(* Content-type: application/vnd.wolfram.mathematica *)
(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)
(* CreatedBy='Mathematica 11.1' *)
(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 158, 7]
NotebookDataLength[ 1433708, 28958]
NotebookOptionsPosition[ 1409454, 28529]
NotebookOutlinePosition[ 1409886, 28546]
CellTagsIndexPosition[ 1409843, 28543]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
Notebook[{
Cell[CellGroupData[{
Cell["Gyrate Rhombicosidodecahedron", "Title",ExpressionUUID->"374b501c-4e56-4c55-ae3c-2d49809fed1d"],
Cell[CellGroupData[{
Cell["Author", "Subsection",ExpressionUUID->"510db536-818e-492e-9e9d-c5378029d7d7"],
Cell["\<\
Eric W. Weisstein
April 17, 2020\
\>", "Text",ExpressionUUID->"6d0a47af-fe1f-401e-8847-4c5cef53ad07"],
Cell[TextData[{
"This notebook downloaded from ",
ButtonBox["http://mathworld.wolfram.com/notebooks/Polyhedra/\
GyrateRhombicosidodecahedron.nb",
BaseStyle->"Hyperlink",
ButtonData:>{
URL["http://mathworld.wolfram.com/notebooks/Polyhedra/\
GyrateRhombicosidodecahedron.nb"], None}],
"."
}], "Text",ExpressionUUID->"cad3f5cb-bf11-4ac5-8d12-9326ccd567b2"],
Cell[TextData[{
"For more information, see Eric's ",
StyleBox["MathWorld",
FontSlant->"Italic"],
" entry ",
ButtonBox["http://mathworld.wolfram.com/GyrateRhombicosidodecahedron.html",
BaseStyle->"Hyperlink",
ButtonData:>{
URL["http://mathworld.wolfram.com/GyrateRhombicosidodecahedron.html"],
None}],
"."
}], "Text",ExpressionUUID->"9337c47a-a176-4e5b-b956-0dc6796f9e6d"],
Cell["\<\
\[Copyright]2020 Wolfram Research, Inc. except for portions noted otherwise\
\>", "Text",ExpressionUUID->"a996f21f-77f5-4e42-86b5-f0d62845b607"]
}, Open ]],
Cell[CellGroupData[{
Cell["To do", "Section",ExpressionUUID->"15c56df4-9d00-4612-8d13-41f155229b00"],
Cell["RegionFunction", "Text",ExpressionUUID->"81b820e6-403e-4b52-9469-de4cfb807623"]
}, Open ]],
Cell[CellGroupData[{
Cell["Graphic", "Section",ExpressionUUID->"db24e6b8-ca01-47b0-8454-a340873ae129"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"PolyhedronData", "[",
RowBox[{"\"\\"", ",", "\"\\""}], "]"}]], "Input",
CellLabel->"In[54]:=",ExpressionUUID->"a7f654d0-2fbd-49be-b9a8-c7450d645867"],
Cell[BoxData[
RowBox[{"{",
RowBox[{"\<\"GyrateRhombicosidodecahedron\"\>", ",", "\<\"J72\"\>", ",",
RowBox[{"{",
RowBox[{"\<\"Johnson\"\>", ",", "72"}], "}"}]}], "}"}]], "Output",
CellLabel->"Out[54]=",ExpressionUUID->"81a05688-7270-4977-84e5-93734df55688"]
}, Open ]],
Cell[CellGroupData[{
Cell["PolyhedronData", "Subsection",ExpressionUUID->"401523a8-e861-49e3-8adf-b8ced076117c"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"PolyhedronData", "[",
RowBox[{
"\"\\"", ",", "\"\\""}],
"]"}]], "Input",
CellLabel->
"In[281]:=",ExpressionUUID->"e4219688-6846-40ab-8340-ee36580cbba2"],
Cell[BoxData[
RowBox[{"Missing", "[", "\<\"NotAvailable\"\>", "]"}]], "Output",
CellLabel->
"Out[281]=",ExpressionUUID->"c59e6c66-1516-425c-a322-53afb4565774"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"PolyhedronData", "[", "\"\\"",
"]"}]], "Input",
CellLabel->
"In[279]:=",ExpressionUUID->"7346e294-67b2-40dd-93b4-f0ff78f30ea5"],
Cell[BoxData[
Graphics3DBox[
GraphicsComplex3DBox[
NCache[{{0, Root[
1 - 5 #^2 + 5 #^4& , 1, 0], (Rational[9, 4] +
Rational[9, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2] (1 + 5^Rational[1, 2]), 0,
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[
1 - 20 #^2 + 80 #^4& , 2, 0], (Rational[9, 4] +
Rational[9, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 4] (3 + 5^Rational[1, 2]),
Rational[1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (1 + 5^Rational[1, 2]),
Rational[-1, 4] (34 + 62 5^Rational[-1, 2])^Rational[1, 2], (
Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 4] (3 + 5^Rational[1, 2]),
Rational[-1, 4] (26 + 58 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[-1, 2], (Rational[9, 4] + Rational[9, 2] 5^Rational[-1, 2])^
Rational[1, 2], (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {
0, (Rational[5, 2] + Rational[11, 2] 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[-1, 2], Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (3 + 5^Rational[1, 2]),
Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (-3 - 5^Rational[1, 2]),
Rational[1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 2], Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (-3 - 5^Rational[1, 2]),
Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (1 + 5^Rational[1, 2]),
Rational[-1, 4] (2 - 2 5^Rational[-1, 2])^Rational[1, 2],
Rational[-3, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2] (-1 - 5^Rational[1, 2]), 0,
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 2], (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2],
Rational[-3, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
0, Root[1 - 25 #^2 + 5 #^4& , 1, 0],
Rational[1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2], Rational[-3, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 4] (-3 - 5^Rational[1, 2]), (Rational[13, 8] +
Rational[29, 8] 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 4] (-1 - 5^Rational[1, 2]), (Rational[17, 8] +
Rational[31, 8] 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2], (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2], (Rational[9, 4] + Rational[9, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {
Rational[1, 2] (2 + 5^Rational[1, 2]), (Rational[1, 4] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2], Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (5 + 5^Rational[1, 2]), Root[
1 - 100 #^2 + 80 #^4& , 1, 0],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[-1, 2], Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (1 + 5^Rational[1, 2]), (Rational[17, 8] +
Rational[31, 8] 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 4] (3 + 5^Rational[1, 2]),
Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 2] (2 + 5^Rational[1, 2]),
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2], Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (3 + 5^Rational[1, 2]), (Rational[13, 8] +
Rational[29, 8] 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2] (1 + 5^Rational[1, 2]), 0,
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 2] (2 + 5^Rational[1, 2]),
Rational[1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2], (
Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 4] (3 + 5^Rational[1, 2]),
Rational[1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (5 + 5^Rational[1, 2]), (Rational[5, 8] +
Rational[11, 8] 5^Rational[-1, 2])^
Rational[1, 2], (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {
Rational[1, 2] (1 + 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^
Rational[1, 2], (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {
Rational[1, 4] (1 + 5^Rational[1, 2]), Root[
1 - 20 #^2 + 80 #^4& , 2, 0], (Rational[9, 4] +
Rational[9, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2] (2 + 5^Rational[1, 2]),
Rational[-1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[-1, 2], (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2], (Rational[9, 4] + Rational[9, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {
Rational[1, 2] (1 + 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^
Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2], (Rational[9, 4] + Rational[9, 2] 5^Rational[-1, 2])^
Rational[1, 2], (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {
Rational[1, 4] (-1 - 5^
Rational[1, 2]), -(Rational[17, 8] +
Rational[31, 8] 5^Rational[-1, 2])^Rational[1, 2], (Rational[1, 4] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2], Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (-5 - 5^Rational[1, 2]), (Rational[5, 8] +
Rational[11, 8] 5^Rational[-1, 2])^
Rational[1, 2], (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {
Rational[-1, 2], Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {(-3 +
5^Rational[1, 2])^(-1), Root[1 - 260 #^2 + 80 #^4& , 1, 0],
Rational[-1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[-1, 2], Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {-1 +
Rational[-1, 2] 5^Rational[1, 2], (Rational[1, 4] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 4] (-3 - 5^Rational[1, 2]),
Rational[1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (-5 - 5^Rational[1, 2]),
Rational[-1, 4] (10 + 22 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 4] (-3 - 5^Rational[1, 2]),
Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {-1 +
Rational[-1, 2] 5^Rational[1, 2],
Rational[-1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2] (-1 - 5^Rational[1, 2]), 0,
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[-1, 2],
Rational[-3, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2] (-1 - 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^
Rational[1, 2], (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {
0, Root[1 - 5 #^2 + 5 #^4& , 1, 0],
Rational[-3, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {-1 +
Rational[-1, 2] 5^Rational[1, 2],
Rational[1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2], (
Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[-1, 2], (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2],
Rational[-3, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2] (-1 - 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^
Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {-1 +
Rational[-1, 2] 5^Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 4] (-1 - 5^Rational[1, 2]),
Rational[-1, 4] (2 - 2 5^Rational[-1, 2])^Rational[1, 2],
Rational[-3, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}}, {{
0, -0.8506508083520399, 2.0645728807067605`}, {
1.618033988749895,
0, -1.5388417685876268`}, {-0.8090169943749475, -0.2628655560595668,
2.0645728807067605`}, {1.3090169943749475`,
0.9510565162951535, -1.5388417685876268`}, {
0.8090169943749475, -1.9641671727636467`, 0.6881909602355868}, {
1.3090169943749475`, -1.8017073246471935`, -0.16245984811645317`}, {-0.5,
2.0645728807067605`, 0.6881909602355868}, {
0, 2.2270327288232132`, -0.16245984811645317`}, {-0.5, \
-1.5388417685876268`, 1.5388417685876268`}, {
1.3090169943749475`, -0.9510565162951535, -1.5388417685876268`}, \
{-1.3090169943749475`, 0.9510565162951535, 1.5388417685876268`}, {0.5,
1.5388417685876268`, -1.5388417685876268`}, {-1.3090169943749475`, \
-0.9510565162951535, 1.5388417685876268`}, {
0.8090169943749475, -0.2628655560595668, -2.0645728807067605`}, \
{-1.618033988749895, 0, 1.5388417685876268`}, {0.5,
0.6881909602355868, -2.0645728807067605`}, {
0, -2.2270327288232132`, 0.16245984811645317`}, {
0.5, -2.0645728807067605`, -0.6881909602355868}, {-1.3090169943749475`,
1.8017073246471935`, 0.16245984811645317`}, {-0.8090169943749475,
1.9641671727636467`, -0.6881909602355868}, {0.5, 0.6881909602355868,
2.0645728807067605`}, {2.118033988749895,
0.6881909602355868, -0.16245984811645317`}, {0.5, -1.5388417685876268`,
1.5388417685876268`}, {
1.8090169943749475`, -1.1135163644116068`, -0.6881909602355868}, {-0.5,
1.5388417685876268`, 1.5388417685876268`}, {0.8090169943749475,
1.9641671727636467`, -0.6881909602355868}, {
1.3090169943749475`, -0.9510565162951535, 1.5388417685876268`}, {
2.118033988749895, -0.6881909602355868, 0.16245984811645317`}, {0.5,
1.5388417685876268`, 1.5388417685876268`}, {1.3090169943749475`,
1.8017073246471935`, 0.16245984811645317`}, {
1.618033988749895, 0, 1.5388417685876268`}, {2.118033988749895,
0.16245984811645317`, 0.6881909602355868}, {1.3090169943749475`,
0.9510565162951535, 1.5388417685876268`}, {1.8090169943749475`,
1.1135163644116066`, 0.6881909602355868}, {
1.618033988749895, -1.3763819204711736`, 0.6881909602355868}, {
0.8090169943749475, -0.2628655560595668, 2.0645728807067605`}, {
2.118033988749895, -0.16245984811645317`, -0.6881909602355868}, {-0.5,
0.6881909602355868, 2.0645728807067605`}, {1.618033988749895,
1.3763819204711736`, -0.6881909602355868}, {0.5, 2.0645728807067605`,
0.6881909602355868}, {-0.8090169943749475, -1.9641671727636467`,
0.6881909602355868}, {
0.5, -1.5388417685876268`, -1.5388417685876268`}, {-1.8090169943749475`,
1.1135163644116066`, 0.6881909602355868}, {-0.5,
1.5388417685876268`, -1.5388417685876268`}, {-1.3090169943749477`, \
-1.8017073246471935`, -0.16245984811645317`}, {-0.5, -1.5388417685876268`, \
-1.5388417685876268`}, {-2.118033988749895,
0.6881909602355868, -0.16245984811645317`}, {-1.3090169943749475`,
0.9510565162951535, -1.5388417685876268`}, {-1.8090169943749475`, \
-1.1135163644116066`, -0.6881909602355868}, {-1.3090169943749475`, \
-0.9510565162951535, -1.5388417685876268`}, {-2.118033988749895, \
-0.16245984811645317`, -0.6881909602355868}, {-1.618033988749895,
0, -1.5388417685876268`}, {-0.5, -2.0645728807067605`, \
-0.6881909602355868}, {-1.618033988749895, -1.3763819204711736`,
0.6881909602355868}, {
0, -0.8506508083520399, -2.0645728807067605`}, {-2.118033988749895,
0.16245984811645317`, 0.6881909602355868}, {-0.5,
0.6881909602355868, -2.0645728807067605`}, {-1.618033988749895,
1.3763819204711736`, -0.6881909602355868}, {-2.118033988749895, \
-0.6881909602355868,
0.16245984811645317`}, {-0.8090169943749475, -0.2628655560595668, \
-2.0645728807067605`}}],
Polygon3DBox[{{37, 28, 24}, {40, 8, 7}, {35, 5, 6}, {39, 26, 30}, {10, 14,
2}, {12, 4, 16}, {54, 45, 41}, {55, 42, 46}, {58, 19, 20}, {53, 18,
17}, {56, 43, 47}, {57, 48, 44}, {34, 32, 22}, {59, 51, 49}, {60, 50,
52}, {10, 2, 37, 24}, {37, 22, 32, 28}, {8, 40, 30, 26}, {25, 29, 40,
7}, {35, 27, 23, 5}, {6, 24, 28, 35}, {39, 30, 34, 22}, {12, 26, 39,
4}, {55, 14, 10, 42}, {41, 9, 13, 54}, {57, 44, 12, 16}, {15, 11, 43,
56}, {45, 54, 59, 49}, {50, 60, 55, 46}, {48, 58, 20, 44}, {43, 19, 58,
47}, {53, 17, 41, 45}, {46, 42, 18, 53}, {59, 56, 47, 51}, {52, 48, 57,
60}, {31, 32, 34, 33}, {17, 18, 6, 5}, {14, 16, 4, 2}, {7, 8, 20, 19}, {
51, 52, 50, 49}, {3, 1, 36, 21, 38}, {22, 37, 2, 4, 39}, {29, 33, 34, 30,
40}, {27, 35, 28, 32, 31}, {42, 10, 24, 6, 18}, {41, 17, 5, 23, 9}, {20,
8, 26, 12, 44}, {11, 25, 7, 19, 43}, {56, 59, 54, 13, 15}, {57, 16, 14,
55, 60}, {58, 48, 52, 51, 47}, {49, 50, 46, 53, 45}, {36, 27, 31}, {38,
25, 11}, {23, 1, 9}, {15, 13, 3}, {29, 21, 33}, {31, 33, 21, 36}, {27,
36, 1, 23}, {3, 38, 11, 15}, {21, 29, 25, 38}, {1, 3, 13,
9}}]]]], "Output",
CellLabel->
"Out[279]=",ExpressionUUID->"ad7d4b13-acf4-4682-84d2-d735e2a48ffd"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"PolyhedronData", "[",
RowBox[{
"\"\\"", ",", "\"\\""}],
"]"}]], "Input",
CellLabel->"In[2]:=",ExpressionUUID->"925a486a-9662-4c24-861f-66a4116d1240"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"0", ",",
InterpretationBox[
TemplateBox[{"Root",
TemplateBox[{"\"-0.851\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{
RowBox[{"1", "-",
RowBox[{"5", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"5", " ",
SuperscriptBox["#1", "4"]}]}], "&"}], ",", "1"}], "]"}],
Short[#, 7]& ], -0.85065080835204},
"NumericalApproximation"],
Root[1 - 5 #^2 + 5 #^4& , 1, 0]], ",",
SqrtBox[
RowBox[{
FractionBox["9", "4"], "+",
FractionBox["9",
RowBox[{"2", " ",
SqrtBox["5"]}]]}]]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{"(",
RowBox[{"1", "+",
SqrtBox["5"]}], ")"}]}], ",", "0", ",",
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], " ",
SqrtBox[
RowBox[{"5", "+",
RowBox[{"2", " ",
SqrtBox["5"]}]}]]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
FractionBox["1", "4"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "-",
SqrtBox["5"]}], ")"}]}], ",",
InterpretationBox[
TemplateBox[{"Root",
TemplateBox[{"\"-0.263\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{
RowBox[{"1", "-",
RowBox[{"20", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"80", " ",
SuperscriptBox["#1", "4"]}]}], "&"}], ",", "2"}], "]"}],
Short[#, 7]& ], -0.2628655560595668},
"NumericalApproximation"],
Root[1 - 20 #^2 + 80 #^4& , 2, 0]], ",",
SqrtBox[
RowBox[{
FractionBox["9", "4"], "+",
FractionBox["9",
RowBox[{"2", " ",
SqrtBox["5"]}]]}]]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
FractionBox["1", "4"], " ",
RowBox[{"(",
RowBox[{"3", "+",
SqrtBox["5"]}], ")"}]}], ",",
RowBox[{
FractionBox["1", "2"], " ",
SqrtBox[
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{"(",
RowBox[{"5", "+",
SqrtBox["5"]}], ")"}]}]]}], ",",
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], " ",
SqrtBox[
RowBox[{"5", "+",
RowBox[{"2", " ",
SqrtBox["5"]}]}]]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
FractionBox["1", "4"], " ",
RowBox[{"(",
RowBox[{"1", "+",
SqrtBox["5"]}], ")"}]}], ",",
RowBox[{
RowBox[{"-",
FractionBox["1", "4"]}], " ",
SqrtBox[
RowBox[{"34", "+",
FractionBox["62",
SqrtBox["5"]]}]]}], ",",
SqrtBox[
RowBox[{
FractionBox["1", "4"], "+",
FractionBox["1",
RowBox[{"2", " ",
SqrtBox["5"]}]]}]]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
FractionBox["1", "4"], " ",
RowBox[{"(",
RowBox[{"3", "+",
SqrtBox["5"]}], ")"}]}], ",",
RowBox[{
RowBox[{"-",
FractionBox["1", "4"]}], " ",
SqrtBox[
RowBox[{"26", "+",
FractionBox["58",
SqrtBox["5"]]}]]}], ",",
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], " ",
SqrtBox[
RowBox[{"1", "-",
FractionBox["2",
SqrtBox["5"]]}]]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], ",",
SqrtBox[
RowBox[{
FractionBox["9", "4"], "+",
FractionBox["9",
RowBox[{"2", " ",
SqrtBox["5"]}]]}]], ",",
SqrtBox[
RowBox[{
FractionBox["1", "4"], "+",
FractionBox["1",
RowBox[{"2", " ",
SqrtBox["5"]}]]}]]}], "}"}], ",",
RowBox[{"{",
RowBox[{"0", ",",
SqrtBox[
RowBox[{
FractionBox["5", "2"], "+",
FractionBox["11",
RowBox[{"2", " ",
SqrtBox["5"]}]]}]], ",",
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], " ",
SqrtBox[
RowBox[{"1", "-",
FractionBox["2",
SqrtBox["5"]]}]]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], ",",
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], " ",
SqrtBox[
RowBox[{"5", "+",
RowBox[{"2", " ",
SqrtBox["5"]}]}]]}], ",",
RowBox[{
FractionBox["1", "2"], " ",
SqrtBox[
RowBox[{"5", "+",
RowBox[{"2", " ",
SqrtBox["5"]}]}]]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
FractionBox["1", "4"], " ",
RowBox[{"(",
RowBox[{"3", "+",
SqrtBox["5"]}], ")"}]}], ",",
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], " ",
SqrtBox[
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{"(",
RowBox[{"5", "+",
SqrtBox["5"]}], ")"}]}]]}], ",",
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], " ",
SqrtBox[
RowBox[{"5", "+",
RowBox[{"2", " ",
SqrtBox["5"]}]}]]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
FractionBox["1", "4"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "3"}], "-",
SqrtBox["5"]}], ")"}]}], ",",
RowBox[{
FractionBox["1", "2"], " ",
SqrtBox[
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{"(",
RowBox[{"5", "+",
SqrtBox["5"]}], ")"}]}]]}], ",",
RowBox[{
FractionBox["1", "2"], " ",
SqrtBox[
RowBox[{"5", "+",
RowBox[{"2", " ",
SqrtBox["5"]}]}]]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
FractionBox["1", "2"], ",",
RowBox[{
FractionBox["1", "2"], " ",
SqrtBox[
RowBox[{"5", "+",
RowBox[{"2", " ",
SqrtBox["5"]}]}]]}], ",",
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], " ",
SqrtBox[
RowBox[{"5", "+",
RowBox[{"2", " ",
SqrtBox["5"]}]}]]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
FractionBox["1", "4"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "3"}], "-",
SqrtBox["5"]}], ")"}]}], ",",
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], " ",
SqrtBox[
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{"(",
RowBox[{"5", "+",
SqrtBox["5"]}], ")"}]}]]}], ",",
RowBox[{
FractionBox["1", "2"], " ",
SqrtBox[
RowBox[{"5", "+",
RowBox[{"2", " ",
SqrtBox["5"]}]}]]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
FractionBox["1", "4"], " ",
RowBox[{"(",
RowBox[{"1", "+",
SqrtBox["5"]}], ")"}]}], ",",
RowBox[{
RowBox[{"-",
FractionBox["1", "4"]}], " ",
SqrtBox[
RowBox[{"2", "-",
FractionBox["2",
SqrtBox["5"]]}]]}], ",",
RowBox[{
RowBox[{"-",
FractionBox["3", "2"]}], " ",
SqrtBox[
RowBox[{"1", "+",
FractionBox["2",
SqrtBox["5"]]}]]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "-",
SqrtBox["5"]}], ")"}]}], ",", "0", ",",
RowBox[{
FractionBox["1", "2"], " ",
SqrtBox[
RowBox[{"5", "+",
RowBox[{"2", " ",
SqrtBox["5"]}]}]]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
FractionBox["1", "2"], ",",
SqrtBox[
RowBox[{
FractionBox["1", "4"], "+",
FractionBox["1",
RowBox[{"2", " ",
SqrtBox["5"]}]]}]], ",",
RowBox[{
RowBox[{"-",
FractionBox["3", "2"]}], " ",
SqrtBox[
RowBox[{"1", "+",
FractionBox["2",
SqrtBox["5"]]}]]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"0", ",",
InterpretationBox[
TemplateBox[{"Root",
TemplateBox[{"\"-2.23\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{
RowBox[{"1", "-",
RowBox[{"25", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"5", " ",
SuperscriptBox["#1", "4"]}]}], "&"}], ",", "1"}], "]"}],
Short[#, 7]& ], -2.2270327288232132`},
"NumericalApproximation"],
Root[1 - 25 #^2 + 5 #^4& , 1, 0]], ",",
RowBox[{
FractionBox["1", "2"], " ",
SqrtBox[
RowBox[{"1", "-",
FractionBox["2",
SqrtBox["5"]]}]]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
FractionBox["1", "2"], ",",
RowBox[{
RowBox[{"-",
FractionBox["3", "2"]}], " ",
SqrtBox[
RowBox[{"1", "+",
FractionBox["2",
SqrtBox["5"]]}]]}], ",",
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], " ",
SqrtBox[
RowBox[{"1", "+",
FractionBox["2",
SqrtBox["5"]]}]]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
FractionBox["1", "4"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "3"}], "-",
SqrtBox["5"]}], ")"}]}], ",",
SqrtBox[
RowBox[{
FractionBox["13", "8"], "+",
FractionBox["29",
RowBox[{"8", " ",
SqrtBox["5"]}]]}]], ",",
RowBox[{
FractionBox["1", "2"], " ",
SqrtBox[
RowBox[{"1", "-",
FractionBox["2",
SqrtBox["5"]]}]]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
FractionBox["1", "4"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "-",
SqrtBox["5"]}], ")"}]}], ",",
SqrtBox[
RowBox[{
FractionBox["17", "8"], "+",
FractionBox["31",
RowBox[{"8", " ",
SqrtBox["5"]}]]}]], ",",
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], " ",
SqrtBox[
RowBox[{"1", "+",
FractionBox["2",
SqrtBox["5"]]}]]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
FractionBox["1", "2"], ",",
SqrtBox[
RowBox[{
FractionBox["1", "4"], "+",
FractionBox["1",
RowBox[{"2", " ",
SqrtBox["5"]}]]}]], ",",
SqrtBox[
RowBox[{
FractionBox["9", "4"], "+",
FractionBox["9",
RowBox[{"2", " ",
SqrtBox["5"]}]]}]]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{"(",
RowBox[{"2", "+",
SqrtBox["5"]}], ")"}]}], ",",
SqrtBox[
RowBox[{
FractionBox["1", "4"], "+",
FractionBox["1",
RowBox[{"2", " ",
SqrtBox["5"]}]]}]], ",",
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], " ",
SqrtBox[
RowBox[{"1", "-",
FractionBox["2",
SqrtBox["5"]]}]]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
FractionBox["1", "2"], ",",
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], " ",
SqrtBox[
RowBox[{"5", "+",
RowBox[{"2", " ",
SqrtBox["5"]}]}]]}], ",",
RowBox[{
FractionBox["1", "2"], " ",
SqrtBox[
RowBox[{"5", "+",
RowBox[{"2", " ",
SqrtBox["5"]}]}]]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
FractionBox["1", "4"], " ",
RowBox[{"(",
RowBox[{"5", "+",
SqrtBox["5"]}], ")"}]}], ",",
InterpretationBox[
TemplateBox[{"Root",
TemplateBox[{"\"-1.11\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{
RowBox[{"1", "-",
RowBox[{"100", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"80", " ",
SuperscriptBox["#1", "4"]}]}], "&"}], ",", "1"}], "]"}],
Short[#, 7]& ], -1.1135163644116066`},
"NumericalApproximation"],
Root[1 - 100 #^2 + 80 #^4& , 1, 0]], ",",
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], " ",
SqrtBox[
RowBox[{"1", "+",
FractionBox["2",
SqrtBox["5"]]}]]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], ",",
RowBox[{
FractionBox["1", "2"], " ",
SqrtBox[
RowBox[{"5", "+",
RowBox[{"2", " ",
SqrtBox["5"]}]}]]}], ",",
RowBox[{
FractionBox["1", "2"], " ",
SqrtBox[
RowBox[{"5", "+",
RowBox[{"2", " ",
SqrtBox["5"]}]}]]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
FractionBox["1", "4"], " ",
RowBox[{"(",
RowBox[{"1", "+",
SqrtBox["5"]}], ")"}]}], ",",
SqrtBox[
RowBox[{
FractionBox["17", "8"], "+",
FractionBox["31",
RowBox[{"8", " ",
SqrtBox["5"]}]]}]], ",",
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], " ",
SqrtBox[
RowBox[{"1", "+",
FractionBox["2",
SqrtBox["5"]]}]]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
FractionBox["1", "4"], " ",
RowBox[{"(",
RowBox[{"3", "+",
SqrtBox["5"]}], ")"}]}], ",",
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], " ",
SqrtBox[
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{"(",
RowBox[{"5", "+",
SqrtBox["5"]}], ")"}]}]]}], ",",
RowBox[{
FractionBox["1", "2"], " ",
SqrtBox[
RowBox[{"5", "+",
RowBox[{"2", " ",
SqrtBox["5"]}]}]]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{"(",
RowBox[{"2", "+",
SqrtBox["5"]}], ")"}]}], ",",
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], " ",
SqrtBox[
RowBox[{"1", "+",
FractionBox["2",
SqrtBox["5"]]}]]}], ",",
RowBox[{
FractionBox["1", "2"], " ",
SqrtBox[
RowBox[{"1", "-",
FractionBox["2",
SqrtBox["5"]]}]]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
FractionBox["1", "2"], ",",
RowBox[{
FractionBox["1", "2"], " ",
SqrtBox[
RowBox[{"5", "+",
RowBox[{"2", " ",
SqrtBox["5"]}]}]]}], ",",
RowBox[{
FractionBox["1", "2"], " ",
SqrtBox[
RowBox[{"5", "+",
RowBox[{"2", " ",
SqrtBox["5"]}]}]]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
FractionBox["1", "4"], " ",
RowBox[{"(",
RowBox[{"3", "+",
SqrtBox["5"]}], ")"}]}], ",",
SqrtBox[
RowBox[{
FractionBox["13", "8"], "+",
FractionBox["29",
RowBox[{"8", " ",
SqrtBox["5"]}]]}]], ",",
RowBox[{
FractionBox["1", "2"], " ",
SqrtBox[
RowBox[{"1", "-",
FractionBox["2",
SqrtBox["5"]]}]]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{"(",
RowBox[{"1", "+",
SqrtBox["5"]}], ")"}]}], ",", "0", ",",
RowBox[{
FractionBox["1", "2"], " ",
SqrtBox[
RowBox[{"5", "+",
RowBox[{"2", " ",
SqrtBox["5"]}]}]]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{"(",
RowBox[{"2", "+",
SqrtBox["5"]}], ")"}]}], ",",
RowBox[{
FractionBox["1", "2"], " ",
SqrtBox[
RowBox[{"1", "-",
FractionBox["2",
SqrtBox["5"]]}]]}], ",",
SqrtBox[
RowBox[{
FractionBox["1", "4"], "+",
FractionBox["1",
RowBox[{"2", " ",
SqrtBox["5"]}]]}]]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
FractionBox["1", "4"], " ",
RowBox[{"(",
RowBox[{"3", "+",
SqrtBox["5"]}], ")"}]}], ",",
RowBox[{
FractionBox["1", "2"], " ",
SqrtBox[
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{"(",
RowBox[{"5", "+",
SqrtBox["5"]}], ")"}]}]]}], ",",
RowBox[{
FractionBox["1", "2"], " ",
SqrtBox[
RowBox[{"5", "+",
RowBox[{"2", " ",
SqrtBox["5"]}]}]]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
FractionBox["1", "4"], " ",
RowBox[{"(",
RowBox[{"5", "+",
SqrtBox["5"]}], ")"}]}], ",",
SqrtBox[
RowBox[{
FractionBox["5", "8"], "+",
FractionBox["11",
RowBox[{"8", " ",
SqrtBox["5"]}]]}]], ",",
SqrtBox[
RowBox[{
FractionBox["1", "4"], "+",
FractionBox["1",
RowBox[{"2", " ",
SqrtBox["5"]}]]}]]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{"(",
RowBox[{"1", "+",
SqrtBox["5"]}], ")"}]}], ",",
RowBox[{"-",
SqrtBox[
RowBox[{"1", "+",
FractionBox["2",
SqrtBox["5"]]}]]}], ",",
SqrtBox[
RowBox[{
FractionBox["1", "4"], "+",
FractionBox["1",
RowBox[{"2", " ",
SqrtBox["5"]}]]}]]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
FractionBox["1", "4"], " ",
RowBox[{"(",
RowBox[{"1", "+",
SqrtBox["5"]}], ")"}]}], ",",
InterpretationBox[
TemplateBox[{"Root",
TemplateBox[{"\"-0.263\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{
RowBox[{"1", "-",
RowBox[{"20", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"80", " ",
SuperscriptBox["#1", "4"]}]}], "&"}], ",", "2"}], "]"}],
Short[#, 7]& ], -0.2628655560595668},
"NumericalApproximation"],
Root[1 - 20 #^2 + 80 #^4& , 2, 0]], ",",
SqrtBox[
RowBox[{
FractionBox["9", "4"], "+",
FractionBox["9",
RowBox[{"2", " ",
SqrtBox["5"]}]]}]]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{"(",
RowBox[{"2", "+",
SqrtBox["5"]}], ")"}]}], ",",
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], " ",
SqrtBox[
RowBox[{"1", "-",
FractionBox["2",
SqrtBox["5"]]}]]}], ",",
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], " ",
SqrtBox[
RowBox[{"1", "+",
FractionBox["2",
SqrtBox["5"]]}]]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], ",",
SqrtBox[
RowBox[{
FractionBox["1", "4"], "+",
FractionBox["1",
RowBox[{"2", " ",
SqrtBox["5"]}]]}]], ",",
SqrtBox[
RowBox[{
FractionBox["9", "4"], "+",
FractionBox["9",
RowBox[{"2", " ",
SqrtBox["5"]}]]}]]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{"(",
RowBox[{"1", "+",
SqrtBox["5"]}], ")"}]}], ",",
SqrtBox[
RowBox[{"1", "+",
FractionBox["2",
SqrtBox["5"]]}]], ",",
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], " ",
SqrtBox[
RowBox[{"1", "+",
FractionBox["2",
SqrtBox["5"]]}]]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
FractionBox["1", "2"], ",",
SqrtBox[
RowBox[{
FractionBox["9", "4"], "+",
FractionBox["9",
RowBox[{"2", " ",
SqrtBox["5"]}]]}]], ",",
SqrtBox[
RowBox[{
FractionBox["1", "4"], "+",
FractionBox["1",
RowBox[{"2", " ",
SqrtBox["5"]}]]}]]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
FractionBox["1", "4"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "-",
SqrtBox["5"]}], ")"}]}], ",",
RowBox[{"-",
SqrtBox[
RowBox[{
FractionBox["17", "8"], "+",
FractionBox["31",
RowBox[{"8", " ",
SqrtBox["5"]}]]}]]}], ",",
SqrtBox[
RowBox[{
FractionBox["1", "4"], "+",
FractionBox["1",
RowBox[{"2", " ",
SqrtBox["5"]}]]}]]}], "}"}], ",",
RowBox[{"{",
RowBox[{
FractionBox["1", "2"], ",",
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], " ",
SqrtBox[
RowBox[{"5", "+",
RowBox[{"2", " ",
SqrtBox["5"]}]}]]}], ",",
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], " ",
SqrtBox[
RowBox[{"5", "+",
RowBox[{"2", " ",
SqrtBox["5"]}]}]]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
FractionBox["1", "4"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "5"}], "-",
SqrtBox["5"]}], ")"}]}], ",",
SqrtBox[
RowBox[{
FractionBox["5", "8"], "+",
FractionBox["11",
RowBox[{"8", " ",
SqrtBox["5"]}]]}]], ",",
SqrtBox[
RowBox[{
FractionBox["1", "4"], "+",
FractionBox["1",
RowBox[{"2", " ",
SqrtBox["5"]}]]}]]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], ",",
RowBox[{
FractionBox["1", "2"], " ",
SqrtBox[
RowBox[{"5", "+",
RowBox[{"2", " ",
SqrtBox["5"]}]}]]}], ",",
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], " ",
SqrtBox[
RowBox[{"5", "+",
RowBox[{"2", " ",
SqrtBox["5"]}]}]]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
FractionBox["1",
RowBox[{
RowBox[{"-", "3"}], "+",
SqrtBox["5"]}]], ",",
InterpretationBox[
TemplateBox[{"Root",
TemplateBox[{"\"-1.80\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{
RowBox[{"1", "-",
RowBox[{"260", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"80", " ",
SuperscriptBox["#1", "4"]}]}], "&"}], ",", "1"}], "]"}],
Short[#, 7]& ], -1.8017073246471935`},
"NumericalApproximation"],
Root[1 - 260 #^2 + 80 #^4& , 1, 0]], ",",
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], " ",
SqrtBox[
RowBox[{"1", "-",
FractionBox["2",
SqrtBox["5"]]}]]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], ",",
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], " ",
SqrtBox[
RowBox[{"5", "+",
RowBox[{"2", " ",
SqrtBox["5"]}]}]]}], ",",
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], " ",
SqrtBox[
RowBox[{"5", "+",
RowBox[{"2", " ",
SqrtBox["5"]}]}]]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"-", "1"}], "-",
FractionBox[
SqrtBox["5"], "2"]}], ",",
SqrtBox[
RowBox[{
FractionBox["1", "4"], "+",
FractionBox["1",
RowBox[{"2", " ",
SqrtBox["5"]}]]}]], ",",
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], " ",
SqrtBox[
RowBox[{"1", "-",
FractionBox["2",
SqrtBox["5"]]}]]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
FractionBox["1", "4"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "3"}], "-",
SqrtBox["5"]}], ")"}]}], ",",
RowBox[{
FractionBox["1", "2"], " ",
SqrtBox[
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{"(",
RowBox[{"5", "+",
SqrtBox["5"]}], ")"}]}]]}], ",",
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], " ",
SqrtBox[
RowBox[{"5", "+",
RowBox[{"2", " ",
SqrtBox["5"]}]}]]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
FractionBox["1", "4"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "5"}], "-",
SqrtBox["5"]}], ")"}]}], ",",
RowBox[{
RowBox[{"-",
FractionBox["1", "4"]}], " ",
SqrtBox[
RowBox[{"10", "+",
FractionBox["22",
SqrtBox["5"]]}]]}], ",",
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], " ",
SqrtBox[
RowBox[{"1", "+",
FractionBox["2",
SqrtBox["5"]]}]]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
FractionBox["1", "4"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "3"}], "-",
SqrtBox["5"]}], ")"}]}], ",",
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], " ",
SqrtBox[
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{"(",
RowBox[{"5", "+",
SqrtBox["5"]}], ")"}]}]]}], ",",
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], " ",
SqrtBox[
RowBox[{"5", "+",
RowBox[{"2", " ",
SqrtBox["5"]}]}]]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"-", "1"}], "-",
FractionBox[
SqrtBox["5"], "2"]}], ",",
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], " ",
SqrtBox[
RowBox[{"1", "-",
FractionBox["2",
SqrtBox["5"]]}]]}], ",",
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], " ",
SqrtBox[
RowBox[{"1", "+",
FractionBox["2",
SqrtBox["5"]]}]]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "-",
SqrtBox["5"]}], ")"}]}], ",", "0", ",",
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], " ",
SqrtBox[
RowBox[{"5", "+",
RowBox[{"2", " ",
SqrtBox["5"]}]}]]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], ",",
RowBox[{
RowBox[{"-",
FractionBox["3", "2"]}], " ",
SqrtBox[
RowBox[{"1", "+",
FractionBox["2",
SqrtBox["5"]]}]]}], ",",
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], " ",
SqrtBox[
RowBox[{"1", "+",
FractionBox["2",
SqrtBox["5"]]}]]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "-",
SqrtBox["5"]}], ")"}]}], ",",
RowBox[{"-",
SqrtBox[
RowBox[{"1", "+",
FractionBox["2",
SqrtBox["5"]]}]]}], ",",
SqrtBox[
RowBox[{
FractionBox["1", "4"], "+",
FractionBox["1",
RowBox[{"2", " ",
SqrtBox["5"]}]]}]]}], "}"}], ",",
RowBox[{"{",
RowBox[{"0", ",",
InterpretationBox[
TemplateBox[{"Root",
TemplateBox[{"\"-0.851\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{
RowBox[{"1", "-",
RowBox[{"5", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"5", " ",
SuperscriptBox["#1", "4"]}]}], "&"}], ",", "1"}], "]"}],
Short[#, 7]& ], -0.85065080835204},
"NumericalApproximation"],
Root[1 - 5 #^2 + 5 #^4& , 1, 0]], ",",
RowBox[{
RowBox[{"-",
FractionBox["3", "2"]}], " ",
SqrtBox[
RowBox[{"1", "+",
FractionBox["2",
SqrtBox["5"]]}]]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"-", "1"}], "-",
FractionBox[
SqrtBox["5"], "2"]}], ",",
RowBox[{
FractionBox["1", "2"], " ",
SqrtBox[
RowBox[{"1", "-",
FractionBox["2",
SqrtBox["5"]]}]]}], ",",
SqrtBox[
RowBox[{
FractionBox["1", "4"], "+",
FractionBox["1",
RowBox[{"2", " ",
SqrtBox["5"]}]]}]]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], ",",
SqrtBox[
RowBox[{
FractionBox["1", "4"], "+",
FractionBox["1",
RowBox[{"2", " ",
SqrtBox["5"]}]]}]], ",",
RowBox[{
RowBox[{"-",
FractionBox["3", "2"]}], " ",
SqrtBox[
RowBox[{"1", "+",
FractionBox["2",
SqrtBox["5"]]}]]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "-",
SqrtBox["5"]}], ")"}]}], ",",
SqrtBox[
RowBox[{"1", "+",
FractionBox["2",
SqrtBox["5"]]}]], ",",
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], " ",
SqrtBox[
RowBox[{"1", "+",
FractionBox["2",
SqrtBox["5"]]}]]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"-", "1"}], "-",
FractionBox[
SqrtBox["5"], "2"]}], ",",
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], " ",
SqrtBox[
RowBox[{"1", "+",
FractionBox["2",
SqrtBox["5"]]}]]}], ",",
RowBox[{
FractionBox["1", "2"], " ",
SqrtBox[
RowBox[{"1", "-",
FractionBox["2",
SqrtBox["5"]]}]]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
FractionBox["1", "4"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "-",
SqrtBox["5"]}], ")"}]}], ",",
RowBox[{
RowBox[{"-",
FractionBox["1", "4"]}], " ",
SqrtBox[
RowBox[{"2", "-",
FractionBox["2",
SqrtBox["5"]]}]]}], ",",
RowBox[{
RowBox[{"-",
FractionBox["3", "2"]}], " ",
SqrtBox[
RowBox[{"1", "+",
FractionBox["2",
SqrtBox["5"]]}]]}]}], "}"}]}], "}"}]], "Output",
CellLabel->"Out[2]=",ExpressionUUID->"f97e4b31-0631-4296-ba05-6a9c93d0617e"]
}, Closed]]
}, Open ]],
Cell[CellGroupData[{
Cell["PolyhedronData (V12.1; inexact)", "Subsection",ExpressionUUID->"c7cd807f-f023-4052-bd5c-498fb6618849"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Show", "[",
RowBox[{
RowBox[{
"PolyhedronData", "[", "\"\\"", "]"}], ",",
RowBox[{"Method", "\[Rule]",
RowBox[{"{",
RowBox[{"\"\\"", "\[Rule]", "True"}], "}"}]}]}],
"]"}]], "Input",ExpressionUUID->"10b494bd-dc26-4c0d-8295-5d54b47b721b"],
Cell[BoxData[
Graphics3DBox[GraphicsComplex3DBox[CompressedData["
1:eJwNlGs4FGgUxwdrrUYRTaViaUIS0fZE2M64VFaKpK1WurqsjEvZFdqVR6Os
TdKDLZdcChWyVEjljFvppg2RSyRk3GeYMOO258P75f3ynvf8f/+f9nF/Zw9Z
BoNhSUeOTsWNPXNap2X4xj0pLhd4HeDoGbDZNyUP8zUeC7qaGfwrgTo1hhYN
mCB8M2r3rBffFARIGB4MfoYf8+KG0grwKZ5SdVMYgtA1tsptTXPooHVkX75A
hPGj0sN2P1ag87651Da7OSwdGlTQZg9isuOQuUfwAHzO8xFwG2dQxdYyLNtK
BO/lY0RMewFWftQ547t9BpX8shyrrn2F9cuCefkTL6Ds7tanI2nTeKXUqLN3
ewNIJyXf7mBPYOv8CV/D9VL8kHkkN8dICLu7ym966Y1BaLrrr7WaElzOXSZ9
NNyLvxgwxisHJlAqMMm13TuJx6Z3mxtl10L22WfK3Z+lkPSXfnbntgn8LUS7
q1xlClmrRQtjDw9hUcfunzXrxXhNcaVrhlc/Wtvx2V4rpVCU65WSZiDGB7Ze
ka2hs1iY139hl34ORLdrG6SnjmP1irn7T9kS1G24xNLVEIJsgNO81aAQezbs
ajP1mYbIqmI1s64R/Jy+4LK1mxAbDxbnuVTOw6i4hFkR7o3d3p6mm4XDKLyw
0UXV6CMMrDBNG0+exxNBOg8fDPXjUb5iUuz8BMjaNj9IVJ0Cm33pMf3DAhTw
EpAt/YT6OTdqSkwYfLZdhXG3eQ/WSvp8XF91g4m/v4qiF4Njc9dnfcyDT1jd
FO2oa/MV6uPFPPPgacxRzE/f4teJQ6K+qaqCWTS/qcY7aD2Gene56qykNiz1
iLVa4MTg5EZF7RTc6oc+g2/z1nE+oKB0jbe13Sjek7sf5vD3PJhezQrZIt+M
lzsS60YvyfDjdTUvWta9xGVs53kTvwY8NCZrsWjJDN67fC6AGfMVRg5KTpzJ
fYNl2dM9ypoynN7ZSFHLgm5cpWEBCY+fYPuXemVQFuNYpq7aHxGzaPootdji
UQZWxB9vnHxeBglL9esimmX4LxJCHekeINg6g+6xoTr0Nd1z6os3tbmH1MBt
b4Un3vsp7z1yrCszk6AaZ2xP70Jl1vFuepdvUPJ6gN4FdfQdoznBTLxpK80J
shvbA2lOfFF8PGifVhMccOguUD47AKLfI/nyhxgciWEFl/4LwZ0b/qP/crjM
LVz6L0iea6fRfiD8SZQ/7QdUc5QjaD+ovy1KifYJle4TQPvkJ7y1cqZ9YsKf
Zg6UC7wOrHWlXPDZwVX/UC6wcKnjOsoR1k6c96AcsZ+voUo58t/b3L9HPACv
vDmReMDTfT+UEg+Ybyo2Jn7g33MndxA/GHSmNZn4AV/1nhDGvRGwc7Nr2fRu
Bna6XZI8UxiGsYvvoolDEO/n3SEOcfHOU85l4d5gfuq7ldaDQnBXZImIW3y8
OM2ZuIWwKoEecQ5Rq4xLiHO4GtS/nDjHJnFisufYODiV5DGYoR1Q1DJ6XnJr
BjKvGl2nvkD49utR1BdwVA8bo75gdg1rL/UL1i48d4z6BZmDq/SoXyh9O5VD
PYXOoXIt6inKfs9Wo55iRGRdgYWsFHrMOHcUQARzLe3iJncRtH5Zd5I8AN9k
GN4mD2Amb2UOeQCL4uTLyBvgVOhZT97AGy6pcuQNKKoeCiTPgCU30IE8g0s2
uqWRZzBiqfMUeQksu0KiyUv4KradpWQvAHvLmiTyGBwQOi4ij4FHYpYVeQz9
mEwl8h6sWR13gLwH3EaWLXkPfmI3TpInOWlHz/qSJ1FntlCdPIl6cZp95FWO
MHT4HXkVXt1Z0k9eBQvVhzPkYY7Kx8Yd5GEslLa95Kbkwf+Scv/B
"],
Polygon3DBox[{{37, 34, 46, 49}, {49, 46, 56}, {46, 48, 57, 56}, {34, 28,
36, 48, 46}, {36, 43, 48}, {48, 43, 51, 57}, {24, 32, 43, 36}, {24, 19,
32}, {19, 21, 35, 32}, {32, 35, 47, 51, 43}, {21, 31, 35}, {35, 31, 42,
47}, {49, 56, 58, 50}, {50, 58, 52}, {58, 60, 54, 52}, {56, 57, 59, 60,
58}, {60, 55, 54}, {54, 55, 45, 44}, {59, 53, 55, 60}, {57, 51, 59}, {51,
47, 53, 59}, {53, 42, 39, 45, 55}, {47, 42, 53}, {42, 31, 25, 39}, {50,
52, 41, 40}, {40, 41, 29}, {41, 38, 23, 29}, {52, 54, 44, 38, 41}, {38,
26, 23}, {23, 26, 14, 12}, {44, 33, 26, 38}, {44, 45, 33}, {45, 39, 27,
33}, {33, 27, 15, 14, 26}, {39, 25, 27}, {27, 25, 13, 15}, {40, 29, 20,
30}, {30, 20, 18}, {20, 10, 8, 18}, {29, 23, 12, 10, 20}, {10, 2, 8}, {8,
2, 1, 6}, {12, 4, 2, 10}, {12, 14, 4}, {14, 15, 5, 4}, {4, 5, 3, 1,
2}, {15, 13, 5}, {5, 13, 11, 3}, {30, 18, 22, 37}, {37, 22, 34}, {22, 16,
28, 34}, {18, 8, 6, 16, 22}, {16, 17, 28}, {28, 17, 24, 36}, {6, 7, 17,
16}, {6, 1, 7}, {1, 3, 9, 7}, {7, 9, 19, 24, 17}, {3, 11, 9}, {9, 11, 21,
19}, {37, 49, 50, 40, 30}, {11, 13, 25, 31, 21}}]],
Method->{"ShrinkWrap" -> True},
ViewAngle->0.49495915481319697`,
ViewPoint->{1.0468421302852262`, 3.1656480520734602`, 0.5768829731092742},
ViewVertical->{0.26147436913827743`, 0.390217916424568,
0.8828143247506854}]], "Output",
CellLabel->"Out[7]=",ExpressionUUID->"8f1ed7e5-bc10-41fe-9efa-33729cda35ae"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"PolyhedronData", "[",
RowBox[{
RowBox[{"{",
RowBox[{"\"\\"", ",", "72"}], "}"}], ",",
"\"\\""}], "]"}]], "Input",
CellLabel->"In[55]:=",ExpressionUUID->"a02fb8ac-ebb6-4ac6-a21d-ca7d1af36155"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"-", "2.18072699247918`"}], ",", "0.4768386675164633`", ",",
RowBox[{"-", "0.05588094033755608`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "2.1054113561728713`"}], ",",
RowBox[{"-", "0.3004869866616042`"}], ",",
RowBox[{"-", "0.6804547008209904`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "2.049318264724184`"}], ",", "0.13843340009667762`", ",",
"0.8758988733804477`"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "1.9274550052962511`"}], ",",
RowBox[{"-", "1.1193059286906815`"}], ",",
RowBox[{"-", "0.13468269956308332`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "1.8927875682469062`"}], ",",
RowBox[{"-", "0.8480382113188147`"}], ",", "0.8271967078057857`"}],
"}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "1.8018616751604033`"}], ",", "1.0785279208250849`", ",",
RowBox[{"-", "0.759038898257297`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "1.7671942381110601`"}], ",", "1.3497956381969543`", ",",
"0.20284050911157558`"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "1.7265460388540945`"}], ",", "0.3012022666470182`", ",",
RowBox[{"-", "1.3836126587407294`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "1.635785510356064`"}], ",", "1.0113903707771694`", ",",
"1.1346203228295795`"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "1.5700153423768186`"}], ",",
RowBox[{"-", "0.6852693447684741`"}], ",",
RowBox[{"-", "1.4323148243153896`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "1.4578291594794437`"}], ",", "0.19257142874809133`", ",",
"1.6803923240874865`"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "1.3920589915001984`"}], ",",
RowBox[{"-", "1.5040882867975514`"}], ",",
RowBox[{"-", "0.8865428230574844`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "1.301298463002166`"}], ",",
RowBox[{"-", "0.7939001826674028`"}], ",", "1.6316901585128254`"}],
"}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "1.2606502637452022`"}], ",",
RowBox[{"-", "1.8424935542173388`"}], ",", "0.04523699066052112`"}],
"}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "1.2259828266958572`"}], ",",
RowBox[{"-", "1.5712258368454721`"}], ",", "1.0071163980293902`"}],
"}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "1.0574359868251126`"}], ",", "1.7136763159241974`", ",",
RowBox[{"-", "0.9649925599133985`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "1.0227685497757695`"}], ",", "1.9849440332960642`", ",",
RowBox[{"-", "0.0031131525445277012`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "0.9355727273971833`"}], ",", "0.4559369871368366`", ",",
RowBox[{"-", "1.9755741328569294`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "0.8101447618498238`"}], ",", "1.4373928086388545`", ",",
"1.5045382560822422`"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "0.7790420309199039`"}], ",",
RowBox[{"-", "0.5305346242786557`"}], ",",
RowBox[{"-", "2.0242762984315914`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "0.6321884109731893`"}], ",", "0.6185738666097729`", ",",
"2.050310257340151`"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "0.5220399730290598`"}], ",", "1.3288939578173293`", ",",
RowBox[{"-", "1.7168526834077977`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "0.49110260668762823`"}], ",",
RowBox[{"-", "1.8554115031139373`"}], ",",
RowBox[{"-", "1.1411986502882443`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "0.4312794445310452`"}], ",", "2.0390820619474788`", ",",
"0.8013802981625039`"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "0.37891642379025686`"}], ",",
RowBox[{"-", "0.9775707295973719`"}], ",", "1.9715084981146265`"}],
"}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "0.35969387893263466`"}], ",",
RowBox[{"-", "2.1938167705337213`"}], ",",
RowBox[{"-", "0.20941883657024063`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "0.3036007874839454`"}], ",",
RowBox[{"-", "1.7548963837754377`"}], ",", "1.3469347376311975`"}],
"}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "0.23179523831886634`"}], ",", "2.1396787537858843`", ",",
RowBox[{"-", "0.5950746266607295`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "0.11223728936885319`"}], ",",
RowBox[{"-", "1.253722249805313`"}], ",",
RowBox[{"-", "1.8443566082079852`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "0.03461634258461504`"}], ",", "0.10461377082045244`", ",",
RowBox[{"-", "2.230229960087693`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"0.0346163305778578`", ",",
RowBox[{"-", "0.1046137589168845`"}], ",", "2.230229947563751`"}], "}"}],
",",
RowBox[{"{",
RowBox[{
"0.16776714995778846`", ",", "1.646341070640668`", ",",
"1.499160844880953`"}], "}"}], ",",
RowBox[{"{",
RowBox[{"0.23179522631210908`", ",",
RowBox[{"-", "2.1396787418823076`"}], ",", "0.5950746141367963`"}],
"}"}], ",",
RowBox[{"{",
RowBox[{"0.3036007754771944`", ",", "1.75489639567901`", ",",
RowBox[{"-", "1.3469347501551288`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
"0.3457235008344069`", ",", "0.8275221286115864`", ",",
"2.0449328461388565`"}], "}"}], ",",
RowBox[{"{",
RowBox[{
"0.35969386692588007`", ",", "2.193816782437292`", ",",
"0.20941882404630563`"}], "}"}], ",",
RowBox[{"{",
RowBox[{"0.3789164117835067`", ",", "0.9775707415009407`", ",",
RowBox[{"-", "1.9715085106385613`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"0.43127943252427997`", ",",
RowBox[{"-", "2.039082050043903`"}], ",",
RowBox[{"-", "0.8013803106864424`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"0.5220400322613609`", ",",
RowBox[{"-", "1.328894003417406`"}], ",", "1.7168527510417433`"}], "}"}],
",",
RowBox[{"{",
RowBox[{"0.6321883989664357`", ",",
RowBox[{"-", "0.6185738547062032`"}], ",",
RowBox[{"-", "2.0503102698640885`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"0.8101447498430568`", ",",
RowBox[{"-", "1.4373927967352822`"}], ",",
RowBox[{"-", "1.5045382686061797`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"0.9355727153904262`", ",",
RowBox[{"-", "0.45593697523326693`"}], ",", "1.975574120332991`"}],
"}"}], ",",
RowBox[{"{",
RowBox[{
"0.958740461414704`", ",", "1.8010757911304882`", ",",
"0.907199370764752`"}], "}"}], ",",
RowBox[{"{",
RowBox[{"1.0227685377690219`", ",",
RowBox[{"-", "1.984944021392491`"}], ",", "0.0031131400205962685`"}],
"}"}], ",",
RowBox[{"{",
RowBox[{"1.0574360900855724`", ",",
RowBox[{"-", "1.7136763970634883`"}], ",", "0.9649926770876428`"}],
"}"}], ",",
RowBox[{"{",
RowBox[{"1.2259828146891034`", ",", "1.5712258487490391`", ",",
RowBox[{"-", "1.0071164105533268`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
"1.2466798856469743`", ",", "0.4761989122952075`", ",",
"1.7902770189080965`"}], "}"}], ",",
RowBox[{"{",
RowBox[{"1.2606502517384475`", ",", "1.8424935661209076`", ",",
RowBox[{"-", "0.04523700318445611`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"1.3012984509954122`", ",", "0.7939001945709707`", ",",
RowBox[{"-", "1.6316901710367593`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"1.4578291474726925`", ",",
RowBox[{"-", "0.1925714168445216`"}], ",",
RowBox[{"-", "1.6803923366114195`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
"1.6255452029657538`", ",", "1.0778881656038317`", ",",
"1.0871190609883565`"}], "}"}], ",",
RowBox[{"{",
RowBox[{"1.6357854983493127`", ",",
RowBox[{"-", "1.0113903588735988`"}], ",",
RowBox[{"-", "1.1346203353535107`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"1.7265460268473416`", ",",
RowBox[{"-", "0.3012022547434485`"}], ",", "1.3836126462167964`"}],
"}"}], ",",
RowBox[{"{",
RowBox[{"1.7671942261043054`", ",",
RowBox[{"-", "1.3497956262933846`"}], ",",
RowBox[{"-", "0.2028405216355088`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"1.8018617343927024`", ",",
RowBox[{"-", "1.0785279664251695`"}], ",", "0.7590389658912441`"}],
"}"}], ",",
RowBox[{"{",
RowBox[{"1.8927875562401533`", ",", "0.8480382232223844`", ",",
RowBox[{"-", "0.8271967203297207`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
"1.9274549932894973`", ",", "1.119305940594253`", ",",
"0.13468268703914832`"}], "}"}], ",",
RowBox[{"{",
RowBox[{"2.049318252717431`", ",",
RowBox[{"-", "0.13843338819311143`"}], ",",
RowBox[{"-", "0.8758988859043809`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
"2.1054113441661175`", ",", "0.3004869985651757`", ",",
"0.6804546882970554`"}], "}"}], ",",
RowBox[{"{",
RowBox[{"2.1807269804724263`", ",",
RowBox[{"-", "0.4768386556128954`"}], ",", "0.05588092781362287`"}],
"}"}]}], "}"}]], "Output",
CellLabel->"Out[55]=",ExpressionUUID->"96aa7abe-0bab-4263-89ef-009a26658a68"]
}, Open ]]
}, Closed]]
}, Open ]],
Cell[CellGroupData[{
Cell["Net", "Section",ExpressionUUID->"2c6dc9d0-4cb0-4ac9-b10e-2e223daf46c7"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"PolyhedronData", "[",
RowBox[{"\"\\"", ",", "\"\\""}],
"]"}]], "Input",
CellLabel->"In[68]:=",ExpressionUUID->"009947b2-8b62-4f30-88b4-9d2680e7d5c5"],
Cell[BoxData[
GraphicsBox[
{RGBColor[1, 1, 0.85], EdgeForm[GrayLevel[0]],
GraphicsComplexBox[
NCache[{{0,
Rational[1, 4] (
9 + (63 + 6 5^Rational[1, 2] +
24 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
Rational[1,
2] (-1 + (
2 (4 + 5^Rational[1, 2] - (15 + 6 5^Rational[1, 2])^
Rational[1, 2]))^Rational[1, 2]),
Rational[1, 4] (
1 + (3 (9 + 2 5^Rational[1, 2] +
4 (5 + 2 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2])}, {
Rational[1,
2] (-1 + (
2 (4 + 5^Rational[1, 2] - (15 + 6 5^Rational[1, 2])^
Rational[1, 2]))^Rational[1, 2]),
Rational[1, 4] (
5 + (3 (9 + 2 5^Rational[1, 2] +
4 (5 + 2 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2])}, {
Rational[1, 4] (10 - 2 5^Rational[1, 2])^Rational[1, 2],
Rational[1, 4] (8 - 5^
Rational[
1, 2] + (63 + 6 5^Rational[1, 2] +
24 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 2] (Rational[1, 2] (5 - 5^Rational[1, 2]))^Rational[1, 2],
Rational[1, 4] (10 +
5^Rational[1, 2] + (63 + 6 5^Rational[1, 2] +
24 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {(2 +
Rational[1, 2] 5^Rational[1, 2] +
Rational[-1, 2] (3 (5 + 2 5^Rational[1, 2]))^Rational[1, 2])^
Rational[1, 2],
Rational[1, 4] (1 + (15 + 6 5^Rational[1, 2])^Rational[1, 2])}, {(2 +
Rational[1, 2] 5^Rational[1, 2] +
Rational[-1, 2] (3 (5 + 2 5^Rational[1, 2]))^Rational[1, 2])^
Rational[1, 2],
Rational[1, 4] (
5 + (63 + 6 5^Rational[1, 2] +
24 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {(2 +
Rational[1, 2] 5^Rational[1, 2] +
Rational[-1, 2] (3 (5 + 2 5^Rational[1, 2]))^Rational[1, 2])^
Rational[1, 2],
Rational[1, 4] (
13 + (63 + 6 5^Rational[1, 2] +
24 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 2] (-1 + (5 + 2 5^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (
3 + (3 (9 + 2 5^Rational[1, 2] +
4 (5 + 2 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2])}, {
Rational[1, 2] (
1 + (2 (4 + 5^Rational[1, 2] - (15 + 6 5^Rational[1, 2])^
Rational[1, 2]))^Rational[1, 2]),
Rational[1, 4] (
13 + (123 + 6 5^Rational[1, 2] +
36 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[1, 4] (-5 + (15 + 6 5^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[1, 4] (-1 + (15 + 6 5^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[1, 4] (3 + (15 + 6 5^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[1, 4] (
3 + (63 + 6 5^Rational[1, 2] +
24 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[1, 4] (
7 + (63 + 6 5^Rational[1, 2] +
24 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[1, 4] (
11 + (63 + 6 5^Rational[1, 2] +
24 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
Root[1 - 32 # + 168 #^2 + 1456 #^3 - 2624 #^5 - 832 #^6 + 768 #^7 +
256 #^8& , 8, 0], Root[
1 + 24 # - 680 #^2 + 2736 #^3 - 3616 #^4 + 576 #^5 + 2240 #^6 -
1536 #^7 + 256 #^8& , 8, 0]}, {
Rational[1, 2] (1 + (5 + 2 5^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (
11 + (123 + 6 5^Rational[1, 2] +
36 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
Root[-59 - 296 # + 92 #^2 + 1792 #^3 + 1200 #^4 - 2112 #^5 - 1728 #^6 +
256 #^7 + 256 #^8& , 8, 0], Root[
181 - 1368 # + 976 #^2 + 4176 #^3 - 6016 #^4 + 768 #^5 + 2624 #^6 -
1536 #^7 + 256 #^8& , 8, 0]}, {
Rational[1, 2] (2 + (5 + 2 5^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (-5 + (15 + 6 5^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 2] (2 + (5 + 2 5^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (-1 + (15 + 6 5^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 2] (2 + (5 + 2 5^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (3 + (15 + 6 5^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 2] (2 + (5 + 2 5^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (
3 + (63 + 6 5^Rational[1, 2] +
24 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 2] (2 + (5 + 2 5^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (
7 + (63 + 6 5^Rational[1, 2] +
24 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 2] (2 + (5 + 2 5^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (
11 + (63 + 6 5^Rational[1, 2] +
24 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
Rational[1,
4] (-1 + (35 + 20 3^Rational[1, 2] +
2 (5 (97 + 56 3^Rational[1, 2]))^Rational[1, 2])^Rational[1, 2]),
Root[1 - 6 # - 10 #^2 + 96 #^3 - 136 #^4 - 24 #^5 + 160 #^6 - 96 #^7 +
16 #^8& , 8, 0]}, {
1 + 3^Rational[1, 2],
Rational[1, 4] (
9 + (63 + 6 5^Rational[1, 2] +
24 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 2] (3 + (5 + 2 5^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (
3 + (3 (9 + 2 5^Rational[1, 2] +
4 (5 + 2 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2])}, {
Rational[1, 4] (
4 + (58 - 2 5^Rational[1, 2] +
8 (30 - 6 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (8 - 5^
Rational[
1, 2] + (63 + 6 5^Rational[1, 2] +
24 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 4] (
4 + (58 - 2 5^Rational[1, 2] +
8 (30 - 6 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (10 +
5^Rational[1, 2] + (63 + 6 5^Rational[1, 2] +
24 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
1 + (Rational[1, 2] (4 +
5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2]))^
Rational[1, 2],
Rational[1, 4] (
5 + (63 + 6 5^Rational[1, 2] +
24 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
1 + (Rational[1, 2] (4 +
5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2]))^
Rational[1, 2],
Rational[1, 4] (
13 + (63 + 6 5^Rational[1, 2] +
24 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 2] (
3 + (2 (4 +
5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2]))^
Rational[1, 2]),
Rational[1, 4] (
1 + (3 (9 + 2 5^Rational[1, 2] +
4 (5 + 2 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2])}, {
Rational[1, 2] (
3 + (2 (4 +
5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2]))^
Rational[1, 2]),
Rational[1, 4] (
5 + (3 (9 + 2 5^Rational[1, 2] +
4 (5 + 2 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2])}, {
Rational[1, 2] (
3 + (2 (4 +
5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2]))^
Rational[1, 2]),
Rational[1, 4] (
13 + (123 + 6 5^Rational[1, 2] +
36 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 4] (
6 + (55 + 7 5^Rational[1, 2] + (750 + 330 5^Rational[1, 2])^
Rational[1, 2])^Rational[1, 2]),
Root[-22259 + 478240 # - 1106488 #^2 + 161680 #^3 + 446464 #^4 -
262720 #^5 + 60608 #^6 - 6400 #^7 + 256 #^8& , 8, 0]}, {
Rational[1, 2] (
2 + (17 + 2 5^Rational[1, 2] +
4 (15 + 6 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (
7 + (63 + 6 5^Rational[1, 2] +
24 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 2] (
2 + (17 + 2 5^Rational[1, 2] +
4 (15 + 6 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (
11 + (63 + 6 5^Rational[1, 2] +
24 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 2] (
3 + (17 + 2 5^Rational[1, 2] +
4 (15 + 6 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (
7 + (3 (9 + 2 5^Rational[1, 2] +
4 (5 + 2 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2])}, {
Rational[1, 2] (
3 + (17 + 2 5^Rational[1, 2] +
4 (15 + 6 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (
11 + (123 + 6 5^Rational[1, 2] +
36 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 4] (
6 + (62 + 22 5^Rational[1, 2] +
4 (150 + 66 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (2 - 2 3^Rational[1, 2] - 5^
Rational[
1, 2] + (63 + 6 5^Rational[1, 2] +
24 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 4] (
6 + (62 + 22 5^Rational[1, 2] +
4 (150 + 66 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (4 - 2 3^Rational[1, 2] +
5^Rational[1, 2] + (63 + 6 5^Rational[1, 2] +
24 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
Rational[3, 4] (
2 + (2 (4 +
5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2]))^
Rational[1, 2]),
3 + (Rational[3, 2] (7 + 5^Rational[1, 2] +
3 (5 + 2 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2]}, {
Rational[1, 2] (
4 + (17 + 2 5^Rational[1, 2] +
4 (15 + 6 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (
7 + (63 + 6 5^Rational[1, 2] +
24 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 2] (
4 + (17 + 2 5^Rational[1, 2] +
4 (15 + 6 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (
11 + (63 + 6 5^Rational[1, 2] +
24 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 2] (
3 + (23 + 8 5^Rational[1, 2] +
4 (15 + 6 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (
3 + (3 (9 + 2 5^Rational[1, 2] +
4 (5 + 2 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2])}, {
2 (1 + 3^Rational[1, 2]),
Rational[1, 4] (
9 + (63 + 6 5^Rational[1, 2] +
24 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 4] (
6 + (73 + 25 5^Rational[1, 2] + (8310 + 3714 5^Rational[1, 2])^
Rational[1, 2])^Rational[1, 2]),
Root[-238739 + 1171904 # - 1679896 #^2 + 703088 #^3 + 133504 #^4 -
177344 #^5 + 49856 #^6 - 5888 #^7 + 256 #^8& , 8, 0]}, {
Rational[1, 2] (
3 + (2 (16 + 5^Rational[1, 2] +
3 (15 + 6 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2]),
Rational[1, 4] (
1 + (3 (9 + 2 5^Rational[1, 2] +
4 (5 + 2 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2])}, {
Rational[1, 2] (
3 + (2 (16 + 5^Rational[1, 2] +
3 (15 + 6 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2]),
Rational[1, 4] (
5 + (3 (9 + 2 5^Rational[1, 2] +
4 (5 + 2 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2])}, {
Rational[1, 4] (
8 + (202 - 2 5^Rational[1, 2] +
16 (30 - 6 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (8 - 5^
Rational[
1, 2] + (63 + 6 5^Rational[1, 2] +
24 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 4] (
8 + (202 - 2 5^Rational[1, 2] +
16 (30 - 6 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (10 +
5^Rational[1, 2] + (63 + 6 5^Rational[1, 2] +
24 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
2 + (Rational[1, 2] (16 + 5^Rational[1, 2] +
3 (15 + 6 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2],
Rational[1, 4] (1 + (15 + 6 5^Rational[1, 2])^Rational[1, 2])}, {
2 + (Rational[1, 2] (16 + 5^Rational[1, 2] +
3 (15 + 6 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2],
Rational[1, 4] (
5 + (63 + 6 5^Rational[1, 2] +
24 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
2 + (Rational[1, 2] (16 + 5^Rational[1, 2] +
3 (15 + 6 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2],
Rational[1, 4] (
13 + (63 + 6 5^Rational[1, 2] +
24 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 2] (
5 + (2 (16 + 5^Rational[1, 2] +
3 (15 + 6 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2]),
Rational[1, 4] (
1 + (3 (9 + 2 5^Rational[1, 2] +
4 (5 + 2 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2])}, {
Rational[1, 2] (
5 + (2 (16 + 5^Rational[1, 2] +
3 (15 + 6 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2]),
Rational[1, 4] (
5 + (3 (9 + 2 5^Rational[1, 2] +
4 (5 + 2 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2])}, {
Rational[1, 2] (
5 + (2 (16 + 5^Rational[1, 2] +
3 (15 + 6 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2]),
Rational[1, 4] (
13 + (123 + 6 5^Rational[1, 2] +
36 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 2] (
4 + (53 + 2 5^Rational[1, 2] +
8 (15 + 6 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (-1 + (15 + 6 5^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 2] (
4 + (53 + 2 5^Rational[1, 2] +
8 (15 + 6 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (
7 + (63 + 6 5^Rational[1, 2] +
24 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 2] (
4 + (53 + 2 5^Rational[1, 2] +
8 (15 + 6 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (
11 + (63 + 6 5^Rational[1, 2] +
24 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 2] (
5 + (53 + 2 5^Rational[1, 2] +
8 (15 + 6 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2]),
Rational[
1, 4] (-1 + (
3 (9 + 2 5^Rational[1, 2] +
4 (5 + 2 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2])}, {
Rational[1, 2] (
5 + (53 + 2 5^Rational[1, 2] +
8 (15 + 6 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (
7 + (3 (9 + 2 5^Rational[1, 2] +
4 (5 + 2 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2])}, {
Rational[1, 2] (
5 + (53 + 2 5^Rational[1, 2] +
8 (15 + 6 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (
11 + (123 + 6 5^Rational[1, 2] +
36 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 4] (
10 + (2 (79 + 11 5^Rational[1, 2] +
6 (150 + 66 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2]),
Rational[1, 4] (2 - 2 3^Rational[1, 2] - 5^
Rational[
1, 2] + (63 + 6 5^Rational[1, 2] +
24 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 4] (
10 + (2 (79 + 11 5^Rational[1, 2] +
6 (150 + 66 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2]),
Rational[1, 4] (4 - 2 3^Rational[1, 2] +
5^Rational[1, 2] + (63 + 6 5^Rational[1, 2] +
24 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 2] (
6 + (53 + 2 5^Rational[1, 2] +
8 (15 + 6 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (
7 + (63 + 6 5^Rational[1, 2] +
24 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 2] (
6 + (53 + 2 5^Rational[1, 2] +
8 (15 + 6 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (
11 + (63 + 6 5^Rational[1, 2] +
24 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 2] (
5 + (47 + 8 5^Rational[1, 2] +
12 (15 + 6 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (
3 + (3 (9 + 2 5^Rational[1, 2] +
4 (5 + 2 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2])}, {
3 (1 + 3^Rational[1, 2]),
Rational[1, 4] (
9 + (63 + 6 5^Rational[1, 2] +
24 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 2] (
5 + (2 (40 + 5^Rational[1, 2] +
5 (15 + 6 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2]),
Rational[1, 4] (
1 + (3 (9 + 2 5^Rational[1, 2] +
4 (5 + 2 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2])}, {
Rational[1, 2] (
5 + (2 (40 + 5^Rational[1, 2] +
5 (15 + 6 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2]),
Rational[1, 4] (
5 + (3 (9 + 2 5^Rational[1, 2] +
4 (5 + 2 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2])}, {
3 + Rational[
1, 4] (442 - 2 5^Rational[1, 2] +
24 (30 - 6 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2],
Rational[1, 4] (8 - 5^
Rational[
1, 2] + (63 + 6 5^Rational[1, 2] +
24 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
3 + Rational[
1, 4] (442 - 2 5^Rational[1, 2] +
24 (30 - 6 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2],
Rational[1, 4] (10 +
5^Rational[1, 2] + (63 + 6 5^Rational[1, 2] +
24 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
3 + (Rational[1, 2] (40 + 5^Rational[1, 2] +
5 (15 + 6 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2],
Rational[1, 4] (1 + (15 + 6 5^Rational[1, 2])^Rational[1, 2])}, {
3 + (Rational[1, 2] (40 + 5^Rational[1, 2] +
5 (15 + 6 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2],
Rational[1, 4] (
5 + (63 + 6 5^Rational[1, 2] +
24 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
3 + (Rational[1, 2] (40 + 5^Rational[1, 2] +
5 (15 + 6 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2],
Rational[1, 4] (
13 + (63 + 6 5^Rational[1, 2] +
24 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 2] (
7 + (2 (40 + 5^Rational[1, 2] +
5 (15 + 6 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2]),
Rational[1, 4] (
1 + (3 (9 + 2 5^Rational[1, 2] +
4 (5 + 2 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2])}, {
Rational[1, 2] (
7 + (2 (40 + 5^Rational[1, 2] +
5 (15 + 6 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2]),
Rational[1, 4] (
5 + (3 (9 + 2 5^Rational[1, 2] +
4 (5 + 2 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2])}, {
Rational[1, 2] (
7 + (2 (40 + 5^Rational[1, 2] +
5 (15 + 6 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2]),
Rational[1, 4] (
13 + (123 + 6 5^Rational[1, 2] +
36 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 2] (
6 + (113 + 2 5^Rational[1, 2] +
12 (15 + 6 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (-1 + (15 + 6 5^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 2] (
6 + (113 + 2 5^Rational[1, 2] +
12 (15 + 6 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (
7 + (63 + 6 5^Rational[1, 2] +
24 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 2] (
6 + (113 + 2 5^Rational[1, 2] +
12 (15 + 6 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (
11 + (63 + 6 5^Rational[1, 2] +
24 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 2] (
7 + (113 + 2 5^Rational[1, 2] +
12 (15 + 6 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2]),
Rational[
1, 4] (-1 + (
3 (9 + 2 5^Rational[1, 2] +
4 (5 + 2 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2])}, {
Rational[1, 2] (
7 + (113 + 2 5^Rational[1, 2] +
12 (15 + 6 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (
7 + (3 (9 + 2 5^Rational[1, 2] +
4 (5 + 2 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2])}, {
Rational[1, 2] (
7 + (113 + 2 5^Rational[1, 2] +
12 (15 + 6 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (
11 + (123 + 6 5^Rational[1, 2] +
36 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 4] (
14 + (350 + 22 5^Rational[1, 2] +
20 (150 + 66 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (2 - 2 3^Rational[1, 2] - 5^
Rational[
1, 2] + (63 + 6 5^Rational[1, 2] +
24 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 4] (
14 + (350 + 22 5^Rational[1, 2] +
20 (150 + 66 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (4 - 2 3^Rational[1, 2] +
5^Rational[1, 2] + (63 + 6 5^Rational[1, 2] +
24 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 2] (
8 + (113 + 2 5^Rational[1, 2] +
12 (15 + 6 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (
7 + (63 + 6 5^Rational[1, 2] +
24 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 2] (
8 + (113 + 2 5^Rational[1, 2] +
12 (15 + 6 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (
11 + (63 + 6 5^Rational[1, 2] +
24 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
4 + Rational[
1, 4] (647 - 41
5^Rational[1, 2] + (30 (985 + 139 5^Rational[1, 2]))^
Rational[1, 2])^Rational[1, 2],
Rational[1, 8] (1 +
5^Rational[1, 2] + (30 - 6 5^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 2] (
7 + (95 + 8 5^Rational[1, 2] +
20 (15 + 6 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (
3 + (3 (9 + 2 5^Rational[1, 2] +
4 (5 + 2 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2])}, {
4 (1 + 3^Rational[1, 2]),
Rational[1, 4] (
9 + (63 + 6 5^Rational[1, 2] +
24 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 2] (
7 + (2 (76 + 5^Rational[1, 2] +
7 (15 + 6 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2]),
Rational[1, 4] (
1 + (3 (9 + 2 5^Rational[1, 2] +
4 (5 + 2 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2])}, {
Rational[1, 2] (
7 + (2 (76 + 5^Rational[1, 2] +
7 (15 + 6 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2]),
Rational[1, 4] (
5 + (3 (9 + 2 5^Rational[1, 2] +
4 (5 + 2 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2])}, {
4 + Rational[
1, 4] (680 + 2 5^Rational[1, 2] +
30 (15 + 6 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2], 0}, {
4 + Rational[
1, 4] (778 - 2 5^Rational[1, 2] +
32 (30 - 6 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2],
Rational[1, 4] (8 - 5^
Rational[
1, 2] + (63 + 6 5^Rational[1, 2] +
24 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
4 + Rational[
1, 4] (778 - 2 5^Rational[1, 2] +
32 (30 - 6 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2],
Rational[1, 4] (10 +
5^Rational[1, 2] + (63 + 6 5^Rational[1, 2] +
24 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
4 + (Rational[1, 2] (76 + 5^Rational[1, 2] +
7 (15 + 6 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2],
Rational[1, 4] (1 + (15 + 6 5^Rational[1, 2])^Rational[1, 2])}, {
4 + (Rational[1, 2] (76 + 5^Rational[1, 2] +
7 (15 + 6 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2],
Rational[1, 4] (
5 + (63 + 6 5^Rational[1, 2] +
24 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
4 + (
Rational[1, 2] (76 + 5^Rational[1, 2] +
7 (15 + 6 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2],
Rational[1, 4] (
13 + (63 + 6 5^Rational[1, 2] +
24 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 2] (
9 + (2 (76 + 5^Rational[1, 2] +
7 (15 + 6 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2]),
Rational[1, 4] (
1 + (3 (9 + 2 5^Rational[1, 2] +
4 (5 + 2 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2])}, {
Rational[1, 2] (
9 + (2 (76 + 5^Rational[1, 2] +
7 (15 + 6 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2]),
Rational[1, 4] (
5 + (3 (9 + 2 5^Rational[1, 2] +
4 (5 + 2 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2])}, {
Rational[1, 2] (
9 + (2 (76 + 5^Rational[1, 2] +
7 (15 + 6 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2]),
Rational[1, 4] (
13 + (123 + 6 5^Rational[1, 2] +
36 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
4 + Rational[
1, 4] (737 +
49 5^Rational[1, 2] + (38550 + 9570 5^Rational[1, 2])^
Rational[1, 2])^Rational[1, 2],
Rational[1, 8] (-1 - 5^
Rational[1, 2] + (30 - 6 5^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 2] (
8 + (197 + 2 5^Rational[1, 2] +
16 (15 + 6 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (-1 + (15 + 6 5^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 2] (
8 + (197 + 2 5^Rational[1, 2] +
16 (15 + 6 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (
7 + (63 + 6 5^Rational[1, 2] +
24 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 2] (
8 + (197 + 2 5^Rational[1, 2] +
16 (15 + 6 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (
11 + (63 + 6 5^Rational[1, 2] +
24 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 2] (
9 + (197 + 2 5^Rational[1, 2] +
16 (15 + 6 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2]),
Rational[
1, 4] (-1 + (
3 (9 + 2 5^Rational[1, 2] +
4 (5 + 2 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2])}, {
Rational[1, 2] (
9 + (197 + 2 5^Rational[1, 2] +
16 (15 + 6 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (
7 + (3 (9 + 2 5^Rational[1, 2] +
4 (5 + 2 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2])}, {
Rational[1, 2] (
9 + (197 + 2 5^Rational[1, 2] +
16 (15 + 6 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (
11 + (123 + 6 5^Rational[1, 2] +
36 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 4] (
18 + (22 (29 + 5^Rational[1, 2]) +
28 (150 + 66 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (2 - 2 3^Rational[1, 2] - 5^
Rational[
1, 2] + (63 + 6 5^Rational[1, 2] +
24 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 4] (
18 + (22 (29 + 5^Rational[1, 2]) +
28 (150 + 66 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (4 - 2 3^Rational[1, 2] +
5^Rational[1, 2] + (63 + 6 5^Rational[1, 2] +
24 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
5 + Rational[
1, 2] (197 + 2 5^Rational[1, 2] +
16 (15 + 6 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2],
Rational[1, 4] (
7 + (63 + 6 5^Rational[1, 2] +
24 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
5 + Rational[
1, 2] (197 + 2 5^Rational[1, 2] +
16 (15 + 6 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2],
Rational[1, 4] (
11 + (63 + 6 5^Rational[1, 2] +
24 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 2] (
9 + (167 + 8 5^Rational[1, 2] +
28 (15 + 6 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (
3 + (3 (9 + 2 5^Rational[1, 2] +
4 (5 + 2 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2])}, {
Rational[1, 2] (
9 + (2 (124 + 5^Rational[1, 2] +
9 (15 + 6 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2]),
Rational[1, 4] (
5 + (3 (9 + 2 5^Rational[1, 2] +
4 (5 + 2 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2])}, {
5 + (Rational[1, 2] (124 + 5^Rational[1, 2] +
9 (15 + 6 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2],
Rational[1, 4] (
5 + (63 + 6 5^Rational[1, 2] +
24 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}}, {{
0, 5.314726871570336}, {0.17281636480318796`, 2.448701467785898}, {
0.17281636480318796`, 3.448701467785898}, {0.5877852522924731,
4.50570987719539}, {0.5877852522924731, 6.1237438659452845`}, {
0.672816364803188, 1.5826760640014592`}, {0.672816364803188,
4.314726871570336}, {0.672816364803188, 6.314726871570336}, {
1.0388417685876268`, 2.948701467785898}, {1.172816364803188,
7.1807522753547754`}, {1.5388417685876268`, 0.08267606400145922}, {
1.5388417685876268`, 1.0826760640014592`}, {1.5388417685876268`,
2.0826760640014594`}, {1.5388417685876268`, 3.8147268715703366`}, {
1.5388417685876268`, 4.814726871570336}, {1.5388417685876268`,
5.814726871570336}, {1.7079723749464848`, 3.691846293263292}, {
2.038841768587627, 6.6807522753547754`}, {2.5169893693214322`,
2.290587754819201}, {2.538841768587627, 0.08267606400145922}, {
2.538841768587627, 1.0826760640014592`}, {2.538841768587627,
2.0826760640014594`}, {2.538841768587627, 3.8147268715703366`}, {
2.538841768587627, 4.814726871570336}, {2.538841768587627,
5.814726871570336}, {2.6215178325890856`, 3.285109650187492}, {
2.732050807568877, 5.314726871570336}, {3.038841768587627,
2.948701467785898}, {3.3198360598613506`, 4.50570987719539}, {
3.3198360598613506`, 6.1237438659452845`}, {3.4048671723720654`,
4.314726871570336}, {3.4048671723720654`, 6.314726871570336}, {
3.9048671723720654`, 2.448701467785898}, {3.9048671723720654`,
3.448701467785898}, {3.9048671723720654`, 7.1807522753547754`}, {
4.112778863189824, 8.158899876088544}, {4.270892576156504,
4.814726871570336}, {4.270892576156504, 5.814726871570336}, {
4.770892576156504, 3.948701467785898}, {4.770892576156504,
6.6807522753547754`}, {4.855923688667219, 2.1396844734109504`}, {
4.855923688667219, 3.7577184621608453`}, {5.1073007585580985`,
8.263428339356235}, {5.270892576156504, 4.814726871570336}, {
5.270892576156504, 5.814726871570336}, {5.443708940959692,
2.948701467785898}, {5.464101615137754, 5.314726871570336}, {
5.514037401633899, 7.349882881713558}, {5.636917979940943,
2.448701467785898}, {5.636917979940943, 3.448701467785898}, {
6.051886867430228, 4.50570987719539}, {6.051886867430228,
6.1237438659452845`}, {6.136917979940943, 1.5826760640014592`}, {
6.136917979940943, 4.314726871570336}, {6.136917979940943,
6.314726871570336}, {6.636917979940943, 2.448701467785898}, {
6.636917979940943, 3.448701467785898}, {6.636917979940943,
7.1807522753547754`}, {7.002943383725381, 1.0826760640014592`}, {
7.002943383725381, 4.814726871570336}, {7.002943383725381,
5.814726871570336}, {7.502943383725381, 1.9487014677858978`}, {
7.502943383725381, 3.948701467785898}, {7.502943383725381,
6.6807522753547754`}, {7.587974496236097, 2.1396844734109504`}, {
7.587974496236097, 3.7577184621608453`}, {8.00294338372538,
4.814726871570336}, {8.00294338372538, 5.814726871570336}, {
8.17575974852857, 2.948701467785898}, {8.196152422706632,
5.314726871570336}, {8.36896878750982, 2.448701467785898}, {
8.36896878750982, 3.448701467785898}, {8.783937674999105,
4.50570987719539}, {8.783937674999105, 6.1237438659452845`}, {
8.86896878750982, 1.5826760640014592`}, {8.86896878750982,
4.314726871570336}, {8.86896878750982, 6.314726871570336}, {
9.36896878750982, 2.448701467785898}, {9.36896878750982,
3.448701467785898}, {9.36896878750982, 7.1807522753547754`}, {
9.734994191294259, 1.0826760640014592`}, {9.734994191294259,
4.814726871570336}, {9.734994191294259, 5.814726871570336}, {
10.234994191294259`, 1.9487014677858978`}, {10.234994191294259`,
3.948701467785898}, {10.234994191294259`, 6.6807522753547754`}, {
10.320025303804973`, 2.1396844734109504`}, {10.320025303804973`,
3.7577184621608453`}, {10.734994191294259`, 4.814726871570336}, {
10.734994191294259`, 5.814726871570336}, {10.857874769601302`,
0.9135454576426009}, {10.907810556097447`, 2.948701467785898}, {
10.928203230275509`, 5.314726871570336}, {11.101019595078697`,
2.448701467785898}, {11.101019595078697`, 3.448701467785898}, {
11.264611412677104`, 0}, {11.515988482567982`, 4.50570987719539}, {
11.515988482567982`, 6.1237438659452845`}, {11.601019595078697`,
1.5826760640014592`}, {11.601019595078697`, 4.314726871570336}, {
11.601019595078697`, 6.314726871570336}, {12.101019595078697`,
2.448701467785898}, {12.101019595078697`, 3.448701467785898}, {
12.101019595078697`, 7.1807522753547754`}, {12.259133308045376`,
0.10452846326765342`}, {12.467044998863136`, 1.0826760640014592`}, {
12.467044998863136`, 4.814726871570336}, {12.467044998863136`,
5.814726871570336}, {12.967044998863136`, 1.9487014677858978`}, {
12.967044998863136`, 3.948701467785898}, {12.967044998863136`,
6.6807522753547754`}, {13.05207611137385, 2.1396844734109504`}, {
13.05207611137385, 3.7577184621608453`}, {13.467044998863136`,
4.814726871570336}, {13.467044998863136`, 5.814726871570336}, {
13.639861363666324`, 2.948701467785898}, {13.833070402647575`,
3.448701467785898}, {14.333070402647575`, 4.314726871570336}}],
PolygonBox[{{10, 8, 16, 18}, {18, 16, 25}, {16, 15, 24, 25}, {5, 1, 4, 15,
16}, {7, 14, 15}, {15, 14, 23, 24}, {3, 9, 14, 7}, {3, 2, 9}, {2, 6,
13, 9}, {9, 13, 19, 26, 17}, {6, 12, 13}, {13, 12, 21, 22}, {35, 32, 38,
40}, {40, 38, 45}, {38, 37, 44, 45}, {30, 27, 29, 37, 38}, {37, 39,
44}, {44, 39, 50, 54}, {31, 34, 39, 37}, {24, 23, 31}, {23, 28, 34,
31}, {34, 33, 41, 46, 42}, {28, 33, 34}, {21, 12, 11, 20}, {58, 55, 61,
64}, {64, 61, 68}, {61, 60, 67, 68}, {52, 47, 51, 60, 61}, {60, 63,
67}, {67, 63, 72, 76}, {54, 57, 63, 60}, {54, 50, 57}, {50, 49, 56,
57}, {57, 56, 65, 69, 66}, {49, 53, 56}, {56, 53, 59, 62}, {80, 77, 83,
86}, {86, 83, 90}, {83, 82, 89, 90}, {74, 70, 73, 82, 83}, {82, 85,
89}, {89, 85, 95, 100}, {76, 79, 85, 82}, {76, 72, 79}, {72, 71, 78,
79}, {79, 78, 87, 92, 88}, {71, 75, 78}, {78, 75, 81, 84}, {104, 101,
108, 111}, {111, 108, 115}, {108, 107, 114, 115}, {98, 93, 97, 107,
108}, {107, 110, 114}, {114, 110, 117, 118}, {100, 103, 110, 107}, {100,
95, 103}, {95, 94, 102, 103}, {103, 102, 112, 116, 113}, {94, 99,
102}, {102, 99, 106, 109}, {36, 35, 40, 48, 43}, {99, 91, 96, 105,
106}}]]}]], "Output",
CellLabel->"Out[68]=",ExpressionUUID->"dff338f1-9523-4716-b530-b28245349ed5"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"PolyhedronData", "[",
RowBox[{
"\"\\"", ",", "\"\\"", ",",
"\"\\""}], "]"}]], "Input",
CellLabel->
"In[282]:=",ExpressionUUID->"b71be3ec-81fd-403a-b1ca-8a9cfe8e2c00"],
Cell[BoxData[
GraphicsBox[
{EdgeForm[GrayLevel[0]],
GraphicsComplexBox[
NCache[{{0,
Rational[1, 4] (
9 + (63 + 6 5^Rational[1, 2] +
24 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
Rational[1,
2] (-1 + (
2 (4 + 5^Rational[1, 2] - (15 + 6 5^Rational[1, 2])^
Rational[1, 2]))^Rational[1, 2]),
Rational[1, 4] (
1 + (3 (9 + 2 5^Rational[1, 2] +
4 (5 + 2 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2])}, {
Rational[1,
2] (-1 + (
2 (4 + 5^Rational[1, 2] - (15 + 6 5^Rational[1, 2])^
Rational[1, 2]))^Rational[1, 2]),
Rational[1, 4] (
5 + (3 (9 + 2 5^Rational[1, 2] +
4 (5 + 2 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2])}, {
Rational[1, 4] (10 - 2 5^Rational[1, 2])^Rational[1, 2],
Rational[1, 4] (8 - 5^
Rational[
1, 2] + (63 + 6 5^Rational[1, 2] +
24 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 2] (Rational[1, 2] (5 - 5^Rational[1, 2]))^Rational[1, 2],
Rational[1, 4] (10 +
5^Rational[1, 2] + (63 + 6 5^Rational[1, 2] +
24 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {(2 +
Rational[1, 2] 5^Rational[1, 2] +
Rational[-1, 2] (3 (5 + 2 5^Rational[1, 2]))^Rational[1, 2])^
Rational[1, 2],
Rational[1, 4] (1 + (15 + 6 5^Rational[1, 2])^Rational[1, 2])}, {(2 +
Rational[1, 2] 5^Rational[1, 2] +
Rational[-1, 2] (3 (5 + 2 5^Rational[1, 2]))^Rational[1, 2])^
Rational[1, 2],
Rational[1, 4] (
5 + (63 + 6 5^Rational[1, 2] +
24 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {(2 +
Rational[1, 2] 5^Rational[1, 2] +
Rational[-1, 2] (3 (5 + 2 5^Rational[1, 2]))^Rational[1, 2])^
Rational[1, 2],
Rational[1, 4] (
13 + (63 + 6 5^Rational[1, 2] +
24 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 2] (-1 + (5 + 2 5^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (
3 + (3 (9 + 2 5^Rational[1, 2] +
4 (5 + 2 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2])}, {
Rational[1, 2] (
1 + (2 (4 + 5^Rational[1, 2] - (15 + 6 5^Rational[1, 2])^
Rational[1, 2]))^Rational[1, 2]),
Rational[1, 4] (
13 + (123 + 6 5^Rational[1, 2] +
36 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[1, 4] (-5 + (15 + 6 5^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[1, 4] (-1 + (15 + 6 5^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[1, 4] (3 + (15 + 6 5^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[1, 4] (
3 + (63 + 6 5^Rational[1, 2] +
24 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[1, 4] (
7 + (63 + 6 5^Rational[1, 2] +
24 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[1, 4] (
11 + (63 + 6 5^Rational[1, 2] +
24 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
Root[1 - 32 # + 168 #^2 + 1456 #^3 - 2624 #^5 - 832 #^6 + 768 #^7 +
256 #^8& , 8, 0], Root[
1 + 24 # - 680 #^2 + 2736 #^3 - 3616 #^4 + 576 #^5 + 2240 #^6 -
1536 #^7 + 256 #^8& , 8, 0]}, {
Rational[1, 2] (1 + (5 + 2 5^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (
11 + (123 + 6 5^Rational[1, 2] +
36 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
Root[-59 - 296 # + 92 #^2 + 1792 #^3 + 1200 #^4 - 2112 #^5 - 1728 #^6 +
256 #^7 + 256 #^8& , 8, 0], Root[
181 - 1368 # + 976 #^2 + 4176 #^3 - 6016 #^4 + 768 #^5 + 2624 #^6 -
1536 #^7 + 256 #^8& , 8, 0]}, {
Rational[1, 2] (2 + (5 + 2 5^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (-5 + (15 + 6 5^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 2] (2 + (5 + 2 5^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (-1 + (15 + 6 5^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 2] (2 + (5 + 2 5^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (3 + (15 + 6 5^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 2] (2 + (5 + 2 5^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (
3 + (63 + 6 5^Rational[1, 2] +
24 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 2] (2 + (5 + 2 5^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (
7 + (63 + 6 5^Rational[1, 2] +
24 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 2] (2 + (5 + 2 5^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (
11 + (63 + 6 5^Rational[1, 2] +
24 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
Rational[1,
4] (-1 + (35 + 20 3^Rational[1, 2] +
2 (5 (97 + 56 3^Rational[1, 2]))^Rational[1, 2])^Rational[1, 2]),
Root[1 - 6 # - 10 #^2 + 96 #^3 - 136 #^4 - 24 #^5 + 160 #^6 - 96 #^7 +
16 #^8& , 8, 0]}, {
1 + 3^Rational[1, 2],
Rational[1, 4] (
9 + (63 + 6 5^Rational[1, 2] +
24 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 2] (3 + (5 + 2 5^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (
3 + (3 (9 + 2 5^Rational[1, 2] +
4 (5 + 2 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2])}, {
Rational[1, 4] (
4 + (58 - 2 5^Rational[1, 2] +
8 (30 - 6 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (8 - 5^
Rational[
1, 2] + (63 + 6 5^Rational[1, 2] +
24 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 4] (
4 + (58 - 2 5^Rational[1, 2] +
8 (30 - 6 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (10 +
5^Rational[1, 2] + (63 + 6 5^Rational[1, 2] +
24 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
1 + (Rational[1, 2] (4 +
5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2]))^
Rational[1, 2],
Rational[1, 4] (
5 + (63 + 6 5^Rational[1, 2] +
24 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
1 + (Rational[1, 2] (4 +
5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2]))^
Rational[1, 2],
Rational[1, 4] (
13 + (63 + 6 5^Rational[1, 2] +
24 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 2] (
3 + (2 (4 +
5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2]))^
Rational[1, 2]),
Rational[1, 4] (
1 + (3 (9 + 2 5^Rational[1, 2] +
4 (5 + 2 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2])}, {
Rational[1, 2] (
3 + (2 (4 +
5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2]))^
Rational[1, 2]),
Rational[1, 4] (
5 + (3 (9 + 2 5^Rational[1, 2] +
4 (5 + 2 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2])}, {
Rational[1, 2] (
3 + (2 (4 +
5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2]))^
Rational[1, 2]),
Rational[1, 4] (
13 + (123 + 6 5^Rational[1, 2] +
36 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 4] (
6 + (55 + 7 5^Rational[1, 2] + (750 + 330 5^Rational[1, 2])^
Rational[1, 2])^Rational[1, 2]),
Root[-22259 + 478240 # - 1106488 #^2 + 161680 #^3 + 446464 #^4 -
262720 #^5 + 60608 #^6 - 6400 #^7 + 256 #^8& , 8, 0]}, {
Rational[1, 2] (
2 + (17 + 2 5^Rational[1, 2] +
4 (15 + 6 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (
7 + (63 + 6 5^Rational[1, 2] +
24 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 2] (
2 + (17 + 2 5^Rational[1, 2] +
4 (15 + 6 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (
11 + (63 + 6 5^Rational[1, 2] +
24 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 2] (
3 + (17 + 2 5^Rational[1, 2] +
4 (15 + 6 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (
7 + (3 (9 + 2 5^Rational[1, 2] +
4 (5 + 2 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2])}, {
Rational[1, 2] (
3 + (17 + 2 5^Rational[1, 2] +
4 (15 + 6 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (
11 + (123 + 6 5^Rational[1, 2] +
36 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 4] (
6 + (62 + 22 5^Rational[1, 2] +
4 (150 + 66 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (2 - 2 3^Rational[1, 2] - 5^
Rational[
1, 2] + (63 + 6 5^Rational[1, 2] +
24 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 4] (
6 + (62 + 22 5^Rational[1, 2] +
4 (150 + 66 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (4 - 2 3^Rational[1, 2] +
5^Rational[1, 2] + (63 + 6 5^Rational[1, 2] +
24 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
Rational[3, 4] (
2 + (2 (4 +
5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2]))^
Rational[1, 2]),
3 + (Rational[3, 2] (7 + 5^Rational[1, 2] +
3 (5 + 2 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2]}, {
Rational[1, 2] (
4 + (17 + 2 5^Rational[1, 2] +
4 (15 + 6 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (
7 + (63 + 6 5^Rational[1, 2] +
24 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 2] (
4 + (17 + 2 5^Rational[1, 2] +
4 (15 + 6 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (
11 + (63 + 6 5^Rational[1, 2] +
24 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 2] (
3 + (23 + 8 5^Rational[1, 2] +
4 (15 + 6 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (
3 + (3 (9 + 2 5^Rational[1, 2] +
4 (5 + 2 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2])}, {
2 (1 + 3^Rational[1, 2]),
Rational[1, 4] (
9 + (63 + 6 5^Rational[1, 2] +
24 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 4] (
6 + (73 + 25 5^Rational[1, 2] + (8310 + 3714 5^Rational[1, 2])^
Rational[1, 2])^Rational[1, 2]),
Root[-238739 + 1171904 # - 1679896 #^2 + 703088 #^3 + 133504 #^4 -
177344 #^5 + 49856 #^6 - 5888 #^7 + 256 #^8& , 8, 0]}, {
Rational[1, 2] (
3 + (2 (16 + 5^Rational[1, 2] +
3 (15 + 6 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2]),
Rational[1, 4] (
1 + (3 (9 + 2 5^Rational[1, 2] +
4 (5 + 2 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2])}, {
Rational[1, 2] (
3 + (2 (16 + 5^Rational[1, 2] +
3 (15 + 6 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2]),
Rational[1, 4] (
5 + (3 (9 + 2 5^Rational[1, 2] +
4 (5 + 2 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2])}, {
Rational[1, 4] (
8 + (202 - 2 5^Rational[1, 2] +
16 (30 - 6 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (8 - 5^
Rational[
1, 2] + (63 + 6 5^Rational[1, 2] +
24 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 4] (
8 + (202 - 2 5^Rational[1, 2] +
16 (30 - 6 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (10 +
5^Rational[1, 2] + (63 + 6 5^Rational[1, 2] +
24 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
2 + (Rational[1, 2] (16 + 5^Rational[1, 2] +
3 (15 + 6 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2],
Rational[1, 4] (1 + (15 + 6 5^Rational[1, 2])^Rational[1, 2])}, {
2 + (Rational[1, 2] (16 + 5^Rational[1, 2] +
3 (15 + 6 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2],
Rational[1, 4] (
5 + (63 + 6 5^Rational[1, 2] +
24 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
2 + (Rational[1, 2] (16 + 5^Rational[1, 2] +
3 (15 + 6 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2],
Rational[1, 4] (
13 + (63 + 6 5^Rational[1, 2] +
24 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 2] (
5 + (2 (16 + 5^Rational[1, 2] +
3 (15 + 6 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2]),
Rational[1, 4] (
1 + (3 (9 + 2 5^Rational[1, 2] +
4 (5 + 2 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2])}, {
Rational[1, 2] (
5 + (2 (16 + 5^Rational[1, 2] +
3 (15 + 6 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2]),
Rational[1, 4] (
5 + (3 (9 + 2 5^Rational[1, 2] +
4 (5 + 2 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2])}, {
Rational[1, 2] (
5 + (2 (16 + 5^Rational[1, 2] +
3 (15 + 6 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2]),
Rational[1, 4] (
13 + (123 + 6 5^Rational[1, 2] +
36 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 2] (
4 + (53 + 2 5^Rational[1, 2] +
8 (15 + 6 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (-1 + (15 + 6 5^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 2] (
4 + (53 + 2 5^Rational[1, 2] +
8 (15 + 6 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (
7 + (63 + 6 5^Rational[1, 2] +
24 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 2] (
4 + (53 + 2 5^Rational[1, 2] +
8 (15 + 6 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (
11 + (63 + 6 5^Rational[1, 2] +
24 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 2] (
5 + (53 + 2 5^Rational[1, 2] +
8 (15 + 6 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2]),
Rational[
1, 4] (-1 + (
3 (9 + 2 5^Rational[1, 2] +
4 (5 + 2 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2])}, {
Rational[1, 2] (
5 + (53 + 2 5^Rational[1, 2] +
8 (15 + 6 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (
7 + (3 (9 + 2 5^Rational[1, 2] +
4 (5 + 2 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2])}, {
Rational[1, 2] (
5 + (53 + 2 5^Rational[1, 2] +
8 (15 + 6 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (
11 + (123 + 6 5^Rational[1, 2] +
36 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 4] (
10 + (2 (79 + 11 5^Rational[1, 2] +
6 (150 + 66 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2]),
Rational[1, 4] (2 - 2 3^Rational[1, 2] - 5^
Rational[
1, 2] + (63 + 6 5^Rational[1, 2] +
24 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 4] (
10 + (2 (79 + 11 5^Rational[1, 2] +
6 (150 + 66 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2]),
Rational[1, 4] (4 - 2 3^Rational[1, 2] +
5^Rational[1, 2] + (63 + 6 5^Rational[1, 2] +
24 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 2] (
6 + (53 + 2 5^Rational[1, 2] +
8 (15 + 6 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (
7 + (63 + 6 5^Rational[1, 2] +
24 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 2] (
6 + (53 + 2 5^Rational[1, 2] +
8 (15 + 6 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (
11 + (63 + 6 5^Rational[1, 2] +
24 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 2] (
5 + (47 + 8 5^Rational[1, 2] +
12 (15 + 6 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (
3 + (3 (9 + 2 5^Rational[1, 2] +
4 (5 + 2 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2])}, {
3 (1 + 3^Rational[1, 2]),
Rational[1, 4] (
9 + (63 + 6 5^Rational[1, 2] +
24 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 2] (
5 + (2 (40 + 5^Rational[1, 2] +
5 (15 + 6 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2]),
Rational[1, 4] (
1 + (3 (9 + 2 5^Rational[1, 2] +
4 (5 + 2 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2])}, {
Rational[1, 2] (
5 + (2 (40 + 5^Rational[1, 2] +
5 (15 + 6 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2]),
Rational[1, 4] (
5 + (3 (9 + 2 5^Rational[1, 2] +
4 (5 + 2 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2])}, {
3 + Rational[
1, 4] (442 - 2 5^Rational[1, 2] +
24 (30 - 6 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2],
Rational[1, 4] (8 - 5^
Rational[
1, 2] + (63 + 6 5^Rational[1, 2] +
24 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
3 + Rational[
1, 4] (442 - 2 5^Rational[1, 2] +
24 (30 - 6 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2],
Rational[1, 4] (10 +
5^Rational[1, 2] + (63 + 6 5^Rational[1, 2] +
24 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
3 + (
Rational[1, 2] (40 + 5^Rational[1, 2] +
5 (15 + 6 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2],
Rational[1, 4] (1 + (15 + 6 5^Rational[1, 2])^Rational[1, 2])}, {
3 + (Rational[1, 2] (40 + 5^Rational[1, 2] +
5 (15 + 6 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2],
Rational[1, 4] (
5 + (63 + 6 5^Rational[1, 2] +
24 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
3 + (Rational[1, 2] (40 + 5^Rational[1, 2] +
5 (15 + 6 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2],
Rational[1, 4] (
13 + (63 + 6 5^Rational[1, 2] +
24 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 2] (
7 + (2 (40 + 5^Rational[1, 2] +
5 (15 + 6 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2]),
Rational[1, 4] (
1 + (3 (9 + 2 5^Rational[1, 2] +
4 (5 + 2 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2])}, {
Rational[1, 2] (
7 + (2 (40 + 5^Rational[1, 2] +
5 (15 + 6 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2]),
Rational[1, 4] (
5 + (3 (9 + 2 5^Rational[1, 2] +
4 (5 + 2 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2])}, {
Rational[1, 2] (
7 + (2 (40 + 5^Rational[1, 2] +
5 (15 + 6 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2]),
Rational[1, 4] (
13 + (123 + 6 5^Rational[1, 2] +
36 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 2] (
6 + (113 + 2 5^Rational[1, 2] +
12 (15 + 6 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (-1 + (15 + 6 5^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 2] (
6 + (113 + 2 5^Rational[1, 2] +
12 (15 + 6 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (
7 + (63 + 6 5^Rational[1, 2] +
24 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 2] (
6 + (113 + 2 5^Rational[1, 2] +
12 (15 + 6 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (
11 + (63 + 6 5^Rational[1, 2] +
24 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 2] (
7 + (113 + 2 5^Rational[1, 2] +
12 (15 + 6 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2]),
Rational[
1, 4] (-1 + (
3 (9 + 2 5^Rational[1, 2] +
4 (5 + 2 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2])}, {
Rational[1, 2] (
7 + (113 + 2 5^Rational[1, 2] +
12 (15 + 6 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (
7 + (3 (9 + 2 5^Rational[1, 2] +
4 (5 + 2 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2])}, {
Rational[1, 2] (
7 + (113 + 2 5^Rational[1, 2] +
12 (15 + 6 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (
11 + (123 + 6 5^Rational[1, 2] +
36 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 4] (
14 + (350 + 22 5^Rational[1, 2] +
20 (150 + 66 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (2 - 2 3^Rational[1, 2] - 5^
Rational[
1, 2] + (63 + 6 5^Rational[1, 2] +
24 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 4] (
14 + (350 + 22 5^Rational[1, 2] +
20 (150 + 66 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (4 - 2 3^Rational[1, 2] +
5^Rational[1, 2] + (63 + 6 5^Rational[1, 2] +
24 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 2] (
8 + (113 + 2 5^Rational[1, 2] +
12 (15 + 6 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (
7 + (63 + 6 5^Rational[1, 2] +
24 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 2] (
8 + (113 + 2 5^Rational[1, 2] +
12 (15 + 6 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (
11 + (63 + 6 5^Rational[1, 2] +
24 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
4 + Rational[
1, 4] (647 - 41
5^Rational[1, 2] + (30 (985 + 139 5^Rational[1, 2]))^
Rational[1, 2])^Rational[1, 2],
Rational[1, 8] (1 +
5^Rational[1, 2] + (30 - 6 5^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 2] (
7 + (95 + 8 5^Rational[1, 2] +
20 (15 + 6 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (
3 + (3 (9 + 2 5^Rational[1, 2] +
4 (5 + 2 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2])}, {
4 (1 + 3^Rational[1, 2]),
Rational[1, 4] (
9 + (63 + 6 5^Rational[1, 2] +
24 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 2] (
7 + (2 (76 + 5^Rational[1, 2] +
7 (15 + 6 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2]),
Rational[1, 4] (
1 + (3 (9 + 2 5^Rational[1, 2] +
4 (5 + 2 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2])}, {
Rational[1, 2] (
7 + (2 (76 + 5^Rational[1, 2] +
7 (15 + 6 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2]),
Rational[1, 4] (
5 + (3 (9 + 2 5^Rational[1, 2] +
4 (5 + 2 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2])}, {
4 + Rational[
1, 4] (680 + 2 5^Rational[1, 2] +
30 (15 + 6 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2], 0}, {
4 + Rational[
1, 4] (778 - 2 5^Rational[1, 2] +
32 (30 - 6 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2],
Rational[1, 4] (8 - 5^
Rational[
1, 2] + (63 + 6 5^Rational[1, 2] +
24 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
4 + Rational[
1, 4] (778 - 2 5^Rational[1, 2] +
32 (30 - 6 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2],
Rational[1, 4] (10 +
5^Rational[1, 2] + (63 + 6 5^Rational[1, 2] +
24 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
4 + (Rational[1, 2] (76 + 5^Rational[1, 2] +
7 (15 + 6 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2],
Rational[1, 4] (1 + (15 + 6 5^Rational[1, 2])^Rational[1, 2])}, {
4 + (Rational[1, 2] (76 + 5^Rational[1, 2] +
7 (15 + 6 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2],
Rational[1, 4] (
5 + (63 + 6 5^Rational[1, 2] +
24 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
4 + (Rational[1, 2] (76 + 5^Rational[1, 2] +
7 (15 + 6 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2],
Rational[1, 4] (
13 + (63 + 6 5^Rational[1, 2] +
24 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 2] (
9 + (2 (76 + 5^Rational[1, 2] +
7 (15 + 6 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2]),
Rational[1, 4] (
1 + (3 (9 + 2 5^Rational[1, 2] +
4 (5 + 2 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2])}, {
Rational[1, 2] (
9 + (2 (76 + 5^Rational[1, 2] +
7 (15 + 6 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2]),
Rational[1, 4] (
5 + (3 (9 + 2 5^Rational[1, 2] +
4 (5 + 2 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2])}, {
Rational[1, 2] (
9 + (2 (76 + 5^Rational[1, 2] +
7 (15 + 6 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2]),
Rational[1, 4] (
13 + (123 + 6 5^Rational[1, 2] +
36 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
4 + Rational[
1, 4] (737 +
49 5^Rational[1, 2] + (38550 + 9570 5^Rational[1, 2])^
Rational[1, 2])^Rational[1, 2],
Rational[1, 8] (-1 - 5^
Rational[1, 2] + (30 - 6 5^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 2] (
8 + (197 + 2 5^Rational[1, 2] +
16 (15 + 6 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (-1 + (15 + 6 5^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 2] (
8 + (197 + 2 5^Rational[1, 2] +
16 (15 + 6 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (
7 + (63 + 6 5^Rational[1, 2] +
24 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 2] (
8 + (197 + 2 5^Rational[1, 2] +
16 (15 + 6 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (
11 + (63 + 6 5^Rational[1, 2] +
24 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 2] (
9 + (197 + 2 5^Rational[1, 2] +
16 (15 + 6 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2]),
Rational[
1, 4] (-1 + (
3 (9 + 2 5^Rational[1, 2] +
4 (5 + 2 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2])}, {
Rational[1, 2] (
9 + (197 + 2 5^Rational[1, 2] +
16 (15 + 6 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (
7 + (3 (9 + 2 5^Rational[1, 2] +
4 (5 + 2 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2])}, {
Rational[1, 2] (
9 + (197 + 2 5^Rational[1, 2] +
16 (15 + 6 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (
11 + (123 + 6 5^Rational[1, 2] +
36 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 4] (
18 + (22 (29 + 5^Rational[1, 2]) +
28 (150 + 66 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (2 - 2 3^Rational[1, 2] - 5^
Rational[
1, 2] + (63 + 6 5^Rational[1, 2] +
24 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 4] (
18 + (22 (29 + 5^Rational[1, 2]) +
28 (150 + 66 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (4 - 2 3^Rational[1, 2] +
5^Rational[1, 2] + (63 + 6 5^Rational[1, 2] +
24 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
5 + Rational[
1, 2] (197 + 2 5^Rational[1, 2] +
16 (15 + 6 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2],
Rational[1, 4] (
7 + (63 + 6 5^Rational[1, 2] +
24 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
5 + Rational[
1, 2] (197 + 2 5^Rational[1, 2] +
16 (15 + 6 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2],
Rational[1, 4] (
11 + (63 + 6 5^Rational[1, 2] +
24 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 2] (
9 + (167 + 8 5^Rational[1, 2] +
28 (15 + 6 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (
3 + (3 (9 + 2 5^Rational[1, 2] +
4 (5 + 2 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2])}, {
Rational[1, 2] (
9 + (2 (124 + 5^Rational[1, 2] +
9 (15 + 6 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2]),
Rational[1, 4] (
5 + (3 (9 + 2 5^Rational[1, 2] +
4 (5 + 2 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2])}, {
5 + (Rational[1, 2] (124 + 5^Rational[1, 2] +
9 (15 + 6 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2],
Rational[1, 4] (
5 + (63 + 6 5^Rational[1, 2] +
24 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}}, {{
0, 5.314726871570336}, {0.17281636480318796`, 2.448701467785898}, {
0.17281636480318796`, 3.448701467785898}, {0.5877852522924731,
4.50570987719539}, {0.5877852522924731, 6.1237438659452845`}, {
0.672816364803188, 1.5826760640014592`}, {0.672816364803188,
4.314726871570336}, {0.672816364803188, 6.314726871570336}, {
1.0388417685876268`, 2.948701467785898}, {1.172816364803188,
7.1807522753547754`}, {1.5388417685876268`, 0.08267606400145922}, {
1.5388417685876268`, 1.0826760640014592`}, {1.5388417685876268`,
2.0826760640014594`}, {1.5388417685876268`, 3.8147268715703366`}, {
1.5388417685876268`, 4.814726871570336}, {1.5388417685876268`,
5.814726871570336}, {1.7079723749464848`, 3.691846293263292}, {
2.038841768587627, 6.6807522753547754`}, {2.5169893693214322`,
2.290587754819201}, {2.538841768587627, 0.08267606400145922}, {
2.538841768587627, 1.0826760640014592`}, {2.538841768587627,
2.0826760640014594`}, {2.538841768587627, 3.8147268715703366`}, {
2.538841768587627, 4.814726871570336}, {2.538841768587627,
5.814726871570336}, {2.6215178325890856`, 3.285109650187492}, {
2.732050807568877, 5.314726871570336}, {3.038841768587627,
2.948701467785898}, {3.3198360598613506`, 4.50570987719539}, {
3.3198360598613506`, 6.1237438659452845`}, {3.4048671723720654`,
4.314726871570336}, {3.4048671723720654`, 6.314726871570336}, {
3.9048671723720654`, 2.448701467785898}, {3.9048671723720654`,
3.448701467785898}, {3.9048671723720654`, 7.1807522753547754`}, {
4.112778863189824, 8.158899876088544}, {4.270892576156504,
4.814726871570336}, {4.270892576156504, 5.814726871570336}, {
4.770892576156504, 3.948701467785898}, {4.770892576156504,
6.6807522753547754`}, {4.855923688667219, 2.1396844734109504`}, {
4.855923688667219, 3.7577184621608453`}, {5.1073007585580985`,
8.263428339356235}, {5.270892576156504, 4.814726871570336}, {
5.270892576156504, 5.814726871570336}, {5.443708940959692,
2.948701467785898}, {5.464101615137754, 5.314726871570336}, {
5.514037401633899, 7.349882881713558}, {5.636917979940943,
2.448701467785898}, {5.636917979940943, 3.448701467785898}, {
6.051886867430228, 4.50570987719539}, {6.051886867430228,
6.1237438659452845`}, {6.136917979940943, 1.5826760640014592`}, {
6.136917979940943, 4.314726871570336}, {6.136917979940943,
6.314726871570336}, {6.636917979940943, 2.448701467785898}, {
6.636917979940943, 3.448701467785898}, {6.636917979940943,
7.1807522753547754`}, {7.002943383725381, 1.0826760640014592`}, {
7.002943383725381, 4.814726871570336}, {7.002943383725381,
5.814726871570336}, {7.502943383725381, 1.9487014677858978`}, {
7.502943383725381, 3.948701467785898}, {7.502943383725381,
6.6807522753547754`}, {7.587974496236097, 2.1396844734109504`}, {
7.587974496236097, 3.7577184621608453`}, {8.00294338372538,
4.814726871570336}, {8.00294338372538, 5.814726871570336}, {
8.17575974852857, 2.948701467785898}, {8.196152422706632,
5.314726871570336}, {8.36896878750982, 2.448701467785898}, {
8.36896878750982, 3.448701467785898}, {8.783937674999105,
4.50570987719539}, {8.783937674999105, 6.1237438659452845`}, {
8.86896878750982, 1.5826760640014592`}, {8.86896878750982,
4.314726871570336}, {8.86896878750982, 6.314726871570336}, {
9.36896878750982, 2.448701467785898}, {9.36896878750982,
3.448701467785898}, {9.36896878750982, 7.1807522753547754`}, {
9.734994191294259, 1.0826760640014592`}, {9.734994191294259,
4.814726871570336}, {9.734994191294259, 5.814726871570336}, {
10.234994191294259`, 1.9487014677858978`}, {10.234994191294259`,
3.948701467785898}, {10.234994191294259`, 6.6807522753547754`}, {
10.320025303804973`, 2.1396844734109504`}, {10.320025303804973`,
3.7577184621608453`}, {10.734994191294259`, 4.814726871570336}, {
10.734994191294259`, 5.814726871570336}, {10.857874769601302`,
0.9135454576426009}, {10.907810556097447`, 2.948701467785898}, {
10.928203230275509`, 5.314726871570336}, {11.101019595078697`,
2.448701467785898}, {11.101019595078697`, 3.448701467785898}, {
11.264611412677104`, 0}, {11.515988482567982`, 4.50570987719539}, {
11.515988482567982`, 6.1237438659452845`}, {11.601019595078697`,
1.5826760640014592`}, {11.601019595078697`, 4.314726871570336}, {
11.601019595078697`, 6.314726871570336}, {12.101019595078697`,
2.448701467785898}, {12.101019595078697`, 3.448701467785898}, {
12.101019595078697`, 7.1807522753547754`}, {12.259133308045376`,
0.10452846326765342`}, {12.467044998863136`, 1.0826760640014592`}, {
12.467044998863136`, 4.814726871570336}, {12.467044998863136`,
5.814726871570336}, {12.967044998863136`, 1.9487014677858978`}, {
12.967044998863136`, 3.948701467785898}, {12.967044998863136`,
6.6807522753547754`}, {13.05207611137385, 2.1396844734109504`}, {
13.05207611137385, 3.7577184621608453`}, {13.467044998863136`,
4.814726871570336}, {13.467044998863136`, 5.814726871570336}, {
13.639861363666324`, 2.948701467785898}, {13.833070402647575`,
3.448701467785898}, {14.333070402647575`, 4.314726871570336}}], {
{RGBColor[1, 0, 0],
PolygonBox[{{3, 2, 9}, {6, 12, 13}, {7, 14, 15}, {18, 16, 25}, {24, 23,
31}, {28, 33, 34}, {37, 39, 44}, {40, 38, 45}, {49, 53, 56}, {54, 50,
57}, {60, 63, 67}, {64, 61, 68}, {71, 75, 78}, {76, 72, 79}, {82, 85,
89}, {86, 83, 90}, {94, 99, 102}, {100, 95, 103}, {107, 110, 114}, {
111, 108, 115}}]},
{RGBColor[1, 0.5, 0],
PolygonBox[{{2, 6, 13, 9}, {3, 9, 14, 7}, {10, 8, 16, 18}, {13, 12, 21,
22}, {15, 14, 23, 24}, {16, 15, 24, 25}, {21, 12, 11, 20}, {23, 28, 34,
31}, {31, 34, 39, 37}, {35, 32, 38, 40}, {38, 37, 44, 45}, {44, 39,
50, 54}, {50, 49, 56, 57}, {54, 57, 63, 60}, {56, 53, 59, 62}, {58, 55,
61, 64}, {61, 60, 67, 68}, {67, 63, 72, 76}, {72, 71, 78, 79}, {76,
79, 85, 82}, {78, 75, 81, 84}, {80, 77, 83, 86}, {83, 82, 89, 90}, {89,
85, 95, 100}, {95, 94, 102, 103}, {100, 103, 110, 107}, {102, 99, 106,
109}, {104, 101, 108, 111}, {108, 107, 114, 115}, {114, 110, 117,
118}}]},
{RGBColor[1, 1, 0],
PolygonBox[{{5, 1, 4, 15, 16}, {9, 13, 19, 26, 17}, {30, 27, 29, 37,
38}, {34, 33, 41, 46, 42}, {36, 35, 40, 48, 43}, {52, 47, 51, 60,
61}, {57, 56, 65, 69, 66}, {74, 70, 73, 82, 83}, {79, 78, 87, 92,
88}, {98, 93, 97, 107, 108}, {99, 91, 96, 105, 106}, {103, 102, 112,
116, 113}}]}}]}]], "Output",
CellLabel->
"Out[282]=",ExpressionUUID->"a41d9fb9-24c9-4d54-8ba9-30d68ebcb80f"]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell["Properties", "Section",ExpressionUUID->"857ba155-f70f-45c3-b82d-5ab8e186fb63"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"p", "=",
RowBox[{"PolyhedronData", "[",
RowBox[{
RowBox[{"pname", "=", "\"\\""}], ",",
"\"\\""}], "]"}]}]], "Input",
CellLabel->
"In[284]:=",ExpressionUUID->"a0b62ef1-5230-4a33-bc72-e59bbb4c2d2b"],
Cell[BoxData[
InterpretationBox[
RowBox[{
TagBox["Polyhedron",
"SummaryHead"], "[",
DynamicModuleBox[{Typeset`open$$ = False, Typeset`embedState$$ = "Ready",
Typeset`spolyhedron$$ = Quiet[
Polyhedron[{{0,
Root[
1 - 5 #^2 + 5 #^4& , 1, 0], (Rational[9, 4] +
Rational[9, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2] (1 + 5^Rational[1, 2]), 0,
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (-1 - 5^Rational[1, 2]),
Root[
1 - 20 #^2 + 80 #^4& , 2, 0], (Rational[9, 4] +
Rational[9, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 4] (3 + 5^Rational[1, 2]),
Rational[1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (1 + 5^Rational[1, 2]),
Rational[-1, 4] (34 + 62 5^Rational[-1, 2])^Rational[1, 2], (
Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 4] (3 + 5^Rational[1, 2]),
Rational[-1, 4] (26 + 58 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[-1, 2], (Rational[9, 4] + Rational[9, 2] 5^Rational[-1, 2])^
Rational[1, 2], (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {
0, (Rational[5, 2] + Rational[11, 2] 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[-1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (3 + 5^Rational[1, 2]),
Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (-3 - 5^Rational[1, 2]),
Rational[1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (-3 - 5^Rational[1, 2]),
Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (1 + 5^Rational[1, 2]),
Rational[-1, 4] (2 - 2 5^Rational[-1, 2])^Rational[1, 2],
Rational[-3, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2] (-1 - 5^Rational[1, 2]), 0,
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 2], (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2],
Rational[-3, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {0,
Root[1 - 25 #^2 + 5 #^4& , 1, 0],
Rational[1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2],
Rational[-3, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 4] (-3 - 5^Rational[1, 2]), (Rational[13, 8] +
Rational[29, 8] 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 4] (-1 - 5^Rational[1, 2]), (Rational[17, 8] +
Rational[31, 8] 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2], (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2], (Rational[9, 4] + Rational[9, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {
Rational[1, 2] (2 + 5^Rational[1, 2]), (Rational[1, 4] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (5 + 5^Rational[1, 2]),
Root[1 - 100 #^2 + 80 #^4& , 1, 0],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[-1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (1 + 5^Rational[1, 2]), (Rational[17, 8] +
Rational[31, 8] 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 4] (3 + 5^Rational[1, 2]),
Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 2] (2 + 5^Rational[1, 2]),
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (3 + 5^Rational[1, 2]), (Rational[13, 8] +
Rational[29, 8] 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2] (1 + 5^Rational[1, 2]), 0,
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 2] (2 + 5^Rational[1, 2]),
Rational[1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2], (
Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 4] (3 + 5^Rational[1, 2]),
Rational[1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (5 + 5^Rational[1, 2]), (Rational[5, 8] +
Rational[11, 8] 5^Rational[-1, 2])^
Rational[1, 2], (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {
Rational[1, 2] (1 + 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^
Rational[1, 2], (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {Rational[1, 4] (1 + 5^Rational[1, 2]),
Root[
1 - 20 #^2 + 80 #^4& , 2, 0], (Rational[9, 4] +
Rational[9, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2] (2 + 5^Rational[1, 2]),
Rational[-1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[-1, 2], (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2], (Rational[9, 4] + Rational[9, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {
Rational[1, 2] (1 + 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^
Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2], (Rational[9, 4] + Rational[9, 2] 5^Rational[-1, 2])^
Rational[1, 2], (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {
Rational[1, 4] (-1 - 5^
Rational[1, 2]), -(Rational[17, 8] +
Rational[31, 8] 5^Rational[-1, 2])^Rational[1, 2], (Rational[1, 4] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (-5 - 5^Rational[1, 2]), (Rational[5, 8] +
Rational[11, 8] 5^Rational[-1, 2])^
Rational[1, 2], (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {
Rational[-1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {(-3 +
5^Rational[1, 2])^(-1),
Root[1 - 260 #^2 + 80 #^4& , 1, 0],
Rational[-1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[-1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {-1 +
Rational[-1, 2] 5^Rational[1, 2], (Rational[1, 4] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 4] (-3 - 5^Rational[1, 2]),
Rational[1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (-5 - 5^Rational[1, 2]),
Rational[-1, 4] (10 + 22 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 4] (-3 - 5^Rational[1, 2]),
Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {-1 +
Rational[-1, 2] 5^Rational[1, 2],
Rational[-1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2] (-1 - 5^Rational[1, 2]), 0,
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[-1, 2],
Rational[-3, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2] (-1 - 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^
Rational[1, 2], (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {0,
Root[1 - 5 #^2 + 5 #^4& , 1, 0],
Rational[-3, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {-1 +
Rational[-1, 2] 5^Rational[1, 2],
Rational[1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2], (
Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[-1, 2], (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2],
Rational[-3, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2] (-1 - 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^
Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {-1 +
Rational[-1, 2] 5^Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 4] (-1 - 5^Rational[1, 2]),
Rational[-1, 4] (2 - 2 5^Rational[-1, 2])^Rational[1, 2],
Rational[-3, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}}, {{37, 28,
24}, {40, 8, 7}, {35, 5, 6}, {39, 26, 30}, {10, 14, 2}, {12, 4, 16}, {
54, 45, 41}, {55, 42, 46}, {58, 19, 20}, {53, 18, 17}, {56, 43, 47}, {
57, 48, 44}, {34, 32, 22}, {59, 51, 49}, {60, 50, 52}, {10, 2, 37,
24}, {37, 22, 32, 28}, {8, 40, 30, 26}, {25, 29, 40, 7}, {35, 27, 23,
5}, {6, 24, 28, 35}, {39, 30, 34, 22}, {12, 26, 39, 4}, {55, 14, 10,
42}, {41, 9, 13, 54}, {57, 44, 12, 16}, {15, 11, 43, 56}, {45, 54, 59,
49}, {50, 60, 55, 46}, {48, 58, 20, 44}, {43, 19, 58, 47}, {53, 17, 41,
45}, {46, 42, 18, 53}, {59, 56, 47, 51}, {52, 48, 57, 60}, {31, 32,
34, 33}, {17, 18, 6, 5}, {14, 16, 4, 2}, {7, 8, 20, 19}, {51, 52, 50,
49}, {3, 1, 36, 21, 38}, {22, 37, 2, 4, 39}, {29, 33, 34, 30, 40}, {27,
35, 28, 32, 31}, {42, 10, 24, 6, 18}, {41, 17, 5, 23, 9}, {20, 8, 26,
12, 44}, {11, 25, 7, 19, 43}, {56, 59, 54, 13, 15}, {57, 16, 14, 55,
60}, {58, 48, 52, 51, 47}, {49, 50, 46, 53, 45}, {36, 27, 31}, {38, 25,
11}, {23, 1, 9}, {15, 13, 3}, {29, 21, 33}, {31, 33, 21, 36}, {27, 36,
1, 23}, {3, 38, 11, 15}, {21, 29, 25, 38}, {1, 3, 13, 9}}]]},
TemplateBox[{
PaneSelectorBox[{False -> GridBox[{{
PaneBox[
ButtonBox[
DynamicBox[
FEPrivate`FrontEndResource["FEBitmaps", "SummaryBoxOpener"]],
ButtonFunction :> (Typeset`open$$ = True), Appearance -> None,
BaseStyle -> {}, Evaluator -> Automatic, Method ->
"Preemptive"], Alignment -> {Center, Center}, ImageSize ->
Dynamic[{
Automatic,
3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[
Magnification])}]],
Graphics3DBox[{
Directive[
Hue[0.58, 0.4, 1],
Opacity[0.5],
EdgeForm[
GrayLevel[1]]],
TagBox[
GraphicsComplex3DBox[
NCache[{{0,
Root[
1 - 5 #^2 + 5 #^4& , 1, 0], (Rational[9, 4] +
Rational[9, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2] (1 + 5^Rational[1, 2]), 0,
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (-1 - 5^Rational[1, 2]),
Root[
1 - 20 #^2 + 80 #^4& , 2, 0], (Rational[9, 4] +
Rational[9, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 4] (3 + 5^Rational[1, 2]),
Rational[1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (1 + 5^Rational[1, 2]),
Rational[-1, 4] (34 + 62 5^Rational[-1, 2])^
Rational[1, 2], (Rational[1, 4] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 4] (3 + 5^Rational[1, 2]),
Rational[-1, 4] (26 + 58 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 - 2 5^Rational[-1, 2])^
Rational[1, 2]}, {
Rational[-1, 2], (Rational[9, 4] +
Rational[9, 2] 5^Rational[-1, 2])^
Rational[1, 2], (Rational[1, 4] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {
0, (Rational[5, 2] + Rational[11, 2] 5^Rational[-1, 2])^
Rational[1, 2],
Rational[-1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[-1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (3 + 5^Rational[1, 2]),
Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (-3 - 5^Rational[1, 2]),
Rational[1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (-3 - 5^Rational[1, 2]),
Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (1 + 5^Rational[1, 2]),
Rational[-1, 4] (2 - 2 5^Rational[-1, 2])^Rational[1, 2],
Rational[-3, 2] (1 + 2 5^Rational[-1, 2])^
Rational[1, 2]}, {
Rational[1, 2] (-1 - 5^Rational[1, 2]), 0,
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[
1, 2], (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2],
Rational[-3, 2] (1 + 2 5^Rational[-1, 2])^
Rational[1, 2]}, {0,
Root[1 - 25 #^2 + 5 #^4& , 1, 0],
Rational[1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2],
Rational[-3, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^
Rational[1, 2]}, {
Rational[1, 4] (-3 - 5^Rational[1, 2]), (Rational[13, 8] +
Rational[29, 8] 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 4] (-1 - 5^Rational[1, 2]), (Rational[17, 8] +
Rational[31, 8] 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[
1, 2], (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2], (Rational[9, 4] +
Rational[9, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2] (2 + 5^Rational[1, 2]), (Rational[1, 4] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (5 + 5^Rational[1, 2]),
Root[1 - 100 #^2 + 80 #^4& , 1, 0],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[-1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (1 + 5^Rational[1, 2]), (Rational[17, 8] +
Rational[31, 8] 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^
Rational[1, 2]}, {
Rational[1, 4] (3 + 5^Rational[1, 2]),
Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 2] (2 + 5^Rational[1, 2]),
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (3 + 5^Rational[1, 2]), (Rational[13, 8] +
Rational[29, 8] 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2] (1 + 5^Rational[1, 2]), 0,
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 2] (2 + 5^Rational[1, 2]),
Rational[1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2], (
Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {
Rational[1, 4] (3 + 5^Rational[1, 2]),
Rational[1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (5 + 5^Rational[1, 2]), (Rational[5, 8] +
Rational[11, 8] 5^Rational[-1, 2])^
Rational[1, 2], (Rational[1, 4] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2] (1 +
5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^
Rational[1, 2], (Rational[1, 4] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 4] (1 + 5^Rational[1, 2]),
Root[
1 - 20 #^2 + 80 #^4& , 2, 0], (Rational[9, 4] +
Rational[9, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2] (2 + 5^Rational[1, 2]),
Rational[-1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[-1, 2], (Rational[1, 4] +
Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2], (Rational[9, 4] +
Rational[9, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2] (1 + 5^Rational[1, 2]), (1 +
2 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[
1, 2], (Rational[9, 4] + Rational[9, 2] 5^Rational[-1, 2])^
Rational[1, 2], (Rational[1, 4] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 4] (-1 - 5^
Rational[1, 2]), -(Rational[17, 8] +
Rational[31, 8] 5^Rational[-1, 2])^Rational[1, 2], (
Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {
Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (-5 - 5^Rational[1, 2]), (Rational[5, 8] +
Rational[11, 8] 5^Rational[-1, 2])^
Rational[1, 2], (Rational[1, 4] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[-1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^
Rational[1, 2]}, {(-3 + 5^Rational[1, 2])^(-1),
Root[1 - 260 #^2 + 80 #^4& , 1, 0],
Rational[-1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[-1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^
Rational[1, 2]}, {-1 +
Rational[-1, 2] 5^Rational[1, 2], (Rational[1, 4] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 - 2 5^Rational[-1, 2])^
Rational[1, 2]}, {
Rational[1, 4] (-3 - 5^Rational[1, 2]),
Rational[1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (-5 - 5^Rational[1, 2]),
Rational[-1, 4] (10 + 22 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^
Rational[1, 2]}, {
Rational[1, 4] (-3 - 5^Rational[1, 2]),
Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^
Rational[1, 2]}, {-1 + Rational[-1, 2] 5^Rational[1, 2],
Rational[-1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^
Rational[1, 2]}, {
Rational[1, 2] (-1 - 5^Rational[1, 2]), 0,
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[-1, 2],
Rational[-3, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^
Rational[1, 2]}, {
Rational[1, 2] (-1 - 5^
Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^
Rational[1, 2], (Rational[1, 4] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {0,
Root[1 - 5 #^2 + 5 #^4& , 1, 0],
Rational[-3, 2] (1 + 2 5^Rational[-1, 2])^
Rational[1, 2]}, {-1 + Rational[-1, 2] 5^Rational[1, 2],
Rational[1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2], (
Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {
Rational[-1, 2], (Rational[1, 4] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2],
Rational[-3, 2] (1 + 2 5^Rational[-1, 2])^
Rational[1, 2]}, {
Rational[1, 2] (-1 - 5^Rational[1, 2]), (1 +
2 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^
Rational[1, 2]}, {-1 + Rational[-1, 2] 5^Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 4] (-1 - 5^Rational[1, 2]),
Rational[-1, 4] (2 - 2 5^Rational[-1, 2])^Rational[1, 2],
Rational[-3, 2] (1 + 2 5^Rational[-1, 2])^
Rational[1, 2]}}, {{
0, -0.8506508083520399, 2.0645728807067605`}, {
1.618033988749895,
0, -1.5388417685876268`}, {-0.8090169943749475, \
-0.2628655560595668, 2.0645728807067605`}, {1.3090169943749475`,
0.9510565162951535, -1.5388417685876268`}, {
0.8090169943749475, -1.9641671727636467`,
0.6881909602355868}, {
1.3090169943749475`, -1.8017073246471935`, \
-0.16245984811645317`}, {-0.5, 2.0645728807067605`, 0.6881909602355868}, {
0, 2.2270327288232132`, -0.16245984811645317`}, {-0.5, \
-1.5388417685876268`, 1.5388417685876268`}, {
1.3090169943749475`, -0.9510565162951535, \
-1.5388417685876268`}, {-1.3090169943749475`, 0.9510565162951535,
1.5388417685876268`}, {0.5,
1.5388417685876268`, -1.5388417685876268`}, \
{-1.3090169943749475`, -0.9510565162951535, 1.5388417685876268`}, {
0.8090169943749475, -0.2628655560595668, \
-2.0645728807067605`}, {-1.618033988749895, 0, 1.5388417685876268`}, {0.5,
0.6881909602355868, -2.0645728807067605`}, {
0, -2.2270327288232132`, 0.16245984811645317`}, {
0.5, -2.0645728807067605`, -0.6881909602355868}, \
{-1.3090169943749475`, 1.8017073246471935`,
0.16245984811645317`}, {-0.8090169943749475,
1.9641671727636467`, -0.6881909602355868}, {0.5,
0.6881909602355868, 2.0645728807067605`}, {
2.118033988749895,
0.6881909602355868, -0.16245984811645317`}, {
0.5, -1.5388417685876268`, 1.5388417685876268`}, {
1.8090169943749475`, -1.1135163644116068`, \
-0.6881909602355868}, {-0.5, 1.5388417685876268`, 1.5388417685876268`}, {
0.8090169943749475,
1.9641671727636467`, -0.6881909602355868}, {
1.3090169943749475`, -0.9510565162951535,
1.5388417685876268`}, {
2.118033988749895, -0.6881909602355868,
0.16245984811645317`}, {0.5, 1.5388417685876268`,
1.5388417685876268`}, {1.3090169943749475`,
1.8017073246471935`, 0.16245984811645317`}, {
1.618033988749895, 0, 1.5388417685876268`}, {
2.118033988749895, 0.16245984811645317`,
0.6881909602355868}, {1.3090169943749475`,
0.9510565162951535, 1.5388417685876268`}, {
1.8090169943749475`, 1.1135163644116066`,
0.6881909602355868}, {
1.618033988749895, -1.3763819204711736`,
0.6881909602355868}, {
0.8090169943749475, -0.2628655560595668,
2.0645728807067605`}, {
2.118033988749895, -0.16245984811645317`, \
-0.6881909602355868}, {-0.5, 0.6881909602355868, 2.0645728807067605`}, {
1.618033988749895,
1.3763819204711736`, -0.6881909602355868}, {0.5,
2.0645728807067605`,
0.6881909602355868}, {-0.8090169943749475, \
-1.9641671727636467`, 0.6881909602355868}, {
0.5, -1.5388417685876268`, -1.5388417685876268`}, \
{-1.8090169943749475`, 1.1135163644116066`, 0.6881909602355868}, {-0.5,
1.5388417685876268`, -1.5388417685876268`}, \
{-1.3090169943749477`, -1.8017073246471935`, -0.16245984811645317`}, {-0.5, \
-1.5388417685876268`, -1.5388417685876268`}, {-2.118033988749895,
0.6881909602355868, -0.16245984811645317`}, \
{-1.3090169943749475`,
0.9510565162951535, -1.5388417685876268`}, \
{-1.8090169943749475`, -1.1135163644116066`, -0.6881909602355868}, \
{-1.3090169943749475`, -0.9510565162951535, -1.5388417685876268`}, \
{-2.118033988749895, -0.16245984811645317`, -0.6881909602355868}, \
{-1.618033988749895,
0, -1.5388417685876268`}, {-0.5, -2.0645728807067605`, \
-0.6881909602355868}, {-1.618033988749895, -1.3763819204711736`,
0.6881909602355868}, {
0, -0.8506508083520399, -2.0645728807067605`}, \
{-2.118033988749895, 0.16245984811645317`, 0.6881909602355868}, {-0.5,
0.6881909602355868, -2.0645728807067605`}, \
{-1.618033988749895,
1.3763819204711736`, -0.6881909602355868}, \
{-2.118033988749895, -0.6881909602355868,
0.16245984811645317`}, {-0.8090169943749475, \
-0.2628655560595668, -2.0645728807067605`}}],
Polygon3DBox[{{37, 28, 24}, {40, 8, 7}, {35, 5, 6}, {39, 26,
30}, {10, 14, 2}, {12, 4, 16}, {54, 45, 41}, {55, 42, 46}, {
58, 19, 20}, {53, 18, 17}, {56, 43, 47}, {57, 48, 44}, {34,
32, 22}, {59, 51, 49}, {60, 50, 52}, {10, 2, 37, 24}, {37,
22, 32, 28}, {8, 40, 30, 26}, {25, 29, 40, 7}, {35, 27, 23,
5}, {6, 24, 28, 35}, {39, 30, 34, 22}, {12, 26, 39, 4}, {55,
14, 10, 42}, {41, 9, 13, 54}, {57, 44, 12, 16}, {15, 11,
43, 56}, {45, 54, 59, 49}, {50, 60, 55, 46}, {48, 58, 20,
44}, {43, 19, 58, 47}, {53, 17, 41, 45}, {46, 42, 18, 53}, {
59, 56, 47, 51}, {52, 48, 57, 60}, {31, 32, 34, 33}, {17,
18, 6, 5}, {14, 16, 4, 2}, {7, 8, 20, 19}, {51, 52, 50,
49}, {3, 1, 36, 21, 38}, {22, 37, 2, 4, 39}, {29, 33, 34,
30, 40}, {27, 35, 28, 32, 31}, {42, 10, 24, 6, 18}, {41, 17,
5, 23, 9}, {20, 8, 26, 12, 44}, {11, 25, 7, 19, 43}, {56,
59, 54, 13, 15}, {57, 16, 14, 55, 60}, {58, 48, 52, 51,
47}, {49, 50, 46, 53, 45}, {36, 27, 31}, {38, 25, 11}, {23,
1, 9}, {15, 13, 3}, {29, 21, 33}, {31, 33, 21, 36}, {27, 36,
1, 23}, {3, 38, 11, 15}, {21, 29, 25, 38}, {1, 3, 13,
9}}]], "Polyhedron"]}, ImageSize ->
Dynamic[{5.25, 3.5} (CurrentValue["FontCapHeight"]/
AbsoluteCurrentValue[Magnification])], Boxed -> False,
Lighting -> {{"Ambient",
RGBColor[0.4, 0.45, 0.5]}, {"Directional",
RGBColor[0.24, 0.27, 0.3],
ImageScaled[{2, 0, 2}]}, {"Directional",
RGBColor[0.24, 0.27, 0.3],
ImageScaled[{2, 2, 2}]}, {"Directional",
RGBColor[0.24, 0.27, 0.3],
ImageScaled[{0, 2, 2}]}}, Method -> {"ShrinkWrap" -> True}],
GridBox[{{
RowBox[{
TagBox["\"Number of points: \"", "SummaryItemAnnotation"],
"\[InvisibleSpace]",
TagBox["60", "SummaryItem"]}]}, {
RowBox[{
TagBox["\"Number of faces: \"", "SummaryItemAnnotation"],
"\[InvisibleSpace]",
TagBox["62", "SummaryItem"]}]}},
GridBoxAlignment -> {
"Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete ->
False, GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}},
GridBoxSpacings -> {"Columns" -> {{2}}, "Rows" -> {{Automatic}}},
BaseStyle -> {
ShowStringCharacters -> False, NumberMarks -> False,
PrintPrecision -> 3, ShowSyntaxStyles -> False}]}},
GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}},
AutoDelete -> False,
GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}},
BaselinePosition -> {1, 1}], True -> GridBox[{{
PaneBox[
ButtonBox[
DynamicBox[
FEPrivate`FrontEndResource["FEBitmaps", "SummaryBoxCloser"]],
ButtonFunction :> (Typeset`open$$ = False), Appearance -> None,
BaseStyle -> {}, Evaluator -> Automatic, Method ->
"Preemptive"], Alignment -> {Center, Center}, ImageSize ->
Dynamic[{
Automatic,
3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[
Magnification])}]],
Graphics3DBox[{
Directive[
Hue[0.58, 0.4, 1],
Opacity[0.5],
EdgeForm[
GrayLevel[1]]],
TagBox[
GraphicsComplex3DBox[
NCache[{{0,
Root[
1 - 5 #^2 + 5 #^4& , 1, 0], (Rational[9, 4] +
Rational[9, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2] (1 + 5^Rational[1, 2]), 0,
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (-1 - 5^Rational[1, 2]),
Root[
1 - 20 #^2 + 80 #^4& , 2, 0], (Rational[9, 4] +
Rational[9, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 4] (3 + 5^Rational[1, 2]),
Rational[1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (1 + 5^Rational[1, 2]),
Rational[-1, 4] (34 + 62 5^Rational[-1, 2])^
Rational[1, 2], (Rational[1, 4] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 4] (3 + 5^Rational[1, 2]),
Rational[-1, 4] (26 + 58 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 - 2 5^Rational[-1, 2])^
Rational[1, 2]}, {
Rational[-1, 2], (Rational[9, 4] +
Rational[9, 2] 5^Rational[-1, 2])^
Rational[1, 2], (Rational[1, 4] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {
0, (Rational[5, 2] + Rational[11, 2] 5^Rational[-1, 2])^
Rational[1, 2],
Rational[-1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[-1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (3 + 5^Rational[1, 2]),
Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (-3 - 5^Rational[1, 2]),
Rational[1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (-3 - 5^Rational[1, 2]),
Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (1 + 5^Rational[1, 2]),
Rational[-1, 4] (2 - 2 5^Rational[-1, 2])^Rational[1, 2],
Rational[-3, 2] (1 + 2 5^Rational[-1, 2])^
Rational[1, 2]}, {
Rational[1, 2] (-1 - 5^Rational[1, 2]), 0,
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[
1, 2], (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2],
Rational[-3, 2] (1 + 2 5^Rational[-1, 2])^
Rational[1, 2]}, {0,
Root[1 - 25 #^2 + 5 #^4& , 1, 0],
Rational[1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2],
Rational[-3, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^
Rational[1, 2]}, {
Rational[1, 4] (-3 - 5^Rational[1, 2]), (Rational[13, 8] +
Rational[29, 8] 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 4] (-1 - 5^Rational[1, 2]), (Rational[17, 8] +
Rational[31, 8] 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[
1, 2], (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2], (Rational[9, 4] +
Rational[9, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2] (2 + 5^Rational[1, 2]), (Rational[1, 4] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (5 + 5^Rational[1, 2]),
Root[1 - 100 #^2 + 80 #^4& , 1, 0],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[-1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (1 + 5^Rational[1, 2]), (Rational[17, 8] +
Rational[31, 8] 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^
Rational[1, 2]}, {
Rational[1, 4] (3 + 5^Rational[1, 2]),
Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 2] (2 + 5^Rational[1, 2]),
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (3 + 5^Rational[1, 2]), (Rational[13, 8] +
Rational[29, 8] 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2] (1 + 5^Rational[1, 2]), 0,
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 2] (2 + 5^Rational[1, 2]),
Rational[1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2], (
Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {
Rational[1, 4] (3 + 5^Rational[1, 2]),
Rational[1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (5 + 5^Rational[1, 2]), (Rational[5, 8] +
Rational[11, 8] 5^Rational[-1, 2])^
Rational[1, 2], (Rational[1, 4] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2] (1 +
5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^
Rational[1, 2], (Rational[1, 4] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 4] (1 + 5^Rational[1, 2]),
Root[
1 - 20 #^2 + 80 #^4& , 2, 0], (Rational[9, 4] +
Rational[9, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2] (2 + 5^Rational[1, 2]),
Rational[-1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[-1, 2], (Rational[1, 4] +
Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2], (Rational[9, 4] +
Rational[9, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2] (1 + 5^Rational[1, 2]), (1 +
2 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[
1, 2], (Rational[9, 4] + Rational[9, 2] 5^Rational[-1, 2])^
Rational[1, 2], (Rational[1, 4] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 4] (-1 - 5^
Rational[1, 2]), -(Rational[17, 8] +
Rational[31, 8] 5^Rational[-1, 2])^Rational[1, 2], (
Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {
Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (-5 - 5^Rational[1, 2]), (Rational[5, 8] +
Rational[11, 8] 5^Rational[-1, 2])^
Rational[1, 2], (Rational[1, 4] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[-1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^
Rational[1, 2]}, {(-3 + 5^Rational[1, 2])^(-1),
Root[1 - 260 #^2 + 80 #^4& , 1, 0],
Rational[-1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[-1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^
Rational[1, 2]}, {-1 +
Rational[-1, 2] 5^Rational[1, 2], (Rational[1, 4] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 - 2 5^Rational[-1, 2])^
Rational[1, 2]}, {
Rational[1, 4] (-3 - 5^Rational[1, 2]),
Rational[1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (-5 - 5^Rational[1, 2]),
Rational[-1, 4] (10 + 22 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^
Rational[1, 2]}, {
Rational[1, 4] (-3 - 5^Rational[1, 2]),
Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^
Rational[1, 2]}, {-1 + Rational[-1, 2] 5^Rational[1, 2],
Rational[-1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^
Rational[1, 2]}, {
Rational[1, 2] (-1 - 5^Rational[1, 2]), 0,
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[-1, 2],
Rational[-3, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^
Rational[1, 2]}, {
Rational[1, 2] (-1 - 5^
Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^
Rational[1, 2], (Rational[1, 4] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {0,
Root[1 - 5 #^2 + 5 #^4& , 1, 0],
Rational[-3, 2] (1 + 2 5^Rational[-1, 2])^
Rational[1, 2]}, {-1 + Rational[-1, 2] 5^Rational[1, 2],
Rational[1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2], (
Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {
Rational[-1, 2], (Rational[1, 4] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2],
Rational[-3, 2] (1 + 2 5^Rational[-1, 2])^
Rational[1, 2]}, {
Rational[1, 2] (-1 - 5^Rational[1, 2]), (1 +
2 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^
Rational[1, 2]}, {-1 + Rational[-1, 2] 5^Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 4] (-1 - 5^Rational[1, 2]),
Rational[-1, 4] (2 - 2 5^Rational[-1, 2])^Rational[1, 2],
Rational[-3, 2] (1 + 2 5^Rational[-1, 2])^
Rational[1, 2]}}, {{
0, -0.8506508083520399, 2.0645728807067605`}, {
1.618033988749895,
0, -1.5388417685876268`}, {-0.8090169943749475, \
-0.2628655560595668, 2.0645728807067605`}, {1.3090169943749475`,
0.9510565162951535, -1.5388417685876268`}, {
0.8090169943749475, -1.9641671727636467`,
0.6881909602355868}, {
1.3090169943749475`, -1.8017073246471935`, \
-0.16245984811645317`}, {-0.5, 2.0645728807067605`, 0.6881909602355868}, {
0, 2.2270327288232132`, -0.16245984811645317`}, {-0.5, \
-1.5388417685876268`, 1.5388417685876268`}, {
1.3090169943749475`, -0.9510565162951535, \
-1.5388417685876268`}, {-1.3090169943749475`, 0.9510565162951535,
1.5388417685876268`}, {0.5,
1.5388417685876268`, -1.5388417685876268`}, \
{-1.3090169943749475`, -0.9510565162951535, 1.5388417685876268`}, {
0.8090169943749475, -0.2628655560595668, \
-2.0645728807067605`}, {-1.618033988749895, 0, 1.5388417685876268`}, {0.5,
0.6881909602355868, -2.0645728807067605`}, {
0, -2.2270327288232132`, 0.16245984811645317`}, {
0.5, -2.0645728807067605`, -0.6881909602355868}, \
{-1.3090169943749475`, 1.8017073246471935`,
0.16245984811645317`}, {-0.8090169943749475,
1.9641671727636467`, -0.6881909602355868}, {0.5,
0.6881909602355868, 2.0645728807067605`}, {
2.118033988749895,
0.6881909602355868, -0.16245984811645317`}, {
0.5, -1.5388417685876268`, 1.5388417685876268`}, {
1.8090169943749475`, -1.1135163644116068`, \
-0.6881909602355868}, {-0.5, 1.5388417685876268`, 1.5388417685876268`}, {
0.8090169943749475,
1.9641671727636467`, -0.6881909602355868}, {
1.3090169943749475`, -0.9510565162951535,
1.5388417685876268`}, {
2.118033988749895, -0.6881909602355868,
0.16245984811645317`}, {0.5, 1.5388417685876268`,
1.5388417685876268`}, {1.3090169943749475`,
1.8017073246471935`, 0.16245984811645317`}, {
1.618033988749895, 0, 1.5388417685876268`}, {
2.118033988749895, 0.16245984811645317`,
0.6881909602355868}, {1.3090169943749475`,
0.9510565162951535, 1.5388417685876268`}, {
1.8090169943749475`, 1.1135163644116066`,
0.6881909602355868}, {
1.618033988749895, -1.3763819204711736`,
0.6881909602355868}, {
0.8090169943749475, -0.2628655560595668,
2.0645728807067605`}, {
2.118033988749895, -0.16245984811645317`, \
-0.6881909602355868}, {-0.5, 0.6881909602355868, 2.0645728807067605`}, {
1.618033988749895,
1.3763819204711736`, -0.6881909602355868}, {0.5,
2.0645728807067605`,
0.6881909602355868}, {-0.8090169943749475, \
-1.9641671727636467`, 0.6881909602355868}, {
0.5, -1.5388417685876268`, -1.5388417685876268`}, \
{-1.8090169943749475`, 1.1135163644116066`, 0.6881909602355868}, {-0.5,
1.5388417685876268`, -1.5388417685876268`}, \
{-1.3090169943749477`, -1.8017073246471935`, -0.16245984811645317`}, {-0.5, \
-1.5388417685876268`, -1.5388417685876268`}, {-2.118033988749895,
0.6881909602355868, -0.16245984811645317`}, \
{-1.3090169943749475`,
0.9510565162951535, -1.5388417685876268`}, \
{-1.8090169943749475`, -1.1135163644116066`, -0.6881909602355868}, \
{-1.3090169943749475`, -0.9510565162951535, -1.5388417685876268`}, \
{-2.118033988749895, -0.16245984811645317`, -0.6881909602355868}, \
{-1.618033988749895,
0, -1.5388417685876268`}, {-0.5, -2.0645728807067605`, \
-0.6881909602355868}, {-1.618033988749895, -1.3763819204711736`,
0.6881909602355868}, {
0, -0.8506508083520399, -2.0645728807067605`}, \
{-2.118033988749895, 0.16245984811645317`, 0.6881909602355868}, {-0.5,
0.6881909602355868, -2.0645728807067605`}, \
{-1.618033988749895,
1.3763819204711736`, -0.6881909602355868}, \
{-2.118033988749895, -0.6881909602355868,
0.16245984811645317`}, {-0.8090169943749475, \
-0.2628655560595668, -2.0645728807067605`}}],
Polygon3DBox[{{37, 28, 24}, {40, 8, 7}, {35, 5, 6}, {39, 26,
30}, {10, 14, 2}, {12, 4, 16}, {54, 45, 41}, {55, 42, 46}, {
58, 19, 20}, {53, 18, 17}, {56, 43, 47}, {57, 48, 44}, {34,
32, 22}, {59, 51, 49}, {60, 50, 52}, {10, 2, 37, 24}, {37,
22, 32, 28}, {8, 40, 30, 26}, {25, 29, 40, 7}, {35, 27, 23,
5}, {6, 24, 28, 35}, {39, 30, 34, 22}, {12, 26, 39, 4}, {55,
14, 10, 42}, {41, 9, 13, 54}, {57, 44, 12, 16}, {15, 11,
43, 56}, {45, 54, 59, 49}, {50, 60, 55, 46}, {48, 58, 20,
44}, {43, 19, 58, 47}, {53, 17, 41, 45}, {46, 42, 18, 53}, {
59, 56, 47, 51}, {52, 48, 57, 60}, {31, 32, 34, 33}, {17,
18, 6, 5}, {14, 16, 4, 2}, {7, 8, 20, 19}, {51, 52, 50,
49}, {3, 1, 36, 21, 38}, {22, 37, 2, 4, 39}, {29, 33, 34,
30, 40}, {27, 35, 28, 32, 31}, {42, 10, 24, 6, 18}, {41, 17,
5, 23, 9}, {20, 8, 26, 12, 44}, {11, 25, 7, 19, 43}, {56,
59, 54, 13, 15}, {57, 16, 14, 55, 60}, {58, 48, 52, 51,
47}, {49, 50, 46, 53, 45}, {36, 27, 31}, {38, 25, 11}, {23,
1, 9}, {15, 13, 3}, {29, 21, 33}, {31, 33, 21, 36}, {27, 36,
1, 23}, {3, 38, 11, 15}, {21, 29, 25, 38}, {1, 3, 13,
9}}]], "Polyhedron"]}, ImageSize ->
Dynamic[{5.25, 3.5} (CurrentValue["FontCapHeight"]/
AbsoluteCurrentValue[Magnification])], Boxed -> False,
Lighting -> {{"Ambient",
RGBColor[0.4, 0.45, 0.5]}, {"Directional",
RGBColor[0.24, 0.27, 0.3],
ImageScaled[{2, 0, 2}]}, {"Directional",
RGBColor[0.24, 0.27, 0.3],
ImageScaled[{2, 2, 2}]}, {"Directional",
RGBColor[0.24, 0.27, 0.3],
ImageScaled[{0, 2, 2}]}}, Method -> {"ShrinkWrap" -> True}],
GridBox[{{
RowBox[{
TagBox["\"Number of points: \"", "SummaryItemAnnotation"],
"\[InvisibleSpace]",
TagBox["60", "SummaryItem"]}]}, {
RowBox[{
TagBox["\"Number of faces: \"", "SummaryItemAnnotation"],
"\[InvisibleSpace]",
TagBox["62", "SummaryItem"]}]}, {
RowBox[{
TagBox["\"Embedding dimension: \"", "SummaryItemAnnotation"],
"\[InvisibleSpace]",
TagBox["3", "SummaryItem"]}]}, {
RowBox[{
TagBox["\"Type: \"", "SummaryItemAnnotation"],
"\[InvisibleSpace]",
TagBox[
DynamicBox[
ToBoxes[
Quiet[
Apply[Region`PolyhedronDump`polyhedronType,
Region`PolyhedronDump`computeType[
Typeset`spolyhedron$$]]], StandardForm],
SynchronousUpdating -> False, TrackedSymbols :> {},
CachedValue :>
AnimatorBox[
0, {0, Infinity}, AppearanceElements -> "ProgressSlider",
ImageSize -> 20]], "SummaryItem"]}]}, {
RowBox[{
TagBox["\"Bounds: \"", "SummaryItemAnnotation"],
"\[InvisibleSpace]",
TagBox[
DynamicBox[
ToBoxes[
Region`PolyhedronDump`iRegionBounds[
Typeset`spolyhedron$$], StandardForm],
SynchronousUpdating -> False, TrackedSymbols :> {},
CachedValue :>
AnimatorBox[
0, {0, Infinity}, AppearanceElements -> "ProgressSlider",
ImageSize -> 20]], "SummaryItem"]}]}, {
RowBox[{
TagBox["\"Volume: \"", "SummaryItemAnnotation"],
"\[InvisibleSpace]",
TagBox[
DynamicBox[
ToBoxes[
Region`PolyhedronDump`iVolume[Typeset`spolyhedron$$],
StandardForm], SynchronousUpdating -> False,
TrackedSymbols :> {}, CachedValue :>
AnimatorBox[
0, {0, Infinity}, AppearanceElements -> "ProgressSlider",
ImageSize -> 20]], "SummaryItem"]}]}},
GridBoxAlignment -> {
"Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete ->
False, GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}},
GridBoxSpacings -> {"Columns" -> {{2}}, "Rows" -> {{Automatic}}},
BaseStyle -> {
ShowStringCharacters -> False, NumberMarks -> False,
PrintPrecision -> 3, ShowSyntaxStyles -> False}]}},
GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}},
AutoDelete -> False,
GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}},
BaselinePosition -> {1, 1}]},
Dynamic[Typeset`open$$], ImageSize -> Automatic]},
"SummaryPanel"],
DynamicModuleValues:>{}], "]"}],
Polyhedron[{{0,
Root[
1 - 5 #^2 + 5 #^4& , 1, 0], (Rational[9, 4] +
Rational[9, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2] (1 + 5^Rational[1, 2]), 0,
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (-1 - 5^Rational[1, 2]),
Root[
1 - 20 #^2 + 80 #^4& , 2, 0], (Rational[9, 4] +
Rational[9, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 4] (3 + 5^Rational[1, 2]),
Rational[1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (1 + 5^Rational[1, 2]),
Rational[-1, 4] (34 + 62 5^Rational[-1, 2])^Rational[1, 2], (
Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 4] (3 + 5^Rational[1, 2]),
Rational[-1, 4] (26 + 58 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[-1, 2], (Rational[9, 4] + Rational[9, 2] 5^Rational[-1, 2])^
Rational[1, 2], (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {
0, (Rational[5, 2] + Rational[11, 2] 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[-1, 2], Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (3 + 5^Rational[1, 2]),
Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (-3 - 5^Rational[1, 2]),
Rational[1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 2], Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (-3 - 5^Rational[1, 2]),
Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (1 + 5^Rational[1, 2]),
Rational[-1, 4] (2 - 2 5^Rational[-1, 2])^Rational[1, 2],
Rational[-3, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2] (-1 - 5^Rational[1, 2]), 0,
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 2], (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2],
Rational[-3, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {0,
Root[1 - 25 #^2 + 5 #^4& , 1, 0],
Rational[1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2], Rational[-3, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 4] (-3 - 5^Rational[1, 2]), (Rational[13, 8] +
Rational[29, 8] 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 4] (-1 - 5^Rational[1, 2]), (Rational[17, 8] +
Rational[31, 8] 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2], (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2], (Rational[9, 4] + Rational[9, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {
Rational[1, 2] (2 + 5^Rational[1, 2]), (Rational[1, 4] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2], Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (5 + 5^Rational[1, 2]),
Root[1 - 100 #^2 + 80 #^4& , 1, 0],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[-1, 2], Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (1 + 5^Rational[1, 2]), (Rational[17, 8] +
Rational[31, 8] 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 4] (3 + 5^Rational[1, 2]),
Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 2] (2 + 5^Rational[1, 2]),
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2], Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (3 + 5^Rational[1, 2]), (Rational[13, 8] +
Rational[29, 8] 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2] (1 + 5^Rational[1, 2]), 0,
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 2] (2 + 5^Rational[1, 2]),
Rational[1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2], (Rational[1, 4] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 4] (3 + 5^Rational[1, 2]),
Rational[1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (5 + 5^Rational[1, 2]), (Rational[5, 8] +
Rational[11, 8] 5^Rational[-1, 2])^
Rational[1, 2], (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {
Rational[1, 2] (1 + 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^
Rational[1, 2], (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {Rational[1, 4] (1 + 5^Rational[1, 2]),
Root[
1 - 20 #^2 + 80 #^4& , 2, 0], (Rational[9, 4] +
Rational[9, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2] (2 + 5^Rational[1, 2]),
Rational[-1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[-1, 2], (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2], (Rational[9, 4] + Rational[9, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {
Rational[1, 2] (1 + 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^
Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2], (Rational[9, 4] + Rational[9, 2] 5^Rational[-1, 2])^
Rational[1, 2], (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {
Rational[1, 4] (-1 - 5^
Rational[1, 2]), -(Rational[17, 8] + Rational[31, 8] 5^Rational[-1, 2])^
Rational[1, 2], (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {
Rational[1, 2], Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (-5 - 5^Rational[1, 2]), (Rational[5, 8] +
Rational[11, 8] 5^Rational[-1, 2])^
Rational[1, 2], (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {
Rational[-1, 2], Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {(-3 +
5^Rational[1, 2])^(-1),
Root[1 - 260 #^2 + 80 #^4& , 1, 0],
Rational[-1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[-1, 2], Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {-1 +
Rational[-1, 2] 5^Rational[1, 2], (Rational[1, 4] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 4] (-3 - 5^Rational[1, 2]),
Rational[1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (-5 - 5^Rational[1, 2]),
Rational[-1, 4] (10 + 22 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 4] (-3 - 5^Rational[1, 2]),
Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {-1 +
Rational[-1, 2] 5^Rational[1, 2],
Rational[-1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2] (-1 - 5^Rational[1, 2]), 0,
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[-1, 2],
Rational[-3, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2] (-1 - 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^
Rational[1, 2], (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {0,
Root[1 - 5 #^2 + 5 #^4& , 1, 0],
Rational[-3, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {-1 +
Rational[-1, 2] 5^Rational[1, 2],
Rational[1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2], (Rational[1, 4] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[-1, 2], (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2],
Rational[-3, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2] (-1 - 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^
Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {-1 +
Rational[-1, 2] 5^Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 4] (-1 - 5^Rational[1, 2]),
Rational[-1, 4] (2 - 2 5^Rational[-1, 2])^Rational[1, 2],
Rational[-3, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}}, {{37, 28,
24}, {40, 8, 7}, {35, 5, 6}, {39, 26, 30}, {10, 14, 2}, {12, 4, 16}, {54,
45, 41}, {55, 42, 46}, {58, 19, 20}, {53, 18, 17}, {56, 43, 47}, {57, 48,
44}, {34, 32, 22}, {59, 51, 49}, {60, 50, 52}, {10, 2, 37, 24}, {37, 22,
32, 28}, {8, 40, 30, 26}, {25, 29, 40, 7}, {35, 27, 23, 5}, {6, 24, 28,
35}, {39, 30, 34, 22}, {12, 26, 39, 4}, {55, 14, 10, 42}, {41, 9, 13,
54}, {57, 44, 12, 16}, {15, 11, 43, 56}, {45, 54, 59, 49}, {50, 60, 55,
46}, {48, 58, 20, 44}, {43, 19, 58, 47}, {53, 17, 41, 45}, {46, 42, 18,
53}, {59, 56, 47, 51}, {52, 48, 57, 60}, {31, 32, 34, 33}, {17, 18, 6,
5}, {14, 16, 4, 2}, {7, 8, 20, 19}, {51, 52, 50, 49}, {3, 1, 36, 21,
38}, {22, 37, 2, 4, 39}, {29, 33, 34, 30, 40}, {27, 35, 28, 32, 31}, {42,
10, 24, 6, 18}, {41, 17, 5, 23, 9}, {20, 8, 26, 12, 44}, {11, 25, 7, 19,
43}, {56, 59, 54, 13, 15}, {57, 16, 14, 55, 60}, {58, 48, 52, 51, 47}, {
49, 50, 46, 53, 45}, {36, 27, 31}, {38, 25, 11}, {23, 1, 9}, {15, 13,
3}, {29, 21, 33}, {31, 33, 21, 36}, {27, 36, 1, 23}, {3, 38, 11, 15}, {21,
29, 25, 38}, {1, 3, 13, 9}}],
Editable->False,
SelectWithContents->True,
Selectable->False]], "Output",
CellLabel->
"Out[284]=",ExpressionUUID->"3457a291-1711-4043-8312-108b2aaa96cb"]
}, Open ]],
Cell[CellGroupData[{
Cell["AdjacentFaceIndices", "Subsection",ExpressionUUID->"2b1e9185-eef2-42f7-89f9-cb08dd84015a"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"AdjacentFaceIndices", "[", "p", "]"}]], "Input",
CellLabel->"In[67]:=",ExpressionUUID->"4d9145e9-af0c-4277-bfc7-7cf63bb7509b"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"1", ",", "16"}], "}"}], ",",
RowBox[{"{",
RowBox[{"1", ",", "17"}], "}"}], ",",
RowBox[{"{",
RowBox[{"1", ",", "21"}], "}"}], ",",
RowBox[{"{",
RowBox[{"2", ",", "18"}], "}"}], ",",
RowBox[{"{",
RowBox[{"2", ",", "19"}], "}"}], ",",
RowBox[{"{",
RowBox[{"2", ",", "39"}], "}"}], ",",
RowBox[{"{",
RowBox[{"3", ",", "20"}], "}"}], ",",
RowBox[{"{",
RowBox[{"3", ",", "21"}], "}"}], ",",
RowBox[{"{",
RowBox[{"3", ",", "37"}], "}"}], ",",
RowBox[{"{",
RowBox[{"4", ",", "18"}], "}"}], ",",
RowBox[{"{",
RowBox[{"4", ",", "22"}], "}"}], ",",
RowBox[{"{",
RowBox[{"4", ",", "23"}], "}"}], ",",
RowBox[{"{",
RowBox[{"5", ",", "16"}], "}"}], ",",
RowBox[{"{",
RowBox[{"5", ",", "24"}], "}"}], ",",
RowBox[{"{",
RowBox[{"5", ",", "38"}], "}"}], ",",
RowBox[{"{",
RowBox[{"6", ",", "23"}], "}"}], ",",
RowBox[{"{",
RowBox[{"6", ",", "26"}], "}"}], ",",
RowBox[{"{",
RowBox[{"6", ",", "38"}], "}"}], ",",
RowBox[{"{",
RowBox[{"7", ",", "25"}], "}"}], ",",
RowBox[{"{",
RowBox[{"7", ",", "28"}], "}"}], ",",
RowBox[{"{",
RowBox[{"7", ",", "32"}], "}"}], ",",
RowBox[{"{",
RowBox[{"8", ",", "24"}], "}"}], ",",
RowBox[{"{",
RowBox[{"8", ",", "29"}], "}"}], ",",
RowBox[{"{",
RowBox[{"8", ",", "33"}], "}"}], ",",
RowBox[{"{",
RowBox[{"9", ",", "30"}], "}"}], ",",
RowBox[{"{",
RowBox[{"9", ",", "31"}], "}"}], ",",
RowBox[{"{",
RowBox[{"9", ",", "39"}], "}"}], ",",
RowBox[{"{",
RowBox[{"10", ",", "32"}], "}"}], ",",
RowBox[{"{",
RowBox[{"10", ",", "33"}], "}"}], ",",
RowBox[{"{",
RowBox[{"10", ",", "37"}], "}"}], ",",
RowBox[{"{",
RowBox[{"11", ",", "27"}], "}"}], ",",
RowBox[{"{",
RowBox[{"11", ",", "31"}], "}"}], ",",
RowBox[{"{",
RowBox[{"11", ",", "34"}], "}"}], ",",
RowBox[{"{",
RowBox[{"12", ",", "26"}], "}"}], ",",
RowBox[{"{",
RowBox[{"12", ",", "30"}], "}"}], ",",
RowBox[{"{",
RowBox[{"12", ",", "35"}], "}"}], ",",
RowBox[{"{",
RowBox[{"13", ",", "17"}], "}"}], ",",
RowBox[{"{",
RowBox[{"13", ",", "22"}], "}"}], ",",
RowBox[{"{",
RowBox[{"13", ",", "36"}], "}"}], ",",
RowBox[{"{",
RowBox[{"14", ",", "28"}], "}"}], ",",
RowBox[{"{",
RowBox[{"14", ",", "34"}], "}"}], ",",
RowBox[{"{",
RowBox[{"14", ",", "40"}], "}"}], ",",
RowBox[{"{",
RowBox[{"15", ",", "29"}], "}"}], ",",
RowBox[{"{",
RowBox[{"15", ",", "35"}], "}"}], ",",
RowBox[{"{",
RowBox[{"15", ",", "40"}], "}"}], ",",
RowBox[{"{",
RowBox[{"16", ",", "42"}], "}"}], ",",
RowBox[{"{",
RowBox[{"16", ",", "45"}], "}"}], ",",
RowBox[{"{",
RowBox[{"17", ",", "42"}], "}"}], ",",
RowBox[{"{",
RowBox[{"17", ",", "44"}], "}"}], ",",
RowBox[{"{",
RowBox[{"18", ",", "43"}], "}"}], ",",
RowBox[{"{",
RowBox[{"18", ",", "47"}], "}"}], ",",
RowBox[{"{",
RowBox[{"19", ",", "43"}], "}"}], ",",
RowBox[{"{",
RowBox[{"19", ",", "48"}], "}"}], ",",
RowBox[{"{",
RowBox[{"19", ",", "61"}], "}"}], ",",
RowBox[{"{",
RowBox[{"20", ",", "44"}], "}"}], ",",
RowBox[{"{",
RowBox[{"20", ",", "46"}], "}"}], ",",
RowBox[{"{",
RowBox[{"20", ",", "59"}], "}"}], ",",
RowBox[{"{",
RowBox[{"21", ",", "44"}], "}"}], ",",
RowBox[{"{",
RowBox[{"21", ",", "45"}], "}"}], ",",
RowBox[{"{",
RowBox[{"22", ",", "42"}], "}"}], ",",
RowBox[{"{",
RowBox[{"22", ",", "43"}], "}"}], ",",
RowBox[{"{",
RowBox[{"23", ",", "42"}], "}"}], ",",
RowBox[{"{",
RowBox[{"23", ",", "47"}], "}"}], ",",
RowBox[{"{",
RowBox[{"24", ",", "45"}], "}"}], ",",
RowBox[{"{",
RowBox[{"24", ",", "50"}], "}"}], ",",
RowBox[{"{",
RowBox[{"25", ",", "46"}], "}"}], ",",
RowBox[{"{",
RowBox[{"25", ",", "49"}], "}"}], ",",
RowBox[{"{",
RowBox[{"25", ",", "62"}], "}"}], ",",
RowBox[{"{",
RowBox[{"26", ",", "47"}], "}"}], ",",
RowBox[{"{",
RowBox[{"26", ",", "50"}], "}"}], ",",
RowBox[{"{",
RowBox[{"27", ",", "48"}], "}"}], ",",
RowBox[{"{",
RowBox[{"27", ",", "49"}], "}"}], ",",
RowBox[{"{",
RowBox[{"27", ",", "60"}], "}"}], ",",
RowBox[{"{",
RowBox[{"28", ",", "49"}], "}"}], ",",
RowBox[{"{",
RowBox[{"28", ",", "52"}], "}"}], ",",
RowBox[{"{",
RowBox[{"29", ",", "50"}], "}"}], ",",
RowBox[{"{",
RowBox[{"29", ",", "52"}], "}"}], ",",
RowBox[{"{",
RowBox[{"30", ",", "47"}], "}"}], ",",
RowBox[{"{",
RowBox[{"30", ",", "51"}], "}"}], ",",
RowBox[{"{",
RowBox[{"31", ",", "48"}], "}"}], ",",
RowBox[{"{",
RowBox[{"31", ",", "51"}], "}"}], ",",
RowBox[{"{",
RowBox[{"32", ",", "46"}], "}"}], ",",
RowBox[{"{",
RowBox[{"32", ",", "52"}], "}"}], ",",
RowBox[{"{",
RowBox[{"33", ",", "45"}], "}"}], ",",
RowBox[{"{",
RowBox[{"33", ",", "52"}], "}"}], ",",
RowBox[{"{",
RowBox[{"34", ",", "49"}], "}"}], ",",
RowBox[{"{",
RowBox[{"34", ",", "51"}], "}"}], ",",
RowBox[{"{",
RowBox[{"35", ",", "50"}], "}"}], ",",
RowBox[{"{",
RowBox[{"35", ",", "51"}], "}"}], ",",
RowBox[{"{",
RowBox[{"36", ",", "43"}], "}"}], ",",
RowBox[{"{",
RowBox[{"36", ",", "44"}], "}"}], ",",
RowBox[{"{",
RowBox[{"36", ",", "58"}], "}"}], ",",
RowBox[{"{",
RowBox[{"37", ",", "45"}], "}"}], ",",
RowBox[{"{",
RowBox[{"37", ",", "46"}], "}"}], ",",
RowBox[{"{",
RowBox[{"38", ",", "42"}], "}"}], ",",
RowBox[{"{",
RowBox[{"38", ",", "50"}], "}"}], ",",
RowBox[{"{",
RowBox[{"39", ",", "47"}], "}"}], ",",
RowBox[{"{",
RowBox[{"39", ",", "48"}], "}"}], ",",
RowBox[{"{",
RowBox[{"40", ",", "51"}], "}"}], ",",
RowBox[{"{",
RowBox[{"40", ",", "52"}], "}"}], ",",
RowBox[{"{",
RowBox[{"41", ",", "58"}], "}"}], ",",
RowBox[{"{",
RowBox[{"41", ",", "59"}], "}"}], ",",
RowBox[{"{",
RowBox[{"41", ",", "60"}], "}"}], ",",
RowBox[{"{",
RowBox[{"41", ",", "61"}], "}"}], ",",
RowBox[{"{",
RowBox[{"41", ",", "62"}], "}"}], ",",
RowBox[{"{",
RowBox[{"43", ",", "57"}], "}"}], ",",
RowBox[{"{",
RowBox[{"44", ",", "53"}], "}"}], ",",
RowBox[{"{",
RowBox[{"46", ",", "55"}], "}"}], ",",
RowBox[{"{",
RowBox[{"48", ",", "54"}], "}"}], ",",
RowBox[{"{",
RowBox[{"49", ",", "56"}], "}"}], ",",
RowBox[{"{",
RowBox[{"53", ",", "58"}], "}"}], ",",
RowBox[{"{",
RowBox[{"53", ",", "59"}], "}"}], ",",
RowBox[{"{",
RowBox[{"54", ",", "60"}], "}"}], ",",
RowBox[{"{",
RowBox[{"54", ",", "61"}], "}"}], ",",
RowBox[{"{",
RowBox[{"55", ",", "59"}], "}"}], ",",
RowBox[{"{",
RowBox[{"55", ",", "62"}], "}"}], ",",
RowBox[{"{",
RowBox[{"56", ",", "60"}], "}"}], ",",
RowBox[{"{",
RowBox[{"56", ",", "62"}], "}"}], ",",
RowBox[{"{",
RowBox[{"57", ",", "58"}], "}"}], ",",
RowBox[{"{",
RowBox[{"57", ",", "61"}], "}"}]}], "}"}]], "Output",
CellLabel->"Out[67]=",ExpressionUUID->"79bac50f-5c62-4c59-87e6-3f18a758863f"]
}, Open ]]
}, Closed]],
Cell[CellGroupData[{
Cell["Centroid", "Subsection",ExpressionUUID->"ee81ab3a-bab9-4e6a-a915-faf4a5b0eb80"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Graphics3D", "[",
RowBox[{"{",
RowBox[{
RowBox[{"AbsolutePointSize", "[", "10", "]"}], ",", "\[IndentingNewLine]",
RowBox[{"Point", "[",
RowBox[{"{",
RowBox[{"0", ",", "0", ",", "0"}], "}"}], "]"}], ",",
RowBox[{"{",
RowBox[{"Blue", ",",
RowBox[{"Point", "[",
RowBox[{"PolyhedronData", "[",
RowBox[{"pname", ",", "\"\\""}], "]"}], "]"}]}], "}"}],
",",
RowBox[{"Opacity", "[", ".2", "]"}], ",",
RowBox[{"PolyhedronData", "[",
RowBox[{"pname", ",", "\"\\""}], "]"}]}], "}"}],
"]"}]], "Input",
CellLabel->
"In[285]:=",ExpressionUUID->"e2768ade-bacf-4c50-8df5-99fe04b535d0"],
Cell[BoxData[
Graphics3DBox[
{AbsolutePointSize[10], Point3DBox[{0, 0, 0}],
{RGBColor[0, 0, 1], Point3DBox[{0, 0, 0}]},
{Opacity[0.2],
GraphicsComplex3DBox[
NCache[{{0, Root[
1 - 5 #^2 + 5 #^4& , 1, 0], (Rational[9, 4] +
Rational[9, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2] (1 + 5^Rational[1, 2]), 0,
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[
1 - 20 #^2 + 80 #^4& , 2, 0], (Rational[9, 4] +
Rational[9, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 4] (3 + 5^Rational[1, 2]),
Rational[1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (1 + 5^Rational[1, 2]),
Rational[-1, 4] (34 + 62 5^Rational[-1, 2])^Rational[1, 2], (
Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 4] (3 + 5^Rational[1, 2]),
Rational[-1, 4] (26 + 58 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[-1, 2], (Rational[9, 4] + Rational[9, 2] 5^Rational[-1, 2])^
Rational[1, 2], (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {
0, (Rational[5, 2] + Rational[11, 2] 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[-1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (3 + 5^Rational[1, 2]),
Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (-3 - 5^Rational[1, 2]),
Rational[1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 2], Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (-3 - 5^Rational[1, 2]),
Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (1 + 5^Rational[1, 2]),
Rational[-1, 4] (2 - 2 5^Rational[-1, 2])^Rational[1, 2],
Rational[-3, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2] (-1 - 5^Rational[1, 2]), 0,
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 2], (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2],
Rational[-3, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
0, Root[1 - 25 #^2 + 5 #^4& , 1, 0],
Rational[1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2],
Rational[-3, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 4] (-3 - 5^Rational[1, 2]), (Rational[13, 8] +
Rational[29, 8] 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 4] (-1 - 5^Rational[1, 2]), (Rational[17, 8] +
Rational[31, 8] 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2], (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2], (Rational[9, 4] + Rational[9, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {
Rational[1, 2] (2 + 5^Rational[1, 2]), (Rational[1, 4] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (5 + 5^Rational[1, 2]), Root[
1 - 100 #^2 + 80 #^4& , 1, 0],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[-1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (1 + 5^Rational[1, 2]), (Rational[17, 8] +
Rational[31, 8] 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 4] (3 + 5^Rational[1, 2]),
Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 2] (2 + 5^Rational[1, 2]),
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2], Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (3 + 5^Rational[1, 2]), (Rational[13, 8] +
Rational[29, 8] 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2] (1 + 5^Rational[1, 2]), 0,
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 2] (2 + 5^Rational[1, 2]),
Rational[1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2], (
Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 4] (3 + 5^Rational[1, 2]),
Rational[1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (5 + 5^Rational[1, 2]), (Rational[5, 8] +
Rational[11, 8] 5^Rational[-1, 2])^
Rational[1, 2], (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {
Rational[1, 2] (1 + 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^
Rational[1, 2], (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {
Rational[1, 4] (1 + 5^Rational[1, 2]), Root[
1 - 20 #^2 + 80 #^4& , 2, 0], (Rational[9, 4] +
Rational[9, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2] (2 + 5^Rational[1, 2]),
Rational[-1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[-1, 2], (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2], (Rational[9, 4] + Rational[9, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {
Rational[1, 2] (1 + 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^
Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2], (Rational[9, 4] + Rational[9, 2] 5^Rational[-1, 2])^
Rational[1, 2], (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {
Rational[1, 4] (-1 - 5^
Rational[1, 2]), -(Rational[17, 8] +
Rational[31, 8] 5^Rational[-1, 2])^Rational[1, 2], (Rational[1, 4] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (-5 - 5^Rational[1, 2]), (Rational[5, 8] +
Rational[11, 8] 5^Rational[-1, 2])^
Rational[1, 2], (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {
Rational[-1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {(-3 +
5^Rational[1, 2])^(-1), Root[1 - 260 #^2 + 80 #^4& , 1, 0],
Rational[-1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[-1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {-1 +
Rational[-1, 2] 5^Rational[1, 2], (Rational[1, 4] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 4] (-3 - 5^Rational[1, 2]),
Rational[1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (-5 - 5^Rational[1, 2]),
Rational[-1, 4] (10 + 22 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 4] (-3 - 5^Rational[1, 2]),
Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {-1 +
Rational[-1, 2] 5^Rational[1, 2],
Rational[-1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2] (-1 - 5^Rational[1, 2]), 0,
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[-1, 2],
Rational[-3, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2] (-1 - 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^
Rational[1, 2], (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {
0, Root[1 - 5 #^2 + 5 #^4& , 1, 0],
Rational[-3, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {-1 +
Rational[-1, 2] 5^Rational[1, 2],
Rational[1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2], (
Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[-1, 2], (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2],
Rational[-3, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2] (-1 - 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^
Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {-1 +
Rational[-1, 2] 5^Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 4] (-1 - 5^Rational[1, 2]),
Rational[-1, 4] (2 - 2 5^Rational[-1, 2])^Rational[1, 2],
Rational[-3, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}}, {{
0, -0.8506508083520399, 2.0645728807067605`}, {
1.618033988749895,
0, -1.5388417685876268`}, {-0.8090169943749475, -0.2628655560595668,
2.0645728807067605`}, {1.3090169943749475`,
0.9510565162951535, -1.5388417685876268`}, {
0.8090169943749475, -1.9641671727636467`, 0.6881909602355868}, {
1.3090169943749475`, -1.8017073246471935`, -0.16245984811645317`}, \
{-0.5, 2.0645728807067605`, 0.6881909602355868}, {
0, 2.2270327288232132`, -0.16245984811645317`}, {-0.5, \
-1.5388417685876268`, 1.5388417685876268`}, {
1.3090169943749475`, -0.9510565162951535, -1.5388417685876268`}, \
{-1.3090169943749475`, 0.9510565162951535, 1.5388417685876268`}, {0.5,
1.5388417685876268`, -1.5388417685876268`}, {-1.3090169943749475`, \
-0.9510565162951535, 1.5388417685876268`}, {
0.8090169943749475, -0.2628655560595668, -2.0645728807067605`}, \
{-1.618033988749895, 0, 1.5388417685876268`}, {0.5,
0.6881909602355868, -2.0645728807067605`}, {
0, -2.2270327288232132`, 0.16245984811645317`}, {
0.5, -2.0645728807067605`, -0.6881909602355868}, {-1.3090169943749475`,
1.8017073246471935`, 0.16245984811645317`}, {-0.8090169943749475,
1.9641671727636467`, -0.6881909602355868}, {0.5, 0.6881909602355868,
2.0645728807067605`}, {2.118033988749895,
0.6881909602355868, -0.16245984811645317`}, {0.5, -1.5388417685876268`,
1.5388417685876268`}, {
1.8090169943749475`, -1.1135163644116068`, -0.6881909602355868}, {-0.5,
1.5388417685876268`, 1.5388417685876268`}, {0.8090169943749475,
1.9641671727636467`, -0.6881909602355868}, {
1.3090169943749475`, -0.9510565162951535, 1.5388417685876268`}, {
2.118033988749895, -0.6881909602355868, 0.16245984811645317`}, {0.5,
1.5388417685876268`, 1.5388417685876268`}, {1.3090169943749475`,
1.8017073246471935`, 0.16245984811645317`}, {
1.618033988749895, 0, 1.5388417685876268`}, {2.118033988749895,
0.16245984811645317`, 0.6881909602355868}, {1.3090169943749475`,
0.9510565162951535, 1.5388417685876268`}, {1.8090169943749475`,
1.1135163644116066`, 0.6881909602355868}, {
1.618033988749895, -1.3763819204711736`, 0.6881909602355868}, {
0.8090169943749475, -0.2628655560595668, 2.0645728807067605`}, {
2.118033988749895, -0.16245984811645317`, -0.6881909602355868}, {-0.5,
0.6881909602355868, 2.0645728807067605`}, {1.618033988749895,
1.3763819204711736`, -0.6881909602355868}, {0.5, 2.0645728807067605`,
0.6881909602355868}, {-0.8090169943749475, -1.9641671727636467`,
0.6881909602355868}, {
0.5, -1.5388417685876268`, -1.5388417685876268`}, \
{-1.8090169943749475`, 1.1135163644116066`, 0.6881909602355868}, {-0.5,
1.5388417685876268`, -1.5388417685876268`}, {-1.3090169943749477`, \
-1.8017073246471935`, -0.16245984811645317`}, {-0.5, -1.5388417685876268`, \
-1.5388417685876268`}, {-2.118033988749895,
0.6881909602355868, -0.16245984811645317`}, {-1.3090169943749475`,
0.9510565162951535, -1.5388417685876268`}, {-1.8090169943749475`, \
-1.1135163644116066`, -0.6881909602355868}, {-1.3090169943749475`, \
-0.9510565162951535, -1.5388417685876268`}, {-2.118033988749895, \
-0.16245984811645317`, -0.6881909602355868}, {-1.618033988749895,
0, -1.5388417685876268`}, {-0.5, -2.0645728807067605`, \
-0.6881909602355868}, {-1.618033988749895, -1.3763819204711736`,
0.6881909602355868}, {
0, -0.8506508083520399, -2.0645728807067605`}, {-2.118033988749895,
0.16245984811645317`, 0.6881909602355868}, {-0.5,
0.6881909602355868, -2.0645728807067605`}, {-1.618033988749895,
1.3763819204711736`, -0.6881909602355868}, {-2.118033988749895, \
-0.6881909602355868,
0.16245984811645317`}, {-0.8090169943749475, -0.2628655560595668, \
-2.0645728807067605`}}],
Polygon3DBox[{{37, 28, 24}, {40, 8, 7}, {35, 5, 6}, {39, 26, 30}, {10,
14, 2}, {12, 4, 16}, {54, 45, 41}, {55, 42, 46}, {58, 19, 20}, {53, 18,
17}, {56, 43, 47}, {57, 48, 44}, {34, 32, 22}, {59, 51, 49}, {60, 50,
52}, {10, 2, 37, 24}, {37, 22, 32, 28}, {8, 40, 30, 26}, {25, 29, 40,
7}, {35, 27, 23, 5}, {6, 24, 28, 35}, {39, 30, 34, 22}, {12, 26, 39,
4}, {55, 14, 10, 42}, {41, 9, 13, 54}, {57, 44, 12, 16}, {15, 11, 43,
56}, {45, 54, 59, 49}, {50, 60, 55, 46}, {48, 58, 20, 44}, {43, 19, 58,
47}, {53, 17, 41, 45}, {46, 42, 18, 53}, {59, 56, 47, 51}, {52, 48,
57, 60}, {31, 32, 34, 33}, {17, 18, 6, 5}, {14, 16, 4, 2}, {7, 8, 20,
19}, {51, 52, 50, 49}, {3, 1, 36, 21, 38}, {22, 37, 2, 4, 39}, {29, 33,
34, 30, 40}, {27, 35, 28, 32, 31}, {42, 10, 24, 6, 18}, {41, 17, 5,
23, 9}, {20, 8, 26, 12, 44}, {11, 25, 7, 19, 43}, {56, 59, 54, 13,
15}, {57, 16, 14, 55, 60}, {58, 48, 52, 51, 47}, {49, 50, 46, 53,
45}, {36, 27, 31}, {38, 25, 11}, {23, 1, 9}, {15, 13, 3}, {29, 21,
33}, {31, 33, 21, 36}, {27, 36, 1, 23}, {3, 38, 11, 15}, {21, 29, 25,
38}, {1, 3, 13, 9}}]]}}]], "Output",
CellLabel->
"Out[285]=",ExpressionUUID->"6ee08417-3387-4072-a918-b3fc0b7d269f"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"PolyhedronData", "[",
RowBox[{"pname", ",", "\"\\""}], "]"}]], "Input",
CellLabel->
"In[286]:=",ExpressionUUID->"f6218690-dc6d-48a0-90a2-61aa522ac818"],
Cell[BoxData[
RowBox[{"{",
RowBox[{"0", ",", "0", ",", "0"}], "}"}]], "Output",
CellLabel->
"Out[286]=",ExpressionUUID->"33ce651e-205a-408c-b810-6b2d94b4220a"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{
RowBox[{"RegionCentroid", "[", "p", "]"}], "//", "FullSimplify"}], "//",
"Quiet"}]], "Input",
CellLabel->
"In[288]:=",ExpressionUUID->"13567aab-0c37-4eee-b661-49b1dd3596c6"],
Cell[BoxData[
RowBox[{"{",
RowBox[{"0", ",", "0", ",", "0"}], "}"}]], "Output",
CellLabel->
"Out[288]=",ExpressionUUID->"ca3642df-91b0-44d0-aa15-d07ad2bc580e"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{
RowBox[{"PolyhedronCentroid", "[", "p", "]"}], "//", "FullSimplify"}], "//",
"Quiet"}]], "Input",
CellLabel->
"In[289]:=",ExpressionUUID->"9ec613a6-37b9-462c-848d-e81c443d8b05"],
Cell[BoxData["$Aborted"], "Output",
CellLabel->
"Out[289]=",ExpressionUUID->"5abddc96-a810-4cf6-abf6-2c64389c52c8"]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell["Circumsphere", "Subsection",ExpressionUUID->"97087804-a135-4e8a-83c5-f90841ab688a"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"PolyhedronData", "[",
RowBox[{"pname", ",", "\"\\""}], "]"}]], "Input",
CellLabel->
"In[290]:=",ExpressionUUID->"42f5a2a3-c6b1-40ff-bfef-075df2e1c217"],
Cell[BoxData[
RowBox[{"Sphere", "[",
RowBox[{
RowBox[{"{",
RowBox[{"0", ",", "0", ",", "0"}], "}"}], ",",
RowBox[{
FractionBox["1", "2"], " ",
SqrtBox[
RowBox[{"11", "+",
RowBox[{"4", " ",
SqrtBox["5"]}]}]]}]}], "]"}]], "Output",
CellLabel->
"Out[290]=",ExpressionUUID->"7cfe7180-f3a0-4b16-af5f-1be6a2510b1b"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"Circumsphere", "[", "p", "]"}], "//", "FullSimplify"}]], "Input",
CellLabel->
"In[292]:=",ExpressionUUID->"362cc938-e982-4d0e-9e60-4616ce8cbe2e"],
Cell[BoxData[
RowBox[{"Sphere", "[",
RowBox[{
RowBox[{"{",
RowBox[{"0", ",", "0", ",", "0"}], "}"}], ",",
SqrtBox[
RowBox[{
FractionBox["11", "4"], "+",
SqrtBox["5"]}]]}], "]"}]], "Output",
CellLabel->
"Out[292]=",ExpressionUUID->"f5ff62e0-6bec-4d2f-9621-14c6df33b856"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"sphere", "=",
RowBox[{
RowBox[{"MyCircumsphere", "[", "p", "]"}], "//",
"FullSimplify"}]}]], "Input",
CellLabel->
"In[293]:=",ExpressionUUID->"a8590b8d-1f96-465b-b351-38a7b0f7dd33"],
Cell[BoxData[
RowBox[{"Sphere", "[",
RowBox[{
RowBox[{"{",
RowBox[{"0", ",", "0", ",", "0"}], "}"}], ",",
RowBox[{
FractionBox["1", "2"], " ",
SqrtBox[
RowBox[{"11", "+",
RowBox[{"4", " ",
SqrtBox["5"]}]}]]}]}], "]"}]], "Output",
CellLabel->
"Out[293]=",ExpressionUUID->"61062d69-12f9-4124-95e2-a870cf441283"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Graphics3D", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"Opacity", "[", ".2", "]"}], ",", "Yellow", ",", "sphere"}],
"}"}], ",", "p"}], "}"}], ",",
RowBox[{"Boxed", "\[Rule]", "False"}]}], "]"}]], "Input",
CellLabel->
"In[294]:=",ExpressionUUID->"4b77c6ca-64c5-47e7-a764-69e4fcef5c3d"],
Cell[BoxData[
Graphics3DBox[{
{RGBColor[1, 1, 0], Opacity[0.2],
SphereBox[{0, 0, 0}, NCache[
Rational[1, 2] (11 + 4 5^Rational[1, 2])^Rational[1, 2],
2.2329505094156903`]]},
TagBox[
GraphicsComplex3DBox[
NCache[{{0, Root[
1 - 5 #^2 + 5 #^4& , 1, 0], (Rational[9, 4] +
Rational[9, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2] (1 + 5^Rational[1, 2]), 0,
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[
1 - 20 #^2 + 80 #^4& , 2, 0], (Rational[9, 4] +
Rational[9, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 4] (3 + 5^Rational[1, 2]),
Rational[1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (1 + 5^Rational[1, 2]),
Rational[-1, 4] (34 + 62 5^Rational[-1, 2])^Rational[1, 2], (
Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 4] (3 + 5^Rational[1, 2]),
Rational[-1, 4] (26 + 58 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[-1, 2], (Rational[9, 4] + Rational[9, 2] 5^Rational[-1, 2])^
Rational[1, 2], (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {
0, (Rational[5, 2] + Rational[11, 2] 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[-1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (3 + 5^Rational[1, 2]),
Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (-3 - 5^Rational[1, 2]),
Rational[1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 2], Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (-3 - 5^Rational[1, 2]),
Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (1 + 5^Rational[1, 2]),
Rational[-1, 4] (2 - 2 5^Rational[-1, 2])^Rational[1, 2],
Rational[-3, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2] (-1 - 5^Rational[1, 2]), 0,
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 2], (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2],
Rational[-3, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
0, Root[1 - 25 #^2 + 5 #^4& , 1, 0],
Rational[1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2],
Rational[-3, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 4] (-3 - 5^Rational[1, 2]), (Rational[13, 8] +
Rational[29, 8] 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 4] (-1 - 5^Rational[1, 2]), (Rational[17, 8] +
Rational[31, 8] 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2], (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2], (Rational[9, 4] + Rational[9, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {
Rational[1, 2] (2 + 5^Rational[1, 2]), (Rational[1, 4] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (5 + 5^Rational[1, 2]), Root[
1 - 100 #^2 + 80 #^4& , 1, 0],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[-1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (1 + 5^Rational[1, 2]), (Rational[17, 8] +
Rational[31, 8] 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 4] (3 + 5^Rational[1, 2]),
Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 2] (2 + 5^Rational[1, 2]),
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2], Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (3 + 5^Rational[1, 2]), (Rational[13, 8] +
Rational[29, 8] 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2] (1 + 5^Rational[1, 2]), 0,
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 2] (2 + 5^Rational[1, 2]),
Rational[1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2], (
Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 4] (3 + 5^Rational[1, 2]),
Rational[1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (5 + 5^Rational[1, 2]), (Rational[5, 8] +
Rational[11, 8] 5^Rational[-1, 2])^
Rational[1, 2], (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {
Rational[1, 2] (1 + 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^
Rational[1, 2], (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {
Rational[1, 4] (1 + 5^Rational[1, 2]), Root[
1 - 20 #^2 + 80 #^4& , 2, 0], (Rational[9, 4] +
Rational[9, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2] (2 + 5^Rational[1, 2]),
Rational[-1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[-1, 2], (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2], (Rational[9, 4] + Rational[9, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {
Rational[1, 2] (1 + 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^
Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2], (Rational[9, 4] + Rational[9, 2] 5^Rational[-1, 2])^
Rational[1, 2], (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {
Rational[1, 4] (-1 - 5^
Rational[1, 2]), -(Rational[17, 8] +
Rational[31, 8] 5^Rational[-1, 2])^Rational[1, 2], (Rational[1, 4] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (-5 - 5^Rational[1, 2]), (Rational[5, 8] +
Rational[11, 8] 5^Rational[-1, 2])^
Rational[1, 2], (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {
Rational[-1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {(-3 +
5^Rational[1, 2])^(-1), Root[1 - 260 #^2 + 80 #^4& , 1, 0],
Rational[-1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[-1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {-1 +
Rational[-1, 2] 5^Rational[1, 2], (Rational[1, 4] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 4] (-3 - 5^Rational[1, 2]),
Rational[1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (-5 - 5^Rational[1, 2]),
Rational[-1, 4] (10 + 22 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 4] (-3 - 5^Rational[1, 2]),
Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {-1 +
Rational[-1, 2] 5^Rational[1, 2],
Rational[-1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2] (-1 - 5^Rational[1, 2]), 0,
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[-1, 2],
Rational[-3, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2] (-1 - 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^
Rational[1, 2], (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {
0, Root[1 - 5 #^2 + 5 #^4& , 1, 0],
Rational[-3, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {-1 +
Rational[-1, 2] 5^Rational[1, 2],
Rational[1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2], (
Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[-1, 2], (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2],
Rational[-3, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2] (-1 - 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^
Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {-1 +
Rational[-1, 2] 5^Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 4] (-1 - 5^Rational[1, 2]),
Rational[-1, 4] (2 - 2 5^Rational[-1, 2])^Rational[1, 2],
Rational[-3, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}}, {{
0, -0.8506508083520399, 2.0645728807067605`}, {
1.618033988749895,
0, -1.5388417685876268`}, {-0.8090169943749475, -0.2628655560595668,
2.0645728807067605`}, {1.3090169943749475`,
0.9510565162951535, -1.5388417685876268`}, {
0.8090169943749475, -1.9641671727636467`, 0.6881909602355868}, {
1.3090169943749475`, -1.8017073246471935`, -0.16245984811645317`}, \
{-0.5, 2.0645728807067605`, 0.6881909602355868}, {
0, 2.2270327288232132`, -0.16245984811645317`}, {-0.5, \
-1.5388417685876268`, 1.5388417685876268`}, {
1.3090169943749475`, -0.9510565162951535, -1.5388417685876268`}, \
{-1.3090169943749475`, 0.9510565162951535, 1.5388417685876268`}, {0.5,
1.5388417685876268`, -1.5388417685876268`}, {-1.3090169943749475`, \
-0.9510565162951535, 1.5388417685876268`}, {
0.8090169943749475, -0.2628655560595668, -2.0645728807067605`}, \
{-1.618033988749895, 0, 1.5388417685876268`}, {0.5,
0.6881909602355868, -2.0645728807067605`}, {
0, -2.2270327288232137`, 0.16245984811645317`}, {
0.5, -2.0645728807067605`, -0.6881909602355868}, {-1.3090169943749475`,
1.8017073246471935`, 0.16245984811645317`}, {-0.8090169943749475,
1.9641671727636467`, -0.6881909602355868}, {0.5, 0.6881909602355868,
2.0645728807067605`}, {2.118033988749895,
0.6881909602355868, -0.16245984811645317`}, {0.5, -1.5388417685876268`,
1.5388417685876268`}, {
1.8090169943749475`, -1.1135163644116068`, -0.6881909602355868}, {-0.5,
1.5388417685876268`, 1.5388417685876268`}, {0.8090169943749475,
1.9641671727636467`, -0.6881909602355868}, {
1.3090169943749475`, -0.9510565162951535, 1.5388417685876268`}, {
2.118033988749895, -0.6881909602355868, 0.16245984811645317`}, {0.5,
1.5388417685876268`, 1.5388417685876268`}, {1.3090169943749475`,
1.8017073246471935`, 0.16245984811645317`}, {
1.618033988749895, 0, 1.5388417685876268`}, {2.118033988749895,
0.16245984811645317`, 0.6881909602355868}, {1.3090169943749475`,
0.9510565162951535, 1.5388417685876268`}, {1.8090169943749475`,
1.1135163644116066`, 0.6881909602355868}, {
1.618033988749895, -1.3763819204711736`, 0.6881909602355868}, {
0.8090169943749475, -0.2628655560595668, 2.0645728807067605`}, {
2.118033988749895, -0.16245984811645317`, -0.6881909602355868}, {-0.5,
0.6881909602355868, 2.0645728807067605`}, {1.618033988749895,
1.3763819204711736`, -0.6881909602355868}, {0.5, 2.0645728807067605`,
0.6881909602355868}, {-0.8090169943749475, -1.9641671727636467`,
0.6881909602355868}, {
0.5, -1.5388417685876268`, -1.5388417685876268`}, \
{-1.8090169943749475`, 1.1135163644116066`, 0.6881909602355868}, {-0.5,
1.5388417685876268`, -1.5388417685876268`}, {-1.3090169943749477`, \
-1.8017073246471935`, -0.16245984811645317`}, {-0.5, -1.5388417685876268`, \
-1.5388417685876268`}, {-2.118033988749895,
0.6881909602355868, -0.16245984811645317`}, {-1.3090169943749475`,
0.9510565162951535, -1.5388417685876268`}, {-1.8090169943749475`, \
-1.1135163644116066`, -0.6881909602355868}, {-1.3090169943749475`, \
-0.9510565162951535, -1.5388417685876268`}, {-2.118033988749895, \
-0.16245984811645317`, -0.6881909602355868}, {-1.618033988749895,
0, -1.5388417685876268`}, {-0.5, -2.0645728807067605`, \
-0.6881909602355868}, {-1.618033988749895, -1.3763819204711736`,
0.6881909602355868}, {
0, -0.8506508083520399, -2.0645728807067605`}, {-2.118033988749895,
0.16245984811645317`, 0.6881909602355868}, {-0.5,
0.6881909602355868, -2.0645728807067605`}, {-1.618033988749895,
1.3763819204711736`, -0.6881909602355868}, {-2.118033988749895, \
-0.6881909602355868,
0.16245984811645317`}, {-0.8090169943749475, -0.2628655560595668, \
-2.0645728807067605`}}],
Polygon3DBox[{{37, 28, 24}, {40, 8, 7}, {35, 5, 6}, {39, 26, 30}, {10,
14, 2}, {12, 4, 16}, {54, 45, 41}, {55, 42, 46}, {58, 19, 20}, {53, 18,
17}, {56, 43, 47}, {57, 48, 44}, {34, 32, 22}, {59, 51, 49}, {60, 50,
52}, {10, 2, 37, 24}, {37, 22, 32, 28}, {8, 40, 30, 26}, {25, 29, 40,
7}, {35, 27, 23, 5}, {6, 24, 28, 35}, {39, 30, 34, 22}, {12, 26, 39,
4}, {55, 14, 10, 42}, {41, 9, 13, 54}, {57, 44, 12, 16}, {15, 11, 43,
56}, {45, 54, 59, 49}, {50, 60, 55, 46}, {48, 58, 20, 44}, {43, 19, 58,
47}, {53, 17, 41, 45}, {46, 42, 18, 53}, {59, 56, 47, 51}, {52, 48,
57, 60}, {31, 32, 34, 33}, {17, 18, 6, 5}, {14, 16, 4, 2}, {7, 8, 20,
19}, {51, 52, 50, 49}, {3, 1, 36, 21, 38}, {22, 37, 2, 4, 39}, {29, 33,
34, 30, 40}, {27, 35, 28, 32, 31}, {42, 10, 24, 6, 18}, {41, 17, 5,
23, 9}, {20, 8, 26, 12, 44}, {11, 25, 7, 19, 43}, {56, 59, 54, 13,
15}, {57, 16, 14, 55, 60}, {58, 48, 52, 51, 47}, {49, 50, 46, 53,
45}, {36, 27, 31}, {38, 25, 11}, {23, 1, 9}, {15, 13, 3}, {29, 21,
33}, {31, 33, 21, 36}, {27, 36, 1, 23}, {3, 38, 11, 15}, {21, 29, 25,
38}, {1, 3, 13, 9}}]],
"Polyhedron"]},
Boxed->False]], "Output",
CellLabel->
"Out[294]=",ExpressionUUID->"b6ea5827-4d8d-4849-aa77-45d3ef698e07"]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell["Convex", "Subsection",ExpressionUUID->"bd17af4f-611d-424f-ae16-dfcd622c1e55"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"ConvexPolyhedronQ", "[", "p", "]"}]], "Input",
CellLabel->"In[18]:=",ExpressionUUID->"49e4f122-a2d3-4c9c-9525-4a56f35a6d68"],
Cell[BoxData["True"], "Output",
CellLabel->"Out[18]=",ExpressionUUID->"ec57806e-d232-4751-a53b-d908d5479df0"]
}, Open ]]
}, Closed]],
Cell[CellGroupData[{
Cell["DihedralAngles", "Subsection",ExpressionUUID->"d7d4a568-2372-4533-befc-8b1922904365"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"PolyhedronData", "[",
RowBox[{"pname", ",", "\"\\""}], "]"}], "//",
"Tally"}]], "Input",
CellLabel->
"In[306]:=",ExpressionUUID->"a6967470-fbcd-47a2-bb11-1b6b23921987"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"ArcCos", "[",
RowBox[{"-",
SqrtBox[
RowBox[{
FractionBox["1", "6"], " ",
RowBox[{"(",
RowBox[{"3", "+",
SqrtBox["5"]}], ")"}]}]]}], "]"}], ",", "55"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"ArcCos", "[",
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"-0.851\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]},
"RowDefault"], ShowStringCharacters ->
False], -0.85065080835203987774661982257384806871`15.\
954589770191003, Editable -> False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{
RowBox[{"1", "-",
RowBox[{"5", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"5", " ",
SuperscriptBox["#1", "4"]}]}], "&"}], ",", "1"}], "]"}],
Short[#, 7]& ], -0.8506508083520399},
"NumericalApproximation"],
Root[1 - 5 #^2 + 5 #^4& , 1, 0]], "]"}], ",", "55"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
FractionBox["\[Pi]", "2"], "+",
RowBox[{"ArcTan", "[", "2", "]"}]}], ",", "5"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"\[Pi]", "-",
RowBox[{"ArcSec", "[",
RowBox[{
FractionBox["5", "29"], " ",
SqrtBox[
RowBox[{"39", "+",
FractionBox["6",
SqrtBox["5"]]}]]}], "]"}]}], ",", "5"}], "}"}]}], "}"}]], "Output",\
CellLabel->
"Out[306]=",ExpressionUUID->"55139186-a0a8-443c-9782-affae4aa20ab"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{
RowBox[{"DihedralAngles", "[", "p", "]"}], "//", "FullSimplify"}], "//",
"Tally"}]], "Input",
CellLabel->
"In[307]:=",ExpressionUUID->"3581bdf9-f190-4918-9ea2-cc8c58132837"],
Cell[BoxData["$Aborted"], "Output",
CellLabel->
"Out[307]=",ExpressionUUID->"a741f61f-cf44-4958-8ef5-39d377c16c7b"]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell["EdgeLengths", "Subsection",ExpressionUUID->"29aed57e-cba5-4e08-9301-07f00dc3cd80"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"PolyhedronData", "[",
RowBox[{"pname", ",", "\"\\""}], "]"}]], "Input",
CellLabel->
"In[308]:=",ExpressionUUID->"2ce5a547-8922-41bb-9329-fa09d124e769"],
Cell[BoxData[
RowBox[{"{", "1", "}"}]], "Output",
CellLabel->
"Out[308]=",ExpressionUUID->"e566a955-abac-4c7a-9d9f-bf096a43e984"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{"PolyhedronData", "[",
RowBox[{"pname", ",", "\"\\""}], "]"}], "/.",
RowBox[{
RowBox[{"Line", "[", "l_", "]"}], "\[RuleDelayed]",
RowBox[{"EuclideanDistance", "@@", "l"}]}]}], "//", "FullSimplify"}], "//",
"Union"}], "//", "Quiet"}]], "Input",
CellLabel->
"In[309]:=",ExpressionUUID->"30242084-8cd1-4261-b6f3-abf0b3063372"],
Cell[BoxData[
RowBox[{"{", "1", "}"}]], "Output",
CellLabel->
"Out[309]=",ExpressionUUID->"55b05101-8e1c-43a2-b9ae-98cef871ca26"]
}, Open ]]
}, Open ]],
Cell["Faces", "Subsection",ExpressionUUID->"7eb49f74-f845-469d-9396-11184f176e7b"],
Cell[CellGroupData[{
Cell["GeneralizedDiameter", "Subsection",ExpressionUUID->"573049e7-2826-400c-875a-ca41b3e5b0ff"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"PolyhedronData", "[",
RowBox[{"pname", ",", "\"\\""}], "]"}]], "Input",
CellLabel->
"In[310]:=",ExpressionUUID->"6dd87507-76a8-4ccb-888d-09adbd198af5"],
Cell[BoxData[
SqrtBox[
RowBox[{"11", "+",
RowBox[{"4", " ",
SqrtBox["5"]}]}]]], "Output",
CellLabel->
"Out[310]=",ExpressionUUID->"b7f30d52-6817-4854-9884-f970202476a4"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{
RowBox[{"GeneralizedDiameter", "[", "p", "]"}], "//", "FullSimplify"}], "//",
"Quiet"}]], "Input",
CellLabel->
"In[311]:=",ExpressionUUID->"6905f96b-37a1-4541-94d9-ec6830839027"],
Cell[BoxData[
SqrtBox[
RowBox[{"11", "+",
RowBox[{"4", " ",
SqrtBox["5"]}]}]]], "Output",
CellLabel->
"Out[311]=",ExpressionUUID->"b04685f9-d0fa-4a61-ad27-cc934f2aa989"]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell["InertiaTensor", "Subsection",ExpressionUUID->"d08b5c33-ab13-411b-b165-00795477e202"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"PolyhedronData", "[",
RowBox[{"pname", ",", "\"\\""}], "]"}]], "Input",
CellLabel->
"In[312]:=",ExpressionUUID->"6be223e7-337f-4d7f-a8a4-3d6fc7619bf4"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
FractionBox[
RowBox[{"3", " ",
RowBox[{"(",
RowBox[{"3885", "+",
RowBox[{"1601", " ",
SqrtBox["5"]}]}], ")"}]}], "12100"], ",", "0", ",", "0"}], "}"}],
",",
RowBox[{"{",
RowBox[{"0", ",",
FractionBox[
RowBox[{"3", " ",
RowBox[{"(",
RowBox[{"3885", "+",
RowBox[{"1601", " ",
SqrtBox["5"]}]}], ")"}]}], "12100"], ",", "0"}], "}"}], ",",
RowBox[{"{",
RowBox[{"0", ",", "0", ",",
FractionBox[
RowBox[{"3", " ",
RowBox[{"(",
RowBox[{"3885", "+",
RowBox[{"1601", " ",
SqrtBox["5"]}]}], ")"}]}], "12100"]}], "}"}]}], "}"}]], "Output",
CellLabel->
"Out[312]=",ExpressionUUID->"26e46212-1e13-43a0-bf12-45e2dc403c1c"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{
FractionBox[
RowBox[{"MomentOfInertia", "[",
RowBox[{"p", ",",
RowBox[{"{",
RowBox[{"0", ",", "0", ",", "0"}], "}"}]}], "]"}],
RowBox[{"Volume", "[", "p", "]"}]], "//", "RootReduce"}], "//",
"Timing"}]], "Input",
CellLabel->
"In[313]:=",ExpressionUUID->"352fd447-c5bb-4cf5-962b-7e5cc251f07e"],
Cell[BoxData["$Aborted"], "Output",
CellLabel->
"Out[313]=",ExpressionUUID->"4d3e69da-d8ae-4f02-83e7-d1d2ed866c2a"]
}, Open ]],
Cell[BoxData[
RowBox[{
RowBox[{"PolyhedronInertiaTensor", "[", "p", "]"}], "//",
"Timing"}]], "Input",ExpressionUUID->"b9cc9ce3-7ecc-4365-9da6-f78702b5f54a"]
}, Open ]],
Cell[CellGroupData[{
Cell["Insphere", "Subsection",ExpressionUUID->"1ec0f72f-dece-415a-906d-8f6827213e7c"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"PolyhedronData", "[",
RowBox[{"pname", ",", "\"\\""}], "]"}]], "Input",
CellLabel->
"In[314]:=",ExpressionUUID->"b47cbcb8-1415-4d0f-bd6f-117ef371965e"],
Cell[BoxData[
RowBox[{"Missing", "[", "\<\"NotApplicable\"\>", "]"}]], "Output",
CellLabel->
"Out[314]=",ExpressionUUID->"1a4fa171-c026-4556-9472-ba697e67365a"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Insphere", "[", "p", "]"}]], "Input",
CellLabel->
"In[315]:=",ExpressionUUID->"6884d710-3c8d-4a98-b75b-4cc9b1638df9"],
Cell[BoxData[
TemplateBox[{
"Insphere", "indep",
"\"Insphere does not exist for \\!\\(\\*RowBox[{\\\"Polyhedron\\\", \
\\\"[\\\", RowBox[{RowBox[{\\\"{\\\", RowBox[{RowBox[{\\\"{\\\", \
RowBox[{\\\"0\\\", \\\",\\\", RowBox[{\\\"Root\\\", \\\"[\\\", \
RowBox[{RowBox[{RowBox[{\\\"1\\\", \\\"-\\\", RowBox[{\\\"5\\\", \\\" \\\", \
RowBox[{\\\"Power\\\", \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \
\\\"\[RightSkeleton]\\\"}], \\\"]\\\"}]}], \\\"+\\\", RowBox[{\\\"5\\\", \\\" \
\\\", RowBox[{\\\"Power\\\", \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \
\\\"2\\\", \\\"\[RightSkeleton]\\\"}], \\\"]\\\"}]}]}], \\\"&\\\"}], \
\\\",\\\", \\\"1\\\", \\\",\\\", \\\"0\\\"}], \\\"]\\\"}], \\\",\\\", \
SqrtBox[RowBox[{FractionBox[\\\"9\\\", \\\"4\\\"], \\\"+\\\", \
FractionBox[\\\"9\\\", RowBox[{\\\"2\\\", \\\" \\\", \
SqrtBox[\\\"5\\\"]}]]}]]}], \\\"}\\\"}], \\\",\\\", RowBox[{\\\"{\\\", \
RowBox[{RowBox[{FractionBox[\\\"1\\\", \\\"2\\\"], \\\" \\\", RowBox[{\\\"(\\\
\", RowBox[{\\\"1\\\", \\\"+\\\", SqrtBox[\\\"5\\\"]}], \\\")\\\"}]}], \
\\\",\\\", \\\"0\\\", \\\",\\\", RowBox[{RowBox[{\\\"-\\\", FractionBox[\\\"1\
\\\", \\\"2\\\"]}], \\\" \\\", SqrtBox[RowBox[{\\\"5\\\", \\\"+\\\", RowBox[{\
\\\"2\\\", \\\" \\\", RowBox[{\\\"Power\\\", \\\"[\\\", RowBox[{\\\"\
\[LeftSkeleton]\\\", \\\"2\\\", \\\"\[RightSkeleton]\\\"}], \
\\\"]\\\"}]}]}]]}]}], \\\"}\\\"}], \\\",\\\", RowBox[{\\\"{\\\", \
RowBox[{RowBox[{FractionBox[\\\"1\\\", \\\"4\\\"], \\\" \\\", RowBox[{\\\"(\\\
\", RowBox[{RowBox[{\\\"-\\\", \\\"1\\\"}], \\\"-\\\", SqrtBox[\\\"5\\\"]}], \
\\\")\\\"}]}], \\\",\\\", RowBox[{\\\"Root\\\", \\\"[\\\", \
RowBox[{RowBox[{RowBox[{\\\"1\\\", \\\"-\\\", RowBox[{\\\"20\\\", \\\" \\\", \
RowBox[{\\\"Power\\\", \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \
\\\"\[RightSkeleton]\\\"}], \\\"]\\\"}]}], \\\"+\\\", RowBox[{\\\"80\\\", \
\\\" \\\", RowBox[{\\\"Power\\\", \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \
\\\"2\\\", \\\"\[RightSkeleton]\\\"}], \\\"]\\\"}]}]}], \\\"&\\\"}], \
\\\",\\\", \\\"2\\\", \\\",\\\", \\\"0\\\"}], \\\"]\\\"}], \\\",\\\", \
SqrtBox[RowBox[{FractionBox[\\\"9\\\", \\\"4\\\"], \\\"+\\\", \
FractionBox[\\\"9\\\", RowBox[{\\\"2\\\", \\\" \\\", \
SqrtBox[\\\"5\\\"]}]]}]]}], \\\"}\\\"}], \\\",\\\", RowBox[{\\\"{\\\", \
RowBox[{RowBox[{FractionBox[\\\"1\\\", \\\"4\\\"], \\\" \\\", RowBox[{\\\"(\\\
\", RowBox[{\\\"3\\\", \\\"+\\\", SqrtBox[\\\"5\\\"]}], \\\")\\\"}]}], \
\\\",\\\", RowBox[{FractionBox[\\\"1\\\", \\\"2\\\"], \\\" \\\", \
SqrtBox[RowBox[{FractionBox[\\\"1\\\", \\\"2\\\"], \\\" \\\", RowBox[{\\\"(\\\
\", RowBox[{\\\"5\\\", \\\"+\\\", RowBox[{\\\"Power\\\", \\\"[\\\", \
RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \\\"\[RightSkeleton]\\\"}], \\\"]\
\\\"}]}], \\\")\\\"}]}]]}], \\\",\\\", RowBox[{RowBox[{\\\"-\\\", \
FractionBox[\\\"1\\\", \\\"2\\\"]}], \\\" \\\", SqrtBox[RowBox[{\\\"5\\\", \\\
\"+\\\", RowBox[{\\\"2\\\", \\\" \\\", RowBox[{\\\"Power\\\", \\\"[\\\", \
RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \\\"\[RightSkeleton]\\\"}], \\\"]\
\\\"}]}]}]]}]}], \\\"}\\\"}], \\\",\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \
\\\"4\\\", \\\"\[RightSkeleton]\\\"}], \\\",\\\", RowBox[{\\\"{\\\", \
RowBox[{RowBox[{\\\"-\\\", FractionBox[\\\"1\\\", \\\"2\\\"]}], \\\",\\\", \
RowBox[{RowBox[{\\\"-\\\", FractionBox[\\\"1\\\", \\\"2\\\"]}], \\\" \\\", \
SqrtBox[RowBox[{\\\"5\\\", \\\"+\\\", RowBox[{\\\"2\\\", \\\" \\\", \
RowBox[{\\\"Power\\\", \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \
\\\"\[RightSkeleton]\\\"}], \\\"]\\\"}]}]}]]}], \\\",\\\", \
RowBox[{FractionBox[\\\"1\\\", \\\"2\\\"], \\\" \\\", SqrtBox[RowBox[{\\\"5\\\
\", \\\"+\\\", RowBox[{\\\"2\\\", \\\" \\\", RowBox[{\\\"Power\\\", \
\\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \\\"\[RightSkeleton]\\\
\"}], \\\"]\\\"}]}]}]]}]}], \\\"}\\\"}], \\\",\\\", RowBox[{\\\"{\\\", \
RowBox[{RowBox[{FractionBox[\\\"1\\\", \\\"4\\\"], \\\" \\\", RowBox[{\\\"(\\\
\", RowBox[{\\\"3\\\", \\\"+\\\", SqrtBox[\\\"5\\\"]}], \\\")\\\"}]}], \
\\\",\\\", RowBox[{RowBox[{\\\"-\\\", FractionBox[\\\"1\\\", \\\"2\\\"]}], \\\
\" \\\", SqrtBox[RowBox[{FractionBox[\\\"1\\\", \\\"2\\\"], \\\" \\\", \
RowBox[{\\\"(\\\", RowBox[{\\\"5\\\", \\\"+\\\", RowBox[{\\\"Power\\\", \\\"[\
\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \\\"\[RightSkeleton]\\\"}], \
\\\"]\\\"}]}], \\\")\\\"}]}]]}], \\\",\\\", RowBox[{RowBox[{\\\"-\\\", \
FractionBox[\\\"1\\\", \\\"2\\\"]}], \\\" \\\", SqrtBox[RowBox[{\\\"5\\\", \\\
\"+\\\", RowBox[{\\\"2\\\", \\\" \\\", RowBox[{\\\"Power\\\", \\\"[\\\", \
RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \\\"\[RightSkeleton]\\\"}], \\\"]\
\\\"}]}]}]]}]}], \\\"}\\\"}], \\\",\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \
\\\"50\\\", \\\"\[RightSkeleton]\\\"}]}], \\\"}\\\"}], \\\",\\\", \
RowBox[{\\\"{\\\", RowBox[{RowBox[{\\\"{\\\", RowBox[{\\\"37\\\", \\\",\\\", \
\\\"28\\\", \\\",\\\", \\\"24\\\"}], \\\"}\\\"}], \\\",\\\", \
RowBox[{\\\"{\\\", RowBox[{\\\"40\\\", \\\",\\\", \\\"8\\\", \\\",\\\", \\\"7\
\\\"}], \\\"}\\\"}], \\\",\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"7\\\", \
\\\"\[RightSkeleton]\\\"}], \\\",\\\", RowBox[{\\\"{\\\", RowBox[{\\\"53\\\", \
\\\",\\\", \\\"18\\\", \\\",\\\", \\\"17\\\"}], \\\"}\\\"}], \\\",\\\", \
RowBox[{\\\"\[LeftSkeleton]\\\", \\\"52\\\", \\\"\[RightSkeleton]\\\"}]}], \\\
\"}\\\"}]}], \\\"]\\\"}]\\).\"", 2, 315, 59, 19517997606812307428, "Local"},
"MessageTemplate"]], "Message", "MSG",
CellLabel->
"During evaluation of \
In[315]:=",ExpressionUUID->"a8a82291-1a23-4838-b8dc-75eedfdfaf0b"],
Cell[BoxData[
RowBox[{"Insphere", "[",
InterpretationBox[
RowBox[{
TagBox["Polyhedron",
"SummaryHead"], "[",
DynamicModuleBox[{Typeset`open$$ = False, Typeset`embedState$$ = "Ready",
Typeset`spolyhedron$$ = Quiet[
Polyhedron[{{0,
Root[
1 - 5 #^2 + 5 #^4& , 1, 0], (Rational[9, 4] +
Rational[9, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2] (1 + 5^Rational[1, 2]), 0,
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (-1 - 5^Rational[1, 2]),
Root[
1 - 20 #^2 + 80 #^4& , 2, 0], (Rational[9, 4] +
Rational[9, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 4] (3 + 5^Rational[1, 2]),
Rational[1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (1 + 5^Rational[1, 2]),
Rational[-1, 4] (34 + 62 5^Rational[-1, 2])^Rational[1, 2], (
Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {
Rational[1, 4] (3 + 5^Rational[1, 2]),
Rational[-1, 4] (26 + 58 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[-1, 2], (Rational[9, 4] + Rational[9, 2] 5^Rational[-1, 2])^
Rational[1, 2], (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {
0, (Rational[5, 2] + Rational[11, 2] 5^Rational[-1, 2])^
Rational[1, 2],
Rational[-1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[-1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (3 + 5^Rational[1, 2]),
Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (-3 - 5^Rational[1, 2]),
Rational[1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (-3 - 5^Rational[1, 2]),
Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (1 + 5^Rational[1, 2]),
Rational[-1, 4] (2 - 2 5^Rational[-1, 2])^Rational[1, 2],
Rational[-3, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2] (-1 - 5^Rational[1, 2]), 0,
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 2], (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2],
Rational[-3, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {0,
Root[1 - 25 #^2 + 5 #^4& , 1, 0],
Rational[1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2],
Rational[-3, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 4] (-3 - 5^Rational[1, 2]), (Rational[13, 8] +
Rational[29, 8] 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 4] (-1 - 5^Rational[1, 2]), (Rational[17, 8] +
Rational[31, 8] 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2], (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2], (Rational[9, 4] + Rational[9, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {
Rational[1, 2] (2 + 5^Rational[1, 2]), (Rational[1, 4] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (5 + 5^Rational[1, 2]),
Root[1 - 100 #^2 + 80 #^4& , 1, 0],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[-1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (1 + 5^Rational[1, 2]), (Rational[17, 8] +
Rational[31, 8] 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 4] (3 + 5^Rational[1, 2]),
Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 2] (2 + 5^Rational[1, 2]),
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (3 + 5^Rational[1, 2]), (Rational[13, 8] +
Rational[29, 8] 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2] (1 + 5^Rational[1, 2]), 0,
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 2] (2 + 5^Rational[1, 2]),
Rational[1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2], (
Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {
Rational[1, 4] (3 + 5^Rational[1, 2]),
Rational[1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (5 + 5^Rational[1, 2]), (Rational[5, 8] +
Rational[11, 8] 5^Rational[-1, 2])^
Rational[1, 2], (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {
Rational[1, 2] (1 + 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^
Rational[1, 2], (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {Rational[1, 4] (1 + 5^Rational[1, 2]),
Root[
1 - 20 #^2 + 80 #^4& , 2, 0], (Rational[9, 4] +
Rational[9, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2] (2 + 5^Rational[1, 2]),
Rational[-1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[-1, 2], (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2], (Rational[9, 4] + Rational[9, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {
Rational[1, 2] (1 + 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^
Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2], (Rational[9, 4] + Rational[9, 2] 5^Rational[-1, 2])^
Rational[1, 2], (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {
Rational[1, 4] (-1 - 5^
Rational[1, 2]), -(Rational[17, 8] +
Rational[31, 8] 5^Rational[-1, 2])^Rational[1, 2], (Rational[1, 4] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (-5 - 5^Rational[1, 2]), (Rational[5, 8] +
Rational[11, 8] 5^Rational[-1, 2])^
Rational[1, 2], (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {
Rational[-1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {(-3 +
5^Rational[1, 2])^(-1),
Root[1 - 260 #^2 + 80 #^4& , 1, 0],
Rational[-1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[-1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {-1 +
Rational[-1, 2] 5^Rational[1, 2], (Rational[1, 4] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 4] (-3 - 5^Rational[1, 2]),
Rational[1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (-5 - 5^Rational[1, 2]),
Rational[-1, 4] (10 + 22 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 4] (-3 - 5^Rational[1, 2]),
Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {-1 +
Rational[-1, 2] 5^Rational[1, 2],
Rational[-1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2] (-1 - 5^Rational[1, 2]), 0,
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[-1, 2],
Rational[-3, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2] (-1 - 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^
Rational[1, 2], (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {0,
Root[1 - 5 #^2 + 5 #^4& , 1, 0],
Rational[-3, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {-1 +
Rational[-1, 2] 5^Rational[1, 2],
Rational[1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2], (
Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[-1, 2], (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2],
Rational[-3, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2] (-1 - 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^
Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {-1 +
Rational[-1, 2] 5^Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 4] (-1 - 5^Rational[1, 2]),
Rational[-1, 4] (2 - 2 5^Rational[-1, 2])^Rational[1, 2],
Rational[-3, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}}, {{37, 28,
24}, {40, 8, 7}, {35, 5, 6}, {39, 26, 30}, {10, 14, 2}, {12, 4,
16}, {54, 45, 41}, {55, 42, 46}, {58, 19, 20}, {53, 18, 17}, {56, 43,
47}, {57, 48, 44}, {34, 32, 22}, {59, 51, 49}, {60, 50, 52}, {10, 2,
37, 24}, {37, 22, 32, 28}, {8, 40, 30, 26}, {25, 29, 40, 7}, {35, 27,
23, 5}, {6, 24, 28, 35}, {39, 30, 34, 22}, {12, 26, 39, 4}, {55, 14,
10, 42}, {41, 9, 13, 54}, {57, 44, 12, 16}, {15, 11, 43, 56}, {45, 54,
59, 49}, {50, 60, 55, 46}, {48, 58, 20, 44}, {43, 19, 58, 47}, {53,
17, 41, 45}, {46, 42, 18, 53}, {59, 56, 47, 51}, {52, 48, 57, 60}, {
31, 32, 34, 33}, {17, 18, 6, 5}, {14, 16, 4, 2}, {7, 8, 20, 19}, {51,
52, 50, 49}, {3, 1, 36, 21, 38}, {22, 37, 2, 4, 39}, {29, 33, 34, 30,
40}, {27, 35, 28, 32, 31}, {42, 10, 24, 6, 18}, {41, 17, 5, 23, 9}, {
20, 8, 26, 12, 44}, {11, 25, 7, 19, 43}, {56, 59, 54, 13, 15}, {57,
16, 14, 55, 60}, {58, 48, 52, 51, 47}, {49, 50, 46, 53, 45}, {36, 27,
31}, {38, 25, 11}, {23, 1, 9}, {15, 13, 3}, {29, 21, 33}, {31, 33, 21,
36}, {27, 36, 1, 23}, {3, 38, 11, 15}, {21, 29, 25, 38}, {1, 3, 13,
9}}]]},
TemplateBox[{
PaneSelectorBox[{False -> GridBox[{{
PaneBox[
ButtonBox[
DynamicBox[
FEPrivate`FrontEndResource["FEBitmaps", "SummaryBoxOpener"]],
ButtonFunction :> (Typeset`open$$ = True), Appearance -> None,
BaseStyle -> {}, Evaluator -> Automatic, Method ->
"Preemptive"], Alignment -> {Center, Center}, ImageSize ->
Dynamic[{
Automatic,
3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[
Magnification])}]],
Graphics3DBox[{
Directive[
Hue[0.58, 0.4, 1],
Opacity[0.5],
EdgeForm[
GrayLevel[1]]],
TagBox[
GraphicsComplex3DBox[
NCache[{{0,
Root[
1 - 5 #^2 + 5 #^4& , 1, 0], (Rational[9, 4] +
Rational[9, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2] (1 + 5^Rational[1, 2]), 0,
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^
Rational[1, 2]}, {
Rational[1, 4] (-1 - 5^Rational[1, 2]),
Root[
1 - 20 #^2 + 80 #^4& , 2, 0], (Rational[9, 4] +
Rational[9, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 4] (3 + 5^Rational[1, 2]),
Rational[1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^
Rational[1, 2]}, {
Rational[1, 4] (1 + 5^Rational[1, 2]),
Rational[-1, 4] (34 + 62 5^Rational[-1, 2])^
Rational[1, 2], (Rational[1, 4] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 4] (3 + 5^Rational[1, 2]),
Rational[-1, 4] (26 + 58 5^Rational[-1, 2])^
Rational[1, 2],
Rational[-1, 2] (1 - 2 5^Rational[-1, 2])^
Rational[1, 2]}, {
Rational[-1, 2], (Rational[9, 4] +
Rational[9, 2] 5^Rational[-1, 2])^
Rational[1, 2], (Rational[1, 4] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {
0, (Rational[5, 2] + Rational[11, 2] 5^Rational[-1, 2])^
Rational[1, 2],
Rational[-1, 2] (1 - 2 5^Rational[-1, 2])^
Rational[1, 2]}, {
Rational[-1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (3 + 5^Rational[1, 2]),
Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^
Rational[1, 2]}, {
Rational[1, 4] (-3 - 5^Rational[1, 2]),
Rational[1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^
Rational[1, 2]}, {
Rational[1, 4] (-3 - 5^Rational[1, 2]),
Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (1 + 5^Rational[1, 2]),
Rational[-1, 4] (2 - 2 5^Rational[-1, 2])^Rational[1, 2],
Rational[-3, 2] (1 + 2 5^Rational[-1, 2])^
Rational[1, 2]}, {
Rational[1, 2] (-1 - 5^Rational[1, 2]), 0,
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[
1, 2], (Rational[1, 4] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2],
Rational[-3, 2] (1 + 2 5^Rational[-1, 2])^
Rational[1, 2]}, {0,
Root[1 - 25 #^2 + 5 #^4& , 1, 0],
Rational[1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2],
Rational[-3, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^
Rational[1, 2]}, {
Rational[1, 4] (-3 - 5^Rational[1, 2]), (Rational[13, 8] +
Rational[29, 8] 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 2] (1 - 2 5^Rational[-1, 2])^
Rational[1, 2]}, {
Rational[1, 4] (-1 - 5^Rational[1, 2]), (Rational[17, 8] +
Rational[31, 8] 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^
Rational[1, 2]}, {
Rational[
1, 2], (Rational[1, 4] +
Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2], (Rational[9, 4] +
Rational[9, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2] (2 + 5^Rational[1, 2]), (Rational[1, 4] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 - 2 5^Rational[-1, 2])^
Rational[1, 2]}, {
Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (5 + 5^Rational[1, 2]),
Root[1 - 100 #^2 + 80 #^4& , 1, 0],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^
Rational[1, 2]}, {
Rational[-1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (1 + 5^Rational[1, 2]), (Rational[17, 8] +
Rational[31, 8] 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^
Rational[1, 2]}, {
Rational[1, 4] (3 + 5^Rational[1, 2]),
Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 2] (2 + 5^Rational[1, 2]),
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (3 + 5^Rational[1, 2]), (Rational[13, 8] +
Rational[29, 8] 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 2] (1 - 2 5^Rational[-1, 2])^
Rational[1, 2]}, {
Rational[1, 2] (1 + 5^Rational[1, 2]), 0,
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 2] (2 + 5^Rational[1, 2]),
Rational[1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2], (
Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {
Rational[1, 4] (3 + 5^Rational[1, 2]),
Rational[1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (5 + 5^Rational[1, 2]), (Rational[5, 8] +
Rational[11, 8] 5^Rational[-1, 2])^
Rational[1, 2], (Rational[1, 4] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2] (1 +
5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^
Rational[1, 2], (Rational[1, 4] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 4] (1 + 5^Rational[1, 2]),
Root[
1 - 20 #^2 + 80 #^4& , 2, 0], (Rational[9, 4] +
Rational[9, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2] (2 + 5^Rational[1, 2]),
Rational[-1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^
Rational[1, 2]}, {
Rational[-1, 2], (Rational[1, 4] +
Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2], (Rational[9, 4] +
Rational[9, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2] (1 + 5^Rational[1, 2]), (1 +
2 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^
Rational[1, 2]}, {
Rational[
1, 2], (Rational[9, 4] +
Rational[9, 2] 5^Rational[-1, 2])^
Rational[1, 2], (Rational[1, 4] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 4] (-1 - 5^
Rational[1, 2]), -(Rational[17, 8] +
Rational[31, 8] 5^Rational[-1, 2])^Rational[1, 2], (
Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {
Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^
Rational[1, 2]}, {
Rational[1, 4] (-5 - 5^Rational[1, 2]), (Rational[5, 8] +
Rational[11, 8] 5^Rational[-1, 2])^
Rational[1, 2], (Rational[1, 4] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[-1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^
Rational[1, 2]}, {(-3 + 5^Rational[1, 2])^(-1),
Root[1 - 260 #^2 + 80 #^4& , 1, 0],
Rational[-1, 2] (1 - 2 5^Rational[-1, 2])^
Rational[1, 2]}, {
Rational[-1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^
Rational[1, 2]}, {-1 +
Rational[-1, 2] 5^Rational[1, 2], (Rational[1, 4] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 - 2 5^Rational[-1, 2])^
Rational[1, 2]}, {
Rational[1, 4] (-3 - 5^Rational[1, 2]),
Rational[1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^
Rational[1, 2]}, {
Rational[1, 4] (-5 - 5^Rational[1, 2]),
Rational[-1, 4] (10 + 22 5^Rational[-1, 2])^
Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^
Rational[1, 2]}, {
Rational[1, 4] (-3 - 5^Rational[1, 2]),
Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^
Rational[1, 2]}, {-1 + Rational[-1, 2] 5^Rational[1, 2],
Rational[-1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^
Rational[1, 2]}, {
Rational[1, 2] (-1 - 5^Rational[1, 2]), 0,
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[-1, 2],
Rational[-3, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^
Rational[1, 2]}, {
Rational[1, 2] (-1 - 5^
Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^
Rational[1, 2], (Rational[1, 4] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {0,
Root[1 - 5 #^2 + 5 #^4& , 1, 0],
Rational[-3, 2] (1 + 2 5^Rational[-1, 2])^
Rational[1, 2]}, {-1 + Rational[-1, 2] 5^Rational[1, 2],
Rational[1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2], (
Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {
Rational[-1, 2], (Rational[1, 4] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2],
Rational[-3, 2] (1 + 2 5^Rational[-1, 2])^
Rational[1, 2]}, {
Rational[1, 2] (-1 - 5^Rational[1, 2]), (1 +
2 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^
Rational[1, 2]}, {-1 + Rational[-1, 2] 5^Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 2] (1 - 2 5^Rational[-1, 2])^
Rational[1, 2]}, {
Rational[1, 4] (-1 - 5^Rational[1, 2]),
Rational[-1, 4] (2 - 2 5^Rational[-1, 2])^Rational[1, 2],
Rational[-3, 2] (1 + 2 5^Rational[-1, 2])^
Rational[1, 2]}}, {{
0, -0.8506508083520399, 2.0645728807067605`}, {
1.618033988749895,
0, -1.5388417685876268`}, {-0.8090169943749475, \
-0.2628655560595668, 2.0645728807067605`}, {1.3090169943749475`,
0.9510565162951535, -1.5388417685876268`}, {
0.8090169943749475, -1.9641671727636467`,
0.6881909602355868}, {
1.3090169943749475`, -1.8017073246471935`, \
-0.16245984811645317`}, {-0.5, 2.0645728807067605`, 0.6881909602355868}, {
0, 2.2270327288232132`, -0.16245984811645317`}, {-0.5, \
-1.5388417685876268`, 1.5388417685876268`}, {
1.3090169943749475`, -0.9510565162951535, \
-1.5388417685876268`}, {-1.3090169943749475`, 0.9510565162951535,
1.5388417685876268`}, {0.5,
1.5388417685876268`, -1.5388417685876268`}, \
{-1.3090169943749475`, -0.9510565162951535, 1.5388417685876268`}, {
0.8090169943749475, -0.2628655560595668, \
-2.0645728807067605`}, {-1.618033988749895, 0, 1.5388417685876268`}, {0.5,
0.6881909602355868, -2.0645728807067605`}, {
0, -2.2270327288232137`, 0.16245984811645317`}, {
0.5, -2.0645728807067605`, -0.6881909602355868}, \
{-1.3090169943749475`, 1.8017073246471935`,
0.16245984811645317`}, {-0.8090169943749475,
1.9641671727636467`, -0.6881909602355868}, {0.5,
0.6881909602355868, 2.0645728807067605`}, {
2.118033988749895,
0.6881909602355868, -0.16245984811645317`}, {
0.5, -1.5388417685876268`, 1.5388417685876268`}, {
1.8090169943749475`, -1.1135163644116068`, \
-0.6881909602355868}, {-0.5, 1.5388417685876268`, 1.5388417685876268`}, {
0.8090169943749475,
1.9641671727636467`, -0.6881909602355868}, {
1.3090169943749475`, -0.9510565162951535,
1.5388417685876268`}, {
2.118033988749895, -0.6881909602355868,
0.16245984811645317`}, {0.5, 1.5388417685876268`,
1.5388417685876268`}, {1.3090169943749475`,
1.8017073246471935`, 0.16245984811645317`}, {
1.618033988749895, 0, 1.5388417685876268`}, {
2.118033988749895, 0.16245984811645317`,
0.6881909602355868}, {1.3090169943749475`,
0.9510565162951535, 1.5388417685876268`}, {
1.8090169943749475`, 1.1135163644116066`,
0.6881909602355868}, {
1.618033988749895, -1.3763819204711736`,
0.6881909602355868}, {
0.8090169943749475, -0.2628655560595668,
2.0645728807067605`}, {
2.118033988749895, -0.16245984811645317`, \
-0.6881909602355868}, {-0.5, 0.6881909602355868, 2.0645728807067605`}, {
1.618033988749895,
1.3763819204711736`, -0.6881909602355868}, {0.5,
2.0645728807067605`,
0.6881909602355868}, {-0.8090169943749475, \
-1.9641671727636467`, 0.6881909602355868}, {
0.5, -1.5388417685876268`, -1.5388417685876268`}, \
{-1.8090169943749475`, 1.1135163644116066`, 0.6881909602355868}, {-0.5,
1.5388417685876268`, -1.5388417685876268`}, \
{-1.3090169943749477`, -1.8017073246471935`, -0.16245984811645317`}, {-0.5, \
-1.5388417685876268`, -1.5388417685876268`}, {-2.118033988749895,
0.6881909602355868, -0.16245984811645317`}, \
{-1.3090169943749475`,
0.9510565162951535, -1.5388417685876268`}, \
{-1.8090169943749475`, -1.1135163644116066`, -0.6881909602355868}, \
{-1.3090169943749475`, -0.9510565162951535, -1.5388417685876268`}, \
{-2.118033988749895, -0.16245984811645317`, -0.6881909602355868}, \
{-1.618033988749895,
0, -1.5388417685876268`}, {-0.5, -2.0645728807067605`, \
-0.6881909602355868}, {-1.618033988749895, -1.3763819204711736`,
0.6881909602355868}, {
0, -0.8506508083520399, -2.0645728807067605`}, \
{-2.118033988749895, 0.16245984811645317`, 0.6881909602355868}, {-0.5,
0.6881909602355868, -2.0645728807067605`}, \
{-1.618033988749895,
1.3763819204711736`, -0.6881909602355868}, \
{-2.118033988749895, -0.6881909602355868,
0.16245984811645317`}, {-0.8090169943749475, \
-0.2628655560595668, -2.0645728807067605`}}],
Polygon3DBox[{{37, 28, 24}, {40, 8, 7}, {35, 5, 6}, {39, 26,
30}, {10, 14, 2}, {12, 4, 16}, {54, 45, 41}, {55, 42,
46}, {58, 19, 20}, {53, 18, 17}, {56, 43, 47}, {57, 48,
44}, {34, 32, 22}, {59, 51, 49}, {60, 50, 52}, {10, 2, 37,
24}, {37, 22, 32, 28}, {8, 40, 30, 26}, {25, 29, 40, 7}, {
35, 27, 23, 5}, {6, 24, 28, 35}, {39, 30, 34, 22}, {12, 26,
39, 4}, {55, 14, 10, 42}, {41, 9, 13, 54}, {57, 44, 12,
16}, {15, 11, 43, 56}, {45, 54, 59, 49}, {50, 60, 55,
46}, {48, 58, 20, 44}, {43, 19, 58, 47}, {53, 17, 41,
45}, {46, 42, 18, 53}, {59, 56, 47, 51}, {52, 48, 57,
60}, {31, 32, 34, 33}, {17, 18, 6, 5}, {14, 16, 4, 2}, {7,
8, 20, 19}, {51, 52, 50, 49}, {3, 1, 36, 21, 38}, {22, 37,
2, 4, 39}, {29, 33, 34, 30, 40}, {27, 35, 28, 32, 31}, {42,
10, 24, 6, 18}, {41, 17, 5, 23, 9}, {20, 8, 26, 12, 44}, {
11, 25, 7, 19, 43}, {56, 59, 54, 13, 15}, {57, 16, 14, 55,
60}, {58, 48, 52, 51, 47}, {49, 50, 46, 53, 45}, {36, 27,
31}, {38, 25, 11}, {23, 1, 9}, {15, 13, 3}, {29, 21, 33}, {
31, 33, 21, 36}, {27, 36, 1, 23}, {3, 38, 11, 15}, {21, 29,
25, 38}, {1, 3, 13, 9}}]], "Polyhedron"]}, ImageSize ->
Dynamic[{5.25, 3.5} (CurrentValue["FontCapHeight"]/
AbsoluteCurrentValue[Magnification])], Boxed -> False,
Lighting -> {{"Ambient",
RGBColor[0.4, 0.45, 0.5]}, {"Directional",
RGBColor[0.24, 0.27, 0.3],
ImageScaled[{2, 0, 2}]}, {"Directional",
RGBColor[0.24, 0.27, 0.3],
ImageScaled[{2, 2, 2}]}, {"Directional",
RGBColor[0.24, 0.27, 0.3],
ImageScaled[{0, 2, 2}]}}, Method -> {"ShrinkWrap" -> True}],
GridBox[{{
RowBox[{
TagBox["\"Number of points: \"", "SummaryItemAnnotation"],
"\[InvisibleSpace]",
TagBox["60", "SummaryItem"]}]}, {
RowBox[{
TagBox["\"Number of faces: \"", "SummaryItemAnnotation"],
"\[InvisibleSpace]",
TagBox["62", "SummaryItem"]}]}},
GridBoxAlignment -> {
"Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete ->
False,
GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}},
GridBoxSpacings -> {
"Columns" -> {{2}}, "Rows" -> {{Automatic}}},
BaseStyle -> {
ShowStringCharacters -> False, NumberMarks -> False,
PrintPrecision -> 3, ShowSyntaxStyles -> False}]}},
GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}},
AutoDelete -> False,
GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}},
BaselinePosition -> {1, 1}], True -> GridBox[{{
PaneBox[
ButtonBox[
DynamicBox[
FEPrivate`FrontEndResource["FEBitmaps", "SummaryBoxCloser"]],
ButtonFunction :> (Typeset`open$$ = False), Appearance -> None,
BaseStyle -> {}, Evaluator -> Automatic, Method ->
"Preemptive"], Alignment -> {Center, Center}, ImageSize ->
Dynamic[{
Automatic,
3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[
Magnification])}]],
Graphics3DBox[{
Directive[
Hue[0.58, 0.4, 1],
Opacity[0.5],
EdgeForm[
GrayLevel[1]]],
TagBox[
GraphicsComplex3DBox[
NCache[{{0,
Root[
1 - 5 #^2 + 5 #^4& , 1, 0], (Rational[9, 4] +
Rational[9, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2] (1 + 5^Rational[1, 2]), 0,
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^
Rational[1, 2]}, {
Rational[1, 4] (-1 - 5^Rational[1, 2]),
Root[
1 - 20 #^2 + 80 #^4& , 2, 0], (Rational[9, 4] +
Rational[9, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 4] (3 + 5^Rational[1, 2]),
Rational[1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^
Rational[1, 2]}, {
Rational[1, 4] (1 + 5^Rational[1, 2]),
Rational[-1, 4] (34 + 62 5^Rational[-1, 2])^
Rational[1, 2], (Rational[1, 4] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 4] (3 + 5^Rational[1, 2]),
Rational[-1, 4] (26 + 58 5^Rational[-1, 2])^
Rational[1, 2],
Rational[-1, 2] (1 - 2 5^Rational[-1, 2])^
Rational[1, 2]}, {
Rational[-1, 2], (Rational[9, 4] +
Rational[9, 2] 5^Rational[-1, 2])^
Rational[1, 2], (Rational[1, 4] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {
0, (Rational[5, 2] + Rational[11, 2] 5^Rational[-1, 2])^
Rational[1, 2],
Rational[-1, 2] (1 - 2 5^Rational[-1, 2])^
Rational[1, 2]}, {
Rational[-1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (3 + 5^Rational[1, 2]),
Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^
Rational[1, 2]}, {
Rational[1, 4] (-3 - 5^Rational[1, 2]),
Rational[1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^
Rational[1, 2]}, {
Rational[1, 4] (-3 - 5^Rational[1, 2]),
Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (1 + 5^Rational[1, 2]),
Rational[-1, 4] (2 - 2 5^Rational[-1, 2])^Rational[1, 2],
Rational[-3, 2] (1 + 2 5^Rational[-1, 2])^
Rational[1, 2]}, {
Rational[1, 2] (-1 - 5^Rational[1, 2]), 0,
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[
1, 2], (Rational[1, 4] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2],
Rational[-3, 2] (1 + 2 5^Rational[-1, 2])^
Rational[1, 2]}, {0,
Root[1 - 25 #^2 + 5 #^4& , 1, 0],
Rational[1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2],
Rational[-3, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^
Rational[1, 2]}, {
Rational[1, 4] (-3 - 5^Rational[1, 2]), (Rational[13, 8] +
Rational[29, 8] 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 2] (1 - 2 5^Rational[-1, 2])^
Rational[1, 2]}, {
Rational[1, 4] (-1 - 5^Rational[1, 2]), (Rational[17, 8] +
Rational[31, 8] 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^
Rational[1, 2]}, {
Rational[
1, 2], (Rational[1, 4] +
Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2], (Rational[9, 4] +
Rational[9, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2] (2 + 5^Rational[1, 2]), (Rational[1, 4] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 - 2 5^Rational[-1, 2])^
Rational[1, 2]}, {
Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (5 + 5^Rational[1, 2]),
Root[1 - 100 #^2 + 80 #^4& , 1, 0],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^
Rational[1, 2]}, {
Rational[-1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (1 + 5^Rational[1, 2]), (Rational[17, 8] +
Rational[31, 8] 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^
Rational[1, 2]}, {
Rational[1, 4] (3 + 5^Rational[1, 2]),
Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 2] (2 + 5^Rational[1, 2]),
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (3 + 5^Rational[1, 2]), (Rational[13, 8] +
Rational[29, 8] 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 2] (1 - 2 5^Rational[-1, 2])^
Rational[1, 2]}, {
Rational[1, 2] (1 + 5^Rational[1, 2]), 0,
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 2] (2 + 5^Rational[1, 2]),
Rational[1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2], (
Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {
Rational[1, 4] (3 + 5^Rational[1, 2]),
Rational[1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (5 + 5^Rational[1, 2]), (Rational[5, 8] +
Rational[11, 8] 5^Rational[-1, 2])^
Rational[1, 2], (Rational[1, 4] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2] (1 +
5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^
Rational[1, 2], (Rational[1, 4] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 4] (1 + 5^Rational[1, 2]),
Root[
1 - 20 #^2 + 80 #^4& , 2, 0], (Rational[9, 4] +
Rational[9, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2] (2 + 5^Rational[1, 2]),
Rational[-1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^
Rational[1, 2]}, {
Rational[-1, 2], (Rational[1, 4] +
Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2], (Rational[9, 4] +
Rational[9, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2] (1 + 5^Rational[1, 2]), (1 +
2 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^
Rational[1, 2]}, {
Rational[
1, 2], (Rational[9, 4] +
Rational[9, 2] 5^Rational[-1, 2])^
Rational[1, 2], (Rational[1, 4] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 4] (-1 - 5^
Rational[1, 2]), -(Rational[17, 8] +
Rational[31, 8] 5^Rational[-1, 2])^Rational[1, 2], (
Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {
Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^
Rational[1, 2]}, {
Rational[1, 4] (-5 - 5^Rational[1, 2]), (Rational[5, 8] +
Rational[11, 8] 5^Rational[-1, 2])^
Rational[1, 2], (Rational[1, 4] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[-1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^
Rational[1, 2]}, {(-3 + 5^Rational[1, 2])^(-1),
Root[1 - 260 #^2 + 80 #^4& , 1, 0],
Rational[-1, 2] (1 - 2 5^Rational[-1, 2])^
Rational[1, 2]}, {
Rational[-1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^
Rational[1, 2]}, {-1 +
Rational[-1, 2] 5^Rational[1, 2], (Rational[1, 4] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 - 2 5^Rational[-1, 2])^
Rational[1, 2]}, {
Rational[1, 4] (-3 - 5^Rational[1, 2]),
Rational[1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^
Rational[1, 2]}, {
Rational[1, 4] (-5 - 5^Rational[1, 2]),
Rational[-1, 4] (10 + 22 5^Rational[-1, 2])^
Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^
Rational[1, 2]}, {
Rational[1, 4] (-3 - 5^Rational[1, 2]),
Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^
Rational[1, 2]}, {-1 + Rational[-1, 2] 5^Rational[1, 2],
Rational[-1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^
Rational[1, 2]}, {
Rational[1, 2] (-1 - 5^Rational[1, 2]), 0,
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[-1, 2],
Rational[-3, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^
Rational[1, 2]}, {
Rational[1, 2] (-1 - 5^
Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^
Rational[1, 2], (Rational[1, 4] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {0,
Root[1 - 5 #^2 + 5 #^4& , 1, 0],
Rational[-3, 2] (1 + 2 5^Rational[-1, 2])^
Rational[1, 2]}, {-1 + Rational[-1, 2] 5^Rational[1, 2],
Rational[1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2], (
Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {
Rational[-1, 2], (Rational[1, 4] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2],
Rational[-3, 2] (1 + 2 5^Rational[-1, 2])^
Rational[1, 2]}, {
Rational[1, 2] (-1 - 5^Rational[1, 2]), (1 +
2 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^
Rational[1, 2]}, {-1 + Rational[-1, 2] 5^Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 2] (1 - 2 5^Rational[-1, 2])^
Rational[1, 2]}, {
Rational[1, 4] (-1 - 5^Rational[1, 2]),
Rational[-1, 4] (2 - 2 5^Rational[-1, 2])^Rational[1, 2],
Rational[-3, 2] (1 + 2 5^Rational[-1, 2])^
Rational[1, 2]}}, {{
0, -0.8506508083520399, 2.0645728807067605`}, {
1.618033988749895,
0, -1.5388417685876268`}, {-0.8090169943749475, \
-0.2628655560595668, 2.0645728807067605`}, {1.3090169943749475`,
0.9510565162951535, -1.5388417685876268`}, {
0.8090169943749475, -1.9641671727636467`,
0.6881909602355868}, {
1.3090169943749475`, -1.8017073246471935`, \
-0.16245984811645317`}, {-0.5, 2.0645728807067605`, 0.6881909602355868}, {
0, 2.2270327288232132`, -0.16245984811645317`}, {-0.5, \
-1.5388417685876268`, 1.5388417685876268`}, {
1.3090169943749475`, -0.9510565162951535, \
-1.5388417685876268`}, {-1.3090169943749475`, 0.9510565162951535,
1.5388417685876268`}, {0.5,
1.5388417685876268`, -1.5388417685876268`}, \
{-1.3090169943749475`, -0.9510565162951535, 1.5388417685876268`}, {
0.8090169943749475, -0.2628655560595668, \
-2.0645728807067605`}, {-1.618033988749895, 0, 1.5388417685876268`}, {0.5,
0.6881909602355868, -2.0645728807067605`}, {
0, -2.2270327288232137`, 0.16245984811645317`}, {
0.5, -2.0645728807067605`, -0.6881909602355868}, \
{-1.3090169943749475`, 1.8017073246471935`,
0.16245984811645317`}, {-0.8090169943749475,
1.9641671727636467`, -0.6881909602355868}, {0.5,
0.6881909602355868, 2.0645728807067605`}, {
2.118033988749895,
0.6881909602355868, -0.16245984811645317`}, {
0.5, -1.5388417685876268`, 1.5388417685876268`}, {
1.8090169943749475`, -1.1135163644116068`, \
-0.6881909602355868}, {-0.5, 1.5388417685876268`, 1.5388417685876268`}, {
0.8090169943749475,
1.9641671727636467`, -0.6881909602355868}, {
1.3090169943749475`, -0.9510565162951535,
1.5388417685876268`}, {
2.118033988749895, -0.6881909602355868,
0.16245984811645317`}, {0.5, 1.5388417685876268`,
1.5388417685876268`}, {1.3090169943749475`,
1.8017073246471935`, 0.16245984811645317`}, {
1.618033988749895, 0, 1.5388417685876268`}, {
2.118033988749895, 0.16245984811645317`,
0.6881909602355868}, {1.3090169943749475`,
0.9510565162951535, 1.5388417685876268`}, {
1.8090169943749475`, 1.1135163644116066`,
0.6881909602355868}, {
1.618033988749895, -1.3763819204711736`,
0.6881909602355868}, {
0.8090169943749475, -0.2628655560595668,
2.0645728807067605`}, {
2.118033988749895, -0.16245984811645317`, \
-0.6881909602355868}, {-0.5, 0.6881909602355868, 2.0645728807067605`}, {
1.618033988749895,
1.3763819204711736`, -0.6881909602355868}, {0.5,
2.0645728807067605`,
0.6881909602355868}, {-0.8090169943749475, \
-1.9641671727636467`, 0.6881909602355868}, {
0.5, -1.5388417685876268`, -1.5388417685876268`}, \
{-1.8090169943749475`, 1.1135163644116066`, 0.6881909602355868}, {-0.5,
1.5388417685876268`, -1.5388417685876268`}, \
{-1.3090169943749477`, -1.8017073246471935`, -0.16245984811645317`}, {-0.5, \
-1.5388417685876268`, -1.5388417685876268`}, {-2.118033988749895,
0.6881909602355868, -0.16245984811645317`}, \
{-1.3090169943749475`,
0.9510565162951535, -1.5388417685876268`}, \
{-1.8090169943749475`, -1.1135163644116066`, -0.6881909602355868}, \
{-1.3090169943749475`, -0.9510565162951535, -1.5388417685876268`}, \
{-2.118033988749895, -0.16245984811645317`, -0.6881909602355868}, \
{-1.618033988749895,
0, -1.5388417685876268`}, {-0.5, -2.0645728807067605`, \
-0.6881909602355868}, {-1.618033988749895, -1.3763819204711736`,
0.6881909602355868}, {
0, -0.8506508083520399, -2.0645728807067605`}, \
{-2.118033988749895, 0.16245984811645317`, 0.6881909602355868}, {-0.5,
0.6881909602355868, -2.0645728807067605`}, \
{-1.618033988749895,
1.3763819204711736`, -0.6881909602355868}, \
{-2.118033988749895, -0.6881909602355868,
0.16245984811645317`}, {-0.8090169943749475, \
-0.2628655560595668, -2.0645728807067605`}}],
Polygon3DBox[{{37, 28, 24}, {40, 8, 7}, {35, 5, 6}, {39, 26,
30}, {10, 14, 2}, {12, 4, 16}, {54, 45, 41}, {55, 42,
46}, {58, 19, 20}, {53, 18, 17}, {56, 43, 47}, {57, 48,
44}, {34, 32, 22}, {59, 51, 49}, {60, 50, 52}, {10, 2, 37,
24}, {37, 22, 32, 28}, {8, 40, 30, 26}, {25, 29, 40, 7}, {
35, 27, 23, 5}, {6, 24, 28, 35}, {39, 30, 34, 22}, {12, 26,
39, 4}, {55, 14, 10, 42}, {41, 9, 13, 54}, {57, 44, 12,
16}, {15, 11, 43, 56}, {45, 54, 59, 49}, {50, 60, 55,
46}, {48, 58, 20, 44}, {43, 19, 58, 47}, {53, 17, 41,
45}, {46, 42, 18, 53}, {59, 56, 47, 51}, {52, 48, 57,
60}, {31, 32, 34, 33}, {17, 18, 6, 5}, {14, 16, 4, 2}, {7,
8, 20, 19}, {51, 52, 50, 49}, {3, 1, 36, 21, 38}, {22, 37,
2, 4, 39}, {29, 33, 34, 30, 40}, {27, 35, 28, 32, 31}, {42,
10, 24, 6, 18}, {41, 17, 5, 23, 9}, {20, 8, 26, 12, 44}, {
11, 25, 7, 19, 43}, {56, 59, 54, 13, 15}, {57, 16, 14, 55,
60}, {58, 48, 52, 51, 47}, {49, 50, 46, 53, 45}, {36, 27,
31}, {38, 25, 11}, {23, 1, 9}, {15, 13, 3}, {29, 21, 33}, {
31, 33, 21, 36}, {27, 36, 1, 23}, {3, 38, 11, 15}, {21, 29,
25, 38}, {1, 3, 13, 9}}]], "Polyhedron"]}, ImageSize ->
Dynamic[{5.25, 3.5} (CurrentValue["FontCapHeight"]/
AbsoluteCurrentValue[Magnification])], Boxed -> False,
Lighting -> {{"Ambient",
RGBColor[0.4, 0.45, 0.5]}, {"Directional",
RGBColor[0.24, 0.27, 0.3],
ImageScaled[{2, 0, 2}]}, {"Directional",
RGBColor[0.24, 0.27, 0.3],
ImageScaled[{2, 2, 2}]}, {"Directional",
RGBColor[0.24, 0.27, 0.3],
ImageScaled[{0, 2, 2}]}}, Method -> {"ShrinkWrap" -> True}],
GridBox[{{
RowBox[{
TagBox["\"Number of points: \"", "SummaryItemAnnotation"],
"\[InvisibleSpace]",
TagBox["60", "SummaryItem"]}]}, {
RowBox[{
TagBox["\"Number of faces: \"", "SummaryItemAnnotation"],
"\[InvisibleSpace]",
TagBox["62", "SummaryItem"]}]}, {
RowBox[{
TagBox[
"\"Embedding dimension: \"", "SummaryItemAnnotation"],
"\[InvisibleSpace]",
TagBox["3", "SummaryItem"]}]}, {
RowBox[{
TagBox["\"Type: \"", "SummaryItemAnnotation"],
"\[InvisibleSpace]",
TagBox[
DynamicBox[
ToBoxes[
Quiet[
Apply[Region`PolyhedronDump`polyhedronType,
Region`PolyhedronDump`computeType[
Typeset`spolyhedron$$]]], StandardForm],
SynchronousUpdating -> False, TrackedSymbols :> {},
CachedValue :>
AnimatorBox[
0, {0, Infinity}, AppearanceElements -> "ProgressSlider",
ImageSize -> 20]], "SummaryItem"]}]}, {
RowBox[{
TagBox["\"Bounds: \"", "SummaryItemAnnotation"],
"\[InvisibleSpace]",
TagBox[
DynamicBox[
ToBoxes[
Region`PolyhedronDump`iRegionBounds[
Typeset`spolyhedron$$], StandardForm],
SynchronousUpdating -> False, TrackedSymbols :> {},
CachedValue :>
AnimatorBox[
0, {0, Infinity}, AppearanceElements -> "ProgressSlider",
ImageSize -> 20]], "SummaryItem"]}]}, {
RowBox[{
TagBox["\"Volume: \"", "SummaryItemAnnotation"],
"\[InvisibleSpace]",
TagBox[
DynamicBox[
ToBoxes[
Region`PolyhedronDump`iVolume[Typeset`spolyhedron$$],
StandardForm], SynchronousUpdating -> False,
TrackedSymbols :> {}, CachedValue :>
AnimatorBox[
0, {0, Infinity}, AppearanceElements -> "ProgressSlider",
ImageSize -> 20]], "SummaryItem"]}]}},
GridBoxAlignment -> {
"Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete ->
False, GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}},
GridBoxSpacings -> {
"Columns" -> {{2}}, "Rows" -> {{Automatic}}},
BaseStyle -> {
ShowStringCharacters -> False, NumberMarks -> False,
PrintPrecision -> 3, ShowSyntaxStyles -> False}]}},
GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}},
AutoDelete -> False,
GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}},
BaselinePosition -> {1, 1}]},
Dynamic[Typeset`open$$], ImageSize -> Automatic]},
"SummaryPanel"],
DynamicModuleValues:>{}], "]"}],
Polyhedron[{{0,
Root[
1 - 5 #^2 + 5 #^4& , 1, 0], (Rational[9, 4] +
Rational[9, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2] (1 + 5^Rational[1, 2]), 0,
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (-1 - 5^Rational[1, 2]),
Root[
1 - 20 #^2 + 80 #^4& , 2, 0], (Rational[9, 4] +
Rational[9, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 4] (3 + 5^Rational[1, 2]),
Rational[1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (1 + 5^Rational[1, 2]),
Rational[-1, 4] (34 + 62 5^Rational[-1, 2])^Rational[1, 2], (
Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 4] (3 + 5^Rational[1, 2]),
Rational[-1, 4] (26 + 58 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[-1, 2], (Rational[9, 4] + Rational[9, 2] 5^Rational[-1, 2])^
Rational[1, 2], (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {
0, (Rational[5, 2] + Rational[11, 2] 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[-1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (3 + 5^Rational[1, 2]),
Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (-3 - 5^Rational[1, 2]),
Rational[1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 2], Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (-3 - 5^Rational[1, 2]),
Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (1 + 5^Rational[1, 2]),
Rational[-1, 4] (2 - 2 5^Rational[-1, 2])^Rational[1, 2],
Rational[-3, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2] (-1 - 5^Rational[1, 2]), 0,
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 2], (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2],
Rational[-3, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {0,
Root[1 - 25 #^2 + 5 #^4& , 1, 0],
Rational[1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2],
Rational[-3, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 4] (-3 - 5^Rational[1, 2]), (Rational[13, 8] +
Rational[29, 8] 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 4] (-1 - 5^Rational[1, 2]), (Rational[17, 8] +
Rational[31, 8] 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2], (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2], (Rational[9, 4] + Rational[9, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {
Rational[1, 2] (2 + 5^Rational[1, 2]), (Rational[1, 4] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2], Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (5 + 5^Rational[1, 2]),
Root[1 - 100 #^2 + 80 #^4& , 1, 0],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[-1, 2], Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (1 + 5^Rational[1, 2]), (Rational[17, 8] +
Rational[31, 8] 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 4] (3 + 5^Rational[1, 2]),
Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 2] (2 + 5^Rational[1, 2]),
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2], Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (3 + 5^Rational[1, 2]), (Rational[13, 8] +
Rational[29, 8] 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2] (1 + 5^Rational[1, 2]), 0,
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 2] (2 + 5^Rational[1, 2]),
Rational[1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2], (
Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 4] (3 + 5^Rational[1, 2]),
Rational[1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (5 + 5^Rational[1, 2]), (Rational[5, 8] +
Rational[11, 8] 5^Rational[-1, 2])^
Rational[1, 2], (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {
Rational[1, 2] (1 + 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^
Rational[1, 2], (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {Rational[1, 4] (1 + 5^Rational[1, 2]),
Root[
1 - 20 #^2 + 80 #^4& , 2, 0], (Rational[9, 4] +
Rational[9, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2] (2 + 5^Rational[1, 2]),
Rational[-1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[-1, 2], (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2], (Rational[9, 4] + Rational[9, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {
Rational[1, 2] (1 + 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^
Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2], (Rational[9, 4] + Rational[9, 2] 5^Rational[-1, 2])^
Rational[1, 2], (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {
Rational[1, 4] (-1 - 5^
Rational[1, 2]), -(Rational[17, 8] +
Rational[31, 8] 5^Rational[-1, 2])^Rational[1, 2], (Rational[1, 4] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2], Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (-5 - 5^Rational[1, 2]), (Rational[5, 8] +
Rational[11, 8] 5^Rational[-1, 2])^
Rational[1, 2], (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {
Rational[-1, 2], Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {(-3 +
5^Rational[1, 2])^(-1),
Root[1 - 260 #^2 + 80 #^4& , 1, 0],
Rational[-1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[-1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {-1 +
Rational[-1, 2] 5^Rational[1, 2], (Rational[1, 4] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 4] (-3 - 5^Rational[1, 2]),
Rational[1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (-5 - 5^Rational[1, 2]),
Rational[-1, 4] (10 + 22 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 4] (-3 - 5^Rational[1, 2]),
Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {-1 +
Rational[-1, 2] 5^Rational[1, 2],
Rational[-1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2] (-1 - 5^Rational[1, 2]), 0,
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[-1, 2],
Rational[-3, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2] (-1 - 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^
Rational[1, 2], (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {0,
Root[1 - 5 #^2 + 5 #^4& , 1, 0],
Rational[-3, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {-1 +
Rational[-1, 2] 5^Rational[1, 2],
Rational[1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2], (
Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[-1, 2], (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2],
Rational[-3, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2] (-1 - 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^
Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {-1 +
Rational[-1, 2] 5^Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 4] (-1 - 5^Rational[1, 2]),
Rational[-1, 4] (2 - 2 5^Rational[-1, 2])^Rational[1, 2],
Rational[-3, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}}, {{37, 28,
24}, {40, 8, 7}, {35, 5, 6}, {39, 26, 30}, {10, 14, 2}, {12, 4, 16}, {54,
45, 41}, {55, 42, 46}, {58, 19, 20}, {53, 18, 17}, {56, 43, 47}, {57,
48, 44}, {34, 32, 22}, {59, 51, 49}, {60, 50, 52}, {10, 2, 37, 24}, {37,
22, 32, 28}, {8, 40, 30, 26}, {25, 29, 40, 7}, {35, 27, 23, 5}, {6, 24,
28, 35}, {39, 30, 34, 22}, {12, 26, 39, 4}, {55, 14, 10, 42}, {41, 9, 13,
54}, {57, 44, 12, 16}, {15, 11, 43, 56}, {45, 54, 59, 49}, {50, 60, 55,
46}, {48, 58, 20, 44}, {43, 19, 58, 47}, {53, 17, 41, 45}, {46, 42, 18,
53}, {59, 56, 47, 51}, {52, 48, 57, 60}, {31, 32, 34, 33}, {17, 18, 6,
5}, {14, 16, 4, 2}, {7, 8, 20, 19}, {51, 52, 50, 49}, {3, 1, 36, 21,
38}, {22, 37, 2, 4, 39}, {29, 33, 34, 30, 40}, {27, 35, 28, 32, 31}, {42,
10, 24, 6, 18}, {41, 17, 5, 23, 9}, {20, 8, 26, 12, 44}, {11, 25, 7, 19,
43}, {56, 59, 54, 13, 15}, {57, 16, 14, 55, 60}, {58, 48, 52, 51, 47}, {
49, 50, 46, 53, 45}, {36, 27, 31}, {38, 25, 11}, {23, 1, 9}, {15, 13,
3}, {29, 21, 33}, {31, 33, 21, 36}, {27, 36, 1, 23}, {3, 38, 11, 15}, {
21, 29, 25, 38}, {1, 3, 13, 9}}],
Editable->False,
SelectWithContents->True,
Selectable->False], "]"}]], "Output",
CellLabel->
"Out[315]=",ExpressionUUID->"2434f316-7b17-41ef-908b-d847666dda05"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"(",
RowBox[{"sphere", "=",
RowBox[{"MyInsphere", "[", "p", "]"}]}], ")"}], "//", "Timing"}]], "Input",\
ExpressionUUID->"ad6d98c2-58da-45dd-9483-107518798ff3"],
Cell[BoxData[
RowBox[{"{",
RowBox[{"6.474212`", ",",
RowBox[{"{", "}"}]}], "}"}]], "Output",
CellLabel->
"Out[319]=",ExpressionUUID->"d66e8b79-3f0b-44b3-9a24-59f4904d0d97"]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell["MeanCylindricalRadius", "Subsection",ExpressionUUID->"00e002fd-7689-40bd-bcab-0cbab1422928"],
Cell[CellGroupData[{
Cell[BoxData[
FractionBox[
RowBox[{"NIntegrate", "[",
RowBox[{
SqrtBox[
RowBox[{
SuperscriptBox["x", "2"], "+",
SuperscriptBox["y", "2"]}]], ",",
RowBox[{
RowBox[{"{",
RowBox[{"x", ",", "y", ",", "z"}], "}"}], "\[Element]", "p"}]}], "]"}],
RowBox[{"PolyhedronData", "[",
RowBox[{"pname", ",", "\"\\""}], "]"}]]], "Input",
CellLabel->
"In[321]:=",ExpressionUUID->"0c330892-6c04-41c9-9cf7-21b4ccbc1af2"],
Cell[BoxData["1.2675668245151448`"], "Output",
CellLabel->
"Out[321]=",ExpressionUUID->"e4c01d99-c953-46d1-b4a1-0ce3b8d107d6"]
}, Open ]],
Cell[BoxData[
RowBox[{
RowBox[{"(",
RowBox[{"i", "=",
FractionBox[
RowBox[{"Integrate", "[",
RowBox[{
SqrtBox[
RowBox[{
SuperscriptBox["x", "2"], "+",
SuperscriptBox["y", "2"]}]], ",",
RowBox[{
RowBox[{"{",
RowBox[{"x", ",", "y", ",", "z"}], "}"}], "\[Element]", "p"}]}],
"]"}],
RowBox[{"PolyhedronData", "[",
RowBox[{"pname", ",", "\"\\""}], "]"}]]}], ")"}], "//",
"Timing"}]], "Input",ExpressionUUID->"55e76dd5-6ec4-4b82-afea-0e5339d78771"],
Cell[BoxData[
RowBox[{"N", "[", "i", "]"}]], "Input",ExpressionUUID->"410bc14b-b4f2-4c08-839c-476928b31065"]
}, Open ]],
Cell[CellGroupData[{
Cell["MeanSquareCylindricalRadius", "Subsection",ExpressionUUID->"b9793cd4-bf15-47c7-8532-4bd86e412d92"],
Cell[CellGroupData[{
Cell[BoxData[
FractionBox[
RowBox[{"NIntegrate", "[",
RowBox[{
RowBox[{
SuperscriptBox["x", "2"], "+",
SuperscriptBox["y", "2"]}], ",",
RowBox[{
RowBox[{"{",
RowBox[{"x", ",", "y", ",", "z"}], "}"}], "\[Element]", "p"}]}], "]"}],
RowBox[{"PolyhedronData", "[",
RowBox[{"pname", ",", "\"\\""}], "]"}]]], "Input",
CellLabel->
"In[323]:=",ExpressionUUID->"9c67ffd4-2d6f-4e70-ad3a-f5b67983ab03"],
Cell[BoxData[
TemplateBox[{
"N", "meprec",
"\"Internal precision limit $MaxExtraPrecision = \\!\\(\\*RowBox[{\\\"50.`\
\\\"}]\\) reached while evaluating \
\\!\\(\\*RowBox[{RowBox[{RowBox[{\\\"(\\\", \
RowBox[{RowBox[{RowBox[{\\\"-\\\", FractionBox[\\\"1\\\", \\\"8\\\"]}], \\\" \
\\\", SqrtBox[RowBox[{\\\"1\\\", \\\"-\\\", RowBox[{\\\"2\\\", \\\" \\\", \
RowBox[{\\\"Power\\\", \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \
\\\"\[RightSkeleton]\\\"}], \\\"]\\\"}]}]}]]}], \\\"+\\\", \
RowBox[{FractionBox[\\\"1\\\", \\\"8\\\"], \\\" \\\", SqrtBox[RowBox[{\\\"5\\\
\", \\\" \\\", RowBox[{\\\"(\\\", RowBox[{\\\"1\\\", \\\"+\\\", \
RowBox[{\\\"Times\\\", \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \
\\\"\[RightSkeleton]\\\"}], \\\"]\\\"}]}], \\\")\\\"}]}]]}], \\\"-\\\", \
RowBox[{FractionBox[\\\"1\\\", \\\"4\\\"], \\\" \\\", \
SqrtBox[RowBox[{FractionBox[\\\"1\\\", \\\"4\\\"], \\\"+\\\", \
RowBox[{FractionBox[\\\"1\\\", \\\"2\\\"], \\\" \\\", RowBox[{\\\"Power\\\", \
\\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \\\"\[RightSkeleton]\\\
\"}], \\\"]\\\"}]}]}]]}], \\\"+\\\", RowBox[{FractionBox[\\\"1\\\", \
\\\"4\\\"], \\\" \\\", SqrtBox[RowBox[{\\\"5\\\", \\\" \\\", \
RowBox[{\\\"(\\\", RowBox[{FractionBox[\\\"1\\\", \\\"4\\\"], \\\"+\\\", \
RowBox[{\\\"Times\\\", \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \
\\\"\[RightSkeleton]\\\"}], \\\"]\\\"}]}], \\\")\\\"}]}]]}]}], \\\")\\\"}], \
\\\" \\\", RowBox[{\\\"(\\\", RowBox[{SqrtBox[RowBox[{FractionBox[\\\"1\\\", \
\\\"4\\\"], \\\"+\\\", FractionBox[\\\"1\\\", RowBox[{\\\"2\\\", \\\" \\\", \
SqrtBox[\\\"5\\\"]}]]}]], \\\"+\\\", RowBox[{FractionBox[\\\"1\\\", \
\\\"2\\\"], \\\" \\\", SqrtBox[RowBox[{\\\"1\\\", \\\"+\\\", \
RowBox[{\\\"2\\\", \\\" \\\", RowBox[{\\\"Power\\\", \\\"[\\\", RowBox[{\\\"\
\[LeftSkeleton]\\\", \\\"2\\\", \\\"\[RightSkeleton]\\\"}], \
\\\"]\\\"}]}]}]]}]}], \\\")\\\"}]}], \\\"+\\\", RowBox[{RowBox[{\\\"(\\\", \
RowBox[{RowBox[{RowBox[{\\\"-\\\", FractionBox[\\\"1\\\", \\\"2\\\"]}], \\\" \
\\\", SqrtBox[RowBox[{\\\"1\\\", \\\"-\\\", RowBox[{\\\"2\\\", \\\" \\\", \
RowBox[{\\\"Power\\\", \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \
\\\"\[RightSkeleton]\\\"}], \\\"]\\\"}]}]}]]}], \\\"+\\\", \
RowBox[{FractionBox[\\\"1\\\", \\\"2\\\"], \\\" \\\", SqrtBox[RowBox[{\\\"1\\\
\", \\\"+\\\", RowBox[{\\\"2\\\", \\\" \\\", RowBox[{\\\"Power\\\", \
\\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \\\"\[RightSkeleton]\\\
\"}], \\\"]\\\"}]}]}]]}]}], \\\")\\\"}], \\\" \\\", RowBox[{\\\"(\\\", \
RowBox[{RowBox[{FractionBox[\\\"1\\\", \\\"4\\\"], \\\" \\\", \
SqrtBox[RowBox[{FractionBox[\\\"5\\\", \\\"8\\\"], \\\"+\\\", \
RowBox[{FractionBox[\\\"11\\\", \\\"8\\\"], \\\" \\\", RowBox[{\\\"Power\\\", \
\\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \\\"\[RightSkeleton]\\\
\"}], \\\"]\\\"}]}]}]]}], \\\"-\\\", RowBox[{FractionBox[\\\"1\\\", \
\\\"4\\\"], \\\" \\\", SqrtBox[RowBox[{\\\"5\\\", \\\" \\\", \
RowBox[{\\\"(\\\", RowBox[{FractionBox[\\\"5\\\", \\\"8\\\"], \\\"+\\\", \
RowBox[{\\\"Times\\\", \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \
\\\"\[RightSkeleton]\\\"}], \\\"]\\\"}]}], \\\")\\\"}]}]]}], \\\"-\\\", \
RowBox[{FractionBox[\\\"1\\\", \\\"4\\\"], \\\" \\\", RowBox[{\\\"Root\\\", \
\\\"[\\\", RowBox[{RowBox[{RowBox[{\\\"1\\\", \\\"+\\\", \
RowBox[{\\\"Times\\\", \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \
\\\"\[RightSkeleton]\\\"}], \\\"]\\\"}], \\\"+\\\", RowBox[{\\\"Times\\\", \\\
\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \
\\\"\[RightSkeleton]\\\"}], \\\"]\\\"}]}], \\\"&\\\"}], \\\",\\\", \\\"1\\\", \
\\\",\\\", \\\"0\\\"}], \\\"]\\\"}]}], \\\"+\\\", RowBox[{FractionBox[\\\"1\\\
\", \\\"4\\\"], \\\" \\\", SqrtBox[\\\"5\\\"], \\\" \\\", \
RowBox[{\\\"Root\\\", \\\"[\\\", RowBox[{RowBox[{RowBox[{\\\"1\\\", \
\\\"+\\\", RowBox[{\\\"Times\\\", \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \
\\\"2\\\", \\\"\[RightSkeleton]\\\"}], \\\"]\\\"}], \\\"+\\\", \
RowBox[{\\\"Times\\\", \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \
\\\"\[RightSkeleton]\\\"}], \\\"]\\\"}]}], \\\"&\\\"}], \\\",\\\", \\\"1\\\", \
\\\",\\\", \\\"0\\\"}], \\\"]\\\"}]}]}], \\\")\\\"}]}]}]\\).\"", 2, 323, 60,
19517997606812307428, "Local"},
"MessageTemplate"]], "Message", "MSG",
CellLabel->
"During evaluation of \
In[323]:=",ExpressionUUID->"0f94fa83-5b58-47dc-bfd7-1a3f6adabd2b"],
Cell[BoxData["1.850812768258801`"], "Output",
CellLabel->
"Out[323]=",ExpressionUUID->"be91e209-ba32-4cec-9079-e58fc0b3bce6"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"(",
RowBox[{"i", "=",
RowBox[{
FractionBox[
RowBox[{"Integrate", "[",
RowBox[{
RowBox[{
SuperscriptBox["x", "2"], "+",
SuperscriptBox["y", "2"]}], ",",
RowBox[{
RowBox[{"{",
RowBox[{"x", ",", "y", ",", "z"}], "}"}], "\[Element]", "p"}]}],
"]"}],
RowBox[{"PolyhedronData", "[",
RowBox[{"pname", ",", "\"\\""}], "]"}]], "//",
"FullSimplify"}]}], ")"}], "//", "Timing"}]], "Input",
CellLabel->
"In[324]:=",ExpressionUUID->"5fa333ae-6788-487b-b62a-fb2e4f9a32e3"],
Cell[BoxData[
RowBox[{"{",
RowBox[{"27.735482`", ",",
FractionBox[
RowBox[{"3", " ",
RowBox[{"(",
RowBox[{"3885", "+",
RowBox[{"1601", " ",
SqrtBox["5"]}]}], ")"}]}], "12100"]}], "}"}]], "Output",
CellLabel->
"Out[324]=",ExpressionUUID->"169e0a30-e060-416b-841a-cf545e9c92cb"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"N", "[", "i", "]"}]], "Input",
CellLabel->
"In[325]:=",ExpressionUUID->"a9b2087c-db87-4a23-a42b-51335abc9dbb"],
Cell[BoxData["1.850812768258801`"], "Output",
CellLabel->
"Out[325]=",ExpressionUUID->"0e007d99-fcd7-4fcb-b1fa-0855cb9b60ee"]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell["MeanSphericalRadius", "Subsection",ExpressionUUID->"35f6bd67-8778-4c44-8ff3-f1faeaec4e93"],
Cell[CellGroupData[{
Cell[BoxData[
FractionBox[
RowBox[{"NIntegrate", "[",
RowBox[{
SqrtBox[
RowBox[{
SuperscriptBox["x", "2"], "+",
SuperscriptBox["y", "2"], "+",
SuperscriptBox["z", "2"]}]], ",",
RowBox[{
RowBox[{"{",
RowBox[{"x", ",", "y", ",", "z"}], "}"}], "\[Element]", "p"}]}], "]"}],
RowBox[{"PolyhedronData", "[",
RowBox[{"pname", ",", "\"\\""}], "]"}]]], "Input",
CellLabel->
"In[320]:=",ExpressionUUID->"b08d1042-c556-45fb-836a-e652109cf1a4"],
Cell[BoxData["1.61309666131991`"], "Output",
CellLabel->
"Out[320]=",ExpressionUUID->"cfd5aae3-ff4c-4e3c-84e5-3570b54a085c"]
}, Open ]],
Cell[BoxData[
RowBox[{
RowBox[{"(",
RowBox[{"i", "=",
FractionBox[
RowBox[{"Integrate", "[",
RowBox[{
SqrtBox[
RowBox[{
SuperscriptBox["x", "2"], "+",
SuperscriptBox["y", "2"], "+",
SuperscriptBox["z", "2"]}]], ",",
RowBox[{
RowBox[{"{",
RowBox[{"x", ",", "y", ",", "z"}], "}"}], "\[Element]", "p"}]}],
"]"}],
RowBox[{"PolyhedronData", "[",
RowBox[{"pname", ",", "\"\\""}], "]"}]]}], ")"}], "//",
"Timing"}]], "Input",ExpressionUUID->"9531bac5-3eea-4874-8645-66d569c85b29"],
Cell[BoxData[
RowBox[{"N", "[", "i", "]"}]], "Input",ExpressionUUID->"2a073045-cd4d-4f86-9e70-df91fa3faba7"]
}, Open ]],
Cell[CellGroupData[{
Cell["MeanSquareSphericalRadius", "Subsection",ExpressionUUID->"f86bd906-df75-4006-a841-ce85765b6cb9"],
Cell[CellGroupData[{
Cell[BoxData[
FractionBox[
RowBox[{"NIntegrate", "[",
RowBox[{
RowBox[{
SuperscriptBox["x", "2"], "+",
SuperscriptBox["y", "2"], "+",
SuperscriptBox["z", "2"]}], ",",
RowBox[{
RowBox[{"{",
RowBox[{"x", ",", "y", ",", "z"}], "}"}], "\[Element]", "p"}]}], "]"}],
RowBox[{"PolyhedronData", "[",
RowBox[{"pname", ",", "\"\\""}], "]"}]]], "Input",
CellLabel->
"In[326]:=",ExpressionUUID->"65bd176a-2c13-41b1-aa14-52d72ed67bc7"],
Cell[BoxData[
TemplateBox[{
"N", "meprec",
"\"Internal precision limit $MaxExtraPrecision = \\!\\(\\*RowBox[{\\\"50.`\
\\\"}]\\) reached while evaluating \
\\!\\(\\*RowBox[{RowBox[{RowBox[{\\\"(\\\", \
RowBox[{RowBox[{RowBox[{\\\"-\\\", FractionBox[\\\"1\\\", \\\"8\\\"]}], \\\" \
\\\", SqrtBox[RowBox[{\\\"1\\\", \\\"-\\\", RowBox[{\\\"2\\\", \\\" \\\", \
RowBox[{\\\"Power\\\", \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \
\\\"\[RightSkeleton]\\\"}], \\\"]\\\"}]}]}]]}], \\\"+\\\", \
RowBox[{FractionBox[\\\"1\\\", \\\"8\\\"], \\\" \\\", SqrtBox[RowBox[{\\\"5\\\
\", \\\" \\\", RowBox[{\\\"(\\\", RowBox[{\\\"1\\\", \\\"+\\\", \
RowBox[{\\\"Times\\\", \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \
\\\"\[RightSkeleton]\\\"}], \\\"]\\\"}]}], \\\")\\\"}]}]]}], \\\"-\\\", \
RowBox[{FractionBox[\\\"1\\\", \\\"4\\\"], \\\" \\\", \
SqrtBox[RowBox[{FractionBox[\\\"1\\\", \\\"4\\\"], \\\"+\\\", \
RowBox[{FractionBox[\\\"1\\\", \\\"2\\\"], \\\" \\\", RowBox[{\\\"Power\\\", \
\\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \\\"\[RightSkeleton]\\\
\"}], \\\"]\\\"}]}]}]]}], \\\"+\\\", RowBox[{FractionBox[\\\"1\\\", \
\\\"4\\\"], \\\" \\\", SqrtBox[RowBox[{\\\"5\\\", \\\" \\\", \
RowBox[{\\\"(\\\", RowBox[{FractionBox[\\\"1\\\", \\\"4\\\"], \\\"+\\\", \
RowBox[{\\\"Times\\\", \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \
\\\"\[RightSkeleton]\\\"}], \\\"]\\\"}]}], \\\")\\\"}]}]]}]}], \\\")\\\"}], \
\\\" \\\", RowBox[{\\\"(\\\", RowBox[{SqrtBox[RowBox[{FractionBox[\\\"1\\\", \
\\\"4\\\"], \\\"+\\\", FractionBox[\\\"1\\\", RowBox[{\\\"2\\\", \\\" \\\", \
SqrtBox[\\\"5\\\"]}]]}]], \\\"+\\\", RowBox[{FractionBox[\\\"1\\\", \
\\\"2\\\"], \\\" \\\", SqrtBox[RowBox[{\\\"1\\\", \\\"+\\\", \
RowBox[{\\\"2\\\", \\\" \\\", RowBox[{\\\"Power\\\", \\\"[\\\", RowBox[{\\\"\
\[LeftSkeleton]\\\", \\\"2\\\", \\\"\[RightSkeleton]\\\"}], \
\\\"]\\\"}]}]}]]}]}], \\\")\\\"}]}], \\\"+\\\", RowBox[{RowBox[{\\\"(\\\", \
RowBox[{RowBox[{RowBox[{\\\"-\\\", FractionBox[\\\"1\\\", \\\"2\\\"]}], \\\" \
\\\", SqrtBox[RowBox[{\\\"1\\\", \\\"-\\\", RowBox[{\\\"2\\\", \\\" \\\", \
RowBox[{\\\"Power\\\", \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \
\\\"\[RightSkeleton]\\\"}], \\\"]\\\"}]}]}]]}], \\\"+\\\", \
RowBox[{FractionBox[\\\"1\\\", \\\"2\\\"], \\\" \\\", SqrtBox[RowBox[{\\\"1\\\
\", \\\"+\\\", RowBox[{\\\"2\\\", \\\" \\\", RowBox[{\\\"Power\\\", \
\\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \\\"\[RightSkeleton]\\\
\"}], \\\"]\\\"}]}]}]]}]}], \\\")\\\"}], \\\" \\\", RowBox[{\\\"(\\\", \
RowBox[{RowBox[{FractionBox[\\\"1\\\", \\\"4\\\"], \\\" \\\", \
SqrtBox[RowBox[{FractionBox[\\\"5\\\", \\\"8\\\"], \\\"+\\\", \
RowBox[{FractionBox[\\\"11\\\", \\\"8\\\"], \\\" \\\", RowBox[{\\\"Power\\\", \
\\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \\\"\[RightSkeleton]\\\
\"}], \\\"]\\\"}]}]}]]}], \\\"-\\\", RowBox[{FractionBox[\\\"1\\\", \
\\\"4\\\"], \\\" \\\", SqrtBox[RowBox[{\\\"5\\\", \\\" \\\", \
RowBox[{\\\"(\\\", RowBox[{FractionBox[\\\"5\\\", \\\"8\\\"], \\\"+\\\", \
RowBox[{\\\"Times\\\", \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \
\\\"\[RightSkeleton]\\\"}], \\\"]\\\"}]}], \\\")\\\"}]}]]}], \\\"-\\\", \
RowBox[{FractionBox[\\\"1\\\", \\\"4\\\"], \\\" \\\", RowBox[{\\\"Root\\\", \
\\\"[\\\", RowBox[{RowBox[{RowBox[{\\\"1\\\", \\\"+\\\", \
RowBox[{\\\"Times\\\", \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \
\\\"\[RightSkeleton]\\\"}], \\\"]\\\"}], \\\"+\\\", RowBox[{\\\"Times\\\", \\\
\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \
\\\"\[RightSkeleton]\\\"}], \\\"]\\\"}]}], \\\"&\\\"}], \\\",\\\", \\\"1\\\", \
\\\",\\\", \\\"0\\\"}], \\\"]\\\"}]}], \\\"+\\\", RowBox[{FractionBox[\\\"1\\\
\", \\\"4\\\"], \\\" \\\", SqrtBox[\\\"5\\\"], \\\" \\\", \
RowBox[{\\\"Root\\\", \\\"[\\\", RowBox[{RowBox[{RowBox[{\\\"1\\\", \
\\\"+\\\", RowBox[{\\\"Times\\\", \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \
\\\"2\\\", \\\"\[RightSkeleton]\\\"}], \\\"]\\\"}], \\\"+\\\", \
RowBox[{\\\"Times\\\", \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \
\\\"\[RightSkeleton]\\\"}], \\\"]\\\"}]}], \\\"&\\\"}], \\\",\\\", \\\"1\\\", \
\\\",\\\", \\\"0\\\"}], \\\"]\\\"}]}]}], \\\")\\\"}]}]}]\\).\"", 2, 326, 61,
19517997606812307428, "Local"},
"MessageTemplate"]], "Message", "MSG",
CellLabel->
"During evaluation of \
In[326]:=",ExpressionUUID->"1f0f935b-9b24-44db-abcc-7149f96ea8bc"],
Cell[BoxData["2.7762191523882014`"], "Output",
CellLabel->
"Out[326]=",ExpressionUUID->"de37ee82-7509-43f9-b397-a0b11df60ec6"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"(",
RowBox[{"i", "=",
RowBox[{
FractionBox[
RowBox[{"Integrate", "[",
RowBox[{
RowBox[{
SuperscriptBox["x", "2"], "+",
SuperscriptBox["y", "2"], "+",
SuperscriptBox["z", "2"]}], ",",
RowBox[{
RowBox[{"{",
RowBox[{"x", ",", "y", ",", "z"}], "}"}], "\[Element]", "p"}]}],
"]"}],
RowBox[{"PolyhedronData", "[",
RowBox[{"pname", ",", "\"\\""}], "]"}]], "//",
"FullSimplify"}]}], ")"}], "//", "Timing"}]], "Input",
CellLabel->
"In[327]:=",ExpressionUUID->"8719f275-37b6-4907-aca4-c58468f85cf1"],
Cell[BoxData[
RowBox[{"{",
RowBox[{"28.230717`", ",",
FractionBox[
RowBox[{"9", " ",
RowBox[{"(",
RowBox[{"3885", "+",
RowBox[{"1601", " ",
SqrtBox["5"]}]}], ")"}]}], "24200"]}], "}"}]], "Output",
CellLabel->
"Out[327]=",ExpressionUUID->"0c3291fe-8904-4b50-8b9b-cc7752758139"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"N", "[", "i", "]"}]], "Input",
CellLabel->
"In[328]:=",ExpressionUUID->"bcc8337f-08e4-48bf-8626-8dc2f6a3e7b5"],
Cell[BoxData["2.7762191523882014`"], "Output",
CellLabel->
"Out[328]=",ExpressionUUID->"9182885e-4341-4539-863d-e709b7f4c7e5"]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell["Midsphere", "Subsection",ExpressionUUID->"11d7f5b5-6c53-452a-86d0-f9e7aab0634a"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"sphere", "=",
RowBox[{"PolyhedronData", "[",
RowBox[{"pname", ",", "\"\\""}], "]"}]}]], "Input",
CellLabel->
"In[303]:=",ExpressionUUID->"24630125-75e3-40ad-80e8-629d79140ad6"],
Cell[BoxData[
RowBox[{"Sphere", "[",
RowBox[{
RowBox[{"{",
RowBox[{"0", ",", "0", ",", "0"}], "}"}], ",",
RowBox[{
FractionBox["1", "2"], " ",
SqrtBox[
RowBox[{"10", "+",
RowBox[{"4", " ",
SqrtBox["5"]}]}]]}]}], "]"}]], "Output",
CellLabel->
"Out[303]=",ExpressionUUID->"b022b5c9-a49b-41cb-8b81-0c94e895e1ee"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"sphere", "=",
RowBox[{"Midsphere", "[",
RowBox[{"p", ",",
RowBox[{"\"\\"", "\[Rule]", "FullSimplify"}], ",",
RowBox[{"Debug", "\[Rule]", "True"}]}], "]"}]}]], "Input",
CellLabel->
"In[305]:=",ExpressionUUID->"130c78c2-51f4-41d2-bf74-77bb38979043"],
Cell[BoxData[
InterpretationBox[
RowBox[{"\<\"Using Method -> \"\>",
"\[InvisibleSpace]", "\<\"PointsTangentAndPerpendicular\"\>",
"\[InvisibleSpace]", "\<\" and Simplification -> \"\>",
"\[InvisibleSpace]", "FullSimplify"}],
SequenceForm[
"Using Method -> ", "PointsTangentAndPerpendicular",
" and Simplification -> ", FullSimplify],
Editable->False]], "Print",
CellLabel->
"During evaluation of \
In[305]:=",ExpressionUUID->"5c1a1c01-f77d-4e17-b52b-de125fb9d979"],
Cell[BoxData["$Aborted"], "Output",
CellLabel->
"Out[305]=",ExpressionUUID->"df1dbf1a-e7dc-4e3f-afbe-d6043b1939af"]
}, Open ]],
Cell[BoxData[
RowBox[{"Graphics3D", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"Opacity", "[", ".5", "]"}], ",", "p"}], "}"}], ",",
RowBox[{"{",
RowBox[{"Red", ",",
RowBox[{"Midsphere", "[", "p", "]"}]}], "}"}]}], "}"}], ",",
RowBox[{"Boxed", "\[Rule]", "False"}]}], "]"}]], "Input",ExpressionUUID->\
"5c32e2c2-0a7e-4064-a34e-eb9124cc1e85"]
}, Open ]],
Cell[CellGroupData[{
Cell["Oriented", "Subsection",ExpressionUUID->"528b0d86-4f10-4f2b-bd85-6878d611d576"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Graphics3D", "[",
RowBox[{"{",
RowBox[{
RowBox[{"FaceForm", "[",
RowBox[{"Green", ",", "Red"}], "]"}], ",", "p"}], "}"}], "]"}]], "Input",\
CellLabel->"In[74]:=",ExpressionUUID->"d42e3649-7944-4ad4-b5e9-da1f7a45d63f"],
Cell[BoxData[
Graphics3DBox[
{FaceForm[RGBColor[0, 1, 0], RGBColor[1, 0, 0]],
TagBox[
GraphicsComplex3DBox[
NCache[{{0, Root[
1 - 5 #^2 + 5 #^4& , 1, 0], (Rational[9, 4] +
Rational[9, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2] (1 + 5^Rational[1, 2]), 0,
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[
1 - 20 #^2 + 80 #^4& , 2, 0], (Rational[9, 4] +
Rational[9, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 4] (3 + 5^Rational[1, 2]),
Rational[1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (1 + 5^Rational[1, 2]),
Rational[-1, 4] (34 + 62 5^Rational[-1, 2])^Rational[1, 2], (
Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 4] (3 + 5^Rational[1, 2]),
Rational[-1, 4] (26 + 58 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[-1, 2], (Rational[9, 4] + Rational[9, 2] 5^Rational[-1, 2])^
Rational[1, 2], (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {
0, (Rational[5, 2] + Rational[11, 2] 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[-1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (3 + 5^Rational[1, 2]),
Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (-3 - 5^Rational[1, 2]),
Rational[1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 2], Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (-3 - 5^Rational[1, 2]),
Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (1 + 5^Rational[1, 2]),
Rational[-1, 4] (2 - 2 5^Rational[-1, 2])^Rational[1, 2],
Rational[-3, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2] (-1 - 5^Rational[1, 2]), 0,
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 2], (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2],
Rational[-3, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
0, Root[1 - 25 #^2 + 5 #^4& , 1, 0],
Rational[1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2],
Rational[-3, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 4] (-3 - 5^Rational[1, 2]), (Rational[13, 8] +
Rational[29, 8] 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 4] (-1 - 5^Rational[1, 2]), (Rational[17, 8] +
Rational[31, 8] 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2], (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2], (Rational[9, 4] + Rational[9, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {
Rational[1, 2] (2 + 5^Rational[1, 2]), (Rational[1, 4] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (5 + 5^Rational[1, 2]), Root[
1 - 100 #^2 + 80 #^4& , 1, 0],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[-1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (1 + 5^Rational[1, 2]), (Rational[17, 8] +
Rational[31, 8] 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 4] (3 + 5^Rational[1, 2]),
Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 2] (2 + 5^Rational[1, 2]),
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2], Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (3 + 5^Rational[1, 2]), (Rational[13, 8] +
Rational[29, 8] 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2] (1 + 5^Rational[1, 2]), 0,
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 2] (2 + 5^Rational[1, 2]),
Rational[1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2], (
Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 4] (3 + 5^Rational[1, 2]),
Rational[1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (5 + 5^Rational[1, 2]), (Rational[5, 8] +
Rational[11, 8] 5^Rational[-1, 2])^
Rational[1, 2], (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {
Rational[1, 2] (1 + 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^
Rational[1, 2], (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {
Rational[1, 4] (1 + 5^Rational[1, 2]), Root[
1 - 20 #^2 + 80 #^4& , 2, 0], (Rational[9, 4] +
Rational[9, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2] (2 + 5^Rational[1, 2]),
Rational[-1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[-1, 2], (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2], (Rational[9, 4] + Rational[9, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {
Rational[1, 2] (1 + 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^
Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2], (Rational[9, 4] + Rational[9, 2] 5^Rational[-1, 2])^
Rational[1, 2], (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {
Rational[1, 4] (-1 - 5^
Rational[1, 2]), -(Rational[17, 8] +
Rational[31, 8] 5^Rational[-1, 2])^Rational[1, 2], (Rational[1, 4] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (-5 - 5^Rational[1, 2]), (Rational[5, 8] +
Rational[11, 8] 5^Rational[-1, 2])^
Rational[1, 2], (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {
Rational[-1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {(-3 +
5^Rational[1, 2])^(-1), Root[1 - 260 #^2 + 80 #^4& , 1, 0],
Rational[-1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[-1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {-1 +
Rational[-1, 2] 5^Rational[1, 2], (Rational[1, 4] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 4] (-3 - 5^Rational[1, 2]),
Rational[1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (-5 - 5^Rational[1, 2]),
Rational[-1, 4] (10 + 22 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 4] (-3 - 5^Rational[1, 2]),
Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {-1 +
Rational[-1, 2] 5^Rational[1, 2],
Rational[-1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2] (-1 - 5^Rational[1, 2]), 0,
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[-1, 2],
Rational[-3, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2] (-1 - 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^
Rational[1, 2], (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {
0, Root[1 - 5 #^2 + 5 #^4& , 1, 0],
Rational[-3, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {-1 +
Rational[-1, 2] 5^Rational[1, 2],
Rational[1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2], (
Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[-1, 2], (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2],
Rational[-3, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2] (-1 - 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^
Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {-1 +
Rational[-1, 2] 5^Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 4] (-1 - 5^Rational[1, 2]),
Rational[-1, 4] (2 - 2 5^Rational[-1, 2])^Rational[1, 2],
Rational[-3, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}}, {{
0, -0.85065080835204, 2.0645728807067605`}, {
1.618033988749895,
0, -1.5388417685876268`}, {-0.8090169943749475, -0.2628655560595668,
2.0645728807067605`}, {1.3090169943749475`,
0.9510565162951535, -1.5388417685876268`}, {
0.8090169943749475, -1.9641671727636467`, 0.6881909602355868}, {
1.3090169943749475`, -1.8017073246471935`, -0.16245984811645317`}, \
{-0.5, 2.0645728807067605`, 0.6881909602355868}, {
0, 2.2270327288232132`, -0.16245984811645317`}, {-0.5, \
-1.5388417685876268`, 1.5388417685876268`}, {
1.3090169943749475`, -0.9510565162951535, -1.5388417685876268`}, \
{-1.3090169943749475`, 0.9510565162951535, 1.5388417685876268`}, {0.5,
1.5388417685876268`, -1.5388417685876268`}, {-1.3090169943749475`, \
-0.9510565162951535, 1.5388417685876268`}, {
0.8090169943749475, -0.2628655560595668, -2.0645728807067605`}, \
{-1.618033988749895, 0, 1.5388417685876268`}, {0.5,
0.6881909602355868, -2.0645728807067605`}, {
0, -2.2270327288232132`, 0.16245984811645317`}, {
0.5, -2.0645728807067605`, -0.6881909602355868}, {-1.3090169943749475`,
1.8017073246471935`, 0.16245984811645317`}, {-0.8090169943749475,
1.9641671727636467`, -0.6881909602355868}, {0.5, 0.6881909602355868,
2.0645728807067605`}, {2.118033988749895,
0.6881909602355868, -0.16245984811645317`}, {0.5, -1.5388417685876268`,
1.5388417685876268`}, {
1.8090169943749475`, -1.1135163644116066`, -0.6881909602355868}, {-0.5,
1.5388417685876268`, 1.5388417685876268`}, {0.8090169943749475,
1.9641671727636467`, -0.6881909602355868}, {
1.3090169943749475`, -0.9510565162951535, 1.5388417685876268`}, {
2.118033988749895, -0.6881909602355868, 0.16245984811645317`}, {0.5,
1.5388417685876268`, 1.5388417685876268`}, {1.3090169943749475`,
1.8017073246471935`, 0.16245984811645317`}, {
1.618033988749895, 0, 1.5388417685876268`}, {2.118033988749895,
0.16245984811645317`, 0.6881909602355868}, {1.3090169943749475`,
0.9510565162951535, 1.5388417685876268`}, {1.8090169943749475`,
1.1135163644116066`, 0.6881909602355868}, {
1.618033988749895, -1.3763819204711736`, 0.6881909602355868}, {
0.8090169943749475, -0.2628655560595668, 2.0645728807067605`}, {
2.118033988749895, -0.16245984811645317`, -0.6881909602355868}, {-0.5,
0.6881909602355868, 2.0645728807067605`}, {1.618033988749895,
1.3763819204711736`, -0.6881909602355868}, {0.5, 2.0645728807067605`,
0.6881909602355868}, {-0.8090169943749475, -1.9641671727636467`,
0.6881909602355868}, {
0.5, -1.5388417685876268`, -1.5388417685876268`}, \
{-1.8090169943749475`, 1.1135163644116066`, 0.6881909602355868}, {-0.5,
1.5388417685876268`, -1.5388417685876268`}, {-1.3090169943749477`, \
-1.8017073246471935`, -0.16245984811645317`}, {-0.5, -1.5388417685876268`, \
-1.5388417685876268`}, {-2.118033988749895,
0.6881909602355868, -0.16245984811645317`}, {-1.3090169943749475`,
0.9510565162951535, -1.5388417685876268`}, {-1.8090169943749475`, \
-1.1135163644116066`, -0.6881909602355868}, {-1.3090169943749475`, \
-0.9510565162951535, -1.5388417685876268`}, {-2.118033988749895, \
-0.16245984811645317`, -0.6881909602355868}, {-1.618033988749895,
0, -1.5388417685876268`}, {-0.5, -2.0645728807067605`, \
-0.6881909602355868}, {-1.618033988749895, -1.3763819204711736`,
0.6881909602355868}, {
0, -0.85065080835204, -2.0645728807067605`}, {-2.118033988749895,
0.16245984811645317`, 0.6881909602355868}, {-0.5,
0.6881909602355868, -2.0645728807067605`}, {-1.618033988749895,
1.3763819204711736`, -0.6881909602355868}, {-2.118033988749895, \
-0.6881909602355868,
0.16245984811645317`}, {-0.8090169943749475, -0.2628655560595668, \
-2.0645728807067605`}}],
Polygon3DBox[{{37, 28, 24}, {40, 8, 7}, {35, 5, 6}, {39, 26, 30}, {10,
14, 2}, {12, 4, 16}, {54, 45, 41}, {55, 42, 46}, {58, 19, 20}, {53, 18,
17}, {56, 43, 47}, {57, 48, 44}, {34, 32, 22}, {59, 51, 49}, {60, 50,
52}, {10, 2, 37, 24}, {37, 22, 32, 28}, {8, 40, 30, 26}, {25, 29, 40,
7}, {35, 27, 23, 5}, {6, 24, 28, 35}, {39, 30, 34, 22}, {12, 26, 39,
4}, {55, 14, 10, 42}, {41, 9, 13, 54}, {57, 44, 12, 16}, {15, 11, 43,
56}, {45, 54, 59, 49}, {50, 60, 55, 46}, {48, 58, 20, 44}, {43, 19, 58,
47}, {53, 17, 41, 45}, {46, 42, 18, 53}, {59, 56, 47, 51}, {52, 48,
57, 60}, {31, 32, 34, 33}, {17, 18, 6, 5}, {14, 16, 4, 2}, {7, 8, 20,
19}, {51, 52, 50, 49}, {3, 1, 36, 21, 38}, {22, 37, 2, 4, 39}, {29, 33,
34, 30, 40}, {27, 35, 28, 32, 31}, {42, 10, 24, 6, 18}, {41, 17, 5,
23, 9}, {20, 8, 26, 12, 44}, {11, 25, 7, 19, 43}, {56, 59, 54, 13,
15}, {57, 16, 14, 55, 60}, {58, 48, 52, 51, 47}, {49, 50, 46, 53,
45}, {36, 27, 31}, {38, 25, 11}, {23, 1, 9}, {15, 13, 3}, {29, 21,
33}, {31, 33, 21, 36}, {27, 36, 1, 23}, {3, 38, 11, 15}, {21, 29, 25,
38}, {1, 3, 13, 9}}]],
"Polyhedron"]}]], "Output",
CellLabel->"Out[74]=",ExpressionUUID->"f4b2a50f-cb59-4f12-87dc-f384fa9530ae"]
}, Open ]]
}, Closed]],
Cell[CellGroupData[{
Cell["RegionFunction", "Subsection",ExpressionUUID->"cf538d18-a847-45e6-bedd-263d87c726b8"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"PolyhedronData", "[",
RowBox[{
"\"\\"", ",", "\"\\""}],
"]"}]], "Input",
CellLabel->"In[1]:=",ExpressionUUID->"a5dc8320-4eb0-4571-b3cd-f165f4618c8e"],
Cell[BoxData[
RowBox[{
RowBox[{
RowBox[{
RowBox[{"15", "+",
RowBox[{"10", " ",
SqrtBox["5"]}], "+",
RowBox[{
SqrtBox[
RowBox[{"50", "-",
RowBox[{"10", " ",
SqrtBox["5"]}]}]], " ", "#2"}], "+",
RowBox[{"2", " ",
SqrtBox[
RowBox[{"5", " ",
RowBox[{"(",
RowBox[{"5", "-",
RowBox[{"2", " ",
SqrtBox["5"]}]}], ")"}]}]], " ", "#3"}]}], "\[GreaterEqual]",
RowBox[{"5", " ",
RowBox[{"(",
RowBox[{"1", "+",
SqrtBox["5"]}], ")"}], " ", "#1"}]}], "&&",
RowBox[{
RowBox[{
RowBox[{
SqrtBox[
RowBox[{"2", " ",
RowBox[{"(",
RowBox[{"5", "+",
SqrtBox["5"]}], ")"}]}]], " ", "#2"}], "+",
RowBox[{
SqrtBox[
RowBox[{"5", "-",
RowBox[{"2", " ",
SqrtBox["5"]}]}]], " ", "#3"}]}], "\[LessEqual]",
RowBox[{"5", "+",
FractionBox[
RowBox[{"3", " ",
SqrtBox["5"]}], "2"]}]}], "&&",
RowBox[{
RowBox[{"15", "+",
RowBox[{"10", " ",
SqrtBox["5"]}], "+",
RowBox[{"2", " ",
SqrtBox[
RowBox[{"5", " ",
RowBox[{"(",
RowBox[{"5", "+",
RowBox[{"2", " ",
SqrtBox["5"]}]}], ")"}]}]], " ", "#2"}]}], "\[GreaterEqual]",
RowBox[{
RowBox[{"10", " ", "#1"}], "+",
RowBox[{"2", " ",
SqrtBox[
RowBox[{"5", " ",
RowBox[{"(",
RowBox[{"5", "-",
RowBox[{"2", " ",
SqrtBox["5"]}]}], ")"}]}]], " ", "#3"}]}]}], "&&",
RowBox[{
RowBox[{
RowBox[{"5", " ", "#1"}], "+",
RowBox[{
SqrtBox[
RowBox[{"5", " ",
RowBox[{"(",
RowBox[{"5", "+",
RowBox[{"2", " ",
SqrtBox["5"]}]}], ")"}]}]], " ", "#2"}]}], "\[LessEqual]",
RowBox[{
FractionBox["15", "2"], "+",
RowBox[{"5", " ",
SqrtBox["5"]}], "+",
RowBox[{
SqrtBox[
RowBox[{"5", " ",
RowBox[{"(",
RowBox[{"5", "-",
RowBox[{"2", " ",
SqrtBox["5"]}]}], ")"}]}]], " ", "#3"}]}]}], "&&",
RowBox[{
RowBox[{"60", "+",
RowBox[{"40", " ",
SqrtBox["5"]}], "+",
RowBox[{"8", " ",
SqrtBox[
RowBox[{"5", " ",
RowBox[{"(",
RowBox[{"5", "-",
RowBox[{"2", " ",
SqrtBox["5"]}]}], ")"}]}]], " ", "#2"}], "+",
RowBox[{"3", " ",
SqrtBox[
RowBox[{"250", "+",
RowBox[{"110", " ",
SqrtBox["5"]}]}]], " ", "#3"}]}], "\[GreaterEqual]",
RowBox[{
RowBox[{"40", " ", "#1"}], "+",
RowBox[{"5", " ",
SqrtBox[
RowBox[{"10", "-",
RowBox[{"2", " ",
SqrtBox["5"]}]}]], " ", "#3"}]}]}], "&&",
RowBox[{
RowBox[{
RowBox[{"5", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+",
SqrtBox["5"]}], ")"}], " ", "#1"}], "+",
RowBox[{
SqrtBox[
RowBox[{"10", " ",
RowBox[{"(",
RowBox[{"5", "+",
SqrtBox["5"]}], ")"}]}]], " ", "#2"}]}], "\[LessEqual]",
RowBox[{"15", "+",
RowBox[{"10", " ",
SqrtBox["5"]}], "+",
RowBox[{"2", " ",
SqrtBox[
RowBox[{"5", " ",
RowBox[{"(",
RowBox[{"5", "+",
RowBox[{"2", " ",
SqrtBox["5"]}]}], ")"}]}]], " ", "#3"}]}]}], "&&",
RowBox[{
RowBox[{
SqrtBox["5"], " ",
RowBox[{"(",
RowBox[{"15", "+",
RowBox[{"2", " ",
SqrtBox[
RowBox[{"10", "-",
RowBox[{"2", " ",
SqrtBox["5"]}]}]], " ", "#2"}]}], ")"}]}], "\[GreaterEqual]",
RowBox[{"5", "+",
RowBox[{"10", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "3"}], "+",
SqrtBox["5"]}], ")"}], " ", "#1"}], "+",
RowBox[{"20", " ",
RowBox[{"Root", "[",
RowBox[{
RowBox[{
RowBox[{"1", "-",
RowBox[{"65", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"5", " ",
SuperscriptBox["#1", "4"]}]}], "&"}], ",", "3"}], "]"}], " ",
"#3"}]}]}], "&&",
RowBox[{
RowBox[{"15", "+",
RowBox[{"10", " ",
SqrtBox["5"]}], "+",
RowBox[{"2", " ",
SqrtBox[
RowBox[{"50", "-",
RowBox[{"10", " ",
SqrtBox["5"]}]}]], " ", "#2"}], "+",
RowBox[{"2", " ",
SqrtBox[
RowBox[{"5", " ",
RowBox[{"(",
RowBox[{"5", "+",
RowBox[{"2", " ",
SqrtBox["5"]}]}], ")"}]}]], " ", "#3"}]}], "\[GreaterEqual]",
"0"}], "&&",
RowBox[{
RowBox[{
SqrtBox[
RowBox[{"5", " ",
RowBox[{"(",
RowBox[{"5", "+",
RowBox[{"2", " ",
SqrtBox["5"]}]}], ")"}]}]], " ", "#2"}], "\[LessEqual]",
RowBox[{
FractionBox["15", "2"], "+",
RowBox[{"5", " ",
SqrtBox["5"]}], "+",
RowBox[{"5", " ", "#1"}], "+",
RowBox[{
SqrtBox[
RowBox[{"5", " ",
RowBox[{"(",
RowBox[{"5", "-",
RowBox[{"2", " ",
SqrtBox["5"]}]}], ")"}]}]], " ", "#3"}]}]}], "&&",
RowBox[{
RowBox[{"15", "+",
RowBox[{"10", " ",
SqrtBox["5"]}], "+",
RowBox[{"2", " ",
SqrtBox[
RowBox[{"10", " ",
RowBox[{"(",
RowBox[{"5", "+",
SqrtBox["5"]}], ")"}]}]], " ", "#2"}], "+",
RowBox[{"2", " ",
SqrtBox[
RowBox[{"5", " ",
RowBox[{"(",
RowBox[{"5", "-",
RowBox[{"2", " ",
SqrtBox["5"]}]}], ")"}]}]], " ", "#3"}]}], "\[GreaterEqual]",
"0"}], "&&",
RowBox[{
RowBox[{
RowBox[{
SqrtBox[
RowBox[{"50", "-",
RowBox[{"10", " ",
SqrtBox["5"]}]}]], " ", "#2"}], "+",
RowBox[{"2", " ",
SqrtBox[
RowBox[{"5", " ",
RowBox[{"(",
RowBox[{"5", "-",
RowBox[{"2", " ",
SqrtBox["5"]}]}], ")"}]}]], " ", "#3"}]}], "\[LessEqual]",
RowBox[{"5", " ",
RowBox[{"(",
RowBox[{"3", "+",
RowBox[{"2", " ",
SqrtBox["5"]}], "+",
RowBox[{
RowBox[{"(",
RowBox[{"1", "+",
SqrtBox["5"]}], ")"}], " ", "#1"}]}], ")"}]}]}], "&&",
RowBox[{
RowBox[{
SqrtBox[
RowBox[{"10", " ",
RowBox[{"(",
RowBox[{"5", "+",
SqrtBox["5"]}], ")"}]}]], " ", "#2"}], "\[LessEqual]",
RowBox[{"15", "+",
RowBox[{"10", " ",
SqrtBox["5"]}], "+",
RowBox[{"5", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+",
SqrtBox["5"]}], ")"}], " ", "#1"}], "+",
RowBox[{"2", " ",
SqrtBox[
RowBox[{"5", " ",
RowBox[{"(",
RowBox[{"5", "+",
RowBox[{"2", " ",
SqrtBox["5"]}]}], ")"}]}]], " ", "#3"}]}]}], "&&",
RowBox[{
RowBox[{
RowBox[{"-", "5"}], " ",
RowBox[{"(",
RowBox[{"3", "+",
RowBox[{"2", " ",
SqrtBox["5"]}]}], ")"}]}], "\[LessEqual]",
RowBox[{
RowBox[{"5", " ",
RowBox[{"(",
RowBox[{"1", "+",
SqrtBox["5"]}], ")"}], " ", "#1"}], "+",
RowBox[{
SqrtBox[
RowBox[{"50", "-",
RowBox[{"10", " ",
SqrtBox["5"]}]}]], " ", "#2"}], "+",
RowBox[{"2", " ",
SqrtBox[
RowBox[{"5", " ",
RowBox[{"(",
RowBox[{"5", "-",
RowBox[{"2", " ",
SqrtBox["5"]}]}], ")"}]}]], " ", "#3"}]}], "\[LessEqual]",
RowBox[{"5", " ",
RowBox[{"(",
RowBox[{"3", "+",
RowBox[{"2", " ",
SqrtBox["5"]}]}], ")"}]}]}], "&&",
RowBox[{
RowBox[{"60", "+",
RowBox[{"40", " ",
SqrtBox["5"]}], "+",
RowBox[{"40", " ", "#1"}], "+",
RowBox[{"8", " ",
SqrtBox[
RowBox[{"5", " ",
RowBox[{"(",
RowBox[{"5", "-",
RowBox[{"2", " ",
SqrtBox["5"]}]}], ")"}]}]], " ", "#2"}], "+",
RowBox[{"3", " ",
SqrtBox[
RowBox[{"250", "+",
RowBox[{"110", " ",
SqrtBox["5"]}]}]], " ", "#3"}]}], "\[GreaterEqual]",
RowBox[{"5", " ",
SqrtBox[
RowBox[{"10", "-",
RowBox[{"2", " ",
SqrtBox["5"]}]}]], " ", "#3"}]}], "&&",
RowBox[{
RowBox[{
RowBox[{"10", " ",
RowBox[{"(",
RowBox[{"2", "+",
SqrtBox["5"]}], ")"}]}], "+",
RowBox[{
SqrtBox[
RowBox[{"50", "-",
RowBox[{"10", " ",
SqrtBox["5"]}]}]], " ",
RowBox[{"(",
RowBox[{"#2", "+",
RowBox[{"2", " ", "#3"}]}], ")"}]}]}], "\[GreaterEqual]",
RowBox[{"5", " ",
RowBox[{"(",
RowBox[{"1", "+",
SqrtBox["5"]}], ")"}], " ", "#1"}]}], "&&",
RowBox[{
RowBox[{"2", "+",
SqrtBox["5"], "+",
RowBox[{"2", " ", "#1"}]}], "\[GreaterEqual]", "0"}], "&&",
RowBox[{
RowBox[{"2", " ", "#1"}], "\[LessEqual]",
RowBox[{"2", "+",
SqrtBox["5"]}]}], "&&",
RowBox[{
RowBox[{
RowBox[{"-", "2"}], " ",
RowBox[{"(",
RowBox[{"2", "+",
SqrtBox["5"]}], ")"}]}], "\[LessEqual]",
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+",
SqrtBox["5"]}], ")"}], " ", "#1"}], "+",
RowBox[{
SqrtBox[
RowBox[{"2", " ",
RowBox[{"(",
RowBox[{"5", "+",
SqrtBox["5"]}], ")"}]}]], " ", "#2"}]}], "\[LessEqual]",
RowBox[{"2", " ",
RowBox[{"(",
RowBox[{"2", "+",
SqrtBox["5"]}], ")"}]}]}], "&&",
RowBox[{
RowBox[{
RowBox[{"-", "5"}], " ",
RowBox[{"(",
RowBox[{"2", "+",
SqrtBox["5"]}], ")"}]}], "\[LessEqual]",
RowBox[{
RowBox[{
SqrtBox[
RowBox[{"10", " ",
RowBox[{"(",
RowBox[{"5", "+",
SqrtBox["5"]}], ")"}]}]], " ", "#2"}], "+",
RowBox[{
SqrtBox[
RowBox[{"50", "-",
RowBox[{"10", " ",
SqrtBox["5"]}]}]], " ", "#3"}]}], "\[LessEqual]",
RowBox[{"5", " ",
RowBox[{"(",
RowBox[{"2", "+",
SqrtBox["5"]}], ")"}]}]}], "&&",
RowBox[{
RowBox[{
RowBox[{"-", "5"}], " ",
RowBox[{"(",
RowBox[{"2", "+",
SqrtBox["5"]}], ")"}]}], "\[LessEqual]",
RowBox[{
RowBox[{
RowBox[{"-", "5"}], " ", "#1"}], "+",
RowBox[{
SqrtBox[
RowBox[{"5", " ",
RowBox[{"(",
RowBox[{"5", "+",
RowBox[{"2", " ",
SqrtBox["5"]}]}], ")"}]}]], " ", "#2"}], "-",
RowBox[{
SqrtBox[
RowBox[{"50", "-",
RowBox[{"10", " ",
SqrtBox["5"]}]}]], " ", "#3"}]}], "\[LessEqual]",
RowBox[{"5", " ",
RowBox[{"(",
RowBox[{"2", "+",
SqrtBox["5"]}], ")"}]}]}], "&&",
RowBox[{
RowBox[{
RowBox[{"-", "2"}], " ",
RowBox[{"(",
RowBox[{"2", "+",
SqrtBox["5"]}], ")"}]}], "\[LessEqual]",
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{"1", "+",
SqrtBox["5"]}], ")"}], " ", "#1"}], "-",
RowBox[{
SqrtBox[
RowBox[{"10", "-",
RowBox[{"2", " ",
SqrtBox["5"]}]}]], " ", "#2"}]}], "\[LessEqual]",
RowBox[{"2", " ",
RowBox[{"(",
RowBox[{"2", "+",
SqrtBox["5"]}], ")"}]}]}], "&&",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{"1", "+",
SqrtBox["5"]}], ")"}], " ", "#1"}], "+",
RowBox[{
SqrtBox[
RowBox[{"10", "-",
RowBox[{"2", " ",
SqrtBox["5"]}]}]], " ", "#2"}]}], "\[LessEqual]",
RowBox[{"2", " ",
RowBox[{"(",
RowBox[{"2", "+",
SqrtBox["5"]}], ")"}]}]}], "&&",
RowBox[{
RowBox[{
RowBox[{"5", " ", "#1"}], "+",
RowBox[{
SqrtBox[
RowBox[{"5", " ",
RowBox[{"(",
RowBox[{"5", "+",
RowBox[{"2", " ",
SqrtBox["5"]}]}], ")"}]}]], " ", "#2"}]}], "\[LessEqual]",
RowBox[{
RowBox[{"5", " ",
RowBox[{"(",
RowBox[{"2", "+",
SqrtBox["5"]}], ")"}]}], "+",
RowBox[{
SqrtBox[
RowBox[{"50", "-",
RowBox[{"10", " ",
SqrtBox["5"]}]}]], " ", "#3"}]}]}], "&&",
RowBox[{
RowBox[{
RowBox[{"10", " ",
RowBox[{"(",
RowBox[{"2", "+",
SqrtBox["5"]}], ")"}]}], "+",
RowBox[{
SqrtBox[
RowBox[{"10", " ",
RowBox[{"(",
RowBox[{"5", "+",
SqrtBox["5"]}], ")"}]}]], " ",
RowBox[{"(",
RowBox[{"#2", "+",
RowBox[{"2", " ", "#3"}]}], ")"}]}]}], "\[GreaterEqual]",
RowBox[{"5", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+",
SqrtBox["5"]}], ")"}], " ", "#1"}]}], "&&",
RowBox[{
RowBox[{"80", "+",
RowBox[{"40", " ",
SqrtBox["5"]}], "+",
RowBox[{"40", " ", "#1"}], "+",
RowBox[{"8", " ",
SqrtBox[
RowBox[{"5", " ",
RowBox[{"(",
RowBox[{"5", "+",
RowBox[{"2", " ",
SqrtBox["5"]}]}], ")"}]}]], " ", "#2"}], "+",
RowBox[{"5", " ",
SqrtBox[
RowBox[{"250", "+",
RowBox[{"82", " ",
SqrtBox["5"]}]}]], " ", "#3"}]}], "\[GreaterEqual]",
RowBox[{
SqrtBox[
RowBox[{"11050", "+",
RowBox[{"4610", " ",
SqrtBox["5"]}]}]], " ", "#3"}]}], "&&",
RowBox[{
RowBox[{
SqrtBox[
RowBox[{"50", "-",
RowBox[{"10", " ",
SqrtBox["5"]}]}]], " ", "#2"}], "\[LessEqual]",
RowBox[{
RowBox[{"5", " ",
RowBox[{"(",
RowBox[{"2", "+",
SqrtBox["5"]}], ")"}]}], "+",
RowBox[{
SqrtBox[
RowBox[{"10", " ",
RowBox[{"(",
RowBox[{"5", "+",
SqrtBox["5"]}], ")"}]}]], " ", "#3"}]}]}], "&&",
RowBox[{
RowBox[{
SqrtBox[
RowBox[{"50", "-",
RowBox[{"10", " ",
SqrtBox["5"]}]}]], " ",
RowBox[{"(",
RowBox[{"#2", "+",
RowBox[{"2", " ", "#3"}]}], ")"}]}], "\[LessEqual]",
RowBox[{"5", " ",
RowBox[{"(",
RowBox[{"4", "+",
RowBox[{"2", " ",
SqrtBox["5"]}], "+", "#1", "+",
RowBox[{
SqrtBox["5"], " ", "#1"}]}], ")"}]}]}], "&&",
RowBox[{
RowBox[{"1", "+",
SqrtBox["5"], "+",
RowBox[{
SqrtBox["5"], " ", "#1"}], "+",
RowBox[{
SqrtBox[
RowBox[{"50", "-",
RowBox[{"22", " ",
SqrtBox["5"]}]}]], " ", "#2"}]}], "\[GreaterEqual]", "#1"}], "&&",
RowBox[{
RowBox[{
RowBox[{"10", " ",
RowBox[{"(",
RowBox[{"2", "+",
SqrtBox["5"]}], ")"}]}], "+",
RowBox[{"5", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+",
SqrtBox["5"]}], ")"}], " ", "#1"}], "+",
RowBox[{
SqrtBox[
RowBox[{"10", " ",
RowBox[{"(",
RowBox[{"5", "+",
SqrtBox["5"]}], ")"}]}]], " ",
RowBox[{"(",
RowBox[{"#2", "+",
RowBox[{"2", " ", "#3"}]}], ")"}]}]}], "\[GreaterEqual]", "0"}], "&&",
RowBox[{
RowBox[{
SqrtBox[
RowBox[{"5", " ",
RowBox[{"(",
RowBox[{"5", "-",
RowBox[{"2", " ",
SqrtBox["5"]}]}], ")"}]}]], " ", "#2"}], "\[LessEqual]",
RowBox[{
RowBox[{"5", " ",
RowBox[{"(",
RowBox[{"2", "+",
SqrtBox["5"]}], ")"}]}], "+",
RowBox[{"5", " ", "#1"}], "+",
RowBox[{
SqrtBox[
RowBox[{"10", " ",
RowBox[{"(",
RowBox[{"5", "+",
SqrtBox["5"]}], ")"}]}]], " ", "#3"}]}]}], "&&",
RowBox[{
RowBox[{
RowBox[{"-", "10"}], " ",
RowBox[{"(",
RowBox[{"2", "+",
SqrtBox["5"]}], ")"}]}], "\[LessEqual]",
RowBox[{
RowBox[{"5", " ",
RowBox[{"(",
RowBox[{"1", "+",
SqrtBox["5"]}], ")"}], " ", "#1"}], "+",
RowBox[{
SqrtBox[
RowBox[{"50", "-",
RowBox[{"10", " ",
SqrtBox["5"]}]}]], " ",
RowBox[{"(",
RowBox[{"#2", "+",
RowBox[{"2", " ", "#3"}]}], ")"}]}]}], "\[LessEqual]",
RowBox[{"10", " ",
RowBox[{"(",
RowBox[{"2", "+",
SqrtBox["5"]}], ")"}]}]}], "&&",
RowBox[{
RowBox[{
RowBox[{"-", "2"}], " ",
RowBox[{"(",
RowBox[{"2", "+",
SqrtBox["5"]}], ")"}]}], "\[LessEqual]",
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+",
SqrtBox["5"]}], ")"}], " ", "#1"}], "-",
RowBox[{
SqrtBox[
RowBox[{"2", " ",
RowBox[{"(",
RowBox[{"5", "+",
SqrtBox["5"]}], ")"}]}]], " ", "#2"}]}], "\[LessEqual]",
RowBox[{"2", " ",
RowBox[{"(",
RowBox[{"2", "+",
SqrtBox["5"]}], ")"}]}]}], "&&",
RowBox[{
RowBox[{
RowBox[{"5", " ", "#1"}], "+",
RowBox[{
SqrtBox[
RowBox[{"5", " ",
RowBox[{"(",
RowBox[{"5", "-",
RowBox[{"2", " ",
SqrtBox["5"]}]}], ")"}]}]], " ", "#2"}]}], "\[LessEqual]",
RowBox[{
RowBox[{"5", " ",
RowBox[{"(",
RowBox[{"2", "+",
SqrtBox["5"]}], ")"}]}], "+",
RowBox[{
SqrtBox[
RowBox[{"10", " ",
RowBox[{"(",
RowBox[{"5", "+",
SqrtBox["5"]}], ")"}]}]], " ", "#3"}]}]}], "&&",
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{"1", "+",
SqrtBox["5"]}], ")"}], " ", "#3"}], "\[LessEqual]",
SqrtBox[
RowBox[{
FractionBox["45", "2"], "+",
FractionBox["99",
RowBox[{"2", " ",
SqrtBox["5"]}]]}]]}], "&&",
RowBox[{
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], " ", "15", " ",
RowBox[{"(",
RowBox[{"3", "+",
SqrtBox["5"]}], ")"}]}], "\[LessEqual]",
RowBox[{
RowBox[{"5", " ",
RowBox[{"(",
RowBox[{"1", "+",
SqrtBox["5"]}], ")"}], " ", "#1"}], "+",
RowBox[{
SqrtBox[
RowBox[{"50", "-",
RowBox[{"10", " ",
SqrtBox["5"]}]}]], " ", "#2"}], "-",
RowBox[{
SqrtBox[
RowBox[{"10", " ",
RowBox[{"(",
RowBox[{"5", "+",
SqrtBox["5"]}], ")"}]}]], " ", "#3"}]}], "\[LessEqual]",
RowBox[{
FractionBox["15", "2"], " ",
RowBox[{"(",
RowBox[{"3", "+",
SqrtBox["5"]}], ")"}]}]}], "&&",
RowBox[{
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], " ", "15", " ",
RowBox[{"(",
RowBox[{"3", "+",
SqrtBox["5"]}], ")"}]}], "\[LessEqual]",
RowBox[{
RowBox[{"10", " ", "#1"}], "+",
RowBox[{"2", " ",
SqrtBox[
RowBox[{"5", " ",
RowBox[{"(",
RowBox[{"5", "+",
RowBox[{"2", " ",
SqrtBox["5"]}]}], ")"}]}]], " ", "#2"}], "+",
RowBox[{
SqrtBox[
RowBox[{"10", " ",
RowBox[{"(",
RowBox[{"5", "+",
SqrtBox["5"]}], ")"}]}]], " ", "#3"}]}], "\[LessEqual]",
RowBox[{
FractionBox["15", "2"], " ",
RowBox[{"(",
RowBox[{"3", "+",
SqrtBox["5"]}], ")"}]}]}], "&&",
RowBox[{
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], " ", "15", " ",
RowBox[{"(",
RowBox[{"3", "+",
SqrtBox["5"]}], ")"}]}], "\[LessEqual]",
RowBox[{
RowBox[{
RowBox[{"-", "5"}], " ",
RowBox[{"(",
RowBox[{"1", "+",
SqrtBox["5"]}], ")"}], " ", "#1"}], "+",
RowBox[{
SqrtBox[
RowBox[{"50", "-",
RowBox[{"10", " ",
SqrtBox["5"]}]}]], " ", "#2"}], "-",
RowBox[{
SqrtBox[
RowBox[{"10", " ",
RowBox[{"(",
RowBox[{"5", "+",
SqrtBox["5"]}], ")"}]}]], " ", "#3"}]}], "\[LessEqual]",
RowBox[{
FractionBox["15", "2"], " ",
RowBox[{"(",
RowBox[{"3", "+",
SqrtBox["5"]}], ")"}]}]}], "&&",
RowBox[{
RowBox[{"45", "+",
RowBox[{"15", " ",
SqrtBox["5"]}], "+",
RowBox[{"4", " ",
SqrtBox[
RowBox[{"5", " ",
RowBox[{"(",
RowBox[{"5", "+",
RowBox[{"2", " ",
SqrtBox["5"]}]}], ")"}]}]], " ", "#2"}], "+",
RowBox[{"2", " ",
SqrtBox[
RowBox[{"10", " ",
RowBox[{"(",
RowBox[{"5", "+",
SqrtBox["5"]}], ")"}]}]], " ", "#3"}]}], "\[GreaterEqual]",
RowBox[{"20", " ", "#1"}]}], "&&",
RowBox[{
RowBox[{
RowBox[{"15", " ",
RowBox[{"(",
RowBox[{"3", "+",
SqrtBox["5"]}], ")"}]}], "+",
RowBox[{"2", " ",
SqrtBox[
RowBox[{"10", " ",
RowBox[{"(",
RowBox[{"5", "+",
SqrtBox["5"]}], ")"}]}]], " ",
RowBox[{"(",
RowBox[{
RowBox[{"2", " ", "#2"}], "-", "#3"}], ")"}]}]}], "\[GreaterEqual]",
"0"}], "&&",
RowBox[{
RowBox[{
RowBox[{"4", " ",
SqrtBox[
RowBox[{"10", "-",
RowBox[{"2", " ",
SqrtBox["5"]}]}]], " ", "#2"}], "+",
RowBox[{"2", " ",
SqrtBox[
RowBox[{"170", "+",
RowBox[{"62", " ",
SqrtBox["5"]}]}]], " ", "#3"}]}], "\[LessEqual]",
RowBox[{
RowBox[{"3", " ",
RowBox[{"(",
RowBox[{"5", "+",
SqrtBox["5"]}], ")"}]}], "+",
RowBox[{"4", " ",
SqrtBox[
RowBox[{"50", "+",
RowBox[{"22", " ",
SqrtBox["5"]}]}]], " ", "#3"}]}]}], "&&",
RowBox[{
RowBox[{
RowBox[{"4", " ",
SqrtBox[
RowBox[{"5", " ",
RowBox[{"(",
RowBox[{"5", "+",
RowBox[{"2", " ",
SqrtBox["5"]}]}], ")"}]}]], " ", "#2"}], "+",
RowBox[{"2", " ",
SqrtBox[
RowBox[{"10", " ",
RowBox[{"(",
RowBox[{"5", "+",
SqrtBox["5"]}], ")"}]}]], " ", "#3"}]}], "\[LessEqual]",
RowBox[{"5", " ",
RowBox[{"(",
RowBox[{"9", "+",
RowBox[{"3", " ",
SqrtBox["5"]}], "+",
RowBox[{"4", " ", "#1"}]}], ")"}]}]}], "&&",
RowBox[{
RowBox[{"15", "+",
RowBox[{"9", " ",
SqrtBox["5"]}], "+",
RowBox[{"2", " ",
SqrtBox[
RowBox[{"10", " ",
RowBox[{"(",
RowBox[{"5", "+",
SqrtBox["5"]}], ")"}]}]], " ", "#3"}]}], "\[GreaterEqual]", "0"}], "&&",
RowBox[{
RowBox[{
FractionBox["15", "2"], "+",
RowBox[{"5", " ",
SqrtBox["5"]}], "+",
RowBox[{
SqrtBox[
RowBox[{"5", " ",
RowBox[{"(",
RowBox[{"5", "-",
RowBox[{"2", " ",
SqrtBox["5"]}]}], ")"}]}]], " ", "#2"}]}], "\[GreaterEqual]",
RowBox[{
RowBox[{"5", " ", "#1"}], "+",
RowBox[{
SqrtBox[
RowBox[{"5", " ",
RowBox[{"(",
RowBox[{"5", "+",
RowBox[{"2", " ",
SqrtBox["5"]}]}], ")"}]}]], " ", "#3"}]}]}], "&&",
RowBox[{
RowBox[{
RowBox[{
SqrtBox[
RowBox[{"10", " ",
RowBox[{"(",
RowBox[{"5", "+",
SqrtBox["5"]}], ")"}]}]], " ", "#2"}], "+",
RowBox[{"2", " ",
SqrtBox[
RowBox[{"5", " ",
RowBox[{"(",
RowBox[{"5", "+",
RowBox[{"2", " ",
SqrtBox["5"]}]}], ")"}]}]], " ", "#3"}]}], "\[LessEqual]",
RowBox[{"5", " ",
RowBox[{"(",
RowBox[{"3", "+",
RowBox[{"2", " ",
SqrtBox["5"]}], "+",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+",
SqrtBox["5"]}], ")"}], " ", "#1"}]}], ")"}]}]}], "&&",
RowBox[{
RowBox[{
FractionBox["15", "2"], "+",
RowBox[{"5", " ",
SqrtBox["5"]}], "+",
RowBox[{
SqrtBox[
RowBox[{"50", "-",
RowBox[{"10", " ",
SqrtBox["5"]}]}]], " ", "#2"}]}], "\[GreaterEqual]",
RowBox[{
SqrtBox[
RowBox[{"5", " ",
RowBox[{"(",
RowBox[{"5", "+",
RowBox[{"2", " ",
SqrtBox["5"]}]}], ")"}]}]], " ", "#3"}]}], "&&",
RowBox[{
RowBox[{
FractionBox["15", "2"], "+",
RowBox[{"5", " ",
SqrtBox["5"]}], "+",
RowBox[{"5", " ", "#1"}], "+",
RowBox[{
SqrtBox[
RowBox[{"5", " ",
RowBox[{"(",
RowBox[{"5", "-",
RowBox[{"2", " ",
SqrtBox["5"]}]}], ")"}]}]], " ", "#2"}]}], "\[GreaterEqual]",
RowBox[{
SqrtBox[
RowBox[{"5", " ",
RowBox[{"(",
RowBox[{"5", "+",
RowBox[{"2", " ",
SqrtBox["5"]}]}], ")"}]}]], " ", "#3"}]}], "&&",
RowBox[{
RowBox[{
SqrtBox["5"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"5", " ", "#1"}], "+",
RowBox[{
SqrtBox[
RowBox[{"2", " ",
RowBox[{"(",
RowBox[{"5", "+",
SqrtBox["5"]}], ")"}]}]], " ", "#2"}], "+",
RowBox[{"2", " ",
SqrtBox[
RowBox[{"5", "+",
RowBox[{"2", " ",
SqrtBox["5"]}]}]], " ", "#3"}]}], ")"}]}], "\[LessEqual]",
RowBox[{"5", " ",
RowBox[{"(",
RowBox[{"3", "+",
RowBox[{"2", " ",
SqrtBox["5"]}], "+", "#1"}], ")"}]}]}], "&&",
RowBox[{
RowBox[{
RowBox[{"5", " ", "#1"}], "+",
RowBox[{
SqrtBox[
RowBox[{"5", " ",
RowBox[{"(",
RowBox[{"5", "-",
RowBox[{"2", " ",
SqrtBox["5"]}]}], ")"}]}]], " ", "#2"}], "+",
RowBox[{
SqrtBox[
RowBox[{"10", " ",
RowBox[{"(",
RowBox[{"5", "+",
SqrtBox["5"]}], ")"}]}]], " ", "#3"}]}], "\[LessEqual]",
RowBox[{"5", " ",
RowBox[{"(",
RowBox[{"2", "+",
SqrtBox["5"]}], ")"}]}]}], "&&",
RowBox[{
RowBox[{
RowBox[{"10", " ",
RowBox[{"(",
RowBox[{"2", "+",
SqrtBox["5"]}], ")"}]}], "+",
RowBox[{
SqrtBox[
RowBox[{"10", " ",
RowBox[{"(",
RowBox[{"5", "+",
SqrtBox["5"]}], ")"}]}]], " ",
RowBox[{"(",
RowBox[{"#2", "-",
RowBox[{"2", " ", "#3"}]}], ")"}]}]}], "\[GreaterEqual]",
RowBox[{"5", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+",
SqrtBox["5"]}], ")"}], " ", "#1"}]}], "&&",
RowBox[{
RowBox[{
RowBox[{
SqrtBox[
RowBox[{"5", " ",
RowBox[{"(",
RowBox[{"5", "-",
RowBox[{"2", " ",
SqrtBox["5"]}]}], ")"}]}]], " ", "#2"}], "+",
RowBox[{
SqrtBox[
RowBox[{"10", " ",
RowBox[{"(",
RowBox[{"5", "+",
SqrtBox["5"]}], ")"}]}]], " ", "#3"}]}], "\[LessEqual]",
RowBox[{"5", " ",
RowBox[{"(",
RowBox[{"2", "+",
SqrtBox["5"], "+", "#1"}], ")"}]}]}], "&&",
RowBox[{
RowBox[{
RowBox[{
SqrtBox[
RowBox[{"50", "-",
RowBox[{"10", " ",
SqrtBox["5"]}]}]], " ", "#2"}], "+",
RowBox[{
SqrtBox[
RowBox[{"10", " ",
RowBox[{"(",
RowBox[{"5", "+",
SqrtBox["5"]}], ")"}]}]], " ", "#3"}]}], "\[LessEqual]",
RowBox[{"5", " ",
RowBox[{"(",
RowBox[{"2", "+",
SqrtBox["5"]}], ")"}]}]}], "&&",
RowBox[{
RowBox[{
RowBox[{"10", " ",
RowBox[{"(",
RowBox[{"2", "+",
SqrtBox["5"]}], ")"}]}], "+",
RowBox[{"5", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+",
SqrtBox["5"]}], ")"}], " ", "#1"}], "+",
RowBox[{
SqrtBox[
RowBox[{"10", " ",
RowBox[{"(",
RowBox[{"5", "+",
SqrtBox["5"]}], ")"}]}]], " ",
RowBox[{"(",
RowBox[{"#2", "-",
RowBox[{"2", " ", "#3"}]}], ")"}]}]}], "\[GreaterEqual]", "0"}]}],
"&"}]], "Output",
CellLabel->"Out[1]=",ExpressionUUID->"51d12af3-011d-42ad-9d06-8192945ec7b2"]
}, Closed]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"bounds", "=",
RowBox[{"RegionBounds", "[",
RowBox[{"ImplicitRegion", "[",
RowBox[{
RowBox[{
RowBox[{"N", "[",
RowBox[{"PolyhedronData", "[",
RowBox[{
"\"\\"", ",",
"\"\\""}], "]"}], "]"}], "[",
RowBox[{"x", ",", "y", ",", "z"}], "]"}], ",",
RowBox[{"{",
RowBox[{"x", ",", "y", ",", "z"}], "}"}]}], "]"}], "]"}]}]], "Input",
CellLabel->"In[5]:=",ExpressionUUID->"fa9d3cb9-17ac-4b97-89aa-27a17417ec6a"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"-", "2.118033988749895`"}], ",", "2.118033988749895`"}], "}"}],
",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "2.227032728823214`"}], ",", "2.227032728823214`"}], "}"}],
",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "2.06457288070676`"}], ",", "2.06457288070676`"}], "}"}]}],
"}"}]], "Output",
CellLabel->"Out[5]=",ExpressionUUID->"4ab19259-1321-4781-b3c8-22532d077a43"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"ranges", "=",
RowBox[{"Flatten", "/@",
RowBox[{"Transpose", "[",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"x", ",", "y", ",", "z"}], "}"}], ",", "bounds"}], "}"}],
"]"}]}]}]], "Input",
CellLabel->"In[7]:=",ExpressionUUID->"adecf4da-07ea-4faa-bd12-888f23b1b35c"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"x", ",",
RowBox[{"-", "2.118033988749895`"}], ",", "2.118033988749895`"}], "}"}],
",",
RowBox[{"{",
RowBox[{"y", ",",
RowBox[{"-", "2.227032728823214`"}], ",", "2.227032728823214`"}], "}"}],
",",
RowBox[{"{",
RowBox[{"z", ",",
RowBox[{"-", "2.06457288070676`"}], ",", "2.06457288070676`"}], "}"}]}],
"}"}]], "Output",
CellLabel->"Out[7]=",ExpressionUUID->"b018a4b9-474e-44d1-ac67-d77d17070745"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"RegionPlot3D", "[",
RowBox[{
RowBox[{"Evaluate", "[",
RowBox[{
RowBox[{"N", "[",
RowBox[{"PolyhedronData", "[",
RowBox[{
"\"\\"", ",",
"\"\\""}], "]"}], "]"}], "[",
RowBox[{"x", ",", "y", ",", "z"}], "]"}], "]"}], ",",
RowBox[{"Evaluate", "[",
RowBox[{"Sequence", "@@", "ranges"}], "]"}], ",",
RowBox[{"BoxRatios", "\[Rule]", "Automatic"}], ",",
RowBox[{"PlotPoints", "\[Rule]", "40"}]}], "]"}]], "Input",
CellLabel->"In[15]:=",ExpressionUUID->"6f0d782e-e9d2-4555-af0e-fb98afd25977"],
Cell[BoxData[
Graphics3DBox[{GraphicsComplex3DBox[CompressedData["
1:eJyMnXd0V0XYrSO9Sq8iINKkSxMQmB9FQER6ky4iAgLSOwERkQ5SBZEmvYmA
dDiR3qT3GkoIhBCSENITLvee2e+57Plmre8v13rWXu/MmTln5t3bJHzQ/YeW
36bw8/Pzr+7nl/LNf1d/s6PY5zn8AtK+mLK06WdPnMJVMvRdH37emfHLvPD0
Bf0Cok7s2dno32Dh0IPfqRr5Qc8lF4XfGfH+l8s6hzjtb6z+MbnVESehSO82
Yz739ODQh3YOHOx3NsQJ+ODOpnX5NzrNjgS3LT7U04Nb9Opg1/37fltu6BXr
u7njqh8G7v1VrfD04KzXz6vGjinx76quxjooXod67XYvCB55RXia8dWuBJd9
7MwbW2dhq13XnBrRUwr1qu0XEN2/6Zbt+R4Jhx58Zvjt3xb+cNeZuTDdB9n7
eBzrn1jxzs8T53sc69nicsdfyv3rcayb80OF0OWhBlet40//ty/CL6Dnqb8n
9n8ZJOsADn3le4uPZt211eDQj5v+e8SmjcY8DX34x4MK/Tr9pKzPnnll9y6O
CHJ+c9dBjR3yfN3y6p4enNfn6rCMC58m3xDesW+2EQ2S7ju1016PbrXygTPy
5IanrSr5BcTmfLi64KBA4dCDZ6j5UedaRYKEfxy9qvjCXI+cdMdGHEoae9f5
r89Hz5K6eHrwT9MkNxsw1ePYx1lrx7TIv9Pj2K+kui12Tr/vcewX1mffzqkl
/jt0X/YLHPrxabPm/mf+QYOz/ldfwavv33po7C/pDc77Pr9PSLt/9wYa+0jP
pcZN/PrGup89jv1i/a4+Pwb99vkF2a8DM6aX/XSYrKca23f77CU5jHVWvF/f
Leiy8NlPHk93NGHOs5P3nBEbB2dan/qxk7F243+etnrzPQ59USPH/BvC5TvV
/HHwp+Vbzw12Rt4omL/TOI/jPTk76o/30mz0OPa9Vu5B40dc9Tj2Hc97avQX
XUsXvyX7Dg79N1PiejYfdcngrB8ya9D+M23vGe8J9DbO7wNxxZz3neajxs27
kv7vCx7n/QX/curloMVnr3jn5Nvrpnj9cw+ZG/3HT/dV5qYHgyKWvdnff/OW
evrZRWO/wPuevZ8psOdTZ/TTOY17nPY49gvzKTD1xx/2H7so+yXvodbnqPfo
zo9f3jM46wv0Kppi6qurxv5Cb+O8j+C8X+DG9/42V8x5v2hc4RWOz1lw2P+q
+T1qPTjObVoHQ39/fYnHS1rdlH0cn/lanV2vrjg+d/3l3IYenPcxMOWB6ILH
Hgrvf/5o/q21LjrbmmUpktzrqZy34e9NrOj//Khw6MEjd/wS8n2NZ07J9pNH
Hnrmcbw/mP+t0B1Fq5b5z3hPoO/u/92Gr2YHGdym5/cEnN8HcH4fwPl9AOf3
gbhizu8DjWtwfh++GbQiPl3W48a+0/PKOQ+O/WX9soQXnz6/6n3vqV9/1CI8
SfZFznnaL8X7u27u4+hl6R7Le+V3vkO9dTU3G+8DeMsmUR+cnB7i4H0G5/cB
vPv7XywdEf7Q4Lzv4Lzv4Lzv4Lzv4Lzv4LzvxBVz3nca1+C87/Rccs6D8/6C
L5nxwdKYzfflnKd1VrwvU/ef+qBR4ycez/V/73Gfwj5SHcXnP/hkt46sT4Xv
rvy4qeQEhf2i+SvLPqrF7vwNbtlfZdlfZdlfZdlfZdlfZdlfZdlfZdlfZdlf
xd+1Xjfb/ipw+o6wL4a+h/sd8f46O9z95e9XgfP+tna/Xz4fjPcBXJ8PDp1L
xr6D63PJ4Jbz3Nh3cMt5buw7uOU8N/Yd3HKeG/sOzvtOz2Vw7C/dm8b+guv7
UdG9bOwjeJR7L/P5L/tIfYIyfJnmd90+QdZN31OyX9S3GPsIfs/tWwxu6d+M
/QW39G/G/hLnPsrYXxrX4Jb+zdhf3efI/lKfrPh7B9f9MPfhis9z3acZ+w59
f7c/F+7v9oeyvzjnw93+X/ZL3h/Nc7q+QNaznNvHyn7hnIfe+E41/8L1IwY3
vl/Nje9Xc+P7fZsr5sb3+/a4wvO6/kL2F74SeuO71ryH6x+Fa78j7wN8K62z
gs8Fx/sAvwxu9GOaa7/MPt3YR3Dt0x3KB8zvTnOdDxjc+B41N75HzS35ibFf
2l/LflE+Y36nmk91cxjhx1y/L/tL+Y9wyotkfylf8vbr7fxKsZ/SuYexX9Dr
XIvzFtkvnMNRbp6mOIcEv+zmbLKeOheSfcE5DL2Re2ge4uZ+Bud9nOXmV4pz
S+iNfEPzim4+KXyPm6fJviMXpToKOSo49h25Kz2XQn4LzvlkeTc/VEbuofU6
1xX+lZtbGvurc1HZF8qflSWHV3Xc/FnWQee6ss6Uewun/FxZcnhZN8rzZd3o
/xcozsl1Hm6sG/T33P+PIDzEzeGN5wXn/48Azv+/gLjU1/+fQnH+r/8/iMw/
dFH1hE29k51fXhbvWnXhC/F9J06s2zRjcbITPmb28UFZPQ49+K3vuyV3mXvH
4Tp4Lq4Dzno8L+vBWY91YD24Ra8semMdsG6sB7c8r6G3rTPeE9aD8zr/V+9F
w6obbgj3/+NVz3F/hYqv31s74mnQ0mQnskgx506vZ8KhBz82Z3WNRtsfCW9V
Ykqu88fDJAdYMHTx9lOvPD147d0Ldxb88rVwvA/5X/jGp1zlcdnfcz1ONw3z
uOwjcdmv/5kr5rL+xLHOsesyzC5cz+O8nuCdv6nbqFr5u8LHllv1R97fQiRX
yVngdsOV95Id/P8vcOjBZ/ctmHbxgGBnf5cbjaOrvhaO9V8wf0LOWzM8Lut5
fVye8kEex3rGn4gMr3DL4zz/wIMDCgwpKfuiYn9b0DVvTDLXVzzPOR1SN6v/
1X2Vs+aRdduGv3bw/5v4ucBT7E2/N7n+Uyd8UL9BC896ejzXfx3+2fsqu/f/
rfBcsbv9A0rO8vQ8n0e7zs3KuTlIfHrs5CLls270xgXn+XQIKdfs6O8PhX+V
r2Fi1gsPJTfDe4v/nwIOPfjk5X8tnJr3mZOx3NWJ99N6//8F64D3B5znA/7h
qPbNGtwNEp63dvvxj3PddEJfbvik1ZlQJ/dfAw4+GPxm/fX/FwCXfdE86y9t
huYODfXeE80xf3kfNOf5PN5aLuU/H8v8vffh7f9PpHjcNH/WHBVW6InKe659
oZcZ3zyvzrF5nuDjLvtKjg4Ik30Hxzyx7/T/O2Tci63ee76h7xXJT7Dv0IPz
uGcr9hz1Q/cQ4b+XqDl6S5aTTo4mfxa/nCfcWZyufKmMU9+ckzpfBZfzU/OJ
nV9OSNk4XM4rcDwv9h2c5wO+8NCsUeGrQmX+yAN5XPCVB85enD4vXNYHHONi
f8F53PXTtq299uwI9LK/VEfxuKOeDV792+Mw4bNT5dvcK/94mSfVUbzvko+5
dXieived6vC4Kqc7Lq+bcB5Xrxuvg7Lsl+LvHVzvF++7zJPeH2M+4JPc94ff
W2Nc8DPue8vfheRF9B1J/kDfo7Ge+v035gn9j+53Kvy8+915+6X3nXyxt26a
p3LPB9l3cL7XwDF/nHvgPH9wfe7xOaYs57DifgZcn8N8not/pHtB8feV0z23
jXmKL3bvC9l3+B2ej/g+956SfQeXn7vQ+05c4Z4FxzmP+xqcz9V27j1oPBf0
qdx7XPgD9/6V+VP/IPOk/kHNdvsH7k/Ex1E/Iz6I+h95XuqXvOd9u+8ynlfm
4/Zdwu+6fZHMX84Ht99Thn/RXPeB0n+Ccx8Lzn0sOPexxBVz9LFyLr09rkK/
DS7rqd9ncKwn+n9w7hNGu/2tsZ7Qa1/AfsRcN81Pun6E/Zey+D5l8XfK4uOU
xa8piy9TFv+luH/WfkdxXwq99rPCx7g+y1hP7eOM9QG3+Fxl8bPK4luVxZ8q
iw+1+XpZh5l9M2w8vinRyT0vrHliikjpe28eH94lME+SM/xZUnDKThHCoQcv
3r7Bjt1Ng4UX3TW/4r/lI8UXrPo3dMaZBl4dcNbjO2U9OOuxzqwHZz3Wn/Xg
rMe+sB6c9dgv1oNb9MqiV6zH/rJecrz/+XkNPTjr8T6wnt8T2i91sH7FYW3L
G/ul+D2JWrt/zOHy99XN4K5O+F9JkmPwewW+qXbor/WLPHV2F0w/5UoaL/fA
+zOvzbaWezt7HO9JQI/813oeT2Iu8wl7J+Hv9yqEi286WPngZ00feuOC83yu
nl++9vuBD4WPaVz62ec/hYnf6fRB1VPpyiVJngAOveQS06/VXx8d4mRPfPn4
14Ze/oB1ODQxRbXhXY28RQW0XrOmy2ivPs8TfGm3U2tDtwepLnUKls53LEn8
Ps8HfM2gsUWqnAp1AobMTPtDDi8f4Pr3Eltfu/ZI8hDZd8pDFNfvFf5ybb/o
YOHlm2ctX+ZAsPidwFFRVT6unyS+Hhx68DJffej37x9hsu/geC7sO+UYMu7D
V9sbj+gdJH4K+w49OI/bON/1i7mqhQjP+On2GUWjA8U3ddtxyvf5oUTJAcCh
B2/a6pcb2auHO4GLby+ocztJOJ4X+075g+w7OM8TPPv6dy4tGBWqul/etuKr
Dkni63k+8vOcDTqcuF4kwtt3zbn+qTvFxnx8+574Stn3t3MMxfVvVyt9Kc+B
MOGjfqzwZ+Zul50KBQf+7X8ywnmQecqmgdcTxdeDy3NpfrV62V1LM0U63aMW
p+gTmSQcz4V9p7xCxj1/7mH3QUGXHfgj7Dv04Dzu3a1pX3cdF64elR2YecKA
JPH7PE/w/GX91vSIjpR9pDxB9hGcxwU/NKLAuOXLI4Sf6HTjx7iG+5wm4bVr
fjT6pYP5w9eDQw9+8dLQ1wsCX8r6gGP+2Hdwns/qn+rN7XnnMPSy71RH8bjr
fB+/Dvw3UnivQ6ni94+f7c3/7TqK1xNc1+F5Kt53qsPjqqbuuIrWTTiPq9eN
10HmSfuo+PsC1/vI74PkFfReGfPX+27ME3r9vvH7bMxHfs7EfZ/5e5H50Pcl
eQJ9p8Y8wfV3yt+dzAf7TjmAt26a33TPDdl3cJzzON/k5yjovdXnjDFP+TkK
99zj803mQ+et4nsTXJ+3fG5LXkHnvOQJdF8Y8wdv7t4Xsr/w78Y9rnkj956S
/aV8QO5NcJzzuH/B+fzU950xT+jLufey8PvuPSvzpD5Bcb8H3tPtE7gPkVyC
+hnF95TuK4z5Q6/7HOF33H5G5iPftfa/7FPAdX/lfddv+27p68Bxj6M/BOf5
i993+0PuS835aH7Z7Uu575X5UJ8sPpf6avGz1J8r7qN032vOX+u3uH0799sy
f7wPw1xfoNjfgUe6fkH8FDj7PnD2d+Ds48DZrxFXzNl/0bgGZz9Fz2twWX/t
u8F5/cG172ZfZqwnuMUXK4v/VRafqyx+Vll8q7L4U2XxoUYuQc9lcPYpOseQ
daugbnV48CLe2ba1XdvvG7wUnzVm6uU7ke8mOMN+q9T3bHmPQw/efOoHDXM2
9XjlXn77CraMEh86Zm+FHzK+9OqAQx/5TvWSneZFiT9lPTjrsV+sB2c99pH1
4KzH/rIenPXYd9aDW/TKolesx3vCenDL8xp6cNbjvWI9uGW/DD046/Ee7o16
/lPZ7Z4enN+r/A1r+s2dEiT8xLPMr+vWiBQ/2/7+t+meJCVIfgIOPXi2prev
/Vwt1Nmf8+qjWl94eQuP67ewwDeTT0u+p/Y+Gtmq2HcJnO8prv/o6rd+Oc8E
C79b/Mja/OUixLfezF8zh9+YBMlJwKEHP1T/i833Roc5Hd5p2jt2vper4Ln2
puq+o8rrBM6FZNwJOc4suZ45XPzp7supP3z/PU8PzuNu6TnLb/67IcJT/XLj
64brn4l/7NA6e8G88fGSn4DL/mq+av6Io/+UCHdu1ig6JGtOL2/B8+4v2jhX
g4WJnOfI+wDO8wSfOWtw6VrNQ1WnIfH+JeckSH7C8wHvUjOs4JNsEc7tDpmu
FP7/8haZj34fwHnctIVjNrVYHiL+FO8D1VE8bvtCf5Q+OCdM+P2BYwLUg0fi
K+9uPj/FlzVB8hNw6MFXlv8385aECKfLvAf3qpXy8hY8L94HyoVk3Iz52haO
LBokvhXvA/TgPO6cdg/nL+sTrgL/2x3SfF2C5Cc8T/BHReYlDg6KlP2l3Eb2
F5zHBffr22bj4GkRwkfsqV17QNXb4otL5XhY7nrxBMlPwGX9NS+Z+7tn1c+9
dAKfL//ia5+Xt2D+su+a83zyF+1Tolire+LfZd/frqN43MeV+pTesSlSdS8x
vO3IgwmSk/A85fcf99+u33dPlOwj5TxSv3Duku/27HTZgc/FPkIPzvXPJPhv
jPrP43umZJveu/V/Tp9DmY5fKvPK2dJ3xWK/WgmSq4DL+aB50a1/Var45yun
e8Ouu6a09XIYPBf2nfIf2Xdwnid4jawRASfCotSj8VUOrbicIDkJzwe8558T
isROj5Z9BOf6n2c98/TL04dQR/aR6iuuX/B66jrps0azXlnmo7Se56OwPvRc
yjKu0s/F85dxaT0Vv1fgej15XySfoX2U/ITeB2Oe4Pp94PfQmA/4Kfc95Pfc
m8/b34vifdTvrTEf6PV3xN+LzAf7iHyDzzHwR+73K/sIjvMW5wnVUTiXwI33
XPNS7rnE54zMh85JxfcauD4n+byVfIbObcXnyTD3XDXmCb0+z2V/kWMY96zm
s937QvaXchK5v8Bx3uIeBDfOVc31PSg8vXuvyXzoXlbcX4G3de9lvvclh6E+
QXIS6jcU3xf33PvdnL/W6z5EeGq3r5B5ynet8w3uY8F1/+N912/nJ9J3gWP+
6N/Aef7ga9z+jftGcz6ab3L7Ru5LZT7Ux0oeQv2w4r4lhdt/mvPU+iNun8x9
r8wT7wPlA55v1fyB27fL+wAOfwp/Ac794W23zzfmD732HewvZD7kgxT7YnDt
g9hXKotfVhZfrCz+V1l8rrL4WWXxrcriT5XFhyqL31QWXyk5BuUSRo6hfaKx
X9DrvMJ7r1x/aqw/OOcP4JwzgHOeAM65ATjnA8SNebLfp3ENzv6dnkt4RTe3
UeyLdS4k63wx26YMSRXjnNbq09ITYqMlb+m1vEdsvi/inCGRS4d8c83j0IPf
mZGp070P7jhcB+vGdcBZj/VkPTjrsc6sB7folUVvrAP2hfXgluc19OCsxz6y
Hpz12F/Wg0Of6krteWVCoyUPYT0472PW9nfXP2/5UPj5ib0DZsx/Jfne1m4p
3w9LiHOGfdY7/LeUHoce/Nifo3tPHvVI+N7Pt+fZuULm6UxfWzjPraXxordx
vG/M8f4wx3vCHO+DhSvm2F/LuAbHflmey+C8/mXytGp4/edoyU/Gb006NfgT
T8/f6aDc1YqtrvFK8o3x41dU79jKW39w3pdSX77z1aePPN4j3fBU28a+lDyq
YL98B3MtjZO8DlzqaL7UL6LoBz1ChD9yCvX+dkqU5MkTzgeVnngunnNmNWH5
lMXfP/PqGPPUPMOwoJ8eFgsVPt3/YZuvv43wfv6h361iZ1Wc5HXg0INXeHCl
w+clPD6iXtnNUwZGSl70ZEGIf/6/vdwPfELAwITRP3mc5zlv3fMvP1svddT4
2bn6fLMsjusons/F1Fkm9ugVJjzln93+GjHvheQYq77qu9y/UZzkeODQg/ct
1qbHgZAIp6jPP3pYdy/3wzrg/aF8UsYt17hGltLXXkhOgvcHenAe92zjAocG
tQlXa0a2fmdWYJzkeDxP8K15S7b66XKkvA+UH8r7AM7jyu/xdZ15rcGwCOE7
1332ssPZJ5JXFN9eKtPaLnGS14FDDx6ZMaHO5wdfOmsW1ey+bISX72H+2Hdw
nk+FeosmnO4YInkI9p3qKB63aIk/2/2yMFKVvJS9367oOMnleJ7gVV//VyHL
uijZR8oVpX7lmrGvvg98JDkJ9hF6cK6f7sWua8d3e3zu3CctWqV9IPnMukxP
h58bEic5Hjj04GGr602tM+eVU/Jl/H/HZ3q5H54L+055o+y7/JwYzVN+Hixl
qee/34hSG8pcuH4vk5fL8XzAKy7KPTLtmGhvHzXn+v37bLmY99RdyYtkH9+u
r7h+l9O1+92O9/jtxNxfLxx/1Zk072YL/7vRTpmeax/GTI2TvA5cnkvzYdOf
fvfftzHOpiZ7qoev8vI9PBf2nbh3X3fqu+erS5dQX/adxlU8rm9uq+cFCsSo
MpNm1U/3oZfX8TzBy1Xq+u/rZrGyj5Qryj5SHcV1tq09miKiZqzwsVkPXdj1
5F9nVc91t0vOjnW2ON82K7wiTvI6cOjl71zdmvxF+iexTrk1w1fn3efle5g/
9p24jPtsSWtflT0yruw7jass47JeWeap5u2ZNT3LzViej8I8af7gitZBWeaD
+vxcMh/aF2XZX6X3hfdX8kl6TxSvp95HY57Q6/eH309jPvJ3bNz3k99/mQ99
L5If0ndnzBNcf3deH+V+RzIf7C/yPT5nwPU5IPsLjnMP5xXVkXFvuueGMU/o
9TkmvK97Xsl86PxUfI/Iz2W55yefw5JP0rkt+SGd/8b8wfX5L/uLfM+4fzVP
4947sr+UEzq4H8H53P7VvaeM+UBfzb03hVd070eZD93XivsWcH1fcz8g+ST1
D5ITUh9izB88yu1DuK+Q+cj3q3M87m/l57Xcvsj7ft/OCR30aeDcP+xw+yhj
ntDr/o37Q3M+mp9x+0PuP2U+1K9KHkh9rzFPcN33ch8r88H+Iq/DuOIvNNd9
uOwvOPwOfAHVUfAd4Nwf6n7emD/0FV0/wj5C5kn+SFn8l9L+iH2W5JDk4xT7
F+2DFPsC6Je7/o79l2K/MMT1lcY8wUu6flPeB3DME74YHHkCc84HwDkfAOd8
AJzzAXDOB4gr5pwP0LgG53yAnkshVwHnfOCB66+NvA76E27ewr7e2PcBbm5g
7JfOH2RfKC9SnPOAv+vmRYYe+8XckisqS06oLHmgsuR+ypLvKUuOpyx5neL8
TedXinM26O+5+afws25uZuyjzuWM9dT5nqwbc85dwS05qrLkpcqSiypL/qks
Oaey5JmybkMejdmbZ1iMc/39oz9eD4/1/k5O5q9/f3Qlxhmy7HJs2Y0ehx78
XEDA8uOjbggvMvVu4fc7x0nuV3fRuhvtYzw9OOuxDqwHZz3Wh/XgFr2y6BXr
sZ6sB7c8r6EHh755v3GV6ifGSg657Z+KGycHeXreF/BmhXambZnzjvC+Ky4e
TbweLbnu5HzDa2YaESP5MLjUQZ584Mq0xDUeD20/utTWRzGS6z6qWrHT0ze+
jfJq0Y/4a+7jF/NjJS8FXx6xdtHv5WMlLwU/UWl/k4YnYyRXTC7ZdO3mQ159
cJ5n4rpFJ077PxE+4fbk/pfPSL7qtKzXKCnrtFjOXWWe4Hnzf9Fw/uwnwlcW
86u2bGy05ITgT4oG5epb8ZXkXU/2HRi9ZKdXB5zrfxOxpP/shs+Fb2j5yvlp
x0vv9+aadVlarWys5KXgUkfz8GEBKcqNChO+II/KsykgSnJd/wFl07dKG8d1
ZNxSRU+9rBb8UnKwMb4Lw2t86I0LzuMO6r250MG0EcJrX02Rat2SCMnZejQv
nCbibIyX02oOvfze8R8HTjarGCm81O9NOp5fFyk555hue6433hcrep7PvONd
Sw//JVJypzEVOjeseM0YV/G43fPf/qnDhEjhrbPt2TRudrjkWkUHd2g8qVys
5KLg0IP7vfr6l4ILo5wxzT9bV/eHWM51pX7ZyQVPzZz7QnKqUYWf5i41zasD
zvUbPAhP+fufHv/nyBnf9D2hkiP13z1xZubNMZKjgkMP3uBJ5WGPxr9yis6t
u3HBsVjheC68J5T3yvsAzvMEL7Mh9cRbR6LUmjN5d26pHyu5KM8HPHHmhnO5
v4+W/QXn+uV/HFurfN4QyaOwv1Rfcf3FB4cv+ivI4/j3cZADRGarF1/lcIzk
peDQy9/pmjD24O3WMc6aUL88zu1Y4Xgu7DtxGbfSqNtbzy2R+rLvNK7icf0n
Tc8XniZGlSx+7YNrHWIlL+V5gk8c2nzzytqxso+U68o+Uh3FdXo0XbGoQslY
4ZP7rD/2X/u7ktcN+f6dnl1uxEheKhzrr3nklKFfJ92LdUo2cCYER8YKx/xl
39/m3j31eFijwLoyrrfvb4+rLOOqDePmz3g9IFZyUZ4n+MFxbfNNahon+0h6
ZdGrTcvGhmVJ7+WfXB985tBPLrx7IE72hfTKoheOfPLxrqEFS5eOdyyc9Sow
vHXciXtxrAdXNB9lmb+6nPbTXP0mxTn0vMoyf+gVradRX37OsOAHH2crG+fQ
fhn1SS/vA/I0Y/6aH6yS9st/LsXK+waO9xDvJ3GF95zqK0t94X3c91bmQ9+d
sny/Sn93/P1KHkjngOLvZZL7nZrrpvX6fJDzB3kazwdcnz/yXYBjPjgPiSuc
q1RfcX19rgr/2D0nZT50zivLPaL0Oc/3iOSBdB8pPp/x93WNeWq9vqf4PpL5
YH+Rpxl9gual3PvROwfezuvkXgbHPYj7HZznD67vd+4rzPloXt/tK7hv8ebz
dv+j+F7e7vYh5ny0PoXbF3H/I/PB/iI34/5Qfj/R7dNkf8HRH6LPpDoybku3
rzPmD30Ht//kflLmQ/2wjEv9sNL9MPfbytLPK6MPd/teZem3VaTb53O/bTyv
7udlnvAjyJHYR4B3d/2I+CPK8bz1cf2FYh8EfX7XN7GvMZ73seubjPlonyX5
Ffk+xX4NPN71fexDJc8hn6vYb453faLxvNDXdf0v+1NjPtrPKvbR2v9K/kP+
XVlyEvWl6985r1CWnERZ8hBlyT2UJd9QlhxDciHKeYxcSOcDiv0+9Jfc/Idz
CWNfdO5hrI/OT5QlF1KW/EdZch5lyXOUJbdRnM/oHEzWIfeuL/tU3PPKiYq4
+ixeJUh+1XLSbz+W/DPaGdQkw9hY/3jh0IO/KBZSI/nCFeETjgd+WO/fBMm1
uA446/G8rAeHfsjhjYW2DhK9sujluZakDrjYMVOC5FoZ2uwuvGy0pweH/kjD
yz+nXSPPq7Z899Wcm2GveB0Ur8O4mX/tOzHhkvDJQx+VL1QyTvKl/S9Wj077
bbTkXeDyXJrvvVp+y4BLgd461yj3S8PK8ZJPgodOeVJtu4p3eB/XHewY9/S6
jKvanrhU4Ej7GB5X9Bf9BmyaPyhOcq34m0Nmvj7tzRMc+vi6E7vWyRQnudbV
+/8eO13b04Pzc6WL7dOjfKpg4dueNf/xbBbJzZxSifsKlE8bzbmZtz6az660
unf6Ax5funXx9ej3YiUPBK9dt3etd/+NkRzsyOWnB57Fe/Xl76NS/UG+/hmi
zjwTXqHyugLvpYqWnCqq2Iw7lfJ7+Rg49OB9ZucvtnJNqPee12n63q2h0ZJr
gZ/wVYpbW+qV5EV431AHnOv3P1Kt/e3GHu+0IWf/U89eSh7VveKf/h33R0sO
Bi51NF8Z3XDA+40ihDf6ocvRyJgo7+9ma7684vBHr+++9H7uq2nZ5tM2ePXB
jfq9amys/Vek8PCyRbaFXYqQPCdNpW8f5+gSLXkXOPTgE9qvrta2VpTwm5Hf
p88TKHma8Ecfdzp0Zm6k5DP1M7V5MfmlVx+c63f7atHcyjleCc/wTdfQYiNe
SA4Q+vfUa6kSXkneBS7PhZ9vTNNtQZGKMcLT9L7e4djxcMlh+v62pGxSTi83
A4e+1Md1li96sx/oV+smBh4cvzaa9TLPNhsDlqVrJvNRvjMTy/Y6bMxT8Tz3
jzz62eGIaBV2YVC1XHOjJR/j55I87ftHKbe96QtHZR36+ANl5HiqbmjfmSM6
GnUU11le5+bRlDlihX/7uNrFZXefSi4xIOPn9cpmi5Z8DFzuKfxcZbXuwyOu
ven7IzosKlbay9Mwf+w7cRm33apCOdZfknFV3duxnQdkMcZVlnHVgNIfr6q1
PlpyMJ4neP5y9cqPahDnYB9Jryx6NeiLfKmb1vHyLq4P/uTDosEp/omTfSG9
sui958Lfse/ZvXKhD+MdCxd9YKpJQ9PNuuYEVBv23aU68U5kj7R/tSkRLbkT
uIyr+bud6oWu/dXjVEdZ6ihLHVV85O9Xow9GSx7F44LfbFF0VQW/BMeiV6y/
7epVyUU/fZK2nZdfcX3wI51/vTewdoJj0SuLXk0t+2+hDOeiJe+y1Fe7hwxP
yBUU71j0XF/tdfVqauYbB+OqyvMa9cG3TuucZ++0N/X/Zz2vD/TC774aevmT
1BeM+sjBVq6sV6lLRY+TnvcXem9c/Dtlez5qluJGnGPhit5/Zfle1PTzWb5f
My7Ooe9LWb4X6OUcRi5knEuajw9+Nalx8TgH5wPplUXP549ZX/NhybdWhp2J
5fNN8ig6DyUvonPVnM/b9fmclPngnEeeY9yDmutzXs4lyoUc3DtUh+8FY56S
O7n3Ed935nw01/edQ/epstzLkhfRvW/MU36uzL33+V425lPSvd9lXOwjch7u
fyRfcvsT6ZfAuZ9J5fYbivsE6HUfxX2O8Vy6j/J+fvLtfk9x3yU/r+X2e9x/
Ku5jdf+mLH2j0n0p943G8+q+VOaD/hk5D/e94H3d/ln6eXD2BQ3cflhx3w69
7vO5Dzee95jb5xvz0b5A8iXyKYr9Bbj2KeybFPsv7V+M54J+juunhGvfJOOS
v1OGL9Nc+zuH/KPkS+RDlcUXK/an2t8p9qHQa7/MvtJYB+1bjflr/6vYP2of
rdina98tOQ/lA8qSk6ixbj7gUP6gLDmJsuQhypJ7SP7D3Mgr3DzByH+gj3Dz
HM4xjH3ROYnxvDpvUZzz6NxGcZ6j8x/FuQ045zM6p5Ln2j2lYP4vE186s9/1
RfT+KVFyquJLUsYn1Y5y3mztO4dbehx68Pvtl457XOqi8CVDsi059GGS5FRl
xt3u/l2zV6IHh95/dtdxye8lSU7VLarWgn+yeXpw6NdcHFxxwz/CVc2EqWd/
nBjFesXz7J7Q4p7/g8PCV30evajO8ATJhcKPXt6boqWXR4FLHc1/zT4lOk/y
HeFnc04OatMsUXIw8Oi2S35756nkgcILLtr6xeYJCZI7Te6/5tSar71xwaFv
cOtIcvsCCZI7lfuxYc0Hl6NEL38PU+v7v3/j71Q74yV3ujz3yeb3G3l6cH6u
Xpfmz1s85JHwGv+lvPtt1zjJhbpcDOlYKipK8ihw6MEzfPl62tinj4Tvnrip
br7vZZ7CF3R93mNrs3jJu8Bvd7lYd2yqOMmXlszofCf9cG9c+ftpNO7EWWpN
u5YhwrvXG1A+V8MYyZfO3vVLarEgSnIqcKmj+YP1QxrmvhQivGm6vZNqtZJc
TviO5rnLXdkd4/197CEf/763opeDgXP90Gt1mxR474Xw2GNjB1cv/0rypZrP
ci8dWS1Kcipw6MG7pBz6Y7suHn8w7fiprz+VcZ3f0l080Hb9K/75NNHHNkvI
uLJftPf3xzSv3Szwaf8irySP2pB2xQ/ri3vzAef5lMz64cjwCI9nSlG5QLYP
oyRfqpF+XrEsX7zivMt7Ls1P/F3+3oetXgqf0PTo8U+vvZTc6bf4Ez1PPogS
vfzdLarTaUfRMy3bRglf/nOdblUyRnq/F5lrw7Gqz6MkvwKHHrxyt5Ca4Q2j
hReuFXLkSe6XkrOBH/lyw+p006W+2n9/SdFRS19xfcX1Z7cvXuifvdHCF8R0
/OZk0AvJK/IWCfiuy6woyZ3AoQdf87jpjKBzHt8ZEJMu8+twyXNkHVTY7G6+
CMlzwI+NXXOnQ4jUV+uGZIrrNccYV1nGVX2fdXtQYKSXU/E8wetezJoUvSnO
8e3PmtR1uKFXFr1w+bmvnM0a53gv3rFw0fdq+vTdtaMeS/4QmqrZ9KJdoyQv
ApdzW/NeGSqkWDLF41RHWeooSx0VVvST55VjoiRH4nHBq/pl21s0Nt6x6BXr
q7l6FV6/UNPPZnm5E9cHTxUdMXBzzwTHolcWvTeuzpG6VKvgnLyc4Fi46B80
/6vHXXXeuZOhfuTYl2/u20+udxnQJ0ryInB5rzQvVS7b8Jb1Eh2uc9fVK64D
znXKuHXUxeyV6nT7OUpyJB5X/h2B+W2blK6f6LCe64PndvXC68/ye3J/wFpl
qa/SbarZ61yIx6G31FcZXD0/l0o8VGTi4F+NdQNXk5+Hd3661MuFjPdN8/Ab
6ZbnqZbgWPS879Cr5jc6VW2U1suRuL78e/ThYfv23Y13LHrF+ieuXjXfM+TK
Jz/I+2/OX/Obaa9c6/rzm/r/s56/F+iFZy1T6Mblyg+N+siXzhbc9zJlGY+T
Xln0fF6pQ1VWZFl3MY7PK3CF8xD5jHHOa763yS+lm4yMc3Dekl5Z9Hyem/U1
D780/EzrW8a9Y9Z/W8/3iFF/qXvvSJ6D+xG5Ct+/4Pp+lPua9DLuDve+U3yv
Qa/vcb5njefS97jMh/oNxfc+uO43uM9R3C/p/kFZ+hZ1yu1/uG8xnlf3Rd7v
Kes+DbkK91fye3xunyb9If28kEL/Cc79YQa3rzOeS36fzu1Lhdd0+0ljPrr/
9P49lLf7Z8X9KniI2z9zP6/YF+h+WFn6cKX7fO++dvtw43l1ny/zIT+iDB+h
+QTXj7BvUuy/tL9Q7IOg136KfY3xvNo3GfPRPktyG/KDin0ceE/XDzrkNyXP
Id+qLD5asZ/VflCxb4Ve+2v2oca6aZ9rzF/7ZcV+U/tuxb5e+3TF+Yb29ZLD
UM6gOJcA7+DmDJxjSD5DeYjkM5S3GPmMziuM9YRe5zDCdU5izFPnLYpzEp3b
KM4xdC4k8+nQ6cXJ71SkU7dn12Vb9yZKTnLCv9HNwmcjJW8Bhx78p89qferX
7qZwv9R38xfckST5EnOsP3M8l4XLPPt8HBFyZE6S5DOBmcv4DsR4uRA49HMG
p146oIzMR00q/N/fsX1ecg4m+r3/5GtR4Fii5DbdSuQPOXLHe15w6B/ElE11
omui5DZpauzr6NfC04PzuvnlLnZnY7t73nPdPh3edWW85DBVp3UZ3WhApOQ5
4FJH88Wvc9zIm+uh8LYrcjWavEXyJWfeuny/F7v/kvMl0S8vs+JIcmyC5Ejg
J/r/M3zDnATJczYtrvL46V6vDjjPZ87drHX3XXsiPKToh9M3LZCfj3L8/ilf
88ufXvLPR8l8wAd1mjLv7+QnwjP1X9xmeMN4yYvA8fuVuBd+K7t67/UtXh35
u6xUP7Z4zifjlj8XnvP3WXc6+kv+4wz497M7Q4q95PzHm6fmFQvXL/bh0zDv
ve12o/LEqbGSR4HP69sjW7a/YySfwXuIOuBcf9uujA1XVo4QvqHgHx+M7ym5
jZP9UNrPyh6P5DxHxgWfeLBTeOfekcJLXv1sUqVB0d6/O6D59e8/f3Hn22jJ
hcC3dZ5xs0r+V5LPDNhec1JwF68+OI/7uGPmxakWefzivPSDyzd96f09pbPv
P279Zl7IecCljuaRffM0LdXF4we/anWqXYcoyW3uPrueuuJNLy8Chz6606Dd
Kc5JfTVvcdb6v+V/yeMqHjevX5bnPZM83vJOt3fH1I2UHKZJbNiar8Z4+Q84
9OBd3ru4MbplrPAandotOPdTpJfb/Pjonc+vGnUU12myKqvv5NexwuXnmrbk
3rRpYJzU75U3z65WVSMktwEf37HmkCXVhNvqCK8S9nfymnPPJH8Iu35i8zuT
IiXPAYce/NSKp4sHdfQ41VGWOspSR4U86lk653EvF+Jxwd+dv39Ktc8SHIte
WfTCkfPsflzgyoEzCY6Fe+d21Ng02S89kPxh5rVCNdXKSMlzwKGX3/u7nTS9
waeJDtdBbsB1wLnOJLeOmh2T9o9mNbych8cFb33xbv1z6xMd1nN90qs5ecKT
ul70ciHjuTQvcsJJbJc3yWG9Mf+39d57qHOeURmSPx8yKcmxcNEjtwnLO7Lp
iM89PXF1PrJxYLPnXg7D8wd/UL5rnwLhiQ7ref6kV2cvdh+n2ni5DdcHv9rg
s0kBCxId1nN90quz20YVLH9A1s2oD36mc+mVPWq9qU96y/qrs65e+PX1TYK+
bn3dnD9yniHZDqZ75HHojfm/ref3Vu2YFnNj01TjuwBXTRdNH1LimpfDGN+7
5utW3nnV/OMEx6JXFr1qMnJVjjzKy20s54lasudwtlfX4h2Lns8TtdTVqyZf
7d+WZm2k5DZcH3zO+fVlF73pmyx6ZdF799Sy7D/0z/LcrK/znBPbBvWq/qd3
L5Cez3/ohfu794WX/+h7CjkM33fyczvuPSX3I+mlfk/3nlJ8H0Gv703h+t6U
cekeV5b+Qel7nPsEyW2oD1HcD+h735i//J6X259494jbb8h80C8hV+H+BPyR
2y9JX0f5j9Tf7/Y/ivsu6Ce5/R73XcZzbXX7OmM+ug+UnIf6VcV9o/x8jtuv
cv+suA/X/aey9L2qsttXC1/n9r3GOui+WuZD/b8y+nbNdf/PfkSxr9H9vGLf
Ab32KewjjOfF70PxfLSvkZyHfJZifwSufRb7O8lhyD8q9nfalxnPC/0S11ey
HzTmo/2j5DbkfxX7TfDXuf6f/3XIX0ueQz5d8hzy+5LnUF6h2KdrX6wsflz9
7OYY7MeNddN+33gunRsozkl0/qA4D9E5hrLkIcqShyjOQ8A59wC35DyyPknl
AkZOmBDudJu/YdHI+smS22RP3f5k/XvhzsA1Q3+eUdzj0IMPHhEx7slfVx2u
g+fiOuCsx/OyHtyiVxa98VxYH9aDW9bB0IPzOlT6ueCvRY5dER55wP/LmAjJ
f5y+X8/YW69zBOdC8lzg2fP1T5he577wIUNLbNuQlCT5G3jokfvf5E6f7PA+
5kwbnfvQyiTJncBrfp7hVL+aSZLzbGrS6b9Pj3jzAYe+x7SCY/NdTZScZ1Kr
9anTfeLpwXn+K8s+uFOwc7DwApWfLV1zQ/Ii52a/Pzt+/zqccyRvHTQPGfpw
Z7HSwcLTxFWOPhuUIDkY+LqpKTs+ftNHyu81N7iQWOJlhNQB5/r4O/bgW3fF
Pjj1r+RFTqNRexLnrAjnHMnbF82PXGw/6GDO58Ir/LCiof9/cZL/rFo4pMCA
7F7uBC77qH9vEfcF+LHRZYpmjIqVXKjLDd+F3MHeuOA8n2pdo3K2Hu7xY5Fb
pq38J0Zynpyrph5YuCNC8iVwqYO/G3Z6yju/jYsQnmF0thTX18V4fyc8IOes
4yu9OuBcp2/K6O923ooU3mHY/nPH/ngl+czOVU2KNW8bIXkROPTgm0bW79pj
SJTwm2W/rTxqvYwrvOmo6HurOkdLHgU+b+StAwOzv5Kcp2+rid/sXODVB+dx
l6+N2ZvX5/GJoSU/GPbzS8l5iv7d/djw2HDJi8ClDv591ZKv91foHSN8wN+D
Riz9NUryLvDrIwJ+r31c6qhODTZ1uNoygusrrn/5i7jMo1fFCE9RZfz+QyMj
Jf8Ju1nplzEZvRwJHHrwred6DazzUZzwrX1S/bJgtNRR/mXH5/3lXaOOstQR
jnwp8tCn3dLmiHcs3Ds/df6zqfffe6onefqFmeoW/b1NmOQ/Fm7U2eLWEY78
J7zTxHWvHyc4Fi76xtlL9Bo7K1hyj+m7PrlVLoOXC4FDD165ebuFR88nOlwH
fpnrgFvqCEf+c3l3SNde/kmOhYv+ZuViiXFt7zrxt7ONLbk6yamwIfzZV0Hh
kvOAyzpovnLL6TwRoR6nOspSR1nqqMqnrjfpMzZC8h8eF3zAqk3nRnZMdix6
xfpBrl5VDgnYPCqXlxdxffBG1dsvm7HuTf3/Wa8sepX/+v531vwZIfkS1wev
0bz2vo+bJTsWvWJ9TVevcu++vHx+RtErS31V8bui1668SnIseq4PvfDD0zb/
Pn3UEaM+cqfi/hlejlzicdLz+kDP+6Lyzw9/t2A9Y3/B1Zk5cw4ULOblRfwd
gb+76WqpQ08THdbz90J6tcA/ef7YGRGSL3F98FSH9zfoOTvRYT3XJ72a1yV3
lX6vwiVf4vrg0TdWds/wSaLDeq4PHuvqhWedNPV+79uPzfr49xPDJ/tvueNx
6I36b+u9ddP5UmDaHxa3nPj/rf/bXG293/H9mDtybis+h8FX/tovVcHv4x2L
nu8F6L3z6sDKed3ne/Vx7yAX4vsL/ODJ9hPvfB4n9x3pbfWVpY7XH7r3oIxL
97Ky3PtK38vcJyi+x/V9bcxT/l1Ct38QrvsEGRf9jPweFvUV4Lqfkb4LnPul
/m5/orgvgn6L249xX2Q81xy37zLmo/s0yZ2on1Tc14HrfpL7WMX9sO4PlaUv
Vbq/Fd7e7UuNddB9r8yH+nBl9M+a6z6c+3/JkchfKKP/d/t247mg176D/YIx
H/x+lvy9prf9kWI/Ao6/Y09+TbHv035HWXyW0j6OfZbxvNrHyXzIbyrDJ2qu
/aZDflbyKPLdin2x9pWK/S/0OV0/zn7WWAftl415at+t2Ldqn644B9C+XnIk
5A+D3JxBcQ4D/rGbPxh6zmHAOW8hrphzfkLz8d5PN68w8iXoh7t5Eeckxr50
d3MY43nBOUcC57yIuFGf8x8aV9VOWaRVjWnPnSL/NegWUTlZcptJlVPsOLzt
ueQ/4NCD5/p29qcpbnu8QqW8GRtfSZY8Z/kn++NqN/ZyJHDWYx2YYx2YYx0s
XDHHOljGNTj2t0bgjPQPv/LmD8567O/+oM7RNRe/4HUT/fVvB5+7PS5Z8qg0
GZff2D4+TPTgvM7Xg9Nu6D8/SHi1dEnpTpZMkryo4ORVVf67/kJyKnDowXvM
qnVjUbsg4QsWP56VI1+y5F3gNxed7hf4X6LkS78lT6k2/W6Y1AHn+nmP7izU
cGOI8DPTMnz5PGuC5EJxy88PL/D+C8mpwKWO5jVCt82rWOeZ8N3NW6/K9b7k
csLx+4k4bwc8znszupSXg4Fz/fGZ9x7NOOSF8O5Z8v6aLS5W8qKrexL3fP91
mORO4NCDTy2ac9238z0eeCzg1ZFUMq7w7r/N/2jUJ/GSa4GvWzgqbcPQWMmX
dkRm7Xy6ljcuOI8bteFulV4FI4VP/Xnig4DAaMmX3ts3fsrtVc8lpwKXOpr3
mTRwwNKpHh/W+Gz1p6GSgzk7J537Y2+9cM7BRD9+ysHIpctjJI+ac73bFxl3
vhA9OI9bqlng5FMTooQvD6gx7bfLklM52979MOPjUy84v/LmqfnVymXO9hkX
LfzI5D/Pf98mWvIu8AyTJ2+pluGV5Es9k1XUkz+8OuBcv8PL+7fKBHu8cv1G
5/bvfyn50swSzb6skuWF5FTgUkfz2+F7q14N9Hjh9HOKB52IkjwNvMkv/aan
dqSO2nwm+IfGuYz6ylJfOHKqOQsrzE53Os6xcNE/KTJ1Yc3+4ZI7Hfu15n+F
Unj5FTj04Fenphx3dofHqY6y1FGWOsKRa+X3v9pv3tIEx8JFv7HCrhkDc4VI
TtX+5+JlYrt6eRc49OCdBq7v1GFyosN14Cu5DriljnDkWjnzFto5fVCSY+Gi
n/xeh9DeTR96+dXUdNM+/9LLu8ChB2+fMXJVy07JjqWOstRRXKeDW8d7Lvzd
8qm7Q7JXeO1YuOjvjm/67Fzaa06ev+6lvdT2tbM2bsInT5uHSX4FLuPi75aP
X7Ty96UeR528rl5xHXCuE+DWUR9988+lfNvDJNficcELHxi14ubm1w7ruT54
EVcvvG69a7EZA7YY9eX37C53O+Df2uPQc33o87p65irTswY3iiQkc31wlfu3
UPXzYC+n4vcEPPmdsq+OrUh2LHp+XuhVyfB0B5++Oc+RaxnvoeaReXNk+75R
smPR836pKFevim6tlnhiUpjkWsb8NQ8pH1cmy4skx6JXFr3wq50/jJ725z1z
/jrvut3gXqPt8z1Oev5eoPe+F51rXex8tEe7ml4d4mpe7XKXO3X2cirLuaSO
Ddk4PuFBosN6y/kDvao2pnSHTNVeSK7F9eXf6Zt485+rrRId1nN90gvPGX4p
+/3loWZ9nXelOXC0yoKKHofeqP+23jsPR+9tVvjdCMX3DvKrBetaFT6UzeOk
VxY936fKcl+rbYG1l/8YbtzvynL/Qi9c3+NSH/2G/PwS3fvgut+Q/ofyLqlf
0O0fFPct0Ou+iPsWY/7p3L7ImI/uoyTXor5OWfpJVdLt67hvlJyK+lLF/eFS
tw80nlfyMbdfFa77T5kP9c+K+1Vw3T9zn6+4P9f9sLL04Ur3/9yHG8+l+3xj
PtoXSK5F/kWxjwDX/oX9lGJfpv2IsvggVdP1WeyDjHXA76PJ3+t42w8qw8dp
rv0g+1PFPlf7O8U+FHrtW9lXGs+rfasxH+1zJb+C70ZuY/hlzbXvduDrwZGH
IB8A59wDHLkBchWqw77eWB/oc7t5i/e8bp5gzF/nEopzG3BLDqMsOYyy5DDK
ksMoSw6jLDmMkUeBc95S1M2pZN0mrDu87YdsIc7loj3frdY3WXKPM3HThqS/
ECL5CTj04DfXLUzIPPGh8DmHH01Z/e1rybuYY92YY92YY92YY90sXDHHulnG
NTjWzfJcBsf7Bl5xV7P5Ezq9llxob94ajZv09PIocF7P7KP/m/3Tx0+F91k3
uGWn1omS86zLvntn+zf+CnkROPSSL6XOvGtNP4+HdC2wK0u3JMl/un9ZLjp7
TCj/vJboh+2sPLhZtmTJqcDx+484D2fWzvfyo6bPpA44z2fE4fNVG8U/F+7/
8KOESo0kd3JUzw7Vun8ayrmT91yaT+8+YZBq90L4vLWdaw4ZlSC5UN+ive/3
PubVAec6Y1oeT5n/6wjh675a0ORh+TjJZ94bN2nU3+OecY4k48rPa91LyN13
eaT3HhYM/DNjzXjJu8Cvrqmbv075eO/nozQvsKZEbOZHsZLz1GncaGrDLV59
cGPc6BNtxxz1eM07f85OmzdGcp7u4zM0LnI4xMup8O+Po47mc+p8dW/VfI+X
XPk8uHzRWMm7wLutznT15m9SX03OG556fbFQrq+4/oPFp9bf/ShaePO8Harf
yxgtuU3MpU2nSz8N5RzJew819wvPUWvg1Fjhq1ZFbF/7pdRRrM+rziT6ZsZ6
XOc8+3dPaPPHhDipc7Hb35dL+72S3EnezwVVlr1+R7itjvC8FVtuqPp3hOQ8
NeZ3uzE6MUTyInDowf02tan/TV+PUx1lqaMsdYQjF9rZ8vQf89smOBYu+qDe
U35rtiRUcp4uYyovLLP7meRF4NCDx3+2dHpHX6LDdeBTuA4410l06whHLlS7
+sDRH5RKcixc9Idal4lpeCVIcp4J36Rrc2dwqORFwrUefEKZ+n2CcyQ7ljrK
UkdZ6ghHLlTz0p7D+ZK9+sRFX2Pc0o3jC9yVPOTPPduGnijs5UXgsg6a+x+b
vu1esMdRBzkJ1wG31PHmr3Oh+7f/On+xl1+AhfvkvdI5z9jlZy/M/crTE/cV
/zAoW9wEL7fh5wLfljpHrgJl/QJYz/MnvW9v/P5DO1uFSs5jqa/KZkvzYX8/
vwDWW+pD79u5N9RvwYfPJOfh+uBNq0d+PX7ta4f1XB+8uasXHjhyc5cB0y8Y
9ZH/1G1+fWzRph6HnutDX9/Ve+PqnKfqdwcXnYjy3k/iqsiAXjXWtfVyG/6O
wEv5r/qn7+/JjkXP3wX0amdD37NvS4RKzsP1wQvPn3oha91kx6JXrC/i6tW2
tAM++ixGzg2zvuY5Nw14vuNJkmPR87kEvfCRaQ9vHLrxqVEf+c+xb6602Pee
x0mvLHr15Hn2RY0qyLmt+BwGD/w94MKo+ASH9Xzekt67R97tUe1Kca9+1irL
RpbaESr5D99f4PGXNraocSPepjfq83ygT3TreH3m1And87eINMfVedF0p3rN
nru9e5z0fF9DL3yMe78rvveR/+j+QfoTyp2kznm3f1DcJ0Cv+xbhum+RvIj6
KGXp05Tuo7ivU9x36f7KmKf8/Wq33xOu+zoZl/pPxX0g+Fa3/+Q+WXF/q/tJ
Zeljle6fuY81nkv3ycZ8dF8tuRD1/4r7cHDd/7PvUOxfdD+vLD5CzXT9CPsI
Yx20T5H5kG9Sht/BzzW5von9muQ85AcV+zXts4zngn6n6xPZ3xnz0X5QciH4
WeQq7B/Bs7p+VvIEcPbL2p8q9sXQ33ZzBvbFxvNq323MR/t0xTkGuCWvUJa8
QlnyCmXJK5Qlr1CWvEJZ8gplySuUJa8wcp6rbs4j63/sy2+zr1742Jk45uf9
/n9KLuFkc3JVafYimPMKB3rwcoW+u5F/cbDwAXXO5Vj712vJi8C7fd0yYWi0
lwsxxzozxzozxzozxzpbuGKOdbaMa3Css+W5DM7rvG3tgjW9+3m5kPB/Dw39
fp6XtzQYMHD4iatPZZ3Bef331i6cp1ThZ8K3RkZkLjdNchgn7Fqd4UsrBXM+
I+sDnmrM7Xnbf3oufMmuT79tuzBJ8iXwHbfC6vfblyQ5D3iFI8fqPDyQKHlL
/gXNC6856I0LzuOO2NyyZrVVHi/36efrR41LkPxkYulHsWu/eiq5DbjU0bx/
aMmSa3ZGCMe/e4hzuHuP2N/TVvXqgHOdTS1az1qc7qXwDn//E//Rd3GSh3xd
P+unMX88kRwGXMbV/Obihz8P2hglvP6w1y1aDpZxhe8+NDtpTIl4yXnA5+y4
/OTyrVjJVT6Zeq1+0PvBUh+cx+1bd/vw2X09Hlb5cO2mzWIkV1nz2bwMve4H
Sz4DLnU035/oa7pxeYzw63GZFgzrKOMKv7p9z7EVs6W+yjWgRKViC55wfcX1
lz7ecSryfIzwFANGBherFy05TK1FVacPTOvlOeDQgz+6cTl/xRpxwvNvX7qq
/2dSR3WqfW7LpMxGHWWp43Gd8ywd33hIj6LxjoWLHjlM4OD3vyn1boLodzbd
99fqqEjv54L+Z27UeeDWEd5wcr6D9Yq8kBwmU9h7V3ttfSx5Djj04MW/C28R
HuNx1EEfznXALXWEy79n1+Gwb+f9RMfCRR8/I/md4p2eeD+fc+XF3Hx9gyXP
AYcevPA71Rc/Oe1xqqMsdZSljnDkNj2iMk7Z8k+yY+GivzpiRbeC8+9LXtF6
/+EWp0o8kTwHHHrwdcF3hw9Z5nHUgU/nOuBcZ4Nbx3sundtUaLih16X6fgEW
7suyT0346tETyW0WB7Q9WXuip+9xfLJ/2SVXDP6/1Nvq+yx1fDufn2i9+sUT
yYW4PnOL3mfR+/7eHDtnohMsuRDXZ27R+yx65ipfqzyrcv7k1d/f6e6M+ns2
Kh6XuK0OP5ea2yXDtp5tjfUB920fVUANfflUch7jPdT83T5Jzu6P/AJYb7xv
b+t9W2s0Gdv68BPJhbg+eNZngb/nin/tsJ7rk15tih+9r9LcYMmFLN+RSpPi
+K49y187rLd8LyqdqxcenG5syo4jHxr1JUfKu/lS54Yeh57rk57PGRVWfu6L
d8KS+RwDV60Pliv92eZgyXn43AMvNavsT5UeJjkWvbLohf/tm7+zVcVQs77O
f/aO2tev6yHv3CY9n//Qe+fhh7+vuHE1XPG9gzzn8rY1zwuu8Dj0fL+QXtYH
uQ3fm+DhIb/2uzsu3rHo+R6HXnjbtc++mzLPq48+AbkN9xvg468Wap+ha5z0
J6S31VeWOsJ13yLjUh+lLH2a0n0U93WK+y7dXxnzhF73e97+un2djEv9p+I+
EFz3n9wnK+5vdT+pLH2suu32z9zHGs+l+2RjPrqvlryI+n/FfTj4Brf/Z9+h
2L/ofl5ZfITSfoR9hLEO+He+MB/yTcrwO8h/XN/E/k6xL9N+ypg/9Glc38c+
zhhX+z7JheBPkc+wTwTX/lTyBMqLZFztNxX7XOh1zsA+13jeHa6PNuajfbfi
HKOL69MV5xXgnFeAc14BznkFOOcV4JxXEFfMOa+gcQ3OeQU9l/D+bm5jy4Vk
vzK8TDPo5vsPnfsjshzoVc8vAOs26vvB2z87GeQMaLUxfft4L/+BHnz/hdHF
dx4NcrgO1nn85i1N7/s/Fj0467H+rAdnPfaF9eCsx36xHpz12EfWg1v0yqI3
1hn7znpwy/MaenDW4z1hPbhlvww9OPQfBvQYFFfELwDvFevB+T3ZWave6Q8u
PBRe9fKqPkdvJkse1W7islfzMgdJDgYOPbj//Kq7Smx9JnzntC/PjXgs+Ztw
zuWEUy7H9ZG/gXdrnG3/kDd9Fc7PSn+c/uRRi0eSd4FDD14mrk31wDMeb5Kl
Y44/zkrOJpzzN/DCKfenefTAy9m4/oNl/h8v+iRCeNR/Bf0WbYiX/CrrzpiR
lRY8lBwMXOrg3ytcm3Xhpn89HjinV7t/d0rO5pwK77fn+fDHnLOJvvD7T64E
pU+U/E34JzlXB1dIkBwsfF/5kz+tCZI64DyfXn/U3rrlryjh6dJfWTdgaZzk
VFkjIyZ32RfEuZnMBzxF29NRI3ZGCy93oVZYvULxkrPJuOeLnMl6OVZyrSP3
3x309UyvDjjXX1LHlzJbzhjhS6c/CJ03KUZyrdAMBU9vfv1I8jFwqaP5xC0n
G1eK9HjB+tNaNJoj43rv+bm0G+5Mlvoq49adzw+lDuL6ylJfOPKxEyuWVI+7
FedYuOgfd/7p0LJPoiTvepKmUd7dUUGSm4FLHc0zzP+hpHPU41RHWeoorpPJ
rSMceVrTyXXz/PxXgmPhokfelab87gG7FiWKPiBw6KPZl8MlZ2MOX2OpIxz5
WOMi07qO/SnJsXDvO9X51fRcXZrW65cs+o6bZpbI/yBEcjMLN+rMdOsIf3fb
4O8T33sk+dXiz1qlDCr8UHIwcOjBG+y/tHZoO4+jDvwy1wG31BGOvOtou1an
/yjsF2DhvoNlSvw7//ZDybuQt0B/tXrZeU/X3zT4/1Jvq++z1BHOuZmFi57z
LgsXPedXFu7b0q/khW9mefmSRS/coudxhdf9zG/CB92CJI+yzF+4Rc/rILx2
6goBfhUeSR5lWU/hFj3vizmuzqMqZGs1MXicV/962Yk/LL513RiXuK2Oj95b
tb5AgznVWxnvM7hvw96Ncdm/8fIl/u7Ai5Wsvnxacb8A1vP3RXpf2eErG3/z
UZDkUUZ9zR9XqbWs/ZnXDuuN+po/cfXC87Sf2OxJzadGfeRUqfqXLJR3o3eO
Qc/1SS88V9ditxvuDlN87iGnKrgmx7JrUzxOej6foVd4XuRRfM6Db/p1xZSU
vRMd1vP5D77F1Xv9SaVvdlzKF2nWx78Hd3J6+sMNPQ69Uf9tvfBJO7eP+ula
lOJ7Vv5++Dsjpkwo7nHSK4ue+wdl6U/UkOeph2xJHcf9jLL0G9AL132L1Kf+
SnGfA677K+73FPdvul9Slj5N6T6Q+zRj/roPNOaj+0bJo6iPVZa+WvV0+1ju
nyVfov5ccT+s+17jeaFf7Pbt3G8b89H9ueK+HXmR9hHsaxT7Du0LFPf50Gu/
w37EeC7taxT7Js6jpD7lTvCJ4OzjtM9S7Keg1/6R/Z3xvJw7ka+U3An+t7/r
cxXnJOA7XP9r6DknAec8BJxzD3DON8A5xyCumHMuQeManHMGei6FHAmc84Ed
rn838ijodb7EuYGx70XcXMLH66/zDZ8ld/JZ8iWfJUfyWfIinyUX8lnyH58l
5/FZ8hyfJbfxcT4DjnVeUqHFn4Ua3XMuZhn/Zc/E15KrpImeVPlC6kDJZ8Ch
B+9f407Vjwd4vGtIj5YN3/RPeP8DKiQNnhb8QPTg0J9seOzV+Wlersgc+8Ic
+8Ic+8Ic+8Ic+2Lhijn2xTKuwbEvlucSzrkZrzPyMfDHjatG1wpPlrzoj88/
2nmz9APJqeTfM9V68EYLW0ae/OqFcM7BhFMOxnWQg4GPOVuvRvfrkvM4I7u3
if1owH3Jo8ChB88a/7Dt3ysihfeaO+PXqY+SJDcD5xwMnHMwro8cDDxryxb+
kwIk53EOfnPj+OLtgZIvgUsdzUetW7pj7AKPz04f/6D6mQTJzWQ+lHcJp7yL
61+9lOXQlHtRwovOSFuiy444yXna7Br9+aobDzh3knHBO2VIHLNzWqzw6V3u
9+zS3su1wGeOyFy12zipr4w6rZODM/8S63GdF0UeCkueMTdO6tc4ceBclXWx
kl9J/TnVU3dfI9xWR/jEUaHH3x39SvKihSPKt4sKDZTcCRx68HW9e7QPGOtx
qqMsdZSljsd1vhTa6ZOGk75LcCxc9OEvasVMzRMpedH+rilzrV53X3IncOjB
KzTPULVJi0SH66D/5zrgljrefHQeNaTenaLZP01yLFz0c4O6VYzt9VzypbsN
rl1s0+OB93t/mkMPXiakpX/9YsmOpY6y1FFcp5xbRzjyqwF3ivXLkOW1Y+Gi
R76043xsx/Oxnn7A+ZS/hq94LLkWc/hQSx3hyKP++XRXhx8H+gVYuA+8waYL
61fvuie5jcyf8iiL3mfRC+fcycJFz7mThYuecycLZ72y6JVlPoaecyF6LkPP
Oc+nR7sm33v9QPIZoz5xi95n0fuq/TyrpnPuvuQ5xnyIW/Q+i95X+TNn1NJl
gZLnGO8PcYveZ9H76DtSe+6k731QefVLPrzVb8ebPoDHJW6r47v9ZMqUZR8E
Sp7D3x34zJfJLWp2ee2wnr9H0nv3Y8iY+Bw/evVTVcjd58fVDyTn4fMKfEPp
kAsJNZNteqO+MR+t3+TWET47dubh6v7hxrjIhWrkGbG/RAGPk15Z9Arrg/yH
7xHw1s2+qRkcn+Cwnu8L0nt90Zh7U55+6tXH+iAX4vsXfMAvTff/33/Px6I3
6vN8oB/k1vH6k9flmy+K+x/G1TmS3+Dbay7u9voQ0nO/Ab1X3+1PFPctyIV0
/8N9l+J+Sfc/yuhzUMftx7jvUty/6T5NWfpPpftD7lcV93W6bzTmCb3uY7kv
VZY+Vln6dsmFqM9X3PfqPlkZfa/W6/6f+3PjuTgXIl+g2O9wLgR/BM4+QvsO
ZfgIrW/s+ib2O8bzci5EPkux/+X8B34ZHL4Mflz05Mu0HzSeC/oBrk8XznkI
+AnXn/rYd4Oz7wZn3w3OvhucfTdxxZx9N41rcPbd9FwGZ9/dxc0xfOyLz7s5
iax/0dHzuk9tfd3IQ8A5VwHnnAT8ZMnWeZdt9vIQ8IRZZf5JvuTlIcyxL8yx
L8yxL8yxLxaumGNfLOMaHPsC/uH2s1NHzPLyEOGUh/A6Iw8B53wDnHMScM49
hFPuwfWRe4BzjgHOeQg45xvgnG+Ac77B4yLfEE55BTjnHuCcY8i4lGMIpxyD
x0WOAc65BDjnG+CcV4BzXmHU13mFcJ0zDPlxVabmCXFSn/MKqU95haWOcOQG
uf2nZHqvUILUKXil+uT7o6Ilr7Bwo05et473vJnWJsZ1eCm5weWVV9YeqnND
8gdwqaN5h4GdEgLTJTpcB30X1wHnOp3cOsKRM2TPe7F1jpdefeKij0kZ0S40
7IXkBu8PHPth0T03JX8Ahx68bcbV9W7c9jjVUZY6ylJHOHKGxcnDKy47luxY
uOg3pL/6+9mSTyU3+LX/0Il1K96W/AEcevDmq59Pu7DV46gDH8F1wLlOS7eO
cOQSjZt0O/DFl34BFu67XvN9v1Xr70guAR8H/cSoEfHHvn5g8P+l3lbfZ6kj
nHMPC/fqUL5h4aLnfMPCRc/5hoWzXln0yjIfQ8/5Bj2Xoed8Q+pQjmHhvC9m
fcofZF8oZ7BwH723kieAc55g4bY63vNSbmDh8r1wPkDng+QArOfvkf2+3Jvk
9+X8JL9v0SuLns9h8fUWLnr273J/kU9nPZ//7MflHiE/Tvej+HGLnu9T8eN0
/yq+l9mP0z2ujPuafDf1D8rSbyjui9h3U9+iuA9hf039krL0V4r7Q/bX1Kcp
o+8iH039nuI+in009Z+K+2T20dTHKqMvJb9M/bDifpL9MvXniv0R+2Xq8xX3
z+x/wdn/Cnf9iI99VpzrX3zss8DZZ4GzzwJnn0VcMWefReManH0WOPss7Td9
7LPY/4Kz/9109NoHr7pdcFqW+en9KX7viA/dsaJDrkH+V51Pxoc3yBbs+VPo
wZ+dTnsyReAt4aWvzxlSpsA74lu5Djjrsc6sB2c91p/14Ba9sugV67FfrAe3
PK+hB4f+gzXV/oxJ8Hw068F5nbuOPJNcMdUN4ZxXgHNeAc55BTjnFeCVvqt3
N/qql1eAs98XTn6f5wm/D85+H5z9Pjj7feHk97k+/D44+31w9vvg7PfB2e+D
s9/nceH3hZPfB2e/D85+X8Ylvy+c/D6PC78Pzn4fnP0+OPt9cPb7Rn3t94WT
3wdnvy/1ye9b6giXvydTLNMfTrcEqcN+38JtdTyufXfN6kXzr9uQKHXO7L3b
c3y9KPH7zNG/WeoIh0/3LxOTrv+8JMfCRQ8fXfVS3+7L/ZNF/9vSrz8OqhEh
/t3CjTrV3DrCM5bs+e+hLc/ER79oUT/FviIXxY+DQw8+6phq0bOXx1EHfTvX
Aec6Y9w6wuG773VKXzj3R34BFu6rWjh0bIHFl8R3w9dAf7DsF6lXPzH5/1Jv
q++z1BHO/t3CRc9+3MK9+uTHLVz07MctXPTsxy2c9cqiV5b5GHr24/Rchp79
uNQhP27hvF9mffLjsi/kxy3cR++t+HFw9uMWbqvjPS/5cQuX74v9OJ0P4sdZ
z98v+3G518iPy3lIftyiVxY9n6vixy1c9OzH5X4hP856Ps/Zj8v9RX6c7i/x
4xY933fix+l+VHxvsh+ne1YZ9yn5cbrflaUfUNy3sB+nvkJxn8B+nPoZZel/
FPdv7Mepj1JGX0R+nPoxxX0O+3HqDxX3sezHqc9URt9Ifpz6VcX9Hvtx6p8V
9//sx6kPV9zfsh8HZz8unPw4+R2fxVf6Orp+x9BbfKXP4h99Fp/os/hBn8X3
+Sz+zsd+raLrm3zsj6B/7vpl4ezfwdm/g9v8u/aVxnpqf+qz+G6fxV/7LD7a
Z/HLPosv9rH/1TmDrFuvwlUPOTePGHkCOOcS4Af6DHoY+JGXM4AXX//1+mqt
vDwBPPvazzfP6+HlBhaumOO5mOO5wNnX83PBv4Ozfwdn/w7O/h2c/Ts4+3dw
9u/Cyb/zPOHfwdm/g7N/B2f/Lpz8O9eHfwdn/w7O/h2c/Ts4+3dw9u88Lvy7
cPLv4Ozfwdm/y7jk34WTf+dx4d/B2b+Ds38HZ/8Ozv7dqK/9u3Dy7+Ds36U+
+XdLHeHs38HZv1u4rY7Hte/ukvvCoUNHE6UO+3fm6PcsdYRnmvug5YaMkeK7
R7ZusmLJ+vPi38GhB5+6t1qriqWTHUsdZamjuM50t45w+Po1wb/mTij02rFw
0cN3lz+ecnfu1H4B4PW+rnZmeZUw8fvM0f9b6vjA4dMv+Pr9FTfSq09c9IWb
3Cq1qH+w+E1w9ukWvc+iF85+3MK9+ZMft3CvPvlxCxc9+3ELFz37cQtnvbLo
lWU+hp79OD2XoWc/LnXIj1s475dZn/y47Av5cQvn91P8ODj7cQu31fGel/y4
hct3xH6cvl/x46zn75H9uNxT5MflfCM/btEri57PSfHjFi569uNyX5AfZz2f
z+zH5T4iP073kfhxi57vL/HjdN8pvgfZj9O9qYz7kfw43dfKcr8r7kPYj1Of
oPjeZz9O/Ymy9DOK+zH249QXKaPPIT9O/ZXivoX9OPV7ivtS9uPUNyqjDyQ/
Tv2n4v6N/Tj1w4r7efbj1Fcr7lfZj4OzHxdOfhycfTc4+1nWw8+Cs58FZz8L
zn4WnP0suPZfPvZ94Bbf57P4Ph/7Pu0ffez7tN/0se9jP+t3NTJFm7MbDT8L
zn4WnP0sOPtZ8Ab9Vzw5Ncbzs+B/b5q9pcgaz8+C13vxV99Dmzw/C943e8u6
NXt5fhac/Sw/F/wsOPtZcPaz4OxnwdnPgrOfBWc/K5z8LM8Tfhac/Sw4+1lw
9rPCyc9yffhZcPaz4OxnwdnPgrOfBWc/y+PCzwonPwvOfhac/ayMS35WOPlZ
Hhd+Fpz9LDj7WXD2s+DsZ4362s8KJz8Lzn5W6pOftdQRzn4WnP2shdvqeJz8
LDj7Webolyx1hLM/BWefa+FGHfhT8CVXz4xdt/aF+Mrf+xT3+654gPhTcOjB
d3dZ/nDFbI+jDvpergPOdfa6dYTDt/ZokTv7kTZ+ARbuK5l2WMxHuQ6Lb4Uv
gL79z5urDH/11OD/S72tvs9SRzj7YgsXPftfC/fGJf9r4V598r8WLnr2vxYu
eva/Fs56ZdEry3wMPftfei5Dz/5X6pD/tXDeL7M++V/ZF/K/Fs7vlfhfcPa/
Fm6r4z0v+V8Ll++R/S99v+J/WW/53sX/yr1G/lfOQ/K/Fr2y6PlcFf9r4aJn
/yv3C/lf1vN5zv5X7i/yv3R/if+16Pm+E/9L96Pie5P9L92zyrhPyf/S/a4s
/YDivoX9L/UVivsE9r/UzyhL/6O4f2P/S32UMvoi8r/Ujynuc9j/Un+ouI9l
/0t9pjL6RvK/1K8q7vfY/1L/rLj/Z/9Lfbji/pb9Lzj7X+Hkf8HZ/4Kz/2U9
/C84+19w9r/g7H/B2f+Ca7/mY5+o/Z2PfaL2gz72ido/+tgnsv8FZ/8Lzv43
4Mr/44r9Lzj7X3D2v+Dsf8HZ/4Kz/wVn/wvO/hec/S8/F/wvOPtfcPa/4Mbf
2dOc/S84+19w9r/Cyf/yPOF/wdn/grP/BWf/K5z8L9eH/wVn/wvO/hec/S84
+19w9r88LvyvcPK/4P+HsvMOr6rooj7Si/SOCIg06dKkyVx6kSa9g4gICIgU
6UVApArSmzTpTZp0uJHepPcaIAkhhJDeE773+86sfT7WvPP4vP/+nv3s2Wdm
zsxeKzf3sv4FZ/0r45L+FU76l8eF/gVn/QvO+hec9S84618jv9a/wkn/grP+
lfykfy15hLP+BWf9a+G2PC4n/QvO+pc5+iVLHuGsf8FZ/1q4kQf6F5z1LDjr
YubobzkP9Cw461kL94CzbgVn3WqJ91jihbM+tXCJZ31q4e64pE8t3M1P+tTC
JZ71qYVLPOtTC+d4ZYlXlnqMeNan9FxGPOtTyUP61MJ5vcz8pE9lXUifWjjv
K9Gn4KxPLdyWx31e0qcWLu8X61N6H0Wfcrzl/RV9KvcO6VM5r0ifWuKVJZ7P
PdGnFi7xrE/l/Cd9yvF83rI+lfuF9CndL6JPLfF8H4k+pftL8b3G+pTuQWXc
d6RP6f5VlvtacV/B+pTufcX3OOtT6jeUpT9R3F+xPqU+Rxl9C+lT6pcU9yGs
T6l/U9xnsj6lPlAZfR3pU+onFfdjrE+pv1Xcnxvf9/Vun6y4/2R9Cs76VDjp
U3DWp+CsTzke+hSc9Sk461Nw1qfgrE/BWZ+Csz4FZ30KzvoUnPUpOOtTcNan
vZy/2xr6FJz1KTjrU3DWp+D8eWMLV8zxXMzxXOCsT/m5oE/BWZ+Csz4FZ30K
zvoUnPUpOOtT4aRPuU7oU3DWp+CsT8FZnwonfcr5oU/BWZ+Csz4FZ30KzvoU
nPUpjwt9Kpz0KTjrU3DWpzIu6VPhpE95XOhTcNan4KxPwVmfgrM+NfJrfSqc
9Ck461PJT/rUkkc461Nw1qcWbsvjctKn4KxPmaNfsuQRzvoUnPWphRt5oE9/
c/5+qvjvsIjnzxVbuJEHfS/i+fPG4Px5Y+b/ksdT2Pn7qaFbEc+fQ7ZwWx6P
vEf0+WRw1rmWeI8lXjjrXwuXeNa/Fu7mJ/1r4RLP+tfCJZ71r4VzvLLEK0s9
RjzrX3ouI571r+Qh/WvhvF5mftK/si6kfy3cQ/tT9C84618Lt+Vxn5f0r4XL
e8f6l84B0b8cz+8v61+510j/ynlI+tcSryzxfK6K/rVwiWf9K/cL6V+O5/Oc
9a/cX6R/6f4S/WuJ5/tO9C/dj4rvTda/dM8q4z4l/Uv3u7L0A4r7Fta/1Fco
7hNY/1I/oyz9j+L+jfUv9VHK6ItI/1I/prjPYf1L/aHiPpb1L/WZyugbSf9S
v6q432P9S/2z4v6f9S/14Yr7W9a/4Kx/hZP+BWf9C876l+Ohf8FZ/4Kz/gVn
/QvO+hecP5/M3KITPRad6GGdyPoXnPUvOOvfzc7/4Rr6F5z1Lzh/rxdzPBdz
PJeFK+Z4Lsu4wln/8nNB/4Kz/gVn/QvO+hec9S84619w1r/CSf9yndC/4Kx/
wVn/grP+FU76l/ND/4Kz/gVn/QvO+hec9S84618eF/pXOOlfcNa/4Kx/ZVzS
v8JJ//K40L/grH/BWf+Cs/4FZ/1r5Nf6VzjpX3DWv5Kf9K8lj3DWv+Csfy3c
lsfl9H1Z4Kx/maNfsuRRI5z/h1X8f7WI5+/RsnBbHhmXv18LnL9fy8KNPPh+
LXD+vixw/t4t5uifOQ++Lwucvy/Lwj3g/L1Y4KxnLfEeS7xw1rMWLvGsZy3c
zU961sIlnvWshUs861kL53hliVeWeox41rP0XEY861nJQ3rWwnm9zPykZ2Vd
SM9auIf2oehZcNazFm7L4z4v6VkLl/eF9Sy9v6JnOZ7fR9azck+RnpXzjfSs
JV5Z4vmcFD1r4RLPelbuC9KzHM/nM+tZuY9Iz9J9JHrWEs/3l+hZuu8U34Os
Z+neVMb9SHqW7mtlud8V9yGsZ6lPUHzvs56l/kRZ+hnF/RjrWeqLlNHnkJ6l
/kpx38J6lvo9xX0p61nqG5XRB5Kepf5Tcf/Gepb6YcX9POtZ6qsV96usZ8FZ
zwonPQvOehac9SzHQ8+Cs54FZz0LznoWnPUsOH9/FHOL7vNYdJ/Hovs8Ft3n
Yd3HenaX831covtQP3PUzxz1M0f9Fm6Mi/ot4xoc9Rdxvpfb0KfgrE/BWZ+C
sz4F59+fYo55Y455Y455Y455s3DFHPNmGdfgPG+sr4WTvuZ5hr4GZ30Nzvoa
nPW1cNLXnB/6Gpz1NTjra3DW1+Csr8FZX/O40NfCSV+Ds74GZ30t45K+Fk76
mseFvgZnfQ3O+hqc9TU462sjv9bXwklfg7O+lvykry15hPPvT4GzvrZwIw9+
f0o4/Z6U1Em/S8Uc/Rvnwe9JgfPvSVm4xPPvQ4Hz70xZuC2PeuV8X7Ti751G
PP9ulIUbedC3I55/Hwqcf2eKuS0Pfh+qkvN90YaORjz/bpSFeyx5PIjn340C
Z91tifdY4oWzHrdwNw/pcQuXeNbjFi7xrMctnOOVJV5Z6jHiWY/TcxnxrMcl
D+lxC+d1MfOTHpd1IT1u4R7at6LHwVmPW7gtj/u8pMctXN4j1uN0Poge53h+
H1mPy71GelzOQ9LjlnhliedzVfS4hUs863G5X0iPczyf56zH5fwnPU73l+hx
Szzfd6LH6X5UfG+yHqd7Vhn3Kelxut+VpR9Q3LewHqe+QnGfwHqc+hll6X8U
92+sx6mPUkZfRHqc+jHFfQ7rceoPFfexrMepz1RG30h6nPpVxf0e63HqnxXr
F9bj1Icr7m9Zj4OzHhdOepx0mYd1EP9uFMezPuLfk+J41k38O1Mcz3qKf3/K
Eq8s8axDPay/+PeqLM9rxFt0rof1Gv++FXPWcexvgLO/Ac7+xlLnd58NfQ3O
+hqc9TX4eef3pkVfM8e+Yo79wxz7hDn2A3Osu4Ur5lhHy7gGx7pYnks462ue
Z+hrcNbX4KyvwVlfCyd9zfmhr8FZX4OzvgZnfQ3O+hqc9TWPC30tnPQ1OOtr
cNbXMi7pa+Gkr3lc6Gtw1tfgrK/BWV+Ds7428mt9LVzr4vATIclzFsRJftbX
kp/0tSWPcOjizf37dPIZHy95po4JPptlbJToawu35VFXnd9fFl2MfkziNQ/u
9lnjad9auZEHfRrioaMrts5YrfmXiZIn9M3nMTPzhhvjgv9LHpXf+f1l0dHo
byWP5sPrPyqWo5aV2/LIuNDRZYPaTGhQPFnyLPDvVSm232tjXOJGnvJOHjXH
+f1l0dHo/xEPPuRR8UEZs1q5kQe6APHQ0fuuxna9GuvmGXI11W+hawOMccH/
JY+66fz+sqG7EQ/+V60DXX76wco9ljwexDfafm3LhgNPjPys0y3xHku8cNbv
Fi7xrN8tXOJZv1s4xytLvLLUY8SzfqfnMuJZv0se0u8W7qH1NfOTfpd1If1u
4R7a/6LfwVm/W7gtj/u8pN8tXN4L1u90zoh+53h+v1i/y71J+l3OYdLvlnhl
iXc56XcLl3jW73J/kX7neD7PWb/L/Uj6ne5H0e+WeL5PRb/T/av4Xmb9Tve4
Mu5r0u/UPyhLv6G4L2L9Tn2L4j6E9Tv1S8rSXynuD1m/U5+mjL6L9Dv1e4r7
KNbv1H8q7pNZv1Mfq4y+lPQ79cOK+0nW79SfK9ZHrN+pz1fcP7N+B2f9Dn7O
0SMe1lngrLPAWWeBs84CZ51FXDFnnUXjGpx1Fj2XwVlnsf4FZ/2bOnpalWtp
fEWXYR2PV0waNuvFM+FYx/QRaYfe//C58KPXxpbYf9pf+NNRWY/1q+/qX+ZY
F+ZYF+ZYF+ZYF+ZYFwtXzLEulnENjnWxPJdw1r88b9C/K5p+sv9+mWeiT/H+
Ih58wqJqB0rueiW82s31A07fT5b1At8/q8WVUQHmerFeFk56mceFXh7Zu33s
J0Oeim7FuYd48LJx7Wv4XgoV3qtZ9qPDTySKXgZvnrVrzt8vJxnPyzoanHU0
jwsdffTre2eX7/UVPYt7QeI1X7op25Ltf0cIj/ynUIplW+NFR4P7zu/X8e/9
Ccbzsr4WTvqax+33e51dO/+MVG0PjG26/t4z0b+41xAPnrLDxchR+12ePsOt
zUNWxRnPVf7a5yH1C7u6W8a9WvRStpuSX3H+lXU9qbLninG51stTd55vVjk8
VvKvmv0seOG0GNHd4IUazPqyyXyz/v1X0m19NF3ibfnVolEVOkYG+4qORn+C
ePBza1fWiHsQZ+O2PDIudHTGRd+X8p528wd0n3Ji9WeRxrjEjTzvO3nU4Z6p
cm/Y/FR0NPo3xIO3nF4v789/WrmRB30d4qGj01Y4OOTAskTJ4+M7wm/ezVBj
XPB/yaMeNrpzvX2fZ6Kj0Q8jHrxZ0Vk9x0+xclseGRc6enbuHi3rD0qWPF23
/1qywLMgY1ziRp5fnTzCoaMbHb2xaUTHt5Iny55h3yV+4Cd6nDn0giWPcOjo
0x3bXvy9yH/O+//OPeC3a5Rb+HLLfdGnUj/pa0u8xxIvnPW1hUs862sLl3jW
1xbO8coSryz1GPGsr+m5jHjW1+B3y039fvmDuxJf43TP5Cdvnxm6W8bVvGL2
tlNfTLTG2/J7LHk81X6eW9t75amh32n/qC0FG82v0dbKbXk8lRp6x6xa7Wvo
fdk/mhcvVWPNrBJWbsvjofdOBVT9fHWnS+57BB7ocHU/cMaM1R/5iq7n9y5v
p6mtAmu/NDjiUw8uVTjftmQv5+H3FHmYUx6VsmKeAT9teCY+AJ8zuXsWf9j4
YIjBEV9oY87Vd2YkeS15lCUPn7fI494j2jfY/tvaGan6u+c5+E6Hy3zCN+Bz
Pn3lr/fdyB9ucMRfOD87w8nGCV7Ow/cC8jCnPDKf8Bn43py2f++YKXciDY54
v/dGzZhcIt5ryaMseZQlD/cVavjrNMN3pnH7BOISr/sTxf0M/AfdF3mpT1Pc
R+n+x+CI1/2bcN1HKe6LdJ+muI/SfZ2y9LGqr9NPeqnvVdwH6r7R4Ihf7vTD
3Mcq7ofZ96A+XHwP0guK+2TdVxsc8VpHuPe+058r7qvZDyEdoVhfsB8C/QXO
ukPrFIMjXusy4VrvKNYp7JOQLlOs19gngR4HZx23z9F9Bke81umi9yU/6T6t
Kw3Ofgu41r8ei673WHS9x6LrPRZd77Hoeo9F13ssut5j0fUei673sK4Hh64f
9d2wvQ3P+4uux/xM2LGz5dMJAcIxP8wxP8wxP8wxP8wxPxaumGN+LOMaHPNj
eS6DY37aT10dtTCzv/gJ2P+nWnyTY8OSAOHlC397r8DyF8Knjvv56IQ/ksXH
AB9S90rOTX+68wze66s2CSOi3Xlmjnlmjnlmjnlmjnm2cMUc82wZ1+CYZ8tz
GRzzDM4+j3DyeXj+4fN8+vvFz/y+9BNfBecq4sFTj3u4cO+U18J3hYdlLj8r
Ufwc8JUHan3TYUmSse7s84BXPHWm7vNjrs/D447a0aZ29fWhKsv+mNGVF7u+
Cu6pc6GDDr0eGSAc95Tk0XxwcKlSG/e7vHytplvGTEwwnnf4yW2Fdw0V/0dx
nu1ftpu7PH2ECjlS4fyUjf7CcU9lCQ+b3uOIv/gtuMclv+b3lz//eei2SOFd
dv8V/8m3cfJc4A1+fPtlm2Hmcx08MS9pXEl3XPD5+24G3nwg4yoed2C9vSPn
DYxSJ55mGfrVr8/Zj1JBGQtd3PHWT3wb9EuSR/OjiZ6W29bECA+pcrJOy1Yx
4guB3417f/GPXc15uL330Jm18yRecf5VAfsuhF+NURl27X99Io0/1yPx8H/8
7t0sUKlmnORPOWT0i+L1zfoL7F21fnDDf82jAtI2yXcw0l/8H/S3Eq/5qknN
hvcpZuW2PDIu/B/fYR9+XTpLguTZ3/LInxsiw41xiRt5njl5hMP/KfFt6Jeh
MW7+xtPzH69f9I34SMyhCyx5hMP/GdDlpGf/00SvhUs8/Jwi79VYHngxSeLj
5yS/V6JboPhCFm7Lo5Y2bJvKv4jr50BvIh68T2SmGTv/SrZxIw/0JuLh/2x+
8Xjk8NVu/tuj1vYqtOipMS64Lc9WJ486Wrbk34semn6RPK/mFRtv7XejgZV7
LHk8iO9zdvqEcitvGfnZX7LEeyzxwtl3snCJZ9/JwiX+aLfHcxoc2ia+x/ZB
pa59PTfA8KMoj8rfNu/6XFOs8bb8XCfyeDwNU0z+qJe/4WvR86oFPTLu6dvB
ym15PLXTVPRJUdHP8MFo/lWWAUneg59YuS2Pu17av8r2yndF7nh33xLnfavS
pjx74NAaNx48vcPV5sPb4nJ8HSD+Er8XL9KPT9V19HODIz4+344b3Ru/9XIe
fo+QhznlUWVGrmv29Sf+4l8Z42oeUmHBm/dCkm3cyMPjwo8qPbfclMrP3XOM
uMTv9iza37ZSsOJzDz7S4TFHBvU84Z6rFM/nM+KlTvhLfM7f/njF2nu3Qw2O
+Jt7Nr4utDbBy3n4XkAe5pTH5dpfCg36bdDjica9CS7xHTa9+nbGwgjF9yB8
oUm3C3fK2NO99yleWeK5r1CWPsHgiNf9iZf6JcV9he5DDI543UdxP6a4j9L9
ksERr/s6L/WfivtA3Y8ZHPEPnb5UuO7rFPdpus8Un4r6YcV9rO5XDY74rU5f
zf284j5c98MGR7zu81kvKO6Tdb9tcN3/K0NHaJ9K6xEv6SbF+kXrC4MjPq2j
p1gHKdYj7GtJHvK1oLvBWfdpXWZwxGs9LlzrO8V6jX0t0qHia8EfgO/E+r2H
o2cV+yeIZ12PePZVEM96H/HstyCefQDEsw+DePYHEM/+DOLZN0A8+zYUryzx
iuPZZ0A8+zz0vEY8+z+IZ18C8ewL0XoZ8eDwzRDPPsZgx+cxuPaFxOfM6s1d
tdWbF+JjYL9N2nxyz/fZg4Tf37wkIfPU58JvFuubpfrAZPGRwOef9Jux4RvX
R2KO/cMc+4Q59gNzrLuFK+ZYR8u4Bse6WJ7L4Jhn8EoHWi2a3M31kXg+c4z9
Z96UT1+qBkN+GHnu9kvhOE+C79QduaryC/FtcF4hD/i+NJkPbBz0UviAzcPa
dGuXKH4ReFDPggey9koy1vfH/VWGtcrujgt++K/8XxY8I+MqHnfUyavVmsS/
VvkWty6y8bhbJ87nyWX8Yjd1fil+Ds5hyaP57N6Th6qOb4RPeP5JQuUmCcbz
LtzUvfbwMQmSn/OMa3M2VYGvwlSvPrEr0lV7yf6V6tkgW62Y3wPFn8G9iTzg
e54k5Bm4Jlz45s6Lmz+vECd+kax7Id8/MtU2n+v2xnoF6lZwxwUvuLFkbGa/
WPGXjHGjz3UYdzpCVZ15p4H/hy/Y71LrGy7M2O/pC/Ft0LdIHs3n1+38ZP2i
KOG1H/0xL12+GPGLwEute/2iQjFzHnpteP/2/aUSrzj/s+UXtjz+JFrlHFKy
cvHFgVyPqrWs2uwf0gW530up+z3Zb5qnCM35+Q8zXd46X5caTzKZz7V+fdje
TS3c/Jwnn7qU6Pk1VnWpc2XntMzGuG689ouOHpzc/vfJcZL/eq/dN8ukMOuc
sLjq6rfv/Wse4fCLUmxv3+DrgfGSJ1+lNlur7Q4T38nCbXlUxpAPbvfb5fpF
0BeIB9/f5uLvizpYuZEH+gLx8rmjhqtmd/UkSh7//jOWtloZbIwLbsuT6ORR
5W+9WZB/4Avxl6DLEA9ep8YPYz8qbeW2PDIu/KXJZRsMeJEzWfKcaFc2pvEt
f2Nc4rY8qs3Rk19eKBko/hJ0LuLBa984dDJ/crKNG3mgc+V5tb804czsPU9e
uPlrTly1bVLBx8a44P+SR2U+oiZ39gs0/CipU/OnD/+8er2flXsseTz7Xp9r
t+FNoOFTyT7UfPyay9cWdLZyWx7Pnzti50/1vjB8LeQB35MmZ+6C5azclsdD
8apc9rQfD05h5AH3UP2qZY3wryZtctcFvLXD1e4xBdWIiJfiF/E6+o7e0WPI
7GsGR3y91nfHF2v51st5eN2RhzniGzh51M6azce3OxkofhSPC17t2+PLzkUm
27iRB+NujR97pPKCF+JfWd4XVXrC+r8GrjDeF3Ajj7HPtR9VZNHMa9nquXnA
izpc0Xmicm0f8npfoHHOgKs2x8uXabjjhfhLfG6MTndy24htLw2O+DNf3/ry
yAdJXkseZcmjLHlcrv0o3xU+18bEG+c8uHuPZOlT/VaJN4rPbfhI8Te2fVnz
nnsfIZ7Pc8QnOvEyP/CX+F47PHNy7wJfhhsc8bO9NWr3PRjnteRRljx8/yKP
3Pvwo/geH+fc4wZHvO4fvOhbKI+Me9XpEwyOeN3PcF+kLP2MwRGv+ysv9XuK
+x/dLxkc8boP5H5ScR+o+z2DI36X05d6qX9W3MfqftLgiNd9tXDdlyruM3Wf
7P6eyLv9vOI+XPfbBke81gVe0iOKdYTu5w2O+F8dnSJc6wLxzUgHKdYFWr8Y
XHwwR095Sfcp1l9aHxkc8fsdPcg6Tvwu6E34VKwTtR40OOKzObrVC98AnHWu
1psGR/xDx08QrnWrYh2qdbRi3ap1t7L4D8riPyiL/6As/oOy+A/K4j8oi/+g
LP6DsvgPyuI/KPYfbjs+jPg8F+JmDc9wzfUZMD+1UxVtW3PWa+G5v5lXK+XD
x8KL/tOoV1iVZPFtwCtWzpep2a1k8W2YY96YY96YY94sXDHHvFnGNTjmjTnm
DfzuN8OuPJyYLL4Nz8/dF+m2Dl7krw7mq9msed/X7I+pjTkO7u+U2/VD5Pd9
WpSPzhET7Poket8iP3ifuZ/fW9bRX3j19Enpz5dKMtZr8fKAuTnzu+OC3192
cZDvP4ni23D+fKf3F268LUjNrpM/4pOWr9hHUp/37VK9d61g8UlwPkgezWsG
71lYqe4r4ZdmZWzxOluCPC/4wdbt1uf+0HzeQst2fbFjsvg5ivNPynz4dKbh
b9SAYv2f9j/j1oNzOP/EaWN2T3wlfgjOeeQBn1ks1+ZvFoUK750132/Z42LF
nwH3PeMTdSq1+by9ly76ZMxn7rjgm5eMSdc4WMZVPG7k1sdV+xUKV6pZk5mN
d7p+jvyO1aSMzYqedP0T3LOSB3zaD0NWzYwQPvPnqc98fKPFnwH/sdnlGi+D
Y4x5mDTjePiqNTEyLucv3cp3+oXJkWpavtA0W4oHcz0q6sb2i2VeBot/gv5E
xtX8dpWylwdMdPkan5qzlt6MMp7r1PQ/rn7X3s0PnnH69J3VM0p+xfm7RDx9
UPbF/8e13/Iw9HC1276xkr9KgyZXjh6NEN8GvEiG+SX8z0Ua9Tf/ZdDsNF6J
t+VX1Rf1ujc20fVh0MciHnz+korz0l+Ms3FbHhkXPsztmakmXt7n5g8sOnNJ
7cGhxrjEbXlUt3FVlpQ9+Ep8GPT/iAcvMOH2oIWrrNzIA12AePgw3X7Y0q3L
9ETJs63igTk/5A4yxgX/lzxq0tfp2z8aFiw+DHQW4sFz5Su8f/ZQK7flkXHh
w3TKFL6+TbdkyTP9gy7B/Vs+N8YlbuTp4uRRaw/tGXGuyGvxYaB/5Xk1D595
MChHRSs38kD/yrjahzk+adm6FavcPI8ntXx1Jd0dY1xwWx4fJ4+7r7QPU+TY
mLX3d7h5wIs6XBX72D973OTX4qvwuPXq34nN5LPT4IjPc7PXsQnt3no5D9eJ
PMwl3smjDsYfPbG/bbD4NpZx1fuvGt0rmpBs40YejLvvcHCKxR+/Ep+H84Mn
v1cu6szaZBs38ljWRYXny5n9uyZuHvBIh7vrpX2YoApxZbO+cfctcVVkSL+a
mzvIvlW8z293/zh61h9PDI74h42eNNm7KMlryaMsefh9QR61r7Hn1Tclg93P
F9G44Ne7n+7TsbaV2/KoXemGfNIwxvV5jPyanxm+bVLCs0Qbt+Vx51/7NsFT
7/91u62bh7gKeJ1jWZOKrm/D52Su0Bs5nq4JNjji0x47XXVxpQQv5+FzFXmY
Ux6Vperq0aX3BYvPw/fO9LGHWxXJYnLEL97ctsiJ7PFeSx5lyaMsefheVnt8
66z5KdS934lLvL7fFfcD8Gd0X+FFnwPOfUghp38wOOJ1/yNc9yGK+4r0Tp8j
Pg/1XcrSLxkc8aWc/s1L/aTi/mqV048ZHPEDnT6T+1XFfabuJw2OeN33eqk/
V9wn637V4IjXfbtw3fcq7mN1Hy4+D+kFxX2+7ucNjnitO7ykgxTrFK0XDI74
2o4+Eq51h/hIpL8U6w6tjwyOeK3jWFcq1oNafxkc8Vpvsm5VrB+1vjO41pvi
C0EXk//DutXgiNf62gu/Apz1uNbFBkd8HsfHcOt0dL1iHa19AGXxN5TF31AW
f0NZ/A1l8TeUxd9QFn9DWfwNxf5GMce3EV9oapWU+07ucf0KPO+qz47G1WkW
KhzPm1jeZ/TkyS4fNipsYuCft4X3WrR12egGrs/DHPPAHPNg4Yo55sEyruI6
K/9c6LeiZ26p6r5zMjzv7HLMz2H/7tG1l7/heVCpM625t3dSiHDsqwLT11f9
5+4b8UmwfzAueI78gxNm130qPPzYhBYxYYkyz+DDR5TcszUpyZjn4FNPv86T
wa0TPFe66Dwn1iVJneC1m2a8MOg/fQ/qBO8zq9D4/LfFb1Fc57pyzx4V6v5C
LU6eUX324xD380L6vY5Zc3VkwQ/fiN+C91ryaB404vn+4mVeCC9Y5dWq//s9
enivwdPGVYm+7J9gzNvmmam6BsxMkHE5f8Yf/ac8/8+9ODgg3/3o0qHsR6mb
hxIPffdViPgqOM9lnjU/db3T0OO5XgvfdSD22YW/Y8XnAa/4/drGE/6JM543
eEZg9b3KHRf8zNiyxTJFxoovxONW7xmZq93IULUnPFv3i5+HsE+l8h+ZNOPh
eteHwX26b9qV3w/XDxWOe03ya+65OOO9pRNdfiZ856x1f8UY85BxbPaUdzeL
L6Q4z8BU0d/ufxCu5t7t9UWm/W+E4579M8vHmQIuvBEfBn0I8oBvH92gZ5/h
kcK7/Hj0ypnfo+S5wO+X+6bKmC3mc7UcE/1kfXd3XPCFox8c+yGHjKt43DWb
Yg7n80SpPskqMvD31+xTqdklW7WomvWN+DnoAyWP5gVKvT1asX+M8KnBpT76
8ecI8YvAh+weOmrVb5HGPNwd5bOizlmJV5z/5hdxmceuj1HbLr34vlluox6J
hy+060q/H+p+Eif5U1addPTE6HCj/l0DUv+yeGz4v+VRp36r/U/hlKHiC6Fv
Rzx4+IlavdLltHJbHhkXvtD2/rsP1Uhy8yx5v16xFe1DjHGJG3l2OnlUh59L
lI3tGSq+EHQQ4sFDu03d/DbAyo080EGIhy9UpXXHJaevJkqeZjlK9hs/1xwX
/F/yqPIz089q2iJUfCHoTcSD3zwY1LPfBCu35ZFx4Qut23kxb1iwm+d+leKJ
cR0eG+MSt+VRG+Imf/aydYj4QvA3pE7Nh6zffmV012SDD3W4kQf+Rsmv/7qR
f2+I+EicH7xJjU6r52xOtnEjD/IjHr5QzdZ1jnzays0DXtvhHK8qfVvszq2o
JI4HV7mWBqufh0k9iuf55KwdK2aPOWVwxJeYkDFi9MokryWPsuRRljyqRGj6
4y//c57DFzL2m+YFFoVmKVTfym15VNFd1RPPTQsRH8l4Ls2zbL9d+sTLRBu3
5VG0/1Xqk0cb9Z2XyO8FuLtvtc8TfW9d74yfufHgsQ5X8+uUv9mtu5wDit/r
bNNmPu3/MMDgiA8OnT5h56MEL+fhcwB5mFMeVW1cmS7vV38jvhCPC+6b7vvl
baZauZGHx4XPs+63QakLfWec8+ASf//YuoW9F71RfG7Dnzl+vtPUR03de4ri
lSWe70FludcMjnh9n3rpfld8D+p70+CI1/e+9A/k//D9bnDE6z7Ei34JnPuW
wU7/YHDE73T6KOG6D1HcV8x3+iLxhah/U9x36f7K4OL/OH0g95+K+0bdvxkc
8bov5f5WcV/XyekPhVOfrLg/1H2swRGv+20v6QLF/bnukw2OeK0XuM8Xv4j0
iGIdofWCwRGvdY2XdJZiHaT1iMERr/WXcK1rxI8ifadY12j9ZXDEa53oJf2r
WG9qfWdw+X89RxcL1zpRsT7VulV8Iehx+DmsH7X+FQ5dj3jW3VpHC4c/gHiL
Hjc44j91fAbxT8BZv2u9b3DEj3R8FfFnqH63H3b8BIP3dvwQxT4MOPsw4OzD
EDfysw9D46ocaTqdb/DE9VtQD3PUwxz1WLiRH/VYxlUDvppzuH73MPE3sO5d
ur05/60KFz6l4ee1UnS8L7xe356rdx1OFH8GPEWaxwUK7UuS52KO52KO57Jw
BT7g07CgU/OT5LnA5w9Ls2pIWRlXOP4PC/sK/FlMudTnesrzKn7eFHmKP9rW
8Yna2rzbP7VOufOD93da2y1p0n8Wxp9TUvcH/dH1u7euD4P3VPJrvvxtznv5
cj8XPuDhxdCe6+LF/wHvsDZ3k+k7E4x1WVN27ank2ASpB/zc4L9Gbp2fIPXw
uPMfZ6t35E6gGt7oWmLJiDDhOD+bjDmUOH+t68/gfF6/ZHjBITnC3f+30uch
8oMP7TZj4e7kQOFBxT6evX1xnDEP7w9e3n5kY3dc8NaDJlZukCjjKs4fWyJX
4MQ1r1WPe55reV64deKeyrF+5rEl+8LEn8F9JHk0r1SkQfGPX4YIz7Vi7qOu
E2LkeWUf9rpXZepM83kXDuyTPfvuGBmX8+85kKnxuiphapJPrrln14WxT6X2
r29evHWHMPFh0G8gD/jU491Cu/cPF7610O8fTeobJb4QeKnbDadVHmo+793v
mr559I07Lvie7nPuVy0QJT4SjxvQNfPy1Msi1MC2U7/evziUfS1VbHfvMyNj
Xd8G/Z7k0Tx8YN6WpXtECb++MMOwCi0jxBcCP9657YWOXSKNeYjuNvRgyisS
rzh/vhRZX/dN+g9vtL3L7TZhXI8KuV/5l3GZwsXnQZ+MPOA9Pri+LbqNy9s8
6pVlXL1w47lqduu4+MoU4YrzNF+fzXP+q1g1odykfL9kMcaVePhC03bm2b79
hzjJ3y9f3gNtq5l1Tupae/jK6v+aRzh8oQtrXy4f2jVe8lQN2Z288cor8Zcs
3JZHOHyhLIuOzqjeMMFr4Wr2gc8elM8YLj4P9Jqsr+YHAwreOnbJyo080GuI
h88z9WHS7Ea1Et1zNXJ82hw3nhnjgtvyTHPyqIpbQ1919nd9Huh3eV7N211/
3ODKlkQbt+VRlS7cbT5gfJj4PJwfvOg5b2LHfFZuy6OqBPnsGJM7XHwezg8+
JmNy0+HTrNyWR+W7e/S9jX+EiS/E+cFD8o1uOaqpldvyqDwHb65ZlEm4suRX
zyr0HFAwNNHGbXkUPa+63ajhNJ/FiTwP4IrmX13qXmZdn88TeV3UZYerS/Pn
HytUPFx8G96Hd7c09/+q3V2DI95nePbj6f0SvJyH9y3yMKc8auGE5EXj54SJ
L8Tjgu+bFXNv+0wrN/Jg3IU98lQdFOX6SJwffPO6R1GtP7VyIw8/F3yhlYdO
Zo+6E8/nj1rlcHcetM8z/+qWcssmuPHE1a6nXT+MeeT6PHxO/rg6x/eDs742
OOLP7Rnar8YfcV5LHmXJw+c58sg9Al+I74UJzr1gcMTr+8iLe5DyyLh9nXvH
4IjX9yPfs8pyPxoc8fq+9lL/oPg+1fevwRGv+wrpT8hH4v7B4PI93k6f40U/
Bs590VGnPzG4+GBOnyZc9zmK+5ZdTt8l/hL1h4r7Ot2/GRzxus/0Ut+ruC/V
/aHBEV/F6YeFb3b6TPGvqN9W3GfqftjgiNd9O+sIxf2/7rcNjnitL1inKNYL
up83uNYX4juRDlLc52udYnDEaz3lJd2nWH9pHWRwxK909CDrSsW6Ses74aRP
FetHrRMNjvi3uf+fzvWSD6BYF2sdanDE/+z4A65Od/SsYn2qdbdiPYv/s4Of
AL8CPg/7CVrvK/ZPEM8+g/YNFPsqiLf4D4r9FopXlnjF8exXIJ79GXpeI565
9mHENzs3ocn9IpddHwPzeXBGoQItEiOEP+20amJA6evC52XxhPWfkii+DfjK
4dlXnvjY9W3AJ8zrOTH5A9e3Ad94fVilrX8lim/D4/ZO+PLJhGcnlW/msp5j
MS7HPEwr8s/u2AEux/P2Klkg6NQj97nwvGlrHuma4stw9q9UtVk9xjYZ4voe
2P8LN+dfUfxphHDsQ6lT899yzIjOm/xI+Pqm0cvqjkww5vNyrun+7Vu59YNH
d1i59L2XCVI/OP6fC/WDN3pwKrlTQfF5hA/+8N7u1PvjxefhOvvdWLRw+XA/
tX151YCXhyPYd1Ip/qpQu8WUCPFJcG4gD3jGFm9njX/pJ7zmP6kef9MzTuYN
/ODU7fXyf2fO2+Ker/vsauWOC/6wx/V641PHic/D406dqzZ2bBOklpbbcPju
znD2ndSQvxs+Gl48QvwTnNuSB9+rs2V44zw3goT3rj+kQu7GMeLbgLdMf3ja
523NedjXOk/5WwfF/1GcP/hOveYFP3gj+xNcfKcT6RqWO+v6J7ivkQe8R6oR
P3XsESo89sz4YTUqRIlvA/5s1tkLX9Uynze2VUKmdYPcccHrtPJ9ObiojKt4
3FLZPh4dGhamhuytPe1FD7dO+X/zyx8GtOvv+irolx6/upum0v0I4ehbJL/m
53ZXePJxW5e/n7JKwewfRxrzMLnl6bO17kTIuJyn275il9p0iFQLl2drsLRA
BNejmseGbOw8LkJ8FfSZyANepVdQ7dDGLl/zc91eVTOFy3OBF/k86FRgHvO5
TrXYuiH9bIlXnH9epxKF/zocrQ7+5Pde09tGPRIPf2ZjQMs5/ldi3fclpuvX
5/3fiM8Dvt8nJn3mt6HGc61RIfN6ecz8Z8ZvfNQlSPLYxlUhd8/teG+a6+dA
vyAevN71bEnR2+Ns3JZHBfn1LZPrbIT4P5wffHmuVs1yfmDltjzuuar9n34Z
K6ZcOcPN06/lyyybxgQY4xK35VG/3ilcW61z/R/oVnnvNK+WIvvhYrHxBq/u
cCMPdOu8mHS/t6oZIf4P5wdPHR32w46+Vm7kQf75eUOTel6PEP/HqF/zHtUr
es/ftHIjD/LLvtL+T+ny2Ue2qZ/onlet/+zzWF01xgW35Snr5BEO/yfXog7N
yzRw88v/uzlcXQ1v5tvqtXDF4zaYmyLw6ZBNBkd8+u21+10JSvByHq4TeZgj
PqOTR12+3nuiai/PZYwLnnii6NRhv1m5kQfjXt4zplCFY66/ZFlfFXov/Zq8
1a3cyGOsi/aLAkJDjhx57O5z8ECHK9r/6n66W3d6/my8F+Cq5bLZw0veiRA/
h9/TbGUL37tZ5bnBEX+50JGIVGXjvZY8ypJHWfKo5qPX58yr5Jwxx9X8RNW1
WTdfj7NxWx7VvPPRPWk3uf4S5wc/3PyXMs1Hx9m4LQ+f8yr0xshL7R649whx
vi/EL8L9BZ+H751Vzr1jcMTre9CLe5nyyLj7nHvN4IjX97VwfT+KH0X9gOJ7
XN/XBke87iu4n1Hch+h+wODyO3ROn8P9kuI+QfcbwtF3wS/ifkP3RQZHvO7f
vOgzwbnfy+j0XQZHfC+n/xRe2+kbxV+i/lZxX6r7T4MjPsjpk73Utyvuq3V/
a3D5Hienn3fva6dPdn8v/l29oLhP1v28wRE/2dEdXtJHivWL1gsGR7zWTcK1
7lCsd7QOEh+J9JpiPaL1lMHld/cc3cd6VrF+1HrN4IjXOpf1smK9qfWgwbU+
FX+J9Lhinah1rnDS9Yr1Nf6/D5z8AcV+hdbdwslnUOxjaP1ucMR3cfwKL/kq
ivW79gcMjnjttwjXPoli/0T7Kor9E+3DKPYZtG8jvlCJlanik+pEsn/iLTvx
Ye9vW0UJx/P2ivx88V/ZXS7/f5cw8/JPUyOZq9DTNw+nbBMlPgPWJc+BFgMq
HXL5m+JBNZOv3RIeGXb7VbwSP0T45LO+H9f/O0HqYY56wPF7WKgHfGUan+td
308QHwb8VOObP6fbGC8+DNc58dc/j5ybfENNH7zxwsavXI51LP9T49rPbkay
X6RuLgjc8WETl+O96HE9qGvpyEjxMfBeSP2aH75dYeeQG77Cp4/wq1C4VJz4
KlJnzfK/NK5izjP+3wp1gm8+3jXu5V3JI/x6iiHbFw2NkzrB4+tN7Vn3ffl8
juI608cO6FMh9Qu1ck73RxlGus+F8+3y4xRJXy6OdD/3os83yaP5vMob+mc4
FiB8z6vWP13OGiM+DPiqXcvvRn9gzludev0/z/J3jIzL+Yd6BmeMvPSf/mj4
pysOV4piv0jVfpVn1ejqkeJ74P5amv76sQ5booTjvkB++dzLvALF1210ecUq
mwt+kNp83sl1W37wYIQ7Lvg5T+W4TaWjxLfh/INPVe/0sFmo2ppu7fdbSkSy
j6RqZlhYPOsXUeKH4L6WPJqvi2485MMmLu+2NdfgC68i5HnBm3zf43R4TKTx
vGsqjfR7+1jyKyN/v5rb6vwZrpbGn+t7/lmkcPRLm3NvPVPtdaT4IejHkAd8
cqcN1Tt8Hik8tFzRPSE3wsSHAb8f/l2GvL7hxvP6fdrtxKUF4TIu5+/VedmC
Kjmj1NGnK4uNWRXF9ah8RX2+7TE3UnwS9MNSj+bBaXstLlopRnjGr3sGFx/1
RvwZ8LT973Y5czbUeN7Sn9Zds6yJOy54+20+q9O3kjyKxz06+nTDk2HRavPw
9+P6zTfqVANf9XpWcHSU+DBcP3jL7/xS7Sln8jV1759OlTNWeY5mS+o50sgj
9cCHaV6998iwO26ebwKqX1/9+KUxbsf1hXNuufHy3/Ko4NStZhfrGSk+DPQR
4sELlK9fYUyjOBu35VEhxT57XSUmUnwYzg8e+HGxFyn/irNxWx4V2qBwy4Zz
o8SH4fzgnr69qxT+2MpteWTe4MNk6VY/eNNvbh7f1NNGpJ97xxiXuC2PWvjZ
3R5DBkSKDwM/Qfah5ve/LLa+YgqTP3S4kQd+wvUclev2+jlSfBvOD36q+29P
fqhj5UYe5Kd4dXD4yITc/vGcRx12uKL61a5Z3fMenhXPzwWupr8O7f5ylcyb
4nl+HDXi5mdprhkc8evW1a/co1K815JHWfLweiGPan2vW7Um6aLcz/PQuOBL
D33SKuW9OBu35VGtDw2/9dn3ss/N59J89tWs322caLwv4LY87jmgfZhJL6Km
NSvh5iHO54b6MfnBupBL7jlDXM4x+CSWc8ngiNfnoRfnKuWRevS5Z3DE6/OW
z21zXM31OW9wfe/wPWWMq+8R8Wdw38FX4fuolHMfGRzx+t704h6nPDJuaue+
Mzji9f0uXN+b4v9Q/6D43tf3u8ERv8bpQ7zUFynuW3T/YHDE637JXUenDxH/
B/0Y+S3cLxkc8QOdvk76THDuDxs5/ZjB5XNNTv8pfSw495O63zP4Gaf/FN+G
+mTFfaDuYw2OeN1ve6n/V9yf6z7Z4PI9244uYH2huK/W/b/BEa91ipf0l2K9
o/WFwRGvdZlwrVMU6yOtm8SfIT2oWL9o/SWcdKVi3ad1nHDSp8qiBw2O+PGO
zvWSflesH7XeNLmOD3N0vXCtWxXrTa27Fet9rdPd7/9512dQFr0vnPwKxT6A
9g2Ek++h2B9APDj5J4p9A+1jCG8zbelPpf6IFh8Az8scz8scz2XhKmP7g0VW
j3U56tz5bef590OieFx19M2Gsem+iXb1u94/w/3GHc77Y4zwKz4+a86OuSf8
7oenf7obGis+A3jRmY+LfNg9Tp6LOZ6LOZ7LwhVzPJdlXOH4/yDsT36uVoX3
p2uT65HqcO5GwVOdYngeVPz94b++vejOD86B20//PnOxTjR/TkaVTjxSsEK6
aPET8L7LuPiemWO3ZiVufCZ84NrrpxPvRouPAR7caWzpXX4xxrqM+nNBwJtF
bp3ga8I2LVtRwa0T/Fzlo80bnxf/RHE9iZuXnbs4IVCduvny2Kt4t36cw5HF
5zyqXCBGfAacq8gjvw9V4IvGi+YFCp/8cPrgm5eijHlYVzxF9dXj3fzggcX8
cw+sJL6K4vxfh60cPK/xa9nP4Li/elf6Y0LXo9HiM+D+kjyah/7ok7L8mBDh
W9tEeafsixB/A3xxXpV3u0+k8byli12IqP4iQsbl/EP77yh8PF2Yut6yXOtZ
W6PZh1FpK38TkLNHtPt/QLpvQR7wTr8fO9+qUrjwOrdTpt68Mkz8DalnRfOu
VzeHG8+78GzPMiN/ET9Ecf7eBR5O6TI5XDV4v/2b6RFuPehngnfPvJM6wfUZ
0DcOXLqyXFKuGOHoD5EfPEXUV78UWhIpvF32Q9snzgs1nrfc9EIXfl3wRsbl
PI2ehaZa8UeEqpfoe3zSpmgeV3kuTS3X76RRpwq5NrR67gXR4legfuT/69Ql
z+xDwUb9iG8UWOVHv0kmL7s1zdQHpyLVmGwjAj5SLkc99YIH/jqqqzGuGpKp
af1y2aPF30CfHxrWZVnxMjHCuU7wxF+3Xsnzncsr/DT+8wr5gmRcrCPlUZxn
+fGRy/70/0+dD2O7D8lq1KOGlPl0/edbosUnQZ3I0/fC7qmDI/yNOhHvmTz+
+MN2McIrj3m468pKP6kH60j5FeeZMG12/tC0MWroF/nTtKwbI74K1yP/zzWi
9Y51dUzep+XaZRVLxcp6UR53fvC90DNGfJX0xM0zfcCWM/90emyMOzDgxya+
9R7/Wx4V3ifdn+1LRrvf/6z1stSJ75ee2CH/tJZxNm7Lo0qMXnE7+ni0+Cqc
H/zXEZ9dy3IszsZteVSpZVM+S9cxRnwVzg8ecGBEoTJlrNyWR80s93fhjFei
xYex5Fe+oe3izj2Js3FbHjUz873jcdXkuYz84DfT1co9aJoxP+C2PIrWS10o
9NGn2csZ6wjunm/aVzleNV2Lv264+4o471vF+3CAsw8Njni9/730Hinet9Oc
fW5wxOv3S95f+DA8Lrh+fw2uzwc5ZygPn0uSn843xefPp845Y3DE63OPz1vF
56Q+3wyOeH0O83nu1q/Pf/g8qAfrCM73jj7PDY740s69Y3B9T8l9R+Py/Sj1
0H1qjqt5A+f+5Xtf/BzE73XuU4MjPqXTD3BfIXVifeX/0f57n2Bw8aOcfsaL
/gqc+4o2Th9icMR3cfou7t8U9126vzI44nUf6KW+VHHfqPs3g8v/rzn9qnDd
B4pPhX4YPg/3gbpfNTjiezt9tRd9Pjj35wudftjgiC/g9P/CdV+tuJ8PcPp8
93fh39UdivttrRcMjvh4R794SX8p1juTHD1icMTXc3QZ6zvF+kXrKeGkExXr
OK3LhJPeVBZ9Z3DEt3B0q5f0u2I9qPWjwRF/w9H1wrUOVawf8X9w0PvkJyiL
3hdOvoSy+ADK4nsoiz+gLH6IsvgGwjne4icI53j2Geh5hWufRPyxApm/WuF3
y/UZMJ/1lm2+1ynG5Zg35pgf5pgHC1fM8VyWcdWevyptm+7vctQ/Pf/I2u+P
cn0D7Ge/apW6vQyMFY59ez379oxJleKEP5rzfrcnHz0S3k7VKjM5NlrmgTnm
gTnmgTnmwcIVc8yDZVyDYx6Y4/0CT32rzsKywdHiw/A8ZOv0eMvrNs9VcqmW
m3aciGW/SLWp3yQp26xY8TdwziAP+Jk/xvafPsZP+NWp/X3mLIqSdQE/3HRv
3v1rzXUpm7dt47s/u+OCD81TvfiGmlHiz/C4pVu817mW30sVeOTY2JX7Y/jz
MOpEqx6rqpeLFd8D57zk0XxVirBiH/UJEt4n/cjUe8ZHiN8C7uct3P+bGZHm
POg8+F7rCUPKZWibLo7HVeM810bW/NitB/dsn9ZF0oZddv0Q3OPIL/zZrS5N
S4YKnz3hefuvvgkTvwV8VP1yO2b8EG4878LNr1s03BLu1tPr0N1mR2IlP+rh
ca+nyTq1T78QNa5i98aV7hh1qmLDujSbVj5WfA/0RcgDPrB4+z7HgtznSvVH
rz9HLXxjPG/5ZjWzlrnzRuoZ17rh5nrfu/kxLue/3KzgiaHtQ9WYIi/zlJ7l
+jborwYfnPpr5h2GT+IttqDetsVnYoVz/eC78pVqO+VmuMHr9Pz1TqMfw2Td
wVEn1l0+36Lr2Xgp3/6dDWLF90A9yL9/c8OILpcDjXoQH54poW7T4y6vWH/Z
5Itdg9xx9foiHuNynmIl/+j4y5JwWV+qR4Vnrx9f9aTrh6Bv3xicIq/3Yaxw
rh+82tt/KmbdHCm8Su3YqO98/aQerC/lUZwn/ZsDd84ejJD1pXpUqRJ3PrrT
Jdb9PhxdJ/IsWBD4Zdt0z4w6ER+yof7MuvNNPipV6dcr7kXK+oKjTqwvjauG
f/de3x73XB8G+rFUI+/kF+GxwrlO8ErL8oxON87lgwfsvJ7vwmN3XKzvu3kU
5+lxsc6gh/FR7vq+W4/aOnHRnLdDYsXPQZ3I8zAxz1dLJt026kT8j7NffvvP
NzHuPdtt4KHON25IPVhfyq84j2dB29cFC8ao7avHh2TNECf+D9cDXr5yz7/f
tjL5nk2nU4bVjpX1ojwyLvyfpQ+mf5Eh0M0zPtuJawcC/zbGfbWynafqob//
LQ9ztfDQ3NlZ77t5iHOdyjKuwRGvn9dL86a4Tv1cBke8nk9eL2NccL1eBtf7
gfeVjIt9CH8J+bGfwXm/DXX2lcERr/e5vF+UR573vrOfDY54/d7J+0t18vsu
9dD5oPicGei8vwZHvD5nDK7PJT7fpH6ch/CvUA/WEZzHBU/rnKtynlO8zM9v
zvlpcMRXd855uS+oHr5fpB66pxTfd5Wc+8LgiNf3l8EjnfuR71nF5zZ8KuSX
91Fz7k/0PWtwxOt+QPoK+ZwV3b/7nPvd4IjX/Yb0LeTXcZ8j9VO/ZNap+SWn
XzK47tO4r5M6sY7wqZAf6wjOfanu6wyOeN1netEPU36ZH903GhzxlZw+mftt
GZf6c2Xpkw2OeHzPM+kL8ZeoDze4fB7M0R3CdT8v/ht0DX3+yr1n8X92jg7y
Qq+Bs5565ugXgyP+nKPjhGsdpFh/DXF0mfhgpB8V6yOt7wyO+CyODmX9rljP
av1ocMQ/cXQ9+wOK9e9lR58aXOtlxbpV62vxwciXUBbfQFl8FWXxE5TFb1EW
n0FZfBhl8R+UxZ9RFl9CWXwbZfErlMXPURYfQzj5Ucribwjvt6ZPbP4vXB8D
88wc88kc88Yc82Phxrh4Xsu4BrfVj/3MHPtzV69UH4YkuL4H9ufsTUXyPlgV
Lxz7kznmhznmhznmhznmx8IVc8yPZVyDY34sz2VwzM+kXUkXhn0Wzz6VmjRp
bY2ubd15wzlWaFD+47lXuf4MzrGK6kGXZ2/ihbee+VHjXC0DhO/Z1bHDd40i
xP8Br9IvxZFCbSJlXcDD36tRqtvCSFkX5lgX5lgX5lgX5lgXC1fMsS6WcQ2O
dbE8l8GxLpOv+peZesWdT6wLz3OBxrVTLJjhryavmbH8u1fuumC9fAY9KH5Z
uX4U7vHAxUETCuyOF477EfnBs7d8eOfn6i4/9yrz23o1w411T7Gk4NfTL4ZL
nZN9fkgYO8XNg3o4v9/tb1LkuvRCTZqXe8DXq+O4HrW+88A1E5rEsX/lLeaZ
EP1j73jheC7kf1zi1KYC5c3nQvyJBl/seDI2RPjknJdW3s0cKnXivZD/C9P1
cJ6dfeemWJQlSN4XcPQhG0e3e2+ur+Frybipf7n3VeMtr4z65f+zFo06/VdJ
k/86d1iZz1sHyz4BR53YD+Cop8Te0u9v6uH6V+h7Ny6r3Xv1qHjhXCd4j9oh
hQKzuzxdkZjtX64JcsfV6454jMt5OhX+vczx+SGy7jSuKnUjx6AD0a5/hTqR
5+kP43zUMz+jTsSvq/B35p0JLs+Uv0OR8GL+Ug/WF/EYl/PM7/h80eoBobK+
4PL/j++/HHlluOFreUtFxP9z9td44Vw/uF/RhYnD/MMNnmJg+23DZoXJ+oKj
TqwvuPz/Qtlrd5+8Hy8+FepB/lGH6tQZUu2hUQ/iS+X59lWNKy4vUGxAyeJt
n7jjYn11PMblPAGVB5TZtz3cXd9361Fl+256HjPT9a+gu7c3P1QjdH28cK4f
3PfowwYDD0UKL5KnVJa+3W6632+m15fyKM5zKWHCtsh/ImR9qR5VdtrcBun/
7//taR8MdSLPoRnZZ/dv949RJ+KL7fqzcqU/TF4zW5jPuZBIWV9w1In1pXHV
Tu83rYqsdX0z+D/lN47ckO9IvHCuE7zvH5OLxs52edNsl162uHjCHVevL+VR
nKfQ3TR1M2SLlvWlepiLT0X5laVOpfMbXNev6HmVZX7Ed6L5lHFp/hWvo54f
gyNer6PB9brz/pE6ab9JPbRvjXHlc2jOvuX3RfE+1/vT4IjX7xG/j26deh3h
46EerCM4nyf6fTQ44v2c88HgpZ3zR84xGpfPPclP56Tie0GfYwZHvD5v+dxW
fL796JyfBke8Ps/5XpD6se7w9+R7ofW6gxv3r+bznPvI4Pq+k3sTXM7Dd+9Z
yU/3teI+JINzbxoc8R2ce5z7B8X36RPnvjY44nVfwf2J1C/vr/bxUI+8v5pz
v5fG6U8MjnjdRxl8o9N3Sf9Gfib3e1IP9Y3muJpvd/pG7mMV90spnf7Q4Ig/
5fSx3Ce7dep1h7+HerDu4NzP637Y4Ih/5vTtoiMov9T50OnDDY54rS9Ep4Dj
eUnXSD2kjxTrSq1HDC6/b+joJi/pWcU6ResdgyNe61zZD/ADUSf2A/mK4gOA
s/4NdfSgYr8C8ayLEc8+BuJZLyOe/Q3Es45GPPseiGd9jXj2QxDPuhvx7JNQ
vLLEK45nnY549lXoeY149lsQz7oe8ezD0HoZ8eDwqRAPHwDxlRyfxODaVxFf
mnww2T/MsU+YW/xAZfEDlcUPVBY/UFn8QGXxA5XFD5R5Hjfz5qPwLAnsk3jH
Ha74faYIl2MemGMemGMemGMemGMemGMeLFwxxzxYxjW4zMN/fy51OPL1lHJ7
XY790+npN+kDkxLEb8F59evAjNvObk8UXqJTo30HW74QnmdhSOvElOLzCC92
YFGlvyuEyzwzxzwzxzwzxzwzxzwzxzxbuGKOebaMa3DMs+W51NFct/0+/8Kd
N8wzz2fkpqPjTlZ4qg77jW5b/Ft3/uX3BAvUzpliXAL7Tt4u77XsH7soUTiv
F/j2OsG/NSjq8pD3EnZ/UDFU6jmcuve+qm/d/BiX89y+umbTdz88Vwdvpvn4
ww/cePmdjnY5CuWLd30n9D/3axYbni1XIvtRUs+4ZmVeNZ0SYtSP+CKz7zTY
Eh1k8FW9LmwK3uuvjhZrlrvREpejfuxzcNTZbXj8hFLzE8RfQp0Pu7x/q8h/
8oNzneAbh44vWvWCy58ktrtzxy9IxsW6Ix7jcp5+oRGbBkW/kHWncdXjHVdn
eLIlsB/l7bHw2ZPqpROFo37kr9A6W4Wyx8z6EV+288cp/v49RPjzqL3NRvX3
lzqxHxCPejhPs/x3r+euHiT7ARx9mu8/B4Nab05gn0rGzVRr75xi0b5G/eJf
tf3lXo4aJs+x5b0bi8cEy7qDo06sOzjqKZ3zefm7JRLEd4LO8n295ouvPInC
uU7whY26nLtb1OUXHhUf9+nDJzKurLuOx7ic52H1MjfyHgtx1/3dcVXvkiM7
jD6eIL4T6kSeMT9V/CNzr5tGnYi/XaPcgVXvhwu/euV576H+N6UerC/iMS7n
ebwr3dueE0NlfcGhv3YOXLs8xecJ7FN5ezfueWBGh0ThXD94gXIpNvaJDjf4
iVEFJ65ZEybrC446sb7gqMdvUtUTa28miO+EepD/XLd7P8U1PmLUg/jrN0a8
Xezr8g1T6i/o++ikjIv1RTzG5TybPZ++9f07XNaX6mEu/gnlV1xnvxOp449O
mmerX+lxOV5Z5kf8B86j54HnWeqhdVG8D/W8GRzxen15nyieT71eBke83j+8
D93vYX5330r9tP+NOuV70Z39b3D9fvF7KnVifeFTIT/WF5zPPf2eGhzx951z
Q84ryq/ofDA44vU5JuchuNT/7vkp9dB5q/h+0eehwRGvz22Dt3bOeb4v3O+v
1usI/wr1YB3Bjfta8ybOPSX3Jjifz/o+Mjjiyzv3ptzL5MvxPS71UD+guM95
6ty/Bkd8X6dP4P5E8b2s732DI173Ldz/yPPK+659LdQj77vm3Oc/cvofgyNe
92kG132dQn9Ifp30k+Dyezfv9p9SJ/WxZj2a33T6WO6fFfdpui81OOJ3On01
9+dSP/YD/CvUg/0AzvpI9+cGR3y4oxcMrnWZ6Dhw6eve1X3Kon+VRZcpiy5W
Fr2mLHpZWXScsuhoZdF3yqKvlUX3KYvuVhY9qCx6XFl0orLodGXRj8qi35VF
VyqLrhe/yLJeRjzrUMSDk3+iWA9qvS/8/tmRPXzzJrFu9a7/O3jOpUYux35j
jn3FHPuHOfYJc+wH5lh3C1fMsY6WcQ2OdTneoNKPHSoYz6Xuv+jpDf0zifW1
92ChDDNupU0WLr9P135Pm8PdXY75CV5WI2F7/2T1S0SJntWWvJH5AUf8g+96
JfdY8MiIx7wxx7wxx7xZuGKOebOMa3DMm0+fAnf6nk3i51X8XP/Uf9O42tZ7
6niV4w1bPnd9Cezbbh9Vu5C+fJLofdwLORIjAn5rnMz+gDzXhN+j+k78M1jm
HxzxZ+ZvqNlkr5/wtiVn5L56NsRYF8R3/7pek+oVHqsTU1NWH9nT5Xgun3Yb
N/YY69Yp3xtft1CZ/GeSxAdA/cg/vvz63/MtDTLqR/y8gYXSLR/yQrjv8SEF
h5f6/8Yd/mu673O68RiX88zvkqZVg85PZT+D4333HRNZ9dMGSewPyL4F5/rB
Ux7OcDi5gcv9DlyZm2uHv9SD/YB4jMt5ugSVb3V6xXPZD+C473rtu+BpesL1
B9A3+i5/uLjuwyT2DaSezvkbJ2a79tyoH/HT1/y5ZGa+Vwb/eEynVo0e+8u6
y/+76fqx7uCos/fNPWs7d0kSHwB1In++Op0mBeS+b9SJ+Gy/tB+RJ9jlAbvK
p/rr0/9vXKy7jse4nCftH7XHhBQOdNddc/QzzzLP2P7D3UT2Dby9I5enHBCe
JJzrB59401NqrE+I8OttP3i9deAt93OJet0Rj3E5z+VKfcd83ztI1h0c/aFf
uR8yTx6SxL6BjLuiZO2xO7OeN+pE/NTuEZNTNTP5khNzx4SuD5b1BUedWF9w
1IM64QNAh+J5wblO8HXHLl+fvdCtZ8usPZvuvDrljqvXV343TY/Leca8GrZh
aUCIrC+Ny1x0K+VXPG/zUuff0a/AJGM+ET/KGZfjpZ+neRA9xXn0PPB8im6l
+Zc6ab0Uv0d6Pg2OeL3uBp/m7BPeb1I/7U/3e3ff3efGuOCXnH3O75fi9dX7
2eCI/8l57/j9Vbzu8AFQD9YdnM/Dq877a3DEp3bOE4Pr80rOPXDZD++ek5Kf
zlXF96A+9wyOeH0+8/mv+JzJ5Zy3Bkf8TOf85/tF8fsOfwD1Y93BjXtc807O
vSb3KTif2x2de8rgiE/t3LNyX5NPwve71EN9guK+6JlzXxsc8fOc/sHkTn/C
fY7UL+8v/u9P55f3V3Puux47fY7BEa/7MekDyceQeRvr9FcGR7zuA6XPBEf9
1JdK/dTfmnVqft7pb7n/V9wP6/7T4IjX/b8ifaG43xvn9L3CSafIPGCfwE9g
vQbOekT3+Yp1HOItekSxvkO8Raco1n2It+gXxXqQ4lmnKNaJ8r1k/13vKNaP
9LxGPOtKxEMfcTw4x2M/MJf11Tqd/Ch17tzm7XOWuzoL68Uc68Ic888c82zh
xriYN8u4Bsc8HK4T9tJ/lauzREePWL73QpShv7y1Dy7ZX6jFW+F43nxvPJNS
rXc5njfoSp+LLUNcjudljue1cMUcz8sczxu7OeO8IvVdjufNUfBh43VPklmX
eQ/3uNcsutpb4ZiHxYsm53owx+UyD3cn5q3g73J5T7/eV7xpzhSedG9mrGrZ
MND1WzRH/KNq4R/1XXld+KNRH7ZY3T3I9WE0D+7uOyzF5SDXh/nvXDGX94i4
zM+58NCKD9z65b2gOut3PLj4xehbKnrp4p75YpJ5HlSu2qc27xn5lvWmN3To
oKFLLrsc83mxy1+Ho3Kk8Mj3qOA81OOmnVT91otyAcZ8Iv7X0IdLl3zvxh9a
WO7w8jB/qT/24ASfUnPdceW9pjy3f8y05GXyPRU7vWiFbNtcXYz3HfsfehN9
SMbyt6c+TZfCQ/pU6uk6MPuoRklPXb9Oc8RnrP1J98+L+gv/NHp9iSW5zXk4
Nmd2uVo/+kr92M/Igzo5/7eLeyx5NeWxyvPnkOPPhiWzDnX3s+Z4LuRJfzph
/qvzT4znkv9DeVGrQrsFLwyeZ/iC6N+nPHX3FX6nSdcp+0dz+T2IK50KR2R6
y7pV9gk41wk+8PLT9337unxS5jt1D0TdknGxHxCPcTmPb6pj0YXOPJf9AI7+
ZHn6CqUzzXR1K/QIzj3Ss1LP4KunC+z63Kwf8eH7fgn6ruYr4WnefvJlaNJp
qRPrjnjUw3k2LwiIXp0+QOqHPkWdmAdwrhO8TfPIj87PDjL4zKMXPmrSLFDW
Fxz1YH0pP3PRR5RH8fykyP1/97PH5Dp+ulMPx0s99LzSt3Oeds7z8ryJHqH5
N+oB1/Nv8EhnfRXtE6mH9pU77rv7UMal/az4PdX7x+Dyd3lnn/P7pXhf6X1r
cMQPdt47fn8Vrzv0KerBuoPzOTnBeX8NLjrXOWcMrs8lhfMNXH43R5+HpNP5
XDXGBdfnKp//is8TfX4aHPH6/Of7RerEukNvoh6sO7jlvjA44m86952sO+WR
Ois495HBEa/vX4X7Xb6/mu6jzs49KBx9Aul37iukfupPFPcD+t43OOLrOn0L
92mK+xzdbxgc8U+cPk1RHyjzQ32jPC/1mco4z7X+Rf3oY+Xv+9Q3Bjn9m+K+
GvHcNyKe+23Ecz+JeO7DKV5Z4hXHc/+p+1vhch6++7wSr/tn4dAdiMd64T0i
f0N0DTjWhXSQsug1ZdFryqLXlEWvKYteUxa9pix6TZ53zi8LQzMUcvtz1JlQ
tH/7cU1djjpbnXrRocQIl6PO4z2PHlm6xuDq+x8O/6bWuhx1jh9X8u/1PY1x
Vc3oGYX71XH7avk8w5L0H+UY4HLUmVjp0c9TF7kcdX55s+sv5f92Oer0fl8x
eE2wwVW7+Iv/HAlL4cHvbqBOcMRXebL8dLYDuwyO+ImzV4Rt32bUacSHfjq0
8G+zz6vxw19vXlPD5ViX0ee3vmxb2e3DcW7/M+CTV0k9XI7zrVba5FZDZroc
8zZ307gvC+x3OeYtqd6X+2c/dTnmDXUe2T+z5D8nnsq8gSN+Urpsef5adNzg
HP+bp9DtDx88N+aZ4g3O879oQFDHvw/7GvNJz6UmTv3q3uafXY755PgDA37y
X9r0mho/cO+8lTmN+VSZ6jT762VbV4+g3xh9r1CBbhNdjnW5POb3D9JucznW
5fM8QyeNuu1yrAvquTD2i55lSjyQdQFH/Ncz4vq2HnPD4Bw/fO7Qo5c6PDHW
EfE2zutFXDHndaF6DN5i5k3/5ZdvqYkLb2XYfc3lWBc5B96dN5W55XH/sNWu
nsL8j305v1mfiy7H/GPcgjN/+v7omesy/7Lu+Htofb9HP7V4YnCOL9ivWMqZ
UbeN9UK8jfO6gPP8y+/L8Pv1LlfMef5pXOEVz85ffHLCbXP/63hwnFc0D0b8
0y0lA1a2vS/nlXyvqb4HcS7J95RqfVGq0/TRJ165HOuI/A+C9xWrVvYfYx0R
33vCt1s7z/M3uC2e1xGc1wuc1wuc10t+r4fWi7hizutF4xqc1+vroWvj02c7
a6wLPa+ce+BYF45fnfCm1uvbj+Xco3WR9YXuxjpin4DzOoL3/vCLVaNCnxuc
1wuc1wuc1wuc1wuc10t+/4jWi7hizutF4xqc14uey+Ar53y0KmbHUzkPwbFe
OA9pnpmL/qU8iue54re3ftpearLBEb/cqcfglnVRlnVRlnVRlnVRlnVRlnVR
lnVRlnVRlnVRvC56foz3BfHgtP9Ff3F8H2f/83skepzeO3cd331/jfUC1++v
wS3nnrFe4JZzz1gv+R2u/37uGesFbjn3jPUC5/Wi5zK45XxT+r5QdO/IetE9
5a7Lu/eazD/dj8Y86/PZ4Ih/4tybBrf0D8a6gFv6B2NdiPM9bqwLjWtwS/8g
60L9mLEu+n43uHwOx+nHuN9TfO7BZ8M849yT/6Oh+Szv9D/m/tfxXzh9qcGN
90Jz473Q3Hgv3uWKufFevDuugl4A5/nP5/Sl5vui4/s4ekFBj9C8Sbzuk4VD
1yAe6wUdRL4r6yZ3Xd7VX+Y+11zrL4Mb+19zY/9rbtGnMv+kc43517rJfC/w
+SJH5yrS0cb7csbRccJJj8t6kX535/9dvS/zj3MJPifmE+cSOM+b1ssGR3yQ
4z8YHPMMnwSc53muo+sNjvhKjk8iPgzlkXk75PgMwuHnIF7+v0P7P/S84heB
G7pS+6WYB/KjjH2F3yUEJ19Lnpd8MKmffDOpn3w23j8+Ft/Jh/0icIsf4sP+
BjjrcXCLTvRh3Qdu0SM+rC/Aue+Vcf973+XDfRTll/sd3HK/+PD9As7nHrjl
XPXhcxWc33dwy3niw+cJOO9/cMv75cPvF+0f3s8+lvfdx3I++FjOZx/Lvelj
uWd9LP2Pj6Vf8rH0tz4WneJj0TWy30iHyv4kP8HH4j/I/ie/yMfiL/lY/CIf
i4/nY/H9fCw+no/Fd/Wx+LQ+Fr/ah/3YrEfU5M5+gV4873KfDufrTE3hs//1
uXYb3gR6MW/gu3fEzp/qfeHFPIOfafFNjg1LArxHuz2e0+DQNgW+c1Cpa1/P
DfDKOmper2GKyR/18kd+4XXSVPRJUdEP9QjPGJF26P0Pn3vvlpv6/fIHd4XX
Ot0z+cnbZ17sT/DqP8+t7b3y1Iv9DF6loXfMqtW+XrwX4CsrfvlH4SZPvKWe
Pxi07z/9DXixsQt7z2x31+DbT9/5KKrXNYP3K1LthPf+KYOnuB2esv3lbQb3
ufX/uGLey8lj8M3OuAYv4tRp8KXOcxm8kjMPiuehmjNviuethjPPiuc5vbMu
iteltrOOitfR46y74nXf7uwTxfvklLOvFO+rP519qHgf7nP2reJ9m9nZ54r3
OfL3OTt9QrmVt4QfLVvy70UPn8vni/h5b9cot/DllvtenudG269t2XDgifCb
tT9MsX7LI/mcFa/X1MhR8We+eia8UpHg8QWX35DPj/G6Hy/3RZoNgS7HPinS
/EHpZYNfCC+c7seYT3KfdH+PnvZbp593VB0Z9dLL+5N5KSePl/Ngn/O4eC+4
zmrOc3n5ufB+8TzcdebNy/OG95TnGecDrwvOJV7f4876enl9LfEeS7zHMq7H
UqfH8lweyzx4LPPmscyzx7IuHss6eizr7rHsE49lX3ks+9Bj2bceyz73WN4L
j+U98ljeO4/lPfVY3muP5RzwWM4Nj+Wc8VjOJY/lHPNYzj2P5Zz0WM5Vj+Uc
9ljObY/lnPdY7gWP5R7xWO4dj+We8ljuNY/lHvRY7k2P5Z71WO5lj+Ue91ju
fY+lT/BY+gqPpQ/xWPoWj6XP8Vj6Io+lj/JY+i6PpU/zWPo9j6Xf80AX2z7/
YPv7/v/6+QHb36//17+P2/5u+7/+Xfh//buk7e9f/+vfX2w+///qM/+v/qfN
l/tffSSLDjV8oX/zkSy62PDl/s3Hs+h0wy/9N3/V4hsYPva/+d4WH8P4+xHt
H9vfp9hXMf7OS/vnX/++L+NaPj9g8ZGMz9XQ/jH+fvpvn7OC35Uzutjm9JuS
vF80/r60aux+Xwc4/v/oo0GLlmT4yOWzlt4tt+SHUHl/wdf6zj+y6nConAPg
GUcF3pl5J1TODebY/8yxz5ljP1u4Yo55sIxrcKwL+Jm8wYlL7rjf18Hzc272
vrfFhz8Rjv9jOnuyV6makS+8zP32Bh/8IvGpxOf/7VZiv0mB8nkAcPSBmUrP
2jT9nMsvZvtiSPVuQbJvOb7LR29/mFrHTzjWPWxhlt7XV7ySPJcybH1+19f9
3gmOv/tr9jLHJrn8yf1aV+Yfeir/jwCO/fnd/mzFMwx5bfBOiR/7RZ0IdOvU
+/yPXX1fT6r/RuLXpcmxM/zCY/m/AI6/3L/a7+XTvBLesGmD+qP9b8n/Tci4
+r0bv+1K9ZOzXP5HzJWFlW/ekP934Pjmd5p0+Lbxa3d99fvedHHhQwtGhHmZ
X2rQNeuaGW8k/siTP9/vPvmQfL8BOM4T36w+PunThQvvdOODmMDDf8v3GHD8
R/eq9Qn2d/nqomtft7uwxpZf6Xgvxcv/v3O8rkdRPYrnE+fqBed5vfS8Rn7E
N3PmjedZ6Xnm9VITnPWS+HXOeineb7hf/nH2g/D6zn5QPJ/yO7zOflO03xS/
d7gHOzj71uB6n7v7U9+/+n2R+MfO+6J4vyE+3HkfhV9w3kfF5zD+rtHZea8N
ntk5H9w8zvmg+HzG56ufOeeP8HzO+aP4vUP8eecc43NP6XOP7wul7wuJP+2c
n4rvhQzOeav4XgDnewGc7wVwvheIK+Z8L9C4Bud7Qd93iu+Fmc79qPh81ves
/J13QszufcsGxHkvjZ91vtQg9/cZwfH7gwci0964G/NceNlH1cd911t+/1F4
/bR5/VNvd3/Xkjnmkznmkznm08IVc8ynZVyDYz6ZYz6ZYz7Bbw4tOqhX5Wgv
zyfmLV1shYkrsr0UvjkiS5Jq7/5uo8Tr74fPUy/g5MGnLk8+dqZE2q8ipS8C
H32vwIq8RyPlnuI8E54diJzV5pXwxH3ZnxRvGi73Jji+P+2b4Z7CJS6+Eb5s
W2LLFsnu7wBy/PNyb/5OWvha+PLiw55/nNf9fUNw9CfZQ9P3z7gozOBjPd9u
bfif9xJ8WqGqbVfWCZH7BRx9S/ykfjeiJoQLj14fUXDITyFyf3H8qEUxWVe8
HyZc/t/B0zrr+X4Rkqd60wNTH6R5Kd/Pw/Flay2IvlEuXHiTfiuKnxnp/n6f
1KP7loCbH5ya1ybS4CMbXAmKaRkhee75n/s0bpf7u3Xg6Fu2l+04am5tlycu
3p1q98zn8n3IHL+nxoLiod9HuvXjc+xlVvUeXSJa8kz4Meh29UIP5XuSOb7v
k/Lvf/Kby307vxdV8z99i/xePMbF91enyZG7UbYYg+8KHJCixZ5oyYO+5ebv
ffz7xLvxqXM8ufm85DX5vTOOD35Uvtb/Yey9w7sqnvdvmgLSBBRRkSZNBKRJ
E5goKMVOEaSLKE1BkN5EAUX4UAURkaoUqaIgTTx0qRJ6h9AhoSQhhHR+Pu7e
c3zfJ3t9n/z5uu5rz3nvmZ2dyZZ5+dA95bcfk8eLPLVO66+BI27p0v6FUos3
+Lxwt+mTIres1fporD9d5Vb2uPUBLisq59heclWgffmwTraoP1f5etu+8Pvo
+U3z/h69v/D7QG/7R6h/xNH/Yvs5wO138du3cYj9vqo/Z76vBPof5y6N/Sgf
bOxHHHYr1g4D3NqztpNk7Fl4HCE+6WfGi3I7XiRgt1Z/zYw7Hr9ix6+2Y8ev
8DiCvpXxD8qtfxD2S3q/jfEzAW79lbZj/ZU4/KQMNP5QufWHwn4JeutXff9v
7xux/tn358Y/C/tJ6Dsb/6/8O+P/hecL3FM61Mwvvl8y84vwfAF9QTOv+fOI
mb+E50HU33nAzJt++2YeDMQt0K8z8QnPs8Lz4yEzXwvPp3Z+F45/wB1xjjji
HHHEOeKIc8QR54gjzhFHnCOOOEc4znnWxG/Ccc5uEwdq3Hg9oe7mshXuet3b
risknVM0TgPvnSgZtzZJ8Vb8r8ETjZK3B3jrEb98ei3XeuUv34z+I/P0JI0P
Vf/aQ0MThiV5EzKebHG2/XHlvXLf+DP1p2SNG8GH/vNNH6qVovEheJkynWbP
OJas8SF46zGzEhr1Stb4EHzE3l+X3H1I21d+LmFCqfd/StL4kN9z+ernZ2yt
dFJ5g6QtzXONS9R4GNzWhfdGjnpi2MNPXFDeZsOSodnqJmmcCb6rfoW05ccS
Pe7/yCefz9usV6LGmdx+1u65Z87PeU35vG0Zq5zvc0/jRtXb+uzDTi2rE5v5
mvK40y9VfODzBI3/lSetj3+sVILGmeDJ32+f9tvJeI0Puf1xnbrsyXjE5x2m
be39ZNu7Gn+CI04u3WNLi9ibN5UXubL1p8e6xmucDP7V9rxFvp1wV+M9biff
KOmUZb/PG0ztW2Vf/TsaT6rexsmlhqVVGBDl89mNqj9x7a04jWPB+45onj1P
/TiND7mdD78b3HpAlTvKV/ya4fjpGrEaH4Ijfj47u0KrSRFxynv2nTjqbkKs
xnXgT1cbPHjxshiN07idmr+keium+bx+tdyFMhaL1jgNHPF2lpYLo746ck/5
yiZFz+wvp+0r/2t51RKNSms7wu2Ebcj9ctXV95S3i4u+f2zKDY3HwBGHtyv4
XuLzO33+7ZUVmTL6emH9wayXPnvmL58jDi9R57XsN2oneg6uesTbL9bL177v
El9PXPWIn/+YtLH5rceTPAf32y/w6OBYOettqtGv86EXfT3i54F1H47vNNrn
pBeH3n8fGz9f7VB+2Lz4/7xPKPe/i42Tq1VqPb/2B8ke8xqGq17vb4nJ2776
RF9PnPWSsUDfm+eqBfSS2XB+H0ko1zr7yDNJ/D7g/HslNeO+p0uPDPxecNVP
LpB9aI3Vx4T7H/FqiUeX7Yws63PSi0PP9iC1S154td+BRLYHcP872vhz5+g7
Ax4Z8B/7DOVsz/Ln7BNT1hYO2DO4/542nsxQM2fB5zb640jjz+5Pn3noT3+8
TDHjS3g86v2EZvz685EZv8LjEXrrN5TvMP5B2M8gnrR+Sfkvxs8I+zHorT9U
Xs/4MWH/Y/2hsL+y/lPY3yL+7GT8s3Lrn4X9LfSlzbzgz2vG/wvPI4g/85p5
R/ksM48Iz1PQlzHzHc9TwvPLKDPfCc9HqMNo51meN4Xna+iHm3lfeXszLwvP
43Z+F56vbTwgPC/bOEQeNHEIxxWBeBL6USYu4rhFOM6x8Y9wPGPjJeG4xcZX
wvGYjd9kqYnflNv4TTgeg36yiUs5PhSOY208KRyv2vhTOH628apwHGvjW+E4
1sbV0tHE1cptnCwcx0L/u4nPlds4XDi+tXE+rbNHe5+WLl38gbkptL8iWuP8
P9YffejWCxHKF/XqW/7G0lTapxHtffFnw7bjiqbRfg+fh+4r8Hno/oEA1/cc
+/SK3/YVTvP4/Sv/0DfXJ4+n0Tp1tFd083PnWqxNpXXwaK9h5vqTMzdJpfX0
aC/7cy/9Oj8qhdbro70Lo345XH5Uihd6btTvnwrb8kz4/Guf12pc7s7Vf+KD
0HPW0ZpfnKuzPjG8pM/PrTxZ9c6UZNqvEu3tXLKkwsO1kjU+53YSFsTl+6hJ
lPLbqe0f2TwkUeNqcOQRny+d0eJYnhvKt780vv+xW4ka57O+6+65c37LFe23
3yPzkxGd7mn8rHqbF3yfrVbU6RSf79i3Kdf1TxI0LwBvNWXCV71/TNA4H/yz
y0m9sra8p3E4t98t7/Q813vFKu9WcEDe8NfuahwOjnyhZIm5Y0fE+Dx32d9W
bGgZr/kCeOkqPxTelTNe43NuZ1j3tuUbHo1T3mnbqQa/Vr2jcbjqbb4wZ8/m
97te8XmjbgXXbAmL0zgc/Kubd0733axc2984ddnyTv20feH2i2crm+mvWveU
H33/i2sXysRqfA6OPKJcjxZ7bqT6/JN8f791sKzqhfXXC72X/GKaz5EXHBta
+bdfIhM9B1f9/Sxnnyi86qbGz+BaP7T//Zi/Dvuc9ML61UavHHlBQreDEeP+
TPYcXPXnr52ZeeebK96Zh+rHDr3j65Ev7C1Z/dXbk1I81p81enHolet9OJ8/
FzW7fKrHfLPh/vvbvOCxBzIXLvuDryeu+t0HKw9cnXLcSzqdd2iZ+f9p3+YL
ixffSV34UJrn0Avrlxi9/31tHvFih6gCdzv47RBXPfKIFdMyVNmVy9eD/2I4
6+WprT8Oa78qlfXgqm9c+NU9MVN/E/69yC+aVDwxLUdrn5Oefxf03A/SoIH3
24qMgf4E99uxecSs9Q/2brrItxPibA/Sd2HRytneTGF7APftweYR837qvejn
u/+xZ8t/NNy3w1t3VnSteEnYnpFfFPyxxdNhP/zHzq2e7Rn6x43e/70278i1
vo5ceslvh7jqG2Ud9PzmO7eExzvyi7jyW4bE1fA56dnPQO/7PZtHPFN16qer
H/X9D/jNQp0Lv/Go73+sfxP2h4j/rf9Ubv2nsD+E3vpz9s/C/n+U8efCfh55
gZ1HlDcw84Kw/4e+tJm/eN4Rnhfs/CU8DyIvsPMmz4PimGfFzuPKu5h5Vnh+
tPO18Hxq53cJxAk2L+hi4gqOE8QRh8gXJm7hOEQ4frDxjHC8gTj/nomXlNt4
SRzxldg4TbmNx4TjK8ThNg7kuE44noR+o4mrOW4UjjNt/CkcT9p4VThutPGt
cDxv42HhuN3Gz8Jx+/9MvC0ct48w8blw3E5cmHPcDs5xu80vhON2m6fQusZ1
r/LJrudOL0qj/S3XvV4L+o4aVyrN+3hX66jcDS8pf+btZ2bvHX6f9rf4PHTd
x+eh6z4+D1338Xnouk+AC/PQdZ/AcwM8dN0n8LsCPHR/y3WvcZZx15a1v0/7
W657xcKHfnqyahrtP/H7c+qLn6eUnufz+s8mPh81MYX2vVzX/OjTn18atLNS
pPIO8WN3/fpP3BO6TnfdO7H0wLAn41JoX4rfTtG+maqd/e6W8mbPZm/z98hk
2vdyXfOjIz8nPH8yV7TyZ/98blnRNcm0n8TXx8T83mrwLzHKH8zz/VOjP0qk
/SrXNT9KXNxqxc+Z7ihv2aP6mb0DkmifzD+/69MGe892T6L9J9e9Qa2f3fVr
0UTa7+G3/+6OfpOPPBKn/PvJC99b2uwe7Se5rvlRtuh7ZX+45/PtSevWhndI
oH0s173r7aeX6nHkHu0P8dtZ2njy5rcHxitfvCNrr4m179J+jOuaH/0x9eDF
Act9vmZnr2eGN4yn/STXvTyR60rWGRNP+0Cue6Onfzp6V927tH/Db/9ak7pD
eqz4D7d5UPUKDZfEzkn0HNzXX20++NTNGM1HwJHvDCr25Pdrx/ic9ML6wUav
HHnQiKav7z3eJ9lzcNU/Umpou76P3tR8BBz5zv6aH4z/oV2Kx3rEb6w/YPTK
dR9UfPd8PRumeg6u+mENn5zR/40rml+AI99JnZt9U+3KaZ5DLw69cuRB264V
2Nes0H3PwVWf3HtAeKY857zHVpzLeugdX4/8KOWpZ0Y+kTnDJtYXNHpx6MP0
uTYPOtGy3ZIsA/x2iKte7+WrdOn1Er19PXHVIw96vPTMSt++7OuJs16+fr1m
65sFA3pwfh/J+mvLg8OO+/2j924ZLvS7ZN2dGb9n++w//W/5esNVP6ncK6/e
nnBEuP+R74x9ofxnG0v6HHruf9KzPcjmYRfe6Lo3je1Bthjuf0ebB53IFfNi
nk99Pfgpw9n+ZV+JY21/ezyN7R9c9TmmvZP/RIlIYftHvvNMvr3tn3vR56QX
h579g/w8//7yu0X8cU1c9ZUGdj9ZeM5tYf+AfGfrmcgKq9N8fwU9+wfotxu9
8hFNXiuwd1yssD9EvnP744qNT57x/Srp2Q9D788jNn/ZXOHBqs//7s8L4I22
Rb//0Grfn39l/L/w/GLnC+F5BHmKnad43hGeX6C386PyRWZeE5537PwogXnW
5iMtzbzM86w45nGxcQLP48Lzr40HhOdrGz8IxyHIU2zcwnGIOOIcOWriIo5z
hOMTGy8JxzPIX4qYeEy5jcfEEb9JXxMHKrfxngTiNxNnyhQTZyp/z8SNwvEq
9D1MnM9xqXAcW9zEt8Lxqo2HhePSMiZ+Fs4vwDmPAOc8ApzzCHDOI8A5jyAu
zDmPoOcGOOcR9LuUVzF5FuWzEV6r/VeT334jw6bQ/DTC+6Tpkuwtk+57VZ95
o8XcpteUV17/ecTPn2TYFJq3+jw0b/V5aN7q89C81eeheavPQ/PWABfmoXlr
4LkBHpq3Bn6X8qc3deqdWDzDJu5P9NvvdertKXbgovLONwZMaTU6jdZTIjQv
G/1e5+KVs99SfvyXcrErfrpP60ER3q8Lv13Q9eP7tJ71D9+8pW/3KWm03uS3
v75u0cfKFo1SvnFs2XWD+qfQekqE5munMqW8dDVLrPIHEoa9t6V/Kq0fRXir
Tt2q//GGVFqHivCKZv7jwUsXUmidyG//wuxhlaZXj1Fe7dDVcTPbJ9N6UITm
d8O/+7Zp82x3lRd96tqRy9lTaL3pH179kflXKybTepDfzsft35sxbV+c8kcT
fu2xuGEirQdFaB5Xosin73U6c095tw+janXpkkTrQRHe19l/Ghj3UhKtB0V4
Iwc271FcEmk9yG+/Wa7q+W4n31MeMWnJoOkvJNB6UITmd41OdUjO0SJR+dDr
D77/lq8Xh1458rKLr2arczcsyXNw1ef5qecDpzPepfWgCM3X7vVaOuNU2WTP
oRfWJxi98u93t63SbVYMre9EaL6WeCnz5VWPpHisD/1/eECvHHncntZvFpuY
5rdDXPWPFKr/TMt+N2i9JkLztT65urw7+ZrPSS+s72f0ypHHDY79fnP7g2me
g6s+5/abmVavuKz5FDjytRzXu7V84w+fQ4943qFXjjzuhR0xWco1zbDJwcPA
22ZcVeyzg2f03h59f7rPx6EPc+iV8z1RDq56vm/KwVXP91Y5OOvFoRfH+wT0
fK8I/a6Anu8n0XboHjAHD6PvGGyf7lHR72Lzsr7D5syuOMDXl88UV6fgUxcD
7RB3tRNGdi4rfvp8dunC/7GfUK76+z17TxxwIFLY/pGvnSu3tUmeMj6Hnu2f
9OwfpNfpSedKJKeyf5Dehqu+4LTIE2PzRwv7B+RrJed3fibpuO9nSC+sL2X0
ylPrnjz85KVYYX+IfG3+6NJ11m/zOfTsD0nvzws2j6teI37X/mm+PwevYbg/
P84a+2HU+LvC/h952Y0Me/PP7+vPR6Tn+Qh65Xb+ksB8Z/MvOz8qt/OjBOY7
q7fzNc+/wvO7na+F53HkWR+ZOIHnfeH5HXobn3BcITzv2/hEOM6x8Yw44jGx
8ZJyGy9JIM6xehu/cTwmjvhNOC5FXmbjRo4DJRDXWb2NYznOFI7TVpl4VRzx
rXA+0sPE1bLKxNXKj5o4WTjuhf55k78o72LicOF4tbiJ58M4r6lk4v8wzmvA
Oa8B57wGnPMacM5riAtzzmvouQHOeQ39rgDnvOZdkyeGheYd4V6TciOe+jpD
Rsrvwr3qw6NfyXs1w6aoPVl3ZYo4pbzZgeEbsj6VkfK+cO+F7eeqzyySkfK+
cO/xlwsn/Fo0I+V9AS7MQ/vH56H9E+4VW1Djx3vJnPf5799+4N60yllOKD+Y
Z/jrH6ZwXhaueV+PWmeqVfrE5+0jOzVpMJLz63BvV5lmBWcv4zw63KvSud7Z
+KOcR4d7T//295gBEzgPDXfkoeGOPDTcu9K4WnydaM5DwzVPbDitSeyud28r
Tz/fDHfkm+GOfDPcG/J3vVodj3O+Ga754MNJF99ZOTdWeZdvxk0ac4nzzXBH
vhnuyDfDHflmuPdwk7eHfbmJ87hwzRMHLZq1aui3Pp+YPelCzb2cn4Y78tBw
Rx7qt3/0UJ4tX5+LU15iXNbS7VZxHhqueWKbh1KG/D42Qfn/2p3/sF1LzjfD
vfEDclXr8Bnnm/9pp1na1VxfJSivtXPj/ucXcb4Zrvljn89/yvlWcqLy8ZNr
PtBxAeebAb3ywkdqjj4/KJ7yx3DNN38qmXOm1yHZc+jFoVe+d/3ZD4fXi6P8
MVzzzdxZV2x7d2mKx/rQeCmgV4688v1s16O+mZXqObjqN7f8fFnKGzGUP4Zr
vjm0xIpcv49O8xx6Yf1nRq989qv551U8FkX5YLjmmwkvldv6RW+fQx8aD/v6
JKNXjjy08Iz7LUtUQHwe4GHgPz33U4MseS9TPhUeuG/WoQ9z6JXzPbQOrvr0
89AA99tPN98McNWnn28GuOrTzzcDnPXi0IvjfQL69PPNcEe+GeB+++nmmwHO
3yvYfrr5ZnjgPnAHVz3fp032KevOZO/6p/ic7xd16P3fa/PE8XfS3q7dzh9H
xH2/HTkkKf/nUcLjEfnj4mcjDyTX9sc79DweoV9q9MonJozfWnMY55vhmj/W
emzAH6UL+Zz04tCz35Nmb75f+2pSwH+C+/PmkHNfX3/hjrC/Rf74yVdv/LHg
hO/noWd/C31vo/fnr/vPvTU9kfNNnV8kw6enFxxc+5/5KFTP8xH0fvtm/pLA
fGfzRzs/KrfzowTmO+jNvMzzr/A8budrccQbYuMB305MPCA8j0Nv4xOON8QR
n4gj7qK8UuMcCcQtVm/jNI6jhOOQ9PPNcEe+Ge7INzUOlEBcZ/WNTbzKcaZw
PJZ+vhnuyDfDHfmmxs/C8Sf0n5j4X3n6eeU/3MTzYRzn27wjrLXJO5RXNnlB
GMf/0N80eZZym1+EcV7QzuQjgTwu3OQ1wvG8zY/COL+z+VQY53HgjjwuzJHH
hXEeZ/PBMM7jbP4YxnmczUM1z81g/zg/Bef8FHxjt94XI57x81PwUj+/93ON
pn5+Cv5Kj7nXdg/x81PwlUsnLi++wM9PwevdXvHRlqV+fgr+Ub4mL9Xu4uen
4Jyf8vsjPwXn/BSc81Nwzk/BOT8F5/wUnPNT5ZSf8vsgPwXn/BSc81Nwzk+V
U37K7SA/Bef8FJzzU3DOT8E5PwXn/JTbR34Kzvmp6ik/Bef8VJ9L+alyyk+5
feSn4JyfgnN+Cs75KTjnp4F2bH4Kzvmp6ik/1fYpP3XolXN+Cs75qUMvDr1y
zk9Vb/PNdgUObNmyPcVjPeIlh155zm8uNFmcI1bzTXDkp2PW12ha+dk0z6EX
1v/P6JX/cHTv0EULb2u+CY78dG27ORfnTvQ59IhvWb/e6JUjD+30doF825pn
2OTgYeCB+in2j+ukOPRhDr1yzlsdXPWcnzq4/1zKTx3cb5/yUwdXPeenDq56
zk8dnPXi0IvjfQJ6zk/pdwX0nJ9qO5SfOrjfPuWnDq56zk8dXPWB+lPQU37q
0Ic59P7vpfzUwX2/Tfmp6ik/Zb1j/Gp+Cs75KTjnpw69OPTs9zQ/dXB/3qT8
FJzzU9azv+X8FJzzU9VTfurQ83yk+anqKT9VPeWn4JyfBvQ2P9X2KT8F5/wU
nPNTcM5PWY/8FJzzU+WUn2o7lJ+Cc37KeuSn+n0pP9XnUn4Kzvmptk/5KTjn
p6xHfgrO+ak+l/JTcM5PwTk/Bef8lPXIT8E5P1VO+Sk456fgnJ+yHvkpOOen
4JyfgnN+Cs75KbjNp8I4j7P5VxjncTZfC+M8zuZ3YZzH2XwwjPM4mz+GcR7H
+anNW8WxfiqO9VNxrJ+KY/1UHOunzIU55d3iWD8Vx/qpONZPxbF+Ko71U3Gs
n4pj/VQc66fiWD8Vx/qpONZPxbF+Ko71U3Gsn4pj/VQc66fiWD8Vx/qpONZP
xbF+Ko71U3Gsn4pj/VQc66fiWD8Vx/qpONZPxbF+Ko71U3Gsn4pj/VQc66fi
WD8Vx/qpONZPxbF+ynrljvVTcayfsl4ceuWO9VNxrJ+KY/2U9cod66fMVe9Y
J5VN6a+rMg+0Q+unMjP99VNxrJ+qntZrxLF+Ko71U+ZYb5If018/DdQhdejD
HHrljvXTQD1Hfc/0108DdRu1nfTXTwN1G/W7pL9+GqjnCO5YPw3UeSTO64OB
Oo/03IDesX4aqKvr4H776a+fBupC0ncJtp/++mmgjrCDq96xfiqO9dNAXUiH
3v+96a+fMvf9dvrrp+JYPxXH+qk41k/FsX4qjvVT1otDz36P10+Z+/Nm+uun
4lg/Fcf6qTjWT8WxfiqO9VPW83zE66fiWD8Vx/qpONZPxbF+Ko71U3Gsn4pj
/VQc66fiWD8Vx/qpONZPxbF+Ko71U3Gsn4pj/VQc66fiWD8Vx/qpONZPxbF+
Ko71U3Gsn4pj/VQc66fiWD8Vx/qpONZPxbF+Ko71U3Gsn4pj/VQc66fiWD8V
x/qpONZPxbF+Ko71U3GsnzLX5zrWT8Wxfirp56cRmgdVCj0HKo5zo+I4HyqO
86HiOB8qjvOh4jgfKo7zocyFOe2j5ucGOPeP43yoI6+McOSVEfJh+udDNR/8
MvR8qBxL/3yoI9+McOSbEY58M0L+SP98qOaDJ0PPh0qW9M+HOvLNCEe+GeHI
NyM07/ss9ByoPJ/+uVFHXhnhyCv99ul8qDyS/vlQzQefDj0fKl3TPx8qjvOh
MiL986HaftPQ86FyLv3zoZo/Ngw9HyqO86GsV+44H8rc16d/DlRyp39ulHmg
HTofKtPTPx+q+WNC6PlQ1dN5KHGcD9U8cXfo+VDmqs+X/vlQcZwPZb2wvm/o
+VDNEweFng8Vx/lQeSj986GaDz4Uej5U9XQ+jvXKHedDmeO8nrRK/3yoI68M
6MMceuWO86GOfDPCkW8GuOod50Md+WaEI98McH6fgN5xPtSRbwa4337650Md
+WaEI98McNWXTv8cqDjOjTJ3tRNGds7nQ5mrPjX986Gab54NPR+qerZ/x/lQ
cZwPFcf5UHGcD9X8sUTo+VDWC+tLhp4PlZT0z4dqvvlT6PlQ1bM/dJwPFcf5
UHGcDxXH+VDNH6NCz4eynucj6JU7zodq/tg09Hwo5kc+H6r6p0PPh2L+5fOh
4jgfKo7zoZj3+Xyo6j8LPR+KuILPhzry0AhHHhrhyEM1LuLzoao/GXo+1JFv
RjjyzQhHvqlxIJ8PVf2XoedDEWfy+VBHvhnhyDcjHPmmzyuHngMVx7lR6Zz+
+VBHHhohjvOh4jgfKo7zoeI4HyqO86HMhTnnNY7zoeI4H8q/K8A5r+Hzofbe
Ic0vuoXe4yqV0r/3Vcqkf7+rcrqXSTndy6Sc7mVSTvcyMRfmdC8TPzfA6V4m
/l0BTve7iuN+Vyma/v2u2s9TQu931XyqV+g9rlIv/XtfxXG/qzjud9X2C4fe
76r51OHQe1ylafr3vkrZ9O931XaiQ+931fzoXug9rvJA+ve+Sov073eV4+nf
7yoDW6d7v6s+t2Xo/a6aT2UNvcdVpqd/76tsS/9+V7mW/v2u2v6S0Ptd5ef0
73cVx/2u8nv697tK7vTvdxXH/a7iuN9V87hqofe7Mld93/TvdxXH/a6sF4de
ueN+V+aqd9zjKvnTv/dVOd3fqO2Eh97vKo77XZmrHnlZSug9rjI0/Xtfmbva
Ue6435W5//7p3+MqCenf+6qc7hfldsJUn/79rsxV77jflbnqHfe7Mmc93+/K
nN9HHgy931Uc97tqHrc29H5X5etC73eVkenf76r53ZjQ+12ZB9rh7+K435W5
/x1tfnc89H5X5SdD73fVPG5v6P2uzFX/UPr3u2q+Vib0flfWi0PP/oHvd2Wu
+orp3+8qjvtdVc/+Afptofe7iuN+V83XboXe78p69sPQ+/OIzeM2hd7vKo77
XeXL9O93xXzB97tqHrck9H5XzDt8v6vqs4be7yoL07/fFfMj3++q+V2L0Ptd
Mc/y/a6qTwi93xXzNd/viniA73dF/MD3u2reFx16vyviEL7fVfVHQu93RTzD
97siXuL7XTW/eyr0flfEXXy/q+o/Db3fVRz3u2oeNzn0flfEjXy/q+o/Cr3f
FfEn3+8qjvtdxXG/qzjudxXH/a7iuN9VHPe7iuN+V3Hc78qc43y+35WfG+CO
PILvd5XK6d7vGi29068PqHH72tD6gLIw/fqA4qgPKI76gOKoD8hc39NRH1Ac
9QGlSPr1AaVB+vUBJVv69QHlfPr1AbV/yofWBxRHfUBx1AcUR31AcdQH1Hbi
Q+sDiqMOoNxKv26gOOoDiqM+oNxKvz6g5h3fhdYHFEd9QHHUB5Rh6dcH1Pa7
htYHlK7p1wfUvKNEaH1AcdQHFEd9QHHUBxRHfUBx1AeUhunXBxRHfUD5I/36
gNp+0dD6gOKoD6j5zrOh9QGlZ/r1AcVRH1Ac9QGZqz4t/fqAmu/8FlofkPXC
eqoPqHnQvdD6gMxVfy79+oCa7+wJrQ+oeqqnxnrljvqAzP33T78+IHO/fZvX
/BxaB1B2pl83kHmgncWh9QH9PCi0PiBz1SMPWh5aH1D5itD6gJoHFQqtD8hc
9S+mXx9QHPUBWc+/i+sDat70Smh9QOVUH1Ac9QGZsz1In9D6gOKoDyiO+oDi
qA8ojvqA4qgPKI76gKz3f6/Ng3KG1gdkrnpHfUBx1AdkPfsZrg+oeVCZ0PqA
ym+E1geEf+P6gJrvFA2tDyhH0q8PKI76gPDPXB9QHPUBxVEfUBz1AVVfKrQ+
oDjqA0qp9OsDat7UNbQ+oORKvz6g6r8LrQ8ondOvD4j5musDiqM+oDjqA4qj
DqA46gYiDuH6gOKoD6h5U3xofUDERVwfUBz1AcVRH1Dzo/Kh9QHFUR9Q9etC
6wOKoz4g4k+uD4h4lesDIr7l+oCIh7k+oDjqA4qjPqA46gMyF+YctzvqAyK/
4PqAyFO4zrvG4StMnXTUYRdbD92juu2qb2PqsCu3ddU9qguv8fYEU0deua3b
rvkOuK3/rnkNuK0Xr3kNuK0vr3kNuK1Hr3kNuK1f71H9d33P5aufn7G10knl
iOdHjnpi2MNPXND3aZC0pXmucYma94G32bBkaLa6SR738676FdKWH0vU/Ag8
8snn8zbrlaj5ET83a/fcM+fnvOZzG88PO7WsTmzma/rcedsyVjnf557mTeBx
p1+q+MDnCZofKU9aH/9YqQTNj8CTv98+7beT8ZrX8HPHdeqyJ+MRnyPOL91j
S4vYmze1/Q7TtvZ+su1dzV/Ai1zZ+tNjXeM1nwL/anveIt9OuKt5Dbefb5R0
yrLf5w2m9q2yr/4dzUdUb+P8UsPSKgyI8vnsRtWfuPZWnOZf4H1HNM+ep36c
5k3cTufvBrceUOWOcsT5Z2dXaDUpIk7bWfFrhuOna8RqPgXes+/EUXcTYjU/
An+62uDBi5fFaP7C7df8JfWfWNDnyBeytFwY9dWRe9p+/Wq5C2UsFq35FPjK
JkXP7C+n7Sv/a3nVEo1Kqz7QftiG3C9XXX1POfKIdgXfS3x+Z4K20y4u+v6x
KTc0bwL/9sqKTBl9HmjnYNZLnz3zl8+Rd5So81r2G7UTPQdXPfKIF+vla993
ia8nrnrkEX9M2tj81uNJnoP772PziIF1H47vNNrXxxd4dHCsnNW8zMFd7fjv
Y/OIqx3KD5sX/5/3CeX+d7F5RLVKrefX/iDZY17DcNUjj2gSk7d99Ym+njjr
JWOBvjfPVQvoJbPh/D6SUK519pFnkvh9wPn3SmrGfU+XHhn4veCqn1Qg+9Aa
q48J9zPyhRKPLtsZWdbJXe2wPUjtkhde7Xcgke0B3P+ONo/YOfrOgEcG/Mc+
Qznbs/w5+8SUtYUD9gzu96fNCzLUzFnwuY3+OAIf0P3pMw/96Y+XKWZ8CY87
xP92/Aa49RvaThszfoXH6Q7jH4T9CfIF65eU/2L8jLAfg976SeX1jL8S9j/W
Hwr7K+s/hf0q8osPjH9mPyzsb6G384I/rxn/LzyPII/Ia+adAC9j5jttZ5aZ
X4TnLztPCc8vo8x8JzwfIY+w8yzPm8LzNfTDTTygvL2Zf4XncTu/C8/LNh4Q
npeRXzxo4hCOK4TjGehHmXhJuY1PhOMcG/8Ixy02XhKOW2x8JRx3Ie9YauI3
jtOCca/VTzZxKceHwnGsjSeF41UbfwrHyTZeFY5jbXwrHMcir3nfxNUB/ruJ
z5Xb+Fk4vrVxuHB8a+N5Wh9JlL1Dx+4q8/Fd2ieWqHHXmrgHDx2/d1F5uTM1
hnTvGE/7xxKl3oOPXc6yNJ72j/k8dN3H56HrPj4PXfcJcGHOv4ueG+Ch6z4+
D1338Xno/rFEOdy7+McdqsTT/jG/37ImPPfZjIevK190J3eqNL9D+8ESNc4s
8NKVrWvP+zxt445SD74XR/vEEmXgiSdmPPZHHO1P89sZdmFN3NgmUcoRT37Q
J6xIqT23tZ2UVXnPlWwUS/vEEmX6kpQ3Xk+LoX1ofjsXy9/enDrlpnLEjXmj
s3V9aGqMtvN9yU8vPv1YDO0H8/WDwzovfvnYbW1Hz/sP73Lo7rBY1X9Z+Pmm
P9S9RfvNEiX+pzuFPvn8Fu1n89sZMPVenhk5Y5Tr/p+wt/Ls6nJH26nRaM3I
Uw9cp/1pvr7cC9/EHyofqxxx5pXDT26b2CRO22nYZUbJHf2v0n4zX9+//v7I
e2/c0XZOXt5ZKfGXCNq3lqhx6dJyLQZMqO3zlG9XZl455iLtl/P1v9b8pmR0
zzj//W38WffZWR0HlorXdob1izxao/Bp2v/m6z88VyHnM5N8HvFuxru1Dh+i
/WyJGq+efSDfo688fC/Af7nWLcPrv8b7dmLj1cMzO13ulOTrs+Q7d/hi6QO0
L87X3zhT4YWXD93z+WPyeJGn1tF+vESNb7u0f6HU4g0+L9xt+qTILWtpf52v
P13lVva49QEuKyrn2F5yVaB9+bBOtqg/V/l6277w+yAetu/v0fsLvw/0tn+E
+kcc/S+2nwPcfhe/fRsn2++r+nPm+0qg/63e2o/ywcZ+xGG3Yu0wwK09azvJ
xp6Fxwvi6n5mvCg/YcaLBOzW6q+Z8cjjV+z49Zi3Mn5A9Xb8Co8v6x+E/Y/G
58bPBLj1Y77fMP5KHP5QBhp/GODWr2o71h8K+yvE29Y/e8w7G/+v+unGPwv7
z++M/xeeFxA/DzXzC88jwvMF9AXNvObPI2b+Ep4HEVc/YOZNv30zDwrPs9Cv
M/EJz7PC8+MhM18Lz6d2fheOf8AdcY444hxxxDniiHPEEeeII84JxG/03ADn
OOdZE78Jxzm7TRyo8Xz++BKLsi1M1fm62MdTp2UvdsUDf61Bz7LS4LbGJ+Bj
vzteflqvaI0nwedGTN4wa320xo3gDw24dmzMsWiNG5mjP5mjP5mjPx1cmKM/
Hc8NcPQn+I7HbqRM+2fcoj+533b+b9X9kn3OKUd88tfWDmVqxV31mF/67cba
V1POqx5xSI6yYxeO3nld9Y9POpLSZfg1jSfB9zz86ic12kR6/B3RTqti93uN
rHtJOeKTmCm5Ox6cEaXt7M2++OLxiEsa37L++Pi8z24c7nPEId1/f7hk9k9u
ajvnTr6wf/K68xpnsr5lytOX7m655r+njUN+/OXDm8Pr3Vb9vAfyLY/dfVbj
Xtb/3bXazAoPRPnvY+OQoUv219g6NlrbeblR/XoDLx/RuBT8x3v7p1T5J86B
H+N2XjvW8J3ODW7639fGJ42+LbLum74xHvO99VvnmfP1bdUj3ojIs2lTtqyx
qt9wbkXOtl+s0/gWvMWhJ+9dW79Z41tup9iJap1uXPb5rOJzbzbbPSfQDuIW
q/dIr/MI6+17Cr2PcL8hbtltfm+ANzb9I/R7A89F3GL72WM+zHxH1c8z30vY
rhC37DP2EOA/GbvSduoZexDu57nG3oTHF+KZd4zdBvhHxv59+8T+bTNePOax
Ztyp/qwZL8J2uNuMR2F/i3jmXTOuAzyn8Rt+O8Y/CPtnxC0XjP8J8F3GX2k7
BY3/ER6PiFus3/OYFzfziOq3G/8pPC9kN/5WeF4A53kBnOcFcJ4XiAtznhfo
uQHO84Kd74TnhTFmfgzMs6+a+ZTWr111gYN1mnAPquv+sfS5+7x5+vcMBO/T
w3P53ni8Z/r1y9x1rtOvZx2sa+Z4ruveP9f9Cf/Hefng/WyOfnbVzwpzfMew
XyIXD15SKMOmC1ey/vj0iEiNW+a/v6pko/w+HzThwdHfzPC8Ty+sz3C0aEAv
NweXzXDlPxx2e69Yw/EznvA57JbbX/bNbcnc4YCMvF1kVPjjGTaF/Xt/73mN
36AHn57545jfS1z07reNb9L9ZZ9j/CYOje1x9hOfY/y+XqTXJ6N/8DnG74b1
Lx9J+svnofslfP7clMlFpjVfFuCh+ygCXJijf34o/PMzBc4G3iegD8s7Naba
2P1SJ6V5QoGPfI7xzv0zN9/kpmFpp6XlunoXyv3Tn3X+5Qc0ToMefECxI72r
jLvudb1ToE+pBf/h1s/XO10+98wDPg/dr+LzdjFZViwqHhHgoftYfB66j8Xn
oftYfM7fBZz7n7gwD93HEnhugKOf+ze/2vPSysDvCugnLms4tc6vJ6XtqpHb
TojP4W+5/5/t+euYnncvyqdjKi2elR/+bG1t/l7g44sPih3d/Z/8dOR7JxaN
8nno/iKf739jUWLt/RcCnL8jOH8vcP5e4Py9wPl7gfP3Ii7M+XvRcwM8dN9R
4HcFuP5fPf3+DOiPmP6UPvS9EIfw95pivpe0sfbQyHx3Yf8GXtLYg9fP2hs4
fxfwr4y9BTh/L3D+XuD8vcD5exEX5vy96LkBzt+Lfq/A/4CH7sfzeXPjfwR+
DBzfsYX1h+D8vcD7G3+o/vYV41e1P6EHn278rQd/Ds79DF7B+PMA5/4H5/4n
Lpi/wLn/wTt98+/8JZgH6T0F8yY4vkuanWfB8V1G2PkanP0b+AQzX0u8jQeu
mXlf+wd68LkmHvCibFwBjv7pZeMQcPTPChvPEBdu/9q4f+MZ+f10zZX5P07z
EIfAf96YXjN5aVefJ7Wd+GTRh6948RuHTKi9zecYvwfjSr5b7Mn7yjFOB1V/
uk3f3j6H/dwsN+rHd3b5XO2k/cVi7+Tx4yL83qplvn2+fxdfj+/ybvarKV+M
TOPnCr//2tN3HmzQ+Jw8Pv3M86u2pHmIEzC/QA8+pujyJZUGR3rfvDq1wezT
95Wjfyrkq1m5YJzP8dx+393Zl5LH57AHbj/2s8ob1z55WY698dU7HxS872Ee
RB4NPfjw+y3/3HDllndu56G3Zszw9RjXa7K9/eEXa3w9xjW38/P0tjE7J0VK
wqKHJhathzo5a2vzc8GHHLvWMTJztOfQC+s/M3r53b4P/An3M/hP5n28s/Z3
kb/yjtr+Aefngn9m+kf62v7HuIN9Qg9+y/S/V95+RxrX3mT73cHRzwWt/YBz
P4N/bexHWlr7xLhD+9CDLzP26VWxdg6O8dLUjgtw+LcbdhyRP5GBdtyBY7wc
sOOU3kfu2nENDrtdbf0DOPqB3z/e+AfpPrZLgQKXUryX/u2HGB0v4z96aMlf
S30evqXln9NWXPFO/xV15OGcqcrxvZij35ijf5jDnzCHP2EO/+ngwhz973hu
gKP/Px7x/WPjUlP4dwn3T50Nm3c27R0h0+ds7tm+aar6MYwj6MFHV10b3a9r
lJdyqNJrq+f4enzHsX3PfrHwjxT288Lt7H5h95E8L/lc88EBzUs3OXzbkz5R
fZuWS2N/KHXqT7hUq2GqcowLbufC8lNh2ddGydxxay5e/MdO4Jfw/1Lowa81
H5q2qUis12tE9jVH01KV4/+fn11qmPvEoVT2nzJ01Y0hm2777eD/itz+q51G
rM85zefwY3tOnnj0vSZ3vO0rd12o3d73b3juDuJo32u2YEG7wanK8f9Vbv9v
074Mse8JP4b2oQdvbN7TG2Z/L/lD7xPbP+B4nzm2n8H5fcCvmn6W2vY7wo+x
vYGfMd/Rq2vtgfyk12bM9sNP/ey3g+/C7bQwdiVfW/skP6PPBd9u7DPARxr7
l+52fL1sxpH6W+jBq5rx5Z2w4xQc/oQ5/Alz+BPm8CcOLszhTxzPDXD4E+bw
J8zhB7pa/wzOfgB8l/HPMjUyR9a/ZySrX4I9VJRTrS7cTlLesOmPbQtVifJ+
z1xoUlpF34/huWU2H5sV81oyzwvC7cwf2v5ynS5X5dtDM7f2KJKsfgnjAnrw
Ync716r+XrRXYP2KxzvX9P0YxkX8pwOfGXncbwd+qfHBnJ1mxSWxXrj9yuOP
vt/27A1pu3FumfJ9k9WPwV9BD/7h+d3fHPk21tvWY2WmQhN8v4f3r/lIlabF
O/kcz61+6ejm7MP99jF+uf3eBaTl22VjpNjC+eOidierH8P+DejB35leatb4
vXHewJEToxbmCPhb6d+saqsJpf12sO+C2yn2zltffXf5juz/9diYizOT1Y9h
/wn04FvqbFs5/I14r0fZHQvfnOb7PbxnT+J4rqN9cbQv/ez7w49xP4AXNu/v
DbD9QP7QK2r7E5z7AbyZ6U+pZr8X/BjbJ/gn5nt5Nex3J3/obbV2Ao7v3sba
Gzi+F7ffydibNLL2DH+I9qEHL2/s2btrxwU4xvWjdhxROzLVjkdwtk9wOx6l
lB3v5Gf0fcBnm/HurbZ+Axxx4ETrf8AxfrmdOsb/yMG8Sx9KrZzo5Y86lfXO
Y/FeoT0NinyTEuExX3k+R9inJa+qHv6nd//Iqbsa3vaGrFizsHZX3y/huaxP
6vTwd+Oy3JILCecWXH7A9xuwK+jB183IsuBOrjven0UeDdvysK9Hf7J+y8K1
05pujJFH3+xZ/bcXE9UPYNxBD567xzuNPqt311tw4WKOn1r7fgPj4r73d9cO
PySxHxNuJ3JZ/u8HDoiTqMtHnug2LVH9APa/QQ8+J+Ol8QkD7nmvH096o+1K
32/gPaViuUxX6gW4SIbwT/a1D7Qv3P63N0vs2lTlnjy2aOPpF+ckqh/Afj/o
wb9tnPOjnOcTvJa/9Xmr8Wzfb+D9HdzVvjjaV67/bzTv6dW1vxcc/fCa7R/i
Emn7GZz7AXy26WdJm9D7eIO1ieoH8H2hB79qvqOXZr87+RNvvrUTcPg9bien
sSvZaO0W4x1+D3r9v5OxW++8HRfgbG/ga824kNHPVttbZFSijmv4MejB75px
5w224xQcfuybGVNX3HwxidsRbqebGe/yUvWjYwsOTfQKGP+g/gp68IXGb3gv
jf3jfyWO+hz+ijniT+aIM5kjzmSOOJM54kwHF+aIMx3PDXDEmeO/m56YbWng
dwn3z8PG30qfS0PWP9bvnvrbl69vavG/fJe9WlUe7f3lZwnK0W+9P51YtmQm
n8PfcjttWk/+RT6NVA4/fDVv0Wufrojx7lR4/pd94QnKYZ/93rw/Msdcn8Pf
Zqp94L3MG/12YJ/c/tubvs75xVuxMvW77y41PHhP/TPGNfTqtxuUiPpg/V0v
86bkbneiEpRjnA66/cik78sl8nwha702T01q6OsxHrn9uFdHfrE3x10ZurLn
X8dLJ6jfhn+DHvyBql/VzxJ9z0tuX6DBc4cTeB6RxOfWry4QfY/bEW7n1bfH
h1/fcU+63t+6rdfQBPXP8MPQg7dtnrn45BaJ3gvhn55bNTigF4deOfzt+80u
5xj0jx9xcKll29f/K9L7gK8cN3rMe1UTvS72/UkvDr0k2P6BP+R+Bm9k+sdL
sv0MDjsZbL8XtSPcThbzvWSNtQf4SdgP9OCxxh68gdauyN96mawdgsOuplh7
Boc9cPubjD1LRjte4D/RPvTgb5jx4vW14w4c4/G2HafgGI/czgUzruVj6x/g
Z+DnoQd/2/gHr6r1M+DIQ1lf3fgl2dp11O0nZsV7l/79vUn6/8MCa17vVnnd
XeV9NjZdkWnNEa/nxJ8PF5vj6+GfmcM/TxnZI3+Z2QEu87I1X3axr8/hn2u9
9vCUotfv8vsIv8/0b7JtHlv7kHL4yY/mVJq5ucx1L7p0vSErc/v+E/PagjZ9
hrSrFa8c8yO3c6tWmffrbrkpr9QPP5779l31h7BD6MFv587x+bT1d7zrh1tU
imkf8Kte2xvVihebF68cdsjtPH+gcKPRP8dJ2bfTznRfG69+D+MOevCPvn2y
Yr7OCd4jw9YXmdcp4J9lWPeEKvuHB9oRbidD/BMn499NkNu1MtUrm9v3e/An
0Ov+nGbjfjg6IdH7e0au/z2dM6AXh14Wr1i7588q8er3cM4aevBllaLjfvs+
yXPoxaGXd9+ftyRbft9PcvvgdbuOvLk1b7Ln0AvrxeiVw082Xfx3lk01/faJ
yz7bP/Bv3J/gh9cdeHb6e4n/2J3pf9KLQy9D7feFv2I7AU+7++/39fJZOyG/
5z1j7Y3aEW6nm7E3aWXtGf6KxwX4c8aevct2XJD/lBft+FL/SeMCPMqML5lr
xy/8GOJk6MEvmfHrRVo/QPGtsP4D4zekmvU/V42fEfaH4B8Y/+PNtH4MHP5w
kvV74PCHH1s/SVyYwx9usv6Z3kf4fd43/lnWfl34iddT7qif7Nj8/r2nLp7x
Gh+ZPrvk/jjliGNH/9gkpv1LPsd8we3Mu1Sny6tvX5JhBWcVylM+jv2nBz14
yfCGf9+se9NLaL/7xWa9fT3mO9a/3upY1wdGR8vsVTWerzAsTv0h7BN68I86
j9rfZ3uQD26Q72S2t+O1ffi3Iw0KDsiw85/xtS9+UJ9Zvt/Tewy6fFt65Q8B
7mpHuj9S9Nm82+LUv8HPQA/+v4qDeiYcTPIcemH9eKNXDv92/3bOz86cSfYc
XLKU+7ziazXj1F/hfjnowRtn7d+l02MpHutxvxzrXzN6qflXrah+S3z/xr8X
/FjDTxI7S7Ln0ItDL/VLLy6au3ac+jduX/eTnBwf/1rnJM+hF4dertnvCz+G
7w49eI/pG6vX+Wdeu2nthPTi0EvlG6mxXZ/z/RXbLXg/Y5/eDGvnpBfWf2js
XDn8VQMzXrzD5RP3RMz0/RjyR9Y/acajjLTjHX4DeSj04F+Z8e69bP0GOPL6
XtXud4ts7fsf5PUHn8r20Cuv+Rx5NLf/hvFLMmnzlGpfdYtVP4P3adXm9q7O
4vOcLTsMmZr1orenaKm8XU/dYT/mLTgyLrLcap/Dz3M7uSPffy187zXl8D/z
F3+5INviaO/xI2vPr9vgc8TtV3e8N2bqYp9j/uJ2cl3vs6vDc7GS7YEGL76Z
y/dLmJehBx86ddvLA8Lvead3NdtfvXNAL6xvltz+wMMJ92RR/scfOX44Vv0S
xgv04Gl3T3xyYkqS59CLQy/hnZaVLt8zVv0S/An04NO2lhjxXIEUj/XwJ6z/
zuiV6/6c+ltKti6W6r2z/l6+7Wd9/4bnMuf2qR3l8GNdSnzUZnehVM/B5X+V
f24+d1es+iX+veC/7Z2cvKp+isd6fh/w1UavHH4ppc+672d/5LdPXL463qBl
272xfh5K3xf8laciao755/s69ML6BkYvx6y9wc+wfYK/aezNy2ztmfTC+v7G
nuWCHS/wP8iDoNf/p5nx4j1ixx044gTWzzHjVObZ8Q5/gvwOevAHzXj3/rJ+
g/yYjLP+BxzxD7eTxfgfSa2waeAXX0SrP9l5Ie38wqeueszLVFx5PvmJG6qH
f3jvq5wH6q6O9eIP9pvX4YLPEfeyPurLD5K7HfU5/MCIMfl/SktN8Jjv+7xJ
5pfTElSPcR2xce6EOdWSPeYXDFe9jvcPXumauX6q5+Byp1HWkae/jtFxh/t+
oQefkfzXwZ3vpXkOvbB+ptFLwZ0ND8xsEaPjlNsH/711pV0jiqd5Dr2wfo3R
K8c4zZilZZcejf32iUu+HlcPvdsqxt8HYv0D9OCvLh2W9d3eKR7r4R9Y/5rR
K8c4ndps/oJ63/vtE5c9mX6Y0Xx2jI47xDPQg781dF/RdY8mer89MDhTrx8C
emF9ofCG295/NFE5xt1lY4feO7WjIxMax/C4DujbGDuXA2vPrOh+M0bHEf5/
Bb3mNWa8eB3ffPP9ZYnRPK6F9Z4Zd/LHi0eKzst7W8cd2q+buXjTWmNvKs91
7oXHfq8S5bVd3mtQrZL+OMX/f1g/smiTLcW73laO8bjop+fjkr04b1/E16+1
X3VbOfLfc+Nl5ZSqt5QjruN2vK2Lqrw91OcYv6e/a39/xrxEz8FVj/FbrdBx
L+fxZI95dcPly1/eOnK/0W0dvxhH0IMnj2+6dHauNM+hF9anGL3E7srxfWzL
Wzp+UbcIevCns40vcGr2fY/1qE/E+pJGrxzjd9K5pnvCS/vtg082XObf/qDc
3/tv6/jl3wt+4qtB3Ta8meY59ML6U0avHOO3ZMW52Rf099snLuP+99CctG9v
6/iF34AefGK3afNS+qV4rIffcOiVY/w2y1fj78PnfPshLketfWKcIk+BHnyD
sU9vi7VzcMxTrJ9nxoW8a8cXxin+PwA9+BAzvrzf7PgFR/7C+gfM+JUvFm39
tWfeSG/1hSp1m91K86rmq/jH5TMRXvkSkXPOfBylHHlBv/mT8l+MvqEceQpz
/J+HOf6fwxz/z3FwYY7/5zieG+DIm5gjbvkh4qncA875vxdxS9jIzzZ+H+Zz
+E/ut+wRC5uElboqzz+WPP3aczfYH3rQg198Yt+Erf/4hdqX3mp8c72vR5zG
+mrZbm7/qXWMcvi9N3u06J+0O9576eCjly4fuMF+0usxaGeH5+b7esSZ3E7G
0kl9vBL35OtFnT9e91Skv2/ZxsnQg9/6+vqDueoneQ69OPTK4VcrfD++45aB
Kd6ZTA+sbhh3QznGNXOMX26nomlHOfxqlcg7l95ZkeY5uOrhJ4c039Dmm84Z
Njl42O3cb0e2iLqhfhL+GXrwnmNzFtpeIMMm1sM/O/Rh4PCTF2uMWf9mc799
8MuGy64vp49a8o89w0/CP0MP/mnnD/u1H5rmOfTi0CuHn7y/r8iKHzr67ROX
U0WvvxpxJMrfp0r2o/9/ztK14rsLkzyHXlh/w+jlA2vP8JPIs6AHTyn1rz17
1ey4IP8srH/VjCOpascj/CT+XwE9eGUzHr3ydryTfxbWnzbjXWpYf7LW+A3N
s6AHz2T8iTfF+iVw/D+nk/Vj4PDPzOGfmcM/M4d/Zg7/7ODCHP7Z8dwAh38u
becd+l3C/VPBzFOy4/UP8s2fdkX98EuRe7bMzH/ZW5Mx24vDllxTjn5jfY1v
bx2YlfGadOo4cWuFN66rv9X9+VYPfmzbkY7XVsR4N4vMqDOxrK9H3M76zKc3
vFYy8x2ZUL7Cjim5r6q/RX4BPfi7H7/yYcmFCd6BS7nqHHskoBfWZ70xc3LF
RT7396VMuLHrcpLH/FHDVQ//+cfmHRE1nkz1HFz18J/DCy3KGfnWfY/554bL
zqfuVX7l8jX1n7gXAnrmDn2YQx+2puz+VQtKX1X/ye0zd+jDHPqw0i/maFEt
p+9v4eehB/+82MobHcpn2MR6+HmHPuy1V0ouf6L8VfW33D74O8teeHvDF/c9
1nP7eu7V6JXr/9WbHtr9e4k0z8FVD387udDYGZV6JnsOrnr4z6t/V5r8wbIE
r/G8q9uqRF9n/xzQF/675udFlybIJTuO4Cfxfy3owVNP/TuOvDZ2nIIjXmL9
QTNOlcNvPGfGu8e8uvEb8tCdB3uffOqi+of9H4xvNeeZ617pD75fM2jXZY4D
PdbDn/wwcsjy38ZcVD+AfBZ68Bm1ft11+//b5zDiyl99PrrC/sS70mvQ4Len
XVaOfIHbKdb19VZ9FsUph384VavVirNvJ3oOrnr4h5hhj9d59qtkj3ms4arX
fWWV9hW4+Eeq1y65x4Gf5/gccYiDu9pRDn+So8eZ8jNj73uzvqn3WpH+vp/B
eGGOceFoRzn7HwcPA2d/4uBhG7KMq3C54SUd76xn7tCHOfTKdZ9t3oWxlev7
7RNXPcb72Jajk3LFpnnM/2e4zPt861vLG1/S8Y44HHrw0nmKfPBA9RSP9YjP
Wf+M0SuHHyi4spB3frBvn8TltLV/jGseR+BPGPv3Iuw4In8i39jxqOtlNI7A
p5vxqJz9xlPWD1D8FtDvMH5D8tR6okfXZufUPyAf/KHi2z8Waejzp6fVvTDq
YJDDnyyrMKDzO/MidLwjv4MevOHRtXO3TwjyN7eX7lrxWJyAww90nZ6vQPM7
iZ6Dy8R6I65X3x2hfgD2AL2uu9Xr1uxamRSP9bAH1g8zeuV631Hdes2WtEvz
mHc0XPUY15UaNIsq0jjDJgcPA+fx7uCq5/Hu4Krnce3gYRU7vbe2f9fzOk5Z
//+Th7V59dFLXdqe1/ELfwg9+MFcvUe+NP++x3r4SYdeOcbvveFtutWKTPEc
XPW6vz3pw5v5n0vyHFz1GHeNjH16c62dgyNfY319Y+fKA/N7v47fply9oBz/
B2P942bcSYnBUzqOaXY8MB6ZYzyC87hjjnEHjvF1fPj6rWWGJHlt+s58YmOW
U8qRLzt4oJ0Tph3lGF9tHs+4bcHuFM/BVY/xtafeyQtFM9z3mO81XI6uj9v3
aIOTOr5gn9Azd+jDHHrlPE4dXPU8Th1c9TxOHVz1PB4dXPU87hxc+5/Hl4Or
nseXg6uexxdzjCNwHkfMMV6Wbj9W7G6HA4HxwhzjBZzHC3OMF3DY+b79v23u
Ny7Jc3DVw86LP/13hUc+SvUcXPWw8+VPVCy9b+5974sql+8Xn3FYuf5/jzj8
J7fzi2lHOY8LBw8DZ/t3cNWz/Tu46tn+HVz1bP8Ornq2fwfX/mH7d3DVs/07
uOrZ/pnD/sHZ/pnD/rsUrbbFO7ktYP/MYf/gbP/MYf/gbP8OLn+diRyxfNoe
/zypzb+gB0/p027JlJupnkMvrE81euWw80YxycV3F8uwycHDwNn+HVz1bP8O
rnq2fwdXPdu/g6ue7d/BVc/27+Dan2z/Dq56tn8HVz3bP3PYPzjbP3PYf4aj
sZma/70kYP/MYf/gbP/MYf/gbP8Ornq2c+awZ3D18ze73RrRO8MmBw8DZ3t2
cNWzPTu46tmeHVz1bM8Ornq2ZwdXPduzg2t/sj07uOrZnh1c9WzPzGHP4GzP
zGHPm478y4XtmTnsGZztmTnsGZzt2cFVz/bMHPYMzvbs4GHgbM8Ornq2ZwdX
Pduzg6ue7dnBVc/27OCqZ3t2cO1PtmcHVz3bs4Ornu2ZOewZnO2ZOey5g/Hb
AXtmDnsGZ3tmDnsGZ3t2cNWzPTOHPYNzvOHgYeBszw6uerZnB1c927ODq57t
2cFVz/bs4Kpne3Zw7U+2ZwdXPduzg6ue7Zk57Bmc7Zk57HmRicMD9swc9gzO
9swc9gzO9uzg4pn4WTjehp7zUAd3taPvw/kpc+Sb4Gz/Dh4Gzvbv4Kpn+3dw
1bP9O7jq2f4dXPVs/w6u/cP27+CqZ/t3cNWz/TOH/YOz/TOH/Rc1/4cJ2D9z
2D842z9z2D84/3+SOf7fCM7/b3RwGWb+fyL8fxXo+f+QrMf/W1iP/0+Cs/07
eBg427+Dq57t38FVz/bv4Kpn+3dw1bP9O7j2D9u/g6ue7d/BVc/2zxz2D872
zxz2/535v33A/pnD/sHZ/pnD/lua/7cL/x8eel4vc3BXO/o+vF7GHOti4Lwu
xhzrYgfN/9sD9g89r5c5eJijnTDoebw4uOp5vDi46nm8OLjqebw4uOp5vDi4
9j+PFwdXPY8XB1c9jxfmGC/gPF6YY7zsM+tfOi5wjiObWacW3t/CHONoiVmP
E153hp73sTDHvhRw3pfi4KrnfSnMsS8FnPelOLjqeZ+Jg6ue7d/Bw8DZ/h1c
9Wz/Dq563gdSwawvB+zfoVfO+0OYY38IOO8DYY79HuC838PBVc/7OmZbO+R1
YdZj/wY4jxfm2KeRUPPffRrKsY+3pNnvIbzva5vZPya875Q5xtH3Zv+J8H6w
q2a/ivC+L7TD+06ZY3/pJbNPRnifGPS8v5Q59pGC8z5S5thH2sbs7xLe9wU9
7y91cFc78oPZ3yW87wvt8H5U1iNuZD32qYLzuHbwMHAe1w4ets7s7wqMa+h5
H6lDH+bQK+f9osyxLxSc94U6uMwx+7uE94NBz/tFWY/9Pw69ct5Hyhz7RU9a
O+f9YNDzftGzdnzxfjDWY7/oJDtOeZ8Y9OxPnrT+gfeDsR77S4ebfezqH3De
ijnOE3U0+111XGNfOvR8nog5zg1FmX227GfkLbNfV/0AzlOgHT5nxBznhsD5
fJCDq57PATHHuR5wPtfj4LLD7CcPjGvo+byPQx/m0Cun8zubVpt95gH/4OCu
dsJKmv3kOt7h96Dn80Gsh99jPc4NNTb7yYX3n0PP54ZYz+3zuaHqgwf+lvH6
NfUnmBeg5/NEDr049Mr5PBFznBvaYc5TqD/B+Qvo+dwQc5wPGmnOcXA7csGO
L97Hjnb43FArO655HzvrcW4InM8HLTPnXJTj3CLrcV7mWXO+Rv0Mzg31Medx
lOPcEHOcG2KOc0PMcW7IwYU5zg05nhvgODfEHOeGvjfnp5Sjf+qac1gc10kV
c55L/ST269Y252eV4/w7c5xzr2XOkSnH9w0z59HUfyKfQjt8Lp45zrl/ZM7B
sd+Wr8x5TPW3+D8G2uFz8Q7uakdOmfOY6p8RD6AdPkfPesQDrMf5enA+R88c
5+XB+Vw8c5x/v2nOY6q/hd+DHhzn4lkPv8d6nJcH53PxzHH+/S9zHlP9J/wk
9Hwu3qEXh145n4t3cDlhzmOq/2T74XPxDr049PK+tVs+vwk9n5evascLn99k
Pc7LV7bjjs9vQs/n5Z+1453Pb7Ie5+WrWb/B5zcnWz/D5zQ7Wr/E5zSZw98y
h79lDn/LHP7WwYU5/K3juQEOf1vSziN8TnO9uX9A/R7+75Ri7htRjnt+mOOe
n9bm3gP2w7LH3J+gfg/xP9rhe4GY4/6fM+beBvbDAj3fC8Qc9wKB871AzHEv
0AhzH4j6MYx36Pm+IAd3tSPR5j4Q9Xvwb2iH7xFiPfwb63GPEDj8Hu4LYo57
geaZ+0DU7/Hv5fuCHHpx6JXzfUHMcS/QWHMfiPo9zF/Q831BrMf85dAr5/uC
mONeoMPWDvn+EOj5vqBN1v75/hDW476gFnYc8f0h0PN9QSvt+OX7Q1iP+4I+
NPcL6Tile8OU475B5rg/8Ii510g5ntva3I+k45TuPVOO+waZ4/7Atea+Jh2/
iP+h5/sDmeOewP3mnihuB/eb6XjHPYEOrnq+94857veLMfd96XjEOIKe7/1z
6MWhl8fMfV86frl9cNz759CLQ6+c7/1jjvv98pr7vnT80v2BynHvH+vp/kDW
K+d7/5jjfj9wvsePOe7rizb30el4xDwFPd/Xxxz38oHz/XvMcZ+evf9TxxHi
EHvPp3LEIfYeUeW435g57iu294LyeBd7z6eOO8RdaIfvMWaO+4rtvaA83nH/
p447xI1ox3GPsXLcY2zvBeV2cP+njlO6L1c57j126MWhx/2f/jweep+wctxv
zBz3GHM7sHN7n6eOa26f7z1mPd1XzHrlGNe495g57je293nquOb34fuNWc/v
w/cbg/M9xg6O+z91XPP35fuKHXpx6HH/p/oBtk++r9je/8l6YT3uK7b3f6p/
wDwIPd9jbO//VE73hCvHPcb2/k/1J5jHoed7jO39n8oR/7Me9xLbe0GV4/8w
R839xupPkAfZ+9iVo14Gc9St6GvuT1aOPMXe085+D/e0K8f7HDf3P6v/Qf6C
53JdDOaoc2HvXVc/g7gOeq5zwRx1K6qbe7C5HbH3rqufoToIylHPwt7Hznph
PepW2PvV1c9Q3QflqFvh0ItDr5zrUzg47mNXPwN/Aj046lCwHv6E9ahDYe9X
Vz/Dv5frUzj04tDjPnb1S9w+161w6MWhx33s6pfYHrhuhb2PnfXCetSnAOc6
FPbedeWwT9aj3sQdU79A/Q/iBOi53gRz1JUYZOomKMf/B+x97OpnEP/Ye9fZ
X2n7XIeCOepB2Po+6jfw/xlbr0c51fFRTnV8mKOOj3Kq48PPFVuXR/0P/Lat
T6QcddOYow6areOjHP1p6/Wo/0Eca+vyKKf6TcpRT4056qDZOj7Kkc/aej3q
l6hOlnLUR7P1epRT/SnlqHdm6/hw+6jXo/6K6n8pRx00W6+H9cJ61Duz9XfU
v8EPQM/1zhx6cehRr0f9G7cPjjpoDr049Mq5DpqDo16P+ivuT653Zuv1sF5Y
j7pmtl6P+ivYia3L4/ux0Pp6ylHvzNbr4XaE9ahfZuv1qH+jemrKUb/M1utR
TvUBlaNOma3j47djx4Wt18N+T5/L9ctsvR7lyNdYj/pltl6P/38h699sXR7l
VJdHOdXlYS7MqS4PP1dsnUf1S/Dntl6kcqrPqxz1eW1dSOX4/5Kt86j+h+qQ
Kkc9X1v/8T/7o0Lq7frnOGw9X1sXkv0k6j+yv0KdR+VUj1U56v/a+o/+fonQ
uqi+n7T1f21dSH8/pLUrW/9R/RXV51WOusC2/qNy+FvWo/6vrQvJ7aP+o/ox
qsOrHHWBbf1H1gvrUecXHH4M9XwdHPUf1Y/x+3B9Xlv/kfXCetTbtfUf1Y+h
n22dR+VUl1k56vDa+o/cjrAe9XZt/Uf1Y7ArW+dROdWb9v2ercNr6z8qpzq/
ylGH19aFZD+M+o/sD1HnUTmPR67ba+s/KufxyPV5bf1H9XvI76Dn+ry2/qNy
5ImsR73aSaa+rfoZxJkvm3q4ypHnMoe/ZQ5/yxz+1sGFOfyt47kBjjyaOfJo
5uifl00dZI5L5TtTT1n9IdWXV97Q1GFH/XTlVLdd+XxT/12+NnWfuX3UVWc/
qc8Ft3XnUVddOdWpV155/NH32569IbZOuvo3jC/owT88v/ubI9/Gon66cvht
1vcuIC3fLhsj902dbuUYd7auuvo9+BNbP105/AnaB39neqlZ4/fGoa4664X1
xd5566vvLt9BfXP1n/CTth66crwP2gHfUmfbyuFvxLv04tC7nit1Tf139bd4
rq2frpz7Abyw+V2oq856YX0z02+ot87PFVsnXf0w2xv4J+b7on66vz/ffl/W
dzL2I4+82bP6by8m8nyBuurqb+E/0Q54eWO3qKvO/l9Yb8eF2Drp6lfhP6EH
n23GY4DXMeNapkbmyPr3jGQdp2hn/EcPLflraYry8C0t/5y24or3e+ZCk9Iq
+hx+hvV1Nmze2bR3hJTZfGxWzGt++/A/3x6aubVHkWQdv/r/h/UrHu9cM0U5
/BLaBx9ddW10v65RXvynA58ZedxvB36J9btf2H0kz0tXpPHBnJ1mxSVx+9J2
49wy5fsmsx/wtvVYmanQhBTleE+0D95yQPPSTQ7f9mo+UqVp8U4+R/usv7D8
VFj2tVFS/dLRzdmH+8+Ffyu2cP64qN3JOt7hx9AO+LXmQ9M2FYn1Bo6cGLUw
h89hP6x/tdOI9TmnRUv/ZlVbTSjttw873//rsTEXZybruNb6BWV3LHxzWoq/
vkDvA77n5IlH32tyx+tJerTP+r+N3vVc6WffE+Mazx1gfy84vhfaB29sfq9X
1PYnOL8P+FXTn1LNfheMa3z3Gvb7grN96jqp+b7eVms/4Pi+rG9h7EfaWDsk
fyWNrN3CD+C5d639g/P4Bd9u7N971I4vakdYP9KML5lqxyk43r+UHdfwJ/h/
12rrH8CRJ6J98KrGP3gTrf8B5/ELvsv4H+k+tkuBApdS2J94p/+KOvJwzlTl
eC5zxIHMEQcyRxzIHHEgc8SBDi7MEQc6nhvgiAM/HvH9Y+NSU/h3yY3pNZOX
dk3zz++0nfhk0YeveMzXnr7zYIPG52Rs37NfLPzD95Pwz+3GbD/81M+p7Me0
HfAxRZcvqTQ40pM+UX2blvM52mF97GeVN6598rLUqT/hUq2Gfvv47nPHrbl4
8VLAj3m9RmRfczQtVTnGI9oHH36/5Z8brtzyPrvUMPeJQ74eds76n6e3jdk5
KVKGrroxZNNt/7mwc6/ZggXtBqeqX8L7bF+560Lt9mnK+X3Ahxy71jEyc7S3
g/Ron/WfGb0Mse8Dv4T2h9nfBc7fRfNf87u8T2y/gfNzwT8z/SZzbP+TX5Xa
9nvBL2k9MvvdwTEe0T74LfPdA/xrYz/ytbVD+Bm0k3yo0mur56Qqx7hGO+DL
jD170+Zs7tm+qa+HXbE+3owL6W7HEfwM/MMJO+7A4R+Ywz8wh39gDv/g4MIc
/sHx3ACHf2AO/8Ac8VtX61fJn8vvp2uuzP9xGvsHL37jkAm1t/kc3yU8ruS7
xZ68rxz9OaD602369vY5+jOq3Kgf39nlc/Rn0/YXi72TJ0MYOPrzp/dXlWyU
3+eDJjw4+psZnle1zLfP9+/it4N+YP2yb25L5g4H5N3sV1O+GJnG7ymPTT/z
/Kotvr+CnU9+dWqD2afvs3/T9wGfnvnjmN9LXPTK56tZuWCcr0f7rJ+bb3LT
sLTT0u+7O/tS8vh6fJcjb3z1zgcF77Mf0+eCDyh2pHeVcde9szsPvTVjhq/H
d2T9sz1/HdPz7kVZk+3tD79Y4/tDjJd7ix6aWLTeffVL/Fzw8cUHxY7uft1z
6IX1U4xefrfPhZ9BP5+x7w/O/Qxe0ry/d9j2D/lDYX1/0z/S1/Yz/A/stpz9
XuCwW7QDPt18L2+StQfye8L6CcYepIC1K3D0c0trh/BLeG4Va8/gGC9oH3yu
sWeviR0v4PAbrL827t/xIpF23IHDn/S34xQc42i/Hdf0nnLX+gFw2O1q6zfI
n8uKyMWDlxTyxyP8Ye8L6zMcLRrgcmNw2QxX/sPxu+KLNRw/4wmf4/1H3C4y
Kvxxf3zh+6a1jW/S/WWfo58Th8b2OPuJz9HPrxfp9cnoH3wOv7Rh/ctHkv7y
OfxSs6Q9+zbE+Py5KZOLTGu+LMDxex1cmOP3/lD452cKnA28T0AflndqTLWx
+6VOSvOEAh/5HN+xxbp6F8o97vsBjLuudwr0KbXgP/7Ejrt6p8vnnnnA5+hP
PBe8XUyWFYuKRwQ4+pk5+pk5+pk597Ouw1J/Ehfm6E/HcwMc/da/+dWel1YG
fldAP3FZw6l1fj0pbVeN3HZCfI5x0XtMpcWz/uMP0f/DRr53YtEon6P/0T74
/jcWJdbefyHA+buAc/+rH6b+B+f+B+f+B+f+Jy7Muf/puQGO/nf8rgBHPzv6
M6A/YvpTPqXvAv/cxn5HzCPo537WHsC5n8G/MvYQ4Nz/4Nz/4Nz/ut+J+p+4
MOf+p+cGOPc//V6BfwBH/7O+ufEPAj9D87u8Y/0SOPoffgzzJvoN/hCc+w28
gvGHAc79qfu7qD+JC/w/OPen/n/4m3/9v2AeofcUzDvg6GfMUxSH6LwGjn6+
a+dBmse9SDtvguP3fmLnWV1PtL93uZ2XieN3beL5BZz9HjiPL3C2B3DuN+b0
HTc5xpc+l/zkJsc8tYnna1e9PFedO1edKcf9P657RZz3FbjuT3DdM+aqD+Kq
A+K6Z8x1D4Pr/gTXfSmOOjuu+lyueoJhrrqE/1fc5YpPXPOpy2//X/6E7Dbg
91zzjit+cMV19v9yHv9fzv6fSvsN/6ey/z/x+P8n9v8kHv+fxK6be451c8+x
bu451s09x7q551g3Zy7Mad2cnxvgtG7OvyvAad3cc6ybe7xubte7mWO9WL+X
1hk366Rq/1gnteuJOl6wDmL353u8P9/ut/d4v73dP6/vjzjT7mPX90T7dj+w
x/uB7f5ej/f32vOGHp83tOcHPcf5QX0fPTdhzgPq+2D9Otyc72MuMeY8l8fn
uZraepd8f05Nc5+J2jnO0zm47LT1Xvl+ki9t3Vi+b2SFrW/L937st3Wv+N4/
lz9MMfeeeXzvWQ5Tt07vx9D1JlPfTf//j334zLHf3jUftTL1yDRPxzll5np/
l73PkOt5rbL3n3Cd33H2nhaut7vf3gPDdXUb2nuQuG7pXXuOD3qMo932HCj+
b4n2f7XnTIlLc3uOlc7vyAF77hX7HvG9OtpztXQeR4bZfe+0T9tLsPvqwfH/
9sr2/Ajtz/cO23MueB/0Zy97jgbPxXg/aM/pgGO8P2r3IdA+QE/sfgzalyJp
dh+Lnsu242i03bej9/bY3/WN3S9EXF6y+4toX6v3kt2PBA57YI75hTl+L3PM
L8wxvzDH/OLgwhzzi+O5AY7+H2/3m9Hvkul2PQL/p9J7GOy6Bjj8xqb015uk
jV2Po3VncdUxdN0/mT++xKJsC1O1rsq2PKWWvtj5msdcqg1r98qYCwIOu9pR
trlsOHjDY36s14I5wzNcUz3sLVO1iW2vzIr2mH+87O8L6/vdVD1+7/A+gycP
6hfjMf/ccNVj3uxq2vGYZzTPVT364aB5T4/5VvO7VA+/V9P0g8d8i+k3GXZv
5arp3fw4YVXGsHPvvhLhMZ++/nLN1FevqB7+udSTncvn2HHLY55jXPSRUpVu
qh7fZUih3jfbr431mHsd/vx7dtMY1eO7bPy147enbsZ5zC9NOXVqa+441eO7
9M+2Zl7Pp+95zDcdWrYjfle86vFdcjT68e7VNQke87k1Bg86sSZB9fguf5p2
POb9zHNVj+9y3rynx/wP87tUj++y0fSDx3yw6TfVw489aPrZY17IfBfVY1yP
N9/RY77AfHe5nlB3c9kKfjzWof5b716qf9xjPm7lwMyPRp1QPexkzg/Nv/mh
Z6TH/MvR2d/ov/uW6mEnK0sd73C5bZzHvMTs64MyV7irethJq3Ur2569lOAx
b9zq3fD8lxJUDzt56/LoFn/FJXoOrnrYyfHXysatuJ/kObjqYSc/j6i3YOz7
yR7zxYarXu9xuvbK5P5j/faJq17371U7mavzb/77E1c97OTDGh9XK37E7x/w
1R9FZdl5xO8fXYc1/ewxX2q+i+phJ4PMd/SYTzPfXfV6vsPYicf8TWNXNk/0
4/A/Fx8p0bQg/m/s8wLvbfpkZIMo1es52WcahbWuHOsxf/zd+TPHfnRH9bCr
+2Uypf18MMFj/uD+xuNePpSgetjVtT23/6qQO9ljft1w1ev6S/6LKfUSUzzm
Uw1XPezqTnjHl9fmTfOYxxmuetjVh+UPtnzkfKrn4KqHXVX4vVSuDNl9PXHV
w64qN86cJ6mi//7EVa/zyIN9Xj3S0u8f4qqHXW24mv3hSef9/gd/9ekW7Q5H
+P2veZz5jh7z6+a7qx52lcvYicd8lbEr6w+va17z0qizxd8ce95jfigy27GF
b1xVPezwl1urPnwya7TH/MSDTZo8uCRG9bDDVh/U6pi//D2PeYlfC1bM2uee
6mGH39fZltqmY5Ln4KqHHdZ7u+HgB79L8ZjXN1z1sEOv5qc7vt+X5jm46mGH
TVdXH/N1/wybHDwMHHb4dq3uO158ztcTVz3scEjxd59v/eV9j/lQw/V9dD9h
uYLL2yz331/t03DVww47Dimw8eHRqZ6Dqx52mO+zkYmH9/r9r+dHDFe9xtXm
O3rMm5nvrnrY4RFjJx7zZcauVI/8dLexQ495TWO31v4j/Dx9z5HWL02F/fsc
94f/v7rOPM7H8vv/QwiJL1ppoRBFZI3kvLOTpeylUilUZN9S9hQlWuyyFRGS
QhLdo5AtjRJCDBPGPjNmzD5+fq7rde7P/brnev/5fJzHua/3uc517uu+lnPA
4bde0e5zrkSleMx/PjEtbtnWZJWH39Yr/8W+revSPQdXefjtuZTTr7Y7n+kx
P2+4ysNvl52vlD+zbI7HfLnhKg+/LfvIN2/sfSgq2sEj4Lz+7OAqz+vYDq7y
vB7u4CrP3zsOrvLw29pv/dTJ63PVY17HcLUP/HZd0upb1i/L8pj/YLjKw29/
7PZ1r8Xn/f4lrvLw2x+Mn3jMNxi/UnnOd818mfFbKx8TqgfKPOjPMaF6oMxR
nwWc63M5uMrDb1usbTR2y6Bsz8FVHn5becZds84sv+oxf9hwlef9DgePgOfu
zyGu8rn7c4irfO7+HOIqn7s/h7jKc/0UB1f7cP0UB1d5rp/i4CrP9VOYo34K
eO7+7HOtb2t/ofq2xLW+rf2F6tsS1/q29heqb5s7V/lQfVviWt/W/kL1bXPn
EfBQfdvcucqH6tvmzlWe/dnBVT5U3zZ3rvKh+ra5c5UP1bfNnas9Q/Vtc+cq
H6pvmztX+VB9W+Ja3xYW4/q2xOHP1s9D9bOYU3wO1c9iTvE5VD/RwVXeEZ+Z
q7wjPosjPof2qR0c8S203+3gKs/+7OAq74jPof1rcEd8Dq2vgjvic6i+Fbgj
PofqW4E74nOovhW4Iz6H6luBO+JzqL6VnYeo364Kzp8d/uzXsfo5OH8Wx/xZ
HPNn5irvmD+LY/4sjvmz8q+D82dxzJ+ZY/7p8OcQV/nc/TnEVd4xf3b4c6zD
n0Nc5eG3tYLzZ6F5tdoHfrs2OH8WmlerPPx2fXD+zFzlHfNn5T8G588Of/b5
V3b+bL8T/X3M4PqG8j+D6xvqt6uC6xvKDwbXN/x8AsH1DeX3B9c31G9nBdc3
mKu8Y31DHOsb4ljfYK7yjvUN5livUL+l9Q3mKg+/HRFc3xBa99D2ONY3lD8S
XN8Qx/oGc5V3rG8wV3mtlxRc31DePri+oX67L7i+oXx5cH1DHOsbymsH1jf8
vNC0PuzXxQiuD4tjfVgc68PqhznB9WFxrA+rH54Org+LY31YHOvDzFUefpgU
XB8WWjdWefjhq8H1YeYqDz+sElwfFsf6sO+HwfVhcawPqx9uDq4PM1d5+OGG
4Pqw8pbB9WH1wxLB9WHl8cH1YfXDIsH1YeH1YbtPIY79L3Hsf4lj/0sc+1/i
2P8Sx/6XOPa/xLH/JY79L+Yq79j/Yq7y8Cva/1JO+1/i2P9irvKO/S/mKu/Y
/xLH/pc49r/Esf8ljv0vcex/iWP/S3j/y+7DimP/XRz77+LYfxfH/rs49t/F
sf8ujv13cey/i2P/XRz77+ontP+unPbfxbH/Lo79d3Hsv4tj/10c++/i2H8X
x/67OPbfxbH/Lrz/bs9piON8izjOt4jjfIs4zreI43yLOM63aL/Q+RbldL5F
HOdbxHG+RRznW8RxvkUc51uEz7c03nv8ts1loqKTt/+4rvnm096i698FMd5i
c68wetEDA5f91SNeeYES7SYem+TLm/8XvRHy55+PHRi156zy3curvflzd1/+
E6NHWB68yfGOzXb0joq+8mabb76/8z99bsH7tv14er/Pof9dr22X3d/5HHpa
X5z14Lw2UdFpt8QtvmdArDfvOo/V/zVyUZWTw1rFKW+auGPo3vW+PJ5r3oNR
0V+O2DcyZc8JfS445F0c7WmTc3PXJbOv2WHwpXolp/2jz4X81fN3D6712uHQ
cyHv4vxccDx3fsEqK47W9Pl081zf/gvbf9g85ojyZjUaV32pyrX2b77jwTNN
/vTOlcn78Avb4tVuQ7M+Wtl0+z7l33VOnTn3lC/P/wuc2w8espvlaP+oRs92
ih/tc7SzdZ3DW18eHhWdUHp89ZEXtmp7oKf7wtJL76+5N9QeyLs4txOc2wmO
dj56R6cKh3f7HO3MvuOjK3nbRkVHxTzbaGn9laF2gnN7wLk94NwecLQHvP6R
eTc2+HqTtofl2R/yD0gftG/1AnG0UxztFEc7xdFO4XaCoz05QbtJnGmPtrPg
wOvt9MBrB+0fauf2w9ftEOKQd/R7qP3g3H5wtL9t0D+1/SOD/hxqD7hjvITa
A4720HgU7vc3zbhQ3iI43rWd82zcSDBxI2w3y0N2szxkN8s5HoKzH841cSbU
77tNvArbzcTbsN0sR3sozof6Mf+F63HYb2fwPaLtHG/fO8nmvSP8ngJnOywx
7xHleN9Bnt+PY817Sp9L71N97o3B97Lqp/d7SP9Z8/4Vfu+D8/v9KzMfUD3b
ty9dMXl2jpfw9tTfBvzfJY1XNh+L997lCt1qz/A5y0M/y4OzPJ7L8uA35Mk8
XfPvHC/pvvLev73OaVyF/IK/iu9bnXNB+QNVLtdcuvSqymv7/3hlV5uLPtd2
Esdz85WNa96kz1UP8xzoz/d64QlfLsxRjn48OD626J5PcjzMWxBv0c5CHYu9
tvC2k8pbHy2fMS2vP8+B/vQKWRPn172qeqD/95hNjZY9eNXDPAR6nnlz8qAt
e30O+XsTm5fe+Mu19tt5AuQz9nbfue+aPfH+xXhEO4tfOZuy5q0Dyqe3nNnh
3DU74D0I/l//jq3qDsjx8N6Ze/25mk/JizR5LWHmDWuVR+1e1Cw9r/+e4ue+
WnbH7ecSlqn81V0BeWF7TilzXV5mGnk5FWyP8s+C7Q/pyWl6vZ0qnxq0T0j+
Ysp1+yi/z9oZcQ//q3OwXzS+xQT7UeVTbb8jbkAefgKO/j1s/Q0cevIG/VP1
5A/6s+rB/ypl/FP1YFwkmHEhPI7AMY4w7sB1HNnxC47nUhwQRzwRR9wQjhuL
TRwI/S8bT8QRx8QRr1T/l5vPT97dNNsbei779A3PJeo4tfnuvHI/TKu+uWqS
cpbHc1kenOXRHpYHZ3m0k+XV/lWPjzn8T5bKwz6QL9KtV7Uu2y9pfMhzvMR7
5R734zP+V/SfMxb82z9bOfS8XH/Rt/szsjUeQk/0O1djSxTN1jgGv8Jzv64w
5Oj3/U4p/+Xz00/cvyRb4xh4ka5TG8SWzNY4hvgAPbdPyawzedJR5WXfK1qu
aIMclYeezW/dduHc8myNe5A/evHPpP2NcjS+gWcUy9f0mYbZyhEf8Nyuu46u
6VnhT+VerzpxvQ5la/yBntSgHuH2NzJ6lN9j2494AnsWs3YA5/ZEjB1CfKax
s+p5NdhfOt6jk0bluVjIH6fo9xc3zBr158vZyjXOBP1Ex92A4h3HrdyZpVzl
rR8OMX4oPF7AeVyAs/+D8zgFZz+/1/i5sB/a8SKOcSqO8SiOcafPfXtDtb43
Xc70hsys0XtP1cs6jmxeX6/l9kb3vjsiWTnLoz2QT8pTt+JznyUrZ3m0k+XB
WR7tZ3mdP3+bWvuOw748/hfLMz9+16a4kb2TNA7cOG9k703V/fgDvuHuZj8f
b5Kp8QT9Aj2V/t1+6+CPE5RvfLzqvUn/Zuo8DfxS4SWr9zyZqfEH4wh6Xi4b
M6FG6hnlO8f8WrTIkCyVh55NpV7YuSEuU+MV5B9evTH9+IgsjUvgT/bvWrDm
W5nKMe7w3NdqvHlmzbY45ZsKjoquUyJL4xL4TSfmVknMytC49Eu/FSPaLE7W
9g/74fG3Fp3y+aCPN5Z99OsslYee/JvnDsz8LFPjFeSb3lS636jbfP6z4fJB
41sW7a6cpfM3yG/8/lRUn28ylUN+Q5AL5D8K6hHINw4+V+ULBtup8gOC/0vj
YdGgfVT+J2tPxEPu99nGbirfIthfKl892L/C/djR9KPKR1s/wbwL8tuDfqXx
Ninonyr/o/VnxFXI47lDjd+q/A/B8RKSL2PGi/LCdtwhHsLP2wfHtTjijzji
jDjiicZD5hwf/jPxQXi8J5h4IhwnwTkegnPcA+f41sLEW21PrwWvpN35ZLo3
KGneoO4HrmhctfUpvA7y2ENj03zO8nguy4OzPNrD8uAsj3ZCfsiMuSVOXPZ5
+oqOdX95KcMbcv07K0XfIx9+Veb2w/N8jvYzRzuZoz3MuT27vu70VdyqyxrP
D/Ut1/yRuHR9X4CPP7OzVrXbMpSj3492uPO5Kt9k6HsBfNy29Ni00hn6XsC4
w3NL5YlvvzZvovKs8ot27fg+Q98LLH9zl5HfHRl2UePkuDWlDgxumaHxHxzy
Nc5+mPVDuf80Hu587ovPXj+Roe8FyK/6ck+JC7vTNf5DvuWc6Knj2vgc8efR
p8p9duyVDI3/kB/bbezty0+lK4f8gpu7JK8a6b8XwNHOz7rvaLlw0zov/rrd
tM6O137UpEl1Z63z/jNcvt6w/q53n0vXeA5eMN+xVzo9pVzAoed48XZ1ajy0
Rlh/yxY/N3m38RqVnxdsp8b50fZ/IT6DP2btAI7/9V3Qnsp/s/ZHvEX/fvHu
4H6/1UxXDvkxwf4V9oeWpn9VvsLvnW96/rt0jcO6/mD9Cpz9JLPzdb9S+cPW
nxFv4f+Qv9f4reoZExwXKn8sOI40To7acWLfvSOvxQczHlUe4xSc4wA4xwFw
jgPgiAMZNs6Acxz43cQBbSfFMW0Pc0dcFUf8FI6fNh6qfoqr4ojn4ojbqr/h
rKX/dElN9QbN35dWZXmaxk9b9827b9LRMnc/n66c5aGf5cFZHs9lefDYm1r1
m/5Cmr4X8H8hX/qWjf+1Gp0a4s2b/9Riat80jdvgibvOT0n+6YrGW/Bjh8ce
u5KUrHEbfMmhS207fXZZ494nn68sk70vVeM5eKF7Ruw+GJem8RzjYmSHl9c0
HutzyN+fkvneC6XSNc6DbysyumfB/Gkaz3Xea9szstYtrVcfuKj83KZ+TZdN
SFV5jGvI5yt9z96ze3y+onbdd3bOTdP4Dz0jr+5IHn6PzyF/x61vN/loXZrG
f/DWlW9cnTwtVeM24iSe++Zbj386+a7DIX7nb1+eHHfrYY3DE9/eXKPh/+gB
X5BW6eCHldI0/kPP2Cs1v2hT0eeQv1Bhxb1Do9N0ng95ObnjxcKezyH/fME1
rfOsUq5xfmnmtsbPfetzyNe5f+qcKnfqc1V+d/97fn+qlM8h/33O2TuaTEzV
OA/56F9rX/jufzjkYZ+GI8ouXjjmkLDd9n1WovGVdw+p/K22XxD/0Y8jgv2o
fFWw3zX+x1v/QZyH/A7rh+DsV5dKXfcrlS8T9Gd9L0B+mvFb1TPCjgu8L/R7
x44jcIyLKcFxF9L/hRmnIR5rxrXweL9g4oC+R+KCcUY4bjQ18UTjLcUxccRD
ccQ94bh3t4ljoefaeCiOOCyOeKv6202YOabiF1e8Aa0Kv5N2bZ4CPbZOsddq
Sue+xZpnKmd56If8iCbbFqbPylQ+vpMcXpKaovJ4LuQX3fDFzt4rfP7+yvqZ
Bw6laPyHPSF/edhXNy3+1ecdqvbrmXG//76AfSA/rPO45yZdm78wv33nO9ur
Xk3VOD/vVNILA59K1fcI+L5KqS2e6Jaq83z4w76smBP5XryicR5+Bf0HBte4
/MfSMP9td+0nfjiQrPEcvHOpBgWyVyVq/JzUK23a4Zuv6HsBHPJZG86fWlo6
UeNzm482pMb1TtX3ha5vfPV7zPcXryiHnrHvHji8cU+KxnPEE+i/4512t//V
JD7E69/1y3/3N4rXONnw2cEX2/6PHvA7esb0OfrSFX0vQE9skUjM4hd9DvmH
S8Q0/vHa9x6+CyCf974LtyVf8Tnkz/w7Id+xU8o1Hh6UdQ0nx/sc8pVn9isx
+OkrGg8h/0qhkh0+budzyP9xqkW5cb/o/1L5ajOerf79/3DIwz53bskZ+EmG
Lw/+3VeX5m3O9OUbB/tF42S7YD9qPHzP+gPiHuShP9v4g7CftDd+pfIHg34r
7IfRxj81Tv5j/R/zW4wLyB8yfq56ZgbHkcZPyN9ixp3y9sHx68/Pg3FAePwO
NeNa5ccF44w44pXGQ+Ycl66YOBN67kITr4TjpI17wvGwtYmfqn/9xHtKtc66
7CWUuzCi7+Qsjat/DH3lu9K7kr0B6ZLn13ZZGj8h/8nqM132xYf5vhJv/Nvj
UqbGzyrxcRPuWJCs8Rbth/xtg86/lJ4S5qflQtbaAhkaV8Hz9K3zz/SG6RoP
C7Wr/cD7u5M13oJDvvUde7znhqdqnATfPWVQo79LXdG4B5738CPTK51P1jgJ
ntpgXd9/X0jSOBZbJuaZL19M0XgIDvlPMyvtHn05SeNb00GNNrYokaxxD+MR
8p2X37a5c7UwP3L3/hkFHrmkcabcLxfL/vw/esA/r7Fl+sJqKTqvhp5R+072
/rhMis6LIP/Rq8/OqVRB9Wh8eENqvf1UeZ9DHu0p/3f80DqtfXnwB1fc2jHx
ybD8VGMHYftkGHtqfCh7cNC5v95O0XHN9s9n+kW4v34z/ajy/R9tOGTE4WQd
7+wPTxl/CPHsN6/7lcaBykG/FfbDs8Y/hf32FuPPIfm/zLjQcfp7cHzpOO38
4MdT8z3lcx6ndtwJj7tEM35V/tnnLu3oKUleVP6jpe5Zk63jmjn0PFfs+4wt
Ay/reGc9/aruO/F39WzlU96pserPTpd1XOP/Qv7t1GceSG+RGeIzD7TuXqFu
lo538EZ94pfPejdDx2+Ftr/d9H7zJNWv51jynln9YuckHe/oL+ipF7Xs7JyN
YT5qacpNNV9I1fFeuXrFmZfSknR+Bb5584z+hY5c1vkV/GpFs4JRs48k6fwK
/gz9XRc9VTRrYZh/OrFj2ie1kzUOVJxcrO8jyy6rHnDI/1507YGEPQk6fsGL
92laYGVMgo73nuOWDVw3Nkm/K4vu7Rzb53SWyg+8u0fv5DF/K+9N8oUN1+eu
s/LgBZ//7s9nS13W71DoKUYc8l++cPlQh1NJum4J+RXEIX/r1DtLPdxGuUD+
LuLczgvFvvpj7ODVwv+3fnHDWf5i1beL9IhLELZn99rFP5x6PEHjVblgv2i8
+jbY78L9NcX0r8pvs/6DOAa/gvzzxk9UT8WgH2oc03Fk/Fb56aD/axwrGxwv
Gsc+DY5T4XH3uBkvqgc8Ysaj8DiaYcavxreuwbghHGdGmTgQem5fE09C8jYu
aXxjjvhTIn+XHY2PXYv3Swa/O7lCjsa37Iejh48dm+C9OO3rWcMb+5zloZ/l
wVkez2V55p+/WbJVx2vzKNgH/L/5d7/18tvZGvdaybd1G92VpPFWz6tb+fqP
ffx04vZMjXvgt301+c6dV9M1vl364Lm3n+2SqHEMfgL5AT1fvrp0QGqIP9Fp
b2zbhWka98D/PD9pwAsnkzWObej2a4fOoxN1noNxBPlTf9Ra+OutSRqX8n7d
qttL7RL1+wjjFPIb32iyYt78OI0D5w7/NeTjs4m6ngb5vdMKnmq0LlHXtcC7
/dY35/l7EnX9CrzeusrFh01I0HUq6MdzuwxfOeKfrf8It2eF5ZD//thjX1+Y
najfNfx/B85MS/jygSTlc8vlj3+8fKKOd9gN8n8Ze+p4B29g7C/cL4NNfwn3
y52m34X94VHjJzpOWwb9Ssfp7j7Hemb/maCc/e2E8U+Vh/8PMP4vPI7AebyA
87hYYMZF6Lkvm3EkPH7BeZyCQ3+DG+5rX++DC161Gnfc1PJvf7wzhx7m0PPj
99M/WHZt/o3xjnZCvmqPDbc8sTbMaz//9PS3YrJ1vINfXVYtX8ZN2Tp+83T/
sMCbEy/peAeH/A8v9vq3ZqNMfx/2gwPRL311Sec/4Buntqnz9tILOv+B/2h7
bt82Y+/aXPjBoi+t/C9dx/vTzSZVuTAoQfXofuuGfSmHuiTo/Af+DD133jhs
VZ5NV3Tesu3GIbPHF76o8xmMC8j33XWp0k0vhPnMfkfy7LrGdd+z2NDh44r4
esAhXz5m8YGhTU5pfMg3IHZAjcYJum4DDvlaVh7juhjJg//Rp/6cZUcu6foM
9PxLHPI3TF7hdVtxUddnIF+SOOTVDjdNzbfhk9PC7ZxlOeTf2dti/Kd11A4a
Z35bET/ibE2fs32O1isypv+bvvx7th8Rl9BfkD945PAv/fuE9dxi+lfjWOug
n2i8+jXohxqvoKe68TeV/zDoz8L+/6jxW9WT9nJgvGh8g/wGM15CerLMuFP5
dXZcIy7xOK1rxq84xntI3sYNccQZccQZjVf96w2Y9tq88xpnoH/s0l+/61v8
rPfJr/9NXPzqVY1jzKGfOfQzx//qe/mP6TljzupzYbelj89btHz+WY1LsBv0
7G3ZPmXyhDB//f+y31vyQKbGjSY7vuna4MQ5jVfgkO+08uaP8qSna1wC33r2
7EP73kjVOLP5oU5945ad0/mMnruw8vOKzSvwVFSaxp+NF1s0W9zwgsrrerKV
/+ydF8s8MzPZ34+z/O55t3bYMitZ4wx4neJT4+rtjtd40vCWj1JajT6n68ng
XYhj/Fbr9kHDu9++oOuxkH+cOOSnFk5aHMk4q+szkF9EHPJo56XMDV6hEudV
HjzLcpY/ueGTU9+uSBa2Q7NPV66tvjxZ48C3QXtqHNge7BdhO882/SLcX9tN
/6r8Y0E/EfaHZ4yfCPtPD+NvKv9t0G81Drxq/RzjHX47zI47cIwL6N9n/Fz1
0DgSxzgVxzgVxzjVOLCt9aslFs845fWoNeaV+MNXNQ6Av/hSu8zBV/w4wBz6
mbN+cPxf8Dn/rirz1Y5sHdfgFQZ0u1zxjSwdv5cKZlb7+9ApjQ/g8Y9t7X/f
wngd7+iXfXcXOVFq0SmdV+h3sdV//sWdFdO/CfOo4W37Dm+UruP3+bd6d9lf
L1716HzDyg8o3PHupv+m6LjucTjmtVKX43XeAn+GfHydnxvc2O6cjlPwYX8O
6jty5kUdR+DjLYd8vRuHrT5T5oy+T1n/47U/+Ov1Sz4/GrSDcPuzh13/vzpe
EoL2VP+HfIKxm+o5FewXHReQv9/0Y4jPN/2ufg7+gvETYT8EZz8EZz8EZz98
xfi5jrtNg4Ylb6t3yuvXfnmhLhm+/xe+XGDAobvjvOPDim3q1SgqGnz0ym/a
HB/py6M9LA/O8mgny4OzPNrP8uAsj/8F+dkDi+WROlHR4LV+f3BfgZkn9f2L
cbdoYoUdfWbF6fhCf0HP/UU+Tfh4VJg/8HWPSjNW+OMR/OdRvXslj8/Q8XJD
x7SSy2vE6TgFh/yWYcsO10tK1/H4yNHP7mySEqfvU4wvyH+5qHHSuvKpIT5v
zrpuGyuk6rgr01OaZKf6esCnNO6av8awU7pPgXEHPdObRb/U958LIb7EcozH
xaQH/PGsnPxdkk7q/gX0tCUOeegfP/Khrk2mJAg/90PLIZ9aumGHteX+0/cg
7NCu/PJ+b5b1Of4v9NSft3p+VJ1UYbtdfq/67K21UlX+SodAf2l8gPxvpr+E
+/En0+8q/3XQr4T9pLzxH40Pj1v/xPsR8QHyFYwfqh74/5vG/4XHKTiPR3Ae
d+AYX56ND+A8vmaZ8RVxxI2IIz5EHHEg4hjvETx3brWnv7i3+TGvW9LFi51u
j4rG+AXf0WxbSswHfrxijvYwR3uYoz3g59aMKTf6FT+egFe+76cRoxdma3wA
5/gA3vOmbZMfviVTx/tb3Z9u2G72cY0P4JC/69e4t2+a68cN8Jsv9HyjRLM0
jQPgkbX3d1/QJE3HO/iPPRt2nlk1Qcf1yXq1q7Xpf1z3McEhv9nKY9xNHvh+
j8vLYnVdDhzy9Za3bdBidaKwniH91xXb/nSacDs/ifqvW9P2acLtLGX+r7Ad
Xjd2E7YDjyPwqqZfdLwULdunTLmpserPGF+QP2P6N8L+s934Q4T9B5z9B5z9
B9zhzxG0p9yIz16e1OFgyM/Bm7/W9dDsrb6fg2dOqbw25y/fz5mjnczRTvB8
aUuOb+/h+zk4+zk4+zk4+zk4+zN4zKDR3f962fdn8Pg/Yns3ecn3Z/Dede6p
0GxgovrtbVcmxy3Zd1DXyfX7kTj8FnrYb8HZb8HZb8HZb8HZb8HZb8HZb8Hz
mH6JcL+nm36McL+Dc7+Dc783M34V4X5n/1yz8NlbB4zc79UZndC0+Gnf31Zs
PVA25cW93kMHPxlU+a48ylke7WF5cJZHO1meOY8X8F2rCiUP/s0fL+Ds5+Ds
5+Ds5+Ds5+Ds5+Ds5+Ds5+AJY5+dXn1dkvotOPstOPstOPstOPstOPstOPst
OPstOPst9W/E4ScRhz9EuN9t/0a4H9lvyX8iDr+NOPxTn9urTO1fvENbvC9e
2NttSGXfz8FLfNVi5Wev+P7MnPWw34Kz34Kz34Kz34Kz34Kz34Kz34Kz34Kz
34IP+/ytwr/dcFnjMPg7lsOfwdmfwdmfwdmfwdmfwdmfwdmfwdmfwdmfqb8i
3C/sh+QPEYf/RNh/vjT+pn4YtT8pb8c9y0N+CD7i5lm7hnzs+yF4vYTUL8f3
9v0QnP0QnP0QnP0QnP0QnP0QnP0QnP0QnP0QnP0QnP0QnP1Q7UN+CM5+CM5+
CM5+CM5+CM5+CM5+CM5+SP0V4X5hPwSva/whwv7ztvGfCPsP+2H039e5sB+C
sx+Csx+Csx+Csx+Csx+Csx+Csx+Csx+Csx+Csx+Csx+Csx+Csx+qfcgPwdkP
wdkPwdkPwdkPwdkPwdkPwdkPqb8i3C/sh+Dsh+Dsh+Dshy+aOBnyQ3B+LzNn
PeyH4OyH4OyH4OyH4OyH4OyH4OyH4OyH4OyH4OyH4OyH4OyH4OyH4OyH4OyH
4OyH4OyH4OyH4OyH1F8R7hf2Q/KHiMN/Iuw/7IdLzbxR+DuIOfQwZz3sh+Ds
h+Dsh+Dsh+Dsh+Dsh+Dsh+Dsh+Dsh+D8XQPO/gbO/gbO/gbO/gbO/gbO/gbO
/gbO/kb9EmH7s79Rv0ccfhJx+In627fm+0j4e5w59DCHnjLmez/kb+C87gTO
607M8Vzm/Fz2W3D2W3D2W3D2W3D2W3D2W3D2W3BedwJnvwVnvwVnvwVnvwVn
vwVnvwVnvwVnvyV/iHA/8voSy3P/8roTy3O/83oUOK9HkX/qOJpp1lFDfgvO
+wLM8b+Yo/3M0U5w3hcAZ78FZ78FZ78FZ78F5/V/cF7/L2HWP4XXRRsQRxyG
Ht4vAOd9AXD2f3D2f3D2f3D2f3D2f3D2f3D2f3Be5wfndX7m7A+8zs+c/YH9
Np/ZjxDsX8NvC5r9L+H9d+aab5k42skc7QTn/XFw3u8GZ78F5/1ucN7XBuf9
a3Dev041+1OC/Sm9F2PleZ8anPepwXl/uZ/ZzxLsZ7Ee3ncG531kcN5HBuf9
4tFmv0+wv8x2431kcPZzcN4XBuf9WfKHiMN/Ig7/ibD/8P7sT2a/WPg8yUiz
vyx8boQ5nsscz2WO59Yw++bC5zq2mHMvwue7wPl8F3O0hznawxztWWD2/YXP
k0Cez32B87mvPObciPC5EcjzOS5wPsdV1ZwnET5Pco85HyJ8PgR6+HzXZHPe
Q/jcyBfEMV6gh899gfO5r8fM+RDhcyOQ5/NgrUkePMWcDxE+HwI9fE7sKXNu
RPjcCOT5nFhyh0C/CNufz4ktDfqDjlPI8zkxcD4n9pj1cz4fgnHB50Cgh8+V
sTz7P583Y3keF3wOjeV5vPD5NHsOTficCeT53Npoc55T+Jw2c7SHuZ4fI876
+dz1BXPeT/gc5ilzblD4HCb08DntP825ROHzmZDnc9rgfE4bnM9j/9X9we9T
LsYLzmHC/yHP57HB+Tw2OJ/HBufzz+B8/hmczz83jmuxt0f5M4LznNwePhfd
zpxHhd2E7cDnn8H5/PORoP3997KV5/PPF4P965+/svJ8Lvq/oJ8I9yOfcyY/
9M9xEXf4uTj8XMdXX3PuWvi+Q31zP0L43hZz6GcO/eB8P6uPOQcufN9hiTk3
LnzfAXr4Phc43+cC53tbjcz5duF7EKqf7mcpp/tZnjlvL3wPYoM5ny983wF6
+H4WON/DAud7WBFzr0H4vkMn4hhf0MP3s8D5HtbD5h6E8P0IbSfdk3qM5Pm5
fH/qI3NvQvg+xQLirIfvT4HzPalvgvbX8Q55vj+1LdiPwv3C96TqBv1H2E/4
ntQ3QX8W9k++JwXO96S62/HC9yYgz/ekhthxzfcpaDyKY7yLY7yLY7xrPMky
90CF73czhx7m0PODuRcmfN8T8nyPG5zvcV8199SE73WONffdhO9vQg/f795g
7tMJ3+uEPN/7fsrcyxO+vwl5vvcNzve+x5p7gsL3PbeYe53C9zqhh++JLzX3
N4Xvb0Ke74nfYO5jCt/fLEoc4xR6+P44ON/v/t3c3xS+1wl5vvd9mOTB85h7
ncL3PYsTh/wIc39T+P4mnsv3x7eae53C9zohz/fHJ9j+4nudrYL+INzvfN8c
nO+bbw76obBf8T30SUE/V34lOC6E/Z/vra+x45HvaUKe76eD871ycL5Xzpzj
A98rt/fZhfNLMIce5tDzm7l3r/GB8uGIIz+PcH4ecM7D86S57y+cRwLyjjw8
4sjDI5yHB9yRV0c4r85Ckw9B4wnlSxFHnhzhPDl973+wbpuxibo+jHEBeUee
HOE8OQVNPgqMa40bCSbvhCDvBOWNEc6fA855csAdeWmE89IcNHktBHktwHua
vBaCvBbg1U1eC0FeC9bvyG8jnN/m3WIdnt82M1HXG9menMcGnPPVJJl8Izqf
ofw2wvlqwB15ZoTzzLQM+rOw33L+GfVDyjOD8cj5KyDP+WdYnscd56VhecqX
JZyvxubpEs6zB8759Gw+LuF8XDbvlnDeLejh/HvgnGfP5tcSR34t4fxa0OPI
yyeclw+c8+/ZvFviyLslnHcLejhfn83HJZyPC/Kcx8/m3RLOuwV5zu8Hznn8
wB35+oTz9dk8XcJ5unoTp7xb4si7JY68W+LIuyWOvFviyLslnHcL/8uR9084
71+5oJ05759wPsBvg/0obGfOEwjO+QBt3i3hvFuQ5zyBFYN+yPkGhfMEng6O
C84fKJw/sGxwfHE+LuF8XNDjyCsonFewazA+CMcTzjdIcYbzB0oi5Q/saPIQ
avyhvKDKocfmFxXOzwzOeZjBOd+yzRcqnC8U8pxvGZzzKvcxeSA1zlDeV+F8
yw+Y/JMafygPrTjyJ4sjf7Jw/mSb/1M4/yfkOX+yzfMpnOfzmd0tutWtmqL7
HZTvVxx5koXzJL9+64z0x+5N0fUQlnfkDRbOG2zziIojj6hwHlHo4fzAcSaf
qs5PKG+wcN5gcM4PDM55gPOZPLE6ftkfOA9w5aAfCvsb5/sFd+TpFc7T+3tw
HHGeXnHk7xXO32vzBut4oTzDyqHH5j9XTnnOhfOc2zztwnU0mEM/c61PZ/Iq
C+dFh7yjLoZwXQybF10cedGF86JDD9fRsPnShfOlQ95RX0O4vobNiy6cF93m
PxdH/nPh/OfQz/UywLkuhs2XLpwv3eY/F0f+c3HkPxdH/nNx5D8Xzn+Odjrq
aAjX0bD50oXzpUPeUVdCuK6Eza8ujvzq4sivLo786uLIry6cX71xsB+F+4vr
TYBzXYl2QT/h/OrC+dUPBv1W4xv0O+pKCNeVsHnUhfOozwyOL2H/5zoU7YPj
Wnj8ch0KcK4f8WEw/igfF4xXXFdCuN4ExT2uNyFch4Llqc6FcH0KWxdD4xjV
0VAO/cypTpBwnSBb50i4nh1z6GdOdZeE69CBcz04WydIHHWCxFEnSLhOEPRz
3TdbP0gc9YOE6wdBD9eDs/WDhOsH2TpB4qgTJFwnCPq5fpytHySO+kHC9YNs
PSBx1AMSRz0gcdQDEkc9IOF6QGi/o66ccF05Wz9IuH4Q5B3144Trx9l6Q+Ko
NySOekPiqDckjnpDwvWGbP0gcdQPEkf9IOH6Qfq/qK6crSskjrpCwnWFygT9
mevWCdebs/WDhOsHQZ7rzdm6QuKoKyRcVwh6uL5bXDDOcD044bpsFK+4Lptw
vTaWd8Qlriuk8hyvuL6brSuncZLq0CmHfuYuPVSXUxx1OcVRl1McdTnFUZdT
uC7nWFMfUDn6y9blFK7LaeuiCtehBud608zRTuZUd1W4TrStBypcDxTyXD/a
1gkVrhMKea4TbeuBCtcDrWTqPCqnOr/CdaJtnVDhOqELTN1JjedUJ1QcdUKF
64TiuVwn2tYJFUedUOE6odDDdaJt/VDh+qF9+idPrfr/5yt2HQ9xMv/GkgeO
tVWu8XNeUA/X9xRHfU/h+p5oJ9dlbm7qpep8G3q+C9qN64EK1wOFfq7XPCbY
j1zfU7i+J/Rw/eUJpi6txmdwW/dTuO4n9HBd5jFB/w/Jc33kY8HxqxxxgOt+
Qg/XU2Z5HtdcZ5nlebxz/WWW5zjAdZltXVHhuqKQd9Rr1vcO1RVV7ojnXFdU
OdWt1rhEdbGVU11s5dDPXNcrTN1t5fhfN5o63Rrf4A8f9S68/LcVWVLuh2nV
N1dN0vYwR3uYoz3M0R7wIt16Veuy/ZI+d4OpM67zavjbRlOvXOMn+CVT31zj
JMbXTlMPXTnkN5n66RonIY/2fF1hyNHv+51S+YdNfXaNn5B/0tRzV47xCD23
T8msM3nSUZXfZOrFa/yE/E2mvrzGSf2+NvXolUM+v6lfr/NnyOO5XXcdXdOz
gi/f9KbS/Ubd5ssjjn3Q+JZFuytnaRyGno3fn4rq802mcshvCHKNkx8F9Wic
bBx8rn//Ith+lR8Q/L/C/dLI/C+/TmXQbqrnJ2tnxH/Itwj2l/Lqwf4V7seI
6Uf/nr71H8R/8O1BfxMeRzONXylPCvqt6vnR+jneC5D/ITgulBe24xfxH36L
595rxpfy9sE4II44I45xLY74I47xLo64JBwHIO+IhxqHWR78y83nJ+9umq1x
DP+LOdrPHO1kjvbkq3p8zOF//DipeciLdxy3cmeWxiv0S57jJd4r93iOcrTn
/Ky6mStey5H3LlfoVnvGJW0Pc7SHOdrz/IZZo/58OVvjIZ4L+QV/Fd+3OueC
PveXpFF5LhbKUXm0/+X6i77dn5GtcZL1FOpY7LWFt51UXqTr1AaxJbM1jmEc
lX2vaLmiDXKUw9+gp/iVsylr3jqgPKNYvqbPNMzWuAT/h3zk+nt5rerf3KtO
XK9D2RqXWP7VsjtuP5ewTOXBp5S5znV8pQafq3HgxMU/k/Y3ylHO+nOaXm+P
f9/krdsunFuerfEH/B5rB8QftufFlOt2UF7M2hPyel7689NP3L8kW+MS5De9
czW2RNFsjT/grwb7Udj+pUw/Kv/5zxkL/u2frfEEfpI36Lc6vqBnsfEr5Xnt
uED84XEH7vBz4fEIeYf/C49TyGNcsDw4y6P927cvXTF5tj9O0R7meC5z6M+b
J/N0zb/98QU7lK9yuebSpVeVQ//ZP17Z1eaiz6GfOfTfUDaueZM+V3Wcqp27
rynfomRUZNEDA5f91SPej2+Wn38+dmDUnrN+fCOu+l8vPOHLhTmqH/Y5OD62
6J5PcnS+BH9rdbR8xrS8URFwtCe9QtbE+XWvqjz07IrZ1GjZg1d1vgQ9aM/I
RVVODmsVp3q6vDl50Ja9vjz03JvYvPTGX65qnGE95xe2/7B5zBGVBx+a9dHK
ptv3qXzG3u47913rL8yvMC6mt5zZ4dw1OyMu6Tmi/h1b1R2Qo/FHv+N2LWqW
fs0O4JDPCXLhduYfkD5o3+oFIV5w4HWuek4Fn6vx4dNgO1VPavB/Kb/P2g1x
Bvrx3LnGPso7Be0v7G+7jZ2V7wn2r+pJtf6AeAV5+A8499dY4w/KD1s/hLzW
IQr6rerPFxwvqgfjC/MrHi9nzbgQHqeQ53EEeXCMd8hr/LHyX5lxqvwGGzcg
74hL4ohL4ohLqr/x3uO3bS5zzc52XENPgRLtJh6b5HPo2b282ps/d/c59DQ5
3rHZjt7+eNf7zvdt+/H0fp9Dz7te2y67v/M59LS+OOvBeW2iIhjX6K+miTuG
7l3vc+jvkLHr958SoyJfjtg3MmXPCdUPDnnmF8/MbvhOieP+9y/Jg7fJubnr
ktnX/q+NJ1r33MpfPX/34FqvHQ61B/Iuzu0Bx3PnF6yy4mhNn6Pfm9ZoXPWl
KtfaaeMSxu93nVNnzj3lc24nOLcHPGQ3y9GeUY2e7RQ/2udoT+s6h7e+PDwq
gniI9kAPOLcHnNsDzu0BR3sevaNThcO7fa511u746Eretn685faAc3vAuT3g
3B5w9p/6R+bd2ODrTdoelndwcbRHHO0RR3uE2wOO5+YE7aNxsnbQnqH2bD98
/X+FOOQd/RhqJzi3ExztbBv0K//+ddAPQ+0Bd/h5qD3gaA+NI21P8+C40/Z8
bscp3psh+1geso/lIftYzvEHnP0H79PQ/7Uc+il+huyf/8L1OOY/NxiH9bnj
bdzGe5afe9zEVeH4D3n+v0tM3FaO9wjk0R5676j+G4PvKdVD7zX+v9GO+B/t
GL/RbB9wbj842wHcMY6iHe+RaNd7zcVd76PuC0svvb/m3lDcc41rx/8K+Qn4
m0Z/yD/ZnnY9xOP1ELte4fF6hV2X8Hhdwn7ve/y9b7/TPf5Ot9/jHn+P2+9o
z/Ed7fF3tP0u9vi72O5very/aff1PN7Xs/t0Hu/T2f0vz7H/5fH+l92f8nh/
yu4Hebwf1DFYb139pE+wjrza354T9vicsD2X6/G5XHvO1uNztva8q8fnXe05
VY/PqW4P1m9Vv7X3rTy+b2XvT3l8f6oQ1eel+1Ae34c6SHV46b6Sx/eValAd
XtwvmGDuH3l8/+hysH6x9ovNI+FxHonmJm+Dx3kbOgTrhWm/F7B1NzjPVSbV
H0H7B1OdEa2vF6yTov01LJhPSf32OOWPgp73Ke8TnlvE5uPi+iBdg3kntH9t
vTPheme2TplwnbKLwXtb/v0aU99ZuL5zXro3h/afo3tzVK9ZuF7zC3SvDbwu
3WuDHb4z9ZeF6y/bOsvCdZZ3Be9XarwtFDzvrfEn1p4zx/+Fns9rbJm+sJp/
rh7PHbXvZO+Py/jn5GHPsva+ANoDe/YP3jvQfuwcvE+h74txwX1q7ZeWwX12
7fevN6y/693n/PMAes8x37FXOj3lnwcA/8Kef0Dchp4K9nwF/heeO8qeS8H/
0jzYwfVPfe9E2/VVxG3831+C67HKNwfXgfX/Hg2uJyv3guvYfl5ouz6P9mve
XbvOD47nDgjuOygveaXc0oJfZXsz8/c59dj8BI2r4IWHxR+YdCBB3wvMMR9g
jv4Fr7a2asUOOy6o3cAr1+z5xJzevn3Ai785tHLRsb59wC/OTNlXYtR6fe+A
v2W4sHxdo0dY/i7zXO1f8LKmncJ2KGT+l7AdwNkO4GyHWcbOOk5Hpq5eM+v1
dK/nP3WGDyjgn4MFb1Tg9pP5Vvjnvpjjucw1bxtxfu6M146XG/yef84KvGKp
Mi2+XZzgn3e1/J0GF/u+ct8FtT/4xWcf/unwtfmnnju1PE+Te06mTTqm4xf8
VOPrXFg+b9freoTl+5jnCrensmmncHtmm//lfycG7SAOO4vDzuKws/bvmbQG
mx98OMVb2bJE/+dW+/e/wNtvX3Lpz4L+fTHwl94fk/Bscf++Kri8tC5pSsV0
9Qfwk98cubDkdv9eGPjvY/8YU/cVP86DT6lcslmHOf78DXx47fGfbqzvz9/A
3z8y4cXjN/v3RsHfLDn7sUWj/fcF+IV/Fl585Fb/fih4mVJHftgwwH+PgNd6
dNuEqn38+SH4WaNHWH8/81xh/ZNMO4XbP9D8L+H2f2LsIGyfHcZuwvb5z9hZ
2P5PmH4Rtv+Lph+F+72d6Xfhfl9l/IS+mxK8sT83f35ymRz6XvN58PsrwVta
85/TW+/M8VjP6vaNXljwUDZ9tyZ45f++9O0b9bPou+/ae69+4/xlh/n5WMBL
Thm0suCqdFo3S/DmxK376FRZP78K+JJeD/4y4yk/vwp4v1Eftrqhkj8/B68Z
F1t79Gd+HhXwcUPXFvrxjX06XwLfbznmS+C1jB5h/W+Y5wrrX2TaKdz+eeZ/
Cbf/NmMHYfu8bewmbJ+Kxs7C9v/W9Iuw/W0/Cvf7ONPvwv0OHozzZ7xKT1ea
v3v0VXpf+DwYx3zu0hN8X5zxzi3rd+eJ3n4+MfAuq79cWObXLHqPnPHG3vbU
yp9qZdB75Iz3QPt/Nw5dmkrvi2t854Od4+qn0fvijNes7c8tRv3t580DHzDi
yJ2VD/h588C/if+6UK0P/Px44D9ZDv8Bn9iw/l03nvXz44FPaN0/vkW8nwcP
/H7TTuH2VzL/S7j97xo70HvqjNfV2E3YnvHGzsL2rGj6hd5fPud+B+d+B+d+
nzz+iR/+rHqV/DbWq75hTOyyfn4+ZOZBv/V50G99HoxXsV6fI7V/eK+9nw8Z
/MCcRcnx+69S/In1ko68NvTbOtkUf2JDdY7AN6164NzYQ37eY/AKn4z3Wh/y
8x6DD6m75pervf3vVvAJlgfjz7Xvw2+9e7Y0ThSWv81yli98YnzBx0/7eYzB
n65Z8cig034eY3DOPwyeYuwg/H//evvsPaU35Qjb7aCxJ8WxWO8NY/8I9+8j
pr8i3L/g3L/g3L/gwf6NuRZ3mpZ85O485D8x3p1N7kn7rkwe8h+fB/XHhOpn
gXOdDnCudwDOeePBc/ermFD9LHCuawDOdQ3Ax03OP3/dpiTytxjvA8uD/hMT
qoel9qS87uCcvx08d7+KCdW9As/dr2JC9bDI/qF+53zs1L8Rhz9E2B+s//h1
2ewvVJfN/kJ12ewvVJfN/kJ12ewvVJfN/kJ12ewvVJfN/kJ12ewvVJfN/kL1
1+wvVH/N/kL11+wvVH/N/kJ11uwvVGfN/kL11OwvVE/N/kL11OyP/Qo8VGct
aP8I2zlUZ83+QnXW7C9UZ83+uK6Q9TdxxCtxxCtxxKtQvQxwR7wK1WcBd8Sr
UL0AcEe8CtVhAXfEK3HEK3HEq1AdCrVn7vEqVG8C3BGvQvUmwB3xKlSHhezP
8SpUP4L6l+OVOOKVcLyy70dxzK/EMb8Sx/xKHPMrccyvZH/u8ytJzH1+5fCr
WGm//L5HMtdlkF/Fysbc513imHfJgNznXTI293mX3Jz7vEtuzX3eJYVyn3dJ
29znXdLR/C/yw1iHH8ZKcu7zMYcfxopjPiaO+Zg45mPimI+JYz4mPB+z83+p
mPv3o3LoZ07fEcpZf+fcvxNlTO7fiVIh9+9EqZD7d6I4vhPF8Z0oy3P/TpT1
uX8nyvu5fyeK4ztRHN+JUjH370QZn/t3ojyb+3eiOL4TxfGdKI7vRHF8J4rj
O1Fy/05MEMf6lTjWr8SxfiXf5r5+JeVyX78Sx/qVlMh9/Upm575+JYtzX78S
x/qV1Mh9/UpSGnXvkXj7CYpjCXJzY8Np/UoG5b7eJY71LnGsd4ljvUsc613y
ee7rXXJr7utd4ljvkgdyX++SVbmvd4ljvUsc613C6112HVUc6+3iWG8Xx3q7
ONbbxbHeLo71dnGst4tjvV0c6+3iWFcXx7q6ONbVxbGuLo71c3Gsn4tj/Vwc
6+fiWD8Xx/q5ONbPxbF+Lrx+bvdlxLGPJo59NHHso4ljH00c+2ji2EcTxz6a
OPbRxLGPJo59NHHso4ljH00c+2ji2EcTxz6aVLjz/i0flkkR/r+O/TVx7K+J
Y39NeH/N7p+KY59aHPvU4tinFsc+tTj2qaV4jzf3V9t6xqP9YnHsX4tj/1ou
5L5/LcNz378Wx/61OPavpZxpJ+/vi2NfWxz72uLY1xbHvrbwvraJ2+5zlXwe
0t7D8j5uMz6pSKkzan/wMYZr++29Tm9Pxy0t7l3s368E32k45xnwevQoN3Ti
4h2cj8J72HAdRzYfi3d8fuqVCo+H8lN5Myp8/tPPw/xzfeCNG/xTYVLp45xn
yatleEj/J0aP9iN4nHmu2tPm4/IuVnqrybZXkzhfn5douPqJzZfoLXgr9efO
tUP5P70vDOd81F6zpaVXNq3qn48Cb2m46s82eeO9vWfGrU8c7s+LwM880WP4
tFuS9D0F/pWtX4B5Dvja+a2/f6ZCks6fwXcb/Wq3BqYuhvdiuZmPDK7o14UB
f9lwjXtjTV0er3DzaSPuKujXoQNPnvzDtsFt/f0s8Ja27hLmXeCJRl77C/xm
o1/7a5upn+XtM999qh+8xv3HWvarn6l2Bm8TvbDvvqP+eTbwg7aOG+wG/k5U
qWdKJfrnAMFrG/1+fmDL+Tu0sKkn6H0+ZPzNqUX8dQBwbj+4S898o0f9aq6p
vxnSA/6ErVsKO4Oz/nKm/mxID/ggWxcYesBZPzjrX2HqO4f0g8fbetmaX9py
1g/O+nuZeuUh/eCsBzy0Lro/KW/HPctDesBZDzjrif77OhfWA856wFkP6rCz
HnDWA856UF+b9Wgdc7I/OOsHZ/2oX8z6wdl/wFk/OOtHnVnWD856wFkP6nvy
eARn/eAuPTweUdeP9YBzXALnuATOcQmc4xI4xyVwbj/qqXHcBue4Dc5xG5zj
NjjHbdRd4vcLOL9fUD+F34Pg/B4E5/cgOL8Hwfk9iDoLjve18Psa+ZMd8wHh
+QDyfzrmG8LzDc2jmPt8SRzzJXHMl8QxXxLHfEl4voS8TI75nvB8D3lCHPNJ
4fkk8gY45qvC81U773Xeu3Hcl4l2cZcexz2j0P1WPWeb+3eNx98ROPf4kPnu
85g7vge9XuZ7PHRe7oN2U9K2/p9/HwT8wcu3vN3qjnO0Dp9wrf96LV77ayLt
IyR4S4Zeff3qlkSP5a/kvv7mlcx9/c2rEfllQ+z+RGH9E/e0PTb878TQ+Z8P
zPqnx+dwGh9a9nvbVzI9Pufz15knZvVucsbj80gnLefzSBGjJ3Teg+M2uGP/
xaveb9jGCp9l0LplrFfVcGH5Trnud8Q4nhvj3WXqxXssz/Xowfk9CM5157EP
G5rn2B8/F5yfCx6aF9kfPxf7dI7/K47/K47/G3rvg+f+3FjHc2PF0Y/C/Yj1
+Um5+6eczf38njTK3W/F4bfi8FvJ3W8TZFPu41cc41eq5z4e5X0aj1gPdJxP
FkecEY4z4HzeGOtRjrgnHN8+PlX95+h7oqJPnLrxi/vH+XlUpjfrUSuqtM8R
hz9O3tqkeK2o6MilVb1/WXFc+yvfaz9Pl/k+53ug4NC/6Onnp9Y66XPof6zD
nJVzakRFP36d79U4/1bLT577+7zP+f4pOD8XPLg+73M8t+gzi/qWec/nsE/H
iYU/jaqEfev19ek+vnJuDzi3B5zbA87rTuBoT2dqD/q3iG1/C9P+0P1ccG4P
OLcHHO2B/cHRHvQXONqz0PZvU9O/oeeC47nwH3A8d6r1N3A8d5r1z3jjn6p/
qvVncOiX0RMmf5CR48GfYZ+CTSdmL99zVTn0TClcrcXU1BwP/ol+n5Rv/vnJ
864q13tVH7Yo0exEjgf/0byOlsM+0POe1YP/hfZ8bJ8Lrt9Ntp34X7AP/hc4
2nPkt3N//1+RbK/hdT1+vjjm+L/MYTfmeG5lr3GeW6v69sRzZXLMqKsDstU+
aH/RmH5/r1yXpfZB3G5Sbe5vzbUu4/r6iMPNiWs+SasH9tT8w7Y9sAP+7z+2
/U1M+9VPmOP/Msf/Za51i97PmTj4cKbaB/3b9scPftq7NEs55HcMmD78yRuy
1G6wz2tjq7Ra0DxL7ab35urt/f3OZpnKYYfi8Us+er5QptpT8x4/eqL93+cy
1W7gNYjjfVHC6oE9wTfa58IP0Z43bDvBdb3O/i/YH3Z40toBdkO/9LZ2A4cd
BmZFSqzrnO6VPHf4xsu3+99lj8xsfXfipxlqT8inrO3b7L5/MtSeaOfeKRXn
bpuVrnaDHZ7utqxImQ8y1G74v0fHp/8S1Tld7YP3bGsrD/tAzz6rH3aAnlTb
HtgB9qli24//C/s0/GDjh+X2p3u3mf/r53UnrvnbicNvmWse9VZfHFrVOU3t
Cbv1PfjO1OmD0tSesNucnTXeLtTL52j/qc9mPNzmwTS1M+zwyrxyey8tT1UO
O8RMO3t379K+/cFfqPLPxkO10tT+mOc8XXzE9uk1fQ77e1Vav/9M+TS1P+SL
xDX5ZFwFn0P+d/tc9Ava+aJtJ/oFPN7+L3C0c4a1A/oL9oHdwGGfF6ydYX/0
78MrDjz/2Lwr3n/X9fv1nsYWLpL85Xyfox/zzPxy6/nEFOXox+EfFttUMC5F
+1HzqjU/tH3gxhTtL7S/ZLdlm45tvaL213Wtr7+OarbF57BblXq39nxtzRW1
G+T776935Mxan0N+rn0u7AB7op2wg+aNn2H+12nzv9SfR1k7gMMOD1m7gcMO
i+6TkV1nJ6t9EFerz3qtT9/EZLUD2tPi8cmHnuyYov6J9j/0/fBLfzVJ0X7H
/33E6sH/gj3n2ueiPbov+XnVbrc8fVnbA15m0r3/t6thknKtS/hNgS8ndkvS
foRf9Wy6YP9dU5LU//H90oc4vl8Kn/1gfd3ZSRqvtM41ccjjuegX+O0dtp34
X7quYv8XuM5z0ppsvKtkotoZ9qz/XeGGiTclql/hueUHL/1p94OJOk7Rzqtr
OlfZ+FCi2hn2/6JOz5On51xSu6E97e5JenLp+gtqN/RvsZdHPr3+6UvK0V+7
x05u3GHIJfVbPPcIca1L/pLRA/tAf1v7XHDoX2TbCfugfwt0HTb/x+fOemtP
1GjQ4WKO+sOQxR+XjEs4rxz+zxz+zxz+v+SxCYnPTvI5+uXWidO3bN5/Tu2G
/l3U7KE5c0+cUz+HHVYThx3yWT34X/DPafa5681z1f9fse0Ex/9ijv/FHP/r
Rms3cM0TOKB//WXT4vV/af7z0e3bF1l7Wsc12g95tB92uNj7swpPDIhTu8Gv
0gs32jasXJzq1/nAq6tXnEs+qX6l7526D458Jd3n8P/VF1YeKlT5lPoJ5Bdm
TLj6xAM+h/wJ+1y0E/52wbYTdoBf3d6qdI1bXj2m4wX/98FpPxZ48vYDOh7R
v52JQ76C4cLy7YlD/syT158reC7kz5t2Ctsz1fwvYXseMfYUtmdhY09he64y
9hS253xjT2F7xtrnsj3P2XayPbcZPxH2q9XGrwR+pfvXVp79Kp/xW+HxPsj4
ufB4Z45xwVzzappxJzzeS5pxKjzeF5hxLTzeVxFH/+a1eni8f2qfy+P9ZdtO
Hu/M8b+Y43/lt3bj8b7QxFXh+P+UicPC8f9mE/+F4/9OE+eF4/8h4rBDhon/
wvG/tX0ux/8Ftp0c/8dOKhzzZPFEHUfw28fM+1H4/VjFvB8F70fwFvXmHNxQ
KVHHHfzcvpfFMd8Qx3xDHPMNccw3xDHfEMd8QxzzDXHMN8Qx3xCeb9j5njjm
e+KY7wnP9xZktvixQLMU9X9wO98Tnu+tbLA6T9OoZG0/7GbngcLzQDvPF8c8
XxzzfHHM88UxzxfHPF8c83xxzPPFMc8XxzxfHPN8cczzxTHPF8c8X3ieb79b
xfHdKo7vVnF8t4rju1Uc363i+G4Vx3erOL5bxfHdKo7vVnF8t4rju1Uc363i
+G4Vx3er8HdrE7OeoPZHPzJHPzLXvMrEMX7teo441nOE13P23fHp+XUH0pWj
/XY9R3g9Z26XW/rd3Dld4xLsb9dzhNdzYqx+2BPPtes54ljPEV7PGWDWr9Se
tE4ojnVCcawTimOdUBzrhOJYJxTHOqHah9YJldM6oTjWCcWxTiiOdUJxrBOK
Y51QeJ3QrkuLY31bHOvb4ljfFsf6tvD69vD12954bn222lPr9Zh1aXGsb6s9
aX1bOa1vC69vj7DPBYf8Y2a9Xe0Me9r1cHGsh4tjPVwc6+HiWA8XXg9vYPYj
hPdZCpj9C+F9lslmv0Mc+yzi2GcRxz6L8D7LBKuH91ns/o7wPgvayfss+F+8
z2L3myK8f2r3pyK8f2r3syKO/dOIY/804tg/jfD+aT2zHxdx7J9GHPunEcf+
acSxfxpx7J9GeP+0g9mvjMDPQ/nMLQ/lD7c8lD/ccm4PeCh/uOVoTydqD+2f
Rhz7pxHH/mnEsX8aceyfRnj/FP3l2D+NOPZPI47904hj/zTC+6efWf/k/dMp
1p95/3R23fLlK72frest6EcbDz2OhzZeeY545XG8mmP147mwg50/eI55iOeY
h3iOeYjH8xA7r/B4XmHnD7qOivmDnSd4PE+w732P3/vrzXeEPhf60x4ucMus
Tv66NPTb7xSPv1Ps94jH3yPjzfemx9+btWg9Ft9rVWg9Ft9rLc33psffm9/R
Ohv07DpU94eSHx3XdTPMHy4+GVyngvxOK495PuYPOwwX1lOyVXDdSdf3rHxI
D63b6Dlws14tvF5di77H0c5y9D0OnmPWq4XXq23/iqN/hfvX7jsI7zvYfU/h
fU+7jym8j2n3K3X+gP9l9yWF9yXt/qA49hnFsc8ojn1G4X1GGx+E44M9DyB8
HsCOd+Hx/v8AqRPkeA==
"], {{
{RGBColor[0.880722, 0.611041, 0.142051], EdgeForm[None], Specularity[
GrayLevel[1], 3],
StyleBox[GraphicsGroup3DBox[{Polygon3DBox[CompressedData["
1:eJxNnXV0EMf39hPiQeMGCRAlJCSQhOAUKFbc3aHQ4g6FQrHi0pbiUCjS4u7u
UmhxdylSaEuLFP99nu/d95z3j+c8d+747Ozs7Mzd2Xxtu9ftlsXFxeWZr4uL
G+wK5JZ8DOEo+AXsB9mBF/AG+4A7KBzn4pIL/i/WxaUIchDyW+RKKS4upZC/
gvPA50AkGIK7JOFKFHNxuYr7PLgAboFYEA8uguvgEngAkkAh8CVxi8AV4cfw
P+AJeATugLvgODgFToCzIBSEg7LgBfgIeFK5D04lXYE3yAKygtro64JRYCT4
GnQGXUBXucm7JVwHrkQ9chKnMpwd9gBeoKbaBq4F54LzAj9QNdPFJRthS1P3
RPxug4JgGGm9gkfAH+H/Grkc/E4MKqh9wd/gKbgB7oGbYCBxrsGD4LFeLi5j
wDgwnevZPKuLy1S4FTwD/h70pgze2VxcVhd2cfGBfUFWsAp3A8JNhjuC7wi7
J4Ny53VxqY/eH26c4OLSELkJHJLX0g+FfyXsFOTf4G/g8WAC2Ei6m8Bm8Co3
dQDbCNMIv2/hyYpHXkGk0aYocX0tr0nwb3lcXD7RtcxjZR5Cnj/Sbsm4k0Ao
aRaEE0En4kTD+UFH5BH4DQcjQW/QB/QFHlFcP9rGDQ7C3YGwbUF71Q93Gzg7
3BJu6sjZQA6wgPwD4a/gfOSTF4Tg3gq2gG3ZLE2FCQbNslrbNoG/oY6Ns1qb
+2WzvALU7lzjVlmsT1wlvRrIJ1U/+koeEAUugJPgFEiO5J6Ak+CS4A/kovBf
6sfu9A94AGmVkn+yi0s12q0o7oq029kkF5cw9Gno1xJuM1infNBthCPgeHAE
ORZe6Wb30RndC/QtX9x74PVgMfLP9I1tbnafqh9uTrH7T/0whPg/4xcYaf32
Nzfr37pH7oAcYBnxU/D35rr/TZ2bo/sLbgm3Aq1BR9AJfAYWku4L/F0J/zyP
hfkHXoN+IfJaeH+KtdkE+JGb3Zu67/4Ed8HvoBB5nocLRto4cNW5ZwtHWpgi
kRbmmpuV756byddBMaetM53rcANcBt9yXSvRh9tTtl/dbFx6pjHPze7lt+AN
A+sGjUFwJuW7B3eEf4d/0PgHT4W/A9+DaWA6mKFxh3Db4G7wZngT2AI2ZrHB
+jVxd8N7wF6NV4QrwHXP4Lqvxb0OrAdt0G8lbBF4Ge6lYDlYpfEF/TOwE3kH
2AU+I9zf6EqkWN9QP0yAc5P2ePzzwOM0hhPmJNjrZuPSfWdM3of7D3hbivUp
T9onBt6PPh98EP4FHNJYSV/dAy+lX0Q7fvnhZF0zXQtQJYuNz1VBFcI/0DOH
Ol4i72/QnYYnwZPBFJCf8i2Ao+EOlGEe8qfwLD0vCHsDLEJeDJaAZm5WL435
Dehb9cFOxqKqXNuZ3L+fwA9TYW/GH655lA/9ELk1aAPy4W4LnwX+IAd4Rvgj
jDkH4CD8g0EImIDffvQHgR/u2rirgzDkxnB9UBy5NCgBwsnvC3R/k0487oIg
wcfCh8ofNPC29OvBNZQ/cjX4X+KMgZ/Co+Gd5Lkb7AVjce+DH+P3M7wH7o2u
O+gBuoKeoBv4C7++8BN4NWEHIq+BZ8CTwBTwG+5p8El4KvwLfMKRZ4HvwT/E
Hwc/T7V2+BZMBGUpb0lQCvwYz72AbiF8kHBnSeMlfAGei/4i3Jw+MBD/kfSB
YegqEG84XA4eCn8F8tBuZXBHwLeJn4QuQM8+dN7AF7iCj9CXAh7InsAL+BEu
Hl0L8jlEPlWQx8Ol4fegpNoOtwth98O7wEt0u+EMnjGHKGMKvJ0+nQ4Xpf8/
U73BC11fdOcJUwLOdPQp3pZOYXg07I//ORDgZXX8EgwB2SnbdvwnUPdruMNB
EAhBXxm+n2r9Khfw97Frmgb3gQv72DXtBZKRC4BE8AfuR+CxrjH4U9cc5AU3
1edBAvgdRKmvgsvAz9vKcBVcB/ecMPdVTh/rhzmd9BNBjPqA+qP6Jrijewfk
Bv3BSuq6Cgzytus4WNeFen1Ad5F6zeFevMh9eQlMR56t+Q3ohTsd/hx25V4t
j5wFdgMlkd/Rzq48d7MANzCIZ3lN9A3ggeA98hcJpv+APBj+l7TWZ7X5cWPS
Wan5D1wNrg5qaK6A+ye4PuxBuu7AE9TLannVgU+DfeAAuOtr4e/BnUEh5Hbw
iygr/0u4bF6bR30EV2ecq8tYVAI5E7xhHlUc3Vj8J4JxmjOB46RxAnSk3Efg
MnD2vFbOrHCtrFbf2lmtnJrL1QW3yC8Kvg2HK6zmPmC4r7XhF3AEnBvkAXlJ
tw26B8wp/o6y8j+F2/taOlXhinltTlge/iGrjZ+zQC3c89R28Guu5Q2u6WF4
Ntd4AZgDlmlcAcvBFrACrALrwDawXuOC+h5xr4L/iP8D7jfwEu6Jpcg/wb97
Wdz78Hx4OpgJDoDNYCt4ht8m3Xsai+FD4DA4Dy5onAFHSPcO/m/hTaR7RvHh
y75WlyvwRt03hPkTvMtOWPAeZMN/r9OeHfJaX2qluhNnG/IbeBZ9+3N0nzM+
dM5r+vZwGcadWYW434sz3mr+TXor4d20f1PkPbq+cATIAV6B1+ANaO3ILcB4
yn3Yk7JnWNnagJYglT6VAtoj5wdBIAREossD2iHPT7H3ntZwOZ6PH4HymhPh
/7HmRbAbc08/4A5iaZfdPLcbMM/Mj9yGfKPh1nA90AAs8aBc8E8eNicfT5t5
wgeI1wn9fngTz+blYCVYBeaDH8FE8jul57zm+/BZkNPV5gCXwRUwC79z8Ez4
gqvNTy6ChWC1nvmgJ21yiHxiafOe5NkL9AY9wOegCxhD+T6Gx8KfwBPgSeAz
4q4lbhRx81G3Gvhd4V5oCFcHNUEpwnxN2E/h5YStiG6F5tWgNPLP8GXirILr
0VbN0c0j/HzFQe4KOoL73Oe/utpcR+3zGbojcHm4CqgAOpFHlNqYfrIDv2bo
tsNzqf9N4s6DH/CY+gr5Idwf/hIMAMNBqt494R2Ey6e5H7wbJGgOl8feVaNB
DAhMsXgV4JQsls5QVwsf58SNct7l8wI/5x3cH5QnznvqUZBn1jbCBeq9Ad4D
CmjuCm8FYZrf5rEwuZG357E1hGAQAiI0NyXPzqAOdW0E6oL59O+dhH0GV6H+
7+ifJeBc5NuJsP7wPurfC3k/PBA+AB9ysXYYBAaDIMJdQHeLe+8I5V2NPAbu
jl8/0AP0AV1BN3ACv0eEmQV74J4CPMFk8Bb9exdrG61jaH1jJPoJYBQ4RZzv
4dPwK8KNRn4Nh1OG8ch54Fqe1n8q6x6OtPtoM5yiMYj+8o75bVP6wGPkZnBe
kAN5Je1wC74JboPG6LsQL4R+G4b7OvAD/uAi8AVlQBb1X/g0yAq8QJtIC9MW
vuJh+V5VX420dDrC7sQrh1waNEi1crWgT66gHM3xDyTfs/idA+fBW/zbo/+I
/t9L718eVj5v0vEBviCEOnZCf4uw3+AXjm5SpMmRyN/COQlTX2UizBS9n6Cf
DK+A/0T/EGRDzgqyizWvgrPBASAGORBeQJyiyD/q3gGpuicdOQl5FjxH74fI
s+G21DEFuTXcBhRGbgenw/3IcwAY5mH3+3CNJSm23qP1qwe484PcYGiktflX
ej+nHMuR0/X8wm8R8g14nqddR7X5EuTFGj9VT3AK3XHQJNWu8yh4WKq1cUN4
PmEWqF5gBpipunha/5kDp8Zb+nPBD+Ak8cbDh+Fp8CX4DHgTZ9evEOGHku50
lVlzcnTfIv+ma6pw6pNgILod8BbVEXmIwoPmxHmqZwDcEvSj3mH0jf/QvQKv
wXCnPw2LtPZ5j+5LuK/WPZB7wm6aJyOfoFxrMuy65SadMcQ7iv4AKKk+qf4M
Bmn+T5xejD9bPWzMX+thbTgJTNHYqvbT+Kn89H6icsPfeFodvwMnGGPKcB2P
wQu4RytmsWfTx1nsXp6uMYGxYyT3cTaudSvcLUFrkB13M9gXPkSY0YTJgVwV
XWPkiqCtq41v7fRsc8YujWH14QagIairsQ/UAysYO3z1vIQ3gnTkTbAncWgW
l3Xk44JcDL0rvFtjmcZBuBlcC31lFyuTypYVzga7O+NYaVAKlFF5CFfE1daH
HzIPpSldHsHlNY7CB0ETF6tLU8DUxiVVcVwsbi7gB9JAuouVrzvlOEK8OTwP
1xaysqjMj9Hh5fIEzgeXcLW41eBPQHWQBiLUhmBbrOXVGq6IvpLq5Wp5lYeZ
OrmsKWRl8aCOdQjHNNilLpwd/xzOXEJj+H8uNg5/T0Wngmlgpputhx8EOTUu
4M4F5wCzkLPDnzBnK0R/rEDDjHeztRSt1XztZus2a7LYmswo3CvhFSm2NqO1
Ha1dtEU/VuuAtMUjPYMZG88gu2vcQW6Af33QELQjzkT1PdgH/ynofOHHxGuM
/AT+ibp5UZ+f4T7o+oJ+bra+9LmbrZNovboSqKw1HcLmBpEgSm0G8oGaxGd6
57Ie/sPFnmuPXWz9pL+bra18yGPpv81j8mB1EsozwM3WmhZqLQu5C+gG/iNM
d60Nwj3dbK1mThbTa91P631LMiwNN+7rr9ANBcO0Xo9uBOwGn2H+eMnL1gj+
pq8EESUEIP6vb5DM/9bZ7mse5WpzDs09NsF/4v7L1da5FuWxMAvgf5w+9rHm
nrhvwz/Af8Qah3MtrrnavZYEHsfamtITPcddbT1N63K3nXunKFhKvJe6Fnks
zbua08IZmks59+Zj+A+lo/kqfo+cMFo/fAveuVrffgrKgeIptqaoNTrtcWSC
4sA7zvYOfOCjxC+N/Au8grDVsti8en+S6WKpy6E8FvcwPE7lzWLzj2Jw4Sy2
75IGSoB0kIzfVadvaF4W5MzNymqO6WpjjfItie4IXJnyTXXmMwdVZ0evcmku
NAmM51rPpkzvuYdKEW45/k/RrYY9tY4Jj+Va3uHC3gbDkH+Bj4HetPso3H3g
CcQ5im4X93oPFxvrerrYHPi8i83tLrrYnO2SxgQXmweulR/x/pE/fKWQzRM1
D7xdyOaJV+Gx5HET/wWU9RR8Cv1p+Cy4hXwOnkwZ5uPvzzhwBN11dNeATxbb
L/PVGEA6M/H7GnZ11nKzaM5NvA2aR3NdlsHPaZuf4LUgaxbzy5HF9uNyAo8s
9nxpAt7EWr/OS9zXyJ+iO6g+CdromsNr9M6mdV/YO8XG0ZIp1j/Vd1fAc1xs
3jsXrNT97Oi19+fjlH+NUx6VqyzxX5J2AvU9qjkd9+IxzRXhYBCqfRcvWxNz
B/mZF2ajnlu51s2RR9FP6yB3QT5QgLZkkO6p995E6s4A3gH5A8/ujoTprX0g
5IbIl5FPE2Y3YQYg10ffCP1o5GXIrZBbI+8h/frIzZDXI9dDLotcDbk68lfI
I+NtrW8U8mLklsgdkZ8QpgHyI+QqBSkT8gHkQSob8l7klsgLkaswTn3Bu2yZ
wlbmgVyH39BXQ78Z/U76xSHkYflJA7kgfr/GcG/wMGyH/mMeUnvRf0rcbzT2
498euQvyceQ2yM2QDyOHI/9JebYgv6IMfZHXIddEHkeZ62pNnTRrkNd82rMw
chBl2Er6bYnbinSOEqYT8jLk88iL9dyi/b8j/DLky8gz0S9F3o08Hfkn5BnI
PxPmKGmuI/2DpHkG/RLaYQrXIgfhclKvs8jDwM8MyqvhRYQpTtwGxJ0CcvNA
/xbehP4B+mfIW5FzkI434a+Tvm809UN/Huz35/6CbxLmHmEuEWYF8hribkKf
gLtiIO9ZcH4QiBwDr8TvCHmdhktRtjD66mvaPAS5A+W8RPnrE+4D4evB80mz
SwLjB/5TkZ/SH9ohzyhm61+dkX9AroHcLdPq1ZgyjEdegDwXfX/kVrRtbY2v
yEfQV2f8eE2d3oI91Otr8nLD7y/kM3rWId9Enog+GgRTntrwcfVP6tsP+R/i
9iNMd+Rw5AHcZ6uI+xx5IvpjyMVJx5M63kPOo3Vy6ngZOQb5e+QryH0pS29k
F8rXG7ktsjt96AVhGiL/TvrP1Z+QLxC+J2EaI7/nvm2CfI28FlKm4silkd2Q
L9O+p7hGRwn/Mfqv0Y9KtHmX5rar4Sl6L2Us/BV5FelXJs8+tJMmkwtJe6fu
R/xWkpcbZauE/D3pvMAvF2HmwTsIMx79VcJ4EWYI8iLkb0irNXIo8jvCTcDd
NIw+BR8G9cK5FvBR0AD5CDyC8FsJPxe5AOkeRL5BGUvjLhxK2eDO4Cry53Ax
kB+5OzyAuOMIPwK5measlPM1+f5LOlHoz5HOF+i/Qx5DmLbI+dW2tEmc+hDy
UPrhVT37SHON9myTbZ/sHOnc4ZpWj7b2HEXcfbpG+E9CfoMciLwi2dYNHxE+
Av1S7se/kHMgD0V+gjyZdCfQPz+nnU9xjb7wt3tqUbKtNX9Gf/2OMasz3JEw
PUAj4j/NtL66jzKczLDxuRD6J+hPoj9H+ofQf59stgINie+N3zvCH6f/+CMX
oJznCdOVuFWI+7fGcOTuyM+Qx8JnCONBGg01tlH3OL3TI6+LtLW1Twm3zcfG
1b7o+zKOvSLMVOL608+D0H2HnAv5De08EzkeOStxe+D3MeGHEH4S8k3k+2qT
ZFu/rkmZxyHvQv4d/UHymkm+q9UH0FfXnjH6RsgXkK8il022NZHXjLNfIy8n
7l30nYjr52vj/P5M2zM+oHk61/gY13ctuj+Rr9D3wgiTDHYwSU2CI2izegFM
d+HHhEumDqvp70G4q6EPhfOBZsgx8CdgKnJV2IP+VBYuofZA7oNcXu86cD/C
FIW7ca1WMAZ2hUeCw8gjpKMfHEJeBf9BHZqj8yJuO3ge+rZwJ7AYuTt8j5ex
U7zMPchneWUn/TsFbExqxDjfN9r67Cz0deGN+F0gXgxp/gLnpe+dgp+SVxHk
Dfj/jbwcXW7CLMP9ws/68El08f4Wfw8IQD6k5w0IRz4ANyePVeTVDM6WaHmW
IZ068Hz0teH+hNtMml/kt2faGeL6ELaNykeY1nAHsAO5PdwQLEFuAA8hzm7i
fgk/TjLOXsjabbjakfvAn/FsHNdxPHgDWjInagGC0LfXWrrmsMht4NagLtd7
AuHy6r6G/fAbDY/W3A15DPw5aILcGf4WvzTkqfAfeew9UPYSs3BX0rsz3EX3
J7ppuh/BFspajPusJfJIhYWHww0JP0Jp4z9DfQ9eQT3+87NrsA7/fnqXA4fx
n4d7DzwdHoxuUB7rt5vQDYBbEGe6n/Wb7zRfQJ4KfwEi/Gz8GUi47YRPgReT
zkDSGKD3PzAJdw94Hf6dkVfA04hzAi6tOaLm1si/gLnI+yLsnjkFVuI+As/U
2i9hq1DfbbgHo18Pj0O3ES6mtXbK957yrIU3AU/6wEZ4C8iGvB32If46xo9N
stVCnoI8nPt1FOjDc2QnfI970hX9fca3v/TcL2jj9nn8pnJfn4MDiXsd/WaN
B8iLkKeg/xX0JMwJuBbjTnJWG39WMXY2y07Z4Ab4XWSsqA+/p49W42X2HexK
OtNIZwNpuiH/gLxR4zrh5lK28fDuDNvHa669Zsr2aUEbc/5CP4c2ngtnwe8N
8mLkKNI5oechcXMj70feg+yKX2qELdBsx12MMv8F/4t7I3E/Ykx7rjFOa2Ca
OxE3jnFwL3m9yDD7rYVwbfRh6Peg/xv3EvTFiPsJ+u1ck1163iHvQd6N/A9h
1hNmXoa9F5Qi7gH0+XB/Q3nqwf9SjneUJ0blp+0q+tp4Pp5nQ0/k1nC5vLYn
WkF7tXltz7gGvI84fxKmF2HKEveYrz37wvOanVwYXCWv7StXhv8h3Zr0jc30
5Xv0j5yMCS/hf9H7MDYU0HwOdwJ6F9zPNb4hv8lvtm1TSP9T+D3uQug9CeMO
iiJnjba5bekAS0vz68Hk9Yy0szn7tTnhwLxmMxegPcG8tu9bGg6j3GG+9sza
zjUP1p4iXJ78tsDVnXeOXOi3wo0SbE9az+gbPAsby3YEeQN+WbXPDd8hraXw
KL23wEXQn4ky2z/lPw39gLy2p6k9S+01qywLk20unAN9b/gX4hQk7jHZQYAY
5INwH/z2Z7W5ymj6WkX67Xr4S65pE+SN8Hqud390Xlz/McQbC8aBkWALZd4A
NoKvcK+Bv4TXwStBO+o+Cnf7wjZneEs9Z3MfTEA3HkwExylHsvbKZXfha3IK
qAyq+Nr+9T/EG0V6+ShvJdkVgKLgZJTJp5y26SnbClCV/JIUH97lY2Xe7mO2
lLK77CT/BLPLTIaXKh7yj3BL2Zmgm0k5B6Ab6Gt77rJjqQjKg6upXE/em9dp
PR/3Z9o3hvvBy+DFTjsMBkNAs8JmB9Fc76HgsI+9O0ue6vRJ7eG39TXbg7U+
lu/PcBv8hskPbgpGo8sobG24G3mH7J6QW+pek/0CZT+OziXBZNmapjh98zoI
B5fxj9N+LFwEv7NwFngefnPBDyAB/3hwUfY4CqM2gK/CQSDE1+ZXIejm0FY+
uE8DX/AR5XPXvax6A0/FhZ/zHHgG7vvYvX4IHJbdRWGzlVD4k7AX8AYHfM12
4qBsHry5V2jz2qCJ1lS1Hkc6b8A+/N/qGsreRvWgPP0KWx/5BH4C3/E1G49C
6k9OH5sFZoM5oBvhbsA9ZEvmhM8LbilvkMeR74PboDvhrsFdZQsD5+Q+cgF7
kF9Rltc+dv+98jW7gocgGsSCePCH2hj0KWz2LP2VXqrZ8lzXnjaoSl0vw8Pj
zaZoBPzOkzzQv9e+CLxRNhPgBe5tssuC18ObwQawBfyD7hnYJfsM+LXsAKIs
bgycByxHDocrkk8lb7NbukXebZU+XM7b7LLKA2/CTUTvBVf1Nlss2eENQFcG
7utl4QfC/cCXXpbmILgI3AXuCK5TjoXwDXg3efzoZeshx5U28AFZwa8gG7iV
ZDZssjM7oDUtL7PZm0FcV3h/qoUpTLm6MgZGoLsGcoObXmbfJVu1J2onxz5k
gexWyP8a8CPeTNw54C2UI1DjCuP2MdKtgFwc+Uft6RLmKFwb3T0v84v1MjlO
7UgfTFS/ge8RroRssODicC/8u4HG3Dstqccw+upb3P96md3LO11bL7Ovyk74
bN5muxgIArzNrqygY7sl+7mNpNtE9YObwpHo6sHJcCFvs2GLBvkdW69YEOdt
tnTlCecKp8HNZbMAj4q39NsjtwI1QC7c5eB2oABycy+zu9O1LgtyelsY2Z59
TfxUb7OXa+ZtNpnNvc0mswVo6W12m7KvfJRq/ecr0hsMuoMM3J/DD/AbCjel
neaqv6CfB3eAZ8NzNA54m31mU2/rV7LTSwN3iFsUvgv7wBXUL73MJrMhaARG
4a6pewqeFG82n5PhOt5mtz9SfZZ7eATukWAG8kwfG+dHynZP4z34U3um3mYL
2pb+EZzXbPW17vQl138l93UK+ke8e67PsHXOePrmmwyz4RxA3LDC1v+XkOcf
2rMmfHKU9WetEwZorRL5e+K+oIwdMm1clY1/F82v0EfFmT3t3GI2F6mAPjf4
iDJGFrb2lP2pbBFnEeY16ZRGPx05D+E/I83yWstNtv0dD5A30myAg5A7RJoN
QxfClEs2uwXZMv3CfTMO3p1i9tfa9Ptde5fu9H04gHBNZSeBvjtx6ybbvnBe
sBH9WtKMRF4WafY5XsiJyDv1TUcxW3+RrbK7yoR+OfrK6CvG2Tca2gvQvkFw
is11j/NcqJJic2zZHqUjfwArKU9R0q9EOt1pz1LU/SLzmpHMXX0ZM9LAT8xp
v4C3ga7aM0uydfF09GXhaNAbuTpcMsnex0porgxGEf5TjT1gMfrPYF/SH8X7
wkdwOsjFe0QaHAlOo88Dn+dd4kAwYyryvkx7n1xE2a+iv4neD30Y2EX4mrAH
6IpcSutnYCJp1oVraA2Teu0ibgHa7KlssyhDOXBF74twgSR7v01IsrXqc5q3
IxdKsnfXZLhokr37ZSTZO9MMwuTUPFTvYcwJz8MrwS/IV+HvmCOuQz6dbu9q
OQn/GI5Itj28vUnW328gH0yy/qX9wvpcvxhnr8sT+QNxPMn3PfwOuCO/1Xo6
iNH7DpwaZc++RNnv4p+pd0lwzsfmMOfBZPp4HR+zf75IH6+GfEnzRz2nkL+G
q/qYffLHmsvFm82zbJtb424EmoBmmnuB5qAXWOttto6Jhc1WUZvpndC30PxL
c13ZSaNfpHHK2/Syg1wCOiD/pPGIPAYg34P7w11Bd/A56AE6g3jSvYX/5GJW
Btlpyw5T7weqVz0wDVxBdw6sQF7uzLdXgdU+Ng9vp+9r4LpRNneWrLljL9w/
KS+4C1iguaiebYVtvllC8ybwA3Im/CLV7MTzIecvbDab2otRu9UnzDW4AdwU
NAQvcS+E/4M/jbIxsy38cWGbT1WGJ+M+jX4ivFLzAR+zKV3vY+8OeqcYi98x
lRkeAfYhD4MPwgfAIbAA979q9yiT/0KeBx/1sbi/gBM+Nh/+Fez1sXT2a94Y
b+8veic55WPlOQOyJpg9/0n0O0grlDLvhOeDp7qm8GvKusnH7MaVzkB0/ejL
W5Uuuv+87ZrK9lV2s1rL9Pe198B7Sc78mXz6R9n16gl/gN18ZfjBuIg7O7wJ
9oBdQRZfW2dVvv3gnAk2z8yVYO+LOUE2kM/Xyqx5fm6Q35m71vWxMqj/BPha
+jl8rTx6Hx2bbO+sEc7c/jC6OM2/nXfWWsSrrTbEHYl7H1wtxb6r0/d3dbgv
63rZ3KM0KOU8cx+lMRbGUCb6zFDGrSHgKzAMDAcjQHewjbFuHdgOeuHeBDfS
Ogrj2wRwmnR+R/cCHsxYM5s0Y0nzA+Vvj9yH58BE4p0lzEnQF3k/vBW0wv9T
3J/Cn8Hr0S0HHXF3wd0uxtLpgezJOJMF3grcQLDefeG7jMeb4XVgLQjUOhMc
pPGKMi1D/gA/Jt0fkZ8E23v0OPw/aC8F3VN0f4PbpPU62OK+CbY038J74Rwg
u9oDHADbgSvprITfk/4F7YsFm8GO9pHGox8Mh5DWDuRQ51mh8m8BB8EesFv1
BjvBBieO4g6AsxHnCmleoVyn4NHoT8BrwPMg6gQmk++/8D74EuE88PsJ/hX+
zWnz4+CXYIv7grAbVF94N7xH9QM7wQ6wC2wkrQ34j4B3klZ36eG1lGkU134d
vBndFuc6riHcUsIPh/vjHgAGgpG4N6LfBPfF3Qf0Ayuoxyv4P+UVbOVRv/oJ
LAE/g1VgJVgNfg8y/a0g28degXwKvka6SZQlgP52H3cY6T5ItPZZ6/TbM4nW
r87Cewj/kDQmqbzoniDfBb8pLfhHeKv2NfHbBt9EN0/tDy9Q/wELwSJwD911
sFT7wcQ7TV/amWb9d5f6Hfpb6G+g9+c6rqJsAfC/6uPIz+AJPD8ngkngW/AN
+C7c5j4jwCgwWXtxtPluMBB5LbwM7Adjce+Ax8C74C2gIWk3AI3UzyjH9+Rz
F65FO9VGVzvG5E+Qa2gPjzL9SrxVuh8ob030Lsit4NagDWhCuOZwU/geaTUN
sX3PO2Aq6W/W3jFleEQ6v4HFOZmz5uKawbF+jCvIQ0HlaOoYwPMebkr4JqAZ
iCZMXhAF8oD8IBIMI04CPDyXpZMI4kBBP9PHg9HaPyrAdaGdmxSwvJrCV8h7
CPJV+JbmLeSzBg5hXhMMRuJ3hrJOQ38cHoT7MmEvgUz8i4JR6HZwjYeon8N1
qH896l43xvqq2kR9JTfcCm4J0vCLwZ0OJ4XYvdMNJCLHg7gQ8y8AYtXG+EWp
neEeIAW5J1yR+OWQK8EVQBnkj+Hv4SVgGvhJ+YMfQAZ+0XCRGNvLbQDqg5dc
01Lo/0u0dIohl4P/TbT7dB+chXZZrLEi0dJROYvCF5mztoSDaePGpNUqzNYf
24BmoDnIwvNpJs+BhqQxFW6vNoVbEK9diMWfC1qgnxdje7ktkefDc2LsWSJZ
+7xf8qzoW9z2qJXOAvgr2XyE2f7CG8o3jnIeccYApf+z8xzR86N1jM3B9ezo
FmLPlo6gE+hPnwigvwyAZxFnNpgDfuW6TtH4CHtT7hPADXShPjfgrvAtOBT4
g9zgNggGjSnTXbgJfB4+By6oLXD7wWHp9m5xFviAh+ABeARSwAuQCP4BhUAc
+A+8Aq9BM+I/gZvLCJQ2cFV7gzPosgJ30E99O8zWghU3HSSDdiAv+vbwSHCM
NvgFXALTcV8Jses1CUwGH6Xb87xMur0DTVG54RK4hyOXgmsXtOd+Hbg07uP4
e8GeYD+yOxypdelCZqsQQv5N1T7gPXgHPoAg9DXhsmpr5I/gDFAOeOEuBWc6
4YuoL5FuNBwJ/wHHq27gdxCldgYvQ6yfZ4JIR68w4WpH3bMhdu0iQB7tG2mu
oLrAt8ENcN1pnzMhVveT4AI4BXzIO0Lh0uxevg8KguIay3W/hJi9Q75QK+td
5x5PULrECYW9ScMDHHLa7Sp8C1wD34RaXhcVDznB6RvtQyzNlrCvc92zgb/B
X+Cp03/+Bc9AL67Nc7i33ge5FiXULxgbg8mvivKjLLdBVeSQdOvzXk7//KCx
H3YFJWWHgdtN73m4Y53+GZVu/SsvXLygXQvlEZpu94T6/DvNmzQvAuHpdn0i
0m3OMyLU6v8V/AUYBIqm25woC5xHNincj2HwSspZG/kyfBU00LwAzkXYrGoP
cAW3Z4jZkLzE3zXE5hWVgDtyZfgO40U1zQfgfDGmj4TD0V0EEcBN9jvwB55N
QcgvNK7reQcng6Rgsz9ZrPGRdn2vtYEQm/P9hK4n/fbnGLPpOI/uPVw22Ory
EfgLZIB04AkOqqxgbLCNaeM1vwNfgzFgBpgOZoLvNN9hfDoOCmq+o37llLEU
KAkCcD+HA2Os/GqLYLgb5foMdAKfgi6gI0jF/09QWHMj6pWDsNmp181Em5tp
7iI5BH2rQjYvVvqatwwDuynLNnAOOUR5qZz0gy9Ie6rWB7iuW8E2sB8cAAc1
hmocp/x14KO4j4SazUdt3K/R+8F7ce8B+8C3ofZ8+Q4MVL9WHwfdwADQHfQN
tTm25uSfIvcEHcEmsBFsBisybQ7+B/dCcfLopzEG/gRdf+Rq2l8Ltbm9xjLN
nwPVh0AFwt1BlxPOAW4il4cf4ndbbRVsdlhDNI+C+8LdQY8w2xPvCo+Af1aZ
NX+DLxHngfo2yEqcO+pP8HD8vwSDQRXirCbsaPgkfAqcBj+AJWA+WADmhJpd
1HKwRnUNtbx+BAuBH+U9AvzBWtyrwEq1G89Cf56J/QqY3I35TgM4CF0v5J4g
g3482LGNeYdff+T38CN/2hI8BofpP274XyvK/Af3C5AM0tANJHw6/Le/2bEU
cPS90ReGL1Dno9T1bIzZ74zG/2vgSt/bBp8hrzHoDyDvBfvAKNx74CNhNtbp
GenJPOQcaYyTHTJxcjj2NlMzzXZmZTHbl65BvOr+trfcF+4DYpCjZFMEXClT
MvxO+9f5Tf/M2a9uRdiWoAfIwN0TPlGEewp+Dv8D2iH/Ak8j3+3ku4p8sxG2
DPpUcEvh4NvwGLgmfmPhm4SNhtcVsP3038kzlrq8lW0PYV7JBoM4+QlzQ3aa
umcp6w3avCL+5UG5ANsn/1j5gQDmttVoo+ogO/PZbPpWgPjlZJsAliKXkv25
7F6QV3MPfKw+qzVPynGcfjAXPiMbVsf2qTfhBjntpn34gWAA6A96+VubdAb9
/K1d/EnbD8xEXkb8daTzG3xS9qyypYGH4LcDeTtY42fprJUdFfw5+AyU1vyH
+pSFp+A+qXRANtqgFHX1hh9R1rLIfxQwOatje6CyKYzKKZsElX8X/tmjrd3U
jmHRdi2C4Wm6zsjT4dhok/PDh4jzvfo7fIq8v0M+7WdtNRF5PxwluyjC53bs
1KSf4G/2aIo7FUzytzCT/c2OW+6D8EGlBfaCouE2VmvsOM41zk89OjOnWku4
rvhPKWA2XwnOPfU9uk/gafAG2QzLbgeu5m+2RjPApgLW/2WnIfuyfP7Wn77J
NFukJcXMtu0/3fsFzE6ppWPnJhvGQoS9C48hrVlgrJ/ZQ9UC1UFn7sNCesZo
Pkn5S4CS4Wb3tMApQ1nSGOfEXU1ab+CV8LEidl/uhxuhc0NuAC/B/QN8FF4j
EPYI7dEC/47O/egrOzWQFWzNb/Jmx3apCXEbgvX5Lc0Njn1cIAjyN7u7/rKv
hgtr7NE7gp/Z3Z137PG24vcTuukFzAYqO8jhb+2R4tzXNah3GHWtBS+lnEsI
v597dBpx3JB7O+8f20Cgn9nIhcMD0Q/Kb/oB+e3dKiXc3nkW466sfZNYs0nc
oLbyMxs9jdt+fma7qj7zlWN/dwDs8TN7pCKks1XzNDgdpIXbmn0UiAw3e+/9
fmZjLztH3e+y/x6l6wF/DW+Xfa/WGeBMuEy42TmV1rdz2hNRe+ubB30X5Gfz
jVLh9uwbjfsBfel+LrOvV7+p6dhL/uxn13U/19KHNv6Mvr2JssYRdwucH07U
2gBICLd3z9bghJ+VTeORbHifw8scm7UPwIVrUZGyfCw7BNxv/ayPvQM1/Cx8
NdCBcN3Ap/5mV/lKYxHXIpi8cgE/sI5yuKmd4HC4LvnXAzHUPSmCsQEejD4W
uS+ckZM+D4qCBHQFQCLIr++54Wi4kPZzZOMXYeFn5eD+BLNBMdxzcpitrhf+
AbFmi/0GVA83u923cLZYK0McYfLBL2SPjv5lQfNTmOyxZgP2Evn3DEujmpNO
DeBK3FrqD3D/cLO3UxmHwgPCbX0mC+764WYD7oPcCA7Xt+f6tpOyRqGLlH2m
yqF6qo7gvs5EI/+SmRavRbjFDdQ3mLiDYq1uqmNIrNkgJzvtqT29NLUNCE62
NptRyGwCO5PGOzgbfllBdoXBP6eTTsmc1oaZIJ0ypumbG+RnxMmJfwnN20nj
FfgPVHTapBLYm25zLtkNqn2qgMpaV0NfPtzs/TSvq4DcHw7S93GgEP2muOz1
QIqfzd9qaw0vzOZRuseDdf9zD4TCfeBvuO/CkCfDH4fbnHmQ1vdy2TrYF7nM
JlThQ/zsG5B+uey7Ca2PDUDuD3Lo+wziZ4Wbh1s7twQnKeuX8Cm4I/wp6BRu
NpDTyecYvADugG6O5qpwN92zGq9Jdx5tNhd8hvvzcGv3LmBRmNlQzta9iHsq
fIi0JoeZjeUquDf6pXCa1tdAMhgSbv3qK3ALdwmQAlrhnqbnOThCOm3Dzcby
TEHrk2fhh2m2BplHdp4girqWzrQyh0RYvTZzD28CW8Az0gp21kn0LYzu+9Xw
c9yF9d4DDhPukOaPel742zxzu7/ZU+/QHEHjK33vPvPJCfQ9D+L8EWZrF5mM
EUVomzD4MnnfDjc79aPEO6a5n8YTyu1KOScTd7e/jS3PwAXKcRD3RXgS6dUh
3hj4YT7qSpq/w1fwvwqugUuEy6k5IXyR/LyQV8Ij4WHgK3+bO40AQ/VMI73c
IAjs9LMwu+C1RWxcVL5vqcNJrQvCt7hPL1LHZNrzjp7t4J6/2X2fBmfBOXAe
XFB5lAa4DNaTVi74ShErc4TzPL0FboLbIMQJ7w8iaY9QrlcE/E7fEoVbG2WS
90TaaTDj/3P0h9G/gB+C7VpThu+m23gse+PbGeZfFPkRunvgruoLfgW7wTGn
HfKE23h+FIRKjrD+3E7jGHn74Q6NtXskV4T1v1vgAbgD3HguBKJ3h3MTLjdy
Hn07oeeB9sHTLZ0Qp143w+1ZqefuXdkQoytGOf90nptlwXutq8JvY2yf/yT4
DfwCzoATIAncAIU0VhHuNPw6xuJeQ/4QY9+1nHfSuRpu8oVw+27iLPwk3eZg
z8Jt/PKmLP9oHNc3yvo+Gdkj1uYGT8JtnqYwTxy9ro+evwXB36T1GH6qNSud
WyP7LbhziK1TddD7cJi9a1TQu4YH7M59CvLIvgq+pu/34Vz4fQQHwtXgiiCf
zn+L4z4vZvoAEARiQQyI87Bv9SoR9hBcnvAz0VWWzYzOJgDfgO/AbDAVXCXs
dPgavBpe42HnGFSVvQ/8CfwnaS1F/guOTLVzPqLgmsQJQa6i8sOR0oNU3C+k
A29AEZDkbnY19eFY2XqpLMjfgWmgOe7psCfs4WHnhHgDHw87S+QqcYvin1u2
crizADcQAeqir+Fu7ZnNw84rqeaUX/XYF2dnj+yXnQbh3rvro33aTDZwyHdT
LExJ5LHwZvw2edhZE/WJvxduBO+GXxHmGZiCPNrDzvMpIZsh2S9xXbxkU4R/
WXgUfuM97OyeR3F25s8f8ET4Ww87/6dkqp3nUQYurXOE1AbwLvgr9Lvh1qAV
aAN2Ef8feHecpXkEeSMcQpyXyKFOvnuR94MhyFvh7Y48EgwFDdVuoB4YDHqD
PiCd+O3gIvB/pLtPdYYPwoc87ByPE+BXDzuj4xdwzMPODPmPPLbBD92t/Tci
14IvMC7Ug8vwrJiG7jT+Z0Gm7ERhV3gh3AG/RXB7eB48H9wm78XwMrg/+nXI
G0AacTrizpBdFtwX9ACb8RuoawfX9rCzXOqA8h52nkwF0Ba/FLgFXDWI6xLI
MwDU0R4HPBl8lcj8Aq4Gx6P/HLkd6AwK4P4UrgRXBlXAx6ACqKj9XfzKaj8M
LgF/BQ8ItG9XF+E+oe8S9E0Q8hq9N6MviNwqzfaCtyCPSrM9te1gp8IRvw+8
Ft5OnPXIW6MtnWXaq4aT4GRQCBQGqaAIOBhme6OHwU3yPsZYmMh42wG/HqoL
6Am6gM5gjL7vgsfCp2Js/ei09tQY1w5o3wreGWZ7qdpv1TfHe7SnCbel3BnE
bZdmdS8JSoEOlDsf3Bpuj19x6eBBuDP1nVeg7ftsC7O9oiKyu0DXBv6Waz/Q
jT4E/0b5d1OuN7wP3Qm0NrwLL4Rvw7fAbOT5YA54RbhqPDe78dxcTrx56FbA
k+BxqqP2rINMPxeMB9+qT4Dv1B9kOwC601eK0Wc6wwn0uTTkAnAq3NG5N0cS
bqKuHfglzu7ZqXF2DlJZjecaK3Sfoe8G4ohfCHe87vcgWyveozwp3yD4G+c6
DFD+4DDug7qecAPa5V2gfUeZU30KZAdnwRmtN0sXbfpf4bXgJ+R1+jaEeCOU
V6B9a74r0L6HHYxuNPhSdY62/jY+2vpDV9kD6Btjwg9ROLgvPBT0A7OiLc1p
8Oxoa9s58FdBVpcvgiyNleS1ItDuwXa618H9FDtH5Gc4zpPrCeKBN8/PqnA1
TzsXzdfLzkOrE2/nlemcMsmyta4LP6Etl6K/B7ug8/Qyu+qS+O3VuT3wGNr6
KPJY+KKn2U5fApvARrAZrJMNOtgAbnvamU6xnnam0Bb4BbzN084meqnnFXm8
9TSb9uzIWbzsXII5qWYDPhv+G7/H4An4F6SBDFBG6YCyoH2qnS00Da4Rb7bu
NeFH8J/gD/AKfHBs4FVHnUekc9sCvax9ZGceIvtsdE1BSxAmW2hPs1e/DK6A
mal2BlhHOCf+tT3t3LP6siP3srP1pA+S/TT4hnBndGYRXDbezr/yhU962vlX
AWA16EHYZfA7xvshsgWPNFtlnZU9GnT1sjOpdN7UMC+7LjtBb+Q18EpQC3mi
rpFsc3X9cY+AU+EYx0Z9pKedC6Fz9r5ItbOg1ug+8rR8d8CdPS28zt+LghO8
zPa9MCjiZXbj0bLJ9rTz8TLBc1AM/Aw+87JzrqZ62lxO5ze1iDfbctm+f6q4
XvYtwNxUO1d1PhxIuNMgCHyL+xQ8JdXiPqQ9mvIc/CPS0n8Mz8a/mZedB7UQ
tPGyM7Uaw428zD5+vb4N0BnGjGe/R1qY+/AC9A1lw8fco6WXncGls7RGptr5
W7LZ1vkWOqvrOvd4i0h7jjeMtGfuHDAX/OBuz1k9c8vrvuR+bOFmc8nK7jbH
a4q7mOai8PUUm5PegMM19wI5NQ7iVxZuAteIszO4x2sMdDe95rSl3G2upXlv
BqjrZudA1uCZVJ2wNahLhOZ6zhxS52pUwH90nIVPd7e54BjcJZw5W6a7lU1z
6EqELexu5zwnw4Uku9t8tZa7zfkagIagEajnbnNIzU1vpth54Yv0XaG7nS/0
KZgYZ/PwSfCSFDtz6LbO03K38f8z0NvdzneaBCaDXrjHwV3gCfAY8Ig4PXH/
ofPb4ERnbjwcvw7wl/BjjYfIT+A5uAchz4Bryr6E/OvqWrvb+UWDwJfIC+DZ
YAP+R5054Wrco5DXqPzudk77VrBDZcS9E35JHlOQX8FHlQbyMXiE5lzwCjc7
T7sz6TUi343udlb5LTezS/8J9zv4bYqdK78DXuBuZ3GfAP/hnoD7BTzD3eZ1
M8EKd5vLya59jfICywXyOU28HvAx3Fnc7SzQqZr7utm53prjrXa3uaPCnHS3
OXcOcNzph7Up80DSaE6ZD6uu7jaX3uduc2bNjX8FB9xtzv3ezeQPan83C/8E
Xh1n8+c18HX4BPgNnFE7uNs81i3VzoPfqzPYcV9xt/cpj1Sbd7vDO/ScI8xD
1QF5k7vNUdeHmf2MvtHVHOoxfA98zzOyoZ6ncDAcAkJBNlADXRXQRHv9cEGd
TxJk86to0AJdGNwYDoQDQBBIIlxDdM107gf8FPwLToDT4FdQA7/tmvfCh+C9
gTZPUBhf4APOAX/gB85oDgJ+A1kdORsID7IyRIDmpBWpcsGfKA3Nm+H3AZb+
BzgzzebgxeCB8G50m8GXyIMDbS79CXOOTehywYNBguYq8Hv8SisuaET8j+A4
2B1/N+ABnqF7rnkOiMLPBa4O/wIfAYc1VwdvNB8NtLNfysGNZTdBfC/gHWTz
Lh0K1hDeh/8xsB/UVH5wXjgAvhho58XkpXyJlPl+Ae55OBWkgH9BMdUbpIF/
tP8L7oI/wT0Qq71ZEAceOPJtcE3pgeugCXOs5XBTfS+cZOcT6LwCnV2g9agr
5PsX/o/AwwA7w+D6/7dONTfA1q+yUO76xL3L8+UG7oUBtn61Be5NPTbAN8EV
6QPsbAPtHWuP9rH6oNpc7aZ5PIgF0eABiAFXnDa54PSfy+A8uAfy691A7wWU
ORxOhetQnpBAO29H8/yb4Ib6IXn6qQ+AOdzjd6nfWtntEO5XdDnhwDTbo56L
f8VEux8+lu1qoL0jXAdXtVcJ8mnPXn0e/oHw80GA5sSk2SfQ6q53k9Lck2VC
zRYrTfYJsj8EA2XThLsPPCuG9uceng6XCzN7CdlPlJTtT6jZa+VLN1ut/Ol2
Jozs2/QtzPJMs93+nXxroZseYraLjZAXw4tAY+TPQs1ObB7uhqFm01gw1Gy/
Zb9XpqDZtpWFe+NODTUbvz+pY384jnw/11pUqGPzRrhvKe/AQnaWT1XKPTPG
7ENkiyu7bemG4h4CloZYXNmLf+PUcxr8SZjt+2gPXTZLagfZw83Ar46TpmzO
Vys9nXWTbmvMPeFKuDuF2tk9kwn3kda6Y+x77jJhtpctW/WuoWa7LpuWjSFm
B67w2ksdH2P9fwHXMSvXryJpTZL9k5jrN9d5r+8KuoBuoB/o77ybDwXHibtL
e9EazwKsP61GXgaWgu6gB+gJOoK1+P8MloH2uBfDbRQW/jHA3nml/9QJ3ynQ
3mn/xm+dxl94EWiJ/AOcnGbvx4XgStShLXJluEmg1WsOmIc8PdCeC5UJt1h9
G16v8Q3/Z+ASmBlo92kc8d/BreBZuoecceMWWBho40lj/H7XveCE+QnMBhVI
90e4IlwlzdYePoGXw5sC7T2uOXF2wC3gDfBOsFHjP+Eek2alNHu/3Aq2gG3g
Lfo34GWA6f+DF9D/Y2V7XswO9KzGWHSbsehXf7OFPu5vZ8DMdtrhZ8J2ZBwe
kWg2pT9p/UFc0Ox/OhW0fZaVYLXWPmLsWXsEzh1kbdsMNA02m+Rmsl1OtHWD
yYlmb9xCtsvBdp7TBOJugjeCr5HXw2vCzM5c349pn2JimO3xTCeNJrJN03MC
ngZ/D6rT1zdQtusZtjc0K8z2lY6S1gqt0cTYmVFfyxajONePOJeCzK7+FX37
huzBC9k3a8v1LV1x08s+X7b1j+A/gux7h6tBZqsv2/vb4E6Q2fBflC2M0pVN
UbSlfxaenG77UTpXROcL7aEsCZl2fohsqXSG1W3C3Vea8MIw2+darDUgws6E
d8TYftl88CN4EGTh9S3B/IK2h7VA3/3RJrVATVBetnzOmonO55Mt4Bo4DS7t
2AGWAcVBMfBzpq09nKCfDCNOOXTDtWaVaGsNinsS9gM5wDDK2h4eDpdLs36t
s87Oo7ug9tCaRKLZB65KtO8Cj4WZrbvOH+qkeRSYkW42+zPh3sRvqzWrNLPB
+1Z119iYZjaGS+BlaWZTuSLN6tLfWSfpBYrg7q35GlwI5Jc9u2zfQQFQFdQF
n4CCoKhjV9k/zdaBFsBBuKMde8IY2WA69pkVQHXwsewjCVsl2Na4ZOdZzrGx
XJto61Tj4MVptjYzAM4MtrLJ1rFEsK3zaC1oIHWuTB2/gPMGWf/RvE7fU24E
m8HX3JMVaNsRcG24FqgD6oJ6oH6gjWNNnfuuPHl/T1hvuBLuscgjQQHKMRp+
V4QywlXxGw+/xz0OTsTfI9Dmop7KQ3MB5QNX1xgPTwAlwCtQMsDmnEqnWqCF
0fy5Jkh05i1JgTZ39QZeoA9xCmuch0sF2tyyTKCd7fSvv9ny6aysk/AJ2bTQ
t6YH2JhVM9rmVLXgGQGmnwk64t4Kt4O3BZisOcf1IraH6UG9WuK3TmN1tM1F
i4OSIBa/jwNtTpseaLaFvZzxU/NGPUdmcV/cYC60hvvCh3APtb9YxOacLwJs
LD6dYff9e8bV7KRTW+UErwPMHky2cPfwf8q1fQS3gaOCra8/A0WDbG35qWwc
4SfwN2lmn/ttmsVVuN/hFPjPIFvXfg3egLfgP/BS45nGpGgLc9fJ858g+0Yr
i+yMHZvSTmm2fqzzDP1x1w6y9Xb1/ybOvVlNc/NgW3tPoD9VoR5PaIsfM+35
eZA2aYIuVP0vwOao8aBAoNU9S6A9j/Ss1DtJPByTaM8pPZPypNkzKhJOSrR3
n2S4Dbq8yG3hPIE2j40MtHmv9FEgKNDmtDp7MSLQyvC/eS1ljQVxQRamMWk0
CrBzJhvoOZ9pabZWfwiw8xv1vpUPnsWYfyuC+y3JbAhXOfZOGyLsfCqdpbU0
nvHUm/ES3sX7Z7BzFsQaxuiheibCY7if18umV88l3ON1L8dY+EVe9v+m4c43
q6Pga1yDdYSvSvjOMfaN4udwZIadN6bzx3TeYy990669sIL2zaK+bZSsb830
fVl3dIOJ20NliLB95Iegqr5hlI1Mks3/r+q+hrfE2lnAm+GTpP+F9pFIfyBh
R4JB4CnoCrpF2BnmWQl/Fn5Kut+j+xdeRn69ZHcWY3vikyJsvzZ/or1fNdN4
SPqXAu2czEqZdtbyh0J2ZpTOY4uCCyfatewIT4mwc890ntSqWDvLeCW8nTxm
kNfOGDtvbWKEndE2LMLOdhsBmsfY92Nt4EH6jpc2XwS7Ef8+5fKCH8YR1oPy
wZvjbM3iMTyY+K65GaMj7AxarSnch7NznaaTTs4o+39TVq5dMFwhgWeeL+Mu
fIc8uqG/DX/trJ3thV9xXXOQ3n/pdv6Yvrd7RH09Mux7O50/1jbTzigqUNi+
e9Ke9oM0W+c858lzEN5LfZZQ9wPwVvK4QT/cou/TM+2bb9/Cdj6uzvjYqbV5
8A55DzyROCnEnQCHUYel1CUC9qUtnoebvdYA+tLQGPt+pj88NsS+A9XcT3l+
7ZxtqTnhftiV/jII7od+M2W+4Kxjb1P/9rJzPIbgn4/wX8KndeZmHp4PyXZu
5JpI+jZlK5RhZ9fp3Lk+Ufa99wB4TJR9pz1e30cz7uShL0UlWnt6y74tw86X
OwlOgyXU4Q3T3MXwXOI8cb7L1lm/+gZb32PrfAudS6VzKXeQZifu84cF7Lr3
kR2d+l2s/YNkOly6kD2HdA7hNcI9kP2l5ubx9p+w20l2VqfseX925ti/+dt5
vH6ad+v5CU+KsvMIvomyc5h1hnT3FBtLtf+ZQrww8l4D/GW3V8jsg3XOmM6r
13n2PVPMfu8giFc5M83mV+dP+pLHvAB7H9eZmf9E2b+fdPaazsaqDn8CniNX
hb0I9y3hP4LLJJmtoI/Of4i189bj6LfzCpi9o2yDk9CX17kK8I4M+9a8MuPe
CvzcZaMDV860M8IjKOfJWDuj/Df4b50Jp7MyQNVEe/8fkmhrCK2Qv0i0M2m1
prKculwlzmbiXoEX0m86aN4bY9/6ifWd3rQIx+ZQtnMRdt7g/gj7jkzfaui8
1sux9u+HS3Be6tbdGQMjkszW5UlBsyHcEmH2NDqTcGuEnYEom5ah8PVwa+dx
/nYucWyS2Vw9LWh26eP97Rxsnb2vraMaaj/qUZW2Laj1DscuMUK2jLH/Oybf
pR78ljj1A+y5k5Joa1uF4KMFzP77iNo1yv4Xq/OUHuP+yHmGhmaYrY3OlG4b
a/+HaBNr73p6T81NmnG4C6sfwS91fokznmchbkGN+5rXRNpeyB34dqR9py+7
msK0cd4Q+4Y0hr7SnT4TnWBne+sMBZ2NprPAc2m9FS7LuHPEx85P07l2gb52
zszQBPuX6ny4eJz9S7gjfC/S9lTuwg8oUznnvI7jxJmXYP+Q1bm8HlpXibH/
EesfwlvhGNzZ0CdqDCSt+1rvjbM+udnHzq75gPsOY/t7uAlljte+HTwMBOtc
oXj73rkEeY6Hh9OmI7jXKtCvikfYN9Ffh9sZtjqLQfd4E+QHkbbXszra9sW1
59tK5Xbspg7J/hH3EfgT8o50ox/Af2m+RNqHqdeyaNtHX6o9XK7T4iD7bn0X
9W6UnXE7wc5z7kH4ixpPomw/7wN5v02yb6r0PVREjH0DFg6fx68KYc5F2lmM
leGR5Nsrzv5NuwI+n2bftOWUfSnpDNcY4pyB3Ib0zpNXuM7fpOw36ds+Mfbt
mR/ciLC7/p9tG+Fbk8dgwteJs/9VfBNnZSvtvOspL51bcBHuH2f/dl0Hv9G/
6Kh380J2LqTOh3yebudYN+aaNoixc6xrhNg3zlWS7CyXHPDNNPteXGcRlyD/
DOrYjzSv4XdZ/TjZ/qmqf6Uuhddl2Nn2iYxR5YlXMsS+Za6fYP8F1D8EL1NW
F3QtdOat9mJ0RnUxO+dbc+W30fbPZa9sdl5TwTj7h2uzOPu+Tt/Z6Xs9fQvz
pb+duz4wzfbqXxY1We/Qg9LMllt2kffgx+C/GLMh1Fn42tv+Aj4eY3YaJ+Bf
1L8d2w/9v0z/l6oH16XcJSh/HZUfvwdaD4ixc6S0b/pnpJ01/VleO+OxJ9hE
+B5wkSg7Q60oXDvezoyrBV+JM7slP+2NZ5rNqc51zBFve67ZNX+It/+VToDL
68xrZ57ck7zq6LwV9MWi7D8fmXBp/Ms4Y/525gEHPc024CB5BZPXgTj79kq2
oLIB1Xney511pIrEeQhKgb8jbW/7L50xrTJwj1+GzxPuBOGvwG0oczYf+9/r
uHg7q+4g/IDrkuCMdfpXgP6Beh32ibf/V5WBD+n6cY2OwqPVbwPtbHmNaTor
UfPhu5S1K2UO0/yO+qZF2fXKyDA7ev0f4Xy0rQ1dhf/RfiJteKyY/X9Ae0g6
g/056awinWdx9s6o8yTGk1cyZSwZYePyMfySZIdH+t9Fm+3It9F29vX/zp1J
MFuRqegqFrIzrtvpv1/6j0WCnXvoB5+Kt/+GZkc+Qnmaa65GeX7VOBlkZ2sk
RNnZfwWj7FwxnZ2XBBfQWEn7JMRbm+yNNrugbfAm4u6ET0bbetBvcHC82ZcE
wUXibY+/cLydT6vvD9Jh1wQ7T6cwPCPabHqmw/mj7FzCfPCVaFtTuwVHEv8j
0skDl4g3+4Pi8BA9QD3tn1M90m19+mWm/W9P/93T/wL1D3f9H756ip0Rnuhp
/wIrnWL/ZdK/kxYk2jrgCXid/quhPd4Um8PoP29JtNVnlGkRZe6qcxC1L8b9
fkNzllT7z5j+F9ABv3l69sEB6BaRTpBsVONs71nnWfXB/TfXtD/sGmn/yNG/
glrE2f+IUrk23vBE9F6Rth+tPW2daXaJ69oNXXnCdIq0/7Lp/26rI8w2WO8V
HZz/vX0Gl9PzivasqHOSYu0feC6yE4iyf9TqP7ZLIu2fW4sj7X9h+jeYzkjv
4swT9K73eaT9l65rpL2v6V9VcbRJLNdyPv4JcATXYxH+dfQ80PUi7e7J9t9n
/Wu6sPa+CXssws6FTtfz3s3+zb0r1v6V9SzW/gs2iLyK066to+wcq1Zwtzjb
O9cZ+/7E+RHZD97D+9k90jsH9iTauRW74dkZ9n9p/Tv7kfa8GPMfwr1JJ414
xZPtuaAzC1eRVzhzqjR9MwPHoV+iZyL8E5inPWrS6aXvwZzzPfSvdv1rvR/6
5gXsfJBmBeyfifqP4oAU+w+JbFj1XhNHnsdJp0Ck/V/7mLOPr3/8hRImOtXe
YfQu84K+nJtwWwgTJdvYRDuz5in8Mo/9k+k1/CLRvvl/nmj/S5Etr+79MxF2
/rbaRGfj16Ku3Sjze+J8Qdx3sFec/SuoNHw40b73fgWvjrR/Z66HxyeaDd8G
vYMnmg3fjkT7x5NsKGRLtjzD7JdzMCZ8Hmf/AM/QOVE6h8/N/mF/uoB9F/FB
3/DpecJ9eo10fsiw/zHqP48N8euey87E0D8E9B9P/X8znDRHU86wOPvWZiHw
iLDzNvWf2N9S7VxA/V9zKdw60v6D2AoOJc7n+s9RnH1r82OE/WBKZwWP8bHn
1NsCthb5Bl6UaOvpOs9H17pvLvsuZqLS8rR/FP4fjgixvQ==
"]],
Polygon3DBox[CompressedData["
1:eJxEnQe8z9X/xy+Xe3HH90pIuO417jLuwHW1iwqVtAhpoKlBaWtpD1oKaVIq
RdNoaEh7au+9SYmSlv/z+XufHv/v4/F6fN7vM97nffb5fM77nG/p2BP2Pb5x
Fr+SrKwmPH4H2Y2yshqD36DzarKy3sOjDVhVHU/5d0FrsLZXVlYjwv5K2B+g
WxD+Hdy3BG8Qfgr8JTlZWd3Ls7JObMjKutHwhH2wW1ZWO/iN8O1w2Ar8AX0f
7jXQvcBC6Cdxm0z4k6GbEn4r5H4A3gdtwb+9IrzxtsL/AZ518LXgfujf8G8N
vSX4HXoxbn2he4OHoZ+oysqa0CYr6xiwHPonwvxDemvB99BrwCbo2wnbGvn7
wT/TJStr85bkh/ALcG+OrGbgbuhf8M+FvhO6DeFn8lxI/EVgFvS6XhHeeG3x
b0G55FI+L4EdoX/Gvwn++ZZpylt/0C+VydOU57JcyoOwZxP/hJ5ZWdt3ysr6
CLcp5VGOlmdb0AZMxH9H/D/D/5zyKAfLoxXYQr2R9wrlWAj26ZeVdQd6fWdd
gvnQ54OZ0K90yMq6qUdW1jz4b+C/TWVivVg/X+M/F/9lyDuRtPo3I0xN5Mf2
ZLtaDX0IOkzCf1v8L4Fej1tL/IvAhl7xlC8EBeDtXlF+lmNL8ns9z6fhnwQz
ukV9dyVct0bRpibifj44DxwHbkaHtqR3AGmdTvwjKY+2lMcduJ2A2z8dcc/O
yjoT/Au9b1lW1mnQ8+gUXaA/IP3XydvN5K2I+BPwmwRuxP86MAgZX1B3dyJv
EvR02sSs1llZI2lPS6E/Nn3yei5+5xC/UTH1RvwzUnp39M3K+otnD/Qa2T8r
azhpTsFvPrK7QT+M/0nI/pz0zyT+MmQehOwxSX5+TfQH+8Wb9LetSKc7+vwI
BkMPAd9Bf5v4acSZjX6jiL8Yeh/SmEh6m9ChOzrcgYxZpN0J951JbwlhRhB2
eAqvvicS/k/CN67PyrqYMr+fcn4AXCLdm3In7JOEfZ34o5H5a3HUuXU/Cv4H
+JvQpwZ+a/T+CHwI2oGtcavE73uwB/Sd1VFWltnd0Ofj1oHybA+mWn/UT5X9
hfRvha6ArgQt4AnyvzHEflMNFnWLPm/fL8RvX+g9kfETaa1J6V2Q2o/taBL4
O8lU1s32bXTYF/4p4nYgf6/0iv5hP8lriPHqRPiDwLJe0S/sHweDb6A7ELcj
aA+2Bl9SfzUIv4i0zyN+D9y6pzDFjlGU50mU5wrKc1VD6FOe+vB/Y5t8WerT
7/SK+rBe8htiLLA8KtKY8Fev6Cv2MfvezdTzOZT7zZTvodAXEfdGcJMysqJ8
K9OY4ljdMelXlfKwCbcSnp3An6kvK79r6sNHUd9b0d/uov5PtC32irHjbfA5
9NH4d+gUbdS2ehTlMRi6GeHn1MT841j/FchAM0RlNTg+UZbfA5pg1iCwG+iT
yt3yPwmMsQ4ph5E8R+kOPa5bhDXOeOgRjh/QDOlZw6EPsD81ZZxBh3OhH0LH
70hnXo9IuEtKXz06gwW9QodOjoe9Qlf749dJZ/unbfsbUFQTc6Rz5XvInN43
xkTHxltJe0sE7wP/OImsZ345gTqHzdoFPEv4lR1Clv3l2ySzFr+BKYxhm5PG
Ktxbgtdpq/Otb9zXEPfqvjF2vgveSWPohbSvZYwHN5DWi6S/HXXwDHlfAbaF
boW8n5D1GG3j4IbIo3ndD6F/9Ys2bpkfBr8Z/nfCPUb5XUj8KuLPxZ+sZOXa
pqBPR94FyW8S8obZb9Qb7N0twhm+FUBM1hziuD5xzeDa4RZQAN0OzOsV8lE/
6xfydw35W9or6tt6b9IQ4ZVvOn/2Cx1MYy/4TfDnk+8jEFBCH7sL+jb8t8iK
NE3b8rN92E7+7hfyh6cyvw96Gfn9nvL5ATxSFuVwUGp7Y6GH076fYLw7hDyX
k+cx3UJ31M06pFuUY6dYfmXt7xxXE/KUO6YhwhiW4Tbr0G7RRruktncA9HLC
rSP8z+Dxslh3uf56C7RqEv3M/uacvQrkoMNmCvZJ9OkP/UaHCKPfKugHkLGY
eF8wHkyGXmF+GkV/mgx9HPmpReEcCnFf4o+Af5/87Qk/Cn4o2IDs9WAv6FvI
z9b4HQh9RkOsD107fuGaA3qs7vgPZAy8vDzSG0t648Az0CvB4dBzSP8i6Meo
49cInwdGUB+3oONUZN2NvuOhZxNmte0d3NAtysHy+Bx8Bo5B32L0v5/4k8tj
HHc838+1FfSVtIFbaA9jaQ+PVIWurne/TDofS/wy4j9O/NPKo1wsnxGNos6X
osPrhHsVLCkL/Q/B71DwrGNydcwxzi3NqyOe8UeBA8xnt1h7mgfzYr+z/60G
j0J/Q5v7wvGTuprWN9Zjf8BvBHOh69HpYcr+IdAXunF1rB9dR7pWboLbb9T/
Evz7Qf9Cua2w7diGofejTJ+AfpC0RlNfV7g+JOz2hJ0M38DzMfhHU/xByN0b
7AV2S5AeCnYH2aS/Pc/H0K19QzzldwCPd4s+Yd9oZ32WR/htG8UafTP6LiXM
TtA7g2XQfQizkPD3gt7QjcDv5GfZf/mtifZrOx5FepstM/zvxr8W/ybVIU+5
W+NfjFsDfr+Bvctj/nzI8RZ8DP0Czw/B+/+5dQhe9086RPlug7xS+DsIP5s2
8wjt52zazzPO2YyvX0N/Bv0O6b3FPHIx5XwRGIFulfSdN6FfBWXQy5FXxbMf
7Ww068En4LPw25WwuxP/Hfgu5K+z72DQj4FX8H8ePALdAfdOoAa+J7iCCWJH
BsBfwQLo0iYRvw9+deCgCtbE+HVmgFnYI+R3w78ev+ugTyTd96G7o1MDOnXi
+YRpgQ7QJ+D/GvQGBsydobsUhy6vpPwchfzLkN+PBdo06GuQWZsd+l2rfNye
xP8w/K+rCB3V9Ub4F6GPx20e/GD4a6Angfvg94OfAd2RNB5H1nJQDH0sOjwN
/R36bAt9CmG+IfyVhJ8FfQy4BL4efjr0cYR5gfDrCL8j9GTcHsf/YPyvhy5F
5jP4P5bkn4zbV/hPw38m9DjizMVvC/zqegZ/F/ydYKzzAZgPfTs4BPpJ8vx2
dtRxbn3k2bznMqktrog0TbsJ/BLrxncAwn+Cfv2hjwKL4Lcifh/SWwSmMXn0
I/wywvfH/V/8N4NtiqOMLKtN4GHoK4g/hPo9Av+9oV+qjvDGa44+ldB/ub4H
FeBF/P9WX3B1dTz/TmEMW4KMW9DtJlAMfSYyFqDPPaR3ar9op7Y3212J7+yk
cx/x7k95GI1Oh1KeRYQ/tyLKzfy9h7w3Gkf53WL7hq4pizI1jH59Unkszo4y
sqzeqo606lL7WgKWQT8EFkOfThr/kN6dpDcH+m3a/AP4PQgOJ/6puK3Ffxb+
s6HLkFXeJPpEV99PikPWstT+r6WNziL8zoS/vzbeC+eAGen90PKZzfMjxogf
GXO+pr4uYrCo5wXkF+TPobxuhN8T/hzKq4Lw9xF+ESiH7gCugL4MtIc+ppKx
r4i1Qkvcoc/D/XzwGvJfaRRxjLsBep1zN2HOInxXwk+B/pb0ryS9j0ivCH6W
ZUi+jgazpSmjO4lfBt2nIZ7y3yNvLfIuI98nOo+CC6C74n8v/gvT+6ryjnOe
BDOh3ySP19E2+6b87o/8wwm7BX7VyP8KfS5AnzfwL0Cfn33fI+5N+O+Pf2t1
IvyRYEvoA6qD170G/6OIM5f8DSF/l1WGXOWPBy2h1xL+NORNAj9C7wfG4VeE
X6+GeMqPBRnoffE/DLoQuif+BTwPhT8E5JWFu/666fc84TdSDt3AldDf2B/J
z/bkZx35fRN+T/g/KINP7d+0kftpL/vTXh6CHk+cG5B1jTr4bkmY7fKiDdoW
FxP/YfrTUsLfAj+F9nIv/HDk/Uj8V/HvjfyzSW+j4xmYS9xBhL8aurPjE7Jv
BaXQ71VHe7Zdvw99rDoRfifCXwVdhXt3UAkqmoRe6vcZ9f8+ONI88vzJ92jn
M9Lfh/Q3o89nxH8Nvh/8V/Afwr8CXwl/Mvr9Dt+6JtarrlsPIf4b+A/E/xfC
f4z/F9UxPjlO7Y3/KvyH4H8d8f/C/1j8l6LPY+AE6Nfx3wX/afhvSv6LG0cf
OsaxFrdbkL0j/r9Cv0z4CsKfBP8b/DtgIf57wa+Hftc5CH4I/AboD5DRC316
+o0Cei1lfiv+O+HfvI6y9NsJ+MP5DrxQHbzuV0EvJL0rqK++xFlaEeso11NX
st45HPp5xp/BhB0EnoPejuf2YFvHbzADGX2zY752Pm5wrAb9smOO1l3/3mk+
fxEZe/Acoi7QY0m/GevV6aR3FOndjIxh+L2G34GsLw7DPwf/y5M+c6pDH/U6
AP+dcVuFvjPxP9r3Bdz3w38f8Dr0q2Bv6KHO+dDXV4d+6jmzOvJk3nYHz0Kv
UifoX1lvVJL2Op6HwY8EP0G/if/h0OOUWRbxjH8i9TkR3MF6qj/rqR3AndA7
4LdjKjPLbi5pTiNcR+Lu5Psf/Cjc1/oCRd+ZVR3hjTfbvlcdaSh7ROIHOt8S
/i/W1+PQMY/yuTblfyfwMuUxDf7I8phDnUs3EL6KsDdWR/lbD8Mpv5vg94J/
GX4E/MGE+bM43nl89xkD/0dxrNlduzvPOd/NBE87bxC/N21vp6RvhrA3Qs8C
+b5XEr8R+p2PvHHEzymOMdqxORt6FPpdDd0Cutq5x3G3SbTpi6EPxO0j/PYm
/ifoeBBu1xI+D7cav0nCXwV/DRhdFpB+FN26l0W+zN+e4CXoU6iTY1j/3st6
9xXKf6H1kR0yFzlWdoxvqIenMtsFnV8n79eR/gTo3cFX8Hen77O2U9urbcy2
5rrR9WOv7FjfqqeyTaOZaxhwZXaUgWWRC66Anp78F/eN7xt+55iCfkeQxy0o
v5tJ73jcxsPnw18Pf2x5fH++Jyt9A/fbjPsbxB+I31kNsYZ3LX8/5VFZFmtc
17qfgIUVscZ0rfkxWOR4bL7BelAKpuC2mfH3bvxvhO6C228pjGFfpcyaU1e7
oHs+7fe56vA33HTX/iDX9oF/Hv73o/8cxpubkHdDRcRvkfZK3L9pTLyPwDuu
49D5QcLfRfgFKf3XCJOfvsX6PblncYT/HNRAP0D4+YTfm/HssYqYw5zL/gRv
QOc0CX22TN8fdiwOt6ZgB+iXkZkNvT10C/TdjWdBk0hzV+jT/J7h+ADOKAvd
89L3bfNwH+nPJP2dSP+Risi36eWktJo1ifJyn8r9KfNj/IGmUx/l1Sz5uT91
flmsZV3TXlAW5Wx8w+xcHPO68/vvrnWyQ47y1GuAfY12fgXtfTDj0QNV8Y7i
u8rP4EHXs7S3IsLVovco+v921iUYg6zhqd/Yf6ZQF2c0jvHCsfRs6DHV0e5t
/1Phz20c47dj7wWuSaA3MAd1b0V7IO0lDTH+KFNZo6tjPHcuOAV+pOsL1piD
Sf9y8jq0IcZWx/vJjWOMdQ3rWvY78GptxHU8O61xyLgNGaOzYw64vW+sMVxr
rAUPVMS6wfXDdmn+cr2h2zZpPni2Ouq2xD5bHd+Yvkhtq3/PWL/7/lrst6vq
WJO4NvnW9TX0SWXRFr8EJ5dFWVlGlo1lZjuyPW2d2nBf5K5xbnG+LI53DN81
HgG3VUQ6pud7c3twalmEN9426POU/cf5C/dBDfEe4PqpIc2/l7ovkL6ZXwTe
Ylyoa059gzfLY9/P/asbsuIb1gbWqEdRX922JBx19jv84fBd4XvDb4Q/Ab4n
fB/4vqASujzxfpP122wj0Az6T8IfR/gq/Our4pue3/aeAttAj2S8+q4pYxv5
2Yr2348w1YStSeEn4t4R/05gEnQWcX6APgF6F/LfmDDnIH87wm8HXQq+gb8d
/kDogYz3d0CPhH6S8jmReCVNQ6ayV1Fu/aCnQO+GvKMZQ7fvSl7a0g6qIh3T
WwtOgj4Vtzz6Uz44BXoA2B/5W8CfDv03+T2Z9Pvi1gD/ZU7sbbl/4LzRFP3/
bRrfOHNSWawEz6YymUD6O5L+mfTXlcR/DpwLfR54tiribyLumeiyK/rmwv8N
/0/TKO/jcN8aujU4Bnpb6wRd+oNtoP8lv183jW9OfnvqiVshfgWgB/Q84kzB
bzK4GfpW0NdvWeAW6A7lweu+D+l/howxhJ0BPxT+J/K/O/lvirwK5LUifAnh
r8V/L/xvxe0lyupK8vMy9AfE34P4l+A/BP/nCftcTrQh58E84hfyvBj/wfh3
ge4MikEn3Wk/D/Bch4yDaqIerc/e4AzoO8BZ0OeA+Y71hH0hlXk2OJQ41Tmx
J3kf48Uv6L8v+hehfy/0Wwd/EHw72yR8FjgPfsdUnhcR/z7i/oj80dDjwTbw
t5NWe9pzO/TvAX88/l+Xxf5nhetV1zQ9I5/mt2nqM9lJN9uFbWQW4Y7keZh7
PtCtyyP/lkOb8pCjvG6uUaB3RKdd0S0ntU+/p25MZTGwZ+zTuV/Xm/a9Hnoo
/eMFwr8M9oaeiv6322aJM6ImvmH6LdM+YN+rJk6GsG+DcdBjaa9daK9DkfmQ
YwHIwe9FcGhVfNP02+YCUOf+JTLvgJ4PLoQ+C1wO/Qby94cegQ6NWoftwgr6
6w48d0dWc9wmQw/H3w2Vk6Cfwf8m4rRkLbQ/Mo6BHog+F3chTeKMqor83GZ7
BedDD2d+mQPdy2/jxP+eMK0piy3Bd9AnE+ZU/Jegz17ur1Fuw+D3sH1A74Tb
DPwWO47Uxx6Ye2HrwPFV0UZsK5+A8VWxZ+te8Q85sZc7zv3KrrFn7d71PeRn
D+iv/JaPPqcg/3TCngZOhZ4FNkNvAtdDP0i4IYRv2jbi+E7tu/XWGfJBW21J
uCKQDwpyQt6ZPJej81DoI7TZIP1i4q8l/iD4WymvV9D3MPiO6FifE9+c/fZ8
Wk3slb1A/H2gZ4K/ba+U+Q3uhRL/duKvIv5YdXNPqkvYGGhrMAD+AvjD4afC
N0bmr8iqAC/RH0aS/1b4bemeP/SdlOsOyN8R3OU3RNzOQPa5joWUzx48JzkX
tQ63RfTZDcg61XGvPvJ6FniiaeRZux7te1ZCbyqLPRn3ZvYzb36fQb8GyqM7
5fEL8ipwn2pbAZXQR+Lfr2vY4GiLo+xzHKubRhqP4XYYfp2I/5PtxzEa3bJT
e52S9FGvM8BxyBuMvN0I/yf+L6P/5YS9FPp59Dk7yTeOcf/AfXvCbgs2VkV9
qF9F2p88A/4ix0t0GQZdUB71bzsoLI9x1fF1d3CRa8ecGE8zoAWYTpzXcuKd
370U37WGUT7DwafQbXB/2/4JWtlvCdMDv+OgT4S+E/TyXQj+JOh5oAt8d3AH
9EZkPJgT74++R27yHScnxuzfoQ9134awG6AP6hnhT4M/GfwG/Qs4PjdsdtYX
RzjDn5Ib8S+rifdd33tPpjyWwk/MjTHZsVm91K+n70/Q9Tz7gb6gT27Y3Wh/
M8oxFXoucYrhD3PMdjx3voEv9f0Vej/rifH/BbB/VeRXf8Od4NgPvS3oDxpS
HON28n06J/YZ3W/sAEZC30WcOuhacDf0m4R5F7QFre3LpHE/aZ1Amx9SFXKU
VwkqEm36VcntdmR0y429KvczLe/Tc+N93vd698eW5gTtu/5XPK+Dvwp8Zh04
RhH2e+iR+K92j8R3X/BTceyXuhd2sG0ZepPf0+nfH6DfHfStrwkzBv9DwDfO
+bT3B/D/Fv+j0f8q+vO/tPd3oN9CvzHa29EfPqAPfYjbtfg3hf4A+u2GGLMd
u027hrR+dg8lN9qEbeNO11zIW5HiHIb+p+ZGW/PbxeKa0Ee9ehF/nXtC8MeA
NdBL+saaw7WG7972B/tGPnJOIf0ra6IvOZZOg25mHqiPfcnPLu7F2odJ/yrS
f7Eq2p/2RNoVHcb71HjnPNJqzDv7objNJcz72jMQ/nXop8jvQuhF2iRBNwMP
IX+Q+3TuD/pOQPypuWHE8UhNfE/xu8pY5P/j+ga/M8Fflg3+I9H1UehS8nuz
8yTpXYj8F1zrIf9F5B8AvRz5+fDPwu8D/xh8S9sn8UcwXnzEeDnc9Rr+L4MR
zu+9Yz52Xl7q/ivp7EfYvcFlxbEOdD04ElzjmtB5nLjPgL2hL6mJ9dcO5bFf
+2ZxjHOOjav8XuSanLhvgUOLYw50LnzDdQ75yesd8pT7aEO4/2+uBK8Xx/x9
CvRr0OX1se50/dnBNl4cay1tGXPTmmt75OxsXab3B9eZjo+OkxdCv+I7M2V3
bVqvNi+PNeT5+O1OHbxDGQ1A1wvgB/WMdEyvFHQEU4sjHdMzjHvS7m3bB+2L
7gm7F76+aewVy7tX/EhOfG8zvHvZruFcy12exmTH4kuhi8qD130P0h8A/z78
BznxDchysDxOBq/6zlAe48t7YDfoj/0emxs2EtpKvOc6HH4v8IHfJHrHeOe4
9zjlvRvug8DFOTHv+D3s85TfLaHLe8f603XosoawpzkvJ2RVUR+f5YQ9outX
1+8LamI8dly+pybape3TNmfbU67yP0nl+WBN2HKobw/3GmpivHXcXQg9WTif
4V9WH+3M9madWXe2c9v7c/bhqghn+EngZei3imMOtk2+mcrrQ+j2YAvoPe2z
xH0a7KWurrlJe5fciP8A6Q+F/hC6O+nfB78r/NvwlfDv2G7gB4N3oV9CxjTa
1hVp/NDf8t0txbHP2HdWgmFVUb/Ox9a5dT+6POZr522/lfod0O+Br3YIm9hl
uN9A27kaPFAcNpbaXq7OCXu2LNpv58a0j0booo2UdhDwE+Cfh56L/6XaimQz
fkPfwhj5WEfikNa+jD8HMX6vZnz/kzHmL9rSP9oPEf8RwpQS5m6/iYFPs2Of
/jvSfKwZbQl8D72+mnaE/zzHmoZw0285+AG6Ee4d3LsFjaHvIuwicC+YD7Jx
6+1eK2gCfZvfT0m7C2nvh36/I/8Kwl0CNkDvok0sGAwG+A0K/X9A/zr0P8e1
GzKqcT/H/Urt7bSx6BJrOtd2Q/x+jv+92hFCN6qN/Jivq9B/MG6vkX4Z6e/f
P9I07duQewD+t/I8X/2zYz/X/F/YJPacH9a2AXnjmtPmkXcl4RvDP4H8H+Gv
hr+b553whxPmS+hR6PcZ+nVDv7Oq4hu739qHEuYK6FvA2dBngZuhb6J/ltLW
7nbeQt7r5PE88nI+eAP6TnS6zr1RcBf0VtYPftO0p4RuWx3hjdeJ+LOReSyy
J4BZ5fGN2m/VRyb+OHWAPxr+euhS4t9C/PeIX0r8S6GvBdeAS5K7/jeDd6Gv
Js4I4g4HV0Gv6ha6XAne6hblYvk8CVZDd0D+1fhdrE0o9E/0v5PxuwG/qaS3
xvEBfo7l1BA2VtpanZ7Kx/bTk/pdQR3+pm0zbg84v+J/o+UHToM+NfH/ksYC
yup+0AjZK8Byx0f819WEDZa2WBfB31Ye+5Sfms+0X3knbrfjNw/Mh76RNOeQ
djvazzDaz0LqYC6yb7fdQ/+OzGsJO9d1hfaOyBiCvgPBTO2ZaC9P4b8G/2sa
4in/NPgJ+g9wB23ndrARuj3hd4B+F3qa9uuuN2lL94HrquIbQ5c0ZmtL7pzx
UU6MiY6NswizmLBLwMyqKFfLtzcy3y6Pcrf8+6bvjR+A3aF3A+9DzyDOQuIu
AtdC30z+8/3uTxn8Cv0OYRoI2y/JG0p7f5j2viCF30j5X9kkxqjfqmOMbpvW
0OrnHPhOeodx7NxAm/k32X89Af0baOq352RfdyTP48CxjcKuryUyj+E5Xnvh
6nDTb1H6XuoY3C4n5lzlK28z/gvRv9izD8RZBN3RfWjq86qa2K/cOa0vh2mj
SX4eTOXnetP9JvedTm2I8w/a6n3qd2PXlsjPdqwD67uFPdlDaUzMqok2Zlsb
RHl9CD0THAPfA/4N6J3QpxVxl6HTesp3LW4r8H8G/FwekF4JfpEGjYnbCKyw
fbqeQ9enwRzon+2D5Hce8jqQxya1IU+519q//KbKevVr3B7DbX/yu5L8riT+
TVWxPn0e+oXEH847xK2k9RthryP+ScQ/kvi3Jbcc+kAN+q8kva74TW8S49XK
7LCxUp9f0Wdgst+bT/gb8J9lH4Kehoy90aUV8l4oj/HlIPiO8C+Vh42ntp7N
4Z+Dfh2UQXcDr6kTGIt/aeKVqezZ4A7oGbiNw78L/q/Ydinv9ehyF/r+Qnnv
rc0g+f+JNdKx5PdVwpQQtlMK/ws6r9F+IdnHXOsYj7wO+L8M/TRz7Dr87kBe
+54x/jjH3kvaIymv97vFWOqY+kG3GEMdS2/S9h76E202tVUEH0E3p77eRP5i
8078BbjfA5aAxY3ie89fOfFN5nDortURRr+K6rBJ1DZxIxhWHvtoOWlvbQvw
EG5vIH8VeLg81h9+D/ebpd9CZ3gGJye+wY6tiXdu37074zcRfZ4qjndr36Of
LI53bHndu7CeetA6ahZpmJZ5Mm+PgI+hu6DjXdAPaXukvbljLngQPAA+YT5s
25Y1AHXxHunNsmxtz+D6NA9ZHgtSGWqHrj36Wel7fGV1lKfl2rkh0robPJzS
fNQ5mbAlpLEa+jPCPYn7cucB6M/B043CTb8vwbPQz4AvoLtXh7/huiD/cNpP
Ne/LHZK8G1N6pjtHXV3vUhYvgnsdaymv2az9llJenevjHdx38W/AUVVRD9aH
+xR+Q56A22r81oBj3HugrY4jv+PBeV1iv6cXfj+n9qvNjLYzLTOs/ytjz8i9
ox+SfPdzekCvBcdBT/AbL+nsAx7oG3tK7i19n9KbBDZB/wkmVsUeinspG9P3
1f6gN/SG5L+8OL5FaKOrHfv39IkbSskTOm2BPrnaIFEW91MWlzZEmVg2L4GF
jif4vwy9CPoS/Cf6jRRZK5DVtT6+2/r99mvwTXrKewaoPL1X+X71MGX8YNN4
/9BNeg+/F9RG+7SdXtYQeqjPa+CB8kjX9F8B9znWgDEpL9rmT0LGMfATc+L7
mvodlRPfsvz+5vdlzwb1zImzSdfh9jt0f/sM9A2pvdvuZzcKmwFtBxzDHMsc
IxwrZoAPoVvR3k6Afg66Y0PMH0e43kzrN931n5jeDxyfDsZvDLjGucY1QW6M
gY6FLxPmAsJemNbThZTHV/g9it8Vju+4nwnOACc2ijN3nr37FzxVHutP4yun
mPBTUnjj+c5ynmEI+zlYVh42RNoSjUz6HAGugh+d1o+X0d/fpS3/wTj6EvLu
Se8UvkvcXRbjqOOp7yraFpdURx97m/RLCN+pOsrUM5KelRwBVtEvipB5WlWs
SV2b/st0fFe3CHdDKnvPYA4n/EtdYg/MvbDi6hhzPJPp2cwr0XFfdN0HTIf+
y/Vyk5jD/qyONa1rW898evbT8e3OlIa6XZ/GLteFrgc7V8d4Zhqm1b4mDq6M
on21on1X4/Yifl+jazfy96f7M6R9l+sI+G9xf9XyB99Az+oY/OvmCbq3Nmym
0yjOVylHec+Dr7qFLqZ/P7ivUcwfjleWqWXbszrGO8e9rg1xJsOzGe4xdkjv
C7e63moU71ud0xju2F1WHTaX2l4eAVpBv+NY3CjOqXk+zTO7njm9Hl3XMt7M
6BhnTD1bei30VR1jLHb8vbrj/5/xvAZ6Td94yhck/38sb+piAWkd2BDl4Zk5
z8rNTOXxFvSV0KuJ/123KCvLzLJUD/Xx7Ot1HSOc4VeBaR3jDLD6qedPpk8b
uYu2cie4uir2hN0bPiPZ73/BGHEG410V491PFWFbuhVtt2122Jie0zhscLW9
fclyL6E95TOvgZugHyXOrgVhk6Ntzg0lYds+R/vikgi/e0HYs2jXcgu4Db9b
lVESkNaeRxmXg3rC9gQXlIQNurbo2hhqa/gs/f8y+EvgT3a/hucp8CeB06Hf
w39L4pZqb1kbbvqdDM6AzkfeWt9dOlAmPSJsa9A5xbmUML159gGXJX0Hay8J
boWeB+5A1tz84G8De+K3W0GUh3X4cqov6/Zrzyfgdx1+p6LvDJ7XexYAXFsS
kL4aXAn9K/gDeoM2J9DPEf9abVfNZ3085a8xTknYxmv7f0V+6OsZAHndtZ1/
ifjz1Bf+9PqoE+tmZn7otAW6tQIloBOYhdsuPLcpCPnaiGsrbt1pmzSdZwN+
/QtC3xeQP9uzBNCnIf8twt+E3zr45wlfBN0SFIOO4J3acJP+EPoz6xz6CvB5
SfDfIO9LbcqgX0feZdoWQz/jfgPPH/D7EXxdEvyV+E8DX0B/BL7A71PwfknY
1Ghbo+yVxP+E56WEvcj0TQtcDX0N+Bb6F/A74TfmRx7kb7R9g59LwgZIW6Dv
oZ9F3nfWB35XFYQ+ylutv3koifS+Utf8yMOdJWELNx/cXhI2+trqzy8J27Ou
9MNycLHtH6ykjC7B/yL8J1O+T8GfAX8W/CT4J2qj/dsPJsJ/Dz+0IGSfAf9u
bdSxdfsR9MW410J3KYj+YD+yP10AppZEOqZ3MbiwJNIxvdPAFOjzDaNffvTP
88BUzzYI6ALkZkAH0B6sIM2z8TsHvxPrI3x33HsURHrP1IY85Z5UH+EMPwWc
Df2bfawgbJI3QH/PczXYK/XJxnW0hYLog98hqxlj2cPQi0Fz6F9xewC6KfT5
9fGUX2Tc0jiD4lmUf5H9EuWfg1s+fCHIhT6L98l3C6LNnwG9vjbkm84F9eGu
/3upT0zC/4cWjAfIvZnx/Tj4T+AHwt8I3xR9NxJuVEHYtzeBXwe9H/jBsIT7
HXoEeKIibOq1rT8IPAX9Ps8PwLapj/5GnEfVF30ucn+D51L4JaAFdAF4BPqh
lJ+/bIPQ88GfJcE3sizA39CbQVPLg/L/A3od8u+G/8e6ro+n/IJUZr/gPxf6
d+hz8d/oGGn7K4j4P9cGr/s59XFGx7M66x07KO98dNpaXUET6A21ob/5uLA+
bNi1Zc/wftCK9Xg27vfhf38KP4U6uRfaA2pT6+Mpf1fKT6PSOHvULNW3Nvza
8h8Cnoa+kGc35HcB50OXFQZ/YRojvgbfFMQc5hhve/wL/f/Ojzxvts4KYox3
rLcdfAS2T+1hO8cZ8FZB2Mh7buBbMKgg5s1hYK11D/YAaxxnwD4F0Y89M+DZ
gX3B4xUxF31XEP1gSJIlPzjJ/Lc20jPdr2qjX/yY8rFbyof5+bQg5uSPKiJ9
9dDeNbsudDBtxxLno5sL4oyBdWbePgY7pDx6BuKrlBfXAp28eIB5bzPz6zn2
1eQm/Sr0AcoBGwrijMeaihjzHOteq4hxz/GvAlwCvYXtn/n6SfrQ9tCFYA38
CNJ4mPl7KM+93E8g/NSCKCvlH5DKLIv8fF4Qc9o35OcLnl+CgWCAfQl5n/Hc
uSDsba3LL5KfdWrf/BXsXxB9dP/E/1QQNsLKVb790v5oP7Q/2ufse84Zzh2z
zKvzGTr84vzlOEd7PZ/2uwVt+xT0Pxe6MBPvwr4Tnwjq0D8P/gTottDNoVuA
4+GPA7XJTbpNXchRXitwamHEM/4/PA8DW2rnA06HPg20g+4IzoM+yzSgtwJT
oM8sDJug9vDnpPM3udDNwLHwE0A9aXaAPxe6fV3IKgZTC0Om7vqbrunl8MwH
E6GPAb2JUwA/CXor6Mme28pEOso/kzLsntrDadDngVroXuBs6Dz0e64w1rCu
Zc/hWQ1fY9qlwb8M/aL5gz4dVBbGetc4p4JnoFcm+fK2P9vk5BT+WegV4JTS
GIPUb3I6X6Pe6m+9WV99yEMb6DMsW+hbiLMaeg241TGKOv6+MM7EeTbO/D0P
/wKYAn1TaZzVGQpuhl5LGj2S35c9Q67yHQ8dF/vWRR1ad1tD30+4Q6EPAHdA
/8tzMxgHxoJ7cfvDugT3QPciThbxx8O3gm4MnQ2OhD8CLCLMnzw3gYWWbQqj
35bQPevC33C31Uc7+zelZXtzrN6b57DCGLPNl/nzTJJzcCfiXw2/G/Fn1Mf8
6NgwCP46+L9dfxbGGTPPmpm/v+H/UnZp6N4IHF4YeehRF/kzn7cSvzv87/AL
4G+Bv4vngUkf66MK//XQd0LfjH8NfBPkHWXbT3RTcHRhuPmUtx3bfu8m3m88
fwbzSkOO8n4F80sjXdP/LYWtROYv0Ldb16S3F89N5Pcvy6Y03PVfl+rPfmyf
tC/anyuI/xPP2/C7sT7OcHmWy29Wfruay3Nf+P2SPoYz/I+pPZ1cGvNbWWrP
8k9DPwlOKo3x2LH0ROjPe8aY7dj9NuPV0/B7dIsx17H2Xdy2cT+Esf6D/Ajz
EFicH+f5PNf3gG7atns+BHog4XsR/3H4Zb5LlcTc49znO8rOfqfBfxz80iTv
UOgx4P60dq9M+js/u25w/XAi8sb7noO+j/JcQtgl6LuY52H4jy0IN/ll6ub5
hZJYA7gWUFfPIt5TEnOHc9O9rnVKYsx3rJ+f+Hvz4/yv54B/8h0JvxsK4n1t
DeP7jIJ4PzjL738lcVZiTX68X3he9PqCGP+fI73VrrHw+zU/5ocPfAfyfSU/
3k/kXYu4NnmvJM7YeNbGsl9B/FdIb1F+6OrZSdcIznueeXkw5Wdhfpx/uSu9
azmeOqb4zrWc8AfyHFkQ603XoM5z5s2zzvcpx7MP+VH+rQjj5UMvgh2gL6ed
vIest8El0FeA9wvD7fLEb1cY50WnpfH7VejXwFTX5OB16FfSeO246Pj4NZgF
XUZ7/xT6GujZ6NMN/jP4a+FnwX+uPvD7wr9NfrftFusP1xwTcRsCvyf8E6lN
/+P7aWGc6fRsZ3PG88dS2M/g93Zcdnx2jCiNdEzvczCjNPz/Log1uWOScpQ3
uzD6r3qoz78FEd/+fUNhnO/0nKfvp65xXNv4fns1bjvjt0vK40zwFfSX4HrX
wKVxtrgulVch+r5ZGGesPWt9Mc9+8A2p/C8F70C/Cy6DblYXZ7ENP5Py6lwX
Z5E9k3w9/HSeHxbGeWnPTcvvAL1Nip8hvQ9S3Xn292fKr0+K79lm9d0dflCq
L8+g7phkeRZ7Ds894Aem8putnML4vu6YZf4/gf4YXOXcWxf+hrsB/Yp4Pu7a
FGScA3i+UxD3AfiNxnfZ18HTBfFO6xm72bnUbdoDreyEH/wKUNUpzjR6ttEz
o54d9UyoZ0NfzImzq37vvSI3zox6djTDc05ufJMuSPGvhn41J2xGTc+zfZ6p
82xdEc8bcyOOcQeC76G/BbtAP9o37lfxnpXx/Rnj+sb5PM/pjesfNsvaLu8G
FkK3xO+m3LCJMJz2EMo3ncN7xtnNGbnxjbp5pzjD6VnO19IesU95z+Nqo1tB
mCdzw8agHLoL+CUn7ggrUY+yOP/vPQC9kV+K29qc2GPr3CnugPMuOO+88u6r
U+Afge8GPwF+Ivz83LiDzrvoPDPh2YkLwN3Fkf9Hc2OPwb0Gv/erv/nwLKrl
aHlaxi2gz8b/k9y448+7/nTX3z1u62BebuijfYG2Yeolr3ubTmH75V14t+WG
DZj635MbezHaI+xKmB/gvwI7Q7+ATl9A7wTdUB9nJsrTfo1nKbyL8GP8PwTb
QdeDN20PoA76TPcToXtDH4++3Xk+kxtlbtn/Rvne2TT2aNyrWak9I37V+PUm
vWdrQp5y+9bHnom2L+7Bu5fyB8+/QIM2EmmPw72OzdpoQLdm/P4behvwTU3Y
0Ghbc2tu2NYoz70Y25BtqR/pFNqeQIP75OTxjKZxhsezPDeCidAnN43zOzWE
eZGwz4Ne0O2R0Ye8nIb/t+RtEG5r8FsNdod+GR1+hN4Nepv6eMpb5pa9ttJf
gy9BR9uo+7k8/wBvQA8jzO/QG8De0HuBX6HXgT07RfifoAdDb4v8Q2piL6sW
HFYT9WB9vAH6QJ9VHvVnPXq35PM1cXek7asf8V+F/wV+D/jt6uMpr05DoF+r
ifTVY/v6OMNr+7KdacvYHveF8AtAu05x99ui3HDT7zPtvd3fd8+pJs4wn+85
u3Se1zv/vPtPmzxt8zzX7Plmz/x69ncSZfw6dEVx3FdTQdhKUAa6gYnMyyeB
u3lHng/GaI9F+OvBwWVx3nlmOlvteels4jRpFvaT2rO/g0658Nvlhj1kU+ic
ZmEfqT3628lNWntL7330/kf30NxL+0T7d+hR+D+srSVY6tkC0stQXmXMD6e0
CBsibYm8U8y7xR4lzLu8z3epiDxMAl2hx3hHDvQthK+HPhb6OHAT/I3gSuhr
wErop8BV0FeDp6GfAUe2iDiGnakdRkWUj2mY1j2MR/eT9n1pv/VY3s+OwO86
wo5P9709gt+e9v2eoctkMK956PRWTZShZaf9/Wh0PLpF2KBoi+IdNd5VU0Qe
BxWHXOWrl/ocSPhDoK+F7uNld8hq5P4l8v5xDITOA81BM/BuTfC6v+d5Hvew
iuNunoEN0T7XE+9v8CZ0++KwvfQOIe8S+gq3vs3Chn0k+l1KHWzXLM5EeJbC
O3y8y6dVcZzpvQy3Ac3CJl7b+DbFYXu4ALQujn5of/gL/Gkfpo3flxs2cd5D
5pkl98ClvZtMm0JtC7Wh0ZZG+zj7h/3EuxLtZ/a3TWkMsD+uS7JX1YQNqfkx
X94PNBi3e6mfZ9J+u3u27t1q8+Le8jGEfzI77kzy7qRh4FTPQ6f7QOdTfidl
xx2l3vfZPJX3QNIbkBvlXdAsbHC1xf0AtILfEnxYE/VkfWm/qx3vfmVx3+o/
6c7TQvSaA38baOlYWhb3YXkvlndguYc+nvg35MbeuncwaYekPZJ3M7kHfmiz
mCOdK83f//bKc2Ov2j1p96a1QdIWyT1f9349MzA++Wv76JrGtc3TyFxAed3T
NGwUhpCHRdDPQncj/1vSBv+0PYOv8XsLfXdtGrbs2qtrY+B4YZvX9sD237hZ
2EJo/+BT3nasrYSQti1rW5LnN1LbMcivjXajbaE2htaxdkTaE70FlpRHG7et
a/ujfZHPFqkvaK/jeOX4pC2E9hE+5R2jtJVwvFJf9dZ+wzjGdYzTpkL7WG2F
N6b5RvtHbUE3pfbmU14bUduj9mnq+1fqX56J8qycZ6Y8K/Ue5bVX07Ct97zp
9c7bzr/gZsdn+16zmJO1e52LnOOaxRyvnetScD70ueY5N2xKtb19MDdsTbUZ
1ZZ0SrOwJZXXltQ+ZF9aAr20WdjfaYd3SL+w57HsL7b8oBc3Cxtp7Y6tV+t3
cNM4u+C5BG3dPUd6bnGkr23rGc3CFniTNoLQcywz6M01IVNZ2jJrg6otqnOs
c+1JvcP+RzugdfWx9/MieKkg9oBeSLzuVeDP2nCT/gz6OZ7P+84PKsCWvAM8
xfNJ0Ko09mpXFcR7ge8D7zGmv10Qe8jeR+NT/uWC2FP+pzbCG+9LbXt4vgZq
QLXfYZKb9OfQG7Wfht6CtC6pDzmvgF5Jnvl4A9Sl/PxeG+8rvrdc7Per2ng/
8T3li9qoZ+v7+LSmU67yl4OWpfEeswJ0Te8z2lFoT6HNtrbbroWsX+vZNVFH
8ljB/LEaDKoISK8Bg6GLQX/of8EeFbE2s/6tM9do/1J/90MvAH+n+nywWazR
XLtdRRtez9hck8fYWRG6PQO6JR03pTqybj6tjfpxL71tQey/reT5LCgHZboh
pwVoB7YCZ7pnx7MtOBf6j9qIY9hPauP71t7pO6J3F7me1Tb8qGZhO77W8T83
7t7VHnsU/GrXq7TddvVxpvkQ+HFN46zzAPxv8txlOt+0BWmsQ9avoBX0I47X
+N/YNM5AaXOs7XF987j7wHO7nt81jGF74V7TPPq1/Xmy50bw69o0zvsbtz/Y
JsnQBlnb5j7NwzZZXtvkU5qF7bPpebfCic3C9tl2Ut087G9tL6vKI81jU/4d
Tz+Ebgc+qgkbJm2ZvgCPQB/tGoy+PDwnzjevxC2X+Dng2fKwUdVWtQV4vjzc
9HPOd+73/soJxH0+2ZNpw6str2sG1w6DamI+eTrZU3bD7SDC34rbz4yFj8P/
TNi1YDl0V+cr/B8n/AE9w4ZPW76Hi+M8dIb8fE/YjuDTmjife1pxnD0/riHs
ELVHnAWWFMcZQu33lif7RO3CtA/zDm3v0jaMYT3D4lmWDrVxnsGxbHpDnJny
7NQptg3S2I68bZvsxbUb/8P2Qvj3aGPP1cQZNc9VaiPu2bUM8beCnpbOT2k/
7lmf6fB7wv9KnEubxTeI0dom439Bs3hn9t3Z+xeyCH92cdwf8UlZtFfbrfcd
eAbOuwo8s+/ZuNU18X7te7bnEZxnnG/2aRpnuF4nfn/os4rjfgfPrB0IP7pp
nGV7jLgXNgsbb88VTG0WvO5LckM35x/nIXWckOar23PjHfJ02zyy+jaNOyQm
FMdZ/8/AkdAvoteWzcMGTVu0D1jTf49fB/BCWdhBVzaP/uu6pyrxumsn3a42
zkc4t3meQJnK/gQcURw2zMXNw2bQ9Z021NpSd24ettbaTZeDCtDVds64kgva
gNZ5YSPdJflpO+0dF9510QocXRz+2lL/b82V5KuburpW05ZR+crQRlGb7/bN
44yJ66+PWfeNaUwf8G6rjnHnoXcfuiftXrXfwfwedk9B7JEvQKe98wmjDQj0
PjyH+X0Z+l6wA/T22gpBzwCLwL75ceel94Q+AA7IjzuKvHdPOXuAO/JC3rUV
IVNZJ0DfxXMv+KHg7rxIx/TUQV18JzqBueLEFvGudA7I4DcGv1HQV/PcFn47
bZCgG/KD1/2KvNBTfbfRngn6wdpIz3Svq4101d98mP4DtXG/jnf6zYDeLT/u
F/JO1FvBLWDX/HCX/xpMT/Ynb0GfQple5bd16BP7xVzSPM0tbVPZ/pa+r1s2
u+SHPOXeAG4Du8MPBDflxXMAmJMXvE957wzyHkzvPxqi7U5e3N3q/UDGV453
Ew7Pj/qwXh70XtaKqEPrbgL0dTx3zI87f7yXcHK/0EldJvaLctXfcNekulqf
H/Zglt0G2tgM3y2pn87Im0aY/vlxJ5f30GovZ/lYTt7l+gXPy/PDPuzLvLCf
k9d9PvRk6FPBB/Dv54W90aXw70HPTbZF+hvupGQXpH3Qu/i/A87Tdgd8Bv0p
WK7NnXsX0PNqY0/GvZk3lW0bYUx6gfVEGfp3QL+na0OGce9w7Q3Ogv8Y/vYk
60zwUV7I1O8c8ElehDG8/too/WcbJW88bZbUR/3Nh7ZSixiPutMvjyLuGNK/
HH2e89stZfqF7074DesYd5p5j673nfW2veXFXb+2a8vbcrd9t8etm98qwNYp
7D8dWEt1iDiWu/Z43tFr+T8MRsAfCBbnJduo/MiXNk+Wh7zu2k55v5p9zL7l
3b5TU3lbZuemfqD91Nt50R+8D3ck/JK8uEtY+yrrzLq6rTb6wbo0RtgfXqsN
ezb7oH1R+wTbm+3Ovmu/sn9pn/gd9J/WS37Yf26A3pgX9pzaQ/6RF7ac8rr/
nhd2nbpJr8+Lfa3PUhlaltonKk+599SG3d4XaUwx34eCnIKwTzooP+yHNudH
Hs2r7tovjc4P/zEguyBsurxn+K3a4HVfYnvqF/KUe3K/sHPS3umQVCfmQ/vO
v/IiP+ZTe9ff8iK/L9eG7d7fjs+1US7ab67Oi/J5vjZsK3+Cvqs2bC21h/XO
53V5YU+pveTPeXH/qWENo59xtOvUvvMH6O/zwv5zBvyP0HfWxlNem1jvaTZt
7UnX5IUO6qZ9oXfuqeO/6pEfNqCboN+sDdslx6nFtWF/qL/hvDvYO/WsM+vq
tIqoJ+vL+/76pXKwPLQJ9Q5Xy93y908LRuWHnZX2Vt75PBaMA80LYp/WscCx
TftObTIdA7WL1D7SOeO/uU7+89Q+vkzhjefYeFq/sK10zHTsvK8iZBjXsXbb
1H6+TOG11/wpP8Zox2r3Yd2PdY5xTnHu097TOcK5wjvttM9xjL8mje3G197U
uWFjCm8851XHZe11ndP+m9vktXFzjn6oIuIY1rn4ccp8EvQq+0ptzC3as3of
nXOMc5P2o2uSfsfmh32uNpwToI/PD3tl7ZaPyw97Z/0N9yj04TzzCqIeLH/t
Gy1/68G7t1cR5p/8GIMerg37UO1zj4F/pDbsc7XfPAp+GfTbtSFPuUtroxzU
d0AqD+c67eG8H9E1yPdJ/11THf2d/A9Ibc50TE8b4KPzIx3T0270yKSX+tkv
7Y+/OE/nR7+wP9hn7btPOL5BP5MXebNtOb9oU6idmvZq3o3bkzXnStZiz4Ae
ZWGz6968e/Sr8N8Jt/X4/QZ2KQsb4c9LYm/8jYqwYdYOeGOqS22QteO1zdn2
3MP/sSTajG1ndW3YIvdkjZdTx/rW78fI/qdRnLdUB3XJBRu7hU2Ptj3a/+RX
ho2ntp6j/cZRETqqq3uu7r3uRvzm3gsKBkGfW007R1Zz6O1YLw/g+S/87qBF
WZxTz/Z7ZDqv3gp6y3S/pvdvXlodtv7e7ev9zpd5RiQ77kb3ft9LqiO8d0Lv
m/y2zo670Q2jf+t0d+T0RLfJjnslu6ZzBJ4nKE9pKEd56uEd0wPRcXPj0Fnd
L/BMvN9j4adWx72RZ4Ez0/2RuuvvPZ/e76lNinYn2p94H+mhKY9bZMed1tqA
aPeh/ccK/Dv4HRz0AN3BQdUhf0q6j3IUOL1x3Afp/ZIfsBYY5fle8D703rgd
CP0e9CbeTdui8zHwR4M2ZcG7/j/YcxRlYVOgbYH2CNpCfki80Y1DprJP8u4E
8BTt44lGIVf5I8C70ENJbzj0O9B/9I2n/AHgbc9+gP2h9wNvdgxI7wNWdQyb
CG0SbtYmgfT3qo7wxtuIvGHVoY96/Qk/HH4S/OPoUgV9rPdQg0fhlzYKP3VW
V8NMTvqflO7XPDHRk9J9xsoz/vHp/uEDqyP85HRfp+VseZ+a7t/0HtDz05kT
77w8uDr4qek+UG2StOPQnqMF/aUdZXwJfpeCrctCvrJWoFuP6kjX9M3HhCTz
vHSu5eyUrumvbBRxzkzt7QXo5xpFe9BNuld1tBfjehamBvry6mhTtiX/P8C+
0T47/kegMrXDVqmveR/u0YxZvdLadyb9tQ156JQhj+TnD9xeyYux3LH+ZeiX
8mLMdKx8MS/GZMfMF6BvdL1Lml+gz7e24epw19+x9Hno4d6Z4v3Jvq/2i/Cf
Wd+2cehva8MWVpvYRoxXO7gfh9/qxvF/EdoEa/ukvau2wtoIaSv0W0HYqvtN
0G+Drm/9L4q9QXVerE18/3BOUX/zcVNtzFHmz3zeXBtzinPLs75r1caaxHnC
d6dZ0I/lxdrNtZz/W+Gc4FpteV6sn53THP+dB/xvC+cF5wfXgo9YXmmN4tpk
aV64y+uuv2tC5ZvO7NqYE/83N/ouBf1aXsy5zrWv5sW87fw9EbwBfQ5l+DNl
tT1lta3//0KcE/B73XVSbdSBdXEEeC4v8ml+nZufyotwJ6R53bS2Q873yOvV
OO4j+d8dwAVhr62tsvZd2oZrI65t+H82765pXdt6hkG7/AXpe+lk9HvNscH+
VR3fxLVDfyt9K+9NGi/h93Lj+L8J27Pt1/8g8L8IHNscL23jjnG6t09zgOfm
hLTzgmfoLq6ONl+a7r/VRk1bNe0Fte/2Pzy03dGG533owaSZT9hCMKQs/qvA
+cN5xP8scD5y/vBcmv+t4Hylv+H8rwPL0bWm/7FieTYg4yP8ujaO+176gvcd
a0E99En2kcaxJpgE3Q+3t82Dc1C3mH89m+EZDc9eWK/Wb3/n7LKon7XQa8A2
ZbFGcK2gPZ22utW4vYLfq43j/zzMs3nXpnJNWo8sd/y0jsvif0DeBa83jv/8
UD/rw3ppaAj97Kvmwbw4hzmXaWP2eapf0zPdfp53d6xqHPese7+69pvaDnZJ
84/ntW5I66q7a+NObG0D/YNB7+rWrlH7xkYgOz/aiG3F/xTwvwW6lYbNs7bO
ZaWxn+L+R1dtx2iL5aVhG63tdklp1LF17X8k/PdfCfLu1xi/S2nYqGsr3Ab6
A+S1K4g+5lr5fdCmIPqIfWt2GhPG0aaOIr02yG/BePom2AX6iJIYA+zbY6GP
LIm9D/8k7aiSWDPqb7ij6yMd09uqIPp0VWnY0Gtr2x26V2nYXGtrbRl4vsLz
Nz2gr9SerjT2j9wzKoXuWBr7We5hdSiN/ST3izppC1kfT3n3kUpSeG2KtSUu
Lo39L/e72kNfXh/7K+6ftIO/DL5taey/uA/TujT2S+R1v7Q+9FI/zyP0LI16
sX7cp1L+Ya5lKY8/WkT5uD+l/uZjWn2ka/ru6WxdGumavnsyW5WGXbn25e7B
ecaqujTOhHjuxfKyXqwfx+rx0MeWxJj3VCr/iaT3GWkPgz6C9PYriW+Dfgvc
X/ta2sgInj8SZnfq8xr4LPhT4ctdv5TEtza/ze2hrW5JfLf0W+e+JfENTn/D
3Uncg1ybE3cdGAN9cEmM7c4dh0AP90xZi0hvROL9JqpMZfvN1G+nI5JuE+EX
5sW3V7+vKN9vfX57HQ19TW181/N/R25tiG+Efis0v3cRfx+en5PWly1CX795
+u1zKPTh9VE/zk3OVYdCn1QSc6VrgROhTymJOcO54uSSgLRz0+SSmFMNb7zj
62POde6dZNnUx5rBNcIJ1k19zLnWj/U0Af74kpiznKuO0z4Vnf/Rtgp+H/Ky
gjXiSMsc96P8/wzfUcjLG2Cnipiznbst6yPrI13Td+0ysSTSNX3TMC3nSPNj
vk7Q/r40zhd9lNqWZxo821ALfRX+f5LGVYXxnyr+t4r/uaN9qzbV2lb7jtS7
MM5k+u7kU97zIJ7RbIG8AYVxJs2zadqr7qqtfXpf9FyJ50s8Ezod5NWFba5n
3Dzrph2u9rj+549nRj176nkT3/d879uC8AcXxp6ue8emq7/hTP/sfpGGss/s
F2euPYviGVfPunrORfts7bS1EVaP2mT/a3qeKxqZ7Ps905chvRGFcWbuv7Nz
8sML4wxgAf77FMaZx//OQsp7DsPzF/n4Dy6MM33/nfWT90yBawjterXv9cyg
Z+pM1/MFDxZE+p6F3L8wxgXHA/e+D4IeXRg2uy3rgtfdvfHCughvPM9Seg7D
8xjLCuJ8SG5dvOv6zqstvWepRhVGns17UV3wuv+W9uYt7zGFsYeunuq7W2Gc
cdQ2v3+yZ9ZG37Ok2lv7/zaeKbVu5XW3jncsjfOlnq/bDnp7x13tnUH/0jhv
6lm9HaCvoT1u6z6/tteFEb5vaZwf8xyZbXb30jiP5rm0gYm/1vwVxhkX19Cu
pbUN97+AdlVuYfzfj//7s7PzKvSlhZGma3DX4vr530B9SuOMlWerHO+L0e8K
82c69SHP82qeY/OMjWtI15L+p5L/rTSgNNaSnvkzzh24DSyJPm3f9vyc5+Pq
tNWuj3cU31X8DyT/C0m7fu37PSPtuW/LWftxzwxa3tqla58+syDOwPmfUcYx
rGfF7YcDkn24+2Geldu2MOIZXrnK100/5SpfG3O/8dh3PA/iuRD7UENpnG/0
vKP1Zf14PtJzkttA15fGu451ZF3ppp9nGM2Tc6pzq3YYbZKtifPdIYVhc6L8
CwvjzmzL0DHdsd05bVfyc1pJvCP4bnAq9A200RV5sf/h977dcXubsO9or+H5
k75R3pb7kYynF/O8v1PcceZdZxfCL4DfDP9VD/qO7/cd4zzkcnAR/vfivxP+
7xH+Cdz+7MC6ATzaIu7s0nbgJ5CHfucSfhbhRyFjMfJOhT8bfjn+/xB2F+8J
6hj/mViKXgPgK+Fvc78J/jTCn9sp7vTybq9z4Gd2ijuo3E8dUBJ7gO6N7Ay9
nfMJcZ8B20CfT/h5neI/JLSncE/FfZJt8ZvXM2xN3Ns6FPysLbG6Qh+ojYu2
w2A49P7gB+hK40O3cC4l/hfaFCOvxHfQTrFHpjzlasuygWctfnXgN/OB/xvo
cjNh6qBH1IZ80xlFe59KnBs7xZlTz54Wgd+9Swxk3P8j/ChktfEbE+EvIPzt
hN+If0vflfE/CHk/4Ta6Pp7y5sm8rQXdid8jL/J7OvEv6BQ2GtpqnAl/GXwm
3TeW8QwPcS8G+dC/4za3edi0ul/bJD/O+3gmKCc/zu14fqe534XTU/4+kJsf
57I8n5UPmuXHf7B5dmsJuLUiIO0esHvB7o3t3THOINWnb25+e3Pfy72yRun9
wTsN/B9C/4PE/yLxTJZnsw6pDftf7YBnN0Sbs+1Nx60qyfI8mXtoyvS8k3tC
7gVNT+8q5q9JemeZTfkUUw43Er+mIvJhfjzfVQg62gdbhL/h2rkGzIv/ZNwa
ui0YDT0StIYuAJcQ9jJQCN0dmdOgi6Cvt6+AGdTHJ+i8hP7TyXWb7xO2uZL4
v9FxeZGWuvWGv6VF+N3QM8LfBD/bb0CmhduDneIdxneZKfBXdIo2adscXxvt
23Y+x/9P53k9fHvizuwZ+RtPeoflhdtZuF3bKWwStE3w/yfH5kVas3qGHYL2
CM7rzufqpG7q737oPo5RLaLvjKiPPVb3WstBWV7syX6c6AtrY0/WvdluoGte
7EG5F9UA+uXFHpj7Wv3BpbWxJ/xhCntBbeyBuRe2TV78N6B7wO4FV4CLamMP
2r3oUnB+8nOvuTKF0c99684pjPuc76b+7zjgnuc7iZ5aG3uk7pW2Bx1TXPe+
uyQZt/eMMcu9X/dbfUf0XfEf7c77xTuz787bg8ugd86LPTH3wvxfw13zYu/T
vcPd8mLfc2NyH5gX+2q/J3qnvFhHu572ncJ3iw1JnnIH5MUe3PoUdr+KSNf0
3Qvpmxdl697hDqmMr0VeM+Sdh74VFbFH6T7gEDC9Nvb83ft3zLm4NvR0r3Nw
0tc9WPdiB4FptSHbvcsdUxq6678h6fffnmQ9uKQ2nvJ+//M74HepTfRLY+7Y
2tBNHQ+pjzZsu7X9al/S3DkC/7NBDvT+7sHlRXjz5hjfoiTyc4DjHfSZLeL9
0PfEpmBKi3BrkvhdU96U95+Of9C+x5D+AfD7EvZ7+JHw32izDj8EfN0pysy0
TPPQ+ghn+GHgO+hvwdAWEce49jH7mv27Gv32qw1/wx1I/Cnupzn2gPOgr+sZ
48xlafyzj1iPfxH+4PqoJ+tL24Ee6em31prEO5d9m8q5LvWNz0FV6iO2E/eS
e6f24jdZbUN65sW3Wp/yb6X+oA3Nt0nuCdAD/P7jfSboOB9d/+wU5y88U7Gp
U+DYdJ7B+dQ2alu1Lnx3951x29Q37N+bCXNyOkPxb6eAtOcqzPPltfG+6Xvn
EayHfvH7e5P4T8D7oK8pibst/IZ5heN+GWNek7Cx93zLX90ZN9sz93q3XK84
+z/B89uZuAPAs/ZHer47E3tuc4gzxf9Pa8oaDXp8JvwN550AVTWssfF7Db+x
jL+VleiViTsHvHvg2EzINx3PsB7jXQyZOOP6Etie9fPETJy59OzlhZTpJZk4
4+pdADvgdnImzmx2qYun/CmZOMM52XP+4K3COGOrXOUfn4kztD3Q4cRMnAn1
bOgF/UIH0z6vX5zFPQ3+1Eycye1FmPOgvyiM/8f1bOs53t+QiTOungU9w/Pm
mTgT2pMwp2fiDKhnQdVLf8Opn/kwPxdk4syuaZiWequvci8G3xWGfM92Xgh/
USbOgCpb/dTTNDz7ej781Eycgd2ZMjk7E2eAPQu8U13oq96eBTZdwxvP9Hep
C/mm41lSy2kSWFUY5eVZ4xMyUW/WV/fK4HX3/3n/pv1k036agn+gnyiN+za8
Y2N5ady34f0Xj/muRP98kuc98DeBB0vjvg7DG28+/g+Uxn0I3oug/1Olcf+F
9wc8Whp3GdwIPScTdxpcTzub4P+vpTY3AHnTMnGG/7+z//KXZeJM/699GB+3
Zn2Nrh3oL1fiPh2sLYw7CbxL4Cr4qzNxp4D/gex/Idcj/w3PepbG/RDqqK7e
b+HdEiuhf6APPs1zIfwisMLvk6SzgfSae08s/esP+F/h14NN0DXEvzwTd154
f6ZP+SsycQeGel8KfigM/b1vwfsmliL79vp4ynvHxJLSuG/C+x0WQ8/Dvyf9
cZuk+7iGuD/E8rRc76yPerF+vD/k8dJoO2dl4oyxbegR6w1+fip/5SrfeyQe
Lo37MCwPy2VufYT3vgfvgVgGPYN0R/v/wejwMnRnz1hBPw99WEP8J5H/TVQO
XoTepoi+Bj4D/cE5yP+EZwMYWxdnRP7332RN4+zIG7h/C+pAFZjqeWieteCQ
uvhfEf9fxP+Y8L/NzsLtI/w+Bmc7flAHp1MXC9qRR+h63D8A74G+RfEfE/6P
hP8n0YL4r/eJ8MbbgvZzpjII1wccWhdP+bdA76JIT3nKPawu8mF+1KFfSkf/
D8H7SW/1/xrUpHCG/zTpvA/4DfwO9gWTaDN/8Nxfv8p4yn8HBhTFf0T4nw7+
R4b/DXcBOqzGfXdwJPQldSFPuROgLwa/Qg8FxyR6Pdg7uUlvAMOSm/VjXX0O
zk209fdlcltFOU2mvE4Gb0KfR5ivcO8FDoY+3+9D0LuCIxL9I9gtuZmP78HA
lJ+BddE/7afeDfIS9TGTursN2UXUx6GEadKScYLngeBSwvzLcxQ4ti7c/wEj
k/8rxJ9L/NuJ37J/6Hs8uh4H3oAeTpg/wV9gRJKjvI1gv1QPm8ABqT4+pE0e
0DRs3LV116Zf2/5bwNqy6Ff2rymZOMO/Z+cYzxxvdoa+SnsI+kt16g/bInM7
cAv+N4Mt6D8/ev7TcPSfX3jeRti5YB309H6hr3pf1i/03gxGJ/2PBHmUTz44
yjCOF9BjoI+ri7BZ8AelOK9RBgdRFgeD16FP8k4x/A8x/45ddVHelvvx0K8Q
ZiRhDwQvQx+Oe3P8G4ODoXN5tgBHQI8rClp91Eu34cQ7BFxFnVzaLnRrCg4r
Ch39z0LPjXl+zP/emlwZMpW1P3SzlpGe6Y4vijMFnjvw/IFnDZSVA8YWhcw1
4Ccw2L5eFHfRXEs5X5OJO2l2J0+zMnFHjnfllFNHrQm3BegK3Rd0kbaPQ/fu
HPOr82wf6NHe92R7h36Q8fGgughvvIfqYz3jeqQz/P3eB9eVciP/j4EfoLvh
3sp+DMqg24Km0DlgK+jXbafgefACGEwZNMGvDX6byfu3tO/HcX8FrIZujXu2
dWweOgd/eCbWaG2SfNdzruu2hG7WlzJkbq9j/tqZ9nRRdew/uw+9Q0Osj1z7
dCdsE+a35xjzH4R/yDVhadxR7f1cz0L/2DOe8oX/zY/o1Ar5HZG/nd/6ad+j
aMsfu7ZEfjVyO6JrseNhKt9S6BJQB92zc/Qn5y3LeC/Sa4tfpflEnwqebYqi
zqy7KrAVdLui0Fl/11Ouq4wzqi7SM90H6iP8GWl9WZbSa4//1qCH8ipjbWxd
ZJFee57Nbeem0Tn4CWn91AF6SOeYAxz7B0MPBDPSfL9d55iznAMGQC+tj6e8
c8Eu0NuCyqKY6ww/Ns0pyn2U8P07x3rBdcM2nWN8cU51Lt2jc8xBzkWDoB8h
fCue4wh7KCiC3q1zzGHOXbt2Dkj3BDt2jnjGd27cvfP/z3nGW4a8S6nDMvgG
+IfrY4x3rN8Jfkl9rHdcy9pXciiv7Xl2x7+iKOmLf1FR9IfGveI/I/zviL3A
cr+1do71vetl+98I5BfaHqDvQ35p51i/uo4thu4EChxniqL8Xb/6fmH4Rsjv
yDMPv/yiCC/v+4LvBFtDj6kL/dRzsf21c6wXXTdaHv4Hgf9FcHBqs+bT/FYX
xXi+gT78CH1vmWs+6N/Ao1uHm35f0f6XQv8K3bdf/AeM/wVzEPI+LYv/sfH/
bJxTnFua9qA901/GpfHYvY9ett1M7IH04FmdiT0T9/18ytdkYg/lSWRsQN56
8AR0G/rbr4k+hP7WmTKuQH4tKIPOJb0y6HLQrEfYXnX2faQw9jVa4NYDv7PQ
5330aaC8yjKxB9SxLvZ6ulhXmdjzySN8HeErkD27V8jS33DKvAk9zvA/scnv
22Vxnnon6B3T+6bznvPfGvAY9Jbovxb6ceiD0b8d9VuHvOuR9VdF3CV2Pfx1
mbhTzHHc8XxmJu50c951/vW9wvX+IHS+IRN3tP13V5v87Ezc6bZbXchTrnel
2W/tvxsKY71uGtel9uH7xDOMcfdD35nW19sSp7fp41cCvY13wmXiTjfvdqtw
LDV+YexLmS/z9wtYDl1Mfouaxn92+9/d/1Lmmyn7LMp0M/TW5L9PJu6A8y64
XetiPnNe8+62rSqjjdg23Bu2fouJ24n6mEl9NIJvCb8FaAzdmjG7EXQG/xm9
4u6/cWl+8H1/LM/DMnEnmnf+efef84nu8rbXDPHbeBd3rxhnjK+cpwrjXm/v
955Anr6ELvFecsJ3EN3i/4r9r7uh4P2yWPO79h/k/RfQN4PziL9n4m/Rxhd+
SApfS3kdmvrS4bSP9uS/fybuoPJuK+c99VVvv1GY/zzSbk3a1/WKfJm/QzJx
55vtuBxcXhjt2XZuey/JxJ5nW+RXZWIPchPy+6c6tS7da9Rd/26Z2KPMIb2O
pDcxrY8b0PdU9P0GfY9oiLu49gAHZ8KGc7TvevCNOsY9XBWVUaaWpfad5ZUR
Rj/v6rJtOT44TtjG/P88/5t0t9S//I8j/+vocPivyuI/k/3v5GMTv5HxaTS6
vYpunfrHuO743rko1jer0xrKtZPvFBeSx7XOR+Aovyegw7PQncDQynh/OgV5
55lf6NtxvxM0cl2NnkPI12AwF/5v+wnhZoMbwCxwKjKfKYo52rn6SGTe4hqc
sLtXhrv+K9Oawbn6afBUmrNfAM8XxRqic3rKP5fWFMchY3lRrCFcSzzK84mi
WDO4BjuNNFcUxZpudKKfTuno5truRfBSWhMeVRl5NG+DoD+mHK8iHytZ2y6E
vgP6TnAXmA8+7hNu0p9A38ZzHrgdzAUfJjfpj6DnI/sOsDkTazpl3e37bJLZ
KJXvXaAxuAm3W8Ct4GbwKTLu4Xkv+KxPyFHePPCP3wHQ8eqtQ2d1t6ybUD/Z
HaPMrZs54MZUR+/3iTSU/UGSvRAsSmm4dnm9KN7bXcNMrAxe92GVMdeuAq+l
NcFkyvjhopjjnetdyz0OHktrupNxe6Qo1sgH1sVT/tFUX8vAUtCyKNbsx5LG
kqJYY7jWWMTzgaJYAzQDD4LFIJPWBBMI81BRrCH2qIx3PN/1HsjENx7fsXzX
cs17Ub94yvuu5Rr4PcrgevL9FvU9B/qMusif+XRtoVzl35/WKHlJnwdT+rrf
VxRrSv1du99dFPVufZ9eF+3Ndue7xTR0eKUo+uh/a7FXUrvvnMr1VVCeyner
1L6fLIo1sf3mZdAt9Z930HkG+n9O3bfuH33D8m+T+kjrVBfLUvk2T/ouLIo1
8IKkr3r7XvJR9+j7Z9s+use7zD3g3qJ4pzm6MuIY1neZK/pFHVk3l/SLdmz4
pqk9K+8S11eU7z3Qb6PvZfDnW+Z9Ig3TOte+0z3+e/rYNvRLUA/9VFXwuvvf
1D/DV7SN/6D2v6i7MQYubMy4xjvP8LL4z+ku+I9vE/9FfSLPGvge4HjoZbgd
yLMH8cf7/sH8+SN9ZV/i70n8PXGfjv/lYAj0D71ZaxL3UOjW/eIOHO/W8Y4d
78bxzp1N8Cdkx108Ve7Jwx8O/yZzx228jx0EPdR1kv/XjZxBbeP/rv3fa/9n
yf9bagN+rIr/MuoIvRXo2TXuLCri/fim7LjLaHfcBuC3IxioLLAr9M5gV+hN
yNgF+gL0f74qubeN/7s937JAXl5x3KHlXVqGM/wOYCr0WL+H4DdXm2Ttg5HZ
G79qsA3038jcvW2UzfG9orz9r2//Q93/Ul9TFfqbD/+b6TCeC5A7DxzUNf6j
yf9qOrhN/BeUNsXaFs/3LI3fU8yzeQf9u0aezfstyd+1mt/Q/Nbkmk0bb229
1VndH6C85/lfH2Vxf9Qg2tQxW9HmkHVar7hjaSvyf3923L20uDruB/SewF0J
vw/h9iXt0WBE14D0SHAA9OAulF0rxgwwBPpf6vgA/PbHbxLyc8nTdPwG4rdt
r2jvl/o9m/Z/PfR76HMm/Bng3e4B6fvwvxv68XYRfipY2i76if3lcnDh1nGG
wbMMK9D5OO3B3e8ujjuhvBuqETJGtA2d1C0bfqz5Qb8T0Wc/nrMo+9ltQudt
3R8mfmPWGKeXxR1s3eHfzY672frD18B/Dn+S9tqU1/fQJ0MPorzO4bkL/juD
s/3mZb+yfsEo6Ba8k23vHXyuCwmfB78T/FnwQxriKb8jmFIW+u1P3H3AsK5x
p1QVfm9nx11T08jPEZTLkWA69D+U9xDC7ml+q0KGsnYAZ7peov9e1yb+s/i9
vvH/xfZv+/nEXnEnhfdIeJ+Ed1X82C7mQ+fFH6B3wf+E4rjzwbsfviDMMdBV
OfRb7xdBhyGulwg7G3ofwt9aHHcIepfgwJr4/ud3wKP8/0LvG8HPOzK8K+PA
ltRXyxiTnUtW0kb2Rd5zyCrsH+76H9AyxuzLneNaxhjsWDwcemTLmJMWpbF3
P/j9W8aYbdh9WsYYvyDNXYYf1TLmsGEtI7zxHLuv7BcyleXY7tw3umXoqX7e
weE9Gd6X4d0cxzj3t4zven7Pewb9h/qtC/0z/eMpvzd4sXvky/zt7zcx6Ht9
h2G87EX8s/1WBUqhpyBrFPRL3eObo98a53SP76IZMKEovo9uQoeV3pcG/oA+
hzjV+Dcg8z5kD6P8VyS/CZT/dObgIvyPJe6kurgDby/vEWkad+PtSvh50L+6
r9QQT/nbwXro3fC/A3qDecd/WmWUz0NpLXIdMg9rGWsc1z7OveP8/toy5mDX
zoPAkJaxhnbtt3fLqAfL37XdXtB7tIw13mXI3LNlrFFdq14Kdm8Z6zzX1vuh
/yL0vxydVqPTU5TRrpTXbuDp7hG2acdYExrHfQ/3P94FbxfFu8DPrp2K4p3g
Iu/z5rmn7SvR69QpuQ3tGfe2eH9La9rv833ie7B19Cz0cjCZuppB2gXUf6f6
+J9l/2/5ANrTStwHEHZnsKJ73MHmHV1+Q/BbguV0SMtYE1peM7S3bRlrzMlp
LWn5jm0Za0jbte17aMtYc7n2Gd8yytyyn04ZHdwy1pSuLW33Y1rGGtL2P60u
2q/teGJdlLX1Yb1Y5ttQ32eh2x3o2J68DOsZ96Z6f6r/L7el34zhswmzP/l7
kvwP3DrGhBV9YlyQ1u3MdqGn9XtHWiP2Qf5RTWMsOZ729KprCtsXyC6P/Sv3
oNx7mgI9zjYLfStz32Dow91DTvXjfpB7Rr7nuYe7V13s0bhXswD+br8L4LYj
/Fzf5ZKsHcBtmZDpntEuYOei2E86Iskw7p518Q3fb/lPOvdWRrsx/vap/Tyd
iW/77iU8mokx4fDk/lQm9He/xO/5vn/6lHcfxXdU9dshtUfbn/kyfzum9rdj
4udlIg/mX11vh94j0ervnqhu7iG4l/AE9PJMrPvdN1maifW/e07uGS0x73Wx
N+xem+8Rvj/8t2fnuqO2MvY4lKmsR/xmlIm9FfeqHs7EHou87vvUxR6MezGP
wfeuTHtkjrXpm9OXrrFpG03AF92jbN1nWZGJMnbPT33Ua2hd6O7ez7JM5EG9
1d+9rvsysUekjuo2rC70ci9tcSb0833S98/vaIvzoHeiPY/3zj/HUNrecL+/
Ev4VwtZXxjh5AngZ/gW/C2ViL8ixd2UmdJXXXZ1fsgysO/As9CSeJ4LXoF/N
RB+zrz0HvR/0qdCnOR7BvwNOgT4dvAf9ViZ0OQm8ngmdlKO848CL0BX0n9rU
V7xPy3CGn/x/RJ0FlJfV04CppXdhgw16C9hddpcNdhcTCxsDsQMLWyxsbEFs
sTsRFLsLCxER7G4UEBQREBRF1O95mPud/zm/Ob+Z9/Z973tjZu4M8D54e56v
I/wvIGNglGN544EPu0U9rI/j1PFpu1xb5nSL9rlG2Ae2fQ9l10VxhpcHsLAo
bGxpQ+qPjLC9Zb8+kHgGxt3HNY30X5B+Y9c26tuTuMeRprApzuOez78g7u2N
8X9r4ql8VhQgLp/lE/BvioI/4Bn+K/DRFdHf9vvQiug3++9M5wzw/Xh2DvgE
x01F8C/kV3yvTLYx+BXmtyHfxnhuuDyM74rChtfZ1HV9RuxX3nSPxf5puOc0
9k+LGLMdiNve/gBfzvMnwB8HfgE/rSLW21NLGGM1Md9mQp8C/QbtH18S67nr
+kngNxP/iRTehfgziP9MSj+b+Gfw/yL0S8CZJXFH+Md0d3Ej3v+tFRFuvEz1
Oco597aJO6N1A+LOoXdHvSPpXcQXqPMg6jom7SfPIt1M0r/sHqQkyrCs54DT
SuK84b1G7zd6p3E9+XdrE3cw66HPqI37mt7bHNYS9bJ+3oH1ruWzjVGe5XZh
fXwB+kjKvtq9DfTxOcxpwGHAccCE2ri/7D1m7+O6/18FvTI9W6GMhXh7Ar+C
T1GeSV3PA5/TFHduG9vEHU/L14bCcPA/2oR9gguJV5Ide66LwC8GSsH7ARco
XyJOq7Zh00DbBq9Qz1rqXw3MrAoQrwFedj23jLZh00HbDpZhWWtTeu+w9gX/
JPVRR/YlHfQtSXlLgOXACOhtgJ/Bt6V/h/WJPd2V1Gcz6FztBEBfURI+yke1
Dh/j+hqfBRzaOnx6/1Ue/V1B3YqBpxtD7+EC0p6fHfoP7hcHg19OXjmMl9vp
v/OyQ59DfYkN/9DnZod+xx3qRGSHjoS6Eu6jzoY+Kzv2U7fx7Jzs0BdRf+XW
+gj/NK3fG55DT8iONd18zM86Wbc75beBX0p9sqnPZfx/AP1hqqM2N7S9sb51
+D7Xj7r+1PWBLq2PZO/9e/9fH6Lad9DWg75Aaxk/U8ljFXmtcb9ZEv5Ctd2g
zYQeA2K/uUMK610TPrfXtA6f3fribqoNf9ziA7VfyDsvp28HKjOrCh/jm7UO
H+j6Hj+b/MrIbyL5dSe/OfTBaMbqcujPm6J9VYQPBC5RNgq8Dz4PmFQSeZr3
/nwjl1dFeCVhFamP3nKNI7+V4F80xb+034Tfxm/AvuD7AKvAb2WPtga8Cri2
Of6lVwADcsJ+hLbutH0xpCX+pbWBoS2MBbTnR+ItBL4F/5f/Vpz3WwP/gS9Q
R4b/fsCz4EuANoS1BZaC/0A7FhXF2uD6sdh+ISwb+BF8IXH+JO1fwCLlW/yv
B/4B/s6JsHUJN87i+qiDZf+YymoHZKQyy50X7G+gLLVTujy19yfStCdeB+Bn
5V05kd58hoG3pPZZRjOwjDhdoTOBX8APo79upW+K6ZuGlqiP9W0CXgD/2THJ
WLiTOP0HRNt/LIp10j7oqzyVsJtTuPl3Ju9NST8z1a0j0CnVUdzwLunZXY3R
pwvTerZJTsQx3cY50f/W33a8WB/5dk75bJLab3tt90vgdwIXZ4eOl7pqB9eG
PQ7tctTRviXKj4j/N+9qION5Gf+jSLs78DP4HdTh26JYO11Pf+LZbo4rYCn4
lzz/Oq3jrt+z6yPceJ82RdoFRbEOm8dtjZHmq7Q/MA/z2sW2gb9ZH+Vbj89I
vwq6lPqttSzoLZQntwmbQNoG0gaNNme0DaR9necq4vvwOxlQE9+l3+cewC/W
iXI/L4p9iXuR33lWTP4lwB8lUY7lOYYdy+1LGTfgtY4Z6J+UcYEfZf+qC8ez
g8H397sDX+r8S/g/4IMovx/1uqlNjAnHhvZSLgbvBV5PffvIA4K+HOg9IMqw
rCF+fyVhj+jFNmGTQNsE7ahPs+/fbwK8FVAHXgGsI/4f9UH7/KumeK++X9to
W1vzvB68wW8CfM5Q9hDgJ1D/d+uDf6ltAm0UaLPAedb51jnVufW42rCXpN2k
JvmLJSGPUy63a0mMM8fbRdmhU7gN+Y4AroG+2nWEOEOhG4EvwL8qiW/LZ4b5
jUn7/MOmsK+jrZ1syquhvNcI35bwKfIQ3HsNCHs62szJGhBh2zkXZkecD0ti
TnRueNf5lzQN4J+7DpH/m7S/DvpT52noj/gf7/7M9Q+824Cw5aNNn+4D/jfH
mu97TVHW9sB12VHmq/XRZtt6L3g36j+W+WId80Yl9R9O2BbA5YRfBnxAPifL
v3GNAH+ONJWEvwf+Lvk/pg0d6FmO05r4Vkw/PH0zr5cEf+Dw7IjzOul34Pn1
nsnBX66PuJZ1N/j3JTFPOJcsKIk5wrniO/CPmyLvLYErsqOOXQaErSL72L6e
meacH4j/SVOkM71z67clMSc5N30D/lFTxDO+ZVq2/W7/V+dE/2rvyP61n6tb
kp0s6I2Bjo79kuBvyOd4DvxR999+e+D96Y/HXSOgn4Ce2xTfuuNtm/TNl7Kf
mOV+i/wyBsQ367d7tPMx+OMlwS+UX/VISewvte1SDbQFf8J36NxP2NtNwR+T
fyPdj/LnEz4D+iaeT2uJ/aC2TUqB1u7HeT5d/os8NHkN5HUk8IDjNzvC3R+P
dT6viHnE+eQewm4HSqj/i/ogT/n5fh1v7gncK8weGm3vS12OZr/9NHgH1wzg
mZLYNzhG/S7cU28FbA1c5f4TmFkS/Cn5VC+Dz2ecXsx4HZr6q5jyn6f8XtD/
EXYb8fZL8531e4g6twZ/jLR93A8R5wTSF6f41zdHfNNNkZ9UH3Ww7Hvqox3b
pzpa13n10Uf2zTTwLRgfReT1D3lVtUTfHALcmx19tFsar1ukNcn8pX0+O60l
W6d2u6ZdTR1OyQ4ZpbJLvzu/P2WQyiJ9bvgJ2SHDdB5wPlCGqSxT2eeJnu2y
Q+au/oH6nLv7LTWFbPk0wk7PDpnzHiXBj5QvOQr86JLQCVXP9AjwY0pCP9Rn
hh1eEjqx6tEeDL6cdi+mPxcBv4CPLQl9WeMY1z66L+X1elPwO1ekcmfqb6Mi
6mO9lH3fXB/1tx3Kcm3nuOzQSXgrtcP2OKc7t/fl/T+s/gfv4I/yaNfE7NCB
t32b8X7ap7BBvJ9dSkKfWr3qkSVxhvAscaZzcfeQRZ+R5lf78ybqcHR26DWo
63A1dTwuO3Q41OW4pT7im05ZtroWx6T50vd1XEno38qvP74kdCOOAj8yO3Qw
bqyP+KZTl8N22t7js0MHw7KNbzrroL669bcdL2ofg//HCH88O87z0uoPq0d8
Avg7JZGf/ej64jrleqWNuBzwt0oif8uZCz6bfhrDu+zaJtaETPrv4NZxtqto
ifzcy7q3nV8S86jzqXvVr0tiD+5e3LzeaYr8+0L3AeaUBL9e/rDz4zzCX+O/
gLCcnPi+XZ/8Hvwu3Gu5fhTmRBzjvgmMzQ5+9KslsX5sTthI4A3wkypC//wg
wjrWxL+0eun7gY8piW/ducHxu29JrEU3ZEe4+vHqwx/iu6J+C8vDdpv23BaV
R5/at+pYH1sSNty05baYsPKWuD/gfYB9CHulKWy+md58ylriueHeG9i7JO4X
yO/f07Y0RbmWr17+oeA/km4+6d8FlpTHPD4jld2Z9t1F+knQB9p3TZGneXtP
Ya+SyNf8lSuMLol6Wl/zNO8F7HEfUxe6jH1Xc5x32/HuX28Teyj3PZ5/PAe5
J8piT7oSWAF0BaaS/lf+OwOHNMa/9HKgI3BVRaz96kmoS/Qp+V9N2dcAn4Hf
3xj5me9hjaF74fs9Ijt0MNb77VHuq8Ba8Bzi/QasAroXxXx+DHkdDbwJ/prj
APiPuOuApbSrHfHWFbJ/A7+PMpZBZwBjwD+piDTGnVERdbbuvwDti+K84/mg
m3I41q/l2tDoxlgHfgXvTZpNEv6bdzd531Ooy+fUpZj3Pak5+LA/eA+qKfQd
1T1dBP0I9Eak/7hb6Ciqq7ikOPiy8k2Xgi8sDh7r+ymN5W8M3gz87B2r4uBB
fp7oZcCXibdrXvJA5YX+Ar6K+m1OvQqZL7/h2QrrzBjqSn0/4Xl/6juC/0bC
Nyd8peFVxFUvSn3dqsh/o26hM2ie2dVxxvRM2L06bD5q1/Fb8ikhv5zqOH8a
x7j38/wnlojzHNPgPYk/OeH9iP9Vfeyf3EfNaIn1/lzCzwHmOXaB8eAnA3PB
bwF+Ib+J0O+AXwI8Dn2i3yz4r7SvDfgM8IKW4CPIT1gCLHIf4xmvKGTP8uff
4dn7QGbao8zg2b+EbQSMB/+uPGxXam9zAfhy8m8F/gB4Pvl/Ux/7YffFD7XE
uHH8eM7MUpZFvEdIcmyq/1qe/wk0Ag3AM+4d3fsBzwEfks9TOcGvmwa+OjvC
jbfSPZt7ipzgL8ln+qo87Gxqb/Mb8PXk+Q8wDGgBHmyMZ+KngK/j/2+gGWgC
Xk75me+LOVG3v4ChqY6/A38A9UBdUYxRx6q8/cXaM2mMNtmWk8Dz+V8DrAby
5NWnMi3rZPBpjfE9+12PbYx+tD9bAw+CL2T/+B/f7dX08wS+v03KQ99Tnc6u
rt+UWdwt9E0/KQ5a2ZeysPesW3HoVKun/ZHfSnHoV/vMsLmM6w+AvkBhz5Cx
vZLi/lId9wHUGVS3yvsfpp+VZBWfgx9CfQ6gynslffzvi0Nmoqzk2+Kg1Tet
TnPAV8WhL1uW0n9RHDKRV1P91RdXF/ZL8BlNwd/bmry3Al4E36N8w9XoVltC
P+9Yp8+6qjvBt1lE/yxTjwE6E/i5KvTo1ad/BlhVFvO88/2jhoOvBJ4GfwpY
Af49+T0J/qt6SM3xL62MQVnDD40R33SN2lIu3+Aut9XGjjm/RfUQekYdrMsS
oDN4J+BH8Mcag/Z54bCot/XvAiwFb+WaZDjQFry5JO7/eg/Y+y6LidOxZ8hA
lIU82hi0zwvI75HGkO8p58uH7sg7/JCx9QHQoTpkbMq1FtC/v0J/Vxz65eok
fw3+D+36kvQfAn+BryCfz8EHqFNXFfOx9wcGpzzW8OxHwhoSP961zvOucnHX
vL8Yt6X0zWPOu8wH7xeHrFLZ4NzieG54GfB4eegvq9ucRVv/VfeN9AMIe5Kw
ItJvXx46wetTHHV8/0rfwj/Ezy4J/Wz1zb3PJK0Oq7qr3cDzqmO8/6neHXk3
Md56KeejLg8y3j7gv0+38An/Dngr5ufmNNZ6Uv7vtPF30neGvqYm6F/Vk0r6
DyfxfF+S7UqaV8pD/7sifQvLq0Om91bq64cobz7/hd3CR/m84gBx/ZZ7X+rt
4pC5Kmv1TrHyh33Ie2/nYM8ezA8rHA/KLRiPHxKnb7dog235pjhkdbPTN9WD
+vRMc8My6tNIfXpAv+Xc1RT/0nnp/SjTfT71xQNNwS/+Iyd4BPJqbmmM8eU4
O53x1qU6+Hfy8TqDT6Ret9IftwAXg/cobdVqp1zeG5AD/g59eHMK60L/nsL/
ydAnASe79yT84oRnEJ5Lmoso+zygO/jdgxnDvRkfxJnseqc8gbzzCBtM2mz+
t4PeCuhWGuuy67NrmGvZxjy7kLDz5T+Db1Iaa4Bz/0bga8jvMMIGyserifZ+
XBSyUfV3XyX8gpxoS5VrbSV0bqRtgX6Jd/Iu9buOsrpT/0Ke75obfWBfFAG7
ge8O9ARfQX67gBeAV8uf5H8f6H2B/uD3kM8i2roYuNe5h2d7EbY30Bd8CWmW
EDbVvm6JfMzPMi17LvlPyYm8htREu2zfQUBpaYD4GKBMHqV3HsjvBvLLJr9V
FVGe5dbWRBzj7i8PE7wcOBj8EGBAafTVp4mXa59tyrOJudHn9v3Z/J8HPE2d
nnTfSv4TcmPNd+2vJc6J0OOAavD23hl03ws8wve2Tv0BwmoIa6Q+3w+Nue5t
4Eb39oyPTZkvBslXdS5Sv4q9/T1AyYDQ570ffCpQBj4QmA7+IDAI/AP3MdRl
COmbaoL3uT6dCTwbrK0P/rN86K/5Po5mvng0pR3aEulM/0BO1PFv8juZ+OOB
9WlvY3vPAJ4AryLOseBHyjMGP4r8Hkp1a9R+Ec82pz2bAZXg2wBXEfdqYAT4
VvKMyeetnNAJzWA8XpIbe3z3+u2hL4UeTthGtKct9MXQm8lHr4n83pY3I9/G
MVwa78f3NDTlfwX4ZcAW6qPS/stzI+73TSG/W946+tC+bOb5OYSfCTSWxhh1
rO4B9ALvYD0cC8pISsP+cfe2YZt/05awQa58UTljKfQn8hhyouwFTSETc0+7
GPiuImRhS3PizO053LXV/Z97PtfY2cr9eD7Z87U8CuV+OfENvyofgT4YwXg/
lPL+49udqT0Xvt/D3JdR/r2Ek1WrA6D/VV+RMVZEvjvz8EzvYtRsEP+02tu9
J+EX50R5lvsa8BRx+veMNKbtrA35XvQN8bdsjn/p3YGhylPLN7j/bKV5nl3B
76rZYLar1W7g64i/e/kGU8a6D9nwzH1cP6Ag7edeq4g6WPZt3rXMifba7lnZ
sbf/D9g47fH3LN9wjaBVjns6+R/VIT9SJtS1OuRN0j4/k/n+Pr6v5b03bFs2
tFn5kfO/68AZhH9KmW/mBA9SXuR7/L8LdAa6pHOG540PPFsDX7Eu/81ZdQ3w
aVnMCc4NyumVz39DHj9AL5DfYn71ob+hHsd03s/n/M8lbB7wRUWUY3nzgQxg
as0Gc9+tRlPXv+m/zyriW7GO1tU1y/nKeasT+NPMMSX0Y6l7yKp4b76/PQjf
BXhcOwPQOb7PquDLeH73HK++oHvBVj2jj90Teo7xm/dbV//AuWFLvuUt+sQc
kZXi+l7cwz5Ef7bmf1PoUxujDMvaFnoS+FvU+dqcmNOd2z2vOd4d9+6N3+TZ
1Tkh41fWv7gm1g/XkTz6ayn0r9C3Que0xN7U85BnFPesnpekfe7e9QHed2d1
Xc1T3ZnBUX/b4Vx5J/QnjIfvyfMu8ryjJsav4/gv+ruZ/9GM7T2BlvLo317k
3dM9uHvhoRFuvK2a4565981HAg3lsbf9I53D1GHzvCXtc/e+7os9s3kGU0fI
vfFf6YzZIfWt72OTNOan+x3z6B9gWnnUwbqMIuxS60PbugAzaN/9wG20bw7t
25P448rjPGf+luNe/GGgrX3lPp3xv6oy7oN4L+S1yrjX4P2Gk6FPBNbwbKj3
IRjrR9NX9/Vg/HgvArgT/HD+jwKmgt/TI+6pSPv8sBTP+EcAhwKnNIATbzr5
zuN9vlQZcU17NfizwAHQt0BfWRl3Vg5L+Rn3+crI89B0X+Je6nUL3+JdwP3g
F9G+E2nvNPCBvJ+raOdR0EcD14D3JV0/4GDyHwPcQbwD5I0Bd5cFfRV5XQHc
Dr6z9lbArwU/k/Y/Qv1Hk/460p4D/jR12Bd6P+AZ8MnePyKvO7UzNCzu6hyX
+sS+uYvn1xN+E3CP+o3AC+T/nHUn/wcrgo8mP+1j8G+UzxB2AWGnDov+2Sc/
7ux4d+c20l9MXhcCt4AfOyT8b+qH84SWqN+exL2e+l4BPpO83qC8mcCLZfFu
jgaOSe9IOxbXOLaKQse8lHz2Jb99gBL9o5LmGdI+CzwDPpUy7yXe1KKwR3MF
z8YRdjowBXwiz0YQth1wCfjO1KMr5XT2zgH4dfRhR/AdwY8Cf9l3YF7Aa+Av
Aa+T11zgFfDpZfF+TwVmgN9MmmzS/+Va3RzxbybsWuAF52qe5xGeC6wrjXjG
7wb8Cd4nP8aEY+Eg4LaGeCZ+EvhNQHfoXaCPaYh/6SxgJPgNDdEe23U0+I1A
JvRa94LU52B1gOwL6nN7VcCUVLcLa2IMOBZeTO//GPl5xH8belJN9ME86NmF
0TftmPPvJP6r4BcTfi/x7yqKZ4Zd2Rh9Zx9epv4i9RhE3foCX4GfwRjIAf/Q
fQ7pryuLdzPS/Sj4n8wfnxL+ud9zZZRp2RvGTFl8Yxu+NeAB8AcqYu1zDfzI
u3DU53nymkfYJTXxvu4l7t2F8U1+5Psg7x7Ax+5JgX7ghcCnpTFnO5c5pzmX
O2c/Br1Vn5jLH64Iea1rqGvp8X6PpD2btCub4l96D+As8OMIHwV+pmcX5fPy
VKjLKuBj8AxtYFHf98En10Q84+8OnAF+nTr8hH9IeJXyPvLbjbDTCfuV/G7g
2RHU5QDrxFp/Ls/vzKP/gXPAb6SO92eH/qLy2wmlMbYcb4afBtxO3NuA8aUR
x7jKdJXtGr4PcfdNZW5D+fcQ9wLw1e7neX5Yj/DBfRRwsfcD+Z9E+Na051zo
eughlge+nDQnl4a+kPpKh5LfUMLOJ+xN5osO0I94FoV+TP1K8tiX+DPUcaqM
PMzreOqwPfhS8juiNHTG1CWzv+37awnfLOG+j+vy4tkc2nRNTqz5rv1PO/aL
4p6X97vO98xMvLvywqf4dOr4YHbI2pWPKzNXdq5M/ZH0/vck/+uJv3lD6Lu6
T96wXwa/lWc9+R4PIM6J4Nf7LDt0fNT1USdCvQf5QspCBqb1wTlhAFBeE3po
6qMtqgidIHWD+qjfA/2w48H7VOQ/AfyuitBNdM/j3udOng3Kj3czHvxBYDvo
Sxyf4DPowwroSuChyijTsp2DyoH7iNPEfxVwN/jtQH/watdM8GfqQ3b3deJn
P0AexYSVAA9WxnzWG7wMuMP6AcdQ9kWEzSf+4/xvT9gOwBPg0wnf0vkYmAH+
BPn2zgmevLp+WzbE+Hac6+/9Yv6nQd8PXOhYJY+p4Bd5FqsJeayyop6kf7wi
dC6ULSpj9C7KZPL7rEfMOZc2hE6MujHK0JW1f+B5WR4C6U4YFvXbirpN8psG
f4rydoG+Cvoy8CeBkfnxzLD55Pd2SchwleXeQp7LqMvPnsegn1TfCvx34Hv5
9zwbxLv9EfyRlji/FRNWmto/hjKrKWswcDB4IeUUAftD72cbGmP9ca0apC9K
4jxKfvvRhh+py8H8Pwv9CjAWvDPhM8EPkzfSFP/SLwOHgx8DzAJ/HTjaszfw
Rm48M6wL6V8DPwr8p6Yox/Iek+cBPo/wj6nfFezhvqQv20FPI2w0YYuJv5s8
G+gHgL1cE4AHwad6Bi4N/l37xEvsNSzsAf4lP7g87APuI/8gN9KY1nzNfzqw
Z2nUy/q9Ks8A/JDS0LdU7/JQ8HH012D66wLvLtLfTYydFuAs4p8ObMQ7HJYX
Z/RW4Jt4nzcveFhtEr2Jcw2wqXdtad9fuXFm/5N3ORd6Pu0fz/voxfs4g3JK
Ka/M87BnI9I8Q9wx1GV4TdTvOfk7wEGl0Qbb8jhwAHgW8R/OjTnRudE50bnR
M59nv5WUN5m+Po3yejdHvubvO/fda89xnfx3+m8jwkfx7D7C7gR2KY07gN4F
1Maptk5XKg/1PgzxW4jfrzLmnt5AX/BCIB+8B1AgDuSB5/qsMkA8B8gDXyk/
GbwP+NP090nyU6DnAieWxnPDe1oG+K/1kb/lPNkS9jU6U7c8eZPe/6a9+9P3
txKnNfjy+ijfejxB/BXQheYH/VRL/EsXAEWVUYZlFclvAc8ij7fAT6AuvzTF
v/QcYFxprF3zcqPO1t07lN6l1OaLtl96kP5rv1/r7F4MeBP8eOIua4p/6dnA
ceBdG+J78rv6mfAS6vAT9M9AKXh/YJFzPVAMXtQQ+pnqaT5je2xzbuhMqjt5
V3PUz3q61voN+y3PB04pjfG8Of01HNi4MuS3i33f5SFDs/7f5IYOqbqryte+
I3yw8g1l8cT/3rslyouqgm/VTF5D84Jndx7PKhnbVa6l4MMq45vyW/qXOi8j
/5MZn0cyPgup6znaDWAvdCJwpXeAKaOatJsBp4Ff4pme5+fLOx4WZwzPGhcV
xf3TGvLvTv7dgFrwdezR1jIP/kRb9yNNne+YsAMo/zfKr3d9yguerrzrftSn
NfTW0Oto72DCM/OCJyyv+WfCT6K+L/INz3KuA14AH8ezL+ibBtdM4h9l/6sf
R10fJfxpzzNlcT66jLo+lc5Q/1C3/4BWhP/L/9/Udx3/64FplXEO8zz2vGcc
8DWeK4jbHlgN/jvQKT+eGXZ9Q9A+z2iOfb/7/y7AH+BLgboesQf7KdF/gK8E
FoEfQP0e9LxEHdtWx/oygLAFhLVqjn2Z+7Nl0PtT/2saov6/Qbcj/Bfos+mL
cdS1qDmeG247V4EfTvgw8OXgbdSl844x5T1E/HNr4l/6MeBRz9JpTXMtO6Eh
+ti+PoywAtL/Rz+3pb+34X+L3JiLR7je58acPNz1OC/u/Hv3/1zKqyiKMenY
3IJnu+VFHONuCewOvgewVWXw3bfKi29EmccE7zuQdhBwDngDzxuBIY434GTq
9Rb1fVveAngTeVTyfDDQDN4IVIPX+I1UBq++Li+eybM3vnnJo5dX73PD61Oa
Iam8k3IjzrF8D+XU5Sx5+3z/exO2F3ATYTcDVfTZaPe64P+5lyD/DOj2QEVl
2ADQFsAB2lAoCxsQ2oK4Jz9sEmSQ7zGEHQJ+Mu+nP/m1s4/J72/yqySPDtAd
garKAHFlSsqWbO/AvODRr1VWTvpHyLsd+X7ZEvW2/gOAs8GPa4z+tZ//JryM
9KtzQ0d8mfvrxnh/vsf1rhfU6zXye1X+EPjMhrBncXCyB1LZEPx7+fjPEf8I
/hfkxRzgXHAg4RWepe3bhliT3iP++2m92mIIZ6oM9rnAVkPCP8NVnSmvE9/r
wJAJK9dVvqttMGWEygrVJ/A+6bWkux64Dbg1I2SayjbnpvuAi9rF3XXvsC9s
F/fXpX3efUjoFKhboD6Cvju1Ga1tb23waYtPm6UziP9gRtgw8A78w+APZcTd
+B2GBL063YfXZre2qbXxpy1v78l7X34a8PuA8AmsnXJtMmqb0fv22kb9gfp0
GxL2ErTFugA6C/xT5qsXMuKOvnf1syvC1rI2FGvBD+B5O8JbA/v1DRD3Prb3
srX5rJxWea33d3cnz7cJmweMGhLlWr42Gr4H78mzdfzvRdoc1rOy+rADqz3Y
zetDZ0q9CfUntA23E/GfJu1T1nHI/2xoan+onvL2IZ9/yW89sHffsCGtnXBt
LGprUZvl2iXXRqe2Orcjjwcywhat9iK2HxL9vyrZI5hXyzdDXjnAe7WR93/A
P6mMIuL/3S7aYFt2r4+7z96BHlcf+gbe5fVOr3d9N6kI3THviHpX1DHl2PL+
tneX1QlTz0t9r9Gk7zEkbBMOAj6n/GzoZeD9gY+hC6D/AB8CfFkbY9Cx6H1d
76raJ/bNBnu84CuItwoYAJS1i7yWAyUpz9whEcewT8mvP31RDPQF+mSEPcE6
ZevqoFWET2B9A6sDpy5ccX3Yydde/ibgb9CP+aYD3hwQdAF4ITDbO1+Ud1BG
2ALRvql26bRPd3u7sP2oTT5t/1Wl71Ebctp1VKdA3YLelHFBVsj8m+vDxuH1
WVFH66rNN+3Uaa9OW3Bl5F0OlAIl1oPy11LWnoyV7KZop7a3tcHdLyPscmuf
e2fiXDkgbAhqq7Ah6etpY047dOpsqLvxWH3YANFuyNSW0M9Q90LbEtqP2LM+
7EBpW+Rk8CneXyHvfYFrB8T9d++Wa09ZW9bX8Gxvwk5oSxj44tqwH64d8d1a
4p36btVxVfdVm2HaWXs76VNf5X26dmFDWVvKlmnZ2je5tj5ssKlLom0M7V1o
Z097e08R/zHvwNI/50G/DD2K+Xepd1ihzweWDAj6DPCzgJ8GxB1K7wl6X1D7
Itro0JaEdxK8m7CU+o8hr7HAT+C7VITtLfXXx1WETTztbr2S9KsXEmdP4o4G
FoFf77zXLmzca+te/w76X9APwyjPA9BnQI93XIPfYnvAr6H/9h0Q/Wh/7gIc
1Ta+Ub9Vddwvr49v0G9R+8zadh6V3o3vaLd2UR/T+152VZ+3Puzoqct9Kni3
mrjX6/1ebavsUBF2vLQNczT496TfKeX1Q23YXNO2mvYxtJehTTVtu9ln9t1r
3uGlb2uJPxE8qybuSb+c5JnDeT9TCL8C2By8FjgA/LsBYd/xFPCTM8J+oXYM
ZzHGjyoJG9XaqtbO5InAOOCo9C99KjA+I/rAvpiqjnRFjCnHlvcL1N3fkvJu
JN7X1C9zyP90ruWByQvTPvcSwkbyfWU1hX1SbZXuAt1N/kDfsOWpTc9d+4b9
VWmfdyd8F+jXyH/tgLAnszvPZzoeXU/6Rp/b9+rT31D/vzackBF2g1zvXa8/
IM9OQ+JOvHfbveN+C/X7hXyvIvw9wp/1Wyd8WknYcdH2i+/Ed3NA4ieZj/m5
D3gf/KTUv2cDZ7qODog6WLa2i7TheUzqW8O8Y+9de+/kn1oRY9yxLg9LXlY9
dTw0I+ZE50bvSHsPWZ6fvD+/Eb8V73xcUxE2KX23M9qF7Up1wtUNVz9dW+AN
5DE2I+ZUbX8ezb5oIPujMmVpebGOuZ41Ag1pPfsn4V8xPu9kzzSXuG/JeyHv
mprQ01FfZyX5vwf+gfx+4P3S0IlRN0YerLxYdWzUtdk3nc9Ocz9J3LflfRA2
1/MPdBvgTfB3gHfB5wngm9SEXof6HR3lhfD8UeAx4CHg2dKgff60/CziLKFd
T4GPJO210A8S9oA84sq48+jdR+9IeldSHRB1QdQRUVfkmlSGeU8Bn+M5CDwj
9cEs+U3gLwKvyX+XX0Z5s9yjg98MzM6LZ4bVJR2j7spQB4cOjro4h6fzZENN
6PWMS/vpyZR5GXlfLq+vMpUDvA7MBLZnT/s0eV/hWZHv41bizLbvlC2Bz+L/
DeBl4NUeEW566z2qJnTC1A3boBNBeScT3so0PNvD+/iVkd587qgMnS51u9RX
W14RPJRPwT9L/Bv7axpxHyfOzjXBc/mYsE8ST6Y79f0w8Y7k1yiDUxZ3MW3Y
CPwiz2XQWwAX5sW/9NbAlsDYhngmfkRD7OHdy3+QeEAj7BNgB2DbHiE/UbZy
jfy6hv/J1CZDbwJ+GNAsb9zzWoqrPGZKXqQxnvGVvV2SFzI3ZW+T5Kc0xL+0
ssWJ4JfnRfnW47K8qO/m4BeAD2uI+8vefZXHI68n1zNvbvDW5I/N9D0SdyXw
guf9yhjPjutd6M/n5GcStgx4Bvxxwp4AHgEeBrIbor+LEv/sXc7TLxFvN9KO
G8ZczvM/SPuy32xNvAffx0e5wXN7UZ4h4avzIt2lfk/gD+SFjMd37Lv+PDd4
d8rglMWpE9Ua+rjKqJ/13LUm6v8k9XoKuEFZYEOMl16JP3djZdTfdtxUGTpX
6l5NIk476AOAl8hvCs+2qYl/6Rc984J/5f0l5rJLmZ/uHRA29rVb757BvYM2
1rXJq08hfSUZdx/g6naRRhu/2vo9p13Y1r7cc0JG2BPXrrjrp7bGbwD/qzZs
bGtr+/S0x1DHVl3b/dJ+cj7PKjPChpS2pNTZVS/XPZV7K+9ceE/C+xLaWvaO
iHdFPAN4FtA/lLbdaoABQ6I8fUltkxH2ubQJr21493Tu7TxTebZyj7hhr0i8
3TPCHrR2obXxLH5Bu7D9rA1obUOf2y5sQ1vPyrQHHpARNtr1L3Btu7Dd3os6
ZEC3B3oPify0Hb1jRtieNj9tS++cEbanfW64ffr/dpSltTltH49M9ZvYLup0
ket8RuShnWp9MuhnQbvT+sbyueG7pTLsC+u/feoT35+20LfKCNvNtmu7FM99
oDbstGWnDSBtAemDQF8E7sHci+lzpyL1ge/uUOcr5UuMrR1qQodBXYb7oLeH
nuoc71jtEXHOZjzfxf92hB3H93Wn/GLljspY/cbkD4M/BL6uKe69ev9VmbKy
ZXmk8kpPBf4Bf4B4XxL/C+DB0rBhqd6iOlnqZo1x/SXsDudgwpprQk9X3pXy
ineGhs6MujLzwWf4jRD/M2A6+NCa0CGdkfSVlCEqS3SNmTc02vcRcd8D7gG/
F7jB+RO4uzR8Duh74KTEX6gaEr6f6oGKIeFTQj8R+ovQ19dgng3LCFuF+jsr
T31dkc5chuubapxnz9rwUaV/tMPSfl6/TPpnOr5d+JqyvGb3bwPCX5P1+5C6
fpAX78g6W/f5efFe9BHj+W2vdN65nzmggLbkKz9riHsi3hfRB6/2yfV5oO8D
99zuvTvWh79n/T4vr6Ne9PE35P0tcDj4WOC7vOA5yXs6GvglL3jE8oqVh32U
Hzog/687Iv1h0gnRhqy2X7UBq23Z7+T/54eMVlnth64Z6q8Q1oW6vw39QX7w
fNX9UCdC3YhpwIPg7/Ds8/yQQSuL7lCW5MrylMG/JM8vwL8EvqqM+J+BtyWs
E/m34/9b6O+AjLKQ4ZYlvHNzyJeVWX9L2k9aQuar7Lc14QfQd/MJ/wS6DXRH
4k/xDkBR1E3+71rib2x7y8J+1RnyaYvCTp/2+T4g/UL52YR3JX0P4s4FXgMy
tWlKfjMKg4csb3nrRs6oPC9XdtUSNn0vUf6YH7Z+r+X5yUVRB+vyd2XY49Vu
r/Zztdk7XFu+6dmmwKmkPQvYvCz00NRHay4Im1tvyGMmbAvwY0g/kfJPI+8b
yLv1sOCpn550hc4jfF1l2Av23R5XE/LinZWXQx8C3Zf/toR3Aop9l4T/1SNk
Gso2uvFsJfFXAd3Bz6e8w8n/GHWwGoPnr25T16QDpL6MYcZRV60rsIywXxwz
4G/Rv3PzQ4agLEEdNXXVphJ2Tk2UYVm/OWbBpxFnM/B/qMuJw+KZYT+aR1no
U3VOsgflEe7J3JutTvICZQKbQQ9PMgTlAsoHNkvygl+d48A3VUZRGvpN6jqp
K6U+k//S6kCpS/Uxc9Sv4EOAe4m7mP7qTN91AX6sDHlCQX6MQcdiH+rYpiD6
2L5WP2vbtD9cD75I/jZh/Qk7uCbyMK/S9H7eJ48F6dtx/H9K+XmEV0LnQA/k
f1R+6ACYRv2tnPzQ/VI/rCfPtvE7B3qJ885+JP1CYCvwz4jfCrw3Yd2JX1YW
4zzLMQ3+XkN8j+3S9+kzw7oBA8D35/09UBgyHWU725Lnz4QNBF/F97BdY8ha
/GZGgO/C84vA51mmtmB59h70WPA18s/5n18YOmBHVoU+Twt99UuSr23F807q
jgJbgG/cGPmZ73LSH0J9G4n/M/FbU99LCJsMXAicD/zqfEHZ9WVhr1qb1jXS
BWHrejT5XEO8z/0eqsJedX/wurKwZ71HVeRnvrtXBYhPAkaBT+D/YmAicE5h
rAmu365hrhUHN0b9bccg8G35z1Q/G9imMNpluPeWvftrfMO82+x95m78ZxfF
/UTvGx+anokfluKaX1ZK45r5bl6sUZbvHWPvGg+jrDK/ZSC3KO5Cet/R/v+I
sHZAXVXkb37WsxJ8JP89iiLNzuANZaFHqT6lNtnNz/rtSNhg8IMAFfQ3gy5P
ZZk+P5VpPOPbhu0L47vdMp23lDeurIz343vS/nsN/738lgrC5vhvlWEvXLvh
R9WEzXBtvQ9JzxxHjqdZSafwcHW0+Z8DHFYVIP4v8WvBd6COTxeGzueO4LsB
fxP2F7CL7SHOU4T9Bl2V5v+p0HcAW4Kvrgx9YseS+sMLnOPom+uAhQ1hN137
6dsXhA3qfdSRJO23fvPqRoLfmfR71fM90DuF/C8nvAJ8p8aQ1T4H7Az+NXnm
WhfyylX/gjgvFoYOprqYl/P8hMLQUVVXdWhj0D4vbY47tOqHlBSlO7KEnQwc
BxwLHEP84qK4X+v9WXV+1f3VNv2htG8kZZxNvFeoQxF4S2PQPv+lJeanbMJy
gEFl0b+/gw/2Lqjfa1W0RRm0usGjUx/Y9j3BdyX+K4XRppGN0V83gl8P7KV8
lWc3gO8NvqIl3pHvqhp6dUvsx9Rdds88NcmyXX/mJJn2RODytF67bsuzknf1
IPCwvCzqfDr5nQocXRYgfhpwjOuh56O+fM/AeeCrasN/r35896D85byfs4h7
fFnIqydTr93Uh4Y+qyaeG34GcJzfD3BiQZRp2QXqrRfEGpEPPkZ5Wts4q3h+
kicub/xJ4FHwX+VhFISssiflrac+96S27NMSZVjWKcBR4B3Yz84l/Cn58i3B
k76pbfgollf9BenrwEfwbKfmkDkoe5BnfAX455UhH1VOeirtaaVPefI+AXp8
Tcjrz4TuSN2/kh8OfXFByK7VT1J/aFJB7CndW35NeRuR9yWW0xLrzzeEZakn
3BLroXvD7tDfQmfzfx3pv+fZ15VRjuW9DP2p8nXP17ybbYALwN8l/VfuV4j3
dUvK17TuT6oiX/N3zetWFTbntT0/nTrNAP+b+t0N/oByENLPoay3CmKMdwf+
If8Z/K92DwDetSns42snf0fiZzbFeHHc7AR9H/9TyO864H7zJ839pL8e+MP9
Nf/3AHcD04F1yhBS3L1I/wj0tdRvf+itWmJ/UJG+zZPYL/3u+un8aX6VsYfU
fusZ+bG3dI/ZRFhjQew9XcNcy241nmc1/ZNT36spYx/lX543iTsNWA9+vDI0
wq6nTtMGxJnds7ttsm1rnP+IewvwJ/jhPHuC+JMIvwu8bWPsn9xHLWiJOcS5
5FWgZ1Xsu19P+w33HcrglMXdlsr7jfZfmPIa3RJ+H/T/4HlffoM+HvT1cDH0
PeC/E39ywvdsiXpZv6uBm31v1PEq/m8C1rq3pA7nFcSYdmzfxv+1wBTg1vRe
fD/ub93n2j8+E/8I/PeGiG+6v8BP9XwAPrEgdPRak+f54Be6h6wKnUV1F88k
rA/fxyz65Zz82PO793+yIXjN8rLep/6PQk9PvOF3oR8n3eO8v4eBR8C/4fkP
pO0IfiDvczb0hPwYA9ryfaoheF/y7p5oiPDzCXsB+pbKiGf809KYeYdnNzq2
PY+r80Ca2/NDp1Xd1lPAz0znF88xeZTb4t4AyAV/Rn5x4rV90BLtM/6zPLs5
tc+7Ofpqebwh6vRw4pW/R/xXKuN+ifdM9A0jH1ofJvoukR/tHte97k75safW
B4rhryd+tHOEc4V9Yt/oC+IqYHJ++HzRR4q+UmYlfvXkFP42+BxgbmWsF8og
NsgigKvzY41/G/yBhthv90z76Y+hV0AXuG9ujjnBuSHHfTb0PNJc61mB/O7y
XQF/QxcSPob39WxD7B3ek//bEPGtj/Wen2Qhl6d1TJ77bOK8bv2lwd9oiPOc
57qPWsKn/A1tQybpGjUauKhtyDCVZSoPPbBdkv22hI8bfd0ob1Q23CGtnbPz
Q0dMmamy0xsJ270leCbyTg5N+f1aG/LOW5I81HjGPxK4yfWyIb4Hvwv1R+WR
yCtRxqqseEltyIuvSvJN7xB6l3BEksW86Pfm3sp+aAgejbya41L+Q8o5g/Ri
36HPRPB3K8P3yY1pLJv+PvCpwEsNcUb1W17umlMW37DfsudY+QH27yuOd/l0
LfEv7RroWuia49rzkt9IZZx35+WHTq66uXN8J/mhjzelIfrR/lSn682Euz95
Oz17zzMl/7cB74O3HxrtsV3Dm4PvIf+jJj94NDU835rwEUBteejTD82PMehY
VJ/wOb83vwnw54E7wBfIg2sIfuLV4Nf2iPteBexVCoH9mE/2BY5gvi6C3t/z
QWPc5bhS+U9e3Omwf+8kv73Lwh+OMgxlGfL35fMrA/GZuLIY70x4T0KZgbID
5XDK45TBKYszzLsUym+MM9tzXY+QgSkL24o09xL+PWEF4De5fnn3qij8sai7
f5Oyr7y4o3JSZaSfneRPypfe6hGyPuVNwxsivunU/VenVt3avX3PLZG//KJz
vT9UFXcwvIuhTEHZwo2pPOUTyin07zsz2ULXntV+yv/yQudW3VttmLxM+KvJ
xsl2znnKX5RRNES/2r/KmNQbexL8KeAP8N9zo74354UMR1mO8rhnoGcAI+Rl
lYVtKm3aLALftzJkKdbBuiwuC1s42sT5sSzs30j7vI76fl8WtrW0ifVDWdjH
Mj/zHdIcNlv0hfxSstlln9g3j5WFDm0F8Ud4NuL5Uvpva89Y0NsBW1WF/OWZ
HiFrUl7zemnICt9IMkDnROfG+Uk+W0p+G3nuT+fXJv5bCuM82+yZhfgraNvz
SV5VTJwhhaEDrC6wZ1DPopsCA8C3Loz6eb7dJtXL+nku9TxqPuanTErZlDKv
R5LMSxmTe3fLtx7uq62ftM/d+w9MZWyTzvv2x3Ypb8/TVcBOhXGW9rzsd7Yr
sEv63my37VemrWzb/Lbk+XD6bklL/Eu7R3GvYj/bHsvcoirytz32+08tka/5
u7+50XOSZ9zC2Pu43xkvP6tHyLqVrw8hfO/C2JO6Nx0Fvkdh7Gfc/9Q0xrNb
0/5O+2uOF8dNbXPkvXth7LMsY7TnOs/L4LcD75bG2qaMXVl7bWPEuT3tl/TJ
O5ux9WbP8MerzaBZ4G/0DFtC9e4X8uIOiHdPTqX+XclrO55tXhl31r27vhr4
BPxN4CHqNx2Y5Xinjv2Jf6Zy5pbgw8uP1ybLOVmRX/seMSepK/A39Stkbu3L
3Lppc+ii/w2szQud9H+Af4F1wF/A8aRZlRf6tS3gD/EeXi+KO3jexTPctH8C
48BPANbkhYz0xESblzrtw1Jcy1uf0nSnXt2AXfNCz9h/6UxgR/BRQHaPuAOp
zvF91Plt/l8HdmqI72U5eEVe6AsfCfwE/jNwVKIX54UOe32SLyzNC50GdRv+
oz/K6Y+ztVsFnk+biqFLgU6DW7U6uDJkIerwVqb4xeXhy7aY88npldEG666u
dFaPqK/1Hpn60f5sSX2gfFfZtLrQ6jvrn7yoPHzX9ie/QypDFpMFVIO3og7d
qUthefiLPSCNR8ela5g2+LTF9xfwhXvkxrB3oN2Dwc1hn0/be9+6tkJX02cH
5sUdlrbgDcAZ0GcCjfJ3KHOc7w7YsTJ0CtQt2NW9BuNrBP8H58UdpC6V8dxw
9Q52UZZTFvb+tFm4APynxhj/fgf6n/YOoncRjwW2k/fVEPdzvKfzPPkvIf5r
yXaW9rL8l3492cha2hjfj9+R9rJyeV9vQ/dJ9hSsg3VR92Ek+O6VoWOgbsFu
lf/TOfD5S5S3B/TGeXG343XoE6vivqn3Tr1fOh76X+ivoS9T14h4nXrEHONc
I91Wfh95bAa+N/ltkRd3m2aR373U8RXog+QztMS91dfSHcp3yqL/T82LO2Te
LdujMnQm1JUYBb5XZehEqAuxZ2W8R9+nfWxf+8ywS4HRlaEjoa7EzuAvtMR8
8Zn1B+aWhc6G+VvOzJbQY/BbVWdC3YmJhL+adBvmtsQ37Xf6StKBGJruYslz
k/emfr20z7U/15x01dVZ1yad9xa9v+gdV++6FjQG71AeYo/GWM+n+35K4/5r
Pf2dRV27AQ3y46nPI4RPJnxNE/FJs4SwcYStlR8D/gewtjDuCCsnVl6szFbZ
7bmm538n8n6L+E/IUyLeKd6Lg965IfSL1DP6synyNf8+rstVUQfrkg00gg8F
OoN3dc2sCj9/eYVRZ334DeHZf/y3Lgz+s2E9UnuM8zb73/Hu9ZO+0SWeV6Gv
hx5RE3pI6iPNBK4rjT6yr/RbuYj65kO3J582QB54TVXgbQuD/9u9MeRlys0W
tsS9Y+8fe0fXu7rWP9f1WX4A+DSefZoXMnNl5xeQ7nDqMxa4sDLyWy9fSB4R
eA7QqjDamNsY+i0nEfdk99+l0Wf2XS/3M1Uh41XW+zBhO9bE+9B2hPYnzgM/
vyz25+7Tz5NXWRW8XMeXd/+U0yuvVwagLOBIyuxF2IHkX98Ye/meRTEvOh9e
Qh79oPsCk8CPIk4f8DGOJ/CjGyPceCXNEce4xplYFvmb34Xg/ZvjX9pyLiiL
84P1td79CL/Yc19R1OmiVJ60z4ub456k9yW9o3VhVcQz/KDCaEOfVNeDC6OO
E6xDYdzx8q7XYv5/BL4FFhTG+uD7mpb0KbS5oe2N6Unf4mj5lIVhk0DbBEfJ
kymMZ4apc6F+hjoK8pN/4PnCFG68vaj/9/wfT9w/WuJfOieN910aQj9DPY2V
zdGf/ZXj+H00hs6GuhtvAreWRtvs70MKo43q9Knb5xp+e2ncAfYusGe2y8FP
pYy2zifE3bwqdLzV9d4x6Y/2bgz/oPoJXUz99iyI78vvTL+bV1C/n8lrSWnc
x/qK720H5cv0ZVlz1NG6Tk/8P+3ujC4Kewra33E/6Pp6QBpf3uvyflc58F1p
vDf3j6PS+7uPOv9I2DeE7VMTNhG0jaCOxCfgS+WtFYT846eCkPVI+1wfsQOU
0RWEjEhZkfSSgpBxKoOURyWv6iNl2oPDron2TZRzXF0Wfep+dHQaP+4/rd9B
abxrw0N7EdqN0B7Kt9SplLwqgR9K406bd9tWAAtLQ7/T84HnBPU9L3JPrrzP
MV0V97uty8eJn+N9YO8uav9Ge0LeT3L+dx3QHuqEyrBnoV2LfWvCbqp3w7zD
pM3UEeS5l/3ofFIV+3n3954jPJ+XVUVf2XfqKDzKOzyGsO3Bf24JmzveVfPO
k/amvP9k/pajfVnrVZXiGNe5r2dh+Mh1Dty3IexbaOdiFXn/yrMVBfFOlAP3
l8/O/zcFIU/N8vsoiGddwTMbQx6rXPYH6lPi9wb9VUHIwzoT/in4e0DHxqD1
L6yf4e+J/45niILgwcuL79IYskFlhJ0aYw/rXlZdXPVBnWOda88ArioN3762
p6AwfPxew7PniP8scHVpyJKU/6mjsWlB+F1e51mnIHjq5mv+7qHVkdyf/uhD
3l+C/9MU/9La/ND2x1upvvp7Via2ElhTEDKxVcAfnsOA1QUhY1ydaPU/1AMZ
VBXj3+9A2eey1N/16RtoSvmZb2OKvzLlrfywsiri+56qEr065a3to15Voe+i
3stS6H5VUV/7uU9VjKdFBeGDW1/cPjNsPtC3KuRuf6W++rMybJ5o+6Qn8Flp
5P8+YR8UhPx/5JDQn9896dev4/v4sg/zVRvmnVrOZJ1atZrSme8KeLNT+JTQ
B0N2Tvia0Gb7KyXhE1Rb7tf35x1l8r0BN4PfDowA3xa4DXxuHf9dmfPBP2+O
OMbdOjOeVVH+Y5wXioD1jeGPQbsZ2sH4Gfwa4kwxPXBT//A5pV8p/UvpX0If
Kfpp0Ta59jj1yaIdeu3R66tlOml2p6zRwIz+YZNeu/Xar9dW/TGcYUrk0/Ps
aeiODbG39+79r5R/I2luouw7u0Z7tLHgPf3H0/lXmwraWXgl7Ye94+29b+9/
e/f7+UHsryn7BtI+Wh02ZLTRok0RbYtoX0Nb0doJWUp5i+mvLTOjracTd019
3AVXb30Z4XMIv4G6XEf4aYRfy/+mxN8sM57dTnmPEv4w+JPV4ZNIv0H6D/K+
tz7A9Funrw19g6ljpl6P+j3qnn1Nuh9I/z3wVf/QgVEXRn0ydcNeIf/9KOsR
wp7S1in/F0FPyoz46sCoC6M9JPXfFthn5LUY+K7//3R81IVTn+3/ddDUYVM3
7UviLCDuQuAb8G+BS8l7cmbQ6hype+T9Z/WZtFHjXtw9ubZrPiPON5YFfAH+
KfA1+C6O8fLw+aIfGP3B6AtGnzL6mdHfjL5mbP8llHVZZtRXH0X6OdLfkffv
9fmknyZ9t+if4FbibEPc7YA7+ofPmYWEb5YTvmj0MaWfKn176O/jt6awaaKN
slNSeyeS9uLMqO/Dg6L+tuO16rCBop0a7dXIH313UPS3/f56dfDI5ZWrQ6gu
nXWwLtsDd/YPmwTaNdC+gbYKtCGsLeF2bDduqwmbxNogrmvNudH9gOOHtG21
m0v+bfjvCN0FyCgOG8DaAtb+dLvasKmubfXO0KtI37sl7P5q/7dDbdh81fbr
K5T3BeFdW8JO7ZPQn0B30t4veecDHYvDhro2wDuSfmVN2OjTVt9a4i+rCRus
2mKdAf1xTdjM1Xau9nXn14SNXG3lngT9Sk3YsNSW5YHQz9WEzUptV87qzTtm
7unVEnartV/dtjZsXGrrcjvQJ2vChqV2Hfm1ur8mbCZqO1E3J/fVhA1K7U5q
f/JO6HYtYRdvT+hnpWlTZwI7pT7VBqC2AJlaW91eEzb+tPU3nPmvLfVZzztr
Q9z2Zkj8DsCT4E/4rDhsFGqr8Cvqf9XQsHGrrdu/if5LTdhc0c6K9la0xbKo
KWyA3AvdRtkL+Y8kr92AaeD3A9MYbw8BD4A/CIwibI/MoG9jPDzQNeI+UR02
qbRb5b0J71rcxfN7CL+7a4y3hYTvoF5fbtjr0CasfsD0B6atWG1kaTdLu03a
ctIGh3ZBtA+ibY6HyOMR56+uMV9/2xR2i7VfrP2Ge3h2L2HTganO58yHS5yv
XBvoyxep766ZEfa4Pht4diX0D9Bfgn9M/K6pLy9sinSm/8k5p3/YuNEOjvZw
tH2jTVfvB3nnXFuvrm93EPc+2+xc0xQ2XPVRpq8y+2MH8t8ZuBd8HuVN7Rr4
mcRdAr1TZqQ9A3p9fdih0NbxL9SvT0v4LdB/QS7j8WPinUv8/3jfG/H8OejD
oGuZz7aGXqg/b9rSkEU+tP0W8B3At1eHGfw78jxHG/TQ54DfAD4CfFvgRvBF
pL+4OO6Qe5f8W+JMKI47vN7ltU/toysoc1ld3J/+nrDrifMjad8HtiqOO7re
1f0YehvnE+q3ALpLfZRnuTc71xJ+CngZz34h/APo7aH/cH6Hfg96C22zu55A
vwNdbzucH6GXAaWkPdln1XH/9tWsyNO85wKtwR8m/ifEfQv6L+r/H+/gKeiv
aM8a6LsI/7Uu7t+/lxV9aF9eoP3+rOgP++VNnv1E/OuJ/6FzM+mbiuPOsXeP
ZxO+hPDl5P844TsRdhNhtwK7FMeYc+wtJfx08A+Jv2Nx3CH2LvFH0MPpr170
1z+Dok22zTvL3l2eAX0E6V/pwpxGeGfK3Cb1/0305038bwe9E3Ab+HXA1uBb
AdcWxx7AvcDe1H/moFizXbsfoz53QD8N/Sz0oYS/Nij2KO5Vbib8ZuhPqPN+
xqf8G+rim/Lb8vu7dVDMCc4NzicvDYo1y7XrQuh3oFcDO1OX26nLEsKmA7v4
DZPf8Y5X6BLou9lvNkDf73hw3YbeCnoa9EjnGOIfB/1MdXwDL1H+PdALqN/V
xWEzQNsBr6c9ybeEPzIo+tLxUg6ML47+WgS+MI3/DqRpBp8EfgP9eQf/P2eF
zQPr3JXwHX2f4LcQfrP8dvI/gvrsPyj6ewHhS1KcmwjvSfgYwvcbFDoH6h6o
w6wu80nEKSHuzrzvHXjvXxNeybNP6a8JzWFDRd1bdXC1rZJL+YcRv5A4kym/
B/+HQB8KFBTHc8MPB4qKg4cgL0EbYtp6OR/67ayYA5wLTuf/Deg5wFnFcWdE
XtejpXGX5AnqfiB1ORh4un/IL7yD4t2TFeDHDwu+mGlMe7a2MsirKuUnT1Le
5MQeYT/tGfJ4gXfxXNfI7zHnZXHgSfAK+qCJtW9LYDD464NifvMdP5PG5ovE
7aeNYMKHUOZrxN1kMHPasBjb7nefAB7tHzqZ6mYWeAam/LbNoXOeQf9f2xA6
7eq2q+/RjbA7B0X+luO38BT/B1H+mMyoXz3lzae8d7S/m/rnKevu9+6c7hxB
22cDZ4C3531VZ8Uc+v9zqXQtcK7+BIDbssJmwu6+E8rv3SfmAOeCU3n2OmGv
pfFqO23vLGBT8JE8+9v1wDUc/EjK26E7YfqLAt9Ze4bdmHO9U+x5jTwHEu9j
4n9GWRuRx5vk9Raw8eCw31DfJ+Zs5+6dPDORfmv9MNXHHtB9i/uXZwbF+BlE
3QYCpxXHvOv8OyvR1n8AeEXqD222a7td+/JHsp6d55gjbF7qj5XkOTTNta5F
8pjlNStTV7b+R1PwDeQfnA59AvFeJH5r6rxxedxxlM8vv/+9oTHOHe/vAOcX
x/0fbZJqi/S35ih/SFasl875zvf14HUp/n9NwVeSv3Rlw/94CouTvsvD1PEy
3vuVvP8bPds1h43mnZW/Uf7TPOuQGWuQa5E2rZTLK5+f1Bj3R7Qtq41ZbQln
Dw7dEXVIuoMPorwPOJuf2Z7+5KzealjoBW7QD5RXRfg7hI8n/BTC/2sJO83a
az6rMXha2sqWh7uB10X8T4m/fQfGK/EroD+C3hr6UeiB0O9Bn0Z+46HLm6Ms
dRI3aYw5f5x7wOpYC85rDFvG2jQ+B3yw523S70F+T5C+GPrFvmEjWFvBbxHn
4J7MT8A8ea+EP9U3bBZou6Af9GPQOxH/qCGhc68evTJtZdt9CH+Y8BGEHzEk
ZDZNSV6zwVYS4bMJP5rwEwmvdo9h+dTnSegy6FnQRxJ+AnSJ/Azo6d5XhC6F
fg36cMLHQW8CvVM/zjKkf0fbJLT5wYHkTfvfAd+X8GWE7836tFdd+IzSt7I+
rvQldTjhuzE+pjL/X1cXOh3qgagPoq7H7r4P0m9M+h3rwmexvom1Ka9teX0O
6/tXG/Lakr+cOKPo/ymU/7FzMek7kf/25H9lXdiD1haxNiG1DalPZn0Z63NK
32X66PioKHyU6LvjIPer7ikp/xDSHygPiPq0kN9k6APkF0A3QF8CfSxlllD+
1ZT/oWch97CE70r6UXXBM21J/FF5qfsQ/hPhexA+mvD95DdAHwi9T13wODdK
/E95nxt7XiB8Bf09n/7eC3oR9A7E3434e0B/BT0ceue68DGgrwFtPp8BPkr+
D+GbEb4T4f+2hF34bVP4iUAt+NbA6eCjif8N8bck/kjiHwKd5/6I9l4D/SZx
9mas7q7Og2ON8I2J/y71e1FeMs8uIGwy8HFj7Dm6aTelOvYi7hHcB7gfGFgf
ezT3au6Zy+tjD+xe+AfoAdB3Qz/qnA5d7fnG78N1XPtE9WFPSJ9U2o36oTnu
k+iXTpmqsvL7iP8c8dtp34i4ucwXn9P+CdTvfcLvJfwZwttov6k+fErpc2pA
t/A1dRv0Pe63KX+QtotIs4X24dUxSvOJPOlWyRb/UOaox5mrngSaBoePQ30o
/t49fB/qM/EwfRd1D1+K7qncW31E/iXQj0KXyk8kfK/6sIezfUXcA15I++7y
e/ecTPzBnreg74f+zTUF+k7oGdBr3XNAv2CdqNtGqb53ED6d8DWEV9aHjyF9
bs3pFr6H9HGkD6be3cL30UXNYRfLe8KL3KvRf5/QfyeR3zvk1513Poa2vqu+
ld+mMiPwW4HP/d4JGwvsD+wH5A4O3Ud1BnPA5ytjIO7YNP+9zhg/lfnkGNo7
j/Je49n2hI0EZoF/BdwFfifwJXgz9d2M8fct42+Od2eht4BeCP0W9EbQ20Iv
g54H/Rwwhvz3J/+3yP8F6MOgx0C/Df007WlD/HbAM+D3y8+lP7poP4v+mOZ8
CJ2pvTPoqc6Xrv/a86oPH0j6bHquW/hGupA88yrCDtf34A2E15D3HOrzxpDw
qaQPp/xu4WtJnRV1V85K47OZPnqEvnpYfwjgs4k/Xl6s/hiJfyjvYyx555Hn
c0Mj/rPa4gTagY+VvyGPke/5hLrwwa2P08PYb4xiv7Ep4SNJu5r6vDskdEzU
O1H/RN0T+S3T5YUAf/cPG/jacdSe47eU9y55rmKtX0bYBPL6l/928nKAf8A/
IjzD/Rj4+Y416H7Q2bR5knsH6D7Q3aAnNsUdIO1gag/Tu0HKXJXjKldVFqu8
aDvG3+nUYS14Jul6kb43kFUcMuDJZSHDVJbpen2LehVFsT9QBqxcV7mtsuFf
qdca6r8aWN4/bHJqm1Obl9q+9I6Mth0nFIT+nHdYvGfjfRvvtnh2lX9yDbDY
fgZ+sT+6Br0IuJqwqzKDfyL9c9c4Dy9J8adkxvnZc/QvwE3gN2ZGn3rHesNd
a/Bz6J8nWGtWdI24nr2VWSvHVp6tLFt+WFZm9Il9Y7/av32B7sWho6uu7vaM
jw5Dw6e5fmz1Z3vH0PBhqy/bXOjhjI8vKL8nabuS9mLKryO8iPEzifAxhHf2
jEV4EdDFvaM6Dd5zIHw04X1bwu+k/icLa4Nf+khm8B/cAw4kfCXhqwlvIfzz
usjPfC+ivNqW8GE/lvz2qA0f4/oaPwR699rgHz7meSjVMRcoBi8B8orDx6i+
Ru8i/2Li/+mZjbAZaUzqc1bfs3MIr64NH7X6gJ0HXVv7P587u9FfXYbGuHX8
9gdyikNHXFvDlxaE7vjXdVG+9biE+ufzf3BWnEk9m+pDVF+it5N//9rwWaTv
olnQVbXh41Nfn/r/LKgNH6H6JJsJXVEb/OCnyf/V1L5dKeNDvt+hfN871MUd
Ju9xeJ/Du03a91tG2XcSdynj5arG0DVU5/Aa8B1I/wjpt+7Eu1J2wrNZRaET
eD14u2HhB0F/CAscL82Bq4+wj3tXZS7Mn2fK6wLf3vXJ+ZP6DHdvXBP3zr3P
5n2E9p5J+X7fSPnPIf4FzGf9tJfFfJZB+Azv4BE+xe+XMu+m729Vh29o+JjV
Z+iipA+8s/Mz5e1L/UvrQifum7LwYev6vw3hJxG+siPjvy70hdQBU/erGnxr
wo8lfCnh3epCh1i9YvWL1S3eivBDCf+C8K6EbwF9APSH0J2gN4PeE3oedHvo
EdAnuz+GzvHbJY93yOtd4KbG0EFVj+7XtH/fnPh7E/8d4ncg/nD3C9DvQXeE
fqsy7n94R9+7+upsq7v9eM/wTfyHvB/5pcDvzhH0zy01wTf4if76mPliambw
+OT1qSOqrmgf+vPfxrAhrS3pttBL0vudT/5PFcX71ka2trL/U9+V+KvI53by
uw1Ymear35iPfgdWgH9InWX2rwM/rylsZms7Wx+Qi+SHUL8rnLsp4+fG8Fmq
3WXtLxtuOtO3TuuNOobqGj6nzeXG0BFUV1B/nfra1KegvgW/SfqQzue3kPYO
4Lf+4WNKX1MLkv6vPqn0TfVD0hd/n/qu6xo8T3mfH9Bf12bG3CzvcjX/fxH+
Z9fIz/njX/B/gLX9/6fTqH9QfYOaj/n93TXeh+upupuOAceCfWRf/dE1+u+D
uuC9+n7ObQofRfol0j+Rvos+cz10DSHOqeBT5JvwPX8DXFMcNoDUK1O/TNtA
2vzXD4D+APQFMJ005/YIHTV11dQxUtfo5h5hy0UdI3WNtIeirRd5VtpKuaoy
eFnq2alvp00PbXt4R8G7CtrU0nZWH+WxneKb99tXJ14d8S5JP9k7DN5l0H6Z
trTU4VaXW/tl3lfasibscmufOxc6j/5vw9zRGljE/uUz5pbNyX8G+U/kfTzh
2Qd6e+DxfjF3tSdup85Bf0H8HQl7EnxSdfiQknc2PPmMUsamrO0TYIF9QbyN
iL8p8AD4FZ5heicfiomnp16T+k3y+tSRUldK3Sbt2/y/DWftdmhPQ16G9ron
FsXdg/vJcz15/wtMB38M6EhdOwCP9gu9TPUz1c1Wv9o7B949UKdY3eLFtOd0
0n5s3arDPpk+LrfPDXvD2h/Th+WFOeFvQxmJfvP0n6fsRJ+H+gQ8LjfsK2vv
pq40fAzqa1CfhfWl4eNFXy/e55HfIt+ldFicHSdQ/jnAl+AfAKeCjwfe7xf2
dvThp49CfTNWMR5O6xRrkmuT9u70+6j/R31Dvs7zgwg/EHgN/EVgz04xfzuP
e0fCOw7ayNJW1hZ18X59z65V6jCpy6S9L/W9HXeOv206RX+qU6MOjDbqtL3m
O/Zd6/NS35fywJ7vEXf75I1tURN+EfSPkF0Z9ub0sZjVh7PQ4NAhUpdIXS39
X2ifTr+K+lfUd2QTa+zZ1GVCXthL056dfhn1z6h99U2hR0Lfof6DuuzQv7cK
n9v63lY+eZ/zY6qf8mL9OrdO4X8A+e4FgN/B/wR6gvcC1oIfQP8c1zl4FPIq
9FfehbC2wArwNUAOeC6wuibk2Y+Sf//W4XtXf4Ekb1UB/Q/4OqCkdfjcNVz/
bO0JHwi9vibk408o720dvnf/cgx0Cf6IdWjPHmU7woa3Dvm3dbSulSl/62Bd
BqT0zsHe3dH3t3Oza4L63+qBu1b43HDXe9d953Dvcuhr0LndOV8dan3xuRb4
L60utb76BHHnf9cBZdbKrumqVg/WRJ/at4NS+1ox1w6nLVsD7fpHOZbneuG6
4ZlHewvaXfAs9Dttru8SfWBfXMr72BR8PfhHzSE/1y+1/qkzamPPvW26C+de
/BnijWTs7gw83S9k9MrqH24V8vtv+P73IOwFwiZT/suk7905vhX3PuoLTCKv
O4j/LvGzeH4LZ7nbgex+oR+gn73v03x2Evk9RFhPwo4kvyvJ79PeMSYdm95J
3LFXnA88J8hzlfe6FdBtcMjvT+T5ccR/uSZ0BtQdOKVV6BPYLtu3Ta+4+/c3
5QyjPzYD/gVvQ59uBb4F0Lp/+FvsKxuX/mlTG/1m/w0F1vYLfQf97ul/T1/y
yvfvoh5f9g7fhAfKM6M//usX/D/LsKzNu8Sz6vKo+9apPupwqMuxUSqvhvTn
dgoemry0WujzOwUPTF6YOhXqVrRL31N2ddxLWwLkVIfPEv286O9FXyZlpB9D
+lm+V9JfzTg5sih84OkLT51NdTfPKgzfduOJ/wf1H6PMjPg3Qj9F3Q9Uxtcc
64u2orRnpX0n7xBqG8o7f9790weEfuL0F6dvCHno2ufQToe89R1ZT//tHDJS
ZaVn1IRfOP3D7VgVaUyrjwZ9NbhmuXZNSvlrs0nbTfLkr68KnqG8Rf3KyUuU
p679CO1IyGs/rCZsouyfH/7xzqU9PZTNUv5xtO9bz9TsZZdUhj0Abd5o+6bU
8zXPOvJOdqOvd28d+jH6dNylV8gPlCPcov29DsFDkZdyOeXuT/n72YaqsGGh
LQvt3ewGfSUwhrADgSuqggewZ4qr7OBI6vVql5Af20e+B9/HWuBg8OuId0pR
2MzSdtYhPHueuM91iXB9KqhzLo9CG/3yK9QV11eC9vr9l5bnoI3//9dB1/a/
9v7PJI/x7O0mA5PAv5cnnhn4KU3Bz1C3XV8i+ud5Erq1/MaisGVzgXtM4tcD
l4D/QPoG8Mnm2xTlWJ48An0P6HNHXXd189XHv5R4l1P2ZV0jjbLsFbR9JbA/
+G30dxb93ewZsynqYX1ss20/SLkgfTETOLx/9M+fpP0HGNs/eEX6T7w4ja9T
mH+eIL/+5Hd0dYwLx0c+cDL4AfJkeHcnVMV9EHXUvZvxRdJhP19+BHFPI+64
prjf8zNhS1OaU3heQHghMN4xVxV69urbHwu+Z2PoxatH/3tL7KvcX50BfNIv
bCppW6m4IHR6z6uL/Mz3eGVLxBlH3OOB+f3CxshZxH8vP+5bz+PZMYSdALwL
/gZwMPghwGzwzsAU2n8D0BX8VWD/ThHHuL4T38256e6Esi39YOoPU1sYec3h
t0L/FUv4lt4izRGkHQvM6Rf20MamsT5+WOhMbSovujx0qQbQniOJO9e9Fu05
ivdxI3XJhD6U99GJ/6ugrwW69At7i9syv03JDX8i2gPeHHpybviY0Ie5PqDP
zQ1/UIOVQXQKGY6yHGWK6s2rP6+ssbou9pPuK5VNHD4wyrPcgyn/yIHRP/bT
IdDHDoz1zHXtMOgZzWGPRrs0+kP5jOdnkd/ZwOf9olzL99mGMOp3G3H3TnOU
PpNH9Qp+jnwd73BcWhY8Q+926ONFu2vaX9P3yznUN5f3fwLv/1jqexz/3aGz
1c8AH0adGljAlrRljAzgeXPYrdN+3RcNYQNKu0/af9LXqzaYtMWkfrT6zZXU
8XXaNxcY0i9kpDsm2wDKTi3X8vOAE/uHjT1t7WlDRVsqjnHHehFwav+Yz1qB
dwOOBX+APJb1iDsU3qWYUBf1tx3HNIXNP+38ae/PO0na5NM2n/YX//J8SP8v
YwPYj7odpayc9Eep9+xZoDnWk2vK4k6BdwuOqAmbV96FUB9bm4baNjwvP+x7
aPND2x/aNNRmon1oX+YA4+xb4ArmjsuAbv1Dv3kj5rONgavBH2wO+3/aAdR+
hTYWW7l+5IftRXWo1ZtWf/pH21odd8dds1275RlJ+1xe0n/E+Zq4QzhLX90U
MoHVvM+TOoSsYI78BujvvDtK/ANJtx76Rfqkhb6pJd1ZnMXPzoo8HKOO1ZtJ
fwzhVTw7LSviGFfe/MtAr8SjH6Tsh/K/BGrANyP9HuT/SgbjlzJ/Z/0+JSt0
FNRVGMD/h8T9ACiX98oZ78SswK+UN0Wcv0l/FuUfPDBkGq2ozwUdQtZhfT7L
DH0a9Wp2J/60vuGzQP8E/S0nM/QhLLOvPAnCv6QuY2j/3sT/Enok+e1H/vu4
H4IeA73/wJApK1u+lf7ZsznmFOeWm3h2NOG9qO951LeRvK9pim/cb/0awo8g
vIjwM7OiL65qijnBueFqwscSfhF13LZv2FDSltKZwKbgmwCng/cl3dGkPwEo
Ax9B+nMI2zjZSN0OemLfsMWrfdy19O+5WaFDpy7dgdT/N8LaUNaBtHdrzxXE
/51n7XhWTbzP6ZsFmdGGbQifoE8VwjMIH2G7yG8KsA34SMJvIPzgjORzADqX
9txJe44bGPoqNxP3FmBn8K0dh+DXAtvKvwaOAz8eKAEvoH/GgZeCX5H4y69R
l/cy41kP5YuUt56yDvB8S3nH9A0fI/oT6UmcsaQ/Augl/xo4EvwooI/p64P2
+WXK6kl/H+k34n32Hhj9+zZlzc2M+DsQfmnfsK2s/eOdPFNA9yR+NvG3hD7e
+THDQyT1qI/22K7LyX9Hwq8gvIj43QfG+DuG8GOBfuBHEF5Efz1If50wMMb/
SYSNByrAz2OMnZoVY1ldsZ+AJSXUJ4f1tD7uBKyHrsqNuwIDPeOWhM1xbY9f
QbovSP85cDl4KeEflYRPSn1TdiLN8KzQoVN+7R2EOSXh89O7CbOGhn9Z/cwe
NSzuZKzW/nVO3NXQn8Fp0M8lH/TeodCfp349vVuhzp96dOrT6UtohfOV37jy
54rwt/q8+SX/IJcRtjFxN0n11f/BlYTXEn5uRfD45fXvQviaQaGDqnxdncjf
BkU7bM8WWcE/LKU+n4BPBr+xKfyTXEF+HyV/8N2hL4EeCH029CXEa8mKOliX
PoQ/qb8M2vRQCv84K+TZyrX19zGJ8Hmkv53wS3m2UVbYELbMlc4fptF/UbIH
vgL6G+iNK8Lf1HfF4SNIX0GL6dPBJeFTRN8iGa43JeEjRV8pS5TPlYTPWn3X
KrPuCX10t5Bla8+4H/S4buFPSvvNxSXhY0RfI9pLr4M+P/k/Gk35LzE+92d8
lg8Me+MbE35Z8pc0TBk/83h/oCN43dDQH1OPrHpYzBen09YzgMHgP6qjQPp1
lHelvPf6+B79Li9V14P/3+XXZ8Z8cBWwOeGbAVcWh/+oWfx3p/zcitB5+LA4
fCqpC2H/fkrcL1N8/W99w39l8gc0M60/rkNP9QqZ9JuOo24hq9af17vQvaB7
VITOQVFJ+ORRF0H9vH+p2/rM0N/Vnnt3wsck/z7ab19pnZO/I+3BdysJHz/6
+pGnIm9lGyAD/GvlmZmhI62u9JbWWd59ZsyfFypP6xI6L+q+aDNB2wnZ1L01
fXwTdP/ysPGgrQf5MUd49gDWgB/PO7urQ8jHlZMrY1AWsaYqZA/6VdW/6q88
+70qZCbDyCtzcMhSNtiFIHyA8tLBwSeQX3Ae8HW/8MGqL1Z9iq4j/cwhMb87
z0/gfHEo9b+wc+gkqZukXQjtQ+STX8bgaJftKwEWexYh3bn8v9Ip/K1dRPqy
LqFT9P+6RdLlwFLlTMYh7gLwK313yq/B7+BZM2m/de0HvxD4DrwHcDf9MRUo
6BdlWnYp8CN4JfXryv53OPPjL7yv02wHz//pyDozMPgi8kfM07xfkR9F2l7A
BXVxZ8a7M073t8prIPzX3vQ/9D01oVu1XZfgAckL0l/6Bv/19N1p9Pef5NlE
WC2wCnwQ42Mi/deFuNe611YvU/1WYGiv8OGuL3d1vO6oCh/u+nKfWRj2O+Vz
ye96FOgD3qE6bD8oL1JupI/0OeCPFYXv9HG08YEOsea49liu5V8CZIJfSvwP
iD+b+O2rQzaqHYav0/3sP10joJcmfbdraP+y3hu2qBvux1zlfrU8fIjqS9T7
MqPKgwcmL8z7NHtBM522ursm7uPcyjh5nTzurYk7Nd6taU78y3PcX1DXvryP
edT9irroX/tZXTbv0+xcHjzcDbxcno/oEvpxjknv2HjXpkd6P4afQ1vP7hzf
p/d3di0PHrG8Yt+p7zY31W+463hW3G/wG76Y8gd0CR03dd08fyp72UJ9FPBN
iHOJawewOXhb1+jMwK9tCh6efDv5d+r2XUf7ulKPSVSggrEwrDjs0msXpwW8
Nel/yIw7B949GMr/+Vlx/8Bn6uQ5DzgfqKvnmcWzSxX0duR/HvnfAj2ATniP
/msgzbfktzgz8m92DiKvicBGtrU6zv2e/xcODH9rV2bFnQzvZmzmHJ0Z9zN8
dnF1yJWUL31K/Euqg88rv/cr6O2Is4a4qzNjv1cHTMiKNtgW/bXdkBV3QLwL
8i302sy4I+Fdif71cVdC+nr6r1193BUx/nVNoQ/+Rq+Y9weDX0CaOyh/BeVn
eleuOmRULfI/qM/57kegf4XuOijabNsnueYXhwxKnskw+q9veh+LKO9nYFPw
SfRpVZfQaVS3cSL0oC6hE6puqDwfeT/LGZA7DQyd0VHQb3UMXdKT3INDX0f5
awg/GXos9HeEPz8wdAwuge7aKXQPVoAPJv8hwOp0RvWs+jjf8MnEP9v9qHxw
eR4Dg6csb1n9TfU4x5FHXZcYI44VeeLOGTNIf+LA0EEbCD2zQ+im2Q7bUwH8
Iq9EHkBm3DH1rukE91s8/43vdergGO9LCVuSGf3XxzU6K/pqSlPobH1FX4wY
GLpcfjd+PwOBn8Ev9zzsfVZgijwo8h/q2Zv6nEWa+dSvAvo08MNIv5D+3iQz
4p7aFHW0rpXActtL+uH8f0/6CQOj/8Z0Dv1T39mzvNOmzNDhVpf7ZfLYiwnn
N9b/Sd4fgR4LfS/7q2n6gqD+C9xHuOcZGvrh2iHQHsFBDSG/1y6W9rG0HaQN
dH3p6lNX2+jeh9WOvfbstRWvfF+7QNoH0jaQ/pD0JaRNfW3r39MQtgWLgdvB
b6fcO4AbgRuAu3lWRdgJyp8bwj+Rvoq0ma8tff0d7dojbNJbnvJ77dxp705b
RauEnuHzW9/f3sfVj0DXlH5H4IW8sDGjrRltAGkL6B8mxL7aW2qIu/razNN2
nvYEtTc4Kt3n0z6f9gNHp/vN6kyqO6lNPm3zKf9SN+InYDF4T97plcyzf0L/
0hg2GrXVqI9hfRF731ffxx1T/3j/8HRtM/QI/8H6HNDPgP4G9EVwF1BJ3Nr8
8BewKe9sCf22WZqf1S/Rbt5LqT7eV9Gv0IupvcMI78B6sESbTv9X1FmGWXVk
XThAAjTWuDVNQxOggYbu20rcietEidvE3T0Td3d3d5eJu7u7TYQQIe7f+2ZV
nu/Hfm7tW3Lq1KlTp2TvtYgf7hqG79itxR6jpsypenmm2Z49R/ceV6f8Pugd
yGs18RnRd0R/x709H6Z+O1H+bu6ZEd5UewHPCnwnKP/2Yv9Rj34m5TdQ5mft
8Rffl/wbkH7n1tyD97JQ8RcVY+gQ4i8dHOyhYeT/hPJuLvYaQ9E/RL+h2NNY
B+syYmj4QizTskehn9OaNrVt5VSQW0F78o+cv5D/bcJP0R+uoD+MKf1TTDOx
zeTYlmtbH3F9xWtLedq3v0f+C4s9q/byn6Nfjf5uW/wr3hJ3ZUiwHPT3EAfC
PmZfe3J6fDde1AezNfbxb5H/3GJ/29QY26mf0X+ZEj5j+aMfR1ZqzX6jZyuz
kUUIN9Eei5PnQ+dZ7eFTll95ENdfh/D6yKghwZCwPmJiiY21MGnWRJ/ueEbe
N7W3aM8Y4Fgg57Dcwz7zJ4h7tSZ9QfwusbF8R31X550vNsLa+GrrK16ZWF+O
AY4FjjHvkffdmow9m/oODwnHguOJeFhiZ/mO+66LoSeW3ob8N601HDdy3ayH
3ki4L2WsTVmbaPPQnvfxaa69YU1sm7X/FBNdDG+xw+VwlstZfuihnbnHt0n7
Tk3uXftRcczFMxffcSL3M4r72Zr4wZbP75el/ub7QRu7moxj8xLfD5lJeDPt
owlXt8d2WhvqQe3x8dHXZz76z6WtwQf7hxdObjUxz8Q+k99+LfRmrj+jMe+4
77qYnGKBigkqVqc+8/rOn1l0MQLEChDDVCxTMVHlkjthcLBSxUQVO9UxzbFN
jFGxUB3THNvE+BTrczb/jWyNDYm2JNqEaxsuZqnYpZeQZsnWtIFt8V5pQ/8z
7rryvo4n/xDyX0L+d8jfwD1cXhObQG0Df3SMJnwVMgl9AnIJ4auRyYQ3pozG
IcFkFJvRPm3f/kqboPaMF85NPyvtMxG5tCZlWJbP1778hWOk81fko5q8I74r
+iDqiyhnntx57cQ/V5M9APcCbDPbbtUh8Qe3z75b+oDvmz5zT9bknfDd0GdP
n7ZnPZ9oz5jt2L1Ieb5i0suVdOSwYNX/Qrpfke+QOTWxV/XMdCXCvch/Ju09
oSFn5J6Vyykqj6h8onKNinEi1smcucMtunVn5nWeG2/XmTmRvi2rNGSu5Pxc
X5uJDSnvPMqf0ZAzw13QqyhvARczlPdkE23SmXmcPjLOv3tqQ0z82914Zu2p
o3X1Gfusz5qeNd9/PH+lvHPRl9LvF337SmwLfBafFxuDEdrDj86erXu3zu+P
pn4fTMxZhZzZ8lzLRS3/9GDtOdGfJf01XPt0yh9F+RMof0YlHMdruN87d7iP
n/OMg/Iedu/SsyDiNxgdDji54E4l/w/EXcj8cjrxJ6N/NTFrZG0JXI/vSv67
+a+vtvDkryP/Hdz/bbTPUOdT6O9Q3ppy1ZL/y4nZY9A2Qf9UOcr1wXD/qhfp
Fx4dzm25t68l/YfENbFgPKUzGIjiDDqmOraK8ShOomOoY6mYjOI0itcoVuPt
04NzKN7hePRvaZOrall3dqEfUv5txI8Ts4j3eQTxnTyjmTyreua3/2oPJqG4
jI5Bf2MVdmYfUy50+QWHkGY7ntO3rgHbw0kvDqp4qHLVy/Eo1+Moyv+mJRyI
ciGOQP+6JZyNcjcOQ/9KLBjtv9Fncb9nUf6N08NhP5D4czrDbyD3RS/a55mm
7G/peyHP92Gd4TuQe6EP8c9qa8D91BJ/dW3ud3ZnOFzlbj2v7CePR/94UsqX
o1OOyCFcb7b4MJS3GOX1pLynyX8d8f8j7RbU7zTSD6OtVuPeV3F/qjH7w2L3
fEKaczuz36Strr69X7TnPfB9WMHvBeGf+O9l6rZGV77TcitT32f5/zP++4u4
FQj/SNrdkHGNMWz6kri16F/nk34t0j/F/5/4TEm/JvoT6B/pT++3Br3imYQ+
f+hdyP8DcVuT/2Lz1+T76PxYXGjPRJYg/e6j877t6vjA+3NDQ/z35yZ/D+KO
Jf+15F+yPWPUnPL81yD/Y1z/A67xe3swA28YFxtTsQQv7QzGoD7Uv3QEk9U9
uLrxsVfWZkobI20UtVX0jNSzUn2KeqKPJv0ppK8eH3vlWvST0QeMj33zgqSv
JTyK9H9ofz49vtviEsr3p32Wtk+zynivzb9nxV+X74WYru7hDaWMn9uCqakN
p7ibh7YGo0msJjF5xebd2fMJ2uaMhtjviif1Fve+Hs9zFdpnp87gFpzqGN0Z
G+THaN+bG2KbLD7Cw+jPNwSrQzH8VUPwKvZG7iD8ekP84/ftDK6DuAIHuPdN
W69JXdZwrGzMecmPDfFJcr93eGPm5vZR+6pnKE9PTRrT/ov7HYf+CHW+iLov
hfxG2u/91rRnTm9+y5kwX3xg9YVduiHfg9X4rx79HvJf0J49mmc9Q2zI3o3f
FL8ttpFt9T1p7idtfdek/xl51f6MvhLt9Qv66+jroK+MviN5tm1IH7QvLs9/
zxP/LLJsU9rUttXveK/OnA/f4J5PQ7C3PNPRN/Hbhpz1aG993dS0qW0rJsCH
UzMGOxaL9/EQ+vUNwVbRh/0D9NkN8W1fjfqNZWysIGu3x19I7pv7h4b/QH8R
uQUOL99v5wDOvd8v89kNKKOZtfbHyH9agsElFtds5H3CGyItxP0POYjw/sib
hN9A9iO8sXgNhN8q+ofIN+T9FvmA8EykjrhHkD0Iv4d8Qdxk5I6W8IVvx72u
OCnnK/uK0UTaV+QMJbweMp7wU8hehNdFxhB+FNnTs13kXcLvIAe0xIdRX8bb
kV1bcq/OvT4s97wq/91dzX0Rv31L+OZXnxSfTs8z/D7Jeyv/7aTW+NTpW7ce
6bcjvDWyEuHFkM09DyLNZaT9lPt5F30XZKtJ8aH0/GJtpD9pb5MjvCVrENci
zpGdK6+kT6S+e/LLE14ZuRV9HfRtPU9CfqLsH5GPWoKpJrbaz0VfH2kk7YvI
3oTfQd637ZG3CT9tnQnvgDzbEowssbKW0n6b8FuexxEe6vljSzDlxJZ7EXmD
8HPek3ED+E63pN7W/yXnQ43BfBP7bTnkwZZgaomttQRyX0swzcQ2Wxp5oCV4
cG/V85wp72zPM5HlidsIebIlZ6iepS6K3Ev4M6TLoGwAf9oSPK8PyX8w+c9D
vxg5nvCS5X4uQU5En1GuZ5+17x7m+aJh5A/ifkc+Kf3nffu+54Ut8UnVN3Ub
/tuJ8KXIKcQtW+7vIuRY9MXL/YlX9h71ObDk/xLpTV17IbNagm/2DvH7E38O
+oXIUYQXKff3hX2ItHMjnxN+wmdK3AWkuYzwv2xT6rMV9dmR8CbIfITfK/3d
+YG8266ZXDu55nTtKUa3WN2+w77LNxFf1Zr5jTzTrqlcWzn/kRfcNZVrKzGi
xIpas6xXnYM5F/t6UPgY/Cb5bfq4rNedH73nOSnX6NGaPSn3pn5Bagn/xfXP
GJQ1vWt7MafEnvoOGYU+GHmL8PuDwl9xtuPbpNjJf9YR/L5tx+WZ+ezE9BPb
T8xxsa+dD4pV/cCg4EOJQb7H4GBiGy/mlthbYo43tWYO6lx0O6S5NffyDfK/
ck/iCa7r/GBQ7kc8rB3H5Rn5rMSj2mpc3knfTfHcth+XPmpfFRNLbKy5yv7L
dOQAwgcinWX+KW+3a2LXxmIAigX4NjIEvRp5hvB7yNDWjHGOddvTH85oyfj4
umNteX985/9+99HPaglGiFghnyEHt2TMdezdTpuBloxBjkUbDAhe5DK8w6/X
ZI9s6caM72/bt0p/dcx17N1FewLCp/m+TcqY7dh9MnL0pIx5jn2OuY69G5L+
lJa8Q75L1ejHtaQP25f7al9g2Pcf/Wvf0Zb4GOtrvBft+3xLxlzH3rn47yjC
V9J+Z3Gt2wYkXn6ST2mrd0r7uf4QU/7hQcF73Ig07eR/rXxPHPMd+7uR/+iW
jLGOtX8U/3jxW5YlPBs5lPAx3tOkfCP8VojhIpbLF8ghLRmzHbu/L/72fh9W
JPxt2b92D9q9aPdU3FtxD9u97E24v6da8s3123tIGc/EdNUOVHtQ8WHFyBUr
97Sh4UIS0/WVYcGIFetV+z+5bOW0vaY1fD1fDA1HmVxcYhSLVXxh0eWUkFtC
zji5ueSQk/Pt5KLLSSU3lZxYcmPJOSdHnBxhcpnJcSHXxUlFlzNDXgv5w+QO
k7NN7jY5k8WvlKNLri75529tDUfWi4RPHRruLNcvd9O2/6Y9vmsJnug3jJc1
ZX12GWnmHxpOKbml5PiS6+uaIeHHkhNLbqwr0W9ozX/GyREml5b8WTuRd5eh
uZ+7WsPPI+eP3D9i6g4fFkxdsXXvdbzQtg+5pzWcSBcNDceSXEk+M5/dROo3
h/AkvuETeG/2cL7rfhyyO+H9kBrCf5Hn+mHhxJMb702kD+FVKe9awg3kr2vM
mtW162vFpr1x3uAleSbh2YR7dO7VXcd/qw8N56Xcl3LgyoVrmZatva7cQ96j
96p/rlyD8inJv/Qx8q9h4Syz/eUklDNQTia5mTyTcO3lGsy9SufYzrWv4r/3
2tIH7YurDAuf51DS7FQT3AX3D4chuxDeouwf2r5iF2uDry3+e8jIYenD9uVa
0hxC2r2QkYTn4r+biZOTV25e9zDdy9yzxIthJZbV4tThCsf3tvDjPYl0b4vP
7jmkvaDs18khJ5fcccTPaQ3nodyHx5f++nnZ33HP7Q3kT/sPcbchXdzbbg33
ntfwWguXPdW3y37z1a3hWlui1Ec+d7naVynPd8nG8l0p8yXxe++if69Xxkfx
e/+L3n9g5l/iRa4xLnNK55bvu95HPxr9D+IfR7+B9F1If73zk+mxifK/G1r+
n5Or29Dgaz1L+ueI26mM3/aBv/vC0HBzuX8jl8Wjg4JHKqeD3A6PDwr+o5iu
Yrs+VdKL1/uE9k3le/Qo+v7oI9BPbMl53RbWr4zXJ9D+J06KndtzHcEHfl1+
+vK9Eq9knfrMsZxrXcX1ryN99cDMPz0PXLM+czrndvegr16fOZ9zP/Epdrf9
yvdFjGGxhv8s87uHid+V+JvK/PVu9JXrMwdzLvZf9yPrM6dzbie+5OL6m5L/
tZZg0opN23VQ5p+L8gyfr8me6yKNwaOdi/QNgzJ+ia/ZHX0a+g8twfP9m5ds
aM4S/c+47SjzmZbg0X7O9QcPyv6OGLVi1fYZlPmjGFdiXV1Sxh/xgmeTfvig
7FeJByw3vJydcoOKhzuL+KGDsn8lh5lcZo4Zjh1i6oqt231Q5pvi/co9Lweo
XKNyxssdL0eoXKFyzGs3rf20eLauKV1byvkmF5yYwWIHu0fsXrH4pqt7/jUo
/DByrMm19ht1OL41fHxyw92DPNSab5bfrmUcc1uDUSxW8cv2udaciXk29trQ
4BGLrys3vd84v3ULlr1Z313tc8QIEyvsWuLvbw3enzx28tnJPSg+aDfq10b9
fm6JTdzO9Lee02Ird3Jn7DCdgzoXPbIzdn47aLvZGcx4seMd0x3b9ddca1p4
fMSCd39G3kj5I+VCeRH9pcmxidc2Xg5CefFsg4fL9/GByeF8vLm093voDejn
oz+Nfs3knKF6lioHyQmTw4Hh/pXnf1eibzkk+MXPoF87OT7Y+mJ7XvdzY3wi
9I3w+3mPfgFDw53pGOdYt2PBP/E8R464vwaH20bOMnnK5OySu0s+kXkI9x0e
LpYPSLP8sHCKyC3y1fRwhB+HvkhbxqM3JoeT0f4i58gM0i8zLOkfJf7AyTlT
82zN8z39tvXflgtH/+dlpoVHSe4Iz1iu4TlfVs5L3E87cnJ8pvWdlmNMbnE5
weQKkxNZnmT5kuVK/gZ95pRwVstdLUe7HO7XDQ93u5wH8iDIhyAXgvMnuV7l
n5D7YdR8sbvT/m4Oei/02z3nRL+lLefHX6D3Rb+xLee//0OvQr8efTD6O+in
ob+GXoV+I3qXguc0f1t42uWQnl7Ouz8jvjfxN9j+6O95P+ivlPPkj6bEh/+6
ch7+I/rX6J+055vot1GOeLnixXcXL0rcqMb5wsEm99uM8nw7kd0IH4DMR7gf
aR6hvFUL/lY1+pPoqxR8pK7OCSh/V9J3tIVTQ94W+Vvk2uhN+rvRJ5H+dvS+
6PejL6QNQlvwsV6bEgwvsbz6oN83JRhSYkmJ//QS+u7oz6H3dz8afTP0J53/
oj8/JZhOYjv1RL8evSv6tW3hvJFTxz5r35UDbqkp4ZyTG879ZW3vG+ehvzRT
/9bwIMiHUNMWm3Zt298gfo3m2Lxo+3KX/g205eIdsSHyzMmzp7bGnAX2RboS
XrUjNkyecXnWtW9HMF/Fen26wlqE8kaQdzvKb6f8aztik60t9uGkP6gjuIXu
sbrXenZHbLg98/Ds45aO2CQ7RjlW6TOh78Sy3RkTxO9Dn5/y70e/szk+zPoY
vzkieHb6POv7/CtjZGdnfFT0VflwRPDqtkY/xvUP38dH2v/f5/nlEcGvm017
rqxPE+21cFvwlORWF+NNrDd9WPRl2ZH2ur05NkfaHr1GfW53f9s+Sd5GpK4t
Ps76Ot+E/g7x66LvQPu/1I3+0sQ9oS/nfnQvxhTnd+SZl7Rb88w+bw1mkthJ
ciTKRfgPp8Z7w8K14fpKTo5Xy3xfzmV5luVblotZziM5keQskrtoFvpy2tmi
X9OZeLmRHMMcy+R4X4H4vcv7an/Tr0n/JvmNvKbX/hCpbsv8/vPJmQM7F7b9
ViH/oeX9FHdL/K0rkCtL+Ppy3ux/zter9NMbFvsAx2DH4pW8Rms4IeWCnF7u
f6uO+OG65+/e/xa03zbi5Pbmu0P7/Rt9XuP0gaI/1pOnMjyckXJHyrEoj+KS
ZTytI72ccr2oy09teUd8V4YjI9syv5ZH/O0yf/B85M8pOTP37PwfzvL3y3zF
85Lfp8QmQdsE15vyjr9b5iPej1yXYuyJtSenjrw58ufItSPHi7xN8tnJ/bIL
93uo9pt9GJ+4n53RD9RvFv1B9J2cr6Lvi35/JT6v+r7qD/uw6b0G1/pxRPBQ
xAgXK1z88M8qwdx+riF78u7N6/N1V0P2+N3rd4x3rP+V/Fe2BUNLLC3xvp6r
5MzKsyvPWDxrEXP8wjHBL3+yEg6JU8aEP+LjSnzm9J17lOd1tr6UHfF71f/1
zEows19qyBmOZzlihPeelDMCzwrWp103qAl/pDx6YqbNGhO8ry8r8WndA/15
yju/km+W364/tQkivCPx+xK/J/W7txKfRH0EnyD9Oehbux+G/iD6WZX4XO+M
/hT6uZV8s/x2/a69c1t8Wncl/hniz6vEZ1g/YP2BH6nkzMqzK89EPBvRpvCk
MbFHfLSS+fq/mN9+VfZnnM+vgj6r7Mfchb58ffZI3SsVn1RuuV/K83D9sAbx
35T9Jn02zqC9ek2LL4f4mXIP/VbqKz6mXEB/lPbYzG/QiHDAitd0A+WNp7zd
qnlmZb2xC3q/f/a3HC8pe8v6+O48UMVahnftOOQewjeRvqU+ZxqebdzYEX8Q
z0w8O9FHRr8V/Vd6ureGvmR9zmQ8m/FMzrM5z4z+xpPuCFeJ/CyPV+Ljr4/5
7bT3GZX4wOlHpj/ZXOS/A33p+uyRuVf2b+coI8KBKz6qZzKezXSbFl+YO0m/
bH3OfDz7uRm9sz5nNJ7V3Ob6qT5nSp4t3Yq+cH3OKDyr+HV6fMLl/BMvVp87
fe/0R/yzkvnCXcQ302fubAvn6qXDwvEkF6s+6fqEy8kknq77T3K5rlLef/e3
5GZdvczfxAwQO2BR0u/RFnyxK9CvHRE8Mvez5GZdrYwn2vxo+3Nxsa9zviB3
7DFl/8DxoXVEOOa2aQu+mJymT6CfXuqnX6/+vfrSd5svfgL6C4gN20H8ZL5n
D3blPWrK/FrOWjnAxXP7x4dfDirxWH92Po4+nvpd2xkffn3s5cjaru3/OXAP
HRb8NX3Y9UvXP12uQ33O9T1/xTGzLZy/cv8eMix4gt8Tvznxz/Lfam3hbNNv
Xf91udzk5JULeLkyX5pD/EbaX/of+nfom6Dfi75ymQ/fYf3k00TvMl9wHMRz
EGv5Zr8XxNWV+bI249qOa3Ne1xKbfG3ztdcf3RKfQ/0M9Tf8vRKbc23PtUmf
pyU2zdo2aw/etSWYVr+MCQbZ15VwAvzckDNgz4L1WdV3VX/WPyrxCdQ38Bn0
3yrxydWvVv/akb4ftgF1HV/uxz1cx9RHin2xPov6Lj5O/l8r8anSt+pRfaoq
4bSQ20K+kDnorbTXWJ7/BTz/LZqCSSnG3z3E/1jJfvgKvCuLIJu1BDNC7Ajx
JsR3FmNDrI2bae8j2nIG71m8Z+iepYsBKBbgfZT3UyUYl2Iy3o3+QyWYmOIQ
ikf4bSUY9mLWP4z+cyUYar8Sfxn6N5VgMIpzKN7h95VgJIqVeJs+BOhHcM3l
GB+2Ro7pDF50L+pahWzcFo5MuTKdUzi3mEX7nVDL/LELbcH9Lzs9PrVzmN89
gv4QZSzAvewl3z3hpYnfifCrxN+rvQz5T60NRpFYRcsTf4B+tcQ/RvwM9O18
v9DvQP9Km6vaYBiJZbQM8bsR/yHx93t92vNI5jPHjGLsJO2SxG9G/JXE3yQe
I/qa6IdqP9YUTFn38t3Tl0d2MedvxO9A/KXEP+galPqvwH8rdmbP1jwPFfvy
BUi/MHHf8PwPIP2Cvv/oP6AfiP4l6U+uDYaSWEqdxFeIf5b4XZtiD/iJ9jHU
9yjC04lvIf5x4ndpii//l8WeRLuSRYlfifhNqd9FxK+kfUtjbGa1H52P+OnE
v0L+PYhfWXvnxthHavt6AvGfTgzGgVgL2qxuStw6ZX94M+LfJv8GrF+amd+f
wX97Uf9Lqd+BhI+bHky1Rck/ivx78d+xxO2H7NIen7UliX+je3zZjkG/C/3D
nrFfOwr9JvQe6K805/zR83wxWrSV2Zz4d7n+ely/ifjD0K8g/fWk/wP9aPRb
0fugv4Z+BPp16N3QX0I/Ev0G9HnQX25OuZav3YB2yocQf5F+7fqb8zwPcL9C
2zzSv0X6g9DPQt8ZfRb6wehno++O/hX64dTxdu71vvK8zrZNaJ+zkXOcf5P+
E+q/H/Wfn/TL0P73eA5H/B7EH4rcRN57kCMJr+h42hgbTm059cfYlv62J9dc
l/DBnhGQ9i7kCML7298nxqdE35L/+D1E35z7Wbsz+9nuf2vnqC3SfshZ5L0a
OYjwNsiWhPdGdibcxvVX4frzoC/THv9kudI8E/Rs0D5h33ig+DecRPypk8Ih
p3+ye2zutfmfcc65nHt5xuZZ2/KUvXNNzhSWI3wZ9b2NuLPcXybtv2xv2muf
uXmH6K/X2P8mxeZB24fj0d+fGMwI7THdz5bXWBttbbVPRP9iYjBBxAZZHf0c
ytuL8r6mvMvR75kUmwltJ5bgfvdujA2wtsDOgZwLTSXNIi2x8dPWbzV9jQlP
9/snDjLPb/X2+MuKFT6U+M6W+LeKrT0JfcGW+AuLde0Y6lhqGZblnqR7k56n
2B62SwtlL4Rs1RibYW2H3ZN0b9I9dvfa1/EZ8WyWRjZsz5j899iMHE94De7v
AvF0ud/vtUdEPxl9Jvon6KugH4++JvpH6Ov7PqLPQh9A/6xw/WUbY/+rPdZ6
xN9CfJe5M15viv48egf9eUpz0phWm2FtuVZw/kb8L4xHj1P+cuj7Of6hP4p+
sjZJtbH5Mr32So5njmtVpW95FuaZmH1shmdsNbFJXIJwK/Vbkfp1tQ3QZ1L+
9ZR/M/XrSn02QP8v+tfog9A3RL8X/Tv0IeinkGdjrt+99O81ff8d/4n/zvER
/VhxB9A/QF8R/Qj01btlvPc8bMeatJFttTDxy4oTQfwxTamTdRuErNgeG0Vt
VX+uie2iz9hn/UO5n7XJfyX5L+N6f5B/E/Rn0afTvo3Udx30a9GvIv5P4jdG
f0zcBeLHNgfjTky7d0eEz2AF9BMbMyY5Np3ueWVtxhjHGu0fuzeG0/6vMv9b
kW/3IPJv3hb7enHUlyn2kO4fLkt8NfGblvW53LdyHot37Z6pe6dy+IqP7Xnp
eO0CyT+qPfNdcazEsxLLSn8M7VBXKPaVU+aLT8mp6PW2R1v4hj8t89vJ7mES
f0A5b3V+LO6V+FdiX7k/IBesnMviVbu/K7etHMrie7sfLC+s/LAz2rIfLG+u
/LlLoa9O+Q9T/oyuse/TnvVJ68fzPKcpex7ufXxQ5su+/+sSvwVteir16UBf
szF91L7qee+YxnxD/ZZqg66drva62qbrv1HbGIx7/UHcT5dXVH7RhdpyHqtd
pfaVfUp/0SbXM1fHCtdX4m6JvyVWt+/DSo05Y/WsVZsabWvEnjyf+NkdwUQV
C/WCzmCMijUqn/K+jJfrOWfj3r5E1m3LGZ5neZ6ReFYy2mc6PBhaYmm5h+de
3m/Dg+e+C+X9MTlnBJ4ViIEpFubtlP9sezDZxGYbTPyr7cG8FPtSjmC5gvWz
09/ufORMx5GOYMSKDbtaa9bj/XiWfUv/045Fexb9GfT50n58ncaMiY6N2txp
52I6bfF8R/3O+L3x3fX8YCnq3rvMX/3erdoYm2LfT+1Tu/F+TaU/XOjzI82i
w8M5LT6aGAxiNDxSE38M19MDiRtQ3h/33N0jlmPVvXjte7uhD/Le2uKPsXBj
fGj1pdXnwzNk53zO/fbx+9YYzCCxg7Rvfhx9Ofrj2fTHJVy/Up8rh6f/uiZz
bfaoe2RtEcNysA8s+6NyD8sZrD3JSm3h9pXjd5W24BGty/ixodg7nVnvyXEr
T++KbeF0l9v9vuFJvxvxizhfYj53lOMP+trOP5hvXIK+h/Nd9JeIP7E545+2
2jsU+4cnuMaGXG9T0sz0bI70UwgfTvp93L/2e45eS3kXou+IPi/6JsRvj74d
ejf07xn/ritz1c3KN8Nvx7bE/8nz+4j4tZrDx/KKa/dyHrMN8T8T/xDxK+uf
gv49+nXoy6FvhT4H/Rr0ZdF3QK91fsv1N0ffCX0y+qHoezbHZkLbiSuLf51Y
YNqbaXemnfeWpP/G8ZvylmmODYW2FOsWe49diV+I8p6gvCOas0Z3rf5yWc8v
jpw3PJzSckuvQn/4fPxcc73ZJfNL5/Nn0T/uLfNHx1Rt1/V5c6xdB1mN6+/s
+qU9Z2SelZ0wPOd37lm7d22fWqJc7330T4bl/GxJ8u9DWfuW+fyC6FuitxZ7
ZO39N6L88yj/8vb4EzznuQj6eU05c/Ps7UZk2bbMt/ZszJzTuafzna393pT5
jPsZbfS/AcODrbdxTXzptFfRd+Afznnx+1Ynfnf0xWi/Z2m/42i/e9HXEjdv
UMY7/RWe1geC+pzblO/jyehXlPWL66Uz0O8u82nn54f7vWF8P7PMx09Dv6bM
l11PHoW+T5kvu1/SOCXvlO/Wco6vjZmjO1cfTR3289tX9pPkON5APOJB4T6u
eDbIvTyNbDEl/kVr8e4/UPqn9sPXVocjRK4Q+caurg6HiFwiD/Lbrzr8Iaax
f//E87if/KuQvx9pVqK8G9Cvbo+/1srot6Kv4PqFdUNvffeRI8Xs47/5aMtm
ZOPm+BNtSfpq0tc1x79rVfT/zhNu6/+Qpxt55xEThHCF78YN1cGUEVtmX/77
b1XwR8Qh8X1v5HkdSfn7kv8x0g2qDl6MuDGr8d8TlH1EiV8RuQV998KXdSBy
GuFTkQMIr4o8QvxB5X2Uv+pq6ncU/y2Mvj9yFHFHI/s1p87WfS/03QnfxDX/
6Bc+FtvU97tBfyvi9yL+Ltu5Ojbc948NR5hcYfuU/Msj11PeroUfzPXCTeVe
9BXy+VyHfiPyyNiMb2tS/nDGt/NIfwFSQ3gAcq7jG7IRZY1EP5/wlUgb4Xbk
CsJXI9MJz4dc5XkisiDhhZBrmrPG6j4gmEV/Yxfx39qUN6xcT84tubfGoV/s
+Eq660l/A7JTffi8PhCfiPhbmmP3pm2WNlpbIRvx3zTytyCblPF/LXHWSn13
RrYnbir6ZYTnpcxdufc9kImEJyC7V2c/3X31/9ImPaqDP2SfWZc8X9Ces5CZ
hC+nP31J3XrwPl7Be7U+/31D3NfIeoRHer4xOv8ZdykymWvXl/vbxXukPk3o
lzfHJ07fuDP57z+lf92Gfnt5H7alTlcPSJvYNjfw3wzyHkb6vcv9bUf4393D
b/YQ9z5X6dti7bTTHpN4/25g/rB1U/pPd+5tHuTOsdkTdG9wFuN3Z1P4/66s
DueP3D9z3A9wfUKahYlfB9ndvRtk7abwoQyh/HWLv0+7NrLV4QiSK+hifv9F
f14HuXJs/CH+Wx0OJrmYfqD8Bym/gfxLkP85/h9J/Fjk5bH5z7jdqd/gppRh
WTORq8SJorx1+4UTSm6o9Umzv3tdyHqEJ3vP5N0BfU3Cjcj96LuV+m+IHEL4
UGSDpvC/vM337E7SbIy+qWtE4k5BNmmKGD4b2cy247pf9gvflLxT6/Lf3sTt
g8xsyv77FNrnLvTt0Kup79olrVxVm/PfucRdXvgRn+D/W6rjk/E44SnOH6jP
SOIXI/472usO2mtE0S9BtuBbsjTrsffLevEYrrck+ntN2QMYXR0MLfcGnL/U
O7fqHn4++e/up79eWeYD8uU9iH51mW+84F5xdfC3LEN/kduqw+kkt5M+D/o+
rDEwvhf70+/+6pkx2LFYPsC7KO8cyluC8h4WM606fFCW8RRye3V8Xuwz+kO9
4vqQ9p9I/V/hv/v9lpT+YPsMrg5/l32odVL8a8T0EtvL8fvm6pRp2eMp4zrK
WoH2Wq4p/Dr9XD8Xf0P5ovq7/1D8r+TjGYi+dvG/0h/rNepzC2U0NMVf8SWx
8dEnoD/DNe6sThv93VZj8/7IwXkv4bVIsyNl7VT63zTkYfLuVfqHfIwvj847
7bstH+Oz6J1lPBWrbhrv/mCuufD47B+dS/325/l+25T9qbPR90T/Cv1m5Cr6
w8Hoc5ri46uv74/IMMIv899owp+V/ZVX0esJzy77E12QGwjvzPPqNEz8hZS3
X7me+4f/83rET/d7Qfu/PCAYfWL1mce8eyPz+f0RE5i+0BM5tC7pTD8/97P0
+OwPXUh5h5T6HuPZHfFTtJevD7beBMKTkSPr46Ps/MB5gr7Ls8izA3l3RL4g
PBvZjfCuyJeOBZPSfraj2H+mMe0epb1+QI4ifALyk88bOY3w8UV3z8q9q6Nt
w1L+7oT3Lvt37tdcPCFlWNY+k1Jf6y02oDY22tr8G2l1P6s5WJlbFP1n8pxI
3pno05qzv/2O42nRfWd8d05FFmvOnMe5T39ktN8O8i9G/ir0WvQ9ue6dXP8e
ZB/Co/ivu3u9pHmbtK8jE3yWZf+pCnmR8Gml/LeIb0H/DRnRnL1X94p+cg+c
8Bye2e9d4k+sX7F78O7Fb4K0NGft34255tyjkt49gINqskfm3kB350eUfTjp
F7J/UMd5qes45ND6lGFZWyJtzZkzOXc6EFmA8CK+E4SfoIwezv+QTwhfyn8z
msPpKbfn6cjizjeRD4i/EH1J54dcYzTXqkcOrs9+vrilPhOfjeujr9DPL+mr
kY/IfzH6Us3hX32a97OlzH/O43k/OyAYkmJJHsXvc/qKlP4qnns30v7GeHt6
czhM5TLtyn9nNmd92o/xeAD/HY++KXl+70/7kX8rwqdR/qUDcp7vuf7G/P7W
P/iK4iyeTZ6ePYJhLpb5uubRVwfZsD620ZcQvhLZuj574OcMSF73xl1Dupb8
vdTP+XaF8LfOaZszp3JuNQc5xbZHniH8XKnvochl3YN/uo7vPuX2ofzeZf52
MP9dTPwlyEHN4bd9XrzaMj80/Y0D4oMj79/2SM8BsWfQrsH1/aITc02vrU31
zSVO2wfX1K6tLyzlH4P0Ilxd1l/es/d+VZmDOkdzrnYD8Yc3Z373pWt39MMI
r+b+Ac//P4x5nzsW8N8v3YMPu1lz1uPfEn9R6Q8vkmYE/eNNpE/pb+8TfgXp
1RzfId9H38s+2qSTfuDceed8955HH0L41ZL+BfRhhF9HeqP3Rd7W9x7p2Zx+
Zn97oYyP9s8PiXutpHeMcqxyTHFscb/5Hs//Cv7FWujboD/K/f3alP2G79Av
Ke+P+9V3o3/5D34G8jHhN8r9ub99o/MZ9LnRH6CMT8R6QO/WHJ8JfSu2qYkv
hT6F+hbKCSo36Pr8/tQ//KD+p82+vlZibmnLvzm/Fw2Iz5L/aWNfXfqGtvee
D9zB9T/legObg8EhFodjimOL78e5A1KGZVlH6/oAMk9zMDLEyvijjG9yi67J
fGwt5HLCzZT3OOPbfmX+OB/Xn1gdDlG5RG/n+/PvPrRFX75jhG9FZqLL6SU3
mPtlcm9+Tx+/hftv5/k/WR2MUrFK33ROUh28Uv8TI0CsgApteFJTMAzEMpgP
/TT0WyhznT7h0JJLazjlTakOZqzYsR9qS+D8B/lgbDAPxD5oJ/8p5H9bW4Hq
4MuaR597fe9PRm4mfIc2AJTdn/q/QvgK5MveXJv/HiN8GfI++lHFXupS5B30
A9AfqMRf9NHqcMrKLavPuL7jx2ujRvgmZDnSflPs0e7SZovwYK73mvZfyPJ9
wrEp1+Zt2qj2Caem3Jp3apOGPhD9VcJ3Izv2CYeiXIr/1YauTzgc5XK8BHmL
+u3Df/d5L3JDM9ZsicwifDptMj9ts0Bp31H0kW2rg5crbu6x/DeGuP7I4YSP
R8YTHooc6dzJMYq02yG19TnPno/++A79ZS/nHq5hCL9azrctvxd9vQqpqc+Z
u2fv8yMzyvrjINdOZX9KLN+epO3dP+WLTbsV19qmOvnn53oL2P/Jsy/pz0QW
Je9iyBlNWf/s69y27C/JYSmX5droFxA+1TUJ4c7SP072e0+4tfS/E5HJhGuQ
o5uCwSEWxyKlfOez21PekuhnNWU9uKtnFWU/eEH657vVwcgVK/dVfh9Efwh5
rayP9iT98uU84wRkIuHhyFFNyWf+dq45Y3xsCLQlcA3mWuw/zsEJf13sGS7n
GX/O8z652Ou5XhhTHX5j+6T2jadqf1j688XIG6TfA/2eSrCYFybtCO9xfOzZ
TiP9YmJkVmIveRH68mIcVmIfeMKY4PV/VOwJjxgTfhK5SbT/PAB9Evp76Bch
r3K9I4q956dcr4PrzY/MGht70MNI39w33Cjai+6HPhH93UrsSw9Gn4b+PvqF
yMuUd1ixN9Vec9sx4UOQ+0CMWrFqTWNa7Tc3Jf73XtxzJfZ566N/2yvcPOIP
j+mdOlpX8XjFyrWNbCvtNXcfE/4FuUnEuxS70THAseBL7uEN7uXNcj/aY+40
JnwOcuOIsSTWkjbB2gZrj7nLmPChyD2ifecOY8KPIBfFlT4TbU2LPaH2sJdo
H4T+lPc2Kc/L5yaW9vv8Po3+HPLR2PCTyl06qIwvYmKIjaFNu7bt8vPKFTug
jCfvkmcSeaeV8fN1bZOq45PvmC9/r9y71WV8FFNDbI09kasIf+w3g7RN5fq3
OWdirPmUsabZvT/S/GJbFnvba5DfbLtyP3tQv3Mdi6nfPh2xh/rR59Un3xPt
eb9AP61vuHK1j5KHdkQZ77Sv/Yz4r8r4+RVxC1KXBZDZY2OPJW+w9+C9aP8l
T65tYFt84T17ryV9J+37QnUw2vUL0H5LnuNuZTzW3u2nMeGH9Hukvdk8pO1d
vofaa/VEH1rGZ+159yH9ePR3KtkP+rpf+MblHZfzVu7bEeX99/x6uPY9/HcY
+gK+713CmSR30jeMR1fU5j/jtLc6Df2JLuGzlUt9Q8reCLlhbNbortUvReqb
wsc7ivu6mDwd6De6D8P9no/cTHg5vmcXVYczXe507b9OIe0jXcKf6/7g5cRf
gdw9NnxydcS9VOzL5G6/gLgLkVsJN7j/zbjSo+yfaW91EuU90CV8uO4puLdw
JTJvU+yvmpyfkX7npuzhuJezBPIu4WVbUr7XkSveNKa9v2vsO90/Prc69+S9
Xep7Qlv8XtpDe7jjuf7dXcK36x6Ley2XI+Oawsf7zvjsmbl3Jn/v++OzZ+be
mfzBH4/PHMm5kvzCH47PnoZ7G57Z7dAjnCKe5bn/cg1x53cJP3Et6R8l/dbo
A3yetF9Pwmcio5vCGSx38FWlPb4Va5Pw2UhdU56Lz+di5HbCA1vyvH3uF3aE
O3599A2Q63xPyHMEeU9CRjWlPdYgbnXkkrG5pte+rPSPfi2ZDzovlHt+QEvK
s1y56d1ndL9xPeSasamTdbuitJ98zK9xfyeW631J/X+bK3WwLstT3iXU/Q7y
XtJRftEvrc5+rHuc7nXugAyyPn6/yX/uXGmv/sgWxP0bqSbcC5lJeGOkb0m/
GeFDSf/otPBTP0V99ue/oU3hZ355fDgU5VIcwn97E/5Pl/Ax93EO4fMg/zPE
PzM6e/3uR7kvJee13NejyvxAvJlB/bN3rm16C2u1q7rH/0Y/HG2MnM84r9H2
yPlTn/7hI5CXQHvMfSYE803sN+dbEyj752Jf6fygwbVKsd9xfjKF8B/IE02x
OZDvSxtvbRHc3xrDuzIWeYnwQtrk07bjPFfoyHptuGulgo+mTZTzK+dZ2kq5
/hrq2qzgqw3m/67UdR5kWH3sh/afEEw0sdG0LzpoQjDXxF6Ts1vu7iHU7wjC
x/kOER5cdDnp5aYfVuaTyzPe9u2fuafcDX34/YX6dBOvjed0EGn+IH030h9C
+FCkJ+EuRdce9cAJwYQTG8715QDXYgU/z/OOgf2DUWQbNHK9narT9nJDaM/Z
OiFzVueuL9EH76vOnM25298Ya92yx/ROuZ950X8s9lMDKWcuyv6L9APqw4Ww
IeGNi34NaY50P7LYs9qemxG3KTKoPrYFu9BXrqXPtNF3bifN3aR9qNjTajOr
7az37L37fZ7X51md+WQ/ytiA8PLiYY0PV8Of6F36p/yhrgEJd0OG1Ke+mxC/
eXV0588Ld8uel3tfS9Ae02iPe2mP69CXQu9AfwP91qbsl85L2vGu8Zsyf24m
f13pb64vpqNPdE3elP22BsKTiv6m6QlXXFM3ZT7eRvpxpbzh1GlL6rZFdfrb
MpNyP3/fl7iUk9K+f3NOTI39cAu/A3n+NzZl/TKW8r4r9s3agGkLNss2bQoX
yUu2HfI54R/H52znetpv9NTYcz3O/Y6ah/HQvapRPP9RwTcQ50BbQG39tI+p
NMY3dhvP3kfFR3YRcfWZ38yNLEx470p0/1+R8JqlPMtdElmM/3sQ3x1ZtFfm
i3LrTe8V/8VbuMaa1O2bKp4186QF+b8rabsgCxDeizK7EV6I8AqV/KqbxrSe
4Vtf6+3Z/uX8/og+q+C/+w2Wm14baL/N7rl7lvnc6OzFt1HmyVXhRJcbvZk8
51Du2UilIXuAjo+Ok+4NWq7l/4B8qu8N5d7XJd97v/sLkude8v5IXP+G/Krf
hcwhvLZYcNaF8BfI/fz/MPII8kCvjJU+2++RfQnfw3/3IT+LJ1/qaX3Flxdn
fk/q/xfx8yPLE15Crg7apieyeK9whMgV8p7409p3cu07umR+4DzBPuT1vK5j
dfuo2EZsRdyWtamDddGeUrtKx0LH6t+6hb/K9jd9e7GHcqxybNceU7tM6+ez
7F/WL9qyjRsV/E1xOCdRxy+RWcjEXhlzHHscgx2L96mk/9iPVqrEhmPrUbGh
1bajg+cyu1v2iMRt3Zc0vUi/JOlXruRX3TaxbewH9gfne8777F/25UFlfWLY
/jy4/Gf/tu8OKesd+539z/XM3xx69OE+/K7Asz5/eupl/fS1bG3MHOyeLvFR
cG5mv7f/yzHZ2itt07WUZRv5TbT9bEfHfvugffE5nncXwi3Ieejnm59wT+r0
bE/anr6waEd+1Z9B1pZHhWvezLXH8O5PprwjDFO/au13xHEUi5+0zyPr1sVG
VVvsTWpju2pa8QAHlDxPcd1nHQN6hee8B9d/mrxryXnREQxZsWS3RV+yI1wV
2k7LKSm35BZi95P+s55J040ynkaeQCTpcKzZ1r5UxpxFaY9bqUudNs7aapHn
SfI+gaxeF5truRM/nxhb7G8mhitGfpevJ6Ze1u8pZM26+FSfStyGdfG19lf9
dGQj7Uko75iqpF2Y+KpK2me9Mj7YRrbVc8hMwgfWxpZd+6L/1OadfIm4F3vm
Xe1eSX3XKOXdPjHxptPPezV+H0N/A9nUsO+AvsjIQ71yjRMcZ6py7Wr+ex15
BenTKzbN2kJvWBtb5z+qMp44rvxaFVtDbY83Iv72xtgcet7juY+2iHfwfViM
/vmtY1hjruG1TqrKPS8qjmevcL4PaYgNgbYEX3bJ+kob1GMo+/7G2KauzW+X
UbFP1U51kYb0GfvKYMKtldzPzNJf3yj3430N6BUbZm2ZHSO0d9+MsofIv4Ns
XptxY1yxdx44Kn38OMo7vip9/zXKeBMZhPRDWiqJX7v0T5+rz/fYqvSNB0t7
y28vz/3i1PFF9JeQJRpSjuW9Zf17pR5DyvlXt2JzPbiEly7+FbcS3qM2ttCO
ie1lrNN2VJ8NfTc+KvaXcho5Rjk2yUekGHbslqtoJOPAkXy/N2FMeIEyVvQs
i/C3lD9pavbs3Bv8vODpfsrvQt2yn+e+nhxPjp1+e+V+8hvht0KuWPlNHVON
N5180f98Y+Uild/Ub7Rj1kt1wR7wG++3/s268E3LUep32G+13KWWa/nyq8iz
8g11WJ+6bOacpTZ7lO5VivEr1q9zfr8nfleca78oF0hVOGrlqnVN/liX+Gi5
Vn+uLuNmpVf4afXh15e/kbG/B+XNHB3ypj/5HqxDeB3Srdsrfdp+531ML2Ov
ZYllq+3AisjbteHEkY9WXlq5csTUbiBtbUOwtmeL3dotc2bv4X+12Wu2zW17
95zV/1fwil3DuJZZhro83BlfnRe4n7e7xGfnC96/t7rEvlI7y3bSv0/4XN8p
/VOYfzw1TzC7xe5ek9+fPJvR/mh07NEenyeY32J/y7kp9+b3pLlvQjDCxQp/
Blm9ObZ62vrJ0SlX57nEn6M/G+EJ3N95tbn+58iFtekH9gefsc/aPZinusQH
zr2ZD2uzt+x5hOcS7yJLEV4Cecdyabd5fcfqgmtuv7H/OHeUQ9fn6vN1f8d9
Hp/V+r0y/vjMtEnUdlYMdG0V3yfNtG45T/FcxT1u97o/LnjQS6JP6hoMXrF4
bRfb525kxdHZA7e+Hxb8ZvOZ3/MYz2Wcdzj/0P9PP8Cv+G9mt9yT9/bPnML3
dk19Tbm/H9C/Q5ZpCHavfWmprsHwfRG5vkv2qLQrcb/qxi7BxP4HG1vdPRrt
YtaknLWQNZDVkTUr0f/+vxIs4Zu7ZE9JuxX3eeW6now0msczG35Xs4xK9p9u
7RLMYW1dZpb3wfdi7ZLO9Ksiq/SKTa++Yfrsaeu7K2XM4f9pyFadmbf8VN6/
f95DdTnHm3tlDeJaxLmYWPr/bgyW8GHOkxuzJ/1tqeuyldj0Gm86bX1ddzif
175e+3zrYX20l9VuVqz+z8k7HqlpSPs7fxS/QxyPB7n+F46PyMNNsbHVd00f
RW1v26jX593Cdyzv8WrUYWXnlrYD4VWQZQgvbZs43+SeNyM8Vgxs3o/l/UYh
R2m/WpX8tp3fFOcOnvl49tPaNXjTu2sb7vpTDtKpKd8yzNtcyXPx+dyGvFEb
GybHI8clsbaf1C4IvQN5rDY8efLl7Y68UJe6WP+jq1Kn5bhev265ptd2/8/+
Yr/R9up5xpiD3dujvO4T0r/sC46Nfpt78d/SXeOfop/KSqV8r7NCEcPew3LI
euV9tU/Zt5ZuSn2fcQ+Utlu7knjTrWPbEv80ceNpi8bp6ef2b7/ffqdXLf3R
77NtOg/1ae8a/G5xvO3f5jGt3/YHavO+V6xvbfbkZ9PW2/TIXr0cBnIdzp4Y
bgM5CfZHnzUxXAVymsttvllVxih5xeUX3xB5sC7jv9wKcpPLN/4M+eYl7kz0
A6bGZ2/f6nB66ssnl916jhnIGX7bPY8g/wOEV+pIOtPvh0wlPAkZ1n+uuYYi
DYSXIn096Uch9/K8HpLfyrkNck9duLlqCY9xzkr4tsZcz+vKpTeFMvah7L2R
yfWxfx1M2cP7R/+WfD9UZV3qelTuONehrkfPqcsa3LW4HGtyrXmf3m8DcnZd
sCUOouyDkVbCdzkPcL6M3K1tN/lnV4WDTS62C/xm+KyQiwmPq4QvXt74FfUd
akl5lit2xTH8P9C1M3I04TGkX4nwbYRX6IiNmbZmczvHJzyNfKM8e+2f9ry8
LnNg576X1gXL4+gBlIusWp919E/Id2U9fQlp2nwXkYucXzekfazrwdT/Y+ez
PItr0A9Df5znP8j5I/o+UzMndm58A/rh6Ff7fSN+QeSKupRjeba7bXEjsizh
JZHrCN/snIzwCsgtdSnX8oc4p60Lx95yhG+qC/ee9+C9iC8ozqCYhScMCAaJ
WCQf6RtWlbXUIOq20qRgf4gBIjesdbJu8uXJm7doS7hijRcrpNkzbPQDkCbC
AxrSXrbbwIZwAC5M+Kq6cANqj/Qj5f+AzKwP5uFxA4KpIraKnHxtpZ3l6luM
/0+k7BOQReuD7XES4ZORJerTPlXUvVev3LM2/tr690AOqcsz99l3RQ702ZHn
EPIegUz3/Bxp6B8+XXl1TyTN8Krw58mj9wf1ubcqnKByg9rGtvUw54d1uf/R
/YM/Ig6Ja27X3keV5y1H5Sj3X8r7tg+/v/QMv6hlypn3Ld+bk+vCpSdnn/3Z
fi2Xn/nMP9I1Vl3e4e9GhW/Pd1vOVrlbJzNOL9wZG3Zt2feszvigzaO2j/Mz
n5naHP9YecEXKLqYmdq/aQcnlqb+nc85hhI/mfh5kbGExyDjCE9CWrUFLf61
6i3ayiEN2sMhU7XVK/mtm/yyh8n3NSUYZ2Kdmca0H1O/NebONbzWfOg/dAkn
i9wsPq96zwb6Z/xYnPoeXp22FvtlQft3dfiJ5Slehf47qX/CchfvSRv9RFt/
h+xKeHAl7e9zWLojdvHax//eM74gctDeX/qK9vKLUM7U/sGPEUdmCftrdcJi
y3Twexj6oUg74W3I9yllfYPsXJf+dRRxxyILEX5sYuxftYPdm/Lvm5j6Wc/d
p4ZH5sjq9EVx1ewj9r+7q1JnfWD0hakufWzJlrwPvhdi33iP3uu3yC514byU
+3Ka3/+J2eOcVcZmx1t/1T8t3yi/QfVV4Vf1G3FZY/rb6eX75RjrWCsfpbyU
cuRq371/eT8W9Ey7Ktee0RGOUcuzXLlH/WZMrgr/qN8Sv7N+b+X/kQfIccDx
QHxVcVYdpxyvxF8Vh/Wqgg0gRsDpo7J/dJHfp4nhJpIz0/0i943k0nSPxr2a
c/xm18VHSl+pc0YFa0CfQH0DFyduvo7MZ/VVu7X4I7tn5DzJ+ZJ7MvpeHTkq
eB3idlRz/U+43tZ12b9yjuZcTY5PuT7933j7hH2jC+/WuK7hB5EnZB3HB67/
DrK/PEjIZ4SXJO2OYipNzLd8LeRdwtNtf+KHIAvWZe9QX69rC17bvqR5q0f8
d/TjcZ/L/a59kM8mZh7jfEb8AXEI5E4W6+JdZHPCfzGOjKV+/6V+Y6fGh2zv
cq/6lu3bGOyM7Ym/i/BPlHEJZW1VF94n01ufrYv/3N8YG6OST1+9gdqIcK0d
Sv9wf0MskTuKP/iq/P9Iz+xxudelj9ounk83xnftaH6vHRX/Nf3YHkQGUN+B
yM/U/aqJyW85O00Nhof3533KTaVPndgg+qDra+een3t/8lfJY7UJ6V7vGf5V
eVhNZ/o9qcN/G9Mf3EuUv9VnvGln9g/dRzxlevqO+zW3lz70G3XqR92qkd8J
n9KYPqx/n35+rjNcb7zIs1uM8I6+E5T9NbKTz7oS3f+Xor224/dz9I97ps23
dz7WM/8ZtwDpr67KO+i76DP12b7dM/2/j2tCwhsTXqIjv+res/cutofvl3W0
rtMZjy+rjY2EthK+P8abTt/D68nTg2/v3Mi1dZkTfVfmTH7Dj/NsCNmJMnbU
r0cbH+KuLfgoYiA733LeJZaa3KsnoZ+MrF0fDgG5BA5Hv6Al84Em9PmRFQh/
KJZIVfZg3ItZjmtOoe83IssTXgaZ1CM+V8s6J6yL79c0ZMW6YMrsRd7/TQzW
jP5Z5recBTryv/F7Ih8TXoprnsp4exoyw28m6V8j/QKk7yD9BMr7t3M57u+3
5nyz/XY7p3BuYXstRXjpqswBR1eCTeN8cTn3vydmvn5qmQ+IJbKpbUl5l3t9
2uCU6mCwicUmJrXtZbuJVe175ftln7Bv2Ia2pfjW4lyLcX3qgMy9xL52DuNc
pqYqc5D5qM/lVfl22d+cf8907EPGVvL8tqvKntuUSr6Px1enTWybpcnX0CNt
bts7xjrWOmaKJ3N5bb7vX2uD434R9zTDuRr1vWBixnTH9v08S6rNmOXYJf6P
OEDO71ezLUn/Q3PeZ9+lvWuD/fMSaTrKXN75+Hml/9kPjy3j/rn/jN/IUo5/
1PVjZEZdfALtH/aTBTtSjuXNX5W1gthzZ3KvZyHL1cdnT9+9lYhbiPQzxMyr
DqbdHWV+Mrl/8PJ8Zv5v/BnIMuotKc9yxbZzTPH74TfHscZyLb8ZWdn+TPqz
q4MxKNbgm9zvMlWZ8zv3X4Xflf1e0T7HInWVrBWOcA7UnHzmP6c67898k3L+
6znwN1Njfz5YX4q5w++2MdcYMoa+05vnXAmmrNiyvZEujcHEEBtDDmG5hLXh
19fzhdGx7ffc1PNT7fu183/T9eaA8O/IwyNW8R1i7clBrN80cjjhI+RDnZI5
o3NH/zPuWfLsSN5dkRcJv0iZS/i9RF4aHRya3Yh7qT44EQ/wuyn6ZsiD9cG4
l2vovvpg358kHzzj8hzK/5nyb3HeRfzcyM31wciXS+Se+mDn36vNwMBwFPnf
A+SZQd4fFHEBaZPj9bFH/2lKxLB4yOIiy0n7Nzdtud61lLGSa03kesLP04b7
jAwmsdjEcrh1qwlGqVilp2qjMz74p+Kgyvn218hgnIp1+rLzVerWODBtIA/C
lgWDU9y4y0h36Qjeb/GbCX+M3DQy/MDyBMsJfOPIYDqL7fwBv9ePDF+wvMFz
c80hNcGLEDfC6+0+IHj64uo/R5oNSFtN/DyNwfyXu+WF+nAB+PwmULfx4s8T
voH03UbmGl7ref7beUD4AuQNmOT5XHf6Lc/3bcobTXscVhPMFbFX7ifNJqTd
eECeqfW2/t6T92afsm/dhXw5Jf4I+gsfVPBIHiLPCOoyfGD6h753S3GtpZFX
CL9RH24b+6x9V84Adf+XS+AM8RBGBBNbbOzr+H1sRPCx/U/s7VtGhi9a3mg5
mNX9X2xuOZ7t/74HYnfLKX3byGBu/4O9rS4ftLzQ3yIfjQx+jTg2YiaLnfwi
/80Wa4P4aSNzfu85vhw9cvW8XR/uqzbe8Rr967vRL5iLtqKP1FYE/eXG7Im7
xy3GjFgzlzMG7NktGA1iNWhbMljuRP7blP+a0Pugn4E+c0KwQNwrd29f3kXn
OM7t7izzCTkXL+0WTAaxGaaRfx7yH85/LzWmntZXvip5q+QAkgvo3fpwWU2e
mnMhz4dWnpDx52TaYmpjsHq0s9XediPkf6Mzp7yjzLWc73Udxz0PCv6+OPxi
QXgW9gXyfGPOxNT9X6yIZxpzTuPZmDyUf1CPRvK2IF3I/2hjzhg8W5DnUSwH
z3LMY17b0fb0rEBeSs94jDed2A/XMl71oO/d6j7CtJzheJbj2Y5YGp6zeN7y
Lt/LWeNzru35tnNe575yBsodONeEcA++4z58j+AXiGPgOb7n+c5BnYs6p3du
X4f+x/jsObv3LKaM2DLTPG+sCYaMWDInUKe/6F/viDc/JWcgPl+fs9gv3zmG
OHaU+J78P7Em+DOW4Xi50YCMwY7Fjo+nFyydxsbs67q/uzh1eKgxe8DuBbuX
LPaRGIHyJJ/R+P9YGOrvlb1+MQI/qAnGiOcPYtI9UxNMDOenC/H7UE3WfP53
O3VYm7qsi9xZH4wGsRo+oq9M64jNk7ZP81CfH2ifR8jzXm2esc9azlS5Yr8f
Hy7V43h+61PW3ZQ1Zlrmyc6X5zjHIc1nlLtpj+AViFsw0zkq4dcIr0Xaf3PN
VcRf5vt6aiVzYrEDnWM513KOtVtV5szqcyF3uJeBPrkSvDm5f92PHo/+J/lv
dO8BfZJ7yY3BKBHPSVynX4i/qGfmlKZ3zusc9y7+64Je0xgcBfEU5PFemT5+
Pn39PGQlwvWVrEXdY57Xs2HksqrMGZ07yiUkHorX9Np/n5GU86K/zz4qOQfw
PMCzDddP33L946bmfMwzZc+W3RNwL94zY88AXbO6F/8r7XY7z+tW5JfROXP2
zNE1rrYdm1DeJxODee/5s2fWnjE7h3eur82Ha+J7uN+u1k3/w7q0sW39I2Xu
zvPZq0fKX8ZnUM6qPH+SU+QS2uJf48I14pmAa+r79HGv/P+a6mzKa68kT3M5
7/IsazmknfAvyO6V+GDoi+GZmWdn7ueP65Uzq50q4ZuWW/SLonv+7lm/9lra
Onm+uBR6796xZVrX8wz3WNAPr+T83bP87sU2aab+A3Xx2dB3QxsrfUW0CdP2
ah39B4gfz3+Hoi9dic2VZxKeTXje71msdk/aQnlGswH6hr1ydrNRZ2xWtFXR
XuaH0fGlvAn5ST9274m2ORfpqARjbMPS18Qe02ZGOxLPc7W10wZDuwvPdzy/
8UzGPaMHaO+5KzmzXP2f889K7BW0LdBOyvtxzeLa5WTS/9gcmxr3cdzP8fzt
Hxsoz5M8z3q6Plx3OwzI/MQzHM9yXNO5ttvE/RT6xu/yAU8N39PZNcGI8/vz
AOPBIYzng+gfjYwH/fmdQX9ZdlD+c/733cjMmc2jzeT5BWOs2e8L8fMQvrjo
4jGJH7VjwQebSRnXUtY1yDrj4lO5TXm3/8FuU9+2vH/alLkvJHZ/i983yp+L
8EVFF/NK7Csx4cSGq6bMA6j/wc5xx4VjWa7lXcW/awzG5pa0zWP1wd4UQ+8/
NeEgE1vP/43fCnm8Pt+Hd0cGH885m9xNdZQ9emDi5VORr0JMMrHJXF8MrAk+
mf+5p+3edsX5LmmfIs+2lL0N8mR9OKB8Xj43uaFupP1HUvYj7hvLi0wZZ3D9
s5D+jeGglItSjCOxjl6kfruNDN6guINHE57ftkEOHRmO4CtGBkNLHjLxuS8b
Gcw8sfNG0R/vp35rM95XNUUMazOv7fzyHTmncQ3mWkwub7kd1+P6i4oH3JF9
Z/efh1SCPXjRyGCAy43dlfpeTPr3BoZPVcw+x9e68ryW7cjZimcstZWcGXp2
uEEZn99qS3mWK96WeGDXjAyGn1h+Ynv+uyaYX2LQ+f0eY99BejSGg7q2tI3Y
jHdzT892CyeG3Bi2qW17DjKgMdiM5xG+YGQwvt6nfU8ZGU5muZnfaEu86cYV
7EHb84rS1tbL+l03Mulnk//lkfkm+W3akHa7ZVDwqXyGa7tHUxcfNX3VxNKT
q1n8SnEsxbAUm1OMQrEK5TR8e1g4OOTi+ILnMRT9WaTONQ/f4pmUtQEygvBY
/nt9WPg6zDOc/9Ynbl1kmGkbovv/6YwHo0jzFGmfQGoIr87/VxJ/HTKT8Djf
h2Hh5JAX5A2eb9WwcIDIBaJPvb71dzDGPEB4M/5/Zngw18RJ36Cs556jTR4f
mTX5GtqXjsla/TbXifxf45pjSjjwtihrP7HD69zvp/yvkLGecYihNiKcNXLX
jBkTW9FzkTrCpxL/4IhgzIs1fxR99hXmg99Rn13471BkiRHhu7EMMfzeLPcm
tt9oytiU+m2G1BIehWxCePPeKb9GXzaudVavxH/N85hK/s+QeacEG1Ost4+L
7hzpCvL+a0zmTmvxew361ciaYzIeuTY60ndEex7++5SyP+uV+CV5Xu9ov0H4
cvc7uN45Q+lHlN91SvgWLx2a8BvUfy5+VxZrEPmLtLtx/zvOG/4TeVDER5t7
ePh95PmRw/DRoYmTK0VOlJVK3tfRdyL/6uQ/kzTP8l/nmNhxa8+9AOEp5JtD
+u+Qye4dkGYK4U+RCehNyJ/Dwg8jT4wcMF2HJyw3zGr6RtIWlyKrEv6R/PMP
C/6bOHA70H7v90rc5h3hlJFb5m/OQ/FZ+f8C8l6MrDwmWKRfEDerXH8O5bUR
/gZpQJ+EzCb8ZdG9/oe90ua2/fekbyHu63I/u3P/O3P//0HvQvsv1BB79X9p
p+TZCvHPE/8F97QT6R9ClqZvLYM8SHhv36G+9AVkrzERw/oT6ldoGtMuK18U
4eOQLUaEz0Feh9OQPdCXKPHPIOsSXkf+pinB9BaDu5UxfXHa5jHaZL2R4XyS
+8n9jU1Hhv/J/85EjhgRfip5qpp4px53/wtp97yJOh3Sh1/kP4aRqX3jv3vw
mHCuTyd83JjwjRzP74mkPaFP/jP9oYaRowkfhbSRvhM5lvB94oWODKeV3Fbu
Ry0yMvxW/ncP0jYyfFbyWv0XmTIyfFjyYj2FbER443L/+hQ39Q2HzT9cNur6
I+uX7P5C68iUadn6cE7oG44WfTvPd7wfkTIt2/+N139ZP+ZhPPNfR8XHQd+H
dtp5Ndp7daSD8CXkuYj8FyAXE563Ltgj34gJR/hC/jvd/RXTEB5rf6WseV1D
kn99ytySvlsvBwnXOoL+9BT96X3603ZTsv91FXmvRi6dEv8N81vOmaQ/hPR3
kP5E4i8i/iTa907CVzkvmy/lWv5krrcE19uF+/9aeyb+f6UzvtQ3EX8jsh7h
R8i/5shwlslddiD/TaYtpvRNf9Cnu6FvOIH09X5QjMbSl+Q+02fc9ObTl9x0
ptefXL/ys0l3yIjwoXmN9+m/t4wIx4hcI1fye/2I8I34nxjtD7g/Xxfsdjkl
5JaQQ07ujFtsU/T68v0QP9vvqd9VsWq3oT4vuBZwXKc+g0hzCe/yxcjAKcFA
lnu2oezPTeP3lJrgcYrL+TJp9hwZPjV51TZoj9+PcdrznUOdBsp1yfztc8Lv
Mc8+QewW5N3R2TNw7+BvPF33FxpjR689vbiddzbGF0UfE3E7nXO6X+gehXNR
bcS1B9evRKxkr+P1BiGf1YejXa72CvOtR9szP9yRvNsjLzjG1ocr+VDkY8If
IAcNCB+8vPDuU7lfJR+7vOyWadnya8qz2ZsyDh4W/jd54OQ2PGpY+F3keZFD
5bBh4bySW0VuuV249q7l+j9TxnjKmoD8Uh9OGLllLUuuGPOZXz4XeV3kdLF8
ryPXywLc9+M1OUP1LLUnc6gFKGtRpA/he8W8rc3ZquetcgzLNfw715pF3ELi
P9QEw1gsYzll5Zb9FJlBuJ//1wQDWW5v62hdp5Qy3Kdzv84+Yd8QE0rbeH1I
9DGYiBxcE4xyMaKqnCfWBI9YXOL7qMNRtfEV0H9A/xP9FfRb0D9Bm3pt68Wd
El/qXO2VeBbvu7fbEczImfT/90cHS1IOeflxxTgW69i9evfvj0A+d5zk//1r
4qOgr8L0xpy1e8YtzqpnWp4jaRcgNmsHvzfXBI9WXNpt2+OfYtjzb8s+ocxP
vIYcoPPTNj3GhRvUM2DPguV4lev1t5asH11Hvudcd1K4Xn/lfiYyVs1GX2ZQ
1mpT0BfnvTyJsedUZCnC19FeW9HX1h4e/qJF6AfthFuRhQmvan8ZHv43eeDk
anDu+T3v20qEzxvLbz/SIReOzfz2hWHh25N3T7zDVYhbGTmf8P7UY6MhfE+Q
A1xjub9O/UbKF1uf+e9b5D+d/OtMCTfmOYTPLbqcsqY3n1yzcnCPQv+2Ptzc
zsffIf8ZpF9jSjDJjxwezk+xypcbE5+OV92vIbyK9jXdw5cob6LjkuOTz9Rn
uxjj/8vaocrZo/0e85XulH8XMnRKOMnlKpczTu44OcflHpcjTq64t0j/5tDw
OcvrLOfeX8MyF5SLT0z3q4eH81Osd/OZX75zec/lgJa7/G/Ouun5VZfvXN7z
Tf2GDw+GtjxHYl7fUcJiYX9JuwwbFD5eeXm/R9Zj7FoX+Y5wN9LNpKzR5FmA
8Hx+79E3GRZdjl7zW47cvXI8yfUkp6HchnICDyH+i/pwBX9KfdcfFo5NuTbl
jHc8dFx8xfNr9I249o/ob6L3RV+tYDuc0xEOSLkgH0HuJtxBOQO51iCkfUre
U99Xx1TH1hX5b5/h4TeU59D58VfDws8oT+PGyO3Dwwe1UZkfdxueNZNrJ/uc
fe9vPvf6cITuWsqSO1FM5LtLXrGS7Wf2t1pkTn3u2/uXz1heYzHNxTaXs1Ws
/j95/iv4rPivhf/WR64dHkzp9cr8+Nth4UuSN2ld5PLh4X+1T+zI9/R/9L93
ke0red+X8mxiMGsxuYjRN6X9/kKmEV6Qd+oQ4o9EFhmXfRf3XxwzHTvlk7l+
YnzY9LWbm/odRtqFSDvftJyZe3Z+JDKH8DL8fzLxJyFLjwvX90NidyJLjAvn
9+HELTwuXOBT+b2MuKuRJsI/Mf5s6/juuQrln0f/WQN9FPrszmCqia2mT7f4
V/Lp3DgxPof6Ig4l3YqkXxUZQfhh0j9G2uOI/745mBbicIjHIdbFJ/w3XduK
sl8ylf9+65czbc/Gta+WG6UamZdwI/JLv5yxe9YuH9D5XH9v8o8k/7eUd3jP
nJd7Pi5/zs7EX0EdvkQfQZ69yD+E/G0t4e+5dmJ89PTVG85/OxLfR/vmlnB3
H8O9HI8sNS42INqCnIv83Jw9dvfab0L+Qq/xfIv8NeTvIPw7/11F3Adc/3Hx
5MQnI/xg2e98Af1X9PvLfvPz6D+j31v2s8dRxouUt3N1+ADdf92N+J2QOYSX
pE7HUbdjB+X5TkN2JLwz0uz+Pnle6heMBLESxEOQK0ZOR7kdf+J6Z+uvSHmP
+KyQdwlfyn+/NoezTO4yMX/F/pUPSZu293okfopl9IsNhLYSHzsG9IxNpraZ
k6hDtedVtelT8okNHBsMH7F8XG+41nuob/jCnmiO7cZo5CLx7qjnVtzLZPK2
TAvmmNhjco6eTHiO5zXE1xPfPC3zb9cmj/QNX5o2H9oNaT+kLYg2QNoNaT+k
bdD8HbET8Zpee1/ubyO+G13571b69428g4tQ90bKb6P8CfxuwvU2RxrGxUao
jbTP94jtkGNgN+0C6zI2ype0DeWNr8v+z9WNaQ/bpTIt+87uPx+I/DU69+n9
bjco1zyW/Oe6R0171lTSp+3bK5f9R/midiT+KvLPJm4A/33VMzZm2po9R/tc
z7tdoax2rvcH+u6ed1p39MktwTbWBklbpEG2KXmbkQ8pr6ElWD7ayGorK6aJ
uCzis4h1MphylhuUd953X3s0fVnfRHpXwpd1y8T40OpLO548H/SLzbm25+9p
j0zcR0i/SsYZx5t1kLpx4e+6e2Ls44z/mTbag3vds0fOH+TMkjvrtXK9SZQ5
p19saLWlfYP4gcS9jPRybct/H/aLz4G+BxORT/vFBllbZPGU5VaS40+uvy6M
twdSl+nUZTrtVct/R/YLxt90wi+T9n7a91DH+MnBvBarWMxisbDlXJV79W3k
r0owxcQWe6Nv+CnF1BMz8JHqYO2JuS/uu/jvYvGLaTJGG5ny/opRKOZfQ3Ww
C8VoFkdaPGmxm8XkFrN4RHlfxTgT6+w9RH5Obay1az603K9jsGPxgv35Lnm/
yJsN4aCVi9b9A/c2nu4bPkN9NPS52L+0n5gw9ej9+wcrRh8C/QYOKM9Xjlu5
bmch3VqCsSbW2ud9w68op6DcgmL8iPUjRpp7E8/2DT/j/LT7QYPyjfRbKceg
XIPLO0a3hJNRbsal0Hu1hENQLkExfsT6kY9w2Nh8c/32ViHfNoTjVq5b1+Ou
vR/rG75FOQrlKpwhRn9LOBblWnTO49xnCLIF4W7cX7NzLc8rvLY+LC3hXJR7
UUwhsYXWaIlNlrZY13lWR/yaxH/fN3yTn6OvRfhHZO6WYMyJNfd83/BJdue/
2Q3hCJYrWM5EuRPFGBdrXM5duXc70Xt4LdroDm2ZkAXGhaNRrkYxjcRSl09y
BO2xOfrglojhLvp7tAQfS2yrhfuHL3IGZTxFWU8OzPfv0M7YtGvLLle4fJkL
j8074bsh3+ai6F+W5y0f5wwxqsr9aWOv3fyxZTyRH7NC/Dvl/ZBPtmVs+Ya2
xAZeP5ETyvusDZ52mqeV780G6L9pN6sfWiWcn3J/thA/P+GneP9nOVcp3+cx
1qlfMN0WaAlfbOPYzAmcG6yP/jPlbanPWiUYYeJ82Sa2jRyicolOLO/fUGRb
9J760LQEU1/cMPHDxNqXD7RubNKYVv7R+rHpM/Yd+UPnHZs5h3MPMePFKV2r
PF/5QGvGps/Z9xxzHXsX5fls3hJMfHHyZ5bn65zcdd2qpb+ehX4m+rLlfTnT
Z4a+eOnfYmCJk7V6eV8O4Pl+1xBOeLnh5VPcnHB/2uS/tN9a/PdRXTAFxRYU
k0scrg3K+3sa+iHobaU/atOqX8/J5fsi3+oyY/MMfBbaPGp3eVaZ78lPfNjY
zHmc+2hDqV3lGWW+dwb6ycQvUd53OUnEYRePXa4SMbzE7VqvvH/HUcdleweT
T2y+17mHavrCo8g8lWDuib3X0S98yJugH8CzPxDZuBJOb7m99+sTvFHtsa/i
27u7Z+SV8GVU6F9de4b/cS/ekXVZK6+H7D0u/BkdxM/dM3yQcmLLjS3GqVin
f7Vkvu68/UPnEvzuhb4f0uk3G9mH8AHlG+T88TfnfsizhHdmTbEh19qPuG/I
fwRltvYOZqbYmW+SZjDXXon0Nzq3Q2rRRyPvNIeDWy7uvfoEL/N/+uz0zJzc
ufmOrbkf7+urjpzZe3b/r3I+7/z1F8r+BnmmOWfunr3/7bNcif/EEVXxqdU+
xHma87WNkfHjwsl0AHn/HB2uppsoY3X0Ydq4E76APC/2DgasWLDaMGjLIAas
WLBn0j8n0l/3KM9DGwBtAVYu9ilygssNLiat2LT6hOobOs05eXM4x+UeFyNX
rNx9rB/3uwGyL+EdkG7UdR5kR8JbOqYyFv6EbEV4U+Rrwt8jW4wLh7pc6mLc
inX7Bc+3B3l3Iu5L2m8z/juEuh2MbFqJTYe2HWLwisW7Hmnm8H6NQr9P+2rP
3Fk7f4Nc4v7kpFzfesi7Jie63Ohi6Iql63rwqJ7xmdS2Wo53ud7FNBbb2HpY
nyrXCOMihnsju2gDQ31/ofytCX/eEY5TuU77Iq8S3o7//yK+C+m3dw7J3OxO
1oO/8fzWZ5z4X0viTfcF+XdqTXvarl9ri9KS9rRdZ3WEQ1wucTGWxVqWD1Wb
qhV65Plf3xxb4N7l+sO5xgyxIGiPKyelntb3N2SbcelH9qf9kD9G5z/j/kC2
HRf+mvmJ694z/K+b+T0ZE7yPbbn+g8iBnu30Cf7xdsjbvXLG5lnbXMzx9i/v
Zue02Ijrd6D/gbbjG6H38oynPF9thrQd2kT/6ErO6DyrfKeU53qpjbq0Owdu
jg2NtjTble+ZGM5iOe+AnFbJeam2ZWIu31TWiz8590eeJrwh5fek/KVJc2wl
GKZimf4LOYbwKZWcJYrJLDazNjna5qxf7H08X9Z+QDsC+f+0EdFWZHdk3sZ8
E/02buUZSSWYSWIhiYmk/dBRztl6B+NVrNcPnG/R9v+mvT6lbkfy3/TewaAW
i/oCnvdlU/MMTqoEY0nsJTGYtG8SQ1YsWTGgtI8So1asWjGdtI96n3seR9ut
z/3f2px79t7FZBWbVcwEcQ7WKePR6Y4BvYO5LfZ2T57nqdrzUL8FeZ7/BzVu
aGo=
"]], Polygon3DBox[CompressedData["
1:eJxEnXWYVsX7h9/tZentBXYX2N5li11YukRBEBCQlJDu7u4GCZGSFgFFQFqQ
7u5GkZQQA6Ukf/fn+5zr+v1xX+/7zJk+cyafmSnUsludru4ul+uOj8vlxe+o
TJerS5jL1RnawgjkifldLv8CLlcAuMOo/GavE897QW8Yg1wx2uUaFuxyjYRy
IS7Xe8gFwYf/vvAW8/zIGwu7XB7+LleDvC5XQ9iCfBQ/zsBZOAfHoWExlyuD
8GYQ3mSog9wv3eV64udybcjucrUp6HK1L+5ylU1zucYR+WnwR6zL1a6Ey7W0
iMt1G7cTSNNY6BPjci3IcrkiAlyuSPiXMB8i70xxuY5g7zB0w44nbrsRdkfo
AF2hO4zl2Vz8aermcjWH/cgP5Ge4y7UQbmL2ELk8+TAtlHSQ3ogkl+tP/KtG
WhtBY/iK9M6Cjwj7Aw+X61fcxiXjDnutidNini2B2dAUuR9pzEdac8Ie6I9c
FS6QB5dhPmbVkV9G8Y7I36pBLlcVeIU8iTD65iE/c7tcJRNcrmWE0ZM4diMd
3aEL9EBuSRy8SL8nBEEr5I7kX0P+N4KOyFuRTxTFDWloDcuJ37fIR4ljFHIh
KAjHkF9iXpk8Lgt+xOM67+gZ5p/xvLnsYf5U+V/I5coibplwHh4Usrz7EmbD
FfLwPFzF/XPs58bdR7g/iv9+lKN7pPc+XAE35EjKxwTKyTSYDoWQE0u6XPHE
fQzyOIgoZu/oc/yfCbOgInJB0hMF0TCEPBsIc0n3Bd5rBBSAOcg7sFs2n8tV
PJ99Jyr3HxB2aeJZFirA+8ipGS5Xi0CeJfI+YCnv4hx+noezUASSIZZ3fxJ/
3+cjXEIYV3kfq8iLKjyrCqVhgfIo1eW6xPPrMB/7f5GOeOKaBEVgDPZGQhni
VRHegz5O2U3H7WncXXQzP+SX8mpSfvu2R0AB5Mek5RHuPkf+Agpjdon0TCeP
ZsBEOIM8kGedoRMMgEFwDbtfku65UJswB+FXTt7LGTgBxyA7JPE+knkf83Az
H6Jwtx27pQi3AlSCncijSUsC6UqEGBiGPJgyHJfX0j0CuQlywWJWN0yBsc77
vU5+xxFWLPgQn2Z84/GUw7LkWxmYRxmKRa5DWA2hETSGT2A8+b+W72I+LIRx
yK/w8xfcvcf3Wj3WvtV+xLEC6ZyK/5OgO3J12EwebULeAOOR3xHOJeIRBqHw
Fnkn8evG/yLkZUnstSN+J+Em39oN1VmEmYMwFpBPx5BHqF4WMVZfqN5IhRS4
gdyU9DRzvi3VHapDKuNvefwvBSWcurgSeVYLPobvKVPLIYzy9xV+/Ey5SIY1
hNGQcHMTbt4C9t0kIA8mXSNgFBzAv10QTZmehb8VyYe+mJckvSF8q50jaE+o
i9+SV51JRzBprsm3O574jYFA5OK4a08etIYo/CqGHMj/k3AazkMAfIif6/B7
Hc/Xwy/FLI1Kq+qT6jAH+SR1Qnf+r+X/KjiOfJ/65AxpTIficA/Zhft00hQP
ieCG/Cdpvk/a78Ey8iI/eXKcsrAdfoJjcALuq3zktzpmONxGPkW9lEi48RAH
p5EXEN+lsAxukbbrsDeSskl9nQBxcAT5Z+J4EzcNyY9PwJ06owTpHYi74TAS
SiF/xPdah/rhY6gKXxPnqphV5n81OEWcn2F2JtzkZaRjLZxF3gOD+d8HCvNs
d7h9J/pe9J0/JA134Armm7GzGqpj7yryHdKSQvzSoBzcRl5GXv1HNr6EF/A1
cgG+w/LkbwZuisLbeOKqeoB0fwTVoBbyGtJ7kHczAb8mwTnkXNQHB2kn6xKH
j2Av6b2MuYvn77C7n99LyMN4NhRGQF/oDzUof5/wDdSD3wl3L/Jy8mwRLIRv
YAW0p/xWpix/UMDqnRTkq8R3kOoU6AcXkG+GmDu5nwO/IJ8lPusp3+tggN43
cgxpqUPZrA059B1E2/vWe58PS+BrKEe7fIR3fRw+p52uiByF3ey4yQN5IQ55
Fd/IWvIwF2k9A1dJbzpxLQQFYZzeGUzl2Qz4QvZU5mE1bjfitihmf8Mt3H6a
YPWj2oPrpKsM8mnsTuP5dJisdhp5EmlZQLqWwdfwueph4liHsGrDeOJcBjme
fN1NPBdhZx5MzLT2Ue3kULhGGJdzW3hqh4rjtli4hb2ffNgHB2En7IB4/PIn
7cEQAknI6wijLeVgTIqFNYUwvqb+GOtJfKhL6sO1WHsfKgPXsLsKvkD2wbwk
ZTYLDhJuNN9vTsrVTJ4PJL6Vsb8Le/t475Ww8x5UBF/czaP8PqS4XYarMBf5
e77DKrxbT+JWiLjkJW7RfF8LKDuz4Dn+/Yt/xflm+1Kv9YdBUAz5Km4/xm0D
SFA6cZvK9zCHMtCc/MxHfs4hfj+RD7tgN+yB7c7/Q3AYjsBeR97t2H2jPjRk
Es5AwusDvSAD2eXksfL6OLjBDdLXmnxbTB5+A7eQS/BOSqtMwMJclFdIJH6f
E79PiF9e4vcl8buJ3fa4bellfsivjZSt/JSda/ALXEeeST6cJJ2nYCt5PQO5
I/5Nxq9JUB7/luFfKO8lJNzadbXlvxB+LG68VD8E2/ek72oH9WIocSkEkbAv
0uqSj7E3CztzoG60vbvSvMMj+Hks3N6tD+98MuXnHs/diMsG8j4Ovom2/rz6
9aOJ3yh+h8IQGCkz+AQ79QijPnwSYmGs1XiGZ8P17cP3yO+TtmvEayFpq0Xa
VpK2hvz+gdldWIF544LWvsXhT6LKt9pg9VeJ827ew48wgDy9j3y+qNWF+XiH
KcS9M2noT1oa8N3Xh5GkbSdy84I25vmXMJ5CM+TDfNezcDsbzqvdR56O/ZzU
4bnhPExTvU697YudnJADfkT+lvj0dMZvGsctR36E+4qUp0qQk/gkplh+Kd/U
l+yncRBya8LeRlxeEo/X0KqgfTf6fn4mztfgK+SVhFONeFUlDlXgm8IWV/W/
SiOXCrd4n+AdJ+NPFhSDs8g/8N4a8v0OTbH39zPfXzWFQ7iLYDF8hPw5z9KJ
V1EopPeK3IWy3wt6wxbyfh10Ztx4Cr+n4e593LWmnzKLtOzHzTS+54lwHjkP
+b+EcGdh3hyzQ5h50daqSWKY6dpGuvJT5wYQd3+YS1pmqi3La22X2rDq8L5T
53xS0MrEHcL+Deoi/0rYuaIsn9+HV3h+gLz/3N/qeNXrC5EPkl8ByEH+9t3t
L2z9ofWk60/S9BCqIP9IfLzpU07Arw8Yc8RRBz0gbhVpFytBHXjo1Iv7+U3n
uynhbvXmR0mWT8qvAVAD+Vun76I2bSV8B/s1/sPtUaiAWz/c1iGva6hthzpQ
G/kk7657NsaVUJT0nkJeS/ySeY8hpHmi+mu829zk82HCqkc+NYADpONX4p0f
f1LwpzX2L+HuFnlVHXezSdsceKcxp8ogbjrns/ZrMvJf4dYPqA9N4W/Fs6DV
QdNhBlRCPqq+GOyBI3AMylGn34Pf4G8oD6uIQ/8wS7/a8pXIu8j/YPVf/e29
7C5s8Vb8m0ITp7wkY/dT6qnmUAD/U5GLYd4Df9rCaszckGNJbwXeV3l4D2KQ
v8fchT+5YT35k418Sif9awlvPQxw6vuZlMOTfGcnYBVOZiEnka9nCesw8f6D
cD7V2BQeEN4fsBazqprfId7fq+8Aa6Ab8jnK2zb83wqPNbZH7s07vkdebqe+
2gbrkO8Txzb4FY9fCRCBf5OIZ33CrAeN9T6SbDxXDDKhJJTOZ3NKGjdnQRq0
0xyTxtHQFbpBe1hJWnw03oZZcA75AuUvmnFFIdhPnLrG2th/NnGZA1M1T4Ac
Td58GmDfpL7NKMnkSUuefwbNoQmyu74b/m8Fd7hMur5UGxNifspvzS+cJx92
4M92eEa+fJdg32E+5HbIbfPad9qO+PzMd3EJ1hC/9sghpMUf8kAwhEJP6hI/
7OSBdOxkUcbdCG8TbIbv4UWwxVvxz0s5zqM5IuSTuP+MstkCGsAu5DbQQubw
Ffk5H5pi9w5u72mehryor7khGIk8TmMmzIKiLF+Vv7PhSziD3BF/Ojjflr6x
VuBFXh1y+qx+4IH8LXFfQpk4QVrPwirkSvCKdL2Gl1AB+Tik0da1wG5zOIb8
WYzVpVTJLj5zV3PkDfi70ckH5YdL4WBps6e1mRtw9yl5dSzT0ryEdC7VPCFy
VZ7lIQ55ITd8oH5iUatrxsI+lXX1XWhDhpFvP+P+kt4H8k3ee1XCqk6Z6EZk
epW0uYF5TrvajLyKQf5NdSzlurvac8p9wUwbb/aAnvBDXht73uD9ViG+H8BE
4lETd+3xuxfuuqodgnbIhXj2FXk0X/M+UBj5SozNAS2FxXA5xtoltU/TYQZM
gguE/SW/kzVXAxeRyxDvtprnUh8LmpG2Q5TVL/3teyhEGlJJXwHq06V8Q8W9
Xa7wONKssQd584a4v1IaKMuHsdOHdIQQryAoqn4j9gpG2fhDbVR9zaMi9yAt
o0nTSBgBPZFrEqcPoarGaFBLqC+q9oh8qQyTkXsR1gbC3JjX6qOuau9IS2Vn
Hu0V+CN7E58Y4nwY911w9wFxyYF5IZ7HwA3IJXfkwWDyoAvp7yzIg3kwKtz6
UhoDKl/CsJuXd5gbgiAUeRbmncJtvrNzAXN7gXzZS1pf57X8uYg8BHk4jIAd
mG2FArjPjz8FINjxLy+8DLE5mPf07WRaOvvgri908rf6dwHv6Di/h2C05jjV
BySNh0hrFGkuDB2VV9jv7W/u5Y/y7RPi2JY4t4FA4lwDuTv5P5TwhsEQ6Ibs
yXf0E3m+FdbiV2Py7wS/6XyXRb3s+9R3OsUpU1NhHIzVXBzf2HhHlvku5AOE
8wnh14V1xPlIcZvD0FzGLVhF2WiEvEL9PspxTXgL36m/RBt1CjvZYQ1p/464
ePJdraHOWwut9K2QB21x/xg7/8Im/GuBXJ3+yyTyozbx/QRyU377YN4giPCh
EfRDbkRe/8J7uAa3oaHWKqAwce9PWP3wP4J4/EefaRxhjtc8k/qNmIdpjYE6
ogOcJ71/Zlqbf0HzEBrzOO3/U9yWJH+L6x3jthNu6/G9aoqJbHExxHHVj7Ex
kurh36CAv42hBpJnW7CUF4JhAPJj/OtDPPpCWfzrgH/BfINXXDY+PYFfEeRV
CnngSR4Mp3yMgIZqQ7AfTzwSNBcBGcgJ2PuH/G6OnWZQA3ufgDtuPWC05k1i
bQ7qV+IVCmEa1yH3Jw9rk5dT6ZMsCLQ8/Y84xvEeWmKnBbxAzoy28PQN6ltM
R26F3a3Y2wY/yj5ymubm1f6StibB1r/TN6hv5RZchfp6P3y77cn3dtBLc8NF
bE51A88f4/6pxorIzwj/ud4BFIFkJ/5Kx1W4DCHgQbl0kdbB6heqfSL/mqne
Rc6FeU5oGmvz9xXxexRxGw6VkPtSNv3z2nvqR1qzp9h71/v/2RkDq19eQ/HB
7T9qv4jnR6oL8HMM9eZYmAQFkH1oZ+76W7us9vm34tbv+gb/3SFbXuuXzcX9
KcrpQ7hCPIpQTntTDgfCIBisef18Nt+ob+OxM++ToP4ocR7F71D4Cf++SjB3
ct8L1uDnWsigbISR9lXkw2poS/wGE3YIbgJhGwxCroPdfLjLDwGan0Neor55
mK2dTNU8G3Jz4uyhOWB9W0k27p5P2Hs0JtLcPX7lIv8WkkeLYLHGLuTzA6gY
a32FC8TjHHRDLpdpaw1ac/gCKmjMzrfwn+Y6sdMDO1V4lzPxZ0GI+Su/bsIP
9PGb5qQOgIawtqD1L9TP2E8duQ+aas6S9AQ66VL6wjW/SDifko4W0ErjfuTm
vKv1lOM/yNM//a08P9caIeksTNyioCn2XmBWCrM45N+hifwinruI8x6YTbwb
IX9NXJfBNyozxPdxsL1nve8HcB+uIrclvQtx1w93H+Ouor59KpXbcAtuQqqg
vtrNt7KQdE2BAcWsj6R+dTtoCYc1hs2wORuV3Qak4W5xm/fr7PT3esI3YTaX
/RAeOeVL5exEpj2XvU5wUu0b8VvgsrWSw+RnOPHrr7UY4rAAthOnZOSoWOvf
9CAdPTUWRe6H+VDqpiFai8HukGIWp5+d72sx+V0beT/h1FYfR+sscFDjdcJ9
jD/9Nf9DOd5HWfuDeiJ/Xiu/g52ydge723D7lLx8BrcIo3iW/T+E+Wl4hJ3D
1LsTeQcT4BB13kLkPzA/y/Ormmd02oC9+S1d8+F7lSPk3sT/J/7vgPXQB/k/
1e+kYRjkdtY+N2psRvtXRGtvsAnZS3Wn1sPhsuYakQcSTpUwGzNo7LAB+Ql+
VCZe74Mv9p4ie1Cm+zO2HgiVGNe6IZ8nPluJw4+wGy4gb1IfCX82Ui4nwhDk
1eDulP0gjTEzLb1q6/7AzhTyLot8mkSeLipg5eoQfpVGzkU4tQmvhuZetCat
eSCer4HVcAZ7Z2F8McsX5U8vGIU8qIj1qzopr7BTHHk9+UB2uHidrqL8WYc8
gHojH+8xCHpQvhsg7yLtI5y6WXX0buR3vOeu/rYenUJ5eVvY5mMH83+D+uNQ
VGt8WkvD/0Q3ewd6FzPxYzpM03oTfp2CM/AF8gz4Es4iXyJfZpMvc+A6eRNI
//Ip77ez04fzUpnl/a6OsbWzQlBQay8x9qyv018rTpw8kVdh7s5zD8gO3yPP
duY0Nbd5njAvgA/mfxHm3/AAPJDrxdOP0pwj5CDfZ1L2B5K3K8nP72A2DEL+
l/i19be8UR5dI37+lK1/8f+Jyo/W1ZDL4b4ubcBO+lG74TnfUzBh5KJM5YRN
kbzHZFu/vIibn+EX8NA8IfG5ozEK4S2C32NsHaUQ76wwhOe1NZX+vLsAp03p
jlwf+R1sIW4/Qkn8zqK8RTIQrJWNPhPhbiHc6sR5a6bNEWiuoAT8hJxJOTpJ
2bkMac7andYSAjRnq3nhYFtPqYt54QKmszLJ0QP4C/f38OcGFHX8W5CLOOSm
3oZiMBfZHfcX8CdYY3BwISdqbZIwgiCns94TTp86G/nmq/zTmJb6bx/50IJ8
aQxNYK/maDIs75SHb0ivL9/WRcr+R+R9TbinfrnWIXJZHIo765VfInfg/a0g
71ZqPhBaFba8VD0XCr3yWL6eI31lKDel4U/VD4TxhjDKEWYJCCS+n6VYW/GT
6gnNHWgdDPlJYdOHidY4N8D6dUWKWf2tOm+P8rqY1SWNNCcK8eTfFuTXkI/n
P8I6SMJezzz27QY7/dsueUy/Q3oeWnv4inTNgYOxNkauCiHk4X7kZL6vUkWs
vtntxE9rsd9I34H8/NPN1moTMP+O52shF/xHPHbh/h+tFUVYub6EP9loK3q4
TN9ll9p83lERwihWxOqg77UGjF+/Yu993FaHKfhTC3u9MB9M+dmW3/JM7arW
jlXuckl/gfwsRz4vI7+8pT+jsQ7pXYG8Dv/8iUNeWELl9kOqze9rnl9rn1oL
D0NeiX8B2AmC77C3AXt1KVeNkRvBEfKlDnJx4l7WmZesC8VUb2TZWFTjz3l8
U98S5+ph1p9R3a46/j3kNM1P0h/5gPqrisZZuIsg7LoBtg6o9cBw5L+K2PzW
v04a8pO+mvyO13otTIRayEMIv6/aPhgMQ6E18fmNvLqr8TXZ1Aq5IuYVoJLq
eiiR39ZxtZ47nrAraLzId/6IeNckXjtDbD6uOPHtL50K/k+GidAP+WCYjT81
PtXcxyHkC6rbKRPeWueQfkuM6a187qxvS29sJpxT/xE3o+EyYQVQBiaQZ9VJ
01PNdTrp9SE+Rcj3K7yLq7CL97G6sM2LaA7gueb/kNfAx8oPeKG5C+RP8TOL
spqA++O4/Qm32/NaX1x9AfUJfkTORRjVsLOBd/uQ8ubP+40lfv1IZ1/Ne/Cu
YpB/J19Ciet2zPpgloVZHPFPhtR81kdtAqH41wX/buLfLWiEf6spV20w6wAB
mBXEzAf3B0NMf2MClEX+grLejDgMIr4DYIbm7zTvy/vpAam8o2LkS2iUzRlq
Lk1zaprH/47ykpMyv1zjL+SMFMsb5WcNqJnX8k66fdmw46f20t90/xKJf+F8
1jdJgKR8pjMo3cGhsJ16bAe8IY4FeH/R0MPpd17CfAF2voJ56jsFWXuWxf90
+DPY2rt91Ls/8f8Fz/+D/cjuxLMbceigOJMeN9XH6hs6YxGNSbLLLeF8nM/W
BgfDHvWfydP31KdVX07tOHI5p33SnLZ0wspDgWibu9Qc5nP8C4o2/SbpZUmX
sD1sy7Qy8zKv6Ti8zWtlqjzfZjx+FyWcUvktjCFOv/5z6SeS311hA3ZiKe9x
KvsEVzPG0qn0boaN8Az5KfzA//WwDf5BbkJb25F2NpN+xDPa2qaUn9v8VsHs
Q625Yn4T+ZLmpVQ/kE9VyKfSKbb+oHUIP+KQDe4R70aU+yKU+zfIAylDKyj3
G0lfJOmNhh8pw34lbc2xseyDt7+tSWr+R/NAKh9b1Q4RRl7y6650o6A45EE+
QPraktZ20MbRvVxWzHQ+tO7ThHCXEO5S3nFysLnPJj0L8rOy9LbCrT+ofuFD
tUv0c17R33gNy0nr6GT7rvR9xUARSIGc+JGqdXy4I10P5DKkbRzfz3hHH0r6
OYpLXeJwmm8iPtn0UHoTxzG8m9bEt6XTF5CumnQQ8zq6HdJnrUedeJp2sTft
ZENHR1PzKgUpP60Is12wzeccYQw1lzDmwWI4hjyziPX5j+HnUfgSuRB04/8/
8C98iDwau7U9LI6feti8hNqmpY5f85z5kNWUDR86y2thAXm0RHVzrOWv1tP+
hbP4VxD5Hw8bhz105t2zcP+X7MEDyJT/+LEdv4IhEJYg38J9P/K8B/zly/M4
6lHMnjt6hKOhJvJ7cJP/N+CW2hHkLVoHJw4v1eZDbeT6MBGzCeGmsybdtffh
XH4bA92FysjlIVNtJ1xR24R8HTeVtZZEfnSCP9WGY37faa+yoGoR63dKVywB
yiGnUJ7Laj0U+Xh+65OWQV5M+vKSzgD4CRYhJ1EeXuNvH8LpDbXJz2LJNq97
APkgdMKsDXzP/+AIm5s5j39n+C3rQ5jwHpxF3sz3FEXZ/I8y8VJ9X/w6kmnj
/DzEw4W7SM2DE7YGPh9nt3HDIOQz7jbfo3mf5XDC3foeyxx5lRP+QOxWd8Z5
b2BAvI0/qvH/Nbxz/NudafqaT+Al8SpAuL8VM/2YZwKz/Jht1zsnDzbxfrbA
dOTGuG+BP/45LM+GIQeSllek6TVcxv1fuPclTrfgBlwDd2hAXg3l1y3C5kLP
4V9ass3nqSzrO2kSa2Xotvq6hLlTul/Itfk2c9HmVcFuGdw0IX6/8L8O+Vsb
PoGfI2xuQHMEFzT+Jx75sDeV+smN7/iK02Ztx9wTPwOdvugalRnkRqSlPmnz
Il3eMBR5AuYDicNw8mEYjEMeSrs8mQq8nhNmkeI2h7JZY3eYiJ0PCfc1r/J3
+BPewFsNS/h+NuHuJ9gOscie1DPPHb08L6df9DbD1pvXaC2F+P7KN/0Pz900
8IYrxOlyAdO/OuroHrXB3hPs1dF8gDPPJ33pT7TOC3OduTnpBddDzoA8/M8G
PlBUeht815WJUyWII36N4mxebzLPJ8HH2PmDMJaQB+E8vwUVsVuCPAjm2Tbi
+1OI9X9CkBsS3Q+lmwgfa4yFHJ5kevbSET8HkchbeT9ZPC/p9r+pX9cn0u1M
5Jvi+Sk4Dfmx55Nq/si/j8AX+QX2yqjdDrE53WTs7cB9DZ7Xgk/xr2WMmTVA
rgefwE7kZs6+AO0PaAiN3GwdQ+sZWvPrAl74t5lwtqlvCQWJoFdx03X5ytEd
bICdv8iXXLiPhijpbTr6PLewP53y8gV8Sn7dUJ2Nf5Pwaxx46XvAv82ae3bM
9OxH5DjK1fL8ptMv3f6yJW2cLD35OdAIsyzMGvNbDDvtKaPt4FPkydCT/z3C
bU5Ic0PXCetz4jEFahGXa8jx+Lc4v+kuSYfpPfz7jviNIQ7riMMG+F4yZSGW
uj8BWuG2CfIg7eHAr6rIF/ErqbitsSaTJ5lQLsnWYG9iLwV3yTAad8Mx+xA/
P8DvmlALqqeaPn0N+Ejr8c6aqvrQ0lPuB9WSrI/9Bc9bEb82qofhS2RvyuFk
4jEOxmpfjHR1Sc8ljQ1gBPFMIGwXftTUnAD++UEx5JfhNs/Zw/HvufSccH8B
f/whEEoit8fuGdychnPQDvkH0jYcv4fCOcJJIA8uqszQZ9wiXTWtW0u3gjg+
hX/VZkEmvML+Vtxtl3vCeIPcnvb8MH2cg/AFfbt2yF+R5tfE/UfMRmPWGrN/
cP/I8Ut+PpH+L3H5EH+qKN7k9RXkB5jfgtvwEH5X3mJeETt5sJMbLiMXwfw+
/AY3Vfb07ikbi4jbAnhA3FJJW1vCniYdP+JyCNog9+PdXXQ3XYqS0uskvnOg
EHXoGOyMg8aOvQvYCXe3dWqtV4fyex7Owknwh1LYXYmbAX42Z/oZcnfs7uWZ
r7vpYkgnoyLmXjw/6Wd6Yh2RO8AJR3/XAyog58T+PtgPhyG35veJW6ucxIV3
XQB+Rb6O+WXlI/wKN5RnlKFOBU1/bjvtQ2/pEjr5qXxNhGh3S19LwmsBBeMt
/dfJ10jy9ze4q7xOt7qyAmVpMO+zfpzVpRNob/pAb7hMGJfAD7vncbMZO1vg
M+qb1eorSicTe62w04Rw/sZ9X+xlkV+lIR/ukjE/wv9jMIv4FEHOjZvs4Aef
4rap9mJBkNPXC4W2yMWIX3Hid5zykQ3m4/980hKCH0H49TN0IYws7JXH3i/Y
yQ+LsXcKnvH/Y8zfg6PIv0Ep4jdBaVAZRr4BjbDXAArx7Ffk2vh3LtL0z3oR
75ZZVk+o3vkMey19rB4pir1A7C1GXgY7MdsNK/kfinlwpJmVLG5xuIt5jOxi
loFZKmYHkT1gHmZ7IAazwurbUs5nIo8iL0bDRLhBnvwKf/GOn8MzKO9uusvD
KIN/8/vC3da5RiCPJG8inPHYLdjFNxRdxPokp/LZWqnWTKdqbKA1JpgF06Al
7mfwOxmmqI5DXsHvAlikb9PN9jw8T7K+mvSaZ2sOD/+KFLE2Qfuopjpmv2u+
F3dLYSX8gbyV3/WwUfUP8hsoUcT6Lhthi9MfUtwUx+lwBTvXYDv/d8BPsMXd
2ijtT5roxFlxv4w83nEn95/DBNnV9+thddAduUe+q+/QaVfVvup707qV5g36
wTnS6U979DO/x5z9hbMw/wV5C+XjC0fH5hdnnr89fn6DH8vcbR2uTarpBmg9
6JbGiaQrAXtx/I4knf3zm95ALPKLTJuXVL/QQ+OlkjYu6665MmgFBZGbxtt3
ou+lCN/iGrnVHhzCWwub4CXyt/x+5+S78v9ryEEaPdXmQ06N3+Ctu8kyV1tY
xd32jGRHzgYe8CFyAuWqJ9/FHb6Hu3H2fXg57t+p/eO/D1SmjHek3H2L3aVQ
AneL+I4+It4f8G0Vh76YVYGC/L/tZ3rQPZFnYu9v/N7PN7kVEjEbnWpxUFz8
YAzy9075UTlSH2G1yhLfzSLcNCXM9hCL2/eJS3fisi6b1eclMUvD//l8Z834
/u7SpjSmP39fe0bz21gvB/lZmLyPKGL71bpCF4hEzg5x9NtioAhmfirz9Nei
NL+T3/aXnNeYRmPO/Lb/55zWipGrEJdBxOUn4rEFthPmLNI7kPDHRlqbW574
VcPe98hufta2VHTant3uti6cRPtWHHfTpE8XZmv0pwkzr+bBee/pbrYultvR
KUnmPV2mP3kau6/pM6xH3uxFuSMP+sMA+BG5uua+AokXNKFPu5swmvK7A3kj
bHDMBxHfKcTvLPE9A268143Sr8GfOvAxbED+ET7ROAXqwmbk3xP4tp11rezw
ELkd760Kz9+HVdgJJ/2lSdsY4joE9tFX8lafjrD9icMFuAgtkZeRL595mL7K
U74FN9x+wPuYjt+Dgqi/YTz2ZnhbH3gmnCCtp+Col/VD1R+dCseRz5E3r0lb
N/I9Wt8ZeToK9+3wZwx+joKRyE2KW92qea/W2O2Eu2Hky1zM7pEnT+jLLued
N9H4iHK2H5J5lql5V+wV5f8JzI6pTcHev5iPxO/WhNMR+vIurvJOh/NuYylb
iZATe9s0x09cG0ND2Ip8CDrxvzN0hAPIX5MHe4nDHiCKrkXI76CYs468GT7I
MrPimJWBslpj1Pq89i262R7Wec6eUTfMU5FT3Gyc5NLaBOVji/Yuq/52zNan
/G+5wyV15A9gHXL2ErYHcRTyaOkkYeZVwvZWa4/1ODiI2X24WsDGlhpj/pFi
/lVx2TiqqsamhDFY/RVnDHHUWeuQrv17bjbWex/7P+BuPhG56mZtx1n4qpj1
n49RpvbwPeyHFch7ya+2+NUO2sAe5J789oDesJYw1oEX3+FB6pcD8B11yDjp
oGneTnO/sFL7oZKsv6R+Uy7IAZuQd8EL/mdAOuxEXkWcFsIirek6e+jyq96k
TNwm3HtQINL2WJ6RPjNEOuvFXxBu9oK2nq45l08oq6O05oX9l5S//yA3ZnEa
9xD3AaTpPZ43ozwnUX4/lM6/vkO+o0Tkujxbi53qhPkhXFUdSP21E3bAfulV
wdfYyeJ5CW/TBV2i8QbuXdJFx7+qEJ9odarq1uakpTU0Jb0NKW9t+N8WHjp9
+YOYzdMcBn6FYac58VuEnIFcFFJgfoTNjTQknYGkOQAaIhcjbe1I2xyef5xs
bntQnzzPY3vgm8DvpCNvnO0DqwuTsfsRdg+SllNwOr/pHxyGnJSZIbjZRaW5
29GDkl5BmNZjCtuzR/hXAHurCtsazkda48JOOmXrgNYeIVXzhcg5sNe/sOlF
aT27H/bWkp7v4Fv4Q2s5WmfB3k+FbY+N9vJpT98M6JnX9oVegk3IU4l7Aenf
Kq9U/iPsHALtxx8BR/luJhPuP9htzHsI5Z3kh/REW5vd4fSvNE8kHZsRGvfj
T1niUBqGSj8Q3DErh1wBRiHPSrY8b0D+T6WuS4q3deCtzhpupPolmofF7n+4
eQHPnDI3DrcbKJPZcZcDgnDbD/MnPE+CWOit9SbM31BmV6j8w23yuRfmf/L8
L/jbsVcF/8bwm404+kI23u1b0tuP9GaS1gwoSXqbUn9GUI/Gw2DkAxrv43aC
wsKdP2RXP4PyVxWzPJ74G2vzeu2QrxNeGARDJ+QauP2S3xjcRUOAdEixf9+Z
s86AXsilVLdrHzPmf0I/zCpg9pnmG/HrCrzGrD5l9yL/L0B7ngXzLbTk9zKy
v3RUHfMSpGMEaZoMDUjHTtIxhN8Y0hUNcU761qZYvaf5rkawRfU9aWsRY/NP
VZy6eAh1Rz8YAENhGNzA/DzPT1N+Tqn+Rb6usy0wOwAb4NcCppum/SFPoWeS
6a51cNYptF7RETrBAs2nUR9uhi3YbYG8Kct0sabAQmQP8rkhcQuwqsP1J/4v
453/R97sJe1jvW1eJ4l8HplpenVav9yF2xy47cjvz/h9CS5AB+QR5Olc3MyB
ZNz1In738PsCXIT78EBze/h3GTe/QmeNY7A3nt8viO+0aNufPzbJ9tZrL7/O
ArlF/KbxzewjDDfqL29Id9rz6dhdFm06ji213qy5Tuy5Yyen5oaJS3/CmJFk
+wEHhdn+0i80J8+zFsQ3wsfmM+she1BeVuPXGlgtPUHsbcyyNUXtPfwS2Y08
OEO87sIdOEf8zkIJ3MZTbk5T9i5Jd4781PS+mlScunJCLpfpyUifJV06LfiX
Hf828Ps+lsqDG+brkL3w7xzxOK+1JO1lxKyC0xZ/oLYWKoIn7W8lfjNM3eF/
7bQvaXnDu9yhNhVKI1dz5k7VTqu9ruxm8ctws75JaaDL4SpI3q4nPzb72Hx1
FPJm8iBvPtsXs87Z47SYMvQM+0/1jknkIsoQn4SLquR//R71f7QtZCn2p2vP
Xpjt0VuMzCtxRZmqjut37D2ErUm2F+kTKCh9FWS63NpW/j/d7NyO3lkNwvVx
2dk3ns5a6l/k9bfS6yH/d6muIL0H8bMSzytLrxsOIcfGWZ9N/bQ12H+KO5Ln
Ku70m5SHVLeu76RTp3KLm3uwATlJcwsE/JL8fAdFIu3bl//aF1PU6fs0k54d
48NckAc+Q55Cmcypeg/Kq/4iAwLjrD675W19jipxtm4wlfcwBcbCI+STpG+C
xtXwCnk58nMiPEt9YjJ8Fx/x10R2HM+nO3oVWkt4id004lM4yvbEaN/pkQTb
T5hGxo50s3MGdN5Adp134uhwfgxPi9hYU2PODfSZtmkeK87mcTSf89rXXvRe
9beIz3z18cDPzXTkfMibCeTVRPgcfJFvan+gUx/sgWvIAdL3cerF/hCIPILf
gTDIzeI4CkIwH+5m9Yj8CEo1XfuhTn16UPUE/j0hnz8nbnPgG+I2hnzOC7OJ
017s7HPC/TnF6tfLLtPXl9sj2OmMX12gNxxF3u8y/xU/xXOdy+z14n9PN/Nz
Toz5pzjI/g+q95BTSLMXaX/Lu93NbxpyGcw/JH9nktcneB9XEpyzIdxtn/tx
51yIFbwPr2DTDfsbXvE+loTbeReaB9LZRTrDyF1r4fg93sfy2xN5Lulur7l6
3k+yxonIi2E8Zh8hV4fLyHXAx8fm+jQm0tioheb1kT/A7vswUX4R51JaV+dj
7i5dzkSbZ9R8Y3m4hJ3PyeNrmF8LNn08fdhXkS+Qvp2kswxpKA9emE3F/sf4
nRe3/nAE+XmWncmSor3N1LtrkbPz/X9OmAMxHwRuxO9QuJ0ZoDk47WnV3lYX
5r143hvGYN8Pd5X4PpqTpln4f8HX5k81n9Fbc+jwOM7mO7Q2No/wvsbtUu0x
dHTXHjv1q/bCaE/ME9zXiLZzMd4k2p6zCPx/wLu9q7Gz2hDNhypt+D+FMGfA
z3E2X6v1Za2bts5uc7dvNS7B3mT6ZVOcft3weFtz15xsS+x8ityDeiqSeioe
/oE+WuuF5/x/pf4MDEbuQtjL8O8b+A66Ip8mjCT+x0Fb4jIbuYfGQNrnC6my
h9xa4xx+r/lafn2m/cAR1ke+62XnwvSMsD5hNP8Lw33ohpyG/UzIgF647w5h
5HNJ5GLQB/kvvsmm8Fj1LfTHXb7ilrbfnX64wlKY+6iPs/P/rJf129R/i8Rt
Xi/rF7Z1+msNFY7mu6GA1hd8TYcqF3ZyQGvp6GHvMGnOzfNcUAM7U5Dr8huM
HAQBUMvJg/n8XwALta6BnJ/fkGxmtx52GkAg/0OzWdifINfxtbn6C07+BTjr
Lnkw+5v/MRCnso5cmN8H8BB+h2iNUzG/45gXdubCi6XbmslYaKW5dNKxW+05
z/+D4jAe+SW/z+Cp5v8hE8pRZg5Tnvb7WZ9effuWqhP4Pwe+ghbIpaUvRJm9
rLU7Z32rDFzl/xU4ByUibTzYh/zsC5mU88V6R/A98mrogNl+zYFgd4V0c7LZ
3KPmICP4LQyFFCZxawYe/H/H71soC+XhMO674U9XaO/4t1P7fPi/nDBWqh+D
/BMs4P9CaKJ1swjL43vOGku8k9/34SbcgIIQ7rwXvR+V818gCDyJiy9kg8rI
leBYhM099IIK5MERjd0x98aOVzaLv+JcAdz4757N/JFbzbtV05wW8ZvhZfNy
zTGP5HlBCIcmvpbPQfgdDNegbKStnwT42JpjuUhbX3nO/x3Y3655DPgTeSh1
6ELa+1lQn7Z/CPI0vUv8PpfN5gWnIrvz3s+r7oPPtd7Ed+QXZ/2PHDCWuFVN
tvUxrZO9U72BvQ8Jd7TSTPwretkYdSTyDJ5dVl1CXfgLvzPVJyRO+2Cv+gPE
7Sl0pa2oJl3QYNuj8SrRxrpSenMDL8e/+9hdjbs18L3en4+Vva/5vwyW+lo5
fAjrfa0Psk7fCfIBwo4mzjEQpbKOvDTS6qIU+AuWRNo89388zyW9mHibB38P
s0A/Ow9E54IsKGGdN813b/G19SutYy3g/0pYrnLkfCf5sZ+Iu7/hL/hA4+Y0
S4fSM4z8HVvC7MvdCvVB4DpyJexexM0lP9PXl96+/G9LXNupvslmboaQNyXJ
9zJeNhcwTPUY/sbyPw5mIddMtvmIUM3vYq8hTEOupTwgrFgfW/fSOtwR4leQ
//FQBbkU73cC4UyHqXAE870+9it5mq/1nw4hR5MvzYjXYuS5qp/S7b/Mmmez
uf6Fqhe1zueM1Ssm2/lhMzRvhFkDyKf5X2d+w0N9Z8zeelnarpK2GvhTEybi
1xLkZlkW3myVBacPF0PYrbUuqHerepAwh/A7Akb62lhFY5aNMBx5GAxSmdE4
ED8CCTcIJuobJY4/+Np5Fzr3oiOs8rU1Fq09ylzP36ovif38uIvUONFJh+Kk
uM2CU/g/KM7ipLi1gE9hvpPHdfhfF2pns/wty3vfx/vf62f6jP7IC/GzN/nR
1cvm4hZE2Pccq/M/YLGffdtvw03vd5iH7SWVLpV0oqQblRtyag+7dKSIkw9h
+UI2X9NFc+PXBe6QjpzhY+d+pON3mvofcAw5TG2Vr+kG1MBONfXdpTdCeDOl
awHZVTdnWbsmnRCt0WqtVnojozxsv2pysu3drJZua06ZcFrnAlH+ckTY3rpF
sABya84ctx09bC10DnyjvYOktztmHaA9vAi3tlvtdU2F62P6Hnuw+5uHzfuk
45cvYXyFeRtf6/e0gjk+tga5z8POpCiebHvS1W+u7WvtuNpzjVf0q/5FI18b
u8jsWprljfKjMekdVsL0Jt6pfw/lfUyvQjoo9X2tv6C4Kn45fW0+WjoZ0s14
H77VHkDishMiHZ0ib34nIM+AaVpzQ45w2i+1Y9J1qwsdyMv2WvfwszZ9Hozj
/yQ/609uR96WzZ638jO9hK+c9v9TzU9Qzg7BQWgaYWdJTcTOBNiJnTekr3mE
9cF8NPcOzZBHOvvXpJehNb01MJz/w/zsmeQf4EPsrlf7B5u0toXcIt3sbuL5
S/yfR/6t4n2MJ52TtXYZYXpQDdW/wM1+L9tLoT0Vq3AzCLeDYQiszmY6/9p7
esHRMUzWd0oeFfA1nQLpFtT3sXwLhRBf0xNUHtbC7iNP0+Xf4MSvufRMoA3M
xP8vspneSQ/k7n7Wr5FeitYPlU/jYayfrSU2wP1L/PoPduHfJ5oThy1etra3
HWorDOnA+FlalKbSyAv5Jv7m/xP412m3mvpaf6ml6hjiO0N1eoSd23HMw3RQ
dc5AWdWnhOkJ7lAGuSt+Xsf/MOG0b619bTzYDhbg1zzYSvlbyu8iCFA9QN6X
o/yOJK5lqYNWR9ha4MoIk0doPhpWKG18+26epjtcIsL2c7bBbTlve14n2c6o
KKV+hZ9NBr3ltyTU15k/OpPVz9KstEv/Yivx2AIbfEwXQ3MrWrc7APt8bO7l
d8YGk72sj6X1Eq2bqO5MQy7pbWsjWiP5SmVa63EaU3jZGsYSwksg3Phw68dc
zGY6Xur7qr2+7vS75mJvASxUfYWdk9msXX3i9G/+hZrIbUnvWPyeBGv0nZJX
T/C7LXnSGbo4emQfYvcPH+u7PYKqyP/o+8T/FwWwA3+qP8Wzz3ytv/ip2mHk
7/G3MukYTxgTvWx99h8/O79L53jp7K1UKID5VsLbIp09yKc+u9Lja33s0mrr
kCfx3VXl/4cwGLllnI0bUn1NP68TZu2hmK+NJfRMckeIUP8bvzfCJghH/o4y
9LOH6R5oYm4n33OS5tH5fx1+gRS9H7jJ/189bJ+OvtUyvtaHrgh98b+3j/W9
KzltU1E4jjzAx+yof60++kDk0Ag7r2cFrIQQ5MLkw324BzchHHrwLTx0zPX8
/XTLM+XdKz/rG+rsskKRVu7Ud1B/ITLSviGd/aUzwHSuXT7nV7LOjJPehM66
K0XYb4hDEhSBkhGmS/Enzx752dmh0rU4pbEX/+f5mU6WdLM0rtBYQu+pP+H2
g1UJtsdEe020zvW39vSqDKnOc8bsix1d/LVOHay6WHoWfcn/c+6mM34ceiP3
TzV9tiy+nbcx5KNjVhCzGHfT9Rso3Uu9O0enTTqDQ6R7xPdVo6CdV32FOFeO
tzCkq1dMehBQPcvOdNPZeled/m015NqpptcpvRbpvYxFLk2dUDbWzjEr6oQx
GO65my7Qr05cBqWajpB07KRrNyDVzudbQxhrYXV2O79PuvKeOUxnu05205vX
Xmd3ZLccpgcvffiO0okpaGdx54Cu2odHWjxymN26mDWIt0lg7SfQvoIusDjV
+iHdnL7Hs3Drp1QgHeGxdk6E9mZoH4t0H/Rc/ZR2HqYb4V7cdEtVF3SF5ZiV
wW22WDvL8o3mYDEri1kOzJoj+0sHGLNvYZW76RH197A9OjKTDr106ROgE/LW
VDt3RufPlIahqbbfXvWy9ndojWxvqn2bF53vMdX5duX2D3fTJT3pYfvfdO70
KTfeCWXlPlTNsrOnpYugs7X1THY0XyC92BzqR/rYfIL0FKSL8EDrWlpTQC4l
HTk32wv6FEoiVyW9VWLt3KeHTvy0f+Et7+E/qOKsqasfp7iqHrnrYf28TTpf
xd10NaUzJt3sQLnlGzhI2TsK5eNtrVNrnjpz/TxUQM5W3L5PfaeRsC/VznTX
+dDjIIU27Qpmf2k+jTStoO79Bv5E3oj5WqeuCVT/Brmr9MLdrb+mfpv0pNco
r91NV0563NL1XgvznX5uHlhRzMr4L+5Wn6pelT7cHzxbTHhLoQPh/46cHfP6
bqa3rj3Kfsgd4u2MzgpwzElvP9KxKoeVaZVt7QN6Qf3+NfnSGzt9IBbzjTz/
EbY6axNao5Bu6GbYBOscPVGdf6q2UO3fcY2rkUNhe6Sd99kIs1/xv368fT/6
7nTWgM4hzV3Q9rzre9R3maeg7VNSvPSd1cNsDXLZdOs/qR8VH299wr64H6D+
QDbT2ZDuhvYjpVD2ksNN7076qqWKUodojzL15V9as+PdPk6zOW7NdfeFvWk2
dtR47Qz5edjH1gekO7IKszc+1n+XbslzzM/72JzDUmd8qXmAez42P/Gjr80T
vMbsto/NQ6xzxojdFKeclA0Igq7I7SAn/3NBDmibw/qT0mf2ID/ekMZJ6TY3
XJB0RYbb/iPNE2udROsUPZ11EK117KHMzCTfvoD3cN+K9I7QOeD4E5/N5nmz
x9u5EhWxUwZKZ7ew9I50Rqx/Qct7vQPpFei96P1o34t0Op5H2h7Dnn6mgyVd
rA20Px/F2BnDGrdq/Po1bksjH/CzucZ2Klfal055fQbrtH5MviwtYftotJ9m
DRxPt3sPFhDGVzA7u92L8BDzxuTRLvmD34OL27mPOvdTut0q4yrr7gXt7IyR
zpjDB7kMbvaoL8T/ksQzJNm+D9UDh/zsLGSdZVuR36lah4MJ2e2c5zukbRVp
XBlp9YfqkQnY3Rpp5xpoHl/z+UrrGNy8pq/2qoCFpfzXe9AZ0dI375Ru7Yrm
mXpBh4LW7qTHm56exu8ax6fFW/9AOpdqwxrBXvLuMWGmZLcxm8Z2L5D9Vcc4
61HaR5kHORxmSgfJzdYE8yFHks+nSPtE5EmO2R3tlaE+qwUN4TbyrVRrh9Q/
rYbZTdnB7fRY2+fWF+459mrzvBH0ctqtjHjrQ6vfrHnFovFWJ37L85Gedubz
v8he0qmWPoeX9Y/LaC+85sgwWw/9MCuRZnXiQs1lYDYY/laYOh8o1s4c/Azu
Y5YTu9f5Pwd3c6GS9jSk2jlamgdp5th7mWr78jQ+0hmHr1Jd/zuw8KrT79yk
MRJy9TQbm2qMqj3dq8j7LzC7RJm9CGc1xyM9A1iHm7XwLbzFvzewnP/fe1p6
3iFvh6P4/xXyUnidamcero81HRTNS+hMxEaYfR9regFnPMxeQ82ZxNo5z4uc
OK+EITxvg9zE097HNNyfJl7n4QLMSLP7Uh7h9iR2DnrafSrXpYeneSAvWwfR
HnL1HR9nszGHxhkLkHPG27pgouapkEdS5l/w/b2GN9AMmsAk6Uk6YyCNhSYj
l0u3uQXNMQxGrqp6iN+9yHtgBwxFHgMHstk+FunWSsd2YqT1g9X3PapxNHK7
LNtHMpr/A4hHm5KMr4jf35H2TaTyTdRC/k/54Glzik0hVXMvxPEVvITPoLnq
X+L3ytfaj4FO/GKw+4nOmYD8Wr9SucC/ZI2dkZ/rPIs0Ow9kD3mahVzS084L
+V3r0542H6t52SJp5l8U/xPgU579hp0bxDFd6+rQmnjsRW7h5OdbR/GjJb9f
KF3UIVez2Ryf5u6nR9o8vb4tjU01197USdd/8NQ5G2uT9ini/0PN+WBnuOrw
eNM33O1n9aDqwwnE74DWUeCwxo9plr/KZ+3b0bsaFWl1ieqL4vRDykn33BkH
qG+u84YToHKq3WVQWzrpsdZP/TDL1qx1h4HuL9Az2dG5mZNi7ew66QXrXM16
WXa/T0Hq0R+0lqm+eJrpJktHeR10QC6M+ZYI01X+DLpg1hH3P7jb3jjtN+iM
HCO9xQhbd9L6UzXsZRJubKydNaK+Zgenb7bB0VHXnocueo9wwN32ZR+FXsj5
U03XQueonoUqWWb2OWaTYTSEKk9KWH/4pPQRcNtMZqmm26q9Dtrz0EL1JPb+
wN5t6e9i1lrjB40FpMji7A/o7MRF+5GS1e+EallmT3sriiA/x4/yTv/5mZvp
20vvXmnrq/FCnOnRqV5Q/fBJmulWS8da+1OHpJkOVgr2znuZvpt0tFLIvzsR
pn8/W+sLabaH9TJm1TXX6W17XDWXqTlNrX8dVX+3mO3vu6r+uPabxNn+v8Ti
tr9Oc8XaUyZ7er/1vW3vnNa0FiD3Ji7l4kxv0E9xTDO9rLqY1fI2HXTpba2j
PfzUqX9UD61H7op5S83B+9haxlLkj9PsDKRh3rb/bqC+Sa11OGvVus+kIXIX
wqicbGvmGVpHV15l2fk/l0lHK/XnScNwvofdfBf7s1m9NTLS8lRzpZozbaI1
T9KWF7v1I2zu9IDm9dLsPI+umF3Bv8P4WwizFmk2L6W5fOnYNkfOj71lmqck
zb9hrxRmXYlfLeI3G/NWWmPV3iUY6GX6vTr39Qedf4rbvvz/F/NH0Bg7s3VG
P/nTRH0pP9vnpXOddN/Qr25WBnXuU7SPrQulQndv01VflGDnn+vMZZ03exC5
QbSd0aGzOuqG2Nng2zLotyA3QW6kM5XIu31F7U6nGjoTAnfLS9jZHTuw1wU7
HeAh8kzspvrbfSQXCpOXpOEEdsclUsaCSD/2l2fYOWja+38RjuS3sxF+xt9w
3EXAfZ1xidyJtmF9gt1dpTusjuPfl85a6Gy4FIAfsDXL9pHo/IBTjj5wY8Lp
T7gVoR52G2WYXqrueWqJXCDI9FY/D7QzNKfBGfw6Df0I95sk+go6R5W0JWTZ
nR3/SGeY57cS7E6PJbjvhj/9oRhpW4bcu6Sd4dNe+ymi7QzT3pi3D7IzUPtG
4Q/pmEt4i2EJ3MDPq7qfAvMNvOMdGjfxLTygbbtCOD1T7HzspTp3Bb8O48cR
/DoIB+BQlJ1Rq/tCdF7QFNibYGf+liUe5aFmqJ3/q7t/tGZ3gPIY6mXfjM6B
3JnXzssdDXuQ62Pvc+zdI0/fp6zVIi4ZhJ8ZbGlVmvsF2VnFmv99gH+DvKzs
BpHmz1QuCG8VdncQ5z7kyxTypRl5uohnsdiZnWl3ymmv12qeeZe0/TOTdM5P
st01dxP/OmA+O8HO2dJ5W/sIcw38jZ1SmGcwLixd1M49b02YTfG/mc4nwG1F
zOaTx1PgJHkcjHxFZ+9ozzf8SPz2YBZAuEWQGyLXg59lDz/Pkh/ndGZpgp2D
m+acYVMUepL+HlCH+LliTYdM/fdF+P8Iv3bks/O/d+rcPuRi+DmEeJTDTUlo
rbjx2yzYzqFvDHORawXbOWk6L+0L5KkwC+oH250lurtkOnIW7ofjX6kgO1us
PXJt4vIkxva8ax6hLO1H02A717WFvnXszdMZZOTFatyugWVwN8DO1mxKni8g
roN1GGdJu99B96/pPFHp3equB+2/WIF80dEJPhhtZzceyWdnqEtvVGc7TtdZ
hmF2pqn2Tk3NtLxVHjeC2cRjJtROsvMGGmBnvnS/pPNPnL4PtDgqrn/AWtLX
EXdt9a3hbkSG3fulu/kOaM8XfZB5pHcHfsyR7q70n2FntOndSf9Od2z46PzZ
BNtTqDMDcxexc4N0fpDmY/+jnO3yNz026bP9mGXnS2hfp87V0pnkM4LsbiHd
ifIhTEbeRjgzwuyuGN0Lsx356wwrMyonnWAx8j3Sspx0rYB5cB15BeH8Tbib
/e3svbPIF8HTOZNJ5/zovB/dB7TQSdvsMLtXQWuLOqdAZ5bonJJaxHeLdDJ4
PjHMdHF/RE4j7C6El0o8klTukH/D/AnP3cPsPhbdyzJO/jr64zrXc3yY3Sek
e4V0fv1MmJBpuuVTHLvSQR+l85WTTR+3lbe14dFxdh6P7sn6GHvzsBdD/PoR
dnfi0AZGU389UVvBs5+wswk2av8nspfOJ9C++zC740l3CWkv3rIk2/+z0ilX
JaSziD8/+dsdCW6JpmPYH/NR2EsOs/vfWmF+iTy4DAHKC+R3fNcTsNMwzM7P
0xmcxXGXhn89A2y/wxvyvj9xHhhke92m8ewZcfbAfVn+l46yOwh0F8Fk/vdR
Xe/UkZ9H2Vk2OtPmKlyDisjHMPfjeU44IZAHEsY47TOAL5BfEMY8fscjT4CJ
8JXCxv1O4v9joO2/0z486e5PSzKdeOnG62xc3QOwO8Tug9PZYronIFO6qrj5
lvhWoD+/TudJkAfxsbaHVfPQmmvW3hvdD/Mkr30TWptITrP9K9rH0pex0CPs
7dNer8J2VrLuqtCdky949kBjdYjQOEzzBfDEWTdNhHhPO/PsOPE6EWL3Fyh+
iY4drbG+giKe1ofzkI6Ml43ZNHaL438EFIJ62GngaWO9Ao7OosZsGrv9QFqX
k2+3yatfVedFmT9uXjYe1LgwFVKw+6mjXzMZ+UWqpVN6UZVgoKeluT+U97J9
OxonarzYztPOaNdZ7cWlJ4d8hHimyn+NI+Eo8mLa0TPZ7Y5QrVHMk15tgt21
pDuXhkMj5Kuxdn76xzAav5YgZzp+yc+WmLWG0+T1AN7jYNiVYGcM6p6M19Q5
60Psbh3do3GENB8OsvNzjwrkfuRF2SA7k1JtSH/kq7zLAar/4Rx+HMOvy/j5
LtHukamJ+dMs65e465vBrD5mzzBLw4/0IKtfVM90hdwZ1u6egkD8WIe7i9Ai
xe6d/YgwVmHndobdH6U76KR3eyPDdHB138PRRDsLVmbd8bM4/mdChtpf5B1q
m1XuoD35sD3B6pE9sBf2wfYwS0d3/PsI/z8krFsZVuds49kD6qeHOusj2u7J
2o3ZXeQbcAy5PGFVCLK2W234UOgJRZBTgixOipvO7tEZPjpD+m/i/J36M5h/
EGT3vn6sbzjQzknReSkZ+N9D/aQsy5fbiXbfViRh/ptle1FmYW9/kt3XoHPu
1I9Tf64GfASjQuycp33aX5lkd4vqfs7TvMs3hPUf7OZ9v6YuOcXvaeKQC7LD
8Sg7m+oE7o4n2T0lOota+z90t82jJDujWe35ySirp3JDHjgTZfd56TxxT/Lr
PnF+kWX7jxZp72eS3d2pM6HPkLa9pK0/edIPNpP3Y4hX9SA7N/k9tQOB1kfX
HivttWoVaHeyRiBfcfrI13SnBfKnuK+vfZD8HwDLtS6pzRyBtkfyM1iG2Sn8
25Voeuw99E1gZxLx7o3/P2B3LUyMsr5TNcw+DLI9YOpb6V3exO1/wXbni85p
+s5xI7d/EZcHcDfTzmnWeeVH4SFyH+y2xK/IYLvndBFyCNx0znHVHceBigvc
wN5l4nAFzmovAPEeRLhfwy+YvS1ue4Ie866fh9re8kvIJ7DXg/b2X9rY8Yxh
06SDTLyewhNnf15qoLUvameyQTXleaDF4xbcds6UVZwaYx6JnfAgGx99qj2N
xO9vnhWFIjoT1ZEfwz+Q4TzT/pQviesI3I2EAdgriflTeAa/66xKaIKfwTwP
DbKwFOZr2sOn8AReQVOdSZ1ke990T9IZ0jpR96KoTnD8lN/Pqft+5tlb7L2D
37H7C/I07C0n717SXj1SXZ9lZ5poPVvr2nk1547ZPxl2fqnOMVWdF55l+/Bj
cPsa/7cF2j79WtAi0fbuag9vTeRF2P0pwO5RaEcY90l/H/w4Hmx36Y7Dz76q
y3Az0qkvBsNHiXbH9d0EK8fXnHIg//Im2nPZK45ZutPvVf/3DiRAlyTbS7eB
tB7C//EpNq4YFGj3OShOcqszhBLiTU9M87dts+yuqUehVrfpPkDdReUmu7iZ
Bx+RjtvF7WzXCcT/bLC1AWoL5LfC6AO9Au3eCPXvv8evI+ozEg/PkrZ3Y0qI
3Q97Ktj2cfiRprkBdj9YDcIoi93hmIeov6X9hDAs2s421/kNusv1ebSdc67z
29KdM6FdMXa+28NidqeO7kIpSXl5UMzO4dR5nLp/R+eEqC+vsyF0rojOJi0Y
Y2dHpPD7vs4ChNLOWaFFSc9j+EffNKToG9f8F/3X0DibrzlAXuXSHAGchROQ
DV6RX7vUT1M5hnHk515+98F+cAc351fygUArV68C7I5mnan4Ah47Z18MzbAx
0VL8XAyDkf2c8E7CEfCGupi/UzjY2RNl4Q7KsH6i+ovaK6ZvMJz0BeBvEOSH
AsjHcXcKTkN28IHxGXbGuup41etntEZF2obxv0WQ1WW9Msy9/NF+9UJOvibh
/hH8rrGa2kSozDtvym/DQHv3KgMXycPvyMvulMvNmsOivlqbbnvNtedca4e9
suwsdZ2prrt8bzrv/Sun7lB90Qjmqw5VPQa34BcIC7TzCHWmaQScyWfnFeqc
ien81sb/UoQ1Md3OZtQZjTrnVmcFvom2cyBGE88xMDbKzonQmuZC3P2Qg7Fj
DovfH4TzEB5AvNobuAP34D5EqR6FwnBXbb0TT8VX50vonAndlaszTAoj18A8
h9Meq12uiXwj0Pqrdxy/CgTamdY671JnNSfE2PnWOhNFZyaPyWdn0urMFNVh
OjtEZ4iovlxCnCeSvo4ax0NBjd+i7U7baxpn+tvdOdeoT4OC7Vz1EM1HBNl9
PZ9qHBVnutrS2f5H61uYNY+zfSnan3Ibsynq2yGXzWb7gbQvSLrd2pd3HRpk
M51y6RLrXLgd8Kev7ZXJF2z3LBSAZpqbC7I9zRpbajw6Nszu7J6qMT/PXsLv
vCM3/FobYH0x9b+6qW1G/gJ7HtqbBn9F2Xnr0j/V+Xu6n0d38tTE7L0Sdg6l
zqPUWoHm5d8vYfet6BxO6VdJ50n7gLUfWHeSar/wcPL+dZT57xls92K/irI2
XvN5mtdbqv6JxvuYPyS+j4LsvN/fouwe3VOhNo+iMy10p+73uOuEm7bQGr4L
sDG7zPRsNaRn2B3ew3D7YZjd5647vrWXuqf2WIfanjrdeV49yc7R093f05EH
aL8kvwfVx8tnd2zo7o2DpHdEoo0FNCbIJIzZmNcMs/sC6zvj9l3Ya5Rocxea
wwjNsDkB3Tm8OMzue9PddtpLrXzSHa5jwuxe8JVJNqbX2F5n5X2bZPfP1w2z
O2yqhdn99J/j5wPicQ9ukU/vils/qDByFFzHrFGKzaOHxJne59wIq591voXO
psiHebK3zcH/jP2f5Q7uwtUo62upz3UNrsAl5LnRlp9Dya+xMEdlT+MSxUN2
sfOGuAxV34P0l1IfMdDu+E0jfvn4HwQN1DdKsHnGXwNsfuerQJuH1N2RukNy
LOaeuNki3TDy4SBl53Cw7Wnsk2L38/4YZvd67Qiz+3vraE8rZbKzp+lQq+yq
b6Y+qPqi66AqcgPsLcfeTE/TN6/lzMV2pE1uB22hueZfA63eToQu+NEhwO4k
1d2klRRf1W2KbzHrm6mPNpl+2QfIJXhWFsrAsAC7V1n3ed0JtbGU5m0SCfcZ
bt6BWwE7h76PzjQpYfeF6N6QE4x5x2l8lGXnKg+EAozhpmm9IcDaV7V9XlAF
eSVud2JnkL/dtXYKeyUSrf1OD7Qz0V/z/GN+cwZaey0/5Jev09blgBrI1WAF
dERuD+1gZYDp5umuQp3HpfvctfZZ0KnTo6ENdlpCZ+WXU//HyA/kzyDcqefV
FjVBLiW96Fg7u1G6d9LXK+DU6fK3BXaaKh5697ybrcE2J625ad1BuCnYzgvv
GWJ3FPYgn9PC7D5d3asbpXLPe9oXbO47YZYPs9b4WchpgxSn5gF2/obO0x1N
fF6TviOpdtauzuLYDCcoM75ptqajtZ2dMBA/uyJXDvj/fsxL/pdT+sn7t/y+
C7A7iXU3cWqGjduUr8pfzwy7F+p9/K8ca2fq6dw8vYfckAdqB9g7eUM7m58y
lg/KUTbyaz6D7+6rIJsn19z4iig7s8PPy+72qEicy8FvGTYPUQ8aEee7yJeK
2XyF7sDV+tYd1cXgxjf3lnayYbStb92QLjz+jgmwuwR1p6DGDH/omyfMt0E2
plhB/Od7mu7HEQ+731Rlcm6C3Rug+wPOFLW7g/NE2R2Euv/hMPH4J9XmcUbA
Nx52j8QE/k+Fz2G7dBvBnW/IO9TO6PUFD5jO80kwBWbAF56m+z3FMR8H6xUf
7HaD7qF2T6nu6fzS8V/hzILZkD3UzkLVmahe4Blq+1JmOv7LX+mXS59mDf9X
wnkPu2uhW4bVZ5q7HuOsZUnPRzoysrsBNnramUL/whP4x9vOF9pE3hwobHez
6q5k3bMnPf5n8ByeOjr9uttSd1zWJk/rwA9F7f5C3WOoc/h1QMQ6zLrzHv8k
7n/B35pHQa4aZ/uz73jbHrpg5JNF7U4B3S3gAYeK2f6WY152DtkZL9v/onG2
xuC/8r4LBtk4XG2N2hy1R/dhWaKdnezjvKfqmhdItHzR2p7uOpzv1PcLyYc5
MM/T9H10x/s4nncOsvUArR9p7uFgMVsvvQNjSN8i4jshytZmtP7RBXvjo0zf
SGVPZfBrWAYnifMZ3BUkfYV1f0VRW5+dSZmci1/V/W39dg9pieXbvxpj+mTS
/dAdmLpbU/epNwixOzK1TjckxfbGt6GOGZFp66FjU+wMr+WqdzB7LN1kwh+u
uHjY/SmbSHPvYLsjcQ95clo6UIl2xloHiNdcX6J9q40JzyPJ1jY1d6i2KYW4
FAm1u1vbI1fLsHZNczVTnfn2CoSVQZiZUMzT7s5+GGXzgZqDe6J2Hrm8Uy+o
fmiAnUYeds/8CtKwJNTOctZ95ddhY7Stl2wNtbsBtUZdmriWgdWJtoa9m7Cb
kc9fJFjeTsevPZi1LGz3/iyC5UXtrmXdN1co1NYitSa5G7th5P2aGDvXTXrS
3mmmx7Uf3hK3o6m2TqB3rXWvzYG2jhDA83P6/uAs+ENeOAOn4ain7QeSvoru
NNTZnKfdTI87CbM3hBnpbvr/2gtQpITpvegu4cqYVU21e+wicRsRa2eP6hxN
6fTpPmndK70X9kE8bp/h1s3d9FukrxJKOkMgHwSAP8SWsDPvdI+azrbTGXez
Scto0jYGxqouR96WaGufqtsXw1bk7bAkyNYptV75k+aMycOu/O+mtWTkkyVs
jUFrDbqjVXd9nUAuTXmK0Pgm1O74K5lkeao1GK1Xd3W+o6u8lwshdh75FbgW
YmsqB8nz3YF2xorG0Knedkbsn/DQ2+YDpCsonUHtL81F3dKvhM2z7sX+/ijX
/w7EqUd8J8JZzbVG2T1lE5B9+HZ8wRtKE78y8Avp8aHsecMNrTs7c+R3KGN5
aY9OBNgceknV1WE2z/UGskJNT13nu7WDzj6mx/6MfEgLsPm2R5Avw+o1zSP+
RjxuBtkc41Xifx1+9ba9rtrzqjU41TvKJ+k1aI1ualE7k01ns6nf1hN5fqLp
HowNtrtZDyXaeTTNEm1dSvOAmg9szLdwP9Tm1tU31B2vDeA6/3+DMJUb5HvY
bY2b7QGmY3GTMHZmmO7ABs1B4e9Z8uRCorXFLsz2w8VEO//giJ/p95YtaLrJ
0lfWf+n9ToT28Xb31Y/OOWq6L2pDfps71hzyLML9Eio5cxTNcPtU+1pw1566
z1v1UID1ETtAUeQu5FcR7VODKB87z7AC7mdo7BlgOifSPfGItPPJtXd1FLgh
F+VdF6bMxUIcFIu2+w10x4D0uXR2ps6Rf0Q+5MQvf/ypRD35R3E70137HLXf
sSH8GmFnzDd29orqjgS51Vzpv7iNTrT5TM0B6Cy7X+BnuOxt59q9w+4IHzs3
6id4HWF9KK3rzA82/SDpCT3i2d/wGNK9bXw1kW/hKL8H4RBMSrPxuOrjx7yn
f4NsvL5QOlM+dv5BA+x1kp59qN37q7tldSdzOKzG3XVnPudr3K6Nsr6Kzl7X
GexXIEeo3aWmMb3G35qz19y9J+H+i+xNfN2kH5Fh96npXjXdp/cSbpEPdSlv
50PtLoRMzTFTrpph9h/yi1A7yz4y09qif+AJvHLapY1RNsejORmtJ27QN887
qkmZ/YdyH0N4D4hHZ34rEG5WiHNXgb4Lp5+i/koCJMLKKNPFUF23EFZFWf4o
n3ReRG4fO+PVz8f23ki/Tnp2NaGj7jbTmD7Y1lT+TTRdA92FoztxcsF58ikX
8QlR3ZJoaxlaj8oD+TB7i913cAl330u/En7wtjMAdRag9Po3wWZvO8dF57lI
H20D8npY4226aTrPXufa/+ht5xG+hAvFbA0rFnKrjs0wM2/1wxNt/U/rWxoP
lqBeOUt/v08eq190zs02pzyqXOpcM72zk3DC6RfrHgudLXfFKRtnoR5ySerk
nd4WJ8XDG7kn33ArwksmLqGEfz3DyoHOspMOi+Zh6mTaeEF3Sx5PtHVCrXMe
w2wh72VJlOncDMHt+igrnzedub11WrvB/K76NpqrIJy8uB2Hnz/wfy38QBhV
kXfQjh6CA552mNkftP15CGss/Yij1LMnYKHGPfCY/99gXpW2NJQ6rT5+tICW
mjcKsXt6dY6m7qbWXX66k1NnZuqeON2Xpru+/ncfGn6t1H0SMXYXnvRMpG+i
OvUb4vsHafk22Opc6e9OJ9+mepm+ufTOW1PvvK+9PtSls2BGus0PSZ9jOHEZ
BDOjrb/bWmvT0Ez6+56m+9/fy86T6eFlewNGEs436hMSZhf4IcPO9NU5+veJ
5z+RdubvbcJvg5u20AXuaN3fkWWuPvACeKD2Jsju19KdWvejbI5NfUGtzSYH
2RzcHfgzyNan0x17w71sr6323Oq97HLej+QJMM7L3tVd+jqN+a3rabrl0gGv
48jaO/ER1PA0HX7p8rfytDX6pp429xKtflGo1Svq6x7PsLsm30IoeTAvw86s
7qtzVrLZWT+B5HNu8iWUvH0VbGv6F7F3HnJH271bun9LeodlsNst0s6B0nlQ
2mteC/+OIMdpvxV8kG7fvu4/exZsfdxvM+xuXt3/PLywzb9oHqYoZivz2x2O
3prHoa5sFWrzx23gW9KwMsTmCKvCB1ADaoVZv8ef/M0bZGvN6gM9Ix+eeppe
iHRBwj1tr8ho8nco/ORpe0n03jRHqnvQHjt9+V5pdl6Qzg2SLngP5H58S+XC
7AzFcRrPq29KWn4LtjubdXfzK83FauyF/4u97ByhX5H7h9i6e7FQu8tPd/pp
f3wQeRUCy6lnd6XZnQK6G0dn1WhfmO430B0ZOk9XfS/tFRyN2Zdp1i7qvh/d
8bMNO8Pws6LTxysFQ5Ar8fteqJnr+fAQi4/ipXOOZnlZPz+Pl51JqnkOjWEq
eNreDt0TGOhl92Bq78dvnnZe0gr4Bu5qfO9l5yfJXM9/gVW8v2Wae9N56zp7
N7/piLgTfjhlISzaytXYNKvTn2rfuc4zSLN6YJ6X7cfRvpxTUJN82Rdp+6F1
pnzldDubU2d06nztAXF2Fvco/NzCOxwYbONCjQ/1/ase6KR4e9qeGp1NrPtG
dG5xszg7u1h667cjrI+juyM24a4zbnpBT+mZKl3QPMN02fRd33bmi6WjLh12
nec0mvQMSLPx2ry8dldmjcI2ntOe/u+w922ElcMyjs72N8ilcVcGWqfZWuBc
55wBnZH8WZrdm5EVaedmaR/hAel/Y3ZPZ18gf429UWmm5yB9hyGa1yOOo5Fr
YGebl30L+ibqaV8EYWyKsDPGGzp9JJ1/muycjaDzJ+ek2Z20W73sjOwfvOx+
Wn0H0m8rAmXD7EzRnfi3O9LOStKZSdoLr/W+c3DemXvTHNxtysBvcA8SnT6p
5mJ1153ur83v1AfS1T3i6B3ofHvp5V4KsbuadGfTRbgcYmd7aI66C/TytHNk
NL+ej7TnD7K5Fc2//5Jqe25KQGPsLELOnWnxURzUP86JXER9NP4/gZLwLNHO
5Q3g9zj922GBdm5vGuVuIeV6AXjCG9x1xO+e0B26QSdPu++4G2nrDHmcc6J1
5/iLaFsvlA6rdFnl39fOd/MNpCPHY28X9o6E2j1cU4hf4wTT2YrBr1gYlGB6
7xcpY49xszHB9OKlE90Ct81JQwt4QJyDMWuJWSfkNiGmr6z7JXV3pdamdUeC
7kpIUJ9Jc5pwA2JgNv2kLoS3Dv8Lp5hu/FD+J2A2mvgEh9OnK2L66P1SbH1d
6+y6W1Z1+1L8XgIrFA5yiOaMsfOO/95Jpo/Um/zq47xHvc+uMIlwPQhjFmFl
SzFdbN3pdc4ZU+eDh7ybfk6+K/+n8n6nw1qtXxKvMcSvCH4Mw496CXb/sO4h
9oc+yDMyrA9/INjWRg5pztGJr+L9lnf0Ip/tfausOSC1JVDW084s6uXEewDM
Qv4y1tpjtcsjkesh782w8YnaGd27KR3wvoSdUzrmxKdrHotLkqfpHxaFcrgt
A0v/b8B4fwbMC0LANlmPHmTNE2j9XwYQp7FA9jImAvECI0hZA7qj9yXQvGbQ
vAYwvHaA9npyQc6KUgDmSwBB2Z1L
"]], Polygon3DBox[CompressedData["
1:eJw12nm8T9X+x/FtPMeU8RzjMXM45iFDpibzUBmaE5Wx8UaiolJSGVK6peGm
UkJkFjKUWSONQkiXCt1EGUJ+z/VY398fr8fZ3/de+7M+67M+a9hrnyq33N3z
rtxJkkzMlST5/T3VOEmalkySYziJU8hqkiQHmibJr9WT5BDml0uSPFhEe8K9
lRlJshZrsK5akpxtliTv0OfnJMkCPEJ/AG/TytdIktLlk+Ruz9+DLNcVae0a
JskneZNkG6bmS5LncTHtS/5sKZ4kn2Jd7SRZj2nNk2RH3SRJV6YgdqB/RTbq
JcmbWXzUlrZojf14nbZW3V/yZTt+4cuv+JB2R1qSNE5PkiZogZa4i/YlXnH9
Kl7G8/iMtl+9f7o+gWUFkuS+SlDvz3ztSOuA0co9jF9o8/mfq0SSbMJmrMe3
tLLqL4cMlMQ1pZLkWjzj3n3FkmQksrS5Ip6lPcDvysqVz4jP3qRse9pH/HlL
+97Ar9raDsvFM4+2va3vblNuAPqhHq2i/stbmp+Z4otzyKKt5+9Evk/CBIzH
WtqVnvneszvxDYqjGm2u+s6rqxeuwknMppWXE2XLJEklVMT16jqgfFvXSdkk
yY1MZKAdbRF772M5VpSKOfcHZrF1nM0/cQqn/9++tpWRM2VRAsVRjraTv99j
MzahKIpjoWcKSPB05EUeLKC1rpMkDdSfg1q4nZ/5aFX42lv91yKDP5mp9rZq
kCTd+NAFxzCTjaMXJklN9y5XJo8+yYtcoS9p3+A3sX2T3dmYg3O0rfpyuj6d
hZVy+QO8IJ8XyaXRBZNkDB7D41hC6+ne0zW1CWXleXFUlFeX8KectpRBcSwN
8eLPZZ7pjC7ohHFiMBbn9MvtxttQZIb4iVlrttd4rorn79GmEajlei3tlPvF
csfYhRguwbq6sd9DX/yNxL1cmEe7Vttya3sa8qO9mNSiVeBrM2O6Kc4j4X95
2h2NkuQrbfwSBZAfQxvF+IccK4G68vt38TkrZsP1zVn9dBInysS+a0Orrnwp
ZXdgF3bjKlpPDPT8IJSnlU7p/THE9WBU52dN9KO9KBZr1fWnNhYxh12ALeKZ
iNt5/Ziu/0qrrwzmKrtcm0tq+63iMATlXa+g3WTMVBPv6shBHdxM66COI3Lq
BJaoeyk60973TKZns1ARFbAyxDhbGf23APNxf2qeyR9ywf3NaKbs0+reViOO
05Cr5XCbNg/A2/wsL64/Yj/2YTdKY6+YVjUXVcEe7d6Ll5V/CTtdF/B8dzHo
ioTty+TbSHWNRgP1rlf/X+Kzzt96ftdHXdRM5c8w/s7l97wCMbcXYzhti3sX
KjMuV1xz2rjeGmxp7+vKvIyXMFDZYdp71r3785jjlJuJh1yfz4rzy0EcwBEc
RmU0tg78pEwRpGE3GtFm6r9r3b8uzEm4Ai/QjsrFB/TRKMzXT3PxP9p+/tzF
j7txZ+gD92fTDrt3r+t/4U68qfxa2jnxnKBvO4t/F3REbXHboI7R6hqDh3Ef
PqB1q5UkhQvxE4XQXp9UolU0Bi4vEMfxo+yPQQVaZXVPMXaewuUW6kXa1Ft8
vlbvBv21EZ+ZU7biK9pa8avAZlbBmAOZ+ID2WFij2O6I9rgEj9CWs7/X3x34
Dpl4NDvOD6FPs1EDlbCKtlrfF2ezKAqFuYrtrtb9zXikqrzgx0Zswlz+HDSu
yipXDmWwSvmn+f+gGI01Bi/JjGtSR8yhLVJHYXX1kyN9kc/1fNrVYS0R2zb4
B+fQh7bcOK1pbtuBf6xn5/ETH+8IazRGhPzDcu16D23lcxqbRXABFrN9TPkt
nnvX2jQHC7EAm2k56uikru7ohon6+h/tqqUfvpBjp9j4A1tcZ9MmKP+jds3U
nnfwOlbQzhqrGbnjmA9jfxnO0L5Ux2p1rcUmbMR22gY+rRfDDViLMWK7SYxX
q38EP0biETyMNbT3Gscc+BjjlB1bNca/hXGdWz0HxOcQjuComPUKPnn2DC5C
K/Sm7fDMRnPDx9iK3FhIu4ad3vLiATTRh03xAR/b0CuxX9HaUimsyTjD/l73
NlaPcV2sTTvkfx/6MLl+gbw/IxdW+nt7ZX7Kh2rmnTraURM/4RdUpRVlv2z1
uF9plxn3lv9qaTzK+3bK/I0zOIvq7h1Ub0H+FMFZbT2H4+qdwe+p+r+PXLga
vbGb1sja1BBZqIB6+rEBhpnvj/P5GGqiBu6tE/vlUbF9DJuLxz3qPPFp515T
ZU7hb+TV5hG0nurIb65IcJnx2wlX0aryqbFy5/BPmB+UPd2CD+5dpMxp/I1T
6J6KexE28mITLhT/u+rFOH/p+e14h40n6pt/xOx6f380h++Xi//FbzhtLC4R
o8mun0In8eyOxbQK+qW+PmmAeviU/YnsD2dnoPgPNHcNxj04z86bnvmBjd34
Vj3f4BT9HX7OFueh4ns7hmAfbYH1a4X4jjGPPYzROEBbiq30SX5PxkQcoi1i
vyvfLsU4dUzCQtoetqaxPwVXsX0t9tKO4yo+98QTYf+DY7S/a8Z3hFvwDdtf
4wztZu3K1K6T7J/CaexLvbe0S+2Rw9z0qHqfpB32zATPjsN6/m7JG/0cJ+aX
6+sGmMTec3ic9p5n2ni+CUaw8TDm0dqqt6dYvSxfX8Ub+EvcOpnr64p7Tpgr
9cUEsd+uH+trwytyYCqew3cp/x+WP1P1+UvIrexodmsqfw9eNq5eQmdja6Z7
r8urDD79zZc/8a4+nI9StDTP9ZXL4+Xxz949TuEwf8aHsZEe35EGybcBeILW
z9irlB3z+FLMEdeK5qVM9fbV9lvZnZsZ37l2qvcGZXt4thQ7GSgX9qVhzVHH
H549giHuz2KrMb0zn27XpjtwJxak/DzfJO6lB9CGohPtUIu4n7+Tfhca0hul
9ofNcROtL6rQqqJFGKPqeFddd6rzqLqPYx9fruZ/Pff2uP6F9iMWN4zr3fty
agUOuFda3wxW9mvtW6ydQ9i/uXocI2l14ni5zfXd9EXuL8yMen8xKqE/euuX
Z/XxlIA+b47pcnUGTqp/uP76nP229AfUOQpn6GcxkN7Q3//w/zXslgs70YB2
hXzsgU7oiEHmsCH4kP+Z6i2Lm9X9b/UOahTzZzo/X8c1cnei+FxMG6R/3+ZD
R+VfVH4apiqfqONndc1U7zv5YwybZMe8Cn20MLQXZ7R3v9j0yI5z1xpxrqUN
2WEfS7sftV3n4EP3zilzJa2lWD/I/ii8z/+FaE4rx34BdvNgBdagbJ3Yrqna
8hyu4WMp/t4ixiXD2FNmoPYMwmB0oP0mdhWMu6uNt8kl4t7pjpZxXXguPb4D
b+TPx3iTNkYbhlsT70NzY7dFGMO0+k3iO3UVv6viQdoGefgxfyax/zyeoI3H
rOZx/glj9gt8jltT5xVD/N2VL/bhPvyIobRtYf8uhm9hT0acY7+gfcb+fLYX
4R3aLDzKl8/COHO9C695Zjo+p00Q16fxGMZiI/ub0UvbCmljYRREd/eq0HLw
uOthuBcrlD3B9/by+Tl1PsT+aIzJiO2biOn0V/F0RlxTJuTEebW0nPqdH00z
4xx41rh5SptXVor70fAeklEwjqcz6sqTWtdyh/clv9thkrbtY3tvtbhuvc32
bPE8o48/on2gvlVYEeIjNoVy4lx6nb65AbegA+1yvEafjr60m1PnJ9X5+Z15
L1su1EZj/BHm4TCuw7sahpWKOdCZdo341OBfTVTH7XzMDusLf+by5zV+vIEp
ym6RD+P4v4a+GsvoS/F4kzjf3qjeF8230/ASpsrFHZ77IvQd8iIPvqMVV1d5
VEA59FNvn/xx/glzywIcYfswvqJtFaN/5NEYZdcodxEfb5Hn2e5drE2tcBrn
wl4rJ65Trdk4gYzqcU0M/bWrbnzXmIv27FyRypM5ylcLZXGtOgdjNq1RdpzD
38Qb+En+nJc/V7ouypdiuADp6Epb715hZYqgjbHeCuto+8Wzk5g9y7/P9ckX
JeJ76Gl7rIL0AjjOtzVitp32WHZcU37AHuzHStpWOdGtWlxrC/Nvl/I7lX9K
HRepK79601AoX6x3tWfqebYB/kqPZ32raKPxI5/n+P1uetzbzKSVqRX3Hr1Q
Qi6vSb3XLGJrDftrsRpHzMH3057OiXuYxzGNT//BU7Tn+FRJDlTGKGvvCEyh
HeJ/XXvYFrjanvp5+9hvzc+fsrkbP2AXyqEo5ueN8+ZyLMMB9e7Bdu17Rryn
4N94AV/RTorhV3z4Gt9nxDnkjZAP5srPrQef4Vu58A3ya9cNOXFPvh8zjIlZ
uD6Md6x1/SE+Cu9mqbz6Qh6OF5OPxWcrzovZAHn4i3r7i9etqG/ePqrMM+y/
xa8ZeBkv4Qc+7g1nXk3iWXQ4I1yDvuHss0XcnzTUF8dwHCexhnbMe9Ut2j3Z
e9YUDHX9F612/Zg7bdhqWzK+OxySE1dkxzXoH5zFxahIG8rXip5Zaqzml4NX
659ntGmyvuwqvqX4loFyYV6tGcdLmEt7oBsWpN7TV1vDvg9rdRgX8ihDexvJ
8RHujawUz0fCed/yAnGd366PR+vruvq8ur6vgvO0rvplpLXsLiyxvq1GF9oy
eZKXnTRMYv8T9UxQ53g+Xabt7dEirKV4gtbM+++MrHhe/l/v1wfQnFZTTMvx
aXpWPDtvhg7a+z+0E4ciof/F4VcU0Cd/qPddZc8qdwYn0JKdQc1jX9czPl7U
x89jgP3D/BbxDH+S53uJfXl9cUTZQtp3Ory7I9Hm8/5eQCvE1g1sFkqd276H
NrQTYpGuXFo4B1bueb5V1FcD2DoR5mj13hvOFHGDejOCLWULIx/yoBRtiPJZ
ynbCcWX/xHDla/OzUr147hnqDj4UaRDfJ//iWwd0xRkUDlrT+I4Z3jWL+T2V
P1n8aeyZFeFMHpPYmoxXLozzT5jrWuNqfdMbT9JmKT/C9X2pc64knF2FvmV/
fel4nrQS+bGrSTz/DGebZXCdePYJ78u067XrVnGYiO7GRNf0+D2ih3bWM96y
UAHHUuMuvH+Fd5l1OKruXP4uoR1mp5a2/KrPBuuzW3HMvHS9+eDG0vFsY1Zm
3O/fRHumZDwf6YFe6IkptFXatZ3dbanzkRpYSZugjs7quhjt0N/97rTX1HtU
nfXlW8lS8Yw3tKu7funmfk/lLswbz5Z3s3PIuFuvPRuwDkNS5wlXeO5KdC0V
z+YmhX0fBjaKOXmjsqWVzagc9+EF9N2f+vBitMJvSKe9Gc4xsuL5ZSv50Bod
1Juhj/eFvaZy8/CF+XKavnqMr0vMpYvxgRxfhc/ZeEEftDY2L8kfzwJyYRrt
FRRwnZYWzwXCu9Vg2gpxaCBX6yGbHy/pi6rqLO26KK2vOm9CAdclaePC2WVq
LxneDabjcdpY/szmy5zgE18W4BHajeI5Sjxzi+PHeeM3uDTly4TzfzYHsT24
XPxmF76zXMSfov7m8rs7vSOOaW8renF6bvr1tBtwkn4KmTWiv2GshjF7mnaG
H++HMzGsx7qwP8yIa8cmbMaW8F0F5/XXTdp8rmZ8zwn75QHyJ8P8WaNGjE39
EB/UTM2Xj2jDi9r+av74XhSe7UPL595hvv0RzoOC76n+rSsONeTLJ1nxTHqy
8dpRm0ro48GuS6XO5T/AdP2Yo3zlevH8LtwLZYoq+6d7q2nVaDmog8vpV6Gv
65uw2/1t6Epbot1Lw3kW5uF3MTiK38WoBd/a4n/Iz8eW/HlBvYkx/Kl14jM8
afxuC98j8F3YG4Q5yTicLE/KidlPYT1nd0Y4V8XszHgOFOIQcrslmuAg8tKq
ifUP2IO9+AzFwrla9Wh7N/bgh9Q5a/ieOjc1B4SzzoNsv0VrHM4C+DZDPu/R
B7uwXGyW6Ydi4VuQ8bvB38/DfoU239hLL2wuRRFcH96Paf3E6E4xuyOcl4rx
bj42EoMd5qHv8TW+RHGUQBvP/J0dv5+Eb7MjsCp8F6OXrRXPocMebTkupXXj
5zLXRcwFJVGqYNTD94+vUvb/o/09wp4h7B08X1uO1ULVEC9kyoMs/dXfHNgP
Lc0HF2Fe87j/3M7GNjzPThd2fgrrvjZfKIeb4bBYVESXmvF95Ft7jUbKj7TX
uB9LzYPvowetHZ6ivYxltIniU8mzWRgavgey0VZ8rqgW/Q4x2okZrnvRqmjb
v1PftG+QPzeiGm28frtM/12O9rgoM77nHTZHDNemZvYbzcvEs8oqTeP5yLTU
Pq2/Pj6oHdeJQ5Vw9qqu3aiCHFSmpcvFBWKSV978ZY5siJHsVAtzjfFcOl88
t7gS1RvG73APhRigNRuF+Z4jNunV4u/76f/Cha7TaH+wvZ/tneGsV17m0i9H
admeOSOelcN7n/KDcLB23AcW8lwz+nDagyXi+0RGvbifCHNpmFP7sLeVnZ88
c0FYxzDAc8NRIrxLsdPP9VL6ETYOoyi9ttjloFpGPCMI3+AHlornflcq/7ry
34X/BSgR30vO1In7hrCXCHuKXthMm2qt7aOv8yi3WDuyPP+2/n0onHnJ8Y/E
/9Fwrhz22M2jn0VCvNDQMw2wnzZEH+eV22nYhu24nZaJDexsRPv0+D8MpRvF
/2cIe4YL5EcRFCoQ9fJ4iP5wevx2dCmywndbY+s2NjujE55MnbuWDOeZqW+h
h3EEJWhl0MV1p/C9XrnN6M//PMZGPX3QWx6PldOj88T9TyhfmM1iKI5unvuV
j4+H9cuzn6TF/9EIuX2C/ozy15lDCppLCiAN79F6qWMx2z/jUTk3Fq2Uf0HO
dJGT3dAVl+JZ2ib3trH9AruvYTpO0X7DHPo83E8bid9pH+It2t1+D8Pw0Gba
XfL/Gf38ulx4JazD4TyjWTx366uufrgZ1+JV2r0lYo6H/B+FpXJgIRobl83R
Ai0xiq1huAd1/K6LeqiMgeG9vFE865sW3rNqxbWjXaM4n3QPuSpPDsirgzgm
//PzqZn4f+N6q9h/nCfu0372e58c2x6++bDVIfW9sqs2PSCvR4X/42BrWZjj
aNvDua417rfwvwFsjDc3lQsx11999ddtafHbeMiN/eLzFLaGdxZ6PnXkCd+V
aKtQzHVRvOje9nD+TZuKr8I7Iq24eyXwvjw51DDmxpWYHOrBStoS3KhsbXot
VApnBQ1j+bH0R9A5PeZkyKvZFeO59mWpvVorzKT9Hw17h3M=
"]]}],
Lighting->{{"Ambient",
RGBColor[0.30100577, 0.22414668499999998`, 0.090484535]}, {
"Directional",
RGBColor[0.2642166, 0.18331229999999998`, 0.04261530000000001],
ImageScaled[{0, 2, 2}]}, {"Directional",
RGBColor[0.2642166, 0.18331229999999998`, 0.04261530000000001],
ImageScaled[{2, 2, 2}]}, {"Directional",
RGBColor[0.2642166, 0.18331229999999998`, 0.04261530000000001],
ImageScaled[{2, 0, 2}]}}]},
{RGBColor[0.880722, 0.611041, 0.142051], EdgeForm[None], Specularity[
GrayLevel[1], 3],
StyleBox[GraphicsGroup3DBox[{Polygon3DBox[CompressedData["
1:eJwt0ltozmEcB/DHHMYwp5rZppB3UZgUNlKiybjRWGI5sxszd2YX2EHbbBek
iIZ3JzOSU46ZY+SGFDm15TTKLphwwYXD520uPn3f53n+z+//+z/PO3b91tyi
uBDCEnpzg9s8pTgSQrXcJnslWieOg2khnOQwX61/5y9FFLKZ89bauMjmSSGs
lIWyXK0D1nfLdtnBZ2pHh/An1Q/PxU8I4dOAEPrL7tDzjlj9e1Psl/flr4kh
tA4P4ZHso6d+9CXD+mS8KrwZEsJbKoaiVtog75XlpPhdJj8M06s6XbKTj5wx
3jQ9hDy9bJS/U3t6i/W4T+HL5vfLBPu79DlAVgxUmypGWk8micEkMpTVet2j
l1K507iILUT1Ws8FKu0vp4wVzijd3EpZp6eXentBgZ7yY3vlTJnJDPZSyi5O
2Xeamzyz5zmH1EgyTqbbM9XUUUuOucUsosH7fshopOcOY3d5jpT/e2M1Kn3H
e2f7jiPqHmXDCOflLDLHqOESOpzNa/Kd2/GEEE7QwnWucJlsfS2kmwV8I4dW
Z9Qyzjvd9VXPXaONG+7tFjd5pXY7EfWX6ymPZbH/r7W73OGx/TXmHsizvqGB
+tj/0tyl2DxL3WW8uVwZ9R+qZ47vGmVPkx6+mF/juXWspVEfzTRRYq3A3mKZ
IacyjUbfn+UcusxHjNMZT4EzijqrY2SpNZtZzLM2n2weGz+hk+3GNZSww5lU
OfdVcq7+GvXZwEPjZvV+yn/UhZLi
"]], Polygon3DBox[CompressedData["
1:eJxNm3eYVFW2xa+AhO7q6kbUQS21Gm2okupCHVFQSSo6iAEBZURyzkERxICA
iD5BBBR1FJUowTyiiDmTzD4jggpmZ8w4ppl569dr8/H+2F/tc8+5556499qh
KgeM7TqmVpIk42onSR39XtckSY5omCRHiuaK/74ySTqUJ8kJoh/El+lZb/E9
RSXir8gnyXFq+zfx+xSTZLzaVKaT5CDRGPE36/mxqm8lulH8AtEx4luLbhJ/
oN7vqL52qu2P1UnSVOW/qlxfdX+oPFTP/6S+9hMNFz9d9Ufr3RtUv3fR7/H+
KaJ/iR8tOlBts6Kx4oeI9hW/t2iQ+M9z7o9+t6j/L3Nuz3tbVf4i5/a894HK
A/XbSOV9RIPFf6b6vcQPEP++6htoHOfq271EpeJ/0fO/iD9Z9HOlx8TYOol+
FZ/V+E8V/5v4n6v9S5l3ePdH0cfit4t+Ej9CtL++11g0rNJrwFocIBopfpQo
k3Yb2n6Vc5nn29T/QfreSdHXTyofrHJnlX9XeafKw6uS5EztexfRCPGDRaeK
7ywaIv6sllqfTJJUi3qI7yI6QHxz0TnizxQ1Fp8XnS3+E30/re/3Uf/vqv/T
9CyVcR/0xbqxfhWifuI/zXl9Wef31H6nxjeiUZIs3itJNuf9S3mMaKn4RaIl
opEqDxU9ozNwscZ6icZar1WSbMq7DXU/ij+2tb5ZSJJCjLenqJX4U0X9xJ8h
2jfjOTCXozSe1SWaTzZJbtV4DtXvMpVXipqJL4juEX+X6DDxrdV/P/V/WMyf
93j/blFz8S1V3131JarvpPrjVB6kcjHW8zyeiT9d1F/8qaIGGa8xa91S41ml
vnLqa6HGczX7qfO/RGdt/6LvHfevjehW8TPyvm/cu31V/7RoktbnIq1P3Vb+
rSmLJleZanjRxeIfUvuzxI8UX0vtJ+r3QpUniiaJX1P0eeHc7KH6+hrfJw2S
ZIeoXs5nhrNzumholQn+DNEw8Sv0voaYnCf+38forOu97aLPRJ+KRut5N9Wf
LRpTZYLvgYyq8rgYX1fRKPEz1VlbzXeh5tu46F/Kx4tuEX+l6tuJv038n4pe
N9bvBNEi8XeIOog/UbS4iZ9R1150exO/x/u0oe3DRY+PcdbW/Hvpt7HK+4v6
VHkdWI+PRB+K6mhNtuj3PVFt8XVzni/z3lP8PPX5jvp+VzS/idecOQ5Vf4/r
W9PylpfIzUYqX6V3qlKSs6U6d+L7i84X31TPrs5ZRn+k+/1huWX3QD2bqPrD
VH+N+P8R5cVfqGcDxM8StVB5isqDc5YTyIsTyy2LNurZpDLLTGTnXaK3Un6H
d4eIpurdw1WeLb5N3t//IeR5W5U/CVmI/JlQZlmMjJ1Y5nd4923R3Zx10asp
j5GxcliWpT0mZBnyC1m6Ss/2EF9LtDptGYpsXatvPKq78pTeX6r3L9M3ppZZ
HyDn0R/oorkVWr+85SW6aoravJTzGrKWL4lW5rxmrN1rotXil4vWi68UXSl+
hWhzynvC3swUNRG/QXRnrN3kMsts1hD9giy/SM825fzbOOT3xeJ7V3puK0Tn
ie8pulP8SlGvSj+jbrno3Eo/o251yFzanhz6ZGX0Q3+dQkfyjDrWa3Ws4V1p
6wTW9gWNaazGUa5nO8T/N+dvoWPR1cujT/rqGHvC9/gue4X8R7aPUx8vRl/j
RQ3T7pPn1KMDzo+1uaTM+ow1ukD8hWXWt41iTVgbdNqlZda/nB/O0QbWPvaY
vUWXV2oMp2s896hcW/z6nPukL3TNcPEjRaUqN0BPik+lrbPGiH8u2lD3sfgR
4kvSbkPb7TmXef58zn2NFpWl3Se4Bfxyjqhu4Buw09K01xKdDC7izHH2kOvI
9xWipuI7Sz/MlX5YJvl/ueT/dTqn8yqMl5ADnFPeBWNNizVgHVlP1oY5stas
OXNnD5gX82Nv3q72mWIOzKW/xnd9hXUIWI41ZC/YE9aWO89esCfIAs4s93bf
OMtvqb8e6q9erNch6qOb5ltbc/+12r+UzxbtKb4qb7wEbvq92hgTrNlSdH0T
4zrw3VEhD3mHd3uI6jUxbuGsssf/rvR+nyn+v2At9fcf/Z6h8mmiPyq9B+xF
d1Ed8YeqfVfxtcT/Vu1fyl1ESRP3Q39nifZQuUne/dHvL9WWEZzDTOwfd4S9
5wxwdzgTw8TXj/VlPejrAZX3zHutOAuLRN0rTfB3iLpV+g5xl9gj9oozQ3ve
Y63P0e+StGXiX5mf2v897TkwNzAtOHWfkNe0ryu+jujswLTgyMaxf3X0zr1p
z5G5gmnByXvHeWK/WPu1KtcTX1/0SNpnHKwOZutf6TPH2XtM5ReylonIxkdV
fl7lTSEPH1H5SZWfV3lZzmeGszMk7t461T+TtYxF1oLJwbkHxP1+XOUNqn8l
5PNTKr+atU5CN4E5wZUVcd6fVvkN1b8b+uWdasvYspBvT7Knqn8j5PsTKm/M
Wgehiw4Rv7TEGBAs+Irof1Nuz3tHq819qqsWf1u139+ctdzfGP1vyvrObIrx
vp61zNoc6/Ns1nf0xbhPyPXlIS9Yz/VZy7D1cX/Z92Uhb5EnYH32hL1h/ugB
ZDu6kfn2rbSMR9azfi9mLTM2xPq8lvWZ5mwvV5uPA0uCl+5EpgcWAl9tE72k
Tz8iekf8DtEH4jeJtor/UPSK+EdF74pvJDxzu/DMNpU/Ublc5bkq36nyG0W/
w7sPi97m/Yb+/mph+OWixZzphsb0YHvOA7baujiPu2yED8DE0XZrQ9sIi+I5
9dgO28R/pm98lHiMjPW9sPHuC32xJWzOB+O+Lla5JfsljDNI67NI5cOzxlRg
qyUqH501BgIL3V5tGwFMBjYDr5/M+knGDhF/h+qP4HwE/rpNzxeJ/qI2HRsa
46MTxqi+b842CDbFWJX75NwP/XViXhU+c5y9CwIP3lJh/ArGXSj+hgpjYTDx
jRWW9QsqbC8g87mPj2cts56P+/dc1nobeYa8wBZGxtQNfPVE1jqS+3pzhbEy
3+TbfxPdWmE8DWYGn1NPu0F52yeMh3ENCHmDTYgMQhYNzntNWIurxN8UfdIX
OHxgPIMH2x/F2S31+rMPnDHOGmeUs8p53qG292r/X0HW6Vl71TUXrRJfX+fx
Up3HS1R+tmgbEjsIewjb8h5RW/FA0ZVF21DYQdhD2FZ3iY4X30Z0d9E2xNec
s7AXjmNNJR8eER0r/puC62m3X9H2xhcqfxM2XWu1eVBt/y5qJb6BvjdF37tM
/T+n9iUqT1N5qsovqPy6aBl+G9HGosfE2PpzB4u2UbCTsJewXbAvsPOx97H1
sOGwy85IbNvRhrasEWvFM+qOi/nxDu+yJqzNa6Il4q8VbRB/v8b9gOgh0ZoS
j5mxDxM9UfSasraDRI8Vveas/ZCwdz7SOqzQXt0j2t7QNmJPja9pYtsRewrb
ChsbW/1y1U1R3eWiqVVej+Wsh/h0K/9SRt4gdxhPTfsqry0yaIXK86osm+ij
pq/E63ytaGniNZ4j/jWdoQf2skxENs7Ss8WJ12B2ldeD9rxXpv5m6PdmlW8U
TRd/h+hD8dtFi6t8XinzHFl5m363Jj7DyE1sRXwN+BywkTkXnA90zr0lXgvs
TfwNrAnzYa7zkMlFj4FxMT7Ght2D/YOPYH6F14h5MT/WrqPW+5+JZTqyHf8D
32cc2K6sE+u1UjRf/Jtqs1r8k6L3i35G3SrR9eKrdCdH6m6OKjW+RZZia14s
+nPWPjww3/shv9HJ2AnoLHQXmGVx2pjnnLB3wOIlgZHQdenA59SBueoHNkJX
Yi+By9H36H0wVi1kfeAvdD62HTr6ydDdr6v8pujlrDEAZZ6j23mHd+sFJkNX
YyvwDb7Fd/l+3Rgv+Ib6cwO/cb/XllgHoAuQD9wVdAq65TH9Di2zPEYus0aT
S61/WLt1jDNl+xY790vJk8tD9qGLsOGnRNvFgT2YH3gJ3MScmBt4CdwEtng5
ZbwD7qEf+ruk1LIVjIUtDGYAO2BTP5eyDkAXYHODte8OvPGWnm9JGW+Buy6V
DbNAtsydomniLxFdL35p2De9Re3wDYoGip8oujLjd3i3o+yhqZrjeJXHqHyx
aJ74xaIp4k9W/XTVX6DyWJV7idrgyxMNED9BNC3jd3j3FLWfofYXqjxO5QtF
V2Q8JsY2HB+l+AlR317tz1f7LtFfO5XHqXxG+OvAnO+kjOnAdmBMfBlgqqcD
61H/Pmcq631+KGRkMWvdfV/c6Rbij8n5roMhwBJD9Y0+jCXm31bfH63vdw7/
Jd/he2BSsOkIPRusukmi8eKHifqJPz/Wp4Pen6D3u8Z6H6l3Liq1DmW/weTP
pnz2HgmsyP6D38Hx3NEPwpfP3cUHid5Cf63M+zn128IHiY8fPLYlfFjL8pbx
t4R/Ekw9Qt8eXmqszXlHNoCPuCNgqAmlXivWA581NuCXOnPt8vYp4bPCX46v
CR/t6FL3Sd9L8/7+TRGf4Lt8f3v4DMG54M0PI4aBj41xMl6wJ/Re2KbU0Qft
aE/f2Kj47t6PmASYGZ8hmAPsgX37tvi3Gjq2Qnts2z83tO8PmYjtv7zEshKf
GTGNHeX2pe3yaW4PfcM4GM/bEZ9hDVln1pu1BbttTNn+wg7jTOHrAx9y1sCs
7PeRIW+Qs8hb7DfsOPzoNf70xLgI/Xyp+MuqjJWe0nsvpGyfPZP185r6xDjl
aT17MWX7DjsP2wZfGM+owyZE3iB3sG2wCamnHbYQNh/jZx7rAmsib/gm3yYm
hI/lZ2IsefsQ8CX8C39UfrdN/53KJ+V3x1i+ULl93ueI8wR+5y6CwVmfFiGP
fwkfwj+IeeW9P+gu8Di4HEw+rtS+f7A6mJzzxrkDq+/yeXyPDzVvnwQ+hX+q
3CFvjI7vltgA2J1+6A97gTvPc+rB++B+7DZ8Wfg78HuAYbGNPo7zhf8G/9DX
0T+Yb0BiHz9YsF9iLAgmxI9PPCatu18m6iz++IxlGfKyTcg0yjwnNnGsfk+L
+ARxitYZyx6eUce3BiaOIfBNZFLnaEesBZm/SvyNIc9pC/abHO+AAQcnPnNg
Q2QSsql9xrqhg367ibqLThT1Qg4iy6jPGC99p3e/FS2s8hkE+8yNM4v865+x
DEeW02/X6JO+J+n5UP0OF00uWP4PzFhGIiuRp0Oj3QkqX6jfQRnL2IkFt6M9
z6jjO3wPHXJBwToD3dE2Y92EX39Y3BfuDZh4eGJMCjZdwB3ieeCnXRh2XWJ7
G4wKBnsssX0N3no8cZnn2LSvit+R2NYF/4FF1ya2r9F9MzWWq0RXFoyJsdXp
n+/wjLqrRTMLxqRg059U/1XR36T93MDLtKHtLN4peMyMnTExNnQOupk1YS9Y
hy6h79H7I9RuVGK8De5mLUYEz5pgEwyNtXo2zsqQkE+cmWv1zfvVzwOiOQWP
8fvE2LlR2Eo3sJaJsX3fjLEE+hC9yDPq5ie2CYjVlWYcszy74HgcZZ4Ty8Om
fDkxZge7o5Ppj37R1WCDvtH3ePE/lNv2xTb+qdxy4cdy27TYscgsZBc2L7Yv
dTvLbUPThrrfyu0joA0yCdk0P+xn9MSnolkqX11hvY3+fjplLImNjm8NrAhe
w8eED/75kLe8+7no2gr3gYzFp419j+zFZ4HP4ZeQt/xSxvfwe7n1MLIHGYSv
GhmErMPPgGz6qtw2B+P9R8hE1oC5Y8sfGVgRzNhS9JnqZqtuToVlNjEa3v8q
5DexpGsq3Ia2+BRY3x9C3n9Tbt8Cvo7vAiMwRsbWN28fB777J7O7fZGU8e2j
n0pytrPAYGAxbFps24urdvsGKM9OdsdP4Wcljq2OKVgugdnGFnwmOA+ci3aB
3XqF7KLtqIJj0Z1EIwu24a8L3bvLN0F5TmLdPFP9PZxxjIBYwZCW7o9+wYbY
fPNCF2PfglnADPjXiSU2yDnOyhyZKzoc3zV7zt6zBqwF/kh0Mj4g6p8Jfcw5
4jwNLrMtgv8T2xMblFhwn7z355PAY23ijHI2e+dtsxNLJyaKLd87ZPm4WDNs
zG0NHBPB9iRmShz1o2hPzPS8A92Gtpy1b8vt0+LMYQvMyNiGuKJguYevEn/Q
5sQ5CAdlrAPRhYcl9gW1F7VL7BPSNJMOif0f2Azz1XZ6xrYEv/PDXsBuwCd0
WLyLPwTZebPo1pCh5ByQe5DJOJ5P7L996J7BBY+D8RwsqsjYx4KvRVtZ41tC
B9XokYx1EzbKDRnPEduFnANyD/bPOH/hJNnval4zh1Xh3yFWPzh0bWmM5cCQ
cYeKmopyomYxH3xdPSM+T45CMcbI2qHD0eXoEGw12tG+mejcKo+D8ZAfQg4D
8XHWlzUi5s+4Gf+C2CN0MnKyX+gHfFXoR2T+yLgD6HH0OXeDfIARoSeIwWPP
sc9XxnjYmyUZ25fsEXfkOtU/mPHdwfeF/mA9WJdFGduS2IdzM7Ypl8Qes/fo
Z8YzKuL92JvTCt571p9njGN46HJs2mUxR/YK39qgwEjkQpD/MbBg3Qe+Qad0
KzjnA10DfgOv9UUnF405wBngDbAIMgg5gDzYUNyd04H8WV+0jEHu9Al9hP18
ecE2MOcXfcr8R0R+B/kx/QvGfr0iv4fzURrjIb+lb8HYDzzIGWI+wyL/gzkx
N3AguR9gjLVx1/Dtk3vTNnQ98z4vMCc5M/Q9K2QpPrRFgduQX/iwlseezw0e
/9T80OX4mFaEXEQ+4r/C7wbOAG9MCAwGNsPWn5gxRsOXMD3uLvtIX+CDVdHn
pvgGfeNLq/ERRD/cP+ZHrGJ2+PfYgznxbfxrm4vuD9yBrxYcBB56k/rEOAv8
9EpiHAGmWxc82GJzyCr8f1tjbdA3S2KNtkYb6vDPbUwcP/lAtCXxmeSOIQc5
q9wJ7iq4j7uCTgDnzI+5Mkb8kvgnGTvjQV7OCex5Gf4l1o27UTDBc544V8gc
7vx+GedSITORneTI4Es+LXH+DzlBnRKfLeRhdcigdiF78TmT18OdQD4iJ4+L
3CrOS41tgm4t2LbA9uhTMMFzPvtGPfKsivNc8Jnm/HEOOevI6HbxLXzZyFt8
9+Q0rQke33aXeMY+s98PJfb1si6sD2ccXL1LJ3CuuGusIWuJTxTfKO/w7hrR
NVU+g5xF/DPcadriH7473kFutxCdGDoIGYzcRH6uDPwN1gfjg/Xx8VyUsY2y
y1ahPDljmwaMCB76JuxZMChYlNgQNjQ4EDxIPBBfD3G1x9POZzw3Yrzkej6a
dnyRmBttqCM2jD2MbUzOC7kvL+cdayNf79e8c2TIlRkd8Sv0YfPYy12yp3no
DPYafVMdsmKXrKyOM8MeknN0RMo+NXxvNTl3sffIE8bJeMlRfSJtfwF5qj1j
LsT5iMUTkyfO/0veuYTEC1/KO4ZOrsCatONd96edG0B8nRgY/gbyEHrE/IkR
Eiskx4FY/8Np5xsQHycmiz+APIKzoh7/BHkI3SNej7+BvIMuEX9/KO1Ye4/I
mWBe+dDPnPUeKHfx/znA9smjOh9HZ5zTiL2dS9nXi8+XvCVyqJqn7MPGl40/
l3rakeuE/5tYdiHlXKdmKede4Q/GT3Noyr4/fIBNox3t8TcWRYeknPuEvwm/
zVXRB++uiG9Xp+xzfj14csfeimddNYf6Ges/9CA5kvWCRzfij8D3MDbw81D9
Hqny4YGfIPhiyAzWKBeYBlmAPwFbEwzVIex3bH98ANju2Of4PsAg7QNr0R4b
FVue7/J9/B3gdXJKB+q83BbxaJ5Rh88DDE4/9IcPBcyPD45cHOKp+LSma00O
SNmnhS+ds8Oes9fd4tx1j/whztK+4bMkZkrsFP8jvszWka+DDxafKzEdctuI
mRJ7vTXsSewjbKG2EYslZkrsd0HYX/hz8V3eEfm2U0WHNzSGB8szR+b6XvhD
uSPcla3h/8TniO+RO8/dR95g6x0b48Ufio+1TcRr8WeSS9A+xsMYGevO8N8x
Jsb2bdiK2HTYcTdG/Jg4A/EG8lWIGRNDJZZ6YsSLa8cd526TG4TNipxbGPF3
CJ74OLF5ZPSqwADIbnys+FqJPxLr405yN5EDxKdZc9Z+Xti32KfYqkfH+mNj
YWtdG/YmPlX8d/jx8LWSm8IcGDtxb3IyyM/rHfEuxn9P+GLJTagVc+4X+dTI
G+TX4MrduT6UmfPAyIEiL+r0mD/+cvLOyf8jv69OyLRBlbtzfSgj24ZETjp5
U6wxsR1kIGdy2P/LHaLM2RwR+enwyDryUJgzc/88bG9sduz4OZFvSS7P2jjz
5LKjU5DZYyJfHf1CPe3I9cAfTi4pOXTk0pHTj35CB5EHwpnl7A5p5Nxx4gHk
mpKTSG4i3+Bb3DPyOvgO30M38F8F7uLBKfuXuZP4L7HHR4U9fVDKvmz819mU
YxD4kB8I/wA+4xZZx29aR34IvnVi/sT2iOE/XOKYH/X4fPHxYjNjO5NzQ04f
sTLiRcTgyLWryffJOmZHrmNN/lDWOUU1uXhZxyPJ4anJhcw6PkdOEbl7r2Yd
j9qVY/pS1vHNheFzvivsa2JS5MeSj0SsakapfTL4Yq4qtc2O7V6tM30Zd1vr
siJjGwcfRDF0ATEo8njxgeMLXxnxeeJh+Hfoc3bo7qNSjoehw5k38yeXkdgh
ORJrIn+A9SMexfqzDzNy/j8FPit8CsRJsLew9bDxsPWIgZEzSj4TsTHmzfx5
Rh26e2f44Mgt3OXTKon/myCDqK8X+YnkD4KZkCHEHfiPB/44/HLEHdDl+J5o
Q1tkFrJrj8h/JGcL+Y8eIN7BN38MPyBxAuQb79eJfESwAFgNmUccg31kP8mT
fTnrfukfvwdxBe725+EDZG24+1+HX444GfNifvjq+O8OfdAX+WnEtLnr+Nbw
zRH3wH/H+/8OWcIdpn++gyzhPyr43bjTNf9hqbSvh2fUTdN890v5XqHrTgif
HPMC67QPn+AfIWum64zNLPWZ4GzgBzs18MwxGZ8Zzs6MyK/C3zwpMDS+amIn
hwY2IYYCpgHbTIj8K9pMDBsQGwhfwYSwEbGRiMcQG2sW2AV7j3ranRK2M76p
sbvsn5b2F9xHfy0dSysEFiKGCoaifFHkhxE7Qm6Aj8dEXBIsXBlyZ1LkQoCL
wErIT3yVx4S/DsxMLAicBZbGR4t8RceQN8vYiV+B2ZrFHeGuHCi6Iuf4Ft9o
HliQdckFNiQGhv96XNhyHcO3gW98fNg0+O/PD1sZe5IxM/b1ITMZO/kGLQLb
PSY8ek3YINgm2ZCdG2INmMMhgRWJ9ZGvwBlg78H2+DqI9YDRwGqsaTFkCzle
xAvBo+w59sbglm7Pe/hK8AsTX0Ufo3OQC8gHfDrEB1hL4mtVgV3pg77GRb7d
/wHcFEO9
"]], Polygon3DBox[CompressedData["
1:eJwt1F1Ml1UcB/CfNQlJK7spQNTanDjxBfCNTCYI3WRdFMzN0AsX+AJBXTHn
YokMMCx1RrPFO/9Abioqa4it1WqultZqc2apTK3JlanXNT/P+F989pzveX7P
ec5zzvn/n9rV9FLjAxGxmdmUl0Q0F0TULYiopnZtxGsJ7UZqqJNzVkaMPB1x
d37Ec3Qui1iSF/HnnIhTWREphigz5haqqOZlznOBKa5zjRG1o4xx1Rh/8fqS
iHr3GthHozy4ImLD4oiDD0e0UpvvPY+Y/6PeQwUpudo3/J8b8R9Z5lwll/q2
Btft8ivp73iVSu0tSU36e99VM679BZ9zVH5Df7N2u3Ynk+sjTpvTl/zEj5zj
eXXbCmbeP1f9Vnk7Jdo79NVwxrMD5jhMufmWsYlJz5/lV37jF36wzm+l16CR
7+W3H4tYbc2LWcMRudT6XzdGu/ZhdsrDXHP/o8etCT/LY55fbpwaa7mTCnM5
r/+U+6NMqU/JN9RdUderpodKdZf1dWufYMy93+U6699mHw5RYl+G7M+E/lo1
dexSd0bu076jfY9/0+NmW5MccplDZrIv+r0+bms/mZ7nGuMeMP5ZZ2OCIrmQ
r7Qn2e9esdzvPP5j/n9zg165j5va09xiQH7GuBt5kRfYSq19KUufg3J2yxfV
/5GMY116OMkl+UPXPvq5LJ9L9sQYnTSbb8YG2fUzeYBBuuQ25+CdgpnzNeQd
LfJ7rilGGaE7OYPzrB0POR8PMovZZJDJHvd2s9S4lj9K2cSzMTOXrvR7+5Mz
lJyf5AxzjOMcZL0Hx63dp0z7rWXJmdzS/ljfJ6yT29W+zwecpIOFrGQ1q1hE
3lz9LKbBftTT5vkF8rd8R0oe5hvtr8mhNX/mjLeaazet1inL+rVYo6b0f04L
b8pLXfNZlpwNnkjm47BU2oPbDNvbbGPt9e59LDJ+Ltl0+k10UaSukBXs8GyH
vkNMJb9B+T4C7rq/
"]]}],
Lighting->{{"Ambient",
RGBColor[0.30100577, 0.22414668499999998`, 0.090484535]}, {
"Directional",
RGBColor[0.2642166, 0.18331229999999998`, 0.04261530000000001],
ImageScaled[{0, 2, 2}]}, {"Directional",
RGBColor[0.2642166, 0.18331229999999998`, 0.04261530000000001],
ImageScaled[{2, 2, 2}]}, {"Directional",
RGBColor[0.2642166, 0.18331229999999998`, 0.04261530000000001],
ImageScaled[{2, 0, 2}]}}]}, {}, {}, {}, {}, {}}, {
{GrayLevel[0],
Line3DBox[{23, 7361, 7362, 11419, 13707, 7363, 7364, 7365, 7366, 7367,
11420, 7368, 7369, 13708, 7370, 7371, 11421, 7372, 7373, 7374, 14268,
11422, 7375, 7376, 7377, 7378, 7379, 13709, 7380, 7381, 11423, 7382,
13710, 7383, 7384, 7385, 7386, 11424, 13711, 7387, 7388, 7389, 7390,
7391, 11425, 7392, 7393, 13712, 7394, 7395, 11426, 7396, 7397, 7398,
14269, 11427, 7399, 7400, 7401, 7402, 7403, 13713, 7404, 7405, 11428,
7406, 13714, 7408, 23}],
Line3DBox[{2522, 7409, 11429, 7410, 7411, 11430, 7412, 7413, 7414,
11431, 7415, 7416, 7417, 7418, 11543, 9529, 7419, 7420, 7421, 7422,
9530, 7423, 7424, 9531, 7425, 7426, 9532, 7427, 7428, 7429, 7430,
9533, 11432, 7431, 7432, 7433, 7434, 11433, 7435, 7436, 7437, 11434,
7438, 7439, 11435, 7440, 7441, 7442, 7443, 9534, 7444, 7445, 11436,
7446, 7447, 7448, 9535, 7449, 7450, 7451, 9536, 7452, 7453, 7454,
9537, 7455, 7456, 7457, 11437, 7458, 7459, 9538, 7460, 7462, 2522}],
Line3DBox[{2525, 7463, 7464, 7465, 9539, 7466, 7467, 11438, 7468, 7469,
7470, 9540, 7471, 7472, 7473, 9541, 7474, 7475, 7476, 9542, 7477,
7478, 7479, 11439, 7480, 7481, 9543, 7482, 7483, 7484, 7485, 11440,
7486, 7487, 11441, 7488, 7489, 7490, 11442, 7491, 7492, 7493, 7494,
11544, 9544, 7495, 7496, 7497, 7498, 9545, 7499, 7500, 9546, 7501,
7502, 9547, 7503, 7504, 7505, 7506, 9548, 11443, 7507, 7508, 7509,
7510, 11444, 7511, 7512, 7513, 11445, 7514, 7516, 11446, 2525}],
Line3DBox[{7164, 7517, 7518, 13715, 7519, 11447, 7520, 7521, 13716,
7522, 7523, 7524, 7525, 7526, 11448, 13717, 7527, 7528, 7529, 11449,
7530, 7531, 13718, 7532, 7533, 11450, 7534, 7535, 7536, 7537, 7538,
14270, 11451, 7539, 7540, 7541, 7542, 13719, 7543, 11452, 7544, 7545,
13720, 7546, 7547, 7548, 7549, 7550, 11453, 13721, 7551, 7552, 7553,
11454, 7554, 7555, 13722, 7556, 7557, 11455, 7558, 7559, 7560, 7561,
7562, 14271, 11456, 7564, 7164}]},
{GrayLevel[0],
Line3DBox[{22, 7407, 41, 11943, 38, 9561, 39, 60, 11947, 57, 58, 76,
73, 74, 9573, 11961, 95, 96, 117, 9590, 136, 138, 11983, 159, 178,
9610, 180, 199, 201, 219, 237, 14149, 9628, 239, 255, 243, 241, 12010,
244, 9633, 226, 224, 12006, 227, 210, 208, 211, 192, 9621, 11994,
190, 172, 152, 9604, 149, 130, 11972, 110, 107, 9584, 87, 84, 67, 47,
44, 14148, 9566, 26, 22}],
Line3DBox[{2521, 7461, 2722, 2723, 8227, 2921, 3097, 10369, 3098, 3261,
3262, 8377, 3429, 3585, 3586, 8531, 3743, 3901, 3905, 8689, 4063,
4227, 4231, 10621, 4397, 4401, 8847, 4565, 4760, 4764, 4963, 10739,
4967, 4971, 10744, 4772, 4773, 4778, 10702, 4782, 4581, 4582, 4587,
11502, 8867, 4591, 4424, 4256, 4090, 8715, 3932, 3772, 8559, 3616,
3456, 8403, 3290, 3124, 2950, 2945, 8248, 10340, 2941, 2937, 2747,
2742, 10296, 2738, 2734, 2536, 10247, 2531, 2527, 10243, 2521}],
Line3DBox[{2524, 7515, 10245, 2529, 2533, 10249, 2537, 2736, 2740,
10298, 2744, 2748, 2939, 2943, 11497, 8249, 2947, 2951, 3125, 3291,
8405, 3457, 3617, 8561, 3773, 3933, 8717, 4091, 4257, 4425, 4594,
8870, 10664, 4590, 4584, 4585, 4785, 10704, 4781, 4775, 4776, 10745,
4974, 4970, 10741, 4966, 4766, 4763, 4567, 8849, 4403, 4400, 10624,
4233, 4230, 4065, 8691, 3907, 3904, 3745, 8533, 3588, 3589, 3431,
8379, 3264, 3265, 3100, 10371, 3101, 2923, 8229, 2725, 2726, 2524}],
Line3DBox[{7165, 7563, 7168, 11351, 13643, 7181, 7184, 7199, 7215,
7218, 11367, 7234, 7237, 13668, 7253, 7270, 11385, 7273, 7289, 7306,
14267, 11400, 7307, 7323, 7320, 7321, 7337, 13697, 7334, 7335, 11410,
7350, 13702, 7347, 7348, 7356, 7344, 11405, 13700, 7343, 7328, 7312,
7311, 7295, 11389, 7294, 7277, 13677, 7259, 7258, 11371, 7241, 7223,
7222, 14266, 11356, 7205, 7204, 7207, 7191, 7190, 13646, 7193, 7176,
11346, 7175, 13641, 7178, 7165}]}, {}, {},
{GrayLevel[0.2],
Line3DBox[{8227, 8228, 8231, 11675, 8233, 8235, 11677, 8237, 8239,
11679, 8241, 8243, 8245, 11681, 8248}],
Line3DBox[{8229, 8230, 8232, 11676, 8234, 8236, 11678, 8238, 8240,
11680, 8242, 8244, 8246, 11682, 8249}],
Line3DBox[{8377, 8378, 11703, 8381, 8383, 8385, 11705, 8387, 8389,
11707, 8391, 8393, 11709, 8395, 8397, 8399, 11711, 8401, 8403}],
Line3DBox[{8379, 8380, 11704, 8382, 8384, 8386, 11706, 8388, 8390,
11708, 8392, 8394, 11710, 8396, 8398, 8400, 11712, 8402, 8405}],
Line3DBox[{8531, 8532, 8535, 11733, 8537, 8539, 8541, 11735, 8543,
8545, 11737, 8547, 8549, 11739, 8551, 8553, 8555, 11741, 8557, 8559}],
Line3DBox[{8533, 8534, 8536, 11734, 8538, 8540, 8542, 11736, 8544,
8546, 11738, 8548, 8550, 11740, 8552, 8554, 8556, 11742, 8558, 8561}],
Line3DBox[{8689, 8690, 11763, 8693, 8695, 8697, 11765, 8699, 8701,
11767, 8703, 8705, 11769, 8707, 8709, 8711, 11771, 8713, 8715}],
Line3DBox[{8691, 8692, 11764, 8694, 8696, 8698, 11766, 8700, 8702,
11768, 8704, 8706, 11770, 8708, 8710, 8712, 11772, 8714, 8717}],
Line3DBox[{8847, 8848, 8851, 11795, 8853, 8855, 11797, 8857, 8859,
11799, 8861, 8863, 8865, 11801, 8867}],
Line3DBox[{8849, 8850, 8852, 11796, 8854, 8856, 11798, 8858, 8860,
11800, 8862, 8864, 8866, 11802, 8870}], Line3DBox[CompressedData["
1:eJwV0EdWglEMBtC4Ex04dCrH3nsHexdFRATsuB972Y6ux5vBPV9ekr92lVvF
ZkdE7NHXHVHojBjguSdiSA4zxgSnvRGT8tVsRs6ywBLvesuyYmdNFtlgky0+
zX8LnqPe54Cq3WN5QplzanrfdqvqC66o6zVkk1b2nK/lDQ31rbzLufpePvCY
u85t+cRlcq7JH/evy7P8pnyOfkUeccif9/yys6PeZpd1SvmOdlflh/mKXGSe
Od70pvO+dqbkOKOM8GI2KPvzGv/5H0N/M3U=
"]], Line3DBox[CompressedData["
1:eJwV0DdOA1EUBdBnk0wGwwJwQUkLElugo6VjAbACctwWOdQWYEzG5JyxicfF
0X1z3x99zWQGh/uHEhExQG9nRLYjYqErYlvm2GWfA5b0uZ6IY/MpBS5Y0V/K
ke6IG3nLA488sWaf996r+Y13xp0tyS++iUzEpG7D2YQ5SRVTumpZQyNNzOqa
ZQtz5laZZt7cJtupJcW0rk7WM2NukJVUsOmuX3f/MGH3Jz/5YMxzUa478yKf
ueeOUbtruWp3Jc8546T8v3znsv7IfMgeeXZY1G/JPv/5H6nKSGQ=
"]],
Line3DBox[CompressedData["
1:eJwV0DdWw1AQBdBhKS4oaaFgB5S0dCwAOOQcTM7ZgI3JOa8ITGYZ3CnueaP3
v6QvFdo7WzvqIqKN5vqIrkLEW0NEj+yjnyGGede/NkWMmSeYZJpP/YwsNUbM
ywWWWWGVb+s1922YN9niwN6S3GOfQyq6X3ur5iNOs9edyXNuueNYdy8fODE/
yqfcb36WL1xyQVV3Ja/zmeabvCefwZ93lfMslK1V5A7beSbXu/LHnnW5xhKL
eWZrc/LL2qwsMsV4/jvf+aEfNY8wyAC91PTdssV//gdhEEb2
"]],
Line3DBox[CompressedData["
1:eJwN0EdSQlEQQNHGNLIQM2ZBMYMBBQPmCDhyyswF6NLMcTvqMlTO4NTt3+9R
1P+Z69urm0RENKjkIjqzEb/5iC7tpod+Bvi3/ypHDJlHGGWCRCFiUu9KEVM6
zSxzzNPq/Mfvlsx5Cjy6u6ZF1tnk2a7d3S3zNru82O3pPqec8W53rhd8mKta
49Nc10sOOeDV7kiPeTOfaIUdOvxXSTd4clbWFZZ58Lyqbe4s6gIz5Lh3ltUW
ZxkdZ4xhvr1n2KfNg/TRS4o/3y+pVd+5CeZSKaQ=
"]],
Line3DBox[CompressedData["
1:eJwN0DVSg2EQgOGlIrjcAGZoKaGjpcJCcAkEtwQN7q4Xwi3cBK7BUzzzfpvd
+YvUZXLJbFFEpGlpiLivj6hpjLjRay6pMp/pKccUmiIOdJ8Ku23dYZMy87p+
uVnTLEvkmKXE/tNuznuCDO/mSR1hmGI3o/rm9zZtp4NHc6d2keTJ3K0pnr17
tJcX7z7tZ4BX86AOkSbh+7/NEWPe40wxzYe7GZ1ngT83pW4XvZdZYZUNvt3m
tdx+S3fZo9J8qEf8uDnRcy6otrvSW+6oNT9oq//9H1QvOWU=
"]],
Line3DBox[CompressedData["
1:eJwV0DdSQ0EQBcDhKAoISVFIxgFIyTgA3El4W4UR3ntvhPdIeBBI4gT0Bl1v
/szUbv3NtHW0tNdFRCtN9RGVTEStIaIsv3nng1cq+sONESV1kQd+9O7lDYNm
1/KcM47SGeaHcsDsWO6wTZ/vXbnOp501Oc8c3WYLcpEe9ZIcY5RxcnoTMk+n
elJO0aWeljPMskyv3opcZYMvdxWzEZvqLfbYp9/egTyhQMlO2e6p+oJLrrhl
yO6dfOTXzpN85oURs6reW/qvdF96o7THn35VNnvnf0U9V74=
"]],
Line3DBox[CompressedData["
1:eJwN0EdSQlEQQNF2Eeb4VcwoooKCAVTMkZlTFwDrMOdVmcMQ9uIZnLqP7q76
VSTn9WqtJSLOKKUiftMRp0nEEYfs8W22q8+5iC2tsM6neVlXebRb0SUWmePd
PqsPdvOaZoo7v6d1jFc3ozpAP9d2iQ5y4z2kbbTSzoVZh3Zy6d2l3Vx592gv
fQxza5bSEcZ5861GPmLCe5IZMty7m9UFcjTdfLjNexcosswaT25LusGXm03d
ZocXu339MT/QY06o8mdW8f/+AwZ2LVg=
"]], Line3DBox[CompressedData["
1:eJwV0Ec2hFEQBtCyEwaGpoydYwWmZhYg5260nHPOOdMaLeyE5bg1uOerV1V/
OK+uvbO1oyYi2miuj/iujfhsiKjKDyq88pJn/UJjxKP6gVve9G7kJcNmF/KE
Y/byWfNdOWS2LzdYZ8B5Uy7nu+0syWmm6DWbkbP0qefkSL6fAl16RTlKt3pM
jtOjLskJJpmnX29BLrJC2bd+myJW1Wtssc2gvR15wCF/dip2j9SnnHHOVf6L
3Wt5x7ude/nEM0Wzql457ybneZ98Jf0f2eKe/wFiZ0SI
"]],
Line3DBox[CompressedData["
1:eJwN0EVSA1EUQNEXgrt7SEIVQ6Ywhx0wwQlkAbAUPMiygA3g7i4BzuDU/a//
q66uzuaXxhYTEZFjZCAim4nYGYzo0xQ9bJk7tYM2FoYimrWJTXf1WkcN6+ZK
zdmp0BISJCmmI1bd7w9H/Di/88as3Q995IFlO0864/mRHnLMuPlETzljwnyu
F0w6X+oVU87XesMt0+Y7veeZFe/f8w0vzq988sWcvW/95Y8DO2t2w7eXUkY5
VczbrdYN97XaQCMFc4u2krfTrl10s+2uV9Nk2DX366j//g/CNj10
"]],
Line3DBox[CompressedData["
1:eJwV0EkyA0AUBuDnHMYEW0tW9lnb2jkAl6KIWYyJeQgSIYSYiWDhGL5efPX3
G6q7qjMTU2OTHRExTm4wYiYbMUfXUMSCXGSZNSrDEQXZY7Ypt9hhlz69PXll
51Aecc4ZZbLmNbNq2uGOG3Vd3vLEgJ3HVOs35S8/NNXfss0XD+qW/OTe+UO+
03B+k6+8pDfUz2k/7dHv/rpeI73NNbWUehV5yQV/IxEZu6fOJxxzwD5VuyXZ
a16U22ywTrfearrHzopcYp48nWazcppR//wPSPJO4Q==
"]],
Line3DBox[CompressedData["
1:eJwl0UVOZFEUgOHLMqApHGYMCftgCSyADgvBpXF3d+tuqMKdbtx2gLuM+BIG
X/7zzr1VyctLzf+ZVxAXQiikKBJCMfXEZ4cQzQ2h0dxEKx38sO/Ubvp4yAmh
XyP2QzrCKBMk203qkzszOkuq3R+dZ4FFXpwvabqzFV1ngy0y7bb11Z09/c8+
B7zZHeoR7+ZjPeHDfKpnnPPp+UIv+ccuWf435v12zJussUqG/bLGiPLst381
zf63zjHNFCl24/rozpgOk2Q3qAP00sO98y5NdNaubbTQTIJdg965U6e11PCL
W7tqreLGXKkVXJvLtYxSrjyXRL6/3xdOTFzd
"]], Line3DBox[CompressedData["
1:eJwl0uk6lVEYh/G1ZSYyJBLZIcPem8LeKlOU4XOH0AHU8Tidcho0GCoUoQyJ
fs/Vh/u6n/V/1ruG932zr9++epNJKa1ivSulDfxAKqW0z9/xE0OFlI74FzJ6
v/kM58jpXfJ1PNed0g39gqwsalSiBrUYlddzI27hsXEL30YbOjAuu8v3cB8V
1uvhovwB9+IhhjApG+Yqc/JcwCM8lY/zRMzBE7yfTGlKPq2eifN4Zpbn8Bx1
xvO8gHr1C36Jm+pFXsIypq2xZq0V9bPYK+5nzhSX4pyRmzMW90O13iiPIBdn
0RvkAfTH+9EvyfrUWXSjC51xfnk730ErxoybuQkNcba4r6wu9on3gHLrVcR+
8nLO4Mq3+Yu87A+XmXPBpzjBsPyYD3GAPbxzx0H5rvpbfN9iSl/5C3ZwZbzN
W7G2epM/41L9iT/iAwZiz+L//+sfGBhO8A==
"]], Line3DBox[CompressedData["
1:eJwl0llXjlEYgOHtD2QskT4NHDrlqEyR0KxCCaXMlXloMJdkSuY5JCEhFTJG
+Fmud3Vwrfv5nr1bX729qVX1RXWTQghD5MRCWE3cwhDydC0ZC0LI1RKm2pfq
JsqpYIZdtS52b6tWsYME+1rdzm6WOp9pt8e8nwb2cYhZ9od1uTvHtJEV5mY9
wUnOkG13TtvIMbdrB2vMl/QKV+ki1+6G3iLfPL4ohDvme9znEY8pdPZMk/wO
PfqcPl4Ss3ujxe4M6CAfSLEf0k98JtXnUf0SPSd3v+sP0u1/6hjzzL/0N//4
w3y7cf1LqZ/7pl9Jsx/RYT7yjrl2b3Wde+/1Na9Itu/XF/RS5HyO3RNzN095
yAPuRt/rORS4c9t8kzzzdb1GJ5ej/7vdRb0QvQ/m89rKKvNZPc0pWlhp16TH
yTIf1dm+/4ge5AD1LHNWp4nO9uoudlJDvN02XeLOFt1MJdPtN+oG1jPN57Lo
GZDpbnH09zLFvlALmGzOj96J2MT7/B8aWmuG
"]], Line3DBox[CompressedData["
1:eJwl0ldTU0EYgOFFRLGBYhcNYKGHBARiBXsXHW9sFEUQK/gXuUKK2Ltib6Ai
Yu/PGS+eeXe/s9mTDBS0dh3oTAshdNMbC6GP0toQ7uptDsZDuKPlZg/0IU95
TNzsib7msHMv9RVJ83c6wlvG6EmFcNSZj9af+co3msx+6m/+0Otci1laXgjp
ZDCJ42ZTdBonrGdoNjNpt5+tld47V+fTYbZQc1nMafs8LWApKzhr1u99RdbF
lFFOnGp3Vep5Z6q0lhqzlK5iHevp8nxDNPNso25lG2vst+sOdrLWfpfujj5r
vUf3RndYN+g+9rOZ1WabdAsX3F+vKbO66N7oeXRf9J3MqnUlnc7VaCLam1do
klJKGPA7zzlTaL2cZeRzxiymS1jEKfsFOo8q98zRk2Y5Ooss2uyn61RarTN1
MhOZwDGzPu8L1n/9TX/RbPZDv/OFTzSaXXRu3PoDo7xnmIR3v9EjzrzQ51SY
PdNHDHGfQ57f0zLPbulNblBif12vcZVi+yt6mSLrQb1EofWA9sf+////A5Fx
b6U=
"]], Line3DBox[CompressedData["
1:eJwl09VWUEEUBuDxSVw+ALd6Z2C3oKjYYhcICiIImGBQdoPdit1dgAqIrViP
4reXF9/69+w9DIc5hz55Bdn5vVJKHWT1TimbeQzum9JcmcdCVmWktEguZ4jZ
UrmMIoZar5SFrKHY3mJZwnCzclkRM/1KuYFNbGatXle/lGrU29hOuV6dbKCR
3fHzenvlfqrUB+XhOEt9VDZzjJNxtt5peZbzbLG+IEd6lsuyhavU6N+QNxlt
dkfei+fQvy8f8ISxZk/lS17xmh32dHvuN+q3dNLFR7LsrzP/pP4cd2r9RX7l
GxOtv8sfTFL3yJ/kqH/J3/xhsnW9c/6qu3nPBL0PsoN31Jq3yVbGm7XL5zxj
nPUL+YiHcbf2PpZ3GWN2W95iq/51eY0rjDK7JKv1L8pznIn3ZX1KnuA4TWzU
OyIPsV59QO6jUr1H7mIn9azTq427i98Zf4/7K9OrjncUZ8UZlOpVxX5GeJay
+E7ie9Ivlavje2SYWYHMZwVLYmZPp3MXqxcwnznMJtP+IvNZ6pkMsp4hpzON
gda5cioD1FPiHdBfnRPvKt5d3L3zCzP+/7/8A/NEj/4=
"]],
Line3DBox[CompressedData["
1:eJwl01VXlFEYBtCDoNit2MogIcigqIyihBiYoIAdIAZYYP1Nb+0AkZgh7FZ0
n+XFXs8bZ8588y3I7+xt6ckKITxkMBHCEIXJENKpEIbVI6R5VBVCRo7yWD0m
x3minpDveM9T/Qf5kSL3ZNzzSf2Z7/zgd7zHvMT+jzqrIIQpZPPS53PldGZT
6swcOZfXdvPlIjaaL5ZLWc4Kkmbj7l2lXss6NpklZCFFlFBpVhrvYKs6Gc9R
pa6MyTa2R2bVchd1VOvrZb9naZD72B/35gflIQbsjsgWas2PyeOcYtDuhDzJ
BYb05+R56p3tkJe4xrDdFXmVBzTE32d2X32Pu4zp78heRtU98jYZ9S15kxuk
9ddlN7vdM6LvUl+mk3YuMuH91dmfVZ/hNG28db5VNtNEjTNH5WHe2B2Qjew0
3yv3xO+hz65W7jCviftYk9Kn4vtnC5vjOzerkOVxpi6TG+JOXSwLWE8+FWar
5RpWxvfgucvN8tTLWMJCyswWyHm88iwz5Yx4r/ksmcNUXthNk5P+Hv/yXB/0
P9XFzv6SX/jKM7tvif//L/8AA8N3lQ==
"]], Line3DBox[CompressedData["
1:eJwl0tlWj1EcBuBdkuuwOnfIBShjQkjhyAVwZM48p0Fknmcyz7NkSKaUWcg8
k1KSRJ69OnjW+9vvt79v7f+u7mPHZ45LCCGUMyElhIn86BnCfDmX3j1CmCeb
dYvlIgrJ56euQJaQZt8yuZxW/Rq5itVs4HuvEPras9G8hW1sp79ul9xDKb+9
O1C333yQIxxmkO64PMlg82l5lnMMtS6Tf7xbLi8zTHdVXqOSEdY35W2qqGGk
rtG57pnv84jHPOGfbz2XOfbUydd06N7It3zkE6M9/yoTfeebbIz3R5J1U7y3
eE90tW6Rv0g2t8bfSjdzWzw77fGe6KKrlw2M8f0vMkH3Wb7jPR8IupfyBaPs
eyWf8tc5a+UzHvIgnsnebHvumqu5wy2ydDfkdSoYbn1FXorn8Z2LMlN3QZ7n
DEOsT8kTZJiPyaMc4gDpujbv7jPvZTcDdDvlDraymX66BufaZF7POtayMt6T
91fIPvYUy6W06IrkEvJYSKrnC2STZ3PkbGbFv4P1TDmD6fEurXPltHjH5qly
CvXmyXJSSuf//39hJ5/7
"]], Line3DBox[CompressedData["
1:eJwl0ulbjFEYx/GTLFMiRmoiSxpZIkLGvmQpa5myhFJTQ1QzlVSWf8tfZnmH
Pvflxff63ud33891nvM8p71ULVZqUkrf8acjpb/4h9p8SnWFlDbyJtSrN/MW
jHenlOGtaJA38DZsD1tneReaMGE2x43yVt6H/WjHTtkhLpnp4CM4iq54Xu8E
T+t182m8VZ/hXpzHBczILvEVfFBf4xuYU/fxXdzBACqy+/wQC+pf9nisLuIJ
nuMpnuG33pKZV+rXmMRu2QS/iXfBsv40t8jLsWe8A2axR7bIS1gx95W/xPnl
n/kb1rCKNtkKf8Je9TJ/jLXnFriKVnmF5/EeOesZfoepmDdb4mb5OI/hJUbj
P8he8KKZER7GEAbxCD/1q3oP1PdiD3U/38Yt3Iwzya7z1dhffZkvxv7qAp/F
OfSgLDvFJ+Pd1Mc4a4/jnMdhdOIAfsgnzRyMs8d3ww5ZW3zvOE98b/2WuF/y
xujH3Yn7GXdQVs81cWZziTcgU/h/n9cBJERRKA==
"]],
Line3DBox[CompressedData["
1:eJwl0ttWTVEcB+DZi6S0KaJ01Xv0CB5Alwlbts4nUUnbKRQdHYoiRUen6ESl
JCHJG9Slb40uvvH7z9+cY4411lrpJwsLTqWEEJLEYyGc5xIZ+SHUyXoaKc4J
4YpsIWbvqkzSyll7N+Ud2jhsP667Z27nAd30UKLvk495QsL6qRxkiGFKdS/l
KGNkuW9clusn5RRv+UClbkYedeaTnGWBav0XucRXVjnuTK3+u3mDHOsfcpOf
5Fr/kr85Yd6Sf8gzb8u/7FDnjj3dP/M31jhmvS5XWKbGmUX5mWx7c3Kej1TZ
eyff84Yj9it00+YJXvOKEcr0L+RznnHRekD284iHXND1yi46yXTf/ehb6jvk
XW5zi3O6G/KQM9flNZo5o2+Sl2mgll1nTutrovfJQeuq6J1TQbp1efSMpJlL
o+fjgDkRPVf0vSlyR2r+/v/1H9zgdkA=
"]], Line3DBox[CompressedData["
1:eJwl0WVOQ0EAhdEp7u4uxaFAheK6A5bAAiAsBHd2iLvrIfw4+ebdN2mTtn1l
bXk1EkJY5ywawjkXxNMhXOoV1yQ83+gtSec7vSfl/KCPPPHMmO1VN2MhfOgn
3/ywbcvoCmHcnSzNJo98dr0r1BImvS/VfVuFVlJLDYe2ep12p1mbaOPY3qkd
dNPPrDun9j7nwb/vJc2SfUxTJFn0nNA4C86jOsK887DGGGKAOVuvnvjcHu0i
SjtHtladcadFG2mgjgPvqrWKKe/Ldc9WpkUUU8COLUcn3MnVTAJb9oh++R3f
eCftzob9Jfr///0CLmM9Yw==
"]]},
{GrayLevel[0.2], Line3DBox[{9561, 9562, 14333, 9563, 9564, 9566}],
Line3DBox[{9584, 9582, 9581, 14339, 9580, 9579, 14338, 9578, 9577,
14337, 9576, 9575, 9574, 9573}],
Line3DBox[{9590, 9591, 14342, 9592, 9593, 9594, 14343, 9595, 9596,
14344, 9597, 9598, 14345, 9599, 9600, 9601, 14346, 9602, 9604}],
Line3DBox[{9610, 9611, 9612, 14349, 9613, 9614, 14350, 9615, 9616,
14351, 9617, 9618, 9619, 9621}],
Line3DBox[{9628, 9629, 9630, 14355, 9631, 9633}],
Line3DBox[{10243, 10244, 10292, 11675, 10334, 10373, 10405, 11705,
10437, 10467, 11735, 10497, 10527, 11765, 10559, 10591, 10625, 11795,
10657, 10698, 10739}],
Line3DBox[{10245, 10246, 10293, 11676, 10335, 10374, 10406, 11706,
10438, 10468, 11736, 10498, 10528, 11766, 10560, 10592, 10626, 11796,
10658, 10699, 10741}],
Line3DBox[{10247, 10248, 10294, 11677, 10336, 10375, 10407, 11707,
10439, 10469, 11737, 10499, 10529, 11767, 10561, 10593, 10627, 11797,
10659, 10700, 10744}],
Line3DBox[{10249, 10250, 10295, 11678, 10337, 10376, 10408, 11708,
10440, 10470, 11738, 10500, 10530, 11768, 10562, 10594, 10628, 11798,
10660, 10701, 10745}],
Line3DBox[{10296, 10297, 11679, 10338, 10377, 10409, 11709, 10441,
10471, 11739, 10501, 10531, 11769, 10563, 10595, 10629, 11799, 10661,
10702}],
Line3DBox[{10298, 10299, 11680, 10339, 10378, 10410, 11710, 10442,
10472, 11740, 10502, 10532, 11770, 10564, 10596, 10630, 11800, 10662,
10704}],
Line3DBox[{10340, 11681, 10341, 10379, 10411, 11711, 10443, 10473,
11741, 10503, 10533, 11771, 10565, 10597, 10631, 11801, 11502}],
Line3DBox[{10369, 10370, 10403, 11703, 10435, 10465, 11733, 10495,
10525, 11763, 10557, 10589, 10621}],
Line3DBox[{10371, 10372, 10404, 11704, 10436, 10466, 11734, 10496,
10526, 11764, 10558, 10590, 10624}],
Line3DBox[{10664, 11802, 10632, 10598, 10566, 11772, 10534, 10504,
11742, 10474, 10444, 11712, 10412, 10380, 10342, 11682, 11497}],
Line3DBox[{11346, 11347, 14645, 11348, 11349, 11351}],
Line3DBox[{11356, 11357, 11358, 11359, 14649, 11360, 11361, 14650,
11362, 11363, 14651, 11364, 11365, 11367}],
Line3DBox[{11371, 11372, 14654, 11373, 11374, 11375, 14655, 11376,
11377, 14656, 11378, 11379, 14657, 11380, 11381, 11382, 14658, 11383,
11385}],
Line3DBox[{11389, 11390, 11391, 14661, 11392, 11393, 14662, 11394,
11395, 14663, 11396, 11397, 11398, 11400}],
Line3DBox[{11410, 11408, 14667, 11407, 11406, 11405}],
Line3DBox[{11420, 9583, 14340, 9585, 9586, 9663, 14364, 9664, 9665,
9717, 11550, 9718, 14376, 9719, 9772, 9773, 9774, 14403, 9820, 11568,
9821, 9822, 9884, 14420, 9885, 9940, 9941, 11592, 9994, 10047, 14453,
10048, 10087, 11618, 10088, 10130, 10131, 10187, 11646, 11446}],
Line3DBox[{11421, 9603, 14347, 9605, 9606, 9668, 9669, 9722, 14378,
11552, 9723, 9724, 9778, 14392, 9779, 9780, 9826, 9827, 11570, 14404,
9828, 9887, 9944, 9945, 11594, 9997, 9998, 14455, 10050, 10091, 11620,
10092, 10133, 10190, 10191, 11648, 11445}],
Line3DBox[{11422, 14352, 9620, 9622, 14353, 9623, 9624, 9673, 9674,
9728, 14674, 11554, 9729, 9730, 9784, 14393, 9785, 9831, 9832, 11572,
9833, 9890, 14422, 9891, 9947, 10001, 11596, 10002, 10053, 10054,
14691, 11622, 10094, 10136, 10137, 10193, 10253, 11650, 10254,
11444}],
Line3DBox[{11423, 9632, 14356, 9634, 9635, 9636, 14357, 9637, 9638,
9678, 14367, 9679, 9680, 9734, 11556, 9735, 9789, 14395, 9790, 9791,
9837, 14406, 11574, 11477, 9838, 9895, 9896, 9950, 14437, 9951, 11598,
10005, 10006, 10056, 10097, 11624, 10098, 14467, 10139, 10196, 10197,
11652, 10257, 10258, 10301, 11443}],
Line3DBox[{11425, 9609, 14348, 9607, 9608, 9672, 14365, 9670, 9671,
9727, 11553, 9725, 14379, 9726, 9783, 9781, 9782, 14405, 9830, 11571,
11476, 9829, 9888, 14421, 9889, 9946, 9999, 11595, 10000, 10051,
10052, 14461, 11621, 10093, 10134, 10135, 10192, 10251, 11649, 10252,
11431}],
Line3DBox[{11426, 9589, 14341, 9587, 9588, 9666, 9667, 9721, 14377,
11551, 11458, 9720, 9777, 14391, 9775, 9776, 9825, 9823, 11569, 14682,
9824, 9886, 9942, 9943, 11593, 9995, 9996, 14454, 10049, 10089,
11619, 10090, 10132, 10188, 10189, 11647, 11430}],
Line3DBox[{11427, 14336, 9572, 9571, 14335, 9569, 9570, 9661, 9662,
9716, 14673, 11549, 9714, 9715, 9770, 14390, 9771, 9819, 9817, 11567,
9818, 9882, 14419, 9883, 9938, 9939, 11591, 9993, 10046, 14452, 10045,
10085, 11617, 10086, 10128, 10129, 10186, 11645, 11429}],
Line3DBox[{11428, 9560, 14332, 9559, 9558, 9557, 14331, 9555, 9556,
9657, 14362, 9655, 9656, 11457, 11547, 9710, 9766, 14388, 9764, 9765,
9814, 14402, 11565, 9812, 9813, 9877, 9878, 9934, 14434, 9935, 11589,
9989, 9990, 10041, 10042, 14690, 11615, 10083, 10124, 10125, 10184,
11643, 10241, 10289, 10288, 11673, 10332, 11437}],
Line3DBox[{11432, 10663, 10706, 10751, 11831, 10752, 10810, 10811,
14530, 10866, 11859, 10907, 10908, 10951, 11001, 11885, 11002, 14563,
11054, 11055, 11108, 11109, 14580, 11110, 11909, 11524, 11171, 11172,
14609, 11216, 11217, 11218, 11270, 14625, 11927, 11271, 11272, 11321,
14637, 11322, 11323, 11403, 11404, 14666, 11451}],
Line3DBox[{11433, 10703, 11829, 10747, 10748, 10808, 10862, 10863,
11857, 14703, 10905, 10947, 10948, 11883, 10997, 10998, 11052, 14578,
11104, 11105, 11165, 11907, 11166, 14595, 11167, 11211, 11212, 11213,
14623, 11264, 11925, 11265, 11266, 11316, 14636, 11317, 11318, 11387,
14660, 11388, 11450}],
Line3DBox[{11434, 11827, 10743, 10804, 10805, 10860, 11855, 10901,
10902, 14544, 10945, 10993, 11881, 10994, 11048, 11049, 11102, 14594,
11905, 11159, 11160, 11161, 11205, 14606, 11206, 11207, 11259, 11923,
14621, 11260, 11261, 11312, 11313, 11369, 14653, 11370, 11449}],
Line3DBox[{11435, 11825, 10740, 10802, 10856, 10857, 11853, 10897,
10898, 14542, 10941, 10942, 11879, 10991, 11044, 11045, 14576, 11098,
11099, 11903, 11154, 11155, 11156, 14605, 11200, 11201, 11253, 11921,
14619, 11254, 11255, 11307, 11308, 11353, 14647, 11354, 11355, 14648,
11448}],
Line3DBox[{11436, 10622, 11793, 10655, 10694, 10695, 11823, 10737,
10800, 10852, 10853, 11851, 14702, 10895, 10937, 10938, 10987, 11877,
10988, 14561, 11040, 11041, 11093, 11094, 11522, 11901, 14709, 11149,
11150, 11194, 14603, 11195, 11196, 11919, 11248, 11249, 11301, 14633,
11302, 11303, 11341, 14643, 11342, 11343, 11344, 14644, 11345,
11447}],
Line3DBox[{11438, 10333, 11674, 10291, 10290, 10242, 11644, 10185,
10127, 10126, 10084, 11616, 14460, 10044, 10043, 9992, 9991, 11590,
9937, 14435, 9936, 9881, 9880, 9879, 14418, 9816, 11566, 11475, 9815,
9769, 14389, 9768, 9767, 9713, 9712, 14375, 11548, 9711, 9660, 9659,
14363, 9658, 9568, 9567, 9565, 14334, 11419}],
Line3DBox[{11439, 10623, 11794, 10656, 10696, 10697, 11824, 10738,
10801, 10855, 10854, 11852, 14536, 10896, 10940, 10939, 10989, 11878,
10990, 14562, 11042, 11043, 11097, 11095, 14575, 11096, 11902, 11153,
11151, 11152, 14604, 11199, 11197, 11198, 11252, 14717, 11920, 11250,
11251, 11306, 14634, 11304, 11305, 11352, 11350, 14646, 11456}],
Line3DBox[{11440, 11826, 10742, 10803, 10858, 10859, 11854, 10899,
10900, 14543, 10943, 10944, 11880, 10992, 11046, 11047, 14577, 11100,
11101, 11523, 11904, 11157, 14593, 11158, 11204, 11202, 11203, 14620,
11258, 11922, 11256, 11257, 11311, 14635, 11309, 11310, 11368, 14652,
11366, 11455}],
Line3DBox[{11441, 11828, 10746, 10806, 10807, 10861, 11856, 10903,
10904, 14545, 10946, 10995, 11882, 10996, 11050, 11051, 11103, 14710,
11906, 11164, 11162, 11163, 11210, 14607, 11208, 11209, 11541, 11924,
14622, 11262, 11263, 11314, 11315, 11386, 14659, 11384, 11454}],
Line3DBox[{11442, 10705, 11830, 10749, 10750, 10809, 10864, 10865,
11858, 14537, 10906, 10949, 10950, 11884, 10999, 11000, 11053, 14579,
11106, 11107, 11908, 11170, 11168, 11169, 14608, 11214, 11215, 11269,
11926, 14624, 11267, 11268, 11319, 11320, 11402, 14665, 11401, 11399,
14664, 11453}],
Line3DBox[{11452, 11409, 14668, 11411, 11412, 11413, 14669, 11414,
11325, 11324, 14638, 11326, 11273, 11542, 11928, 11220, 11219, 14610,
11221, 11174, 11173, 14711, 11910, 11175, 11112, 11111, 11057, 11056,
14564, 11004, 11886, 11003, 10952, 10910, 10909, 11860, 10867, 14531,
10813, 10812, 10754, 11832, 10753, 10707, 10665, 11544}],
Line3DBox[{11543, 10300, 10256, 10255, 11651, 10195, 10194, 10138,
14466, 10096, 11623, 10095, 10055, 10004, 10003, 11597, 9949, 14436,
9948, 9893, 9892, 9894, 14423, 9835, 11573, 9834, 9836, 9787, 14394,
9786, 9788, 9732, 9731, 14675, 11555, 9733, 9676, 9675, 14366, 9677,
9626, 9625, 9627, 14354, 11424}], Line3DBox[CompressedData["
1:eJwl001QzHEYB/AnnFyY4UDbe1S0bYOhDBfDpbzUbi6VzChuXmbcqBmuSnkd
XLzeyUu75SjFeDthHLlRVLgxQz47Dp/5Ps+zz/z2t7v/Le8+ljlaEBHv2b06
Yg+PWNkY8VA+4D4r9MPyLvfyr9dFtG6OmFJPU1YVUUIp2+y2ylo7aXmBVrNz
8jwveMmC6oj9zthur0C9kU106Q/IfiaZ4ITZIbvz6rqaiCRXzTrkKW5xk6zZ
E/mRt+o/MrEm4od6i2yng16WpCKuy3GeMuyOdWZz6uRaNd00mQ3KLDl69Mfd
5bP6C4naiCJamMl/dpmm194ZOW/WL0fIkmOZ+/Q5Y9DOjD6RdAbVZsWyhFJq
9GWynCbW6ZvlTtard8lKKljFrLMKzYecu9x7zOnHWGw2Kh9zlgHCrM9emzrD
XmbdtUQWU8q0zzfFB/ODdsfUowzRrO+R9aT47ntLmR127oR6khssNeuT++hk
Kz/drUj+9fu8U3+S4+TUd+RtTtPJNbN6mSK44i4nzZ57Fp4xQHf+WTJrlA0s
Yof+iN2F6jeet9e84jJp80vyIm0k7ba7d0ZdSQXlbLA34/n+xlcK7VWZ5dRZ
RsiQ5neD31628Kvh///pH2OZiGI=
"]], Line3DBox[CompressedData["
1:eJwl00lsTWEUB/AjVPQZNhU1LVTSATXE2Ip0rtYQFUGIhcSmA15Li52dMWm3
aFAJib6+tlu2ho0xQWcLpd2RsGHX8mssfvmf7+S877v33XtzTjUfSs6KiEEe
50Z084kPfKSwKCJ3fcSLwoh5eRGZ7NKrkGWU08yJ4ogd5lrUaVIcM9cjvzHO
V7LzI5L6dWaXqvewl0brVnmXe7SbGZJX9CecnVUQUUI9D/UaZDt9PLN+J7/z
RZ25JiKfKXWNrOcGKzZE/LRXj3qA2WsjivXmyCfOK5FtXOCIfpd8xWuarVvd
45R6ms3rIrawld9+2yibOM21mT3NdqtTDDFMlt6ITLiG+dwxt1pvgbqUMsq5
xQH92zMz1Kk7ZSUVbLSuktXsZpN1jaxlEZ32vay3UD3mvFE+kyZDv0deN3NW
nuGP60/K7Wwj+OseR/RbzL1Vv+EBR60vyYuU8tTMXLlTP0MO+l/T/HL2Sr2b
6gZqmfY8CmSCcfUPz+s9z9X9soMmHlk3ylIWM2mvq3rD3ocO53XJ+7TRpL9f
7mM5B61Pusdl6knv2wT99HHcb3vleYrMnZM1etWyikoSvHTeYXvkmRnzDYwy
Qo7ZYTnEIKusB2QvabJn3neZYknR/+/pH2X+jJk=
"]],
Line3DBox[CompressedData["
1:eJwl0zlwjGEYB/BHR0EZNigcS7IbZhJmJCo0DBIzColhRja1o5TEUDly0dE4
Zhw9yabFBhFtUpgx5NwjQRw9lt83it/8n+d53+/9dt9sNnVdOH5+RUSM8zEd
8YnG5ojUtohaJhsi6ndEtKoHabM2IN/yhnH2Wz9rXlX/pXF7RBOzns21RJyy
fkbfR4ExLpr9kZm6iNvqE7Kdyzx01n2ZN38uXzDNpP6XTNVH7OGHvlk+tr9d
9rDsnat3RtxVF8iqv8m6jO9BJwfNJjzTrx5gmBGKvDfPWS+pa7IRa1nHV/PD
8gg91q/Kazxlpe/4TM6zQI2+KEuUkzP0FbmYnKVekp9Jqb8kZ7PMCKvMhmWe
G1S997rso9d7W+XRZL95W3IGtczpyz5zhS778nKUQYY459xD5jl1hizf3UuD
2Zi8x5rkrtxfr7qDJ85skT/d815Zy2/3P6WfkQVeMqp/IB/Zf0WepIM75llZ
9XfuVr+Wr+ink9Nmlzwz55279bsIDph/MHvnt5SzPiFvcZNj+qEkydg3ZV+b
ep/5RrmB9TTpl/yWF6lQJm1WkkW2qhfkPFuSzyBnmWGzfjr9///hHz3Zjv8=
"]], Line3DBox[CompressedData["
1:eJwl0ktL1GEUB+Bj0QW0vM2MVipINaWltcvRilQwFbq5KWoXUWTSaGbapm1X
qI+gga00rT6B1CpIXZXa1UCrRW11lT1Di4ffOef9+54Z5199Mdt1PS8ipshP
RxRwpCGiXbZxnHb9gOwnUxdxU77gvPmEnGSJy/pluWNPxBnPVcgTnGSAO86v
md9SDzPHPHfNknsjjtHMqP5KxrPqx0zw2mxG/mZRnV8TUcOaukNe5SGjdlTW
R4yp3/OBJv2mWvfTzBBnzXrtWNkfMaJ/xzR95n/N8vb5Tu46JBvIsqLvlX3c
99wGu8fUG90zLj/xmYT+iyx0TxHF7DQrkaXsUidkkt3qlCyjnLR+m9zON3ck
9V/l89we+x7Y26++warP0ygzNLE+N3c+b75OPev7zPCUVfe9NT/n/La+lRY2
czj3N/5Pc4xTpe+295G6m07CrFYW8N3n+ON3mOWNelI+oYdhO56ZtapbSHFP
/9HvvMAIQ/SYXbJjUH2aU1RRSdYdXc5/eZd+8oNXXDB/KQdpzL1HspMOjjor
l2WkOKhPygSlHNCXyGLq1UWykDr1Vrkl/f/9/wcYpnOW
"]],
Line3DBox[CompressedData["
1:eJwl0stTjXEcx/GvNSsxbJvhXKKyYVhlI4xsjFMynTT+AKZJ91DonKzZKH8A
i6i2pQvjrsvSDINaFjYaM51zmvE6Y/Ge9+f5fp7f77lWXr1+4dqOiJhE3fGI
ZHXE68MRb/AWmRMR7/g9GuUP/BFN8idexBIuOV7mFaTs0ZCIOG+/Eb6Pl3iF
k7oSZ52/zbXJiCO4bJ7lVgxZl+M8ZjGHLn2RSxjTp1MRD80y3I8BPMaU2Qx/
xYpc4P3piN/yMW5ED7qxqyZilJ/ab4433XuV2U85WRWRwBUs6Fv5r75ePyJP
4Dnay89h3ma+5njvoYg9OIt1685wj+4u38G22RAP4jZKjm/xTRTlAe5HQe7j
3vJ6dNvjhmudlutRgd347rxV1/1RvlfnlNzLM3kci7o853BKl+UWzJsf5APY
8KzrSOv/WDsrP9E/4p1mXdyJDI7il/e4j7e812X5C09jUh7jXvThIh6YpXjU
fgXfbQudZmuuMyO/wD0M6oe5Bc36b/pqucO8hov+kwLqdJ9183KbboFzyONc
4v//+w82XoMv
"]], Line3DBox[CompressedData["
1:eJwl0rlPlFEUhvGDQYdVxQasgEZQ0BojSwMYhUagwVAYGwtlLEBlZsCFpQDF
RGttBCKRoNEI/gNgz2g1uMSAFC7RxoJKfxOLJ885571z5373+2ovXu1JFkTE
MlJHIk4djxjhNM40RWR4FGM4q7/Jt9Clvs130K0e5wlMotkeAycjptSreIMf
uGTdT66pi+izZrMxolbdixFZH6eRlGV4HlPmC/wJn1FVHzEj3/Hbw+rH8g5e
NEvyQ7zCW32Wf2Nbvf9oRCP2nHBevoL7qNG/4CX7bHLZsYhWsz/2L1V34jTW
5aM8hvPyXfmCOmv+jt8j0RAxLPsr26fekbVyG67jBhLu5Z41h5ypAgfzz2p2
IH9GpNXlXIaUupRLUJx/L/oiTuCuPa7Zb9d/DHMLmrEXQ7JCzsmyzrWBefSb
z3EGa7I0d6AdJWiRF3POPTyTP+dqs1m+jC4U6Bu4HFvO8cv9bmBd/ZIfYBBP
9e38yD6V/NWdTJt99A4/YA5PMClP8Rf5oLxHfQ7VuOB5c+a95t99N9+wgtcY
aPr/vf4DE8Fw1Q==
"]], Line3DBox[CompressedData["
1:eJwl0jtPk2EYxvHbUeOJAWexSltAFxhwgAW/AIUEhAAJgwkx0SgksHEobCxg
FPULKIeAE6EtlQ+gsgnhUNw8RFZo2fgRhn/+13Nfz/u2fZ7WDL7MvLgSEW+w
URuRw05DRMvDiFO5LhnxqjkixWkc6rp0PfK4+QRPYgM5DOtO+K3ulB+kIhK4
j2ePI+b07XIGo/iANbMc7+GHXObqdMR/uZE7MIx3uPooYsh7FuQc8ihg1ef9
5qT+D9+ti6hBN7Z0T7lNN8VZfMY380VeQp9unw9wvd7v1N3gmyjJt/g2juSq
i96+Evo9d8Q/zX/xMlbw3XqaZ/DEnh7uxT0ksK7/63umdP94E0V8Mn/P18xH
uBNNOHYWd7jibLblfc7ji/yRx9CBeevkxbl6Ty1X3EEZI+YFnjXPcxZT6EW3
ruReG+TX+no+c/cVPLcuc6s9u/ZsyV8xYF7kTfTLBc6jr/nyf3QODo5rNw==
"]], Line3DBox[CompressedData["
1:eJwl0rtPFFEYhvGPaIESgVqlALkIAjVWXBRZIFCQyCVYWYEEFgtNIArY0EiC
CSZ0lCxrLLg1/gNiDwJGRZQA2oCgNNjwIxZPnvd878w5uzOT/zDZNpAREVM4
KI44RFFJxP2KiEIerIoo4BvnMwxZt/MzJF3znGeRwjYm9d/5pe7qzYhruIcZ
8wZOmyd5CktYsV7lI+zKOaURFbhQGdHC/ZhEvvU8v7XPF/6KK2UR1ebZ/M48
wY0YwSi6daflfp+8qv/I68i8FfHZ+hI/cU0497Jcg33zWq7DT/kO38UvuZ6z
kOH6p+7btNcG1nSfOIV/znugeyG/Nx/jZjQhFzW6HJ7XffMftrCNRfTd9qz1
C/IrDKAVF80qORd7zj72rNbwQV7m13iMQbwx67FPk9yIBPIw7bzrPKHf8X5+
II05jOtGz9+1boS70Ilh8w4uQbuumE98H3/xSPeHj9ErH/Fv9FT9/47OAJ5U
ZUI=
"]], Line3DBox[CompressedData["
1:eJwl0Esug2EUh/FjxFzVXVVCESSMugqXTs0soNImbMFtQIKwAgO01Xv3wJwF
kLjM6jL2E4Mnz/+8J995z/emt7Zz+Z6I2MReNuImE3GLEvbVZa7gQL7jKg7l
GtfRwJG6yS20UVyM+OKp2YgTeZ13cYmyusNPeJB/ODEX8S6vcA5F9C1FnHMH
M/ILp+YjJtB03ziPYRQN9QgPoy4P8SBqcpIHkEBV/WzOtHndBbvKLVw5P+NT
9Op96BXkDSzjzW79/G3Xe/mR2yjJF7yDNazi2Nmr7yf//tfcNHe9xScKeteZ
/3f+BSejQTo=
"]], Line3DBox[CompressedData["
1:eJwl0Lkyg1EYBuBPIX2iZwwzwdhKLa1EIrZC5wLE4DYYiaV1AahICkFPT29N
xJrhAvIYxTPv+50z/5nzn96VYmG1IyKWeUpHPLM1EtE9EDHNkb4u96lwbb6V
P9T15GDEGJ2jETlZpESf+VTeM6knhyIyZDmfiJiROfLUzLOywIU+J+e51Bfk
IktcmbvklPNS8tHZD5xYP5Ot4Yh+exW9zBp5EtbGZYqGO/+6+x03elUesEnT
98fWNvQsh87NyJ6/f7W3ba/lffasf8svPtk1f8h3yvqbbFLSX2WDOjvml/T/
O7cBh/dFAQ==
"]]},
{GrayLevel[0.2],
Line3DBox[{11943, 14333, 11944, 11949, 11957, 14338, 11964, 11970,
14344, 11977, 11985, 14350, 11991, 11998, 12004, 14355, 12010}],
Line3DBox[{11947, 11948, 11956, 14337, 11963, 11969, 14343, 11976,
11984, 14349, 11990, 11997, 12003, 14149}],
Line3DBox[{11961, 11962, 11968, 14342, 11975, 11983}],
Line3DBox[{11972, 11973, 14346, 11979, 11987, 11994}],
Line3DBox[{12006, 11999, 11992, 14351, 11986, 11978, 14345, 11971,
11965, 14339, 11958, 11950, 11945, 14148}],
Line3DBox[{13641, 14645, 13642, 13648, 13654, 14650, 13660, 13666,
14656, 13672, 13679, 14662, 13685, 13691, 13695, 14667, 13702}],
Line3DBox[{13643, 13644, 13649, 13655, 14651, 13661, 13667, 14657,
13673, 13680, 14663, 13686, 13692, 13697}],
Line3DBox[{13646, 13647, 13653, 14649, 13659, 13665, 14655, 13671,
13678, 14661, 13684, 13690, 13694, 13700}],
Line3DBox[{13668, 13669, 14658, 13674, 13681, 14267}],
Line3DBox[{13677, 13670, 14654, 13664, 13658, 14266}],
Line3DBox[CompressedData["
1:eJwN0L8rxHEYB/DHJgvRkfEGZfI9d+4wUcpyZTC4EillYDh1hf+AcjuLX+VM
GJSZzmK1yE0MJgsW4UJew6v383me5/ujT3pxdbrcEhELVPMRf8MRxwMRhzTV
R/KXT754tZMkEX0jERk5xzz7lEY9b76j3uWBBqmM99vvlh2FiCm5zgb9zmfy
nHu27bUORozr5+QMJWadN+UJdW6o6D3JJlV1KuufqKmLcokVtrjSq8k6tzSc
3+Sl73XmIsYo865fkXsc0OYO7uSjvQ/5TTLk31gmbf5jVlavccoFve7iWebN
X2S7e+mih6zZhJykoL628w/XzEYs
"]], Line3DBox[CompressedData["
1:eJwN0L8rhHEcB/CPMCgTy3ElDIoBx/lVBgwyoZtO6pRFUQw6g3+AIjMKExZ1
t/gxUUpZJSTbZVRY5eI1vHp/Pu/n++3peVrmVzLLFRGxwHZfxHVnRNVgxKUs
UKS6KyKpq5R/9vGBiDb7gfOfpPUpJvQ9+px5jkOyQ+44s2ve442G7ohG6voj
puSSO9NynSLt+oJ85oUtz2tSEaP6tMwyw6x9Q55wR95ekmV2zImeiF5OzZNy
iU1u7Mfylnte7V/y3HvqeyNGGONbvyrzHPHk+YOs9Z2P8odf0umIRVr1ZWdW
zGucUeP7L/Tv5pL/0G/+MDfqr8wJXZIOe5NsJkOWYV1O7vMPlC5IOA==
"]],
Line3DBox[CompressedData["
1:eJwVz0srhGEYgOFHKeWUZKtGmVIOn3EWShaSJkr8AFMsKJLlLMyOppSyGQsy
q/kPE3ulLKSUxtLCodRsZOeyuLrf53nfr2l6cvtrew0RscnpeMTbUETXVMSn
flMnZU4lEb308evdqib261rkjDuydm0TEQ/Oj7QOR3SwyI67ZU27P9BDKsz9
v9dHGjMR594lumG/onkK7JmvtMozNU7sfrRzJKLsPKhLVJ1zekSBS57sbvSd
D77M7aMRt35vVncp0TQZcaH3vPiv3ea687t3/WMRA2yxTYWM+/x0xLVzmRqv
pO2afb/gvkXnmSGxn9Uix2TNBS3xB5S7Q8E=
"]], Line3DBox[CompressedData["
1:eJwV0L0rxHEcwPGPlAjJZFGSK5HOeXYoGSQJhdXgYaE8ZLzCJN1CGdziabr/
4WJXynApg/sDnJTcIqOX4dX7+/18vvWrX/v63tJuVUSscjYU8ZGM+KJlNKKi
bb0RHXTya7+gSbtlzXLOI3NmDcMRz85F6lMRTUyzZTerCft9PSDPxP97LVLd
F3HhXVJXzOc1wzE77tda4JUSp2Y/2twfcefcozMUnNf0kCOueDG713fKfLo3
DkQ8+N64bnNJzUhETp/4ptW9omXvugYjutlgkzwp+0w64sb5ljdKJMxq/asp
+zqdJM0Yi3ZZPSHHHxBFQOM=
"]], Line3DBox[CompressedData["
1:eJwV0L0rxHEcwPEPhUKSwaIUVyh5frhDySDpwnD+ANxEyc0XWZRuIsWEDLr/
4aKMogyXUtg9pMQiq5fh1fvz/X6+9buuLZvLbFRExBL7IxFNqYj33ohPms3f
2toX0U4Hv97Ma49dRgvscU3aXd1oxJ25TG1/RAPTrNrNasI+p+cUmfh/r2Uq
ByIOvOvRRfdzmmebdecTLfHAM7vufrRxMOLM3K0zlMzLuskWx9y7u9AXXvlw
rh+KuPS9cV3jkKpkxJHecEuL85e+edc5HNHFClmK9Nnnx/w28ymPPJFwV+2/
mrKv0UmSpFiwK+gOafOVN39rOUF4
"]], Line3DBox[CompressedData["
1:eJwV0L8rRXEcxvHPFYNfm0RKXQwG7nX9piRRiMmuZHAHupQFZTKYFAYDJvwL
ul27JEWKDEwYKBaDldcd3r2f5znn9D3nJOeXZ3KJiMhityfiNhVR1R/xyC94
RW06otFWxw0Y74to0yfkX8+cYlqetA/Zt+UdXBY3vaI34ka+Q3lHxAhGkbQv
8Yp7cnyCawwW7+c/JDLey/U2nrFP8Ro2sagfcR4P2NJ/uLoz4lhu5VGcy7O8
gUPc6wV+wzs+9cquiAvnDPACsij1PXu8jys8u/7F9fZvbu6OaMEczpCyrw04
Qz7CE2r0vL3MPyrBsPzBTfaC3CNn0K6nOI11rGLMtsQH+AekjEXT
"]],
Line3DBox[CompressedData["
1:eJwN0L0rhXEUB/BjkYVckkySksL1cr0OlDKQ7UpdgwEDw41b/AkUo5fJtbhK
bgZl9jLZZLkyMZgsWCjC4DN8+p5zfufpeZ5f0/xKerksIubY7os4Tkb8DUQc
yjwHNAxG/MoPPnm119YZ0WzeLjPMkGd6yPPOd9S7lLgn0RUxa79GVvVHnNqZ
VK/Roj+RRUps2ivvjhgx75Zppsjo1+URl1yRM3uS32ypa3sikhTUE3KBJTa4
MCvIa2540L/Jc++rTkUMk+XdPCf3uaXCfdzJR3sf8ouOXt/GIo3Of5xl1asU
OaPeXTzLlPMXWemfE7Sa18lRxujVj8s9/gGfEEX6
"]],
Line3DBox[CompressedData["
1:eJwN0L8rxGEcwPGPSRbCJSOlTO7cOb8W6soiFqEQgwwMR1f8CRSjH5MfgzOd
RZnlJpssfkwMJgsW5EJ5Da/ez/N8nvp+e1rnV8aWqyJilu3uiONkxCGV3ogj
/eWTL17NO1IRbX0RSZ1mhgMm+yP+zHet97jjnsbOiDn3E1rXEzGio6zRbl/S
U27ZdK86HTHoPKPjTDBlv64nXFKm4OxJK2xZJzIRKYrWw7rAEhtcOCtqmSse
7N/03PfquyIGyPPuvKD7XFPjDW700b0P/SaZ9W8s0mL+Y5a3XqXEGc3e4lmz
5i9a610aaCJtltMhdvgHiYlD9g==
"]], Line3DBox[CompressedData["
1:eJwV0D8oxGEYB/CHMhlQupOiWMTAufPnTDJZXDnJjUrJoIhuYKZMRosYXEgG
hVFMt8liwsSidJtBcZLPDZ++7/O8z/v+/nQtrM6s1EXEInvDEdmxiFmZY5KM
ukO200qPullWhiLeSY9GvMqE/oU8Y51lOu0Va32ZUlczEV880qhXkofcZ83J
z5GIVTlBgiYu7R2Y/aCcjrjjiBuz23KJHKfqtEyya/07GPFG0bosS2xRUOfl
NCke3DvPjuc0qJ9S3pcr39hndtN6zd6GzNOi1yaTvAxEPDPl/LiZqjP76gJz
9NGt3ysrtX8pf/ojvmnT/5P1eiey6o5jec41Yf9W7x9Jj0c2
"]],
Line3DBox[CompressedData["
1:eJwVz70rhWEYwOFbFAOyGMhCnVMMHMfHcQYLipR8FJMoUhaMSgxkM4nFwBH+
A2XxMaFYDCgWbAaHxSKTy3D1e+/76X3e3tqphZH5goiYYactoi8bsagrrDFg
btE07aTMnVpEId2ZiFJN2r+2RrxwyAE/zortj3XSnCDJV0tEtd21XvHQEbGl
hXb37pr1nKGDC2f79p/tEfl0xAfnPJr3dJUJTsw9Ws+u53L9bo5Y9/ykp+RY
MK/qMoOMmafdv+07DebgLhVxS9bZkS45y+kcdXa92kUZJQx7f9x/XupNU8Qm
G4yS8u6Q/vqvfk1Q+8++RqvIN0ZUmt/1jWcqzGfu+wNZFESx
"]],
Line3DBox[CompressedData["
1:eJwl019ojWEcB/DfEaNopY0QcSga82fj7ExZ1IQLF8NuaIWFYiFJrMY0dqGo
Sf7Uke0IF+JiJxfuzslZkhLarvwJF0oTpbjQ1pnPycWn7/N8n/d5et/3vCfZ
fnznsUREvGJwVUSOitURk5nXqJQJUhTSES3rI26nIjLU6/ZT57p9coBoiOiX
H1mwRm+t1b5q/SN7WnVnOUetLic/0O2693J6XcQMmq2l5B5uWetwRpsu74we
XZYiJ3Wf5RiXjWfXux/uG2+Xh7jAAAXdVec8cF7R/CXvdL/krLURc8hb2yy3
8tvaaZnlHiNU2v+QT64rmSfWuU+W6E7IM0zzjh7LHF8ZpUuXds0P45/M9Rw1
uvlyIUl2kdbtlntpMl4ml7KcWvMVctz+MZqcV5JJ/YR8yxuqzIflCDe4ToXu
pvxi/0r7cvz1DIvL+/lefn7dqCwyxLD1PjlJf1AeIEUD/bpv3k9GXuO1cZ+8
wiWemPfKHjLG3bKrPDfulKfK74vD5kflEXYYt8sav2XJtzDOCxr1Wdnpfu7I
DgY9xyL9JuONTKXNeov9RYZ8f8/YpivIXi7SwwbdebmFu+X37t1k5R+addVU
lb9f182UlTz3v5hinpdPmUj//7/8AyO8jcE=
"]], Line3DBox[CompressedData["
1:eJwl011ozWEcB/DfucGGJNYppnlJls02zmyTLFlLoxXDLTpbLaNN5+JgTCLn
QqJEoWbzcidJhAs3m5rSlLTR2M0Q2dVEKTV8Ti4+fZ/n+7zs/P87Z1m6q6Uz
ERGv8ioiZtdFDMsR5ht/kBMUVUYkKdEtkkvYykBtxO4NEU3G29lJjnr7zsvn
FNREvJQzqiI20W5tj3Ml+gPmHfTST63uhfxNzr5pWbo2oowd1rbJLH3WOt3R
obtu3s8zxjir+ynnrYu4YbxaNvLEeJ88TR9D6yNe6y675577Puom+KorTEWk
qGbIWqtMk7D3ohxkgDF3JHV3+WLf0mrPxV7KddfkVYq8o1H5lklnvnFSV29P
GCeopkJXJctZw1GadBl5kAbjUrmSFZSZL5ff3TtFnfs+m/foP8mnuscUmj+S
D+nmGH983iPyML+cu8+k7q/nmmaUuboR99w27mfYelb+8I4aZQNJFtKbP88V
LuXfBxc4R44JznCKcXro5h1ZMnTxhkO0scXf2S8L8/9b34X3PKBMf1xmfJ4T
soVdLNAvlsWM+841W292fpA7nuOmbrPulmwlTRspXbuspYZV5nVyypmNchYz
KdYXyDmV/38v/wCK+4zv
"]], Line3DBox[CompressedData["
1:eJwl0l1ozXEcx/HvNHk4CTcr5CzlIaRtbLbDlCPJbsguFjs2Uput1lyIlqe4
48a4oIk7zJRcYK3T0uyCDLvghiw6JQ+lPHSak5vN6+Ti3fv7/f4+v9//cdmh
I43dJRExirkVEQlswZ5URD3/rolI8SZ0orouooPb0I60/jbfRMnGiFucwy7z
xtqIZGVEOcqsNfE5HLXWZO2hep35I/6Aj5hfFbHdrI6vyLXJZdT70WJ+nu/g
GY7rP/EUetWL1rs/DKh3cxcuYFTfz2O46rz7zs2rJ8z/8OINETvQgEmzF555
QG5crt/sLhbo33JUR9xTf7dWq05huX7CnpPqafPTPIghJLzHLA/jZzEv+1l2
ifkXzhf38yQvNfuq3ixT0Jfrx/g5XuIVFppd4l5cRqk+Z88ae/bp96IZBffR
wkl8c9/vZMpk3puP6J/gIqY97wFuRSWqkJWZzT/k53DOOxrCuGwf9yCDB/o0
r8Q1dYJ/+RZn1W94EH04rD/GDdiJ185dVfxmrrOC//ruBTxFjewNvo4OHPR8
SbN2dT1mohTN9s7gwIj/bZbMY87ID3MWZ4r/rdwpPoEebMNaszTnvZOtvFo/
r+L///8PxMeGag==
"]], Line3DBox[CompressedData["
1:eJwl0l1ozXEcx/GvycPFmFa78DDNhefyMM7ZYWtKnnIzTZK2CTeeLaVMYQ+u
iBJKx4W5mTlqpWTJw8IFF9pRW8mVg6TEjXVaB4nXPxfv3t/v9/f5/c7///uf
efvam49NiIjnqFgeMQOV6E1FNK+JuMVFbDDbiDOoz0R0cjfOYbN+iO/KTU07
Sz1xRUSL+fY6eXUjqq3t5yw6rO209tietPlLsxJ+Y8HKiCazTXxd7qDcCfVJ
HDDP8iBG0a3/weW1ETfUC3k97qtb+RSyyOsfciHJOe+ec6esivhiPplrsRd7
ENYvcY5HkndTP0WV/itXr44YUJestapbsFR/ja9gknu7yiN4g0r9MOfxBw2y
v7jGvMQ/sdg9jPNcsyKvlRnjOfpnPIQneIRysx7uwlmE/jTPt6ch2YsMvnu+
NJfhned+iwqZ4/L96j50YNwdbOUtmI2ZGLS36K6+Jc/Br9GPF7IX+Ci2IadP
8SxcVv/1LT4n30r9iu/gPHbr2ziNOuSdO40v+p3pXPDdP+ABlsl2chd2oM3z
VpkNuKMa/Xv/rwKa7P3In3AbZTJ9MruS99PncBgpuUN8BO1Yh0VmjTwmfxNL
Mv////8Aa/GHxA==
"]], Line3DBox[CompressedData["
1:eJwl0ktIVGEUB/BTk0GLIiEo0Y0o0ca0tHE0yAhchVQKaVAQEYJQU/YQcdPD
XOTQos3QKmhTjrmRUCjwQSPhJojCNhoUOdjGNmVF0eM3tPjxP9/5znz33rm3
8syF9vS6iBjnfG1EmjFGOZSKSCQjHu6LGLFe4ajeR7lMdV1EFV1sN3fOXqf6
JoPU6U3KD1y3d6oxonRPxFZa7TXJZk6Tobsp4o2ZYXWOefrNFWTsjbirLpdJ
RtXHZJoMeesev8+715z1S9ZY0v8uK+ojHjh71n0cVrfxw96AHOExb+19MbPg
jEXrDQ0RG9nPqr0D8iDX2GnuquvdUA8yxBSb9Wbkc7ao5+QLJswnrG+rh9ll
fUeOy6/Obld3sKY+LsvYQQUFvRX3s83sM/mUDK/d5x/P8Eh/zsxuvRoSLOuv
l0ue/R1j9iflJ7NZ2ccJCtYtspr36k3ys/97Uf1KPiHLgvVled85vcX3x7Tr
t7lOlbqSb97zLfsnzTbo563vkeUs5XrNsttMSib56zv6TZfeL/mTTvURZ+Sc
X1L8hvQmaC2+O/0+9RUarS/JiyRT/7/ffzxQf8Y=
"]],
Line3DBox[CompressedData["
1:eJwl0klIlHEYgPF3SAu6tF2iLFCS8DSV1cxgUVEYdBAajDLMSBCEoKFEBvEg
gXVp6DrVsQ6FLShNFOXFSqSIQJBIaENwyktewjpU9Pvo8PC823/5lvruQv5c
KiLGcCQTcT4d0YdsNqKfi8iJB3gQj/EErWrLd0c8FY/jNzrU/nJqW0QGOYzu
iqgzV9DrkZdxA81qL/kHLul1Obthe8QWtOkd4sO4gOf26M1FvDNTllcwjSFz
i7xyR8Q1cSPvx5j4JBdRxhv5WesfiSv4hNrmiHn1Gk7jpr0n3eOUuBN/9Er8
DOOY1VsyU03WYePOiA04jiW9dj6Gz+7aZK7ovKvyKyjhNVarTfEkVolf8AQq
5lPyy+JhbJV/sM8oL9r7gNo+fBfv5RWoxTJ8UZt1nzVm7/EIBjGAn57hlvqE
mc3yTfjl2T+qT9n/bfJucFv/Dn81W+IC8piTZ7guWZPckave93vxKx5BCTPy
Lr5un9Pcgj1odc5aXoc53/mi/gmzafWHzh9Ovj06sF6tns+YaeBGVP1L8ziq
9o0XkBe32eOuuMaa+/wAB7P//99/+mB/ZA==
"]], Line3DBox[CompressedData["
1:eJwl0j9IVWEYB+A3FyMkVCRoEMlBQSXN/Du4iGhoSCQR3qDyUtCSiro02Kgu
LnIJEt0CRZFLOrjUUCiCQuIi2CDVDQSLUpOwlnrE4eH3ve/7ne+cc++5kuy7
3XsuIqaZqY1IV0Yc0NUQ8UPu842KqoikXpksoZT7jcjLdREJeY8RlukxW6uP
6Caj/krBtYg2e9+4T5P1pPN6ZJIH+uNynnWeqfdkVnXEhHWhbGDeukv2M86K
ek5uMuu8LfmHXf2/suh6xE1eeY6frNmz4f7Degt8JF9/W2/AM++qz9dEXOCz
vTnyIs20cKDXKm8wSpZrxmQH7RyZd8pb5JFLRq9AXjo90/mDrjl2z0/WGZYZ
Y8sz9JsdmiXU3ZTzz3t88T5h/dJsznk7eous66fkEHdJq5tkMS+ss+V3v+Ow
9Qf5mhSP1X3yKVPOe+Lct+7foV+k98v/dch7Nsye2/POOnX6HfCQtP2rZr1m
NepqqnikvipPfDe/OeaO3pFcYtZ1icaz7+0/3tB01g==
"]],
Line3DBox[CompressedData["
1:eJwl0j1I1WEUB+AjLUZEkEjQIEaLoXH9yNLFQRMNNClEAhUtPza/BhtKXMUG
F7k4iKsQipg5SLtiKdhW5BeYSkOiJhcRF59Lw8PvPef87/ve997/vTd9L3sz
ImKKT4mIp2URC3KRM5rUKXnOBYnCiC69IllCKW3lEStPpPVrOkjypTSi02zd
rJl/eilyiyLqHkdUyiqm7Ncr++nWT8oFNhhWH8nM4ogJ6/uygnnrV3KQJGvq
z3KTGfv9kl+d/1s/oySigGam09+Db575oB5liX1+eD5l9tNsT33nUUQ2++os
eZsXNHCmVy/r2PG5t+65LZ+pazg1r5ZV3OIme3o35HV20+ept2WWM7fkHMMM
0WO/E/0G6+fkculOu+6z6pwJs48+/z19X5b1x+QAjcyqy2UO49bX5B+/4zvr
NTnLGO3qDtnJpP267VthXaufLQ/8X4cssWr23jOLzh9Rt9DKXc/O6fWY5akf
kJ9+D9QP5V/vzRHHNOqdyvnE//ftCl9TdT4=
"]], Line3DBox[CompressedData["
1:eJwl0c0rpnEYxfFLTf4EmiRJ1Oy85DUL29nJTJQdQlIUIskCCzNlhsHCVrLk
IUlCIonylqJspCyQmWYtpnzuZvHtXOf8zu++r+e5c5u767rSImIQ3wojvmML
m2iujDguj2jEI/+AzKKIDJzLWp23J8q3YQpNZRGTdBlLmK+IGNAZkj/xH4oj
Zs05tApL5nHnC3o9/CR+4VB+UOrcfIk5nZTOb/rG55ZE5KEWi7IX/S77nLhz
ihF5CmfurNI1XJjX6ViS63Trn9PXZAfZF3zFvl4DLUA+NvhP9J/33ule0Wuk
cMSv0EWdGdqLetzbqTrZE7fmdPrs99+YT+kKZtBuhz07tHhOJ9+BGnzms2kW
fnj2R/rX//8Ho/wz3U2+k7tFujvmYfk2ncYU+vmfdAJ9Ff+/7zvWhl8R
"]],
Line3DBox[CompressedData["
1:eJwl0csroGEUB+AzC/+DJA2pkZVLg8lCtnYUzdalSEKhIXInYVwbS0mWGpfc
spCSMClEjWw0NRuakbUkjyyefuec77xfb9+XWtVU1vghIjoYzYoYY+tzxCZd
BRG/8iN2ze65IzE7otLsnDnPi/R11LLvTFVexLR6hRY7i3ZO1V3m9zIhJ+KH
+qMs5Ke6XC7ZG7M/pZ7hyHz57TmXXNHwJeK/nXnSciPSKaWMJ/vH3tGj7qWf
Vc7M1uUGF+otOcgQJ/ph+ezsubuXqys4MP8qM/jEjj5TvrjDH7u/5TVrnOgP
na13t0n3GmeEvwzSxy3ddHJDO600s+DdM75Ljfc0yHqKKdGnyGQm7CTJR9//
gQH9P7nPHjl2d9yh2h225azZNN/sTcrvtBW8/99X58dfoQ==
"]]}}},
VertexNormals->CompressedData["
1:eJzsfXlUjm/XdiUyj5lLxsxjRIlN5jFDyTwVMo8hocwzkaEMRSJSqQyhspWi
eR5Ud3U33c2IUJS+U3vnebSW9TzP+37fWt/3rdc/v7X22uu6z+s89rn3cRzX
ya/Lys1zVinIycnt15KTqyP+u9yqrpIsqRhdcuObv34di8eM+i5Zi28x2tRq
+P7sYtxTYa7XdXMsaoWuOjFMPggfV72y+Sjiu/Ne9NqyMRZbNupbEVr5FvVv
GQY+XFuMeUUVN05EJWLGlP5Drp58hXMPf2q2820xJmxYPqXLyzgctfnstsdv
AtHYfI5mp7eF+LzTMuNTZ9JxU4/lvh6FrvipQ0C0/MhivG9WlXZX/x3u//Hd
W/OSP+qPv9n4ABTgTD+jUxZTM3G2VvOh+Z0v47eAAa/Oji/Cph/Ge9+bloo9
PJRGLQ14juvWnkT59QXY662JTU+lTIw8vPFJ3J2bcHOS3ICrTYrwkNaBo0e7
pqGBWg/f7VOfQ67TkmOFFwoxs/tOyevpEjyZc2qJXmokdFn+4sbZg4W4tUm9
nuutEnFe8v2HU+4nwEeb6KV7exbisHx/vynzY3FHj/lDr4ekwLa9B7O/5BRj
SGJP1/OrY9GznUYnt6q3uHjrh82NRHxT6SKfynWxuG57I8+bdYLQqlh5/ciP
xbi9yayO5XNicd7JEJ8lW96i1vpRde3EPvu21+3Va1MsDvCfnpYj9l+7oKDl
NRFXbr3hel8Rtz3iY9RaIQh3NgktzRLx+bpfAxtsiMXPLcvqzxLPtyt09b7y
tBgvD9730btRPCZNqWPTtskblKv+85H/+48/ewZvXnrLshhn4CO3tvcScNEW
Pzs5lYC/5veZs6vbDu1CzB5ZVs95QCx2N1g/qfWNFPhb/qJOuoZFwwux/oDK
eiae0VhqeN1T56YE+nuvnzN5RCF6b5RMiXaPRpeowbrJ9hJoN3ZUaqLILxms
pxjpEY23NIJ75ov85J0qBSfF+1Yk2XRSFfvw2Edt4FHxvmfGKwVk/NqHq/P3
fl8fi1NUNqm5iniOe/qp3rJiXLtuVniBwCU4McDr2Pe32Kue/MLmH4rxSuvT
nkYCx8MW48cv2fkWT704fNxMPCf4we55T8Xzm13ssOWj2OeqFi4Fe0VcZXDP
xEci/mCtc+cnIm5S5+2iX3jN8LLvtlyci4MzpHtXKwZhz2G95piL+GSpWu+b
4hxN2LbkVqKoh7/tz/8r8XNGdrftBF4qEa2W2wu8egw1QHc7yV9x3+H15H53
00KM0atI7e4bjQ8GTzx550EKLL5819ZDxDeffPP6s3c0RlXMuK3lnAIWxmPW
bRTxrJGJM8f5RGOLJmvntxb5apM8RsxZUoTRoeE6luti8O6kdU2OD0tEp5YT
d6xYXIStPo9PG7Q1Bm8iNokemojqN0wT12bmo9Zkjc5WcVF467Kd1bdYKT51
HTTjFy4XLhUdnC5w1Ovn/6qbwOvgpvGbX4j4qPm5CvICR/NPN9TWi/rR6JAU
VyXi3lO35I0S5ysqd0upuVzQ//M4/i1u1k3X5q1WITo1G9zr+MNoXNfdQePz
1b/jq2exupGuqIeuB/zu+It6QPnBA3+I8/vaT79tpTi/H0tTnNXF+fXevuvm
a3F+N/7UWCkTePWdUnZ5/MYYrHtzfrmxwLHdsjo/V/7Mx+n2BYHjgqPwcMvF
PnseSNEiYMKseLH/4X7J0VfE/s+X9+pwT+H/3/3/Px1vf3nS9hMCr1kRS78F
CHyfNVxocNz+7/gacd9+15/69hfu28O4bx/ivu3OfVuF+7Y/9+2H3Ld9XTYu
GSTwTd6z1H+IwHdn4d4v4QLfJlGdh3h1LsSynWM+PbjhimeCXXv1S5ei5UFd
vQMdCvGkhpVy4IaneLjV5c2730pR31RpaPyXIszy3O7U7uhd9G+5222ccsr/
1MP/5nhNn1flPt/tX/T5bdznI7nPe3KfX8J9fgv3+XDu8/u5z8u4z7fkPr80
WeZlPEHwivIVdVUWhMLtHet2mFql4ZiUj3c37CrEpjuDziy59ha87tzfFu2Y
hlvUnhq2Fjzt2+KstR22RMAcM68xnz5K/qce/kXclPv8fe7zu/5Fn5/FfV6V
+/xL7vN+3Oc/c59H7vPG3DciqW8A8z2smRc96TnA8wJ9+Tk/6DkQSs/5K441
6/eg9cN2Wv//4P5fjG/mc/SFzhHOpnP013pYxfhG8Fz4zHNhGZ/fYjq/aEvn
F0bz+a1H5xcD6Pz+7g+bqD9AGPUHNOf+UEz9AVSoP6AV96U21JeA+ef/4P4v
4gY8N9NobsJLmpt/xbc5z+XPNJfhBM1l2Mtz2Z3mMpyguQw1PD+U+j+4Uv9H
LeYJ5sQTwIl4AvZgnvCMeAJcJJ7wVxzbMG9ZQrwFfIi3/A/u/KeGJwcRT4aF
xJP/iu8m5uGDiIdDlX01Dwcf5mmZxNOAeRp0ZH6uR/wc9hM/hxp+KOU+/577
/HTu84O5z7/6S58P/xd9fj33efnm1OfX/X/S54ewrnxDuhJCSVf+Fa+/xQ+x
bh1BuhX2km4FL9a5J0jnwizSuXCX9XIT0stwh/Qy9GG9rEF6GW6QXoal3J/X
cX9m/oZ7uT/ncn9uz/35PPfn1tyfu/1f2p9bsz/znPwZGEr+zH+8/6vY/1lO
/g9Ykv8DFewXDSS/CO6RXwTH2V9KJH8JWpG/BKfYv1pL/hVMIP8KOrPvEU6+
B9wn3wOy2dcyJV8L3pKv9bsPv+M+7MR9uEavWXIfduM+3JX7sA/34ev/og/3
Yt8vj3w/6E2+3/82fK+zb3mRfEtoOLXat/yPcdnNvuhs8kXhPfmiMJJ91Ibk
o4IN+agwkn1XZ/JdYRD5rrCc/VtD8m/BhPxbGMX+oSv5h3BuX7V/CHfZ191L
vi6sOl7t60Ii+5atkqt9S3hIvuXv/hnF/bOM+6cK+8+W5D/DIvKfsYj9ZyD/
GfaS//zX/bdj3/sU+d4winzv3/55C/LPoSP551Djw3uQDw9byIcHffbz48nP
h5Hk50Mify9YSN8LYAh9L4CN7IcXkR8OzuSHgwd/R7hA3xHgR8Pq7wiQwz58
PvnwcIp8+Np+PrCfj7P5u8Ac+i4ADem7ACzj7wsh9H0BDOj7Aujxd4qf9J0C
Muk7BdT6DgL76TsITGyhsNteuQDlQxWPr7TIREvX3KT4g46oXOdW0qS4Qlw8
5esd45bp6B2Z5n4/9SnO0zlcVKpfhLOGDDw9+ooEvzsVFO7b9QoPXNv3YGtO
PrZPPzNgXVjmb3zGH7xW6v6pACUTRs+GYRm4o/TMssJQx9/57WrlR99umhnW
vQBXqO9rarc1Ey06FndNWX4Bz3C+Uq38SF1b+4cifn1DWZzyP8Vr8uvXyo/i
/Kt/yf/b86/9m8+H7h1RYVcBtvg2UD30Qwa+OZMaYPztDviObNDtwqQCdOzy
XDbvZQaOumF+8pS2H7i8/+Jj+bMAr6gF5x5unY6PZrRM7qMfDl+bmIyLblCI
XY3qKh6zSUK1jW+CVr5IgCb31C0n/KrDrKtNf26OxaYWJTGJCkHYSvvzuu9Z
4rxLl/bduTUWb/TeOqa4ThC+95M7/SOzGCdZ6vdSMo1F53Ang8GNg7Bsrplx
RWoxTlm4cerMxFh8ruR1tneftzj827TZihnFqPxlnK12SCx2W7Z9oWG7t5gw
qNVxE2cxx62Ozc+MiEd7/XNjO9UNwMdx79b2+Sn6tpHuN5OnSfjaIWTBgvp+
ODOwz+wl2YX4sMq4omnDdPSYYClvNcQT8xa0vtLoaAHutJ/V+aosA39elR5Z
NNYCf2gbR/tkiXpIOPfqdcQ/9rMm3r5WfMbDYrVBYwqxu8/nhgdUpBgpWal2
9KE/+Mgp5tV9VIjzZ7bUVP8ej33Dp53LnJMIdzzVLLznFKKrdljOPL9ozIr1
Gls2UALbVHcpD1xUhPGT+28/uT0Gp5m8bhs2IhGvvrk1Y4/gD8/rZB8J2xCD
099M2hc3PBF1VO1ym2TnY8tLo3X0Y6Jw8YAng+VipKia3HXJd4HL5UzFxebr
Y/F7sf6GpWL/+8+f/8NHxAP21j3bbUMsDjumG6RYLwhN78YWThZ9Q/mN9ITV
uljslVz8bYRcEPZ7FXh6yvhC1MzcqrToWAz2t1jjqJqXAvbxJ3wujS3EC+bR
g/SuRON8eZlNt9MSaLpIs5W7mHerK/o9MH8Yjf7xB9y72kvg6/PzB4vE/Dp5
ec8OOZdobDxTY+UbGwm4zVpmfkO8l21+1sCHm2Jwd4T96vvDErEovK50xbt8
PHjt9bFb76IwpzQvzzBTimezbnfcJtZ/DwJMyzfGova2T6dy6wbhh+dn2uqL
udB9t7JytIGoE823qVvN3qLXFnULT9HnFd9ecProEY0q97vvWnlLAhXtcrea
jRT9/Hxa/88PonGgyhyPJ5cl8P1Sj/WtxTpbDLk3arlY/1RNkwtZthKYqdp/
TCeR/+a+xis9t2iMWbR9wTWRr46P6sWLdU68ktQqV6zzuYbnhMsZUhz5euny
XFEnq9Ost5hFR6Fn8bNB2wQuIafbHGgjzqnp4nPlHQVeqXNz0nZGifxPOnG7
BN+4L5E96rU2Br2X3X0lFfswPalo+B6xn0m729i8do/GAZsaFHYX+2l732LC
W7H/DbbbdLO2jcbZ36ZmyJ2UgMEeQ4v2RfnYwOjupLveUXi77v1tuqFS/Lk7
9UQ7ER8+0dTEwjcKS+6MaBQRIkX9o5UaY0U8I7r4VqOXUVhe33rWBhFvel4p
rJ5Y/6gEn4U3xToTV5Q3ORgrnnP9/dQksZ97v/ys11bs5yGD5psMxH76cj0s
3UP14Mj10ITrYT3Xg9+/qIcbD90S9EU9J3S+PXeh+N269WbsOR8tcJ96NUFH
7JujonabQLGf5SBvNVvs27PG1u4thT56UPD9dM+QKIzw8bN9+UCKjxn3xoy7
OuP+g3Efz7gP/gvuUxj3GbVwj2Pcr+xZMGRyXj6GpVzVKQ+Nwht9N+9vFS7F
R5qDvngqCJ3V3Uz+gcVrNLk6JPnJdila7+9dJzu1AMfLOo5O+/AGUxqNf6m4
Vopw9cRN1eaiDrOTK0wsXuLjXjf9+9+R4gzGPZlx78+4WzDuAxj364y793HT
x/PeFWLJ3G5WGZdeQpcWu33cbNJwhXNgl8i8QgzSXtjU+Z4XTH79SiniZRp2
aP+2bOC9Qpy3R0u/r+1ryFpytMUo5zSsZHz3M77HGd/bjO9Jxreo1nk3YXxf
Mr5ljO8hxrce4/uN938f7T90pP3HZvwcQ3oOvKbnYM1zNtNzoA095/c6j9A6
4SCt8/d7TaH3wlx6r9/nXZ9xV2PckfdtOe0bqtC+wXLeNwPaN5xN+waOvA9m
tA9QSvvw+5xKCS/oQ3jhAcZrCOEFlwkvHMW4byXc4SnhDr5cP/t6VNcPTKf6
gctcPz5UPxBE9fO7bttQ3QL3K9Tjuo2kuoVgqtva5wK60rnAp3yO3OgcQRSd
I7jG5/E9nUdQpPMIN7n+m0uq6x8sqP7hIp9TdzqnUEznFMr/3H/oz7jX1M8i
xj2Ycf/CuO9g3FVq4X6UcT/CuDfnfjWU+hVwv4IS7ntAfQ8U71b3PZjKfa+I
+h7UaVDd9wAZ34mMrwvjW3Me0xhfdcb3OuPbhPGdwPjW9HN36ufgSf0ctHku
rKO5AI9pLsB07tsfV1b3bXhOfRsCeF6Y0LyAPJoXUM64t2XcZ/wF9zDG/Wkt
3NUYd6UXNDf70dyEPkOr5ybUzFlHmrOgRXP297y+RvMattO8hlE8BzVoDsJV
moPQKILmuDHNcfClOQ7fuR50uR40avWB+VwPQVwPNfNie616qOEn44ifQHfi
J7iB+cwM4jPQg/gM9GP+E0H8BzSI/0AtvgRlxJfgOvOuB8S7YCbxLgDmXc2I
d4Eh8S6w4/o5QbwIjLh+fJkHLiAeCN2IB6LTnzwQEokH4izmk6rEJyGM+CRW
Mf9sRfwTavhnBcfb1IrnM781JX4L7teq+S1MYz78nPgwPCY+DJ7MnxOIP8ML
4s9Qw7cDiW/DLeLboMn8vDXxc+hB/BwaM/8fQfwfrhL/hx3Mb6OJ38JU4reQ
x7rAhHQBsC4AN9Yj50mPgCvpEfzGeqQL6RHoSHoEh7HeUSO9A+Gkd/AN66Z7
pJt+7080x21rxWM4blMrns56cDrpQTAmPQizWFcGk66ESaQroUKBdOsT0q1g
T7oVfrDe0SS9Az6kdwBYz7qRngWFe9V6FhqwztpFOgvqk86C56zjnEnHgS7p
ONzPelCF9ODv9f8tfpLjjf4Pxbuzrh9Cuh62k66Hg3IuFpI0GcYuS+w0riwL
j6X697mjGYcdbW+M7d2/ECXZgxVGdUzByvcrbnj0i8PTWt8VF0lyUWH3YC23
TSlYtGyn1qq5UkwrP91tVL18fJvwrNA5Mgu9Lp6HK2s98c1r9/w6oaJOJrm4
XjdIxza9SoxMfB7hZVXD45/Eefn0VRZh9k867oqzU5J6WAF+aOIz8cr2DHTM
m3Fl7hGHv+a/2N94nXqbAvy5xhXhWCYuCu7wGEef/mv+VwPdj+My8/H2tm3L
Q6L+Ef9b/pe/5F/h/I+18j9z/t1a+bacX/x/Sb7zT71AveYF2NCgfPRFq0yc
3e/uyqaVO6FHRKNGm28U4GePQpfZdzNwWO87GTJdd5gmmbss3asAtUJmqsjd
kqLuwgNtSwa9BZfc3Oh5LQvx06yW8y68l6DrzoGnd7WLgTmjXnqFFhbg4cwW
ppMWJWL8pJsjRh1NgnNfzFQfrixCB52hTzu3jUXLEreTW88k4LUVhqum5Ard
oT59sW5kFNp0CW8UIvh83N4W652ti1HHe9zh9msS0LDV3cqN+17jukNGhjM+
FeHQRtpbOpUm4Utbk42H417hetV3WyP2ibm8zqjznddxeEXrVof2Bkngdu78
925i/o6+3Ct0/697O9rTgowdJbA1KeurkYj3qnpo5yHi91fv6zfnttAd70Jn
6Iu4902dEiXBw63qnF4xX8QHtFxY8kOWj0cuJHROjYrCgz11PZLFOuMHXEzQ
Fvt/9lOS5dw4sX6thwMDhd7swN8XevB9PG++j7duaevc56IPz/JZdvvdthhM
K5k04JFmIk7aOvfkPTG/rCM7xRXaRKNxY/ctqUJfKF//kb1ZzOVAGNhomVhn
P7lEg5O/7iGEd/IbKNaZ2v7M7muPo/GBgcsuV6EXvDoaFn0V6ylo02NWmtBr
tiug8Vixnivz6XvWVCe6b3anA9036+u27eMFMd8HGWqahQq9kF4Q08RO6C+Y
0vWhnnh+w4sfF84Sz7dVqDj4S8ct1xk57ZRYz1Vni1OrxHru6c1o00msp/tA
detDIv/KzIJ+rTyjUdI+9FSVyB95l76vlR+ke1DnPtM9KIXUReXBYn+m9Bw4
zTs2Coed+5pjI/bnnNtOTT0R1zmRvsNXxG+nPRhkECdFJ5vGzd4LPnP4vdOo
CULv+1x7PNtG6P0u0f4blLUEL/20ocNksZ5XsWGH1G9IwJVxn8C4ezLuGxn3
QYy7J+M+hXH3Y9xvMe7nbv08YiH4hpw0e+AS8butfi60i4iUot2rHc/iRHy6
p8OukIQofHbJRdddxCcZbj1wQsTlh1UmX0yMwmkFFetLRNzMft/8VIFLsPW+
MzrivZ436JzUXOBixLhvjyDcXf8F7uGMezDjfpJxz1Fsd9hKPH+D4zEnqdDv
L0etb2knnv9Y0ifRUOxnYNchOf7id80k589NjPsH7gMZ9zTGfSbj/sWacN/M
uBsz7pcZ9+uMe0/G3YpxT2DcN/UwHnLuV/3LVy4eI+rwZ7sHP86L3x21qp7c
BhHf8LzFhhUiXnFOPgVFfJHCPMlDEQ+Rv3z/lDhf7QzyMk6L+A3rMQ1/8avS
qyY+2uK9vt4KOX9YvFdnxv0Q4+7PuLsz7sC4P2DcNzPuXRh3L8Z9FuN+n3G/
yLg/UY79dsS+AN0vvtkYphqKhtZr5rqZSDE9b/8TB+0CbL/q1cSRLpGo3Udj
4tbjUpzMONoyjj8Yx1aM40vGcQjjGMs4ejOO5ozjm08LYlLF73Y5e2pC2zsR
mJaQdORkHSmO++bwc2H7IjR40bXljER7+DRl69uSs2lYsKLFgcEoeI6nelaf
y7shfVvUaPWMdPzW2LXJgPdC/57rJT/5jBuYTP2W97kq7TfuQxj3ZMZ9BuNe
h8/7mlrn3YFxd2DcuzHulxl3KeOuJN+waRvVQmzRMbfvZ9VoeDMj+WPxklRc
yc+5Sc8Be3oOqvFzDtJzoIqeg/3/7EuQQOv8/V7L6L1wFb0XfJej39Wm30Up
/S4M4n2LoX1DranV+waRvG91vKr3DUdtr9633/tQTvUPm2gfsA3j6EI4wiDC
ERMZRy/CEbYQjr/7+SWqB5BvUl0P+Jjr6j7VFcynuoJXjLs24Q7ZhDsUcL21
oHqD3lRvv+tZheoZuJ5xNtezO9UzHKd6RjU+L6fovEAAnZff5+snnS/4TOcL
RvA53UvnFKronMJyPqev6ZxCKzqnv8/dJDp3cI/OHdbUjwfjfpVxr6mfm4x7
CuPe78/6hHeMu+zP/gY+1N9gO/eZvtRn4Av1GXjBfc+d+h6YUt+D6YzvD8Z3
Ry183Rjf/oxvbC189zO+KxnfrYyvJ513NOc+7019Hl5Qn4fnPC+20byAwzQv
YAnPiy40L6ArzQswZXxbMr53GV9DxteB8d37F3z9GF9/npsraW7CdZqbUJfn
rzbNX+D5C3d43mnSvIPsyup5Bxd4Lg+nuQx2NJfhMeM+mHG/zbgvZdyfMO7X
a533e4x7bi3cNWqd91p8BpjPADCvKCReAWeJV8Al5jljiefAA+I5MJpx70z9
Dc4y7m0Zd3fGfSDjHsS4BzLudoz7RMb9FPE02MC4b2ReN4l4HSQSr4M45odn
iB+CLfFDaM38sDvfP/Hj+yfba+HuyrjPZdwdGfezjPta5r3KxHvBjngvmjBP
Hk48GQKJJ0MNrwbi1TCLePVvfu5M/Bx2ET+HTsx7LxDvhSvEe+EM8/YPxNvB
iXj7b75d0wd4/uID1gs/SC+AA+kF1GO94EB6AUJJL2A/1iN5pEegP+kRLGdd
Y0+65rfO/Vu8Rsc51orX6EGH/2bcl3Xod9Kh0DykWoeCLevZQtKzEEh6FoJY
F6uQLob8ntW6GFRYd6eT7oZS0t1wjnX3j13VuhtYd9fWZdCfdBk+ZH2nQPoO
2vWt1nd4jXViIenE3+v/W/w6x/Nrxe05nvPfjN/kePa/mZ/PPsMz8hnAnXwG
OM0+RiD5GGBFPgacGntnzMdOmRip4eS5Yo8MbQJe3TWwScFdT9Xt9jlmYcdL
Bj9m9pHh2Idzr5bqvMNtHdMqh/bIwOQ3F2wkYTJsc0FNU/pTgq8cG/5caZGD
5Z11bs1WlaFGh7w6Z5tHo0FVnM7AiFw0XL503CD/bPQJ/zH0/akAHL/Qfq2i
VR42VNjaUrIxG58UOWV20nBFkwflzY0f5OPcs+Mur+2QhTn7dgwv33QcR8ql
9VaU5mPRkXrNMmP/6f5Af/djUaIPjz1dv+vk8H/E/5Y/+r+Yr1srX5vzi2vl
63K+zl+eX/gf5tdez9j/MP8/ff7f8t/aatuW9yzA8W0vlXlszMQON2csMPc7
BweV4oJmvCvAb/cadZcbkoGvU6fqKPd6CmvcOwTndC/EujEvjedvSMeupnsn
Fa0JhnC3Oxbvf32vl48zWKaSggeCB6gPuR8LlYc6dzMW53rrFrvl9TAef6il
e6akJEG2+vNPa45noFaLDjfkr8kwbaZ+16muEnR5lZFS4ihD3SE6Hufj01G/
seKkOs2k2EPHqtuzrCz89LRwbOvPWai0RvVF5aI03NugpCx8WyEmzunR4mfD
OAx5d0zi1CYZbrSr6N93VCE+L73y2eS+0B2KfuNizksg1fHOtTWCJzh0L4u5
7haNdqpDG3y6LgHNp3Pvnxbzt/3Fol7mQhfEnLS/kit0QdTp8MnPtHJR08XQ
fb1HCobd/9IqVyUDXTS1z0SE52O64/RzN5dE4xjfph3DoqS4uO+JMJXWom/c
zQsaPDUWwxY8snNeloHN6vbdNDsuH/dtXTj5+vho9PPOXz0qXOj9Y0MUx//i
CVP8lj4R+iLO5HnWr79nMfHhvrHHdQoxLGOHT78H0TirdeSQXtYSKM3Otp4o
4u2fOzeZKtY5cu7xXttEXMnrgFOUiHuF3aqnKOKKBxdVnD3/j+/ySvxd3pG/
y8ub0fcpXf4un1/ru/xX/i5fwt/lG/N3Lg3+Lp/G3+Xd4LyshZh3NwpL6/kJ
3fTJ4AEqOUjgdf2A5k7ivTpB5bgH4r0sClPnnbCTgGroRrnVApeijp2+eAlc
1sSebuFnJYFb/L0vn7+/V9Sl7+8n+bveQ/7+Xsnf30fWo++Gtz/R9/eiAPr+
/nLmm/RlYj0T9S/ulQk9uz52T46DWI8d18NLroc+XA/JXA+3uR6cuB6GcT2o
1KqHo/z9sRV9f0Qn/v5uvLXquYWIN5uTNsI9PAqdPc53nBUmxcjkG4v9RDyt
ReuvT0Q85hBszhf7/3HSik5mYj8T9cM2rBXv27VsZma60PVnatWDhOthLteD
L9dDF66HOjlUD+XPqB7acD205nq4wvWQfoDqwXDaQJPD4ndf+ZzfvisuCjVd
X36fKn43NTvmCIp9NqzqodTol8+A5QE7I6X4nPE9yfjGM74BjK8y43uI8e3K
+LZQIXzHML5LGkqN1mbk40zDBSEp4ncXfC1T3BwvzvWiSdk6ol9tykmWHI6P
wht2nW62TJSizWaYZCLiEwtSl80T8TZP2lmnJEjRwB0/3xQ8pHcnOfevsVFo
pPG4Z7CoQ2TcxzPu6xh3e8b9M+Nej3FPYdwdGXcHxl2jFu7vGPfY70sXPBT7
9ka6N7KB2B8/ndv6jmLf2pVnjTEUdbt45PNlQSIemhw5apuoW2vG0YlxjGAc
ZzOOPoxjX8ZRgXH8wjiq1sLxIuOYwzgqeE997y32oU5yaNYpsQ9fd8xZ+ELs
AzyCYdtFfOmFRiExYj0d0uqaz4+T4mnXpO2/4rsWXr86SMQPBH+/ZSninRPg
TKJ4r6n981pUiOeoNdqSli/Wj4z7IcbdvxburRn3I4x7R8a9K+M+m3GfUdm8
EDQK0VVFx2VBtB0uaf10yy//rfD0q+ZjxXMm3nm0V9njIcqtnLxkyhMpjp5w
54C/mC9WkR7HB3aPxjs9H61LG5UKlxnHb4xjd8axsbfHy+9dC9HE92qrmcER
qJNu1FJLKw3qmph2+bayEDskfnW7FRGCN9UPBFaNT4NmnL+J8mEg5WNNvhrl
gx3l/17PHloPeNJ6cAq/ly69FxjRe0EBv9dIei/g9wJbXv8nWj90ovWj/599
Eg7SfqIK7+cQ2k8YS/uJ3ozLMcIFIggX7Mk4TiQcoS3hCDpcDwupHkCN6gHO
cD1so3oArgeo5PnSjOYLqFEdYk0d3qU6hESqw9/96gXVOcRTnWM0n5dXdF4g
gM4LVL2gum1KdQvlVLfQis+RAZ0jiKdzBLP4vITQeYE+dF4wgc+vPZ1feELn
Fwfy+W1O5xdK6PyiH/eHUdQfYA31B1zK/aQr9RMwpH4C/bkvGVFfAmvqS3CV
+1Jv6kvQgfrS7z4Tz/h2YHxr5mAzxvcY49uN8W3F+GrWwteS8Y1jfOdz335K
fRtGUN+GtdxXZ1NfhUnUVyGf+/lC6ueQTf0cqhjfBoxvB8a3w5/zAmIY31r8
BKIY30KeX1k0v6AnzS9YwXOwKc1BcKM5KPCkOfiO5iCE0hyEOX/ONVBnfCWM
71XG9w7jO4TxbcP4ZjG+Nf1fh/HdzPhqMU9wJp4AzBPAnvnGJ75fxHwDTvJ8
b8H3i27x/aIaHuLA94uq+H5RDe5ujDvzTKzpk20Yd+Y/qPYn/4EVjPtDxv0s
4/6Nca/hXQP5fhHzLlAw+/N+US7xN5jN/K2U7xeVEX+DT4x7N8adeSM2YNyf
Me5VjPvZWrinMO5VisRjTxKPhUTiseDJfDia+DCMJD4MC5h/yhP/hJt8v2g1
8+R04smAxJNhPNdDEtfDVK6HdK6Hy1wP17kehnM9NON6YJ6GFqwL4kkXwCvS
BejK+kKT9AUYkr6AdOb5XYjnAxLPBw3WHfmkO6BidbXuAAfG/TrjPohxD2Yd
NJ10EJiSDsIaHXScdBDkkQ5Cc9ZZde5X6yyIJp2FI1ivTSW99tsHqIlP+Tfj
Ohyf8H8oPvIvcWPW+4ak9yGX9D7MYt9gMfkG8JJ8A6jxJdqTLwETyJcAGevE
kaQTIZ50ItT4FWnkV0AD8itgGetTddKnUI/0Kfqzzp1OOhe+21frXBzKevkL
6eXf6/9bfNi/iJf+h/n/brxmPV9rxXXYb2lFfgukkN8Cj9i3UepS7dtAP/Jt
4BD7QhLyheAo+UIw5uj+1ktu5+HhJ07XLHtl49jz8/Qsm77AFZJ5S4MxH1u7
tdcrLc9Ez+WL+krLbmCbHY3aaF6SYe9GO5cdF79jU+gepxgehi3sr6hceZ2P
Nhdux8z4nolmG/qrn1hige0zXpw0F3Pqq9c7+bTof/gPj0NGHPcQ8U7nQ/2s
/yn+t/xwzv9u9Wf+YM6PrZVfwPmxtfL1OP/BfzM/stOTT7bR+ZhzPeTOodxM
dEv3u3czaQvU5LvUyl/98WOQ/0jBc7LOdf1wNwvfbNy+Jv3kTZjJ+a618m8P
n1V43jQXgxassjjpnoMjZsV/2PHCBeapH5q2bHU+Bg2XVXjvzMI5O/r+SN5s
BEuXz994qiAbPa+HDjlRkIsPniauern/Jdy4a78eh+Rh7vKuBWa+2Zhzes+X
VQ28YEGvkPvF37NR9nBl97fbcnHDkjtdd819Cx3HZbkuq8zAq2Y7bwwIl+Fq
rw/WP1OTcbDW7crmnbJQPfqZXqe6ufhxbudCcEvAhBUDRscL/dFt8vLUAvVc
DAnp9+yAmBcj7+pPm7YrG/17xBiYj5ZhSSvL6BkK8XjY6VW/Rrdz0djZPXtV
ixwsvfjqwrQj/rhZWmmp65ePFY+GGk2oyMSycXZzFQecw1PunayyRP03scr5
7hbzj/35W/wEx1vUip/8L8ab/5vP/1v8yOl1amteF6B+DyuvQ2oZ6OPe4LrJ
vpewwPp4q8QnOdjB0a1bR6UcdO2/5UVF3XhoUPFl6yX/AlR85nd4qSwFzXaq
5wROiYeQhSOGmwZn47l9i3UP1M/CgYqeM97MTAPb6bdnWQ8swG3yHmdWH3mH
Zv7hk+PWp4DW4C+XTd7LsGN56xu5Y9IwvEmyl+FaKRx1+Wa0SOjXxZvfZ9sK
vAQT8K26LcF780JtJgscH7xIW270K65fYXdQ8BCnZx2PXxf5vcwmZ7qJeHuX
sKiuIl/2zfxlI6HnXpWbXGnaMxcVtIxLzgie41XmseqKVSFGV37asbt7LI4M
8C2tmJAMilvX/fgpeM7cBRFBv/5+gZ/ZxZPlNyVw/u6jC0cK83G8cm4dz8lx
WH75yIkf1ukwtLdqqzUpUhzZus/OjD65GNgifG+YpQRXHetqq7M3G2cnhJTJ
hWWib+6kV8ru6ah17/tKw+gs3GPz9dHavCx8dnPL/KdOafhT5+i4z2L9z9t8
6+8r1ukyZZJVkVhn0EvL/a5mmTj6ZSOT57nZuDolceKe+ekot+/E5xGCb3jd
VzP74haN+gu6RW24IYEt03U/HBC8yLNzz0Rrj2jUMJsQf1To371nQiP2iPeS
D500/ZFnNDaKD8j3vSWB4o/bXO1F3HBi43I5Ee8/4OlHexG/1V77gcPSXPw0
ebCvzrVUdF083de7tRSb3SyVaF/Nx4I6eV3H5MViqw1l/bqvk6Jm1Mnr3oPz
Mdv2w1HzoHhs8mFj/0XbpfhV5jLhJebhOe1Ib6WxCThk90fTel+luFs3rbON
WKdrb4WdnmKfM7R3PfMV61S5NSg7W6wnK/jcmWlC1xfPLqk3wF4Ci18ET3cQ
cQ+D55cniLhrN7uqAQKX7vVnXSwT8d6jBtpefiTwWlLadK7Il/L36J183+Y1
37fx4O/OiXzfZg/ft7E8dtLr5S998cU8bLpzNO4zvCufdUEC8lwPBlwPoVwP
W/Ys++Ih1r/pc7lRfxGPsl7i6fprn/l7d3++V5PH92rG8ff6JXyv5hvfq9nI
3+sf8b2aOnyvxpq/+3/hezX1HOheTQ3uLxn3WYz7DsbdnXFXZ9z3Me5yjLsS
417CuM9i3Lsx7sPuKTbIF+s5ltc8UUXsz6Zz959bifOWvuPYz0sivsOjz6ST
cVGootBK5YmI72Ic3RjHTMaxQy0cvzKOCxnHJ4zjY8axC+PYj3EMZhxVFu45
XSr2IUx6vW878bu391wY+jRait++KDf79R2qhXqdgWlif8YdXGxVX+zPgnjr
+44ifjd1UV13ES/tqKB9SsQPm9/f6PTr3tfajZ0biP1/2uLcrdXiOYcY90DG
XZ9xr9xCuC9h3OMY982M+3bGPYxxD9uT2cZV/O4Yx7w1ieJ3A7p0X7tD/O6Q
yNl3pGJuDjnyJq+b2E8ni862PeKlWLmXcHzFOC5kHHcyjs6MY1fG0YJx/BpC
ONZhHN8zjhMYx2GM4+A3pv1XCbxyhl6M7CXW41AWcdxG1JXWGsmqX/cK0rc6
fHAX6zma/GbZdYFj4ZnxkYdE3KJgue9PEd/psa7ss4grauue+nVfonJKwanl
4jnr328/M0m81w7G/T7j/plx78y4hzDuJYz7Csb9FuN+i3Hvx7j3ZNwdGXeb
+cFLX4rfbfom6nKY+N2BjiWHF4vfjcwuNz2Xno+71gc/HpIQhd03x98sSRT9
hHFMYBx3Mo51+PwuZBwDGMedjOMhxtGZcVyzZndH7wgZGs0x+14cFo5tbLop
rOyXg/t775hz+VouemTN25r09TkOW6BRbLkoB7ue+f5457tMXPgodenUWY9w
6Km5KwIFH9V8ePTpKA2xHq96n3sP8sLHmUsNml+T4n7J+E6yC4U42LLDqOUj
3mJxr9IKO/00GNZ5lZ8z5qLG1k63bZUiUVXuSnTKzyy4ujrzflm9PHTUC5k4
p4Uflrf07d/vUTYE7HdVfSfLxPXfleq0cn6Ej0tfHev1OB+GZbSZW3UpFwOi
zlzfPsoP+hQ8t581OAcbbNMqHOOZgWrDz+2decQHOl+Zrd1qQ8Hv9Qyi9QCv
5/f6A2n9wOuH3KLsWzN75WLoiSZvKia8gJcvlPMiE3Lg8tgFFvqOGXjxdXT7
xP4+8FBNUv/dzgLIMbXsbJQmwycdnVR6FIfDPcN9t+3a5WANLnMIF2Bc0Ixx
2Ua4gAvh8hvfRMIXdhC+aMt1Uo/qBAZRnUDsC02bqRk56NtK1f7Y7TB4kt6q
KEdLBlFcP9uofoDrB1ZzfV6l+oTLVJ84iOuzA9UnXKf6xJ1/1j/kU/3/Pi+l
dF5gI50XGMnnLo3OHRymcwfFfO720rmDHXTuoBOfo3d0joDPER7iPvCB+gBU
xFX3AczjPjCT+gBMpj6ACjwvHlKfgdnUZzCU+5Um9SsIoX4FGtw3CqhvwHXq
GzCU+9gA6mPgSH0MDnC/Okv9CpSoX2EV98/5jG8042vB+K5mfK8yvgcZX3/G
dzHje4z7dl3q2+BBfRvKuf83of4P3P9hKfd/J+r/UET9H+Yzvs8YXy/Gtwfj
q8H4PmF8zRhfB8Y3i/HV5vloRvMR1tF8hDY8p/xpToEbzSmI5bk5m+YmaNLc
hHaMbxLjqziH8D3A+JYwvvLU5zGf8Z3O+I6rhe8jxleP8b3yJ3+AKr43qMM8
ZBffG/zB9waXMA/x5XuD7fne4B7G9wnj24jxreFFixjfEMZ3D+O7h/G1Z3wt
GF9rxvcY45vKPM2M7w0G1bo3OJ3vDRbxvUFv5m8RfG9wA98bXMn4bmd8fRjf
/ozvZx3Cl/nhb95yj/HNY3xLma86EF+FAcRXoRHz3m/Ee6Et8V4YybxXQrwX
GhLvhe6M7x3G9zufX0vG9wvjq8j4fqiFb1/Gtw7j61oL3zTWBUNJF4Ae6QIw
Yd0xl3QHuJPu+M3nPxCfBzfi86DNesSU9Ai8Jj3ym0/eYdz7Me61+/Zbxt2a
9dF00kdQRPoIn7LOiiWdBWNJZ+Ed1nGPSMfBW9JxoDSKdNAj0kHgTDoIHFjf
9SZ9B91I38Fo1l/DSH+BP+kvuMl6cynpTVhHehOns96sT3oTvElvYv0/9SxY
kp7F46yL9UgXwwPSxWjFOlqJdPRvv+u/Gq9fK36W443+Em/4b8bPcbxBrfgO
9jG+ko8Be8dX+xhwkn2PxeR7QP1L1b4HDPnTV4ES8lUglfV1JOlryB9Rra8h
kv2WnuS3QCT5LWDBun416XoIJl0PUvYNzMk3gB7kG+BW9h8qb1f7D/CK/Ae0
ZL+o/opqvwiyyS/CjewXRZNfBJbkF2FX9qMaj6j2o+Dj9mo/ClXZ1/pAvtbv
/en0l/jf8jU5Hl4rPpfjd/7NuP5f4ofY55S5Vvuc8Jl8TtBi/wrJv4IGytX+
FTRj/3MA+Z/wnPxP6My+mTX5ZrCTfDPQYl8ulnw5sCdfDo3Y32u6sNrfg6bk
72Ff9glvkU8IN8gnRFv2GwfeqPYbwZv8Rqzlo/5+r4g//dLf8Vo+57+MT2Zf
dyb5urCSfF1Ywr7xcvKNYTr5xpC50M1llUcWBhq8enjzjQxzV3wOd3WJx+5L
W9q1+pyD/acPlu1tLcM9dh8HpB4PxzE9D9sZ+WagZknigbrKueg5qlJOcikZ
ry+tt7Cubh5Oa/hmnMG5bHzRfUBiexcf7Pili8xK7M9Gk5hipztZeDB3f86V
8Q44ePqukEix/v1Xf3Rb908+qop3uup4wXNUtq/e2+Cf/p7gAM4/UCu/Ped3
rpWfkeOQMdw1H/cYx2kbtcvCpvoaT8eOPQitOb9nrfw3yT3aTLyTh09Su7j7
Ls9GvYCGR+T2O/w1f8vsXV1Xm8uwzYjuLbpYyTBwpXHHHnbPoJVd3pbIUfk4
XGFa4513s/DunrFdW5lfA1Vz7QYKUVmoE343p/WlPEyXv/HRJSkABlurbY5K
l6F1lnexT1cZ9m7fqb3PuBcwYGVxSrvXWYI/17mZY52HDzGkQeLDQGhwr0Vi
UdsMnPFZd0CjdzJsHTTsSIMfEjSNfTv8cLsMbJBgl/k8UYbXFmx2dvwu+Pns
gqaeIn/2ijvZ6SKu97jsvkqFBEdpP219wScDdabXtzwgcJy3eNu9xZeTcYrR
zKidLzKwu6XKlMA2uZjrfNNB9WIydk4uPy7RzMYDVcWzFi/Mw2slKf20cvwh
ZMzGLSc+Z+Lez33XftYWPLRUpdRmQiBkaryZYncsA+37fDhSqpaHbeWaNpmu
mQhpe63a54v4wh4DxrqK+BmlOvoXRPyg/PR4b3kpXlKttEpXkGHcvOydwYLP
OPvbZimI/rlCYb+zY89cDAlLVm8r+IO9kq39JxHXTeg5M149F22PnFtxUMS7
mG2V/NL3sfEFvY+IeOednzx+inkd4fTKzLWRFDNPOn1T+JqD1n4e8qoSKazb
sf/6chFfYWiWOehHDjZ8OU7pjuDz5keHKAd2y8Knhe8Gzx2YhfaVcyVXFTMg
UUvp4CP3DFTeFza/sWYOPnAKu1/SSwpXl2c2LYuS4j2DBrfThC4cr1a/SdEv
nvPMYE65iO+4ERCk3TsX1RVt416K9aiazlN3iZZik8fH0veI+ONdce+nXpdg
z2d6F3aI9QdMTamrI9af28jn/hjBK/BRwo7ghDx8XDRTM6VfEt4/OSfJ4Hg6
mA85eqptUiZaBx8w3n82G4uL75TNXJEOo4/81EizysPRjZtcaeQvwXXYa6vv
qFRwGrVsZLFpNi7/WTF8lVEm9tnYclLufCk0N/KLchK/+z3zjMMWsc8zx2Zv
zrgmQX3bDE8v1SxUCPRxcXfKxgWNCzvam6bhhOkNVhmOykRl/WalE0tyUPeA
/daYMgkmbVo84OIvP6x+gGKQeM76K+sb6wmeNnFwx8X9lIVec33Q5/HcGMwc
2sVkir8E6i/a3dmkRy52t87TW3whFUfotez+YL0UFKNnbBrYuhB7GF9ppjM7
BttsHTO88SsJTIm4PsrGIx9HPv5kVPgyAR8+Tnw9+WYaLN7vvK29bjYaBW+/
5OuVhb374B1JRSpGp/aQKz6ah5V5k09d80rCtnNXd71VX4rPK8ddnh+Wi9tj
0+0a2Kag99mn9/PnS/H8y3Mrlgi+Z6V0P8vSPRqnaR5P9P719we7rjy0KbQA
d9r6rlgfEoNKi2UxzodSodn3hklFowpRam3XPe9uNC7fUNfR3EoC1/s+T/8a
UoCdOlQN9Rf5R8ebfO5xJBWM+B7IcL5fN4/v1/XheyzT+X6dHd+vu8j3WFT5
fl1Pvl+3iO/DjOT7dfP4fl2T9fGf5ARP3mhnnFBHrN/seLu4qzcErzjl7dTv
l1+qpTduhIhHdu/TLu66BA41GT85WrMQLRN2mt7xjMZnlkPzpzpKIOHPe0Ho
y/fo6vH9n7V8jy6b79F5Kg9MMBb79mFw4eSp4vnSKUrafmLfTiRtD6kQz29o
MweO//LrZmZe8RI85/DkNU+NxHoeXPi4N9I1GksD7/pYiHUGHtB3W69diImO
aou7ukWj7IW+3TJbCZTwfaTmfI+uqSndo9Pke1MGfI+uD9+jO8f3prbzPbr9
fI+uN9+/msz36FrwPbozjPs5xn0B45516tNLGF2I6mOa7Lt4JxpvPbg9toXA
92s54V7/IuHuzLhHJwy5FybiXd6qT38v8nuOHhRudV4C7lPaRrYRv3tKT3P/
eLGeuPCpKyzF+mdZjH9TlZOPT9uV29aLjsLxke8K9SOl2JBx3MA4HmUckxnH
IMYxhXE8xjg+ZhxPMI4Djmn0MUmWYQul/rfS48NxfvOS8ZWdcrBM1qHOxq8y
nLNXvfKxcziaj9S6Z6CYg3qrjmQMq8pE54r0dovuBeGsXm+cbOXyccM55br7
xX4mrHbePFnsW8nHM9v6iP10Y9xLGfd8xr1xo7SPEwNzccOtHXPntY7E+KWO
05K/ZoHTgapnWwpyMeLjkeEdkiPw+S478+ZRWXD6Y9azyx2y8Ox8w+4+b4JQ
Zf7tdTH5eaAvL0lfEypD+8C0e3sNw1Fywen4EO0c/Flu22qpXyYWz9Rp6t4+
CPe1LxuBw/OxS+kFtUvPcjG+88SLapYRuDGj96QxytlQ/jS0vK2Y3xZad/rZ
qAXh4OWFT/P654Nc9NDLh+7J0EdWELnwWDhWTT/zZsaiHHRSMX6Wfz0TJy3o
sNtzRBBe7VgRkzQrHytdl8g9uJyLxoqJTpbuEbiodEePPcOzITjk8+j6tzMx
ZEK/yJa6QWi6YVX/4Gn5MC/tpqJlVQZOVOunb3jYEW3CljQ4sLEAJ64Yl/Ra
XvTfEtdnd+44YvCpvS0k6wtgvtdaF8lFURctl333j/aDBn23VVTIFWLGZHtl
vwtSHLXnZ+nQED+YLK2TdUWhEOrNz3G8cFeG7j1HLq8yD4fI9wv8DZfmYIct
59Uuaol+ZqWnHqkeCLqryj6WtCjET8+/6CQ8yEH7ca5WYbph0LGt1XEPUxm8
zJzqZaQh9GbYaHNr1UDwfDAmq32bQig97q9eEivDBxsantIYFw7aSXYfAobk
YIl527j928R5cmmydHhlANzctuXgqZICXNvjjktScg42eeI5ckLDMHhhNKzz
+ukymO0+5N7zVVK8dX28388vAfCq/tool/ICGH/xiVXPdrnYZXgDExOfcGjm
uzLLJTUbo063mj9PIvTs27CgJymBoFWyd/RtxwJ05nqroHqDr1RvuJnrM57q
E95TfYLtqrsTk9rJ8FmbmUawLwwueXWaF1hXBnPanT1s9EqK64++XKTtEwi9
urS6kORVAL4m7l/65srQdNe1goEKETAidJb7sCY5mMLn7i2dO0imc4cX+dzZ
07kDIzp3qMzn15jOL6yi84se3AfOUR+AGOoDcEE+arP7xxxUM7tt5fYoDCbD
q9vGvcW+cX/wpP4A46g//O4/Daj/gBP1H4zh/tOT+g90p/6DVtzfLlB/g5nU
31CN++FQvo/ak++j1vTV+XwftTffRz3LfXUr30e14PuoNX1SjfokOFKfxOPc
512pz0MW9XkM4D7/jvo8vKc+/7uflDG+RYxvFM+jF3xP9S3fU/3Ic6Eh31Nt
TnMBlHhOreF7qpl8T/Uyz6OhNI/Ad0b1PMKavhrC+KYxvtaMryPja8z4NmN8
tzO+6xnf5TyXNfie6iy+p1pzf16P76ne5nuqF3i+q/A91d58T/VLLXzdGN9j
zCsmE6+Ap8Qr8Bzja8v4zmF8Y5j/1Mmv5j/QkvgPLGYe0pfvoxrzfdSHf/Ii
CCVeBI2Z/9wh/gPTiP/gzyjiaX2Jp0Ev4mmowzxtNPE0SCCehpOYBxYRD4Qs
4oG4mXlmRkA1z4T1xDNhHvM6Y+J1MIR4HSxj/lk2t5p/ggHxT1BgPtmR+CSM
Jz6JWsyH9YkPwyriw+jIfHgD8WHoQnwYfZlv+xHfhtvEt9GC+fxW4vMwmPg8
SJj3bifeC1uJ94Ia8/zmxPPBiXg+9Ge+nUZ8G4yIb8Ma5vP3ic9DFvF53Mx6
5DXpEWA9gj6sR7qRHoGnpEdEHZA+mkb6CE6SPgIV1hcRpC8gg/QF9GDd9I50
E9Ql3QTWrGvcSNfAONI1sJp10zLSTdCCdBNGs86SkM6Cq6Sz8DPrvkmk++Am
6T7czbrvIuk+SCXdh9qsQ/uTDoX3pENhB+vchqRz4QbpXPBknbiAdCJEkk6E
vax/p5D+hdWkfyGV9akD6VNoTfoUg1nPWpCehc+fq/Us9mT9u4/0Lxwm/YvD
Wb+fJv0OmqTfUZP1+wfS73CD9Dt2ZH+gP/kDoGle7Q9gLd8DavsbarXiNb6E
eq248p9+xe94K/ZhzMiHgXXkw0BH9nmGkc8DO8nngaHsD0wgf0Cc92p/AHTY
/9Ei/weekf8DSuxLzCZfApqQLwHd2fcYRr4HKCpU+x64m/2TJuSfQEujav8E
g9iH8SAfBqaRD4NS9nPMyc+BRuTnYD/2hY6QL/T7ff8Wv8w+lT75VOBMPhWk
sg8WQj4Y5JAPBt+yXjwu+Sz0/416w3Vey7DRoJzIU/5xOPWhcVmHEzL8evDF
oKqrORgTpbjFu30Yqt3OSrvUNxMDvFNUPf1kuOnKQ926x5NRsbLOjdl7c7Fk
VePVeqdzsE5lUtXzN0/xaBf9h00X5WPv6PDmsw5kodKl+24XrW3xY0L3/aWm
uaicdezJ1js5OPXuzIUKnzxALe6Bxc5L+bhp9/RR04Zn4YmDCRaGR8/A1znP
jMsa5uDZ/k9dXz4XurtIZ0s9FT9wM4588XhKHq5qebl+94Bs7L/MeK6k5QMI
eHDYOGNwFppI29juVczHwA96thEhgaB+bmeVgAp3+x1rHDtZ8OjCGUra2T5g
t1LZo4V5Jp4KHtNi2oZ8bOC8RHVyoyBotjbhVQvdLHyoJ1mTW5mH48rUdrRc
GgiNgjymRO/PRNUGpafURf6mJT1hQ/pbaDtEP+KR0JHjIhKHf+2Zi7MfRvUP
tpPgjqzEiUW//j+QQbcCktVzMadP6C0LMb88S8wG7BbxpNjEB+tE/pFIRUUU
+TEqd5v7v83ArrcbabT7IcPskJn5E6KSUSc8on3LfZl4/kXbk84bhc7bdPPE
6JS3gK0L93Uzy8Qc33HG8pvysanyrTON6gXBjtPKB9bvzMQf7Zbqbd+Sj9Fz
GuY3+/kWHiw41sdG5D/5ahZUIp5z9srMgl3yQeDkZlFv/q5MbFSVWX5gsziv
ZU3KXBSCQO35vYcy0U8SXyQ3Pt45Dx2qfN400kiETfeujFA8moGvdCM3neiS
h7vGaZWeHZoIPVY8+hAnJ8WrQ4yLe9STof6FNT8WCX5StHlhcabQf3PfPH6g
2DcXk1sGbj94TYIvytY8CRBxg3Mfl3UX8fPpg4NWiviI/eHuY0V/dknx9lgm
4pbvvnnvFTxKdYDHUwexz9a7l6zsJ/ZtaUql8f5bEjw8We5V/M909O9w5bKk
rgyVnCetVhb8ZIVWbPFd0YeVti/uO7qODFOiqm6sELyu9+D7uz9VpmMfx7lG
LcQ697TXNhgp8vsc0TGTF7iYfrg66JV4vrl8oomfwGV7469ZGmIOPPHssspD
zOGJcpYd4KYEBw7afUZRzIEi/zBt4665aON2w1Z6VYI+43xLb4v1bI08+cJI
PD/4+JFe5oLX/YiQFuwV+5M1IGNosqIMi5y+lK0Qv9sdzdM2i3U6a6ZujRDr
7HHFfWySiMf1nNTSS+SPVJnSx1LEPTdfXflBrH9T1/uhD399L5ur9O2eWOek
ns62YaKublQ9HTFKxD9ET8ur3zsX5Tsvil4t+F5VmtL79WKfZ/b+vPBNH8GD
CiXfjASvS9DO3RYj1m+Q1vxscZdcdH3SqaG5WP/Yjd8O6IrfzT0QNkRVrH9c
wcsXnwSOVmfqNS3pm4Gqby2T173OxoV15rovH5cBz0ou5LUtkeLYZecUh6rn
4MbRo6b1qZsBCge/9fz1va9tq4zKKrHOd/lyl5XFfhZN1XMzHJmBSxu5Nci7
L8NHtwbvCR6eiv4NHJrEa2fgtN67Ru9xluGFrLelw0X81Yg25dli/cefKkwy
EOs/Wer26IlYv9Oxg8Xd8jNw8Kd34684ZmPzvYd/TrgjhcM6Vww/rxD9wtRe
N/d6Kp4NjejQo7kUmj9+Mv3NrSzU8FnlZNwpCycX2jyZelQKNy4+P9nfLwNT
ei+VM3goQ6eLLmE70lKwYmfz/RekMnzuZhNi45uOWjsyG68/lY72GQUua48I
XdPYrWBPuhT1uyUtbWcnxQMXu1zcJ9YzS/b2UehcGaoMnN97k9h/OS3n5iOU
c/GHYGr5T9Lwecdj8sPK07Egocrro0MO6m2fsW9UhuApc+LrvTGVQmJZ7nhV
swLcd6ZsuWK3eEzftuj5q9apIOk88aptogwd75Sfbl9Pimb75g1+Y5AO0571
HT+xuAAvP7wo16VuHBaFZH+SGyKBNp+LvC/9yMONX5OVF61Mws6ysCfnctPA
st4M5UvB+ehw5u2+pQrRGBK/0Hr/eykqe2fETRqSjwsPGi51nxqD331D1+/a
k4FzgzXXrBZ6oXRIB7X5j6Kxk+FR1213BD88lDHV6Ne/g60x98cJj2g06XnC
Ul7wk4suLe42civAHO1zLs6FMbgraIX95nepcPuS52FnsZ8HfcLrm2aEo/yl
3V0Hts1Bp9CkZXryuagRXGp970k4KqxY13T7t2y83fTmhaomWfi1yYGNe54F
4ZrsPr0NS/OwXIvu4ShPpXtrpnxvzV5Nu9cvXZaY/PW1g3s0Lno9OcJf8M+y
TXLOoZG5GD4/pvJKp0gsunK15+r8LDC4FFxs/jkX7282NrXLi8DKNlHZT15n
Qb8b96MH98zCnudbuTgmBuGFguz3yul5MHihsblppAwtdK+0rLcgHPvOP7br
ybAcHGto1NAhIBMXdQpz+KoahKuX+L9oNiwf5b32Pw7zzsWHZ/cpFO6JwHr6
+8aWNM+GkY/6jPaKzsQ8lfyLZ9WCcLpTyKKhffPhpXXQ8Ap3GXZTW9M/3yIc
FddMGvtpTg7O9HfT2m2fiQbyS79eGBmEpTFGC8JmCv28tlOIh3UuHlvTadNa
rwg0rb+rzlTtbLDR+yJbeTcTGxzRrz9vQhB6T7Po3GlKPtxqU6UTfSoTx09L
uZypGYRTuxou2L9E6Lpj+XOyzmRikykQuX5sEPo+XXVswaJ8cF5efK1SzJ3W
55uceFw3COfH+FlYrMvHaS1abjUW88Lsw6HjGopBmJN0pGCFmBu5ig6ZuSLe
2KHdiyUKQZi8qp9GJxGveU77P58Ds/k5h/g5UnoOFPJzVPg57+g54L1+IA7S
yETfM5PXpl56gxdXqO/u/kTM4eP+mpvkMrHcWt2rfa4/bgvZeiFPqQDfcP5T
zj9N+bCT879x/gbKB/fpqsf2L89Al3cNmo1QPICFluu326YVYOlT04oB5VLM
XCh3POvsVfhUVcd5jWohPquVL6N8KOP8eZz/gfJB+uy0/YRBUqz31NO3w/vX
oHf1de/Z6oX49WjDsjmtpHh+8+yp8mcCIFrNdU7HQYVYyPkNOH8K5UMl59tx
fjjlg3LrokcmFemol3TXfl5IACwIn9fdUZyHoa2uGZ4W/fzRcKWnr4MDQNrL
2Grqr/+PMucv43x9yoeRnJ/O+UmUD2Ym18ODq9Jx6fpoo8EJAbDqWc9PyuI5
B+tOevlU5H97qj2wMjEAzJa2v/jr35mqyV/E+aspH2ryS//Mh1LL+g7eymJ+
TRh0s7h9IIQ3eBB1pFchBnVS23K6pRSbGFVFTWgeCGt6VD2e3Ee877am+roO
MnQPet6j9HA4rDxW8qzbyhzc9GKEsdYoKb50+BRT0jsQbhx/Vedas0JcgHVd
9j7KwXr5T8qcRoXBXLW5ZY83yUD9fYLlKE0pDtHsHzimcyDojqsbNE65EB5q
vtlSN0GG16bOvWo0OhwGjc0PKxmUgzv6PwjssEuKHrOf25j+EO/Vu41N1PsC
lNuZ7RmWmoNtV15u7tUoDF5WSJ3WTpFBcEpKUd11UpwSOeJoo7IASK1rpvT1
awF4StbKVMXcNY6wD50ZGg6KQavMTWKy8UfZxHuLCqUY3kHOTaUoEPx1+xWP
u1qAN7i/vaP+Biuov9Xuh7CT7yUu6ZW/6kA3Gc7Jz/+cejwMFKZcvqn6PQdm
1eu13lrod5vtH7e0CQuEoTZ+A3RcCsBSr63ewM8y/Fw17FhSgwgYYvNReWNV
Nkq5z6+mPg9Lqc/jBe7zn6jPA/d5XMnzoplG9byA+HnV8wIP8dyxo7kDQTR3
YMuGtj5qZTn46MD30kTfMHgaZJo1pIsM2vE8MqR5BF9pHoEezztrmneQRvMO
2/O820rzDlrQvMNknqeHaZ5CKM1T/D6C5nIFzWUIpbkM8rto7vvS3IeeNPfB
ged+V5r7MJ3mPrzjuexCcxm20FzGlok03zVpvoM3zXc8yvxkBfETsCJ+gpOZ
n7QifgJ9iJ9gAfOlBcSXwJ/4Elgy39AjvgFdiW/Aa+ZRusSjwI14FFxlnpNF
PAcuEs8Bd+ZRPYlHQUviUXic+V4H4ntgRHwPPZjvaRPfA3Pie7/5ZwnxT/ih
Vs0/4TXztxPE3+AA8TeoZF46nXgp7CVeCnX/5I2QRLwRhjMvLSFeCmOIl+IA
5s9viT9D2eVq/owy5s+LiD/DLuLPaM583pX4PEwnPg8RzIeXEh8GB+LDoME8
P4t4PjgTz4c1zMMHEQ+H0cTDoU0k8fwi4vnwhng+BrMuWE26AGJIF+AC1ikN
SKdAKukUHMg6pS/pFDAlnYL+rJtmk26CY6SbQIP1yzrSL3CC9Atos556THoK
VpKeglq6CVg34WbWd36k72Ab6Tus0XeXSN/BItJ36Mj6sRnpRyj/Vq0fcRfr
0DLSofCKdChuYV38nHQxyEgXQ2fWd+dJ38Ey0nfwiPVyMull2Ed6Gd6zrlxI
uhICSFdC5z91K9iTbsX7rH+9SP/CIdK/6PunjobGpKNxBuvuQ6S7YQvpblRh
f+AW+QOwjfwB7Mf+gAL5A/CC/AFUY/9hP/kPEEf+Az5gH8OEfAzQIh8Du7Af
sp78EGA/BE+wr9KDfBVQJV8FprNvU0q+DcSSbwMZ7Cc0JT8BqshPgMHs5zwi
PwfMyM/57WPoko8B88nHgPvskxwknwS6k0+C/uy3rCO/Bd6S34Ll7NucIt8G
jMm3wffs/7Ql/wd6kv+DddlH+kg+ErQkHwkq2Ke6Rj4VNPxfxL15VE19+DZe
kkJCSkkImYokaSJ3JIoyJiGZx2gwJlOIyJQpIkOFhEwpaXCnSVRoTudUp3lO
UYYy/D71uZ/n/bKW9Xuf9a53vc8/z1rXutz7c/beZ3+u6+o+++Y5FXg2blba
OkCEpmPHnQ1aWcX+vzRyjyAL1w2ocgo6U4TNx/u0NudWoEKc+pkSnVw06M3+
VYwI/dfVfe82pQKPWA4fZL9JiHKVN/yUbuVj/46vTZWH12L8jlzNZtlINDqp
Kd4HSzBlT0TAkMxKNDueZuD4KgZzjOP8B8gUoNFE2cQElVpcpzXfbfKlMJhr
aiXZK60Ed2c0bnUUVOIo8e0D1s+MBhnr8h3Ha9k+e9fNNS20GjU8wlVmBsZB
v8Cz0mceFGPAvVuOJrOq8GiW2+OP619CxYQxlfZmxeirI/u07E4VVhr0Ejcx
SgTDDt9MxNr6abelj37EfPTPS/apTcxHT5Dw2K/KvtdaQen7XzFfPCnNx+YR
0wMbF91y9M4W4dkG7RbXwRU4BvVc1W4I8ZxUpUPS2WJcFPv1RPrCKvx4bkzk
Bbkk8FPdsU2aXd+XlZ/P395YhetHmaV7SiZB2OZw9cfseyHRkH84bFMVnl3Y
qaptrqv8bJubg7YVo4nm/pX9nKtQwnbGhksdkiD7xjXRSsb/4HXz4ACHKsw7
EHu7SSwJBlXVdhR3LcaohdvPX2J1Sg7+8NVm/CcysWutXYrRbuww1SDGt50f
djGV1R8RH12whPH19vu4r2Z8h5cn90wUT4KzA4c1OLHjDg6ehy+cqtDNvWNj
JePvOpo6WZednyGC8wKl4RV4rJdoWtv7V2XOfJSNZPhZ+6p90UMrcPbUJbJz
rwux9YEg/QbD9U07HzrH8KkyJaVd/IToe/6E0UJ23grLSk/JqlXgxCGj1+X4
C3FB0C772INFuPmg8FXPwZV4L0jT+5dODkwMf5ahz56HoFySm9SxHOc9y3B6
liGCsZPmbahguHNSaFwXhs/p+qy/TKYIFuzx3jKs7fn58GJ0pEQ5ig+9Jaae
JYKOdjUvzrHnqI3ZAGvPEWw9Gwbnz/IVotfazx+8GV78MnLODYYP67/94md2
fQelngm/yHBn9djuIQwPvbf4dpsOjJ/yamIP9rnenL+7RI7dJwFTZZXT2n4H
4do6/jvT4Spxwz5XSpbjQkmZUS5MH1qHv3jW2lqIic3G47pLleOomE4SBQzf
VNJF/zlb5zW1iQeDGd951Ysp3RkeG5lU5szut4al706NYec57tmG0QsChOip
Z7k5n62nqixypxY7rqRVVYgxw++HNa961TavLF+g1HZdnLQdZITsfHor62aO
YM8Z7yOWiX0YvrfD7t2XmJ5cNGXllIVsn70VNMLMehB7Hnh/+m56SYib65Ns
2/xIqEf3Cx3Yes7X5zj0Z+c5o/T66VS2b3pmKwcUMVx/8LSkpHciUBr2uU6h
gwgD3Mr7nGT4uwi0aGR4pcRWKxWG99ny3bQt12pysn04muEVRoqNNWw9exx6
S7uw9R951e9IPltP7KMmmZ9sf/Fwam2Zyb5fKZN2DD/F7quQyO6rLrH92SIx
pGkUu0/Q8aH98Vvs8x4ZejuDnedNfQIaP7PjzjYrVt/JzttU43MLfNg6H50T
H+zD7ocl5o/P3GZ43efU6jy2//a32zKkG1uPTlblsnSGGz7rOmgiu46TEtwV
T7P1vLHboJXMvu8XdkYcusbWqTlygbUJw72HBd4cz+7b9x4jLq9m/IpdcpuD
Ga5X8MZHrq0/sGvHwN5sncKx8zwFbJ1H7uxSOM10uKl6Rm4aW+eUZ9Jdw9g6
7y5z/vGGHdey1yy9IetEuLp8kPR0hzLcNenMnQatIhBcjXhStlyE35IeTH+9
pgxfJiak6xoXgaSfmc/MeUK8/lotcrV/Cb6LivqpWleKZytW9nh0tQgXrCgt
cxQUYMsiw7ez35ThiGFDPE2m5uJk/dXqMYl5eE/wWAXXVWNZgMRCPfa50tzk
Fp9k98Ml7UUrxdn6TxT444E+Ragwv1zry8Ay3F17WayA6Wirpwky6sFC7J4x
5JvS6WJsdh6o9yiuDHp2cCx5yfRG9aYBheOC8nGRgudSs0NlMNpaqmW2Zi7O
/ZDgJHc+D9e2TP0S61oN5Scr9U7vLcOp4v6KU1XTMcRr3e53FWVo1zzyhsyy
fGwydu+VlZmOg+dU71yRUY3ZaWoxr9aU48rvlV/S/dLR7I2ETWB+KWTu31Fr
syIfO7/5cLLwTTo2m1xuTsmohmfvxobn9i1C58E9ZW7/eIVVk4pfSxszHzfP
/2vX/kV44cLT81s7vUYp75GdZSdWw1J548dO1sXYUy0nqzksCZ84+mfs312F
y7Tfjstmz0m/j73Nv3VMwiG598PN2fNylFKT7QerYgx/Jyl58FESDu25YW/N
nir8p06X3+vAGqpzk+qo8jowluq8ozqqvA4c3TE5uJg9z7u1rjNfy/hjd3pb
nmLPY2FevN0EhqsG6PdNlErCh/11Rmcx/BzxOxJ/FOdDOfFHEz+Q82EWmpw/
51aM8n0jbIOYDtvTvZt83roqjDjUZbUce/6X6dlcnS+WhBcfKCm3/d1jLvHF
ib+L8+El8YuIf4rzwUl+ivx6xu/h3nGotUQSVoxKdRCx+oGEWxAeyXHYSTmV
GOVUeynvCv18V0exSzGuPGrU2Tc6Gi10N3i2qlejb2l3q+PyxTjPsJ93RXQo
ntqw6fsYk2q8SXXMqM5Cyruiqc4FqjOV14HrVGcX1TnG64CynMlXY4EIX8iv
vxh97j4Mydx/T35QDcrFdErTTBFhs9iYORPMnsKUi48MHsnX4CziryO+JOfD
eOKXEV+D8+Gi+Yiji2sLsfvulp3aEfGwqrvn5P5Qg597BdruqCzEnGcf56eE
xsPjU3U7dhjXoJD4Dbs4fy7nQwPxG4j/hPNhamJGgcv3QlysqqernxwPbtNV
rp8zqME5hB8hfBfHQSmj5psnez5nRs9TD8mKh41Z6hOO69bg0XX2zgPY8+rt
gHd7yl/HQ97brxpp+jXYj/jRxN/A+XCV+PHEz+J8UC6uP9ZTQoSbtwx1SmD4
z9rnybGs/kp9S80b7Dl86s7oshC2HnXNW+drWP0hxHci/hfOh83E9ye+GufD
p6+htU/Ycz7u8+HVi9/EQ07M806r9GpQ/8OeM5eZj5vlF/BQl+GqX/f4KbPz
0EL8DOKncz4YE9+R+CqcD5rzPspeZse95Tdg1Vx23JkWp2o+snVm3l/3oQfb
H+d6PD746lU8VPw6lXmG4aOIf+d3PmQQf+HvfJAID246KS/CiOE9N1cqJcAU
CfNP94bX4N0e1zsskGP7e+6pvhU9EmDRXDG3Zeo1ICp+9/Tz/TLces/NXdUt
DV7uC9gZmFuGX15UDNNYUYiX7b41lBakwoa7jRoxBdVYm1+3rSKqFLWiku3H
f30HngklCVdyy0HZ6PFRi2WFKJr1yXtoTSr8tCiNcC6ohueLFFJ/su/pQoFk
dUtAPuzVG39gJnted534zOeQvgD9A2WOnpySB0fOzZub/7YKXdcOero8qAib
RIbfHXIK4N37HaPkX5bBnYe2XnWzBWhZ/MP39fY86H3Wt/lUVBXcVZe7qBqf
j5Iv5IeesiyB+9eFl95HluJd2nfKrdr3HbjE9x10p/1xBt8fYR3fH/EX7Y8v
+f4IxXx/RH/arwfw/RqC+H4NDbTfJfP9Ds7w/Q4aaR/P5fs4aPJ9HKxEH/U6
sP1FXvdURKJ1KVis89x6SVgCC2kfB76Pw22+j6Pl73oD5nO9gS2kN4ZwvQFD
uN7ASNI5Z7nOgcdc50Ay6QcB1w9wmusHeEj6x5brH/Dm+gcmk24Zx3ULFHHd
AjdJF23nugjMuC7CoaTTIrlOgwCu0/Aj6TR1rtMgh+s0tCN9GMD1ITRyfQgX
SX9+4PoT3s1r159QSLruKNd14MJ1HUSQLn3GdSnM47oUqkhPenM9CQpcT+Je
0p+3uf6Ey1x/4mzSz/FcP4M218+4mfTzBa6fYQfXz3iU9HwZ1/OgzfU8+JIe
PsH1MHhwPQz9SOc7cp0PL7nOh1zS4bVch4MP1+EwkHT+AK7zYQHX+ahNfsSB
+xGw4n4EF5Ifucj9CLQMafcj2O133wQzuG+CBPIXadxfwCXuL+Db734KZnI/
BWLka5ZwXwPka8CIfJMR901gzX0TLiaf5cB9FjzmPgtHkR/U4X4QtnA/iBfJ
D6pyPwjbuR/EIeQ3I7nfhFzuN1GNfKs+960gzX0rTicfPYD7aFjAfTT84weL
uB8EPe4HwZ78tRf312DE/TW4kA9V5z4UDnIfClHkcxdwnwtruM9FIfnlGu6X
IZH7ZXxMvrsz992wm/tuPE8+/R336eDAfTq6kq/fxH09tHBfj//kDDd4zgD7
eM6AOZQzBPKcAb7znAFnUo6xj+cYoMpzDDSgPOQtz0NgAs9DYP3veQv04HnL
n3kF/OB5BYynHOYGz2FgD89hoCvlJJd4TgJaPCfBvN/zFjjI8xbsTrnNAJ7b
QBDPbeAI5ULTeC4Ek3guBJh7ud+LFey+Dela9kOuEp+05M+w8MhDrVG9drij
CPNkHx36OaUCJaJjpjhtEuI1ab/1Wuz7sdJ1kI3XUOanHqWNesf8oL5d5cDz
u4R46lf/4Nm3atDduN99o35v0MSt2kxdPRvfzpo0cefPOhz//GbkhfcBaN+1
j9qCy1lormHxeE3fetSY+1Y89cQVMOrfoXxew3vU8O4tVaFRh2GTzkvEnHoE
C1ZtFZffV4h77KVMNa7U4Hb32PLqRdFgdmfZda8ZxdgIk6QDblfhD9n6En+j
RDhx0ddlwusiTEsObLLqWY3CVzq2t0ckgPu1EeWPdxfjuAjb+4fsq3Ba06+j
UzsmwcQtJxz2svtwiMXeqI9OVVg/dv6+VsFLMNUuM/dgetXe6vr2CqZ3s8fb
vDjE+GveJIWnHC3GryFv4tYur0L32C/dSrolweorRSXjPYsxyV+utj/DX11u
KZ7P8Onvb8iaMr5yfTdbL4a3ZIjGPO+ZBB7Khq1N7PulGnm355oRFTjZS7Fq
AvN34f4uM+8w/Gql3Yeqthzj3N09k5i/hvG2Dzcz3G/JtBUmzHdf0gnx8vcV
olHPzqltv9c5Gz8kobwtZxh4YkvbXJuzOYuvLc4RYS+3ItdlgyvwpPOqOXf8
hTjc+NP3ZvZ9+ZTyaF0iOw/bAlQWy3dOAms96YeRHkU4563sCDnVSrwsf1LC
ZVwO2LhM3DjtQBF6LCl9Xju4ElfURntUMrzxdv9AGbYvBF6TnlbB/PKLSaPF
d6aJwE33RuFQtp4OpoedRWw9a0cpf1x0XYgKB36u+szwW1Yh+VfY/TPz9IN7
h9l6bhQ6T0X2vfgwrKjxNfO5V8UtTAJ82P2U0ts/iT0POwWtCDrN6lfHZ6Wz
/QCuSzm8+s7wt+8r5FI6lqPBGv/cFobn9k01GcLWs25orwfnGb7VIOFQ3wwR
vHrXQdmI4Zt2Jt8dw+r011wVrN/2fpLAkmJdtp6ah4NcjrDjWqr/PKzAzr/F
ppAnzuz5rN5/xLkvDI/Om2i/h+Gnv54TurN1BonZrrBl67exfOndla1/Uohr
nQr7XiyZ62ixiF0vefWuSz97C3F3zEGLH2zfmbVW7kQmO671o9yVZ9Lb3h8y
5shptp7WuYFLzrF19ll9EMIYLum4/aEz07fvJc73y+1Uji7BfVa0vZ9ELSZ8
fF+2/ySO6flKhh334bSDrnPY9fUybRnnwY77Y3xC83qGz1HL03drm4/c8GRF
2++ilth83uHB8O6LsPhk21wwu/A+EQyvlbggNXBIBY7Z5T5HK0DI/GrQIEV2
XLNOy+t0pcpxcUDUtMHsuDMvbuu25WMhyrb6O0zsVo5jZeTKpr8VwdOY7xJr
GwuxdUuA0zSG1wgXbXjO8JNrr9cmML5NYFTEN5ly/GIVfGMPw/dfvd0aw86n
1M7ytJfs/CS/uhetelmIE3o6BN9h+KhdjbZD2f08ec2ipkGXhCg5ZPt6c4an
nkjbto/hI/O3ybe9P3ZjB7H7be9DaAz8rNHeh/bu4ub77HN5+Kx7qcnOj1Jg
4S0VtQo0vhl9ae1NIbqsvbhegt0nppa389r62bz8pC4Zsc/Va2HGuHLms0LE
96g+Ybjt7p9vytpyvEaYsZbxS6XqjtWx63WuabeqLMOnVDQs6Mqu+1bn/JW3
2HF3+nk8+sHuh/4nxqo+Z3jqdwmNtr67oMkyr0oZXrXukJUHw12X7VbcyO6f
n6q7lRaxz9u5k+a+uax+0LqZQllW/5jRnnWmbe9FGVlX2oetZ46O6dcGsXKs
DYle+TZPBNfMJx23ZNfFV3pphD9bp1yGyY5kth5vKZNTe8dlYn/j3QGLzglQ
FPEy/btMDe5/ovNk+QcBdhsDN8dblaBkxpFjztZlOE1aWkHreR7e9HfN3r2/
GJuOuGX9sC+H1do7LwdpZqKXxdE58w4JcP71jUt6y9XAicDub099y8CRYxaL
H+gmQHUX08EShuy5vj7U58v0XDz9uVN5sFEOfpqZ/eQew/O2irw8o7JxTWiz
T7BNHvpX7b7eQ1CNl6mOIdVR43XgINU5T3U+8jpQQXU2UJ0rvA50qb8+o8BA
hGbjXgQ/7vcOPfXHdn68rBpnSGs3RcQIUOAl3nl8eSZKjB3TWlNYjZ2Jb/47
H6yJn0/8X9rtfJA/HW6jECbCursOFRnzUjCnw+WKvEXVuIhwhXscv81xUP0y
PHxI/2IscmrsNj7uFcbnGXzof64KrSlHOk05kiblUaudHr0IUCnGBi2fj4nR
r3C/urXCkfNVaEN1tJx5nYu8DsynOu+ojgblUYupTu8xvM4hXgfOUL70q4Xn
S5qUR5VQvmRA+dIdyqMuEl+c8qgRlEflE3/g7/kVqFC+1JnyJX/Ko5DypbeU
L3n/kUfpEd+F8qhI4qcQ34fyqABBp4+XfhSh9O7uk7aq38G15SqZqeur8Srh
koTbcxzubVAYEuwtQt2DJeskRQhJ8Cj6rlwN+hKuRXg6x+He2+wX68sKsWqI
g1S/8Hjw7Leqq/GkGrxYfG3NOvZ9fLQwRdo4NR6GtI7oPa7td1PEbyD+Gc6H
Y8QPIv4ozoekqfNMZn4rxPUjD8/PTI6H1WELdXax78VirdkZTozvNH6U8n6G
Gyyb4mrK6qcS35b4qzgf5hN/IvGB86FKnvcjWVM/0mrqXxpO/UgC6kcqpf6l
kdS/ZEn8udS/ZET8J8TPo/6lDdSPJEb9SA7Uv3SW+pGuUj/SVupf8ib+NuLb
Uv/SZeIrP+X89dS/VNTDKeAq2+8U1Uodn6fEg+LadUL3tvc9ET6a8G4ch2+H
flwdz/yj65gTgWPZ+r85a0/4yT5v5qIZcy+y+t+fNY/Yxc7/gXolxd5snR0O
c/4W4n/mfCgg/jfi7+F8EHw16TiO8Q2nhCsbsuP27LJgUwWrv2LGa/GB7HMN
N3xY/ZWd/17eY33jWP1m4psQvwvngzPxpxBfhvOhh7/ahVEzCvFbbtjBZ80p
sGG2ZrpdczWWvc14Wr20ANd4zrfoG/YW3NbOsZeXqsEBxO/6nvNXcz7UEP80
8V05H/SX9iivWCvAxQPnRpo25sBVQzR/ObcazdKVLq8OzUUDbdevnVfmw8Nm
caWRl6pQl/i2v/Mhe7HEWvmoXFyd7PnWfXM++Obvk1Vhz58oO1Sz+ybAnep9
8K1VCSTcGBN9c24ZrqR9qg/fp0DuSfs+hY20Ty3m+xRM4vsUjqH9MZrvj/CA
749w4EqvQcp989Hr2tOJw/uVwoS8ZeceaJVCBe2b6/m+CeMHtu+bIEP7pj/f
N+EM3zdRnvbxcL6Pw3y+j2M87ePFfB8H2sfRlXTCQK4TALhOgHGkQ7S4DgEz
rkNgJu37G/m+D3v5vg+dSJ+kcH0Co7g+gS2kN+ZzvcH47XoDP5Jequd6CQq5
XsI00ktWXC9BPtdLeJJ0XacJ7boOdLmug1Wkf35x/QPLuP6BH6T37Lneg7SF
7XoPtpPu6s51F7zhugvukK772NKu62AU13WoTToQuA6EJVwH4mHSqy1cr0Jv
rldRnPRqPtersI3rVZxL+nkI188Qx/Uz5JP+LOH6E0y4/oSLpKtvcl0N87mu
hlGkexO47oUrXPfCNtLVc7iuhvlcV6Pgd/0PTlz/YyLp/41c/8Mgrv9R/nc/
AuRH4B89v57reWgY0a7n4R+f8p37FNjGfQoA+YhK7iPAnPuIf31KGvcpoMd9
Cm4nXyPHfQ00cl+DS8hnHeA+C9Zwn4U55LMecp8Fb7nPwjPk73pzfweHub+D
f/yjP/ePcJ/7R9hHvkyc+zJw5L4MjMhXXuG+Em5xXwlzyQ9acT8IvtwP4gDy
j9+5f4Q13D/iBPK/Ndz/wh7uf1GO/O807n8hnPtftCB/vYb7a8ji/hr3kE83
4D4drLhPxzHk98WM2/0+SHdv9/uoSXmFgOcVQHkFTPzdF8Mv1XZfDL6UYyzn
OQZM5jkGHCU/PpD7cZjA/TgYkt/v+6Td74Mx9/toTrlBP54bQAPPDfAi5Q+v
eP4AxTx/wE2UY+zgOQYE8RwDZ1PuMZznHtDAcw/cRzmJKc9JYATPSdCacpVk
nquACc9VYBrlMMd4DgMePIeBGMp53vKcByJ4zgP34yaqzpueidFbbw87YVWP
3WVHd1Aa7ochmo4ZH+5kY+SY4dtXYh2GQkhRn14R6HMm92G0tADPfJfUiOhc
iwPzBl/SCk1FlRHhNR4RGdgrUGlCT+f6f9+b9Diod8nbsAx8LXXL/u7/wFWJ
L/cHP5z4r/7gD/4L/7kK7A5flIkzu9kenGldj5Nl7adNcj4Ag/7Cf+RVPAXm
56CGjxoWJNbh5lFWnarj/CDBfkXTMLtMPD5ip0vA7HrMOKW95aO6P+wYO3TI
7kEC3BAvWDIyvRZXbVfq92tJOGgMDAvsPTUfa3vXmsUMZeehV8J+h6sxsOHl
x+bh7PmQM2CjrBnzg99a7SyqmD8tePzYOoXhccY3DyQyP57taDBV5roQV55J
mdz2/JlWm/ppFOPbFOk1PmH4AzE3ybhtTDdeji4w+lyBx4OGWqjE5OHXuy0L
Pm0uxh0GleohW6twV9W0+2dFLwEmNNQnsPvwmo1UjCfzG9stLj7cIp4Ep9fI
/Wx7X2LU9ucpvkyXl25+2K3td3BH74vCAtn3K7hOV3qaPfMtLiXxTdJJcMHv
Xmsy+76PXBE6Un9AJSo7aL5/p58DM7Iwf+LRIjweMKfgSP9KPGhT19VcLwcq
vk0w82PPsUE7I4cJmJ+N8hjZ5UOaCCSbJj5t61d0/SqrW8s+V8vk9897svNQ
28/3oid7bmk8+OrzjPlirT3XD3Vl+PT3M362/X2gr3aDvAbjdw6aWtvU9h7a
jJpdBxguG+WxTJ/xn5l07rSW+eu4b9HmDW19O+65L+SYL9ZzGDe4ra97wuah
C76x52SDd+sLYcdyPHjpS2gTW0+dYtCIUy2FmJwtfXZQZ+brO/00z3gngo4h
NjZlbD375y1u9FCrwPmS6zUT7gox/JLYmaS2/qI3bvJ2DE8rvZ136p4QXUZO
ermZrcdx21pZGYZHR1VCZ4bPzBgw6SPD47parfZpe499h6DIFexz7VEYKraI
XfemrNMVKSMq8FPs2GLLC0L8/uDqZxW2ngFSfX4GsvX0fn84chFbzwInr9G7
mZ4xmGgLjexzhaUf1Uxin6tFOCb8BNOfox5LnhgmVY4O/cU2fmzLASJDtB8w
/sZalXUCxjcsTfJIYbirzVrd02w9g0JEu7ez89bJ0tRm1xUhnot6f/hYW357
QkU8Y0gFykxWW2TnJ8THK1wtrmSLUGaL5/z4wRW4OmSaybAAIdq8mTom82ch
nsFtZwrZ9e0a1TS+Z4YIbqmMVG77O3XW+spDA9l6VoxzrfJkx/VZWyjRl90P
VRsj5dvyE63PxTMWMLxTdJ3iC3Yevh2OzXnS1m82OLdgKbu+XvNnHyxgeFEn
8/2RDB+Su0FNkuGnZzcmSjG82lxbUYGdT7XHAWOEDPcJbFyqzva7rnWjt+qz
ddY/9D90ja3z64PJYzay42bGDFkTyY7byct6wAx23BurFo+tZUYw7tX+za9/
lqGRs8XcwdkiyA7OPDJMil2X7/UrzBg+Y4CvnF+WCArWrLiv3EmE19b2HTb7
Vxm+KIlZbsZwn3GhjdXsfPreLF8u3XY+L6lHy7D7cGP+zLGTGN6r28PTWQx3
u/XyvgQ7z5VRbi+UGN75bmRqD3bdxVp1xQN8hWjXmKc+j+Hnij53UGV8/18K
qkPYfWI+4pxBt7b1D1wQvI6tv+a+YlTbeb4+agd4M/xp4GmzcHY/awycN3U7
w4cZZW04ze7/UE2d8p4Mf9V1/NJebJ1aJvIP/PsLsbP/I/gwpwRNHVSSf5iV
4ak3o7znKQjReEa6QvWMEhx+ZeN99zlleGDo4dtFNpmY9Lr4pqxQgN9Kgjs2
fqrGi4ddP2fV5WGqYz/fHfuKUeVS/LSVS5mOdr90b2nbvJELJQt7sf3/zI0+
K5vXlkNt1CG5b2aZ+HCgzKuPyQLssS+gSbG1GlK7iw5o1GTgtLiKYQ0LBCj7
quhRF/UatP8xo3xWRQbWXf12MtBKgJIpF/qd1WA+Mffi/kOJGVg4bljUJn0B
TrdTS/dj/kt8ybDGxKQM7KA6MkBpggCLiq+qzGT+sRPhSoQLOA4fqU411ZnC
64Ba34HbMwMyUXdISGGoznt8m3E00uAY88uEBxAeynFQ1bBf3aspGy8O7pQa
nZmL/X0jpmlr1OCN57v0bn0twAuRvsHVyunYuF7/bcu+aqyYkzlMY38eeg3q
YPlCPAcPn9ZOmxtbjUpUR1qN15HidWAE8joBVCeJ14FMquNJdY7zOqDvudzO
YbMIjRd9cvC++BYPSgU1fDCvRk3CJxB+lOPQNNJEuUNpEVbc3N5yN/M1ikIK
gh3uVuHSP/qdhlJO5XjS0HZfcRF6HfrSPO7tazQPnOuQc68Km6lOEtUp4nVg
JdUJojqDKadyoTqBVGcSrwNdZs15vtasGPsU73okK/MSO/x4P23ftSocskSj
WFyuGNU+PPDZPCoev31ze25bW4W9iN+f+K3f2/kwmvj6xP/I+bB+6Y9fn3yL
MEMlaU39rPNY9aXUbX5oNepmn578Rr0IJxnUhiyP9YRjFvuljojV4Gbia/fj
/FLOByPi99HnfA/Oh/ffzh0yXML8l1hrx5+psQArTphqK9Xg1diafb1GinC1
WItV8Nh4SH7Y9eylITVYQnwJcc434HwIIr4j8eM5H3xyD1nt7yDC+huZdyve
xMPuC7aKZbo1qKd9rcNZ9hwoWrpY6sG7eGjyfdf5I7v/rxG/803O38H5YER8
pWWc/4HzwdaM9yldpD6ll9TXtFuO9ylZUJ/ScC/e17SY+Jd+58MO4hsQX53z
wZj6l1ypf2k/9TXpEL6e8EPU1zSa+pQ2UZ/Syj/6mt790dekQ/ws4ttSX9Mu
4r8hfiH1NY2iPqWb1KfUQH1Nq6lP6QH1KQ2jviYj4p8nfiX1NS0kvifxR1Ff
09BvvE/pCfUpRVBf00HqU9KgPqWu1NfUmfhJxH9FfU3jiW/wex8UPKE+pYbr
vE9pNPU1gWtBFx2pQuzcb82sV1oJIOWrsMl6Vw06EN+K+pqA+posiW9NfDHO
B8/9YuU79gnwRbiGV8CgTHD7ekPunUIN+hD+jnBXjoPxpNRnP71y0LViVtSx
VQVQ5iYQqz9bhbcNUoc7XszBh0JFeTQugKQEuWdpvlUYNmXpdtnzOTja/2t9
3NoCuGCR69L5TBUEEj+E+C85H3oMmXWwtiEbzx/LDup0uBCUtOy03ZdVoeKy
WBWdnkLMfn9leemsEtBbsv+b6awyVMw4NaXj2By8gVUeeRmF4GkgWdnboArH
ptwI1TDMR+V5H+uH9S6FjhsedXEcWQqygp0nv7Dn8JXmgt0GRwshu+PNpMt2
VRAbcSDVzCQHb+am+p4vKYQnHcYV2mlVwXO1FwHabD+dOfbeo0VzS0BqoOaU
F2w/vUb7chjfl0GT78s4iPblcL4vA+3LuIl0ghzXCbCf6wQwHHGjaKhxPmpe
WZq7SLkUFjucOCQ/tBQqSD904foBJLh+gEmkEwq4ToAyrhMwg/RMC9czMJXr
GcwjPePP9QzEcj2D50h3VXHdBb9y2nUX2JA+OcP1CYRwfQInSI9Vcj0GelyP
wWnSRTe4LoIfPu26CIJId0Vw3QWmXHfhD9JpCVyngTzXafiU9OQbrieB9CRe
Jj2Zz/UkGHE9id6kY5dyHQsKXMfCTdKHYlwfwmeuD+Eh6Vtprm9hB9e30IV0
6WeuS2E616WwiHSvF9e9IMt1L0rmcx2uxXU4rOI6HG+TDnfiOhw0uA5HN9L/
P7j+hzdc/0MU+QsR9xeQyv0FbCXdPpzrdpDkuh3+8R1bue+Ah9x3gD35BX3u
F+A+9wvsPHN/0Y/7C1Di/gKHkT9q5f4IPLg/wmbyR2+4P4IT3B/969eGc78G
etyvgSX5nUTudyCI+x0wIx83kPs4+Hm73cdBZ/JZu7nPgoXcZ0E8+bi+3McB
+Tg0J795gvtNcOd+E0XkNwdzvwnI/SbuIT/7hPtZmML9LJaS747hvhvect8N
I8lX9uS+Ep5yXwnrfvfjYMH9OHT83c9CK/ezcIn88nDul2EQ98voQ747lPtu
+Mx9N84in36O+3Rw5j4dZe9xX2/PfT2Ycl+P2ZQ/zOH5A/zg+QNuoPxBwPMH
GM3zB+x4mucbyjzfgNc830DlfjwnAZ6TQHH39pwE+97hecsznrf8+94klb/g
kqN5LhTEcyEYbtyeC0EE5RWzeF4BZTyvgATKi3bzvAgKeF4EWygnecNzEhD7
3p6TgPhGnsMc4DkMPPVqz2HQjPKcrjzP+Xc9ln/BZxLe5X8Tz6Ec7CnPwcCJ
52DwpZ/a0l8OBRjvq93xdWkV6p9bG7ehdzYuqazN6fGiEP3PTu1dYFOJe8N+
HA+Oz8OgjG1n7kczHe7b2r+XZQV+M1vfa9ICIcbmX0yXG56LI49NThxnWYcj
Jvdvdg9+gYOib4qs2HU8LdiiemNHNXrdHNf6qzwTU9WDhbULM1EnbahXzfx6
FE9dL/mrxwnMr1e8U/YyAwPmbZEud/hfuZbgP+J5f8Fjx/faPtwhEyViRueE
zq3Ht/t7eXy9fxSeRuol9PmQjcI49bIbgjq85HRy2Pee16HsyNyO+54W4lGV
s2P899Vgh2TxmFkaMeBT7ibW8YoAB4Yr3XkaXYsKTXvX6QaGwsmG/LDzjkU4
R+16p09LqvFWdFKKT2UcPE5bApaOIvSYWLpQ0LsG9RUyXyyseQHPvVKE+bOK
UfV2dUqbzsjQWuz4audLMP11r8C3dzF63dk5+lh2FQ6ynXu3y9UECOsvEbmO
fU/f55naxw+rwOzApnTl60J0wvEF29hzolShos8n5ruPP5YYeID595Evv9yX
ZfjJBL+FsuoVGH5L2rvwshDH9zjR9w17/iw7tbjxet9KzOxWdff2pBxoypqf
Jtf298QJF02OMZ9uH9Co1jZfe4fN2UOX2/r5tz+eVtWWw0SJhccx/G3YoQ5O
bB/JNlIsbWT8nBa1Ynbfg9uMgtD7bJ37TnyLCmPrrHh36bz/NSEanV1kEci+
F6Ym78OKh1bgz3njVaXZ+lNproQWzfEMpTme3q/93LTY+gP1nudvGVGB+skh
Vu5tv8M6mCNxgD1Xrxy4atX2OzXttVGLxNhxW+RLJDZ+K8RQVfMXqzuXo6LH
9CDJNBEsvGdVsL3tvRPDz1R4sfUHSiasHMFwV5pbsYLmUZbRPMoAmmPykOZR
ZtE8yss0r0ST5lEOonmU72leRhrNo6zl8zLQ0ejB6OnsuANdBs9oO2/X6+YO
Er0TQfL4PgcPs31q3LPB9zUkynGw43i/tnlM+HrRvVqGyyab3RRneELyGWcH
hj86FF9dwHD74sl5zzuw9VtPKEpnuBnNSVGmOZUd5PicypFdsgre5IkwZ0Xo
vJEaFbijuIvKpP1CPHhkaNYsxr/U+afgLOOXXFsW/YvhEjSf5QnNqXxEcyql
X5g4WDNdEW6+bob/4AqMisyuH39DiGYz92lvZOdf/edX977sczl02LTLld0P
e7tMlE5gOt+z+tiRQoYnXojoasLwaR4rrq5h94nIeuI9dYYr3HjWsYThWemB
q5zZcf36TO/3hh13k1ZL7wp23bVWGv3axK572Pwtg4rZ/ZwqEXG87XdwG8IG
zRSwfXtBt3zTLHY/JExw1+vJ7oeSWudb1mw9sp4Zv6rY/RC9zO9kAqs/5IRD
0y1BIfq9GOn7QrYcY1RjrvbLFcGaXZ1e57wvxKKMhA6W3cux6+pJXSYzfMiX
Lb/K8wrx9ovHub0Zv1hcs2HBexG8V83wa9URYuGuJotrh0vwqcexeRN6luHH
ai1DiVlCjBQv08nZUoK/tub9KOxThr+OTz+tdiwTgyZ0nZLrIEQDTYvUmrhq
bB04eJZ423vyJ/R/Mp2tf7/G1MMu7HO5L9/1RkxcgAWhMRrzHxbjCTuF5Lda
5eBo1k9VrK8AFxt7HblzpRiPrPl0/ox+OajoWOSItmbiujGDEyJnCPHn2KUD
d6ZVw7HkHSYNzRn4Pj5uZe4aAV74GZM2U435qT0rlyxrZPud7VXHkuUC1JOs
8ljd9j6Z2JHl8uw5uWFadcoCPQGOfH3ROJX5rwnj8NHg5Azsc/N0rwoDAWrU
nLi5sW2uVcKYnbaMX/Lz8wZ1fQHaFV2/dKzt/cVUx/73OqBNdQZSHXVeB95S
nUaqY8vrQOzuqxvrEzNwZdnt+TMYDrorl1xg9asJdyJch+PgU694oQPDp90K
nnpSV4Adxh13HNP2nuKNfSNSozOws2l+i7WRAJee37zyO6vz4Osrk9qEDLx8
bt+VU2ydM9IdRjYzPIHq6FGdnzrtdcCG6qynOua8DvhTnRNUZw6vAzMl5k68
fyATZeRWX5cyyMNi3zsTNlvV4FTCuxJewnGw3tRTbn9MFu7TXjZoiVQe6t/6
bv5kUA1KdljZK9UmH889zJu770sGvrLJC/O7Xo0ya3avxAu5ePvyNds0r1ws
Ls87vLagGu2ozmmqo83rQH+qc57qxPE60IvqhFCdfF4H3INWZIzuJULLnXlx
o/TTUEHfSurZjGp0I9yecHmOw/zLHtsFZ4vQT1diwcOTyXiksmbKQrZffR9c
FGLzqwgjrdU9W/bFYNfMl6Y4qBo//RruL9azCA3fdAis2RuDS/sueZMaU43n
qE4K1VnM68BsNV7Hm+qkZ7TXgfFiI9rrKFGdMbwOTNg+z3kn80d7s7ffDqgN
hL1DfS/21ajBBSsajsY9YT5s2fIBp7uGwIeAHrZ2WjU4jfjBxN/B+bCQ+DnE
r+V8sOrtJe7KdFHp3DDB/cJ4qNoebPrevAZvnB525TgW4gu7l7dNi+KhNFl9
wfzp7D4kfuRszv/F+fCM+A9sOf8L50N6bP4WxbZ+p96mEq9T4kEwOm/mBnZ/
phHeVZHj7zkOim94H9cq6uOS7s/7vs5QH1ca9XENo76vAcS3Jb4k54P3H31i
Q6nvy4f6uGyoj2sr9X3908dlS31cE6nv6z7xVxB/E/V9LSX+WuLrUd+XHPVx
LfnjvVX/vIcqmvq4BNT3NYD4TsSfR31fxsRvJH429X0lred9XA0beB+XNPV9
aXTifVzu1PelQn1ff/I7U9/XcOLvJH4/6vsSUX9X4WDe36VCfV/5hIsI7099
XzbdNg2r21iAn6eO3XVv0kswKavuGXasBj/faI4fXF2APT6PH98jLhnWNQ93
WjykBlcQ33Aa5xtxPtQSX5n49pwPPZz8vPpPzcPhCoFunjbZ8KgiuuVYUzWO
fFc7W3VPHtrOPZc+/XQu9Or3/Nzn9dWoSvzev/NBifjGxO/P+fA54k7vvU3Z
iHZXrO3sCuGZ/ZGh3+2r8Eim9zpBYzYWKMWUL15aCFNkfMdM3ViFHSI5P4j4
zzkfAohfTHwjzoervT+NdX6XjVefvt+ZtLEQBilku950rMLDN4y0BEyf974x
29LvSCH0kYkr+7i0Cm/8wVflfFigLGW1mx23/EbI5Z0n2Dqxw6rVS9jzJLa2
aBUIMUuYGjt2XQl8SUuUSB1RhiNWaCq1zMxBi+aHV42VRDCytDFoqEIVprdY
Hri9Kh/rkqbaaOmUwomOw/u//VkCPW/KbPNelYPjis+cuDFCBAM/yajWdKyC
qTZvWheMEGKFw9ZItR0lcGnKsFb7wWVYQ3rDIrNdb4Dxqna9gWGkN7rHtusN
UOB6AzVJ/zzk+gfKuP6Br6QfBnD9ALO4foBtpIuWcl0Ep7gugoM7ZvdfOzMf
7zbvmuxsUgrq1Q86H/1SAi9IF33jugjEuS7CFtJRnbiOAtJR6Eq67iDXdZDO
dR3akq4r4roOOnNdh11JNz7luhEiuW6EvM5cl4qtbNelEM51KZSRDvTiOhAO
ch0IOqRXI7hehXHX2/UqTCL9qcH1Jzhx/Yn/6OduXD/DS66fMYj083qun+Eh
1894i3R+MM0rzKV5hZKkh8NpXqE/zSu88se8wjE0r/DTcK7DZ9C8Qg2uw+EV
6Xw9rvNBjet83EK+oB/3BeDHfQGKK3D/8pD7F+jD/Qvakn+p5/4F7nH/gobk
p8y5n4Kv3E9B3h/z+xppfl8K+ayRNL8vkeb37SUfZEfz+6poft+j330WkM9C
Z/KDy7kfhHHcD2I2+cH33A9CKveD6Ej+tIT7UzjL/Sn84+9uc38HutzfwT++
9Sj3rRDPfSvsI1/pxn0lkK+Er+Rbv3LfCuu5b0V38rnq3OdCBve5+IZ8txz3
3fCV+248S757IffdMJb7brxEvt6c+3o4zn09/qR8wJ3nAxD8uj0fwDGUe+zl
uQeU8NwDBlTxXMWJ5yowl+cq8Ix8fTb39UC+HqQyed4iy/MWuM/zFnhCecIh
nieAJc8T0JNyiaE8l4DET+25BN6ifEPE8w3owvMNDKI8RJrnIeDg1p6HYDTl
J4E8P/k3R4ok/Pb/If6Q8h99nv8w39Ke/8BjypHG8BwJ5HiOBA/785zqEs+p
4MfZ9pwKtj/xPec0QITeK4/3hzmV+O2QZmy+WR7aabZ0jowU4XDZ0IFyMyrw
5C2DYOcVQkw4Mf7VHPa9mDbN2bKubR7ZFJ9qK+a/Dh0WkxOWCnB2wCIP8+wa
vBb1PUL5RCq6+332/CKbjdIZCwc871CP2mUzpeUbb+Afnwv/8nn/f/Go/4j/
1zr+tlEDj8lk4cmzSrpddOvRZfbdOXM1L8CR+c49R1zIRpOnflYZyXXo2t/E
bO+Op/B+ctKRIYuycdmFjG4q5TUYd/34o6EtWaBu2jMlekwR7h53upu0XyXe
FtQmpfXMhm5bjVOG+uRh4s5e4576VGDfoSMn3ZEugo73+Pvzyxv5XD/lOD7X
b0sOn3fgm8nn+j2y4nP9XOfzuQaipXyu3/oHfK5f7ewMo93s+aET7PF9xbAK
NA/rZ/2GXa9M68mmduz58OBG0fNrzEcLz7vd8vRlPtrTsHb3+3wsH3rq65yQ
chy4cdeUskoRvHOXVVLXzccH358YbhlegaUfKr66eImgbOb2joc6iLDXeG/T
tt/TJXTcvzA1TQQPUgQHbO0KUXOEYkr47nJUGrbc3ddNBCE0l2ERze9Lpvl9
52k+xRya37ef5vep0RyKVzS/z5Dm9zmOPDZpc5t+Dhpr+ogd97mlzn2/DBHM
kBCqSrflKo0GWuZS5RjtslxyAFtP6UifOiuGd9uD7hM6sfP5sHjBonQRXKB5
FjdpTp81zelzp7ke62hO32Sa0zeY5ne0hvA5fYU0p68fzdGIojl9vWX4nL7Y
C4fF2/5+MTc2erEaO+7J51KGWuy433Qc1n9kz/+WD4Pn6EqWY69AtdCMTBHs
zV7qF850Qu/MWeq9Ga5SMND7GsNDnyzs58X4JcGrZ51huK1uqIwnwwfQ3JAK
mtO3hub0yXvYLnnC8OGP8nAAw1EnJOoVW+d4WRnZewwfL+X1slNb31T1wb6a
V4QooHklG2lOnyfN6XsxM6pnp7b32dpvt3zMjvtrxDv18Lb3Mm18kKrM9uXv
Y70sX7Hzb6agV1PE8NHLlkfuY/wW/embTNjnPfF1zcbD7PyftN1k0dYnn6Rc
13cXq/81dEDeUXae04qvub9m53nT4MZDyex8mqkfBBt23FiJoPeP74mwf5C8
eJ5ZBYbGTnn9/bgQw+ymLd/D6ntof0vRYvW1lLZ182P1Z61wjpQ1Zvdhkvrr
srAyXCszR+dcqwgMxBcPbvyRgdKjV12ffk+A02sV48f0rMEQp6Rrs68K0H6W
zwMPxxKcEfT1uZRNGYL6QJ27+gKMqZv1cKhaMc4vtJUyP8v0XUezBZ+Z/7ee
NEOl03UB6oZUNGxSqIH5zDeHxWfg02aRXb6uAIMat1cuZP7L2jj2hExsBmq6
lJ5awOqd2aqos8Og7f0w3iaNcRm4RCf2mpSBABNrpxl+Yn5qBdWJpjo3eR34
Sx3oJc/rLKM6L3gdWFaVYdg7MQNP77qX3pPxDZYcF2/Low4R7k34GI5DQ+7a
x2MYPtHvzIeu7LieXX5sMWfr3PnxaohkcgZqSeyInKjHztO+ozoqrE6lrO3O
GsZX2/NrnBrD9ReF3y1qy3+oziqqc5TXgVVUx4zqrOd1wIfqjKE6k3kdWC7x
88Qa9hy2q+kZnsPWWTJnx2Y7Vn8e4XMIr+Q4DNZ1Te7I8GfD+2ycwOocVxgv
mcP4lt1aZ4xi53Pyxi7967XZ9ZRVdnNgvntVj5s3hjH++HpZt6OMX/YtZ2M0
4/+lDkymOtN+rwMrqc4UqlPM60Bsr++BJzQyUW7Rpo37ewjwapRQ1FWrBnMI
1yb8DMfBt9/E63mTMrFl2qbOo2TZdak+XOE6sgZ75X6YbT9JwPzNxYXn7LPw
MjzZN7G8Gje/XTjkq0023jY1uNHD8D12dpBP0NSpQR+qI2HG62jxOpCVw+uk
U52bvA6YUB0/qqPA68CNxIO5DhuEKCeUbHlqmoiOotDFR1Rr8SDhgwjfwXFY
qDlq4fVzhRgQmycz3ekpNDxKTrwaXINT/8A/cxzuLHr8rCquEJXWSccoFcTD
r2FHx+iZ12Bd34bEnew52TldfH1jfDyEnGta+Ytdl0fEl1zD+YrD2/lQSHwZ
4j/lfKj5ERhtzfajDq1b03a8jgebeefW6OjVYPHXa76ZjK8nb9AglhwPR3q5
3L3E6tcRvxvxF3A+lBC/H/E9OR/2Uz9VD+qnOkL9V7LUT9WJ+qlkrvD+q+vE
/0z9Wi7UfzWI+E3UryXG+RBG74myp/dKLaD+Kwt53k9lFsH7qc7Re6UKiI/U
fzWP+q+0iR9L/Vf+9F4pZ+qzWkN9Vluo/8qW8EuE76D+qwTqp5pK/VTdqP/q
OPVTJf3Rf/WK+EbE70r9V5eIH0n8HOq/Gkz9VCupn+ob9V8tp36qg3+8V2o0
8R2J30j9V+uJf+73fi3oubdQ1XhtIZo4ubmllSeD+Hwppe6/qrF7bNbsxOUF
mJvo4tc56g3MkhxgekGpBvsT35r4rVbtfFAgfivxLTgfJvrNE3tzVID+8R3G
6yjlwNwTOfstXasxTnfJua33cjF1N8SsDhWCzTSxNctTq/AffsDvfAgjfhLx
l3A+jMtXfPY4PxtPrzv9NXdPIaRuuxK4cm0Vhs8w6W5WmI3L37lkWzK89MOc
42MZ7l7I+RPWcv5jzocPlpzf+obzMzgfChKuNE5m+ICnT4427S6E6y4rl85m
dZJnqu8d9jYbh80wU7TaWAh7ds+26eVUhcfGiRmHZmXj6gon08JNheDwo6FS
1aEKC4ivR/wtnA8Dknj92FBe35PXh1NUZx/VWc3rwLjooUrDGD6p652fJzYU
QrWs8ZBpjlU4wcUus/lzNpa9u2XqElYIN4/GuneZzXDiLyJ+EefDCjFFlcjv
2Vju5hXxMbYQvlwz3Zw2vQqEypvrtm4TYvwmt5EPWovB0eeHxZGdZTiP9EN3
rh+A9APmkT5x5PoENLg+gS6tWyLKkoWoFS4apGJYys6bst8wrVKIId2izHUL
JHHdAlGkW3Zx3QL6XLfgTNJRrVxHAXAdhWNIR33hOgpOcR2FaqTr+nBdB8lc
18EF0ldRXF9B57B2fQWTSe/pcb0Hg7jegwTSdcVc18FXrutwK+lPJa4/oT/X
n4ikPyu4/oS5XH/iQdLJ9jT/bjzNvxORnrSn+Xf7af6dBunnH1w/QwLNv/tH
x5bQ/Dtnmn/3lXTyV66ToTfXyYikq2dxXQ3nuK7G2b/rf3jG9T/Wkv6X5fof
5Ln+x9PkO+bSXLzDNBfvDz0Pfbieh8HkR1JpLp4WzcXzJR9xnebiLaC5eBvI
p9hxnwLIfQr+45vkuG8C8k14nXzTaO6boD/3TZhDfi2Y+zUQcL8G8VncD+7N
4vPviubz+XePfvdZ8I7m3yXM4z4xZhmff3fvIZ9/l0P+7hH3d1DE/R0Gkx+8
zf0grOB+EDeRn53F/Sxc534Wx5KfPcb9LNhxP4urKE9Q5HkChPM8AT6QP1Xn
/hRWc38K/+QMo3nOAGNN23MGmH+H++JXH/lcuenxfK5cCvnutdx3Qwj33bic
fPp07tPBnPt0dCVff577eqib1e7r8TLlAMF/5C3/Fff9C37lP+J/q2NHuUp3
nqtAU2l7rgIrKIex5TkM7OY5DGymnMeL5zygdLg95/n3veXmNH8NaP7aJnrP
fArNXwuh+WsP6H3ylTR/bT7NXxO8OuE6wkeEY3O8qzOHVuF3j7V1Lz2ycGBv
g9brw/PwtWrpU6MftViyPWtWuk0UPpz1y6/MNQMH7/4xYeau//H7u7/g//DV
/jfxvYSP/L+E7/kL7vdaNvprWDLaDFqeI/axHi8bPP6kPPQFDNh4c3afxHDU
36qv7rStDle6HgvtoZcLJ1eV9TSOe4rfHPKbj2rU4qzx6KyemA+Gg4Z3MazL
wJYukw133qnCLgcuXxk1SwTjWpbd2aofh4nd7fbnp9Tgss36A3+MLYBmep+/
Dc2Je0pz4l7/MSduA82Jm0hzDcJoTpwVzYlToTkCl2hOnDnNiZsp5rPbWyYF
D9xyXtSxtBrzeg8q1okshMiuCw93nZyO9f5xG761VKHYktAzURYimBF3yebW
4kK85dxS0rKnHK1F6stHu4nAaGLuS7+aLNR2eVoyKboSs+3eWyxQKPp3ftx2
mh/nQvPjttG8iQCaH+dC8+M8aa7ET5ofdzCYz4+LtHzdq/Xxe+xQkxg1t1Ml
TknsdSgkSQSBnyJie7Dn7Y4FmXUTJMvx8bO0A8vSRIDKswcfrctHe2FKUNXH
cjyQOkVO7agIFtN8CiOaEzeW5sRdpDkd9TQnrjvNiWuleRx2NCfOlObEDRzP
52Jspzlxp5/wOXEV28yvHmb7Uf7KdOHctlxlavezW9vm1hVtGdGJ6ViV/eM9
yhg+QPR+uT3D59XjpMpW5l9sTK61dirH8xmnK9v6tZ5vXbDfkvFzmpZ+TWa4
mGRhQt90EfSkOSBdaX5cMc2PU7x4VK0/e64uvvXU/gH7XtufGX7Zm32usRff
Dfdh59+933nLiYz/7Orizm1zal7+Pn8EXWh+3OMNSxd0Z/valM0S0o/YOt2b
Z0k8Yse13/xax4XphxGbg6ulpMpxaqT4I22Ge767DW378t1gWzGFtv6lwdc8
HzN8UXKecr6iEM/npK8Vn16CqnWSX9bNLcMetnd81GIEuP/evRW160pwTsNp
Rbl5Zah6XnLTrhmZ6FxtoNIzRYDDNo1ddqGlGiVm1G2fXJ6H5cFJ4ye4FuOm
oOHrv68uh/uWZy4/tRbgpgNediP7F2NwvP9j8VPlMEM/MdXRKBPXWK0YqBMp
QEd9k41e4jXQ+fva0o5FGSgj/al2n4UAE6qMdiRq1qB193HKUJCBKdKLHZ3N
BSh2KOq8DPPvuTmWQwITMlDzyNZJlw0EKGyZnLaX+RSnT/Idu8RmoHqvtILd
WgI8ueh9+abxNbiNcG3Cj3Gc+XReR4/q5PE6sPrCpafWEWw97yR+RjH84bP6
+wcNa1Bl6RDTiLAMvBB0cfpaPQGeSe65KYbVN7rxReot40sPlLar1RVg79m7
Wwcy/OV5Xkf6La8zIaK9DlxdwusE3OZ1eqW014HL/ryOpCqvE8DrQKnHcsOT
iRm4JSA+44W+AKNXP9Vt619KI9yJ8Bcch9FHxk+VfZ2BY6QvqnkZCjDz/I/k
rW19UOnGHiopGSjlfGVLPeNbnJU5u4fha6xc83cxvtqj4DnXGa546km+kOG6
VMeA6qTxOpBOdSSpzkxeB3ZRHXWqI8frQMdUo+vZbD/N7rPQJZDhwxNPDbVm
6x9BeA7hqhwH4wWL4uWTMrDxcrGxYJwAvU8NLfrB+L4fuhvEx2fgpRDdBZ46
Alz9euWQWuajjTW0IxpYnRkKmaXb2fnUMlx8/ArjK1IdBV9e5xyvAyeoTizV
seN14Ls6r7OQ6ujzOhA3OFVGheFpvoq9o9l16SSnfa3t9z4JhMcS3pnj/+qF
3/9rQIWtB3Y/aMvrnsj+FLL70Hng9S572X31N/5fcHCXP3lpt3kuhn1w0Rxj
8Bo71FYf71lY+7fj/nU9//W4/6/qP6e+oxHLed/Rc+pT+q/1w6lOb6rzgvqX
mqhPqZn6lxKof6ma8ArCk6l/qYbeQ2UwlPcjbaP3Vp2jfqSD1I80gvqXEogf
Rv1Lh+m9VSeIf4L4I6l/qYL6kdZQP5It9S9ZUD+SC/UjTab+pUzibyT+cupf
Mif+EuJPof6lRnpvlS31I62g/iW1P/qXKql/qZn4dsRfTv1LfYkfQfz6P95b
5Uf9SFuof0mpyVb3Vl4hDlEaOfJDWTwc9WhpGje5Bk9S/9J74itT/9LSZs6f
Q/zhnA+LM6fp5p0W4gB1zzztwxnw2eWn+ZyaatxBuAbhdRyHfhM1S8u35aC6
0MVvxOd82JU54rpPRBWuqZ60clhKDj6q0/balJwPftY5MmNDqlCF+Bq/82Ej
8cOIf5XzIfRn9K6Ut9noa5L1/dSGQlhTdrp5p1MV6gj2qUhnZWPWk1/D7BwL
wfdc5La0TVX4Fz4YED+S+AGcD7t2TRwH75nvEJOW7ORUCOeTvhjd3ViFtjL7
d1XlZmOR81yNr4z/0tExKZbhzsSXIv4lzgdz4rcSP57zwbx+rGmnimxUMAqw
1XAphNM1fjNk1lahlolFs1ZaNg61vOzaj61TcrHhSkv2uRQtLXQbq7LR+9FW
yym7CgEnZ+o5rK6C4cTXJr4E58N2Qd+N/cqyMcfV8HCEayFMuebr/mBNFb7a
3ZD36IQQR0XssHr1uRj8jrwJeLetDENTmr4cH5GD2k6B32VeF0KhbvCcRROr
8EttkVC2UoiTPr82PaZTColxoil3NEph/yYNa+nKbLwwcJRDxp5COHfZYn1P
tp6KUKvQFL0cnJjTapiQVwgXxJfovBlXBarBHxZHMP3zIu/4fP9ZJbD5rqf7
YssydCYdNZTrKJjGdRSeJB11m+soUOQ66l9dt5DrOnDiug50H8z+sdgwHzu4
2gztolAKNrJjZVxHlcI/em8/13uAXO/BP7rOhOs6OMR1HS4m/WnI9Sec5PoT
/9CfQPrz33l2tTTPrhPXyZBCenInzbML+GOenSXNs6M5y9CddKwMzbMroXl2
b0knD+I6GfpwnYyVpKuLua6GVq6r8R/9v5nrfwjn+h+fk/5fxfU/HOf6H13J
d1yhOXduNOdOnfT8Fppz58H1PJwiP/KV5tyd4n4ElvzuI0CD5tw9I5/ys7rd
p8AM7lPQgnzTXe6bYCb3TTiNfJMh903wkvsmTCJ/t4Tm2S2keXaa5Kc20zw7
V5pnZ0y+7znNs9OleXYvyMc1cR8HzbbtPg7nk+87yH0fZHDfh+vJn8Zyfwrz
uT/FqeRPo7g/hcPcn+IyyhPiaG5dLc2tG/DH3LplNLfuNuUMRTS3bi/NrftI
Pncpza27TXPr7pCPbuA+Ghy4j8ZO5Lsnc98NWtx3YzL59AXcp8MC7tPxFPn6
4dzX/6sDvP6Cn/6P/JOEj/gDtyNc6z/iY/7Al/wFb1LgOUwWz2HgCs9h4CXl
NlN5bgO5PLcBKcqF5tA8O3OaZ2d1JjP5nk4OfvNwf3nqcB2Kku4Va7yKQZXe
60tujMpHidBNmOJagxnTNZ4cbkjFABzxIfxNPqaf9x5Z3LEauy3o8/rpwmwM
7l4mN3tmJnazuTN2lU09jlux72zz1AO4yrRXZvLsXFxxrzpj/Zk6vLDq1bZu
yTdQN65XiCLT83bvZB54/o/+nFHn0ya835aBnuf3XVbZ/b/wv/E1/yN/9H/k
qxP/2B98vb/wv53j/DP/h/y/recr8c/+x/p/8oOlE8Y5LX2HtaNbnxu+rscf
3gOMX3x8CkuCLNwC16SjltjZuMc36rGTv8IehWNnwNwxsc/GwhfoebvYpfV7
HcZ8l+8j5pIJPmrSTtCYhAdqu02TO1mPp8ZrLlgdmgIrIu6adFp7D5VUO5xd
Vl6Lbh0V+/QwFsCnSP/o5C0ibG0cN3ueWQXW//K1Pd4zH6VpzoIPzaebRvPp
mudGfzbYyu7bF9ut3kytwJlBaVedFPLRleYRiJXz+XRDaD7dge37bz1XOY1H
7XZsVPlQi1umr29JnS3493uj3FtVrN/VWrwRfm23WYDwX1wuV6+oB8PnZ1p8
cGF4VGzw3V0aIsz5canw6sEKPBq1dVJxkxAv0NyKPJpDR3MrcEtM6PwHO0Qo
nt/jgOraCpSdbZjc4aYQC/NCxm73EOHdHTZ73KZU4MftZhVKjUJ84gXDFMMO
YPetDzuZu9XiR5H12neK+ZCfaufuXxOAje/uv60fX4sfXgpzBR0LYK6j+tGQ
GWG4cZZExfeXNXh0y0CT/CmFIN4/JrWzogh7bTxuGXmmAhtUTMKmt9WnOSCF
NIfuBZ8Dgte9bXQvr2HP2y6ufso7K3DYlQ26C5iutbCs7X/9oAj7yv0o95hc
gT097wtHieVjGM0ZCaU5dGXn+Ry6pRvLY1cZxKFGUnq0k3sNHlZSFYvWL4Qu
ozx6Ksa/xg+fZooWrahB/7mxNUfNC2De+fi4o8lCnGwpNcovrALrmu3CBpYX
Qo9tWYYNUmk4YVPYheJ+1Zgp6LX5/XoRmPZZ0hK/V4TdHg9SX8nW4+jQbfWD
rvkYRfNZfGgO3TWaQzdrq+qcrWxf7SaW2EkZKlDee9LAZXL5+HJvrVnCwCy8
ej01RiG6Em0f/vQJtyqCgLOP+xcMfY87hENeR7tX4mL5JTfqpoigj9LeiaOY
rvDeHtN7s2Q5PpDPefXrnQhUHfIiphQKMSDIa1CycwWaac1eUTRTBDJNlSMd
jQX41eXQRZ3nJWjl0/wuY1QZXjqx2jDDSIhKEqeeKK4qQQi52Nhbs+z/Y++8
45rMmr6Pih0RFGzYC1hQsSHi6ogdFStYsPeGioqKvSH2ih0L9i4oAgroKAJK
UzAUIUAinYRiLxR9L5kJLnmePCt7u+/u/fns/vnb8ZdzTkIy33PONYOa2XVb
tTaLxFZzXlV96hSPV8RWQ9s9leGHAW2f2W2R4psl1kvumKfj3WVpj7JT4vHi
mv1tZmXHov6TbtG3PyehQd7Tczv6pUHcR8PgLRpi7LLReu6F/Ul43GHPifID
0kBdZLNySstIrJ19t/WBdfFo9MX0yPoXMmgR92FG27ciXLQ7P7LCFDFWvuRR
8a6+HL/UOtvMRPjdH1o7+qLVeDG+aZB84nlLOdwKCnLXeyLCZVa65hnGYnzf
eWlyusBZUk9D56oowrOG8xOfdRRjuy37D83oLsdZMW437YX4+OmDA852FeM2
66nTLwvxXuzjxD5Z5ANp7OPDPgbkAwvZ5yP7rCcfcFwYOX3LUxEGZhxKNOwh
xv12VzJ1uspxB+vxrO8kHfzVTJJsBJ9FB7NOtfl+b+qJw8htwnjm7pxx84QQ
f+nLNNcePcW4xDN5TqixHGezfpX1xaQDss9E9gHyAZdRQevMBH3moiO2GwRd
/X7Gt1WCv0KfXVIHm1TJ5JmBInTM9+ke8b3OVYD+0z1CfMrQFlrTBb3AKkXa
Q9A3FBhVuSPoeaxXHE36KtLBiX12sY8Z+cDaSPe6p0dEYtVv+gsr+4qx2dP5
w/YWyvDsy/RTUy0jcUqLZtNqeYtx3X3dtTsE3WqQnv7JkZHoFNBin5Ogj3t0
wBEFvekb8lnxhnx+CyzygdEfyEdSm3x2+xT5QNws8lG/Sz7LscgHTk2Kc9IX
1vNGsmhPd2GcH69tPD5NmNdB1q+x/oX0X7XP86v2l0o7nn9a/D9un+2v9p/C
9am28H2qJlzPqrT+49lnBfs05zpXy/g+lQXfp7Lje1ZTWe/L+kq+Z1VhVOAE
jX4C98mjx38rCIC0g+L1PpPl+OH09QMLTyTi5XS3+LcuwbDqgVUdGws59rek
+FCO307xkMjxRzl+I8WDWr521TszxajXcXQDX5coeHBxWf7EFzI0P1lpyvu9
sXitzNv+qbkxsCm8nKW/8PtizPHNON6V4mEkx1/m+A0UD36VY72st0bjycb6
66+3ksCNGUOa2R/MxN1am2I3nInGo7ePTPRxkMDYrMQ1d5dkYjTH3+b4MxQP
ZzjeheNHUjxodDOrW9EyGluJk2/n3JKA/ZXhc0KWZWKBju7sK1OisUlQinf8
fgl8vlHfKW9NJupxfDOOX07x8JHja3L8V4oHB934D/eiozGispvTmCUSwN/K
XnOwycTrmzzlZ69HYcgOSeqm5RJwfCPLMbieiSc4PoXjPSgePDg+iOO3UDy0
GdrB4H77aAwKSB5kZiWBT/VW9LU4nole6Y5tJObRmPU4q0p/NwnUlsRlb7PP
xAEcL+F4OcXDc45/w/HaFA/fTGi+3Xm+y3h95tfW9D26Jhr3N6zlP/OaBGJr
WkakLszEarw+XTjejten8sXbc29tjMadS6PNP7hK4LDtNpdxwrz62s6tcqFj
PNac06RO/cnJMCgj7MtE41Qc9Tq34JwwTs+bs9d2by+Fl1qf1gwfkIk6jq07
jLNKwHvu1z8uMkgBs1HXY/pop4CmYce+1YTxr89qeWtzNym4bOp+oVH3TFjc
w9fVPCwOnXJ6VA11TYbZA+3cHkxORaX8Cji/QqX8Cji/wgec7+3kfnwB3I/v
Xcl8CXwoXwILzgM1KQ8EXcoDYeRVz1UuOvFoZnB5nrdNCtT/GGzk1SMFLpTM
A4HzQAzivPEy5Y0wlPJGHMJ5bD/KY0FGeSzqcB47gPJY8Kc8Fn04f/bkPn1R
lD/DXc7PX3Gfvjvcp683570alPfCGsp7wZnz9gmUt4Mp5e1QnfPtbMq34Srl
2ziJ83MDys/hEOXnaMIcsYg4AtYQRxT3147nfnzduR/fMOaChsQFoEZcAPNL
8g40Jt4BdeYRHeIRSCEegRvMNe+IayCTuAbvMwdpEAfBF+Kg4u/n8sRlsJW4
DCsyJx7nfnzMiZDEnHWZOAs+EGfBa+bH0cSPMID4Ee4w370kvoMjxHfFvy81
iRPhAXEiDmauPEJcCcbElViuRQn+hX7EvziI+bcD8S/UIf7Fa8zXzYmvocb5
Ir7GYbzPsIU4vXgcpdUHs+6opNdlfY+SXo/13T8Zr0pfxvs8k2ifB4D2eaAl
7yPl3ynaR4Lqg4v2kcCW+b0q8TvU5H6CZ3h/KYj2l8CM9pcgmfcNNN4W7RvA
S9o3gL68L7Gf9iXgOO1LoGJ/Q0b7G7DnSNH+BpqU3CcpHr8qvetfHN+tlLp7
yX020Kd9NpjC+3jvaB8PJgYV7ePBw+3vJ9ipP8QnWfeXNlghx6vlG62TxkrQ
wG1c9wu2L9F+ddS1J3MycefM0zoufROxX5UKEXrihzitjvmsY13kGJRnIJou
fA+f0tbbahr6HB8PeXmueedsdL18YOnlJ5E482vOsbI9JdhhpuaZU80yMVBf
/1WM5Ut0HWmTVRAdjo0djliNvJeDrZJEQ591uIu5623XHNn7AhvcnWD5/mQO
JsX6X3XLP4T5fC/upNLzegWl1AtV6Kr8S6tv89Xac+NABBptvdT4yYMcvJix
OXvP03Pg6dRr18AAf+wUYr80+W4OXo+f1/BQmzBo3fHI4NTL59G8VcN1HVpm
49zg9bUe9Ywrfj+j7s3AhmeyMH/8k029jsTDw9rzE0x6PEfpmTWTH1jKcEFn
3w4aNlLUG3Zj/ohpElzYI+i4xql0lLpLv0ZdScCUU8OHuB55jg93jYpeM1aG
72ftnt1hvLR4vB6x6/ZfPJ2F6pkNNzQ9+eP7re4f7ION4X2wiLUam63snqFk
c2Sfw+tliCNO3bHvKcWoU17BVcpIcOyAXPgQno6VHu6aXnNBApp1HmzudeEZ
br+zpbzRJBmePz5/vu9CKdbeNCUzr0I4Vlsw9UTHKTIsN3V03yG9foyzcee3
k/cJ41yzdqnF6t+Nc6Cr06EMYTwZeZYbvz//q9BH1baa81DQFxvOausj6IUv
Gg0Jzg/BCbEy0fNLMgyop3vQv48Ul38dNcpInIA7N17tcE0vA2W7FxydIKxb
4XvfPVMnh6K44YELN5bLcMKnjt4XtklxyNZj6i/vPEf7thUjN8+Xod3CxP1R
Jj/GuTRQfZSdMM71o3ttkwvj1Hw6b0Zo/koMWXez4eQtWdh84hurM+oJsDSv
hcHIQGds13qJ7dLqWfilYVMTY69EqL3i7CqTjOc4Mr7lt6zBMvy4YlnU6ZlS
fHtzxYLDN4S/o/WTp2ntS8czfnbG3R0T0HAMHglWC8f0Rcvi2xnJMCJdrdBn
jxQH5KSLmuffxsabXMpYe8qxbLcZ7V5dkMAs9W39jfIeobWhrs/sFDmumhl5
SkczEXbozK8yu04wWq7QXbRa4PB3jy6uf1BOAglXI8NvDX6GhzoHPOsYloi9
06a0a15W8Fu6sd6bY2FoC9ZlLl9KxfVNqraoNikNjcoP3xw7PRQX5dQYOzU+
FW3aTs8T9UmDrm0b+4LpMxwUmGV4VZSIduDv71BGDjq+Xaat6v0CHUzrt/UL
iMfWpzXKt6olx96dN9VZI3y/iRMPG+wxFWPBqH2WU7vKsfu9XVrVlojw+Zev
a7PKxmP/OQb3ZujIsSn77GIfffKB39gnqaQP9GGfBPbpTT7QPlUe/Pn7fZug
F8ZRXcSo3c/OXl3guA6sJ7KuSTrs8ehxoZagf/2otT+oq/D7nXB4vZuwfi11
93hefyr4iALDxvQQY96et+XLCePXcpv0anKgCB99+1pGu5sY+14IilovxB9j
n2z2uUk+YM4+z9jnA/lANfa5zD5DyAfedq/v6iXo9r36Sy8I8+1pcvdCle/3
SVhfznov0kHjSnWfHcLrNog+u3T7b2KcPCJi7Pzvfbgkh59ZCa9bITuj3Adh
PPsTR1yeL/hc3q+j01TQU/uPdm4jvG5EebfZBoKuwz492Gc0+UBFKfk0YJ9t
5AP32Ed9APk8IR+IXGDSJUHQNfTikmKF+K1fB0WPE/zrLyS9EevLSIfa2asa
fgsQYatKabtkJmJMXRBe3lmIV+s0qnkTIb7pgZct1gnxQe/Wvv7e592Y9Xqs
PyIdqrKPFvtkkQ8MPuYWYOsnwpQOp1u/Et73IY0H7y1rKkcV+j9tn+Tf+P87
/h+3T/VX+0e/sdDL+vYU31w91Lptt0T4tmVQa4eNpd8H82efLPYp61jkA+P6
uNyafyoCD2fdGGZbVwqDdvbVzjWWobeZx9i7sd6Yt/jCk/DdUlBvV+ZDdFs5
zuP4thy/jeIhjONbcPwWiodRPvpfn/X1wfXO082XohT2+bkWulWT4678rzuN
u0aht2zL6gO5Erj1fuqGwaczsSC3yqBCf38sc6O5//lrUthg6ZOoHSFDF473
5/irFA/P2P/ScfLXeVzkD51ek08N9llKPjBXq3GnfVJ/DBvR5aCOsxQSw78d
VIuT4ZmeCQv2BvvjyWt6Z7utl4KrvHqdrlkytOX4RI5/QfGwmuOPc7w7xcM6
Xp8YXp/6vJ49etP66C2h9cluS+t5guNtOH4cr+cIju/P62nL63mF53uO19Oe
13MTr88NXh8vXs8sXs+v12kdNvN6OnO8D8ff4PVs4kv+QbyeX8kfGvN6VuP1
XMHrOZ7Xx5vXR8brGadn2elLrQAsxPFRj+OkIHqQ/3ibqwyXcnw4x4t5PTe0
27ravlUAWpsdrHg/RgrWeq7nt7rJYMUQi9oBVYPxYb15Kwe1T4PtO/uM2N0o
DXeWzH/gPeU/ynkXcN4Ffey9Muv2C8HuU9blJOWnwpdnBts6dU8DRT6WRvkY
vKB8DGZz3jWB8i6wp7wLZ3Ge1pzyNMg1KcrTsGY+5YfGlB9CHOWHaMv56nbK
V+EL5atQq2TeCJw3glIeC5zHgj/npcGUl4I+5aXFf++LKI+F3ZTHFutWlFfD
bMqrMZbz/HGU54M65fkwkvPkVZQnwyLKk2EQ5//7KP+Ho5T/Qx7n52MoP4cQ
ys+Lv8fMKc+HVMrzi8fTgLgAHIgLVO4L1WA+WkJ8BPHER1CXuaMKcQdUJO6A
ZOamx8RN8Jq4qZh3Eoh3wI94R+W+kEL3J86C4IwizirWM4nv4AbxHY5mXjYh
Xob7xMswjHn88doiHoc7E4t4HC4xD6YTD8JM4kE4x5zurlfE6dDtQxGng6wD
8eZw4k0YRLyJS5lPTYhPYSfxKQ5lnjUhnoVz6UU8i74q6hSp0lXVR/pVPqr0
R7yf0IL2EyA+pmg/Ac7y/kMz2n+ASrT/AFd4H8OP9jHgGu1jQMcdtE9S4XXR
PgnY5DX8vk9S/DrzVusdaCj8jprt6t1f63d8/fHM5vdegh6dfX2wprVU+P5K
N8pxc8JPdV8NnlsxB+ttGFvNUScaT2xeYmrV6A5mGB/O7uqUi5vTrfOcOvhh
aK2tnleP++PY7iNHuS/NxWlTvt4Y9ckTwy/W1786ORwN33Va3DM7B8+fD9a4
lnkYg6p7jRj/SITuclnGh0U/9iWCVeiljQ8ppZ5S4OwW0SAUE8ZX9X2QnoMR
C5/cijn/CPTTa0SunOCGR8o1HvnKPxs9a31aa9MwBiL2jJkfaTQJh76z1vC4
kIUzHcXHghx+cL1iP6SA90MUeqvAgPvhQl5+esn2hbWf/1j/7WOfZzoJeb/3
mQax3/uTKvQ/2ve4qLTvoa2076HQK2jI7XYJvDTj4r0KUyN/+Ofk3U4sI7yu
VeXujc6Jfujtb8ys1kbgSY1uHmZ+Ef9zf2Otiv2NzD/Y31DoEzbufDC5ixzL
bPGPTon54V9m/rvb+YL+qVovSUb0Dz3Laq+rtzDOaodT9ex/tz5LeB9jA+9j
KPQhLXsPuiTo9x3CTzT6ne7gs2ClmvC+xLm3fXzvd+/LavN6b9WEvGe1m1OY
yZBXxf6B+3IWTBHWYXd3B/H8363D1e03rs4T/O/I97SpceqHj0FCoCxVmO97
v5qGLX4333sut9Pb2mehVUHv64UmCTB+f9ep9qM9sGe7k7t21U1Cx4DRs2qa
ybBv92HRX+sfw2+Rj9wsqqWjtGanuRbt0tDcZu1G9XHHsO5r965HO2Rg4+o1
zNOzU2DnIeuIq5YeaBppWFPaKAkt/eNcfH6TgXNMr+Nnh4dgn2/VUq1tJHi+
T37TNhXlWKVM+23eEX4Ytruu9dwqr3DORe8+ttdlWJ31KNankw7n2GcY+7iQ
D3wt28fMa1UEhsU0HO4XkYCei/2Hb82RYe9jdV/VRBE2GffJ1auNGHVarqvU
soccHa++6es+RoTLxmfuXngrHtcPGPVtmFyG+8qRTyH7HCAfiGafYeyTY1Dk
A1rXyOco+0wkH1gUsKMgPlCEu98vto8TuHhGzDJc/v2eDOvrWJ9LOuRWtpnf
LUiEs5ptCFc3FWMPk52WD4S/j00VXeaPE7h79pn4l/1/E+PIHv3sRgu67/CL
uS8E/V7oQYNDQnyGvKv4uqDns89C9ulGPrCWfRaxzwjygRfs85h9XpEPtBzt
mWUl/C7AgXvdawn6qAMDRdrC+DuwPoj1YaTD5fLvB20TdLlDc7uugr96pSCL
DcJ45l0xcvQQxtPurlmLncJ8d1jVNK4g+EwXXfLf+P2ej8f9RQu7iXFLrbCI
ToK+jn0qbinhA5vZZzD7rCcfMGafheyzk3wgasgV03RhnR8sWTWwR1cxplWL
N4z//vwd67dYzyT9V/Hjr+LWfxrv/xv/F8WfL+83EV9IYVRYo4vf7639Ip9i
fRZc2hnmL4W9nR9/MDD74X+oJ+nVuxTpxfFHFp0JMg6QgtP6Tp3Tf3fPR72n
WcPgCCm0iMnroN/th/5wIcXX3lAU/+O8g+PrU3yxXk9/pnf4cylcvt967KTf
PUe5j8c/WWkd2nL8CYoHFfHFenOer5fSfEfyfE2U5mvF8/VVmm9BDxp/K6X5
ruP59lKab1Web2Ol+Vbl8d9Smu+MnabLt1d5BfMtdu701/2hN+L4C0rz7bnE
zWK0+isYESTWv1r3hx5+KbXl8v3psCUwft6IC6nFPvz7Dvz7/mP8moFdx81I
g+TpRrf6xqcp5xvA+Uaxrk/5A7yj/EE53wAPyjeK9W2Uz0Aw5TPKeQtw3qKc
dwHnXcW6BeVL4E35UrGPLfP1LhV8PYv5WqG/pjwNKlCeVuxfnfJPGE35Z7Fe
OK8o34NCyvf+B0enKXF0w5/kaIXelvJY0KQ8ttjfkPJwOEZ5eLGeRfkwjKF8
+E/zcoYSLyv0PZTnw23K84v9Z64t4jLI3lbEZRDHfGFFfAHmxBc4qiSPwC3i
EXxeSPwSTvwCF4lf8JgW8c4B4p3i1zvO+n4lXVX8CRXxqnRnFbrlJeLBesSD
sOtCEQ9CjdrEj2OIHyF9chE/gqwkb8IC4k048JD49C3xKXQkPi1+nTfningW
NsmKeBYSvbKs3133xi0vdta3XZGLrxx8K0TUeIyBjXv6pPQKwtXmZxoX9MpF
rc1PjmVe88CkGmWWz+noiv3em8tWbcrFxRvrFFSR+eOLQ4GNdK2e4Etr9+sp
E3Kx/+DW2+oa3EGHRnadTgn8fupUu9jUUzm4+tOU3bdu78WOfboU7PcLx5kN
kkIXJ+Sgk5/FhkF5Llhv+vvJesL6DNasbK5m+7vnZRrnt7H6TYQT3DVfRjnk
YMh5T4OZtzarjN84b5/3BSEfOxyrZvP6d+f7pY3XUxE/wzBt2mH1cFyjsbLO
pOgczBkX+8wkyQtc91bXejn+Bd4bcvXsyIs5mNXQekeSwwFo7hFp7nse0X9O
5GzPqjlokDMl4vDuSDha7nknl4tPcJ5OmPb2vTnofb+RjZpbGPhU3zNxzsPL
eDX/y1S9sCxc6LpunvndH8+5/Ox+hUI/LO+wZdyLbNQ7GDjlQJcYrDsi6kKD
ZGs0NvyovXtxLsabL8n+8PgJXnr2ZdYas2OYEmimd3x/Lp46MuaA0R1/PBz1
Zmr8/IOo1z7bKS06C7cYnRv6250f4xnwtKnbdoH7hoY7aR4++c/l/YrM+9NV
8P6oX8T7MhW8v6SUvP9RBe9rKPG+8r0Fha7gfd+/mPc9lHiff6/xgxLv32Xe
H828X6wPfPMqflcy1rx1ZeE0q8xi/8nXW4q72KWjuNrqqG/+P/KKyfur+zkc
yECdQ0+nua1P+fF74VB9VnWnZNx940DS0eGZMCYjopxeDzd89NvSkYO7JeGM
/R31PbrJsPPS5WateuzFDw0/mHbRSMazZbb1XOWRiZLFpH9h3YV0aMs+wewz
iXzgzWWpsejgU1y41lLLcJEUCztf7PDcT4ZpC/Vjq9d6iJldRDZu91/h+Scv
qh0eJUMR6/KSOkSwzxz2Ue9S5AORL1LrtOwegZNWLLfbFxiP8mE6bd8I+WEY
6+NYzyYdel/XzBnuLMKoijXMj00Q4xHTxx2+37vQaBN1c+1JEXbQ7TXFYr4Y
56lp7TbvJMdarJuyPpN0GM4+YvZxIh/QrdJv87UAEQ60Ckk9bibGJZ1aX11r
LMfbfrkJtQQ9r9lMu/eCHur56bdNgp50dqqVp6Df8hfPj/5e1/bLsBAbQa/I
PgfZZyr5gDv7DGtOPl7kA6HsU8A+j8kHQi+mfVklcHT1zlGZmQJHz9x/xdVf
+PvwZL086/NJ/5ev/43/r4j/VTx+rpQ8fpD5VOsfzuPt/kt4XOMX8Xhjjj//
H/I4//7CaCUeX888nlRKHv+ggsfvlJLH96jgcbVfxOOzlXj8DfN4eSUe12Ie
t/qLeLzCH/B49b+Jx2/+SR5X6MMp/4fWlP9jQDTxQk3iBbhIvICe6sQ71sQ7
8JJ4B0dqEe+cI94BR+IddNlHPHWYeAoKiaewygzisubEZcXjUKVXLaW+ojFx
60riVphB3Ao1mxIXzyMuhmHExSCPIG56RdwE6cRN0EGHeLkn8TKobyriZdAZ
T/zVhfgLXhN//fgeI14DIF5Tye8KrnxMXAmtiStRiU+hkPgUNzPnHiLOLfZV
pXcuyd3wkLgbOjC/zyJ+h6PE7xDB+wCxtA8AvWkfAF7yPoMj7TNAMu0z/Ph7
r4ZGIxbkYlrh4oH6DZ7i3bSLB283X48X99zsKVqZi3lf7zeoV+0JdvpadtCn
eZdQb/Pa7eUP5OKzGHmzVtr+ODT3RPaYsoiZNv1XHNqdiyN/Wz/UrM99NN+R
734iPRj9dy4xMDbOxVG69fPeNL6F82feq1v/RQT2vJpRXnY3BzcZBAYscnbG
S28e9n08MQLfRa0YYvskB29oHLnlm3EG6jQ+vn5MgD9mZQxcd/9eDhqN3b7A
sEEYHFym+1p89Tweu9yl+sMW2TgsTs/ByfzH/f+6hSs2yp2z8PhJ7Fz1+g8O
UsXvH5jfXyrx+xHm91rM7wp9xOiw2pUX5WK/ss3Wdvny5Mf3sFFF22hhPa1f
zTAxr/G0WE9q8NbWV+CyI96iyiG/4zJV/C5ifi83oSS/GzC/ny0lv5dTwe8X
lPhdi/l9ohK/V2Z+n6LE72+Y34cr8Tt/r2J1JX7n72fcrMTv/H2OqUr8bsn8
vkCJ36cxv39yKMnvlZjfs5T4Xcb8rqXE74uZ3x2V+J1/79BbBb+/LCW/71Hi
98vM7z4q+P2PzusVOjK/ayrx+0Tm9wQlfp/I/F5Hid/nM79vZX5X6MYpBmX6
LUzGQpFZ5Vc2P/w/XmzzKGZeMmqP+VJr/SKVerFPL/b5QD4gurDoWhP5BfR6
/MFj1+Yk9HlTcfcWLRkuzWyt2X76SjzbSyttpnEyrrvQOkXtSCb6pZN+nvU1
pMNJ9rnJPo/IB7b3bLp0YmVv1GkX0uTQuSTs59jbdt+zTPymZn1N1icczaYM
aPdspwQ77j+xP8FFhsNWzBl+tm8Alu343DZl9ysUOZY/9NBEhsvZx5B9upAP
FLDPBPZpQz7Qj31qs08g+YDPy2m24qnhuKne+RXNlyag4fJ31cd2luMV1g+x
3op0ePwMy0MZETaob39+pLcYB8yY71Ug/N2HbVp3Ra+cCOfqxTRs+kCMNbu0
aXBL+HzdZn0N67qkw2320WYfC/KBig/L9VoncL3L7qsOlduLsc7E0c1bd5dj
GdadWa9H+q/i9395/N/4UsX/1efjM5hP96k4H1fm8cPMpweV+LQs86a+Ep8i
82kdJT7V5vgG/yGPt+d455/k8Xk8311K8z3G862mNF9nnu9+FTzeWmm+ATxf
nZ/k8eo8flcVPD5Picebc/xZpfkC8/hwJR4PYx7fpuJ8fJQSj69hHk8tJY+/
V+Jx/n0HHyUe3848HviTPM55Dnx0KMnjfL4Ad5V4fCHzuJMSj49hHp+qxOM5
zONVlHi8BvP4CCUeL0f5FbxT4vFBzONSJR6vzzy+XYnH1ZnH9yjxeBvm8ZpK
PN6aefykEo/z+RFYqeBxXxU8/lSJx9OYxz2VeHx3KXl8GPO4EfO4Qo+j/B98
KP8v1msSp4ArcUqxfp44AhKJI4r9RxCvQfDXIl77oROPQH/ikWL9APNsNyWe
zWGe3cI8e4B56ijxFFgRT6GCv+TEX9CV+EuZ1+A08RrOY74D4jtwIL4DJR4E
C+JBGF6SH2Ec8SMo8SY8J96EiyX5FPKJT1XyrELv37jLdIeFubg3f8CnGuo/
9JHMcUbMcXUKllb0ObQTd0xpOe3Kxlw0X2a65eKoQBy/1jBxTgM3XDTEqb3+
/lxcMaJH4tEpj7GPYZjNjETEzm0NTYaez8XNt7Y2yqzmgTMr3bx5Q/uBwAl5
2gOO52LmYvdVRh7eoBW6+PHyBRexfKb+F+0aOShTz8jOuBMFNQydm+l0noQn
bmi+zjubhWMqu3zz2fs7XvvFPFu7lDw7rpQ8a/Ef8uw2FTzr+Q/lWYdS8qyN
Cp79qMSzFf+AZ7V/kmcV59E+/zCeHfWTPDueeTaxlDzr+JM8+4m5VUuJZ5V0
lTxbvM5xmdKqNsnYfkVVkdPCHz4ZhZ9b2Qo+49PNWz/7nX8W6+NIL/bpxz6d
yQeu3K2T66R/HLu0GNtwxvsknPpeY2qW/w+fxWOHu6YK8SOiB67IXvBD38Y6
kA632GcA+1iSD/hFhMV3snXD1V3Vmt/PScKErAppc7wysbJLxumhR4JR83yP
U71HSXHmvL4ZTT1kWL9J/XR9X280/zZ+mvzYK/Qwlnk+2izDO+yzl33CyAfk
p8mnCfuMJx943Zh8JrLPZfKBrR0qe4yf7YePjlQcFyFNwIVLD/vrZcnRnnVX
1u1ILy1f/GmO+A/1v52n/o3/74r/q/l3porzaCcV/HvoT/Jv3X84/x4tJf8W
qjiP/tX8q3werYp/VZ1H/xH/Kt8PV/BvmhL/rvpF/Ks4j35aSv795PC/n0er
4t+DKvh3mgr+rfw38e/uX8S/lir416eU/HvnL+ZfbyX+1WH+vamCfyUq+DdI
Bf/2U+Lf/cy/pn/Av4HMX87EXzCJ+At1S/IaZBOv4bSSfAfRxHfYuyQPwhbi
QVDiR1hM/Ah1S/ImDCbeLB4n8yl0UJoX8yzsI54t1hX8K1Xi3wHMv7tU8G9r
5r5KNB5Q8O845t+RNH5Q8O925t+ONF9Q8O8G5t9RtD6g4F/NJcS/arSeoM78
+5r5txytP5xi/h2uxL96zL8Hf5J/f/Y+tkIfzuswSgX/jlLBv8d+8jw3spT3
sVXx7x/dx1bmX+X+Cwr9776PXdrnr3/VfWxVz1+L/6b72MrnuYr72DV+0X3s
XUr825W5tUCJf3OYc2sr8a+SXuxjVkr+zVTBv9k/yb+niFtBFf8uYc4drsS/
25X49yL7KPNvLnEomDKHPmSePUo8C/OZZzOYi3exvpH1WOZcf/axYB935tkN
xK0QwNy6gHl2CevurC/9tTyryucfyzv/xv93xf+3PL9c7m+6L62KT/dy/BSl
+Tb7h92XrsLjv6003+l/8fPLd3/x88uq7kuX9vnln70vrTif9VHiU1X1wUaX
8vnlP3tfWrkO2H/7fenS8qnyfWmFHst8el/F+extFXz6UgWf+ivxKfMFjFLi
uJ+9b3yX+YjPB4HPB7FSSZ6Ct8ynSvwFecynRiV5DTYynyrxHWxmPlXiQbBW
wactlebFvAnb/oBP+b4xKO4bv+f7xp3p/Bfq833jIL5vbEHnxaC4b7yU7xv3
ofNlCOD7xiv4vvFMOo+GXnzfeCnfNz5L59eguG/8nu8b69J5N/B5N5ryfWMn
Oh8HZ75vPFDpvrGCT53+S/lUuV66Qlfw6alf9LywKj4d/Q/j09I+L/yr6oM9
+Ek+XVXK81lV9cH+aj6d8jfxaW/2ec98GkX3hMFT6b7xMrpvDCruG8OF//2+
Mbiyz0O+bzyE7v1CGb73G8n3h3fS/WGoqXQPme8Vg/K94j7so3x/OILOT+Hz
OTo/Xc7nsK50fxiW8v3hjnyv2IV1R9bb8b1iD/apyuewNnwOG0j3hKEx3xPu
z/eNn9K9YrDme8V1+b7xadYXsa7H940vso8u+wzl+8Zq/+t/r7EQi+4bw0Wl
e8ifWT/7c/eQS8svpeWgfyx//Rv/98b/t/Dv3/288D+Ff9f/4ueFle8n/6rn
hRXns5Y/yb9/dD77V/Pvz9bv+tn62Ar97+Zfx38Y//7Z+l0KXcG/rf4h/Ks4
n+35B/y7l/mLn/eEoXw/Wackr0Efvp98riTfQSbfT57FPKi4n7yM7yf3LcmP
YMv3k4eU5E1YzveTO5bkU3jC95MvlORZYJ6FVKrfBYr6XUu4flcCPZ8Lijpg
SVwHjJ/nBeW6Xvz8LyjX7+LnhUG5ThfX1wLl+lqbVOj8/DIo6mvlcn2tFvS8
MyjX0XpI9bLgCtfLslNRL6tXKfm3PvNvfaqXBYp6WYlcL+sm1csCRb0sF66X
dZbqZUE9rpe1s5T1sn4V//7s/eT/X+ezq39RfWy1f0i9rD/Lvz97Pqu4n2z5
F/OvUr0sUNTLmsn1srpQvSxQrpclpXpZoFwvy5B9FPWyJnO9rLdU5woWcJ2r
r1wvK53qYkEG18W6wPWyXrKuqJd1jutlRbOPol5WOa6XpVam6HlYUH6u9gXV
y4IJXC8ri+toBbM+lvVcrqPFz9WC8nO1fakuFsRwXazDXF+rCtXRAuX6Wjqs
K+przeL6WqPZJ5599nN9rRyqcwVuXOcqnOtlNaJ6WTCA62Ut5rpb5Vk/pFRH
6wH7FLJPANfLCqa6WKClVC/rCusVWF/wa+tl/cuz/8aXKv6/hWf/aee5qu4b
/13nub+qHnVpefYF86zjT57n/ur6V3/1eW5pefY/Pc8tYJ79+pP1r362r5NC
/7M8O1YFz+J/yLOK81z3P3me+4LqX4Gi/tUlrn81lupcgXKdq2SqHwWK+lGp
XD+qE9WPAuX6UbOsiUdU1Y/6WZ5twjylqB/ViutHTS/JX1BQsn6UgteKfTep
0JV4ULl+lIIf4TDXjwovyZvF9aPiSvIpMJ9CKNWpBkWdam2uU72N6k7DSa47
bc91pxtRPWcYpFTPWZXO9Z9Buf5zfRW6G9V/BkX951yu/+xEdZ5hLtd5DuQ6
z4p/97Pns1+p/xR8Vuo/dYzqgYNy/6kg6j8F47j/1MyS/adA0X/qKvefekZ9
oEC5D5RCv/2TerAKn5BS6lLqPwWK/lPx3H+qFdV7h8Pcf8q7ZP8p+LP9p/5p
58uWpeRrVf21/+r7z8rnywq+XvcP4+uPf1CPmvtPgaL/1BbuP9WP+k+BWhT1
n5Jw/6mB1H8KlPtP7aD+U6DoPzWqZP8p6PW/958CFf2nIFKp/5Q7+yj6T53m
/lPrqJ8U2HEfqI3cT+ob9aWCUO4n5cV9qY5TnynIZ30f95nSpX5ScJB9JnA/
qdnUNwp2ct+oWdxPyob1VazP435S3B8K7ij1h8qm/lAwhftDAfeZ+sL6XNa7
c9+oGPZ5oNQf6i7ViwZF3ekQrjvNfaNA0TfKkvtG9WDdnHUL7hvlyj4jue70
Xa47PYf6OoGiP5QD94e6Qf2hIIP7TJXjPlObWK+8pYQOHdhnAfvs4v5Qav/r
f68V/aHgkVLfqBDWFX2j5P9336h/+f3f+F8S/9/C43/1+bLSefEPflFRj/rP
ni93+5vuVyvz+K+6X/1HPK5cj3rDn+Txj39xPWrl82UFj/v+f+bxP3u+vLmU
PK71F58vB/1iHo/m/F/RH2oA94eyZF5Q9Idy4/5QvlSPGhT1qGO5HnUk9Y0C
Rd+oS9w36jzVo4ZDXI86n+tRn6S+TqDc10mT6ktDM6X60qWNP6UinutXg3L9
6hMq4jVKGW9PdbBBUQd7LtfBVhVfnepjg3J97JHU3woU/a32cn8rbepvBcr9
rdJL8iws5P5Wh6i/Ffxsf6te1EcbZtUp6qONfnlFfbQRtxf1g4aQrKJ+0Ohc
vtH3ftB4lvpHA/ePxuvUPxpvUb9paEz9prEu9ZvGXOpPDQ2oPzUmxhb1p8YC
6mcNJ6mfdfHnuFCFrio+/xfrp5T0rdQfHIyoPzhezCjqDw53qJ84dKJ+4uhK
/cShbcei/uMwkPqP4zzqP66Sr9OpDzs8oD7s+JH6sKMf9T0HCfU9x0XU9/yn
+fqP+j31pT71sJX61ONF6lOPMdT/HRKp/zs+pP7vWIv6yEM16iOP5amP/P/g
69L2d7Zlvtb44Ltn6uRQiG144MKN5TKc/Kmj94VtUqwkajQkOD8ExsbKRM8v
yTConu5B/z5SHLL1mPrLO89hRduKkZvny3DZwsT9USaqz681n86bEZq/EkLW
3Ww4eUsWNp/4xuqMegIsy2thMDLQGdq1XmK7tHoWfmnY1MTYKxHajMEjwWrh
kLZoWXw7Ixm+SFcr9Nkjxborzq4yyXgOo+JbfssaLLxfK5ZFnZ4pxb456aLm
+beh8SaXMtaeQh7QbUa7VxckMEd9W3+jvEcwwVDXZ3aKHJfNjDylo5kIO3Tm
V5ldJxhGrdBdtFrIk94/urj+QTkJxF+NDL81+Bkc6RzwrGNYIpqlTWnXvKwc
yy7dWO/NsTBYDNZlLl9KxXVNqraoNikNG5Ufvjl2eijY5tQYOzU+FRe0nZ4n
6pMGbdo29gXTZ2ARmGV4VZSIduDv71BGDt3v7dKqtkQEMV++rs0qG4995xjc
m6Ejx5q+Xaat6v0CdpjWb+sXEI8tT2uUb1VLjo1Zd2K9OekwjH2S2acn+cBv
1H8ZmnL/ZV3u49wpVR78Wfj7igp6YRzVRYxa/ezs1YV8rBvriaxXIx2S2Gcw
+2RzH+cqbpNeTf7Ofd++ltEWOLHfhaCo9cL67fLocaGW4PPto9b+IIH7ricc
Xu8m6MdYl7F+k3SowT7n2WcI+YAD9V+GGUp9nN90r+/qJcSv6dVfeqGo7/Pd
C1UEfxnr9qwD6cD9oGG+Uh9nt/06Ok0FPa3/aOc2wuuGl3ebbfD9/sWV6j47
hHE2jj67dLsQP2lExNj5wuvWZb0n61akgy/7lB1APoHkA9zHGdor9XFOWmDS
JUGIr6YXlxQrrIPD10HR4wS9zkLSa7NuTzrsZp++Sn2c62avavgtQAQtK6Xt
kgl6yoLw8s6CT/VOo5o3EXwaHXjZYp3g8+Td2tcHBN2U9Rqs+5EO1dlHk32y
yEclf5kdcwuw9RPWrcPp1q+Ez8mQxoP3lhXy8N5KugXp//L+v/E/FR/yxkIv
69tTeH31UOu23RJBzXFQa4eNpef3Z+wjY5+y5AOXzDzG3o31hrzFF56E75ZC
+XZlPkS3lWMy681YdyQdLH30vz7r6wPrnaebL0Up7PNzLXSrJsf83CqDCv39
ocyN5v7nr0lhg6VPonaEDJ9z/IXjFK/7uCgeOr+meG2Ot6N4GK/VuNM+qT88
G9HloI6zFBLCvx1Ui5Phjp4JC/YG+8Opa3pnu62Xgpu8ep2uWTKcwfESjn9B
8bCS45053p3iQb83zavBEppXTlua7wzW+/N8bXm+13j853i+9jzfLJ7v1+s0
/k0832a+FP+U5/uV4qEJz7caz3cFz3c4j/8Bjz+T5xunZ9npS60A+Ibjox7H
SSHiQf7jba4ynMPxLzhezPO1b7d1tX2rABhvdrDifYFvrfVcz291k8HaIRa1
A6oGA9abt3JQ+zTYvrPPiN2N0lDp9x0+0O879rH3yqzbLwS6TVmXk5SfCnnP
DLZ16p4GrUvmG8D5Bkzl/GEi5Q/A+QOO4nyjBeUbkGNSlG9grXzKZ4wpnwEx
5TNYh/OWkZS3wAfKW5TzLuC8C4JK5kvQgvKl4s+/op/Uzj94PtqM87SVlKfB
YsrTivPPvZR/wnHKP+HrC8r3LCnfgwjK9/4Hv6f85Hm64n74Fub3RpzHVqU8
FipQHgtZnIc/pjwccigPB0U+LKZ8GPwpH/4f/K6qfvUfPR99mfP8NMrzYTbl
+XCGucxLr4jLoOOHIi6D9A7EF8OJL2AQ8QXaMY+YEI/ATuIRHMr8YkL8Ai7p
RfyC95l3LhHvFM/Hl/XLSrqPCr208ar0+yr0h8yPLYgfIT6miB/BhXmzGfEm
vHtVxJtwkfnUn/gULhGfQvsdxLNVXxfxLFjnNfzOs6DvNq77BduXsGZ11LUn
czJx/czTOi59E3H215xjZXtKwGim5plTzTLRX1//VYzlSzyPrXLvPksA0aHD
hknqMqw8pm6w17hotDoQGXK9cwx82erwZK9jNkY+vZ7UJughulVPrTF8aCRU
G3u104yxOdhl2nqnD/03ocnjmu61g0UwKVzDdcfveLO0elcVuvFfrN+oFNDF
dnI4ZLXPf2AanIPfDjfq9eitF/RfFFjXRvIIdlxOss8vyMYHBTp11ewjYaz3
tT4VZl+HOo3LOk1Jy8LN6rXravUSQ81hN+aPmCaBxT2CjmucSscEd+nXqCsJ
+Gbk/Y/d7KRg9Wi55bP+6dj/SsQpW90EfOdz9n7IUinkv+kyfNTAdHz97cSE
XdoJuOrQ7h7jooXvj9SUvZrN07F5i/ZzYs7G45rlGy8+qL8ftk1aYVM/Nwvt
B83NCxv+4575z973jj7lFVyljATGDMiFD+HpWOXhruk1FyTgsoceVq4rhO+D
BK1NjWeno9Zw05CyF+LRx+/GtdVtpBBbeFxyanM6bvG1M0t6H4/iOPdOy7dK
4daKsWs39E3H9OUD0+u8iUf3fWBQ23MTVLdzq2C+IQvfSEfPDq+dAKFhkxzO
ys/Bm/Cbz3O6Z2Huk/iXYvVE6Leo9Xb3wZ5gM6xcesETOe5c2qRPQl8JrP46
apSROAG2bbza4ZpeBubuXnB0grCeRw+PNXaeJYW5VVadqbcyHWufnGc8Zn88
5jV4GFa5thT0bHZZ+BxIx5T6fTwHCeMZZpHV0GWzFOrUKEzb2jsda+y4Gd9W
LQEn2qT5zej2GNo8fXHf1kGOW+o0VrtvIoFybbdq1/YPhjfvhkqtp8nReaSf
fLt5IlRbFmX6umIE9FjgeSSpgQwjxTWXxM6VgqbrigWHb0igyfrJ07T2paOn
n51xd0fB367xCLsNUij4FlChHqSj4WGzJlNqJOCAuhPz/NdJodrtpq2nC+Ox
WVhtpmvVBAxYlzUwoEkUnHYJe6h7PwMnuH09dtfyFZxzut0wUT8W7ONbBN93
yEBrnYnns/tKocHCOO++kng4c2Vf05DF6TjYaPi0V8L3avXsuq1am0WC4ZxX
VZ86Cd/LYquh7Z7KsOr7DMNFwuf0k/2Wo50fJKPlsQ/horapWHZg22d2W6Qg
WWK95I55OkYuS3uUnRKPzmv2t5mVHQvNnnSLvv05CQ3znp7b0S9N+F2zWTml
ZSTUzr7b+sC6eDT6Ynpk/QsZmHXeVGeN8PeVnHjYYI/Aj3mj9ll+vy+tH/dh
Rtu3IliyOz+ywhQxVrrkUfGuvhzzap1tZpItgiG1oy9ajRfjmwbJJ563lAOw
Tyb7fCEfmB/jdtNe+F5NmD444KzAX47WU6dfFrjMLSjIXU/Q7a10zTOMxfiu
89LkdEH3Zf0g63LSYRH7fGafdeQDhrp7PK8LfPdCFBg2pofwunveli8njH//
wsjpWwTdP+NQoqGg77O7kqkj6DtZf8X6dtKhD/tEsc8H8oFQNZMkG+F15xzM
OtVG4ETTJw4jtwnjXLZzxs0TQvzZL9Nce/QU42LP5DmhxnJcyvpV1heRDk/Y
x4p9epEPfJIcfmYlxOtkZ5T7IMxrd+KIy/MF/yOjgtaZCfGLFx2x3SDEl72f
8W2Vah0K2ceQfRzJB9akSibPDBTBlnyf7hFC/IAA/affz8XSh7bQmi7oVUen
SHsI+poCoyp3BD2LdV3W7UmH7eyzh336kA88M9fTPzkyEg49bbHPyVuM1x4e
cMRCGeaL3OueHhEJ2mUNFlb2FaPdk/nD9gr6wdekb3ivX6TvDSjSYcQs8qnk
Qz5PHxT5wPFJcU7639czWbSnu/C6n69tPD5NGOc+1i+znkf6v3z93xWPM2tc
mrAiQwJdvN9ahXr4Q7N92StW9FLJvyrflyns04Z99MlH5XgWBIoS7QskMKRx
V2OTEH9YNqi+y8FucpzK+lDWV5Je6s9D9unrBxaeSIQr6W7xb12CYc0Dqzo2
FnJMZP0w65tIV+nf+2SlKe/3xsK1Mm/7p+bGgEN4OUt/4XdhNOvXWV9POozq
43Jr/qkIOJh1Y5htXSkM3tlXO9dYhr6VY72st0bD8cb666+3koDrjCHN7A9m
4g6tTbEbzkTDwdtHJvo4SGB8VuKau0sy0ZZ92rDPVvKBWPa5wz5nyAdOsY8z
+1iRD2zN/7rTuGsUPJBtWX0gVwK33k/dMPh0JlboZla3omU0GIiTb+fcksCq
K8PnhCzLxHc6urOvTImGRkEp3vH7JZB/o75T3ppMPMY+AexzjXxAh32asY89
+UA2++iwzzfyAZdNnvKz16Pg+Q5J6qblEtj2RpZjcD0T77AezroD6WDP6xDN
69CQ11N/aAeD++2jITQgeZCZlQQ+11vR1+J4Jt5Nd2wjMY+GzMdZVfq7SaCu
JC57m30mnmGf+ewzjtfTnH2S2SeTfCCcfeTsU5N8YB2vgzuvgyevpxqvgwmv
wzJez2m1NX2PrhHe34a1/Gdek0BcTcuI1IWZeFTpfbnJ66nJPp3Zx47Xs+LF
23NvbYyGPUujzT+4SuCQ7TaXcTaZMOJ1bsE5YfxeN2ev7d5eCi+1Pq0ZPiAT
NQ079q0mjH9dVstbm7sJPLmp+4VG3TOFPNvX1TwsDvbn9Kga6poMcwfauT2Y
nIpKeRFwXoRKeRp4UZ4G6iXzH3hB+Q8o5W/A+RuMvuq5ykUnHsDg8jxvmxSo
/zHYyKtHClzgPG0l5WkwhvI0fMZ53SXK68CC8jrU5XxyAOWT4E/5JC7jvNeB
8l4os6co74U+nDdWobwR1lLeCE6cD8+ifBiMKB+GypzHZlMeCzcpjy3Oe/Up
74UTlPdiT87DF1EeDusoD8cY5oVxxAtQiXgBFHl1A8qroSzl1TCHOUKdOAIa
EEeAIj9vRPk5vKT8HJC54B1xAWQSF+Bd5ohqxBHwiTii+Pu8otJ+iCbz1zLi
LxARf0Eyc8pN4hSQEqeAnLlsPHEZ9CIuA0/mnQTiHdhMvFP8vaqjVOe8P3PZ
UeIy6ERchr2YEzsSJ4IOcSJaMo93Ix6He8TjsJi5r3JaEfeBHnEfnGZOf0qc
Dr2I02E48/6TtUW8D5cmFvE+JDFXVntbxJUgJq4EM+bZ/cSzcIx4FhX8m0n8
C/uPFPEvmpbk5eL5m/wi3biUuiqfbip095L7FaBP+xUwnvc33tP+BgwLKtrf
gMq15iafb5sAlTwWYOgqOQYNanPH8XUYNuxXMzJk+EuwvS4TzT2QjatnBC2r
FnIe/Q5G/Ba7TATOh9Y711/zYz/Bv5T6R9adlPR2h0jf8R/qbVnfqaQfvDJk
w6VZL6ClmtPj2+dzsOxZ3bW6Ow+AeotKtvDmKazJqjagxp4cPNS93ZiZHqFQ
4cBbTR+RFE7Mz1x/Xz8de/WfqDnSJR5vvlnZzl7Q5aKYa/MM0tHqubo6norH
eh0tn7m/kMKAZzFdPwp6H9fwtkGCHhO0e1WrY1LoEnNYFqmfiQVbZ2c/2RqF
r3S75bu0jIOXjVO8ehRmYfzyqGEvxvqi+bBvZ1JXiaDzmsLfhq7+Mf6BKvQB
KvSVrBsq6W6sN/tJ/ZYK/XYp4zVCNO9/9gyBEU2nxqi9zcHz3W6/q6f/CPRt
LgyvG3gXutqZtLZdlo2zVu300Or6EpxnpGr3euwFXxYmfNjeJguHdcfFrQMT
wCRvylU7k8cQVH3SxoRQOY5ZYtKksFMiHJv9MfdwhBRin/iMON8qHTs0XH70
o3M8DlwX5mYWLoVrYp9bk9uk49SXn3zWHIvHMrbW2UnPpTAo8M41dUF/WiNg
6SYhXq/dLc+zwvt43H7iNEPhfRwiLpyx7kw8WqkdW3NYIxS2XlxsrZ4iw+Ba
TZM6+0jgTtVxjlV7v4B3Zx/P+5KXiV8meBzwHSIF454vn5yRR0EXe69ks/sZ
GDkpdsgY3Vfg1tViSYIwzvRUn5VGgv+dUZnuvYTv1Xt9p/cdFy+F21daDRzd
NB3TD70r6Hc8Hncb2e9WF/RCv1DTGYK++cbJY1JBb7vlt5VlhM+hXe5xo4eC
j32ZmDmPhM/bA4vgmvm3Y6GcPNB3ZIUM7B1Yc4v7Uyk8rje82fbsBFgQH3ol
820abgjrW6P5dikMO+T/eHtIPPSzqNj2jKfwuh8meTZJk8D9W+81vgrrc9Q2
P29o63Q8Y7ai5d6T8ViYWDFnvqBPavXOOlDQ+8jjP00X9AlNr4S4CuvWY1TF
T5eF8bQzuHos9HQ8NuuevuSFMP5liVp7spuk4947DausFsYvX2Z+yvGbBBKm
v4gfWT4Nv/Wv7mQnzCfy1dJWFb5KoP7G7ltTBb2RNHbqfEH3sRuz0ULQY95P
/hxSIQ3LlJcE6AmvV6fOup5ty0rh4PKHtZYI8e46MUHfhPf7xO6ZpqIe8VCn
3N47tWckI7gffVOrXSoaHQ1veUzwc2hwyKKnME6fU+MrlxHGWX3TJ4N3gl/V
mq8Kvwl6UqbaYR1hPZ+Y1PqSIsx3u2fZAVbCfFe+v+nuIczXbd7kMdXVpGC2
pFylW8LrbvswrNwt4d87hF+GSsK8btyYoKYrjFO32ekdtwU9/KNh8BYNMZhs
tJ57YX8SHnfYc6L8gDRofKj8gtWDI2GZrFt97VAx6i/oNOVInsApIXH1EmrH
w+GYF7PLDErGRtnlP80ZmYplB2cv750WBxk3nnb/bVUSzr/Scm7BzDSwMAkM
W9QjEmZYTmvS2UeMi0z62OwrIwepp6FzVRTBWcP5ic86irHdlv2HZnSXo0bB
7BT1VyKoWuld1vohYnyc2WNFYDs5jq/epR4kiuBZpfGLFpuL8ZuD7yENIzmk
so8P+xiQD0hiLFpcChCB/jY7M+duYkzI6x2x7vs+zzsd9Sp+wvdAzYjENUZi
3Gsdm7ZAeN1VrHdifSfpEM8+ndknjnyg3flPFZ97i2Bek0qTsozFqDZ8TX4T
wWf6keNeowV9YXi5r75C/NF7OTc3m8ox6hDp356R3sO7SIcrZ8mnsBH5nCUf
eLV1qumeQBEsPecvemQixgczvYx3CuN/wfoi1v1Ih1mWqxJWC7+/nW7dGOEi
6DX33kmI7yrHTtu699cUdKh0tPk+UzGGHyoMsRP0Dqz3Zf056bCafUzZpxr5
gPbL9FNTLSNhastm02p5i1Hkq7t2R6EMy4X1cIl+IoKYuuPsLwnxBoF79UcL
42zMupT1xqSD/3vykdUjn1feRT4AbTp6vxbi++pGpizvKsYOpuN3nRR8YIy1
v85TEcick3qJu4jxyF79V4Xf74ewrnmihA4FrclnGPuYko9Krn/YLEyjvhD/
/ETtWveF9a9Qo+Ppt4K/H+uPWa9M+r/3QFj33W9wchdKoOnUJ5f7vfIHDGk9
xmpQ6fd5PNlHj30ekY/K8bzzS1haW/h+y67Vr1xwqD8EtI8bOu/7vSnWs1gP
Ib3U63ko6fSsOYLPxnGhlXqF+UPL/Fa1ugj+e1h3ZN2QdJX+Q4yGi2yF+NXd
29bbGOIPvaf0XdVP8BnE+gzW+5IOTWs6j9kl6A+7VvR8HOQPspYz9g0S4vVY
f8J6NulQMDJwgkY/CUjk0eO/FQRA+kHxep/Jcpw050RYkPA9Hz0vYnqHaH+w
u2vwVkfwqfF+gvHFOAlY1TE0zE31h+1b89536S3H/pbk84J9tpMPHJhLPsns
U5d8YOoH8pnAPgbkA1/ztKvemSmGhh1HN/B1iQK8uCx/4gsZjo8cYBwncHDD
1jviOjqK4JP9V/MRchkuY70169mkQ+d88jFkH1fygWkys+kGoTHgmt1x34KQ
BDg7Okajk3smzmH9NusupMONr/dXhz6PhhN9ogr2zpPAnNT9H1baZmIH8fr6
laKiIfzON4NJiyRw8qDPsogFmXiT409x/GyKhy4c78Px5ygeHHTjP9yLjobg
ym5OY5ZIwO+3stccbDJx5eqeXSA2GiqoVSpfwVYCx55+6nFN0CdobFyd+TIa
xItHtvks+AQtWvTUT9CPsk82+7iTDyxin0rs40w+0Id9vrKPP/lAlz5DPhhF
RENTC+dVDYTxVxhvOt1CmG9L1tuzrk462Iv1bBqkRkPcKlNH71US6Hv6hIPr
rEy8Hfr+065WMdDZ9lKBRrAEEo1vjLDumYkbF7QZXSkjGo42abtQtFYCB52H
zNWemQlyD0uP0K4x0DMm3zRA+FwcLjOx87MumdDNdm6VCx3jofacJnXqT06G
QRlhXyYap2LtG7njvYX8ITBul9XZYcmw5NoOh/EWqbiF85NrlJ9AbcpPsIFj
6w7jrBLAy/36x0UGKWA26npMH+0U6OY6vHC8aQKUWTVWv4puCozV7KSxqm0K
dOY8agPlUYCUR0G9kvkYuFE+Vpwv9aZ8CThfwsec10VTXgff1IvyOnzI+ecO
yj/hCeWfEML52CrKx+AM5WOQz3npCMpLYQnlpaBVMq+DV5TXwUvOMxtTngl1
KM9ERT7ch/JhyKF8GGWcr0opX4UCylfRh/PqGZRXwx7Kq/E+5/MelM9DJOXz
0LpkPgzrKB8GRZ7/hfJ82EV5PtxhXsgkXoALxAswkfPtXpRvQwvKt8GT8/9v
sqL8H4ZQ/o8jmEeMiUcghHgE9zM3JRI3QUfiJjBivrAlvoDVxBdgwTx1i3gK
fiOegufMQa+Jg+AjcRCOZW5yIG6C58RN2I85zps4DrYTx2FF5u7jxN0wgLgb
mjCX7SUug2nEZXCFefwV8ThsIB4HNea7kcR34EZ8Bx7MlbnElbCUuBKrMIf2
Jg4FI+JQ3N+c9ge20f4AdKf9AZwcTDw7iXgWrIhnsRfvM3SmfQbQPl+0z4At
mYu7ERcX/56l8H7IYdqvKNZb/cXxqsZTm/dP9ijFj+P4DkrxQzl+i1L8fo5v
+R/GD/tF8QdUxC/n/a5JtN8FvWi/C97w/kwU7c/ASdqfgVa8b5Z/p2jfDOoO
Lto3gye8z9OP9nlASvs8UJH3hYbRvhAMo30hWJAc0z9L+NwGPz3jH6efjp6t
Q86sFzj0ye7uQSMiBZ8Biy2yBT297zGZpcChK++cOGjbSAoHpu9qCCMysKxj
O7+EgXG4zVGtRnyKGCzOWW81j5bjDd8C73q7w3DbmY87PmkKv2uicY0elM3B
TqlDK+m8OY8PSt4fK84j7/8iXele2Z/Wz07wbbJTIwr2ONUxrmKcg/bDr40Y
2e4I7LBarN3qSDT09jpjKQrJxk0N+wxct8ILEno/3dbCOhomHxFVq58mxwCX
Xbf086JA265XqP6xOAhYWbOL17F0rKdvaHa10iuApi2rmGaLoKBKb9OVVzOx
wibnk22HSSHq82wPf+F7Y8De15Obt0nHtZIOT6c5x6ODpUzzdu1XUHfqhRRJ
TBqKbny+Ur8gHrWuacdkCXqDd73bVX2Zho6PumypnB+P8uGiHmuE97fTja0F
0wzScZBng9HPhPfRYYdp1prYBEjX3/t5hHsaNrJZ3Tc1QwqxDpp1WhsnwI2C
O6ZLW6ZjSm76Z/t9UvAKFW+aMEkCbVvVDr27Jg11DaY6nNggBfPHx8deHC+B
64vzkvPWpuFQaeup7QV9kcbH5E5RUrh+u8nMWy3ScZ7ahnrgEo9NVi6OPyp8
rp5HyVptET5XbZa/vfVVGM8dv2PJZYVxji277up5YZzPQ+P0awufQxvDnWZL
hN/rKVc69bulnobeFp1vnhHiXhoey7YUfgdrr0WH3yqkYQ23pDHWwuf7/Dtv
Py3hd3/dmMjs38qn4dV7EZumCL8rR795mvQQ/n9OxOCMSq3SsWrj8RGzTsSj
wbLR+teF///JfatklaAnr4jMGSToJ6YkaX4Wfl9crCqfSxTWYVyjStWyhPHU
uTvsgJ0w/sBB4vK/CeMvr+F7pZcwL58jjmVeC+MZ53d/fHNhPDseVDQ1El7v
beeFc98WSEDtdbMRxsJ4NC819xAJ/971zrgG+wRdfmPmsAOCbmnsobFD0Ifn
oFlGvgRMx/Y5nS/4HBDtz1AT5lvn6PbmDYX/P+6i13xX4XUXH2jpfFgYTw9N
Dc3rgm5acd+TCsK6NZFt1mt3Mh4bT38UfknQ05J2n7UV9FlmKYteCZ+fhIUT
2h0U/OZV8ld/Kug7jszXGCbEPxzqq11BWOek+cstbgvjyW8V3vquMP7OU6b6
rBf0TyaDFvQRxrP78ywbR2G9li4J7mxfKIHmS27IKlZMQ3OfMrc6fs9vJlw9
1vyhGDZfvz4ta04yjni9v3aNUamI5a7E3r4uhQZXdMrEDUxHH7++wQW74nHv
hAVDqgrjCayXrbdaGM9nj0Zx24V5PZg0YOpa4XU3dfwSaiS8rlGdZdXOCK87
YtpiH81eUtB+2jo41TMVZ2mM6HwwXwq3LQ44e40Ww7xN+yYZNkzCm/5nb5fZ
mwa9yoxv9qZQBGXbz3AZdF2Mg7Jq+3fQlqOH7dPTw0+JYc6wY65bFyXjkCuf
H1Qcm4q9WzfpfM1EDPezh7npN0/C0ZIJFc2d0qC8+sAxHz+JwNJscP0KLmI0
dk9/vUBXDnk1D/d581gEAzr7na7YTYyhWQNM3wn8NVFv4jNPfxGc+iCdlGAs
xptvlmeM6ybHeaxfYv0K6VBLh3wGs08A+YD65Bb9vD1F8PXK0UGzu4pxdYj2
gofd5TgmU2RaK1AEB1dff6H9/V7TxF1lwoTXdWT9AOsdSYfzE8nn1GXyqRla
5AOZmhNWyoX4Vmu/dWku6MbWd6+9EnykL2ff7iDofc8cyK0qjHNnlcKl5sL4
g1mfxfpW0uES+5iyT0/yAcmLXlvrh4pAZ/HJpTnCeAY6aTit7SqsQ7mvu2cJ
37fj5dp3YwQ9acSKJZOE153A+kjW00iHcPbRYp8h5AMztC6cNxDif8vR3LBd
eN2ULzE29wWf5sarQtQF/VbLuja/Cfoe3e7lYwS9GevuJXUYzz79SvrAidzq
3fyF9+ucu/GYHZ3FOC14eossYR28axZc2t0mEhpZL7DZqCXGE77x0qpGcoxk
vSPrTqTDFvbxZZ8p5AOLno9r8XlsNFzu1+28lmksVlmoE9CusxwPNejpEmcW
CRUGLqjcVlOMRjLH9FWGcjzFelnW25MOwD5n2UeXfFTue7gEbn65cF48VI0v
n+fVLxAXSz3Gb2uchetZr8/6StJLva8yrl3bcS4HJXDJL05jkK0XvL4VEnjq
hhz7s36X9Q+kl/5+jt7rwJXC9225F2XmvvH3hzsH30//Jry/Caxrs+5Fukp/
6efTJyKF+C463V6rhfjD9pr2145/f96NdW3Wd5IOmh1Pl3USvpcqTxlf0TXc
H6qeDK/8Vvg8N2M9ezLpZUiHrOfRj+amSsBIf2HFBnf9YVmDGVV7mcnR3bzV
9vFZEpi3Jm9lR29/GFt9R++GIMeBOnQPqhffgzq0l+5TBbDP1Rbk40g+EM8+
fqvJx5J8wIh9vO+Rzznygcz+o/oM/SIBa0NHq0hhXhM9x3VebSrHxXxvajLf
m7Lj+1QTWN/Buj3fp4pin6nsM418IFsny32OED8u9uLp0cH+MD1sdPPzgs/W
OfMXNxLWM7hR+No0QRc//9wmQljnk6zfZT2adPjMPjPYZzL5wAQTi3bnBV7e
cLV9qrvwuobtLh6Sf6+PxPox1vVJh2p+UcMDpyZCeKD9mcq+z2B4+Ub9jtSR
oy7r+awPIR0a9GyXkrYsBtrE259p9TEBVke2cjnmnYm9z4xSe7ZdDC7+Zbt3
rhMDI3bHbLRYJcMw44kH7a6/hJA18HCmRzyMGaA2a2pYJqrwAYXPmZI+4KPk
M4F8IG5wn+oDJdGQ8dw+2mKtBMq8HrGr0+xMfG1BeuEz0l/kFunwLuDkm96C
ft3zzvb3ayTw0H765OFC/PYuar08oqJhTrptP8kCCSwofJ3ReKEwzqcU/8CD
4ndTPOzk+A0cP5PiYWhOp34V0qOhVo9zE9rYS2Cv/MxgDcHf5L5+HQMh3qzq
1a+750mE35VeLQYs+n+svXlUze33/19KGRJSCimRogyZZxsJEVFRQoYkYxkz
ZCgkU4QQMjSQqUhKGlyhKM1z6lSn03hOhUjK1O+qve/782N977W+n7W+f73X
er67n+c6r3N67edj2722mE3aY5P9tTEXxOl3jPaEl0DAiVdHOy0UM9X5JmPr
xblwOWTn/JnOJcBmZI9zsBPDRPJZRT4l6APLpVTVo37mQq2LZ+TnVyXQeNNo
e8ZcMSTu/1QQ4iGAYZG7LRIbReB7PNU/fVcFK+69vW7nLgHEbXEZ8uiHCByu
/DI5vreCWVB+UMT8APaYH9jX2lKBYrUApje+Mzo1uhzevBbOvK9fDnI/dkRW
JAlgVISwv/rEcri1p7evrkE5/JNn+mCegTeYZ2A75SItzEVggrmIvaY8sxvz
DEzAPMPGUL5qwHwFZzFfsV6U9ywx78EuzHtwifJSFOYl6BzelpdgGuXA8ZgD
oT/mQDCnPDkZ8yScwTzJXlHeK8e8B02Y91gI5dKPmEthPuZSdo3ycz3mZ5DG
/AzFlCc3YZ6EY5gnYQjl6h+YqyERczVoUi4tw1wK2zGXgphycsvHtpwMypiT
mS/l+QOY5+ER5nn2iPK2JeZtOId5mxX/yQWggFzAdhCP3EUegS3II9CH8nwc
5nmQxTwP/YhTspFTQAs5BXyJC24iF4AZcgEsIQ4KRA4C4qC/+QWikV/YfeIp
feQp0ECeYpnEfQuR+8AeuQ+eEB8tQz6CVOQjSDdDHvyOPAhdH7XxIBT9yXEg
Qo5jG4g3Y5E3wQp5k90nHryHPAhrkAfZKOLWU8itsBK5ldlQ3+AN9g1AjH0D
qCPe1EfeBDvkTYijfoIB9hNglFFbPwHW3ENulW5o41Z49KqNWyGVONoOORqe
I0czW+LuucjdYIXczZyJ0y8ip0OtaRunsxvE9UF//V3Y/1a//v9I9/kP3Yb6
JF2xTwLN5W19ErChvspy7KuAE/ZVYNuffRhQxT4MLBv2vWNUlBD0FMO0lOZV
Mc87E4K2rRGw5Kxd54NjhNDJ54dGj/lVzNh4Q4/plgJmqqG9ssWhGLx9Rsq+
Kxez4172rzf2zGWJRd6ZSoPyYcipGW/GzK9jg2ZofD0a9JKl6AUJapdmw+gM
Hc+axR+YW/KG9i3dPFgRvS//v/on/6UL/pc/Hzeph9Mgh2yQiR2eF2b2gaW5
9nBvCj4BUVHj4nt9zIXC13oVAYV1bOzWM7o/u9+Cm5UuUrLXC6FfhNr9ZzG1
rOLLwfVjA8MgOmMFzHcUguvU8qWFPWuYsUr2y6U1L+FAy8Nin54iWHt/7/BT
uWK2c7nZg0434mGpUffkmBGlYD7mXJcOvtXsbWFtQkb3XDiQ+3bcUbVSyMu5
IXqeV8lUzB3vB3wXsJwlM4xs+H0vOKD0xc3BVUxw0eXOSR8BG/72W7Ai18/H
+y5V1Ktit+50uFTCefy5hkzUen5fFRQYbYrj/Ps2sCGz9e9SN3bz6JN6ohTG
n11Wf6tPNfvQRfzg7vQ8aM5ZnKHE7yefJ3sbnuKcvtW/XruE//fZ4W7ttvL8
kzRFtbye68Lv2qJB/PewaoGTrBu/fypOumR0UbaSJcq6Lk1p7YfIX7n5mf//
prm6C3J0qtgRt7OrD3PuTlk9bGoO1w3mrCqScP3ZuyERrlw/OK84LJi/jotH
c3Q4P2d1+tWLfly/+M7XxYD73R33omgHf78TkkItjl4XsMgjeTKH+X345uEb
FkH8PEPto61b+xhLH1oUO/Hztww6X+XJud67fbztYP7fT5AR9Gv996Dx9RMM
jOUr2ZM9q9trct09YrFZM7/f2l2PS5jI/Y1kr2S/uCFgVyP6HPfh5xm2d44o
mJ9z4MPk9P7+Arbv4TfbZVy3c/xQfoXrhaxjTAvXC745v+jM7z+ZzesvK/Lz
l41fW+/BfdZPeTR8Lj+P/p4B88T8PNfqzPoL+etlTup15Ji0EAY/HxCsL8PP
7zjJt7UeRLrFSYq5biOaUfCiXSV7tGRyaSbXd+Su9I3gdV8z21SvJ3+/SsVa
l25yXcV9+Yqn/H8HhxQwzdY5n9Gh0Yn8+3DkuE6OaaEQrnT8XXiBfx/Kb66K
aXEVsPmD+/aw57qaip5TKde/d0/Zn+wiYB2mHDNs/fejJz2/DY3hPveNZ3vW
8vMvXHBo5GZ+3Yb9bjrah59/bbstzvv4z1m7r7mxjn8fipZMfajH9W4Bz2XL
uL5g86OU3vz8DaM85yfy74OxyriaUq6/Fd08+o6/770D6t2S+HUeq3cErPjn
uCa8/4JCrq/uUmSUw/Vnk4+O6871/MzAtdv4f3ez19y+qfw8Wwy+96zi34fG
2m13lvDztD+Z1SLm14Gt8j0Tz39Oz8Oh4U5hCfi9HOLzUrGSRfeLvdE3n1+X
bztaKgt43Xz5JL8n10XSwz5Zvud85TH3nPapbPCb3HlmvoOATRhmklLzWsIK
+mX5/hgtgELnBpObx8pYpPsp88ndK9gnrQGm0vz7ojpZ4+lcfk5n/VnH9vDr
47baOVVKuhCEYbH6ix+LmIeNSlKaQSX0GW2SJ9yZDQ4jBsRHzROwn6NWau3N
kMDSaa88FF5lQe895WctxxeySztVR+/m/OKZtNvw09csyIh7bZu/rpB5/47N
WKBdw6YdsF2xqj4LQpffcCxbXcgmthe72+nU/OvT608fyI0fsXd56/Nkfjdu
1OP6itJbV1vnfNq9HlKpzPVNsyXJluMKmf4772mt/RwZ0jf+qUM2+TSQzzL0
gW2fb4S2T8qCMTK7o6byn9906MRode4Tvv/G5g9vsmB1xd3F8/jPTx9ru+Iy
1ytJdyJ9NOqwkXyWkY8t+kBYU6JhbXwWXPc6dP0s1+dmOgz5yn14XbvcjvsY
3gmadWZsIWs35rTjCH7d0kifRvr30W06PCYfT/JZgD5g0uXHvKFxWTBpcyeN
DyML2UvF3i4OnE/ny5hNDT6cDXJKdrfkJxSwMp/7k7db1LCZpHckvRx1mEE+
RuQTiz7Qad1+W3Y5H+5cu7k8wzOflVcWHLMvlrDFW7orucbm8Hy+qv8K+QI2
8c5P46f9a5gN6R6kj0Id1MnnKfkI0Ac6539cuGl6IaR+817qtSmHecPTQ1Mr
JezwvTVZw3vw+9LegtdDx2ewHuMt5J/Pk7Cjf+lKqENh3p8+AegDX1oG+Ul1
L4Uxqe0Caw7GspV9VqSmxEqYxTV3p8ILpZAyVsby8Zkkdqy6ZuZSXse8SC8i
3Rp1mCQ1uM1nFPkYoA9Yrvl04vVTIWStWq15rnMofPDvttzGoIYtJb2U9DrU
4b71k+fi1yXQa32HWLXiOJAadGLEOOMaZtHTU3rfyxL4aRZeGFwSB9VOQUbv
ue5H8z8pNjj/U05zRCHko7YOfXqiD9iSz9uF6NOCPv/OEb1cjj7faI5I8isw
ZklrvfuxM2P3uziwMvdaN3pcDcugeaFKmhcqoDmidNJVVFHPpzmiOvKRJx9L
9AGXfDcLV673vp39oCo1Dk5cXq5aMZbfH2heKI3mhXRpjuif+aL7pOvQHNEt
8pEEoM9e9AELmheypnkhoDmilaSvIH0czRFNpHmhBJoXKqQ5ommk15GeS3NE
8Vk1zSf565rEmOuF5sRBlxy9yaf5+RNo/ucLzf90oDkifbnZL8Jb56DCJw7/
lRcH6ja9vI7w65lAPmPIRwF94O3/2QcGkc8e8umLPqAt+nCqu4wQNuzQ2RrP
r3Nz7YukV/w8Jd22+t/gdap+QLnjC/659LFfLzjKX1dAupj0vqjDMPLZTj71
6APKB0v6TbMvgRlbXVwyKpOgxUJerWuLhDUHfI0bICkGzcZJk7q9TgL7r4O2
LhtYwz6QPpD0DaiDFvmsJZ/v6ANj0msX9jtQAJZmXplzz+VD974vvBo3SFgf
0qeR3hd1sCxSff6kKBfU1p9ryj9QAjW7rgfa2ovZr8j7PQ825EKEzfUlNpwL
Izcd1/m5Sczcsi+tL6zPhWK12MplK0vASMFnxKzNYnakBH2m26NPCPqAVBT6
hJBPNPrADfKRkM9k9IGUBXoHddNyode8OaoWm0vAZf9Cqx5bxex6zy+jtqXn
gsez93sTuK6rkrvvtqOYuQdMMSjkeVsuYOF83+MloKHwuuLzSjETko8++Tih
DwSQz6k/fWBpb3mL/fyceQGh1/Z6lEAMa7fWboUYdNcMU/u+IA8WfH18Y5oa
z2Xl9fd0VMRM/rbCrktr82Cq6LxHwGAhaHxR6FcjK4aZVqk/LAcLoMphZ5T2
7jLwman7Y9OAChZKuaLbq7ZcASqYK1ga5ZwDmHOgJ+Yc+Cc/6GN+gMmYH2Az
5Z+NmH/gMOYfcNm9UMN+QRE8/uo8Y5thOehIHnU88a0M3lLO+Yk5B35otuUc
tohy10/MXTAFcxeTrfsjL8EzzEvMlvJbBeY3kML8xgZQnuyNeRISMU9CBeWx
s5jHwA3zGIymnPkccyaMu9WWM2Ej5VV1zKugjnmVmVCe1Mc8CRsxT7InlHuX
Yu6FGMy97J98vg7zOQDmc+hIeTUc8ypcx7wKvpTbdTC3gwHmdvg2CHOvMeZe
GKjUlnshlXK4PuZwGI45nJkQLwxBXoAI5AW2jfK8FuZ5uIV5nq0i7qhH7gA/
5A7mRRy0EDkI3JGD4D3xQjryAtQhL0AS8dFQ5CN4g3wELsQdK5A7QITc8S9/
dUX+gjfIXyya+OgG8hEMQz5imcRx75HjIB05juUTVwYhV0IRciVc+pO/YCLy
FxgQb3ogb8Ij5E1IzUZufZ7bxq1gZNHGrfAX34EE+e5f3mxG3oT1yJvMh7hY
F7kYXiIXsyfEre2QW6EeuZXFEl+PRb4GV+Rrto76FcrYr4Ao7FcAIy7ORi6G
NORiGJaNfYyCa219DPg1p62PAaHE9W7I9WCGXM88qA+gg30A8MI+AHtAfYNi
7BuAPPYN2APqM8hjnwGqsM/wn887+t8+B+m/fv4x9VXGY18FRiS19VUghPow
I7APA4rYhwF5TezbbMW+DRhi3wYeVdfmdeN5aduFWT2LrapZeviv00FxBWxA
zG2hxawiOF+4o1/AbgnzuD3mR0tlNvM+n/84pkMhXPjZXj+yYy3rVjDgqkFY
CvN9PbWf+dxsiN15V9fD4gP71GV4O7VBvqxlUESNe2QWqAaqTe6+7X/6M+0G
o97zL13mP/T2/6GHb1rToGuTDWcH793jv/ADyzo7csdnPT/I7Rce2JOfv71q
7ZxYnVpWrhTv6nAjFk4dN5M99KwEbqtfGOF3qIY9eycda6ofC6c/FYVfdCwF
c+1bcl9WSNi5mITkK9Wv4Y1nsqDIVAS97kqSP1wQM5HBMsfEvW9hPZtUvIv/
vnxRqer1ZVAVc3wio3WY8+PS88kzGvn30Ko25ctQzrljSsfVP70lYOvffv7a
2l8p0NysOIfrX3/YmIg5/96Tcmn/epcQdl6LKZ7SWMVO3dMxUY8tYEkPvlt+
2S6CaxOq9UJ3itlM8ezgC8K3MGHypw/xe0TgbyUfe9JBzFxMvB/vkE4Az3VK
v4P2iiDa6UWyzxYxa9j+uEtnuQTw8X34I8md5/Y1YUPGa1azL1uGvU8fnweS
5slzfFv7GHujdAs5dwe5D+n0kb+fQ1YX3K79LAELpyezW/sb06KlIl7z9zPp
grVJID//LMP34SKdKtZiPqlfB/6+Zr+f97uY///qIz8p6/P31eXerNoGrv/+
MvVZ69yjc5Pi2FquSxu+f9Gdv1/NrBrnw1zvF+2+ajy/bncNO8rZ8+sW3hxj
3Nqf73s0/6USf93JDmMGzOY/J1a9N/js9xJIze1woX/HSnZe7rdxFq8fMipl
MpubS+BpP+OXdlzv4T73Xnt+fv8lSd5z+DmfRBavsuXnzLb4eeOwn4D1HzL9
7XbuF7jLXlFBu4rlR1dDx4cCFvTEyqqC/3fPzZfVu3Pdsf2GYfEP+PvK0pz+
ubXP0dnC7go/f2i7e1Fr+PmlHt9oVOfn6Sff63cgf12l98eirPl5Zm/1HL6f
Xzejqcuhnp8/KPPEsAT+3x+JCh35iOtOterrC7k+pjzBPbnV9531w1pep6ST
5tyWlqlkaUnntznw+jG0U05xaoEQ8teEmQ/Rr2JOok7q010F7GOsocOSXCHE
GK+f5zegipVH5X6YFCBg3mv2mVzneo8dJxfHcf1U6GxD3da+lpX92HP8dTRD
hfud+HXuNt/IqvU5detSZ43I5vXCg+06X8I/d4Xohknd+fW6Zl8i06d1nmdz
lHId18c1iuZZtt7fO03tEM/r/jHJqeMl/PzvLkd2NuT6SNspLVv4dQtZvKO/
iPvnyESeTuKfo+fC+jfyrX9najxSVYVfN+0n/iMErc/Ni6lTfcn1H8de5T3l
n4vlgPzilVzfE1i/Ui9PCGp1w3eO5+dXCvFzu8nP/+nRjBGb+XmyYgeui2o9
p+cSzXn8dW3WLhtV214I7xNdt7/7XcFst5mYDeDv//K6NcG95YQQat9Hd2FL
Basti109J4fnDGe5d3nvS6A0K77d/K6VrJPd9E4z8oXwUWIwUcaU1w3pitF5
O8rYz50Fv0p6VbCCaJeXavx1ej2ISuk2uIrVfx8r7e8jYKfHhNVLuH7/duXq
Dvz9Nl/Ri1Hg79eqvkDPnOuXSxvb9eN6QItKv4H8ezJrsNeELvz8Ai3LoPX8
/GXBqtGt11l7Ss7Gc/x7/mLY6MruspXsZedJK3vwc26Z07efVJ9CsJnmefz+
dRE7tu7LxfPjK8FV59jdUqtsiHknuq0oKGQ/y4Jk679ImI6h8iM/DQF08guB
j4vK2GwH9aRfcyrY+WP7GnPqCiDJsa/P7kMipnk1brbtykqoiHZTap6TDXe0
FBI/JxUy5UP+Dao/JDB5DAsZkJQFY2+f61E1oZBp13jc3sy56U1X4WH9mixY
/7pK95NlIZNLLA3ppFfD7H7NqzStyoJuN5vPBFrw8yRd7ntBvwZGk89U8hmA
PpCf7+3q9iYLCsfoRm9pncOx0c705ZzYtFy3/k1CFgzsN8RfbXIhKxTdUF/A
X/cX6eNJz0EdJORTTj6z0QfWb+4TmRKTBXJGRd+XTClkKy9ut/3J/dX7aDll
+/P6ODC0JGz0e5aedSJqwqkapkP6bdLDUYfl5GNPPsboA0WLsnX1XQvgdP92
819K57ET50ZmmL2SsF76m+x6cB4JGCCXEpOdzzR8ImeP1K9h3Unvpo26HOqQ
9JfPGfQBibRtjxSrIjj0uMDs0LcslmNVEO57S8IGnFxt47BdCMOsvzhc8k5j
5+TvffpozDmR9IGkX0IdZNqhz1HySUEfsD8zcfkhEc9vbt++jkl7x0wCzRzy
HorZ+yGGvduVl4LKHafvD7LfsU+hxUEOD8SskPSa26jXow6O5JNMPrPQB34N
KA21auH+S/ROfj8UyzplvzVi/SVMd4W+SFpJBMM+PrqyfWgca252ebG8VswM
SB9H+mfUYZE2+gSRT0ZWmw9MdjLftpffH2pzne761wbCQR0f7z78Oo/NPTcj
Va8USifUhq5+dRJOm7jKH5eqYVNJH0L6MdRhNvmEks9u9IHrr2oO9RgihB1S
3y2CRsVB0uPOF65yrg8k/RDpcajDSJrbKaS5nSYfnOcZR7oCzfl8Rh2CU3AO
5ynN4fTXwHke8Wycw/lJczhlNM/TiZ5rdJPmcGbR85Gekc8d8tFCH6gin99/
+oAs+ZwgH2N6PtJ5msOZS3M4TjTPM/KveZ5jNM+jQ7o56Sdpnuce+cwin600
z9NdBedw1tEcjhXN87jR3E7uX/M8TqSLSC+heR5N8tlOPuY0z2NLczu3aG5n
EM3zLCH9AOlDaZ5nx8cD56+1zlf4+j8emxoH3ZsO+Pbm5xlC+hDSdVCHQV22
6NZtLobcWaOcH05/C2YVku7h/L6x0/yz4jXu/+WW5loz7j/d5GxN69+BdthX
3Gm0fAlUqa8zTTSIh14+KluWOPPrST69Z6OPCfrASPIx9kWfRegDauQzqC/6
dEcf6LLV11NjVgEMUAl0OWmVC0+qYr6fapCwQ65SlbsPFUJEhL6nf/9sONoU
oJSuUsPOkv6W9IOoQ1/yUf3TB9wnpAxy9M6DxwJVZTatGNLjlZ5n+IjZMdKf
kp6GOlRpmx6p/ZQL107l3pM7xnOQgc3Io6vETCHr7EzZUXngz8TuBVk8X0xo
X91zgpg1Fuw9843fD298Ld4/4UQJCGRvJ1yzEcOryMMpcwzz4FZ+is/FshII
bzemxMZADPNe1ZauBQHkClJejVpfBt8y3sikDK5g0dov/Ufyerdg1MMQa7My
6KA1bOZLXu/UqJ6+wnoKVE/Zu+/zD99dWwRNCbOsDEaXg5vsII2032WgMzig
VGdaEYy8vjLfunc5rHTwcFPWKYf3f9Z9oLoPlZQfFmS35QeYtrYtP7ApVN8r
sb5DCdZ3FkI5pARzCFzBHML0KC+FYl6CMsxLsJDygw/mBwjE/ADulKM+YI6C
YZijwJ1ySAjmEBBjDgFXykW/MBeBMuYito/y22HMb5CF+Y19oXyVgPkKemO+
YpcpB+ZjDgRjzIGskfJnFOZPKMT8CYcpvylifoPemN/gIuXSbphL4SbmUijs
iPlW2rYt30Iw5luQ/TMfwjzMh3/nZKCc/G+OPY05FijHsiuUt/dh3gZtzNvs
LnHBfeQCKEYugJ2UkwdgTgbKyaBFvHAPeQEykBfAmnL+bMz54I85n3UgHglB
HgEV5BH2/RHygibyAqggL7Ba4ppM5Bo4jVzDJhBnGSNnwQ/kLPiHRxKQR4B4
BGYRf2kif4EM8hf8wzXhyDWwB7kGthPfrUa+g7HIdyyM+EsD+QuIv1jFn5wI
T5AT2bo/+Rd2IP9C3z/5Dh4g34ENcbElcjEMRy4GqQbkxL3IiSCHnAg3iFuH
IbfCL+RWlko8roQ8Du1GtPE4u0z8G4b8C/I72viXeRPXz0euB0fkejaHOPoK
cjRsRY5mgdQfuIX9AdiB/QEmJB73RB4HOeRx1kJ9hqaebX0G+IV9BjaT+icn
sX8CJ7F/Aq+I91ch74MX8j6UUF/FFfsqoI19Fdgmxv4MYH8GArA/Azuon5CO
/QT4jf0EEFI/xB37IVDu2dYPYUOof9IN+yf/9pGG/4c+gvSu/5d6HvV/wrH/
A86Kbf0fuDXMMevj/Vx4MWKQky2rYzchtLRXj0h28V7PsrTwLEiTv7Ppwf+v
n3ON9NS/dF912B9hnQ3mXZYfWbDkA5uhuGn29G2HwctTNBMW54HBFW1W/KaO
bR9qISd57Qv2o3QG7u9fCA5xhSuGZNYyKye1vi0rIiD3yZMlyfy6JU+7ffgN
59AUxwmzFDiHXuzgu8GA87fdvv5Wnlw3DskYms45Lir/Wt+XaziHhnau+KVU
zcK+F80zcS9gY2yqtS46C+Bci0bQwjs1zHla3+ApfVPZDBfJHD29XEgznT51
7+86NunF7ajL7/3Zxs69tC2v5YCxvsmTdX0+MH2zNOkUj+swRaNdpfmn9zDk
Uk/5Kv06FjH9okzs2RCwXLtTWvkQzzOb5I30r9ew3UdfVUqsY8DD22fP5Hel
kJEU2GDRXcJyE0cvvzs4Hibt8HA4yL/Pg0wORn/eKmaVoxYf+lH4FtamJkQk
nxBBU2jqa/vVYnbq1bcuZV0SYPL7AEUjrut86LLck+sfs4QjXnRPgB3BwvDA
/SKIqRvbYfYmMZu1pyyuoUMCzMlhRVNPlMJF/0XFxzWqmb1VXWfjcXlQ0dfH
+yS/Dwx51HTlOeffSQduuXXm123ipOWPt6cLwW/F7DWGelXMb3Sopx/naNfe
E380cF076kH3dZyvDT1VxZM5R4/u3jElgN8HvOMGxlfqVrGOWh47NLiP0rQv
P786i0AuJWT9G36elf7qy5Q7JoDJuA6Po/j9YXGa4mClftXstvIZmT1j8uDD
XY1ABV4v7tzsMLuKc/eb6cOl97bOC23XsWzm+udLP14KOHcfufotrIHrK69K
nU/g/6uW5qJso13FvpTfLTj7UMCcVHSkrPn35FvOuapkfs7mV6NE8y8LmF/J
tlmM6x91S+vf8ffrJ21i6H9FwA6MDSjR4eeXNTq2TcjPv3Fo78/W/Ht1Jrmn
XwK/f8rdW3PvHD+PJC4nczD/OV95h8SfXM98X6WUzM8zbp1f/vfWvlB6u95T
+Dm37k16MIL/vPqwtUHjW/tgghERHj9KYPyT9h668pXMXkNqc2s9OB39/tgp
/r3d7KEunTWwisnO0La28RWwU01egqP8nI+llq9Zzr/PS+a/vdTZj38ugWWi
sa1+j/vvOc7Pv0Tv9zEVfv1nhO6rU+c+y80cTaz5++2p13ll4yUB2xN7xOQX
rwvz7ZU8svl5lobk257n/32zg9PjbTxXlMhc7JsvV8mcgnqt2cn1W+pDerfy
gmBDtZsWP6f1mH3ik63/zrR44ZFifh6RnLFrFD+PTv5G7fb8+jR+errGir/u
SqvG3e5cV7BmojP8c9eKjZjUJ0cI70Z0T1Tg+sPZR/Yt4nqaTUSvSP7z32Qu
y2vx96vlfHSRgb+AdfO/11+Vn8dMbnXdWP66i/2jZw/grzvTe1eXHZ9LQOWH
n8PULpVsuIJSxdzW5yLZ36qN5/rywOjIZoVK1mgRFHCA66eCso/ryguh868P
a+b8rmC7NH2UfPk5bIoWjJrO/bS6PD6Xw6/btjtvg2WuC5j0QKcNxvz7k+mR
sesQ/57rFu1Srmr9Pty4+yOW6532Vma85dczMfFhTL9rAraxnVRw679nfQ5s
1G99/tW+dO/twfx9Odl7b5Dh3wfD+XcLuvPredFX/mrr/HRkPcyz53qZfN2p
1r7c9Yb9/RS57jV0N1xqfR5I4Lk5Efz7M0jLfJYTv77HUodeMlcRwNR5mSqS
eWVsyPXNwUcXVbCq9W4W7vz/37dqv+pmfv52WvvVrPl5pld9smydD3faVmR7
h5/H2dc95Bf/PkjLDTtkxv0frF8gUOSv6znlwHqj1ufKGU8/PZ9fZ58OKyP9
+Dl7ZBnuTmr9Hh69+nBlUQEYXC5b2sNZxC4G9LL9al8JPvKGZw+OyQatafv9
rb0KWXHk28yfCjXs2NPRT1d/LASFEXB7kkUZk8k6fmrbkgpm1KGDisGLArjt
ty93v6uIfT3ukvNrUyXYjtx77d6wbLhscmKRuVshs7i1eUVPpRrI3in0PBmd
C3ZhX68EWRUwf/H+W90KJex0YNe0s81ZMHzEMunDXQqZ3h6jATKcc6+QPoF0
bdRBRD4byOcm+sDcDiMbImMLQeAp3XFSZTaTGTXiR02JhC0hXUj675FtOlx5
4TzuTlMxXIvyCZL0zmRfNoxP+35IwpTPRViphAuh6oFDVZZ5Mstrd62qwFrC
lpHe8yHqd1GHfgx9HpDPO/SBVVtDXvqri+CnwZXPb2IS2RG9JSrHL4qZ5rdB
EQM1RJCxtb7LpNeJ7E3BhI8aXmJmSfrwbahfQR2WkI/GCPQ5jj5gOjJtTC6v
I2Wfexo3yyawYfnBEcYOYlZUEGczmecrE//xfd7IJ7AgjdHDc7aIWR7pmqSH
og4W5JNOPvroAy0LFr2wnyOCgSLnEEWFt6zjr/ezD90UszC3TnZK+0SQNs7q
xmKpBHbjkVrv+9z/CemJpN9CHTqaoo8W+bRDH1i28lfLF59SeKaesO6D6UX2
+Vu5y+IwCfMqlPt89VcplDh3nb5T7z7bVqmenbJBws6QLiF9F+qwhnyuk08d
+kBys5fbxBWcR6R/yP5OeQWz1ngYjVSrYbc2qgwMuiQEgyNl69sLGaRBSMwD
pRrmRfpQ0nNRhzzy6UI+09AHztCcTwHN+RyleaHzNBd046/nDh0n3Yf0YTQv
5EU+H8nnEM0LWf71fKHJNC+0iPRpfz6PCAbSXNAbmguqonmhf+aInpIuoHkh
HZrz2UZzPhtoXmgjPXeonuZ8ttK8kEd7nPO5TnM+u2leaAj51JHPKpoX8iQf
p03oY0PzQhfIR+MZ+jjQvFB/mvM5Q3M+32heKJ/mgrpo41yQBs0LVZOuQboy
zQuNJB838vlI80K9msNqn/Kfv914zG4Zv86vYl/IreU+adbzzLz5eX4+/zrY
mX8ubh/UVHvy91tIejXpLqhDSxP6BJFPBvqA9bx30lr8/Y6e+FjSxD8XlUuj
fF63/v0a6UC6IupQlJb1TLKyGNacXGzSJzwNDtsv2qQsX8PKST9C+gHUodf0
lOe/PfNgb5Vp9Km1xfDBpVCq9d85DVZ2q6yyL4SlWmZRRvV5cGsiM35rJmHj
MtWu2YXlw9SR+5o62hZB6FdptSFXxezGzJVOihfzYIhf04fX9sVwwyR/T8fz
YvgPH8heJmOvHJ0P65JOph3dXgTXig4pqvP7ksKqV+qjuwsg9/311eWmZTBp
hWuzkWkFe2LDtG2aC8FZrxdLsyiDtwEjYm6bVbB6qkfLsR7BNKxHTD85IEx/
YhGomn/+oNuzHDpuDOnkOKQc3K736N+7TxGcv/ls6qC+5TCxYJXXI4NyKKP6
uAnrIwDWx7/rLOhhnWXtqD4GYH0Eb6yPLIbqdSnWa/DBes1W/JkfYCfmB5hN
9dcR6y8cw/oLUpQr0jFXgD7mCrhH+WQK5hPoifmE7aT8YI75AVwwP7B0yjlL
MedAHuYcdo7yWA3mMZDCPAZ2lE9+Yz6BlZhP4CfltM2Y0yBjaVtOgx2Uc5Qw
5wDlHLhGuav5e1vuAn3MXewB5cNczIewEvMh60P5bTbmN1iB+Y19o5xZhjkT
tmPOZMf/zL2giLkXsikffsR8CCMwH4In5eEgzMOwAPMw6FLOTMGcCZcxZ8JX
ytuTMW/DCszbbDvlYTPMw7AE8zCLo9zuiLkdtDC3s73EES3IEZCPHAHTKG+v
x7wNXwe35W34hy9+Il/AHuQLWEWcooqcAp+RU2DSn3keFmGeh5vEFznIFzAa
+YL1Iw6SutzGQXACOYjtIk5RRk6BeuQUlkU89Qh5CrKRp5iYuE8XuQ+mIffB
QeIgaeQg2IYcBJOIB68jD0Iw8iAYEVdeRq4E4kpmTHxniXwHd5HvmCPx6Uvk
U5iMfMq6/cmJYI2cyDoQ55oi50Ioci4roj7AG+wDQBL2AWAscehl5FAgDoUL
1B+wxf4AmGF/ANyIZ7WQZ2EG8iyMJe7WeNrG3WCE3M0MidO1kNOhAjmdPaZ+
xTLsV0Ae9ivYJeL9ZOR9KETeZ1XU99DEvgckYd+DbaG+wW7sG8B97Buw39Q/
mYn9Eyjr2tY/YQuo/6CL/Qf4hP0H1kJ9mBfYh/m3z+NCfQwj7GPAYOxjMKn7
/+eft6R+SBL2Q2AG9kNAdjj2he5hXwgGTmvrC8FM6qt4YF8FDmJfBaKpD5OO
fRiIwT4MjBzaY/dRxvOSYojb75mca2JiZ27dwjm356lX2bFC8Ftf97ML10/M
H9R/E9dP1W9X26nJuXDUmAv3bMVs1qiVUQcKc1iP6gBftTtFoCH7zqj3oFoW
tzt/2FfFKJY37bWfpkIxTJmq+CZevZatN1jsMuNqOCgsqdx9ulYI3g9c9mXw
fKnvHqG+IPA1VE0eUb2J59JroxWfVdwXM9GEHtKGU97A7PurbnnOE0E9TO/g
f1fMfil+KPPj+tGbgyuf8O/zmMjlwW6bxGx2Q8uJWbIJMGtkhbH7ARFssrjl
VLVRzHInWb104/q666Vlk06K4K2fUq3GajF7d+27aHGXBHjmt2fB/da/M622
+SjmvBnu9eDAdM6nF/KW3VyWJ4QeLqX7Vg2oYh7b1i667ydgW6zvOF7KFcKF
TyO/7+O6ARu3TztAwCa3azZs/burkF2Zw0M4D/68uimlgfOgl3y1Q8IFEVi/
avLIXCpmdV4joi4rJYBvv927OvDfu4Tqxot3N4uZ7dA5mSfbJ0D49gi9J5wL
2n8qOhbOc/zppXLiAfz8+QE3hbZcr/O8fUSTc0X+4Vd3G6QSIEzhlf0S/nux
YpRuv3tcX7k43DuF//x5Ld1PW3eJQDvInL3cKmYeR2Xrq7m+eM/UzbMPl4L7
ivIXtQOqmV1tjHv1mDxQOfx7bWuf+bZFaNF1nSpmeu7Rw2P8/f58VJgZwN/X
BKOObl5cN1QoK+/kK2D7T6TMGMv1AYUXC9U4F3v0EM7W4dftBj3nv4j2u02j
/W4W95w3vTpSCjuPCBK789d9eG/YpZbReTAp4nnW+NbnKvcuy0/gPG7+PGvr
c+675MClHbpcv/jYOyZKppK107kjpcfrTV6fFMOB/L66XqfHo9a/s9s5Id6t
D/95ky2hT7fx+6qexmCvb/w8LwqmbjrAr/+AlPMR3lzfqveqayj/fMMeLrv7
ivN7e5ual15cXzJHc8lJrptsHFBk6iNgcTMTp3bjfqkXH6xQ4p+j/yzF3hmt
z1Pa92PST16/1F/rNlZzrl/WXmHoHn69tpR1Gv+Cn/Om9tQjrX9/57j25cyu
XHc1GXH8XOscslngCi9+zl52RyC8tZ9j9H2MO78f/p4U/3UDv54LtQvGu9wU
sEfhX9cm8u9hWFGhWuv1dBrpoCDg1+1VVELFNq5/WJl+dgTX3zzfONzSX8Au
9R6b3doPu3x8/pteXD/Qbv/+q9xn+4eE5a18Ee7e9XI7fp4LH/IcNPj7ySy/
dS6Fn+dUbm//Uq6PHzA7IYH7imV2WqhzXlDb8dOor1wl+7p1+ePhreeI/Slj
X18C33f4b53dpZLVCqw3vkgTwqTuDkH3+XUb5ly/XEePf77rrBv6XxUwtyvr
3w7jn0/vwJI76vxzn3I75qr9bQELjeq69ip/vwvehDYM5fozx8ebTt8RsOop
qvU1/PwHHHp22MOv87HEvseL+PlDjuvczeLXeXMv//pGfs6Fc0R6e/nP1Tam
SAp+l4CGzY6BXfg5R+VUr8rkes+lWWMqeS56JH2g31Ou2+z/nVrB9b4eo/q9
aP0cf8rotz7X/e4MhcTy1ufzuw++Zsf1amel7UFcH1ucekWJ65Oed+4/lesz
4o+qnuN6ss1Gg9a5rNTOsoE9+fmLRpmfLOTnP3zfWeUcf19z9bLyM/g5DZ93
6Bze+vyrVdt+pbb+femNyKcVq4XQlPBo7rt1Feztm/jMsdNKQXNIXXmv1n1J
o42aPklVsrrQGNu0AiEM1x140nBWPkwfb6cX+6aAPSh8os7WS5ii75wrC8x5
HnmnHWXnV8ZSo6N/96srZ5X+MkvHtT5f3EVp2Rn+uV8daW0rzc95utiPHe5V
CmqLKw2+aVUw59prUsWlPNc+i1fQCxKAUtbAZrVzIvZ5m9a4kNcVMHyJ/PeF
w/Jh4cf4rUoXC9j677O+vdongaMbwq58m5sPFxrlKoOm5LHPC3KfPpxYw1Z/
HRKgsKoIvk472iMnO5MNWCTZuyZLwrJdd9darSmClpSPZ0pSM1mj4bWvyVn/
43OWfL6gDyh8uDWveIIQZo95GfSkbzo7MX5UxyerJCwyfVREfp9S2Dagu8Ld
X4mserroXYdpEnbd3K+ps0YpnL/87OJOuXdM/tKQjopTJdCZfGaSz0n0geFq
Dcs/Wojgbnr79kdCEtjA7hsP1hwQs1XK055sXSKCDtp5OV/DE9hTR78s1/3/
oyv8qcNo8kkkH030gSXUnzn3H30eLernPKY+TyXpeqTfpT7PYvJJ/KvPc273
jCBR6/3/x3pj+1b/vZfmn+U+z6mfI6F+jjf1ed6SXki6J/V5vMnn+3f0GYw+
oM4ML3q5iEC+T+Tye9IJzK9rF+WC9WLmqDxTeQPXexyV1Vkik8CqhqY4CLke
SLoF6ZGogxn5jCOfPegDPuVdLU4ri2DexL6XqmLC2NmNW36OMJSwPavqrv3i
dVnqXJcTT9snsIOZLw8d4vX5NulmpFuhDrfIZx/5nEIfUIqVyxiWLIRPUiMW
TZ7zDGZ6h0wIUa5hU0kvI30w6hBMz/MR0fzPKXou0BV6no8CPRdoLc0RfeuB
8z8Cmv95Qs8FukI+leRzjp4LVE4+NTRHZEpzRPXkIyGfp/RcoASa/1lF8z/r
aI5oFs0LraV5IReaIzIl/TTpzjRHlEw+S8nHjuaIauh5PqY0/2NHc0SnaV4o
meaFCmiO6CrpGaTn0BzRIJojWvzXHJEdzQsdp3mhwTRH5Ej6TdIH0hzRBJoX
mkPzQv1ojmgG6Tak96U5oma3XzcmcX7cM8IjcBR/3aZtIyf/5j9vQPM/12n+
Zz7NEeUEr//Yjdc7M/cnRxJb+2wtZ7PPt/6d7zH0WU8+39AHRpDPtT99IJt8
FvzpA4ImQ9kx3GfqzIjeE5PjoHsnyy1V/DyyEUENZ5SFEDOo+/ZqtXiYKWP8
5eGgGvag2612lkq8XuWf7VPVLR6szaRcVunVQAP5GJNPJ/SBLn7al4fOK4Gf
+eFHnn9Nhk0Lh2XafJWwxpdVuvprSuCqTfOn8uIU2PSgXj+2WMJUpjw5YbKq
BIpNv1zSqUmBFpPyyG3FEuhDPirv0ccOfUB26vMrbuMLISBQ4cSZmQVwwsvc
rCiN/949Xu5Zt7AQTES/fN45FYDaBZ+vZ6PF8EBPybtfXBHIvVTWOTu/DB7e
Elx9H1XO7Kl+qWL9gh5P2+oXC6K6U2XRVnfgMtYdJn0T62Ac1kEowzrIhlJd
ZliX4SHWZfhIdS0F6xqcxboGtVSvBVivYTjWa1gs/DyuHa87KmPPRr5ZUg7z
1p/ceVVQ9m8eCMM8AJaYB9hyqteA9RruYr1mvylXDMRcAQMwV7ADlGe0MM/A
ZMwzkEJ5oADzAHhgHoAQyjnLMOeAF+YcGEV5aSTmJTDGvATTKW+MxbwBxZg3
4CvlrjrMXSDE3MXuUC7ahbkIjDEXsc+U3wZjfoN8zG/sn5wpP7ktZ8IIzJkg
pNx1HHMX7MbcBVGUPyMxf4Ip5k+optx4EXMjqGJuZEcp3/7AfAuqmG/ZQcqf
dzF/wlXMn2wb5WRvzMnghDmZmVNuH4C5HeIxt8MNyrdnMN+CG+ZbUKc874h5
HhIxz8N7ysl1mJPBC3My5BMvbERegK3IC6wv5XlNzPNghXmeWRJ3XEHugB8D
27iDKRMf3UE+AuIjiCdeSEdeAB/kBfhO3DQOuQnmIzdBywrkjuXIHTAXuQMm
EwcBchAsRg5iK4jXDiOvwUbkNWZNPOWIPAVhyFPsMnFfP+Q+OIzc9y/PqiLP
whHkWfAhXhMhr8FQ2su2mTj3HHIujEfOhQjiZV/kZQhGXoY9xINDkAdhP/Ig
PCc+tUI+hY3Ip2wy8XgN8jg4I4+zQuLcWuRciEPOZSbE9XbI9ZCNXM9CiZfl
kZdhH/IyO0D9gQnYHwAL7A+wS8TdacjdsAm5m42gPoP0tLY+A8h3beszMGfi
9y3I7/AN+Z3lUb8iEPsV8A37FWwY9VUE2FcBaeyrwD/9gSfYH4Af2B+ASdRv
8cd+CxzCfgt0pj7JVeyTgAH2SVjBn30VOIJ9Fdbtzz4M3MU+DBynvs1s7NvA
DOzbwEZN8dZ750uh4XSvH1/zq5jKa73zZaPz2ZQzw6R7sTJIOhDpPzC7ms0+
nTHBMTGWmRlZtO+RUQb7s+p3OhZWsyHSTpobFsRA38ALHc4/EkHAwzuOhqZi
djTH5cnnDW9hioy7az/+PRl2L9M1kXPijIwrViGcu/v7lxVf1BfBq6jCvk9e
VjKHy49mtD9ewJrKIp/WfymDG9flxk1+XckUDCrS+JVhsr9kri/aXwX1dgrr
TE9XMJlf71uevwlnn3K1DzbsqgLlMvewbbcr2Nw7C6zbfQ6BRrOItU2dKsBj
aHjQi+dVzK528lY59ZcQ9+Do2tIRZbBe2PPKflkxi/1oeiX1XTxcX6Mc0p1/
H04nTus+b7OYydxf0XdO5wTonBBinHFQBH07NpzS4fq2FbqwueQtKC+0ut2f
/37NHOZq23ebmLUsm7fxarsEGCCulZXmOTx6qdPFqzyXi4788hnJ9cFxMcUr
uD7O9cpRO65ve3vmwFTpBOhCz72/QPvmFtC+uSf0fPt82jfnRvvm1Oi54oa0
b86M9s1lqt/p9uptKfT37zxK7UclK3+3QGyUXsAmp6T2UuK/L56RqidbOcHK
4daJqYVvganUHBjAf18qYgzXSnNuUVb29Wj9e7cHS931vFvnABv3JtTznz9/
eYFkNz+nxvO7jyrdSyE/skDheL9q5t8S/abzqDzQXh36Mbv1309Hrq0byLnb
/Lz9j2X8vjZ8uvnGKq5vTwh73Um2ki3q/FxDgdchT9o7UEb72gbTvraxtF8g
iPa1HaV9bTWO+Dx/c9rXJqB9beq0F8CL9rXZ0L42lzlSsTm8jr/qffmSgPN4
h/uz1ynz66gz4t6ezzxnDg4wt22dD9nfa+LiSVw3i3j5/AfPY2+/ThvTVb6S
DY2Vk2mdBz1F+xeqaV+bnAXua7Om/Q53aF/bp0u4r82A9jiIaV+bTzDuaxtM
+xR20b62/bSvLdYwpsGfn3Nr2slIW36exONug5z56/5IFUr2t86rDCsdXcCv
W03g16bV/L/P0p2t9Izrk9WN9VxkKlmI49U1H/n1VNNtrFPhdd/fpbLXGf5+
0yKZST2/jnG0R8Od9rgl0h436RLclzGP9rjtoj1uW2mvxCDa42ZEe9zyJ+Le
CjPa4xYShnvcZmz55jqDn6fKNXlka79ohuRF5Gd+vSLqz1er1gthxsqzsqN1
KtjmqVPm6bUvhdnTvCyv8Pr72Et6wBX+vpYZPzl/t3VebW+k283W50oNsVxi
yF/3vG7g7Un8c4zv6NclZ2IpGA/ePXXf/UrmWfa2Ydy4IiZHez160r62PNrX
9pL2g7jTvrZTtK/tjvvhugHiUhj9OX/m5YByprj/6G+j20Lo9jTM5I1vGYyO
tgtcq1HG5tR4h809JoT5PUzHDVwvhHWV/TvMdahg+6afv//JoBQuVNl2C7lR
CpZryiscC4tZs/XEtIWpFexWqeThBrcK0FAIluwr4TlmwHsbtRtCdsPr+cmh
L0uhYLCN1OJHleyO18PkncWF7IiXltcBfp6FlW9Dk8wrWZ/hVoMdfARMktvy
7JNfBSzYMf/AFJ6b881y5N7sEkJhv1lXr+RVQuDt5tO95IRs54ElI94s5vn7
S23UxR/V4NBYoLxszXvWuzI57GxVMXRv51j21kkEdVs0S8bcK2JWKidXzuHn
qzpTPe7cwQowlPZTndUvk4V4rt+fXlXBVKJKs2ePFMOyw5Y2j+dmsuaYpE27
95Uyr4fd73QOlkD5xLMP79dkMqeE1Tcd84sgN0M7NnFdJaz8Wf0t0zeTzUmV
sQosKocAxVvnW7qUwYcurlv2RSSwdeV6gy0bqtmdi0+O3hdWwr7olA67SlPY
b689/YerVrAmB6n7SWlVkGKV+euyRhqru3xVd524DPSv38sYoVsGBud6PAzI
S2DnJeUflEuqYRX1Sa5Rn0SH+i3TLW07+cWJYJFGsl9j3wRmv+JVZNcxYjYx
VG/qswwRNKqLvc5o8twQ+G7ZaH0xrCOfMPLpR/2WE9Qnkad+y2jqt5i+Cp6w
56YIjKRtGs9PSmANmbZLkxeI2RXTr5Vr7oigk5tFhyVGCSxy3qF+GsZiuEA+
nchnCPVbTKlPokx9kgPUb7nVs2VyxikRTJtXeEk0NoHN62+59OAKMRvpLjYr
8xCBrDGkbZqewGLC7dyXLvuffos0+ThTv6Va1k9UtVsEin5qkSvaJbACuyGj
NBzF7B71VZSpr7KU+i3/6N3/1EFCPtrkk4c+EN74YLRqJxFsPzGlo09MDDMZ
u/HkDz0Jczj+aqyDlAh+XNB51qvqFdv2btv5ankJcyJdygv1zahDDPncJZ9Z
6AO9lQybphUK4Z7yBu8Yr2AYmO36ULl/DWsI3/VzWLMQSqyljpeduQqfW2Tu
2/etYc2kTyP9I+pgSj4ryKc9+kDjsU5NZj14nXVcNFfaIw4yNIPM+hjUsF+k
XyM9BXUYTfM5z2g+p+SvuZ1q0t/T3I4azduk07zNZprb2UvzNmto3mYdze0c
pnmbTzS3s4/mdtTJJ4l8NtLczj8+6/70AVfyqf/TB3rTvM1mmrf5RXM7DS4d
/KKUeZ0yMrhV1yseUjo+SHcbVMMSNDS3nlYSgpxtS7pRt3hYP7Dl6Ry9GhhI
Pjv/nP+BBpq3YTRvk0dzO46R49dOmCKE536fM+sH81x1PFbmWtcapvsh12XK
WCEMHDs0flq/eJhh2D7BULkGfpDPu7/mdpyGPojvvVsIwYuee+/6EQd2g3t6
p3+QsITCwtr2G4UwPW38sc5NcVDcfq98Y6MEfjbNurusRggZvaWC1WvjIXbG
kDrDqxJmKjdo0wVel27s+LS1Z3I8jPJ+OWzyQwmIROnPGoMrYPtDl6P9XDIg
/pD/3sD8CuZiqmo6/EslNLWMcX/fMRVGeH9S3tJSzs7T/bAe74ewB++HrK6o
bldVdDkMi07aNKkpHU7Fl8Vfz+d8uVk1WrOpAp66fm/Ii0mGsIRdZSO1KqEX
3W8t8X4LX/F+Cy+sVVJ+899r68L2ku/+RXBw3KTDCw5WsN50n9+G93nohvd5
5k91RwvrDphg3YH99v2frb5XCp+EE3865BVD+vvdQ5XfVkA+1ZFgrCPggHWE
uVO9m4f1DtZhvWPKeViPxmA9gkisR2wu1U0lrJswGOsmu0V1vD/WcQjEOg6H
qN6ZYr2DgVjv4J/6Pg3rOwRjfYcrVDfLsW6CF9ZNMP0zP4A55gf2hOr7IKzv
0BXrO8/PmEMmYg4BZ8wh7J/9thdov1gI7ReLp/xwnPaLudB+sd/Ff+QlOEj7
xTpQDlGh/WK5tF9Mm/JYFOYxCMA8xsZRXqrHvATTMC+xcsp1yzDXwR7MdcyG
cqYf7RH7iDkTUimPraA9Yrcxj8FIyp9ltEfsPuZPuEo59gPtEUulPWL2lPcM
aI8Y0B4xlTTMnx8wf0Ic5k+2iHJyHOZkGIE5maVSjrXDHAvpmGPZSMrbepi3
YTfmbXaC8n8F7R0bTnvHxlBO3kB7x9xp79gk4oKntHfMlvaOGRBfOCJfwGLk
C3boz/wPlP/ZP5xyGTkFrJFT2D/8dfGvvWP9/9o7tor2joURlxXQ3rHdtHes
jjjFmvaOxdPesX+4KQ+5CXyRm5g+8eAY5EHYizzIAom/IpC/4DjyF9MmroxE
roR85EoWTRxXhRwHXZHj2EDi03HIp9B+eRufsnnEg27Ig7AReZANIc6VQc6F
h8i5zIT4XQP5HSyR36GceFMReRO+I2/CSOL6J8j1sA+5HlSJW2fSPqwFtA/r
AXG3K3I39EPuZq+J0zcip8NL5HSm/mefAfZhn4E1E++fRN4HG+R9toD6FYew
XwGa2K9gH6hvoIp9A9DFvgGbQH2PNOx7wGTse8Bf/QdQwv7Dv/2Tr9g/ge7Y
P4Gf1Me4hn0M6IR9DJj7aG1T7xOV0Hg40qDlagXLTpfdGtUrmR3TsnikyPPd
oIyUbgtdy5j8xXvBXheuMM3sB4ecLorBYY/JlHnjytiJw7mHLI95QPDatMin
xtVgp3Spg3ZcORuycq25QOkB6Jx1akm5UwF7XrorZM2pYjk18+UnlkdD1w25
sd1nlMEjU4F91a9qNr9Jc6eSTTzsoOeKR9A+slLaRzZd9+gN25hSGFef59pe
uYo9nfJLSnCxgJVaBz+0CymDt4tjH916U8mqVn9JCXqYw3xs5Kzbz6iGeZ3e
GC4+W86itYfl9XoYzUaY7H6XViqGg1d/DNiYIfr379GGke76l15a4Vc6Loh/
rmuzJ9qqlTFFi1Hh06cfhjcFA3vOul0NYUVaj2NWlTPTuE5uUgf9YNui3f3X
OVeCynjt7lqelez9mrV9Bt6IgL7OEzu2Sy+DyfxiqFysZh+kr396+D4Ohq6p
K1R7XQZfjWVuVVyoZo/Zu455j/h1OK3suolz03c1G9MdW8Usz6yTuOvvt3Av
+JCcFc/DnVpEza48T/dp6tL0sF0CON69PF72WCnPGWkOJ7Sq2R7DCQ1nRudB
BD1PfjHtEbtEe8R2LcLnxpvRHrHFT3GPWIe7+Dz2+bRHTDUB94hNmRiucj66
FCaZdHBx5dd/yfLtd5dfKmBaBc3HBWPLwbWlbuFy62rmXV84ZELFK0iatmXr
iS8i2P9Ff8OXiWLWpUG9wdsoHkSj3hjf4Pefm3of3Ro0q5mqlGIXk7F54CJt
khPV2s/v+8uzpF0ly15S7pSYLYTVE7Lq7nBdfsdy/akylawwveX66tbnLdPz
/ENov5jpX/vFMmm/WH/aL3aPnp+/ivaLpdN+sdTA2L1BnYVQejLwW7vGCub1
MkS6L69bW3Ye9FnF9ZWWe0UGPypY5xeG8rf5672fIH849HEp9DiQbKUwtoLd
D0y+Vz+I50jmXOzIz3l/bNG2VH5O7cuPp7/nr3fzr71jLZq4d0yD9iN0fop7
x579tXfsNu0dM6a9Y4NpTwGjvWMfO+PeMeeRx06pvheBV6Lr2oNnyllN3e2m
BatLIHDKykl1u8phze+f4+xsRWzwFqXZVVZCOOMhp1ivXwr93roUbHxdzqxk
zB+vMiyFj3NNgy0nlcKyzsEdq+9Vsqe+I/Yljitic0w62llOEUE3i64Ns+or
2GzXm9symwSsB+1xaKT9Yotov1gh7YPYSfvFHGi/mPyyPf3WD6wCvQvVpsvP
F7FxpkraDzYJYU6qzxTvEDFMf/rZtuZFLgt+mvd6zq1iODL5suWX1VWwZdfN
GVU+RexMUmrvgd2E8Nup28HznN+fBXu/844pYRN2ihQ2nSphMhPudxuvXAXf
mIWCOKyYPevjLj2muYRF/jK8ZJVcBduzSm50vFLIIs+E3xNbCdnKg/e395pR
DqsSd1yMeVbGBuux24KfRUy3/5ojDkkS2HElZvWmd5ms4/LKzPtHiuCa/vOS
xncSUO/dMvoV14/PXP9loFsR5DZVzey7VwL7PJpWyQ7IYaXblz2PVSmCeRH6
M2fVSeDcIy8prfbZrOZd+WepkQJwlZuvfDFRDH4ebw/YtMtgiTnWFw5+EDLb
TkLbDfz+M95y6bvC7HS2pLFJ1jFHyC44wuz1QjH0kRStXJKTznTD1C4U5grZ
kS4z52Rw7jmY67Tr9pMMFuEyWjw3QADmiWPt13H988jemlahGUzT8ljQ9tsC
EBwpnWvL+cx+lPmPEyEZzF73hEvrntx7Se9XmkpXwbjEhgt3w1KY1OqNiju+
lbPvE2acKioTg8pcyalVmelsx4cdHq1/Py7XXDbNslwM9pOer0zgenlB2pTt
PLecfL/j3U/+uvLeZnCcn6f9AtHlZzzX3dCcOMi29bnXBY2v/R5nsBWv56S2
/rtYvKtF8KaJNZAXoLm8f3AGq460uLGS56jFFxPrnL9UQZDj2l03qlPZr57p
5WH8/jjCeq3zrjRev2dcVpJbmsL0rdx3h42pYPWRcz9EicSgWJBUdiornSnu
MrOO5PnqbND7HTu4vsfa56oBP+fBxO++LjyPlZ36/AKm1sCAaV0OeN3OYH4P
/Kd39xSA9LODT5OjquD5mQPtavalMjmLA9Pru5VDeu7Iu8lTakD3rY7JB/7z
g6YapHieE0DshYRxPx9zftK0Hyo+lMJk7GdP/2xWwRYemvmmpUIM4WrNV+Qy
0tnMtPwaizQhO0afF6PP6zh9XqEbNN6FXKgCT3sNhw3PUtmODrtl5k4shwV2
bqVjWkRw82eJ2rK7CWzhoDeBV6TEzMB9lN76gkqQlR/qW5KTwqy61c/8pVHB
unQu/jQrvgocfXeaL1FJYzk2AfMKGsvg1KeyiEu9y+ColaV29JsEpm7lvzFT
XA3G3ZW2reV1ZO/HI8dHySawqvduktW8nvxqvtLD5qUIRAsmKz7ulcAO9Woa
z8aJWVN4UrNqqgi2T7g9xFszgY1cVRNePVQMi8jHmXxE6ANRm4Yzg1EieO4x
Z0PRxTfswmqdPdphYnZHfW2E2EcEk5f23vNkfAK72udn5vuFYpb47svUDv4i
SDQakqY0I4Ht2mw3NHGeGOLJ5xn5nEYfeGzS1/3gqlKwyu/YdbysK6t12bTj
SrGEWRbfknVpKQUdzSEWlkcDmHfyio6uWyRs9mrD96+l+evWB0Xcvh3AEk7t
7y7YJIEI8nlMPpXoAyURp28aGQhBLvxJTO8Pr2Hh1deDF+nUMKtnGx4KvIRg
obTy+6uMl9BRf/vPn1I1TDTnpvLL80KYsu93w+h3L2G2UKbscrsaqCGfDuRj
jD6gpPLnPMxSmodR23pO02uCEE57muqk6cSDoV3Tp/ruNSxGNPeZ7SghhCVP
db7QNx6ePJhW1qtnDfQjnzXkY0HzMPXOqtkHt/Oc/LCLzbhfceC7fevhU/US
ZvZ45N3ndkK45jPz5e+vcRDbYUP6w2YJpJ/uYbWE170Rb5MTwgrjYUL9/qn+
Afzn1c4ctY0Vgu2xF8smRsfDYK0e598/k0CP7YoWM/wq4VHC84ENR1NgjXt9
xIA1FSxm/eOv+lWV4Lz7mmR4u1QYn7Tw8ZguvK7S998Xv/+wFr//bClr/3B/
aAV0FIc1BU5JBgtN86anDpVwXjrd8fGnClDd6+8ZHJoMxhDrv3ZwJSyi369Q
/P2CGfj7BY/GvtnaPpfz+Vzzq7ZTU2D4dHFyvUEFy6Tf34H4+wva+PvLztD9
wQnvD3AI7w8g5VT+JLmoArTWXOr2rHMyvPgpDNxgXAmhgg2VfTnfrk69mbQg
KQVkE+yc12eWs+t0f8vD+xvY4v3t3/uMOt5nwB/vMyzuz/sefMD7Hmum+60a
3m9hJ95v4Z/7W0e8v0FXvL+BPN2H1+N9GErxPgwrB4ntXAdUgpVY/KXoeDK0
zLl0q+/3Ciih+78d3v9hBd7/2WqqF4qj2uoF5C5pqxfsIt3Px+D9HKLnt93P
2Xn6HAP/+hzPU53qi3UKBmGdgiNU73yx3sFbrHewgOqjF9ZHKMH6yAqonh7B
egqpWE+ZO9XfmVh/4RnWX/ZjPNb9r1j3IRXrPthQPR2E9RRssZ5CCOWBrZgH
IBnzAEjvxlwRjbkCBmGuAHfKISswh8BZzCFMgXKCH+YEmI85gU2hPDMV8wzk
YJ5hdZSvLDFfwRvMV7CEcshazCEwGnMIrKTc1WzelrvAHHMXnKT81hvzG6zB
/MbaUb7qg/kKZmK+YgGUAzdjDgQtzIHMh3LpR9rn9QtzKQgov22nfV67aJ/X
P3m1K+ZVuE/7vIZSDiymfV62tM9rGOXht5iHoelSWx5m9pRX72FehXLMqyya
cnV/zNXwDHM12//nHmFYQHu7+lIeTqa9XWWYh0GX8n8e7e3qQHu7LlCuDqK9
XTNpb5c95fzlmPNBBXM+sybu6IjcAcXIHSyNeCEfeQFuIC+wXcQvXsgvIER+
YXF/7fM6Rvu8wohHLGmfF/EI7Ccum0X7vOyQy2AL8d0r5DvYhnzHBMRTAchT
0BN5igUQJ3ZDToTv39o4kSUQlx1CLvv/2HvzsBzDbm1cA0lmGSuiyJg5JBZl
JjIkU+YhsyhDhswyJ1PGikiJypxiiUqluZTmp3l4CpGZ+q5aq97Xs4+Ovd9v
7318+/j9tj/XcR33fa11rmut81zPpRs+f67SZWjNevMX6U0IJL2JXVjf7SR9
B3ak73Ag69aPpFvhBulWlNHvkM3fBRvC+nEE6UeYRPoRhrGuH0y6Hp6Qrgdl
1qFTSIeCCulQ6Mg6ejDpaCgnHY3teJ7gSvMEWEXzBNzCerwx6XGoID2OHXgu
sYvmEhBPcwkMYV3vQ7oeJpKux9s831hJ8w3Qp/kGyswHoAHNB7Ajz0lW05wE
7GhOgj15znCA5gw1/6/qMM9bOtO8BdRp3gK1rZ/Ec5symttAHM1t4CzPPUxp
7gHuNPeAVJ6ThNOcBDJpTgLa85tfbfE5F3pM6pu3o2Ue2l79qJtmF4FqXzrm
2Q8thLUWsSVuN7Jxb/6u3POjrqG6X4bGKNF31Dct36Ec+Y85SVu2d5Cxt2R7
l/+gvcXVgg1RwwphkPzEhptvZqObzchOLbZfgr6nO6yPzsiD09l+Jf6d8rBD
2/Zt/Y2eglUc/T1zZfp75ug0m77DNWHJ5OjNTzOh42718UGt8lHq4XxN40wy
trZSaaV3Ng+6qmxeYGebi05S73jFiHAceXBXS/PrBbDvodul3V1z0PjUzCm7
Gz/FZk7n1c+/KgRHh+uxxj+z0GZNry6HzW3xQdhgOx+BS/tTbwJO/9O8KILt
v+z/theyPV7GXsT2OBl7VPuHny7EFELu5bAb+/Kz8G5GwC3npA2w/OPHkJcC
F9Psk50+iPg8XrtpRcYRZ7g+yER6yjofQmYvsz3inYvdTN5+sHrqCeYLZ609
WpQD9y+/6Xe4KB89HiUue77rOczqGuZe8jMH8rwWa7/emI+rzW902jL9NaTu
sG9bKOrJvM66I+90KMCTSgozHPQSwYn/Tv5I/l7YFf5eWCL/PXxt/l5YGH8v
TM0o+86CP5lwcdvmK7oRebjy8YfT5WnJOPTmjIkTt+TAy86xptuH5+GnFrtj
jOXf4qzTdi0SH+aCmutdLTWlXLzba8PT33XfQticwYOsQ3PgxM55hnvqZ2Nf
xXvGwZPTYWjfL+cs3udB6x8tr+SPSMeIRsmPzVZKYMfBfqpBWtnwUPqu7/Te
2ej0Z3rqRcVM2MPfKdjA3xHryd8Rc+PvEXTl74i14u+IHeK/5z+bvyMm4e+I
5fN3AQL4O2IV/B2xUzfvOxyQFsIw1XyFe+Pi8de5A4d/nc4AvJ9gFZpQAA+K
J+ul9ExC9yPTkkztMmD4gfL+6fYFMLxho/MqL1NxJXa1fDZM8IELmfcea2RD
RaC/p7dbDs5qKFVzsk7Hobd+LjaLyQYbx6/3VxZk4xPnDbMeuaXjIP5e2GD+
XlgIfy+sDn9/4TF/L8yTvxdmOcnwwx7BA+9o6iSe9onBAdtGvz0o+uOYvmrz
eqpK4fOd290fTI/FnAEdLca/TIWSjxvvOA2SgtmYhj/qCN2qq/voo5NLKijG
GK/r3VLo4qXnmxhMjcU2liMGNXyRCtFpneuUHCwAucJxRy89TsLW05d3cqkv
wUHRRy779S2EzAsfDm4PeYuNP6ztNXeTBF3a6t++Nj8f3o/r+8zgUhrenTfp
mV9LCaq59MnJEe/NCT15fOKDGPwwtbSerugjJ5+fXGQu9n9RyT17t3cMTtSz
S/QTdq36Jme+i/UDhvW+cO5+DL4wL2s8Xdib/GyQVCz4f9bpq9oFN2Nw4Zq6
rtuF3u8+d2yOgeCr43OTU/e/jcarV9s7N08Ufd8bPzsLvj2ifR3vr3HROLP/
A53Qyr8Dmdo90UzYEzv1y30p7Dapp06OEf19nc2CLz5iP9affyzpJfYTcdr8
3h0RT5XVbz/VEbrA6urSBAVh32rXJv6i4FEZR/3cegr7syFTjAYLe7R29zbx
gkcl/pw/20vwfz/Jjijl2Gh8ZnB9hmus4D+dl/Y7Kd7bXe7PvBEx0VjQ5vav
U5XvlZ+Z6iXst+XOuR+NjkYF04LMY8Juxfh6M746jO891d4JS4X9Y1/puAni
vZLxSvoBIj6ljO9UxrcT47t/3IpHlbrmtsPHHVF3YrAs6Ka/rdi/3n0YWKmb
ZjiohMWKfXZLr7t9lnhv9wQ4nij2P7pXQbPfIj7NVDakF8ZIUGJ1qPysWL/W
p/vYI/HRqCHfQv1h3D/wzWN8PzO+xxjfS4zvLMa3A+M7iPENYXy//CB8G5wh
fG8zvt7jW0e1EvtxmKK3a5TYZ2zEhEW7K+9Xz7E5VibsryWXe7QR+7lu4zDg
kdjn7Len3V2F/Xba3LreYv1nNXn9o7H/wHc74xvO+CrL4LuP8U1mfMMY32TG
90deO4W1X/PAeEeXPw88InD70CG3TBVzce1J1bq7RHzSlnusHyfi9uHj8Y3d
RTz7RE29IRF9YeiB4AItYXez1bzQWfDSzYyvB+OryfjeZXx/ML55jO97xnc0
4zuQ8b25p+LJhqJ8SP54YFC75Ej03XJ1e1PBq2bKpWaseJMHF4PSb+0wi8BU
Bze7fvq52CfYutcysU/pgDNRXUV8rn2PtKv8Dov0+KiofcJuW7TwWbnY52af
Vd8/izh3YHzDZc6vVplDh7NPRJ/SHHOmw+5IXJPZbewI1RzoyfhqMb6ujK9c
zIBz+24J/Z1XFDXnUARWTDoebDw3F6NyflifzCgE69WhD/olRKP2+rfOpeL8
bmG8bBgvD8ar4o55ndvn8mGGYqLbbu9InFdm1dlmUA50Ov7zweZ3WTDhftr8
CSb3ccDR6YuCsBBXrNiq5heZB0unbftZEh6BLR215Bf3zMWBmssCPDAfBlm2
v35BKQo16pyPSSnPhle77mi8y8uCvT+VFFp43Mf7ZS8OdX1QCPU3DpGOuJcJ
XQed3DH5gD9onp+q32JNEZ4bOdt2hmsm7H8V0zaxlz94dUit/25zEdSblevq
cDMPPHSGLqzYHgHR72e/NJufi7nWuzWXpOfBQzU39c4lEXDLbOf1q21ya/zl
/ITb5C9+8v1ikHA7F64b3bEPNwyHdq3t7Xys8yDuqZ7jhMxcCGih4XToejg8
yGhRnDskD2TiCRxP+Gz3sktpXB7cWdPgaH+jCBiadPVDYL9c7M14dSa84CLh
hcWcD3soH8CK8gFWdr7hmZScC20e3hs6ukE4+C4ZqLl6Uh4YnXlor9MmH3QH
KVtY+EdA42eLsz3TctCd81muX1U+wxfKZ9TgvEqmvIKPlFdYwHk+hfIcxlGe
43o+X2/pfIl+VnW+oD/n83vKZ7hM+QwD+Nz1oXMHrnTu4MKym2OS2oj4t5q8
BHaGw5nH7WcG1c2rOe+hdN4hlc47tuD6sITqAyyj+oB7+fyepPML9ej84i7G
cQPjeJFxnM916QbVJSimulRT345QfYN4qm/wjethfaqHcIPqIdpzXT1HdRWM
qa6iNuM4gnG8zzh24Hreh+q54MtV9Rxacf1Eqp/gRfUT4rjOT6U6D3pU52EQ
94vp1C+A+wXYcX+5T/0Fsqi/oCfj/pvqGEgZ9zaMexrjLj+NcC9k3Ccx7qMY
d3Puj0+pP0Jb6o8Qw332IfVZeE19FpIYxzeMYxrj2IRx3MQ4rmEcbRjHB4xj
Y8Zx+9/1B1wYx0XMK3oTr4ApxCvAivv7eOrvIKX+Dr7MN94R34A1xDdAh3nL
ROItcI14S00fVGbc7zLu1XzpAuM+jXHvxbiXGhDuzJdwCPM0KfE0qE88DeKY
19UlXgdNiddBeTTxwB7EA6EH8UCs5pNFxCeB+SRqM47XGcdffH4/yODYg3Fc
y3w4h/gwrCY+DNW88QPxRmDeCPrMk62IJ0Mw8WQYzHx7BvFtWEF8G58zPw8g
fg6uxM9reJQ749uT8a3m+bOJ50Mh8Xzc/be+gH78HbTq7/b68HfQ7vJ30K6x
7tDh76Bp83fQhjOfH8jfQQskPg/rWNe8IF0D10jX4ETWQSqkg8CfdBBeYb02
nr9rdoy/a5bO+iWCv2tWxN81i2Ed15m/axbF3zXb8/f3lCGcv2uWzrpsG+ky
0CVdhqWsH8eQfoQbpB9xPeu78utV+g6CSN/hWtahcaRDYTfpUBzG+r0b6Xf4
SPodhrB+RNKPUF+1Sj9CU9b1PUnXw3PS9bDl7/kAXKb5AHRifXqK9ClYkz6F
wayX40gvw1XSy7iE9XXjOVX6GtqTvsbBPJc4RnMJGE5zCezJOt2ZdDp4kk5H
dZ5v9KT5BgzaXjXfwAus9/tcqdL74Ed6v2beokFzkpr5j8z8ocZePYfRlFkf
yet/2v+9XpXX68isl5lL1Nhl5jb/7voWPEfaRnMkWEVzJBjHc5XJNFeBxTRX
AQ2eR/WneRTsoHkULOD5jDnNZ2AWzWdgYerM+aFYCK3utp1S9iMLfRbO7SH5
fgXbZD49sl3s5+vjd3Lp/zRXacv2LzL2fmyPlbFPZvttGfsUtnv+B+2Ta7HP
7LJv4oLlhRA6KO+33+ZsNLXq8St5/RK4fNNpNfYrgIKFnYq2PcvBnGM2X5Yp
P4a+Q67/ado+G7rGPJnSvm4+Fk3XlMLdBNzv9qKnyvV8WOrhnbOsWS6WnXnh
MPHAS1wv+bPbMKAQft8fsGT07yz8bnR1uqLuSTzq3d4+W/SRxva5P+/G/mM/
1fZGMnY7tjeXsR9mezMZ+xG2N/0X7bLPsavFvvfYqg4rXhXBzM72j/d1yMQn
3sqXLXY+h/q/v1iefVkE9Z8E7J+fl4LbNnfJDRr/Fi5Mum5yuncRrJPzOb78
wDvc+jJiXPzqFHDn7wh48vfF3vH3xTaqpf8Z0DkTkoMdHFPD87CVQwc9SXkq
Hh15Y8TH9lkQ3d/t3iKbPDwd+OKmqWMKvnBtUL5Y1J1fmgYuUzXysFe7AoUT
TWNw1BynlYqi7zSQt2yeujYHHxa7ZbXvfweH1knvpij8Kj5Qr0lW3D/8+p9m
12d7iYz99QX9Cz90isCo9dnvPmuzsK2z8eztASdhhXe70FxtwT9jny+dtSYD
O1rvGFu8IhQef/dZdt5eCnF/Pllt1Y5Dg8BnZb9HJ8OffZpaS3tJwXLD1YX1
8C1+75BxLyUlCeparvpVXskHZkeGvBI6LnDbmSM/nFNh+aFOFwx25IBJQtj3
OuFZ6Jc/9oWqdwaGPd+9q/J7AfBcxcI3PwcXpSSOsZmVgdoG9lpPsrOh7JF0
ZMvP2ai4QuPpn7npmNPF99MKu0wY0qzdFblLeZgyeUanCXdS8Uqb3716CB71
pOz8Zwv3GOyvGGAUe0roxx2HPw8WPPCee4dtX+7G4OzZWtFrhN4f+Gi6+zF9
KbQ5U9x1u2cMxh9xOl/5dx13Hn8TaSP2/zts7KT7Qnc3fhtY+Ezo7ibOZan6
FwshX6Gg04iCOFRd872n9ioJfsnzHP0cC+CUfpSf0sgE7Lf1o3W9rxKMPBYx
7smQfBjsaea92icFI9y/tMhXz8S5PQ6Hq7cshMKbBSF9J8Rh+Oz7Vz0WZOJo
r50j7QwEj8208u95Owantozq1/V0Kmw1TNd0FHzmRjf5zfdEPHP0tzx5VslP
Hu9xixbrvcJd6imK/Svtnfv7hPB37tPQSdfE/n1Mfc+NFvr9rtbVCl0Rf4li
m/32gj9vcj3kJomNxsBhq5tfjZXgDBsz27bFhaCy5ObYm37ReKOu+0bDN8J+
8E//kcL+KabEReV5NJbWP22yJkyC7d+srbO8ci6n1v7LYxHn1XHHmgXYp8Le
Q0cePxf7Oflle/gkjxi0Nbspl+2QCnKcD6acD+GcD0bL6tVZI3jyLN9maxbF
ROP3k3IpGC/B06dHNPAX+/xy0cJfX+yz3rWwU/vFPo9OuJhgkFsI7or6rYLE
+t8gZz81WoJXGXc/xr0n4y63k3B/yrhPlsFdnXGPZdx3yeBel3HXu6WoXCj2
ubugaaJ6XDRuOOnuax8nwUM2s/uNKyiEFqkXDX68icabPdbvahEhwajkK/MC
hD2pWcuvDyOiMXYfrC+sjCfj68v4dmR8bRhfF8Y3k/Ftw/geYXwlewjfOYzv
Q8b3PuP744tqk08ibg27KPROF3Ez2jvPvr6I24Ht7mvdRN//Y7FWU1nE7VGz
ky7LYySYlhN7AEU8TSo6K6mI9V/xR+DmKAl2YnyV1QnfkYzvfsb3GeM7g/H9
s4HwNWd8YxnfCJusVnfEfka4FqxIrMy3jtorK/9eaPXv+xP4vtwcvi/nyPcQ
jPi+XEu+L+fE+H5hfOvKnGs/mXM9gPFVY3wTGV9bxveTDL76K1KXhQp80y2v
ffAW+B5IDl5wWeCroE/3OsrH0z261XyPri3f3zDne3RhfI9uKuP7hPHVZXyt
Gd/LjO8Xxrc143uI8c1nfBczvs6Mrwvje2FW6PznYj+NgqPPhYv39nYt3T9P
7Efej+6ZKPA9uq9WdI/umMw9ur18j06N8VVnfKcxvtsY30jGdzPjK8/nd45M
Pd/VzWrauUv58CR7pmXSV18cMLt/ye65uajndfDRsP5SSH9c73O3Po/xQdZ8
06aXJFh07EXTkSIO82/c36Hq44V1Fo8zH/9QgucY3x+Mrzbjuyt1VPs8Byn0
2d1u2MLBr7Gka9nvqzPSoa6Fdcdvi6Wgmfj1rktkGDp32RNUMSodLi7Pcv9e
rwDuTAkbM61ZAP5o/qxXz/s5MDCz1fSKs0KPRR+/vGlYAHQr8nUy6ZuL1c/v
S88Hfj5WP78dPR/4+TX7r0/7B94/yPgL7C/kF+e4TO6aDy8PNwr+PfopPH+q
WhCVkFsTz7kUT3hJ8cStHP9kij9YU/zRkeNTRvEBDYoPqjOOeoQjjCAc8Tjj
voHvRzHu4Ph3/gDnDyzjfLtO+QZnKN9wM+etG+UtSClvsRXnrSvlLbyjvK05
L1/pvMAavgdVh/OzEd+D+kH5CS34HJnyPai3fA+q+jxK6DzCPjqPsJ/PbzGd
X/gdX3V+UYHrvCfVAZhCdQBN+DwG0XmEHnQesTfXh6ZUH+Aj1Qe8xPWnC9+D
asf3oN5wHdOjOgZhVMegnOveIsYxinGs7oOBjONcxrG6TyUyjq0Zx+p6q8k4
6jGOh7hu11tZVbfBh+o2rOL6OZHvR43l+1H5XM+XUT2HbKrnsn0BuC+AGeMe
wLg/Ydyr+YYr457HuFf3IxfGPY5xj+N+l0P9DkKp34E+983t1DdhNfVN2MM4
fmAcFakOY3W/fsA4Tmccq+vqM8axG+PYj3FsxThmMY7n/+YPUOFSxR/gMPfr
ptSv4Rr1azjCvMKFeAXUGVHFK8CA+ckW4ifwg/hJDZ+pPr9vGPddjPt5xn0/
417dvzwZ9z6MewfG/T3xKFjEuJsw7yol3gU/iHdBCvO3vcTfIIT4W02/sGQc
/WTO7x3GsYBxrOaN/ozjH8axjHnsJeKx0Id4LMxifliH+CFcI34Iy5nHSojH
wnPisaDMPPkn8WRoQzy5pv/+kMFdfudf/BymMe6jGPckxn0C467HuDdh3Jm3
YzrriP6kI8CEdARkMA/vTDwcnhMPh/6sLwpJX8Cf5VX6AlayTplKOgW8SafU
1O0FjHsw4/6Q9VEC6SMYSfoIXRj3i4z7QMb9N+smO9JNUEi6CW+ynvXh7+KF
8nfxcv/WO/CO9A5U69w00rmgQjoXnFgvryC9DCtIL2O9v/U17CB9jQdZj08l
PQ63SI/jfNaD3UgPgiLpQbRnXV+PdH3NvOgl68qJpCvhp1OVrqxZrySzfgDr
0y+kT2vstT3/31sv+/yBtaw/wetV/pvXN/hvWm/Fc6GvNBcCm1FVcyGoLT5H
eL40j+ZLUO9s1XwJDHi+0ZzmG5BI8w3oz3OqzjSnglKaU8F9npPU61g1J4Ee
NCeBfTxXSaW5ChykuQrs5jmY8qKqORhk0xwMO/HcrNHgqrkZlG6qmpuhBs/Z
SmnOVrP/avuH/6Bdj+0RMvbpbL8hY59Ri7229Xt5bpl/p2puCaU0t4Stj7pc
3emaDe3Omv6a3D0PDb2mXywzeIczK+INekfmg+nC+UZ9XuagX8SvAe+PBqLF
7R9Nl94uhOknjM6tbJeNuTutBv1YZ4fQy/tQtOj7I4/V7zQu4h9zm+H/jt1Q
xj6S7cNk7IZsN6hlvay9tvW12fcqxYcYvyuCb7dUtOv0y8SnaRMMVLs+gsi7
N2zfj5LCQLl40wXqKbgzVLdLP/c48HiRmVLqmgeG/Qx8Tr3NwBkNFccqNBH6
ZchPxbmp+VCxpe+Qu+tSsHjB5iHLpktwXx1P29T0PIhdkNje6Hs22qW97H5D
Lx7TfxzTGlavEIITnkg9orLx0ZlTcH7lPTynYWZXyX8+fc2L3PZP9xX/q+2l
MvYLbC/5T9o9yqcETWlaBCqmP4afsc/CaT1vLm78ZzNMTJ2+IONxEQwJm6xe
x0WCw+fsaV3a5zXsUi79HrFRCm+ndW5W3iAeg94dSnVrlQzThz1//EZaBAez
mlmPnZuI8WOdBw87mARprjcurRD994r299jLQkdf1hig/OlyKnjo6R+PjCiE
LNdJJ53NY9DwWWO18GgJNqrbY93U+EKwtZwz7vKoGHzlV7h8WIQELy4yWzY+
vxASu0yaZxgVjY4dI1TChN3r5KmfWqJvGpzr+maX0I/e+hNDlrqmwslD/RRH
CX5yb3zA/IfCHm/hm/3LKRWmvHtjPEOsv+9sUKrkE4OnFI4tmnU9Fcpyck6P
EXygra9HowlCLw+dbtd1o9DX8tvSDrcR/MRgjLWF7bNoLLwxWCUyTIIqp5TC
64l4Dkjwn+Ms9G/6oh+N9gpd3Kv5nNJfeYVg55CgmRYdjft0DH2SxT7bXrFO
XCn4Xudx/TXt46Px6bmr9t/E+pcR7QN6i/0ktT2+9ZLQ4x6mnlvuuKSCF5zK
aybsl6Vl9QIq78mY3kYl0a8D6wc2dRN+qcMfo9vCL1tp2szDQu+7eN1NmCHO
S7bm9elzxH5+1zW2ORUjQf16p72blxeC66efx3TCorE4MODC89sSPD9LoXyx
sE9yKwoyCo1G13bz/G2EfcT4Tl5TxHsbnfk4x0S894z8772LxX6eTw7OWCDs
I2ec2ZHnUzmXs8m9JvbTuXeX05V/x8VxclHPFvdiMKXtm6MVYn0y436VcXdn
3JdZVvjaCp5cf1r6YO+IaPTwOaVmEi7Bj2MXtd8m4vl2RvialWL/Wt8nZ2XE
SnDozbXmfcQ+f++d/7Kf2OfJzzu+RIh9nri7WW+KiOfQwxlWz+LE/tNv9zGN
l+BdzgcjzgcfzofjMvmQwvkwgfPBl/PBhfNBIZfy4fsTyofWnA9mE3tb7Bf7
9Pc/tWmLwFHvzvOfE8Q+7V3KD9iK+Jdn5PQ2fxeNzcvnXI2MkuBYM8s9h4W9
YsCf5DOJ0Tix6PfqUmGPYNyDGPcjjLsv436EcY9n3F8x7i0Z9z2Me2f+3X89
31e8wvcVZ/x9rwCX8H3FB3x/IIjvK27j+4qTGfdvpwn3dTK4j5HBXYdxt2fc
E2Rwv8G432DcY/l+xWu+xxjA9xjX8j2HrnyPsYLvMc7lexrhfI+xDd9j9GZ8
gfH1ZHxPMb7ejG+EzHm/y/ieYXzlGd8yxleD8R3B91Jm8z3GtnyPsSPfexnL
9xg1+R5jRsGuh9f0i6D9shdjhnpGoX73/mMs7SQYx/g+Z3xtGN9njO8xxveF
DL6tGd8DjK/xn6ZS6C+FOeoGnrNjruL8lo82VOIV/Gl2bJpTEaifODq69Y1I
TE9IOnBEQYJFi5rt6YtSKHjQJbv7ua2QsTF6eJfMjBp85fhcWzC+w0ff2PNS
8PCzUT52vbVj0FXn/qr0YWmgxfieY3wljK+Kn8/zn52ksPnZxRaTQyNRP2NJ
8yFD0qEx263JDrpkx2H8/D30fLhHz0cluQaNW2kIfa2W3+OzhtA7xskfS8zT
sAO/dy+9F8rpvfizDq03oPWYSethHMfHRK0qPrCE4gNRHAe9J1VxQINNVXGo
ibMmxRn2UpzRj3E5SLhAJOGCxn+fC1hPccO3jO8Lwhc2EL6ow3kygu9HteL7
US8YrxGEF+QQXiDl/JGn/IHulD8wnPNwKt+P6sD3o/5wn2pMfQo0KW/xBOf/
Q8p/SKT8RxPOfz/KfzhM+Y+LZe5BteB7UNXnNIDvQb3ie1CJfK6d6FzDQzrX
GMD1wYDqAyyn+lDTl0fTOQUPOqdYnVfOjC/3C6EHqV5p8T2oWXwPahPXB12+
B1XG96Cech3z5ntQ1nwPqhfXw6V8D+o034Oqxr0t435IBvfdjHsc4z6Rca9g
3C0Z9xjGPYRx3864m3Od7zSwqs6DFtV5mMn94jn1CxhE/QIqGMemjGM7xlGG
twDzFjT9u47BDsaxiPtmNvVN6Ep9E25wP9KTVPUjyPlT1Y/AgfumHvVNcKK+
CQu4L7elvgx3qS9DKuN+jnF3Y9yRcR/MuG9k3B8w7rqMuyvjXn2ubzHu+Yz7
YOYn3sRPgPkJAPf9D9T34QT1fTjNvGUK8RbwIN4CTsx/PhH/AeY/NXyJ+yZw
38RqfnWccf/GuA9n3DtRnYRTjHsQ457AuDsx7qrM6/oQr4MXxOugmh8OJH4I
acQPa/gkEJ+EfOKT8InzQYvzYajMufbhfHjH+TCV88FL5lyXKxJ/PkH8GRKJ
P4MG89IzxEvBkXgpHGdeXUy8Gm4RrwYf5udxxM9hKPFzkHA+nOZ8YD6Pu1kX
xJAuACRdUNOvx3A+uHM+mLBeuEZ6AUJIL+BJ1mVfSJdBCeky8GQdN4R0HJiR
joNQ1n3jSfeBFek+3M46UcG9SifCa9KJOOlvXQPdSdfgYNabE0hv1uhxb9ZH
8qSPoG2PKn1Us36izPrLrLOKSGfV2Gt7/qVa1hvw+tG1PL/wP7jeidfn/g9f
v4znFWY0r4A8mldAbetNeO4xj+Ye8JzmHlDIOv0x6XTwJp1eMz9pQ/MTGEvz
EzjGev8V6X1wIL0PaheujOzWSwqpOX3lh6mlYPn7RVd8esZj8CvvQoU3Uugw
1vPOZdMMbNO1dImF/3085+GW1CW8CD408h9zflMmXiswPj/9wDV8uqvhqi6t
iqBixR2EQ1loFtruAQ4/hl9NDT8aibpxfePGhWHR/9Djtdk/sd1Nxv6Z7Tf/
k3atSBWV9VeKoMxH6jn1Zib273YjM8/QGzzz82NmNpfCV5PmMx3ep6Ln5t7H
trSJhRNftml4LS4GV4MBjzRbx+Hu0rtHLI8nYPyOZqs9TpfAMD+j/W1XJODs
Fjf/rN35ClfuW2Jm/KkY9FT0N7QvS8LnFyzW7o9/gaObyW91UhXn9I2i3WLb
LLS9k5/0dq8rzjbYX1w2oxjG9Ot9bPj5VJS7VSTdueUF7rm087ZlruhTGcd1
V4X/01yI7W1k7MfZrlyLvf5/0u4/VFnLYWwR3OzomzfzeSYOvbL9yFH9AFil
8c4ycqcU2q1aonnjVTyeH+LSrq1pEnxtZGEUoywF7SV1FQ85JqHm2uCQxU8T
YGNS9tclok52rPC66iP4v/vynT2nCZ0Sr3smQV/kv/2npN3Thd50HOLVO0jo
ppXzW+b7zi0GE/8F199tjMXU0rG69/USsdmtLrtH55TA5OyLjcvXx+HnXaWx
ifIhWBpQ59ivrBLovXtGVyXrOLwT4Wbat2EIlk/ftvR3Wgn0mrN2wuTEOLyu
9PhEt+6v8da9DrZ+00Tf1w/PnRkQg/lxj0d+750KYy2nH7k1UtT/qPbxUscY
XNbQe0PakVRoeflXznrRpwKgt8oCsf+edRJNjwj99VjNrPhr5dypVWeTdKHv
HBdBw5Fi/7YaW1R7i/27j+u16cimWOxn8ap1+OBEHKdxNb9R5e+SZ4cbzBD6
a6Luw751xPrbbw/7nxXvXb49ps+U8zE4Xi7PUetYKnS/u/Gjg74UBprpbXsj
dFx6UWyjqxdSoc7TU3uLhX3LORurOsL+ybj/4mDHVFhgMHTiUbFPZw/bo8vE
Pt2mGLeq/O6nfNrcH5W/Cxvr9J7oJ/TdwJNfcx2FXnZzbNjk/btCsHvvNmy0
0PXPLj2Y6pgpwfcRdSWLhP3gpVeHXIRdUlZQYJYlwT9t8i23DRX96FR6r8+3
Y7Cz+jSfh+dSQSvm5RpV0Tc3flrTbpx478u48H2V35sw0eg1or1Y/8i9/4sp
Qi/Hzd00+5JYv47zoSvnw33Oh6svrJ7Ei/iMuXdtS1hCNPqe9TT0jpLgNqed
syp/Hw87vfO4gdj/U2XNpKYibr3wfr23Yp8Dzie1yBf79Ol/b/Q5sf/YY632
tBL5vGHeyR9qIs4x03PTN1fed3K3Hf268jtRGx21Tl+IwZnfJmTWOVI5tyHc
zSMJd2/GXZVxf8m46zLuefx74hK+D/aC74OZ8e99zfk+mBPfB5vLv0vG832w
D3wfLIRx729DuJ+pBfe0WnAvY9yXMO6XGPfLjPsw/h12Nd8T+833xK7w77wl
fE/sG/3Oixf599wzfE+siO+J/WLcJzHu3WRwX8+4BzHuU2RwT2Tc1zPuGoz7
I8b9oWrctwNCP949E7w2XOMNmp1eMf2uhQQv8+/OoSl0T+w83xM7vaubQk5a
ERjkqQ1P/xCMKSqjniuulOB+xld5E+HrwvhOYHz3M75/ZPD1ZXz7Mb5G366V
z2lbDLpPOzU3TnSC0vGWr0tPpOO3hnca6b4XuJzsKjfu+F1YOeFbweeKdFzk
EdQxqkAKcfpzGnvcegzjXr1QinyejncZ34WMbzrj25Px7cP4JjO+8ozvBsb3
PeO7UOZcX2d8F7P9KtnBmezYi5+vS8+HBHo+/mQcbQhHUCUcscKX3ruO3gs/
6L1YzutnMe5tGPfqOJhQHHAFxQEWchwWURxwGsUB+nA8D1I8UX9CVTxr6uoT
ij/w+cJxjNcRwgsUGlXhhZ4cz1UUT8ikeNbg3ppwh4uEO57jPHlEeQKhlCfw
gPPtIuUbzKF8g7Wcn90pP4HzEzU5z/dSnkMw5TlW17dgynMIpzyvOV/lfI/i
M9+jcOV8bsz3KLbxPQonPnc3+B5FBp07GMLn15LvUcjZ0z2K+Yz7I8b9EuNe
nVeDa8F9GuOuw7j/YdytGHf5yYT7VK5XuXyP4g/fo8jlureO71E843sU1Ti+
YBy5P+ISxnE543ifzh0GM46DGcdLjKMT4/iB6jOMZxy3c/1/RvUfuP6DMdfb
b4vpfsVDvl8RwfV/EdV/SKX6D77cXzZRf4H91F/A6m9+AtdrwT2QcZ8ig3sE
4/6S++kq6qdwifopjOY+1Yn6FJyiPgUNI6nPrqE+C0+oz4Ii9+uh1K+B+zWY
M+5PGXeu89hDBvckxv03427IuPdi3H8z7htlcJ/I/KQ+8RMYQ/wEHjHP+UY8
B84Tz6mpnyhzfkcz7ieIR8Eaxv0m476VeA6YMO7uzMeciI9BMvExXM08cBzx
QEgiHgi7mV+5Er8CXeJXIGUeaEI8EJgHQhzzzLPEM+EC8UywZNw1GXdPxn0F
89v2xG/hCvFbrOa3PYjfQjvit2jB/F+f+D+8Iv4PFcw/tYh/gjPxTxjB/N+T
+D+Uu1Xxf6jWF8NJX8A00hfQkHnvSuK9UEa8t0an3CSdAttJp8Bt1jUVpGvA
hXQN9mAdVEg6CHqSDsLHzPM9iefDSOL5+J31lBPpqRp9uov1gjrphRr7v7pe
Rg/+494Fr29Yy/prtaxX+S9aX9t+ZNf7s/79RfoXGoVV6V/QYt3Xj3QfbCTd
B46so4tJR4M/6WgIYd2tTrobinSqdDdosE5PJp0OX0inQzsFl6Sx8YKHj/96
Y2nzDHwSle7tnvYIJ+y9VOb9qQhiRw+fCgMz0aLs+ALpG1dMut44K1y7CEy7
7Gx81TILb6uVdEpZ6ICJhhecvIRfp9Z8j1f9J93379ntZeyjtNVQfksRKH/r
3eXNh0w8eDwtcOm3G+D1/ov/7vIisO8Qmr+/ZQa6GjdP7j4jAtrpf171M7sE
8jPm99hsGYcHu1mOKFEIQf1vE6cqZpZAgy9GF/TD4vDX/E1zzNq8xqQ+Lews
PErA1/7QrKzIt3hsxsmR7esG4tP4dyu7lxeDzxLDbxaPkjDwWtjs2fUDcEZQ
96nmOULfVSz93bhBBj4dvVvOvt89/Di75XmVg0WwyslE82JeJv65KDkwd6Qt
yg9dGlPZrxsnnHzx6p/uDyjUYp/pVdKhzwgptPL/3GCPugTdUxd3OOj1EoLr
KBbUvS+FfpOb63X5+RY1IiaezJqWCDeCXYxt5hXDDYWcA+FrYrFb8Nid8YMS
UTO5k/lPca7tshTnbV8dhx9KZqyZL+LQb9asX/7C7rOj7gmtNXHY+pBhiGK9
ENxwM046LrcE9IIlh+1XxaFqcsm3wXVCEOzrKuUllcCYgrdNX72Kw1ZLe5iv
xNd4suKF40fxHN3Cp103rI3Dqyo9fr/58xrHupgFea0sAe2S31cORyfi9/G9
+l088gLnbJ+m1/61FFLbL1h69HgGzui88JmP9A5OGuXccA8UwdyAJUdtJ2Rh
myFNBxRqnsPFK4+g3OoiGPjawlFHKQtf7V/7MP6GM+S4mR+SOkihQHtz6qtJ
qXg596j5lLQo6P8i6Nj4UaKuZlkqzT0Ui+1tV7hqFKRAsWPM/B06QgcVvgwY
P0vkQ+dZAy6HpYDaXL0W3qK/jP7d8/Z2L8F73+7x7iR4r7fJgu1XRDwvFWb3
9loXi6sjnZa7D0xEh+zrahuFv84QaP1D+Fth+eloft0QvOV3vPWMDyUQZ6Gq
GmMah0tHv06z3PYal+7Ym/NFxLPxO507p5bHYWGb/u3vVrzGYR9UVw/9KPpI
+RS1H9NEHl4I8zff8BqntDc0Kxb9ornun3oW92JQbdblewbOqfByQxfbe8Le
4LWD20efGCy9pb2l8vfHxiOHpSUKu2K/KYpRwu7XP1SnUKyvONt5dUvRf5v1
uzVsofBLX8/CIVvw/zGv5i/MF/lmnn56wzahv66XPOmzUeiy3p8M4reYF4NC
Wt79ritj0WPBzRcS4e+7zepFR4S/8smO7TXWxWGAf4feB0X+xHlnHO2WVwJv
VplEFAm/viYGPj708zXGK8nNaSricLzesXtLRJyLTowaZb75NS578NBd21rg
Zfw7TftZDDaCMUdu3E4B06TiQTaVPHNrK8fK/7/QaZ2yVFvEf/WiEavWivWJ
QxInG/nH4Nl2K2e1FOsb8Pxfk++TZPN9kjb8e0FHvk8SzfdJ6o71GTxN+DU3
PMJg96pY9B27qpGd8EuDf3fQ5fsk9/g+iW/AjNZ/RDxLylI8uoh4SjZtcX4l
4ql05f2EJGFf+KW8XmthtzZtus5UxL86f8bK5M9t/j0lmO+TfOH7JCeV6Pea
Kfl0n+RBEN0nyZtNv8t8u0T3SazV6D6JCedDE86H1pwPyPmgwvlQwfnQkPOh
oi/lQxDnQznnQ1POh6GcD0/0+ny5Jy/0bOdtcrdtX6H5xX7JDzdJcMzFw84a
TaXgl5P828L2Od7s6vyy1w0JHnSj35WcttB9khVldJ/Eaq/hlD3tpODW3141
aM0jPNfi3PqtryWYcJ9wP8a47xxJuM9k3B8y7h0Z94yFhPtexv2POuEeYGf9
YOY7KQRM17LPPPscWjfb6n/XMR21277+3vuWqIc2Q2b0uPAKgs0PNhvmkY59
Uj7eXLNFCqabQ46bX3oNuTfcN8a4puMTxvcD45vL+CoyvosZXxvGV4PxNWJ8
nRlfdbaPIjsw7liXn7OCngNW9ByczjjWJRyhJeGID3g/X2k/UEr7qVmvyLjz
etBif0eTvxhC/kIv9ncu+YsfyF94xXGbQXHDphS3mnPnS/EHDYo/pnL8D1H8
oZ5GVfxxA+PrRfjCFcIXRnGehFOegBvlCbzkvDpMeQWGlFc1dUmZ8hCGUR7i
C87nupTP8IfyGd9x/hym/IGtlD/YkvP8C+U5eFKe4zE+X6Z0vuARnS84wHl7
i/IWLChvoZDP3Xc6d7Cezh248/lN4d9DP/PvoW0Z9/GMuzvjXp0/qxj3bYz7
VMaxFePehHG/z7h/Y9zLGPeOf99zg7v8e2hbrm9q/Hso1zco30r1sDP/HvqV
fw81Y3yfML5qjK8F19UUxteJ6mpN/W9I9R+cqf5DPa6fplQ/wY/qJ8Ry/U+g
+g8fqf7X9JeF1F+A+0tN/VFh3Ecw7tV9TYFx/8a4L+F+8Z5xb0z9Apsz7j8Z
dx/G/Qz332fUf8F8bFX/hefcjw5SP4Ic+6p+BF24/xpQ/xX4V/VfOM39/TL1
d/hN/R0SuA+2oT4IftQHwYd5wlXiCbCUeEJNnnBfADfOk2p+okP8BNoQP8Fp
nCf1OU+4zmM+85bhxFvAgXhLDU8bRDwN2hJPg2XMN+oS34AC4hvgwDytM/E0
OEI8DWR4IDAPhI7MGw8Tb4QC4o1wk3nmeeKZ0IV4Zg0vHUi8FNoRL8U5zGOb
EI+FB8RjMZP52wfib3CL+BsqMR+uT3y4RgctZB44iHggPCUeiIq8XkVm/Tjm
kwuJT4I28UkoZX6+kvg5eF+q4udgyrz0PfFSGEW8FKYxz79GPB+eEc8HQ+a3
BsRv4SvxW/BlvfCE9AIg6QUYzvzZmPgzqBB/hmrd8YR0Bxwh3QEyOgW+k06B
FqxrVCVVugb2k64Bb9ZBR0kHgQvpIBzKuqkV6SZwIt2EkayzrpDOqolbEttP
yNiT2X5cxl7Aum8k6T44TLoPZrNO9CedCAtJJ4I860oX0pVwkXQleFrbD9ol
8q3Hn+1TOq2Pw/Q3yw4PlAvBsfs/Ndn8ugRarF04vuPzeJy+/sTGB8FBKG0X
GCM3tASit1Wk35zxDrf8+umnd/YlfgjUfXFiVDF0/zDK79bENGzrozRsfqAv
nh9bR/dio2JwGrLn4MFO6WjcofOzTRN8QXXh0ysn9krhaKN6OqvtE3FjsrvX
ePcEmGL5Yb2KOEfXyub6/xE6yGeTyj1nwXsHrB5W96rY55u2hl27Cj489uWk
9FyxzyFFRc0vVdaHlmsu9xD2iwf8l7SUD8HNjd6UZQu7ueHXIGWhsz43/17f
RDznqvSO3/lHJXC6786PfipvMWm8gmPrRsHom+0nadOgBMJ2t+8cticJty/Z
UuJY8YLj/bEm7n//+7f2LtO2aFmJevtx6Pd6Hrpx2Mt09diWV1JqfU5bv9XT
xol6FbM2dXyM4GPF0X0NkwXPOTBKKTBT7H/LxVk7fgr96KC+rsMdsf99T/fb
bRP2ottbZz4S/uqcabfho/D3VzPPoh2VOPbVSbwv7E9Wemg+FPYVCq/nVsZt
2mMnrYVCN+01luxYXvl914Fdp20XdmNJh27OAvfRG81dEoU++lf9/Z9mt1ty
9fpVEc+ekS0WOol4Dhpgit5XU2uN/9DTNy/4iH530C741We/GLRqMPn6EI8U
uNR8jNUiUW/VP49K72MZizGIjWIGJOL9O32MK+N26Wzx3kkizgt6vnyhJeK5
d92o9U+FfcSsfHk5EWebT1c6rK7U++2S4iuEHSdsKBgm8jAqf0PZdqHr/1/F
5/+V3UbL0PH1EClcb9K3q53g86u0r/X/fDEVDG2XqxgKvDrvCbjxUuD1Qa5v
78r7zyvK+y/OE/EfOP77uVFrY7Gd86wfS4V+3Bk42uStiGdCQHLMeRFPM7nH
7W7J//8vnv9V9pbnxm46LOJvGjn/W6DA5UWDOaZ2TrWfFzWuV6+5XhVyvfoT
pdnvsaYUfm0e8en2lTvoFnqna88MCU6zVhrw9ouo//c3ubU5eBODm2+9a6Sa
8r94/RfbD3HdG8J1r9+/U/e8Haju9eK6l9CQ6p5Rct7jpaOlMPHnorrqs99A
gdUqK2v7dFzT4ZFZS9GvG5lnr2y3IRLmbHs84tPH1P/F8f/SbsX18DHXw80y
9VCL62EJ18ORbO9FdigmO1r//RzYSM/5X1z+i+2rOP87U/7jbMr/Ws/XaD5H
pnSOUELnCKrPnS6dO+BzhzK8BQbS+f1fHP8v7TO47yTfq+o78Ir6DlRwn/pM
fQquU5+CDtzXkPoaZFJfw2bcHy2oP0Ig9cf/xYX/7WY+FkR8DOYSH/uXddMq
5ntdie9BK+J7AFz3BnHd+8h1bxXXPaWmVPcs/j9S96r1QhDpBQghvfAvx7Na
jxiQHoHtpEdqfc5D1jUOpGtgEekauMw6qAXpIEgkHQQGrJv2cB3bSLoJD3Md
68F1rP//4zrWinXufdK5MIB07r8cz2WsoxeSjgZb0tG1PucH6/EhpMfhIelx
2MP6/Tvpd+hB+h32sd4/QHofjpHeh2q+Hch1KY/rkjbPGb7TnAH60pzhvyzO
l/+ek4DyhKo5yb8ct208h5lIcxh4T3OYWp9jwPOcujTPAUea54Aez39e0fwH
xtH8B6byvMiR5kXgSfMiaMLzJSeaL8EWmi/hWZ5HedE8CnrRPKrWuL3nuZYu
zbVAm+ZaUMRzsASag8EamoPBOJ6bNae5GUyhuRn48JytJc3ZIIHmbPCE5k4Y
zXMnW547TXAdaq0/SIqJfYJvXXGPx+wVWypWnE6G/YNi90sHS3Gqcb91e+7G
YPPIX51TBM8f67HjvdkQKWLP1IRMwSePWM6KXno5FbZcmOawfKgUZ7WIWNRF
rL9Q3Nzc5WwqTJ1wXcdHX4oTH8dZHr0Tg9OVN0174JgKfs37tvwsnt9Z2jOh
o3hOslas4Vzx/H383vH83tYy733F77Xj967l91rwex/xeyfwe434vWv4vQMu
xPRo90aKi5pGp+yeG4VafSJPhTmkwMrgx3u2zn6P44rfWUxTuQWzbm75dqlp
PDj6Z64vySnBP7N0B9wS5yW0xOdtpMB95sVMq53CXlfa9Eq8yDeL5uD/pH4I
6Lfub9w+twQvdqrztVTkSR3rjXWmiLwKvVUweZSwV2g52N0Udt2pR58ai3qr
fXf+T5GHmK+UuvyUeL7B4Caq6xqEwDe5j93yhD3iW8oQb2HflfHp2WhRB5bO
tqtoJey+t663/2EZB8+3fPNUEc95c6W+UWh2CSbeOrMzV9jndHS0NasXAj3z
Y4wtxXu7b5ptrbAyDsYfCg5rI/YT1HWYzmyxPmnZ75sKm0SejLz3c71KCGzu
u36+y+4SNMH7d1vfSoBHGwKu1lEPhIecP+mUP7CM8gfHcv7kUf5AFuUPVuM4
gXCEtoQjjmEcfQlHcCAccS7jWEY4wjXCEQcwjopPqnCEyYQjPuH8MaT8gVjK
n5r3DuP3duD3juL3+vF7L/J7V/F71/B7n/N7J/J7p1H+wBJ+72DOHyvKH2hO
+YOrOX9GUf7gRMofrM6fcsofDKf8QVPOH2XKH9xE+YODOH/cKX/wj1VV/mAQ
508r7ar8wT6UP9iF8yeW8gdNKH/wN+fPPcof3Ef5g4c4fyRuVfmDiZQ/KOX8
+eNWlT94iPIHZfIHjSl/qusYytaxMM6rRMor3EV5hftVT1zcMf4dPviwVbfv
kDCULy461iyjGJ+MjBg9MzINP3jF5W8Z9QTe6KTXu6VTjL3HPG4Z8SsDFysE
Z8UGBoJT60l9Wgo8du/T1flom4EuN3U3b/keCGq/fPOc50rxksL7r3v3Z6Dd
6BHX630LhPopDmsXzZFin5Yquc3kJdhtw0aDuWGBoHgn0XC+yNf0tlPv/pCT
4PHDwzQ83gRCg89G++YJ+9qVG4pGJmSgXFmT9XnOgaAhTZ/4eowUj0W/9NCI
yEDPyCSdBS6BoNT65ZfV40Uef533zbksA9X36r9PEs939Dq8N0/kk7rW3F36
i9Mxv1fjrWuMIiH8+1PHUk0pKl2YcOirXQQWvrTbs+hUCmy88KXXNKm0Jo6a
e8y79I6RQMsrU94fGPJv7a3+h9mr96lIfkGejF9qFAeQcBwiOQ4cN2glE7fT
FGdQ5jg34jhbEy6w/DPh0pFxkRCOcIhxVGYcGXfoIoM75wmckMkTW8oruMh5
pcF51YPyEOZwHrpwHnLewleZvN1OeQ5enOeKnOcNrfbu8AqOg2UPGpen9knB
TR2dG+wSz3m89kFdjaA4qP9I1WvdgBTcGLr2Q5aI5+yPuUn1QwTPaPv42Z7B
KWg5cr71TFHXZnU63d0N42CEW8zqdn1TMK3p0lkPRdx+ZT1wW/IsDvQPOsx6
1j8Fr8/6lGEt7EGWzt9TxPPLtF0arByUgsZ5KsFy4vkKq67L1Rf2CdrZB7z0
RP1qn+c0U9g9S0o/XRb2bsXTzjcckoJd7MJnuor3XrGwOBn9Kg6CeoWtdtBJ
wYWzHvvOGCbyoXlih2EBcfD1ZUCmirA/GLkroUTY1X54mM6QC4T9Z29tVhqX
iul6w3wXjCpGLbLjHhl7PXoOFvFzHvFzPOm96Cfz3qe0T+zC+9TmfdYlv3Ac
+7WG/YqiOGB1HCZyHOplV8UNh3DcrnHcFlKccTjHOZXjvJBwQQ/GZQPjIlsH
q+sj44vKMviqUj5gdT5soHyAJ7xejtdvovWwiN/rwu/dSO+FWvYJtfgFtcQB
8lZS3EZy3DZR3OAyx1mT49yD4gy14AK14Ai14A615AnUkldQSx7CCc7bjrzP
XrzPXPILDGX8qj4Xn/4+F1B9jgb/fY7AjM+doUyc5/A5dZXBxZfPdcVDwtGK
caylDkB13fD8u25AdZ3583edgeq6NO/vugTVdezy33UMquvemb/rHlTXyZ5/
10morqsH/q6rUF2Hl/xdh6G6bjf5u25DdZ2X6Y/A/RFec1+Ior4AytxHkrmP
WFMfgVr6zr+xt/ofZq/epwr3/TT2y4r9as88Ierv/lgdN2wjE7dqHuLOca7P
ca7mLYp/8xao5jn2f/OcatxRSwb3ah61j/NEmfOkFt4FtfC0WnV7Nd+T6Zuw
nXQHjCPdgfNIdyDzSZDlk92Jl8IA5qVTmJcWEo8FJdJBaMc8lnkvyPLen8ST
wZ958n7myZ2JV0MK8+ppzKuZh4MsD2feDt7M238zb59BPB+aMs/fyDz/HOkC
UJ5NuoB1ZbWOgBsyOoJ1B8jqDtYpIKtTLEjXgA3rmmesawxJB0Eo66ALrINY
N4GsbmKdBbI6i3UZyOqy2fxeOVV6rzO/dzS/9zW/95TMe2V1IutKeM+6MoN1
5QO+P5PDOnQB61DWrWAso1tZ54KsztXl/OnAungs6+Jwzp8I1tGzWUez7gZZ
3c06Hap1+g7W6azroVrXD2Fdz3MAKOc5QE+eAwzh/HHmuUE55Q+wTgQVmTnD
Rc6fUp5LvOG5xCrOH10pzTHMeI7Rj/PnJM89NHnuwXMSkJ2TsC6GvTxXuc9z
FdbRkMZzmIM8h6nGUXZu84zzR11mzjON32soMxfiORLIzpF4/gOycyeeU4Hs
nKq63shWIJ53wTued0l43iUx/l535IxiNLq2LFZyKg63hs5d/HhNAnrpqW00
mVqMZb79WjStF4cWgQ+9pn9KwCmrT+UVhhbjxMYuRt3LknH45mXrcrY/w50X
6hrtdxX6pqPzZIsPGXho6ZY+kc998GT7Zkk6rYpw4MRdh+QPZOHBJXVMNOqd
R72DDYZNzS7Ekp0X4syi/vH/g2qzD2F74X+T/Vhcj/DC/UUYHTUvI8U7Extf
X7vVeOIjaDgiepHuVimWdlmtnXkiAc1Kzoc9TUqETZ0Xe/ywFrq8f/ZzB9N4
fNjJbJ5eVBKUefhGjGsixQVXJ52Kd4zB0LIW3/qMS8Nxate2DBC651hy2cSs
2zGY008l4eylVNimNmJPtNjPyPZhSfMrv68xf7dK5fc17A43upiTV4gFn09m
F0dHo5+7ztOfERJc9PunYiPBo40cLXrOEvnQ4sPo8oQrqUL/2Ne/LOzuQw49
rMyHrgtCRw4VedLGd47/jIxCPDzne+j0t9E4wO3IwX3vJNiuUGHYN8Hfe7fV
WzC58l6cdsmDU+I5lvdvtEgU9tK4D63MhL0swupePZFXZRtjfuwQ+/wGfaQW
cdF4/cuB5hfFPr+OdGzcMKcQzyrqmBQIu20TuT9XYiRozP6asr+f2N+pJp2K
6gq/5h3rEfsnPBp3jCq+ZBxdu18G7Jcb+9WJ/Trv3GDLTbGfLQPkfx8TcVOy
7q93SuznydCkwYuFvZtX5M06wj6vT7PJGnH/8Lcn+ytlfzewvyXs71f2t/8R
k8S4O0X4cURR6eQBYbh5/y+HrislOJb9MmO/lPqTXzdN9zX54C3Fgi9rb+xY
cwN33ruyb9/XDMxc/kvxXpkUjYMf7dOx8YTiDOsHsz6m1/gL7G9rGRzvsr9a
7O+fuG1mb3Kk2OtgvuXifn4Q+XJB6K6r6VgdH09aDx1oPVavH0nrMZzWQwbv
ZyftB8toP7CU99OP9gOqtB8cz/6OI3+B/UU39vcl+Qvsb03c6o6sihtsorjB
eo7zZ4ozfKc442PGawDhBXMIL2jDeA0mvIDzE6vj80jG3+p82En5AHUpH2AK
59sCyjfYRflW4+8AGX+nsL9G7O8Xylv8zXl+ivIcNlOe1+TPJ/brM/v1hc9L
AZ0X4PMCWnweN9F5hG50Hmv81Wd/OT+FjiV/n8j4W10f8qk+ANcHWMJ+DWS/
+BzhBPZrG/tVwH7J1B/oQ/UHvnAdm0N1DF5THYONXPe2U92DZ1T30Jv7xW/q
F7CI+gWocP38RPUT5lL9RHuut2+o3kIjqrc4mOuzlOpzTR+rzS5Tz2vs+mzP
/0/aD3D/Gkn9C3ypf8Eu7nePqN/BOep3YML9cQL1R9Ck/ljTZydSn4X11Geh
Ys67eVlTsrBnq9bDSjLy0K/B8JmNfJPw2De70OE7MvHHbcdLTzvno3KEcaSi
Ygo2nNR9t5xCLi7Pkr4p1czD0iHDC36MEn179DmznyjOUZbx1YE/s7DiR9rI
c9cv46fAD5vWZhbiHK3oRaX/9B3J2uzKQWQ3kLFrsb31v2hvI2PvxPa2Mvas
H7Em+ZaFOHiGWvtbK7IxV/r4/K1ri+D07gyHAqsCPGGm0a3Bmhy0DNh7cTU+
hvKZp8abv8/DsOb38/dcz0bDbMsFQ/XeQlzuwnszDYtw2/jy95qZ73CRTlqe
T1QyHHg76VSC6A+qqvXO7+ySj/XaDUsccj0Vuyk5Zn4RdjlN+zuHhH21tt61
qGupaHp+pOnXPxK8uFc9ZkjzfAzpGdTi4a5U/Cp3LfysueAJffL3tLZNRLlR
dXeVOqdAh6Erb1yZXoQhbz8ozt4Xhzlvx86NfJAO6xO+XanfIhO1H24da5qY
h1u2d9oSXl/wgWkqG2IMczB6znp154bZqKT6vWCRewbWzfxU9nOQFCcftJmm
c0/0X9cAtV7OqbBZfdKrY8K+Y9Fy63nCLl80daqXSyqU7FzTrOmgXAxdcVg3
8EUmpvu93vi5pQRjxlxXv7q7EOP1Dva27xuPWgY9N5zbLkFnmylz/cRz6i/u
OrPgfgyuSji+QFk8/2x4i0Rtz0JMad3tjPHgOLw28IPh/r0SNJn4tL5/ViGW
Zi9cZSP6e/3jn08+F/20YVijbd7iOdEFU+f6i+es1vv21Vg8R2Fn74rtoo65
z2zyfI7op+rOXmXznUSfvaA23EY8Z9P2Ly6rYqIxMf78Tbd4CdZnf43Z32L2
dxv7u5X9/VVI/h5+czrOWjynddkWo/3iOWN0OzS4JZ4TbtTm/B1hH1fsuLFT
fDQWHUkO8hD7vMr+NmR/LdnfhYE6Gz+J895eZ012Y+HXyg7Nw34J3jJ+YnKj
PGGfdVG+XuX34zbXr/tWXeSHMvv7lv21ZH/l2F8vGX9z+nftO1Psp1fk8OVN
xfP32r59aC322YD9HcX+Fsj4u479VWB81cZr2rmK52w/0uiOZuVzkl90/iH8
ckiXD/cS9mbbd5+MEPYW3T5c8Bf2G+zvr0Xk7xL2F5Xf3DkkKcQbrT37rRQ8
0Gvr/Ss3EyTYlP16xX4tYL+U2C9f9qvCifyKvuC7+aBRPi4eO7TfwLlBOOZe
xfGVJrm4MGno3rPzcvGnfGrDNWGPcNwZ/WsP3PJxXqyNJLQkH8+HuAavy3+N
usujZuxakgPd1a7Xa34nFxPPfnk1YrQfenp6WURPyId5qh5t/SQ5uHeevveq
WIRW9uN0+xWL9/3Of/7gRA7azO8wSGWpH5isepm7dVwBzI23Gzx2VD4eH6qz
GTe+huSFHzdO6JmLyrx/D9o/1CFcMP+lS+MxDnmYdc6xrltyIJy/6ZiwpUUe
vOD4OFN8wJviA6ocH3+KD5hSfNCd41xGcYZZFGc8zbg0IVygGeECW//GF5QI
X2zP+O4kfMGW8IU8zp+ulD+wh/IHmnH+9Kf8gUTKH2zE/rqyv98JL5zI+WxK
+QzWlM9Qn/1KYL+s2K8r7FcTOi9gzX5Vn5c2dF5gNZ0XCOZz153OHfymcwdb
ZPytz/7u4/OrS+cXJtD5Fbqb6sMxqg+QQvUBGrG/Y9nfVPa3Aft7n/39yf7O
5HpVTPUK6lC9gmbs72X2dwv7W31eohnHbezvKa6HeVQP4SbVQ4jguppJdRW6
UF0FG/bXkv2toHqFH7k+v6H6DIlUn2Ey1/8Yqv/ws0VV/Qdl9teQ/S1hfzW5
v0RQf4E06i9ow/2lPfUX2ET9BTpzX6tLfQ2WUV+D39y/kPoXfDOq6l+YzH3T
gvommFLfxIncB92pD8Jd6oNwiPnJL+InoEL8BPZwn21PfRY+t63qs9DEjPr1
ferXMI36NW7j/u5J/R3WU3/HB8wHrIgPwDHiA/iNeYsp8YcanlZtn1GLXXZ9
I+YhA2XsXdne/F+0N5Oxn2c+pkx8DEb8rOJjoML8bTHxN1DSr+JvID+XeGAX
4oEQRDwQDCZs+z5qYjY2XLfj9+2+hXh7pvHCkbte4MZG7Vq1OZ6NMHlxWO/w
AnxvOjxo8JNAHONyfErvD9mYZqWmNql+IQZlnTj20Xo6HJle//5aobPbWLZb
vbl7Pj4P0pBXFjpif1KjlpHCHmxSsqqusG9VWrPsjLCPG1P6blXbbPx0++jy
0t75uDZI0aNPowTMeR44On5rDlp7mdgHzynAmRVPh1xf4wc9mq8IfSaXg4bG
V28s3FqAc6f+Wr7hxysws1WwyKmTjZum7fZ80KEQ1fc1/uK3JxiySw9HNd6e
hWXthkyyWFOIEzdO/bZDOQR6Gudmh1lnYfMnR747bShEuXQbnTj5EHjYvb1D
0eYsVD007VX8+kL0HLDxmJWwj/6VeDJR9L0mNu75zwR/s/Tp6tuosj4UOyxw
E/Z9e/JtPgr7B1vJyhRRH9Kn4lKPbVnop/wr7OXaQrziKx96XyEEFt8e5pol
7InH3n/yF/ZxruPGL5YLgflrC5ZdOpiJMZ5xOtM7FuC8Ian1bvVPhKLDX9+n
1pHg3Qz9scPq5qGDcqOflX+n7qO7Q+dMEc/YTA+l0G75uN0nXbOH0F+NQxtG
5Qi7fdDHsKMiznuC3j25fTEVb28KtrMQ+2xaOrpzuthno9NTtnmI/U+LDFNv
Ip5/4/vU0y3E889u3zzVVtQxXbPZIQ1+Z2ALOdusBkp5KL9AdX+qeO/bPMV1
TYX9UqSSQqW91dTjP5KFvU+Qa+maJAne2jZNr1wrHzfVD+gYKXTf5Kez5iW9
k+AiSdjmL8LuvPBh4zFin51URg2cIc5v/dh2l9265mOkT2nwamG31t7/fI/Y
z64DV+PyFPMw5XFi2iSxn0cN703oIycR+uNq+kBh7xN9ZOUJYbdacS5kuPD3
0KOZI5sKf5VdvTu+FM+5bD3/xxJhH+4b7/JaxCe90D7VVOjld23Ohi4R7x2e
Gb1up04+mq0/q9ZQ1M/ue0vLssV7zVfqhUpFHEZtNYu7IPrOq0XWw0/PlOC7
5OFHLB/nommRzu9BuRJYtrThxMkingGt17oriuf4Leh/arWIZ3nMxwylMgl2
HZyz+G1FHh6JO5u4ICYV95za6uvqJcFt/m6TRxzLxVjY+35OkAQKCzSMVk6S
YLO4mDHG53Nx6O36t963zoQ35lZdti6XYMvjTu3HrsnFXpOtzFUGZkLmyaBv
qlsycWjyhYLvb/PQ9Zn5TlBLxdmzd6kfjMzG9+7d9czGS9BoX06nw9rZ+OPh
h4AJPTPRZttOm1a5efj5hGO0jvA31v/izxe6uWjXSz3S3y8TQw98MVrVReRV
9Ju8253y0KbJ+aANXik4LlzTvsmeLOgn/0DHckEOLlHvXNzFLAHvRe17piCX
h0ffN8ysMMrBD9133jtgHouXi5R0CoTfmOt8eAbkYsjc+028RiXg5S7+q+ro
5sJHw+fOL5rm4lLHDmXrI2Jx6MT6d071yoPlC3qWtRTn8WFar0fJHUNxmeaF
L6ELClF7wK2nCw9l4bxdAz+t1A9FFac6wUUmhbB0Wqi+4c0sNNJ+3bCeagi+
dlJd0HVSIUqiRkzVuJuFxfLBtxVahmCP4bHhk8YUQsVys3HH92eh7vB6MY3F
+vUlu13Slxbi4x2LY/cfzEJ1J8Xxb1uF4LnYff1HLymEBbnXRk/ekYWXrjcP
XqkQgrk2r3NSVhdii4Z7+yjYZmFA193XzORCMHjXKzWFVYW4gtef5PUSWg9t
ef09Xv+S1oO617Jt9jaiDjy6cv22fMj/Ye+ro7Jem7VtUVAU7ASVUGwBBdHB
QAxUVMIGUbGwA2wxMRDBQGwUW1QwscYABZQu6c6HssX8bpl5cPOcl/Vuz3nP
+c76vvevvda1Zt/85hf3XOP9zHWhZ1FMLy2xH/Rk/D3jroRDWF+7BTVqZ4h+
/4pegf4TbNokMXxU8wKMY9yMcUXCIS1TvcWIQvGea7xugC3Owqelde9vVpHg
F8ZL1QnPJRzeDJn75ni9NPweO/n0Mw9/WPm2Z2l/HcE7GW8QR/gywkFzmL7/
uZ+pWC1EqUO/YH/oprD9no/gSTqMd2Ncg3AYueb9kofi+33VM/hwcKQ/qGka
PNEU/GMc43cZ70A4+G0drVBSIw0flVUvdAvxh5eTEyJv6kpwzk65ViV10tCj
jXupcpI/JPzorXOhj+grOP4OxwdQPCg+iD6yQsRP337X4lO8P7hUv2pcX1sC
/dSXXu7ZKQ0vvW1qPK9mAHy62mrzEnF/xk37fK2jShp2MJGsDP7uD2btGz5s
11ECd26476w3Pg3HaVzt07rQH7SCukxoWkeCdj4NVWuJ7+3E/JdD/PL9oa12
6eoz8hKYuXmU180LaXjG1v2y36UAeHuqfvcdLwpQa1Y37x6H0jCoRi0rZbcA
UDXvMH9QdAFMvVlYr/apLJy4OifasFkEBHYaM7JDUQ5eMB2B/cJEfSwo+/rj
VDhMPdTkk9mdXMgvMmk2LSAL9R+NL525PgbOtYoNexmXjVk7+zbJV8/B7lZO
/p2vJMJrg7yRuuszcPbL/q2GpWXi3IIyBzvnGHBO1O6kfzYHBvTPua8VlYnd
R2XGtBieBkZp6WqBKpkQx/vDBtofIJT2B/zO+9L7PeX7EmjQvoTVbtM+s4T2
GajpUr7PQJ1I2g/b0H4InrQfQibvY0D7GBykfQya5NN++C2yfD+ErrQf4k7e
P1fR/gkhtH/ic96f42h/Bt6f0Zb358e0P8ND2p/hENeFUVQX4CnVBdDg/d+O
9n/oTfs/Pue6c4DqDnwJK687GM91xIjqCADVEbCoXO/AheodLOQ6tZ/qFJSe
Ka9TsJvr3Saqd/CM6h2Gc509QnUW2lCdxU5cN2tR3YR4qpsgz3X/ENV9sKe6
D9pcl09TXQZ7qsvQmeu7EtV3qEv1vYIPeBEfAHfiA5jPPOQS8RA4TDwEr1Tm
FSBPvALkmRdtJV4E+cSL4A3zljjiLTCHeAtYV+Y/MI34D8rwJRhCfAlTK/Mr
OEj8Ch8zf1Mg/gaXib/h0Mr8DZYTf4N9zEvvEC8FZ+Kl0I/5oRzxQ6hG/BBz
mU+WEp8EK+KTOIb55xrin9Ce+Cd2Z746iPgqmBFfxXTmtw7Eb8GI+C0OZl6d
RrwaXmSW82o0YZ5cSjwZFhBPhsXMz4cQP4dM4ufgzjxcjng4hBMPBz3m+YrE
8+Ek8XyYfPZ23XXi/tw+27RXHcFnpo9a3fTXfJbTqYTWMwWe8t52apngjS6n
2vW0+uUHHa69p/bSNFSzzxu07HsuHi7u0LXIJwHnXuruu/h7LA7QjtF+f6EI
Tdz21f2YcR8LlQZca/06Cj3WDy0aYFeM/Y7ZLr1/3hoXu7YLWBYehWk/pqzc
uFDgdd9dyX05EbpaLredcD4aN+5NSmw0ohjHyynZHIl3gjrL9s979zwOXw76
cOjL1SI0GnOte/WiMzBN63ihkkcidq7t7OXlW4jT5GynJk7wgyYz3XpZrMhA
L5OILs+W5+PJm5MeLEx9AQ1Lvy2UE/ti9ULDVkNEXVc4e9t1X61A8Kpec+ot
UX9tTfb2CBX9QlT1adkKdUVfMLxs43WndLS8btj1Vbs8vL+238rUvnEgfyTV
7GTNdLR44J5ed24u5tgtqdVxQiJoe3wZcVHsH02jXFqeEfz26ctobQVxP4dF
TM6+JvCxKSveOAt8+GN79UECH7sf2rYX39OPC+mhWwQ+cc1kx6mCr3ok9Pvu
Jr67Scc2D7gleOmwXYbG3QXfTh89ddWs76l4acHW868FDx+669jVLoKvDg9Y
0Unx13v+Y2JnXbFOSOMfdh0FHw52mVdDRazf6lvmkT1quXikzcYDb84n4VAd
VcMmYh/4nl+39VK5HNyztyC6hlhnjU/JNv+vqVjfcXb9FmJ9gyY1rxWKv9t+
lrneCLG+fae3jR3Fe7LXN/h9lrjOrMMNw5Ji0tAgu/vDLZ1y0aPh28GOp5Ow
jqJh3RSRr0f7/c+6ir+r3uhqs6cXk3CtsU70dbF+ut0VpbZi/Vid+StKxPrP
kpeqSEReUXd9X02pk4PTPdXmJwt8sXbmMv8fqXi//cuWswRu3/5YvwUCX9sl
e1e4uJ6Ja+dZ3hXv5zRbOf2e4v2MiKyx20HgNqreCjkC93nuNPQXPz/gs6f8
3yMf3HJxKxL9iOqT7g33iOuM26s5G8TfrascOuuYuB61g98G7hb3QW2msZ92
rTQ8mp8xYbHgu7b2mGUanQZblgzP+uW76PdNKTFI3Ge9oqRwJXGfkwb3yxoo
cKVLdu9eC7xvWlznH6LP7aKQ6CmeG35Y7fxlp8Av/Ryo0EnctxVjb2SerJ2G
nc/tSHj3Mxuzg1Qn5Ir1o67iDAvx3A3VBzrWF8993aQ384xFvyMZZL9cV+Al
Z2wfzhd90CT14GhdEX+i502Xam2SMN8hd3R/00wcuiAnc86obPw83KVY8VYs
Xstxbn1MNRWPqR2MCd8jvoNJrQJ18xOw+YlsNYMNGTj51PWklzNy4PKRDQZP
IBbHLRyz7cKOFDRZ86Hxpeh8SHJUrfX8exSOiP92VmlOIn5rfq12WAcJGgTe
KuxSFoWmKmohr60TcWHx5G76ahLw1Q4z+BodhSE+E6JX9kzEdw5X+/0QfG+S
soGXwbZotLFQ29W0RiJOdCsYGSfW8eP4dI4voniYx/ELOH4CxcOQD+rtZq+I
xamZnj6dtF5j07KOWqELJGjC+FXGqxMOTmPN3ySbxGNc8npHpW+xGPo12u9B
AwleG/L0wM2QRAycb9vM8UwMRntc8Pl5uwAvcrxWCsXfoHgIlIkPoXi42mXK
wfapgjfO8t1xSy0U1cZ+nKiuUoBejHdhXItw2PPocnK8QwauPje2RKl2IPYr
G+FstCgf9zG+jnEdwmFX+4ilBWIfM5evXu1B6Qt8FGThPGFZPhq55o5f10Xs
b8N7pW1bHoDxnufGhgbn416On8Tx9ykexnK8D8dHUjzM1dAzfjMyHYuCjTZM
XrIIUvMadXxaWICLGX/4nPAEwiFohsFDRUjDd7c2FnS79AxWWyba7xf8OYrx
L4wvJRx+zotu00nw85+J1fYOCPMHX48Vkc37/vo9OeEqSYR7Ew6q615s7S7e
cyPJ69HVXvpDtf75R5aJ/qKF3NdzbsWpOHfFlB969/3hzo4pBxcMlKA6x0/l
+G/65fGgxPGjOf4exYPvp2GvT4nvPfTz2ZaJok9ZfuKBymA9Cd5k3I/xFYRD
RIvjeyaL9cvWt24VIPqLmH4HUnXF9YQwrryB8DjC4eH+YzHpAtcyQw9TcT3Z
k05Pri3iHzOuWBmH6yn35Y8LntnSxb7f5FB/+NLWWGWZuD9ujHdnvH67chy6
v96g7ilwL/uShYMFbnJ5bPwSEf9W2ShonlEqalipXXnQPAAafSupmT1fgo05
/j7HT6V4qNaE4udyfD2Kh+OHza587Z+EnsFNj91RjoLWo5YsndxMgpcY92W8
KeFg5D6xg1FwHL6PiPFqLp8CI2M00pt45uPn6f7uSzzjMFY1dPpgixRYtLz7
UusD+Vi0MupN69A4LGq5pl3HhilQ8/zV3iYn82FGbEuNs2fjcGKdGn06T06B
md86zwO3fNBv06LH8rOvsXPjXgUjC9NA7+XhIcF98vB55wdZzZvEo/vTRR/H
aKdDS6Xum5tlCX7U583xPa2SUAvl4y6Oy4RSm13tD43MxnzeP0tp/4QptH9i
E8fVt1YOTMbLTfSxS8ssSN/Yqka6RhYk837emPZz6Ef7OYTz/mxE+zPw/oxL
eT/vTfs5pNJ+jppcR05QHYFpVEewY+W6AHepLkAk16/ZVL/gPNUv2boD/aju
wAeuXx+UyusXdKf6hQ5cN32obsJGqpt4kuvgDaqD0IHqIEjruB7VcbhAdRw2
cp2dTHUWjKnOwkuu12FUr8Ga6jVu4/qeRfUdQqi+43bmFQ2IV0Bv4hVYn3mC
O/EE6Eg8AcKYt7Qm3gL7iLdAG+Yhq4mHwD7iIWDEfOYb8RlwJj6D8cyXrhFf
AiC+hMbMl5SJL8Fj4ktgxDxtNPE0GEM8DfYzH5tKfAyMiY9hXeaBlsQDIZ94
IJowr6t+sZzXgTnxOnBhXp1MvBq2E6+u4I1NiDdCEPHGCv5pQfwTkPgnnmO+
Oov4KsQTX0VF5rc1iN/CZ69yfosazIfdiQ/DKuLDeI/5sxLxZygl/owWzLfv
E9+Gk8S3cSvz8yXEz+FjvXJ+jiHM58OJz4MG8Xkcr0z834n4Pwwn/g+3uV/o
Sv0C3KN+AXZwf6FA/QUkUX8BNtynXKc+BaZRnwKOxz62GtUvDYctb/F9yro8
TGj4uShuTjw6SbKe9xbfmZPeEK9cwQOTSlt3/aVjsF0usvviI4noccPD9niz
Qjy0+t1y5xvBaD/09fmrB2Kwz8yETvNaF2P04tIn9Wt7ossUdUUHvyjssCly
2IClxRW/J/lTfDvjHf8mvo3xTn8zXgvmZ9x+Eo0D67T/4TekGNWP3x+jFOsG
CjrT6yV9i8bdQ2tKbisWY/6FUa69dvmB14HYHy3totA78W7mSItCTLK5aa+7
JRbkp8X2lXSOxPqSZIOGygV4cNdkz5yuaYCzJlornYjEo2Z2k498z8cTAZvH
zOueBgrvCh1/1k/HXUkfLn3KycECjQW7phQkod2b3Ai7uul4p6vTpYKCHLRT
/BEwOCcJvyyMsT8hnmPw8VwrPdFH5L6puamW6IMWubd+fdkxAZ+mrdQ6/S1X
7K8fQq9sS4NRq6+HeUxLxQdLHqorr8/BJjdq56/flAbj1G51Hya+r2PXR0xd
Ini18sQYDxDPN125qYea2MfCrkRK/EXfMcLeZp+q4P/he5SHZUWm4vM+p0Le
q+dg8TjwnPsgDVS/Lj64XtRHtzt9eqwRfLvf0I42xwT/7+q2yrCXuM4rR/YF
uIrrdLOdYpwr1r+hPXpMkfhOn2h6XTfunItHi6ettBQ8P+DzEsMO4u+Oaj6p
2yPxd7Os9gGIv2vxOVtzn1i/2nizWSvE+kV6iiPdxPo93zvqLBL7kubiyCv9
BT5lWVbqL3/hNSv2Ky4Q+1j0NZVWGQJ/8mLhwD4Cv9vIafwzcT22tZe5fBXX
0+nnp9F6v+a777UNdBTvuWGfmU8LxXvul2AXkC36kaBRozS/iPtzQfe82kRx
fxpvevw0R8Tv993atsPPVDxjt0juq1h/Q9JXg0DRTwWM9tFaJvDT6SHJHqLP
GtD6qXakuM4LpjHXQsISUa9QftrCmZk4yfyk+efx2XiglquGsmsCnlb6Othy
Rwbucgqq5bIiBzdGJnebJq5zzYdPiwaK68QXqhecxfNtoaq6c7FYf9fGpEUu
Yv3Q9nrt08X6jTVvbOw4OBG7PPFy69ojA0+3bzV1z44c6LAu+NMw1QQct02i
sdo2HSPMJra5sCoXMs1GJu38HIVLRq/aO0V8xwdamK/wF/xELjdEUfNdFI58
3jUlzCUR7+uo6C9tJQHDhy6LdP2jsPFZk7GXdRKx53iP6w8F3+v8fuT0IQL/
2ePomI56iVi2s92cZMHTTDi+Ocd3pXgAjq/Rk+LfUzy0LD78tf2zKNy3wE/p
Td9EPGh7K266WL+oiPDZjF8gHPK6LVfXFXhqRovGY3UTse2hvOHPRLxv74Tv
8c+jMHr/j2dLRfzAcb1XRYjrWcfxoRyvQ/GwiONTON6Y4qG+3M5jLoFReHz0
OvPkfoloca1ISUOs86Mu4fsZn0I4zHh0sMRI4EMHpUw6L9apf9v5vaOIhwf1
Vwx/EYXHxkvaocDlSz4rXhK4FccP4Xh5iodhHH+W4+UoHi7OxSt75aKx166r
dyLaiOvRqu6wrI/Il/EJjI8iHGb3zN1p1Dwaf06uft2kdSI+exR4v00vCc4f
NL/X3ZQYHNp18YR7R+LxrtPTHUt1JTid45WnUPxjioehHG/A8c8oHl503HV8
qVoClhW32eG6JhA/G+3f0s+lEP0Yr1FC+FfCwe+kp7L8vhTcOvd5r16SO9Ap
5+XLx+8l6MO4E+PqhIPNrUm7lwre1XTS+Nd5/v5QgFpLRovnO5Hx5owXEQ7R
TrNnBr9LxbfhtT/0EH1Q3LoNq0r7S1CKJzAeTzj4Dx3+eq3gIQfnqjV/L3D3
2evc5cRziWJ8G+P7CIfxfT0/P89PxVYTF99aI/qgos7zWoaDBHsy7m1J+HfC
4fbrjfWmi76p/ebND789Fn3KBN9IbdFnyRtats76koqbCxp03y76l63rfJ7X
1ZfgEY5PdKT4NxQPn4DiT3K8E8XDdq9Gr+eJ+7Clo0fmY9FnmexxniAn7o8r
42sYH0k43I71OZP9SfDGDiq3T4b7g+lVx2WXxN/9wnhHxvsTDmYHX1V73CAF
O9TRieqkEQ7WxntK/ZUkOI3x3oxPIRxmRF3d2skhAVM8jObvrh4PTSUXn0Wb
FqBvc6XPxhNfo19IP5jeIBkmv2s263FgPlpzfGrleLjI8bc4fjrFQ9AlG6Op
ybF4pTShq8+aVCg1dJixdG4+ul8hfGsJ4ZmEg45zkXWHlFh8On1TNSeBnz7g
4TJOxGv572swNjYWy3YlvhuyKBWcFHcYpS7MRzkXij83jeLdKB6k8cq7KX4T
xcOozPvz6iTE4vHD1eyHCtzHyHZxPbGOQ2bjdZ5vY3F7n89LN59NhUlL326Z
YJGPB6Zc14wU8VfkloW3WZwKrasHBB4WfPPF3GNppz7FYvXartWWXEuF1LD0
Qc3H58OlkiVZ704mollEpFrNpRkwx2G4Xap2DlZf/ryZws9EfFstbEb8lkyY
mv3y4GO1bEhY9z67lYPoKweXHOpdNxNq3gsctGJRNnbgerGZ6gVEU73AYK5T
J6lOwUCqU7iN685SqjvwiuoOWHF9NKD6CFwfId9BcdXjj0lo08LG6k33LFCN
zY2q1jULjnB9PEv1EVZRfcQtXJdfU12Gu1SXMZTr7DmqsyBHdRb8KvME2Ek8
Afy4jltTHQcdquPQg/mABvEBmEZ8oII/fB1Xzh/gHfEH7MC8ZS/xFjAg3oLB
zEOMiIdAIfEQyGFe9JJ4EZgSL4I+zHMuEs8B5jkQzHwpmPgSFBFfQkPmY4+I
j0Ez4mM4lvnYceJjwHwMWpUSD5zdrZwHgk2jch4Iy5nvPSO+B4bE97CAeeZ8
4pmQQTwTPzNvfEK8ERTelvNG2Mo8fyXxfOjwppzng/cb4qWQXM5LIVOznJeC
DvPb1wXl/Bbiid+iB/Phm8SH4TnxYSzVJv7sSvwZzhN/xobMt4cQ34bbx8r5
Ni5mfq5B/Lzi91r/KnwO45p/E7etAh/O/U5/6nfgNPU7YM39kRf1R7CM+iNY
y32WEfVZUER9Fmi46Z+d1z8WZz3+oL04VoIvas6u6z8nFp29hrpPvZKAJz80
dgy2zkfPJhcSli5KwpFWT7svHBSFeuPHmAWPK8Z7XYIW73x8Hw/tDDa50jcK
FcNh3NOtxTjvS+CjNlqu6KVosOiu4Bszv7YJfLbod79z9l+EV7X+n+LKa/Zc
+jk3Els/7nLB8Ewx6q1xXev/4DCE6Z1yHmkZhJJQkDd4XYwjuk3TbvvyOXS9
+LVsc+4N3LDSQmevUxGOeN1e7qnqa1ixNO+ry9iD6LTuolOPR4VYu23SgwMt
k8BsYujQVe/icFvR0Jv3NPLxsEnd40FrU9HNZVbsYrnXaBSts3myZj7u6PIl
NmheKtZx6OvYt04iHu0bcc8uJg/rZe2Jl/+ajKPUBt68e3k1qtxTqqEi1h/Y
dNHkrqpJFe9Fq2Yq1dqeKMSzd0+uG37mN670um96I4FbRJuUOAi81v55T2cm
JuDs4deG/vDLwzV2Zxw01qbgSc3GmRfSE7Dmzx55/a/noeunuxK9gykIhsdc
tSbGoraXkfWXHfk4bIPpKqMVqfjMo0vGkMZ2WHuhhvWn/YW4U9NOf/3LJCgr
yjs7LdMZW4yY8vT42kJs5+eY8lgjGVy/+n4NengKZ+o4Lboh+tYZM7/Jdz6f
DB39oka4dhV16qC12asD+bj/042TK8R9cFuy6GmpRgp2nNriVRuFPDTs2X1Y
973JaNi/Tz2twitYohkXJBlZiEpbvRecvpoMy03hR5fetzBZ9+NFF4NCLHC7
F+bhlQyXvBJtf7Z6hKtXKnloOUnQcVO+Xv2HqXB1W9nQZk6x+EoypVa9Ofm4
xdXFYsWDVGycO3rXLJdYjP7c4mVzUUcV0yc4jSxKxc4GExVLuqbgnYPRAXfr
5OHge6aWx44kYxuLOOMFXwJw5pyWlt6xBfjdxNb2+s40MGzQs8Vyq1BM0F9R
OiulANW2ZgSvG5oKJhmuD+U0RN9hHuQ6pV4BbistdhuUkwrGO4xrr3SNwtxT
g4p6y2djafWQixPkcvDiYUnGT+UI3FHk/HHHj2SMf/LF2+1tARZlqL7wuRaJ
Rt/09/dLz0Kba8pubtY5cKnRiem6tSMwPvHrTNcvydgz8ueqmh8LoFHq4KeR
wVGo796oepp+Ii4bNbDVgF+/51H0Lnwh8KJJTR/FCHz/qUNnBvWVwEQLvfsr
BB4WENV7u8C7NbxzYZaIl39Z8DhQ9AsLFBuM3iz6mriRk9+k/9LF4/gYju9K
8aDI8es5PoLioe/Nrh/aiO/x6KQkQ+v+idjZsYnKUbG+QUScQZKIr6bWsUe0
wM09LmTsFLgpx7txvDrFgynHv+9UKR7cD1uf+Sr6rANPhte7K/q+3l/kAvXE
de5jfA/juoQDzn70oUCs02jB+h/TxPWP+HEpJEv8XTP1+Yf0xd8dOf/SisOi
/4qJM35k/OscgeO7crwhxcMcjp/F8cEUD4NVBw8rFfFPlU+c1RX4xut2vgvF
OhsYj2B8KeGQFO7WK+Sr6Ae9xuVNmpeINr7zbx3uIME+Y/J0475E4SbziPU+
AteZPiH1msAfJVL8tpMUf9mnPB4yJlK8lSnF75xWHg+jlzX4ckD0xSUt81o+
E8+l5mWd47aCzw9nvLgyXpV+RZU6P1Xgf6qP+afr/Dv+Pxlfq2WBabP5Kbjh
WLGr0qsQWL//Ze+f6lXrOFW1Tg1ex5bX2UjrQGHyk1mGjhGoe9Q5b269JHjk
MMDrg60ECxjvzTgSDsOHzp8Y/ykSzaynb/9QkgpNTg2bVUuxANMft0tu/TMS
u9yQC95Y69c8iblF9ToFOJnjH1tR/ACKh7ccn+pL8acpHlzeD7+QMSwU+2q2
vbx4YRoEqj1TjZtdgMj4YMYfEQ4/ljRoM8IiFI9Yr+6SOjMN3Cf0f+E9vwB7
5xn4WU4LwSzV2HnvjdKgh6KPwsW9Bdh0KcWf43gXigdVjs/g+F4UD9lnFvbf
nRqJLsenBbf6KvrEWfilRqMCPNpgeauQnEg8N952XeP6aTB675QvP0W+Nb0o
vuwYxftQPNzh+Ekcb0/xsIHz6s15hXC+PowPZPwp51vE+e7h6/fkfB3vtRlW
420I6s95Zq17JQ0Wu9XYs3xoATbmfI9x/AHO98vqc9c1Goeiq/LKT3OupsHM
iBNrYgwF3k6nT8LoSBylcGD0gRnZ0CBQrb/3l2wcXbk+AtdH7Krj0HFS9yg8
Y3Dz04jd2bA7u3XnGZ7Z0IjrdRTVa+B6DcD1N5HqL3Sg+ovqXK/nUb2Gt1Sv
MZB5wmbiCWBDPAE7cN2/SXUfTKnuwy7mJyrET2As8RPwrswrgHkFrGd+kkj8
BIqJn+BA5jMS4jOgSnwGNzBfmkN8CSyIL2Fn5kvXiC/BLuJL4Mn8rRbxN9hG
/A2uMx9rSXwMWhIfw0jmbzWJv4Eb8beK77oO8UZwIt6IeswDexMPBFPigeDM
PHYE8VhwJB4LdZhnziKeCQ7EMyv2JWXiq/CI+CqWdSJ+24P4LdQkfos2zKtP
EK8G7zblvBrbME821CvnybA5pZwnw0HuXzp+Ku9fQFuxvH+BkczDdxMPBxfi
4dCE+fw24vOgSXwevZj/FxH/hzHE/7F0NfULqtQvwEeH8n5B8BvqL+ZTf1GR
5z/D5/1h/J+uI4uv435Nmfo16FBW3q/BMO7v+lF/BzW1yvs7UOM+0Zb6RHhC
fSIoLwvI0uvoh5P6zL1Ra00JDtIo83834RnuVbUu1DH0xlFxW1R7bC5BXyfn
mMK2AdjWbFOu26DnaHNkStMGtiX4fr26TeD8W6gCRna3dcLRZUP/a9eKi1HL
d8Heau5n8BPcjFqXHonb1u7Zct6tGN/svbOjd73dOGDBrBouFwTfk/dq8nF5
MZalrjR5dXQKrh+S7bvYMwqHX2n8qeXKYjw24I5P6/wZ4J13/+CPyWGof8nd
eldCMdptf7HumcI9SDt9cdrUCY/wXIDZgIxqxXi6pmLfMEk0aFxrsCxG+zym
lJwPdw8uxOFxnyWKgYkV9++j55b3dxwlGFt0ZVTDyWkV38v8ta3d2gl80J7B
wxpN+Y27S3ptmxRZhG0OPLd204lDa5O7DQu1J2HU6L7qs5eWYH21FLWRL17g
5R01Tpzydkez+qmx3i4lmHe5SSvjAn9cobLrhK7afry8x7WFU1QhLopzk9d8
9vt6hgd2uL7zZCGODd/f8NDx331fjN8sbOdZiN+mvNhs6P4b3zkxLH+/4J33
PNvG3478fZ2dnwc8DNeX4MllOxc1D/uN34rf4HpOrF8rv92mDn9ZvyX3m+eq
6Dcncr8pxUu++KZUF3/XrF7/9meifq9fV0Gy4td85MxzfnVmRP/Ge3jPbqAl
+KiC3q1BTyN+4yrab632ietZv3756LV/uZ7h1/YfzBN/t+CLmWOrU7/xCc3N
5z4W+LKutt3u/wWvueCd71cdCX5sYJiaF/t7/amOux9ZCbzaNv/YrLjfeKG5
y7V74voVDmW3dvjLfVv+vNaEFeJ6NloYOkn+cj0mmoNHnhf4g63hx9r/Bd96
f+HqauK5JNzo9szvL8/l+b7ihdYiX+f+WxMX/CXftSNava1WWIBrr+8P6WeS
XoFf2ul9ab5Y/5Zkr5bSid/rqCc/L8gW+X54qtxV7S/53j3lm9vNoRAtvg2+
8r1fcgVudUUzUWdFLiY2WBvz0z+7Yv27w9+kJ+3JRGWfi4tszPMrcGtXxadb
3fKw6cFAm+sbsyrWmb1V0VZxfyY6e7tlHDbNB2PPHtMXj3DGcX4W9j2UMlGj
iYJOT5983Drb0vvD8qv4Q/ORyZLRGejtqt2qZfcCrHuK4s05vhPFQ1+Ol+tM
8RcoHuw8X506POwRetsmrNsYl44evaBxx1EF+GmqaUHxnBc4Md4z4NX+NFS7
MOOQ8sMCHMbx1zj+MMVDLMeP43gtiod5WZdWLT4XjteMrEaq2Kfgkk5DTqSm
F+Asxh8xbkc4aMh10e7oEYGWp79dj3ibjE6GHpkz0wrQJP/Aa5gbhc38W/Z+
vCER7Q++khSK970zxy/g+M0UDxM5vi3HL6d4cDg4r+EuP9Gvhe8NWDgiERve
nzvsvq4EB/QKmLFK4DNHz3WdK/CYL186PRb4Ao7Xi6D4n/fK40GD4y9wfCDF
Q/TLar0XiL5Yrq9n3pS+iXjIQlnhl244Mv5Dl/BjhP+7H/x3/P+qeK/aT6dh
ZBpMCGl/bm/V+sMgG29G8b//3R3O7w7xF/2a9rMPGoN+r3NgIOGNdMrx3/Pc
iz2DdAPSYP/GPtq5hr/jaw0c1C741+/R4770Uv+LTviTRRTfYlN5/O+6yfFt
KP73v+uqz74XHpYGFx52mThd//c6+/j6rWTy7c7xxygeqoivwDtzvrdk8rXk
fHVl8p3E+frJ5PttAF1/Z5l8t3C+A2XyVeB8VWTylefr95HJd9Zu/VU766fD
gtG7d/s3/YvuOsd7yeQ7cNn10Ra10mFcUKL6pZa/8Yjz2ZqrXHNh+/Ok+ePO
/qXeUX0Ero8V+KaGz/tOmpUDmTN7+gxNyqlYh+sycF2Wrb/A9Ve2XsNNqtcV
uBPxAQgmPlCBMx+AvcQHKtafRvwEmJ9U4KOJb8A94hsV6ywhfgJ7iJ9U4BbE
i2Au8aIK/A3xHKhNPKdi/UbE08CceFoF/mN+OY+C78SjKvARxMcgh/hYxfrt
iL/BVuJv/6Hf3MH9phTvRjwQFIkHVqzflfgqeBBfrcALiWeCJfHMKvtNKe5P
/BaC88r5bQWeR/wZrhF/rsD3En8GX+LPv/nP+nL+D0VO5fy/Ah9H/By0iJ+j
iyrx+dPE52Ev8Xm8xX3Ha+o7YAb1HXhvF/UFptQXgPaV8r4AXnSgPmsI9Vkw
cmd5nwX3zam/iKT+AtpQf/F7H6B+BID6kQr8zZnyvgY2F5T3NZBeuT+Cc9Qf
oUw/BWuon8KNlfsvcKH+C4H7tXfUr8FX6tfgY+X+DrKov4P2lftB6EH9ILSp
3D9CKfWPoFC5D4XB1IdW5GWsojNz66ISdP5q/EmpVmDFc5zaAHuOW1iCmd+X
Dldv+xsfbxHSvN7iEuxWo+N6nbIXuPH0ZHSqtsNgvGHWzVmin537MWWIltlz
zGwypq5+g0sGajPu6Op4luCSe43mr5j/DKuf1DbsqXvfwO7zbOuwzBJUaZ7n
2qXfLSzYc0bjWFc/A4/OuZMvR5bgIxWNJ6+z7kGMDc7tXsvT4Pj7utb2LYsx
+1RLX7gXAwOL+mTXqDbZwCvUTuXH6UJU3xzfDV3+ct733d5RcrQQ3Y+jtvyV
37i0P437w/60FfenUtyU74MJ3wcpfqln3SWx4r5ZpM/qN0Lp933LbPt2yQPR
d3jci6r38i99R1X9aTT3pz9l+lOnKvpTTe5PT/1hf1rVeejkKvrT8TL9qRz3
pzYy/Wl37k8byPSn7bk/3STTn/J+iPky/akZ96dLZPrT2tyfvpXpT624P/22
tXJ/KuH+tKFMf7qM+9PN/8P96UXuT+/+zf7Uj/tTc5n+dDr3p8ky/el97k8b
yfSnVtyfNpfpT+dxf7qL+1Mp/vac1pO4+ZnYxLKs2cbFv9fpm6VR3WhRJn6L
GlQv3e43LhNfsc4gjv9A8RV4/vfPnZeI+Cm5I7qE/mV9k4T8NHm7TOxhLx+1
f9FvvIjjJ1F8xTrDOF6H4ivwZRNNr2UL3DR2uH3RwnxsF62hVr3GYYMNc/bM
LPuQgZYHuk9WfvF7/Z0cDxQP0vh9HD+S4uHx1peXbyo4PQDz03LPPmdg2m7V
3nUC8jGiZ3ujbc1OGcz46Ojp45uOUUny95UvFmCs945lDnKbHphxfATFgzR+
Jcc/p3gYCNvXzuj51CAm5GR1lV4p6G339qhm30IcwPgTxn0J/9N+4U/7iP/r
/cu/4//fjv/P9qcT/mZ/evCf9KcHZPq1mlX0p4//m/vTHhx/VKZfc+F4a5l8
h3G+p2XyXcn5dpTJ14HzPf83+9PTnK/W3+xPFaroT2dW0Z+q/mF/Gs796Q6Z
/tSviv50PfenWf/F/pTrNdytoj8N+pv9KfMTYH4iyzf+Q3+6mPvTfTL9qSX3
p7Nl+tMS7k/ryvSnjbk/nSDTn1YnHgVlMv3pSO5Ps6roT3fI9Ke1uT/dJdOf
duX+tLFMf6rF/elRmf60iPtTC5n+tMk/6U+DquhPfWX6U+c/7E9NuT/txv2p
FI8nPg8PiM9X4E2o7wAf6jt+72/UF0Ai9QUV64+jPgue/yjvs37/XeovgPuL
Clzanw6Q6U9LuT/dwv3ptsJb1WtWm2Jwmvoj6Er9EZbeiLdaWOu0wTHqpyCP
+in0NKzzcVb3e9L+Cy5R/yXbr0FH6tcgi/s7dervYAH1dzB636iQzdW2S/tB
mE/9YMV1cv8IXWXy4j4U9lAfCirUt4L0/BT4/PQ0nZ+C9Pz0Op+fqlP/C9Lz
0zw+P1Wjfhmk56fN+Pz0C/XXID0/fcrnpwOpHwfuxzEvhc5PuX8H6flpfz4/
vUH9PkjPT6fy+WkR/fsAnOfz0xN8fqpH/44ByXx+avKH56eGVfSnbbk/XUbn
pyA9P1Xg89PHdH4Ksuenu+j8FC7y+enSPzw//fqH56cnquhPa/5hf2r+33x+
uraK81PZ/lR6frpUpj+twf3pp/9l56d7ZfrTNf+i81Npf2r2N89P/f7J+WmT
f3J+OpnOT0F6fqrJ56cH6TwUvvP56VU+P21F56dgxvFqfH46jOPrypyfbqTz
ULjM56FH+Py05rTy81Aw5/NQdT4/ncHxV2XOT/Po/BRMZc5PF9E5KZzkc9IV
fH46l3HpuepSPj8dS+ee0JTPPVfxOak+nZOCIZ+T7uZz1f6MT2B8O5+fWvE6
bXidZXx+upnOQ6GIz08b8PnpCDoPBRs+D43i89M5HN9X5vy0Fcdf5PhgPj+N
oHNSqCdzfurLeDXGT/z7/PTf8f8L4/+n+lPFv3l+WlV/+t99flpVf1rV+Wkn
zveuTL7jOd9+Mvmac74P/mZ/uoHzNZTJV/7/0vlpZBXnp1X1p//q89Nb/8Xz
06lVnJ9W1Z9Kz0/3VnF+OkemPy3l/rTO3zw//c7npz//8Px0WxXnp07/ovPT
iVWcn+LfPD/N5/70ahX96Y3/5PnpeTo/Ben5qQufnwZx3yE9P7Xm89PHdH4K
0vPTHnx+mkDnpyA9PzXm81MNOj8F6flpW5nzU1fuTwf+k/PTgsr9EXjy+alP
5X4K5vL56abK/Rf0r3x+Ku3X4DP1ayDT34EPn5/K9IPQis9P1Sr3j5DF56dt
K/ehwH0ouNHvqMGT50AP8BxoH/o9MMzgudFAnhsdS78fBv79MHrzfOhh+r0x
SOdDrXg+9Bz9Phlk5zH/FD9bBe71h/iZKvAmNB8K0vlQVZ4PjaHfh4N0PnQQ
z4fq0+/JYSPPhxrzfKgL/Y4dpPOhdXg+dCr9Lh228nzoIZ4PPUq/q4ehPB+6
jedD5el373CM50Or8XzoApoPBel8KMjMh/6z3+tacr/ZnH63DzN4PpR/t4/X
ab4Afvyg+VAXng81prkA6MPzoUY8H1pM8wUgnQ/dxfOhDYvL5xFAOh+qwvOh
njTvANL5UBueD3WnOQtQ5TnQwTwHqklzEODNc6N7eW50Ac1TgHQ+VJnnQ51p
/gKk86F5PB8aTHMf4MDzoVt4PjSA5jjAn+dDd/F8qAbNm8BLng9txvOhPWlO
BG7wfOgwng/tTvMmYMPzoT94PtSM5lNAOh/K8ylgTvMvsJfnQ3fyfOgYmg+F
HJ4PLeH50Cs0HwpOPB/6mudDC2g+FAbzfOgsng+9QPOhkCgzH6pI86EwmOdD
l/B8qBnNh8J7ng915flQnuuERTzXGcNzoJY0BwpxPAeqxXOj5ownM96F50Ob
8DobeJ1wng/Vo3lPkM6HavJ86ACa94TqMvOhJhx/UGY+dAzHf5KZD/WgOVDY
LzMfeoDx3TLzoU9o3hNa8rynMc+HTqZ5TxjL854RPB8azPF9OH4gz4fO4vj5
HB/E86HjaA4UpPOh63g+1J7xV4wv5/nQ2zQfCniW5j1VeD60Js2HwmkLmvd8
T/Oe6EzzoeB1iuIX8HyoL82HwuZxFD+c50ONaA4U3vAcaC2eDx3MuHRutPa/
50P/v47neU9YwfOeG3hutDrjUxnfxHOgVa1fTHOg0KvyHCh+ZLxb5blRMKJ5
TzDl+dCmPB+aSvOeoMnzoQ48H2rD8Y9k5kPLOD6J50PP8HyoB81Fgux8aCDj
svOh1Wj+EY7y/OMhnpfUpHlPyJaZD23G8ec5fi/PS2pxfGbleMig+VBw5vnQ
nTwf6kHznnBWZj60Ps2HwmeeD73O86GPON5SZj50B+fVh/N6yfk+ZFw6H/qE
831L86Hgwtd/kvN1pvlQMOD50IU8H9qC8z0hMx9aY035fChI50NteD60Zvvy
+VAw5vnQhjwfKlMfYRfPh/al+VDw5PnQPTwfKq3Xr3g+tAXPh5py/ZXOh7bn
+dB+XK/n8nzoO54PLWWe4MjzobN4PrQL1/1rPB86kedDXZm3tOX5UHOeD5Xh
FcC8Ag4zP5HOh5bwfKiUz0jnQzvyfOgx5ku2PB9qyfOh6syLfHg+dDvPh/oy
f6vO86E7eD6U9TpAdj70E/M36XyoaxXzodu43xxRmQcC80A4wjx2OM+HOvB8
qJRnWvN8qL3MfKj0PPQh95utmN/25PnQ6jwfup55tXQ+9ArPh3pw/6LGc6Bq
PAeqyvx5MM+Nrua5UXPm4bt4PnQXz4eqMJ/fzvOhnXg+1Jv5v3Q+dBjPh76h
+VBQ4fnQ+MrzoVDFnGaVeBXznv8BX/eH8Ruq+Ls8HwrS+dDWPB9qXLm/gzfU
34EW94OsIwTI86E7Sd8JdrCOazLruG4hPSIYwrqv2az7uoH0i+AI67teZn3X
uaR3BLqs75rO+q4bSR8J1GT0VDdUgbP+Ksjqr7oyriqD7/sX4TqkNwUGrO+q
zfqubUjfFZxY37WQ9V19Sc8KLrO+azLru7Yg/Suox/qubqzvGky6W3CM9V2P
sL7rddLvAi/S70KdhqTjOuxtub4WbCd9LTytTrqvrO8KL1nfVcL6rhtJ7wuQ
9V2HsL7rONITA6m+a2PWd00ivTKIZx1XA9ZxNSedMXBn3ddWrPsaQnpl8JL1
XQtY37Ut6aTBEdZ37cX6rrdInw2QdVyPs45rL9JDA9ZDw4Os+4qkqwZmrO8a
y/quE0ifDeqyvmsO67t2JT036Mb6rpas77qKdOQgifVd77O+61TSqYOBrON6
l3VcWfcVZrHua0fWfQ0m3Tk4z/qujVjfdR/p18E51nddw/quoaSbB8dZ35V1
8+A06btC/3+s7wrnWd91G+u7biKdPXBgfdcnrO+qRnp9sI31XcNY37Up6buC
Juu7nmF9186k7wqmrO8axvqu+aTvCgtk9F0VSN8VRsjouw4nvVb46kV6rdqs
79qN9FpBwvqu31nfdQLH12Z91x6s7zqE499y/GfWd21A+q5wjnVc3VjftYT0
XWEG4xdZ35V1XOE167IasI5rHOm4wifWcW3Juq+OjIcx3of1XVfzOtm8zhDW
d1UifVeQ6ruasb5rLcYPMT6J9V0NSZcVTsjouM4kHVcYVFnHFaczPphxBdZ3
HcDrnJPRd/UiHVcwYB3XCazv6s34OMZHs77rXNJlBamO6z3WcbUhHVeozzqu
T1n31ZrxRow/YX3XQbxOfxl910DScYUi1nctq6zvCu8Y/8b6rg9IxxWkOq4d
Wd/1JuMHGFdjfVdr0nGFBqzjKmF9V3PGWzJezPqukaTjCiWs4/qa9V2leLiM
vmsA6biC+z/Wd4WNjLuwvqsZ6biCEuu7FrO+ay/GT8vou94hvVZo+o/1XcGB
9Vq3sb4r67iCK+M7WcfVg9cJldF9dSQdV9jKOq6jWd/1AOOrGR/B+q4+pOMK
TVjHdRzru35nvAvj+qzvOoF0XKEt67jOYH3X6Yz3kNF3nUN6rRAno+96j/Ra
QarXOon1XW05/jXHN2F916scf5vjp7G+azbpu8JI1neVG0T6rodJ3xV2yOi7
GpG+K9iwvusD1nftQnqt8JX1XXewvmtt0ncFT9Z33c/6ruoc31RG39WU9F3h
xD/Wd4VdrO86kfVd95O+K/iwvmsr1nf1J31XqMv6rims73qF9F3BkvVdZ7G+
a03Sd4X3rO86ifVdX5O+K9yU0XfV4nqxnvVd41jfNYzr1FHWdx3E+q7bue4s
YX3XcNZ3nc51U6rveo/1XfNI3xVmsr5rB9Z3Zf1zOC+j7+rAdTmV9V1vsr7r
K66zrKMO9Srru8LTf6zvClJ9V13Wd+3IfKAr67tOZX1XU+YPdYg/QCHru7Zm
3uLB+q7arO/6jHmIKeu7xrO+ayrzpVjWdx3A+q59mc9cYH3XPazvynr4EMT6
rsyXcCTzsXsy+q7jmXcdZX3XpqzvOr2E+KFZd9J37UQ6/7CZ+d4j1ncdxPqu
b5hnzmF912zWd/3IvPGZjL7rFub/q1jfVZX1XfNKiX8apJC+6yHyHYCBzG+j
Wd81mfVd2e8AfFnfNYj1XQtJ3xWk+q7erO/6bSDx7WGs7/qU9V2nMz/vIqOn
+qc467KCrC7rUsZldV+rwpdUgU/gfkeP9V19WN91OvdHUn1Xe9Z3Xc39lFTf
tYT1Xc3JdwMesD+gJfsDbiIfEyhkf8A17A/oQP4d0Jn9Ad3ZH9CC/D7AkP0B
ddgfMJz8AeE4+wP2Z3/ACeQnAlnsD9iN/QEbk/8IbGV/QDP2ByxYWu5XAhHs
D2jM/oBjyd8EurM/4Hj2B3xrU+6HAsj+gMvZH7Ae+adALfYHbMb+gMfJbwXs
2B8wvrI/IFixP+DRyv6AYM3+gP7sD9iNfF6gOfsDhrA/IJDvDJiyP+AE9gc0
JB8ZaEA+MmjC/oAHyI8GJrM/4Aj2B0wivxvwZn/AwewPuIX8dMCIfQBvsw+g
IfnggBL7Bkaxb+Bw8tOBH+wP6MT+gAvIxweasj+gDvsDsi8POLA/oCv7A4aT
rxAMZX/Aq+wP+Khhue8P+LM/4BD2B5xP/kFQyP6A4ewPGEx+QyD1B5xa2R8Q
/NgfcDX7A9qTbxFI/QFnsD9gOPkrwUwZf8A15IsEz9kfUI/9AQPJXwnqsT9g
Z/YHzLMp93UCb/YH3MH+gCvIpwlesD9gZ/YHDCU/KVBhf0BN9gfsRD5QUMb+
gFfYH7Af+UmBPvsDygWTP+Ar8p+CEewPuJr9AbPI3wo+sz+gGfsDHiR/QJD6
AxqzP2AZ+QPCFRl/wMPkDwhN2R9wGvsDnid/QBjN/oBj2B8wgfwBYSb7A35k
f0A98geEhewPOIf9AS+T3x/kst9fCfsDjie/P5jOfn+T2R+Q/QThM8fnsz/g
TI635Xhz9gc0JB9AkPoDNmN/wJGMX5PxB9xKfn+QLOMPeJ78/iCA/f7i2B/w
HMf3kvEHfMrxQRwfxv6AJ8gHEJqxD2BP9gc8xHhLxnXZH3A9+QDCbfYBNGR/
QEfGTzM+gP0BB5GvH9xgX79E9gFcQz6A4MI+gM/ZN3Aj4+sZf8b+gCN5ndu8
TjT7A84iH0BY8Yp8ANPZH9COcU/2DUxif8Bn5AMIUh/AtewPGMJ4nduEr2B/
wA/kDwjF7A/ox/6AXxmXY3/Am+wP2ID8/mA4+/0psD/gk7rlfn9whv3+Qtkf
UInjJ3G8HMWDH8fv5PgI9gc8Tz6AcJt9AB3YH/Ai4xcq48A+gPCT/QFfsz9g
EOOaGyrhcJd8AKEl+wDmsz/gfcarM57H/oBnyAcQ6rMPYA3yAcSdjCsx3pj9
AVXJ7w8Osd+fOfsDPid/QFBkv7+27A9Yl+M9OX4m+wPGcfxQjm/G/oAHyQcQ
PNgHsD37A3oyfp7xFuwPqEr+gPCB/QHN2B8wivwBIY79Ae3ZHzCG/AGhgP0B
67E/4CjyBwRL9gecz/6AvcgfELTYH1C/sj8gSP0BW7A/oC35A4LUH/At+wOm
8/75hf0BzdkfsCb5A4I3+wNmsz9gCO/n7dkfsAv7Awby/jyG/QHt2R/QlPdz
W/YH9GN/QDnyB4Ro9gfUZX/ANlwXfrA/oDf7A4Zy/ZrH/oBn2B9QWncC2R+w
K/sDZnD9KmN/wN7sD7iQ6+Z19gfcxv6AW7gOPmZ/wP7sDxjCdXww+wM+Yn9A
9uGF6TL+gKFcr8PZH5D9fHEF1/cS9gcMYH/AVcwrWrI/oBb7A25j3mLMPoDX
2AcQK/MHGMy+gc2Zh6xjf8BD7A84hPnMT/YH3MX+gKHMl27I+AMOYl7UlP0B
g9kfcAjzNKk/oCX7A+5hPmbF/oCjKvsDwgz2B3zB/oBSXqfA/oBj2B9wO/Pq
fPYHtGd/wF7MG5XZHzCS/QFvMv+czv6AJ9kf8BTz1XnsD5jB/oBSfltHxh+w
FvkDwi32BzRif8ADzJ9bsz9gMPsD9id/QHjC/oCe7A84j/n5Chl/QF/m8zHs
D6jF/oB9yR8QnNkfcBD7A97ifkHqD3iL/QF3c3/Rkv0BT7E/4HTuU26yP+Bk
9gdcTj7pAOSTjsXkk44DyA8dFMgPHS+THzoOIx92SCYfdgzIKPdhh93kqw7N
yFcdH5GvOm4lH3kIIB95dCAfeRxBvu3whnzbcRH5tmMW+b/DSvJ/R3Pyfwct
8ouHweQXjxbkFw8TyV8elpO/PLYgf3nIID96+EB+9GhEfvSgRf71oEz+9fgt
udy/Hm51aedWsCoDmuwY/yx6cT5e1F62Z4XA5QvdrM6L+7bFMXdNqeDDxRvT
5iX+8iv/GucSJ/CGay7mPhT4Mh9NvwaCJ6eMw1mXVmfA/Xpfg58uzMcTfjWC
btQMBJvLA7wyBB63p/jtA4GP8ho+wqZ6IExdmDf76PZ0iLoSpTFBNQ+n6SXV
udAnDnJ3fixOEt/L9VR94wGCx7rVa/Bl66/vIUghLEvcT9eA0uDd4n5uCXh9
9/KRJCy96KaWLvDI9Et1gzrn4jqfFBUtwasvL3/uNFdcZ+M3Rmop4joV9o9d
fUlcp2locBtFsf7Zz+P2K4v13deuGrdRxGlZTgqsL/aBptU3ZtQXfL6GVZOt
SeLvRubUWtRI4MdD69b8hTcf51yWIPCx9yZOjX+dBjPSgld9EH3BKetbDYeJ
v9szwOuNXXwaXFg9XveHwJfLPVENPZqEHeSH6piJ/69eZKtj5wWfD/V583yB
iF/ZaesjR3E9G7adiMoR/DzhTlyyibieWwq+I3uK+utgdCJFR+A9wnfN2yvw
VXMOBQ4U+W6/bTGokbgPdbyuqz4V65xYOb1spsAH+kV7vhD3ISF/X5K56BcS
WhwMmin+7oD08EXrRf9lsfhgawXPJOyy+c37TPF3p8/TDZKI+zDEwTLKQ+wj
ATNWDtxvkQbxCQN3Lb2TjWYFGt/6ZgseE1GaWve94C39smxifoq+JupgnFVE
Es6ZpTBqjLiux80XXqwl1r9r1cf1V9+02dXBz+taGqx5cH6M4Z5sDIfNxZMD
0qAgr+2QeSbiuURFDBvtno36l+UuFDdPh5fTVqg72Ip91flkO2O7bOw2ZsU0
eZ10mDxpQ5vtoZlQcrGLruWINByyJavDzk6ZmOES8KmJfTroJ3jkfY7JwTMP
p62H1kn45VbJk5Fd02Ht6vVrmmXn4Ju9h8M1RL4RD458edw9G3Z3axP64H46
vtj2Ych89TR4G/4y53KHHFin6B6w5FoiGr1S2afomAHOxQrpP4dkQVGX9b7b
pkXi0YK6Gnkib+0aNzWWWmXBzDZqheqWsegbtuVhTdHnPck+tdMMsuHFlBuK
14bG4jH1B/Orib9XOvjRqceNsmH64fbvF4dEosEoOW/Xbjkwx6rr+6bie7ye
3O12gmoQzlLx+BBklY8dtS/cs96RAdYbdN7O0w9C+ZPVnheYCr49Pkh/8LkM
6N/phUKdJoEYeLKJlaZJPqaGGY5rezUDvtZ4frlm00DUGhj5ymRYPvy0tRzu
vDUD1AbWiWgo4pcUbfJMmZWPd9fZRG7dngGqJ2uNiGkWiO6RW/oYzcwHZYXN
PWtuzICnmptOW1YPxOcbnrWuOT8frbJPG41ZlwHuZ5Sez6sZiNlrXmQlLshH
W8YPMJ5GOLTkda7zOk9pHWhzbfbqfaLuJNw+fuZyjUD0LIrppSX2gx6Mf2fc
lXAI62u3oEbtDDBteEWvQP8JNm2SGD6qeQHGMT6NcUXCIS1TvcUIwfP6aLxu
gC3Owqelde9vFv3FV8az1AnPJRzeDJn75ni9NKgWN/n0Mw9/WPm2Z2l/HQl+
YLwe48sIh87D9P3P/UyFOiFKHfoJnt9NYfs9H8HPtRnXZlyTcBi15v2Sh+L7
DewZfDg40h/UNA2eaAq+PZbxAMY7EA5+W0crlIi+xq+seqGb6AuCJydE3tSV
4Nydcq1K6qTBgTbupcpJ/pDwo7fOhT4SVHwQfWSFwKdvv2vxKd4fXKpfNa6v
LYFnvM5DXieA1gE99aWXe3YS+97bpsbzagbAp6utNi8R92f8tM/XOqqI+mUi
WRn83R/M2jd82K6j6EduuO+sN17scxpX+7Qu9IcuQV0mNK0jQTufhqq1RqTB
wfkvh/jl+0M77dLVZ+QlMGvzKK+bF9LgvK37Zb9LAfDmVP3uO14UoNasbt49
DqVBWI1aVspuAaBq3mH+oOgCmHazsF7tU1lguTon2rBZBAR2GjOyQ1EOXjAd
gf3CMqG0oOzrj1PhMO1Qk09md3KhoMik2bSALNB7NL505voYONsqNuxlXDZm
7ezbJF89B7pbOfl3vpIIcQZ5I3XXZ+DA/jn3taIyoeuozJgWw9NgaFq6WqBK
Jsx+2b/VsDTx34IyBzvnGHBO1O6kfzYH4nh/2Ej7A4TQ/oDVptO+9H5P+b4E
arQv4U/eZ5bSPgM1XMr3GagdSftkW9on4STtk5DO+5Uh7Vewn/YraJZP++HX
yPL9ELrQfoi7ef9cSfsnvKT9EwN5f46l/Rl4f8Z5vA8j7cNwj/ZhOMx1YSTV
BXhCdQE0eP+3o/0f+tD+jwFcdw5S3YGvYeV1By0q1zvYS/UO4rm+GFF9AaD6
Aou5TrlRnYLiM+V1CnZzvXOkegdPqN5hBNfZI1RnoTXVWVTjulmL6ibEUd0E
eeYDh4gPwEriA6DD9fc01V9YSfUXOnN9V6L6DnWovlfwAS/iA+BBfADzmIdc
Jh4Ch4iHoHdlXgFyxCtAgfnSNuJLoh8s50sg5SdxxE9gHvETmM78J5z4D0wn
/oMzmC/FE1+CEcSXZPkVHCJ+hY+ZvykQfwPmb2jEPK0x8TRYQDwN3JiX3iZe
Cs7ES0Gf+WE94ofwk/gh5jGfLCE+CVOIT+JY5p+riX9CS+Kf2J356iDiqzCG
+CqmM791IH4LQ4nf4mDm1WnEq2F7ZjmvxsXMz4cQP4cs4udgwvy5lPgzLCD+
DB7Mw+sSD4dw4uGgx3xekfg8nCQ+Dz8mv56aMTYDujZrPqAoNQfv1R9o0cAv
Hvd8cgoauC4dyi4fPnpPLRdrh4wOrVUrERVMumyqXjMbbDMkL9+o5OBbvYF5
ZUOj0N7okOUXzAedjNEndL5k4I+y5EGHzhzDt/4lyxem58PUjuEz3kRkVPxe
S4pPlsHrBRCuL4N3ZLzFfxHvUAWeURZpmrs0H/qZtW53YU4m5knuuF84PQPc
NqW65a3IAxfLtp3r22XhkiebjyzAO/DdwnXEtOIceKl0I9fxTCYOyVxq1V83
BqKyrX0tBhfAqhE/ilXSX6O1RnKOT1gCbI8xcY0V369ykzru6wUPr9NqQJze
GcE/6x5O/yDwGir7vHcIfG4n3dNhp5PQ3H2Q+cfvaXB0c5sIPaVcfNY1QPnW
hiT8VP30q4PTCuBVz1zH5hvjsPrQ2hvenEqE9v3nnT0+oQCexJTUmrQlCnNi
jKeE3kyBEePll0QMzoLwyYvbnFLIxDpNPufNuJiKS2M/HZdTToeOtxyMzeNy
0H5tB/tXcslYJ/3t+y+iDo/Yvma8hm8EfvR60rqb+F7s25g8+zVXuXqG7cqp
Aq9ZMG7cNbG/RQw70+bEpnyI0N3eY1+vaOxk0HXJobVpWLzernGjvtkQOGdn
d//H6Zh8/8Wyd03T8NSasVPui3Xq2Wha5N2IwIWxzlb1xPqmo+7JPcjIh9JM
6/lrosJRzvmdyyOx/xx8pRzX6Uo+vG7e+cDoflF4Rqdk8NbNaSgf3GD1dbFO
eN64KQ/EOna6nz6OFuvUWN/j51rBO65aKD6afD0CW5269n662H+WeLQeuEas
v2jtB8/5EeH4Otr93Plf/77E+Y7kfCWc72rOdxXn+yWf8g0Z0sLdW6wzqPDw
sg7R4SjZlRBwSVznzpf7o1YKXOm9/ZCtYn3j7u3rXxDrn+B85TnfJZzvDH+N
ZW8zxXuoYZfZUOQ7r71S8FdRd0aOSmiQI3CzIzXqxEWG4yq52jFtxH5bj/ON
4XyXcL7VOd+bnG9rzjezj2YvC3E92qEDbRuJ9TdvjLm1UlxPfc53MOebx/k6
cL4LZJ5vmxEqTl5inQ27Gnir/Fon4bFamcjXLaXGq2sCb7R2k0uIwJU7l3g8
EPhZzvfTDMrXhvN9XO+l9460fPBqfqX3vJhwvO5w49e/o2Fjzusp52XNedXj
vG5wXj9PUl4RHn6rtg/JBVvj/r11pgTgMN+fzvNMs3FGfP/NB6dmw6caSQp2
wbdx+AH90zfP5+LUyDVpQUW5cDzQ6/mi3BfY3TbMbMPMLOjS+kwdJe9sKDr4
4Zmh0X30vnJtbvjIXJjW5FLL+2lZsGOq/vX5kQjN9g3v3rswF22+5T66uTcL
Fk5v31d+1n0wnf8022F4HkyJdupnPFTUj/4aq3DZC0iwLl02sms2ylV+LsDX
j7lPPRsOc8uBjEOHa59P8Af3c4dj7ZVzZO8P8P0BZb4/AXR/YALdH7zA9/kr
3Wcwp/tc8VyU6LlAY3ouFc93IT1fqEvPF9vy891Ezxc20vOFHH5/utD7A470
/oASvz+96f2BWHp/UJ7z9eZ8P3G+o/h9nkDvs+Ah5e8z1OW8UjmvlZzXUc6r
GX0vsJLzsubvpTl9L7CAvhd4zt+jFn2P8I2+x4r9Sppvfc53Ae8De2gfgATa
B2Arf7896PuF4fT9ggLnO4zzTeF861d+P+Er52vO+9hH2segGu1jIH3Pj3K+
9pzvOc43nJ/jas73Fe+rmbSvggbtq+DC+2EB7YdwnvbDiv1qGef7g/YrHMv7
fxjt//BFuXz/hze8PwfR/gyvaX8GOZl8izhfaX1JpPoi/lteX3At15HWVEdg
JdURUOe6VpvqGsyhugZfuX4FUf2Cd0PK6xfGc91cQnUTxlPdxNFcB89THYTr
VAdhZ2V+AvLET2Az19k2VGfhXcvyOgsNLKle36B6DRZUr3E113dvqu+wiOo7
3mQ+sJL4ADgTH8CPzFvMiT9U/J7kE+NmVeCy8Q2Yh+jI4JqMK1WBN/6b8e7M
x+SJjwF8KedjIM/8zYb4G9TRL+dvUGsK8cBOxAMhgHggXNNtvcx0XCF89Out
3KhOFM7zv3VtwttYTBv9ufYgs0IwOj07Ms01Ch2CptjcsYtF0wWuOflBhTCq
oeeQLu8TcPCq2Yuy1j7E9R61h2z1ksA91VNj5pak4o5Z9j1DH/ng3naN4zWa
FYDOqA07amzLwC0zq5m2reOOutvrDxgnvvei9R5RlmG/eVpfxgtl8H6MF8jg
eozn/xfx3VFar/K3FkBE2NTUxOvpqHBmocPoUbdB3jB8RncHCXxQX9ApfW8s
Wha5B9+Lj4NlajaXylZKYHOfzEdu5tF4q4PlVN2weHh3yS9kuKIErE+YuEYf
jsDA98qfeg5PxuGtT9tr60vAKeH9qIzLEZjVWz72oOjXnHY2OJKVkw+Sdy6Z
heHheO+ixr0vIWm4urWhY7i4zqHtguOnC57QY/om+amCJ8z49qVWAz0JDDo8
t+vEaxGoXGL0I1b0WXrb98kdE/g1vR23HK9GoIZV0KD+oi9o7jf5gVlqPjhP
/hw0QdRl7fO7tm95nYat82sO+CT2N9WWulZjRP0t6lR001Wss/zGWeU4gadG
lTSzFPjHkBW+dUQf/WHQ4YYKWflwsJaGaZ7gAxsVq38/LvjMu2URZevEdX6G
npK5Aj/zYZvSEXGdYzjfMZzvB87XzLRDQW2R7/g9WpHfX4XjmqGFR0eH/85r
COfVlPPqz3ld4bxUOa+7/eP72Yi/2/Fa6Llq4v5M69l4TFvBT9xP1bc/J/DF
2jW+7RF4vZV9dF3F9bThfNtWkW8i51vG+fbZZRoX5V0ARYYFb8ZoB+OqrV/d
NOelVTzHsZyXXB/KK932ay3f9xIY/fz2Fo01V6AwdeXNiaUpeM58i2LJdQnk
fFh4dp3dWdzge3zLlo+pgm9Qvv053+acrz7n6835duJ8v0ettnyZJYFu23OX
2vS+D2FPrYI2nEhBA46/RPGgQvEojdejeAyleEjh65xP14kf6DphJl+PPl0P
8HuFIyo/R6hF+aL0/nym+wMr6f6ANN87lC9sonxhCd/nIrrP8IXuM97h59iL
niNMoecILfl59abnBcX0vFD6nt/nfNtyvuP4vbKi9wrW0XsF0vdhA70PUJve
B5De/8Gcb2POV+a9hff03uI3fv/d6P2HVfT+w1LOq5Dz+sB5deTvzp6+O9Ck
7w4+8PdSQN8L8PcCLThfbZl8+3G+D2Wer3TfeE/7BvC+ATL7Q8VzNOa8dnBe
+ZyXdL+yov0KeL8CB95/RtP+A91p/4ElvO9tp30PHtC+h9I68pnqCNhSHYF6
vH9+of0TptD+iXt5v31F+y3Up/0Wpfu/hPbninpXFS7dz/NkcH3Gc/8mXtU6
27h+DaH6BXepfsEGrnd3qd7Bfqp3IK2PI6k+QkeqjyCtp8ZUT2E51VM46KRV
73hUCl6J3rpPwe8lTFFbHzC76190pRynqfcQ71mz42OLt+n9Oe5O68MhXn8q
r+8e/zPr5dMouLN1k0l6n0Rcmjc4e6m+BBNNmvbfFBAFrYqmy33om4jJ9o+X
lPST4Is5R0y2GjwzODcl8kzr00no4PB10NxfOpcUj804PpHjT9L6eFNmfSnu
UxmHUF5HidfJoHWgir8Lj/k6lTk+i+MPc163ef1lvP5hvg/b+D5Mo/sAVdy3
P8b5PuORyvdZ9C210m68keDc+8YZeZkpePpzpGm31j7otvKsz6jSQrSOCg08
vyoBV96YmuHW8j6unmA6Jce+AEtvHT9x/UM6Ouqm22+UHMep2kdmPXQvQAvD
kBl7nqTjS9cjCkYFZ2CAzcfW8w9JMPiCQfqp5ETsf+hzRPqhcHjlv+FWHw8J
Orpm13VwTMTFs3abNmgTAaY3eh0/llWEJ/ZdfOi9MArLLsa321szEDfLH1yW
KvCTO+T8z9pFYdrzoU18qgfi41u5tZXyinC+/JZ2PeZEoWa3XfoOUS/QO68s
8YqIv3Cw04QVYp2Y5R2n1hLrPI9SgRMCf9pTf+4ZgU/oli/vIvBmCkerbRd4
1w2zUzssjkL52Druh6tJfU/+WN/ib+M57q+75ovvoO3TsgPHWkXiKmX9+eqW
Ut2e/xjvPMXj2K85sNqTtnW+LvjAj2DnkCYnk2CklVrdImsJPvhe5u3oF4E9
7c03nf6eCEd96p7p0L4AlXSudHlyMAx9u2iZLbidhn74fKakdQHeHuHha5MS
hkc7Jg2O8k3DkNVmhTFrCrEg7/+w955RVW1N16AigqAimECMGFAxIyDGMmMW
RVRAFCMqBhTFjJgBASNiFhEDKqAYMVAqIKAgGQQOcMjRHDHgt6Tq+LSn236e
2+O9/d7u97t/7hhljc0+a9Wce52zq+bMjLzcMwE7uJ9UKD+Yhh1U3fuli/VZ
laTy2l6sf5q1ycs0hb9/ff5p8UcGwzruF+t/5uLTIRfEuWiN1tRPa0/9eb/q
Qce5E0X+fZdmBrFiv97s31XyUOS71riS8X5AOcabz8mIDk5At4df+ya5S6Cm
jU1JD5G/WC1k/i7/BFByXv3+pp8EFzrAkjARHxxjd2jl2QQ4nHhPT/WsBLsM
S4zcN7McL5wZMgRWx8PH8PE2r6Il/+P25b8q3pXX8xStJ/J6/nF/ZftlRfuF
qrRfsJj3qwvtF56g/QJ1rocbVA9QQvWA+7geIqkewIHqAR9wvQVSvcEGqrf/
cfury/yznPgH0ol//rgvT5nHlEureQy0iMfAm/lwLPEhXCU+hJvMh2XEh3CU
+BD2Md++mF7Nt/Cd+BbHM98GEt9CN+JbLGA+b0F8DhuIz//2/arLz69V9PyC
HynVz68/rk8EPwej6DkIk+k5CLLnZgA9NyGRnpvwmJ+zG+k5C1u7Vj9nYRw/
r6/T8xre0/MaNvPz+jo9r0FCz2voz+eBHDoPQFc6D+ATPg+cpPMAmNJ5AKfx
uWImnStgOZ0r0J7PIVV0DoElhtXnEGjL55nddJ4BSzrPwBo+z7yg8wzMDq4+
z8A+6U1fY6sK7L9W48p0h0S8Wqz7Idw4DVvfW35l2rgKdEwbVn51USIOLJ5w
x8klDR2cHMb0FZ/L2lJrQpU4J8wMyer9RJwf+tRZGfs9V8S7TLbTu5aEyh4R
D3FyJGYW263ed+cFvl6w5Sj2TcHxkuE7PWtE4ImnmDB45AvMTbjscUv1OZbP
PLAtvvIRnmxq0Wdq/xcY5hG+cFDmc+xpeGitujLiRreUjUYnynG94reWWzqk
oEPYWte7a55DhZtdlyIox/ahHd8UHkvAc8YpzX76xx2vecVt8uByzP726sIA
Ef+ma/7c1VMCR2Z8UsjJKcWgazZOPZLjUSFQQ/dzmhT7Oe6TnpKW4qGG8a8O
ibinrW7ljVQpHmnntqS7dQWujHBcrGiXiHFuZzo9M0zDOZ2GP5WK+n9y/LWK
hzhvtOwzvutTcd44sGOwq6Ko/+aaps3HieddtERzi80JCbQ6umW5m7hPryfa
8e4+CXjpfbj7IHE/xytSe8xWKEPPiiZH6zWJx0Xz80I2J0gxura3umdhKWaP
d96hlxCPUW9PNP8aJ8XanqN8EwVPtgmd/bhEPDf9XfP9hnpIwD09POKd+Lu6
kobmm8Rz+Vz0mOBJRyXQ5ExwlX//cnTyrWFz4nICZnUZufaAlwT2Xu0yMsep
HEvNg6/tdHsKmZKy9ybXs/Bz91tzF4r8NQ47o9+L76HaNmcCPxwS/Mz5mZSP
OZQP3zl/KuVjS8oHN74fPbofOEv3g5p8P7vofiCJ7geV+HPp0OeC8/S50JvX
5zqtD9jS+kAcr89rWh+4Q+vza/11aP0hgtYfdXj9j9L6gy+tP87mfUygfQTe
RzzK+76W9h2iaN/hNNfPJaof+BxQXT8wiOtnF9UPuFH9QBnXpzbVJwRRfeJR
rs8Eqk9Q7lhdn7iJ63w71TnMoTrH/YyL2p7VuIAMg2pcwFHG0UfCESQRjuA5
407Bthp3MJJwB0aM09mEU1AinMIyxrUz4RpmEK5hP/ODEfEDBBE/gC7zwxri
B2hN/AAHYtZZLjApxVunR92wjpRiut9gw73TknFRlORjs+PFONXktOuoYnHO
/vr1lH1hBlp5mBsuiS/DBRYbS+uPy8XBIye8tB59DT8ciN0X4liGrppFSd8r
c/H5snQc9uIQltUfsW1QrTLckfQ56qBvHn6yK7H0WLcFXRJ09UrySrFe7ZpL
S/4Pvxv/u3h9ubjrH/L/atzboFmTHnZlGGNZJ7uxQh7WNerYaHC/szDf4964
xt/KcIJl1sAI32wc4PfFQGVMHBzQqpe4t2E5To74NkndOhNP9Cmaf3BOMuQe
ylFalF+K48yhVkhSPAYGrQz1S5TiYKWOleNLS3Gu5uwLsYIfTn/KGab6RIrb
T4wb+lE8rzd/iBriJHjgVP3x6k1PSiCkjaOGY59yVLkxZFnqNcE/rSPfNj8t
ge4KyVXmIr52rvJF1esJqLt207HVIq5Xz2pIjYJSTJrh0sc0LR73xJ76kBIv
xZrGwemPB5XjAdenByMFjw1d9fmE4j4JpNVcGdtE/F3XDU8T1wves6pclhrn
I4HNUY/VBojrV2jre9mKv+tzdW79gb4SsBs4yiDkbSnu3lNUddQjHp+PKVK1
j5Fiq/Ozl1WJz3W0ofPEVvfiUbevif68Z1Jc9XrZPENxP6sCB74+ID5vygKT
je8ET4K5+Zoogff9zzBhZqA4fy7YE3T+mDhnFjcoWif+bkf1gVkXxf2ottj2
UeGMBOwtPptOEnFlm4a5k68mYGHzpSsMRfxBTtFUlXbl2M37nemZQYI37JJG
3jDIwmnKLTysBV/ZxPWaUV/w1cKSPdENvCU4g+MDKY5LKQ49L0UEVYWWY5Mw
ny2nT0agTYz2y1o/suAmX9+Uro9JdH3Q4PvUofsEvk9cyfepRvcJGXSfOIg/
71H6vFCPPi+u5vXZQesDcbQ+MJ/X+RStM2TSOkM7XmcvWmdoQ+sMEt7HFbSP
MJ32EXfxPqbSPoI77SPW+L0ewITqAdtPHoPOom6TxkR0t02Kh5pbsq4dTJRC
f66rb1RXsIjqCm5zfbam+gQfqk/sxvXpQfUJrag+cQDXvw3VP5yn+oe5jK+F
hC94caYaX7iP8bWH8AVTCV94jHEaSTiFFYbVOEUPxrUS4frX70p/iu/muMp/
mP9X46+Y95yI96CceA8+Mk+6EE/CbOJJMGdetSdehRbEq7CZ+TmJ+BnSiJ9B
xs/LiZ/BnfgZtlaN1Fn3sQAbD381YqtzHsZoLHIIb5OD1gualuU0yMe1F/S0
ur0twMf2AS2rnmThgC9eyVqO5Tjrg9rVH2NTcFyF1910xXSoYxewpH+/cuzg
OWL02oAEbKdW09lZnE/K1p2o00bgaGuDeWueifNDr29RijqHBV/N71LZs6wU
x5wrunzyUTwqdzu5bY3gh/nHF7i5iPj6XYkR+SLecvDKbjlPpXg1v9GcK6Ie
FM94zNgTH49eLvlNHkVLcf2EM/en/tQNGtg24LPggdyqjRq7T0lAcUqz94oD
xfdcvT1pJ8T3Vg2TQdOH7ZfAoZBX+9VFvGR6ehcXEfeetmZpexEvPDx2Sy9x
3qitWKXYMzEeH2SpjRwl+FBlk/7mR0Winv1jNQ+JvztwwaiaIwRfDWh04eUw
UeeD7JIqFAR/6nZs0HyLyB+rZpi9VtTzD+OjofMEH14/VuY9TfCttVlo2xyB
a5VRfmP0BW/vblDp/0yszwWn15G9xf1sjVW+u+liAprn9TBTEnybtb25X7DA
V3fzBG99cT++FuUaXuK5MLltnEYj8Xc/zQ+JKRHxNzOjtZIETxr4PP2kJ9Yh
uXGz9qqC94o0v0ToCn5uoaBx84tY/8P+ZzPOCh6TjDb1tjwogQOGw3Ml4jyW
bqRemCT2pVHQgLZO4u/2Cv9xE5aVY4CFv+rVXndB79ZGg5LWUsyLDQxW3leO
PSqvdqpSvwaeO69MMmwkxccxKj0iW5XjsPB+CmatE+BmibKRdGoW3uW4LcUx
kuLQja8/lK6Pven6kMvXv/+5+vq4n64Pmnz/V+n+IZvuH2X3X073D7Xp/rE7
r0MRrQO8oHVACa9nJ1pP8KP1hPG8nm9pPeELrSdY8X7Vpf2CPbRfeIn3axvt
F4yl/cJxvO+fad8hkPYdx3Gd2FGdQC2qk1/1VlWrut4gjOoNGv5eb9Cd6g1q
cz3voXoGLapnlNVzOtUznKJ6xg2MC3PCBeQRLn7hSIFwBN6EI3k8ghLhEWYz
HlcTHqEd4RHqMt6bEN6hLeEdKxjvqwjvwHhHYN5YQbwBRsQbuJz5pwfxDzwk
/gEZ/2wm/oHrxD8wYL9jxPl++XhMvWvU3P1F2G9FU5+66s+xKGDvgNZrCvHY
nD7NziwpwAmPq9SndH0OYe1bHumYLsV1VgZq9fSKcfC2cZ0SXSQ4tllguMLP
36UD+5mMEHgMaGwdoCLOUSZiX1LFPo7ZNMG1SODI1XJXdI7AUbhhI4Njon6K
F6mV3RK4m6K7MM5b4HG4Q1LFYsHn119eWV4o4jGRk/fYJEvR6XFE03Fi/bu2
cBg5WfCSWq2WS376kRmnd/rgIuL1V65ZOktc319hzHZ38Xcz1UZXvRPXz77U
typBnAOfpmifiBK47pszNjhPxK1H9g6IFPGKlkcTCkVc++6MKRqiri41Cvtw
V5yXQt/c/d5G3M+1AIm7hVj/KyrJlxwE3k8HOUXniO9raq8a+jiIv7s7c3UD
M/F3verETCoUf/fd3ZUOWeL+fQPWwUlx/dn5A/W3JkmxUWrQixEibhxrVtZV
fF9237TsmIn4XIYLh7kE/LzPuee77xefd11cT5Ud4u+2xyWdf753GuA43LGr
+Lzf83YviBDfiyfH+uT7i/V88Xxd82+CD53GLT34Uy/Id/Smh8oif8bLqToT
RTw9rsGuEYK3G24as8cyrBhDVrtkJunug5dvJi2NWlKIvdIV0l5a5mHAoA57
H2/eD21TOx4JMSjDy988CsPOleOkep666uvPQ7Nd+h/fqUh/xTfXrY5jC4pD
2P7tOpfE9ZsEdjkyMWAPnr+eGxa0pBAin9e+ON8qD08VmhdkNt8Hw786Jvga
lMFZvs8JdJ+QQPeJur9/XnhPn/fX+jyn9YENtD7wgdfZh9YZbGidoQmvsyGt
M+ymdYYdD04k5oh1czkSF/JG8Ji10eHlNwSPNeN93E77CEtoHzGY9/0i7Tuc
p33Hllwn/lQnEEJ1AkZcV1OpruAt1RVs5rrtRnUL9alucRDXbSOqW9hNdYth
jItSwgVMJVyACeMihHABjwkX8H7M1313xOeycq5zYWlwApw2+7T5o7j+aMbd
IMId7CTc4XjGaWPCKfgTTjHx/jnr1rXysOmPIeoPDhaC37WTLg28siGW8b6S
8A6DCO/QycrrfNvJxfjyvf4Nk875MHjkFuURQ1PwB/PGTuINGES8gTcCdo1u
MrEU7wzf3/bKhHywHbj/envdOzjk/r6NCkdK8WP76L6VvfNhQKjprH2fpqK/
i5XFwNxS/Pr+8K7eif861/3V+C2Ol8jFozge/x/GozkeJxfX0DlVuftBKd42
Vr6m+DUP1rj4mQ1tehhGBbaL8vEpxOOhmo2dPxbChWsj49/3TICRzLf7iW/B
kPgWNvS80HlVkRSXNetQZ5RGMZqNs77iECLByXEKePF0Lh7LqeMakViETRb1
X3j2TiZuf9DiWPmRXNSxdGtl37IQz+osUPKfLZ5r/bdVedWVor336k5HPxXi
ywbdItpkSOG15slh3j95NLh33uqOxegbmTTvk/ge5KjnYR8g9rf792n5+oLP
3e1fSzV3SXDkuzX1O98ow2l7hjS42zUZHd+8cn9TIoEG9fw6eOmW4bvoMWFj
V6eg8cas1FU1skHdc7jh1fqlmHCrQjnz9HOcc6XF7hajcuB4t2vnm4h1a9fD
vPVFwXuK63Z0+pYivncHSf1mifjYwbmZN0RcWlVj4y4Rr+VXkHpU1HmtUS9s
lAV/WtRsOltN3HerWsZbDwq8qK7vbGnxk+ctbc3mCb6duuLH4a8/35eZjro6
QPDk7O2Vdd0FT6auGPD5pVE5ag78unNfcAIGN18/r0h8b83++upJjri+Qh1v
i1WCb00aPlKLFvy84E7jxc8ErlefuVfws9/+ssf9zg3Fc2FQYOmbaHH90hbW
hd3E9XeePtV6svi7wZW5JRHief1qt7ZvU3E+P6Cyd32AOIdrdZ1doifwddnw
fKNZ4vv1sHduPX6I+3kwb2yqZ1QRHmvabvRiq1hclLlXp2xAIX711D49NzQP
n5jqHOrfIgonhadqxfUtxY3fW92Kv1GMDv0CWmptf4Y7JroNaq9ZAHofep87
8CQPb2UmtVzaNgq1wy6YW/csBY0JVYMsrXNxyQT1SKdN/jBA6/qR7OQyPH7o
uedaEbeK/tD4vLU/7Kn7vlNpchnYrLxXc1B8Eb6NjdfINomFZy8ud7UwKkS7
zy8Lni8V3xsGvxzi+/P3r5MtQo3el6HR4QMFtdIK8eSp3eWlajGwfKivedzE
Inh07WGdE7OleD+gLw6qDIfl+XdSan0rk18f2E/rgzq8Pj60PtCZ1gdH8DoX
0DrDUlpnlO2XEu0XjKT9AlverxW0X8D7BZO4HqKoHmA51QPmcz0MonoAW6oH
bM911YDqCvZSXaEi16EK1SFMpToEb67nDlTPUI/qGbb9Xs/ifFhdz/C9LuFF
+0k1XsCS8ILfPQgvJYQX8CC84BDG3XLCHawl3KET47QT4RR2E06hnhbhei7h
Gm4SrmEz80Nr4gcIIH5AGT8sJn6AD8QPv3jGm3gGdIlnYBvz0nziJZhFvASh
Az9P+byhCIPffX/t5FuIjz81WT1rfgxe9lz/qMowD7PaO1yze1SEfqXm0aUL
M1ALok2nm5diV50rq1a65GNJ02811JYexfMNc8K/eQq8b9vV+hHkY/OayWHH
auyBDdrqLxMGlGDEoyoYkFiA9Ts3qXKKvgRHYxUXGnsVoq7SrdevpxZj//wr
akun3IfdDjZ6LbvlY2p9z+/1VUuxwSPT0TvOR4D+bY/vi53ycFvMiqN6S0rR
IKjNVe2CSFix7f08FOcsw1OnzDQ7FaOW9+3HQ8W+pyUO/KIl4l+nxXc4/VM/
7cjFj3VF3Pqi4/FEBSlKH2Z+bVerCNu//ByxQNThhEszN43/kYOqm6Z3fl+7
CBerNTx+TzyvM3aeujvqgxTHnbb72vpHEeZ/6BERFC/Bc0t77mwp4jcVO9ee
KOL7Z66bvFnEbbPT29uJfRzj83mnl+Dn4foBEZ8FPx+Ye7vDvGZFKL2r2T5+
sRRnDh88q7apqKsGxjO09fNx6N4w2xc78rGT3meFJXulYDPQrI5afCmG7+xT
evij+D5b0KTTwWLxPDi4f3xScTFOH54Waz5bnG9t7974fjoft5oZ1Y4VuHi1
pf3oJ4Ina+rMtxzuJwGvJk/a+ApcGG6LNpok+HZ2bWU3Q8F7iQWjA706l2Lo
xCebI5smoMZSZROF5Fx42KXccfDdIvywqNXwzJWxmBqq7aAzuhAbv0pS+nYp
Dy+Z1DE40ysK69+vZ6k3shSNpp0L6XO6GKeqx+i0PPMMNUYMbLW4awG0aXBW
5+v1PNx7wUvV3zgKJRYaF5tCKVw4NW575oo8TD8mnWZSFImdL36d0mm1OBdO
ONJz67I8DEmbvibTOxIbDtx0XXdjKQZxfi7nd6B8yOT8x5zfgPKhT/JGu6tp
UlTt49S3/qtgcEsM/KzVvBy/XO69ecxeKX4Kb7/X+sUt6Hhn50YQ56rBnF+X
87dTPtQIoPw3nN+O8qG85hyXyTWkGN6u6zGdtHCw62xUM1pcRxZ/yPElFIdn
dVq1vH2tCEuP+5uNWRoLHoPHlfpNKkTv1bX9bptKUWL93NhSOwKa5k2beVpR
fA/86rocHxbioyzHY0VdY+CuZJyp/pwiiJ+d0iHQRHyv8i1dF9YwAh5P7HbW
QbUcvHl/e9P+giXtL3ba3thr9J0SPDxF484dwas+fYZdqr1J7AfXSeOt1XUC
d9pU1wnO5np7SPUGr6je4O28rvvXLS5Gr4jVataN4qHINzR5/cgCcOF6rqB6
hrlUz9heneq5G9UzNKZ6xm2Mi56EC7AgXMBzxtd4whcwvuAs4+sG4Qu8CF8w
i/GbRviFroRfXMD4VST8wnzCL+YwD7wnHoBk4gFYx7zRlXgDdIg3wJX5J5H4
B1YQ/+BE5p9FxD/gRPyDLsxjfYjHwJ14DJcz7yUR78EJ4j08yzypRDwJugrV
PImazKvdiFfhqGY1r8JN5uebxM/wnfgZIpifY4if4TDxM9SAQ0q7UsXnKtFv
6tGuGG3XfeulJvZ36MbFmd/WCRz1L9Y+ubQUXwyv30tPIQp2jNniarQ+D9uP
WqvsJOK9R+7atK1mFOzaYqzlvzoP+4abtD5iX4qt1Y/kFilGQenteiMmi/V+
dzhkyErBb8FGVSd/iHpLv7X7+itxzjrfrtGLFoJvm38+X6IlvqfMOCkd5iJw
saC+o/STouDP6FSLnoJvU06+Xpsj4m1g+sQBgm9fhuknbxN8+9rgvk+J2Jeo
rlHdbMX1m050Tm8urlPvwatFZuLvNrVOtPER8bS+ny/bir87uGBTg06jpFjp
qHl51r5CjHHffHFVu1zYeMuqWfbRbEx+F19aYZeAd/oazJ94uwxHXiqbM8u0
CJsa7tXxMonHGm7pRgdXiOeQk8MBgz7FaHi0070zRfGYmFZ4bvXUApg3yy7o
1IlsPBp0YubahQnosLXIvsntMmg0OX6ei1jPy1u15h1WjMKZDkY1non1K6/q
mFt/aR5GHHi6sGBwFM7d88PDxKEUm3P+Oc6fTvnwnvPTON+K8qHYx+HD1c15
mNPE3l5F5K9cXdrZapG4zmmKt2pK8VEUh41bPR1fi3PB0zK/iPUZ9yHSs5VD
rvjeG+YwWWn2dCmqPNzl2Sn4AWg3nRnQvVe5uA/KP8j5gZQPxZz//gHlK1I+
tDE73cWkphT9DXqufZUSDmNne8aZCN7ra15SXFyVg+P67uv+4kk47E571eWn
T1w7zj/2ez6M4/wRnL+D8mHMliYffEU91Crw2VAzNhzeBhqf+/k+ZuuCJZPr
i3zdgqHNXsSEw6Tjrd7/1C0fz/n1OP815cNOzu/H+RMpHy42XDtv+aIiTNZu
a13WLB4KroYF1bEpRFzzOP/GoRzMbpHV8eydp6DfeKVFfXFObl1jXpiC+P77
xW3u+iMVz8BMo5f+SPsiGOcZ32DkwRzUaXJ087eHT8G452L9se/LYHPYfsvb
48T5zdCkYfqhQrgq6V/LSCsXZ3B9plB9QhbVJ37hOr9LdQ6dqc6hJdd5Hapz
yKQ6hwLGizbhBcoIL5iyT2VZjvh/Yxvniy9E/uHjQaOcRH4u4/EU4RFaER7B
lfGuQ3iHvoR3dGe8GxHeoSnhHUcwb0iJNyCPeAOXTXoz11Dk79C4tbjBilIY
Wn7nno+IfzT3knSNl6JrbyvDe+J8GxV1wQYFz1cNIl7qRLwEK4mXoO7tFc2u
ifwpdTMWZnQuxpj3nbVmiXN+PZ9vyltFfJpzmVln8X22g7Q0N/G4BCvvd1Ub
K57X82rumWcv+K11ViPJCV8Jvng71m3G1lzsFKmRmtWuBF+kdEgtMkyDLX2f
tP+sLMXQx7fbL29QhEP2tTW3CJXCjZsGmRnJP+eA1XfadyhGD7eQUXmnJXhF
aUnSLrH+Z2w0J38TcbWteUP6i+8Xsy+dVvAXdZXYau69AqUifHJXmhQnvqc8
23bfyvtLDvbeG3PldB3xPFQPG7ZWxHt0jtz0U8cicpX996mCr8LeHd/2QvDV
lrljiqxEvHKyd6qu4MkNZ3GTj/hcpcp9fKd9z8E2F+YnqisU4VHN3UEPnkuh
UrFZ4z7i7+okBjkZiL9rf6p22E9d392N3i7uPzMDG3mtfJXsnoKPm5YOVtEq
RzvVaKtNP9Kwzt6w6/1V03HvbZDGFJShG+c35fwIyod1nF+f890pH3rVHHmv
y5g8tGt7wTi+PAoHqDy/p721FGfp+/aya5mH4xtkTD78IBovh7/fHHuwFMdz
fjDnt6N8WMv5LpzvTfnwJNfo0nyHPHwfvb7i6aHHqL7+46zOu0ox3//e0XjB
b32vRNllinq65NTh6lTBe5oXKb6c41spDo/5Om/4Oo3oOrBl/TiLDQKPmguL
9l+Z9Qh2H1vRq2bHclzJcQ2OH6Q44JeiwI7fctAfTLNXC17aZGyLNwTPOOY0
1HQTuFsZbKtXEh0Opg+zOowRvPSd809x/hLKBxfOH835JpQPR5OMlowUfOg0
vaTku+Alp03Prt8Q/HmB4x4cX01xMMge1uHAuhxcI22lNfvTE3A1m3upok45
2j5/tTjgaTa6jttm4Vw/FibUfHB6rtj3kZy/i/O3UT6s4Pxgzh9D+aBTh+rt
w/nqeoNbVG/YpzbV2+uE6nqDg1RvCFzPd6meIZrqGbZxPZdRPcMZqmdYx3h5
RniBMMILvmW86BJegPGCdxh3xwh30IBwB/cYp3UJp7CfcArvGO/tCe/whvCO
doz3Z4R3GEp4x0/MGwuIN6Ap8QaoMv9MJf6BMOIfqMv8M5X4B3oR/8DVLw37
/tStObrhxYfeAtcauZY3s8X5JCo5ydtPfK6r28pnN1Upwr1a5xqlx0vhitLh
qxNTxHPWZ/W5loJPjr5ZtTVT8Ex21yt7Q8X6n995qspCuQjNrp4MPSt4w7FZ
26MHRT20XxB+ZoQ4L4X2qm+lLc5LZ/cdqG90KxWXaeqkm7fPQcvBjpVbdpfi
nDON7c8NT8WgpO8p69yy0SjsYMbjxFLo2vjCrjXfk9Dy2t7co3cy0MY6ouTe
+HLsx/FNHDenOPQeChNfJ2Zj3JwV13OHJ+LYhACTiG1l2IbjMRyfRHGYP2rK
eW3IQ9U63f23L4hAp4l67qX3SnHyYZXStYp5uKbpk5g2ix5h2gCvtg9Vy3AZ
56tz/hrKhxmcv5vz4ykfEtev2q3eU4pnG1hEXXkWBmvPJh+WCvzWDDS7YNlU
ird61jvZZ2s4LO2xMz6xezlmcv5NznegfFDh/FTOX0D58HlRu4IUsV/NH4xw
XiNwesV4QNMO/crxBcdVOX6d4jClc5uJx8X3ju1nFnX68jQc1HvVUK4U36MW
P47oNVbU+cyX+g3dBX4HF+1d+PN3K3POd+b8BpQPozl/DOePoXzQd+mbumuZ
BF/blsy9nZIAwy5ed+8O5Qgcr7WQ4v0pDrsOrJ2d0ViCKxzHuHiZ5kOoNNxn
xfhCfHptmeYQ/+eo66O+rskLKRgYxrsP1y/BDfUP7Jf0z0KPtBpx0zQLwDan
694zegWwKdJ5t2WTdFwRvOJhL8NcyM+ftq5VfjFs4DrUpDqEJ1SHOHHT+PwB
4jne2H51jlP7Yljtd1Dxp17HLa5zT6pzOEZ1Ds2MRlu9EdeJgpcHc8V1NkpW
Vn346SfCeLlOeAFXwgtatBm/zlv8+xHzVp2vCD5RLOwYV/eUBIIYd6cId6BE
uIPpbuX6PuK+It51iyjRLcapX7/2rS3weFb5eXKMiPfb2e7KT/3MBs8uXNh6
SoLqK7Yo76jMwTruBWunCpyaTjeOqS9w13pj73cOgrc3RF0Y7CGesw32dnjX
86ee/MhP0Q8E//gav9qySzyv797Mdm19WIKvOq/oukWsg7adYgcHEQ9qpzd5
yEEJfpoU0U4irmPb45zmHoHft3t7Xl8k8OuUvEjl9uccPPJEI8lT4L3bl8M1
wkW8wcxjc7MbJGNT42/vzh/MxESdCYEljcqx14HlpkZ1klGloV+OvVsmNi1a
dqRCsxyet9kWN+FxEs7w3tGyVZ9MPNvE+ewPUW+1dChuzvFTFIc6q+6o7umU
gdo72pmm+6Zi3QlpPv0qyrBWE/vhnWan4bNTJjcjeqfjx4u73Mq/l6E257fl
/NqUD/U4P4vz31A+pNv5TsqsyMXHTotjBlrdxxOdJvpEDC7DAUVqB8eo5+L2
/VGHVCPv4fuVca2vJJdhpyWUv4XzF1I+bOb84ZwfTfkwx/hC1/ycHPRytLCp
mxYOC7Onrpo3RJxzOH5mNcXtKQ7Zut3OBXzKwT4tQiz6iOdycUUNAxXxPSjF
IrGtvdiXTXmpgWcFHvVu5rQdLtbtLecP5vxcyocczt/B+e0pHwK2FIYqinpW
d2/X0DA5HHK82qpsF8/xixxX5XguxWHa3fc2I20y0SLulWaHx0ng99K5/XXB
V3fnrMjU8c9EF9spUfkKqZA1y9iyRkAZzuf8KZzvS/lwkfNXcX4R5cP9k0oD
Z9ZIwy1xTzveO5sDFlHzmrY3K8X9s4v1Pimn4aFe9n1ignLAefzshcMnlILC
ZKrPmVSf8J7qE4O4Ps9QfYIK1Scmcp13pjqHCKpzkDIuThIuQEq4AC3GlyLh
C8wIX9iW8bWa8AWNCV9ozviNJvyCKeEX/Bi/RoRfaE34Bc26cLtr52xcXVJ3
yCnTMrzU+MAx1YUCP3ubfTn9ToLGxqEXzrYtR+3tN3YsC0jALaelxiFxaage
fqfr+ZUv0Pp+vudEdcS3Hbo1uT44GSvP7W++2PIlPvTyz1qq5IJpLzUvFkYm
oZ+ZQ52iZf/yeUz5Qzz1L+YHafQ8ZjcpGWv6lps9mPYS6/U1vnSk3w444qSX
f3JeKs7YpBI88NMLPGWc1d17/1FYNC/c0m1LBlYO094RofwCXWLcO4ZVBINO
WfeQofUluNj3wqc+2yvQ87VyeG2lUFFfXa67RmTgp9KH4x9Jy9Aj/lnFzDap
8DLbQudM7efoMSmlprV7GZoeyvU+65ABLl5TL7wQ6zzdsPBIuuDJyHfKnZ0F
T3rY3HDYK/Z3fr+oVrtF/P2Fst4/f+epZTpUWf1HDma+2NdjkOAxf6cXlzsL
nryr6+xhJeK3sx98MhT8uXJ6w4hZP31ANIfUaS+uf6BgmuEqcV5SrHyptEBc
f3t4ctM6Io7F8x78/D3ni5KHt6aIj+jvVSdaPBfuzX529IS4fkjb66Y3fvp2
DO9pnKcqxYyInE1WlYX4PflQna3i+9HlomftDoQnYdCsB+3fGGWict2X9lbi
3N79Ztj6yyI+yrZ0+hcRV/3o7DZFxG9z/k3OV6R8GMD5EzhfifJBYncsWEXs
o6THEt09gleLc+87PBS88XRq/9GnRXx783lmkSI/aKWnJE3E8zjuzPFLFIeT
fJ18vs4bug5UtbNYF6+SjFlG+70vtvzpOz+oc83e5Vi3PcU/chwoDvcdklwU
HkrQMabTg6G7w/BQcMSqL3oVeILjOzh+kuJw/W6O6qSCHHyYrpM6VvDSJMdn
K/oNLsd5tsMMzov9Mmjcr3tlZDj0eZ6oEivu/zbn331O+TMoH6w5vzPn96N8
WGhS8T6gXHxPiVg+aFlIOPSMKF9qKc4tOzieEE7xHhSHY5/U4bY4F234rjhO
KTEc0p2XHjspzlGt0xd9/yDORS6NJPu6CL6d1LqOWoa4H1/OX8f5KZQPXTh/
B+dPoHxIWTkwuWePDIzZWKG583k6NFYMc1fvUYbPOP6E400pDv6FPZboJKSi
fYT+zlC7HNAoOtosfnkpusCkpTtTUrH88M1NkUty4MLZ1ZlblpXibc7fxvl1
KB88OF/xCOWfonxYwvX8kOoZfKieMYbrOZ7qGRRTqusZDzAugggXUE+5Ghew
lnG0i3AEjQhHUIfxKCE8wlnCI4YzHu8QHmEp4RF3MN4tCe8QS3gHd8b7IsI7
lBHe4RrzyQfiE9hKfIIyPnEjPgEb4hP8Ukq8tIp4CVYSL6EB85jy8Goeg4qn
1TyGq5j35hLvgVKfat7DfcyTSsSTYNOnmifxNvOqP/Hqr/6Nm/9F8QR+LlTR
cwHeHqh+LsAcfo40o+cIBN6rfo7AcH7u9KbnDpRvq37uwGdVek4503MKjtBz
CvLuRHhdiJZiLedaYQ4PinFdrZZtlgZloInK+PWnzAS/RX65qXS5BHfu3Xy+
67znuO5mcK1Fhrexb5enTZfdq8AKx/svZjhngtG0tQ/0xHn78eJeH0LE98rt
elrFxuLcu+Zkr0Y5meL7rkHs7vVti/Gy2cZHr3/OH9nrSxeWCvyOGnjMX60I
u8e36xgiePv+g6jFNplZOH2vQX7hpyJUq19LYamb4NvCRiW160lw/LKZB/Qn
5GOWxNN82+RCfJ5yyMa0UyZi0dduI/3y8G6XjpUfuhdh60ObZg/4mIFdn/dW
HbU0D7++3W2QYVcElT7guks1Ay0GNLd/k5uLIcufHNvWuhi+1b4+77XgW2uV
l2rPBB8aNYJxjQQ/y+LzOW5IcTjy+VCRl9ivNSVR0tF9MzH4+OnxfQU/eMrF
r1McFi5qualhVBIeafR0xwfDTDxodfLOJ5E/lOP3OL6f4r/2//f//vJ85p+u
87dfv9a78487CL6d2PquW4rg2/hhtxZsEjzsN2PX49ni3DVnWskso9hw2Fp7
xoqf69aa8y+1+i0fTnC+HefvpHyAvqOyI7/nYNaRu1a6ceFgbqzY5Wf/2ZTT
A21HifyjujXU456FQ+bIkBQDcf0Qzv/A+b0oH1w5P5Dz71A+HHxlu+pU3XS0
nKj/vpVVJlhF5I7QaVyGPhyfzfGpFIex7XbaHExLxbjmHfd+WJYD11vZmM9a
Wor9OF7M8asUh4SGu337OmTilk5WuDcrDxrMar62dnEhlneqd7y54MMPNjG1
lwte/d5j4HE3wYdOla1UijZL0Pltx1aqB/OhoL9l/oryAqjFOOpCOAIDwhFe
YRxNJRxBM8IR9mecPiCcgjvhFDYwTl8TTuEW4RS2M94HEt5BSnjHBOaNpsQb
MIt4A16YPb6gtEGKNr3rJt0aUYwJ2kfNt6lkYY8px3Xcxeey9jnnrybOVyFX
3RJCfupA+qpO72O9EedPOTt13oMKXJcU3uy+pgQ+h0x06PBAiopmAQrnehWj
y8W+519dlOCBSy5TlWeJc2DTpOuHNhTjI78ajh6CT/DBiTQ9cf9hG0N6PBY8
c25obpHfMQk+s3xeW3O1BNMdw9efTyjGk6d7feqSnwPtRmzbaPM2Ht27nSys
7FCGdTx3mrnNkcKC2XpGnXSSUfuVzyCTphLsfv7j+LGvyvDG4WH37dWT0cJ8
1aRwZQnurwjt0vNjGZTM+lF7msDvirOLWxoPyESd4eMPWP7so+W4C8e1KQ4P
ZkybOld8L279rZflRONMfGnQ41SQqM+saJsOL0T80YyHg71EvNVZnVY7RPwV
x2M4rklxeM7X0ePrFNN1wDa8xC3xYxIe6jzksNG8TOwzRGlgXPtyvJy+yX5Q
bBJK1+58dqdfJg59eeRmijjn7M+g+A6O96A4fI2l69TpQNc5Mrj6On+VN/7u
/L/MS76aa/fOcsnBswHJscZhj+Hh4GUrBgwVvM3xYxyPojio9LmSePdQKs5q
VTug46wceKzWMfC6cym24PgSjt+nOPSa1fBb9J5UPKtpFq69IAdqrJ+C2iK/
4t34yFUFKbhTq67P8oU58GrcO6+TfqU4lvNvc/77ddX58I3zPTm/hPJhR1jP
dTAxFWNUhs6/rCqFN/rxnn7TSlFp/YBPM2zE97XG47dc1ZCCpdrQd4snloIr
1/9rqn84QvWPmlz/x6n+4Z1Hdf1jOOMognAEhwlH8IrxWI/wCM6ER3BjPM4j
PEI64RHaniFcLyRcw1LCNeowDywgHoB7xAOQzbyxgngD7hJvwJ5rMdPbecRh
nfT+ftPE92tTrTbbPBYJHuv95HTjQXFo/PbBnsgpZTjV/eKUfDvpr3q4cz+0
xYOTFZjle9HqnuA3g/ADLaeUSPDT+GTPppNLcLtp+Y3PxVnY0rbFw4YWMSiJ
W7ImaV0Z3p1W3HPUdinqL1xjHTfyGK68ZlQ2uWEF9rBKuq0bkA3N5x+LWJsV
j35az5cWBmfh6MK0RBX1cozWse3hlR6PnZxbqeXdyMI5ZhPqJjUoh90n8gq/
i/NA7atPHN8JfKneSvxyV/DDvNGjDwQK/NY0Cq+9XeD3yurBT372C57h/K9X
KL8O5cMCzi8zpPwblA99K/WVTX/yzNW4wOciLvXRf9JbXGcax/04nkxxCKn7
6bVvWBL6Guv5FInvg1pe9S+5iufmTY4f43hziv/T8P5fxg877q1eGuyfhB3e
T34X/jQHVPcU+TStLMUiv3XGC0c9wCk2Fh9a9ZFCkIvH7Qajy/Ew5197R/l6
lA8lnB88i/LVXavz4XyvjUkmO8MwZkx9x7CtUuiTobHKsLIMXTl+luOTKA4d
nA8eVCkJR8Mg71kJZ6QwuvVx/X7JZdgn9pX+vrJw1F/xsK6tiO+ceMZ7RnIZ
rOL63Ej1CapUn+gURnXeYkJ1nQNSnYMW13k21Tncpjr/tZ73CS+QTHhBScPS
I7ldpdirgWfjgBXFcHPuy7KHXbKgDeNuEOEOJhLufl1nTt4wiyM/+5q9fOoH
Jv6f8ZjNeJTFlY33+i8yLMeHev0TktP+lb/X+v3czz4VOCF1XbsMbwlcP/7S
zKJhBNr82Bhkek2KHwNnvtoeVYa11pe82BEajREZYyNs1aW41nSL4/2yMtTg
eAzHHSgOIXydBXydN3QduOfv0bzsWhKaqTyK7rE+E2PyYyvWdSnHOI6P5/gT
isPcXkG1Fguctnh75eIrgdPiLm1j0gSup3O8O8cLKf5PO8//Y/MN95937hcl
hbQ1DbTrwb/0+g7vo3iftdXxX/nBllnO0+KloDJaoXXdfv/K9+R4a4r/yp+a
dHlrdpoUFKes8p9r+K/8cyXecxRFvOl6zctlhv/KP0h1CIOoDn/lK1HdAtft
H3Eki9sSLkBKuPjb8XLPH+tb+B7HaMv5I9uk5mHbTaVn7DJKUYPjzzjeiuLQ
JqaPw6u58djO5UrxJ+csjNM/Jx3Vsxy1ON6C44kUByOdhpeLIpLQUMfoygLI
xJRbfbrUEPWvGDB0grp4Ti2aMuDiRRHfpjXLu1icM99fpvh5jjtSHNrwdZbw
dZ7Sdf6x9fl35/+p/r25/o3/pvo/z/Xf5B9W/1ly9V+P6//WH+p/HNe/LL7P
akw9tMvHqHoKm58tK/2Vf5DjjykOrv77Tl4+H4nhx5VTjnfKxablDtO+W5Zh
yQl379SNDzG/a8adIPU8XLLu3dm19cpwC+encX5dyocczv/M+TMpHx4MGNTa
pVcSDnp9ddaww5lYc1SQS5f+5RjMcQOOK1H8H1uff3e+Adf/8z/wv3z9h3Kd
15Sr/6Mc15Srf0uufwW5+r/I9d9Irv69uP77y9U/1yHc+kP9J8rV/wKu/9w/
1H/Zf1j/9bn+b/6H9b+f6zzy39S/m/fMWQbD3DHENXr5nK75eFnjg+ndE6W4
n+OxHD9OcVC/dPXYmvlhqHAr/2VogQQ19Kc3XtOuAuty/NtNijei+D+23v7u
/D/x+SGu577/TfU88C/Wc8JfrOf/lM//3Xlmolw97+a6jZWrZ0+OP+V6dqK6
BVk9X+J63slx+XpWobqF2lzP6lzPtThexfXc8H/X83/J+dyD423k6tmc67n2
/8vn8396PfM5BPL4XLGUzyHZHK/8vz5vwBA+V9Tg88Z5jhtzXPl/+Hnj767n
/6+ft2X1/OA/+74J8t83G3A8Vu77Jp+3Qf683Yq+b0Jb/r6ZwN9Dm3C8OceT
+Xson8NB/hwO9L0SZN9Pk/j7aUOOL+V47P/+vvnf8nvL313/Mj7P+5v5XO73
SZD/fTKU47Zyvzdeo98VwZR/V4zl3xsTOD5K7vdGVfpdBRby7ydb+XeV+fR7
IzSX+x3yHf3eAv6cv4Z/b5nN+bLfJ/P/n/0++f+b/L9a/1f/oeeZpH9T/wPo
d3sw4vdl0//wvkz2e2MXel8A6fxeLJTfixnQeweQfy/Gv8NDJP/evoZ/h9em
92Vwgd+XmfD7snB6XwZd+X2ZDb8v49/tIVbud3sbev8FsvdlV/l92SKOF8u9
FxtK77/Ald9/ZfN7MQuO+8i9F/tT/Vyn92JwVu59WTDHj3O8xf/9+7J/bP3/
p/lZ9J4LzPi92BV+L/aW41f4/ZcGv//aT++5IJbfcxn//v4LZO+/TPn9V3N6
/wV9+f2XCb//6krvv8BA7v3XGq5D2fuvuvz+qwPXbQa/57r7h/dcMry0ZVzI
3meZ8vusd/T+C96oVb//wgnzqt9/YQW9p4ZZcv0tWdTHAvO4j2Uj97H0pffO
8J7fO7vye+fd9N4clnMfyzXuY2lD7+XBQ64vxZb6UqAl96V0476UYOpLgely
fSlvqf8ElnP/SWvuS3nJcQ+ON+O+lAjqJ4Gu3E9Sxn0pMRzvI9dnYkx9JnBE
j/pDqqg/BJ9S3wjU06X47H9m3wgco34POMf9HmHcB/KnfO4PgdNy/SGK1AcC
VtwHEvV7fwgs5ngo94fkUV8HuMr1gXC/BxzgeDH3ezhTvwfEcr/HW+73qE39
HiDf76HF9SPf17Gd3guDFr8XjuL3wlu4Dpdy/8Yz7t/Qpv4NWMT9G4u5fyOL
69+e+zTucZ9GZXB1nwY0oT4NGE99GqBP/R5gyX1fd7nvi/tOQYH7Ttdz3yn3
m4Gsv/Ql95e+p/4TqMv9YOu5H+wR9avAA+77usB9X+uonw0+cN/pJe47fUB9
cWDJ/aV1ub80mvpkQMJ9Yt7cJ5ZM/aXwgPtL73B/6WfqIwUr7iO9xX2kikrV
/aJgzv2ixtxHqsDxuRw34D7SHOrvgnju72rGfV+HqY8UNnAf6VXuL/Xg+Hq5
/tJ8vk4GX6cp94mdo74v+Mj9XYO478uW+k7hAPedenE/6g7qB4OjnN+V+8H6
cf7N3/P/23B9lvpCYbZcH+mfrnOS8+fJ9ZGaUv8nXJHrF3XjeAjHQ7gvdB/1
f8J07v+cwX2hJzg+k+PTuS+0B/V3wWnu76rJ/WDjqC8Uorkv9Cb3i47hfOT8
t9wPZsT5pZwfzH2kUdRHCju4j1SN+0idqV8UNsv1i+7mOn/B/WDHuR/sMuPC
nPtFm3O/aATji/sq4RD3g61nfL3lftEb3C9axjhtwn1i9rI+McZ1f+4jzeU+
Uu4Hg7ncD/aI+8G4vxQac3/pfO4vbUHzVrCS562u87zVO+r/B9k80SSeJ+pJ
/a7wjPvSHbkv3Y3mC8CO54kKeZ7oCs0pQBjPDdnx3JAG9dlCT+5X1+V+9QLq
14Uf1K+LL6lfF+1pPgL2y80ZPaM5C0iRmxsyonkf6MHzPg14Pmg4x41/nxuC
HJrfgRye3ynkOaCLHC/l+Aue6/lMcz1QxPM7I3muR4nmekA21zOY53r+hLsQ
muuB5TzX483zPn/C3WHOd5KbA5pD8zvQU27e56/ygxVfp4PcHJAC9ZPDBO4/
T+D+83k0BwSreD6oF88HteT8y61+y4etnJ8Y/ts8ERhTPzm84X7yqdx/3pzm
gMCV54DMeG7oHud/5/we3H/enfNlc0PjeW6oXVbo6sgT6WB9Oe7W1bUZ8KTl
kEjFLmWYSXNDIJsbasTzRLL8mb/nQ6JcfhOeM3Kl+SB4KTdPtJvjdeTmhib/
qFd7YycJTHYuvNd2WD7M2Kkf2M6sEBO5nmPk5obWcP278HyQJs8HbU5S7TO4
RxZo1xu2a2KzApihkrZyULcC+Lyc8GXIfexduY/9FuMxnOeGbHluyIBx/ZT7
2NdzH7sL49qe54YyeW6I54PAheeD5vJ80CCac4E8mnOBbTTnAh9pXga2yc3L
DKT5GujEc53Ac507aR4HGvBcp9Xvc50gm+u0+n2uE+TnMf+r4ldoXgnk5zpP
0HwTyOY6v9J8EyyjeSj4zHOdNjzX2Y3mOsGW5zr9eK7zKc1hQRnPdR7juc7d
NM8FU3l+M5rnN3n+HWTz7xo8/85z7rCT59xr8pz724nVc2RQxnOdJ3mucxfN
o0Eoz2lW8pxmOc3/gg/Pxd/jufg9NEcM++Xm3KfQHBzc5rnO2zzXeZ3mMcGb
5zHr8fxmE5qLhwY8F5/Ec/H6NBcPtXkuXovn4h/wdU79PgcKPKcJ2+TmNFNp
jh6m87z8OZ6jL+d8D84/z/ObdWi+Hqw5/zjP1yvQXDxE81z8Z56jV+d4Jsdf
87w8z8XDOrm5eJ5/h9Vy8+/BNI8Jj+XmN21o/h185ObiQzj/Ec9vWvH85mLO
D+Z5+RU8L59Mc+6wXm4unuffYYPc/DvPb8IWufnNyzT/Dppyc/E8vwmOnJ/K
85s8Lw/1OD+P5+XDaM4ddvKceybPxQdy3JHjhTz/fonmMcGW5zEb8fxmKM3F
w2qei7fmufgQzt/E+So8v8nz8uDO8/LbeF5+DddtKM9vnuL5zdtc57J5+Vo8
L8/zmxDI85v1eX6T5+XhBM/L5/G8vCLNb0I2z2/68fymLuN0Lc/L1+V5+V2M
92ly85tnGO99eF6+Dc/LP2feKOX5zQM8v8lzmiCb09zMc5pGzEuyOc0wntNc
zzw2h+c0a/Gc5kHmPdmc5mFjmtMMYZ6Un6+8/Yf4rb+Yz3OaIJvTPM9zmrP5
uSCb0zzPc5oL+Tmiy3OayvQcgamkPwCPWT9kGuuHBJLeCMh0fhqzzk846ZYA
65agJ+v8aJPuAch0RcazrkgF6SdAC9YJucY6ISdILwWOsS5QEOsCzSHdFdBj
/Z+nrP/zlnRFYB7rinxlXZHTpAsEtqwLZM26QDNIFwjOsy5QP9YFakf6PzCd
9X/msC6QPsfXcXwa6wJ9cqjWAwEV1gNpxPohjUgXCKJYF2gq6wUpcDyC41as
F6RKuiKg+bsOCWSSfgiEsh7IcdYPmUK6QLCZdYFSWUeoM+mHwCXOt2X9EGvO
d+X8ONYR+h5Qrf8Dd1j/ZxnrBSmRLhCkc3wh6wLFkx4I9GI9kArWD8knXSCQ
6QLdZr2gQs7vyvlFrB+SxvnfkPLvso7QPNL/AVPW/xnKekHDOD6Q4+NZF2gM
6YGAGeuB+LN+SEvSBYIC1gsaw3pBUzl/IuefY/2Qrpz/6Xd9IQgjvSDowHpB
xqwXtIZ0gcCedYGKWBfoB9fhEtYPKWL9EDuu246sFxTBekHPuP67sX7II9YP
8eP692a9oMusF9SacVSb9UMmsn7IY8bdbdYLcmG9INYPAZl+yBTWDwlg/J5g
vaB6rBc0mfSF4DjpC2Ed0hdCZdL7AgvWG+zKeoObSE8M7rN+oAnrB+qRrhEg
6RrhWtI1gp6kjwRtSR8JXUkfCQNJxwy0WW9wC+sNIumhwQDWDyxi/cC5N/It
PmhKoOWr50knxufjg8pOOi0mFuJm0lsDmX6gE+sHviedQGjLOoErWSfwZqDb
7B+5GVBrTtDEiRvzUOJeO8hjvjjXk+4fyOsErua4TA/Qg/UArUnHD8awjl8g
6/6t5vhujh9hfT9L0vuCJqz3tYP1wR6QXh+8Y70+Ldb9m8f5Gpy/mfXB7nP+
S87XZn2/SNL7ghOs9+XM+mBrSd8P6rO+3z7W/XvG+QGcv571wZZyfl3O92Y9
QAfS8YOZrONnxrp/Ozgu0/cbzfp+o0jvC+xZ70uT9cH2k74frGF9v22s+zeG
85f+ng+nOX8j529gPUAb0vEDN9bxm8S6f4s4fpbj41jfrxfp+MEb1vHzYh0/
J66fCtbr82e9viLSo4MjpEcHs0mPDrO4PrvL6fVd53puyrp821iXz5bxEsv6
e4wXVGF8mbOenjHr6amQ/h7I63+yzifIdD5bsc4n6xtDF9Y3ns/6xjtJvxRk
esVdWK+4jHQCQY91QVknEC6S3iBcZJ3PWqzzyTrGINMx1mYdY9YrhrasV/yC
9YrNSOcQ0lkXNIJ1QbuRXiJEs/5nOOt/1iV9V9BkHeNU1jEeQjqx8FlOx7iM
dEGhNeuCHmddUHfS84TGv+t5ohPpHkMK6x6HsO6xLF/jd71Qmb4x7Gd941Ws
b9yT9DxhLut5DmT9T9Y3BmS94jmsb8w6xpDA8RmsY8y6oBDI12nPuqCs8wnG
cjqfRaR7DHlyuses/wkr5fQ/WQ8ZOrEesgnrIbPuMSjJ6R6Xc/wN6xvXYn3j
h6TnCafl9D8HkF4xjJHTN67k/HOcv5T1P0dz/mTO38n6xttJlxhasy6xKesY
u3BcT06vWJ/0PGGDnP5nKOkVQxbrFfdmveKhnL9PTv9zNOkVQ1vWK+7LesWt
SP8T3rP+5x3W/5zJdZjEesXZrFfcj+s5lPU/n7L+ZzOu57qsV5zBesW2jItk
1v8MZ/1P1jEGeR3j64xHP9b/rMn6n/mMR5mOMeMR3jKuZfqfH1j/czfzgEzH
WId1jD8zn9iy/mcj1v+U8Yke6xIv+12XGGS6oBGsC1pG+sZwmPSN8TrpG2Mg
6bFDBvtlnGG/DPatAJlvhRH7Vswk/WTYR/rJ2I/0k2EY6S2DTKe94neddpDp
tBuxTnsM6T9DK9J/RnfSf0Z70rcHmS9GM/bFMCWdfKjDPheL2OfiDelRQzTr
rjdi3XV/0uGH6+xz4ck+F9/ItwKGsW9FR/atmEo62OBIOtj4gHSwYTTprkNj
1l3/7kq66yvJzwKmsp/FPfazYD12MJDTY2ffCpD3rWhI+upwVk6PnX0r4AT7
Vqixb4U251/h/Gmsx86+FXBIzrcinfwm4K6cP4WE4/FyPhSbSF8dwuT02NmH
Aj7L+VBc4Hx3zg9gPXb2oYAKOR8K1mOHC6yvPo712NmHQpyzf/enaMv55zl/
DOuxl3F+hJxvxVjSV4fv+b/rsR8m3wp4LudbMZHzFViP/RXrsSeQbwX0Zd+K
SPatuEx67JDKeux5rMfOvhUg71vBeuxQKafH/o78KUDmT1HI/hQdyIcCZD4U
GuxD8Znr/D7rruuy7vp5rvNr7DdxkP0mlpB/Acwi/wKQkH8BLmIcyfwm5rLf
xAbGnR77SrRmX4nX5JsAFeSbACHkmwA7GddtWY99EOuxj/ydB6CAddfZhwJk
PhQr2IfiMfPPU/aDOMJ+EOzvAzJ/nyj292EfH+jCPj6lv/v4wB98fEDm41P3
dx8fkPn49PvdxwfS2MdHk318UsiPAyrZl+c5+/KsJ38ikPmmWbBvmhL5HMEy
9kF7xT5o7AMC2ezj04F9fLLITwRGs19PLvv12JH/CJiwL88o9uV5R35qsJ79
1M6yn5oa+aBBGvugzWYfNPbxgVz28bFmHx/2T4EI9uth/xTcQX5SMIb90XLZ
H20b+bBABfv1KLBfTxr5W0Fj9ju7xn5n7OMDBnI+PmHk1wMv5fx62AcNHOV8
0NivB2zYr0ed/Xqakp8X3GS/s6Hsd3aO/HfgOfvvdGG/nkryOwNkv7PJ7HcW
yPkZnK/Lfj2dye8MLrHfWXP2OzMi/x1Qk/PrYR802C7ng8Z+PaAq59dzgvzR
YBL7o3myPxr7oIGFnA9aGPmdwW05vzP264Fi9uvxZL8e9juD03J+Z+zXA5Fy
fj3sawar2NfsEvuasV8PyPx6rNivZw/Xg7wvD/udwRA5vzNZvbE/FLxkvx72
44Nx7F/G9QZuXLfl7Nczh/16qsi/DGT+Ze7sX8Z+PSDv18M+ZSDvU5bJuBvL
Pj557OMzh3Gayn493divh/3LwJb9yyrZvyyP+eGdnF/PTuaHOexfZsP+ZS7M
M8ns17OY/XrYlwf+4MsDyezLc/J3Xx6Q+fJ0+N2XB2S+PEd+9+UBeV8e9l8D
mc+jFvs8sj8vyPx5B7A/byH5bMJx9uedxP687AsJbdgX8hz7Qq4l/zjowj6P
e9jn8TH5e4Ij+/kOZT9f9n8ES/Z/XMP+j+znC6PYz9eN/XzVyBcSPsn5QrL/
I+iw/2Nt9n9UIH89qC3n88j+v3BNzv+X/R+hLvs/XmT/xz7kowpqcv6/7AsJ
Ml/IOewLyX6CwH6CyH6C2I/8W8GKfYHL2Rd4APkSwlv2f9zG/o/1yDcWDrD/
70H2/71KvofwRs4X8iH5P4IX+z8uZP9H9gUGeV9gJ/J/hAXs/7id/R/Z5xem
y/n8sp8v5LKfbzv2831MPrwwQc6Hdxb5P8J79n+MZ/9HP76+BfvzxrE/L/s/
gj/7Py5j/8fGfP/95Px22f8RXsv5P7LPIxSyz+MS9nnU4vXcwz68duzDK9uv
muz/yH6dMr9dMGO/3Xfst2vK+/6E/R+Xsf9jO66f+uzzuJ99HtmHFxqyD68n
+/DW5vpUYv9Hc/Z/HMn1Gco+vBHsw3v49zqHuuwLyf6P0Iz9H63Y/5F9HmEZ
+zyuZ59H9u0FkPPt3cT47cj+jx7s/8j+vCDz52U/btjEPNCC/R+D2f/xO/OG
zJ93OPvzTmH+8WL/xw7s/2jC/CPvV2tK/rZwgvxt0ZH8bfFLm2o/XEgjP1zU
Ij9c9CP/XKj5odo/91f/w5/iwRx/+f73eBjH0+Ti4RxP/Q/jf7qONfkRQwL5
EeMC8iOGKPIvBl/yL8aN5F8MHckHGd6RDzIakg8yRJKfMmiSnzLeJT9lZB92
WE8+7PiIfNhl/umgyf7pV9k/vYz832Er+b+jAfm/wxvyfYY55PuMl8j3Wear
DgXsq27OvurzyXceHMl3HluS77zMVx26sK96A/ZVPxTyar/6QIHT6eldXPwT
8Mi0NUvb75dAc/K/hnNyPumqm/Q3PyoqhU/+sZqH4uNx4IJRNUc8k+IN8tGG
c+yf7sv+6f5OryN7i+uvjVW+u+liAk7N62GmtE8inl/VPt2wm3y6cQb5dMv8
vuG0nK+6AfmDQ46cf/rktnEajcR9fpofElMi4m9mRmslCT7vQD7j0JN91X+w
r/pBw+G5kgHlEGOkXpgk1rlJ0IC2Tvt++adDAPunv2D/dPZDh9FyPul5sYHB
yvvKoUPl1U5V6tfAc+eVSYaNfvmnwxw5//Rczo/7XJ2P+yhf5qsOO+V81c3J
/x1ekf87rCT/91+fqz/7p39g//QD/LlK6HNBbfpcv9Ytg33V17Ov+nhet7e0
bvCF1u3X+p+R81tnn3S4LOeTLtvfPbS/MIb2V+afDhfl/NM1uH6UL1bXD3Sn
+oFUtdFV78R9Jl3qW5Ug/m5KivaJKHE/srrtzr7qXLfozXWbRnULJ6lu8SHj
4rWcr/psxsVKwgW0J1zAOMZjc/ZJv8Q+6RWMx1WER2A8/sK1E+EabhKuYUvV
SJ11Hwug8fBXI7Y65+FTjUUO4W1ycHGU5GOz48VgbnLadZT4vhf79esp+8IM
HPTFK1nLsRysP6hd/TE2BU0qvO6mK6bDQa16iXsbloNZxLdJ6taZeKxP0fyD
c5JBxS5gSX/xnNXxHDF6rThvtFOr6ex8VAJ35nep7Ck+14hzRZdPCrwrdzu5
bU2MFK/mN5pzpVScu854zNgjcHrIJb/Jo2gpDlbqWDlexOdqzr4QK3Dt8yln
mOoTKa6fcOb+VLHOVgPbBnwWeJFWbdTYLc4bPRSSq8xFHW6Yq3xR9XoC6qzd
dGz1aQkoTmn2XlGs/3G9PWknBG80Mhk0fZjgjSLxXOtVWAo1FKsUewo8PsxS
GzkqXooDG114OUzUwwC7pAqFtHjU7dig+RYR71LPakgNEU+c4dLHVMT3xJ76
kCLiY9UMs9eKv1tlfDR0njj/XDtW5j1N/N3NUY/VBoh4sba+l62I+1ydW3+g
rwRmmIW2zRH7qDrKb4y+4FW3BpX+z8T6SLY39wsW9dDDPMFbX9yPr0W5hpfg
jVbnZy+rEutwvKHzxFb34rFDXxP9eYLH9H2eftIT65DVuFl7VcFLhZpfInQF
Ly23+Gw6SfzdejYNcyf/jDdfusJQfO9uoaBx84uok8P+ZzPOCt6TjDb1tjwo
zmnhP27CsnJAC3/Vq73uQpdbGw1KWksxIkalR2Qrca4O76dg1joBbpYoG0mn
ZiHmFE1VaVcOvbzfmZ4ZlADhdkkjbxhk4V3OX0z5GEX5cJPzJ1M+JlM+dOO/
a09/F3vT3wVNvs8guk/IpvvEHvx58+jzwiv6vGjPn1eLPi9k0OfFLF7PzrSe
cIbWE9rzeu6m9YQ2tJ5gyfvSiPYFPGlfcBzv7yfaXwii/cWdvL9FtL+wm/YX
x3H92FH9QC2qH+jP9fON6gcWU/1AAdehMtUhhFEdghLXrSfVLWhS3eIGrv8p
VP9QSPWPXbn+91D9Qxuqf7zC+KpD+ALGF/RnfC0hfME5wheEME7HEE5BiXAK
dRnXDQnX0JZwjYOZH5YSP4Ah8QPuZ37YQ/wAZsQPuIz5pwfxDzwi/oFFzD9L
iX/Ak/gHDsSss1xgUgo3T4+6YR0pxXS/wYZ7pyWjlYe54ZL4MphvsbG0/rhc
HDJywkvr0dfww4HYfSGOZeCmWZT0vTIXU5el47AXh7Cs/ohtg2qVwY6kz1EH
ffPwvV2Jpce6LeiSoKtXIp4j9WrXXFoS969z15/iuziuJhd3/UP+X417GzRr
0sOuDGIt62Q3VsjDOkYdGw3udxbme9wb1/hbGUyyzBoY4ZuNxn5fDFTGxEGX
e8uvTBtXAWPThpVfXZSI7Ysn3HFyScPzNa+4TR5cDje+vbow4FgClumaP3f1
FDzcxlHD8Sc/3BiyLFXw0vnWkW+bC75qO3kMOgu85I+J6G4rzjM1t2RdOyj4
Z4jjPukpaSm4N4x/dUh8H9xuq1t5I1WKtYyD0x8PKodNrk8PRvok4IhVn08o
ivNJ26NblrtBOax5oh3vLuKB78PdB4m/+7zmytifv6Pv2PA0cb3gbevKZalx
gq/sBo4yCHlbCm57iqqOesTj8zFFqvbiubDq9bJ5hgIvywIHvj4g+D91gcnG
d+K8lFzbW91T4CVuvPMOPRG/+/ZE869xUhxqbr4mSuDX6RkmzAxMwPoL9gSd
PyYBrTPBVf6CT5b61rA5IXgvt8vItQe8JKBe3KBonViHduoDsy6K+1Ftse2j
guDJHpcigqpCy8E4zGfL6ZMRMCNG+2WtH1loodzCw1pcxzqu14z6gpfmlOyJ
buAtwa/db81d+PP567Az+r14/mrYnAn8IM4b1pwPlI8LKB9+cP40ysdGlA8N
+H560P2ACt0PAn+uvfS5QI0+F8o+10b6XJBKnwtX87ptp3WDOFo3SOd1K6J1
gwBaN1jA63+Q1h+yaP0hg/drC+0XTKX9wpq876607zCK9h3b8b5vo32Hs7Tv
aML1s5HqBzZT/cAtrkMdqkPwpTrE7SfGDf0o/u6mD1FDnAQP+9Qfr95UnHN8
uZ7DqJ7hHdUz5hzKUVok6tbcHGqFiPNYYNDKUD/B8/q/4wJqES5gLuNoEeEI
ys5U4wiPMe4iCXew3LAad+jBOFUinP7q23T/Q3w3x+vIxf90nX93fWW5+Evm
sc3EY1BKPAYfmfdciffAnHgPzJkn7YknoSXxJGxhXk0gXgXmVTghvelrbFUB
ams1rkx3SETvYt0P4cZpuN7JYUzfghcAlloTqpYn4diQrN5PakVhvzorY7/n
voBJXSbb6V1Lwlz3iIc4ORIlxXar9915AS8XbDmKfVOw3/9i7z2jquqWbVEU
MCEmVMxZUYKKKBjQUsGMEbOiGPETc1YUxSyKWVBBDCiYwYiCWiIgSI6SFrBI
CxYLUAETBt6QKvwO3O07e7+3z72nvfN+0Vp3OOaYVb36qFk15poS0/1HlQLR
KRSjh44shK/Rtx286yVis/mn9kR9fYWnms8ymj6oEEocApYNSUnE2f0ctzSq
jbh/47V7494XwJnYiGCPTcl47MHczJMtfXGfffx2wwsKmK7yva1d13hc4r/l
kO/mRAgJsH1kcE4BB0/k1N5il4LbFh+epN4mGj7bW+vIBD/Lnmt9yBF6eKp/
fEs8JgG3uZ9rpqfL4eoDS9teQt8+32nc7UuCFE91tl/R06IAPAM3LVexjsGX
9m7dI/ol4A61M+vShR2eHqgTcG1FLH58bdr0Xo1g8VxrGiq1FM/Fzu/rOjyN
xlIYrxv6IwUMLbrWLhT41u9f79gJvN2uabuuCPz8vqGHVERcq2hOam0m9MdX
omlnKZ77bhS87bWgZj7YFTQ7X79ZFM5akvl0p9A9mc/rRYrW+YAm5+4vTItE
iY5keOx9Kb50GH0lRjxPvXu+4HWeeO6Oss+6OtxBArpKXsmlAk+YtjD5jcDz
Xn0bEHtEAseTAgJLxHU7SZpM2yHyz7Nvxt6fLPJP53s6I9NtRXxNu/9gv30o
PJPkl456mIrT18MKfxGPm8KsHdddi4YnMc+0612ToAuPf0Dj8SWNh5k8fgGN
x5c0/vd129B14RxdF/14/XJaP0TS+rEvrz+c1g8xtH68xva5SvaBGWQfyGD7
lJB9gO0DzmxnZbIzPCE7ozn7aw/5C76Qv7Cav6At+QtPMx8eEx/Am/gA25gP
YcQHKCI+wG3m1UXiFSiIV1DCPKz7ooKHcJ54iPuZz4uIzzCT+IxBzOerxGew
JD7jAY4Xo6MV8QI/+1bEC1hzvHSKq4gX2Hq/Il7gFMedekxF3MHPeRVxBykc
pyUUp9CH4hSqxTWkUlzDBtaBBaQDMIp0AC6ybtQj3YDTpBvQsUBF+uCDAo74
jsrMy0rDM19iJum1vodrzCfNkW3Oh5+PLrh6fczA0YYZm3cqLuDUvucXP3fK
h0VDwxcc8ctAPHG+/oh8Nxi48FPr5Y4KiL1unHEpNQVHOX6JznCMArMH+hdc
xHpuHL/x/M7KWGxyM6ndUaFLZo9zVZvkFcKKWnva9bKKxZV97AduiQ1Cj7yv
KbfF+IAzXcw3iPGf13eeqyLG+8d2AFeBv+k9cJmbwGfrydWOCbx5fWel/QLv
Y7skvZPQvfpvazmdVQrmfO1f/l3tfxrPdkrUlQvednz19bRLqxjcqjFwebcZ
lb8v9L+Ot5tzzsVOxJ3mrH09vISetAt1CG8qnotf367t1ql9Pmj2uq3tdyYS
S/voTLV+LMWgrVML4rcVwMe8lKDbvaNxwBHXmorTCdil3pGBSeJ+d8TWfb9G
6FuCxaiihJr/9ff73w3HviZaJ4U9r98MHXZd6KRti+mft1z8s/1Lh2gtmvjr
O3gHW/YNF/bveupAnp8Y/26+ZV4vgV9q8HTJAfEc133XxtLHV0W+ZBITdGKe
Au67DRsGG6OgSeB4y3dvJP/j7Pzvwivt6Un2RLbnH/1V6ZcT5BfUI7/AZ/Zj
KfkR2pIf8Rnz4QnxAfYQH/7H+asb64M16QMkkT780c7BrDM15BU6A3qkM+DH
ujSJdAlYl2AP61gT0jFoTTqGWVX1EHaQHv6X278+6/8q0n8oj6/Q/z/e7yve
RyJpH4GZtI+AO+87b2jfgWLad8CE96l1tE9BC4OKfQrG8r72gvY1qE/7Ghjy
PphL+yAMon0Qx/O+uYr2TZhF+yZa8T6r9rhin4U9/Sr2WWjB+/Jd2pdhCu3L
8ODy8iNeAxV4tN3S6Lr7Y9AzZtjE+Q0ksGT6sr+K+ytwbvrY8xpCD7/YNnBZ
6iqBkScH2PhMUOD6j7cmdf8rGpXfrM7S2iSBYmvvy8eyC3FunmWam+BJE70N
rgW1gyF0+/Tj03IKcYZ0+Kyzf8VClxYdS+cL/tzj656m64IXXRcX8nU30nWh
mK6Lldc9QNeFb8EV18UPfN15dF1sQ9fFcL7uGLouatN1sXX9DsZ74hJx20R5
nUk6QdhxffOV4xQF2O+S/4jxz9LR7d2ghAXpAbBAf0fveeMUOG2Y141vNaQ4
3HDfw6OhAVB6u9BjrpECtdfeCPNZlw7eDwx1PH8GQfmRgisnBD6DxoMxjy/h
8QY0Pzjz/It4/ia0HtjI6+nC66nz5WHXgFexsNO684fGhin4I/XJkNwBYjzh
aMv4t/97HCrn2VF1Hqi87vqq14XKdV6ouk6ovK9BVe8LdMgOeL+qHaDSbqZV
7QZ/sDNU+mV7Vb9U8gfM2Y+67Mf35HewYr+3Zr8zT6A6T5hXUJ1XzENwrMZD
5g+YMW87MW+Z5zCfea7BPK+87qZqcWHF151aLY447uBYtbjrTHU5zKxWl+M6
FQ7gOtUcrlPtp/oJrqlWP5FSnQTNuE7iyXUS7puj6z/um+Mf+ub4h775/4Jz
3xyr9825D45/6I//0zj3zbF633we9c0xivvmC7lv/ob65niJ++Y7qvbNsZj7
5n25bx5IfXNswX1z5L4597vRivvdN7jfzf1irOwXz+N+8XTqk6KM+6QbuE/K
/USM535iHPcT8+h8Pp7j8/n3+Xw+n7fH43zefgiftw+n8/NYeX7+MJ+fn0bn
2LHyHLsfn2Pn88A4j88Dp/F54Hd0vhcVfL73GZ/vnUXvG6Izv2/4I5veN9Sj
9wfxebX3B03p/UFsye8PbuX3B1fQ+4DYjt8HfMbvA76g9/tQhd/vS+T3+77S
+1zoyO9zWfD7XFn8vUulBfT7OYX8+zkd6fdMcD7/nkko//5JB8Ytq+Iwm36f
BCdU+32SHfR7I1j990aAv2+bwb/7Yce/+8G/+4eVv/s3nn/37095xhf63TNs
zr97Zsa/e3acvlsHtfm7dVP4u3UO9H03qFXte3AXGf9Z7btvf7gu7qTvkUEX
/n6ZOn+/zIXx+9W+U5bMv2dY+T0vb/6eF3/nF5L4O79H+Du/AfS9XZjI39uV
8Pd2+bu6oMff1S3j7+ryd0uhlL9bqtSbvlsaye/x3SC/4wzyO9ie2rIguakE
1m4ae/DMpCzwkwZcWjs+B9eonzopGZQKDglKkTM0s8E6Xfe4m3Y29Of3WNsT
D2Ef8RAa83uvYcRb2EG8xen8Xu1Z4jmo03u1IOdz76UUF3iP4gIt+Fy9FcUR
ZlIcgR2/P7KI4g68KO4wgd9zaUZxCo4Up7Ca36PZS3ENQHGNX/g9nYOkAxBM
OgASPoeQRLqBoaQbaM7nMRSkM2hLOvP7HMsJ0iXgcyxYyud25pOOwRXSMYzh
80LNSPfAg3QPuvH5onekkzCCdBIf8nkkX9JVWEq6isP4/NIn0mEYQjqMN/i8
03fS7d98rcTL/oB/q4Z7M55XDQ9mPOr/Jd6oI50f86F9EDbRPgij+byZC+2b
wj4V+ybwPgsTaZ9F7kdU72vgRdqXoTf3mxrRPo4LaB+HLtyPi6d9H3jf/51f
vaiWZ1bmn9Xzrk8Tmo+a6Z2PMsP2ajvnRWPHAfWbp15Lw1Ve9nFGIk80D7yW
kHA3Gu8PSFu054IESnrMOrVb7EdJW/bkrhTrH+w4pt9xsX7NXs4/XojxqUP7
fF5wR+x30gk1lrlIwHmT36EfpXLU3bzVym9vFOYk1f/YJlSK+t3P3S0ReUio
bZenX8X9uoTIjsWK+R9mjF80BxW4o37evQEXAqGhgf2zwh+p+IjxGYRjU8Kh
N88TRfPABZoHz/F1B9N1IYuuCy14ndG0TrhF68SPfF8hdF8whO4L1rAdTMkO
8IDsgGVstxyyGzQlu0Fbw4nFBQOzsfeTG3+9XCLDV65uigzTeLTr5GQ8yCwX
c69uvv+pXhaWT9gebRsUD077Xt03HpSF0ocr6houzca5htKlXVLSsKfaYid/
4bcDL6NVh4v84aPTEu13Ik6Pdh6beStTjnZZdWO/xETh9Oa7wz6LfS7LqtRm
nLDDi67Z8toir1jp2HTLbaFL5yQLn50W92VzZ/uSecJfbZabd94i/DUwZYmh
jhivl/tz4X0xfvbr4qTnF3+9fxHgulvMP21d4PB3YrxRxw23vor5XZWsD/x6
n1uRf+JNlNANpbopLXuK9aiv07bNHJyDCx88HnBf+yRsbeMla1+Yizu27+q4
aUgOaiwa0LT4a0/Qh3ltphflwhWeJ5vmgU91KuZBR76uOV0X+tF1YSivU4vW
Caa0TnTi+1pF9wWd6b5AznbwIzvAFLIDnmC77SG7wWSyG+iznbeRneEd2RlP
sF+KyC8wivwCe9iPeeRH+Ex+xB7s9+7kd/Amv8NW5yyPFyJPk8eOstMUeVp5
Z8PmtoJvbpEP94VsysS7W49YKVbLEQYM1Nz5673IN+1XbIuTIrbdunrIr9+h
MnV4USTG1+/lvrb0ZzpqQ8C2EFUZJptd2d1WrP/opUQNzTwp3hh22Uy/QS62
HO8zYy9K0D449cIDkde96vh6UazI6/SGbH44TOR1+anNss2SszBrv2rrsM9R
eOWG9cNrrrkYHmv38syObFwaW34xZko0qow6aXtBKRdmh1j7y45l4nWD0PWN
mgbjtcAe+afmynHch4Zuyacysa/XdBVoHozvJs7ycpglB9mZBk8c1mbi7N4/
1RZsDEJ9vanf3tnI8SvjmxjvRDhMa6rW/cNuKe43qdN1Z8FTuG33/qCa8N8i
xvcw7kY4XK8zYfoZkU++bfvzR/OYAGisXVY4WvjPk/EgxhsQDkWD5dGXDKRo
PX7G9HPfAiDazcLfWVOBP7P3Z8j0pOjXqfn7hp8DYEzPmwHQWgHzjGz99Z5m
4br4v3KOGEVC4qDnmwI+5uKy7QYaYxtnYbqy982jmyPgU3TT8HGH8+AR2/kO
2RnakJ3xJPvlMvkFupFfoAv7UYf8CBHkRxzJfvclv0PNERV+h7vME3fiCQwh
nuA+5lUy8QqadqngFbx1f9L+jtjnT/TJiHYUebhZcOI7bcF/zfG7sraKPPmi
6v2NYSJf2rXWZ/Ov30OTtwONz/FSvKZSsOa8yMOXzL+kWSby8Bb2PvFTxfhR
1sq9D4vxJ5U8HX/lPU2X9Gl8rCQRtdrafurSPgOtHw/V9f+Wi506/Sz27JqI
E0ySL+qflqJVofWDEcfzIDniq/04pXg8HnHh+urJydjb2b7+LUMF5jF+g/Fu
hEPq9p8O56PEdfe9xUeTozFp+8K+pxbkYyLjYxhPJhw6tH221KNtJgYHrCtS
veuPlzJ7NpiTL0dtxt8yfo5w0Oo7L+x2B5GfH3y9PNw4ACbvKlnzUUeBvRn/
xPg4wkHJY++uJd/TMVTZ8N6pNwHQYfDJhXfFflCJP6qKA9b6EdpB8PDJjIh2
08MCYL3zlMRYwU9vxm8zvoVwaHqxr+eLOql4QefbPRflaFg+U+lzG8H/Dow/
YHwR4dB15/tSi/rJ6Lyq76v32RnwvI3FnDttctFmYsrPZ+HJaN4qceHnpZlg
sWFparcdMjBkP/YjP4IL+RFL2O8Xye+wgPwOjZgn14gnsJ14gvHMq+PEKzAn
XkGTKaFGWo3T8XijR8FfQuV4sUZE7ece8Tii08rmh2vGoqfFqlifkwrcYOX1
8tK0ZDCaaZ7dUlx3oKlKRGTXXGxs8T27pdDbvE7Z53WEfVboZL4vEPq2yKpn
p6mCb5F6A89FLZCim6p6jzeOMux6W329ytR0vDPYfViOfRpun7zk2+OYbGzf
z33qYFkmdJjc3Mg4QFxX/bunkVEK3p353XGW8Jc+4w8Zv0k4NL7Ucf2IoFh8
GeBTL1Tgdh3fXPIQ9k++SPhrxu0Jh552Zb4XigW+YbZ/VtcUzGvX8S+jfgo0
YjydcSnhMMlouW2Ds8loFjp4YNnxQLTRKmw15XwBDmd8KuO2hEP3xyYd231N
x3HleXb1QwLA51sNzYsDFdiZ8aGMPyMcBvR/2fmOIh2NvBLTtZ4HwO76jyfr
gQLbMB7jSfhxwuGRW3J6f8HbzVd1pvoIHhpMl34/LewTy/hWxrUJh2Fzw6cc
SU3CCVYdP97rkwwOuX5Oxbr5OITx8YwfJRwudXwxcmzCWzT+4dHSdFU6bHr4
Pcp9pRw7djNptkvgau4+xjsE/uqWs8ahlXKImVW/vG1OGj7stS4xqXEOrN5o
m7V0WyaaJZ3w2LdRihMDc1b+uCeDw/tMV/3af+XMk7+IJ2BFPMFBzCtD4hVo
Eq9gKvPwOvEQDhAPsXgy8fYS8RZ2E29hlNe8gsiGSRh56uyVxfXl+K14yfad
pWmYN9zl2scRS/Dy/p2zbG4VoMaPsW22rZTAshbrIqYqp+H9Q5Yp65rmoc+r
Dfpjz6biY7N+5hE5z1HNQsnD9YgC4w3bPPPxSofDfvW+re8Tgw2fyOebSiXY
VD1wa3hjoScNls992iMGbd7r5ZWkSlC9/4wTmRoKMD6+saRlcCy6f5D4GAxK
wTEj30W4Cz2ZxvhFxkcRDkdlujO6C3zP1L1rdvUXPP9Lo9FkwedbjJ9n/CLh
sK7PlRWJb2OxQdEUF/moFNx2rZ9PsL4C6xgSPq2A8GGE/7f7vf1/dbzB7Zmd
fWNj0GXqxLzFR9Nh1cT1r3oa5KMJ480ZP0U4lDps2WbUKhJHtKoZ69xfCidv
vNzbcXM+ljDel3EXwuHbohnqR3Uj8NOL4ZNa75aCdV5qi5jZ+bg2Mnm1w4AI
lC+J7VZrj3gOGR/lNmlWPtxhnmgST+AO8QRHMq8eEa8gingFGibEQzfiIdQh
HuIU5q316Qrewuf3Fbz9bZ//p9+D/s++z9XFsMeGh4nnMWq6Xs3r6Zm4apSS
aXGsHPf3Izye8eWEQ67u3M5aLpE4ZV6NPbOL01Cx7HzBtPR8TGJ8LuNywmH8
i851rz2LxZZhRyaUmabgXuejj3/le/0ZH8u4DeH/7fj2v2v8v/p95wf8XaE6
1b43dIzxdv9F39tiXsHLf9P35v7Z79vWYz4/+0/4XIlX+07i7/HVvvsMRyA9
N+TDIePdL05dSdDNwsWSPfUsXOVYiTsyPo1wGPm2wO7G21fGqrJZKWUDU9F8
eq/+tzYX4AjGf+QQPpXw/7Z8+68e/599P6s6n58wb1Wr8fkU422q8XnGH/h8
nfnc9A98rv5927rM52f/4vez/l3fA/3P9Lkv6TNEsg6vZn12JH2GOMatWZ+L
SYfBhHW4iPU5g/EJjBewPk8nHYYWrMO7WZ91GDdjfMf/r8//I76HOJnyEIjg
/Pkj5881KW+BS5w/N+X8eSXlOeDF+fMzzp/jKS+Cepw/J3D+fITyZ9Dg/FmD
8+dy9Yr8GXZWy5+B8mTwqJY/T2H8SrX82ZHyZNjPebIH588ejLsy7sr5swXl
z7CO8+clnD+X9iPcm/Nn3f+P5M99KE+G89Xy53GMN2P8BOfPCsqTYWS1/Lmc
8X6MO3P+rLK4In+Gr5w//8X582bKn6Eyf9bk/LmSJ805f/bk/NmMecXPZfCW
8+eezMPK/LkW588WzNvK/Pk958/qVN+AU1zfcOb6hjk9V8Idrm+s4vpGH3oO
BROub6hwfSObnlthI9c3LLi+EUP1DbjG9Y2WXN/wofoGbOP6Rluub2hRHQPO
cx3jPtc3jBh3Y/wO1zc0qL4BAVzH2MX1jWyqb0AY4/u5vqFLdQyI4DqGjOsb
vRlPYzyjan0DhlWrbwxjfGS1+kY3qmPACK5j+HJ9owPjxow/5/rGQKpjQO9q
9Y22jAdVq294UR0DtnEdoy/XN95Ww3twfWMU1TFgXLX6hinj46vilfUNGFyt
vtGW6hvQoFp9I4nqG3Cf6xsruL4xgeobMInrG3u4vpHJPNnA9Q1Lrm/0ZV4N
4/oG8wosmIfuXN84zPUNBdU3wI3rGzZc34ikOh6c4vrwDK4PN6G6H1zh+rAt
14ffUp0Q7nB9eCvXh9WorgijuT7sxPXhxlQfhm5cH17B9eH2VB+GyvrwMq4P
x1IdGI5wHVif68NZjHsw3p3rw4FUB4bhXAfO4PrwK8ZNquLQlurAEM91YDeu
D3djPIlxF64Pd6A6MKRyHXg614e7M/6+at0Yitwr6sDgw3Xgblwffs/4rao4
cB0Y3KvWgdGL8fOM7+D6sDLVgeEM14HXcH24MeMeVevG0J7qw+BarT68merD
MK1afbgz+3EA14cvcX04lf1+k+vDG7g+rMo8uVGtPhzLvDrG9eG5XB/m/hfk
cf9LqUuV/hdU9r+Muf81nPogUNn/+lK1/wU61fpfx6jPApX9r+bc/zpMfRnw
4/6XDve/Cqj/BRnc/7rM/a8w6n/BQu5/qVbtf8FF7n+5V+1/gTH3v4qq9r9g
XrX+1xfGd/7j/hdU738tZtymWv/rBvW5ILZa/+sO43HV+l/vqP8FVtX6X+XU
/4LH3P8aW7X/BWv/cf8LUrn/9Zn7X95s58r+V2vuf51iv1zh/lfXqv0v0OX+
Vxj3v0ax3yv7X0rc//JknlT2v5gneIB5lVSt/8X9d6jef99FfVvgvi0qTazS
f4fK/vvsqv132M39909V+++w8x/334H7zriC++/nqU8NG/9x/x16c/99VtX+
O0z9x/13kFfrvzeg/jus4/77lqr9d0gfWrX/fpnnKeD+e0nV/jtM5/67Ifff
oeo6YUTV/jus/Mf990o7gDn334+z3Q7/4/472HL//T3330+xXwq4/z6a++98
jgLk3H8v4/67Nvu9ev+dz7dAHp9v6VD1fIvYf//h+RZI5vMtfA4E+dwIxPD5
lltVz7eAFp9vkfH5FgM6lwI+fL7lQtXzLWDD51saVT3fAuZ8vqVZ1fMtwOdk
wLXq+RYYyOdbsqueb4G31c63lPJ9hfH5Fj63Ayur2uH3+ZavbLdCPt/SjM+3
QPy5yITMQhz/7slzvb2x+PL7OE3P1CD0sTs74WBcIV58u3PXTdU4fLB2T+SS
8UF448eDPj+CCvDWyueDIhOSsf+0n9MW7EK02XtHHqmmQFPVkqKf6hm4qSC6
0/69V3F2py/tlJwVOD50elOT2om46kvLUeAVDwkWbaOtHRR477DOrU1vJRh6
uk7phN4RcGFxi7cXsgtRP3Lv/O6rYtEkye1tXo1gXB7esa9LRCHOVTaN3moc
h6ZJUe7pdYLQK1R54AKRb/qeuNtz/rRYvFfq32/q7hS4P/vapUtinpVKyTme
K2OxhsUEAyPlYHzWV3NuZ0Uh2gVKdx6xjMVWS+3OT7oVhK0kz3VcxPhzUdO6
7BXjO6x2OdZW5fd7cH96fvqn8aKid6+uiPmn/jAw3yHmz0iwmuul/O+b/0/4
zlXzrVuL/Wev1eA7ZV7RuNs0YbO10Jlps6ZtX2yuwHqtfQ/1fyz2xzvB8636
SmD0D9fRebb5uH/sjikHOkaj9t4uY9MPpmMT2/BzkaVyLPacBT3Co7DOhZpb
ljyV4uId0mJHcV+vv8d+e7UiFsdZBFh8qvXvuy8vd6i9Vqy/YKqtYw+x/pwJ
Wxt4/NJhg45N5+xS4LpUd1n3ybdx4YXMFoEm0v9ye/4Jd82q97iFyBMNi3bs
7STWeVKp7ho9oQ8vFmnabZiswA8NO49vVxQKxXZfZk0wSfs/ts4/4R+aZyR8
FHnHyJFNX94TOn/x1rpBh37Xhf73r+cl261mowq7oYzsBiW8zmG0TjxL6wQX
tn9Psj9cJPv/H1v/FebnLOInTCN+QiWfi4nPwHz+t61zCcfjK4pHMKV4hD+N
N+d4P0bxDsoU77CNdeME6QY4kG7829b5jvXQjPQQpKSH0KyqzoAK6QxMZL1q
QnoFzUmv/uX1NGedv086D21J5/9oHy/eR3bQPgI1aR+Bu1X3HXhK+87vfWoO
7VMwnfapP85/ife79rTfwUja7yCY9ykn2qcgdXHFPgVTeD8dR/spnKf9FN15
X35G+zLUo30ZTHl/16f9HR7Q/g5vef91o/0X6p+p2H9xPe/jk2gfB23ax+Ep
5wM3KR8AZ8oHAFQKcmfL8nH0pr0Bc8dkoIHtga7nmlxFO+cdt9bmyLFlukPP
5WF/v6cTNfzcRU+Bu6z4Etf0P+AOPL52tfF7tZXddq7Kx6lrovRLfmRgm+zD
ZpZnr0Ll+DrVxqs76xgbiPv9EHpf/8f1WPw2x0PvxZog7BJ7vKW1tBDz7cLz
XbxiMWuocpNtNkHYzGfQk67vCnDFsL7zv6onY+gJm89Z9i+xmWLylg/98vHt
bO391nMyMSj34Q2X4atx8ICaRqd6K/DUGp0GM8ZJsUbCNLsDB/2gr/9hpbhf
7z+OumCTbR2L6aMNl9ZSDcZQ33O16gmedApU0f+VZxY3N0oa6ywBnbYdGk4Y
k48dhg5b0K5DNB5bWyPCoa0U77YtvG+fIke/XrsaFL2NwsP2FvaFqVKc9fnc
VlPBh8Mnbeyz5on1v8pX73Q3CF1rPbzuJOL0uul7+1/7u5OeWclJVwmU9ur8
I9I6H48MjGpYp0c0Dk6aUeIRkI77npbIC+cpsEzp6Or2T6Kx1RVj2aRaEni+
dcKGqEw5lideUTUTefI3Z3W8KZ5TTtb8Lr/yqx7Z5MnMFJH3xsV9WDZOrF/5
y+wwg0EK1JwPL77eisbCkZ2++ThJ4Ia2l5+mqQLnGXyoW0s818yMM5+7YK0E
fErtPpfKFLiobVDx8+NPoNOoL2paPmno6L6sIEaiwOYvS3aW1bgMNbT7lE60
SsfQsM7nCoXOO07SkLUXOt/xu79PzcsS6LdYffIOqQJ9lvk/zU19DgPCLpZN
3Z+GwTz+Ao2HrjQe+/D46L8qxmMfGi/ildajRevB7rQe8OD1L6b1wxxaPx7n
dXo8rlgnatM6odI+g8g+wPbBmmyfZmQfKCH74Eu282eyM3wlO8Ne9ks5+QXa
k1/wG/vxDPkROpEfwYX97kl+h3Pkd1zGPDlKPAF3vwqewHjmmxrxDSyIbxDG
/GxI/IRy4idW8nkR8RnSiM/wmvl5k/gJK4mfYMJxsY/iAnQoLn7HUQLFEeRQ
HEFjjrs9FHdwj+IO6nH8qoRVxC+UUfzCdtYBS9IBmEE6gNGsJ+dIT373P8aw
LhmRLkHBjgpdgq5VdQCkpANgy3rShvTk9zz2jKv9k/g0331drYUdjt4t+6Yv
nhuDHi5P6b3kJn7qcqB3S0c5Gr2q6Z3dJwvLdbKmt7rqjJ+mDX9vIvjgtm6d
ZUjU3zrm2HbGweIssQ9+kkVsjfgbL+Hx7tXGn+Xx7/7J8ed5fFG18Q2jxy5w
ravApq2aBx+dkYQNXRp631ZOgK2DyqRlx+Vo2OPFw58fYvBrRn23Ay+l+DDp
u+3APoV4ZUUTw3ZXEtHOpkPz4ng/fFZfZcRRKwUermtt4XAxFsPmlZovd0wG
Wer4aT/FdS1uLp6mEhOFiRYzO+uK5/FHNVdq/HqPoHuTJskXhI5tan9ZWfuK
BCavsHw/XuDjdF1Negsd2CV9eHOGmwSujfDvqSN4WzDxQfov/XFfOtH1ptCl
RZbdTzUW819Uyd9nLHSs3GTk6rFCx2qXq32NE/hipZJVs4WuXlixp/30aCn2
LGvRD8U80LNlF6vb0dgoXm+LwTkJWOinqy0T4xOO1LX+tc7z/SKXaoh53F3M
PfPj8vH2USuzNyeDUNZhuM2Iv6To81zHQVPE4yuja/PsxTr/OnpjXkeRlwaO
2eplLtbf5NitOZoCz49y0Z8s1j+g3a1GjcV1h3b5onxfxN2R+yUtf56X4Aue
5yHNA0tpHnzN87SkeSCd5vm9fkNaPzSj9eNStoMT2QG+kx1Ak+2wnuwAu8gO
YM52HkV2hh1kZ8xlf80lf4m8ocJfoHq2h3nfIUL3yms98L4cDdJva2ZfPClB
96QdrQYLvRq64br7fL1oUNnoGmck9Ooe88SLeAI7iCegfKqm/vzB+Tg/sqH0
Y6tomF/mtHNyHymoMQ8bEg9Bi3iIX5nPF4nPv+PuY9U4+o1XxteVavhUjtNj
FKewl+IUljDPdxPPQSWzgufgzPGioHj5PY8r43nV8IuM51TDa3YlHdAiHQAj
0gHYuzLR6LK6HOXXvxk1DsnCRkt3+0yyvIdmD5zKrU/kYi8186hJBjkY3mie
fthWPxyi53UgKluOw47U6TQ6/O/4HaSU1kNFKseCfbUaZsb+jQ/n8cZ/GF/4
L46vPv9+wxSt6wYKjA3ddnR7djpGPntnUi8uEGoYp6zoez0fB80++SbYNgM/
m5nV7XH1EXzaZ1yj94YMHDN1jmT8NRlmLHj3s9ULCd7embZdXisXu0XWnDdM
7Ov78sbMWNJNioPTDPrvF/vpVrnWsHYijwqasrpN2BkJ7OwycvFLgV/Iytnm
JXSg5Tz101ECb702p+0cEUcWITFzVou4s0mIbqh/UQJtD0pXPBX3FbnK83JL
Ede7ZB1DagkdKPya8tVGLse+u7a2TQiMQssbzZT8wqS4WcfffrWIi6cuU1qW
iXlK5p7vN0foUqubHYp9xDzr/N8bD4qOwkFOqG4s5ul3/o7dTIHvaTRMp1zo
TN4NE4uFUVL07p3hW1fEqUWLOlOu3o3GV30+Ddl7XgJxlm65qcYKdC5rI4kU
6z8Sf+LJ9hMSyI4cnpjx63ubrSxaNBXX1dFb8cRQ5D8P85ZfNft1XectU5+J
9Qeuz3DcJ667cWG3CCWBpz43O60kdO/l1QATucCbrJySMEPMcy1359NaYp68
U8me44T+bIO1jpkiLhbEGjzsJcYPXR9SeEboW2qRvHSjWE+GpalUU6xn3ZlU
ybZTQm+b5E2esUqBgVmJm9rtOIYdFw3JPLdFin1r7vQx7aLApVLDh+kZkZgz
4uxOG0UqGDJuTjhkEY7neZ5dGRXzQD+aB9L4uh/ourCUros2vE4LWicMo3VC
U76v23RfkEr3hXfZPtZkH4gg+0AO29OE7Ak9yZ64lu0WR3aDN2Q3eML+mkP+
AvYXjmL/upB/IYj8C0nsx/PkR7AlP2Iz5okN8QSGEk9gI/PKh3gFZcQrbFOV
n7Cb+AltmM/mxGdgPqOCeduTeAtLiLcwiOPFjuIF3lC8oC3Hy2WKF2hO8YIP
OO7qUNzBQYo7sOO4TqC4Bo3nFXGN/VkfxpA+/NY3Y8ZH/JP4Pta9fNI98FpS
oXvwmfXBjPQBEkkf4Mcg0hMgPYFZ4yv0BPuyLn0kXfr7nBbjpX/Aq48fw3rb
l/QWDpDeQssMH3ubDDl+8k6skRb9t+7ZvzE+uiNQjmV1zz8J/JyJdSc+UHts
tQOH8nisNj4lpP/BewLPPR7qd+o/4BN5/O1q4x89TYhwiZFj6Li+t7rKMnHH
ALuiBmdF/rzCv7HqtzwcVS/27I3PWWjc5lJS34ZXYGDf9LZ3DsswT5acdOi4
DC8v3JzQbP1D8Dh7L8m4nQwnPt8We+xrDi7Rytr+ICoMj3i1O54l7NDgeE7Z
3f/wexqHGG9cDbdnvFE1vIUMViSZ5OPlc3mO/QdkoodmkNmYfHfY0G/cltsi
v8vroRzq2S0X1249vqJM8PyVuVlox2wpfnjodEC/aS4+Ndx46OgjCVrsvNPp
5hgF/lXuHqb1ORrPnnrqXUNfAi3vpfv/es/XM6TVzW9C/y8Pm5td10UCzxw9
E15/zsOe48/UVrsdj/CoJKFc6JhZjYLLqneysX1psNqH+ExU3nuj0+QW6Xho
+7Aa0/LlmDQzoc+NVyKvM105frDQ+UFnWl1sLuLL5bF5+7riubUsPWxEf7Ff
jHS0XftG4F3CHIqzxfPvTu0G7ezE83W/IXfNHIUu/bX8grFtXBQuPnHF3Vtc
N6zB7kg7oQNaar1PzxH5pCIozWbfSQksnZ70XFvw/+2zwc7jhG6vvbXvU7zQ
5zLLVkN/PceFuji8NRF5r1Jg6CpVcd3FWx+ELRPzJyzK7x4p9HmsUqu/esRJ
Matw4/BaYvymNhfKDwg9n/Tc4vziX+dIw63uDhB69fKMz+Mssb9EJD2xcRd5
rOJK6/X+u7Nx3irtaWq7/PCN45gtS3XycH3iuy+un7LRI2lq0cqOr7DnqPbr
L2IufBt31H6ZUg4WpIx8n2P5FNU9D8pGvcuF9kvcH+saZuEsGHwqMcIXvul9
N/SYLYcj/pFnRvbNwsLwc1v+OvYKxhebKQbqyrGVVbBJN4ngx9ihjXTUX8GH
JynS+RvkUIPXGUTrhFe0TpTxfVnTfcFoui+stMNrsgNMJDuAFdszjuwJq8me
EMn270b2h1SyP/qk1/b75a/BjpPf7Y+LgvIr6a8fin1kNPu3BflXPGdW+Bd7
sH9Hkn/BlvwLa4ePnWMoxr+8lTb8jHjubtO5u5eJWOc+5lUC8QouEa/AlHm1
lngFxcQrbM18vkZ8BlfiMwLzVod4CyrEW5jDcbGE4gKuUlygH8fRF4ojcKc4
gvKWWrvXTs7H4/5myaf1kmCz06he0eOSsT3H6WmKUzBqURGneILjug7F9W89
PMq4WjX8GON1q+HerDOmpDOgQzoDK1kHSkkHYB7pAGRZk47ZkY7BbdIxbMd6
+I708Pf8Ixj3qYZPZfxaNfyHAelh19wKPYQnpIe4k3W1mVmFrkIu6SpKqurz
73n8WOc9SefhxoQKnYd5K9Y0Oz5SjiWb5hYfOJuFna82KnfpcBmVLd+tnjQ/
D7eqqPcZvCkbtfVPD/2Z7YOavultTQVvO69fur3uf3juzgvrrHsnSOjtPklT
1Y+ZaN/9/Ld5w9aB3rxRF4+NFvqfYaLd91wWHgx+sveZ/zk4PftbjT6XZGjk
sqnW1NUy7OLvb77tpjeMuPppziORZx8/rdf4L6VcDFR7Ytpiewr2X3vcM3xn
BnrNNmnZtlyGP1ZcOHxtRwrqXzP40AuzsNebexOPeOWh7Z3zZ9+H+INJbsmU
1ypSfPAxUL34Zw7GOHTsUztBCinXnycc+/U+e7n793VCz1Nsh3pPEHxO/Vmw
cqa4f7+CTnozxF//nBPv9ipJQdtyioVFpAy/LfVJKB0uRfMtc9d5v0uDObe1
D6TeyMLS5RovF2lk49dX006MupCGDw827ryyqeC548Guzc1j8FHJlnY+fhIY
f7KDiaqIo9Z+eaYGQp+7zq0zxFLo5LMk5X7fBQ83jT29qU58FHo5Dbqv9laK
21RDXPbUzkOL/oPqrbyQjMYuK65cXC7F7qNb1VcTedex2bq1l9+PxnmLXmmc
FvmwZ8zLXiN1FDhZrffCmdHROO745HPqz4UO9+qVO0k8x5X3OHhgu8jz+6cm
f5kpdL6gTluNpiJ+z+ZtTzsj9Fb/wUvDvmJfuGOfcKu/WOe1boMdLgl9znZw
vXtGrPPLkNPPNs/Ixk1P4l+GzQlBi0t7ve5H5GJS1tbEE+Oz8TsaTjqxLASP
tJ3UaPjbXPw4vH9/l0fZuKHR4nZx70MwJGLW5mXrcmGk6vrbWv7ZGFI/PMon
PQQXuc1Zcc0qF9oFoP4r7xy8mq7v5/QhFCdH+HntXyPDKSk9rf4Sf4/f6HC9
/tswjPPUGdDzWg5YzjXXvfstBy11po2zuRqGQ4bNT3jSXoZHDz7LdwoW/+/1
bVvZ1XA84m84wNYwB7YMGJ+y2jIH319xyB0eHwqjPjcqeh8ow03PJi+8eywb
+74vLneMDAGp/YMNjRxzoeamZy09wwXvN8Z93nAlBHZYWGneXpiL+ZY29xZo
ZuMes2u+2i/fgOmRRQusG+aBYl7wK1WDTJwR6JLt4hAEQ7ceUpvtIUfdggsP
L2dkYFL07ntjtINgacuEXh9y5KAY8PhAgFYmjnW6/cr2XBDYTHwc63ZXjk+a
dzLyTMzA1GErGkcYBMHaLwV6pxVy8GK/3CC/wFvyCxaxH13Ij9CD/Ihzqvod
RpLfoR/z5x7xBzSIP+jLPNxIPIR7xEN4zrxaQ7yCmsQrnMZ8LnxZwWfoRnzG
WczbV8RbMCXewgOOi8UUF/CU4gIXcRzlUBxBbf+KOIImHHetrCriDmZR3GEi
x2kwxSm8pDjFyrgOpLiG1xTXMIR1wIt0AFJIB3Aw64wj6Qz4k85An6p6Atak
J2jAOuZPOgaT31ToGLaoqoe/9XYG6+p30lXIcKvQVejLOvaUdAyKSMfAifXQ
gPQQTpAeoox1tSnpKqSSrmIN1ucdpM/wtneFPoN+kxk6L1/I8N2CoRPX2+Vg
69IOqoPPhKDDwScdiw2z0aTW6Z9nfGUY9+569zcpsZg72HdWSUkejrhy66lR
jWzssnLBxMGDL8OA4lvt1oyVYfjFa17+T2X4cEX79CcdfOBskdJg1eVZ2Fy+
Z82j7Dxs0EhJr82HAMgJ2dX68v5M1FRpPf/HEjlesltSsiI3CHYPH5N/VOhN
hs152wlauai3Ico3+xc/t+f6TBY4ZC0v3yfw76/LavgJvL7R674BmzKxvNP5
6BZr5NjjeVxUSHkQBFtsgYlbM7FTszL7byvlmFVvg/5UlWB4JhlUdKY8HdNc
vBq+V5XhYe+PBy7GSEHj8ve1j2pIsdbGtdu+15ThwZEHfW6IvOvDG7fFKHiy
+WnjQ5OE/k8ZcGPqL/2fhdvgV/1j/Z167h49ctFsw5f6fiKfeWDwXWW/wFWm
jOwY2D0XDwzQ+fxerLP/wg7O1wTvrnio7s9WlmHMX/uebhfzH00LUzuvl4UG
7XRb1rHPQq3IRpmhx6UgD5E01hJ62HIupF9XzkT9umP7h62XgqbDKieVAxm4
0W3cqYn7xD6Ysae1a6nI3xQxF+/45uKt8aPqb80R+9yV5o8fTJLi3aBeHpsd
89G7f8NjKtPicPWSE42sBqfCO7Wte742zcbWU4Z91VQNQd3rE3RD6+fhbnej
FM362Wi0q+O5pw1CMHTQYpMjGnk4t8EnXcOF2dho6bbhyjtDMMbK7ZO6fy78
iDh9esiKbHyUM/iJxfoQvDb9TMEQ31w4tvz5sqaeOWg4prDL46xQtNFycP+x
VYYB0YETri2W4ZHvMuNnL8KwY7au9pgHOVDU8+ArS7HvrpbN2RhwNgxvJd9O
/95Whsv0EtcFvJThiJ5ths50C8dLF/Ouq0IOTNjbfrTK1Bx8u9diWYeoUNBx
vjP9c7QMu5kOPKx9NBuV3VdOdvYLgVt7S9Zbns0FjdpzXRO8s7GJg67eZtsQ
cB0wWHZqSy4qzx5Ztl81G9/l1/Xs5f4GvCc3C1PukAcfH5vGDPTIQKc93efc
T34NgenWF0c1ycd6SnblqaszUGN1Ycv0069B+aE02HBQPhQc7fnI6nIGTh61
uPEC6Wsouzfzcl6zfPR7fr31oeUZOGzm9bpvzr2GWiNuX9wxJB+us19iyC+w
lvyCXdmPR8iPYEJ+hFqhxAc14gO0Jj5gU+bDGuID9Cc+ADKvmhGvoAnxCmdW
5S2MJ97CSOYnEj/hIvETPzH/txL/AYj/4Mk8r0M8h33Ec6hbNY7gOMURVsad
hOIOHCjuUL1q/EJjil+s1IEs0gHQIh2AII7rzhTXkEZxjRdZZxqQzsA40hnM
Yr0aQ3oFs0iv0Jh1T066B5klFboHc1lnhpHOwBfSGShkvWpIegUvSK/QgHUv
hnQPXpHuoTPr52DST/Ai/YSP9q2H7mgixcsPD6oucpHjZp+RD3qXxqG2+cWc
VqZZ2M7rZs9RreT4LMxTbXJ9fxgpa/r0yPd0vF17d0DMWgWeHNPzaaOfL8C7
wbavp7cLfbt1RGFjLcaPLzKbWysYQsf6vu28LRNPeUz03C90z+CaReOEGsFQ
1/Ro3M8tmejXrHEH81VyPKppqbK0ZjC4ZS/vrRsvxY/19uw52TUXE2+Ht/j1
u3llyg6DdphL8dKnJN2GIm7XBVx/del1Oow323YgU/DESt0/7ZyKwEdI900T
eYJFskthiuDDMadVqRpCD0MCEtp3vyDB8on5tyVi/GS/5vMGCr1dNm9EnUNC
bz/0SF1bU4z3eVy4pLbQyYMaqepHrkiwd4R1nJ2w/9xnB62eCL29t7ymplys
Z8sOUCSqZ2BLr6eBP6Uib0vr18D+kwQz68xL6Cd4NUCzlUahmL/+25sdo8X8
t798fJ2ulIx7Aq1O6tmk4KMxVl+mR8pRs6j1kzU/E3Hl7VN2y15LcMRqx5K0
h3IsnuHRaNj7RDxvMfKJ1zAJ3prc26lcIodUw5oNLPski3y/9aOO3VPQf63Z
iNBEOYz07ZN9bEI2pnbo8fPhnBg0aju9W/EnGX5KWuip75aFMUeCp604HgXb
ZR0aPknLhWu3zqjebpaG/l/N3S5PTYF9PZtqJ3vn4c6pgeNjPVJx0OLXrgnB
KWAzomXAtSd5oLTZy8C9jQRDXAaVvJKlwtNSrcapDnn45Wadthc6CruqFoUP
9kqDzll2h7+Mz4NitsMgsgPUJDtgP7bnVLIn+JE9YfVNi8cK4ZcV3wc1iRTx
fvT57fbTRZx+Y7/4kl9gBfkF1CeRH8eQH2ER+RGfbZJFjBDj37b5+VJdOxeM
W8XmzHeWwCzmw0niAwQRH+Aj88qJeAWniVcYwbw9QbyFnsRbvML8/EL8hGji
JzRmPj8nPsN+4jPe4LjQpbgAP4oL7Mrx1ZHiC95QfGFey/5LN7zIQOXGsvE+
pbnQK+pm0IPhCTCe4+4GxR2EUtzhB47fWxS/MIniFxqU7nF8K/zSQlHeSz1B
gYei2k2c4RiGmz1aOeiFJuDYZ3bbJ90sFM+vh+pFfrkOo8t+xN8UOhb0pcfi
JavleGKl8Wy5yH9kT5Of+t3MwAfnBo6N18nHkcObFI31D4BbN0ImJgn/FI3J
GBkn4lT/yKHJbiIuMu9+lNYUfsgatnLfJhFHKtcaZL8R+cbGJm9st+7LxMho
C/m2xXKM7n63xciGwWB0atHGevWlaPqg49N6zWS4B5zu1nsghdnrFEpyNWHn
N32udhL41+zDBmoCnzWuxNpL8OfI10jfy2L+++Zl98adl+DdL3sbXBb4qaLr
554K3NulxKGTwF/eixmuKng4fNl9C6NaMtSe9OnLfhGPRjFF2tsFf5YGXNNc
K+K0wbztBhcEnnJ54AI9wZN9F9oMUIi8rmezhKm7hQ546xS3DBD3VSbtut9E
zK/wHO5+XehJnGqhh6rAJ48du6Gr0JmIE4XqDiLv8h871/b0t3ScP9R96aI6
Miz7knVgcrQU3sf1ONrpZzr2M7C4Mlas56VXm0NJ4roP1eX1lU2ScYZ67Kqk
9plYN/J1p59pMnz2U//VoLFJuFvrUOGi9Rl4wjl9YaBHLpy9Xz+ou00m3l+X
v+WoUjC6FeMqyQo59lXpfu+B8KO6Vrz1JeVg8e8aPZ8L3XXl8d483pXGQy8e
r8TjH9N4yFH2yjtZNxNHvJtp+mbmPWwRm/UxZEY+VuLbGNckHPzvZ42bfkuK
O5vZT7vh8Qyy1A/pLhDPS28Yn8i4lHBIrLc+LV34pfX6nbr7wwLgx/4nr/f+
+r1FxjUYVz1QgcPTfP3+fwl/zf3i49I0PAC0T8ju/KoD3mF8IuN9CIeBZk6u
D6xTcMJmV/sF2zJB9zK+MB0s9P7Lh+4lCyQoG1JTtWnXLKjjbxGtNScHvrJf
BpFf4CH5Be+y33+S36GI/A6x7N9l5F+QkX8xh/mzn/gDjYg/EMI8mUM8gWDi
CfSvykNQIx6iD/N2BPEWuhNvsZL/Z4n/cIT4D8YcL2UUL9AspyJe8CbH6QeK
U+hBcQp3OF5cKV7gBMULNOd4HEnxCJcoHnEsx+8Hil9wpfjFYawbYaQb4Ea6
gVmsA9mkA1B+tUIH4BPriQfpCViQnuAZ1iVT0iW4TLqETVjH2pCOwRTSMdA+
t9EibcdbDHXfdm9VeCEqCjIfjdnwBL1KGh/fNywOnwWvqukyvQiDI6e+9212
Cf2K/F9m1YnD633LknQXF+HUMyumz1u7Djr2eKI44BOLTTxaGDdeW/S7Hrig
9QGfMbnJ2KzTLk+jrAJsH5budMPKG0ZaGp7vPDUOpU96zC2bUoSj7Z/BmjqX
4a92xfI6wp69ErYfNRK6sVvJQ3W50MPwDoM/tRH2KQ2rc0Bf5DlLDFw36ioH
g9rl991uC3v22nJ353Shh3un7lMZLPQwru52d13Bh46J+3fWEPrQCSxDdH59
l7lXy7ACYc/3ay522ibm39nM73GceO5btaihvo7Yj9Y7/5jYV+hwWuyQJnmX
JbhYb8u+N2I9m6L0zOuL8QtXvlT91a98M3ukToDYR9aFRr6JFvNHG/prRYr5
/9q7OyNBzN/l3bvMOWL8N78vL63E+i+2fXBTdiQJjR8Fe905lIGwv3TXqH25
Io+Nt8/yTsQt9+vuXftZio1Srd6ZauVBbpeU6DXGGZh74rvmiIwwLL/33qdO
mRxL6v2o1cMyBb29d7eJ0HyLu6Q/Dtr45sPY9WfMOwv7XDJuYdm8djAmwTG/
D0KvYsx6hs/5mo5rL6hjVEAA7LI5lBk2UIFO7Tpf0BRxGjd6j++jkADoNi1U
peMABR52W5ypJ+KlR1O7q0qhAaBUU+Vu6K/fE1iYO7CNwA822paoEONtQgdJ
ooVuTGB8L+M7CYc1591PrPVNxu4PDlxovCATApf1ilx2QIb1Jp7YVhSQjJYd
xi0oX5gJzqcGbVbZI8PTw8LXHKopxeaRj14bibzlfXINu5PC7kvYnh3JnqD+
qsKeIGH7byb7wyuyP85nf20lf8FS8heMY7+XkN9hC/kdYpgnnYgn0IV4gumX
iFdTiFcwiXiFIYb3VUeI+ScH1JDVFvPsj7XO3iTWk8z8lBM/YRnxE98w/791
rOA/JBD/sdM7iqOzFEdg5lQRR7iZ4/EZxSO0LKyIR1jNcaFLcQG2FBewm+Mo
nuIIxhyuiCMcz/GoRvH4ux6VwHH9iOIavlBcQ5cdNXwTJsXhuInt2x+ZUYTr
lh4y+QmHMaVI82ZOUCy6ma+vI1v1d1wvL+73PmJRHD6JsL9/cGoRttkVfbJZ
04NwZniPxnEBGVhU9LNYopGPu+o2abBsaCA4Fc8f/PhSKtr3Hz3jfo8C3Hm9
+7Auyr6g73Ok7bMAoZ+RPT3XD83FGbINp5TWSPBmwIgPi6dKcdpRLacOW2TY
vvT1AqugdGj15sAodcHbfQaGa8+IuBs2xvuRnYi77JuF6lbCb+2/FfarJ/KK
p1l5BcYiTodIww+u+lVfGnt6wGfx3LFO28x4nIjHg5F16j4U4298GnDyqsDt
Pi96V9/t13c/J185JfCPb61Ubgs8I6jDz6ECdyg/MvGc4MmjY2olX0WeYzD2
0vgIkYc0ymgy8qPg4fqRTQMe/cqLbC7ukoj1OLz/2dpZzHNUw2LBMaEDWh83
1ZwkrvtSL3GGk1j/7HDnw23F+BpHU+umivE/jphOnzsqAWfp+yqmNZJi6MD3
F3+0luM4n/JEgARMjBy5Oru5FKM8SwJvtZTjohad7hT6vsV+NtKsORvSUc3X
/2TOWjkk3zz4tX3AW3x/fuyxPVbpeGXW15zaG+RQcmqjfUiTOBxq3nn1kSjB
x5hetdaaKnCVRS0jyd0kVFd6kjp8awJ+19CZcy5F5Cc8fhCPL6fxsIfHl5Z7
V4z/SePBvL1T+AmhA66tltuFRgbAXt92T9YLfRjD+G7GDxIOQb5Xlz0U9ow9
Y+LTX+Qb3g27vqwjxj9lPIlxJBxs+r7o/PxLGsaOSm8sXx4KXmHytNBuClzM
uO5owu8TDtIzZ4PsTyShlW2gyGEzoPHsDLfAjbk49/C5mUP1knHLulJjk3qZ
cGmF+Rf4JAO7+HDofjAJI/ouf2LjlgHbhnxbOWR9LtqzH+3JjzCI/AjTlu2t
I+2cjCOHLF9k0jgTWj1STFteIoO37N9Z5F/47FDhX+zIPNlMPIE2xBM8xDx0
Ix7CUeIhHGe+3Se+QV/iGw5iPpsQn2E58RnGMG/fE2+hiHgLjTleDlG8AFC8
YBbHSweKF3hC8QKPOO5MKe6gP8UdunNcZ1Jcw0GKa1zL8buL4he6UfzCBY73
gxTvYEfxjpNZN56RbkCDnRW6gb6sM9dJZ37rVW3WpUmkSxC5uEKXwMHRr5/q
cyk+zK0/YIlZLrZuqRtbf46k+jy/9epfxVu0dSlrdTUem7dO2dpLowiHe/dY
1k9yHRL3nBvX+lEKrruye+W4iFxsVv9Dkd5YKVzWCI8bopaB1o0cI3RzZdj4
ioakrVyCP3+ozewu8EMa0i81BK6YctwlWeATkr9v6y38O3SUn7WB0JMR9zLy
+v36/kKv+ys6ing5YbXF973Qh1fR05L2C53pYFm+5de5tuv3DnhnC13Sbbf4
mI7QE9m6qLuTRV56qvGc4sNCZ3RC9e6bi+emoDov8xLfSvG5XmHsEKGHK31K
27Y5LcHPo2ejr+BDC5+Ioe7iulcbrc6wEtcNSph9WFdcd2qtsJJMgTd6tik8
U+jSueBVsVuaJ+PJHe3Ul07IxB/6gW4ur2U4K1mzz4vHSTjUJyG2DDIwb3TB
zIFeubDgyug1JsKeXR8FbJzTPwW3ZffP3iPiWtPd0jHkdSzeKUxfO0ng65rd
Oesi8LqMX2J8K+FwVHakuXJhGtYYqmOX5R8KCXtfHdjeRYF2jNdjPJlw8Lo4
SW1+jyQM2tmj1V23FFgx72BoyFc53mTcg/GNhMNP5VadLGcnYueNsWr3jVLh
QjdZ1JhncpyiQnjOBsKdCYcFBiMWOe5NwSUay+aM2pAJ/cMDt7sPlOG4gTEO
Tgkp2OxYjYk1d2dBYODJ2PV9cyCF7TmN7AmqZE98WtUvcIz8AkpjyC+tyS/g
Qn7BXPbvcfIv9Cb/wkHmyUniCbwgnmAn5ok78QR6Ek9gPPNtOPENTIlvOKwJ
8bZT4wreQm23Ct5CCfPciHgOC4nnGMFxd5ziDr60qIg7cP1OPB/atILnkG1e
wXP42IbiqA3FEYynOEJnjrs71eLd5V/Ed/vLWjdqlIpzR+8Ivh+uwH55D6M3
Gb/B+xPLL+dsi8Uu238YT7D5O66dGO9eDbdlXLcaPmVvt8U3V0RjwfaRZ59i
ETo0y27aP/wGpKj29C4U/lzyQG/kcBF3Mfn7xxwQ8fi+saSXe4t4LFKuvdm9
jhyfNB61/4FcChMGTs872SERz3a50EV1TB7iuJkPHv+Qwr2Wc79+E3woHq5/
La5LLualzayX6CqeF6wU27dFStG6k+m859q52CQ+TDLvggQ1DMaEbxf4yTmX
TB8LfMPZ9tZrBH67g+8EW8GfBLndfW8Rvy9zLw8T+wQUT2p6WkvsO/U6XJi3
XujJntKJvX6dO3UKeT9hTEwS6mqbRD31zsDOi5LqOk7MxdP9X+x8apiEJvtb
qz1JlqKntYulU6s8mJKetea6iNNP7hazI0WcYsmQJiKuIVBpA+jFvUWLG4d6
n1mVDmfPunoOFc9nbxgfxbgr4XBb6WniaocUXBN+7+p7vSyo/TH3+eqzObCy
xaI9a0JS0Cal5YEDzbNgwoJzP6+cy4HLbIc5ZAcYSnaA63y/Erpf8KX7xUds
TwXZE96TPaE5220P2Q3cyG5Qj/3iSX6BR+QXbNaE/KggP4IX+REr/T6X/A5F
5HeYzjzJJ55AIvEETzKvehCvfvN2M+N61fB5jOtXw02Y5+uJ5/A0t4Ln8OZS
TedWY5Lx/Bw1t8TiAtySPuL8/LbP0XJUI/WGa+LRvPeyLI+WRais2r+fr+Zt
7HUm2jhpYywePrPTuc32v3lu5K/xQDMkFudH1fe0/w/7oAaPP/5Pjv9ymsaf
+ifHO4542cJ6ZBSqLmjw5nhoEd52r3vpxKkn8PBSf6diy1Dsme2x4fHTIszW
UVPurBwEeodcj7sJP4+45zGjTOyDJW7lGwNEnv9t/PVrCc7iuWzHkD2OE3Jx
S6PJew+J5/fEGyZ99WZJcd3AdZbX1uXiNg2Pv3oESjB06gDJlQF3UO/Yxr0P
mhRgmzm7NZrtSoM2E08YfMuLwuISqZZtj3x0evHNYPZ8EUe1Wia3WBONURKz
uzvU89HfWMXj2DIpaESNnxWxUYpvhrUqzZieiyEXmh1snybB2sGL8+rWS8Ta
s8s7f/CWonf3L4vDbPPwUsYFKTolYJzV5NbnpVIs+Kb1/Z7AY3+end414y3W
00rs3meTyL9W3R9u8SEPPkqDTAwXJuD+80vSXo2S4s50v6/5ArfzHXL8tIjH
CYeM9qKIxzdv6l21F/vpsusxG+cJnTw6Vzd6lMBn9wyo2H8XM76H8XmEw2qe
ZxzPE07zQFOtvyavwbe4us9sjNyYDnBoeeyNNXJsxfgMxkcQDjpfx3479C0e
LWq+N3PbnQ4G4d8NrzjJUZvx6YwbEg62TQcs6HEoCceOTvgSWJYBK9dkaU/o
nYtbp61UfzwsGW/sS1savSkTrh4s7LTonAzGrzkedDQwEcc5TjUP6SLydsfz
Xo6muXgo07hO1vEk1L/ddYLZ+Uz40bvvwnd3ZeDN/soif8ED8hc2ZH8Fk78g
kfwF+uz3j+R3cCC/4yfm1STiFewnXkE586cn8QdaEn9Qm/lpQvyEGlcr+AkR
zMP1xENwIB5CCPP/m2UF/2GCRwX/cRLH3X6Ko9860Idx+2p4S8aPVsPDWR+c
SR+gHukDHOL40qX4giG6FfGFA6rG6e95/jN8XjV8QVX9gdakP1Dgk+QfpuaP
ZV20hvhlK9D+pFafA5mpeM5l9f7LhdG4d/qsbhF3itC3X4vhJ+rcwB+877tW
y8//hH//A373U71j8covcPytj/rXJhXh08mLC1o2iYWZD2RKnh6ReLgrmmot
y8evz76ty4O/f7f2lv7zdUmuBbg4O6HuDKHzreveuT2jWzjqbvsmvXQmHzNK
9zX3Gyr8vWZqvNZn8Xz6QqWFckYuqitOFZmbpGLZp52fI8zOooek0HhB5wLU
Ko8syF+TBvNTVRvfzA5H6xe1DwSuy8ZLjzQnRovnzfxhaXeuF4Rh2baQQzLX
bOy9ISPljGUuqPUeN+KsiNMRtSxUmw1MwVd72p7uK+LaqGsL12bifvvk1G9l
MSAFN4TEh/36zpAqjx/E41/TeNg4uNPN0gOhuKZ1/foF5lLYa/pq6dZr+eBZ
uqms2QZ/rGXWS7VktxT0+xy8lf81H4fkvCnOGPQGPT//8NEemwNmp3cMSqqX
i9deGWkPhxDMfK/34Vy7HOij+qh9SIdcCPlM93uH7hc06H5Ri+2mTXaDbLLb
b77cITvDfLIzWrJfDpJf4Af5BXbte+W8wy8Js6M/hz1cIgff7vkGYX1S4ftH
8u8E8i/4kX/x2R+eK1/8i7gN8/MQ8RNc+1bwEyx8ic+2WhV8hmaHKvgMX/Us
u3S6sBJrXXC6Z6NegOXKUwY8DknD8CUq7pNvvcQ+/idOHD34DkvudQoLrf0M
Qxp6T57jF4sPFfl5H1f/zds/4WF/wK+P85kbFn8V7dIGby9dVIjZc+fPq9Mz
6fd9tLeKD5D+qsuE1LQZGPNnnlfif+lEbUwwVGDqof1398X/Pf562/DmwZcK
8Lry7pPOZyWw8a7y3DMtL2Mzqe6j4vky7PN/VffVcVl1S7gqNiYGFnZjd6Bj
d3e3GNiJgZ0oii2KomJhd4A6mGDSSoN0g4iFonfLPNvvvPvI74tzzu/ey5/j
69prz5q19pp6nsSU4fX8o7g0DzZo1vIoR22xMas1MZqLXCmba517JPn+qFpo
ujJ/r6b1b1zqGcB7tx5bfKdJPCe8SUr3Uux2nf7WycHK9yjqfKrpYmW+0ZAv
hDxB5L/maba/zpcm7qF045L33Ir/gku84FRovk0roqh4naDrqx9E/ZKHtb+T
7d6ySHqdbtdiws3oX+Ock/eiA/Jev34/RfRAwaKHLO1WlZcXPVMv0TNtx7qs
kXWhKFkXtiki67hT1vHXuAeykB+EfIdGXtlU7Kqh2BXNF7siiwZihzsPZ9oh
jf7e/6cdUi/fnk1fHPPkkevKp5S1TeJ8ra28HW5a8bxl7lOPf3Hhg1F7mn8c
kswDt00vfnfmVS4zMW1sWeW5PQvl655tzh/2Nqbf1IRSaxS/oOyegoWWJnFG
FdvwVZfnc+yzqe16zPPkPPf9ulWwT+I71YJsLo3aQS42sz517eDOLby3T3b2
TOIWES0q1TC98es98vHI07d/xHOBFMd3gd+C+UOeo8NfTrfmKqXsn9tvSOY6
Tr1qvPZ/zPuL69cfsHEzW604ZHHlQQKfDRtdp3uBwL9s55OzsPPALOz8FOxc
lc8u+zh709go3tSj9YeyQ/+wq1qPnFb7REaz4SS9Lrm7RdLWnE8M7Oo+54nP
Y6ZG+IRw9bwpQ+bExf1juw2H3fr8Rbud+id2O05jt0Yau3UoIXreInqm66Jn
fv1c1jfcOXN96bOsL+efJHZSVezk1/M6+Im9NRN7o1OtMu2NzPPL+laS9aXh
sr6//t9e50x7oAVxmfZA92A/LcV+aJXYD4/VtUPaI3ZIm2DPB8SeqZHYM/X7
tqx77tcOHD7+zIZ1u5LZNbRin15OD3lhuwPu03u5cbNFNrWyfU/ijodreL8o
cJprz1/tcencY86osOpG1OMkDivacFOlQ8//zW4LwW5V+ZKABbu7z0rmBKeA
pLd5XX/J3ToNMctnp/gdN3vX22f3h13h3OAeGrs9B7sdp7HbmbBbH43dOsBu
T2rsdhbsdrPGbmvAbsvAbu+Znq5T2vwMlzKw37pgcxgPCO/Ys1TeOM4GeTHI
B4v81/jmsOcLGnueB3suqbHnt7BnX409n4c979PYsxns2U9jzxdgzyM09lwO
9twH9qzKX4r+qYbo/9fvF8p6Ed3JXK9fv98NOzSHHeaFPXwVe6AqBpn2wJth
P03Ffqig2A+d17U3uiP2RolmZudf7unJMwf1Ht1tTjLfrf3sUkKwC1exHt9v
Rc5bXKRGkTHT7JPZbuainI+T73J63WxJW71Pc553m3f7tkjiHk0rPWn3yvsv
22G8xg7d/0t2OAN2+DoLO9SenzNgh5ZZ2GFp2KEqX1n27LU6M8I5oYfB/aX/
wnuyHPJkkf9jOwzNwg7Vc3X//9gOq/9FO9wFO1wCOzwGe8gm9kCzxB64G+yn
qNgPzRb7ocJzdOyNbou9UZDYIal2eAt2aCjjEMbhS7DDOHku5YId9svCDgtk
YYdJWZyHRho7/G9/x0//w+/4n9mhBeRJGjv8f+1eqv2+/1U7bK+xQ+13eTfs
4UeK2OF82GFrXfuhlbDDH7N17I0uww7xXSb1u/wQ32UzOVdJ/S5PwHe5upzD
9A3f5YQsvsv/t+wwK7/J4R/a4X35/pIhvr8Ddb/LVDyL7/L/b3ZY7R/aoR7s
Qf0u18N3eQ3sR/0u18F3+YyuvdF1fJfnyr2RtH7QaLlnktbfgV9Dql/T8k/8
mnTxa0j1a+rBrzkpfg1thV9z8W/6NVn57/8jv4YmwK+p9jf9mmL/oV+j2lvI
P7S32+LXkNavmSP+CKn+yLA/8UfuYt1Vf2Slrj+i2gnthj+yGXal+iONVX9E
/HEaAX88N/xxI/G7qYfG744T/5pU/5rhXyPuRHkQd/qOuNMziTtRY8SdPiDu
9EriSHRVE0d6mYUccSfSxp3OSXyDViHuFP03407/1B9H3IlKauJOpSTuRNq4
k7vEncgdcaf9iDup40//L9vtwf/SOdkbdmsNPatxJMT3OED8cVL98U/wxw9J
vIi08aKC4qdTFY2fntXv4b+T6r+fg/9um8XvK0k8itR41ALEo1ZLPIq08Sjk
BSgDeQEL5AUOSNyV1LzAOeQFvkuclrKI//+b/GsW8rOSFyA1L+ComxcgS+QF
vv5JXqCKxLcJ8W2ORF7gm8T/KYv4P81A/N8O8f8Aif/TV8T/GyL+HyHxT1qD
+GcM4qKxkM/RxEXzSfyfumnyBXkh1+YFbCT+T9r4fyeJ/5M2/n9c4v+kxv8b
I/7/QuL/pMb/iyP+r+qnBuL/sVnE/8fA/qdD/9r4/1eJ85M2zo+4PWnj9k5/
U74E9qbG+bcjzj9c4vy0FnH+XIjzD5N8BBVzz8xHcMP6mfkInij5LxqA/HtK
Tsm/I19G2jx4iyzkzbOQX5H8Han58XDkx5HvprnId5sj331T8pWk5ruNkO8u
LXlPeq/JdxeVPCm9Ql77IfLayF+TNn/9XPLXlA/56y7IXzeV/BRVRX5qseSn
aJrko8lKk6eeAvlqTZ66guSRaYxuHpldTTLzWWSOfJal5LO4Gn4/QpN37iV5
ZOqBPPJR5JG3SB6Z6iOP/B155ILQw3Pki72RL0a+j9wk30dlJd9HjaBPbR65
8GDRv5ovLoN88Uus12LkhdciL4z8LKn5WdLNz5I2D9siC3lWvx8L+1Tzs7mR
n90v+WI6iXqSqagneSx1HWSrqetAfQhp60NQZ0LaOpMXku+mDMl38yXUexhL
3py6oa4jCXUdw6XuhaaivqsZ6ru6S50MNdXUa+2BvJZGjnow0taDbZC6HYpA
fddB1Hd9k7w/9UU9yWLUk/hL/Q+pdV9eqPuKlboveoe6r+uo+0qUOgTyRN3I
A9SNlJB6JFLruOahjuu81DWRto4rr9STUF5NPUmS1IfQJtSHrEJ9yC6p76K6
qO+qjPquFVLvQb01dSOoA6EemjqQgVL3RR9Q9+WMuq8HUt9FI1HfdRB1X0Wl
PoRmoD6kPepGnuD33fF7O9SDlcDv1XqSLqgnWSz1IdRbUx8yR+rEaCnqxPqi
TmyF1I3QSU3dyEXo0x91Yo6oE7uFddHWh6C+jtajTuwI6sTSYA8DUQeyCnUg
FaVOjKJRJ3YVdWKBsJORqBNLQZ0Y6kOog6Y+ZB72RV6pg6KuqAPJAfv8hLqy
16gri8R+3Kep96gFO2+pqR9D3Qhp60YW4vfaOjTUn5C2/mSn7v76w2/HuYE6
NCqCOpMO2L8LULfmjLo11v3+/tqP97KQ38lCXlrqtEmt0+6GOu1mUndN66Ue
lY/1l7rrrlLvRwdRh+mEOsxzUjdIn1GHGYg6zJ5SN0tdUKfdDnXaR6Qukaaj
PrMw6jPLS/0tXUCddgXUaaOOl3Zo6rTfSz02GaEe2w712Fs9OuX4tsePkhJP
dE1/8ZY7HHzulLNfNNtKPTZtRz32d9Rjj5J6bGqDeuxY1GNPkXpsqoJ6bHPU
YxeQOmfSR/3zEdQ/D4Y8GvXPNqh/niD1z2SK+ufmqH+utXHhyastAqhXYOSo
i83CqJ3RfuPB66K4i9RFUylNXXSK1KNSUalHpaVSj6rWpVMF1D8f0K1/JrX+
uRHqn1EfS2NQF9oWdaGVoP+zqH8uh/rni1jfNNSFvkVdaC/d9SVCXXQx2MkZ
1IXeQl2o31exqzYlpM55n9Tz00epcya1znkY6pwPw261dcuHspDbZiG3l7pr
2oV+h37od0DfFql9WxmTpW8rCONo+7ZmSP8Fafu2jkm/Bm1Ef9ZM9GfFSB04
zUS/Q0n0O7yRunGaJnXj/OCI9Dt0l34QWoF+ro3o57ohfSXUDf1cxujnQh8K
VULflhP6tuZJfTsdRh/ELfRBdJE+F1L7s8LRn7VZ+mXIEf1ZDdGf5Sr19qT2
QZihD8JP6vOpH/odCqLfwUv6d2gI+rMypH+HBkgfFnmjD8tDtw+LWqEPKz/6
sCpIXwOdQ1/DXPQ7FIf8GOSL0O/wUfqtqK2mPysBchPIM9CHtUP6IKgw+iBe
oz9ihfRDURj6pC6iT2odfl8Cv/dD34Qpft+8m05fFd2Wvgl6jL6J6einuAi5
A+QL0E+xUvqnyA39U0vQP9VH+qSoF/qkSqJPKgz6H4b+iAwn6Y8Ihv5Ho38q
Gf1Tt7CO9zR9E9ux7mqfVDP0Sa2B/exDf4QT+iN6w34SNX1S5kXFnisZSB/E
zaPSBxEG+1T7pGCfxLBnE/RJtUaf1A/sl0bom5iMvomt2Bej0CeFPkeKwb6e
gX6KuqXRT4H9qPZPmaJ/ahD2r9o/NUf2b5b+L/qnSO2fWob+qaPSB0r30N/t
gP5uPekbJUNNH3dT6TOlMPRrd0W/9n7pC6ME9HsuRb/nBOlXpdbo4zZDH/dT
6ZOlD+jjnoM+7krSp0ZrNX2d6HejdujfnI/+TXfp26Vq6O+uhP7ujdJPR2pf
5zq1r1P6fykVfd/r0Pf9PTSzL4+Wo3+zOvo3R0kfMal93wvR931T+o5pOfq+
X6DvG/2eZIV+z1ro98xhldnXScPQ1/kMfZ1TpK+Zqmn6xH2lf5M+o3/zKPo3
g6RPnBaiT7wY+sRNpR+T8qN/8wf6N5dC/gF9mpBTlPSPk9o/vhb948Olj5us
0Me9HP3d/aV/k/Zo+jp74Pf78ftV6Pvuht8vxe83o9/zkfR1UiD6Om+h3/MG
5P6Q30e/Z5D0b9JUTf9mbukfJ7V//BD6xwdJXyetRV/nQfR1joGea6F/XA/9
4+uxXtbo62yCvs4S0qdJq9CnWRJ9mm5Y91XoN7+DfvOhsBNz9JsvQ7/5Ntjh
UfR1bkdfZxfYYRr60FejD70l7Fzt65yFvs7i2Bdb0L/ZCv2bbrr2T8A34OPY
jxHo08R+ZB/su0T0p89GfzrwFqg5+sqxT2ki9rs/+soXoK+8Ac6HIpq+ch+c
J2pfuZ679JUbSj87uQFf4g3wJY4LjgSd1+BI9JN+eSoNvIhiwItwkr57Gid9
97xY+u5ZX3AtqAzweVYDn2eh4GCQis/TAvg8wOEhFYenPXB4vkq/P5kAR2Ix
cCT8BX+DYoDDkwc4PJMEx4MCgMPzADg8jQX3gzoCh2czcHjOCU4Iqbg6TsDV
uS34JNQRuDrGwNUZLngIVFXwELhUQCYeAnkI/gkNAk7OC+Dk3BMcFRoDnJwM
4OTcD/FqcO+cL7VMKDm5S1oov+/oNGxonRi6LTg5NAQ4OXmAk3NbcHJIi5Pj
K3gU9AZ4FPmvZOJREAnuBO0D7kSY4E6QseDhKP694OHcAn5ODci/Vxf5HeDk
XBX8GeoB/Jl6wKU5A3lnyJsAl+aI4FrQROBaWAuuBe0UXAs6B1yLWoJrQXsE
14IaAtfiW/ZMXAuuL/g21A/4NvWAbzNN8G0oGvg2uYBv867OyfeedgGUMWDY
vujPYVQmLPFFh/uR5AP9a3FsnmK9RgOv5hHwakYL3ggtFbwRShG8EboGe+im
was5C/tRcWZ2A2fGAPbWGTgzJ4Az4w17Hgn8ih7AryDY7Rfgz+wD/kwQ7DwK
ODO5xc7JHvsxp+xHugL8ivfYR2eAPzMY+DO5BdeCDgHXojdwLXZjP2pxaRbh
fLgLvAtD4F0Ad4uMgFfTHXg1HwWni45ocPaAp0daPD3gcZEWjwt4PpQM3K0G
wN26IThjVAX4ezeAv1dAcMnIGTh724GzN1TwgugT8LW+A19rmOALkYqvdRP4
WscF94zeA5cvALh8nwQ/jY4Bl28+cPnGCN4abQP+nhvw9xoL3hFN1eBuBQpu
Eq0F7lZj4G59F7w+GgC8vinA67shuEz0DXhcscDjShW8OLoJHD8r4PilCr4T
NdHgbjUUPDoaDXy/C8D3Cxf8OmoBHD994PiVF7w+mgG8vo66eH20H3h954DX
t11wt+gScLccgNO1F/JrkB8HHleQ4GtRC+BrlQfuViDkC3Tl5CT4WrQM+FrR
wN16DHkvyMOAu/VK8LUoL/C1sgu+Ft+GPDfkeYC79W1RJu4fvQTunyNw/z4I
7h9lyy24f9WA+/cNem4FHK2rwNH6AH2qeIDZgAd4Huv4A/haicDXAk4gDQZO
IAMn8BvW9w7wAKcCDzAK9qPibukDdws4gaTFCWwKO5ymwd0aBrtVcQKfAydQ
3Rcq7pY1cLfSYP82wA/cBfzAFthfX4DHVQZ4XMDNo1TgcVUHHhdwBSkduIJP
gStYGPv3ngZXELhbpMXdOoNzwBh4g/eANwj8QMoCP5BU/MD+wA98KziE9L1I
Jg4hDxMcQjYW3EJScUEdgQu6TfBFqQPwmX2AzwwcZlJxmC8Ahxl4y1QKeMsH
gbcMvFBS8UKbAC8UeMuk4i1nAG8ZuMqk4irHAFfZWXAgyUtwIBk4kHxbcF8p
BHjLW4G3PFrwJ6mP4E/yY8GfpOuCK0t6wE/eoIufTPbAT/bQxU+mpsBPrg78
5MuC/0lrgP95DfifZQQvl+YDP7kS8JOB80mBGpzPRTcDb3uWiKQr61Z4Jrzw
5GuJx6YG1IyitYKTTPWBk/xMFyeZDDU4yROPeNxtOSWCmnw6Xmj6D3faNzMl
KqVKNAM3mIYAN/gLcIOdBTeYumhwg48Ijig9Bo7oBuCILhccUWoBHNHlwBEt
gfedDXzglsAHXil4qqQveKp0SvBUyRn6VHGDCwM3uBP0r+IDHwE+8AWsl4oD
jPWinoITS5MFJ5YWC04s34Q9BGlwgF/CDlX8zwbA/3wCe6sGvN8w4P2Ohn2q
OL3vgNObDDsvBJxeR+D0Vsc+UvE/XYD/Cfxe8gB+7x1d/F7S4vcCL51UvHQj
4KUDF520uOjAPycV/9wQ+OfANyYV57wOcM7Bo0Eqj4YxeDTAl0Favow9ggNP
zcCL0Ry8GMBFp+/ARa8DXHTwYtBl8GJ8By8GcOypHngxloEXo6jgOZOKi75Z
FxedFgIXfQhw0TsIfj6pPBpe4NEYKbjTNBd46cCdVnH46S74NULArxEouP30
APwaD8CvESO46KTFRa8tuNl0BvjnDXTxz+k68M/nAf98mfAO0EjwZbQGXwZ4
MagveDF6gRcjRfDSqSTw0o2Bl/5N8M/prgb/3Frwz6kh8M+X6+Kf017gn1cE
/nmy4J/TROCfOwD/fJrgn1Nv4J8fBv45eDTo3e95NGi2hkejt+Clkw/w0usA
Lx28EtTt97wS5ANeiXnglQC+OmXX4KsXF3x1Kgh89UPAV88h+OqUqsFX/yj4
6nRAg6+uL/jqVFaDrw68dHIHXvoC4KXfwXrN0/BNjMD63gOvRGfwSlSHnWwC
vnon4KvnFXx1ygd89TLAVwdeOs0DXnpf4KWDV4K0vBJBsOeH4JVwBa/EJ+wX
8AhQe+Co59HdX7QTeOkm2EcqD0UIeCj0sa+zVRG89GLASwevDak8FDPBQ6Hu
9+vgj0gEf8Q6nD8qvnpl4Kvb4rwqAhz1DsBR34tzpgn4JlaCbwL46qTiq48A
vjp4KEjloQgEDwVw10mLu54N594K8FP4gJ8CfEOk5RsCjwZpeYXAH0Qqf9Bm
8AeBJ4i2gSfoKXiCwGdHKp9dfvDZgbeOYjS8deCnIy0/HXjoSOWhswUP3ULh
gaIo8MEtBB8ceILoG3iCBoAnaJTwm9B78AR9Bk8Q+FBoKniCbqg8QcKfReXB
+5YDvG+9hG+FqoM/qKoufxAt1PAHtRLeLjoJPrgv4IMDfxBZafiDJgtfDH35
PU8Q2Wh4gsAfRxPAHzcZ/HFnhaeGLoE/KFyXP4hmafiDOgsfELlo+IAqCB8Q
HdLwAQ0UPiBaq+EDGi98QDQMfEAEPqDtwgdEnTV8QAnCK0cjfs8rR5c0vHLg
D6JYDX8Q+OMoRcMfV1b44yi9uy5/HPiGqAX4hkLAN5Rd+IaouoZvKF74hmgT
+IY66vIN0RAN31Bd4RsiL/ANTQHf0EXddSEf8AclYn2PgT+oJviDRsEevmn4
g8ArR1peOfAK0TXwChUHr9Bd2Odc8ArBPgn8QRQP/iDwYTH45mi2hm9O3S8T
wB90B/xB4Juj2uCbywO+OfAKkcorlE+XV4hKa3iFZmFfp4LfbRz43drjnNkN
niDwkRF42UjlZbsLXrYmOK8egCdoAHiCwNdGJcHXFgW+NkPdc+9XXB08bqTl
cQOvEGl5hcDvRlp+t1LCK0da3k/we5KW3xM8nqTl8SwifJ2k8nW2Bl8neDmp
H3g5x+nyclLh3/NyUrHf83KSlpfTUPj+6Bh4OY+Dl/Or8APSaeEH5DnCD0gP
hU+QUsHLeQO8nOChJpWH2hU81OCDJi0f9N+VgyeaVJ7oj+CJHiO8hzQJfKA2
4AMFPyz1AH90CPijSwmvIp0FT+gJ8ISC95ZswRNdFjzRlsLbSD4aPtBZwvNI
TsLzyMbC80hJwrdLDTU80V2FR5IqgifUAjyhT4R3koYJ7yRHCe8kvxKeSiqj
4QkFryV5aHhC3wi/MFlpeKInCz8mvQZPaHfwhEYInybNA09of/CELhK+YwoG
TzSDJxq8nHQF/KFu4A/tvmDH9MlPIuhUz+2RDb5c5+KmCz4WqB/Dm5LmtBw4
MZyCZtR1S+h5j7LFFqx0Uzm31XEeg9/zIfg9YzCfaeD37Ap+T3X+jzX8nuBl
Ji0vc67xmXyp5CJ8qeT9KJMvlVW9aflAVT03AB9oKPhAVX0eB1/zSvA1q+uo
8oGC71Xl9ySV3/Mo+D3Bv0zG4F82Bf/yTeGlpQ7CS0vthJeWysA+T4P3Ezy2
Ki8zqbzMhuBlHgH7nwPeT3vwfqr23xP8yIHgRwYfKH0CH6gD+EDB+0l7wPvZ
DLyf4FMmlU95GPiUwQdKeTT8nuBZJi1vMnhCScsT2vRPfp//L/4evKKk8orW
Bq9oD5xLKl/zBvA1hwmvKK0Br+hZ8Ioa4XzOgleUtLyiAyHX8oqCt5pihbea
i5hm8lZzW+G5pvbCc/3rfGsPeRuNvAPkJhr5BuHdJk/h3eandzJ5t+ms8HRT
deHp5g3C080fq25sUHpvLDV/kONmRKNw/mEcPqTM8YO812joplTlHpL6MerV
kn/xC/ZDnqKRH4A8SSNf0jo9NN1aGb/WvWvf33ly+tsC9hudQ7mN8IzTEuEZ
ZxfhGaeywldOI4WvnJcIXzmVF35zeir85rxK+M3ZXPjQ6abwofN74UOnMsKf
TrOFP51NhD+dB8wYl9Jb+X2POoc7NlB+vzL02pmhyj28mfCz0xrhZ+cY4Wfn
m8LnTqOEz52dhc+d8vzQ/+KtvO/EbO9njVB+f2jG2gpDlPHDhS+eeglfPNcV
vni6JvzyNF/45fmh8MuzgfDR0xnho+dY4aOn5cJfT6OEv57bCX89P+q+5NJA
5feG28+ONFR+H+9u27C/8vvgpNi0hcq5FDyuU6ihcs4v2BMUuHRXIJ0wiOk/
dFY8JYf5LipvsZ0rTWwbZmMeyk1yrHTsVDWeFoQ2uxby1o0jOu9fuSw+iJpB
PlrkFC5yPoBxqoVmjkNNZZxfz/0gz6XJ8lxW5z9Y5k+YP6nve1Pel4Lkffkx
3quqvBeFyHvxRehthuiNXoreKBJ67ih6JuiZb2C9Jsl6EdaLu2B9D8v6kqus
LxliHefLOtJqWUcqDvtZIfZD7cV+aBHs7bbYG30Te+OBsKsuYle0QuyKy8Fu
X4nd0hqxWyoHOx8gdk4WYufcGvtitewLcpV9wVexf/PJ/iVL2b80Cftrhewv
yhWWub9oNc6B13IOUJG7mecAt8C50VPOjT/qYLF/42T//pKb4PedNb8/jN/H
/MXf2+H3kZrfa85DujQ58zyknNXkXKoh5xK1kHOJBjutr2bWIJ62XUj/2vB5
KD+9Nj2gweQz/HFwh5SOir3Zz5s37pn7H+dPKuSnNPL3kJ/UyAt79Bh/OF88
lSxT0nXbUD8uaFv45jm9N5RrV46GY9vEUTu3wqEfynjwxPR9K/s3CuWrft9W
tGqUSCdmGDQrf8yX1yyrWDLV5z6vPmhxdq7i/5UOsao3/cUf41tBni8LeV6N
/LCfRZk2ZspzF5w+ObauB1deeNi7+aMQruVlXdosNJG8V7+Ms73kxc/b6Rks
XebCufbXGtikrWKHP3JfvXnUgwO+zhlhp9wP44J6D/6u6H/kmUmDcyrnj+fo
YVXqeIbyNaPEK5YBsXS//qpCSco5ttZytGViUChPGldzV1Hl9wdyxq03Uc6f
bJ26zO6hnD+N00s1ZWV/tahXuuoU5f6p51PXvLFy38v7ecSLxordGoyle1+U
8yeoS+WvjvsCyemusZWhYufOzU+MsVTOq2nbHMZUUu6Te09OTfAMjKd6zu9X
pmc/StlrN0rrOyWEW5Q/W6SoMn67qp/1rijfBesr70t/V87bJpMK9rcIjaf7
Ux/ejg66S81f2KUPUr5jjSAPmZYp54Yip7u6z6VJ8lw+azvwYpx3HKVvm9Lr
6U4XelOxw7LO00LJGvPhG5nz4ToyHxrdMER/qqKHkK35zBS90YGmbqbFlHOs
EfTQUvRAeUQPnBt6KC56oHDRA5tCn/tFn5TRMVOfdLLzw3rGyjiRfa+G/Pz9
adO+h88cDGTHHDOLXVfOk7IGBv6HlPvq9ApH9Wor54y6jhNlHclN1pGeYx0v
yjrSJFlHul0gZ+dtU+JpfT6z0VZ2XuQ/Jm3g9L3+fBl2e1nslpaL3VJN2JWf
2BW5iF2RPvZFYdkXVE32BX/GPrKTffRrX6+APZcTe/4l1+zTX3JL/L7A3/y9
vub3g3A+WMv5QCvlfKAuOROiR0TFUZtF6x6N6v6Wa6/YWM3G4Di/6WBjd1EZ
Z8eMz97F/2XfWdbWs185K456zXFv+D7jLYeGb+k1bv9xMjhobNI4LJGCnl9p
mHHai/1Hnqp7b44Ll3VsfatacgL1a99k7JeC/vxix7JP4ZbObBTf3/xd0zh6
PqL2BrORYfwk+pqDbYfZ3KVljua7lHmun2NcaGjPUA56PXj1xk33qcXDLdm8
IxKpZ9dDyyLMvNi1WzPT3Llc+cDq/X02eSdS4zcrV53J5c0m89a6Te7twnPX
nY9104+nQbneJ30v+JaHJ3hU3rDuOHuPNvIws4qnW1uMzy56HciBu/Om9Wnw
it442eTOr9hb/sc5G45X9tebks39ehwMpHpGFQv36R5HVdu1H1++ogdvmZv9
lZVRKM/+bLOkU3wifdy0zDJ8jBcPfRFXsPIFFz6V+9rpn/7UuU4plumKn7uo
bq/3OxW/9Wv9Khluynm1p5V74by1lPPKb+j7U8p55drUcFQVZZzyd0JXbh3n
xc6zVx/od9aFd998H5s4RvFffljNrnDLgzefMYnqlzuQnJf0WeCurHus77Fc
vZTz59vBgnxGOX8Shw5ePmlgPBmVcdrc4oYHF7zqOnZKk0CyX/rSxi0tlu6e
H061Xrpz/LEc5pNvh/K+HN9ijyl+UzODW8MCFP/6gfe7qT2V982odem+Yad4
etboXb7cVz2425uBo8bPDSTHtNWf0qLiabKRS+pd61tUsetn/RqOwez6oopN
orIfN/YrFlVBOccafnvomEO51z2B3Erk1FTkHFHy7ZsPinxEl+LOlxX5w7Pz
Wm/+yR8B+RCR8x2R/3pufXku15Dn0jfM003mST1knrwf71Vf3oseynvxQ+gt
TPRG6aI3Ogn9OIp+KFr0Q7ug/+Oif7IW/XM09FxV9EwVRc+s10DW97CsL+nJ
+tJJ2MMJsQdaJvbAE2A/kWI/tP1lpv3QTdhDRbEH+jQn0x6oL+ywmNghDRM7
JG/YbV6xWwoXu2XNfqHHsl+oN/bXYtlfVPxN5v5SvnuyL87IvqAaezL3hXaf
UqTsU5qG/TVO9hfVkP1Fhtjvk2S/03XZ72SDfdpZ9ilVlH1KhXFuJMu5QT5y
btAanDND5ZyhOhGZ5wz74VzaJufSr/OtP86x2nKOkZ6cY1TOx8btjTL+p+Rb
d+uu8+JRGT0NLwa58NGMq40yXBLoxcy7rd3e+LPx4O+Dx69i7lP5c/lsB+Np
6vMhxTvm8WXLz6W70iUfOjCp1OtDij7bua0bW3OWMo6f/euY7K48/WWlJrav
Emm0XiePJSbe3MnP/WRIXhc+91yv1XhlXZ7suFBv7GAvvp32sOmgNQF0dsSJ
I0eUcbZl84+8ONOLjUf3adxcz5VLB941tlXkh90HV12nyCvOtt1ulFPFg0r5
9Z66f/+5PCEp+cEx5bnDMhoPtFCeG/lmyqhLev/75y6YNdasrLIv1k9pc/7n
OXm+05vFZsp+7/TlcLeYFXH0oavFgI2VPLjArqo9QjaF8ESL0NS9yjxfffP6
+mCGF/cY/Wj0x9z/vXkeP0l55irzyT94xd5aynyy9V1S6JTiX1s1rlR85Kp4
2h90Mqpm/3O8+FBYqccdQ//n+rEJz3+jlHKO9U+yWFdZmc/ebPnm1P3JNzHR
cPWC/oqfXqRK7/JJz6nOms/D+3QM/p/P5/8XuQP0M0b0wxVFP7Qf+mwn+qTj
os//a3rbA7saLnZF08WuyB52WEzskGCH/7V5TsI+eiL7iDrLPqK+2HdfZN9R
9M7MfUezsU93yD6lW7JP/2vzScT5M0DOH4qS84f+7jiGOD+vyPlJRnJ+ZjmO
A85hWzmHCecwncG5/UzObXKWczvL91XP/2Fy/tNgOf+zfO5BfEeayXeE8B2h
LvjuTJfvDl2T7w4fxncqSL5TyvmU+Z2iiviuRcp3jfrKd42uR7sufdgynhuX
yv7gyTcPHlEqIOLidMXPbTFz/9BW8bzZcqt9fuW+t9Clyspyin/6rNfrln4R
iTxmm/vT4oo9DNqZXD6HorfLLsVGTlbk114PsNdT5ml0MHL5I8VOrmH8KjI+
TZXxORrjb5TxaY2Mz+4Yv5mMzyNkfL6G8a/I+Jx6IHN8vipyugn5e8hfyThE
GGckxnGwe//upz6vzq241EKRJ112DuiZx5UjZD60G/NZhflcwfgX8F7l8F7Q
A6l6GAA9nMX4p2R8ipLxKQrjH4M+50KfiIcwaeIhiFdwW028AnEJ7qaJS8Df
5w4afx9+OmffLn76a/jp8Mc5DP64DfzxU+JHsz/8aAf40U7iR3NR+NEz4Ec7
iV/MS+AXB8AvTpf8Jjsgvzkb+U3k9fg28np1kNd7LHk6Hos8XSTydMh/8fnf
57/4tSb/lUfyU3xPk59CPoi7IB9EyAeFgm9dW+f8ADzyav1wK9QPjwFPfW/U
CT9BnTDqcvkW6nKvoi4XdbbcFHW2+1Fni3pXVutdT6PetZfUqfJETZ3qI13+
VrZGH5kV+GeLo9/qm/DPkov0T3Er9E+9Q/9UBPh5g9EPlR39UF3Bw7sN/VBB
6Id6Ch7e7uhXWo9+pcPg4b2jy8NL+8HDWxv9Sl/Rr/RF+o84x0DpPyqB/iOV
v3g2+oli0E8EHAmOAY5EF+BI1BXcBu4N3AYCbkM6+MIKAp9hGfAZhoN3owhw
rloB56oB+EdqaPCdkgSXiRcDl2kTcJk6gSflFXCTygA3qR3wlHzAn5If/Cmt
gB9VH+PPB7/JROExoXkaHpOVwOOKAT/IJfCDJAJ3ohB40FaCB+2A8J1RB/Cd
XQDf2QXhKaN54CnLBZ6y8ejbWgae6HDwRO8RfmdqBn7nLuB3DkDf3FvYSR6x
E+6Avrm7unbCDuhrWwM72Qq+5q3oa1PtxBh8zRvQ19ZGw9c8UfiXqQb4l5+B
f3kJ+go7gWf5FXiWndFfORq8xvPAa9wD9d7TZB/xfNlHtBR15qVk3/EW2Xfc
zalRxPY+ERRQsdb3ayM9uZnRkOqpH6P4o9+Eiw3tw8l9q+vgGdbutDyqYuFb
wdE0E/0CM+QcoG1yDvAd9B28lnODWsq5QTHop9ArmnnOUAM5Z+gO8tT15Vxi
nEv8eZzk2d3lHOMfco7R157bLKdmi6TsgV1SIsfd5oIXN0V1TY6mCpNP3qjT
LJx6UJtdvq+c6Gvdb81OjYglR9Q/tJFzlX7IuUpzUV/hLOcwGck5zN9Rl7JP
zm1aIOc230H801LOeX4p5zzdQHy1vHwXeLF8F+iEbjyWEY+lMYgDe8h3h23l
u8MnEU8+IfFkjpLvFLdEHLutfNdoq3zXOCfi8x3lO0hv5TvIJxDn7ybfTcot
303SQ95hlHxnaZx8Z6lKhUvOq8skcMX9JQbdLh3MlnOMFv8wvsHNNuRv01/5
PiZa2HgNdfsjntkS8ti/KO9X/Ezr3JPi2WrQ41n9pnnxuhVpZXa+8KdcX9ym
1FP2R42Co5emKfoxuXruwlFFP++cHU+YKuO0D+rjnE/Rj0Hr0y2K/9RP7S3t
hyn7JiR3h5HRFzw4clTeKd9tFf8O8jcip7ci5xSM00vGocIyDuXBc0vIc4nk
udwX81wi86S9Mk9ugfeKl/f6dT9tpfu+/yaP1sgrQc+1Rc80XfRMvNw++kT+
CG5gWvr89gVRvMO32N0UJx9+/yh5/sy3sTyyivv4d/9Sx1Xyschra+RVIC+l
kbu4XbW7UiaWcw6d8Xi4Wzg/LeO2YNf6Y1Q9/cnTZOXcrPOxwOjrlaPZy66p
hamit+FV6xvfPxjFiS2uF7KaFMK11pzflWtgKKc7tjya/2ffv/n2TyZXFP0b
HTOKUPbjMieD+zWV9w3Ycer7bS93nn51imkeZb0eXN9tOVT5valFr9BAZV9Y
R+xsYqP8/gXkw0VOc0XOizHOExmHFsk4lM1JnntInkuB8lzuhXlWbZk5T6oq
86RKeK9m8l50T96L7KCHFqIHMimbqQf+DD0PFr39Wq8y0GdVjbwW5AYaeekD
R4qvqRHOp2u9izUbFM3Z01r1smvrw9N6tunxtW0Eu58sMcXOLIZnLptp2sPP
mfoEdPa1WBvG3nH2Q65PieX6NncfG75zobDNGys8UPQ3r3XUFO/q0fxjT4+h
n5T3PZfj0XJW7id1HOmAs/K9udlyQkufHK60a39q49nKfWlKrHmBGrmiuKRL
vfn5Fb2N2Vsy7JxyfwvRu1prXa1o7vm8ckVjZX03lF9SIFb5fdtCj0qvUL4L
tldLOcxXfv8wwHObv/L7vt2zG1euGc056y442VI5D6+5zV54OCmULTysTg7P
Hc0jjFLLdHsayFubmTzcZBbK5yZ+aPljVySXzr7TrO33UNp5c2j+3p0jOJeb
/4ZhKz154mWnuemforjU5/krdxWNZLttlwZP8PdkvTf1HPLVjqJzGOewjEOF
ZBx2xHPnyXPJTJ5LDzDPoTJPSqiTOU/aj/fqJ+9F8+W9eDT0ECp6oF6ih196
myx6o9KiN76gq2e6LHpmdV3my7rQd1kX6od19JR1pC6yjjwF6+4h607zZd25
POzknNgJhbzPtBMacrnz1h0vX7PR5sSRY28lcmvHiG7J9R2ZPvHOEibePMf3
fPSukUlc6V7LEqPfL6NNHgMnHhwdwO0jUjrXfpTAXt8ylq8ee4uO6p/rWWt5
GO/1G9jtjVks767p02xlLsUPHb8y3USZ//MnDZ7XUO7PBU1eHar8E9elmT6N
bRvKnL59T+cRUTxux3670Cqh5FB6nfMzz1BuMnBth66KPdxdcz5u66FAjvJf
vHy18p1PvOn5pqRin8t2pFsdUMY5FHxkKin3z+UfjB4kKPe0k0OtU+M8Q2nV
Vbc6ZnqhXOxFm1V9ckRxttuWvgmKvRV7VXfOHWX8Se9t1vgo81kVc8WpvGLn
49e0W7JJuVf33du07w3lXnRmZ3vb98r+Hwt5N105FcU4k2UcWi/j0Ho8t7g8
l9JvZT6XT2GeFjJPOiLz5Ai8V7y8F62W96LT0ENz0QNdEz3QfejtruiNZoje
+Db0/Ez0THqiZ7LXXRfaLOvCCVjHmrKOtDYjcx35ENZ9vKw7GTtnrjsfgp0U
EjuhcWIntH1k9cLmt7248irPLm3+Bf9nSxby9ZBX1chtPmWsMAj05hJfa5Xt
0iyJGzquzGFd2IGKdFxaOWWOJ8ct/rHn+zbFr/XJ5ei6I5jGzBzS9HS2t7x0
4ovLBu+jeMbM0jd7BwbybfOZeicVffazWmXY+Cfv+efdXWKV9U2LvbVwnaKf
AfoJK0opdlXPrOLa2cq55Dz0wQ2PjBB+eujDlyTlHAtd2Dx18U9c0RL54xan
+3HkJYd6hmXDeO6m1MEzlPPk8NLwoVG7/fjCPeu5BiXe8ofnLubDfaPJ6XHO
qQYRbzjmYdrDGLcg2tF7w8Dh52LZ5InIt0O+VeSUumnqS7MJAVzBYk/d733C
aOLeSdveToziZ2nt939zDOC0zwv0Y/uHUzHnGvNspkXSU8zzhcyTfGWe/Anv
1Vvei5rLe9E96KGn6IEaix6o3QzRW4FJmXojk1mZeqN60PNd0TM1ep2pZ7bA
upSRdaGusi48G+tYQ9bx1/doBuQ1NfIpkNfSyD8eNLfMaRvE8YOPPlgbHUft
Lpw/1++HB+Vq7H2sSTsvvnLGO27UkiTeW+1m9JomZ/hEYZNZt1y9eOLXcq4P
/wWnLiv58SzkekeXlc1x9SFv7Wa6/oBVEps12dhwTld3MppgPKi7pz/Hbjm2
y7dGLBe/9njmwGJBXCV1+YuOy99w6uTPdfIOi+Xt10Y+H90qhFOMTN6lJe5h
/dQGdwvNSuD8Vw7VNRoWRJNNzi2tlN2LFYXHrFobziddzM6eXRvNBz9PGVB9
sCfzSvvHE8aH85NJF5yv3o+m8nltAooqfrFlu6vmiYrfqn+54oSayvlTBvLV
kBcSOT2b/rntt1kv+Vz8oHMluoVS5Lk7bSpvjeMbkJ+FPFrkNGLFLF/bPR7s
OiUp4/GwCDrd8cWuvcWV83hRqddxXT057anDrMLLIyhi8sKHYzyjyLC8vFdB
eS/KJe/FBtDDe9ED2Yge6HrEqUsh7QbyUIeVk+odT6CmtXzj31sGck3oc6VV
pj5p+4VMfdKdIzr6p9Wif7bAek2X9fqjHuNvyt83Evu5LvZDiVUz7Ye+uhle
coh8wsFDzErZjkvm003eudS8co31jDuMa9LZi60mnB21f20Sf37rt+PD8hXc
flfHEq8C3TjDKmDXtDdJ3PfCwtLmi2/9eo7K06EPno4TG2mjmes2zn4s3pPW
J3MXx/SHLzMe88jx9w4kJG1kn2Ur82xwTuBvexbd3lLin/PFTAffQYCG7+DP
+DhKgY/DrVlkxUuvn7JpnuWln3UI5fHJr4Z8ehbHmyGfCvkkkf967t/lGVT5
BIP+IZ+gKvev5+lhqvy+xYJbEysdC+SRE0SfXqJPyr03U588cqvo/8fRTP3T
QtH/r3G0fBz1sL7fZX3JRtaXc+vaA1mIPZCBu9hPkNgPbRL7oTWPjLpbZ+tq
UsCwRoXuc5J50bMG537yYQXmKDxwRaVrJl6j2GCSSzK36b2xdQ39e/x+aWif
V5XsTUJbHS9Qv0MS53jgdLSV11/nw0rMgpctKx4iLS+balcTNXYFnjL209jV
zCx4AGv+Tf41iyz41+b/Ca/QG41dge+DArKwq9FZ2JWWTy0AdtUcdqXK/y6/
1R7Y1ULYVa1U5y+3Gh038ZP1pRqyvvwd9uAt9kBFxB4o8lANPctsXVT7obli
P5RT7I3U88oW5xXsk9Tz6jTOq65iz6SeV+3+5LxylvOK1POqK86rxXJekTfO
q+9/87z6q7xCf5U/KEDOJZqgey6xDeTqOWaaxXn1V3lY/own6J+eV+ZyXpHn
788rUs+reX9yXjXE+qrn1UacV3l17YFq4bwqB/tRz6vlOK/yyP2KLuN+tQn3
q5PyPaUs7lf/JrfPQp5P7lek3q+m4n5VRe4DFIf7lT7uV3XlXkEpuF9Z4X6V
Q+4hpN6v9HG/Gt9nm3ed5oH0vveR1unmMXyg1Kb3VQ2Cebrcu6gN7l2ncO/a
J/cuuoN71zPcuyrI/Yo24X6VH/eucpCvgrwg7l0P5H5F5zX3rvsaeRTuXRPk
3kWPce9ywL2ruNy76J3m3tUJ7/VB3ovOyXtRJ+ihgOY+Vgl6w72UcC+ll3If
I/U+1hj3sbrQ/yrcx9bhPvZI7mNkhfuYBe5juF+R9n5l8TfluI+Reh8Lwn1s
pfgFVO33/iNp/ccdWchPiJ9CxeA/Nof/eEf8Heos/g6PmyF+4nXxj2gI/MQq
8BM/ij9F/TV+4l3xv+gV/MQA+IndxU+kOPiJM+EnHhc/kc7BT0yDn/hU/ER6
BH9wH/zE9uInkjXkW+AnpoifSFo/8bn4ifQRfmJR+In3MU8P+Imv4Seq79UH
fmIL+ImO0MNA+InQA9mZid784CfWFf+amoufSI7wE1vCT5wL/RvBT+wPP3EM
1qu2xu8zg1zrJ86BXOtXpomfSKqf2BF+YkeJS1BFxK+qIX5VVeIYtFATvzKX
uAd1QfzKBfErW4mT0AHEr2wRvzojcRXyQ/zqU2uJXz2WOAw9RPxqLOJXxyRu
Q80Qv3qM+FWAxHnoHeJXGxC/2ilxIVqH+NVRxK96SByJqiJ+VR7xqyISdyJT
xK/WIH4VEOjer03VEJpoczjfzGKenL3nh4pLF8TxTcitIc8lchoicS0ixLUu
IN41GPIOunLKj+fOQLxrOeJdUzHPjoh3+SHeZYv32oB4lw3iXa919UDbEe+y
h95aIN7FiHc5Qc/3NfGuS1iX14h3fZB1+bWONoh3bUW86wnWvQHiXWMQ71oN
O5msiXcdhF2p8a5RiHeVkTgqnUK8PYduvJ3UePt0xNt7S5yWfBBvr414e7jE
dUmNt2fbqxNvJzXefhvx9h0SN6apiLcbIt6OODMhzsy9dOPtRJp4+2OJY1Mf
xNv1EG+3kng4nUdc3RBx9V0SV6cciKuP142rkw3i6jkRV7+AcQ4hrl4AcXXE
+SmL+Dn1R/x8HuLnyCMQ8gjUHfFzVQ9q/LwM4ucavdFVxM9VPS9A/PwT4uf9
sS4eiJ930I2fkxo/n60bPydt/Bx5NNLm0VIlv0OjNHkxQ8njUBZ5NMoij0a5
kEd7hjxaDck3kZpH80QebYTkpygBebTayKN9kTwa3dLk0ZZL/ou8f59Ho2m/
z6PRuN/n0UibR8sueTSyRR4tSDePRpWQR6uGPFplvFdTTR7t7Y7k9r454yij
Xk9L88H+dGKi3bbIEf58GPpR82utdfNrlEV+jbT5tZqQa/NryFNTBeSpt+jm
qSmLPDXFZyHPIk9N2jx10bD6TvvM4sixiMWg7nU8eMhTS7cjD0M4t+SRqSLy
16Sbv6bWyF8X081fU+Dv89fk//v8NXVH/roI8tea51Jb5K9LY56PZZ7UQuZJ
vfFe65HX3oO8dnNd/Wjz15RFXvvf5BWxLmpeexry2vKvKb/0q/v37/L6VcM+
bm8Tzyt/fJ/nbu/Bjhef+j3ZFUiqfJbIyVXk3ORs961fi8bzhYnzxhr98Ocx
lv0vmb71poaQ7xY57RA5V/ZoqNdOGaf+3mXWvc948K0ZYxZ+sA6kKpC3Fzk5
iJwr7x9WsPjOcK6193PpJIsovpWr57Cm9IYb8havedki+cOIR6mt54Xzq1zz
x9sdDqSUgEmTrZXv9p5KZdc/V/Zp3+X5Tz5X5N8h3ypyqiJy7oRx/GQcipBx
uBaeW1meS3fkufT2k4Oh38/85J56da8o941xA5affK/YSRzkx0VO00RO7gXT
6oxQvvNj0y+62CrflykHH7xcpdx/3kA+XOQ0TeTUJrjkJE/vUL45b2P6yGrR
zNlTD7dQ/OVOkF8SObmInCJmPB3RJGcoF6tz58OHbFFcznxVQrJyn3iVe179
Vbv8+MatYK9PVm+5w7rv17utiub6+pn8BbwL/AXmwl/Axyovz5h0PICDQ+7c
LPstjFYf3DJO724kxWL8vDI+VZfxueGI1pf6+4RyfvtiodeU98oxRK9/873K
ekGeV+RUW+RkPqaAad6rQezRr5/F4LNxXLNwnvrtm3qxtfm3lEEV/DnNtFO9
9e1i+O7U0wa9uodSe+Fd4orgXVotvEt0B7+/Jr+nfNMyf8+DMH6ojE/6Mj5t
6d4upeznmxzrnK/QRsVfHuhy2muAcyB1Sdp2ZJQyT591W4OGK/eN7wZ+JveU
dVmZ832Eb7wvL54zYmbfsm+5zYZNHVdli6HJwuPGX8Djdkd43Livk+HCuDB/
Dk7KsXS98r0d69u24O4pUdwD47vL+KRXLHN8OoD5hMp8aJ7Mh29u2LRr6IZQ
rnvS49Xh9tHc8Ea+NzHfAnmAfj6v4LPT2KZiYH3n8wm86ePCPR0mBdL8fCLf
K3LaJ3J2wDhtZRwqK+P8OieCJA7D9SQOQ4uFt5SDegpvaW/hLc0ybqPKAzFO
fYzjK7zA/FKXF/jXOJ3BC/xSeIH/9viewpfNo8CXXUX4svmfjh+kGV+VD8A4
jzXjZBUX/afjNPuL43TCOK/+w/f6T8fxAF/5COi/6n9Z//7glX6ahf1kNf+A
v2g/sHNS7byXxs6163tD9hFp92N32Y+0H/vREvvRTPYjqftxF/bjaYyj7sfy
2I975RygGJxLA3AudZdzg7w059IKOZfIHOeSCc6l8eCX1J5L3eRcoreac6kn
xnfTnEvHMZ8QnEuLcS5ZyLlKr3BuN8C5vVvOYUrVnNs9wZdXGef2Cpzbd/F7
9dzWx7ndD+OH4dzOj3O7iXxHKA++L3q63xdVTnXwfbks3ymqjO9gC3wHXeQ7
SNfwHeyM72BF+Q7SNnwHLfAd3CXfQQrFd3A9voPPMH5zfAdz4TvYTL7LdB/f
6yv4XptA7oTv9U18r93ku0/qfQDfffaHfBjuA9NxH4iQewWdxX1jIu4b8ZDb
474xE/cN3JdIvS/d1r0vURruSx64LyXLvYgOa+5LGZDvw32pMu5LHTCOL+5L
Cbgv1cZztfcl3PeoJu57t3Xve9QR973TuO/hPkkXcZ8chftkI8h34T5phftk
K7mX0kTcV0/gvtoM8im4r17GfVV2+1/vz0IfDZ/W9NGocgf07ySjfwd9RqTt
M0J/E2n7m+DX8G34NUPh15SB3Al+REv4EZ7i93Gr+pl+Hx8Vv4/CIP8Af/A0
/EEX1LXWFn+c4I9T+o1j+9O6RXDPwodL99ngTgXSzMd2HxTNdp32vdhhFc7j
Q2qUWlPVnap9ORvjmyOGllrvXpTX2o9NqpjOu7TlLQ/8XPNC4ppo7jf6zMwL
V3w5upL3bo8PobxpxqDAu7ViKFnibDwdcbb0HhJ/c4bcDvIfIqd+Qx49T3L2
56XvdlY2mBBGCZ/jR39cF8VfbSKHVD4WwGuN+z/dkB5G+6IPupTjSCpvK3Uy
/hL/5IkS/2R//aTIcyEhPHPDhfWG5aM4pUz1ggUehFLg3NTC/sp9Mvlj6uou
yrmkd3j6o5nKOXkL8kTI9UVObzDObBmHMA4bRUldxwjJI3BtySPQcMlTMPIU
fBD5l16pxf13F7jLpa5s73/2cLzyXbtYeuSKENoCeTmR0zqRcxuM8xn5jjPI
d2T1XVPlp41elnQ9ksCn9NbsPLj/D/kMfDevy3fz1/exSxbf63MyDh2Qcf70
XpHVc+dh/Cua5/aA/FkWz7X5D59rhvFvaJ6b1f1E+75NZX1pONbXGOtrJutF
hljHA1jHK5CXxTpuwDqWEfskP9jnTNinEfIFMajfO476PR+xN5oPu42H3YaK
fdI72GcO2O19yN9DnlfXbmku7DYBdjtD9i81wf4djf3bS/Yvqft3M/ZvZ9mP
tAT78R32Y5LsR1qN/XgI+/G61AmTWp88FPXJOGeox+/PGRqnOWdQb0zzUW88
HfXGXoh3tcS5dwznnivijbVwvlnjfCs9Y8viLj/jDNGFh+S+HcqfKqfZXj90
mhPaOE24uiueS1/cnGA9OZDn5Fg38tgSN1p48b31k6hEzvGw3pfD07zYtlDJ
yFWRLmxWc7GTrXLOWx33Ges004sbTXp5fOwfOAP/Fj+Zkc1yYlvF7tJP2vfZ
196Te/WwXuJhEkinxp32umwXx9aWR1q3M3Tn46tDnhw+GcJJ7/0CD/zsJ63i
UdpW+Y5cyG/YsHqerMf/u3KnPQXLL1HsxTNHaLmSyvfdILzSgN12gWRvUbns
XvrZD7KxQMBsD6LN90vGnA38rz3378qPYz4WMh/uKPMhR8zfR+ZPRWT+/7V5
qvq/KPqnE6J/Oov1uizrRRtkvcgM6/tB1pcGy/pmOZ9psJ99Yj/UQOyHzGFv
JcTeqKHYG8Xp2iftFvvkArDnzmLPZCL2TBXTd18MDktku5pf3bId8OL4Tm45
6+xx4aLXSyx91DmRHzWtYxpr6Mt2n73abn3wgH8EN79mNzWOqywb4nXR2IOD
XcLae74MYYv4oVXyDIjnAsZnAqre8OD6Mxam3GkZSLkX5jhrobzvDIs5Wysp
9jOqo0FG8L5AygX5HJET5Lwc4xSTcQjjcMEQeW41eS5dlOdSIcwzROZJK2Se
VB7vdUnei2LkvWjkj9rGhQ7GsavP8/HbHd/ygplvzUfZn+BNHtVrx4TFcoFc
2WfG/Es8WZUX1Mg3Z/H7A9aeh+q3jefud/d8qnLUg+fncF1UQLlPjv6x/4SP
YodTJpkbl7jowRsLdSjhpdyTC/041m9o83gO8d2m3+qyB29xGvW1rn0gDXAy
LTV6Zjw/siv00KWKG11u5V7hfuEgHgj5bZHzJZFTYYwTIePQGhmHbTAfE5kP
LZP5sBXmn1vm/+t7thXyvBp5Vr8fBn2+FH1S8oxMfdL+Mw1XdD4YyQsW+NVw
rR7GTYKWBdvVDeb8c/NM6GkYz1u/L90XXyeAz1VdHXltszddnOaYvcrPeNjR
0iX3KXp4aNg/JVE5ZzoZmw5dGRHLV06vb/rKx529vBbGzHMP5cmj0vI1aB3P
hfb1ODDkvAdbbu9/4p3ixzVZ29c/j/J702abDnh5unOtpo8cfuISL1x+Muzy
9HhONS3/uFO5RzRsysGzZrNDeA7k5aZkynmSyKkBxhkn41AjGYfU5xaW59Im
eS73xTw9ZZ50W+ZJl/BeveS96IG8FxeEHmxFD7RF9MA7oTdL0RsVFb3R/Gj7
vVsiw/nmZaNPzxZF8fAKh3afavma+/S4v+xCy3heEflEv84FD05vVPlzLcWP
C37Zq2dgbCy7tTkZPPORO1/seWPPhp/40sfnVzgfHstDy71aVcDLnWPKDywx
xTOU0+NLBW5X9uO+VXU8xyrjrMi/zOeici+a1inhdkb7CHbosqF9Tldzenqo
ecXuj2PoG35vJ7+nBfJ77ozxe8n4lCDjkz/m81zmQ9dlPtQP858v86dPMn8e
l7v++0rrYznRJOBrbMdw2ll6b7bDJY6zw6aRw9u8jeWvafs3Nv4XvF+GPFAj
fwq5m0Ze3n7xNUsO48BZsQ+eZkRw2oGEGwMWBFNT08UDB/qG8tvWze+b14rm
judOW5zYGsjVGxa7Vn1nHPvp37s0aqU3l071y7a+fhDZB5TpuV0Z/2pyQJca
3u6cq0SroPE+ody///4WC5X92GPB0uDPij1vXnRjXBfl/jlkw5wSmxV7WDgy
vH5+RX4opaGT808/ekb3j473I3mfn0vVgFwveFEz84tdJkfx0ZmOO+KXR/Fb
S+tPrxNf8JlVNyMa7o2kyyFb8n18G8HHlpy61PvJM6o0y3Za9j7R3OJ0t0XD
a0bwmzDjH+tCnlIxa9fFZX5E03g8d7Y8l5bIc3k45jld5kmDZZ58BO91Q96L
8sl7kRH08EX0QDVED9wBensteqOuojcqAD37ip6p5sFMPfPd6W6FGlyJYtMf
HcMKbY7kE/mmLS0b/IyLOPT3mRoXw9kG03i7AhEclWFbO7/rUeq99navboPD
+U76vZzZ38WwQ/IQs7UtH1NA9IvsZxX7jX/Rv1nNmtH84kRsYRPlvbYc+L7F
sE04T6o7zWrGsnBu5FyzdH7rUEruN6DltqRI1ndJCYqb9oJvtJ5waU7DKL7i
nTf104Uonli0957mU16y7fNjz1sMjSSTtAXnqzSJ5Ib3Tm8qtOQ5bWkfnF79
YxQ/dOjXyG1uBOcruX9niyXPaHXzhLb6N6JpH547VZ5LFeS5HI55hss8yVvm
SZ3wXnflvahUSuZ7cS7ooYDogVZ+z9QD39PVGx0WvZFDPC83WBrGPUdeLLZz
ZiyfefD8fHx2V9pp2r3Ps9BQPpBr6NvoktE8/O3z15evBfKNirPerbeI5Amh
+/ZcbuzBjsmdJw0oFUUuEzIarxgQwS0j8z1+tciNoqZPsvk+K5r3YxxrGYem
yDh0Hs/tJs+lE/Jcdpq4jn7mmzaOaD7Jt1o0H985zO7kkUDeWOBUaoZ+KKc0
7W1erEQUHzrdrspPvk49k+et1yq/f7S8v8Nu5ffFXEosaP0zDrao8R3vhWFc
vfM911uBT3hu1MV+a1bHckfIG0NuJnJq03zCgM99Qjkyr5+ZQd4HtGaW19x6
teK5JeQ+kK8XOenjuffkuWQoz6UpmOc7mSc5yjzZEe+1Rd6LDsl70YHZR161
uuzLe6jgmSmKH3Rj/pmqU2rH0MtNbmlNS4ayU2BRmy9f3Hm30cbA9IFxlB5w
cn2jjBDuZTWx+rGnj6hf2Y5L5irn4OTGAZGf7/nzxvU9Is6OD6NKR277B6+P
4k47fiRP8wrlfj1H78uoHs17UrbOa/+z3mnNjMORynyK9uj+Zr1i/++y1W/x
SrlHRV/OW71a9lAeb/cy17ycUVzWNaLXT3zR8QsvHPr8I4Qb9G3yMP0nn3ib
Z20H/vw+QV4Z8i0ipxSMM0TGoYoyDm/CcwvJc6l49sznUnvMc6DMk6xknvSy
lHW1ijFBXLf7iodHV8bx92EjrXt7enG21B+h9Vp6c1S5GVPvjkziLfELdxbe
sIF9kgzPRLp48fGB8/NG/Usd7I+Fi5b4d/PmZ1+LrGszPIm/hCTU/hS1lnw6
Ot6rViqAC9jr9X/um8AVDYc9LV/qJs1/7zOglvJenruOOUbmjuItofdW7VC+
4w5fjzhs/OzP9+pZ7T7l/4ZMtuQsuHdBHNtDfhTyjiInc4zjJePQBhmHHfBc
Q3kuuZfMfC6HYZ5uMk86GJw5T76B93KQ9/r1PQp+J3qIFz2QXWymHuge9NZc
9EZvRW/kZtTyderrUD7a6m7ToKrRnLDe8o2Hcu7N3La26iJl/CUXOvEVxa+/
aBgRMElZR2/8/oD8nj7I7+nQvPCd39eH8oZym75+ax/NW7ztt67/Fsiu71pF
5jTw4JNnb4UWrBTHiV8XmNSbEErDP7ZZtDXdj7lBpaoPQt5y6SqNzl9W9mta
je8XyxTwY4Opa+P0277l8k0K1a0VEk01hi+5vDbInw/2sVh9emsYjVxVcdiY
4VG8bESd1UeeBvDoiSkOZnXDKTpgc/Ce9ZHUC899Is8lX3kub8M898o8yVzm
SU9Xzkl9mucRHwwvEddjVSgZNLz92jUtjg77jd1cpLwXT7Fc+WifbwAHNg96
2rRePN+HfBDkASKnfSInU8iD8fsHkPfT/L64PJce47nZ5bkMfdJ66HMr9PlQ
3otOQZ8J0OdQ0Sc5Q5+loM9U0ScVgz7LQZ9Gok+ygz5HQJ8Wok/S6rM3nqvV
pxXmqepzGfT5XOyETsKu3sKuLMWuaCnsykHsil/h9/awq2jYlb/YLdXAfi84
XGe/k7rfjbHf38i+IO1+z7Yocx+Rdr8Hyb4jfez3ItjvE2WfUgj2+2rs98uy
r+ku9nVr7PdTkB+DvAP2+zyM44v9vg77/Qyeq+53J+z3SNnvpO53Z5kn38J7
ZbHfSd3vw7HfH0BvTbDfI7HfO8i5Sur5vw/n/245h6kwzv9UnP+Bcm7TBJz/
1XD+j5Zznoxxzq/H+d8N8rKQW+H8j8E4k3H+l8T5vxHPLYjzvyTO/3aY5wCc
/ztw/n/OfvJ8s+1+ZNJyfqGaW95yG+Odi7eujWZn+T6S+n08iO9jqnwfyRjf
x4HyfaRjtdZna340gG48qenz9ksY2Za4s/gTRxK+y7RJc99YK99xSsZ9wx73
jW+tM7/79BL3jTy4bzSRewVVw71iMe4buIdQQ8jn4L7RVO4VFIR7xQbcN5pB
7gb5Rtw3cM8hV9w38uK+MRHzxL2IWPe+Qep94yDuG2fk3kU9fn/fIxvc9wbp
3vdoHO57d3Dfu5F9lan5oXDy3DW1XMP9r8j3xNKKHUrH0D6MswP3vcm473lV
t9v8k4f6qe/z7D95qIuWOn3sJw/1WcxHvQeewj0Q93xS7/mndO/5pN7zI3HP
7yX3YVLv+Rdxz/eX+zMl4J7vhnu+pdy3yRT3/Ia456fIPZ/0fn/Ppxm/v+dT
XdzzLXXv+ZRfc8/fj+eq9/xyuOdHYp5hmnt+R7wX455fVPeeTwVxz1+le88n
7T3fSPwpCoDf+gF+a3PxvygYfmsXXb+VAn/vt9KV3/ut1A1+qyX81sHiP9IK
jd+aIn4rWWv8VnvxW+k1/Naz8Fsvid9KdvBbK+v6rRQIv9UAfutYPHcx/NbF
8FuHYZ4zNX7rUbwX/HHKq+u30mf4rTV1/VZS/dYe8Fv1oefX8FsbwW89IfEE
yvEhM57w6zvlCHl4mq78EeSvNfKlEt+gFxLf4PIS3yDEc2gp4jkZuvEceq6J
52TEOb/9ife27NjYY9aXPLi92YVzaT/xtSQ+Q1sQz1mFeM7+dRnt0tpHUP8m
R3ee6buTQt4Pau/xMIYRz6HDiOcsQjznB8ZfLuNTcxmfEc+hp4jn3EA8py/m
b454zhfEc8wlfkWXJH5FkyV+pcYJab4mTlhA4mNkhTjhGcQJEU+jPogTPtCN
E9JFTZzQVOJ1pI844RbdOCFlESekr4gTDkeccDbk9RAnnKgbJ6TxmjjhJDy3
zO/jhOStiRMi/klqnPAx4oSFoIeDiBNuQpxwB/SmxgmLIU6I+Dap8e2FuvFt
yiK+TVnEt//t90clnkzGiG9PRnx78Ozo0ZffxdLcLeYOCbvcOaB/1D1zxT4L
SlyawjTxbcSxiRHfvoD49iDIHRHfPof4NuLklIz49lrEtwfiuRvlueQrz6Wx
Em+nsRJvp/USb+fDmH8zxMNn6sbDKYt4OOX5i/Kh0L8aD49DPLya5CPICnmW
l8iz5Jf8BQUjz+KCPEsuyXcQ8h3sijxL07jM/Ag1rS15lvNzJc/ybUFmPoXG
Is+yCXmWDMhHIM9iiTxLE91x6JKMw8Xx3BrIs+xBniUP5vkJeZZTyLNUwXsd
QJ7FBXmWIpJvonbInwYhfxoj+SmqjPzpeuRPX0g+i6JZ8qcpRSV/ivwX7UH+
tKVu/vTf6m2QX6MM5E/7IH+aOCozH0cdN0n+dOR2yZ8mSP6OHJE/Pa+bP/3L
dT5ZyS9J/pESkT+tjfzpLslXkhPyp2N186f/8XP/rnw35nMO+dPJyJ9exPzT
kD+trZs//Y+fi/wpXUb+9CTypylYrwmyXkSyXjQd6/vl9/nTfxt/KuznMPKn
zZA/fQx7SxV7o2EGkj+Ngn1WRf70EvKnerDnQciftkL+tFxgDrN5ZnFcuGSb
y0/reHDhVw+3vnkYwjgPeRHOQ3+ch4Mg34zz6g3Oq/HIDw7CebUB51VVjG8g
49O7l5njE+4hrL2HOEEe9vt7CGdxD+HnmnsI7hWsvVfg/sBNNPeHbPHyewvN
PWEx8lba7/4j8SPYTfwILiF+BLW4s2H8lYcRHP3sSITtXXd+mn/vufZBUQw/
hb3hp7yBnwJ/hLX+SO4cmf4md4K/2Rj+5n3EY93hb9qIv8nZAyUe2wT+Zl/4
mxfE3+Tb8Df3wt9EPIQXIx5yFvGQhT7egReeBvPTOYeefYyL5jdmzWu5Dgji
2ohTPUK8KBviRcPw++fye0qU39M8kdMzjOOFcVwQd9LGuwbj9y8wTjLGmYu4
zQrM8wLigXslXk1qvPom4tXX4Y8/g36OQD9x8MdbQz+DEa8eLvFqWo94dTXE
q7G+5IH1LY71bS3rS5FYX1esL/IOpOYdIpF3QN6T1LznCOQ9u0mekfpr8pjI
V9KGzpKvfIZ8JfKSpM1LIs9I2jzjGdzbs8gzkjbP6Aq5u0aO84GKas6HMbif
jEM9wGbUA1TB78to9vv/AXsLI0c=
"]], {}},
Axes->True,
DisplayFunction->Identity,
FaceGridsStyle->Automatic,
Method->{"RelieveDPZFighting" -> True, "DefaultBoundaryStyle" -> Directive[
GrayLevel[0.3]],
"DefaultGraphicsInteraction" -> {
"Version" -> 1.2, "TrackMousePosition" -> {True, False},
"Effects" -> {
"Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2},
"Droplines" -> {
"freeformCursorMode" -> True,
"placement" -> {"x" -> "All", "y" -> "None"}}}}},
PlotRange->{{-2.118033988749895, 2.118033988749895}, {-2.227032728823214,
2.227032728823214}, {-2.06457288070676, 2.06457288070676}},
PlotRangePadding->{
Scaled[0.02],
Scaled[0.02],
Scaled[0.02]},
Ticks->{Automatic, Automatic, Automatic}]], "Output",
CellLabel->"Out[15]=",ImageCache->GraphicsData["CompressedBitmap", "\<\
eJycvQd8FdeVPz55TQ2hiiRUQAiQEL33IkASEkh00Q2i92aqwUUuuGDcK4lt
3OIaV9ztBLfYjkOKk930XZLdDanbd7PJ7v72/s/3nHNn7kgjZ/evz2ee3pty
Z96933PO95R7X+v6g9s2715/cPvG9ZVzLl2/b9v2jQcqG/deSrviX/C8L2yj
7c5KL0Hvjed1ednuef9/3l/g1/izuvvf8SnGr/FenvN3dej0IfTyt7Q14dP1
cujncqiWXn5G2wF8OiGHfiGHiunlU9o68Ok6p8HYULwm8FJJ259oS6PtWvee
yfn08jXaUrRNoe3HnVvxknF6eVAf5Txtrc4p+gwx90vpoX/g10SlPhoaM1u2
bDksR3/Hr+k42k7bOT2jQ9vAmedoOyQffyNPYtvC2Wdoq+ObyyNc2Lx58xm6
ooP+ewflsl8Fl51xblDJe+XxcFnl1q1b7f8DcuXfBVfi8S707Nnzgr730sNX
1tGGR9Ur/4Zf09yvbR/VXqEtJHEVrsYH//2l0syF8AOE+ke/sb2x3LBrk7Yf
bZN/9TmdmJImQ5fLvhQ6tX3Tpk22SbzHvv3y8aef08d50mqohVjEnfZKUz+S
G3b5zr1798bpBd23ZkfQbe0H4a/rDoRcFgNU8v13Cf+dNvD9oIHQ42Bvb/9k
wVHcH1v87ZYGXpBD4+jlE9t7fcNPFRqEMjnfdjB/Ssi+0FiHmx/vNl8RNG9H
40xhYeG5trY2PRZuXp8+NBq7um++NLpL2rk3IpqK+kYKNWM/429n97csCXdY
aBirIjonFXFLbf55OfQAvSy3tyiK/ka4lTcwovm0iG+5I9Q8VNZ/2uYLw09v
h/tCc3OzVyPnh7CbFrFvR6hzltHLx7ZzRMBYi3YRPi9QKtURrbIOYgRr+y/K
SSnP+cuO7h2894bJ+aFxTI/onW1y6GvhngiN44jumwp1vjb1dvRTXRgyZIg3
Wi4LiWOG7AspDtWQb/Jryj5VSBxt/4yKaDIz4on13evB03UZk/HdNxUCrDb1
SvQXxXtvklwW6uqsiH0y2t7LQVMd2oyprq5ur6qqYrvfTVMhyGhTAsRuTbcd
MW011Os9/E7Vtp4LP1ao/wOFPDmiqeyIh94ojT4bNNplBKLkd2L3zYfgp80/
FTRvv7/Jzs4+N3r0aK/Bf+aciEY3SANPBB3Y4XUSBS+Q2nq/rVxpKwSb9XJy
hxzCcH1Br1fxj9Zpc+X8ENpyIvZp81dKU2Acd3li7EH5pmNvn+A2HV6nsWuJ
aFK/Rajr20O3WUEvb3lilWZ6asLLg9vY0TRjxozhLzm/+9uEkBu6TepWernU
C/7+2RMdIaamC7D1Yh/YetMQNFgR81iFbwVbs825FRgp7LBjdjq8ThBYEtF+
fkTfrQ3dCf+u0LtguP7DE7CLBUq0e2FhWBbRS/kRNw7dJInn+64nfYzjHwaX
dfkuFyZPnuytiLhNFI+7RG5zlTzsSXr5tScez1jPDumfNXN6s5BS1puFRGeN
HOqQQyHf5fMM3trumw91mTZ/a9AULFNoiNsjmpKBCg/xajl0Sppqd74/muTT
NkR8QW0q1Ova1E3BU3V4wWDxA0UxuPaI5tmFZbBrozcEjXYZn60RDRRF3Gil
NHVd0BRuHRqAHRGXaVOhAdCmruFX37bbr3quvr4epwspDMOwOGKfoErRkqjr
9B3jEc+0PaKVkohuWC4tXxF8Zfuc5+xXVn4eGsnPaT7UDdr88a7N4z8+SziB
R7I04nuIjvCO8it7tO1e2Jz4px/s3FDoibWhw12fpLMXf86VCNHRYe1eGrGv
TU5XvRlyt8RGdRm14xGtlEX0wNJQyyG/pKzrlzGlpaXoIR3RyOZDI6TNz5ND
sBPf1s2L8Wtyjhf8+bd3vDB7a/yv5OswBldE3KvcPxq+a65eKVfzazIr6q7F
wV3xJUOs4pqIG6q7GUL8Ys/5F3bEeoW/VIhNiFIIY6oi4pbh5kOOmChqNmBd
WMT1Ec0LcMJoWCTNKxpCjphQKJ/SnfMcGfYC6iCKMqz3KyLurneSkQq7ZD3C
/WSHgPvpVETz+kVCWFwoh9qDptq9TiN6W0RTfSP6ZIEcEtvYxY+yuvZ2uTKE
BW0tNIDamljQ0GChVbQeaaRujWheTgbetdGV4Y4LDdG9EQ30i9jXKk0tDzcF
9o//eF7v/ojn6xfxVbUpGeJI5eoj4nREk1UR+4R0K/w/N1gaepL7ZF/InvSX
faHhF4Wh4Ik29qmI5u/tvvkQKLX51qB5t0OYTT4a0dSAiI6Y6z5wFwJQp9+H
wfGI/06jPSE51IY0fvJnw/ndhMdwc+9J/0bV/rtw86HwvxPI6/A6DeLTEb2n
bYTQ2iTNV8qhzzMvofRCadBt7gCfWbRoEW75TPd3D417+O4RZiblmhk3i9FN
TK6dG5LmQsP9VMQT1UScp99W+j86OVIQ3LrD6wSZFyO+5CDZF5KTRuc23SRY
8rp+QygRhGq9s93fJvQNw7eJTNJEWKWoQIPEhsLIr43ovwbPfZju/KYuSuH1
7psP7dPmx3XtG3/0JfIX7m5uisVJGxjDr93y/nci2hgc8W1ny6GR0Y/TwRdE
XPZW982HhlSbHx403+F1GqL35bKQTA+RfSEVOEuaGho05XqJ+CyOeqemhkY8
6Uz5J8PTbSTE4vDDiO+vrYagqq3WhL9rSLgSEd/r/Yjmh0Xsq5PmrQrUXF0H
f4WIZt+L2KfNhvCozdosgCcEnwfwWxFN8EgyDt0LYx1dzxQ6m1E5YsSI9snD
qs7NGlxo5gzJNQ1Di8zkkTVm6oh+Zhpt00f082IXpowcSF9q/KihCDCeIc5K
beI1XodX+zc24olGRPTVdPdLJX3XH0NhL5WkdDY/3gR6vKmDS83MQTlmbnXC
zB+UMAtrE2bGyH6mdXiuWT4sYdqGJvj/imEJL4Z3Xo5ZRvsWD8s0i2hbQOfN
HVFk6keW83X02BfGjx6KL4avdIE+4wvVLaiJVy6oUQRxR47UrnflJvQFUud0
nDBwFnL4L/GqnvgOZ8aPrDVTh5SZWQMzTOOAOH2PuFlA32H+kExTP6Lcf/5V
wxPmkpEJs25UIkYvSS8bb83akbLh0CUjEmb96KRpH5XkY8tHZpqpo2tMI321
afR/2YhM6oJVo7K8DLNgRK5pGl5kZtMtsNFXx1fGV+88ku302R/Nvv7XHxUx
ptPcr5/GIkR2Gb1jpc0fbnFyszomjKjhMayryTH1/ePcD9MH9zKTCGrjRw8z
E2ibNaqfmTeyCA8/PEE6Yc0I7gfuhhRe+Tt7CXw3M33MIDNxzDAzd3R5XHev
HZnk/sO2cjj1H8DQg7vVhUGzAwPcdsqoGoYDbegT7Q5Ggf0TghXWJ1EZmaly
utBBrjpgJaCnRGlqqS1IZ5zrgJhxo4Zx/9h+mjSsX8rwQ/E3nk5jPHt0FXVT
8+hy2rdgdJFZOioPG32ibkpxf6TQNQwSbHg/iS5uG5WXxocLpWsVV35X0/uZ
NAyLRubyPmBt5ahM3AlPYOaNKWeRA6bqA0yhD2MXJo4e6sU7Zo8o8/stu/t+
C+0L9RtruXO2iajksMRkCtBpABYLFoCF9/iPz+hE25lThvdj3QaBwxM30OgT
QEzTqHLuUQDM9mb96CrGFm20j1qIod+oN7ETB9GTtmd98MV9TOK6LOyL4WhS
hwJHcTGGYOmoXLNaYBoLcEr9PCxxYenwzAvTRw0EBHtE9NPoiM6QFJcN7US4
B6mQe+CJsoXSjUpD7eHXlK93Jw2j7qjtZbEYQ39yt3g9uWshw82ky1pJJy8a
LN1bR4CA7kUXryYArRgpAMKXp45ISu9AQcWBRwbwXO58dF6cz8PQCeSl9/HZ
9jzOx3XUQkJ7H7vQv/iUruoAo+GIAA3U6KQHlZnkp2kfTbAfnXmhYXQfm2gM
6Xjt65A1Dvd1yFdir5MNbVT+WeK8aV1MgRVx+ixoI52NbnWPNw2k7q2h7q0V
M9c4qlxVZBp3r5gL+WLA2STRitoPcX9f0DeiDtCl2I9+QifHgg7nffJJBgbd
rf3oJbVd2wbOiNnWyS4txFiMqTIb6P2GMUmzkbYN47I65owoy4jo5zHScdTF
2ruqbP/XrqLVEF7gVESOgbz2YK0BXd/FHBHMoUGs1iC1i+NxnEAIxDC00DBA
iUD9QU1S98egP6k31uoIrOO+kVcLerfXrJ7Ap0zHnlntQO+tSnG0jcfaJMYC
kvIFBP/taNHJeg7GMktGi0YAx1aPzgqNxibatoxNXpg5ZiBb/KiCj7ERPTgp
NED/F286ETFGGRF3kOx2YA4hK/imkAfHHKpiplGi3rBjaDcey6FlFs4w8Whi
4mhAnAgSXULmkwenWbUJzCdB3O149BtUVMwZN6theuo+lTT+xJ2frQOKnY4h
CexIDBaUsLBibJ7ZPDbJ25KxRfiuNm4VNQohgdFRYCXUTQRB3GKfgKBJCFhm
RI+382tfa0svTB7ax7ehqplCtlSlgvc7hoE/4xhs7WzyISAmrURuwa5gDFYo
uV0DxjEqUMP1zGRsJ4m6T4bUvap8L0/sBp2QpxJltb41zTJec8dAY80QDaaa
rQ6GhYsj7J8iMuR4RvkvE53e7iaQEg96GwEUDB56O6oQZo2eqvg+N27kYPRi
THUMOlEtn9/h/uEc7m/0sf1vLYWvmgaJQzGV+hysd+Vw36EQnZTZSf3bzvPV
v2iPtC5kxzG5nmXhFv1KK0Uocl1zwxsuxb3E5iZZEVklBPiTIjKzxg66MHnM
0DrijlHjItGYMNWeEBqXyMiTjTN7Dp2MqthZGQyKa5yjBsWxzWIXEv5hmA5W
TTQ69PyQAzg30+A/Qwl5IgPWYpPVYCHIiMCy1T0pn0c6Sikw1emu+faHyxoS
+p/t6DNrvUXHZfkjR9LSdUjGJU3r2HIzZeywM7NHVdqOjBqTkGbSMdFkUig2
x00wPcqJGAFJnqZb03xh3KihUabZZyiqgzAAMkp5IQuOzeomX06GlpmGmgzT
QjKyhIgqZAQeM5kF9nYgI6lgQFLWSPMG6Cvce3Sy2XpKYJ8dOUpGyRE9cRt7
amjBmndx2XL8fbjZstF5gcVWQVk/Lss0j6u60Dq6xPrqvlRMiOhYqfWzqQ43
0hI5DpK1SfNNL7CNzrRUlDrTp4nWKIC6Wo6k5tk/poYh5guG4z8kuesRsMCG
s+HUOmoqzFwt03c0jvAn7vm0iKPxP2eMP3d8WHb4OCzJmjFZ/jhAQraqhMwZ
W9UxZ1RZ5zEI2fDwGIQoUFQ1mlR29ehikNGX1gBHGORYMBCOR4EBy/XttWNS
QkM1Y1i5WTokYcj7ZFrbMqqIo0pLCPbzRxexayyDlnCdMyE0QkmjjAUdSXNG
0nrHGRFaKa1TZEc1YKLT5T4QRCkmQhqTniauLhSGrIFckBZSbtbGrCLKRXbG
bGlf1TFjxgxbcBnyr8eFhoqpkx2qvIih0uqFyjl9vY4pwodUFJL+EDl9rroq
1+dKVl+5Hp8dJ8uv7LmTaWsYnAsnW+KbSTiCak6STKng38adjsRYaEfGpNMA
7IT1t+1xJabB8NoOtS6FNMpDipNSEdKZpfscRelZNu0oUpEqEJAxgfUJWJoo
lpUrV5qVdbUcm5wY0evC0mzyGQN0wQ5SfiB+Z+wlzbwviwdpdv8vdHa7Q7Kk
gSRfn2EAOhNfOqL6DO5Hzy5EbL5GQto0ArJqRJI03CBziZLednHEYmbjWJgZ
aJX12Gh322i/9wLT745om/gpGMHuaUEqNIhWI/JgBobHDoilHz4dUPkFLc+x
Q0uPtopcSDtYcPBbdAAxWHV1dXgPd9IqwBAtCA8YlB/SIzxHqiBiwMTJT4UG
zPHNpd/7+gY+5PZ1EiiMlzs+bnDQfm4YQI76wAQTaGQVlvK4JclRSfKYMXyt
8wz1Pw6jQRSJ+o7es0nANk97BIPI4XkJ0Ytj2LOTflPdF+N+TvqSarkch+V5
SOOuiZK2Ep0YCIbEcV71vo5Yyi3xXDPUnCEgsG7JHNPY2OgHEjQDYqcHhJyg
MaERbMcIVlRU8AgWRoyg5EAzfL3Y2WQ5tEJ1YnpoqKy42fN8Wp3vn4L/GHXk
UuaQ1DVXJ/zozBIyZcvZ1SSJGy3ihW/IxntcymwZn4qbbRPoZfuEFI3i1vFC
eWEp1o7N4h4C1tcHwSxxPjXQqGEXS8+7BjK7Ddbgv4bW4nKOSuToQCLTNTSE
oUWDeApXOaxc0mo2N9aaFWNzzWSruOPnZo4eYLWg9WND/tJoZwiZhxdFDJzk
g9MxcBdc4+XoPuHhGLlyd3z4sKsuuxM/nO8O2lwatBZN6MnAiTHDQNEYmR0T
U2by2GFm16RUzOyZTC97p6R5PcyeKSmzc2Kw0VCabTSQ/mDS1kIMbYaIVAx9
yMJhTZAylBBlzHGofDjIKRL558Nv6snZeKkqD49vTyzHRuEgfC2NdWbFmDzy
uhJQp1bgL2wek6izSZQxEerUHclOfDJqTCXvncCYdo0p9PdppR1L+976TvxF
nZiPO944p4E2+FbThsL8JThBi/HkJO1gUaerSRDbx8iYYjx3TU6Z3ZNlXGk0
zb6paWb/1DTqu0unpRFHoPdm56SUaRtfzNv8cRWmdVw5M27b+RhbqFwI6kJh
7aPzEujsdMeBs6bO6l07sllKlhZorFqp02jWq2rqVJnHsDuGvdQmhJClXO+M
ay2FIvR0QQUdXtEy0yxuncP75ikfXUWyW0fH8YVmjRt0bv7IwsiA66juh7o4
Yqhn6D4MtY4hODIIC2xm3CWV4kbTYQy44zQLLorYLDbqNnFkjZk9KJdlFYke
KFlQnGXDkkxvoGQ3qrxiXO2YThk73KyaVGLmTehvWmirHz8obqaMGw7aMn6Q
aZnYH4do6JrGVZEenj++god6zrgqU0dMfev4FIuyHW5i9HTujO5lcEyVRP9E
BtvVCGMQaNy8hI6ywz3hQfI+jDnjhUc5wIHvi4zOShMcSHSxXZXyBpZtnJ/N
nzHYy2mD1qkLIpCI8ZpGeg78r2MjXMP8NirJpIOu9ZqVnsNve0ecLsn4PNbZ
MwdmhvjQVMf4dgmIqMPhfBZjHMPYk5ditfQckmpINud/IxDQNjLLLCW5WDS2
mIdu5jg1cDT8pPIwymunlPC2s67AXFmfbq5qSDcdDel0v6sb06nrsI9En0Gz
mwQfwg80bLeKnTagAY+gyp2uJXtOhsCyU2y+eI4Oiadrf0VUE7546mmWbaEF
BY4CIe4zQHzK0H3WeRGoSGYRAMB+TnhJ4IbOpHdk07Fva1Ot2d42y+yckDS7
JpKZmpAF6ZenInRQQ1AIihtEqxUeIR91ZPfwiJr2IEm13BA83Pixq+PtZ9fv
VJsQU7fWVQsABwEDqfPqhFdg5gzK5FoOC5D5QzNNw6hy9n6QZodQNI6tMssm
FJv2SfnmwPQ0c3hGmjlSl8b64NisNEFGoyIjYa6Zk0EQoh3mCJ14kC6wMFk0
oQK6hk4ki0LDAqgsHS8IZMXh8ADQdikikcFTjR8MnhVri5dO8fC4ixYIyZiq
LL0YY24VysIx5JVhuCXIjQAE8jyIFW2fgJN3TECAnN6b3fMGmx3LZplLp6bM
wWkpc3h6ir4hgXxaPo9Gg+oKIngWDyBkKEoZFWEnRoQwARvhB7zLIjAhGaSk
jwnHrnsapqOPhFprLzoHKfCekBADDOjbKhB4Y05XDVCQriDCjpgF4uD1qCsb
VcPpOAQuoDE2jqVvPEHEHTbjwDQBw1HaLpuZZhonDDJXiqqIs6YoNtc0ZgAU
/tbRkGGOz043x2el82WHCCIwNxYmaBZUEWZpJtmU1ePzfG0CiFgPbgPL6noe
U3hHGE9l3pkq+G7MIqRsdH/9mKpuKeIM1zz1ZK8Cly8bIyFeDDdOWUfeB4Z9
DknJdnq6HdAU6Bx6+kunEfc9NC1FrsghQsu+1iFmz4pZ5goSmitnk4zUp5lr
GtLMdY0kG5P7m92zS0z7lOKQFcJ/0jDs5kWVtYVh1OFJ7SYfLo+Akfj6nLzk
iH1n2u/WMnX2upk6kg5BTd9EQpdraBRCMfANgVGhaVQYQb9MH9HPtAzPNSuJ
eqwF9SAYbabxhArAOGPcoSosjGBdFlKXqNUBkuKsWZL01oESvadTCQZX0GtP
00qGC+rpkGoeoHM/bdunZDOzIWeEb+nDSbSN2CXGkvW1xTakO1xDMeMJr0xY
jmIhF9dT1wdJezp1I6sWcEiLF2yT2ZxhSIvNQrKZ6ybmmX1TRK2gBy6fJeC4
mrbr5qSbKxdUmj3rFpiTzenm5Nx0c4q2W+alm9ta082uWSVm2dT+5ubmNHNs
djZoiqqgGt89sXEC/AXlpmHoINFwpra2lhVU1NwiCbSm+0zVWhzrXeAzWx3h
qJa7rBmVdPWO5aVN1YHeiQM1BJim2kyOawMwFjjzlbXAx0RoZ4PqH4widBAU
BRQHRhzGCLoHoCHwxNgqsRaygPHEPOWbqxk8gq2O4BL+jyYumyVqDc3C5kEu
4OIwgAJ2E0Nggm4BgUcYQvAhYIIF2+gDwVdWnaiKcFbVRcBYXCONDBybu1gf
5JRgPSeAnuylb74f336qKBuQMIBo7vgqZAFjsM/UxNRxw1kpr5rax2yrKzFX
N2VTE6fmpZP1v25JpdnfvsDcuzDDfHFJpvnS0kzzAG0PtWWaA429zaoZ/c19
C9PNrYS3m5rSzLKJ5Ywt0GI8MqgPaegzM0dW2qLhUABjWAhhIV+oTwTCBKBZ
SKN08W07xyU0JOwJ80255IY3tl+1uRZacwhaM8mcWVgBZs20D24vx0drhRjD
7UVn07AyvKxrhLEHDoAJwoiFFiDD+qgxw8tw9BMgB3jhuJBmuohYEWkpFnDo
KNwWOgpNgxUlOLSVZESvGpen7hQeBchB8DIVCl5ayroOXAhQ6uenHu0hYjes
dyzD3SyxUFZ7aBrBF1Ab2Cwcg6OPR4MeOjBV3h+fKbroBOkhQo0YeDJeCyf1
N9fSV7ye9t9EemndjD5m2TR4hnUThnu9zNbZfc2JRWVm96bV5uFlmeaxlVnm
ydVZ5iuXZJkX1tH/tVncBY8tzzRfXJRh7mhJNwdmCZUCxtaTOJEOMyuJjgFj
K0b10EkPYQMYxlgo/9M3AmNCxXJYi1ksddZk2G/jJA0OcVZjp+S5wifP8LGx
AWSowcc+/K8nAwjvq0U9sHmDM5lLLR6SMCuGiyHcrECDAYQeA8gOKcE+NjPd
V16b6nqbRVP6k+MFlMUZZYI+4BBoTLLyAsLQhbie0EXPSi0TcvZr+/Ye4OLE
u2MI1lAD7AQS4Ah0dAlxGS/LD98sJnYDhmMdaEaSIgjJbbmmfRxCqgBtM7VF
CpH2kUryBrHO3KsbFBasG1Bzoimdrdt19BWBpBubxardS2iA1oKlmztpEFm5
DHPn/AxzD2mp04szzSOEmGcJRV9cnmt2NfY1TdPHmvb2drOnqa+5an6pebG9
h3l5fQ9zdkMP8wpt6I5X1meZp1ZlmgeXZJh5kweZQ7PzScf3MK0TquL4kvTo
pNTOtY0tdEAVNUHFzkvDP9+Ji5qnKfowAxW5XTi5tY34PLsaAfVOpLzaJeXQ
YHEGEzOpYXBn6B1pNWg0Cz5s82qCQF7zkFwp5FKttk7BBvVyyPHi2GjWs7qK
AVtEb6b1ETtprg22TMUdYdA3poxCT7QdOvkw0Y8t5A2tnVpi1tEGNgZ10ThR
67K9TDObnOe54/ubZrJSiBOumZBnLqENDuYyxA0loBQTcAJamRxzZLWg/2cq
yECdFhOO502oAmBi5rI6BCSPzRStZWn21ayAb2/NICzeQTi6a0GGuZuwdPcC
wdSXSTPNnDjcPEhWD81DWz2+Iss8sSrLPEr/n1mTZV4lHL22sYd5fZNgikbZ
vEqfNzUMMLMnDTeHWirN9YvLzJube/BnnP8yYe4rdO3MCcPNfQsI23NJizak
zK5peazhbOCA/l+YN7ZP3eoR8ai1sYaEcAcD6juKUeuYSRM9GXcoaOpcmgyl
Rpjj/REMnoFEnQhoAW4KOeg2T45lhWAGwzlrRDnPznDJPQjS3qnQPwQ0uvKI
Q+xDUEsCXWny8Vo2oIAYULeZVJ5Ve4SHibUe1wqYaaQb8CkGBej1MBunl5hd
Mwt4A3dD9OqgE3rYrz7lLrHncSgk0qMw7di1y5r5ycKftk3uAf7Elx+mrW1S
hVk+uQJIVhSPMmun9zEHZhewirp5rhjGU/MyzANtQp7OLBM19RjB58sEo6fI
8D2/TlTRWVJNswhuL5Gaeonev0D7nyVjiP2Az1tbss3bW7PNV2kDzN7dnm3O
0fb8BlJZ8yvN1jkDTT1BDG0BclBtL9D1i6bVkjElFbmIHIN5aeZG8iqPzOzh
S40lbNPGDavbOiYeOeEujLV2TyYd8F//CKzppMIOJ8HgRUWdZsFjHFmjhjOD
Ew6u3upsOKHdkjgSZ1cyNxS/hFID0lxvYNdk8QKAMPCrozMVbQ0u2lYr2pKO
LiMgKZikmAKfsR8bATBm9swqVNxZtaetke6LqeGFogPA7UYGnK4hAMX47TR6
FuJ9tO1XNxeRMTzfcVJRC4hIbZhWwm4IzOEJNYnWHM4YP9xsnNmHzFYtqJXZ
Vt/XPET4epjwBUIFU/j82izGEUwf/gNrZ9X0AT/bCDNf20a4Imy9sVlU2TuK
MezHOe/tyDaXbl1tXtteYt7fmW0+oO1D/f8eHV9WN9hsaRR1d+ncvmbx9Frz
5MpMxtwDi9OJwKWZk+QkXNZQQNrYOrhx3/HEX9R82cEO5jjLGbV8Yq2DtID6
S7IkoGisyWLQV6KqEqy6LOcnlRbT3VyrHACQLSepBFZqCrM2spuIgArMxCOA
qrBDiOiVhB5A7ZNM963NJKCp1iIIEfmyQJs2XsQW/+lzjE9KsZLbO6uQN1yu
CjBurm1SpRgGYFyO4m3Ya+WNFOyxWUIE6b14HmX8eLDTaP9EU4a5YW6GuYk0
1qmWDDOdHuc2GEYyhvcRwYKBvHOBkC6QMaCOtRkZyvvbcs2eOX3NIhp9a/hu
IC30xiYxjoQs+tpkGqmXoc0aJg837+5gBCYAsxhwRp4Qo2tXT0YYUPf6jhKL
OLr+67t6Er3B52UzB5svrSo2T63NMwfmVnI/7KX7f3lFpnl0WYZ5iAjdneQ6
nFmawYZhf12+G5HnIpdZMmciaja1Cz7xUDHdm72FKBjq6gBsXMMwzA7DUIwp
Q88qONf9BCyJ0GnkQ447noTgsYAdh/lO2gZqD5iE2tviOA5wGKD2jtSTWSMr
uGmGbzkt7rpTcAkggtleXJGGEwh42Oh0eUVPOmQwybvDZJC1olfEjsmJZgIY
bTcqyG5uEaDdQkz+jgWZ5p5FmQy000syGVxnlouZfJrY0jOXiJ+Iz4+vEh+R
1FkM9tLr6ZN7aDFoL7aGhLGjZBlvWlrGWg1a7quk1YA9aLLt4DfvE+ziDCkC
FwNMYBZn+L2xszfgSJ+wL5fPg9I8SU2+vYWgTQpzY/0As498DBjvnQ19zMNt
GexPQPkhUrK9rsScak4z26fmufOy6sbWBFDjwFtX0PlKMmpBDLvACMIi6jlo
tVumaaRvNifsMZjxowRg+K9uaEpxBgxil+Ispua1RQldqxK6tqGCNRR18PTH
ccVM0EHckfWBd9ZFjyWZsFkdpnrM43eMjUQEvuL6eh19Zow1IXd0nQ8uAOn6
ZoCL3hG4cB4Adet80lIEortpu5eAdB8B6X4Er5ZlmYeJcz1GwHlyjfCs55Vn
vQx3cGNA44Eg3JP4VoxUFdDxhtIv0lN0SyJd9PigXccIXNuaBvLpy0khAVQA
FxQYgYs6lvBC10OZfbQ7jK4rty00z+0coJ/wWsTn0XXmZkIXQAzlCU8CcZEH
luewVwuv4Zq5BYyuQ40lZvm0/uYWQtf1DULr4GnbBMHSsUV188aUqYILheBk
0Q0/FOI5XuugCKzZVXFGjx5ts9J+uVeDKjdsDTWZgW0VvMUAvjT1Vjn8NpjL
DzwfZYqwVrWymGo0d2SRmaUFcfg2TeTWwTVECcLmqflsZTUEkqb4se7BtWz+
ZJ/jrHpiMRMuzrDFFVa4E2CETyl+rfShZvXVjfPk/anWTHPnQoLWkizzEOmo
R8gAPsp6qYd56hKi7USzXkCkYWO2WTpjsHmDsPMWjec724RWnVNa9f7OnkLF
dshn/AflIp0E5MRYOWX4rEvsYE/z8Npic3yBJGVWzBoM6AmsYoGuYrzRRgfw
GoW3Yjpb8dZWxs/1FuF8M+ENXipch6dXiTGdP6XWbJvVhzEHvXyyJdvcTq7E
TXMId40ps25ysV8DM39sed3eCXHLzCKWnYkEXdTp4sZKuRMIngJPQrtpZFQT
ZsbgIvZmrW6bSu8lEkKgS9cgr7W2fihE425zybrWDysy03X1gFlaprdYqx92
2VymBng14ZQeAbgeug+gUoCR4hNkQRuGkVXB116vyDrZIog61ZJpbocVJMX1
pWWCqicJTc+3ZxOass3ZTdmMpK9u72neoxHe0Vxtvk6j/CFGek9P88nenuZT
2j6h99gPeHxAcPnQt2tAQpKPqa2TbbdFRDqfC0g9sq6Y/3MCmzTa5Qv74Ywk
N5EwJ7c3mEd3jBCQ7epp8XR8QSXrROAb+qutrta8SToMeIIrAnIGywgsAUew
jofmlJgvkWt6V2s6W0nosaOkx5BLaB+bhYgIT4+JWkCoJoSnOs8JgUSRusoA
T+fqq2I2nmvxhOgH8pfAUx3hytpPgo/HBY6gZYGHqmGPXp1JGkMMOYRp6rki
x4nSuRWOc4ryBugzziFME88Bjp/Q8UCBfR7GrvtcjPUJMKZM6xbC2G0LxECe
XpplziAIsVq01Usbss3rW3qaczsIL3tyzDf355jvHsw1+1qrzf2XVJjvHco1
nx3MMZ8dyjHfvpSO78thnAEfAMHHuwV39D8dO8TKZTCGcBz4wfbKlgL+7+CK
nl40lAMq3ZfD+LRWERrynDqc4F7QVoi5vUjWEZwLlP/2BT1ZW7VOQVCG9BX1
5L3zJfABbXWiPmUaiKkAXaSxwK8UWKHYWrUDLPY9h0bASWCXzoXtNmoLol9P
OJo2VHhWfU1mDEDyhIbBPGI3u6PdIaqALSSUFpDleqpQVrYQE4kC5FDbNSu1
AEHPiRV+0lMTBcK/0zWExqrJDeA2ZVgmJoRLccUISvwZbMFVPDkvwBUs4n1k
ER9cDqLVwzyzlsaGcPXaZrJ8pLM+2J1jvkG4+Q7h6i+P5JovratgfP3waK75
AW1/cVgwJvjqaRoJH8DUN1SnfbyHFA0BLE2V0I7mgYyt25aX471AJi0KYhZa
dBHOEbWnJI2tK6AFjxJG8J0tYgjhTSAJZaFFiktyWJnMvx4kW/jFhensZEJv
3dAoRS5AlpZ8Ra2y5iKr0yy+KIxJwj2tvaEq5pd7YfoQdBNS5oQzj9kXffEm
5WAzJarmRnDFHiacpKcNq9mkpxtJW0o0f7lOm3BrfZEbWjKpwoeXkrBMl8DP
cRzElB+t+D8gazEhCxoLFhE+Iag8UHWoudQcnVdm9jRVmv3k8G9sGGi2kCcG
/r1jbrW5ekmVubatyvzkWJ55oL2PuXR+tfnxsVzz48tyGWEuuhqnDGdL6SAr
CWQlo5GV0t0WWa2trWbd0qZEoOgyGUngZ6BuQB0UFaOJzCDiHc+uYfMXQ0AC
dUlk+WAFSU/hv6iqNHMPqSoQK8TLlkyuMksncsn6ualjh1paHjKAA100Jd3F
q+BPcrhiSASqyhxiZWtMp2KZhfFcWtwwKJMNn+Q08ZpiMNU79eF+UI3QxUoM
lS+ktiyuuOAu8CKDEvIkay5bRr5JS40RqIX2ArQOa9RC05yZEf4hBxqSnw+v
lAsv3o419DT7ZhfGzJa63nQSkIZTmifVyuPOIOHuaVbVDTBrZg4wa2eRW09A
OzCv0tywtNzcvKzc3Lqiwty1qoKBdv2yKnNgQbVZ2zjENE0dYZd8uaRhsDlB
h8/tLjTfPQCsjWBt9mmANbJJHwM5AdgANAUbm0+vyty7Y7K5bsOMLqpM/Uj2
N6HCPlCf01pHq8Jeapcs0+NQYUupA1oK2TKCw1v+ddv8bP4MPXY38S8E/E40
ZxMb6QGv68z0MbVRPyoTQl0CSxQBWXathGERgJNi5zSuUrSAA92aInRd8QNF
lWTkwaV0TKonNjTlhzMaB2X6oQwyjjGNi9my5qjSZiAOSaj1GrOFQtszRSoM
D9cFxYrHZjkMzDWLFnsp8Rp97PVkbDn4szgDzMzq6X34sboN81ayh7l4an/R
eGRD7yVt96U2CVj4/Gyj8LOvKT/7FPyMONmPLsszf31Fnvmbq/LNz6/kSZ38
+a8uzzMvby9lkM6ZOsLMIRTiGMB7PozGDIDRwSEARrRNcJhiRgbzqf6kVYJx
gC6mUTG0bM0op6UIg6+sFx/ymdWZgkEyo4hd3EEMDbYT2OO0hdV+KbNqen9z
sLHEnCSidvVssjfjy89NHT20RliYv6SuXyPkif/I2jCqBlJ/6umMRVyDzn+A
losp5ph6VfubZNwr+VStjGU/E8QNPoET1+AyD8vegDioPeteWn3XptMqgLwN
WtvI+k4jtMhJ2tpG6Lur2MWUmEY8AnxpFoJkZy8jmO0lmG1WmBGaYhzSTbko
Y6qGw/Q5TeMaQNwSQtwtNo6xVOIYj6/uytreJ9b2CbG2b4O1kR39GSHrbzvy
zd9dnc//m6eNML8g5F0g1P01Hfvp8TxCJZ1L9hao2z2vmh9nJXkCVy7qB9TF
ALs00YFXsAPwsWBOGZw4AA7wPDbMDDkvm1uzKQJrchGHfZk03nOIEmvy6UhT
b7OG7CyRN/UFsnybazUfEIhKtpvJ4F5HvsGOaXkXJo0eyonQ6giD2z+EQBhb
3+OMWgxPJnGlQvQN8IH+IiglWW9lskqzETSgDcibrV4EAAs12VQtxlaA28tH
HQyuDWh0jtHafMB2nagFbxP+AWK1qLTWCn1bOusl3SA+8GNhF1O7ulmTB5pA
4JPUrbAwg9ITEHbleOKtilcK/CHagTAtwrOPksfw9NoeHOl4lbD39jZEOXLM
x8DegVzzfcLTD1Xb/ZKwd/GafP6/jszv67tLfQ0IzfcT4n0/OCL4gw0G53ti
fYm5apHYUngWV9B72OJUgMOEj8OPxaVNdQdFjReqPvQEmVlsn4FMuA+vqmf6
7JpM84QmpXANuxKLA0TClwAKLRrvWdzT3D0ftZXiUxyd2eNC67hKjoFEpZ4U
kTqHLPRjFbr+TrvnpOujpqEUBtbZnxsIyEG5AWIIgAhUe/A+W0s5R2cSAa6A
KpSkdTrUUgtaC20zpnFIrh/nteW78GJdq2zrvu2ckgbyqjrCSE04oRCoQdok
qRoTLch0TlBosQnociKCNCadnpAkaleMRvkmgttq9niXThvAERRY6EdWSrz3
ecLsK5vIbSTMvgvM7s0x3yLMfnZIdOaPyCf5+ZX5IdweWlhjHt3Yh3XoL64S
/fkz1Z2r6wezr/Idwu639os3DF/l1a0FrEMtH1QMx9WCK4Nk9NJhdmlscOX5
nQM4BBxAOM+H8Edyvmve+TPyZ4dbKs3Z9VJJgHAwTDnM+J0Le8IjppYFxg8q
rUSbCOvh8+kF6eYO9WagXFdOruB1uwZGKNaqEIxDv4ySEPvv+ZOhQ+C1vxY1
YsSIc5gAUze4Fzspzf7ElbhvmedxjAWvfVnnzq7NZXVsvWXoXvd/p5o7H8V2
AdKFduKk1tFtcibFupE9cEug+GqN7sUCbeuqU52ZTMgTaij4Bgh9hZpyUxZ/
Drayr9bP6y8j6N6rKYsn1vQwz7VLUJlhu5NwQLD95qW5HKCx6hbm/BdXibm3
8D21qr+5mba/I+h2Vrsgm50DOYDuN/b4hNO8QjC+Igxj+tofM04d/IqbRPte
6ILdRAi7pLEF5pl86XPr882RFikJQEHKg8tzzRPECS5r9vmAoLaHuZ1oAJAK
JcyVFJpYe2CROES3aGBn49RiTJZQ4IZChVLjaZdg+l//5k7USpdR8NaV/Tvs
OljTBNrOvKy46/Z4UhmVxnMmbOgQ/3ndXECbfXp4U4VBknhgGOI8v0LphK1J
dquqtkzqwZP+kIxbM7mESSxRikDtWvhC34Zc9iiFy8o1+X/BdRKIJhcZmF4+
fQAHs6GKQR9eJkfpza09zTnC89fJUfrGflcV55kfHxOsWgoLTP+SMP3Ypj7m
MKlkS2tdlYz+BZ34/qEcH9ef7vPDRwnmEWk+rAFpbCASUKdjeH03UdFv7+rN
dQVKMBKKZqt9Fc0JRTN8qXe29OA88AFC8uyJwzl1jTyKzyWWUOcRZuMc805n
+ALSqCzlUBI5U3NI99SPGwQdGfVLKWEI/69/wCkKwuMimpd2k3V2aqoL4bgD
4RbxnQieeM1gCIPdaoCA/08nmtEUMGWP33n5PoTtFEVo58VDE2bJiCyzeFQe
z3jAfFUUPWLC12xiwDyVXWc0b5tWgDKhuF9vyorWgq9LbjjuHu0K1wTvg9rV
LcF1ClWc7lsxYwATXjhb0MAgu1/V8DjIrq+BjwQa+AJp2L/pyA+h9s09pWbd
nCH8HvtcTdxEWvhHRyXM/r1DQiTO7/NRmw7ExljHypcDbB9dVyxkmPY5MBVW
7KVCLAGbxgus5oXv/1UNdoL7vrQuizXvnsa+Uj0tYfSkal6ULoAnWPprQ+o2
FbhzZolZPLnqwtWzknUbx8TtimsuZagUyOlCGaEf/1LmizP8DPOECGjKEpK8
RDZPe5SFn5xpi4LOFlWKATqT/ixGG28ShYzcc28fod1xCqC5Dmge2Y8LpKfq
rOrpOqsaBfBbJ2ezr3bQmfhxVAulpW6L66M5zN4Vpezpx7pDaUyOnvAPICAA
hCb5Nd+cnJdpVhJOEYICwUVA4I2tSm73SfgJTtlnhx2teoUwhd+dKDC/vpaY
wtX5MYDTkyzhLxW2rnIFTEEabHz+u8p3z9P2qcKUvgp7ZJpsBFLx2fKGpCIW
FdGqVBWxST/56KBVE4tZHDg4x5WvUsSFcBUgiwDC5fN68722z+7DrprFLPY9
oKErBBGAX1fd4jiSjDc0pFACYVc1c0OnYcyGflFOMOsvPWtDqgxbjn4JWNN4
oVk779YWFGo0QNGZsmjlPHSd0oAWW9jFJdRcKtGs5LbJZwXJALBazjN7aJGu
etqTZ3uviQjdo/j1sANSJ5SFXkkHENO6g6nDc6+zVV+qQm1E9QRULqAZwBXl
XwlQAIIr1CpKv1bPHMDE9ivt4o8hfoVo6XlSqSABiJj+xRGJmv70cqhVweOv
CK4E2RjeeDnmV9dIWOu7R4uY71rt+urOUrO2YYj5KaGdtStB9nvKB74lkKUH
/ISTSXvw1gGuF9PIv2UJDoihehm8NOQpB7uKZ8QmnER5FtcAcbh/m9ADW2KB
ANjzOn1uR30fhPsVu9lSakE6l9mtlo65ehex172zS5jxVuV/oR1Qq/Khp7BV
7yz0S4XOyrxYCo61s/6WeGjdMVmwOunPCbAB2ZZBSmRZzXriYDWr6a9D+ZiP
W65WlOMWt9WahQJ0s/3qM6Af1Rco6vEjDJ0gqzPL6d5HeHYQR2Bn2VnlDFsJ
9WdE4Da7E0ZVf8YVldh9/Vxxum6cR5r2JrycbMnwcjlTfsmsARzVB1lltUoD
ihgr8Pm9w4LRHxBGf3I8iO4DhATMWADUniGQWt16cEG1eWh9H98hg279PrVr
YwlEAZLAaLwTRkEGkhoR64xRKFcCYbKTj/Yxl5fRAXHeRNEi/oVcwLtOLgrx
MChZBBIwHeWG+YWcj9L4v3hjcZ8TyCfJiGqClDGLpOm19WmmuMcX2KpHkQKJ
zNrfrw390mVM4OzZhVTC+JSfGUgxS7U/RAKMYi4UgS/J6Iz7c9DJ/HuJAJpa
ZKawVJXKeLSVIMAlKh2bh+ayvbczinUVO7NjkuSjYPNJlcYxN4TuwJBE2GAO
RwE4bJUVYdKz1TPyiaeoSMCQxghqUvKhCkkuZ0Th2c0tmTFknkjtIRPQXj/Q
rwVCrunrqj3/QskoIllAJbIAP7dhgWvy6ca/ZkQeXlRjHtvch1UoUPmtw0WM
UhDYv1Z3Chn5HzjE9Jv7yNJ/wmAE2CwY0x0wgovuXzjUr3j0MZd0wWgDYJJQ
sGUempeyNWlvq8IEHq9eQAqdbMYjbRmcl9LsgMWjtfcuHm3qFMeGlaWb19sz
zfCSWJ2vLzuFZxWPunBCqN4jCoXy8w1JJqN28QT5jamEwA2VaEH5BnWPA0Eu
QnMgiCwDQlvWaZqriyq2DM/jhXwAP7tmi13HzV9wY2ZaUiezXyPQC5KdkdCT
kIwqQkBPUCcljkgsX9nU0xxsKCRW1dusq+vLgdS5k2sxj0nnBGXSuI/ghDkC
oGvI0qKI48YVVeamlf3Nwxv7mNd2lwJWMeAroZC7dXV/cwttMOKA3Rt0DpIC
NikFRWgDq+wPicWOwRFKKe5sqRH9pycW3AFzb+/uzXiEgdaIFbtNArCCEPg+
Vqb5dU3Kv6eJUIAOVvptlKuRAlxICvDx5RmclIcDf+08VoSaEIi7lpr6RTKj
lnEO7lvIiLupKe1coABDCKoIAS7knE+NOF2c+BRWMPOnItsfZ3OMsoM5GOUQ
7OykqTlOUh7QswZ6fq3UfcwbJQv0AXJ7Jqf5U89dD+f4rPSUxva7QixqX8qH
3ZaZvbmkA6n0pkm1cYCOng7VHYBaO0FuV31vc6Sp0JxoyTEPkWtzuLWfOULb
OQ1+giP+xRFxuR/a0Idhd3JVf47Vt5OrPXfaCA1y0TssN0X7jiyqsf/ZNtNz
2fio9cgtCi1vtK4Ol4VIMt5jOMY7wZFUHR34hJOle+yUFMWkF3f0o1uqC7a4
A6vgAqL5IUgiU/re9qBO5K1N4tQgOor81JmlQRWlzZSqUU4pErF8RGlpqbm3
rdDVfVG/71seQqJxTfG0CCQKkeTfVfJXWkA5bn1trkWjujdx3/mGFY5FAhI1
bjb2aXWi1X8on0RSHiv3tI7jtcf8MP1RpYFXzJZpeyfgX1/PngeB6nMBmS5e
tczd03C+X/OBz4uRmto6EzP/DpAihEIEOlH3gUw8eTAx0EM1xYgRPbsu25xs
Kzfbm6s5Ef+xn4gXEwwHBj43iB8IIGhhnFBYEDOfXVZMbPPtvWXm8c19WUkS
Zn204pFgl+3/ZvLEUcgEhXvDsiq2z58dJCVJrngMQCXTp1D1q+ZwrUVpMgiE
ylSDF3YN4E8JdXtuWyG5qS6xfykKjgcVUT14WoKFK7Qn5hOijARhT5hqC1OU
kpP/wlWZSbXPWI5memWcZ0LjOmD00qkpzn9GxT7LXayGA0YzIkAqP4SR6atL
eDDQd24diONzW7xCdeKXdCR05ENVKAZ0KqbRS640z68fWaqZfDjbgOnCCRXu
DFN2mnlGndbhYv4AsAQ/IwGCB65A+MJx+M6unUaWfosk80NT6AmtElyiAxI5
Kud7WCUbQR/ZiMP7hmeDjL6tYUKaCZOt4OE80k5aZPZg1rDgk/B04OHYoNHf
aGCTjHsG8OuV8C3pHYDMELVxTlDKb9IGbxyOzo3Lq4grDOZk/9WL+5knN5Rw
AAllTt/sHrIZqmuR139s5wiGqfV/2KxrsgogVdDaiKliVr0h8cmhYoFXnq61
NihCcaqHbeyIepcUa0Kr0w9NS0GJ8qPdR0p16fRaBi05OZVetI9TFsIs1K9f
hCK2Pts9PaRQ7eKfNtXjONoS59Q5WlCwPliVc+oSXBqzL/DX6AZO7dKx8GTs
PC1Mbj+h8w9OakUvcHK71ooji44KX9pHbZIGBM8gLAFXII3MIU9whXpUVV2n
ydPhxClOOuHqZa/Cd4tcLPMs1FaRm1vmC5bd57u/U2oJSvjtXYWc5gR+oYj/
grYfHoV/k88pUV8Zk18kYI77YCY9TJ8I5SSNDGhNoVqyCuYB3Xv1kn4sLyDD
HQTqq2gj/Ss0QdsDkHeSt2ORfLMi+RMfyYnOSE4ozN00FdD8yLpinR4EspBt
NjcOMNcuLOVFmWzxio/kxYJkmzPVKJKdbVFTGDNvtEt+Cv+BZ5AFVcKK51BQ
NIznduA5Ly+PVbSseJ0FPLevWtBwYeLwgb5P1KxzWoHjBocQJBwc25xSwuGx
2O/rZ0C5IiigQknKMF21XCdSA8pYyAGM4OaWMHzvXizF6chAnm7L4veYvsXQ
XijnzqD+2Uk+z1LipUuEmwZ4jSieIox7Ntg5RynHCQ7an9BglMx6Te8CZCtg
UMTzJtfG8Bh0GuaSYT7GV9YFUdEfHBXsMpklFkH34rJRFPHxJzj1cQ2MFjCI
0/g1yTTis2PFTCPU51JI54ayp2gPrj6ypvC53tlZyPoZcLYFgdDLluwSlKOQ
HPcrBvGrWxqs0qBqindL0QpgbONVOlvNHG2tNAfnVXIdlq1DZSgLgbCQtXFQ
G9MHhyD1y/AlHsF4VpmDZgYieT4sh0bD4O3wZKFNJgwCXv7thAvNQ/P8glKE
lKCA0eAMAaI48hpfsqAVhVzOYMV+gNcyX3dqti2mAllAjt5O/0dic5FOp7Bl
nl8klAIQD9J2x5Jcc2RuKVe7z59aa1qnMjLjXAifZpZNH2B2k8cE8B5qLJQZ
sBLV9DihGVMV7UOVvf8mOy07bjWwU0NV4mvhKE3sWggsawJRwmyiL6+RWZCv
bZaoFHw1QO031xUwHAHRX2FDaABITHAkgNEpCCY9fB30MPivcmGBN4HWxqrc
KCr0MYIGP9Qkqk39cxSVqwmLWSez/BCCMwSl9+2YLCGFLlBNk5QrKEN2CK/o
g7YZteax1bmcfHpCiYMluqpuqU/JIyNybIP31dXVvBafgtQ8uSqH39+rHGLt
9Ir2qqoqO3Hb5Q+9Q5ANhQgEssGcNq6WHKCrj+k8R4JjmpIDJ21v003ijwnx
rWHSC37hz+8eZH+ZRWqiEY3niCe5XrtnircOxQmF+vDKLHN3W565bF6ZWTCt
ltfiWjtbMjxInqNi9GGyzeCZcJYwcQPXWSV8t/ILoAqKGwi7YW7nsGicI/XY
R4pZE6Bh5CYk448DBT5kZVKlwBUPDEvQMqXWV7bPruuagoJGBFShOckxI5kX
ckDQZCjTRtroNz5QAW0Qhpg971of0x6HwLwAsCAPP3GmOyE3BdB+V/NT53VC
3atOtACfUU5I+5Jd8GvV8ifCHDID/GZwbN86WNj2NvUNaILoVn/2pQ2iWqUK
bFpeQHzXKld83FQ/4Fzv3r393w7vOoMkErPyJr1utvMLQjrJkoMHGrJPj8Cs
0gGlBwUhuM7XCSSogAK9xa8iIFKACAEK90Bp0dati3J5YhpWvplFnYEQ+i1L
i6lNwgCpF1BHTOOGEnuMYAsoA7aYfvugQhewte4TEMVunMA1Bp1roYrY1vV+
8vOEvDoznCw5YM3sFTK08YyAPWju7Tr9917lLND6Dyu9xRQTVAK+vwv5famY
AsUFYoHGxzf3RZS/IFsRinYtajXmIAFZG4iFPgW3/WsNwNpsFKdNNfbPs/EE
aTFgkcbHFrlityLUs4ExkAKQA6G4XYHaiDkp9IbR6uVwIgpVrChKeXxNntnf
LMu0YCGNR7BK0FIoV+GzsP5gAbyI9wDEmg7P7UsA3lw/wFy/oDeDFhsoAEBf
Wlpa5/krY4SiBJJ98tdr95ygQp3DCdx5KRxQ0ES9otCziLWcwOEBNvcEvy3b
h6st1kPEYNvEFFdQAx7XzMsx+xqlqAFatL1+AMoq12Ntkhc2ZHN5B230Ca+F
XIOP0iQoMcAaJSAWwtC8gAwgBA1758JOsG0J1srYNrM3KG/cUbShSpOYD3Av
j3MEuPCW+YHrBW0K9Q6ZgdrHg/E0dSdhChr7Q8EpjRnpS+YFmNpD6vM3gWoN
MCrp0yx2vn7uTFuxiSlbv/odAid05SccnyUcCgzTfIjioFWid2waC2h6Vn9a
D01hmQzCuBKLxfF3dI0XW2CNBbQwPnct6qkBgwyy9bLe8pCiGOvKGFQlPQOB
04ekhSVxAg50aZ1qaMGX4u4xKYEu/slWXhfB4rKxJtOfHzxP0ZauzJQ9v2HM
TZW75vFnnDtfteayYQmBIhl5lEJfWpfNYXjwbXBOfNXTK/IYakg6koNN/Xx2
U3YMppNeNmfH8Y56E743hA5ofX49HaNryPpBbwEf9y+N9r0ASoRW2f+aNoAt
9skWAenJeX6YQax+cSi6hQ2QxCW36aocIM9nVoiBRxqH60xQvodM6V4JzcKz
+slxCc2iFOrLW/pCfVL3iKLEZ0UmfVLleV2BulkSvkV04OLV+f6cKqs9f+Sw
USQQVqgLdcfKcrNz7kDkCvb2TCgALUhXzp9ltqyazwBORICTGkkLilYkgY/j
722X5L1N3AOg9y/N4er/7fV9fIDi3OElMWvIwUOxazPrGOxLMDaxj1QmgOfE
AM5olVMnlQkteS4MzxTXPfm/iDMox9r1mI/NNCdYZcv1ZF8hW/UFnXC5fkIP
9u5Rmo+h3lLfl4cXKm4dEc0rF5T5C6+8Sq7Ha6R5oH3e2EKS/MbWnhqkxG57
6OVNjE/WlA+pgYcSA3IA0nsVpHcSSPeQZMPHus0CVcHqcFUpKCkJhV5t2BVP
fItOGQX2H1gmoSroyUXTBwf2fLfUlKKe1C16+i2B8519ZWb9nCEWm+s1MyD6
szM2C5SIZrNld9OrjE1HecLdJ3e+EzYlwWWzXCnz4q4B5qptCxmEdlYLgTEW
YdepsaRSADuRAJ9iQWxAlrzBNR8RfoFdJPqxptdrupgRCOqOBsneI8E1eVAv
zExJKG5h5lWXeo6ijXeAkdo/yeangFwYe1ujBxQj9eWCmAtNBLqS07JLVCIb
Dys/S628TQXYiXydw1XW6vsUttBMpstlXjNR0zFZ/EtbqGpGmOrS+kKGxJe0
xBh2+yoC8oaGgQwJ+NCIyKNIHvB4exsNCHkp9LIDc3mhy5CGRzkyoINzIADQ
wNB3oLDQf4Aae18OyolSxszm2X29vuwPgRrc0YkehByxuRldkd0qyIZQ3O2o
XAjU3uZKc+ncShY2lwH8RKtPdYoV9ahA1yEAvqr9reNrZeCVc7mZ/DlTgH2V
k7FVVmALVKF4dzQPjAHV1BjhWia3cEzW4hs0KoC2gJT00GPrin2YY9PJsBzC
TQRB2855C8/qbOQ3sA/x2Q92kGXE4mBJLlrFMiWYkAVop1L4sYAgYoWcgo9p
2gcrihgB6WJNzUbCGc5XLIJGFIX0NNgGBISZ73Tel+RFMOF/+ZP7OXE7gzMM
dn60TCkUemtBjq1FZrQqpcj3l5PGzw3hJyWXjcwyM8YO8le3RGkUDDmYKGAC
QiCrrwnDelXQHgPCSY8C3AggnduZY97FRr4OJpnCQ/8ISxqR37NrbrW5fWWF
eQ+hfvLeXyW0oRkIwTNEiK0/Z8MQVhjOrOgRM9sa+nq9nFBwVlc64vPkTAV9
ZijuhXAxgA9jBJIE6rtouiboCEa2RGaOZmwPLqzhGoVTq/or8BOua4YtBdSn
Ozoe7pwvAMhEOBO5LN/4sfXWVKfvaBrIuhx4XzlrMDkngvp39shUgU/2+rFa
HEj5xNjFO3ESEYde3A4I9rcxQWd/F9jzPkAe53z3UpxLG+37Nm3fwrl7SJdt
yOJY2dS+cTOquszHPYIJmn9Q3Cf86O3YPhntno0npOxSKZ2hn/yz0Eex64Xm
5mZOU0xTBg2vDqVbvPRTULfAun0WlhnumpmIdcpM6P6gqsErYkKNqBmWuG4Y
KT9RtZHIywFeNUwW7wUVAOYQFQOhhk93VlnzU+sLGMpQmucC2Meh4OnWQD/o
K8KqH+/LIaa4uJ9XLrmu7WIpXt8qHOctIhLPq3cIa+AKBFT0ZS1ljNqHVwRx
OahwjsvRdnJBrrl8bi/2RjF1C/k+5Nz8sHMBzzvY3tDXHKOmTi0p4sV+ltQN
9ifXYkYXimTBZV7dVcp1YTeLAHBo15IYhHidap0kHzhKyL+NTsJGTJxOIApE
WP7esWJfYmAicC7IEc6n8zKwkwQFvAmp6p/bckYmP3kB+TnSvaB8VQXlG+xN
Mg/C2yxOhAD92BBTXqlZDCtAqLv4/kFm/HThd+g1z3x2QJIqMEh/eTiHC97+
6niu+RlJ7c/oYX6K7WiO+QltPzqSw5Lz6ArOKrPnCGqTcKyERuR8aakPl04U
RUsL3kNa0tUauDGQsLSEqn+0Do1n3Uwe2kezYf58m6QrB3buTUhOnEBIzBcW
MSe9/IVfsIwoCsDnjC7nwm8U12KpDcTP7AKemMQN2MqCF0KMsKgUam4gKLAN
kJEk6JA30nywJyckLbeRndg5V2pziD6xuACnb6q4vLJJXAIQrxfFdWWxQWDl
ivllHM6+f3meuWlxEeMdheFQ+Oxdk3eM+BzC2geaStmIwJjAqHDOkZ4dBt8u
t/bUWpmIfqCl0hyZ34+f3zqlPAH9qvwYAEyq+W91Iq9FvKI9wShPMvDhplpB
ISGg7qeTNPtnNbq+F6NCrzj3tyJAXkolJsgI5nMRsMuqfqDmBakQAN1KTJIF
IxkqOMIGTZvAuxiXzPXltUXYPpA03LOqwuyhz6hxf3ObuL7IoMOGnGjrZ17Y
2tv8+KhIBqTkr2i7QBJzfHGN+f21eeZ31+SZ39L2m6vzzK868szFq3LNL6/M
NX9H2/ZJaTzt5fqFEkNDYFB824xQnlu5lp+P0ToOr+DzxSdL/AX6pEEa++Of
nhOkEaHhee6cBUd9ulZyeO48NZUdf56aDXe7lR42veiWJSWUcUF8WgZnsq2B
+KxzsjSYF3HbfImFuGt2cKKDYA96ddmCfuYYyrNJJlIQmxikxhsucqOyg4eC
zACj4GOdZceam1eUd0F+wPwXz5DMBeLs8HERaw9xMidICZlgWdGs5wMaS0TU
6VFdqPc59e7byL48cEmxLq0kkzDgUfwSZcaSUPy1Wga1CD0Z32nWg7a4Z5lg
mVlsZSbflxn8x4bzkQOC1Tq5sj9XMn16sJcvGz9SjwMLulq5aJwyPCkeBorx
BrFswOv8ptKmb+jir5/qZ4gCDASMAxbw3NdS7ScxYTyw/9MDvcxNK6qIRg7m
AsCbV1bxkhSA/69JDK5qqzH/earA/OnmAvPHk/nmP27KN3+g7d9uzDf/cn2+
+acTedDrnKp8Y30mu9ChtE4aS4KNUFqp0FOoe16H/fGXJsGfnZDprGDnSkpP
EYyINXaszNR5TuRIZCbBlMzOmBuPnyLkiJGEh5yEuz/Ps1F+U8lPyrsVUTZV
VDe8nOVj0bBM5mOofEJ6CJlMhBXtmkpYwQuVF2d1YjqbFDErtqwTP3ugchIH
BIkTNJDWwhk4G6QHggLpQjrRCgpY3aFWBBCI49FTHmzpZ+5eWazm9Oymnl7v
wPjQprFTBj1zt7XZbERYMFZksTcP7x4CAqHC+XB+cE8bEQD5gkH56fUFPP/j
t45r/RtEidS1jkEI2J5kItBEeogEgo0Kwk7YwMnS+VhPtkGYznyzFk6DzQCQ
EBrMEb2kYQivZIZs0W4ytyjvI4FIKLP6lN0FTBsFsyIa5ckPMcEsAOs20QSC
BXOxl2Thh0SKYA4eWFeBotcYPtBlP1Hr8PfX5Zvf04b/PzhWZO5Y098co2+A
J9rYNMR0rBhkzN0Ec3MXXu4sJEtgbi8w5rYC8z+3FJj28fiR0RSLxdIZtYx7
wr/yq8yQXNiqPzfRpHUmWWoICPp1Gi31YhwvjXe4rkmugt/NmIblop1efEmT
mSdJrH7rz3NClh+YT+gM0s6pfZ69P7ImLcKFkTqVHI79zySxQH011ovAj1mB
dcFRRy01Yjr+jOL1ssQYlnkit8QTX0TIKID2gWVd8UAs0llgsAajDU5Z0fga
bUfnk9Gp5wJN0J+nSTpISqjH36TXck4DQmLok5iZbUL3rKmBiw9z8xahHaYD
pgRSAGl5Sf0oXPe1HUIBH9/Q26yqDypaMRUaNAsJ+X+7mUDxrycLaaD/5WSh
+ZebZPtn2v7pxkJzbEmN+ccbCsw/0Pb3JEi/v5684t+dgOfOZuREgQ1TJVR4
YDW+f7zYFx5ZUgLHBrDw2NIVy7Z8Z97xUa5dKr64XQqw8+JC+G9nsn5H3YuD
28ixP1RK0pLLFgMWBO8hJjeSQN60vMpcuDzXvLqjN1uRX1yRFzN/c2UefZO/
vSrPNx60xfCBYPVftOu/SUDOHy03W+YPNa11I8z5aypIhr7Ui76S+WIvY+6n
7b5e/P7MBvyASoLlyCnFcooIlIhJQgxiZRNjECG6FMDXaVVprhxdUCIGW8Jy
VBjIml+Z6MqQM3MwmCVo07fNsk64lQdn+jUB0IncdrY2tpwLKzsjvoVZgXBW
8FvysCRI6iMqBB0NgoM0GRaMeEvEJqFSA/X80pbCSKnJYImB5MB7eZHOInrG
qx3jKtC15zfBGJMc0fh8jRkZjI3839pUbU4uq5DDxSGBwymwDZAaSA+kBvYG
EiXRhhy+xTeIUH2LbMb3juSZ65fLZK5fEEhRYIDaWVCef7wRNuN/7ujlVZj/
d3sv8992u62X+S/a/pO2zXOHmj/dWmj+eEuh+Q/a/nCq0Pw7tpsLIXEQOBY3
FjMWtQK0a766nyga6WwSM/M7bGJ9zPePiUD9hp2e37L8wX6hfkGFSRymLJWn
fH9pTSTi9rdSj+7V2Sa6xCbJGH0N4lg01ChxsO45ZOYQydK3jpSx4wEnBHJD
omJ+SWzrllVVZDCrzD+eEJODNv+JGNav6TF+dy2bIrYycbU3d6NE9OLJ3mbL
gqHm4j1ldFN6R5bUPFZszKPYiox5nP4/SdvTJaayV5xliL2V9Zkhj4XsjoQC
Ur4ZsqZJ55klAlZmqZcrPhJLC0/+6RWyPqF6nUkqjHbRDSRFrAzZpEjCKX2w
3r6NG6crA3M9G7vGwTx6v8QW7IwVRobVDuH0w4GGswxnATKEaNj7vqkRQYKY
3LK8IlKQUubhdSWM6OWzRHggSA+tK0mApnn9OGLMpE2Jm/18HMsCOlED/P9w
r1gvmJvXtoo5gpl5UzN28ELOH5ClVX98HPmNfBYa+A1fI0D/I9mRP5AQfP+I
5D7+dBcUJ1ZqMPcV0cu9RYSVe4o08GnuJjjgjLt6AUe9yDCZO3pB3nxps1L2
n7f2YikDD7vjkv4xiBm1AiHb2DzEfHCwHEIWg5R5Q30Zs6bst5ot/KUum4BI
AwJmePSfqxDZ5MqB+dUcbcYDInb10f5CZnlryKqC9cE1eYUMy88vF2E5tH21
+d6xMhaaix3irf8DCcw/35Bv7l7b39y7rr/5f2Ra/ou2lukjzMUTJWJL7irk
feY0vvwXe4mtyaNX6pQHisz5ExVmy8KhJCslLCvnT/U1WxYNNaf3VhvzfG9j
XqTtZdpeKTVnyNLDHqkc+VkVGB4ID/E3jav1CHE8Z6pcZymyUTMtbQuFnMNS
FPoRY5WiM+NH1vpZcbuI1wwtzEg4MQCbXbEZFpGiXF+KuCp+uBRvLNSVGVFM
jJVqQeAwtXJvY28mcMiu6Ir+6So4p5arjQkJDr19eWshGyArMxIw+pCPwSBZ
KmclUa5LscB8qMKC9d0/3pcLSxJDLpu069et/GwTYwNj5EeIOduNJT5Ek0Kp
//4GMQz4DJgD+uauIpaMH6AuyDxUTC8P4uWBYpKdLxVb2fkiqdDT2CBX9xcF
EhZjCcsU6bqniGUT94D4kJCxiF21bJB5aXclRCwGGfOGq4T1Ctmxf1W7BVn6
e5Kl35+wsqR1dB1SUwfPCMwKD4b/kAVk4ol48WfIxHqZqWpuX93f3LhnkTl/
RQ0bln8hOfn3m4SR/fetBeb0hgHm9MYB9E3oUe/pZTqW15iz+yupE+jrfLk4
sB+wKY+gTx4tJpZPb1lcICbmWRKZ50p8MTl9abVpnT3SnL+TmjlbasyrtL1e
ylECdX/WZ4qAsOnRYFrCiaW55ueyWdkXBgwY4EqJ/8sJbqxZxUTskL+CjhUw
lRT/15VRft9ZUmxmxmZhJvGvkraEip56+LP18MNBdm1xWBsUk+xUObm5NYMr
ljc2DIyxAxLn1b3U2NBjiLzc4shLgl8zWRxeInG5RfkaxAX/YXYgDvhM4pSh
1shKB5uVfRJUYwn5lCSkF1sQnHJul1A1m/jB/49ImL57GIVKUNFiSv9wCxkB
MgTmziLTOmMEoC7Yf6AYwmH+eDdbl8d708tjJfTyaAlB4pESepLWmSONeZhg
cEa3h0rC8hRjeUrj9i7eWmbmkXoGVQO9g+SQbFHbpzcPDOQKLAcvd/Xyalla
YaQguX+C2Cjt+1f1rmCG/nhK8PSP10vEDbzpt7T9BoFuEgt8/gPB/48E/593
FJv72vublStXmpXzppr71/cn9x1SW8jmAuJweguJx7aB9EWKWCTOHupnOlYN
Enr1FH3BFwjzL/WW/8+V0JiS8aDOuHi6zLTOGikyYc95Gb32Um+wtkfJ8Vky
DBu68/VSzCNvyDSVlZXmydU5EBBrVODJqDj4Xo41NDbUDMMybNgwNgv9/pxo
+BFlPixykX1u6uBSPwLQ7MxjdaLDIQ4mRSvdTGwlXuZmaNxfTkVYABUriCZj
HivKPpAXRCxqU+NArp+CCn9HxQWkyooLrISGBujeYmTg8Jwh0XBEhfZCNuJ+
oACfYrrPBp9po2HCaynLDWJtr2wrNJ+QUKAAAP4KxM1JAPn0DX7MD8iZvkBc
BmYFrvzLeyqJi5eaLa1DGdyMfkjDoyUQF9KlGPynMdDmafr4lL/R7ieBCfNE
b9OxthZnAhN8vitnMZazDG719I5qc3rTQBEbNTwkXATPKtOxGhk8K28gO3g5
XUyDwtJ8b1FwGdig2ihLA7EPxOnTI+X8/4/kq//hZIH5N5IakCy8JynxJOAl
knLmyBzz0bVj6JEG8ACd3jrQXLytlKUGzskHHRX09Yp9g8IWFZ+fU1L1cqn8
fwnf98XexEggNB3ra83Zq/vLobO9xZC8VirvlYth3/l7Kk1r/Uhz+nCNOUeP
R2o/7opQVAUM9oXjcbyv3TKrSvH2yXIUhYQH5M0PLU/k16T/i6/OvC4/9WJX
snKKW9zZMREzbTlWQNQUBV6tzvyDNhIbJKD2TEnxOmuIpmHhdLgyTEUd0UE+
JRAd5mJ++BYiQ94IPQXRMVghxNJAwpiOiZjYaIEvOhksK3F2XcDEbltZgcmi
+3IIVmBlaMDKiJQQiAyxgblcDAzo11d2Vpot84aKnNxZBkyLfBD6STAAq2dY
SF6gsX2etud4I/H4iuymS14qI1gMMB0bBvPZnytXGdzy6d3VkCORxkdKfDt1
/vq+7DMHAhbDsRgOokUI8YNq/VSWyKiSoRJROi3GEeErcCZ8L3N3LzEgdxSa
/7mtkMNcMCTkd9C5RexvnDnWZD66cSzdhD4/XEzSjMpIsp/0tPA5mFB9RTd6
z4YE+2BEzpbiaV8pRZzsrC825uIj5Uy6HDmh094oRQe8WhoWH+JiF5+qYHHZ
snSYaRzLP28ayAtMi/otns3h2AynjVPb2b2OyQklZFyTw0EzkZV0/4dqlwwO
SJj9qRYyFDH9pT3HU+leXGJaGtOpHIAXmIf02B/gAD1bOVJm7xyclsarEiIY
gOw/KrhsWNiVHmJJqSAvw0ID78V6MHDnfU8ljeVEPIUPbXXAnpxMlRkUCEBm
SC7okbEvn+Xl646coDgXduUzcll+Rm7+L8l//tEVJeaKNvmpakbtlxXcz6hc
PI8xfqEMxoNkwrzMsgF4vIRyFvMifX6lnFBA29ukgd+qkKYgQ8+XJfT65/BC
whU3p/fVkL9bwxIocpiEaIlgPS1Zb7q/x5LFBiuwU5AWV8AeAS98uMQr5o8d
l9QyPzy9fSB72+x1wyuH13F3obwHxXq4iKnVmStIQm4ZR7coEZr1jEjClkXE
mRYPE/fijkpP+FSCVEGteOiwCK9AW7xaCqb5iiD/7LX9TcfGwa4E4NI3+Qu+
VhqSDMiMHIub8/fLAuKYCRR3vBYIB5I0xMtEPtJDfr6lZthn/X21Hm5uJszK
QquCyTK1GfxLuzAsTTpZ2K4KAmGBnz6Gf7U7MDQqGH6UTJIyxW7e3580DMY2
TQvibR0xFgPD2vWXzxZmhjz/vYuzzKMrezA7w09gva05fsvOJPyc8oPKVkLw
n0wIE7WEKyU46EhJOktEwg+KPdxeIhXgIijWwYGQkE/D8bBvHxLD8v2jeeYb
h4p45S94Ey+Sjw2v5eK9hPhn1YC8yJJBQ3q2DCB9hT6+Sodf4y2GD0DKm/Tx
qyQj7/Yx5sO+/B+U4uJjfTy5NC7ydbYs+ETNnb2G7ZDc5YWyuC9TNCAA6vm7
q+RWuOWrfN2zpY7VirtWSwQLAdynRODOXt6f8Xf+Jnqix0vE6yCDwc65FaNH
rZNOZuvsjTO8bLUfvZleXXy4XOwHwfviExXsdZw+UMOicfHxCrEZrzLkXyul
UWQRUJG4+OUK07FpMPiVdVJIOiAbsr1RKrvTw7tpg+BsaRtmKovjWgiwHkak
85IQTqmM+DYxfUsOjZ+nVNEJBZYLQ6ITCiyL6KQ4MTNnQNy3LRCbeSgVI7np
NMU+1o0EyTon0cdaecVStCW/xtlGfg3mMm/VaU4wL8jZ4Nehbbrz2kVlXFj2
zvZAgt5V3wLSg/CZY19iGheAe4PdmhFli5Me4eIwRYuxlYn7BTZft58IVvBr
vgnxUTtzbm8vc92yKl5Y57Y1/c2/nSpkx79jJfHu4/3FqJyFjLxWDk35utoS
bG+yTQFs3qoAir9GsvMeZIfl5esojYIcdWwdYs5ej9p2uhpyhmtfl+3iE30V
fuWwUyJnIljpLGhnrxtoOjaTcJ2jhj/owwaMBe0liPOLZUwH0fTzZSLqwhdh
E0s9urxDpOfiQxUiDpA0hHcf13DWw+qRPC3G5ezJOnP2prqQz372mv5iXBjv
ZQz004dqxACR2wH+RP/FiRfCFWcZ0oMe70vien6XYMuSYOGAkHRcko31/MS4
pCIrZcjIiN+f9KNlbwRLA1nxCEWMw+IRKrtUy8LLUMCiLFAHA9VeoExI3UNc
giqADJ9WuVUAbr4FCU6RkxLfMllf/xJdRAUlAFhdFxblfp3X/4zmMt/Ugksr
F89vKjA3Lw+Hvx4iIXifDUm4QmCPUjAWiJg5zvOEuzj5CZUKiBHsy9d9JiZS
8cbOQnP3mgqzun4Ip/FOLK/i5aW+dmm5eX4XDdPyQeyx4LYYei4oJvsAwt42
3HRsGWJOHx3E29mTA0Ua3lfQkkQkVCLO3lLN55p3KiBP9JoyF5+t5DYuPlMp
AH+TJQyAUslLt9ImBAxtftxX7iGGLIU3MZahHmKhXtENQnSN+OQXH6XzX4I9
LBW/+1lOdMTAr7ws2UWg/+ie8ebMNc1BvoN8DNgMpkjQ8m8xwXwTCxdcfLKC
BQDNw04ofYopxnE6ywfhXPD/VqllVvQWTdkz34TpsUbDGhHCKcpmYhGy4VTL
JLRYGTEyxMq0WPlzxEKXBcYZfmHlRBUL1Ozb5SlYJEbJz0hgH37wJ1gnoGvR
mBbHcCjZhsEgDljgv82KAmqQJ6d4lUEb+sJPvHMdYrtMsIIfj7Zuais3W5sG
sghsa6qW9KQVAOvMhwVAPXf+Ufi9cF3oNcnYL7ZeO/MsRLrwfoWuLrWnpdrc
t7aPOUHWAHVWsAgbmoaYK5cRoPf3M+evkR91YvVNwLv4fCVttP/B/ubsqWqE
bY+hlrxj2xCzZflw3lobRmrlfWvDKNChFSQo26Usn842Z2/GddRCzFx8AZN9
cDEaZHUPdIOPvYOqkLdZXN7ij76pofaBxI/Y1EDY4OLImW9XiF0i+L6pEvWW
2iyyO8AkhPjsdQPEQ0D0CZLxkqb5oP/her8o8P/o3gkkEnPF3abzz98tet96
C3EWipTlROb8feI1wL9W3JexM9FP4M2f8JoQMcBlIg68Awdpl1oI9UVSfniY
OZMWlDlLZziFL/6MW+yzsa9AJEKR4ZBIpECiQKbcyku4K+OsdBDiXcnA/2jp
6Fo6pkbELdAHb0KF8RoVDFs5CcGwc7lQxPu0FrU/ekk+r9aKpiEY+DHed218
dleOlI8lVUD8JL4VkAwVEGVFgXEQAVGBIAPBC0iRUEBgYBzuWl3BRV4wDChd
eXlnqfm7awq4vIRzJfcVcaRoywIasfuqREO/3yeGN0yD1KUQUuRTI3rHn6xx
6Ng+lOWGZASVHMuHx630jCROz0dIQCA5py9j6RFBEdLFrXXsGGrO3lYDmeA2
0+HGAJhWoM5V+IJFZojchRvAzJhivVamcSI4z6+UwpCo9oc38NH9JALXzfUd
ZVbrBHOf978FRvZ2GaJNrNVZsxPz689elMIeZ+A9HokveEuEI66wv/h0BZ8O
wFvYn7u5gFdGZDa0OsfWR8adUJXNjsSUJcEztxkSW/sVlTAMYT+J0y5UVFTY
SmO2GgL8TP5RRAt+ILZlSCa/t+Cvl4oVt/JLCZJUfgnqs/1wLgJSWHzbVqfY
cK47fwuLIuybW+lX9qKeEag/2VbOhVpIKtqpi+9zRsRBv59Z5Pitg35QI4Db
Rz+HdKnXrEkA6hukOhAFvCsrPFliAGZi17xq8/Tm3uYvL5OgLoo5Ll5bwFm8
/4dc+v3FHFY9e6y/eMXvsTcQLQvpVhYIrUAtoVc+kdk6fXmtRbG5+HIVbWRr
zvQHgYKtOc62Zrtra0Z1tTUkDWgH29lbkck9//AAsJazVSJ7lqC9z1JEzV42
CMhUAWFzBxy/XgbpSLCn20MkgHb/+PFh5tSxJRJMfdLHrSsRZK1EKmKOgWB3
niwB5yuO1OB/mm8S9DL7CUphy2CS0v6WNXHEqm54ymyfls8WgMVhoS03yQiR
JGwapWJT0DS6/JwjCxG//qk/NBdHxfEXLDUKfnlRSFKCf70DVe+QhLlDc2Mg
+17CFwi4EIR8t3rLrrZoF7WJa+DWLl7nxqBQR79D163BvMYbsFhMS47ZWt+X
p0Vh2gemgTy2Np+zhYhHYaoWUSQ7nTcGoWB5SHP9Bc1xZGgcynoJQPytKyuS
LBNlIX5khYGjt/tkqhcHBHXfo+t7cwQXQSlUNqL296+ulGzHb04UcEUiPGou
HXm4xFy8X6MxwmEihEONQhKvCZYGqdxhaXAkJVOP8QUfBRvwL6wowedaCaBr
YhALug+dYmdveSIwaSxElpgJOSPXeyth78YBDNwyG+QhDf7jLw83p44vYTEQ
ltJP9fmbymyAfGz49LbwnDI2M2dvGCACQbDPtFKhHAgpCV+K3iq1aD9zUIqt
XILjTlrsrP2tBED7Z2dng9LYX2qOQrz+Lh3WHb+Ltp/S9gvapvvIjwwvZXZM
05lXM4jcIzm3eLAg2BWC1kEJG1piazC83HWl3bRGsT/H3a0oQR3wJC2f3zsj
mxcGxTxZTPjb0djX/5VuOA2YfWWlAZOYls8c7POihD8Ny+NArFQKby307UJM
w0S3KuQD9zjLnCVRuLWTKFy+qF8X8cAC4AkIgycJci7qvVyK/mAjkPxDdQnn
nb8oaQHzZG8WB0SCOPJqRQLA+SCQBqZNaYpq6PbzjwwwF1+pAngzrQvwoS8E
vlvgECKPL4/BdQYeP+lrr8cJMYgIjRJMCtEthuH5L/ZjCHfhNQrv3780wFy2
/xLy2yVSjLNilta/KVxHxSDBB9P5UnbF9RL8hwDBDtAZzIrY0QkCqdD9JDhi
POgYYc9n/4z89bYqJO5WhfjSYKNFCCQNGzbsjCMNoRr3sDSsoJe3PPldCCwG
+QNHGkL1hzZPMXl4Fd9q/hCpvO0sDdO5WgQx0wTXTSHvAJtAtiAosIp1mruL
BtyVeprGVZmlkyp4rWeso3u8ubDLbyhCBN7caqsBJcQ6hn/EyRcBdgbEPVhR
ocYg1w0ZcYQIkSJAH+9DVkAn/Lr76LOkwoNUH+Qgxq/ZHHKFcfjxcWFMv7qu
wPzDjYXmj7dq3ROyy8ibPVVqOtYPRsQGeH6P40aWpIgkWLAD1JADKO9cZx8A
j08pvMYZ7ER4Xq3ik803ibCfp+1TbJCFT/raleCXEQqP1viMxUtz1biPdbCR
QK3HfU6vcqJIjynHV1jzplQHtiLZCebQ+5AC+u/DHM6unTnFCt2BedfKjQDm
NjZUXV1taU4ob1Dgwjx1K71c6gV//wwse3Z9/6gAUZLXn8LdgHJFuicEKMVo
h1vcqu4wr+k/JJfTBALu0lA9lc3mLXBqo1DgsWRcsb+SD9Y1uUvXQj2jeQTE
TDulqv0aJaj2F7cUJn1ngNk/B0YlQtQzBHVsgLklNYB9lHanzwmFOPiOHpZP
Xj4n5j47LPwHCh8zLMB92CmAe/wgwfsxyVxz6QaihTbd9p5y8A/79lAoQzUr
6UGJNu9zSJC4CQkLbzq5Y+dQc/7RAQLvb9P2XWSsPqsEjr9TyUzGnCsHww90
uxATRjPmCbIOtzhmgMfxLqlQ59sLmNUkxH39DbgnOkV0VHFz0L+z8mZFTQo8
qB0PoptufQXtc/xcfw0q/S2VUGgzDGz8DOo2B9i/0qu6B3biAk9mIsCuH50E
sGNAtgA7zqAGoZnMBbFMa3xIF4QWaphXEyzvC/Fo06V68HMAbaS7sRL1HQvD
E8df3OCv5+jJLIq4PzH21PIKoS9JP42ssR3NIEuRuCa8gOTLOQNAuPWSPrt3
UCwlTIxl0c9FPLQAtd1QOQ728tdX5vOC0ojz/Ok2h7k8rKUYyDC/VKaeYkUQ
jhF9naV8hfG5Q3IH9D5Pd4eCNR/1TTKa0/js01fUSoifWAoj+juMaMCeIX3+
iQGssQHpi8/15fesQZ9l4uRD2lHXqtcTPrhhMG6UzMD50/08C3PHNRU2YwP2
HPB8ww942kyWeKMuqAP2kYosiqD/lr47CPXX9HWXqA6D+kp6uULPBl3/D0+m
9Cmo67wuhXlSLARQExTpoSys6QDULROWWhwgxKKAmXA7zarnQX4RhZ3YigrW
BUMzTcOoct9HxXoIm2aUmLZpsur0l/V3R89uzHarWOmGWimxK5jnQCCO+6wk
rsgGqrWKSGvxMnnyBHTycicuaRk5zsV+9l8tsEUr9+KTX0VN6/6gphVTIgBs
1K3+q6+hiwMN/RTSQ1JMxFr6HQW2aGivh8LXRmgUxnmdSQirZnqNAc1eMsDz
txTPn3Fo+3uVaPEzxjfj+PyDVYxr81WhHgxGYSbAN3CdFdCUBOtg4Fy3lN39
dB+fc1x8uuLPoDjd9zLt1DhFskWuG27U4h+fj0wbPag9JyfHRXEozBhCcRIw
/a4nk7XBSz60cJYQi5Rj92TgIryyBLTAUg0l1o3DRGe5AUhgdzKWwQTHFvja
yusWWwBB2MVvTuIHryx2+Sd6m2TNuMdXyYpp8CZBpUGjnSpsYDeha0WBZLwf
TNkJpvpIlXWenaTgl/ng/fFFQW0Q4AzljP+WdgDSVmH7FUFJF884cvuqCr8U
CP+/d0SmxYFUh8KQD6mSRq3cC1IId/aGgZJ+fVfxTK5llriF8P/CocjcwF9U
6w8Ei/f4MaKXDtQDdAv3IET3E3CnBNzfoXbvotO3k0C9Ww6Ax4BwkgtgGyAF
ftvb20G1PQa4x1CGcpbw+dtl1mdMBjHFJAPd1j5zMOa+Skm9phTZKMEhz49R
zfp3hpALDaTb/JEtLXCRTaec6dOnT4BsrodWV1FWG0icpJdf0/Yz2sZaKAdr
AuICSzHMjGFlAuohDGpWyJ4oVShpXkgDpINATXefL5DWShu86mxPKeRhQjKR
LsHal9sVzyjsxAKS9y2RQiOsAuhiWcuibbzcIjrur0UjpWxhOMuKA4CvC2G8
R671cv5JqCn4JQmL6iB8Ig1/JFM+HeqRUOoBNGPpKIvobx4QHv0zRTQ09P90
RrTSDi4rsyWd79piA3YTMyJcQhsTQcjD8uisgHnIAbCP/4+y94CzsrrWxs//
tClMYxgYYJhhOsxQjIKNJiggXTrSQZqKjaJUcURFFNSosYwNsHcxxx6VxF7G
bozYxhJPmvfLl9yb5CbfTfZ/P6vsd79nDprr73emnCkOM89a+1nPetba/B6/
VI0keK6TZm8L7xp5VDuQm7d6m8ljLUr3Q9CBzwoot+n4QUapIJwBHtd+EIGc
MG1TdjJAN0viQDb7HC2qY9IW8jUSPJC/u3TpEmUbMzdBvVUaEZ2c8QfLNArs
11V7yTukEkryFl086jMWQbquAPSQzu5ltP2Zd1isR4hUk1o4cUAJQZ0rx6mE
daRx5OspDutF9P5EabTqfBkt0R7GON9lcY4dkXDSQBOXiybion2fUazjzJqt
M6Yyc11m9iczAWs8v4VvOlNYg1m/TH0ihjWStsI66hJ1XBI1yAZgSZAWzyZg
jUStxONfkMWlXxSCNdxhlnRAh0vvr3EemmigAXq41GIwQ+zLxctcga3PSaIe
sKGJ2NeS0BXYAuoPOgI7dXUjKYQBsBMmdVk9VZe7t84wc6cNRzqHNE+kG1Wm
pG5XMvplZNzP4wA0zgDN4/Y1e8eizjsTzygj9WEzeiQaTFDm+PMu9IB0fnhj
xR4P5CEjsoBcLnYP0XIFNGQLgHemA3SeGTewGz0HcGpa90U/HvKdQmDW6hIk
ZO5h8RCQ0fTEDj7oeLjgZ8XYBvK+0GoLKQcD3hzRlC3lYTA8yTvGOrnpSYW0
Tk/6Q/uAuYV+RMdaVNrLhucuhGf0P2ETaxMD5bvncpoO4bnVw/ODPdkxLHhG
857bl9rt6a3NG/z5X8mCyg45nD6vgOCa0LxMD6kxmXIrlBXGmVBus4/XyT9j
y1WFcg6z75trCMp3XzzYMRNUlblaVQoT8SFNLcqd9ZmQTjpqojka0LbvUwqP
BS2eHLNkSqNZL2ofHujzS2vHtXo6zqRwglegCq5Dal8pv+IBrrDqwTw7yXLc
Yb2IY+MxlbkIQ7yc4A3rFsG6mWENGKtjcoT9cs3P+LxTBifI/dtiYY1dvtg0
cdu8zrReDouO4J+H09HVhJSok1nG52naEWBe2RHMyNc+FcHvygL8e2YceW4L
iZzlEeUheDNQPkSxZryvnthIzhdg/R3x26Ofo7TEHArvT4iT3uZtWFniVDbG
/Eal4yIqjbTtq2fJOkPno88r8vAu/IQUEhsYnM6pnWPJFJWWmr8ziYmAvnVr
X9O6ua8xz1dQiQnAk5Ri395z6QTzyi1Hu1JTSs+kYF+fEumb5ZKAnTNfR8Be
Ws/KyzPBIIlq3KoUOh8kPI9jhzfD4hKJi8yt8p8PdUBf1JMQ/NXf8sPwHxnx
9BGF/3CB/2gJAeDdpnUf/hCl/XYOUXChJWqHwedgVQTW360bzgu5YfTF6jsY
t1LLGP43zis3s0Y1g4ZHog7+PKNY6I/3MuwzLMBXZMAeXt+oN1PiFZz+tKJq
1UFaTxDMuX68YLqF4IxaB3HUk7C2qK0llNbv9mBOHkPK5ATMn9YGncq4qylz
snCTEqki9Tlg2T5iAZRj3Kp516kk9mUhv4+8bqmIeQOkSLi/qCWavz0oO4Hb
b2iqQkh529IXR8UlvwsZd88hjatvMZrRs9dZD5EM2bWS8P2LpA/uGp8TiQm6
pcj00J2bdSYEb1/Om4eyLUXxwe0pJ0myaiEtnyjsZCazk5iw8JFA+GHdSEyR
rG5/DJvT7d8Fy4LxHL5szoA4bT09A5d9jRR3FjL6bJ5V1347Kkv8+DajR7OQ
FU7tndz8rY9njBBekUG9kcbjgmlvtgMpPTTe4ZeV2TK5SiaA+DW2yIRzCxB/
T6amPt5Sar7d3sX8KcO5RRCHXPKM72DvTebE1JV9RPyzGI86jOdmkf5KPOqN
8AA3IZqdIIAXqqQdPPD+25KnAW4LanBt+FCkeIywZBLz87QDM0mDkmCjAmmX
sP0uPMvelJ89jAc5W725hSFvLpyJnpzoPqb0RuTDEMjDrfgA5P5shzfMkU06
/LdAjgQMxE4aUBJjWWX0jzCV5Pfh8f+BbIj3j7e5HvvjsR1rhazExu541JNY
Lc1XzheYJ23Cxm5EOEowICs6YKi01KklbF3gcjHJsJ4TZixu+i88WZ7vQ1o3
MDhIJyVNvybjsbSv8FyW/Oi65c2dnQ/3f4DhVnGVQMJO9dIpjKhHQEJEOnLI
nnlY8CvJ8pyXrYv4SdW135EOpIL5zQDQSjYoNd5cQ3iOmtQ1o5JexUgurI2g
NvZlzAeukI8QAfH8V9KCzPN9hA68ajcUP6EQkxxSB2+Xzb26Gi7MM3KzDl7g
8/bNzGuPZNe8w9QjZKCSRvrIE+ViUQtbNVKhsuwfZ/LRg7L0SEngKhECw+q4
AoZPPLyX20+FLK0Y1ntvkKmfWhWsRVDXuDqjErIeoUNanlMZUfkDz2EEz1lp
ddICABeqHckNrLSxYNJC0rLFPpDMy0WgiaCWzEQyBr7RMk/v7EnjFuShXdJM
kwo0Y7RKzN9byM6K31kiixpC3CPpSXqK2CKhHVpj4mHhT0BOEpALmHa8LY+3
MgD8elWIanAlJwDmItLZ/hIexaAO4001kQDKUaEKYQb9jDik1PkKtLJZVmcg
OrkujaJVrCHO5eql1oheYqBDEGEuERL5wmgNGZx8tAKA0DzwWnQQRWtVCK3I
yHBCTZfMCwMTkDp+UC9SqkGRkXE126qBSbdDK1rZ1drAM6LenKiidQ6mpNEh
T3YAsJSRHQcfsuHV7SdQvOZ6tg4wh+sWVFLjEDgFOT5vWh/aA4hZa+xvxdqa
VEs9NVkwAZHa2UBeC+DVnuIx58+2fw91n4pFm1svca3oyMVhH/Es2p0iWBQS
/ZiHYIu71yUV48HoBfJeJy8VOi+27oNeZx8xoROgEqAUrIIwdSBZz4KXlLhQ
Gk76El4gYN9Yk+9mGvD1cH/o15/Xh/FLy5zN0x52ZdWTq/gyhhvwKfU9ivZc
Pyn5fbjlPQJu45le4iRdlyUnNkSpzhMJLgHUeul1tJR/2mEEunHBEtqEuFJM
VbqrhPy6rflLeGv+00IRANibF5TTTtlHVtAqAEcJsBZgd2Y1N6cylsWcHRpW
wOeq8pzjz3Hu4x0BhFiy3uVJhgVir7VoxUDb2ZMbaYXkupP6mDtW9jYvb6hk
v91twnMfytiP8Xzg30CGJXSGPRzwnWpbkDvbXNtJQo0QyAnjUuBJcccmU4vr
HE9/pm94e31ETakev8AjR/x5bNuTRPw66MxrpB++WkWITj8EbVyzcQaemVjk
EhUWNwg9VNuTzjpDO+FLedpwjLBNu4v5IyaohU3g82iq8xmn6hENhm1PhTyZ
THCLZtWrndFgND0K/7+WGyYmFOAhV2pHgCM56/VMOo5wIq4p799NL6uQtDzL
oryalAkIc8PkIouZgvLZ/TGA08fMOqKzmTS40kw/utJsG83XiOFiiz16n8pC
1qQV6UD5Q8u60MZk8sxJbyUT3XjfjeOwPCEIxyNf8I05TWl7h/Gtm/wcvplB
9HSDCWga0gVg9tG6uIqUuS9lHRm5rK/vFjQMHxI+nAXnIMWquJH1aCth1dfc
FMJ4oI479BhBnpu7wUO/VrM6+bYV7kSdkZgJ4W8ozUAXHQh/lcbWXsGQBLv2
AFTptUSlp+jhHI9EZtfFqw7x1Z5BirDuN9YF92BAMqopk8gs4T0DpqwSXmNj
Iw2kPR1gPBKVss/bZhnCuM3KLTdPTqhzL6TSdfYxnk2lix84vrmUqj35bRPA
CdYWEAD15IElBHSA+2TLNU44otZMH9yNTHfzh3QnNRrMGMvCMGyMlUd6P96d
i3imEmkbVd5mC2wZOPbBHPNHCHSNeAaawS3UvOENVsZD+/Wc/Nazw5CNNsIx
PYB/6q8yhmn+doX4pW/1FGfCdWVWXItgTHm6WPKuE+K8JvffoVaHzB05jnd4
wHeGa500G3s4/pRA/GqL+DMQGa0XNEdssrjGIv6uBvbucda2YK5iQL9cSd1x
6r6ICM0RxKg+eM9A6sBkoJpIhgh4CU/UowTuNWPwecjgopf8rKKTQFrgHEDa
V6Dnjqs2V59UxF3EaOC21uWTDswA/mlj6pZsHtM1qw3VBzMJFkOYPx/AFZCA
MHI0iSP94fwAhLsSEwGMkadpPSTUZAvj0YNqzcyjys2co8vNpGPqzPaxuWa3
mDu8AUkz47hmupiB77sqoll5Ld4A41DjUG4j4j0RepPXS9oO95onsHQEOVn9
/X5px92SnKzDYnifOyqvrYEOB0yDjyimoVt8t6PM/O1KD9N3Shcc8vJTOuxe
FdiVXurtcCgOpQ4cOS+LcYMxXUEGJcr1r7FZCXMBbXc2mNTVfQiyFrymtaUZ
UDYr5/I8mAU5fYwhXEmic2p3g2k5tdnBl+bEICTbtwW+XA/GsqTkHHmpDETU
ZmdGhfFUBQ83XiAd8vAUvayRiMkOCdSGliybS6f2kJUpDsUiarjGSTJpKenE
qiVHHHHED6I469p6HmqEsIbmieI5RnjuQZcBAc94fpZg+eSBMsdyRMIMGTzA
TD2axXv4oWEenTy0iYcbjxlIdx1eNL0C1/pQSkZqBp/4RXBhEAsXOtyoq4Jf
JEktPNwIQFoKnXD5mMiF/QMApYdArqjH5W4Z6muyh377rFpz6Zw68/WFfAMJ
1GOegM/SB3yqV1YECzJtddlRVfPZsfbBKUvHpLwDHAFbhTD4QxQDLSpetFUH
MwCixAHO8CS13V5n0il7sM8ZIAa85wlWz4mD277+7qc05xJGr59689h6CpWZ
eISOc+En/1lFwsu1svQkEtg3YpJwIblNOaZW8+pSSGza8FCp7fJxOSANZte0
HkCpgDQksf0bIIVDDhoERIswSEuIEIM3kD5hQTrXAnThjxIE1tOO4i1w0yxI
hx05kLa+nzWmh9k+uStxB5t0eSg9TtThQcuHRVCLii4MaUzTbsxLuy+e5dd7
QdpNhIZSxOAMFAtoOf0mHWD9GVz7PinFMS/VYpfJ2il9iDr8YQffDPIvbw6X
yz+PPmQAFe08Oe4JhJ2z0IdkFrBGgx5HgmhB6sd9soA1HoCVZeMo+fuThNf0
U/r//pGk2RBWNdtmxarX7mCssrGfsiw+Rpt6VjYzXOMCV8+nQbuGaO58YSEu
hzazjmuSvnSO69yB0YIIgAlfPrUHLpDiNEr20FDNFjYTKS4nNbE2NlPkhgCX
3QiXSJp4Hlx2/mFxs/jwhFl0ONrLCbPa4vLsoUmzZFh3M2NYndk5uZguisV9
ZZgKB599SuZgdTbKA6bv8wwGxBWYOhf77wPT/s0yE6gwXa7YeoRyqC5gg5aG
n0Th6Yz4Cs97RJ1QeD4XTJekH62haW1VEGCD6JyFCSQ9yNJo1GuUX+3LLoRK
oNNDpn3IZOCbgkpnZfY6dG1UoOl6H9qY4GPTd1PwPZ0sSQCS0m6OhNz7Ov0q
YyhJB0vSiPMFjBY07gyPeWDUrNlgj33LSs3984pGOjBGwlqZpEu93ynSwQvE
F6HpAKvIuBHWEcrpTAc08VrhOc9CE7A8ZVDCrBicMKdaeJ5h4XmOheepw0vN
+GObzCR7rgOe93nXNumKc8yn/ny1JEhBH+Td7Nj0N/3lyORT5iSfTIXEgrZa
/iHZKYoydIzl/UPBFcNQaFNASHtrQ7mDKx372eD6dABX2DfROG7bWx+y1mc7
+lXwpYJrWxMBNY9e9qBT30H1NYFqOIEGxp/3AqjixJfT3o3+pS6vd8Q1G1TV
qYzcWSA+/EypQHhqUoYEiZ3S1/im5KdoAS3hV1c3IZkqfrUDjJP+Rz2idM/z
fXOLsB5Z8RvyaIbxi6M+QybIobUc02V1gJp5RrKBLUJNYQZzFxK+MGcKMrrc
AnflkQlz2tFJc+axMGUmzZRjeXHi7pOKSS+4ZwHkXgHwcu6oBZNNYTemA29o
rOkKr+lL4GUfcZ6/jIke2dioP3h6/vRaPCIE17ic+BANYGxYY0/8vct6hzF6
4/dg1J722lLz7JhUjytGRbUKmYeBQUmhSGeE1A6HfWYqfQ9yuPmgBm0MNaW9
wanUzTw9T3IuHfHAJrCoBmOLgzi322zlVCiyrmfXcQMialOwBZXnxowHFgcG
aMLfRoklS6CbKPedApB0GEXLbYx9++SRTe13zi7MNlhdEoJni32xp6ysjDzx
DM/crPCkEmiAWC5ZDQABBUBx6C8bxOA8VQ5+bM5bMbTUjDm6L92IDSUAPYk7
5nWiDIuehA9SZFi0eaMZBsvsIPWdCcksVsqYKFvAZuZGDF4BoK7KuO/FwccD
ghoFWmXrJPxmNy2pMuun9qFyymEWE9N7BLMPhzDLi/aS/rBHxhhemAi8Rqgl
T1nbHazB4j1FrSMCyKhKAMJZVVAbZ9S+bbPqnciqA6OALPji89xVwwPnv6pS
MyYehXGPWGZefU7zathRGZXumkJa5/pItr2/yt84ENqMl3D7Ve0/SrxmSLRu
T572IXDpPUjClklVB55amJt1PUBHFLf369fPQ3HOnqH9q0MotmmVyMBIsi8w
h0U9NW8g67AYpwY5WCU1FQjCqUMK6D66NccVmmUjups5IzA9yk0Ht+9O+sFP
yd27utDI/iHAEbwJvMxxpZgOkAZDpHGZ3cgyNRrJHBuN+fPQstGlwo2Pusda
djLAxfDwqT3NorH9SKP9syoC12fps1kIpy5rICe87y1TDCs9KPYr/kzBCqpr
p6B5wLYq3mjhkQIq/2tkDM+h9+8vVHIE/KIXozfPofe7VL05eO9Aaihg0wUG
lXAvELwNKs1qKhZptlOmPuDJsL7HTBdqaHLWZO0rWVFvZaqslQxwXUDt5JFH
11EiftrrHQPbJx9dTgRCsb1vdpFAu73j5cAK7WxXMe4ZOrAjtPHb9aF9Mt1B
wtrsCkcdEmTAAX1AH232kEqzeVSO2XAc03SscrxpJt/6C/ngwcVMJZ6QMs1y
4FiW8qwjrj2Tr5gkcyhBZ1tRdCXdT7J1Wk0iY4w0MJoFPsl4iPZafMfo+qwi
d9MPfi601iB4/eOq7G2I9L3sg7WwjopD8qXeUd/VLlS3ky8SqKKlS1rsa8nO
nYKyzD6IX1zdpyPvfbfGy9KlhPP0M7XcX+BRUwvuBvPKrcc4cKO/gO4ZJATk
ZfxwADvEW7yv5oj87EZKzcW6wigAeSLY8yKU2YI8QsJXPMCzhMz11SQOUCfN
/iExlwr+AdVh6RFxs3lSlXlheV77j6eVZd3eGAZ0tlsRaSvR9H4BoNFoCAM6
j/I0iripg7qZEwfXEpiVapxtH0MHo6u/aWSO/XsA1NDDLp5YZK6bxkNLoB6u
SbyMaQfs7ZlFXba7RMNFndp+M1Acy9jN9YqORsdFE/OpxqtBQRcPNLFSN1/q
D+RhiSOqOgx0uBUXGbhO39GbzGdkpXyxKpuvLM/3KgClqN5oH8sd9QX0dNcQ
kAFiSLJZcrU3eVdDmkPLmf3Nd8/2Ma/sOcaCdiaBl9y/tx7NuoM40Cxg7U+1
bvVss3v90aDOXM7lCX49p3vm/gtN0toV1pUuFK/sn+TkHAumT3NdoUd9YtkE
vGR0HnkfntYB1ATVfFdPzCEob55Y1b51Qs/vgzKP4YW1Ce6fVR8YMaCnk8xm
ip9hpBDoWdIzQ15eKiUdnl87jHMy6MbEo216GVZKJkkLZoLyHJunFx9XRdcU
gEkr/bjf7WQppFsLPfnMn7kL0Ky5GB/VeVI1Q4jFgVtpke+fh862PivRUZFY
g48hPxeTmAY8w9IOm8+dK3vzlYK61UIoSPq2KroApu3GOq78flHlBLIOolm+
EGaQY6RnC2jYwUk585GMB+HER/K7YSR/91KTeeXeIZReN6216L1sIvEMyzuA
0ecr4jJIim+EfAziQeXbZfUs7eZmkmX1NSiM/ZFShTHbfOsDzvFMT96tFQ3e
1HUBct1HD+OScZKS8TH9a5CAzRz79qlj6tpXHF+dbXPoD4K3vn1U/+5ZwatN
X5AK5OBlQijQIDt7RKE5d4Q9Fo6ppMVBIBM+eKH/oi+BhjD2YyEX3z6Xy0D4
GiC0gVz8wvNOSvmXmYZzHGgBWH/Izt2qEcky8XzoAbosOGapoks4EVvwtsmm
xNtOqTIbpvcxf9ktN9LqyNE9PU3rmj6mdV3fkGwhO0IJwGqucZ6GIgGwx50j
BYcAMPGPp2pDAP7uJYueW0ab3RfOIjyesWqaObB3EDeBX6pUrQI/gKRgmxPB
jFH/YQoamdgXMTwYq7OyA4z9MVKlzN5uxdBGF1R/zCVKQqIbfa5eYJPqYZaM
dDmZBC/YyAFpcGULabPs+LofhjR48oEwpEvoivJpuCTZ04UV1mi3QRum0k/U
i/FH1poFQ7oTrC2FiAHPkXA6BrPArturprDFAdveVHlT+9nPg10sfhkYD2SM
ZIcMjNcWCbEsioYmZe9qAA/bSeHG/n6s1zwoe1wCPBmXMgHKuBUTX+KWfd7M
YxmtZ/UhKLPlUnpufN1SxCcWNOPJcxXEKVS3EIWtmJ5OOiCDT5yx+EhzMHWE
Sd10guVq6xZC2bD4Pfikfep6m93P6h9Mzb2cFb95hF1qQ9jXasLx9YzAThlz
dkr42uOBgTKe6Q0OOd11jk5Xa8nFF/5VGFEa+y8IysBHu5v2a7qQdvHA3Dzq
usGXCwyLIGdmDO8rGA7pxT6GyYkzVJA7prmELn1BdYeHdjOA2pGH11AidoLF
0UmqL8EesIzQMog4IbfAoXaKffpC3UYhfnZw4gcsidDLLCwf9mfjpMiLsP03
55A3HlsQh+Y7XwrcOoec78yWlONe3Rc8BxCX8dV7CmBv0hmEAn5K3CH8V/Gd
pa+qMK2rG2ljLdzubdfWktsdN7jwApbeftNN1GChDglVL0LqMYO5syW5fc0r
dw4xe3ZPooy7u2UWwGy+e6EpRCkmn3g4N+MwXfRmlbNIZqA57so60Sp4SIO4
hnPe2EyczTOZCJJyIiQwCzX2Z/y7+ns9vbmjjGXOimbcEX5nN7NkSA5ZDWDD
ISwIybCIbp89vDHrhV/FoZScRb6I08WSAPdUntHnAi+fVgTB3ID/k+rJpFgc
owXeAGA7QbguNBuP44wMfnHSsXVm54Q8c/VJ+aTP7ZWMDH6BcWbocj8neRng
zvNrPXpkDjAD0AlvuNO7BM8HtJjbPUDnCIKFUiALgxhbBHd2F0e+c25naoLo
TBHQu9Eyiq2z+tKcxuSRP6JrGHHBI3bz0/XTMweKU3CQ7s6Phzy8lvqS3bdQ
GIWvUkSzsIx8YRmE5zssnndNZNq7a5J55a4hzDaers1UL0zL2f0pU/vdOzK4
v9CLVvJXqIys7gdUfFEZ2UCmRsYGuEm+ENn4832VkWwmnhDCvSJQ32YWze6I
zi5tuzssnnHLPQN0P46bYzB52M0cOKeIGtbQMZCj9y+Cr9IyjkisHY0l/U+2
MIdEuo4oX1JbW+vd012C/rYZ18Tj9zNl6wSKPzy/yAbV6CNqzaTBvYh0QG/W
AhAfXzi0e5JgXuyIB56+kHawsD34Vh2cW1zglhjKUn0iHuythAMtHprL9653
9Noo7nrHWObYsk4aZaTqRAZ/BsQZ6EmizG9Jin7urK7mxkVVuK+L54oK6f7H
1hUN3Oy7r2dw+6nPml+oCvZQaCsvSgVe3A0lkfdm7OHZXb6ryeW7rUnKQ9E5
+Btpt/AO32yR42Jh9wUzJRYm0vuWvIgdqJAEESyIc741Gxdt9zWYlfMPy7rG
wrJwfH9nvPC6KxTQsSyhQQaNmxyhkTHpmCZ+3TmnoRF3zFsOgViwo7w0dIWF
Z3fjaMBdww/hRkrcTtnVVJdGzbEDaoh1757eg+QQ+zYuN63+wSBALOHDRM4l
CGCJo1TvB8HJkuO1qT3ZBgEKyUVHd6Y8f8JRfc2ko+uQ63OFw4BxowezYxxf
BQyRWi/j2r+UjRrwEGFi1AJfPcUigATjSjravFcuanRlYyxztFlhn+e1WkTX
EEoS4xEmvnKIP8MyYbRX7jtN5AasC79L2iqPy3WKz3gmITFa8hwowdJrTkdU
qsP7kOrwIKRjqiOHMrTMGTgDsKAf7gyL/FxCdOqGE0KIPrj/cLUSRQFtRnYR
mYdJ7hNkp5+tI1Snn6/Ljmzm5wRu6nUzljOSflztbwHBYalPyY0svMjNpvc5
EkPzppYSe6OmDGKh3uYB/KZxM3GZrWK6mLmWbgPASOu3nVwGTQ+mIQFxSNIT
ELMZLpsqUkJ2I7o9sV8JKdRzxO2G3bJ+43v50QXm+CP7EgmfZB/SVsmVTA5x
RDsumF66ywIXe1fuslkcq4fWTaomF7F/YZbHwLOPh4aGkcKe945JO0d6hJhH
8oW6x08rM9um17pL5mgJgX2NSxZvXlJFFyyiZwjhmW7tvboiPNehwH42cL9Z
jk0FY46HbCUfuS6bJ6WBQn9Um46B9R1rjjArF09wSlzL2nFm3YqhCngUn2Ph
SobznWRsuOHtAwCmsBPKgmIydX3fQ24YIkr+Qi9iLWBMDwV976gUkR4x903z
0QDIgdzHl0xmdF10RUssoOLd1CkfGv332uU6i8pk5RHcqW2/5k5B93WlZt6o
JviNHbp3T+vh0E3OzpIQpsG/M2SRznvwLyNrfBMnZXUVA9PLpajUdiFYCbbc
D7VZGNI0OuL2dUSBjWQNrJ9/Qo65xjLwK6YW060nx4vT82kxeDwv1zz4aw7/
vSlSf+6ZgJ0vteFquflN0MsUoyuBd64FM8ahf2kp9idbSkntwDDH73d0oWGO
lpNtbjy3NjzM8YTQEHUZ65DSKwGQfRad67EJfS7usYm504dTzsWOb0AZudjm
X2bkyL4Yr3sdEpmOdyiYeUpJ2Y0FFgrK1u3NNh3Xhsm3pmIl4Mifl7v+t9vF
4s1+RIJ9FvgXBOsAXP/FW6qVE7hAeY8+/v0YwcsJTHUxf3uFSCaFrFzjQlJA
+D4L4Tu6UnI2l5eYBcc3mVvnlLmq0iZoQFIrypDI52doTyApojvXcXsDFGvk
5AWH8djGmEG1ZsbgbqEO4cSjasGqgdMoAIz4PIZhCxAr2wbROGt4AbFuSHzH
HT2QXKF3y8ZDLSafkxW1GPrXNksIyt87MEoKtUKZR/hziXbANAfs+kl4Ne9S
jkqDUMW7gz6kbW6GHp06xxZo85osl+sRMGuF9M884/yLVbmH5MEx38UptWOy
Q5247ow55tptx5G3o1NAI4qpx4JMjOzMIggXjsAu3l85b6BJ/aQPj9uhcHyR
sEu7OhOCX1WoxZP8nGuecBqO6ErmEGl+1hFqN0mqBDrpbbFV9ZoO5owFtuGd
K4V8R+i1vUlHattlf859NgH/pNT898XFZu3EevMLUfeA4I0Tqkb+LxFccOCo
w5tpQyGoMTIw6kKYlDETih430IsMPBeDdUfXsRgdIyZBRZBNwozfEkLzIgvw
c48vpHt3rpnKUgho8v0i8fkbALDcECzjhTNDo6F0KW3H0dCEP+isjuSI6s7e
TYTMUMfSlmXsTFbOHPsB+NKN5tdy19+tBnpEeLOOjSpvfr23wtfzx0d0Y5Un
fRCMs5Z1dw4hXZp63JYwFwUQLiQIo9NCP4s2vd8Xbc+m3rZ7G6jhjVklrClE
6o1C3fPxK067SKYeEmA67vArrZa45+LwdnrGRQvxeyw6B50j4kgWNS9CS2np
IkRcEN3dpG+zFGNqf6IR6e1lZtNJ9shZ3s28sIJR/KJF8awRTTXChP3x/jBJ
Dol6TCgK2o86vD9fDCj9bSRiEGNAGL9IyBtIxCDIZ40ojHMmtvnW/jZAKDQT
JyQTj7HPQdY7a1QXs2tiIFnfJZrHo3KV2hOy/Ap4hvYR3BsYc5YjNyHqzzlj
K8W+pd2D+0VivgNfCrqEM3jcsbSHbksWoaPUzUBDgz64lQH9rVAM3TQLNS99
TUXGpIjHl4M2ts8sYqLSAcQA+NM3DPi+Si5GNIJTd/qJWnrPS8ulDtM8Y3e4
abu7ITBwKJ2Qzkv6cZuut/QlZxI5nsWd5Oab4sEKQ0a5gtwbK3Eg1/qPWowP
VOVkzkTrTT66o1kkPvElCcLjmYoeg9vG6hMMbvOIrQAf6EZVYMvcPiZ1WqXZ
OKXBfH1egUktlnWVK/La541sjNSKYOHL1kUhhIdMSozwTrTifoYk6sXSBAfF
AHKpEW7RPcHSjAXHlguKEy4r43PALWzmdgjHj3SyrQcx9H/xibmhduJd4u6A
gJ2SBYb4fNSEmQhHj3AQ3ZwWHsJLuHqwI67jDtdSG8YkS4NxoBx8bY2MRLMN
uiR0N5qPc95L2M3+0ptMakNtePXmk8I9flHV6Qe4BbCtBZ+wZJXqvEZ4JCo4
dyY7xTk+T32lb+LzWluaAfs2rgPdplkf6loDvsiD/hhAIZA+3Nu5TQXQcR/k
3vpOl93vvmQw9dLZ7c8CXcbqFu5Dttb4CwC0PORLfbq4Frm7tZla5LjduTvL
1g+qWFdGhfj507ChuNz8emOBeWJpsdJpkq8F5SHFTlAuS/KBcCd2MCXheWjK
4ZZM07yU5PANlhFjth/Chs3XTJhzCNxKpNEyBzVBOrdvR2Ie0BcP624uGJ1L
EjbED6InYmW6W7ZqPSr3mUAEeXh5FyLV2Yb7oNztXdI9kshM6cC5cBFdYuVf
EX770h6xwOIRU2bdEet6SRp2AHyxTcvGMnePeGqNTaTzmzpe8gCSQnyYakOA
dM/Fh1GeVt6MnqHgO5EF35rHhZd4+C53+Kb7SSDUibmUjo3MoSq/ia4M+xe9
KJ3LPCDhW7AcCQHcs09HfNC3nH2i/cFGuXlVn6doUzKbrzobuh2yH+vBCh5k
6HulSLyV7w/ZatH9f863hM6i+54FXCzuObkMdZ+iO3QLVQjdCR/dCABvOICn
mTSPq9wBog0Yo0wcankJyxvsWxd2Qg9IIJLLAXMqJO1JBPWjZTSncvU63TRT
vE6LWKcGYVkuS/NfOAS61ROd8HVpzeDoNsZEBQOsUTD67RjPgicbLeLu6hJ5
Pi5zLWhDfrSJV+Pr4pY/WoD/g4YCyhlWmdc9vCxkJdex6h0bpxCwQUzwPoiK
Zd8k7OUKmulbCcLz6WURoRkNRjoQ1CZtyfbKeYdRQ8Wh+d3QIuWoCh2/6OV4
iU4M2v9N0jeKaJ/F9VS8oVeh3u4KCOBXy8Vstml+rszREDVGE4aFYJuHy1mr
gxK9x37uDeyv+WKTPSZbCs3vtxSan8zuwa0VFjwExiFFOgxjEG20KJHH9cb7
EIwXWrLtt8vPllvqpUgUGMd8KhJRVxM+B1DWDE5Rd3yO2XZCLtESSCBXTuZF
W5CqdSgAxSRwvHMmbegkGGfan4NBrHjopm4LYR/BW6fTxVIRkkES2SEbI8h2
pnfh/YAh+lML268Ftv52C+LbN/bicazHZbPFK3I9H0lt4Wafa3zvnkRV4SBe
8dOBrGRjIzlZ2IjiO/1kLWkgPrZRSKau6xswEsX327JS64VeUZl5+TmBXEYN
ZQ8iK8o313jJOpk566IZXWU/J5F4G108E0lAUjboeiL7VtwDu+6kdUBPiSgN
sn13V9ZEWktN6izxsewsNv9zSZH5w9ZC6h9CqD5tTF2Lgp0E6uIQD2mxLzCE
SDRFeAgojFnqzWuDg2Dk1daOJERPYjjnCJ49HuLQLRY+l6y1i3i+RbjPReAa
0Ux9r7hSL55eYVbQ/Q+uaej78aIikPhTsTrc4gCe4wAuLUXf9S/iSThlKzPR
buPr9Bzna72qm/L1dl5H8Odd4qC+sdy0LLAEfEsdqyYgIxD7sPzQog5HNuH/
EGpI0OR+CzsvIG6ohmeryaRPsAX6ySxEJU+h/wTXmVRjetBXKZBgonqKwv/l
yqhecqLl5gGSVcgwRQi0fAVNGqIiq5p9zhJ38qD015W2uOajg3+e7zBxN0i4
leEscEf8CCCtZUcdo1/pikfEzS1dTHpnVzN5xGGmZWajSZ1uM85lxURdPJ27
ZdrQPpLuQ+KgpPt8/tCR9sVrysmzXWvvxwfS/irPPrJ6aAHFxQrLUBZyQOSK
vJ1JYhAblqdHvd4k0XT7VVtG5bgQuWRcnrliEh8A91tqjrr0AZkKw+c/d3pR
5NDxIRmeb4KIKCXHc6Dl4mONZQziyuA4hUeOV5UGEwWvE1NfqytkQGKwqQsV
Ke6u/6/dXd2WcVSkLYuaOSiequSGzmvV7Ph/WczTLbNgRVVJRTJ9MrilxD7Q
R4R63XZXAyM/ztGgC2zfrM6Rpx3X4UqU9Je4nBYIjNZtzR0nat6lsbD3ajBW
O1/4jwYHejzosNuwiFFMxOhMoF2Lm/rSe9rzoXUHm/p4EzcI5sCIhde6PsGt
r/P21HWYXIiyQg5dvXto36jaDJ2P+zEpUkGBtNdzm6X815ealtkcE62La0zr
khrz94v5dJg/qomUc8TGmjGVEhshb2w4No7692Ijh2JjyeEBq18zNGkWDqHd
dNicR0eEFxDS/YnTAYHAkOejCIu4V8Sie4/oAEUCPbpMLIc3zerE6xcwXmYP
D+y4e+CULmqsYiuhhoRcfeyFROx7rz0OzyjEs5waCa+evZpv3YxQgPDwTVfS
bsCZUMviuhTcaf8XihKeX0httFGyuJlo/nf7G83BBw83qdYTzO7tNjLWLzKp
20abg08dwZh8myZ4hSPlMPyRzD+spUfrRf20IqUtz8SSNFTUIPuufJ83q+Vz
hGvRVnOKhbdpGvFtiSNVfuAZaOYvkTa/+4YSQAkKVSJYSq5eoSvpft4rLtGD
i5j5PNGOUxxRo+zKr4TJVyOegESWwNFbW7yNvfyclsF6roiVnM4UVxo/KWxq
vxhYwKb22vPkJvtXupTPE7OrmGKnZUaj+dt2jptxQwdCyoRm3/L4wpw6DoSQ
mln4g3ETWvfEcZM8MPxH9eaEI2qcbo+5tKGYgeCQkb6/FzKJkP4j3gAROItc
ZYHXpw0vtRUyHyhUUUxjofPuBaz9LBtjqwmuiuNSNEj0aLCIzY8v8JQCI2M4
jdpU4RlLluu9owSa/dVcXnCQxGVCDSI+rj1EgKAOxhLTf8omsu9uqjVjx441
ey6SudxtM8n1ffBpC/RfkcP241oIfx/VsqoOgL8lSR74xPO/woLTS/rhT7XA
5vgHG813T1fyQQKsa3y8T1D+sBaAe19jpYa/1RuBAkoqkOVpgH6MviqH48Wf
3lzdn2ufd+h78md+KD/OR/Rj/7JGz6wPpB450CsULanLG6Sfpf6CuGNhMjUU
dbOdOWIsuHpULMuREth5eTFfobPIuHUnfiV9r9Crm0PHCH7oXbAyrRzfbP5q
Q+LupRVm/aR68/LKfAqJR+bmRP6XMSEXhFZHPD10GMdE+4iBXNdMxGXMtrxG
/8oCXWPCrzsyY0I4FmmhHBNdXBWOj6HFhQ0+24RoYbxTbb0gWWsnVtOqVNh5
tYLeu6S7SpwdTg+epO94TWLH6U1/sD6a5USJBVV3zDxxehkRMIQJj9uXkped
rsDdwJU4uBdOlfRlvc0r2webPZvGmU1nLTBnLJ9qrt0ygq2OjERG30H7+MQG
hPmkDi3Kj+27v6wNbkH8JX9K6uYm07J2AD6L314zAB+P6W4+PQLepy+JUSzm
Bd8JkfeOhM6b3Lcln+4HFAi/rKVLn2uIEIKa0RH0OkVtjD4pn3/Wj+XnPchv
U/Q+hPZZtS4N9o8WNi/UcumSK+zMn02KIm5yvIVrqkWpo8yfvPN8voX0pM49
h5jXft8kZsPlRneC4H9B4UJC1MYuZsKwgdQueP1UDpeH5rhwCbUKJFzy+EO3
2BdzNGTkCAHtOhAOlwQZfjHIAQ8OmmLjj8IFmedpVa60K6J1u9bmvglH4wcT
Hjrlgc+bO6yK7O9aq6NBtn0a1+m3LuzutbeCmPCvwvUnmjOvDg3Mk+FJ0FhQ
bSTcjTBPnl6mA/r2C20c2MMOs0hvbqo0j204wuw8a7pZtnieuXb9OPNK6zHm
n/srTGp3Y2CvfU9gjiPBfFpnX3xWh7/Up3UEdRsZAMNB7FRNv9pgJo87nD6D
P49lv3+8VBVsU/Hj4EM6ahAd9PX2bQ0IOSdiVMmkX6j3jq4k/TyqWeE18a6P
EVP2oCjhIMCP9pk+bHTe0pcj8sOMhhqaDs9zEY9rwVpObaaaJU/Jlmf9taGQ
G0zsObnKm9vL8SOAanTZ796ynO/cCepx5U9dyCa5coL9+vN6yIFh/y+7i11b
4d5TbP2yqcC8vZqWDi95ZJ7yqJAUGw6Cc+2Lf4SCgMw8Ixj69L0niZcdj5nH
gswH0AeEfegD4uJ8kOfYB6uwxwNeYcAeGwovn1JMg03Ypr1mQrVzKIwVqGMa
CZxINg52uKormFJKSCnhFRZuXjQor2OS8XGvDG6mA86j9LLEPL+mwrSeMdS0
nD7NLLdI37l6rPnoBizeC+4UJeXUoohcYB94ef+zOvvn/AKob+e3APPXbW5e
dBheR/i5Tgz7L+oCJhWGOH+zT+uC4MHLg/IxhvavEALAKE4PBASfOEmCP9En
1bTwfQ7WcdQUM8Txv26Xh3175UJ7dHxUwx5ib8s2tSIs1Km1oPV5njfzgQ8A
8/jjQrjK0XrCAv67R1mgEk02kuujHV4HNMsI5Y8xNVo5vX/QKLuFqVF6h1QL
u0sCtNvKAc9NGj7Q/HFbofnt5gLz/pmE9pEHln0f2oUhzbYvXg0xJA/tyT06
dgBOdJatsWccU8mCUgB44TqS12NOj0W/LFdqBATAKqy78ACPLtr6MWVkvpwy
jK8ww73peI0a4bZF3WOBK57rBJfm4/6MtEvyKrZ6TQXujynJ0TVZAcnpRjeO
XjCjNgD7adPMpjMWmH3rhpmDV/Uz6ZsrTduuatO6tg//mWxyolm8C5oIW+Aa
ZHm0hAHgAb4nj3fzSuNphm/xYaZl/QB6DKKLwr6st7+c1J5mesp8Lun2E8C9
jmD6T9qV9Rmw+nldQo6E1C3ClDQ/2y8k3F/XlwWvj+kwoNCzgVLM3/lL+/jK
ngNf8dv4AdseaWC3/BuBO0I7x7KikxGeTwhPuo6aTDRpUZDwPfJI6XB3YAw7
L6iP2SNMhuKL65j4WybTttvm95PYpwYmY67trLm8A8JRBEBP+tMFjPAHl3Ql
VmO/pyA8pLUKwjvxh5IR778oP6ejfNRmG86fPbK8vNxh/UzRk6CxDg3Ii5IW
B3Yl+kELLjuxQatt69giM3uETUiTytxY0ymjG8gMISvlItEsiI9nuTK641YA
ca2Fm2nZEF9unj+nwvz0nEazadkEcipsWr3A3L9huDm426L98p4mta6WrhGb
PMr+nacNIOS33VjLrsxXON2T/eADnoBOv2TB9Wkt5XNK91FgDdzEoi79ZiPB
375tC+PLce9oy7kD6Ck8wpES8yMlQp9v68y9IBZf0VTfl/WarPGefSkb6exz
OFtaL+tnWnf0k9I65pK6/GR0Gn1eB6LzhcTEN/bxa7y2pcfeJo7GXwrR0bj4
OWf9tr116mGOBaw/EbroV0ajIlFxKUs1EPiZtWKePHkyCmjPSlQoEyM8tEfh
clFd4Jq4u6v9m/Qzbdvsx6/pbNo29UBY4JvuLvFjBV+4f2Uv8+eWIvO7LYXm
5nk9tTP3PbHCsyQxbB1tP/nkkyku+AzodKC5udnMOrKbWX1Mgryd60dwf05N
QMp6ggI47p6fHO7fbZTawL62P/lGOhvQhJg3vMosHVlFetEtsjnm/MkV5pQx
DWSKe+402RzONuZgY23cXzkQZj4x6bWBOD1xWpmuSvRITw1Fwl1n/sjstsRm
3anzzSVnTjNPbz7CHHvssbQro3W55SuT+vOw9vwm03axhcWd3dktkcJfqxc3
G16V1jOUyA9rTKpVOLPlz+bz2oBk2PSbftPi9PJ+wDuCA3+2r+sxALi3mSIj
3dZo2p7oS7iXCLBPRxEZGAIdz/OAeE2xg6eThFs8ZT+dQgivLb6TiBiEZD26
XBoMXwvm0/bxLWOffpjX6/lMeBVOokqTfrSazM/mtcoOLMjCPyfLRFXM256U
sdvAfcyfQNGaOFf3O/+M9m6Y1CX2XFvWZFbO6M+ez/t4dLXtQsuzJvYD3IF+
Ar+lkL+9oIie0rMC/blt0xvMf15YZL7bWmh2zuhtrpjeg5z7EgQh47MEQbF8
KOIJRMcx7afDYeTgvu5wOGdoUpoMcToktANtwR6TMtcThvyzw48FDRuNhbXH
FZrh9jn0q38MoygcGWKHpowg9n6NB4mFeGAiSvgz3dKNLpZ+Qk623V3aT/B7
CXkuMC6wZAg17s7TxpgD2waZv1/d1aQv7WlalzUgxx13WKSLaV3ZYP8wNghu
lR1Jt3sXOjxWwX65F7wggf74S9TFNUz+cXR85h0foBuLDqMgIc7ylWD2a9Ca
r/Bh+6Y8xQ+Cb1tjgkIpxh/+kh4ROov0A4gxiaAIhZVwM42qQdjLg4OonA+i
8wbQo3W3heFvLGP6vX38rsFFTmqfnBif1fCJYaOmZXU/k7q2kdeBoH54VUrl
F3tp9LgJLmrW8QJ0CY/8kMtD75dwPYvnKlRqVc6lpfTv7u8uAzAFbkSAdvXe
XkHFRNuVVcHs7PXsWALV0ijSIyTdUuZaEmhH/HNHMemvi0Y3wc3UIOeEL7kW
HDp6RnKpQWXE0qM6mTOOYecSwgHuJWwUO2t4oRbJMY9VadcuKs/5nbyEF0Ja
fmgIQW497/hCZ9Dbu7jALQvBpRR75pcS49LbAyWM4r4Pz58Pj2fZSOr4VV9u
MtjSGRzLDxqUyxevHGPe224r0labva7talrm9OXcfRyvRkittdXg5P68kUmD
Z59se7wPu6Z7BuamF6TUfiscQKmb+0pFUEsJHAyIouGNBsAfHAyk50vmZDGK
g4Q7a4IYkkCJU8zEJOYoyPABCh4cTHK2KDWz9Im/pS2132o06bf50fZUX5O6
3WL7Dpxgu+0nTp5weKSzab2qv0m/10ixQ0fEl7X0j0CskCz7rv0Hvm3/oW1V
XJng5NH4kemxeOax83wFd8LVC+Vvtvafk/o8QlPsGj5amAe3ExaHRiVpDYlu
F9nPLYvJx9vfwen15IcyV3emPydOHFGh7ImUHzqN2s7t7up0qFN/v6jILLbh
dNucMgmnkCQbDidE0IFwONGlBGbsoFq6GAiH0bkjuIu3bliSQkol2GEyyisn
T9xTY8OhVEah5BcuWtjA73qh7xEUhrbw+Hpz/pQKWkwZCiceXYj64YRTKHyV
VRYLKwdUIxUsD5zWmwgyAmmFnD7vX9Rk0ldaanB2NQUS3XVsqVlqjcXPjd04
yG4qp2BCULVdVBUE1B2yvB207ZGebJzy9auMoIK8hJMpdWtfPoku6xeVaoOL
6TpXTEslcoigiQvLa9CvSbpQRIVsPxdBBbLmPu9L/h4UHvx9vsH3oSj9xj3i
YHBI+N8Kj/utrbQ+6EMRZmONq6kiPkLba03rJc2m1f4CzQf2H/tebxa33soI
NKV4XN5g28OmPrHMkQgtZvQ5VbzEUfts6M5EDiKv7slnW9Z11WwuhJx7Z1fT
eqoNsDn293BKrWmZ1Yhg8s6kPAogBBKCSEscc3mxuX9ZhTlvcr25fV5ZRCIp
5BT3I4lUreP5aT6OjuzEqpY9js4ZwvGDOEJgaAscr0mu6eitTbB1ZCO1+xBQ
s201RMFjq/0t4qvCDYlwj/x4Cm90PW9CT7PIBs6Di4MxiKe8c+ils0S/1dEe
y90y5dtIoN/aOvY5e+TsP7vR3HjGUCpgUMojcj7e2WzSO3pQtKyc2J9zFEbh
w9ESRbhg6OAWPoFS59WSw9AFDU6i++Uk0lGf573AgW1JA+fjGpN+2Z5Al/aj
4Em/Vh9QOgqRBEVLThBDfPLQ21J8Iyq+pDj7CrHRIAcOEcEInWMkK9TRc1Tk
fI0T6BtmfS48JGzKuc5BjPxGHr+rZxb3exsv71vI7WYfCxVk4KK/qub6H82O
93vziZQtWF5kfcxd8hXMgQYnUcc5uYTzaLn7Fm+q4Y4g9dPZfdI58O4+Lqt7
UP/c2oW85qkzq0zrUp5bxZGCyGhdUmujpIfWRYgYEtCAIXzO15u7mM0nNZhn
Tu1mtk2u0mgJ6cLhcyfkuBpFL/NA7ajlB6fumULlEDfY6XkeHyAcJnLIqI1E
OZzfRg8FkPpHEDy6CmurBNFFY3mb4TUyaYF/9z0Lg1kiXVt/YLULIDZVCXcL
llepJpBPdQ9C507L1nadHtT+D2wYbr69vDeFjg0brnDiFDl0CQhHThShA4ze
HESOuQ38rRy/9b3d8S8a9SOTvg4LVDDlLMNy+6UgeiojitAsfJ+jKHVTX1KR
EUV43ZZqxGiQnjJ6jjBbk+eE76GKpnMoUBca+MSSs0nPFKZsOS72+MyqC8Sw
bymAfkMHDAWMPH6Lw8bG5TsNbEooIbppPkHXR2IGB0xm3OhixAM8beftrTjk
xF1UbI2+tmYrH3KUZJY+QXh15s+H6/encrzsFWuJ5WnmqhKTWl3pHLz2hDGt
i2spYPAc5YHFNS5w8DyUtM1TG8xvNhW0Lzq+kQOHzO2Fhw4XPma4ebJ4cCfX
PMExs254MuqZdf2hOpw29v1YFpYWD4Ilpp8n79lw0bGkDJo28uiBdGe6Onmf
WMH3nB1YrbuyXtVLGEqJj3nycSg6li2aZy49dYx5ZvMR5k+XlVF0tC6rdwcL
VDK8tuERRXwAsMLEMsKDGdleYWW30yEDQr66EXfm3Z1x2DwBMUhC5aUqnsnA
yqrneWVVy5r+3DFBk9oytZZ1A1D8ttdxIAQUjWmaSe2Rar29TqMCTwnB43NJ
IoVPF9KRv+YaiihYHWllFCbf1nOE9OCo+J08QMPebaDow8nV9mQfF42t9kg2
H1dnD5W33LGiNz4Eg9da9EQPMQsix0xMdsyBdXl75UJzUFE5hahGGiM3SDxC
ixLxsetKEfFXlpj0RWXuXJFQYTIWp6fV50viAdu90YD8+LxStNvbJwwdIAdM
SGoOHzAha+IJ9DLXHi41ZtWRXNTgcMHVfUrK7P8nLpGDc8Q7X5SY6Ti2X8uo
2hyXQNkmEyGXTWQn1tzj6s0GS8vu9faUI0ieX807Q191F0sXhCSASaOOpPjQ
Wn/7ijHmxZZB5l/2iGjbXIkShU+PfAqPtm2V7gSh6qSlKjM+onR+JMPhcbvw
sDu7R3GURHhkMnSgpORAOSBR8mpvcna0XsibWNoebCBqppECOZo6gI/1kWiJ
uQjBe1F5Tj5HnyPiBVEBGR9RZN/O8/iYV+fEghonFgRNms6d3yBsflsf6U46
AL7IfGs/+Gs9nOzP91WtC5m2/Q3MyPyQeVdW7b5cadpuqWWChTCBthZobNHg
ZOG5Etl77mZhY0HnMhHSqnfYvyoucuVYKQhuq4CRF45FHCfX8nGCWMGRoscJ
NbIQJzH28+LpXcXkzsKJgphZcWKzOWUsXVpIA9wSKSFDvEQK++LDitpojpQ9
TU1NobPlbD5b9HBQr7ueFRIOGiHao98oxc5GjhsbIbV0lMCnCPHsnLE9zPyR
9bKOo5A3SPONKtSLQX2iUfGsPTFusGUIIgJdxR2rWP36drct2s/yinZ7amCF
ETqNHqlyRwa2dbXMb4oiJvCb21OuIYE/ye0YCJeQYHJ1F6nN+Ng9PWx8tCxu
Mqnz61h9frRnULKQN7GK2vasNVWLX6WGbU+faqumlmLB4h9nEhUs3slBDxXZ
cGwUeEcJfQ6HhAsMLwDidGLkBNC3XErhn9rXV3qeNgCwEeSNegpBcMD0S7VB
YfK+nBavV8qtb3QwvIpJ4gyZWaWx0GVZoo7Fg5q8wE1UIQJGjhxJp4Vz9D4p
o1AYg7Jot6i33/IKSMXiRVHgU/EB+Zi0sHO7M+iT9BQODTRk/txCDfz2vXO7
Nsox4CvJnXzcx8Gn2ouKinCAQCEb7R0Sp8rMB6r3eceU074CwXjSKzaAcT6f
gpYMwkG9KC4sAP3etP0AZQdq9jPH9KDD4fa5fAHcI8KgUKsD+s+c3dPBfaOt
uvetGWY+urTZ/BTbuWb3DapuC3vAnW5gywJ3OQEijPckFw7YJLMvxJKiADzC
geDOkI8R5DvzcWCJE3r1JG/ZGiN9b2+b5upMy2n9eBWAhT2bz7PCnrvjGWm/
hF7G3XPClOJ4upPA3tOaI+HErx3G32gxYU/CK/oHwE8z8M03tZT3iS493gj4
47iBz77tMTZFtl7qMSd7BKSfhYsXLRC+8fCtLCLWCzI4HlTj4suiXmQA/7iw
JlyTQRfMXVIXWA1hMWQrCgGexv5stlfQc5+kRFN9XACvmX/luGbzlwuLzK83
FLTvml7xg4CnCdkDumB6DKOd1pIuGtSJuu+rjimg/eiot4USaTdRC4hZZEcM
FohtYBNKRIsH4kNcZUvxUEFuLJ0FxxIm2sAgc+B3Lu1url8x0FyycgztNwTU
7z1vmPnljibz9cU9zI2nBHUAdSi/H+r4XVqw5wQFwV6+jYKGkxY2SUHQEetx
Se+E9fukUHiAMZ+60KbkdbKhYvZAk9rdQKmebNtvi7T7oWD+YEfMt6UY20B7
sdAfpTqDaC2jfS73kHmexSqH9zRKAEydWLRHAXP8a78Ngz39JvcsketjhHb7
OV/Yn+5zbom27mDEr1ww0LTdSwH0ciUydbYGSSbkg6ZhQmps0WD5rm+e9Z48
2R4t403bVVU8kXRDKUBOsE5fWKae8t1g/MxiWFiyyZzzek6oU4i/PKDevr5T
+/oJNRHBeqiv4WOd1NgTJZ+P6F9BpB8zF0uO6ezQPbnj7Ld02WGuH1YaCVaK
+QjX8T5gO0ovu4sFK4cE2R3juDE4Zvhgs3nOEeb8U0abs1fMpwr3gTWHm28u
LDWfXdDd3LDUInuCVLgW5W1bK+naCUioLXP7CrLpPpUoQTsnXOnuLfepPP6E
FtoyheN4S/ckcB0FrLHb/qZexF1alrAdEo5QAJv4PV2TVcnAfiMD2L9ywAYm
OyTyQmleANSSxF0NEAI3YVIa5wzu/KDFYB8rlxxGSZykVI+9WFyjVCYwC39H
+czQ7kotCMA7/VodlcGAOFXvHwunB5/PbE1o/1whLsQGRIYd0Y6/d2LfiLbs
npMVYjvYQ7J743RiNTRldEOptOhifjZXF1Xr4lr5gLQaWAuKkiyUcE08GG1f
Pb2E6LsgPaSkhrN6SBoaK1m9oaGBZo1GDe5L9H1doKAG89wMFs3sFtekHFHb
O9LT0XpfM4WXCtXt9kll5vxZ/c2aJScRFz/Hhvotqw4zn2+xXH1dV3PH8ipz
yrh+tKQfGdxc05U61OYncufgDZy5uZ75N7GdDHHylkVYVFCL5J1LubuUqDmW
bALeqQuYogPi6TuqskP8nUAX9SAe98zkBNj2Oqlkk+H2t2XqQlvy8U5Olgwe
9Vt3Tvps3Y3l6jaLa98gwok8Tgn876DhX1Mij0oGd+TlSzpVvqQwFNAD8PYR
BZW3P2f65bqAzCvmNa073Evf+6VeNEYkvYTwYtQS16B2D3q/p0nfUxmMTDxU
bnafN93cvd6+/+POfoKPSyAgt0sil0o1sIHgtcIe5H39pHoM//ww6kO79TjT
88T27KO6kbxDiA961RFdYaDpG/DWtoBDfUXQoxbUbxjTxayffbQ5a9FJZvWy
eebchSeYXXNqzOaJPWlZ5Ftri805kxvpZs3zpvYxB9ZUmL9iaeOPsyD+Rr4d
C06/1Hn0lxRFpvyQikwMSRxgubGCqDuQzry8nBbUtJ5pieDUAfQxComtdSH+
ghiAv5bSPErVZ3v9cAx8RmOjFAQt6wYQoAH/PI+7qKoZzyLn5AXRkAyixatV
0283UhBwwQrZRvj6NyzpONwD88ScvlQeU8Ye3MuaicvQ4zPmNC3r+jP4/faa
D37hNKmraJYoJGuG8jwcsj/r2cErqHuZnt7WCP++y/PUDwtM5Q7yIv1H4sJn
3FIPpP7dxbR178dzqinL92FQh+RMwTv3AcIizTjO8jQmh3svCO/DArwLxjNH
hCbT4oINTuRHSzlgNhXkSj17xtFm9cIpZtVSi3WL+5ap1eZK7CE7Kc/cPCvf
PLy4wMwZ1Ux70R9a2cN8sdXSCsto/oh96LuB+zLBfNcA82AxtgxF2UkYdlJL
PJBaOLUnCe555KYArLGKJhPmeLvt8mpRZEo7UHbS9/ezxbkD5N/MAnlWLhXx
SOvi+cax1O4LkwLmhIBei1a8R0cA2S9o8EKOAOl8te7iwpSMfiLUcMqPMcf5
ioRJVmcowUfFFCJv0c8F4agGOZ8qixpbS6Ru68t8Htr/QcH9h70D7L/D2Mc4
Xtue2pBAGQ2AXxQAX5brpe/uxSl+f7AQNX1luZk7cajZfc40LU81xWs656nJ
cIpXVwUcFT8+mfAOo+z/EvLjJe3jLwOX39ph5I8dwes1Mjm85SiC9GrSYWaM
aDLjRg0xZ8453pxqkU2cxSJ9/fjelOUvGJ1jdmOf5JQ8c9OMfLN3Tr55cnmB
2XJSDfm7P95YYr7YgpOts/k/O0rN33Z1Mf+8qowz/PVeJXpzNyYxNqNj+KTt
0t5UbMYCbHMqB65tuobHdRT5+C2myUFkEZ3wZZf7PEw/2pMutU1dUh9gGrvP
2w6J6YgPak6c/XDgtGc2p3KzpPFOQScrRxyw4pewaHbGhzSpHb+B688xdmXt
XwqiY0JZOHzqVeOnp4nIAIEW2hRiKsh85HEYC+e2++p5E5p0ekVwVPUl4Cq0
svqZnvjxn+xBI0EtpzSx3oKBt72BPzW1aSgVqjDWxX3WfnqlG3rukLl3scFu
38KetEGyL+MyJK+HYQxufiAM4xzK3DOP7EbcHPUomlALh/izP0WOpWij9tzR
XcyaKf0ciFcvmGLmjB9K4Abwsed6y6gcvr28G2Xt66bmmVtm5pu753UyGydX
m23Tasw8m7n3r+pBeP62xeL5klLzl8u7mP+5UvCckbWJkO8rpwxtIRsHlOME
5VyBci0tBHcMxEKbRMYbe+VmIvlB8cc9yiIirfB8zjOfZmZn7St9TrPFHdKz
kg+vZ+RIip+bib3HBck6yoDeKQnnHZCcDNeeeHDjKC5ERGmJRNOXtZSdUQbD
cAo/3GVchNIYnAB55XzSWph8v9hLJ906sm294PYpm4bv6sUzCv5CJKiGVzGl
Rn0JVfHgRY2sphQq+SYK4gM3lI5tKsZusT+eX9h+yujGSDMjNSQd5nsgJjll
Ir2fbB81qMF1hdTUZiGqq3whCgKRQOYZglS8tsgVotGDUi62IOE6GPwtLziB
S0tIKJeOy7UpOM/ssyl4+0kVdDfGO2uLzP3Lu5sFo5tNu4Xtry/obL67uNT8
12VdzP+7wsL2GgR11yAFs969txx/UEuoiXQwyaBMHKFUbFrPaAwht+0yZGvK
0cjFmqOJjeAPpAiWXGwel8t2bq7zJpUPgeAvanN4Psx5PWOZbR56DuhUvl0o
bNrxbfXdvNXQAbmxgFLEM+VALwcH/9PUnr5kSaCxfFALga7SjPTrPKu8cuFA
0lH4Fo7eTKNlNF9ysGdKw20X9je3vda0LG0KtjvCWvYTLg6BSR0OAJOw0BXa
nOuUQBoO8LArlrMogGv/Cci/757dufqdVTkK3ZAS6EM3Qx+ZwCCm/DtvcGc3
bgMgTzpaHMxBqkVsAcDLZ48jQLuxgLg0MzFMs2BEFaH2svG55qrJlibbhHvL
ySW0gLrtnCLz3rpi89F5xWahRe9jp/Uw32zrbH6/vbP506Wl5u+WSBhQ5uu6
BoKfvr6ViURqE0vX6esrTNvO3nQnLcgFcWELYQvbBGAbleKQsqNwiaRitwOX
YP9LaieKoX7c2T8Ufj8FggTA7hR3JaAq2iKVBGTYnsAZvJm0P3JiYjbgGwGp
j+DM3PtNGMRhQmwRK4yCHDn4aDu9oJ0rX9SYtp82sOsKcvevhB5D/0AD06Zb
GsfBJmDoQvYXcqDCpO/pxXwBi1DukcWkGB++ksVrOFbIK2zf/u7SCrNp9Xxf
83Dw1SZNtrT75wsKD5wxriHS79/Cbvv48eNpkowTcMGB44+oJz37dFnTu+DY
cuIJAC3Kt9MtLwDBnT9zslk3vnfU0/p0b6NFMPckq+ni2xFHDaQx+a3jyswN
0yxtmFliThltedrccvPS6kKL4CLzy3OLzcGNxSR0fLnVUgfk4ItKzX/uLDX/
2I0jyf6irpZcjALwhq6E4vSPe9L+RNKbMfBrkQsEA8k2FedQwo2zOcuCVhiE
J1sXh4GrdhRLgNF3TP+0JnAKh4DLtCEG5CYEuTrCS8f/Y31KsuTcTPqgUKOp
MPWhIP8GyI1+T+qNBS0Yx7+jGSwC7yUdfmOEX1ttvcGT9OlX64gPu7bNr4QT
v2YBdno/kjPMK1iq3Qt6njE/l4kSgBiUYZ/sMrmms8rQ6n+3lN1mX8rCnGHJ
4Cv+RM7G/nwJ4GtTb/vvNnXChIigN6TRhdELC5YzyzN68yjzHjeoj1k1tLNZ
PbrSnDHtKJdmgV6L2AjVdDHPYqJGLIfbXmbV8FIzYUiT2TmpyEwe2mROGtZk
lhzPcz8bLNXdclK1uXZuL/PBes6+ayY3mlsXV5p2we5/WOz+3x2M3/+2WfjX
F3U3bZt6UT+dR3IPI6GOFuJurGW9IuZbQyI5h8q68azofcRz51r0oouIPyDZ
DjHcp53zX9W4DiKkaNGj4yTFaYVkk2lnQarOp/t6hTZgRKaOeX1El34ZwKQ8
k1m3Q8vFgZi7LlHpzRN2qU4UQTruGDDn3m4Bdi2HUIku/UqA49RNfQjH6Z/V
8AQwKDHNYjF+6eKKq6u4YJOBQpuA/c6Kt6iEmoio5VaePE7yb0lUSjf8ctxo
h8Xvv3YUIf22XDatd6Q/U1ubWqVgK8iiOzBsc5GfgXIzY8YMs3LJPLNq3hSz
eupRZurxR6L4inpSW+Zkoe9K1yYiWuKbpE0eFesguMSuKUVmz+x8s2taV2LR
F02tMOdOqjabp1Sb1eMbzFkTG8x8W8CBCfOQqc3HljyOt1kZd9fjMREP++tZ
MaEfGaOosSjZGOIEN132kflJ1eZMNGsh5+RmQnMUYAaks8AZagRB0e8daiIO
vIEMabR3NRejTEr1ocnx1G1N5LLtnCUxJ7KQ5mTG0BTtgfBxHdLYOCuT51bZ
hP0mCUE0dAluT0q+9hCdcIgmAS4Q4T6vwdw7pnM/rTEta/u7og/FHvtGKik7
t91Sw9XuI7JhCiY/r11Cve8Ly4SROF153fJZ5uD2xoh6ndgGFTCJv24vbP/9
5k4DGLghLS0/hOmQCMHycaFiWv1PeN2CVIz/y/wjOxMxni/kQrqEES3zlE3o
AhK+tyIHAoQAOklbCc8d18PcMKvETLdgvmdRZ/P8qsKoeW5VYaS7efmMQvOW
5cfvW3bxoWUXrQsrqZXyiWUZn20uMV+fX2J+08KVHrjyXy9HtSd8+VphGLba
owyNO4P2ilDBKTqE57bLq0k/dniOUXYuYdH4wQw4iyRBx+s1fdwuEvY0SUHH
GZroBfUK6/2WSNAhZ2RHSrIkay0D/XaK0g+UdphyxfYFD8mJML+Q9KzdEmqL
Y2BCCQWJfH2lGcn7SoRfxIIc/QarKjWsKSdcwjafVpMzcOUC+CFs+Yfiro3h
TBrydb1Zl7ijLGTv8P2qUNGiIkzINDhl6N1n28JvewNhGfRikKz8N5cWm/+2
FOO7LZ1Gtq/rFPkhYJMwwT3vpML5gAdnvM9rOXMODDmimTYsQD2G7xv/T72D
ViU35+04jo166HVfciI7uoFwIH27fRtkY5pF9E9mdwOYY+aVMwojPQjRr51l
i9O1RcQ7PrSP+TZTP7yiu/l4A6P6q/PhYuxs/nBRZ+Iff7msi/mHohq8GQbv
7ZW0IMdJb0FTkKWLmAAZkAa08V60A6wfErUtFYY1HNz0C1fCEW5/I1NHBdaO
brxeH1ES7dxMvPemmBfyALwJ3pPzRohkC6QToXoPPo+2p/tKzRfzzXqRDkYP
DgsiGo52sFCRDcsJeq7U2Z0Iyp9Uc3uE+uK9+Rbclr6mba8M0D0mN1FAHIb1
epcr6Bi9xSFvntZ/+LTvdnANqMZU8JJHV/Uy/+/iIvP7zQUt7WvyIgOFV/gr
QTqg+IQAxaAkPorBoXnLVHIklVGDe5lxR9aaxcd0JgnNLf0odqaNLaM4HWNL
weUTckmfwKAbGh13zss3U4c3UYX39IoC88LphebNs4vsb+6dNUWRLlTtvS8P
cA3kZjDoTzeVuMoP+sUfBb2Uk68ONAwgl6ajbyuXFrcQDXYkRUJihYhsAYKZ
NpcFtPkhbw5BpnXSj1o++RhvmcRNsK0XNZvWi5tpLQ5O37b9tvB+pd7NIlgI
hepALzM7CEuF7CXjfPF8UOfak9sscAFg1orj0riuVY0YmwvwpWFS0c7ZNxOs
SR+sIaD2JqCa96tM+lm+nIvWpj2D9X3oZMjavitDOdeRYUnBknJjsrwVGReM
Ah9qXVRjbrCP77YUtD+0pFvkR1Ky+RJwXohChHS047KjFW8DrYzuBN2tfMpR
nWiRJRlNh3YXIwZfNYscC1juHJ9rdk/MpZ6Fymg3zS6hu7+xBv/xUwqQZ5Fm
AVIIwjFk2SjAar+XQvX+Zd0p8f7KwvWzLHD9K/U5urBIYeGKDRkt8/pGwSPw
B7rNtToiMUGpU4uluKOH9Dc4Dec6g7RThy1eUxfV01aHlbMHRqFU2ByGxa0k
RwlcW87pT1v9kGEprsfhTm9eVjbucGEQqPrAiZ3qZTErKZjfK8ygEZjML9Bq
8Ou6TKWYc+8zGbn3G+0/W/B2CsiCmi0i0Qzw8nusVBB4lRd/zsSBgEyW6t7S
kLb54G0buU/2tmUag4GuJgQfvhN/jM7mX7s6ekOBZN24ZNEcDWq7pNm99AhL
JKZSut18UkP7Z2vykR4FySFVLYzkkHdIbnvApwK5yLcmA82iZyQo+U4b1I1c
dTJd6eCsO1dh/9xlM+6PLYR/chKvWbr1ZCbAd8zvbJaPqTc7Z1SYZ1YWmF+c
VmjeOJvgHAWcLSl+b20RJWBNwvcvKydkv7+O6cRBSyO+ADnexuT4txdaZF/C
ifh/NBFbGgFXafryHiwm39KNqcTt3P6glnQkHvifGdVRdKFj4oOGVbTtimrT
stRCeDovD6Xm86UN3PAgIsGGCoyCAdPEj2VnDM0Y7+znfNA2L4JEwAzdSLYF
+xBMs7JB0LWBYB9RMWDSu7yHjENh/QDmJNK8DhPpuLOeitqcr7OaLn+HA8EG
AYIh6puQvlUOonFAmhznaWmON/gZPEmkuUv25A3cvwfXncX9E3wzqPl5T9O6
kTsgqW01vGdbiLNQDNeKpoECJtKkySGF+9JyasNQs23pCbjJoeXCyZWRwyVP
+ysqBPiyqhKgd8rGsWHarFXgAaHNfIdtklL42MG1Zu4x5aRQiJIR5S4IsJ9H
zy0YUk6pHLiHWejG6XnmzrmdzAqL90unw1T4s5UFsj4MuP+5fbzE6TzC4I/5
4LfPWfhjpGZig7l+fi8KAGYhxdDwoogAm+d8/BMRuYolaMh4VCCG8e+g7094
KZ/me8NhN1JWAjcpTQBcYJPuVdXhCXtHpwNbEa/EriOhFluThISgG0GlIuDo
cWd6QAhB7obibFGtAEfRRgNalOclILzlfBoQKssxx8b3lA0vAnlA59t6MGge
ltH8Hwh+v4Y/yc0jf1WbF9aio/hf0fgAcv2nHsY1t39gfwHvVlFxmH6ccZ5+
GJet27TyBBd3LYv60mI9XSqh2G5dUhtRwcOb9xK8B8Nd6QvKSLvbdebU9jOn
HXkE4zmkPYehDqbiBI+jwlDPrBC78hFAO/iOHTTATB/czRFpVISrhpWycBeT
uzxxv9XUY+uoLARlQc9kz5x8s24CKXVRUGr7aS9aYn3l7Apz+rgGYi4oD1+3
5SFg/i4YjMV5jGDOYYF8D/aCUvHzzfglfLEFS1hQMgLncGpArob7CG1vKuLI
gcRlo8P5HVkme4nPqJdOfEddlHp7DCbwGnUAuvjnMB6FdE9V1I5+XDOyy+IL
qhydb/S2JiHc9qXqd77rSP0b3I9uwkMSfNzHf8YS13xe7rqE9+fpuAD9Muzr
9DsNtHXFQtqvJKm9zXMwNPvl3HTyQE5nWbEZUCcZBD9fmMdEkdChg7yDX4WF
+2O9uQv1oP0VPY2rDbsTP+chjDJxDFFqt79yJPeY6yDydlUEdieehV9cSw9v
4os0vq+3dGlfNrqvS+uHc8lo8ZvvI57GGf0rPo84NOjxfXow6Gn7KnauYMrR
v25k9rGVEc3vqCbxTwI1v3oKW4oeXtzJjB06EJWjeeMsZG/LZGzE4rmnT+1C
ne82+7G31xDg4wA75fSo2T4D5PH9oKlofw+f2Jel1GBUtP/holJCPEweNyyx
OWppvePtlNVv7RZIfhbt2IaCpmLLwibfVSfKH6t+mc1EdMEfD6M8/ViNm+FV
lGs7pkhkEU3bYOlJt4S+4wC7j3mZ75UWTZG3pChM0VN3NLs5Rir7LM5TdzRR
is4Yg1FMs9aXlxXT2obhjUkUi59RIv8kXGVSArdEBSTdvGFPwCvrZYOD/VU9
aVH9mP0tP2ofD3ejBXVE2i15Se/qxrs5rixxpF0FbbfZAXMvuS7v4/Xk4YeZ
/adVgl2oLCL0JaT1hXN6i33hbvj8UfYKVOHdiz5cRqvsRuMyqsEJGm3ENkjQ
9Nlyk6cuT8VwDOxHaIVfPKGI6Mv1M0vMrJFN5qGlpQTjt86x4LVv2H+oFKHo
x0RiWdhLzMHdvnmiDQkRVCzSLebt7/+jc0N0hlD/G4v6/7gYOZ7XMPzzSs/a
JM0buopwQZNrpcMcAmMIhJWoGKI9VTCc3HXxyeOelLK/Bhct8/yu6Ny0XXgd
9uB8XutDXnK6s+L5rZhcL5VL11HaMzmHhDoaj1HxjmIYRiEvUI9kw3oiw+iR
47NxKj9h+qBLFj6jFs2n1ZbXEWX5yKPk71Sylv06GucVpnVLH5oJIH1Fcrh5
xH7dg/ZxX1d7TPZhndsifuWkfqZta0+s/Ill6C2BDLMLzXWXxXcWm7/vKGq/
Y15XXRAf8oseluW5MPJD2kt/IfNexRqJkrAYcxUr/utNLxNuTRAkw3nHlsNv
Kr3JQndxDuAPNnPGCT3MySPqzO2WzSw9od5cPrOC2PqrZ3Kv5m1i6+DsCVK5
YSa975Ryetvi3/7JHe7jRNtB3wX7eLrYvlhfbNPfBxb/n2xkhSYtTZ4tM/qY
h0/vbf51FXYAdTety+tdGx6b4yy3YVdfUpuWDuJC2DnJFwUNSov29N1VzuZE
Z/UTtcFCRunq0GVMqcYOiKdzXBmMsBrqsHhOET+5J1kMR7e9OKg7vw1qTmIo
FupgLm1P9xE7tYQR1tCxiOj5QRjmfcIw/yJo0aDrmLqljyT06o4JHR3I1+AN
qaD7CVF9mqfsby4lCR0wf8g+HuhKsmJqi/2eC/uYtosrzMrJ/bi1c03nzOld
X3aMKODpeUtZ/t8lRe3/9/wCJF+988MCM5vEmHtomDcxQTlUfUqHQJ1keVAf
XDmINfLjLcyxCQu2akjg64fnuFXymM/deGIZ3Qdy/uSeJMYA3mDq2o60EPcR
DnQD5YrwHB/hrDmWZyDccvhIZ8ru2sYEn/mPS9h1vnVmHzNpBM/8OtPqLd2C
VT17ZBrsTjGi2owuemOQzS2+W9dY+MwQZWZVP7oaytWib4c3MVBLetFhhO9i
punSsPmiLrMTz2Pr+VkGAnRwwKswpbrs5AsqzkZC7XixkQDcsgixQw5Phtvr
XzgZMQpU27qCyMsLtdnT9yu97CFWRdiW9B0FsMHS9/vwto/7Lby3Wjp4Uj++
62B7BcMbLZ8rtfC0/Jx19By3dUS9qKhA/3pRYcuWiZWRhEDWV1uk0ROSHsMI
D22lagwz9D0ZZSmPFnRx20Qhoq84ppM5b0TS5uocUhkhoGMjL2gLWDn6OhDM
n4W6aEEN9x5y9+tnerlb5RaYSa6f14tgnSu0xdMcI1GH6RhhuhtVpl+IAft3
FtP40ZaN62f+pvMD12RYWb15GErZqjba16qxtCwGXz/+R1gni4tAflLD1x4c
qAy7qjssF6nRBYYBrHX+/Ys6rTGJq+RmSdVce5aZP+H7ZiEo6XcaaVwLgHaT
utJ852GY+g77pIKRLYftcldZhrDty4W2vGx7sJ4tIy5p92IzlE3a6Udskl1l
C4DzGjlpQzInZFN77ZFuKLwfEq5iUZ6+qQf/EmD8u7WLu/wGMwOSvJm3JN0E
LhH4S2kR+4HfbizIyQLtAYeGttz0hCTsxMX6MLQzFRemMLbQHFRjThxca+Yc
1c1ssLCGgKj9Hwjp28YWmdVje1MfCP+mMUMGSs1sC80hA6nYxAMJ+qwJZI+K
mgun14h6+l7HnJ3wBEVpc66Hpxz4bqRWJ+wnb6wrM4vH9jPvnteVLFUfb+0m
vaOyoNV5gzcj42Pc0hKdKiCZF8uitDkkYwME8Oe9wRd1ryonEes1GpkWyDEA
vFAA7rawU1++IdcHuJ+t45qzM8CNBeo2M0d96+qvqbH/pN6kUxtsyYk7li8D
Ar4jysGaIR3hfF0YKISSr1M/sfTrjH6Sr+0//8UKUghpeuL63qDbBOVywnMM
RSaOFAvq9K09TcuSvvaXeRgvWACgsRf9Jwxo1cw1Y+seERqOsRn7vy+iW51G
/mxxTiQn4M2uDS+wDgmJYViDjzghsSaAdbaik4l8scvYoCIbjkuaS8ZyexPj
hdAK987ON2eP623WTqimsazzp1ZDQzFvn4MMjTydSxXmvUvLzXU2QeNhUW22
2weSti0oo8jQUX6LlDH7VoyyNteb22fUkM5C6TvSBJSTtqh22LWTG2kYAezk
9mVVZsO0Rq+hX+b6SOghtV1QiS6pu7MJwwhk37ZZ3K1DeyBjB+3Tum/BW4H+
rvizP6wJeamglKdu7UuGulpSES2+0CdyDR2xoNAEQjbe7bDu4VxptU3kAdZ1
SpHXK+heBbawYmkgDSc2O2A7kHuEW3M21ZMg27Q0MMjbaG/CWGJ+0dOkH5Jb
Mu6uACeJA95xgne+Se/pKTdnVBLEU5uquR10Uym1Q9PbQ7laeQhy9b8u5SGC
L9fny6WSodqx/w+AmvwmvbNDWSvIQfThIncD69kjCgjGkLvR1rx1Vr65Z14n
KhKfXFZgnlpegOxsnjm1i9NJiGxon34t+DKQKUkZj6Sfl4FYRS5y9NkTUVgA
0X3s84fp/Sn0wBACLK8UaCf2Y9srrim0D3zM7QFcY8/Wlkrm1TLDiPycvqGC
ejtuZNy3ST0rW0L8xf3ZbFKf10rHXjs84gMU83VETVTodqJwxHvJQ3HraIaV
NZi17SccO+kKSPdgns32v0SQpPXRXit9+2CagPruqYaAgHzsyYDax4EE+KZU
jS/bX8oLevlkI6/sg1tqP83WKZo7OTRDH0TiTl1QQ00fH9GarH1Iq06orr97
ZuQIRi0QBcghSbADkCvo/VCd2KGBzw2gYlp2NmTQALNoSDn5+q62POP6qXnm
5jnsNXl0SYH52YoCos+QPs4Y34Ck7MkeMZL93uVHqHGJQpFZs30vVCUC1c+v
7qKMI0YpuQ8AToQDZhUI3/BXfW4LxsVjm7lgvLjU/Nn5XsvCvledDwv8riz7
7a4O1G1dqP+zXmFAZ0nBurmVJD5NxbkZLkA1t9Io9zi50AvrLKW5qXvE/dHb
qGRmUsZ17Somb9kJGM0YoElKC77OiX78jWhMXA0o9P9+Fd975cKBkWKTfrE2
bDR5xwOw0A003s1ztmre0GhaljfxcoNHMkDcuqaBxG2AWYHcdpVN4dPgxbRA
vqVUB7oYxFFZWkz5Zlyz+dO2wj0fnZWnjimfQDf/AJYjCV/90LQc6Rom0pk1
4lBJ0xA/sKPy4rE55hqbnq+dXkz+PhhUkZqfX1Xouu4nj2o291hmoRk6SSCO
E4jni55n3/YrQlHy+L1IvUVzGeVkNOXBKNDH+dUG5s6AMb5NSkYdf7e9s+vj
/H23Z9/2VG29DyK1uZYYRYc13dkgHKw6iIpnlea9qPb5nBs2OYJgJRJMLTqm
ZYJvjsobwY295HHCOKOXqkPjuF6jPQxnCOLhBWauWhQbScwbluGruYOasO3h
er7zFTXhe1WuK0ODXi9gUpHRnL6/F9WFresbSbN2nOLHlUkgOApIR/FWDGDW
m/P24cLfzrq5pkM+bltPTXsa9LrhpBydRfTR3JSFS4fRjFJwz7Rp07QdSWgu
DaM5syzkGyF5Rgw/6KYTCmmFwdrxvc15k6rhIDHPn0pItsEPz3XM7FvE+pxL
0TmSkyUfB+qGOkp80Q5pGe9bQDNT7k0uKzBk4Bn4fmB5dxrd/ZxcV529Tjzj
+V9XeV2am72epE3J4BhwUrllwY97WH7VwzJvjsRfQoAchXsqGowYhOs+S45z
PWiDK7srSHOzwDgq87jeVGPWxUz+PG4061ijmlzBl7vJ96gLuDJdt5eNI9si
8Dqbec/s53ou4MfAMES79D0VlJVb1zUAxyxrxBycLYgjXBXyc8jTeC6EbGgf
2pmk20snNIuVKuGQDXF64rCBLR+sznPbr30IZ1uEwGWjNGTi1RFWOVSC7pyd
RmtFyFc15NHamrlDKs1NtvpbOdYm0FUF5gWbi19eDUtIITrl9l8DF3bczD2e
8zP1GBXPnJ49xY7TczLDJFhE1Nm+zyQj5tyw0DdYme5BxOPmRZWEaL/v+GcZ
hXR9RxANVaRv706bPig7+3VeJpo/AKEk68RntTGZ+CJYcEpmbHfMynmCci37
xB2VJ+OL2mLPo7KP3EO6L7uDdieiNKfh4o5pWLuJ0i2Ho8/vkjv8foRBVMsp
oK8Rq2DPB9V3e2o4B8Pi9FR3qu9oT8dPSZvzZIxkiFTg0bK0r8vKUcJuntPu
uNfYl6QONF/oNt6rS+yZGUw66r6xf+0swu1UcrNuqACU7BwS6wTGkdgD9gVk
6L8Qg6aXya6R8H+gIaAjJdnRrbyadwjnu3zdMraQZnCftozjOfG3AuHQNrzm
OfgwwP0uZeaAQYtk52drbrEA0ygL7TNxwfWHgZ7hcI2vR08RuPb7ihgeg0JN
uP6JqNOB1ZvPRBif9kuGfs67EOQt7waqTyRDx4RcyK0ghGtcRwXDq2oVBaH8
zFNgAZq93QgAsseYDw1of0jXx/TXtbppSYe4ujg3ravxVKh4T2q8d5RQVFD3
hOq6p9nqkb6zQtY7UvsE/9uH/WxsH5yNGb0lIfRiuBHd8tTGaurdkvpsaz+L
YGoZYshcB3L/Y2tBy/xRfTpnQXDfLJzDIRiT599EZI4xKV8d8WQ6tbv+UId8
nJedTzq21kwa0tf8dEknEjRQBh44tYDw63Q5EpfzvISMZIykrAlZUat2vlDJ
F/NVOEFtT3PRzBpzyawa88mmALnfegNif9MVIcovJBvTiC62nP60ImiYvOTp
ydossSXeP96t9oCbcKSBMrC4tAu9vrdkYAasWvp8uwdn45IQLw4BN8Nr3QGw
X9U6uILl1PDIQ0nQ5gu1sHsFYgTquGd7mJYV9l9/Sa1lDI3BorpHuuUSVhOE
VSRdYQ+CYMC1WODaleF6LydctASpwoNUYakx3ecko15t53XH3oMDX6zNj3Rh
ZIWktT5ZnlOsxjUdf2Yf6+yD2oakWzCh+P7+9iQGqEuw44/pa26bmWceW9rJ
PG4fSLQHLJV4ZXVhxLcmSYaN5HnZFc89d3oX6fTFifriOemHxL4fpz2o3kP/
z8cp+oC/v4hX2dASEN+tBJzeJdn1p7gooyK4lczzTBNj+Iiza1yX1mUm1NfI
of95rRZvfwLAWXpwBZ3LtOz6b9cdvt4ajy/Ef0fJ1y2sCXAb4V5ITkfcfuMw
Sz8Iciw2c1CORQPvofpwseaZi5jo9uTu9BOWRl1cy5u31zYobCO5GWSB1Af7
kPfjBN0igm76lh6m9ax6elBbZG8XngW7ga+LJVPGrEbzz0uL2v+wudPId1bn
lGXJpo0MRIs4qdvEmVRuX7xhHy0Ovhm+jETACbIpEtPow7k0NzD8yAHm6km5
5u65+eaRRZ3MYza3PrOc8qqPVqzpOHNCgy2zO1ZuOYJWLtJYQ6MheeUCcYHn
jQsqzTmTGgmikCDQpv7yfC7ZdNvSf/upFJaL28u5gXFhHR/82GPwQmXYRhFs
QnLwdPe27uynqRQf0+ZFzGexbkmBm4sFZGyO/VNbNRdsMXGEum0HHQlAGI/f
uENf0udnmCHED8VXTAauztYLm2jQlUxA6Ce/WBHwVrg6U+zsRN1Fcbq/PM/p
BvGMc7/tqkrJoQUk77aeXU851DWbBYTpi8sIgFhS8J8XFO75fE2nblkAmO0K
L0mb0f4OfNX28Xf5SCwLGqNhNGYqCjPpw0UugWKCZc2Y7ub+efnm4YX5lEiB
yJ/bkx6iLmz6b9h6bB7XYHkZ0pj0LeIijT1nAYnT/75l5RE1e3qmN37u0Dm1
hr7nQyu6k/yLeUVMdqnHAjoDQEtTLdeWscP/Ni+npnpyly20tL93eGm/SLvp
VzmXgqzSvak2vwpGOdsqcDNs+x1yKBnh4uLrdEk0C2ONIW3SBal1mjjdcCDs
arSe/yOPlIqlZ+XcAaZ1ax9WuZ7vyaT0MXZk0l3ztspC4rQJVJJmWBJI0HOl
3Dy+TeSDcxrofff2g+wFQpe+bUcv7+ZTzpx/217Unt5oM+eqnG4Bk3QiQbYb
tfS8T0yxL56PMC2FOHswSKO5av45lFhwsqRObCrAXximHlyyeObY3j5Yo3D1
2H82fD13Li4HViV1xv3UiYfYkG3tFP0e25qXR3uR3IWdBSrnAo4fSYcCzeLv
7HGPJjHJXtcJJd3n5VEc86CiL1dlrDYiYcCkXwqOdfs6Lqqtk7E+l/Pf76hJ
yuR06e/xYgtE1HUgYoH/MifIpx1yqZ7z3flcV2POZxhdFGiqi/KdDAoKF+Xm
Pnx5rueiTO9jaKb3VpDlDEV+qqUmmZFCHUL5QI/R59HQ2W20ttaJAa4hbKGZ
vrwrmY6/3drF/GFLwZ5Pz8mLdM+CQcFlSLxKKi6RO2+1jy/to80+Jge4TJjC
wkJfpqUUPZ8+VjzSb7uefUJ3c/roKlp/gffhNBttH5umVJOFEtkTLTMc6AH9
zPFlK+eSR56Eez6eCcx/q2ziT31Q9mr88tziKEBqSRmYKep+zATScsWrVcfq
FnR9H5Ojnqolb4GyhWj6F3UEgNZLqcj5rFYBirQpOhaOdAVoUlJmX7fASM79
pJuGigagTAT35AagFDCWBiu3NF9+KoA8p39gffSbs6+ET3RsZLF5MYrdWXB3
4eoLwSO4pMUj8JbIwKR97WMyQWc7OKi+xrnP2Mzltu7ivoTL1DlVlC7/q6Ww
/av1nbCOk4aKiFR+DxiFaEYj3n+MxCRdx+Y9rfhmMBYcGDa4P2XFCcf2NTec
lGtum5Fnbp+dZ+6xBHPfvBJqEqw6sZ421J88qjnmrDH2JyGP2ETyiEXUJAZj
DVIm7y1/b62qU1nHODxweic7582YOXAGt8Q+OLc4GPI4jwe2IbKCg2J4j9YP
4DhvFf6Jy0q21wVHuXDP9M9scbtd7th8uMFt9E4KHv//xq49ysrqun/c97zf
DM7APME44WGrFUEQLiivQZDXCAoICqKiiCS+UIQLIopPjAww+BitzwTbpMuu
qEkaktbWJJo0TTVtV1bWJKYlyVpdXc1f7Uqzcnp+e+9zvnPuPXecWeveufe7
3/2+++39O3v/9j777E9maovxyKkHyivB139/cs4J651ZrV/Y/lov9VHkkyQo
1rvROTlsC8B/dgJyqbuFNaTGmcZRU+0tlQYAfIRzgM8kQ2VyjmMbzt6DLD89
ySRII+KcGQJbhowjVTbKQ/x3AhbSNMPCgozlU9WvHmhSv72/GpOvXA/gc02u
E/cTooJGma7aGnFeP++gTmxgrbWBW+dNIvgNrsyp51fn1MsDFepNDb2/2lKl
3t3GZQNgklj0eXu/JtCm2JbxliL8AYfAmFe6xYUuGdoBmc6i5f9xcE7rJ5Ji
A5HIR9yDKgLHBqLqHF0v/usw5z1tyPPieKrZIhtI0fhEyxypjcrBz8fR+L91
E9yy4VnVn/eYqVW5iRlRyaoA1hIlNwinbZ+SwbNY6yGsoT8gYe0n4SoUM+1p
Pe9Xted9qS0pE0RirBxwZfzpfAmoNY48JwyeCF6oH7CEZOjwnr77HOeV3763
k4zd7w7UjPxsT+WkAMh6eJuXBxKQyRLNroiTlLgJH4zkJsYXmTXqH3FlI5m2
Z67KEr5g2oCvr2l8ff3GOFJBodV7tzS5MbSpSEnRc9pmfJwJfWwlQxZXWMES
GhzqjxmWF9KD8+4owXpoXTc7XY47Ppb5/k/ujudJkQtCPTjKVf7P5IFO+wZu
6N4LcEdRavh47r0eP/fDbYazduazAq9Skt5xmqtR0gc/1iw2Np611b2vdgys
X/jgGjrcZ1sy2PTM35rqECculvVfGlya1HZznTVDKuvmFOkhXI/sVxw4p8uB
i81XlpC1Y9VUyuFgwc0fdbj80y82IOqIBF5e2DEKvGSGvhA5OXDXdmHh4/rZ
E9WOBR3qxvmT1LHlWXVKu8+XNb6+rCPhryE3o4ML5Lxf3DgerjOBpLeZnEHd
qZTucXlTxvWLTq7bWTKgL/bExknq0LpuynDjATjBv17IeKshnKFcDxVP960+
Xx2/Hst8e+nm74WNF9gS6ra2NnBU1dWU0Gcge6262lKqqz2l8jNzOkiqUFvX
IiYq7G7Qnw1rxnz29TZ6jHy3QxZZC4+Lp9GjZKAUpMrU6ZnMoH30SOdMuguR
cY8eqj4Sc/V3jqkCot7jxJ9ZbgVUWRDp9799oTkp2BLzZPkaXuM/DFwJrOjD
A90+rBDYnjt1HkEKEzAoTTqwZsrI8rnTpebTjxq4pNlPwwisZIY877hGJmrE
8Abo07qzJrVyZFGGjNfeRY0EsOMrtJNck1OvbagggMGAYVIQ3OzDO2rIdpm5
7UGZRhFrRVQs7a8YD7pAQpP6jqZeH1vaVaW+u6uZqo9e2dahntnUq05s6aXV
Vk1NTQAPYKQuPn+8Okshijqp3xaWV+qfsXV2VuXPT9ND70SrdRKqa2JKfyYY
o4dGWcIJC0xyxCSindq4yISxMZzMHdyauTcjwS6ApQ8nxdU+345nmglHXIDp
YUn/53RIirm7xgwRwYA1ot11vJkRV2cWuQI1iDmHbu3llX9P1qEks9tqfBSo
1InBEgtUoHcBg8X5uDiqXDRTi2BRjQXOMwKc57T3e3V9hTqzkdnVG5vryet9
++ZqLT4zl5wU+MA2/TguwUz58BFOL9ljNymX88ri8Tip2RTVZaJ7IxgVEJXx
SPzH99Sr+ZPTauQwQHCyCQx2fztF6HhXR8+16u09nWYbdgXY1PD11erImnoC
H2za9K46NXvaRLV4WpXBXCLGXFJN72tQsy/piG0bk/lGQZOpYaA0sKmKLEWR
mYL4FtfaEIp4jbOps9EuThP2CwGiqMJh5aIll5UzywKMpOomrl+Q2V9MpQ3t
7KVlGtr4jPzvwer8z3Znjf/yKFNnwM8JoqSwpiDGp0vcmvn6NfSufti4N0w1
DMztVfM1PYf1MUA6vSpnI8S/2FypHrpaD4BFk7nwZldNAtU3KDu5sxaTY0TO
v7WzKbRCrtTxOWubHcfnmScYNGTUPqZ3MFIpSvR+sLtOXXdxFqhIOSCihVgW
RCkLLICpsOFzCewAJGz4HH2EnciAaYju1T4aWNKWjB9XVcKeJQCsRBGymlV+
lrZm62rooXEV3ynBBc77zmSB1AZ4i+OFTmv+UylsG2bHTF+BFgkjN9ABD5Kg
TqxPhS0cgPUBdM4db+UVPsfqAenCb++tktVkQeh4CQaempIqw3SXQIcgZCI/
xs147guBe+Jd2qM2zp1EuIEROry0hug3QrxTGjsv6RCPDNGmSmrIfWrDePW+
LKwUDGHuipbqOEsr3XKWpC0I1+OlKPWqfrAbQ7tcmosBFG9jGKGe647Lc+S0
MoKec4+1Eno0LMCN9bYsbRu6qZcQZO+frZGkt2Mukb6HzwEnvEvjWcPxVJM2
MSMPN6jXb2pUa2dPUF1dXdZmfXEbB4vWtHy7LTYrxjkZojPcRoS4UmblBS2W
OWu4oIib6klMkh6oSDCh0ZuyAZSAMJ97Vp/hJJeVDF3fTbfimhIwJoISL/AX
lMikKNCBC6N369k9DRv3tC+fUY8szhBpxnug5P7FjYSOoVWcf4JleXptM6Hj
ve1wTzpE02N339Vd6sDqblPGZ7qEOBUjbFJSUsgHyKAZoLOWwDaIYoRkStyV
mBdjbW69LEtjX52A+mNgGAXztkraJiaFO7LgFtQaCGJTjNmpl0OYXS1GBFtm
O75OfRqu1WbpAN0/VkOohlzaE3vaufHd37T5RsRpP4D43JDcCic7aeZ0UkJs
iBhriEhsniAWwzl0QU9sVb7CtR3q9WY2SC/JHYieqlMf7mnFQhBTt+Gx4Y7y
eGmR3SOHDTNeuBPXJm1FDi7MqMeWZK0lwX9g5s4rJhBmXlnPeFlzeZ96dqBF
fUMHXI+uaVe3LJmiPoj7D6QEK1KyEWMlYbKSgTUod8TrWl2OUwoayVQaC3N4
mXYFs7IEmgyekw5yqNnJfrrBHnkZIMM1KVC/hkGmLBGqctFDhyxzCLJKKWbj
gA8zoo+Guqg2jZqNyzRgMfUdHTZEUVzSInMteouwHGN10i52Xm9RQ7dPpgct
YUL5mg7Qn722i7DTF8COBO0e3xXsmGnEyKHH7IlaCsbWPLE0q2OorHp8KeMH
LAYYukZYzQ3aBr2g7c1rGkNYq/T21iqafEEpMSZfvi8tWniVUmklhQOglAug
uPtonPv+TJ4Mjgyu/OJ6racp6WpCT4507PAVXhej34txqQxQnVpBlkGbgYV8
rVpIDqz0udfi+d+S+Ge4LaoUEJigWYq+TKFiljM1B7qLE8rkgVj7lUxlteU4
d3ICR0O39dK6HzSI+OOR2pHBDROhstDdb6jnFEVKwmF5lo44rM3LRFw7ji+u
4Y/VrIumq3VzetSTy7LqCf04tLgGGk8AAtqZAwRwQADBjoUd6tGVbHD2LOuk
SkUE1agl/94uqiMvXqeGxHKadf9j6tCDD8Qp0Q60srhsgD19+nQKmKHgCnpO
ecZf68nQUmzSO5DGaop4SUxVc8Vf96yA/l8ru+GsIy80k5ugOigdoVCkwild
d8gbBCTjtG4Fz1WJb3DHv5lvkHmtt0jrZ9hXnBucQK1BEAP/5lG+3ee/3tUw
8uSadmhdlot7RFTmG7yoWIb9eQGXQfhgzWdtWQo0/lR/Vj2tH3s5CazFDPVX
qm15Vj31z14wmaIY5FK+dRMXWH9AJSu1ZvUATICOYExMnIw1n/U0b+BBPua2
pqgsz3hvR426rDsFTRknYRRYpLwkfZy0FoDf6eeqAEkVUw+rnwn6A71TMkBA
DLmlGGdDtZlgsjPprjcw4YiFhhvDGsrAJU011GoAC/0w9U4u4LVmopmAw7mn
W8kA/OFwrfrl3VXq0MoOpDBM5y4PD20B1yB44I/sNMDI1KlTsdta/gb9/MU6
JnloMao5NRYSGPeMg3r1SH8NDX/stUDb/zuXdqq7+jspaYtJAfQvwgQ8zMCH
0ngRnAC5NR8IjgkQEAgpdTBQrd6/nXpjkP4H/iSjzmpgYXRzZ+lWeu2MZC82
fbA9phMJbMrhVdYx9S4jKDoCwICPYsaadLMpkUETsilbF+Yoa5GIPb6toeTA
k4DgBB4MhOLsPLcUwbYq6wEQZ6ALFqgt2hzC/2tboI6uOk8tuWwGBq9pm+/F
HGIQvMiU57fZQ3DMYQ0Caz8r5WnT1Q3zJqnDS2rI/0taTGxBLWU0iLDPuUDt
XNShdi/pVGvn95neKOpWzSPRbXb/6i5V0GYduqektVmDn3HiUwlFI0/r7xZp
mxjbg+3WJRcxtioZ5HaEnkB8QVqPh7ywwsiFCNkHO5x95mgUDAdgyFyyyNpr
bXrbvP2yol3Xv5thboq/KF31Ot/g8dyxVhsHUZn1HDK3WBdAPcwuCgzptvJa
NrM3kcP22OLnaKkBFupucnIOjqZT4vMRMGDXm/WARw70qzJDgxnAx9e1qycG
2tW+VV1qv37s6p9S1AhEO8+NUu0A535QkECRZfGEssbWrbOzasf82pJxuJ2N
slY/yPwJbxxaNpDzPIEx/U7sUBfQcMaxBNhumAASDU9sn5CRgM/Yb3hsk0tw
7HhK/eb5ZpPOtikD6PiMo+M3Yh0P3dyrhnb0kCn/7we1mbytXj22rhNKiS6x
zlk068WAotnOePxaQreKLbz15bdd3kAc/r4rG/VVax2nSad19OHyyy5Q+5c2
qeEBDgSx2gRBoFkPyPWnbLyd3opM3jWNw3sY60NxN5hIWsFY5WfN3K3aOKuR
cjbOoIWNtE7a2Ola2Yb3RrtJySKEcgVi48GZ7bGI+J1osoklV91JYXQhpMDS
kyVfkCteaFSSeoaahclJRVIdddGniqQ3JeJ/rYUjtqFGqgwZurGHugD9+z1V
6qNd9RjbdlzPDLhvqazziL1oXzJGgQV0SW8BnZTV5aNASclK+ixDdgC5x4NX
ZIj1HQPzW9SYAGCiJjuJZh7g/zdqIrhcm4kHljSp01IdgLQkyKBZrfS+pCT/
UfBjrX3GKVmWfrS2ZPmhpXEGIOeoFAYghkfOwgP/jXFwoFUZQJZD/7IWEiVQ
2t8ueSWacbMFQmmZFHUK0Jm5yeS7Hv1R2kktU6LHpA+pC2hLXKCuyT01kHqu
Uf/2HkoqfPpgk/r1fVXqP+6t0ka1U+3pnzzSP2fa7AAqWj8TFd6iNC4q8uo9
8NWreTP9oP0LMurhKzNQfAKzFfoaoHTJMup37PHxHgHgfCk7Oi1lR1/ZyMbj
HVH+d2+tpnbbULoT0Ls9iVPOimG3CRoqKHUMr6U22FQhWoN6jT+vFi7njl5i
2nofrefagNqzMQXIlg334GUqRO3I9Zx9qF7sfkzaDHs3tWLizSXzV1phYayC
9fJvspe367tONZJFGNrajQ5K6leazP/ojnq15co+dfdVk5H4jS4T9+1yOtG/
F+SJ/mWW/Bb99CN5RAl6Ti8Rg+AuAHObWQMbwIhYhTTlgpbOukAd1sDAfDpw
kVBfuiqrcb5+bi+ZAZMP2rUQHZ/1Fq0gIAemweSlMWvxZVriUEUogXtBXPDN
W5uYKcR8kJEhy2rUuxpKmnZlgYVMwOfztqrRvIKljRTpOdzB9RJ8nHTIjETJ
gAfJupx/Qc5N7RhOkBA4WCth4dDEy1XiCYYieDRTzwCi+Udb0DdAnbi+W/38
C5XkNB4f6FTLL5+hHlvbSam/uaw/jwyO/0x41IuqSd0Jes5UxS4jcpddFd3C
Iu8ghGYmBub0qseWZIhlMEKe1QhpIgTcr5HwsJM1xP7PiANBJuGE2JDhdRXq
9Q2VVF521skg3t5P5dtReQOSsh1hUE8xcqiBwKI3/+fRBrwyj6RAxSEVXkQR
Ur2BnIkQY/hUxlGDH3fGyUI2R9liLmPRk3Kdi88n2ZYQnYwdSMpam7jwlI3L
mfEx3RD0wK+YX4Ig8VcaOT/UhuXlzW2arHeqI6sZPdTihGjm+ACOXJdSZhGU
cysfgGM4BkeqYKaodi2YoJ5alk2q4xoX4+2sFXDgYgOYIEKhP0M1dYyLCipn
NZllWA4cWrLLphVyWuDwjrYZ6y7MqL2ru6GQOoKD9vb72l1T7+ooqgr4jGpH
99DtxXR746KIkRBVSlYpPZkSLVPe8FSTabbgRITNtv7FSQDZztd0ww6oE43e
NXscuqFHbV+iOdTuBvWpVidUisgQVOGOJb0YinlWhkcVZJ7ICwyTjl7LrBFi
O+HVIeOPoME3oU7RpLXR8bb5kxKi3+MrsuQdoMcvSe0DdjNJY7x+YAnrGIU1
mLWEV3iPl2KSjo+tb6cbTDu37EjLlDV0S+mAQdT8d4JVI8YfRAR47mgrbSPf
vtzz7QQA7BUiCBVCEwJGwHAP6zdcRaclAw26emRzg6GFiVjH9XE9ueR7DTX8
6OgkHqqggViveKKBeACM+0/ubFBfv6kFxp6LE5MUJLyzhRd2LQjoWXifFyb6
eg6uuakTXUZxcgCHpc8iSjKPmBmh7dpeIxFwtL+G9LtP9IvXdyycQK9Ndhj/
oV94/1OyMgL2HbNEyA6i6g6LxRz9RkmJCW7R8X+hn1VKLBBCl9GrFQxCNohU
7VFK1UJjjqahfb2z+R4AQcRxkJQ12ORGBV5S2GGG3pyPmIiUwz4MEy0fp6Zo
v2vnd6jZF05k264RkRP3byaOTU835AQwv2NKlT46qJHybD2Ndif/Q/8f06P9
/Vvq1MOrOijjd4XYX5cdjgIFsfLeYhdpeFGInCwCm/DzMMSHr5jJGT09xNWG
y3vJRkP32svTdvh4zQlpvFtzIL6d2N86LhtHwuj566iclxa1mtnBhKd3PRQH
G1nHoj+oN8ZCOp7jR5kA1LOvPcoW7Y9tOWwzYSS+hJ3LsMQKR71GlcVxZmh+
iExrmfLqhCkBALsz8R5I/wtN+vvn88DOkVbhlkHswPt/uKte/eC2+pEbrzwf
4uemNr5fDrV9EAXLRGDetducEjqP/PHymT1qc56ViAENRUKxMM4w3HhvFGgG
PYw0lPhlrUS0ecBNaF7a3EpKRDtKOGAJ2mmQNWIsHR1vrLMna70NGTFSFj7D
PnhXRc9EuDxBS5FQaKiZhJ9hcMX6wVf1djMNBBs9vKs2noVHq0atLkvG35LR
KJMtVKOBpbjP8RryB1dPUfetmEw6+mgXGiBpjUHlOlz/+vaWkaWXTZMOLr6y
qPyLKJbQKXPDFMfkioqqoHChTdNJ9NvFZy6Xyo0H9FiDDdbjUP8ArTDt+rB9
5ZwL1H1Lz6Mo69WNXJxq6sFOr6vUAXUqSZqpIM2UWs0OfCoa6YjqRENm1Fjz
yWa3opzZjZ3yVVODDjMUaIkpjpIO46I5WsOk3ECLiLCMNZkhG9pN3eHOtGC5
GIjTq81x85STmjht6Vb9c2eo93a0IKjWBLGFlIhgG4NNc2GTglsWGFhiHr1g
SgYb32AhXYjiolCr+qvlM3jQ/MxpNMigRV7bp19FjWqD9pyDetANysC7bl6v
WnDpDLV7cafaduVkSq2f2VxJFJIHVIdfJEXWr43GHM1rkY6rhfEaHZkgyCFH
kZtUN8QoLYET3jvfqxHFuYFTaJqMHaWj5bAmIwQ9bmEdaLBoEmtQKEmOIfiK
DEEUO2hNnnukRZ3a1K2euqZTvbSpjWjvy/L/07s5mbr4Mkqmcpsanx7Vl9ci
z5raVnoo3sMu3Dmkglygu+oYdGebQ2X1MNUXolWoTdGTV9XQimRzg4BMJqMW
z+4zw6SKhmCS9MgSboSsBhuzojJDV7hhtDe8xEImXfWwyrIB+uKZ3D2dNmnm
aIQeFJxQjRNPPb8ltUmn6fbnb7ZgEL/MNpBaZ53gRuA3LOpTT2p/BeFjSGE4
ga9CCWAo+vSUu1oZ0ISpzXcZi2hC7rk2HDlMZI1ox1hGsY4J6EAbImgBxhIa
eWRptRrUROT0qqx6eW1OrZrbB8MHKR1vrBDZ415ZRvYV4qwg0mKLJozTmkLD
QFlRgXCjiBnI3LRYwQme5MkV3V7L4cDuKTzH/6ZMDpkJg1NyW4Fn6tWJTV1q
mbZgP9LifZzFS2IH7r9/W73atLAvAeBfHRCtAN+L/4T+mXnEyOEKskrC82Ac
DKStCuZpea+f20OJ4QTGQ5QzaiE9PLqsWp1cmVX5Ge2qSxums7trslBBxlEB
R2S0wtbhCx1WBTRXwuaNiJ9QQhK5RHO1DueTTYAwDYuARsW+Jd2EoGinwWrH
+Bk0k0FHI9LIG8LdnpfecU+jd1ydem0L51IE9PpnXn9Fnz7L0bWdauOCPkzK
j9y+iAv0VgfEKgPBo+mimYtFkZFDERIBCyaTfexkLpmm4gEygws49JCH04FW
Vs+cSMYXFHvkYH0FNMLSZ3YccjA8ELCUhxSHXWRsRCz9nDVZhuz5ygOxLiHm
tRIjmYl8JO6GdqFD5mvNGJMvNEnTs3oqkB3Z26i2XNFHVv+DnXXqC/3w9zwb
t4QtPiU/9IPW8xDXqgtYHhHuJfxRwbUy9J21Mc6txYfkNAmLElwCp2mx1jCM
DiYyYd61gQHAI5InIU9HANt6LXlFeqLWkZ+xPcnY7qc8Q0ITp7FPFS8cVRdF
tBAkDQmOTFuDiUwT5WIlBtEiONXTXD2I2wD+4UitOra+C8CFWOkmNsBS/5zp
Z3cunVIQsUYbAtKUVZ4eVxIJ80RmyhiWkWXLlmEXXqJX65lyyPfOhRMsPdrm
xCQX9XXzOkuQm/6KJEm4Sp17NGAqtvXyXRCPN9r32NtIXogtvUvLswG7ayNM
3ClQpXc1RRBmlcUO20O+kzJISh4RNgVli/T5ss+jaFftXTmZhA4RAMN39XcP
CwfdHJB1tcWoeMpLYwNBTSqam5ul+ruxyFPOsCJeL3lWMtFLa9Tm2a2EYoh3
7+queNCvp0GfIQEmSZTYhHcpPFeS/CptcABUE+oDQYXeTkB35WoQbSyI2eYM
ANcLp+PsfU7lJ6fU7x+qVf+0u0EdZt4+vHruVKRCANStIhbXAVYH7KbgdHZs
CawDZKjXeJkv8PT1zgyGK1UjQQ1QsQEOvzsO46qfk8zQtaQkZWWO7Li5KmsW
mkxkbDmfT905hHCj55zAceRQgxreXA2CMbKwJzlyz/JuO4aFaXkuqCqwTWRj
ph2jUhd01uUSvISS6k1IXtdoYrBjwSQhBxejNx5epkhgUex/siIrQwb0qGZZ
oTADI3O9n+VBeCpyrbPxDltRi6hk0agsTgNDpIkAEjPCGsDL8lO4V7x+EJp2
2qEnQPKY1Dj+x5NwqUIUuxQIScymHZHLZuFWFtuRKodMsl4sASA1VowjMA1v
qorM+IO5Y3NETMhuEyHFkxLrJY4347SI7BpTaMwe3iUkBAkICkOP5VJpoebA
q1hOGDt3xPCwlquyvNAuF/DJ6FMrVqyIrqNttVsHBgbgNYYXz+ojAd0yr9Xm
QPB+36JGEh7sKuiDjMC0AMjIDDKx1yXy0Z9VBLBHoq2yAUGb/Z5xMWLO2H0k
Zdi5Eunq6iqWyBcDEpFbJHm0TyQyLx5zgAONuWtpW6trvgyezi6UvEKxXcJ/
SMaxTZaXuOIQEQEaJVBLW7tFJC/MzmVbVnYbOVSvzt5ZQ+fTvKhYGvfK5bnW
WaThsQiRRp4/MoMKUmEfR6NRbnhJcpBat0iqzjC20sR3+89PkhDAf7TNiYhC
JHDNxZfM7/CcdUdXsVOUeMUfWQlBDS7fuXRjNsn67hOwu5Y2V/7aF8Rjw865
h6zvaisPczs5wcbIgpnTbAhgEroQR2PlOMNZEwF3VSsykPclMkB2MGdsjDa9
b+2cQBkOfcjEiNVX3vy+QuCy5Zd6Dlkum+9PQEtl7WxyJLOOa+2lVvErSp/j
OiUYnU7XOW96u5rSlDC4N9dIoffxxtglg3U7etbXSztVyPVrtMAKq62XZuG1
DJRJl0cCesuUvyjxpAg7vmfkYmQgh6ZriS/Q3AtC6xInLCy71Lj9TMm4xkXo
3+1aPueaPMunMZsIkLq0PBddKn5b9HiMOWvAZOR5w9i/1JnupQrKjU4JEWsC
EuQ8a31ewEtK3Tx7vL3YHfNqLCpDxkyuMOtwCHxslFhkj46Vu7BxcFXjnGuS
LMloBVX4s9dcVFBFf6sC18sT89n800uShb1XNNDg1Bt42YUeUfr6hFDmPDTi
QqQvHS4krx/PBjTCF4O347Ddv5hA+U/aLf+xF8Ocx6sdxR+dZUXgoibI/rgo
+Q4pT0ynvRhtfcp5iVN82NJClHF4Oy4fX4zQ9+cj9gv0gzkq9eazlZ3P9n8r
L4yo7DK74QHLGDLhEU+dO/M443CscTiY/2vu1k+/N79GshB0eB3JkqBD2WlZ
55t3Thf9eWC/hP0N/oDD4s0PRDdu85MRkauUbPgHe5+eM962KF4OKGfgW3ol
TedO+qOcYmLY+0GLy5/Bw2UUz5HIGWSmZGsUY8zqKXTUv+f9PYBErGYzZnm8
laxskqN51OsffJHGw99aqULkjORQfnR+4LAf+D+cLl8OK+ur8s71Gt/+mYcl
VPFAGIlRsE7kHDkmNoo1mS97ILIMzhXzIuBUQX4abphFHVj5AB6Jd3RrzmMa
CDu65ZyExSIqj6PQ0b5Dz7nQ0QwWIBvJfjAn9hUzL3DUb5Jo6ZqzxTdjdA9r
+iVz9JHJR761M1qREe7B+V2WmLm3h+mjLLf38OyNGFjuhGY5TsFRVBQ6w1+X
Fw3+mw65nOePNseioRACRwkd9atjFQ0Xk0TX8zE80cwKHPfM2OXBviLaIkeJ
HM53aeDIb4xNDrzaKbqBpbzV+b1WypJd9wbbK+WP7oqDe04ZWEOjAnTDc0qa
KoZO9iI9VxghjSp/biMSce6Uarjg7X+mH7+MBPWVsc7tcAitETvtX6Pb8xv/
zWk/750ROYxvRMwnEJX8FFudkmCLhj8NnPHE6FI1OpvhnjHzlH76QhT//S7i
MJFP6g0c/BHE+Qg+/X4GT2OB+EXe6UEnbnFO/+uIl9A5XQ3JlA0MDARP+yQ9
j2kEzPROvF8/PSgnhZ7/J+I4wUQDEZMIEvb0wImPlhe2O0DmuCclZvfjiF06
DkNmXUoe3BDMFBZ5Z3y4/BldAbMjM87lMf30m4hXIPxZZNsjbY0ClaZ03yVy
zgdpozdkzpbTJ9fEmUHq1bo1iXKiGEP4enyeB/1LCo0RnIMLfaLdfAocxjbt
kZuUuIRHeDYOtnd0kRklMUmM7uRj5V3ZJEc9/l30agygZ4oU7eGjuQIxZKT0
DEXw3S3CHAPSmaFIPixViOKCGXwj1Ev0tvKCctHMVCC6K74MmnHShC/YofTm
0cVvpMNeNLqHj1CIHMMaEsSN9Dw2cLJjklxYSWBFQyvUzff60cVhcCnc5z7R
jKNV7BU68HVjk8hOPvD9sUQs4CcGjkrWZSww5Jxx9AAfwxNHqHP2armwMUBO
XIgk3lxRBDNpUifvkeQVowvdYJB1Ge3n31ZwrgF7tQYOvGxsQmepRAf8SyBw
h456JT2PDYZ8zOhgrE+L8JAk8qNLwsDvMB/hbj6Cl/GSxub5KCrNJLAL8Ln7
3LGJ6FHvjF7iqajLdUHOFjoZ8c2xwPWJ8qdz+AGGBk5rHKl3rovlZ40BwsfK
n81phmsTxFLq49ntC8uL0YXwIO8tZtTLqPBRS3KyZKlqAmecWv6MriiHvDN6
WRPR0NYoLh8InonuGTZGvL/gidLLl8jpcIFIrBXonfyE0t6y/k/oGV28Zlxw
Lsf4Ey+XIoykEPlNmdycvnfGjrGJ93Xem8looOWPHNozgXy7jDGMgq/w/k/x
T++K/IgndOgW2XUMoP9L/oYkaAuR03A1Ezhyw+gaMAB/m/d+ho/QFTm5MfYG
qWHnqPhm3dgE/Q5/41k5SBSrEXuJp3GPLYHi2GD7Tf7KcV+NNF0QOnRqdGEY
OH6H9+ZBXxJQ0RETY7t6zgJFJ/mSCnIkc67gJYkJM2neyMn2/ZA/QiY2urX0
NePtsxse/MTb3VsJ/y/80dP8kbcQ+qf8keDOu+/gJ84By6yD/Ng9Z3hJ3Sfe
LsHVWJ94v8GLXD4plUc07v8BPP28Fw==\
\>", "ImageResolution" -> \
72.],ExpressionUUID->"8512182d-75d7-49e4-969d-2446ea494f9a"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"ByteCount", "[",
RowBox[{"ineq", "=",
RowBox[{"PolyhedronInequalities", "[",
RowBox[{"p", ",",
RowBox[{"{",
RowBox[{"#1", ",", "#2", ",", "#3"}], "}"}]}], "]"}]}], "]"}]], "Input",\
CellLabel->"In[4]:=",ExpressionUUID->"946fac39-b6d7-4d2f-8997-c40006a6ad79"],
Cell[BoxData["850408"], "Output",
CellLabel->"Out[4]=",ExpressionUUID->"b6157469-3f1a-4f52-9530-476d1a381a21"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"ByteCount", "[",
RowBox[{"ineq2", "=",
RowBox[{"FullSimplify", "[", "ineq", "]"}]}], "]"}], "//",
"Timing"}]], "Input",
CellLabel->"In[5]:=",ExpressionUUID->"07f551d4-a990-43f7-8d57-13ce96053d32"],
Cell[BoxData[
RowBox[{"{",
RowBox[{"3811.154819`", ",", "83720"}], "}"}]], "Output",
CellLabel->"Out[5]=",ExpressionUUID->"fd46657b-93fc-4741-b7d2-932f2e6ac075"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData["ineq2"], "Input",
CellLabel->"In[8]:=",ExpressionUUID->"0d99fe7f-2e1c-4f8c-9468-196a121ceb55"],
Cell[BoxData[
RowBox[{
RowBox[{
RowBox[{"15", "+",
RowBox[{"10", " ",
SqrtBox["5"]}], "+",
RowBox[{
SqrtBox[
RowBox[{"50", "-",
RowBox[{"10", " ",
SqrtBox["5"]}]}]], " ", "#2"}], "+",
RowBox[{"2", " ",
SqrtBox[
RowBox[{"5", " ",
RowBox[{"(",
RowBox[{"5", "-",
RowBox[{"2", " ",
SqrtBox["5"]}]}], ")"}]}]], " ", "#3"}]}], "\[GreaterEqual]",
RowBox[{"5", " ",
RowBox[{"(",
RowBox[{"1", "+",
SqrtBox["5"]}], ")"}], " ", "#1"}]}], "&&",
RowBox[{
RowBox[{
RowBox[{
SqrtBox[
RowBox[{"2", " ",
RowBox[{"(",
RowBox[{"5", "+",
SqrtBox["5"]}], ")"}]}]], " ", "#2"}], "+",
RowBox[{
SqrtBox[
RowBox[{"5", "-",
RowBox[{"2", " ",
SqrtBox["5"]}]}]], " ", "#3"}]}], "\[LessEqual]",
RowBox[{"5", "+",
FractionBox[
RowBox[{"3", " ",
SqrtBox["5"]}], "2"]}]}], "&&",
RowBox[{
RowBox[{"15", "+",
RowBox[{"10", " ",
SqrtBox["5"]}], "+",
RowBox[{"2", " ",
SqrtBox[
RowBox[{"5", " ",
RowBox[{"(",
RowBox[{"5", "+",
RowBox[{"2", " ",
SqrtBox["5"]}]}], ")"}]}]], " ", "#2"}]}], "\[GreaterEqual]",
RowBox[{
RowBox[{"10", " ", "#1"}], "+",
RowBox[{"2", " ",
SqrtBox[
RowBox[{"5", " ",
RowBox[{"(",
RowBox[{"5", "-",
RowBox[{"2", " ",
SqrtBox["5"]}]}], ")"}]}]], " ", "#3"}]}]}], "&&",
RowBox[{
RowBox[{
RowBox[{"5", " ", "#1"}], "+",
RowBox[{
SqrtBox[
RowBox[{"5", " ",
RowBox[{"(",
RowBox[{"5", "+",
RowBox[{"2", " ",
SqrtBox["5"]}]}], ")"}]}]], " ", "#2"}]}], "\[LessEqual]",
RowBox[{
FractionBox["15", "2"], "+",
RowBox[{"5", " ",
SqrtBox["5"]}], "+",
RowBox[{
SqrtBox[
RowBox[{"5", " ",
RowBox[{"(",
RowBox[{"5", "-",
RowBox[{"2", " ",
SqrtBox["5"]}]}], ")"}]}]], " ", "#3"}]}]}], "&&",
RowBox[{
RowBox[{"60", "+",
RowBox[{"40", " ",
SqrtBox["5"]}], "+",
RowBox[{"8", " ",
SqrtBox[
RowBox[{"5", " ",
RowBox[{"(",
RowBox[{"5", "-",
RowBox[{"2", " ",
SqrtBox["5"]}]}], ")"}]}]], " ", "#2"}], "+",
RowBox[{"3", " ",
SqrtBox[
RowBox[{"250", "+",
RowBox[{"110", " ",
SqrtBox["5"]}]}]], " ", "#3"}]}], "\[GreaterEqual]",
RowBox[{
RowBox[{"40", " ", "#1"}], "+",
RowBox[{"5", " ",
SqrtBox[
RowBox[{"10", "-",
RowBox[{"2", " ",
SqrtBox["5"]}]}]], " ", "#3"}]}]}], "&&",
RowBox[{
RowBox[{
RowBox[{"5", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+",
SqrtBox["5"]}], ")"}], " ", "#1"}], "+",
RowBox[{
SqrtBox[
RowBox[{"10", " ",
RowBox[{"(",
RowBox[{"5", "+",
SqrtBox["5"]}], ")"}]}]], " ", "#2"}]}], "\[LessEqual]",
RowBox[{"15", "+",
RowBox[{"10", " ",
SqrtBox["5"]}], "+",
RowBox[{"2", " ",
SqrtBox[
RowBox[{"5", " ",
RowBox[{"(",
RowBox[{"5", "+",
RowBox[{"2", " ",
SqrtBox["5"]}]}], ")"}]}]], " ", "#3"}]}]}], "&&",
RowBox[{
RowBox[{
SqrtBox["5"], " ",
RowBox[{"(",
RowBox[{"15", "+",
RowBox[{"2", " ",
SqrtBox[
RowBox[{"10", "-",
RowBox[{"2", " ",
SqrtBox["5"]}]}]], " ", "#2"}]}], ")"}]}], "\[GreaterEqual]",
RowBox[{"5", "+",
RowBox[{"10", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "3"}], "+",
SqrtBox["5"]}], ")"}], " ", "#1"}], "+",
RowBox[{"20", " ",
RowBox[{"Root", "[",
RowBox[{
RowBox[{
RowBox[{"1", "-",
RowBox[{"65", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"5", " ",
SuperscriptBox["#1", "4"]}]}], "&"}], ",", "3"}], "]"}], " ",
"#3"}]}]}], "&&",
RowBox[{
RowBox[{"15", "+",
RowBox[{"10", " ",
SqrtBox["5"]}], "+",
RowBox[{"2", " ",
SqrtBox[
RowBox[{"50", "-",
RowBox[{"10", " ",
SqrtBox["5"]}]}]], " ", "#2"}], "+",
RowBox[{"2", " ",
SqrtBox[
RowBox[{"5", " ",
RowBox[{"(",
RowBox[{"5", "+",
RowBox[{"2", " ",
SqrtBox["5"]}]}], ")"}]}]], " ", "#3"}]}], "\[GreaterEqual]", "0"}],
"&&",
RowBox[{
RowBox[{
SqrtBox[
RowBox[{"5", " ",
RowBox[{"(",
RowBox[{"5", "+",
RowBox[{"2", " ",
SqrtBox["5"]}]}], ")"}]}]], " ", "#2"}], "\[LessEqual]",
RowBox[{
FractionBox["15", "2"], "+",
RowBox[{"5", " ",
SqrtBox["5"]}], "+",
RowBox[{"5", " ", "#1"}], "+",
RowBox[{
SqrtBox[
RowBox[{"5", " ",
RowBox[{"(",
RowBox[{"5", "-",
RowBox[{"2", " ",
SqrtBox["5"]}]}], ")"}]}]], " ", "#3"}]}]}], "&&",
RowBox[{
RowBox[{"15", "+",
RowBox[{"10", " ",
SqrtBox["5"]}], "+",
RowBox[{"2", " ",
SqrtBox[
RowBox[{"10", " ",
RowBox[{"(",
RowBox[{"5", "+",
SqrtBox["5"]}], ")"}]}]], " ", "#2"}], "+",
RowBox[{"2", " ",
SqrtBox[
RowBox[{"5", " ",
RowBox[{"(",
RowBox[{"5", "-",
RowBox[{"2", " ",
SqrtBox["5"]}]}], ")"}]}]], " ", "#3"}]}], "\[GreaterEqual]", "0"}],
"&&",
RowBox[{
RowBox[{
RowBox[{
SqrtBox[
RowBox[{"50", "-",
RowBox[{"10", " ",
SqrtBox["5"]}]}]], " ", "#2"}], "+",
RowBox[{"2", " ",
SqrtBox[
RowBox[{"5", " ",
RowBox[{"(",
RowBox[{"5", "-",
RowBox[{"2", " ",
SqrtBox["5"]}]}], ")"}]}]], " ", "#3"}]}], "\[LessEqual]",
RowBox[{"5", " ",
RowBox[{"(",
RowBox[{"3", "+",
RowBox[{"2", " ",
SqrtBox["5"]}], "+",
RowBox[{
RowBox[{"(",
RowBox[{"1", "+",
SqrtBox["5"]}], ")"}], " ", "#1"}]}], ")"}]}]}], "&&",
RowBox[{
RowBox[{
SqrtBox[
RowBox[{"10", " ",
RowBox[{"(",
RowBox[{"5", "+",
SqrtBox["5"]}], ")"}]}]], " ", "#2"}], "\[LessEqual]",
RowBox[{"15", "+",
RowBox[{"10", " ",
SqrtBox["5"]}], "+",
RowBox[{"5", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+",
SqrtBox["5"]}], ")"}], " ", "#1"}], "+",
RowBox[{"2", " ",
SqrtBox[
RowBox[{"5", " ",
RowBox[{"(",
RowBox[{"5", "+",
RowBox[{"2", " ",
SqrtBox["5"]}]}], ")"}]}]], " ", "#3"}]}]}], "&&",
RowBox[{
RowBox[{
RowBox[{"-", "5"}], " ",
RowBox[{"(",
RowBox[{"3", "+",
RowBox[{"2", " ",
SqrtBox["5"]}]}], ")"}]}], "\[LessEqual]",
RowBox[{
RowBox[{"5", " ",
RowBox[{"(",
RowBox[{"1", "+",
SqrtBox["5"]}], ")"}], " ", "#1"}], "+",
RowBox[{
SqrtBox[
RowBox[{"50", "-",
RowBox[{"10", " ",
SqrtBox["5"]}]}]], " ", "#2"}], "+",
RowBox[{"2", " ",
SqrtBox[
RowBox[{"5", " ",
RowBox[{"(",
RowBox[{"5", "-",
RowBox[{"2", " ",
SqrtBox["5"]}]}], ")"}]}]], " ", "#3"}]}], "\[LessEqual]",
RowBox[{"5", " ",
RowBox[{"(",
RowBox[{"3", "+",
RowBox[{"2", " ",
SqrtBox["5"]}]}], ")"}]}]}], "&&",
RowBox[{
RowBox[{"60", "+",
RowBox[{"40", " ",
SqrtBox["5"]}], "+",
RowBox[{"40", " ", "#1"}], "+",
RowBox[{"8", " ",
SqrtBox[
RowBox[{"5", " ",
RowBox[{"(",
RowBox[{"5", "-",
RowBox[{"2", " ",
SqrtBox["5"]}]}], ")"}]}]], " ", "#2"}], "+",
RowBox[{"3", " ",
SqrtBox[
RowBox[{"250", "+",
RowBox[{"110", " ",
SqrtBox["5"]}]}]], " ", "#3"}]}], "\[GreaterEqual]",
RowBox[{"5", " ",
SqrtBox[
RowBox[{"10", "-",
RowBox[{"2", " ",
SqrtBox["5"]}]}]], " ", "#3"}]}], "&&",
RowBox[{
RowBox[{
RowBox[{"10", " ",
RowBox[{"(",
RowBox[{"2", "+",
SqrtBox["5"]}], ")"}]}], "+",
RowBox[{
SqrtBox[
RowBox[{"50", "-",
RowBox[{"10", " ",
SqrtBox["5"]}]}]], " ",
RowBox[{"(",
RowBox[{"#2", "+",
RowBox[{"2", " ", "#3"}]}], ")"}]}]}], "\[GreaterEqual]",
RowBox[{"5", " ",
RowBox[{"(",
RowBox[{"1", "+",
SqrtBox["5"]}], ")"}], " ", "#1"}]}], "&&",
RowBox[{
RowBox[{"2", "+",
SqrtBox["5"], "+",
RowBox[{"2", " ", "#1"}]}], "\[GreaterEqual]", "0"}], "&&",
RowBox[{
RowBox[{"2", " ", "#1"}], "\[LessEqual]",
RowBox[{"2", "+",
SqrtBox["5"]}]}], "&&",
RowBox[{
RowBox[{
RowBox[{"-", "2"}], " ",
RowBox[{"(",
RowBox[{"2", "+",
SqrtBox["5"]}], ")"}]}], "\[LessEqual]",
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+",
SqrtBox["5"]}], ")"}], " ", "#1"}], "+",
RowBox[{
SqrtBox[
RowBox[{"2", " ",
RowBox[{"(",
RowBox[{"5", "+",
SqrtBox["5"]}], ")"}]}]], " ", "#2"}]}], "\[LessEqual]",
RowBox[{"2", " ",
RowBox[{"(",
RowBox[{"2", "+",
SqrtBox["5"]}], ")"}]}]}], "&&",
RowBox[{
RowBox[{
RowBox[{"-", "5"}], " ",
RowBox[{"(",
RowBox[{"2", "+",
SqrtBox["5"]}], ")"}]}], "\[LessEqual]",
RowBox[{
RowBox[{
SqrtBox[
RowBox[{"10", " ",
RowBox[{"(",
RowBox[{"5", "+",
SqrtBox["5"]}], ")"}]}]], " ", "#2"}], "+",
RowBox[{
SqrtBox[
RowBox[{"50", "-",
RowBox[{"10", " ",
SqrtBox["5"]}]}]], " ", "#3"}]}], "\[LessEqual]",
RowBox[{"5", " ",
RowBox[{"(",
RowBox[{"2", "+",
SqrtBox["5"]}], ")"}]}]}], "&&",
RowBox[{
RowBox[{
RowBox[{"-", "5"}], " ",
RowBox[{"(",
RowBox[{"2", "+",
SqrtBox["5"]}], ")"}]}], "\[LessEqual]",
RowBox[{
RowBox[{
RowBox[{"-", "5"}], " ", "#1"}], "+",
RowBox[{
SqrtBox[
RowBox[{"5", " ",
RowBox[{"(",
RowBox[{"5", "+",
RowBox[{"2", " ",
SqrtBox["5"]}]}], ")"}]}]], " ", "#2"}], "-",
RowBox[{
SqrtBox[
RowBox[{"50", "-",
RowBox[{"10", " ",
SqrtBox["5"]}]}]], " ", "#3"}]}], "\[LessEqual]",
RowBox[{"5", " ",
RowBox[{"(",
RowBox[{"2", "+",
SqrtBox["5"]}], ")"}]}]}], "&&",
RowBox[{
RowBox[{
RowBox[{"-", "2"}], " ",
RowBox[{"(",
RowBox[{"2", "+",
SqrtBox["5"]}], ")"}]}], "\[LessEqual]",
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{"1", "+",
SqrtBox["5"]}], ")"}], " ", "#1"}], "-",
RowBox[{
SqrtBox[
RowBox[{"10", "-",
RowBox[{"2", " ",
SqrtBox["5"]}]}]], " ", "#2"}]}], "\[LessEqual]",
RowBox[{"2", " ",
RowBox[{"(",
RowBox[{"2", "+",
SqrtBox["5"]}], ")"}]}]}], "&&",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{"1", "+",
SqrtBox["5"]}], ")"}], " ", "#1"}], "+",
RowBox[{
SqrtBox[
RowBox[{"10", "-",
RowBox[{"2", " ",
SqrtBox["5"]}]}]], " ", "#2"}]}], "\[LessEqual]",
RowBox[{"2", " ",
RowBox[{"(",
RowBox[{"2", "+",
SqrtBox["5"]}], ")"}]}]}], "&&",
RowBox[{
RowBox[{
RowBox[{"5", " ", "#1"}], "+",
RowBox[{
SqrtBox[
RowBox[{"5", " ",
RowBox[{"(",
RowBox[{"5", "+",
RowBox[{"2", " ",
SqrtBox["5"]}]}], ")"}]}]], " ", "#2"}]}], "\[LessEqual]",
RowBox[{
RowBox[{"5", " ",
RowBox[{"(",
RowBox[{"2", "+",
SqrtBox["5"]}], ")"}]}], "+",
RowBox[{
SqrtBox[
RowBox[{"50", "-",
RowBox[{"10", " ",
SqrtBox["5"]}]}]], " ", "#3"}]}]}], "&&",
RowBox[{
RowBox[{
RowBox[{"10", " ",
RowBox[{"(",
RowBox[{"2", "+",
SqrtBox["5"]}], ")"}]}], "+",
RowBox[{
SqrtBox[
RowBox[{"10", " ",
RowBox[{"(",
RowBox[{"5", "+",
SqrtBox["5"]}], ")"}]}]], " ",
RowBox[{"(",
RowBox[{"#2", "+",
RowBox[{"2", " ", "#3"}]}], ")"}]}]}], "\[GreaterEqual]",
RowBox[{"5", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+",
SqrtBox["5"]}], ")"}], " ", "#1"}]}], "&&",
RowBox[{
RowBox[{"80", "+",
RowBox[{"40", " ",
SqrtBox["5"]}], "+",
RowBox[{"40", " ", "#1"}], "+",
RowBox[{"8", " ",
SqrtBox[
RowBox[{"5", " ",
RowBox[{"(",
RowBox[{"5", "+",
RowBox[{"2", " ",
SqrtBox["5"]}]}], ")"}]}]], " ", "#2"}], "+",
RowBox[{"5", " ",
SqrtBox[
RowBox[{"250", "+",
RowBox[{"82", " ",
SqrtBox["5"]}]}]], " ", "#3"}]}], "\[GreaterEqual]",
RowBox[{
SqrtBox[
RowBox[{"11050", "+",
RowBox[{"4610", " ",
SqrtBox["5"]}]}]], " ", "#3"}]}], "&&",
RowBox[{
RowBox[{
SqrtBox[
RowBox[{"50", "-",
RowBox[{"10", " ",
SqrtBox["5"]}]}]], " ", "#2"}], "\[LessEqual]",
RowBox[{
RowBox[{"5", " ",
RowBox[{"(",
RowBox[{"2", "+",
SqrtBox["5"]}], ")"}]}], "+",
RowBox[{
SqrtBox[
RowBox[{"10", " ",
RowBox[{"(",
RowBox[{"5", "+",
SqrtBox["5"]}], ")"}]}]], " ", "#3"}]}]}], "&&",
RowBox[{
RowBox[{
SqrtBox[
RowBox[{"50", "-",
RowBox[{"10", " ",
SqrtBox["5"]}]}]], " ",
RowBox[{"(",
RowBox[{"#2", "+",
RowBox[{"2", " ", "#3"}]}], ")"}]}], "\[LessEqual]",
RowBox[{"5", " ",
RowBox[{"(",
RowBox[{"4", "+",
RowBox[{"2", " ",
SqrtBox["5"]}], "+", "#1", "+",
RowBox[{
SqrtBox["5"], " ", "#1"}]}], ")"}]}]}], "&&",
RowBox[{
RowBox[{"1", "+",
SqrtBox["5"], "+",
RowBox[{
SqrtBox["5"], " ", "#1"}], "+",
RowBox[{
SqrtBox[
RowBox[{"50", "-",
RowBox[{"22", " ",
SqrtBox["5"]}]}]], " ", "#2"}]}], "\[GreaterEqual]", "#1"}], "&&",
RowBox[{
RowBox[{
RowBox[{"10", " ",
RowBox[{"(",
RowBox[{"2", "+",
SqrtBox["5"]}], ")"}]}], "+",
RowBox[{"5", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+",
SqrtBox["5"]}], ")"}], " ", "#1"}], "+",
RowBox[{
SqrtBox[
RowBox[{"10", " ",
RowBox[{"(",
RowBox[{"5", "+",
SqrtBox["5"]}], ")"}]}]], " ",
RowBox[{"(",
RowBox[{"#2", "+",
RowBox[{"2", " ", "#3"}]}], ")"}]}]}], "\[GreaterEqual]", "0"}], "&&",
RowBox[{
RowBox[{
SqrtBox[
RowBox[{"5", " ",
RowBox[{"(",
RowBox[{"5", "-",
RowBox[{"2", " ",
SqrtBox["5"]}]}], ")"}]}]], " ", "#2"}], "\[LessEqual]",
RowBox[{
RowBox[{"5", " ",
RowBox[{"(",
RowBox[{"2", "+",
SqrtBox["5"]}], ")"}]}], "+",
RowBox[{"5", " ", "#1"}], "+",
RowBox[{
SqrtBox[
RowBox[{"10", " ",
RowBox[{"(",
RowBox[{"5", "+",
SqrtBox["5"]}], ")"}]}]], " ", "#3"}]}]}], "&&",
RowBox[{
RowBox[{
RowBox[{"-", "10"}], " ",
RowBox[{"(",
RowBox[{"2", "+",
SqrtBox["5"]}], ")"}]}], "\[LessEqual]",
RowBox[{
RowBox[{"5", " ",
RowBox[{"(",
RowBox[{"1", "+",
SqrtBox["5"]}], ")"}], " ", "#1"}], "+",
RowBox[{
SqrtBox[
RowBox[{"50", "-",
RowBox[{"10", " ",
SqrtBox["5"]}]}]], " ",
RowBox[{"(",
RowBox[{"#2", "+",
RowBox[{"2", " ", "#3"}]}], ")"}]}]}], "\[LessEqual]",
RowBox[{"10", " ",
RowBox[{"(",
RowBox[{"2", "+",
SqrtBox["5"]}], ")"}]}]}], "&&",
RowBox[{
RowBox[{
RowBox[{"-", "2"}], " ",
RowBox[{"(",
RowBox[{"2", "+",
SqrtBox["5"]}], ")"}]}], "\[LessEqual]",
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+",
SqrtBox["5"]}], ")"}], " ", "#1"}], "-",
RowBox[{
SqrtBox[
RowBox[{"2", " ",
RowBox[{"(",
RowBox[{"5", "+",
SqrtBox["5"]}], ")"}]}]], " ", "#2"}]}], "\[LessEqual]",
RowBox[{"2", " ",
RowBox[{"(",
RowBox[{"2", "+",
SqrtBox["5"]}], ")"}]}]}], "&&",
RowBox[{
RowBox[{
RowBox[{"5", " ", "#1"}], "+",
RowBox[{
SqrtBox[
RowBox[{"5", " ",
RowBox[{"(",
RowBox[{"5", "-",
RowBox[{"2", " ",
SqrtBox["5"]}]}], ")"}]}]], " ", "#2"}]}], "\[LessEqual]",
RowBox[{
RowBox[{"5", " ",
RowBox[{"(",
RowBox[{"2", "+",
SqrtBox["5"]}], ")"}]}], "+",
RowBox[{
SqrtBox[
RowBox[{"10", " ",
RowBox[{"(",
RowBox[{"5", "+",
SqrtBox["5"]}], ")"}]}]], " ", "#3"}]}]}], "&&",
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{"1", "+",
SqrtBox["5"]}], ")"}], " ", "#3"}], "\[LessEqual]",
SqrtBox[
RowBox[{
FractionBox["45", "2"], "+",
FractionBox["99",
RowBox[{"2", " ",
SqrtBox["5"]}]]}]]}], "&&",
RowBox[{
RowBox[{
RowBox[{"-",
FractionBox["15", "2"]}], " ",
RowBox[{"(",
RowBox[{"3", "+",
SqrtBox["5"]}], ")"}]}], "\[LessEqual]",
RowBox[{
RowBox[{"5", " ",
RowBox[{"(",
RowBox[{"1", "+",
SqrtBox["5"]}], ")"}], " ", "#1"}], "+",
RowBox[{
SqrtBox[
RowBox[{"50", "-",
RowBox[{"10", " ",
SqrtBox["5"]}]}]], " ", "#2"}], "-",
RowBox[{
SqrtBox[
RowBox[{"10", " ",
RowBox[{"(",
RowBox[{"5", "+",
SqrtBox["5"]}], ")"}]}]], " ", "#3"}]}], "\[LessEqual]",
RowBox[{
FractionBox["15", "2"], " ",
RowBox[{"(",
RowBox[{"3", "+",
SqrtBox["5"]}], ")"}]}]}], "&&",
RowBox[{
RowBox[{
RowBox[{"-",
FractionBox["15", "2"]}], " ",
RowBox[{"(",
RowBox[{"3", "+",
SqrtBox["5"]}], ")"}]}], "\[LessEqual]",
RowBox[{
RowBox[{"10", " ", "#1"}], "+",
RowBox[{"2", " ",
SqrtBox[
RowBox[{"5", " ",
RowBox[{"(",
RowBox[{"5", "+",
RowBox[{"2", " ",
SqrtBox["5"]}]}], ")"}]}]], " ", "#2"}], "+",
RowBox[{
SqrtBox[
RowBox[{"10", " ",
RowBox[{"(",
RowBox[{"5", "+",
SqrtBox["5"]}], ")"}]}]], " ", "#3"}]}], "\[LessEqual]",
RowBox[{
FractionBox["15", "2"], " ",
RowBox[{"(",
RowBox[{"3", "+",
SqrtBox["5"]}], ")"}]}]}], "&&",
RowBox[{
RowBox[{
RowBox[{"-",
FractionBox["15", "2"]}], " ",
RowBox[{"(",
RowBox[{"3", "+",
SqrtBox["5"]}], ")"}]}], "\[LessEqual]",
RowBox[{
RowBox[{
RowBox[{"-", "5"}], " ",
RowBox[{"(",
RowBox[{"1", "+",
SqrtBox["5"]}], ")"}], " ", "#1"}], "+",
RowBox[{
SqrtBox[
RowBox[{"50", "-",
RowBox[{"10", " ",
SqrtBox["5"]}]}]], " ", "#2"}], "-",
RowBox[{
SqrtBox[
RowBox[{"10", " ",
RowBox[{"(",
RowBox[{"5", "+",
SqrtBox["5"]}], ")"}]}]], " ", "#3"}]}], "\[LessEqual]",
RowBox[{
FractionBox["15", "2"], " ",
RowBox[{"(",
RowBox[{"3", "+",
SqrtBox["5"]}], ")"}]}]}], "&&",
RowBox[{
RowBox[{"45", "+",
RowBox[{"15", " ",
SqrtBox["5"]}], "+",
RowBox[{"4", " ",
SqrtBox[
RowBox[{"5", " ",
RowBox[{"(",
RowBox[{"5", "+",
RowBox[{"2", " ",
SqrtBox["5"]}]}], ")"}]}]], " ", "#2"}], "+",
RowBox[{"2", " ",
SqrtBox[
RowBox[{"10", " ",
RowBox[{"(",
RowBox[{"5", "+",
SqrtBox["5"]}], ")"}]}]], " ", "#3"}]}], "\[GreaterEqual]",
RowBox[{"20", " ", "#1"}]}], "&&",
RowBox[{
RowBox[{
RowBox[{"15", " ",
RowBox[{"(",
RowBox[{"3", "+",
SqrtBox["5"]}], ")"}]}], "+",
RowBox[{"2", " ",
SqrtBox[
RowBox[{"10", " ",
RowBox[{"(",
RowBox[{"5", "+",
SqrtBox["5"]}], ")"}]}]], " ",
RowBox[{"(",
RowBox[{
RowBox[{"2", " ", "#2"}], "-", "#3"}], ")"}]}]}], "\[GreaterEqual]",
"0"}], "&&",
RowBox[{
RowBox[{
RowBox[{"4", " ",
SqrtBox[
RowBox[{"10", "-",
RowBox[{"2", " ",
SqrtBox["5"]}]}]], " ", "#2"}], "+",
RowBox[{"2", " ",
SqrtBox[
RowBox[{"170", "+",
RowBox[{"62", " ",
SqrtBox["5"]}]}]], " ", "#3"}]}], "\[LessEqual]",
RowBox[{
RowBox[{"3", " ",
RowBox[{"(",
RowBox[{"5", "+",
SqrtBox["5"]}], ")"}]}], "+",
RowBox[{"4", " ",
SqrtBox[
RowBox[{"50", "+",
RowBox[{"22", " ",
SqrtBox["5"]}]}]], " ", "#3"}]}]}], "&&",
RowBox[{
RowBox[{
RowBox[{"4", " ",
SqrtBox[
RowBox[{"5", " ",
RowBox[{"(",
RowBox[{"5", "+",
RowBox[{"2", " ",
SqrtBox["5"]}]}], ")"}]}]], " ", "#2"}], "+",
RowBox[{"2", " ",
SqrtBox[
RowBox[{"10", " ",
RowBox[{"(",
RowBox[{"5", "+",
SqrtBox["5"]}], ")"}]}]], " ", "#3"}]}], "\[LessEqual]",
RowBox[{"5", " ",
RowBox[{"(",
RowBox[{"9", "+",
RowBox[{"3", " ",
SqrtBox["5"]}], "+",
RowBox[{"4", " ", "#1"}]}], ")"}]}]}], "&&",
RowBox[{
RowBox[{"15", "+",
RowBox[{"9", " ",
SqrtBox["5"]}], "+",
RowBox[{"2", " ",
SqrtBox[
RowBox[{"10", " ",
RowBox[{"(",
RowBox[{"5", "+",
SqrtBox["5"]}], ")"}]}]], " ", "#3"}]}], "\[GreaterEqual]", "0"}], "&&",
RowBox[{
RowBox[{
FractionBox["15", "2"], "+",
RowBox[{"5", " ",
SqrtBox["5"]}], "+",
RowBox[{
SqrtBox[
RowBox[{"5", " ",
RowBox[{"(",
RowBox[{"5", "-",
RowBox[{"2", " ",
SqrtBox["5"]}]}], ")"}]}]], " ", "#2"}]}], "\[GreaterEqual]",
RowBox[{
RowBox[{"5", " ", "#1"}], "+",
RowBox[{
SqrtBox[
RowBox[{"5", " ",
RowBox[{"(",
RowBox[{"5", "+",
RowBox[{"2", " ",
SqrtBox["5"]}]}], ")"}]}]], " ", "#3"}]}]}], "&&",
RowBox[{
RowBox[{
RowBox[{
SqrtBox[
RowBox[{"10", " ",
RowBox[{"(",
RowBox[{"5", "+",
SqrtBox["5"]}], ")"}]}]], " ", "#2"}], "+",
RowBox[{"2", " ",
SqrtBox[
RowBox[{"5", " ",
RowBox[{"(",
RowBox[{"5", "+",
RowBox[{"2", " ",
SqrtBox["5"]}]}], ")"}]}]], " ", "#3"}]}], "\[LessEqual]",
RowBox[{"5", " ",
RowBox[{"(",
RowBox[{"3", "+",
RowBox[{"2", " ",
SqrtBox["5"]}], "+",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+",
SqrtBox["5"]}], ")"}], " ", "#1"}]}], ")"}]}]}], "&&",
RowBox[{
RowBox[{
FractionBox["15", "2"], "+",
RowBox[{"5", " ",
SqrtBox["5"]}], "+",
RowBox[{
SqrtBox[
RowBox[{"50", "-",
RowBox[{"10", " ",
SqrtBox["5"]}]}]], " ", "#2"}]}], "\[GreaterEqual]",
RowBox[{
SqrtBox[
RowBox[{"5", " ",
RowBox[{"(",
RowBox[{"5", "+",
RowBox[{"2", " ",
SqrtBox["5"]}]}], ")"}]}]], " ", "#3"}]}], "&&",
RowBox[{
RowBox[{
FractionBox["15", "2"], "+",
RowBox[{"5", " ",
SqrtBox["5"]}], "+",
RowBox[{"5", " ", "#1"}], "+",
RowBox[{
SqrtBox[
RowBox[{"5", " ",
RowBox[{"(",
RowBox[{"5", "-",
RowBox[{"2", " ",
SqrtBox["5"]}]}], ")"}]}]], " ", "#2"}]}], "\[GreaterEqual]",
RowBox[{
SqrtBox[
RowBox[{"5", " ",
RowBox[{"(",
RowBox[{"5", "+",
RowBox[{"2", " ",
SqrtBox["5"]}]}], ")"}]}]], " ", "#3"}]}], "&&",
RowBox[{
RowBox[{
SqrtBox["5"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"5", " ", "#1"}], "+",
RowBox[{
SqrtBox[
RowBox[{"2", " ",
RowBox[{"(",
RowBox[{"5", "+",
SqrtBox["5"]}], ")"}]}]], " ", "#2"}], "+",
RowBox[{"2", " ",
SqrtBox[
RowBox[{"5", "+",
RowBox[{"2", " ",
SqrtBox["5"]}]}]], " ", "#3"}]}], ")"}]}], "\[LessEqual]",
RowBox[{"5", " ",
RowBox[{"(",
RowBox[{"3", "+",
RowBox[{"2", " ",
SqrtBox["5"]}], "+", "#1"}], ")"}]}]}], "&&",
RowBox[{
RowBox[{
RowBox[{"5", " ", "#1"}], "+",
RowBox[{
SqrtBox[
RowBox[{"5", " ",
RowBox[{"(",
RowBox[{"5", "-",
RowBox[{"2", " ",
SqrtBox["5"]}]}], ")"}]}]], " ", "#2"}], "+",
RowBox[{
SqrtBox[
RowBox[{"10", " ",
RowBox[{"(",
RowBox[{"5", "+",
SqrtBox["5"]}], ")"}]}]], " ", "#3"}]}], "\[LessEqual]",
RowBox[{"5", " ",
RowBox[{"(",
RowBox[{"2", "+",
SqrtBox["5"]}], ")"}]}]}], "&&",
RowBox[{
RowBox[{
RowBox[{"10", " ",
RowBox[{"(",
RowBox[{"2", "+",
SqrtBox["5"]}], ")"}]}], "+",
RowBox[{
SqrtBox[
RowBox[{"10", " ",
RowBox[{"(",
RowBox[{"5", "+",
SqrtBox["5"]}], ")"}]}]], " ",
RowBox[{"(",
RowBox[{"#2", "-",
RowBox[{"2", " ", "#3"}]}], ")"}]}]}], "\[GreaterEqual]",
RowBox[{"5", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+",
SqrtBox["5"]}], ")"}], " ", "#1"}]}], "&&",
RowBox[{
RowBox[{
RowBox[{
SqrtBox[
RowBox[{"5", " ",
RowBox[{"(",
RowBox[{"5", "-",
RowBox[{"2", " ",
SqrtBox["5"]}]}], ")"}]}]], " ", "#2"}], "+",
RowBox[{
SqrtBox[
RowBox[{"10", " ",
RowBox[{"(",
RowBox[{"5", "+",
SqrtBox["5"]}], ")"}]}]], " ", "#3"}]}], "\[LessEqual]",
RowBox[{"5", " ",
RowBox[{"(",
RowBox[{"2", "+",
SqrtBox["5"], "+", "#1"}], ")"}]}]}], "&&",
RowBox[{
RowBox[{
RowBox[{
SqrtBox[
RowBox[{"50", "-",
RowBox[{"10", " ",
SqrtBox["5"]}]}]], " ", "#2"}], "+",
RowBox[{
SqrtBox[
RowBox[{"10", " ",
RowBox[{"(",
RowBox[{"5", "+",
SqrtBox["5"]}], ")"}]}]], " ", "#3"}]}], "\[LessEqual]",
RowBox[{"5", " ",
RowBox[{"(",
RowBox[{"2", "+",
SqrtBox["5"]}], ")"}]}]}], "&&",
RowBox[{
RowBox[{
RowBox[{"10", " ",
RowBox[{"(",
RowBox[{"2", "+",
SqrtBox["5"]}], ")"}]}], "+",
RowBox[{"5", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+",
SqrtBox["5"]}], ")"}], " ", "#1"}], "+",
RowBox[{
SqrtBox[
RowBox[{"10", " ",
RowBox[{"(",
RowBox[{"5", "+",
SqrtBox["5"]}], ")"}]}]], " ",
RowBox[{"(",
RowBox[{"#2", "-",
RowBox[{"2", " ", "#3"}]}], ")"}]}]}], "\[GreaterEqual]",
"0"}]}]], "Output",
CellLabel->"Out[8]=",ExpressionUUID->"b5f692f3-b834-4683-a015-7b091997a316"]
}, Open ]]
}, Closed]],
Cell[CellGroupData[{
Cell["SkeletonCoordinates", "Subsection",ExpressionUUID->"dd932e6b-788e-4289-8a5d-ee05714d396e"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"vc", "=",
RowBox[{"PolyhedronData", "[",
RowBox[{"\"\\"", ",", "\"\\""}],
"]"}]}]], "Input",
CellLabel->"In[9]:=",ExpressionUUID->"c3cfd91a-4255-474a-9bda-1682b68532f5"],
Cell[BoxData["60"], "Output",
CellLabel->"Out[9]=",ExpressionUUID->"b7511779-caaf-4c2d-af9e-e628d2f21d61"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"e", "=",
RowBox[{"PolyhedronData", "[",
RowBox[{
"\"\\"", ",", "\"\\""}],
"]"}]}]], "Input",
CellLabel->"In[10]:=",ExpressionUUID->"e68f2229-7bfd-4c02-be61-5f5fbed2ea33"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"1", ",", "3"}], "}"}], ",",
RowBox[{"{",
RowBox[{"1", ",", "9"}], "}"}], ",",
RowBox[{"{",
RowBox[{"1", ",", "23"}], "}"}], ",",
RowBox[{"{",
RowBox[{"1", ",", "36"}], "}"}], ",",
RowBox[{"{",
RowBox[{"2", ",", "4"}], "}"}], ",",
RowBox[{"{",
RowBox[{"2", ",", "10"}], "}"}], ",",
RowBox[{"{",
RowBox[{"2", ",", "14"}], "}"}], ",",
RowBox[{"{",
RowBox[{"2", ",", "37"}], "}"}], ",",
RowBox[{"{",
RowBox[{"3", ",", "13"}], "}"}], ",",
RowBox[{"{",
RowBox[{"3", ",", "15"}], "}"}], ",",
RowBox[{"{",
RowBox[{"3", ",", "38"}], "}"}], ",",
RowBox[{"{",
RowBox[{"4", ",", "12"}], "}"}], ",",
RowBox[{"{",
RowBox[{"4", ",", "16"}], "}"}], ",",
RowBox[{"{",
RowBox[{"4", ",", "39"}], "}"}], ",",
RowBox[{"{",
RowBox[{"5", ",", "6"}], "}"}], ",",
RowBox[{"{",
RowBox[{"5", ",", "17"}], "}"}], ",",
RowBox[{"{",
RowBox[{"5", ",", "23"}], "}"}], ",",
RowBox[{"{",
RowBox[{"5", ",", "35"}], "}"}], ",",
RowBox[{"{",
RowBox[{"6", ",", "18"}], "}"}], ",",
RowBox[{"{",
RowBox[{"6", ",", "24"}], "}"}], ",",
RowBox[{"{",
RowBox[{"6", ",", "35"}], "}"}], ",",
RowBox[{"{",
RowBox[{"7", ",", "8"}], "}"}], ",",
RowBox[{"{",
RowBox[{"7", ",", "19"}], "}"}], ",",
RowBox[{"{",
RowBox[{"7", ",", "25"}], "}"}], ",",
RowBox[{"{",
RowBox[{"7", ",", "40"}], "}"}], ",",
RowBox[{"{",
RowBox[{"8", ",", "20"}], "}"}], ",",
RowBox[{"{",
RowBox[{"8", ",", "26"}], "}"}], ",",
RowBox[{"{",
RowBox[{"8", ",", "40"}], "}"}], ",",
RowBox[{"{",
RowBox[{"9", ",", "13"}], "}"}], ",",
RowBox[{"{",
RowBox[{"9", ",", "23"}], "}"}], ",",
RowBox[{"{",
RowBox[{"9", ",", "41"}], "}"}], ",",
RowBox[{"{",
RowBox[{"10", ",", "14"}], "}"}], ",",
RowBox[{"{",
RowBox[{"10", ",", "24"}], "}"}], ",",
RowBox[{"{",
RowBox[{"10", ",", "42"}], "}"}], ",",
RowBox[{"{",
RowBox[{"11", ",", "15"}], "}"}], ",",
RowBox[{"{",
RowBox[{"11", ",", "25"}], "}"}], ",",
RowBox[{"{",
RowBox[{"11", ",", "38"}], "}"}], ",",
RowBox[{"{",
RowBox[{"11", ",", "43"}], "}"}], ",",
RowBox[{"{",
RowBox[{"12", ",", "16"}], "}"}], ",",
RowBox[{"{",
RowBox[{"12", ",", "26"}], "}"}], ",",
RowBox[{"{",
RowBox[{"12", ",", "44"}], "}"}], ",",
RowBox[{"{",
RowBox[{"13", ",", "15"}], "}"}], ",",
RowBox[{"{",
RowBox[{"13", ",", "54"}], "}"}], ",",
RowBox[{"{",
RowBox[{"14", ",", "16"}], "}"}], ",",
RowBox[{"{",
RowBox[{"14", ",", "55"}], "}"}], ",",
RowBox[{"{",
RowBox[{"15", ",", "56"}], "}"}], ",",
RowBox[{"{",
RowBox[{"16", ",", "57"}], "}"}], ",",
RowBox[{"{",
RowBox[{"17", ",", "18"}], "}"}], ",",
RowBox[{"{",
RowBox[{"17", ",", "41"}], "}"}], ",",
RowBox[{"{",
RowBox[{"17", ",", "53"}], "}"}], ",",
RowBox[{"{",
RowBox[{"18", ",", "42"}], "}"}], ",",
RowBox[{"{",
RowBox[{"18", ",", "53"}], "}"}], ",",
RowBox[{"{",
RowBox[{"19", ",", "20"}], "}"}], ",",
RowBox[{"{",
RowBox[{"19", ",", "43"}], "}"}], ",",
RowBox[{"{",
RowBox[{"19", ",", "58"}], "}"}], ",",
RowBox[{"{",
RowBox[{"20", ",", "44"}], "}"}], ",",
RowBox[{"{",
RowBox[{"20", ",", "58"}], "}"}], ",",
RowBox[{"{",
RowBox[{"21", ",", "29"}], "}"}], ",",
RowBox[{"{",
RowBox[{"21", ",", "33"}], "}"}], ",",
RowBox[{"{",
RowBox[{"21", ",", "36"}], "}"}], ",",
RowBox[{"{",
RowBox[{"21", ",", "38"}], "}"}], ",",
RowBox[{"{",
RowBox[{"22", ",", "32"}], "}"}], ",",
RowBox[{"{",
RowBox[{"22", ",", "34"}], "}"}], ",",
RowBox[{"{",
RowBox[{"22", ",", "37"}], "}"}], ",",
RowBox[{"{",
RowBox[{"22", ",", "39"}], "}"}], ",",
RowBox[{"{",
RowBox[{"23", ",", "27"}], "}"}], ",",
RowBox[{"{",
RowBox[{"24", ",", "28"}], "}"}], ",",
RowBox[{"{",
RowBox[{"24", ",", "37"}], "}"}], ",",
RowBox[{"{",
RowBox[{"25", ",", "29"}], "}"}], ",",
RowBox[{"{",
RowBox[{"25", ",", "38"}], "}"}], ",",
RowBox[{"{",
RowBox[{"26", ",", "30"}], "}"}], ",",
RowBox[{"{",
RowBox[{"26", ",", "39"}], "}"}], ",",
RowBox[{"{",
RowBox[{"27", ",", "31"}], "}"}], ",",
RowBox[{"{",
RowBox[{"27", ",", "35"}], "}"}], ",",
RowBox[{"{",
RowBox[{"27", ",", "36"}], "}"}], ",",
RowBox[{"{",
RowBox[{"28", ",", "32"}], "}"}], ",",
RowBox[{"{",
RowBox[{"28", ",", "35"}], "}"}], ",",
RowBox[{"{",
RowBox[{"28", ",", "37"}], "}"}], ",",
RowBox[{"{",
RowBox[{"29", ",", "33"}], "}"}], ",",
RowBox[{"{",
RowBox[{"29", ",", "40"}], "}"}], ",",
RowBox[{"{",
RowBox[{"30", ",", "34"}], "}"}], ",",
RowBox[{"{",
RowBox[{"30", ",", "39"}], "}"}], ",",
RowBox[{"{",
RowBox[{"30", ",", "40"}], "}"}], ",",
RowBox[{"{",
RowBox[{"31", ",", "32"}], "}"}], ",",
RowBox[{"{",
RowBox[{"31", ",", "33"}], "}"}], ",",
RowBox[{"{",
RowBox[{"31", ",", "36"}], "}"}], ",",
RowBox[{"{",
RowBox[{"32", ",", "34"}], "}"}], ",",
RowBox[{"{",
RowBox[{"33", ",", "34"}], "}"}], ",",
RowBox[{"{",
RowBox[{"41", ",", "45"}], "}"}], ",",
RowBox[{"{",
RowBox[{"41", ",", "54"}], "}"}], ",",
RowBox[{"{",
RowBox[{"42", ",", "46"}], "}"}], ",",
RowBox[{"{",
RowBox[{"42", ",", "55"}], "}"}], ",",
RowBox[{"{",
RowBox[{"43", ",", "47"}], "}"}], ",",
RowBox[{"{",
RowBox[{"43", ",", "56"}], "}"}], ",",
RowBox[{"{",
RowBox[{"44", ",", "48"}], "}"}], ",",
RowBox[{"{",
RowBox[{"44", ",", "57"}], "}"}], ",",
RowBox[{"{",
RowBox[{"45", ",", "49"}], "}"}], ",",
RowBox[{"{",
RowBox[{"45", ",", "53"}], "}"}], ",",
RowBox[{"{",
RowBox[{"45", ",", "54"}], "}"}], ",",
RowBox[{"{",
RowBox[{"46", ",", "50"}], "}"}], ",",
RowBox[{"{",
RowBox[{"46", ",", "53"}], "}"}], ",",
RowBox[{"{",
RowBox[{"46", ",", "55"}], "}"}], ",",
RowBox[{"{",
RowBox[{"47", ",", "51"}], "}"}], ",",
RowBox[{"{",
RowBox[{"47", ",", "56"}], "}"}], ",",
RowBox[{"{",
RowBox[{"47", ",", "58"}], "}"}], ",",
RowBox[{"{",
RowBox[{"48", ",", "52"}], "}"}], ",",
RowBox[{"{",
RowBox[{"48", ",", "57"}], "}"}], ",",
RowBox[{"{",
RowBox[{"48", ",", "58"}], "}"}], ",",
RowBox[{"{",
RowBox[{"49", ",", "50"}], "}"}], ",",
RowBox[{"{",
RowBox[{"49", ",", "51"}], "}"}], ",",
RowBox[{"{",
RowBox[{"49", ",", "59"}], "}"}], ",",
RowBox[{"{",
RowBox[{"50", ",", "52"}], "}"}], ",",
RowBox[{"{",
RowBox[{"50", ",", "60"}], "}"}], ",",
RowBox[{"{",
RowBox[{"51", ",", "52"}], "}"}], ",",
RowBox[{"{",
RowBox[{"51", ",", "59"}], "}"}], ",",
RowBox[{"{",
RowBox[{"52", ",", "60"}], "}"}], ",",
RowBox[{"{",
RowBox[{"54", ",", "59"}], "}"}], ",",
RowBox[{"{",
RowBox[{"55", ",", "60"}], "}"}], ",",
RowBox[{"{",
RowBox[{"56", ",", "59"}], "}"}], ",",
RowBox[{"{",
RowBox[{"57", ",", "60"}], "}"}]}], "}"}]], "Output",
CellLabel->"Out[10]=",ExpressionUUID->"2b97eba3-a71d-4a59-a12f-27c3c016c1c0"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"g", "=",
RowBox[{"Graph", "[",
RowBox[{
RowBox[{"Range", "[", "vc", "]"}], ",",
RowBox[{"UndirectedEdge", "@@@", "e"}]}], "]"}]}]], "Input",
CellLabel->"In[11]:=",ExpressionUUID->"3ace9f00-1b78-4422-983d-8f9beb6ca723"],
Cell[BoxData[
GraphicsBox[
NamespaceBox["NetworkGraphics",
DynamicModuleBox[{Typeset`graph = HoldComplete[
Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,
20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37,
38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55,
56, 57, 58, 59, 60}, {
Null, {{1, 3}, {1, 9}, {1, 23}, {1, 36}, {2, 4}, {2, 10}, {2, 14}, {2,
37}, {3, 13}, {3, 15}, {3, 38}, {4, 12}, {4, 16}, {4, 39}, {5, 6}, {5,
17}, {5, 23}, {5, 35}, {6, 18}, {6, 24}, {6, 35}, {7, 8}, {7, 19}, {7,
25}, {7, 40}, {8, 20}, {8, 26}, {8, 40}, {9, 13}, {9, 23}, {9, 41}, {
10, 14}, {10, 24}, {10, 42}, {11, 15}, {11, 25}, {11, 38}, {11, 43}, {
12, 16}, {12, 26}, {12, 44}, {13, 15}, {13, 54}, {14, 16}, {14, 55}, {
15, 56}, {16, 57}, {17, 18}, {17, 41}, {17, 53}, {18, 42}, {18, 53}, {
19, 20}, {19, 43}, {19, 58}, {20, 44}, {20, 58}, {21, 29}, {21, 33}, {
21, 36}, {21, 38}, {22, 32}, {22, 34}, {22, 37}, {22, 39}, {23, 27}, {
24, 28}, {24, 37}, {25, 29}, {25, 38}, {26, 30}, {26, 39}, {27, 31}, {
27, 35}, {27, 36}, {28, 32}, {28, 35}, {28, 37}, {29, 33}, {29, 40}, {
30, 34}, {30, 39}, {30, 40}, {31, 32}, {31, 33}, {31, 36}, {32, 34}, {
33, 34}, {41, 45}, {41, 54}, {42, 46}, {42, 55}, {43, 47}, {43, 56}, {
44, 48}, {44, 57}, {45, 49}, {45, 53}, {45, 54}, {46, 50}, {46, 53}, {
46, 55}, {47, 51}, {47, 56}, {47, 58}, {48, 52}, {48, 57}, {48, 58}, {
49, 50}, {49, 51}, {49, 59}, {50, 52}, {50, 60}, {51, 52}, {51, 59}, {
52, 60}, {54, 59}, {55, 60}, {56, 59}, {57, 60}}}]]},
TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData["
1:eJwB0QMu/CFib1JlAgAAADwAAAACAAAAn86+zzU5E0DS1iBouz8DQKQgNJK0
xQZAdD35RmbqD0Cv2r6lrBkPQM4zorBww/o/x22Q8LTJAUBxv81NpPsHQDk5
Rs3k8hNAdodgO+cQEkDgOboHwtYSQIYluIi/9BNAdtDJwHzuAEAAjEExQaKO
P8+AfTLqm/0/qOjotnL44T903GESpDMRQATmoNf3kglATIo0umvfB0CsP4jx
oUoTQFR9t9EYBQZACLnMGrHO5T9gLdkdiYX3P7Yh9pvhawNAp5WDlPXeC0CG
pqx1e0oEQEgvfgcJPwBA8+ZHO0rAEUAn21n97WQHQLnFJg5gAfo/zNlaFrr0
9T/o2vtLj1ALQDgXwcxxfQ9ABnS7cLs3FECUbYs2aRQNQEZIdxORRBZAQPyd
3WPb8D8MnBYpoo/iP0i4OhnQgeg/irQnGXAN8T9OBVnNPBETQAgdumj2AuY/
I+dKf/N+EECgMKIfJE0EQPYUYWVfwRRA7sSE+lj8CkC8nNCcYqgQQFEs53b8
BRJA/WLDMWCJCUAAAAAAAAAAABI5xLp0QwJAb3pIqLn59z+SvplgTuQWQKTW
pSrltQZAPbSVG8VRE0B0AeVuYd0NQLPBl6gfUhBA4EzwbA4izT9WK/jloysK
QP/CQLW7tPM/YAdOeY6TFkA+VCInPtz+P9aaKSWaFBRAcu9o2FdgBED+iUIl
U/kTQGJQtcT1y+8/29RDDirBEUAquzkG5e/6Px/GqdTXrRVAiQuIKndPEEDe
V63EqKAVQEbhueU05vs/3F7OC2H9D0CGFEeewaANQInnW8OiHg5AnLfMC8Qj
4z+7NHH6KAMIQKxcS7LQ6QBAXsjijOoeB0AAov8gcNfQP8NsJjnoKgxAJXK3
0k+AEEBy6b/Izs4DQJBdIfUGOxZAAAW9+zt++T87gJhwKmPxPwgwaZs8I90/
TVCyld6vAUBlBjeCho0EQMTnS7F3nhFAdGTH2mTo/D/Gsbl4tskVQBSF7uWd
n+4/SgufYVYz/j8AAAAAAAAAAPRoGWyk9QRAeqHPf6Pw9j8ULm4nWbsPQHzC
3z3u3+s/aWnGEpSmEkCESFI+873rP5RNWc0A3QhAcC8SwAOhzz83XEMkcQIO
QDH9RbfdfgdAJLoPA8J9FUBJqjhav2wGQBAwCbT86wtADJQ8PbNR9z+MX/2Y
iIEUQNvmSaLlh/w/LsFg8kGD/j/QQCNLnsrVP8XHXPd8FwpAKMzYpwTy1T94
X/7o/Un3PykXuMBjTfs/vtY6GBGqCEA4rbrAfqzfPzkNfOw6hBFAiGizCA==
"], {
{Hue[0.6, 0.7, 0.5], Opacity[0.7],
LineBox[{{1, 3}, {1, 9}, {1, 23}, {1, 36}, {2, 4}, {2, 10}, {2,
14}, {2, 37}, {3, 13}, {3, 15}, {3, 38}, {4, 12}, {4, 16}, {4,
39}, {5, 6}, {5, 17}, {5, 23}, {5, 35}, {6, 18}, {6, 24}, {6, 35}, {
7, 8}, {7, 19}, {7, 25}, {7, 40}, {8, 20}, {8, 26}, {8, 40}, {9,
13}, {9, 23}, {9, 41}, {10, 14}, {10, 24}, {10, 42}, {11, 15}, {11,
25}, {11, 38}, {11, 43}, {12, 16}, {12, 26}, {12, 44}, {13, 15}, {
13, 54}, {14, 16}, {14, 55}, {15, 56}, {16, 57}, {17, 18}, {17,
41}, {17, 53}, {18, 42}, {18, 53}, {19, 20}, {19, 43}, {19, 58}, {
20, 44}, {20, 58}, {21, 29}, {21, 33}, {21, 36}, {21, 38}, {22,
32}, {22, 34}, {22, 37}, {22, 39}, {23, 27}, {24, 28}, {24, 37}, {
25, 29}, {25, 38}, {26, 30}, {26, 39}, {27, 31}, {27, 35}, {27,
36}, {28, 32}, {28, 35}, {28, 37}, {29, 33}, {29, 40}, {30, 34}, {
30, 39}, {30, 40}, {31, 32}, {31, 33}, {31, 36}, {32, 34}, {33,
34}, {41, 45}, {41, 54}, {42, 46}, {42, 55}, {43, 47}, {43, 56}, {
44, 48}, {44, 57}, {45, 49}, {45, 53}, {45, 54}, {46, 50}, {46,
53}, {46, 55}, {47, 51}, {47, 56}, {47, 58}, {48, 52}, {48, 57}, {
48, 58}, {49, 50}, {49, 51}, {49, 59}, {50, 52}, {50, 60}, {51,
52}, {51, 59}, {52, 60}, {54, 59}, {55, 60}, {56, 59}, {57,
60}}]},
{Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}],
DiskBox[1, 0.04702905784858269], DiskBox[2, 0.04702905784858269],
DiskBox[3, 0.04702905784858269], DiskBox[4, 0.04702905784858269],
DiskBox[5, 0.04702905784858269], DiskBox[6, 0.04702905784858269],
DiskBox[7, 0.04702905784858269], DiskBox[8, 0.04702905784858269],
DiskBox[9, 0.04702905784858269], DiskBox[10, 0.04702905784858269],
DiskBox[11, 0.04702905784858269], DiskBox[12, 0.04702905784858269],
DiskBox[13, 0.04702905784858269], DiskBox[14, 0.04702905784858269],
DiskBox[15, 0.04702905784858269], DiskBox[16, 0.04702905784858269],
DiskBox[17, 0.04702905784858269], DiskBox[18, 0.04702905784858269],
DiskBox[19, 0.04702905784858269], DiskBox[20, 0.04702905784858269],
DiskBox[21, 0.04702905784858269], DiskBox[22, 0.04702905784858269],
DiskBox[23, 0.04702905784858269], DiskBox[24, 0.04702905784858269],
DiskBox[25, 0.04702905784858269], DiskBox[26, 0.04702905784858269],
DiskBox[27, 0.04702905784858269], DiskBox[28, 0.04702905784858269],
DiskBox[29, 0.04702905784858269], DiskBox[30, 0.04702905784858269],
DiskBox[31, 0.04702905784858269], DiskBox[32, 0.04702905784858269],
DiskBox[33, 0.04702905784858269], DiskBox[34, 0.04702905784858269],
DiskBox[35, 0.04702905784858269], DiskBox[36, 0.04702905784858269],
DiskBox[37, 0.04702905784858269], DiskBox[38, 0.04702905784858269],
DiskBox[39, 0.04702905784858269], DiskBox[40, 0.04702905784858269],
DiskBox[41, 0.04702905784858269], DiskBox[42, 0.04702905784858269],
DiskBox[43, 0.04702905784858269], DiskBox[44, 0.04702905784858269],
DiskBox[45, 0.04702905784858269], DiskBox[46, 0.04702905784858269],
DiskBox[47, 0.04702905784858269], DiskBox[48, 0.04702905784858269],
DiskBox[49, 0.04702905784858269], DiskBox[50, 0.04702905784858269],
DiskBox[51, 0.04702905784858269], DiskBox[52, 0.04702905784858269],
DiskBox[53, 0.04702905784858269], DiskBox[54, 0.04702905784858269],
DiskBox[55, 0.04702905784858269], DiskBox[56, 0.04702905784858269],
DiskBox[57, 0.04702905784858269], DiskBox[58, 0.04702905784858269],
DiskBox[59, 0.04702905784858269],
DiskBox[60, 0.04702905784858269]}}]],
MouseAppearanceTag["NetworkGraphics"]],
AllowKernelInitialization->False]],
DefaultBaseStyle->{
"NetworkGraphics", FrontEnd`GraphicsHighlightColor -> Hue[0.8, 1., 0.6]},
FormatType->TraditionalForm,
FrameTicks->None]], "Output",
CellLabel->"Out[11]=",ExpressionUUID->"c4e57fa2-1d66-4562-a4b6-904fbbba4778"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"r", "=",
RowBox[{"RecognizeGraph", "[", "g", "]"}]}]], "Input",
CellLabel->"In[14]:=",ExpressionUUID->"7580b745-1b99-44cf-bc38-809a276f929d"],
Cell[CellGroupData[{
Cell[BoxData["\<\"Reading CanonicalForms from raw GraphData file cache (first \
time only)...\"\>"], "Print",
CellLabel->
"During evaluation of \
In[14]:=",ExpressionUUID->"225798e2-4a41-4cd5-9e6f-e485986d8674"],
Cell[BoxData["\<\"Reading GraphData standard names from raw GraphData file \
cache (first time only)...\"\>"], "Print",
CellLabel->
"During evaluation of \
In[14]:=",ExpressionUUID->"a82a458b-f3c7-4faa-bfd8-e298e4c2d7f8"],
Cell[BoxData[
InterpretationBox[
RowBox[{"\<\"Building default Association of length \"\>",
"\[InvisibleSpace]", "10369", "\[InvisibleSpace]", "\<\"...\"\>"}],
SequenceForm["Building default Association of length ", 10369, "..."],
Editable->False]], "Print",
CellLabel->
"During evaluation of \
In[14]:=",ExpressionUUID->"2d1a9774-7d8b-4e90-8bcd-2208ac3b58ac"]
}, Open ]],
Cell[BoxData[
RowBox[{"{",
RowBox[{"\<\"JohnsonSkeleton\"\>", ",", "72"}], "}"}]], "Output",
CellLabel->"Out[14]=",ExpressionUUID->"6c0914ae-8cb7-4ed9-9901-9a47d8cce455"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"GraphData", "[",
RowBox[{"r", ",", "\"\\"", ",", "\"\\""}], "]"}]], "Input",
CellLabel->"In[15]:=",ExpressionUUID->"600198fd-4021-4f1a-aba7-619fabcf8580"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
GraphicsBox[
NamespaceBox["NetworkGraphics",
DynamicModuleBox[{Typeset`graph = HoldComplete[
Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35,
36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52,
53, 54, 55, 56, 57, 58, 59, 60}, {Null,
SparseArray[
Automatic, {60, 60}, 0, {
1, {{0, 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 44, 48, 52, 56, 60,
64, 68, 72, 76, 80, 84, 88, 92, 96, 100, 104, 108, 112, 116, 120,
124, 128, 132, 136, 140, 144, 148, 152, 156, 160, 164, 168, 172,
176, 180, 184, 188, 192, 196, 200, 204, 208, 212, 216, 220, 224,
228, 232, 236, 240}, {{2}, {3}, {4}, {5}, {1}, {6}, {7}, {8}, {
1}, {9}, {10}, {11}, {1}, {5}, {7}, {16}, {1}, {4}, {10}, {17}, {
2}, {9}, {12}, {13}, {2}, {4}, {8}, {18}, {2}, {7}, {12}, {20}, {
3}, {6}, {14}, {15}, {3}, {5}, {11}, {19}, {3}, {10}, {14}, {
21}, {6}, {8}, {13}, {22}, {6}, {12}, {15}, {24}, {9}, {11}, {
15}, {23}, {9}, {13}, {14}, {25}, {4}, {17}, {26}, {27}, {5}, {
16}, {27}, {28}, {7}, {20}, {26}, {29}, {10}, {21}, {28}, {30}, {
8}, {18}, {29}, {31}, {11}, {19}, {32}, {33}, {12}, {24}, {31}, {
36}, {14}, {25}, {32}, {38}, {13}, {22}, {36}, {39}, {15}, {23}, {
38}, {39}, {16}, {18}, {34}, {35}, {16}, {17}, {34}, {37}, {17}, {
19}, {30}, {37}, {18}, {20}, {35}, {40}, {19}, {28}, {33}, {43}, {
20}, {22}, {40}, {41}, {21}, {23}, {33}, {42}, {21}, {30}, {32}, {
47}, {26}, {27}, {35}, {46}, {26}, {29}, {34}, {49}, {22}, {24}, {
41}, {44}, {27}, {28}, {43}, {48}, {23}, {25}, {42}, {45}, {24}, {
25}, {44}, {45}, {29}, {31}, {41}, {50}, {31}, {36}, {40}, {51}, {
32}, {38}, {47}, {52}, {30}, {37}, {48}, {53}, {36}, {39}, {45}, {
54}, {38}, {39}, {44}, {55}, {34}, {48}, {49}, {56}, {33}, {42}, {
52}, {53}, {37}, {43}, {46}, {57}, {35}, {46}, {50}, {56}, {40}, {
49}, {51}, {58}, {41}, {50}, {54}, {58}, {42}, {47}, {55}, {59}, {
43}, {47}, {57}, {59}, {44}, {51}, {55}, {60}, {45}, {52}, {54}, {
60}, {46}, {49}, {57}, {58}, {48}, {53}, {56}, {59}, {50}, {51}, {
56}, {60}, {52}, {53}, {57}, {60}, {54}, {55}, {58}, {59}}},
Pattern}]}, {VertexCoordinates -> CompressedData["
1:eJw9kQ9Q02UYxwcSriRNsYsju6IgQk4RUcdw8kREcTHqDoQKicMtFnAdm+UG
hcdfw4w/Ic7BhOOAFDba7Y8OIUSejT+N4OcJ7pDkHAEhbSpbTv7dotY7k567
99773vN+vs/3fV8/Dj8hw51Go7HIcu20pLe9N/OtwLaEMGw/GyE1Rejx2o1Z
kC3W1uf+bkHak3I+LhsoPzYZ/liaBqUXf/tkgxrY979TTk6ZoF7XGFjaOgrp
//G4zgexKxUV9NswQR0Pa4ucwHuRozkXKQqEaw0vv+eYQufhx/Mx4cl8Qd1i
xKGBbrBvrB4r6JiGk/Wh0XF93eiWpbnr0nx6QZtyhML4aMUGF1/8YCVsK/02
6hoTqFbir95aak2bMuFnd+hFrjyNVw/a5EvT+KvPiOkOyVteOSRSW4xQIXwr
r0zwI1gCPnw9k3YTGkPXYseL+8CrLfHiN1wK/rwWuCtUT2HL2drDOSoFcH5o
dorOGyHviN+manUfHIiLUL1jGUNZ/0CLj0yB5W5x2bmkH1IRnK5T9mH83ppK
Vz9jqoVZ5BxDn7zpqFvE3xErGeg4SqHD7C4PIf51ZTuWDGYj7t1V3VJF8lw4
r2ClHRyBM19cv9r7kQbf4D49KmZSoP7FEp8ovQSStX22gnAdPPOT/dapM0Ow
0pu+vFCtB9Hwc1+V0odQ2mP1n3DI4PjknmA2YxjW/6+u4WSSuZxCjyp2KveA
DrOflU98S/hN+9OUdLsMnxrv8Isn52dK8pfL6gdhNloXQHtRjNYHCu1D335o
5zJjt9VokXNOU369So/BCSdySsi8rsyed90XemFZc8EzSN0DpqT5TgGDwrmV
uPlkknctzB5ziDmCO/a3qrvJfSZXDc4jCU3wvLGzKCpmECN1LPe/Y5vwc1a+
9k2ilWJleIS5Fx/eSEkKJn6OZJ75XJwKbgqbB+Z6r4Fhrr5L6tOPFj6DvYXk
8VXSMndLB3GbwO0Di68Yuz7t6Gf0dAKdy9vnFZKFRf+whKejVCjC8cR5wtte
mRH8FnQZgt7fU8WL0UDuI6ZmeKMWZosD4ISqDfPZzaveYgmc8tQFykVX8Fit
8q5/oQT/audZ24jWvsQRXPK/jGLG2a8zCb/+vgZObJ2wVgs1UFjyvbsWm+4V
Jn9J/MIWDN7OK50YfnrVHrA7C49JPjE1b5GD1jMleDSjAvUizwz+USms6djx
26db//ebWdTv5Gxox2y/oVc3s6XY5TZU+ALp3x+W7HzkIcdUnjy9ifD/Ag8T
9mg=
"]}]]},
TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData["
1:eJw9kQ9Q02UYxwcSriRNsYsju6IgQk4RUcdw8kREcTHqDoQKicMtFnAdm+UG
hcdfw4w/Ic7BhOOAFDba7Y8OIUSejT+N4OcJ7pDkHAEhbSpbTv7dotY7k567
99773vN+vs/3fV8/Dj8hw51Go7HIcu20pLe9N/OtwLaEMGw/GyE1Rejx2o1Z
kC3W1uf+bkHak3I+LhsoPzYZ/liaBqUXf/tkgxrY979TTk6ZoF7XGFjaOgrp
//G4zgexKxUV9NswQR0Pa4ucwHuRozkXKQqEaw0vv+eYQufhx/Mx4cl8Qd1i
xKGBbrBvrB4r6JiGk/Wh0XF93eiWpbnr0nx6QZtyhML4aMUGF1/8YCVsK/02
6hoTqFbir95aak2bMuFnd+hFrjyNVw/a5EvT+KvPiOkOyVteOSRSW4xQIXwr
r0zwI1gCPnw9k3YTGkPXYseL+8CrLfHiN1wK/rwWuCtUT2HL2drDOSoFcH5o
dorOGyHviN+manUfHIiLUL1jGUNZ/0CLj0yB5W5x2bmkH1IRnK5T9mH83ppK
Vz9jqoVZ5BxDn7zpqFvE3xErGeg4SqHD7C4PIf51ZTuWDGYj7t1V3VJF8lw4
r2ClHRyBM19cv9r7kQbf4D49KmZSoP7FEp8ovQSStX22gnAdPPOT/dapM0Ow
0pu+vFCtB9Hwc1+V0odQ2mP1n3DI4PjknmA2YxjW/6+u4WSSuZxCjyp2KveA
DrOflU98S/hN+9OUdLsMnxrv8Isn52dK8pfL6gdhNloXQHtRjNYHCu1D335o
5zJjt9VokXNOU369So/BCSdySsi8rsyed90XemFZc8EzSN0DpqT5TgGDwrmV
uPlkknctzB5ziDmCO/a3qrvJfSZXDc4jCU3wvLGzKCpmECN1LPe/Y5vwc1a+
9k2ilWJleIS5Fx/eSEkKJn6OZJ75XJwKbgqbB+Z6r4Fhrr5L6tOPFj6DvYXk
8VXSMndLB3GbwO0Di68Yuz7t6Gf0dAKdy9vnFZKFRf+whKejVCjC8cR5wtte
mRH8FnQZgt7fU8WL0UDuI6ZmeKMWZosD4ISqDfPZzaveYgmc8tQFykVX8Fit
8q5/oQT/audZ24jWvsQRXPK/jGLG2a8zCb/+vgZObJ2wVgs1UFjyvbsWm+4V
Jn9J/MIWDN7OK50YfnrVHrA7C49JPjE1b5GD1jMleDSjAvUizwz+USms6djx
26db//ebWdTv5Gxox2y/oVc3s6XY5TZU+ALp3x+W7HzkIcdUnjy9ifD/Ag8T
9mg=
"], {
{Hue[0.6, 0.7, 0.5], Opacity[0.7],
LineBox[{{1, 2}, {1, 3}, {1, 4}, {1, 5}, {2, 6}, {2, 7}, {2, 8}, {
3, 9}, {3, 10}, {3, 11}, {4, 5}, {4, 7}, {4, 16}, {5, 10}, {5,
17}, {6, 9}, {6, 12}, {6, 13}, {7, 8}, {7, 18}, {8, 12}, {8,
20}, {9, 14}, {9, 15}, {10, 11}, {10, 19}, {11, 14}, {11, 21}, {
12, 13}, {12, 22}, {13, 15}, {13, 24}, {14, 15}, {14, 23}, {15,
25}, {16, 17}, {16, 26}, {16, 27}, {17, 27}, {17, 28}, {18, 20}, {
18, 26}, {18, 29}, {19, 21}, {19, 28}, {19, 30}, {20, 29}, {20,
31}, {21, 32}, {21, 33}, {22, 24}, {22, 31}, {22, 36}, {23, 25}, {
23, 32}, {23, 38}, {24, 36}, {24, 39}, {25, 38}, {25, 39}, {26,
34}, {26, 35}, {27, 34}, {27, 37}, {28, 30}, {28, 37}, {29, 35}, {
29, 40}, {30, 33}, {30, 43}, {31, 40}, {31, 41}, {32, 33}, {32,
42}, {33, 47}, {34, 35}, {34, 46}, {35, 49}, {36, 41}, {36, 44}, {
37, 43}, {37, 48}, {38, 42}, {38, 45}, {39, 44}, {39, 45}, {40,
41}, {40, 50}, {41, 51}, {42, 47}, {42, 52}, {43, 48}, {43, 53}, {
44, 45}, {44, 54}, {45, 55}, {46, 48}, {46, 49}, {46, 56}, {47,
52}, {47, 53}, {48, 57}, {49, 50}, {49, 56}, {50, 51}, {50, 58}, {
51, 54}, {51, 58}, {52, 55}, {52, 59}, {53, 57}, {53, 59}, {54,
55}, {54, 60}, {55, 60}, {56, 57}, {56, 58}, {57, 59}, {58, 60}, {
59, 60}}]},
{Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}],
DiskBox[1, 0.021812234931106983], DiskBox[2, 0.021812234931106983],
DiskBox[3, 0.021812234931106983],
DiskBox[4, 0.021812234931106983], DiskBox[5, 0.021812234931106983],
DiskBox[6, 0.021812234931106983],
DiskBox[7, 0.021812234931106983], DiskBox[8, 0.021812234931106983],
DiskBox[9, 0.021812234931106983],
DiskBox[10, 0.021812234931106983],
DiskBox[11, 0.021812234931106983],
DiskBox[12, 0.021812234931106983],
DiskBox[13, 0.021812234931106983],
DiskBox[14, 0.021812234931106983],
DiskBox[15, 0.021812234931106983],
DiskBox[16, 0.021812234931106983],
DiskBox[17, 0.021812234931106983],
DiskBox[18, 0.021812234931106983],
DiskBox[19, 0.021812234931106983],
DiskBox[20, 0.021812234931106983],
DiskBox[21, 0.021812234931106983],
DiskBox[22, 0.021812234931106983],
DiskBox[23, 0.021812234931106983],
DiskBox[24, 0.021812234931106983],
DiskBox[25, 0.021812234931106983],
DiskBox[26, 0.021812234931106983],
DiskBox[27, 0.021812234931106983],
DiskBox[28, 0.021812234931106983],
DiskBox[29, 0.021812234931106983],
DiskBox[30, 0.021812234931106983],
DiskBox[31, 0.021812234931106983],
DiskBox[32, 0.021812234931106983],
DiskBox[33, 0.021812234931106983],
DiskBox[34, 0.021812234931106983],
DiskBox[35, 0.021812234931106983],
DiskBox[36, 0.021812234931106983],
DiskBox[37, 0.021812234931106983],
DiskBox[38, 0.021812234931106983],
DiskBox[39, 0.021812234931106983],
DiskBox[40, 0.021812234931106983],
DiskBox[41, 0.021812234931106983],
DiskBox[42, 0.021812234931106983],
DiskBox[43, 0.021812234931106983],
DiskBox[44, 0.021812234931106983],
DiskBox[45, 0.021812234931106983],
DiskBox[46, 0.021812234931106983],
DiskBox[47, 0.021812234931106983],
DiskBox[48, 0.021812234931106983],
DiskBox[49, 0.021812234931106983],
DiskBox[50, 0.021812234931106983],
DiskBox[51, 0.021812234931106983],
DiskBox[52, 0.021812234931106983],
DiskBox[53, 0.021812234931106983],
DiskBox[54, 0.021812234931106983],
DiskBox[55, 0.021812234931106983],
DiskBox[56, 0.021812234931106983],
DiskBox[57, 0.021812234931106983],
DiskBox[58, 0.021812234931106983],
DiskBox[59, 0.021812234931106983],
DiskBox[60, 0.021812234931106983]}}]],
MouseAppearanceTag["NetworkGraphics"]],
AllowKernelInitialization->False]],
DefaultBaseStyle->{
"NetworkGraphics", FrontEnd`GraphicsHighlightColor -> Hue[0.8, 1., 0.6]},
FormatType->TraditionalForm,
FrameTicks->None], ",",
GraphicsBox[
NamespaceBox["NetworkGraphics",
DynamicModuleBox[{Typeset`graph = HoldComplete[
Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35,
36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52,
53, 54, 55, 56, 57, 58, 59, 60}, {Null,
SparseArray[
Automatic, {60, 60}, 0, {
1, {{0, 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 44, 48, 52, 56, 60,
64, 68, 72, 76, 80, 84, 88, 92, 96, 100, 104, 108, 112, 116, 120,
124, 128, 132, 136, 140, 144, 148, 152, 156, 160, 164, 168, 172,
176, 180, 184, 188, 192, 196, 200, 204, 208, 212, 216, 220, 224,
228, 232, 236, 240}, {{2}, {3}, {4}, {5}, {1}, {6}, {7}, {8}, {
1}, {9}, {10}, {11}, {1}, {5}, {7}, {16}, {1}, {4}, {10}, {17}, {
2}, {9}, {12}, {13}, {2}, {4}, {8}, {18}, {2}, {7}, {12}, {20}, {
3}, {6}, {14}, {15}, {3}, {5}, {11}, {19}, {3}, {10}, {14}, {
21}, {6}, {8}, {13}, {22}, {6}, {12}, {15}, {24}, {9}, {11}, {
15}, {23}, {9}, {13}, {14}, {25}, {4}, {17}, {26}, {27}, {5}, {
16}, {27}, {28}, {7}, {20}, {26}, {29}, {10}, {21}, {28}, {30}, {
8}, {18}, {29}, {31}, {11}, {19}, {32}, {33}, {12}, {24}, {31}, {
36}, {14}, {25}, {32}, {38}, {13}, {22}, {36}, {39}, {15}, {23}, {
38}, {39}, {16}, {18}, {34}, {35}, {16}, {17}, {34}, {37}, {17}, {
19}, {30}, {37}, {18}, {20}, {35}, {40}, {19}, {28}, {33}, {43}, {
20}, {22}, {40}, {41}, {21}, {23}, {33}, {42}, {21}, {30}, {32}, {
47}, {26}, {27}, {35}, {46}, {26}, {29}, {34}, {49}, {22}, {24}, {
41}, {44}, {27}, {28}, {43}, {48}, {23}, {25}, {42}, {45}, {24}, {
25}, {44}, {45}, {29}, {31}, {41}, {50}, {31}, {36}, {40}, {51}, {
32}, {38}, {47}, {52}, {30}, {37}, {48}, {53}, {36}, {39}, {45}, {
54}, {38}, {39}, {44}, {55}, {34}, {48}, {49}, {56}, {33}, {42}, {
52}, {53}, {37}, {43}, {46}, {57}, {35}, {46}, {50}, {56}, {40}, {
49}, {51}, {58}, {41}, {50}, {54}, {58}, {42}, {47}, {55}, {59}, {
43}, {47}, {57}, {59}, {44}, {51}, {55}, {60}, {45}, {52}, {54}, {
60}, {46}, {49}, {57}, {58}, {48}, {53}, {56}, {59}, {50}, {51}, {
56}, {60}, {52}, {53}, {57}, {60}, {54}, {55}, {58}, {59}}},
Pattern}]}, {VertexCoordinates -> CompressedData["
1:eJwB0QMu/CFib1JlAgAAADwAAAACAAAA8KKvIM1Y9b88+IkD6PfFP2DI6lbP
yfm/VVG8ytom7T89ZMqHoOrqv51mgXaHFNA/jjulg/V//L/B49u7Bn3ev3/2
I0VkWPG/KJmc2hmm1b+/DpwzorTqv0I+6Nms+vA/p7OTwVEyCMDa4a/JGvXX
Pwk4hCo1e/6/n5PeN742A0BaEqCmlq3kv4gQV87eGeM/qiwKuyh657+Tp6ym
64m6v65JtyVyweC/0Lnb9dIUwT/RdkzdlV3gvxSuR+F6lPw/B/AWSFD80L8l
kuhlFMvxP3lcVIuIYti/VPzfERWq2D9jKCfaVUjSv3Ztb7ckB+Y/7zhFR3J5
9L/T3uALkyn1vy+nBMQkXOq/A7StZp3x6L9/vFetTLgZwN+mP/uR4g7ACvX0
EfjD3b+v6UFBKVrRv293IPzVLbi/VwT/W8nuHkATmbnA5bHUv+avkLkyqKa/
JPCHn/8e3z/wxKwXQ7n8P37ja88sCcC/xvmbUIiA0z+vsrYpHhfQP89r7BLV
2/E/JhWVJgjLZr/uQ95y9WPhP66BrRIsDvK/W5nwS/18BsA9KChFK/ffv737
471q5fO/7KLogY/B3L9BLnHkgcjivy3Pg7uzFhpA36Y/+5HiDsDf3jXoS2/L
vxoaTwRxHtm/1PGYgcr4/T+Hp1fKMoQDQJhQweEFEb2/GWiIdIk0sT+8H7df
Plm9v4Jvmj474MS/YvHd3hxLgz83T3XIzXD9v9dR1QRRd/I/TKYKRiV1BsDe
6GM+IFDqPx2UMNP2L/E/4BKAf0qVyL9ne/SG+0jrv9+KxAQ1fL8/vobguIyb
0z+wVYLF4czRP8kgdxGmKOY/m1q21hdJCEBgAOFDiZbaP3ehuU4jrfk/7zfa
ccPv7T849YHknUO9P4WX4NQHkrE/rRVtjnObcD+Qozmy8kviv8lxp3SwfuQ/
WFUvv9Nk4z+5Nem2RC7YPyvdXWdD/tg/91j60AV14D/cY+lDF9TzvzOK5ZZW
Q74/AMgJE0azxL+7YHDNHf3JPxGnk2x1Oeu/NuohGt3B9D+t+lxtxf70vxo0
9E9wsfw/cTjzqzlA3b/hYkUNpmH1P4UHza57K8g/+YVXkjzX1D8Wj+YjhKKk
vx6ILNLEO8w/0eY4twn32L/qswOuK+bqP1BvRs1XydA/7X2qCg3E4D9FnbmH
hO/BP60Yrg6AuOo/aTum7squ6L+uDRXj/E3dP3SV7q6zoeK/uwopP6l28T+e
CyO9qN3Uv9Bk/zwNGN4/SzrKwWwC0b/3yVGAKJjnP68WjtYHSLi/I6cOuA==
"]}]]},
TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData["
1:eJwB0QMu/CFib1JlAgAAADwAAAACAAAA8KKvIM1Y9b88+IkD6PfFP2DI6lbP
yfm/VVG8ytom7T89ZMqHoOrqv51mgXaHFNA/jjulg/V//L/B49u7Bn3ev3/2
I0VkWPG/KJmc2hmm1b+/DpwzorTqv0I+6Nms+vA/p7OTwVEyCMDa4a/JGvXX
Pwk4hCo1e/6/n5PeN742A0BaEqCmlq3kv4gQV87eGeM/qiwKuyh657+Tp6ym
64m6v65JtyVyweC/0Lnb9dIUwT/RdkzdlV3gvxSuR+F6lPw/B/AWSFD80L8l
kuhlFMvxP3lcVIuIYti/VPzfERWq2D9jKCfaVUjSv3Ztb7ckB+Y/7zhFR3J5
9L/T3uALkyn1vy+nBMQkXOq/A7StZp3x6L9/vFetTLgZwN+mP/uR4g7ACvX0
EfjD3b+v6UFBKVrRv293IPzVLbi/VwT/W8nuHkATmbnA5bHUv+avkLkyqKa/
JPCHn/8e3z/wxKwXQ7n8P37ja88sCcC/xvmbUIiA0z+vsrYpHhfQP89r7BLV
2/E/JhWVJgjLZr/uQ95y9WPhP66BrRIsDvK/W5nwS/18BsA9KChFK/ffv737
471q5fO/7KLogY/B3L9BLnHkgcjivy3Pg7uzFhpA36Y/+5HiDsDf3jXoS2/L
vxoaTwRxHtm/1PGYgcr4/T+Hp1fKMoQDQJhQweEFEb2/GWiIdIk0sT+8H7df
Plm9v4Jvmj474MS/YvHd3hxLgz83T3XIzXD9v9dR1QRRd/I/TKYKRiV1BsDe
6GM+IFDqPx2UMNP2L/E/4BKAf0qVyL9ne/SG+0jrv9+KxAQ1fL8/vobguIyb
0z+wVYLF4czRP8kgdxGmKOY/m1q21hdJCEBgAOFDiZbaP3ehuU4jrfk/7zfa
ccPv7T849YHknUO9P4WX4NQHkrE/rRVtjnObcD+Qozmy8kviv8lxp3SwfuQ/
WFUvv9Nk4z+5Nem2RC7YPyvdXWdD/tg/91j60AV14D/cY+lDF9TzvzOK5ZZW
Q74/AMgJE0azxL+7YHDNHf3JPxGnk2x1Oeu/NuohGt3B9D+t+lxtxf70vxo0
9E9wsfw/cTjzqzlA3b/hYkUNpmH1P4UHza57K8g/+YVXkjzX1D8Wj+YjhKKk
vx6ILNLEO8w/0eY4twn32L/qswOuK+bqP1BvRs1XydA/7X2qCg3E4D9FnbmH
hO/BP60Yrg6AuOo/aTum7squ6L+uDRXj/E3dP3SV7q6zoeK/uwopP6l28T+e
CyO9qN3Uv9Bk/zwNGN4/SzrKwWwC0b/3yVGAKJjnP68WjtYHSLi/I6cOuA==
"], {
{Hue[0.6, 0.7, 0.5], Opacity[0.7],
LineBox[{{1, 2}, {1, 3}, {1, 4}, {1, 5}, {2, 6}, {2, 7}, {2, 8}, {
3, 9}, {3, 10}, {3, 11}, {4, 5}, {4, 7}, {4, 16}, {5, 10}, {5,
17}, {6, 9}, {6, 12}, {6, 13}, {7, 8}, {7, 18}, {8, 12}, {8,
20}, {9, 14}, {9, 15}, {10, 11}, {10, 19}, {11, 14}, {11, 21}, {
12, 13}, {12, 22}, {13, 15}, {13, 24}, {14, 15}, {14, 23}, {15,
25}, {16, 17}, {16, 26}, {16, 27}, {17, 27}, {17, 28}, {18, 20}, {
18, 26}, {18, 29}, {19, 21}, {19, 28}, {19, 30}, {20, 29}, {20,
31}, {21, 32}, {21, 33}, {22, 24}, {22, 31}, {22, 36}, {23, 25}, {
23, 32}, {23, 38}, {24, 36}, {24, 39}, {25, 38}, {25, 39}, {26,
34}, {26, 35}, {27, 34}, {27, 37}, {28, 30}, {28, 37}, {29, 35}, {
29, 40}, {30, 33}, {30, 43}, {31, 40}, {31, 41}, {32, 33}, {32,
42}, {33, 47}, {34, 35}, {34, 46}, {35, 49}, {36, 41}, {36, 44}, {
37, 43}, {37, 48}, {38, 42}, {38, 45}, {39, 44}, {39, 45}, {40,
41}, {40, 50}, {41, 51}, {42, 47}, {42, 52}, {43, 48}, {43, 53}, {
44, 45}, {44, 54}, {45, 55}, {46, 48}, {46, 49}, {46, 56}, {47,
52}, {47, 53}, {48, 57}, {49, 50}, {49, 56}, {50, 51}, {50, 58}, {
51, 54}, {51, 58}, {52, 55}, {52, 59}, {53, 57}, {53, 59}, {54,
55}, {54, 60}, {55, 60}, {56, 57}, {56, 58}, {57, 59}, {58, 60}, {
59, 60}}]},
{Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}],
DiskBox[1, 0.07495914963708368], DiskBox[2, 0.07495914963708368],
DiskBox[3, 0.07495914963708368], DiskBox[4, 0.07495914963708368],
DiskBox[5, 0.07495914963708368], DiskBox[6, 0.07495914963708368],
DiskBox[7, 0.07495914963708368], DiskBox[8, 0.07495914963708368],
DiskBox[9, 0.07495914963708368], DiskBox[10, 0.07495914963708368],
DiskBox[11, 0.07495914963708368], DiskBox[12, 0.07495914963708368],
DiskBox[13, 0.07495914963708368],
DiskBox[14, 0.07495914963708368], DiskBox[15, 0.07495914963708368],
DiskBox[16, 0.07495914963708368],
DiskBox[17, 0.07495914963708368], DiskBox[18, 0.07495914963708368],
DiskBox[19, 0.07495914963708368],
DiskBox[20, 0.07495914963708368], DiskBox[21, 0.07495914963708368],
DiskBox[22, 0.07495914963708368],
DiskBox[23, 0.07495914963708368], DiskBox[24, 0.07495914963708368],
DiskBox[25, 0.07495914963708368],
DiskBox[26, 0.07495914963708368], DiskBox[27, 0.07495914963708368],
DiskBox[28, 0.07495914963708368],
DiskBox[29, 0.07495914963708368], DiskBox[30, 0.07495914963708368],
DiskBox[31, 0.07495914963708368],
DiskBox[32, 0.07495914963708368], DiskBox[33, 0.07495914963708368],
DiskBox[34, 0.07495914963708368],
DiskBox[35, 0.07495914963708368], DiskBox[36, 0.07495914963708368],
DiskBox[37, 0.07495914963708368],
DiskBox[38, 0.07495914963708368], DiskBox[39, 0.07495914963708368],
DiskBox[40, 0.07495914963708368],
DiskBox[41, 0.07495914963708368], DiskBox[42, 0.07495914963708368],
DiskBox[43, 0.07495914963708368],
DiskBox[44, 0.07495914963708368], DiskBox[45, 0.07495914963708368],
DiskBox[46, 0.07495914963708368],
DiskBox[47, 0.07495914963708368], DiskBox[48, 0.07495914963708368],
DiskBox[49, 0.07495914963708368],
DiskBox[50, 0.07495914963708368], DiskBox[51, 0.07495914963708368],
DiskBox[52, 0.07495914963708368],
DiskBox[53, 0.07495914963708368], DiskBox[54, 0.07495914963708368],
DiskBox[55, 0.07495914963708368],
DiskBox[56, 0.07495914963708368], DiskBox[57, 0.07495914963708368],
DiskBox[58, 0.07495914963708368],
DiskBox[59, 0.07495914963708368],
DiskBox[60, 0.07495914963708368]}}]],
MouseAppearanceTag["NetworkGraphics"]],
AllowKernelInitialization->False]],
DefaultBaseStyle->{
"NetworkGraphics", FrontEnd`GraphicsHighlightColor -> Hue[0.8, 1., 0.6]},
FormatType->TraditionalForm,
FrameTicks->None]}], "}"}]], "Output",
CellLabel->"Out[15]=",ExpressionUUID->"c039b4f7-52d7-4c16-988f-e474a6bc3ec3"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"ToCommonEdges", "[",
RowBox[{
RowBox[{"GraphData", "[", "r", "]"}], ",", "g"}], "]"}]], "Input",
CellLabel->"In[16]:=",ExpressionUUID->"37fec55f-8fd8-4ee2-8aff-7840e260b80f"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"0.06112354719077291`", ",", "0.11619405556253717`"}], "}"}], ",",
RowBox[{"{",
RowBox[{"0.5877852522924729`", ",",
RowBox[{"-", "0.8090169943749475`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"0.`", ",", "0.0804360863479686`"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "0.5877852522924734`"}], ",",
RowBox[{"-", "0.8090169943749475`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"0.22050724180260173`", ",", "0.07265206005266722`"}], "}"}], ",",
RowBox[{"{",
RowBox[{"0.3111382637018429`", ",", "0.0535928746987607`"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "0.22044190387229792`"}], ",", "0.07265227434615401`"}],
"}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "0.3110828298250481`"}], ",", "0.05359311804212509`"}],
"}"}], ",",
RowBox[{"{",
RowBox[{"0.07485767846913281`", ",", "0.06746521922496442`"}], "}"}], ",",
RowBox[{"{",
RowBox[{"0.39114682055259437`", ",",
RowBox[{"-", "0.36319904351257776`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "0.07477870219928812`"}], ",", "0.06746533386760084`"}],
"}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "0.3911173827652377`"}], ",",
RowBox[{"-", "0.3631989474620063`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"0.02478574804410161`", ",", "0.04467833942033114`"}], "}"}], ",",
RowBox[{"{",
RowBox[{"0.2249953070718143`", ",",
RowBox[{"-", "0.48402646147946565`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "0.024704190133009098`"}], ",", "0.04467843470411331`"}],
"}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "0.2249658887704444`"}], ",",
RowBox[{"-", "0.48402643545801`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"0.16880881343151713`", ",",
RowBox[{"-", "0.019634249023571367`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"0.21274927103623498`", ",",
RowBox[{"-", "0.06776039204619112`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "0.16873722151045528`"}], ",",
RowBox[{"-", "0.01963390869819654`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "0.21268430629098123`"}], ",",
RowBox[{"-", "0.06776015103078631`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "0.048721572194248074`"}], ",", "0.20481266160974357`"}],
"}"}], ",",
RowBox[{"{",
RowBox[{"0.`", ",", "0.9999999999999999`"}], "}"}], ",",
RowBox[{"{",
RowBox[{"0.12080396891943479`", ",", "0.11206299221220903`"}], "}"}], ",",
RowBox[{"{",
RowBox[{"0.5300177482229651`", ",", "0.06489336966392287`"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "0.12073100932919331`"}], ",", "0.11206312974792333`"}],
"}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "0.5299882576490409`"}], ",", "0.06489353575588852`"}],
"}"}], ",",
RowBox[{"{",
RowBox[{"0.12672411613491325`", ",", "0.19194124217524006`"}], "}"}], ",",
RowBox[{"{",
RowBox[{"0.46672694249325697`", ",", "0.26016310567048045`"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "0.12665979391850624`"}], ",", "0.1919413617161852`"}],
"}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "0.4666974381655349`"}], ",", "0.2601631880128878`"}],
"}"}], ",",
RowBox[{"{",
RowBox[{"0.05602593214624753`", ",", "0.3063027855301269`"}], "}"}], ",",
RowBox[{"{",
RowBox[{"0.1045568722662169`", ",", "0.5221551983852335`"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "0.05596997248574748`"}], ",", "0.30630288486647633`"}],
"}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "0.10452719107125402`"}], ",", "0.5221552358810017`"}],
"}"}], ",",
RowBox[{"{",
RowBox[{"0.2812748312395273`", ",", "0.14458719314314988`"}], "}"}], ",",
RowBox[{"{",
RowBox[{"0.048788760431642327`", ",", "0.2048125468151799`"}], "}"}], ",",
RowBox[{"{",
RowBox[{"0.9510565162951536`", ",", "0.30901699437494723`"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "0.06104688221102794`"}], ",", "0.11619414850951934`"}],
"}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "0.9510565162951535`"}], ",", "0.30901699437494756`"}],
"}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "0.28121953609977474`"}], ",", "0.14458730904237949`"}],
"}"}], ",",
RowBox[{"{",
RowBox[{"0.09271572616616452`", ",",
RowBox[{"-", "0.0030741918919371426`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"0.22178717205616072`", ",",
RowBox[{"-", "0.2246457548603611`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "0.0926360533994071`"}], ",",
RowBox[{"-", "0.003073763007493426`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "0.22173187350251294`"}], ",",
RowBox[{"-", "0.22464557411678482`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"0.07824389292541221`", ",",
RowBox[{"-", "0.04626072188216647`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"0.13723539858028008`", ",",
RowBox[{"-", "0.18775981341748932`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "0.07816407142604323`"}], ",",
RowBox[{"-", "0.0462604563799307`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "0.1371704990480494`"}], ",",
RowBox[{"-", "0.18775968928152173`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"0.02204924778955018`", ",",
RowBox[{"-", "0.08774811954938332`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"0.03187835213974362`", ",",
RowBox[{"-", "0.16617602143346547`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "0.02196939136378923`"}], ",",
RowBox[{"-", "0.08774804659212158`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "0.03180685665427106`"}], ",",
RowBox[{"-", "0.16617592632835299`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"0.14925977060361312`", ",",
RowBox[{"-", "0.08035387290273258`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"0.048947389862218034`", ",",
RowBox[{"-", "0.013866068194377724`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"0.14601326507064605`", ",",
RowBox[{"-", "0.27986304390030925`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "0.048865889500481284`"}], ",",
RowBox[{"-", "0.013865712118035826`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "0.14595799156003994`"}], ",",
RowBox[{"-", "0.27986301255512985`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "0.14918824686154705`"}], ",",
RowBox[{"-", "0.08035369501834534`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"0.`", ",",
RowBox[{"-", "0.05080706378883249`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"0.`", ",",
RowBox[{"-", "0.22301963973697947`"}]}], "}"}]}], "}"}]], "Output",
CellLabel->"Out[16]=",ExpressionUUID->"3f237974-fde2-495e-a47c-09f143bcffd1"]
}, Open ]]
}, Closed]],
Cell[CellGroupData[{
Cell["SurfaceArea", "Subsection",ExpressionUUID->"267238f8-3ec2-4879-9679-23f4ccd42470"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"PolyhedronData", "[",
RowBox[{"pname", ",", "\"\\""}], "]"}]], "Input",
CellLabel->
"In[300]:=",ExpressionUUID->"05d238cb-8743-4d7f-b012-4550d7accf5c"],
Cell[BoxData[
RowBox[{
RowBox[{"5", " ",
RowBox[{"(",
RowBox[{"6", "+",
SqrtBox["3"]}], ")"}]}], "+",
RowBox[{"3", " ",
SqrtBox[
RowBox[{"5", " ",
RowBox[{"(",
RowBox[{"5", "+",
RowBox[{"2", " ",
SqrtBox["5"]}]}], ")"}]}]]}]}]], "Output",
CellLabel->
"Out[300]=",ExpressionUUID->"a18fd660-11e0-4d01-9d82-53d5d5a391f1"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"RootReduce", "[", "%", "]"}]], "Input",
CellLabel->
"In[301]:=",ExpressionUUID->"93ecbd6d-a281-4fa2-b9fd-5e2aae1be4bc"],
Cell[BoxData[
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"59.3\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"],
ShowStringCharacters -> False],
59.30598284490938709723195643164217472076`15.954589770191003, Editable ->
False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{
RowBox[{"19764000000", "-",
RowBox[{"33372000000", " ", "#1"}], "+",
RowBox[{"7554600000", " ",
SuperscriptBox["#1", "2"]}], "-",
RowBox[{"751680000", " ",
SuperscriptBox["#1", "3"]}], "+",
RowBox[{"40824000", " ",
SuperscriptBox["#1", "4"]}], "-",
RowBox[{"1296000", " ",
SuperscriptBox["#1", "5"]}], "+",
RowBox[{"24000", " ",
SuperscriptBox["#1", "6"]}], "-",
RowBox[{"240", " ",
SuperscriptBox["#1", "7"]}], "+",
SuperscriptBox["#1", "8"]}], "&"}], ",", "8"}], "]"}],
Short[#, 7]& ], 59.30598284490939},
"NumericalApproximation"],
Root[19764000000 - 33372000000 # + 7554600000 #^2 - 751680000 #^3 +
40824000 #^4 - 1296000 #^5 + 24000 #^6 - 240 #^7 + #^8& , 8, 0]]], "Output",\
CellLabel->
"Out[301]=",ExpressionUUID->"f951c0ff-f6d6-4a97-a183-8700aec8dfb8"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{
RowBox[{"SurfaceArea", "[", "p", "]"}], "//", "RootReduce"}], "//",
"Timing"}]], "Input",
CellLabel->
"In[302]:=",ExpressionUUID->"f3b9e7cb-1de5-47bb-a246-0b184252ccd3"],
Cell[BoxData["$Aborted"], "Output",
CellLabel->
"Out[302]=",ExpressionUUID->"f88d1c28-3261-4df6-aac6-5de6b87ed4ae"]
}, Open ]],
Cell[BoxData[
RowBox[{
RowBox[{
RowBox[{"Total", "[",
RowBox[{"Area", "/@",
RowBox[{"PolyhedronData", "[",
RowBox[{"pname", ",", "\"\\""}], "]"}]}], "]"}], "//",
"RootReduce"}], "//", "Timing"}]], "Input",ExpressionUUID->"911c6ae2-e83a-\
4ac7-85fb-ef4213b3a468"]
}, Open ]],
Cell[CellGroupData[{
Cell["VertexSubsetHulls", "Subsection",ExpressionUUID->"b1740c49-d338-4d18-9fed-10788d3427ea"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"PolyhedronData", "[",
RowBox[{"pname", ",", "\"\\""}], "]"}]], "Input",
CellLabel->
"In[298]:=",ExpressionUUID->"2354b42b-00c4-42ea-ac2e-a9730da99927"],
Cell[BoxData[
RowBox[{"{",
RowBox[{"\<\"GyrateRhombicosidodecahedron\"\>", "\[Rule]",
RowBox[{"{",
RowBox[{"{",
RowBox[{
"1", ",", "2", ",", "3", ",", "4", ",", "5", ",", "6", ",", "7", ",",
"8", ",", "9", ",", "10", ",", "11", ",", "12", ",", "13", ",", "14",
",", "15", ",", "16", ",", "17", ",", "18", ",", "19", ",", "20", ",",
"21", ",", "22", ",", "23", ",", "24", ",", "25", ",", "26", ",", "27",
",", "28", ",", "29", ",", "30", ",", "31", ",", "32", ",", "33", ",",
"34", ",", "35", ",", "36", ",", "37", ",", "38", ",", "39", ",", "40",
",", "41", ",", "42", ",", "43", ",", "44", ",", "45", ",", "46", ",",
"47", ",", "48", ",", "49", ",", "50", ",", "51", ",", "52", ",", "53",
",", "54", ",", "55", ",", "56", ",", "57", ",", "58", ",", "59", ",",
"60"}], "}"}], "}"}]}], "}"}]], "Output",
CellLabel->
"Out[298]=",ExpressionUUID->"4bd3a5c7-50f2-48cf-bf0a-8170fce20ad3"]
}, Open ]],
Cell[CellGroupData[{
Cell["Platonic", "Subsubsection",ExpressionUUID->"7ad683bb-63ad-460d-9825-9e442a3dc5bd"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"(",
RowBox[{"h", "=",
RowBox[{"VertexSubsetHulls", "[",
RowBox[{"p", ",", "\"\\"", ",",
RowBox[{"\"\\"", "\[Rule]",
RowBox[{"{", "}"}]}]}], "]"}]}], ")"}], "//", "Timing"}]], "Input",
CellLabel->
"In[299]:=",ExpressionUUID->"67a628ee-557c-473c-89cf-fd6e95127e31"],
Cell[CellGroupData[{
Cell[BoxData["\<\"Finding equilateral triangles...\"\>"], "Print",
CellLabel->
"During evaluation of \
In[299]:=",ExpressionUUID->"6d6aad30-6aa5-4802-aaed-d30c7d47431c"],
Cell[BoxData["\<\"Finding potential tetrahedra from equilateral \
triangles...\"\>"], "Print",
CellLabel->
"During evaluation of \
In[299]:=",ExpressionUUID->"667e1055-e1df-405c-a30e-a60c637cd774"],
Cell[BoxData["\<\"Finding tetrahedra from potential candidates...\"\>"], \
"Print",
CellLabel->
"During evaluation of \
In[299]:=",ExpressionUUID->"7159c626-23e3-4cc5-8677-0f388d12d50b"],
Cell[BoxData["\<\"Finding cubes from tetrahedra...\"\>"], "Print",
CellLabel->
"During evaluation of \
In[299]:=",ExpressionUUID->"de86207d-6caf-4807-97a8-541e7ae29de0"],
Cell[BoxData["\<\"Finding dodecahedron from cubes...\"\>"], "Print",
CellLabel->
"During evaluation of \
In[299]:=",ExpressionUUID->"ec7ecdbf-9ad4-4c12-b496-f4ff75149167"],
Cell[BoxData["\<\"Finding octahedra by building up from equilateral \
triangles...\"\>"], "Print",
CellLabel->
"During evaluation of \
In[299]:=",ExpressionUUID->"35342c7d-75d5-4739-90f8-8d03e52d4b57"],
Cell[BoxData["\<\"Finding dodecahedra from octahedra...\"\>"], "Print",
CellLabel->
"During evaluation of \
In[299]:=",ExpressionUUID->"d9c2838f-8bf4-4e72-9b87-958d685fa653"],
Cell[BoxData["\<\"Finding icosahedra by building up from equilateral \
triangles...\"\>"], "Print",
CellLabel->
"During evaluation of \
In[299]:=",ExpressionUUID->"50840cc3-77ab-4a5a-9da5-0ce5f6157012"]
}, Open ]],
Cell[BoxData[
RowBox[{"{",
RowBox[{"0.889192`", ",",
RowBox[{"{", "}"}]}], "}"}]], "Output",
CellLabel->
"Out[299]=",ExpressionUUID->"df1af838-93e5-4fec-932a-ebe427585121"]
}, Open ]]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell["Volume", "Subsection",ExpressionUUID->"ba9a6b4e-9bc1-4a05-bc7d-023d546df675"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"PolyhedronData", "[",
RowBox[{"pname", ",", "\"\\""}], "]"}]], "Input",
CellLabel->
"In[295]:=",ExpressionUUID->"f62c1e01-5d4f-411f-9a59-17b4cf72ebab"],
Cell[BoxData[
RowBox[{"20", "+",
FractionBox[
RowBox[{"29", " ",
SqrtBox["5"]}], "3"]}]], "Output",
CellLabel->
"Out[295]=",ExpressionUUID->"d5c8f113-1213-4306-9909-28281f59f9df"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"Volume", "[", "p", "]"}], "//", "FullSimplify"}]], "Input",
CellLabel->
"In[296]:=",ExpressionUUID->"b1a18864-00f9-4bf4-8d7d-86b5e8b96992"],
Cell[BoxData[
RowBox[{"20", "+",
FractionBox[
RowBox[{"29", " ",
SqrtBox["5"]}], "3"]}]], "Output",
CellLabel->
"Out[296]=",ExpressionUUID->"40d88593-78a1-4e2a-a0b9-9bd73763e2be"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"PolyhedronVolume", "[",
RowBox[{"p", ",",
RowBox[{"Method", "\[Rule]", "\"\\""}]}], "]"}], "//",
"FullSimplify"}]], "Input",
CellLabel->
"In[297]:=",ExpressionUUID->"febd2802-70ee-4783-bae3-89fe9ce27c5c"],
Cell[BoxData[
RowBox[{"20", "+",
FractionBox[
RowBox[{"29", " ",
SqrtBox["5"]}], "3"]}]], "Output",
CellLabel->
"Out[297]=",ExpressionUUID->"16f581e1-69a2-4b5e-8ec8-ca78c0256e6a"]
}, Open ]]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell["Construction", "Section",ExpressionUUID->"d130c577-5eb5-449b-981b-cc5237942dc5"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{
RowBox[{"PolyhedronData", "[",
RowBox[{"#", ",", "\"\\""}], "]"}], "&"}], "/@",
RowBox[{"{",
RowBox[{
"\"\\"", ",",
"\"\\""}], "}"}]}]], "Input",
CellLabel->"In[40]:=",ExpressionUUID->"13267c9f-81a7-4df8-b243-b1092b7bbcd0"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
GraphicsBox[
{RGBColor[1, 1, 0.85], EdgeForm[GrayLevel[0]],
GraphicsComplexBox[
NCache[{{0,
Rational[1, 4] (
9 + (63 + 6 5^Rational[1, 2] +
24 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 2] (-1 - 3^
Rational[1, 2] + (5 + 2 5^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (
1 + (3 (9 + 2 5^Rational[1, 2] +
4 (5 + 2 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2])}, {
Rational[1, 2] (-1 - 3^
Rational[1, 2] + (5 + 2 5^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (
5 + (3 (9 + 2 5^Rational[1, 2] +
4 (5 + 2 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2])}, {
Rational[1, 4] (10 - 2 5^Rational[1, 2])^Rational[1, 2],
Rational[1, 4] (8 - 5^
Rational[
1, 2] + (63 + 6 5^Rational[1, 2] +
24 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 2] (Rational[1, 2] (5 - 5^Rational[1, 2]))^Rational[1, 2],
Rational[1, 4] (10 +
5^Rational[1, 2] + (63 + 6 5^Rational[1, 2] +
24 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
Rational[
1, 2] (-3^Rational[1, 2] + (5 + 2 5^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (1 + (15 + 6 5^Rational[1, 2])^Rational[1, 2])}, {
Rational[
1, 2] (-3^Rational[1, 2] + (5 + 2 5^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (
5 + (63 + 6 5^Rational[1, 2] +
24 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
Rational[
1, 2] (-3^Rational[1, 2] + (5 + 2 5^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (
13 + (63 + 6 5^Rational[1, 2] +
24 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 2] (1 - 3^
Rational[1, 2] + (5 + 2 5^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (
1 + (3 (9 + 2 5^Rational[1, 2] +
4 (5 + 2 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2])}, {
Rational[1, 2] (1 - 3^
Rational[1, 2] + (5 + 2 5^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (
5 + (3 (9 + 2 5^Rational[1, 2] +
4 (5 + 2 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2])}, {
Rational[1, 2] (1 - 3^
Rational[1, 2] + (5 + 2 5^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (
13 + (123 + 6 5^Rational[1, 2] +
36 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[1, 4] (-1 + (15 + 6 5^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[1, 4] (
7 + (63 + 6 5^Rational[1, 2] +
24 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[1, 4] (
11 + (63 + 6 5^Rational[1, 2] +
24 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 2] (1 + (5 + 2 5^Rational[1, 2])^Rational[1, 2]),
Rational[
1, 4] (-1 + (
3 (9 + 2 5^Rational[1, 2] +
4 (5 + 2 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2])}, {
Rational[1, 2] (1 + (5 + 2 5^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (
7 + (3 (9 + 2 5^Rational[1, 2] +
4 (5 + 2 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2])}, {
Rational[1, 2] (1 + (5 + 2 5^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (
11 + (123 + 6 5^Rational[1, 2] +
36 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 4] (
2 + (62 + 22 5^Rational[1, 2] -
4 (150 + 66 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (2 - 2 3^Rational[1, 2] - 5^
Rational[
1, 2] + (63 + 6 5^Rational[1, 2] +
24 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 4] (
2 + (62 + 22 5^Rational[1, 2] -
4 (150 + 66 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (4 - 2 3^Rational[1, 2] +
5^Rational[1, 2] + (63 + 6 5^Rational[1, 2] +
24 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 2] (2 + (5 + 2 5^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (
7 + (63 + 6 5^Rational[1, 2] +
24 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 2] (2 + (5 + 2 5^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (
11 + (63 + 6 5^Rational[1, 2] +
24 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 2] (
1 + (23 + 8 5^Rational[1, 2] -
4 (15 + 6 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (
3 + (3 (9 + 2 5^Rational[1, 2] +
4 (5 + 2 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2])}, {
1 + 3^Rational[1, 2],
Rational[1, 4] (
9 + (63 + 6 5^Rational[1, 2] +
24 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 2] (1 +
3^Rational[1, 2] + (5 + 2 5^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (
1 + (3 (9 + 2 5^Rational[1, 2] +
4 (5 + 2 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2])}, {
Rational[1, 2] (1 +
3^Rational[1, 2] + (5 + 2 5^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (
5 + (3 (9 + 2 5^Rational[1, 2] +
4 (5 + 2 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2])}, {
Rational[1, 4] (
4 + (58 - 2 5^Rational[1, 2] +
8 (30 - 6 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (8 - 5^
Rational[
1, 2] + (63 + 6 5^Rational[1, 2] +
24 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 4] (
4 + (58 - 2 5^Rational[1, 2] +
8 (30 - 6 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (10 +
5^Rational[1, 2] + (63 + 6 5^Rational[1, 2] +
24 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 2] (2 +
3^Rational[1, 2] + (5 + 2 5^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (1 + (15 + 6 5^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 2] (2 +
3^Rational[1, 2] + (5 + 2 5^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (
5 + (63 + 6 5^Rational[1, 2] +
24 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 2] (2 +
3^Rational[1, 2] + (5 + 2 5^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (
13 + (63 + 6 5^Rational[1, 2] +
24 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 2] (3 +
3^Rational[1, 2] + (5 + 2 5^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (
1 + (3 (9 + 2 5^Rational[1, 2] +
4 (5 + 2 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2])}, {
Rational[1, 2] (3 +
3^Rational[1, 2] + (5 + 2 5^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (
5 + (3 (9 + 2 5^Rational[1, 2] +
4 (5 + 2 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2])}, {
Rational[1, 2] (3 +
3^Rational[1, 2] + (5 + 2 5^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (
13 + (123 + 6 5^Rational[1, 2] +
36 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 4] (
6 + (55 + 7 5^Rational[1, 2] + (750 + 330 5^Rational[1, 2])^
Rational[1, 2])^Rational[1, 2]),
Root[-22259 + 478240 # - 1106488 #^2 + 161680 #^3 + 446464 #^4 -
262720 #^5 + 60608 #^6 - 6400 #^7 + 256 #^8& , 8, 0]}, {
1 + 3^Rational[1, 2] +
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[1, 4] (-1 + (15 + 6 5^Rational[1, 2])^Rational[1, 2])}, {
1 + 3^Rational[1, 2] +
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[1, 4] (
7 + (63 + 6 5^Rational[1, 2] +
24 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
1 + 3^Rational[1, 2] +
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[1, 4] (
11 + (63 + 6 5^Rational[1, 2] +
24 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 2] (3 +
2 3^Rational[1, 2] + (5 + 2 5^Rational[1, 2])^Rational[1, 2]),
Rational[
1, 4] (-1 + (
3 (9 + 2 5^Rational[1, 2] +
4 (5 + 2 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2])}, {
Rational[1, 2] (3 +
2 3^Rational[1, 2] + (5 + 2 5^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (
7 + (3 (9 + 2 5^Rational[1, 2] +
4 (5 + 2 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2])}, {
Rational[1, 2] (3 +
2 3^Rational[1, 2] + (5 + 2 5^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (
11 + (123 + 6 5^Rational[1, 2] +
36 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 4] (
6 + (62 + 22 5^Rational[1, 2] +
4 (150 + 66 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (2 - 2 3^Rational[1, 2] - 5^
Rational[
1, 2] + (63 + 6 5^Rational[1, 2] +
24 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 4] (
6 + (62 + 22 5^Rational[1, 2] +
4 (150 + 66 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (4 - 2 3^Rational[1, 2] +
5^Rational[1, 2] + (63 + 6 5^Rational[1, 2] +
24 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
Rational[3, 4] (
2 + (2 (4 +
5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2]))^
Rational[1, 2]),
3 + (Rational[3, 2] (7 + 5^Rational[1, 2] +
3 (5 + 2 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2]}, {
2 + 3^Rational[1, 2] +
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[1, 4] (
7 + (63 + 6 5^Rational[1, 2] +
24 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
2 + 3^Rational[1, 2] +
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[1, 4] (
11 + (63 + 6 5^Rational[1, 2] +
24 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 2] (
3 + (23 + 8 5^Rational[1, 2] +
4 (15 + 6 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (
3 + (3 (9 + 2 5^Rational[1, 2] +
4 (5 + 2 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2])}, {
2 (1 + 3^Rational[1, 2]),
Rational[1, 4] (
9 + (63 + 6 5^Rational[1, 2] +
24 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 4] (
6 + (73 + 25 5^Rational[1, 2] + (8310 + 3714 5^Rational[1, 2])^
Rational[1, 2])^Rational[1, 2]),
Root[-238739 + 1171904 # - 1679896 #^2 + 703088 #^3 + 133504 #^4 -
177344 #^5 + 49856 #^6 - 5888 #^7 + 256 #^8& , 8, 0]}, {
Rational[1, 2] (3 +
3 3^Rational[1, 2] + (5 + 2 5^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (
1 + (3 (9 + 2 5^Rational[1, 2] +
4 (5 + 2 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2])}, {
Rational[1, 2] (3 +
3 3^Rational[1, 2] + (5 + 2 5^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (
5 + (3 (9 + 2 5^Rational[1, 2] +
4 (5 + 2 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2])}, {
Rational[1, 4] (
8 + (202 - 2 5^Rational[1, 2] +
16 (30 - 6 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (8 - 5^
Rational[
1, 2] + (63 + 6 5^Rational[1, 2] +
24 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 4] (
8 + (202 - 2 5^Rational[1, 2] +
16 (30 - 6 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (10 +
5^Rational[1, 2] + (63 + 6 5^Rational[1, 2] +
24 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 2] (4 +
3 3^Rational[1, 2] + (5 + 2 5^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (1 + (15 + 6 5^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 2] (4 +
3 3^Rational[1, 2] + (5 + 2 5^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (
5 + (63 + 6 5^Rational[1, 2] +
24 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 2] (4 +
3 3^Rational[1, 2] + (5 + 2 5^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (
13 + (63 + 6 5^Rational[1, 2] +
24 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 2] (5 +
3 3^Rational[1, 2] + (5 + 2 5^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (
1 + (3 (9 + 2 5^Rational[1, 2] +
4 (5 + 2 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2])}, {
Rational[1, 2] (5 +
3 3^Rational[1, 2] + (5 + 2 5^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (
5 + (3 (9 + 2 5^Rational[1, 2] +
4 (5 + 2 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2])}, {
Rational[1, 2] (5 +
3 3^Rational[1, 2] + (5 + 2 5^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (
13 + (123 + 6 5^Rational[1, 2] +
36 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 2] (4 +
4 3^Rational[1, 2] + (5 + 2 5^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (-1 + (15 + 6 5^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 2] (4 +
4 3^Rational[1, 2] + (5 + 2 5^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (
7 + (63 + 6 5^Rational[1, 2] +
24 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 2] (4 +
4 3^Rational[1, 2] + (5 + 2 5^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (
11 + (63 + 6 5^Rational[1, 2] +
24 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 2] (5 +
4 3^Rational[1, 2] + (5 + 2 5^Rational[1, 2])^Rational[1, 2]),
Rational[
1, 4] (-1 + (
3 (9 + 2 5^Rational[1, 2] +
4 (5 + 2 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2])}, {
Rational[1, 2] (5 +
4 3^Rational[1, 2] + (5 + 2 5^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (
7 + (3 (9 + 2 5^Rational[1, 2] +
4 (5 + 2 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2])}, {
Rational[1, 2] (5 +
4 3^Rational[1, 2] + (5 + 2 5^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (
11 + (123 + 6 5^Rational[1, 2] +
36 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 4] (
10 + (2 (79 + 11 5^Rational[1, 2] +
6 (150 + 66 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2]),
Rational[1, 4] (2 - 2 3^Rational[1, 2] - 5^
Rational[
1, 2] + (63 + 6 5^Rational[1, 2] +
24 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 4] (
10 + (2 (79 + 11 5^Rational[1, 2] +
6 (150 + 66 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2]),
Rational[1, 4] (4 - 2 3^Rational[1, 2] +
5^Rational[1, 2] + (63 + 6 5^Rational[1, 2] +
24 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 2] (6 +
4 3^Rational[1, 2] + (5 + 2 5^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (
7 + (63 + 6 5^Rational[1, 2] +
24 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 2] (6 +
4 3^Rational[1, 2] + (5 + 2 5^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (
11 + (63 + 6 5^Rational[1, 2] +
24 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 2] (
5 + (47 + 8 5^Rational[1, 2] +
12 (15 + 6 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (
3 + (3 (9 + 2 5^Rational[1, 2] +
4 (5 + 2 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2])}, {
3 (1 + 3^Rational[1, 2]),
Rational[1, 4] (
9 + (63 + 6 5^Rational[1, 2] +
24 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 2] (5 +
5 3^Rational[1, 2] + (5 + 2 5^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (
1 + (3 (9 + 2 5^Rational[1, 2] +
4 (5 + 2 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2])}, {
Rational[1, 2] (5 +
5 3^Rational[1, 2] + (5 + 2 5^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (
5 + (3 (9 + 2 5^Rational[1, 2] +
4 (5 + 2 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2])}, {
3 + Rational[
1, 4] (442 - 2 5^Rational[1, 2] +
24 (30 - 6 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2],
Rational[1, 4] (8 - 5^
Rational[
1, 2] + (63 + 6 5^Rational[1, 2] +
24 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
3 + Rational[
1, 4] (442 - 2 5^Rational[1, 2] +
24 (30 - 6 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2],
Rational[1, 4] (10 +
5^Rational[1, 2] + (63 + 6 5^Rational[1, 2] +
24 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 2] (6 +
5 3^Rational[1, 2] + (5 + 2 5^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (1 + (15 + 6 5^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 2] (6 +
5 3^Rational[1, 2] + (5 + 2 5^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (
5 + (63 + 6 5^Rational[1, 2] +
24 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 2] (6 +
5 3^Rational[1, 2] + (5 + 2 5^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (
13 + (63 + 6 5^Rational[1, 2] +
24 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 2] (7 +
5 3^Rational[1, 2] + (5 + 2 5^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (
1 + (3 (9 + 2 5^Rational[1, 2] +
4 (5 + 2 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2])}, {
Rational[1, 2] (7 +
5 3^Rational[1, 2] + (5 + 2 5^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (
5 + (3 (9 + 2 5^Rational[1, 2] +
4 (5 + 2 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2])}, {
Rational[1, 2] (7 +
5 3^Rational[1, 2] + (5 + 2 5^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (
13 + (123 + 6 5^Rational[1, 2] +
36 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 2] (6 +
6 3^Rational[1, 2] + (5 + 2 5^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (-1 + (15 + 6 5^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 2] (6 +
6 3^Rational[1, 2] + (5 + 2 5^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (
7 + (63 + 6 5^Rational[1, 2] +
24 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 2] (6 +
6 3^Rational[1, 2] + (5 + 2 5^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (
11 + (63 + 6 5^Rational[1, 2] +
24 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 2] (7 +
6 3^Rational[1, 2] + (5 + 2 5^Rational[1, 2])^Rational[1, 2]),
Rational[
1, 4] (-1 + (
3 (9 + 2 5^Rational[1, 2] +
4 (5 + 2 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2])}, {
Rational[1, 2] (7 +
6 3^Rational[1, 2] + (5 + 2 5^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (
7 + (3 (9 + 2 5^Rational[1, 2] +
4 (5 + 2 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2])}, {
Rational[1, 2] (7 +
6 3^Rational[1, 2] + (5 + 2 5^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (
11 + (123 + 6 5^Rational[1, 2] +
36 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 4] (
14 + (350 + 22 5^Rational[1, 2] +
20 (150 + 66 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (2 - 2 3^Rational[1, 2] - 5^
Rational[
1, 2] + (63 + 6 5^Rational[1, 2] +
24 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 4] (
14 + (350 + 22 5^Rational[1, 2] +
20 (150 + 66 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (4 - 2 3^Rational[1, 2] +
5^Rational[1, 2] + (63 + 6 5^Rational[1, 2] +
24 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 2] (8 +
6 3^Rational[1, 2] + (5 + 2 5^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (
7 + (63 + 6 5^Rational[1, 2] +
24 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 2] (8 +
6 3^Rational[1, 2] + (5 + 2 5^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (
11 + (63 + 6 5^Rational[1, 2] +
24 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
4 + Rational[
1, 4] (647 - 41
5^Rational[1, 2] + (30 (985 + 139 5^Rational[1, 2]))^
Rational[1, 2])^Rational[1, 2],
Rational[1, 8] (1 +
5^Rational[1, 2] + (30 - 6 5^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 2] (
7 + (95 + 8 5^Rational[1, 2] +
20 (15 + 6 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (
3 + (3 (9 + 2 5^Rational[1, 2] +
4 (5 + 2 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2])}, {
4 (1 + 3^Rational[1, 2]),
Rational[1, 4] (
9 + (63 + 6 5^Rational[1, 2] +
24 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 2] (7 +
7 3^Rational[1, 2] + (5 + 2 5^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (
1 + (3 (9 + 2 5^Rational[1, 2] +
4 (5 + 2 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2])}, {
Rational[1, 2] (7 +
7 3^Rational[1, 2] + (5 + 2 5^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (
5 + (3 (9 + 2 5^Rational[1, 2] +
4 (5 + 2 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2])}, {
4 + Rational[
1, 4] (680 + 2 5^Rational[1, 2] +
30 (15 + 6 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2], 0}, {
4 + Rational[
1, 4] (778 - 2 5^Rational[1, 2] +
32 (30 - 6 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2],
Rational[1, 4] (8 - 5^
Rational[
1, 2] + (63 + 6 5^Rational[1, 2] +
24 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
4 + Rational[
1, 4] (778 - 2 5^Rational[1, 2] +
32 (30 - 6 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2],
Rational[1, 4] (10 +
5^Rational[1, 2] + (63 + 6 5^Rational[1, 2] +
24 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 2] (8 +
7 3^Rational[1, 2] + (5 + 2 5^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (1 + (15 + 6 5^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 2] (8 +
7 3^Rational[1, 2] + (5 + 2 5^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (
5 + (63 + 6 5^Rational[1, 2] +
24 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 2] (8 +
7 3^Rational[1, 2] + (5 + 2 5^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (
13 + (63 + 6 5^Rational[1, 2] +
24 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 2] (9 +
7 3^Rational[1, 2] + (5 + 2 5^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (
1 + (3 (9 + 2 5^Rational[1, 2] +
4 (5 + 2 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2])}, {
Rational[1, 2] (9 +
7 3^Rational[1, 2] + (5 + 2 5^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (
5 + (3 (9 + 2 5^Rational[1, 2] +
4 (5 + 2 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2])}, {
Rational[1, 2] (9 +
7 3^Rational[1, 2] + (5 + 2 5^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (
13 + (123 + 6 5^Rational[1, 2] +
36 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
4 + Rational[
1, 4] (737 +
49 5^Rational[1, 2] + (38550 + 9570 5^Rational[1, 2])^
Rational[1, 2])^Rational[1, 2],
Rational[1, 8] (-1 - 5^
Rational[1, 2] + (30 - 6 5^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 2] (8 +
8 3^Rational[1, 2] + (5 + 2 5^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (-1 + (15 + 6 5^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 2] (8 +
8 3^Rational[1, 2] + (5 + 2 5^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (
7 + (63 + 6 5^Rational[1, 2] +
24 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 2] (8 +
8 3^Rational[1, 2] + (5 + 2 5^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (
11 + (63 + 6 5^Rational[1, 2] +
24 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 2] (9 +
8 3^Rational[1, 2] + (5 + 2 5^Rational[1, 2])^Rational[1, 2]),
Rational[
1, 4] (-1 + (
3 (9 + 2 5^Rational[1, 2] +
4 (5 + 2 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2])}, {
Rational[1, 2] (9 +
8 3^Rational[1, 2] + (5 + 2 5^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (
7 + (3 (9 + 2 5^Rational[1, 2] +
4 (5 + 2 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2])}, {
Rational[1, 2] (9 +
8 3^Rational[1, 2] + (5 + 2 5^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (
11 + (123 + 6 5^Rational[1, 2] +
36 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 4] (
18 + (22 (29 + 5^Rational[1, 2]) +
28 (150 + 66 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (2 - 2 3^Rational[1, 2] - 5^
Rational[
1, 2] + (63 + 6 5^Rational[1, 2] +
24 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 4] (
18 + (22 (29 + 5^Rational[1, 2]) +
28 (150 + 66 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (4 - 2 3^Rational[1, 2] +
5^Rational[1, 2] + (63 + 6 5^Rational[1, 2] +
24 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
5 + 4 3^Rational[1, 2] +
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[1, 4] (
7 + (63 + 6 5^Rational[1, 2] +
24 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
5 + 4 3^Rational[1, 2] +
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[1, 4] (
11 + (63 + 6 5^Rational[1, 2] +
24 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 2] (
9 + (167 + 8 5^Rational[1, 2] +
28 (15 + 6 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (
3 + (3 (9 + 2 5^Rational[1, 2] +
4 (5 + 2 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2])}, {
Rational[1, 2] (9 +
9 3^Rational[1, 2] + (5 + 2 5^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (
5 + (3 (9 + 2 5^Rational[1, 2] +
4 (5 + 2 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2])}, {
Rational[1, 2] (10 +
9 3^Rational[1, 2] + (5 + 2 5^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (
5 + (63 + 6 5^Rational[1, 2] +
24 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}}, {{
0, 5.314726871570336}, {0.17281636480318818`, 2.448701467785898}, {
0.17281636480318818`, 3.448701467785898}, {0.5877852522924731,
4.50570987719539}, {0.5877852522924731, 6.1237438659452845`}, {
0.6728163648031882, 1.5826760640014592`}, {0.6728163648031882,
4.314726871570336}, {0.6728163648031882, 6.314726871570336}, {
1.1728163648031882`, 2.448701467785898}, {1.1728163648031882`,
3.448701467785898}, {1.1728163648031882`, 7.1807522753547754`}, {
1.5388417685876268`, 1.0826760640014592`}, {1.5388417685876268`,
4.814726871570336}, {1.5388417685876268`, 5.814726871570336}, {
2.038841768587627, 1.9487014677858978`}, {2.038841768587627,
3.948701467785898}, {2.038841768587627, 6.6807522753547754`}, {
2.123872881098342, 2.1396844734109504`}, {2.123872881098342,
3.7577184621608453`}, {2.538841768587627, 4.814726871570336}, {
2.538841768587627, 5.814726871570336}, {2.7116581333908147`,
2.948701467785898}, {2.732050807568877, 5.314726871570336}, {
2.9048671723720654`, 2.448701467785898}, {2.9048671723720654`,
3.448701467785898}, {3.3198360598613506`, 4.50570987719539}, {
3.3198360598613506`, 6.1237438659452845`}, {3.4048671723720654`,
1.5826760640014592`}, {3.4048671723720654`, 4.314726871570336}, {
3.4048671723720654`, 6.314726871570336}, {3.9048671723720654`,
2.448701467785898}, {3.9048671723720654`, 3.448701467785898}, {
3.9048671723720654`, 7.1807522753547754`}, {4.112778863189824,
8.158899876088544}, {4.270892576156504, 1.0826760640014592`}, {
4.270892576156504, 4.814726871570336}, {4.270892576156504,
5.814726871570336}, {4.770892576156504, 1.9487014677858978`}, {
4.770892576156504, 3.948701467785898}, {4.770892576156504,
6.6807522753547754`}, {4.855923688667219, 2.1396844734109504`}, {
4.855923688667219, 3.7577184621608453`}, {5.1073007585580985`,
8.263428339356235}, {5.270892576156504, 4.814726871570336}, {
5.270892576156504, 5.814726871570336}, {5.443708940959692,
2.948701467785898}, {5.464101615137754, 5.314726871570336}, {
5.514037401633899, 7.349882881713558}, {5.636917979940943,
2.448701467785898}, {5.636917979940943, 3.448701467785898}, {
6.051886867430228, 4.50570987719539}, {6.051886867430228,
6.1237438659452845`}, {6.136917979940943, 1.5826760640014592`}, {
6.136917979940943, 4.314726871570336}, {6.136917979940943,
6.314726871570336}, {6.636917979940943, 2.448701467785898}, {
6.636917979940943, 3.448701467785898}, {6.636917979940943,
7.1807522753547754`}, {7.002943383725381, 1.0826760640014592`}, {
7.002943383725381, 4.814726871570336}, {7.002943383725381,
5.814726871570336}, {7.502943383725381, 1.9487014677858978`}, {
7.502943383725381, 3.948701467785898}, {7.502943383725381,
6.6807522753547754`}, {7.587974496236097, 2.1396844734109504`}, {
7.587974496236097, 3.7577184621608453`}, {8.00294338372538,
4.814726871570336}, {8.00294338372538, 5.814726871570336}, {
8.17575974852857, 2.948701467785898}, {8.196152422706632,
5.314726871570336}, {8.36896878750982, 2.448701467785898}, {
8.36896878750982, 3.448701467785898}, {8.783937674999105,
4.50570987719539}, {8.783937674999105, 6.1237438659452845`}, {
8.86896878750982, 1.5826760640014592`}, {8.86896878750982,
4.314726871570336}, {8.86896878750982, 6.314726871570336}, {
9.36896878750982, 2.448701467785898}, {9.36896878750982,
3.448701467785898}, {9.36896878750982, 7.1807522753547754`}, {
9.734994191294259, 1.0826760640014592`}, {9.734994191294259,
4.814726871570336}, {9.734994191294259, 5.814726871570336}, {
10.234994191294259`, 1.9487014677858978`}, {10.234994191294259`,
3.948701467785898}, {10.234994191294259`, 6.6807522753547754`}, {
10.320025303804973`, 2.1396844734109504`}, {10.320025303804973`,
3.7577184621608453`}, {10.734994191294259`, 4.814726871570336}, {
10.734994191294259`, 5.814726871570336}, {10.857874769601302`,
0.9135454576426009}, {10.907810556097447`, 2.948701467785898}, {
10.928203230275509`, 5.314726871570336}, {11.101019595078697`,
2.448701467785898}, {11.101019595078697`, 3.448701467785898}, {
11.264611412677104`, 0}, {11.515988482567982`, 4.50570987719539}, {
11.515988482567982`, 6.1237438659452845`}, {11.601019595078697`,
1.5826760640014592`}, {11.601019595078697`, 4.314726871570336}, {
11.601019595078697`, 6.314726871570336}, {12.101019595078697`,
2.448701467785898}, {12.101019595078697`, 3.448701467785898}, {
12.101019595078697`, 7.1807522753547754`}, {12.259133308045376`,
0.10452846326765342`}, {12.467044998863136`, 1.0826760640014592`}, {
12.467044998863136`, 4.814726871570336}, {12.467044998863136`,
5.814726871570336}, {12.967044998863136`, 1.9487014677858978`}, {
12.967044998863136`, 3.948701467785898}, {12.967044998863136`,
6.6807522753547754`}, {13.05207611137385, 2.1396844734109504`}, {
13.05207611137385, 3.7577184621608453`}, {13.467044998863136`,
4.814726871570336}, {13.467044998863136`, 5.814726871570336}, {
13.639861363666324`, 2.948701467785898}, {13.833070402647575`,
3.448701467785898}, {14.333070402647575`, 4.314726871570336}}],
PolygonBox[{{11, 8, 14, 17}, {17, 14, 21}, {14, 13, 20, 21}, {5, 1, 4,
13, 14}, {13, 16, 20}, {20, 16, 25, 29}, {7, 10, 16, 13}, {7, 3,
10}, {3, 2, 9, 10}, {10, 9, 18, 22, 19}, {2, 6, 9}, {9, 6, 12, 15}, {
33, 30, 37, 40}, {40, 37, 45}, {37, 36, 44, 45}, {27, 23, 26, 36,
37}, {36, 39, 44}, {44, 39, 50, 54}, {29, 32, 39, 36}, {29, 25, 32}, {
25, 24, 31, 32}, {32, 31, 41, 46, 42}, {24, 28, 31}, {31, 28, 35,
38}, {58, 55, 61, 64}, {64, 61, 68}, {61, 60, 67, 68}, {52, 47, 51,
60, 61}, {60, 63, 67}, {67, 63, 72, 76}, {54, 57, 63, 60}, {54, 50,
57}, {50, 49, 56, 57}, {57, 56, 65, 69, 66}, {49, 53, 56}, {56, 53,
59, 62}, {80, 77, 83, 86}, {86, 83, 90}, {83, 82, 89, 90}, {74, 70,
73, 82, 83}, {82, 85, 89}, {89, 85, 95, 100}, {76, 79, 85, 82}, {76,
72, 79}, {72, 71, 78, 79}, {79, 78, 87, 92, 88}, {71, 75, 78}, {78,
75, 81, 84}, {104, 101, 108, 111}, {111, 108, 115}, {108, 107, 114,
115}, {98, 93, 97, 107, 108}, {107, 110, 114}, {114, 110, 117, 118}, {
100, 103, 110, 107}, {100, 95, 103}, {95, 94, 102, 103}, {103, 102,
112, 116, 113}, {94, 99, 102}, {102, 99, 106, 109}, {34, 33, 40, 48,
43}, {99, 91, 96, 105, 106}}]]}], ",",
GraphicsBox[
{RGBColor[1, 1, 0.85], EdgeForm[GrayLevel[0]],
GraphicsComplexBox[
NCache[{{0,
Rational[1, 4] (
9 + (63 + 6 5^Rational[1, 2] +
24 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
Rational[
1, 2] (-1 + (
2 (4 + 5^Rational[1, 2] - (15 + 6 5^Rational[1, 2])^
Rational[1, 2]))^Rational[1, 2]),
Rational[1, 4] (
1 + (3 (9 + 2 5^Rational[1, 2] +
4 (5 + 2 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2])}, {
Rational[
1, 2] (-1 + (
2 (4 + 5^Rational[1, 2] - (15 + 6 5^Rational[1, 2])^
Rational[1, 2]))^Rational[1, 2]),
Rational[1, 4] (
5 + (3 (9 + 2 5^Rational[1, 2] +
4 (5 + 2 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2])}, {
Rational[1, 4] (10 - 2 5^Rational[1, 2])^Rational[1, 2],
Rational[1, 4] (8 - 5^
Rational[
1, 2] + (63 + 6 5^Rational[1, 2] +
24 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 2] (Rational[1, 2] (5 - 5^Rational[1, 2]))^Rational[1, 2],
Rational[1, 4] (10 +
5^Rational[1, 2] + (63 + 6 5^Rational[1, 2] +
24 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {(2 +
Rational[1, 2] 5^Rational[1, 2] +
Rational[-1, 2] (3 (5 + 2 5^Rational[1, 2]))^Rational[1, 2])^
Rational[1, 2],
Rational[1, 4] (1 + (15 + 6 5^Rational[1, 2])^Rational[1, 2])}, {(2 +
Rational[1, 2] 5^Rational[1, 2] +
Rational[-1, 2] (3 (5 + 2 5^Rational[1, 2]))^Rational[1, 2])^
Rational[1, 2],
Rational[1, 4] (
5 + (63 + 6 5^Rational[1, 2] +
24 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {(2 +
Rational[1, 2] 5^Rational[1, 2] +
Rational[-1, 2] (3 (5 + 2 5^Rational[1, 2]))^Rational[1, 2])^
Rational[1, 2],
Rational[1, 4] (
13 + (63 + 6 5^Rational[1, 2] +
24 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 2] (-1 + (5 + 2 5^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (
3 + (3 (9 + 2 5^Rational[1, 2] +
4 (5 + 2 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2])}, {
Rational[1, 2] (
1 + (2 (4 + 5^Rational[1, 2] - (15 + 6 5^Rational[1, 2])^
Rational[1, 2]))^Rational[1, 2]),
Rational[1, 4] (
13 + (123 + 6 5^Rational[1, 2] +
36 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[1, 4] (-5 + (15 + 6 5^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[1, 4] (-1 + (15 + 6 5^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[1, 4] (3 + (15 + 6 5^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[1, 4] (
3 + (63 + 6 5^Rational[1, 2] +
24 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[1, 4] (
7 + (63 + 6 5^Rational[1, 2] +
24 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[1, 4] (
11 + (63 + 6 5^Rational[1, 2] +
24 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
Root[1 - 32 # + 168 #^2 + 1456 #^3 - 2624 #^5 - 832 #^6 + 768 #^7 +
256 #^8& , 8, 0], Root[
1 + 24 # - 680 #^2 + 2736 #^3 - 3616 #^4 + 576 #^5 + 2240 #^6 -
1536 #^7 + 256 #^8& , 8, 0]}, {
Rational[1, 2] (1 + (5 + 2 5^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (
11 + (123 + 6 5^Rational[1, 2] +
36 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
Root[-59 - 296 # + 92 #^2 + 1792 #^3 + 1200 #^4 - 2112 #^5 - 1728 #^6 +
256 #^7 + 256 #^8& , 8, 0], Root[
181 - 1368 # + 976 #^2 + 4176 #^3 - 6016 #^4 + 768 #^5 + 2624 #^6 -
1536 #^7 + 256 #^8& , 8, 0]}, {
Rational[1, 2] (2 + (5 + 2 5^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (-5 + (15 + 6 5^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 2] (2 + (5 + 2 5^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (-1 + (15 + 6 5^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 2] (2 + (5 + 2 5^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (3 + (15 + 6 5^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 2] (2 + (5 + 2 5^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (
3 + (63 + 6 5^Rational[1, 2] +
24 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 2] (2 + (5 + 2 5^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (
7 + (63 + 6 5^Rational[1, 2] +
24 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 2] (2 + (5 + 2 5^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (
11 + (63 + 6 5^Rational[1, 2] +
24 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
Rational[
1, 4] (-1 + (35 + 20 3^Rational[1, 2] +
2 (5 (97 + 56 3^Rational[1, 2]))^Rational[1, 2])^Rational[1, 2]),
Root[
1 - 6 # - 10 #^2 + 96 #^3 - 136 #^4 - 24 #^5 + 160 #^6 - 96 #^7 +
16 #^8& , 8, 0]}, {
1 + 3^Rational[1, 2],
Rational[1, 4] (
9 + (63 + 6 5^Rational[1, 2] +
24 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 2] (3 + (5 + 2 5^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (
3 + (3 (9 + 2 5^Rational[1, 2] +
4 (5 + 2 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2])}, {
Rational[1, 4] (
4 + (58 - 2 5^Rational[1, 2] +
8 (30 - 6 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (8 - 5^
Rational[
1, 2] + (63 + 6 5^Rational[1, 2] +
24 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 4] (
4 + (58 - 2 5^Rational[1, 2] +
8 (30 - 6 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (10 +
5^Rational[1, 2] + (63 + 6 5^Rational[1, 2] +
24 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
1 + (Rational[1, 2] (4 +
5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2]))^
Rational[1, 2],
Rational[1, 4] (
5 + (63 + 6 5^Rational[1, 2] +
24 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
1 + (Rational[1, 2] (4 +
5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2]))^
Rational[1, 2],
Rational[1, 4] (
13 + (63 + 6 5^Rational[1, 2] +
24 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 2] (
3 + (2 (4 +
5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2]))^
Rational[1, 2]),
Rational[1, 4] (
1 + (3 (9 + 2 5^Rational[1, 2] +
4 (5 + 2 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2])}, {
Rational[1, 2] (
3 + (2 (4 +
5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2]))^
Rational[1, 2]),
Rational[1, 4] (
5 + (3 (9 + 2 5^Rational[1, 2] +
4 (5 + 2 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2])}, {
Rational[1, 2] (
3 + (2 (4 +
5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2]))^
Rational[1, 2]),
Rational[1, 4] (
13 + (123 + 6 5^Rational[1, 2] +
36 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 4] (
6 + (55 + 7 5^Rational[1, 2] + (750 + 330 5^Rational[1, 2])^
Rational[1, 2])^Rational[1, 2]),
Root[-22259 + 478240 # - 1106488 #^2 + 161680 #^3 + 446464 #^4 -
262720 #^5 + 60608 #^6 - 6400 #^7 + 256 #^8& , 8, 0]}, {
Rational[1, 2] (
2 + (17 + 2 5^Rational[1, 2] +
4 (15 + 6 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (
7 + (63 + 6 5^Rational[1, 2] +
24 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 2] (
2 + (17 + 2 5^Rational[1, 2] +
4 (15 + 6 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (
11 + (63 + 6 5^Rational[1, 2] +
24 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 2] (
3 + (17 + 2 5^Rational[1, 2] +
4 (15 + 6 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (
7 + (3 (9 + 2 5^Rational[1, 2] +
4 (5 + 2 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2])}, {
Rational[1, 2] (
3 + (17 + 2 5^Rational[1, 2] +
4 (15 + 6 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (
11 + (123 + 6 5^Rational[1, 2] +
36 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 4] (
6 + (62 + 22 5^Rational[1, 2] +
4 (150 + 66 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (2 - 2 3^Rational[1, 2] - 5^
Rational[
1, 2] + (63 + 6 5^Rational[1, 2] +
24 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 4] (
6 + (62 + 22 5^Rational[1, 2] +
4 (150 + 66 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (4 - 2 3^Rational[1, 2] +
5^Rational[1, 2] + (63 + 6 5^Rational[1, 2] +
24 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
Rational[3, 4] (
2 + (2 (4 +
5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2]))^
Rational[1, 2]),
3 + (Rational[3, 2] (7 + 5^Rational[1, 2] +
3 (5 + 2 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2]}, {
Rational[1, 2] (
4 + (17 + 2 5^Rational[1, 2] +
4 (15 + 6 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (
7 + (63 + 6 5^Rational[1, 2] +
24 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 2] (
4 + (17 + 2 5^Rational[1, 2] +
4 (15 + 6 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (
11 + (63 + 6 5^Rational[1, 2] +
24 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 2] (
3 + (23 + 8 5^Rational[1, 2] +
4 (15 + 6 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (
3 + (3 (9 + 2 5^Rational[1, 2] +
4 (5 + 2 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2])}, {
2 (1 + 3^Rational[1, 2]),
Rational[1, 4] (
9 + (63 + 6 5^Rational[1, 2] +
24 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 4] (
6 + (73 + 25 5^Rational[1, 2] + (8310 + 3714 5^Rational[1, 2])^
Rational[1, 2])^Rational[1, 2]),
Root[-238739 + 1171904 # - 1679896 #^2 + 703088 #^3 + 133504 #^4 -
177344 #^5 + 49856 #^6 - 5888 #^7 + 256 #^8& , 8, 0]}, {
Rational[1, 2] (
3 + (2 (16 + 5^Rational[1, 2] +
3 (15 + 6 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2]),
Rational[1, 4] (
1 + (3 (9 + 2 5^Rational[1, 2] +
4 (5 + 2 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2])}, {
Rational[1, 2] (
3 + (2 (16 + 5^Rational[1, 2] +
3 (15 + 6 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2]),
Rational[1, 4] (
5 + (3 (9 + 2 5^Rational[1, 2] +
4 (5 + 2 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2])}, {
Rational[1, 4] (
8 + (202 - 2 5^Rational[1, 2] +
16 (30 - 6 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (8 - 5^
Rational[
1, 2] + (63 + 6 5^Rational[1, 2] +
24 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 4] (
8 + (202 - 2 5^Rational[1, 2] +
16 (30 - 6 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (10 +
5^Rational[1, 2] + (63 + 6 5^Rational[1, 2] +
24 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
2 + (Rational[1, 2] (16 + 5^Rational[1, 2] +
3 (15 + 6 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2],
Rational[1, 4] (1 + (15 + 6 5^Rational[1, 2])^Rational[1, 2])}, {
2 + (Rational[1, 2] (16 + 5^Rational[1, 2] +
3 (15 + 6 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2],
Rational[1, 4] (
5 + (63 + 6 5^Rational[1, 2] +
24 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
2 + (Rational[1, 2] (16 + 5^Rational[1, 2] +
3 (15 + 6 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2],
Rational[1, 4] (
13 + (63 + 6 5^Rational[1, 2] +
24 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 2] (
5 + (2 (16 + 5^Rational[1, 2] +
3 (15 + 6 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2]),
Rational[1, 4] (
1 + (3 (9 + 2 5^Rational[1, 2] +
4 (5 + 2 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2])}, {
Rational[1, 2] (
5 + (2 (16 + 5^Rational[1, 2] +
3 (15 + 6 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2]),
Rational[1, 4] (
5 + (3 (9 + 2 5^Rational[1, 2] +
4 (5 + 2 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2])}, {
Rational[1, 2] (
5 + (2 (16 + 5^Rational[1, 2] +
3 (15 + 6 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2]),
Rational[1, 4] (
13 + (123 + 6 5^Rational[1, 2] +
36 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 2] (
4 + (53 + 2 5^Rational[1, 2] +
8 (15 + 6 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (-1 + (15 + 6 5^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 2] (
4 + (53 + 2 5^Rational[1, 2] +
8 (15 + 6 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (
7 + (63 + 6 5^Rational[1, 2] +
24 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 2] (
4 + (53 + 2 5^Rational[1, 2] +
8 (15 + 6 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (
11 + (63 + 6 5^Rational[1, 2] +
24 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 2] (
5 + (53 + 2 5^Rational[1, 2] +
8 (15 + 6 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2]),
Rational[
1, 4] (-1 + (
3 (9 + 2 5^Rational[1, 2] +
4 (5 + 2 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2])}, {
Rational[1, 2] (
5 + (53 + 2 5^Rational[1, 2] +
8 (15 + 6 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (
7 + (3 (9 + 2 5^Rational[1, 2] +
4 (5 + 2 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2])}, {
Rational[1, 2] (
5 + (53 + 2 5^Rational[1, 2] +
8 (15 + 6 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (
11 + (123 + 6 5^Rational[1, 2] +
36 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 4] (
10 + (2 (79 + 11 5^Rational[1, 2] +
6 (150 + 66 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2]),
Rational[1, 4] (2 - 2 3^Rational[1, 2] - 5^
Rational[
1, 2] + (63 + 6 5^Rational[1, 2] +
24 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 4] (
10 + (2 (79 + 11 5^Rational[1, 2] +
6 (150 + 66 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2]),
Rational[1, 4] (4 - 2 3^Rational[1, 2] +
5^Rational[1, 2] + (63 + 6 5^Rational[1, 2] +
24 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 2] (
6 + (53 + 2 5^Rational[1, 2] +
8 (15 + 6 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (
7 + (63 + 6 5^Rational[1, 2] +
24 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 2] (
6 + (53 + 2 5^Rational[1, 2] +
8 (15 + 6 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (
11 + (63 + 6 5^Rational[1, 2] +
24 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 2] (
5 + (47 + 8 5^Rational[1, 2] +
12 (15 + 6 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (
3 + (3 (9 + 2 5^Rational[1, 2] +
4 (5 + 2 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2])}, {
3 (1 + 3^Rational[1, 2]),
Rational[1, 4] (
9 + (63 + 6 5^Rational[1, 2] +
24 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 2] (
5 + (2 (40 + 5^Rational[1, 2] +
5 (15 + 6 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2]),
Rational[1, 4] (
1 + (3 (9 + 2 5^Rational[1, 2] +
4 (5 + 2 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2])}, {
Rational[1, 2] (
5 + (2 (40 + 5^Rational[1, 2] +
5 (15 + 6 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2]),
Rational[1, 4] (
5 + (3 (9 + 2 5^Rational[1, 2] +
4 (5 + 2 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2])}, {
3 + Rational[
1, 4] (442 - 2 5^Rational[1, 2] +
24 (30 - 6 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2],
Rational[1, 4] (8 - 5^
Rational[
1, 2] + (63 + 6 5^Rational[1, 2] +
24 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
3 + Rational[
1, 4] (442 - 2 5^Rational[1, 2] +
24 (30 - 6 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2],
Rational[1, 4] (10 +
5^Rational[1, 2] + (63 + 6 5^Rational[1, 2] +
24 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
3 + (Rational[1, 2] (40 + 5^Rational[1, 2] +
5 (15 + 6 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2],
Rational[1, 4] (1 + (15 + 6 5^Rational[1, 2])^Rational[1, 2])}, {
3 + (Rational[1, 2] (40 + 5^Rational[1, 2] +
5 (15 + 6 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2],
Rational[1, 4] (
5 + (63 + 6 5^Rational[1, 2] +
24 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
3 + (Rational[1, 2] (40 + 5^Rational[1, 2] +
5 (15 + 6 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2],
Rational[1, 4] (
13 + (63 + 6 5^Rational[1, 2] +
24 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 2] (
7 + (2 (40 + 5^Rational[1, 2] +
5 (15 + 6 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2]),
Rational[1, 4] (
1 + (3 (9 + 2 5^Rational[1, 2] +
4 (5 + 2 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2])}, {
Rational[1, 2] (
7 + (2 (40 + 5^Rational[1, 2] +
5 (15 + 6 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2]),
Rational[1, 4] (
5 + (3 (9 + 2 5^Rational[1, 2] +
4 (5 + 2 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2])}, {
Rational[1, 2] (
7 + (2 (40 + 5^Rational[1, 2] +
5 (15 + 6 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2]),
Rational[1, 4] (
13 + (123 + 6 5^Rational[1, 2] +
36 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 2] (
6 + (113 + 2 5^Rational[1, 2] +
12 (15 + 6 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (-1 + (15 + 6 5^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 2] (
6 + (113 + 2 5^Rational[1, 2] +
12 (15 + 6 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (
7 + (63 + 6 5^Rational[1, 2] +
24 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 2] (
6 + (113 + 2 5^Rational[1, 2] +
12 (15 + 6 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (
11 + (63 + 6 5^Rational[1, 2] +
24 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 2] (
7 + (113 + 2 5^Rational[1, 2] +
12 (15 + 6 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2]),
Rational[
1, 4] (-1 + (
3 (9 + 2 5^Rational[1, 2] +
4 (5 + 2 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2])}, {
Rational[1, 2] (
7 + (113 + 2 5^Rational[1, 2] +
12 (15 + 6 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (
7 + (3 (9 + 2 5^Rational[1, 2] +
4 (5 + 2 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2])}, {
Rational[1, 2] (
7 + (113 + 2 5^Rational[1, 2] +
12 (15 + 6 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (
11 + (123 + 6 5^Rational[1, 2] +
36 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 4] (
14 + (350 + 22 5^Rational[1, 2] +
20 (150 + 66 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (2 - 2 3^Rational[1, 2] - 5^
Rational[
1, 2] + (63 + 6 5^Rational[1, 2] +
24 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 4] (
14 + (350 + 22 5^Rational[1, 2] +
20 (150 + 66 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (4 - 2 3^Rational[1, 2] +
5^Rational[1, 2] + (63 + 6 5^Rational[1, 2] +
24 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 2] (
8 + (113 + 2 5^Rational[1, 2] +
12 (15 + 6 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (
7 + (63 + 6 5^Rational[1, 2] +
24 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 2] (
8 + (113 + 2 5^Rational[1, 2] +
12 (15 + 6 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (
11 + (63 + 6 5^Rational[1, 2] +
24 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
4 + Rational[
1, 4] (647 - 41
5^Rational[1, 2] + (30 (985 + 139 5^Rational[1, 2]))^
Rational[1, 2])^Rational[1, 2],
Rational[1, 8] (1 +
5^Rational[1, 2] + (30 - 6 5^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 2] (
7 + (95 + 8 5^Rational[1, 2] +
20 (15 + 6 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (
3 + (3 (9 + 2 5^Rational[1, 2] +
4 (5 + 2 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2])}, {
4 (1 + 3^Rational[1, 2]),
Rational[1, 4] (
9 + (63 + 6 5^Rational[1, 2] +
24 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 2] (
7 + (2 (76 + 5^Rational[1, 2] +
7 (15 + 6 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2]),
Rational[1, 4] (
1 + (3 (9 + 2 5^Rational[1, 2] +
4 (5 + 2 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2])}, {
Rational[1, 2] (
7 + (2 (76 + 5^Rational[1, 2] +
7 (15 + 6 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2]),
Rational[1, 4] (
5 + (
3 (9 + 2 5^Rational[1, 2] +
4 (5 + 2 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2])}, {
4 + Rational[
1, 4] (680 + 2 5^Rational[1, 2] +
30 (15 + 6 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2], 0}, {
4 + Rational[
1, 4] (778 - 2 5^Rational[1, 2] +
32 (30 - 6 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2],
Rational[1, 4] (8 - 5^
Rational[
1, 2] + (63 + 6 5^Rational[1, 2] +
24 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
4 + Rational[
1, 4] (778 - 2 5^Rational[1, 2] +
32 (30 - 6 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2],
Rational[1, 4] (10 +
5^Rational[1, 2] + (63 + 6 5^Rational[1, 2] +
24 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
4 + (Rational[1, 2] (76 + 5^Rational[1, 2] +
7 (15 + 6 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2],
Rational[1, 4] (1 + (15 + 6 5^Rational[1, 2])^Rational[1, 2])}, {
4 + (Rational[1, 2] (76 + 5^Rational[1, 2] +
7 (15 + 6 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2],
Rational[1, 4] (
5 + (63 + 6 5^Rational[1, 2] +
24 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
4 + (Rational[1, 2] (76 + 5^Rational[1, 2] +
7 (15 + 6 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2],
Rational[1, 4] (
13 + (63 + 6 5^Rational[1, 2] +
24 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 2] (
9 + (2 (76 + 5^Rational[1, 2] +
7 (15 + 6 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2]),
Rational[1, 4] (
1 + (3 (9 + 2 5^Rational[1, 2] +
4 (5 + 2 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2])}, {
Rational[1, 2] (
9 + (2 (76 + 5^Rational[1, 2] +
7 (15 + 6 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2]),
Rational[1, 4] (
5 + (3 (9 + 2 5^Rational[1, 2] +
4 (5 + 2 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2])}, {
Rational[1, 2] (
9 + (2 (76 + 5^Rational[1, 2] +
7 (15 + 6 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2]),
Rational[1, 4] (
13 + (123 + 6 5^Rational[1, 2] +
36 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
4 + Rational[
1, 4] (737 +
49 5^Rational[1, 2] + (38550 + 9570 5^Rational[1, 2])^
Rational[1, 2])^Rational[1, 2],
Rational[1, 8] (-1 - 5^
Rational[1, 2] + (30 - 6 5^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 2] (
8 + (197 + 2 5^Rational[1, 2] +
16 (15 + 6 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (-1 + (15 + 6 5^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 2] (
8 + (197 + 2 5^Rational[1, 2] +
16 (15 + 6 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (
7 + (63 + 6 5^Rational[1, 2] +
24 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 2] (
8 + (197 + 2 5^Rational[1, 2] +
16 (15 + 6 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (
11 + (63 + 6 5^Rational[1, 2] +
24 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 2] (
9 + (197 + 2 5^Rational[1, 2] +
16 (15 + 6 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2]),
Rational[
1, 4] (-1 + (
3 (9 + 2 5^Rational[1, 2] +
4 (5 + 2 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2])}, {
Rational[1, 2] (
9 + (197 + 2 5^Rational[1, 2] +
16 (15 + 6 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (
7 + (3 (9 + 2 5^Rational[1, 2] +
4 (5 + 2 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2])}, {
Rational[1, 2] (
9 + (197 + 2 5^Rational[1, 2] +
16 (15 + 6 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (
11 + (123 + 6 5^Rational[1, 2] +
36 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 4] (
18 + (22 (29 + 5^Rational[1, 2]) +
28 (150 + 66 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (2 - 2 3^Rational[1, 2] - 5^
Rational[
1, 2] + (63 + 6 5^Rational[1, 2] +
24 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 4] (
18 + (22 (29 + 5^Rational[1, 2]) +
28 (150 + 66 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (4 - 2 3^Rational[1, 2] +
5^Rational[1, 2] + (63 + 6 5^Rational[1, 2] +
24 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
5 + Rational[
1, 2] (197 + 2 5^Rational[1, 2] +
16 (15 + 6 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2],
Rational[1, 4] (
7 + (63 + 6 5^Rational[1, 2] +
24 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
5 + Rational[
1, 2] (197 + 2 5^Rational[1, 2] +
16 (15 + 6 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2],
Rational[1, 4] (
11 + (63 + 6 5^Rational[1, 2] +
24 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 2] (
9 + (167 + 8 5^Rational[1, 2] +
28 (15 + 6 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (
3 + (3 (9 + 2 5^Rational[1, 2] +
4 (5 + 2 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2])}, {
Rational[1, 2] (
9 + (2 (124 + 5^Rational[1, 2] +
9 (15 + 6 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2]),
Rational[1, 4] (
5 + (3 (9 + 2 5^Rational[1, 2] +
4 (5 + 2 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2])}, {
5 + (Rational[1, 2] (124 + 5^Rational[1, 2] +
9 (15 + 6 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2],
Rational[1, 4] (
5 + (63 + 6 5^Rational[1, 2] +
24 (5 + 2 5^Rational[1, 2])^Rational[1, 2])^Rational[1, 2])}}, {{
0, 5.314726871570336}, {0.17281636480318796`, 2.448701467785898}, {
0.17281636480318796`, 3.448701467785898}, {0.5877852522924731,
4.50570987719539}, {0.5877852522924731, 6.1237438659452845`}, {
0.672816364803188, 1.5826760640014592`}, {0.672816364803188,
4.314726871570336}, {0.672816364803188, 6.314726871570336}, {
1.0388417685876268`, 2.948701467785898}, {1.172816364803188,
7.1807522753547754`}, {1.5388417685876268`, 0.08267606400145922}, {
1.5388417685876268`, 1.0826760640014592`}, {1.5388417685876268`,
2.0826760640014594`}, {1.5388417685876268`, 3.8147268715703366`}, {
1.5388417685876268`, 4.814726871570336}, {1.5388417685876268`,
5.814726871570336}, {1.7079723749464848`, 3.691846293263292}, {
2.038841768587627, 6.6807522753547754`}, {2.5169893693214322`,
2.290587754819201}, {2.538841768587627, 0.08267606400145922}, {
2.538841768587627, 1.0826760640014592`}, {2.538841768587627,
2.0826760640014594`}, {2.538841768587627, 3.8147268715703366`}, {
2.538841768587627, 4.814726871570336}, {2.538841768587627,
5.814726871570336}, {2.6215178325890856`, 3.285109650187492}, {
2.732050807568877, 5.314726871570336}, {3.038841768587627,
2.948701467785898}, {3.3198360598613506`, 4.50570987719539}, {
3.3198360598613506`, 6.1237438659452845`}, {3.4048671723720654`,
4.314726871570336}, {3.4048671723720654`, 6.314726871570336}, {
3.9048671723720654`, 2.448701467785898}, {3.9048671723720654`,
3.448701467785898}, {3.9048671723720654`, 7.1807522753547754`}, {
4.112778863189824, 8.158899876088544}, {4.270892576156504,
4.814726871570336}, {4.270892576156504, 5.814726871570336}, {
4.770892576156504, 3.948701467785898}, {4.770892576156504,
6.6807522753547754`}, {4.855923688667219, 2.1396844734109504`}, {
4.855923688667219, 3.7577184621608453`}, {5.1073007585580985`,
8.263428339356235}, {5.270892576156504, 4.814726871570336}, {
5.270892576156504, 5.814726871570336}, {5.443708940959692,
2.948701467785898}, {5.464101615137754, 5.314726871570336}, {
5.514037401633899, 7.349882881713558}, {5.636917979940943,
2.448701467785898}, {5.636917979940943, 3.448701467785898}, {
6.051886867430228, 4.50570987719539}, {6.051886867430228,
6.1237438659452845`}, {6.136917979940943, 1.5826760640014592`}, {
6.136917979940943, 4.314726871570336}, {6.136917979940943,
6.314726871570336}, {6.636917979940943, 2.448701467785898}, {
6.636917979940943, 3.448701467785898}, {6.636917979940943,
7.1807522753547754`}, {7.002943383725381, 1.0826760640014592`}, {
7.002943383725381, 4.814726871570336}, {7.002943383725381,
5.814726871570336}, {7.502943383725381, 1.9487014677858978`}, {
7.502943383725381, 3.948701467785898}, {7.502943383725381,
6.6807522753547754`}, {7.587974496236097, 2.1396844734109504`}, {
7.587974496236097, 3.7577184621608453`}, {8.00294338372538,
4.814726871570336}, {8.00294338372538, 5.814726871570336}, {
8.17575974852857, 2.948701467785898}, {8.196152422706632,
5.314726871570336}, {8.36896878750982, 2.448701467785898}, {
8.36896878750982, 3.448701467785898}, {8.783937674999105,
4.50570987719539}, {8.783937674999105, 6.1237438659452845`}, {
8.86896878750982, 1.5826760640014592`}, {8.86896878750982,
4.314726871570336}, {8.86896878750982, 6.314726871570336}, {
9.36896878750982, 2.448701467785898}, {9.36896878750982,
3.448701467785898}, {9.36896878750982, 7.1807522753547754`}, {
9.734994191294259, 1.0826760640014592`}, {9.734994191294259,
4.814726871570336}, {9.734994191294259, 5.814726871570336}, {
10.234994191294259`, 1.9487014677858978`}, {10.234994191294259`,
3.948701467785898}, {10.234994191294259`, 6.6807522753547754`}, {
10.320025303804973`, 2.1396844734109504`}, {10.320025303804973`,
3.7577184621608453`}, {10.734994191294259`, 4.814726871570336}, {
10.734994191294259`, 5.814726871570336}, {10.857874769601302`,
0.9135454576426009}, {10.907810556097447`, 2.948701467785898}, {
10.928203230275509`, 5.314726871570336}, {11.101019595078697`,
2.448701467785898}, {11.101019595078697`, 3.448701467785898}, {
11.264611412677104`, 0}, {11.515988482567982`, 4.50570987719539}, {
11.515988482567982`, 6.1237438659452845`}, {11.601019595078697`,
1.5826760640014592`}, {11.601019595078697`, 4.314726871570336}, {
11.601019595078697`, 6.314726871570336}, {12.101019595078697`,
2.448701467785898}, {12.101019595078697`, 3.448701467785898}, {
12.101019595078697`, 7.1807522753547754`}, {12.259133308045376`,
0.10452846326765342`}, {12.467044998863136`, 1.0826760640014592`}, {
12.467044998863136`, 4.814726871570336}, {12.467044998863136`,
5.814726871570336}, {12.967044998863136`, 1.9487014677858978`}, {
12.967044998863136`, 3.948701467785898}, {12.967044998863136`,
6.6807522753547754`}, {13.05207611137385, 2.1396844734109504`}, {
13.05207611137385, 3.7577184621608453`}, {13.467044998863136`,
4.814726871570336}, {13.467044998863136`, 5.814726871570336}, {
13.639861363666324`, 2.948701467785898}, {13.833070402647575`,
3.448701467785898}, {14.333070402647575`, 4.314726871570336}}],
PolygonBox[{{10, 8, 16, 18}, {18, 16, 25}, {16, 15, 24, 25}, {5, 1, 4,
15, 16}, {7, 14, 15}, {15, 14, 23, 24}, {3, 9, 14, 7}, {3, 2, 9}, {2,
6, 13, 9}, {9, 13, 19, 26, 17}, {6, 12, 13}, {13, 12, 21, 22}, {35,
32, 38, 40}, {40, 38, 45}, {38, 37, 44, 45}, {30, 27, 29, 37, 38}, {
37, 39, 44}, {44, 39, 50, 54}, {31, 34, 39, 37}, {24, 23, 31}, {23,
28, 34, 31}, {34, 33, 41, 46, 42}, {28, 33, 34}, {21, 12, 11, 20}, {
58, 55, 61, 64}, {64, 61, 68}, {61, 60, 67, 68}, {52, 47, 51, 60,
61}, {60, 63, 67}, {67, 63, 72, 76}, {54, 57, 63, 60}, {54, 50, 57}, {
50, 49, 56, 57}, {57, 56, 65, 69, 66}, {49, 53, 56}, {56, 53, 59,
62}, {80, 77, 83, 86}, {86, 83, 90}, {83, 82, 89, 90}, {74, 70, 73,
82, 83}, {82, 85, 89}, {89, 85, 95, 100}, {76, 79, 85, 82}, {76, 72,
79}, {72, 71, 78, 79}, {79, 78, 87, 92, 88}, {71, 75, 78}, {78, 75,
81, 84}, {104, 101, 108, 111}, {111, 108, 115}, {108, 107, 114,
115}, {98, 93, 97, 107, 108}, {107, 110, 114}, {114, 110, 117, 118}, {
100, 103, 110, 107}, {100, 95, 103}, {95, 94, 102, 103}, {103, 102,
112, 116, 113}, {94, 99, 102}, {102, 99, 106, 109}, {36, 35, 40, 48,
43}, {99, 91, 96, 105, 106}}]]}]}], "}"}]], "Output",
CellLabel->"Out[40]=",ExpressionUUID->"201b63d1-b176-41ad-b33f-88d014f18996"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"PolyhedronData", "/@",
RowBox[{"{",
RowBox[{
"\"\\"", ",",
"\"\\""}], "}"}]}]], "Input",
CellLabel->"In[7]:=",ExpressionUUID->"65c6716b-4c13-4ab2-b66d-8d76b4320583"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
Graphics3DBox[
GraphicsComplex3DBox[
NCache[{{Rational[-1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], (
Rational[9, 4] + Rational[9, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2] (1 + 5^Rational[1, 2]), 0,
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (-1 - 5^Rational[1, 2]),
Rational[1, 4] (2 - 2 5^Rational[-1, 2])^Rational[1, 2], (
Rational[9, 4] + Rational[9, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 4] (3 + 5^Rational[1, 2]),
Rational[1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (1 + 5^Rational[1, 2]),
Rational[-1, 4] (34 + 62 5^Rational[-1, 2])^Rational[1, 2], (
Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 4] (3 + 5^Rational[1, 2]),
Rational[-1, 4] (26 + 58 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[-1, 2], (Rational[9, 4] + Rational[9, 2] 5^Rational[-1, 2])^
Rational[1, 2], (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {
0, (Rational[5, 2] + Rational[11, 2] 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[-1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (3 + 5^Rational[1, 2]),
Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (-3 - 5^Rational[1, 2]),
Rational[1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 2], Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (-3 - 5^Rational[1, 2]),
Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (1 + 5^Rational[1, 2]),
Rational[-1, 4] (2 - 2 5^Rational[-1, 2])^Rational[1, 2],
Rational[-3, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2] (-1 - 5^Rational[1, 2]), 0,
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 2], (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2],
Rational[-3, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
0, Root[1 - 25 #^2 + 5 #^4& , 1, 0],
Rational[1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2],
Rational[-3, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 4] (-3 - 5^Rational[1, 2]), (Rational[13, 8] +
Rational[29, 8] 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 4] (-1 - 5^Rational[1, 2]), (Rational[17, 8] +
Rational[31, 8] 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 4] (1 + 5^Rational[1, 2]), Root[
1 - 20 #^2 + 80 #^4& , 3, 0], (Rational[9, 4] +
Rational[9, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2] (2 + 5^Rational[1, 2]), (Rational[1, 4] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (5 + 5^Rational[1, 2]), Root[
1 - 100 #^2 + 80 #^4& , 1, 0],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[-1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (1 + 5^Rational[1, 2]), (Rational[17, 8] +
Rational[31, 8] 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 4] (3 + 5^Rational[1, 2]),
Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 2] (2 + 5^Rational[1, 2]),
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2], Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (3 + 5^Rational[1, 2]), (Rational[13, 8] +
Rational[29, 8] 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2] (1 + 5^Rational[1, 2]), 0,
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 2] (2 + 5^Rational[1, 2]),
Rational[1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2], (
Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 4] (3 + 5^Rational[1, 2]),
Rational[1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (5 + 5^Rational[1, 2]), (Rational[5, 8] +
Rational[11, 8] 5^Rational[-1, 2])^
Rational[1, 2], (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {
Rational[1, 2] (1 + 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^
Rational[1, 2], (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {
Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], (
Rational[9, 4] + Rational[9, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2] (2 + 5^Rational[1, 2]),
Rational[-1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
0, (Rational[1, 10] (5 + 5^Rational[1, 2]))^
Rational[1, 2], (Rational[9, 4] + Rational[9, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {
Rational[1, 2] (1 + 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^
Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2], (Rational[9, 4] + Rational[9, 2] 5^Rational[-1, 2])^
Rational[1, 2], (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {
Rational[1, 4] (-1 - 5^
Rational[1, 2]), -(Rational[17, 8] +
Rational[31, 8] 5^Rational[-1, 2])^Rational[1, 2], (Rational[1, 4] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (-5 - 5^Rational[1, 2]), (Rational[5, 8] +
Rational[11, 8] 5^Rational[-1, 2])^
Rational[1, 2], (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {
Rational[-1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {(-3 +
5^Rational[1, 2])^(-1), Root[1 - 260 #^2 + 80 #^4& , 1, 0],
Rational[-1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[-1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {-1 +
Rational[-1, 2] 5^Rational[1, 2], (Rational[1, 4] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 4] (-3 - 5^Rational[1, 2]),
Rational[1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (-5 - 5^Rational[1, 2]),
Rational[-1, 4] (10 + 22 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 4] (-3 - 5^Rational[1, 2]),
Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {-1 +
Rational[-1, 2] 5^Rational[1, 2],
Rational[-1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2] (-1 - 5^Rational[1, 2]), 0,
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[-1, 2],
Rational[-3, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2] (-1 - 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^
Rational[1, 2], (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {
0, Root[1 - 5 #^2 + 5 #^4& , 1, 0],
Rational[-3, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {-1 +
Rational[-1, 2] 5^Rational[1, 2],
Rational[1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2], (
Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[-1, 2], (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2],
Rational[-3, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2] (-1 - 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^
Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {-1 +
Rational[-1, 2] 5^Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 4] (-1 - 5^Rational[1, 2]),
Rational[-1, 4] (2 - 2 5^Rational[-1, 2])^Rational[1, 2],
Rational[-3, 2] (1 + 2 5^Rational[-1, 2])^
Rational[1, 2]}}, {{-0.5, -0.6881909602355868,
2.0645728807067605`}, {
1.618033988749895, 0, -1.5388417685876268`}, {-0.8090169943749475,
0.2628655560595668, 2.0645728807067605`}, {1.3090169943749475`,
0.9510565162951535, -1.5388417685876268`}, {
0.8090169943749475, -1.9641671727636467`, 0.6881909602355868}, {
1.3090169943749475`, -1.8017073246471935`, -0.16245984811645317`}, \
{-0.5, 2.0645728807067605`, 0.6881909602355868}, {
0, 2.2270327288232132`, -0.16245984811645317`}, {-0.5, \
-1.5388417685876268`, 1.5388417685876268`}, {
1.3090169943749475`, -0.9510565162951535, -1.5388417685876268`}, \
{-1.3090169943749475`, 0.9510565162951535, 1.5388417685876268`}, {0.5,
1.5388417685876268`, -1.5388417685876268`}, {-1.3090169943749475`, \
-0.9510565162951535, 1.5388417685876268`}, {
0.8090169943749475, -0.2628655560595668, -2.0645728807067605`}, \
{-1.618033988749895, 0, 1.5388417685876268`}, {0.5,
0.6881909602355868, -2.0645728807067605`}, {
0, -2.2270327288232132`, 0.16245984811645317`}, {
0.5, -2.0645728807067605`, -0.6881909602355868}, {-1.3090169943749475`,
1.8017073246471935`, 0.16245984811645317`}, {-0.8090169943749475,
1.9641671727636467`, -0.6881909602355868}, {0.8090169943749475,
0.2628655560595668, 2.0645728807067605`}, {2.118033988749895,
0.6881909602355868, -0.16245984811645317`}, {0.5, -1.5388417685876268`,
1.5388417685876268`}, {
1.8090169943749475`, -1.1135163644116066`, -0.6881909602355868}, {-0.5,
1.5388417685876268`, 1.5388417685876268`}, {0.8090169943749475,
1.9641671727636467`, -0.6881909602355868}, {
1.3090169943749475`, -0.9510565162951535, 1.5388417685876268`}, {
2.118033988749895, -0.6881909602355868, 0.16245984811645317`}, {0.5,
1.5388417685876268`, 1.5388417685876268`}, {1.3090169943749475`,
1.8017073246471935`, 0.16245984811645317`}, {
1.618033988749895, 0, 1.5388417685876268`}, {2.118033988749895,
0.16245984811645317`, 0.6881909602355868}, {1.3090169943749475`,
0.9510565162951535, 1.5388417685876268`}, {1.8090169943749475`,
1.1135163644116066`, 0.6881909602355868}, {
1.618033988749895, -1.3763819204711736`, 0.6881909602355868}, {
0.5, -0.6881909602355868, 2.0645728807067605`}, {
2.118033988749895, -0.16245984811645317`, -0.6881909602355868}, {
0, 0.85065080835204, 2.0645728807067605`}, {1.618033988749895,
1.3763819204711736`, -0.6881909602355868}, {0.5, 2.0645728807067605`,
0.6881909602355868}, {-0.8090169943749475, -1.9641671727636467`,
0.6881909602355868}, {
0.5, -1.5388417685876268`, -1.5388417685876268`}, \
{-1.8090169943749475`, 1.1135163644116066`, 0.6881909602355868}, {-0.5,
1.5388417685876268`, -1.5388417685876268`}, {-1.3090169943749477`, \
-1.8017073246471935`, -0.16245984811645317`}, {-0.5, -1.5388417685876268`, \
-1.5388417685876268`}, {-2.118033988749895,
0.6881909602355868, -0.16245984811645317`}, {-1.3090169943749475`,
0.9510565162951535, -1.5388417685876268`}, {-1.8090169943749475`, \
-1.1135163644116066`, -0.6881909602355868}, {-1.3090169943749475`, \
-0.9510565162951535, -1.5388417685876268`}, {-2.118033988749895, \
-0.16245984811645317`, -0.6881909602355868}, {-1.618033988749895,
0, -1.5388417685876268`}, {-0.5, -2.0645728807067605`, \
-0.6881909602355868}, {-1.618033988749895, -1.3763819204711736`,
0.6881909602355868}, {
0, -0.85065080835204, -2.0645728807067605`}, {-2.118033988749895,
0.16245984811645317`, 0.6881909602355868}, {-0.5,
0.6881909602355868, -2.0645728807067605`}, {-1.618033988749895,
1.3763819204711736`, -0.6881909602355868}, {-2.118033988749895, \
-0.6881909602355868,
0.16245984811645317`}, {-0.8090169943749475, -0.2628655560595668, \
-2.0645728807067605`}}],
Polygon3DBox[{{36, 23, 27}, {37, 28, 24}, {40, 8, 7}, {35, 5, 6}, {38,
29, 25}, {39, 26, 30}, {10, 14, 2}, {9, 1, 13}, {12, 4, 16}, {11, 15,
3}, {54, 45, 41}, {55, 42, 46}, {58, 19, 20}, {53, 18, 17}, {56, 43,
47}, {57, 48, 44}, {34, 32, 22}, {33, 21, 31}, {59, 51, 49}, {60, 50,
52}, {27, 31, 21, 36}, {23, 36, 1, 9}, {10, 2, 37, 24}, {37, 22, 32,
28}, {8, 40, 30, 26}, {25, 29, 40, 7}, {35, 27, 23, 5}, {6, 24, 28,
35}, {3, 38, 25, 11}, {21, 33, 29, 38}, {39, 30, 34, 22}, {12, 26, 39,
4}, {55, 14, 10, 42}, {41, 9, 13, 54}, {57, 44, 12, 16}, {15, 11, 43,
56}, {45, 54, 59, 49}, {50, 60, 55, 46}, {48, 58, 20, 44}, {43, 19, 58,
47}, {53, 17, 41, 45}, {46, 42, 18, 53}, {59, 56, 47, 51}, {52, 48,
57, 60}, {31, 32, 34, 33}, {17, 18, 6, 5}, {1, 3, 15, 13}, {14, 16, 4,
2}, {7, 8, 20, 19}, {51, 52, 50, 49}, {3, 1, 36, 21, 38}, {22, 37, 2,
4, 39}, {29, 33, 34, 30, 40}, {27, 35, 28, 32, 31}, {42, 10, 24, 6,
18}, {41, 17, 5, 23, 9}, {20, 8, 26, 12, 44}, {11, 25, 7, 19, 43}, {56,
59, 54, 13, 15}, {57, 16, 14, 55, 60}, {58, 48, 52, 51, 47}, {49, 50,
46, 53, 45}}]]], ",",
Graphics3DBox[GraphicsComplex3DBox[CompressedData["
1:eJwNlGs4FGgUxwdrrUYRTaViaUIS0fZE2M64VFaKpK1WurqsjEvZFdqVR6Os
TdKDLZdcChWyVEjljFvppg2RSyRk3GeYMOO258P75f3ynvf8f/+f9nF/Zw9Z
BoNhSUeOTsWNPXNap2X4xj0pLhd4HeDoGbDZNyUP8zUeC7qaGfwrgTo1hhYN
mCB8M2r3rBffFARIGB4MfoYf8+KG0grwKZ5SdVMYgtA1tsptTXPooHVkX75A
hPGj0sN2P1ag87651Da7OSwdGlTQZg9isuOQuUfwAHzO8xFwG2dQxdYyLNtK
BO/lY0RMewFWftQ547t9BpX8shyrrn2F9cuCefkTL6Ds7tanI2nTeKXUqLN3
ewNIJyXf7mBPYOv8CV/D9VL8kHkkN8dICLu7ym966Y1BaLrrr7WaElzOXSZ9
NNyLvxgwxisHJlAqMMm13TuJx6Z3mxtl10L22WfK3Z+lkPSXfnbntgn8LUS7
q1xlClmrRQtjDw9hUcfunzXrxXhNcaVrhlc/Wtvx2V4rpVCU65WSZiDGB7Ze
ka2hs1iY139hl34ORLdrG6SnjmP1irn7T9kS1G24xNLVEIJsgNO81aAQezbs
ajP1mYbIqmI1s64R/Jy+4LK1mxAbDxbnuVTOw6i4hFkR7o3d3p6mm4XDKLyw
0UXV6CMMrDBNG0+exxNBOg8fDPXjUb5iUuz8BMjaNj9IVJ0Cm33pMf3DAhTw
EpAt/YT6OTdqSkwYfLZdhXG3eQ/WSvp8XF91g4m/v4qiF4Njc9dnfcyDT1jd
FO2oa/MV6uPFPPPgacxRzE/f4teJQ6K+qaqCWTS/qcY7aD2Gene56qykNiz1
iLVa4MTg5EZF7RTc6oc+g2/z1nE+oKB0jbe13Sjek7sf5vD3PJhezQrZIt+M
lzsS60YvyfDjdTUvWta9xGVs53kTvwY8NCZrsWjJDN67fC6AGfMVRg5KTpzJ
fYNl2dM9ypoynN7ZSFHLgm5cpWEBCY+fYPuXemVQFuNYpq7aHxGzaPootdji
UQZWxB9vnHxeBglL9esimmX4LxJCHekeINg6g+6xoTr0Nd1z6os3tbmH1MBt
b4Un3vsp7z1yrCszk6AaZ2xP70Jl1vFuepdvUPJ6gN4FdfQdoznBTLxpK80J
shvbA2lOfFF8PGifVhMccOguUD47AKLfI/nyhxgciWEFl/4LwZ0b/qP/crjM
LVz6L0iea6fRfiD8SZQ/7QdUc5QjaD+ovy1KifYJle4TQPvkJ7y1cqZ9YsKf
Zg6UC7wOrHWlXPDZwVX/UC6wcKnjOsoR1k6c96AcsZ+voUo58t/b3L9HPACv
vDmReMDTfT+UEg+Ybyo2Jn7g33MndxA/GHSmNZn4AV/1nhDGvRGwc7Nr2fRu
Bna6XZI8UxiGsYvvoolDEO/n3SEOcfHOU85l4d5gfuq7ldaDQnBXZImIW3y8
OM2ZuIWwKoEecQ5Rq4xLiHO4GtS/nDjHJnFisufYODiV5DGYoR1Q1DJ6XnJr
BjKvGl2nvkD49utR1BdwVA8bo75gdg1rL/UL1i48d4z6BZmDq/SoXyh9O5VD
PYXOoXIt6inKfs9Wo55iRGRdgYWsFHrMOHcUQARzLe3iJncRtH5Zd5I8AN9k
GN4mD2Amb2UOeQCL4uTLyBvgVOhZT97AGy6pcuQNKKoeCiTPgCU30IE8g0s2
uqWRZzBiqfMUeQksu0KiyUv4KradpWQvAHvLmiTyGBwQOi4ij4FHYpYVeQz9
mEwl8h6sWR13gLwH3EaWLXkPfmI3TpInOWlHz/qSJ1FntlCdPIl6cZp95FWO
MHT4HXkVXt1Z0k9eBQvVhzPkYY7Kx8Yd5GEslLa95Kbkwf+Scv/B
"],
Polygon3DBox[{{37, 34, 46, 49}, {49, 46, 56}, {46, 48, 57, 56}, {34, 28,
36, 48, 46}, {36, 43, 48}, {48, 43, 51, 57}, {24, 32, 43, 36}, {24, 19,
32}, {19, 21, 35, 32}, {32, 35, 47, 51, 43}, {21, 31, 35}, {35, 31,
42, 47}, {49, 56, 58, 50}, {50, 58, 52}, {58, 60, 54, 52}, {56, 57, 59,
60, 58}, {60, 55, 54}, {54, 55, 45, 44}, {59, 53, 55, 60}, {57, 51,
59}, {51, 47, 53, 59}, {53, 42, 39, 45, 55}, {47, 42, 53}, {42, 31, 25,
39}, {50, 52, 41, 40}, {40, 41, 29}, {41, 38, 23, 29}, {52, 54, 44,
38, 41}, {38, 26, 23}, {23, 26, 14, 12}, {44, 33, 26, 38}, {44, 45,
33}, {45, 39, 27, 33}, {33, 27, 15, 14, 26}, {39, 25, 27}, {27, 25, 13,
15}, {40, 29, 20, 30}, {30, 20, 18}, {20, 10, 8, 18}, {29, 23, 12, 10,
20}, {10, 2, 8}, {8, 2, 1, 6}, {12, 4, 2, 10}, {12, 14, 4}, {14, 15,
5, 4}, {4, 5, 3, 1, 2}, {15, 13, 5}, {5, 13, 11, 3}, {30, 18, 22,
37}, {37, 22, 34}, {22, 16, 28, 34}, {18, 8, 6, 16, 22}, {16, 17,
28}, {28, 17, 24, 36}, {6, 7, 17, 16}, {6, 1, 7}, {1, 3, 9, 7}, {7, 9,
19, 24, 17}, {3, 11, 9}, {9, 11, 21, 19}, {37, 49, 50, 40, 30}, {11,
13, 25, 31, 21}}]]]}], "}"}]], "Output",
CellLabel->"Out[7]=",ExpressionUUID->"ee3736a2-db98-4f04-8011-8bf385bf5c03"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"PolyhedronData", "[",
RowBox[{
"\"\\"", ",", "\"\\""}],
"]"}]], "Input",
CellLabel->"In[8]:=",ExpressionUUID->"d9f26483-957d-48cb-9cbd-de067cce11d9"],
Cell[BoxData[
RowBox[{"{",
RowBox[{"\<\"C2\"\>", ",", "\<\"C5\"\>"}], "}"}]], "Output",
CellLabel->"Out[8]=",ExpressionUUID->"21e59d06-1d9a-4a2d-9c59-f182a8199c43"]
}, Open ]],
Cell["\<\
Obtain GyrateRhombicosidodecahedron by rotating one of the cupolas. \
\>", "Text",ExpressionUUID->"845bfcee-5183-4845-b0d9-be0406a48f7c"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Graphics3D", "[",
RowBox[{"{", "\[IndentingNewLine]",
RowBox[{
RowBox[{"MapIndexed", "[",
RowBox[{
RowBox[{
RowBox[{"Text", "[",
RowBox[{
RowBox[{"#2", "[",
RowBox[{"[", "1", "]"}], "]"}], ",", "#", ",",
RowBox[{"Background", "\[Rule]", "White"}]}], "]"}], "&"}], ",",
RowBox[{"PolyhedronData", "[",
RowBox[{
"\"\\"", ",",
"\"\\""}], "]"}]}], "]"}], ",",
"\[IndentingNewLine]",
RowBox[{"PolyhedronData", "[",
RowBox[{
"\"\\"", ",", "\"\\""}],
"]"}]}], "\[IndentingNewLine]", "}"}], "]"}]], "Input",
CellLabel->"In[13]:=",ExpressionUUID->"31075e0a-b4f8-4808-b423-fe8cded3e6a7"],
Cell[BoxData[
Graphics3DBox[{{Text3DBox[
FormBox["1", StandardForm],
NCache[{Rational[-1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], (
Rational[9, 4] + Rational[9, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {-0.5, -0.6881909602355868, 2.0645728807067605`}],
Background->GrayLevel[1]], Text3DBox[
FormBox["2", StandardForm],
NCache[{Rational[1, 2] (1 + 5^Rational[1, 2]), 0,
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
1.618033988749895, 0, -1.5388417685876268`}],
Background->GrayLevel[1]], Text3DBox[
FormBox["3", StandardForm],
NCache[{Rational[1, 4] (-1 - 5^Rational[1, 2]),
Rational[1, 4] (2 - 2 5^Rational[-1, 2])^Rational[1, 2], (
Rational[9, 4] + Rational[9, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {-0.8090169943749475, 0.2628655560595668,
2.0645728807067605`}],
Background->GrayLevel[1]], Text3DBox[
FormBox["4", StandardForm],
NCache[{Rational[1, 4] (3 + 5^Rational[1, 2]),
Rational[1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
1.3090169943749475`, 0.9510565162951535, -1.5388417685876268`}],
Background->GrayLevel[1]], Text3DBox[
FormBox["5", StandardForm],
NCache[{Rational[1, 4] (1 + 5^Rational[1, 2]),
Rational[-1, 4] (34 + 62 5^Rational[-1, 2])^Rational[1, 2], (
Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {
0.8090169943749475, -1.9641671727636467`, 0.6881909602355868}],
Background->GrayLevel[1]], Text3DBox[
FormBox["6", StandardForm],
NCache[{Rational[1, 4] (3 + 5^Rational[1, 2]),
Rational[-1, 4] (26 + 58 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, {
1.3090169943749475`, -1.8017073246471935`, -0.16245984811645317`}],
Background->GrayLevel[1]], Text3DBox[
FormBox["7", StandardForm],
NCache[{Rational[-1, 2], (Rational[9, 4] +
Rational[9, 2] 5^Rational[-1, 2])^
Rational[1, 2], (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {-0.5, 2.0645728807067605`, 0.6881909602355868}],
Background->GrayLevel[1]], Text3DBox[
FormBox["8", StandardForm],
NCache[{0, (Rational[5, 2] + Rational[11, 2] 5^Rational[-1, 2])^
Rational[1, 2],
Rational[-1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, {
0, 2.2270327288232132`, -0.16245984811645317`}],
Background->GrayLevel[1]], Text3DBox[
FormBox["9", StandardForm],
NCache[{Rational[-1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^
Rational[1, 2]}, {-0.5, -1.5388417685876268`, 1.5388417685876268`}],
Background->GrayLevel[1]], Text3DBox[
FormBox["10", StandardForm],
NCache[{Rational[1, 4] (3 + 5^Rational[1, 2]),
Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
1.3090169943749475`, -0.9510565162951535, -1.5388417685876268`}],
Background->GrayLevel[1]], Text3DBox[
FormBox["11", StandardForm],
NCache[{Rational[1, 4] (-3 - 5^Rational[1, 2]),
Rational[1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^
Rational[1, 2]}, {-1.3090169943749475`, 0.9510565162951535,
1.5388417685876268`}],
Background->GrayLevel[1]], Text3DBox[
FormBox["12", StandardForm],
NCache[{Rational[1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {0.5,
1.5388417685876268`, -1.5388417685876268`}],
Background->GrayLevel[1]], Text3DBox[
FormBox["13", StandardForm],
NCache[{Rational[1, 4] (-3 - 5^Rational[1, 2]),
Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^
Rational[1, 2]}, {-1.3090169943749475`, -0.9510565162951535,
1.5388417685876268`}],
Background->GrayLevel[1]], Text3DBox[
FormBox["14", StandardForm],
NCache[{Rational[1, 4] (1 + 5^Rational[1, 2]),
Rational[-1, 4] (2 - 2 5^Rational[-1, 2])^Rational[1, 2],
Rational[-3, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
0.8090169943749475, -0.2628655560595668, -2.0645728807067605`}],
Background->GrayLevel[1]], Text3DBox[
FormBox["15", StandardForm],
NCache[{Rational[1, 2] (-1 - 5^Rational[1, 2]), 0,
Rational[1, 2] (5 + 2 5^Rational[1, 2])^
Rational[1, 2]}, {-1.618033988749895, 0, 1.5388417685876268`}],
Background->GrayLevel[1]], Text3DBox[
FormBox["16", StandardForm],
NCache[{Rational[
1, 2], (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2],
Rational[-3, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {0.5,
0.6881909602355868, -2.0645728807067605`}],
Background->GrayLevel[1]], Text3DBox[
FormBox["17", StandardForm],
NCache[{0, Root[1 - 25 #^2 + 5 #^4& , 1, 0],
Rational[1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, {
0, -2.2270327288232132`, 0.16245984811645317`}],
Background->GrayLevel[1]], Text3DBox[
FormBox["18", StandardForm],
NCache[{Rational[1, 2],
Rational[-3, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
0.5, -2.0645728807067605`, -0.6881909602355868}],
Background->GrayLevel[1]], Text3DBox[
FormBox["19", StandardForm],
NCache[{Rational[1, 4] (-3 - 5^Rational[1, 2]), (Rational[13, 8] +
Rational[29, 8] 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 2] (1 - 2 5^Rational[-1, 2])^
Rational[1, 2]}, {-1.3090169943749475`, 1.8017073246471935`,
0.16245984811645317`}],
Background->GrayLevel[1]], Text3DBox[
FormBox["20", StandardForm],
NCache[{Rational[1, 4] (-1 - 5^Rational[1, 2]), (Rational[17, 8] +
Rational[31, 8] 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^
Rational[1, 2]}, {-0.8090169943749475,
1.9641671727636467`, -0.6881909602355868}],
Background->GrayLevel[1]], Text3DBox[
FormBox["21", StandardForm],
NCache[{Rational[1, 4] (1 + 5^Rational[1, 2]), Root[
1 - 20 #^2 + 80 #^4& , 3, 0], (Rational[9, 4] +
Rational[9, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {
0.8090169943749475, 0.2628655560595668, 2.0645728807067605`}],
Background->GrayLevel[1]], Text3DBox[
FormBox["22", StandardForm],
NCache[{Rational[1, 2] (2 + 5^Rational[1, 2]), (Rational[1, 4] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, {
2.118033988749895, 0.6881909602355868, -0.16245984811645317`}],
Background->GrayLevel[1]], Text3DBox[
FormBox["23", StandardForm],
NCache[{Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
0.5, -1.5388417685876268`, 1.5388417685876268`}],
Background->GrayLevel[1]], Text3DBox[
FormBox["24", StandardForm],
NCache[{Rational[1, 4] (5 + 5^Rational[1, 2]), Root[
1 - 100 #^2 + 80 #^4& , 1, 0],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
1.8090169943749475`, -1.1135163644116066`, -0.6881909602355868}],
Background->GrayLevel[1]], Text3DBox[
FormBox["25", StandardForm],
NCache[{Rational[-1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {-0.5,
1.5388417685876268`, 1.5388417685876268`}],
Background->GrayLevel[1]], Text3DBox[
FormBox["26", StandardForm],
NCache[{Rational[1, 4] (1 + 5^Rational[1, 2]), (Rational[17, 8] +
Rational[31, 8] 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
0.8090169943749475, 1.9641671727636467`, -0.6881909602355868}],
Background->GrayLevel[1]], Text3DBox[
FormBox["27", StandardForm],
NCache[{Rational[1, 4] (3 + 5^Rational[1, 2]),
Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
1.3090169943749475`, -0.9510565162951535, 1.5388417685876268`}],
Background->GrayLevel[1]], Text3DBox[
FormBox["28", StandardForm],
NCache[{Rational[1, 2] (2 + 5^Rational[1, 2]),
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, {
2.118033988749895, -0.6881909602355868, 0.16245984811645317`}],
Background->GrayLevel[1]], Text3DBox[
FormBox["29", StandardForm],
NCache[{Rational[1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {0.5,
1.5388417685876268`, 1.5388417685876268`}],
Background->GrayLevel[1]], Text3DBox[
FormBox["30", StandardForm],
NCache[{Rational[1, 4] (3 + 5^Rational[1, 2]), (Rational[13, 8] +
Rational[29, 8] 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, {
1.3090169943749475`, 1.8017073246471935`, 0.16245984811645317`}],
Background->GrayLevel[1]], Text3DBox[
FormBox["31", StandardForm],
NCache[{Rational[1, 2] (1 + 5^Rational[1, 2]), 0,
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
1.618033988749895, 0, 1.5388417685876268`}],
Background->GrayLevel[1]], Text3DBox[
FormBox["32", StandardForm],
NCache[{Rational[1, 2] (2 + 5^Rational[1, 2]),
Rational[1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2], (
Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {
2.118033988749895, 0.16245984811645317`, 0.6881909602355868}],
Background->GrayLevel[1]], Text3DBox[
FormBox["33", StandardForm],
NCache[{Rational[1, 4] (3 + 5^Rational[1, 2]),
Rational[1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
1.3090169943749475`, 0.9510565162951535, 1.5388417685876268`}],
Background->GrayLevel[1]], Text3DBox[
FormBox["34", StandardForm],
NCache[{Rational[1, 4] (5 + 5^Rational[1, 2]), (Rational[5, 8] +
Rational[11, 8] 5^Rational[-1, 2])^
Rational[1, 2], (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {1.8090169943749475`, 1.1135163644116066`,
0.6881909602355868}],
Background->GrayLevel[1]], Text3DBox[
FormBox["35", StandardForm],
NCache[{Rational[1, 2] (1 +
5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^Rational[1, 2], (
Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {
1.618033988749895, -1.3763819204711736`, 0.6881909602355868}],
Background->GrayLevel[1]], Text3DBox[
FormBox["36", StandardForm],
NCache[{Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], (
Rational[9, 4] + Rational[9, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {
0.5, -0.6881909602355868, 2.0645728807067605`}],
Background->GrayLevel[1]], Text3DBox[
FormBox["37", StandardForm],
NCache[{Rational[1, 2] (2 + 5^Rational[1, 2]),
Rational[-1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
2.118033988749895, -0.16245984811645317`, -0.6881909602355868}],
Background->GrayLevel[1]], Text3DBox[
FormBox["38", StandardForm],
NCache[{0, (Rational[1, 10] (5 + 5^Rational[1, 2]))^
Rational[1, 2], (Rational[9, 4] + Rational[9, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {0, 0.85065080835204, 2.0645728807067605`}],
Background->GrayLevel[1]], Text3DBox[
FormBox["39", StandardForm],
NCache[{Rational[1, 2] (1 + 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^
Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
1.618033988749895, 1.3763819204711736`, -0.6881909602355868}],
Background->GrayLevel[1]], Text3DBox[
FormBox["40", StandardForm],
NCache[{Rational[
1, 2], (Rational[9, 4] + Rational[9, 2] 5^Rational[-1, 2])^
Rational[1, 2], (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {0.5, 2.0645728807067605`, 0.6881909602355868}],
Background->GrayLevel[1]], Text3DBox[
FormBox["41", StandardForm],
NCache[{Rational[1, 4] (-1 - 5^
Rational[1, 2]), -(Rational[17, 8] +
Rational[31, 8] 5^Rational[-1, 2])^Rational[1, 2], (Rational[1, 4] +
Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {-0.8090169943749475, -1.9641671727636467`,
0.6881909602355868}],
Background->GrayLevel[1]], Text3DBox[
FormBox["42", StandardForm],
NCache[{Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
0.5, -1.5388417685876268`, -1.5388417685876268`}],
Background->GrayLevel[1]], Text3DBox[
FormBox["43", StandardForm],
NCache[{Rational[1, 4] (-5 - 5^Rational[1, 2]), (Rational[5, 8] +
Rational[11, 8] 5^Rational[-1, 2])^
Rational[1, 2], (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {-1.8090169943749475`, 1.1135163644116066`,
0.6881909602355868}],
Background->GrayLevel[1]], Text3DBox[
FormBox["44", StandardForm],
NCache[{Rational[-1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {-0.5,
1.5388417685876268`, -1.5388417685876268`}],
Background->GrayLevel[1]], Text3DBox[
FormBox["45", StandardForm],
NCache[{(-3 + 5^Rational[1, 2])^(-1), Root[1 - 260 #^2 + 80 #^4& , 1, 0],
Rational[-1, 2] (1 - 2 5^Rational[-1, 2])^
Rational[
1, 2]}, {-1.3090169943749477`, -1.8017073246471935`, \
-0.16245984811645317`}],
Background->GrayLevel[1]], Text3DBox[
FormBox["46", StandardForm],
NCache[{Rational[-1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^
Rational[1, 2]}, {-0.5, -1.5388417685876268`, -1.5388417685876268`}],
Background->GrayLevel[1]], Text3DBox[
FormBox["47", StandardForm],
NCache[{-1 +
Rational[-1, 2] 5^Rational[1, 2], (Rational[1, 4] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 - 2 5^Rational[-1, 2])^
Rational[1, 2]}, {-2.118033988749895,
0.6881909602355868, -0.16245984811645317`}],
Background->GrayLevel[1]], Text3DBox[
FormBox["48", StandardForm],
NCache[{Rational[1, 4] (-3 - 5^Rational[1, 2]),
Rational[1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^
Rational[1, 2]}, {-1.3090169943749475`,
0.9510565162951535, -1.5388417685876268`}],
Background->GrayLevel[1]], Text3DBox[
FormBox["49", StandardForm],
NCache[{Rational[1, 4] (-5 - 5^Rational[1, 2]),
Rational[-1, 4] (10 + 22 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^
Rational[
1, 2]}, {-1.8090169943749475`, -1.1135163644116066`, \
-0.6881909602355868}],
Background->GrayLevel[1]], Text3DBox[
FormBox["50", StandardForm],
NCache[{Rational[1, 4] (-3 - 5^Rational[1, 2]),
Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^
Rational[
1, 2]}, {-1.3090169943749475`, -0.9510565162951535, \
-1.5388417685876268`}],
Background->GrayLevel[1]], Text3DBox[
FormBox["51", StandardForm],
NCache[{-1 + Rational[-1, 2] 5^Rational[1, 2],
Rational[-1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^
Rational[
1, 2]}, {-2.118033988749895, -0.16245984811645317`, \
-0.6881909602355868}],
Background->GrayLevel[1]], Text3DBox[
FormBox["52", StandardForm],
NCache[{Rational[1, 2] (-1 - 5^Rational[1, 2]), 0,
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^
Rational[1, 2]}, {-1.618033988749895, 0, -1.5388417685876268`}],
Background->GrayLevel[1]], Text3DBox[
FormBox["53", StandardForm],
NCache[{Rational[-1, 2],
Rational[-3, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^
Rational[1, 2]}, {-0.5, -2.0645728807067605`, -0.6881909602355868}],
Background->GrayLevel[1]], Text3DBox[
FormBox["54", StandardForm],
NCache[{Rational[1, 2] (-1 - 5^
Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^Rational[1, 2], (
Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {-1.618033988749895, -1.3763819204711736`,
0.6881909602355868}],
Background->GrayLevel[1]], Text3DBox[
FormBox["55", StandardForm],
NCache[{0, Root[1 - 5 #^2 + 5 #^4& , 1, 0],
Rational[-3, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
0, -0.85065080835204, -2.0645728807067605`}],
Background->GrayLevel[1]], Text3DBox[
FormBox["56", StandardForm],
NCache[{-1 + Rational[-1, 2] 5^Rational[1, 2],
Rational[1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2], (
Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {-2.118033988749895, 0.16245984811645317`,
0.6881909602355868}],
Background->GrayLevel[1]], Text3DBox[
FormBox["57", StandardForm],
NCache[{Rational[-1, 2], (Rational[1, 4] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2],
Rational[-3, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {-0.5,
0.6881909602355868, -2.0645728807067605`}],
Background->GrayLevel[1]], Text3DBox[
FormBox["58", StandardForm],
NCache[{Rational[1, 2] (-1 - 5^Rational[1, 2]), (1 +
2 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^
Rational[1, 2]}, {-1.618033988749895,
1.3763819204711736`, -0.6881909602355868}],
Background->GrayLevel[1]], Text3DBox[
FormBox["59", StandardForm],
NCache[{-1 + Rational[-1, 2] 5^Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 2] (1 - 2 5^Rational[-1, 2])^
Rational[1, 2]}, {-2.118033988749895, -0.6881909602355868,
0.16245984811645317`}],
Background->GrayLevel[1]], Text3DBox[
FormBox["60", StandardForm],
NCache[{Rational[1, 4] (-1 - 5^Rational[1, 2]),
Rational[-1, 4] (2 - 2 5^Rational[-1, 2])^Rational[1, 2],
Rational[-3, 2] (1 + 2 5^Rational[-1, 2])^
Rational[
1, 2]}, {-0.8090169943749475, -0.2628655560595668, \
-2.0645728807067605`}],
Background->GrayLevel[1]]},
GraphicsComplex3DBox[
NCache[{{Rational[-1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], (
Rational[9, 4] + Rational[9, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2] (1 + 5^Rational[1, 2]), 0,
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (-1 - 5^Rational[1, 2]),
Rational[1, 4] (2 - 2 5^Rational[-1, 2])^Rational[1, 2], (
Rational[9, 4] + Rational[9, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 4] (3 + 5^Rational[1, 2]),
Rational[1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (1 + 5^Rational[1, 2]),
Rational[-1, 4] (34 + 62 5^Rational[-1, 2])^Rational[1, 2], (
Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 4] (3 + 5^Rational[1, 2]),
Rational[-1, 4] (26 + 58 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[-1, 2], (Rational[9, 4] + Rational[9, 2] 5^Rational[-1, 2])^
Rational[1, 2], (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {
0, (Rational[5, 2] + Rational[11, 2] 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[-1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (3 + 5^Rational[1, 2]),
Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (-3 - 5^Rational[1, 2]),
Rational[1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 2], Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (-3 - 5^Rational[1, 2]),
Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (1 + 5^Rational[1, 2]),
Rational[-1, 4] (2 - 2 5^Rational[-1, 2])^Rational[1, 2],
Rational[-3, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2] (-1 - 5^Rational[1, 2]), 0,
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 2], (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2],
Rational[-3, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
0, Root[1 - 25 #^2 + 5 #^4& , 1, 0],
Rational[1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2],
Rational[-3, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 4] (-3 - 5^Rational[1, 2]), (Rational[13, 8] +
Rational[29, 8] 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 4] (-1 - 5^Rational[1, 2]), (Rational[17, 8] +
Rational[31, 8] 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 4] (1 + 5^Rational[1, 2]), Root[
1 - 20 #^2 + 80 #^4& , 3, 0], (Rational[9, 4] +
Rational[9, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2] (2 + 5^Rational[1, 2]), (Rational[1, 4] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2], Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (5 + 5^Rational[1, 2]), Root[
1 - 100 #^2 + 80 #^4& , 1, 0],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[-1, 2], Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (1 + 5^Rational[1, 2]), (Rational[17, 8] +
Rational[31, 8] 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 4] (3 + 5^Rational[1, 2]),
Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 2] (2 + 5^Rational[1, 2]),
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2], Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (3 + 5^Rational[1, 2]), (Rational[13, 8] +
Rational[29, 8] 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2] (1 + 5^Rational[1, 2]), 0,
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 2] (2 + 5^Rational[1, 2]),
Rational[1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2], (
Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 4] (3 + 5^Rational[1, 2]),
Rational[1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (5 + 5^Rational[1, 2]), (Rational[5, 8] +
Rational[11, 8] 5^Rational[-1, 2])^
Rational[1, 2], (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {
Rational[1, 2] (1 + 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^
Rational[1, 2], (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {
Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], (
Rational[9, 4] + Rational[9, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2] (2 + 5^Rational[1, 2]),
Rational[-1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
0, (Rational[1, 10] (5 + 5^Rational[1, 2]))^
Rational[1, 2], (Rational[9, 4] + Rational[9, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {
Rational[1, 2] (1 + 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^
Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2], (Rational[9, 4] + Rational[9, 2] 5^Rational[-1, 2])^
Rational[1, 2], (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {
Rational[1, 4] (-1 - 5^
Rational[1, 2]), -(Rational[17, 8] +
Rational[31, 8] 5^Rational[-1, 2])^Rational[1, 2], (Rational[1, 4] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2], Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (-5 - 5^Rational[1, 2]), (Rational[5, 8] +
Rational[11, 8] 5^Rational[-1, 2])^
Rational[1, 2], (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {
Rational[-1, 2], Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {(-3 +
5^Rational[1, 2])^(-1), Root[1 - 260 #^2 + 80 #^4& , 1, 0],
Rational[-1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[-1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {-1 +
Rational[-1, 2] 5^Rational[1, 2], (Rational[1, 4] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 4] (-3 - 5^Rational[1, 2]),
Rational[1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (-5 - 5^Rational[1, 2]),
Rational[-1, 4] (10 + 22 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 4] (-3 - 5^Rational[1, 2]),
Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {-1 +
Rational[-1, 2] 5^Rational[1, 2],
Rational[-1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2] (-1 - 5^Rational[1, 2]), 0,
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[-1, 2],
Rational[-3, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2] (-1 - 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^
Rational[1, 2], (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {
0, Root[1 - 5 #^2 + 5 #^4& , 1, 0],
Rational[-3, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {-1 +
Rational[-1, 2] 5^Rational[1, 2],
Rational[1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2], (
Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[-1, 2], (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2],
Rational[-3, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2] (-1 - 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^
Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {-1 +
Rational[-1, 2] 5^Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 4] (-1 - 5^Rational[1, 2]),
Rational[-1, 4] (2 - 2 5^Rational[-1, 2])^Rational[1, 2],
Rational[-3, 2] (1 + 2 5^Rational[-1, 2])^
Rational[1, 2]}}, {{-0.5, -0.6881909602355868, 2.0645728807067605`}, {
1.618033988749895, 0, -1.5388417685876268`}, {-0.8090169943749475,
0.2628655560595668, 2.0645728807067605`}, {1.3090169943749475`,
0.9510565162951535, -1.5388417685876268`}, {
0.8090169943749475, -1.9641671727636467`, 0.6881909602355868}, {
1.3090169943749475`, -1.8017073246471935`, -0.16245984811645317`}, \
{-0.5, 2.0645728807067605`, 0.6881909602355868}, {
0, 2.2270327288232132`, -0.16245984811645317`}, {-0.5, \
-1.5388417685876268`, 1.5388417685876268`}, {
1.3090169943749475`, -0.9510565162951535, -1.5388417685876268`}, \
{-1.3090169943749475`, 0.9510565162951535, 1.5388417685876268`}, {0.5,
1.5388417685876268`, -1.5388417685876268`}, {-1.3090169943749475`, \
-0.9510565162951535, 1.5388417685876268`}, {
0.8090169943749475, -0.2628655560595668, -2.0645728807067605`}, \
{-1.618033988749895, 0, 1.5388417685876268`}, {0.5,
0.6881909602355868, -2.0645728807067605`}, {
0, -2.2270327288232132`, 0.16245984811645317`}, {
0.5, -2.0645728807067605`, -0.6881909602355868}, {-1.3090169943749475`,
1.8017073246471935`, 0.16245984811645317`}, {-0.8090169943749475,
1.9641671727636467`, -0.6881909602355868}, {0.8090169943749475,
0.2628655560595668, 2.0645728807067605`}, {2.118033988749895,
0.6881909602355868, -0.16245984811645317`}, {0.5, -1.5388417685876268`,
1.5388417685876268`}, {
1.8090169943749475`, -1.1135163644116066`, -0.6881909602355868}, {-0.5,
1.5388417685876268`, 1.5388417685876268`}, {0.8090169943749475,
1.9641671727636467`, -0.6881909602355868}, {
1.3090169943749475`, -0.9510565162951535, 1.5388417685876268`}, {
2.118033988749895, -0.6881909602355868, 0.16245984811645317`}, {0.5,
1.5388417685876268`, 1.5388417685876268`}, {1.3090169943749475`,
1.8017073246471935`, 0.16245984811645317`}, {
1.618033988749895, 0, 1.5388417685876268`}, {2.118033988749895,
0.16245984811645317`, 0.6881909602355868}, {1.3090169943749475`,
0.9510565162951535, 1.5388417685876268`}, {1.8090169943749475`,
1.1135163644116066`, 0.6881909602355868}, {
1.618033988749895, -1.3763819204711736`, 0.6881909602355868}, {
0.5, -0.6881909602355868, 2.0645728807067605`}, {
2.118033988749895, -0.16245984811645317`, -0.6881909602355868}, {
0, 0.85065080835204, 2.0645728807067605`}, {1.618033988749895,
1.3763819204711736`, -0.6881909602355868}, {0.5, 2.0645728807067605`,
0.6881909602355868}, {-0.8090169943749475, -1.9641671727636467`,
0.6881909602355868}, {
0.5, -1.5388417685876268`, -1.5388417685876268`}, {-1.8090169943749475`,
1.1135163644116066`, 0.6881909602355868}, {-0.5,
1.5388417685876268`, -1.5388417685876268`}, {-1.3090169943749477`, \
-1.8017073246471935`, -0.16245984811645317`}, {-0.5, -1.5388417685876268`, \
-1.5388417685876268`}, {-2.118033988749895,
0.6881909602355868, -0.16245984811645317`}, {-1.3090169943749475`,
0.9510565162951535, -1.5388417685876268`}, {-1.8090169943749475`, \
-1.1135163644116066`, -0.6881909602355868}, {-1.3090169943749475`, \
-0.9510565162951535, -1.5388417685876268`}, {-2.118033988749895, \
-0.16245984811645317`, -0.6881909602355868}, {-1.618033988749895,
0, -1.5388417685876268`}, {-0.5, -2.0645728807067605`, \
-0.6881909602355868}, {-1.618033988749895, -1.3763819204711736`,
0.6881909602355868}, {
0, -0.85065080835204, -2.0645728807067605`}, {-2.118033988749895,
0.16245984811645317`, 0.6881909602355868}, {-0.5,
0.6881909602355868, -2.0645728807067605`}, {-1.618033988749895,
1.3763819204711736`, -0.6881909602355868}, {-2.118033988749895, \
-0.6881909602355868,
0.16245984811645317`}, {-0.8090169943749475, -0.2628655560595668, \
-2.0645728807067605`}}],
Polygon3DBox[{{36, 23, 27}, {37, 28, 24}, {40, 8, 7}, {35, 5, 6}, {38, 29,
25}, {39, 26, 30}, {10, 14, 2}, {9, 1, 13}, {12, 4, 16}, {11, 15, 3}, {
54, 45, 41}, {55, 42, 46}, {58, 19, 20}, {53, 18, 17}, {56, 43, 47}, {
57, 48, 44}, {34, 32, 22}, {33, 21, 31}, {59, 51, 49}, {60, 50, 52}, {
27, 31, 21, 36}, {23, 36, 1, 9}, {10, 2, 37, 24}, {37, 22, 32, 28}, {8,
40, 30, 26}, {25, 29, 40, 7}, {35, 27, 23, 5}, {6, 24, 28, 35}, {3, 38,
25, 11}, {21, 33, 29, 38}, {39, 30, 34, 22}, {12, 26, 39, 4}, {55, 14,
10, 42}, {41, 9, 13, 54}, {57, 44, 12, 16}, {15, 11, 43, 56}, {45, 54,
59, 49}, {50, 60, 55, 46}, {48, 58, 20, 44}, {43, 19, 58, 47}, {53, 17,
41, 45}, {46, 42, 18, 53}, {59, 56, 47, 51}, {52, 48, 57, 60}, {31, 32,
34, 33}, {17, 18, 6, 5}, {1, 3, 15, 13}, {14, 16, 4, 2}, {7, 8, 20,
19}, {51, 52, 50, 49}, {3, 1, 36, 21, 38}, {22, 37, 2, 4, 39}, {29, 33,
34, 30, 40}, {27, 35, 28, 32, 31}, {42, 10, 24, 6, 18}, {41, 17, 5, 23,
9}, {20, 8, 26, 12, 44}, {11, 25, 7, 19, 43}, {56, 59, 54, 13, 15}, {57,
16, 14, 55, 60}, {58, 48, 52, 51, 47}, {49, 50, 46, 53, 45}}]]},
ImageSize->{360., 360.},
ImageSizeRaw->Automatic,
ViewAngle->0.4498282413629834,
ViewPoint->{0.7416110621006939, -1.4546851869393191`, 2.963765179542604},
ViewVertical->{-0.40121829933116565`, 0.20659763943388362`,
0.8923795670353251}]], "Output",
CellLabel->"Out[13]=",ExpressionUUID->"bac7a8f4-665e-46ed-a94c-5da0dcef0c26"]
}, Open ]],
Cell[BoxData[
RowBox[{
RowBox[{"toppentagon", "=",
RowBox[{"{",
RowBox[{"36", ",", "21", ",", "38", ",", "3", ",", "1"}], "}"}]}],
";"}]], "Input",
CellLabel->"In[22]:=",ExpressionUUID->"90e3e1a6-f282-4fd0-b7b8-abfd44df2b88"],
Cell[BoxData[
RowBox[{
RowBox[{"topcupola", "=",
RowBox[{"{",
RowBox[{
"23", ",", "27", ",", "31", ",", "33", ",", "29", ",", "25", ",", "11",
",", "15", ",", "13", ",", "9"}], "}"}]}], ";"}]], "Input",
CellLabel->"In[14]:=",ExpressionUUID->"984a3148-86cb-424d-b4cd-8c3ca3e1e779"],
Cell[BoxData[
RowBox[{
RowBox[{"v", "=",
RowBox[{"PolyhedronData", "[",
RowBox[{
"\"\\"", ",", "\"\\""}],
"]"}]}], ";"}]], "Input",
CellLabel->"In[15]:=",ExpressionUUID->"a126ab63-1a3f-40bc-9c13-3e887e0f7b5a"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Graphics3D", "[",
RowBox[{"{", "\[IndentingNewLine]",
RowBox[{
RowBox[{"MapIndexed", "[",
RowBox[{
RowBox[{
RowBox[{"Text", "[",
RowBox[{
RowBox[{"#2", "[",
RowBox[{"[", "1", "]"}], "]"}], ",", "#", ",",
RowBox[{"Background", "\[Rule]", "White"}]}], "]"}], "&"}], ",",
RowBox[{"PolyhedronData", "[",
RowBox[{
"\"\\"", ",",
"\"\\""}], "]"}]}], "]"}], ",",
"\[IndentingNewLine]",
RowBox[{"PolyhedronData", "[",
RowBox[{
"\"\\"", ",", "\"\\""}],
"]"}], ",", "Thick", ",",
RowBox[{"Line", "[",
RowBox[{"v", "[",
RowBox[{"[",
RowBox[{"Append", "[",
RowBox[{"topcupola", ",",
RowBox[{"topcupola", "[",
RowBox[{"[", "1", "]"}], "]"}]}], "]"}], "]"}], "]"}], "]"}]}],
"}"}], "]"}]], "Input",
CellLabel->"In[21]:=",ExpressionUUID->"e893c03b-e1f8-46ac-88dc-903e43dd6819"],
Cell[BoxData[
Graphics3DBox[{{Text3DBox[
FormBox["1", StandardForm],
NCache[{Rational[-1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], (
Rational[9, 4] + Rational[9, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {-0.5, -0.6881909602355868, 2.0645728807067605`}],
Background->GrayLevel[1]], Text3DBox[
FormBox["2", StandardForm],
NCache[{Rational[1, 2] (1 + 5^Rational[1, 2]), 0,
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
1.618033988749895, 0, -1.5388417685876268`}],
Background->GrayLevel[1]], Text3DBox[
FormBox["3", StandardForm],
NCache[{Rational[1, 4] (-1 - 5^Rational[1, 2]),
Rational[1, 4] (2 - 2 5^Rational[-1, 2])^Rational[1, 2], (
Rational[9, 4] + Rational[9, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {-0.8090169943749475, 0.2628655560595668,
2.0645728807067605`}],
Background->GrayLevel[1]], Text3DBox[
FormBox["4", StandardForm],
NCache[{Rational[1, 4] (3 + 5^Rational[1, 2]),
Rational[1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
1.3090169943749475`, 0.9510565162951535, -1.5388417685876268`}],
Background->GrayLevel[1]], Text3DBox[
FormBox["5", StandardForm],
NCache[{Rational[1, 4] (1 + 5^Rational[1, 2]),
Rational[-1, 4] (34 + 62 5^Rational[-1, 2])^Rational[1, 2], (
Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {
0.8090169943749475, -1.9641671727636467`, 0.6881909602355868}],
Background->GrayLevel[1]], Text3DBox[
FormBox["6", StandardForm],
NCache[{Rational[1, 4] (3 + 5^Rational[1, 2]),
Rational[-1, 4] (26 + 58 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, {
1.3090169943749475`, -1.8017073246471935`, -0.16245984811645317`}],
Background->GrayLevel[1]], Text3DBox[
FormBox["7", StandardForm],
NCache[{Rational[-1, 2], (Rational[9, 4] +
Rational[9, 2] 5^Rational[-1, 2])^
Rational[1, 2], (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {-0.5, 2.0645728807067605`, 0.6881909602355868}],
Background->GrayLevel[1]], Text3DBox[
FormBox["8", StandardForm],
NCache[{0, (Rational[5, 2] + Rational[11, 2] 5^Rational[-1, 2])^
Rational[1, 2],
Rational[-1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, {
0, 2.2270327288232132`, -0.16245984811645317`}],
Background->GrayLevel[1]], Text3DBox[
FormBox["9", StandardForm],
NCache[{Rational[-1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^
Rational[1, 2]}, {-0.5, -1.5388417685876268`, 1.5388417685876268`}],
Background->GrayLevel[1]], Text3DBox[
FormBox["10", StandardForm],
NCache[{Rational[1, 4] (3 + 5^Rational[1, 2]),
Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
1.3090169943749475`, -0.9510565162951535, -1.5388417685876268`}],
Background->GrayLevel[1]], Text3DBox[
FormBox["11", StandardForm],
NCache[{Rational[1, 4] (-3 - 5^Rational[1, 2]),
Rational[1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^
Rational[1, 2]}, {-1.3090169943749475`, 0.9510565162951535,
1.5388417685876268`}],
Background->GrayLevel[1]], Text3DBox[
FormBox["12", StandardForm],
NCache[{Rational[1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {0.5,
1.5388417685876268`, -1.5388417685876268`}],
Background->GrayLevel[1]], Text3DBox[
FormBox["13", StandardForm],
NCache[{Rational[1, 4] (-3 - 5^Rational[1, 2]),
Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^
Rational[1, 2]}, {-1.3090169943749475`, -0.9510565162951535,
1.5388417685876268`}],
Background->GrayLevel[1]], Text3DBox[
FormBox["14", StandardForm],
NCache[{Rational[1, 4] (1 + 5^Rational[1, 2]),
Rational[-1, 4] (2 - 2 5^Rational[-1, 2])^Rational[1, 2],
Rational[-3, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
0.8090169943749475, -0.2628655560595668, -2.0645728807067605`}],
Background->GrayLevel[1]], Text3DBox[
FormBox["15", StandardForm],
NCache[{Rational[1, 2] (-1 - 5^Rational[1, 2]), 0,
Rational[1, 2] (5 + 2 5^Rational[1, 2])^
Rational[1, 2]}, {-1.618033988749895, 0, 1.5388417685876268`}],
Background->GrayLevel[1]], Text3DBox[
FormBox["16", StandardForm],
NCache[{Rational[
1, 2], (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2],
Rational[-3, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {0.5,
0.6881909602355868, -2.0645728807067605`}],
Background->GrayLevel[1]], Text3DBox[
FormBox["17", StandardForm],
NCache[{0, Root[1 - 25 #^2 + 5 #^4& , 1, 0],
Rational[1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, {
0, -2.2270327288232132`, 0.16245984811645317`}],
Background->GrayLevel[1]], Text3DBox[
FormBox["18", StandardForm],
NCache[{Rational[1, 2],
Rational[-3, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
0.5, -2.0645728807067605`, -0.6881909602355868}],
Background->GrayLevel[1]], Text3DBox[
FormBox["19", StandardForm],
NCache[{Rational[1, 4] (-3 - 5^Rational[1, 2]), (Rational[13, 8] +
Rational[29, 8] 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 2] (1 - 2 5^Rational[-1, 2])^
Rational[1, 2]}, {-1.3090169943749475`, 1.8017073246471935`,
0.16245984811645317`}],
Background->GrayLevel[1]], Text3DBox[
FormBox["20", StandardForm],
NCache[{Rational[1, 4] (-1 - 5^Rational[1, 2]), (Rational[17, 8] +
Rational[31, 8] 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^
Rational[1, 2]}, {-0.8090169943749475,
1.9641671727636467`, -0.6881909602355868}],
Background->GrayLevel[1]], Text3DBox[
FormBox["21", StandardForm],
NCache[{Rational[1, 4] (1 + 5^Rational[1, 2]), Root[
1 - 20 #^2 + 80 #^4& , 3, 0], (Rational[9, 4] +
Rational[9, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {
0.8090169943749475, 0.2628655560595668, 2.0645728807067605`}],
Background->GrayLevel[1]], Text3DBox[
FormBox["22", StandardForm],
NCache[{Rational[1, 2] (2 + 5^Rational[1, 2]), (Rational[1, 4] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, {
2.118033988749895, 0.6881909602355868, -0.16245984811645317`}],
Background->GrayLevel[1]], Text3DBox[
FormBox["23", StandardForm],
NCache[{Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
0.5, -1.5388417685876268`, 1.5388417685876268`}],
Background->GrayLevel[1]], Text3DBox[
FormBox["24", StandardForm],
NCache[{Rational[1, 4] (5 + 5^Rational[1, 2]), Root[
1 - 100 #^2 + 80 #^4& , 1, 0],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
1.8090169943749475`, -1.1135163644116066`, -0.6881909602355868}],
Background->GrayLevel[1]], Text3DBox[
FormBox["25", StandardForm],
NCache[{Rational[-1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {-0.5,
1.5388417685876268`, 1.5388417685876268`}],
Background->GrayLevel[1]], Text3DBox[
FormBox["26", StandardForm],
NCache[{Rational[1, 4] (1 + 5^Rational[1, 2]), (Rational[17, 8] +
Rational[31, 8] 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
0.8090169943749475, 1.9641671727636467`, -0.6881909602355868}],
Background->GrayLevel[1]], Text3DBox[
FormBox["27", StandardForm],
NCache[{Rational[1, 4] (3 + 5^Rational[1, 2]),
Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
1.3090169943749475`, -0.9510565162951535, 1.5388417685876268`}],
Background->GrayLevel[1]], Text3DBox[
FormBox["28", StandardForm],
NCache[{Rational[1, 2] (2 + 5^Rational[1, 2]),
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, {
2.118033988749895, -0.6881909602355868, 0.16245984811645317`}],
Background->GrayLevel[1]], Text3DBox[
FormBox["29", StandardForm],
NCache[{Rational[1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {0.5,
1.5388417685876268`, 1.5388417685876268`}],
Background->GrayLevel[1]], Text3DBox[
FormBox["30", StandardForm],
NCache[{Rational[1, 4] (3 + 5^Rational[1, 2]), (Rational[13, 8] +
Rational[29, 8] 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, {
1.3090169943749475`, 1.8017073246471935`, 0.16245984811645317`}],
Background->GrayLevel[1]], Text3DBox[
FormBox["31", StandardForm],
NCache[{Rational[1, 2] (1 + 5^Rational[1, 2]), 0,
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
1.618033988749895, 0, 1.5388417685876268`}],
Background->GrayLevel[1]], Text3DBox[
FormBox["32", StandardForm],
NCache[{Rational[1, 2] (2 + 5^Rational[1, 2]),
Rational[1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2], (
Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {
2.118033988749895, 0.16245984811645317`, 0.6881909602355868}],
Background->GrayLevel[1]], Text3DBox[
FormBox["33", StandardForm],
NCache[{Rational[1, 4] (3 + 5^Rational[1, 2]),
Rational[1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
1.3090169943749475`, 0.9510565162951535, 1.5388417685876268`}],
Background->GrayLevel[1]], Text3DBox[
FormBox["34", StandardForm],
NCache[{Rational[1, 4] (5 + 5^Rational[1, 2]), (Rational[5, 8] +
Rational[11, 8] 5^Rational[-1, 2])^
Rational[1, 2], (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {1.8090169943749475`, 1.1135163644116066`,
0.6881909602355868}],
Background->GrayLevel[1]], Text3DBox[
FormBox["35", StandardForm],
NCache[{Rational[1, 2] (1 +
5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^Rational[1, 2], (
Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {
1.618033988749895, -1.3763819204711736`, 0.6881909602355868}],
Background->GrayLevel[1]], Text3DBox[
FormBox["36", StandardForm],
NCache[{Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], (
Rational[9, 4] + Rational[9, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {
0.5, -0.6881909602355868, 2.0645728807067605`}],
Background->GrayLevel[1]], Text3DBox[
FormBox["37", StandardForm],
NCache[{Rational[1, 2] (2 + 5^Rational[1, 2]),
Rational[-1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
2.118033988749895, -0.16245984811645317`, -0.6881909602355868}],
Background->GrayLevel[1]], Text3DBox[
FormBox["38", StandardForm],
NCache[{0, (Rational[1, 10] (5 + 5^Rational[1, 2]))^
Rational[1, 2], (Rational[9, 4] + Rational[9, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {0, 0.85065080835204, 2.0645728807067605`}],
Background->GrayLevel[1]], Text3DBox[
FormBox["39", StandardForm],
NCache[{Rational[1, 2] (1 + 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^
Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
1.618033988749895, 1.3763819204711736`, -0.6881909602355868}],
Background->GrayLevel[1]], Text3DBox[
FormBox["40", StandardForm],
NCache[{Rational[
1, 2], (Rational[9, 4] + Rational[9, 2] 5^Rational[-1, 2])^
Rational[1, 2], (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {0.5, 2.0645728807067605`, 0.6881909602355868}],
Background->GrayLevel[1]], Text3DBox[
FormBox["41", StandardForm],
NCache[{Rational[1, 4] (-1 - 5^
Rational[1, 2]), -(Rational[17, 8] +
Rational[31, 8] 5^Rational[-1, 2])^Rational[1, 2], (Rational[1, 4] +
Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {-0.8090169943749475, -1.9641671727636467`,
0.6881909602355868}],
Background->GrayLevel[1]], Text3DBox[
FormBox["42", StandardForm],
NCache[{Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
0.5, -1.5388417685876268`, -1.5388417685876268`}],
Background->GrayLevel[1]], Text3DBox[
FormBox["43", StandardForm],
NCache[{Rational[1, 4] (-5 - 5^Rational[1, 2]), (Rational[5, 8] +
Rational[11, 8] 5^Rational[-1, 2])^
Rational[1, 2], (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {-1.8090169943749475`, 1.1135163644116066`,
0.6881909602355868}],
Background->GrayLevel[1]], Text3DBox[
FormBox["44", StandardForm],
NCache[{Rational[-1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {-0.5,
1.5388417685876268`, -1.5388417685876268`}],
Background->GrayLevel[1]], Text3DBox[
FormBox["45", StandardForm],
NCache[{(-3 + 5^Rational[1, 2])^(-1), Root[1 - 260 #^2 + 80 #^4& , 1, 0],
Rational[-1, 2] (1 - 2 5^Rational[-1, 2])^
Rational[
1, 2]}, {-1.3090169943749477`, -1.8017073246471935`, \
-0.16245984811645317`}],
Background->GrayLevel[1]], Text3DBox[
FormBox["46", StandardForm],
NCache[{Rational[-1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^
Rational[1, 2]}, {-0.5, -1.5388417685876268`, -1.5388417685876268`}],
Background->GrayLevel[1]], Text3DBox[
FormBox["47", StandardForm],
NCache[{-1 +
Rational[-1, 2] 5^Rational[1, 2], (Rational[1, 4] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 - 2 5^Rational[-1, 2])^
Rational[1, 2]}, {-2.118033988749895,
0.6881909602355868, -0.16245984811645317`}],
Background->GrayLevel[1]], Text3DBox[
FormBox["48", StandardForm],
NCache[{Rational[1, 4] (-3 - 5^Rational[1, 2]),
Rational[1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^
Rational[1, 2]}, {-1.3090169943749475`,
0.9510565162951535, -1.5388417685876268`}],
Background->GrayLevel[1]], Text3DBox[
FormBox["49", StandardForm],
NCache[{Rational[1, 4] (-5 - 5^Rational[1, 2]),
Rational[-1, 4] (10 + 22 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^
Rational[
1, 2]}, {-1.8090169943749475`, -1.1135163644116066`, \
-0.6881909602355868}],
Background->GrayLevel[1]], Text3DBox[
FormBox["50", StandardForm],
NCache[{Rational[1, 4] (-3 - 5^Rational[1, 2]),
Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^
Rational[
1, 2]}, {-1.3090169943749475`, -0.9510565162951535, \
-1.5388417685876268`}],
Background->GrayLevel[1]], Text3DBox[
FormBox["51", StandardForm],
NCache[{-1 + Rational[-1, 2] 5^Rational[1, 2],
Rational[-1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^
Rational[
1, 2]}, {-2.118033988749895, -0.16245984811645317`, \
-0.6881909602355868}],
Background->GrayLevel[1]], Text3DBox[
FormBox["52", StandardForm],
NCache[{Rational[1, 2] (-1 - 5^Rational[1, 2]), 0,
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^
Rational[1, 2]}, {-1.618033988749895, 0, -1.5388417685876268`}],
Background->GrayLevel[1]], Text3DBox[
FormBox["53", StandardForm],
NCache[{Rational[-1, 2],
Rational[-3, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^
Rational[1, 2]}, {-0.5, -2.0645728807067605`, -0.6881909602355868}],
Background->GrayLevel[1]], Text3DBox[
FormBox["54", StandardForm],
NCache[{Rational[1, 2] (-1 - 5^
Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^Rational[1, 2], (
Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {-1.618033988749895, -1.3763819204711736`,
0.6881909602355868}],
Background->GrayLevel[1]], Text3DBox[
FormBox["55", StandardForm],
NCache[{0, Root[1 - 5 #^2 + 5 #^4& , 1, 0],
Rational[-3, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
0, -0.85065080835204, -2.0645728807067605`}],
Background->GrayLevel[1]], Text3DBox[
FormBox["56", StandardForm],
NCache[{-1 + Rational[-1, 2] 5^Rational[1, 2],
Rational[1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2], (
Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {-2.118033988749895, 0.16245984811645317`,
0.6881909602355868}],
Background->GrayLevel[1]], Text3DBox[
FormBox["57", StandardForm],
NCache[{Rational[-1, 2], (Rational[1, 4] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2],
Rational[-3, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {-0.5,
0.6881909602355868, -2.0645728807067605`}],
Background->GrayLevel[1]], Text3DBox[
FormBox["58", StandardForm],
NCache[{Rational[1, 2] (-1 - 5^Rational[1, 2]), (1 +
2 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^
Rational[1, 2]}, {-1.618033988749895,
1.3763819204711736`, -0.6881909602355868}],
Background->GrayLevel[1]], Text3DBox[
FormBox["59", StandardForm],
NCache[{-1 + Rational[-1, 2] 5^Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 2] (1 - 2 5^Rational[-1, 2])^
Rational[1, 2]}, {-2.118033988749895, -0.6881909602355868,
0.16245984811645317`}],
Background->GrayLevel[1]], Text3DBox[
FormBox["60", StandardForm],
NCache[{Rational[1, 4] (-1 - 5^Rational[1, 2]),
Rational[-1, 4] (2 - 2 5^Rational[-1, 2])^Rational[1, 2],
Rational[-3, 2] (1 + 2 5^Rational[-1, 2])^
Rational[
1, 2]}, {-0.8090169943749475, -0.2628655560595668, \
-2.0645728807067605`}],
Background->GrayLevel[1]]},
GraphicsComplex3DBox[
NCache[{{Rational[-1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], (
Rational[9, 4] + Rational[9, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2] (1 + 5^Rational[1, 2]), 0,
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (-1 - 5^Rational[1, 2]),
Rational[1, 4] (2 - 2 5^Rational[-1, 2])^Rational[1, 2], (
Rational[9, 4] + Rational[9, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 4] (3 + 5^Rational[1, 2]),
Rational[1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (1 + 5^Rational[1, 2]),
Rational[-1, 4] (34 + 62 5^Rational[-1, 2])^Rational[1, 2], (
Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 4] (3 + 5^Rational[1, 2]),
Rational[-1, 4] (26 + 58 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[-1, 2], (Rational[9, 4] + Rational[9, 2] 5^Rational[-1, 2])^
Rational[1, 2], (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {
0, (Rational[5, 2] + Rational[11, 2] 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[-1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (3 + 5^Rational[1, 2]),
Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (-3 - 5^Rational[1, 2]),
Rational[1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 2], Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (-3 - 5^Rational[1, 2]),
Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (1 + 5^Rational[1, 2]),
Rational[-1, 4] (2 - 2 5^Rational[-1, 2])^Rational[1, 2],
Rational[-3, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2] (-1 - 5^Rational[1, 2]), 0,
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 2], (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2],
Rational[-3, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
0, Root[1 - 25 #^2 + 5 #^4& , 1, 0],
Rational[1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2],
Rational[-3, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 4] (-3 - 5^Rational[1, 2]), (Rational[13, 8] +
Rational[29, 8] 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 4] (-1 - 5^Rational[1, 2]), (Rational[17, 8] +
Rational[31, 8] 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 4] (1 + 5^Rational[1, 2]), Root[
1 - 20 #^2 + 80 #^4& , 3, 0], (Rational[9, 4] +
Rational[9, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2] (2 + 5^Rational[1, 2]), (Rational[1, 4] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2], Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (5 + 5^Rational[1, 2]), Root[
1 - 100 #^2 + 80 #^4& , 1, 0],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[-1, 2], Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (1 + 5^Rational[1, 2]), (Rational[17, 8] +
Rational[31, 8] 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 4] (3 + 5^Rational[1, 2]),
Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 2] (2 + 5^Rational[1, 2]),
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2], Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (3 + 5^Rational[1, 2]), (Rational[13, 8] +
Rational[29, 8] 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2] (1 + 5^Rational[1, 2]), 0,
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 2] (2 + 5^Rational[1, 2]),
Rational[1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2], (
Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 4] (3 + 5^Rational[1, 2]),
Rational[1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (5 + 5^Rational[1, 2]), (Rational[5, 8] +
Rational[11, 8] 5^Rational[-1, 2])^
Rational[1, 2], (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {
Rational[1, 2] (1 + 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^
Rational[1, 2], (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {
Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], (
Rational[9, 4] + Rational[9, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2] (2 + 5^Rational[1, 2]),
Rational[-1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
0, (Rational[1, 10] (5 + 5^Rational[1, 2]))^
Rational[1, 2], (Rational[9, 4] + Rational[9, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {
Rational[1, 2] (1 + 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^
Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2], (Rational[9, 4] + Rational[9, 2] 5^Rational[-1, 2])^
Rational[1, 2], (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {
Rational[1, 4] (-1 - 5^
Rational[1, 2]), -(Rational[17, 8] +
Rational[31, 8] 5^Rational[-1, 2])^Rational[1, 2], (Rational[1, 4] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2], Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (-5 - 5^Rational[1, 2]), (Rational[5, 8] +
Rational[11, 8] 5^Rational[-1, 2])^
Rational[1, 2], (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {
Rational[-1, 2], Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {(-3 +
5^Rational[1, 2])^(-1), Root[1 - 260 #^2 + 80 #^4& , 1, 0],
Rational[-1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[-1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {-1 +
Rational[-1, 2] 5^Rational[1, 2], (Rational[1, 4] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 4] (-3 - 5^Rational[1, 2]),
Rational[1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (-5 - 5^Rational[1, 2]),
Rational[-1, 4] (10 + 22 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 4] (-3 - 5^Rational[1, 2]),
Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {-1 +
Rational[-1, 2] 5^Rational[1, 2],
Rational[-1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2] (-1 - 5^Rational[1, 2]), 0,
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[-1, 2],
Rational[-3, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2] (-1 - 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^
Rational[1, 2], (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {
0, Root[1 - 5 #^2 + 5 #^4& , 1, 0],
Rational[-3, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {-1 +
Rational[-1, 2] 5^Rational[1, 2],
Rational[1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2], (
Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[-1, 2], (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2],
Rational[-3, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2] (-1 - 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^
Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {-1 +
Rational[-1, 2] 5^Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 4] (-1 - 5^Rational[1, 2]),
Rational[-1, 4] (2 - 2 5^Rational[-1, 2])^Rational[1, 2],
Rational[-3, 2] (1 + 2 5^Rational[-1, 2])^
Rational[1, 2]}}, {{-0.5, -0.6881909602355868, 2.0645728807067605`}, {
1.618033988749895, 0, -1.5388417685876268`}, {-0.8090169943749475,
0.2628655560595668, 2.0645728807067605`}, {1.3090169943749475`,
0.9510565162951535, -1.5388417685876268`}, {
0.8090169943749475, -1.9641671727636467`, 0.6881909602355868}, {
1.3090169943749475`, -1.8017073246471935`, -0.16245984811645317`}, \
{-0.5, 2.0645728807067605`, 0.6881909602355868}, {
0, 2.2270327288232132`, -0.16245984811645317`}, {-0.5, \
-1.5388417685876268`, 1.5388417685876268`}, {
1.3090169943749475`, -0.9510565162951535, -1.5388417685876268`}, \
{-1.3090169943749475`, 0.9510565162951535, 1.5388417685876268`}, {0.5,
1.5388417685876268`, -1.5388417685876268`}, {-1.3090169943749475`, \
-0.9510565162951535, 1.5388417685876268`}, {
0.8090169943749475, -0.2628655560595668, -2.0645728807067605`}, \
{-1.618033988749895, 0, 1.5388417685876268`}, {0.5,
0.6881909602355868, -2.0645728807067605`}, {
0, -2.2270327288232132`, 0.16245984811645317`}, {
0.5, -2.0645728807067605`, -0.6881909602355868}, {-1.3090169943749475`,
1.8017073246471935`, 0.16245984811645317`}, {-0.8090169943749475,
1.9641671727636467`, -0.6881909602355868}, {0.8090169943749475,
0.2628655560595668, 2.0645728807067605`}, {2.118033988749895,
0.6881909602355868, -0.16245984811645317`}, {0.5, -1.5388417685876268`,
1.5388417685876268`}, {
1.8090169943749475`, -1.1135163644116066`, -0.6881909602355868}, {-0.5,
1.5388417685876268`, 1.5388417685876268`}, {0.8090169943749475,
1.9641671727636467`, -0.6881909602355868}, {
1.3090169943749475`, -0.9510565162951535, 1.5388417685876268`}, {
2.118033988749895, -0.6881909602355868, 0.16245984811645317`}, {0.5,
1.5388417685876268`, 1.5388417685876268`}, {1.3090169943749475`,
1.8017073246471935`, 0.16245984811645317`}, {
1.618033988749895, 0, 1.5388417685876268`}, {2.118033988749895,
0.16245984811645317`, 0.6881909602355868}, {1.3090169943749475`,
0.9510565162951535, 1.5388417685876268`}, {1.8090169943749475`,
1.1135163644116066`, 0.6881909602355868}, {
1.618033988749895, -1.3763819204711736`, 0.6881909602355868}, {
0.5, -0.6881909602355868, 2.0645728807067605`}, {
2.118033988749895, -0.16245984811645317`, -0.6881909602355868}, {
0, 0.85065080835204, 2.0645728807067605`}, {1.618033988749895,
1.3763819204711736`, -0.6881909602355868}, {0.5, 2.0645728807067605`,
0.6881909602355868}, {-0.8090169943749475, -1.9641671727636467`,
0.6881909602355868}, {
0.5, -1.5388417685876268`, -1.5388417685876268`}, {-1.8090169943749475`,
1.1135163644116066`, 0.6881909602355868}, {-0.5,
1.5388417685876268`, -1.5388417685876268`}, {-1.3090169943749477`, \
-1.8017073246471935`, -0.16245984811645317`}, {-0.5, -1.5388417685876268`, \
-1.5388417685876268`}, {-2.118033988749895,
0.6881909602355868, -0.16245984811645317`}, {-1.3090169943749475`,
0.9510565162951535, -1.5388417685876268`}, {-1.8090169943749475`, \
-1.1135163644116066`, -0.6881909602355868}, {-1.3090169943749475`, \
-0.9510565162951535, -1.5388417685876268`}, {-2.118033988749895, \
-0.16245984811645317`, -0.6881909602355868}, {-1.618033988749895,
0, -1.5388417685876268`}, {-0.5, -2.0645728807067605`, \
-0.6881909602355868}, {-1.618033988749895, -1.3763819204711736`,
0.6881909602355868}, {
0, -0.85065080835204, -2.0645728807067605`}, {-2.118033988749895,
0.16245984811645317`, 0.6881909602355868}, {-0.5,
0.6881909602355868, -2.0645728807067605`}, {-1.618033988749895,
1.3763819204711736`, -0.6881909602355868}, {-2.118033988749895, \
-0.6881909602355868,
0.16245984811645317`}, {-0.8090169943749475, -0.2628655560595668, \
-2.0645728807067605`}}],
Polygon3DBox[{{36, 23, 27}, {37, 28, 24}, {40, 8, 7}, {35, 5, 6}, {38, 29,
25}, {39, 26, 30}, {10, 14, 2}, {9, 1, 13}, {12, 4, 16}, {11, 15, 3}, {
54, 45, 41}, {55, 42, 46}, {58, 19, 20}, {53, 18, 17}, {56, 43, 47}, {
57, 48, 44}, {34, 32, 22}, {33, 21, 31}, {59, 51, 49}, {60, 50, 52}, {
27, 31, 21, 36}, {23, 36, 1, 9}, {10, 2, 37, 24}, {37, 22, 32, 28}, {8,
40, 30, 26}, {25, 29, 40, 7}, {35, 27, 23, 5}, {6, 24, 28, 35}, {3, 38,
25, 11}, {21, 33, 29, 38}, {39, 30, 34, 22}, {12, 26, 39, 4}, {55, 14,
10, 42}, {41, 9, 13, 54}, {57, 44, 12, 16}, {15, 11, 43, 56}, {45, 54,
59, 49}, {50, 60, 55, 46}, {48, 58, 20, 44}, {43, 19, 58, 47}, {53, 17,
41, 45}, {46, 42, 18, 53}, {59, 56, 47, 51}, {52, 48, 57, 60}, {31, 32,
34, 33}, {17, 18, 6, 5}, {1, 3, 15, 13}, {14, 16, 4, 2}, {7, 8, 20,
19}, {51, 52, 50, 49}, {3, 1, 36, 21, 38}, {22, 37, 2, 4, 39}, {29, 33,
34, 30, 40}, {27, 35, 28, 32, 31}, {42, 10, 24, 6, 18}, {41, 17, 5, 23,
9}, {20, 8, 26, 12, 44}, {11, 25, 7, 19, 43}, {56, 59, 54, 13, 15}, {57,
16, 14, 55, 60}, {58, 48, 52, 51, 47}, {49, 50, 46, 53, 45}}]],
{Thickness[Large],
Line3DBox[
NCache[{{Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (3 + 5^Rational[1, 2]),
Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 2] (1 + 5^Rational[1, 2]), 0,
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (3 + 5^Rational[1, 2]),
Rational[1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 2], Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[-1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (-3 - 5^Rational[1, 2]),
Rational[1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 2] (-1 - 5^Rational[1, 2]), 0,
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (-3 - 5^Rational[1, 2]),
Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[-1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}}, {{
0.5, -1.5388417685876268`, 1.5388417685876268`}, {
1.3090169943749475`, -0.9510565162951535, 1.5388417685876268`}, {
1.618033988749895, 0, 1.5388417685876268`}, {1.3090169943749475`,
0.9510565162951535, 1.5388417685876268`}, {0.5, 1.5388417685876268`,
1.5388417685876268`}, {-0.5, 1.5388417685876268`,
1.5388417685876268`}, {-1.3090169943749475`, 0.9510565162951535,
1.5388417685876268`}, {-1.618033988749895, 0,
1.5388417685876268`}, {-1.3090169943749475`, -0.9510565162951535,
1.5388417685876268`}, {-0.5, -1.5388417685876268`,
1.5388417685876268`}, {0.5, -1.5388417685876268`,
1.5388417685876268`}}]]}},
ImageSize->{360., 360.},
ImageSizeRaw->Automatic,
ViewAngle->0.4498282413629834,
ViewPoint->{0.9135654915288646, -0.5493428204159999, 3.2114826106247274`},
ViewVertical->{-0.2953053701775563, 0.4987230403191351,
0.8149049437812578}]], "Output",
GeneratedCell->False,
CellAutoOverwrite->
False,ExpressionUUID->"2090e652-95cc-48c8-8a1c-f357077f6d47"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"v2", "=",
RowBox[{
RowBox[{"ReplacePart", "[",
RowBox[{"v", ",",
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{"#", "\[Rule]",
RowBox[{"(",
RowBox[{
RowBox[{"RotationMatrix", "[",
RowBox[{
RowBox[{"\[Pi]", "/", "5"}], ",",
RowBox[{"{",
RowBox[{"0", ",", "0", ",", "1"}], "}"}]}], "]"}], ".",
RowBox[{"v", "[",
RowBox[{"[", "#", "]"}], "]"}]}], ")"}]}], ")"}], "&"}], "/@",
"toppentagon"}]}], "]"}], "//", "FullSimplify"}]}]], "Input",
CellLabel->"In[34]:=",ExpressionUUID->"6fadebaf-2796-44a0-af79-23a42b500c84"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"0", ",",
InterpretationBox[
TemplateBox[{"Root",
TemplateBox[{"\"-0.851\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{
RowBox[{"1", "-",
RowBox[{"5", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"5", " ",
SuperscriptBox["#1", "4"]}]}], "&"}], ",", "1"}], "]"}],
Short[#, 7]& ], -0.8506508083520399},
"NumericalApproximation"],
Root[1 - 5 #^2 + 5 #^4& , 1, 0]], ",",
SqrtBox[
RowBox[{
FractionBox["9", "4"], "+",
FractionBox["9",
RowBox[{"2", " ",
SqrtBox["5"]}]]}]]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{"(",
RowBox[{"1", "+",
SqrtBox["5"]}], ")"}]}], ",", "0", ",",
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], " ",
SqrtBox[
RowBox[{"5", "+",
RowBox[{"2", " ",
SqrtBox["5"]}]}]]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
FractionBox["1", "4"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "-",
SqrtBox["5"]}], ")"}]}], ",",
InterpretationBox[
TemplateBox[{"Root",
TemplateBox[{"\"-0.263\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{
RowBox[{"1", "-",
RowBox[{"20", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"80", " ",
SuperscriptBox["#1", "4"]}]}], "&"}], ",", "2"}], "]"}],
Short[#, 7]& ], -0.2628655560595668},
"NumericalApproximation"],
Root[1 - 20 #^2 + 80 #^4& , 2, 0]], ",",
SqrtBox[
RowBox[{
FractionBox["9", "4"], "+",
FractionBox["9",
RowBox[{"2", " ",
SqrtBox["5"]}]]}]]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
FractionBox["1", "4"], " ",
RowBox[{"(",
RowBox[{"3", "+",
SqrtBox["5"]}], ")"}]}], ",",
RowBox[{
FractionBox["1", "2"], " ",
SqrtBox[
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{"(",
RowBox[{"5", "+",
SqrtBox["5"]}], ")"}]}]]}], ",",
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], " ",
SqrtBox[
RowBox[{"5", "+",
RowBox[{"2", " ",
SqrtBox["5"]}]}]]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
FractionBox["1", "4"], " ",
RowBox[{"(",
RowBox[{"1", "+",
SqrtBox["5"]}], ")"}]}], ",",
RowBox[{
RowBox[{"-",
FractionBox["1", "4"]}], " ",
SqrtBox[
RowBox[{"34", "+",
FractionBox["62",
SqrtBox["5"]]}]]}], ",",
SqrtBox[
RowBox[{
FractionBox["1", "4"], "+",
FractionBox["1",
RowBox[{"2", " ",
SqrtBox["5"]}]]}]]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
FractionBox["1", "4"], " ",
RowBox[{"(",
RowBox[{"3", "+",
SqrtBox["5"]}], ")"}]}], ",",
RowBox[{
RowBox[{"-",
FractionBox["1", "4"]}], " ",
SqrtBox[
RowBox[{"26", "+",
FractionBox["58",
SqrtBox["5"]]}]]}], ",",
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], " ",
SqrtBox[
RowBox[{"1", "-",
FractionBox["2",
SqrtBox["5"]]}]]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], ",",
SqrtBox[
RowBox[{
FractionBox["9", "4"], "+",
FractionBox["9",
RowBox[{"2", " ",
SqrtBox["5"]}]]}]], ",",
SqrtBox[
RowBox[{
FractionBox["1", "4"], "+",
FractionBox["1",
RowBox[{"2", " ",
SqrtBox["5"]}]]}]]}], "}"}], ",",
RowBox[{"{",
RowBox[{"0", ",",
SqrtBox[
RowBox[{
FractionBox["5", "2"], "+",
FractionBox["11",
RowBox[{"2", " ",
SqrtBox["5"]}]]}]], ",",
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], " ",
SqrtBox[
RowBox[{"1", "-",
FractionBox["2",
SqrtBox["5"]]}]]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], ",",
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], " ",
SqrtBox[
RowBox[{"5", "+",
RowBox[{"2", " ",
SqrtBox["5"]}]}]]}], ",",
RowBox[{
FractionBox["1", "2"], " ",
SqrtBox[
RowBox[{"5", "+",
RowBox[{"2", " ",
SqrtBox["5"]}]}]]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
FractionBox["1", "4"], " ",
RowBox[{"(",
RowBox[{"3", "+",
SqrtBox["5"]}], ")"}]}], ",",
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], " ",
SqrtBox[
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{"(",
RowBox[{"5", "+",
SqrtBox["5"]}], ")"}]}]]}], ",",
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], " ",
SqrtBox[
RowBox[{"5", "+",
RowBox[{"2", " ",
SqrtBox["5"]}]}]]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
FractionBox["1", "4"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "3"}], "-",
SqrtBox["5"]}], ")"}]}], ",",
RowBox[{
FractionBox["1", "2"], " ",
SqrtBox[
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{"(",
RowBox[{"5", "+",
SqrtBox["5"]}], ")"}]}]]}], ",",
RowBox[{
FractionBox["1", "2"], " ",
SqrtBox[
RowBox[{"5", "+",
RowBox[{"2", " ",
SqrtBox["5"]}]}]]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
FractionBox["1", "2"], ",",
RowBox[{
FractionBox["1", "2"], " ",
SqrtBox[
RowBox[{"5", "+",
RowBox[{"2", " ",
SqrtBox["5"]}]}]]}], ",",
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], " ",
SqrtBox[
RowBox[{"5", "+",
RowBox[{"2", " ",
SqrtBox["5"]}]}]]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
FractionBox["1", "4"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "3"}], "-",
SqrtBox["5"]}], ")"}]}], ",",
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], " ",
SqrtBox[
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{"(",
RowBox[{"5", "+",
SqrtBox["5"]}], ")"}]}]]}], ",",
RowBox[{
FractionBox["1", "2"], " ",
SqrtBox[
RowBox[{"5", "+",
RowBox[{"2", " ",
SqrtBox["5"]}]}]]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
FractionBox["1", "4"], " ",
RowBox[{"(",
RowBox[{"1", "+",
SqrtBox["5"]}], ")"}]}], ",",
RowBox[{
RowBox[{"-",
FractionBox["1", "4"]}], " ",
SqrtBox[
RowBox[{"2", "-",
FractionBox["2",
SqrtBox["5"]]}]]}], ",",
RowBox[{
RowBox[{"-",
FractionBox["3", "2"]}], " ",
SqrtBox[
RowBox[{"1", "+",
FractionBox["2",
SqrtBox["5"]]}]]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "-",
SqrtBox["5"]}], ")"}]}], ",", "0", ",",
RowBox[{
FractionBox["1", "2"], " ",
SqrtBox[
RowBox[{"5", "+",
RowBox[{"2", " ",
SqrtBox["5"]}]}]]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
FractionBox["1", "2"], ",",
SqrtBox[
RowBox[{
FractionBox["1", "4"], "+",
FractionBox["1",
RowBox[{"2", " ",
SqrtBox["5"]}]]}]], ",",
RowBox[{
RowBox[{"-",
FractionBox["3", "2"]}], " ",
SqrtBox[
RowBox[{"1", "+",
FractionBox["2",
SqrtBox["5"]]}]]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"0", ",",
InterpretationBox[
TemplateBox[{"Root",
TemplateBox[{"\"-2.23\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{
RowBox[{"1", "-",
RowBox[{"25", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"5", " ",
SuperscriptBox["#1", "4"]}]}], "&"}], ",", "1"}], "]"}],
Short[#, 7]& ], -2.2270327288232137`},
"NumericalApproximation"],
Root[1 - 25 #^2 + 5 #^4& , 1, 0]], ",",
RowBox[{
FractionBox["1", "2"], " ",
SqrtBox[
RowBox[{"1", "-",
FractionBox["2",
SqrtBox["5"]]}]]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
FractionBox["1", "2"], ",",
RowBox[{
RowBox[{"-",
FractionBox["3", "2"]}], " ",
SqrtBox[
RowBox[{"1", "+",
FractionBox["2",
SqrtBox["5"]]}]]}], ",",
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], " ",
SqrtBox[
RowBox[{"1", "+",
FractionBox["2",
SqrtBox["5"]]}]]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
FractionBox["1", "4"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "3"}], "-",
SqrtBox["5"]}], ")"}]}], ",",
SqrtBox[
RowBox[{
FractionBox["13", "8"], "+",
FractionBox["29",
RowBox[{"8", " ",
SqrtBox["5"]}]]}]], ",",
RowBox[{
FractionBox["1", "2"], " ",
SqrtBox[
RowBox[{"1", "-",
FractionBox["2",
SqrtBox["5"]]}]]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
FractionBox["1", "4"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "-",
SqrtBox["5"]}], ")"}]}], ",",
SqrtBox[
RowBox[{
FractionBox["17", "8"], "+",
FractionBox["31",
RowBox[{"8", " ",
SqrtBox["5"]}]]}]], ",",
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], " ",
SqrtBox[
RowBox[{"1", "+",
FractionBox["2",
SqrtBox["5"]]}]]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
FractionBox["1", "2"], ",",
SqrtBox[
RowBox[{
FractionBox["1", "4"], "+",
FractionBox["1",
RowBox[{"2", " ",
SqrtBox["5"]}]]}]], ",",
SqrtBox[
RowBox[{
FractionBox["9", "4"], "+",
FractionBox["9",
RowBox[{"2", " ",
SqrtBox["5"]}]]}]]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{"(",
RowBox[{"2", "+",
SqrtBox["5"]}], ")"}]}], ",",
SqrtBox[
RowBox[{
FractionBox["1", "4"], "+",
FractionBox["1",
RowBox[{"2", " ",
SqrtBox["5"]}]]}]], ",",
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], " ",
SqrtBox[
RowBox[{"1", "-",
FractionBox["2",
SqrtBox["5"]]}]]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
FractionBox["1", "2"], ",",
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], " ",
SqrtBox[
RowBox[{"5", "+",
RowBox[{"2", " ",
SqrtBox["5"]}]}]]}], ",",
RowBox[{
FractionBox["1", "2"], " ",
SqrtBox[
RowBox[{"5", "+",
RowBox[{"2", " ",
SqrtBox["5"]}]}]]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
FractionBox["1", "4"], " ",
RowBox[{"(",
RowBox[{"5", "+",
SqrtBox["5"]}], ")"}]}], ",",
InterpretationBox[
TemplateBox[{"Root",
TemplateBox[{"\"-1.11\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{
RowBox[{"1", "-",
RowBox[{"100", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"80", " ",
SuperscriptBox["#1", "4"]}]}], "&"}], ",", "1"}], "]"}],
Short[#, 7]& ], -1.1135163644116068`},
"NumericalApproximation"],
Root[1 - 100 #^2 + 80 #^4& , 1, 0]], ",",
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], " ",
SqrtBox[
RowBox[{"1", "+",
FractionBox["2",
SqrtBox["5"]]}]]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], ",",
RowBox[{
FractionBox["1", "2"], " ",
SqrtBox[
RowBox[{"5", "+",
RowBox[{"2", " ",
SqrtBox["5"]}]}]]}], ",",
RowBox[{
FractionBox["1", "2"], " ",
SqrtBox[
RowBox[{"5", "+",
RowBox[{"2", " ",
SqrtBox["5"]}]}]]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
FractionBox["1", "4"], " ",
RowBox[{"(",
RowBox[{"1", "+",
SqrtBox["5"]}], ")"}]}], ",",
SqrtBox[
RowBox[{
FractionBox["17", "8"], "+",
FractionBox["31",
RowBox[{"8", " ",
SqrtBox["5"]}]]}]], ",",
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], " ",
SqrtBox[
RowBox[{"1", "+",
FractionBox["2",
SqrtBox["5"]]}]]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
FractionBox["1", "4"], " ",
RowBox[{"(",
RowBox[{"3", "+",
SqrtBox["5"]}], ")"}]}], ",",
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], " ",
SqrtBox[
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{"(",
RowBox[{"5", "+",
SqrtBox["5"]}], ")"}]}]]}], ",",
RowBox[{
FractionBox["1", "2"], " ",
SqrtBox[
RowBox[{"5", "+",
RowBox[{"2", " ",
SqrtBox["5"]}]}]]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{"(",
RowBox[{"2", "+",
SqrtBox["5"]}], ")"}]}], ",",
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], " ",
SqrtBox[
RowBox[{"1", "+",
FractionBox["2",
SqrtBox["5"]]}]]}], ",",
RowBox[{
FractionBox["1", "2"], " ",
SqrtBox[
RowBox[{"1", "-",
FractionBox["2",
SqrtBox["5"]]}]]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
FractionBox["1", "2"], ",",
RowBox[{
FractionBox["1", "2"], " ",
SqrtBox[
RowBox[{"5", "+",
RowBox[{"2", " ",
SqrtBox["5"]}]}]]}], ",",
RowBox[{
FractionBox["1", "2"], " ",
SqrtBox[
RowBox[{"5", "+",
RowBox[{"2", " ",
SqrtBox["5"]}]}]]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
FractionBox["1", "4"], " ",
RowBox[{"(",
RowBox[{"3", "+",
SqrtBox["5"]}], ")"}]}], ",",
SqrtBox[
RowBox[{
FractionBox["13", "8"], "+",
FractionBox["29",
RowBox[{"8", " ",
SqrtBox["5"]}]]}]], ",",
RowBox[{
FractionBox["1", "2"], " ",
SqrtBox[
RowBox[{"1", "-",
FractionBox["2",
SqrtBox["5"]]}]]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{"(",
RowBox[{"1", "+",
SqrtBox["5"]}], ")"}]}], ",", "0", ",",
RowBox[{
FractionBox["1", "2"], " ",
SqrtBox[
RowBox[{"5", "+",
RowBox[{"2", " ",
SqrtBox["5"]}]}]]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{"(",
RowBox[{"2", "+",
SqrtBox["5"]}], ")"}]}], ",",
RowBox[{
FractionBox["1", "2"], " ",
SqrtBox[
RowBox[{"1", "-",
FractionBox["2",
SqrtBox["5"]]}]]}], ",",
SqrtBox[
RowBox[{
FractionBox["1", "4"], "+",
FractionBox["1",
RowBox[{"2", " ",
SqrtBox["5"]}]]}]]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
FractionBox["1", "4"], " ",
RowBox[{"(",
RowBox[{"3", "+",
SqrtBox["5"]}], ")"}]}], ",",
RowBox[{
FractionBox["1", "2"], " ",
SqrtBox[
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{"(",
RowBox[{"5", "+",
SqrtBox["5"]}], ")"}]}]]}], ",",
RowBox[{
FractionBox["1", "2"], " ",
SqrtBox[
RowBox[{"5", "+",
RowBox[{"2", " ",
SqrtBox["5"]}]}]]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
FractionBox["1", "4"], " ",
RowBox[{"(",
RowBox[{"5", "+",
SqrtBox["5"]}], ")"}]}], ",",
SqrtBox[
RowBox[{
FractionBox["5", "8"], "+",
FractionBox["11",
RowBox[{"8", " ",
SqrtBox["5"]}]]}]], ",",
SqrtBox[
RowBox[{
FractionBox["1", "4"], "+",
FractionBox["1",
RowBox[{"2", " ",
SqrtBox["5"]}]]}]]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{"(",
RowBox[{"1", "+",
SqrtBox["5"]}], ")"}]}], ",",
RowBox[{"-",
SqrtBox[
RowBox[{"1", "+",
FractionBox["2",
SqrtBox["5"]]}]]}], ",",
SqrtBox[
RowBox[{
FractionBox["1", "4"], "+",
FractionBox["1",
RowBox[{"2", " ",
SqrtBox["5"]}]]}]]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
FractionBox["1", "4"], " ",
RowBox[{"(",
RowBox[{"1", "+",
SqrtBox["5"]}], ")"}]}], ",",
InterpretationBox[
TemplateBox[{"Root",
TemplateBox[{"\"-0.263\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{
RowBox[{"1", "-",
RowBox[{"20", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"80", " ",
SuperscriptBox["#1", "4"]}]}], "&"}], ",", "2"}], "]"}],
Short[#, 7]& ], -0.2628655560595668},
"NumericalApproximation"],
Root[1 - 20 #^2 + 80 #^4& , 2, 0]], ",",
SqrtBox[
RowBox[{
FractionBox["9", "4"], "+",
FractionBox["9",
RowBox[{"2", " ",
SqrtBox["5"]}]]}]]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{"(",
RowBox[{"2", "+",
SqrtBox["5"]}], ")"}]}], ",",
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], " ",
SqrtBox[
RowBox[{"1", "-",
FractionBox["2",
SqrtBox["5"]]}]]}], ",",
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], " ",
SqrtBox[
RowBox[{"1", "+",
FractionBox["2",
SqrtBox["5"]]}]]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], ",",
SqrtBox[
RowBox[{
FractionBox["1", "4"], "+",
FractionBox["1",
RowBox[{"2", " ",
SqrtBox["5"]}]]}]], ",",
SqrtBox[
RowBox[{
FractionBox["9", "4"], "+",
FractionBox["9",
RowBox[{"2", " ",
SqrtBox["5"]}]]}]]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{"(",
RowBox[{"1", "+",
SqrtBox["5"]}], ")"}]}], ",",
SqrtBox[
RowBox[{"1", "+",
FractionBox["2",
SqrtBox["5"]]}]], ",",
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], " ",
SqrtBox[
RowBox[{"1", "+",
FractionBox["2",
SqrtBox["5"]]}]]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
FractionBox["1", "2"], ",",
SqrtBox[
RowBox[{
FractionBox["9", "4"], "+",
FractionBox["9",
RowBox[{"2", " ",
SqrtBox["5"]}]]}]], ",",
SqrtBox[
RowBox[{
FractionBox["1", "4"], "+",
FractionBox["1",
RowBox[{"2", " ",
SqrtBox["5"]}]]}]]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
FractionBox["1", "4"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "-",
SqrtBox["5"]}], ")"}]}], ",",
RowBox[{"-",
SqrtBox[
RowBox[{
FractionBox["17", "8"], "+",
FractionBox["31",
RowBox[{"8", " ",
SqrtBox["5"]}]]}]]}], ",",
SqrtBox[
RowBox[{
FractionBox["1", "4"], "+",
FractionBox["1",
RowBox[{"2", " ",
SqrtBox["5"]}]]}]]}], "}"}], ",",
RowBox[{"{",
RowBox[{
FractionBox["1", "2"], ",",
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], " ",
SqrtBox[
RowBox[{"5", "+",
RowBox[{"2", " ",
SqrtBox["5"]}]}]]}], ",",
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], " ",
SqrtBox[
RowBox[{"5", "+",
RowBox[{"2", " ",
SqrtBox["5"]}]}]]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
FractionBox["1", "4"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "5"}], "-",
SqrtBox["5"]}], ")"}]}], ",",
SqrtBox[
RowBox[{
FractionBox["5", "8"], "+",
FractionBox["11",
RowBox[{"8", " ",
SqrtBox["5"]}]]}]], ",",
SqrtBox[
RowBox[{
FractionBox["1", "4"], "+",
FractionBox["1",
RowBox[{"2", " ",
SqrtBox["5"]}]]}]]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], ",",
RowBox[{
FractionBox["1", "2"], " ",
SqrtBox[
RowBox[{"5", "+",
RowBox[{"2", " ",
SqrtBox["5"]}]}]]}], ",",
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], " ",
SqrtBox[
RowBox[{"5", "+",
RowBox[{"2", " ",
SqrtBox["5"]}]}]]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
FractionBox["1",
RowBox[{
RowBox[{"-", "3"}], "+",
SqrtBox["5"]}]], ",",
InterpretationBox[
TemplateBox[{"Root",
TemplateBox[{"\"-1.80\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{
RowBox[{"1", "-",
RowBox[{"260", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"80", " ",
SuperscriptBox["#1", "4"]}]}], "&"}], ",", "1"}], "]"}],
Short[#, 7]& ], -1.8017073246471935`},
"NumericalApproximation"],
Root[1 - 260 #^2 + 80 #^4& , 1, 0]], ",",
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], " ",
SqrtBox[
RowBox[{"1", "-",
FractionBox["2",
SqrtBox["5"]]}]]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], ",",
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], " ",
SqrtBox[
RowBox[{"5", "+",
RowBox[{"2", " ",
SqrtBox["5"]}]}]]}], ",",
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], " ",
SqrtBox[
RowBox[{"5", "+",
RowBox[{"2", " ",
SqrtBox["5"]}]}]]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"-", "1"}], "-",
FractionBox[
SqrtBox["5"], "2"]}], ",",
SqrtBox[
RowBox[{
FractionBox["1", "4"], "+",
FractionBox["1",
RowBox[{"2", " ",
SqrtBox["5"]}]]}]], ",",
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], " ",
SqrtBox[
RowBox[{"1", "-",
FractionBox["2",
SqrtBox["5"]]}]]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
FractionBox["1", "4"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "3"}], "-",
SqrtBox["5"]}], ")"}]}], ",",
RowBox[{
FractionBox["1", "2"], " ",
SqrtBox[
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{"(",
RowBox[{"5", "+",
SqrtBox["5"]}], ")"}]}]]}], ",",
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], " ",
SqrtBox[
RowBox[{"5", "+",
RowBox[{"2", " ",
SqrtBox["5"]}]}]]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
FractionBox["1", "4"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "5"}], "-",
SqrtBox["5"]}], ")"}]}], ",",
RowBox[{
RowBox[{"-",
FractionBox["1", "4"]}], " ",
SqrtBox[
RowBox[{"10", "+",
FractionBox["22",
SqrtBox["5"]]}]]}], ",",
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], " ",
SqrtBox[
RowBox[{"1", "+",
FractionBox["2",
SqrtBox["5"]]}]]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
FractionBox["1", "4"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "3"}], "-",
SqrtBox["5"]}], ")"}]}], ",",
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], " ",
SqrtBox[
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{"(",
RowBox[{"5", "+",
SqrtBox["5"]}], ")"}]}]]}], ",",
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], " ",
SqrtBox[
RowBox[{"5", "+",
RowBox[{"2", " ",
SqrtBox["5"]}]}]]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"-", "1"}], "-",
FractionBox[
SqrtBox["5"], "2"]}], ",",
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], " ",
SqrtBox[
RowBox[{"1", "-",
FractionBox["2",
SqrtBox["5"]]}]]}], ",",
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], " ",
SqrtBox[
RowBox[{"1", "+",
FractionBox["2",
SqrtBox["5"]]}]]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "-",
SqrtBox["5"]}], ")"}]}], ",", "0", ",",
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], " ",
SqrtBox[
RowBox[{"5", "+",
RowBox[{"2", " ",
SqrtBox["5"]}]}]]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], ",",
RowBox[{
RowBox[{"-",
FractionBox["3", "2"]}], " ",
SqrtBox[
RowBox[{"1", "+",
FractionBox["2",
SqrtBox["5"]]}]]}], ",",
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], " ",
SqrtBox[
RowBox[{"1", "+",
FractionBox["2",
SqrtBox["5"]]}]]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "-",
SqrtBox["5"]}], ")"}]}], ",",
RowBox[{"-",
SqrtBox[
RowBox[{"1", "+",
FractionBox["2",
SqrtBox["5"]]}]]}], ",",
SqrtBox[
RowBox[{
FractionBox["1", "4"], "+",
FractionBox["1",
RowBox[{"2", " ",
SqrtBox["5"]}]]}]]}], "}"}], ",",
RowBox[{"{",
RowBox[{"0", ",",
InterpretationBox[
TemplateBox[{"Root",
TemplateBox[{"\"-0.851\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{
RowBox[{"1", "-",
RowBox[{"5", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"5", " ",
SuperscriptBox["#1", "4"]}]}], "&"}], ",", "1"}], "]"}],
Short[#, 7]& ], -0.8506508083520399},
"NumericalApproximation"],
Root[1 - 5 #^2 + 5 #^4& , 1, 0]], ",",
RowBox[{
RowBox[{"-",
FractionBox["3", "2"]}], " ",
SqrtBox[
RowBox[{"1", "+",
FractionBox["2",
SqrtBox["5"]]}]]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"-", "1"}], "-",
FractionBox[
SqrtBox["5"], "2"]}], ",",
RowBox[{
FractionBox["1", "2"], " ",
SqrtBox[
RowBox[{"1", "-",
FractionBox["2",
SqrtBox["5"]]}]]}], ",",
SqrtBox[
RowBox[{
FractionBox["1", "4"], "+",
FractionBox["1",
RowBox[{"2", " ",
SqrtBox["5"]}]]}]]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], ",",
SqrtBox[
RowBox[{
FractionBox["1", "4"], "+",
FractionBox["1",
RowBox[{"2", " ",
SqrtBox["5"]}]]}]], ",",
RowBox[{
RowBox[{"-",
FractionBox["3", "2"]}], " ",
SqrtBox[
RowBox[{"1", "+",
FractionBox["2",
SqrtBox["5"]]}]]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "-",
SqrtBox["5"]}], ")"}]}], ",",
SqrtBox[
RowBox[{"1", "+",
FractionBox["2",
SqrtBox["5"]]}]], ",",
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], " ",
SqrtBox[
RowBox[{"1", "+",
FractionBox["2",
SqrtBox["5"]]}]]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"-", "1"}], "-",
FractionBox[
SqrtBox["5"], "2"]}], ",",
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], " ",
SqrtBox[
RowBox[{"1", "+",
FractionBox["2",
SqrtBox["5"]]}]]}], ",",
RowBox[{
FractionBox["1", "2"], " ",
SqrtBox[
RowBox[{"1", "-",
FractionBox["2",
SqrtBox["5"]]}]]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
FractionBox["1", "4"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "-",
SqrtBox["5"]}], ")"}]}], ",",
RowBox[{
RowBox[{"-",
FractionBox["1", "4"]}], " ",
SqrtBox[
RowBox[{"2", "-",
FractionBox["2",
SqrtBox["5"]]}]]}], ",",
RowBox[{
RowBox[{"-",
FractionBox["3", "2"]}], " ",
SqrtBox[
RowBox[{"1", "+",
FractionBox["2",
SqrtBox["5"]]}]]}]}], "}"}]}], "}"}]], "Output",
CellLabel->"Out[34]=",ExpressionUUID->"8fd6fe2d-6dd2-4cad-921b-8067bb6ca766"]
}, Open ]],
Cell[BoxData[
RowBox[{
RowBox[{"faceindices", "=",
RowBox[{"PolyhedronData", "[",
RowBox[{
"\"\\"", ",", "\"\\""}],
"]"}]}], ";"}]], "Input",
CellLabel->"In[42]:=",ExpressionUUID->"67fc4448-2979-4233-a36c-68072860f811"],
Cell[BoxData[
RowBox[{"oldf", "=",
RowBox[{"Select", "[",
RowBox[{"faceindices", ",",
RowBox[{
RowBox[{"!",
RowBox[{"(",
RowBox[{
RowBox[{
RowBox[{"Length", "[",
RowBox[{"Intersection", "[",
RowBox[{"#", ",", "topcupola"}], "]"}], "]"}], "\[Equal]", "2"}], "&&",
RowBox[{
RowBox[{"Length", "[",
RowBox[{"Intersection", "[",
RowBox[{"#", ",", "toppentagon"}], "]"}], "]"}], ">", "0"}]}],
")"}]}], "&"}]}], "]"}]}]], "Input",
CellLabel->"In[53]:=",ExpressionUUID->"e18a893b-0811-4f10-9390-621e92f25e0c"],
Cell[BoxData[
RowBox[{
RowBox[{"oldf", "=",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"37", ",", "28", ",", "24"}], "}"}], ",",
RowBox[{"{",
RowBox[{"40", ",", "8", ",", "7"}], "}"}], ",",
RowBox[{"{",
RowBox[{"35", ",", "5", ",", "6"}], "}"}], ",",
RowBox[{"{",
RowBox[{"39", ",", "26", ",", "30"}], "}"}], ",",
RowBox[{"{",
RowBox[{"10", ",", "14", ",", "2"}], "}"}], ",",
RowBox[{"{",
RowBox[{"12", ",", "4", ",", "16"}], "}"}], ",",
RowBox[{"{",
RowBox[{"54", ",", "45", ",", "41"}], "}"}], ",",
RowBox[{"{",
RowBox[{"55", ",", "42", ",", "46"}], "}"}], ",",
RowBox[{"{",
RowBox[{"58", ",", "19", ",", "20"}], "}"}], ",",
RowBox[{"{",
RowBox[{"53", ",", "18", ",", "17"}], "}"}], ",",
RowBox[{"{",
RowBox[{"56", ",", "43", ",", "47"}], "}"}], ",",
RowBox[{"{",
RowBox[{"57", ",", "48", ",", "44"}], "}"}], ",",
RowBox[{"{",
RowBox[{"34", ",", "32", ",", "22"}], "}"}], ",",
RowBox[{"{",
RowBox[{"59", ",", "51", ",", "49"}], "}"}], ",",
RowBox[{"{",
RowBox[{"60", ",", "50", ",", "52"}], "}"}], ",",
RowBox[{"{",
RowBox[{"10", ",", "2", ",", "37", ",", "24"}], "}"}], ",",
RowBox[{"{",
RowBox[{"37", ",", "22", ",", "32", ",", "28"}], "}"}], ",",
RowBox[{"{",
RowBox[{"8", ",", "40", ",", "30", ",", "26"}], "}"}], ",",
RowBox[{"{",
RowBox[{"25", ",", "29", ",", "40", ",", "7"}], "}"}], ",",
RowBox[{"{",
RowBox[{"35", ",", "27", ",", "23", ",", "5"}], "}"}], ",",
RowBox[{"{",
RowBox[{"6", ",", "24", ",", "28", ",", "35"}], "}"}], ",",
RowBox[{"{",
RowBox[{"39", ",", "30", ",", "34", ",", "22"}], "}"}], ",",
RowBox[{"{",
RowBox[{"12", ",", "26", ",", "39", ",", "4"}], "}"}], ",",
RowBox[{"{",
RowBox[{"55", ",", "14", ",", "10", ",", "42"}], "}"}], ",",
RowBox[{"{",
RowBox[{"41", ",", "9", ",", "13", ",", "54"}], "}"}], ",",
RowBox[{"{",
RowBox[{"57", ",", "44", ",", "12", ",", "16"}], "}"}], ",",
RowBox[{"{",
RowBox[{"15", ",", "11", ",", "43", ",", "56"}], "}"}], ",",
RowBox[{"{",
RowBox[{"45", ",", "54", ",", "59", ",", "49"}], "}"}], ",",
RowBox[{"{",
RowBox[{"50", ",", "60", ",", "55", ",", "46"}], "}"}], ",",
RowBox[{"{",
RowBox[{"48", ",", "58", ",", "20", ",", "44"}], "}"}], ",",
RowBox[{"{",
RowBox[{"43", ",", "19", ",", "58", ",", "47"}], "}"}], ",",
RowBox[{"{",
RowBox[{"53", ",", "17", ",", "41", ",", "45"}], "}"}], ",",
RowBox[{"{",
RowBox[{"46", ",", "42", ",", "18", ",", "53"}], "}"}], ",",
RowBox[{"{",
RowBox[{"59", ",", "56", ",", "47", ",", "51"}], "}"}], ",",
RowBox[{"{",
RowBox[{"52", ",", "48", ",", "57", ",", "60"}], "}"}], ",",
RowBox[{"{",
RowBox[{"31", ",", "32", ",", "34", ",", "33"}], "}"}], ",",
RowBox[{"{",
RowBox[{"17", ",", "18", ",", "6", ",", "5"}], "}"}], ",",
RowBox[{"{",
RowBox[{"14", ",", "16", ",", "4", ",", "2"}], "}"}], ",",
RowBox[{"{",
RowBox[{"7", ",", "8", ",", "20", ",", "19"}], "}"}], ",",
RowBox[{"{",
RowBox[{"51", ",", "52", ",", "50", ",", "49"}], "}"}], ",",
RowBox[{"{",
RowBox[{"3", ",", "1", ",", "36", ",", "21", ",", "38"}], "}"}], ",",
RowBox[{"{",
RowBox[{"22", ",", "37", ",", "2", ",", "4", ",", "39"}], "}"}], ",",
RowBox[{"{",
RowBox[{"29", ",", "33", ",", "34", ",", "30", ",", "40"}], "}"}], ",",
RowBox[{"{",
RowBox[{"27", ",", "35", ",", "28", ",", "32", ",", "31"}], "}"}], ",",
RowBox[{"{",
RowBox[{"42", ",", "10", ",", "24", ",", "6", ",", "18"}], "}"}], ",",
RowBox[{"{",
RowBox[{"41", ",", "17", ",", "5", ",", "23", ",", "9"}], "}"}], ",",
RowBox[{"{",
RowBox[{"20", ",", "8", ",", "26", ",", "12", ",", "44"}], "}"}], ",",
RowBox[{"{",
RowBox[{"11", ",", "25", ",", "7", ",", "19", ",", "43"}], "}"}], ",",
RowBox[{"{",
RowBox[{"56", ",", "59", ",", "54", ",", "13", ",", "15"}], "}"}], ",",
RowBox[{"{",
RowBox[{"57", ",", "16", ",", "14", ",", "55", ",", "60"}], "}"}], ",",
RowBox[{"{",
RowBox[{"58", ",", "48", ",", "52", ",", "51", ",", "47"}], "}"}], ",",
RowBox[{"{",
RowBox[{"49", ",", "50", ",", "46", ",", "53", ",", "45"}], "}"}]}],
"}"}]}], ";"}]], "Input",
CellLabel->"In[3]:=",ExpressionUUID->"68dcab2b-263e-47f9-8d00-e18a5b640ceb"],
Cell[BoxData[
RowBox[{"newf", "=",
RowBox[{
RowBox[{"Select", "[",
RowBox[{"faceindices", ",",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"Length", "[",
RowBox[{"Intersection", "[",
RowBox[{"#", ",", "topcupola"}], "]"}], "]"}], "\[Equal]", "2"}], "&&",
RowBox[{
RowBox[{"Length", "[",
RowBox[{"Intersection", "[",
RowBox[{"#", ",", "toppentagon"}], "]"}], "]"}], ">", "0"}]}],
"&"}]}], "]"}], "/.",
RowBox[{"Thread", "[",
RowBox[{"topcupola", "\[Rule]",
RowBox[{"RotateLeft", "[", "topcupola", "]"}]}], "]"}]}]}]], "Input",
CellLabel->"In[50]:=",ExpressionUUID->"d37e7203-d2fd-450d-9a49-a7af4a49a0e5"],
Cell[BoxData[
RowBox[{
RowBox[{"newf", "=",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"36", ",", "27", ",", "31"}], "}"}], ",",
RowBox[{"{",
RowBox[{"38", ",", "25", ",", "11"}], "}"}], ",",
RowBox[{"{",
RowBox[{"23", ",", "1", ",", "9"}], "}"}], ",",
RowBox[{"{",
RowBox[{"15", ",", "13", ",", "3"}], "}"}], ",",
RowBox[{"{",
RowBox[{"29", ",", "21", ",", "33"}], "}"}], ",",
RowBox[{"{",
RowBox[{"31", ",", "33", ",", "21", ",", "36"}], "}"}], ",",
RowBox[{"{",
RowBox[{"27", ",", "36", ",", "1", ",", "23"}], "}"}], ",",
RowBox[{"{",
RowBox[{"3", ",", "38", ",", "11", ",", "15"}], "}"}], ",",
RowBox[{"{",
RowBox[{"21", ",", "29", ",", "25", ",", "38"}], "}"}], ",",
RowBox[{"{",
RowBox[{"1", ",", "3", ",", "13", ",", "9"}], "}"}]}], "}"}]}],
";"}]], "Input",
CellLabel->"In[4]:=",ExpressionUUID->"7635641f-9785-4182-9853-c2be3dc8c71e"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"faceindices", "=",
RowBox[{"Join", "[",
RowBox[{"oldf", ",", "newf"}], "]"}]}]], "Input",
CellLabel->"In[5]:=",ExpressionUUID->"8c7275a4-a682-4e10-ad52-37b9b0dc3add"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"37", ",", "28", ",", "24"}], "}"}], ",",
RowBox[{"{",
RowBox[{"40", ",", "8", ",", "7"}], "}"}], ",",
RowBox[{"{",
RowBox[{"35", ",", "5", ",", "6"}], "}"}], ",",
RowBox[{"{",
RowBox[{"39", ",", "26", ",", "30"}], "}"}], ",",
RowBox[{"{",
RowBox[{"10", ",", "14", ",", "2"}], "}"}], ",",
RowBox[{"{",
RowBox[{"12", ",", "4", ",", "16"}], "}"}], ",",
RowBox[{"{",
RowBox[{"54", ",", "45", ",", "41"}], "}"}], ",",
RowBox[{"{",
RowBox[{"55", ",", "42", ",", "46"}], "}"}], ",",
RowBox[{"{",
RowBox[{"58", ",", "19", ",", "20"}], "}"}], ",",
RowBox[{"{",
RowBox[{"53", ",", "18", ",", "17"}], "}"}], ",",
RowBox[{"{",
RowBox[{"56", ",", "43", ",", "47"}], "}"}], ",",
RowBox[{"{",
RowBox[{"57", ",", "48", ",", "44"}], "}"}], ",",
RowBox[{"{",
RowBox[{"34", ",", "32", ",", "22"}], "}"}], ",",
RowBox[{"{",
RowBox[{"59", ",", "51", ",", "49"}], "}"}], ",",
RowBox[{"{",
RowBox[{"60", ",", "50", ",", "52"}], "}"}], ",",
RowBox[{"{",
RowBox[{"10", ",", "2", ",", "37", ",", "24"}], "}"}], ",",
RowBox[{"{",
RowBox[{"37", ",", "22", ",", "32", ",", "28"}], "}"}], ",",
RowBox[{"{",
RowBox[{"8", ",", "40", ",", "30", ",", "26"}], "}"}], ",",
RowBox[{"{",
RowBox[{"25", ",", "29", ",", "40", ",", "7"}], "}"}], ",",
RowBox[{"{",
RowBox[{"35", ",", "27", ",", "23", ",", "5"}], "}"}], ",",
RowBox[{"{",
RowBox[{"6", ",", "24", ",", "28", ",", "35"}], "}"}], ",",
RowBox[{"{",
RowBox[{"39", ",", "30", ",", "34", ",", "22"}], "}"}], ",",
RowBox[{"{",
RowBox[{"12", ",", "26", ",", "39", ",", "4"}], "}"}], ",",
RowBox[{"{",
RowBox[{"55", ",", "14", ",", "10", ",", "42"}], "}"}], ",",
RowBox[{"{",
RowBox[{"41", ",", "9", ",", "13", ",", "54"}], "}"}], ",",
RowBox[{"{",
RowBox[{"57", ",", "44", ",", "12", ",", "16"}], "}"}], ",",
RowBox[{"{",
RowBox[{"15", ",", "11", ",", "43", ",", "56"}], "}"}], ",",
RowBox[{"{",
RowBox[{"45", ",", "54", ",", "59", ",", "49"}], "}"}], ",",
RowBox[{"{",
RowBox[{"50", ",", "60", ",", "55", ",", "46"}], "}"}], ",",
RowBox[{"{",
RowBox[{"48", ",", "58", ",", "20", ",", "44"}], "}"}], ",",
RowBox[{"{",
RowBox[{"43", ",", "19", ",", "58", ",", "47"}], "}"}], ",",
RowBox[{"{",
RowBox[{"53", ",", "17", ",", "41", ",", "45"}], "}"}], ",",
RowBox[{"{",
RowBox[{"46", ",", "42", ",", "18", ",", "53"}], "}"}], ",",
RowBox[{"{",
RowBox[{"59", ",", "56", ",", "47", ",", "51"}], "}"}], ",",
RowBox[{"{",
RowBox[{"52", ",", "48", ",", "57", ",", "60"}], "}"}], ",",
RowBox[{"{",
RowBox[{"31", ",", "32", ",", "34", ",", "33"}], "}"}], ",",
RowBox[{"{",
RowBox[{"17", ",", "18", ",", "6", ",", "5"}], "}"}], ",",
RowBox[{"{",
RowBox[{"14", ",", "16", ",", "4", ",", "2"}], "}"}], ",",
RowBox[{"{",
RowBox[{"7", ",", "8", ",", "20", ",", "19"}], "}"}], ",",
RowBox[{"{",
RowBox[{"51", ",", "52", ",", "50", ",", "49"}], "}"}], ",",
RowBox[{"{",
RowBox[{"3", ",", "1", ",", "36", ",", "21", ",", "38"}], "}"}], ",",
RowBox[{"{",
RowBox[{"22", ",", "37", ",", "2", ",", "4", ",", "39"}], "}"}], ",",
RowBox[{"{",
RowBox[{"29", ",", "33", ",", "34", ",", "30", ",", "40"}], "}"}], ",",
RowBox[{"{",
RowBox[{"27", ",", "35", ",", "28", ",", "32", ",", "31"}], "}"}], ",",
RowBox[{"{",
RowBox[{"42", ",", "10", ",", "24", ",", "6", ",", "18"}], "}"}], ",",
RowBox[{"{",
RowBox[{"41", ",", "17", ",", "5", ",", "23", ",", "9"}], "}"}], ",",
RowBox[{"{",
RowBox[{"20", ",", "8", ",", "26", ",", "12", ",", "44"}], "}"}], ",",
RowBox[{"{",
RowBox[{"11", ",", "25", ",", "7", ",", "19", ",", "43"}], "}"}], ",",
RowBox[{"{",
RowBox[{"56", ",", "59", ",", "54", ",", "13", ",", "15"}], "}"}], ",",
RowBox[{"{",
RowBox[{"57", ",", "16", ",", "14", ",", "55", ",", "60"}], "}"}], ",",
RowBox[{"{",
RowBox[{"58", ",", "48", ",", "52", ",", "51", ",", "47"}], "}"}], ",",
RowBox[{"{",
RowBox[{"49", ",", "50", ",", "46", ",", "53", ",", "45"}], "}"}], ",",
RowBox[{"{",
RowBox[{"36", ",", "27", ",", "31"}], "}"}], ",",
RowBox[{"{",
RowBox[{"38", ",", "25", ",", "11"}], "}"}], ",",
RowBox[{"{",
RowBox[{"23", ",", "1", ",", "9"}], "}"}], ",",
RowBox[{"{",
RowBox[{"15", ",", "13", ",", "3"}], "}"}], ",",
RowBox[{"{",
RowBox[{"29", ",", "21", ",", "33"}], "}"}], ",",
RowBox[{"{",
RowBox[{"31", ",", "33", ",", "21", ",", "36"}], "}"}], ",",
RowBox[{"{",
RowBox[{"27", ",", "36", ",", "1", ",", "23"}], "}"}], ",",
RowBox[{"{",
RowBox[{"3", ",", "38", ",", "11", ",", "15"}], "}"}], ",",
RowBox[{"{",
RowBox[{"21", ",", "29", ",", "25", ",", "38"}], "}"}], ",",
RowBox[{"{",
RowBox[{"1", ",", "3", ",", "13", ",", "9"}], "}"}]}], "}"}]], "Output",
CellLabel->"Out[5]=",ExpressionUUID->"f1a1f4ba-2ef9-408f-affa-461b19b2b891"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Graphics3D", "[",
RowBox[{"p", "=",
RowBox[{"Polyhedron", "[",
RowBox[{"v2", ",", "faceindices"}], "]"}]}], "]"}]], "Input",ExpressionUUI\
D->"fc3db61f-fb28-403d-9cd0-36ebffd10b9b"],
Cell[BoxData[
Graphics3DBox[
TagBox[GraphicsComplex3DBox[
NCache[{{0, Root[
1 - 5 #^2 + 5 #^4& , 1, 0], (Rational[9, 4] +
Rational[9, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2] (1 + 5^Rational[1, 2]), 0,
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[
1 - 20 #^2 + 80 #^4& , 2, 0], (Rational[9, 4] +
Rational[9, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 4] (3 + 5^Rational[1, 2]),
Rational[1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (1 + 5^Rational[1, 2]),
Rational[-1, 4] (34 + 62 5^Rational[-1, 2])^Rational[1, 2], (
Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 4] (3 + 5^Rational[1, 2]),
Rational[-1, 4] (26 + 58 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[-1, 2], (Rational[9, 4] + Rational[9, 2] 5^Rational[-1, 2])^
Rational[1, 2], (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {
0, (Rational[5, 2] + Rational[11, 2] 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[-1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (3 + 5^Rational[1, 2]),
Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (-3 - 5^Rational[1, 2]),
Rational[1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 2], Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (-3 - 5^Rational[1, 2]),
Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (1 + 5^Rational[1, 2]),
Rational[-1, 4] (2 - 2 5^Rational[-1, 2])^Rational[1, 2],
Rational[-3, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2] (-1 - 5^Rational[1, 2]), 0,
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 2], (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2],
Rational[-3, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
0, Root[1 - 25 #^2 + 5 #^4& , 1, 0],
Rational[1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2],
Rational[-3, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 4] (-3 - 5^Rational[1, 2]), (Rational[13, 8] +
Rational[29, 8] 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 4] (-1 - 5^Rational[1, 2]), (Rational[17, 8] +
Rational[31, 8] 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2], (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2], (Rational[9, 4] + Rational[9, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {
Rational[1, 2] (2 + 5^Rational[1, 2]), (Rational[1, 4] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2], Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (5 + 5^Rational[1, 2]), Root[
1 - 100 #^2 + 80 #^4& , 1, 0],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[-1, 2], Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (1 + 5^Rational[1, 2]), (Rational[17, 8] +
Rational[31, 8] 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 4] (3 + 5^Rational[1, 2]),
Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 2] (2 + 5^Rational[1, 2]),
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2], Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (3 + 5^Rational[1, 2]), (Rational[13, 8] +
Rational[29, 8] 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2] (1 + 5^Rational[1, 2]), 0,
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 2] (2 + 5^Rational[1, 2]),
Rational[1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2], (
Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 4] (3 + 5^Rational[1, 2]),
Rational[1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (5 + 5^Rational[1, 2]), (Rational[5, 8] +
Rational[11, 8] 5^Rational[-1, 2])^
Rational[1, 2], (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {
Rational[1, 2] (1 + 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^
Rational[1, 2], (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {
Rational[1, 4] (1 + 5^Rational[1, 2]), Root[
1 - 20 #^2 + 80 #^4& , 2, 0], (Rational[9, 4] +
Rational[9, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2] (2 + 5^Rational[1, 2]),
Rational[-1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[-1, 2], (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2], (Rational[9, 4] + Rational[9, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {
Rational[1, 2] (1 + 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^
Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2], (Rational[9, 4] + Rational[9, 2] 5^Rational[-1, 2])^
Rational[1, 2], (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {
Rational[1, 4] (-1 - 5^
Rational[1, 2]), -(Rational[17, 8] +
Rational[31, 8] 5^Rational[-1, 2])^Rational[1, 2], (Rational[1, 4] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2], Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (-5 - 5^Rational[1, 2]), (Rational[5, 8] +
Rational[11, 8] 5^Rational[-1, 2])^
Rational[1, 2], (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {
Rational[-1, 2], Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {(-3 +
5^Rational[1, 2])^(-1), Root[1 - 260 #^2 + 80 #^4& , 1, 0],
Rational[-1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[-1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {-1 +
Rational[-1, 2] 5^Rational[1, 2], (Rational[1, 4] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 4] (-3 - 5^Rational[1, 2]),
Rational[1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (-5 - 5^Rational[1, 2]),
Rational[-1, 4] (10 + 22 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 4] (-3 - 5^Rational[1, 2]),
Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {-1 +
Rational[-1, 2] 5^Rational[1, 2],
Rational[-1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2] (-1 - 5^Rational[1, 2]), 0,
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[-1, 2],
Rational[-3, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2] (-1 - 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^
Rational[1, 2], (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {
0, Root[1 - 5 #^2 + 5 #^4& , 1, 0],
Rational[-3, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {-1 +
Rational[-1, 2] 5^Rational[1, 2],
Rational[1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2], (
Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[-1, 2], (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2],
Rational[-3, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2] (-1 - 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^
Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {-1 +
Rational[-1, 2] 5^Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 4] (-1 - 5^Rational[1, 2]),
Rational[-1, 4] (2 - 2 5^Rational[-1, 2])^Rational[1, 2],
Rational[-3, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}}, {{
0, -0.8506508083520399, 2.0645728807067605`}, {
1.618033988749895,
0, -1.5388417685876268`}, {-0.8090169943749475, -0.2628655560595668,
2.0645728807067605`}, {1.3090169943749475`,
0.9510565162951535, -1.5388417685876268`}, {
0.8090169943749475, -1.9641671727636467`, 0.6881909602355868}, {
1.3090169943749475`, -1.8017073246471935`, -0.16245984811645317`}, \
{-0.5, 2.0645728807067605`, 0.6881909602355868}, {
0, 2.2270327288232132`, -0.16245984811645317`}, {-0.5, \
-1.5388417685876268`, 1.5388417685876268`}, {
1.3090169943749475`, -0.9510565162951535, -1.5388417685876268`}, \
{-1.3090169943749475`, 0.9510565162951535, 1.5388417685876268`}, {0.5,
1.5388417685876268`, -1.5388417685876268`}, {-1.3090169943749475`, \
-0.9510565162951535, 1.5388417685876268`}, {
0.8090169943749475, -0.2628655560595668, -2.0645728807067605`}, \
{-1.618033988749895, 0, 1.5388417685876268`}, {0.5,
0.6881909602355868, -2.0645728807067605`}, {
0, -2.2270327288232137`, 0.16245984811645317`}, {
0.5, -2.0645728807067605`, -0.6881909602355868}, {-1.3090169943749475`,
1.8017073246471935`, 0.16245984811645317`}, {-0.8090169943749475,
1.9641671727636467`, -0.6881909602355868}, {0.5, 0.6881909602355868,
2.0645728807067605`}, {2.118033988749895,
0.6881909602355868, -0.16245984811645317`}, {0.5, -1.5388417685876268`,
1.5388417685876268`}, {
1.8090169943749475`, -1.1135163644116068`, -0.6881909602355868}, {-0.5,
1.5388417685876268`, 1.5388417685876268`}, {0.8090169943749475,
1.9641671727636467`, -0.6881909602355868}, {
1.3090169943749475`, -0.9510565162951535, 1.5388417685876268`}, {
2.118033988749895, -0.6881909602355868, 0.16245984811645317`}, {0.5,
1.5388417685876268`, 1.5388417685876268`}, {1.3090169943749475`,
1.8017073246471935`, 0.16245984811645317`}, {
1.618033988749895, 0, 1.5388417685876268`}, {2.118033988749895,
0.16245984811645317`, 0.6881909602355868}, {1.3090169943749475`,
0.9510565162951535, 1.5388417685876268`}, {1.8090169943749475`,
1.1135163644116066`, 0.6881909602355868}, {
1.618033988749895, -1.3763819204711736`, 0.6881909602355868}, {
0.8090169943749475, -0.2628655560595668, 2.0645728807067605`}, {
2.118033988749895, -0.16245984811645317`, -0.6881909602355868}, {-0.5,
0.6881909602355868, 2.0645728807067605`}, {1.618033988749895,
1.3763819204711736`, -0.6881909602355868}, {0.5, 2.0645728807067605`,
0.6881909602355868}, {-0.8090169943749475, -1.9641671727636467`,
0.6881909602355868}, {
0.5, -1.5388417685876268`, -1.5388417685876268`}, {-1.8090169943749475`,
1.1135163644116066`, 0.6881909602355868}, {-0.5,
1.5388417685876268`, -1.5388417685876268`}, {-1.3090169943749477`, \
-1.8017073246471935`, -0.16245984811645317`}, {-0.5, -1.5388417685876268`, \
-1.5388417685876268`}, {-2.118033988749895,
0.6881909602355868, -0.16245984811645317`}, {-1.3090169943749475`,
0.9510565162951535, -1.5388417685876268`}, {-1.8090169943749475`, \
-1.1135163644116066`, -0.6881909602355868}, {-1.3090169943749475`, \
-0.9510565162951535, -1.5388417685876268`}, {-2.118033988749895, \
-0.16245984811645317`, -0.6881909602355868}, {-1.618033988749895,
0, -1.5388417685876268`}, {-0.5, -2.0645728807067605`, \
-0.6881909602355868}, {-1.618033988749895, -1.3763819204711736`,
0.6881909602355868}, {
0, -0.8506508083520399, -2.0645728807067605`}, {-2.118033988749895,
0.16245984811645317`, 0.6881909602355868}, {-0.5,
0.6881909602355868, -2.0645728807067605`}, {-1.618033988749895,
1.3763819204711736`, -0.6881909602355868}, {-2.118033988749895, \
-0.6881909602355868,
0.16245984811645317`}, {-0.8090169943749475, -0.2628655560595668, \
-2.0645728807067605`}}],
Polygon3DBox[{{37, 28, 24}, {40, 8, 7}, {35, 5, 6}, {39, 26, 30}, {10, 14,
2}, {12, 4, 16}, {54, 45, 41}, {55, 42, 46}, {58, 19, 20}, {53, 18,
17}, {56, 43, 47}, {57, 48, 44}, {34, 32, 22}, {59, 51, 49}, {60, 50,
52}, {10, 2, 37, 24}, {37, 22, 32, 28}, {8, 40, 30, 26}, {25, 29, 40,
7}, {35, 27, 23, 5}, {6, 24, 28, 35}, {39, 30, 34, 22}, {12, 26, 39,
4}, {55, 14, 10, 42}, {41, 9, 13, 54}, {57, 44, 12, 16}, {15, 11, 43,
56}, {45, 54, 59, 49}, {50, 60, 55, 46}, {48, 58, 20, 44}, {43, 19, 58,
47}, {53, 17, 41, 45}, {46, 42, 18, 53}, {59, 56, 47, 51}, {52, 48, 57,
60}, {31, 32, 34, 33}, {17, 18, 6, 5}, {14, 16, 4, 2}, {7, 8, 20, 19}, {
51, 52, 50, 49}, {3, 1, 36, 21, 38}, {22, 37, 2, 4, 39}, {29, 33, 34,
30, 40}, {27, 35, 28, 32, 31}, {42, 10, 24, 6, 18}, {41, 17, 5, 23,
9}, {20, 8, 26, 12, 44}, {11, 25, 7, 19, 43}, {56, 59, 54, 13, 15}, {57,
16, 14, 55, 60}, {58, 48, 52, 51, 47}, {49, 50, 46, 53, 45}, {36, 27,
31}, {38, 25, 11}, {23, 1, 9}, {15, 13, 3}, {29, 21, 33}, {31, 33, 21,
36}, {27, 36, 1, 23}, {3, 38, 11, 15}, {21, 29, 25, 38}, {1, 3, 13,
9}}]],
"Polyhedron"],
ImageSize->{360., 360.},
ImageSizeRaw->Automatic,
ViewAngle->0.44982824136298344`,
ViewPoint->{1.0727034872167336`, -2.789306459325931, 1.5871599492413158`},
ViewVertical->{-0.01118666719526813, -0.14837263563268338`,
0.9888682518275493}]], "Output",
CellLabel->"Out[56]=",ExpressionUUID->"3bf6a9b6-cc3c-468c-91ac-6028b916ac49"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData["v2"], "Input",
CellLabel->"In[60]:=",ExpressionUUID->"a93ba50c-91d3-45fc-927c-06d0198c4c43"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"0", ",",
InterpretationBox[
TemplateBox[{"Root",
TemplateBox[{"\"-0.851\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{
RowBox[{"1", "-",
RowBox[{"5", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"5", " ",
SuperscriptBox["#1", "4"]}]}], "&"}], ",", "1"}], "]"}],
Short[#, 7]& ], -0.8506508083520399},
"NumericalApproximation"],
Root[1 - 5 #^2 + 5 #^4& , 1, 0]], ",",
SqrtBox[
RowBox[{
FractionBox["9", "4"], "+",
FractionBox["9",
RowBox[{"2", " ",
SqrtBox["5"]}]]}]]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{"(",
RowBox[{"1", "+",
SqrtBox["5"]}], ")"}]}], ",", "0", ",",
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], " ",
SqrtBox[
RowBox[{"5", "+",
RowBox[{"2", " ",
SqrtBox["5"]}]}]]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
FractionBox["1", "4"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "-",
SqrtBox["5"]}], ")"}]}], ",",
InterpretationBox[
TemplateBox[{"Root",
TemplateBox[{"\"-0.263\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{
RowBox[{"1", "-",
RowBox[{"20", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"80", " ",
SuperscriptBox["#1", "4"]}]}], "&"}], ",", "2"}], "]"}],
Short[#, 7]& ], -0.2628655560595668},
"NumericalApproximation"],
Root[1 - 20 #^2 + 80 #^4& , 2, 0]], ",",
SqrtBox[
RowBox[{
FractionBox["9", "4"], "+",
FractionBox["9",
RowBox[{"2", " ",
SqrtBox["5"]}]]}]]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
FractionBox["1", "4"], " ",
RowBox[{"(",
RowBox[{"3", "+",
SqrtBox["5"]}], ")"}]}], ",",
RowBox[{
FractionBox["1", "2"], " ",
SqrtBox[
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{"(",
RowBox[{"5", "+",
SqrtBox["5"]}], ")"}]}]]}], ",",
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], " ",
SqrtBox[
RowBox[{"5", "+",
RowBox[{"2", " ",
SqrtBox["5"]}]}]]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
FractionBox["1", "4"], " ",
RowBox[{"(",
RowBox[{"1", "+",
SqrtBox["5"]}], ")"}]}], ",",
RowBox[{
RowBox[{"-",
FractionBox["1", "4"]}], " ",
SqrtBox[
RowBox[{"34", "+",
FractionBox["62",
SqrtBox["5"]]}]]}], ",",
SqrtBox[
RowBox[{
FractionBox["1", "4"], "+",
FractionBox["1",
RowBox[{"2", " ",
SqrtBox["5"]}]]}]]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
FractionBox["1", "4"], " ",
RowBox[{"(",
RowBox[{"3", "+",
SqrtBox["5"]}], ")"}]}], ",",
RowBox[{
RowBox[{"-",
FractionBox["1", "4"]}], " ",
SqrtBox[
RowBox[{"26", "+",
FractionBox["58",
SqrtBox["5"]]}]]}], ",",
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], " ",
SqrtBox[
RowBox[{"1", "-",
FractionBox["2",
SqrtBox["5"]]}]]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], ",",
SqrtBox[
RowBox[{
FractionBox["9", "4"], "+",
FractionBox["9",
RowBox[{"2", " ",
SqrtBox["5"]}]]}]], ",",
SqrtBox[
RowBox[{
FractionBox["1", "4"], "+",
FractionBox["1",
RowBox[{"2", " ",
SqrtBox["5"]}]]}]]}], "}"}], ",",
RowBox[{"{",
RowBox[{"0", ",",
SqrtBox[
RowBox[{
FractionBox["5", "2"], "+",
FractionBox["11",
RowBox[{"2", " ",
SqrtBox["5"]}]]}]], ",",
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], " ",
SqrtBox[
RowBox[{"1", "-",
FractionBox["2",
SqrtBox["5"]]}]]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], ",",
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], " ",
SqrtBox[
RowBox[{"5", "+",
RowBox[{"2", " ",
SqrtBox["5"]}]}]]}], ",",
RowBox[{
FractionBox["1", "2"], " ",
SqrtBox[
RowBox[{"5", "+",
RowBox[{"2", " ",
SqrtBox["5"]}]}]]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
FractionBox["1", "4"], " ",
RowBox[{"(",
RowBox[{"3", "+",
SqrtBox["5"]}], ")"}]}], ",",
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], " ",
SqrtBox[
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{"(",
RowBox[{"5", "+",
SqrtBox["5"]}], ")"}]}]]}], ",",
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], " ",
SqrtBox[
RowBox[{"5", "+",
RowBox[{"2", " ",
SqrtBox["5"]}]}]]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
FractionBox["1", "4"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "3"}], "-",
SqrtBox["5"]}], ")"}]}], ",",
RowBox[{
FractionBox["1", "2"], " ",
SqrtBox[
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{"(",
RowBox[{"5", "+",
SqrtBox["5"]}], ")"}]}]]}], ",",
RowBox[{
FractionBox["1", "2"], " ",
SqrtBox[
RowBox[{"5", "+",
RowBox[{"2", " ",
SqrtBox["5"]}]}]]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
FractionBox["1", "2"], ",",
RowBox[{
FractionBox["1", "2"], " ",
SqrtBox[
RowBox[{"5", "+",
RowBox[{"2", " ",
SqrtBox["5"]}]}]]}], ",",
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], " ",
SqrtBox[
RowBox[{"5", "+",
RowBox[{"2", " ",
SqrtBox["5"]}]}]]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
FractionBox["1", "4"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "3"}], "-",
SqrtBox["5"]}], ")"}]}], ",",
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], " ",
SqrtBox[
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{"(",
RowBox[{"5", "+",
SqrtBox["5"]}], ")"}]}]]}], ",",
RowBox[{
FractionBox["1", "2"], " ",
SqrtBox[
RowBox[{"5", "+",
RowBox[{"2", " ",
SqrtBox["5"]}]}]]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
FractionBox["1", "4"], " ",
RowBox[{"(",
RowBox[{"1", "+",
SqrtBox["5"]}], ")"}]}], ",",
RowBox[{
RowBox[{"-",
FractionBox["1", "4"]}], " ",
SqrtBox[
RowBox[{"2", "-",
FractionBox["2",
SqrtBox["5"]]}]]}], ",",
RowBox[{
RowBox[{"-",
FractionBox["3", "2"]}], " ",
SqrtBox[
RowBox[{"1", "+",
FractionBox["2",
SqrtBox["5"]]}]]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "-",
SqrtBox["5"]}], ")"}]}], ",", "0", ",",
RowBox[{
FractionBox["1", "2"], " ",
SqrtBox[
RowBox[{"5", "+",
RowBox[{"2", " ",
SqrtBox["5"]}]}]]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
FractionBox["1", "2"], ",",
SqrtBox[
RowBox[{
FractionBox["1", "4"], "+",
FractionBox["1",
RowBox[{"2", " ",
SqrtBox["5"]}]]}]], ",",
RowBox[{
RowBox[{"-",
FractionBox["3", "2"]}], " ",
SqrtBox[
RowBox[{"1", "+",
FractionBox["2",
SqrtBox["5"]]}]]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"0", ",",
InterpretationBox[
TemplateBox[{"Root",
TemplateBox[{"\"-2.23\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{
RowBox[{"1", "-",
RowBox[{"25", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"5", " ",
SuperscriptBox["#1", "4"]}]}], "&"}], ",", "1"}], "]"}],
Short[#, 7]& ], -2.2270327288232137`},
"NumericalApproximation"],
Root[1 - 25 #^2 + 5 #^4& , 1, 0]], ",",
RowBox[{
FractionBox["1", "2"], " ",
SqrtBox[
RowBox[{"1", "-",
FractionBox["2",
SqrtBox["5"]]}]]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
FractionBox["1", "2"], ",",
RowBox[{
RowBox[{"-",
FractionBox["3", "2"]}], " ",
SqrtBox[
RowBox[{"1", "+",
FractionBox["2",
SqrtBox["5"]]}]]}], ",",
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], " ",
SqrtBox[
RowBox[{"1", "+",
FractionBox["2",
SqrtBox["5"]]}]]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
FractionBox["1", "4"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "3"}], "-",
SqrtBox["5"]}], ")"}]}], ",",
SqrtBox[
RowBox[{
FractionBox["13", "8"], "+",
FractionBox["29",
RowBox[{"8", " ",
SqrtBox["5"]}]]}]], ",",
RowBox[{
FractionBox["1", "2"], " ",
SqrtBox[
RowBox[{"1", "-",
FractionBox["2",
SqrtBox["5"]]}]]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
FractionBox["1", "4"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "-",
SqrtBox["5"]}], ")"}]}], ",",
SqrtBox[
RowBox[{
FractionBox["17", "8"], "+",
FractionBox["31",
RowBox[{"8", " ",
SqrtBox["5"]}]]}]], ",",
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], " ",
SqrtBox[
RowBox[{"1", "+",
FractionBox["2",
SqrtBox["5"]]}]]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
FractionBox["1", "2"], ",",
SqrtBox[
RowBox[{
FractionBox["1", "4"], "+",
FractionBox["1",
RowBox[{"2", " ",
SqrtBox["5"]}]]}]], ",",
SqrtBox[
RowBox[{
FractionBox["9", "4"], "+",
FractionBox["9",
RowBox[{"2", " ",
SqrtBox["5"]}]]}]]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{"(",
RowBox[{"2", "+",
SqrtBox["5"]}], ")"}]}], ",",
SqrtBox[
RowBox[{
FractionBox["1", "4"], "+",
FractionBox["1",
RowBox[{"2", " ",
SqrtBox["5"]}]]}]], ",",
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], " ",
SqrtBox[
RowBox[{"1", "-",
FractionBox["2",
SqrtBox["5"]]}]]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
FractionBox["1", "2"], ",",
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], " ",
SqrtBox[
RowBox[{"5", "+",
RowBox[{"2", " ",
SqrtBox["5"]}]}]]}], ",",
RowBox[{
FractionBox["1", "2"], " ",
SqrtBox[
RowBox[{"5", "+",
RowBox[{"2", " ",
SqrtBox["5"]}]}]]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
FractionBox["1", "4"], " ",
RowBox[{"(",
RowBox[{"5", "+",
SqrtBox["5"]}], ")"}]}], ",",
InterpretationBox[
TemplateBox[{"Root",
TemplateBox[{"\"-1.11\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{
RowBox[{"1", "-",
RowBox[{"100", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"80", " ",
SuperscriptBox["#1", "4"]}]}], "&"}], ",", "1"}], "]"}],
Short[#, 7]& ], -1.1135163644116068`},
"NumericalApproximation"],
Root[1 - 100 #^2 + 80 #^4& , 1, 0]], ",",
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], " ",
SqrtBox[
RowBox[{"1", "+",
FractionBox["2",
SqrtBox["5"]]}]]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], ",",
RowBox[{
FractionBox["1", "2"], " ",
SqrtBox[
RowBox[{"5", "+",
RowBox[{"2", " ",
SqrtBox["5"]}]}]]}], ",",
RowBox[{
FractionBox["1", "2"], " ",
SqrtBox[
RowBox[{"5", "+",
RowBox[{"2", " ",
SqrtBox["5"]}]}]]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
FractionBox["1", "4"], " ",
RowBox[{"(",
RowBox[{"1", "+",
SqrtBox["5"]}], ")"}]}], ",",
SqrtBox[
RowBox[{
FractionBox["17", "8"], "+",
FractionBox["31",
RowBox[{"8", " ",
SqrtBox["5"]}]]}]], ",",
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], " ",
SqrtBox[
RowBox[{"1", "+",
FractionBox["2",
SqrtBox["5"]]}]]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
FractionBox["1", "4"], " ",
RowBox[{"(",
RowBox[{"3", "+",
SqrtBox["5"]}], ")"}]}], ",",
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], " ",
SqrtBox[
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{"(",
RowBox[{"5", "+",
SqrtBox["5"]}], ")"}]}]]}], ",",
RowBox[{
FractionBox["1", "2"], " ",
SqrtBox[
RowBox[{"5", "+",
RowBox[{"2", " ",
SqrtBox["5"]}]}]]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{"(",
RowBox[{"2", "+",
SqrtBox["5"]}], ")"}]}], ",",
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], " ",
SqrtBox[
RowBox[{"1", "+",
FractionBox["2",
SqrtBox["5"]]}]]}], ",",
RowBox[{
FractionBox["1", "2"], " ",
SqrtBox[
RowBox[{"1", "-",
FractionBox["2",
SqrtBox["5"]]}]]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
FractionBox["1", "2"], ",",
RowBox[{
FractionBox["1", "2"], " ",
SqrtBox[
RowBox[{"5", "+",
RowBox[{"2", " ",
SqrtBox["5"]}]}]]}], ",",
RowBox[{
FractionBox["1", "2"], " ",
SqrtBox[
RowBox[{"5", "+",
RowBox[{"2", " ",
SqrtBox["5"]}]}]]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
FractionBox["1", "4"], " ",
RowBox[{"(",
RowBox[{"3", "+",
SqrtBox["5"]}], ")"}]}], ",",
SqrtBox[
RowBox[{
FractionBox["13", "8"], "+",
FractionBox["29",
RowBox[{"8", " ",
SqrtBox["5"]}]]}]], ",",
RowBox[{
FractionBox["1", "2"], " ",
SqrtBox[
RowBox[{"1", "-",
FractionBox["2",
SqrtBox["5"]]}]]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{"(",
RowBox[{"1", "+",
SqrtBox["5"]}], ")"}]}], ",", "0", ",",
RowBox[{
FractionBox["1", "2"], " ",
SqrtBox[
RowBox[{"5", "+",
RowBox[{"2", " ",
SqrtBox["5"]}]}]]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{"(",
RowBox[{"2", "+",
SqrtBox["5"]}], ")"}]}], ",",
RowBox[{
FractionBox["1", "2"], " ",
SqrtBox[
RowBox[{"1", "-",
FractionBox["2",
SqrtBox["5"]]}]]}], ",",
SqrtBox[
RowBox[{
FractionBox["1", "4"], "+",
FractionBox["1",
RowBox[{"2", " ",
SqrtBox["5"]}]]}]]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
FractionBox["1", "4"], " ",
RowBox[{"(",
RowBox[{"3", "+",
SqrtBox["5"]}], ")"}]}], ",",
RowBox[{
FractionBox["1", "2"], " ",
SqrtBox[
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{"(",
RowBox[{"5", "+",
SqrtBox["5"]}], ")"}]}]]}], ",",
RowBox[{
FractionBox["1", "2"], " ",
SqrtBox[
RowBox[{"5", "+",
RowBox[{"2", " ",
SqrtBox["5"]}]}]]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
FractionBox["1", "4"], " ",
RowBox[{"(",
RowBox[{"5", "+",
SqrtBox["5"]}], ")"}]}], ",",
SqrtBox[
RowBox[{
FractionBox["5", "8"], "+",
FractionBox["11",
RowBox[{"8", " ",
SqrtBox["5"]}]]}]], ",",
SqrtBox[
RowBox[{
FractionBox["1", "4"], "+",
FractionBox["1",
RowBox[{"2", " ",
SqrtBox["5"]}]]}]]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{"(",
RowBox[{"1", "+",
SqrtBox["5"]}], ")"}]}], ",",
RowBox[{"-",
SqrtBox[
RowBox[{"1", "+",
FractionBox["2",
SqrtBox["5"]]}]]}], ",",
SqrtBox[
RowBox[{
FractionBox["1", "4"], "+",
FractionBox["1",
RowBox[{"2", " ",
SqrtBox["5"]}]]}]]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
FractionBox["1", "4"], " ",
RowBox[{"(",
RowBox[{"1", "+",
SqrtBox["5"]}], ")"}]}], ",",
InterpretationBox[
TemplateBox[{"Root",
TemplateBox[{"\"-0.263\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{
RowBox[{"1", "-",
RowBox[{"20", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"80", " ",
SuperscriptBox["#1", "4"]}]}], "&"}], ",", "2"}], "]"}],
Short[#, 7]& ], -0.2628655560595668},
"NumericalApproximation"],
Root[1 - 20 #^2 + 80 #^4& , 2, 0]], ",",
SqrtBox[
RowBox[{
FractionBox["9", "4"], "+",
FractionBox["9",
RowBox[{"2", " ",
SqrtBox["5"]}]]}]]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{"(",
RowBox[{"2", "+",
SqrtBox["5"]}], ")"}]}], ",",
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], " ",
SqrtBox[
RowBox[{"1", "-",
FractionBox["2",
SqrtBox["5"]]}]]}], ",",
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], " ",
SqrtBox[
RowBox[{"1", "+",
FractionBox["2",
SqrtBox["5"]]}]]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], ",",
SqrtBox[
RowBox[{
FractionBox["1", "4"], "+",
FractionBox["1",
RowBox[{"2", " ",
SqrtBox["5"]}]]}]], ",",
SqrtBox[
RowBox[{
FractionBox["9", "4"], "+",
FractionBox["9",
RowBox[{"2", " ",
SqrtBox["5"]}]]}]]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{"(",
RowBox[{"1", "+",
SqrtBox["5"]}], ")"}]}], ",",
SqrtBox[
RowBox[{"1", "+",
FractionBox["2",
SqrtBox["5"]]}]], ",",
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], " ",
SqrtBox[
RowBox[{"1", "+",
FractionBox["2",
SqrtBox["5"]]}]]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
FractionBox["1", "2"], ",",
SqrtBox[
RowBox[{
FractionBox["9", "4"], "+",
FractionBox["9",
RowBox[{"2", " ",
SqrtBox["5"]}]]}]], ",",
SqrtBox[
RowBox[{
FractionBox["1", "4"], "+",
FractionBox["1",
RowBox[{"2", " ",
SqrtBox["5"]}]]}]]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
FractionBox["1", "4"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "-",
SqrtBox["5"]}], ")"}]}], ",",
RowBox[{"-",
SqrtBox[
RowBox[{
FractionBox["17", "8"], "+",
FractionBox["31",
RowBox[{"8", " ",
SqrtBox["5"]}]]}]]}], ",",
SqrtBox[
RowBox[{
FractionBox["1", "4"], "+",
FractionBox["1",
RowBox[{"2", " ",
SqrtBox["5"]}]]}]]}], "}"}], ",",
RowBox[{"{",
RowBox[{
FractionBox["1", "2"], ",",
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], " ",
SqrtBox[
RowBox[{"5", "+",
RowBox[{"2", " ",
SqrtBox["5"]}]}]]}], ",",
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], " ",
SqrtBox[
RowBox[{"5", "+",
RowBox[{"2", " ",
SqrtBox["5"]}]}]]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
FractionBox["1", "4"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "5"}], "-",
SqrtBox["5"]}], ")"}]}], ",",
SqrtBox[
RowBox[{
FractionBox["5", "8"], "+",
FractionBox["11",
RowBox[{"8", " ",
SqrtBox["5"]}]]}]], ",",
SqrtBox[
RowBox[{
FractionBox["1", "4"], "+",
FractionBox["1",
RowBox[{"2", " ",
SqrtBox["5"]}]]}]]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], ",",
RowBox[{
FractionBox["1", "2"], " ",
SqrtBox[
RowBox[{"5", "+",
RowBox[{"2", " ",
SqrtBox["5"]}]}]]}], ",",
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], " ",
SqrtBox[
RowBox[{"5", "+",
RowBox[{"2", " ",
SqrtBox["5"]}]}]]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
FractionBox["1",
RowBox[{
RowBox[{"-", "3"}], "+",
SqrtBox["5"]}]], ",",
InterpretationBox[
TemplateBox[{"Root",
TemplateBox[{"\"-1.80\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{
RowBox[{"1", "-",
RowBox[{"260", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"80", " ",
SuperscriptBox["#1", "4"]}]}], "&"}], ",", "1"}], "]"}],
Short[#, 7]& ], -1.8017073246471935`},
"NumericalApproximation"],
Root[1 - 260 #^2 + 80 #^4& , 1, 0]], ",",
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], " ",
SqrtBox[
RowBox[{"1", "-",
FractionBox["2",
SqrtBox["5"]]}]]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], ",",
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], " ",
SqrtBox[
RowBox[{"5", "+",
RowBox[{"2", " ",
SqrtBox["5"]}]}]]}], ",",
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], " ",
SqrtBox[
RowBox[{"5", "+",
RowBox[{"2", " ",
SqrtBox["5"]}]}]]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"-", "1"}], "-",
FractionBox[
SqrtBox["5"], "2"]}], ",",
SqrtBox[
RowBox[{
FractionBox["1", "4"], "+",
FractionBox["1",
RowBox[{"2", " ",
SqrtBox["5"]}]]}]], ",",
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], " ",
SqrtBox[
RowBox[{"1", "-",
FractionBox["2",
SqrtBox["5"]]}]]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
FractionBox["1", "4"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "3"}], "-",
SqrtBox["5"]}], ")"}]}], ",",
RowBox[{
FractionBox["1", "2"], " ",
SqrtBox[
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{"(",
RowBox[{"5", "+",
SqrtBox["5"]}], ")"}]}]]}], ",",
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], " ",
SqrtBox[
RowBox[{"5", "+",
RowBox[{"2", " ",
SqrtBox["5"]}]}]]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
FractionBox["1", "4"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "5"}], "-",
SqrtBox["5"]}], ")"}]}], ",",
RowBox[{
RowBox[{"-",
FractionBox["1", "4"]}], " ",
SqrtBox[
RowBox[{"10", "+",
FractionBox["22",
SqrtBox["5"]]}]]}], ",",
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], " ",
SqrtBox[
RowBox[{"1", "+",
FractionBox["2",
SqrtBox["5"]]}]]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
FractionBox["1", "4"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "3"}], "-",
SqrtBox["5"]}], ")"}]}], ",",
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], " ",
SqrtBox[
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{"(",
RowBox[{"5", "+",
SqrtBox["5"]}], ")"}]}]]}], ",",
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], " ",
SqrtBox[
RowBox[{"5", "+",
RowBox[{"2", " ",
SqrtBox["5"]}]}]]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"-", "1"}], "-",
FractionBox[
SqrtBox["5"], "2"]}], ",",
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], " ",
SqrtBox[
RowBox[{"1", "-",
FractionBox["2",
SqrtBox["5"]]}]]}], ",",
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], " ",
SqrtBox[
RowBox[{"1", "+",
FractionBox["2",
SqrtBox["5"]]}]]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "-",
SqrtBox["5"]}], ")"}]}], ",", "0", ",",
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], " ",
SqrtBox[
RowBox[{"5", "+",
RowBox[{"2", " ",
SqrtBox["5"]}]}]]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], ",",
RowBox[{
RowBox[{"-",
FractionBox["3", "2"]}], " ",
SqrtBox[
RowBox[{"1", "+",
FractionBox["2",
SqrtBox["5"]]}]]}], ",",
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], " ",
SqrtBox[
RowBox[{"1", "+",
FractionBox["2",
SqrtBox["5"]]}]]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "-",
SqrtBox["5"]}], ")"}]}], ",",
RowBox[{"-",
SqrtBox[
RowBox[{"1", "+",
FractionBox["2",
SqrtBox["5"]]}]]}], ",",
SqrtBox[
RowBox[{
FractionBox["1", "4"], "+",
FractionBox["1",
RowBox[{"2", " ",
SqrtBox["5"]}]]}]]}], "}"}], ",",
RowBox[{"{",
RowBox[{"0", ",",
InterpretationBox[
TemplateBox[{"Root",
TemplateBox[{"\"-0.851\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{
RowBox[{"1", "-",
RowBox[{"5", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"5", " ",
SuperscriptBox["#1", "4"]}]}], "&"}], ",", "1"}], "]"}],
Short[#, 7]& ], -0.8506508083520399},
"NumericalApproximation"],
Root[1 - 5 #^2 + 5 #^4& , 1, 0]], ",",
RowBox[{
RowBox[{"-",
FractionBox["3", "2"]}], " ",
SqrtBox[
RowBox[{"1", "+",
FractionBox["2",
SqrtBox["5"]]}]]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"-", "1"}], "-",
FractionBox[
SqrtBox["5"], "2"]}], ",",
RowBox[{
FractionBox["1", "2"], " ",
SqrtBox[
RowBox[{"1", "-",
FractionBox["2",
SqrtBox["5"]]}]]}], ",",
SqrtBox[
RowBox[{
FractionBox["1", "4"], "+",
FractionBox["1",
RowBox[{"2", " ",
SqrtBox["5"]}]]}]]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], ",",
SqrtBox[
RowBox[{
FractionBox["1", "4"], "+",
FractionBox["1",
RowBox[{"2", " ",
SqrtBox["5"]}]]}]], ",",
RowBox[{
RowBox[{"-",
FractionBox["3", "2"]}], " ",
SqrtBox[
RowBox[{"1", "+",
FractionBox["2",
SqrtBox["5"]]}]]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "-",
SqrtBox["5"]}], ")"}]}], ",",
SqrtBox[
RowBox[{"1", "+",
FractionBox["2",
SqrtBox["5"]]}]], ",",
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], " ",
SqrtBox[
RowBox[{"1", "+",
FractionBox["2",
SqrtBox["5"]]}]]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"-", "1"}], "-",
FractionBox[
SqrtBox["5"], "2"]}], ",",
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], " ",
SqrtBox[
RowBox[{"1", "+",
FractionBox["2",
SqrtBox["5"]]}]]}], ",",
RowBox[{
FractionBox["1", "2"], " ",
SqrtBox[
RowBox[{"1", "-",
FractionBox["2",
SqrtBox["5"]]}]]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
FractionBox["1", "4"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "-",
SqrtBox["5"]}], ")"}]}], ",",
RowBox[{
RowBox[{"-",
FractionBox["1", "4"]}], " ",
SqrtBox[
RowBox[{"2", "-",
FractionBox["2",
SqrtBox["5"]]}]]}], ",",
RowBox[{
RowBox[{"-",
FractionBox["3", "2"]}], " ",
SqrtBox[
RowBox[{"1", "+",
FractionBox["2",
SqrtBox["5"]]}]]}]}], "}"}]}], "}"}]], "Output",
CellLabel->"Out[60]=",ExpressionUUID->"74dfd5a3-dee9-4c27-a275-68ece233b0f6"]
}, Open ]]
}, Closed]]
}, Open ]]
},
InitializationCellEvaluation->Automatic,
WindowSize->{891, 797},
WindowMargins->{{Automatic, 232}, {Automatic, 0}},
FrontEndVersion->"12.4 for Mac OS X x86 (64-bit) (May 3, 2021)",
StyleDefinitions->"Default.nb",
ExpressionUUID->"535079a8-6859-47a7-834a-08ef6c5f9899"
]
(* End of Notebook Content *)
(* Internal cache information *)
(*CellTagsOutline
CellTagsIndex->{}
*)
(*CellTagsIndex
CellTagsIndex->{}
*)
(*NotebookFileOutline
Notebook[{
Cell[CellGroupData[{
Cell[580, 22, 101, 0, 98, "Title",ExpressionUUID->"374b501c-4e56-4c55-ae3c-2d49809fed1d"],
Cell[CellGroupData[{
Cell[706, 26, 83, 0, 54, "Subsection",ExpressionUUID->"510db536-818e-492e-9e9d-c5378029d7d7"],
Cell[792, 28, 111, 3, 58, "Text",ExpressionUUID->"6d0a47af-fe1f-401e-8847-4c5cef53ad07"],
Cell[906, 33, 364, 9, 58, "Text",ExpressionUUID->"cad3f5cb-bf11-4ac5-8d12-9326ccd567b2"],
Cell[1273, 44, 391, 11, 35, "Text",ExpressionUUID->"9337c47a-a176-4e5b-b956-0dc6796f9e6d"],
Cell[1667, 57, 154, 2, 35, "Text",ExpressionUUID->"a996f21f-77f5-4e42-86b5-f0d62845b607"]
}, Open ]],
Cell[CellGroupData[{
Cell[1858, 64, 79, 0, 67, "Section",ExpressionUUID->"15c56df4-9d00-4612-8d13-41f155229b00"],
Cell[1940, 66, 85, 0, 35, "Text",ExpressionUUID->"81b820e6-403e-4b52-9469-de4cfb807623"]
}, Open ]],
Cell[CellGroupData[{
Cell[2062, 71, 81, 0, 67, "Section",ExpressionUUID->"db24e6b8-ca01-47b0-8454-a340873ae129"],
Cell[CellGroupData[{
Cell[2168, 75, 199, 3, 30, "Input",ExpressionUUID->"a7f654d0-2fbd-49be-b9a8-c7450d645867"],
Cell[2370, 80, 271, 5, 34, "Output",ExpressionUUID->"81a05688-7270-4977-84e5-93734df55688"]
}, Open ]],
Cell[CellGroupData[{
Cell[2678, 90, 91, 0, 54, "Subsection",ExpressionUUID->"401523a8-e861-49e3-8adf-b8ced076117c"],
Cell[CellGroupData[{
Cell[2794, 94, 233, 6, 30, "Input",ExpressionUUID->"e4219688-6846-40ab-8340-ee36580cbba2"],
Cell[3030, 102, 163, 3, 34, "Output",ExpressionUUID->"c59e6c66-1516-425c-a322-53afb4565774"]
}, Open ]],
Cell[CellGroupData[{
Cell[3230, 110, 188, 4, 30, "Input",ExpressionUUID->"7346e294-67b2-40dd-93b4-f0ff78f30ea5"],
Cell[3421, 116, 15154, 248, 405, "Output",ExpressionUUID->"ad7d4b13-acf4-4682-84d2-d735e2a48ffd"]
}, Open ]],
Cell[CellGroupData[{
Cell[18612, 369, 233, 5, 30, "Input",ExpressionUUID->"925a486a-9662-4c24-861f-66a4116d1240"],
Cell[18848, 376, 31699, 1204, 1424, "Output",ExpressionUUID->"f97e4b31-0631-4296-ba05-6a9c93d0617e"]
}, Closed]]
}, Open ]],
Cell[CellGroupData[{
Cell[50596, 1586, 108, 0, 54, "Subsection",ExpressionUUID->"c7cd807f-f023-4052-bd5c-498fb6618849"],
Cell[CellGroupData[{
Cell[50729, 1590, 335, 9, 30, "Input",ExpressionUUID->"10b494bd-dc26-4c0d-8295-5d54b47b721b"],
Cell[51067, 1601, 3430, 54, 350, "Output",ExpressionUUID->"8f1ed7e5-bc10-41fe-9efa-33729cda35ae"]
}, Open ]],
Cell[CellGroupData[{
Cell[54534, 1660, 261, 6, 30, "Input",ExpressionUUID->"a02fb8ac-ebb6-4ac6-a21d-ca7d1af36155"],
Cell[54798, 1668, 9618, 252, 455, "Output",ExpressionUUID->"96aa7abe-0bab-4263-89ef-009a26658a68"]
}, Open ]]
}, Closed]]
}, Open ]],
Cell[CellGroupData[{
Cell[64477, 1927, 77, 0, 67, "Section",ExpressionUUID->"2c6dc9d0-4cb0-4ac9-b10e-2e223daf46c7"],
Cell[CellGroupData[{
Cell[64579, 1931, 217, 4, 30, "Input",ExpressionUUID->"009947b2-8b62-4f30-88b4-9d2680e7d5c5"],
Cell[64799, 1937, 37140, 735, 230, "Output",ExpressionUUID->"dff338f1-9523-4716-b530-b28245349ed5"]
}, Open ]],
Cell[CellGroupData[{
Cell[101976, 2677, 249, 6, 30, "Input",ExpressionUUID->"b71be3ec-81fd-403a-b1ca-8a9cfe8e2c00"],
Cell[102228, 2685, 37267, 741, 230, "Output",ExpressionUUID->"a41d9fb9-24c9-4d54-8ba9-30d68ebcb80f"]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell[139544, 3432, 84, 0, 67, "Section",ExpressionUUID->"857ba155-f70f-45c3-b82d-5ab8e186fb63"],
Cell[CellGroupData[{
Cell[139653, 3436, 283, 7, 30, "Input",ExpressionUUID->"a0b62ef1-5230-4a33-bc72-e59bbb4c2d2b"],
Cell[139939, 3445, 68862, 1175, 64, "Output",ExpressionUUID->"3457a291-1711-4043-8312-108b2aaa96cb"]
}, Open ]],
Cell[CellGroupData[{
Cell[208838, 4625, 96, 0, 54, "Subsection",ExpressionUUID->"2b1e9185-eef2-42f7-89f9-cb08dd84015a"],
Cell[CellGroupData[{
Cell[208959, 4629, 151, 2, 30, "Input",ExpressionUUID->"4d9145e9-af0c-4277-bfc7-7cf63bb7509b"],
Cell[209113, 4633, 7425, 243, 287, "Output",ExpressionUUID->"79bac50f-5c62-4c59-87e6-3f18a758863f"]
}, Open ]]
}, Closed]],
Cell[CellGroupData[{
Cell[216587, 4882, 85, 0, 38, "Subsection",ExpressionUUID->"ee81ab3a-bab9-4e6a-a915-faf4a5b0eb80"],
Cell[CellGroupData[{
Cell[216697, 4886, 714, 19, 73, "Input",ExpressionUUID->"e2768ade-bacf-4c50-8df5-99fe04b535d0"],
Cell[217414, 4907, 15830, 262, 405, "Output",ExpressionUUID->"6ee08417-3387-4072-a918-b3fc0b7d269f"]
}, Open ]],
Cell[CellGroupData[{
Cell[233281, 5174, 192, 4, 30, "Input",ExpressionUUID->"f6218690-dc6d-48a0-90a2-61aa522ac818"],
Cell[233476, 5180, 166, 4, 34, "Output",ExpressionUUID->"33ce651e-205a-408c-b810-6b2d94b4220a"]
}, Open ]],
Cell[CellGroupData[{
Cell[233679, 5189, 217, 6, 30, "Input",ExpressionUUID->"13567aab-0c37-4eee-b661-49b1dd3596c6"],
Cell[233899, 5197, 166, 4, 34, "Output",ExpressionUUID->"ca3642df-91b0-44d0-aa15-d07ad2bc580e"]
}, Open ]],
Cell[CellGroupData[{
Cell[234102, 5206, 221, 6, 30, "Input",ExpressionUUID->"9ec613a6-37b9-462c-848d-e81c443d8b05"],
Cell[234326, 5214, 118, 2, 34, "Output",ExpressionUUID->"5abddc96-a810-4cf6-abf6-2c64389c52c8"]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell[234493, 5222, 89, 0, 54, "Subsection",ExpressionUUID->"97087804-a135-4e8a-83c5-f90841ab688a"],
Cell[CellGroupData[{
Cell[234607, 5226, 196, 4, 30, "Input",ExpressionUUID->"42f5a2a3-c6b1-40ff-bfef-075df2e1c217"],
Cell[234806, 5232, 357, 12, 50, "Output",ExpressionUUID->"7cfe7180-f3a0-4b16-af5f-1be6a2510b1b"]
}, Open ]],
Cell[CellGroupData[{
Cell[235200, 5249, 183, 4, 30, "Input",ExpressionUUID->"362cc938-e982-4d0e-9e60-4616ce8cbe2e"],
Cell[235386, 5255, 303, 10, 54, "Output",ExpressionUUID->"f5ff62e0-6bec-4d2f-9621-14c6df33b856"]
}, Open ]],
Cell[CellGroupData[{
Cell[235726, 5270, 218, 6, 30, "Input",ExpressionUUID->"a8590b8d-1f96-465b-b351-38a7b0f7dd33"],
Cell[235947, 5278, 357, 12, 50, "Output",ExpressionUUID->"61062d69-12f9-4124-95e2-a870cf441283"]
}, Open ]],
Cell[CellGroupData[{
Cell[236341, 5295, 376, 11, 30, "Input",ExpressionUUID->"4b77c6ca-64c5-47e7-a764-69e4fcef5c3d"],
Cell[236720, 5308, 15924, 266, 380, "Output",ExpressionUUID->"b6ea5827-4d8d-4849-aa77-45d3ef698e07"]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell[252693, 5580, 83, 0, 54, "Subsection",ExpressionUUID->"bd17af4f-611d-424f-ae16-dfcd622c1e55"],
Cell[CellGroupData[{
Cell[252801, 5584, 149, 2, 30, "Input",ExpressionUUID->"49e4f122-a2d3-4c9c-9525-4a56f35a6d68"],
Cell[252953, 5588, 110, 1, 34, "Output",ExpressionUUID->"ec57806e-d232-4751-a53b-d908d5479df0"]
}, Open ]]
}, Closed]],
Cell[CellGroupData[{
Cell[253112, 5595, 91, 0, 38, "Subsection",ExpressionUUID->"d7d4a568-2372-4533-befc-8b1922904365"],
Cell[CellGroupData[{
Cell[253228, 5599, 230, 6, 30, "Input",ExpressionUUID->"a6967470-fbcd-47a2-bb11-1b6b23921987"],
Cell[253461, 5607, 1826, 56, 107, "Output",ExpressionUUID->"55139186-a0a8-443c-9782-affae4aa20ab"]
}, Open ]],
Cell[CellGroupData[{
Cell[255324, 5668, 217, 6, 30, "Input",ExpressionUUID->"3581bdf9-f190-4918-9ea2-cc8c58132837"],
Cell[255544, 5676, 118, 2, 34, "Output",ExpressionUUID->"a741f61f-cf44-4958-8ef5-39d377c16c7b"]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell[255711, 5684, 88, 0, 54, "Subsection",ExpressionUUID->"29aed57e-cba5-4e08-9301-07f00dc3cd80"],
Cell[CellGroupData[{
Cell[255824, 5688, 195, 4, 30, "Input",ExpressionUUID->"2ce5a547-8922-41bb-9329-fa09d124e769"],
Cell[256022, 5694, 133, 3, 34, "Output",ExpressionUUID->"e566a955-abac-4c7a-9d9f-bf096a43e984"]
}, Open ]],
Cell[CellGroupData[{
Cell[256192, 5702, 437, 12, 52, "Input",ExpressionUUID->"30242084-8cd1-4261-b6f3-abf0b3063372"],
Cell[256632, 5716, 133, 3, 34, "Output",ExpressionUUID->"55b05101-8e1c-43a2-b9ae-98cef871ca26"]
}, Open ]]
}, Open ]],
Cell[256792, 5723, 82, 0, 54, "Subsection",ExpressionUUID->"7eb49f74-f845-469d-9396-11184f176e7b"],
Cell[CellGroupData[{
Cell[256899, 5727, 96, 0, 38, "Subsection",ExpressionUUID->"573049e7-2826-400c-875a-ca41b3e5b0ff"],
Cell[CellGroupData[{
Cell[257020, 5731, 203, 4, 30, "Input",ExpressionUUID->"6dd87507-76a8-4ccb-888d-09adbd198af5"],
Cell[257226, 5737, 184, 6, 37, "Output",ExpressionUUID->"b7f30d52-6817-4854-9884-f970202476a4"]
}, Open ]],
Cell[CellGroupData[{
Cell[257447, 5748, 222, 6, 30, "Input",ExpressionUUID->"6905f96b-37a1-4541-94d9-ec6830839027"],
Cell[257672, 5756, 184, 6, 37, "Output",ExpressionUUID->"b04685f9-d0fa-4a61-ad27-cc934f2aa989"]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell[257905, 5768, 90, 0, 54, "Subsection",ExpressionUUID->"d08b5c33-ab13-411b-b165-00795477e202"],
Cell[CellGroupData[{
Cell[258020, 5772, 197, 4, 30, "Input",ExpressionUUID->"6be223e7-337f-4d7f-a8a4-3d6fc7619bf4"],
Cell[258220, 5778, 851, 29, 62, "Output",ExpressionUUID->"26e46212-1e13-43a0-bf12-45e2dc403c1c"]
}, Open ]],
Cell[CellGroupData[{
Cell[259108, 5812, 366, 11, 51, "Input",ExpressionUUID->"352fd447-c5bb-4cf5-962b-7e5cc251f07e"],
Cell[259477, 5825, 118, 2, 34, "Output",ExpressionUUID->"4d3e69da-d8ae-4f02-83e7-d1d2ed866c2a"]
}, Open ]],
Cell[259610, 5830, 163, 3, 30, "Input",ExpressionUUID->"b9cc9ce3-7ecc-4365-9da6-f78702b5f54a"]
}, Open ]],
Cell[CellGroupData[{
Cell[259810, 5838, 85, 0, 54, "Subsection",ExpressionUUID->"1ec0f72f-dece-415a-906d-8f6827213e7c"],
Cell[CellGroupData[{
Cell[259920, 5842, 192, 4, 30, "Input",ExpressionUUID->"b47cbcb8-1415-4d0f-bd6f-117ef371965e"],
Cell[260115, 5848, 164, 3, 34, "Output",ExpressionUUID->"1a4fa171-c026-4556-9472-ba697e67365a"]
}, Open ]],
Cell[CellGroupData[{
Cell[260316, 5856, 144, 3, 30, "Input",ExpressionUUID->"6884d710-3c8d-4a98-b75b-4cc9b1638df9"],
Cell[260463, 5861, 5513, 78, 227, "Message",ExpressionUUID->"a8a82291-1a23-4838-b8dc-75eedfdfaf0b"],
Cell[265979, 5941, 70882, 1230, 64, "Output",ExpressionUUID->"2434f316-7b17-41ef-908b-d847666dda05"]
}, Open ]],
Cell[CellGroupData[{
Cell[336898, 7176, 203, 5, 30, "Input",ExpressionUUID->"ad6d98c2-58da-45dd-9483-107518798ff3"],
Cell[337104, 7183, 183, 5, 34, "Output",ExpressionUUID->"d66e8b79-3f0b-44b3-9a24-59f4904d0d97"]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell[337336, 7194, 98, 0, 54, "Subsection",ExpressionUUID->"00e002fd-7689-40bd-bcab-0cbab1422928"],
Cell[CellGroupData[{
Cell[337459, 7198, 469, 15, 61, "Input",ExpressionUUID->"0c330892-6c04-41c9-9cf7-21b4ccbc1af2"],
Cell[337931, 7215, 129, 2, 34, "Output",ExpressionUUID->"e4c01d99-c953-46d1-b4a1-0ce3b8d107d6"]
}, Open ]],
Cell[338075, 7220, 558, 17, 71, "Input",ExpressionUUID->"55e76dd5-6ec4-4b82-afea-0e5339d78771"],
Cell[338636, 7239, 109, 1, 30, "Input",ExpressionUUID->"410bc14b-b4f2-4c08-839c-476928b31065"]
}, Open ]],
Cell[CellGroupData[{
Cell[338782, 7245, 104, 0, 54, "Subsection",ExpressionUUID->"b9793cd4-bf15-47c7-8532-4bd86e412d92"],
Cell[CellGroupData[{
Cell[338911, 7249, 452, 14, 55, "Input",ExpressionUUID->"9c67ffd4-2d6f-4e70-ad3a-f5b67983ab03"],
Cell[339366, 7265, 4405, 65, 172, "Message",ExpressionUUID->"0f94fa83-5b58-47dc-bfd7-1a3f6adabd2b"],
Cell[343774, 7332, 128, 2, 34, "Output",ExpressionUUID->"be91e209-ba32-4cec-9079-e58fc0b3bce6"]
}, Open ]],
Cell[CellGroupData[{
Cell[343939, 7339, 618, 19, 57, "Input",ExpressionUUID->"5fa333ae-6788-487b-b62a-fb2e4f9a32e3"],
Cell[344560, 7360, 321, 10, 62, "Output",ExpressionUUID->"169e0a30-e060-416b-841a-cf545e9c92cb"]
}, Open ]],
Cell[CellGroupData[{
Cell[344918, 7375, 137, 3, 30, "Input",ExpressionUUID->"a9b2087c-db87-4a23-a42b-51335abc9dbb"],
Cell[345058, 7380, 128, 2, 34, "Output",ExpressionUUID->"0e007d99-fcd7-4fcb-b1fa-0855cb9b60ee"]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell[345235, 7388, 96, 0, 54, "Subsection",ExpressionUUID->"35f6bd67-8778-4c44-8ff3-f1faeaec4e93"],
Cell[CellGroupData[{
Cell[345356, 7392, 507, 16, 61, "Input",ExpressionUUID->"b08d1042-c556-45fb-836a-e652109cf1a4"],
Cell[345866, 7410, 127, 2, 34, "Output",ExpressionUUID->"cfd5aae3-ff4c-4e3c-84e5-3570b54a085c"]
}, Open ]],
Cell[346008, 7415, 599, 18, 71, "Input",ExpressionUUID->"9531bac5-3eea-4874-8645-66d569c85b29"],
Cell[346610, 7435, 109, 1, 30, "Input",ExpressionUUID->"2a073045-cd4d-4f86-9e70-df91fa3faba7"]
}, Open ]],
Cell[CellGroupData[{
Cell[346756, 7441, 102, 0, 54, "Subsection",ExpressionUUID->"f86bd906-df75-4006-a841-ce85765b6cb9"],
Cell[CellGroupData[{
Cell[346883, 7445, 489, 15, 55, "Input",ExpressionUUID->"65bd176a-2c13-41b1-aa14-52d72ed67bc7"],
Cell[347375, 7462, 4405, 65, 172, "Message",ExpressionUUID->"1f0f935b-9b24-44db-abcc-7149f96ea8bc"],
Cell[351783, 7529, 129, 2, 34, "Output",ExpressionUUID->"de37ee82-7509-43f9-b397-a0b11df60ec6"]
}, Open ]],
Cell[CellGroupData[{
Cell[351949, 7536, 659, 20, 57, "Input",ExpressionUUID->"8719f275-37b6-4907-aca4-c58468f85cf1"],
Cell[352611, 7558, 321, 10, 62, "Output",ExpressionUUID->"0c3291fe-8904-4b50-8b9b-cc7752758139"]
}, Open ]],
Cell[CellGroupData[{
Cell[352969, 7573, 137, 3, 30, "Input",ExpressionUUID->"bcc8337f-08e4-48bf-8626-8dc2f6a3e7b5"],
Cell[353109, 7578, 129, 2, 34, "Output",ExpressionUUID->"9182885e-4341-4539-863d-e709b7f4c7e5"]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell[353287, 7586, 86, 0, 54, "Subsection",ExpressionUUID->"11d7f5b5-6c53-452a-86d0-f9e7aab0634a"],
Cell[CellGroupData[{
Cell[353398, 7590, 222, 5, 30, "Input",ExpressionUUID->"24630125-75e3-40ad-80e8-629d79140ad6"],
Cell[353623, 7597, 357, 12, 50, "Output",ExpressionUUID->"b022b5c9-a49b-41cb-8b81-0c94e895e1ee"]
}, Open ]],
Cell[CellGroupData[{
Cell[354017, 7614, 308, 7, 30, "Input",ExpressionUUID->"130c78c2-51f4-41d2-bf74-77bb38979043"],
Cell[354328, 7623, 493, 12, 24, "Print",ExpressionUUID->"5c1a1c01-f77d-4e17-b52b-de125fb9d979"],
Cell[354824, 7637, 118, 2, 34, "Output",ExpressionUUID->"df1dbf1a-e7dc-4e3f-afbe-d6043b1939af"]
}, Open ]],
Cell[354957, 7642, 419, 12, 30, "Input",ExpressionUUID->"5c32e2c2-0a7e-4064-a34e-eb9124cc1e85"]
}, Open ]],
Cell[CellGroupData[{
Cell[355413, 7659, 85, 0, 54, "Subsection",ExpressionUUID->"528b0d86-4f10-4f2b-bd85-6878d611d576"],
Cell[CellGroupData[{
Cell[355523, 7663, 260, 7, 30, "Input",ExpressionUUID->"d42e3649-7944-4ad4-b5e9-da1f7a45d63f"],
Cell[355786, 7672, 15786, 261, 405, "Output",ExpressionUUID->"f4b2a50f-cb59-4f12-87dc-f384fa9530ae"]
}, Open ]]
}, Closed]],
Cell[CellGroupData[{
Cell[371621, 7939, 91, 0, 38, "Subsection",ExpressionUUID->"cf538d18-a847-45e6-bedd-263d87c726b8"],
Cell[CellGroupData[{
Cell[371737, 7943, 230, 5, 30, "Input",ExpressionUUID->"a5dc8320-4eb0-4571-b3cd-f165f4618c8e"],
Cell[371970, 7950, 27951, 1029, 1262, "Output",ExpressionUUID->"51d12af3-011d-42ad-9d06-8192945ec7b2"]
}, Closed]],
Cell[CellGroupData[{
Cell[399958, 8984, 551, 14, 90, "Input",ExpressionUUID->"fa9d3cb9-17ac-4b97-89aa-27a17417ec6a"],
Cell[400512, 9000, 482, 15, 34, "Output",ExpressionUUID->"4ab19259-1321-4781-b3c8-22532d077a43"]
}, Open ]],
Cell[CellGroupData[{
Cell[401031, 9020, 325, 9, 30, "Input",ExpressionUUID->"adecf4da-07ea-4faa-bd12-888f23b1b35c"],
Cell[401359, 9031, 512, 15, 34, "Output",ExpressionUUID->"b018a4b9-474e-44d1-ac67-d77d17070745"]
}, Open ]],
Cell[CellGroupData[{
Cell[401908, 9051, 626, 15, 73, "Input",ExpressionUUID->"6f0d782e-e9d2-4555-af0e-fb98afd25977"],
Cell[402537, 9068, 662561, 10905, 419, 575806, 9482, "CachedBoxData", "BoxData", "Output",ExpressionUUID->"8512182d-75d7-49e4-969d-2446ea494f9a"]
}, Open ]],
Cell[CellGroupData[{
Cell[1065135, 19978, 309, 8, 30, "Input",ExpressionUUID->"946fac39-b6d7-4d2f-8997-c40006a6ad79"],
Cell[1065447, 19988, 111, 1, 34, "Output",ExpressionUUID->"b6157469-3f1a-4f52-9530-476d1a381a21"]
}, Open ]],
Cell[CellGroupData[{
Cell[1065595, 19994, 244, 6, 30, "Input",ExpressionUUID->"07f551d4-a990-43f7-8d57-13ce96053d32"],
Cell[1065842, 20002, 166, 3, 34, "Output",ExpressionUUID->"fd46657b-93fc-4741-b7d2-932f2e6ac075"]
}, Open ]],
Cell[CellGroupData[{
Cell[1066045, 20010, 109, 1, 30, "Input",ExpressionUUID->"0d99fe7f-2e1c-4f8c-9468-196a121ceb55"],
Cell[1066157, 20013, 26880, 1029, 1235, "Output",ExpressionUUID->"b5f692f3-b834-4683-a015-7b091997a316"]
}, Open ]]
}, Closed]],
Cell[CellGroupData[{
Cell[1093086, 21048, 96, 0, 38, "Subsection",ExpressionUUID->"dd932e6b-788e-4289-8a5d-ee05714d396e"],
Cell[CellGroupData[{
Cell[1093207, 21052, 240, 5, 30, "Input",ExpressionUUID->"c3cfd91a-4255-474a-9bda-1682b68532f5"],
Cell[1093450, 21059, 107, 1, 34, "Output",ExpressionUUID->"b7511779-caaf-4c2d-af9e-e628d2f21d61"]
}, Open ]],
Cell[CellGroupData[{
Cell[1093594, 21065, 254, 6, 30, "Input",ExpressionUUID->"e68f2229-7bfd-4c02-be61-5f5fbed2ea33"],
Cell[1093851, 21073, 7416, 243, 287, "Output",ExpressionUUID->"2b97eba3-a71d-4a59-a12f-27c3c016c1c0"]
}, Open ]],
Cell[CellGroupData[{
Cell[1101304, 21321, 259, 6, 30, "Input",ExpressionUUID->"3ace9f00-1b78-4422-983d-8f9beb6ca723"],
Cell[1101566, 21329, 7280, 108, 367, "Output",ExpressionUUID->"c4e57fa2-1d66-4562-a4b6-904fbbba4778"]
}, Open ]],
Cell[CellGroupData[{
Cell[1108883, 21442, 169, 3, 30, "Input",ExpressionUUID->"7580b745-1b99-44cf-bc38-809a276f929d"],
Cell[CellGroupData[{
Cell[1109077, 21449, 214, 4, 24, "Print",ExpressionUUID->"225798e2-4a41-4cd5-9e6f-e485986d8674"],
Cell[1109294, 21455, 224, 4, 24, "Print",ExpressionUUID->"a82a458b-f3c7-4faa-bfd8-e298e4c2d7f8"],
Cell[1109521, 21461, 374, 8, 24, "Print",ExpressionUUID->"2d1a9774-7d8b-4e90-8bcd-2208ac3b58ac"]
}, Open ]],
Cell[1109910, 21472, 175, 3, 34, "Output",ExpressionUUID->"6c0914ae-8cb7-4ed9-9901-9a47d8cce455"]
}, Open ]],
Cell[CellGroupData[{
Cell[1110122, 21480, 196, 3, 30, "Input",ExpressionUUID->"600198fd-4021-4f1a-aba7-619fabcf8580"],
Cell[1110321, 21485, 19538, 323, 190, "Output",ExpressionUUID->"c039b4f7-52d7-4c16-988f-e474a6bc3ec3"]
}, Open ]],
Cell[CellGroupData[{
Cell[1129896, 21813, 205, 4, 30, "Input",ExpressionUUID->"37fec55f-8fd8-4ee2-8aff-7840e260b80f"],
Cell[1130104, 21819, 7166, 199, 350, "Output",ExpressionUUID->"3f237974-fde2-495e-a47c-09f143bcffd1"]
}, Open ]]
}, Closed]],
Cell[CellGroupData[{
Cell[1137319, 22024, 88, 0, 38, "Subsection",ExpressionUUID->"267238f8-3ec2-4879-9679-23f4ccd42470"],
Cell[CellGroupData[{
Cell[1137432, 22028, 195, 4, 30, "Input",ExpressionUUID->"05d238cb-8743-4d7f-b012-4550d7accf5c"],
Cell[1137630, 22034, 380, 14, 41, "Output",ExpressionUUID->"a18fd660-11e0-4d01-9d82-53d5d5a391f1"]
}, Open ]],
Cell[CellGroupData[{
Cell[1138047, 22053, 146, 3, 30, "Input",ExpressionUUID->"93ecbd6d-a281-4fa2-b9fd-5e2aae1be4bc"],
Cell[1138196, 22058, 1466, 37, 41, "Output",ExpressionUUID->"f951c0ff-f6d6-4a97-a183-8700aec8dfb8"]
}, Open ]],
Cell[CellGroupData[{
Cell[1139699, 22100, 213, 6, 30, "Input",ExpressionUUID->"f3b9e7cb-1de5-47bb-a246-0b184252ccd3"],
Cell[1139915, 22108, 118, 2, 34, "Output",ExpressionUUID->"f88d1c28-3261-4df6-aac6-5de6b87ed4ae"]
}, Open ]],
Cell[1140048, 22113, 301, 8, 30, "Input",ExpressionUUID->"911c6ae2-e83a-4ac7-85fb-ef4213b3a468"]
}, Open ]],
Cell[CellGroupData[{
Cell[1140386, 22126, 94, 0, 54, "Subsection",ExpressionUUID->"b1740c49-d338-4d18-9fed-10788d3427ea"],
Cell[CellGroupData[{
Cell[1140505, 22130, 201, 4, 30, "Input",ExpressionUUID->"2354b42b-00c4-42ea-ac2e-a9730da99927"],
Cell[1140709, 22136, 972, 17, 98, "Output",ExpressionUUID->"4bd3a5c7-50f2-48cf-bf0a-8170fce20ad3"]
}, Open ]],
Cell[CellGroupData[{
Cell[1141718, 22158, 88, 0, 45, "Subsubsection",ExpressionUUID->"7ad683bb-63ad-460d-9825-9e442a3dc5bd"],
Cell[CellGroupData[{
Cell[1141831, 22162, 349, 9, 30, "Input",ExpressionUUID->"67a628ee-557c-473c-89cf-fd6e95127e31"],
Cell[CellGroupData[{
Cell[1142205, 22175, 172, 3, 24, "Print",ExpressionUUID->"6d6aad30-6aa5-4802-aaed-d30c7d47431c"],
Cell[1142380, 22180, 200, 4, 24, "Print",ExpressionUUID->"667e1055-e1df-405c-a30e-a60c637cd774"],
Cell[1142583, 22186, 189, 4, 24, "Print",ExpressionUUID->"7159c626-23e3-4cc5-8677-0f388d12d50b"],
Cell[1142775, 22192, 172, 3, 24, "Print",ExpressionUUID->"de86207d-6caf-4807-97a8-541e7ae29de0"],
Cell[1142950, 22197, 174, 3, 24, "Print",ExpressionUUID->"ec7ecdbf-9ad4-4c12-b496-f4ff75149167"],
Cell[1143127, 22202, 204, 4, 24, "Print",ExpressionUUID->"35342c7d-75d5-4739-90f8-8d03e52d4b57"],
Cell[1143334, 22208, 177, 3, 24, "Print",ExpressionUUID->"d9c2838f-8bf4-4e72-9b87-958d685fa653"],
Cell[1143514, 22213, 205, 4, 24, "Print",ExpressionUUID->"50840cc3-77ab-4a5a-9da5-0ce5f6157012"]
}, Open ]],
Cell[1143734, 22220, 183, 5, 34, "Output",ExpressionUUID->"df1af838-93e5-4fec-932a-ebe427585121"]
}, Open ]]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell[1143978, 22232, 83, 0, 54, "Subsection",ExpressionUUID->"ba9a6b4e-9bc1-4a05-bc7d-023d546df675"],
Cell[CellGroupData[{
Cell[1144086, 22236, 190, 4, 30, "Input",ExpressionUUID->"f62c1e01-5d4f-411f-9a59-17b4cf72ebab"],
Cell[1144279, 22242, 194, 6, 55, "Output",ExpressionUUID->"d5c8f113-1213-4306-9909-28281f59f9df"]
}, Open ]],
Cell[CellGroupData[{
Cell[1144510, 22253, 177, 4, 30, "Input",ExpressionUUID->"b1a18864-00f9-4bf4-8d7d-86b5e8b96992"],
Cell[1144690, 22259, 194, 6, 55, "Output",ExpressionUUID->"40d88593-78a1-4e2a-a0b9-9bd73763e2be"]
}, Open ]],
Cell[CellGroupData[{
Cell[1144921, 22270, 265, 7, 30, "Input",ExpressionUUID->"febd2802-70ee-4783-bae3-89fe9ce27c5c"],
Cell[1145189, 22279, 194, 6, 55, "Output",ExpressionUUID->"16f581e1-69a2-4b5e-8ec8-ca78c0256e6a"]
}, Open ]]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell[1145444, 22292, 86, 0, 67, "Section",ExpressionUUID->"d130c577-5eb5-449b-981b-cc5237942dc5"],
Cell[CellGroupData[{
Cell[1145555, 22296, 349, 9, 30, "Input",ExpressionUUID->"13267c9f-81a7-4df8-b243-b1092b7bbcd0"],
Cell[1145907, 22307, 75222, 1430, 126, "Output",ExpressionUUID->"201b63d1-b176-41ad-b33f-88d014f18996"]
}, Open ]],
Cell[CellGroupData[{
Cell[1221166, 23742, 266, 6, 30, "Input",ExpressionUUID->"65c6716b-4c13-4ab2-b66d-8d76b4320583"],
Cell[1221435, 23750, 18913, 309, 199, "Output",ExpressionUUID->"ee3736a2-db98-4f04-8011-8bf385bf5c03"]
}, Open ]],
Cell[CellGroupData[{
Cell[1240385, 24064, 227, 5, 30, "Input",ExpressionUUID->"d9f26483-957d-48cb-9cbd-de067cce11d9"],
Cell[1240615, 24071, 169, 3, 34, "Output",ExpressionUUID->"21e59d06-1d9a-4a2d-9c59-f182a8199c43"]
}, Open ]],
Cell[1240799, 24077, 147, 2, 35, "Text",ExpressionUUID->"845bfcee-5183-4845-b0d9-be0406a48f7c"],
Cell[CellGroupData[{
Cell[1240971, 24083, 826, 21, 115, "Input",ExpressionUUID->"31075e0a-b4f8-4808-b423-fe8cded3e6a7"],
Cell[1241800, 24106, 35091, 633, 377, "Output",ExpressionUUID->"bac7a8f4-665e-46ed-a94c-5da0dcef0c26"]
}, Open ]],
Cell[1276906, 24742, 241, 6, 30, "Input",ExpressionUUID->"90e3e1a6-f282-4fd0-b7b8-abfd44df2b88"],
Cell[1277150, 24750, 303, 7, 30, "Input",ExpressionUUID->"984a3148-86cb-424d-b4cd-8c3ca3e1e779"],
Cell[1277456, 24759, 281, 7, 30, "Input",ExpressionUUID->"a126ab63-1a3f-40bc-9c13-3e887e0f7b5a"],
Cell[CellGroupData[{
Cell[1277762, 24770, 1071, 29, 115, "Input",ExpressionUUID->"e893c03b-e1f8-46ac-88dc-903e43dd6819"],
Cell[1278836, 24801, 37668, 680, 377, "Output",ExpressionUUID->"2090e652-95cc-48c8-8a1c-f357077f6d47"]
}, Open ]],
Cell[CellGroupData[{
Cell[1316541, 25486, 688, 19, 30, "Input",ExpressionUUID->"6fadebaf-2796-44a0-af79-23a42b500c84"],
Cell[1317232, 25507, 31704, 1204, 1424, "Output",ExpressionUUID->"8fd6fe2d-6dd2-4cad-921b-8067bb6ca766"]
}, Open ]],
Cell[1348951, 26714, 285, 7, 30, "Input",ExpressionUUID->"67fc4448-2979-4233-a36c-68072860f811"],
Cell[1349239, 26723, 624, 17, 73, "Input",ExpressionUUID->"e18a893b-0811-4f10-9390-621e92f25e0c"],
Cell[1349866, 26742, 4675, 115, 241, "Input",ExpressionUUID->"68dcab2b-263e-47f9-8d00-e18a5b640ceb"],
Cell[1354544, 26859, 714, 19, 94, "Input",ExpressionUUID->"d37e7203-d2fd-450d-9a49-a7af4a49a0e5"],
Cell[1355261, 26880, 987, 26, 52, "Input",ExpressionUUID->"7635641f-9785-4182-9853-c2be3dc8c71e"],
Cell[CellGroupData[{
Cell[1356273, 26910, 198, 4, 30, "Input",ExpressionUUID->"8c7275a4-a682-4e10-ad52-37b9b0dc3add"],
Cell[1356474, 26916, 5153, 127, 266, "Output",ExpressionUUID->"f1a1f4ba-2ef9-408f-affa-461b19b2b891"]
}, Open ]],
Cell[CellGroupData[{
Cell[1361664, 27048, 217, 5, 30, "Input",ExpressionUUID->"fc3db61f-fb28-403d-9cd0-36ebffd10b9b"],
Cell[1361884, 27055, 15679, 257, 377, "Output",ExpressionUUID->"3bf6a9b6-cc3c-468c-91ac-6028b916ac49"]
}, Open ]],
Cell[CellGroupData[{
Cell[1377600, 27317, 107, 1, 30, "Input",ExpressionUUID->"a93ba50c-91d3-45fc-927c-06d0198c4c43"],
Cell[1377710, 27320, 31704, 1204, 1424, "Output",ExpressionUUID->"74dfd5a3-dee9-4c27-a275-68ece233b0f6"]
}, Open ]]
}, Closed]]
}, Open ]]
}
]
*)