(* Content-type: application/vnd.wolfram.mathematica *) (*** Wolfram Notebook File ***) (* http://www.wolfram.com/nb *) (* CreatedBy='Mathematica 11.1' *) (*CacheID: 234*) (* Internal cache information: NotebookFileLineBreakTest NotebookFileLineBreakTest NotebookDataPosition[ 158, 7] NotebookDataLength[ 275483, 7517] NotebookOptionsPosition[ 245281, 7000] NotebookOutlinePosition[ 245720, 7017] CellTagsIndexPosition[ 245677, 7014] WindowFrame->Normal*) (* Beginning of Notebook Content *) Notebook[{ Cell[CellGroupData[{ Cell["Elongated Triangular Pyramid", "Title",ExpressionUUID->"b83a0b4b-6670-4c18-9113-6056bc7dedde"], Cell[CellGroupData[{ Cell["Author", "Subsection",ExpressionUUID->"df43b363-6c76-4d43-9f48-06e9084602e6"], Cell["\<\ Eric W. Weisstein October 5, 2022\ \>", "Text",ExpressionUUID->"2503fb3e-da7c-4d5b-b9b2-633e5d2f9cd1"], Cell[TextData[{ "This notebook downloaded from ", ButtonBox["http://mathworld.wolfram.com/notebooks/Polyhedra/\ ElongatedTriangularPyramid.nb", BaseStyle->"Hyperlink", ButtonData:>{ URL["http://mathworld.wolfram.com/notebooks/Polyhedra/\ ElongatedTriangularPyramid.nb"], None}], "." }], "Text",ExpressionUUID->"1f29cd08-8a9b-4aae-aa1b-d7af717f479f"], Cell[TextData[{ "For more information, see Eric's ", StyleBox["MathWorld", FontSlant->"Italic"], " entry ", ButtonBox["http://mathworld.wolfram.com/ElongatedTriangularPyramid.html", BaseStyle->"Hyperlink", ButtonData:>{ URL["http://mathworld.wolfram.com/ElongatedTriangularPyramid.html"], None}], "." }], "Text",ExpressionUUID->"159b673d-c771-44dd-95bc-a5bfcd9f43c3"], Cell["\<\ \[Copyright]2022 Wolfram Research, Inc. except for portions noted otherwise\ \>", "Text",ExpressionUUID->"0053175e-5821-48c9-b8d5-268cfa6dacc8"] }, Open ]], Cell[CellGroupData[{ Cell["Solid", "Section",ExpressionUUID->"1247822e-5b0a-433f-9b29-d396bdcaa85f"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"PolyhedronData", "[", RowBox[{"\"\\"", ",", "\"\\""}], "]"}]], "Input", CellLabel-> "In[167]:=",ExpressionUUID->"eb281f6c-d8c4-4d33-8d34-cbe7b8d70802"], Cell[BoxData[ RowBox[{"{", "\<\"C3\"\>", "}"}]], "Output", CellLabel-> "Out[167]=",ExpressionUUID->"3c426287-501d-4f68-bfc3-0b412a3b33dc"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"PolyhedronData", "[", "\"\\"", "]"}]], "Input", CellLabel-> "In[169]:=",ExpressionUUID->"fa7ae304-7f20-4743-83da-4526acaa8997"], Cell[BoxData[ Graphics3DBox[ GraphicsComplex3DBox[ NCache[{{0, 0, Rational[1, 3] (3 + 6^Rational[1, 2])}, { Rational[-1, 2] 3^Rational[-1, 2], Rational[-1, 2], 0}, { Rational[-1, 2] 3^Rational[-1, 2], Rational[-1, 2], 1}, { Rational[-1, 2] 3^Rational[-1, 2], Rational[1, 2], 0}, { Rational[-1, 2] 3^Rational[-1, 2], Rational[1, 2], 1}, { 3^Rational[-1, 2], 0, 0}, {3^Rational[-1, 2], 0, 1}}, {{ 0, 0, 1.8164965809277258`}, {-0.2886751345948129, -0.5, 0}, {-0.2886751345948129, -0.5, 1}, {-0.2886751345948129, 0.5, 0}, {-0.2886751345948129, 0.5, 1}, {0.5773502691896258, 0, 0}, { 0.5773502691896258, 0, 1}}], Polygon3DBox[{{5, 3, 1}, {3, 7, 1}, {7, 5, 1}, {4, 2, 3, 5}, {2, 6, 7, 3}, {6, 4, 5, 7}, {6, 2, 4}}]]]], "Output", CellLabel-> "Out[169]=",ExpressionUUID->"2d9c6440-52af-493e-b7b4-2e104b57a0f6"] }, Open ]], Cell[CellGroupData[{ Cell["Net", "Subsection",ExpressionUUID->"8279c2a7-d767-4d57-a5d0-f37c3c43d05e"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"PolyhedronData", "[", RowBox[{"\"\\"", ",", "\"\\""}], "]"}]], "Input", CellLabel-> "In[171]:=",ExpressionUUID->"ebd939a2-fc1a-4e2a-8df2-c9e178898fe2"], Cell[BoxData[ GraphicsBox[ {RGBColor[1, 1, 0.85], EdgeForm[GrayLevel[0]], GraphicsComplexBox[ NCache[{{0, Rational[1, 2] 3^Rational[1, 2]}, { 0, Rational[1, 2] (2 + 3^Rational[1, 2])}, { Rational[1, 2], 1 + 3^Rational[1, 2]}, { 1, Rational[1, 2] 3^Rational[1, 2]}, { 1, Rational[1, 2] (2 + 3^Rational[1, 2])}, {Rational[3, 2], 0}, { Rational[3, 2], 1 + 3^Rational[1, 2]}, { 2, Rational[1, 2] 3^Rational[1, 2]}, { 2, Rational[1, 2] (2 + 3^Rational[1, 2])}, { Rational[5, 2], 1 + 3^Rational[1, 2]}, { 3, Rational[1, 2] 3^Rational[1, 2]}, { 3, Rational[1, 2] (2 + 3^Rational[1, 2])}}, {{0, 0.8660254037844386}, { 0, 1.8660254037844386`}, {0.5, 2.732050807568877}, { 1, 0.8660254037844386}, {1, 1.8660254037844386`}, {1.5, 0}, {1.5, 2.732050807568877}, {2, 0.8660254037844386}, {2, 1.8660254037844386`}, { 2.5, 2.732050807568877}, {3, 0.8660254037844386}, { 3, 1.8660254037844386`}}], PolygonBox[{{4, 6, 8}, {2, 1, 4, 5}, {3, 2, 5}, {5, 4, 8, 9}, {7, 5, 9}, { 9, 8, 11, 12}, {10, 9, 12}}]]}]], "Output", CellLabel-> "Out[171]=",ExpressionUUID->"4826b570-4755-4d48-9bd2-3e4e7058012c"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"PolyhedronData", "[", RowBox[{ "\"\\"", ",", "\"\\"", ",", "\"\\""}], "]"}]], "Input", CellLabel-> "In[170]:=",ExpressionUUID->"5d2b55a3-71f4-45b4-bef5-3843b9ddb3ce"], Cell[BoxData[ GraphicsBox[ {EdgeForm[GrayLevel[0]], GraphicsComplexBox[ NCache[{{0, Rational[1, 2] 3^Rational[1, 2]}, { 0, Rational[1, 2] (2 + 3^Rational[1, 2])}, { Rational[1, 2], 1 + 3^Rational[1, 2]}, { 1, Rational[1, 2] 3^Rational[1, 2]}, { 1, Rational[1, 2] (2 + 3^Rational[1, 2])}, {Rational[3, 2], 0}, { Rational[3, 2], 1 + 3^Rational[1, 2]}, { 2, Rational[1, 2] 3^Rational[1, 2]}, { 2, Rational[1, 2] (2 + 3^Rational[1, 2])}, { Rational[5, 2], 1 + 3^Rational[1, 2]}, { 3, Rational[1, 2] 3^Rational[1, 2]}, { 3, Rational[1, 2] (2 + 3^Rational[1, 2])}}, {{0, 0.8660254037844386}, { 0, 1.8660254037844386`}, {0.5, 2.732050807568877}, { 1, 0.8660254037844386}, {1, 1.8660254037844386`}, {1.5, 0}, {1.5, 2.732050807568877}, {2, 0.8660254037844386}, {2, 1.8660254037844386`}, { 2.5, 2.732050807568877}, {3, 0.8660254037844386}, { 3, 1.8660254037844386`}}], { {RGBColor[1, 0, 0], PolygonBox[{{3, 2, 5}, {4, 6, 8}, {7, 5, 9}, {10, 9, 12}}]}, {RGBColor[1, 0.5, 0], PolygonBox[{{2, 1, 4, 5}, {5, 4, 8, 9}, {9, 8, 11, 12}}]}}]}]], "Output",\ CellLabel-> "Out[170]=",ExpressionUUID->"59021604-b183-4ce3-8999-613a4c7beb7b"] }, Open ]], Cell[BoxData[ RowBox[{"NetPrintout", "[", RowBox[{ RowBox[{"PolyhedronData", "[", RowBox[{"\"\\"", ",", "\"\\""}], "]"}], ",", "\"\\""}], "]"}]], "Input",E\ xpressionUUID->"e6cb4c30-b094-46f5-ac1d-4d50c933a9b4"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Properties", "Section",ExpressionUUID->"a7f1fd83-f10c-4383-bf49-48d5e68d7627"], Cell[BoxData[ RowBox[{"<<", "MathWorld`Polyhedra`"}]], "Input", CellLabel->"In[5]:=",ExpressionUUID->"6243c8ec-2373-45be-872e-b94f38c0df8e"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"p", "=", RowBox[{"PolyhedronData", "[", RowBox[{ RowBox[{"pname", "=", "\"\\""}], ",", "\"\\""}], "]"}]}]], "Input", CellLabel->"In[1]:=",ExpressionUUID->"159b602b-645e-48ac-9d88-ebbf567cae17"], Cell[BoxData[ InterpretationBox[ RowBox[{ TagBox["Polyhedron", "SummaryHead"], "[", DynamicModuleBox[{Typeset`open$$ = False, Typeset`embedState$$ = "Ready", Typeset`spolyhedron$$ = Quiet[ Polyhedron[{{0, 0, Rational[1, 3] (3 + 6^Rational[1, 2])}, { Rational[-1, 2] 3^Rational[-1, 2], Rational[-1, 2], 0}, {Rational[-1, 2] 3^Rational[-1, 2], Rational[-1, 2], 1}, {Rational[-1, 2] 3^Rational[-1, 2], Rational[1, 2], 0}, {Rational[-1, 2] 3^Rational[-1, 2], Rational[1, 2], 1}, {3^Rational[-1, 2], 0, 0}, { 3^Rational[-1, 2], 0, 1}}, {{5, 3, 1}, {3, 7, 1}, {7, 5, 1}, {4, 2, 3, 5}, {2, 6, 7, 3}, {6, 4, 5, 7}, {6, 2, 4}}]]}, TemplateBox[{ PaneSelectorBox[{False -> GridBox[{{ PaneBox[ ButtonBox[ DynamicBox[ FEPrivate`FrontEndResource["FEBitmaps", "SummaryBoxOpener"]], ButtonFunction :> (Typeset`open$$ = True), Appearance -> None, BaseStyle -> {}, Evaluator -> Automatic, Method -> "Preemptive"], Alignment -> {Center, Center}, ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], Graphics3DBox[{ Directive[ Hue[0.58, 0.4, 1], Opacity[0.5], EdgeForm[ GrayLevel[1]]], PolyhedronBox[ NCache[{{0, 0, Rational[1, 3] (3 + 6^Rational[1, 2])}, { Rational[-1, 2] 3^Rational[-1, 2], Rational[-1, 2], 0}, {Rational[-1, 2] 3^Rational[-1, 2], Rational[-1, 2], 1}, {Rational[-1, 2] 3^Rational[-1, 2], Rational[1, 2], 0}, {Rational[-1, 2] 3^Rational[-1, 2], Rational[1, 2], 1}, {3^Rational[-1, 2], 0, 0}, { 3^Rational[-1, 2], 0, 1}}, {{ 0, 0, 1.8164965809277258`}, {-0.2886751345948129, -0.5, 0}, {-0.2886751345948129, -0.5, 1}, {-0.2886751345948129, 0.5, 0}, {-0.2886751345948129, 0.5, 1}, { 0.5773502691896258, 0, 0}, {0.5773502691896258, 0, 1}}], {{5, 3, 1}, {3, 7, 1}, {7, 5, 1}, {4, 2, 3, 5}, {2, 6, 7, 3}, {6, 4, 5, 7}, {6, 2, 4}}]}, ImageSize -> Dynamic[{5.25, 3.5} (CurrentValue["FontCapHeight"]/ AbsoluteCurrentValue[Magnification])], Boxed -> False, Lighting -> {{"Ambient", RGBColor[0.4, 0.45, 0.5]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{2, 0, 2}]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{2, 2, 2}]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{0, 2, 2}]}}, Method -> {"ShrinkWrap" -> True}], GridBox[{{ RowBox[{ TagBox["\"Number of points: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["7", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Number of faces: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["7", "SummaryItem"]}]}}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> {"Columns" -> {{2}}, "Rows" -> {{Automatic}}}, BaseStyle -> { ShowStringCharacters -> False, NumberMarks -> False, PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, BaselinePosition -> {1, 1}], True -> GridBox[{{ PaneBox[ ButtonBox[ DynamicBox[ FEPrivate`FrontEndResource["FEBitmaps", "SummaryBoxCloser"]], ButtonFunction :> (Typeset`open$$ = False), Appearance -> None, BaseStyle -> {}, Evaluator -> Automatic, Method -> "Preemptive"], Alignment -> {Center, Center}, ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], Graphics3DBox[{ Directive[ Hue[0.58, 0.4, 1], Opacity[0.5], EdgeForm[ GrayLevel[1]]], PolyhedronBox[ NCache[{{0, 0, Rational[1, 3] (3 + 6^Rational[1, 2])}, { Rational[-1, 2] 3^Rational[-1, 2], Rational[-1, 2], 0}, {Rational[-1, 2] 3^Rational[-1, 2], Rational[-1, 2], 1}, {Rational[-1, 2] 3^Rational[-1, 2], Rational[1, 2], 0}, {Rational[-1, 2] 3^Rational[-1, 2], Rational[1, 2], 1}, {3^Rational[-1, 2], 0, 0}, { 3^Rational[-1, 2], 0, 1}}, {{ 0, 0, 1.8164965809277258`}, {-0.2886751345948129, -0.5, 0}, {-0.2886751345948129, -0.5, 1}, {-0.2886751345948129, 0.5, 0}, {-0.2886751345948129, 0.5, 1}, { 0.5773502691896258, 0, 0}, {0.5773502691896258, 0, 1}}], {{5, 3, 1}, {3, 7, 1}, {7, 5, 1}, {4, 2, 3, 5}, {2, 6, 7, 3}, {6, 4, 5, 7}, {6, 2, 4}}]}, ImageSize -> Dynamic[{5.25, 3.5} (CurrentValue["FontCapHeight"]/ AbsoluteCurrentValue[Magnification])], Boxed -> False, Lighting -> {{"Ambient", RGBColor[0.4, 0.45, 0.5]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{2, 0, 2}]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{2, 2, 2}]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{0, 2, 2}]}}, Method -> {"ShrinkWrap" -> True}], GridBox[{{ RowBox[{ TagBox["\"Number of points: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["7", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Number of faces: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["7", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Embedding dimension: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["3", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Type: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Quiet[ Apply[Region`PolyhedronDump`polyhedronType, Region`PolyhedronDump`computeType[ Typeset`spolyhedron$$]]], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}, { RowBox[{ TagBox["\"Bounds: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Region`PolyhedronDump`iRegionBounds[ Typeset`spolyhedron$$], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}, { RowBox[{ TagBox["\"Volume: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Region`PolyhedronDump`iVolume[Typeset`spolyhedron$$], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> {"Columns" -> {{2}}, "Rows" -> {{Automatic}}}, BaseStyle -> { ShowStringCharacters -> False, NumberMarks -> False, PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, BaselinePosition -> {1, 1}]}, Dynamic[Typeset`open$$], ImageSize -> Automatic]}, "SummaryPanel"], DynamicModuleValues:>{}], "]"}], Polyhedron[{{0, 0, Rational[1, 3] (3 + 6^Rational[1, 2])}, { Rational[-1, 2] 3^Rational[-1, 2], Rational[-1, 2], 0}, {Rational[-1, 2] 3^Rational[-1, 2], Rational[-1, 2], 1}, {Rational[-1, 2] 3^Rational[-1, 2], Rational[1, 2], 0}, {Rational[-1, 2] 3^Rational[-1, 2], Rational[1, 2], 1}, {3^Rational[-1, 2], 0, 0}, { 3^Rational[-1, 2], 0, 1}}, {{5, 3, 1}, {3, 7, 1}, {7, 5, 1}, {4, 2, 3, 5}, {2, 6, 7, 3}, {6, 4, 5, 7}, {6, 2, 4}}], Editable->False, SelectWithContents->True, Selectable->False]], "Output", CellLabel->"Out[1]=",ExpressionUUID->"a143fe7d-a5a0-4703-86bb-29de185620c0"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"vol", "=", RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}]}]], "Input", CellLabel-> "(byblis65 V13.2.0) \ In[3]:=",ExpressionUUID->"c476d211-744c-4074-94bb-628fc9a0fbf4"], Cell[BoxData[ RowBox[{ FractionBox["1", "12"], " ", RowBox[{"(", RowBox[{ SqrtBox["2"], "+", RowBox[{"3", " ", SqrtBox["3"]}]}], ")"}]}]], "Output", CellLabel-> "(byblis65 V13.2.0) \ Out[3]=",ExpressionUUID->"1dc5da08-590d-4bde-9b8b-aa8e4f981d63"] }, Open ]], Cell[CellGroupData[{ Cell["Centroid", "Subsection",ExpressionUUID->"23071e18-9ec8-49cc-a04b-4237121c7e58"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}]], "Input", CellLabel-> "In[173]:=",ExpressionUUID->"4f8c044f-a2d9-4b05-977e-ac4ac62600a3"], Cell[BoxData[ RowBox[{"{", RowBox[{"0", ",", "0", ",", RowBox[{ FractionBox["1", "75"], " ", RowBox[{"(", RowBox[{"39", "+", RowBox[{"4", " ", SqrtBox["6"]}]}], ")"}]}]}], "}"}]], "Output", CellLabel-> "Out[173]=",ExpressionUUID->"59437994-706d-4deb-8b87-2653b63dd72e"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"RegionCentroid", "[", "p", "]"}], "//", "FullSimplify"}]], "Input",\ CellLabel-> "In[175]:=",ExpressionUUID->"8c0bd1e5-e982-458e-80c8-ab19aa3ffdb0"], Cell[BoxData[ RowBox[{"{", RowBox[{"0", ",", "0", ",", RowBox[{ FractionBox["1", "75"], " ", RowBox[{"(", RowBox[{"39", "+", RowBox[{"4", " ", SqrtBox["6"]}]}], ")"}]}]}], "}"}]], "Output", CellLabel-> "Out[175]=",ExpressionUUID->"5c110597-99c2-494c-8a6b-6eec2198be6f"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"PolyhedronCentroid", "[", "p", "]"}]], "Input", CellLabel-> "In[176]:=",ExpressionUUID->"68a280b0-4b32-410a-9120-549d1989a839"], Cell[BoxData[ RowBox[{"{", RowBox[{"0", ",", "0", ",", RowBox[{ FractionBox["1", "75"], " ", RowBox[{"(", RowBox[{"39", "+", RowBox[{"4", " ", SqrtBox["6"]}]}], ")"}]}]}], "}"}]], "Output", CellLabel-> "Out[176]=",ExpressionUUID->"72f2bea9-ce63-4810-b722-2dc3d758e086"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Circumsphere", "Subsection",ExpressionUUID->"127204a7-78ab-4a84-8a03-e69493a06319"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}]], "Input", CellLabel-> "In[177]:=",ExpressionUUID->"77012c8c-fe33-4b7f-9c5a-4eeff8139b1a"], Cell[BoxData[ RowBox[{"Missing", "[", "\<\"NotApplicable\"\>", "]"}]], "Output", CellLabel-> "Out[177]=",ExpressionUUID->"68606911-a56c-4a43-84da-e11136d70af5"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Circumsphere", "[", "p", "]"}]], "Input", CellLabel-> "In[178]:=",ExpressionUUID->"0e9473e5-50bc-4df0-bc7f-a6348941c711"], Cell[BoxData[ TemplateBox[{ "Circumsphere", "indep", "\"Circumsphere does not exist for \ \\!\\(\\*InterpretationBox[RowBox[{TagBox[\\\"Polyhedron\\\", \\\"SummaryHead\ \\\"], \\\"[\\\", DynamicModuleBox[{Typeset`open$$ = False, \ Set[Typeset`embedState$$, \\\"Ready\\\"], Set[Typeset`spolyhedron$$, \ Quiet[Polyhedron[List[List[0, 0, Times[Rational[1, 3], Plus[3, Power[6, \ Rational[1, 2]]]]], List[Times[Rational[-1, 2], Power[3, Rational[-1, 2]]], \ Rational[-1, 2], 0], List[Times[Rational[-1, 2], Power[3, Rational[-1, 2]]], \ Rational[-1, 2], 1], List[Times[Rational[-1, 2], Power[3, Rational[-1, 2]]], \ Rational[1, 2], 0], List[Times[Rational[-1, 2], Power[3, Rational[-1, 2]]], \ Rational[1, 2], 1], List[Power[3, Rational[-1, 2]], 0, 0], List[Power[3, \ Rational[-1, 2]], 0, 1]], List[List[5, 3, 1], List[3, 7, 1], List[7, 5, 1], \ List[4, 2, 3, 5], List[2, 6, 7, 3], List[6, 4, 5, 7], List[6, 2, 4]]]]]}, \ TemplateBox[List[PaneSelectorBox[List[Rule[False, \ GridBox[List[List[PaneBox[ButtonBox[DynamicBox[FEPrivate`FrontEndResource[\\\"\ FEBitmaps\\\", \\\"SummaryBoxOpener\\\"]], RuleDelayed[ButtonFunction, \ Set[Typeset`open$$, True]], Rule[Appearance, None], Rule[BaseStyle, List[]], \ Rule[Evaluator, Automatic], Rule[Method, \\\"Preemptive\\\"]], \ Rule[Alignment, List[Center, Center]], Rule[ImageSize, \ Dynamic[List[Automatic, Times[3.5`, \ Times[CurrentValue[\\\"FontCapHeight\\\"], \ Power[AbsoluteCurrentValue[Magnification], -1]]]]]]], \ Graphics3DBox[List[Directive[Hue[0.58`, 0.4`, 1], Opacity[0.5`], \ EdgeForm[GrayLevel[1]]], TagBox[GraphicsComplex3DBox[NCache[List[List[0, 0, \ Times[Rational[1, 3], Plus[3, Power[6, Rational[1, 2]]]]], \ List[Times[Rational[-1, 2], Power[3, Rational[-1, 2]]], Rational[-1, 2], 0], \ List[Times[Rational[-1, 2], Power[3, Rational[-1, 2]]], Rational[-1, 2], 1], \ List[Times[Rational[-1, 2], Power[3, Rational[-1, 2]]], Rational[1, 2], 0], \ List[Times[Rational[-1, 2], Power[3, Rational[-1, 2]]], Rational[1, 2], 1], \ List[Power[3, Rational[-1, 2]], 0, 0], List[Power[3, Rational[-1, 2]], 0, \ 1]], List[List[0, 0, 1.8164965809277258`], List[-0.2886751345948129`, -0.5`, \ 0], List[-0.2886751345948129`, -0.5`, 1], List[-0.2886751345948129`, 0.5`, \ 0], List[-0.2886751345948129`, 0.5`, 1], List[0.5773502691896258`, 0, 0], \ List[0.5773502691896258`, 0, 1]]], Polygon3DBox[List[List[5, 3, 1], List[3, \ 7, 1], List[7, 5, 1], List[4, 2, 3, 5], List[2, 6, 7, 3], List[6, 4, 5, 7], \ List[6, 2, 4]]]], \\\"Polyhedron\\\"]], Rule[ImageSize, \ Dynamic[Times[List[5.25`, 3.5`], Times[CurrentValue[\\\"FontCapHeight\\\"], \ Power[AbsoluteCurrentValue[Magnification], -1]]]]], Rule[Boxed, False], \ Rule[Lighting, List[List[\\\"Ambient\\\", RGBColor[0.4`, 0.45`, 0.5`]], List[\ \\\"Directional\\\", RGBColor[0.24`, 0.27`, 0.3`], ImageScaled[List[2, 0, \ 2]]], List[\\\"Directional\\\", RGBColor[0.24`, 0.27`, 0.3`], \ ImageScaled[List[2, 2, 2]]], List[\\\"Directional\\\", RGBColor[0.24`, 0.27`, \ 0.3`], ImageScaled[List[0, 2, 2]]]]], Rule[Method, List[Rule[\\\"ShrinkWrap\\\ \", True]]]], GridBox[List[List[RowBox[List[TagBox[\\\"\\\\\\\"Number of \ points: \\\\\\\"\\\", \\\"SummaryItemAnnotation\\\"], \ \\\"\\\\[InvisibleSpace]\\\", TagBox[\\\"7\\\", \\\"SummaryItem\\\"]]]], \ List[RowBox[List[TagBox[\\\"\\\\\\\"Number of faces: \\\\\\\"\\\", \ \\\"SummaryItemAnnotation\\\"], \\\"\\\\[InvisibleSpace]\\\", \ TagBox[\\\"7\\\", \\\"SummaryItem\\\"]]]]], Rule[GridBoxAlignment, List[Rule[\ \\\"Columns\\\", List[List[Left]]], Rule[\\\"Rows\\\", \ List[List[Automatic]]]]], Rule[AutoDelete, False], Rule[GridBoxItemSize, \ List[Rule[\\\"Columns\\\", List[List[Automatic]]], Rule[\\\"Rows\\\", \ List[List[Automatic]]]]], Rule[GridBoxSpacings, List[Rule[\\\"Columns\\\", \ List[List[2]]], Rule[\\\"Rows\\\", List[List[Automatic]]]]], Rule[BaseStyle, \ List[Rule[ShowStringCharacters, False], Rule[NumberMarks, False], \ Rule[PrintPrecision, 3], Rule[ShowSyntaxStyles, False]]]]]], \ Rule[GridBoxAlignment, List[Rule[\\\"Columns\\\", List[List[Left]]], \ Rule[\\\"Rows\\\", List[List[Top]]]]], Rule[AutoDelete, False], \ Rule[GridBoxItemSize, List[Rule[\\\"Columns\\\", List[List[Automatic]]], \ Rule[\\\"Rows\\\", List[List[Automatic]]]]], Rule[BaselinePosition, List[1, \ 1]]]], Rule[True, \ GridBox[List[List[PaneBox[ButtonBox[DynamicBox[FEPrivate`FrontEndResource[\\\"\ FEBitmaps\\\", \\\"SummaryBoxCloser\\\"]], RuleDelayed[ButtonFunction, \ Set[Typeset`open$$, False]], Rule[Appearance, None], Rule[BaseStyle, List[]], \ Rule[Evaluator, Automatic], Rule[Method, \\\"Preemptive\\\"]], \ Rule[Alignment, List[Center, Center]], Rule[ImageSize, \ Dynamic[List[Automatic, Times[3.5`, \ Times[CurrentValue[\\\"FontCapHeight\\\"], \ Power[AbsoluteCurrentValue[Magnification], -1]]]]]]], \ Graphics3DBox[List[Directive[Hue[0.58`, 0.4`, 1], Opacity[0.5`], \ EdgeForm[GrayLevel[1]]], TagBox[GraphicsComplex3DBox[NCache[List[List[0, 0, \ Times[Rational[1, 3], Plus[3, Power[6, Rational[1, 2]]]]], \ List[Times[Rational[-1, 2], Power[3, Rational[-1, 2]]], Rational[-1, 2], 0], \ List[Times[Rational[-1, 2], Power[3, Rational[-1, 2]]], Rational[-1, 2], 1], \ List[Times[Rational[-1, 2], Power[3, Rational[-1, 2]]], Rational[1, 2], 0], \ List[Times[Rational[-1, 2], Power[3, Rational[-1, 2]]], Rational[1, 2], 1], \ List[Power[3, Rational[-1, 2]], 0, 0], List[Power[3, Rational[-1, 2]], 0, \ 1]], List[List[0, 0, 1.8164965809277258`], List[-0.2886751345948129`, -0.5`, \ 0], List[-0.2886751345948129`, -0.5`, 1], List[-0.2886751345948129`, 0.5`, \ 0], List[-0.2886751345948129`, 0.5`, 1], List[0.5773502691896258`, 0, 0], \ List[0.5773502691896258`, 0, 1]]], Polygon3DBox[List[List[5, 3, 1], List[3, \ 7, 1], List[7, 5, 1], List[4, 2, 3, 5], List[2, 6, 7, 3], List[6, 4, 5, 7], \ List[6, 2, 4]]]], \\\"Polyhedron\\\"]], Rule[ImageSize, \ Dynamic[Times[List[5.25`, 3.5`], Times[CurrentValue[\\\"FontCapHeight\\\"], \ Power[AbsoluteCurrentValue[Magnification], -1]]]]], Rule[Boxed, False], \ Rule[Lighting, List[List[\\\"Ambient\\\", RGBColor[0.4`, 0.45`, 0.5`]], List[\ \\\"Directional\\\", RGBColor[0.24`, 0.27`, 0.3`], ImageScaled[List[2, 0, \ 2]]], List[\\\"Directional\\\", RGBColor[0.24`, 0.27`, 0.3`], \ ImageScaled[List[2, 2, 2]]], List[\\\"Directional\\\", RGBColor[0.24`, 0.27`, \ 0.3`], ImageScaled[List[0, 2, 2]]]]], Rule[Method, List[Rule[\\\"ShrinkWrap\\\ \", True]]]], GridBox[List[List[RowBox[List[TagBox[\\\"\\\\\\\"Number of \ points: \\\\\\\"\\\", \\\"SummaryItemAnnotation\\\"], \ \\\"\\\\[InvisibleSpace]\\\", TagBox[\\\"7\\\", \\\"SummaryItem\\\"]]]], \ List[RowBox[List[TagBox[\\\"\\\\\\\"Number of faces: \\\\\\\"\\\", \ \\\"SummaryItemAnnotation\\\"], \\\"\\\\[InvisibleSpace]\\\", \ TagBox[\\\"7\\\", \\\"SummaryItem\\\"]]]], List[RowBox[List[TagBox[\\\"\\\\\\\ \"Embedding dimension: \\\\\\\"\\\", \\\"SummaryItemAnnotation\\\"], \ \\\"\\\\[InvisibleSpace]\\\", TagBox[\\\"3\\\", \\\"SummaryItem\\\"]]]], \ List[RowBox[List[TagBox[\\\"\\\\\\\"Type: \\\\\\\"\\\", \ \\\"SummaryItemAnnotation\\\"], \\\"\\\\[InvisibleSpace]\\\", \ TagBox[DynamicBox[ToBoxes[Quiet[Apply[Region`PolyhedronDump`polyhedronType, \ Region`PolyhedronDump`computeType[Typeset`spolyhedron$$]]], StandardForm], \ Rule[SynchronousUpdating, False], RuleDelayed[TrackedSymbols, List[]], \ RuleDelayed[CachedValue, AnimatorBox[0, List[0, Infinity], \ Rule[AppearanceElements, \\\"ProgressSlider\\\"], Rule[ImageSize, 20]]]], \ \\\"SummaryItem\\\"]]]], List[RowBox[List[TagBox[\\\"\\\\\\\"Bounds: \\\\\\\"\ \\\", \\\"SummaryItemAnnotation\\\"], \\\"\\\\[InvisibleSpace]\\\", \ TagBox[DynamicBox[ToBoxes[Region`PolyhedronDump`iRegionBounds[Typeset`\ spolyhedron$$], StandardForm], Rule[SynchronousUpdating, False], \ RuleDelayed[TrackedSymbols, List[]], RuleDelayed[CachedValue, AnimatorBox[0, \ List[0, Infinity], Rule[AppearanceElements, \\\"ProgressSlider\\\"], \ Rule[ImageSize, 20]]]], \\\"SummaryItem\\\"]]]], List[RowBox[List[TagBox[\\\"\ \\\\\\\"Volume: \\\\\\\"\\\", \\\"SummaryItemAnnotation\\\"], \ \\\"\\\\[InvisibleSpace]\\\", \ TagBox[DynamicBox[ToBoxes[Region`PolyhedronDump`iVolume[Typeset`spolyhedron$$]\ , StandardForm], Rule[SynchronousUpdating, False], \ RuleDelayed[TrackedSymbols, List[]], RuleDelayed[CachedValue, AnimatorBox[0, \ List[0, Infinity], Rule[AppearanceElements, \\\"ProgressSlider\\\"], \ Rule[ImageSize, 20]]]], \\\"SummaryItem\\\"]]]]], Rule[GridBoxAlignment, \ List[Rule[\\\"Columns\\\", List[List[Left]]], Rule[\\\"Rows\\\", \ List[List[Automatic]]]]], Rule[AutoDelete, False], Rule[GridBoxItemSize, \ List[Rule[\\\"Columns\\\", List[List[Automatic]]], Rule[\\\"Rows\\\", \ List[List[Automatic]]]]], Rule[GridBoxSpacings, List[Rule[\\\"Columns\\\", \ List[List[2]]], Rule[\\\"Rows\\\", List[List[Automatic]]]]], Rule[BaseStyle, \ List[Rule[ShowStringCharacters, False], Rule[NumberMarks, False], \ Rule[PrintPrecision, 3], Rule[ShowSyntaxStyles, False]]]]]], \ Rule[GridBoxAlignment, List[Rule[\\\"Columns\\\", List[List[Left]]], \ Rule[\\\"Rows\\\", List[List[Top]]]]], Rule[AutoDelete, False], \ Rule[GridBoxItemSize, List[Rule[\\\"Columns\\\", List[List[Automatic]]], \ Rule[\\\"Rows\\\", List[List[Automatic]]]]], Rule[BaselinePosition, List[1, \ 1]]]]], Dynamic[Typeset`open$$], Rule[ImageSize, Automatic]]], \ \\\"SummaryPanel\\\"], RuleDelayed[DynamicModuleValues, List[]]], \ \\\"]\\\"}], Polyhedron[List[List[0, 0, Times[Rational[1, 3], Plus[3, \ Power[6, Rational[1, 2]]]]], List[Times[Rational[-1, 2], Power[3, \ Rational[-1, 2]]], Rational[-1, 2], 0], List[Times[Rational[-1, 2], Power[3, \ Rational[-1, 2]]], Rational[-1, 2], 1], List[Times[Rational[-1, 2], Power[3, \ Rational[-1, 2]]], Rational[1, 2], 0], List[Times[Rational[-1, 2], Power[3, \ Rational[-1, 2]]], Rational[1, 2], 1], List[Power[3, Rational[-1, 2]], 0, 0], \ List[Power[3, Rational[-1, 2]], 0, 1]], List[List[5, 3, 1], List[3, 7, 1], \ List[7, 5, 1], List[4, 2, 3, 5], List[2, 6, 7, 3], List[6, 4, 5, 7], List[6, \ 2, 4]]], Rule[Selectable, False], Rule[Editable, False], \ Rule[SelectWithContents, True]]\\).\"", 2, 178, 45, 19516473296632108012, "Local"}, "MessageTemplate"]], "Message", "MSG", CellLabel-> "During evaluation of \ In[178]:=",ExpressionUUID->"2c76f7c2-6f32-4e00-8f8e-26260e6374b5"], Cell[BoxData[ RowBox[{"Circumsphere", "[", InterpretationBox[ RowBox[{ TagBox["Polyhedron", "SummaryHead"], "[", DynamicModuleBox[{Typeset`open$$ = False, Typeset`embedState$$ = "Ready", Typeset`spolyhedron$$ = Quiet[ Polyhedron[{{0, 0, Rational[1, 3] (3 + 6^Rational[1, 2])}, { Rational[-1, 2] 3^Rational[-1, 2], Rational[-1, 2], 0}, {Rational[-1, 2] 3^Rational[-1, 2], Rational[-1, 2], 1}, {Rational[-1, 2] 3^Rational[-1, 2], Rational[1, 2], 0}, {Rational[-1, 2] 3^Rational[-1, 2], Rational[1, 2], 1}, {3^Rational[-1, 2], 0, 0}, { 3^Rational[-1, 2], 0, 1}}, {{5, 3, 1}, {3, 7, 1}, {7, 5, 1}, {4, 2, 3, 5}, {2, 6, 7, 3}, {6, 4, 5, 7}, {6, 2, 4}}]]}, TemplateBox[{ PaneSelectorBox[{False -> GridBox[{{ PaneBox[ ButtonBox[ DynamicBox[ FEPrivate`FrontEndResource["FEBitmaps", "SummaryBoxOpener"]], ButtonFunction :> (Typeset`open$$ = True), Appearance -> None, BaseStyle -> {}, Evaluator -> Automatic, Method -> "Preemptive"], Alignment -> {Center, Center}, ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], Graphics3DBox[{ Directive[ Hue[0.58, 0.4, 1], Opacity[0.5], EdgeForm[ GrayLevel[1]]], TagBox[ GraphicsComplex3DBox[ NCache[{{0, 0, Rational[1, 3] (3 + 6^Rational[1, 2])}, { Rational[-1, 2] 3^Rational[-1, 2], Rational[-1, 2], 0}, {Rational[-1, 2] 3^Rational[-1, 2], Rational[-1, 2], 1}, {Rational[-1, 2] 3^Rational[-1, 2], Rational[1, 2], 0}, {Rational[-1, 2] 3^Rational[-1, 2], Rational[1, 2], 1}, {3^Rational[-1, 2], 0, 0}, { 3^Rational[-1, 2], 0, 1}}, {{ 0, 0, 1.8164965809277258`}, {-0.2886751345948129, -0.5, 0}, {-0.2886751345948129, -0.5, 1}, {-0.2886751345948129, 0.5, 0}, {-0.2886751345948129, 0.5, 1}, { 0.5773502691896258, 0, 0}, {0.5773502691896258, 0, 1}}], Polygon3DBox[{{5, 3, 1}, {3, 7, 1}, {7, 5, 1}, {4, 2, 3, 5}, {2, 6, 7, 3}, {6, 4, 5, 7}, {6, 2, 4}}]], "Polyhedron"]}, ImageSize -> Dynamic[{5.25, 3.5} (CurrentValue["FontCapHeight"]/ AbsoluteCurrentValue[Magnification])], Boxed -> False, Lighting -> {{"Ambient", RGBColor[0.4, 0.45, 0.5]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{2, 0, 2}]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{2, 2, 2}]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{0, 2, 2}]}}, Method -> {"ShrinkWrap" -> True}], GridBox[{{ RowBox[{ TagBox["\"Number of points: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["7", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Number of faces: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["7", "SummaryItem"]}]}}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> { "Columns" -> {{2}}, "Rows" -> {{Automatic}}}, BaseStyle -> { ShowStringCharacters -> False, NumberMarks -> False, PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, BaselinePosition -> {1, 1}], True -> GridBox[{{ PaneBox[ ButtonBox[ DynamicBox[ FEPrivate`FrontEndResource["FEBitmaps", "SummaryBoxCloser"]], ButtonFunction :> (Typeset`open$$ = False), Appearance -> None, BaseStyle -> {}, Evaluator -> Automatic, Method -> "Preemptive"], Alignment -> {Center, Center}, ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], Graphics3DBox[{ Directive[ Hue[0.58, 0.4, 1], Opacity[0.5], EdgeForm[ GrayLevel[1]]], TagBox[ GraphicsComplex3DBox[ NCache[{{0, 0, Rational[1, 3] (3 + 6^Rational[1, 2])}, { Rational[-1, 2] 3^Rational[-1, 2], Rational[-1, 2], 0}, {Rational[-1, 2] 3^Rational[-1, 2], Rational[-1, 2], 1}, {Rational[-1, 2] 3^Rational[-1, 2], Rational[1, 2], 0}, {Rational[-1, 2] 3^Rational[-1, 2], Rational[1, 2], 1}, {3^Rational[-1, 2], 0, 0}, { 3^Rational[-1, 2], 0, 1}}, {{ 0, 0, 1.8164965809277258`}, {-0.2886751345948129, -0.5, 0}, {-0.2886751345948129, -0.5, 1}, {-0.2886751345948129, 0.5, 0}, {-0.2886751345948129, 0.5, 1}, { 0.5773502691896258, 0, 0}, {0.5773502691896258, 0, 1}}], Polygon3DBox[{{5, 3, 1}, {3, 7, 1}, {7, 5, 1}, {4, 2, 3, 5}, {2, 6, 7, 3}, {6, 4, 5, 7}, {6, 2, 4}}]], "Polyhedron"]}, ImageSize -> Dynamic[{5.25, 3.5} (CurrentValue["FontCapHeight"]/ AbsoluteCurrentValue[Magnification])], Boxed -> False, Lighting -> {{"Ambient", RGBColor[0.4, 0.45, 0.5]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{2, 0, 2}]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{2, 2, 2}]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{0, 2, 2}]}}, Method -> {"ShrinkWrap" -> True}], GridBox[{{ RowBox[{ TagBox["\"Number of points: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["7", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Number of faces: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["7", "SummaryItem"]}]}, { RowBox[{ TagBox[ "\"Embedding dimension: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["3", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Type: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Quiet[ Apply[Region`PolyhedronDump`polyhedronType, Region`PolyhedronDump`computeType[ Typeset`spolyhedron$$]]], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}, { RowBox[{ TagBox["\"Bounds: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Region`PolyhedronDump`iRegionBounds[ Typeset`spolyhedron$$], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}, { RowBox[{ TagBox["\"Volume: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Region`PolyhedronDump`iVolume[Typeset`spolyhedron$$], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> { "Columns" -> {{2}}, "Rows" -> {{Automatic}}}, BaseStyle -> { ShowStringCharacters -> False, NumberMarks -> False, PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, BaselinePosition -> {1, 1}]}, Dynamic[Typeset`open$$], ImageSize -> Automatic]}, "SummaryPanel"], DynamicModuleValues:>{}], "]"}], Polyhedron[{{0, 0, Rational[1, 3] (3 + 6^Rational[1, 2])}, { Rational[-1, 2] 3^Rational[-1, 2], Rational[-1, 2], 0}, {Rational[-1, 2] 3^Rational[-1, 2], Rational[-1, 2], 1}, {Rational[-1, 2] 3^Rational[-1, 2], Rational[1, 2], 0}, {Rational[-1, 2] 3^Rational[-1, 2], Rational[1, 2], 1}, {3^Rational[-1, 2], 0, 0}, { 3^Rational[-1, 2], 0, 1}}, {{5, 3, 1}, {3, 7, 1}, {7, 5, 1}, {4, 2, 3, 5}, {2, 6, 7, 3}, {6, 4, 5, 7}, {6, 2, 4}}], Editable->False, SelectWithContents->True, Selectable->False], "]"}]], "Output", CellLabel-> "Out[178]=",ExpressionUUID->"f5dfb295-46b2-4f79-9854-92b5f1f51379"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"MyCircumsphere", "[", "p", "]"}]], "Input", CellLabel-> "In[179]:=",ExpressionUUID->"a9367c59-ba86-430f-80ce-0920872c3951"], Cell[BoxData[ RowBox[{"{", "}"}]], "Output", CellLabel-> "Out[179]=",ExpressionUUID->"efdc1214-e769-4821-b7b2-d959b680ab3e"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["DihedralAngles", "Subsection",ExpressionUUID->"4e59addc-6190-4338-aba0-f923c0945478"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}], "//", "Tally"}]], "Input", CellLabel-> "In[180]:=",ExpressionUUID->"eaed75d5-757f-43d8-a523-d32ea07b3290"], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"ArcSec", "[", "3", "]"}], ",", "3"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"ArcCos", "[", RowBox[{"-", FractionBox[ RowBox[{"2", " ", SqrtBox["2"]}], "3"]}], "]"}], ",", "3"}], "}"}], ",", RowBox[{"{", RowBox[{ FractionBox["\[Pi]", "3"], ",", "3"}], "}"}], ",", RowBox[{"{", RowBox[{ FractionBox["\[Pi]", "2"], ",", "3"}], "}"}]}], "}"}]], "Output", CellLabel-> "Out[180]=",ExpressionUUID->"ad8b15ed-e065-4de3-b6d4-c0daf89e1149"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{"DihedralAngles", "[", "p", "]"}], "//", "FullSimplify"}], "//", "Tally"}]], "Input", CellLabel-> "In[181]:=",ExpressionUUID->"72d88485-92bc-43f7-9ddd-58a04dcc614d"], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"ArcSec", "[", "3", "]"}], ",", "3"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"ArcCos", "[", RowBox[{"-", FractionBox[ RowBox[{"2", " ", SqrtBox["2"]}], "3"]}], "]"}], ",", "3"}], "}"}], ",", RowBox[{"{", RowBox[{ FractionBox["\[Pi]", "3"], ",", "3"}], "}"}], ",", RowBox[{"{", RowBox[{ FractionBox["\[Pi]", "2"], ",", "3"}], "}"}]}], "}"}]], "Output", CellLabel-> "Out[181]=",ExpressionUUID->"0a18f031-6ff1-43fd-9027-0ca2f24a4e26"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["EdgeLengths", "Subsection",ExpressionUUID->"34b41a70-f3de-4ed6-a601-65dc61807638"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}]], "Input", CellLabel-> "In[182]:=",ExpressionUUID->"c12005e0-5640-4d25-86d1-9bdeee9f6c8a"], Cell[BoxData[ RowBox[{"{", "1", "}"}]], "Output", CellLabel-> "Out[182]=",ExpressionUUID->"d4118716-4ce9-4de3-a9e3-0ee6575f6726"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{ RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}], "/.", RowBox[{ RowBox[{"Line", "[", "l_", "]"}], "\[RuleDelayed]", RowBox[{"EuclideanDistance", "@@", "l"}]}]}], "//", "FullSimplify"}], "//", "Union"}]], "Input", CellLabel-> "In[183]:=",ExpressionUUID->"e02e26ab-ae0b-47b6-877f-a5b8a8af9b65"], Cell[BoxData[ RowBox[{"{", "1", "}"}]], "Output", CellLabel-> "Out[183]=",ExpressionUUID->"c7bd9582-3ad8-4d82-85c3-e160148755f0"] }, Open ]] }, Closed]], Cell["Faces", "Subsection",ExpressionUUID->"682ce05c-ceaf-4226-ba36-f114876cbda7"], Cell[CellGroupData[{ Cell["GeneralizedDiameter", "Subsection",ExpressionUUID->"251ba3de-7d56-47e9-8148-c912e1d6d7cc"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}]], "Input", CellLabel-> "In[184]:=",ExpressionUUID->"439346ca-46ce-40ad-862e-d62f37fcbbc9"], Cell[BoxData[ SqrtBox[ RowBox[{ FractionBox["2", "3"], " ", RowBox[{"(", RowBox[{"3", "+", SqrtBox["6"]}], ")"}]}]]], "Output", CellLabel-> "Out[184]=",ExpressionUUID->"6b2876d4-46c1-4135-b20b-e2beb77d44e3"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"GeneralizedDiameter", "[", "p", "]"}], "//", "FullSimplify"}]], "Input", CellLabel-> "In[185]:=",ExpressionUUID->"8b10adaf-30bd-4f6b-b645-805cb63132d1"], Cell[BoxData[ SqrtBox[ RowBox[{ FractionBox["2", "3"], " ", RowBox[{"(", RowBox[{"3", "+", SqrtBox["6"]}], ")"}]}]]], "Output", CellLabel-> "Out[185]=",ExpressionUUID->"5502bfb1-fdbb-4cae-982f-18fd73d1ad5b"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Insphere", "Subsection",ExpressionUUID->"085df129-cd25-4b7c-8e95-84f032f3d1a9"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}]], "Input", CellLabel-> "In[186]:=",ExpressionUUID->"b5bf2097-94af-4a63-9188-5672d9b45dae"], Cell[BoxData[ RowBox[{"Missing", "[", "\<\"NotApplicable\"\>", "]"}]], "Output", CellLabel-> "Out[186]=",ExpressionUUID->"c6a0846d-61ee-47e2-88d7-9be54494fc7c"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Insphere", "[", "p", "]"}]], "Input", CellLabel-> "In[187]:=",ExpressionUUID->"74fc9162-d402-4666-8620-ba68f8404146"], Cell[BoxData[ TemplateBox[{ "Insphere", "indep", "\"Insphere does not exist for \ \\!\\(\\*InterpretationBox[RowBox[{TagBox[\\\"Polyhedron\\\", \\\"SummaryHead\ \\\"], \\\"[\\\", DynamicModuleBox[{Typeset`open$$ = False, \ Set[Typeset`embedState$$, \\\"Ready\\\"], Set[Typeset`spolyhedron$$, \ Quiet[Polyhedron[List[List[0, 0, Times[Rational[1, 3], Plus[3, Power[6, \ Rational[1, 2]]]]], List[Times[Rational[-1, 2], Power[3, Rational[-1, 2]]], \ Rational[-1, 2], 0], List[Times[Rational[-1, 2], Power[3, Rational[-1, 2]]], \ Rational[-1, 2], 1], List[Times[Rational[-1, 2], Power[3, Rational[-1, 2]]], \ Rational[1, 2], 0], List[Times[Rational[-1, 2], Power[3, Rational[-1, 2]]], \ Rational[1, 2], 1], List[Power[3, Rational[-1, 2]], 0, 0], List[Power[3, \ Rational[-1, 2]], 0, 1]], List[List[5, 3, 1], List[3, 7, 1], List[7, 5, 1], \ List[4, 2, 3, 5], List[2, 6, 7, 3], List[6, 4, 5, 7], List[6, 2, 4]]]]]}, \ TemplateBox[List[PaneSelectorBox[List[Rule[False, \ GridBox[List[List[PaneBox[ButtonBox[DynamicBox[FEPrivate`FrontEndResource[\\\"\ FEBitmaps\\\", \\\"SummaryBoxOpener\\\"]], RuleDelayed[ButtonFunction, \ Set[Typeset`open$$, True]], Rule[Appearance, None], Rule[BaseStyle, List[]], \ Rule[Evaluator, Automatic], Rule[Method, \\\"Preemptive\\\"]], \ Rule[Alignment, List[Center, Center]], Rule[ImageSize, \ Dynamic[List[Automatic, Times[3.5`, \ Times[CurrentValue[\\\"FontCapHeight\\\"], \ Power[AbsoluteCurrentValue[Magnification], -1]]]]]]], \ Graphics3DBox[List[Directive[Hue[0.58`, 0.4`, 1], Opacity[0.5`], \ EdgeForm[GrayLevel[1]]], TagBox[GraphicsComplex3DBox[NCache[List[List[0, 0, \ Times[Rational[1, 3], Plus[3, Power[6, Rational[1, 2]]]]], \ List[Times[Rational[-1, 2], Power[3, Rational[-1, 2]]], Rational[-1, 2], 0], \ List[Times[Rational[-1, 2], Power[3, Rational[-1, 2]]], Rational[-1, 2], 1], \ List[Times[Rational[-1, 2], Power[3, Rational[-1, 2]]], Rational[1, 2], 0], \ List[Times[Rational[-1, 2], Power[3, Rational[-1, 2]]], Rational[1, 2], 1], \ List[Power[3, Rational[-1, 2]], 0, 0], List[Power[3, Rational[-1, 2]], 0, \ 1]], List[List[0, 0, 1.8164965809277258`], List[-0.2886751345948129`, -0.5`, \ 0], List[-0.2886751345948129`, -0.5`, 1], List[-0.2886751345948129`, 0.5`, \ 0], List[-0.2886751345948129`, 0.5`, 1], List[0.5773502691896258`, 0, 0], \ List[0.5773502691896258`, 0, 1]]], Polygon3DBox[List[List[5, 3, 1], List[3, \ 7, 1], List[7, 5, 1], List[4, 2, 3, 5], List[2, 6, 7, 3], List[6, 4, 5, 7], \ List[6, 2, 4]]]], \\\"Polyhedron\\\"]], Rule[ImageSize, \ Dynamic[Times[List[5.25`, 3.5`], Times[CurrentValue[\\\"FontCapHeight\\\"], \ Power[AbsoluteCurrentValue[Magnification], -1]]]]], Rule[Boxed, False], \ Rule[Lighting, List[List[\\\"Ambient\\\", RGBColor[0.4`, 0.45`, 0.5`]], List[\ \\\"Directional\\\", RGBColor[0.24`, 0.27`, 0.3`], ImageScaled[List[2, 0, \ 2]]], List[\\\"Directional\\\", RGBColor[0.24`, 0.27`, 0.3`], \ ImageScaled[List[2, 2, 2]]], List[\\\"Directional\\\", RGBColor[0.24`, 0.27`, \ 0.3`], ImageScaled[List[0, 2, 2]]]]], Rule[Method, List[Rule[\\\"ShrinkWrap\\\ \", True]]]], GridBox[List[List[RowBox[List[TagBox[\\\"\\\\\\\"Number of \ points: \\\\\\\"\\\", \\\"SummaryItemAnnotation\\\"], \ \\\"\\\\[InvisibleSpace]\\\", TagBox[\\\"7\\\", \\\"SummaryItem\\\"]]]], \ List[RowBox[List[TagBox[\\\"\\\\\\\"Number of faces: \\\\\\\"\\\", \ \\\"SummaryItemAnnotation\\\"], \\\"\\\\[InvisibleSpace]\\\", \ TagBox[\\\"7\\\", \\\"SummaryItem\\\"]]]]], Rule[GridBoxAlignment, List[Rule[\ \\\"Columns\\\", List[List[Left]]], Rule[\\\"Rows\\\", \ List[List[Automatic]]]]], Rule[AutoDelete, False], Rule[GridBoxItemSize, \ List[Rule[\\\"Columns\\\", List[List[Automatic]]], Rule[\\\"Rows\\\", \ List[List[Automatic]]]]], Rule[GridBoxSpacings, List[Rule[\\\"Columns\\\", \ List[List[2]]], Rule[\\\"Rows\\\", List[List[Automatic]]]]], Rule[BaseStyle, \ List[Rule[ShowStringCharacters, False], Rule[NumberMarks, False], \ Rule[PrintPrecision, 3], Rule[ShowSyntaxStyles, False]]]]]], \ Rule[GridBoxAlignment, List[Rule[\\\"Columns\\\", List[List[Left]]], \ Rule[\\\"Rows\\\", List[List[Top]]]]], Rule[AutoDelete, False], \ Rule[GridBoxItemSize, List[Rule[\\\"Columns\\\", List[List[Automatic]]], \ Rule[\\\"Rows\\\", List[List[Automatic]]]]], Rule[BaselinePosition, List[1, \ 1]]]], Rule[True, \ GridBox[List[List[PaneBox[ButtonBox[DynamicBox[FEPrivate`FrontEndResource[\\\"\ FEBitmaps\\\", \\\"SummaryBoxCloser\\\"]], RuleDelayed[ButtonFunction, \ Set[Typeset`open$$, False]], Rule[Appearance, None], Rule[BaseStyle, List[]], \ Rule[Evaluator, Automatic], Rule[Method, \\\"Preemptive\\\"]], \ Rule[Alignment, List[Center, Center]], Rule[ImageSize, \ Dynamic[List[Automatic, Times[3.5`, \ Times[CurrentValue[\\\"FontCapHeight\\\"], \ Power[AbsoluteCurrentValue[Magnification], -1]]]]]]], \ Graphics3DBox[List[Directive[Hue[0.58`, 0.4`, 1], Opacity[0.5`], \ EdgeForm[GrayLevel[1]]], TagBox[GraphicsComplex3DBox[NCache[List[List[0, 0, \ Times[Rational[1, 3], Plus[3, Power[6, Rational[1, 2]]]]], \ List[Times[Rational[-1, 2], Power[3, Rational[-1, 2]]], Rational[-1, 2], 0], \ List[Times[Rational[-1, 2], Power[3, Rational[-1, 2]]], Rational[-1, 2], 1], \ List[Times[Rational[-1, 2], Power[3, Rational[-1, 2]]], Rational[1, 2], 0], \ List[Times[Rational[-1, 2], Power[3, Rational[-1, 2]]], Rational[1, 2], 1], \ List[Power[3, Rational[-1, 2]], 0, 0], List[Power[3, Rational[-1, 2]], 0, \ 1]], List[List[0, 0, 1.8164965809277258`], List[-0.2886751345948129`, -0.5`, \ 0], List[-0.2886751345948129`, -0.5`, 1], List[-0.2886751345948129`, 0.5`, \ 0], List[-0.2886751345948129`, 0.5`, 1], List[0.5773502691896258`, 0, 0], \ List[0.5773502691896258`, 0, 1]]], Polygon3DBox[List[List[5, 3, 1], List[3, \ 7, 1], List[7, 5, 1], List[4, 2, 3, 5], List[2, 6, 7, 3], List[6, 4, 5, 7], \ List[6, 2, 4]]]], \\\"Polyhedron\\\"]], Rule[ImageSize, \ Dynamic[Times[List[5.25`, 3.5`], Times[CurrentValue[\\\"FontCapHeight\\\"], \ Power[AbsoluteCurrentValue[Magnification], -1]]]]], Rule[Boxed, False], \ Rule[Lighting, List[List[\\\"Ambient\\\", RGBColor[0.4`, 0.45`, 0.5`]], List[\ \\\"Directional\\\", RGBColor[0.24`, 0.27`, 0.3`], ImageScaled[List[2, 0, \ 2]]], List[\\\"Directional\\\", RGBColor[0.24`, 0.27`, 0.3`], \ ImageScaled[List[2, 2, 2]]], List[\\\"Directional\\\", RGBColor[0.24`, 0.27`, \ 0.3`], ImageScaled[List[0, 2, 2]]]]], Rule[Method, List[Rule[\\\"ShrinkWrap\\\ \", True]]]], GridBox[List[List[RowBox[List[TagBox[\\\"\\\\\\\"Number of \ points: \\\\\\\"\\\", \\\"SummaryItemAnnotation\\\"], \ \\\"\\\\[InvisibleSpace]\\\", TagBox[\\\"7\\\", \\\"SummaryItem\\\"]]]], \ List[RowBox[List[TagBox[\\\"\\\\\\\"Number of faces: \\\\\\\"\\\", \ \\\"SummaryItemAnnotation\\\"], \\\"\\\\[InvisibleSpace]\\\", \ TagBox[\\\"7\\\", \\\"SummaryItem\\\"]]]], List[RowBox[List[TagBox[\\\"\\\\\\\ \"Embedding dimension: \\\\\\\"\\\", \\\"SummaryItemAnnotation\\\"], \ \\\"\\\\[InvisibleSpace]\\\", TagBox[\\\"3\\\", \\\"SummaryItem\\\"]]]], \ List[RowBox[List[TagBox[\\\"\\\\\\\"Type: \\\\\\\"\\\", \ \\\"SummaryItemAnnotation\\\"], \\\"\\\\[InvisibleSpace]\\\", \ TagBox[DynamicBox[ToBoxes[Quiet[Apply[Region`PolyhedronDump`polyhedronType, \ Region`PolyhedronDump`computeType[Typeset`spolyhedron$$]]], StandardForm], \ Rule[SynchronousUpdating, False], RuleDelayed[TrackedSymbols, List[]], \ RuleDelayed[CachedValue, AnimatorBox[0, List[0, Infinity], \ Rule[AppearanceElements, \\\"ProgressSlider\\\"], Rule[ImageSize, 20]]]], \ \\\"SummaryItem\\\"]]]], List[RowBox[List[TagBox[\\\"\\\\\\\"Bounds: \\\\\\\"\ \\\", \\\"SummaryItemAnnotation\\\"], \\\"\\\\[InvisibleSpace]\\\", \ TagBox[DynamicBox[ToBoxes[Region`PolyhedronDump`iRegionBounds[Typeset`\ spolyhedron$$], StandardForm], Rule[SynchronousUpdating, False], \ RuleDelayed[TrackedSymbols, List[]], RuleDelayed[CachedValue, AnimatorBox[0, \ List[0, Infinity], Rule[AppearanceElements, \\\"ProgressSlider\\\"], \ Rule[ImageSize, 20]]]], \\\"SummaryItem\\\"]]]], List[RowBox[List[TagBox[\\\"\ \\\\\\\"Volume: \\\\\\\"\\\", \\\"SummaryItemAnnotation\\\"], \ \\\"\\\\[InvisibleSpace]\\\", \ TagBox[DynamicBox[ToBoxes[Region`PolyhedronDump`iVolume[Typeset`spolyhedron$$]\ , StandardForm], Rule[SynchronousUpdating, False], \ RuleDelayed[TrackedSymbols, List[]], RuleDelayed[CachedValue, AnimatorBox[0, \ List[0, Infinity], Rule[AppearanceElements, \\\"ProgressSlider\\\"], \ Rule[ImageSize, 20]]]], \\\"SummaryItem\\\"]]]]], Rule[GridBoxAlignment, \ List[Rule[\\\"Columns\\\", List[List[Left]]], Rule[\\\"Rows\\\", \ List[List[Automatic]]]]], Rule[AutoDelete, False], Rule[GridBoxItemSize, \ List[Rule[\\\"Columns\\\", List[List[Automatic]]], Rule[\\\"Rows\\\", \ List[List[Automatic]]]]], Rule[GridBoxSpacings, List[Rule[\\\"Columns\\\", \ List[List[2]]], Rule[\\\"Rows\\\", List[List[Automatic]]]]], Rule[BaseStyle, \ List[Rule[ShowStringCharacters, False], Rule[NumberMarks, False], \ Rule[PrintPrecision, 3], Rule[ShowSyntaxStyles, False]]]]]], \ Rule[GridBoxAlignment, List[Rule[\\\"Columns\\\", List[List[Left]]], \ Rule[\\\"Rows\\\", List[List[Top]]]]], Rule[AutoDelete, False], \ Rule[GridBoxItemSize, List[Rule[\\\"Columns\\\", List[List[Automatic]]], \ Rule[\\\"Rows\\\", List[List[Automatic]]]]], Rule[BaselinePosition, List[1, \ 1]]]]], Dynamic[Typeset`open$$], Rule[ImageSize, Automatic]]], \ \\\"SummaryPanel\\\"], RuleDelayed[DynamicModuleValues, List[]]], \ \\\"]\\\"}], Polyhedron[List[List[0, 0, Times[Rational[1, 3], Plus[3, \ Power[6, Rational[1, 2]]]]], List[Times[Rational[-1, 2], Power[3, \ Rational[-1, 2]]], Rational[-1, 2], 0], List[Times[Rational[-1, 2], Power[3, \ Rational[-1, 2]]], Rational[-1, 2], 1], List[Times[Rational[-1, 2], Power[3, \ Rational[-1, 2]]], Rational[1, 2], 0], List[Times[Rational[-1, 2], Power[3, \ Rational[-1, 2]]], Rational[1, 2], 1], List[Power[3, Rational[-1, 2]], 0, 0], \ List[Power[3, Rational[-1, 2]], 0, 1]], List[List[5, 3, 1], List[3, 7, 1], \ List[7, 5, 1], List[4, 2, 3, 5], List[2, 6, 7, 3], List[6, 4, 5, 7], List[6, \ 2, 4]]], Rule[Selectable, False], Rule[Editable, False], \ Rule[SelectWithContents, True]]\\).\"", 2, 187, 46, 19516473296632108012, "Local"}, "MessageTemplate"]], "Message", "MSG", CellLabel-> "During evaluation of \ In[187]:=",ExpressionUUID->"a22b9453-8610-450b-a614-2305f200b215"], Cell[BoxData[ RowBox[{"Insphere", "[", InterpretationBox[ RowBox[{ TagBox["Polyhedron", "SummaryHead"], "[", DynamicModuleBox[{Typeset`open$$ = False, Typeset`embedState$$ = "Ready", Typeset`spolyhedron$$ = Quiet[ Polyhedron[{{0, 0, Rational[1, 3] (3 + 6^Rational[1, 2])}, { Rational[-1, 2] 3^Rational[-1, 2], Rational[-1, 2], 0}, {Rational[-1, 2] 3^Rational[-1, 2], Rational[-1, 2], 1}, {Rational[-1, 2] 3^Rational[-1, 2], Rational[1, 2], 0}, {Rational[-1, 2] 3^Rational[-1, 2], Rational[1, 2], 1}, {3^Rational[-1, 2], 0, 0}, { 3^Rational[-1, 2], 0, 1}}, {{5, 3, 1}, {3, 7, 1}, {7, 5, 1}, {4, 2, 3, 5}, {2, 6, 7, 3}, {6, 4, 5, 7}, {6, 2, 4}}]]}, TemplateBox[{ PaneSelectorBox[{False -> GridBox[{{ PaneBox[ ButtonBox[ DynamicBox[ FEPrivate`FrontEndResource["FEBitmaps", "SummaryBoxOpener"]], ButtonFunction :> (Typeset`open$$ = True), Appearance -> None, BaseStyle -> {}, Evaluator -> Automatic, Method -> "Preemptive"], Alignment -> {Center, Center}, ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], Graphics3DBox[{ Directive[ Hue[0.58, 0.4, 1], Opacity[0.5], EdgeForm[ GrayLevel[1]]], TagBox[ GraphicsComplex3DBox[ NCache[{{0, 0, Rational[1, 3] (3 + 6^Rational[1, 2])}, { Rational[-1, 2] 3^Rational[-1, 2], Rational[-1, 2], 0}, {Rational[-1, 2] 3^Rational[-1, 2], Rational[-1, 2], 1}, {Rational[-1, 2] 3^Rational[-1, 2], Rational[1, 2], 0}, {Rational[-1, 2] 3^Rational[-1, 2], Rational[1, 2], 1}, {3^Rational[-1, 2], 0, 0}, { 3^Rational[-1, 2], 0, 1}}, {{ 0, 0, 1.8164965809277258`}, {-0.2886751345948129, -0.5, 0}, {-0.2886751345948129, -0.5, 1}, {-0.2886751345948129, 0.5, 0}, {-0.2886751345948129, 0.5, 1}, { 0.5773502691896258, 0, 0}, {0.5773502691896258, 0, 1}}], Polygon3DBox[{{5, 3, 1}, {3, 7, 1}, {7, 5, 1}, {4, 2, 3, 5}, {2, 6, 7, 3}, {6, 4, 5, 7}, {6, 2, 4}}]], "Polyhedron"]}, ImageSize -> Dynamic[{5.25, 3.5} (CurrentValue["FontCapHeight"]/ AbsoluteCurrentValue[Magnification])], Boxed -> False, Lighting -> {{"Ambient", RGBColor[0.4, 0.45, 0.5]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{2, 0, 2}]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{2, 2, 2}]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{0, 2, 2}]}}, Method -> {"ShrinkWrap" -> True}], GridBox[{{ RowBox[{ TagBox["\"Number of points: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["7", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Number of faces: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["7", "SummaryItem"]}]}}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> { "Columns" -> {{2}}, "Rows" -> {{Automatic}}}, BaseStyle -> { ShowStringCharacters -> False, NumberMarks -> False, PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, BaselinePosition -> {1, 1}], True -> GridBox[{{ PaneBox[ ButtonBox[ DynamicBox[ FEPrivate`FrontEndResource["FEBitmaps", "SummaryBoxCloser"]], ButtonFunction :> (Typeset`open$$ = False), Appearance -> None, BaseStyle -> {}, Evaluator -> Automatic, Method -> "Preemptive"], Alignment -> {Center, Center}, ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], Graphics3DBox[{ Directive[ Hue[0.58, 0.4, 1], Opacity[0.5], EdgeForm[ GrayLevel[1]]], TagBox[ GraphicsComplex3DBox[ NCache[{{0, 0, Rational[1, 3] (3 + 6^Rational[1, 2])}, { Rational[-1, 2] 3^Rational[-1, 2], Rational[-1, 2], 0}, {Rational[-1, 2] 3^Rational[-1, 2], Rational[-1, 2], 1}, {Rational[-1, 2] 3^Rational[-1, 2], Rational[1, 2], 0}, {Rational[-1, 2] 3^Rational[-1, 2], Rational[1, 2], 1}, {3^Rational[-1, 2], 0, 0}, { 3^Rational[-1, 2], 0, 1}}, {{ 0, 0, 1.8164965809277258`}, {-0.2886751345948129, -0.5, 0}, {-0.2886751345948129, -0.5, 1}, {-0.2886751345948129, 0.5, 0}, {-0.2886751345948129, 0.5, 1}, { 0.5773502691896258, 0, 0}, {0.5773502691896258, 0, 1}}], Polygon3DBox[{{5, 3, 1}, {3, 7, 1}, {7, 5, 1}, {4, 2, 3, 5}, {2, 6, 7, 3}, {6, 4, 5, 7}, {6, 2, 4}}]], "Polyhedron"]}, ImageSize -> Dynamic[{5.25, 3.5} (CurrentValue["FontCapHeight"]/ AbsoluteCurrentValue[Magnification])], Boxed -> False, Lighting -> {{"Ambient", RGBColor[0.4, 0.45, 0.5]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{2, 0, 2}]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{2, 2, 2}]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{0, 2, 2}]}}, Method -> {"ShrinkWrap" -> True}], GridBox[{{ RowBox[{ TagBox["\"Number of points: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["7", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Number of faces: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["7", "SummaryItem"]}]}, { RowBox[{ TagBox[ "\"Embedding dimension: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["3", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Type: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Quiet[ Apply[Region`PolyhedronDump`polyhedronType, Region`PolyhedronDump`computeType[ Typeset`spolyhedron$$]]], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}, { RowBox[{ TagBox["\"Bounds: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Region`PolyhedronDump`iRegionBounds[ Typeset`spolyhedron$$], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}, { RowBox[{ TagBox["\"Volume: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Region`PolyhedronDump`iVolume[Typeset`spolyhedron$$], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> { "Columns" -> {{2}}, "Rows" -> {{Automatic}}}, BaseStyle -> { ShowStringCharacters -> False, NumberMarks -> False, PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, BaselinePosition -> {1, 1}]}, Dynamic[Typeset`open$$], ImageSize -> Automatic]}, "SummaryPanel"], DynamicModuleValues:>{}], "]"}], Polyhedron[{{0, 0, Rational[1, 3] (3 + 6^Rational[1, 2])}, { Rational[-1, 2] 3^Rational[-1, 2], Rational[-1, 2], 0}, {Rational[-1, 2] 3^Rational[-1, 2], Rational[-1, 2], 1}, {Rational[-1, 2] 3^Rational[-1, 2], Rational[1, 2], 0}, {Rational[-1, 2] 3^Rational[-1, 2], Rational[1, 2], 1}, {3^Rational[-1, 2], 0, 0}, { 3^Rational[-1, 2], 0, 1}}, {{5, 3, 1}, {3, 7, 1}, {7, 5, 1}, {4, 2, 3, 5}, {2, 6, 7, 3}, {6, 4, 5, 7}, {6, 2, 4}}], Editable->False, SelectWithContents->True, Selectable->False], "]"}]], "Output", CellLabel-> "Out[187]=",ExpressionUUID->"74526d21-a99a-4db0-8706-b2d6693895ea"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"MyInsphere", "[", "p", "]"}]], "Input", CellLabel-> "In[188]:=",ExpressionUUID->"ab55edd5-5fa3-4558-9057-00adf8684292"], Cell[BoxData[ RowBox[{"{", "}"}]], "Output", CellLabel-> "Out[188]=",ExpressionUUID->"60d90fab-47c3-4a48-9126-8c6d5919ad21"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["InertiaTensor", "Subsection",ExpressionUUID->"537e0b8b-ce29-4a76-bb9e-dc7bfddc5666"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}]], "Input", CellLabel-> "In[189]:=",ExpressionUUID->"a4471f11-764f-4186-94b7-bba37ff69416"], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ FractionBox[ RowBox[{"1313", "+", RowBox[{"218", " ", SqrtBox["6"]}]}], "3000"], ",", "0", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", FractionBox[ RowBox[{"1313", "+", RowBox[{"218", " ", SqrtBox["6"]}]}], "3000"], ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", "0", ",", RowBox[{ FractionBox["1", "500"], " ", RowBox[{"(", RowBox[{"43", "-", RowBox[{"2", " ", SqrtBox["6"]}]}], ")"}]}]}], "}"}]}], "}"}]], "Output", CellLabel-> "Out[189]=",ExpressionUUID->"49e12fb2-f96c-4c91-9b83-e6d50011822e"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{ FractionBox[ RowBox[{"MomentOfInertia", "[", RowBox[{"p", ",", RowBox[{"{", RowBox[{"0", ",", "0", ",", "0"}], "}"}]}], "]"}], RowBox[{"Volume", "[", "p", "]"}]], "//", "RootReduce"}], "//", "Timing"}]], "Input", CellLabel-> "In[190]:=",ExpressionUUID->"c813954c-ebca-4daa-937d-fa520c3e026f"], Cell[BoxData[ RowBox[{"{", RowBox[{"0.098872`", ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ FractionBox[ RowBox[{"1313", "+", RowBox[{"218", " ", SqrtBox["6"]}]}], "3000"], ",", "0", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", FractionBox[ RowBox[{"1313", "+", RowBox[{"218", " ", SqrtBox["6"]}]}], "3000"], ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", "0", ",", RowBox[{ FractionBox["1", "500"], " ", RowBox[{"(", RowBox[{"43", "-", RowBox[{"2", " ", SqrtBox["6"]}]}], ")"}]}]}], "}"}]}], "}"}]}], "}"}]], "Output", CellLabel-> "Out[190]=",ExpressionUUID->"080a49bc-8a3e-4c44-a53d-e3a0ef3c12b9"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"PolyhedronInertiaTensor", "[", "p", "]"}], "//", "Timing"}]], "Input", CellLabel-> "In[191]:=",ExpressionUUID->"80ad87e9-e68f-4b9e-9b59-d15e1a3b8010"], Cell[BoxData[ RowBox[{"{", RowBox[{"0.156452`", ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ FractionBox[ RowBox[{"1313", "+", RowBox[{"218", " ", SqrtBox["6"]}]}], "3000"], ",", "0", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", FractionBox[ RowBox[{"1313", "+", RowBox[{"218", " ", SqrtBox["6"]}]}], "3000"], ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", "0", ",", RowBox[{ FractionBox["1", "500"], " ", RowBox[{"(", RowBox[{"43", "-", RowBox[{"2", " ", SqrtBox["6"]}]}], ")"}]}]}], "}"}]}], "}"}]}], "}"}]], "Output", CellLabel-> "Out[191]=",ExpressionUUID->"e27d014b-6294-493a-ae07-c3da0138ad8c"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["MeanCylindricalRadius", "Subsection",ExpressionUUID->"61da4e9d-30b6-4caf-a838-47a746cf0ef4"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}]], "Input", CellLabel->"In[2]:=",ExpressionUUID->"5cfa1736-0be0-4638-9506-f9442f4a1f29"], Cell[BoxData[ FractionBox[ RowBox[{ RowBox[{ RowBox[{"-", "18"}], " ", SqrtBox["2"]}], "+", RowBox[{"204", " ", SqrtBox["3"]}], "+", RowBox[{ RowBox[{"(", RowBox[{"11", "-", RowBox[{"4", " ", SqrtBox["6"]}]}], ")"}], " ", RowBox[{"Log", "[", RowBox[{"2", "-", SqrtBox["3"]}], "]"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{"113", "-", RowBox[{"7", " ", SqrtBox["6"]}]}], ")"}], " ", RowBox[{"Log", "[", RowBox[{"2", "+", SqrtBox["3"]}], "]"}]}]}], "1800"]], "Output", CellLabel->"Out[2]=",ExpressionUUID->"8f28f6d2-8e08-4069-b785-3593b3a61cdd"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"N", "[", "%", "]"}]], "Input", CellLabel->"In[3]:=",ExpressionUUID->"46cd4039-6173-469f-a17b-9e1e5a527688"], Cell[BoxData["0.2514081119594903`"], "Output", CellLabel->"Out[3]=",ExpressionUUID->"0f3add32-45e5-450c-950d-7bb817debe02"] }, Open ]], Cell[CellGroupData[{ Cell["Integrate over polyhedron", "Subsubsection",ExpressionUUID->"b78c4201-9bd1-49b1-b568-3c4bd56f9804"], Cell[CellGroupData[{ Cell[BoxData[ FractionBox[ RowBox[{"NIntegrate", "[", RowBox[{ SqrtBox[ RowBox[{ SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]}]], ",", RowBox[{ RowBox[{"{", RowBox[{"x", ",", "y", ",", "z"}], "}"}], "\[Element]", "p"}]}], "]"}], "vol"]], "Input",ExpressionUUID->"b157896b-5500-4f78-a4a9-7eca118910d3"], Cell[BoxData[ TemplateBox[{ "NIntegrate", "slwcon", "\"Numerical integration converging too slowly; suspect one of the \ following: singularity, value of the integration is 0, highly oscillatory \ integrand, or WorkingPrecision too small.\"", 2, 192, 47, 19516473296632108012, "Local"}, "MessageTemplate"]], "Message", "MSG", CellLabel-> "During evaluation of \ In[192]:=",ExpressionUUID->"4738aeb0-ad7e-406d-b5c2-135185f15a4b"], Cell[BoxData["0.2514081258839375`"], "Output", CellLabel-> "Out[192]=",ExpressionUUID->"a91c6664-7ac2-46f9-a124-1147a3df92f2"] }, Open ]], Cell[BoxData[ RowBox[{ RowBox[{"(", RowBox[{"i", "=", FractionBox[ RowBox[{"Integrate", "[", RowBox[{ SqrtBox[ RowBox[{ SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]}]], ",", RowBox[{ RowBox[{"{", RowBox[{"x", ",", "y", ",", "z"}], "}"}], "\[Element]", "p"}]}], "]"}], "vol"]}], ")"}], "//", "Timing"}]], "Input",ExpressionUUID->\ "1eaf88c5-ea13-45e6-a226-23710bc1a6b5"], Cell[BoxData[ RowBox[{"N", "[", "i", "]"}]], "Input",ExpressionUUID->"6ecdcfbe-90a1-4730-a16e-f3b26abaaff0"] }, Closed]], Cell[CellGroupData[{ Cell["Integrate using Boole", "Subsubsection",ExpressionUUID->"61a6a4e4-1b90-43fe-b36b-15b8345112d4"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"ineq", "=", RowBox[{ RowBox[{ RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}], "[", RowBox[{"x", ",", "y", ",", "z"}], "]"}], "//", "FullSimplify"}]}]], "Input", CellLabel-> "(V12.3.0 (1)) \ In[3]:=",ExpressionUUID->"40c6e8da-ab70-4fed-9163-b5826a9e7399"], Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{ SqrtBox["3"], " ", "z"}], "\[LessEqual]", RowBox[{ SqrtBox["2"], "+", SqrtBox["3"], "+", RowBox[{"2", " ", SqrtBox["6"], " ", "x"}]}]}], "&&", RowBox[{ RowBox[{ RowBox[{ SqrtBox["6"], " ", "x"}], "+", RowBox[{ SqrtBox["3"], " ", "z"}]}], "\[LessEqual]", RowBox[{ SqrtBox["2"], "+", SqrtBox["3"], "+", RowBox[{"3", " ", SqrtBox["2"], " ", "y"}]}]}], "&&", RowBox[{ RowBox[{ RowBox[{ SqrtBox["6"], " ", "x"}], "+", RowBox[{"3", " ", SqrtBox["2"], " ", "y"}], "+", RowBox[{ SqrtBox["3"], " ", "z"}]}], "\[LessEqual]", RowBox[{ SqrtBox["2"], "+", SqrtBox["3"]}]}], "&&", RowBox[{ RowBox[{ SqrtBox["3"], "+", RowBox[{"6", " ", "x"}]}], "\[GreaterEqual]", "0"}], "&&", RowBox[{ RowBox[{"3", " ", "x"}], "\[LessEqual]", RowBox[{ SqrtBox["3"], " ", RowBox[{"(", RowBox[{"1", "+", RowBox[{"3", " ", "y"}]}], ")"}]}]}], "&&", RowBox[{ RowBox[{ RowBox[{"3", " ", "x"}], "+", RowBox[{ SqrtBox["3"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", RowBox[{"3", " ", "y"}]}], ")"}]}]}], "\[LessEqual]", "0"}], "&&", RowBox[{"z", "\[GreaterEqual]", "0"}]}]], "Output", CellLabel-> "(V12.3.0 (1)) \ Out[3]=",ExpressionUUID->"e1a396c6-e46f-448a-bc6c-6c804b2ec047"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"(", RowBox[{"i", "=", FractionBox[ RowBox[{"Integrate", "[", RowBox[{ RowBox[{ SqrtBox[ RowBox[{ SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]}]], RowBox[{"Boole", "[", "ineq", "]"}]}], ",", RowBox[{"{", RowBox[{"x", ",", RowBox[{"-", "\[Infinity]"}], ",", "\[Infinity]"}], "}"}], ",", RowBox[{"{", RowBox[{"y", ",", RowBox[{"-", "\[Infinity]"}], ",", "\[Infinity]"}], "}"}], ",", RowBox[{"{", RowBox[{"z", ",", RowBox[{"-", "\[Infinity]"}], ",", "\[Infinity]"}], "}"}]}], "]"}], "vol"]}], ")"}], "//", "Timing"}]], "Input",ExpressionUUID->"a64f7007-\ 1999-4bb6-a182-2a6f93a40b03"], Cell[BoxData[ RowBox[{"{", RowBox[{"96.654795`", ",", RowBox[{ FractionBox["1", RowBox[{"1728", " ", RowBox[{"(", RowBox[{ SqrtBox["2"], "+", RowBox[{"3", " ", SqrtBox["3"]}]}], ")"}]}]], RowBox[{"(", RowBox[{"1728", "+", RowBox[{"144", " ", SqrtBox["6"]}], "-", RowBox[{"32", " ", SqrtBox["2"], " ", RowBox[{"Log", "[", "3", "]"}]}], "-", RowBox[{"27", " ", SqrtBox["3"], " ", RowBox[{"Log", "[", "3", "]"}]}], "+", RowBox[{"3", " ", SqrtBox["3"], " ", RowBox[{"Log", "[", RowBox[{"21", "-", RowBox[{"12", " ", SqrtBox["3"]}]}], "]"}]}], "-", RowBox[{"24", " ", SqrtBox["2"], " ", RowBox[{"Log", "[", RowBox[{"2", "+", SqrtBox["3"]}], "]"}]}], "+", RowBox[{"246", " ", SqrtBox["3"], " ", RowBox[{"Log", "[", RowBox[{"2", "+", SqrtBox["3"]}], "]"}]}], "+", RowBox[{"48", " ", SqrtBox["3"], " ", RowBox[{"Log", "[", RowBox[{"3", "+", RowBox[{"2", " ", SqrtBox["3"]}]}], "]"}]}], "+", RowBox[{"16", " ", SqrtBox["2"], " ", RowBox[{"Log", "[", RowBox[{"45", "+", RowBox[{"26", " ", SqrtBox["3"]}]}], "]"}]}], "+", RowBox[{"16", " ", SqrtBox["2"], " ", RowBox[{"Log", "[", RowBox[{"135", "+", RowBox[{"78", " ", SqrtBox["3"]}]}], "]"}]}]}], ")"}]}]}], "}"}]], "Output", CellLabel-> "(V12.3.0 (1)) \ Out[4]=",ExpressionUUID->"8af82a31-7e7a-402a-8a9f-e8ac941755df"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"Log", "[", RowBox[{ RowBox[{"3", "+", RowBox[{"2", " ", SqrtBox["3"]}]}], ",", RowBox[{"45", "+", RowBox[{"26", " ", SqrtBox["3"]}]}]}], "]"}], "//", "N"}]], "Input", CellLabel->"In[60]:=",ExpressionUUID->"b800a91e-36af-40ee-b347-c2a3d698972a"], Cell[BoxData["2.41133073113971`"], "Output", CellLabel->"Out[60]=",ExpressionUUID->"3ce4e589-9abf-4b4d-9b94-04e6497da812"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"Log", "[", RowBox[{ RowBox[{"2", "+", SqrtBox["3"]}], ",", RowBox[{"45", "+", RowBox[{"26", " ", SqrtBox["3"]}]}]}], "]"}], "//", "N"}]], "Input",ExpressionUUID->\ "97ec1fdf-597d-4837-9ae9-bca1c79c1557"], Cell[BoxData["3.417102282173729`"], "Output", CellLabel->"Out[59]=",ExpressionUUID->"803c07f1-4683-4846-8ec6-ea85ef3c6a2c"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"Log", "[", RowBox[{ RowBox[{"3", "+", SqrtBox["3"]}], ",", RowBox[{"45", "+", RowBox[{"26", " ", SqrtBox["3"]}]}]}], "]"}], "//", "N"}]], "Input", CellLabel->"In[58]:=",ExpressionUUID->"18b0976b-b0e2-402a-93b2-3fa913c51773"], Cell[BoxData["2.895200370484377`"], "Output", CellLabel->"Out[58]=",ExpressionUUID->"25e27c36-75ce-429b-ae56-3ce2f2584fea"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ FractionBox[ RowBox[{"Log", "[", RowBox[{"135", "+", RowBox[{"78", " ", SqrtBox["3"]}]}], "]"}], RowBox[{"Log", "[", RowBox[{"3", "+", RowBox[{"2", SqrtBox["3"]}]}], "]"}]], "//", "FullSimplify"}]], "Input", CellLabel-> "(V12.3.0 (1)) \ In[22]:=",ExpressionUUID->"ec72e3f4-457c-49b0-b082-bcdcba105e21"], Cell[BoxData["3"], "Output", CellLabel-> "(V12.3.0 (1)) \ Out[22]=",ExpressionUUID->"3aa5de14-6277-4e91-8113-b17441813281"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ SuperscriptBox[ RowBox[{"(", RowBox[{"3", "-", RowBox[{"2", SqrtBox["3"]}]}], ")"}], "2"], "//", "Expand"}]], "Input", CellLabel-> "(V12.3.0 (1)) \ In[48]:=",ExpressionUUID->"8ebf1025-40fe-429f-99b7-5a01114f3e61"], Cell[BoxData[ RowBox[{"21", "-", RowBox[{"12", " ", SqrtBox["3"]}]}]], "Output", CellLabel-> "(V12.3.0 (1)) \ Out[48]=",ExpressionUUID->"ec532311-fc2b-428a-9816-c9a3099d65ce"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Cases", "[", RowBox[{ RowBox[{"Flatten", "[", RowBox[{ RowBox[{"Table", "[", RowBox[{ RowBox[{"{", RowBox[{"a", ",", "b", ",", "n", ",", RowBox[{ SuperscriptBox[ RowBox[{"(", RowBox[{"a", "+", RowBox[{"b", " ", RowBox[{"Sqrt", "[", "3", "]"}]}]}], ")"}], "n"], "//", "Expand"}]}], "}"}], ",", RowBox[{"{", RowBox[{"n", ",", "10"}], "}"}], ",", RowBox[{"{", RowBox[{"a", ",", RowBox[{"-", "10"}], ",", "10"}], "}"}], ",", RowBox[{"{", RowBox[{"b", ",", RowBox[{"-", "10"}], ",", "10"}], "}"}]}], "]"}], ",", "2"}], "]"}], ",", RowBox[{"{", RowBox[{"__", ",", RowBox[{"45", "+", RowBox[{"26", " ", SqrtBox["3"]}]}]}], "}"}]}], "]"}]], "Input", CellLabel-> "(V12.3.0 (1)) \ In[91]:=",ExpressionUUID->"566d2d20-7be0-4929-83b0-a7b16fd62bf1"], Cell[BoxData[ RowBox[{"{", "}"}]], "Output", CellLabel-> "(V12.3.0 (1)) \ Out[91]=",ExpressionUUID->"fe711f72-4716-48c2-b445-681472d06f6b"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{ FractionBox["1", RowBox[{"1728", " ", RowBox[{"(", RowBox[{ SqrtBox["2"], "+", RowBox[{"3", " ", SqrtBox["3"]}]}], ")"}]}]], RowBox[{"(", RowBox[{"1728", "+", RowBox[{"144", " ", SqrtBox["6"]}], "-", RowBox[{"32", " ", SqrtBox["2"], " ", RowBox[{"Log", "[", "3", "]"}]}], "-", RowBox[{"27", " ", SqrtBox["3"], " ", RowBox[{"Log", "[", "3", "]"}]}], "+", RowBox[{"3", " ", SqrtBox["3"], " ", "2", RowBox[{"Log", "[", RowBox[{ RowBox[{"2", SqrtBox["3"]}], "-", "3"}], "]"}]}], "-", RowBox[{"24", " ", SqrtBox["2"], " ", RowBox[{"Log", "[", RowBox[{"2", "+", SqrtBox["3"]}], "]"}]}], "+", RowBox[{"246", " ", SqrtBox["3"], " ", RowBox[{"Log", "[", RowBox[{"2", "+", SqrtBox["3"]}], "]"}]}], "+", RowBox[{"48", " ", SqrtBox["3"], " ", RowBox[{"Log", "[", RowBox[{"3", "+", RowBox[{"2", " ", SqrtBox["3"]}]}], "]"}]}], "+", RowBox[{"16", " ", SqrtBox["2"], " ", RowBox[{"Log", "[", RowBox[{"45", "+", RowBox[{"26", " ", SqrtBox["3"]}]}], "]"}]}], "+", RowBox[{"16", " ", SqrtBox["2"], " ", RowBox[{"(", RowBox[{"3", RowBox[{"Log", "[", RowBox[{"3", "+", RowBox[{"2", SqrtBox["3"]}]}], "]"}]}], ")"}]}]}], ")"}]}], "//", "FullSimplify"}]], "Input", CellLabel-> "(V12.3.0 (1)) \ In[64]:=",ExpressionUUID->"3e44037c-67d4-4f58-8ced-3a4258f9b7c9"], Cell[BoxData[ RowBox[{ FractionBox["1", RowBox[{"1728", " ", SqrtBox[ RowBox[{"29", "+", RowBox[{"6", " ", SqrtBox["6"]}]}]]}]], RowBox[{"(", RowBox[{ RowBox[{"-", RowBox[{"(", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"32", " ", SqrtBox["2"]}], "+", RowBox[{"27", " ", SqrtBox["3"]}]}], ")"}], " ", RowBox[{"Log", "[", "3", "]"}]}], ")"}]}], "+", RowBox[{"6", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "4"}], " ", SqrtBox["2"]}], "+", RowBox[{"41", " ", SqrtBox["3"]}]}], ")"}], " ", RowBox[{"Log", "[", RowBox[{"2", "+", SqrtBox["3"]}], "]"}]}], "+", RowBox[{"6", " ", SqrtBox["3"], " ", RowBox[{"Log", "[", RowBox[{ RowBox[{"-", "3"}], "+", RowBox[{"2", " ", SqrtBox["3"]}]}], "]"}]}], "+", RowBox[{"16", " ", RowBox[{"(", RowBox[{"108", "+", RowBox[{"9", " ", SqrtBox["6"]}], "+", RowBox[{"3", " ", RowBox[{"(", RowBox[{ SqrtBox["2"], "+", SqrtBox["3"]}], ")"}], " ", RowBox[{"Log", "[", RowBox[{"3", "+", RowBox[{"2", " ", SqrtBox["3"]}]}], "]"}]}], "+", RowBox[{ SqrtBox["2"], " ", RowBox[{"Log", "[", RowBox[{"45", "+", RowBox[{"26", " ", SqrtBox["3"]}]}], "]"}]}]}], ")"}]}]}], ")"}]}]], "Output", CellLabel-> "(V12.3.0 (1)) \ Out[64]=",ExpressionUUID->"ffbaa3c9-e28d-4aaa-989a-e1bf025e1d37"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"N", "[", "%", "]"}]], "Input", CellLabel-> "(V12.3.0 (1)) \ In[65]:=",ExpressionUUID->"d0dda3a2-3130-4d86-82a8-52b0e26ba910"], Cell[BoxData["0.2514081119594903`"], "Output", CellLabel-> "(V12.3.0 (1)) \ Out[65]=",ExpressionUUID->"b9e434ad-b818-4754-ae6f-60a4837f56b7"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Divergence theorem", "Subsubsection",ExpressionUUID->"b5a7b7d6-be73-4c08-8b28-b55cb52a371a"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"(", RowBox[{"rxy", "=", RowBox[{"MeanCylindricalRadius", "[", RowBox[{"p", ",", RowBox[{"Debug", "\[Rule]", "True"}]}], "]"}]}], ")"}], "//", "Timing"}]], "Input", CellLabel-> "(byblis65 V13.2.0) \ In[4]:=",ExpressionUUID->"01553d41-fb1c-4732-b357-8ab6a76c59c0"], Cell[CellGroupData[{ Cell[BoxData[ InterpretationBox[ RowBox[{"\<\"Polygon: \"\>", "\[InvisibleSpace]", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"-", FractionBox["1", RowBox[{"2", " ", SqrtBox["3"]}]]}], ",", FractionBox["1", "2"], ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", FractionBox["1", RowBox[{"2", " ", SqrtBox["3"]}]]}], ",", RowBox[{"-", FractionBox["1", "2"]}], ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", "0", ",", RowBox[{ FractionBox["1", "3"], " ", RowBox[{"(", RowBox[{"3", "+", SqrtBox["6"]}], ")"}]}]}], "}"}]}], "}"}]}], SequenceForm["Polygon: ", {{Rational[-1, 2] 3^Rational[-1, 2], Rational[1, 2], 1}, {Rational[-1, 2] 3^Rational[-1, 2], Rational[-1, 2], 1}, {0, 0, Rational[1, 3] (3 + 6^Rational[1, 2])}}], Editable->False]], "Print", CellLabel-> "During evaluation of (byblis65 V13.2.0) \ In[4]:=",ExpressionUUID->"e558a588-d1be-4551-b128-89357a8ef1bc"], Cell[BoxData[ InterpretationBox[ RowBox[{"\<\" integrand: \"\>", "\[InvisibleSpace]", FractionBox[ RowBox[{ RowBox[{ RowBox[{"-", "2"}], " ", SqrtBox[ RowBox[{ RowBox[{"3", " ", SuperscriptBox["\<\"s\"\>", "2"]}], "+", RowBox[{"3", " ", "\<\"s\"\>", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", "\<\"t\"\>"}], ")"}]}], "+", SuperscriptBox[ RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", "\<\"t\"\>"}], ")"}], "2"]}]], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", "\<\"t\"\>"}], ")"}]}], "+", RowBox[{"3", " ", SuperscriptBox[ RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", RowBox[{"2", " ", "\<\"s\"\>"}], "+", "\<\"t\"\>"}], ")"}], "2"], " ", RowBox[{"Log", "[", FractionBox[ RowBox[{"1", "+", RowBox[{"2", " ", SqrtBox[ RowBox[{ RowBox[{"3", " ", SuperscriptBox["\<\"s\"\>", "2"]}], "+", RowBox[{"3", " ", "\<\"s\"\>", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", "\<\"t\"\>"}], ")"}]}], "+", SuperscriptBox[ RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", "\<\"t\"\>"}], ")"}], "2"]}]]}], "-", "\<\"t\"\>"}], RowBox[{"2", " ", SqrtBox["3"]}]], "]"}]}]}], RowBox[{"12", " ", SqrtBox["6"]}]]}], SequenceForm[ " integrand: ", Rational[1, 12] 6^Rational[-1, 2] ((-2) (3 "s"^2 + 3 "s" (-1 + "t") + (-1 + "t")^2)^ Rational[1, 2] (-1 + "t") + 3 (-1 + 2 "s" + "t")^2 Log[Rational[1, 2] 3^Rational[-1, 2] (1 + 2 (3 "s"^2 + 3 "s" (-1 + "t") + (-1 + "t")^2)^Rational[1, 2] - "t")])], Editable->False]], "Print", CellLabel-> "During evaluation of (byblis65 V13.2.0) \ In[4]:=",ExpressionUUID->"97a15f3c-cca2-4d95-bdb4-27192564728e"], Cell[BoxData[ InterpretationBox[ RowBox[{"\<\" Integral over t and s: \"\>", "\[InvisibleSpace]", FractionBox[ RowBox[{"27", "-", RowBox[{"36", " ", RowBox[{"Log", "[", "2", "]"}]}], "+", RowBox[{"18", " ", RowBox[{"Log", "[", "3", "]"}]}], "-", RowBox[{"2", " ", SqrtBox["3"], " ", RowBox[{"Log", "[", RowBox[{"7", "-", RowBox[{"4", " ", SqrtBox["3"]}]}], "]"}]}]}], RowBox[{"1728", " ", SqrtBox["6"]}]]}], SequenceForm[ " Integral over t and s: ", Rational[1, 1728] 6^Rational[-1, 2] (27 - 36 Log[2] + 18 Log[3] - 2 3^Rational[1, 2] Log[7 - 4 3^Rational[1, 2]])], Editable->False]], "Print", CellLabel-> "During evaluation of (byblis65 V13.2.0) \ In[4]:=",ExpressionUUID->"81bb9a97-9ad5-4dc3-89aa-a55143e1dca8"], Cell[BoxData[ InterpretationBox[ RowBox[{"\<\" Elapsed time: \"\>", "\[InvisibleSpace]", "44.522011`8.1001197661056"}], SequenceForm[" Elapsed time: ", 44.522011`8.1001197661056], Editable->False]], "Print", CellLabel-> "During evaluation of (byblis65 V13.2.0) \ In[4]:=",ExpressionUUID->"74a67a3d-918b-4fc0-9f90-8e04fba6a4cb"], Cell[BoxData[ InterpretationBox[ RowBox[{"\<\"Polygon: \"\>", "\[InvisibleSpace]", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"-", FractionBox["1", RowBox[{"2", " ", SqrtBox["3"]}]]}], ",", RowBox[{"-", FractionBox["1", "2"]}], ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{ FractionBox["1", SqrtBox["3"]], ",", "0", ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", "0", ",", RowBox[{ FractionBox["1", "3"], " ", RowBox[{"(", RowBox[{"3", "+", SqrtBox["6"]}], ")"}]}]}], "}"}]}], "}"}]}], SequenceForm["Polygon: ", {{Rational[-1, 2] 3^Rational[-1, 2], Rational[-1, 2], 1}, {3^Rational[-1, 2], 0, 1}, { 0, 0, Rational[1, 3] (3 + 6^Rational[1, 2])}}], Editable->False]], "Print", CellLabel-> "During evaluation of (byblis65 V13.2.0) \ In[4]:=",ExpressionUUID->"09ce22d3-0394-4dc6-9486-f23efa589805"], Cell[BoxData[ InterpretationBox[ RowBox[{"\<\" integrand: \"\>", "\[InvisibleSpace]", FractionBox[ RowBox[{ RowBox[{ FractionBox["1", "12"], " ", SqrtBox[ RowBox[{ RowBox[{"3", " ", SuperscriptBox["\<\"s\"\>", "2"]}], "+", RowBox[{"3", " ", "\<\"s\"\>", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", "\<\"t\"\>"}], ")"}]}], "+", SuperscriptBox[ RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", "\<\"t\"\>"}], ")"}], "2"]}]], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", RowBox[{"3", " ", "\<\"s\"\>"}], "+", "\<\"t\"\>"}], ")"}]}], "-", RowBox[{ FractionBox["1", "8"], " ", SuperscriptBox[ RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", "\<\"s\"\>", "+", "\<\"t\"\>"}], ")"}], "2"], " ", RowBox[{"Log", "[", FractionBox[ RowBox[{"1", "-", RowBox[{"3", " ", "\<\"s\"\>"}], "+", RowBox[{"2", " ", SqrtBox[ RowBox[{ RowBox[{"3", " ", SuperscriptBox["\<\"s\"\>", "2"]}], "+", RowBox[{"3", " ", "\<\"s\"\>", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", "\<\"t\"\>"}], ")"}]}], "+", SuperscriptBox[ RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", "\<\"t\"\>"}], ")"}], "2"]}]]}], "-", "\<\"t\"\>"}], RowBox[{"2", " ", SqrtBox["3"]}]], "]"}]}]}], SqrtBox["6"]]}], SequenceForm[ " integrand: ", 6^Rational[-1, 2] ( Rational[1, 12] (3 "s"^2 + 3 "s" (-1 + "t") + (-1 + "t")^2)^ Rational[1, 2] (-1 + 3 "s" + "t") + Rational[-1, 8] (-1 + "s" + "t")^2 Log[Rational[1, 2] 3^Rational[-1, 2] (1 - 3 "s" + 2 (3 "s"^2 + 3 "s" (-1 + "t") + (-1 + "t")^2)^Rational[1, 2] - "t")])], Editable->False]], "Print", CellLabel-> "During evaluation of (byblis65 V13.2.0) \ In[4]:=",ExpressionUUID->"b7e7139b-6cc6-47a0-9ed7-f7329dedfb7f"], Cell[BoxData[ InterpretationBox[ RowBox[{"\<\" Integral over t and s: \"\>", "\[InvisibleSpace]", FractionBox[ RowBox[{"45", "+", RowBox[{"36", " ", RowBox[{"Log", "[", "2", "]"}]}], "-", RowBox[{"18", " ", RowBox[{"Log", "[", "3", "]"}]}], "+", RowBox[{ SqrtBox["3"], " ", RowBox[{"Log", "[", RowBox[{"18817", "+", RowBox[{"10864", " ", SqrtBox["3"]}]}], "]"}]}]}], RowBox[{"3456", " ", SqrtBox["6"]}]]}], SequenceForm[ " Integral over t and s: ", Rational[1, 3456] 6^Rational[-1, 2] (45 + 36 Log[2] - 18 Log[3] + 3^Rational[1, 2] Log[18817 + 10864 3^Rational[1, 2]])], Editable->False]], "Print", CellLabel-> "During evaluation of (byblis65 V13.2.0) \ In[4]:=",ExpressionUUID->"e1fceb0c-6f28-4873-9ab7-c78a4d7d2cc3"], Cell[BoxData[ InterpretationBox[ RowBox[{"\<\" Elapsed time: \"\>", "\[InvisibleSpace]", "36.074583`8.008746313113322"}], SequenceForm[" Elapsed time: ", 36.074583`8.008746313113322], Editable->False]], "Print", CellLabel-> "During evaluation of (byblis65 V13.2.0) \ In[4]:=",ExpressionUUID->"db93a359-e53a-4134-afd3-54922af32ae7"], Cell[BoxData[ InterpretationBox[ RowBox[{"\<\"Polygon: \"\>", "\[InvisibleSpace]", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ FractionBox["1", SqrtBox["3"]], ",", "0", ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", FractionBox["1", RowBox[{"2", " ", SqrtBox["3"]}]]}], ",", FractionBox["1", "2"], ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", "0", ",", RowBox[{ FractionBox["1", "3"], " ", RowBox[{"(", RowBox[{"3", "+", SqrtBox["6"]}], ")"}]}]}], "}"}]}], "}"}]}], SequenceForm[ "Polygon: ", {{3^Rational[-1, 2], 0, 1}, {Rational[-1, 2] 3^Rational[-1, 2], Rational[1, 2], 1}, {0, 0, Rational[1, 3] (3 + 6^Rational[1, 2])}}], Editable->False]], "Print", CellLabel-> "During evaluation of (byblis65 V13.2.0) \ In[4]:=",ExpressionUUID->"bdc194d1-974a-48a6-b759-4f423961ceea"], Cell[BoxData[ InterpretationBox[ RowBox[{"\<\" integrand: \"\>", "\[InvisibleSpace]", FractionBox[ RowBox[{ RowBox[{ RowBox[{"-", "2"}], " ", SqrtBox[ RowBox[{ RowBox[{"3", " ", SuperscriptBox["\<\"s\"\>", "2"]}], "+", RowBox[{"3", " ", "\<\"s\"\>", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", "\<\"t\"\>"}], ")"}]}], "+", SuperscriptBox[ RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", "\<\"t\"\>"}], ")"}], "2"]}]], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "2"}], "+", RowBox[{"3", " ", "\<\"s\"\>"}], "+", RowBox[{"2", " ", "\<\"t\"\>"}]}], ")"}]}], "-", RowBox[{"3", " ", SuperscriptBox["\<\"s\"\>", "2"], " ", RowBox[{"Log", "[", FractionBox[ RowBox[{ RowBox[{"3", " ", "\<\"s\"\>"}], "+", RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", SqrtBox[ RowBox[{ RowBox[{"3", " ", SuperscriptBox["\<\"s\"\>", "2"]}], "+", RowBox[{"3", " ", "\<\"s\"\>", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", "\<\"t\"\>"}], ")"}]}], "+", SuperscriptBox[ RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", "\<\"t\"\>"}], ")"}], "2"]}]], "+", "\<\"t\"\>"}], ")"}]}]}], RowBox[{"2", " ", SqrtBox["3"]}]], "]"}]}]}], RowBox[{"24", " ", SqrtBox["6"]}]]}], SequenceForm[ " integrand: ", Rational[1, 24] 6^Rational[-1, 2] ((-2) (3 "s"^2 + 3 "s" (-1 + "t") + (-1 + "t")^2)^ Rational[1, 2] (-2 + 3 "s" + 2 "t") - 3 "s"^2 Log[Rational[1, 2] 3^Rational[-1, 2] (3 "s" + 2 (-1 + (3 "s"^2 + 3 "s" (-1 + "t") + (-1 + "t")^2)^Rational[1, 2] + "t"))])], Editable->False]], "Print", CellLabel-> "During evaluation of (byblis65 V13.2.0) \ In[4]:=",ExpressionUUID->"1a143160-e7d0-4b18-8ded-54fa97ef650e"], Cell[BoxData[ InterpretationBox[ RowBox[{"\<\" Integral over t and s: \"\>", "\[InvisibleSpace]", FractionBox[ RowBox[{"45", "+", RowBox[{"36", " ", RowBox[{"Log", "[", "2", "]"}]}], "-", RowBox[{"18", " ", RowBox[{"Log", "[", "3", "]"}]}], "+", RowBox[{ SqrtBox["3"], " ", RowBox[{"Log", "[", RowBox[{"18817", "+", RowBox[{"10864", " ", SqrtBox["3"]}]}], "]"}]}]}], RowBox[{"3456", " ", SqrtBox["6"]}]]}], SequenceForm[ " Integral over t and s: ", Rational[1, 3456] 6^Rational[-1, 2] (45 + 36 Log[2] - 18 Log[3] + 3^Rational[1, 2] Log[18817 + 10864 3^Rational[1, 2]])], Editable->False]], "Print", CellLabel-> "During evaluation of (byblis65 V13.2.0) \ In[4]:=",ExpressionUUID->"2bdcfa94-af17-43bd-9e1f-4bb196f6a3b1"], Cell[BoxData[ InterpretationBox[ RowBox[{"\<\" Elapsed time: \"\>", "\[InvisibleSpace]", "34.064606`7.983848363638687"}], SequenceForm[" Elapsed time: ", 34.064606`7.983848363638687], Editable->False]], "Print", CellLabel-> "During evaluation of (byblis65 V13.2.0) \ In[4]:=",ExpressionUUID->"cd884753-fbe6-4a0b-8261-348fe26cf904"], Cell[BoxData[ InterpretationBox[ RowBox[{"\<\"Polygon: \"\>", "\[InvisibleSpace]", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"-", FractionBox["1", RowBox[{"2", " ", SqrtBox["3"]}]]}], ",", FractionBox["1", "2"], ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", FractionBox["1", RowBox[{"2", " ", SqrtBox["3"]}]]}], ",", RowBox[{"-", FractionBox["1", "2"]}], ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", FractionBox["1", RowBox[{"2", " ", SqrtBox["3"]}]]}], ",", RowBox[{"-", FractionBox["1", "2"]}], ",", "1"}], "}"}]}], "}"}]}], SequenceForm["Polygon: ", {{Rational[-1, 2] 3^Rational[-1, 2], Rational[1, 2], 0}, {Rational[-1, 2] 3^Rational[-1, 2], Rational[-1, 2], 0}, {Rational[-1, 2] 3^Rational[-1, 2], Rational[-1, 2], 1}}], Editable->False]], "Print", CellLabel-> "During evaluation of (byblis65 V13.2.0) \ In[4]:=",ExpressionUUID->"aceba3c2-99dc-4b71-8c93-da9ce6edafa9"], Cell[BoxData[ InterpretationBox[ RowBox[{"\<\" integrand: \"\>", "\[InvisibleSpace]", RowBox[{ FractionBox["1", "12"], " ", RowBox[{"(", RowBox[{ SqrtBox[ RowBox[{"1", "+", RowBox[{"3", " ", SuperscriptBox["\<\"s\"\>", "2"]}], "-", RowBox[{"3", " ", "\<\"t\"\>"}], "+", RowBox[{"3", " ", SuperscriptBox["\<\"t\"\>", "2"]}], "+", RowBox[{"\<\"s\"\>", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "3"}], "+", RowBox[{"6", " ", "\<\"t\"\>"}]}], ")"}]}]}]], "+", RowBox[{ FractionBox["3", "2"], " ", SuperscriptBox[ RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", RowBox[{"2", " ", "\<\"s\"\>"}], "+", RowBox[{"2", " ", "\<\"t\"\>"}]}], ")"}], "2"], " ", RowBox[{"Log", "[", RowBox[{ FractionBox["1", RowBox[{"2", " ", SqrtBox["3"]}]], "+", SqrtBox[ RowBox[{ FractionBox["1", "12"], "+", SuperscriptBox[ RowBox[{"(", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], "+", "\<\"s\"\>", "+", "\<\"t\"\>"}], ")"}], "2"]}]]}], "]"}]}]}], ")"}]}]}], SequenceForm[ " integrand: ", Rational[1, 12] ((1 + 3 "s"^2 - 3 "t" + 3 "t"^2 + "s" (-3 + 6 "t"))^ Rational[1, 2] + Rational[3, 2] (-1 + 2 "s" + 2 "t")^2 Log[Rational[1, 2] 3^Rational[-1, 2] + ( Rational[1, 12] + (Rational[-1, 2] + "s" + "t")^2)^Rational[1, 2]])], Editable->False]], "Print", CellLabel-> "During evaluation of (byblis65 V13.2.0) \ In[4]:=",ExpressionUUID->"a09ac02b-400c-4641-9236-74441506b1ab"], Cell[BoxData[ InterpretationBox[ RowBox[{"\<\" Integral over t and s: \"\>", "\[InvisibleSpace]", RowBox[{ FractionBox["1", "864"], " ", RowBox[{"(", RowBox[{"18", "+", RowBox[{"2", " ", SqrtBox["3"], " ", RowBox[{"ArcSinh", "[", SqrtBox["3"], "]"}]}], "-", RowBox[{"Log", "[", FractionBox["262144", "19683"], "]"}]}], ")"}]}]}], SequenceForm[ " Integral over t and s: ", Rational[1, 864] (18 + 2 3^Rational[1, 2] ArcSinh[3^Rational[1, 2]] - Log[ Rational[262144, 19683]])], Editable->False]], "Print", CellLabel-> "During evaluation of (byblis65 V13.2.0) \ In[4]:=",ExpressionUUID->"09aa0c44-5ace-444a-a230-f06c978ac5b5"], Cell[BoxData[ InterpretationBox[ RowBox[{"\<\" Elapsed time: \"\>", "\[InvisibleSpace]", "21.233545`7.778567500399283"}], SequenceForm[" Elapsed time: ", 21.233545`7.778567500399283], Editable->False]], "Print", CellLabel-> "During evaluation of (byblis65 V13.2.0) \ In[4]:=",ExpressionUUID->"1c1df0bd-d960-42f5-91ef-5d4112802fed"], Cell[BoxData[ InterpretationBox[ RowBox[{"\<\"Polygon: \"\>", "\[InvisibleSpace]", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"-", FractionBox["1", RowBox[{"2", " ", SqrtBox["3"]}]]}], ",", FractionBox["1", "2"], ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", FractionBox["1", RowBox[{"2", " ", SqrtBox["3"]}]]}], ",", RowBox[{"-", FractionBox["1", "2"]}], ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", FractionBox["1", RowBox[{"2", " ", SqrtBox["3"]}]]}], ",", FractionBox["1", "2"], ",", "1"}], "}"}]}], "}"}]}], SequenceForm["Polygon: ", {{Rational[-1, 2] 3^Rational[-1, 2], Rational[1, 2], 0}, {Rational[-1, 2] 3^Rational[-1, 2], Rational[-1, 2], 1}, {Rational[-1, 2] 3^Rational[-1, 2], Rational[1, 2], 1}}], Editable->False]], "Print", CellLabel-> "During evaluation of (byblis65 V13.2.0) \ In[4]:=",ExpressionUUID->"586a1ee6-8084-44e2-82bf-4c98c7de4d72"], Cell[BoxData[ InterpretationBox[ RowBox[{"\<\" integrand: \"\>", "\[InvisibleSpace]", RowBox[{ FractionBox["1", "12"], " ", RowBox[{"(", RowBox[{ SqrtBox[ RowBox[{"1", "-", RowBox[{"3", " ", "\<\"s\"\>"}], "+", RowBox[{"3", " ", SuperscriptBox["\<\"s\"\>", "2"]}]}]], "+", RowBox[{ FractionBox["3", "2"], " ", SuperscriptBox[ RowBox[{"(", RowBox[{"1", "-", RowBox[{"2", " ", "\<\"s\"\>"}]}], ")"}], "2"], " ", RowBox[{"Log", "[", FractionBox[ RowBox[{"1", "+", RowBox[{"2", " ", SqrtBox[ RowBox[{"1", "-", RowBox[{"3", " ", "\<\"s\"\>"}], "+", RowBox[{"3", " ", SuperscriptBox["\<\"s\"\>", "2"]}]}]]}]}], RowBox[{"2", " ", SqrtBox["3"]}]], "]"}]}]}], ")"}]}]}], SequenceForm[ " integrand: ", Rational[1, 12] ((1 - 3 "s" + 3 "s"^2)^Rational[1, 2] + Rational[3, 2] (1 - 2 "s")^2 Log[Rational[1, 2] 3^Rational[-1, 2] (1 + 2 (1 - 3 "s" + 3 "s"^2)^Rational[1, 2])])], Editable->False]], "Print", CellLabel-> "During evaluation of (byblis65 V13.2.0) \ In[4]:=",ExpressionUUID->"d34aba86-cd47-4f89-8b51-3f66c013299c"], Cell[BoxData[ InterpretationBox[ RowBox[{"\<\" Integral over t and s: \"\>", "\[InvisibleSpace]", RowBox[{ FractionBox["1", "864"], " ", RowBox[{"(", RowBox[{"18", "-", RowBox[{"18", " ", RowBox[{"Log", "[", "2", "]"}]}], "+", RowBox[{"9", " ", RowBox[{"Log", "[", "3", "]"}]}], "+", RowBox[{"2", " ", SqrtBox["3"], " ", RowBox[{"Log", "[", RowBox[{"2", "+", SqrtBox["3"]}], "]"}]}]}], ")"}]}]}], SequenceForm[ " Integral over t and s: ", Rational[1, 864] (18 - 18 Log[2] + 9 Log[3] + 2 3^Rational[1, 2] Log[2 + 3^Rational[1, 2]])], Editable->False]], "Print", CellLabel-> "During evaluation of (byblis65 V13.2.0) \ In[4]:=",ExpressionUUID->"37e31840-6892-4d19-8d12-754b2a92ffb1"], Cell[BoxData[ InterpretationBox[ RowBox[{"\<\" Elapsed time: \"\>", "\[InvisibleSpace]", "28.625545`7.908298757428703"}], SequenceForm[" Elapsed time: ", 28.625545`7.908298757428703], Editable->False]], "Print", CellLabel-> "During evaluation of (byblis65 V13.2.0) \ In[4]:=",ExpressionUUID->"326c5efc-27ba-4754-be96-530494ca29ed"], Cell[BoxData[ InterpretationBox[ RowBox[{"\<\"Polygon: \"\>", "\[InvisibleSpace]", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"-", FractionBox["1", RowBox[{"2", " ", SqrtBox["3"]}]]}], ",", RowBox[{"-", FractionBox["1", "2"]}], ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{ FractionBox["1", SqrtBox["3"]], ",", "0", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{ FractionBox["1", SqrtBox["3"]], ",", "0", ",", "1"}], "}"}]}], "}"}]}], SequenceForm["Polygon: ", {{Rational[-1, 2] 3^Rational[-1, 2], Rational[-1, 2], 0}, {3^Rational[-1, 2], 0, 0}, { 3^Rational[-1, 2], 0, 1}}], Editable->False]], "Print", CellLabel-> "During evaluation of (byblis65 V13.2.0) \ In[4]:=",ExpressionUUID->"36de9626-a972-47cd-a0f4-7af9b122beb9"], Cell[BoxData[ InterpretationBox[ RowBox[{"\<\" integrand: \"\>", "\[InvisibleSpace]", RowBox[{ FractionBox["1", "48"], " ", RowBox[{"(", RowBox[{ RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", RowBox[{"3", " ", "\<\"s\"\>"}], "+", RowBox[{"3", " ", "\<\"t\"\>"}]}], ")"}], " ", SqrtBox[ RowBox[{"1", "+", RowBox[{"3", " ", SuperscriptBox["\<\"s\"\>", "2"]}], "-", RowBox[{"3", " ", "\<\"t\"\>"}], "+", RowBox[{"3", " ", SuperscriptBox["\<\"t\"\>", "2"]}], "+", RowBox[{"\<\"s\"\>", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "3"}], "+", RowBox[{"6", " ", "\<\"t\"\>"}]}], ")"}]}]}]]}], "-", RowBox[{"3", " ", SuperscriptBox[ RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", "\<\"s\"\>", "+", "\<\"t\"\>"}], ")"}], "2"], " ", RowBox[{"Log", "[", FractionBox[ RowBox[{"1", "-", RowBox[{"3", " ", "\<\"s\"\>"}], "-", RowBox[{"3", " ", "\<\"t\"\>"}], "+", RowBox[{"2", " ", SqrtBox[ RowBox[{"1", "-", RowBox[{"3", " ", "\<\"s\"\>"}], "+", RowBox[{"3", " ", SuperscriptBox["\<\"s\"\>", "2"]}], "-", RowBox[{"3", " ", "\<\"t\"\>"}], "+", RowBox[{"6", " ", "\<\"s\"\>", " ", "\<\"t\"\>"}], "+", RowBox[{"3", " ", SuperscriptBox["\<\"t\"\>", "2"]}]}]]}]}], RowBox[{"2", " ", SqrtBox["3"]}]], "]"}]}]}], ")"}]}]}], SequenceForm[ " integrand: ", Rational[1, 48] ( 2 (-1 + 3 "s" + 3 "t") (1 + 3 "s"^2 - 3 "t" + 3 "t"^2 + "s" (-3 + 6 "t"))^ Rational[1, 2] - 3 (-1 + "s" + "t")^2 Log[Rational[1, 2] 3^Rational[-1, 2] (1 - 3 "s" - 3 "t" + 2 (1 - 3 "s" + 3 "s"^2 - 3 "t" + 6 "s" "t" + 3 "t"^2)^ Rational[1, 2])])], Editable->False]], "Print", CellLabel-> "During evaluation of (byblis65 V13.2.0) \ In[4]:=",ExpressionUUID->"d7919474-f649-487a-8cc7-bba6f5640ee3"], Cell[BoxData[ InterpretationBox[ RowBox[{"\<\" Integral over t and s: \"\>", "\[InvisibleSpace]", FractionBox[ RowBox[{"117", "+", RowBox[{"36", " ", RowBox[{"Log", "[", "2", "]"}]}], "-", RowBox[{"18", " ", RowBox[{"Log", "[", "3", "]"}]}], "-", RowBox[{"8", " ", SqrtBox["3"], " ", RowBox[{"Log", "[", RowBox[{"2", "-", SqrtBox["3"]}], "]"}]}], "+", RowBox[{"12", " ", SqrtBox["3"], " ", RowBox[{"Log", "[", RowBox[{"2", "+", SqrtBox["3"]}], "]"}]}]}], "6912"]}], SequenceForm[ " Integral over t and s: ", Rational[1, 6912] (117 + 36 Log[2] - 18 Log[3] - 8 3^Rational[1, 2] Log[2 - 3^Rational[1, 2]] + 12 3^Rational[1, 2] Log[2 + 3^Rational[1, 2]])], Editable->False]], "Print", CellLabel-> "During evaluation of (byblis65 V13.2.0) \ In[4]:=",ExpressionUUID->"d7a36f94-e696-4d2a-9e6d-86d10d79ab75"], Cell[BoxData[ InterpretationBox[ RowBox[{"\<\" Elapsed time: \"\>", "\[InvisibleSpace]", "59.472059`8.225857968095108"}], SequenceForm[" Elapsed time: ", 59.472059`8.225857968095108], Editable->False]], "Print", CellLabel-> "During evaluation of (byblis65 V13.2.0) \ In[4]:=",ExpressionUUID->"e961e605-7460-4792-bde8-def1fd232bd6"], Cell[BoxData[ InterpretationBox[ RowBox[{"\<\"Polygon: \"\>", "\[InvisibleSpace]", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"-", FractionBox["1", RowBox[{"2", " ", SqrtBox["3"]}]]}], ",", RowBox[{"-", FractionBox["1", "2"]}], ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{ FractionBox["1", SqrtBox["3"]], ",", "0", ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", FractionBox["1", RowBox[{"2", " ", SqrtBox["3"]}]]}], ",", RowBox[{"-", FractionBox["1", "2"]}], ",", "1"}], "}"}]}], "}"}]}], SequenceForm["Polygon: ", {{Rational[-1, 2] 3^Rational[-1, 2], Rational[-1, 2], 0}, {3^Rational[-1, 2], 0, 1}, { Rational[-1, 2] 3^Rational[-1, 2], Rational[-1, 2], 1}}], Editable->False]], "Print", CellLabel-> "During evaluation of (byblis65 V13.2.0) \ In[4]:=",ExpressionUUID->"4807b279-6e45-40cd-9416-2e9a3d2ddf65"], Cell[BoxData[ InterpretationBox[ RowBox[{"\<\" integrand: \"\>", "\[InvisibleSpace]", RowBox[{ FractionBox["1", "48"], " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "2"}], " ", SqrtBox[ RowBox[{"1", "-", RowBox[{"3", " ", "\<\"s\"\>"}], "+", RowBox[{"3", " ", SuperscriptBox["\<\"s\"\>", "2"]}]}]]}], "+", RowBox[{"6", " ", "\<\"s\"\>", " ", SqrtBox[ RowBox[{"1", "-", RowBox[{"3", " ", "\<\"s\"\>"}], "+", RowBox[{"3", " ", SuperscriptBox["\<\"s\"\>", "2"]}]}]]}], "+", FractionBox[ RowBox[{"Log", "[", "3", "]"}], "2"], "+", RowBox[{"Log", "[", "24", "]"}], "-", RowBox[{"3", " ", RowBox[{"Log", "[", RowBox[{"1", "-", RowBox[{"3", " ", "\<\"s\"\>"}], "+", RowBox[{"2", " ", SqrtBox[ RowBox[{"1", "-", RowBox[{"3", " ", "\<\"s\"\>"}], "+", RowBox[{"3", " ", SuperscriptBox["\<\"s\"\>", "2"]}]}]]}]}], "]"}]}], "-", RowBox[{"3", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "2"}], "+", "\<\"s\"\>"}], ")"}], " ", "\<\"s\"\>", " ", RowBox[{"Log", "[", FractionBox[ RowBox[{"1", "-", RowBox[{"3", " ", "\<\"s\"\>"}], "+", RowBox[{"2", " ", SqrtBox[ RowBox[{"1", "-", RowBox[{"3", " ", "\<\"s\"\>"}], "+", RowBox[{"3", " ", SuperscriptBox["\<\"s\"\>", "2"]}]}]]}]}], RowBox[{"2", " ", SqrtBox["3"]}]], "]"}]}]}], ")"}]}]}], SequenceForm[ " integrand: ", Rational[1, 48] ((-2) (1 - 3 "s" + 3 "s"^2)^Rational[1, 2] + 6 "s" (1 - 3 "s" + 3 "s"^2)^Rational[1, 2] + Rational[1, 2] Log[3] + Log[24] - 3 Log[1 - 3 "s" + 2 (1 - 3 "s" + 3 "s"^2)^Rational[1, 2]] - 3 (-2 + "s") "s" Log[Rational[1, 2] 3^Rational[-1, 2] (1 - 3 "s" + 2 (1 - 3 "s" + 3 "s"^2)^Rational[1, 2])])], Editable->False]], "Print", CellLabel-> "During evaluation of (byblis65 V13.2.0) \ In[4]:=",ExpressionUUID->"7a90d4e3-f21c-41be-9db8-89bcdb507635"], Cell[BoxData[ InterpretationBox[ RowBox[{"\<\" Integral over t and s: \"\>", "\[InvisibleSpace]", FractionBox[ RowBox[{"27", "+", RowBox[{"54", " ", RowBox[{"Log", "[", FractionBox["4", "3"], "]"}]}], "+", RowBox[{"8", " ", SqrtBox["3"], " ", RowBox[{"Log", "[", RowBox[{"2", "-", SqrtBox["3"]}], "]"}]}], "+", RowBox[{"20", " ", SqrtBox["3"], " ", RowBox[{"Log", "[", RowBox[{"2", "+", SqrtBox["3"]}], "]"}]}]}], "6912"]}], SequenceForm[" Integral over t and s: ", Rational[1, 6912] (27 + 54 Log[ Rational[4, 3]] + 8 3^Rational[1, 2] Log[2 - 3^Rational[1, 2]] + 20 3^Rational[1, 2] Log[2 + 3^Rational[1, 2]])], Editable->False]], "Print", CellLabel-> "During evaluation of (byblis65 V13.2.0) \ In[4]:=",ExpressionUUID->"594a6dcf-d251-4e78-807b-9eb6859a819d"], Cell[BoxData[ InterpretationBox[ RowBox[{"\<\" Elapsed time: \"\>", "\[InvisibleSpace]", "57.634034`8.212224011873552"}], SequenceForm[" Elapsed time: ", 57.634034`8.212224011873552], Editable->False]], "Print", CellLabel-> "During evaluation of (byblis65 V13.2.0) \ In[4]:=",ExpressionUUID->"021c7141-67d6-4bab-85c5-41cb0e76b26d"], Cell[BoxData[ InterpretationBox[ RowBox[{"\<\"Polygon: \"\>", "\[InvisibleSpace]", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ FractionBox["1", SqrtBox["3"]], ",", "0", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", FractionBox["1", RowBox[{"2", " ", SqrtBox["3"]}]]}], ",", FractionBox["1", "2"], ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", FractionBox["1", RowBox[{"2", " ", SqrtBox["3"]}]]}], ",", FractionBox["1", "2"], ",", "1"}], "}"}]}], "}"}]}], SequenceForm[ "Polygon: ", {{3^Rational[-1, 2], 0, 0}, {Rational[-1, 2] 3^Rational[-1, 2], Rational[1, 2], 0}, {Rational[-1, 2] 3^Rational[-1, 2], Rational[1, 2], 1}}], Editable->False]], "Print", CellLabel-> "During evaluation of (byblis65 V13.2.0) \ In[4]:=",ExpressionUUID->"8d6e49cb-fc35-4d04-8fe8-52c058564a8d"], Cell[BoxData[ InterpretationBox[ RowBox[{"\<\" integrand: \"\>", "\[InvisibleSpace]", RowBox[{ FractionBox["1", "48"], " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "2"}], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "2"}], "+", RowBox[{"3", " ", "\<\"s\"\>"}], "+", RowBox[{"3", " ", "\<\"t\"\>"}]}], ")"}], " ", SqrtBox[ RowBox[{"1", "+", RowBox[{"3", " ", SuperscriptBox["\<\"s\"\>", "2"]}], "-", RowBox[{"3", " ", "\<\"t\"\>"}], "+", RowBox[{"3", " ", SuperscriptBox["\<\"t\"\>", "2"]}], "+", RowBox[{"\<\"s\"\>", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "3"}], "+", RowBox[{"6", " ", "\<\"t\"\>"}]}], ")"}]}]}]]}], "-", RowBox[{"3", " ", SuperscriptBox[ RowBox[{"(", RowBox[{"\<\"s\"\>", "+", "\<\"t\"\>"}], ")"}], "2"], " ", RowBox[{"Log", "[", FractionBox[ RowBox[{ RowBox[{"-", "2"}], "+", RowBox[{"3", " ", "\<\"s\"\>"}], "+", RowBox[{"3", " ", "\<\"t\"\>"}], "+", RowBox[{"2", " ", SqrtBox[ RowBox[{"1", "+", RowBox[{"3", " ", SuperscriptBox["\<\"s\"\>", "2"]}], "-", RowBox[{"3", " ", "\<\"t\"\>"}], "+", RowBox[{"3", " ", SuperscriptBox["\<\"t\"\>", "2"]}], "+", RowBox[{"\<\"s\"\>", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "3"}], "+", RowBox[{"6", " ", "\<\"t\"\>"}]}], ")"}]}]}]]}]}], RowBox[{"2", " ", SqrtBox["3"]}]], "]"}]}]}], ")"}]}]}], SequenceForm[ " integrand: ", Rational[1, 48] ((-2) (-2 + 3 "s" + 3 "t") (1 + 3 "s"^2 - 3 "t" + 3 "t"^2 + "s" (-3 + 6 "t"))^ Rational[1, 2] - 3 ("s" + "t")^2 Log[Rational[1, 2] 3^Rational[-1, 2] (-2 + 3 "s" + 3 "t" + 2 (1 + 3 "s"^2 - 3 "t" + 3 "t"^2 + "s" (-3 + 6 "t"))^Rational[1, 2])])], Editable->False]], "Print", CellLabel-> "During evaluation of (byblis65 V13.2.0) \ In[4]:=",ExpressionUUID->"a840ffc2-9134-44ed-8b54-8d01846790a4"], Cell[BoxData[ InterpretationBox[ RowBox[{"\<\" Integral over t and s: \"\>", "\[InvisibleSpace]", FractionBox[ RowBox[{"27", "+", RowBox[{"54", " ", RowBox[{"Log", "[", FractionBox["4", "3"], "]"}]}], "+", RowBox[{"8", " ", SqrtBox["3"], " ", RowBox[{"Log", "[", RowBox[{"2", "-", SqrtBox["3"]}], "]"}]}], "+", RowBox[{"20", " ", SqrtBox["3"], " ", RowBox[{"Log", "[", RowBox[{"2", "+", SqrtBox["3"]}], "]"}]}]}], "6912"]}], SequenceForm[" Integral over t and s: ", Rational[1, 6912] (27 + 54 Log[ Rational[4, 3]] + 8 3^Rational[1, 2] Log[2 - 3^Rational[1, 2]] + 20 3^Rational[1, 2] Log[2 + 3^Rational[1, 2]])], Editable->False]], "Print", CellLabel-> "During evaluation of (byblis65 V13.2.0) \ In[4]:=",ExpressionUUID->"d1fdbd88-a74b-4e95-bc83-c4bdda510349"], Cell[BoxData[ InterpretationBox[ RowBox[{"\<\" Elapsed time: \"\>", "\[InvisibleSpace]", "28.576467`7.907553528054152"}], SequenceForm[" Elapsed time: ", 28.576467`7.907553528054152], Editable->False]], "Print", CellLabel-> "During evaluation of (byblis65 V13.2.0) \ In[4]:=",ExpressionUUID->"7c0d97d8-973f-440c-9cc3-21f821727e31"], Cell[BoxData[ InterpretationBox[ RowBox[{"\<\"Polygon: \"\>", "\[InvisibleSpace]", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ FractionBox["1", SqrtBox["3"]], ",", "0", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", FractionBox["1", RowBox[{"2", " ", SqrtBox["3"]}]]}], ",", FractionBox["1", "2"], ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{ FractionBox["1", SqrtBox["3"]], ",", "0", ",", "1"}], "}"}]}], "}"}]}], SequenceForm[ "Polygon: ", {{3^Rational[-1, 2], 0, 0}, {Rational[-1, 2] 3^Rational[-1, 2], Rational[1, 2], 1}, {3^Rational[-1, 2], 0, 1}}], Editable->False]], "Print", CellLabel-> "During evaluation of (byblis65 V13.2.0) \ In[4]:=",ExpressionUUID->"3fe7cb65-484e-479f-a0c6-55419d1ed6b9"], Cell[BoxData[ InterpretationBox[ RowBox[{"\<\" integrand: \"\>", "\[InvisibleSpace]", RowBox[{ FractionBox["1", "48"], " ", RowBox[{"(", RowBox[{ RowBox[{"2", " ", RowBox[{"(", RowBox[{"2", "-", RowBox[{"3", " ", "\<\"s\"\>"}]}], ")"}], " ", SqrtBox[ RowBox[{"1", "-", RowBox[{"3", " ", "\<\"s\"\>"}], "+", RowBox[{"3", " ", SuperscriptBox["\<\"s\"\>", "2"]}]}]]}], "-", RowBox[{"3", " ", SuperscriptBox["\<\"s\"\>", "2"], " ", RowBox[{"Log", "[", FractionBox[ RowBox[{ RowBox[{"-", "2"}], "+", RowBox[{"3", " ", "\<\"s\"\>"}], "+", RowBox[{"2", " ", SqrtBox[ RowBox[{"1", "-", RowBox[{"3", " ", "\<\"s\"\>"}], "+", RowBox[{"3", " ", SuperscriptBox["\<\"s\"\>", "2"]}]}]]}]}], RowBox[{"2", " ", SqrtBox["3"]}]], "]"}]}]}], ")"}]}]}], SequenceForm[ " integrand: ", Rational[1, 48] (2 (2 - 3 "s") (1 - 3 "s" + 3 "s"^2)^Rational[1, 2] - 3 "s"^2 Log[ Rational[1, 2] 3^Rational[-1, 2] (-2 + 3 "s" + 2 (1 - 3 "s" + 3 "s"^2)^Rational[1, 2])])], Editable->False]], "Print", CellLabel-> "During evaluation of (byblis65 V13.2.0) \ In[4]:=",ExpressionUUID->"91fd5481-6f9d-48ff-a10a-bc87a20c3c57"], Cell[BoxData[ InterpretationBox[ RowBox[{"\<\" Integral over t and s: \"\>", "\[InvisibleSpace]", FractionBox[ RowBox[{"117", "+", RowBox[{"36", " ", RowBox[{"Log", "[", "2", "]"}]}], "-", RowBox[{"18", " ", RowBox[{"Log", "[", "3", "]"}]}], "+", RowBox[{"2", " ", SqrtBox["3"], " ", RowBox[{"Log", "[", RowBox[{"262087", "+", RowBox[{"151316", " ", SqrtBox["3"]}]}], "]"}]}]}], "6912"]}], SequenceForm[ " Integral over t and s: ", Rational[1, 6912] (117 + 36 Log[2] - 18 Log[3] + 2 3^Rational[1, 2] Log[262087 + 151316 3^Rational[1, 2]])], Editable->False]], "Print", CellLabel-> "During evaluation of (byblis65 V13.2.0) \ In[4]:=",ExpressionUUID->"899e7e42-4389-43f0-a23c-1e86ac4fbed5"], Cell[BoxData[ InterpretationBox[ RowBox[{"\<\" Elapsed time: \"\>", "\[InvisibleSpace]", "44.038507`8.095377580529282"}], SequenceForm[" Elapsed time: ", 44.038507`8.095377580529282], Editable->False]], "Print", CellLabel-> "During evaluation of (byblis65 V13.2.0) \ In[4]:=",ExpressionUUID->"594ed01d-6893-4ee1-961d-81fffb01c125"], Cell[BoxData[ InterpretationBox[ RowBox[{"\<\"Polygon: \"\>", "\[InvisibleSpace]", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ FractionBox["1", SqrtBox["3"]], ",", "0", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", FractionBox["1", RowBox[{"2", " ", SqrtBox["3"]}]]}], ",", RowBox[{"-", FractionBox["1", "2"]}], ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", FractionBox["1", RowBox[{"2", " ", SqrtBox["3"]}]]}], ",", FractionBox["1", "2"], ",", "0"}], "}"}]}], "}"}]}], SequenceForm[ "Polygon: ", {{3^Rational[-1, 2], 0, 0}, {Rational[-1, 2] 3^Rational[-1, 2], Rational[-1, 2], 0}, {Rational[-1, 2] 3^Rational[-1, 2], Rational[1, 2], 0}}], Editable->False]], "Print", CellLabel-> "During evaluation of (byblis65 V13.2.0) \ In[4]:=",ExpressionUUID->"9f115400-e1f2-4144-af8e-aeb3fa0cf53c"], Cell[BoxData[ InterpretationBox[ RowBox[{"\<\" Integrand and hence integral over t and s is zero : \"\>", "\[InvisibleSpace]", "0"}], SequenceForm[" Integrand and hence integral over t and s is zero : ", 0], Editable->False]], "Print", CellLabel-> "During evaluation of (byblis65 V13.2.0) \ In[4]:=",ExpressionUUID->"9ae73e4e-7061-48f9-bf74-d19e0d133ce1"], Cell[BoxData[ InterpretationBox[ RowBox[{"\<\" Elapsed time: \"\>", "\[InvisibleSpace]", "0.000386`3.03813229816773"}], SequenceForm[" Elapsed time: ", 0.000386`3.03813229816773], Editable->False]], "Print", CellLabel-> "During evaluation of (byblis65 V13.2.0) \ In[4]:=",ExpressionUUID->"65d3d19c-14cf-424d-b441-5dcdc4c669a1"] }, Open ]], Cell[BoxData[ RowBox[{"{", RowBox[{"399.629719`", ",", RowBox[{ FractionBox["1", RowBox[{ FractionBox["1", SqrtBox["2"]], "+", FractionBox[ RowBox[{"3", " ", SqrtBox["3"]}], "2"]}]], RowBox[{"6", " ", RowBox[{"(", RowBox[{ FractionBox[ RowBox[{"27", "-", RowBox[{"36", " ", RowBox[{"Log", "[", "2", "]"}]}], "+", RowBox[{"18", " ", RowBox[{"Log", "[", "3", "]"}]}], "-", RowBox[{"2", " ", SqrtBox["3"], " ", RowBox[{"Log", "[", RowBox[{"7", "-", RowBox[{"4", " ", SqrtBox["3"]}]}], "]"}]}]}], RowBox[{"1728", " ", SqrtBox["6"]}]], "+", RowBox[{ FractionBox["1", "864"], " ", RowBox[{"(", RowBox[{"36", "+", RowBox[{"2", " ", SqrtBox["3"], " ", RowBox[{"ArcSinh", "[", SqrtBox["3"], "]"}]}], "-", RowBox[{"Log", "[", FractionBox["68719476736", "387420489"], "]"}], "+", RowBox[{"2", " ", SqrtBox["3"], " ", RowBox[{"Log", "[", RowBox[{"2", "+", SqrtBox["3"]}], "]"}]}]}], ")"}]}], "+", RowBox[{ FractionBox["1", "864"], " ", RowBox[{"(", RowBox[{"18", "+", RowBox[{"18", " ", RowBox[{"Log", "[", "2", "]"}]}], "-", RowBox[{"9", " ", RowBox[{"Log", "[", "3", "]"}]}], "+", RowBox[{"4", " ", SqrtBox["3"], " ", RowBox[{"Log", "[", RowBox[{"2", "+", SqrtBox["3"]}], "]"}]}]}], ")"}]}], "+", FractionBox[ RowBox[{"45", "+", RowBox[{"36", " ", RowBox[{"Log", "[", "2", "]"}]}], "-", RowBox[{"18", " ", RowBox[{"Log", "[", "3", "]"}]}], "+", RowBox[{ SqrtBox["3"], " ", RowBox[{"Log", "[", RowBox[{"18817", "+", RowBox[{"10864", " ", SqrtBox["3"]}]}], "]"}]}]}], RowBox[{"1728", " ", SqrtBox["6"]}]], "+", RowBox[{ FractionBox["1", "3456"], RowBox[{"(", RowBox[{"72", "+", RowBox[{"27", " ", RowBox[{"Log", "[", FractionBox["4", "3"], "]"}]}], "+", RowBox[{"18", " ", RowBox[{"Log", "[", "2", "]"}]}], "-", RowBox[{"9", " ", RowBox[{"Log", "[", "3", "]"}]}], "+", RowBox[{"4", " ", SqrtBox["3"], " ", RowBox[{"Log", "[", RowBox[{"2", "-", SqrtBox["3"]}], "]"}]}], "+", RowBox[{"10", " ", SqrtBox["3"], " ", RowBox[{"Log", "[", RowBox[{"2", "+", SqrtBox["3"]}], "]"}]}], "+", RowBox[{ SqrtBox["3"], " ", RowBox[{"Log", "[", RowBox[{"262087", "+", RowBox[{"151316", " ", SqrtBox["3"]}]}], "]"}]}]}], ")"}]}]}], ")"}]}]}]}], "}"}]], "Output", CellLabel-> "(byblis65 V13.2.0) \ Out[4]=",ExpressionUUID->"e5654e16-bb37-4888-bfed-941f56a816a3"] }, Closed]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"N", "[", "rxy", "]"}]], "Input", CellLabel-> "(byblis65 V13.2.0) \ In[5]:=",ExpressionUUID->"f6268216-1129-41a8-aa73-b8cf90b56e70"], Cell[BoxData["0.2514081119594903`"], "Output", CellLabel-> "(byblis65 V13.2.0) \ Out[5]=",ExpressionUUID->"fa6b7714-7345-47dc-8610-07ca837f7960"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"FullSimplify", "[", "rxy", "]"}]], "Input", CellLabel-> "(byblis65 V13.2.0) \ In[6]:=",ExpressionUUID->"d0573f61-9a32-40e3-b77d-3b72b4383ba7"], Cell[BoxData[ RowBox[{ FractionBox["1", RowBox[{"288", " ", SqrtBox[ RowBox[{"29", "+", RowBox[{"6", " ", SqrtBox["6"]}]}]]}]], RowBox[{"(", RowBox[{"288", "+", RowBox[{"24", " ", SqrtBox["6"]}], "+", RowBox[{"42", " ", SqrtBox["3"], " ", RowBox[{"ArcCosh", "[", "2", "]"}]}], "+", RowBox[{ SqrtBox["2"], " ", RowBox[{"ArcCosh", "[", "18817", "]"}]}], "+", RowBox[{ SqrtBox["3"], " ", RowBox[{"ArcCosh", "[", "262087", "]"}]}], "-", RowBox[{"2", " ", SqrtBox["2"], " ", RowBox[{"Log", "[", RowBox[{"7", "-", RowBox[{"4", " ", SqrtBox["3"]}]}], "]"}]}], "+", RowBox[{"4", " ", SqrtBox["3"], " ", RowBox[{"Log", "[", RowBox[{"2", "-", SqrtBox["3"]}], "]"}]}]}], ")"}]}]], "Output", CellLabel-> "(byblis65 V13.2.0) \ Out[6]=",ExpressionUUID->"b5a7c2be-c569-4a22-9dbf-9a2e5f0409ab"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"TrigToExp", "[", "%", "]"}]], "Input", CellLabel-> "(byblis65 V13.2.0) \ In[7]:=",ExpressionUUID->"707d6120-8118-489c-8993-fb52b9213b6b"], Cell[BoxData[ RowBox[{ FractionBox["1", RowBox[{"288", " ", SqrtBox[ RowBox[{"29", "+", RowBox[{"6", " ", SqrtBox["6"]}]}]]}]], RowBox[{"(", RowBox[{"288", "+", RowBox[{"24", " ", SqrtBox["6"]}], "-", RowBox[{"2", " ", SqrtBox["2"], " ", RowBox[{"Log", "[", RowBox[{"7", "-", RowBox[{"4", " ", SqrtBox["3"]}]}], "]"}]}], "+", RowBox[{"4", " ", SqrtBox["3"], " ", RowBox[{"Log", "[", RowBox[{"2", "-", SqrtBox["3"]}], "]"}]}], "+", RowBox[{"42", " ", SqrtBox["3"], " ", RowBox[{"Log", "[", RowBox[{"2", "+", SqrtBox["3"]}], "]"}]}], "+", RowBox[{ SqrtBox["2"], " ", RowBox[{"Log", "[", RowBox[{"18817", "+", RowBox[{"10864", " ", SqrtBox["3"]}]}], "]"}]}], "+", RowBox[{ SqrtBox["3"], " ", RowBox[{"Log", "[", RowBox[{"262087", "+", RowBox[{"151316", " ", SqrtBox["3"]}]}], "]"}]}]}], ")"}]}]], "Output", CellLabel-> "(byblis65 V13.2.0) \ Out[7]=",ExpressionUUID->"e01e46d9-8945-4890-8bff-c8b58dc87495"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Cases", "[", RowBox[{ RowBox[{"Flatten", "[", RowBox[{ RowBox[{"Table", "[", RowBox[{ RowBox[{"{", RowBox[{"a", ",", "b", ",", "n", ",", RowBox[{ SuperscriptBox[ RowBox[{"(", RowBox[{"a", "+", RowBox[{"b", " ", RowBox[{"Sqrt", "[", "3", "]"}]}]}], ")"}], "n"], "//", "Expand"}]}], "}"}], ",", RowBox[{"{", RowBox[{"n", ",", "10"}], "}"}], ",", RowBox[{"{", RowBox[{"a", ",", RowBox[{"-", "10"}], ",", "10"}], "}"}], ",", RowBox[{"{", RowBox[{"b", ",", RowBox[{"-", "10"}], ",", "10"}], "}"}]}], "]"}], ",", "2"}], "]"}], ",", RowBox[{"{", RowBox[{"__", ",", RowBox[{"18817", "+", RowBox[{"10864", " ", SqrtBox["3"]}]}]}], "}"}]}], "]"}]], "Input", CellLabel-> "(byblis65 V13.2.0) \ In[8]:=",ExpressionUUID->"3abc8f6c-9073-467d-b8df-690d3ac9c524"], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"-", "7"}], ",", RowBox[{"-", "4"}], ",", "4", ",", RowBox[{"18817", "+", RowBox[{"10864", " ", SqrtBox["3"]}]}]}], "}"}], ",", RowBox[{"{", RowBox[{"7", ",", "4", ",", "4", ",", RowBox[{"18817", "+", RowBox[{"10864", " ", SqrtBox["3"]}]}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "2"}], ",", RowBox[{"-", "1"}], ",", "8", ",", RowBox[{"18817", "+", RowBox[{"10864", " ", SqrtBox["3"]}]}]}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", "1", ",", "8", ",", RowBox[{"18817", "+", RowBox[{"10864", " ", SqrtBox["3"]}]}]}], "}"}]}], "}"}]], "Output", CellLabel-> "(byblis65 V13.2.0) \ Out[8]=",ExpressionUUID->"eae5fabb-26ca-4005-b37b-2a347f60018a"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Cases", "[", RowBox[{ RowBox[{"Flatten", "[", RowBox[{ RowBox[{"Table", "[", RowBox[{ RowBox[{"{", RowBox[{"a", ",", "b", ",", "n", ",", RowBox[{ SuperscriptBox[ RowBox[{"(", RowBox[{"a", "+", RowBox[{"b", " ", RowBox[{"Sqrt", "[", "3", "]"}]}]}], ")"}], "n"], "//", "Expand"}]}], "}"}], ",", RowBox[{"{", RowBox[{"n", ",", "10"}], "}"}], ",", RowBox[{"{", RowBox[{"a", ",", RowBox[{"-", "10"}], ",", "10"}], "}"}], ",", RowBox[{"{", RowBox[{"b", ",", RowBox[{"-", "10"}], ",", "10"}], "}"}]}], "]"}], ",", "2"}], "]"}], ",", RowBox[{"{", RowBox[{"__", ",", RowBox[{"262087", "+", RowBox[{"151316", " ", SqrtBox["3"]}]}]}], "}"}]}], "]"}]], "Input", CellLabel-> "(byblis65 V13.2.0) \ In[9]:=",ExpressionUUID->"76e66176-ef99-46fe-9e98-2c75cfee49a6"], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"7", ",", "4", ",", "5", ",", RowBox[{"262087", "+", RowBox[{"151316", " ", SqrtBox["3"]}]}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "2"}], ",", RowBox[{"-", "1"}], ",", "10", ",", RowBox[{"262087", "+", RowBox[{"151316", " ", SqrtBox["3"]}]}]}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", "1", ",", "10", ",", RowBox[{"262087", "+", RowBox[{"151316", " ", SqrtBox["3"]}]}]}], "}"}]}], "}"}]], "Output", CellLabel-> "(byblis65 V13.2.0) \ Out[9]=",ExpressionUUID->"fec58fc2-bd56-46ac-be48-890a5a6b4bd9"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Cases", "[", RowBox[{ RowBox[{"Flatten", "[", RowBox[{ RowBox[{"Table", "[", RowBox[{ RowBox[{"{", RowBox[{"a", ",", "b", ",", "n", ",", RowBox[{ SuperscriptBox[ RowBox[{"(", RowBox[{"a", "+", RowBox[{"b", " ", RowBox[{"Sqrt", "[", "3", "]"}]}]}], ")"}], "n"], "//", "Expand"}]}], "}"}], ",", RowBox[{"{", RowBox[{"n", ",", "10"}], "}"}], ",", RowBox[{"{", RowBox[{"a", ",", RowBox[{"-", "10"}], ",", "10"}], "}"}], ",", RowBox[{"{", RowBox[{"b", ",", RowBox[{"-", "10"}], ",", "10"}], "}"}]}], "]"}], ",", "2"}], "]"}], ",", RowBox[{"{", RowBox[{"__", ",", RowBox[{"7", "-", RowBox[{"4", " ", SqrtBox["3"]}]}]}], "}"}]}], "]"}]], "Input", CellLabel-> "(byblis65 V13.2.0) \ In[15]:=",ExpressionUUID->"7387248d-39a4-4468-b998-bc9902eee51a"], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"7", ",", RowBox[{"-", "4"}], ",", "1", ",", RowBox[{"7", "-", RowBox[{"4", " ", SqrtBox["3"]}]}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "2"}], ",", "1", ",", "2", ",", RowBox[{"7", "-", RowBox[{"4", " ", SqrtBox["3"]}]}]}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", RowBox[{"-", "1"}], ",", "2", ",", RowBox[{"7", "-", RowBox[{"4", " ", SqrtBox["3"]}]}]}], "}"}]}], "}"}]], "Output", CellLabel-> "(byblis65 V13.2.0) \ Out[15]=",ExpressionUUID->"b6b255e6-5351-4a72-8d4f-c39d50419716"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"N", "[", RowBox[{ FractionBox["1", RowBox[{"288", " ", SqrtBox[ RowBox[{"29", "+", RowBox[{"6", " ", SqrtBox["6"]}]}]]}]], RowBox[{"(", RowBox[{"288", "+", RowBox[{"24", " ", SqrtBox["6"]}], "-", RowBox[{"2", " ", SqrtBox["2"], " ", RowBox[{"Log", "[", RowBox[{"7", "-", RowBox[{"4", " ", SqrtBox["3"]}]}], "]"}]}], "+", RowBox[{"4", " ", SqrtBox["3"], " ", RowBox[{"Log", "[", RowBox[{"2", "-", SqrtBox["3"]}], "]"}]}], "+", RowBox[{"42", " ", SqrtBox["3"], " ", RowBox[{"Log", "[", RowBox[{"2", "+", SqrtBox["3"]}], "]"}]}], "+", RowBox[{ SqrtBox["2"], " ", RowBox[{"Log", "[", RowBox[{"18817", "+", RowBox[{"10864", " ", SqrtBox["3"]}]}], "]"}]}], "+", RowBox[{ SqrtBox["3"], " ", RowBox[{"Log", "[", RowBox[{"262087", "+", RowBox[{"151316", " ", SqrtBox["3"]}]}], "]"}]}]}], ")"}]}], "]"}]], "Input", CellLabel-> "(byblis65 V13.2.0) \ In[12]:=",ExpressionUUID->"6814b3cd-3186-4fdb-849c-b3dbc50f3605"], Cell[BoxData["0.2514081119594904`"], "Output", CellLabel-> "(byblis65 V13.2.0) \ Out[12]=",ExpressionUUID->"31b1f47b-2558-4070-b501-910546567442"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"N", "[", RowBox[{ FractionBox["1", RowBox[{"288", " ", SqrtBox[ RowBox[{"29", "+", RowBox[{"6", " ", SqrtBox["6"]}]}]]}]], RowBox[{"(", RowBox[{"288", "+", RowBox[{"24", " ", SqrtBox["6"]}], "-", RowBox[{"2", " ", SqrtBox["2"], " ", RowBox[{"Log", "[", RowBox[{"7", "-", RowBox[{"4", " ", SqrtBox["3"]}]}], "]"}]}], "+", RowBox[{"4", " ", SqrtBox["3"], " ", RowBox[{"Log", "[", RowBox[{"2", "-", SqrtBox["3"]}], "]"}]}], "+", RowBox[{"42", " ", SqrtBox["3"], " ", RowBox[{"Log", "[", RowBox[{"2", "+", SqrtBox["3"]}], "]"}]}], "+", RowBox[{ SqrtBox["2"], " ", "8", RowBox[{"Log", "[", RowBox[{"2", "+", " ", SqrtBox["3"]}], "]"}]}], "+", RowBox[{ SqrtBox["3"], " ", "10", RowBox[{"Log", "[", RowBox[{"2", "+", SqrtBox["3"]}], "]"}]}]}], ")"}]}], "]"}]], "Input", CellLabel-> "(byblis65 V13.2.0) \ In[13]:=",ExpressionUUID->"4483d06d-87de-41ee-a961-c3315488ae1b"], Cell[BoxData["0.25140811195949037`"], "Output", CellLabel-> "(byblis65 V13.2.0) \ Out[13]=",ExpressionUUID->"f5a877f0-5919-4610-84ab-00918f7a2c15"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"N", "[", RowBox[{ FractionBox["1", RowBox[{"288", " ", SqrtBox[ RowBox[{"29", "+", RowBox[{"6", " ", SqrtBox["6"]}]}]]}]], RowBox[{"(", RowBox[{"288", "+", RowBox[{"24", " ", SqrtBox["6"]}], "-", RowBox[{"2", " ", SqrtBox["2"], " ", "2", RowBox[{"Log", "[", RowBox[{"2", "-", SqrtBox["3"]}], "]"}]}], "+", RowBox[{"4", " ", SqrtBox["3"], " ", RowBox[{"Log", "[", RowBox[{"2", "-", SqrtBox["3"]}], "]"}]}], "+", RowBox[{"42", " ", SqrtBox["3"], " ", RowBox[{"Log", "[", RowBox[{"2", "+", SqrtBox["3"]}], "]"}]}], "+", RowBox[{ SqrtBox["2"], " ", "8", RowBox[{"Log", "[", RowBox[{"2", "+", " ", SqrtBox["3"]}], "]"}]}], "+", RowBox[{ SqrtBox["3"], " ", "10", RowBox[{"Log", "[", RowBox[{"2", "+", SqrtBox["3"]}], "]"}]}]}], ")"}]}], "]"}]], "Input", CellLabel-> "(byblis65 V13.2.0) \ In[18]:=",ExpressionUUID->"27904df8-934a-4fd0-8cf0-06093ab2b416"], Cell[BoxData["0.25140811195949037`"], "Output", CellLabel-> "(byblis65 V13.2.0) \ Out[18]=",ExpressionUUID->"f3c5d28c-fb90-43a1-a660-867830417a22"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"FullSimplify", "[", RowBox[{ FractionBox["1", RowBox[{"288", " ", SqrtBox[ RowBox[{"29", "+", RowBox[{"6", " ", SqrtBox["6"]}]}]]}]], RowBox[{"(", RowBox[{"288", "+", RowBox[{"24", " ", SqrtBox["6"]}], "-", RowBox[{"2", " ", SqrtBox["2"], " ", "2", RowBox[{"Log", "[", RowBox[{"2", "-", SqrtBox["3"]}], "]"}]}], "+", RowBox[{"4", " ", SqrtBox["3"], " ", RowBox[{"Log", "[", RowBox[{"2", "-", SqrtBox["3"]}], "]"}]}], "+", RowBox[{"42", " ", SqrtBox["3"], " ", RowBox[{"Log", "[", RowBox[{"2", "+", SqrtBox["3"]}], "]"}]}], "+", RowBox[{ SqrtBox["2"], " ", "8", RowBox[{"Log", "[", RowBox[{"2", "+", " ", SqrtBox["3"]}], "]"}]}], "+", RowBox[{ SqrtBox["3"], " ", "10", RowBox[{"Log", "[", RowBox[{"2", "+", SqrtBox["3"]}], "]"}]}]}], ")"}]}], "]"}]], "Input", CellLabel-> "(byblis65 V13.2.0) \ In[19]:=",ExpressionUUID->"edef1146-6b38-49fe-ad2a-dc16887f24de"], Cell[BoxData[ FractionBox[ RowBox[{"72", "+", RowBox[{"6", " ", SqrtBox["6"]}], "+", RowBox[{"2", " ", SqrtBox["2"], " ", RowBox[{"ArcCosh", "[", "2", "]"}]}], "+", RowBox[{"13", " ", SqrtBox["3"], " ", RowBox[{"ArcCosh", "[", "2", "]"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"-", SqrtBox["2"]}], "+", SqrtBox["3"]}], ")"}], " ", RowBox[{"Log", "[", RowBox[{"2", "-", SqrtBox["3"]}], "]"}]}]}], RowBox[{"72", " ", SqrtBox[ RowBox[{"29", "+", RowBox[{"6", " ", SqrtBox["6"]}]}]]}]]], "Output", CellLabel-> "(byblis65 V13.2.0) \ Out[19]=",ExpressionUUID->"7a96abb7-f679-406c-9a7c-82ae40bac813"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"ArcCosh", "[", "2", "]"}], "//", "TrigToExp"}]], "Input", CellLabel-> "(byblis65 V13.2.0) \ In[20]:=",ExpressionUUID->"ac73c5f5-5a3e-4bdc-901d-e0f58749ad98"], Cell[BoxData[ RowBox[{"Log", "[", RowBox[{"2", "+", SqrtBox["3"]}], "]"}]], "Output", CellLabel-> "(byblis65 V13.2.0) \ Out[20]=",ExpressionUUID->"1df4924d-ac6b-4ea6-9930-619115907aec"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"N", "[", FractionBox[ RowBox[{"72", "+", RowBox[{"6", " ", SqrtBox["6"]}], "+", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"2", " ", SqrtBox["2"]}], "+", RowBox[{"13", " ", SqrtBox["3"]}]}], ")"}], RowBox[{"Log", "[", RowBox[{"2", "+", SqrtBox["3"]}], "]"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{ SqrtBox["3"], "-", SqrtBox["2"]}], ")"}], " ", RowBox[{"Log", "[", RowBox[{"2", "-", SqrtBox["3"]}], "]"}]}]}], RowBox[{"72", " ", SqrtBox[ RowBox[{"29", "+", RowBox[{"6", " ", SqrtBox["6"]}]}]]}]], "]"}]], "Input",ExpressionUUID->"a6d1ba1d-9583-\ 4783-8505-af6098b5659a"], Cell[BoxData["0.25140811195949037`"], "Output", CellLabel-> "(byblis65 V13.2.0) \ Out[21]=",ExpressionUUID->"63c27f5b-07a7-48c6-81ae-a558804e50c1"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"N", "[", RowBox[{ RowBox[{"Subtract", "@@", RowBox[{"{", RowBox[{ RowBox[{ FractionBox["1", RowBox[{"1728", " ", SqrtBox[ RowBox[{"29", "+", RowBox[{"6", " ", SqrtBox["6"]}]}]]}]], RowBox[{"(", RowBox[{ RowBox[{"-", RowBox[{"(", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"32", " ", SqrtBox["2"]}], "+", RowBox[{"27", " ", SqrtBox["3"]}]}], ")"}], " ", RowBox[{"Log", "[", "3", "]"}]}], ")"}]}], "+", RowBox[{"6", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "4"}], " ", SqrtBox["2"]}], "+", RowBox[{"41", " ", SqrtBox["3"]}]}], ")"}], " ", RowBox[{"Log", "[", RowBox[{"2", "+", SqrtBox["3"]}], "]"}]}], "+", RowBox[{"6", " ", SqrtBox["3"], " ", RowBox[{"Log", "[", RowBox[{ RowBox[{"-", "3"}], "+", RowBox[{"2", " ", SqrtBox["3"]}]}], "]"}]}], "+", RowBox[{"16", " ", RowBox[{"(", RowBox[{"108", "+", RowBox[{"9", " ", SqrtBox["6"]}], "+", RowBox[{"3", " ", RowBox[{"(", RowBox[{ SqrtBox["2"], "+", SqrtBox["3"]}], ")"}], " ", RowBox[{"Log", "[", RowBox[{"3", "+", RowBox[{"2", " ", SqrtBox["3"]}]}], "]"}]}], "+", RowBox[{ SqrtBox["2"], " ", RowBox[{"Log", "[", RowBox[{"45", "+", RowBox[{"26", " ", SqrtBox["3"]}]}], "]"}]}]}], ")"}]}]}], ")"}]}], ",", FractionBox[ RowBox[{"72", "+", RowBox[{"6", " ", SqrtBox["6"]}], "+", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"2", " ", SqrtBox["2"]}], "+", RowBox[{"13", " ", SqrtBox["3"]}]}], " ", ")"}], RowBox[{"Log", "[", RowBox[{"2", "+", SqrtBox["3"]}], "]"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{ SqrtBox["3"], "-", SqrtBox["2"]}], ")"}], " ", RowBox[{"Log", "[", RowBox[{"2", "-", SqrtBox["3"]}], "]"}]}]}], RowBox[{"72", " ", SqrtBox[ RowBox[{"29", "+", RowBox[{"6", " ", SqrtBox["6"]}]}]]}]]}], "}"}]}], ",", "1000"}], "]"}]], "Input", CellLabel-> "(byblis65 V13.2.0) \ In[22]:=",ExpressionUUID->"e870542f-29c4-40c4-ab92-a0cec952f4ef"], Cell[BoxData[ TemplateBox[{ "N", "meprec", "\"Internal precision limit $MaxExtraPrecision = \\!\\(\\*RowBox[{\\\"50.`\ \\\"}]\\) reached while evaluating \\!\\(\\*RowBox[{RowBox[{\\\"-\\\", \ FractionBox[RowBox[{\\\"72\\\", \\\"+\\\", RowBox[{\\\"6\\\", \\\" \\\", \ SqrtBox[\\\"6\\\"]}], \\\"+\\\", RowBox[{RowBox[{\\\"(\\\", \ RowBox[{RowBox[{\\\"-\\\", SqrtBox[\\\"2\\\"]}], \\\"+\\\", \ SqrtBox[\\\"3\\\"]}], \\\")\\\"}], \\\" \\\", RowBox[{\\\"Log\\\", \\\"[\\\", \ RowBox[{\\\"2\\\", \\\"-\\\", RowBox[{\\\"Power\\\", \\\"[\\\", RowBox[{\\\"\ \[LeftSkeleton]\\\", \\\"2\\\", \\\"\[RightSkeleton]\\\"}], \\\"]\\\"}]}], \\\ \"]\\\"}]}], \\\"+\\\", RowBox[{RowBox[{\\\"(\\\", RowBox[{RowBox[{\\\"2\\\", \ \\\" \\\", SqrtBox[\\\"2\\\"]}], \\\"+\\\", RowBox[{\\\"13\\\", \\\" \\\", \ SqrtBox[\\\"3\\\"]}]}], \\\")\\\"}], \\\" \\\", RowBox[{\\\"Log\\\", \ \\\"[\\\", RowBox[{\\\"2\\\", \\\"+\\\", SqrtBox[\\\"3\\\"]}], \ \\\"]\\\"}]}]}], RowBox[{\\\"72\\\", \\\" \\\", SqrtBox[RowBox[{\\\"29\\\", \ \\\"+\\\", RowBox[{\\\"6\\\", \\\" \\\", SqrtBox[\\\"6\\\"]}]}]]}]]}], \ \\\"+\\\", FractionBox[RowBox[{RowBox[{\\\"-\\\", RowBox[{\\\"(\\\", \ RowBox[{RowBox[{\\\"(\\\", RowBox[{RowBox[{\\\"32\\\", \\\" \\\", \ SqrtBox[\\\"2\\\"]}], \\\"+\\\", RowBox[{\\\"27\\\", \\\" \\\", SqrtBox[\\\"3\ \\\"]}]}], \\\")\\\"}], \\\" \\\", RowBox[{\\\"Log\\\", \\\"[\\\", \\\"3\\\", \ \\\"]\\\"}]}], \\\")\\\"}]}], \\\"+\\\", RowBox[{\\\"6\\\", \\\" \\\", \ RowBox[{\\\"(\\\", RowBox[{RowBox[{RowBox[{\\\"-\\\", \\\"4\\\"}], \\\" \\\", \ SqrtBox[\\\"2\\\"]}], \\\"+\\\", RowBox[{\\\"41\\\", \\\" \\\", SqrtBox[\\\"3\ \\\"]}]}], \\\")\\\"}], \\\" \\\", RowBox[{\\\"Log\\\", \\\"[\\\", RowBox[{\\\ \"2\\\", \\\"+\\\", SqrtBox[\\\"3\\\"]}], \\\"]\\\"}]}], \\\"+\\\", \ RowBox[{\\\"6\\\", \\\" \\\", SqrtBox[\\\"3\\\"], \\\" \\\", \ RowBox[{\\\"Log\\\", \\\"[\\\", RowBox[{RowBox[{\\\"-\\\", \\\"3\\\"}], \\\"+\ \\\", RowBox[{\\\"2\\\", \\\" \\\", RowBox[{\\\"\[LeftSkeleton]\\\", \ \\\"1\\\", \\\"\[RightSkeleton]\\\"}]}]}], \\\"]\\\"}]}], \\\"+\\\", RowBox[{\ \\\"16\\\", \\\" \\\", RowBox[{\\\"(\\\", RowBox[{\\\"108\\\", \\\"+\\\", \ RowBox[{\\\"9\\\", \\\" \\\", SqrtBox[\\\"6\\\"]}], \\\"+\\\", \ RowBox[{\\\"3\\\", \\\" \\\", RowBox[{\\\"(\\\", \ RowBox[{RowBox[{\\\"Power\\\", \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\ \"2\\\", \\\"\[RightSkeleton]\\\"}], \\\"]\\\"}], \\\"+\\\", \ RowBox[{\\\"Power\\\", \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \ \\\"\[RightSkeleton]\\\"}], \\\"]\\\"}]}], \\\")\\\"}], \\\" \\\", RowBox[{\\\ \"Log\\\", \\\"[\\\", RowBox[{\\\"Plus\\\", \\\"[\\\", RowBox[{\\\"\ \[LeftSkeleton]\\\", \\\"2\\\", \\\"\[RightSkeleton]\\\"}], \\\"]\\\"}], \ \\\"]\\\"}]}], \\\"+\\\", RowBox[{SqrtBox[\\\"2\\\"], \\\" \\\", \ RowBox[{\\\"Log\\\", \\\"[\\\", RowBox[{\\\"Plus\\\", \\\"[\\\", RowBox[{\\\"\ \[LeftSkeleton]\\\", \\\"2\\\", \\\"\[RightSkeleton]\\\"}], \\\"]\\\"}], \ \\\"]\\\"}]}]}], \\\")\\\"}]}]}], RowBox[{\\\"1728\\\", \\\" \\\", \ SqrtBox[RowBox[{\\\"29\\\", \\\"+\\\", RowBox[{\\\"6\\\", \\\" \\\", SqrtBox[\ \\\"6\\\"]}]}]]}]]}]\\).\"", 2, 22, 1, 30283600873797580694, "byblis65 V13.2.0"}, "MessageTemplate"]], "Message", "MSG", CellLabel-> "During evaluation of (byblis65 V13.2.0) \ In[22]:=",ExpressionUUID->"b828997f-0d20-48bd-a941-ca4bdccf2a32"], Cell[BoxData["0``1049.6642375878228"], "Output", CellLabel-> "(byblis65 V13.2.0) \ Out[22]=",ExpressionUUID->"bc762a04-4232-4a51-bf17-cb7911b3c6a7"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"FullSimplify", "[", RowBox[{ SqrtBox[ RowBox[{"29", "+", RowBox[{"6", " ", SqrtBox["6"]}]}]], SqrtBox[ RowBox[{"29", "-", RowBox[{"6", " ", SqrtBox["6"]}]}]]}], "]"}]], "Input", CellLabel-> "(byblis65 V13.2.0) \ In[25]:=",ExpressionUUID->"aa793936-4f9d-4e80-abe5-78c1c3d38fdb"], Cell[BoxData["25"], "Output", CellLabel-> "(byblis65 V13.2.0) \ Out[25]=",ExpressionUUID->"a6144241-ffbe-4885-985d-d08cc43f03e1"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"N", "[", FractionBox[ RowBox[{ RowBox[{"(", RowBox[{"72", "+", RowBox[{"6", " ", SqrtBox["6"]}], "+", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"2", " ", SqrtBox["2"]}], "+", RowBox[{"13", " ", SqrtBox["3"]}]}], ")"}], RowBox[{"Log", "[", RowBox[{"2", "+", SqrtBox["3"]}], "]"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{ SqrtBox["3"], "-", SqrtBox["2"]}], ")"}], " ", RowBox[{"Log", "[", RowBox[{"2", "-", SqrtBox["3"]}], "]"}]}]}], ")"}], SqrtBox[ RowBox[{"29", "-", RowBox[{"6", " ", SqrtBox["6"]}]}]]}], RowBox[{"25", " ", "72"}]], "]"}]], "Input", CellLabel-> "(byblis65 V13.2.0) \ In[27]:=",ExpressionUUID->"234f6ec9-fafe-4fd2-854c-8aedabc0a7f7"], Cell[BoxData["0.25140811195949037`"], "Output", CellLabel-> "(byblis65 V13.2.0) \ Out[27]=",ExpressionUUID->"1b0a54ae-9ff5-43be-9524-eb8a2e5b3fa0"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ FractionBox[ RowBox[{ RowBox[{"(", RowBox[{"72", "+", RowBox[{"6", " ", SqrtBox["6"]}], "+", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"2", " ", SqrtBox["2"]}], "+", RowBox[{"13", " ", SqrtBox["3"]}]}], ")"}], RowBox[{"Log", "[", RowBox[{"2", "+", SqrtBox["3"]}], "]"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{ SqrtBox["3"], "-", SqrtBox["2"]}], ")"}], " ", RowBox[{"Log", "[", RowBox[{"2", "-", SqrtBox["3"]}], "]"}]}]}], ")"}], SqrtBox[ RowBox[{"29", "-", RowBox[{"6", " ", SqrtBox["6"]}]}]]}], RowBox[{"25", " ", "72"}]]], "Input", CellLabel-> "(byblis65 V13.2.0) \ In[28]:=",ExpressionUUID->"89311c3a-e5a8-476b-81b9-7d3caebfaf79"], Cell[BoxData[ FractionBox[ RowBox[{ SqrtBox[ RowBox[{"29", "-", RowBox[{"6", " ", SqrtBox["6"]}]}]], " ", RowBox[{"(", RowBox[{"72", "+", RowBox[{"6", " ", SqrtBox["6"]}], "+", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"-", SqrtBox["2"]}], "+", SqrtBox["3"]}], ")"}], " ", RowBox[{"Log", "[", RowBox[{"2", "-", SqrtBox["3"]}], "]"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"2", " ", SqrtBox["2"]}], "+", RowBox[{"13", " ", SqrtBox["3"]}]}], ")"}], " ", RowBox[{"Log", "[", RowBox[{"2", "+", SqrtBox["3"]}], "]"}]}]}], ")"}]}], "1800"]], "Output", CellLabel-> "(byblis65 V13.2.0) \ Out[28]=",ExpressionUUID->"a6009f80-0a05-496a-aff3-a7b71f4fb41a"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"FullSimplify", "[", FractionBox[ RowBox[{ RowBox[{"(", RowBox[{"72", "+", RowBox[{"6", " ", SqrtBox["6"]}], "+", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"2", " ", SqrtBox["2"]}], "+", RowBox[{"13", " ", SqrtBox["3"]}]}], ")"}], RowBox[{"Log", "[", RowBox[{"2", "+", SqrtBox["3"]}], "]"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{ SqrtBox["3"], "-", SqrtBox["2"]}], ")"}], " ", RowBox[{"Log", "[", RowBox[{"2", "-", SqrtBox["3"]}], "]"}]}]}], ")"}], SqrtBox[ RowBox[{"29", "-", RowBox[{"6", " ", SqrtBox["6"]}]}]]}], RowBox[{"25", " ", "72"}]], "]"}]], "Input", CellLabel-> "(byblis65 V13.2.0) \ In[29]:=",ExpressionUUID->"0fc56620-b9ef-44d7-be7d-d074b29e1cd9"], Cell[BoxData[ FractionBox[ RowBox[{ RowBox[{ RowBox[{"-", "18"}], " ", SqrtBox["2"]}], "+", RowBox[{"204", " ", SqrtBox["3"]}], "+", RowBox[{ RowBox[{"(", RowBox[{"11", "-", RowBox[{"4", " ", SqrtBox["6"]}]}], ")"}], " ", RowBox[{"Log", "[", RowBox[{"2", "-", SqrtBox["3"]}], "]"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{"113", "-", RowBox[{"7", " ", SqrtBox["6"]}]}], ")"}], " ", RowBox[{"Log", "[", RowBox[{"2", "+", SqrtBox["3"]}], "]"}]}]}], "1800"]], "Output", CellLabel-> "(byblis65 V13.2.0) \ Out[29]=",ExpressionUUID->"4f7d3ccf-fb57-4f02-a225-270f615feedd"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"N", "[", "%", "]"}]], "Input", CellLabel-> "(byblis65 V13.2.0) \ In[30]:=",ExpressionUUID->"2012c3c6-2ba0-47de-b364-bd67ff8581c8"], Cell[BoxData["0.2514081119594903`"], "Output", CellLabel-> "(byblis65 V13.2.0) \ Out[30]=",ExpressionUUID->"7db7114c-08a1-4fb5-b18d-0346f368a49d"] }, Open ]] }, Closed]] }, Closed]], Cell[CellGroupData[{ Cell["MeanSphericalRadius", "Subsection", FontColor->RGBColor[ 1, 0, 0],ExpressionUUID->"f0639b37-12bd-409a-8a33-de9690dd27b7"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}]], "Input", CellLabel->"In[28]:=",ExpressionUUID->"61306949-c449-4c43-870b-bda5a27dea72"], Cell[BoxData[ RowBox[{"Missing", "[", "\<\"NotAvailable\"\>", "]"}]], "Output", CellLabel->"Out[28]=",ExpressionUUID->"e1f20df1-fa2d-4973-94e3-a7deddb0891a"] }, Open ]], Cell[CellGroupData[{ Cell["Integrate over polyhedron", "Subsubsection",ExpressionUUID->"750fef7f-9e94-4499-9516-9ea679c71667"], Cell[CellGroupData[{ Cell[BoxData[ FractionBox[ RowBox[{"NIntegrate", "[", RowBox[{ SqrtBox[ RowBox[{ SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"], "+", SuperscriptBox["z", "2"]}]], ",", RowBox[{ RowBox[{"{", RowBox[{"x", ",", "y", ",", "z"}], "}"}], "\[Element]", "p"}]}], "]"}], "vol"]], "Input",ExpressionUUID->"d395f455-107e-4322-a280-11676dbb3472"], Cell[BoxData["0.7308560763350795`"], "Output", CellLabel-> "Out[196]=",ExpressionUUID->"f3ff9d48-42b8-4249-bc07-cfd28f5b7ea4"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"(", RowBox[{"i", "=", FractionBox[ RowBox[{"Integrate", "[", RowBox[{ SqrtBox[ RowBox[{ SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"], "+", SuperscriptBox["z", "2"]}]], ",", RowBox[{ RowBox[{"{", RowBox[{"x", ",", "y", ",", "z"}], "}"}], "\[Element]", "p"}]}], "]"}], "vol"]}], ")"}], "//", "Timing"}]], "Input", CellLabel-> "(byblis65 V13.2.0) \ In[4]:=",ExpressionUUID->"6ac81459-89c0-4c7b-8eee-c8ef85efb752"], Cell[BoxData[ RowBox[{"{", RowBox[{"7130.484753`", ",", FractionBox[ RowBox[{"12", " ", RowBox[{"Total", "[", InterpretationBox[ RowBox[{ TagBox["Failure", "SummaryHead"], "[", DynamicModuleBox[{Typeset`open$$ = False, Typeset`embedState$$ = "Ready"}, TemplateBox[{ PaneSelectorBox[{False -> GridBox[{{ PaneBox[ ButtonBox[ DynamicBox[ FEPrivate`FrontEndResource[ "FEBitmaps", "SummaryBoxOpener"]], ButtonFunction :> (Typeset`open$$ = True), Appearance -> None, BaseStyle -> {}, Evaluator -> Automatic, Method -> "Preemptive"], Alignment -> {Center, Center}, ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], FrameBox[ StyleBox["\"\[WarningSign]\"", Directive["Message", 35], StripOnInput -> False], ContentPadding -> False, FrameStyle -> None, FrameMargins -> {{0, 0}, {0, 0}}, StripOnInput -> False], GridBox[{{ TagBox[ GridBox[{{ TagBox["\"Message: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ "\"\\!\\(\\*TagBox[\\\"$Failed\\\", \ Function[Short[Slot[1], 5]]]\\) encountered.\"", "SummaryItem"]}}, GridBoxItemSize -> {"Columns" -> {6.5, All}}, GridBoxAlignment -> {"Columns" -> {{Left}}}, GridBoxSpacings -> {"Columns" -> {{0}}}], "SummaryItem"]}, { TagBox[ GridBox[{{ TagBox["\"Tag: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["\"ConfirmationFailed\"", "SummaryItem"]}}, GridBoxItemSize -> {"Columns" -> {6.5, All}}, GridBoxAlignment -> {"Columns" -> {{Left}}}, GridBoxSpacings -> {"Columns" -> {{0}}}], "SummaryItem"]}}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> { "Columns" -> {{2}}, "Rows" -> {{Automatic}}}, BaseStyle -> { ShowStringCharacters -> False, NumberMarks -> False, PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, BaselinePosition -> {1, 1}], True -> GridBox[{{ PaneBox[ ButtonBox[ DynamicBox[ FEPrivate`FrontEndResource[ "FEBitmaps", "SummaryBoxCloser"]], ButtonFunction :> (Typeset`open$$ = False), Appearance -> None, BaseStyle -> {}, Evaluator -> Automatic, Method -> "Preemptive"], Alignment -> {Center, Center}, ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], FrameBox[ StyleBox["\"\[WarningSign]\"", Directive["Message", 35], StripOnInput -> False], ContentPadding -> False, FrameStyle -> None, FrameMargins -> {{0, 0}, {0, 0}}, StripOnInput -> False], GridBox[{{ TagBox[ GridBox[{{ TagBox["\"Message: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ "\"\\!\\(\\*TagBox[\\\"$Failed\\\", \ Function[Short[Slot[1], 5]]]\\) encountered.\"", "SummaryItem"]}}, GridBoxItemSize -> {"Columns" -> {6.5, All}}, GridBoxAlignment -> {"Columns" -> {{Left}}}, GridBoxSpacings -> {"Columns" -> {{0}}}], "SummaryItem"]}, { TagBox[ GridBox[{{ TagBox["\"Tag: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["\"ConfirmationFailed\"", "SummaryItem"]}}, GridBoxItemSize -> {"Columns" -> {6.5, All}}, GridBoxAlignment -> {"Columns" -> {{Left}}}, GridBoxSpacings -> {"Columns" -> {{0}}}], "SummaryItem"]}, { RowBox[{ TagBox[ TemplateBox[{"\"ConfirmationType\"", "\": \""}, "RowDefault"], "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ TagBox["\"Confirm\"", HoldForm], "SummaryItem"]}]}, { RowBox[{ TagBox[ TemplateBox[{"\"Expression\"", "\": \""}, "RowDefault"], "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ TagBox["$Failed", HoldForm], "SummaryItem"]}]}, { RowBox[{ TagBox[ TemplateBox[{"\"Information\"", "\": \""}, "RowDefault"], "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ TagBox["Null", HoldForm], "SummaryItem"]}]}}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> { "Columns" -> {{2}}, "Rows" -> {{Automatic}}}, BaseStyle -> { ShowStringCharacters -> False, NumberMarks -> False, PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, BaselinePosition -> {1, 1}]}, Dynamic[Typeset`open$$], ImageSize -> Automatic]}, "SummaryPanel"], DynamicModuleValues:>{}], "]"}], Failure[ "ConfirmationFailed", <| "MessageTemplate" -> "`` encountered.", "MessageParameters" :> {$Failed}, "ConfirmationType" -> "Confirm", "Expression" :> $Failed, "Information" -> Null|>], Editable->False, SelectWithContents->True, Selectable->False], "]"}]}], RowBox[{ SqrtBox["2"], "+", RowBox[{"3", " ", SqrtBox["3"]}]}]]}], "}"}]], "Output", CellLabel-> "(byblis65 V13.2.0) \ Out[4]=",ExpressionUUID->"efe080d7-8e63-466d-8602-dc08315c086f"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["Divergence theorem", "Subsubsection",ExpressionUUID->"11305ed9-efcf-4076-9620-654ebc69c653"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"(", RowBox[{"rxy", "=", RowBox[{"MeanSphericalRadius", "[", RowBox[{"p", ",", RowBox[{"Debug", "\[Rule]", "True"}]}], "]"}]}], ")"}], "//", "Timing"}]], "Input", CellLabel-> "(byblis65 V13.2.0) \ In[4]:=",ExpressionUUID->"3fbcf048-4ce7-4a54-bb38-60c772f1ef8f"], Cell[CellGroupData[{ Cell[BoxData[ InterpretationBox[ RowBox[{"\<\"Polygon: \"\>", "\[InvisibleSpace]", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"-", FractionBox["1", RowBox[{"2", " ", SqrtBox["3"]}]]}], ",", FractionBox["1", "2"], ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", FractionBox["1", RowBox[{"2", " ", SqrtBox["3"]}]]}], ",", RowBox[{"-", FractionBox["1", "2"]}], ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", "0", ",", RowBox[{ FractionBox["1", "3"], " ", RowBox[{"(", RowBox[{"3", "+", SqrtBox["6"]}], ")"}]}]}], "}"}]}], "}"}]}], SequenceForm["Polygon: ", {{Rational[-1, 2] 3^Rational[-1, 2], Rational[1, 2], 1}, {Rational[-1, 2] 3^Rational[-1, 2], Rational[-1, 2], 1}, {0, 0, Rational[1, 3] (3 + 6^Rational[1, 2])}}], Editable->False]], "Print", CellLabel-> "During evaluation of (byblis65 V13.2.0) \ In[4]:=",ExpressionUUID->"3b4054d2-24d4-4311-b75b-d33cbd893c77"], Cell[BoxData[ InterpretationBox[ RowBox[{"\<\" integrand: \"\>", "\[InvisibleSpace]", RowBox[{ FractionBox["1", SqrtBox["6"]], RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", FractionBox["1", "6"]}], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", "\<\"t\"\>"}], ")"}], " ", SqrtBox[ RowBox[{"4", "+", RowBox[{"3", " ", SuperscriptBox["\<\"s\"\>", "2"]}], "+", RowBox[{"3", " ", "\<\"s\"\>", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", "\<\"t\"\>"}], ")"}]}], "+", RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", SqrtBox["6"]}], ")"}], " ", "\<\"t\"\>"}], "+", RowBox[{"3", " ", SuperscriptBox["\<\"t\"\>", "2"]}]}]]}], "+", RowBox[{ FractionBox["1", "12"], " ", RowBox[{"(", RowBox[{"15", "+", RowBox[{"12", " ", SuperscriptBox["\<\"s\"\>", "2"]}], "+", RowBox[{"12", " ", "\<\"s\"\>", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", "\<\"t\"\>"}], ")"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"-", "6"}], "+", RowBox[{"8", " ", SqrtBox["6"]}]}], ")"}], " ", "\<\"t\"\>"}], "+", RowBox[{"11", " ", SuperscriptBox["\<\"t\"\>", "2"]}]}], ")"}], " ", RowBox[{"Log", "[", FractionBox[ RowBox[{"1", "-", "\<\"t\"\>", "+", RowBox[{"2", " ", SqrtBox[ RowBox[{"4", "+", RowBox[{"3", " ", SuperscriptBox["\<\"s\"\>", "2"]}], "+", RowBox[{"3", " ", "\<\"s\"\>", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", "\<\"t\"\>"}], ")"}]}], "+", RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", SqrtBox["6"]}], ")"}], " ", "\<\"t\"\>"}], "+", RowBox[{"3", " ", SuperscriptBox["\<\"t\"\>", "2"]}]}]]}]}], RowBox[{"2", " ", SqrtBox["3"]}]], "]"}]}]}], ")"}]}]}], SequenceForm[ " integrand: ", 6^Rational[-1, 2] ( Rational[-1, 6] (-1 + "t") (4 + 3 "s"^2 + 3 "s" (-1 + "t") + 2 (-1 + 6^Rational[1, 2]) "t" + 3 "t"^2)^Rational[1, 2] + Rational[1, 12] (15 + 12 "s"^2 + 12 "s" (-1 + "t") + (-6 + 8 6^Rational[1, 2]) "t" + 11 "t"^2) Log[Rational[1, 2] 3^Rational[-1, 2] (1 - "t" + 2 (4 + 3 "s"^2 + 3 "s" (-1 + "t") + 2 (-1 + 6^Rational[1, 2]) "t" + 3 "t"^2)^Rational[1, 2])])], Editable->False]], "Print", CellLabel-> "During evaluation of (byblis65 V13.2.0) \ In[4]:=",ExpressionUUID->"74652ff3-6006-4da7-9978-d5f1511ca2c9"] }, Open ]], Cell[BoxData[ TemplateBox[{ "Integrate", "ilim", "\"Invalid integration variable or limit(s) in \\!\\(\\*RowBox[{\\\"{\\\", \ RowBox[{\\\"\\\\\\\"t\\\\\\\"\\\", \\\",\\\", \\\"0\\\", \\\",\\\", \ \\\"1\\\"}], \\\"}\\\"}]\\).\"", 2, 4, 1, 30283269436357224198, "byblis65 V13.2.0"}, "MessageTemplate"]], "Message", "MSG", CellLabel-> "During evaluation of (byblis65 V13.2.0) \ In[4]:=",ExpressionUUID->"d821ce73-efc8-41eb-b230-6dda9137e94b"], Cell[CellGroupData[{ Cell[BoxData[ InterpretationBox[ RowBox[{"\<\" Integral over t and s: \"\>", "\[InvisibleSpace]", RowBox[{ FractionBox["1", SqrtBox["6"]], RowBox[{"Integrate", "[", RowBox[{ RowBox[{ RowBox[{ RowBox[{"-", FractionBox["1", "6"]}], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", "\<\"t\"\>"}], ")"}], " ", SqrtBox[ RowBox[{"4", "+", RowBox[{"3", " ", SuperscriptBox["\<\"s\"\>", "2"]}], "+", RowBox[{"3", " ", "\<\"s\"\>", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", "\<\"t\"\>"}], ")"}]}], "+", RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", SqrtBox["6"]}], ")"}], " ", "\<\"t\"\>"}], "+", RowBox[{"3", " ", SuperscriptBox["\<\"t\"\>", "2"]}]}]]}], "+", RowBox[{ FractionBox["1", "12"], " ", RowBox[{"(", RowBox[{"15", "+", RowBox[{"12", " ", SuperscriptBox["\<\"s\"\>", "2"]}], "+", RowBox[{"12", " ", "\<\"s\"\>", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", "\<\"t\"\>"}], ")"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"-", "6"}], "+", RowBox[{"8", " ", SqrtBox["6"]}]}], ")"}], " ", "\<\"t\"\>"}], "+", RowBox[{"11", " ", SuperscriptBox["\<\"t\"\>", "2"]}]}], ")"}], " ", RowBox[{"Log", "[", FractionBox[ RowBox[{"1", "-", "\<\"t\"\>", "+", RowBox[{"2", " ", SqrtBox[ RowBox[{"4", "+", RowBox[{"3", " ", SuperscriptBox["\<\"s\"\>", "2"]}], "+", RowBox[{"3", " ", "\<\"s\"\>", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", "\<\"t\"\>"}], ")"}]}], "+", RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", SqrtBox["6"]}], ")"}], " ", "\<\"t\"\>"}], "+", RowBox[{"3", " ", SuperscriptBox["\<\"t\"\>", "2"]}]}]]}]}], RowBox[{"2", " ", SqrtBox["3"]}]], "]"}]}]}], ",", RowBox[{"{", RowBox[{"\<\"t\"\>", ",", "0", ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{"\<\"s\"\>", ",", "0", ",", RowBox[{"1", "-", "\<\"t\"\>"}]}], "}"}], ",", RowBox[{"GenerateConditions", "\[Rule]", "True"}]}], "]"}]}]}], SequenceForm[ " Integral over t and s: ", 6^Rational[-1, 2] Integrate[ Rational[-1, 6] (-1 + "t") (4 + 3 "s"^2 + 3 "s" (-1 + "t") + 2 (-1 + 6^Rational[1, 2]) "t" + 3 "t"^2)^Rational[1, 2] + Rational[1, 12] (15 + 12 "s"^2 + 12 "s" (-1 + "t") + (-6 + 8 6^Rational[1, 2]) "t" + 11 "t"^2) Log[Rational[1, 2] 3^Rational[-1, 2] (1 - "t" + 2 (4 + 3 "s"^2 + 3 "s" (-1 + "t") + 2 (-1 + 6^Rational[1, 2]) "t" + 3 "t"^2)^Rational[1, 2])], {"t", 0, 1}, {"s", 0, 1 - "t"}, GenerateConditions -> True]], Editable->False]], "Print", CellLabel-> "During evaluation of (byblis65 V13.2.0) \ In[4]:=",ExpressionUUID->"733deedb-4a69-47ad-9c27-715bb51fb9b0"], Cell[BoxData[ InterpretationBox[ RowBox[{"\<\" Elapsed time: \"\>", "\[InvisibleSpace]", "314.59995`8.949303642759956"}], SequenceForm[" Elapsed time: ", 314.59995`8.949303642759956], Editable->False]], "Print", CellLabel-> "During evaluation of (byblis65 V13.2.0) \ In[4]:=",ExpressionUUID->"0d141e69-7aac-423c-af9a-d07e95f35d7d"], Cell[BoxData[ InterpretationBox[ RowBox[{"\<\"Polygon: \"\>", "\[InvisibleSpace]", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"-", FractionBox["1", RowBox[{"2", " ", SqrtBox["3"]}]]}], ",", RowBox[{"-", FractionBox["1", "2"]}], ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{ FractionBox["1", SqrtBox["3"]], ",", "0", ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", "0", ",", RowBox[{ FractionBox["1", "3"], " ", RowBox[{"(", RowBox[{"3", "+", SqrtBox["6"]}], ")"}]}]}], "}"}]}], "}"}]}], SequenceForm["Polygon: ", {{Rational[-1, 2] 3^Rational[-1, 2], Rational[-1, 2], 1}, {3^Rational[-1, 2], 0, 1}, { 0, 0, Rational[1, 3] (3 + 6^Rational[1, 2])}}], Editable->False]], "Print", CellLabel-> "During evaluation of (byblis65 V13.2.0) \ In[4]:=",ExpressionUUID->"4da09ef8-2b18-4196-9c76-c2eac3ee9f13"], Cell[BoxData[ InterpretationBox[ RowBox[{"\<\" integrand: \"\>", "\[InvisibleSpace]", RowBox[{ FractionBox["1", RowBox[{"2", " ", SqrtBox["6"]}]], RowBox[{"(", RowBox[{ RowBox[{ FractionBox["1", "6"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", RowBox[{"3", " ", "\<\"s\"\>"}], "+", "\<\"t\"\>"}], ")"}], " ", SqrtBox[ RowBox[{"4", "+", RowBox[{"3", " ", SuperscriptBox["\<\"s\"\>", "2"]}], "+", RowBox[{"3", " ", "\<\"s\"\>", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", "\<\"t\"\>"}], ")"}]}], "+", RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", SqrtBox["6"]}], ")"}], " ", "\<\"t\"\>"}], "+", RowBox[{"3", " ", SuperscriptBox["\<\"t\"\>", "2"]}]}]]}], "-", RowBox[{ FractionBox["1", "12"], " ", RowBox[{"(", RowBox[{"15", "+", RowBox[{"3", " ", SuperscriptBox["\<\"s\"\>", "2"]}], "+", RowBox[{"6", " ", "\<\"s\"\>", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", "\<\"t\"\>"}], ")"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"-", "6"}], "+", RowBox[{"8", " ", SqrtBox["6"]}]}], ")"}], " ", "\<\"t\"\>"}], "+", RowBox[{"11", " ", SuperscriptBox["\<\"t\"\>", "2"]}]}], ")"}], " ", RowBox[{"Log", "[", FractionBox[ RowBox[{"1", "-", RowBox[{"3", " ", "\<\"s\"\>"}], "-", "\<\"t\"\>", "+", RowBox[{"2", " ", SqrtBox[ RowBox[{"4", "+", RowBox[{"3", " ", SuperscriptBox["\<\"s\"\>", "2"]}], "+", RowBox[{"3", " ", "\<\"s\"\>", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", "\<\"t\"\>"}], ")"}]}], "+", RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", SqrtBox["6"]}], ")"}], " ", "\<\"t\"\>"}], "+", RowBox[{"3", " ", SuperscriptBox["\<\"t\"\>", "2"]}]}]]}]}], RowBox[{"2", " ", SqrtBox["3"]}]], "]"}]}]}], ")"}]}]}], SequenceForm[ " integrand: ", Rational[1, 2] 6^Rational[-1, 2] ( Rational[1, 6] (-1 + 3 "s" + "t") (4 + 3 "s"^2 + 3 "s" (-1 + "t") + 2 (-1 + 6^Rational[1, 2]) "t" + 3 "t"^2)^Rational[1, 2] + Rational[-1, 12] (15 + 3 "s"^2 + 6 "s" (-1 + "t") + (-6 + 8 6^Rational[1, 2]) "t" + 11 "t"^2) Log[Rational[1, 2] 3^Rational[-1, 2] (1 - 3 "s" - "t" + 2 (4 + 3 "s"^2 + 3 "s" (-1 + "t") + 2 (-1 + 6^Rational[1, 2]) "t" + 3 "t"^2)^Rational[1, 2])])], Editable->False]], "Print", CellLabel-> "During evaluation of (byblis65 V13.2.0) \ In[4]:=",ExpressionUUID->"ac6e431a-9c3e-4fb4-8359-a72d5f1bc56e"] }, Open ]], Cell[BoxData[ TemplateBox[{ "Integrate", "ilim", "\"Invalid integration variable or limit(s) in \\!\\(\\*RowBox[{\\\"{\\\", \ RowBox[{\\\"\\\\\\\"t\\\\\\\"\\\", \\\",\\\", \\\"0\\\", \\\",\\\", \ \\\"1\\\"}], \\\"}\\\"}]\\).\"", 2, 4, 2, 30283269436357224198, "byblis65 V13.2.0"}, "MessageTemplate"]], "Message", "MSG", CellLabel-> "During evaluation of (byblis65 V13.2.0) \ In[4]:=",ExpressionUUID->"2e948515-e1b9-4dae-b3da-be0f63a44bb5"], Cell[CellGroupData[{ Cell[BoxData[ InterpretationBox[ RowBox[{"\<\" Integral over t and s: \"\>", "\[InvisibleSpace]", RowBox[{ FractionBox["1", RowBox[{"2", " ", SqrtBox["6"]}]], RowBox[{"Integrate", "[", RowBox[{ RowBox[{ RowBox[{ FractionBox["1", "6"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", RowBox[{"3", " ", "\<\"s\"\>"}], "+", "\<\"t\"\>"}], ")"}], " ", SqrtBox[ RowBox[{"4", "+", RowBox[{"3", " ", SuperscriptBox["\<\"s\"\>", "2"]}], "+", RowBox[{"3", " ", "\<\"s\"\>", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", "\<\"t\"\>"}], ")"}]}], "+", RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", SqrtBox["6"]}], ")"}], " ", "\<\"t\"\>"}], "+", RowBox[{"3", " ", SuperscriptBox["\<\"t\"\>", "2"]}]}]]}], "-", RowBox[{ FractionBox["1", "12"], " ", RowBox[{"(", RowBox[{"15", "+", RowBox[{"3", " ", SuperscriptBox["\<\"s\"\>", "2"]}], "+", RowBox[{"6", " ", "\<\"s\"\>", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", "\<\"t\"\>"}], ")"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"-", "6"}], "+", RowBox[{"8", " ", SqrtBox["6"]}]}], ")"}], " ", "\<\"t\"\>"}], "+", RowBox[{"11", " ", SuperscriptBox["\<\"t\"\>", "2"]}]}], ")"}], " ", RowBox[{"Log", "[", FractionBox[ RowBox[{"1", "-", RowBox[{"3", " ", "\<\"s\"\>"}], "-", "\<\"t\"\>", "+", RowBox[{"2", " ", SqrtBox[ RowBox[{"4", "+", RowBox[{"3", " ", SuperscriptBox["\<\"s\"\>", "2"]}], "+", RowBox[{"3", " ", "\<\"s\"\>", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", "\<\"t\"\>"}], ")"}]}], "+", RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", SqrtBox["6"]}], ")"}], " ", "\<\"t\"\>"}], "+", RowBox[{"3", " ", SuperscriptBox["\<\"t\"\>", "2"]}]}]]}]}], RowBox[{"2", " ", SqrtBox["3"]}]], "]"}]}]}], ",", RowBox[{"{", RowBox[{"\<\"t\"\>", ",", "0", ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{"\<\"s\"\>", ",", "0", ",", RowBox[{"1", "-", "\<\"t\"\>"}]}], "}"}], ",", RowBox[{"GenerateConditions", "\[Rule]", "True"}]}], "]"}]}]}], SequenceForm[ " Integral over t and s: ", Rational[1, 2] 6^Rational[-1, 2] Integrate[ Rational[1, 6] (-1 + 3 "s" + "t") (4 + 3 "s"^2 + 3 "s" (-1 + "t") + 2 (-1 + 6^Rational[1, 2]) "t" + 3 "t"^2)^Rational[1, 2] + Rational[-1, 12] (15 + 3 "s"^2 + 6 "s" (-1 + "t") + (-6 + 8 6^Rational[1, 2]) "t" + 11 "t"^2) Log[Rational[1, 2] 3^Rational[-1, 2] (1 - 3 "s" - "t" + 2 (4 + 3 "s"^2 + 3 "s" (-1 + "t") + 2 (-1 + 6^Rational[1, 2]) "t" + 3 "t"^2)^Rational[1, 2])], {"t", 0, 1}, {"s", 0, 1 - "t"}, GenerateConditions -> True]], Editable->False]], "Print", CellLabel-> "During evaluation of (byblis65 V13.2.0) \ In[4]:=",ExpressionUUID->"fc8559b3-d489-44d8-9624-f9a942d5bd40"], Cell[BoxData[ InterpretationBox[ RowBox[{"\<\" Elapsed time: \"\>", "\[InvisibleSpace]", "1410.426961`9.600895594617652"}], SequenceForm[" Elapsed time: ", 1410.426961`9.600895594617652], Editable->False]], "Print", CellLabel-> "During evaluation of (byblis65 V13.2.0) \ In[4]:=",ExpressionUUID->"1f6b2cd4-1524-4b26-99e9-d26564ad878a"], Cell[BoxData[ InterpretationBox[ RowBox[{"\<\"Polygon: \"\>", "\[InvisibleSpace]", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ FractionBox["1", SqrtBox["3"]], ",", "0", ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", FractionBox["1", RowBox[{"2", " ", SqrtBox["3"]}]]}], ",", FractionBox["1", "2"], ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", "0", ",", RowBox[{ FractionBox["1", "3"], " ", RowBox[{"(", RowBox[{"3", "+", SqrtBox["6"]}], ")"}]}]}], "}"}]}], "}"}]}], SequenceForm[ "Polygon: ", {{3^Rational[-1, 2], 0, 1}, {Rational[-1, 2] 3^Rational[-1, 2], Rational[1, 2], 1}, {0, 0, Rational[1, 3] (3 + 6^Rational[1, 2])}}], Editable->False]], "Print", CellLabel-> "During evaluation of (byblis65 V13.2.0) \ In[4]:=",ExpressionUUID->"71237ba1-f067-42c3-92c7-bcd8047a1316"], Cell[BoxData[ InterpretationBox[ RowBox[{"\<\" integrand: \"\>", "\[InvisibleSpace]", RowBox[{ FractionBox["1", RowBox[{"2", " ", SqrtBox["6"]}]], RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", FractionBox["1", "6"]}], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "2"}], "+", RowBox[{"3", " ", "\<\"s\"\>"}], "+", RowBox[{"2", " ", "\<\"t\"\>"}]}], ")"}], " ", SqrtBox[ RowBox[{"4", "+", RowBox[{"3", " ", SuperscriptBox["\<\"s\"\>", "2"]}], "+", RowBox[{"3", " ", "\<\"s\"\>", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", "\<\"t\"\>"}], ")"}]}], "+", RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", SqrtBox["6"]}], ")"}], " ", "\<\"t\"\>"}], "+", RowBox[{"3", " ", SuperscriptBox["\<\"t\"\>", "2"]}]}]]}], "-", RowBox[{ FractionBox["1", "12"], " ", RowBox[{"(", RowBox[{"12", "+", RowBox[{"3", " ", SuperscriptBox["\<\"s\"\>", "2"]}], "+", RowBox[{"8", " ", SqrtBox["6"], " ", "\<\"t\"\>"}], "+", RowBox[{"8", " ", SuperscriptBox["\<\"t\"\>", "2"]}]}], ")"}], " ", RowBox[{"Log", "[", FractionBox[ RowBox[{ RowBox[{"3", " ", "\<\"s\"\>"}], "+", RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", "\<\"t\"\>", "+", SqrtBox[ RowBox[{"4", "+", RowBox[{"3", " ", SuperscriptBox["\<\"s\"\>", "2"]}], "+", RowBox[{"3", " ", "\<\"s\"\>", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", "\<\"t\"\>"}], ")"}]}], "+", RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", SqrtBox["6"]}], ")"}], " ", "\<\"t\"\>"}], "+", RowBox[{"3", " ", SuperscriptBox["\<\"t\"\>", "2"]}]}]]}], ")"}]}]}], RowBox[{"2", " ", SqrtBox["3"]}]], "]"}]}]}], ")"}]}]}], SequenceForm[ " integrand: ", Rational[1, 2] 6^Rational[-1, 2] ( Rational[-1, 6] (-2 + 3 "s" + 2 "t") (4 + 3 "s"^2 + 3 "s" (-1 + "t") + 2 (-1 + 6^Rational[1, 2]) "t" + 3 "t"^2)^Rational[1, 2] + Rational[-1, 12] (12 + 3 "s"^2 + 8 6^Rational[1, 2] "t" + 8 "t"^2) Log[Rational[1, 2] 3^Rational[-1, 2] (3 "s" + 2 (-1 + "t" + (4 + 3 "s"^2 + 3 "s" (-1 + "t") + 2 (-1 + 6^Rational[1, 2]) "t" + 3 "t"^2)^Rational[1, 2]))])], Editable->False]], "Print", CellLabel-> "During evaluation of (byblis65 V13.2.0) \ In[4]:=",ExpressionUUID->"c75b9920-fac5-4848-8f5b-c1eb7710c2e9"] }, Open ]] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Integrate over z first", "Subsubsection",ExpressionUUID->"f3013242-3293-4cba-9ffa-b9afc43d0869"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"xmin", ",", "xmax"}], "}"}], ",", RowBox[{"{", RowBox[{"ymin", ",", "ymax"}], "}"}], ",", RowBox[{"{", RowBox[{"zmin", ",", "zmax"}], "}"}]}], "}"}], "=", RowBox[{"MinMax", "/@", RowBox[{"Transpose", "[", RowBox[{"PolyhedronCoordinates", "[", "p", "]"}], "]"}]}]}]], "Input", CellLabel-> "(byblis65 V13.2.0) \ In[5]:=",ExpressionUUID->"6df2f3f9-9261-4ce6-b61a-c72cdee8d065"], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"-", FractionBox["1", RowBox[{"2", " ", SqrtBox["3"]}]]}], ",", FractionBox["1", SqrtBox["3"]]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], ",", FractionBox["1", "2"]}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", RowBox[{ FractionBox["1", "3"], " ", RowBox[{"(", RowBox[{"3", "+", SqrtBox["6"]}], ")"}]}]}], "}"}]}], "}"}]], "Output", CellLabel-> "(byblis65 V13.2.0) \ Out[5]=",ExpressionUUID->"551423ee-f3e9-4858-bcfa-bec4c57e3d90"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"ineq", "=", RowBox[{ RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}], "[", RowBox[{"x", ",", "y", ",", "z"}], "]"}]}]], "Input", CellLabel-> "(byblis65 V13.2.0) \ In[6]:=",ExpressionUUID->"0813684b-3215-4ca7-adc3-b5d746260697"], Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{ SqrtBox["3"], " ", "z"}], "\[LessEqual]", RowBox[{ SqrtBox["2"], "+", SqrtBox["3"], "+", RowBox[{"2", " ", SqrtBox["6"], " ", "x"}]}]}], "&&", RowBox[{ RowBox[{ RowBox[{ SqrtBox["6"], " ", "x"}], "+", RowBox[{ SqrtBox["3"], " ", "z"}]}], "\[LessEqual]", RowBox[{ SqrtBox["2"], "+", SqrtBox["3"], "+", RowBox[{"3", " ", SqrtBox["2"], " ", "y"}]}]}], "&&", RowBox[{ RowBox[{ RowBox[{ SqrtBox["6"], " ", "x"}], "+", RowBox[{"3", " ", SqrtBox["2"], " ", "y"}], "+", RowBox[{ SqrtBox["3"], " ", "z"}]}], "\[LessEqual]", RowBox[{ SqrtBox["2"], "+", SqrtBox["3"]}]}], "&&", RowBox[{ RowBox[{ SqrtBox["3"], "+", RowBox[{"6", " ", "x"}]}], "\[GreaterEqual]", "0"}], "&&", RowBox[{ RowBox[{"3", " ", "x"}], "\[LessEqual]", RowBox[{ SqrtBox["3"], " ", RowBox[{"(", RowBox[{"1", "+", RowBox[{"3", " ", "y"}]}], ")"}]}]}], "&&", RowBox[{ RowBox[{ RowBox[{"3", " ", "x"}], "+", RowBox[{ SqrtBox["3"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", RowBox[{"3", " ", "y"}]}], ")"}]}]}], "\[LessEqual]", "0"}], "&&", RowBox[{"z", "\[GreaterEqual]", "0"}]}]], "Output", CellLabel-> "(byblis65 V13.2.0) \ Out[6]=",ExpressionUUID->"325ce7d6-b450-42c6-9c1e-05d20c4183cc"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"(", RowBox[{"i1", "=", RowBox[{"Integrate", "[", RowBox[{ RowBox[{ RowBox[{"Boole", "[", "ineq", "]"}], SqrtBox[ RowBox[{ SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"], "+", SuperscriptBox["z", "2"]}]]}], ",", RowBox[{"{", RowBox[{"z", ",", "zmin", ",", "zmax"}], "}"}]}], "]"}]}], ")"}], "//", "Timing"}]], "Input", CellLabel-> "(byblis65 V13.2.0) \ In[7]:=",ExpressionUUID->"28de2966-8fb3-47e6-ba24-a6c62bde0d4a"], Cell[BoxData[ RowBox[{"{", RowBox[{"169.479563`", ",", TagBox[GridBox[{ {"\[Piecewise]", GridBox[{ { RowBox[{ FractionBox["1", "6"], " ", RowBox[{"(", RowBox[{"5", "+", RowBox[{"2", " ", SqrtBox["6"]}]}], ")"}]}], RowBox[{ RowBox[{"x", "\[Equal]", "0"}], "&&", RowBox[{"y", "\[Equal]", "0"}]}]}, { RowBox[{ FractionBox["1", "6"], " ", RowBox[{"(", RowBox[{ RowBox[{"2", " ", SqrtBox["3"]}], "+", RowBox[{"Log", "[", RowBox[{"2", "+", SqrtBox["3"]}], "]"}]}], ")"}]}], RowBox[{ RowBox[{"x", "\[Equal]", FractionBox["1", SqrtBox["3"]]}], "&&", RowBox[{"y", "\[Equal]", "0"}]}]}, { RowBox[{ FractionBox["1", "12"], " ", RowBox[{"(", RowBox[{ RowBox[{"2", " ", SqrtBox["2"], " ", SqrtBox[ RowBox[{"5", "+", RowBox[{"2", " ", SqrtBox["6"]}], "+", RowBox[{"12", " ", SqrtBox["2"], " ", "x"}], "+", RowBox[{"8", " ", SqrtBox["3"], " ", "x"}], "+", RowBox[{"27", " ", SuperscriptBox["x", "2"]}], "+", RowBox[{"3", " ", SuperscriptBox["y", "2"]}]}]]}], "+", RowBox[{"2", " ", SqrtBox["3"], " ", SqrtBox[ RowBox[{"5", "+", RowBox[{"2", " ", SqrtBox["6"]}], "+", RowBox[{"12", " ", SqrtBox["2"], " ", "x"}], "+", RowBox[{"8", " ", SqrtBox["3"], " ", "x"}], "+", RowBox[{"27", " ", SuperscriptBox["x", "2"]}], "+", RowBox[{"3", " ", SuperscriptBox["y", "2"]}]}]]}], "+", RowBox[{"4", " ", SqrtBox["6"], " ", "x", " ", SqrtBox[ RowBox[{"5", "+", RowBox[{"2", " ", SqrtBox["6"]}], "+", RowBox[{"12", " ", SqrtBox["2"], " ", "x"}], "+", RowBox[{"8", " ", SqrtBox["3"], " ", "x"}], "+", RowBox[{"27", " ", SuperscriptBox["x", "2"]}], "+", RowBox[{"3", " ", SuperscriptBox["y", "2"]}]}]]}], "-", RowBox[{"3", " ", SuperscriptBox["x", "2"], " ", RowBox[{"Log", "[", RowBox[{ RowBox[{"-", "3"}], "-", SqrtBox["6"], "-", RowBox[{"6", " ", SqrtBox["2"], " ", "x"}], "+", RowBox[{ SqrtBox["3"], " ", SqrtBox[ RowBox[{"5", "+", RowBox[{"2", " ", SqrtBox["6"]}], "+", RowBox[{"12", " ", SqrtBox["2"], " ", "x"}], "+", RowBox[{"8", " ", SqrtBox["3"], " ", "x"}], "+", RowBox[{"27", " ", SuperscriptBox["x", "2"]}], "+", RowBox[{"3", " ", SuperscriptBox["y", "2"]}]}]]}]}], "]"}]}], "-", RowBox[{"3", " ", SuperscriptBox["y", "2"], " ", RowBox[{"Log", "[", RowBox[{ RowBox[{"-", "3"}], "-", SqrtBox["6"], "-", RowBox[{"6", " ", SqrtBox["2"], " ", "x"}], "+", RowBox[{ SqrtBox["3"], " ", SqrtBox[ RowBox[{"5", "+", RowBox[{"2", " ", SqrtBox["6"]}], "+", RowBox[{"12", " ", SqrtBox["2"], " ", "x"}], "+", RowBox[{"8", " ", SqrtBox["3"], " ", "x"}], "+", RowBox[{"27", " ", SuperscriptBox["x", "2"]}], "+", RowBox[{"3", " ", SuperscriptBox["y", "2"]}]}]]}]}], "]"}]}], "+", RowBox[{"3", " ", SuperscriptBox["x", "2"], " ", RowBox[{"Log", "[", RowBox[{"3", "+", SqrtBox["6"], "+", RowBox[{"6", " ", SqrtBox["2"], " ", "x"}], "+", RowBox[{ SqrtBox["3"], " ", SqrtBox[ RowBox[{"5", "+", RowBox[{"2", " ", SqrtBox["6"]}], "+", RowBox[{"12", " ", SqrtBox["2"], " ", "x"}], "+", RowBox[{"8", " ", SqrtBox["3"], " ", "x"}], "+", RowBox[{"27", " ", SuperscriptBox["x", "2"]}], "+", RowBox[{"3", " ", SuperscriptBox["y", "2"]}]}]]}]}], "]"}]}], "+", RowBox[{"3", " ", SuperscriptBox["y", "2"], " ", RowBox[{"Log", "[", RowBox[{"3", "+", SqrtBox["6"], "+", RowBox[{"6", " ", SqrtBox["2"], " ", "x"}], "+", RowBox[{ SqrtBox["3"], " ", SqrtBox[ RowBox[{"5", "+", RowBox[{"2", " ", SqrtBox["6"]}], "+", RowBox[{"12", " ", SqrtBox["2"], " ", "x"}], "+", RowBox[{"8", " ", SqrtBox["3"], " ", "x"}], "+", RowBox[{"27", " ", SuperscriptBox["x", "2"]}], "+", RowBox[{"3", " ", SuperscriptBox["y", "2"]}]}]]}]}], "]"}]}]}], ")"}]}], RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"x", "\[Equal]", RowBox[{"-", FractionBox["1", RowBox[{"2", " ", SqrtBox["3"]}]]}]}], "&&", RowBox[{ RowBox[{ SqrtBox["3"], " ", "x"}], "<", "y", "\[LessEqual]", RowBox[{ RowBox[{"-", SqrtBox["3"]}], " ", "x"}]}]}], ")"}], "||", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", FractionBox["1", RowBox[{"2", " ", SqrtBox["3"]}]]}], "<", "x", "<", "0"}], "&&", RowBox[{ RowBox[{ SqrtBox["3"], " ", "x"}], "<", "y", "\[LessEqual]", RowBox[{ RowBox[{"-", SqrtBox["3"]}], " ", "x"}]}]}], ")"}]}]}, { RowBox[{ FractionBox["1", "12"], " ", RowBox[{"(", RowBox[{ RowBox[{"2", " ", SqrtBox["2"], " ", SqrtBox[ RowBox[{"5", "+", RowBox[{"2", " ", SqrtBox["6"]}], "-", RowBox[{"12", " ", "y"}], "-", RowBox[{"6", " ", SqrtBox["6"], " ", "y"}], "+", RowBox[{"21", " ", SuperscriptBox["y", "2"]}]}]]}], "+", RowBox[{"2", " ", SqrtBox["3"], " ", SqrtBox[ RowBox[{"5", "+", RowBox[{"2", " ", SqrtBox["6"]}], "-", RowBox[{"12", " ", "y"}], "-", RowBox[{"6", " ", SqrtBox["6"], " ", "y"}], "+", RowBox[{"21", " ", SuperscriptBox["y", "2"]}]}]]}], "-", RowBox[{"6", " ", SqrtBox["2"], " ", "y", " ", SqrtBox[ RowBox[{"5", "+", RowBox[{"2", " ", SqrtBox["6"]}], "-", RowBox[{"12", " ", "y"}], "-", RowBox[{"6", " ", SqrtBox["6"], " ", "y"}], "+", RowBox[{"21", " ", SuperscriptBox["y", "2"]}]}]]}], "+", RowBox[{"3", " ", SuperscriptBox["y", "2"], " ", RowBox[{"Log", "[", RowBox[{"3", "+", SqrtBox["6"], "-", RowBox[{"3", " ", SqrtBox["6"], " ", "y"}], "+", RowBox[{ SqrtBox["3"], " ", SqrtBox[ RowBox[{"5", "+", RowBox[{"2", " ", SqrtBox["6"]}], "-", RowBox[{"6", " ", RowBox[{"(", RowBox[{"2", "+", SqrtBox["6"]}], ")"}], " ", "y"}], "+", RowBox[{"21", " ", SuperscriptBox["y", "2"]}]}]]}]}], "]"}]}], "-", RowBox[{"3", " ", SuperscriptBox["y", "2"], " ", RowBox[{"Log", "[", RowBox[{ RowBox[{"-", "3"}], "-", SqrtBox["6"], "+", RowBox[{"3", " ", SqrtBox["6"], " ", "y"}], "+", RowBox[{ SqrtBox["3"], " ", SqrtBox[ RowBox[{"5", "+", RowBox[{"2", " ", SqrtBox["6"]}], "-", RowBox[{"6", " ", RowBox[{"(", RowBox[{"2", "+", SqrtBox["6"]}], ")"}], " ", "y"}], "+", RowBox[{"21", " ", SuperscriptBox["y", "2"]}]}]]}]}], "]"}]}]}], ")"}]}], RowBox[{ RowBox[{"x", "\[Equal]", "0"}], "&&", RowBox[{"0", "<", "y", "\[LessEqual]", FractionBox["1", "3"]}]}]}, { RowBox[{ FractionBox["1", "12"], " ", RowBox[{"(", RowBox[{ RowBox[{"2", " ", SqrtBox["2"], " ", SqrtBox[ RowBox[{"5", "+", RowBox[{"2", " ", SqrtBox["6"]}], "+", RowBox[{"12", " ", "y"}], "+", RowBox[{"6", " ", SqrtBox["6"], " ", "y"}], "+", RowBox[{"21", " ", SuperscriptBox["y", "2"]}]}]]}], "+", RowBox[{"2", " ", SqrtBox["3"], " ", SqrtBox[ RowBox[{"5", "+", RowBox[{"2", " ", SqrtBox["6"]}], "+", RowBox[{"12", " ", "y"}], "+", RowBox[{"6", " ", SqrtBox["6"], " ", "y"}], "+", RowBox[{"21", " ", SuperscriptBox["y", "2"]}]}]]}], "+", RowBox[{"6", " ", SqrtBox["2"], " ", "y", " ", SqrtBox[ RowBox[{"5", "+", RowBox[{"2", " ", SqrtBox["6"]}], "+", RowBox[{"12", " ", "y"}], "+", RowBox[{"6", " ", SqrtBox["6"], " ", "y"}], "+", RowBox[{"21", " ", SuperscriptBox["y", "2"]}]}]]}], "-", RowBox[{"3", " ", SuperscriptBox["y", "2"], " ", RowBox[{"Log", "[", RowBox[{ RowBox[{"-", "3"}], "-", SqrtBox["6"], "-", RowBox[{"3", " ", SqrtBox["6"], " ", "y"}], "+", RowBox[{ SqrtBox["3"], " ", SqrtBox[ RowBox[{"5", "+", RowBox[{"2", " ", SqrtBox["6"]}], "+", RowBox[{"6", " ", RowBox[{"(", RowBox[{"2", "+", SqrtBox["6"]}], ")"}], " ", "y"}], "+", RowBox[{"21", " ", SuperscriptBox["y", "2"]}]}]]}]}], "]"}]}], "+", RowBox[{"3", " ", SuperscriptBox["y", "2"], " ", RowBox[{"Log", "[", RowBox[{"3", "+", SqrtBox["6"], "+", RowBox[{"3", " ", SqrtBox["6"], " ", "y"}], "+", RowBox[{ SqrtBox["3"], " ", SqrtBox[ RowBox[{"5", "+", RowBox[{"2", " ", SqrtBox["6"]}], "+", RowBox[{"6", " ", RowBox[{"(", RowBox[{"2", "+", SqrtBox["6"]}], ")"}], " ", "y"}], "+", RowBox[{"21", " ", SuperscriptBox["y", "2"]}]}]]}]}], "]"}]}]}], ")"}]}], RowBox[{ RowBox[{"x", "\[Equal]", "0"}], "&&", RowBox[{ RowBox[{"-", FractionBox["1", "3"]}], "\[LessEqual]", "y", "<", "0"}]}]}, { RowBox[{ FractionBox["1", "12"], " ", RowBox[{"(", RowBox[{ RowBox[{"2", " ", SqrtBox["2"], " ", RowBox[{"\[Sqrt]", RowBox[{"(", RowBox[{"5", "+", RowBox[{"2", " ", SqrtBox["6"]}], "-", RowBox[{"6", " ", SqrtBox["2"], " ", "x"}], "-", RowBox[{"4", " ", SqrtBox["3"], " ", "x"}], "+", RowBox[{"9", " ", SuperscriptBox["x", "2"]}], "-", RowBox[{"12", " ", "y"}], "-", RowBox[{"6", " ", SqrtBox["6"], " ", "y"}], "+", RowBox[{"12", " ", SqrtBox["3"], " ", "x", " ", "y"}], "+", RowBox[{"21", " ", SuperscriptBox["y", "2"]}]}], ")"}]}]}], "+", RowBox[{"2", " ", SqrtBox["3"], " ", RowBox[{"\[Sqrt]", RowBox[{"(", RowBox[{"5", "+", RowBox[{"2", " ", SqrtBox["6"]}], "-", RowBox[{"6", " ", SqrtBox["2"], " ", "x"}], "-", RowBox[{"4", " ", SqrtBox["3"], " ", "x"}], "+", RowBox[{"9", " ", SuperscriptBox["x", "2"]}], "-", RowBox[{"12", " ", "y"}], "-", RowBox[{"6", " ", SqrtBox["6"], " ", "y"}], "+", RowBox[{"12", " ", SqrtBox["3"], " ", "x", " ", "y"}], "+", RowBox[{"21", " ", SuperscriptBox["y", "2"]}]}], ")"}]}]}], "-", RowBox[{"2", " ", SqrtBox["6"], " ", "x", " ", RowBox[{"\[Sqrt]", RowBox[{"(", RowBox[{"5", "+", RowBox[{"2", " ", SqrtBox["6"]}], "-", RowBox[{"6", " ", SqrtBox["2"], " ", "x"}], "-", RowBox[{"4", " ", SqrtBox["3"], " ", "x"}], "+", RowBox[{"9", " ", SuperscriptBox["x", "2"]}], "-", RowBox[{"12", " ", "y"}], "-", RowBox[{"6", " ", SqrtBox["6"], " ", "y"}], "+", RowBox[{"12", " ", SqrtBox["3"], " ", "x", " ", "y"}], "+", RowBox[{"21", " ", SuperscriptBox["y", "2"]}]}], ")"}]}]}], "-", RowBox[{"6", " ", SqrtBox["2"], " ", "y", " ", RowBox[{"\[Sqrt]", RowBox[{"(", RowBox[{"5", "+", RowBox[{"2", " ", SqrtBox["6"]}], "-", RowBox[{"6", " ", SqrtBox["2"], " ", "x"}], "-", RowBox[{"4", " ", SqrtBox["3"], " ", "x"}], "+", RowBox[{"9", " ", SuperscriptBox["x", "2"]}], "-", RowBox[{"12", " ", "y"}], "-", RowBox[{"6", " ", SqrtBox["6"], " ", "y"}], "+", RowBox[{"12", " ", SqrtBox["3"], " ", "x", " ", "y"}], "+", RowBox[{"21", " ", SuperscriptBox["y", "2"]}]}], ")"}]}]}], "+", RowBox[{"3", " ", SuperscriptBox["x", "2"], " ", RowBox[{"Log", "[", FractionBox[ RowBox[{"3", "+", SqrtBox["6"], "-", RowBox[{"3", " ", SqrtBox["2"], " ", "x"}], "-", RowBox[{"3", " ", SqrtBox["6"], " ", "y"}], "+", RowBox[{"3", " ", SqrtBox[ RowBox[{ SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"], "+", SuperscriptBox[ RowBox[{"(", RowBox[{"1", "+", SqrtBox[ FractionBox["2", "3"]], "-", RowBox[{ SqrtBox["2"], " ", "x"}], "-", RowBox[{ SqrtBox["6"], " ", "y"}]}], ")"}], "2"]}]]}]}], SqrtBox[ RowBox[{"5", "+", RowBox[{"2", " ", SqrtBox["6"]}], "+", RowBox[{"9", " ", SuperscriptBox["x", "2"]}], "-", RowBox[{"6", " ", RowBox[{"(", RowBox[{"2", "+", SqrtBox["6"]}], ")"}], " ", "y"}], "+", RowBox[{"21", " ", SuperscriptBox["y", "2"]}], "-", RowBox[{"2", " ", "x", " ", RowBox[{"(", RowBox[{ RowBox[{"3", " ", SqrtBox["2"]}], "+", RowBox[{"2", " ", SqrtBox["3"]}], "-", RowBox[{"6", " ", SqrtBox["3"], " ", "y"}]}], ")"}]}]}]]], "]"}]}], "+", RowBox[{"3", " ", SuperscriptBox["y", "2"], " ", RowBox[{"Log", "[", FractionBox[ RowBox[{"3", "+", SqrtBox["6"], "-", RowBox[{"3", " ", SqrtBox["2"], " ", "x"}], "-", RowBox[{"3", " ", SqrtBox["6"], " ", "y"}], "+", RowBox[{"3", " ", SqrtBox[ RowBox[{ SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"], "+", SuperscriptBox[ RowBox[{"(", RowBox[{"1", "+", SqrtBox[ FractionBox["2", "3"]], "-", RowBox[{ SqrtBox["2"], " ", "x"}], "-", RowBox[{ SqrtBox["6"], " ", "y"}]}], ")"}], "2"]}]]}]}], SqrtBox[ RowBox[{"5", "+", RowBox[{"2", " ", SqrtBox["6"]}], "+", RowBox[{"9", " ", SuperscriptBox["x", "2"]}], "-", RowBox[{"6", " ", RowBox[{"(", RowBox[{"2", "+", SqrtBox["6"]}], ")"}], " ", "y"}], "+", RowBox[{"21", " ", SuperscriptBox["y", "2"]}], "-", RowBox[{"2", " ", "x", " ", RowBox[{"(", RowBox[{ RowBox[{"3", " ", SqrtBox["2"]}], "+", RowBox[{"2", " ", SqrtBox["3"]}], "-", RowBox[{"6", " ", SqrtBox["3"], " ", "y"}]}], ")"}]}]}]]], "]"}]}], "-", RowBox[{"3", " ", SuperscriptBox["x", "2"], " ", RowBox[{"Log", "[", FractionBox[ RowBox[{ RowBox[{"-", "3"}], "-", SqrtBox["6"], "+", RowBox[{"3", " ", SqrtBox["2"], " ", "x"}], "+", RowBox[{"3", " ", SqrtBox["6"], " ", "y"}], "+", RowBox[{"3", " ", SqrtBox[ RowBox[{ SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"], "+", SuperscriptBox[ RowBox[{"(", RowBox[{"1", "+", SqrtBox[ FractionBox["2", "3"]], "-", RowBox[{ SqrtBox["2"], " ", "x"}], "-", RowBox[{ SqrtBox["6"], " ", "y"}]}], ")"}], "2"]}]]}]}], SqrtBox[ RowBox[{"5", "+", RowBox[{"2", " ", SqrtBox["6"]}], "+", RowBox[{"9", " ", SuperscriptBox["x", "2"]}], "-", RowBox[{"6", " ", RowBox[{"(", RowBox[{"2", "+", SqrtBox["6"]}], ")"}], " ", "y"}], "+", RowBox[{"21", " ", SuperscriptBox["y", "2"]}], "-", RowBox[{"2", " ", "x", " ", RowBox[{"(", RowBox[{ RowBox[{"3", " ", SqrtBox["2"]}], "+", RowBox[{"2", " ", SqrtBox["3"]}], "-", RowBox[{"6", " ", SqrtBox["3"], " ", "y"}]}], ")"}]}]}]]], "]"}]}], "-", RowBox[{"3", " ", SuperscriptBox["y", "2"], " ", RowBox[{"Log", "[", FractionBox[ RowBox[{ RowBox[{"-", "3"}], "-", SqrtBox["6"], "+", RowBox[{"3", " ", SqrtBox["2"], " ", "x"}], "+", RowBox[{"3", " ", SqrtBox["6"], " ", "y"}], "+", RowBox[{"3", " ", SqrtBox[ RowBox[{ SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"], "+", SuperscriptBox[ RowBox[{"(", RowBox[{"1", "+", SqrtBox[ FractionBox["2", "3"]], "-", RowBox[{ SqrtBox["2"], " ", "x"}], "-", RowBox[{ SqrtBox["6"], " ", "y"}]}], ")"}], "2"]}]]}]}], SqrtBox[ RowBox[{"5", "+", RowBox[{"2", " ", SqrtBox["6"]}], "+", RowBox[{"9", " ", SuperscriptBox["x", "2"]}], "-", RowBox[{"6", " ", RowBox[{"(", RowBox[{"2", "+", SqrtBox["6"]}], ")"}], " ", "y"}], "+", RowBox[{"21", " ", SuperscriptBox["y", "2"]}], "-", RowBox[{"2", " ", "x", " ", RowBox[{"(", RowBox[{ RowBox[{"3", " ", SqrtBox["2"]}], "+", RowBox[{"2", " ", SqrtBox["3"]}], "-", RowBox[{"6", " ", SqrtBox["3"], " ", "y"}]}], ")"}]}]}]]], "]"}]}]}], ")"}]}], RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"x", "\[Equal]", FractionBox["1", RowBox[{"4", " ", SqrtBox["3"]}]]}], "&&", RowBox[{"0", "<", "y", "\[LessEqual]", RowBox[{ SqrtBox["3"], " ", "x"}]}]}], ")"}], "||", RowBox[{"(", RowBox[{ RowBox[{"0", "<", "x", "<", FractionBox["1", RowBox[{"4", " ", SqrtBox["3"]}]]}], "&&", RowBox[{"0", "<", "y", "\[LessEqual]", FractionBox[ RowBox[{ SqrtBox["3"], "-", RowBox[{"3", " ", "x"}]}], RowBox[{"3", " ", SqrtBox["3"]}]]}]}], ")"}], "||", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", FractionBox["1", RowBox[{"2", " ", SqrtBox["3"]}]]}], "<", "x", "<", "0"}], "&&", RowBox[{ RowBox[{ RowBox[{"-", SqrtBox["3"]}], " ", "x"}], "<", "y", "\[LessEqual]", FractionBox[ RowBox[{ SqrtBox["3"], "-", RowBox[{"3", " ", "x"}]}], RowBox[{"3", " ", SqrtBox["3"]}]]}]}], ")"}], "||", RowBox[{"(", RowBox[{ RowBox[{ FractionBox["1", RowBox[{"4", " ", SqrtBox["3"]}]], "<", "x", "<", FractionBox["1", SqrtBox["3"]]}], "&&", RowBox[{"0", "<", "y", "\[LessEqual]", FractionBox[ RowBox[{ SqrtBox["3"], "-", RowBox[{"3", " ", "x"}]}], RowBox[{"3", " ", SqrtBox["3"]}]]}]}], ")"}]}]}, { RowBox[{ FractionBox["1", "12"], " ", RowBox[{"(", RowBox[{ RowBox[{"2", " ", SqrtBox["2"], " ", RowBox[{"\[Sqrt]", RowBox[{"(", RowBox[{"5", "+", RowBox[{"2", " ", SqrtBox["6"]}], "-", RowBox[{"6", " ", SqrtBox["2"], " ", "x"}], "-", RowBox[{"4", " ", SqrtBox["3"], " ", "x"}], "+", RowBox[{"9", " ", SuperscriptBox["x", "2"]}], "+", RowBox[{"12", " ", "y"}], "+", RowBox[{"6", " ", SqrtBox["6"], " ", "y"}], "-", RowBox[{"12", " ", SqrtBox["3"], " ", "x", " ", "y"}], "+", RowBox[{"21", " ", SuperscriptBox["y", "2"]}]}], ")"}]}]}], "+", RowBox[{"2", " ", SqrtBox["3"], " ", RowBox[{"\[Sqrt]", RowBox[{"(", RowBox[{"5", "+", RowBox[{"2", " ", SqrtBox["6"]}], "-", RowBox[{"6", " ", SqrtBox["2"], " ", "x"}], "-", RowBox[{"4", " ", SqrtBox["3"], " ", "x"}], "+", RowBox[{"9", " ", SuperscriptBox["x", "2"]}], "+", RowBox[{"12", " ", "y"}], "+", RowBox[{"6", " ", SqrtBox["6"], " ", "y"}], "-", RowBox[{"12", " ", SqrtBox["3"], " ", "x", " ", "y"}], "+", RowBox[{"21", " ", SuperscriptBox["y", "2"]}]}], ")"}]}]}], "-", RowBox[{"2", " ", SqrtBox["6"], " ", "x", " ", RowBox[{"\[Sqrt]", RowBox[{"(", RowBox[{"5", "+", RowBox[{"2", " ", SqrtBox["6"]}], "-", RowBox[{"6", " ", SqrtBox["2"], " ", "x"}], "-", RowBox[{"4", " ", SqrtBox["3"], " ", "x"}], "+", RowBox[{"9", " ", SuperscriptBox["x", "2"]}], "+", RowBox[{"12", " ", "y"}], "+", RowBox[{"6", " ", SqrtBox["6"], " ", "y"}], "-", RowBox[{"12", " ", SqrtBox["3"], " ", "x", " ", "y"}], "+", RowBox[{"21", " ", SuperscriptBox["y", "2"]}]}], ")"}]}]}], "+", RowBox[{"6", " ", SqrtBox["2"], " ", "y", " ", RowBox[{"\[Sqrt]", RowBox[{"(", RowBox[{"5", "+", RowBox[{"2", " ", SqrtBox["6"]}], "-", RowBox[{"6", " ", SqrtBox["2"], " ", "x"}], "-", RowBox[{"4", " ", SqrtBox["3"], " ", "x"}], "+", RowBox[{"9", " ", SuperscriptBox["x", "2"]}], "+", RowBox[{"12", " ", "y"}], "+", RowBox[{"6", " ", SqrtBox["6"], " ", "y"}], "-", RowBox[{"12", " ", SqrtBox["3"], " ", "x", " ", "y"}], "+", RowBox[{"21", " ", SuperscriptBox["y", "2"]}]}], ")"}]}]}], "-", RowBox[{"3", " ", SuperscriptBox["x", "2"], " ", RowBox[{"Log", "[", FractionBox[ RowBox[{ RowBox[{"-", "3"}], "-", SqrtBox["6"], "+", RowBox[{"3", " ", SqrtBox["2"], " ", "x"}], "-", RowBox[{"3", " ", SqrtBox["6"], " ", "y"}], "+", RowBox[{"3", " ", SqrtBox[ RowBox[{ SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"], "+", SuperscriptBox[ RowBox[{"(", RowBox[{"1", "+", SqrtBox[ FractionBox["2", "3"]], "-", RowBox[{ SqrtBox["2"], " ", "x"}], "+", RowBox[{ SqrtBox["6"], " ", "y"}]}], ")"}], "2"]}]]}]}], SqrtBox[ RowBox[{"5", "+", RowBox[{"2", " ", SqrtBox["6"]}], "+", RowBox[{"9", " ", SuperscriptBox["x", "2"]}], "+", RowBox[{"6", " ", RowBox[{"(", RowBox[{"2", "+", SqrtBox["6"]}], ")"}], " ", "y"}], "+", RowBox[{"21", " ", SuperscriptBox["y", "2"]}], "-", RowBox[{"2", " ", "x", " ", RowBox[{"(", RowBox[{ RowBox[{"3", " ", SqrtBox["2"]}], "+", RowBox[{"2", " ", SqrtBox["3"]}], "+", RowBox[{"6", " ", SqrtBox["3"], " ", "y"}]}], ")"}]}]}]]], "]"}]}], "-", RowBox[{"3", " ", SuperscriptBox["y", "2"], " ", RowBox[{"Log", "[", FractionBox[ RowBox[{ RowBox[{"-", "3"}], "-", SqrtBox["6"], "+", RowBox[{"3", " ", SqrtBox["2"], " ", "x"}], "-", RowBox[{"3", " ", SqrtBox["6"], " ", "y"}], "+", RowBox[{"3", " ", SqrtBox[ RowBox[{ SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"], "+", SuperscriptBox[ RowBox[{"(", RowBox[{"1", "+", SqrtBox[ FractionBox["2", "3"]], "-", RowBox[{ SqrtBox["2"], " ", "x"}], "+", RowBox[{ SqrtBox["6"], " ", "y"}]}], ")"}], "2"]}]]}]}], SqrtBox[ RowBox[{"5", "+", RowBox[{"2", " ", SqrtBox["6"]}], "+", RowBox[{"9", " ", SuperscriptBox["x", "2"]}], "+", RowBox[{"6", " ", RowBox[{"(", RowBox[{"2", "+", SqrtBox["6"]}], ")"}], " ", "y"}], "+", RowBox[{"21", " ", SuperscriptBox["y", "2"]}], "-", RowBox[{"2", " ", "x", " ", RowBox[{"(", RowBox[{ RowBox[{"3", " ", SqrtBox["2"]}], "+", RowBox[{"2", " ", SqrtBox["3"]}], "+", RowBox[{"6", " ", SqrtBox["3"], " ", "y"}]}], ")"}]}]}]]], "]"}]}], "+", RowBox[{"3", " ", SuperscriptBox["x", "2"], " ", RowBox[{"Log", "[", FractionBox[ RowBox[{"3", "+", SqrtBox["6"], "-", RowBox[{"3", " ", SqrtBox["2"], " ", "x"}], "+", RowBox[{"3", " ", SqrtBox["6"], " ", "y"}], "+", RowBox[{"3", " ", SqrtBox[ RowBox[{ SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"], "+", SuperscriptBox[ RowBox[{"(", RowBox[{"1", "+", SqrtBox[ FractionBox["2", "3"]], "-", RowBox[{ SqrtBox["2"], " ", "x"}], "+", RowBox[{ SqrtBox["6"], " ", "y"}]}], ")"}], "2"]}]]}]}], SqrtBox[ RowBox[{"5", "+", RowBox[{"2", " ", SqrtBox["6"]}], "+", RowBox[{"9", " ", SuperscriptBox["x", "2"]}], "+", RowBox[{"6", " ", RowBox[{"(", RowBox[{"2", "+", SqrtBox["6"]}], ")"}], " ", "y"}], "+", RowBox[{"21", " ", SuperscriptBox["y", "2"]}], "-", RowBox[{"2", " ", "x", " ", RowBox[{"(", RowBox[{ RowBox[{"3", " ", SqrtBox["2"]}], "+", RowBox[{"2", " ", SqrtBox["3"]}], "+", RowBox[{"6", " ", SqrtBox["3"], " ", "y"}]}], ")"}]}]}]]], "]"}]}], "+", RowBox[{"3", " ", SuperscriptBox["y", "2"], " ", RowBox[{"Log", "[", FractionBox[ RowBox[{"3", "+", SqrtBox["6"], "-", RowBox[{"3", " ", SqrtBox["2"], " ", "x"}], "+", RowBox[{"3", " ", SqrtBox["6"], " ", "y"}], "+", RowBox[{"3", " ", SqrtBox[ RowBox[{ SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"], "+", SuperscriptBox[ RowBox[{"(", RowBox[{"1", "+", SqrtBox[ FractionBox["2", "3"]], "-", RowBox[{ SqrtBox["2"], " ", "x"}], "+", RowBox[{ SqrtBox["6"], " ", "y"}]}], ")"}], "2"]}]]}]}], SqrtBox[ RowBox[{"5", "+", RowBox[{"2", " ", SqrtBox["6"]}], "+", RowBox[{"9", " ", SuperscriptBox["x", "2"]}], "+", RowBox[{"6", " ", RowBox[{"(", RowBox[{"2", "+", SqrtBox["6"]}], ")"}], " ", "y"}], "+", RowBox[{"21", " ", SuperscriptBox["y", "2"]}], "-", RowBox[{"2", " ", "x", " ", RowBox[{"(", RowBox[{ RowBox[{"3", " ", SqrtBox["2"]}], "+", RowBox[{"2", " ", SqrtBox["3"]}], "+", RowBox[{"6", " ", SqrtBox["3"], " ", "y"}]}], ")"}]}]}]]], "]"}]}]}], ")"}]}], RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"x", "\[Equal]", RowBox[{"-", FractionBox["1", RowBox[{"2", " ", SqrtBox["3"]}]]}]}], "&&", RowBox[{"y", "\[Equal]", RowBox[{ SqrtBox["3"], " ", "x"}]}]}], ")"}], "||", RowBox[{"(", RowBox[{ RowBox[{"x", "\[Equal]", FractionBox["1", RowBox[{"4", " ", SqrtBox["3"]}]]}], "&&", RowBox[{ RowBox[{ RowBox[{"-", SqrtBox["3"]}], " ", "x"}], "\[LessEqual]", "y", "\[LessEqual]", "0"}]}], ")"}], "||", RowBox[{"(", RowBox[{ RowBox[{"0", "<", "x", "<", FractionBox["1", RowBox[{"4", " ", SqrtBox["3"]}]]}], "&&", RowBox[{ FractionBox[ RowBox[{ RowBox[{"-", SqrtBox["3"]}], "+", RowBox[{"3", " ", "x"}]}], RowBox[{"3", " ", SqrtBox["3"]}]], "\[LessEqual]", "y", "\[LessEqual]", "0"}]}], ")"}], "||", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", FractionBox["1", RowBox[{"2", " ", SqrtBox["3"]}]]}], "<", "x", "<", "0"}], "&&", RowBox[{ FractionBox[ RowBox[{ RowBox[{"-", SqrtBox["3"]}], "+", RowBox[{"3", " ", "x"}]}], RowBox[{"3", " ", SqrtBox["3"]}]], "\[LessEqual]", "y", "\[LessEqual]", RowBox[{ SqrtBox["3"], " ", "x"}]}]}], ")"}], "||", RowBox[{"(", RowBox[{ RowBox[{ FractionBox["1", RowBox[{"4", " ", SqrtBox["3"]}]], "<", "x", "<", FractionBox["1", SqrtBox["3"]]}], "&&", RowBox[{ FractionBox[ RowBox[{ RowBox[{"-", SqrtBox["3"]}], "+", RowBox[{"3", " ", "x"}]}], RowBox[{"3", " ", SqrtBox["3"]}]], "\[LessEqual]", "y", "\[LessEqual]", "0"}]}], ")"}]}]}, {"0", TagBox["True", "PiecewiseDefault", AutoDelete->True]} }, AllowedDimensions->{2, Automatic}, Editable->True, GridBoxAlignment->{"Columns" -> {{Left}}, "Rows" -> {{Baseline}}}, GridBoxItemSize->{"Columns" -> {{Automatic}}, "Rows" -> {{1.}}}, GridBoxSpacings->{"Columns" -> { Offset[0.27999999999999997`], { Offset[0.84]}, Offset[0.27999999999999997`]}, "Rows" -> { Offset[0.2], { Offset[0.4]}, Offset[0.2]}}, Selectable->True]} }, GridBoxAlignment->{"Columns" -> {{Left}}, "Rows" -> {{Baseline}}}, GridBoxItemSize->{"Columns" -> {{Automatic}}, "Rows" -> {{1.}}}, GridBoxSpacings->{"Columns" -> { Offset[0.27999999999999997`], { Offset[0.35]}, Offset[0.27999999999999997`]}, "Rows" -> { Offset[0.2], { Offset[0.4]}, Offset[0.2]}}], "Piecewise", DeleteWithContents->True, Editable->False, SelectWithContents->True, Selectable->False, StripWrapperBoxes->True]}], "}"}]], "Output", CellLabel-> "(byblis65 V13.2.0) \ Out[7]=",ExpressionUUID->"7627d6be-fe78-4df7-9dfe-c65c9fa940d3"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"NIntegrate", "[", RowBox[{ FractionBox["i1", "vol"], ",", RowBox[{"{", RowBox[{"x", ",", "xmin", ",", "xmax"}], "}"}], ",", RowBox[{"{", RowBox[{"y", ",", "ymin", ",", "ymax"}], "}"}]}], "]"}]], "Input", CellLabel-> "(byblis65 V13.2.0) \ In[8]:=",ExpressionUUID->"4ff54d68-f201-4013-97dc-6de6df9267ae"], Cell[BoxData["0.7308561012524257`"], "Output", CellLabel-> "(byblis65 V13.2.0) \ Out[8]=",ExpressionUUID->"e4836537-5c5d-421d-b9ff-39dbd41b6624"] }, Open ]], Cell[BoxData[ RowBox[{ RowBox[{"(", RowBox[{"i2", "=", RowBox[{"Integrate", "[", RowBox[{ FractionBox["i1", "vol"], ",", RowBox[{"{", RowBox[{"x", ",", "xmin", ",", "xmax"}], "}"}], ",", RowBox[{"{", RowBox[{"y", ",", "ymin", ",", "ymax"}], "}"}]}], "]"}]}], ")"}], "//", "Timing"}]], "Input", CellLabel-> "(byblis65 V13.2.0) \ In[9]:=",ExpressionUUID->"472b4d59-c79a-4a57-8a5e-108e1837609b"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["MeanSquareCylindricalRadius", "Subsection",ExpressionUUID->"30123a88-ef62-4b99-8324-cb82299d072c"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}]], "Input", CellLabel->"In[27]:=",ExpressionUUID->"a73f4293-e91b-4ee8-89f9-2967f501979d"], Cell[BoxData[ RowBox[{ FractionBox["1", "500"], " ", RowBox[{"(", RowBox[{"43", "-", RowBox[{"2", " ", SqrtBox["6"]}]}], ")"}]}]], "Output", CellLabel->"Out[27]=",ExpressionUUID->"7b54d303-c8ce-4f9e-9bfd-523e1512fb19"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ FractionBox[ RowBox[{"NIntegrate", "[", RowBox[{ RowBox[{ SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]}], ",", RowBox[{ RowBox[{"{", RowBox[{"x", ",", "y", ",", "z"}], "}"}], "\[Element]", "p"}]}], "]"}], RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}]]], "Input", CellLabel-> "In[193]:=",ExpressionUUID->"81936642-ac47-4e4b-b0d3-081f839d1e11"], Cell[BoxData["0.0762020410288673`"], "Output", CellLabel-> "Out[193]=",ExpressionUUID->"696ee386-d934-45bc-97fd-e000143f5eb3"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"(", RowBox[{"i", "=", RowBox[{ FractionBox[ RowBox[{"Integrate", "[", RowBox[{ RowBox[{ SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]}], ",", RowBox[{ RowBox[{"{", RowBox[{"x", ",", "y", ",", "z"}], "}"}], "\[Element]", "p"}]}], "]"}], RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}]], "//", "FullSimplify"}]}], ")"}], "//", "Timing"}]], "Input", CellLabel-> "In[201]:=",ExpressionUUID->"4fcfe8ad-dcc7-406d-8009-c181b264e624"], Cell[BoxData[ RowBox[{"{", RowBox[{"0.187244`", ",", RowBox[{ FractionBox["1", "500"], " ", RowBox[{"(", RowBox[{"43", "-", RowBox[{"2", " ", SqrtBox["6"]}]}], ")"}]}]}], "}"}]], "Output", CellLabel-> "Out[201]=",ExpressionUUID->"c8953bce-a9d3-4321-9cb9-e5b581a71ddc"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"N", "[", "i", "]"}]], "Input", CellLabel-> "In[195]:=",ExpressionUUID->"01105a28-8f44-4675-a63f-8c2ada908141"], Cell[BoxData["0.0762020410288673`"], "Output", CellLabel-> "Out[195]=",ExpressionUUID->"34efb75b-9502-419d-8468-ce0d224d4258"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{"MeanSquareCylindricalRadius", "[", "p", "]"}], "//", "FullSimplify"}], "//", "Timing"}]], "Input", CellLabel->"In[8]:=",ExpressionUUID->"6a7f6f0c-2946-4e98-8d60-8103d00e70a1"], Cell[BoxData[ RowBox[{"{", RowBox[{"0.141258`", ",", RowBox[{ FractionBox["1", "500"], " ", RowBox[{"(", RowBox[{"43", "-", RowBox[{"2", " ", SqrtBox["6"]}]}], ")"}]}]}], "}"}]], "Output", CellLabel->"Out[8]=",ExpressionUUID->"b2beef0e-790a-43fd-aec0-dec835d4c01d"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["MeanSquareSphericalRadius", "Subsection",ExpressionUUID->"5a3610c8-9ba1-4a7d-82a9-e97e3a55f58e"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}]], "Input",\ CellLabel->"In[29]:=",ExpressionUUID->"af497dd6-cccf-4b74-8273-323b3c5f7cea"], Cell[BoxData[ FractionBox[ RowBox[{"721", "+", RowBox[{"106", " ", SqrtBox["6"]}]}], "1500"]], "Output", CellLabel->"Out[29]=",ExpressionUUID->"e611bcff-7aad-4d61-b571-48468cab6b45"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ FractionBox[ RowBox[{"NIntegrate", "[", RowBox[{ RowBox[{ SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"], "+", SuperscriptBox["z", "2"]}], ",", RowBox[{ RowBox[{"{", RowBox[{"x", ",", "y", ",", "z"}], "}"}], "\[Element]", "p"}]}], "]"}], RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}]]], "Input", CellLabel-> "In[197]:=",ExpressionUUID->"8ef2d0fe-ba04-4e5e-8924-fd46e3d4ae6c"], Cell[BoxData["0.6537639418233445`"], "Output", CellLabel-> "Out[197]=",ExpressionUUID->"1f6e3279-356f-4294-a21f-fa663e0d1f2c"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"(", RowBox[{"i", "=", RowBox[{ FractionBox[ RowBox[{"Integrate", "[", RowBox[{ RowBox[{ SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"], "+", SuperscriptBox["z", "2"]}], ",", RowBox[{ RowBox[{"{", RowBox[{"x", ",", "y", ",", "z"}], "}"}], "\[Element]", "p"}]}], "]"}], "vol"], "//", "FullSimplify"}]}], ")"}], "//", "Timing"}]], "Input",ExpressionUUID->"b17546dc-7ac4-4ede-95a5-dbecdb2e2bc1"], Cell[BoxData[ RowBox[{"{", RowBox[{"0.103699`", ",", FractionBox[ RowBox[{"721", "+", RowBox[{"106", " ", SqrtBox["6"]}]}], "1500"]}], "}"}]], "Output", CellLabel-> "Out[200]=",ExpressionUUID->"46a965e2-8976-416d-b252-5c0da5f067d3"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"N", "[", "i", "]"}]], "Input", CellLabel-> "In[199]:=",ExpressionUUID->"21883ce9-22e8-4b70-8983-4eb3a5697e3f"], Cell[BoxData["0.6537639418233446`"], "Output", CellLabel-> "Out[199]=",ExpressionUUID->"e2502318-ee9e-4f16-a5f3-df2fbb37a4d1"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{"MeanSquareSphericalRadius", "[", "p", "]"}], "//", "FullSimplify"}], "//", "Timing"}]], "Input", CellLabel->"In[7]:=",ExpressionUUID->"be13d11f-2e33-4fec-8a4e-266818ab5bf9"], Cell[BoxData[ RowBox[{"{", RowBox[{"0.137898`", ",", FractionBox[ RowBox[{"721", "+", RowBox[{"106", " ", SqrtBox["6"]}]}], "1500"]}], "}"}]], "Output", CellLabel->"Out[7]=",ExpressionUUID->"ebf43022-2409-48dd-875c-cc2729d1d4ed"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Midsphere", "Subsection",ExpressionUUID->"652c37fb-883a-4082-a698-a08b5c1658ca"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}]], "Input", CellLabel-> "In[202]:=",ExpressionUUID->"90fa6ac7-edff-41be-b93c-f08362f982fe"], Cell[BoxData[ RowBox[{"Missing", "[", "\<\"NotApplicable\"\>", "]"}]], "Output", CellLabel-> "Out[202]=",ExpressionUUID->"d9e6960b-0107-4b2d-b6bf-45d984bd396a"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Midsphere", "[", "p", "]"}]], "Input", CellLabel-> "In[203]:=",ExpressionUUID->"9bcbabc2-32cf-4e72-9997-d2082a6eefa2"], Cell[BoxData[ RowBox[{"{", "}"}]], "Output", CellLabel-> "Out[203]=",ExpressionUUID->"58e968ba-cbb5-4311-8dff-7cb7afa7675d"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["SurfaceArea", "Subsection",ExpressionUUID->"63b1fafb-eb5a-4972-93f6-95c1268a3bfd"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}]], "Input", CellLabel-> "In[204]:=",ExpressionUUID->"7dca263e-69f0-4f36-8434-1a17b71b60f3"], Cell[BoxData[ RowBox[{"3", "+", SqrtBox["3"]}]], "Output", CellLabel-> "Out[204]=",ExpressionUUID->"903f1a9d-6deb-498f-a816-6a2e87782ec4"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"SurfaceArea", "[", "p", "]"}]], "Input", CellLabel-> "In[206]:=",ExpressionUUID->"b72b8970-75b5-43b6-adab-313230b5e139"], Cell[BoxData[ RowBox[{"3", "+", SqrtBox["3"]}]], "Output", CellLabel-> "Out[206]=",ExpressionUUID->"6bae3fa0-7b6f-472c-91fe-9d16c73e19ff"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"Total", "[", RowBox[{"Area", "/@", RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}]}], "]"}], "//", "FullSimplify"}]], "Input", CellLabel-> "In[208]:=",ExpressionUUID->"42632bc5-f81f-4dde-a8a3-d773bb8490c7"], Cell[BoxData[ RowBox[{"3", "+", SqrtBox["3"]}]], "Output", CellLabel-> "Out[208]=",ExpressionUUID->"44b2d513-aba9-40fa-ba06-0b307591eaff"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["VertexSubsetHulls", "Subsection",ExpressionUUID->"48fea836-0d6d-4b21-91b2-240606a842ea"], Cell[CellGroupData[{ Cell["Platonic", "Subsubsection",ExpressionUUID->"d0996749-5ae4-4671-8f70-b3277ad1415c"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"(", RowBox[{"h", "=", RowBox[{"VertexSubsetHulls", "[", RowBox[{"p", ",", "\"\\"", ",", RowBox[{"\"\\"", "\[Rule]", RowBox[{"{", "}"}]}]}], "]"}]}], ")"}], "//", "Timing"}]], "Input", CellLabel-> "In[209]:=",ExpressionUUID->"a7fbf87a-98b9-4e63-84de-37c672c5201d"], Cell[CellGroupData[{ Cell[BoxData["\<\"Finding equilateral triangles...\"\>"], "Print", CellLabel-> "During evaluation of \ In[209]:=",ExpressionUUID->"4a5eb1f1-6674-4429-8d49-5919fadabb83"], Cell[BoxData["\<\"Finding potential tetrahedra from equilateral \ triangles...\"\>"], "Print", CellLabel-> "During evaluation of \ In[209]:=",ExpressionUUID->"b22ec49b-01b4-421b-95d8-0ed7833ac764"], Cell[BoxData["\<\"Finding tetrahedra from potential candidates...\"\>"], \ "Print", CellLabel-> "During evaluation of \ In[209]:=",ExpressionUUID->"aaf83206-d833-447e-815e-d1d6de6930e5"], Cell[BoxData["\<\"Finding cubes from tetrahedra...\"\>"], "Print", CellLabel-> "During evaluation of \ In[209]:=",ExpressionUUID->"7bc954b2-3562-4de2-8240-e6bda0d47e8f"], Cell[BoxData["\<\"Finding dodecahedron from cubes...\"\>"], "Print", CellLabel-> "During evaluation of \ In[209]:=",ExpressionUUID->"cb1c7653-2b2e-4b02-ba1f-a6d7b1401eaa"], Cell[BoxData["\<\"Finding octahedra by building up from equilateral \ triangles...\"\>"], "Print", CellLabel-> "During evaluation of \ In[209]:=",ExpressionUUID->"704b8077-54ac-4a51-82d8-9bec24cee55b"], Cell[BoxData["\<\"Finding dodecahedra from octahedra...\"\>"], "Print", CellLabel-> "During evaluation of \ In[209]:=",ExpressionUUID->"05730684-984c-45f4-b4e2-011e19d84303"], Cell[BoxData["\<\"Finding icosahedra by building up from equilateral \ triangles...\"\>"], "Print", CellLabel-> "During evaluation of \ In[209]:=",ExpressionUUID->"b0ab6de8-eb25-4bfc-8e1f-5f30a79aff56"] }, Open ]], Cell[BoxData[ RowBox[{"{", RowBox[{"0.006014`", ",", RowBox[{"{", RowBox[{"\<\"Tetrahedron\"\>", "\[Rule]", RowBox[{"{", RowBox[{"{", RowBox[{"1", ",", "3", ",", "5", ",", "7"}], "}"}], "}"}]}], "}"}]}], "}"}]], "Output", CellLabel-> "Out[209]=",ExpressionUUID->"77311c64-faef-4b11-a763-ffc0c6234fd1"] }, Open ]] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Volume", "Subsection",ExpressionUUID->"0d9f456a-0d5c-4f96-8906-7242a7a059a7"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}]], "Input", CellLabel-> "In[210]:=",ExpressionUUID->"b4d88419-0040-4a75-9cd4-c4a61e965e60"], Cell[BoxData[ RowBox[{ FractionBox["1", "12"], " ", RowBox[{"(", RowBox[{ SqrtBox["2"], "+", RowBox[{"3", " ", SqrtBox["3"]}]}], ")"}]}]], "Output", CellLabel-> "Out[210]=",ExpressionUUID->"3e36c7f1-4c1d-49dc-b93a-0f8ae9a3c896"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"Volume", "[", "p", "]"}], "//", "FullSimplify"}]], "Input", CellLabel-> "In[211]:=",ExpressionUUID->"a0239d19-e99c-4280-96bb-6c53d35daa22"], Cell[BoxData[ RowBox[{ FractionBox["1", "12"], " ", RowBox[{"(", RowBox[{ SqrtBox["2"], "+", RowBox[{"3", " ", SqrtBox["3"]}]}], ")"}]}]], "Output", CellLabel-> "Out[211]=",ExpressionUUID->"32dd02be-713b-43fc-b5ab-7a85d0aa73a4"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"PolyhedronVolume", "[", RowBox[{"p", ",", RowBox[{"Method", "\[Rule]", "\"\\""}]}], "]"}], "//", "FullSimplify"}]], "Input", CellLabel-> "In[212]:=",ExpressionUUID->"e2c3bdbf-88dd-419f-a51f-3939c4305933"], Cell[BoxData[ RowBox[{ FractionBox["1", "12"], " ", RowBox[{"(", RowBox[{ SqrtBox["2"], "+", RowBox[{"3", " ", SqrtBox["3"]}]}], ")"}]}]], "Output", CellLabel-> "Out[212]=",ExpressionUUID->"25f321e1-22fc-409e-891d-7677b8c1b4a8"] }, Open ]] }, Closed]] }, Open ]], Cell[CellGroupData[{ Cell["Perspective projections", "Section",ExpressionUUID->"bb1395a2-ec3d-4f1a-ad4a-c4d305685331"], Cell[BoxData[ RowBox[{"Manipulate", "[", RowBox[{ RowBox[{"PolyhedronProjectionGraph", "[", RowBox[{ RowBox[{"PolyhedronData", "[", RowBox[{ "\"\\"", ",", "\"\\""}], "]"}], ",", RowBox[{"{", RowBox[{"a", ",", "b", ",", "c"}], "}"}]}], "]"}], ",", RowBox[{"{", RowBox[{"a", ",", RowBox[{"-", "1"}], ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{"b", ",", RowBox[{"-", "1"}], ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{"c", ",", RowBox[{"-", "1"}], ",", "1"}], "}"}]}], "]"}]], "Input",ExpressionUUID->\ "ed5a90ad-4a8e-44e0-90fb-69c0c7b94077"], Cell[CellGroupData[{ Cell["XXX", "Subsection",ExpressionUUID->"1a393170-cbdd-40e8-bdf9-406bbbd5024d"], Cell[BoxData[ RowBox[{"PolyhedronProjectionGraph", "[", RowBox[{ RowBox[{"PolyhedronData", "[", RowBox[{"\"\\"", ",", "\"\\""}], "]"}], ","}], "]"}]], "Input",ExpressionUUID->"1eead764-2578-4aeb-8575-\ bcbff80e8309"] }, Open ]] }, Open ]] }, Open ]] }, InitializationCellEvaluation->Automatic, WindowSize->{869, 716}, WindowMargins->{{90, Automatic}, {Automatic, 53}}, FrontEndVersion->"13.2 for Mac OS X ARM (64-bit) (September 28, 2022)", StyleDefinitions->"Default.nb", ExpressionUUID->"589de72d-0cef-4d97-98cd-24821ef2254c" ] (* End of Notebook Content *) (* Internal cache information *) (*CellTagsOutline CellTagsIndex->{} *) (*CellTagsIndex CellTagsIndex->{} *) (*NotebookFileOutline Notebook[{ Cell[CellGroupData[{ Cell[580, 22, 100, 0, 98, "Title",ExpressionUUID->"b83a0b4b-6670-4c18-9113-6056bc7dedde"], Cell[CellGroupData[{ Cell[705, 26, 83, 0, 54, "Subsection",ExpressionUUID->"df43b363-6c76-4d43-9f48-06e9084602e6"], Cell[791, 28, 112, 3, 58, "Text",ExpressionUUID->"2503fb3e-da7c-4d5b-b9b2-633e5d2f9cd1"], Cell[906, 33, 360, 9, 58, "Text",ExpressionUUID->"1f29cd08-8a9b-4aae-aa1b-d7af717f479f"], Cell[1269, 44, 387, 11, 35, "Text",ExpressionUUID->"159b673d-c771-44dd-95bc-a5bfcd9f43c3"], Cell[1659, 57, 154, 2, 35, "Text",ExpressionUUID->"0053175e-5821-48c9-b8d5-268cfa6dacc8"] }, Open ]], Cell[CellGroupData[{ Cell[1850, 64, 79, 0, 67, "Section",ExpressionUUID->"1247822e-5b0a-433f-9b29-d396bdcaa85f"], Cell[CellGroupData[{ Cell[1954, 68, 228, 5, 30, "Input",ExpressionUUID->"eb281f6c-d8c4-4d33-8d34-cbe7b8d70802"], Cell[2185, 75, 142, 3, 34, "Output",ExpressionUUID->"3c426287-501d-4f68-bfc3-0b412a3b33dc"] }, Open ]], Cell[CellGroupData[{ Cell[2364, 83, 186, 4, 30, "Input",ExpressionUUID->"fa7ae304-7f20-4743-83da-4526acaa8997"], Cell[2553, 89, 870, 16, 449, "Output",ExpressionUUID->"2d9c6440-52af-493e-b7b4-2e104b57a0f6"] }, Open ]], Cell[CellGroupData[{ Cell[3460, 110, 80, 0, 54, "Subsection",ExpressionUUID->"8279c2a7-d767-4d57-a5d0-f37c3c43d05e"], Cell[CellGroupData[{ Cell[3565, 114, 219, 5, 30, "Input",ExpressionUUID->"ebd939a2-fc1a-4e2a-8df2-c9e178898fe2"], Cell[3787, 121, 1195, 23, 346, "Output",ExpressionUUID->"4826b570-4755-4d48-9bd2-3e4e7058012c"] }, Open ]], Cell[CellGroupData[{ Cell[5019, 149, 247, 6, 30, "Input",ExpressionUUID->"5d2b55a3-71f4-45b4-bef5-3843b9ddb3ce"], Cell[5269, 157, 1249, 26, 346, "Output",ExpressionUUID->"59021604-b183-4ce3-8999-613a4c7beb7b"] }, Open ]], Cell[6533, 186, 303, 6, 52, "Input",ExpressionUUID->"e6cb4c30-b094-46f5-ac1d-4d50c933a9b4"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[6885, 198, 84, 0, 53, "Section",ExpressionUUID->"a7f1fd83-f10c-4383-bf49-48d5e68d7627"], Cell[6972, 200, 142, 2, 30, "Input",ExpressionUUID->"6243c8ec-2373-45be-872e-b94f38c0df8e"], Cell[CellGroupData[{ Cell[7139, 206, 276, 6, 30, "Input",ExpressionUUID->"159b602b-645e-48ac-9d88-ebbf567cae17"], Cell[7418, 214, 10237, 203, 61, "Output",ExpressionUUID->"a143fe7d-a5a0-4703-86bb-29de185620c0"] }, Open ]], Cell[CellGroupData[{ Cell[17692, 422, 235, 6, 44, "Input",ExpressionUUID->"c476d211-744c-4074-94bb-628fc9a0fbf4"], Cell[17930, 430, 275, 10, 63, "Output",ExpressionUUID->"1dc5da08-590d-4bde-9b8b-aa8e4f981d63"] }, Open ]], Cell[CellGroupData[{ Cell[18242, 445, 85, 0, 54, "Subsection",ExpressionUUID->"23071e18-9ec8-49cc-a04b-4237121c7e58"], Cell[CellGroupData[{ Cell[18352, 449, 192, 4, 30, "Input",ExpressionUUID->"4f8c044f-a2d9-4b05-977e-ac4ac62600a3"], Cell[18547, 455, 310, 10, 50, "Output",ExpressionUUID->"59437994-706d-4deb-8b87-2653b63dd72e"] }, Open ]], Cell[CellGroupData[{ Cell[18894, 470, 187, 5, 30, "Input",ExpressionUUID->"8c0bd1e5-e982-458e-80c8-ab19aa3ffdb0"], Cell[19084, 477, 310, 10, 50, "Output",ExpressionUUID->"5c110597-99c2-494c-8a6b-6eec2198be6f"] }, Open ]], Cell[CellGroupData[{ Cell[19431, 492, 154, 3, 30, "Input",ExpressionUUID->"68a280b0-4b32-410a-9120-549d1989a839"], Cell[19588, 497, 310, 10, 50, "Output",ExpressionUUID->"72f2bea9-ce63-4810-b722-2dc3d758e086"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[19947, 513, 89, 0, 38, "Subsection",ExpressionUUID->"127204a7-78ab-4a84-8a03-e69493a06319"], Cell[CellGroupData[{ Cell[20061, 517, 196, 4, 30, "Input",ExpressionUUID->"77012c8c-fe33-4b7f-9c5a-4eeff8139b1a"], Cell[20260, 523, 164, 3, 34, "Output",ExpressionUUID->"68606911-a56c-4a43-84da-e11136d70af5"] }, Open ]], Cell[CellGroupData[{ Cell[20461, 531, 148, 3, 30, "Input",ExpressionUUID->"0e9473e5-50bc-4df0-bc7f-a6348941c711"], Cell[20612, 536, 10179, 148, 49, "Message",ExpressionUUID->"2c76f7c2-6f32-4e00-8f8e-26260e6374b5"], Cell[30794, 686, 10765, 216, 61, "Output",ExpressionUUID->"f5dfb295-46b2-4f79-9854-92b5f1f51379"] }, Open ]], Cell[CellGroupData[{ Cell[41596, 907, 150, 3, 30, "Input",ExpressionUUID->"a9367c59-ba86-430f-80ce-0920872c3951"], Cell[41749, 912, 128, 3, 34, "Output",ExpressionUUID->"efdc1214-e769-4821-b7b2-d959b680ab3e"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[41926, 921, 91, 0, 38, "Subsection",ExpressionUUID->"4e59addc-6190-4338-aba0-f923c0945478"], Cell[CellGroupData[{ Cell[42042, 925, 230, 6, 30, "Input",ExpressionUUID->"eaed75d5-757f-43d8-a523-d32ea07b3290"], Cell[42275, 933, 596, 20, 58, "Output",ExpressionUUID->"ad8b15ed-e065-4de3-b6d4-c0daf89e1149"] }, Open ]], Cell[CellGroupData[{ Cell[42908, 958, 217, 6, 30, "Input",ExpressionUUID->"72d88485-92bc-43f7-9ddd-58a04dcc614d"], Cell[43128, 966, 596, 20, 58, "Output",ExpressionUUID->"0a18f031-6ff1-43fd-9027-0ca2f24a4e26"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[43773, 992, 88, 0, 38, "Subsection",ExpressionUUID->"34b41a70-f3de-4ed6-a601-65dc61807638"], Cell[CellGroupData[{ Cell[43886, 996, 195, 4, 30, "Input",ExpressionUUID->"c12005e0-5640-4d25-86d1-9bdeee9f6c8a"], Cell[44084, 1002, 133, 3, 34, "Output",ExpressionUUID->"d4118716-4ce9-4de3-a9e3-0ee6575f6726"] }, Open ]], Cell[CellGroupData[{ Cell[44254, 1010, 401, 11, 30, "Input",ExpressionUUID->"e02e26ab-ae0b-47b6-877f-a5b8a8af9b65"], Cell[44658, 1023, 133, 3, 34, "Output",ExpressionUUID->"c7bd9582-3ad8-4d82-85c3-e160148755f0"] }, Open ]] }, Closed]], Cell[44818, 1030, 82, 0, 38, "Subsection",ExpressionUUID->"682ce05c-ceaf-4226-ba36-f114876cbda7"], Cell[CellGroupData[{ Cell[44925, 1034, 96, 0, 38, "Subsection",ExpressionUUID->"251ba3de-7d56-47e9-8148-c912e1d6d7cc"], Cell[CellGroupData[{ Cell[45046, 1038, 203, 4, 30, "Input",ExpressionUUID->"439346ca-46ce-40ad-862e-d62f37fcbbc9"], Cell[45252, 1044, 231, 8, 54, "Output",ExpressionUUID->"6b2876d4-46c1-4135-b20b-e2beb77d44e3"] }, Open ]], Cell[CellGroupData[{ Cell[45520, 1057, 193, 5, 30, "Input",ExpressionUUID->"8b10adaf-30bd-4f6b-b645-805cb63132d1"], Cell[45716, 1064, 231, 8, 54, "Output",ExpressionUUID->"5502bfb1-fdbb-4cae-982f-18fd73d1ad5b"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[45996, 1078, 85, 0, 38, "Subsection",ExpressionUUID->"085df129-cd25-4b7c-8e95-84f032f3d1a9"], Cell[CellGroupData[{ Cell[46106, 1082, 192, 4, 30, "Input",ExpressionUUID->"b5bf2097-94af-4a63-9188-5672d9b45dae"], Cell[46301, 1088, 164, 3, 34, "Output",ExpressionUUID->"c6a0846d-61ee-47e2-88d7-9be54494fc7c"] }, Open ]], Cell[CellGroupData[{ Cell[46502, 1096, 144, 3, 30, "Input",ExpressionUUID->"74fc9162-d402-4666-8620-ba68f8404146"], Cell[46649, 1101, 10171, 148, 49, "Message",ExpressionUUID->"a22b9453-8610-450b-a614-2305f200b215"], Cell[56823, 1251, 10761, 216, 61, "Output",ExpressionUUID->"74526d21-a99a-4db0-8706-b2d6693895ea"] }, Open ]], Cell[CellGroupData[{ Cell[67621, 1472, 146, 3, 30, "Input",ExpressionUUID->"ab55edd5-5fa3-4558-9057-00adf8684292"], Cell[67770, 1477, 128, 3, 34, "Output",ExpressionUUID->"60d90fab-47c3-4a48-9126-8c6d5919ad21"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[67947, 1486, 90, 0, 38, "Subsection",ExpressionUUID->"537e0b8b-ce29-4a76-bb9e-dc7bfddc5666"], Cell[CellGroupData[{ Cell[68062, 1490, 197, 4, 30, "Input",ExpressionUUID->"a4471f11-764f-4186-94b7-bba37ff69416"], Cell[68262, 1496, 710, 24, 58, "Output",ExpressionUUID->"49e12fb2-f96c-4c91-9b83-e6d50011822e"] }, Open ]], Cell[CellGroupData[{ Cell[69009, 1525, 366, 11, 51, "Input",ExpressionUUID->"c813954c-ebca-4daa-937d-fa520c3e026f"], Cell[69378, 1538, 807, 26, 58, "Output",ExpressionUUID->"080a49bc-8a3e-4c44-a53d-e3a0ef3c12b9"] }, Open ]], Cell[CellGroupData[{ Cell[70222, 1569, 191, 5, 30, "Input",ExpressionUUID->"80ad87e9-e68f-4b9e-9b59-d15e1a3b8010"], Cell[70416, 1576, 807, 26, 58, "Output",ExpressionUUID->"e27d014b-6294-493a-ae07-c3da0138ad8c"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[71272, 1608, 98, 0, 38, "Subsection",ExpressionUUID->"61da4e9d-30b6-4caf-a838-47a746cf0ef4"], Cell[CellGroupData[{ Cell[71395, 1612, 200, 3, 30, "Input",ExpressionUUID->"5cfa1736-0be0-4638-9506-f9442f4a1f29"], Cell[71598, 1617, 660, 24, 56, "Output",ExpressionUUID->"8f28f6d2-8e08-4069-b785-3593b3a61cdd"] }, Open ]], Cell[CellGroupData[{ Cell[72295, 1646, 132, 2, 30, "Input",ExpressionUUID->"46cd4039-6173-469f-a17b-9e1e5a527688"], Cell[72430, 1650, 124, 1, 34, "Output",ExpressionUUID->"0f3add32-45e5-450c-950d-7bb817debe02"] }, Open ]], Cell[CellGroupData[{ Cell[72591, 1656, 105, 0, 45, "Subsubsection",ExpressionUUID->"b78c4201-9bd1-49b1-b568-3c4bd56f9804"], Cell[CellGroupData[{ Cell[72721, 1660, 361, 11, 59, "Input",ExpressionUUID->"b157896b-5500-4f78-a4a9-7eca118910d3"], Cell[73085, 1673, 444, 10, 46, "Message",ExpressionUUID->"4738aeb0-ad7e-406d-b5c2-135185f15a4b"], Cell[73532, 1685, 129, 2, 34, "Output",ExpressionUUID->"a91c6664-7ac2-46f9-a124-1147a3df92f2"] }, Open ]], Cell[73676, 1690, 471, 15, 70, "Input",ExpressionUUID->"1eaf88c5-ea13-45e6-a226-23710bc1a6b5"], Cell[74150, 1707, 109, 1, 30, "Input",ExpressionUUID->"6ecdcfbe-90a1-4730-a16e-f3b26abaaff0"] }, Closed]], Cell[CellGroupData[{ Cell[74296, 1713, 101, 0, 37, "Subsubsection",ExpressionUUID->"61a6a4e4-1b90-43fe-b36b-15b8345112d4"], Cell[CellGroupData[{ Cell[74422, 1717, 346, 10, 44, "Input",ExpressionUUID->"40c6e8da-ab70-4fed-9163-b5826a9e7399"], Cell[74771, 1729, 1425, 55, 71, "Output",ExpressionUUID->"e1a396c6-e46f-448a-bc6c-6c804b2ec047"] }, Open ]], Cell[CellGroupData[{ Cell[76233, 1789, 788, 23, 70, "Input",ExpressionUUID->"a64f7007-1999-4bb6-a182-2a6f93a40b03"], Cell[77024, 1814, 1690, 57, 151, "Output",ExpressionUUID->"8af82a31-7e7a-402a-8a9f-e8ac941755df"] }, Open ]], Cell[CellGroupData[{ Cell[78751, 1876, 319, 10, 38, "Input",ExpressionUUID->"b800a91e-36af-40ee-b347-c2a3d698972a"], Cell[79073, 1888, 123, 1, 34, "Output",ExpressionUUID->"3ce4e589-9abf-4b4d-9b94-04e6497da812"] }, Open ]], Cell[CellGroupData[{ Cell[79233, 1894, 270, 9, 38, "Input",ExpressionUUID->"97ec1fdf-597d-4837-9ae9-bca1c79c1557"], Cell[79506, 1905, 124, 1, 34, "Output",ExpressionUUID->"803c07f1-4683-4846-8ec6-ea85ef3c6a2c"] }, Open ]], Cell[CellGroupData[{ Cell[79667, 1911, 292, 9, 38, "Input",ExpressionUUID->"18b0976b-b0e2-402a-93b2-3fa913c51773"], Cell[79962, 1922, 124, 1, 34, "Output",ExpressionUUID->"25e27c36-75ce-429b-ae56-3ce2f2584fea"] }, Open ]], Cell[CellGroupData[{ Cell[80123, 1928, 374, 13, 82, "Input",ExpressionUUID->"ec72e3f4-457c-49b0-b082-bcdcba105e21"], Cell[80500, 1943, 126, 3, 48, "Output",ExpressionUUID->"3aa5de14-6277-4e91-8113-b17441813281"] }, Open ]], Cell[CellGroupData[{ Cell[80663, 1951, 263, 9, 53, "Input",ExpressionUUID->"8ebf1025-40fe-429f-99b7-5a01114f3e61"], Cell[80929, 1962, 186, 6, 49, "Output",ExpressionUUID->"ec532311-fc2b-428a-9816-c9a3099d65ce"] }, Open ]], Cell[CellGroupData[{ Cell[81152, 1973, 991, 32, 80, "Input",ExpressionUUID->"566d2d20-7be0-4929-83b0-a7b16fd62bf1"], Cell[82146, 2007, 143, 4, 48, "Output",ExpressionUUID->"fe711f72-4716-48c2-b445-681472d06f6b"] }, Open ]], Cell[CellGroupData[{ Cell[82326, 2016, 1669, 59, 154, "Input",ExpressionUUID->"3e44037c-67d4-4f58-8ced-3a4258f9b7c9"], Cell[83998, 2077, 1639, 60, 98, "Output",ExpressionUUID->"ffbaa3c9-e28d-4aaa-989a-e1bf025e1d37"] }, Open ]], Cell[CellGroupData[{ Cell[85674, 2142, 152, 4, 44, "Input",ExpressionUUID->"d0dda3a2-3130-4d86-82a8-52b0e26ba910"], Cell[85829, 2148, 144, 3, 48, "Output",ExpressionUUID->"b9e434ad-b818-4754-ae6f-60a4837f56b7"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[86022, 2157, 98, 0, 37, "Subsubsection",ExpressionUUID->"b5a7b7d6-be73-4c08-8b28-b55cb52a371a"], Cell[CellGroupData[{ Cell[86145, 2161, 325, 10, 44, "Input",ExpressionUUID->"01553d41-fb1c-4732-b357-8ab6a76c59c0"], Cell[CellGroupData[{ Cell[86495, 2175, 1106, 33, 45, "Print",ExpressionUUID->"e558a588-d1be-4551-b128-89357a8ef1bc"], Cell[87604, 2210, 2039, 61, 63, "Print",ExpressionUUID->"97a15f3c-cca2-4d95-bdb4-27192564728e"], Cell[89646, 2273, 828, 24, 48, "Print",ExpressionUUID->"81bb9a97-9ad5-4dc3-89aa-a55143e1dca8"], Cell[90477, 2299, 343, 8, 24, "Print",ExpressionUUID->"74a67a3d-918b-4fc0-9f90-8e04fba6a4cb"], Cell[90823, 2309, 994, 30, 45, "Print",ExpressionUUID->"09ce22d3-0394-4dc6-9486-f23efa589805"], Cell[91820, 2341, 2135, 63, 63, "Print",ExpressionUUID->"b7e7139b-6cc6-47a0-9ed7-f7329dedfb7f"], Cell[93958, 2406, 832, 24, 48, "Print",ExpressionUUID->"e1fceb0c-6f28-4873-9ab7-c78a4d7d2cc3"], Cell[94793, 2432, 347, 8, 24, "Print",ExpressionUUID->"db93a359-e53a-4134-afd3-54922af32ae7"], Cell[95143, 2442, 967, 29, 45, "Print",ExpressionUUID->"bdc194d1-974a-48a6-b759-4f423961ceea"], Cell[96113, 2473, 2142, 62, 67, "Print",ExpressionUUID->"1a143160-e7d0-4b18-8ded-54fa97ef650e"], Cell[98258, 2537, 832, 24, 48, "Print",ExpressionUUID->"2bdcfa94-af17-43bd-9e1f-4bb196f6a3b1"], Cell[99093, 2563, 347, 8, 24, "Print",ExpressionUUID->"cd884753-fbe6-4a0b-8261-348fe26cf904"], Cell[99443, 2573, 1138, 35, 45, "Print",ExpressionUUID->"aceba3c2-99dc-4b71-8c93-da9ce6edafa9"], Cell[100584, 2610, 1765, 53, 45, "Print",ExpressionUUID->"a09ac02b-400c-4641-9236-74441506b1ab"], Cell[102352, 2665, 711, 20, 40, "Print",ExpressionUUID->"09aa0c44-5ace-444a-a230-f06c978ac5b5"], Cell[103066, 2687, 347, 8, 24, "Print",ExpressionUUID->"1c1df0bd-d960-42f5-91ef-5d4112802fed"], Cell[103416, 2697, 1113, 34, 45, "Print",ExpressionUUID->"586a1ee6-8084-44e2-82bf-4c98c7de4d72"], Cell[104532, 2733, 1283, 38, 50, "Print",ExpressionUUID->"d34aba86-cd47-4f89-8b51-3f66c013299c"], Cell[105818, 2773, 794, 23, 39, "Print",ExpressionUUID->"37e31840-6892-4d19-8d12-754b2a92ffb1"], Cell[106615, 2798, 347, 8, 24, "Print",ExpressionUUID->"326c5efc-27ba-4754-be96-530494ca29ed"], Cell[106965, 2808, 884, 27, 45, "Print",ExpressionUUID->"36de9626-a972-47cd-a0f4-7af9b122beb9"], Cell[107852, 2837, 2170, 60, 99, "Print",ExpressionUUID->"d7919474-f649-487a-8cc7-bba6f5640ee3"], Cell[110025, 2899, 936, 27, 44, "Print",ExpressionUUID->"d7a36f94-e696-4d2a-9e6d-86d10d79ab75"], Cell[110964, 2928, 347, 8, 24, "Print",ExpressionUUID->"e961e605-7460-4792-bde8-def1fd232bd6"], Cell[111314, 2938, 1026, 32, 45, "Print",ExpressionUUID->"4807b279-6e45-40cd-9416-2e9a3d2ddf65"], Cell[112343, 2972, 2190, 61, 99, "Print",ExpressionUUID->"7a90d4e3-f21c-41be-9db8-89bcdb507635"], Cell[114536, 3035, 886, 24, 49, "Print",ExpressionUUID->"594a6dcf-d251-4e78-807b-9eb6859a819d"], Cell[115425, 3061, 347, 8, 24, "Print",ExpressionUUID->"021c7141-67d6-4bab-85c5-41cb0e76b26d"], Cell[115775, 3071, 974, 30, 45, "Print",ExpressionUUID->"8d6e49cb-fc35-4d04-8fe8-52c058564a8d"], Cell[116752, 3103, 2248, 63, 99, "Print",ExpressionUUID->"a840ffc2-9134-44ed-8b54-8d01846790a4"], Cell[119003, 3168, 886, 24, 49, "Print",ExpressionUUID->"d1fdbd88-a74b-4e95-bc83-c4bdda510349"], Cell[119892, 3194, 347, 8, 24, "Print",ExpressionUUID->"7c0d97d8-973f-440c-9cc3-21f821727e31"], Cell[120242, 3204, 857, 26, 45, "Print",ExpressionUUID->"3fe7cb65-484e-479f-a0c6-55419d1ed6b9"], Cell[121102, 3232, 1388, 41, 50, "Print",ExpressionUUID->"91fd5481-6f9d-48ff-a10a-bc87a20c3c57"], Cell[122493, 3275, 792, 22, 44, "Print",ExpressionUUID->"899e7e42-4389-43f0-a23c-1e86ac4fbed5"], Cell[123288, 3299, 347, 8, 24, "Print",ExpressionUUID->"594ed01d-6893-4ee1-961d-81fffb01c125"], Cell[123638, 3309, 999, 31, 45, "Print",ExpressionUUID->"9f115400-e1f2-4144-af8e-aeb3fa0cf53c"], Cell[124640, 3342, 371, 8, 24, "Print",ExpressionUUID->"9ae73e4e-7061-48f9-bf74-d19e0d133ce1"], Cell[125014, 3352, 343, 8, 24, "Print",ExpressionUUID->"65d3d19c-14cf-424d-b441-5dcdc4c669a1"] }, Open ]], Cell[125372, 3363, 3232, 100, 284, "Output",ExpressionUUID->"e5654e16-bb37-4888-bfed-941f56a816a3"] }, Closed]], Cell[CellGroupData[{ Cell[128641, 3468, 158, 4, 40, "Input",ExpressionUUID->"f6268216-1129-41a8-aa73-b8cf90b56e70"], Cell[128802, 3474, 148, 3, 48, "Output",ExpressionUUID->"fa6b7714-7345-47dc-8610-07ca837f7960"] }, Open ]], Cell[CellGroupData[{ Cell[128987, 3482, 169, 4, 44, "Input",ExpressionUUID->"d0573f61-9a32-40e3-b77d-3b72b4383ba7"], Cell[129159, 3488, 953, 34, 98, "Output",ExpressionUUID->"b5a7c2be-c569-4a22-9dbf-9a2e5f0409ab"] }, Open ]], Cell[CellGroupData[{ Cell[130149, 3527, 164, 4, 44, "Input",ExpressionUUID->"707d6120-8118-489c-8993-fb52b9213b6b"], Cell[130316, 3533, 1140, 42, 98, "Output",ExpressionUUID->"e01e46d9-8945-4890-8bff-c8b58dc87495"] }, Open ]], Cell[CellGroupData[{ Cell[131493, 3580, 1001, 32, 80, "Input",ExpressionUUID->"3abc8f6c-9073-467d-b8df-690d3ac9c524"], Cell[132497, 3614, 867, 29, 76, "Output",ExpressionUUID->"eae5fabb-26ca-4005-b37b-2a347f60018a"] }, Open ]], Cell[CellGroupData[{ Cell[133401, 3648, 1003, 32, 80, "Input",ExpressionUUID->"76e66176-ef99-46fe-9e98-2c75cfee49a6"], Cell[134407, 3682, 676, 22, 52, "Output",ExpressionUUID->"fec58fc2-bd56-46ac-be48-890a5a6b4bd9"] }, Open ]], Cell[CellGroupData[{ Cell[135120, 3709, 994, 32, 80, "Input",ExpressionUUID->"7387248d-39a4-4468-b998-bc9902eee51a"], Cell[136117, 3743, 666, 23, 52, "Output",ExpressionUUID->"b6b255e6-5351-4a72-8d4f-c39d50419716"] }, Open ]], Cell[CellGroupData[{ Cell[136820, 3771, 1206, 43, 228, "Input",ExpressionUUID->"6814b3cd-3186-4fdb-849c-b3dbc50f3605"], Cell[138029, 3816, 149, 3, 48, "Output",ExpressionUUID->"31b1f47b-2558-4070-b501-910546567442"] }, Open ]], Cell[CellGroupData[{ Cell[138215, 3824, 1144, 41, 228, "Input",ExpressionUUID->"4483d06d-87de-41ee-a961-c3315488ae1b"], Cell[139362, 3867, 150, 3, 48, "Output",ExpressionUUID->"f5a877f0-5919-4610-84ab-00918f7a2c15"] }, Open ]], Cell[CellGroupData[{ Cell[139549, 3875, 1119, 40, 228, "Input",ExpressionUUID->"27904df8-934a-4fd0-8cf0-06093ab2b416"], Cell[140671, 3917, 150, 3, 48, "Output",ExpressionUUID->"f3c5d28c-fb90-43a1-a660-867830417a22"] }, Open ]], Cell[CellGroupData[{ Cell[140858, 3925, 1130, 40, 228, "Input",ExpressionUUID->"edef1146-6b38-49fe-ad2a-dc16887f24de"], Cell[141991, 3967, 721, 27, 77, "Output",ExpressionUUID->"7a96abb7-f679-406c-9a7c-82ae40bac813"] }, Open ]], Cell[CellGroupData[{ Cell[142749, 3999, 195, 5, 44, "Input",ExpressionUUID->"ac73c5f5-5a3e-4bdc-901d-e0f58749ad98"], Cell[142947, 4006, 196, 6, 51, "Output",ExpressionUUID->"1df4924d-ac6b-4ea6-9930-619115907aec"] }, Open ]], Cell[CellGroupData[{ Cell[143180, 4017, 759, 29, 68, "Input",ExpressionUUID->"a6d1ba1d-9583-4783-8505-af6098b5659a"], Cell[143942, 4048, 150, 3, 48, "Output",ExpressionUUID->"63c27f5b-07a7-48c6-81ae-a558804e50c1"] }, Open ]], Cell[CellGroupData[{ Cell[144129, 4056, 2825, 92, 290, "Input",ExpressionUUID->"e870542f-29c4-40c4-ab92-a0cec952f4ef"], Cell[146957, 4150, 3306, 49, 126, "Message",ExpressionUUID->"b828997f-0d20-48bd-a941-ca4bdccf2a32"], Cell[150266, 4201, 151, 3, 48, "Output",ExpressionUUID->"bc762a04-4232-4a51-bf17-cb7911b3c6a7"] }, Open ]], Cell[CellGroupData[{ Cell[150454, 4209, 348, 13, 58, "Input",ExpressionUUID->"aa793936-4f9d-4e80-abe5-78c1c3d38fdb"], Cell[150805, 4224, 132, 3, 48, "Output",ExpressionUUID->"a6144241-ffbe-4885-985d-d08cc43f03e1"] }, Open ]], Cell[CellGroupData[{ Cell[150974, 4232, 892, 33, 88, "Input",ExpressionUUID->"234f6ec9-fafe-4fd2-854c-8aedabc0a7f7"], Cell[151869, 4267, 150, 3, 48, "Output",ExpressionUUID->"1b0a54ae-9ff5-43be-9524-eb8a2e5b3fa0"] }, Open ]], Cell[CellGroupData[{ Cell[152056, 4275, 836, 32, 75, "Input",ExpressionUUID->"89311c3a-e5a8-476b-81b9-7d3caebfaf79"], Cell[152895, 4309, 850, 32, 72, "Output",ExpressionUUID->"a6009f80-0a05-496a-aff3-a7b71f4fb41a"] }, Open ]], Cell[CellGroupData[{ Cell[153782, 4346, 903, 33, 88, "Input",ExpressionUUID->"0fc56620-b9ef-44d7-be7d-d074b29e1cd9"], Cell[154688, 4381, 685, 26, 70, "Output",ExpressionUUID->"4f7d3ccf-fb57-4f02-a225-270f615feedd"] }, Open ]], Cell[CellGroupData[{ Cell[155410, 4412, 157, 4, 44, "Input",ExpressionUUID->"2012c3c6-2ba0-47de-b364-bd67ff8581c8"], Cell[155570, 4418, 149, 3, 48, "Output",ExpressionUUID->"7db7114c-08a1-4fb5-b18d-0346f368a49d"] }, Open ]] }, Closed]] }, Closed]], Cell[CellGroupData[{ Cell[155780, 4428, 130, 2, 38, "Subsection",ExpressionUUID->"f0639b37-12bd-409a-8a33-de9690dd27b7"], Cell[CellGroupData[{ Cell[155935, 4434, 199, 3, 30, "Input",ExpressionUUID->"61306949-c449-4c43-870b-bda5a27dea72"], Cell[156137, 4439, 159, 2, 34, "Output",ExpressionUUID->"e1f20df1-fa2d-4973-94e3-a7deddb0891a"] }, Open ]], Cell[CellGroupData[{ Cell[156333, 4446, 105, 0, 45, "Subsubsection",ExpressionUUID->"750fef7f-9e94-4499-9516-9ea679c71667"], Cell[CellGroupData[{ Cell[156463, 4450, 399, 12, 59, "Input",ExpressionUUID->"d395f455-107e-4322-a280-11676dbb3472"], Cell[156865, 4464, 129, 2, 34, "Output",ExpressionUUID->"f3ff9d48-42b8-4249-bc07-cfd28f5b7ea4"] }, Open ]], Cell[CellGroupData[{ Cell[157031, 4471, 557, 18, 84, "Input",ExpressionUUID->"6ac81459-89c0-4c7b-8eee-c8ef85efb752"], Cell[157591, 4491, 7569, 157, 128, "Output",ExpressionUUID->"efe080d7-8e63-466d-8602-dc08315c086f"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[165209, 4654, 98, 0, 45, "Subsubsection",ExpressionUUID->"11305ed9-efcf-4076-9620-654ebc69c653"], Cell[CellGroupData[{ Cell[165332, 4658, 323, 10, 44, "Input",ExpressionUUID->"3fbcf048-4ce7-4a54-bb38-60c772f1ef8f"], Cell[CellGroupData[{ Cell[165680, 4672, 1106, 33, 45, "Print",ExpressionUUID->"3b4054d2-24d4-4311-b75b-d33cbd893c77"], Cell[166789, 4707, 2944, 83, 117, "Print",ExpressionUUID->"74652ff3-6006-4da7-9978-d5f1511ca2c9"] }, Open ]], Cell[169748, 4793, 455, 10, 28, "Message",ExpressionUUID->"d821ce73-efc8-41eb-b230-6dda9137e94b"], Cell[CellGroupData[{ Cell[170228, 4807, 3407, 91, 176, "Print",ExpressionUUID->"733deedb-4a69-47ad-9c27-715bb51fb9b0"], Cell[173638, 4900, 347, 8, 24, "Print",ExpressionUUID->"0d141e69-7aac-423c-af9a-d07e95f35d7d"], Cell[173988, 4910, 994, 30, 45, "Print",ExpressionUUID->"4da09ef8-2b18-4196-9c76-c2eac3ee9f13"], Cell[174985, 4942, 3071, 85, 160, "Print",ExpressionUUID->"ac6e431a-9c3e-4fb4-8359-a72d5f1bc56e"] }, Open ]], Cell[178071, 5030, 455, 10, 28, "Message",ExpressionUUID->"2e948515-e1b9-4dae-b3da-be0f63a44bb5"], Cell[CellGroupData[{ Cell[178551, 5044, 3535, 93, 212, "Print",ExpressionUUID->"fc8559b3-d489-44d8-9624-f9a942d5bd40"], Cell[182089, 5139, 351, 8, 24, "Print",ExpressionUUID->"1f6b2cd4-1524-4b26-99e9-d26564ad878a"], Cell[182443, 5149, 967, 29, 45, "Print",ExpressionUUID->"71237ba1-f067-42c3-92c7-bcd8047a1316"], Cell[183413, 5180, 2937, 81, 121, "Print",ExpressionUUID->"c75b9920-fac5-4848-8f5b-c1eb7710c2e9"] }, Open ]] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[186411, 5268, 102, 0, 37, "Subsubsection",ExpressionUUID->"f3013242-3293-4cba-9ffa-b9afc43d0869"], Cell[CellGroupData[{ Cell[186538, 5272, 495, 15, 44, "Input",ExpressionUUID->"6df2f3f9-9261-4ce6-b61a-c72cdee8d065"], Cell[187036, 5289, 658, 25, 70, "Output",ExpressionUUID->"551423ee-f3e9-4858-bcfa-bec4c57e3d90"] }, Open ]], Cell[CellGroupData[{ Cell[187731, 5319, 308, 8, 44, "Input",ExpressionUUID->"0813684b-3215-4ca7-adc3-b5d746260697"], Cell[188042, 5329, 1430, 55, 71, "Output",ExpressionUUID->"325ce7d6-b450-42c6-9c1e-05d20c4183cc"] }, Open ]], Cell[CellGroupData[{ Cell[189509, 5389, 554, 18, 54, "Input",ExpressionUUID->"28de2966-8fb3-47e6-ba24-a6c62bde0d4a"], Cell[190066, 5409, 40616, 1050, 2193, "Output",ExpressionUUID->"7627d6be-fe78-4df7-9dfe-c65c9fa940d3"] }, Open ]], Cell[CellGroupData[{ Cell[230719, 6464, 353, 10, 64, "Input",ExpressionUUID->"4ff54d68-f201-4013-97dc-6de6df9267ae"], Cell[231075, 6476, 148, 3, 48, "Output",ExpressionUUID->"e4836537-5c5d-421d-b9ff-39dbd41b6624"] }, Open ]], Cell[231238, 6482, 452, 14, 65, "Input",ExpressionUUID->"472b4d59-c79a-4a57-8a5e-108e1837609b"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[231739, 6502, 104, 0, 38, "Subsection",ExpressionUUID->"30123a88-ef62-4b99-8324-cb82299d072c"], Cell[CellGroupData[{ Cell[231868, 6506, 210, 4, 30, "Input",ExpressionUUID->"a73f4293-e91b-4ee8-89f9-2967f501979d"], Cell[232081, 6512, 240, 7, 50, "Output",ExpressionUUID->"7b54d303-c8ce-4f9e-9bfd-523e1512fb19"] }, Open ]], Cell[CellGroupData[{ Cell[232358, 6524, 452, 14, 55, "Input",ExpressionUUID->"81936642-ac47-4e4b-b0d3-081f839d1e11"], Cell[232813, 6540, 129, 2, 34, "Output",ExpressionUUID->"696ee386-d934-45bc-97fd-e000143f5eb3"] }, Open ]], Cell[CellGroupData[{ Cell[232979, 6547, 618, 19, 58, "Input",ExpressionUUID->"4fcfe8ad-dcc7-406d-8009-c181b264e624"], Cell[233600, 6568, 309, 10, 50, "Output",ExpressionUUID->"c8953bce-a9d3-4321-9cb9-e5b581a71ddc"] }, Open ]], Cell[CellGroupData[{ Cell[233946, 6583, 137, 3, 30, "Input",ExpressionUUID->"01105a28-8f44-4675-a63f-8c2ada908141"], Cell[234086, 6588, 129, 2, 34, "Output",ExpressionUUID->"34efb75b-9502-419d-8468-ce0d224d4258"] }, Open ]], Cell[CellGroupData[{ Cell[234252, 6595, 227, 5, 30, "Input",ExpressionUUID->"6a7f6f0c-2946-4e98-8d60-8103d00e70a1"], Cell[234482, 6602, 304, 9, 50, "Output",ExpressionUUID->"b2beef0e-790a-43fd-aec0-dec835d4c01d"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[234835, 6617, 102, 0, 38, "Subsection",ExpressionUUID->"5a3610c8-9ba1-4a7d-82a9-e97e3a55f58e"], Cell[CellGroupData[{ Cell[234962, 6621, 207, 4, 30, "Input",ExpressionUUID->"af497dd6-cccf-4b74-8273-323b3c5f7cea"], Cell[235172, 6627, 195, 5, 54, "Output",ExpressionUUID->"e611bcff-7aad-4d61-b571-48468cab6b45"] }, Open ]], Cell[CellGroupData[{ Cell[235404, 6637, 489, 15, 55, "Input",ExpressionUUID->"8ef2d0fe-ba04-4e5e-8924-fd46e3d4ae6c"], Cell[235896, 6654, 129, 2, 34, "Output",ExpressionUUID->"1f6e3279-356f-4294-a21f-fa663e0d1f2c"] }, Open ]], Cell[CellGroupData[{ Cell[236062, 6661, 540, 16, 58, "Input",ExpressionUUID->"b17546dc-7ac4-4ede-95a5-dbecdb2e2bc1"], Cell[236605, 6679, 260, 8, 58, "Output",ExpressionUUID->"46a965e2-8976-416d-b252-5c0da5f067d3"] }, Open ]], Cell[CellGroupData[{ Cell[236902, 6692, 137, 3, 30, "Input",ExpressionUUID->"21883ce9-22e8-4b70-8983-4eb3a5697e3f"], Cell[237042, 6697, 129, 2, 34, "Output",ExpressionUUID->"e2502318-ee9e-4f16-a5f3-df2fbb37a4d1"] }, Open ]], Cell[CellGroupData[{ Cell[237208, 6704, 225, 5, 30, "Input",ExpressionUUID->"be13d11f-2e33-4fec-8a4e-266818ab5bf9"], Cell[237436, 6711, 255, 7, 58, "Output",ExpressionUUID->"ebf43022-2409-48dd-875c-cc2729d1d4ed"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[237740, 6724, 86, 0, 38, "Subsection",ExpressionUUID->"652c37fb-883a-4082-a698-a08b5c1658ca"], Cell[CellGroupData[{ Cell[237851, 6728, 193, 4, 30, "Input",ExpressionUUID->"90fa6ac7-edff-41be-b93c-f08362f982fe"], Cell[238047, 6734, 164, 3, 34, "Output",ExpressionUUID->"d9e6960b-0107-4b2d-b6bf-45d984bd396a"] }, Open ]], Cell[CellGroupData[{ Cell[238248, 6742, 145, 3, 30, "Input",ExpressionUUID->"9bcbabc2-32cf-4e72-9997-d2082a6eefa2"], Cell[238396, 6747, 128, 3, 34, "Output",ExpressionUUID->"58e968ba-cbb5-4311-8dff-7cb7afa7675d"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[238573, 6756, 88, 0, 38, "Subsection",ExpressionUUID->"63b1fafb-eb5a-4972-93f6-95c1268a3bfd"], Cell[CellGroupData[{ Cell[238686, 6760, 195, 4, 30, "Input",ExpressionUUID->"7dca263e-69f0-4f36-8434-1a17b71b60f3"], Cell[238884, 6766, 145, 4, 35, "Output",ExpressionUUID->"903f1a9d-6deb-498f-a816-6a2e87782ec4"] }, Open ]], Cell[CellGroupData[{ Cell[239066, 6775, 147, 3, 30, "Input",ExpressionUUID->"b72b8970-75b5-43b6-adab-313230b5e139"], Cell[239216, 6780, 145, 4, 35, "Output",ExpressionUUID->"6bae3fa0-7b6f-472c-91fe-9d16c73e19ff"] }, Open ]], Cell[CellGroupData[{ Cell[239398, 6789, 295, 8, 30, "Input",ExpressionUUID->"42632bc5-f81f-4dde-a8a3-d773bb8490c7"], Cell[239696, 6799, 145, 4, 35, "Output",ExpressionUUID->"44b2d513-aba9-40fa-ba06-0b307591eaff"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[239890, 6809, 94, 0, 38, "Subsection",ExpressionUUID->"48fea836-0d6d-4b21-91b2-240606a842ea"], Cell[CellGroupData[{ Cell[240009, 6813, 88, 0, 45, "Subsubsection",ExpressionUUID->"d0996749-5ae4-4671-8f70-b3277ad1415c"], Cell[CellGroupData[{ Cell[240122, 6817, 349, 9, 30, "Input",ExpressionUUID->"a7fbf87a-98b9-4e63-84de-37c672c5201d"], Cell[CellGroupData[{ Cell[240496, 6830, 172, 3, 24, "Print",ExpressionUUID->"4a5eb1f1-6674-4429-8d49-5919fadabb83"], Cell[240671, 6835, 200, 4, 24, "Print",ExpressionUUID->"b22ec49b-01b4-421b-95d8-0ed7833ac764"], Cell[240874, 6841, 189, 4, 24, "Print",ExpressionUUID->"aaf83206-d833-447e-815e-d1d6de6930e5"], Cell[241066, 6847, 172, 3, 24, "Print",ExpressionUUID->"7bc954b2-3562-4de2-8240-e6bda0d47e8f"], Cell[241241, 6852, 174, 3, 24, "Print",ExpressionUUID->"cb1c7653-2b2e-4b02-ba1f-a6d7b1401eaa"], Cell[241418, 6857, 204, 4, 24, "Print",ExpressionUUID->"704b8077-54ac-4a51-82d8-9bec24cee55b"], Cell[241625, 6863, 177, 3, 24, "Print",ExpressionUUID->"05730684-984c-45f4-b4e2-011e19d84303"], Cell[241805, 6868, 205, 4, 24, "Print",ExpressionUUID->"b0ab6de8-eb25-4bfc-8e1f-5f30a79aff56"] }, Open ]], Cell[242025, 6875, 341, 10, 34, "Output",ExpressionUUID->"77311c64-faef-4b11-a763-ffc0c6234fd1"] }, Open ]] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[242427, 6892, 83, 0, 38, "Subsection",ExpressionUUID->"0d9f456a-0d5c-4f96-8906-7242a7a059a7"], Cell[CellGroupData[{ Cell[242535, 6896, 190, 4, 30, "Input",ExpressionUUID->"b4d88419-0040-4a75-9cd4-c4a61e965e60"], Cell[242728, 6902, 256, 9, 49, "Output",ExpressionUUID->"3e36c7f1-4c1d-49dc-b93a-0f8ae9a3c896"] }, Open ]], Cell[CellGroupData[{ Cell[243021, 6916, 177, 4, 30, "Input",ExpressionUUID->"a0239d19-e99c-4280-96bb-6c53d35daa22"], Cell[243201, 6922, 256, 9, 49, "Output",ExpressionUUID->"32dd02be-713b-43fc-b5ab-7a85d0aa73a4"] }, Open ]], Cell[CellGroupData[{ Cell[243494, 6936, 265, 7, 30, "Input",ExpressionUUID->"e2c3bdbf-88dd-419f-a51f-3939c4305933"], Cell[243762, 6945, 256, 9, 49, "Output",ExpressionUUID->"25f321e1-22fc-409e-891d-7677b8c1b4a8"] }, Open ]] }, Closed]] }, Open ]], Cell[CellGroupData[{ Cell[244079, 6961, 97, 0, 67, "Section",ExpressionUUID->"bb1395a2-ec3d-4f1a-ad4a-c4d305685331"], Cell[244179, 6963, 679, 20, 52, "Input",ExpressionUUID->"ed5a90ad-4a8e-44e0-90fb-69c0c7b94077"], Cell[CellGroupData[{ Cell[244883, 6987, 80, 0, 54, "Subsection",ExpressionUUID->"1a393170-cbdd-40e8-bdf9-406bbbd5024d"], Cell[244966, 6989, 275, 6, 30, "Input",ExpressionUUID->"1eead764-2578-4aeb-8575-bcbff80e8309"] }, Open ]] }, Open ]] }, Open ]] } ] *)