1.0350189850506437`, -1.1130935470160186`, 0.7221218570282217}}], Polygon3DBox[{{-0.9510565162951535, -1.3090169943749475`, 0.}, {-0.767373089668091, -2.361731524942793, 1.2416357411349916`}, {-0.8786482103100484, -1.8145348050493642`, 0.8987499220873276}, {-0.9616274903494018, -1.3389693420267155`, 0.3378390018022039}}]}}, {{ Polygon3DBox[{{2.0090088308030825`, -1.4596303547167664`, 1.2416357411349916`}, {0.9510565162951535, -1.3090169943749475`, 0.}, { 1.210138914777069, -1.1584152234848248`, 0.15918384705313063`}, { 1.6880705550228392`, -1.2264550484977064`, 0.7200947673382541}}], Polygon3DBox[{{0.9510565162951535, -1.3090169943749475`, 0.}, { 1.5388417685876268`, -0.5, 0.}, { 1.4756718370913198`, -0.7929405099216136, 0.15918384705313068`}, { 1.210138914777069, -1.1584152234848248`, 0.15918384705313063`}}], Polygon3DBox[{{1.5388417685876268`, -0.5, 0.}, { 2.0090088308030825`, -1.4596303547167664`, 1.2416357411349916`}, { 1.6880705550228392`, -1.2264550484977064`, 0.7200947673382541}, { 1.4756718370913198`, -0.7929405099216136, 0.15918384705313068`}}]}, { Polygon3DBox[{{2.0090088308030825`, -1.4596303547167664`, 1.2416357411349916`}, {1.5388417685876268`, -0.5, 0.}, { 1.5649994144658566`, -0.5180184956202535, 0.337839001802204}, { 1.777398132397376, -0.9515330341963466, 0.898749922087328}}], Polygon3DBox[{{1.5388417685876268`, -0.5, 0.}, {1.3763819204711736`, 0., 0.85065080835204}, {1.4916079197646146`, -0.29214270060955677`, 0.7221218570282217}, {1.5649994144658566`, -0.5180184956202535, 0.337839001802204}}], Polygon3DBox[{{1.3763819204711736`, 0., 0.85065080835204}, { 2.0090088308030825`, -1.4596303547167664`, 1.2416357411349916`}, { 1.777398132397376, -0.9515330341963466, 0.898749922087328}, { 1.4916079197646146`, -0.29214270060955677`, 0.7221218570282217}}]}, { Polygon3DBox[{{2.0090088308030825`, -1.4596303547167664`, 1.2416357411349916`}, {1.3763819204711736`, 0., 0.85065080835204}, { 1.3129527650155413`, -0.29214270060955666`, 1.0111919696775946`}, { 1.5987429776483018`, -0.9515330341963455, 1.1878200347367005`}}], Polygon3DBox[{{1.3763819204711736`, 0., 0.85065080835204}, { 0.6881909602355868, -0.5, 1.3763819204711736`}, { 1.0020614044907652`, -0.5180184956202535, 1.2486918355011287`}, { 1.3129527650155413`, -0.29214270060955666`, 1.0111919696775946`}}], Polygon3DBox[{{0.6881909602355868, -0.5, 1.3763819204711736`}, { 2.0090088308030825`, -1.4596303547167664`, 1.2416357411349916`}, { 1.5987429776483018`, -0.9515330341963455, 1.1878200347367005`}, { 1.0020614044907652`, -0.5180184956202535, 1.2486918355011287`}}]}, { Polygon3DBox[{{2.0090088308030825`, -1.4596303547167664`, 1.2416357411349916`}, {0.6881909602355868, -0.5, 1.3763819204711736`}, {0.8023188692159293, -0.7929405099216138, 1.2486918355011285`}, {1.3990004423734668`, -1.2264550484977066`, 1.1878200347367007`}}], Polygon3DBox[{{0.6881909602355868, -0.5, 1.3763819204711736`}, { 0.42532540417601994`, -1.3090169943749475`, 0.85065080835204}, { 0.683568936304162, -1.1584152234848248`, 1.0111919696775946`}, { 0.8023188692159293, -0.7929405099216138, 1.2486918355011285`}}], Polygon3DBox[{{0.42532540417601994`, -1.3090169943749475`, 0.85065080835204}, {2.0090088308030825`, -1.4596303547167664`, 1.2416357411349916`}, {1.3990004423734668`, -1.2264550484977066`, 1.1878200347367007`}, {0.683568936304162, -1.1584152234848248`, 1.0111919696775946`}}]}, { Polygon3DBox[{{2.0090088308030825`, -1.4596303547167664`, 1.2416357411349916`}, {0.42532540417601994`, -1.3090169943749475`, 0.85065080835204}, {0.7387764152543119, -1.32832637257865, 0.7221218570282217}, {1.4542079213236163`, -1.3963661975915318`, 0.8987499220873278}}], Polygon3DBox[{{0.42532540417601994`, -1.3090169943749475`, 0.85065080835204}, {0.9510565162951535, -1.3090169943749475`, 0.}, { 0.9762762810778459, -1.32832637257865, 0.337839001802204}, { 0.7387764152543119, -1.32832637257865, 0.7221218570282217}}], Polygon3DBox[{{0.9510565162951535, -1.3090169943749475`, 0.}, { 2.0090088308030825`, -1.4596303547167664`, 1.2416357411349916`}, { 1.4542079213236163`, -1.3963661975915318`, 0.8987499220873278}, { 0.9762762810778459, -1.32832637257865, 0.337839001802204}}]}}, {{ Polygon3DBox[{{2.009008830803083, 1.459630354716766, 1.2416357411349916`}, {1.5388417685876268`, 0.5, 0.}, { 1.4756718370913198`, 0.7929405099216134, 0.15918384705313057`}, { 1.6880705550228394`, 1.2264550484977061`, 0.7200947673382541}}], Polygon3DBox[{{1.5388417685876268`, 0.5, 0.}, {0.9510565162951535, 1.3090169943749475`, 0.}, {1.2101389147770691`, 1.1584152234848246`, 0.1591838470531307}, {1.4756718370913198`, 0.7929405099216134, 0.15918384705313057`}}], Polygon3DBox[{{0.9510565162951535, 1.3090169943749475`, 0.}, { 2.009008830803083, 1.459630354716766, 1.2416357411349916`}, { 1.6880705550228394`, 1.2264550484977061`, 0.7200947673382541}, { 1.2101389147770691`, 1.1584152234848246`, 0.1591838470531307}}]}, { Polygon3DBox[{{2.009008830803083, 1.459630354716766, 1.2416357411349916`}, {0.9510565162951535, 1.3090169943749475`, 0.}, { 0.976276281077846, 1.32832637257865, 0.337839001802204}, { 1.4542079213236148`, 1.3963661975915314`, 0.8987499220873267}}], Polygon3DBox[{{0.9510565162951535, 1.3090169943749475`, 0.}, { 0.42532540417601994`, 1.3090169943749475`, 0.85065080835204}, { 0.7387764152543119, 1.32832637257865, 0.7221218570282217}, { 0.976276281077846, 1.32832637257865, 0.337839001802204}}], Polygon3DBox[{{0.42532540417601994`, 1.3090169943749475`, 0.85065080835204}, {2.009008830803083, 1.459630354716766, 1.2416357411349916`}, {1.4542079213236148`, 1.3963661975915314`, 0.8987499220873267}, {0.7387764152543119, 1.32832637257865, 0.7221218570282217}}]}, { Polygon3DBox[{{2.009008830803083, 1.459630354716766, 1.2416357411349916`}, {0.42532540417601994`, 1.3090169943749475`, 0.85065080835204}, {0.6835689363041624, 1.1584152234848246`, 1.0111919696775946`}, {1.399000442373467, 1.2264550484977064`, 1.1878200347367007`}}], Polygon3DBox[{{0.42532540417601994`, 1.3090169943749475`, 0.85065080835204}, {0.6881909602355868, 0.5, 1.3763819204711736`}, { 0.8023188692159292, 0.7929405099216134, 1.2486918355011287`}, { 0.6835689363041624, 1.1584152234848246`, 1.0111919696775946`}}], Polygon3DBox[{{0.6881909602355868, 0.5, 1.3763819204711736`}, { 2.009008830803083, 1.459630354716766, 1.2416357411349916`}, { 1.399000442373467, 1.2264550484977064`, 1.1878200347367007`}, { 0.8023188692159292, 0.7929405099216134, 1.2486918355011287`}}]}, { Polygon3DBox[{{2.009008830803083, 1.459630354716766, 1.2416357411349916`}, {0.6881909602355868, 0.5, 1.3763819204711736`}, { 1.0020614044907652`, 0.5180184956202534, 1.2486918355011287`}, { 1.5987429776483026`, 0.9515330341963459, 1.1878200347367005`}}], Polygon3DBox[{{0.6881909602355868, 0.5, 1.3763819204711736`}, { 1.3763819204711736`, 0., 0.85065080835204}, {1.3129527650155413`, 0.29214270060955655`, 1.0111919696775946`}, {1.0020614044907652`, 0.5180184956202534, 1.2486918355011287`}}], Polygon3DBox[{{1.3763819204711736`, 0., 0.85065080835204}, { 2.009008830803083, 1.459630354716766, 1.2416357411349916`}, { 1.5987429776483026`, 0.9515330341963459, 1.1878200347367005`}, { 1.3129527650155413`, 0.29214270060955655`, 1.0111919696775946`}}]}, { Polygon3DBox[{{2.009008830803083, 1.459630354716766, 1.2416357411349916`}, {1.3763819204711736`, 0., 0.85065080835204}, { 1.4916079197646148`, 0.2921427006095567, 0.7221218570282217}, { 1.777398132397376, 0.9515330341963458, 0.8987499220873275}}], Polygon3DBox[{{1.3763819204711736`, 0., 0.85065080835204}, { 1.5388417685876268`, 0.5, 0.}, {1.5649994144658566`, 0.5180184956202534, 0.3378390018022039}, {1.4916079197646148`, 0.2921427006095567, 0.7221218570282217}}], Polygon3DBox[{{1.5388417685876268`, 0.5, 0.}, {2.009008830803083, 1.459630354716766, 1.2416357411349916`}, {1.777398132397376, 0.9515330341963458, 0.8987499220873275}, {1.5649994144658566`, 0.5180184956202534, 0.3378390018022039}}]}}, {{ Polygon3DBox[{{-1.3958593552386035`*^-16, -4.296013357829913*^-16, \ -2.7763819204711737`}, {-0.6881909602355868, -0.5, -1.3763819204711736`}, \ {-0.5999614731741487, -0.22587579501069677`, -1.5558688492790274`}, \ {-0.28907011264937316`, -2.577129957015667*^-16, -2.188321075308978}}], Polygon3DBox[{{-0.6881909602355868, -0.5, -1.3763819204711736`}, \ {-0.6881909602355868, 0.5, -1.3763819204711736`}, {-0.5999614731741487, 0.2258757950106966, -1.5558688492790274`}, {-0.5999614731741487, \ -0.22587579501069677`, -1.5558688492790274`}}], Polygon3DBox[{{-0.6881909602355868, 0.5, -1.3763819204711736`}, {-1.3958593552386035`*^-16, \ -4.296013357829913*^-16, -2.7763819204711737`}, {-0.28907011264937316`, \ -2.577129957015667*^-16, -2.188321075308978}, {-0.5999614731741487, 0.2258757950106966, -1.5558688492790274`}}]}, { Polygon3DBox[{{-1.3958593552386035`*^-16, -4.296013357829913*^-16, \ -2.7763819204711737`}, {-0.6881909602355868, 0.5, -1.3763819204711736`}, {-0.4002189378993127, 0.5007978093120569, -1.5558688492790271`}, {-0.08932757737453678, 0.27492201430136, -2.188321075308978}}], Polygon3DBox[{{-0.6881909602355868, 0.5, -1.3763819204711736`}, { 0.2628655560595668, 0.8090169943749475, -1.3763819204711736`}, { 0.02942235553723027, 0.6403967278645712, -1.5558688492790274`}, {-0.4002189378993127, 0.5007978093120569, -1.5558688492790271`}}], Polygon3DBox[{{0.2628655560595668, 0.8090169943749475, -1.3763819204711736`}, {-1.3958593552386035`*^-16, \ -4.296013357829913*^-16, -2.7763819204711737`}, {-0.08932757737453678, 0.27492201430136, -2.188321075308978}, {0.02942235553723027, 0.6403967278645712, -1.5558688492790274`}}]}, { Polygon3DBox[{{-1.3958593552386035`*^-16, -4.296013357829913*^-16, \ -2.7763819204711737`}, {0.2628655560595668, 0.8090169943749475, -1.3763819204711736`}, {0.35261256661099016`, 0.5353858626570364, -1.5558688492790274`}, {0.23386263369922314`, 0.16991114909382513`, -2.188321075308978}}], Polygon3DBox[{{0.2628655560595668, 0.8090169943749475, -1.3763819204711736`}, {0.85065080835204, 0., -1.3763819204711736`}, {0.6181454889252409, 0.16991114909382513`, -1.5558688492790271`}, {0.35261256661099016`, 0.5353858626570364, -1.5558688492790274`}}], Polygon3DBox[{{0.85065080835204, 0., -1.3763819204711736`}, {-1.3958593552386035`*^-16, \ -4.296013357829913*^-16, -2.7763819204711737`}, {0.23386263369922314`, 0.16991114909382513`, -2.188321075308978}, {0.6181454889252409, 0.16991114909382513`, -1.5558688492790271`}}]}, { Polygon3DBox[{{-1.3958593552386035`*^-16, -4.296013357829913*^-16, \ -2.7763819204711737`}, {0.85065080835204, 0., -1.3763819204711736`}, { 0.6181454889252409, -0.16991114909382524`, -1.5558688492790271`}, { 0.23386263369922314`, -0.16991114909382557`, -2.188321075308978}}], Polygon3DBox[{{0.85065080835204, 0., -1.3763819204711736`}, { 0.2628655560595668, -0.8090169943749475, -1.3763819204711736`}, { 0.35261256661099005`, -0.5353858626570367, -1.5558688492790274`}, { 0.6181454889252409, -0.16991114909382524`, -1.5558688492790271`}}], Polygon3DBox[{{ 0.2628655560595668, -0.8090169943749475, -1.3763819204711736`}, \ {-1.3958593552386035`*^-16, -4.296013357829913*^-16, -2.7763819204711737`}, { 0.23386263369922314`, -0.16991114909382557`, -2.188321075308978}, { 0.35261256661099005`, -0.5353858626570367, -1.5558688492790274`}}]}, { Polygon3DBox[{{-1.3958593552386035`*^-16, -4.296013357829913*^-16, \ -2.7763819204711737`}, { 0.2628655560595668, -0.8090169943749475, -1.3763819204711736`}, { 0.02942235553723027, -0.6403967278645715, -1.5558688492790274`}, \ {-0.08932757737453682, -0.2749220143013606, -2.188321075308978}}], Polygon3DBox[{{ 0.2628655560595668, -0.8090169943749475, -1.3763819204711736`}, \ {-0.6881909602355868, -0.5, -1.3763819204711736`}, {-0.4002189378993125, \ -0.500797809312057, -1.5558688492790274`}, { 0.02942235553723027, -0.6403967278645715, -1.5558688492790274`}}], Polygon3DBox[{{-0.6881909602355868, -0.5, -1.3763819204711736`}, \ {-1.3958593552386035`*^-16, -4.296013357829913*^-16, -2.7763819204711737`}, \ {-0.08932757737453682, -0.2749220143013606, -2.188321075308978}, \ {-0.4002189378993125, -0.500797809312057, -1.5558688492790274`}}]}}, {{ Polygon3DBox[{{ 0.7673730896680907, -2.361731524942793, -1.2416357411349916`}, \ {-0.42532540417601994`, -1.3090169943749475`, -0.8506508083520399}, \ {-0.1278804980985963, -1.3389693420267155`, -1.0111919696775944`}, { 0.41092294291160214`, -1.8145348050493646`, -1.1878200347367007`}}], Polygon3DBox[{{-0.42532540417601994`, -1.3090169943749475`, \ -0.8506508083520399}, { 0.2628655560595668, -0.8090169943749475, -1.3763819204711736`}, { 0.18301086242617964`, -1.1130935470160188`, -1.2486918355011287`}, \ {-0.1278804980985963, -1.3389693420267155`, -1.0111919696775944`}}], Polygon3DBox[{{ 0.2628655560595668, -0.8090169943749475, -1.3763819204711736`}, { 0.7673730896680907, -2.361731524942793, -1.2416357411349916`}, { 0.41092294291160214`, -1.8145348050493646`, -1.1878200347367007`}, { 0.18301086242617964`, -1.1130935470160188`, -1.2486918355011287`}}]}, { Polygon3DBox[{{ 0.7673730896680907, -2.361731524942793, -1.2416357411349916`}, { 0.2628655560595668, -0.8090169943749475, -1.3763819204711736`}, { 0.5062010734999393, -1.0080826818084838`, -1.2486918355011287`}, { 0.7341131539853617, -1.7095239398418292`, -1.1878200347367005`}}], Polygon3DBox[{{ 0.2628655560595668, -0.8090169943749475, -1.3763819204711736`}, { 1.1135163644116066`, -0.8090169943749475, -0.8506508083520399}, { 0.8904839287259572, -1.0080826818084838`, -1.0111919696775944`}, { 0.5062010734999393, -1.0080826818084838`, -1.2486918355011287`}}], Polygon3DBox[{{ 1.1135163644116066`, -0.8090169943749475, -0.8506508083520399}, { 0.7673730896680907, -2.361731524942793, -1.2416357411349916`}, { 0.7341131539853617, -1.7095239398418292`, -1.1878200347367005`}, { 0.8904839287259572, -1.0080826818084838`, -1.0111919696775944`}}]}, { Polygon3DBox[{{ 0.7673730896680907, -2.361731524942793, -1.2416357411349916`}, { 1.1135163644116066`, -0.8090169943749475, -0.8506508083520399}, { 1.0350189850506435`, -1.1130935470160186`, -0.7221218570282216}, { 0.8786482103100482, -1.8145348050493633`, -0.8987499220873271}}], Polygon3DBox[{{ 1.1135163644116066`, -0.8090169943749475, -0.8506508083520399}, { 0.9510565162951535, -1.3090169943749475`, 0.}, { 0.9616274903494016, -1.3389693420267155`, -0.3378390018022041}, { 1.0350189850506435`, -1.1130935470160186`, -0.7221218570282216}}], Polygon3DBox[{{0.9510565162951535, -1.3090169943749475`, 0.}, { 0.7673730896680907, -2.361731524942793, -1.2416357411349916`}, { 0.8786482103100482, -1.8145348050493633`, -0.8987499220873271}, { 0.9616274903494016, -1.3389693420267155`, -0.3378390018022041}}]}, { Polygon3DBox[{{ 0.7673730896680907, -2.361731524942793, -1.2416357411349916`}, { 0.9510565162951535, -1.3090169943749475`, 0.}, { 0.7277648566501786, -1.5088804911205407`, -0.15918384705313063`}, { 0.644785576610825, -1.9844459541431898`, -0.7200947673382546}}], Polygon3DBox[{{0.9510565162951535, -1.3090169943749475`, 0.}, { 0., -1.618033988749895, 0.}, { 0.2981235632136358, -1.6484794096730553`, -0.1591838470531307}, { 0.7277648566501786, -1.5088804911205407`, -0.15918384705313063`}}], Polygon3DBox[{{0., -1.618033988749895, 0.}, { 0.7673730896680907, -2.361731524942793, -1.2416357411349916`}, { 0.644785576610825, -1.9844459541431898`, -0.7200947673382546}, { 0.2981235632136358, -1.6484794096730553`, -0.1591838470531307}}]}, { Polygon3DBox[{{ 0.7673730896680907, -2.361731524942793, -1.2416357411349916`}, { 0., -1.618033988749895, 0.}, { 0.009053450564262842, -1.6484794096730553`, -0.337839001802204}, { 0.35571546396145237`, -1.9844459541431898`, -0.8987499220873278}}], Polygon3DBox[{{0., -1.618033988749895, 0.}, {-0.42532540417601994`, -1.3090169943749475`, \ -0.8506508083520399}, {-0.18308797704874588`, -1.5088804911205407`, \ -0.7221218570282215}, { 0.009053450564262842, -1.6484794096730553`, -0.337839001802204}}], Polygon3DBox[{{-0.42532540417601994`, -1.3090169943749475`, \ -0.8506508083520399}, { 0.7673730896680907, -2.361731524942793, -1.2416357411349916`}, { 0.35571546396145237`, -1.9844459541431898`, -0.8987499220873278}, \ {-0.18308797704874588`, -1.5088804911205407`, -0.7221218570282215}}]}}, {{ Polygon3DBox[{{2.4832714822699833`, 0., -1.241635741134992}, { 1.1135163644116066`, -0.8090169943749475, -0.8506508083520399}, { 1.2339182706923424`, -0.5353858626570366, -1.0111919696775944`}, { 1.8527073231248055`, -0.1699111490938252, -1.187820034736701}}], Polygon3DBox[{{ 1.1135163644116066`, -0.8090169943749475, -0.8506508083520399}, { 0.85065080835204, 0., -1.3763819204711736`}, { 1.1151683377805752`, -0.16991114909382513`, -1.2486918355011287`}, { 1.2339182706923424`, -0.5353858626570366, -1.0111919696775944`}}], Polygon3DBox[{{0.85065080835204, 0., -1.3763819204711736`}, { 2.4832714822699833`, 0., -1.241635741134992}, { 1.8527073231248055`, -0.1699111490938252, -1.187820034736701}, { 1.1151683377805752`, -0.16991114909382513`, -1.2486918355011287`}}]}, { Polygon3DBox[{{2.4832714822699833`, 0., -1.241635741134992}, { 0.85065080835204, 0., -1.3763819204711736`}, {1.1151683377805752`, 0.1699111490938251, -1.2486918355011287`}, {1.8527073231248048`, 0.16991114909382538`, -1.1878200347367007`}}], Polygon3DBox[{{0.85065080835204, 0., -1.3763819204711736`}, { 1.1135163644116066`, 0.8090169943749475, -0.8506508083520399}, { 1.2339182706923424`, 0.5353858626570366, -1.0111919696775944`}, { 1.1151683377805752`, 0.1699111490938251, -1.2486918355011287`}}], Polygon3DBox[{{1.1135163644116066`, 0.8090169943749475, -0.8506508083520399}, {2.4832714822699833`, 0., -1.241635741134992}, {1.8527073231248048`, 0.16991114909382538`, -1.1878200347367007`}, {1.2339182706923424`, 0.5353858626570366, -1.0111919696775944`}}]}, { Polygon3DBox[{{2.4832714822699833`, 0., -1.241635741134992}, { 1.1135163644116066`, 0.8090169943749475, -0.8506508083520399}, { 1.378453327017029, 0.6403967278645715, -0.7221218570282217}, { 1.9972423794494913`, 0.2749220143013603, -0.8987499220873278}}], Polygon3DBox[{{1.1135163644116066`, 0.8090169943749475, -0.8506508083520399}, {1.5388417685876268`, 0.5, 0.}, {1.5705947546300378`, 0.5007978093120569, -0.337839001802204}, { 1.378453327017029, 0.6403967278645715, -0.7221218570282217}}], Polygon3DBox[{{1.5388417685876268`, 0.5, 0.}, {2.4832714822699833`, 0., -1.241635741134992}, {1.9972423794494913`, 0.2749220143013603, -0.8987499220873278}, {1.5705947546300378`, 0.5007978093120569, -0.337839001802204}}]}, { Polygon3DBox[{{2.4832714822699833`, 0., -1.241635741134992}, { 1.5388417685876268`, 0.5, 0.}, {1.6599223320045744`, 0.22587579501069688`, -0.15918384705313066`}, {2.0865699568240283`, 0., -0.7200947673382543}}], Polygon3DBox[{{1.5388417685876268`, 0.5, 0.}, { 1.5388417685876268`, -0.5, 0.}, { 1.6599223320045744`, -0.22587579501069688`, -0.15918384705313066`}, { 1.6599223320045744`, 0.22587579501069688`, -0.15918384705313066`}}], Polygon3DBox[{{1.5388417685876268`, -0.5, 0.}, {2.4832714822699833`, 0., -1.241635741134992}, {2.0865699568240283`, 0., -0.7200947673382543}, { 1.6599223320045744`, -0.22587579501069688`, -0.15918384705313066`}}]}, \ {Polygon3DBox[{{2.4832714822699833`, 0., -1.241635741134992}, { 1.5388417685876268`, -0.5, 0.}, { 1.5705947546300378`, -0.5007978093120569, -0.3378390018022041}, { 1.9972423794494918`, -0.27492201430136004`, -0.8987499220873282}}], Polygon3DBox[{{1.5388417685876268`, -0.5, 0.}, { 1.1135163644116066`, -0.8090169943749475, -0.8506508083520399}, { 1.378453327017029, -0.6403967278645715, -0.7221218570282217}, { 1.5705947546300378`, -0.5007978093120569, -0.3378390018022041}}], Polygon3DBox[{{ 1.1135163644116066`, -0.8090169943749475, -0.8506508083520399}, { 2.4832714822699833`, 0., -1.241635741134992}, { 1.9972423794494918`, -0.27492201430136004`, -0.8987499220873282}, { 1.378453327017029, -0.6403967278645715, -0.7221218570282217}}]}}, {{ Polygon3DBox[{{0.767373089668091, 2.361731524942793, -1.2416357411349916`}, {1.1135163644116066`, 0.8090169943749475, -0.8506508083520399}, {0.8904839287259572, 1.0080826818084838`, -1.0111919696775944`}, {0.7341131539853618, 1.7095239398418292`, -1.1878200347367005`}}], Polygon3DBox[{{1.1135163644116066`, 0.8090169943749475, -0.8506508083520399}, {0.2628655560595668, 0.8090169943749475, -1.3763819204711736`}, {0.5062010734999394, 1.0080826818084838`, -1.2486918355011287`}, {0.8904839287259572, 1.0080826818084838`, -1.0111919696775944`}}], Polygon3DBox[{{0.2628655560595668, 0.8090169943749475, -1.3763819204711736`}, {0.767373089668091, 2.361731524942793, -1.2416357411349916`}, {0.7341131539853618, 1.7095239398418292`, -1.1878200347367005`}, {0.5062010734999394, 1.0080826818084838`, -1.2486918355011287`}}]}, { Polygon3DBox[{{0.767373089668091, 2.361731524942793, -1.2416357411349916`}, {0.2628655560595668, 0.8090169943749475, -1.3763819204711736`}, {0.1830108624261797, 1.1130935470160188`, -1.2486918355011287`}, {0.4109229429116015, 1.8145348050493637`, -1.1878200347367005`}}], Polygon3DBox[{{0.2628655560595668, 0.8090169943749475, -1.3763819204711736`}, {-0.42532540417601994`, 1.3090169943749475`, -0.8506508083520399}, {-0.1278804980985963, 1.3389693420267155`, -1.0111919696775944`}, {0.1830108624261797, 1.1130935470160188`, -1.2486918355011287`}}], Polygon3DBox[{{-0.42532540417601994`, 1.3090169943749475`, -0.8506508083520399}, {0.767373089668091, 2.361731524942793, -1.2416357411349916`}, {0.4109229429116015, 1.8145348050493637`, -1.1878200347367005`}, {-0.1278804980985963, 1.3389693420267155`, -1.0111919696775944`}}]}, { Polygon3DBox[{{0.767373089668091, 2.361731524942793, -1.2416357411349916`}, {-0.42532540417601994`, 1.3090169943749475`, -0.8506508083520399}, {-0.18308797704874588`, 1.5088804911205407`, -0.7221218570282216}, {0.3557154639614516, 1.984445954143189, -0.8987499220873271}}], Polygon3DBox[{{-0.42532540417601994`, 1.3090169943749475`, -0.8506508083520399}, {0., 1.618033988749895, 0.}, {0.009053450564262893, 1.6484794096730553`, -0.3378390018022041}, {-0.18308797704874588`, 1.5088804911205407`, -0.7221218570282216}}], Polygon3DBox[{{0., 1.618033988749895, 0.}, {0.767373089668091, 2.361731524942793, -1.2416357411349916`}, {0.3557154639614516, 1.984445954143189, -0.8987499220873271}, {0.009053450564262893, 1.6484794096730553`, -0.3378390018022041}}]}, { Polygon3DBox[{{0.767373089668091, 2.361731524942793, -1.2416357411349916`}, {0., 1.618033988749895, 0.}, {0.2981235632136358, 1.6484794096730553`, -0.1591838470531307}, { 0.6447855766108251, 1.9844459541431896`, -0.7200947673382541}}], Polygon3DBox[{{0., 1.618033988749895, 0.}, {0.9510565162951535, 1.3090169943749475`, 0.}, {0.7277648566501785, 1.5088804911205407`, -0.15918384705313074`}, {0.2981235632136358, 1.6484794096730553`, -0.1591838470531307}}], Polygon3DBox[{{0.9510565162951535, 1.3090169943749475`, 0.}, { 0.767373089668091, 2.361731524942793, -1.2416357411349916`}, { 0.6447855766108251, 1.9844459541431896`, -0.7200947673382541}, { 0.7277648566501785, 1.5088804911205407`, -0.15918384705313074`}}]}, { Polygon3DBox[{{0.767373089668091, 2.361731524942793, -1.2416357411349916`}, {0.9510565162951535, 1.3090169943749475`, 0.}, {0.9616274903494018, 1.3389693420267155`, -0.337839001802204}, {0.8786482103100485, 1.8145348050493633`, -0.8987499220873271}}], Polygon3DBox[{{0.9510565162951535, 1.3090169943749475`, 0.}, { 1.1135163644116066`, 0.8090169943749475, -0.8506508083520399}, { 1.0350189850506435`, 1.1130935470160188`, -0.7221218570282215}, { 0.9616274903494018, 1.3389693420267155`, -0.337839001802204}}], Polygon3DBox[{{1.1135163644116066`, 0.8090169943749475, -0.8506508083520399}, {0.767373089668091, 2.361731524942793, -1.2416357411349916`}, {0.8786482103100485, 1.8145348050493633`, -0.8987499220873271}, {1.0350189850506435`, 1.1130935470160188`, -0.7221218570282215}}]}}, {{ Polygon3DBox[{{-2.0090088308030825`, 1.4596303547167664`, -1.2416357411349916`}, {-0.42532540417601994`, 1.3090169943749475`, -0.8506508083520399}, {-0.6835689363041619, 1.1584152234848248`, -1.0111919696775944`}, {-1.399000442373466, 1.2264550484977064`, -1.1878200347367005`}}], Polygon3DBox[{{-0.42532540417601994`, 1.3090169943749475`, -0.8506508083520399}, {-0.6881909602355868, 0.5, -1.3763819204711736`}, {-0.8023188692159292, 0.7929405099216137, -1.2486918355011285`}, {-0.6835689363041619, 1.1584152234848248`, -1.0111919696775944`}}], Polygon3DBox[{{-0.6881909602355868, 0.5, -1.3763819204711736`}, {-2.0090088308030825`, 1.4596303547167664`, -1.2416357411349916`}, {-1.399000442373466, 1.2264550484977064`, -1.1878200347367005`}, {-0.8023188692159292, 0.7929405099216137, -1.2486918355011285`}}]}, { Polygon3DBox[{{-2.0090088308030825`, 1.4596303547167664`, -1.2416357411349916`}, {-0.6881909602355868, 0.5, -1.3763819204711736`}, {-1.0020614044907654`, 0.5180184956202535, -1.2486918355011287`}, {-1.5987429776483024`, 0.9515330341963462, -1.1878200347367005`}}], Polygon3DBox[{{-0.6881909602355868, 0.5, -1.3763819204711736`}, {-1.3763819204711736`, 0., -0.8506508083520399}, {-1.3129527650155413`, 0.29214270060955677`, -1.0111919696775946`}, {-1.0020614044907654`, 0.5180184956202535, -1.2486918355011287`}}], Polygon3DBox[{{-1.3763819204711736`, 0., -0.8506508083520399}, {-2.0090088308030825`, 1.4596303547167664`, -1.2416357411349916`}, {-1.5987429776483024`, 0.9515330341963462, -1.1878200347367005`}, {-1.3129527650155413`, 0.29214270060955677`, -1.0111919696775946`}}]}, { Polygon3DBox[{{-2.0090088308030825`, 1.4596303547167664`, -1.2416357411349916`}, {-1.3763819204711736`, 0., -0.8506508083520399}, {-1.4916079197646146`, 0.29214270060955666`, -0.7221218570282216}, {-1.7773981323973753`, 0.9515330341963449, -0.8987499220873267}}], Polygon3DBox[{{-1.3763819204711736`, 0., -0.8506508083520399}, {-1.5388417685876268`, 0.5, 0.}, {-1.5649994144658566`, 0.5180184956202534, -0.3378390018022041}, {-1.4916079197646146`, 0.29214270060955666`, -0.7221218570282216}}], Polygon3DBox[{{-1.5388417685876268`, 0.5, 0.}, {-2.0090088308030825`, 1.4596303547167664`, -1.2416357411349916`}, {-1.7773981323973753`, 0.9515330341963449, -0.8987499220873267}, {-1.5649994144658566`, 0.5180184956202534, -0.3378390018022041}}]}, { Polygon3DBox[{{-2.0090088308030825`, 1.4596303547167664`, -1.2416357411349916`}, {-1.5388417685876268`, 0.5, 0.}, {-1.4756718370913198`, 0.7929405099216137, -0.1591838470531307}, {-1.6880705550228399`, 1.226455048497707, -0.7200947673382554}}], Polygon3DBox[{{-1.5388417685876268`, 0.5, 0.}, {-0.9510565162951535, 1.3090169943749475`, 0.}, {-1.2101389147770691`, 1.1584152234848248`, -0.15918384705313074`}, {-1.4756718370913198`, 0.7929405099216137, -0.1591838470531307}}], Polygon3DBox[{{-0.9510565162951535, 1.3090169943749475`, 0.}, {-2.0090088308030825`, 1.4596303547167664`, -1.2416357411349916`}, {-1.6880705550228399`, 1.226455048497707, -0.7200947673382554}, {-1.2101389147770691`, 1.1584152234848248`, -0.15918384705313074`}}]}, { Polygon3DBox[{{-2.0090088308030825`, 1.4596303547167664`, -1.2416357411349916`}, {-0.9510565162951535, 1.3090169943749475`, 0.}, {-0.9762762810778459, 1.32832637257865, -0.3378390018022039}, {-1.4542079213236163`, 1.3963661975915318`, -0.8987499220873278}}], Polygon3DBox[{{-0.9510565162951535, 1.3090169943749475`, 0.}, {-0.42532540417601994`, 1.3090169943749475`, -0.8506508083520399}, {-0.738776415254312, 1.32832637257865, -0.7221218570282215}, {-0.9762762810778459, 1.32832637257865, -0.3378390018022039}}], Polygon3DBox[{{-0.42532540417601994`, 1.3090169943749475`, -0.8506508083520399}, {-2.0090088308030825`, 1.4596303547167664`, -1.2416357411349916`}, {-1.4542079213236163`, 1.3963661975915318`, -0.8987499220873278}, {-0.738776415254312, 1.32832637257865, -0.7221218570282215}}]}}, {{ Polygon3DBox[{{-2.009008830803083, -1.459630354716766, \ -1.2416357411349919`}, {-1.3763819204711736`, 0., -0.8506508083520399}, {-1.3129527650155413`, -0.2921427006095566, \ -1.0111919696775946`}, {-1.598742977648303, -0.9515330341963464, \ -1.1878200347367007`}}], Polygon3DBox[{{-1.3763819204711736`, 0., -0.8506508083520399}, {-0.6881909602355868, -0.5, \ -1.3763819204711736`}, {-1.0020614044907654`, -0.5180184956202534, \ -1.2486918355011287`}, {-1.3129527650155413`, -0.2921427006095566, \ -1.0111919696775946`}}], Polygon3DBox[{{-0.6881909602355868, -0.5, -1.3763819204711736`}, \ {-2.009008830803083, -1.459630354716766, -1.2416357411349919`}, \ {-1.598742977648303, -0.9515330341963464, -1.1878200347367007`}, \ {-1.0020614044907654`, -0.5180184956202534, -1.2486918355011287`}}]}, { Polygon3DBox[{{-2.009008830803083, -1.459630354716766, \ -1.2416357411349919`}, {-0.6881909602355868, -0.5, -1.3763819204711736`}, \ {-0.8023188692159292, -0.7929405099216134, -1.2486918355011287`}, \ {-1.3990004423734672`, -1.2264550484977064`, -1.1878200347367007`}}], Polygon3DBox[{{-0.6881909602355868, -0.5, -1.3763819204711736`}, \ {-0.42532540417601994`, -1.3090169943749475`, -0.8506508083520399}, \ {-0.6835689363041622, -1.1584152234848246`, -1.0111919696775946`}, \ {-0.8023188692159292, -0.7929405099216134, -1.2486918355011287`}}], Polygon3DBox[{{-0.42532540417601994`, -1.3090169943749475`, \ -0.8506508083520399}, {-2.009008830803083, -1.459630354716766, \ -1.2416357411349919`}, {-1.3990004423734672`, -1.2264550484977064`, \ -1.1878200347367007`}, {-0.6835689363041622, -1.1584152234848246`, \ -1.0111919696775946`}}]}, { Polygon3DBox[{{-2.009008830803083, -1.459630354716766, \ -1.2416357411349919`}, {-0.42532540417601994`, -1.3090169943749475`, \ -0.8506508083520399}, {-0.7387764152543119, -1.32832637257865, \ -0.7221218570282216}, {-1.4542079213236163`, -1.3963661975915316`, \ -0.8987499220873277}}], Polygon3DBox[{{-0.42532540417601994`, -1.3090169943749475`, \ -0.8506508083520399}, {-0.9510565162951535, -1.3090169943749475`, 0.}, {-0.9762762810778459, -1.32832637257865, -0.33783900180220416`}, \ {-0.7387764152543119, -1.32832637257865, -0.7221218570282216}}], Polygon3DBox[{{-0.9510565162951535, -1.3090169943749475`, 0.}, {-2.009008830803083, -1.459630354716766, -1.2416357411349919`}, \ {-1.4542079213236163`, -1.3963661975915316`, -0.8987499220873277}, \ {-0.9762762810778459, -1.32832637257865, -0.33783900180220416`}}]}, { Polygon3DBox[{{-2.009008830803083, -1.459630354716766, \ -1.2416357411349919`}, {-0.9510565162951535, -1.3090169943749475`, 0.}, {-1.2101389147770691`, -1.1584152234848246`, \ -0.1591838470531307}, {-1.6880705550228394`, -1.2264550484977061`, \ -0.7200947673382543}}], Polygon3DBox[{{-0.9510565162951535, -1.3090169943749475`, 0.}, {-1.5388417685876268`, -0.5, 0.}, {-1.4756718370913198`, -0.7929405099216135, \ -0.15918384705313068`}, {-1.2101389147770691`, -1.1584152234848246`, \ -0.1591838470531307}}], Polygon3DBox[{{-1.5388417685876268`, -0.5, 0.}, {-2.009008830803083, -1.459630354716766, -1.2416357411349919`}, \ {-1.6880705550228394`, -1.2264550484977061`, -0.7200947673382543}, \ {-1.4756718370913198`, -0.7929405099216135, -0.15918384705313068`}}]}, { Polygon3DBox[{{-2.009008830803083, -1.459630354716766, \ -1.2416357411349919`}, {-1.5388417685876268`, -0.5, 0.}, {-1.5649994144658566`, -0.5180184956202534, -0.3378390018022041}, \ {-1.7773981323973755`, -0.9515330341963446, -0.8987499220873268}}], Polygon3DBox[{{-1.5388417685876268`, -0.5, 0.}, {-1.3763819204711736`, 0., -0.8506508083520399}, {-1.4916079197646148`, -0.2921427006095568, \ -0.7221218570282215}, {-1.5649994144658566`, -0.5180184956202534, \ -0.3378390018022041}}], Polygon3DBox[{{-1.3763819204711736`, 0., -0.8506508083520399}, {-2.009008830803083, -1.459630354716766, \ -1.2416357411349919`}, {-1.7773981323973755`, -0.9515330341963446, \ -0.8987499220873268}, {-1.4916079197646148`, -0.2921427006095568, \ -0.7221218570282215}}]}}}}, Boxed->False, ImageSize->{360., 413.99401077214117`}, ViewAngle->0.2798302538458737, ViewPoint->{1.3, -2.4, 2.}, ViewVertical->{0., 0., 1.}]], "Output",ExpressionUUID->"049b5a50-3939-497d-\ 8f6b-29dbcfae3baa"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Faces", "Section",ExpressionUUID->"b80e932c-4599-4500-bdb3-dc1559db2f2a"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Show", "[", RowBox[{"GraphicsArray", "[", RowBox[{"partition", "[", RowBox[{ RowBox[{"PolyhedronFaces", "[", RowBox[{"poly", "//", "N"}], "]"}], ",", "10"}], "]"}], "]"}], "]"}]], "Input",ExpressionUUID->"35a4bf95-4113-4ef9-9f49-d1b048c27b3b"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: .4148 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.0238095 0.0952381 0.00987612 0.0952381 [ [ 0 0 0 0 ] [ 1 .4148 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 .4148 L 0 .4148 L closepath clip newpath % Start of sub-graphic p 0.0238095 0.00987612 0.111184 0.101747 MathSubStart %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.794302 0.588604 0.0226442 0.588604 [ [ 0 0 0 0 ] [ 1 .95106 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 .95106 L 0 .95106 L closepath clip newpath 0 g .7943 .02264 m .2057 .02264 L .02381 .58244 L .5 .92841 L .97619 .58244 L F MathSubEnd P % End of sub-graphic % Start of sub-graphic p 0.119921 0.00987612 0.207296 0.101747 MathSubStart %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.794302 0.588604 0.0226442 0.588604 [ [ 0 0 0 0 ] [ 1 .95106 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 .95106 L 0 .95106 L closepath clip newpath 0 g .7943 .02264 m .2057 .02264 L .02381 .58244 L .5 .92841 L .97619 .58244 L F MathSubEnd P % End of sub-graphic % Start of sub-graphic p 0.0238095 0.110934 0.111184 0.202805 MathSubStart %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.5 0.952381 0.0206197 0.952381 [ [ 0 0 0 0 ] [ 1 .86603 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 .86603 L 0 .86603 L closepath clip newpath 0 g .5 .02062 m .02381 .84541 L .97619 .84541 L F MathSubEnd P % End of sub-graphic % Start of sub-graphic p 0.119921 0.110934 0.207296 0.202805 MathSubStart %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.5 0.952381 0.0206197 0.952381 [ [ 0 0 0 0 ] [ 1 .86603 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 .86603 L 0 .86603 L closepath clip newpath 0 g .5 .02062 m .02381 .84541 L .97619 .84541 L F MathSubEnd P % End of sub-graphic % Start of sub-graphic p 0.216033 0.110934 0.303408 0.202805 MathSubStart %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.97619 0.952381 0.0206197 0.952381 [ [ 0 0 0 0 ] [ 1 .86603 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 .86603 L 0 .86603 L closepath clip newpath 0 g .97619 .02062 m .02381 .02062 L .5 .84541 L F MathSubEnd P % End of sub-graphic % Start of sub-graphic p 0.312145 0.110934 0.399519 0.202805 MathSubStart %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.0238095 0.952381 0.845406 0.952381 [ [ 0 0 0 0 ] [ 1 .86603 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 .86603 L 0 .86603 L closepath clip newpath 0 g .02381 .84541 m .97619 .84541 L .5 .02062 L F MathSubEnd P % End of sub-graphic % Start of sub-graphic p 0.408257 0.110934 0.495631 0.202805 MathSubStart %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.0238095 0.952381 0.845406 0.952381 [ [ 0 0 0 0 ] [ 1 .86603 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 .86603 L 0 .86603 L closepath clip newpath 0 g .02381 .84541 m .97619 .84541 L .5 .02062 L F MathSubEnd P % End of sub-graphic % Start of sub-graphic p 0.504369 0.110934 0.591743 0.202805 MathSubStart %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.97619 0.952381 0.0206197 0.952381 [ [ 0 0 0 0 ] [ 1 .86603 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 .86603 L 0 .86603 L closepath clip newpath 0 g .97619 .02062 m .02381 .02062 L .5 .84541 L F MathSubEnd P % End of sub-graphic % Start of sub-graphic p 0.600481 0.110934 0.687855 0.202805 MathSubStart %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.97619 0.952381 0.0206197 0.952381 [ [ 0 0 0 0 ] [ 1 .86603 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 .86603 L 0 .86603 L closepath clip newpath 0 g .97619 .02062 m .02381 .02062 L .5 .84541 L F MathSubEnd P % End of sub-graphic % Start of sub-graphic p 0.696592 0.110934 0.783967 0.202805 MathSubStart %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.205698 0.588604 0.928412 0.588604 [ [ 0 0 0 0 ] [ 1 .95106 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 .95106 L 0 .95106 L closepath clip newpath 0 g .2057 .92841 m .7943 .92841 L .97619 .36862 L .5 .02264 L .02381 .36862 L F MathSubEnd P % End of sub-graphic % Start of sub-graphic p 0.792704 0.110934 0.880079 0.202805 MathSubStart %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.205698 0.588604 0.928412 0.588604 [ [ 0 0 0 0 ] [ 1 .95106 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 .95106 L 0 .95106 L closepath clip newpath 0 g .2057 .92841 m .7943 .92841 L .97619 .36862 L .5 .02264 L .02381 .36862 L F MathSubEnd P % End of sub-graphic % Start of sub-graphic p 0.888816 0.110934 0.97619 0.202805 MathSubStart %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.205698 0.588604 0.928412 0.588604 [ [ 0 0 0 0 ] [ 1 .95106 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 .95106 L 0 .95106 L closepath clip newpath 0 g .2057 .92841 m .7943 .92841 L .97619 .36862 L .5 .02264 L .02381 .36862 L F MathSubEnd P % End of sub-graphic % Start of sub-graphic p 0.0238095 0.211992 0.111184 0.303863 MathSubStart %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.5 0.952381 0.0206197 0.952381 [ [ 0 0 0 0 ] [ 1 .86603 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 .86603 L 0 .86603 L closepath clip newpath 0 g .5 .02062 m .97619 .84541 L .02381 .84541 L F MathSubEnd P % End of sub-graphic % Start of sub-graphic p 0.119921 0.211992 0.207296 0.303863 MathSubStart %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.97619 0.588604 0.58244 0.588604 [ [ 0 0 0 0 ] [ 1 .95106 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 .95106 L 0 .95106 L closepath clip newpath 0 g .97619 .58244 m .5 .92841 L .02381 .58244 L .2057 .02264 L .7943 .02264 L F MathSubEnd P % End of sub-graphic % Start of sub-graphic p 0.216033 0.211992 0.303408 0.303863 MathSubStart %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.97619 0.588604 0.58244 0.588604 [ [ 0 0 0 0 ] [ 1 .95106 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 .95106 L 0 .95106 L closepath clip newpath 0 g .97619 .58244 m .5 .92841 L .02381 .58244 L .2057 .02264 L .7943 .02264 L F MathSubEnd P % End of sub-graphic % Start of sub-graphic p 0.312145 0.211992 0.399519 0.303863 MathSubStart %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.97619 0.588604 0.58244 0.588604 [ [ 0 0 0 0 ] [ 1 .95106 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 .95106 L 0 .95106 L closepath clip newpath 0 g .97619 .58244 m .5 .92841 L .02381 .58244 L .2057 .02264 L .7943 .02264 L F MathSubEnd P % End of sub-graphic % Start of sub-graphic p 0.408257 0.211992 0.495631 0.303863 MathSubStart %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.0238095 0.588604 0.368617 0.588604 [ [ 0 0 0 0 ] [ 1 .95106 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 .95106 L 0 .95106 L closepath clip newpath 0 g .02381 .36862 m .5 .02264 L .97619 .36862 L .7943 .92841 L .2057 .92841 L F MathSubEnd P % End of sub-graphic % Start of sub-graphic p 0.504369 0.211992 0.591743 0.303863 MathSubStart %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.0238095 0.588604 0.368617 0.588604 [ [ 0 0 0 0 ] [ 1 .95106 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 .95106 L 0 .95106 L closepath clip newpath 0 g .02381 .36862 m .5 .02264 L .97619 .36862 L .7943 .92841 L .2057 .92841 L F MathSubEnd P % End of sub-graphic % Start of sub-graphic p 0.600481 0.211992 0.687855 0.303863 MathSubStart %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.612413 0.618895 0.0250348 0.618895 [ [ 0 0 0 0 ] [ 1 1.05146 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 1.05146 L 0 1.05146 L closepath clip newpath 0 g .61241 .02503 m .97619 .52573 L .61241 1.02643 L .02381 .83518 L .02381 .21628 L F MathSubEnd P % End of sub-graphic % Start of sub-graphic p 0.696592 0.211992 0.783967 0.303863 MathSubStart %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.5 0.952381 0.845406 0.952381 [ [ 0 0 0 0 ] [ 1 .86603 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 .86603 L 0 .86603 L closepath clip newpath 0 g .5 .84541 m .97619 .02062 L .02381 .02062 L F MathSubEnd P % End of sub-graphic % Start of sub-graphic p 0.792704 0.211992 0.880079 0.303863 MathSubStart %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.5 0.952381 0.845406 0.952381 [ [ 0 0 0 0 ] [ 1 .86603 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 .86603 L 0 .86603 L closepath clip newpath 0 g .5 .84541 m .97619 .02062 L .02381 .02062 L F MathSubEnd P % End of sub-graphic % Start of sub-graphic p 0.888816 0.211992 0.97619 0.303863 MathSubStart %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.5 0.952381 0.0206197 0.952381 [ [ 0 0 0 0 ] [ 1 .86603 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 .86603 L 0 .86603 L closepath clip newpath 0 g .5 .02062 m .02381 .84541 L .97619 .84541 L F MathSubEnd P % End of sub-graphic % Start of sub-graphic p 0.0238095 0.31305 0.111184 0.404921 MathSubStart %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.97619 0.618895 0.835178 0.618895 [ [ 0 0 0 0 ] [ 1 1.05146 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 1.05146 L 0 1.05146 L closepath clip newpath 0 g .97619 .83518 m .97619 .21628 L .38759 .02503 L .02381 .52573 L .38759 1.02643 L F MathSubEnd P % End of sub-graphic % Start of sub-graphic p 0.119921 0.31305 0.207296 0.404921 MathSubStart %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.97619 0.952381 0.845406 0.952381 [ [ 0 0 0 0 ] [ 1 .86603 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 .86603 L 0 .86603 L closepath clip newpath 0 g .97619 .84541 m .02381 .84541 L .5 .02062 L F MathSubEnd P % End of sub-graphic % Start of sub-graphic p 0.216033 0.31305 0.303408 0.404921 MathSubStart %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.97619 0.952381 0.845406 0.952381 [ [ 0 0 0 0 ] [ 1 .86603 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 .86603 L 0 .86603 L closepath clip newpath 0 g .97619 .84541 m .02381 .84541 L .5 .02062 L F MathSubEnd P % End of sub-graphic % Start of sub-graphic p 0.312145 0.31305 0.399519 0.404921 MathSubStart %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.0238095 0.952381 0.0206197 0.952381 [ [ 0 0 0 0 ] [ 1 .86603 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 .86603 L 0 .86603 L closepath clip newpath 0 g .02381 .02062 m .97619 .02062 L .5 .84541 L F MathSubEnd P % End of sub-graphic % Start of sub-graphic p 0.408257 0.31305 0.495631 0.404921 MathSubStart %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.0238095 0.952381 0.0206197 0.952381 [ [ 0 0 0 0 ] [ 1 .86603 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 .86603 L 0 .86603 L closepath clip newpath 0 g .02381 .02062 m .97619 .02062 L .5 .84541 L F MathSubEnd P % End of sub-graphic % Start of sub-graphic p 0.504369 0.31305 0.591743 0.404921 MathSubStart %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.0238095 0.952381 0.0206197 0.952381 [ [ 0 0 0 0 ] [ 1 .86603 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 .86603 L 0 .86603 L closepath clip newpath 0 g .02381 .02062 m .97619 .02062 L .5 .84541 L F MathSubEnd P % End of sub-graphic % Start of sub-graphic p 0.600481 0.31305 0.687855 0.404921 MathSubStart %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.5 0.952381 0.0206197 0.952381 [ [ 0 0 0 0 ] [ 1 .86603 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 .86603 L 0 .86603 L closepath clip newpath 0 g .5 .02062 m .97619 .84541 L .02381 .84541 L F MathSubEnd P % End of sub-graphic % Start of sub-graphic p 0.696592 0.31305 0.783967 0.404921 MathSubStart %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.5 0.952381 0.845406 0.952381 [ [ 0 0 0 0 ] [ 1 .86603 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 .86603 L 0 .86603 L closepath clip newpath 0 g .5 .84541 m .02381 .02062 L .97619 .02062 L F MathSubEnd P % End of sub-graphic % Start of sub-graphic p 0.792704 0.31305 0.880079 0.404921 MathSubStart %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.5 0.952381 0.845406 0.952381 [ [ 0 0 0 0 ] [ 1 .86603 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 .86603 L 0 .86603 L closepath clip newpath 0 g .5 .84541 m .02381 .02062 L .97619 .02062 L F MathSubEnd P % End of sub-graphic % Start of sub-graphic p 0.888816 0.31305 0.97619 0.404921 MathSubStart %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.5 0.952381 0.0206197 0.952381 [ [ 0 0 0 0 ] [ 1 .86603 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 .86603 L 0 .86603 L closepath clip newpath 0 g .5 .02062 m .97619 .84541 L .02381 .84541 L F MathSubEnd P % End of sub-graphic % End of Graphics MathPictureEnd \ \>"], "Graphics", ImageSize->{411, 170.438}, ImageMargins->{{43, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}},ImageCache->GraphicsData["CompressedBitmap", "\<\ eJy1WstuXEUQHcfya+x5e962Z2ziJWLDArYg8Q4CEUAsWFhRpGSBQCEbBALB PsAevoCfDOnTrXN6aqrvzI2cLDyVqr51+lFdXVXd926ePnr43c3Txw9ulu8/ ufnh0eMHPy7f+/7JC9buTqOx80+j0fhv2Qj08xdk+oN//4Y/6T+3TPfCzzBg DUhB/mkmHwVuf4Mc1Jjye1HeJbdCPgnc7gZ5J1BTyj+JcnEr5LPAbW+QtwI1 p/zjKG+TWyE/C9yTDfJjUhXyc8o/inKgXgRuc4P8iFSFfEH5h1GOXi8D93CD /IBUhfyS8g+iHKO6Ctx9V94iqo/f5qj98cM+puX1ldX59iWr9u37NPz0AndE CvLPonwYfjqBOyEF+edRPg4/x4F7RgryL6IcXx0F7gUpyO9H+TT8HATukhTk X0b5PPzsBu5dUpB/HeVAbYgd/nfX4eHvV/Eb0K/Q56zRbziDEBWH0Pgm/MCS 7pPaI4V12AvUlUPN600GFh2mOq79hcwcDtUsrahp7BJ6dicwrknB0paEL0q1 IwFlrEzUJIMycwtlC0IVpdqc2CatQM0cKs5XZJg1gLJzNipKtc+xd83eEzWM UJjH/cC4JIVGZ4QqSuWSATUI1GmJ8vcilM0JVZTqdMCJYzySqH6EwpIdBsaC FJTNCFWUtkjpSGw7VC+DMsY5YqNxpdSoNSMV1Y1QUNYMjHNSUDYhVFHaIeUd GaLaGZTZByPOcrVUq4ERmG0tqhWh8KHZB+ANCVWU6tABlHFqohIUbL5N99Gm slNCFaUDUi0HYG1U3sEGZQNCFaXaOVgN46wOLBSad6m2S2X9VZ4nHZLqlKCW mVl4x7mocaVUlAe1ZoEDp4+j1bFUS7vcpCa+O3KhzMyPuC7jSqnWrwh1wTEn gzX2NKK1jSulssq+AyC/n0OZXaK9Nq6Uaq+hI8bbH1soL0qEsmNCFaXyIKcl qDN+u5bQTKisSaiiVH5x6ACsuVsvNoayI0IVpfL2Q6oVQMtCmTRqRmWHhCpK F5XtfCjTHyg7oIqidLnazkCtHY1e8gZl+1RRlCremDgT3XGhTPwDZXuEKkoV RU0d81mD8s5PKNslVFGq2HDmQK2FMV72CGV3CFWUKuKdU61XTcihzAENZSZS H27ZzovyMWYVO0ZuR9D02mkpPzXIWr7q3KrJafw7ct9mNzwHC2/mpWIw5b82 qBjRMoxhLgIFJ/lnVPEWp82s6Yh2bHYsrKDDL0z88mZU62V4UwdKlBcKwkYG 7NIW1pISTGVzns3K9QPAHFTmDCrui/MMapeT5fkXQJ1y2nTSo92MUMXdnjJv LajnykT1OW0KNMyhVPRhaQKVzRWh1G9jgfLCHVKeZ86hilmaSaLMSjaptut8 q/NmFqGUzXlQorxJPeJkVZ+xOVTx3D5ZnRizGrA2BXvF2CCVLrRzvBhLUE3H xvZJedOr4CqVLsA4IZTpt0AxWWa77q1CGacszTlUi5ZloJqcIkyWl68tCVUd u+bZnBd6e1BmVJdcoeqIPM/mvB0v0EOO4GAV6opQxUwi+sUsxeo4UAbAUPuE 6lBLRe1HKZaXZ3pQxgIFVZ1g5ilWy7ExA2CyNLXrcbKKaXOeYnlQ6vfBKtTF akf6NAGvGJBDDQnlmcVidVTGWyyorFjiSMGOtpwX6hp3ZFyUgcJ2nZMaUXMO NSZUMXfxsjSN1MvwVCNKwZ5SLM+PqSMtAqgjhxxfdQkuhe1y/97hp9s778bK QBVLhzmUDm2z4xUddfmhgTqjMRQLoimbU4qFsZi9MSXVJ5Q5Guc0hmKZN4c6 pzJjsHNSg9U1nXLVsJIIv4rF61RP0G7qO1Z0TgpTabI0UKc0hmJJPtV+lGJ5 9w2LVXsyWRq+6LJd8aIhh7qkMZhJeI3UhADaADpnsUK1rlRSmfAdZzquSZnc bEzzweifRRXvbol97fCmBNCukzGktOZ5HOb6188y+S2kdhOOG9zfM+4+ub9G rurq4P4cuQoRvg1UsfL8usNLyZYql9terHnJ9+2k6/OsS0MaobFor+BQvzCR EjDY55S72BimV0apX25JCRj26ay08bziUP0i0txCgTI+1St51S+NJShsozmh vAJdMVPatuCXsqIeewHQbcuOtcqYCUppLqCMP/aKrvWLs1MLhfGZU8arWtev bqesCIfSBRuZCAwqvLqYSbG8dmsJGAa8IJR3wVysXm17PTC2UBifiZa9y4z6 lx4JChaj1NDEOd4VTf2rnJSA6ZjG+F7yjqu6XcqK9LoH4zP3Wd7N3Uve8OWj ajmT4N1HvuS9Zb5WJ87Seres9W9jE5QsEFDGYL274/p3zAMLhVUz2xAqzLb2 Uiyv3VoCJm8BqC0qrvUv6fMETIeacZne64X6rxx6FgqJhzkIvDcZokaV7dYS MJ1XynF0vHkvTeq/SElZkU5hZW46tL33M/Xf2SQoxRbKRxWKeK+C6r8e6mRQ U0KZAMt761T/TVT+pGDIsZiw0XvBVf+lV4KCK+zR7kxYvO1btdt+8bb2NgUN fopcXV6D+0vkylzA/S1yFbKD+0fkgq6RGjV2/gcB2LpK\ \>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 410.}, {169.438, 0.}} -> \ {0., 0., 0., 0.}, {{10.4375, 46.125}, {165.375, 127.875}} -> {-1., 0., 0., \ 0.}, {{49.6875, 85.4375}, {165.375, 127.875}} -> {-3., 0., 0., 0.}, \ {{10.4375, 46.125}, {124.062, 86.5625}} -> {0., -1., 0., 0.}, {{49.6875, \ 85.4375}, {124.062, 86.5625}} -> {-1., -1., 0., 0.}, {{89., 124.688}, \ {124.062, 86.5625}} -> {-3., -1., 0., 0.}, {{128.25, 163.938}, {124.062, \ 86.5625}} -> {-3., -2., 0., 0.}, {{167.5, 203.188}, {124.062, 86.5625}} -> \ {-4., -2., 0., 0.}, {{206.75, 242.438}, {124.062, 86.5625}} -> {-7., -1., 0., \ 0.}, {{246., 281.688}, {124.062, 86.5625}} -> {-8., -1., 0., 0.}, {{285.25, \ 320.938}, {124.062, 86.5625}} -> {-13., -3., 0., 0.}, {{324.562, 360.25}, \ {124.062, 86.5625}} -> {-15., -3., 0., 0.}, {{363.812, 399.5}, {124.062, \ 86.5625}} -> {-17., -3., 0., 0.}, {{10.4375, 46.125}, {82.8125, 45.3125}} -> \ {0., -2., 0., 0.}, {{49.6875, 85.4375}, {82.8125, 45.3125}} -> {-4., -5., 0., \ 0.}, {{89., 124.688}, {82.8125, 45.3125}} -> {-5., -5., 0., 0.}, {{128.25, \ 163.938}, {82.8125, 45.3125}} -> {-7., -5., 0., 0.}, {{167.5, 203.188}, \ {82.8125, 45.3125}} -> {-8., -4., 0., 0.}, {{206.75, 242.438}, {82.8125, \ 45.3125}} -> {-9., -4., 0., 0.}, {{246., 281.688}, {82.8125, 45.3125}} -> \ {-12., -3., 0., 0.}, {{285.25, 320.938}, {82.8125, 45.3125}} -> {-8., -3., \ 0., 0.}, {{324.562, 360.25}, {82.8125, 45.3125}} -> {-10., -3., 0., 0.}, \ {{363.812, 399.5}, {82.8125, 45.3125}} -> {-11., -2., 0., 0.}, {{10.4375, \ 46.125}, {41.5625, 4.}} -> {-2., -7., 0., 0.}, {{49.6875, 85.4375}, {41.5625, \ 4.}} -> {-2., -4., 0., 0.}, {{89., 124.688}, {41.5625, 4.}} -> {-3., -4., 0., \ 0.}, {{128.25, 163.938}, {41.5625, 4.}} -> {-3., -3., 0., 0.}, {{167.5, \ 203.188}, {41.5625, 4.}} -> {-4., -3., 0., 0.}, {{206.75, 242.438}, {41.5625, \ 4.}} -> {-6., -3., 0., 0.}, {{246., 281.688}, {41.5625, 4.}} -> {-7., -3., \ 0., 0.}, {{285.25, 320.938}, {41.5625, 4.}} -> {-8., -4., 0., 0.}, {{324.562, \ 360.25}, {41.5625, 4.}} -> {-10., -4., 0., 0.}, {{363.812, 399.5}, {41.5625, \ 4.}} -> {-11., -3., 0., \ 0.}},ExpressionUUID->"e341c344-3074-4ed6-8cf0-191c026f891d"], Cell[BoxData[ TagBox[ RowBox[{"\[SkeletonIndicator]", "GraphicsArray", "\[SkeletonIndicator]"}], False, Editable->False]], "Output",ExpressionUUID->"4c724f7b-90ce-48d9-81cd-\ 63174cd87cff"] }, Open ]], Cell[CellGroupData[{ Cell["Triangular Faces", "Subsection",ExpressionUUID->"76151f32-fb84-46fe-b1b9-ddc9311f53b8"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Together", "//@", RowBox[{"FullSimplify", "[", RowBox[{"Norm", "[", RowBox[{ RowBox[{"Centroid", "[", RowBox[{ RowBox[{"Select", "[", RowBox[{"poly", ",", RowBox[{ RowBox[{ RowBox[{"Length", "[", RowBox[{"#", "[", RowBox[{"[", "1", "]"}], "]"}], "]"}], "\[Equal]", "3"}], "&"}]}], "]"}], "[", RowBox[{"[", RowBox[{"1", ",", "1"}], "]"}], "]"}], "]"}], "[", RowBox[{"[", "1", "]"}], "]"}], "]"}], "]"}]}]], "Input",ExpressionUUID->\ "8d4af852-d20f-424b-8e24-c7d9d65203cd"], Cell[BoxData[ SqrtBox[ RowBox[{ FractionBox["1", "6"], " ", RowBox[{"(", RowBox[{"7", "+", RowBox[{"3", " ", SqrtBox["5"]}]}], ")"}]}]]], "Output",ExpressionUUID->"0a677a3d-470d-\ 4264-bbdc-05f2c96782b4"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["Pentagonal Faces", "Subsection",ExpressionUUID->"5ede71de-1a29-46df-ac36-8a00ab46cf57"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Together", "//@", RowBox[{"Simplify", "[", RowBox[{"Norm", "[", RowBox[{ RowBox[{"Centroid", "[", RowBox[{ RowBox[{"Select", "[", RowBox[{"poly", ",", RowBox[{ RowBox[{ RowBox[{"Length", "[", RowBox[{"#", "[", RowBox[{"[", "1", "]"}], "]"}], "]"}], "\[Equal]", "5"}], "&"}]}], "]"}], "[", RowBox[{"[", RowBox[{"1", ",", "1"}], "]"}], "]"}], "]"}], "[", RowBox[{"[", "1", "]"}], "]"}], "]"}], "]"}]}]], "Input",ExpressionUUID->\ "20a710a7-8f4c-4576-8e20-eecff898c54d"], Cell[BoxData[ SqrtBox[ RowBox[{ FractionBox["1", "5"], " ", RowBox[{"(", RowBox[{"5", "+", RowBox[{"2", " ", SqrtBox["5"]}]}], ")"}]}]]], "Output",ExpressionUUID->"6582b82e-56ac-\ 46c4-9f77-3fbbad080f32"] }, Open ]] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Projections", "Section",ExpressionUUID->"1d5dcf8d-c0e2-46d0-ace4-7e682f7b601e"], Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{"PolyhedronProjectionGraph", "[", RowBox[{ RowBox[{"PolyhedronData", "[", RowBox[{"\"\\"", ",", "\"\\""}], "]"}], ",", "#", ",", RowBox[{"\"\\"", "\[Rule]", "FullSimplify"}]}], "]"}], "&"}], "/@", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"0", ",", "1", ",", "0", ",", RowBox[{"\[Pi]", "-", RowBox[{"ArcTan", "[", RowBox[{ FractionBox["1", "2"], "-", FractionBox[ SqrtBox["5"], "2"]}], "]"}]}]}], "}"}], ",", RowBox[{"{", RowBox[{"1", ",", ".01", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ FractionBox["3", "4"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", SqrtBox["5"]}], ")"}]}], ",", RowBox[{ FractionBox["1", "2"], " ", SqrtBox[ RowBox[{ FractionBox["1", "2"], " ", RowBox[{"(", RowBox[{"5", "+", SqrtBox["5"]}], ")"}]}]]}], ",", "1", ",", RowBox[{ RowBox[{"\[Pi]", "/", "2"}], "-", RowBox[{"ArcTan", "[", RowBox[{ SqrtBox["2"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "2"}], "+", SqrtBox["5"]}], ")"}]}], "]"}]}]}], "}"}], ",", RowBox[{"{", RowBox[{"1", ",", "0", ",", "1"}], "}"}], ",", "\[IndentingNewLine]", RowBox[{"{", RowBox[{ RowBox[{ FractionBox["1", "8"], " ", RowBox[{"(", RowBox[{"1", "+", SqrtBox["5"]}], ")"}]}], ",", SqrtBox[ RowBox[{ FractionBox["25", "32"], "+", FractionBox[ RowBox[{"11", " ", SqrtBox["5"]}], "32"]}]], ",", RowBox[{"-", "1"}], ",", RowBox[{"\[Pi]", "-", RowBox[{"ArcTan", "[", SqrtBox[ RowBox[{ FractionBox["2", "15"], " ", RowBox[{"(", RowBox[{"7", "-", RowBox[{"3", " ", SqrtBox["5"]}]}], ")"}]}]], "]"}]}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", SqrtBox[ RowBox[{ FractionBox["1", "30"], " ", RowBox[{"(", RowBox[{"5", "+", SqrtBox["5"]}], ")"}]}]]}], ",", SqrtBox[ RowBox[{ FractionBox["1", "6"], " ", RowBox[{"(", RowBox[{"3", "-", SqrtBox["5"]}], ")"}]}]], ",", SqrtBox[ RowBox[{ FractionBox["1", "15"], " ", RowBox[{"(", RowBox[{"5", "+", RowBox[{"2", " ", SqrtBox["5"]}]}], ")"}]}]], ",", RowBox[{"ArcTan", "[", SqrtBox[ RowBox[{ FractionBox["1", "6"], " ", RowBox[{"(", RowBox[{"7", "-", RowBox[{"3", " ", SqrtBox["5"]}]}], ")"}]}]], "]"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", "0", ",", "1"}], "}"}]}], "}"}]}]], "Input", CellLabel->"In[75]:=",ExpressionUUID->"3c09d264-ef62-4ade-a739-1421a2848aca"], Cell[BoxData[ RowBox[{"{", RowBox[{ GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30}, { Null, {{1, 5}, {1, 15}, {1, 18}, {1, 27}, {2, 6}, {2, 16}, {2, 19}, { 2, 28}, {3, 9}, {3, 12}, {3, 17}, {3, 27}, {4, 10}, {4, 13}, {4, 17}, {4, 28}, {5, 7}, {5, 15}, {5, 29}, {6, 8}, {6, 16}, {6, 30}, {7, 8}, {7, 14}, {7, 29}, {8, 14}, {8, 30}, {9, 15}, {9, 17}, {9, 22}, { 10, 16}, {10, 17}, {10, 23}, {11, 12}, {11, 13}, {11, 20}, {11, 21}, {12, 13}, {12, 27}, {13, 28}, {14, 22}, {14, 23}, {15, 22}, {16, 23}, {18, 20}, {18, 25}, {18, 27}, {19, 21}, {19, 26}, {19, 28}, { 20, 21}, {20, 25}, {21, 26}, {22, 23}, {24, 25}, {24, 26}, {24, 29}, {24, 30}, {25, 29}, {26, 30}}}, { VertexCoordinates -> {{0, 0}, {0, 0}, { Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2])}, { Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2])}, { Rational[1, 4] (-1 - 5^Rational[1, 2]), Rational[1, 2]}, {Rational[1, 4] (-1 - 5^Rational[1, 2]), Rational[1, 2]}, { Rational[1, 4] (-3 - 5^Rational[1, 2]), Rational[1, 4] (1 + 5^Rational[1, 2])}, { Rational[1, 4] (-3 - 5^Rational[1, 2]), Rational[1, 4] (1 + 5^Rational[1, 2])}, { Rational[-1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2])}, { Rational[-1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2])}, { Rational[1, 2] (1 + 5^Rational[1, 2]), 0}, { Rational[1, 4] (3 + 5^Rational[1, 2]), Rational[1, 4] (-1 - 5^Rational[1, 2])}, { Rational[1, 4] (3 + 5^Rational[1, 2]), Rational[1, 4] (-1 - 5^Rational[1, 2])}, { Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, { Rational[1, 4] (-1 - 5^Rational[1, 2]), Rational[-1, 2]}, {Rational[1, 4] (-1 - 5^Rational[1, 2]), Rational[-1, 2]}, {0, Rational[1, 2] (-1 - 5^Rational[1, 2])}, { Rational[1, 4] (1 + 5^Rational[1, 2]), Rational[1, 2]}, {Rational[1, 4] (1 + 5^Rational[1, 2]), Rational[1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2]), Rational[1, 4] (1 + 5^Rational[1, 2])}, { Rational[1, 4] (3 + 5^Rational[1, 2]), Rational[1, 4] (1 + 5^Rational[1, 2])}, { Rational[1, 4] (-3 - 5^Rational[1, 2]), Rational[1, 4] (-1 - 5^Rational[1, 2])}, { Rational[1, 4] (-3 - 5^Rational[1, 2]), Rational[1, 4] (-1 - 5^Rational[1, 2])}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2])}, { Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])}, { Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])}, { Rational[1, 4] (1 + 5^Rational[1, 2]), Rational[-1, 2]}, {Rational[1, 4] (1 + 5^Rational[1, 2]), Rational[-1, 2]}, { Rational[-1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])}, { Rational[-1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])}}}]]}, TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData[" 1:eJxTTMoPSmViYGCQA2IQTRx4YB/y6/TZ3R+/7Efnr/gyfXb545dwcXQ+mjoM PlTdfjTz96Oq+2kPcwlUHG4POh+qfj9MPZp70N2Lpu4nurvs0flo9uHi70dz H5q9cPswzMVlD5r74Xy08EIPT3sAew3njA== "], { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 5}, {1, 15}, {1, 18}, {1, 27}, {2, 6}, {2, 16}, {2, 19}, {2, 28}, {3, 9}, {3, 12}, {3, 17}, {3, 27}, {4, 10}, {4, 13}, {4, 17}, {4, 28}, {5, 7}, {5, 15}, {5, 29}, {6, 8}, {6, 16}, {6, 30}, {7, 8}, {7, 14}, {7, 29}, {8, 14}, {8, 30}, {9, 15}, {9, 17}, {9, 22}, {10, 16}, {10, 17}, {10, 23}, {11, 12}, { 11, 13}, {11, 20}, {11, 21}, {12, 13}, {12, 27}, {13, 28}, {14, 22}, {14, 23}, {15, 22}, {16, 23}, {18, 20}, {18, 25}, {18, 27}, { 19, 21}, {19, 26}, {19, 28}, {20, 21}, {20, 25}, {21, 26}, {22, 23}, {24, 25}, {24, 26}, {24, 29}, {24, 30}, {25, 29}, {26, 30}}, 0.0319088348808545]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.0319088348808545], DiskBox[2, 0.0319088348808545], DiskBox[3, 0.0319088348808545], DiskBox[4, 0.0319088348808545], DiskBox[5, 0.0319088348808545], DiskBox[6, 0.0319088348808545], DiskBox[7, 0.0319088348808545], DiskBox[8, 0.0319088348808545], DiskBox[9, 0.0319088348808545], DiskBox[10, 0.0319088348808545], DiskBox[11, 0.0319088348808545], DiskBox[12, 0.0319088348808545], DiskBox[13, 0.0319088348808545], DiskBox[14, 0.0319088348808545], DiskBox[15, 0.0319088348808545], DiskBox[16, 0.0319088348808545], DiskBox[17, 0.0319088348808545], DiskBox[18, 0.0319088348808545], DiskBox[19, 0.0319088348808545], DiskBox[20, 0.0319088348808545], DiskBox[21, 0.0319088348808545], DiskBox[22, 0.0319088348808545], DiskBox[23, 0.0319088348808545], DiskBox[24, 0.0319088348808545], DiskBox[25, 0.0319088348808545], DiskBox[26, 0.0319088348808545], DiskBox[27, 0.0319088348808545], DiskBox[28, 0.0319088348808545], DiskBox[29, 0.0319088348808545], DiskBox[30, 0.0319088348808545]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->{ "NetworkGraphics", FrontEnd`GraphicsHighlightColor -> Hue[0.8, 1., 0.6]}, FormatType->TraditionalForm, FrameTicks->None], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30}, { Null, {{1, 5}, {1, 15}, {1, 18}, {1, 27}, {2, 6}, {2, 16}, {2, 19}, { 2, 28}, {3, 9}, {3, 12}, {3, 17}, {3, 27}, {4, 10}, {4, 13}, {4, 17}, {4, 28}, {5, 7}, {5, 15}, {5, 29}, {6, 8}, {6, 16}, {6, 30}, {7, 8}, {7, 14}, {7, 29}, {8, 14}, {8, 30}, {9, 15}, {9, 17}, {9, 22}, { 10, 16}, {10, 17}, {10, 23}, {11, 12}, {11, 13}, {11, 20}, {11, 21}, {12, 13}, {12, 27}, {13, 28}, {14, 22}, {14, 23}, {15, 22}, {16, 23}, {18, 20}, {18, 25}, {18, 27}, {19, 21}, {19, 26}, {19, 28}, { 20, 21}, {20, 25}, {21, 26}, {22, 23}, {24, 25}, {24, 26}, {24, 29}, {24, 30}, {25, 29}, {26, 30}}}, { VertexLabels -> {"Name"}, VertexCoordinates -> {{Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, { Rational[1, 2] (1 + 5^Rational[1, 2]), 0}, { Rational[1, 4] (-1 - 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Rational[1, 4] (1 + 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Rational[1, 4] (-3 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 2], (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[1, 2], (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Rational[1, 4] (1 + 5^Rational[1, 2]), Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, {0, Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Rational[-1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { 0, (Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, { Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, { 0, -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, { Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, { Rational[-1, 2], 0}, { Rational[1, 2], 0}, { Rational[-1, 2], 0}, { Rational[1, 2], 0}, { 0, (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[1, 4] (-1 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 4] (1 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Rational[1, 4] (3 + 5^Rational[1, 2]), Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Rational[1, 4] (-1 - 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Rational[1, 4] (1 + 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}}}]]}, TagBox[GraphicsGroupBox[{ {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[CompressedData[" 1:eJydlDFuwkAQRUegVOQSuQVFpOlyAMQJIqWmoIhyA26QggsEcQSKPQDiDpYC hUUVyUIiFZFsL/KbHS9hJRfrP/P/rP9fP73OJm9DEXn+ewbN81V9Lt+/z0Ga Nf3d7jY/VTgMX0aL8VE9vN3fi+9r/tDgClyhb3Dw/xvv6pfhYz1/XD2c4t7D a5bC1HdxEQ9Pn79U1HM+hb6pz+gr9CM//cb5lDj9TeelZL+CXz2c/qXzEM9j 5iV/Ghfxzsv503ymX9HPfeD37ubzinv56eIF++mneriXD/DH/nZRn3ljfwYP gtWvTz3yF+79Yj3z7/hp5qPf7Xv6yX76cWe/yUvuPnp5cPRNXnL3sd9P6583 P+upfxt/zLOm+Q2uGdz8L3L32/v/UY/9F2rE698= "], 0.0319088348808545]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[ 0.7]}], {DiskBox[{-1.618033988749895, 0.}, 0.0319088348808545], InsetBox["1", Offset[{2, 2}, {-1.5861251538690404, 0.0319088348808545}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{1.618033988749895, 0.}, 0.0319088348808545], InsetBox["2", Offset[{2, 2}, {1.6499428236307494, 0.0319088348808545}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{-0.8090169943749475, -1.3763819204711736`}, 0.0319088348808545], InsetBox["3", Offset[{2, 2}, {-0.777108159494093, -1.344473085590319}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{0.8090169943749475, -1.3763819204711736`}, 0.0319088348808545], InsetBox["4", Offset[{2, 2}, {0.840925829255802, -1.344473085590319}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{-1.3090169943749475`, 0.85065080835204}, 0.0319088348808545], InsetBox["5", Offset[{2, 2}, {-1.277108159494093, 0.8825596432328945}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{1.3090169943749475`, 0.85065080835204}, 0.0319088348808545], InsetBox["6", Offset[{2, 2}, {1.340925829255802, 0.8825596432328945}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{-0.5, 1.3763819204711736`}, 0.0319088348808545], InsetBox["7", Offset[{2, 2}, {-0.4680911651191455, 1.408290755352028}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{0.5, 1.3763819204711736`}, 0.0319088348808545], InsetBox["8", Offset[{2, 2}, {0.5319088348808545, 1.408290755352028}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{-0.8090169943749475, -0.8506508083520399}, 0.0319088348808545], InsetBox["9", Offset[{2, 2}, {-0.777108159494093, -0.8187419734711854}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{0.8090169943749475, -0.8506508083520399}, 0.0319088348808545], InsetBox["10", Offset[{2, 2}, {0.840925829255802, -0.8187419734711854}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{0., -0.8506508083520399}, 0.0319088348808545], InsetBox["11", Offset[{2, 2}, {0.0319088348808545, -0.8187419734711854}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{-0.5, -1.3763819204711736`}, 0.0319088348808545], InsetBox["12", Offset[{2, 2}, {-0.4680911651191455, -1.344473085590319}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{0.5, -1.3763819204711736`}, 0.0319088348808545], InsetBox["13", Offset[{2, 2}, {0.5319088348808545, -1.344473085590319}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{0., 0.85065080835204}, 0.0319088348808545], InsetBox["14", Offset[{2, 2}, {0.0319088348808545, 0.8825596432328945}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{-1.3090169943749475`, 0.}, 0.0319088348808545], InsetBox["15", Offset[{2, 2}, {-1.277108159494093, 0.0319088348808545}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{1.3090169943749475`, 0.}, 0.0319088348808545], InsetBox["16", Offset[{2, 2}, {1.340925829255802, 0.0319088348808545}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{0., -1.3763819204711736`}, 0.0319088348808545], InsetBox["17", Offset[{2, 2}, {0.0319088348808545, -1.344473085590319}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{-1.3090169943749475`, 0.}, 0.0319088348808545], InsetBox["18", Offset[{2, 2}, {-1.277108159494093, 0.0319088348808545}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{1.3090169943749475`, 0.}, 0.0319088348808545], InsetBox["19", Offset[{2, 2}, {1.340925829255802, 0.0319088348808545}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, {DiskBox[{-0.5, 0.}, 0.0319088348808545], InsetBox["20", Offset[{2, 2}, {-0.4680911651191455, 0.0319088348808545}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, {DiskBox[{0.5, 0.}, 0.0319088348808545], InsetBox["21", Offset[{2, 2}, {0.5319088348808545, 0.0319088348808545}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, {DiskBox[{-0.5, 0.}, 0.0319088348808545], InsetBox["22", Offset[{2, 2}, {-0.4680911651191455, 0.0319088348808545}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, {DiskBox[{0.5, 0.}, 0.0319088348808545], InsetBox["23", Offset[{2, 2}, {0.5319088348808545, 0.0319088348808545}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{0., 1.3763819204711736`}, 0.0319088348808545], InsetBox["24", Offset[{2, 2}, {0.0319088348808545, 1.408290755352028}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{-0.8090169943749475, 0.85065080835204}, 0.0319088348808545], InsetBox["25", Offset[{2, 2}, {-0.777108159494093, 0.8825596432328945}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{0.8090169943749475, 0.85065080835204}, 0.0319088348808545], InsetBox["26", Offset[{2, 2}, {0.840925829255802, 0.8825596432328945}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{-1.3090169943749475`, -0.8506508083520399}, 0.0319088348808545], InsetBox["27", Offset[{2, 2}, {-1.277108159494093, -0.8187419734711854}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{1.3090169943749475`, -0.8506508083520399}, 0.0319088348808545], InsetBox["28", Offset[{2, 2}, {1.340925829255802, -0.8187419734711854}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{-0.8090169943749475, 1.3763819204711736`}, 0.0319088348808545], InsetBox["29", Offset[{2, 2}, {-0.777108159494093, 1.408290755352028}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{0.8090169943749475, 1.3763819204711736`}, 0.0319088348808545], InsetBox["30", Offset[{2, 2}, {0.840925829255802, 1.408290755352028}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}}}], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->{ "NetworkGraphics", FrontEnd`GraphicsHighlightColor -> Hue[0.8, 1., 0.6]}, FormatType->TraditionalForm, FrameTicks->None], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30}, { Null, {{1, 5}, {1, 15}, {1, 18}, {1, 27}, {2, 6}, {2, 16}, {2, 19}, { 2, 28}, {3, 9}, {3, 12}, {3, 17}, {3, 27}, {4, 10}, {4, 13}, {4, 17}, {4, 28}, {5, 7}, {5, 15}, {5, 29}, {6, 8}, {6, 16}, {6, 30}, {7, 8}, {7, 14}, {7, 29}, {8, 14}, {8, 30}, {9, 15}, {9, 17}, {9, 22}, { 10, 16}, {10, 17}, {10, 23}, {11, 12}, {11, 13}, {11, 20}, {11, 21}, {12, 13}, {12, 27}, {13, 28}, {14, 22}, {14, 23}, {15, 22}, {16, 23}, {18, 20}, {18, 25}, {18, 27}, {19, 21}, {19, 26}, {19, 28}, { 20, 21}, {20, 25}, {21, 26}, {22, 23}, {24, 25}, {24, 26}, {24, 29}, {24, 30}, {25, 29}, {26, 30}}}, { VertexCoordinates -> {{ Rational[1, 4] (3 + 5^Rational[1, 2]), Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (-3 - 5^Rational[1, 2]), Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { 0, Rational[1, 2] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (-3 - 5^Rational[1, 2]), Rational[1, 4] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (1 + 5^Rational[1, 2]), 0}, { Rational[-1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2]), Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[ 1, 2], (Rational[9, 8] + Rational[1, 2] 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[1, 4] (-1 - 5^Rational[1, 2]), Rational[1, 4] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 4] (-1 - 5^Rational[1, 2]), Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[1, 4] (-3 - 5^Rational[1, 2]), Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (1 + 5^Rational[1, 2]), Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2]), Rational[1, 4] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (-1 - 5^Rational[1, 2]), Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2], (Rational[9, 8] + Rational[1, 2] 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (1 + 5^Rational[1, 2]), Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (-3 - 5^Rational[1, 2]), Rational[-1, 4] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { 0, Rational[-1, 2] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (-1 - 5^Rational[1, 2]), Rational[-1, 4] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 4] (1 + 5^Rational[1, 2]), Rational[1, 4] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { 0, Rational[1, 2] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[ 1, 2], (Rational[-1, 2] 2^Rational[-1, 2]) (2 + 5^Rational[1, 2])}, { Rational[1, 4] (1 + 5^Rational[1, 2]), Rational[-1, 4] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 2], Rational[-1, 2] (Rational[9, 2] + 2 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, { Rational[1, 4] (3 + 5^Rational[1, 2]), Rational[-1, 4] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { 0, Rational[-1, 2] (3 + 5^Rational[1, 2])^Rational[1, 2]}}}]]}, TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData[" 1:eJxTTMoPSmViYGCQA2IQHfLr9NndH7/Y36gy5Rf6cdoeyt8P5e9ngII5f3i2 B/t9gss3z/J5tWjeW/sVX6bPLn/8054BBTzYf8a6Pm3egmv70cyHmvfAHiYP 4084vSag+tt3qHkv95vKHOOrLP8C50Psf7QfzXx098LU20PVw+TtUd0LN88e Zh6a/TD9+9H8ix4e+9HcC+Pbw9yPHn4w//ZD7ENXvx/NPejhBQtvuDvQ/Ifh PgBKcfCL "], { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 5}, {1, 15}, {1, 18}, {1, 27}, {2, 6}, {2, 16}, {2, 19}, {2, 28}, {3, 9}, {3, 12}, {3, 17}, {3, 27}, {4, 10}, {4, 13}, {4, 17}, {4, 28}, {5, 7}, {5, 15}, {5, 29}, {6, 8}, {6, 16}, {6, 30}, {7, 8}, {7, 14}, {7, 29}, {8, 14}, {8, 30}, {9, 15}, {9, 17}, {9, 22}, {10, 16}, {10, 17}, {10, 23}, {11, 12}, { 11, 13}, {11, 20}, {11, 21}, {12, 13}, {12, 27}, {13, 28}, {14, 22}, {14, 23}, {15, 22}, {16, 23}, {18, 20}, {18, 25}, {18, 27}, { 19, 21}, {19, 26}, {19, 28}, {20, 21}, {20, 25}, {21, 26}, {22, 23}, {24, 25}, {24, 26}, {24, 29}, {24, 30}, {25, 29}, {26, 30}}, 0.0319088348808545]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.0319088348808545], DiskBox[2, 0.0319088348808545], DiskBox[3, 0.0319088348808545], DiskBox[4, 0.0319088348808545], DiskBox[5, 0.0319088348808545], DiskBox[6, 0.0319088348808545], DiskBox[7, 0.0319088348808545], DiskBox[8, 0.0319088348808545], DiskBox[9, 0.0319088348808545], DiskBox[10, 0.0319088348808545], DiskBox[11, 0.0319088348808545], DiskBox[12, 0.0319088348808545], DiskBox[13, 0.0319088348808545], DiskBox[14, 0.0319088348808545], DiskBox[15, 0.0319088348808545], DiskBox[16, 0.0319088348808545], DiskBox[17, 0.0319088348808545], DiskBox[18, 0.0319088348808545], DiskBox[19, 0.0319088348808545], DiskBox[20, 0.0319088348808545], DiskBox[21, 0.0319088348808545], DiskBox[22, 0.0319088348808545], DiskBox[23, 0.0319088348808545], DiskBox[24, 0.0319088348808545], DiskBox[25, 0.0319088348808545], DiskBox[26, 0.0319088348808545], DiskBox[27, 0.0319088348808545], DiskBox[28, 0.0319088348808545], DiskBox[29, 0.0319088348808545], DiskBox[30, 0.0319088348808545]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->{ "NetworkGraphics", FrontEnd`GraphicsHighlightColor -> Hue[0.8, 1., 0.6]}, FormatType->TraditionalForm, FrameTicks->None], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30}, { Null, {{1, 5}, {1, 15}, {1, 18}, {1, 27}, {2, 6}, {2, 16}, {2, 19}, { 2, 28}, {3, 9}, {3, 12}, {3, 17}, {3, 27}, {4, 10}, {4, 13}, {4, 17}, {4, 28}, {5, 7}, {5, 15}, {5, 29}, {6, 8}, {6, 16}, {6, 30}, {7, 8}, {7, 14}, {7, 29}, {8, 14}, {8, 30}, {9, 15}, {9, 17}, {9, 22}, { 10, 16}, {10, 17}, {10, 23}, {11, 12}, {11, 13}, {11, 20}, {11, 21}, {12, 13}, {12, 27}, {13, 28}, {14, 22}, {14, 23}, {15, 22}, {16, 23}, {18, 20}, {18, 25}, {18, 27}, {19, 21}, {19, 26}, {19, 28}, { 20, 21}, {20, 25}, {21, 26}, {22, 23}, {24, 25}, {24, 26}, {24, 29}, {24, 30}, {25, 29}, {26, 30}}}, { VertexCoordinates -> {{0, Rational[1, 2] (-1 - 5^Rational[1, 2])}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2])}, { Rational[1, 4] (13 + 19 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2])}, { Rational[1, 4] (13 + 19 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2])}, { Rational[-1, 4] (1 + 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2])}, { Rational[-1, 4] (1 + 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])}, { Rational[-1, 2] (Rational[1, 2] + 5^Rational[-1, 2])^ Rational[1, 2], Rational[-1, 2]}, { Rational[-1, 2] (Rational[1, 2] + 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 2]}, { Rational[1, 4] (17 + 31 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2])}, { Rational[1, 4] (17 + 31 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2])}, { Rational[-1, 2] (1 - 5^Rational[-1, 2])^Rational[1, 2], 0}, {(Rational[1, 8] + Rational[1, 4] 5^Rational[-1, 2])^ Rational[1, 2], Rational[-1, 2]}, {(Rational[1, 8] + Rational[1, 4] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 2]}, { Rational[1, 2] (1 - 5^Rational[-1, 2])^Rational[1, 2], 0}, { Rational[1, 4] (5 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2}, { Rational[1, 4] (5 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])}, {(Rational[5, 4] + Rational[11, 4] 5^Rational[-1, 2])^Rational[1, 2], 0}, { Rational[-1, 4] (5 + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2}, { Rational[-1, 4] (5 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])}, { Rational[-1, 2] (Rational[5, 2] + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2]}, { Rational[-1, 2] (Rational[5, 2] + 5^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2]}, {(Rational[5, 8] + Rational[1, 4] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 2]}, {(Rational[5, 8] + Rational[1, 4] 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2]}, { Rational[-1, 2] (5 + 11 5^Rational[-1, 2])^Rational[1, 2], 0}, { Rational[-1, 4] (17 + 31 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2])}, { Rational[-1, 4] (17 + 31 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2])}, { Rational[1, 4] (1 + 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2])}, { Rational[1, 4] (1 + 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])}, { Rational[-1, 4] (13 + 19 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2])}, { Rational[-1, 4] (13 + 19 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2])}}}]]}, TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData[" 1:eJxTTMoPSmViYGCQA2IQDQMrvkyfXf745340vv2nd3cmHOn+ZA/hv9yPxrf3 WOrxrs7+8v6QX6fP7v74ZT8a3z5KYYrAbZX7UHMf7Efj2/O23P521eIb3Hw0 vr3qt2kuO05dh7sLqt8ezTwYH6beHqZ++9n8mdKtT+1h7kPj219MyvuvY/QT Xf1+NPVw/+yO8rT+lvER7h80PkzeHk0e7j6ofXD/QP27H83/+9HC1x4tfOHu h8bHfrT4gesHAFrM9YI= "], { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 5}, {1, 15}, {1, 18}, {1, 27}, {2, 6}, {2, 16}, {2, 19}, {2, 28}, {3, 9}, {3, 12}, {3, 17}, {3, 27}, {4, 10}, {4, 13}, {4, 17}, {4, 28}, {5, 7}, {5, 15}, {5, 29}, {6, 8}, {6, 16}, {6, 30}, {7, 8}, {7, 14}, {7, 29}, {8, 14}, {8, 30}, {9, 15}, {9, 17}, {9, 22}, {10, 16}, {10, 17}, {10, 23}, {11, 12}, { 11, 13}, {11, 20}, {11, 21}, {12, 13}, {12, 27}, {13, 28}, {14, 22}, {14, 23}, {15, 22}, {16, 23}, {18, 20}, {18, 25}, {18, 27}, { 19, 21}, {19, 26}, {19, 28}, {20, 21}, {20, 25}, {21, 26}, {22, 23}, {24, 25}, {24, 26}, {24, 29}, {24, 30}, {25, 29}, {26, 30}}, 0.0319088348808545]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.0319088348808545], DiskBox[2, 0.0319088348808545], DiskBox[3, 0.0319088348808545], DiskBox[4, 0.0319088348808545], DiskBox[5, 0.0319088348808545], DiskBox[6, 0.0319088348808545], DiskBox[7, 0.0319088348808545], DiskBox[8, 0.0319088348808545], DiskBox[9, 0.0319088348808545], DiskBox[10, 0.0319088348808545], DiskBox[11, 0.0319088348808545], DiskBox[12, 0.0319088348808545], DiskBox[13, 0.0319088348808545], DiskBox[14, 0.0319088348808545], DiskBox[15, 0.0319088348808545], DiskBox[16, 0.0319088348808545], DiskBox[17, 0.0319088348808545], DiskBox[18, 0.0319088348808545], DiskBox[19, 0.0319088348808545], DiskBox[20, 0.0319088348808545], DiskBox[21, 0.0319088348808545], DiskBox[22, 0.0319088348808545], DiskBox[23, 0.0319088348808545], DiskBox[24, 0.0319088348808545], DiskBox[25, 0.0319088348808545], DiskBox[26, 0.0319088348808545], DiskBox[27, 0.0319088348808545], DiskBox[28, 0.0319088348808545], DiskBox[29, 0.0319088348808545], DiskBox[30, 0.0319088348808545]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->{ "NetworkGraphics", FrontEnd`GraphicsHighlightColor -> Hue[0.8, 1., 0.6]}, FormatType->TraditionalForm, FrameTicks->None], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30}, { Null, {{1, 5}, {1, 15}, {1, 18}, {1, 27}, {2, 6}, {2, 16}, {2, 19}, { 2, 28}, {3, 9}, {3, 12}, {3, 17}, {3, 27}, {4, 10}, {4, 13}, {4, 17}, {4, 28}, {5, 7}, {5, 15}, {5, 29}, {6, 8}, {6, 16}, {6, 30}, {7, 8}, {7, 14}, {7, 29}, {8, 14}, {8, 30}, {9, 15}, {9, 17}, {9, 22}, { 10, 16}, {10, 17}, {10, 23}, {11, 12}, {11, 13}, {11, 20}, {11, 21}, {12, 13}, {12, 27}, {13, 28}, {14, 22}, {14, 23}, {15, 22}, {16, 23}, {18, 20}, {18, 25}, {18, 27}, {19, 21}, {19, 26}, {19, 28}, { 20, 21}, {20, 25}, {21, 26}, {22, 23}, {24, 25}, {24, 26}, {24, 29}, {24, 30}, {25, 29}, {26, 30}}}, {VertexCoordinates -> {{ Rational[-1, 2], -(Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 2], (Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[-1, 2], Root[1 - 21 #^2 + 9 #^4& , 1, 0]}, {0, -3^Rational[-1, 2]}, { Rational[1, 4] (-1 - 5^Rational[1, 2]), 0}, { 0, (Rational[1, 6] (7 + 3 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 4] (-1 - 5^Rational[1, 2]), ( Rational[1, 6] (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 2], (Rational[1, 6] (7 + 3 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 4] (-3 - 5^ Rational[1, 2]), -(Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, {Rational[1, 4] (-1 - 5^Rational[1, 2]), 0}, { Rational[1, 4] (3 + 5^Rational[1, 2]), -(Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[ 1, 2], (Rational[-1, 2] 3^Rational[-1, 2]) (3 + 5^Rational[1, 2])}, { Rational[1, 4] (1 + 5^Rational[1, 2]), -(Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 4] (-3 - 5^Rational[1, 2]), ( Rational[1, 6] (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 4] (-3 - 5^Rational[1, 2]), -3^Rational[-1, 2]}, { Rational[-1, 2], (Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 4] (-1 - 5^ Rational[1, 2]), -(Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[ 1, 2], -(Rational[1, 6] (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2]), 3^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2]), -3^Rational[-1, 2]}, { Rational[1, 2] (1 + 5^Rational[1, 2]), 0}, { Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, { Rational[1, 4] (-3 - 5^Rational[1, 2]), 3^Rational[-1, 2]}, { Rational[1, 4] (1 + 5^Rational[1, 2]), ( Rational[1, 6] (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 4] (1 + 5^Rational[1, 2]), 0}, { Rational[1, 4] (3 + 5^Rational[1, 2]), ( Rational[1, 6] (3 + 5^Rational[1, 2]))^Rational[1, 2]}, {0, Root[1 - 21 #^2 + 9 #^4& , 1, 0]}, { Rational[1, 4] (1 + 5^Rational[1, 2]), 0}, {0, 3^Rational[-1, 2]}, { Rational[1, 2], (Rational[1, 6] (7 + 3 5^Rational[1, 2]))^ Rational[1, 2]}}}]]}, TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData[" 1:eJxTTMoPSmViYGCQA2IQDQEP9sv7BeXtffJ2P5RvD+Xbw+TnOXyMNNL/sR+m Q9Z4guvyykf7V3yZPrv88Uu4OAxA1dvD5HGYZx/y6/TZ3R+/wO1HNw8qb4/u vvlQ90DVw+XRzIObD3Mvmn/R3Yfuf5h59lD99mh8qP0/7WHuhfLR3Q+z3x7N vXA+Dv/Cxeeh+Rc9vGHmw9wPC18A0WPVSQ== "], { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 5}, {1, 15}, {1, 18}, {1, 27}, {2, 6}, {2, 16}, {2, 19}, {2, 28}, {3, 9}, {3, 12}, {3, 17}, {3, 27}, {4, 10}, {4, 13}, {4, 17}, {4, 28}, {5, 7}, {5, 15}, {5, 29}, {6, 8}, {6, 16}, {6, 30}, {7, 8}, {7, 14}, {7, 29}, {8, 14}, {8, 30}, {9, 15}, {9, 17}, {9, 22}, {10, 16}, {10, 17}, {10, 23}, {11, 12}, { 11, 13}, {11, 20}, {11, 21}, {12, 13}, {12, 27}, {13, 28}, {14, 22}, {14, 23}, {15, 22}, {16, 23}, {18, 20}, {18, 25}, {18, 27}, { 19, 21}, {19, 26}, {19, 28}, {20, 21}, {20, 25}, {21, 26}, {22, 23}, {24, 25}, {24, 26}, {24, 29}, {24, 30}, {25, 29}, {26, 30}}, 0.0319088348808545]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.0319088348808545], DiskBox[2, 0.0319088348808545], DiskBox[3, 0.0319088348808545], DiskBox[4, 0.0319088348808545], DiskBox[5, 0.0319088348808545], DiskBox[6, 0.0319088348808545], DiskBox[7, 0.0319088348808545], DiskBox[8, 0.0319088348808545], DiskBox[9, 0.0319088348808545], DiskBox[10, 0.0319088348808545], DiskBox[11, 0.0319088348808545], DiskBox[12, 0.0319088348808545], DiskBox[13, 0.0319088348808545], DiskBox[14, 0.0319088348808545], DiskBox[15, 0.0319088348808545], DiskBox[16, 0.0319088348808545], DiskBox[17, 0.0319088348808545], DiskBox[18, 0.0319088348808545], DiskBox[19, 0.0319088348808545], DiskBox[20, 0.0319088348808545], DiskBox[21, 0.0319088348808545], DiskBox[22, 0.0319088348808545], DiskBox[23, 0.0319088348808545], DiskBox[24, 0.0319088348808545], DiskBox[25, 0.0319088348808545], DiskBox[26, 0.0319088348808545], DiskBox[27, 0.0319088348808545], DiskBox[28, 0.0319088348808545], DiskBox[29, 0.0319088348808545], DiskBox[30, 0.0319088348808545]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->{ "NetworkGraphics", FrontEnd`GraphicsHighlightColor -> Hue[0.8, 1., 0.6]}, FormatType->TraditionalForm, FrameTicks->None], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30}, { Null, {{1, 5}, {1, 15}, {1, 18}, {1, 27}, {2, 6}, {2, 16}, {2, 19}, { 2, 28}, {3, 9}, {3, 12}, {3, 17}, {3, 27}, {4, 10}, {4, 13}, {4, 17}, {4, 28}, {5, 7}, {5, 15}, {5, 29}, {6, 8}, {6, 16}, {6, 30}, {7, 8}, {7, 14}, {7, 29}, {8, 14}, {8, 30}, {9, 15}, {9, 17}, {9, 22}, { 10, 16}, {10, 17}, {10, 23}, {11, 12}, {11, 13}, {11, 20}, {11, 21}, {12, 13}, {12, 27}, {13, 28}, {14, 22}, {14, 23}, {15, 22}, {16, 23}, {18, 20}, {18, 25}, {18, 27}, {19, 21}, {19, 26}, {19, 28}, { 20, 21}, {20, 25}, {21, 26}, {22, 23}, {24, 25}, {24, 26}, {24, 29}, {24, 30}, {25, 29}, {26, 30}}}, {VertexCoordinates -> {{0, Root[1 - 21 #^2 + 9 #^4& , 1, 0]}, { 0, (Rational[1, 6] (7 + 3 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 2], Rational[-1, 2] 3^Rational[-1, 2]}, { Rational[-1, 2], (Rational[3, 4] + Rational[1, 3] 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (1 + 5^Rational[1, 2]), (Rational[-1, 4] 3^Rational[1, 2]) (1 + 5^Rational[1, 2])}, { Rational[1, 4] (1 + 5^Rational[1, 2]), (Rational[1, 4] 3^Rational[-1, 2]) (5 + 5^Rational[1, 2])}, { Rational[1, 4] (3 + 5^Rational[1, 2]), (Rational[-1, 4] 3^Rational[-1, 2]) (3 + 5^Rational[1, 2])}, { Rational[1, 4] (3 + 5^Rational[1, 2]), (Rational[1, 4] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2])}, { Rational[1, 2], Rational[-1, 2] 3^Rational[-1, 2]}, { Rational[ 1, 2], (Rational[3, 4] + Rational[1, 3] 5^Rational[1, 2])^ Rational[1, 2]}, {Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, { Rational[1, 4] (-3 - 5^Rational[1, 2]), (Rational[-1, 4] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2])}, { Rational[1, 4] (-3 - 5^Rational[1, 2]), (Rational[1, 4] 3^Rational[-1, 2]) (3 + 5^Rational[1, 2])}, { Rational[1, 2] (1 + 5^Rational[1, 2]), 0}, { Rational[1, 4] (1 + 5^Rational[1, 2]), Rational[-1, 2] (Rational[5, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 4] (1 + 5^Rational[1, 2]), Rational[1, 2] (Rational[3, 2] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, {0, 3^Rational[-1, 2]}, { Rational[1, 4] (-1 - 5^Rational[1, 2]), Rational[-1, 2] (Rational[3, 2] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 4] (-1 - 5^Rational[1, 2]), Rational[1, 2] (Rational[5, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 4] (-3 - 5^Rational[1, 2]), (Rational[-1, 4] 3^Rational[-1, 2]) (3 + 5^Rational[1, 2])}, { Rational[1, 4] (-3 - 5^Rational[1, 2]), (Rational[1, 4] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2])}, { Rational[1, 4] (3 + 5^Rational[1, 2]), (Rational[-1, 4] 3^Rational[-1, 2]) (-1 + 5^Rational[1, 2])}, { Rational[1, 4] (3 + 5^Rational[1, 2]), (Rational[1, 4] 3^Rational[-1, 2]) (3 + 5^Rational[1, 2])}, { 0, -3^Rational[-1, 2]}, { Rational[-1, 2], (Rational[-1, 2] 3^Rational[-1, 2]) (2 + 5^Rational[1, 2])}, { Rational[-1, 2], Rational[1, 2] 3^Rational[-1, 2]}, { Rational[1, 4] (-1 - 5^Rational[1, 2]), (Rational[-1, 4] 3^Rational[-1, 2]) (5 + 5^Rational[1, 2])}, { Rational[1, 4] (-1 - 5^Rational[1, 2]), Rational[1, 4] (3^Rational[1, 2] + 15^Rational[1, 2])}, { Rational[ 1, 2], -(Rational[3, 4] + Rational[1, 3] 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[1, 2], Rational[1, 2] 3^Rational[-1, 2]}}}]]}, TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData[" 1:eJxTTMoPSmViYGCQA2IQDQPzHD5GGun/2I/Gt4fwHuyXNZ7gurzy0n4Y/7px b8eJCZ/tV3yZPrv88Uv76bv2CvVlf9sP44uvjfnHtO2Dfciv02d3f/xiPx9s 3ov9MD67WUugzrVjMPPt0cy3RzX/J9xdUP37ofph5u2Hmg9Tbw9TD3OPGMQ9 cPfNgLgXrg5i/yOYf/bPQPXPfjFU/+xH8w/MPfZo/tuP5n90++DheQPiXzgf Gh5w94ijun8/qvvh4QUPP5h+AL/k5mo= "], { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 5}, {1, 15}, {1, 18}, {1, 27}, {2, 6}, {2, 16}, {2, 19}, {2, 28}, {3, 9}, {3, 12}, {3, 17}, {3, 27}, {4, 10}, {4, 13}, {4, 17}, {4, 28}, {5, 7}, {5, 15}, {5, 29}, {6, 8}, {6, 16}, {6, 30}, {7, 8}, {7, 14}, {7, 29}, {8, 14}, {8, 30}, {9, 15}, {9, 17}, {9, 22}, {10, 16}, {10, 17}, {10, 23}, {11, 12}, { 11, 13}, {11, 20}, {11, 21}, {12, 13}, {12, 27}, {13, 28}, {14, 22}, {14, 23}, {15, 22}, {16, 23}, {18, 20}, {18, 25}, {18, 27}, { 19, 21}, {19, 26}, {19, 28}, {20, 21}, {20, 25}, {21, 26}, {22, 23}, {24, 25}, {24, 26}, {24, 29}, {24, 30}, {25, 29}, {26, 30}}, 0.0319088348808545]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.0319088348808545], DiskBox[2, 0.0319088348808545], DiskBox[3, 0.0319088348808545], DiskBox[4, 0.0319088348808545], DiskBox[5, 0.0319088348808545], DiskBox[6, 0.0319088348808545], DiskBox[7, 0.0319088348808545], DiskBox[8, 0.0319088348808545], DiskBox[9, 0.0319088348808545], DiskBox[10, 0.0319088348808545], DiskBox[11, 0.0319088348808545], DiskBox[12, 0.0319088348808545], DiskBox[13, 0.0319088348808545], DiskBox[14, 0.0319088348808545], DiskBox[15, 0.0319088348808545], DiskBox[16, 0.0319088348808545], DiskBox[17, 0.0319088348808545], DiskBox[18, 0.0319088348808545], DiskBox[19, 0.0319088348808545], DiskBox[20, 0.0319088348808545], DiskBox[21, 0.0319088348808545], DiskBox[22, 0.0319088348808545], DiskBox[23, 0.0319088348808545], DiskBox[24, 0.0319088348808545], DiskBox[25, 0.0319088348808545], DiskBox[26, 0.0319088348808545], DiskBox[27, 0.0319088348808545], DiskBox[28, 0.0319088348808545], DiskBox[29, 0.0319088348808545], DiskBox[30, 0.0319088348808545]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->{ "NetworkGraphics", FrontEnd`GraphicsHighlightColor -> Hue[0.8, 1., 0.6]}, FormatType->TraditionalForm, FrameTicks->None], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30}, { Null, {{1, 5}, {1, 15}, {1, 18}, {1, 27}, {2, 6}, {2, 16}, {2, 19}, { 2, 28}, {3, 9}, {3, 12}, {3, 17}, {3, 27}, {4, 10}, {4, 13}, {4, 17}, {4, 28}, {5, 7}, {5, 15}, {5, 29}, {6, 8}, {6, 16}, {6, 30}, {7, 8}, {7, 14}, {7, 29}, {8, 14}, {8, 30}, {9, 15}, {9, 17}, {9, 22}, { 10, 16}, {10, 17}, {10, 23}, {11, 12}, {11, 13}, {11, 20}, {11, 21}, {12, 13}, {12, 27}, {13, 28}, {14, 22}, {14, 23}, {15, 22}, {16, 23}, {18, 20}, {18, 25}, {18, 27}, {19, 21}, {19, 26}, {19, 28}, { 20, 21}, {20, 25}, {21, 26}, {22, 23}, {24, 25}, {24, 26}, {24, 29}, {24, 30}, {25, 29}, {26, 30}}}, { VertexCoordinates -> {{0, Rational[1, 2] (-1 - 5^Rational[1, 2])}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2])}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2])}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2])}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2])}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2])}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2])}, {-(1 + 2 5^Rational[-1, 2])^Rational[1, 2], 0}, {Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 2]}, {(1 + 2 5^Rational[-1, 2])^Rational[1, 2], 0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])}, {( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2], 0}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2]}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2]}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2]}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2]}, { Root[1 - 5 #^2 + 5 #^4& , 1, 0], 0}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-1 - 5^Rational[1, 2])}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (1 + 5^Rational[1, 2])}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-3 - 5^Rational[1, 2])}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (3 + 5^Rational[1, 2])}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (-1 - 5^Rational[1, 2])}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (1 + 5^Rational[1, 2])}}}]]}, TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData[" 1:eJxTTMoPSmViYGCQA2IQDQMrvkyfXf745340vj1v8ELeU5cu2EP4L/ej8e2f MLtxd1jctg/5dfrs7o9f9qPx7StXF/OsZH1mDzH1wX40vv3WMO7Obxc+ws1H 40P1f4O7C6p/P5p5MD5MvT1M/f8QF2G+/Hdw96Hx7Z+C3fsaXf1+NPUwvv36 63e6Jeb/gNuPxofJ26PJw/0LCZ/XcP9sg/h3P8z/aHxY+O5HC1+4e6DxsR8t fuD6AZsr5RM= "], { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 5}, {1, 15}, {1, 18}, {1, 27}, {2, 6}, {2, 16}, {2, 19}, {2, 28}, {3, 9}, {3, 12}, {3, 17}, {3, 27}, {4, 10}, {4, 13}, {4, 17}, {4, 28}, {5, 7}, {5, 15}, {5, 29}, {6, 8}, {6, 16}, {6, 30}, {7, 8}, {7, 14}, {7, 29}, {8, 14}, {8, 30}, {9, 15}, {9, 17}, {9, 22}, {10, 16}, {10, 17}, {10, 23}, {11, 12}, { 11, 13}, {11, 20}, {11, 21}, {12, 13}, {12, 27}, {13, 28}, {14, 22}, {14, 23}, {15, 22}, {16, 23}, {18, 20}, {18, 25}, {18, 27}, { 19, 21}, {19, 26}, {19, 28}, {20, 21}, {20, 25}, {21, 26}, {22, 23}, {24, 25}, {24, 26}, {24, 29}, {24, 30}, {25, 29}, {26, 30}}, 0.0319088348808545]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.0319088348808545], DiskBox[2, 0.0319088348808545], DiskBox[3, 0.0319088348808545], DiskBox[4, 0.0319088348808545], DiskBox[5, 0.0319088348808545], DiskBox[6, 0.0319088348808545], DiskBox[7, 0.0319088348808545], DiskBox[8, 0.0319088348808545], DiskBox[9, 0.0319088348808545], DiskBox[10, 0.0319088348808545], DiskBox[11, 0.0319088348808545], DiskBox[12, 0.0319088348808545], DiskBox[13, 0.0319088348808545], DiskBox[14, 0.0319088348808545], DiskBox[15, 0.0319088348808545], DiskBox[16, 0.0319088348808545], DiskBox[17, 0.0319088348808545], DiskBox[18, 0.0319088348808545], DiskBox[19, 0.0319088348808545], DiskBox[20, 0.0319088348808545], DiskBox[21, 0.0319088348808545], DiskBox[22, 0.0319088348808545], DiskBox[23, 0.0319088348808545], DiskBox[24, 0.0319088348808545], DiskBox[25, 0.0319088348808545], DiskBox[26, 0.0319088348808545], DiskBox[27, 0.0319088348808545], DiskBox[28, 0.0319088348808545], DiskBox[29, 0.0319088348808545], DiskBox[30, 0.0319088348808545]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->{ "NetworkGraphics", FrontEnd`GraphicsHighlightColor -> Hue[0.8, 1., 0.6]}, FormatType->TraditionalForm, FrameTicks->None]}], "}"}]], "Input", CellChangeTimes->{{3.827087085006128*^9, 3.827087085014467*^9}},ExpressionUUID->"dfa7bd49-1197-4b45-aedc-\ be109e765935"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"GraphData", "[", RowBox[{ "\"\\"", ",", "\"\\"", ",", "\"\\""}], "]"}]], "Input", CellLabel->"In[10]:=",ExpressionUUID->"0f5d40d0-d724-4267-99ea-f1ca5d489dd0"], Cell[BoxData[ RowBox[{"{", RowBox[{ GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30}, {Null, SparseArray[ Automatic, {30, 30}, 0, { 1, {{0, 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92, 96, 100, 104, 108, 112, 116, 120}, {{5}, {15}, {18}, {27}, {6}, {16}, {19}, {28}, {9}, {12}, { 17}, {27}, {10}, {13}, {17}, {28}, {1}, {7}, {15}, {29}, {2}, { 8}, {16}, {30}, {5}, {8}, {14}, {29}, {6}, {7}, {14}, {30}, {3}, { 15}, {17}, {22}, {4}, {16}, {17}, {23}, {12}, {13}, {20}, {21}, { 3}, {11}, {13}, {27}, {4}, {11}, {12}, {28}, {7}, {8}, {22}, { 23}, {1}, {5}, {9}, {22}, {2}, {6}, {10}, {23}, {3}, {4}, {9}, { 10}, {1}, {20}, {25}, {27}, {2}, {21}, {26}, {28}, {11}, {18}, { 21}, {25}, {11}, {19}, {20}, {26}, {9}, {14}, {15}, {23}, {10}, { 14}, {16}, {22}, {25}, {26}, {29}, {30}, {18}, {20}, {24}, {29}, { 19}, {21}, {24}, {30}, {1}, {3}, {12}, {18}, {2}, {4}, {13}, { 19}, {5}, {7}, {24}, {25}, {6}, {8}, {24}, {26}}}, Pattern}]}, { VertexCoordinates -> {{0, 0}, {0, 0}, { Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2])}, { Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2])}, { Rational[1, 4] (-1 - 5^Rational[1, 2]), Rational[1, 2]}, {Rational[1, 4] (-1 - 5^Rational[1, 2]), Rational[1, 2]}, { Rational[1, 4] (-3 - 5^Rational[1, 2]), Rational[1, 4] (1 + 5^Rational[1, 2])}, { Rational[1, 4] (-3 - 5^Rational[1, 2]), Rational[1, 4] (1 + 5^Rational[1, 2])}, { Rational[-1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2])}, { Rational[-1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2])}, { Rational[1, 2] (1 + 5^Rational[1, 2]), 0}, { Rational[1, 4] (3 + 5^Rational[1, 2]), Rational[1, 4] (-1 - 5^Rational[1, 2])}, { Rational[1, 4] (3 + 5^Rational[1, 2]), Rational[1, 4] (-1 - 5^Rational[1, 2])}, { Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, { Rational[1, 4] (-1 - 5^Rational[1, 2]), Rational[-1, 2]}, {Rational[1, 4] (-1 - 5^Rational[1, 2]), Rational[-1, 2]}, {0, Rational[1, 2] (-1 - 5^Rational[1, 2])}, { Rational[1, 4] (1 + 5^Rational[1, 2]), Rational[1, 2]}, {Rational[1, 4] (1 + 5^Rational[1, 2]), Rational[1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2]), Rational[1, 4] (1 + 5^Rational[1, 2])}, { Rational[1, 4] (3 + 5^Rational[1, 2]), Rational[1, 4] (1 + 5^Rational[1, 2])}, { Rational[1, 4] (-3 - 5^Rational[1, 2]), Rational[1, 4] (-1 - 5^Rational[1, 2])}, { Rational[1, 4] (-3 - 5^Rational[1, 2]), Rational[1, 4] (-1 - 5^Rational[1, 2])}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2])}, { Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])}, { Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])}, { Rational[1, 4] (1 + 5^Rational[1, 2]), Rational[-1, 2]}, {Rational[1, 4] (1 + 5^Rational[1, 2]), Rational[-1, 2]}, { Rational[-1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])}, { Rational[-1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])}}}]]}, TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData[" 1:eJxTTMoPSmViYGCQA2IQTRx4YB/y6/TZ3R+/7Efnr/gyfXb545dwcXQ+mjoM PlTdfjTz96Oq+2kPcwlUHG4POh+qfj9MPZp70N2Lpu4nurvs0flo9uHi70dz H5q9cPswzMVlD5r74Xy08EIPT3sAew3njA== "], { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 5}, {1, 15}, {1, 18}, {1, 27}, {2, 6}, {2, 16}, {2, 19}, {2, 28}, {3, 9}, {3, 12}, {3, 17}, {3, 27}, {4, 10}, {4, 13}, {4, 17}, {4, 28}, {5, 7}, {5, 15}, {5, 29}, {6, 8}, {6, 16}, {6, 30}, {7, 8}, {7, 14}, {7, 29}, {8, 14}, {8, 30}, {9, 15}, {9, 17}, {9, 22}, {10, 16}, {10, 17}, {10, 23}, {11, 12}, { 11, 13}, {11, 20}, {11, 21}, {12, 13}, {12, 27}, {13, 28}, {14, 22}, {14, 23}, {15, 22}, {16, 23}, {18, 20}, {18, 25}, {18, 27}, { 19, 21}, {19, 26}, {19, 28}, {20, 21}, {20, 25}, {21, 26}, {22, 23}, {24, 25}, {24, 26}, {24, 29}, {24, 30}, {25, 29}, {26, 30}}, 0.0319088348808545]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.0319088348808545], DiskBox[2, 0.0319088348808545], DiskBox[3, 0.0319088348808545], DiskBox[4, 0.0319088348808545], DiskBox[5, 0.0319088348808545], DiskBox[6, 0.0319088348808545], DiskBox[7, 0.0319088348808545], DiskBox[8, 0.0319088348808545], DiskBox[9, 0.0319088348808545], DiskBox[10, 0.0319088348808545], DiskBox[11, 0.0319088348808545], DiskBox[12, 0.0319088348808545], DiskBox[13, 0.0319088348808545], DiskBox[14, 0.0319088348808545], DiskBox[15, 0.0319088348808545], DiskBox[16, 0.0319088348808545], DiskBox[17, 0.0319088348808545], DiskBox[18, 0.0319088348808545], DiskBox[19, 0.0319088348808545], DiskBox[20, 0.0319088348808545], DiskBox[21, 0.0319088348808545], DiskBox[22, 0.0319088348808545], DiskBox[23, 0.0319088348808545], DiskBox[24, 0.0319088348808545], DiskBox[25, 0.0319088348808545], DiskBox[26, 0.0319088348808545], DiskBox[27, 0.0319088348808545], DiskBox[28, 0.0319088348808545], DiskBox[29, 0.0319088348808545], DiskBox[30, 0.0319088348808545]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->{ "NetworkGraphics", FrontEnd`GraphicsHighlightColor -> Hue[0.8, 1., 0.6]}, FormatType->TraditionalForm, FrameTicks->None], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30}, {Null, SparseArray[ Automatic, {30, 30}, 0, { 1, {{0, 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92, 96, 100, 104, 108, 112, 116, 120}, {{5}, {15}, {18}, {27}, {6}, {16}, {19}, {28}, {9}, {12}, { 17}, {27}, {10}, {13}, {17}, {28}, {1}, {7}, {15}, {29}, {2}, { 8}, {16}, {30}, {5}, {8}, {14}, {29}, {6}, {7}, {14}, {30}, {3}, { 15}, {17}, {22}, {4}, {16}, {17}, {23}, {12}, {13}, {20}, {21}, { 3}, {11}, {13}, {27}, {4}, {11}, {12}, {28}, {7}, {8}, {22}, { 23}, {1}, {5}, {9}, {22}, {2}, {6}, {10}, {23}, {3}, {4}, {9}, { 10}, {1}, {20}, {25}, {27}, {2}, {21}, {26}, {28}, {11}, {18}, { 21}, {25}, {11}, {19}, {20}, {26}, {9}, {14}, {15}, {23}, {10}, { 14}, {16}, {22}, {25}, {26}, {29}, {30}, {18}, {20}, {24}, {29}, { 19}, {21}, {24}, {30}, {1}, {3}, {12}, {18}, {2}, {4}, {13}, { 19}, {5}, {7}, {24}, {25}, {6}, {8}, {24}, {26}}}, Pattern}]}, { VertexCoordinates -> {{Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, { Rational[1, 2] (1 + 5^Rational[1, 2]), 0}, { Rational[1, 4] (-1 - 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Rational[1, 4] (1 + 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Rational[1, 4] (-3 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 2], (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[1, 2], (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Rational[1, 4] (1 + 5^Rational[1, 2]), Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, {0, Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Rational[-1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { 0, (Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 4] (-3 - 5^Rational[1, 2]), 0}, { Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, { 0, -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[1, 4] (-3 - 5^Rational[1, 2]), 0}, { Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, { Rational[-1, 2], 0}, { Rational[1, 2], 0}, { Rational[-1, 2], 0}, { Rational[1, 2], 0}, { 0, (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[1, 4] (-1 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 4] (1 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Rational[1, 4] (3 + 5^Rational[1, 2]), Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Rational[1, 4] (-1 - 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Rational[1, 4] (1 + 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}}}]]}, TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData[" 1:eJxTTMoPSmViYGCQA2IQveLL9Nnlj3/uZ4ACKN8elf9yf+XqYp6VrN/2Q/n2 MH7Ir9Nnd3/8sv8psxt3h8VreyjfHsaHmPIAph/Gh+m3h5kPVQ83H8aHuQOV DzdvP5p56Oph7oGLw9zHgAbQ/YNf/YP9aHwS5eH2ofvfHs3/9mjhux8tfPej xY89WvzYAwBctLxG "], { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 5}, {1, 15}, {1, 18}, {1, 27}, {2, 6}, {2, 16}, {2, 19}, {2, 28}, {3, 9}, {3, 12}, {3, 17}, {3, 27}, {4, 10}, {4, 13}, {4, 17}, {4, 28}, {5, 7}, {5, 15}, {5, 29}, {6, 8}, {6, 16}, {6, 30}, {7, 8}, {7, 14}, {7, 29}, {8, 14}, {8, 30}, {9, 15}, {9, 17}, {9, 22}, {10, 16}, {10, 17}, {10, 23}, {11, 12}, { 11, 13}, {11, 20}, {11, 21}, {12, 13}, {12, 27}, {13, 28}, {14, 22}, {14, 23}, {15, 22}, {16, 23}, {18, 20}, {18, 25}, {18, 27}, { 19, 21}, {19, 26}, {19, 28}, {20, 21}, {20, 25}, {21, 26}, {22, 23}, {24, 25}, {24, 26}, {24, 29}, {24, 30}, {25, 29}, {26, 30}}, 0.0319088348808545]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.0319088348808545], DiskBox[2, 0.0319088348808545], DiskBox[3, 0.0319088348808545], DiskBox[4, 0.0319088348808545], DiskBox[5, 0.0319088348808545], DiskBox[6, 0.0319088348808545], DiskBox[7, 0.0319088348808545], DiskBox[8, 0.0319088348808545], DiskBox[9, 0.0319088348808545], DiskBox[10, 0.0319088348808545], DiskBox[11, 0.0319088348808545], DiskBox[12, 0.0319088348808545], DiskBox[13, 0.0319088348808545], DiskBox[14, 0.0319088348808545], DiskBox[15, 0.0319088348808545], DiskBox[16, 0.0319088348808545], DiskBox[17, 0.0319088348808545], DiskBox[18, 0.0319088348808545], DiskBox[19, 0.0319088348808545], DiskBox[20, 0.0319088348808545], DiskBox[21, 0.0319088348808545], DiskBox[22, 0.0319088348808545], DiskBox[23, 0.0319088348808545], DiskBox[24, 0.0319088348808545], DiskBox[25, 0.0319088348808545], DiskBox[26, 0.0319088348808545], DiskBox[27, 0.0319088348808545], DiskBox[28, 0.0319088348808545], DiskBox[29, 0.0319088348808545], DiskBox[30, 0.0319088348808545]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->{ "NetworkGraphics", FrontEnd`GraphicsHighlightColor -> Hue[0.8, 1., 0.6]}, FormatType->TraditionalForm, FrameTicks->None], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30}, {Null, SparseArray[ Automatic, {30, 30}, 0, { 1, {{0, 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92, 96, 100, 104, 108, 112, 116, 120}, {{5}, {15}, {18}, {27}, {6}, {16}, {19}, {28}, {9}, {12}, { 17}, {27}, {10}, {13}, {17}, {28}, {1}, {7}, {15}, {29}, {2}, { 8}, {16}, {30}, {5}, {8}, {14}, {29}, {6}, {7}, {14}, {30}, {3}, { 15}, {17}, {22}, {4}, {16}, {17}, {23}, {12}, {13}, {20}, {21}, { 3}, {11}, {13}, {27}, {4}, {11}, {12}, {28}, {7}, {8}, {22}, { 23}, {1}, {5}, {9}, {22}, {2}, {6}, {10}, {23}, {3}, {4}, {9}, { 10}, {1}, {20}, {25}, {27}, {2}, {21}, {26}, {28}, {11}, {18}, { 21}, {25}, {11}, {19}, {20}, {26}, {9}, {14}, {15}, {23}, {10}, { 14}, {16}, {22}, {25}, {26}, {29}, {30}, {18}, {20}, {24}, {29}, { 19}, {21}, {24}, {30}, {1}, {3}, {12}, {18}, {2}, {4}, {13}, { 19}, {5}, {7}, {24}, {25}, {6}, {8}, {24}, {26}}}, Pattern}]}, { VertexCoordinates -> {{ Rational[1, 4] (3 + 5^Rational[1, 2]), Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (-3 - 5^Rational[1, 2]), Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { 0, Rational[1, 2] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (-3 - 5^Rational[1, 2]), Rational[1, 4] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (1 + 5^Rational[1, 2]), 0}, { Rational[-1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2]), Rational[-1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2], Rational[-1, 2] 2^Rational[-1, 2]}, { Rational[ 1, 2], (Rational[9, 8] + Rational[1, 2] 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[1, 4] (-1 - 5^Rational[1, 2]), Rational[1, 4] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 4] (-1 - 5^Rational[1, 2]), Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[1, 4] (-3 - 5^Rational[1, 2]), Rational[1, 4] (3 - 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (1 + 5^Rational[1, 2]), Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2]), Rational[1, 4] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (-1 - 5^Rational[1, 2]), Rational[1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2], (Rational[9, 8] + Rational[1, 2] 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (1 + 5^Rational[1, 2]), Rational[-1, 4] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (-3 - 5^Rational[1, 2]), Rational[-1, 4] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { 0, Rational[-1, 2] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (-1 - 5^Rational[1, 2]), Rational[-1, 4] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 4] (1 + 5^Rational[1, 2]), Rational[1, 4] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { 0, Rational[1, 2] (3 + 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2], Rational[-1, 2] (Rational[9, 2] + 2 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[1, 4] (1 + 5^Rational[1, 2]), Rational[-1, 4] (5 (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 2], Rational[-1, 2] (Rational[9, 2] + 2 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[1, 2], Rational[1, 2] 2^Rational[-1, 2]}, { Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, { Rational[1, 4] (3 + 5^Rational[1, 2]), Rational[-1, 4] (7 + 3 5^Rational[1, 2])^Rational[1, 2]}, { 0, Rational[-1, 2] (3 + 5^Rational[1, 2])^Rational[1, 2]}}}]]}, TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData[" 1:eJxTTMoPSmViYGCQA2IQHfLr9NndH7/Y36gy5Rf6cdoeyt8P5e9ngII5f3i2 B/t9gss3z/J5tWjeW/sVX6bPLn/8054BBTzYf8a6Pm3egmv70cyHmvfAHiYP 4084vSag+tt3qHkv95vKHOOrLP8C50Psf7QfzXx098LU20PVw+TtUd0LN88e Zh6a/TD9+9H8ix4e+9HcC+Pbw9yPHn5o/kVXvx/NPejhBQtvuDvQ/IfhPgBK 2fCM "], { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 5}, {1, 15}, {1, 18}, {1, 27}, {2, 6}, {2, 16}, {2, 19}, {2, 28}, {3, 9}, {3, 12}, {3, 17}, {3, 27}, {4, 10}, {4, 13}, {4, 17}, {4, 28}, {5, 7}, {5, 15}, {5, 29}, {6, 8}, {6, 16}, {6, 30}, {7, 8}, {7, 14}, {7, 29}, {8, 14}, {8, 30}, {9, 15}, {9, 17}, {9, 22}, {10, 16}, {10, 17}, {10, 23}, {11, 12}, { 11, 13}, {11, 20}, {11, 21}, {12, 13}, {12, 27}, {13, 28}, {14, 22}, {14, 23}, {15, 22}, {16, 23}, {18, 20}, {18, 25}, {18, 27}, { 19, 21}, {19, 26}, {19, 28}, {20, 21}, {20, 25}, {21, 26}, {22, 23}, {24, 25}, {24, 26}, {24, 29}, {24, 30}, {25, 29}, {26, 30}}, 0.0319088348808545]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.0319088348808545], DiskBox[2, 0.0319088348808545], DiskBox[3, 0.0319088348808545], DiskBox[4, 0.0319088348808545], DiskBox[5, 0.0319088348808545], DiskBox[6, 0.0319088348808545], DiskBox[7, 0.0319088348808545], DiskBox[8, 0.0319088348808545], DiskBox[9, 0.0319088348808545], DiskBox[10, 0.0319088348808545], DiskBox[11, 0.0319088348808545], DiskBox[12, 0.0319088348808545], DiskBox[13, 0.0319088348808545], DiskBox[14, 0.0319088348808545], DiskBox[15, 0.0319088348808545], DiskBox[16, 0.0319088348808545], DiskBox[17, 0.0319088348808545], DiskBox[18, 0.0319088348808545], DiskBox[19, 0.0319088348808545], DiskBox[20, 0.0319088348808545], DiskBox[21, 0.0319088348808545], DiskBox[22, 0.0319088348808545], DiskBox[23, 0.0319088348808545], DiskBox[24, 0.0319088348808545], DiskBox[25, 0.0319088348808545], DiskBox[26, 0.0319088348808545], DiskBox[27, 0.0319088348808545], DiskBox[28, 0.0319088348808545], DiskBox[29, 0.0319088348808545], DiskBox[30, 0.0319088348808545]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->{ "NetworkGraphics", FrontEnd`GraphicsHighlightColor -> Hue[0.8, 1., 0.6]}, FormatType->TraditionalForm, FrameTicks->None], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30}, {Null, SparseArray[ Automatic, {30, 30}, 0, { 1, {{0, 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92, 96, 100, 104, 108, 112, 116, 120}, {{5}, {15}, {18}, {27}, {6}, {16}, {19}, {28}, {9}, {12}, { 17}, {27}, {10}, {13}, {17}, {28}, {1}, {7}, {15}, {29}, {2}, { 8}, {16}, {30}, {5}, {8}, {14}, {29}, {6}, {7}, {14}, {30}, {3}, { 15}, {17}, {22}, {4}, {16}, {17}, {23}, {12}, {13}, {20}, {21}, { 3}, {11}, {13}, {27}, {4}, {11}, {12}, {28}, {7}, {8}, {22}, { 23}, {1}, {5}, {9}, {22}, {2}, {6}, {10}, {23}, {3}, {4}, {9}, { 10}, {1}, {20}, {25}, {27}, {2}, {21}, {26}, {28}, {11}, {18}, { 21}, {25}, {11}, {19}, {20}, {26}, {9}, {14}, {15}, {23}, {10}, { 14}, {16}, {22}, {25}, {26}, {29}, {30}, {18}, {20}, {24}, {29}, { 19}, {21}, {24}, {30}, {1}, {3}, {12}, {18}, {2}, {4}, {13}, { 19}, {5}, {7}, {24}, {25}, {6}, {8}, {24}, {26}}}, Pattern}]}, { VertexCoordinates -> {{0, Rational[1, 2] (-1 - 5^Rational[1, 2])}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2])}, { Rational[1, 4] (13 + 19 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2])}, { Rational[1, 4] (13 + 19 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2])}, { Rational[-1, 4] (1 + 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2])}, { Rational[-1, 4] (1 + 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])}, { Rational[-1, 2] (Rational[1, 2] + 5^Rational[-1, 2])^ Rational[1, 2], Rational[-1, 2]}, { Rational[-1, 2] (Rational[1, 2] + 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 2]}, { Rational[1, 4] (17 + 31 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2])}, { Rational[1, 4] (17 + 31 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2])}, { Rational[-1, 2] (1 - 5^Rational[-1, 2])^Rational[1, 2], 0}, {(Rational[1, 8] + Rational[1, 4] 5^Rational[-1, 2])^ Rational[1, 2], Rational[-1, 2]}, {(Rational[1, 8] + Rational[1, 4] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 2]}, { Rational[1, 2] (1 - 5^Rational[-1, 2])^Rational[1, 2], 0}, { Rational[1, 4] (5 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2])}, { Rational[1, 4] (5 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])}, {(Rational[5, 4] + Rational[11, 4] 5^Rational[-1, 2])^Rational[1, 2], 0}, { Rational[-1, 4] (5 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2])}, { Rational[-1, 4] (5 + 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])}, { Rational[-1, 2] (Rational[5, 2] + 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2]}, { Rational[-1, 2] (Rational[5, 2] + 5^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2]}, {(Rational[5, 8] + Rational[1, 4] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 2]}, {(Rational[5, 8] + Rational[1, 4] 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2]}, { Rational[-1, 2] (5 + 11 5^Rational[-1, 2])^Rational[1, 2], 0}, { Rational[-1, 4] (17 + 31 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2])}, { Rational[-1, 4] (17 + 31 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2])}, { Rational[1, 4] (1 + 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2])}, { Rational[1, 4] (1 + 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])}, { Rational[-1, 4] (13 + 19 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2])}, { Rational[-1, 4] (13 + 19 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2])}}}]]}, TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData[" 1:eJxTTMoPSmViYGCQA2IQDQMrvkyfXf745340vv2nd3cmHOn+ZA/hv9yPxrf3 WOrxrs7+8v6QX6fP7v74ZT8a3z5KYYrAbZX7UHMf7Efj2/O23P521eIb3Hw0 vr3qt2kuO05dh7sLqt8ezTwYH6beHqZ++9n8mdKtT+1h7kPj219MyvuvY/QT Xf1+NPVw/+yO8rT+lvER7h80PkzeHk0e7j6ofXD/QP27H83/+9HC1x4tfOHu h8bHfrT4gesHAFrM9YI= "], { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 5}, {1, 15}, {1, 18}, {1, 27}, {2, 6}, {2, 16}, {2, 19}, {2, 28}, {3, 9}, {3, 12}, {3, 17}, {3, 27}, {4, 10}, {4, 13}, {4, 17}, {4, 28}, {5, 7}, {5, 15}, {5, 29}, {6, 8}, {6, 16}, {6, 30}, {7, 8}, {7, 14}, {7, 29}, {8, 14}, {8, 30}, {9, 15}, {9, 17}, {9, 22}, {10, 16}, {10, 17}, {10, 23}, {11, 12}, { 11, 13}, {11, 20}, {11, 21}, {12, 13}, {12, 27}, {13, 28}, {14, 22}, {14, 23}, {15, 22}, {16, 23}, {18, 20}, {18, 25}, {18, 27}, { 19, 21}, {19, 26}, {19, 28}, {20, 21}, {20, 25}, {21, 26}, {22, 23}, {24, 25}, {24, 26}, {24, 29}, {24, 30}, {25, 29}, {26, 30}}, 0.0319088348808545]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.0319088348808545], DiskBox[2, 0.0319088348808545], DiskBox[3, 0.0319088348808545], DiskBox[4, 0.0319088348808545], DiskBox[5, 0.0319088348808545], DiskBox[6, 0.0319088348808545], DiskBox[7, 0.0319088348808545], DiskBox[8, 0.0319088348808545], DiskBox[9, 0.0319088348808545], DiskBox[10, 0.0319088348808545], DiskBox[11, 0.0319088348808545], DiskBox[12, 0.0319088348808545], DiskBox[13, 0.0319088348808545], DiskBox[14, 0.0319088348808545], DiskBox[15, 0.0319088348808545], DiskBox[16, 0.0319088348808545], DiskBox[17, 0.0319088348808545], DiskBox[18, 0.0319088348808545], DiskBox[19, 0.0319088348808545], DiskBox[20, 0.0319088348808545], DiskBox[21, 0.0319088348808545], DiskBox[22, 0.0319088348808545], DiskBox[23, 0.0319088348808545], DiskBox[24, 0.0319088348808545], DiskBox[25, 0.0319088348808545], DiskBox[26, 0.0319088348808545], DiskBox[27, 0.0319088348808545], DiskBox[28, 0.0319088348808545], DiskBox[29, 0.0319088348808545], DiskBox[30, 0.0319088348808545]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->{ "NetworkGraphics", FrontEnd`GraphicsHighlightColor -> Hue[0.8, 1., 0.6]}, FormatType->TraditionalForm, FrameTicks->None], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30}, {Null, SparseArray[ Automatic, {30, 30}, 0, { 1, {{0, 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92, 96, 100, 104, 108, 112, 116, 120}, {{5}, {15}, {18}, {27}, {6}, {16}, {19}, {28}, {9}, {12}, { 17}, {27}, {10}, {13}, {17}, {28}, {1}, {7}, {15}, {29}, {2}, { 8}, {16}, {30}, {5}, {8}, {14}, {29}, {6}, {7}, {14}, {30}, {3}, { 15}, {17}, {22}, {4}, {16}, {17}, {23}, {12}, {13}, {20}, {21}, { 3}, {11}, {13}, {27}, {4}, {11}, {12}, {28}, {7}, {8}, {22}, { 23}, {1}, {5}, {9}, {22}, {2}, {6}, {10}, {23}, {3}, {4}, {9}, { 10}, {1}, {20}, {25}, {27}, {2}, {21}, {26}, {28}, {11}, {18}, { 21}, {25}, {11}, {19}, {20}, {26}, {9}, {14}, {15}, {23}, {10}, { 14}, {16}, {22}, {25}, {26}, {29}, {30}, {18}, {20}, {24}, {29}, { 19}, {21}, {24}, {30}, {1}, {3}, {12}, {18}, {2}, {4}, {13}, { 19}, {5}, {7}, {24}, {25}, {6}, {8}, {24}, {26}}}, Pattern}]}, { VertexCoordinates -> {{ Rational[-1, 2], -(Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 2], (Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[-1, 2], Root[1 - 21 #^2 + 9 #^4& , 1, 0]}, {0, -3^Rational[-1, 2]}, { Rational[1, 4] (-1 - 5^Rational[1, 2]), 0}, { 0, (Rational[1, 6] (7 + 3 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 4] (-1 - 5^Rational[1, 2]), ( Rational[1, 6] (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 2], (Rational[1, 6] (7 + 3 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 4] (-3 - 5^ Rational[1, 2]), -(Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, {Rational[1, 4] (-1 - 5^Rational[1, 2]), 0}, { Rational[1, 4] (3 + 5^Rational[1, 2]), -(Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 2], Root[1 - 21 #^2 + 9 #^4& , 1, 0]}, { Rational[1, 4] (1 + 5^Rational[1, 2]), -(Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 4] (-3 - 5^Rational[1, 2]), ( Rational[1, 6] (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 4] (-3 - 5^Rational[1, 2]), -3^Rational[-1, 2]}, { Rational[-1, 2], (Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 4] (-1 - 5^ Rational[1, 2]), -(Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[ 1, 2], -(Rational[1, 6] (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2]), 3^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2]), -3^Rational[-1, 2]}, { Rational[1, 2] (1 + 5^Rational[1, 2]), 0}, { Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, { Rational[1, 4] (-3 - 5^Rational[1, 2]), 3^Rational[-1, 2]}, { Rational[1, 4] (1 + 5^Rational[1, 2]), ( Rational[1, 6] (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 4] (1 + 5^Rational[1, 2]), 0}, { Rational[1, 4] (3 + 5^Rational[1, 2]), ( Rational[1, 6] (3 + 5^Rational[1, 2]))^Rational[1, 2]}, {0, Root[1 - 21 #^2 + 9 #^4& , 1, 0]}, { Rational[1, 4] (1 + 5^Rational[1, 2]), 0}, {0, 3^Rational[-1, 2]}, { Rational[1, 2], (Rational[1, 6] (7 + 3 5^Rational[1, 2]))^ Rational[1, 2]}}}]]}, TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData[" 1:eJxTTMoPSmViYGCQA2IQDQEP9sv7BeXtffJ2P5RvD+Xbw+TnOXyMNNL/sR+m Q9Z4guvyykf7V3yZPrv88Uu4OAxA1dvD5HGYZx/y6/TZ3R+/wO1HNw8qb4/u Pph7oOrh8mjmwc2HuRfNv+juQ/c/zDx7qH57ND7U/p/2MPdC+ejuh9lvj+Ze OB+Hf+Hi6P5FD2+Y+WjhYw8A0DvVSA== "], { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 5}, {1, 15}, {1, 18}, {1, 27}, {2, 6}, {2, 16}, {2, 19}, {2, 28}, {3, 9}, {3, 12}, {3, 17}, {3, 27}, {4, 10}, {4, 13}, {4, 17}, {4, 28}, {5, 7}, {5, 15}, {5, 29}, {6, 8}, {6, 16}, {6, 30}, {7, 8}, {7, 14}, {7, 29}, {8, 14}, {8, 30}, {9, 15}, {9, 17}, {9, 22}, {10, 16}, {10, 17}, {10, 23}, {11, 12}, { 11, 13}, {11, 20}, {11, 21}, {12, 13}, {12, 27}, {13, 28}, {14, 22}, {14, 23}, {15, 22}, {16, 23}, {18, 20}, {18, 25}, {18, 27}, { 19, 21}, {19, 26}, {19, 28}, {20, 21}, {20, 25}, {21, 26}, {22, 23}, {24, 25}, {24, 26}, {24, 29}, {24, 30}, {25, 29}, {26, 30}}, 0.0319088348808545]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.0319088348808545], DiskBox[2, 0.0319088348808545], DiskBox[3, 0.0319088348808545], DiskBox[4, 0.0319088348808545], DiskBox[5, 0.0319088348808545], DiskBox[6, 0.0319088348808545], DiskBox[7, 0.0319088348808545], DiskBox[8, 0.0319088348808545], DiskBox[9, 0.0319088348808545], DiskBox[10, 0.0319088348808545], DiskBox[11, 0.0319088348808545], DiskBox[12, 0.0319088348808545], DiskBox[13, 0.0319088348808545], DiskBox[14, 0.0319088348808545], DiskBox[15, 0.0319088348808545], DiskBox[16, 0.0319088348808545], DiskBox[17, 0.0319088348808545], DiskBox[18, 0.0319088348808545], DiskBox[19, 0.0319088348808545], DiskBox[20, 0.0319088348808545], DiskBox[21, 0.0319088348808545], DiskBox[22, 0.0319088348808545], DiskBox[23, 0.0319088348808545], DiskBox[24, 0.0319088348808545], DiskBox[25, 0.0319088348808545], DiskBox[26, 0.0319088348808545], DiskBox[27, 0.0319088348808545], DiskBox[28, 0.0319088348808545], DiskBox[29, 0.0319088348808545], DiskBox[30, 0.0319088348808545]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->{ "NetworkGraphics", FrontEnd`GraphicsHighlightColor -> Hue[0.8, 1., 0.6]}, FormatType->TraditionalForm, FrameTicks->None], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30}, {Null, SparseArray[ Automatic, {30, 30}, 0, { 1, {{0, 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92, 96, 100, 104, 108, 112, 116, 120}, {{5}, {15}, {18}, {27}, {6}, {16}, {19}, {28}, {9}, {12}, { 17}, {27}, {10}, {13}, {17}, {28}, {1}, {7}, {15}, {29}, {2}, { 8}, {16}, {30}, {5}, {8}, {14}, {29}, {6}, {7}, {14}, {30}, {3}, { 15}, {17}, {22}, {4}, {16}, {17}, {23}, {12}, {13}, {20}, {21}, { 3}, {11}, {13}, {27}, {4}, {11}, {12}, {28}, {7}, {8}, {22}, { 23}, {1}, {5}, {9}, {22}, {2}, {6}, {10}, {23}, {3}, {4}, {9}, { 10}, {1}, {20}, {25}, {27}, {2}, {21}, {26}, {28}, {11}, {18}, { 21}, {25}, {11}, {19}, {20}, {26}, {9}, {14}, {15}, {23}, {10}, { 14}, {16}, {22}, {25}, {26}, {29}, {30}, {18}, {20}, {24}, {29}, { 19}, {21}, {24}, {30}, {1}, {3}, {12}, {18}, {2}, {4}, {13}, { 19}, {5}, {7}, {24}, {25}, {6}, {8}, {24}, {26}}}, Pattern}]}, { VertexCoordinates -> {{0, Root[1 - 21 #^2 + 9 #^4& , 1, 0]}, { 0, (Rational[1, 6] (7 + 3 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 2], Rational[-1, 2] 3^Rational[-1, 2]}, { Rational[-1, 2], (Rational[3, 4] + Rational[1, 3] 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (1 + 5^Rational[1, 2]), Rational[-1, 2] (Rational[3, 2] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 4] (1 + 5^Rational[1, 2]), Rational[1, 2] (Rational[5, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2]), -(Rational[7, 24] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2]), Root[1 - 36 #^2 + 144 #^4& , 3, 0]}, { Rational[1, 2], Rational[-1, 2] 3^Rational[-1, 2]}, { Rational[ 1, 2], (Rational[3, 4] + Rational[1, 3] 5^Rational[1, 2])^ Rational[1, 2]}, {Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, { Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[1 - 36 #^2 + 144 #^4& , 2, 0]}, { Rational[1, 4] (-3 - 5^Rational[1, 2]), (Rational[7, 24] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (1 + 5^Rational[1, 2]), 0}, { Rational[1, 4] (1 + 5^Rational[1, 2]), Rational[-1, 2] (Rational[5, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 4] (1 + 5^Rational[1, 2]), Rational[1, 2] (Rational[3, 2] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, {0, 3^Rational[-1, 2]}, { Rational[1, 4] (-1 - 5^Rational[1, 2]), Rational[-1, 2] (Rational[3, 2] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 4] (-1 - 5^Rational[1, 2]), Rational[1, 2] (Rational[5, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 4] (-3 - 5^ Rational[1, 2]), -(Rational[7, 24] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[1 - 36 #^2 + 144 #^4& , 3, 0]}, { Rational[1, 4] (3 + 5^Rational[1, 2]), Root[1 - 36 #^2 + 144 #^4& , 2, 0]}, { Rational[1, 4] (3 + 5^Rational[1, 2]), (Rational[7, 24] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2]}, { 0, -3^Rational[-1, 2]}, { Rational[-1, 2], -(Rational[3, 4] + Rational[1, 3] 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[-1, 2], Rational[1, 2] 3^Rational[-1, 2]}, { Rational[1, 4] (-1 - 5^Rational[1, 2]), Rational[-1, 2] (Rational[5, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 4] (-1 - 5^Rational[1, 2]), Rational[1, 2] (Rational[3, 2] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[ 1, 2], -(Rational[3, 4] + Rational[1, 3] 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[1, 2], Rational[1, 2] 3^Rational[-1, 2]}}}]]}, TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData[" 1:eJxTTMoPSmViYGCQA2IQDQPzHD5GGun/2I/Gt4fwHuyXNZ7gurzy0n4Y/7px b8eJCZ/tV3yZPrv88Uv7Gbv2CvVlf9sP44utjfnHtO2Dfciv02d3f/xiDzHv xX4Yn82sJVDn2jGY+fZo5tujmv8T7i6o/v1Q/TDz9kPNh6m3h6lHc89+NPfC 1UHsfwTzz340/+xH889+NP/A3GOP5r/9aP5Htw89POF8aHjYo9m/H8198PBD 0w8LT3sAuATmYA== "], { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 5}, {1, 15}, {1, 18}, {1, 27}, {2, 6}, {2, 16}, {2, 19}, {2, 28}, {3, 9}, {3, 12}, {3, 17}, {3, 27}, {4, 10}, {4, 13}, {4, 17}, {4, 28}, {5, 7}, {5, 15}, {5, 29}, {6, 8}, {6, 16}, {6, 30}, {7, 8}, {7, 14}, {7, 29}, {8, 14}, {8, 30}, {9, 15}, {9, 17}, {9, 22}, {10, 16}, {10, 17}, {10, 23}, {11, 12}, { 11, 13}, {11, 20}, {11, 21}, {12, 13}, {12, 27}, {13, 28}, {14, 22}, {14, 23}, {15, 22}, {16, 23}, {18, 20}, {18, 25}, {18, 27}, { 19, 21}, {19, 26}, {19, 28}, {20, 21}, {20, 25}, {21, 26}, {22, 23}, {24, 25}, {24, 26}, {24, 29}, {24, 30}, {25, 29}, {26, 30}}, 0.0319088348808545]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.0319088348808545], DiskBox[2, 0.0319088348808545], DiskBox[3, 0.0319088348808545], DiskBox[4, 0.0319088348808545], DiskBox[5, 0.0319088348808545], DiskBox[6, 0.0319088348808545], DiskBox[7, 0.0319088348808545], DiskBox[8, 0.0319088348808545], DiskBox[9, 0.0319088348808545], DiskBox[10, 0.0319088348808545], DiskBox[11, 0.0319088348808545], DiskBox[12, 0.0319088348808545], DiskBox[13, 0.0319088348808545], DiskBox[14, 0.0319088348808545], DiskBox[15, 0.0319088348808545], DiskBox[16, 0.0319088348808545], DiskBox[17, 0.0319088348808545], DiskBox[18, 0.0319088348808545], DiskBox[19, 0.0319088348808545], DiskBox[20, 0.0319088348808545], DiskBox[21, 0.0319088348808545], DiskBox[22, 0.0319088348808545], DiskBox[23, 0.0319088348808545], DiskBox[24, 0.0319088348808545], DiskBox[25, 0.0319088348808545], DiskBox[26, 0.0319088348808545], DiskBox[27, 0.0319088348808545], DiskBox[28, 0.0319088348808545], DiskBox[29, 0.0319088348808545], DiskBox[30, 0.0319088348808545]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->{ "NetworkGraphics", FrontEnd`GraphicsHighlightColor -> Hue[0.8, 1., 0.6]}, FormatType->TraditionalForm, FrameTicks->None], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30}, {Null, SparseArray[ Automatic, {30, 30}, 0, { 1, {{0, 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92, 96, 100, 104, 108, 112, 116, 120}, {{5}, {15}, {18}, {27}, {6}, {16}, {19}, {28}, {9}, {12}, { 17}, {27}, {10}, {13}, {17}, {28}, {1}, {7}, {15}, {29}, {2}, { 8}, {16}, {30}, {5}, {8}, {14}, {29}, {6}, {7}, {14}, {30}, {3}, { 15}, {17}, {22}, {4}, {16}, {17}, {23}, {12}, {13}, {20}, {21}, { 3}, {11}, {13}, {27}, {4}, {11}, {12}, {28}, {7}, {8}, {22}, { 23}, {1}, {5}, {9}, {22}, {2}, {6}, {10}, {23}, {3}, {4}, {9}, { 10}, {1}, {20}, {25}, {27}, {2}, {21}, {26}, {28}, {11}, {18}, { 21}, {25}, {11}, {19}, {20}, {26}, {9}, {14}, {15}, {23}, {10}, { 14}, {16}, {22}, {25}, {26}, {29}, {30}, {18}, {20}, {24}, {29}, { 19}, {21}, {24}, {30}, {1}, {3}, {12}, {18}, {2}, {4}, {13}, { 19}, {5}, {7}, {24}, {25}, {6}, {8}, {24}, {26}}}, Pattern}]}, { VertexCoordinates -> {{0, Rational[1, 2] (-1 - 5^Rational[1, 2])}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2])}, { Root[1 - 20 #^2 + 80 #^4& , 3, 0], Rational[1, 4] (-1 - 5^Rational[1, 2])}, { Root[1 - 20 #^2 + 80 #^4& , 3, 0], Rational[1, 4] (1 + 5^Rational[1, 2])}, { Rational[1, 2] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2])}, { Rational[1, 2] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2])}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2])}, {-(1 + 2 5^Rational[-1, 2])^Rational[1, 2], 0}, {Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 2]}, {(1 + 2 5^Rational[-1, 2])^Rational[1, 2], 0}, { Rational[1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2])}, { Rational[1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])}, {( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2], 0}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2])}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2]}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2]}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2]}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2]}, { Root[1 - 5 #^2 + 5 #^4& , 1, 0], 0}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-1 - 5^Rational[1, 2])}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (1 + 5^Rational[1, 2])}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-3 - 5^Rational[1, 2])}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (3 + 5^Rational[1, 2])}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (-1 - 5^Rational[1, 2])}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (1 + 5^Rational[1, 2])}}}]]}, TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData[" 1:eJxTTMoPSmViYGCQA2IQDQMrvkyfXf745340vj1v8ELeU5cu2EP4L/ej8e2f Mrtxd1jctg/5dfrs7o9f9qPx7StXF/OsZH1mDzH1wX40vv3WMO7Obxc+ws1H 40P1f4O7C6p/P5p5MD5MvT1M/f8QF2G+/Hdw96Hxoe5/ja5+P5p6GN9+/fU7 3RLzf8DtR+PD5O3R5OH+hdoH9w/Uv/vR/L8fLXz3o4Uv3D3Q+NiPFj9w/QCe i+UW "], { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 5}, {1, 15}, {1, 18}, {1, 27}, {2, 6}, {2, 16}, {2, 19}, {2, 28}, {3, 9}, {3, 12}, {3, 17}, {3, 27}, {4, 10}, {4, 13}, {4, 17}, {4, 28}, {5, 7}, {5, 15}, {5, 29}, {6, 8}, {6, 16}, {6, 30}, {7, 8}, {7, 14}, {7, 29}, {8, 14}, {8, 30}, {9, 15}, {9, 17}, {9, 22}, {10, 16}, {10, 17}, {10, 23}, {11, 12}, { 11, 13}, {11, 20}, {11, 21}, {12, 13}, {12, 27}, {13, 28}, {14, 22}, {14, 23}, {15, 22}, {16, 23}, {18, 20}, {18, 25}, {18, 27}, { 19, 21}, {19, 26}, {19, 28}, {20, 21}, {20, 25}, {21, 26}, {22, 23}, {24, 25}, {24, 26}, {24, 29}, {24, 30}, {25, 29}, {26, 30}}, 0.0319088348808545]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.0319088348808545], DiskBox[2, 0.0319088348808545], DiskBox[3, 0.0319088348808545], DiskBox[4, 0.0319088348808545], DiskBox[5, 0.0319088348808545], DiskBox[6, 0.0319088348808545], DiskBox[7, 0.0319088348808545], DiskBox[8, 0.0319088348808545], DiskBox[9, 0.0319088348808545], DiskBox[10, 0.0319088348808545], DiskBox[11, 0.0319088348808545], DiskBox[12, 0.0319088348808545], DiskBox[13, 0.0319088348808545], DiskBox[14, 0.0319088348808545], DiskBox[15, 0.0319088348808545], DiskBox[16, 0.0319088348808545], DiskBox[17, 0.0319088348808545], DiskBox[18, 0.0319088348808545], DiskBox[19, 0.0319088348808545], DiskBox[20, 0.0319088348808545], DiskBox[21, 0.0319088348808545], DiskBox[22, 0.0319088348808545], DiskBox[23, 0.0319088348808545], DiskBox[24, 0.0319088348808545], DiskBox[25, 0.0319088348808545], DiskBox[26, 0.0319088348808545], DiskBox[27, 0.0319088348808545], DiskBox[28, 0.0319088348808545], DiskBox[29, 0.0319088348808545], DiskBox[30, 0.0319088348808545]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->{ "NetworkGraphics", FrontEnd`GraphicsHighlightColor -> Hue[0.8, 1., 0.6]}, FormatType->TraditionalForm, FrameTicks->None]}], "}"}]], "Output", CellLabel->"Out[10]=",ExpressionUUID->"a524ed01-8bd6-4c6f-8ad4-4a5d66c0aeee"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Vertex subset hulls", "Section",ExpressionUUID->"5a1a62c0-a59a-406f-99b6-4bd65dc11a1c"], Cell[CellGroupData[{ Cell["Platonic", "Subsection",ExpressionUUID->"b62d756c-efc9-42a6-a204-c3a1dd8aedec"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"(", RowBox[{"h", "=", RowBox[{"VertexSubsetHulls", "[", RowBox[{ RowBox[{"PolyhedronData", "[", RowBox[{"\"\\"", ",", "\"\\""}], "]"}], ",", "\"\\""}], "]"}]}], ")"}], "//", "Timing"}]], "Input",ExpressionUUID->"7107c184-ae98-4d8b-88f3-e144ca573a54"], Cell[CellGroupData[{ Cell[BoxData["\<\"Finding equilateral triangles...\"\>"], "Print",ExpressionUUID->"276cb67c-1bc8-4a71-8983-c78bb9c5f9ff"], Cell[BoxData["\<\"Finding potential tetrahedra from equilateral \ triangles...\"\>"], "Print",ExpressionUUID->"e6c994b6-e432-4ed4-ae33-\ ffc283f82297"], Cell[BoxData["\<\"Finding tetrahedra from potential candidates...\"\>"], \ "Print",ExpressionUUID->"973726a9-24a0-47bb-9e86-25832e9db50c"], Cell[BoxData["\<\"Finding cubes from tetrahedra...\"\>"], "Print",ExpressionUUID->"0bee0a96-a2da-4e5a-917d-25c3cee4fd92"], Cell[BoxData["\<\"Finding dodecahedron from cubes...\"\>"], "Print",ExpressionUUID->"92cb7d76-bdee-4ae9-ac4f-f6cf414611ba"], Cell[BoxData["\<\"Finding octahedra by building up from equilateral \ triangles...\"\>"], "Print",ExpressionUUID->"3a730d2d-7003-4b56-82eb-\ 48a52b628da2"], Cell[BoxData["\<\"Finding dodecahedra from octahedra...\"\>"], "Print",ExpressionUUID->"a0fc657f-c604-48ab-b35c-51253d4cef58"], Cell[BoxData["\<\"Finding icosahdra by building up from equilateral \ triangles...\"\>"], "Print",ExpressionUUID->"61ee3c30-329a-45cc-ba67-\ 0910ce69e0f0"] }, Open ]], Cell[BoxData[ RowBox[{"{", RowBox[{"0.42004600000000103`", ",", RowBox[{"{", RowBox[{ RowBox[{"\<\"Octahedron\"\>", "\[Rule]", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"1", ",", "2", ",", "11", ",", "14", ",", "17", ",", "24"}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "5", ",", "20", ",", "23", ",", "28", ",", "30"}], "}"}], ",", RowBox[{"{", RowBox[{"4", ",", "6", ",", "21", ",", "22", ",", "27", ",", "29"}], "}"}], ",", RowBox[{"{", RowBox[{"7", ",", "9", ",", "13", ",", "16", ",", "18", ",", "26"}], "}"}], ",", RowBox[{"{", RowBox[{"8", ",", "10", ",", "12", ",", "15", ",", "19", ",", "25"}], "}"}]}], "}"}]}], ",", RowBox[{"\<\"Icosidodecahedron\"\>", "\[Rule]", RowBox[{"{", RowBox[{"{", RowBox[{ "1", ",", "2", ",", "3", ",", "4", ",", "5", ",", "6", ",", "7", ",", "8", ",", "9", ",", "10", ",", "11", ",", "12", ",", "13", ",", "14", ",", "15", ",", "16", ",", "17", ",", "18", ",", "19", ",", "20", ",", "21", ",", "22", ",", "23", ",", "24", ",", "25", ",", "26", ",", "27", ",", "28", ",", "29", ",", "30"}], "}"}], "}"}]}]}], "}"}]}], "}"}]], "Output",ExpressionUUID->"d7e4e4cd-92a7-4d9f-a5c3-\ fb5b23147189"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"g", "=", RowBox[{ RowBox[{"Function", "[", RowBox[{"poly", ",", RowBox[{"Graphics3D", "[", RowBox[{ RowBox[{"{", "\[IndentingNewLine]", RowBox[{ RowBox[{"{", RowBox[{"Gray", ",", RowBox[{"Opacity", "[", ".2", "]"}], ",", RowBox[{"EdgeForm", "[", "Thick", "]"}], ",", RowBox[{"PolyhedronData", "[", RowBox[{"p", ",", "\"\\""}], "]"}]}], "}"}], ",", RowBox[{ RowBox[{ RowBox[{"ConvexHull3D", "[", RowBox[{ RowBox[{"N", "[", RowBox[{"PolyhedronData", "[", RowBox[{"p", ",", "\"\\""}], "]"}], "]"}], "[", RowBox[{"[", "#", "]"}], "]"}], "]"}], "&"}], "/@", "poly"}]}], "}"}], ",", RowBox[{"Boxed", "\[Rule]", "False"}]}], "]"}]}], "]"}], "/@", RowBox[{"h", "[", RowBox[{"[", RowBox[{"All", ",", "2"}], "]"}], "]"}]}]}]], "Input",ExpressionUUID->\ "c7a86fd2-b182-4fde-a44f-394df27893e3"], Cell[BoxData[ RowBox[{"{", RowBox[{ Graphics3DBox[{ {GrayLevel[0.5], Opacity[0.2], EdgeForm[Thickness[Large]], GraphicsComplex3DBox[ NCache[{{0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), 0}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {-(1 + 2 5^Rational[-1, 2])^ Rational[1, 2], 0, Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {(1 + 2 5^Rational[-1, 2])^Rational[1, 2], 0, (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, {(Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2], 0, -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2], 0}, { Root[1 - 5 #^2 + 5 #^4& , 1, 0], 0, (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}}, {{0, -1.618033988749895, 0}, { 0, 1.618033988749895, 0}, { 0.2628655560595668, -0.8090169943749475, -1.3763819204711736`}, { 0.2628655560595668, 0.8090169943749475, -1.3763819204711736`}, { 0.42532540417601994`, -1.3090169943749475`, 0.85065080835204}, { 0.42532540417601994`, 1.3090169943749475`, 0.85065080835204}, { 0.6881909602355868, -0.5, 1.3763819204711736`}, {0.6881909602355868, 0.5, 1.3763819204711736`}, { 1.1135163644116066`, -0.8090169943749475, -0.85065080835204}, { 1.1135163644116066`, 0.8090169943749475, -0.85065080835204}, {-1.3763819204711736`, 0, -0.85065080835204}, {-0.6881909602355868, -0.5, \ -1.3763819204711736`}, {-0.6881909602355868, 0.5, -1.3763819204711736`}, { 1.3763819204711736`, 0, 0.85065080835204}, { 0.9510565162951535, -1.3090169943749475`, 0}, { 0.9510565162951535, 1.3090169943749475`, 0}, { 0.85065080835204, 0, -1.3763819204711736`}, {-0.9510565162951535, \ -1.3090169943749475`, 0}, {-0.9510565162951535, 1.3090169943749475`, 0}, {-1.5388417685876268`, -0.5, 0}, {-1.5388417685876268`, 0.5, 0}, {1.5388417685876268`, -0.5, 0}, { 1.5388417685876268`, 0.5, 0}, {-0.85065080835204, 0, 1.3763819204711736`}, {-1.1135163644116068`, -0.8090169943749475, 0.85065080835204}, {-1.1135163644116068`, 0.8090169943749475, 0.85065080835204}, {-0.42532540417601994`, -1.3090169943749475`, \ -0.85065080835204}, {-0.42532540417601994`, 1.3090169943749475`, -0.85065080835204}, {-0.2628655560595668, \ -0.8090169943749475, 1.3763819204711736`}, {-0.2628655560595668, 0.8090169943749475, 1.3763819204711736`}}], Polygon3DBox[{{30, 24, 29, 7, 8}, {26, 24, 30}, {25, 29, 24}, {5, 7, 29}, {14, 8, 7}, {6, 30, 8}, {16, 2, 6}, {19, 21, 26}, {20, 18, 25}, {1, 15, 5}, {22, 23, 14}, {2, 19, 26, 30, 6}, {21, 20, 25, 24, 26}, {18, 1, 5, 29, 25}, {15, 22, 14, 7, 5}, {23, 16, 6, 8, 14}, {12, 13, 4, 17, 3}, {3, 17, 9}, {17, 4, 10}, {4, 13, 28}, {13, 12, 11}, { 12, 3, 27}, {27, 1, 18}, {9, 22, 15}, {10, 16, 23}, {28, 19, 2}, {11, 20, 21}, {27, 3, 9, 15, 1}, {9, 17, 10, 23, 22}, {10, 4, 28, 2, 16}, {28, 13, 11, 21, 19}, {11, 12, 27, 18, 20}}]]}, {{ Polygon3DBox[{{-1.3763819204711736`, 0., -0.85065080835204}, {-0.85065080835204, 0., 1.3763819204711736`}, {0., 1.618033988749895, 0.}}], Polygon3DBox[{{-1.3763819204711736`, 0., -0.85065080835204}, { 0., -1.618033988749895, 0.}, {-0.85065080835204, 0., 1.3763819204711736`}}], Polygon3DBox[{{-1.3763819204711736`, 0., -0.85065080835204}, {0., 1.618033988749895, 0.}, {0.85065080835204, 0., -1.3763819204711736`}}], Polygon3DBox[{{-1.3763819204711736`, 0., -0.85065080835204}, { 0.85065080835204, 0., -1.3763819204711736`}, {0., -1.618033988749895, 0.}}], Polygon3DBox[{{-0.85065080835204, 0., 1.3763819204711736`}, { 0., -1.618033988749895, 0.}, {1.3763819204711736`, 0., 0.85065080835204}}], Polygon3DBox[{{-0.85065080835204, 0., 1.3763819204711736`}, { 1.3763819204711736`, 0., 0.85065080835204}, {0., 1.618033988749895, 0.}}], Polygon3DBox[{{0., -1.618033988749895, 0.}, {0.85065080835204, 0., -1.3763819204711736`}, {1.3763819204711736`, 0., 0.85065080835204}}], Polygon3DBox[{{0., 1.618033988749895, 0.}, {1.3763819204711736`, 0., 0.85065080835204}, {0.85065080835204, 0., -1.3763819204711736`}}]}, { Polygon3DBox[{{-1.5388417685876268`, -0.5, 0.}, {-0.42532540417601994`, 1.3090169943749475`, -0.85065080835204}, { 0.2628655560595668, -0.8090169943749475, -1.3763819204711736`}}], Polygon3DBox[{{-1.5388417685876268`, -0.5, 0.}, {-0.2628655560595668, 0.8090169943749475, 1.3763819204711736`}, {-0.42532540417601994`, 1.3090169943749475`, -0.85065080835204}}], Polygon3DBox[{{-1.5388417685876268`, -0.5, 0.}, { 0.2628655560595668, -0.8090169943749475, -1.3763819204711736`}, { 0.42532540417601994`, -1.3090169943749475`, 0.85065080835204}}], Polygon3DBox[{{-1.5388417685876268`, -0.5, 0.}, { 0.42532540417601994`, -1.3090169943749475`, 0.85065080835204}, {-0.2628655560595668, 0.8090169943749475, 1.3763819204711736`}}], Polygon3DBox[{{-0.42532540417601994`, 1.3090169943749475`, -0.85065080835204}, {-0.2628655560595668, 0.8090169943749475, 1.3763819204711736`}, {1.5388417685876268`, 0.5, 0.}}], Polygon3DBox[{{-0.42532540417601994`, 1.3090169943749475`, -0.85065080835204}, {1.5388417685876268`, 0.5, 0.}, { 0.2628655560595668, -0.8090169943749475, -1.3763819204711736`}}], Polygon3DBox[{{-0.2628655560595668, 0.8090169943749475, 1.3763819204711736`}, {0.42532540417601994`, -1.3090169943749475`, 0.85065080835204}, {1.5388417685876268`, 0.5, 0.}}], Polygon3DBox[{{ 0.2628655560595668, -0.8090169943749475, -1.3763819204711736`}, { 1.5388417685876268`, 0.5, 0.}, { 0.42532540417601994`, -1.3090169943749475`, 0.85065080835204}}]}, { Polygon3DBox[{{-1.5388417685876268`, 0.5, 0.}, {-0.42532540417601994`, -1.3090169943749475`, \ -0.85065080835204}, {-0.2628655560595668, -0.8090169943749475, 1.3763819204711736`}}], Polygon3DBox[{{-1.5388417685876268`, 0.5, 0.}, {-0.2628655560595668, -0.8090169943749475, 1.3763819204711736`}, {0.42532540417601994`, 1.3090169943749475`, 0.85065080835204}}], Polygon3DBox[{{-1.5388417685876268`, 0.5, 0.}, {0.2628655560595668, 0.8090169943749475, -1.3763819204711736`}, {-0.42532540417601994`, \ -1.3090169943749475`, -0.85065080835204}}], Polygon3DBox[{{-1.5388417685876268`, 0.5, 0.}, {0.42532540417601994`, 1.3090169943749475`, 0.85065080835204}, {0.2628655560595668, 0.8090169943749475, -1.3763819204711736`}}], Polygon3DBox[{{-0.42532540417601994`, -1.3090169943749475`, \ -0.85065080835204}, {0.2628655560595668, 0.8090169943749475, -1.3763819204711736`}, {1.5388417685876268`, -0.5, 0.}}], Polygon3DBox[{{-0.42532540417601994`, -1.3090169943749475`, \ -0.85065080835204}, {1.5388417685876268`, -0.5, 0.}, {-0.2628655560595668, -0.8090169943749475, 1.3763819204711736`}}], Polygon3DBox[{{-0.2628655560595668, -0.8090169943749475, 1.3763819204711736`}, {1.5388417685876268`, -0.5, 0.}, { 0.42532540417601994`, 1.3090169943749475`, 0.85065080835204}}], Polygon3DBox[{{0.2628655560595668, 0.8090169943749475, -1.3763819204711736`}, {0.42532540417601994`, 1.3090169943749475`, 0.85065080835204}, {1.5388417685876268`, -0.5, 0.}}]}, { Polygon3DBox[{{-1.1135163644116068`, 0.8090169943749475, 0.85065080835204}, {-0.9510565162951535, -1.3090169943749475`, 0.}, { 0.6881909602355868, -0.5, 1.3763819204711736`}}], Polygon3DBox[{{-1.1135163644116068`, 0.8090169943749475, 0.85065080835204}, {-0.6881909602355868, 0.5, -1.3763819204711736`}, {-0.9510565162951535, \ -1.3090169943749475`, 0.}}], Polygon3DBox[{{-1.1135163644116068`, 0.8090169943749475, 0.85065080835204}, {0.6881909602355868, -0.5, 1.3763819204711736`}, { 0.9510565162951535, 1.3090169943749475`, 0.}}], Polygon3DBox[{{-1.1135163644116068`, 0.8090169943749475, 0.85065080835204}, {0.9510565162951535, 1.3090169943749475`, 0.}, {-0.6881909602355868, 0.5, -1.3763819204711736`}}], Polygon3DBox[{{-0.9510565162951535, -1.3090169943749475`, 0.}, {-0.6881909602355868, 0.5, -1.3763819204711736`}, { 1.1135163644116066`, -0.8090169943749475, -0.85065080835204}}], Polygon3DBox[{{-0.9510565162951535, -1.3090169943749475`, 0.}, { 1.1135163644116066`, -0.8090169943749475, -0.85065080835204}, { 0.6881909602355868, -0.5, 1.3763819204711736`}}], Polygon3DBox[{{-0.6881909602355868, 0.5, -1.3763819204711736`}, { 0.9510565162951535, 1.3090169943749475`, 0.}, { 1.1135163644116066`, -0.8090169943749475, -0.85065080835204}}], Polygon3DBox[{{0.6881909602355868, -0.5, 1.3763819204711736`}, { 1.1135163644116066`, -0.8090169943749475, -0.85065080835204}, { 0.9510565162951535, 1.3090169943749475`, 0.}}]}, { Polygon3DBox[{{-1.1135163644116068`, -0.8090169943749475, 0.85065080835204}, {-0.9510565162951535, 1.3090169943749475`, 0.}, {-0.6881909602355868, -0.5, -1.3763819204711736`}}], Polygon3DBox[{{-1.1135163644116068`, -0.8090169943749475, 0.85065080835204}, {-0.6881909602355868, -0.5, -1.3763819204711736`}, \ {0.9510565162951535, -1.3090169943749475`, 0.}}], Polygon3DBox[{{-1.1135163644116068`, -0.8090169943749475, 0.85065080835204}, {0.6881909602355868, 0.5, 1.3763819204711736`}, {-0.9510565162951535, 1.3090169943749475`, 0.}}], Polygon3DBox[{{-1.1135163644116068`, -0.8090169943749475, 0.85065080835204}, {0.9510565162951535, -1.3090169943749475`, 0.}, { 0.6881909602355868, 0.5, 1.3763819204711736`}}], Polygon3DBox[{{-0.9510565162951535, 1.3090169943749475`, 0.}, { 0.6881909602355868, 0.5, 1.3763819204711736`}, {1.1135163644116066`, 0.8090169943749475, -0.85065080835204}}], Polygon3DBox[{{-0.9510565162951535, 1.3090169943749475`, 0.}, { 1.1135163644116066`, 0.8090169943749475, -0.85065080835204}, {-0.6881909602355868, -0.5, \ -1.3763819204711736`}}], Polygon3DBox[{{-0.6881909602355868, -0.5, -1.3763819204711736`}, { 1.1135163644116066`, 0.8090169943749475, -0.85065080835204}, { 0.9510565162951535, -1.3090169943749475`, 0.}}], Polygon3DBox[{{0.6881909602355868, 0.5, 1.3763819204711736`}, { 0.9510565162951535, -1.3090169943749475`, 0.}, {1.1135163644116066`, 0.8090169943749475, -0.85065080835204}}]}}}, Boxed->False], ",", Graphics3DBox[{ {GrayLevel[0.5], Opacity[0.2], EdgeForm[Thickness[Large]], GraphicsComplex3DBox[ NCache[{{0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), 0}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {-(1 + 2 5^Rational[-1, 2])^ Rational[1, 2], 0, Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {(1 + 2 5^Rational[-1, 2])^Rational[1, 2], 0, (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, {(Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2], 0, -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2], 0}, { Root[1 - 5 #^2 + 5 #^4& , 1, 0], 0, (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}}, {{0, -1.618033988749895, 0}, { 0, 1.618033988749895, 0}, { 0.2628655560595668, -0.8090169943749475, -1.3763819204711736`}, { 0.2628655560595668, 0.8090169943749475, -1.3763819204711736`}, { 0.42532540417601994`, -1.3090169943749475`, 0.85065080835204}, { 0.42532540417601994`, 1.3090169943749475`, 0.85065080835204}, { 0.6881909602355868, -0.5, 1.3763819204711736`}, {0.6881909602355868, 0.5, 1.3763819204711736`}, { 1.1135163644116066`, -0.8090169943749475, -0.85065080835204}, { 1.1135163644116066`, 0.8090169943749475, -0.85065080835204}, {-1.3763819204711736`, 0, -0.85065080835204}, {-0.6881909602355868, -0.5, \ -1.3763819204711736`}, {-0.6881909602355868, 0.5, -1.3763819204711736`}, { 1.3763819204711736`, 0, 0.85065080835204}, { 0.9510565162951535, -1.3090169943749475`, 0}, { 0.9510565162951535, 1.3090169943749475`, 0}, { 0.85065080835204, 0, -1.3763819204711736`}, {-0.9510565162951535, \ -1.3090169943749475`, 0}, {-0.9510565162951535, 1.3090169943749475`, 0}, {-1.5388417685876268`, -0.5, 0}, {-1.5388417685876268`, 0.5, 0}, {1.5388417685876268`, -0.5, 0}, { 1.5388417685876268`, 0.5, 0}, {-0.85065080835204, 0, 1.3763819204711736`}, {-1.1135163644116068`, -0.8090169943749475, 0.85065080835204}, {-1.1135163644116068`, 0.8090169943749475, 0.85065080835204}, {-0.42532540417601994`, -1.3090169943749475`, \ -0.85065080835204}, {-0.42532540417601994`, 1.3090169943749475`, -0.85065080835204}, {-0.2628655560595668, \ -0.8090169943749475, 1.3763819204711736`}, {-0.2628655560595668, 0.8090169943749475, 1.3763819204711736`}}], Polygon3DBox[{{30, 24, 29, 7, 8}, {26, 24, 30}, {25, 29, 24}, {5, 7, 29}, {14, 8, 7}, {6, 30, 8}, {16, 2, 6}, {19, 21, 26}, {20, 18, 25}, {1, 15, 5}, {22, 23, 14}, {2, 19, 26, 30, 6}, {21, 20, 25, 24, 26}, {18, 1, 5, 29, 25}, {15, 22, 14, 7, 5}, {23, 16, 6, 8, 14}, {12, 13, 4, 17, 3}, {3, 17, 9}, {17, 4, 10}, {4, 13, 28}, {13, 12, 11}, { 12, 3, 27}, {27, 1, 18}, {9, 22, 15}, {10, 16, 23}, {28, 19, 2}, {11, 20, 21}, {27, 3, 9, 15, 1}, {9, 17, 10, 23, 22}, {10, 4, 28, 2, 16}, {28, 13, 11, 21, 19}, {11, 12, 27, 18, 20}}]]}, { Polygon3DBox[{{-1.5388417685876268`, -0.5, 0.}, {-1.5388417685876268`, 0.5, 0.}, {-1.3763819204711736`, 0., -0.85065080835204}}], Polygon3DBox[{{-1.5388417685876268`, -0.5, 0.}, {-0.9510565162951535, -1.3090169943749475`, 0.}, {-1.1135163644116068`, -0.8090169943749475, 0.85065080835204}}], Polygon3DBox[{{-1.5388417685876268`, 0.5, 0.}, {-1.1135163644116068`, 0.8090169943749475, 0.85065080835204}, {-0.9510565162951535, 1.3090169943749475`, 0.}}], Polygon3DBox[{{-1.3763819204711736`, 0., -0.85065080835204}, {-0.6881909602355868, 0.5, -1.3763819204711736`}, {-0.6881909602355868, -0.5, \ -1.3763819204711736`}}], Polygon3DBox[{{-1.1135163644116068`, -0.8090169943749475, 0.85065080835204}, {-0.2628655560595668, -0.8090169943749475, 1.3763819204711736`}, {-0.85065080835204, 0., 1.3763819204711736`}}], Polygon3DBox[{{-1.1135163644116068`, 0.8090169943749475, 0.85065080835204}, {-0.85065080835204, 0., 1.3763819204711736`}, {-0.2628655560595668, 0.8090169943749475, 1.3763819204711736`}}], Polygon3DBox[{{-0.9510565162951535, -1.3090169943749475`, 0.}, {-0.42532540417601994`, -1.3090169943749475`, -0.85065080835204}, \ {0., -1.618033988749895, 0.}}], Polygon3DBox[{{-0.9510565162951535, 1.3090169943749475`, 0.}, {0., 1.618033988749895, 0.}, {-0.42532540417601994`, 1.3090169943749475`, -0.85065080835204}}], Polygon3DBox[{{-0.6881909602355868, -0.5, -1.3763819204711736`}, { 0.2628655560595668, -0.8090169943749475, -1.3763819204711736`}, \ {-0.42532540417601994`, -1.3090169943749475`, -0.85065080835204}}], Polygon3DBox[{{-0.6881909602355868, 0.5, -1.3763819204711736`}, {-0.42532540417601994`, 1.3090169943749475`, -0.85065080835204}, {0.2628655560595668, 0.8090169943749475, -1.3763819204711736`}}], Polygon3DBox[{{-0.2628655560595668, -0.8090169943749475, 1.3763819204711736`}, {0.42532540417601994`, -1.3090169943749475`, 0.85065080835204}, {0.6881909602355868, -0.5, 1.3763819204711736`}}], Polygon3DBox[{{-0.2628655560595668, 0.8090169943749475, 1.3763819204711736`}, {0.6881909602355868, 0.5, 1.3763819204711736`}, { 0.42532540417601994`, 1.3090169943749475`, 0.85065080835204}}], Polygon3DBox[{{0., -1.618033988749895, 0.}, { 0.9510565162951535, -1.3090169943749475`, 0.}, { 0.42532540417601994`, -1.3090169943749475`, 0.85065080835204}}], Polygon3DBox[{{0., 1.618033988749895, 0.}, {0.42532540417601994`, 1.3090169943749475`, 0.85065080835204}, {0.9510565162951535, 1.3090169943749475`, 0.}}], Polygon3DBox[{{ 0.2628655560595668, -0.8090169943749475, -1.3763819204711736`}, { 0.85065080835204, 0., -1.3763819204711736`}, { 1.1135163644116066`, -0.8090169943749475, -0.85065080835204}}], Polygon3DBox[{{0.2628655560595668, 0.8090169943749475, -1.3763819204711736`}, {1.1135163644116066`, 0.8090169943749475, -0.85065080835204}, {0.85065080835204, 0., -1.3763819204711736`}}], Polygon3DBox[{{0.6881909602355868, -0.5, 1.3763819204711736`}, { 1.3763819204711736`, 0., 0.85065080835204}, {0.6881909602355868, 0.5, 1.3763819204711736`}}], Polygon3DBox[{{0.9510565162951535, -1.3090169943749475`, 0.}, { 1.1135163644116066`, -0.8090169943749475, -0.85065080835204}, { 1.5388417685876268`, -0.5, 0.}}], Polygon3DBox[{{0.9510565162951535, 1.3090169943749475`, 0.}, { 1.5388417685876268`, 0.5, 0.}, {1.1135163644116066`, 0.8090169943749475, -0.85065080835204}}], Polygon3DBox[{{1.3763819204711736`, 0., 0.85065080835204}, { 1.5388417685876268`, -0.5, 0.}, {1.5388417685876268`, 0.5, 0.}}], Polygon3DBox[{{-0.42532540417601994`, -1.3090169943749475`, \ -0.85065080835204}, {-0.6881909602355868, -0.5, -1.3763819204711736`}, \ {-1.3763819204711736`, 0., -0.85065080835204}, {-1.5388417685876268`, -0.5, 0.}, {-0.9510565162951535, -1.3090169943749475`, 0.}}], Polygon3DBox[{{-1.1135163644116068`, 0.8090169943749475, 0.85065080835204}, {-0.85065080835204, 0., 1.3763819204711736`}, {-1.1135163644116068`, -0.8090169943749475, 0.85065080835204}, {-1.5388417685876268`, -0.5, 0.}, {-1.5388417685876268`, 0.5, 0.}}], Polygon3DBox[{{-0.42532540417601994`, 1.3090169943749475`, -0.85065080835204}, {-0.9510565162951535, 1.3090169943749475`, 0.}, {-1.5388417685876268`, 0.5, 0.}, {-1.3763819204711736`, 0., -0.85065080835204}, {-0.6881909602355868, 0.5, -1.3763819204711736`}}], Polygon3DBox[{{0.42532540417601994`, -1.3090169943749475`, 0.85065080835204}, {-0.2628655560595668, -0.8090169943749475, 1.3763819204711736`}, {-1.1135163644116068`, -0.8090169943749475, 0.85065080835204}, {-0.9510565162951535, -1.3090169943749475`, 0.}, { 0., -1.618033988749895, 0.}}], Polygon3DBox[{{0.42532540417601994`, 1.3090169943749475`, 0.85065080835204}, {0., 1.618033988749895, 0.}, {-0.9510565162951535, 1.3090169943749475`, 0.}, {-1.1135163644116068`, 0.8090169943749475, 0.85065080835204}, {-0.2628655560595668, 0.8090169943749475, 1.3763819204711736`}}], Polygon3DBox[{{0.6881909602355868, -0.5, 1.3763819204711736`}, { 0.6881909602355868, 0.5, 1.3763819204711736`}, {-0.2628655560595668, 0.8090169943749475, 1.3763819204711736`}, {-0.85065080835204, 0., 1.3763819204711736`}, {-0.2628655560595668, -0.8090169943749475, 1.3763819204711736`}}], Polygon3DBox[{{0.85065080835204, 0., -1.3763819204711736`}, { 0.2628655560595668, 0.8090169943749475, -1.3763819204711736`}, {-0.6881909602355868, 0.5, -1.3763819204711736`}, {-0.6881909602355868, -0.5, \ -1.3763819204711736`}, { 0.2628655560595668, -0.8090169943749475, -1.3763819204711736`}}], Polygon3DBox[{{ 1.1135163644116066`, -0.8090169943749475, -0.85065080835204}, { 0.2628655560595668, -0.8090169943749475, -1.3763819204711736`}, \ {-0.42532540417601994`, -1.3090169943749475`, -0.85065080835204}, { 0., -1.618033988749895, 0.}, {0.9510565162951535, -1.3090169943749475`, 0.}}], Polygon3DBox[{{1.1135163644116066`, 0.8090169943749475, -0.85065080835204}, {0.9510565162951535, 1.3090169943749475`, 0.}, {0., 1.618033988749895, 0.}, {-0.42532540417601994`, 1.3090169943749475`, -0.85065080835204}, { 0.2628655560595668, 0.8090169943749475, -1.3763819204711736`}}], Polygon3DBox[{{1.5388417685876268`, -0.5, 0.}, {1.3763819204711736`, 0., 0.85065080835204}, {0.6881909602355868, -0.5, 1.3763819204711736`}, { 0.42532540417601994`, -1.3090169943749475`, 0.85065080835204}, { 0.9510565162951535, -1.3090169943749475`, 0.}}], Polygon3DBox[{{1.5388417685876268`, 0.5, 0.}, {0.9510565162951535, 1.3090169943749475`, 0.}, {0.42532540417601994`, 1.3090169943749475`, 0.85065080835204}, {0.6881909602355868, 0.5, 1.3763819204711736`}, { 1.3763819204711736`, 0., 0.85065080835204}}], Polygon3DBox[{{1.1135163644116066`, 0.8090169943749475, -0.85065080835204}, {1.5388417685876268`, 0.5, 0.}, {1.5388417685876268`, -0.5, 0.}, { 1.1135163644116066`, -0.8090169943749475, -0.85065080835204}, { 0.85065080835204, 0., -1.3763819204711736`}}]}}, Boxed->False]}], "}"}]], "Output",ExpressionUUID->"2598cbc3-524a-4722-\ a667-178799494acf"] }, Open ]], Cell[BoxData[ RowBox[{"GraphicsGrid", "[", RowBox[{ RowBox[{"{", "g", "}"}], ",", RowBox[{"Spacings", "\[Rule]", RowBox[{"-", "100"}]}]}], "]"}]], "Input",ExpressionUUID->"f3515510-1e7a-\ 4041-9183-3950e6beb4ea"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Construction", "Section",ExpressionUUID->"e0107f4f-93f8-4e8f-8266-cc384c02b039"], Cell[CellGroupData[{ Cell["C5", "Subsection",ExpressionUUID->"e444336a-2ebf-49bc-a7b1-72b76ee5cb1c"], Cell[BoxData[ RowBox[{"Module", "[", RowBox[{ RowBox[{"{", RowBox[{"p", ",", "rim", ",", "ctr", ",", "i", ",", RowBox[{"h", "=", RowBox[{"Sqrt", "[", RowBox[{ RowBox[{"(", RowBox[{"5", "+", RowBox[{"2", RowBox[{"Sqrt", "[", "5", "]"}]}]}], ")"}], "/", "5"}], "]"}]}], ",", "x2", ",", RowBox[{"golden", "=", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"Sqrt", "[", "5", "]"}], "+", "1"}], ")"}], "/", "2"}]}], ",", RowBox[{"z2", "=", RowBox[{"Sqrt", "[", RowBox[{ RowBox[{"(", RowBox[{"5", "+", RowBox[{"Sqrt", "[", "5", "]"}]}], ")"}], "/", "10"}], "]"}]}], ",", RowBox[{"R", "=", RowBox[{ RowBox[{"Sqrt", "[", RowBox[{"50", "+", RowBox[{"10", RowBox[{"Sqrt", "[", "5", "]"}]}]}], "]"}], "/", "10"}]}], ",", "half"}], "}"}], ",", RowBox[{ RowBox[{"x2", "=", "h"}], ";", "\[IndentingNewLine]", RowBox[{"p", "=", RowBox[{"Table", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"R", " ", RowBox[{"Cos", "[", RowBox[{"2", "Pi", RowBox[{ RowBox[{"(", RowBox[{"i", "+", RowBox[{"1", "/", "2"}]}], ")"}], "/", "5"}]}], "]"}]}], ",", RowBox[{"R", " ", RowBox[{"Sin", "[", RowBox[{"2", "Pi", RowBox[{ RowBox[{"(", RowBox[{"i", "+", RowBox[{"1", "/", "2"}]}], ")"}], "/", "5"}]}], "]"}]}], ",", "h"}], "}"}], ",", RowBox[{"{", RowBox[{"i", ",", "6"}], "}"}]}], "]"}]}], ";", "\[IndentingNewLine]", RowBox[{"rim", "=", RowBox[{"Table", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"x2", " ", RowBox[{"Cos", "[", RowBox[{"2", "Pi", " ", RowBox[{"i", "/", "5"}]}], "]"}]}], ",", RowBox[{"x2", " ", RowBox[{"Sin", "[", RowBox[{"2", "Pi", " ", RowBox[{"i", "/", "5"}]}], "]"}]}], ",", "z2"}], "}"}], ",", RowBox[{"{", RowBox[{"i", ",", "6"}], "}"}]}], "]"}]}], ";", "\[IndentingNewLine]", RowBox[{"ctr", "=", RowBox[{"Table", "[", RowBox[{ RowBox[{"golden", RowBox[{"{", RowBox[{ RowBox[{"Cos", "[", RowBox[{"2", "Pi", RowBox[{ RowBox[{"(", RowBox[{"i", "+", RowBox[{"1", "/", "2"}]}], ")"}], "/", "10"}]}], "]"}], ",", RowBox[{"Sin", "[", RowBox[{"2", "Pi", RowBox[{ RowBox[{"(", RowBox[{"i", "+", RowBox[{"1", "/", "2"}]}], ")"}], "/", "10"}]}], "]"}], ",", "0"}], "}"}]}], ",", RowBox[{"{", RowBox[{"i", ",", "11"}], "}"}]}], "]"}]}], ";", "\[IndentingNewLine]", RowBox[{"half", "=", RowBox[{"Flatten", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"Take", "[", RowBox[{"p", ",", "5"}], "]"}], "}"}], ",", RowBox[{"Table", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"p", "[", RowBox[{"[", "i", "]"}], "]"}], ",", RowBox[{"p", "[", RowBox[{"[", RowBox[{"i", "+", "1"}], "]"}], "]"}], ",", RowBox[{"rim", "[", RowBox[{"[", RowBox[{"i", "+", "1"}], "]"}], "]"}]}], "}"}], ",", RowBox[{"{", RowBox[{"i", ",", "5"}], "}"}]}], "]"}], ",", RowBox[{"Table", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"ctr", "[", RowBox[{"[", RowBox[{ RowBox[{"2", "i"}], "-", "1"}], "]"}], "]"}], ",", RowBox[{"ctr", "[", RowBox[{"[", RowBox[{"2", "i"}], "]"}], "]"}], ",", RowBox[{"rim", "[", RowBox[{"[", "i", "]"}], "]"}]}], "}"}], ",", RowBox[{"{", RowBox[{"i", ",", "5"}], "}"}]}], "]"}], ",", RowBox[{"Table", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"ctr", "[", RowBox[{"[", RowBox[{"2", "i"}], "]"}], "]"}], ",", RowBox[{"ctr", "[", RowBox[{"[", RowBox[{ RowBox[{"2", "i"}], "+", "1"}], "]"}], "]"}], ",", RowBox[{"rim", "[", RowBox[{"[", RowBox[{"i", "+", "1"}], "]"}], "]"}], ",", RowBox[{"p", "[", RowBox[{"[", "i", "]"}], "]"}], ",", RowBox[{"rim", "[", RowBox[{"[", "i", "]"}], "]"}]}], "}"}], ",", RowBox[{"{", RowBox[{"i", ",", "5"}], "}"}]}], "]"}]}], "}"}], ",", "1"}], "]"}]}], ";", "\[IndentingNewLine]", RowBox[{"(*", RowBox[{ "Need", " ", "to", " ", "explicitly", " ", "Simplify", " ", "here", " ", "or", " ", "else", " ", "vertices", " ", "have", " ", "different", " ", "analytic", " ", "forms", " ", "and", " ", "are", " ", "not", " ", "recognized", " ", "as", " ", "identical", " ", "by", " ", "PolyhedronVertices"}], "*)"}], RowBox[{"Simplify", "[", RowBox[{"OrientCentered", "[", RowBox[{"Flatten", "[", RowBox[{"{", RowBox[{ RowBox[{"Polygon", "/@", "half"}], ",", RowBox[{"Polygon", "/@", RowBox[{"(", RowBox[{"-", "half"}], ")"}]}]}], "}"}], "]"}], "]"}], "]"}]}]}], "]"}]], "Input",ExpressionUUID->"a593dafc-7fa0-4f0d-988c-c66dec8cc14a"] }, Open ]], Cell[CellGroupData[{ Cell["C3", "Subsection",ExpressionUUID->"b227825b-78da-4d5d-a3dc-2e4dace6b6f9"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Graphics3D", "[", RowBox[{"{", RowBox[{"p", ",", RowBox[{"MapIndexed", "[", RowBox[{ RowBox[{ RowBox[{"Text", "[", RowBox[{ RowBox[{"#2", "[", RowBox[{"[", "1", "]"}], "]"}], ",", "#", ",", RowBox[{"Background", "\[Rule]", "White"}]}], "]"}], "&"}], ",", RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}]}], "]"}]}], "}"}], "]"}]], "Input", CellLabel-> "In[539]:=",ExpressionUUID->"c46ab6ac-7311-4fe8-9b78-1380b1491529"], Cell[BoxData[ Graphics3DBox[{ PolyhedronBox[ NCache[{{0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), 0}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], Rational[-1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {-(1 + 2 5^Rational[-1, 2])^ Rational[1, 2], 0, Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {(1 + 2 5^Rational[-1, 2])^Rational[1, 2], 0, (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, {(Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2], 0, -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2], 0}, {Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2], 0}, {Root[1 - 5 #^2 + 5 #^4& , 1, 0], 0, (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}}, {{0, -1.618033988749895, 0}, { 0, 1.618033988749895, 0}, { 0.2628655560595668, -0.8090169943749475, -1.3763819204711736`}, { 0.2628655560595668, 0.8090169943749475, -1.3763819204711736`}, { 0.42532540417601994`, -1.3090169943749475`, 0.85065080835204}, { 0.42532540417601994`, 1.3090169943749475`, 0.85065080835204}, { 0.6881909602355868, -0.5, 1.3763819204711736`}, {0.6881909602355868, 0.5, 1.3763819204711736`}, { 1.1135163644116066`, -0.8090169943749475, -0.8506508083520399}, { 1.1135163644116066`, 0.8090169943749475, -0.8506508083520399}, {-1.3763819204711736`, 0, -0.8506508083520399}, {-0.6881909602355868, -0.5, \ -1.3763819204711736`}, {-0.6881909602355868, 0.5, -1.3763819204711736`}, { 1.3763819204711736`, 0, 0.85065080835204}, { 0.9510565162951535, -1.3090169943749475`, 0}, { 0.9510565162951535, 1.3090169943749475`, 0}, { 0.85065080835204, 0, -1.3763819204711736`}, {-0.9510565162951535, -1.3090169943749475`, 0}, {-0.9510565162951535, 1.3090169943749475`, 0}, {-1.5388417685876268`, -0.5, 0}, {-1.5388417685876268`, 0.5, 0}, { 1.5388417685876268`, -0.5, 0}, { 1.5388417685876268`, 0.5, 0}, {-0.8506508083520399, 0, 1.3763819204711736`}, {-1.1135163644116068`, -0.8090169943749475, 0.85065080835204}, {-1.1135163644116068`, 0.8090169943749475, 0.85065080835204}, {-0.42532540417601994`, -1.3090169943749475`, \ -0.8506508083520399}, {-0.42532540417601994`, 1.3090169943749475`, -0.8506508083520399}, {-0.2628655560595668, \ -0.8090169943749475, 1.3763819204711736`}, {-0.2628655560595668, 0.8090169943749475, 1.3763819204711736`}}], {{30, 24, 29, 7, 8}, {26, 24, 30}, {25, 29, 24}, {5, 7, 29}, {14, 8, 7}, {6, 30, 8}, {16, 2, 6}, { 19, 21, 26}, {20, 18, 25}, {1, 15, 5}, {22, 23, 14}, {2, 19, 26, 30, 6}, {21, 20, 25, 24, 26}, {18, 1, 5, 29, 25}, {15, 22, 14, 7, 5}, {23, 16, 6, 8, 14}, {12, 13, 4, 17, 3}, {3, 17, 9}, {17, 4, 10}, {4, 13, 28}, {13, 12, 11}, {12, 3, 27}, {27, 1, 18}, {9, 22, 15}, {10, 16, 23}, { 28, 19, 2}, {11, 20, 21}, {27, 3, 9, 15, 1}, {9, 17, 10, 23, 22}, {10, 4, 28, 2, 16}, {28, 13, 11, 21, 19}, {11, 12, 27, 18, 20}}], { Text3DBox["1", NCache[{0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, { 0, -1.618033988749895, 0}], Background->GrayLevel[1]], Text3DBox["2", NCache[{0, Rational[1, 2] (1 + 5^Rational[1, 2]), 0}, { 0, 1.618033988749895, 0}], Background->GrayLevel[1]], Text3DBox["3", NCache[{(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { 0.2628655560595668, -0.8090169943749475, -1.3763819204711736`}], Background->GrayLevel[1]], Text3DBox["4", NCache[{(Rational[1, 8] + Rational[-1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {0.2628655560595668, 0.8090169943749475, -1.3763819204711736`}], Background->GrayLevel[1]], Text3DBox["5", NCache[{(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { 0.42532540417601994`, -1.3090169943749475`, 0.85065080835204}], Background->GrayLevel[1]], Text3DBox["6", NCache[{(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { 0.42532540417601994`, 1.3090169943749475`, 0.85065080835204}], Background->GrayLevel[1]], Text3DBox["7", NCache[{(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], Rational[-1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {0.6881909602355868, -0.5, 1.3763819204711736`}], Background->GrayLevel[1]], Text3DBox["8", NCache[{(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 2], (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {0.6881909602355868, 0.5, 1.3763819204711736`}], Background->GrayLevel[1]], Text3DBox["9", NCache[{(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, { 1.1135163644116066`, -0.8090169943749475, -0.8506508083520399}], Background->GrayLevel[1]], Text3DBox["10", NCache[{(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {1.1135163644116066`, 0.8090169943749475, -0.8506508083520399}], Background->GrayLevel[1]], Text3DBox["11", NCache[{-(1 + 2 5^Rational[-1, 2])^Rational[1, 2], 0, Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {-1.3763819204711736`, 0, -0.8506508083520399}], Background->GrayLevel[1]], Text3DBox["12", NCache[{Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {-0.6881909602355868, -0.5, -1.3763819204711736`}], Background->GrayLevel[1]], Text3DBox["13", NCache[{Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {-0.6881909602355868, 0.5, -1.3763819204711736`}], Background->GrayLevel[1]], Text3DBox["14", NCache[{(1 + 2 5^Rational[-1, 2])^Rational[1, 2], 0, (Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { 1.3763819204711736`, 0, 0.85065080835204}], Background->GrayLevel[1]], Text3DBox["15", NCache[{(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, { 0.9510565162951535, -1.3090169943749475`, 0}], Background->GrayLevel[1]], Text3DBox["16", NCache[{(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, { 0.9510565162951535, 1.3090169943749475`, 0}], Background->GrayLevel[1]], Text3DBox["17", NCache[{(Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2], 0, -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { 0.85065080835204, 0, -1.3763819204711736`}], Background->GrayLevel[1]], Text3DBox["18", NCache[{Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[-1, 8] (1 + 5^Rational[1, 2])^2, 0}, {-0.9510565162951535, -1.3090169943749475`, 0}], Background->GrayLevel[1]], Text3DBox["19", NCache[{Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, {-0.9510565162951535, 1.3090169943749475`, 0}], Background->GrayLevel[1]], Text3DBox["20", NCache[{Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, {-1.5388417685876268`, -0.5, 0}], Background->GrayLevel[1]], Text3DBox["21", NCache[{Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2], 0}, {-1.5388417685876268`, 0.5, 0}], Background->GrayLevel[1]], Text3DBox["22", NCache[{Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, {1.5388417685876268`, -0.5, 0}], Background->GrayLevel[1]], Text3DBox["23", NCache[{Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2], 0}, {1.5388417685876268`, 0.5, 0}], Background->GrayLevel[1]], Text3DBox["24", NCache[{Root[1 - 5 #^2 + 5 #^4& , 1, 0], 0, (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {-0.8506508083520399, 0, 1.3763819204711736`}], Background->GrayLevel[1]], Text3DBox["25", NCache[{Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {-1.1135163644116068`, -0.8090169943749475, 0.85065080835204}], Background->GrayLevel[1]], Text3DBox["26", NCache[{Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), ( Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {-1.1135163644116068`, 0.8090169943749475, 0.85065080835204}], Background->GrayLevel[1]], Text3DBox["27", NCache[{Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {-0.42532540417601994`, -1.3090169943749475`, \ -0.8506508083520399}], Background->GrayLevel[1]], Text3DBox["28", NCache[{Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, {-0.42532540417601994`, 1.3090169943749475`, -0.8506508083520399}], Background->GrayLevel[1]], Text3DBox["29", NCache[{Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {-0.2628655560595668, -0.8090169943749475, 1.3763819204711736`}], Background->GrayLevel[1]], Text3DBox["30", NCache[{Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {-0.2628655560595668, 0.8090169943749475, 1.3763819204711736`}], Background->GrayLevel[1]]}}]], "Output", CellLabel-> "Out[539]=",ExpressionUUID->"cd313115-20b5-4691-817d-98af3a1c2807"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Length", "/@", RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\"", ",", "\"\\""}], "]"}]}]], "Input", CellLabel-> "In[530]:=",ExpressionUUID->"9eb8f827-6c58-4f62-85f9-93e9069b3338"], Cell[BoxData[ RowBox[{"{", RowBox[{ "5", ",", "3", ",", "3", ",", "3", ",", "3", ",", "3", ",", "3", ",", "3", ",", "3", ",", "3", ",", "3", ",", "5", ",", "5", ",", "5", ",", "5", ",", "5", ",", "5", ",", "3", ",", "3", ",", "3", ",", "3", ",", "3", ",", "3", ",", "3", ",", "3", ",", "3", ",", "3", ",", "5", ",", "5", ",", "5", ",", "5", ",", "5"}], "}"}]], "Output", CellLabel-> "Out[530]=",ExpressionUUID->"45c4b93e-c9e8-4ba1-b2b5-d91bad971161"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"normal3", "=", RowBox[{ RowBox[{"Mean", "[", RowBox[{ RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\"", ",", "\"\\""}], "]"}], "[", RowBox[{"[", "2", "]"}], "]"}], "]"}], "//", "FullSimplify"}]}]], "Input",\ CellLabel-> "In[549]:=",ExpressionUUID->"33175e21-9f8c-47a3-a1c1-0d44f9e1f020"], Cell[BoxData[ RowBox[{"{", RowBox[{ TemplateBox[<|"icon" -> "Root", "small" -> InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.742\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.74234424294107115294139020988950505853`15.954589770191003, Editable -> False], "approx" -> -0.7423442429410712, "interp" -> InterpretationBox["", Root[1 - 225 #^2 + 405 #^4& , 1, 0]], "head" -> "Root", "big" -> RowBox[{ RowBox[{"1", "-", RowBox[{"225", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"405", " ", SuperscriptBox["#1", "4"]}]}], "&"}], "degree" -> "4", "shortDegree" -> "4", "number" -> 1|>, "NumericalApproximationInterp", InterpretationFunction->(Slot["interp"]& )], ",", RowBox[{ FractionBox["1", "6"], " ", RowBox[{"(", RowBox[{"1", "+", SqrtBox["5"]}], ")"}]}], ",", SqrtBox[ RowBox[{ FractionBox["13", "18"], "+", FractionBox["29", RowBox[{"18", " ", SqrtBox["5"]}]]}]]}], "}"}]], "Output", CellLabel-> "Out[549]=",ExpressionUUID->"0d5b96de-1598-44a8-ad36-7e1ee542617d"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"zmax", "=", RowBox[{ RowBox[{"Norm", "[", "normal3", "]"}], "//", "FullSimplify"}]}]], "Input", CellLabel-> "In[550]:=",ExpressionUUID->"0512880b-cb62-4b20-992a-35e7fd0b9169"], Cell[BoxData[ SqrtBox[ RowBox[{ FractionBox["1", "6"], " ", RowBox[{"(", RowBox[{"7", "+", RowBox[{"3", " ", SqrtBox["5"]}]}], ")"}]}]]], "Output", CellLabel-> "Out[550]=",ExpressionUUID->"2c422d51-f642-42e8-9a02-5754b2d4bd14"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"N", "[", "%", "]"}]], "Input", CellLabel-> "In[538]:=",ExpressionUUID->"a3c6cc72-d70e-48f3-8ec0-684705dd7fb1"], Cell[BoxData["1.5115226281523415`"], "Output", CellLabel-> "Out[538]=",ExpressionUUID->"1369e215-2919-4860-8155-85e2d1124f25"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"Normalize", "[", "normal3", "]"}], "//", "FullSimplify"}]], "Input",\ CellLabel-> "In[553]:=",ExpressionUUID->"617148ef-ceae-451c-84cd-03edbe3390fd"], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{"-", SqrtBox[ RowBox[{ FractionBox["1", "30"], " ", RowBox[{"(", RowBox[{"5", "+", SqrtBox["5"]}], ")"}]}]]}], ",", SqrtBox[ RowBox[{ FractionBox["1", "6"], " ", RowBox[{"(", RowBox[{"3", "-", SqrtBox["5"]}], ")"}]}]], ",", SqrtBox[ RowBox[{ FractionBox["1", "15"], " ", RowBox[{"(", RowBox[{"5", "+", RowBox[{"2", " ", SqrtBox["5"]}]}], ")"}]}]]}], "}"}]], "Output", CellLabel-> "Out[553]=",ExpressionUUID->"41d2180b-52ab-489c-b79d-1f23330c8b9e"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{"mat", "=", RowBox[{"RotationMatrix", "[", RowBox[{"{", RowBox[{"normal3", ",", RowBox[{"{", RowBox[{"0", ",", "0", ",", "1"}], "}"}]}], "}"}], "]"}]}], ";"}], "//", "Timing"}]], "Input", CellLabel-> "In[555]:=",ExpressionUUID->"b237bf2b-fb08-4185-8ff1-a519cf464225"], Cell[BoxData[ RowBox[{"{", RowBox[{"0.36945`", ",", "Null"}], "}"}]], "Output", CellLabel-> "Out[555]=",ExpressionUUID->"49ff051b-c651-4338-8f8f-f93612e4238a"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{"vnew", "=", RowBox[{"Map", "[", RowBox[{"ToAlgebraicRoot", ",", RowBox[{ RowBox[{ RowBox[{"mat", ".", "#"}], "&"}], "/@", RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}]}], ",", RowBox[{"{", "2", "}"}]}], "]"}]}], ";"}], "//", "Timing"}]], "Input", CellLabel-> "In[570]:=",ExpressionUUID->"756cc019-5503-4258-8fca-8ee16ba4686a"], Cell[BoxData[ RowBox[{"{", RowBox[{"77.640048`", ",", "Null"}], "}"}]], "Output", CellLabel-> "Out[570]=",ExpressionUUID->"ef63640c-10df-4ad4-a81f-6017633934cc"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData["vnew"], "Input", CellLabel-> "In[571]:=",ExpressionUUID->"6e9cf9fa-0f9b-4565-8c4e-f8f6217767d6"], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ TemplateBox[<|"icon" -> "Root", "small" -> InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.158\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.15799713751504906866784949670545756817`15.\ 954589770191003, Editable -> False], "approx" -> -0.15799713751504907`, "interp" -> InterpretationBox["", Root[1 - 108 #^2 + 3744 #^4 - 41472 #^6 + 20736 #^8& , 3, 0]], "head" -> "Root", "big" -> RowBox[{ RowBox[{"1", "-", RowBox[{"108", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"3744", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"41472", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"20736", " ", SuperscriptBox["#1", "8"]}]}], "&"}], "degree" -> "8", "shortDegree" -> "8", "number" -> 3|>, "NumericalApproximationInterp", InterpretationFunction->(Slot["interp"]& )], ",", TemplateBox[<|"icon" -> "Root", "small" -> InterpretationBox[ StyleBox[ TemplateBox[{"\"-1.50\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -1.50324234904210052299333710834616795182`15.\ 954589770191003, Editable -> False], "approx" -> -1.5032423490421005`, "interp" -> InterpretationBox["", Root[-1 - 18 # + 96 #^2 + 288 #^3 + 144 #^4& , 1, 0]], "head" -> "Root", "big" -> RowBox[{ RowBox[{ RowBox[{"-", "1"}], "-", RowBox[{"18", " ", "#1"}], "+", RowBox[{"96", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"288", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"144", " ", SuperscriptBox["#1", "4"]}]}], "&"}], "degree" -> "4", "shortDegree" -> "4", "number" -> 1|>, "NumericalApproximationInterp", InterpretationFunction->(Slot["interp"]& )], ",", RowBox[{"-", FractionBox["1", SqrtBox["3"]]}]}], "}"}], ",", RowBox[{"{", RowBox[{ TemplateBox[<|"icon" -> "Root", "small" -> InterpretationBox[ StyleBox[ TemplateBox[{"\"0.158\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.15799713751504906866784949670545756817`15.954589770191003, Editable -> False], "approx" -> 0.15799713751504907`, "interp" -> InterpretationBox["", Root[1 - 108 #^2 + 3744 #^4 - 41472 #^6 + 20736 #^8& , 6, 0]], "head" -> "Root", "big" -> RowBox[{ RowBox[{"1", "-", RowBox[{"108", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"3744", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"41472", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"20736", " ", SuperscriptBox["#1", "8"]}]}], "&"}], "degree" -> "8", "shortDegree" -> "8", "number" -> 6|>, "NumericalApproximationInterp", InterpretationFunction->(Slot["interp"]& )], ",", TemplateBox[<|"icon" -> "Root", "small" -> InterpretationBox[ StyleBox[ TemplateBox[{"\"1.50\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 1.50324234904210052299333710834616795182`15.954589770191003, Editable -> False], "approx" -> 1.5032423490421005`, "interp" -> InterpretationBox["", Root[-1 + 18 # + 96 #^2 - 288 #^3 + 144 #^4& , 4, 0]], "head" -> "Root", "big" -> RowBox[{ RowBox[{ RowBox[{"-", "1"}], "+", RowBox[{"18", " ", "#1"}], "+", RowBox[{"96", " ", SuperscriptBox["#1", "2"]}], "-", RowBox[{"288", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"144", " ", SuperscriptBox["#1", "4"]}]}], "&"}], "degree" -> "4", "shortDegree" -> "4", "number" -> 4|>, "NumericalApproximationInterp", InterpretationFunction->(Slot["interp"]& )], ",", FractionBox["1", SqrtBox["3"]]}], "}"}], ",", RowBox[{"{", RowBox[{ TemplateBox[<|"icon" -> "Root", "small" -> InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.527\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.52743571588691551266236956507782451808`15.\ 954589770191003, Editable -> False], "approx" -> -0.5274357158869155, "interp" -> InterpretationBox["", Root[1 - 288 #^2 + 3744 #^4 - 15552 #^6 + 20736 #^8& , 2, 0]], "head" -> "Root", "big" -> RowBox[{ RowBox[{"1", "-", RowBox[{"288", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"3744", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"15552", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"20736", " ", SuperscriptBox["#1", "8"]}]}], "&"}], "degree" -> "8", "shortDegree" -> "8", "number" -> 2|>, "NumericalApproximationInterp", InterpretationFunction->(Slot["interp"]& )], ",", TemplateBox[<|"icon" -> "Root", "small" -> InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.235\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.23482951036909799347185412443650420755`15.\ 954589770191003, Editable -> False], "approx" -> -0.234829510369098, "interp" -> InterpretationBox["", Root[-1 - 12 # - 24 #^2 + 72 #^3 + 144 #^4& , 2, 0]], "head" -> "Root", "big" -> RowBox[{ RowBox[{ RowBox[{"-", "1"}], "-", RowBox[{"12", " ", "#1"}], "-", RowBox[{"24", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"144", " ", SuperscriptBox["#1", "4"]}]}], "&"}], "degree" -> "4", "shortDegree" -> "4", "number" -> 2|>, "NumericalApproximationInterp", InterpretationFunction->(Slot["interp"]& )], ",", TemplateBox[<|"icon" -> "Root", "small" -> InterpretationBox[ StyleBox[ TemplateBox[{"\"-1.51\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -1.51152262815234150750143271579872816801`15.\ 954589770191003, Editable -> False], "approx" -> -1.5115226281523415`, "interp" -> InterpretationBox["", Root[1 - 21 #^2 + 9 #^4& , 1, 0]], "head" -> "Root", "big" -> RowBox[{ RowBox[{"1", "-", RowBox[{"21", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"9", " ", SuperscriptBox["#1", "4"]}]}], "&"}], "degree" -> "4", "shortDegree" -> "4", "number" -> 1|>, "NumericalApproximationInterp", InterpretationFunction->(Slot["interp"]& )]}], "}"}], ",", RowBox[{"{", RowBox[{ TemplateBox[<|"icon" -> "Root", "small" -> InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.369\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.36943857837186644399452006837236694992`15.\ 954589770191003, Editable -> False], "approx" -> -0.36943857837186644`, "interp" -> InterpretationBox["", Root[25 - 1200 #^2 + 12960 #^4 - 43200 #^6 + 20736 #^8& , 3, 0]], "head" -> "Root", "big" -> RowBox[{ RowBox[{"25", "-", RowBox[{"1200", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"12960", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"43200", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"20736", " ", SuperscriptBox["#1", "8"]}]}], "&"}], "degree" -> "8", "shortDegree" -> "8", "number" -> 3|>, "NumericalApproximationInterp", InterpretationFunction->(Slot["interp"]& )], ",", TemplateBox[<|"icon" -> "Root", "small" -> InterpretationBox[ StyleBox[ TemplateBox[{"\"1.27\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 1.26841283867300247401033175265183672309`15.954589770191003, Editable -> False], "approx" -> 1.2684128386730025`, "interp" -> InterpretationBox["", Root[-1 + 24 # + 24 #^2 - 216 #^3 + 144 #^4& , 4, 0]], "head" -> "Root", "big" -> RowBox[{ RowBox[{ RowBox[{"-", "1"}], "+", RowBox[{"24", " ", "#1"}], "+", RowBox[{"24", " ", SuperscriptBox["#1", "2"]}], "-", RowBox[{"216", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"144", " ", SuperscriptBox["#1", "4"]}]}], "&"}], "degree" -> "4", "shortDegree" -> "4", "number" -> 4|>, "NumericalApproximationInterp", InterpretationFunction->(Slot["interp"]& )], ",", TemplateBox[<|"icon" -> "Root", "small" -> InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.934\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.93417235896271566542026221213745884597`15.\ 954589770191003, Editable -> False], "approx" -> -0.9341723589627157, "interp" -> InterpretationBox["", Root[1 - 9 #^2 + 9 #^4& , 1, 0]], "head" -> "Root", "big" -> RowBox[{ RowBox[{"1", "-", RowBox[{"9", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"9", " ", SuperscriptBox["#1", "4"]}]}], "&"}], "degree" -> "4", "shortDegree" -> "4", "number" -> 1|>, "NumericalApproximationInterp", InterpretationFunction->(Slot["interp"]& )]}], "}"}], ",", RowBox[{"{", RowBox[{ TemplateBox[<|"icon" -> "Root", "small" -> InterpretationBox[ StyleBox[ TemplateBox[{"\"0.658\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.65811371296667930952395408894517458975`15.954589770191003, Editable -> False], "approx" -> 0.6581137129666793, "interp" -> InterpretationBox["", Root[1 - 68 #^2 + 464 #^4 - 832 #^6 + 256 #^8& , 7, 0]], "head" -> "Root", "big" -> RowBox[{ RowBox[{"1", "-", RowBox[{"68", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"464", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"832", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"256", " ", SuperscriptBox["#1", "8"]}]}], "&"}], "degree" -> "8", "shortDegree" -> "8", "number" -> 7|>, "NumericalApproximationInterp", InterpretationFunction->(Slot["interp"]& )], ",", TemplateBox[<|"icon" -> "Root", "small" -> InterpretationBox[ StyleBox[ TemplateBox[{"\"-1.48\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -1.47814760073380568883294472470879554749`15.\ 954589770191003, Editable -> False], "approx" -> -1.4781476007338057`, "interp" -> InterpretationBox["", Root[1 - 6 # - 4 #^2 + 24 #^3 + 16 #^4& , 1, 0]], "head" -> "Root", "big" -> RowBox[{ RowBox[{"1", "-", RowBox[{"6", " ", "#1"}], "-", RowBox[{"4", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"24", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "4"]}]}], "&"}], "degree" -> "4", "shortDegree" -> "4", "number" -> 1|>, "NumericalApproximationInterp", InterpretationFunction->(Slot["interp"]& )], ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{ TemplateBox[<|"icon" -> "Root", "small" -> InterpretationBox[ StyleBox[ TemplateBox[{"\"0.914\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.91375845159121982241856585460482165217`15.954589770191003, Editable -> False], "approx" -> 0.9137584515912198, "interp" -> InterpretationBox["", Root[1 - 732 #^2 + 9504 #^4 - 27648 #^6 + 20736 #^8& , 8, 0]], "head" -> "Root", "big" -> RowBox[{ RowBox[{"1", "-", RowBox[{"732", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"9504", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"27648", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"20736", " ", SuperscriptBox["#1", "8"]}]}], "&"}], "degree" -> "8", "shortDegree" -> "8", "number" -> 8|>, "NumericalApproximationInterp", InterpretationFunction->(Slot["interp"]& )], ",", TemplateBox[<|"icon" -> "Root", "small" -> InterpretationBox[ StyleBox[ TemplateBox[{"\"0.954\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.95414961334454584385156294956686906517`15.954589770191003, Editable -> False], "approx" -> 0.9541496133445458, "interp" -> InterpretationBox["", Root[-31 + 78 # + 96 #^2 - 288 #^3 + 144 #^4& , 3, 0]], "head" -> "Root", "big" -> RowBox[{ RowBox[{ RowBox[{"-", "31"}], "+", RowBox[{"78", " ", "#1"}], "+", RowBox[{"96", " ", SuperscriptBox["#1", "2"]}], "-", RowBox[{"288", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"144", " ", SuperscriptBox["#1", "4"]}]}], "&"}], "degree" -> "4", "shortDegree" -> "4", "number" -> 3|>, "NumericalApproximationInterp", InterpretationFunction->(Slot["interp"]& )], ",", TemplateBox[<|"icon" -> "Root", "small" -> InterpretationBox[ StyleBox[ TemplateBox[{"\"0.934\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.93417235896271566542026221213745884597`15.954589770191003, Editable -> False], "approx" -> 0.9341723589627157, "interp" -> InterpretationBox["", Root[1 - 9 #^2 + 9 #^4& , 4, 0]], "head" -> "Root", "big" -> RowBox[{ RowBox[{"1", "-", RowBox[{"9", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"9", " ", SuperscriptBox["#1", "4"]}]}], "&"}], "degree" -> "4", "shortDegree" -> "4", "number" -> 4|>, "NumericalApproximationInterp", InterpretationFunction->(Slot["interp"]& )]}], "}"}], ",", RowBox[{"{", RowBox[{ TemplateBox[<|"icon" -> "Root", "small" -> InterpretationBox[ StyleBox[ TemplateBox[{"\"1.22\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 1.22284749355752864197199869522592052817`15.954589770191003, Editable -> False], "approx" -> 1.2228474935575286`, "interp" -> InterpretationBox["", Root[1 - 216 #^2 + 144 #^4& , 4, 0]], "head" -> "Root", "big" -> RowBox[{ RowBox[{"1", "-", RowBox[{"216", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"144", " ", SuperscriptBox["#1", "4"]}]}], "&"}], "degree" -> "4", "shortDegree" -> "4", "number" -> 4|>, "NumericalApproximationInterp", InterpretationFunction->(Slot["interp"]& )], ",", TemplateBox[<|"icon" -> "Root", "small" -> InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.888\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.88845070933430603243863288298598490655`15.\ 954589770191003, Editable -> False], "approx" -> -0.888450709334306, "interp" -> InterpretationBox["", Root[5 - 120 #^2 + 144 #^4& , 1, 0]], "head" -> "Root", "big" -> RowBox[{ RowBox[{"5", "-", RowBox[{"120", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"144", " ", SuperscriptBox["#1", "4"]}]}], "&"}], "degree" -> "4", "shortDegree" -> "4", "number" -> 1|>, "NumericalApproximationInterp", InterpretationFunction->(Slot["interp"]& )], ",", FractionBox["1", SqrtBox["3"]]}], "}"}], ",", RowBox[{"{", RowBox[{ TemplateBox[<|"icon" -> "Root", "small" -> InterpretationBox[ StyleBox[ TemplateBox[{"\"1.32\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 1.32049509466701997517645850166445598006`15.954589770191003, Editable -> False], "approx" -> 1.32049509466702, "interp" -> InterpretationBox["", Root[25 - 1200 #^2 + 12960 #^4 - 43200 #^6 + 20736 #^8& , 8, 0]], "head" -> "Root", "big" -> RowBox[{ RowBox[{"25", "-", RowBox[{"1200", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"12960", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"43200", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"20736", " ", SuperscriptBox["#1", "8"]}]}], "&"}], "degree" -> "8", "shortDegree" -> "8", "number" -> 8|>, "NumericalApproximationInterp", InterpretationFunction->(Slot["interp"]& )], ",", TemplateBox[<|"icon" -> "Root", "small" -> InterpretationBox[ StyleBox[ TemplateBox[{"\"0.0406\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.04060415570194494949696206731459824368`15.954589770191003, Editable -> False], "approx" -> 0.04060415570194495, "interp" -> InterpretationBox["", Root[-1 + 24 # + 24 #^2 - 216 #^3 + 144 #^4& , 2, 0]], "head" -> "Root", "big" -> RowBox[{ RowBox[{ RowBox[{"-", "1"}], "+", RowBox[{"24", " ", "#1"}], "+", RowBox[{"24", " ", SuperscriptBox["#1", "2"]}], "-", RowBox[{"216", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"144", " ", SuperscriptBox["#1", "4"]}]}], "&"}], "degree" -> "4", "shortDegree" -> "4", "number" -> 2|>, "NumericalApproximationInterp", InterpretationFunction->(Slot["interp"]& )], ",", TemplateBox[<|"icon" -> "Root", "small" -> InterpretationBox[ StyleBox[ TemplateBox[{"\"0.934\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.93417235896271566542026221213745884597`15.954589770191003, Editable -> False], "approx" -> 0.9341723589627157, "interp" -> InterpretationBox["", Root[1 - 9 #^2 + 9 #^4& , 4, 0]], "head" -> "Root", "big" -> RowBox[{ RowBox[{"1", "-", RowBox[{"9", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"9", " ", SuperscriptBox["#1", "4"]}]}], "&"}], "degree" -> "4", "shortDegree" -> "4", "number" -> 4|>, "NumericalApproximationInterp", InterpretationFunction->(Slot["interp"]& )]}], "}"}], ",", RowBox[{"{", RowBox[{ TemplateBox[<|"icon" -> "Root", "small" -> InterpretationBox[ StyleBox[ TemplateBox[{"\"0.467\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.46708617948135783271013110606872942299`15.954589770191003, Editable -> False], "approx" -> 0.46708617948135783`, "interp" -> InterpretationBox["", Root[1 - 36 #^2 + 144 #^4& , 4, 0]], "head" -> "Root", "big" -> RowBox[{ RowBox[{"1", "-", RowBox[{"36", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"144", " ", SuperscriptBox["#1", "4"]}]}], "&"}], "degree" -> "4", "shortDegree" -> "4", "number" -> 4|>, "NumericalApproximationInterp", InterpretationFunction->(Slot["interp"]& )], ",", TemplateBox[<|"icon" -> "Root", "small" -> InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.339\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.33935797363675146431916118672234006226`15.\ 954589770191003, Editable -> False], "approx" -> -0.33935797363675146`, "interp" -> InterpretationBox["", Root[5 - 60 #^2 + 144 #^4& , 2, 0]], "head" -> "Root", "big" -> RowBox[{ RowBox[{"5", "-", RowBox[{"60", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"144", " ", SuperscriptBox["#1", "4"]}]}], "&"}], "degree" -> "4", "shortDegree" -> "4", "number" -> 2|>, "NumericalApproximationInterp", InterpretationFunction->(Slot["interp"]& )], ",", TemplateBox[<|"icon" -> "Root", "small" -> InterpretationBox[ StyleBox[ TemplateBox[{"\"-1.51\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -1.51152262815234150750143271579872816801`15.\ 954589770191003, Editable -> False], "approx" -> -1.5115226281523415`, "interp" -> InterpretationBox["", Root[1 - 21 #^2 + 9 #^4& , 1, 0]], "head" -> "Root", "big" -> RowBox[{ RowBox[{"1", "-", RowBox[{"21", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"9", " ", SuperscriptBox["#1", "4"]}]}], "&"}], "degree" -> "4", "shortDegree" -> "4", "number" -> 1|>, "NumericalApproximationInterp", InterpretationFunction->(Slot["interp"]& )]}], "}"}], ",", RowBox[{"{", RowBox[{ TemplateBox[<|"icon" -> "Root", "small" -> InterpretationBox[ StyleBox[ TemplateBox[{"\"0.625\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.62508331699640695688913183403201401234`15.954589770191003, Editable -> False], "approx" -> 0.625083316996407, "interp" -> InterpretationBox["", Root[1 - 732 #^2 + 9504 #^4 - 27648 #^6 + 20736 #^8& , 7, 0]], "head" -> "Root", "big" -> RowBox[{ RowBox[{"1", "-", RowBox[{"732", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"9504", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"27648", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"20736", " ", SuperscriptBox["#1", "8"]}]}], "&"}], "degree" -> "8", "shortDegree" -> "8", "number" -> 7|>, "NumericalApproximationInterp", InterpretationFunction->(Slot["interp"]& )], ",", TemplateBox[<|"icon" -> "Root", "small" -> InterpretationBox[ StyleBox[ TemplateBox[{"\"1.16\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 1.1638843754053489476518734591081738472`15.954589770191003, Editable -> False], "approx" -> 1.163884375405349, "interp" -> InterpretationBox["", Root[-31 + 78 # + 96 #^2 - 288 #^3 + 144 #^4& , 4, 0]], "head" -> "Root", "big" -> RowBox[{ RowBox[{ RowBox[{"-", "31"}], "+", RowBox[{"78", " ", "#1"}], "+", RowBox[{"96", " ", SuperscriptBox["#1", "2"]}], "-", RowBox[{"288", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"144", " ", SuperscriptBox["#1", "4"]}]}], "&"}], "degree" -> "4", "shortDegree" -> "4", "number" -> 4|>, "NumericalApproximationInterp", InterpretationFunction->(Slot["interp"]& )], ",", TemplateBox[<|"icon" -> "Root", "small" -> InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.934\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.93417235896271566542026221213745884597`15.\ 954589770191003, Editable -> False], "approx" -> -0.9341723589627157, "interp" -> InterpretationBox["", Root[1 - 9 #^2 + 9 #^4& , 1, 0]], "head" -> "Root", "big" -> RowBox[{ RowBox[{"1", "-", RowBox[{"9", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"9", " ", SuperscriptBox["#1", "4"]}]}], "&"}], "degree" -> "4", "shortDegree" -> "4", "number" -> 1|>, "NumericalApproximationInterp", InterpretationFunction->(Slot["interp"]& )]}], "}"}], ",", RowBox[{"{", RowBox[{ TemplateBox[<|"icon" -> "Root", "small" -> InterpretationBox[ StyleBox[ TemplateBox[{"\"-1.61\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -1.6091702292618328407058925222372636199`15.954589770191003, Editable -> False], "approx" -> -1.6091702292618328`, "interp" -> InterpretationBox["", Root[1 - 68 #^2 + 464 #^4 - 832 #^6 + 256 #^8& , 1, 0]], "head" -> "Root", "big" -> RowBox[{ RowBox[{"1", "-", RowBox[{"68", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"464", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"832", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"256", " ", SuperscriptBox["#1", "8"]}]}], "&"}], "degree" -> "8", "shortDegree" -> "8", "number" -> 1|>, "NumericalApproximationInterp", InterpretationFunction->(Slot["interp"]& )], ",", TemplateBox[<|"icon" -> "Root", "small" -> InterpretationBox[ StyleBox[ TemplateBox[{"\"0.169\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.16913060635885820981449967348453355953`15.954589770191003, Editable -> False], "approx" -> 0.1691306063588582, "interp" -> InterpretationBox["", Root[1 - 6 # - 4 #^2 + 24 #^3 + 16 #^4& , 3, 0]], "head" -> "Root", "big" -> RowBox[{ RowBox[{"1", "-", RowBox[{"6", " ", "#1"}], "-", RowBox[{"4", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"24", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "4"]}]}], "&"}], "degree" -> "4", "shortDegree" -> "4", "number" -> 3|>, "NumericalApproximationInterp", InterpretationFunction->(Slot["interp"]& )], ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{ TemplateBox[<|"icon" -> "Root", "small" -> InterpretationBox[ StyleBox[ TemplateBox[{"\"-1.32\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -1.32049509466701997517645850166445598006`15.\ 954589770191003, Editable -> False], "approx" -> -1.32049509466702, "interp" -> InterpretationBox["", Root[25 - 1200 #^2 + 12960 #^4 - 43200 #^6 + 20736 #^8& , 1, 0]], "head" -> "Root", "big" -> RowBox[{ RowBox[{"25", "-", RowBox[{"1200", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"12960", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"43200", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"20736", " ", SuperscriptBox["#1", "8"]}]}], "&"}], "degree" -> "8", "shortDegree" -> "8", "number" -> 1|>, "NumericalApproximationInterp", InterpretationFunction->(Slot["interp"]& )], ",", TemplateBox[<|"icon" -> "Root", "small" -> InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.0406\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.04060415570194494949696206731459824368`15.\ 954589770191003, Editable -> False], "approx" -> -0.04060415570194495, "interp" -> InterpretationBox["", Root[-1 - 24 # + 24 #^2 + 216 #^3 + 144 #^4& , 3, 0]], "head" -> "Root", "big" -> RowBox[{ RowBox[{ RowBox[{"-", "1"}], "-", RowBox[{"24", " ", "#1"}], "+", RowBox[{"24", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"216", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"144", " ", SuperscriptBox["#1", "4"]}]}], "&"}], "degree" -> "4", "shortDegree" -> "4", "number" -> 3|>, "NumericalApproximationInterp", InterpretationFunction->(Slot["interp"]& )], ",", TemplateBox[<|"icon" -> "Root", "small" -> InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.934\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.93417235896271566542026221213745884597`15.\ 954589770191003, Editable -> False], "approx" -> -0.9341723589627157, "interp" -> InterpretationBox["", Root[1 - 9 #^2 + 9 #^4& , 1, 0]], "head" -> "Root", "big" -> RowBox[{ RowBox[{"1", "-", RowBox[{"9", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"9", " ", SuperscriptBox["#1", "4"]}]}], "&"}], "degree" -> "4", "shortDegree" -> "4", "number" -> 1|>, "NumericalApproximationInterp", InterpretationFunction->(Slot["interp"]& )]}], "}"}], ",", RowBox[{"{", RowBox[{ TemplateBox[<|"icon" -> "Root", "small" -> InterpretationBox[ StyleBox[ TemplateBox[{"\"-1.22\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -1.22284749355752864197199869522592052817`15.\ 954589770191003, Editable -> False], "approx" -> -1.2228474935575286`, "interp" -> InterpretationBox["", Root[1 - 216 #^2 + 144 #^4& , 1, 0]], "head" -> "Root", "big" -> RowBox[{ RowBox[{"1", "-", RowBox[{"216", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"144", " ", SuperscriptBox["#1", "4"]}]}], "&"}], "degree" -> "4", "shortDegree" -> "4", "number" -> 1|>, "NumericalApproximationInterp", InterpretationFunction->(Slot["interp"]& )], ",", TemplateBox[<|"icon" -> "Root", "small" -> InterpretationBox[ StyleBox[ TemplateBox[{"\"0.888\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.88845070933430603243863288298598490655`15.954589770191003, Editable -> False], "approx" -> 0.888450709334306, "interp" -> InterpretationBox["", Root[5 - 120 #^2 + 144 #^4& , 4, 0]], "head" -> "Root", "big" -> RowBox[{ RowBox[{"5", "-", RowBox[{"120", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"144", " ", SuperscriptBox["#1", "4"]}]}], "&"}], "degree" -> "4", "shortDegree" -> "4", "number" -> 4|>, "NumericalApproximationInterp", InterpretationFunction->(Slot["interp"]& )], ",", RowBox[{"-", FractionBox["1", SqrtBox["3"]]}]}], "}"}], ",", RowBox[{"{", RowBox[{ TemplateBox[<|"icon" -> "Root", "small" -> InterpretationBox[ StyleBox[ TemplateBox[{"\"1.61\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 1.6091702292618328407058925222372636199`15.954589770191003, Editable -> False], "approx" -> 1.6091702292618328`, "interp" -> InterpretationBox["", Root[1 - 68 #^2 + 464 #^4 - 832 #^6 + 256 #^8& , 8, 0]], "head" -> "Root", "big" -> RowBox[{ RowBox[{"1", "-", RowBox[{"68", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"464", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"832", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"256", " ", SuperscriptBox["#1", "8"]}]}], "&"}], "degree" -> "8", "shortDegree" -> "8", "number" -> 8|>, "NumericalApproximationInterp", InterpretationFunction->(Slot["interp"]& )], ",", TemplateBox[<|"icon" -> "Root", "small" -> InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.169\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.16913060635885820981449967348453355953`15.\ 954589770191003, Editable -> False], "approx" -> -0.1691306063588582, "interp" -> InterpretationBox["", Root[1 + 6 # - 4 #^2 - 24 #^3 + 16 #^4& , 2, 0]], "head" -> "Root", "big" -> RowBox[{ RowBox[{"1", "+", RowBox[{"6", " ", "#1"}], "-", RowBox[{"4", " ", SuperscriptBox["#1", "2"]}], "-", RowBox[{"24", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "4"]}]}], "&"}], "degree" -> "4", "shortDegree" -> "4", "number" -> 2|>, "NumericalApproximationInterp", InterpretationFunction->(Slot["interp"]& )], ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{ TemplateBox[<|"icon" -> "Root", "small" -> InterpretationBox[ StyleBox[ TemplateBox[{"\"0.695\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.69541177767061312930962913014809601009`15.954589770191003, Editable -> False], "approx" -> 0.6954117776706131, "interp" -> InterpretationBox["", Root[841 - 9732 #^2 + 37584 #^4 - 53568 #^6 + 20736 #^8& , 7, 0]], "head" -> "Root", "big" -> RowBox[{ RowBox[{"841", "-", RowBox[{"9732", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"37584", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"53568", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"20736", " ", SuperscriptBox["#1", "8"]}]}], "&"}], "degree" -> "8", "shortDegree" -> "8", "number" -> 7|>, "NumericalApproximationInterp", InterpretationFunction->(Slot["interp"]& )], ",", TemplateBox[<|"icon" -> "Root", "small" -> InterpretationBox[ StyleBox[ TemplateBox[{"\"-1.12\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -1.12328021970340397039933577616466209292`15.\ 954589770191003, Editable -> False], "approx" -> -1.123280219703404, "interp" -> InterpretationBox["", Root[-1 + 18 # - 84 #^2 + 72 #^3 + 144 #^4& , 1, 0]], "head" -> "Root", "big" -> RowBox[{ RowBox[{ RowBox[{"-", "1"}], "+", RowBox[{"18", " ", "#1"}], "-", RowBox[{"84", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"144", " ", SuperscriptBox["#1", "4"]}]}], "&"}], "degree" -> "4", "shortDegree" -> "4", "number" -> 1|>, "NumericalApproximationInterp", InterpretationFunction->(Slot["interp"]& )], ",", TemplateBox[<|"icon" -> "Root", "small" -> InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.934\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.93417235896271566542026221213745884597`15.\ 954589770191003, Editable -> False], "approx" -> -0.9341723589627157, "interp" -> InterpretationBox["", Root[1 - 9 #^2 + 9 #^4& , 1, 0]], "head" -> "Root", "big" -> RowBox[{ RowBox[{"1", "-", RowBox[{"9", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"9", " ", SuperscriptBox["#1", "4"]}]}], "&"}], "degree" -> "4", "shortDegree" -> "4", "number" -> 1|>, "NumericalApproximationInterp", InterpretationFunction->(Slot["interp"]& )]}], "}"}], ",", RowBox[{"{", RowBox[{ TemplateBox[<|"icon" -> "Root", "small" -> InterpretationBox[ StyleBox[ TemplateBox[{"\"0.951\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.95105651629515353118193843329208903015`15.954589770191003, Editable -> False], "approx" -> 0.9510565162951535, "interp" -> InterpretationBox["", Root[5 - 20 #^2 + 16 #^4& , 4, 0]], "head" -> "Root", "big" -> RowBox[{ RowBox[{"5", "-", RowBox[{"20", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "4"]}]}], "&"}], "degree" -> "4", "shortDegree" -> "4", "number" -> 4|>, "NumericalApproximationInterp", InterpretationFunction->(Slot["interp"]& )], ",", RowBox[{ FractionBox["1", "4"], " ", RowBox[{"(", RowBox[{"3", "+", SqrtBox["5"]}], ")"}]}], ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{ TemplateBox[<|"icon" -> "Root", "small" -> InterpretationBox[ StyleBox[ TemplateBox[{"\"0.0603\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.06034953640555763831887503556572482921`15.954589770191003, Editable -> False], "approx" -> 0.06034953640555764, "interp" -> InterpretationBox["", Root[1 - 288 #^2 + 3744 #^4 - 15552 #^6 + 20736 #^8& , 5, 0]], "head" -> "Root", "big" -> RowBox[{ RowBox[{"1", "-", RowBox[{"288", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"3744", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"15552", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"20736", " ", SuperscriptBox["#1", "8"]}]}], "&"}], "degree" -> "8", "shortDegree" -> "8", "number" -> 5|>, "NumericalApproximationInterp", InterpretationFunction->(Slot["interp"]& )], ",", TemplateBox[<|"icon" -> "Root", "small" -> InterpretationBox[ StyleBox[ TemplateBox[{"\"0.574\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.57418748400584940227986407990101724863`15.954589770191003, Editable -> False], "approx" -> 0.5741874840058494, "interp" -> InterpretationBox["", Root[-1 + 12 # - 24 #^2 - 72 #^3 + 144 #^4& , 4, 0]], "head" -> "Root", "big" -> RowBox[{ RowBox[{ RowBox[{"-", "1"}], "+", RowBox[{"12", " ", "#1"}], "-", RowBox[{"24", " ", SuperscriptBox["#1", "2"]}], "-", RowBox[{"72", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"144", " ", SuperscriptBox["#1", "4"]}]}], "&"}], "degree" -> "4", "shortDegree" -> "4", "number" -> 4|>, "NumericalApproximationInterp", InterpretationFunction->(Slot["interp"]& )], ",", TemplateBox[<|"icon" -> "Root", "small" -> InterpretationBox[ StyleBox[ TemplateBox[{"\"-1.51\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -1.51152262815234150750143271579872816801`15.\ 954589770191003, Editable -> False], "approx" -> -1.5115226281523415`, "interp" -> InterpretationBox["", Root[1 - 21 #^2 + 9 #^4& , 1, 0]], "head" -> "Root", "big" -> RowBox[{ RowBox[{"1", "-", RowBox[{"21", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"9", " ", SuperscriptBox["#1", "4"]}]}], "&"}], "degree" -> "4", "shortDegree" -> "4", "number" -> 1|>, "NumericalApproximationInterp", InterpretationFunction->(Slot["interp"]& )]}], "}"}], ",", RowBox[{"{", RowBox[{ TemplateBox[<|"icon" -> "Root", "small" -> InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.951\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.95105651629515353118193843329208903015`15.\ 954589770191003, Editable -> False], "approx" -> -0.9510565162951535, "interp" -> InterpretationBox["", Root[5 - 20 #^2 + 16 #^4& , 1, 0]], "head" -> "Root", "big" -> RowBox[{ RowBox[{"5", "-", RowBox[{"20", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "4"]}]}], "&"}], "degree" -> "4", "shortDegree" -> "4", "number" -> 1|>, "NumericalApproximationInterp", InterpretationFunction->(Slot["interp"]& )], ",", RowBox[{ FractionBox["1", "4"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "3"}], "-", SqrtBox["5"]}], ")"}]}], ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{ TemplateBox[<|"icon" -> "Root", "small" -> InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.695\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.69541177767061312930962913014809601009`15.\ 954589770191003, Editable -> False], "approx" -> -0.6954117776706131, "interp" -> InterpretationBox["", Root[841 - 9732 #^2 + 37584 #^4 - 53568 #^6 + 20736 #^8& , 2, 0]], "head" -> "Root", "big" -> RowBox[{ RowBox[{"841", "-", RowBox[{"9732", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"37584", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"53568", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"20736", " ", SuperscriptBox["#1", "8"]}]}], "&"}], "degree" -> "8", "shortDegree" -> "8", "number" -> 2|>, "NumericalApproximationInterp", InterpretationFunction->(Slot["interp"]& )], ",", TemplateBox[<|"icon" -> "Root", "small" -> InterpretationBox[ StyleBox[ TemplateBox[{"\"1.12\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 1.12328021970340397039933577616466209292`15.954589770191003, Editable -> False], "approx" -> 1.123280219703404, "interp" -> InterpretationBox["", Root[-1 - 18 # - 84 #^2 - 72 #^3 + 144 #^4& , 4, 0]], "head" -> "Root", "big" -> RowBox[{ RowBox[{ RowBox[{"-", "1"}], "-", RowBox[{"18", " ", "#1"}], "-", RowBox[{"84", " ", SuperscriptBox["#1", "2"]}], "-", RowBox[{"72", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"144", " ", SuperscriptBox["#1", "4"]}]}], "&"}], "degree" -> "4", "shortDegree" -> "4", "number" -> 4|>, "NumericalApproximationInterp", InterpretationFunction->(Slot["interp"]& )], ",", TemplateBox[<|"icon" -> "Root", "small" -> InterpretationBox[ StyleBox[ TemplateBox[{"\"0.934\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.93417235896271566542026221213745884597`15.954589770191003, Editable -> False], "approx" -> 0.9341723589627157, "interp" -> InterpretationBox["", Root[1 - 9 #^2 + 9 #^4& , 4, 0]], "head" -> "Root", "big" -> RowBox[{ RowBox[{"1", "-", RowBox[{"9", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"9", " ", SuperscriptBox["#1", "4"]}]}], "&"}], "degree" -> "4", "shortDegree" -> "4", "number" -> 4|>, "NumericalApproximationInterp", InterpretationFunction->(Slot["interp"]& )]}], "}"}], ",", RowBox[{"{", RowBox[{ TemplateBox[<|"icon" -> "Root", "small" -> InterpretationBox[ StyleBox[ TemplateBox[{"\"-1.38\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -1.38084463107257771063984819193137809634`15.\ 954589770191003, Editable -> False], "approx" -> -1.3808446310725777`, "interp" -> InterpretationBox["", Root[1 - 108 #^2 + 3744 #^4 - 41472 #^6 + 20736 #^8& , 1, 0]], "head" -> "Root", "big" -> RowBox[{ RowBox[{"1", "-", RowBox[{"108", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"3744", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"41472", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"20736", " ", SuperscriptBox["#1", "8"]}]}], "&"}], "degree" -> "8", "shortDegree" -> "8", "number" -> 1|>, "NumericalApproximationInterp", InterpretationFunction->(Slot["interp"]& )], ",", TemplateBox[<|"icon" -> "Root", "small" -> InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.615\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.6147916397077943795324017628445290029`15.954589770191003, Editable -> False], "approx" -> -0.6147916397077944, "interp" -> InterpretationBox["", Root[-1 - 18 # + 96 #^2 + 288 #^3 + 144 #^4& , 2, 0]], "head" -> "Root", "big" -> RowBox[{ RowBox[{ RowBox[{"-", "1"}], "-", RowBox[{"18", " ", "#1"}], "+", RowBox[{"96", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"288", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"144", " ", SuperscriptBox["#1", "4"]}]}], "&"}], "degree" -> "4", "shortDegree" -> "4", "number" -> 2|>, "NumericalApproximationInterp", InterpretationFunction->(Slot["interp"]& )], ",", FractionBox["1", SqrtBox["3"]]}], "}"}], ",", RowBox[{"{", RowBox[{ TemplateBox[<|"icon" -> "Root", "small" -> InterpretationBox[ StyleBox[ TemplateBox[{"\"-1.28\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -1.28319702996308615539078346046153455973`15.\ 954589770191003, Editable -> False], "approx" -> -1.2831970299630862`, "interp" -> InterpretationBox["", Root[841 - 9732 #^2 + 37584 #^4 - 53568 #^6 + 20736 #^8& , 1, 0]], "head" -> "Root", "big" -> RowBox[{ RowBox[{"841", "-", RowBox[{"9732", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"37584", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"53568", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"20736", " ", SuperscriptBox["#1", "8"]}]}], "&"}], "degree" -> "8", "shortDegree" -> "8", "number" -> 1|>, "NumericalApproximationInterp", InterpretationFunction->(Slot["interp"]& )], ",", TemplateBox[<|"icon" -> "Root", "small" -> InterpretationBox[ StyleBox[ TemplateBox[{"\"0.314\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.31426322532845663015876880308496765792`15.954589770191003, Editable -> False], "approx" -> 0.31426322532845663`, "interp" -> InterpretationBox["", Root[-1 + 18 # - 84 #^2 + 72 #^3 + 144 #^4& , 4, 0]], "head" -> "Root", "big" -> RowBox[{ RowBox[{ RowBox[{"-", "1"}], "+", RowBox[{"18", " ", "#1"}], "-", RowBox[{"84", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"144", " ", SuperscriptBox["#1", "4"]}]}], "&"}], "degree" -> "4", "shortDegree" -> "4", "number" -> 4|>, "NumericalApproximationInterp", InterpretationFunction->(Slot["interp"]& )], ",", TemplateBox[<|"icon" -> "Root", "small" -> InterpretationBox[ StyleBox[ TemplateBox[{"\"0.934\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.93417235896271566542026221213745884597`15.954589770191003, Editable -> False], "approx" -> 0.9341723589627157, "interp" -> InterpretationBox["", Root[1 - 9 #^2 + 9 #^4& , 4, 0]], "head" -> "Root", "big" -> RowBox[{ RowBox[{"1", "-", RowBox[{"9", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"9", " ", SuperscriptBox["#1", "4"]}]}], "&"}], "degree" -> "4", "shortDegree" -> "4", "number" -> 4|>, "NumericalApproximationInterp", InterpretationFunction->(Slot["interp"]& )]}], "}"}], ",", RowBox[{"{", RowBox[{ TemplateBox[<|"icon" -> "Root", "small" -> InterpretationBox[ StyleBox[ TemplateBox[{"\"1.28\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 1.28319702996308615539078346046153455973`15.954589770191003, Editable -> False], "approx" -> 1.2831970299630862`, "interp" -> InterpretationBox["", Root[841 - 9732 #^2 + 37584 #^4 - 53568 #^6 + 20736 #^8& , 8, 0]], "head" -> "Root", "big" -> RowBox[{ RowBox[{"841", "-", RowBox[{"9732", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"37584", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"53568", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"20736", " ", SuperscriptBox["#1", "8"]}]}], "&"}], "degree" -> "8", "shortDegree" -> "8", "number" -> 8|>, "NumericalApproximationInterp", InterpretationFunction->(Slot["interp"]& )], ",", TemplateBox[<|"icon" -> "Root", "small" -> InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.314\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.31426322532845663015876880308496765792`15.\ 954589770191003, Editable -> False], "approx" -> -0.31426322532845663`, "interp" -> InterpretationBox["", Root[-1 - 18 # - 84 #^2 - 72 #^3 + 144 #^4& , 1, 0]], "head" -> "Root", "big" -> RowBox[{ RowBox[{ RowBox[{"-", "1"}], "-", RowBox[{"18", " ", "#1"}], "-", RowBox[{"84", " ", SuperscriptBox["#1", "2"]}], "-", RowBox[{"72", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"144", " ", SuperscriptBox["#1", "4"]}]}], "&"}], "degree" -> "4", "shortDegree" -> "4", "number" -> 1|>, "NumericalApproximationInterp", InterpretationFunction->(Slot["interp"]& )], ",", TemplateBox[<|"icon" -> "Root", "small" -> InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.934\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.93417235896271566542026221213745884597`15.\ 954589770191003, Editable -> False], "approx" -> -0.9341723589627157, "interp" -> InterpretationBox["", Root[1 - 9 #^2 + 9 #^4& , 1, 0]], "head" -> "Root", "big" -> RowBox[{ RowBox[{"1", "-", RowBox[{"9", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"9", " ", SuperscriptBox["#1", "4"]}]}], "&"}], "degree" -> "4", "shortDegree" -> "4", "number" -> 1|>, "NumericalApproximationInterp", InterpretationFunction->(Slot["interp"]& )]}], "}"}], ",", RowBox[{"{", RowBox[{ TemplateBox[<|"icon" -> "Root", "small" -> InterpretationBox[ StyleBox[ TemplateBox[{"\"1.38\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 1.38084463107257771063984819193137809634`15.954589770191003, Editable -> False], "approx" -> 1.3808446310725777`, "interp" -> InterpretationBox["", Root[1 - 108 #^2 + 3744 #^4 - 41472 #^6 + 20736 #^8& , 8, 0]], "head" -> "Root", "big" -> RowBox[{ RowBox[{"1", "-", RowBox[{"108", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"3744", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"41472", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"20736", " ", SuperscriptBox["#1", "8"]}]}], "&"}], "degree" -> "8", "shortDegree" -> "8", "number" -> 8|>, "NumericalApproximationInterp", InterpretationFunction->(Slot["interp"]& )], ",", TemplateBox[<|"icon" -> "Root", "small" -> InterpretationBox[ StyleBox[ TemplateBox[{"\"0.615\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.6147916397077943795324017628445290029`15.954589770191003, Editable -> False], "approx" -> 0.6147916397077944, "interp" -> InterpretationBox["", Root[-1 + 18 # + 96 #^2 - 288 #^3 + 144 #^4& , 3, 0]], "head" -> "Root", "big" -> RowBox[{ RowBox[{ RowBox[{"-", "1"}], "+", RowBox[{"18", " ", "#1"}], "+", RowBox[{"96", " ", SuperscriptBox["#1", "2"]}], "-", RowBox[{"288", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"144", " ", SuperscriptBox["#1", "4"]}]}], "&"}], "degree" -> "4", "shortDegree" -> "4", "number" -> 3|>, "NumericalApproximationInterp", InterpretationFunction->(Slot["interp"]& )], ",", RowBox[{"-", FractionBox["1", SqrtBox["3"]]}]}], "}"}], ",", RowBox[{"{", RowBox[{ TemplateBox[<|"icon" -> "Root", "small" -> InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.0603\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.06034953640555763831887503556572482921`15.\ 954589770191003, Editable -> False], "approx" -> -0.06034953640555764, "interp" -> InterpretationBox["", Root[1 - 288 #^2 + 3744 #^4 - 15552 #^6 + 20736 #^8& , 4, 0]], "head" -> "Root", "big" -> RowBox[{ RowBox[{"1", "-", RowBox[{"288", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"3744", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"15552", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"20736", " ", SuperscriptBox["#1", "8"]}]}], "&"}], "degree" -> "8", "shortDegree" -> "8", "number" -> 4|>, "NumericalApproximationInterp", InterpretationFunction->(Slot["interp"]& )], ",", TemplateBox[<|"icon" -> "Root", "small" -> InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.574\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.57418748400584940227986407990101724863`15.\ 954589770191003, Editable -> False], "approx" -> -0.5741874840058494, "interp" -> InterpretationBox["", Root[-1 - 12 # - 24 #^2 + 72 #^3 + 144 #^4& , 1, 0]], "head" -> "Root", "big" -> RowBox[{ RowBox[{ RowBox[{"-", "1"}], "-", RowBox[{"12", " ", "#1"}], "-", RowBox[{"24", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"144", " ", SuperscriptBox["#1", "4"]}]}], "&"}], "degree" -> "4", "shortDegree" -> "4", "number" -> 1|>, "NumericalApproximationInterp", InterpretationFunction->(Slot["interp"]& )], ",", TemplateBox[<|"icon" -> "Root", "small" -> InterpretationBox[ StyleBox[ TemplateBox[{"\"1.51\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 1.51152262815234150750143271579872816801`15.954589770191003, Editable -> False], "approx" -> 1.5115226281523415`, "interp" -> InterpretationBox["", Root[1 - 21 #^2 + 9 #^4& , 4, 0]], "head" -> "Root", "big" -> RowBox[{ RowBox[{"1", "-", RowBox[{"21", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"9", " ", SuperscriptBox["#1", "4"]}]}], "&"}], "degree" -> "4", "shortDegree" -> "4", "number" -> 4|>, "NumericalApproximationInterp", InterpretationFunction->(Slot["interp"]& )]}], "}"}], ",", RowBox[{"{", RowBox[{ TemplateBox[<|"icon" -> "Root", "small" -> InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.625\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.62508331699640695688913183403201401234`15.\ 954589770191003, Editable -> False], "approx" -> -0.625083316996407, "interp" -> InterpretationBox["", Root[1 - 732 #^2 + 9504 #^4 - 27648 #^6 + 20736 #^8& , 2, 0]], "head" -> "Root", "big" -> RowBox[{ RowBox[{"1", "-", RowBox[{"732", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"9504", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"27648", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"20736", " ", SuperscriptBox["#1", "8"]}]}], "&"}], "degree" -> "8", "shortDegree" -> "8", "number" -> 2|>, "NumericalApproximationInterp", InterpretationFunction->(Slot["interp"]& )], ",", TemplateBox[<|"icon" -> "Root", "small" -> InterpretationBox[ StyleBox[ TemplateBox[{"\"-1.16\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -1.1638843754053489476518734591081738472`15.954589770191003, Editable -> False], "approx" -> -1.163884375405349, "interp" -> InterpretationBox["", Root[-31 - 78 # + 96 #^2 + 288 #^3 + 144 #^4& , 1, 0]], "head" -> "Root", "big" -> RowBox[{ RowBox[{ RowBox[{"-", "31"}], "-", RowBox[{"78", " ", "#1"}], "+", RowBox[{"96", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"288", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"144", " ", SuperscriptBox["#1", "4"]}]}], "&"}], "degree" -> "4", "shortDegree" -> "4", "number" -> 1|>, "NumericalApproximationInterp", InterpretationFunction->(Slot["interp"]& )], ",", TemplateBox[<|"icon" -> "Root", "small" -> InterpretationBox[ StyleBox[ TemplateBox[{"\"0.934\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.93417235896271566542026221213745884597`15.954589770191003, Editable -> False], "approx" -> 0.9341723589627157, "interp" -> InterpretationBox["", Root[1 - 9 #^2 + 9 #^4& , 4, 0]], "head" -> "Root", "big" -> RowBox[{ RowBox[{"1", "-", RowBox[{"9", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"9", " ", SuperscriptBox["#1", "4"]}]}], "&"}], "degree" -> "4", "shortDegree" -> "4", "number" -> 4|>, "NumericalApproximationInterp", InterpretationFunction->(Slot["interp"]& )]}], "}"}], ",", RowBox[{"{", RowBox[{ TemplateBox[<|"icon" -> "Root", "small" -> InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.467\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.46708617948135783271013110606872942299`15.\ 954589770191003, Editable -> False], "approx" -> -0.46708617948135783`, "interp" -> InterpretationBox["", Root[1 - 36 #^2 + 144 #^4& , 1, 0]], "head" -> "Root", "big" -> RowBox[{ RowBox[{"1", "-", RowBox[{"36", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"144", " ", SuperscriptBox["#1", "4"]}]}], "&"}], "degree" -> "4", "shortDegree" -> "4", "number" -> 1|>, "NumericalApproximationInterp", InterpretationFunction->(Slot["interp"]& )], ",", TemplateBox[<|"icon" -> "Root", "small" -> InterpretationBox[ StyleBox[ TemplateBox[{"\"0.339\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.33935797363675146431916118672234006226`15.954589770191003, Editable -> False], "approx" -> 0.33935797363675146`, "interp" -> InterpretationBox["", Root[5 - 60 #^2 + 144 #^4& , 3, 0]], "head" -> "Root", "big" -> RowBox[{ RowBox[{"5", "-", RowBox[{"60", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"144", " ", SuperscriptBox["#1", "4"]}]}], "&"}], "degree" -> "4", "shortDegree" -> "4", "number" -> 3|>, "NumericalApproximationInterp", InterpretationFunction->(Slot["interp"]& )], ",", TemplateBox[<|"icon" -> "Root", "small" -> InterpretationBox[ StyleBox[ TemplateBox[{"\"1.51\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 1.51152262815234150750143271579872816801`15.954589770191003, Editable -> False], "approx" -> 1.5115226281523415`, "interp" -> InterpretationBox["", Root[1 - 21 #^2 + 9 #^4& , 4, 0]], "head" -> "Root", "big" -> RowBox[{ RowBox[{"1", "-", RowBox[{"21", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"9", " ", SuperscriptBox["#1", "4"]}]}], "&"}], "degree" -> "4", "shortDegree" -> "4", "number" -> 4|>, "NumericalApproximationInterp", InterpretationFunction->(Slot["interp"]& )]}], "}"}], ",", RowBox[{"{", RowBox[{ TemplateBox[<|"icon" -> "Root", "small" -> InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.914\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.91375845159121982241856585460482165217`15.\ 954589770191003, Editable -> False], "approx" -> -0.9137584515912198, "interp" -> InterpretationBox["", Root[1 - 732 #^2 + 9504 #^4 - 27648 #^6 + 20736 #^8& , 1, 0]], "head" -> "Root", "big" -> RowBox[{ RowBox[{"1", "-", RowBox[{"732", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"9504", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"27648", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"20736", " ", SuperscriptBox["#1", "8"]}]}], "&"}], "degree" -> "8", "shortDegree" -> "8", "number" -> 1|>, "NumericalApproximationInterp", InterpretationFunction->(Slot["interp"]& )], ",", TemplateBox[<|"icon" -> "Root", "small" -> InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.954\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.95414961334454584385156294956686906517`15.\ 954589770191003, Editable -> False], "approx" -> -0.9541496133445458, "interp" -> InterpretationBox["", Root[-31 - 78 # + 96 #^2 + 288 #^3 + 144 #^4& , 2, 0]], "head" -> "Root", "big" -> RowBox[{ RowBox[{ RowBox[{"-", "31"}], "-", RowBox[{"78", " ", "#1"}], "+", RowBox[{"96", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"288", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"144", " ", SuperscriptBox["#1", "4"]}]}], "&"}], "degree" -> "4", "shortDegree" -> "4", "number" -> 2|>, "NumericalApproximationInterp", InterpretationFunction->(Slot["interp"]& )], ",", TemplateBox[<|"icon" -> "Root", "small" -> InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.934\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.93417235896271566542026221213745884597`15.\ 954589770191003, Editable -> False], "approx" -> -0.9341723589627157, "interp" -> InterpretationBox["", Root[1 - 9 #^2 + 9 #^4& , 1, 0]], "head" -> "Root", "big" -> RowBox[{ RowBox[{"1", "-", RowBox[{"9", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"9", " ", SuperscriptBox["#1", "4"]}]}], "&"}], "degree" -> "4", "shortDegree" -> "4", "number" -> 1|>, "NumericalApproximationInterp", InterpretationFunction->(Slot["interp"]& )]}], "}"}], ",", RowBox[{"{", RowBox[{ TemplateBox[<|"icon" -> "Root", "small" -> InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.658\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.65811371296667930952395408894517458975`15.\ 954589770191003, Editable -> False], "approx" -> -0.6581137129666793, "interp" -> InterpretationBox["", Root[1 - 68 #^2 + 464 #^4 - 832 #^6 + 256 #^8& , 2, 0]], "head" -> "Root", "big" -> RowBox[{ RowBox[{"1", "-", RowBox[{"68", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"464", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"832", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"256", " ", SuperscriptBox["#1", "8"]}]}], "&"}], "degree" -> "8", "shortDegree" -> "8", "number" -> 2|>, "NumericalApproximationInterp", InterpretationFunction->(Slot["interp"]& )], ",", TemplateBox[<|"icon" -> "Root", "small" -> InterpretationBox[ StyleBox[ TemplateBox[{"\"1.48\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 1.47814760073380568883294472470879554749`15.954589770191003, Editable -> False], "approx" -> 1.4781476007338057`, "interp" -> InterpretationBox["", Root[1 + 6 # - 4 #^2 - 24 #^3 + 16 #^4& , 4, 0]], "head" -> "Root", "big" -> RowBox[{ RowBox[{"1", "+", RowBox[{"6", " ", "#1"}], "-", RowBox[{"4", " ", SuperscriptBox["#1", "2"]}], "-", RowBox[{"24", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "4"]}]}], "&"}], "degree" -> "4", "shortDegree" -> "4", "number" -> 4|>, "NumericalApproximationInterp", InterpretationFunction->(Slot["interp"]& )], ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{ TemplateBox[<|"icon" -> "Root", "small" -> InterpretationBox[ StyleBox[ TemplateBox[{"\"0.369\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.36943857837186644399452006837236694992`15.954589770191003, Editable -> False], "approx" -> 0.36943857837186644`, "interp" -> InterpretationBox["", Root[25 - 1200 #^2 + 12960 #^4 - 43200 #^6 + 20736 #^8& , 6, 0]], "head" -> "Root", "big" -> RowBox[{ RowBox[{"25", "-", RowBox[{"1200", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"12960", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"43200", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"20736", " ", SuperscriptBox["#1", "8"]}]}], "&"}], "degree" -> "8", "shortDegree" -> "8", "number" -> 6|>, "NumericalApproximationInterp", InterpretationFunction->(Slot["interp"]& )], ",", TemplateBox[<|"icon" -> "Root", "small" -> InterpretationBox[ StyleBox[ TemplateBox[{"\"-1.27\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -1.26841283867300247401033175265183672309`15.\ 954589770191003, Editable -> False], "approx" -> -1.2684128386730025`, "interp" -> InterpretationBox["", Root[-1 - 24 # + 24 #^2 + 216 #^3 + 144 #^4& , 1, 0]], "head" -> "Root", "big" -> RowBox[{ RowBox[{ RowBox[{"-", "1"}], "-", RowBox[{"24", " ", "#1"}], "+", RowBox[{"24", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"216", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"144", " ", SuperscriptBox["#1", "4"]}]}], "&"}], "degree" -> "4", "shortDegree" -> "4", "number" -> 1|>, "NumericalApproximationInterp", InterpretationFunction->(Slot["interp"]& )], ",", TemplateBox[<|"icon" -> "Root", "small" -> InterpretationBox[ StyleBox[ TemplateBox[{"\"0.934\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.93417235896271566542026221213745884597`15.954589770191003, Editable -> False], "approx" -> 0.9341723589627157, "interp" -> InterpretationBox["", Root[1 - 9 #^2 + 9 #^4& , 4, 0]], "head" -> "Root", "big" -> RowBox[{ RowBox[{"1", "-", RowBox[{"9", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"9", " ", SuperscriptBox["#1", "4"]}]}], "&"}], "degree" -> "4", "shortDegree" -> "4", "number" -> 4|>, "NumericalApproximationInterp", InterpretationFunction->(Slot["interp"]& )]}], "}"}], ",", RowBox[{"{", RowBox[{ TemplateBox[<|"icon" -> "Root", "small" -> InterpretationBox[ StyleBox[ TemplateBox[{"\"0.527\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.52743571588691551266236956507782451808`15.954589770191003, Editable -> False], "approx" -> 0.5274357158869155, "interp" -> InterpretationBox["", Root[1 - 288 #^2 + 3744 #^4 - 15552 #^6 + 20736 #^8& , 7, 0]], "head" -> "Root", "big" -> RowBox[{ RowBox[{"1", "-", RowBox[{"288", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"3744", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"15552", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"20736", " ", SuperscriptBox["#1", "8"]}]}], "&"}], "degree" -> "8", "shortDegree" -> "8", "number" -> 7|>, "NumericalApproximationInterp", InterpretationFunction->(Slot["interp"]& )], ",", TemplateBox[<|"icon" -> "Root", "small" -> InterpretationBox[ StyleBox[ TemplateBox[{"\"0.235\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.23482951036909799347185412443650420755`15.954589770191003, Editable -> False], "approx" -> 0.234829510369098, "interp" -> InterpretationBox["", Root[-1 + 12 # - 24 #^2 - 72 #^3 + 144 #^4& , 3, 0]], "head" -> "Root", "big" -> RowBox[{ RowBox[{ RowBox[{"-", "1"}], "+", RowBox[{"12", " ", "#1"}], "-", RowBox[{"24", " ", SuperscriptBox["#1", "2"]}], "-", RowBox[{"72", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"144", " ", SuperscriptBox["#1", "4"]}]}], "&"}], "degree" -> "4", "shortDegree" -> "4", "number" -> 3|>, "NumericalApproximationInterp", InterpretationFunction->(Slot["interp"]& )], ",", TemplateBox[<|"icon" -> "Root", "small" -> InterpretationBox[ StyleBox[ TemplateBox[{"\"1.51\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 1.51152262815234150750143271579872816801`15.954589770191003, Editable -> False], "approx" -> 1.5115226281523415`, "interp" -> InterpretationBox["", Root[1 - 21 #^2 + 9 #^4& , 4, 0]], "head" -> "Root", "big" -> RowBox[{ RowBox[{"1", "-", RowBox[{"21", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"9", " ", SuperscriptBox["#1", "4"]}]}], "&"}], "degree" -> "4", "shortDegree" -> "4", "number" -> 4|>, "NumericalApproximationInterp", InterpretationFunction->(Slot["interp"]& )]}], "}"}]}], "}"}]], "Output",\ CellLabel-> "Out[571]=",ExpressionUUID->"3c9df45e-d9ee-423e-99bc-11d6f087240c"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"vnew2", "=", RowBox[{"FullSimplify", "[", "vnew", "]"}]}]], "Input", CellLabel-> "In[572]:=",ExpressionUUID->"d257381f-960c-45ba-a444-8cab33382029"], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", SqrtBox[ RowBox[{"2", "+", FractionBox[ RowBox[{"5", " ", SqrtBox["5"]}], "6"], "-", RowBox[{ FractionBox["1", "6"], " ", SqrtBox[ RowBox[{"255", "+", RowBox[{"114", " ", SqrtBox["5"]}]}]]}]}]]}], ",", RowBox[{ FractionBox["1", "12"], " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "3"}], " ", RowBox[{"(", RowBox[{"2", "+", SqrtBox["5"]}], ")"}]}], "-", SqrtBox[ RowBox[{"15", "+", RowBox[{"6", " ", SqrtBox["5"]}]}]]}], ")"}]}], ",", RowBox[{"-", FractionBox["1", SqrtBox["3"]]}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ FractionBox["1", "2"], " ", SqrtBox[ RowBox[{"2", "+", FractionBox[ RowBox[{"5", " ", SqrtBox["5"]}], "6"], "-", RowBox[{ FractionBox["1", "6"], " ", SqrtBox[ RowBox[{"255", "+", RowBox[{"114", " ", SqrtBox["5"]}]}]]}]}]]}], ",", RowBox[{ FractionBox["1", "12"], " ", RowBox[{"(", RowBox[{"6", "+", RowBox[{"3", " ", SqrtBox["5"]}], "+", SqrtBox[ RowBox[{"15", "+", RowBox[{"6", " ", SqrtBox["5"]}]}]]}], ")"}]}], ",", FractionBox["1", SqrtBox["3"]]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"-", FractionBox["1", "4"]}], " ", SqrtBox[ RowBox[{ FractionBox["1", "3"], " ", RowBox[{"(", RowBox[{"9", "-", SqrtBox["5"], "+", SqrtBox[ RowBox[{"6", " ", RowBox[{"(", RowBox[{"5", "+", SqrtBox["5"]}], ")"}]}]]}], ")"}]}]]}], ",", RowBox[{ FractionBox["1", "24"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "3"}], "-", RowBox[{"3", " ", SqrtBox["5"]}], "+", SqrtBox[ RowBox[{"30", "-", RowBox[{"6", " ", SqrtBox["5"]}]}]]}], ")"}]}], ",", TemplateBox[<|"icon" -> "Root", "small" -> InterpretationBox[ StyleBox[ TemplateBox[{"\"-1.51\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -1.51152262815234150750143271579872816801`15.\ 954589770191003, Editable -> False], "approx" -> -1.5115226281523415`, "interp" -> InterpretationBox["", Root[1 - 21 #^2 + 9 #^4& , 1, 0]], "head" -> "Root", "big" -> RowBox[{ RowBox[{"1", "-", RowBox[{"21", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"9", " ", SuperscriptBox["#1", "4"]}]}], "&"}], "degree" -> "4", "shortDegree" -> "4", "number" -> 1|>, "NumericalApproximationInterp", InterpretationFunction->(Slot["interp"]& )]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"-", FractionBox["1", "4"]}], " ", SqrtBox[ RowBox[{ FractionBox["1", "3"], " ", RowBox[{"(", RowBox[{"25", "+", RowBox[{"9", " ", SqrtBox["5"]}], "-", SqrtBox[ RowBox[{"750", "+", RowBox[{"330", " ", SqrtBox["5"]}]}]]}], ")"}]}]]}], ",", RowBox[{ FractionBox["1", "8"], " ", RowBox[{"(", RowBox[{"3", "+", SqrtBox["5"], "+", SqrtBox[ RowBox[{ FractionBox["10", "3"], " ", RowBox[{"(", RowBox[{"5", "+", SqrtBox["5"]}], ")"}]}]]}], ")"}]}], ",", RowBox[{"-", SqrtBox[ RowBox[{ FractionBox["1", "6"], " ", RowBox[{"(", RowBox[{"3", "+", SqrtBox["5"]}], ")"}]}]]}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ FractionBox["1", "4"], " ", SqrtBox[ RowBox[{"13", "+", RowBox[{"5", " ", SqrtBox["5"]}], "-", SqrtBox[ RowBox[{"150", "+", RowBox[{"66", " ", SqrtBox["5"]}]}]]}]]}], ",", RowBox[{ FractionBox["1", "8"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "3"}], "-", SqrtBox["5"], "-", SqrtBox[ RowBox[{"6", " ", RowBox[{"(", RowBox[{"5", "+", SqrtBox["5"]}], ")"}]}]]}], ")"}]}], ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ FractionBox["1", "2"], " ", SqrtBox[ RowBox[{ FractionBox["1", "6"], " ", RowBox[{"(", RowBox[{"8", "+", RowBox[{"3", " ", SqrtBox["5"]}], "+", SqrtBox[ RowBox[{"15", "+", RowBox[{"6", " ", SqrtBox["5"]}]}]]}], ")"}]}]]}], ",", RowBox[{ FractionBox["1", "4"], " ", RowBox[{"(", RowBox[{"2", "+", SqrtBox["5"], "+", TemplateBox[<|"icon" -> "Root", "small" -> InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.419\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.41946952412160631862292348159826360643`15.\ 954589770191003, Editable -> False], "approx" -> -0.4194695241216063, "interp" -> InterpretationBox["", Root[5 - 30 #^2 + 9 #^4& , 2, 0]], "head" -> "Root", "big" -> RowBox[{ RowBox[{"5", "-", RowBox[{"30", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"9", " ", SuperscriptBox["#1", "4"]}]}], "&"}], "degree" -> "4", "shortDegree" -> "4", "number" -> 2|>, "NumericalApproximationInterp", InterpretationFunction->(Slot["interp"]& )]}], ")"}]}], ",", SqrtBox[ RowBox[{ FractionBox["1", "6"], " ", RowBox[{"(", RowBox[{"3", "+", SqrtBox["5"]}], ")"}]}]]}], "}"}], ",", RowBox[{"{", RowBox[{ SqrtBox[ RowBox[{ FractionBox["3", "4"], "+", FractionBox[ SqrtBox["5"], "3"]}]], ",", RowBox[{"-", SqrtBox[ RowBox[{ FractionBox["5", "12"], "+", FractionBox[ SqrtBox["5"], "6"]}]]}], ",", FractionBox["1", SqrtBox["3"]]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ FractionBox["1", "4"], " ", SqrtBox[ RowBox[{ FractionBox["1", "3"], " ", RowBox[{"(", RowBox[{"25", "+", RowBox[{"9", " ", SqrtBox["5"]}], "+", SqrtBox[ RowBox[{"750", "+", RowBox[{"330", " ", SqrtBox["5"]}]}]]}], ")"}]}]]}], ",", RowBox[{ FractionBox["1", "8"], " ", RowBox[{"(", RowBox[{"3", "+", SqrtBox["5"], "-", SqrtBox[ RowBox[{ FractionBox["10", "3"], " ", RowBox[{"(", RowBox[{"5", "+", SqrtBox["5"]}], ")"}]}]]}], ")"}]}], ",", SqrtBox[ RowBox[{ FractionBox["1", "6"], " ", RowBox[{"(", RowBox[{"3", "+", SqrtBox["5"]}], ")"}]}]]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ FractionBox["1", "2"], " ", SqrtBox[ RowBox[{ FractionBox["1", "6"], " ", RowBox[{"(", RowBox[{"3", "+", SqrtBox["5"]}], ")"}]}]]}], ",", TemplateBox[<|"icon" -> "Root", "small" -> InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.339\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.33935797363675146431916118672234006226`15.\ 954589770191003, Editable -> False], "approx" -> -0.33935797363675146`, "interp" -> InterpretationBox["", Root[5 - 60 #^2 + 144 #^4& , 2, 0]], "head" -> "Root", "big" -> RowBox[{ RowBox[{"5", "-", RowBox[{"60", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"144", " ", SuperscriptBox["#1", "4"]}]}], "&"}], "degree" -> "4", "shortDegree" -> "4", "number" -> 2|>, "NumericalApproximationInterp", InterpretationFunction->(Slot["interp"]& )], ",", TemplateBox[<|"icon" -> "Root", "small" -> InterpretationBox[ StyleBox[ TemplateBox[{"\"-1.51\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -1.51152262815234150750143271579872816801`15.\ 954589770191003, Editable -> False], "approx" -> -1.5115226281523415`, "interp" -> InterpretationBox["", Root[1 - 21 #^2 + 9 #^4& , 1, 0]], "head" -> "Root", "big" -> RowBox[{ RowBox[{"1", "-", RowBox[{"21", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"9", " ", SuperscriptBox["#1", "4"]}]}], "&"}], "degree" -> "4", "shortDegree" -> "4", "number" -> 1|>, "NumericalApproximationInterp", InterpretationFunction->(Slot["interp"]& )]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ FractionBox["1", "2"], " ", SqrtBox[ RowBox[{ FractionBox["1", "6"], " ", RowBox[{"(", RowBox[{"8", "+", RowBox[{"3", " ", SqrtBox["5"]}], "-", SqrtBox[ RowBox[{"15", "+", RowBox[{"6", " ", SqrtBox["5"]}]}]]}], ")"}]}]]}], ",", RowBox[{ FractionBox["1", "4"], " ", RowBox[{"(", RowBox[{"2", "+", SqrtBox["5"], "+", SqrtBox[ RowBox[{ FractionBox["1", "3"], " ", RowBox[{"(", RowBox[{"5", "-", RowBox[{"2", " ", SqrtBox["5"]}]}], ")"}]}]]}], ")"}]}], ",", RowBox[{"-", SqrtBox[ RowBox[{ FractionBox["1", "6"], " ", RowBox[{"(", RowBox[{"3", "+", SqrtBox["5"]}], ")"}]}]]}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"-", FractionBox["1", "4"]}], " ", SqrtBox[ RowBox[{"13", "+", RowBox[{"5", " ", SqrtBox["5"]}], "+", SqrtBox[ RowBox[{"150", "+", RowBox[{"66", " ", SqrtBox["5"]}]}]]}]]}], ",", RowBox[{ FractionBox["1", "8"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "3"}], "-", SqrtBox["5"], "+", SqrtBox[ RowBox[{"6", " ", RowBox[{"(", RowBox[{"5", "+", SqrtBox["5"]}], ")"}]}]]}], ")"}]}], ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"-", FractionBox["1", "4"]}], " ", SqrtBox[ RowBox[{ FractionBox["1", "3"], " ", RowBox[{"(", RowBox[{"25", "+", RowBox[{"9", " ", SqrtBox["5"]}], "+", SqrtBox[ RowBox[{"750", "+", RowBox[{"330", " ", SqrtBox["5"]}]}]]}], ")"}]}]]}], ",", RowBox[{ FractionBox["1", "24"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "9"}], "-", RowBox[{"3", " ", SqrtBox["5"]}], "+", SqrtBox[ RowBox[{"30", " ", RowBox[{"(", RowBox[{"5", "+", SqrtBox["5"]}], ")"}]}]]}], ")"}]}], ",", RowBox[{"-", SqrtBox[ RowBox[{ FractionBox["1", "6"], " ", RowBox[{"(", RowBox[{"3", "+", SqrtBox["5"]}], ")"}]}]]}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", SqrtBox[ RowBox[{ FractionBox["3", "4"], "+", FractionBox[ SqrtBox["5"], "3"]}]]}], ",", SqrtBox[ RowBox[{ FractionBox["5", "12"], "+", FractionBox[ SqrtBox["5"], "6"]}]], ",", RowBox[{"-", FractionBox["1", SqrtBox["3"]]}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ FractionBox["1", "4"], " ", SqrtBox[ RowBox[{"13", "+", RowBox[{"5", " ", SqrtBox["5"]}], "+", SqrtBox[ RowBox[{"150", "+", RowBox[{"66", " ", SqrtBox["5"]}]}]]}]]}], ",", RowBox[{ FractionBox["1", "8"], " ", RowBox[{"(", RowBox[{"3", "+", SqrtBox["5"], "-", SqrtBox[ RowBox[{"6", " ", RowBox[{"(", RowBox[{"5", "+", SqrtBox["5"]}], ")"}]}]]}], ")"}]}], ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ FractionBox["1", "4"], " ", SqrtBox[ RowBox[{ FractionBox["1", "3"], " ", RowBox[{"(", RowBox[{"31", "+", RowBox[{"9", " ", SqrtBox["5"]}], "-", SqrtBox[ RowBox[{"6", " ", RowBox[{"(", RowBox[{"65", "+", RowBox[{"29", " ", SqrtBox["5"]}]}], ")"}]}]]}], ")"}]}]]}], ",", TemplateBox[<|"icon" -> "Root", "small" -> InterpretationBox[ StyleBox[ TemplateBox[{"\"-1.12\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -1.12328021970340397039933577616466209292`15.\ 954589770191003, Editable -> False], "approx" -> -1.123280219703404, "interp" -> InterpretationBox["", Root[-1 + 18 # - 84 #^2 + 72 #^3 + 144 #^4& , 1, 0]], "head" -> "Root", "big" -> RowBox[{ RowBox[{ RowBox[{"-", "1"}], "+", RowBox[{"18", " ", "#1"}], "-", RowBox[{"84", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"144", " ", SuperscriptBox["#1", "4"]}]}], "&"}], "degree" -> "4", "shortDegree" -> "4", "number" -> 1|>, "NumericalApproximationInterp", InterpretationFunction->(Slot["interp"]& )], ",", RowBox[{"-", SqrtBox[ RowBox[{ FractionBox["1", "6"], " ", RowBox[{"(", RowBox[{"3", "+", SqrtBox["5"]}], ")"}]}]]}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ FractionBox["1", "2"], " ", SqrtBox[ RowBox[{ FractionBox["1", "2"], " ", RowBox[{"(", RowBox[{"5", "+", SqrtBox["5"]}], ")"}]}]]}], ",", RowBox[{ FractionBox["1", "4"], " ", RowBox[{"(", RowBox[{"3", "+", SqrtBox["5"]}], ")"}]}], ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ FractionBox["1", "4"], " ", SqrtBox[ RowBox[{ FractionBox["1", "3"], " ", RowBox[{"(", RowBox[{"9", "-", SqrtBox["5"], "-", SqrtBox[ RowBox[{"6", " ", RowBox[{"(", RowBox[{"5", "+", SqrtBox["5"]}], ")"}]}]]}], ")"}]}]]}], ",", RowBox[{ FractionBox["1", "8"], " ", RowBox[{"(", RowBox[{"1", "+", SqrtBox["5"], "+", SqrtBox[ RowBox[{ FractionBox["2", "3"], " ", RowBox[{"(", RowBox[{"5", "-", SqrtBox["5"]}], ")"}]}]]}], ")"}]}], ",", TemplateBox[<|"icon" -> "Root", "small" -> InterpretationBox[ StyleBox[ TemplateBox[{"\"-1.51\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -1.51152262815234150750143271579872816801`15.\ 954589770191003, Editable -> False], "approx" -> -1.5115226281523415`, "interp" -> InterpretationBox["", Root[1 - 21 #^2 + 9 #^4& , 1, 0]], "head" -> "Root", "big" -> RowBox[{ RowBox[{"1", "-", RowBox[{"21", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"9", " ", SuperscriptBox["#1", "4"]}]}], "&"}], "degree" -> "4", "shortDegree" -> "4", "number" -> 1|>, "NumericalApproximationInterp", InterpretationFunction->(Slot["interp"]& )]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", SqrtBox[ RowBox[{ FractionBox["1", "2"], " ", RowBox[{"(", RowBox[{"5", "+", SqrtBox["5"]}], ")"}]}]]}], ",", RowBox[{ FractionBox["1", "4"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "3"}], "-", SqrtBox["5"]}], ")"}]}], ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"-", FractionBox["1", "4"]}], " ", SqrtBox[ RowBox[{ FractionBox["1", "3"], " ", RowBox[{"(", RowBox[{"31", "+", RowBox[{"9", " ", SqrtBox["5"]}], "-", SqrtBox[ RowBox[{"6", " ", RowBox[{"(", RowBox[{"65", "+", RowBox[{"29", " ", SqrtBox["5"]}]}], ")"}]}]]}], ")"}]}]]}], ",", RowBox[{ FractionBox["1", "24"], " ", RowBox[{"(", RowBox[{"3", "+", RowBox[{"3", " ", SqrtBox["5"]}], "+", SqrtBox[ RowBox[{"150", "+", RowBox[{"66", " ", SqrtBox["5"]}]}]]}], ")"}]}], ",", SqrtBox[ RowBox[{ FractionBox["1", "6"], " ", RowBox[{"(", RowBox[{"3", "+", SqrtBox["5"]}], ")"}]}]]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", SqrtBox[ RowBox[{ FractionBox["1", "6"], " ", RowBox[{"(", RowBox[{"12", "+", RowBox[{"5", " ", SqrtBox["5"]}], "+", SqrtBox[ RowBox[{"3", " ", RowBox[{"(", RowBox[{"85", "+", RowBox[{"38", " ", SqrtBox["5"]}]}], ")"}]}]]}], ")"}]}]]}], ",", RowBox[{ FractionBox["1", "12"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "6"}], "-", RowBox[{"3", " ", SqrtBox["5"]}], "+", SqrtBox[ RowBox[{"15", "+", RowBox[{"6", " ", SqrtBox["5"]}]}]]}], ")"}]}], ",", FractionBox["1", SqrtBox["3"]]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"-", FractionBox["1", "4"]}], " ", SqrtBox[ RowBox[{ FractionBox["1", "3"], " ", RowBox[{"(", RowBox[{"31", "+", RowBox[{"9", " ", SqrtBox["5"]}], "+", SqrtBox[ RowBox[{"6", " ", RowBox[{"(", RowBox[{"65", "+", RowBox[{"29", " ", SqrtBox["5"]}]}], ")"}]}]]}], ")"}]}]]}], ",", RowBox[{ FractionBox["1", "24"], " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "3"}], " ", RowBox[{"(", RowBox[{"1", "+", SqrtBox["5"]}], ")"}]}], "+", SqrtBox[ RowBox[{"150", "+", RowBox[{"66", " ", SqrtBox["5"]}]}]]}], ")"}]}], ",", SqrtBox[ RowBox[{ FractionBox["1", "6"], " ", RowBox[{"(", RowBox[{"3", "+", SqrtBox["5"]}], ")"}]}]]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ FractionBox["1", "4"], " ", SqrtBox[ RowBox[{ FractionBox["1", "3"], " ", RowBox[{"(", RowBox[{"31", "+", RowBox[{"9", " ", SqrtBox["5"]}], "+", SqrtBox[ RowBox[{"6", " ", RowBox[{"(", RowBox[{"65", "+", RowBox[{"29", " ", SqrtBox["5"]}]}], ")"}]}]]}], ")"}]}]]}], ",", RowBox[{ FractionBox["1", "24"], " ", RowBox[{"(", RowBox[{"3", "+", RowBox[{"3", " ", SqrtBox["5"]}], "-", SqrtBox[ RowBox[{"150", "+", RowBox[{"66", " ", SqrtBox["5"]}]}]]}], ")"}]}], ",", RowBox[{"-", SqrtBox[ RowBox[{ FractionBox["1", "6"], " ", RowBox[{"(", RowBox[{"3", "+", SqrtBox["5"]}], ")"}]}]]}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ FractionBox["1", "2"], " ", SqrtBox[ RowBox[{ FractionBox["1", "6"], " ", RowBox[{"(", RowBox[{"12", "+", RowBox[{"5", " ", SqrtBox["5"]}], "+", SqrtBox[ RowBox[{"3", " ", RowBox[{"(", RowBox[{"85", "+", RowBox[{"38", " ", SqrtBox["5"]}]}], ")"}]}]]}], ")"}]}]]}], ",", RowBox[{ FractionBox["1", "12"], " ", RowBox[{"(", RowBox[{"6", "+", RowBox[{"3", " ", SqrtBox["5"]}], "-", SqrtBox[ RowBox[{"15", "+", RowBox[{"6", " ", SqrtBox["5"]}]}]]}], ")"}]}], ",", RowBox[{"-", FractionBox["1", SqrtBox["3"]]}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"-", FractionBox["1", "4"]}], " ", SqrtBox[ RowBox[{ FractionBox["1", "3"], " ", RowBox[{"(", RowBox[{"9", "-", SqrtBox["5"], "-", SqrtBox[ RowBox[{"6", " ", RowBox[{"(", RowBox[{"5", "+", SqrtBox["5"]}], ")"}]}]]}], ")"}]}]]}], ",", RowBox[{ FractionBox["1", "24"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", SqrtBox[ RowBox[{"30", "-", RowBox[{"6", " ", SqrtBox["5"]}]}]]}], "-", RowBox[{"3", " ", RowBox[{"(", RowBox[{"1", "+", SqrtBox["5"]}], ")"}]}]}], ")"}]}], ",", SqrtBox[ RowBox[{ FractionBox["1", "6"], " ", RowBox[{"(", RowBox[{"7", "+", RowBox[{"3", " ", SqrtBox["5"]}]}], ")"}]}]]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", SqrtBox[ RowBox[{ FractionBox["1", "6"], " ", RowBox[{"(", RowBox[{"8", "+", RowBox[{"3", " ", SqrtBox["5"]}], "-", SqrtBox[ RowBox[{"15", "+", RowBox[{"6", " ", SqrtBox["5"]}]}]]}], ")"}]}]]}], ",", RowBox[{ FractionBox["1", "12"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "6"}], "-", RowBox[{"3", " ", SqrtBox["5"]}], "-", SqrtBox[ RowBox[{"15", "-", RowBox[{"6", " ", SqrtBox["5"]}]}]]}], ")"}]}], ",", SqrtBox[ RowBox[{ FractionBox["1", "6"], " ", RowBox[{"(", RowBox[{"3", "+", SqrtBox["5"]}], ")"}]}]]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", SqrtBox[ RowBox[{ FractionBox["1", "6"], " ", RowBox[{"(", RowBox[{"3", "+", SqrtBox["5"]}], ")"}]}]]}], ",", TemplateBox[<|"icon" -> "Root", "small" -> InterpretationBox[ StyleBox[ TemplateBox[{"\"0.339\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.33935797363675146431916118672234006226`15.954589770191003, Editable -> False], "approx" -> 0.33935797363675146`, "interp" -> InterpretationBox["", Root[5 - 60 #^2 + 144 #^4& , 3, 0]], "head" -> "Root", "big" -> RowBox[{ RowBox[{"5", "-", RowBox[{"60", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"144", " ", SuperscriptBox["#1", "4"]}]}], "&"}], "degree" -> "4", "shortDegree" -> "4", "number" -> 3|>, "NumericalApproximationInterp", InterpretationFunction->(Slot["interp"]& )], ",", SqrtBox[ RowBox[{ FractionBox["1", "6"], " ", RowBox[{"(", RowBox[{"7", "+", RowBox[{"3", " ", SqrtBox["5"]}]}], ")"}]}]]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", SqrtBox[ RowBox[{ FractionBox["1", "6"], " ", RowBox[{"(", RowBox[{"8", "+", RowBox[{"3", " ", SqrtBox["5"]}], "+", SqrtBox[ RowBox[{"15", "+", RowBox[{"6", " ", SqrtBox["5"]}]}]]}], ")"}]}]]}], ",", RowBox[{ FractionBox["1", "12"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "6"}], "-", RowBox[{"3", " ", SqrtBox["5"]}], "+", SqrtBox[ RowBox[{"15", "-", RowBox[{"6", " ", SqrtBox["5"]}]}]]}], ")"}]}], ",", RowBox[{"-", SqrtBox[ RowBox[{ FractionBox["1", "6"], " ", RowBox[{"(", RowBox[{"3", "+", SqrtBox["5"]}], ")"}]}]]}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"-", FractionBox["1", "4"]}], " ", SqrtBox[ RowBox[{"13", "+", RowBox[{"5", " ", SqrtBox["5"]}], "-", SqrtBox[ RowBox[{"150", "+", RowBox[{"66", " ", SqrtBox["5"]}]}]]}]]}], ",", RowBox[{ FractionBox["1", "8"], " ", RowBox[{"(", RowBox[{"3", "+", SqrtBox["5"], "+", SqrtBox[ RowBox[{"6", " ", RowBox[{"(", RowBox[{"5", "+", SqrtBox["5"]}], ")"}]}]]}], ")"}]}], ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ FractionBox["1", "4"], " ", SqrtBox[ RowBox[{ FractionBox["1", "3"], " ", RowBox[{"(", RowBox[{"25", "+", RowBox[{"9", " ", SqrtBox["5"]}], "-", SqrtBox[ RowBox[{"750", "+", RowBox[{"330", " ", SqrtBox["5"]}]}]]}], ")"}]}]]}], ",", RowBox[{ FractionBox["1", "24"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "9"}], "-", RowBox[{"3", " ", SqrtBox["5"]}], "-", SqrtBox[ RowBox[{"30", " ", RowBox[{"(", RowBox[{"5", "+", SqrtBox["5"]}], ")"}]}]]}], ")"}]}], ",", SqrtBox[ RowBox[{ FractionBox["1", "6"], " ", RowBox[{"(", RowBox[{"3", "+", SqrtBox["5"]}], ")"}]}]]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ FractionBox["1", "4"], " ", SqrtBox[ RowBox[{ FractionBox["1", "3"], " ", RowBox[{"(", RowBox[{"9", "-", SqrtBox["5"], "+", SqrtBox[ RowBox[{"6", " ", RowBox[{"(", RowBox[{"5", "+", SqrtBox["5"]}], ")"}]}]]}], ")"}]}]]}], ",", RowBox[{ FractionBox["1", "8"], " ", RowBox[{"(", RowBox[{"1", "+", SqrtBox["5"], "-", SqrtBox[ RowBox[{ FractionBox["2", "3"], " ", RowBox[{"(", RowBox[{"5", "-", SqrtBox["5"]}], ")"}]}]]}], ")"}]}], ",", SqrtBox[ RowBox[{ FractionBox["1", "6"], " ", RowBox[{"(", RowBox[{"7", "+", RowBox[{"3", " ", SqrtBox["5"]}]}], ")"}]}]]}], "}"}]}], "}"}]], "Output", CellLabel-> "Out[572]=",ExpressionUUID->"94865ff1-175a-49be-900d-5af362680afc"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"topface", "=", RowBox[{"Select", "[", RowBox[{"vnew2", ",", RowBox[{ RowBox[{ RowBox[{"#", "[", RowBox[{"[", RowBox[{"-", "1"}], "]"}], "]"}], "==", SqrtBox[ RowBox[{ FractionBox["1", "6"], " ", RowBox[{"(", RowBox[{"7", "+", RowBox[{"3", " ", SqrtBox["5"]}]}], ")"}]}]]}], "&"}]}], "]"}]}]], "Input", CellLabel-> "In[604]:=",ExpressionUUID->"f6c1c568-df40-4aec-8138-5a089b92a304"], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"-", FractionBox["1", "4"]}], " ", SqrtBox[ RowBox[{ FractionBox["1", "3"], " ", RowBox[{"(", RowBox[{"9", "-", SqrtBox["5"], "-", SqrtBox[ RowBox[{"6", " ", RowBox[{"(", RowBox[{"5", "+", SqrtBox["5"]}], ")"}]}]]}], ")"}]}]]}], ",", RowBox[{ FractionBox["1", "24"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", SqrtBox[ RowBox[{"30", "-", RowBox[{"6", " ", SqrtBox["5"]}]}]]}], "-", RowBox[{"3", " ", RowBox[{"(", RowBox[{"1", "+", SqrtBox["5"]}], ")"}]}]}], ")"}]}], ",", SqrtBox[ RowBox[{ FractionBox["1", "6"], " ", RowBox[{"(", RowBox[{"7", "+", RowBox[{"3", " ", SqrtBox["5"]}]}], ")"}]}]]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", SqrtBox[ RowBox[{ FractionBox["1", "6"], " ", RowBox[{"(", RowBox[{"3", "+", SqrtBox["5"]}], ")"}]}]]}], ",", TemplateBox[<|"icon" -> "Root", "small" -> InterpretationBox[ StyleBox[ TemplateBox[{"\"0.339\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.33935797363675146431916118672234006226`15.954589770191003, Editable -> False], "approx" -> 0.33935797363675146`, "interp" -> InterpretationBox["", Root[5 - 60 #^2 + 144 #^4& , 3, 0]], "head" -> "Root", "big" -> RowBox[{ RowBox[{"5", "-", RowBox[{"60", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"144", " ", SuperscriptBox["#1", "4"]}]}], "&"}], "degree" -> "4", "shortDegree" -> "4", "number" -> 3|>, "NumericalApproximationInterp", InterpretationFunction->(Slot["interp"]& )], ",", SqrtBox[ RowBox[{ FractionBox["1", "6"], " ", RowBox[{"(", RowBox[{"7", "+", RowBox[{"3", " ", SqrtBox["5"]}]}], ")"}]}]]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ FractionBox["1", "4"], " ", SqrtBox[ RowBox[{ FractionBox["1", "3"], " ", RowBox[{"(", RowBox[{"9", "-", SqrtBox["5"], "+", SqrtBox[ RowBox[{"6", " ", RowBox[{"(", RowBox[{"5", "+", SqrtBox["5"]}], ")"}]}]]}], ")"}]}]]}], ",", RowBox[{ FractionBox["1", "8"], " ", RowBox[{"(", RowBox[{"1", "+", SqrtBox["5"], "-", SqrtBox[ RowBox[{ FractionBox["2", "3"], " ", RowBox[{"(", RowBox[{"5", "-", SqrtBox["5"]}], ")"}]}]]}], ")"}]}], ",", SqrtBox[ RowBox[{ FractionBox["1", "6"], " ", RowBox[{"(", RowBox[{"7", "+", RowBox[{"3", " ", SqrtBox["5"]}]}], ")"}]}]]}], "}"}]}], "}"}]], "Output", CellLabel-> "Out[604]=",ExpressionUUID->"8e6769a9-bf84-4333-ace5-d701a457c0ef"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"ArcTan", "@@", RowBox[{"Most", "[", RowBox[{"topface", "[", RowBox[{"[", "1", "]"}], "]"}], "]"}]}], "//", "FullSimplify"}]], "Input",\ CellLabel-> "In[606]:=",ExpressionUUID->"5195e75f-81d4-4be8-8267-4490d288ff52"], Cell[BoxData[ RowBox[{"-", FractionBox[ RowBox[{"8", " ", "\[Pi]"}], "15"]}]], "Output", CellLabel-> "Out[606]=",ExpressionUUID->"9b2dba5f-8544-4358-8ad7-6cc65d111a46"] }, Open ]], Cell[BoxData[ RowBox[{ RowBox[{"mat2", "=", RowBox[{"RotationMatrix", "[", RowBox[{ RowBox[{"8", RowBox[{"\[Pi]", "/", "15"}]}], ",", RowBox[{"{", RowBox[{"0", ",", "0", ",", "1"}], "}"}]}], "]"}]}], ";"}]], "Input", CellLabel-> "In[607]:=",ExpressionUUID->"bc10cea9-428d-463b-9c08-bde63420a24d"], Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{"(", RowBox[{"vnew3", "=", RowBox[{"FullSimplify", "@", RowBox[{"Map", "[", RowBox[{"ToAlgebraicRoot", ",", RowBox[{ RowBox[{ RowBox[{"mat2", ".", "#"}], "&"}], "/@", "vnew2"}], ",", RowBox[{"{", "2", "}"}]}], "]"}]}]}], ")"}], "//", "Timing"}], ";"}]], "Input", CellLabel-> "In[614]:=",ExpressionUUID->"69791426-0227-400b-926f-bdb03a1ae21d"], Cell[CellGroupData[{ Cell[BoxData["vnew3"], "Input", CellLabel-> "In[615]:=",ExpressionUUID->"1b4f92ea-db11-4b88-943a-d03e8d5f7f10"], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ SqrtBox[ RowBox[{ FractionBox["1", "6"], " ", RowBox[{"(", RowBox[{"7", "+", RowBox[{"3", " ", SqrtBox["5"]}]}], ")"}]}]], ",", "0", ",", RowBox[{"-", FractionBox["1", SqrtBox["3"]]}]}], "}"}], ",", RowBox[{"{", RowBox[{ TemplateBox[<|"icon" -> "Root", "small" -> InterpretationBox[ StyleBox[ TemplateBox[{"\"-1.51\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -1.51152262815234150750143271579872816801`15.\ 954589770191003, Editable -> False], "approx" -> -1.5115226281523415`, "interp" -> InterpretationBox["", Root[1 - 21 #^2 + 9 #^4& , 1, 0]], "head" -> "Root", "big" -> RowBox[{ RowBox[{"1", "-", RowBox[{"21", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"9", " ", SuperscriptBox["#1", "4"]}]}], "&"}], "degree" -> "4", "shortDegree" -> "4", "number" -> 1|>, "NumericalApproximationInterp", InterpretationFunction->(Slot["interp"]& )], ",", "0", ",", FractionBox["1", SqrtBox["3"]]}], "}"}], ",", RowBox[{"{", RowBox[{ FractionBox["1", RowBox[{"2", " ", SqrtBox["3"]}]], ",", RowBox[{"-", FractionBox["1", "2"]}], ",", TemplateBox[<|"icon" -> "Root", "small" -> InterpretationBox[ StyleBox[ TemplateBox[{"\"-1.51\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -1.51152262815234150750143271579872816801`15.\ 954589770191003, Editable -> False], "approx" -> -1.5115226281523415`, "interp" -> InterpretationBox["", Root[1 - 21 #^2 + 9 #^4& , 1, 0]], "head" -> "Root", "big" -> RowBox[{ RowBox[{"1", "-", RowBox[{"21", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"9", " ", SuperscriptBox["#1", "4"]}]}], "&"}], "degree" -> "4", "shortDegree" -> "4", "number" -> 1|>, "NumericalApproximationInterp", InterpretationFunction->(Slot["interp"]& )]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", SqrtBox[ RowBox[{ FractionBox["3", "4"], "+", FractionBox[ SqrtBox["5"], "3"]}]]}], ",", RowBox[{"-", FractionBox["1", "2"]}], ",", RowBox[{"-", SqrtBox[ RowBox[{ FractionBox["1", "6"], " ", RowBox[{"(", RowBox[{"3", "+", SqrtBox["5"]}], ")"}]}]]}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ FractionBox["1", "2"], " ", SqrtBox[ RowBox[{ FractionBox["3", "2"], " ", RowBox[{"(", RowBox[{"3", "+", SqrtBox["5"]}], ")"}]}]]}], ",", RowBox[{ FractionBox["1", "4"], " ", RowBox[{"(", RowBox[{"1", "+", SqrtBox["5"]}], ")"}]}], ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", SqrtBox[ RowBox[{ FractionBox["5", "6"], " ", RowBox[{"(", RowBox[{"3", "+", SqrtBox["5"]}], ")"}]}]]}], ",", RowBox[{ FractionBox["1", "4"], " ", RowBox[{"(", RowBox[{"1", "+", SqrtBox["5"]}], ")"}]}], ",", SqrtBox[ RowBox[{ FractionBox["1", "6"], " ", RowBox[{"(", RowBox[{"3", "+", SqrtBox["5"]}], ")"}]}]]}], "}"}], ",", RowBox[{"{", RowBox[{ SqrtBox[ RowBox[{ FractionBox["7", "24"], "+", FractionBox[ SqrtBox["5"], "8"]}]], ",", RowBox[{ FractionBox["1", "4"], " ", RowBox[{"(", RowBox[{"3", "+", SqrtBox["5"]}], ")"}]}], ",", FractionBox["1", SqrtBox["3"]]}], "}"}], ",", RowBox[{"{", RowBox[{ TemplateBox[<|"icon" -> "Root", "small" -> InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.178\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.17841104488654496718069708549592178315`15.\ 954589770191003, Editable -> False], "approx" -> -0.17841104488654497`, "interp" -> InterpretationBox["", Root[1 - 36 #^2 + 144 #^4& , 2, 0]], "head" -> "Root", "big" -> RowBox[{ RowBox[{"1", "-", RowBox[{"36", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"144", " ", SuperscriptBox["#1", "4"]}]}], "&"}], "degree" -> "4", "shortDegree" -> "4", "number" -> 2|>, "NumericalApproximationInterp", InterpretationFunction->(Slot["interp"]& )], ",", RowBox[{ FractionBox["1", "4"], " ", RowBox[{"(", RowBox[{"3", "+", SqrtBox["5"]}], ")"}]}], ",", SqrtBox[ RowBox[{ FractionBox["1", "6"], " ", RowBox[{"(", RowBox[{"3", "+", SqrtBox["5"]}], ")"}]}]]}], "}"}], ",", RowBox[{"{", RowBox[{ FractionBox["1", RowBox[{"2", " ", SqrtBox["3"]}]], ",", FractionBox["1", "2"], ",", TemplateBox[<|"icon" -> "Root", "small" -> InterpretationBox[ StyleBox[ TemplateBox[{"\"-1.51\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -1.51152262815234150750143271579872816801`15.\ 954589770191003, Editable -> False], "approx" -> -1.5115226281523415`, "interp" -> InterpretationBox["", Root[1 - 21 #^2 + 9 #^4& , 1, 0]], "head" -> "Root", "big" -> RowBox[{ RowBox[{"1", "-", RowBox[{"21", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"9", " ", SuperscriptBox["#1", "4"]}]}], "&"}], "degree" -> "4", "shortDegree" -> "4", "number" -> 1|>, "NumericalApproximationInterp", InterpretationFunction->(Slot["interp"]& )]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", SqrtBox[ RowBox[{ FractionBox["3", "4"], "+", FractionBox[ SqrtBox["5"], "3"]}]]}], ",", FractionBox["1", "2"], ",", RowBox[{"-", SqrtBox[ RowBox[{ FractionBox["1", "6"], " ", RowBox[{"(", RowBox[{"3", "+", SqrtBox["5"]}], ")"}]}]]}]}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", RowBox[{ FractionBox["1", "2"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "-", SqrtBox["5"]}], ")"}]}], ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{ TemplateBox[<|"icon" -> "Root", "small" -> InterpretationBox[ StyleBox[ TemplateBox[{"\"0.178\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.17841104488654496718069708549592178315`15.954589770191003, Editable -> False], "approx" -> 0.17841104488654497`, "interp" -> InterpretationBox["", Root[1 - 36 #^2 + 144 #^4& , 3, 0]], "head" -> "Root", "big" -> RowBox[{ RowBox[{"1", "-", RowBox[{"36", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"144", " ", SuperscriptBox["#1", "4"]}]}], "&"}], "degree" -> "4", "shortDegree" -> "4", "number" -> 3|>, "NumericalApproximationInterp", InterpretationFunction->(Slot["interp"]& )], ",", RowBox[{ FractionBox["1", "4"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "3"}], "-", SqrtBox["5"]}], ")"}]}], ",", RowBox[{"-", SqrtBox[ RowBox[{ FractionBox["1", "6"], " ", RowBox[{"(", RowBox[{"3", "+", SqrtBox["5"]}], ")"}]}]]}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", SqrtBox[ RowBox[{ FractionBox["7", "24"], "+", FractionBox[ SqrtBox["5"], "8"]}]]}], ",", RowBox[{ FractionBox["1", "4"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "3"}], "-", SqrtBox["5"]}], ")"}]}], ",", RowBox[{"-", FractionBox["1", SqrtBox["3"]]}]}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", RowBox[{ FractionBox["1", "2"], " ", RowBox[{"(", RowBox[{"1", "+", SqrtBox["5"]}], ")"}]}], ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ FractionBox["1", "2"], " ", SqrtBox[ RowBox[{ FractionBox["5", "6"], " ", RowBox[{"(", RowBox[{"3", "+", SqrtBox["5"]}], ")"}]}]]}], ",", RowBox[{ FractionBox["1", "4"], " ", RowBox[{"(", RowBox[{"1", "+", SqrtBox["5"]}], ")"}]}], ",", RowBox[{"-", SqrtBox[ RowBox[{ FractionBox["1", "6"], " ", RowBox[{"(", RowBox[{"3", "+", SqrtBox["5"]}], ")"}]}]]}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", SqrtBox[ RowBox[{ FractionBox["3", "2"], " ", RowBox[{"(", RowBox[{"3", "+", SqrtBox["5"]}], ")"}]}]]}], ",", RowBox[{ FractionBox["1", "4"], " ", RowBox[{"(", RowBox[{"1", "+", SqrtBox["5"]}], ")"}]}], ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", FractionBox["1", SqrtBox["3"]]}], ",", "0", ",", TemplateBox[<|"icon" -> "Root", "small" -> InterpretationBox[ StyleBox[ TemplateBox[{"\"-1.51\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -1.51152262815234150750143271579872816801`15.\ 954589770191003, Editable -> False], "approx" -> -1.5115226281523415`, "interp" -> InterpretationBox["", Root[1 - 21 #^2 + 9 #^4& , 1, 0]], "head" -> "Root", "big" -> RowBox[{ RowBox[{"1", "-", RowBox[{"21", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"9", " ", SuperscriptBox["#1", "4"]}]}], "&"}], "degree" -> "4", "shortDegree" -> "4", "number" -> 1|>, "NumericalApproximationInterp", InterpretationFunction->(Slot["interp"]& )]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ FractionBox["1", "2"], " ", SqrtBox[ RowBox[{ FractionBox["3", "2"], " ", RowBox[{"(", RowBox[{"3", "+", SqrtBox["5"]}], ")"}]}]]}], ",", RowBox[{ FractionBox["1", "4"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "-", SqrtBox["5"]}], ")"}]}], ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", SqrtBox[ RowBox[{ FractionBox["5", "6"], " ", RowBox[{"(", RowBox[{"3", "+", SqrtBox["5"]}], ")"}]}]]}], ",", RowBox[{ FractionBox["1", "4"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "-", SqrtBox["5"]}], ")"}]}], ",", SqrtBox[ RowBox[{ FractionBox["1", "6"], " ", RowBox[{"(", RowBox[{"3", "+", SqrtBox["5"]}], ")"}]}]]}], "}"}], ",", RowBox[{"{", RowBox[{ SqrtBox[ RowBox[{ FractionBox["7", "24"], "+", FractionBox[ SqrtBox["5"], "8"]}]], ",", RowBox[{ FractionBox["1", "4"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "3"}], "-", SqrtBox["5"]}], ")"}]}], ",", FractionBox["1", SqrtBox["3"]]}], "}"}], ",", RowBox[{"{", RowBox[{ TemplateBox[<|"icon" -> "Root", "small" -> InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.178\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.17841104488654496718069708549592178315`15.\ 954589770191003, Editable -> False], "approx" -> -0.17841104488654497`, "interp" -> InterpretationBox["", Root[1 - 36 #^2 + 144 #^4& , 2, 0]], "head" -> "Root", "big" -> RowBox[{ RowBox[{"1", "-", RowBox[{"36", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"144", " ", SuperscriptBox["#1", "4"]}]}], "&"}], "degree" -> "4", "shortDegree" -> "4", "number" -> 2|>, "NumericalApproximationInterp", InterpretationFunction->(Slot["interp"]& )], ",", RowBox[{ FractionBox["1", "4"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "3"}], "-", SqrtBox["5"]}], ")"}]}], ",", SqrtBox[ RowBox[{ FractionBox["1", "6"], " ", RowBox[{"(", RowBox[{"3", "+", SqrtBox["5"]}], ")"}]}]]}], "}"}], ",", RowBox[{"{", RowBox[{ TemplateBox[<|"icon" -> "Root", "small" -> InterpretationBox[ StyleBox[ TemplateBox[{"\"0.178\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.17841104488654496718069708549592178315`15.954589770191003, Editable -> False], "approx" -> 0.17841104488654497`, "interp" -> InterpretationBox["", Root[1 - 36 #^2 + 144 #^4& , 3, 0]], "head" -> "Root", "big" -> RowBox[{ RowBox[{"1", "-", RowBox[{"36", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"144", " ", SuperscriptBox["#1", "4"]}]}], "&"}], "degree" -> "4", "shortDegree" -> "4", "number" -> 3|>, "NumericalApproximationInterp", InterpretationFunction->(Slot["interp"]& )], ",", RowBox[{ FractionBox["1", "4"], " ", RowBox[{"(", RowBox[{"3", "+", SqrtBox["5"]}], ")"}]}], ",", RowBox[{"-", SqrtBox[ RowBox[{ FractionBox["1", "6"], " ", RowBox[{"(", RowBox[{"3", "+", SqrtBox["5"]}], ")"}]}]]}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", SqrtBox[ RowBox[{ FractionBox["7", "24"], "+", FractionBox[ SqrtBox["5"], "8"]}]]}], ",", RowBox[{ FractionBox["1", "4"], " ", RowBox[{"(", RowBox[{"3", "+", SqrtBox["5"]}], ")"}]}], ",", RowBox[{"-", FractionBox["1", SqrtBox["3"]]}]}], "}"}], ",", RowBox[{"{", RowBox[{ FractionBox["1", SqrtBox["3"]], ",", "0", ",", SqrtBox[ RowBox[{ FractionBox["1", "6"], " ", RowBox[{"(", RowBox[{"7", "+", RowBox[{"3", " ", SqrtBox["5"]}]}], ")"}]}]]}], "}"}], ",", RowBox[{"{", RowBox[{ SqrtBox[ RowBox[{ FractionBox["3", "4"], "+", FractionBox[ SqrtBox["5"], "3"]}]], ",", RowBox[{"-", FractionBox["1", "2"]}], ",", SqrtBox[ RowBox[{ FractionBox["1", "6"], " ", RowBox[{"(", RowBox[{"3", "+", SqrtBox["5"]}], ")"}]}]]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", FractionBox["1", RowBox[{"2", " ", SqrtBox["3"]}]]}], ",", RowBox[{"-", FractionBox["1", "2"]}], ",", SqrtBox[ RowBox[{ FractionBox["1", "6"], " ", RowBox[{"(", RowBox[{"7", "+", RowBox[{"3", " ", SqrtBox["5"]}]}], ")"}]}]]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ FractionBox["1", "2"], " ", SqrtBox[ RowBox[{ FractionBox["5", "6"], " ", RowBox[{"(", RowBox[{"3", "+", SqrtBox["5"]}], ")"}]}]]}], ",", RowBox[{ FractionBox["1", "4"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "-", SqrtBox["5"]}], ")"}]}], ",", RowBox[{"-", SqrtBox[ RowBox[{ FractionBox["1", "6"], " ", RowBox[{"(", RowBox[{"3", "+", SqrtBox["5"]}], ")"}]}]]}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", SqrtBox[ RowBox[{ FractionBox["3", "2"], " ", RowBox[{"(", RowBox[{"3", "+", SqrtBox["5"]}], ")"}]}]]}], ",", RowBox[{ FractionBox["1", "4"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "-", SqrtBox["5"]}], ")"}]}], ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{ SqrtBox[ RowBox[{ FractionBox["3", "4"], "+", FractionBox[ SqrtBox["5"], "3"]}]], ",", FractionBox["1", "2"], ",", SqrtBox[ RowBox[{ FractionBox["1", "6"], " ", RowBox[{"(", RowBox[{"3", "+", SqrtBox["5"]}], ")"}]}]]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", FractionBox["1", RowBox[{"2", " ", SqrtBox["3"]}]]}], ",", FractionBox["1", "2"], ",", SqrtBox[ RowBox[{ FractionBox["1", "6"], " ", RowBox[{"(", RowBox[{"7", "+", RowBox[{"3", " ", SqrtBox["5"]}]}], ")"}]}]]}], "}"}]}], "}"}]], "Output", CellLabel-> "Out[615]=",ExpressionUUID->"c143b033-3b7a-4b80-a427-c29ea46943d8"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Graphics3D", "[", RowBox[{"{", RowBox[{ RowBox[{"c3poly3", "=", RowBox[{"Polyhedron", "[", RowBox[{"vnew3", ",", RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\"", ",", "\"\\""}], "]"}]}], "]"}]}], ",", RowBox[{"Line", "[", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"0", ",", "0", ",", SqrtBox[ RowBox[{ FractionBox["1", "6"], " ", RowBox[{"(", RowBox[{"7", "+", RowBox[{"3", " ", SqrtBox["5"]}]}], ")"}]}]]}], "}"}], ",", RowBox[{"{", RowBox[{"1", ",", "0", ",", SqrtBox[ RowBox[{ FractionBox["1", "6"], " ", RowBox[{"(", RowBox[{"7", "+", RowBox[{"3", " ", SqrtBox["5"]}]}], ")"}]}]]}], "}"}]}], "}"}], "]"}]}], "}"}], "]"}]], "Input", CellLabel-> "In[616]:=",ExpressionUUID->"2e73b327-f646-44f8-a464-c63c5b1aa3a2"], Cell[BoxData[ Graphics3DBox[{ PolyhedronBox[ NCache[{{(Rational[1, 6] (7 + 3 5^Rational[1, 2]))^Rational[1, 2], 0, -3^Rational[-1, 2]}, { Root[1 - 21 #^2 + 9 #^4& , 1, 0], 0, 3^Rational[-1, 2]}, { Rational[1, 2] 3^Rational[-1, 2], Rational[-1, 2], Root[ 1 - 21 #^2 + 9 #^4& , 1, 0]}, {-(Rational[3, 4] + Rational[1, 3] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 2], -(Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 2] (Rational[3, 2] (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), 0}, { Rational[-1, 2] (Rational[5, 6] (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), ( Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[7, 24] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 3^ Rational[-1, 2]}, { Root[1 - 36 #^2 + 144 #^4& , 2, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), ( Rational[1, 6] (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 2] 3^Rational[-1, 2], Rational[1, 2], Root[ 1 - 21 #^2 + 9 #^4& , 1, 0]}, {-(Rational[3, 4] + Rational[1, 3] 5^Rational[1, 2])^ Rational[1, 2], Rational[ 1, 2], -(Rational[1, 6] (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { 0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, { Root[1 - 36 #^2 + 144 #^4& , 3, 0], Rational[1, 4] (-3 - 5^ Rational[1, 2]), -(Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, {-(Rational[7, 24] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), -3^Rational[-1, 2]}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), 0}, { Rational[1, 2] (Rational[5, 6] (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), -(Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[-1, 2] (Rational[3, 2] (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), 0}, {-3^Rational[-1, 2], 0, Root[1 - 21 #^2 + 9 #^4& , 1, 0]}, { Rational[1, 2] (Rational[3, 2] (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), 0}, { Rational[-1, 2] (Rational[5, 6] (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), ( Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[7, 24] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), 3^ Rational[-1, 2]}, { Root[1 - 36 #^2 + 144 #^4& , 2, 0], Rational[1, 4] (-3 - 5^Rational[1, 2]), ( Rational[1, 6] (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Root[1 - 36 #^2 + 144 #^4& , 3, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), -(Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, {-(Rational[7, 24] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), -3^Rational[-1, 2]}, { 3^Rational[-1, 2], 0, (Rational[1, 6] (7 + 3 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[3, 4] + Rational[1, 3] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 2], (Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[-1, 2] 3^Rational[-1, 2], Rational[-1, 2], (Rational[1, 6] (7 + 3 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 2] (Rational[5, 6] (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (-1 - 5^ Rational[1, 2]), -(Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[-1, 2] (Rational[3, 2] (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), 0}, {(Rational[3, 4] + Rational[1, 3] 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2], (Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[-1, 2] 3^Rational[-1, 2], Rational[ 1, 2], (Rational[1, 6] (7 + 3 5^Rational[1, 2]))^Rational[1, 2]}}, {{ 1.5115226281523415`, 0, -0.5773502691896258}, {-1.5115226281523415`, 0, 0.5773502691896258}, { 0.2886751345948129, -0.5, -1.5115226281523415`}, {-1.2228474935575286`, \ -0.5, -0.9341723589627157}, { 1.4012585384440737`, 0.8090169943749475, 0}, {-1.0444364486709836`, 0.8090169943749475, 0.9341723589627157}, {0.7557613140761708, 1.3090169943749475`, 0.5773502691896258}, {-0.17841104488654497`, 1.3090169943749475`, 0.9341723589627157}, {0.2886751345948129, 0.5, -1.5115226281523415`}, {-1.2228474935575286`, 0.5, -0.9341723589627157}, {0, -1.618033988749895, 0}, { 0.17841104488654497`, -1.3090169943749475`, -0.9341723589627157}, \ {-0.7557613140761708, -1.3090169943749475`, -0.5773502691896258}, { 0, 1.618033988749895, 0}, {1.0444364486709836`, 0.8090169943749475, -0.9341723589627157}, {-1.4012585384440737`, 0.8090169943749475, 0}, {-0.5773502691896258, 0, -1.5115226281523415`}, { 1.4012585384440737`, -0.8090169943749475, 0}, {-1.0444364486709836`, -0.8090169943749475, 0.9341723589627157}, { 0.7557613140761708, -1.3090169943749475`, 0.5773502691896258}, {-0.17841104488654497`, -1.3090169943749475`, 0.9341723589627157}, {0.17841104488654497`, 1.3090169943749475`, -0.9341723589627157}, {-0.7557613140761708, 1.3090169943749475`, -0.5773502691896258}, { 0.5773502691896258, 0, 1.5115226281523415`}, {1.2228474935575286`, -0.5, 0.9341723589627157}, {-0.2886751345948129, -0.5, 1.5115226281523415`}, { 1.0444364486709836`, -0.8090169943749475, -0.9341723589627157}, \ {-1.4012585384440737`, -0.8090169943749475, 0}, {1.2228474935575286`, 0.5, 0.9341723589627157}, {-0.2886751345948129, 0.5, 1.5115226281523415`}}], {{30, 24, 29, 7, 8}, {26, 24, 30}, {25, 29, 24}, {5, 7, 29}, {14, 8, 7}, {6, 30, 8}, {16, 2, 6}, {19, 21, 26}, {20, 18, 25}, {1, 15, 5}, {22, 23, 14}, {2, 19, 26, 30, 6}, {21, 20, 25, 24, 26}, {18, 1, 5, 29, 25}, {15, 22, 14, 7, 5}, {23, 16, 6, 8, 14}, {12, 13, 4, 17, 3}, {3, 17, 9}, {17, 4, 10}, {4, 13, 28}, {13, 12, 11}, {12, 3, 27}, {27, 1, 18}, {9, 22, 15}, {10, 16, 23}, {28, 19, 2}, {11, 20, 21}, { 27, 3, 9, 15, 1}, {9, 17, 10, 23, 22}, {10, 4, 28, 2, 16}, {28, 13, 11, 21, 19}, {11, 12, 27, 18, 20}}], Line3DBox[ NCache[{{0, 0, (Rational[1, 6] (7 + 3 5^Rational[1, 2]))^ Rational[1, 2]}, { 1, 0, (Rational[1, 6] (7 + 3 5^Rational[1, 2]))^Rational[1, 2]}}, {{ 0, 0, 1.5115226281523415`}, {1, 0, 1.5115226281523415`}}]]}, ImageSize->{360., 360.}, ImageSizeRaw->Automatic, ViewAngle->0.45132290857416896`, ViewPoint->{1.425886261541735, -0.419529580191048, 3.0398755402962254`}, ViewVertical->{-0.2714283230039611, 0.4378221951586597, 0.8571104893172815}]], "Output", CellLabel-> "Out[616]=",ExpressionUUID->"4a7222a6-ae8c-4546-a284-060ea17d8d2e"] }, Open ]] }, Open ]] }, Closed]] }, Open ]] }, WindowSize->{998, 818}, WindowMargins->{{-1190, Automatic}, {Automatic, -125}}, ShowSelection->True, FrontEndVersion->"14.3 for Mac OS X ARM (64-bit) (November 17, 2024)", StyleDefinitions->"Default.nb", ExpressionUUID->"8756d640-877f-4d5c-acb3-803a331d6243" ] (* End of Notebook Content *) (* Internal cache information *) (*CellTagsOutline CellTagsIndex->{ "A4"->{ Cell[580, 22, 106, 1, 96, "Title",ExpressionUUID->"e46cf2b9-b1ca-4ec9-8105-d756c78a7602", CellTags->"A4"]} } *) (*CellTagsIndex CellTagsIndex->{ {"A4", 6632787, 129244} } *) (*NotebookFileOutline Notebook[{ Cell[CellGroupData[{ Cell[580, 22, 106, 1, 96, "Title",ExpressionUUID->"e46cf2b9-b1ca-4ec9-8105-d756c78a7602", CellTags->"A4"], Cell[CellGroupData[{ Cell[711, 27, 83, 0, 53, "Subsection",ExpressionUUID->"82c04112-9dc8-404b-b29d-0f40ff08cf61"], Cell[797, 29, 114, 3, 55, "Text",ExpressionUUID->"3a341ba1-66b3-4423-91b2-af820a672b10"], Cell[914, 34, 342, 9, 33, "Text",ExpressionUUID->"04ad537b-7497-4eb5-8357-ee5cd11ac93c"], Cell[1259, 45, 364, 10, 33, "Text",ExpressionUUID->"a78d2c22-bc37-4563-b8e7-4bb71c935a3a"], Cell[1626, 57, 154, 2, 33, "Text",ExpressionUUID->"001bab07-d4ca-4b36-8d99-e81dd1f694f8"] }, Open ]], Cell[CellGroupData[{ Cell[1817, 64, 80, 0, 66, "Section",ExpressionUUID->"e4504123-650b-4736-b3b5-44c814a3d8f8"], Cell[CellGroupData[{ Cell[1922, 68, 1202, 30, 131, "Input",ExpressionUUID->"5e846fe8-dddd-4d43-a409-06230edcd326"], Cell[3127, 100, 53117, 1020, 233, "Output",ExpressionUUID->"adbd83e7-2aca-47f3-a7df-44be56895404"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[56293, 1126, 82, 0, 66, "Section",ExpressionUUID->"e2f07934-c67d-45ce-8406-eb23efd1c1ab"], Cell[CellGroupData[{ Cell[56400, 1130, 385, 12, 29, "Input",ExpressionUUID->"2ca5c698-3ca2-4af5-b0ca-ae849b5b51be"], Cell[56788, 1144, 159, 3, 33, "Output",ExpressionUUID->"1be87942-a1aa-40c1-b8c1-061ce923429a"] }, Open ]], Cell[CellGroupData[{ Cell[56984, 1152, 186, 4, 29, "Input",ExpressionUUID->"616493f9-e546-42a3-a6b0-3699f469f002"], Cell[57173, 1158, 1858, 53, 115, "Output",ExpressionUUID->"b0b7b793-00bc-4eba-89cc-75bc3ac0d883"] }, Open ]], Cell[CellGroupData[{ Cell[59068, 1216, 142, 3, 29, "Input",ExpressionUUID->"02393ba3-c1d8-4fbd-8c2a-4e821c48bfd2"], Cell[59213, 1221, 112, 2, 33, "Output",ExpressionUUID->"1ba6a67c-a7ce-4325-836b-2f522203365a"] }, Open ]], Cell[CellGroupData[{ Cell[59362, 1228, 740, 22, 49, "Input",ExpressionUUID->"4c551eee-c0c1-4103-8e77-ab67f2179cf2"], Cell[60105, 1252, 1543, 38, 202, "Output",ExpressionUUID->"822a807c-3fb7-4ade-a475-a2ee7d2c7732"] }, Open ]], Cell[61663, 1293, 147, 3, 29, "Input",ExpressionUUID->"34c1f85c-421c-4ffb-bb84-b2bcfdb65f91"], Cell[CellGroupData[{ Cell[61835, 1300, 1763, 46, 151, "Input",ExpressionUUID->"3c480a21-1f16-44a5-bbe0-952f246055a8"], Cell[63601, 1348, 98953, 1663, 70, "Output",ExpressionUUID->"8f5523bf-6752-438e-8224-5a8c86aca79b"] }, Closed]] }, Closed]], Cell[CellGroupData[{ Cell[162603, 3017, 82, 0, 52, "Section",ExpressionUUID->"e572f70f-7f2e-4e82-a4a0-13b500613e57"], Cell[162688, 3019, 334, 8, 70, "Text",ExpressionUUID->"a51b367b-d6f4-4772-8506-b431037de6ed"], Cell[CellGroupData[{ Cell[163047, 3031, 135, 3, 70, "Input",ExpressionUUID->"462f0d25-37eb-4b6f-bcfd-5775382f52c3"], Cell[163185, 3036, 115, 2, 70, "Output",ExpressionUUID->"29825037-05ff-4eca-b4df-a6d1c05f148d"] }, Open ]], Cell[CellGroupData[{ Cell[163337, 3043, 1149, 27, 70, "Input",ExpressionUUID->"3d33c9c4-888e-42eb-abaf-be80738f4f0b"], Cell[164489, 3072, 112451, 1922, 70, "Output",ExpressionUUID->"b7a73a26-3214-4e84-accc-068d9ca45362"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[276989, 5000, 79, 0, 52, "Section",ExpressionUUID->"a7b66a1d-c4aa-4058-ab51-2fd0fec4571b"], Cell[CellGroupData[{ Cell[277093, 5004, 225, 5, 29, "Input",ExpressionUUID->"dc1b7202-8d84-4554-a739-08f7ebfbdab3"], Cell[277321, 5011, 120, 2, 33, "Output",ExpressionUUID->"15a927e8-e454-4fe7-b8c2-406c7de308c0"] }, Open ]], Cell[CellGroupData[{ Cell[277478, 5018, 219, 5, 29, "Input",ExpressionUUID->"2ada47e3-cdde-47b1-91da-7187e71fbd5f"], Cell[277700, 5025, 174, 4, 33, "Output",ExpressionUUID->"742499ea-2158-457c-a982-45b60832871e"] }, Open ]], Cell[CellGroupData[{ Cell[277911, 5034, 483, 13, 49, "Input",ExpressionUUID->"69493d31-68ce-4937-9a62-7e36927c11c8"], Cell[278397, 5049, 13262, 231, 197, "Output",ExpressionUUID->"f5c7da97-fc62-48dd-b8c2-0ffa3e5f182c"] }, Open ]], Cell[CellGroupData[{ Cell[291696, 5285, 91, 0, 53, "Subsection",ExpressionUUID->"eeb82da7-5991-4e71-924f-5e42db30d8b5"], Cell[CellGroupData[{ Cell[291812, 5289, 394, 10, 29, "Input",ExpressionUUID->"099241ee-899e-4c01-a967-c1e3a35ae92f"], Cell[292209, 5301, 39280, 681, 244, "Output",ExpressionUUID->"8b4a64f5-73c2-4176-9dd4-fc20522771fb"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[331538, 5988, 94, 0, 53, "Subsection",ExpressionUUID->"cc5c501f-db93-4161-90a1-d9b7abae74eb"], Cell[CellGroupData[{ Cell[331657, 5992, 236, 5, 29, "Input",ExpressionUUID->"1706e831-9427-4cf6-b3b2-060975bd532f"], Cell[331896, 5999, 31921, 583, 58, "Output",ExpressionUUID->"4c1b6b03-a17b-48e8-b2d8-d63b74d4fbf6"] }, Open ]], Cell[CellGroupData[{ Cell[363854, 6587, 161, 3, 29, "Input",ExpressionUUID->"940836b8-2fa4-4258-8876-04f5380e36c8"], Cell[364018, 6592, 308, 10, 33, "Output",ExpressionUUID->"256dc911-993a-46e9-be49-a7f29d062d61"] }, Open ]], Cell[CellGroupData[{ Cell[364363, 6607, 193, 4, 29, "Input",ExpressionUUID->"5f3c6cb9-8323-41b5-b161-7a49adde4386"], Cell[364559, 6613, 395, 9, 33, "Output",ExpressionUUID->"571d6f2b-e0b9-459f-ad76-43d6a744695e"] }, Open ]], Cell[CellGroupData[{ Cell[364991, 6627, 622, 15, 111, "Input",ExpressionUUID->"2235ea0f-056d-41b2-b65f-4f8f13f3c4a2"], Cell[365616, 6644, 198609, 3564, 110, "Output",ExpressionUUID->"a21551f1-aa3c-4c07-a9b6-30315202cf4f"] }, Open ]], Cell[CellGroupData[{ Cell[564262, 10213, 137, 3, 29, "Input",ExpressionUUID->"57de1605-0f8d-48a5-83b5-108393605ba6"], Cell[564402, 10218, 114, 2, 33, "Output",ExpressionUUID->"8256c042-6053-45d1-8985-ff5d30ec0e46"] }, Open ]], Cell[CellGroupData[{ Cell[564553, 10225, 440, 13, 29, "Input",ExpressionUUID->"4f19c805-c25b-426d-883e-e3e0d4d4dd4b"], Cell[564996, 10240, 185995, 3246, 70, "Output",ExpressionUUID->"80b92c83-31b2-4382-b33d-e29837bc1ed9"] }, Closed]], Cell[CellGroupData[{ Cell[751028, 13491, 311, 9, 25, "Input",ExpressionUUID->"ccaa3b2a-be6d-46aa-9ef4-e2e1312046db"], Cell[751342, 13502, 195825, 3411, 197, "Output",ExpressionUUID->"a40105a1-27cf-400f-9f27-901931eb2b99"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[947216, 16919, 84, 0, 53, "Subsection",ExpressionUUID->"268bddb8-9cc8-4d20-8892-f3c650420981"], Cell[CellGroupData[{ Cell[947325, 16923, 247, 5, 29, "Input",ExpressionUUID->"ffc0ac3c-0b13-49f6-a87b-e28bdedea3cb"], Cell[947575, 16930, 135, 2, 33, "Output",ExpressionUUID->"5d657577-bd12-465f-8508-2086ca49da19"] }, Open ]], Cell[CellGroupData[{ Cell[947747, 16937, 316, 7, 29, "Input",ExpressionUUID->"eeb960fe-8c78-42f5-9c72-9db2def1c21b"], Cell[948066, 16946, 13621, 260, 379, "Output",ExpressionUUID->"7f5b297d-7c9e-4026-8d39-0984ef94b9b7"] }, Open ]], Cell[CellGroupData[{ Cell[961724, 17211, 284, 6, 29, "Input",ExpressionUUID->"c2805ff1-c5b1-420d-b8ab-043f1254c1ec"], Cell[962011, 17219, 11419, 222, 58, "Output",ExpressionUUID->"13463b8c-745a-483f-abd2-c5e2b27ac624"] }, Open ]], Cell[CellGroupData[{ Cell[973467, 17446, 440, 13, 29, "Input",ExpressionUUID->"375a96cc-925d-4c9b-9d51-451b28575db3"], Cell[973910, 17461, 13316, 260, 1865, "Output",ExpressionUUID->"e07a1192-2fc3-4950-9f9a-58a3659a4afd"] }, Closed]], Cell[CellGroupData[{ Cell[987263, 17726, 161, 3, 25, "Input",ExpressionUUID->"3830cd4e-415c-498b-a581-7a8ad4fd80f4"], Cell[987427, 17731, 308, 10, 33, "Output",ExpressionUUID->"44d8e877-90ff-41d6-b04c-28ceaa139571"] }, Open ]], Cell[CellGroupData[{ Cell[987772, 17746, 311, 9, 29, "Input",ExpressionUUID->"9bf6fdf1-3181-4fdf-88e2-c279bf3ce122"], Cell[988086, 17757, 13598, 246, 197, "Output",ExpressionUUID->"9161c482-7076-4391-9e41-0ca1fd3c91f5"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[1001733, 18009, 83, 0, 37, "Subsection",ExpressionUUID->"90320632-00c2-438b-afed-d63c1d2236dc"], Cell[CellGroupData[{ Cell[1001841, 18013, 245, 5, 29, "Input",ExpressionUUID->"1a283859-2199-4dbe-ba97-fc80a9d8575a"], Cell[1002089, 18020, 135, 2, 33, "Output",ExpressionUUID->"d4353dbd-a811-49a0-a63e-a5d5128cf7ca"] }, Open ]], Cell[CellGroupData[{ Cell[1002261, 18027, 278, 6, 29, "Input",ExpressionUUID->"c92cfb33-9fb6-476c-96b3-f3f47707d6a2"], Cell[1002542, 18035, 521, 12, 33, "Output",ExpressionUUID->"669bf410-5b45-4208-96a3-5918d60b4bea"] }, Open ]], Cell[CellGroupData[{ Cell[1003100, 18052, 725, 19, 70, "Input",ExpressionUUID->"75b6968c-fdb3-4ffc-839e-12f8ed752c65"], Cell[1003828, 18073, 45100, 744, 273, "Output",ExpressionUUID->"544990d5-9efc-4a6a-8569-63b316be0889"] }, Open ]], Cell[CellGroupData[{ Cell[1048965, 18822, 281, 6, 29, "Input",ExpressionUUID->"f3593e31-a105-4769-a193-441d39c5fded"], Cell[1049249, 18830, 24640, 431, 58, "Output",ExpressionUUID->"29bf5e19-9ca5-4dbf-bc52-63a9d45c3f2c"] }, Open ]], Cell[CellGroupData[{ Cell[1073926, 19266, 438, 13, 29, "Input",ExpressionUUID->"c8cfdf19-405d-47e2-88aa-4298c7bea2f2"], Cell[1074367, 19281, 58654, 964, 70, "Output",ExpressionUUID->"cbd987c3-ff53-4dea-a624-80cd16e3f74e"] }, Closed]], Cell[CellGroupData[{ Cell[1133058, 20250, 160, 3, 25, "Input",ExpressionUUID->"ea4f7885-9b78-470a-8d8d-472d64037f39"], Cell[1133221, 20255, 308, 10, 33, "Output",ExpressionUUID->"12bd400b-db2d-4661-9e03-151fe579a6f1"] }, Open ]], Cell[CellGroupData[{ Cell[1133566, 20270, 310, 9, 29, "Input",ExpressionUUID->"1b4dc8bd-6e59-4431-b43a-ac730bd837c3"], Cell[1133879, 20281, 61054, 947, 197, "Output",ExpressionUUID->"b1fe7011-6267-416c-b55b-de2412dc3582"] }, Open ]] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[1194994, 21235, 77, 0, 52, "Section",ExpressionUUID->"1afed683-1ef1-4159-b95e-cf4262a93858"], Cell[CellGroupData[{ Cell[1195096, 21239, 202, 3, 70, "Input",ExpressionUUID->"5d9941db-2c5f-4820-b78b-355478609377"], Cell[1195301, 21244, 17090, 325, 70, "Output",ExpressionUUID->"75a931c8-5f4f-4617-9666-ba8751527df7"] }, Open ]], Cell[CellGroupData[{ Cell[1212428, 21574, 232, 5, 70, "Input",ExpressionUUID->"cacf6352-c8cf-400a-acb7-5519c3291553"], Cell[1212663, 21581, 17171, 330, 70, "Output",ExpressionUUID->"d91ee00b-3b96-4096-a62e-e87856b68251"] }, Open ]], Cell[1229849, 21914, 280, 6, 70, "Input",ExpressionUUID->"194116bd-58be-4346-adff-d43adeede2b5"] }, Closed]], Cell[CellGroupData[{ Cell[1230166, 21925, 105, 0, 52, "Section",ExpressionUUID->"b8e0184f-efb9-4bd4-a62d-609c0ce7c26e"], Cell[CellGroupData[{ Cell[1230296, 21929, 94, 0, 43, "Subsubsection",ExpressionUUID->"c5cf003f-88c1-47c4-85a3-0177ee1173f2"], Cell[1230393, 21931, 147, 3, 29, "Input",ExpressionUUID->"df0d9430-f966-43ae-848f-38a21affa8ba"], Cell[CellGroupData[{ Cell[1230565, 21938, 272, 7, 29, "Input",ExpressionUUID->"3617abf1-bc8d-4459-85ba-4da06ca84f08"], Cell[1230840, 21947, 31961, 583, 58, "Output",ExpressionUUID->"64c98f7a-94f3-4e20-bb11-7e545e12e625"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[1262850, 22536, 86, 0, 53, "Subsection",ExpressionUUID->"fcc6b85a-cbb8-4a58-ba70-678413c252e6"], Cell[CellGroupData[{ Cell[1262961, 22540, 212, 5, 43, "Input",ExpressionUUID->"6d9425d4-9f29-4c61-b2f6-342d88e822b2"], Cell[1263176, 22547, 131, 3, 47, "Output",ExpressionUUID->"45734f40-a8fb-4228-9423-50dbc181c87e"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[1263356, 22556, 86, 0, 53, "Subsection",ExpressionUUID->"6299b4db-a10c-4ac0-aa6e-57542e3f906c"], Cell[CellGroupData[{ Cell[1263467, 22560, 212, 5, 43, "Input",ExpressionUUID->"c691c115-50f2-4ad5-96db-600749f5f6f5"], Cell[1263682, 22567, 131, 3, 47, "Output",ExpressionUUID->"5a86252b-779e-4ee3-a632-bc84a9a13b01"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[1263862, 22576, 80, 0, 53, "Subsection",ExpressionUUID->"ebae90e1-7110-4dcc-91e0-18ed4d9599d7"], Cell[CellGroupData[{ Cell[1263967, 22580, 187, 4, 29, "Input",ExpressionUUID->"86b8ed99-0ffb-47e0-b36e-4739067c5af2"], Cell[1264157, 22586, 17118, 327, 222, "Output",ExpressionUUID->"8f2c1d56-2b33-4946-bdb4-036044008968"] }, Open ]], Cell[CellGroupData[{ Cell[1281312, 22918, 393, 10, 29, "Input",ExpressionUUID->"c93c5be3-48fd-48f9-bf30-615bc112378a"], Cell[1281708, 22930, 1216, 27, 39, "Output",ExpressionUUID->"5cbe1b27-7687-4295-89dd-45d1e0d9417d"] }, Open ]], Cell[CellGroupData[{ Cell[1282961, 22962, 195, 4, 29, "Input",ExpressionUUID->"8e61feea-720f-41ff-ba9f-003a71b0e056"], Cell[1283159, 22968, 338, 12, 44, "Output",ExpressionUUID->"c8cffe76-a463-480e-9355-9ae016c86759"] }, Open ]], Cell[CellGroupData[{ Cell[1283534, 22985, 487, 14, 29, "Input",ExpressionUUID->"d71f0871-16f8-462b-bc12-88c911ef56f4"], Cell[1284024, 23001, 387707, 8091, 579, "Output",ExpressionUUID->"6e201371-8422-43de-98d7-a0e3100837f3"] }, Open ]], Cell[CellGroupData[{ Cell[1671768, 31097, 284, 8, 29, "Input",ExpressionUUID->"e9abd97f-4ed3-4540-b23d-e0241e15fc5d"], Cell[1672055, 31107, 338, 12, 44, "Output",ExpressionUUID->"a7e217ae-94e9-48c5-a2b4-179cbb2933fa"] }, Open ]], Cell[CellGroupData[{ Cell[1672430, 31124, 466, 13, 29, "Input",ExpressionUUID->"b6702f5c-d689-4b30-931c-621752a20127"], Cell[1672899, 31139, 37672, 820, 243, "Output",ExpressionUUID->"5d7aaeb3-00c0-4975-ab48-a75189ad3231"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[1710620, 31965, 90, 0, 53, "Subsection",ExpressionUUID->"9cb62a78-6d00-4dac-93d9-574f5b40d320"], Cell[CellGroupData[{ Cell[1710735, 31969, 193, 3, 29, "Input",ExpressionUUID->"90f5aeb9-a5d0-4f66-8646-5a009f035a5c"], Cell[1710931, 31974, 373, 7, 33, "Output",ExpressionUUID->"1c595c32-f47f-4875-84cd-64e641f5318f"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[1711353, 31987, 89, 0, 53, "Subsection",ExpressionUUID->"5bd40420-6a73-43a5-af94-8c980159624d"], Cell[CellGroupData[{ Cell[1711467, 31991, 192, 3, 29, "Input",ExpressionUUID->"8e1e4c25-e290-4a83-a072-27183c88d6f7"], Cell[1711662, 31996, 170, 3, 33, "Output",ExpressionUUID->"07409f64-dd0f-4d50-a815-0fbbbb45e02c"] }, Open ]], Cell[CellGroupData[{ Cell[1711869, 32004, 198, 3, 29, "Input",ExpressionUUID->"dce7f721-9901-41d6-928a-30ca1df9bc67"], Cell[1712070, 32009, 116, 1, 33, "Output",ExpressionUUID->"248e7e00-a9ca-4e66-86e6-a85bc2c7ecb8"] }, Open ]], Cell[CellGroupData[{ Cell[1712223, 32015, 455, 11, 29, "Input",ExpressionUUID->"50899ff7-ac16-4bdf-bce0-730258a3abb1"], Cell[1712681, 32028, 13266, 230, 197, "Output",ExpressionUUID->"a32474fb-e9bd-4b24-872d-99351e6a7338"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[1725996, 32264, 85, 0, 53, "Subsection",ExpressionUUID->"6512a765-75d4-455e-9427-5208763adaab"], Cell[CellGroupData[{ Cell[1726106, 32268, 188, 3, 29, "Input",ExpressionUUID->"723f7a85-78d5-4df2-9a9e-2cf0c94bd67d"], Cell[1726297, 32273, 4180, 68, 359, "Output",ExpressionUUID->"4d103486-74b1-4c5a-a632-8d1993a07b2f"] }, Open ]], Cell[CellGroupData[{ Cell[1730514, 32346, 238, 5, 29, "Input",ExpressionUUID->"c56b4024-b8e6-418d-9e6b-22d879dc49b6"], Cell[1730755, 32353, 136, 1, 33, "Output",ExpressionUUID->"325cfe63-42f7-46f6-9ab4-539b4622aa5e"] }, Open ]], Cell[CellGroupData[{ Cell[1730928, 32359, 255, 5, 29, "Input",ExpressionUUID->"43f3e692-1e58-495c-9ff1-7625eb3c4830"], Cell[1731186, 32366, 24187, 430, 212, "Output",ExpressionUUID->"9f2eb57e-e6d2-421b-861c-e424ad93bb12"] }, Open ]], Cell[CellGroupData[{ Cell[1755410, 32801, 170, 3, 29, "Input",ExpressionUUID->"66169017-3336-4170-b698-b9f6b2084a78"], Cell[1755583, 32806, 8337, 149, 368, "Output",ExpressionUUID->"61601c1b-6518-40c7-8003-dc510e829a8d"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[1763969, 32961, 88, 0, 37, "Subsection",ExpressionUUID->"de3dc24e-4cbe-4216-ac7f-a33212c56f5a"], Cell[CellGroupData[{ Cell[1764082, 32965, 214, 5, 43, "Input",ExpressionUUID->"f652311f-683c-4553-9e76-4d5567181438"], Cell[1764299, 32972, 131, 3, 47, "Output",ExpressionUUID->"8b27c9e0-afa0-4b84-b508-a35d5086c802"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[1764479, 32981, 94, 0, 53, "Subsection",ExpressionUUID->"58c12321-028f-4dd9-bea0-012f08443f04"], Cell[CellGroupData[{ Cell[1764598, 32985, 235, 5, 29, "Input",ExpressionUUID->"a3708d46-6e74-40b4-b166-2c498222e5b3"], Cell[1764836, 32992, 1292, 31, 94, "Output",ExpressionUUID->"4554c62b-a2ef-4e22-be2b-6db1b98da811"] }, Open ]], Cell[1766143, 33026, 236, 6, 29, "Input",ExpressionUUID->"2a14e612-4110-46c2-a71a-d716131f8f63"], Cell[CellGroupData[{ Cell[1766404, 33036, 259, 8, 29, "Input",ExpressionUUID->"293934d4-3282-4781-9a11-a3fdb2c074f7"], Cell[1766666, 33046, 257, 6, 33, "Output",ExpressionUUID->"002e9c99-e563-46d4-8f1b-306a31879e0a"] }, Open ]], Cell[CellGroupData[{ Cell[1766960, 33057, 482, 14, 29, "Input",ExpressionUUID->"a3f1d129-fde0-4bb3-921d-8304d8bd88f4"], Cell[1767445, 33073, 13429, 233, 197, "Output",ExpressionUUID->"29cb04ae-5d5f-4efb-8496-a40b8b4fe2d2"] }, Open ]], Cell[CellGroupData[{ Cell[1780911, 33311, 456, 14, 29, "Input",ExpressionUUID->"1b835647-9734-4415-959c-2eaa2b07d5df"], Cell[1781370, 33327, 1377, 32, 94, "Output",ExpressionUUID->"72bd27b1-aa95-4459-a3ec-5eb8022b8717"] }, Open ]], Cell[CellGroupData[{ Cell[1782784, 33364, 617, 18, 29, "Input",ExpressionUUID->"61d65a1c-3f29-480e-86de-8851ac1ea7fb"], Cell[1783404, 33384, 55579, 941, 622, "Output",ExpressionUUID->"696fd7f2-f033-489f-a5cf-d1796b4489b6"] }, Open ]], Cell[CellGroupData[{ Cell[1839020, 34330, 91, 0, 43, "Subsubsection",ExpressionUUID->"2295a7f1-e996-4088-b7d2-385c1be2310b"], Cell[CellGroupData[{ Cell[1839136, 34334, 343, 9, 29, "Input",ExpressionUUID->"9ef6b229-44c3-4349-8359-0ac95072d3fa"], Cell[1839482, 34345, 6238, 107, 392, "Output",ExpressionUUID->"7bc38cba-2a2a-424d-bf21-2d0d8ea64ac9"] }, Open ]], Cell[CellGroupData[{ Cell[1845757, 34457, 192, 4, 29, "Input",ExpressionUUID->"fa29b3ff-22de-4945-9eca-9ef1e40cad3a"], Cell[1845952, 34463, 20213, 660, 510, "Output",ExpressionUUID->"634e5605-67bf-46ed-b642-453d1e338a3f"] }, Open ]], Cell[CellGroupData[{ Cell[1866202, 35128, 710, 20, 49, "Input",ExpressionUUID->"adef7aff-1cd1-4718-a55d-5ce6fa2d32f3"], Cell[1866915, 35150, 476, 9, 33, "Output",ExpressionUUID->"39f8d6ed-9529-4e15-ab7a-532508c0ee26"] }, Open ]], Cell[CellGroupData[{ Cell[1867428, 35164, 190, 5, 29, "Input",ExpressionUUID->"ed6fe408-a2eb-4aad-ad9e-87d031b2ff0e"], Cell[1867621, 35171, 114, 2, 33, "Output",ExpressionUUID->"6f88727c-8d69-47ae-ba5d-2949f0fbb2c1"] }, Open ]], Cell[CellGroupData[{ Cell[1867772, 35178, 218, 5, 29, "Input",ExpressionUUID->"06638bf0-9137-4c1e-a904-614d3edd5137"], Cell[1867993, 35185, 135, 2, 33, "Output",ExpressionUUID->"dd4fe772-d464-4aab-ac1c-920d533d8703"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[1868177, 35193, 88, 0, 43, "Subsubsection",ExpressionUUID->"e35d2891-4f62-434c-b3e5-eebcf585a86e"], Cell[CellGroupData[{ Cell[1868290, 35197, 349, 9, 29, "Input",ExpressionUUID->"6d72ee0d-d60f-495a-854a-00ecf602b36c"], Cell[CellGroupData[{ Cell[1868664, 35210, 172, 3, 23, "Print",ExpressionUUID->"a5967263-7ad1-40fe-8230-a6db933dd02e"], Cell[1868839, 35215, 200, 4, 23, "Print",ExpressionUUID->"1654b5fc-b466-4382-a8e8-7207e87bfa23"], Cell[1869042, 35221, 189, 4, 23, "Print",ExpressionUUID->"c0adb5aa-f6ab-461b-8418-213e1a944290"], Cell[1869234, 35227, 172, 3, 23, "Print",ExpressionUUID->"dbbe3663-69d2-4450-9293-5b2106385577"], Cell[1869409, 35232, 173, 3, 23, "Print",ExpressionUUID->"6dfe37dc-bdba-402a-bb93-70cb4f0a5e68"], Cell[1869585, 35237, 204, 4, 23, "Print",ExpressionUUID->"c1a6e321-03f0-400b-9c3d-23889614824e"], Cell[1869792, 35243, 182, 3, 23, "Print",ExpressionUUID->"18280de6-3420-4029-b7a0-4d0e61d9d6fc"], Cell[1869977, 35248, 205, 4, 23, "Print",ExpressionUUID->"9311b39d-b210-4152-a57c-7e4e8260a4cd"] }, Open ]], Cell[1870197, 35255, 1402, 33, 94, "Output",ExpressionUUID->"82c8901e-ae1b-4829-8665-72afdf8e6e5b"] }, Open ]] }, Open ]] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[1871672, 35296, 117, 0, 52, "Section",ExpressionUUID->"06db7ce4-aae6-4784-9196-1f72a978e7a2"], Cell[CellGroupData[{ Cell[1871814, 35300, 94, 0, 43, "Subsubsection",ExpressionUUID->"0158ec3f-139c-4883-8111-ccd22417bc6e"], Cell[CellGroupData[{ Cell[1871933, 35304, 165, 4, 43, "Input",ExpressionUUID->"77f7ed8b-7447-4b75-8905-398998d72666"], Cell[1872101, 35310, 678, 14, 42, "Message",ExpressionUUID->"6324bf66-eed4-4d0c-8587-6f5424ade395"], Cell[1872782, 35326, 678, 14, 42, "Message",ExpressionUUID->"f1fde2cd-960c-4ae0-b135-4c73a1a56d95"] }, Open ]], Cell[CellGroupData[{ Cell[1873497, 35345, 352, 10, 43, "Input",ExpressionUUID->"77966a70-6c98-48b2-8bfd-08621208f959"], Cell[1873852, 35357, 33298, 614, 72, "Output",ExpressionUUID->"5f1640ae-86d5-4096-9fb0-58a8fb702cd6"] }, Open ]], Cell[CellGroupData[{ Cell[1907187, 35976, 234, 6, 43, "Input",ExpressionUUID->"60afae94-8488-4708-88db-90e4c1879826"], Cell[1907424, 35984, 261, 9, 59, "Output",ExpressionUUID->"6866a530-cef5-439d-88fa-071e2bb1689a"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[1907734, 35999, 85, 0, 53, "Subsection",ExpressionUUID->"f1800b8b-294c-4b0c-b5b8-422c95db0aa6"], Cell[CellGroupData[{ Cell[1907844, 36003, 187, 3, 29, "Input",ExpressionUUID->"dc2c6b74-cf2b-4a79-b72a-7a20908b51c0"], Cell[1908034, 36008, 161, 3, 33, "Output",ExpressionUUID->"32d84c41-cbe2-49eb-9e2b-c15b1615944a"] }, Open ]], Cell[CellGroupData[{ Cell[1908232, 36016, 270, 6, 29, "Input",ExpressionUUID->"e9b4b9ac-9792-4776-823a-8aa83826c252"], Cell[1908505, 36024, 162, 3, 33, "Output",ExpressionUUID->"ec32c0d6-314d-4db5-b036-18a98bcf93bb"] }, Open ]], Cell[CellGroupData[{ Cell[1908704, 36032, 340, 8, 29, "Input",ExpressionUUID->"7ea010fd-38e6-41c3-bf6b-007db02b40e4"], Cell[1909047, 36042, 219, 5, 33, "Output",ExpressionUUID->"6c7e0888-5ebf-4077-9c3b-1d7c4636c9ed"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[1909315, 36053, 89, 0, 37, "Subsection",ExpressionUUID->"b8b1675d-3d5e-428c-b7bb-ff0d8bfd9389"], Cell[CellGroupData[{ Cell[1909429, 36057, 192, 3, 29, "Input",ExpressionUUID->"20ebe2d5-1ca8-49a6-9cb3-ea06c489b225"], Cell[1909624, 36062, 211, 6, 45, "Output",ExpressionUUID->"45fb65c6-c193-42fe-a73c-94b2f3115721"] }, Open ]], Cell[CellGroupData[{ Cell[1909872, 36073, 301, 7, 29, "Input",ExpressionUUID->"5cc5168c-2d89-4b46-9bb3-b90ead0d3138"], Cell[1910176, 36082, 406, 12, 45, "Output",ExpressionUUID->"4c846bd5-c5d3-49a6-b8eb-498a15c008c2"] }, Open ]], Cell[CellGroupData[{ Cell[1910619, 36099, 303, 7, 29, "Input",ExpressionUUID->"e43859dd-b1b7-4d3d-8a17-466a5f3e4f9b"], Cell[1910925, 36108, 406, 12, 45, "Output",ExpressionUUID->"803d2f43-75bb-4e22-9340-c01429900f65"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[1911380, 36126, 89, 0, 37, "Subsection",ExpressionUUID->"c27e4e49-0df5-4e6b-ac5e-60f34763a0ad"], Cell[1911472, 36128, 474, 13, 29, "Input",ExpressionUUID->"68431ad6-4e93-45ce-a5db-670ce5e615da"], Cell[1911949, 36143, 1564, 38, 111, "Input",ExpressionUUID->"bbf0d88d-f9dd-41c6-91dd-c83239893641"] }, Open ]], Cell[CellGroupData[{ Cell[1913550, 36186, 91, 0, 53, "Subsection",ExpressionUUID->"435ac904-0735-4fdb-a808-51b9a90052ba"], Cell[CellGroupData[{ Cell[1913666, 36190, 248, 7, 43, "Input",ExpressionUUID->"802db25e-2299-437c-bcc9-a9a13484a157"], Cell[1913917, 36199, 1159, 28, 53, "Output",ExpressionUUID->"bc4dd92a-2932-4506-8b79-f44e7900cf02"] }, Open ]], Cell[CellGroupData[{ Cell[1915113, 36232, 133, 2, 29, "Input",ExpressionUUID->"d5be36b1-9947-4c81-b9a4-5a81ba3af366"], Cell[1915249, 36236, 146, 2, 33, "Output",ExpressionUUID->"e7bb0607-973f-421a-839a-9bc4670fa84a"] }, Open ]], Cell[CellGroupData[{ Cell[1915432, 36243, 133, 2, 29, "Input",ExpressionUUID->"50346003-a7da-48f9-a2d2-2de33edadfac"], Cell[1915568, 36247, 147, 2, 33, "Output",ExpressionUUID->"12b4740f-d43c-4ea9-9e8e-87037e50a4fb"] }, Open ]], Cell[CellGroupData[{ Cell[1915752, 36254, 378, 10, 43, "Input",ExpressionUUID->"26be66e6-f706-4338-913a-13a7223b9189"], Cell[1916133, 36266, 2700, 42, 88, "Message",ExpressionUUID->"98a4bc1d-a72b-4e1c-94b0-9475d491b30a"], Cell[1918836, 36310, 1253, 30, 53, "Output",ExpressionUUID->"4df02c97-8715-4dd2-99b8-0ac50d084eb9"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[1920138, 36346, 81, 0, 37, "Subsection",ExpressionUUID->"fb89ac85-f192-4418-a5e6-c0053c84f6a3"], Cell[CellGroupData[{ Cell[1920244, 36350, 110, 1, 29, "Input",ExpressionUUID->"8f6fc65a-bdef-4615-89d8-0bfb0e226967"], Cell[1920357, 36353, 185, 3, 33, "Output",ExpressionUUID->"f6b8ed5b-42e4-4349-b11c-e1f712a91b95"] }, Open ]], Cell[CellGroupData[{ Cell[1920579, 36361, 237, 5, 29, "Input",ExpressionUUID->"b59021c0-0fa3-4fae-9304-d57b5f97e1c4"], Cell[1920819, 36368, 136, 1, 33, "Output",ExpressionUUID->"4b2659ae-78a0-4095-894e-e49a1a5c0307"] }, Open ]], Cell[CellGroupData[{ Cell[1920992, 36374, 209, 4, 29, "Input",ExpressionUUID->"a02d3162-1059-4be4-8fc3-4d09023e61bc"], Cell[1921204, 36380, 276, 9, 50, "Output",ExpressionUUID->"7fd6a817-4ed4-4bd4-b54c-9c62ae1c71fd"] }, Open ]], Cell[1921495, 36392, 361, 9, 29, "Input",ExpressionUUID->"ebd08b27-0a2b-406a-b4a5-c7e0b9a901bd"], Cell[1921859, 36403, 177, 4, 29, "Input",ExpressionUUID->"4c162b19-5e6e-4543-9e46-eb58bc4ce766"], Cell[1922039, 36409, 4119, 96, 397, "Input",ExpressionUUID->"9a7aac7e-f004-4b30-97cb-dc54711f579d"] }, Open ]], Cell[CellGroupData[{ Cell[1926195, 36510, 88, 0, 53, "Subsection",ExpressionUUID->"d68fbe72-ed2e-4b13-a952-8a95559d157d"], Cell[CellGroupData[{ Cell[1926308, 36514, 190, 3, 29, "Input",ExpressionUUID->"64c1558c-fe31-492a-b2e8-2841a4f8ac4d"], Cell[1926501, 36519, 128, 2, 33, "Output",ExpressionUUID->"02c369dd-e5d1-41bb-ba9f-e2a65802dbfd"] }, Open ]], Cell[CellGroupData[{ Cell[1926666, 36526, 433, 11, 29, "Input",ExpressionUUID->"56f743a7-e88d-4791-8f27-3e3afff2747a"], Cell[1927102, 36539, 177, 4, 33, "Output",ExpressionUUID->"f3e6e4a3-4a11-4873-96ff-d6f66eb94f85"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[1927328, 36549, 85, 0, 37, "Subsection",ExpressionUUID->"38b447fc-24ec-4ebe-9f94-7500b4be226e"], Cell[CellGroupData[{ Cell[1927438, 36553, 188, 3, 29, "Input",ExpressionUUID->"f32eb819-ceec-48be-912b-411c1616df28"], Cell[1927629, 36558, 160, 2, 33, "Output",ExpressionUUID->"bee38c30-2175-4cf5-924d-9a698f235168"] }, Open ]], Cell[CellGroupData[{ Cell[1927826, 36565, 226, 4, 29, "Input",ExpressionUUID->"8e106891-9ec2-40b3-bdc1-6c3a396ff0a7"], Cell[1928055, 36571, 519, 11, 26, "Message",ExpressionUUID->"c79c9ec6-bfc6-4bbc-a1ec-ab9d0765aba7"], Cell[1928577, 36584, 519, 11, 26, "Message",ExpressionUUID->"e8eb4c4c-bb17-4da5-8808-04e467d59829"], Cell[1929099, 36597, 520, 11, 26, "Message",ExpressionUUID->"3ac6638f-52b2-4360-9dc0-c74758b4817f"], Cell[1929622, 36610, 418, 10, 26, "Message",ExpressionUUID->"0eecce01-4f82-4b3a-85fb-a6acf2e9d28b"], Cell[1930043, 36622, 41229, 573, 45, "Message",ExpressionUUID->"a9395a66-47aa-4e11-bb33-d4f1c21c4632"], Cell[1971275, 37197, 34054, 625, 58, "Output",ExpressionUUID->"37e222a6-4b9e-42e9-acd9-fc8de567dc67"] }, Open ]], Cell[CellGroupData[{ Cell[2005366, 37827, 238, 5, 29, "Input",ExpressionUUID->"44422947-98c7-42a1-81c7-9ee10c4febb9"], Cell[2005607, 37834, 114, 1, 33, "Output",ExpressionUUID->"0a1051e6-5077-4df4-b4df-d6b0415af437"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[2005770, 37841, 90, 0, 37, "Subsection",ExpressionUUID->"506573de-972a-485e-8124-0c56cd58ff97"], Cell[CellGroupData[{ Cell[2005885, 37845, 192, 3, 29, "Input",ExpressionUUID->"4983e23b-7885-452b-91c3-9bc1ac2dc0eb"], Cell[2006080, 37850, 650, 21, 50, "Output",ExpressionUUID->"49c1615d-5f26-4605-bdcb-64017caf9dc3"] }, Open ]], Cell[CellGroupData[{ Cell[2006767, 37876, 261, 8, 57, "Input",ExpressionUUID->"2cd43307-8695-48f8-9095-b3a2bd63c0ff"], Cell[2007031, 37886, 769, 25, 64, "Output",ExpressionUUID->"6e7407bc-33de-478b-95b3-fcc2fbcfbfd3"] }, Open ]], Cell[CellGroupData[{ Cell[2007837, 37916, 259, 8, 43, "Input",ExpressionUUID->"4ed14307-d704-471c-a4a7-72faf36c7612"], Cell[2008099, 37926, 768, 25, 64, "Output",ExpressionUUID->"bc27da37-9c38-44a9-94fe-aa7ae37790ab"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[2008916, 37957, 132, 2, 37, "Subsection",ExpressionUUID->"dc93fc5b-e48b-4469-b184-4eee268ff500"], Cell[CellGroupData[{ Cell[2009073, 37963, 223, 5, 43, "Input",ExpressionUUID->"66bc1fb9-d675-4ce8-98a1-590d3883cdb2"], Cell[2009299, 37970, 181, 4, 47, "Output",ExpressionUUID->"0e548275-3a76-4ee7-9a17-dfa57e6f9c71"] }, Open ]], Cell[2009495, 37977, 109, 1, 29, "Input",ExpressionUUID->"b29c8912-8dc0-4327-828f-eae93c418e8f"], Cell[CellGroupData[{ Cell[2009629, 37982, 407, 14, 67, "Input",ExpressionUUID->"d5619c1e-a9af-449a-acd7-6f63d7c653df"], Cell[2010039, 37998, 146, 3, 47, "Output",ExpressionUUID->"439a963d-1645-4d41-b546-7b94f741ff73"] }, Open ]], Cell[2010200, 38004, 138, 2, 29, "Input",ExpressionUUID->"96ff6e39-f95a-4ed0-89c1-74cf40fe6ed5"], Cell[CellGroupData[{ Cell[2010363, 38010, 105, 0, 43, "Subsubsection",ExpressionUUID->"64be50ad-d078-4584-a13b-8a12cf44f58a"], Cell[2010471, 38012, 479, 15, 65, "Input",ExpressionUUID->"d58d7a5a-b6a8-4cdb-9741-1fcf92fbd167"], Cell[2010953, 38029, 111, 1, 29, "Input",ExpressionUUID->"00273a83-e697-4ec5-becb-64edacf3b0eb"] }, Open ]], Cell[CellGroupData[{ Cell[2011101, 38035, 132, 2, 43, "Subsubsection",ExpressionUUID->"f386bd27-e4a9-4ef6-a1f1-ba0dfaabf1b1"], Cell[CellGroupData[{ Cell[2011258, 38041, 399, 11, 43, "Input",ExpressionUUID->"e3ddd0b6-657f-4f3f-82b4-0d81e55d4833"], Cell[CellGroupData[{ Cell[2011682, 38056, 664, 17, 41, "Print",ExpressionUUID->"a1504ce0-8574-49db-8ba9-3943507ecec9"], Cell[2012349, 38075, 638, 16, 23, "Print",ExpressionUUID->"a2111a15-67cc-4433-8554-cf732d52e82f"], Cell[2012990, 38093, 179, 3, 23, "Print",ExpressionUUID->"c9ba0f09-2c31-4ffb-9d18-8ed6a452035c"], Cell[2013172, 38098, 194, 5, 23, "Print",ExpressionUUID->"f079f81e-c4eb-424e-999f-91fd91ee462e"], Cell[2013369, 38105, 166, 3, 23, "Print",ExpressionUUID->"bc6237f6-6fa9-42c7-8a8b-9dea037c03f3"], Cell[2013538, 38110, 1167, 44, 46, "Print",ExpressionUUID->"a1d45732-3a62-4b4a-9a27-2ba9a8911cca"], Cell[2014708, 38156, 169, 3, 23, "Print",ExpressionUUID->"db86349c-d0ee-4b66-8481-1fd0fd8f4a0d"], Cell[2014880, 38161, 3732, 100, 67, "Print",ExpressionUUID->"77b8db92-0919-4c1a-aa63-cedb421c4206"], Cell[2018615, 38263, 181, 3, 23, "Print",ExpressionUUID->"0091b5a6-d895-465b-9f21-e6fdc3c758ef"], Cell[2018799, 38268, 1145142, 26676, 25157, "Print",ExpressionUUID->"6ac69797-f930-45c7-843c-7db9187282b2"] }, Open ]], Cell[3163956, 64947, 136, 3, 47, "Output",ExpressionUUID->"4c5ce9cd-f17d-4d95-8dfe-c86070e8b5ef"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[3164141, 64956, 83, 0, 35, "Subsubsection",ExpressionUUID->"2f343772-ea17-4fdf-9c70-fe999ac89340"], Cell[3164227, 64958, 433, 10, 29, "Input",ExpressionUUID->"717fdb1e-9edf-4c03-830c-6b9d05e00638"], Cell[3164663, 64970, 461, 14, 54, "Input",ExpressionUUID->"bb3806ec-d9fd-46d0-aef0-b8def78dd903"], Cell[3165127, 64986, 579, 18, 65, "Input",ExpressionUUID->"5879e97b-ff79-4d3d-9a1d-d433fe437d84"] }, Closed]], Cell[CellGroupData[{ Cell[3165743, 65009, 94, 0, 35, "Subsubsection",ExpressionUUID->"f25b06e7-b3fc-46a5-9805-d77103ba9b4d"], Cell[CellGroupData[{ Cell[3165862, 65013, 533, 15, 43, "Input",ExpressionUUID->"a7cb3fd5-a1a5-4088-80c0-a45f71082b43"], Cell[3166398, 65030, 2234, 85, 99, "Output",ExpressionUUID->"feb4b673-9c4b-4899-81f5-f6ea5f9dd99c"] }, Open ]], Cell[CellGroupData[{ Cell[3168669, 65120, 556, 16, 43, "Input",ExpressionUUID->"f23e67b1-7c49-4e00-94e6-82083feef3d5"], Cell[3169228, 65138, 802959, 13177, 390, "Output",ExpressionUUID->"38d2c680-4a47-4d63-b7d1-56fba02ef6b0"] }, Open ]], Cell[CellGroupData[{ Cell[3972224, 78320, 358, 11, 57, "Input",ExpressionUUID->"df46d22c-f361-4d0c-9596-0e8d73acc34c"], Cell[3972585, 78333, 150, 4, 59, "Output",ExpressionUUID->"7b0aaa9c-edf9-4670-9907-aedfbdabff22"] }, Open ]], Cell[CellGroupData[{ Cell[3972772, 78342, 319, 9, 43, "Input",ExpressionUUID->"593cfa78-77b9-4ef5-8760-a5c352a298b3"], Cell[3973094, 78353, 45086, 843, 72, "Output",ExpressionUUID->"348bc5ea-a8a1-4abc-a595-071c5be5d7fa"] }, Open ]], Cell[CellGroupData[{ Cell[4018217, 79201, 537, 17, 67, "Input",ExpressionUUID->"be660cc2-06c0-444c-ac96-a83c501f45a4"], Cell[4018757, 79220, 148, 3, 47, "Output",ExpressionUUID->"77eec039-a0d2-4513-ba48-c46497ff7408"] }, Open ]], Cell[4018920, 79226, 658, 21, 78, "Input",ExpressionUUID->"53d86795-afcd-47d7-a9b6-727818e00e35"], Cell[4019581, 79249, 111, 1, 29, "Input",ExpressionUUID->"ff042b56-be53-47b9-8c9f-1fcbd60a200f"], Cell[4019695, 79252, 286, 7, 29, "Input",ExpressionUUID->"316b0305-af2a-4ec4-a248-e5f92ae50fab"], Cell[4019984, 79261, 364, 10, 29, "Input",ExpressionUUID->"70ea45cd-04ca-49f5-942d-b8926c658e0b"] }, Open ]], Cell[CellGroupData[{ Cell[4020385, 79276, 118, 0, 43, "Subsubsection",ExpressionUUID->"123818fd-b728-48d5-945a-bc03c6cc3292"], Cell[4020506, 79278, 378, 11, 29, "Input",ExpressionUUID->"2c3612ce-b864-4c8e-b67f-c0319c72108d"], Cell[4020887, 79291, 309, 8, 43, "Input",ExpressionUUID->"90170fbc-2474-4f72-a385-ac2fcfa25ceb"], Cell[4021199, 79301, 514, 17, 50, "Input",ExpressionUUID->"d1534e6f-1eff-4c81-95f1-4cf5c992eeac"], Cell[4021716, 79320, 353, 10, 57, "Input",ExpressionUUID->"f7251ac3-1ec2-4546-8bef-948d37c6d95a"], Cell[4022072, 79332, 407, 12, 44, "Input",ExpressionUUID->"764039ef-c7bb-4990-ba64-9c1f9e631d23"] }, Closed]] }, Open ]], Cell[CellGroupData[{ Cell[4022528, 79350, 104, 0, 53, "Subsection",ExpressionUUID->"5d157f8a-c604-4840-8221-e115020a5c1c"], Cell[CellGroupData[{ Cell[4022657, 79354, 209, 4, 29, "Input",ExpressionUUID->"f3dc819c-90dd-4b82-85b6-bc19ad21d7c1"], Cell[4022869, 79360, 194, 5, 50, "Output",ExpressionUUID->"342e3a6f-f0d5-48cf-b706-c456e640884f"] }, Open ]], Cell[CellGroupData[{ Cell[4023100, 79370, 368, 11, 47, "Input",ExpressionUUID->"37fc4865-ee6e-4b55-a2ee-10d99e633dc4"], Cell[4023471, 79383, 125, 1, 33, "Output",ExpressionUUID->"a6162c9a-fc06-41b7-b182-b2a441168672"] }, Open ]], Cell[CellGroupData[{ Cell[4023633, 79389, 523, 16, 52, "Input",ExpressionUUID->"daeeaf0b-60fe-46b5-a0c6-71dd57bfe1d5"], Cell[4024159, 79407, 256, 7, 50, "Output",ExpressionUUID->"53d71f93-fb62-4761-a352-d7544dc8e76e"] }, Open ]], Cell[4024430, 79417, 133, 2, 29, "Input",ExpressionUUID->"95aa0100-8e8b-4471-a4e3-2269513b64ab"] }, Closed]], Cell[CellGroupData[{ Cell[4024600, 79424, 130, 2, 37, "Subsection",ExpressionUUID->"ead509d7-eb2d-4aad-beb5-36ae452820b0"], Cell[CellGroupData[{ Cell[4024755, 79430, 198, 3, 29, "Input",ExpressionUUID->"ec607696-4464-41d2-b7e5-19e600418f45"], Cell[4024956, 79435, 158, 2, 33, "Output",ExpressionUUID->"36f55db0-e742-4364-9ba7-8dea48983b7c"] }, Open ]], Cell[CellGroupData[{ Cell[4025151, 79442, 422, 13, 54, "Input",ExpressionUUID->"e9d3ee26-2cd7-4bf2-aab0-76ab0c76d0c2"], Cell[4025576, 79457, 123, 1, 33, "Output",ExpressionUUID->"e02dc547-dd44-479d-8206-8801a2506401"] }, Open ]], Cell[4025714, 79461, 512, 16, 65, "Input",ExpressionUUID->"e874accb-169a-48ed-b0f4-08d0fc5f6747"] }, Closed]], Cell[CellGroupData[{ Cell[4026263, 79482, 102, 0, 37, "Subsection",ExpressionUUID->"d5fc9cc6-f61e-4c89-8c7d-774f80edf6f1"], Cell[CellGroupData[{ Cell[4026390, 79486, 207, 4, 29, "Input",ExpressionUUID->"66e8e320-fbaa-4afa-baec-9f34e0604473"], Cell[4026600, 79492, 248, 7, 52, "Output",ExpressionUUID->"2254c325-10f8-481d-aaee-2393a3d0555c"] }, Open ]], Cell[CellGroupData[{ Cell[4026885, 79504, 133, 2, 29, "Input",ExpressionUUID->"81083740-005b-4d41-8c87-95e8d88efb8e"], Cell[4027021, 79508, 124, 1, 33, "Output",ExpressionUUID->"84f04a9b-68ca-4bac-9887-ad9e66a42baf"] }, Open ]], Cell[CellGroupData[{ Cell[4027182, 79514, 485, 14, 50, "Input",ExpressionUUID->"05a78d08-e2c7-484d-84fe-f91a1e6f731d"], Cell[4027670, 79530, 124, 1, 33, "Output",ExpressionUUID->"43036519-fad0-4b89-9276-cd70686b4f62"] }, Open ]], Cell[CellGroupData[{ Cell[4027831, 79536, 564, 17, 52, "Input",ExpressionUUID->"ca4cc52b-71f4-4754-9c76-1710cad87384"], Cell[4028398, 79555, 313, 9, 52, "Output",ExpressionUUID->"f6950335-2f47-4136-853e-2fae669d912c"] }, Open ]], Cell[4028726, 79567, 133, 2, 29, "Input",ExpressionUUID->"85eddf09-343d-4dee-94bf-63ab07cae065"] }, Closed]], Cell[CellGroupData[{ Cell[4028896, 79574, 86, 0, 37, "Subsection",ExpressionUUID->"5b2a15a9-3797-46cb-b104-d89d0aac89e5"], Cell[CellGroupData[{ Cell[4029007, 79578, 212, 5, 43, "Input",ExpressionUUID->"ca4b514c-1e61-43be-a04c-0139358856bb"], Cell[4029222, 79585, 249, 9, 59, "Output",ExpressionUUID->"939bd4b8-b578-40a7-a5f8-3f7a7536a913"] }, Open ]], Cell[CellGroupData[{ Cell[4029508, 79599, 281, 8, 43, "Input",ExpressionUUID->"b2b7fc15-80e4-4253-8143-ba226fe08d86"], Cell[4029792, 79609, 114, 1, 33, "Output",ExpressionUUID->"e0410a94-74a1-41f3-8762-9c3d4c507f47"] }, Open ]], Cell[4029921, 79613, 90, 0, 33, "Text",ExpressionUUID->"0cb5e1d6-0bdc-43f9-b3e1-0b6dd72b4803"] }, Open ]], Cell[CellGroupData[{ Cell[4030048, 79618, 85, 0, 53, "Subsection",ExpressionUUID->"5edf45b5-9c42-4181-bec3-9f5fdb9d98fb"], Cell[CellGroupData[{ Cell[4030158, 79622, 189, 3, 29, "Input",ExpressionUUID->"eb769558-3847-4ee4-9399-9f9264a46dcc"], Cell[4030350, 79627, 108, 1, 33, "Output",ExpressionUUID->"db32834e-ce18-488a-8da4-cc7cefb1a336"] }, Open ]], Cell[CellGroupData[{ Cell[4030495, 79633, 222, 4, 29, "Input",ExpressionUUID->"1367e0a7-e79a-40ff-823c-6cd6e3a4c24c"], Cell[4030720, 79639, 26149, 500, 1829, "Output",ExpressionUUID->"0f508f72-8d51-4f13-bdb1-1b9b5a797186"] }, Open ]], Cell[CellGroupData[{ Cell[4056906, 80144, 136, 2, 29, "Input",ExpressionUUID->"db1dfe90-9a44-44e6-ad94-917bbde2c5e4"], Cell[4057045, 80148, 24853, 456, 409, "Output",ExpressionUUID->"0e8c4f72-d858-4470-8538-e6312adb91cc"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[4081947, 80610, 86, 0, 37, "Subsection",ExpressionUUID->"c104ea1a-0af8-46c7-a0e3-d388011c08ae"], Cell[CellGroupData[{ Cell[4082058, 80614, 189, 3, 29, "Input",ExpressionUUID->"d7704def-ed9e-4168-9832-27220ce8a871"], Cell[4082250, 80619, 34042, 625, 58, "Output",ExpressionUUID->"07640970-d8ca-4a4e-b14f-a5955f04f9cd"] }, Open ]], Cell[CellGroupData[{ Cell[4116329, 81249, 142, 2, 29, "Input",ExpressionUUID->"8bb00bde-d53f-4182-84b6-4010edbdc875"], Cell[4116474, 81253, 6536, 115, 409, "Output",ExpressionUUID->"0c9f685b-b376-4aba-88c5-cfff0f53f023"] }, Open ]], Cell[CellGroupData[{ Cell[4123047, 81373, 197, 3, 29, "Input",ExpressionUUID->"ee7bb76f-c529-4651-830d-989ed5792e8b"], Cell[4123247, 81378, 526, 10, 33, "Output",ExpressionUUID->"4172c4ee-4f4a-4e49-8d79-7536cccc1b46"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[4123822, 81394, 83, 0, 37, "Subsection",ExpressionUUID->"a7c98578-0c82-416e-aaab-549333f0478c"], Cell[CellGroupData[{ Cell[4123930, 81398, 186, 3, 29, "Input",ExpressionUUID->"3db2ec43-322d-40b9-a7eb-1c25b04bdbab"], Cell[4124119, 81403, 12637, 235, 379, "Output",ExpressionUUID->"e88f541e-b301-4966-a8b6-54b316be40c3"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[4136805, 81644, 91, 0, 37, "Subsection",ExpressionUUID->"d51aee3b-63c2-4a01-9ba0-33141a170098"], Cell[CellGroupData[{ Cell[4136921, 81648, 194, 3, 29, "Input",ExpressionUUID->"0ab5599d-3c0e-4295-a101-1e695a91bd71"], Cell[4137118, 81653, 159, 2, 33, "Output",ExpressionUUID->"0faeb836-722c-4c09-a3e5-07f3088eb6a1"] }, Open ]], Cell[CellGroupData[{ Cell[4137314, 81660, 427, 12, 29, "Input",ExpressionUUID->"6031e2c9-47f6-4c32-8ac0-b877172fc40c"], Cell[4137744, 81674, 36581, 1016, 715, "Output",ExpressionUUID->"fb2b3479-394c-4231-87f1-850f5466620d"] }, Open ]], Cell[CellGroupData[{ Cell[4174362, 82695, 148, 3, 29, "Input",ExpressionUUID->"7e2f3811-e9c9-4c1c-84f2-125dfa50ebf3"], Cell[4174513, 82700, 9378, 359, 308, "Output",ExpressionUUID->"4ebff9b7-670b-4c08-b734-1468c88e4652"] }, Open ]], Cell[CellGroupData[{ Cell[4183928, 83064, 284, 7, 29, "Input",ExpressionUUID->"e609dcdb-1637-4529-b65e-04b6f9706ae8"], Cell[4184215, 83073, 9429, 359, 362, "Output",ExpressionUUID->"87b806df-1614-476c-975f-fef47aff82f8"] }, Open ]], Cell[CellGroupData[{ Cell[4193681, 83437, 635, 16, 49, "Input",ExpressionUUID->"7c1ead51-37e2-4320-b54c-9f48c36881b2"], Cell[4194319, 83455, 365859, 6012, 197, "Output",ExpressionUUID->"e216f79b-0f80-4fe8-9bfd-970165b2045c"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[4560227, 89473, 93, 0, 37, "Subsection",ExpressionUUID->"3789083b-2e30-43bf-94e8-43cfcf007b1c"], Cell[CellGroupData[{ Cell[4560345, 89477, 186, 3, 29, "Input",ExpressionUUID->"d63f5801-e68a-4289-9593-3ff0ecd40fc3"], Cell[4560534, 89482, 110, 1, 33, "Output",ExpressionUUID->"e8618438-5cec-4bc8-bd44-3893c0cf7135"] }, Open ]], Cell[CellGroupData[{ Cell[4560681, 89488, 149, 2, 29, "Input",ExpressionUUID->"18c9a69e-d911-4ee5-bfb6-6431dfac17cd"], Cell[4560833, 89492, 110, 1, 33, "Output",ExpressionUUID->"44164773-11c6-4ea0-9aca-3120d6bb7663"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[4560992, 89499, 88, 0, 37, "Subsection",ExpressionUUID->"346863f2-c3aa-4f0f-ad27-a641007a9267"], Cell[CellGroupData[{ Cell[4561105, 89503, 191, 3, 29, "Input",ExpressionUUID->"8ba113c0-9638-4a74-b0a0-86e2604a7933"], Cell[4561299, 89508, 334, 11, 44, "Output",ExpressionUUID->"8b24dc55-f0b2-4e16-b96b-18d60ef05d59"] }, Open ]], Cell[CellGroupData[{ Cell[4561670, 89524, 142, 2, 29, "Input",ExpressionUUID->"a5f573ac-283f-4289-b47c-614eea6a8672"], Cell[4561815, 89528, 1116, 24, 35, "Output",ExpressionUUID->"54e314ac-a6c6-4555-b4cf-ff41e306c4ee"] }, Open ]], Cell[CellGroupData[{ Cell[4562968, 89557, 252, 6, 29, "Input",ExpressionUUID->"6a33198b-9f38-4997-8ff6-f997d3884a20"], Cell[4563223, 89565, 406, 13, 44, "Output",ExpressionUUID->"ce6c8be6-dc28-4352-8841-4aed1424199e"] }, Open ]], Cell[CellGroupData[{ Cell[4563666, 89583, 369, 9, 29, "Input",ExpressionUUID->"be2dcfaf-a01c-484b-b6c6-59170c2368ac"], Cell[4564038, 89594, 407, 13, 44, "Output",ExpressionUUID->"c027f746-3119-4efa-a72b-9cba4d04438c"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[4564494, 89613, 83, 0, 37, "Subsection",ExpressionUUID->"cdabaee3-ad89-4b89-b6be-467ee9f3e0b9"], Cell[CellGroupData[{ Cell[4564602, 89617, 209, 5, 43, "Input",ExpressionUUID->"1a1bd1d6-4276-49d1-9685-be3c8ba876dd"], Cell[4564814, 89624, 262, 9, 59, "Output",ExpressionUUID->"deba5ce8-5c4e-432e-b18b-4db4c2f98d23"] }, Open ]], Cell[CellGroupData[{ Cell[4565113, 89638, 173, 3, 29, "Input",ExpressionUUID->"63eea8b8-6a48-4c17-9342-3ebd14315745"], Cell[4565289, 89643, 239, 7, 46, "Output",ExpressionUUID->"51db742d-48e3-483d-96d1-dd7e39205d37"] }, Open ]], Cell[CellGroupData[{ Cell[4565565, 89655, 186, 4, 29, "Input",ExpressionUUID->"0a09bb6e-babc-4cc0-9bb8-c581f17217f5"], Cell[4565754, 89661, 239, 7, 46, "Output",ExpressionUUID->"36abad1e-beb8-4211-a888-216caad1d6f2"] }, Open ]], Cell[CellGroupData[{ Cell[4566030, 89673, 260, 6, 29, "Input",ExpressionUUID->"2bd61e3d-92cd-4eb8-8e8f-c00ec6a1c179"], Cell[4566293, 89681, 239, 7, 46, "Output",ExpressionUUID->"a03ed4f3-e463-4d0f-947d-144eb4bd72e4"] }, Open ]], Cell[CellGroupData[{ Cell[4566569, 89693, 479, 12, 29, "Input",ExpressionUUID->"db4d4be9-5b3a-4100-9f95-2169a91ef3f8"], Cell[4567051, 89707, 204, 5, 47, "Output",ExpressionUUID->"ed653b34-124f-464b-833d-3d1151709d1b"] }, Open ]] }, Closed]] }, Open ]], Cell[CellGroupData[{ Cell[4567316, 89719, 117, 0, 66, "Section",ExpressionUUID->"ee0c828d-6c23-4dec-9ee1-192f39fea5fa"], Cell[CellGroupData[{ Cell[4567458, 89723, 94, 0, 43, "Subsubsection",ExpressionUUID->"db58c519-a304-4bae-8c5b-913ecd23209c"], Cell[4567555, 89725, 165, 4, 43, "Input",ExpressionUUID->"232935fc-51e2-46d6-955c-5a2785e8d9bc"], Cell[CellGroupData[{ Cell[4567745, 89733, 352, 10, 43, "Input",ExpressionUUID->"bfdb3fba-34ed-44ce-a6fa-ca498f7cc8d7"], Cell[4568100, 89745, 31987, 584, 72, "Output",ExpressionUUID->"e3759091-cf1c-4da7-b926-acc486b0440d"] }, Open ]], Cell[CellGroupData[{ Cell[4600124, 90334, 234, 6, 43, "Input",ExpressionUUID->"c69e774c-a9e1-4dae-b7ea-cc12e5402959"], Cell[4600361, 90342, 261, 9, 59, "Output",ExpressionUUID->"71912ad9-68f5-4eb2-af38-e9dc8bdac6f2"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[4600671, 90357, 85, 0, 53, "Subsection",ExpressionUUID->"aab960dd-8177-4f69-a501-5b0aa9e8c1bb"], Cell[CellGroupData[{ Cell[4600781, 90361, 192, 4, 70, "Input",ExpressionUUID->"22be7e25-eb28-4742-a722-91e638d9c89e"], Cell[4600976, 90367, 166, 4, 70, "Output",ExpressionUUID->"7e1af7ba-2f03-4390-9b2f-6948ae2a1336"] }, Open ]], Cell[CellGroupData[{ Cell[4601179, 90376, 183, 4, 70, "Input",ExpressionUUID->"303fa38d-08fa-47ad-8ea1-ce9214cfd574"], Cell[4601365, 90382, 166, 4, 70, "Output",ExpressionUUID->"d5046bfc-e38e-4194-862e-9c09f3608e0e"] }, Open ]], Cell[CellGroupData[{ Cell[4601568, 90391, 251, 7, 70, "Input",ExpressionUUID->"6cc3a483-13fb-4823-83b0-7ea74ab59f90"], Cell[4601822, 90400, 223, 6, 70, "Output",ExpressionUUID->"d7e82899-c377-4a9b-b270-05eadeb2f134"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[4602094, 90412, 89, 0, 37, "Subsection",ExpressionUUID->"e59f3ea5-469e-47d3-956b-20a32b90e08e"], Cell[CellGroupData[{ Cell[4602208, 90416, 196, 4, 29, "Input",ExpressionUUID->"1bfb5b04-75b3-45d3-8761-2235901e9699"], Cell[4602407, 90422, 215, 7, 70, "Output",ExpressionUUID->"75f0f2fd-50a6-479b-bd2c-c8bd13ce3838"] }, Open ]], Cell[CellGroupData[{ Cell[4602659, 90434, 214, 6, 29, "Input",ExpressionUUID->"8f376029-b884-41ed-b2b1-043d65c5c1a3"], Cell[4602876, 90442, 410, 13, 70, "Output",ExpressionUUID->"fae8c52b-63c5-4e33-800c-73288c0831c7"] }, Open ]], Cell[CellGroupData[{ Cell[4603323, 90460, 216, 6, 29, "Input",ExpressionUUID->"5bbfaefe-50de-4449-98dd-3b2b9a902f3b"], Cell[4603542, 90468, 410, 13, 70, "Output",ExpressionUUID->"5707407b-cbbb-4fa6-bdc7-e6b88d253af5"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[4604001, 90487, 89, 0, 37, "Subsection",ExpressionUUID->"47ef866d-5a95-45cf-bc72-bde4a0fdae22"], Cell[CellGroupData[{ Cell[4604115, 90491, 474, 13, 70, "Input",ExpressionUUID->"62ef8b88-3503-4243-95da-9461bc0a1bb6"], Cell[4604592, 90506, 128, 3, 70, "Output",ExpressionUUID->"41b90e30-165d-4880-9dc5-2657c62039fc"] }, Open ]], Cell[CellGroupData[{ Cell[4604757, 90514, 1564, 38, 70, "Input",ExpressionUUID->"d30a03db-031c-403f-b30f-c7a3cfea0a2e"], Cell[4606324, 90554, 340, 9, 70, "Message",ExpressionUUID->"5499ea72-be78-4bcb-b3f4-7181f4d01dbe"], Cell[4606667, 90565, 280, 7, 70, "Output",ExpressionUUID->"ff661002-c1b1-4953-9628-726a1e45cc7e"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[4606996, 90578, 91, 0, 37, "Subsection",ExpressionUUID->"396590c4-8044-446b-804f-0e8c75f858f6"], Cell[CellGroupData[{ Cell[4607112, 90582, 230, 6, 29, "Input",ExpressionUUID->"328e181a-9141-4c1f-93bf-0168164ea539"], Cell[4607345, 90590, 1047, 24, 39, "Output",ExpressionUUID->"bcf8e56e-7608-4672-90b3-5eb7a26b905b"] }, Open ]], Cell[CellGroupData[{ Cell[4608429, 90619, 137, 3, 29, "Input",ExpressionUUID->"d109b2ef-e723-4f23-a667-95db3b464c3a"], Cell[4608569, 90624, 150, 3, 33, "Output",ExpressionUUID->"350a6007-a17e-442c-9b5d-7dc2c0513f80"] }, Open ]], Cell[CellGroupData[{ Cell[4608756, 90632, 137, 3, 29, "Input",ExpressionUUID->"d0f89e16-d995-4c8e-99fc-876983cde541"], Cell[4608896, 90637, 151, 3, 33, "Output",ExpressionUUID->"a4f2df6d-be78-49ce-9f81-922e9412ab59"] }, Open ]], Cell[CellGroupData[{ Cell[4609084, 90645, 247, 7, 29, "Input",ExpressionUUID->"2e279eb0-834c-4bfc-ac58-fb242641a858"], Cell[4609334, 90654, 118, 2, 33, "Output",ExpressionUUID->"9f1ecd11-8cbf-4dea-a611-f2f07bee9df5"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[4609501, 90662, 81, 0, 53, "Subsection",ExpressionUUID->"c94c99b9-bca8-49e8-8927-fdb0a68900bc"], Cell[CellGroupData[{ Cell[4609607, 90666, 114, 2, 29, "Input",ExpressionUUID->"91b42fe0-ba02-40ef-8308-78eac9ca0bad"], Cell[4609724, 90670, 135, 2, 33, "Output",ExpressionUUID->"ae99c3ba-86f9-491e-8395-51afd13030cc"] }, Open ]], Cell[CellGroupData[{ Cell[4609896, 90677, 241, 6, 29, "Input",ExpressionUUID->"6a14badc-74bd-4169-b2cc-db5de14b3c86"], Cell[4610140, 90685, 140, 2, 33, "Output",ExpressionUUID->"942beb2f-0d83-4eee-bbc6-0d929796106f"] }, Open ]], Cell[CellGroupData[{ Cell[4610317, 90692, 213, 5, 29, "Input",ExpressionUUID->"3dfe86da-01de-42f2-bb0d-40645384172b"], Cell[4610533, 90699, 280, 10, 50, "Output",ExpressionUUID->"aa5a7dc7-595d-430e-bb57-37e6df1dca42"] }, Open ]], Cell[CellGroupData[{ Cell[4610850, 90714, 361, 9, 29, "Input",ExpressionUUID->"1c87db78-e2bd-4eed-9a9f-67a96ec4aba8"], Cell[4611214, 90725, 349, 13, 50, "Output",ExpressionUUID->"ed7c40be-b8ad-42d2-aa71-3f2dcdfe9f6d"] }, Open ]], Cell[CellGroupData[{ Cell[4611600, 90743, 177, 4, 29, "Input",ExpressionUUID->"e6f7f7f9-660b-4926-802f-0e9a334f0e76"], Cell[4611780, 90749, 280, 10, 50, "Output",ExpressionUUID->"3fef6978-777e-41de-bbda-5aa16ec980fe"] }, Open ]], Cell[CellGroupData[{ Cell[4612097, 90764, 3791, 89, 397, "Input",ExpressionUUID->"0177cc9c-6d5d-44d6-b896-8e1c003aa934"], Cell[4615891, 90855, 62566, 1142, 227, "Output",ExpressionUUID->"0286a4f4-1242-4bdf-be44-56c525aa5315"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[4678506, 92003, 88, 0, 37, "Subsection",ExpressionUUID->"45084040-9448-4c5e-b3fa-e2447ec3bdf7"], Cell[CellGroupData[{ Cell[4678619, 92007, 191, 3, 70, "Input",ExpressionUUID->"74952917-b76b-4874-9e3d-87ea9cd9077b"], Cell[4678813, 92012, 129, 2, 70, "Output",ExpressionUUID->"121452e7-a35f-42fa-870f-953ff63cdaec"] }, Open ]], Cell[CellGroupData[{ Cell[4678979, 92019, 433, 11, 70, "Input",ExpressionUUID->"98fff98a-a46b-4be0-9ebb-cd24928e7856"], Cell[4679415, 92032, 129, 2, 70, "Output",ExpressionUUID->"70ced73c-befc-43dd-81b5-0579db522e94"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[4679593, 92040, 85, 0, 37, "Subsection",ExpressionUUID->"5d77a8e7-1274-4deb-b151-6426f5df9cbf"], Cell[CellGroupData[{ Cell[4679703, 92044, 188, 3, 70, "Input",ExpressionUUID->"db7834b2-a308-4e70-a44a-d03931343248"], Cell[4679894, 92049, 160, 2, 70, "Output",ExpressionUUID->"94d48bb4-cf1c-4c0d-be4b-12d22b760886"] }, Open ]], Cell[CellGroupData[{ Cell[4680091, 92056, 158, 4, 70, "Input",ExpressionUUID->"d8855220-a947-49f6-9af8-41dd90b27c81"], Cell[4680252, 92062, 6514, 94, 70, "Message",ExpressionUUID->"3bde8501-9ed7-4473-b958-33d67c6ef4f0"], Cell[4686769, 92158, 33180, 604, 70, "Output",ExpressionUUID->"ba8c21fe-ac47-425c-bd67-a4eddd1a107c"] }, Open ]], Cell[CellGroupData[{ Cell[4719986, 92767, 160, 4, 70, "Input",ExpressionUUID->"1337acba-fa16-4ba9-b496-c3d025de81a7"], Cell[4720149, 92773, 142, 4, 70, "Output",ExpressionUUID->"fd65e990-f44c-427d-81b9-aed43e3f4ff2"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[4720340, 92783, 90, 0, 37, "Subsection",ExpressionUUID->"4f1ab6bc-3d66-43bd-ba9b-c6ec6208f231"], Cell[CellGroupData[{ Cell[4720455, 92787, 215, 5, 43, "Input",ExpressionUUID->"21c1e455-549d-436d-9456-26c30090e489"], Cell[4720673, 92794, 673, 23, 64, "Output",ExpressionUUID->"32e9d3d9-1ff7-4ee3-b843-8213574b446c"] }, Open ]], Cell[CellGroupData[{ Cell[4721383, 92822, 260, 8, 57, "Input",ExpressionUUID->"e54e8ed5-965c-4766-b21f-cbf99eb78448"], Cell[4721646, 92832, 769, 25, 64, "Output",ExpressionUUID->"6ad4cf05-0f1c-4185-b871-95e232ee36e9"] }, Open ]], Cell[CellGroupData[{ Cell[4722452, 92862, 258, 8, 43, "Input",ExpressionUUID->"b56a5560-0a24-444f-b68a-073382ec4282"], Cell[4722713, 92872, 767, 25, 64, "Output",ExpressionUUID->"b537ea21-bb6d-432d-989f-7023f1f79792"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[4723529, 92903, 132, 2, 37, "Subsection",ExpressionUUID->"3f149308-4df1-4523-b1cf-4fc8419980c9"], Cell[CellGroupData[{ Cell[4723686, 92909, 201, 3, 29, "Input",ExpressionUUID->"a1d071e7-f87e-4ebf-a7be-cf6cfcece023"], Cell[4723890, 92914, 159, 2, 33, "Output",ExpressionUUID->"e4becd4e-77a2-4962-9184-337e078373ce"] }, Open ]], Cell[CellGroupData[{ Cell[4724086, 92921, 105, 0, 43, "Subsubsection",ExpressionUUID->"ac79c30c-90bd-464e-a16e-34e105aa2621"], Cell[CellGroupData[{ Cell[4724216, 92925, 361, 11, 54, "Input",ExpressionUUID->"46e08d94-9a8b-4e69-9c60-369c0ef2ae1c"], Cell[4724580, 92938, 442, 10, 42, "Message",ExpressionUUID->"61cbf652-9acc-4f0c-85c9-56bf83b02ada"], Cell[4725025, 92950, 125, 1, 33, "Output",ExpressionUUID->"a840890a-b903-4f89-89a7-f4392281c218"] }, Open ]], Cell[4725165, 92954, 471, 15, 65, "Input",ExpressionUUID->"b0949b14-b7c8-4c7c-8fa6-36752b9bc8f7"], Cell[4725639, 92971, 109, 1, 29, "Input",ExpressionUUID->"88a7ad9f-5889-4917-b3d9-8269a2ffeb4c"] }, Open ]], Cell[CellGroupData[{ Cell[4725785, 92977, 132, 2, 43, "Subsubsection",ExpressionUUID->"47f4fbfa-d15a-476e-a871-42f0187847ed"], Cell[CellGroupData[{ Cell[4725942, 92983, 400, 11, 43, "Input",ExpressionUUID->"a9abfba5-bc06-41f7-b49e-6c6ce060da98"], Cell[CellGroupData[{ Cell[4726367, 92998, 666, 17, 41, "Print",ExpressionUUID->"712ae5a7-2426-42b2-a5db-ab0de2f283d6"], Cell[4727036, 93017, 640, 16, 23, "Print",ExpressionUUID->"36b011fc-8293-48c0-a8a1-e016003b6ecf"], Cell[4727679, 93035, 181, 3, 23, "Print",ExpressionUUID->"3901ee86-83b8-4d55-89d6-521d4b32882a"], Cell[4727863, 93040, 196, 5, 23, "Print",ExpressionUUID->"87b61f1d-5063-408b-b0f6-ae9d96a1a0ca"], Cell[4728062, 93047, 168, 3, 23, "Print",ExpressionUUID->"8819eb99-c6ff-459e-8eac-105f97582c19"], Cell[4728233, 93052, 3513, 103, 43, "Print",ExpressionUUID->"f6e3ba1a-ad98-43be-ab1c-2d05a076a73e"], Cell[4731749, 93157, 212, 4, 23, "Print",ExpressionUUID->"b2df3036-bd1c-4f7e-918e-e1912e5301d3"], Cell[4731964, 93163, 151, 3, 23, "Print",ExpressionUUID->"c1d4de7a-de63-4fde-a969-40eca8fb59c2"], Cell[4732118, 93168, 344, 8, 23, "Print",ExpressionUUID->"df0bb9d5-e0bc-4791-871f-3b4843f4f689"], Cell[4732465, 93178, 640, 16, 23, "Print",ExpressionUUID->"cb69b723-b52d-4ce2-9b27-7ac09e946b4a"], Cell[4733108, 93196, 181, 3, 23, "Print",ExpressionUUID->"e1575508-0236-4a53-a6c7-163b1cc6fc4b"], Cell[4733292, 93201, 196, 5, 23, "Print",ExpressionUUID->"b4dfe72a-6a45-4333-9dba-d4668c43e882"], Cell[4733491, 93208, 168, 3, 23, "Print",ExpressionUUID->"e6513d40-0e2c-4873-9fd8-f087546023f7"], Cell[4733662, 93213, 2837, 88, 43, "Print",ExpressionUUID->"f72eb4f5-c18e-40f9-8820-423e71d64275"], Cell[4736502, 93303, 212, 4, 23, "Print",ExpressionUUID->"7b48ed03-ab06-48f5-a5ad-98439b339006"], Cell[4736717, 93309, 151, 3, 23, "Print",ExpressionUUID->"4c8ce74a-3667-4058-9bd3-87882080e8fc"], Cell[4736871, 93314, 346, 8, 23, "Print",ExpressionUUID->"b081f69d-c24b-4bcb-9a76-c0613f0e302e"], Cell[4737220, 93324, 640, 16, 23, "Print",ExpressionUUID->"149925e0-d5cb-4081-a617-bdacb9376708"], Cell[4737863, 93342, 181, 3, 23, "Print",ExpressionUUID->"72149f2f-8b6e-406b-9173-4cd20f624442"], Cell[4738047, 93347, 196, 5, 23, "Print",ExpressionUUID->"d0acf2c2-81ce-48cf-aaee-c5bd77f55fa8"], Cell[4738246, 93354, 168, 3, 23, "Print",ExpressionUUID->"cd4f4cae-dc35-4a77-8853-dd4f5c332915"], Cell[4738417, 93359, 1987, 66, 43, "Print",ExpressionUUID->"c21efd4d-0c74-4190-98f7-9603e654f96e"], Cell[4740407, 93427, 212, 4, 23, "Print",ExpressionUUID->"eebeb9f0-cbaf-4287-b091-3481c1ea6351"], Cell[4740622, 93433, 151, 3, 23, "Print",ExpressionUUID->"0e545e8d-d4ef-45a5-8f31-a9b376577604"], Cell[4740776, 93438, 348, 8, 23, "Print",ExpressionUUID->"3352c113-d462-466a-9204-57c54cd1da18"], Cell[4741127, 93448, 666, 17, 41, "Print",ExpressionUUID->"679647ea-185b-47e1-b6cc-ff26b3e6c30f"], Cell[4741796, 93467, 181, 3, 23, "Print",ExpressionUUID->"7986a119-0bf3-4eb2-a5d6-da799f7be884"], Cell[4741980, 93472, 196, 5, 23, "Print",ExpressionUUID->"08cfa25e-b5b8-4a07-aec9-641c31b3d55e"], Cell[4742179, 93479, 168, 3, 23, "Print",ExpressionUUID->"02b9c1a7-1701-41f6-96ca-5cea0ab7e07a"], Cell[4742350, 93484, 3550, 104, 43, "Print",ExpressionUUID->"42168992-a771-4c6f-8c7a-a5d4cc34a759"], Cell[4745903, 93590, 174, 3, 23, "Print",ExpressionUUID->"eab3bf27-818e-467e-86a6-c570ef08e7dd"], Cell[4746080, 93595, 17586, 408, 119, "Print",ExpressionUUID->"3bb5144c-2516-494e-a94e-571f0d2ee597"], Cell[4763669, 94005, 183, 3, 23, "Print",ExpressionUUID->"900e7d1c-63c9-4db0-b81f-5d23876017b9"], Cell[4763855, 94010, 12468, 306, 137, "Print",ExpressionUUID->"3cf56959-ed53-479c-8c23-4ca6f71fc8d9"] }, Open ]], Cell[4776338, 94319, 138, 3, 47, "Output",ExpressionUUID->"81b10f75-2f21-4603-9d12-28ed9bc24bf4"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[4776525, 94328, 94, 0, 35, "Subsubsection",ExpressionUUID->"1b4aee06-500d-498e-9a84-2ae1c2e39bc6"], Cell[CellGroupData[{ Cell[4776644, 94332, 533, 15, 43, "Input",ExpressionUUID->"457e9e56-2aa5-4da1-a6b4-d246bcc492cd"], Cell[4777180, 94349, 2063, 78, 79, "Output",ExpressionUUID->"3636dbe6-dbe7-4662-9beb-99d1684f1658"] }, Open ]], Cell[CellGroupData[{ Cell[4779280, 94432, 556, 16, 43, "Input",ExpressionUUID->"0c8bb6b6-cc60-4d68-be7d-dabb53a3359d"], Cell[4779839, 94450, 923436, 15149, 390, "Output",ExpressionUUID->"079533ba-c2d8-4801-ac7c-ab2d368f56a9"] }, Open ]], Cell[CellGroupData[{ Cell[5703312, 109604, 398, 12, 57, "Input",ExpressionUUID->"d1d54447-7dee-4807-96be-4cce4b391ac9"], Cell[5703713, 109618, 206, 6, 59, "Output",ExpressionUUID->"b1bfd693-8b4c-420b-a8a4-9caf8e8535ad"] }, Open ]], Cell[CellGroupData[{ Cell[5703956, 109629, 320, 9, 43, "Input",ExpressionUUID->"2a5d10a0-8c1b-4cc0-8201-d9b247a6b5a7"], Cell[5704279, 109640, 18736, 379, 72, "Output",ExpressionUUID->"b463dcff-f761-4b65-980a-7e76a3b4338a"] }, Open ]], Cell[CellGroupData[{ Cell[5723052, 110024, 537, 17, 67, "Input",ExpressionUUID->"55cf05eb-f312-405f-baae-7cf7d439b8a2"], Cell[5723592, 110043, 148, 3, 47, "Output",ExpressionUUID->"6182c640-0422-496d-b26a-f797ee59c99d"] }, Open ]], Cell[5723755, 110049, 658, 21, 78, "Input",ExpressionUUID->"7f8a734a-1a36-4893-b3cb-6180d975826d"], Cell[5724416, 110072, 111, 1, 29, "Input",ExpressionUUID->"c2abaacd-b851-4546-8dda-81d1dec1f5e4"], Cell[5724530, 110075, 286, 7, 29, "Input",ExpressionUUID->"9a8605e7-af32-4a5d-9e8c-890da13ff72f"], Cell[5724819, 110084, 364, 10, 29, "Input",ExpressionUUID->"14c290e5-b0be-4518-a159-ea0f32acca56"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[5725232, 110100, 104, 0, 53, "Subsection",ExpressionUUID->"b1294ac9-e7bc-4f74-9eb2-3d00c8879aab"], Cell[CellGroupData[{ Cell[5725361, 110104, 448, 13, 70, "Input",ExpressionUUID->"21efd536-71de-4f6e-b35b-b4a8952b0d6b"], Cell[5725812, 110119, 125, 1, 70, "Output",ExpressionUUID->"c2b4708b-c84e-4dd5-9174-46b0ab0b6640"] }, Open ]], Cell[CellGroupData[{ Cell[5725974, 110125, 614, 18, 70, "Input",ExpressionUUID->"d420e116-2b47-4691-adc7-a5793b633fa3"], Cell[5726591, 110145, 257, 7, 70, "Output",ExpressionUUID->"3835c912-f74f-4e52-9a95-6cc612fffc3b"] }, Open ]], Cell[CellGroupData[{ Cell[5726885, 110157, 133, 2, 70, "Input",ExpressionUUID->"bc7bb041-808a-415f-beee-ecd33e01a60d"], Cell[5727021, 110161, 125, 1, 70, "Output",ExpressionUUID->"a531769f-5052-40b0-80d0-cbac87a2d747"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[5727195, 110168, 130, 2, 37, "Subsection",ExpressionUUID->"2b46a554-96e8-419a-af1b-48d7bdeeaf66"], Cell[CellGroupData[{ Cell[5727350, 110174, 399, 12, 54, "Input",ExpressionUUID->"a40dc46e-b27f-471a-9888-d77b6ccdb3bb"], Cell[5727752, 110188, 124, 1, 33, "Output",ExpressionUUID->"3900a967-4b67-4978-a891-11ae276d591e"] }, Open ]], Cell[5727891, 110192, 512, 16, 65, "Input",ExpressionUUID->"3c8df1f5-2efb-4c0d-bf6d-d3a1d384f315"] }, Closed]], Cell[CellGroupData[{ Cell[5728440, 110213, 102, 0, 37, "Subsection",ExpressionUUID->"ad15bf9e-2d73-4396-9140-51348387a1f9"], Cell[CellGroupData[{ Cell[5728567, 110217, 485, 14, 70, "Input",ExpressionUUID->"1dd0cf6f-1da6-42e6-99ae-a3fb6ad2db55"], Cell[5729055, 110233, 125, 1, 70, "Output",ExpressionUUID->"deacbc79-0335-49dd-a0be-ab38a38eedba"] }, Open ]], Cell[CellGroupData[{ Cell[5729217, 110239, 655, 19, 70, "Input",ExpressionUUID->"cf3da11a-5965-4a47-b8eb-a5a0b70aa019"], Cell[5729875, 110260, 314, 9, 70, "Output",ExpressionUUID->"c45140f1-2ba0-4ae7-a6c1-1f49c183f2cc"] }, Open ]], Cell[CellGroupData[{ Cell[5730226, 110274, 133, 2, 70, "Input",ExpressionUUID->"971f1478-8306-49a5-9247-c76e015c95b5"], Cell[5730362, 110278, 124, 1, 70, "Output",ExpressionUUID->"a614e505-1cfb-4845-b524-220a8ddefd18"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[5730535, 110285, 86, 0, 37, "Subsection",ExpressionUUID->"6439790d-5558-4fb0-9178-8c6534b839c4"], Cell[CellGroupData[{ Cell[5730646, 110289, 189, 3, 29, "Input",ExpressionUUID->"c2f5ed05-f00c-4779-bb1a-56b4f974356f"], Cell[5730838, 110294, 226, 7, 45, "Output",ExpressionUUID->"b1e3a224-6db8-48b2-bf6d-7396c21115f4"] }, Open ]], Cell[5731079, 110304, 282, 8, 43, "Input",ExpressionUUID->"24bf29e7-56e0-4ce7-9473-3e446fc5d46b"] }, Open ]], Cell[CellGroupData[{ Cell[5731398, 110317, 85, 0, 53, "Subsection",ExpressionUUID->"001314f8-3730-49af-aa31-fc349d03fc7b"], Cell[CellGroupData[{ Cell[5731508, 110321, 193, 4, 29, "Input",ExpressionUUID->"213bb3e7-6f68-4fdf-b003-b21cabcadfde"], Cell[5731704, 110327, 112, 2, 33, "Output",ExpressionUUID->"601231d5-00d9-4d6d-b6bb-e8432ea03e5c"] }, Open ]], Cell[CellGroupData[{ Cell[5731853, 110334, 226, 5, 29, "Input",ExpressionUUID->"abfcc2a8-9025-4413-9ca2-3341814eb829"], Cell[5732082, 110341, 24929, 472, 1757, "Output",ExpressionUUID->"2d4f42ab-c279-49c9-a4f5-ea7b644fd55e"] }, Open ]], Cell[CellGroupData[{ Cell[5757048, 110818, 140, 3, 29, "Input",ExpressionUUID->"74a5cb71-2dab-4e84-8763-26cfb1314007"], Cell[5757191, 110823, 23654, 428, 392, "Output",ExpressionUUID->"c29148ba-28ba-46b3-815f-7726e201d81f"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[5780894, 111257, 86, 0, 37, "Subsection",ExpressionUUID->"863dfab6-a44f-47db-afed-617bd2407955"], Cell[CellGroupData[{ Cell[5781005, 111261, 193, 4, 29, "Input",ExpressionUUID->"a96df64e-b2d1-4f27-bc3b-334193ca2462"], Cell[5781201, 111267, 32706, 595, 58, "Output",ExpressionUUID->"807e7701-dbdc-4d02-ac4d-639c5a3d97b0"] }, Open ]], Cell[CellGroupData[{ Cell[5813944, 111867, 146, 3, 29, "Input",ExpressionUUID->"b20b4fa2-2cd2-492c-992a-2f24ebabb6b9"], Cell[5814093, 111872, 6238, 107, 392, "Output",ExpressionUUID->"f5a749e7-63bc-4efe-9cd0-d3787f73fcc6"] }, Open ]], Cell[CellGroupData[{ Cell[5820368, 111984, 201, 4, 29, "Input",ExpressionUUID->"fb4aab5f-30b2-4946-ad38-5f3fa63bef06"], Cell[5820572, 111990, 527, 10, 33, "Output",ExpressionUUID->"48d1b194-b36c-4f67-bd31-f385a934b9e8"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[5821148, 112006, 83, 0, 53, "Subsection",ExpressionUUID->"5378cbb1-4728-4305-9d99-7241d333f8a1"], Cell[CellGroupData[{ Cell[5821256, 112010, 190, 4, 29, "Input",ExpressionUUID->"eff52445-557f-477d-8f60-3f394807fafd"], Cell[5821449, 112016, 12081, 222, 379, "Output",ExpressionUUID->"d6c76245-a375-44c0-b762-9d0454afee7e"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[5833579, 112244, 91, 0, 53, "Subsection",ExpressionUUID->"05cf617e-3d8e-4012-b242-e33e2095628b"], Cell[CellGroupData[{ Cell[5833695, 112248, 216, 5, 43, "Input",ExpressionUUID->"dc99606a-bb1c-4801-9737-365250971b40"], Cell[5833914, 112255, 18647, 684, 627, "Output",ExpressionUUID->"9cd1a783-08ba-4ee9-80d5-2eb0efa4347c"] }, Open ]], Cell[5852576, 112942, 405, 12, 29, "Input",ExpressionUUID->"421827d9-64d9-4b4b-a999-3f29789d4e77"], Cell[5852984, 112956, 148, 3, 29, "Input",ExpressionUUID->"177afe5f-fe52-481d-b518-9f1feba1b35f"] }, Open ]], Cell[CellGroupData[{ Cell[5853169, 112964, 93, 0, 53, "Subsection",ExpressionUUID->"f62cb597-a6f8-4ad0-9cb7-65bf16a22d73"], Cell[CellGroupData[{ Cell[5853287, 112968, 190, 4, 29, "Input",ExpressionUUID->"feefe486-51b5-4737-aadb-6d39c0921dbe"], Cell[5853480, 112974, 114, 2, 33, "Output",ExpressionUUID->"5a009a03-1ffd-40d4-a2ae-1588a77882ee"] }, Open ]], Cell[CellGroupData[{ Cell[5853631, 112981, 153, 3, 29, "Input",ExpressionUUID->"aac10be8-aa22-4aa5-b13e-f759d3a02596"], Cell[5853787, 112986, 114, 2, 33, "Output",ExpressionUUID->"ce0e37e2-8b4e-4748-ac54-e641a24fa593"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[5853950, 112994, 88, 0, 53, "Subsection",ExpressionUUID->"452c20b7-9eb5-4b96-b74f-a2472ef6b495"], Cell[CellGroupData[{ Cell[5854063, 112998, 191, 3, 70, "Input",ExpressionUUID->"6d742df2-c6cc-40d0-8fd1-0a55c52ad55b"], Cell[5854257, 113003, 334, 11, 70, "Output",ExpressionUUID->"8b5b6358-6ebc-4a42-9b35-6ce222d69fb8"] }, Open ]], Cell[CellGroupData[{ Cell[5854628, 113019, 142, 2, 70, "Input",ExpressionUUID->"45db3811-0af8-4f5e-abd5-fa7557b1db1d"], Cell[5854773, 113023, 1075, 28, 70, "Output",ExpressionUUID->"031f6481-bf2f-4e99-8472-91b8a532d296"] }, Open ]], Cell[CellGroupData[{ Cell[5855885, 113056, 227, 7, 70, "Input",ExpressionUUID->"ccfab756-0aad-40d6-aa89-4b260d1500c3"], Cell[5856115, 113065, 1196, 32, 70, "Output",ExpressionUUID->"271ac4ea-5304-4020-af04-9d255b6111ef"] }, Open ]], Cell[CellGroupData[{ Cell[5857348, 113102, 341, 10, 70, "Input",ExpressionUUID->"b7e0803e-e529-4bfb-82e5-e6b8bef8bf62"], Cell[5857692, 113114, 1195, 32, 70, "Output",ExpressionUUID->"3babf7af-b86e-4189-bd48-23fb015709af"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[5858936, 113152, 83, 0, 37, "Subsection",ExpressionUUID->"671ac800-b2c6-4756-a671-5f41534bb14f"], Cell[CellGroupData[{ Cell[5859044, 113156, 186, 3, 70, "Input",ExpressionUUID->"18805b67-f8d1-4e55-a52b-69a3b7bd26be"], Cell[5859233, 113161, 239, 7, 70, "Output",ExpressionUUID->"5b9a8606-c4ed-4e3e-a15d-699dd43336be"] }, Open ]], Cell[CellGroupData[{ Cell[5859509, 113173, 142, 2, 70, "Input",ExpressionUUID->"c1e46f86-a1ec-446b-b50a-30db2343dafb"], Cell[5859654, 113177, 239, 7, 70, "Output",ExpressionUUID->"90e9827f-7b98-48ff-8d23-004b463c054a"] }, Open ]], Cell[CellGroupData[{ Cell[5859930, 113189, 261, 6, 70, "Input",ExpressionUUID->"c46ea563-aee0-4b4f-9f66-8041e81bd033"], Cell[5860194, 113197, 239, 7, 70, "Output",ExpressionUUID->"20beafe6-5b3d-4a55-b089-77ea657ce8c7"] }, Open ]] }, Closed]] }, Open ]], Cell[CellGroupData[{ Cell[5860494, 113211, 84, 0, 52, "Section",ExpressionUUID->"52751a43-fc14-4343-ac44-d5a0dca013af"], Cell[CellGroupData[{ Cell[5860603, 113215, 600, 17, 70, "Input",ExpressionUUID->"de524a44-e42b-41ac-b2a7-97d3b6fffbcd"], Cell[5861206, 113234, 336953, 6252, 70, "Output",ExpressionUUID->"4df19cf7-9358-4e30-977b-ed1b4a2b4647"] }, Open ]], Cell[CellGroupData[{ Cell[6198196, 119491, 724, 21, 70, "Input",ExpressionUUID->"e370b335-badb-41e0-8f05-8d89384e36b3"], Cell[6198923, 119514, 105463, 1676, 70, "Output",ExpressionUUID->"049b5a50-3939-497d-8f6b-29dbcfae3baa"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[6304435, 121196, 79, 0, 52, "Section",ExpressionUUID->"b80e932c-4599-4500-bdb3-dc1559db2f2a"], Cell[CellGroupData[{ Cell[6304539, 121200, 294, 7, 70, "Input",ExpressionUUID->"35a4bf95-4113-4ef9-9f49-d1b048c27b3b"], Cell[6304836, 121209, 21209, 1128, 70, 16292, 1052, "GraphicsData", "PostScript", "Graphics",ExpressionUUID->"e341c344-3074-4ed6-8cf0-191c026f891d"], Cell[6326048, 122339, 196, 5, 70, "Output",ExpressionUUID->"4c724f7b-90ce-48d9-81cd-63174cd87cff"] }, Open ]], Cell[CellGroupData[{ Cell[6326281, 122349, 93, 0, 70, "Subsection",ExpressionUUID->"76151f32-fb84-46fe-b1b9-ddc9311f53b8"], Cell[CellGroupData[{ Cell[6326399, 122353, 627, 18, 70, "Input",ExpressionUUID->"8d4af852-d20f-424b-8e24-c7d9d65203cd"], Cell[6327029, 122373, 232, 8, 70, "Output",ExpressionUUID->"0a677a3d-470d-4264-bbdc-05f2c96782b4"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[6327310, 122387, 93, 0, 70, "Subsection",ExpressionUUID->"5ede71de-1a29-46df-ac36-8a00ab46cf57"], Cell[CellGroupData[{ Cell[6327428, 122391, 623, 18, 70, "Input",ExpressionUUID->"20a710a7-8f4c-4576-8e20-eecff898c54d"], Cell[6328054, 122411, 232, 8, 70, "Output",ExpressionUUID->"6582b82e-56ac-46c4-9f77-3fbbad080f32"] }, Open ]] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[6328347, 122426, 85, 0, 52, "Section",ExpressionUUID->"1d5dcf8d-c0e2-46d0-ace4-7e682f7b601e"], Cell[6328435, 122428, 3108, 104, 70, "Input",ExpressionUUID->"3c09d264-ef62-4ade-a739-1421a2848aca"], Cell[6331546, 122534, 50897, 888, 70, "Input",ExpressionUUID->"dfa7bd49-1197-4b45-aedc-be109e765935"], Cell[CellGroupData[{ Cell[6382468, 123426, 240, 5, 70, "Input",ExpressionUUID->"0f5d40d0-d724-4267-99ea-f1ca5d489dd0"], Cell[6382711, 123433, 47907, 800, 70, "Output",ExpressionUUID->"a524ed01-8bd6-4c6f-8ad4-4a5d66c0aeee"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[6430667, 124239, 93, 0, 52, "Section",ExpressionUUID->"5a1a62c0-a59a-406f-99b6-4bd65dc11a1c"], Cell[CellGroupData[{ Cell[6430785, 124243, 85, 0, 70, "Subsection",ExpressionUUID->"b62d756c-efc9-42a6-a204-c3a1dd8aedec"], Cell[CellGroupData[{ Cell[6430895, 124247, 369, 9, 70, "Input",ExpressionUUID->"7107c184-ae98-4d8b-88f3-e144ca573a54"], Cell[CellGroupData[{ Cell[6431289, 124260, 121, 0, 70, "Print",ExpressionUUID->"276cb67c-1bc8-4a71-8983-c78bb9c5f9ff"], Cell[6431413, 124262, 151, 2, 70, "Print",ExpressionUUID->"e6c994b6-e432-4ed4-ae33-ffc283f82297"], Cell[6431567, 124266, 138, 1, 70, "Print",ExpressionUUID->"973726a9-24a0-47bb-9e86-25832e9db50c"], Cell[6431708, 124269, 121, 0, 70, "Print",ExpressionUUID->"0bee0a96-a2da-4e5a-917d-25c3cee4fd92"], Cell[6431832, 124271, 123, 0, 70, "Print",ExpressionUUID->"92cb7d76-bdee-4ae9-ac4f-f6cf414611ba"], Cell[6431958, 124273, 155, 2, 70, "Print",ExpressionUUID->"3a730d2d-7003-4b56-82eb-48a52b628da2"], Cell[6432116, 124277, 126, 0, 70, "Print",ExpressionUUID->"a0fc657f-c604-48ab-b35c-51253d4cef58"], Cell[6432245, 124279, 155, 2, 70, "Print",ExpressionUUID->"61ee3c30-329a-45cc-ba67-0910ce69e0f0"] }, Open ]], Cell[6432415, 124284, 1393, 33, 70, "Output",ExpressionUUID->"d7e4e4cd-92a7-4d9f-a5c3-fb5b23147189"] }, Open ]], Cell[CellGroupData[{ Cell[6433845, 124322, 1091, 29, 70, "Input",ExpressionUUID->"c7a86fd2-b182-4fde-a44f-394df27893e3"], Cell[6434939, 124353, 28937, 481, 70, "Output",ExpressionUUID->"2598cbc3-524a-4722-a667-178799494acf"] }, Open ]], Cell[6463891, 124837, 228, 6, 70, "Input",ExpressionUUID->"f3515510-1e7a-4041-9183-3950e6beb4ea"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[6464168, 124849, 86, 0, 52, "Section",ExpressionUUID->"e0107f4f-93f8-4e8f-8266-cc384c02b039"], Cell[CellGroupData[{ Cell[6464279, 124853, 79, 0, 53, "Subsection",ExpressionUUID->"e444336a-2ebf-49bc-a7b1-72b76ee5cb1c"], Cell[6464361, 124855, 5861, 167, 233, "Input",ExpressionUUID->"a593dafc-7fa0-4f0d-988c-c66dec8cc14a"] }, Open ]], Cell[CellGroupData[{ Cell[6470259, 125027, 79, 0, 53, "Subsection",ExpressionUUID->"b227825b-78da-4d5d-a3dc-2e4dace6b6f9"], Cell[CellGroupData[{ Cell[6470363, 125031, 566, 16, 29, "Input",ExpressionUUID->"c46ab6ac-7311-4fe8-9b78-1380b1491529"], Cell[6470932, 125049, 13838, 271, 392, "Output",ExpressionUUID->"cd313115-20b5-4691-817d-98af3a1c2807"] }, Open ]], Cell[CellGroupData[{ Cell[6484807, 125325, 244, 6, 29, "Input",ExpressionUUID->"9eb8f827-6c58-4f62-85f9-93e9069b3338"], Cell[6485054, 125333, 475, 9, 33, "Output",ExpressionUUID->"45c4b93e-c9e8-4ba1-b2b5-d91bad971161"] }, Open ]], Cell[CellGroupData[{ Cell[6485566, 125347, 385, 11, 29, "Input",ExpressionUUID->"33175e21-9f8c-47a3-a1c1-0d44f9e1f020"], Cell[6485954, 125360, 1301, 35, 54, "Output",ExpressionUUID->"0d5b96de-1598-44a8-ad36-7e1ee542617d"] }, Open ]], Cell[CellGroupData[{ Cell[6487292, 125400, 208, 5, 29, "Input",ExpressionUUID->"0512880b-cb62-4b20-992a-35e7fd0b9169"], Cell[6487503, 125407, 258, 9, 50, "Output",ExpressionUUID->"2c422d51-f642-42e8-9a02-5754b2d4bd14"] }, Open ]], Cell[CellGroupData[{ Cell[6487798, 125421, 137, 3, 29, "Input",ExpressionUUID->"a3c6cc72-d70e-48f3-8ec0-684705dd7fb1"], Cell[6487938, 125426, 129, 2, 33, "Output",ExpressionUUID->"1369e215-2919-4860-8155-85e2d1124f25"] }, Open ]], Cell[CellGroupData[{ Cell[6488104, 125433, 188, 5, 29, "Input",ExpressionUUID->"617148ef-ceae-451c-84cd-03edbe3390fd"], Cell[6488295, 125440, 618, 24, 50, "Output",ExpressionUUID->"41d2180b-52ab-489c-b79d-1f23330c8b9e"] }, Open ]], Cell[CellGroupData[{ Cell[6488950, 125469, 354, 11, 29, "Input",ExpressionUUID->"b237bf2b-fb08-4185-8ff1-a519cf464225"], Cell[6489307, 125482, 166, 4, 33, "Output",ExpressionUUID->"49ff051b-c651-4338-8f8f-f93612e4238a"] }, Open ]], Cell[CellGroupData[{ Cell[6489510, 125491, 477, 13, 29, "Input",ExpressionUUID->"756cc019-5503-4258-8fca-8ee16ba4686a"], Cell[6489990, 125506, 168, 4, 33, "Output",ExpressionUUID->"ef63640c-10df-4ad4-a81f-6017633934cc"] }, Open ]], Cell[CellGroupData[{ Cell[6490195, 125515, 113, 2, 29, "Input",ExpressionUUID->"6e9cf9fa-0f9b-4565-8c4e-f8f6217767d6"], Cell[6490311, 125519, 81303, 1793, 392, "Output",ExpressionUUID->"3c9df45e-d9ee-423e-99bc-11d6f087240c"] }, Open ]], Cell[CellGroupData[{ Cell[6571651, 127317, 178, 4, 29, "Input",ExpressionUUID->"d257381f-960c-45ba-a444-8cab33382029"], Cell[6571832, 127323, 28647, 960, 1124, "Output",ExpressionUUID->"94865ff1-175a-49be-900d-5af362680afc"] }, Open ]], Cell[CellGroupData[{ Cell[6600516, 128288, 512, 17, 49, "Input",ExpressionUUID->"f6c1c568-df40-4aec-8138-5a089b92a304"], Cell[6601031, 128307, 3390, 111, 135, "Output",ExpressionUUID->"8e6769a9-bf84-4333-ace5-d701a457c0ef"] }, Open ]], Cell[CellGroupData[{ Cell[6604458, 128423, 269, 8, 29, "Input",ExpressionUUID->"5195e75f-81d4-4be8-8267-4490d288ff52"], Cell[6604730, 128433, 178, 5, 46, "Output",ExpressionUUID->"9b2dba5f-8544-4358-8ad7-6cc65d111a46"] }, Open ]], Cell[6604923, 128441, 336, 10, 29, "Input",ExpressionUUID->"bc10cea9-428d-463b-9c08-bde63420a24d"], Cell[6605262, 128453, 457, 14, 29, "Input",ExpressionUUID->"69791426-0227-400b-926f-bdb03a1ae21d"], Cell[CellGroupData[{ Cell[6605744, 128471, 114, 2, 29, "Input",ExpressionUUID->"1b4f92ea-db11-4b88-943a-d03e8d5f7f10"], Cell[6605861, 128475, 18272, 583, 495, "Output",ExpressionUUID->"c143b033-3b7a-4b80-a427-c29ea46943d8"] }, Open ]], Cell[CellGroupData[{ Cell[6624170, 129063, 1043, 33, 78, "Input",ExpressionUUID->"2e73b327-f646-44f8-a464-c63c5b1aa3a2"], Cell[6625216, 129098, 7152, 128, 377, "Output",ExpressionUUID->"4a7222a6-ae8c-4546-a284-060ea17d8d2e"] }, Open ]] }, Open ]] }, Closed]] }, Open ]] } ] *)