(* Content-type: application/vnd.wolfram.mathematica *)
(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)
(* CreatedBy='Mathematica 11.1' *)
(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 158, 7]
NotebookDataLength[ 275483, 7517]
NotebookOptionsPosition[ 245281, 7000]
NotebookOutlinePosition[ 245720, 7017]
CellTagsIndexPosition[ 245677, 7014]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
Notebook[{
Cell[CellGroupData[{
Cell["Elongated Triangular Pyramid", "Title",ExpressionUUID->"b83a0b4b-6670-4c18-9113-6056bc7dedde"],
Cell[CellGroupData[{
Cell["Author", "Subsection",ExpressionUUID->"df43b363-6c76-4d43-9f48-06e9084602e6"],
Cell["\<\
Eric W. Weisstein
October 5, 2022\
\>", "Text",ExpressionUUID->"2503fb3e-da7c-4d5b-b9b2-633e5d2f9cd1"],
Cell[TextData[{
"This notebook downloaded from ",
ButtonBox["http://mathworld.wolfram.com/notebooks/Polyhedra/\
ElongatedTriangularPyramid.nb",
BaseStyle->"Hyperlink",
ButtonData:>{
URL["http://mathworld.wolfram.com/notebooks/Polyhedra/\
ElongatedTriangularPyramid.nb"], None}],
"."
}], "Text",ExpressionUUID->"1f29cd08-8a9b-4aae-aa1b-d7af717f479f"],
Cell[TextData[{
"For more information, see Eric's ",
StyleBox["MathWorld",
FontSlant->"Italic"],
" entry ",
ButtonBox["http://mathworld.wolfram.com/ElongatedTriangularPyramid.html",
BaseStyle->"Hyperlink",
ButtonData:>{
URL["http://mathworld.wolfram.com/ElongatedTriangularPyramid.html"],
None}],
"."
}], "Text",ExpressionUUID->"159b673d-c771-44dd-95bc-a5bfcd9f43c3"],
Cell["\<\
\[Copyright]2022 Wolfram Research, Inc. except for portions noted otherwise\
\>", "Text",ExpressionUUID->"0053175e-5821-48c9-b8d5-268cfa6dacc8"]
}, Open ]],
Cell[CellGroupData[{
Cell["Solid", "Section",ExpressionUUID->"1247822e-5b0a-433f-9b29-d396bdcaa85f"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"PolyhedronData", "[",
RowBox[{"\"\\"", ",", "\"\\""}],
"]"}]], "Input",
CellLabel->
"In[167]:=",ExpressionUUID->"eb281f6c-d8c4-4d33-8d34-cbe7b8d70802"],
Cell[BoxData[
RowBox[{"{", "\<\"C3\"\>", "}"}]], "Output",
CellLabel->
"Out[167]=",ExpressionUUID->"3c426287-501d-4f68-bfc3-0b412a3b33dc"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"PolyhedronData", "[", "\"\\"",
"]"}]], "Input",
CellLabel->
"In[169]:=",ExpressionUUID->"fa7ae304-7f20-4743-83da-4526acaa8997"],
Cell[BoxData[
Graphics3DBox[
GraphicsComplex3DBox[
NCache[{{0, 0, Rational[1, 3] (3 + 6^Rational[1, 2])}, {
Rational[-1, 2] 3^Rational[-1, 2], Rational[-1, 2], 0}, {
Rational[-1, 2] 3^Rational[-1, 2], Rational[-1, 2], 1}, {
Rational[-1, 2] 3^Rational[-1, 2], Rational[1, 2], 0}, {
Rational[-1, 2] 3^Rational[-1, 2], Rational[1, 2], 1}, {
3^Rational[-1, 2], 0, 0}, {3^Rational[-1, 2], 0, 1}}, {{
0, 0, 1.8164965809277258`}, {-0.2886751345948129, -0.5,
0}, {-0.2886751345948129, -0.5, 1}, {-0.2886751345948129, 0.5,
0}, {-0.2886751345948129, 0.5, 1}, {0.5773502691896258, 0, 0}, {
0.5773502691896258, 0, 1}}],
Polygon3DBox[{{5, 3, 1}, {3, 7, 1}, {7, 5, 1}, {4, 2, 3, 5}, {2, 6, 7,
3}, {6, 4, 5, 7}, {6, 2, 4}}]]]], "Output",
CellLabel->
"Out[169]=",ExpressionUUID->"2d9c6440-52af-493e-b7b4-2e104b57a0f6"]
}, Open ]],
Cell[CellGroupData[{
Cell["Net", "Subsection",ExpressionUUID->"8279c2a7-d767-4d57-a5d0-f37c3c43d05e"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"PolyhedronData", "[",
RowBox[{"\"\\"", ",", "\"\\""}],
"]"}]], "Input",
CellLabel->
"In[171]:=",ExpressionUUID->"ebd939a2-fc1a-4e2a-8df2-c9e178898fe2"],
Cell[BoxData[
GraphicsBox[
{RGBColor[1, 1, 0.85], EdgeForm[GrayLevel[0]],
GraphicsComplexBox[
NCache[{{0, Rational[1, 2] 3^Rational[1, 2]}, {
0, Rational[1, 2] (2 + 3^Rational[1, 2])}, {
Rational[1, 2], 1 + 3^Rational[1, 2]}, {
1, Rational[1, 2] 3^Rational[1, 2]}, {
1, Rational[1, 2] (2 + 3^Rational[1, 2])}, {Rational[3, 2], 0}, {
Rational[3, 2], 1 + 3^Rational[1, 2]}, {
2, Rational[1, 2] 3^Rational[1, 2]}, {
2, Rational[1, 2] (2 + 3^Rational[1, 2])}, {
Rational[5, 2], 1 + 3^Rational[1, 2]}, {
3, Rational[1, 2] 3^Rational[1, 2]}, {
3, Rational[1, 2] (2 + 3^Rational[1, 2])}}, {{0, 0.8660254037844386}, {
0, 1.8660254037844386`}, {0.5, 2.732050807568877}, {
1, 0.8660254037844386}, {1, 1.8660254037844386`}, {1.5, 0}, {1.5,
2.732050807568877}, {2, 0.8660254037844386}, {2, 1.8660254037844386`}, {
2.5, 2.732050807568877}, {3, 0.8660254037844386}, {
3, 1.8660254037844386`}}],
PolygonBox[{{4, 6, 8}, {2, 1, 4, 5}, {3, 2, 5}, {5, 4, 8, 9}, {7, 5, 9}, {
9, 8, 11, 12}, {10, 9, 12}}]]}]], "Output",
CellLabel->
"Out[171]=",ExpressionUUID->"4826b570-4755-4d48-9bd2-3e4e7058012c"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"PolyhedronData", "[",
RowBox[{
"\"\\"", ",", "\"\\"", ",",
"\"\\""}], "]"}]], "Input",
CellLabel->
"In[170]:=",ExpressionUUID->"5d2b55a3-71f4-45b4-bef5-3843b9ddb3ce"],
Cell[BoxData[
GraphicsBox[
{EdgeForm[GrayLevel[0]],
GraphicsComplexBox[
NCache[{{0, Rational[1, 2] 3^Rational[1, 2]}, {
0, Rational[1, 2] (2 + 3^Rational[1, 2])}, {
Rational[1, 2], 1 + 3^Rational[1, 2]}, {
1, Rational[1, 2] 3^Rational[1, 2]}, {
1, Rational[1, 2] (2 + 3^Rational[1, 2])}, {Rational[3, 2], 0}, {
Rational[3, 2], 1 + 3^Rational[1, 2]}, {
2, Rational[1, 2] 3^Rational[1, 2]}, {
2, Rational[1, 2] (2 + 3^Rational[1, 2])}, {
Rational[5, 2], 1 + 3^Rational[1, 2]}, {
3, Rational[1, 2] 3^Rational[1, 2]}, {
3, Rational[1, 2] (2 + 3^Rational[1, 2])}}, {{0, 0.8660254037844386}, {
0, 1.8660254037844386`}, {0.5, 2.732050807568877}, {
1, 0.8660254037844386}, {1, 1.8660254037844386`}, {1.5, 0}, {1.5,
2.732050807568877}, {2, 0.8660254037844386}, {2, 1.8660254037844386`}, {
2.5, 2.732050807568877}, {3, 0.8660254037844386}, {
3, 1.8660254037844386`}}], {
{RGBColor[1, 0, 0],
PolygonBox[{{3, 2, 5}, {4, 6, 8}, {7, 5, 9}, {10, 9, 12}}]},
{RGBColor[1, 0.5, 0],
PolygonBox[{{2, 1, 4, 5}, {5, 4, 8, 9}, {9, 8, 11, 12}}]}}]}]], "Output",\
CellLabel->
"Out[170]=",ExpressionUUID->"59021604-b183-4ce3-8999-613a4c7beb7b"]
}, Open ]],
Cell[BoxData[
RowBox[{"NetPrintout", "[",
RowBox[{
RowBox[{"PolyhedronData", "[",
RowBox[{"\"\\"", ",", "\"\\""}],
"]"}], ",", "\"\\""}], "]"}]], "Input",E\
xpressionUUID->"e6cb4c30-b094-46f5-ac1d-4d50c933a9b4"]
}, Open ]]
}, Closed]],
Cell[CellGroupData[{
Cell["Properties", "Section",ExpressionUUID->"a7f1fd83-f10c-4383-bf49-48d5e68d7627"],
Cell[BoxData[
RowBox[{"<<", "MathWorld`Polyhedra`"}]], "Input",
CellLabel->"In[5]:=",ExpressionUUID->"6243c8ec-2373-45be-872e-b94f38c0df8e"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"p", "=",
RowBox[{"PolyhedronData", "[",
RowBox[{
RowBox[{"pname", "=", "\"\\""}], ",",
"\"\\""}], "]"}]}]], "Input",
CellLabel->"In[1]:=",ExpressionUUID->"159b602b-645e-48ac-9d88-ebbf567cae17"],
Cell[BoxData[
InterpretationBox[
RowBox[{
TagBox["Polyhedron",
"SummaryHead"], "[",
DynamicModuleBox[{Typeset`open$$ = False, Typeset`embedState$$ = "Ready",
Typeset`spolyhedron$$ = Quiet[
Polyhedron[{{0, 0, Rational[1, 3] (3 + 6^Rational[1, 2])}, {
Rational[-1, 2] 3^Rational[-1, 2],
Rational[-1, 2], 0}, {Rational[-1, 2] 3^Rational[-1, 2],
Rational[-1, 2], 1}, {Rational[-1, 2] 3^Rational[-1, 2],
Rational[1, 2], 0}, {Rational[-1, 2] 3^Rational[-1, 2],
Rational[1, 2], 1}, {3^Rational[-1, 2], 0, 0}, {
3^Rational[-1, 2], 0, 1}}, {{5, 3, 1}, {3, 7, 1}, {7, 5, 1}, {4, 2, 3,
5}, {2, 6, 7, 3}, {6, 4, 5, 7}, {6, 2, 4}}]]},
TemplateBox[{
PaneSelectorBox[{False -> GridBox[{{
PaneBox[
ButtonBox[
DynamicBox[
FEPrivate`FrontEndResource["FEBitmaps", "SummaryBoxOpener"]],
ButtonFunction :> (Typeset`open$$ = True), Appearance -> None,
BaseStyle -> {}, Evaluator -> Automatic, Method ->
"Preemptive"], Alignment -> {Center, Center}, ImageSize ->
Dynamic[{
Automatic,
3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[
Magnification])}]],
Graphics3DBox[{
Directive[
Hue[0.58, 0.4, 1],
Opacity[0.5],
EdgeForm[
GrayLevel[1]]],
PolyhedronBox[
NCache[{{0, 0, Rational[1, 3] (3 + 6^Rational[1, 2])}, {
Rational[-1, 2] 3^Rational[-1, 2],
Rational[-1, 2], 0}, {Rational[-1, 2] 3^Rational[-1, 2],
Rational[-1, 2], 1}, {Rational[-1, 2] 3^Rational[-1, 2],
Rational[1, 2], 0}, {Rational[-1, 2] 3^Rational[-1, 2],
Rational[1, 2], 1}, {3^Rational[-1, 2], 0, 0}, {
3^Rational[-1, 2], 0, 1}}, {{
0, 0, 1.8164965809277258`}, {-0.2886751345948129, -0.5,
0}, {-0.2886751345948129, -0.5, 1}, {-0.2886751345948129,
0.5, 0}, {-0.2886751345948129, 0.5, 1}, {
0.5773502691896258, 0, 0}, {0.5773502691896258, 0, 1}}], {{5,
3, 1}, {3, 7, 1}, {7, 5, 1}, {4, 2, 3, 5}, {2, 6, 7, 3}, {6,
4, 5, 7}, {6, 2, 4}}]}, ImageSize ->
Dynamic[{5.25, 3.5} (CurrentValue["FontCapHeight"]/
AbsoluteCurrentValue[Magnification])], Boxed -> False,
Lighting -> {{"Ambient",
RGBColor[0.4, 0.45, 0.5]}, {"Directional",
RGBColor[0.24, 0.27, 0.3],
ImageScaled[{2, 0, 2}]}, {"Directional",
RGBColor[0.24, 0.27, 0.3],
ImageScaled[{2, 2, 2}]}, {"Directional",
RGBColor[0.24, 0.27, 0.3],
ImageScaled[{0, 2, 2}]}}, Method -> {"ShrinkWrap" -> True}],
GridBox[{{
RowBox[{
TagBox["\"Number of points: \"", "SummaryItemAnnotation"],
"\[InvisibleSpace]",
TagBox["7", "SummaryItem"]}]}, {
RowBox[{
TagBox["\"Number of faces: \"", "SummaryItemAnnotation"],
"\[InvisibleSpace]",
TagBox["7", "SummaryItem"]}]}},
GridBoxAlignment -> {
"Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete ->
False, GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}},
GridBoxSpacings -> {"Columns" -> {{2}}, "Rows" -> {{Automatic}}},
BaseStyle -> {
ShowStringCharacters -> False, NumberMarks -> False,
PrintPrecision -> 3, ShowSyntaxStyles -> False}]}},
GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}},
AutoDelete -> False,
GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}},
BaselinePosition -> {1, 1}], True -> GridBox[{{
PaneBox[
ButtonBox[
DynamicBox[
FEPrivate`FrontEndResource["FEBitmaps", "SummaryBoxCloser"]],
ButtonFunction :> (Typeset`open$$ = False), Appearance -> None,
BaseStyle -> {}, Evaluator -> Automatic, Method ->
"Preemptive"], Alignment -> {Center, Center}, ImageSize ->
Dynamic[{
Automatic,
3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[
Magnification])}]],
Graphics3DBox[{
Directive[
Hue[0.58, 0.4, 1],
Opacity[0.5],
EdgeForm[
GrayLevel[1]]],
PolyhedronBox[
NCache[{{0, 0, Rational[1, 3] (3 + 6^Rational[1, 2])}, {
Rational[-1, 2] 3^Rational[-1, 2],
Rational[-1, 2], 0}, {Rational[-1, 2] 3^Rational[-1, 2],
Rational[-1, 2], 1}, {Rational[-1, 2] 3^Rational[-1, 2],
Rational[1, 2], 0}, {Rational[-1, 2] 3^Rational[-1, 2],
Rational[1, 2], 1}, {3^Rational[-1, 2], 0, 0}, {
3^Rational[-1, 2], 0, 1}}, {{
0, 0, 1.8164965809277258`}, {-0.2886751345948129, -0.5,
0}, {-0.2886751345948129, -0.5, 1}, {-0.2886751345948129,
0.5, 0}, {-0.2886751345948129, 0.5, 1}, {
0.5773502691896258, 0, 0}, {0.5773502691896258, 0, 1}}], {{5,
3, 1}, {3, 7, 1}, {7, 5, 1}, {4, 2, 3, 5}, {2, 6, 7, 3}, {6,
4, 5, 7}, {6, 2, 4}}]}, ImageSize ->
Dynamic[{5.25, 3.5} (CurrentValue["FontCapHeight"]/
AbsoluteCurrentValue[Magnification])], Boxed -> False,
Lighting -> {{"Ambient",
RGBColor[0.4, 0.45, 0.5]}, {"Directional",
RGBColor[0.24, 0.27, 0.3],
ImageScaled[{2, 0, 2}]}, {"Directional",
RGBColor[0.24, 0.27, 0.3],
ImageScaled[{2, 2, 2}]}, {"Directional",
RGBColor[0.24, 0.27, 0.3],
ImageScaled[{0, 2, 2}]}}, Method -> {"ShrinkWrap" -> True}],
GridBox[{{
RowBox[{
TagBox["\"Number of points: \"", "SummaryItemAnnotation"],
"\[InvisibleSpace]",
TagBox["7", "SummaryItem"]}]}, {
RowBox[{
TagBox["\"Number of faces: \"", "SummaryItemAnnotation"],
"\[InvisibleSpace]",
TagBox["7", "SummaryItem"]}]}, {
RowBox[{
TagBox["\"Embedding dimension: \"", "SummaryItemAnnotation"],
"\[InvisibleSpace]",
TagBox["3", "SummaryItem"]}]}, {
RowBox[{
TagBox["\"Type: \"", "SummaryItemAnnotation"],
"\[InvisibleSpace]",
TagBox[
DynamicBox[
ToBoxes[
Quiet[
Apply[Region`PolyhedronDump`polyhedronType,
Region`PolyhedronDump`computeType[
Typeset`spolyhedron$$]]], StandardForm],
SynchronousUpdating -> False, TrackedSymbols :> {},
CachedValue :>
AnimatorBox[
0, {0, Infinity}, AppearanceElements -> "ProgressSlider",
ImageSize -> 20]], "SummaryItem"]}]}, {
RowBox[{
TagBox["\"Bounds: \"", "SummaryItemAnnotation"],
"\[InvisibleSpace]",
TagBox[
DynamicBox[
ToBoxes[
Region`PolyhedronDump`iRegionBounds[
Typeset`spolyhedron$$], StandardForm],
SynchronousUpdating -> False, TrackedSymbols :> {},
CachedValue :>
AnimatorBox[
0, {0, Infinity}, AppearanceElements -> "ProgressSlider",
ImageSize -> 20]], "SummaryItem"]}]}, {
RowBox[{
TagBox["\"Volume: \"", "SummaryItemAnnotation"],
"\[InvisibleSpace]",
TagBox[
DynamicBox[
ToBoxes[
Region`PolyhedronDump`iVolume[Typeset`spolyhedron$$],
StandardForm], SynchronousUpdating -> False,
TrackedSymbols :> {}, CachedValue :>
AnimatorBox[
0, {0, Infinity}, AppearanceElements -> "ProgressSlider",
ImageSize -> 20]], "SummaryItem"]}]}},
GridBoxAlignment -> {
"Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete ->
False, GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}},
GridBoxSpacings -> {"Columns" -> {{2}}, "Rows" -> {{Automatic}}},
BaseStyle -> {
ShowStringCharacters -> False, NumberMarks -> False,
PrintPrecision -> 3, ShowSyntaxStyles -> False}]}},
GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}},
AutoDelete -> False,
GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}},
BaselinePosition -> {1, 1}]},
Dynamic[Typeset`open$$], ImageSize -> Automatic]},
"SummaryPanel"],
DynamicModuleValues:>{}], "]"}],
Polyhedron[{{0, 0, Rational[1, 3] (3 + 6^Rational[1, 2])}, {
Rational[-1, 2] 3^Rational[-1, 2],
Rational[-1, 2], 0}, {Rational[-1, 2] 3^Rational[-1, 2],
Rational[-1, 2], 1}, {Rational[-1, 2] 3^Rational[-1, 2],
Rational[1, 2], 0}, {Rational[-1, 2] 3^Rational[-1, 2],
Rational[1, 2], 1}, {3^Rational[-1, 2], 0, 0}, {
3^Rational[-1, 2], 0, 1}}, {{5, 3, 1}, {3, 7, 1}, {7, 5, 1}, {4, 2, 3,
5}, {2, 6, 7, 3}, {6, 4, 5, 7}, {6, 2, 4}}],
Editable->False,
SelectWithContents->True,
Selectable->False]], "Output",
CellLabel->"Out[1]=",ExpressionUUID->"a143fe7d-a5a0-4703-86bb-29de185620c0"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"vol", "=",
RowBox[{"PolyhedronData", "[",
RowBox[{"pname", ",", "\"\\""}], "]"}]}]], "Input",
CellLabel->
"(byblis65 V13.2.0) \
In[3]:=",ExpressionUUID->"c476d211-744c-4074-94bb-628fc9a0fbf4"],
Cell[BoxData[
RowBox[{
FractionBox["1", "12"], " ",
RowBox[{"(",
RowBox[{
SqrtBox["2"], "+",
RowBox[{"3", " ",
SqrtBox["3"]}]}], ")"}]}]], "Output",
CellLabel->
"(byblis65 V13.2.0) \
Out[3]=",ExpressionUUID->"1dc5da08-590d-4bde-9b8b-aa8e4f981d63"]
}, Open ]],
Cell[CellGroupData[{
Cell["Centroid", "Subsection",ExpressionUUID->"23071e18-9ec8-49cc-a04b-4237121c7e58"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"PolyhedronData", "[",
RowBox[{"pname", ",", "\"\\""}], "]"}]], "Input",
CellLabel->
"In[173]:=",ExpressionUUID->"4f8c044f-a2d9-4b05-977e-ac4ac62600a3"],
Cell[BoxData[
RowBox[{"{",
RowBox[{"0", ",", "0", ",",
RowBox[{
FractionBox["1", "75"], " ",
RowBox[{"(",
RowBox[{"39", "+",
RowBox[{"4", " ",
SqrtBox["6"]}]}], ")"}]}]}], "}"}]], "Output",
CellLabel->
"Out[173]=",ExpressionUUID->"59437994-706d-4deb-8b87-2653b63dd72e"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"RegionCentroid", "[", "p", "]"}], "//", "FullSimplify"}]], "Input",\
CellLabel->
"In[175]:=",ExpressionUUID->"8c0bd1e5-e982-458e-80c8-ab19aa3ffdb0"],
Cell[BoxData[
RowBox[{"{",
RowBox[{"0", ",", "0", ",",
RowBox[{
FractionBox["1", "75"], " ",
RowBox[{"(",
RowBox[{"39", "+",
RowBox[{"4", " ",
SqrtBox["6"]}]}], ")"}]}]}], "}"}]], "Output",
CellLabel->
"Out[175]=",ExpressionUUID->"5c110597-99c2-494c-8a6b-6eec2198be6f"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"PolyhedronCentroid", "[", "p", "]"}]], "Input",
CellLabel->
"In[176]:=",ExpressionUUID->"68a280b0-4b32-410a-9120-549d1989a839"],
Cell[BoxData[
RowBox[{"{",
RowBox[{"0", ",", "0", ",",
RowBox[{
FractionBox["1", "75"], " ",
RowBox[{"(",
RowBox[{"39", "+",
RowBox[{"4", " ",
SqrtBox["6"]}]}], ")"}]}]}], "}"}]], "Output",
CellLabel->
"Out[176]=",ExpressionUUID->"72f2bea9-ce63-4810-b722-2dc3d758e086"]
}, Open ]]
}, Closed]],
Cell[CellGroupData[{
Cell["Circumsphere", "Subsection",ExpressionUUID->"127204a7-78ab-4a84-8a03-e69493a06319"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"PolyhedronData", "[",
RowBox[{"pname", ",", "\"\\""}], "]"}]], "Input",
CellLabel->
"In[177]:=",ExpressionUUID->"77012c8c-fe33-4b7f-9c5a-4eeff8139b1a"],
Cell[BoxData[
RowBox[{"Missing", "[", "\<\"NotApplicable\"\>", "]"}]], "Output",
CellLabel->
"Out[177]=",ExpressionUUID->"68606911-a56c-4a43-84da-e11136d70af5"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Circumsphere", "[", "p", "]"}]], "Input",
CellLabel->
"In[178]:=",ExpressionUUID->"0e9473e5-50bc-4df0-bc7f-a6348941c711"],
Cell[BoxData[
TemplateBox[{
"Circumsphere", "indep",
"\"Circumsphere does not exist for \
\\!\\(\\*InterpretationBox[RowBox[{TagBox[\\\"Polyhedron\\\", \\\"SummaryHead\
\\\"], \\\"[\\\", DynamicModuleBox[{Typeset`open$$ = False, \
Set[Typeset`embedState$$, \\\"Ready\\\"], Set[Typeset`spolyhedron$$, \
Quiet[Polyhedron[List[List[0, 0, Times[Rational[1, 3], Plus[3, Power[6, \
Rational[1, 2]]]]], List[Times[Rational[-1, 2], Power[3, Rational[-1, 2]]], \
Rational[-1, 2], 0], List[Times[Rational[-1, 2], Power[3, Rational[-1, 2]]], \
Rational[-1, 2], 1], List[Times[Rational[-1, 2], Power[3, Rational[-1, 2]]], \
Rational[1, 2], 0], List[Times[Rational[-1, 2], Power[3, Rational[-1, 2]]], \
Rational[1, 2], 1], List[Power[3, Rational[-1, 2]], 0, 0], List[Power[3, \
Rational[-1, 2]], 0, 1]], List[List[5, 3, 1], List[3, 7, 1], List[7, 5, 1], \
List[4, 2, 3, 5], List[2, 6, 7, 3], List[6, 4, 5, 7], List[6, 2, 4]]]]]}, \
TemplateBox[List[PaneSelectorBox[List[Rule[False, \
GridBox[List[List[PaneBox[ButtonBox[DynamicBox[FEPrivate`FrontEndResource[\\\"\
FEBitmaps\\\", \\\"SummaryBoxOpener\\\"]], RuleDelayed[ButtonFunction, \
Set[Typeset`open$$, True]], Rule[Appearance, None], Rule[BaseStyle, List[]], \
Rule[Evaluator, Automatic], Rule[Method, \\\"Preemptive\\\"]], \
Rule[Alignment, List[Center, Center]], Rule[ImageSize, \
Dynamic[List[Automatic, Times[3.5`, \
Times[CurrentValue[\\\"FontCapHeight\\\"], \
Power[AbsoluteCurrentValue[Magnification], -1]]]]]]], \
Graphics3DBox[List[Directive[Hue[0.58`, 0.4`, 1], Opacity[0.5`], \
EdgeForm[GrayLevel[1]]], TagBox[GraphicsComplex3DBox[NCache[List[List[0, 0, \
Times[Rational[1, 3], Plus[3, Power[6, Rational[1, 2]]]]], \
List[Times[Rational[-1, 2], Power[3, Rational[-1, 2]]], Rational[-1, 2], 0], \
List[Times[Rational[-1, 2], Power[3, Rational[-1, 2]]], Rational[-1, 2], 1], \
List[Times[Rational[-1, 2], Power[3, Rational[-1, 2]]], Rational[1, 2], 0], \
List[Times[Rational[-1, 2], Power[3, Rational[-1, 2]]], Rational[1, 2], 1], \
List[Power[3, Rational[-1, 2]], 0, 0], List[Power[3, Rational[-1, 2]], 0, \
1]], List[List[0, 0, 1.8164965809277258`], List[-0.2886751345948129`, -0.5`, \
0], List[-0.2886751345948129`, -0.5`, 1], List[-0.2886751345948129`, 0.5`, \
0], List[-0.2886751345948129`, 0.5`, 1], List[0.5773502691896258`, 0, 0], \
List[0.5773502691896258`, 0, 1]]], Polygon3DBox[List[List[5, 3, 1], List[3, \
7, 1], List[7, 5, 1], List[4, 2, 3, 5], List[2, 6, 7, 3], List[6, 4, 5, 7], \
List[6, 2, 4]]]], \\\"Polyhedron\\\"]], Rule[ImageSize, \
Dynamic[Times[List[5.25`, 3.5`], Times[CurrentValue[\\\"FontCapHeight\\\"], \
Power[AbsoluteCurrentValue[Magnification], -1]]]]], Rule[Boxed, False], \
Rule[Lighting, List[List[\\\"Ambient\\\", RGBColor[0.4`, 0.45`, 0.5`]], List[\
\\\"Directional\\\", RGBColor[0.24`, 0.27`, 0.3`], ImageScaled[List[2, 0, \
2]]], List[\\\"Directional\\\", RGBColor[0.24`, 0.27`, 0.3`], \
ImageScaled[List[2, 2, 2]]], List[\\\"Directional\\\", RGBColor[0.24`, 0.27`, \
0.3`], ImageScaled[List[0, 2, 2]]]]], Rule[Method, List[Rule[\\\"ShrinkWrap\\\
\", True]]]], GridBox[List[List[RowBox[List[TagBox[\\\"\\\\\\\"Number of \
points: \\\\\\\"\\\", \\\"SummaryItemAnnotation\\\"], \
\\\"\\\\[InvisibleSpace]\\\", TagBox[\\\"7\\\", \\\"SummaryItem\\\"]]]], \
List[RowBox[List[TagBox[\\\"\\\\\\\"Number of faces: \\\\\\\"\\\", \
\\\"SummaryItemAnnotation\\\"], \\\"\\\\[InvisibleSpace]\\\", \
TagBox[\\\"7\\\", \\\"SummaryItem\\\"]]]]], Rule[GridBoxAlignment, List[Rule[\
\\\"Columns\\\", List[List[Left]]], Rule[\\\"Rows\\\", \
List[List[Automatic]]]]], Rule[AutoDelete, False], Rule[GridBoxItemSize, \
List[Rule[\\\"Columns\\\", List[List[Automatic]]], Rule[\\\"Rows\\\", \
List[List[Automatic]]]]], Rule[GridBoxSpacings, List[Rule[\\\"Columns\\\", \
List[List[2]]], Rule[\\\"Rows\\\", List[List[Automatic]]]]], Rule[BaseStyle, \
List[Rule[ShowStringCharacters, False], Rule[NumberMarks, False], \
Rule[PrintPrecision, 3], Rule[ShowSyntaxStyles, False]]]]]], \
Rule[GridBoxAlignment, List[Rule[\\\"Columns\\\", List[List[Left]]], \
Rule[\\\"Rows\\\", List[List[Top]]]]], Rule[AutoDelete, False], \
Rule[GridBoxItemSize, List[Rule[\\\"Columns\\\", List[List[Automatic]]], \
Rule[\\\"Rows\\\", List[List[Automatic]]]]], Rule[BaselinePosition, List[1, \
1]]]], Rule[True, \
GridBox[List[List[PaneBox[ButtonBox[DynamicBox[FEPrivate`FrontEndResource[\\\"\
FEBitmaps\\\", \\\"SummaryBoxCloser\\\"]], RuleDelayed[ButtonFunction, \
Set[Typeset`open$$, False]], Rule[Appearance, None], Rule[BaseStyle, List[]], \
Rule[Evaluator, Automatic], Rule[Method, \\\"Preemptive\\\"]], \
Rule[Alignment, List[Center, Center]], Rule[ImageSize, \
Dynamic[List[Automatic, Times[3.5`, \
Times[CurrentValue[\\\"FontCapHeight\\\"], \
Power[AbsoluteCurrentValue[Magnification], -1]]]]]]], \
Graphics3DBox[List[Directive[Hue[0.58`, 0.4`, 1], Opacity[0.5`], \
EdgeForm[GrayLevel[1]]], TagBox[GraphicsComplex3DBox[NCache[List[List[0, 0, \
Times[Rational[1, 3], Plus[3, Power[6, Rational[1, 2]]]]], \
List[Times[Rational[-1, 2], Power[3, Rational[-1, 2]]], Rational[-1, 2], 0], \
List[Times[Rational[-1, 2], Power[3, Rational[-1, 2]]], Rational[-1, 2], 1], \
List[Times[Rational[-1, 2], Power[3, Rational[-1, 2]]], Rational[1, 2], 0], \
List[Times[Rational[-1, 2], Power[3, Rational[-1, 2]]], Rational[1, 2], 1], \
List[Power[3, Rational[-1, 2]], 0, 0], List[Power[3, Rational[-1, 2]], 0, \
1]], List[List[0, 0, 1.8164965809277258`], List[-0.2886751345948129`, -0.5`, \
0], List[-0.2886751345948129`, -0.5`, 1], List[-0.2886751345948129`, 0.5`, \
0], List[-0.2886751345948129`, 0.5`, 1], List[0.5773502691896258`, 0, 0], \
List[0.5773502691896258`, 0, 1]]], Polygon3DBox[List[List[5, 3, 1], List[3, \
7, 1], List[7, 5, 1], List[4, 2, 3, 5], List[2, 6, 7, 3], List[6, 4, 5, 7], \
List[6, 2, 4]]]], \\\"Polyhedron\\\"]], Rule[ImageSize, \
Dynamic[Times[List[5.25`, 3.5`], Times[CurrentValue[\\\"FontCapHeight\\\"], \
Power[AbsoluteCurrentValue[Magnification], -1]]]]], Rule[Boxed, False], \
Rule[Lighting, List[List[\\\"Ambient\\\", RGBColor[0.4`, 0.45`, 0.5`]], List[\
\\\"Directional\\\", RGBColor[0.24`, 0.27`, 0.3`], ImageScaled[List[2, 0, \
2]]], List[\\\"Directional\\\", RGBColor[0.24`, 0.27`, 0.3`], \
ImageScaled[List[2, 2, 2]]], List[\\\"Directional\\\", RGBColor[0.24`, 0.27`, \
0.3`], ImageScaled[List[0, 2, 2]]]]], Rule[Method, List[Rule[\\\"ShrinkWrap\\\
\", True]]]], GridBox[List[List[RowBox[List[TagBox[\\\"\\\\\\\"Number of \
points: \\\\\\\"\\\", \\\"SummaryItemAnnotation\\\"], \
\\\"\\\\[InvisibleSpace]\\\", TagBox[\\\"7\\\", \\\"SummaryItem\\\"]]]], \
List[RowBox[List[TagBox[\\\"\\\\\\\"Number of faces: \\\\\\\"\\\", \
\\\"SummaryItemAnnotation\\\"], \\\"\\\\[InvisibleSpace]\\\", \
TagBox[\\\"7\\\", \\\"SummaryItem\\\"]]]], List[RowBox[List[TagBox[\\\"\\\\\\\
\"Embedding dimension: \\\\\\\"\\\", \\\"SummaryItemAnnotation\\\"], \
\\\"\\\\[InvisibleSpace]\\\", TagBox[\\\"3\\\", \\\"SummaryItem\\\"]]]], \
List[RowBox[List[TagBox[\\\"\\\\\\\"Type: \\\\\\\"\\\", \
\\\"SummaryItemAnnotation\\\"], \\\"\\\\[InvisibleSpace]\\\", \
TagBox[DynamicBox[ToBoxes[Quiet[Apply[Region`PolyhedronDump`polyhedronType, \
Region`PolyhedronDump`computeType[Typeset`spolyhedron$$]]], StandardForm], \
Rule[SynchronousUpdating, False], RuleDelayed[TrackedSymbols, List[]], \
RuleDelayed[CachedValue, AnimatorBox[0, List[0, Infinity], \
Rule[AppearanceElements, \\\"ProgressSlider\\\"], Rule[ImageSize, 20]]]], \
\\\"SummaryItem\\\"]]]], List[RowBox[List[TagBox[\\\"\\\\\\\"Bounds: \\\\\\\"\
\\\", \\\"SummaryItemAnnotation\\\"], \\\"\\\\[InvisibleSpace]\\\", \
TagBox[DynamicBox[ToBoxes[Region`PolyhedronDump`iRegionBounds[Typeset`\
spolyhedron$$], StandardForm], Rule[SynchronousUpdating, False], \
RuleDelayed[TrackedSymbols, List[]], RuleDelayed[CachedValue, AnimatorBox[0, \
List[0, Infinity], Rule[AppearanceElements, \\\"ProgressSlider\\\"], \
Rule[ImageSize, 20]]]], \\\"SummaryItem\\\"]]]], List[RowBox[List[TagBox[\\\"\
\\\\\\\"Volume: \\\\\\\"\\\", \\\"SummaryItemAnnotation\\\"], \
\\\"\\\\[InvisibleSpace]\\\", \
TagBox[DynamicBox[ToBoxes[Region`PolyhedronDump`iVolume[Typeset`spolyhedron$$]\
, StandardForm], Rule[SynchronousUpdating, False], \
RuleDelayed[TrackedSymbols, List[]], RuleDelayed[CachedValue, AnimatorBox[0, \
List[0, Infinity], Rule[AppearanceElements, \\\"ProgressSlider\\\"], \
Rule[ImageSize, 20]]]], \\\"SummaryItem\\\"]]]]], Rule[GridBoxAlignment, \
List[Rule[\\\"Columns\\\", List[List[Left]]], Rule[\\\"Rows\\\", \
List[List[Automatic]]]]], Rule[AutoDelete, False], Rule[GridBoxItemSize, \
List[Rule[\\\"Columns\\\", List[List[Automatic]]], Rule[\\\"Rows\\\", \
List[List[Automatic]]]]], Rule[GridBoxSpacings, List[Rule[\\\"Columns\\\", \
List[List[2]]], Rule[\\\"Rows\\\", List[List[Automatic]]]]], Rule[BaseStyle, \
List[Rule[ShowStringCharacters, False], Rule[NumberMarks, False], \
Rule[PrintPrecision, 3], Rule[ShowSyntaxStyles, False]]]]]], \
Rule[GridBoxAlignment, List[Rule[\\\"Columns\\\", List[List[Left]]], \
Rule[\\\"Rows\\\", List[List[Top]]]]], Rule[AutoDelete, False], \
Rule[GridBoxItemSize, List[Rule[\\\"Columns\\\", List[List[Automatic]]], \
Rule[\\\"Rows\\\", List[List[Automatic]]]]], Rule[BaselinePosition, List[1, \
1]]]]], Dynamic[Typeset`open$$], Rule[ImageSize, Automatic]]], \
\\\"SummaryPanel\\\"], RuleDelayed[DynamicModuleValues, List[]]], \
\\\"]\\\"}], Polyhedron[List[List[0, 0, Times[Rational[1, 3], Plus[3, \
Power[6, Rational[1, 2]]]]], List[Times[Rational[-1, 2], Power[3, \
Rational[-1, 2]]], Rational[-1, 2], 0], List[Times[Rational[-1, 2], Power[3, \
Rational[-1, 2]]], Rational[-1, 2], 1], List[Times[Rational[-1, 2], Power[3, \
Rational[-1, 2]]], Rational[1, 2], 0], List[Times[Rational[-1, 2], Power[3, \
Rational[-1, 2]]], Rational[1, 2], 1], List[Power[3, Rational[-1, 2]], 0, 0], \
List[Power[3, Rational[-1, 2]], 0, 1]], List[List[5, 3, 1], List[3, 7, 1], \
List[7, 5, 1], List[4, 2, 3, 5], List[2, 6, 7, 3], List[6, 4, 5, 7], List[6, \
2, 4]]], Rule[Selectable, False], Rule[Editable, False], \
Rule[SelectWithContents, True]]\\).\"", 2, 178, 45, 19516473296632108012,
"Local"},
"MessageTemplate"]], "Message", "MSG",
CellLabel->
"During evaluation of \
In[178]:=",ExpressionUUID->"2c76f7c2-6f32-4e00-8f8e-26260e6374b5"],
Cell[BoxData[
RowBox[{"Circumsphere", "[",
InterpretationBox[
RowBox[{
TagBox["Polyhedron",
"SummaryHead"], "[",
DynamicModuleBox[{Typeset`open$$ = False, Typeset`embedState$$ = "Ready",
Typeset`spolyhedron$$ = Quiet[
Polyhedron[{{0, 0, Rational[1, 3] (3 + 6^Rational[1, 2])}, {
Rational[-1, 2] 3^Rational[-1, 2],
Rational[-1, 2], 0}, {Rational[-1, 2] 3^Rational[-1, 2],
Rational[-1, 2], 1}, {Rational[-1, 2] 3^Rational[-1, 2],
Rational[1, 2], 0}, {Rational[-1, 2] 3^Rational[-1, 2],
Rational[1, 2], 1}, {3^Rational[-1, 2], 0, 0}, {
3^Rational[-1, 2], 0, 1}}, {{5, 3, 1}, {3, 7, 1}, {7, 5, 1}, {4, 2, 3,
5}, {2, 6, 7, 3}, {6, 4, 5, 7}, {6, 2, 4}}]]},
TemplateBox[{
PaneSelectorBox[{False -> GridBox[{{
PaneBox[
ButtonBox[
DynamicBox[
FEPrivate`FrontEndResource["FEBitmaps", "SummaryBoxOpener"]],
ButtonFunction :> (Typeset`open$$ = True), Appearance -> None,
BaseStyle -> {}, Evaluator -> Automatic, Method ->
"Preemptive"], Alignment -> {Center, Center}, ImageSize ->
Dynamic[{
Automatic,
3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[
Magnification])}]],
Graphics3DBox[{
Directive[
Hue[0.58, 0.4, 1],
Opacity[0.5],
EdgeForm[
GrayLevel[1]]],
TagBox[
GraphicsComplex3DBox[
NCache[{{0, 0, Rational[1, 3] (3 + 6^Rational[1, 2])}, {
Rational[-1, 2] 3^Rational[-1, 2],
Rational[-1, 2], 0}, {Rational[-1, 2] 3^Rational[-1, 2],
Rational[-1, 2], 1}, {Rational[-1, 2] 3^Rational[-1, 2],
Rational[1, 2], 0}, {Rational[-1, 2] 3^Rational[-1, 2],
Rational[1, 2], 1}, {3^Rational[-1, 2], 0, 0}, {
3^Rational[-1, 2], 0, 1}}, {{
0, 0, 1.8164965809277258`}, {-0.2886751345948129, -0.5,
0}, {-0.2886751345948129, -0.5, 1}, {-0.2886751345948129,
0.5, 0}, {-0.2886751345948129, 0.5, 1}, {
0.5773502691896258, 0, 0}, {0.5773502691896258, 0, 1}}],
Polygon3DBox[{{5, 3, 1}, {3, 7, 1}, {7, 5, 1}, {4, 2, 3,
5}, {2, 6, 7, 3}, {6, 4, 5, 7}, {6, 2, 4}}]],
"Polyhedron"]}, ImageSize ->
Dynamic[{5.25, 3.5} (CurrentValue["FontCapHeight"]/
AbsoluteCurrentValue[Magnification])], Boxed -> False,
Lighting -> {{"Ambient",
RGBColor[0.4, 0.45, 0.5]}, {"Directional",
RGBColor[0.24, 0.27, 0.3],
ImageScaled[{2, 0, 2}]}, {"Directional",
RGBColor[0.24, 0.27, 0.3],
ImageScaled[{2, 2, 2}]}, {"Directional",
RGBColor[0.24, 0.27, 0.3],
ImageScaled[{0, 2, 2}]}}, Method -> {"ShrinkWrap" -> True}],
GridBox[{{
RowBox[{
TagBox["\"Number of points: \"", "SummaryItemAnnotation"],
"\[InvisibleSpace]",
TagBox["7", "SummaryItem"]}]}, {
RowBox[{
TagBox["\"Number of faces: \"", "SummaryItemAnnotation"],
"\[InvisibleSpace]",
TagBox["7", "SummaryItem"]}]}},
GridBoxAlignment -> {
"Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete ->
False, GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}},
GridBoxSpacings -> {
"Columns" -> {{2}}, "Rows" -> {{Automatic}}},
BaseStyle -> {
ShowStringCharacters -> False, NumberMarks -> False,
PrintPrecision -> 3, ShowSyntaxStyles -> False}]}},
GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}},
AutoDelete -> False,
GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}},
BaselinePosition -> {1, 1}], True -> GridBox[{{
PaneBox[
ButtonBox[
DynamicBox[
FEPrivate`FrontEndResource["FEBitmaps", "SummaryBoxCloser"]],
ButtonFunction :> (Typeset`open$$ = False), Appearance -> None,
BaseStyle -> {}, Evaluator -> Automatic, Method ->
"Preemptive"], Alignment -> {Center, Center}, ImageSize ->
Dynamic[{
Automatic,
3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[
Magnification])}]],
Graphics3DBox[{
Directive[
Hue[0.58, 0.4, 1],
Opacity[0.5],
EdgeForm[
GrayLevel[1]]],
TagBox[
GraphicsComplex3DBox[
NCache[{{0, 0, Rational[1, 3] (3 + 6^Rational[1, 2])}, {
Rational[-1, 2] 3^Rational[-1, 2],
Rational[-1, 2], 0}, {Rational[-1, 2] 3^Rational[-1, 2],
Rational[-1, 2], 1}, {Rational[-1, 2] 3^Rational[-1, 2],
Rational[1, 2], 0}, {Rational[-1, 2] 3^Rational[-1, 2],
Rational[1, 2], 1}, {3^Rational[-1, 2], 0, 0}, {
3^Rational[-1, 2], 0, 1}}, {{
0, 0, 1.8164965809277258`}, {-0.2886751345948129, -0.5,
0}, {-0.2886751345948129, -0.5, 1}, {-0.2886751345948129,
0.5, 0}, {-0.2886751345948129, 0.5, 1}, {
0.5773502691896258, 0, 0}, {0.5773502691896258, 0, 1}}],
Polygon3DBox[{{5, 3, 1}, {3, 7, 1}, {7, 5, 1}, {4, 2, 3,
5}, {2, 6, 7, 3}, {6, 4, 5, 7}, {6, 2, 4}}]],
"Polyhedron"]}, ImageSize ->
Dynamic[{5.25, 3.5} (CurrentValue["FontCapHeight"]/
AbsoluteCurrentValue[Magnification])], Boxed -> False,
Lighting -> {{"Ambient",
RGBColor[0.4, 0.45, 0.5]}, {"Directional",
RGBColor[0.24, 0.27, 0.3],
ImageScaled[{2, 0, 2}]}, {"Directional",
RGBColor[0.24, 0.27, 0.3],
ImageScaled[{2, 2, 2}]}, {"Directional",
RGBColor[0.24, 0.27, 0.3],
ImageScaled[{0, 2, 2}]}}, Method -> {"ShrinkWrap" -> True}],
GridBox[{{
RowBox[{
TagBox["\"Number of points: \"", "SummaryItemAnnotation"],
"\[InvisibleSpace]",
TagBox["7", "SummaryItem"]}]}, {
RowBox[{
TagBox["\"Number of faces: \"", "SummaryItemAnnotation"],
"\[InvisibleSpace]",
TagBox["7", "SummaryItem"]}]}, {
RowBox[{
TagBox[
"\"Embedding dimension: \"", "SummaryItemAnnotation"],
"\[InvisibleSpace]",
TagBox["3", "SummaryItem"]}]}, {
RowBox[{
TagBox["\"Type: \"", "SummaryItemAnnotation"],
"\[InvisibleSpace]",
TagBox[
DynamicBox[
ToBoxes[
Quiet[
Apply[Region`PolyhedronDump`polyhedronType,
Region`PolyhedronDump`computeType[
Typeset`spolyhedron$$]]], StandardForm],
SynchronousUpdating -> False, TrackedSymbols :> {},
CachedValue :>
AnimatorBox[
0, {0, Infinity}, AppearanceElements -> "ProgressSlider",
ImageSize -> 20]], "SummaryItem"]}]}, {
RowBox[{
TagBox["\"Bounds: \"", "SummaryItemAnnotation"],
"\[InvisibleSpace]",
TagBox[
DynamicBox[
ToBoxes[
Region`PolyhedronDump`iRegionBounds[
Typeset`spolyhedron$$], StandardForm],
SynchronousUpdating -> False, TrackedSymbols :> {},
CachedValue :>
AnimatorBox[
0, {0, Infinity}, AppearanceElements -> "ProgressSlider",
ImageSize -> 20]], "SummaryItem"]}]}, {
RowBox[{
TagBox["\"Volume: \"", "SummaryItemAnnotation"],
"\[InvisibleSpace]",
TagBox[
DynamicBox[
ToBoxes[
Region`PolyhedronDump`iVolume[Typeset`spolyhedron$$],
StandardForm], SynchronousUpdating -> False,
TrackedSymbols :> {}, CachedValue :>
AnimatorBox[
0, {0, Infinity}, AppearanceElements -> "ProgressSlider",
ImageSize -> 20]], "SummaryItem"]}]}},
GridBoxAlignment -> {
"Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete ->
False, GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}},
GridBoxSpacings -> {
"Columns" -> {{2}}, "Rows" -> {{Automatic}}},
BaseStyle -> {
ShowStringCharacters -> False, NumberMarks -> False,
PrintPrecision -> 3, ShowSyntaxStyles -> False}]}},
GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}},
AutoDelete -> False,
GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}},
BaselinePosition -> {1, 1}]},
Dynamic[Typeset`open$$], ImageSize -> Automatic]},
"SummaryPanel"],
DynamicModuleValues:>{}], "]"}],
Polyhedron[{{0, 0, Rational[1, 3] (3 + 6^Rational[1, 2])}, {
Rational[-1, 2] 3^Rational[-1, 2],
Rational[-1, 2], 0}, {Rational[-1, 2] 3^Rational[-1, 2],
Rational[-1, 2], 1}, {Rational[-1, 2] 3^Rational[-1, 2],
Rational[1, 2], 0}, {Rational[-1, 2] 3^Rational[-1, 2],
Rational[1, 2], 1}, {3^Rational[-1, 2], 0, 0}, {
3^Rational[-1, 2], 0, 1}}, {{5, 3, 1}, {3, 7, 1}, {7, 5, 1}, {4, 2, 3,
5}, {2, 6, 7, 3}, {6, 4, 5, 7}, {6, 2, 4}}],
Editable->False,
SelectWithContents->True,
Selectable->False], "]"}]], "Output",
CellLabel->
"Out[178]=",ExpressionUUID->"f5dfb295-46b2-4f79-9854-92b5f1f51379"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"MyCircumsphere", "[", "p", "]"}]], "Input",
CellLabel->
"In[179]:=",ExpressionUUID->"a9367c59-ba86-430f-80ce-0920872c3951"],
Cell[BoxData[
RowBox[{"{", "}"}]], "Output",
CellLabel->
"Out[179]=",ExpressionUUID->"efdc1214-e769-4821-b7b2-d959b680ab3e"]
}, Open ]]
}, Closed]],
Cell[CellGroupData[{
Cell["DihedralAngles", "Subsection",ExpressionUUID->"4e59addc-6190-4338-aba0-f923c0945478"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"PolyhedronData", "[",
RowBox[{"pname", ",", "\"\\""}], "]"}], "//",
"Tally"}]], "Input",
CellLabel->
"In[180]:=",ExpressionUUID->"eaed75d5-757f-43d8-a523-d32ea07b3290"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"ArcSec", "[", "3", "]"}], ",", "3"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"ArcCos", "[",
RowBox[{"-",
FractionBox[
RowBox[{"2", " ",
SqrtBox["2"]}], "3"]}], "]"}], ",", "3"}], "}"}], ",",
RowBox[{"{",
RowBox[{
FractionBox["\[Pi]", "3"], ",", "3"}], "}"}], ",",
RowBox[{"{",
RowBox[{
FractionBox["\[Pi]", "2"], ",", "3"}], "}"}]}], "}"}]], "Output",
CellLabel->
"Out[180]=",ExpressionUUID->"ad8b15ed-e065-4de3-b6d4-c0daf89e1149"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{
RowBox[{"DihedralAngles", "[", "p", "]"}], "//", "FullSimplify"}], "//",
"Tally"}]], "Input",
CellLabel->
"In[181]:=",ExpressionUUID->"72d88485-92bc-43f7-9ddd-58a04dcc614d"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"ArcSec", "[", "3", "]"}], ",", "3"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"ArcCos", "[",
RowBox[{"-",
FractionBox[
RowBox[{"2", " ",
SqrtBox["2"]}], "3"]}], "]"}], ",", "3"}], "}"}], ",",
RowBox[{"{",
RowBox[{
FractionBox["\[Pi]", "3"], ",", "3"}], "}"}], ",",
RowBox[{"{",
RowBox[{
FractionBox["\[Pi]", "2"], ",", "3"}], "}"}]}], "}"}]], "Output",
CellLabel->
"Out[181]=",ExpressionUUID->"0a18f031-6ff1-43fd-9027-0ca2f24a4e26"]
}, Open ]]
}, Closed]],
Cell[CellGroupData[{
Cell["EdgeLengths", "Subsection",ExpressionUUID->"34b41a70-f3de-4ed6-a601-65dc61807638"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"PolyhedronData", "[",
RowBox[{"pname", ",", "\"\\""}], "]"}]], "Input",
CellLabel->
"In[182]:=",ExpressionUUID->"c12005e0-5640-4d25-86d1-9bdeee9f6c8a"],
Cell[BoxData[
RowBox[{"{", "1", "}"}]], "Output",
CellLabel->
"Out[182]=",ExpressionUUID->"d4118716-4ce9-4de3-a9e3-0ee6575f6726"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{
RowBox[{
RowBox[{"PolyhedronData", "[",
RowBox[{"pname", ",", "\"\\""}], "]"}], "/.",
RowBox[{
RowBox[{"Line", "[", "l_", "]"}], "\[RuleDelayed]",
RowBox[{"EuclideanDistance", "@@", "l"}]}]}], "//", "FullSimplify"}], "//",
"Union"}]], "Input",
CellLabel->
"In[183]:=",ExpressionUUID->"e02e26ab-ae0b-47b6-877f-a5b8a8af9b65"],
Cell[BoxData[
RowBox[{"{", "1", "}"}]], "Output",
CellLabel->
"Out[183]=",ExpressionUUID->"c7bd9582-3ad8-4d82-85c3-e160148755f0"]
}, Open ]]
}, Closed]],
Cell["Faces", "Subsection",ExpressionUUID->"682ce05c-ceaf-4226-ba36-f114876cbda7"],
Cell[CellGroupData[{
Cell["GeneralizedDiameter", "Subsection",ExpressionUUID->"251ba3de-7d56-47e9-8148-c912e1d6d7cc"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"PolyhedronData", "[",
RowBox[{"pname", ",", "\"\\""}], "]"}]], "Input",
CellLabel->
"In[184]:=",ExpressionUUID->"439346ca-46ce-40ad-862e-d62f37fcbbc9"],
Cell[BoxData[
SqrtBox[
RowBox[{
FractionBox["2", "3"], " ",
RowBox[{"(",
RowBox[{"3", "+",
SqrtBox["6"]}], ")"}]}]]], "Output",
CellLabel->
"Out[184]=",ExpressionUUID->"6b2876d4-46c1-4135-b20b-e2beb77d44e3"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"GeneralizedDiameter", "[", "p", "]"}], "//",
"FullSimplify"}]], "Input",
CellLabel->
"In[185]:=",ExpressionUUID->"8b10adaf-30bd-4f6b-b645-805cb63132d1"],
Cell[BoxData[
SqrtBox[
RowBox[{
FractionBox["2", "3"], " ",
RowBox[{"(",
RowBox[{"3", "+",
SqrtBox["6"]}], ")"}]}]]], "Output",
CellLabel->
"Out[185]=",ExpressionUUID->"5502bfb1-fdbb-4cae-982f-18fd73d1ad5b"]
}, Open ]]
}, Closed]],
Cell[CellGroupData[{
Cell["Insphere", "Subsection",ExpressionUUID->"085df129-cd25-4b7c-8e95-84f032f3d1a9"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"PolyhedronData", "[",
RowBox[{"pname", ",", "\"\\""}], "]"}]], "Input",
CellLabel->
"In[186]:=",ExpressionUUID->"b5bf2097-94af-4a63-9188-5672d9b45dae"],
Cell[BoxData[
RowBox[{"Missing", "[", "\<\"NotApplicable\"\>", "]"}]], "Output",
CellLabel->
"Out[186]=",ExpressionUUID->"c6a0846d-61ee-47e2-88d7-9be54494fc7c"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Insphere", "[", "p", "]"}]], "Input",
CellLabel->
"In[187]:=",ExpressionUUID->"74fc9162-d402-4666-8620-ba68f8404146"],
Cell[BoxData[
TemplateBox[{
"Insphere", "indep",
"\"Insphere does not exist for \
\\!\\(\\*InterpretationBox[RowBox[{TagBox[\\\"Polyhedron\\\", \\\"SummaryHead\
\\\"], \\\"[\\\", DynamicModuleBox[{Typeset`open$$ = False, \
Set[Typeset`embedState$$, \\\"Ready\\\"], Set[Typeset`spolyhedron$$, \
Quiet[Polyhedron[List[List[0, 0, Times[Rational[1, 3], Plus[3, Power[6, \
Rational[1, 2]]]]], List[Times[Rational[-1, 2], Power[3, Rational[-1, 2]]], \
Rational[-1, 2], 0], List[Times[Rational[-1, 2], Power[3, Rational[-1, 2]]], \
Rational[-1, 2], 1], List[Times[Rational[-1, 2], Power[3, Rational[-1, 2]]], \
Rational[1, 2], 0], List[Times[Rational[-1, 2], Power[3, Rational[-1, 2]]], \
Rational[1, 2], 1], List[Power[3, Rational[-1, 2]], 0, 0], List[Power[3, \
Rational[-1, 2]], 0, 1]], List[List[5, 3, 1], List[3, 7, 1], List[7, 5, 1], \
List[4, 2, 3, 5], List[2, 6, 7, 3], List[6, 4, 5, 7], List[6, 2, 4]]]]]}, \
TemplateBox[List[PaneSelectorBox[List[Rule[False, \
GridBox[List[List[PaneBox[ButtonBox[DynamicBox[FEPrivate`FrontEndResource[\\\"\
FEBitmaps\\\", \\\"SummaryBoxOpener\\\"]], RuleDelayed[ButtonFunction, \
Set[Typeset`open$$, True]], Rule[Appearance, None], Rule[BaseStyle, List[]], \
Rule[Evaluator, Automatic], Rule[Method, \\\"Preemptive\\\"]], \
Rule[Alignment, List[Center, Center]], Rule[ImageSize, \
Dynamic[List[Automatic, Times[3.5`, \
Times[CurrentValue[\\\"FontCapHeight\\\"], \
Power[AbsoluteCurrentValue[Magnification], -1]]]]]]], \
Graphics3DBox[List[Directive[Hue[0.58`, 0.4`, 1], Opacity[0.5`], \
EdgeForm[GrayLevel[1]]], TagBox[GraphicsComplex3DBox[NCache[List[List[0, 0, \
Times[Rational[1, 3], Plus[3, Power[6, Rational[1, 2]]]]], \
List[Times[Rational[-1, 2], Power[3, Rational[-1, 2]]], Rational[-1, 2], 0], \
List[Times[Rational[-1, 2], Power[3, Rational[-1, 2]]], Rational[-1, 2], 1], \
List[Times[Rational[-1, 2], Power[3, Rational[-1, 2]]], Rational[1, 2], 0], \
List[Times[Rational[-1, 2], Power[3, Rational[-1, 2]]], Rational[1, 2], 1], \
List[Power[3, Rational[-1, 2]], 0, 0], List[Power[3, Rational[-1, 2]], 0, \
1]], List[List[0, 0, 1.8164965809277258`], List[-0.2886751345948129`, -0.5`, \
0], List[-0.2886751345948129`, -0.5`, 1], List[-0.2886751345948129`, 0.5`, \
0], List[-0.2886751345948129`, 0.5`, 1], List[0.5773502691896258`, 0, 0], \
List[0.5773502691896258`, 0, 1]]], Polygon3DBox[List[List[5, 3, 1], List[3, \
7, 1], List[7, 5, 1], List[4, 2, 3, 5], List[2, 6, 7, 3], List[6, 4, 5, 7], \
List[6, 2, 4]]]], \\\"Polyhedron\\\"]], Rule[ImageSize, \
Dynamic[Times[List[5.25`, 3.5`], Times[CurrentValue[\\\"FontCapHeight\\\"], \
Power[AbsoluteCurrentValue[Magnification], -1]]]]], Rule[Boxed, False], \
Rule[Lighting, List[List[\\\"Ambient\\\", RGBColor[0.4`, 0.45`, 0.5`]], List[\
\\\"Directional\\\", RGBColor[0.24`, 0.27`, 0.3`], ImageScaled[List[2, 0, \
2]]], List[\\\"Directional\\\", RGBColor[0.24`, 0.27`, 0.3`], \
ImageScaled[List[2, 2, 2]]], List[\\\"Directional\\\", RGBColor[0.24`, 0.27`, \
0.3`], ImageScaled[List[0, 2, 2]]]]], Rule[Method, List[Rule[\\\"ShrinkWrap\\\
\", True]]]], GridBox[List[List[RowBox[List[TagBox[\\\"\\\\\\\"Number of \
points: \\\\\\\"\\\", \\\"SummaryItemAnnotation\\\"], \
\\\"\\\\[InvisibleSpace]\\\", TagBox[\\\"7\\\", \\\"SummaryItem\\\"]]]], \
List[RowBox[List[TagBox[\\\"\\\\\\\"Number of faces: \\\\\\\"\\\", \
\\\"SummaryItemAnnotation\\\"], \\\"\\\\[InvisibleSpace]\\\", \
TagBox[\\\"7\\\", \\\"SummaryItem\\\"]]]]], Rule[GridBoxAlignment, List[Rule[\
\\\"Columns\\\", List[List[Left]]], Rule[\\\"Rows\\\", \
List[List[Automatic]]]]], Rule[AutoDelete, False], Rule[GridBoxItemSize, \
List[Rule[\\\"Columns\\\", List[List[Automatic]]], Rule[\\\"Rows\\\", \
List[List[Automatic]]]]], Rule[GridBoxSpacings, List[Rule[\\\"Columns\\\", \
List[List[2]]], Rule[\\\"Rows\\\", List[List[Automatic]]]]], Rule[BaseStyle, \
List[Rule[ShowStringCharacters, False], Rule[NumberMarks, False], \
Rule[PrintPrecision, 3], Rule[ShowSyntaxStyles, False]]]]]], \
Rule[GridBoxAlignment, List[Rule[\\\"Columns\\\", List[List[Left]]], \
Rule[\\\"Rows\\\", List[List[Top]]]]], Rule[AutoDelete, False], \
Rule[GridBoxItemSize, List[Rule[\\\"Columns\\\", List[List[Automatic]]], \
Rule[\\\"Rows\\\", List[List[Automatic]]]]], Rule[BaselinePosition, List[1, \
1]]]], Rule[True, \
GridBox[List[List[PaneBox[ButtonBox[DynamicBox[FEPrivate`FrontEndResource[\\\"\
FEBitmaps\\\", \\\"SummaryBoxCloser\\\"]], RuleDelayed[ButtonFunction, \
Set[Typeset`open$$, False]], Rule[Appearance, None], Rule[BaseStyle, List[]], \
Rule[Evaluator, Automatic], Rule[Method, \\\"Preemptive\\\"]], \
Rule[Alignment, List[Center, Center]], Rule[ImageSize, \
Dynamic[List[Automatic, Times[3.5`, \
Times[CurrentValue[\\\"FontCapHeight\\\"], \
Power[AbsoluteCurrentValue[Magnification], -1]]]]]]], \
Graphics3DBox[List[Directive[Hue[0.58`, 0.4`, 1], Opacity[0.5`], \
EdgeForm[GrayLevel[1]]], TagBox[GraphicsComplex3DBox[NCache[List[List[0, 0, \
Times[Rational[1, 3], Plus[3, Power[6, Rational[1, 2]]]]], \
List[Times[Rational[-1, 2], Power[3, Rational[-1, 2]]], Rational[-1, 2], 0], \
List[Times[Rational[-1, 2], Power[3, Rational[-1, 2]]], Rational[-1, 2], 1], \
List[Times[Rational[-1, 2], Power[3, Rational[-1, 2]]], Rational[1, 2], 0], \
List[Times[Rational[-1, 2], Power[3, Rational[-1, 2]]], Rational[1, 2], 1], \
List[Power[3, Rational[-1, 2]], 0, 0], List[Power[3, Rational[-1, 2]], 0, \
1]], List[List[0, 0, 1.8164965809277258`], List[-0.2886751345948129`, -0.5`, \
0], List[-0.2886751345948129`, -0.5`, 1], List[-0.2886751345948129`, 0.5`, \
0], List[-0.2886751345948129`, 0.5`, 1], List[0.5773502691896258`, 0, 0], \
List[0.5773502691896258`, 0, 1]]], Polygon3DBox[List[List[5, 3, 1], List[3, \
7, 1], List[7, 5, 1], List[4, 2, 3, 5], List[2, 6, 7, 3], List[6, 4, 5, 7], \
List[6, 2, 4]]]], \\\"Polyhedron\\\"]], Rule[ImageSize, \
Dynamic[Times[List[5.25`, 3.5`], Times[CurrentValue[\\\"FontCapHeight\\\"], \
Power[AbsoluteCurrentValue[Magnification], -1]]]]], Rule[Boxed, False], \
Rule[Lighting, List[List[\\\"Ambient\\\", RGBColor[0.4`, 0.45`, 0.5`]], List[\
\\\"Directional\\\", RGBColor[0.24`, 0.27`, 0.3`], ImageScaled[List[2, 0, \
2]]], List[\\\"Directional\\\", RGBColor[0.24`, 0.27`, 0.3`], \
ImageScaled[List[2, 2, 2]]], List[\\\"Directional\\\", RGBColor[0.24`, 0.27`, \
0.3`], ImageScaled[List[0, 2, 2]]]]], Rule[Method, List[Rule[\\\"ShrinkWrap\\\
\", True]]]], GridBox[List[List[RowBox[List[TagBox[\\\"\\\\\\\"Number of \
points: \\\\\\\"\\\", \\\"SummaryItemAnnotation\\\"], \
\\\"\\\\[InvisibleSpace]\\\", TagBox[\\\"7\\\", \\\"SummaryItem\\\"]]]], \
List[RowBox[List[TagBox[\\\"\\\\\\\"Number of faces: \\\\\\\"\\\", \
\\\"SummaryItemAnnotation\\\"], \\\"\\\\[InvisibleSpace]\\\", \
TagBox[\\\"7\\\", \\\"SummaryItem\\\"]]]], List[RowBox[List[TagBox[\\\"\\\\\\\
\"Embedding dimension: \\\\\\\"\\\", \\\"SummaryItemAnnotation\\\"], \
\\\"\\\\[InvisibleSpace]\\\", TagBox[\\\"3\\\", \\\"SummaryItem\\\"]]]], \
List[RowBox[List[TagBox[\\\"\\\\\\\"Type: \\\\\\\"\\\", \
\\\"SummaryItemAnnotation\\\"], \\\"\\\\[InvisibleSpace]\\\", \
TagBox[DynamicBox[ToBoxes[Quiet[Apply[Region`PolyhedronDump`polyhedronType, \
Region`PolyhedronDump`computeType[Typeset`spolyhedron$$]]], StandardForm], \
Rule[SynchronousUpdating, False], RuleDelayed[TrackedSymbols, List[]], \
RuleDelayed[CachedValue, AnimatorBox[0, List[0, Infinity], \
Rule[AppearanceElements, \\\"ProgressSlider\\\"], Rule[ImageSize, 20]]]], \
\\\"SummaryItem\\\"]]]], List[RowBox[List[TagBox[\\\"\\\\\\\"Bounds: \\\\\\\"\
\\\", \\\"SummaryItemAnnotation\\\"], \\\"\\\\[InvisibleSpace]\\\", \
TagBox[DynamicBox[ToBoxes[Region`PolyhedronDump`iRegionBounds[Typeset`\
spolyhedron$$], StandardForm], Rule[SynchronousUpdating, False], \
RuleDelayed[TrackedSymbols, List[]], RuleDelayed[CachedValue, AnimatorBox[0, \
List[0, Infinity], Rule[AppearanceElements, \\\"ProgressSlider\\\"], \
Rule[ImageSize, 20]]]], \\\"SummaryItem\\\"]]]], List[RowBox[List[TagBox[\\\"\
\\\\\\\"Volume: \\\\\\\"\\\", \\\"SummaryItemAnnotation\\\"], \
\\\"\\\\[InvisibleSpace]\\\", \
TagBox[DynamicBox[ToBoxes[Region`PolyhedronDump`iVolume[Typeset`spolyhedron$$]\
, StandardForm], Rule[SynchronousUpdating, False], \
RuleDelayed[TrackedSymbols, List[]], RuleDelayed[CachedValue, AnimatorBox[0, \
List[0, Infinity], Rule[AppearanceElements, \\\"ProgressSlider\\\"], \
Rule[ImageSize, 20]]]], \\\"SummaryItem\\\"]]]]], Rule[GridBoxAlignment, \
List[Rule[\\\"Columns\\\", List[List[Left]]], Rule[\\\"Rows\\\", \
List[List[Automatic]]]]], Rule[AutoDelete, False], Rule[GridBoxItemSize, \
List[Rule[\\\"Columns\\\", List[List[Automatic]]], Rule[\\\"Rows\\\", \
List[List[Automatic]]]]], Rule[GridBoxSpacings, List[Rule[\\\"Columns\\\", \
List[List[2]]], Rule[\\\"Rows\\\", List[List[Automatic]]]]], Rule[BaseStyle, \
List[Rule[ShowStringCharacters, False], Rule[NumberMarks, False], \
Rule[PrintPrecision, 3], Rule[ShowSyntaxStyles, False]]]]]], \
Rule[GridBoxAlignment, List[Rule[\\\"Columns\\\", List[List[Left]]], \
Rule[\\\"Rows\\\", List[List[Top]]]]], Rule[AutoDelete, False], \
Rule[GridBoxItemSize, List[Rule[\\\"Columns\\\", List[List[Automatic]]], \
Rule[\\\"Rows\\\", List[List[Automatic]]]]], Rule[BaselinePosition, List[1, \
1]]]]], Dynamic[Typeset`open$$], Rule[ImageSize, Automatic]]], \
\\\"SummaryPanel\\\"], RuleDelayed[DynamicModuleValues, List[]]], \
\\\"]\\\"}], Polyhedron[List[List[0, 0, Times[Rational[1, 3], Plus[3, \
Power[6, Rational[1, 2]]]]], List[Times[Rational[-1, 2], Power[3, \
Rational[-1, 2]]], Rational[-1, 2], 0], List[Times[Rational[-1, 2], Power[3, \
Rational[-1, 2]]], Rational[-1, 2], 1], List[Times[Rational[-1, 2], Power[3, \
Rational[-1, 2]]], Rational[1, 2], 0], List[Times[Rational[-1, 2], Power[3, \
Rational[-1, 2]]], Rational[1, 2], 1], List[Power[3, Rational[-1, 2]], 0, 0], \
List[Power[3, Rational[-1, 2]], 0, 1]], List[List[5, 3, 1], List[3, 7, 1], \
List[7, 5, 1], List[4, 2, 3, 5], List[2, 6, 7, 3], List[6, 4, 5, 7], List[6, \
2, 4]]], Rule[Selectable, False], Rule[Editable, False], \
Rule[SelectWithContents, True]]\\).\"", 2, 187, 46, 19516473296632108012,
"Local"},
"MessageTemplate"]], "Message", "MSG",
CellLabel->
"During evaluation of \
In[187]:=",ExpressionUUID->"a22b9453-8610-450b-a614-2305f200b215"],
Cell[BoxData[
RowBox[{"Insphere", "[",
InterpretationBox[
RowBox[{
TagBox["Polyhedron",
"SummaryHead"], "[",
DynamicModuleBox[{Typeset`open$$ = False, Typeset`embedState$$ = "Ready",
Typeset`spolyhedron$$ = Quiet[
Polyhedron[{{0, 0, Rational[1, 3] (3 + 6^Rational[1, 2])}, {
Rational[-1, 2] 3^Rational[-1, 2],
Rational[-1, 2], 0}, {Rational[-1, 2] 3^Rational[-1, 2],
Rational[-1, 2], 1}, {Rational[-1, 2] 3^Rational[-1, 2],
Rational[1, 2], 0}, {Rational[-1, 2] 3^Rational[-1, 2],
Rational[1, 2], 1}, {3^Rational[-1, 2], 0, 0}, {
3^Rational[-1, 2], 0, 1}}, {{5, 3, 1}, {3, 7, 1}, {7, 5, 1}, {4, 2, 3,
5}, {2, 6, 7, 3}, {6, 4, 5, 7}, {6, 2, 4}}]]},
TemplateBox[{
PaneSelectorBox[{False -> GridBox[{{
PaneBox[
ButtonBox[
DynamicBox[
FEPrivate`FrontEndResource["FEBitmaps", "SummaryBoxOpener"]],
ButtonFunction :> (Typeset`open$$ = True), Appearance -> None,
BaseStyle -> {}, Evaluator -> Automatic, Method ->
"Preemptive"], Alignment -> {Center, Center}, ImageSize ->
Dynamic[{
Automatic,
3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[
Magnification])}]],
Graphics3DBox[{
Directive[
Hue[0.58, 0.4, 1],
Opacity[0.5],
EdgeForm[
GrayLevel[1]]],
TagBox[
GraphicsComplex3DBox[
NCache[{{0, 0, Rational[1, 3] (3 + 6^Rational[1, 2])}, {
Rational[-1, 2] 3^Rational[-1, 2],
Rational[-1, 2], 0}, {Rational[-1, 2] 3^Rational[-1, 2],
Rational[-1, 2], 1}, {Rational[-1, 2] 3^Rational[-1, 2],
Rational[1, 2], 0}, {Rational[-1, 2] 3^Rational[-1, 2],
Rational[1, 2], 1}, {3^Rational[-1, 2], 0, 0}, {
3^Rational[-1, 2], 0, 1}}, {{
0, 0, 1.8164965809277258`}, {-0.2886751345948129, -0.5,
0}, {-0.2886751345948129, -0.5, 1}, {-0.2886751345948129,
0.5, 0}, {-0.2886751345948129, 0.5, 1}, {
0.5773502691896258, 0, 0}, {0.5773502691896258, 0, 1}}],
Polygon3DBox[{{5, 3, 1}, {3, 7, 1}, {7, 5, 1}, {4, 2, 3,
5}, {2, 6, 7, 3}, {6, 4, 5, 7}, {6, 2, 4}}]],
"Polyhedron"]}, ImageSize ->
Dynamic[{5.25, 3.5} (CurrentValue["FontCapHeight"]/
AbsoluteCurrentValue[Magnification])], Boxed -> False,
Lighting -> {{"Ambient",
RGBColor[0.4, 0.45, 0.5]}, {"Directional",
RGBColor[0.24, 0.27, 0.3],
ImageScaled[{2, 0, 2}]}, {"Directional",
RGBColor[0.24, 0.27, 0.3],
ImageScaled[{2, 2, 2}]}, {"Directional",
RGBColor[0.24, 0.27, 0.3],
ImageScaled[{0, 2, 2}]}}, Method -> {"ShrinkWrap" -> True}],
GridBox[{{
RowBox[{
TagBox["\"Number of points: \"", "SummaryItemAnnotation"],
"\[InvisibleSpace]",
TagBox["7", "SummaryItem"]}]}, {
RowBox[{
TagBox["\"Number of faces: \"", "SummaryItemAnnotation"],
"\[InvisibleSpace]",
TagBox["7", "SummaryItem"]}]}},
GridBoxAlignment -> {
"Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete ->
False, GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}},
GridBoxSpacings -> {
"Columns" -> {{2}}, "Rows" -> {{Automatic}}},
BaseStyle -> {
ShowStringCharacters -> False, NumberMarks -> False,
PrintPrecision -> 3, ShowSyntaxStyles -> False}]}},
GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}},
AutoDelete -> False,
GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}},
BaselinePosition -> {1, 1}], True -> GridBox[{{
PaneBox[
ButtonBox[
DynamicBox[
FEPrivate`FrontEndResource["FEBitmaps", "SummaryBoxCloser"]],
ButtonFunction :> (Typeset`open$$ = False), Appearance -> None,
BaseStyle -> {}, Evaluator -> Automatic, Method ->
"Preemptive"], Alignment -> {Center, Center}, ImageSize ->
Dynamic[{
Automatic,
3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[
Magnification])}]],
Graphics3DBox[{
Directive[
Hue[0.58, 0.4, 1],
Opacity[0.5],
EdgeForm[
GrayLevel[1]]],
TagBox[
GraphicsComplex3DBox[
NCache[{{0, 0, Rational[1, 3] (3 + 6^Rational[1, 2])}, {
Rational[-1, 2] 3^Rational[-1, 2],
Rational[-1, 2], 0}, {Rational[-1, 2] 3^Rational[-1, 2],
Rational[-1, 2], 1}, {Rational[-1, 2] 3^Rational[-1, 2],
Rational[1, 2], 0}, {Rational[-1, 2] 3^Rational[-1, 2],
Rational[1, 2], 1}, {3^Rational[-1, 2], 0, 0}, {
3^Rational[-1, 2], 0, 1}}, {{
0, 0, 1.8164965809277258`}, {-0.2886751345948129, -0.5,
0}, {-0.2886751345948129, -0.5, 1}, {-0.2886751345948129,
0.5, 0}, {-0.2886751345948129, 0.5, 1}, {
0.5773502691896258, 0, 0}, {0.5773502691896258, 0, 1}}],
Polygon3DBox[{{5, 3, 1}, {3, 7, 1}, {7, 5, 1}, {4, 2, 3,
5}, {2, 6, 7, 3}, {6, 4, 5, 7}, {6, 2, 4}}]],
"Polyhedron"]}, ImageSize ->
Dynamic[{5.25, 3.5} (CurrentValue["FontCapHeight"]/
AbsoluteCurrentValue[Magnification])], Boxed -> False,
Lighting -> {{"Ambient",
RGBColor[0.4, 0.45, 0.5]}, {"Directional",
RGBColor[0.24, 0.27, 0.3],
ImageScaled[{2, 0, 2}]}, {"Directional",
RGBColor[0.24, 0.27, 0.3],
ImageScaled[{2, 2, 2}]}, {"Directional",
RGBColor[0.24, 0.27, 0.3],
ImageScaled[{0, 2, 2}]}}, Method -> {"ShrinkWrap" -> True}],
GridBox[{{
RowBox[{
TagBox["\"Number of points: \"", "SummaryItemAnnotation"],
"\[InvisibleSpace]",
TagBox["7", "SummaryItem"]}]}, {
RowBox[{
TagBox["\"Number of faces: \"", "SummaryItemAnnotation"],
"\[InvisibleSpace]",
TagBox["7", "SummaryItem"]}]}, {
RowBox[{
TagBox[
"\"Embedding dimension: \"", "SummaryItemAnnotation"],
"\[InvisibleSpace]",
TagBox["3", "SummaryItem"]}]}, {
RowBox[{
TagBox["\"Type: \"", "SummaryItemAnnotation"],
"\[InvisibleSpace]",
TagBox[
DynamicBox[
ToBoxes[
Quiet[
Apply[Region`PolyhedronDump`polyhedronType,
Region`PolyhedronDump`computeType[
Typeset`spolyhedron$$]]], StandardForm],
SynchronousUpdating -> False, TrackedSymbols :> {},
CachedValue :>
AnimatorBox[
0, {0, Infinity}, AppearanceElements -> "ProgressSlider",
ImageSize -> 20]], "SummaryItem"]}]}, {
RowBox[{
TagBox["\"Bounds: \"", "SummaryItemAnnotation"],
"\[InvisibleSpace]",
TagBox[
DynamicBox[
ToBoxes[
Region`PolyhedronDump`iRegionBounds[
Typeset`spolyhedron$$], StandardForm],
SynchronousUpdating -> False, TrackedSymbols :> {},
CachedValue :>
AnimatorBox[
0, {0, Infinity}, AppearanceElements -> "ProgressSlider",
ImageSize -> 20]], "SummaryItem"]}]}, {
RowBox[{
TagBox["\"Volume: \"", "SummaryItemAnnotation"],
"\[InvisibleSpace]",
TagBox[
DynamicBox[
ToBoxes[
Region`PolyhedronDump`iVolume[Typeset`spolyhedron$$],
StandardForm], SynchronousUpdating -> False,
TrackedSymbols :> {}, CachedValue :>
AnimatorBox[
0, {0, Infinity}, AppearanceElements -> "ProgressSlider",
ImageSize -> 20]], "SummaryItem"]}]}},
GridBoxAlignment -> {
"Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete ->
False, GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}},
GridBoxSpacings -> {
"Columns" -> {{2}}, "Rows" -> {{Automatic}}},
BaseStyle -> {
ShowStringCharacters -> False, NumberMarks -> False,
PrintPrecision -> 3, ShowSyntaxStyles -> False}]}},
GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}},
AutoDelete -> False,
GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}},
BaselinePosition -> {1, 1}]},
Dynamic[Typeset`open$$], ImageSize -> Automatic]},
"SummaryPanel"],
DynamicModuleValues:>{}], "]"}],
Polyhedron[{{0, 0, Rational[1, 3] (3 + 6^Rational[1, 2])}, {
Rational[-1, 2] 3^Rational[-1, 2],
Rational[-1, 2], 0}, {Rational[-1, 2] 3^Rational[-1, 2],
Rational[-1, 2], 1}, {Rational[-1, 2] 3^Rational[-1, 2],
Rational[1, 2], 0}, {Rational[-1, 2] 3^Rational[-1, 2],
Rational[1, 2], 1}, {3^Rational[-1, 2], 0, 0}, {
3^Rational[-1, 2], 0, 1}}, {{5, 3, 1}, {3, 7, 1}, {7, 5, 1}, {4, 2, 3,
5}, {2, 6, 7, 3}, {6, 4, 5, 7}, {6, 2, 4}}],
Editable->False,
SelectWithContents->True,
Selectable->False], "]"}]], "Output",
CellLabel->
"Out[187]=",ExpressionUUID->"74526d21-a99a-4db0-8706-b2d6693895ea"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"MyInsphere", "[", "p", "]"}]], "Input",
CellLabel->
"In[188]:=",ExpressionUUID->"ab55edd5-5fa3-4558-9057-00adf8684292"],
Cell[BoxData[
RowBox[{"{", "}"}]], "Output",
CellLabel->
"Out[188]=",ExpressionUUID->"60d90fab-47c3-4a48-9126-8c6d5919ad21"]
}, Open ]]
}, Closed]],
Cell[CellGroupData[{
Cell["InertiaTensor", "Subsection",ExpressionUUID->"537e0b8b-ce29-4a76-bb9e-dc7bfddc5666"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"PolyhedronData", "[",
RowBox[{"pname", ",", "\"\\""}], "]"}]], "Input",
CellLabel->
"In[189]:=",ExpressionUUID->"a4471f11-764f-4186-94b7-bba37ff69416"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
FractionBox[
RowBox[{"1313", "+",
RowBox[{"218", " ",
SqrtBox["6"]}]}], "3000"], ",", "0", ",", "0"}], "}"}], ",",
RowBox[{"{",
RowBox[{"0", ",",
FractionBox[
RowBox[{"1313", "+",
RowBox[{"218", " ",
SqrtBox["6"]}]}], "3000"], ",", "0"}], "}"}], ",",
RowBox[{"{",
RowBox[{"0", ",", "0", ",",
RowBox[{
FractionBox["1", "500"], " ",
RowBox[{"(",
RowBox[{"43", "-",
RowBox[{"2", " ",
SqrtBox["6"]}]}], ")"}]}]}], "}"}]}], "}"}]], "Output",
CellLabel->
"Out[189]=",ExpressionUUID->"49e12fb2-f96c-4c91-9b83-e6d50011822e"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{
FractionBox[
RowBox[{"MomentOfInertia", "[",
RowBox[{"p", ",",
RowBox[{"{",
RowBox[{"0", ",", "0", ",", "0"}], "}"}]}], "]"}],
RowBox[{"Volume", "[", "p", "]"}]], "//", "RootReduce"}], "//",
"Timing"}]], "Input",
CellLabel->
"In[190]:=",ExpressionUUID->"c813954c-ebca-4daa-937d-fa520c3e026f"],
Cell[BoxData[
RowBox[{"{",
RowBox[{"0.098872`", ",",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
FractionBox[
RowBox[{"1313", "+",
RowBox[{"218", " ",
SqrtBox["6"]}]}], "3000"], ",", "0", ",", "0"}], "}"}], ",",
RowBox[{"{",
RowBox[{"0", ",",
FractionBox[
RowBox[{"1313", "+",
RowBox[{"218", " ",
SqrtBox["6"]}]}], "3000"], ",", "0"}], "}"}], ",",
RowBox[{"{",
RowBox[{"0", ",", "0", ",",
RowBox[{
FractionBox["1", "500"], " ",
RowBox[{"(",
RowBox[{"43", "-",
RowBox[{"2", " ",
SqrtBox["6"]}]}], ")"}]}]}], "}"}]}], "}"}]}], "}"}]], "Output",
CellLabel->
"Out[190]=",ExpressionUUID->"080a49bc-8a3e-4c44-a53d-e3a0ef3c12b9"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"PolyhedronInertiaTensor", "[", "p", "]"}], "//",
"Timing"}]], "Input",
CellLabel->
"In[191]:=",ExpressionUUID->"80ad87e9-e68f-4b9e-9b59-d15e1a3b8010"],
Cell[BoxData[
RowBox[{"{",
RowBox[{"0.156452`", ",",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
FractionBox[
RowBox[{"1313", "+",
RowBox[{"218", " ",
SqrtBox["6"]}]}], "3000"], ",", "0", ",", "0"}], "}"}], ",",
RowBox[{"{",
RowBox[{"0", ",",
FractionBox[
RowBox[{"1313", "+",
RowBox[{"218", " ",
SqrtBox["6"]}]}], "3000"], ",", "0"}], "}"}], ",",
RowBox[{"{",
RowBox[{"0", ",", "0", ",",
RowBox[{
FractionBox["1", "500"], " ",
RowBox[{"(",
RowBox[{"43", "-",
RowBox[{"2", " ",
SqrtBox["6"]}]}], ")"}]}]}], "}"}]}], "}"}]}], "}"}]], "Output",
CellLabel->
"Out[191]=",ExpressionUUID->"e27d014b-6294-493a-ae07-c3da0138ad8c"]
}, Open ]]
}, Closed]],
Cell[CellGroupData[{
Cell["MeanCylindricalRadius", "Subsection",ExpressionUUID->"61da4e9d-30b6-4caf-a838-47a746cf0ef4"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"PolyhedronData", "[",
RowBox[{"pname", ",", "\"\\""}], "]"}]], "Input",
CellLabel->"In[2]:=",ExpressionUUID->"5cfa1736-0be0-4638-9506-f9442f4a1f29"],
Cell[BoxData[
FractionBox[
RowBox[{
RowBox[{
RowBox[{"-", "18"}], " ",
SqrtBox["2"]}], "+",
RowBox[{"204", " ",
SqrtBox["3"]}], "+",
RowBox[{
RowBox[{"(",
RowBox[{"11", "-",
RowBox[{"4", " ",
SqrtBox["6"]}]}], ")"}], " ",
RowBox[{"Log", "[",
RowBox[{"2", "-",
SqrtBox["3"]}], "]"}]}], "+",
RowBox[{
RowBox[{"(",
RowBox[{"113", "-",
RowBox[{"7", " ",
SqrtBox["6"]}]}], ")"}], " ",
RowBox[{"Log", "[",
RowBox[{"2", "+",
SqrtBox["3"]}], "]"}]}]}], "1800"]], "Output",
CellLabel->"Out[2]=",ExpressionUUID->"8f28f6d2-8e08-4069-b785-3593b3a61cdd"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"N", "[", "%", "]"}]], "Input",
CellLabel->"In[3]:=",ExpressionUUID->"46cd4039-6173-469f-a17b-9e1e5a527688"],
Cell[BoxData["0.2514081119594903`"], "Output",
CellLabel->"Out[3]=",ExpressionUUID->"0f3add32-45e5-450c-950d-7bb817debe02"]
}, Open ]],
Cell[CellGroupData[{
Cell["Integrate over polyhedron", "Subsubsection",ExpressionUUID->"b78c4201-9bd1-49b1-b568-3c4bd56f9804"],
Cell[CellGroupData[{
Cell[BoxData[
FractionBox[
RowBox[{"NIntegrate", "[",
RowBox[{
SqrtBox[
RowBox[{
SuperscriptBox["x", "2"], "+",
SuperscriptBox["y", "2"]}]], ",",
RowBox[{
RowBox[{"{",
RowBox[{"x", ",", "y", ",", "z"}], "}"}], "\[Element]", "p"}]}], "]"}],
"vol"]], "Input",ExpressionUUID->"b157896b-5500-4f78-a4a9-7eca118910d3"],
Cell[BoxData[
TemplateBox[{
"NIntegrate", "slwcon",
"\"Numerical integration converging too slowly; suspect one of the \
following: singularity, value of the integration is 0, highly oscillatory \
integrand, or WorkingPrecision too small.\"", 2, 192, 47,
19516473296632108012, "Local"},
"MessageTemplate"]], "Message", "MSG",
CellLabel->
"During evaluation of \
In[192]:=",ExpressionUUID->"4738aeb0-ad7e-406d-b5c2-135185f15a4b"],
Cell[BoxData["0.2514081258839375`"], "Output",
CellLabel->
"Out[192]=",ExpressionUUID->"a91c6664-7ac2-46f9-a124-1147a3df92f2"]
}, Open ]],
Cell[BoxData[
RowBox[{
RowBox[{"(",
RowBox[{"i", "=",
FractionBox[
RowBox[{"Integrate", "[",
RowBox[{
SqrtBox[
RowBox[{
SuperscriptBox["x", "2"], "+",
SuperscriptBox["y", "2"]}]], ",",
RowBox[{
RowBox[{"{",
RowBox[{"x", ",", "y", ",", "z"}], "}"}], "\[Element]", "p"}]}],
"]"}], "vol"]}], ")"}], "//", "Timing"}]], "Input",ExpressionUUID->\
"1eaf88c5-ea13-45e6-a226-23710bc1a6b5"],
Cell[BoxData[
RowBox[{"N", "[", "i", "]"}]], "Input",ExpressionUUID->"6ecdcfbe-90a1-4730-a16e-f3b26abaaff0"]
}, Closed]],
Cell[CellGroupData[{
Cell["Integrate using Boole", "Subsubsection",ExpressionUUID->"61a6a4e4-1b90-43fe-b36b-15b8345112d4"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"ineq", "=",
RowBox[{
RowBox[{
RowBox[{"PolyhedronData", "[",
RowBox[{"pname", ",", "\"\\""}], "]"}], "[",
RowBox[{"x", ",", "y", ",", "z"}], "]"}], "//",
"FullSimplify"}]}]], "Input",
CellLabel->
"(V12.3.0 (1)) \
In[3]:=",ExpressionUUID->"40c6e8da-ab70-4fed-9163-b5826a9e7399"],
Cell[BoxData[
RowBox[{
RowBox[{
RowBox[{
SqrtBox["3"], " ", "z"}], "\[LessEqual]",
RowBox[{
SqrtBox["2"], "+",
SqrtBox["3"], "+",
RowBox[{"2", " ",
SqrtBox["6"], " ", "x"}]}]}], "&&",
RowBox[{
RowBox[{
RowBox[{
SqrtBox["6"], " ", "x"}], "+",
RowBox[{
SqrtBox["3"], " ", "z"}]}], "\[LessEqual]",
RowBox[{
SqrtBox["2"], "+",
SqrtBox["3"], "+",
RowBox[{"3", " ",
SqrtBox["2"], " ", "y"}]}]}], "&&",
RowBox[{
RowBox[{
RowBox[{
SqrtBox["6"], " ", "x"}], "+",
RowBox[{"3", " ",
SqrtBox["2"], " ", "y"}], "+",
RowBox[{
SqrtBox["3"], " ", "z"}]}], "\[LessEqual]",
RowBox[{
SqrtBox["2"], "+",
SqrtBox["3"]}]}], "&&",
RowBox[{
RowBox[{
SqrtBox["3"], "+",
RowBox[{"6", " ", "x"}]}], "\[GreaterEqual]", "0"}], "&&",
RowBox[{
RowBox[{"3", " ", "x"}], "\[LessEqual]",
RowBox[{
SqrtBox["3"], " ",
RowBox[{"(",
RowBox[{"1", "+",
RowBox[{"3", " ", "y"}]}], ")"}]}]}], "&&",
RowBox[{
RowBox[{
RowBox[{"3", " ", "x"}], "+",
RowBox[{
SqrtBox["3"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+",
RowBox[{"3", " ", "y"}]}], ")"}]}]}], "\[LessEqual]", "0"}], "&&",
RowBox[{"z", "\[GreaterEqual]", "0"}]}]], "Output",
CellLabel->
"(V12.3.0 (1)) \
Out[3]=",ExpressionUUID->"e1a396c6-e46f-448a-bc6c-6c804b2ec047"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"(",
RowBox[{"i", "=",
FractionBox[
RowBox[{"Integrate", "[",
RowBox[{
RowBox[{
SqrtBox[
RowBox[{
SuperscriptBox["x", "2"], "+",
SuperscriptBox["y", "2"]}]],
RowBox[{"Boole", "[", "ineq", "]"}]}], ",",
RowBox[{"{",
RowBox[{"x", ",",
RowBox[{"-", "\[Infinity]"}], ",", "\[Infinity]"}], "}"}], ",",
RowBox[{"{",
RowBox[{"y", ",",
RowBox[{"-", "\[Infinity]"}], ",", "\[Infinity]"}], "}"}], ",",
RowBox[{"{",
RowBox[{"z", ",",
RowBox[{"-", "\[Infinity]"}], ",", "\[Infinity]"}], "}"}]}], "]"}],
"vol"]}], ")"}], "//", "Timing"}]], "Input",ExpressionUUID->"a64f7007-\
1999-4bb6-a182-2a6f93a40b03"],
Cell[BoxData[
RowBox[{"{",
RowBox[{"96.654795`", ",",
RowBox[{
FractionBox["1",
RowBox[{"1728", " ",
RowBox[{"(",
RowBox[{
SqrtBox["2"], "+",
RowBox[{"3", " ",
SqrtBox["3"]}]}], ")"}]}]],
RowBox[{"(",
RowBox[{"1728", "+",
RowBox[{"144", " ",
SqrtBox["6"]}], "-",
RowBox[{"32", " ",
SqrtBox["2"], " ",
RowBox[{"Log", "[", "3", "]"}]}], "-",
RowBox[{"27", " ",
SqrtBox["3"], " ",
RowBox[{"Log", "[", "3", "]"}]}], "+",
RowBox[{"3", " ",
SqrtBox["3"], " ",
RowBox[{"Log", "[",
RowBox[{"21", "-",
RowBox[{"12", " ",
SqrtBox["3"]}]}], "]"}]}], "-",
RowBox[{"24", " ",
SqrtBox["2"], " ",
RowBox[{"Log", "[",
RowBox[{"2", "+",
SqrtBox["3"]}], "]"}]}], "+",
RowBox[{"246", " ",
SqrtBox["3"], " ",
RowBox[{"Log", "[",
RowBox[{"2", "+",
SqrtBox["3"]}], "]"}]}], "+",
RowBox[{"48", " ",
SqrtBox["3"], " ",
RowBox[{"Log", "[",
RowBox[{"3", "+",
RowBox[{"2", " ",
SqrtBox["3"]}]}], "]"}]}], "+",
RowBox[{"16", " ",
SqrtBox["2"], " ",
RowBox[{"Log", "[",
RowBox[{"45", "+",
RowBox[{"26", " ",
SqrtBox["3"]}]}], "]"}]}], "+",
RowBox[{"16", " ",
SqrtBox["2"], " ",
RowBox[{"Log", "[",
RowBox[{"135", "+",
RowBox[{"78", " ",
SqrtBox["3"]}]}], "]"}]}]}], ")"}]}]}], "}"}]], "Output",
CellLabel->
"(V12.3.0 (1)) \
Out[4]=",ExpressionUUID->"8af82a31-7e7a-402a-8a9f-e8ac941755df"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"Log", "[",
RowBox[{
RowBox[{"3", "+",
RowBox[{"2", " ",
SqrtBox["3"]}]}], ",",
RowBox[{"45", "+",
RowBox[{"26", " ",
SqrtBox["3"]}]}]}], "]"}], "//", "N"}]], "Input",
CellLabel->"In[60]:=",ExpressionUUID->"b800a91e-36af-40ee-b347-c2a3d698972a"],
Cell[BoxData["2.41133073113971`"], "Output",
CellLabel->"Out[60]=",ExpressionUUID->"3ce4e589-9abf-4b4d-9b94-04e6497da812"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"Log", "[",
RowBox[{
RowBox[{"2", "+",
SqrtBox["3"]}], ",",
RowBox[{"45", "+",
RowBox[{"26", " ",
SqrtBox["3"]}]}]}], "]"}], "//", "N"}]], "Input",ExpressionUUID->\
"97ec1fdf-597d-4837-9ae9-bca1c79c1557"],
Cell[BoxData["3.417102282173729`"], "Output",
CellLabel->"Out[59]=",ExpressionUUID->"803c07f1-4683-4846-8ec6-ea85ef3c6a2c"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"Log", "[",
RowBox[{
RowBox[{"3", "+",
SqrtBox["3"]}], ",",
RowBox[{"45", "+",
RowBox[{"26", " ",
SqrtBox["3"]}]}]}], "]"}], "//", "N"}]], "Input",
CellLabel->"In[58]:=",ExpressionUUID->"18b0976b-b0e2-402a-93b2-3fa913c51773"],
Cell[BoxData["2.895200370484377`"], "Output",
CellLabel->"Out[58]=",ExpressionUUID->"25e27c36-75ce-429b-ae56-3ce2f2584fea"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
FractionBox[
RowBox[{"Log", "[",
RowBox[{"135", "+",
RowBox[{"78", " ",
SqrtBox["3"]}]}], "]"}],
RowBox[{"Log", "[",
RowBox[{"3", "+",
RowBox[{"2",
SqrtBox["3"]}]}], "]"}]], "//", "FullSimplify"}]], "Input",
CellLabel->
"(V12.3.0 (1)) \
In[22]:=",ExpressionUUID->"ec72e3f4-457c-49b0-b082-bcdcba105e21"],
Cell[BoxData["3"], "Output",
CellLabel->
"(V12.3.0 (1)) \
Out[22]=",ExpressionUUID->"3aa5de14-6277-4e91-8113-b17441813281"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
SuperscriptBox[
RowBox[{"(",
RowBox[{"3", "-",
RowBox[{"2",
SqrtBox["3"]}]}], ")"}], "2"], "//", "Expand"}]], "Input",
CellLabel->
"(V12.3.0 (1)) \
In[48]:=",ExpressionUUID->"8ebf1025-40fe-429f-99b7-5a01114f3e61"],
Cell[BoxData[
RowBox[{"21", "-",
RowBox[{"12", " ",
SqrtBox["3"]}]}]], "Output",
CellLabel->
"(V12.3.0 (1)) \
Out[48]=",ExpressionUUID->"ec532311-fc2b-428a-9816-c9a3099d65ce"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Cases", "[",
RowBox[{
RowBox[{"Flatten", "[",
RowBox[{
RowBox[{"Table", "[",
RowBox[{
RowBox[{"{",
RowBox[{"a", ",", "b", ",", "n", ",",
RowBox[{
SuperscriptBox[
RowBox[{"(",
RowBox[{"a", "+",
RowBox[{"b", " ",
RowBox[{"Sqrt", "[", "3", "]"}]}]}], ")"}], "n"], "//",
"Expand"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"n", ",", "10"}], "}"}], ",",
RowBox[{"{",
RowBox[{"a", ",",
RowBox[{"-", "10"}], ",", "10"}], "}"}], ",",
RowBox[{"{",
RowBox[{"b", ",",
RowBox[{"-", "10"}], ",", "10"}], "}"}]}], "]"}], ",", "2"}], "]"}],
",",
RowBox[{"{",
RowBox[{"__", ",",
RowBox[{"45", "+",
RowBox[{"26", " ",
SqrtBox["3"]}]}]}], "}"}]}], "]"}]], "Input",
CellLabel->
"(V12.3.0 (1)) \
In[91]:=",ExpressionUUID->"566d2d20-7be0-4929-83b0-a7b16fd62bf1"],
Cell[BoxData[
RowBox[{"{", "}"}]], "Output",
CellLabel->
"(V12.3.0 (1)) \
Out[91]=",ExpressionUUID->"fe711f72-4716-48c2-b445-681472d06f6b"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{
FractionBox["1",
RowBox[{"1728", " ",
RowBox[{"(",
RowBox[{
SqrtBox["2"], "+",
RowBox[{"3", " ",
SqrtBox["3"]}]}], ")"}]}]],
RowBox[{"(",
RowBox[{"1728", "+",
RowBox[{"144", " ",
SqrtBox["6"]}], "-",
RowBox[{"32", " ",
SqrtBox["2"], " ",
RowBox[{"Log", "[", "3", "]"}]}], "-",
RowBox[{"27", " ",
SqrtBox["3"], " ",
RowBox[{"Log", "[", "3", "]"}]}], "+",
RowBox[{"3", " ",
SqrtBox["3"], " ", "2",
RowBox[{"Log", "[",
RowBox[{
RowBox[{"2",
SqrtBox["3"]}], "-", "3"}], "]"}]}], "-",
RowBox[{"24", " ",
SqrtBox["2"], " ",
RowBox[{"Log", "[",
RowBox[{"2", "+",
SqrtBox["3"]}], "]"}]}], "+",
RowBox[{"246", " ",
SqrtBox["3"], " ",
RowBox[{"Log", "[",
RowBox[{"2", "+",
SqrtBox["3"]}], "]"}]}], "+",
RowBox[{"48", " ",
SqrtBox["3"], " ",
RowBox[{"Log", "[",
RowBox[{"3", "+",
RowBox[{"2", " ",
SqrtBox["3"]}]}], "]"}]}], "+",
RowBox[{"16", " ",
SqrtBox["2"], " ",
RowBox[{"Log", "[",
RowBox[{"45", "+",
RowBox[{"26", " ",
SqrtBox["3"]}]}], "]"}]}], "+",
RowBox[{"16", " ",
SqrtBox["2"], " ",
RowBox[{"(",
RowBox[{"3",
RowBox[{"Log", "[",
RowBox[{"3", "+",
RowBox[{"2",
SqrtBox["3"]}]}], "]"}]}], ")"}]}]}], ")"}]}], "//",
"FullSimplify"}]], "Input",
CellLabel->
"(V12.3.0 (1)) \
In[64]:=",ExpressionUUID->"3e44037c-67d4-4f58-8ced-3a4258f9b7c9"],
Cell[BoxData[
RowBox[{
FractionBox["1",
RowBox[{"1728", " ",
SqrtBox[
RowBox[{"29", "+",
RowBox[{"6", " ",
SqrtBox["6"]}]}]]}]],
RowBox[{"(",
RowBox[{
RowBox[{"-",
RowBox[{"(",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"32", " ",
SqrtBox["2"]}], "+",
RowBox[{"27", " ",
SqrtBox["3"]}]}], ")"}], " ",
RowBox[{"Log", "[", "3", "]"}]}], ")"}]}], "+",
RowBox[{"6", " ",
RowBox[{"(",
RowBox[{
RowBox[{
RowBox[{"-", "4"}], " ",
SqrtBox["2"]}], "+",
RowBox[{"41", " ",
SqrtBox["3"]}]}], ")"}], " ",
RowBox[{"Log", "[",
RowBox[{"2", "+",
SqrtBox["3"]}], "]"}]}], "+",
RowBox[{"6", " ",
SqrtBox["3"], " ",
RowBox[{"Log", "[",
RowBox[{
RowBox[{"-", "3"}], "+",
RowBox[{"2", " ",
SqrtBox["3"]}]}], "]"}]}], "+",
RowBox[{"16", " ",
RowBox[{"(",
RowBox[{"108", "+",
RowBox[{"9", " ",
SqrtBox["6"]}], "+",
RowBox[{"3", " ",
RowBox[{"(",
RowBox[{
SqrtBox["2"], "+",
SqrtBox["3"]}], ")"}], " ",
RowBox[{"Log", "[",
RowBox[{"3", "+",
RowBox[{"2", " ",
SqrtBox["3"]}]}], "]"}]}], "+",
RowBox[{
SqrtBox["2"], " ",
RowBox[{"Log", "[",
RowBox[{"45", "+",
RowBox[{"26", " ",
SqrtBox["3"]}]}], "]"}]}]}], ")"}]}]}], ")"}]}]], "Output",
CellLabel->
"(V12.3.0 (1)) \
Out[64]=",ExpressionUUID->"ffbaa3c9-e28d-4aaa-989a-e1bf025e1d37"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"N", "[", "%", "]"}]], "Input",
CellLabel->
"(V12.3.0 (1)) \
In[65]:=",ExpressionUUID->"d0dda3a2-3130-4d86-82a8-52b0e26ba910"],
Cell[BoxData["0.2514081119594903`"], "Output",
CellLabel->
"(V12.3.0 (1)) \
Out[65]=",ExpressionUUID->"b9e434ad-b818-4754-ae6f-60a4837f56b7"]
}, Open ]]
}, Closed]],
Cell[CellGroupData[{
Cell["Divergence theorem", "Subsubsection",ExpressionUUID->"b5a7b7d6-be73-4c08-8b28-b55cb52a371a"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"(",
RowBox[{"rxy", "=",
RowBox[{"MeanCylindricalRadius", "[",
RowBox[{"p", ",",
RowBox[{"Debug", "\[Rule]", "True"}]}], "]"}]}], ")"}], "//",
"Timing"}]], "Input",
CellLabel->
"(byblis65 V13.2.0) \
In[4]:=",ExpressionUUID->"01553d41-fb1c-4732-b357-8ab6a76c59c0"],
Cell[CellGroupData[{
Cell[BoxData[
InterpretationBox[
RowBox[{"\<\"Polygon: \"\>", "\[InvisibleSpace]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"-",
FractionBox["1",
RowBox[{"2", " ",
SqrtBox["3"]}]]}], ",",
FractionBox["1", "2"], ",", "1"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-",
FractionBox["1",
RowBox[{"2", " ",
SqrtBox["3"]}]]}], ",",
RowBox[{"-",
FractionBox["1", "2"]}], ",", "1"}], "}"}], ",",
RowBox[{"{",
RowBox[{"0", ",", "0", ",",
RowBox[{
FractionBox["1", "3"], " ",
RowBox[{"(",
RowBox[{"3", "+",
SqrtBox["6"]}], ")"}]}]}], "}"}]}], "}"}]}],
SequenceForm["Polygon: ", {{Rational[-1, 2] 3^Rational[-1, 2],
Rational[1, 2], 1}, {Rational[-1, 2] 3^Rational[-1, 2],
Rational[-1, 2], 1}, {0, 0, Rational[1, 3] (3 + 6^Rational[1, 2])}}],
Editable->False]], "Print",
CellLabel->
"During evaluation of (byblis65 V13.2.0) \
In[4]:=",ExpressionUUID->"e558a588-d1be-4551-b128-89357a8ef1bc"],
Cell[BoxData[
InterpretationBox[
RowBox[{"\<\" integrand: \"\>", "\[InvisibleSpace]",
FractionBox[
RowBox[{
RowBox[{
RowBox[{"-", "2"}], " ",
SqrtBox[
RowBox[{
RowBox[{"3", " ",
SuperscriptBox["\<\"s\"\>", "2"]}], "+",
RowBox[{"3", " ", "\<\"s\"\>", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+", "\<\"t\"\>"}], ")"}]}], "+",
SuperscriptBox[
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+", "\<\"t\"\>"}], ")"}], "2"]}]], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+", "\<\"t\"\>"}], ")"}]}], "+",
RowBox[{"3", " ",
SuperscriptBox[
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+",
RowBox[{"2", " ", "\<\"s\"\>"}], "+", "\<\"t\"\>"}], ")"}], "2"],
" ",
RowBox[{"Log", "[",
FractionBox[
RowBox[{"1", "+",
RowBox[{"2", " ",
SqrtBox[
RowBox[{
RowBox[{"3", " ",
SuperscriptBox["\<\"s\"\>", "2"]}], "+",
RowBox[{"3", " ", "\<\"s\"\>", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+", "\<\"t\"\>"}], ")"}]}], "+",
SuperscriptBox[
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+", "\<\"t\"\>"}], ")"}], "2"]}]]}],
"-", "\<\"t\"\>"}],
RowBox[{"2", " ",
SqrtBox["3"]}]], "]"}]}]}],
RowBox[{"12", " ",
SqrtBox["6"]}]]}],
SequenceForm[
" integrand: ", Rational[1, 12]
6^Rational[-1, 2] ((-2) (3 "s"^2 + 3 "s" (-1 + "t") + (-1 + "t")^2)^
Rational[1, 2] (-1 + "t") +
3 (-1 + 2 "s" + "t")^2
Log[Rational[1, 2]
3^Rational[-1, 2] (1 +
2 (3 "s"^2 + 3 "s" (-1 + "t") + (-1 + "t")^2)^Rational[1, 2] - "t")])],
Editable->False]], "Print",
CellLabel->
"During evaluation of (byblis65 V13.2.0) \
In[4]:=",ExpressionUUID->"97a15f3c-cca2-4d95-bdb4-27192564728e"],
Cell[BoxData[
InterpretationBox[
RowBox[{"\<\" Integral over t and s: \"\>", "\[InvisibleSpace]",
FractionBox[
RowBox[{"27", "-",
RowBox[{"36", " ",
RowBox[{"Log", "[", "2", "]"}]}], "+",
RowBox[{"18", " ",
RowBox[{"Log", "[", "3", "]"}]}], "-",
RowBox[{"2", " ",
SqrtBox["3"], " ",
RowBox[{"Log", "[",
RowBox[{"7", "-",
RowBox[{"4", " ",
SqrtBox["3"]}]}], "]"}]}]}],
RowBox[{"1728", " ",
SqrtBox["6"]}]]}],
SequenceForm[
" Integral over t and s: ", Rational[1, 1728]
6^Rational[-1, 2] (27 - 36 Log[2] + 18 Log[3] - 2 3^Rational[1, 2]
Log[7 - 4 3^Rational[1, 2]])],
Editable->False]], "Print",
CellLabel->
"During evaluation of (byblis65 V13.2.0) \
In[4]:=",ExpressionUUID->"81bb9a97-9ad5-4dc3-89aa-a55143e1dca8"],
Cell[BoxData[
InterpretationBox[
RowBox[{"\<\" Elapsed time: \"\>", "\[InvisibleSpace]",
"44.522011`8.1001197661056"}],
SequenceForm[" Elapsed time: ", 44.522011`8.1001197661056],
Editable->False]], "Print",
CellLabel->
"During evaluation of (byblis65 V13.2.0) \
In[4]:=",ExpressionUUID->"74a67a3d-918b-4fc0-9f90-8e04fba6a4cb"],
Cell[BoxData[
InterpretationBox[
RowBox[{"\<\"Polygon: \"\>", "\[InvisibleSpace]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"-",
FractionBox["1",
RowBox[{"2", " ",
SqrtBox["3"]}]]}], ",",
RowBox[{"-",
FractionBox["1", "2"]}], ",", "1"}], "}"}], ",",
RowBox[{"{",
RowBox[{
FractionBox["1",
SqrtBox["3"]], ",", "0", ",", "1"}], "}"}], ",",
RowBox[{"{",
RowBox[{"0", ",", "0", ",",
RowBox[{
FractionBox["1", "3"], " ",
RowBox[{"(",
RowBox[{"3", "+",
SqrtBox["6"]}], ")"}]}]}], "}"}]}], "}"}]}],
SequenceForm["Polygon: ", {{Rational[-1, 2] 3^Rational[-1, 2],
Rational[-1, 2], 1}, {3^Rational[-1, 2], 0, 1}, {
0, 0, Rational[1, 3] (3 + 6^Rational[1, 2])}}],
Editable->False]], "Print",
CellLabel->
"During evaluation of (byblis65 V13.2.0) \
In[4]:=",ExpressionUUID->"09ce22d3-0394-4dc6-9486-f23efa589805"],
Cell[BoxData[
InterpretationBox[
RowBox[{"\<\" integrand: \"\>", "\[InvisibleSpace]",
FractionBox[
RowBox[{
RowBox[{
FractionBox["1", "12"], " ",
SqrtBox[
RowBox[{
RowBox[{"3", " ",
SuperscriptBox["\<\"s\"\>", "2"]}], "+",
RowBox[{"3", " ", "\<\"s\"\>", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+", "\<\"t\"\>"}], ")"}]}], "+",
SuperscriptBox[
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+", "\<\"t\"\>"}], ")"}], "2"]}]], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+",
RowBox[{"3", " ", "\<\"s\"\>"}], "+", "\<\"t\"\>"}], ")"}]}], "-",
RowBox[{
FractionBox["1", "8"], " ",
SuperscriptBox[
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+", "\<\"s\"\>", "+", "\<\"t\"\>"}], ")"}],
"2"], " ",
RowBox[{"Log", "[",
FractionBox[
RowBox[{"1", "-",
RowBox[{"3", " ", "\<\"s\"\>"}], "+",
RowBox[{"2", " ",
SqrtBox[
RowBox[{
RowBox[{"3", " ",
SuperscriptBox["\<\"s\"\>", "2"]}], "+",
RowBox[{"3", " ", "\<\"s\"\>", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+", "\<\"t\"\>"}], ")"}]}], "+",
SuperscriptBox[
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+", "\<\"t\"\>"}], ")"}], "2"]}]]}],
"-", "\<\"t\"\>"}],
RowBox[{"2", " ",
SqrtBox["3"]}]], "]"}]}]}],
SqrtBox["6"]]}],
SequenceForm[
" integrand: ",
6^Rational[-1, 2] (
Rational[1, 12] (3 "s"^2 + 3 "s" (-1 + "t") + (-1 + "t")^2)^
Rational[1, 2] (-1 + 3 "s" + "t") +
Rational[-1, 8] (-1 + "s" + "t")^2
Log[Rational[1, 2]
3^Rational[-1, 2] (1 - 3 "s" +
2 (3 "s"^2 + 3 "s" (-1 + "t") + (-1 + "t")^2)^Rational[1, 2] - "t")])],
Editable->False]], "Print",
CellLabel->
"During evaluation of (byblis65 V13.2.0) \
In[4]:=",ExpressionUUID->"b7e7139b-6cc6-47a0-9ed7-f7329dedfb7f"],
Cell[BoxData[
InterpretationBox[
RowBox[{"\<\" Integral over t and s: \"\>", "\[InvisibleSpace]",
FractionBox[
RowBox[{"45", "+",
RowBox[{"36", " ",
RowBox[{"Log", "[", "2", "]"}]}], "-",
RowBox[{"18", " ",
RowBox[{"Log", "[", "3", "]"}]}], "+",
RowBox[{
SqrtBox["3"], " ",
RowBox[{"Log", "[",
RowBox[{"18817", "+",
RowBox[{"10864", " ",
SqrtBox["3"]}]}], "]"}]}]}],
RowBox[{"3456", " ",
SqrtBox["6"]}]]}],
SequenceForm[
" Integral over t and s: ", Rational[1, 3456]
6^Rational[-1, 2] (45 + 36 Log[2] - 18 Log[3] +
3^Rational[1, 2] Log[18817 + 10864 3^Rational[1, 2]])],
Editable->False]], "Print",
CellLabel->
"During evaluation of (byblis65 V13.2.0) \
In[4]:=",ExpressionUUID->"e1fceb0c-6f28-4873-9ab7-c78a4d7d2cc3"],
Cell[BoxData[
InterpretationBox[
RowBox[{"\<\" Elapsed time: \"\>", "\[InvisibleSpace]",
"36.074583`8.008746313113322"}],
SequenceForm[" Elapsed time: ", 36.074583`8.008746313113322],
Editable->False]], "Print",
CellLabel->
"During evaluation of (byblis65 V13.2.0) \
In[4]:=",ExpressionUUID->"db93a359-e53a-4134-afd3-54922af32ae7"],
Cell[BoxData[
InterpretationBox[
RowBox[{"\<\"Polygon: \"\>", "\[InvisibleSpace]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
FractionBox["1",
SqrtBox["3"]], ",", "0", ",", "1"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-",
FractionBox["1",
RowBox[{"2", " ",
SqrtBox["3"]}]]}], ",",
FractionBox["1", "2"], ",", "1"}], "}"}], ",",
RowBox[{"{",
RowBox[{"0", ",", "0", ",",
RowBox[{
FractionBox["1", "3"], " ",
RowBox[{"(",
RowBox[{"3", "+",
SqrtBox["6"]}], ")"}]}]}], "}"}]}], "}"}]}],
SequenceForm[
"Polygon: ", {{3^Rational[-1, 2], 0, 1}, {Rational[-1, 2] 3^Rational[-1, 2],
Rational[1, 2], 1}, {0, 0, Rational[1, 3] (3 + 6^Rational[1, 2])}}],
Editable->False]], "Print",
CellLabel->
"During evaluation of (byblis65 V13.2.0) \
In[4]:=",ExpressionUUID->"bdc194d1-974a-48a6-b759-4f423961ceea"],
Cell[BoxData[
InterpretationBox[
RowBox[{"\<\" integrand: \"\>", "\[InvisibleSpace]",
FractionBox[
RowBox[{
RowBox[{
RowBox[{"-", "2"}], " ",
SqrtBox[
RowBox[{
RowBox[{"3", " ",
SuperscriptBox["\<\"s\"\>", "2"]}], "+",
RowBox[{"3", " ", "\<\"s\"\>", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+", "\<\"t\"\>"}], ")"}]}], "+",
SuperscriptBox[
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+", "\<\"t\"\>"}], ")"}], "2"]}]], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "2"}], "+",
RowBox[{"3", " ", "\<\"s\"\>"}], "+",
RowBox[{"2", " ", "\<\"t\"\>"}]}], ")"}]}], "-",
RowBox[{"3", " ",
SuperscriptBox["\<\"s\"\>", "2"], " ",
RowBox[{"Log", "[",
FractionBox[
RowBox[{
RowBox[{"3", " ", "\<\"s\"\>"}], "+",
RowBox[{"2", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+",
SqrtBox[
RowBox[{
RowBox[{"3", " ",
SuperscriptBox["\<\"s\"\>", "2"]}], "+",
RowBox[{"3", " ", "\<\"s\"\>", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+", "\<\"t\"\>"}], ")"}]}], "+",
SuperscriptBox[
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+", "\<\"t\"\>"}], ")"}], "2"]}]],
"+", "\<\"t\"\>"}], ")"}]}]}],
RowBox[{"2", " ",
SqrtBox["3"]}]], "]"}]}]}],
RowBox[{"24", " ",
SqrtBox["6"]}]]}],
SequenceForm[
" integrand: ", Rational[1, 24]
6^Rational[-1, 2] ((-2) (3 "s"^2 + 3 "s" (-1 + "t") + (-1 + "t")^2)^
Rational[1, 2] (-2 + 3 "s" + 2 "t") - 3 "s"^2
Log[Rational[1, 2]
3^Rational[-1, 2] (3 "s" +
2 (-1 + (3 "s"^2 + 3 "s" (-1 + "t") + (-1 + "t")^2)^Rational[1, 2] +
"t"))])],
Editable->False]], "Print",
CellLabel->
"During evaluation of (byblis65 V13.2.0) \
In[4]:=",ExpressionUUID->"1a143160-e7d0-4b18-8ded-54fa97ef650e"],
Cell[BoxData[
InterpretationBox[
RowBox[{"\<\" Integral over t and s: \"\>", "\[InvisibleSpace]",
FractionBox[
RowBox[{"45", "+",
RowBox[{"36", " ",
RowBox[{"Log", "[", "2", "]"}]}], "-",
RowBox[{"18", " ",
RowBox[{"Log", "[", "3", "]"}]}], "+",
RowBox[{
SqrtBox["3"], " ",
RowBox[{"Log", "[",
RowBox[{"18817", "+",
RowBox[{"10864", " ",
SqrtBox["3"]}]}], "]"}]}]}],
RowBox[{"3456", " ",
SqrtBox["6"]}]]}],
SequenceForm[
" Integral over t and s: ", Rational[1, 3456]
6^Rational[-1, 2] (45 + 36 Log[2] - 18 Log[3] +
3^Rational[1, 2] Log[18817 + 10864 3^Rational[1, 2]])],
Editable->False]], "Print",
CellLabel->
"During evaluation of (byblis65 V13.2.0) \
In[4]:=",ExpressionUUID->"2bdcfa94-af17-43bd-9e1f-4bb196f6a3b1"],
Cell[BoxData[
InterpretationBox[
RowBox[{"\<\" Elapsed time: \"\>", "\[InvisibleSpace]",
"34.064606`7.983848363638687"}],
SequenceForm[" Elapsed time: ", 34.064606`7.983848363638687],
Editable->False]], "Print",
CellLabel->
"During evaluation of (byblis65 V13.2.0) \
In[4]:=",ExpressionUUID->"cd884753-fbe6-4a0b-8261-348fe26cf904"],
Cell[BoxData[
InterpretationBox[
RowBox[{"\<\"Polygon: \"\>", "\[InvisibleSpace]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"-",
FractionBox["1",
RowBox[{"2", " ",
SqrtBox["3"]}]]}], ",",
FractionBox["1", "2"], ",", "0"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-",
FractionBox["1",
RowBox[{"2", " ",
SqrtBox["3"]}]]}], ",",
RowBox[{"-",
FractionBox["1", "2"]}], ",", "0"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-",
FractionBox["1",
RowBox[{"2", " ",
SqrtBox["3"]}]]}], ",",
RowBox[{"-",
FractionBox["1", "2"]}], ",", "1"}], "}"}]}], "}"}]}],
SequenceForm["Polygon: ", {{Rational[-1, 2] 3^Rational[-1, 2],
Rational[1, 2], 0}, {Rational[-1, 2] 3^Rational[-1, 2],
Rational[-1, 2], 0}, {Rational[-1, 2] 3^Rational[-1, 2],
Rational[-1, 2], 1}}],
Editable->False]], "Print",
CellLabel->
"During evaluation of (byblis65 V13.2.0) \
In[4]:=",ExpressionUUID->"aceba3c2-99dc-4b71-8c93-da9ce6edafa9"],
Cell[BoxData[
InterpretationBox[
RowBox[{"\<\" integrand: \"\>", "\[InvisibleSpace]",
RowBox[{
FractionBox["1", "12"], " ",
RowBox[{"(",
RowBox[{
SqrtBox[
RowBox[{"1", "+",
RowBox[{"3", " ",
SuperscriptBox["\<\"s\"\>", "2"]}], "-",
RowBox[{"3", " ", "\<\"t\"\>"}], "+",
RowBox[{"3", " ",
SuperscriptBox["\<\"t\"\>", "2"]}], "+",
RowBox[{"\<\"s\"\>", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "3"}], "+",
RowBox[{"6", " ", "\<\"t\"\>"}]}], ")"}]}]}]], "+",
RowBox[{
FractionBox["3", "2"], " ",
SuperscriptBox[
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+",
RowBox[{"2", " ", "\<\"s\"\>"}], "+",
RowBox[{"2", " ", "\<\"t\"\>"}]}], ")"}], "2"], " ",
RowBox[{"Log", "[",
RowBox[{
FractionBox["1",
RowBox[{"2", " ",
SqrtBox["3"]}]], "+",
SqrtBox[
RowBox[{
FractionBox["1", "12"], "+",
SuperscriptBox[
RowBox[{"(",
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], "+", "\<\"s\"\>", "+", "\<\"t\"\>"}],
")"}], "2"]}]]}], "]"}]}]}], ")"}]}]}],
SequenceForm[
" integrand: ",
Rational[1, 12] ((1 + 3 "s"^2 - 3 "t" + 3 "t"^2 + "s" (-3 + 6 "t"))^
Rational[1, 2] +
Rational[3, 2] (-1 + 2 "s" + 2 "t")^2
Log[Rational[1, 2]
3^Rational[-1, 2] + (
Rational[1, 12] + (Rational[-1, 2] + "s" + "t")^2)^Rational[1, 2]])],
Editable->False]], "Print",
CellLabel->
"During evaluation of (byblis65 V13.2.0) \
In[4]:=",ExpressionUUID->"a09ac02b-400c-4641-9236-74441506b1ab"],
Cell[BoxData[
InterpretationBox[
RowBox[{"\<\" Integral over t and s: \"\>", "\[InvisibleSpace]",
RowBox[{
FractionBox["1", "864"], " ",
RowBox[{"(",
RowBox[{"18", "+",
RowBox[{"2", " ",
SqrtBox["3"], " ",
RowBox[{"ArcSinh", "[",
SqrtBox["3"], "]"}]}], "-",
RowBox[{"Log", "[",
FractionBox["262144", "19683"], "]"}]}], ")"}]}]}],
SequenceForm[
" Integral over t and s: ",
Rational[1, 864] (18 + 2 3^Rational[1, 2] ArcSinh[3^Rational[1, 2]] - Log[
Rational[262144, 19683]])],
Editable->False]], "Print",
CellLabel->
"During evaluation of (byblis65 V13.2.0) \
In[4]:=",ExpressionUUID->"09aa0c44-5ace-444a-a230-f06c978ac5b5"],
Cell[BoxData[
InterpretationBox[
RowBox[{"\<\" Elapsed time: \"\>", "\[InvisibleSpace]",
"21.233545`7.778567500399283"}],
SequenceForm[" Elapsed time: ", 21.233545`7.778567500399283],
Editable->False]], "Print",
CellLabel->
"During evaluation of (byblis65 V13.2.0) \
In[4]:=",ExpressionUUID->"1c1df0bd-d960-42f5-91ef-5d4112802fed"],
Cell[BoxData[
InterpretationBox[
RowBox[{"\<\"Polygon: \"\>", "\[InvisibleSpace]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"-",
FractionBox["1",
RowBox[{"2", " ",
SqrtBox["3"]}]]}], ",",
FractionBox["1", "2"], ",", "0"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-",
FractionBox["1",
RowBox[{"2", " ",
SqrtBox["3"]}]]}], ",",
RowBox[{"-",
FractionBox["1", "2"]}], ",", "1"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-",
FractionBox["1",
RowBox[{"2", " ",
SqrtBox["3"]}]]}], ",",
FractionBox["1", "2"], ",", "1"}], "}"}]}], "}"}]}],
SequenceForm["Polygon: ", {{Rational[-1, 2] 3^Rational[-1, 2],
Rational[1, 2], 0}, {Rational[-1, 2] 3^Rational[-1, 2],
Rational[-1, 2], 1}, {Rational[-1, 2] 3^Rational[-1, 2],
Rational[1, 2], 1}}],
Editable->False]], "Print",
CellLabel->
"During evaluation of (byblis65 V13.2.0) \
In[4]:=",ExpressionUUID->"586a1ee6-8084-44e2-82bf-4c98c7de4d72"],
Cell[BoxData[
InterpretationBox[
RowBox[{"\<\" integrand: \"\>", "\[InvisibleSpace]",
RowBox[{
FractionBox["1", "12"], " ",
RowBox[{"(",
RowBox[{
SqrtBox[
RowBox[{"1", "-",
RowBox[{"3", " ", "\<\"s\"\>"}], "+",
RowBox[{"3", " ",
SuperscriptBox["\<\"s\"\>", "2"]}]}]], "+",
RowBox[{
FractionBox["3", "2"], " ",
SuperscriptBox[
RowBox[{"(",
RowBox[{"1", "-",
RowBox[{"2", " ", "\<\"s\"\>"}]}], ")"}], "2"], " ",
RowBox[{"Log", "[",
FractionBox[
RowBox[{"1", "+",
RowBox[{"2", " ",
SqrtBox[
RowBox[{"1", "-",
RowBox[{"3", " ", "\<\"s\"\>"}], "+",
RowBox[{"3", " ",
SuperscriptBox["\<\"s\"\>", "2"]}]}]]}]}],
RowBox[{"2", " ",
SqrtBox["3"]}]], "]"}]}]}], ")"}]}]}],
SequenceForm[
" integrand: ",
Rational[1, 12] ((1 - 3 "s" + 3 "s"^2)^Rational[1, 2] +
Rational[3, 2] (1 - 2 "s")^2
Log[Rational[1, 2]
3^Rational[-1, 2] (1 + 2 (1 - 3 "s" + 3 "s"^2)^Rational[1, 2])])],
Editable->False]], "Print",
CellLabel->
"During evaluation of (byblis65 V13.2.0) \
In[4]:=",ExpressionUUID->"d34aba86-cd47-4f89-8b51-3f66c013299c"],
Cell[BoxData[
InterpretationBox[
RowBox[{"\<\" Integral over t and s: \"\>", "\[InvisibleSpace]",
RowBox[{
FractionBox["1", "864"], " ",
RowBox[{"(",
RowBox[{"18", "-",
RowBox[{"18", " ",
RowBox[{"Log", "[", "2", "]"}]}], "+",
RowBox[{"9", " ",
RowBox[{"Log", "[", "3", "]"}]}], "+",
RowBox[{"2", " ",
SqrtBox["3"], " ",
RowBox[{"Log", "[",
RowBox[{"2", "+",
SqrtBox["3"]}], "]"}]}]}], ")"}]}]}],
SequenceForm[
" Integral over t and s: ",
Rational[1, 864] (18 - 18 Log[2] + 9 Log[3] +
2 3^Rational[1, 2] Log[2 + 3^Rational[1, 2]])],
Editable->False]], "Print",
CellLabel->
"During evaluation of (byblis65 V13.2.0) \
In[4]:=",ExpressionUUID->"37e31840-6892-4d19-8d12-754b2a92ffb1"],
Cell[BoxData[
InterpretationBox[
RowBox[{"\<\" Elapsed time: \"\>", "\[InvisibleSpace]",
"28.625545`7.908298757428703"}],
SequenceForm[" Elapsed time: ", 28.625545`7.908298757428703],
Editable->False]], "Print",
CellLabel->
"During evaluation of (byblis65 V13.2.0) \
In[4]:=",ExpressionUUID->"326c5efc-27ba-4754-be96-530494ca29ed"],
Cell[BoxData[
InterpretationBox[
RowBox[{"\<\"Polygon: \"\>", "\[InvisibleSpace]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"-",
FractionBox["1",
RowBox[{"2", " ",
SqrtBox["3"]}]]}], ",",
RowBox[{"-",
FractionBox["1", "2"]}], ",", "0"}], "}"}], ",",
RowBox[{"{",
RowBox[{
FractionBox["1",
SqrtBox["3"]], ",", "0", ",", "0"}], "}"}], ",",
RowBox[{"{",
RowBox[{
FractionBox["1",
SqrtBox["3"]], ",", "0", ",", "1"}], "}"}]}], "}"}]}],
SequenceForm["Polygon: ", {{Rational[-1, 2] 3^Rational[-1, 2],
Rational[-1, 2], 0}, {3^Rational[-1, 2], 0, 0}, {
3^Rational[-1, 2], 0, 1}}],
Editable->False]], "Print",
CellLabel->
"During evaluation of (byblis65 V13.2.0) \
In[4]:=",ExpressionUUID->"36de9626-a972-47cd-a0f4-7af9b122beb9"],
Cell[BoxData[
InterpretationBox[
RowBox[{"\<\" integrand: \"\>", "\[InvisibleSpace]",
RowBox[{
FractionBox["1", "48"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"2", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+",
RowBox[{"3", " ", "\<\"s\"\>"}], "+",
RowBox[{"3", " ", "\<\"t\"\>"}]}], ")"}], " ",
SqrtBox[
RowBox[{"1", "+",
RowBox[{"3", " ",
SuperscriptBox["\<\"s\"\>", "2"]}], "-",
RowBox[{"3", " ", "\<\"t\"\>"}], "+",
RowBox[{"3", " ",
SuperscriptBox["\<\"t\"\>", "2"]}], "+",
RowBox[{"\<\"s\"\>", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "3"}], "+",
RowBox[{"6", " ", "\<\"t\"\>"}]}], ")"}]}]}]]}], "-",
RowBox[{"3", " ",
SuperscriptBox[
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+", "\<\"s\"\>", "+", "\<\"t\"\>"}], ")"}],
"2"], " ",
RowBox[{"Log", "[",
FractionBox[
RowBox[{"1", "-",
RowBox[{"3", " ", "\<\"s\"\>"}], "-",
RowBox[{"3", " ", "\<\"t\"\>"}], "+",
RowBox[{"2", " ",
SqrtBox[
RowBox[{"1", "-",
RowBox[{"3", " ", "\<\"s\"\>"}], "+",
RowBox[{"3", " ",
SuperscriptBox["\<\"s\"\>", "2"]}], "-",
RowBox[{"3", " ", "\<\"t\"\>"}], "+",
RowBox[{"6", " ", "\<\"s\"\>", " ", "\<\"t\"\>"}], "+",
RowBox[{"3", " ",
SuperscriptBox["\<\"t\"\>", "2"]}]}]]}]}],
RowBox[{"2", " ",
SqrtBox["3"]}]], "]"}]}]}], ")"}]}]}],
SequenceForm[
" integrand: ",
Rational[1, 48] (
2 (-1 + 3 "s" + 3 "t") (1 + 3 "s"^2 - 3 "t" + 3 "t"^2 + "s" (-3 + 6 "t"))^
Rational[1, 2] - 3 (-1 + "s" + "t")^2
Log[Rational[1, 2]
3^Rational[-1, 2] (1 - 3 "s" - 3 "t" +
2 (1 - 3 "s" + 3 "s"^2 - 3 "t" + 6 "s" "t" + 3 "t"^2)^
Rational[1, 2])])],
Editable->False]], "Print",
CellLabel->
"During evaluation of (byblis65 V13.2.0) \
In[4]:=",ExpressionUUID->"d7919474-f649-487a-8cc7-bba6f5640ee3"],
Cell[BoxData[
InterpretationBox[
RowBox[{"\<\" Integral over t and s: \"\>", "\[InvisibleSpace]",
FractionBox[
RowBox[{"117", "+",
RowBox[{"36", " ",
RowBox[{"Log", "[", "2", "]"}]}], "-",
RowBox[{"18", " ",
RowBox[{"Log", "[", "3", "]"}]}], "-",
RowBox[{"8", " ",
SqrtBox["3"], " ",
RowBox[{"Log", "[",
RowBox[{"2", "-",
SqrtBox["3"]}], "]"}]}], "+",
RowBox[{"12", " ",
SqrtBox["3"], " ",
RowBox[{"Log", "[",
RowBox[{"2", "+",
SqrtBox["3"]}], "]"}]}]}], "6912"]}],
SequenceForm[
" Integral over t and s: ",
Rational[1, 6912] (117 + 36 Log[2] - 18 Log[3] - 8 3^Rational[1, 2]
Log[2 - 3^Rational[1, 2]] +
12 3^Rational[1, 2] Log[2 + 3^Rational[1, 2]])],
Editable->False]], "Print",
CellLabel->
"During evaluation of (byblis65 V13.2.0) \
In[4]:=",ExpressionUUID->"d7a36f94-e696-4d2a-9e6d-86d10d79ab75"],
Cell[BoxData[
InterpretationBox[
RowBox[{"\<\" Elapsed time: \"\>", "\[InvisibleSpace]",
"59.472059`8.225857968095108"}],
SequenceForm[" Elapsed time: ", 59.472059`8.225857968095108],
Editable->False]], "Print",
CellLabel->
"During evaluation of (byblis65 V13.2.0) \
In[4]:=",ExpressionUUID->"e961e605-7460-4792-bde8-def1fd232bd6"],
Cell[BoxData[
InterpretationBox[
RowBox[{"\<\"Polygon: \"\>", "\[InvisibleSpace]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"-",
FractionBox["1",
RowBox[{"2", " ",
SqrtBox["3"]}]]}], ",",
RowBox[{"-",
FractionBox["1", "2"]}], ",", "0"}], "}"}], ",",
RowBox[{"{",
RowBox[{
FractionBox["1",
SqrtBox["3"]], ",", "0", ",", "1"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-",
FractionBox["1",
RowBox[{"2", " ",
SqrtBox["3"]}]]}], ",",
RowBox[{"-",
FractionBox["1", "2"]}], ",", "1"}], "}"}]}], "}"}]}],
SequenceForm["Polygon: ", {{Rational[-1, 2] 3^Rational[-1, 2],
Rational[-1, 2], 0}, {3^Rational[-1, 2], 0, 1}, {
Rational[-1, 2] 3^Rational[-1, 2],
Rational[-1, 2], 1}}],
Editable->False]], "Print",
CellLabel->
"During evaluation of (byblis65 V13.2.0) \
In[4]:=",ExpressionUUID->"4807b279-6e45-40cd-9416-2e9a3d2ddf65"],
Cell[BoxData[
InterpretationBox[
RowBox[{"\<\" integrand: \"\>", "\[InvisibleSpace]",
RowBox[{
FractionBox["1", "48"], " ",
RowBox[{"(",
RowBox[{
RowBox[{
RowBox[{"-", "2"}], " ",
SqrtBox[
RowBox[{"1", "-",
RowBox[{"3", " ", "\<\"s\"\>"}], "+",
RowBox[{"3", " ",
SuperscriptBox["\<\"s\"\>", "2"]}]}]]}], "+",
RowBox[{"6", " ", "\<\"s\"\>", " ",
SqrtBox[
RowBox[{"1", "-",
RowBox[{"3", " ", "\<\"s\"\>"}], "+",
RowBox[{"3", " ",
SuperscriptBox["\<\"s\"\>", "2"]}]}]]}], "+",
FractionBox[
RowBox[{"Log", "[", "3", "]"}], "2"], "+",
RowBox[{"Log", "[", "24", "]"}], "-",
RowBox[{"3", " ",
RowBox[{"Log", "[",
RowBox[{"1", "-",
RowBox[{"3", " ", "\<\"s\"\>"}], "+",
RowBox[{"2", " ",
SqrtBox[
RowBox[{"1", "-",
RowBox[{"3", " ", "\<\"s\"\>"}], "+",
RowBox[{"3", " ",
SuperscriptBox["\<\"s\"\>", "2"]}]}]]}]}], "]"}]}], "-",
RowBox[{"3", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "2"}], "+", "\<\"s\"\>"}], ")"}], " ", "\<\"s\"\>", " ",
RowBox[{"Log", "[",
FractionBox[
RowBox[{"1", "-",
RowBox[{"3", " ", "\<\"s\"\>"}], "+",
RowBox[{"2", " ",
SqrtBox[
RowBox[{"1", "-",
RowBox[{"3", " ", "\<\"s\"\>"}], "+",
RowBox[{"3", " ",
SuperscriptBox["\<\"s\"\>", "2"]}]}]]}]}],
RowBox[{"2", " ",
SqrtBox["3"]}]], "]"}]}]}], ")"}]}]}],
SequenceForm[
" integrand: ",
Rational[1, 48] ((-2) (1 - 3 "s" + 3 "s"^2)^Rational[1, 2] +
6 "s" (1 - 3 "s" + 3 "s"^2)^Rational[1, 2] + Rational[1, 2] Log[3] +
Log[24] - 3 Log[1 - 3 "s" + 2 (1 - 3 "s" + 3 "s"^2)^Rational[1, 2]] -
3 (-2 + "s") "s"
Log[Rational[1, 2]
3^Rational[-1, 2] (1 - 3 "s" +
2 (1 - 3 "s" + 3 "s"^2)^Rational[1, 2])])],
Editable->False]], "Print",
CellLabel->
"During evaluation of (byblis65 V13.2.0) \
In[4]:=",ExpressionUUID->"7a90d4e3-f21c-41be-9db8-89bcdb507635"],
Cell[BoxData[
InterpretationBox[
RowBox[{"\<\" Integral over t and s: \"\>", "\[InvisibleSpace]",
FractionBox[
RowBox[{"27", "+",
RowBox[{"54", " ",
RowBox[{"Log", "[",
FractionBox["4", "3"], "]"}]}], "+",
RowBox[{"8", " ",
SqrtBox["3"], " ",
RowBox[{"Log", "[",
RowBox[{"2", "-",
SqrtBox["3"]}], "]"}]}], "+",
RowBox[{"20", " ",
SqrtBox["3"], " ",
RowBox[{"Log", "[",
RowBox[{"2", "+",
SqrtBox["3"]}], "]"}]}]}], "6912"]}],
SequenceForm[" Integral over t and s: ", Rational[1, 6912] (27 + 54 Log[
Rational[4, 3]] + 8 3^Rational[1, 2] Log[2 - 3^Rational[1, 2]] +
20 3^Rational[1, 2] Log[2 + 3^Rational[1, 2]])],
Editable->False]], "Print",
CellLabel->
"During evaluation of (byblis65 V13.2.0) \
In[4]:=",ExpressionUUID->"594a6dcf-d251-4e78-807b-9eb6859a819d"],
Cell[BoxData[
InterpretationBox[
RowBox[{"\<\" Elapsed time: \"\>", "\[InvisibleSpace]",
"57.634034`8.212224011873552"}],
SequenceForm[" Elapsed time: ", 57.634034`8.212224011873552],
Editable->False]], "Print",
CellLabel->
"During evaluation of (byblis65 V13.2.0) \
In[4]:=",ExpressionUUID->"021c7141-67d6-4bab-85c5-41cb0e76b26d"],
Cell[BoxData[
InterpretationBox[
RowBox[{"\<\"Polygon: \"\>", "\[InvisibleSpace]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
FractionBox["1",
SqrtBox["3"]], ",", "0", ",", "0"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-",
FractionBox["1",
RowBox[{"2", " ",
SqrtBox["3"]}]]}], ",",
FractionBox["1", "2"], ",", "0"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-",
FractionBox["1",
RowBox[{"2", " ",
SqrtBox["3"]}]]}], ",",
FractionBox["1", "2"], ",", "1"}], "}"}]}], "}"}]}],
SequenceForm[
"Polygon: ", {{3^Rational[-1, 2], 0, 0}, {Rational[-1, 2] 3^Rational[-1, 2],
Rational[1, 2], 0}, {Rational[-1, 2] 3^Rational[-1, 2],
Rational[1, 2], 1}}],
Editable->False]], "Print",
CellLabel->
"During evaluation of (byblis65 V13.2.0) \
In[4]:=",ExpressionUUID->"8d6e49cb-fc35-4d04-8fe8-52c058564a8d"],
Cell[BoxData[
InterpretationBox[
RowBox[{"\<\" integrand: \"\>", "\[InvisibleSpace]",
RowBox[{
FractionBox["1", "48"], " ",
RowBox[{"(",
RowBox[{
RowBox[{
RowBox[{"-", "2"}], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "2"}], "+",
RowBox[{"3", " ", "\<\"s\"\>"}], "+",
RowBox[{"3", " ", "\<\"t\"\>"}]}], ")"}], " ",
SqrtBox[
RowBox[{"1", "+",
RowBox[{"3", " ",
SuperscriptBox["\<\"s\"\>", "2"]}], "-",
RowBox[{"3", " ", "\<\"t\"\>"}], "+",
RowBox[{"3", " ",
SuperscriptBox["\<\"t\"\>", "2"]}], "+",
RowBox[{"\<\"s\"\>", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "3"}], "+",
RowBox[{"6", " ", "\<\"t\"\>"}]}], ")"}]}]}]]}], "-",
RowBox[{"3", " ",
SuperscriptBox[
RowBox[{"(",
RowBox[{"\<\"s\"\>", "+", "\<\"t\"\>"}], ")"}], "2"], " ",
RowBox[{"Log", "[",
FractionBox[
RowBox[{
RowBox[{"-", "2"}], "+",
RowBox[{"3", " ", "\<\"s\"\>"}], "+",
RowBox[{"3", " ", "\<\"t\"\>"}], "+",
RowBox[{"2", " ",
SqrtBox[
RowBox[{"1", "+",
RowBox[{"3", " ",
SuperscriptBox["\<\"s\"\>", "2"]}], "-",
RowBox[{"3", " ", "\<\"t\"\>"}], "+",
RowBox[{"3", " ",
SuperscriptBox["\<\"t\"\>", "2"]}], "+",
RowBox[{"\<\"s\"\>", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "3"}], "+",
RowBox[{"6", " ", "\<\"t\"\>"}]}], ")"}]}]}]]}]}],
RowBox[{"2", " ",
SqrtBox["3"]}]], "]"}]}]}], ")"}]}]}],
SequenceForm[
" integrand: ",
Rational[1,
48] ((-2) (-2 + 3 "s" +
3 "t") (1 + 3 "s"^2 - 3 "t" + 3 "t"^2 + "s" (-3 + 6 "t"))^
Rational[1, 2] - 3 ("s" + "t")^2
Log[Rational[1, 2]
3^Rational[-1, 2] (-2 + 3 "s" + 3 "t" +
2 (1 + 3 "s"^2 - 3 "t" + 3 "t"^2 + "s" (-3 + 6 "t"))^Rational[1, 2])])],
Editable->False]], "Print",
CellLabel->
"During evaluation of (byblis65 V13.2.0) \
In[4]:=",ExpressionUUID->"a840ffc2-9134-44ed-8b54-8d01846790a4"],
Cell[BoxData[
InterpretationBox[
RowBox[{"\<\" Integral over t and s: \"\>", "\[InvisibleSpace]",
FractionBox[
RowBox[{"27", "+",
RowBox[{"54", " ",
RowBox[{"Log", "[",
FractionBox["4", "3"], "]"}]}], "+",
RowBox[{"8", " ",
SqrtBox["3"], " ",
RowBox[{"Log", "[",
RowBox[{"2", "-",
SqrtBox["3"]}], "]"}]}], "+",
RowBox[{"20", " ",
SqrtBox["3"], " ",
RowBox[{"Log", "[",
RowBox[{"2", "+",
SqrtBox["3"]}], "]"}]}]}], "6912"]}],
SequenceForm[" Integral over t and s: ", Rational[1, 6912] (27 + 54 Log[
Rational[4, 3]] + 8 3^Rational[1, 2] Log[2 - 3^Rational[1, 2]] +
20 3^Rational[1, 2] Log[2 + 3^Rational[1, 2]])],
Editable->False]], "Print",
CellLabel->
"During evaluation of (byblis65 V13.2.0) \
In[4]:=",ExpressionUUID->"d1fdbd88-a74b-4e95-bc83-c4bdda510349"],
Cell[BoxData[
InterpretationBox[
RowBox[{"\<\" Elapsed time: \"\>", "\[InvisibleSpace]",
"28.576467`7.907553528054152"}],
SequenceForm[" Elapsed time: ", 28.576467`7.907553528054152],
Editable->False]], "Print",
CellLabel->
"During evaluation of (byblis65 V13.2.0) \
In[4]:=",ExpressionUUID->"7c0d97d8-973f-440c-9cc3-21f821727e31"],
Cell[BoxData[
InterpretationBox[
RowBox[{"\<\"Polygon: \"\>", "\[InvisibleSpace]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
FractionBox["1",
SqrtBox["3"]], ",", "0", ",", "0"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-",
FractionBox["1",
RowBox[{"2", " ",
SqrtBox["3"]}]]}], ",",
FractionBox["1", "2"], ",", "1"}], "}"}], ",",
RowBox[{"{",
RowBox[{
FractionBox["1",
SqrtBox["3"]], ",", "0", ",", "1"}], "}"}]}], "}"}]}],
SequenceForm[
"Polygon: ", {{3^Rational[-1, 2], 0, 0}, {Rational[-1, 2] 3^Rational[-1, 2],
Rational[1, 2], 1}, {3^Rational[-1, 2], 0, 1}}],
Editable->False]], "Print",
CellLabel->
"During evaluation of (byblis65 V13.2.0) \
In[4]:=",ExpressionUUID->"3fe7cb65-484e-479f-a0c6-55419d1ed6b9"],
Cell[BoxData[
InterpretationBox[
RowBox[{"\<\" integrand: \"\>", "\[InvisibleSpace]",
RowBox[{
FractionBox["1", "48"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"2", " ",
RowBox[{"(",
RowBox[{"2", "-",
RowBox[{"3", " ", "\<\"s\"\>"}]}], ")"}], " ",
SqrtBox[
RowBox[{"1", "-",
RowBox[{"3", " ", "\<\"s\"\>"}], "+",
RowBox[{"3", " ",
SuperscriptBox["\<\"s\"\>", "2"]}]}]]}], "-",
RowBox[{"3", " ",
SuperscriptBox["\<\"s\"\>", "2"], " ",
RowBox[{"Log", "[",
FractionBox[
RowBox[{
RowBox[{"-", "2"}], "+",
RowBox[{"3", " ", "\<\"s\"\>"}], "+",
RowBox[{"2", " ",
SqrtBox[
RowBox[{"1", "-",
RowBox[{"3", " ", "\<\"s\"\>"}], "+",
RowBox[{"3", " ",
SuperscriptBox["\<\"s\"\>", "2"]}]}]]}]}],
RowBox[{"2", " ",
SqrtBox["3"]}]], "]"}]}]}], ")"}]}]}],
SequenceForm[
" integrand: ",
Rational[1, 48] (2 (2 - 3 "s") (1 - 3 "s" + 3 "s"^2)^Rational[1, 2] - 3
"s"^2 Log[
Rational[1, 2]
3^Rational[-1, 2] (-2 + 3 "s" +
2 (1 - 3 "s" + 3 "s"^2)^Rational[1, 2])])],
Editable->False]], "Print",
CellLabel->
"During evaluation of (byblis65 V13.2.0) \
In[4]:=",ExpressionUUID->"91fd5481-6f9d-48ff-a10a-bc87a20c3c57"],
Cell[BoxData[
InterpretationBox[
RowBox[{"\<\" Integral over t and s: \"\>", "\[InvisibleSpace]",
FractionBox[
RowBox[{"117", "+",
RowBox[{"36", " ",
RowBox[{"Log", "[", "2", "]"}]}], "-",
RowBox[{"18", " ",
RowBox[{"Log", "[", "3", "]"}]}], "+",
RowBox[{"2", " ",
SqrtBox["3"], " ",
RowBox[{"Log", "[",
RowBox[{"262087", "+",
RowBox[{"151316", " ",
SqrtBox["3"]}]}], "]"}]}]}], "6912"]}],
SequenceForm[
" Integral over t and s: ",
Rational[1, 6912] (117 + 36 Log[2] - 18 Log[3] +
2 3^Rational[1, 2] Log[262087 + 151316 3^Rational[1, 2]])],
Editable->False]], "Print",
CellLabel->
"During evaluation of (byblis65 V13.2.0) \
In[4]:=",ExpressionUUID->"899e7e42-4389-43f0-a23c-1e86ac4fbed5"],
Cell[BoxData[
InterpretationBox[
RowBox[{"\<\" Elapsed time: \"\>", "\[InvisibleSpace]",
"44.038507`8.095377580529282"}],
SequenceForm[" Elapsed time: ", 44.038507`8.095377580529282],
Editable->False]], "Print",
CellLabel->
"During evaluation of (byblis65 V13.2.0) \
In[4]:=",ExpressionUUID->"594ed01d-6893-4ee1-961d-81fffb01c125"],
Cell[BoxData[
InterpretationBox[
RowBox[{"\<\"Polygon: \"\>", "\[InvisibleSpace]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
FractionBox["1",
SqrtBox["3"]], ",", "0", ",", "0"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-",
FractionBox["1",
RowBox[{"2", " ",
SqrtBox["3"]}]]}], ",",
RowBox[{"-",
FractionBox["1", "2"]}], ",", "0"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-",
FractionBox["1",
RowBox[{"2", " ",
SqrtBox["3"]}]]}], ",",
FractionBox["1", "2"], ",", "0"}], "}"}]}], "}"}]}],
SequenceForm[
"Polygon: ", {{3^Rational[-1, 2], 0, 0}, {Rational[-1, 2] 3^Rational[-1, 2],
Rational[-1, 2], 0}, {Rational[-1, 2] 3^Rational[-1, 2],
Rational[1, 2], 0}}],
Editable->False]], "Print",
CellLabel->
"During evaluation of (byblis65 V13.2.0) \
In[4]:=",ExpressionUUID->"9f115400-e1f2-4144-af8e-aeb3fa0cf53c"],
Cell[BoxData[
InterpretationBox[
RowBox[{"\<\" Integrand and hence integral over t and s is zero : \"\>",
"\[InvisibleSpace]", "0"}],
SequenceForm[" Integrand and hence integral over t and s is zero : ", 0],
Editable->False]], "Print",
CellLabel->
"During evaluation of (byblis65 V13.2.0) \
In[4]:=",ExpressionUUID->"9ae73e4e-7061-48f9-bf74-d19e0d133ce1"],
Cell[BoxData[
InterpretationBox[
RowBox[{"\<\" Elapsed time: \"\>", "\[InvisibleSpace]",
"0.000386`3.03813229816773"}],
SequenceForm[" Elapsed time: ", 0.000386`3.03813229816773],
Editable->False]], "Print",
CellLabel->
"During evaluation of (byblis65 V13.2.0) \
In[4]:=",ExpressionUUID->"65d3d19c-14cf-424d-b441-5dcdc4c669a1"]
}, Open ]],
Cell[BoxData[
RowBox[{"{",
RowBox[{"399.629719`", ",",
RowBox[{
FractionBox["1",
RowBox[{
FractionBox["1",
SqrtBox["2"]], "+",
FractionBox[
RowBox[{"3", " ",
SqrtBox["3"]}], "2"]}]],
RowBox[{"6", " ",
RowBox[{"(",
RowBox[{
FractionBox[
RowBox[{"27", "-",
RowBox[{"36", " ",
RowBox[{"Log", "[", "2", "]"}]}], "+",
RowBox[{"18", " ",
RowBox[{"Log", "[", "3", "]"}]}], "-",
RowBox[{"2", " ",
SqrtBox["3"], " ",
RowBox[{"Log", "[",
RowBox[{"7", "-",
RowBox[{"4", " ",
SqrtBox["3"]}]}], "]"}]}]}],
RowBox[{"1728", " ",
SqrtBox["6"]}]], "+",
RowBox[{
FractionBox["1", "864"], " ",
RowBox[{"(",
RowBox[{"36", "+",
RowBox[{"2", " ",
SqrtBox["3"], " ",
RowBox[{"ArcSinh", "[",
SqrtBox["3"], "]"}]}], "-",
RowBox[{"Log", "[",
FractionBox["68719476736", "387420489"], "]"}], "+",
RowBox[{"2", " ",
SqrtBox["3"], " ",
RowBox[{"Log", "[",
RowBox[{"2", "+",
SqrtBox["3"]}], "]"}]}]}], ")"}]}], "+",
RowBox[{
FractionBox["1", "864"], " ",
RowBox[{"(",
RowBox[{"18", "+",
RowBox[{"18", " ",
RowBox[{"Log", "[", "2", "]"}]}], "-",
RowBox[{"9", " ",
RowBox[{"Log", "[", "3", "]"}]}], "+",
RowBox[{"4", " ",
SqrtBox["3"], " ",
RowBox[{"Log", "[",
RowBox[{"2", "+",
SqrtBox["3"]}], "]"}]}]}], ")"}]}], "+",
FractionBox[
RowBox[{"45", "+",
RowBox[{"36", " ",
RowBox[{"Log", "[", "2", "]"}]}], "-",
RowBox[{"18", " ",
RowBox[{"Log", "[", "3", "]"}]}], "+",
RowBox[{
SqrtBox["3"], " ",
RowBox[{"Log", "[",
RowBox[{"18817", "+",
RowBox[{"10864", " ",
SqrtBox["3"]}]}], "]"}]}]}],
RowBox[{"1728", " ",
SqrtBox["6"]}]], "+",
RowBox[{
FractionBox["1", "3456"],
RowBox[{"(",
RowBox[{"72", "+",
RowBox[{"27", " ",
RowBox[{"Log", "[",
FractionBox["4", "3"], "]"}]}], "+",
RowBox[{"18", " ",
RowBox[{"Log", "[", "2", "]"}]}], "-",
RowBox[{"9", " ",
RowBox[{"Log", "[", "3", "]"}]}], "+",
RowBox[{"4", " ",
SqrtBox["3"], " ",
RowBox[{"Log", "[",
RowBox[{"2", "-",
SqrtBox["3"]}], "]"}]}], "+",
RowBox[{"10", " ",
SqrtBox["3"], " ",
RowBox[{"Log", "[",
RowBox[{"2", "+",
SqrtBox["3"]}], "]"}]}], "+",
RowBox[{
SqrtBox["3"], " ",
RowBox[{"Log", "[",
RowBox[{"262087", "+",
RowBox[{"151316", " ",
SqrtBox["3"]}]}], "]"}]}]}], ")"}]}]}], ")"}]}]}]}],
"}"}]], "Output",
CellLabel->
"(byblis65 V13.2.0) \
Out[4]=",ExpressionUUID->"e5654e16-bb37-4888-bfed-941f56a816a3"]
}, Closed]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"N", "[", "rxy", "]"}]], "Input",
CellLabel->
"(byblis65 V13.2.0) \
In[5]:=",ExpressionUUID->"f6268216-1129-41a8-aa73-b8cf90b56e70"],
Cell[BoxData["0.2514081119594903`"], "Output",
CellLabel->
"(byblis65 V13.2.0) \
Out[5]=",ExpressionUUID->"fa6b7714-7345-47dc-8610-07ca837f7960"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"FullSimplify", "[", "rxy", "]"}]], "Input",
CellLabel->
"(byblis65 V13.2.0) \
In[6]:=",ExpressionUUID->"d0573f61-9a32-40e3-b77d-3b72b4383ba7"],
Cell[BoxData[
RowBox[{
FractionBox["1",
RowBox[{"288", " ",
SqrtBox[
RowBox[{"29", "+",
RowBox[{"6", " ",
SqrtBox["6"]}]}]]}]],
RowBox[{"(",
RowBox[{"288", "+",
RowBox[{"24", " ",
SqrtBox["6"]}], "+",
RowBox[{"42", " ",
SqrtBox["3"], " ",
RowBox[{"ArcCosh", "[", "2", "]"}]}], "+",
RowBox[{
SqrtBox["2"], " ",
RowBox[{"ArcCosh", "[", "18817", "]"}]}], "+",
RowBox[{
SqrtBox["3"], " ",
RowBox[{"ArcCosh", "[", "262087", "]"}]}], "-",
RowBox[{"2", " ",
SqrtBox["2"], " ",
RowBox[{"Log", "[",
RowBox[{"7", "-",
RowBox[{"4", " ",
SqrtBox["3"]}]}], "]"}]}], "+",
RowBox[{"4", " ",
SqrtBox["3"], " ",
RowBox[{"Log", "[",
RowBox[{"2", "-",
SqrtBox["3"]}], "]"}]}]}], ")"}]}]], "Output",
CellLabel->
"(byblis65 V13.2.0) \
Out[6]=",ExpressionUUID->"b5a7c2be-c569-4a22-9dbf-9a2e5f0409ab"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"TrigToExp", "[", "%", "]"}]], "Input",
CellLabel->
"(byblis65 V13.2.0) \
In[7]:=",ExpressionUUID->"707d6120-8118-489c-8993-fb52b9213b6b"],
Cell[BoxData[
RowBox[{
FractionBox["1",
RowBox[{"288", " ",
SqrtBox[
RowBox[{"29", "+",
RowBox[{"6", " ",
SqrtBox["6"]}]}]]}]],
RowBox[{"(",
RowBox[{"288", "+",
RowBox[{"24", " ",
SqrtBox["6"]}], "-",
RowBox[{"2", " ",
SqrtBox["2"], " ",
RowBox[{"Log", "[",
RowBox[{"7", "-",
RowBox[{"4", " ",
SqrtBox["3"]}]}], "]"}]}], "+",
RowBox[{"4", " ",
SqrtBox["3"], " ",
RowBox[{"Log", "[",
RowBox[{"2", "-",
SqrtBox["3"]}], "]"}]}], "+",
RowBox[{"42", " ",
SqrtBox["3"], " ",
RowBox[{"Log", "[",
RowBox[{"2", "+",
SqrtBox["3"]}], "]"}]}], "+",
RowBox[{
SqrtBox["2"], " ",
RowBox[{"Log", "[",
RowBox[{"18817", "+",
RowBox[{"10864", " ",
SqrtBox["3"]}]}], "]"}]}], "+",
RowBox[{
SqrtBox["3"], " ",
RowBox[{"Log", "[",
RowBox[{"262087", "+",
RowBox[{"151316", " ",
SqrtBox["3"]}]}], "]"}]}]}], ")"}]}]], "Output",
CellLabel->
"(byblis65 V13.2.0) \
Out[7]=",ExpressionUUID->"e01e46d9-8945-4890-8bff-c8b58dc87495"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Cases", "[",
RowBox[{
RowBox[{"Flatten", "[",
RowBox[{
RowBox[{"Table", "[",
RowBox[{
RowBox[{"{",
RowBox[{"a", ",", "b", ",", "n", ",",
RowBox[{
SuperscriptBox[
RowBox[{"(",
RowBox[{"a", "+",
RowBox[{"b", " ",
RowBox[{"Sqrt", "[", "3", "]"}]}]}], ")"}], "n"], "//",
"Expand"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"n", ",", "10"}], "}"}], ",",
RowBox[{"{",
RowBox[{"a", ",",
RowBox[{"-", "10"}], ",", "10"}], "}"}], ",",
RowBox[{"{",
RowBox[{"b", ",",
RowBox[{"-", "10"}], ",", "10"}], "}"}]}], "]"}], ",", "2"}], "]"}],
",",
RowBox[{"{",
RowBox[{"__", ",",
RowBox[{"18817", "+",
RowBox[{"10864", " ",
SqrtBox["3"]}]}]}], "}"}]}], "]"}]], "Input",
CellLabel->
"(byblis65 V13.2.0) \
In[8]:=",ExpressionUUID->"3abc8f6c-9073-467d-b8df-690d3ac9c524"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"-", "7"}], ",",
RowBox[{"-", "4"}], ",", "4", ",",
RowBox[{"18817", "+",
RowBox[{"10864", " ",
SqrtBox["3"]}]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"7", ",", "4", ",", "4", ",",
RowBox[{"18817", "+",
RowBox[{"10864", " ",
SqrtBox["3"]}]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "2"}], ",",
RowBox[{"-", "1"}], ",", "8", ",",
RowBox[{"18817", "+",
RowBox[{"10864", " ",
SqrtBox["3"]}]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"2", ",", "1", ",", "8", ",",
RowBox[{"18817", "+",
RowBox[{"10864", " ",
SqrtBox["3"]}]}]}], "}"}]}], "}"}]], "Output",
CellLabel->
"(byblis65 V13.2.0) \
Out[8]=",ExpressionUUID->"eae5fabb-26ca-4005-b37b-2a347f60018a"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Cases", "[",
RowBox[{
RowBox[{"Flatten", "[",
RowBox[{
RowBox[{"Table", "[",
RowBox[{
RowBox[{"{",
RowBox[{"a", ",", "b", ",", "n", ",",
RowBox[{
SuperscriptBox[
RowBox[{"(",
RowBox[{"a", "+",
RowBox[{"b", " ",
RowBox[{"Sqrt", "[", "3", "]"}]}]}], ")"}], "n"], "//",
"Expand"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"n", ",", "10"}], "}"}], ",",
RowBox[{"{",
RowBox[{"a", ",",
RowBox[{"-", "10"}], ",", "10"}], "}"}], ",",
RowBox[{"{",
RowBox[{"b", ",",
RowBox[{"-", "10"}], ",", "10"}], "}"}]}], "]"}], ",", "2"}], "]"}],
",",
RowBox[{"{",
RowBox[{"__", ",",
RowBox[{"262087", "+",
RowBox[{"151316", " ",
SqrtBox["3"]}]}]}], "}"}]}], "]"}]], "Input",
CellLabel->
"(byblis65 V13.2.0) \
In[9]:=",ExpressionUUID->"76e66176-ef99-46fe-9e98-2c75cfee49a6"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"7", ",", "4", ",", "5", ",",
RowBox[{"262087", "+",
RowBox[{"151316", " ",
SqrtBox["3"]}]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "2"}], ",",
RowBox[{"-", "1"}], ",", "10", ",",
RowBox[{"262087", "+",
RowBox[{"151316", " ",
SqrtBox["3"]}]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"2", ",", "1", ",", "10", ",",
RowBox[{"262087", "+",
RowBox[{"151316", " ",
SqrtBox["3"]}]}]}], "}"}]}], "}"}]], "Output",
CellLabel->
"(byblis65 V13.2.0) \
Out[9]=",ExpressionUUID->"fec58fc2-bd56-46ac-be48-890a5a6b4bd9"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Cases", "[",
RowBox[{
RowBox[{"Flatten", "[",
RowBox[{
RowBox[{"Table", "[",
RowBox[{
RowBox[{"{",
RowBox[{"a", ",", "b", ",", "n", ",",
RowBox[{
SuperscriptBox[
RowBox[{"(",
RowBox[{"a", "+",
RowBox[{"b", " ",
RowBox[{"Sqrt", "[", "3", "]"}]}]}], ")"}], "n"], "//",
"Expand"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"n", ",", "10"}], "}"}], ",",
RowBox[{"{",
RowBox[{"a", ",",
RowBox[{"-", "10"}], ",", "10"}], "}"}], ",",
RowBox[{"{",
RowBox[{"b", ",",
RowBox[{"-", "10"}], ",", "10"}], "}"}]}], "]"}], ",", "2"}], "]"}],
",",
RowBox[{"{",
RowBox[{"__", ",",
RowBox[{"7", "-",
RowBox[{"4", " ",
SqrtBox["3"]}]}]}], "}"}]}], "]"}]], "Input",
CellLabel->
"(byblis65 V13.2.0) \
In[15]:=",ExpressionUUID->"7387248d-39a4-4468-b998-bc9902eee51a"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"7", ",",
RowBox[{"-", "4"}], ",", "1", ",",
RowBox[{"7", "-",
RowBox[{"4", " ",
SqrtBox["3"]}]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "2"}], ",", "1", ",", "2", ",",
RowBox[{"7", "-",
RowBox[{"4", " ",
SqrtBox["3"]}]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"2", ",",
RowBox[{"-", "1"}], ",", "2", ",",
RowBox[{"7", "-",
RowBox[{"4", " ",
SqrtBox["3"]}]}]}], "}"}]}], "}"}]], "Output",
CellLabel->
"(byblis65 V13.2.0) \
Out[15]=",ExpressionUUID->"b6b255e6-5351-4a72-8d4f-c39d50419716"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"N", "[",
RowBox[{
FractionBox["1",
RowBox[{"288", " ",
SqrtBox[
RowBox[{"29", "+",
RowBox[{"6", " ",
SqrtBox["6"]}]}]]}]],
RowBox[{"(",
RowBox[{"288", "+",
RowBox[{"24", " ",
SqrtBox["6"]}], "-",
RowBox[{"2", " ",
SqrtBox["2"], " ",
RowBox[{"Log", "[",
RowBox[{"7", "-",
RowBox[{"4", " ",
SqrtBox["3"]}]}], "]"}]}], "+",
RowBox[{"4", " ",
SqrtBox["3"], " ",
RowBox[{"Log", "[",
RowBox[{"2", "-",
SqrtBox["3"]}], "]"}]}], "+",
RowBox[{"42", " ",
SqrtBox["3"], " ",
RowBox[{"Log", "[",
RowBox[{"2", "+",
SqrtBox["3"]}], "]"}]}], "+",
RowBox[{
SqrtBox["2"], " ",
RowBox[{"Log", "[",
RowBox[{"18817", "+",
RowBox[{"10864", " ",
SqrtBox["3"]}]}], "]"}]}], "+",
RowBox[{
SqrtBox["3"], " ",
RowBox[{"Log", "[",
RowBox[{"262087", "+",
RowBox[{"151316", " ",
SqrtBox["3"]}]}], "]"}]}]}], ")"}]}], "]"}]], "Input",
CellLabel->
"(byblis65 V13.2.0) \
In[12]:=",ExpressionUUID->"6814b3cd-3186-4fdb-849c-b3dbc50f3605"],
Cell[BoxData["0.2514081119594904`"], "Output",
CellLabel->
"(byblis65 V13.2.0) \
Out[12]=",ExpressionUUID->"31b1f47b-2558-4070-b501-910546567442"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"N", "[",
RowBox[{
FractionBox["1",
RowBox[{"288", " ",
SqrtBox[
RowBox[{"29", "+",
RowBox[{"6", " ",
SqrtBox["6"]}]}]]}]],
RowBox[{"(",
RowBox[{"288", "+",
RowBox[{"24", " ",
SqrtBox["6"]}], "-",
RowBox[{"2", " ",
SqrtBox["2"], " ",
RowBox[{"Log", "[",
RowBox[{"7", "-",
RowBox[{"4", " ",
SqrtBox["3"]}]}], "]"}]}], "+",
RowBox[{"4", " ",
SqrtBox["3"], " ",
RowBox[{"Log", "[",
RowBox[{"2", "-",
SqrtBox["3"]}], "]"}]}], "+",
RowBox[{"42", " ",
SqrtBox["3"], " ",
RowBox[{"Log", "[",
RowBox[{"2", "+",
SqrtBox["3"]}], "]"}]}], "+",
RowBox[{
SqrtBox["2"], " ", "8",
RowBox[{"Log", "[",
RowBox[{"2", "+", " ",
SqrtBox["3"]}], "]"}]}], "+",
RowBox[{
SqrtBox["3"], " ", "10",
RowBox[{"Log", "[",
RowBox[{"2", "+",
SqrtBox["3"]}], "]"}]}]}], ")"}]}], "]"}]], "Input",
CellLabel->
"(byblis65 V13.2.0) \
In[13]:=",ExpressionUUID->"4483d06d-87de-41ee-a961-c3315488ae1b"],
Cell[BoxData["0.25140811195949037`"], "Output",
CellLabel->
"(byblis65 V13.2.0) \
Out[13]=",ExpressionUUID->"f5a877f0-5919-4610-84ab-00918f7a2c15"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"N", "[",
RowBox[{
FractionBox["1",
RowBox[{"288", " ",
SqrtBox[
RowBox[{"29", "+",
RowBox[{"6", " ",
SqrtBox["6"]}]}]]}]],
RowBox[{"(",
RowBox[{"288", "+",
RowBox[{"24", " ",
SqrtBox["6"]}], "-",
RowBox[{"2", " ",
SqrtBox["2"], " ", "2",
RowBox[{"Log", "[",
RowBox[{"2", "-",
SqrtBox["3"]}], "]"}]}], "+",
RowBox[{"4", " ",
SqrtBox["3"], " ",
RowBox[{"Log", "[",
RowBox[{"2", "-",
SqrtBox["3"]}], "]"}]}], "+",
RowBox[{"42", " ",
SqrtBox["3"], " ",
RowBox[{"Log", "[",
RowBox[{"2", "+",
SqrtBox["3"]}], "]"}]}], "+",
RowBox[{
SqrtBox["2"], " ", "8",
RowBox[{"Log", "[",
RowBox[{"2", "+", " ",
SqrtBox["3"]}], "]"}]}], "+",
RowBox[{
SqrtBox["3"], " ", "10",
RowBox[{"Log", "[",
RowBox[{"2", "+",
SqrtBox["3"]}], "]"}]}]}], ")"}]}], "]"}]], "Input",
CellLabel->
"(byblis65 V13.2.0) \
In[18]:=",ExpressionUUID->"27904df8-934a-4fd0-8cf0-06093ab2b416"],
Cell[BoxData["0.25140811195949037`"], "Output",
CellLabel->
"(byblis65 V13.2.0) \
Out[18]=",ExpressionUUID->"f3c5d28c-fb90-43a1-a660-867830417a22"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"FullSimplify", "[",
RowBox[{
FractionBox["1",
RowBox[{"288", " ",
SqrtBox[
RowBox[{"29", "+",
RowBox[{"6", " ",
SqrtBox["6"]}]}]]}]],
RowBox[{"(",
RowBox[{"288", "+",
RowBox[{"24", " ",
SqrtBox["6"]}], "-",
RowBox[{"2", " ",
SqrtBox["2"], " ", "2",
RowBox[{"Log", "[",
RowBox[{"2", "-",
SqrtBox["3"]}], "]"}]}], "+",
RowBox[{"4", " ",
SqrtBox["3"], " ",
RowBox[{"Log", "[",
RowBox[{"2", "-",
SqrtBox["3"]}], "]"}]}], "+",
RowBox[{"42", " ",
SqrtBox["3"], " ",
RowBox[{"Log", "[",
RowBox[{"2", "+",
SqrtBox["3"]}], "]"}]}], "+",
RowBox[{
SqrtBox["2"], " ", "8",
RowBox[{"Log", "[",
RowBox[{"2", "+", " ",
SqrtBox["3"]}], "]"}]}], "+",
RowBox[{
SqrtBox["3"], " ", "10",
RowBox[{"Log", "[",
RowBox[{"2", "+",
SqrtBox["3"]}], "]"}]}]}], ")"}]}], "]"}]], "Input",
CellLabel->
"(byblis65 V13.2.0) \
In[19]:=",ExpressionUUID->"edef1146-6b38-49fe-ad2a-dc16887f24de"],
Cell[BoxData[
FractionBox[
RowBox[{"72", "+",
RowBox[{"6", " ",
SqrtBox["6"]}], "+",
RowBox[{"2", " ",
SqrtBox["2"], " ",
RowBox[{"ArcCosh", "[", "2", "]"}]}], "+",
RowBox[{"13", " ",
SqrtBox["3"], " ",
RowBox[{"ArcCosh", "[", "2", "]"}]}], "+",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"-",
SqrtBox["2"]}], "+",
SqrtBox["3"]}], ")"}], " ",
RowBox[{"Log", "[",
RowBox[{"2", "-",
SqrtBox["3"]}], "]"}]}]}],
RowBox[{"72", " ",
SqrtBox[
RowBox[{"29", "+",
RowBox[{"6", " ",
SqrtBox["6"]}]}]]}]]], "Output",
CellLabel->
"(byblis65 V13.2.0) \
Out[19]=",ExpressionUUID->"7a96abb7-f679-406c-9a7c-82ae40bac813"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"ArcCosh", "[", "2", "]"}], "//", "TrigToExp"}]], "Input",
CellLabel->
"(byblis65 V13.2.0) \
In[20]:=",ExpressionUUID->"ac73c5f5-5a3e-4bdc-901d-e0f58749ad98"],
Cell[BoxData[
RowBox[{"Log", "[",
RowBox[{"2", "+",
SqrtBox["3"]}], "]"}]], "Output",
CellLabel->
"(byblis65 V13.2.0) \
Out[20]=",ExpressionUUID->"1df4924d-ac6b-4ea6-9930-619115907aec"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"N", "[",
FractionBox[
RowBox[{"72", "+",
RowBox[{"6", " ",
SqrtBox["6"]}], "+",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"2", " ",
SqrtBox["2"]}], "+",
RowBox[{"13", " ",
SqrtBox["3"]}]}], ")"}],
RowBox[{"Log", "[",
RowBox[{"2", "+",
SqrtBox["3"]}], "]"}]}], "+",
RowBox[{
RowBox[{"(",
RowBox[{
SqrtBox["3"], "-",
SqrtBox["2"]}], ")"}], " ",
RowBox[{"Log", "[",
RowBox[{"2", "-",
SqrtBox["3"]}], "]"}]}]}],
RowBox[{"72", " ",
SqrtBox[
RowBox[{"29", "+",
RowBox[{"6", " ",
SqrtBox["6"]}]}]]}]], "]"}]], "Input",ExpressionUUID->"a6d1ba1d-9583-\
4783-8505-af6098b5659a"],
Cell[BoxData["0.25140811195949037`"], "Output",
CellLabel->
"(byblis65 V13.2.0) \
Out[21]=",ExpressionUUID->"63c27f5b-07a7-48c6-81ae-a558804e50c1"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"N", "[",
RowBox[{
RowBox[{"Subtract", "@@",
RowBox[{"{",
RowBox[{
RowBox[{
FractionBox["1",
RowBox[{"1728", " ",
SqrtBox[
RowBox[{"29", "+",
RowBox[{"6", " ",
SqrtBox["6"]}]}]]}]],
RowBox[{"(",
RowBox[{
RowBox[{"-",
RowBox[{"(",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"32", " ",
SqrtBox["2"]}], "+",
RowBox[{"27", " ",
SqrtBox["3"]}]}], ")"}], " ",
RowBox[{"Log", "[", "3", "]"}]}], ")"}]}], "+",
RowBox[{"6", " ",
RowBox[{"(",
RowBox[{
RowBox[{
RowBox[{"-", "4"}], " ",
SqrtBox["2"]}], "+",
RowBox[{"41", " ",
SqrtBox["3"]}]}], ")"}], " ",
RowBox[{"Log", "[",
RowBox[{"2", "+",
SqrtBox["3"]}], "]"}]}], "+",
RowBox[{"6", " ",
SqrtBox["3"], " ",
RowBox[{"Log", "[",
RowBox[{
RowBox[{"-", "3"}], "+",
RowBox[{"2", " ",
SqrtBox["3"]}]}], "]"}]}], "+",
RowBox[{"16", " ",
RowBox[{"(",
RowBox[{"108", "+",
RowBox[{"9", " ",
SqrtBox["6"]}], "+",
RowBox[{"3", " ",
RowBox[{"(",
RowBox[{
SqrtBox["2"], "+",
SqrtBox["3"]}], ")"}], " ",
RowBox[{"Log", "[",
RowBox[{"3", "+",
RowBox[{"2", " ",
SqrtBox["3"]}]}], "]"}]}], "+",
RowBox[{
SqrtBox["2"], " ",
RowBox[{"Log", "[",
RowBox[{"45", "+",
RowBox[{"26", " ",
SqrtBox["3"]}]}], "]"}]}]}], ")"}]}]}], ")"}]}], ",",
FractionBox[
RowBox[{"72", "+",
RowBox[{"6", " ",
SqrtBox["6"]}], "+",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"2", " ",
SqrtBox["2"]}], "+",
RowBox[{"13", " ",
SqrtBox["3"]}]}], " ", ")"}],
RowBox[{"Log", "[",
RowBox[{"2", "+",
SqrtBox["3"]}], "]"}]}], "+",
RowBox[{
RowBox[{"(",
RowBox[{
SqrtBox["3"], "-",
SqrtBox["2"]}], ")"}], " ",
RowBox[{"Log", "[",
RowBox[{"2", "-",
SqrtBox["3"]}], "]"}]}]}],
RowBox[{"72", " ",
SqrtBox[
RowBox[{"29", "+",
RowBox[{"6", " ",
SqrtBox["6"]}]}]]}]]}], "}"}]}], ",", "1000"}], "]"}]], "Input",
CellLabel->
"(byblis65 V13.2.0) \
In[22]:=",ExpressionUUID->"e870542f-29c4-40c4-ab92-a0cec952f4ef"],
Cell[BoxData[
TemplateBox[{
"N", "meprec",
"\"Internal precision limit $MaxExtraPrecision = \\!\\(\\*RowBox[{\\\"50.`\
\\\"}]\\) reached while evaluating \\!\\(\\*RowBox[{RowBox[{\\\"-\\\", \
FractionBox[RowBox[{\\\"72\\\", \\\"+\\\", RowBox[{\\\"6\\\", \\\" \\\", \
SqrtBox[\\\"6\\\"]}], \\\"+\\\", RowBox[{RowBox[{\\\"(\\\", \
RowBox[{RowBox[{\\\"-\\\", SqrtBox[\\\"2\\\"]}], \\\"+\\\", \
SqrtBox[\\\"3\\\"]}], \\\")\\\"}], \\\" \\\", RowBox[{\\\"Log\\\", \\\"[\\\", \
RowBox[{\\\"2\\\", \\\"-\\\", RowBox[{\\\"Power\\\", \\\"[\\\", RowBox[{\\\"\
\[LeftSkeleton]\\\", \\\"2\\\", \\\"\[RightSkeleton]\\\"}], \\\"]\\\"}]}], \\\
\"]\\\"}]}], \\\"+\\\", RowBox[{RowBox[{\\\"(\\\", RowBox[{RowBox[{\\\"2\\\", \
\\\" \\\", SqrtBox[\\\"2\\\"]}], \\\"+\\\", RowBox[{\\\"13\\\", \\\" \\\", \
SqrtBox[\\\"3\\\"]}]}], \\\")\\\"}], \\\" \\\", RowBox[{\\\"Log\\\", \
\\\"[\\\", RowBox[{\\\"2\\\", \\\"+\\\", SqrtBox[\\\"3\\\"]}], \
\\\"]\\\"}]}]}], RowBox[{\\\"72\\\", \\\" \\\", SqrtBox[RowBox[{\\\"29\\\", \
\\\"+\\\", RowBox[{\\\"6\\\", \\\" \\\", SqrtBox[\\\"6\\\"]}]}]]}]]}], \
\\\"+\\\", FractionBox[RowBox[{RowBox[{\\\"-\\\", RowBox[{\\\"(\\\", \
RowBox[{RowBox[{\\\"(\\\", RowBox[{RowBox[{\\\"32\\\", \\\" \\\", \
SqrtBox[\\\"2\\\"]}], \\\"+\\\", RowBox[{\\\"27\\\", \\\" \\\", SqrtBox[\\\"3\
\\\"]}]}], \\\")\\\"}], \\\" \\\", RowBox[{\\\"Log\\\", \\\"[\\\", \\\"3\\\", \
\\\"]\\\"}]}], \\\")\\\"}]}], \\\"+\\\", RowBox[{\\\"6\\\", \\\" \\\", \
RowBox[{\\\"(\\\", RowBox[{RowBox[{RowBox[{\\\"-\\\", \\\"4\\\"}], \\\" \\\", \
SqrtBox[\\\"2\\\"]}], \\\"+\\\", RowBox[{\\\"41\\\", \\\" \\\", SqrtBox[\\\"3\
\\\"]}]}], \\\")\\\"}], \\\" \\\", RowBox[{\\\"Log\\\", \\\"[\\\", RowBox[{\\\
\"2\\\", \\\"+\\\", SqrtBox[\\\"3\\\"]}], \\\"]\\\"}]}], \\\"+\\\", \
RowBox[{\\\"6\\\", \\\" \\\", SqrtBox[\\\"3\\\"], \\\" \\\", \
RowBox[{\\\"Log\\\", \\\"[\\\", RowBox[{RowBox[{\\\"-\\\", \\\"3\\\"}], \\\"+\
\\\", RowBox[{\\\"2\\\", \\\" \\\", RowBox[{\\\"\[LeftSkeleton]\\\", \
\\\"1\\\", \\\"\[RightSkeleton]\\\"}]}]}], \\\"]\\\"}]}], \\\"+\\\", RowBox[{\
\\\"16\\\", \\\" \\\", RowBox[{\\\"(\\\", RowBox[{\\\"108\\\", \\\"+\\\", \
RowBox[{\\\"9\\\", \\\" \\\", SqrtBox[\\\"6\\\"]}], \\\"+\\\", \
RowBox[{\\\"3\\\", \\\" \\\", RowBox[{\\\"(\\\", \
RowBox[{RowBox[{\\\"Power\\\", \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\
\"2\\\", \\\"\[RightSkeleton]\\\"}], \\\"]\\\"}], \\\"+\\\", \
RowBox[{\\\"Power\\\", \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \
\\\"\[RightSkeleton]\\\"}], \\\"]\\\"}]}], \\\")\\\"}], \\\" \\\", RowBox[{\\\
\"Log\\\", \\\"[\\\", RowBox[{\\\"Plus\\\", \\\"[\\\", RowBox[{\\\"\
\[LeftSkeleton]\\\", \\\"2\\\", \\\"\[RightSkeleton]\\\"}], \\\"]\\\"}], \
\\\"]\\\"}]}], \\\"+\\\", RowBox[{SqrtBox[\\\"2\\\"], \\\" \\\", \
RowBox[{\\\"Log\\\", \\\"[\\\", RowBox[{\\\"Plus\\\", \\\"[\\\", RowBox[{\\\"\
\[LeftSkeleton]\\\", \\\"2\\\", \\\"\[RightSkeleton]\\\"}], \\\"]\\\"}], \
\\\"]\\\"}]}]}], \\\")\\\"}]}]}], RowBox[{\\\"1728\\\", \\\" \\\", \
SqrtBox[RowBox[{\\\"29\\\", \\\"+\\\", RowBox[{\\\"6\\\", \\\" \\\", SqrtBox[\
\\\"6\\\"]}]}]]}]]}]\\).\"", 2, 22, 1, 30283600873797580694,
"byblis65 V13.2.0"},
"MessageTemplate"]], "Message", "MSG",
CellLabel->
"During evaluation of (byblis65 V13.2.0) \
In[22]:=",ExpressionUUID->"b828997f-0d20-48bd-a941-ca4bdccf2a32"],
Cell[BoxData["0``1049.6642375878228"], "Output",
CellLabel->
"(byblis65 V13.2.0) \
Out[22]=",ExpressionUUID->"bc762a04-4232-4a51-bf17-cb7911b3c6a7"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"FullSimplify", "[",
RowBox[{
SqrtBox[
RowBox[{"29", "+",
RowBox[{"6", " ",
SqrtBox["6"]}]}]],
SqrtBox[
RowBox[{"29", "-",
RowBox[{"6", " ",
SqrtBox["6"]}]}]]}], "]"}]], "Input",
CellLabel->
"(byblis65 V13.2.0) \
In[25]:=",ExpressionUUID->"aa793936-4f9d-4e80-abe5-78c1c3d38fdb"],
Cell[BoxData["25"], "Output",
CellLabel->
"(byblis65 V13.2.0) \
Out[25]=",ExpressionUUID->"a6144241-ffbe-4885-985d-d08cc43f03e1"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"N", "[",
FractionBox[
RowBox[{
RowBox[{"(",
RowBox[{"72", "+",
RowBox[{"6", " ",
SqrtBox["6"]}], "+",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"2", " ",
SqrtBox["2"]}], "+",
RowBox[{"13", " ",
SqrtBox["3"]}]}], ")"}],
RowBox[{"Log", "[",
RowBox[{"2", "+",
SqrtBox["3"]}], "]"}]}], "+",
RowBox[{
RowBox[{"(",
RowBox[{
SqrtBox["3"], "-",
SqrtBox["2"]}], ")"}], " ",
RowBox[{"Log", "[",
RowBox[{"2", "-",
SqrtBox["3"]}], "]"}]}]}], ")"}],
SqrtBox[
RowBox[{"29", "-",
RowBox[{"6", " ",
SqrtBox["6"]}]}]]}],
RowBox[{"25", " ", "72"}]], "]"}]], "Input",
CellLabel->
"(byblis65 V13.2.0) \
In[27]:=",ExpressionUUID->"234f6ec9-fafe-4fd2-854c-8aedabc0a7f7"],
Cell[BoxData["0.25140811195949037`"], "Output",
CellLabel->
"(byblis65 V13.2.0) \
Out[27]=",ExpressionUUID->"1b0a54ae-9ff5-43be-9524-eb8a2e5b3fa0"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
FractionBox[
RowBox[{
RowBox[{"(",
RowBox[{"72", "+",
RowBox[{"6", " ",
SqrtBox["6"]}], "+",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"2", " ",
SqrtBox["2"]}], "+",
RowBox[{"13", " ",
SqrtBox["3"]}]}], ")"}],
RowBox[{"Log", "[",
RowBox[{"2", "+",
SqrtBox["3"]}], "]"}]}], "+",
RowBox[{
RowBox[{"(",
RowBox[{
SqrtBox["3"], "-",
SqrtBox["2"]}], ")"}], " ",
RowBox[{"Log", "[",
RowBox[{"2", "-",
SqrtBox["3"]}], "]"}]}]}], ")"}],
SqrtBox[
RowBox[{"29", "-",
RowBox[{"6", " ",
SqrtBox["6"]}]}]]}],
RowBox[{"25", " ", "72"}]]], "Input",
CellLabel->
"(byblis65 V13.2.0) \
In[28]:=",ExpressionUUID->"89311c3a-e5a8-476b-81b9-7d3caebfaf79"],
Cell[BoxData[
FractionBox[
RowBox[{
SqrtBox[
RowBox[{"29", "-",
RowBox[{"6", " ",
SqrtBox["6"]}]}]], " ",
RowBox[{"(",
RowBox[{"72", "+",
RowBox[{"6", " ",
SqrtBox["6"]}], "+",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"-",
SqrtBox["2"]}], "+",
SqrtBox["3"]}], ")"}], " ",
RowBox[{"Log", "[",
RowBox[{"2", "-",
SqrtBox["3"]}], "]"}]}], "+",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"2", " ",
SqrtBox["2"]}], "+",
RowBox[{"13", " ",
SqrtBox["3"]}]}], ")"}], " ",
RowBox[{"Log", "[",
RowBox[{"2", "+",
SqrtBox["3"]}], "]"}]}]}], ")"}]}], "1800"]], "Output",
CellLabel->
"(byblis65 V13.2.0) \
Out[28]=",ExpressionUUID->"a6009f80-0a05-496a-aff3-a7b71f4fb41a"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"FullSimplify", "[",
FractionBox[
RowBox[{
RowBox[{"(",
RowBox[{"72", "+",
RowBox[{"6", " ",
SqrtBox["6"]}], "+",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"2", " ",
SqrtBox["2"]}], "+",
RowBox[{"13", " ",
SqrtBox["3"]}]}], ")"}],
RowBox[{"Log", "[",
RowBox[{"2", "+",
SqrtBox["3"]}], "]"}]}], "+",
RowBox[{
RowBox[{"(",
RowBox[{
SqrtBox["3"], "-",
SqrtBox["2"]}], ")"}], " ",
RowBox[{"Log", "[",
RowBox[{"2", "-",
SqrtBox["3"]}], "]"}]}]}], ")"}],
SqrtBox[
RowBox[{"29", "-",
RowBox[{"6", " ",
SqrtBox["6"]}]}]]}],
RowBox[{"25", " ", "72"}]], "]"}]], "Input",
CellLabel->
"(byblis65 V13.2.0) \
In[29]:=",ExpressionUUID->"0fc56620-b9ef-44d7-be7d-d074b29e1cd9"],
Cell[BoxData[
FractionBox[
RowBox[{
RowBox[{
RowBox[{"-", "18"}], " ",
SqrtBox["2"]}], "+",
RowBox[{"204", " ",
SqrtBox["3"]}], "+",
RowBox[{
RowBox[{"(",
RowBox[{"11", "-",
RowBox[{"4", " ",
SqrtBox["6"]}]}], ")"}], " ",
RowBox[{"Log", "[",
RowBox[{"2", "-",
SqrtBox["3"]}], "]"}]}], "+",
RowBox[{
RowBox[{"(",
RowBox[{"113", "-",
RowBox[{"7", " ",
SqrtBox["6"]}]}], ")"}], " ",
RowBox[{"Log", "[",
RowBox[{"2", "+",
SqrtBox["3"]}], "]"}]}]}], "1800"]], "Output",
CellLabel->
"(byblis65 V13.2.0) \
Out[29]=",ExpressionUUID->"4f7d3ccf-fb57-4f02-a225-270f615feedd"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"N", "[", "%", "]"}]], "Input",
CellLabel->
"(byblis65 V13.2.0) \
In[30]:=",ExpressionUUID->"2012c3c6-2ba0-47de-b364-bd67ff8581c8"],
Cell[BoxData["0.2514081119594903`"], "Output",
CellLabel->
"(byblis65 V13.2.0) \
Out[30]=",ExpressionUUID->"7db7114c-08a1-4fb5-b18d-0346f368a49d"]
}, Open ]]
}, Closed]]
}, Closed]],
Cell[CellGroupData[{
Cell["MeanSphericalRadius", "Subsection",
FontColor->RGBColor[
1, 0, 0],ExpressionUUID->"f0639b37-12bd-409a-8a33-de9690dd27b7"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"PolyhedronData", "[",
RowBox[{"pname", ",", "\"\\""}], "]"}]], "Input",
CellLabel->"In[28]:=",ExpressionUUID->"61306949-c449-4c43-870b-bda5a27dea72"],
Cell[BoxData[
RowBox[{"Missing", "[", "\<\"NotAvailable\"\>", "]"}]], "Output",
CellLabel->"Out[28]=",ExpressionUUID->"e1f20df1-fa2d-4973-94e3-a7deddb0891a"]
}, Open ]],
Cell[CellGroupData[{
Cell["Integrate over polyhedron", "Subsubsection",ExpressionUUID->"750fef7f-9e94-4499-9516-9ea679c71667"],
Cell[CellGroupData[{
Cell[BoxData[
FractionBox[
RowBox[{"NIntegrate", "[",
RowBox[{
SqrtBox[
RowBox[{
SuperscriptBox["x", "2"], "+",
SuperscriptBox["y", "2"], "+",
SuperscriptBox["z", "2"]}]], ",",
RowBox[{
RowBox[{"{",
RowBox[{"x", ",", "y", ",", "z"}], "}"}], "\[Element]", "p"}]}], "]"}],
"vol"]], "Input",ExpressionUUID->"d395f455-107e-4322-a280-11676dbb3472"],
Cell[BoxData["0.7308560763350795`"], "Output",
CellLabel->
"Out[196]=",ExpressionUUID->"f3ff9d48-42b8-4249-bc07-cfd28f5b7ea4"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"(",
RowBox[{"i", "=",
FractionBox[
RowBox[{"Integrate", "[",
RowBox[{
SqrtBox[
RowBox[{
SuperscriptBox["x", "2"], "+",
SuperscriptBox["y", "2"], "+",
SuperscriptBox["z", "2"]}]], ",",
RowBox[{
RowBox[{"{",
RowBox[{"x", ",", "y", ",", "z"}], "}"}], "\[Element]", "p"}]}],
"]"}], "vol"]}], ")"}], "//", "Timing"}]], "Input",
CellLabel->
"(byblis65 V13.2.0) \
In[4]:=",ExpressionUUID->"6ac81459-89c0-4c7b-8eee-c8ef85efb752"],
Cell[BoxData[
RowBox[{"{",
RowBox[{"7130.484753`", ",",
FractionBox[
RowBox[{"12", " ",
RowBox[{"Total", "[",
InterpretationBox[
RowBox[{
TagBox["Failure",
"SummaryHead"], "[",
DynamicModuleBox[{Typeset`open$$ = False, Typeset`embedState$$ =
"Ready"},
TemplateBox[{
PaneSelectorBox[{False -> GridBox[{{
PaneBox[
ButtonBox[
DynamicBox[
FEPrivate`FrontEndResource[
"FEBitmaps", "SummaryBoxOpener"]],
ButtonFunction :> (Typeset`open$$ = True), Appearance ->
None, BaseStyle -> {}, Evaluator -> Automatic, Method ->
"Preemptive"], Alignment -> {Center, Center}, ImageSize ->
Dynamic[{
Automatic,
3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[
Magnification])}]],
FrameBox[
StyleBox["\"\[WarningSign]\"",
Directive["Message", 35], StripOnInput -> False],
ContentPadding -> False, FrameStyle -> None,
FrameMargins -> {{0, 0}, {0, 0}}, StripOnInput -> False],
GridBox[{{
TagBox[
GridBox[{{
TagBox["\"Message: \"", "SummaryItemAnnotation"],
"\[InvisibleSpace]",
TagBox[
"\"\\!\\(\\*TagBox[\\\"$Failed\\\", \
Function[Short[Slot[1], 5]]]\\) encountered.\"", "SummaryItem"]}},
GridBoxItemSize -> {"Columns" -> {6.5, All}},
GridBoxAlignment -> {"Columns" -> {{Left}}},
GridBoxSpacings -> {"Columns" -> {{0}}}],
"SummaryItem"]}, {
TagBox[
GridBox[{{
TagBox["\"Tag: \"", "SummaryItemAnnotation"],
"\[InvisibleSpace]",
TagBox["\"ConfirmationFailed\"", "SummaryItem"]}},
GridBoxItemSize -> {"Columns" -> {6.5, All}},
GridBoxAlignment -> {"Columns" -> {{Left}}},
GridBoxSpacings -> {"Columns" -> {{0}}}],
"SummaryItem"]}},
GridBoxAlignment -> {
"Columns" -> {{Left}}, "Rows" -> {{Automatic}}},
AutoDelete -> False,
GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}},
GridBoxSpacings -> {
"Columns" -> {{2}}, "Rows" -> {{Automatic}}},
BaseStyle -> {
ShowStringCharacters -> False, NumberMarks -> False,
PrintPrecision -> 3, ShowSyntaxStyles -> False}]}},
GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}},
AutoDelete -> False,
GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}},
BaselinePosition -> {1, 1}], True -> GridBox[{{
PaneBox[
ButtonBox[
DynamicBox[
FEPrivate`FrontEndResource[
"FEBitmaps", "SummaryBoxCloser"]],
ButtonFunction :> (Typeset`open$$ = False), Appearance ->
None, BaseStyle -> {}, Evaluator -> Automatic, Method ->
"Preemptive"], Alignment -> {Center, Center}, ImageSize ->
Dynamic[{
Automatic,
3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[
Magnification])}]],
FrameBox[
StyleBox["\"\[WarningSign]\"",
Directive["Message", 35], StripOnInput -> False],
ContentPadding -> False, FrameStyle -> None,
FrameMargins -> {{0, 0}, {0, 0}}, StripOnInput -> False],
GridBox[{{
TagBox[
GridBox[{{
TagBox["\"Message: \"", "SummaryItemAnnotation"],
"\[InvisibleSpace]",
TagBox[
"\"\\!\\(\\*TagBox[\\\"$Failed\\\", \
Function[Short[Slot[1], 5]]]\\) encountered.\"", "SummaryItem"]}},
GridBoxItemSize -> {"Columns" -> {6.5, All}},
GridBoxAlignment -> {"Columns" -> {{Left}}},
GridBoxSpacings -> {"Columns" -> {{0}}}],
"SummaryItem"]}, {
TagBox[
GridBox[{{
TagBox["\"Tag: \"", "SummaryItemAnnotation"],
"\[InvisibleSpace]",
TagBox["\"ConfirmationFailed\"", "SummaryItem"]}},
GridBoxItemSize -> {"Columns" -> {6.5, All}},
GridBoxAlignment -> {"Columns" -> {{Left}}},
GridBoxSpacings -> {"Columns" -> {{0}}}],
"SummaryItem"]}, {
RowBox[{
TagBox[
TemplateBox[{"\"ConfirmationType\"", "\": \""},
"RowDefault"], "SummaryItemAnnotation"],
"\[InvisibleSpace]",
TagBox[
TagBox["\"Confirm\"", HoldForm], "SummaryItem"]}]}, {
RowBox[{
TagBox[
TemplateBox[{"\"Expression\"", "\": \""}, "RowDefault"],
"SummaryItemAnnotation"], "\[InvisibleSpace]",
TagBox[
TagBox["$Failed", HoldForm], "SummaryItem"]}]}, {
RowBox[{
TagBox[
TemplateBox[{"\"Information\"", "\": \""}, "RowDefault"],
"SummaryItemAnnotation"], "\[InvisibleSpace]",
TagBox[
TagBox["Null", HoldForm], "SummaryItem"]}]}},
GridBoxAlignment -> {
"Columns" -> {{Left}}, "Rows" -> {{Automatic}}},
AutoDelete -> False,
GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}},
GridBoxSpacings -> {
"Columns" -> {{2}}, "Rows" -> {{Automatic}}},
BaseStyle -> {
ShowStringCharacters -> False, NumberMarks -> False,
PrintPrecision -> 3, ShowSyntaxStyles -> False}]}},
GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}},
AutoDelete -> False,
GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}},
BaselinePosition -> {1, 1}]},
Dynamic[Typeset`open$$], ImageSize -> Automatic]},
"SummaryPanel"],
DynamicModuleValues:>{}], "]"}],
Failure[
"ConfirmationFailed", <|
"MessageTemplate" -> "`` encountered.",
"MessageParameters" :> {$Failed}, "ConfirmationType" -> "Confirm",
"Expression" :> $Failed, "Information" -> Null|>],
Editable->False,
SelectWithContents->True,
Selectable->False], "]"}]}],
RowBox[{
SqrtBox["2"], "+",
RowBox[{"3", " ",
SqrtBox["3"]}]}]]}], "}"}]], "Output",
CellLabel->
"(byblis65 V13.2.0) \
Out[4]=",ExpressionUUID->"efe080d7-8e63-466d-8602-dc08315c086f"]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell["Divergence theorem", "Subsubsection",ExpressionUUID->"11305ed9-efcf-4076-9620-654ebc69c653"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"(",
RowBox[{"rxy", "=",
RowBox[{"MeanSphericalRadius", "[",
RowBox[{"p", ",",
RowBox[{"Debug", "\[Rule]", "True"}]}], "]"}]}], ")"}], "//",
"Timing"}]], "Input",
CellLabel->
"(byblis65 V13.2.0) \
In[4]:=",ExpressionUUID->"3fbcf048-4ce7-4a54-bb38-60c772f1ef8f"],
Cell[CellGroupData[{
Cell[BoxData[
InterpretationBox[
RowBox[{"\<\"Polygon: \"\>", "\[InvisibleSpace]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"-",
FractionBox["1",
RowBox[{"2", " ",
SqrtBox["3"]}]]}], ",",
FractionBox["1", "2"], ",", "1"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-",
FractionBox["1",
RowBox[{"2", " ",
SqrtBox["3"]}]]}], ",",
RowBox[{"-",
FractionBox["1", "2"]}], ",", "1"}], "}"}], ",",
RowBox[{"{",
RowBox[{"0", ",", "0", ",",
RowBox[{
FractionBox["1", "3"], " ",
RowBox[{"(",
RowBox[{"3", "+",
SqrtBox["6"]}], ")"}]}]}], "}"}]}], "}"}]}],
SequenceForm["Polygon: ", {{Rational[-1, 2] 3^Rational[-1, 2],
Rational[1, 2], 1}, {Rational[-1, 2] 3^Rational[-1, 2],
Rational[-1, 2], 1}, {0, 0, Rational[1, 3] (3 + 6^Rational[1, 2])}}],
Editable->False]], "Print",
CellLabel->
"During evaluation of (byblis65 V13.2.0) \
In[4]:=",ExpressionUUID->"3b4054d2-24d4-4311-b75b-d33cbd893c77"],
Cell[BoxData[
InterpretationBox[
RowBox[{"\<\" integrand: \"\>", "\[InvisibleSpace]",
RowBox[{
FractionBox["1",
SqrtBox["6"]],
RowBox[{"(",
RowBox[{
RowBox[{
RowBox[{"-",
FractionBox["1", "6"]}], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+", "\<\"t\"\>"}], ")"}], " ",
SqrtBox[
RowBox[{"4", "+",
RowBox[{"3", " ",
SuperscriptBox["\<\"s\"\>", "2"]}], "+",
RowBox[{"3", " ", "\<\"s\"\>", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+", "\<\"t\"\>"}], ")"}]}], "+",
RowBox[{"2", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+",
SqrtBox["6"]}], ")"}], " ", "\<\"t\"\>"}], "+",
RowBox[{"3", " ",
SuperscriptBox["\<\"t\"\>", "2"]}]}]]}], "+",
RowBox[{
FractionBox["1", "12"], " ",
RowBox[{"(",
RowBox[{"15", "+",
RowBox[{"12", " ",
SuperscriptBox["\<\"s\"\>", "2"]}], "+",
RowBox[{"12", " ", "\<\"s\"\>", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+", "\<\"t\"\>"}], ")"}]}], "+",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"-", "6"}], "+",
RowBox[{"8", " ",
SqrtBox["6"]}]}], ")"}], " ", "\<\"t\"\>"}], "+",
RowBox[{"11", " ",
SuperscriptBox["\<\"t\"\>", "2"]}]}], ")"}], " ",
RowBox[{"Log", "[",
FractionBox[
RowBox[{"1", "-", "\<\"t\"\>", "+",
RowBox[{"2", " ",
SqrtBox[
RowBox[{"4", "+",
RowBox[{"3", " ",
SuperscriptBox["\<\"s\"\>", "2"]}], "+",
RowBox[{"3", " ", "\<\"s\"\>", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+", "\<\"t\"\>"}], ")"}]}], "+",
RowBox[{"2", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+",
SqrtBox["6"]}], ")"}], " ", "\<\"t\"\>"}], "+",
RowBox[{"3", " ",
SuperscriptBox["\<\"t\"\>", "2"]}]}]]}]}],
RowBox[{"2", " ",
SqrtBox["3"]}]], "]"}]}]}], ")"}]}]}],
SequenceForm[
" integrand: ",
6^Rational[-1, 2] (
Rational[-1, 6] (-1 +
"t") (4 + 3 "s"^2 + 3 "s" (-1 + "t") + 2 (-1 + 6^Rational[1, 2]) "t" +
3 "t"^2)^Rational[1, 2] +
Rational[1, 12] (15 + 12 "s"^2 +
12 "s" (-1 + "t") + (-6 + 8 6^Rational[1, 2]) "t" + 11 "t"^2)
Log[Rational[1, 2]
3^Rational[-1, 2] (1 - "t" +
2 (4 + 3 "s"^2 + 3 "s" (-1 + "t") + 2 (-1 + 6^Rational[1, 2]) "t" +
3 "t"^2)^Rational[1, 2])])],
Editable->False]], "Print",
CellLabel->
"During evaluation of (byblis65 V13.2.0) \
In[4]:=",ExpressionUUID->"74652ff3-6006-4da7-9978-d5f1511ca2c9"]
}, Open ]],
Cell[BoxData[
TemplateBox[{
"Integrate", "ilim",
"\"Invalid integration variable or limit(s) in \\!\\(\\*RowBox[{\\\"{\\\", \
RowBox[{\\\"\\\\\\\"t\\\\\\\"\\\", \\\",\\\", \\\"0\\\", \\\",\\\", \
\\\"1\\\"}], \\\"}\\\"}]\\).\"", 2, 4, 1, 30283269436357224198,
"byblis65 V13.2.0"},
"MessageTemplate"]], "Message", "MSG",
CellLabel->
"During evaluation of (byblis65 V13.2.0) \
In[4]:=",ExpressionUUID->"d821ce73-efc8-41eb-b230-6dda9137e94b"],
Cell[CellGroupData[{
Cell[BoxData[
InterpretationBox[
RowBox[{"\<\" Integral over t and s: \"\>", "\[InvisibleSpace]",
RowBox[{
FractionBox["1",
SqrtBox["6"]],
RowBox[{"Integrate", "[",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"-",
FractionBox["1", "6"]}], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+", "\<\"t\"\>"}], ")"}], " ",
SqrtBox[
RowBox[{"4", "+",
RowBox[{"3", " ",
SuperscriptBox["\<\"s\"\>", "2"]}], "+",
RowBox[{"3", " ", "\<\"s\"\>", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+", "\<\"t\"\>"}], ")"}]}], "+",
RowBox[{"2", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+",
SqrtBox["6"]}], ")"}], " ", "\<\"t\"\>"}], "+",
RowBox[{"3", " ",
SuperscriptBox["\<\"t\"\>", "2"]}]}]]}], "+",
RowBox[{
FractionBox["1", "12"], " ",
RowBox[{"(",
RowBox[{"15", "+",
RowBox[{"12", " ",
SuperscriptBox["\<\"s\"\>", "2"]}], "+",
RowBox[{"12", " ", "\<\"s\"\>", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+", "\<\"t\"\>"}], ")"}]}], "+",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"-", "6"}], "+",
RowBox[{"8", " ",
SqrtBox["6"]}]}], ")"}], " ", "\<\"t\"\>"}], "+",
RowBox[{"11", " ",
SuperscriptBox["\<\"t\"\>", "2"]}]}], ")"}], " ",
RowBox[{"Log", "[",
FractionBox[
RowBox[{"1", "-", "\<\"t\"\>", "+",
RowBox[{"2", " ",
SqrtBox[
RowBox[{"4", "+",
RowBox[{"3", " ",
SuperscriptBox["\<\"s\"\>", "2"]}], "+",
RowBox[{"3", " ", "\<\"s\"\>", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+", "\<\"t\"\>"}], ")"}]}], "+",
RowBox[{"2", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+",
SqrtBox["6"]}], ")"}], " ", "\<\"t\"\>"}], "+",
RowBox[{"3", " ",
SuperscriptBox["\<\"t\"\>", "2"]}]}]]}]}],
RowBox[{"2", " ",
SqrtBox["3"]}]], "]"}]}]}], ",",
RowBox[{"{",
RowBox[{"\<\"t\"\>", ",", "0", ",", "1"}], "}"}], ",",
RowBox[{"{",
RowBox[{"\<\"s\"\>", ",", "0", ",",
RowBox[{"1", "-", "\<\"t\"\>"}]}], "}"}], ",",
RowBox[{"GenerateConditions", "\[Rule]", "True"}]}], "]"}]}]}],
SequenceForm[
" Integral over t and s: ", 6^Rational[-1, 2]
Integrate[
Rational[-1, 6] (-1 +
"t") (4 + 3 "s"^2 + 3 "s" (-1 + "t") + 2 (-1 + 6^Rational[1, 2]) "t" +
3 "t"^2)^Rational[1, 2] +
Rational[1, 12] (15 + 12 "s"^2 +
12 "s" (-1 + "t") + (-6 + 8 6^Rational[1, 2]) "t" + 11 "t"^2)
Log[Rational[1, 2]
3^Rational[-1, 2] (1 - "t" +
2 (4 + 3 "s"^2 + 3 "s" (-1 + "t") + 2 (-1 + 6^Rational[1, 2]) "t" +
3 "t"^2)^Rational[1, 2])], {"t", 0, 1}, {"s", 0, 1 - "t"},
GenerateConditions -> True]],
Editable->False]], "Print",
CellLabel->
"During evaluation of (byblis65 V13.2.0) \
In[4]:=",ExpressionUUID->"733deedb-4a69-47ad-9c27-715bb51fb9b0"],
Cell[BoxData[
InterpretationBox[
RowBox[{"\<\" Elapsed time: \"\>", "\[InvisibleSpace]",
"314.59995`8.949303642759956"}],
SequenceForm[" Elapsed time: ", 314.59995`8.949303642759956],
Editable->False]], "Print",
CellLabel->
"During evaluation of (byblis65 V13.2.0) \
In[4]:=",ExpressionUUID->"0d141e69-7aac-423c-af9a-d07e95f35d7d"],
Cell[BoxData[
InterpretationBox[
RowBox[{"\<\"Polygon: \"\>", "\[InvisibleSpace]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"-",
FractionBox["1",
RowBox[{"2", " ",
SqrtBox["3"]}]]}], ",",
RowBox[{"-",
FractionBox["1", "2"]}], ",", "1"}], "}"}], ",",
RowBox[{"{",
RowBox[{
FractionBox["1",
SqrtBox["3"]], ",", "0", ",", "1"}], "}"}], ",",
RowBox[{"{",
RowBox[{"0", ",", "0", ",",
RowBox[{
FractionBox["1", "3"], " ",
RowBox[{"(",
RowBox[{"3", "+",
SqrtBox["6"]}], ")"}]}]}], "}"}]}], "}"}]}],
SequenceForm["Polygon: ", {{Rational[-1, 2] 3^Rational[-1, 2],
Rational[-1, 2], 1}, {3^Rational[-1, 2], 0, 1}, {
0, 0, Rational[1, 3] (3 + 6^Rational[1, 2])}}],
Editable->False]], "Print",
CellLabel->
"During evaluation of (byblis65 V13.2.0) \
In[4]:=",ExpressionUUID->"4da09ef8-2b18-4196-9c76-c2eac3ee9f13"],
Cell[BoxData[
InterpretationBox[
RowBox[{"\<\" integrand: \"\>", "\[InvisibleSpace]",
RowBox[{
FractionBox["1",
RowBox[{"2", " ",
SqrtBox["6"]}]],
RowBox[{"(",
RowBox[{
RowBox[{
FractionBox["1", "6"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+",
RowBox[{"3", " ", "\<\"s\"\>"}], "+", "\<\"t\"\>"}], ")"}], " ",
SqrtBox[
RowBox[{"4", "+",
RowBox[{"3", " ",
SuperscriptBox["\<\"s\"\>", "2"]}], "+",
RowBox[{"3", " ", "\<\"s\"\>", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+", "\<\"t\"\>"}], ")"}]}], "+",
RowBox[{"2", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+",
SqrtBox["6"]}], ")"}], " ", "\<\"t\"\>"}], "+",
RowBox[{"3", " ",
SuperscriptBox["\<\"t\"\>", "2"]}]}]]}], "-",
RowBox[{
FractionBox["1", "12"], " ",
RowBox[{"(",
RowBox[{"15", "+",
RowBox[{"3", " ",
SuperscriptBox["\<\"s\"\>", "2"]}], "+",
RowBox[{"6", " ", "\<\"s\"\>", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+", "\<\"t\"\>"}], ")"}]}], "+",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"-", "6"}], "+",
RowBox[{"8", " ",
SqrtBox["6"]}]}], ")"}], " ", "\<\"t\"\>"}], "+",
RowBox[{"11", " ",
SuperscriptBox["\<\"t\"\>", "2"]}]}], ")"}], " ",
RowBox[{"Log", "[",
FractionBox[
RowBox[{"1", "-",
RowBox[{"3", " ", "\<\"s\"\>"}], "-", "\<\"t\"\>", "+",
RowBox[{"2", " ",
SqrtBox[
RowBox[{"4", "+",
RowBox[{"3", " ",
SuperscriptBox["\<\"s\"\>", "2"]}], "+",
RowBox[{"3", " ", "\<\"s\"\>", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+", "\<\"t\"\>"}], ")"}]}], "+",
RowBox[{"2", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+",
SqrtBox["6"]}], ")"}], " ", "\<\"t\"\>"}], "+",
RowBox[{"3", " ",
SuperscriptBox["\<\"t\"\>", "2"]}]}]]}]}],
RowBox[{"2", " ",
SqrtBox["3"]}]], "]"}]}]}], ")"}]}]}],
SequenceForm[
" integrand: ", Rational[1, 2]
6^Rational[-1, 2] (
Rational[1, 6] (-1 + 3 "s" +
"t") (4 + 3 "s"^2 + 3 "s" (-1 + "t") + 2 (-1 + 6^Rational[1, 2]) "t" +
3 "t"^2)^Rational[1, 2] +
Rational[-1, 12] (15 + 3 "s"^2 +
6 "s" (-1 + "t") + (-6 + 8 6^Rational[1, 2]) "t" + 11 "t"^2)
Log[Rational[1, 2]
3^Rational[-1, 2] (1 - 3 "s" - "t" +
2 (4 + 3 "s"^2 + 3 "s" (-1 + "t") + 2 (-1 + 6^Rational[1, 2]) "t" +
3 "t"^2)^Rational[1, 2])])],
Editable->False]], "Print",
CellLabel->
"During evaluation of (byblis65 V13.2.0) \
In[4]:=",ExpressionUUID->"ac6e431a-9c3e-4fb4-8359-a72d5f1bc56e"]
}, Open ]],
Cell[BoxData[
TemplateBox[{
"Integrate", "ilim",
"\"Invalid integration variable or limit(s) in \\!\\(\\*RowBox[{\\\"{\\\", \
RowBox[{\\\"\\\\\\\"t\\\\\\\"\\\", \\\",\\\", \\\"0\\\", \\\",\\\", \
\\\"1\\\"}], \\\"}\\\"}]\\).\"", 2, 4, 2, 30283269436357224198,
"byblis65 V13.2.0"},
"MessageTemplate"]], "Message", "MSG",
CellLabel->
"During evaluation of (byblis65 V13.2.0) \
In[4]:=",ExpressionUUID->"2e948515-e1b9-4dae-b3da-be0f63a44bb5"],
Cell[CellGroupData[{
Cell[BoxData[
InterpretationBox[
RowBox[{"\<\" Integral over t and s: \"\>", "\[InvisibleSpace]",
RowBox[{
FractionBox["1",
RowBox[{"2", " ",
SqrtBox["6"]}]],
RowBox[{"Integrate", "[",
RowBox[{
RowBox[{
RowBox[{
FractionBox["1", "6"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+",
RowBox[{"3", " ", "\<\"s\"\>"}], "+", "\<\"t\"\>"}], ")"}], " ",
SqrtBox[
RowBox[{"4", "+",
RowBox[{"3", " ",
SuperscriptBox["\<\"s\"\>", "2"]}], "+",
RowBox[{"3", " ", "\<\"s\"\>", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+", "\<\"t\"\>"}], ")"}]}], "+",
RowBox[{"2", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+",
SqrtBox["6"]}], ")"}], " ", "\<\"t\"\>"}], "+",
RowBox[{"3", " ",
SuperscriptBox["\<\"t\"\>", "2"]}]}]]}], "-",
RowBox[{
FractionBox["1", "12"], " ",
RowBox[{"(",
RowBox[{"15", "+",
RowBox[{"3", " ",
SuperscriptBox["\<\"s\"\>", "2"]}], "+",
RowBox[{"6", " ", "\<\"s\"\>", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+", "\<\"t\"\>"}], ")"}]}], "+",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"-", "6"}], "+",
RowBox[{"8", " ",
SqrtBox["6"]}]}], ")"}], " ", "\<\"t\"\>"}], "+",
RowBox[{"11", " ",
SuperscriptBox["\<\"t\"\>", "2"]}]}], ")"}], " ",
RowBox[{"Log", "[",
FractionBox[
RowBox[{"1", "-",
RowBox[{"3", " ", "\<\"s\"\>"}], "-", "\<\"t\"\>", "+",
RowBox[{"2", " ",
SqrtBox[
RowBox[{"4", "+",
RowBox[{"3", " ",
SuperscriptBox["\<\"s\"\>", "2"]}], "+",
RowBox[{"3", " ", "\<\"s\"\>", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+", "\<\"t\"\>"}], ")"}]}], "+",
RowBox[{"2", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+",
SqrtBox["6"]}], ")"}], " ", "\<\"t\"\>"}], "+",
RowBox[{"3", " ",
SuperscriptBox["\<\"t\"\>", "2"]}]}]]}]}],
RowBox[{"2", " ",
SqrtBox["3"]}]], "]"}]}]}], ",",
RowBox[{"{",
RowBox[{"\<\"t\"\>", ",", "0", ",", "1"}], "}"}], ",",
RowBox[{"{",
RowBox[{"\<\"s\"\>", ",", "0", ",",
RowBox[{"1", "-", "\<\"t\"\>"}]}], "}"}], ",",
RowBox[{"GenerateConditions", "\[Rule]", "True"}]}], "]"}]}]}],
SequenceForm[
" Integral over t and s: ", Rational[1, 2] 6^Rational[-1, 2]
Integrate[
Rational[1, 6] (-1 + 3 "s" +
"t") (4 + 3 "s"^2 + 3 "s" (-1 + "t") + 2 (-1 + 6^Rational[1, 2]) "t" +
3 "t"^2)^Rational[1, 2] +
Rational[-1, 12] (15 + 3 "s"^2 +
6 "s" (-1 + "t") + (-6 + 8 6^Rational[1, 2]) "t" + 11 "t"^2)
Log[Rational[1, 2]
3^Rational[-1, 2] (1 - 3 "s" - "t" +
2 (4 + 3 "s"^2 + 3 "s" (-1 + "t") + 2 (-1 + 6^Rational[1, 2]) "t" +
3 "t"^2)^Rational[1, 2])], {"t", 0, 1}, {"s", 0, 1 - "t"},
GenerateConditions -> True]],
Editable->False]], "Print",
CellLabel->
"During evaluation of (byblis65 V13.2.0) \
In[4]:=",ExpressionUUID->"fc8559b3-d489-44d8-9624-f9a942d5bd40"],
Cell[BoxData[
InterpretationBox[
RowBox[{"\<\" Elapsed time: \"\>", "\[InvisibleSpace]",
"1410.426961`9.600895594617652"}],
SequenceForm[" Elapsed time: ", 1410.426961`9.600895594617652],
Editable->False]], "Print",
CellLabel->
"During evaluation of (byblis65 V13.2.0) \
In[4]:=",ExpressionUUID->"1f6b2cd4-1524-4b26-99e9-d26564ad878a"],
Cell[BoxData[
InterpretationBox[
RowBox[{"\<\"Polygon: \"\>", "\[InvisibleSpace]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
FractionBox["1",
SqrtBox["3"]], ",", "0", ",", "1"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-",
FractionBox["1",
RowBox[{"2", " ",
SqrtBox["3"]}]]}], ",",
FractionBox["1", "2"], ",", "1"}], "}"}], ",",
RowBox[{"{",
RowBox[{"0", ",", "0", ",",
RowBox[{
FractionBox["1", "3"], " ",
RowBox[{"(",
RowBox[{"3", "+",
SqrtBox["6"]}], ")"}]}]}], "}"}]}], "}"}]}],
SequenceForm[
"Polygon: ", {{3^Rational[-1, 2], 0, 1}, {Rational[-1, 2] 3^Rational[-1, 2],
Rational[1, 2], 1}, {0, 0, Rational[1, 3] (3 + 6^Rational[1, 2])}}],
Editable->False]], "Print",
CellLabel->
"During evaluation of (byblis65 V13.2.0) \
In[4]:=",ExpressionUUID->"71237ba1-f067-42c3-92c7-bcd8047a1316"],
Cell[BoxData[
InterpretationBox[
RowBox[{"\<\" integrand: \"\>", "\[InvisibleSpace]",
RowBox[{
FractionBox["1",
RowBox[{"2", " ",
SqrtBox["6"]}]],
RowBox[{"(",
RowBox[{
RowBox[{
RowBox[{"-",
FractionBox["1", "6"]}], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "2"}], "+",
RowBox[{"3", " ", "\<\"s\"\>"}], "+",
RowBox[{"2", " ", "\<\"t\"\>"}]}], ")"}], " ",
SqrtBox[
RowBox[{"4", "+",
RowBox[{"3", " ",
SuperscriptBox["\<\"s\"\>", "2"]}], "+",
RowBox[{"3", " ", "\<\"s\"\>", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+", "\<\"t\"\>"}], ")"}]}], "+",
RowBox[{"2", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+",
SqrtBox["6"]}], ")"}], " ", "\<\"t\"\>"}], "+",
RowBox[{"3", " ",
SuperscriptBox["\<\"t\"\>", "2"]}]}]]}], "-",
RowBox[{
FractionBox["1", "12"], " ",
RowBox[{"(",
RowBox[{"12", "+",
RowBox[{"3", " ",
SuperscriptBox["\<\"s\"\>", "2"]}], "+",
RowBox[{"8", " ",
SqrtBox["6"], " ", "\<\"t\"\>"}], "+",
RowBox[{"8", " ",
SuperscriptBox["\<\"t\"\>", "2"]}]}], ")"}], " ",
RowBox[{"Log", "[",
FractionBox[
RowBox[{
RowBox[{"3", " ", "\<\"s\"\>"}], "+",
RowBox[{"2", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+", "\<\"t\"\>", "+",
SqrtBox[
RowBox[{"4", "+",
RowBox[{"3", " ",
SuperscriptBox["\<\"s\"\>", "2"]}], "+",
RowBox[{"3", " ", "\<\"s\"\>", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+", "\<\"t\"\>"}], ")"}]}], "+",
RowBox[{"2", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+",
SqrtBox["6"]}], ")"}], " ", "\<\"t\"\>"}], "+",
RowBox[{"3", " ",
SuperscriptBox["\<\"t\"\>", "2"]}]}]]}], ")"}]}]}],
RowBox[{"2", " ",
SqrtBox["3"]}]], "]"}]}]}], ")"}]}]}],
SequenceForm[
" integrand: ", Rational[1, 2]
6^Rational[-1, 2] (
Rational[-1, 6] (-2 + 3 "s" +
2 "t") (4 + 3 "s"^2 + 3 "s" (-1 + "t") + 2 (-1 + 6^Rational[1, 2]) "t" +
3 "t"^2)^Rational[1, 2] +
Rational[-1, 12] (12 + 3 "s"^2 + 8 6^Rational[1, 2] "t" + 8 "t"^2)
Log[Rational[1, 2]
3^Rational[-1, 2] (3 "s" +
2 (-1 + "t" + (4 + 3 "s"^2 + 3 "s" (-1 + "t") +
2 (-1 + 6^Rational[1, 2]) "t" + 3 "t"^2)^Rational[1, 2]))])],
Editable->False]], "Print",
CellLabel->
"During evaluation of (byblis65 V13.2.0) \
In[4]:=",ExpressionUUID->"c75b9920-fac5-4848-8f5b-c1eb7710c2e9"]
}, Open ]]
}, Open ]]
}, Closed]],
Cell[CellGroupData[{
Cell["Integrate over z first", "Subsubsection",ExpressionUUID->"f3013242-3293-4cba-9ffa-b9afc43d0869"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"xmin", ",", "xmax"}], "}"}], ",",
RowBox[{"{",
RowBox[{"ymin", ",", "ymax"}], "}"}], ",",
RowBox[{"{",
RowBox[{"zmin", ",", "zmax"}], "}"}]}], "}"}], "=",
RowBox[{"MinMax", "/@",
RowBox[{"Transpose", "[",
RowBox[{"PolyhedronCoordinates", "[", "p", "]"}], "]"}]}]}]], "Input",
CellLabel->
"(byblis65 V13.2.0) \
In[5]:=",ExpressionUUID->"6df2f3f9-9261-4ce6-b61a-c72cdee8d065"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"-",
FractionBox["1",
RowBox[{"2", " ",
SqrtBox["3"]}]]}], ",",
FractionBox["1",
SqrtBox["3"]]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], ",",
FractionBox["1", "2"]}], "}"}], ",",
RowBox[{"{",
RowBox[{"0", ",",
RowBox[{
FractionBox["1", "3"], " ",
RowBox[{"(",
RowBox[{"3", "+",
SqrtBox["6"]}], ")"}]}]}], "}"}]}], "}"}]], "Output",
CellLabel->
"(byblis65 V13.2.0) \
Out[5]=",ExpressionUUID->"551423ee-f3e9-4858-bcfa-bec4c57e3d90"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"ineq", "=",
RowBox[{
RowBox[{"PolyhedronData", "[",
RowBox[{"pname", ",", "\"\\""}], "]"}], "[",
RowBox[{"x", ",", "y", ",", "z"}], "]"}]}]], "Input",
CellLabel->
"(byblis65 V13.2.0) \
In[6]:=",ExpressionUUID->"0813684b-3215-4ca7-adc3-b5d746260697"],
Cell[BoxData[
RowBox[{
RowBox[{
RowBox[{
SqrtBox["3"], " ", "z"}], "\[LessEqual]",
RowBox[{
SqrtBox["2"], "+",
SqrtBox["3"], "+",
RowBox[{"2", " ",
SqrtBox["6"], " ", "x"}]}]}], "&&",
RowBox[{
RowBox[{
RowBox[{
SqrtBox["6"], " ", "x"}], "+",
RowBox[{
SqrtBox["3"], " ", "z"}]}], "\[LessEqual]",
RowBox[{
SqrtBox["2"], "+",
SqrtBox["3"], "+",
RowBox[{"3", " ",
SqrtBox["2"], " ", "y"}]}]}], "&&",
RowBox[{
RowBox[{
RowBox[{
SqrtBox["6"], " ", "x"}], "+",
RowBox[{"3", " ",
SqrtBox["2"], " ", "y"}], "+",
RowBox[{
SqrtBox["3"], " ", "z"}]}], "\[LessEqual]",
RowBox[{
SqrtBox["2"], "+",
SqrtBox["3"]}]}], "&&",
RowBox[{
RowBox[{
SqrtBox["3"], "+",
RowBox[{"6", " ", "x"}]}], "\[GreaterEqual]", "0"}], "&&",
RowBox[{
RowBox[{"3", " ", "x"}], "\[LessEqual]",
RowBox[{
SqrtBox["3"], " ",
RowBox[{"(",
RowBox[{"1", "+",
RowBox[{"3", " ", "y"}]}], ")"}]}]}], "&&",
RowBox[{
RowBox[{
RowBox[{"3", " ", "x"}], "+",
RowBox[{
SqrtBox["3"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+",
RowBox[{"3", " ", "y"}]}], ")"}]}]}], "\[LessEqual]", "0"}], "&&",
RowBox[{"z", "\[GreaterEqual]", "0"}]}]], "Output",
CellLabel->
"(byblis65 V13.2.0) \
Out[6]=",ExpressionUUID->"325ce7d6-b450-42c6-9c1e-05d20c4183cc"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"(",
RowBox[{"i1", "=",
RowBox[{"Integrate", "[",
RowBox[{
RowBox[{
RowBox[{"Boole", "[", "ineq", "]"}],
SqrtBox[
RowBox[{
SuperscriptBox["x", "2"], "+",
SuperscriptBox["y", "2"], "+",
SuperscriptBox["z", "2"]}]]}], ",",
RowBox[{"{",
RowBox[{"z", ",", "zmin", ",", "zmax"}], "}"}]}], "]"}]}], ")"}], "//",
"Timing"}]], "Input",
CellLabel->
"(byblis65 V13.2.0) \
In[7]:=",ExpressionUUID->"28de2966-8fb3-47e6-ba24-a6c62bde0d4a"],
Cell[BoxData[
RowBox[{"{",
RowBox[{"169.479563`", ",",
TagBox[GridBox[{
{"\[Piecewise]", GridBox[{
{
RowBox[{
FractionBox["1", "6"], " ",
RowBox[{"(",
RowBox[{"5", "+",
RowBox[{"2", " ",
SqrtBox["6"]}]}], ")"}]}],
RowBox[{
RowBox[{"x", "\[Equal]", "0"}], "&&",
RowBox[{"y", "\[Equal]", "0"}]}]},
{
RowBox[{
FractionBox["1", "6"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"2", " ",
SqrtBox["3"]}], "+",
RowBox[{"Log", "[",
RowBox[{"2", "+",
SqrtBox["3"]}], "]"}]}], ")"}]}],
RowBox[{
RowBox[{"x", "\[Equal]",
FractionBox["1",
SqrtBox["3"]]}], "&&",
RowBox[{"y", "\[Equal]", "0"}]}]},
{
RowBox[{
FractionBox["1", "12"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"2", " ",
SqrtBox["2"], " ",
SqrtBox[
RowBox[{"5", "+",
RowBox[{"2", " ",
SqrtBox["6"]}], "+",
RowBox[{"12", " ",
SqrtBox["2"], " ", "x"}], "+",
RowBox[{"8", " ",
SqrtBox["3"], " ", "x"}], "+",
RowBox[{"27", " ",
SuperscriptBox["x", "2"]}], "+",
RowBox[{"3", " ",
SuperscriptBox["y", "2"]}]}]]}], "+",
RowBox[{"2", " ",
SqrtBox["3"], " ",
SqrtBox[
RowBox[{"5", "+",
RowBox[{"2", " ",
SqrtBox["6"]}], "+",
RowBox[{"12", " ",
SqrtBox["2"], " ", "x"}], "+",
RowBox[{"8", " ",
SqrtBox["3"], " ", "x"}], "+",
RowBox[{"27", " ",
SuperscriptBox["x", "2"]}], "+",
RowBox[{"3", " ",
SuperscriptBox["y", "2"]}]}]]}], "+",
RowBox[{"4", " ",
SqrtBox["6"], " ", "x", " ",
SqrtBox[
RowBox[{"5", "+",
RowBox[{"2", " ",
SqrtBox["6"]}], "+",
RowBox[{"12", " ",
SqrtBox["2"], " ", "x"}], "+",
RowBox[{"8", " ",
SqrtBox["3"], " ", "x"}], "+",
RowBox[{"27", " ",
SuperscriptBox["x", "2"]}], "+",
RowBox[{"3", " ",
SuperscriptBox["y", "2"]}]}]]}], "-",
RowBox[{"3", " ",
SuperscriptBox["x", "2"], " ",
RowBox[{"Log", "[",
RowBox[{
RowBox[{"-", "3"}], "-",
SqrtBox["6"], "-",
RowBox[{"6", " ",
SqrtBox["2"], " ", "x"}], "+",
RowBox[{
SqrtBox["3"], " ",
SqrtBox[
RowBox[{"5", "+",
RowBox[{"2", " ",
SqrtBox["6"]}], "+",
RowBox[{"12", " ",
SqrtBox["2"], " ", "x"}], "+",
RowBox[{"8", " ",
SqrtBox["3"], " ", "x"}], "+",
RowBox[{"27", " ",
SuperscriptBox["x", "2"]}], "+",
RowBox[{"3", " ",
SuperscriptBox["y", "2"]}]}]]}]}], "]"}]}], "-",
RowBox[{"3", " ",
SuperscriptBox["y", "2"], " ",
RowBox[{"Log", "[",
RowBox[{
RowBox[{"-", "3"}], "-",
SqrtBox["6"], "-",
RowBox[{"6", " ",
SqrtBox["2"], " ", "x"}], "+",
RowBox[{
SqrtBox["3"], " ",
SqrtBox[
RowBox[{"5", "+",
RowBox[{"2", " ",
SqrtBox["6"]}], "+",
RowBox[{"12", " ",
SqrtBox["2"], " ", "x"}], "+",
RowBox[{"8", " ",
SqrtBox["3"], " ", "x"}], "+",
RowBox[{"27", " ",
SuperscriptBox["x", "2"]}], "+",
RowBox[{"3", " ",
SuperscriptBox["y", "2"]}]}]]}]}], "]"}]}], "+",
RowBox[{"3", " ",
SuperscriptBox["x", "2"], " ",
RowBox[{"Log", "[",
RowBox[{"3", "+",
SqrtBox["6"], "+",
RowBox[{"6", " ",
SqrtBox["2"], " ", "x"}], "+",
RowBox[{
SqrtBox["3"], " ",
SqrtBox[
RowBox[{"5", "+",
RowBox[{"2", " ",
SqrtBox["6"]}], "+",
RowBox[{"12", " ",
SqrtBox["2"], " ", "x"}], "+",
RowBox[{"8", " ",
SqrtBox["3"], " ", "x"}], "+",
RowBox[{"27", " ",
SuperscriptBox["x", "2"]}], "+",
RowBox[{"3", " ",
SuperscriptBox["y", "2"]}]}]]}]}], "]"}]}], "+",
RowBox[{"3", " ",
SuperscriptBox["y", "2"], " ",
RowBox[{"Log", "[",
RowBox[{"3", "+",
SqrtBox["6"], "+",
RowBox[{"6", " ",
SqrtBox["2"], " ", "x"}], "+",
RowBox[{
SqrtBox["3"], " ",
SqrtBox[
RowBox[{"5", "+",
RowBox[{"2", " ",
SqrtBox["6"]}], "+",
RowBox[{"12", " ",
SqrtBox["2"], " ", "x"}], "+",
RowBox[{"8", " ",
SqrtBox["3"], " ", "x"}], "+",
RowBox[{"27", " ",
SuperscriptBox["x", "2"]}], "+",
RowBox[{"3", " ",
SuperscriptBox["y", "2"]}]}]]}]}], "]"}]}]}], ")"}]}],
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"x", "\[Equal]",
RowBox[{"-",
FractionBox["1",
RowBox[{"2", " ",
SqrtBox["3"]}]]}]}], "&&",
RowBox[{
RowBox[{
SqrtBox["3"], " ", "x"}], "<", "y", "\[LessEqual]",
RowBox[{
RowBox[{"-",
SqrtBox["3"]}], " ", "x"}]}]}], ")"}], "||",
RowBox[{"(",
RowBox[{
RowBox[{
RowBox[{"-",
FractionBox["1",
RowBox[{"2", " ",
SqrtBox["3"]}]]}], "<", "x", "<", "0"}], "&&",
RowBox[{
RowBox[{
SqrtBox["3"], " ", "x"}], "<", "y", "\[LessEqual]",
RowBox[{
RowBox[{"-",
SqrtBox["3"]}], " ", "x"}]}]}], ")"}]}]},
{
RowBox[{
FractionBox["1", "12"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"2", " ",
SqrtBox["2"], " ",
SqrtBox[
RowBox[{"5", "+",
RowBox[{"2", " ",
SqrtBox["6"]}], "-",
RowBox[{"12", " ", "y"}], "-",
RowBox[{"6", " ",
SqrtBox["6"], " ", "y"}], "+",
RowBox[{"21", " ",
SuperscriptBox["y", "2"]}]}]]}], "+",
RowBox[{"2", " ",
SqrtBox["3"], " ",
SqrtBox[
RowBox[{"5", "+",
RowBox[{"2", " ",
SqrtBox["6"]}], "-",
RowBox[{"12", " ", "y"}], "-",
RowBox[{"6", " ",
SqrtBox["6"], " ", "y"}], "+",
RowBox[{"21", " ",
SuperscriptBox["y", "2"]}]}]]}], "-",
RowBox[{"6", " ",
SqrtBox["2"], " ", "y", " ",
SqrtBox[
RowBox[{"5", "+",
RowBox[{"2", " ",
SqrtBox["6"]}], "-",
RowBox[{"12", " ", "y"}], "-",
RowBox[{"6", " ",
SqrtBox["6"], " ", "y"}], "+",
RowBox[{"21", " ",
SuperscriptBox["y", "2"]}]}]]}], "+",
RowBox[{"3", " ",
SuperscriptBox["y", "2"], " ",
RowBox[{"Log", "[",
RowBox[{"3", "+",
SqrtBox["6"], "-",
RowBox[{"3", " ",
SqrtBox["6"], " ", "y"}], "+",
RowBox[{
SqrtBox["3"], " ",
SqrtBox[
RowBox[{"5", "+",
RowBox[{"2", " ",
SqrtBox["6"]}], "-",
RowBox[{"6", " ",
RowBox[{"(",
RowBox[{"2", "+",
SqrtBox["6"]}], ")"}], " ", "y"}], "+",
RowBox[{"21", " ",
SuperscriptBox["y", "2"]}]}]]}]}], "]"}]}], "-",
RowBox[{"3", " ",
SuperscriptBox["y", "2"], " ",
RowBox[{"Log", "[",
RowBox[{
RowBox[{"-", "3"}], "-",
SqrtBox["6"], "+",
RowBox[{"3", " ",
SqrtBox["6"], " ", "y"}], "+",
RowBox[{
SqrtBox["3"], " ",
SqrtBox[
RowBox[{"5", "+",
RowBox[{"2", " ",
SqrtBox["6"]}], "-",
RowBox[{"6", " ",
RowBox[{"(",
RowBox[{"2", "+",
SqrtBox["6"]}], ")"}], " ", "y"}], "+",
RowBox[{"21", " ",
SuperscriptBox["y", "2"]}]}]]}]}], "]"}]}]}], ")"}]}],
RowBox[{
RowBox[{"x", "\[Equal]", "0"}], "&&",
RowBox[{"0", "<", "y", "\[LessEqual]",
FractionBox["1", "3"]}]}]},
{
RowBox[{
FractionBox["1", "12"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"2", " ",
SqrtBox["2"], " ",
SqrtBox[
RowBox[{"5", "+",
RowBox[{"2", " ",
SqrtBox["6"]}], "+",
RowBox[{"12", " ", "y"}], "+",
RowBox[{"6", " ",
SqrtBox["6"], " ", "y"}], "+",
RowBox[{"21", " ",
SuperscriptBox["y", "2"]}]}]]}], "+",
RowBox[{"2", " ",
SqrtBox["3"], " ",
SqrtBox[
RowBox[{"5", "+",
RowBox[{"2", " ",
SqrtBox["6"]}], "+",
RowBox[{"12", " ", "y"}], "+",
RowBox[{"6", " ",
SqrtBox["6"], " ", "y"}], "+",
RowBox[{"21", " ",
SuperscriptBox["y", "2"]}]}]]}], "+",
RowBox[{"6", " ",
SqrtBox["2"], " ", "y", " ",
SqrtBox[
RowBox[{"5", "+",
RowBox[{"2", " ",
SqrtBox["6"]}], "+",
RowBox[{"12", " ", "y"}], "+",
RowBox[{"6", " ",
SqrtBox["6"], " ", "y"}], "+",
RowBox[{"21", " ",
SuperscriptBox["y", "2"]}]}]]}], "-",
RowBox[{"3", " ",
SuperscriptBox["y", "2"], " ",
RowBox[{"Log", "[",
RowBox[{
RowBox[{"-", "3"}], "-",
SqrtBox["6"], "-",
RowBox[{"3", " ",
SqrtBox["6"], " ", "y"}], "+",
RowBox[{
SqrtBox["3"], " ",
SqrtBox[
RowBox[{"5", "+",
RowBox[{"2", " ",
SqrtBox["6"]}], "+",
RowBox[{"6", " ",
RowBox[{"(",
RowBox[{"2", "+",
SqrtBox["6"]}], ")"}], " ", "y"}], "+",
RowBox[{"21", " ",
SuperscriptBox["y", "2"]}]}]]}]}], "]"}]}], "+",
RowBox[{"3", " ",
SuperscriptBox["y", "2"], " ",
RowBox[{"Log", "[",
RowBox[{"3", "+",
SqrtBox["6"], "+",
RowBox[{"3", " ",
SqrtBox["6"], " ", "y"}], "+",
RowBox[{
SqrtBox["3"], " ",
SqrtBox[
RowBox[{"5", "+",
RowBox[{"2", " ",
SqrtBox["6"]}], "+",
RowBox[{"6", " ",
RowBox[{"(",
RowBox[{"2", "+",
SqrtBox["6"]}], ")"}], " ", "y"}], "+",
RowBox[{"21", " ",
SuperscriptBox["y", "2"]}]}]]}]}], "]"}]}]}], ")"}]}],
RowBox[{
RowBox[{"x", "\[Equal]", "0"}], "&&",
RowBox[{
RowBox[{"-",
FractionBox["1", "3"]}], "\[LessEqual]", "y", "<", "0"}]}]},
{
RowBox[{
FractionBox["1", "12"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"2", " ",
SqrtBox["2"], " ",
RowBox[{"\[Sqrt]",
RowBox[{"(",
RowBox[{"5", "+",
RowBox[{"2", " ",
SqrtBox["6"]}], "-",
RowBox[{"6", " ",
SqrtBox["2"], " ", "x"}], "-",
RowBox[{"4", " ",
SqrtBox["3"], " ", "x"}], "+",
RowBox[{"9", " ",
SuperscriptBox["x", "2"]}], "-",
RowBox[{"12", " ", "y"}], "-",
RowBox[{"6", " ",
SqrtBox["6"], " ", "y"}], "+",
RowBox[{"12", " ",
SqrtBox["3"], " ", "x", " ", "y"}], "+",
RowBox[{"21", " ",
SuperscriptBox["y", "2"]}]}], ")"}]}]}], "+",
RowBox[{"2", " ",
SqrtBox["3"], " ",
RowBox[{"\[Sqrt]",
RowBox[{"(",
RowBox[{"5", "+",
RowBox[{"2", " ",
SqrtBox["6"]}], "-",
RowBox[{"6", " ",
SqrtBox["2"], " ", "x"}], "-",
RowBox[{"4", " ",
SqrtBox["3"], " ", "x"}], "+",
RowBox[{"9", " ",
SuperscriptBox["x", "2"]}], "-",
RowBox[{"12", " ", "y"}], "-",
RowBox[{"6", " ",
SqrtBox["6"], " ", "y"}], "+",
RowBox[{"12", " ",
SqrtBox["3"], " ", "x", " ", "y"}], "+",
RowBox[{"21", " ",
SuperscriptBox["y", "2"]}]}], ")"}]}]}], "-",
RowBox[{"2", " ",
SqrtBox["6"], " ", "x", " ",
RowBox[{"\[Sqrt]",
RowBox[{"(",
RowBox[{"5", "+",
RowBox[{"2", " ",
SqrtBox["6"]}], "-",
RowBox[{"6", " ",
SqrtBox["2"], " ", "x"}], "-",
RowBox[{"4", " ",
SqrtBox["3"], " ", "x"}], "+",
RowBox[{"9", " ",
SuperscriptBox["x", "2"]}], "-",
RowBox[{"12", " ", "y"}], "-",
RowBox[{"6", " ",
SqrtBox["6"], " ", "y"}], "+",
RowBox[{"12", " ",
SqrtBox["3"], " ", "x", " ", "y"}], "+",
RowBox[{"21", " ",
SuperscriptBox["y", "2"]}]}], ")"}]}]}], "-",
RowBox[{"6", " ",
SqrtBox["2"], " ", "y", " ",
RowBox[{"\[Sqrt]",
RowBox[{"(",
RowBox[{"5", "+",
RowBox[{"2", " ",
SqrtBox["6"]}], "-",
RowBox[{"6", " ",
SqrtBox["2"], " ", "x"}], "-",
RowBox[{"4", " ",
SqrtBox["3"], " ", "x"}], "+",
RowBox[{"9", " ",
SuperscriptBox["x", "2"]}], "-",
RowBox[{"12", " ", "y"}], "-",
RowBox[{"6", " ",
SqrtBox["6"], " ", "y"}], "+",
RowBox[{"12", " ",
SqrtBox["3"], " ", "x", " ", "y"}], "+",
RowBox[{"21", " ",
SuperscriptBox["y", "2"]}]}], ")"}]}]}], "+",
RowBox[{"3", " ",
SuperscriptBox["x", "2"], " ",
RowBox[{"Log", "[",
FractionBox[
RowBox[{"3", "+",
SqrtBox["6"], "-",
RowBox[{"3", " ",
SqrtBox["2"], " ", "x"}], "-",
RowBox[{"3", " ",
SqrtBox["6"], " ", "y"}], "+",
RowBox[{"3", " ",
SqrtBox[
RowBox[{
SuperscriptBox["x", "2"], "+",
SuperscriptBox["y", "2"], "+",
SuperscriptBox[
RowBox[{"(",
RowBox[{"1", "+",
SqrtBox[
FractionBox["2", "3"]], "-",
RowBox[{
SqrtBox["2"], " ", "x"}], "-",
RowBox[{
SqrtBox["6"], " ", "y"}]}], ")"}], "2"]}]]}]}],
SqrtBox[
RowBox[{"5", "+",
RowBox[{"2", " ",
SqrtBox["6"]}], "+",
RowBox[{"9", " ",
SuperscriptBox["x", "2"]}], "-",
RowBox[{"6", " ",
RowBox[{"(",
RowBox[{"2", "+",
SqrtBox["6"]}], ")"}], " ", "y"}], "+",
RowBox[{"21", " ",
SuperscriptBox["y", "2"]}], "-",
RowBox[{"2", " ", "x", " ",
RowBox[{"(",
RowBox[{
RowBox[{"3", " ",
SqrtBox["2"]}], "+",
RowBox[{"2", " ",
SqrtBox["3"]}], "-",
RowBox[{"6", " ",
SqrtBox["3"], " ", "y"}]}], ")"}]}]}]]], "]"}]}], "+",
RowBox[{"3", " ",
SuperscriptBox["y", "2"], " ",
RowBox[{"Log", "[",
FractionBox[
RowBox[{"3", "+",
SqrtBox["6"], "-",
RowBox[{"3", " ",
SqrtBox["2"], " ", "x"}], "-",
RowBox[{"3", " ",
SqrtBox["6"], " ", "y"}], "+",
RowBox[{"3", " ",
SqrtBox[
RowBox[{
SuperscriptBox["x", "2"], "+",
SuperscriptBox["y", "2"], "+",
SuperscriptBox[
RowBox[{"(",
RowBox[{"1", "+",
SqrtBox[
FractionBox["2", "3"]], "-",
RowBox[{
SqrtBox["2"], " ", "x"}], "-",
RowBox[{
SqrtBox["6"], " ", "y"}]}], ")"}], "2"]}]]}]}],
SqrtBox[
RowBox[{"5", "+",
RowBox[{"2", " ",
SqrtBox["6"]}], "+",
RowBox[{"9", " ",
SuperscriptBox["x", "2"]}], "-",
RowBox[{"6", " ",
RowBox[{"(",
RowBox[{"2", "+",
SqrtBox["6"]}], ")"}], " ", "y"}], "+",
RowBox[{"21", " ",
SuperscriptBox["y", "2"]}], "-",
RowBox[{"2", " ", "x", " ",
RowBox[{"(",
RowBox[{
RowBox[{"3", " ",
SqrtBox["2"]}], "+",
RowBox[{"2", " ",
SqrtBox["3"]}], "-",
RowBox[{"6", " ",
SqrtBox["3"], " ", "y"}]}], ")"}]}]}]]], "]"}]}], "-",
RowBox[{"3", " ",
SuperscriptBox["x", "2"], " ",
RowBox[{"Log", "[",
FractionBox[
RowBox[{
RowBox[{"-", "3"}], "-",
SqrtBox["6"], "+",
RowBox[{"3", " ",
SqrtBox["2"], " ", "x"}], "+",
RowBox[{"3", " ",
SqrtBox["6"], " ", "y"}], "+",
RowBox[{"3", " ",
SqrtBox[
RowBox[{
SuperscriptBox["x", "2"], "+",
SuperscriptBox["y", "2"], "+",
SuperscriptBox[
RowBox[{"(",
RowBox[{"1", "+",
SqrtBox[
FractionBox["2", "3"]], "-",
RowBox[{
SqrtBox["2"], " ", "x"}], "-",
RowBox[{
SqrtBox["6"], " ", "y"}]}], ")"}], "2"]}]]}]}],
SqrtBox[
RowBox[{"5", "+",
RowBox[{"2", " ",
SqrtBox["6"]}], "+",
RowBox[{"9", " ",
SuperscriptBox["x", "2"]}], "-",
RowBox[{"6", " ",
RowBox[{"(",
RowBox[{"2", "+",
SqrtBox["6"]}], ")"}], " ", "y"}], "+",
RowBox[{"21", " ",
SuperscriptBox["y", "2"]}], "-",
RowBox[{"2", " ", "x", " ",
RowBox[{"(",
RowBox[{
RowBox[{"3", " ",
SqrtBox["2"]}], "+",
RowBox[{"2", " ",
SqrtBox["3"]}], "-",
RowBox[{"6", " ",
SqrtBox["3"], " ", "y"}]}], ")"}]}]}]]], "]"}]}], "-",
RowBox[{"3", " ",
SuperscriptBox["y", "2"], " ",
RowBox[{"Log", "[",
FractionBox[
RowBox[{
RowBox[{"-", "3"}], "-",
SqrtBox["6"], "+",
RowBox[{"3", " ",
SqrtBox["2"], " ", "x"}], "+",
RowBox[{"3", " ",
SqrtBox["6"], " ", "y"}], "+",
RowBox[{"3", " ",
SqrtBox[
RowBox[{
SuperscriptBox["x", "2"], "+",
SuperscriptBox["y", "2"], "+",
SuperscriptBox[
RowBox[{"(",
RowBox[{"1", "+",
SqrtBox[
FractionBox["2", "3"]], "-",
RowBox[{
SqrtBox["2"], " ", "x"}], "-",
RowBox[{
SqrtBox["6"], " ", "y"}]}], ")"}], "2"]}]]}]}],
SqrtBox[
RowBox[{"5", "+",
RowBox[{"2", " ",
SqrtBox["6"]}], "+",
RowBox[{"9", " ",
SuperscriptBox["x", "2"]}], "-",
RowBox[{"6", " ",
RowBox[{"(",
RowBox[{"2", "+",
SqrtBox["6"]}], ")"}], " ", "y"}], "+",
RowBox[{"21", " ",
SuperscriptBox["y", "2"]}], "-",
RowBox[{"2", " ", "x", " ",
RowBox[{"(",
RowBox[{
RowBox[{"3", " ",
SqrtBox["2"]}], "+",
RowBox[{"2", " ",
SqrtBox["3"]}], "-",
RowBox[{"6", " ",
SqrtBox["3"], " ", "y"}]}], ")"}]}]}]]], "]"}]}]}],
")"}]}],
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"x", "\[Equal]",
FractionBox["1",
RowBox[{"4", " ",
SqrtBox["3"]}]]}], "&&",
RowBox[{"0", "<", "y", "\[LessEqual]",
RowBox[{
SqrtBox["3"], " ", "x"}]}]}], ")"}], "||",
RowBox[{"(",
RowBox[{
RowBox[{"0", "<", "x", "<",
FractionBox["1",
RowBox[{"4", " ",
SqrtBox["3"]}]]}], "&&",
RowBox[{"0", "<", "y", "\[LessEqual]",
FractionBox[
RowBox[{
SqrtBox["3"], "-",
RowBox[{"3", " ", "x"}]}],
RowBox[{"3", " ",
SqrtBox["3"]}]]}]}], ")"}], "||",
RowBox[{"(",
RowBox[{
RowBox[{
RowBox[{"-",
FractionBox["1",
RowBox[{"2", " ",
SqrtBox["3"]}]]}], "<", "x", "<", "0"}], "&&",
RowBox[{
RowBox[{
RowBox[{"-",
SqrtBox["3"]}], " ", "x"}], "<", "y", "\[LessEqual]",
FractionBox[
RowBox[{
SqrtBox["3"], "-",
RowBox[{"3", " ", "x"}]}],
RowBox[{"3", " ",
SqrtBox["3"]}]]}]}], ")"}], "||",
RowBox[{"(",
RowBox[{
RowBox[{
FractionBox["1",
RowBox[{"4", " ",
SqrtBox["3"]}]], "<", "x", "<",
FractionBox["1",
SqrtBox["3"]]}], "&&",
RowBox[{"0", "<", "y", "\[LessEqual]",
FractionBox[
RowBox[{
SqrtBox["3"], "-",
RowBox[{"3", " ", "x"}]}],
RowBox[{"3", " ",
SqrtBox["3"]}]]}]}], ")"}]}]},
{
RowBox[{
FractionBox["1", "12"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"2", " ",
SqrtBox["2"], " ",
RowBox[{"\[Sqrt]",
RowBox[{"(",
RowBox[{"5", "+",
RowBox[{"2", " ",
SqrtBox["6"]}], "-",
RowBox[{"6", " ",
SqrtBox["2"], " ", "x"}], "-",
RowBox[{"4", " ",
SqrtBox["3"], " ", "x"}], "+",
RowBox[{"9", " ",
SuperscriptBox["x", "2"]}], "+",
RowBox[{"12", " ", "y"}], "+",
RowBox[{"6", " ",
SqrtBox["6"], " ", "y"}], "-",
RowBox[{"12", " ",
SqrtBox["3"], " ", "x", " ", "y"}], "+",
RowBox[{"21", " ",
SuperscriptBox["y", "2"]}]}], ")"}]}]}], "+",
RowBox[{"2", " ",
SqrtBox["3"], " ",
RowBox[{"\[Sqrt]",
RowBox[{"(",
RowBox[{"5", "+",
RowBox[{"2", " ",
SqrtBox["6"]}], "-",
RowBox[{"6", " ",
SqrtBox["2"], " ", "x"}], "-",
RowBox[{"4", " ",
SqrtBox["3"], " ", "x"}], "+",
RowBox[{"9", " ",
SuperscriptBox["x", "2"]}], "+",
RowBox[{"12", " ", "y"}], "+",
RowBox[{"6", " ",
SqrtBox["6"], " ", "y"}], "-",
RowBox[{"12", " ",
SqrtBox["3"], " ", "x", " ", "y"}], "+",
RowBox[{"21", " ",
SuperscriptBox["y", "2"]}]}], ")"}]}]}], "-",
RowBox[{"2", " ",
SqrtBox["6"], " ", "x", " ",
RowBox[{"\[Sqrt]",
RowBox[{"(",
RowBox[{"5", "+",
RowBox[{"2", " ",
SqrtBox["6"]}], "-",
RowBox[{"6", " ",
SqrtBox["2"], " ", "x"}], "-",
RowBox[{"4", " ",
SqrtBox["3"], " ", "x"}], "+",
RowBox[{"9", " ",
SuperscriptBox["x", "2"]}], "+",
RowBox[{"12", " ", "y"}], "+",
RowBox[{"6", " ",
SqrtBox["6"], " ", "y"}], "-",
RowBox[{"12", " ",
SqrtBox["3"], " ", "x", " ", "y"}], "+",
RowBox[{"21", " ",
SuperscriptBox["y", "2"]}]}], ")"}]}]}], "+",
RowBox[{"6", " ",
SqrtBox["2"], " ", "y", " ",
RowBox[{"\[Sqrt]",
RowBox[{"(",
RowBox[{"5", "+",
RowBox[{"2", " ",
SqrtBox["6"]}], "-",
RowBox[{"6", " ",
SqrtBox["2"], " ", "x"}], "-",
RowBox[{"4", " ",
SqrtBox["3"], " ", "x"}], "+",
RowBox[{"9", " ",
SuperscriptBox["x", "2"]}], "+",
RowBox[{"12", " ", "y"}], "+",
RowBox[{"6", " ",
SqrtBox["6"], " ", "y"}], "-",
RowBox[{"12", " ",
SqrtBox["3"], " ", "x", " ", "y"}], "+",
RowBox[{"21", " ",
SuperscriptBox["y", "2"]}]}], ")"}]}]}], "-",
RowBox[{"3", " ",
SuperscriptBox["x", "2"], " ",
RowBox[{"Log", "[",
FractionBox[
RowBox[{
RowBox[{"-", "3"}], "-",
SqrtBox["6"], "+",
RowBox[{"3", " ",
SqrtBox["2"], " ", "x"}], "-",
RowBox[{"3", " ",
SqrtBox["6"], " ", "y"}], "+",
RowBox[{"3", " ",
SqrtBox[
RowBox[{
SuperscriptBox["x", "2"], "+",
SuperscriptBox["y", "2"], "+",
SuperscriptBox[
RowBox[{"(",
RowBox[{"1", "+",
SqrtBox[
FractionBox["2", "3"]], "-",
RowBox[{
SqrtBox["2"], " ", "x"}], "+",
RowBox[{
SqrtBox["6"], " ", "y"}]}], ")"}], "2"]}]]}]}],
SqrtBox[
RowBox[{"5", "+",
RowBox[{"2", " ",
SqrtBox["6"]}], "+",
RowBox[{"9", " ",
SuperscriptBox["x", "2"]}], "+",
RowBox[{"6", " ",
RowBox[{"(",
RowBox[{"2", "+",
SqrtBox["6"]}], ")"}], " ", "y"}], "+",
RowBox[{"21", " ",
SuperscriptBox["y", "2"]}], "-",
RowBox[{"2", " ", "x", " ",
RowBox[{"(",
RowBox[{
RowBox[{"3", " ",
SqrtBox["2"]}], "+",
RowBox[{"2", " ",
SqrtBox["3"]}], "+",
RowBox[{"6", " ",
SqrtBox["3"], " ", "y"}]}], ")"}]}]}]]], "]"}]}], "-",
RowBox[{"3", " ",
SuperscriptBox["y", "2"], " ",
RowBox[{"Log", "[",
FractionBox[
RowBox[{
RowBox[{"-", "3"}], "-",
SqrtBox["6"], "+",
RowBox[{"3", " ",
SqrtBox["2"], " ", "x"}], "-",
RowBox[{"3", " ",
SqrtBox["6"], " ", "y"}], "+",
RowBox[{"3", " ",
SqrtBox[
RowBox[{
SuperscriptBox["x", "2"], "+",
SuperscriptBox["y", "2"], "+",
SuperscriptBox[
RowBox[{"(",
RowBox[{"1", "+",
SqrtBox[
FractionBox["2", "3"]], "-",
RowBox[{
SqrtBox["2"], " ", "x"}], "+",
RowBox[{
SqrtBox["6"], " ", "y"}]}], ")"}], "2"]}]]}]}],
SqrtBox[
RowBox[{"5", "+",
RowBox[{"2", " ",
SqrtBox["6"]}], "+",
RowBox[{"9", " ",
SuperscriptBox["x", "2"]}], "+",
RowBox[{"6", " ",
RowBox[{"(",
RowBox[{"2", "+",
SqrtBox["6"]}], ")"}], " ", "y"}], "+",
RowBox[{"21", " ",
SuperscriptBox["y", "2"]}], "-",
RowBox[{"2", " ", "x", " ",
RowBox[{"(",
RowBox[{
RowBox[{"3", " ",
SqrtBox["2"]}], "+",
RowBox[{"2", " ",
SqrtBox["3"]}], "+",
RowBox[{"6", " ",
SqrtBox["3"], " ", "y"}]}], ")"}]}]}]]], "]"}]}], "+",
RowBox[{"3", " ",
SuperscriptBox["x", "2"], " ",
RowBox[{"Log", "[",
FractionBox[
RowBox[{"3", "+",
SqrtBox["6"], "-",
RowBox[{"3", " ",
SqrtBox["2"], " ", "x"}], "+",
RowBox[{"3", " ",
SqrtBox["6"], " ", "y"}], "+",
RowBox[{"3", " ",
SqrtBox[
RowBox[{
SuperscriptBox["x", "2"], "+",
SuperscriptBox["y", "2"], "+",
SuperscriptBox[
RowBox[{"(",
RowBox[{"1", "+",
SqrtBox[
FractionBox["2", "3"]], "-",
RowBox[{
SqrtBox["2"], " ", "x"}], "+",
RowBox[{
SqrtBox["6"], " ", "y"}]}], ")"}], "2"]}]]}]}],
SqrtBox[
RowBox[{"5", "+",
RowBox[{"2", " ",
SqrtBox["6"]}], "+",
RowBox[{"9", " ",
SuperscriptBox["x", "2"]}], "+",
RowBox[{"6", " ",
RowBox[{"(",
RowBox[{"2", "+",
SqrtBox["6"]}], ")"}], " ", "y"}], "+",
RowBox[{"21", " ",
SuperscriptBox["y", "2"]}], "-",
RowBox[{"2", " ", "x", " ",
RowBox[{"(",
RowBox[{
RowBox[{"3", " ",
SqrtBox["2"]}], "+",
RowBox[{"2", " ",
SqrtBox["3"]}], "+",
RowBox[{"6", " ",
SqrtBox["3"], " ", "y"}]}], ")"}]}]}]]], "]"}]}], "+",
RowBox[{"3", " ",
SuperscriptBox["y", "2"], " ",
RowBox[{"Log", "[",
FractionBox[
RowBox[{"3", "+",
SqrtBox["6"], "-",
RowBox[{"3", " ",
SqrtBox["2"], " ", "x"}], "+",
RowBox[{"3", " ",
SqrtBox["6"], " ", "y"}], "+",
RowBox[{"3", " ",
SqrtBox[
RowBox[{
SuperscriptBox["x", "2"], "+",
SuperscriptBox["y", "2"], "+",
SuperscriptBox[
RowBox[{"(",
RowBox[{"1", "+",
SqrtBox[
FractionBox["2", "3"]], "-",
RowBox[{
SqrtBox["2"], " ", "x"}], "+",
RowBox[{
SqrtBox["6"], " ", "y"}]}], ")"}], "2"]}]]}]}],
SqrtBox[
RowBox[{"5", "+",
RowBox[{"2", " ",
SqrtBox["6"]}], "+",
RowBox[{"9", " ",
SuperscriptBox["x", "2"]}], "+",
RowBox[{"6", " ",
RowBox[{"(",
RowBox[{"2", "+",
SqrtBox["6"]}], ")"}], " ", "y"}], "+",
RowBox[{"21", " ",
SuperscriptBox["y", "2"]}], "-",
RowBox[{"2", " ", "x", " ",
RowBox[{"(",
RowBox[{
RowBox[{"3", " ",
SqrtBox["2"]}], "+",
RowBox[{"2", " ",
SqrtBox["3"]}], "+",
RowBox[{"6", " ",
SqrtBox["3"], " ", "y"}]}], ")"}]}]}]]], "]"}]}]}],
")"}]}],
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"x", "\[Equal]",
RowBox[{"-",
FractionBox["1",
RowBox[{"2", " ",
SqrtBox["3"]}]]}]}], "&&",
RowBox[{"y", "\[Equal]",
RowBox[{
SqrtBox["3"], " ", "x"}]}]}], ")"}], "||",
RowBox[{"(",
RowBox[{
RowBox[{"x", "\[Equal]",
FractionBox["1",
RowBox[{"4", " ",
SqrtBox["3"]}]]}], "&&",
RowBox[{
RowBox[{
RowBox[{"-",
SqrtBox["3"]}], " ", "x"}], "\[LessEqual]", "y",
"\[LessEqual]", "0"}]}], ")"}], "||",
RowBox[{"(",
RowBox[{
RowBox[{"0", "<", "x", "<",
FractionBox["1",
RowBox[{"4", " ",
SqrtBox["3"]}]]}], "&&",
RowBox[{
FractionBox[
RowBox[{
RowBox[{"-",
SqrtBox["3"]}], "+",
RowBox[{"3", " ", "x"}]}],
RowBox[{"3", " ",
SqrtBox["3"]}]], "\[LessEqual]", "y", "\[LessEqual]", "0"}]}],
")"}], "||",
RowBox[{"(",
RowBox[{
RowBox[{
RowBox[{"-",
FractionBox["1",
RowBox[{"2", " ",
SqrtBox["3"]}]]}], "<", "x", "<", "0"}], "&&",
RowBox[{
FractionBox[
RowBox[{
RowBox[{"-",
SqrtBox["3"]}], "+",
RowBox[{"3", " ", "x"}]}],
RowBox[{"3", " ",
SqrtBox["3"]}]], "\[LessEqual]", "y", "\[LessEqual]",
RowBox[{
SqrtBox["3"], " ", "x"}]}]}], ")"}], "||",
RowBox[{"(",
RowBox[{
RowBox[{
FractionBox["1",
RowBox[{"4", " ",
SqrtBox["3"]}]], "<", "x", "<",
FractionBox["1",
SqrtBox["3"]]}], "&&",
RowBox[{
FractionBox[
RowBox[{
RowBox[{"-",
SqrtBox["3"]}], "+",
RowBox[{"3", " ", "x"}]}],
RowBox[{"3", " ",
SqrtBox["3"]}]], "\[LessEqual]", "y", "\[LessEqual]", "0"}]}],
")"}]}]},
{"0",
TagBox["True",
"PiecewiseDefault",
AutoDelete->True]}
},
AllowedDimensions->{2, Automatic},
Editable->True,
GridBoxAlignment->{"Columns" -> {{Left}}, "Rows" -> {{Baseline}}},
GridBoxItemSize->{"Columns" -> {{Automatic}}, "Rows" -> {{1.}}},
GridBoxSpacings->{"Columns" -> {
Offset[0.27999999999999997`], {
Offset[0.84]},
Offset[0.27999999999999997`]}, "Rows" -> {
Offset[0.2], {
Offset[0.4]},
Offset[0.2]}},
Selectable->True]}
},
GridBoxAlignment->{"Columns" -> {{Left}}, "Rows" -> {{Baseline}}},
GridBoxItemSize->{"Columns" -> {{Automatic}}, "Rows" -> {{1.}}},
GridBoxSpacings->{"Columns" -> {
Offset[0.27999999999999997`], {
Offset[0.35]},
Offset[0.27999999999999997`]}, "Rows" -> {
Offset[0.2], {
Offset[0.4]},
Offset[0.2]}}],
"Piecewise",
DeleteWithContents->True,
Editable->False,
SelectWithContents->True,
Selectable->False,
StripWrapperBoxes->True]}], "}"}]], "Output",
CellLabel->
"(byblis65 V13.2.0) \
Out[7]=",ExpressionUUID->"7627d6be-fe78-4df7-9dfe-c65c9fa940d3"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"NIntegrate", "[",
RowBox[{
FractionBox["i1", "vol"], ",",
RowBox[{"{",
RowBox[{"x", ",", "xmin", ",", "xmax"}], "}"}], ",",
RowBox[{"{",
RowBox[{"y", ",", "ymin", ",", "ymax"}], "}"}]}], "]"}]], "Input",
CellLabel->
"(byblis65 V13.2.0) \
In[8]:=",ExpressionUUID->"4ff54d68-f201-4013-97dc-6de6df9267ae"],
Cell[BoxData["0.7308561012524257`"], "Output",
CellLabel->
"(byblis65 V13.2.0) \
Out[8]=",ExpressionUUID->"e4836537-5c5d-421d-b9ff-39dbd41b6624"]
}, Open ]],
Cell[BoxData[
RowBox[{
RowBox[{"(",
RowBox[{"i2", "=",
RowBox[{"Integrate", "[",
RowBox[{
FractionBox["i1", "vol"], ",",
RowBox[{"{",
RowBox[{"x", ",", "xmin", ",", "xmax"}], "}"}], ",",
RowBox[{"{",
RowBox[{"y", ",", "ymin", ",", "ymax"}], "}"}]}], "]"}]}], ")"}], "//",
"Timing"}]], "Input",
CellLabel->
"(byblis65 V13.2.0) \
In[9]:=",ExpressionUUID->"472b4d59-c79a-4a57-8a5e-108e1837609b"]
}, Open ]]
}, Closed]],
Cell[CellGroupData[{
Cell["MeanSquareCylindricalRadius", "Subsection",ExpressionUUID->"30123a88-ef62-4b99-8324-cb82299d072c"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"PolyhedronData", "[",
RowBox[{"pname", ",", "\"\\""}],
"]"}]], "Input",
CellLabel->"In[27]:=",ExpressionUUID->"a73f4293-e91b-4ee8-89f9-2967f501979d"],
Cell[BoxData[
RowBox[{
FractionBox["1", "500"], " ",
RowBox[{"(",
RowBox[{"43", "-",
RowBox[{"2", " ",
SqrtBox["6"]}]}], ")"}]}]], "Output",
CellLabel->"Out[27]=",ExpressionUUID->"7b54d303-c8ce-4f9e-9bfd-523e1512fb19"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
FractionBox[
RowBox[{"NIntegrate", "[",
RowBox[{
RowBox[{
SuperscriptBox["x", "2"], "+",
SuperscriptBox["y", "2"]}], ",",
RowBox[{
RowBox[{"{",
RowBox[{"x", ",", "y", ",", "z"}], "}"}], "\[Element]", "p"}]}], "]"}],
RowBox[{"PolyhedronData", "[",
RowBox[{"pname", ",", "\"\\""}], "]"}]]], "Input",
CellLabel->
"In[193]:=",ExpressionUUID->"81936642-ac47-4e4b-b0d3-081f839d1e11"],
Cell[BoxData["0.0762020410288673`"], "Output",
CellLabel->
"Out[193]=",ExpressionUUID->"696ee386-d934-45bc-97fd-e000143f5eb3"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"(",
RowBox[{"i", "=",
RowBox[{
FractionBox[
RowBox[{"Integrate", "[",
RowBox[{
RowBox[{
SuperscriptBox["x", "2"], "+",
SuperscriptBox["y", "2"]}], ",",
RowBox[{
RowBox[{"{",
RowBox[{"x", ",", "y", ",", "z"}], "}"}], "\[Element]", "p"}]}],
"]"}],
RowBox[{"PolyhedronData", "[",
RowBox[{"pname", ",", "\"\\""}], "]"}]], "//",
"FullSimplify"}]}], ")"}], "//", "Timing"}]], "Input",
CellLabel->
"In[201]:=",ExpressionUUID->"4fcfe8ad-dcc7-406d-8009-c181b264e624"],
Cell[BoxData[
RowBox[{"{",
RowBox[{"0.187244`", ",",
RowBox[{
FractionBox["1", "500"], " ",
RowBox[{"(",
RowBox[{"43", "-",
RowBox[{"2", " ",
SqrtBox["6"]}]}], ")"}]}]}], "}"}]], "Output",
CellLabel->
"Out[201]=",ExpressionUUID->"c8953bce-a9d3-4321-9cb9-e5b581a71ddc"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"N", "[", "i", "]"}]], "Input",
CellLabel->
"In[195]:=",ExpressionUUID->"01105a28-8f44-4675-a63f-8c2ada908141"],
Cell[BoxData["0.0762020410288673`"], "Output",
CellLabel->
"Out[195]=",ExpressionUUID->"34efb75b-9502-419d-8468-ce0d224d4258"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{
RowBox[{"MeanSquareCylindricalRadius", "[", "p", "]"}], "//",
"FullSimplify"}], "//", "Timing"}]], "Input",
CellLabel->"In[8]:=",ExpressionUUID->"6a7f6f0c-2946-4e98-8d60-8103d00e70a1"],
Cell[BoxData[
RowBox[{"{",
RowBox[{"0.141258`", ",",
RowBox[{
FractionBox["1", "500"], " ",
RowBox[{"(",
RowBox[{"43", "-",
RowBox[{"2", " ",
SqrtBox["6"]}]}], ")"}]}]}], "}"}]], "Output",
CellLabel->"Out[8]=",ExpressionUUID->"b2beef0e-790a-43fd-aec0-dec835d4c01d"]
}, Open ]]
}, Closed]],
Cell[CellGroupData[{
Cell["MeanSquareSphericalRadius", "Subsection",ExpressionUUID->"5a3610c8-9ba1-4a7d-82a9-e97e3a55f58e"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"PolyhedronData", "[",
RowBox[{"pname", ",", "\"\\""}], "]"}]], "Input",\
CellLabel->"In[29]:=",ExpressionUUID->"af497dd6-cccf-4b74-8273-323b3c5f7cea"],
Cell[BoxData[
FractionBox[
RowBox[{"721", "+",
RowBox[{"106", " ",
SqrtBox["6"]}]}], "1500"]], "Output",
CellLabel->"Out[29]=",ExpressionUUID->"e611bcff-7aad-4d61-b571-48468cab6b45"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
FractionBox[
RowBox[{"NIntegrate", "[",
RowBox[{
RowBox[{
SuperscriptBox["x", "2"], "+",
SuperscriptBox["y", "2"], "+",
SuperscriptBox["z", "2"]}], ",",
RowBox[{
RowBox[{"{",
RowBox[{"x", ",", "y", ",", "z"}], "}"}], "\[Element]", "p"}]}], "]"}],
RowBox[{"PolyhedronData", "[",
RowBox[{"pname", ",", "\"\\""}], "]"}]]], "Input",
CellLabel->
"In[197]:=",ExpressionUUID->"8ef2d0fe-ba04-4e5e-8924-fd46e3d4ae6c"],
Cell[BoxData["0.6537639418233445`"], "Output",
CellLabel->
"Out[197]=",ExpressionUUID->"1f6e3279-356f-4294-a21f-fa663e0d1f2c"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"(",
RowBox[{"i", "=",
RowBox[{
FractionBox[
RowBox[{"Integrate", "[",
RowBox[{
RowBox[{
SuperscriptBox["x", "2"], "+",
SuperscriptBox["y", "2"], "+",
SuperscriptBox["z", "2"]}], ",",
RowBox[{
RowBox[{"{",
RowBox[{"x", ",", "y", ",", "z"}], "}"}], "\[Element]", "p"}]}],
"]"}], "vol"], "//", "FullSimplify"}]}], ")"}], "//",
"Timing"}]], "Input",ExpressionUUID->"b17546dc-7ac4-4ede-95a5-dbecdb2e2bc1"],
Cell[BoxData[
RowBox[{"{",
RowBox[{"0.103699`", ",",
FractionBox[
RowBox[{"721", "+",
RowBox[{"106", " ",
SqrtBox["6"]}]}], "1500"]}], "}"}]], "Output",
CellLabel->
"Out[200]=",ExpressionUUID->"46a965e2-8976-416d-b252-5c0da5f067d3"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"N", "[", "i", "]"}]], "Input",
CellLabel->
"In[199]:=",ExpressionUUID->"21883ce9-22e8-4b70-8983-4eb3a5697e3f"],
Cell[BoxData["0.6537639418233446`"], "Output",
CellLabel->
"Out[199]=",ExpressionUUID->"e2502318-ee9e-4f16-a5f3-df2fbb37a4d1"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{
RowBox[{"MeanSquareSphericalRadius", "[", "p", "]"}], "//",
"FullSimplify"}], "//", "Timing"}]], "Input",
CellLabel->"In[7]:=",ExpressionUUID->"be13d11f-2e33-4fec-8a4e-266818ab5bf9"],
Cell[BoxData[
RowBox[{"{",
RowBox[{"0.137898`", ",",
FractionBox[
RowBox[{"721", "+",
RowBox[{"106", " ",
SqrtBox["6"]}]}], "1500"]}], "}"}]], "Output",
CellLabel->"Out[7]=",ExpressionUUID->"ebf43022-2409-48dd-875c-cc2729d1d4ed"]
}, Open ]]
}, Closed]],
Cell[CellGroupData[{
Cell["Midsphere", "Subsection",ExpressionUUID->"652c37fb-883a-4082-a698-a08b5c1658ca"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"PolyhedronData", "[",
RowBox[{"pname", ",", "\"\\""}], "]"}]], "Input",
CellLabel->
"In[202]:=",ExpressionUUID->"90fa6ac7-edff-41be-b93c-f08362f982fe"],
Cell[BoxData[
RowBox[{"Missing", "[", "\<\"NotApplicable\"\>", "]"}]], "Output",
CellLabel->
"Out[202]=",ExpressionUUID->"d9e6960b-0107-4b2d-b6bf-45d984bd396a"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Midsphere", "[", "p", "]"}]], "Input",
CellLabel->
"In[203]:=",ExpressionUUID->"9bcbabc2-32cf-4e72-9997-d2082a6eefa2"],
Cell[BoxData[
RowBox[{"{", "}"}]], "Output",
CellLabel->
"Out[203]=",ExpressionUUID->"58e968ba-cbb5-4311-8dff-7cb7afa7675d"]
}, Open ]]
}, Closed]],
Cell[CellGroupData[{
Cell["SurfaceArea", "Subsection",ExpressionUUID->"63b1fafb-eb5a-4972-93f6-95c1268a3bfd"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"PolyhedronData", "[",
RowBox[{"pname", ",", "\"\\""}], "]"}]], "Input",
CellLabel->
"In[204]:=",ExpressionUUID->"7dca263e-69f0-4f36-8434-1a17b71b60f3"],
Cell[BoxData[
RowBox[{"3", "+",
SqrtBox["3"]}]], "Output",
CellLabel->
"Out[204]=",ExpressionUUID->"903f1a9d-6deb-498f-a816-6a2e87782ec4"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"SurfaceArea", "[", "p", "]"}]], "Input",
CellLabel->
"In[206]:=",ExpressionUUID->"b72b8970-75b5-43b6-adab-313230b5e139"],
Cell[BoxData[
RowBox[{"3", "+",
SqrtBox["3"]}]], "Output",
CellLabel->
"Out[206]=",ExpressionUUID->"6bae3fa0-7b6f-472c-91fe-9d16c73e19ff"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"Total", "[",
RowBox[{"Area", "/@",
RowBox[{"PolyhedronData", "[",
RowBox[{"pname", ",", "\"\\""}], "]"}]}], "]"}], "//",
"FullSimplify"}]], "Input",
CellLabel->
"In[208]:=",ExpressionUUID->"42632bc5-f81f-4dde-a8a3-d773bb8490c7"],
Cell[BoxData[
RowBox[{"3", "+",
SqrtBox["3"]}]], "Output",
CellLabel->
"Out[208]=",ExpressionUUID->"44b2d513-aba9-40fa-ba06-0b307591eaff"]
}, Open ]]
}, Closed]],
Cell[CellGroupData[{
Cell["VertexSubsetHulls", "Subsection",ExpressionUUID->"48fea836-0d6d-4b21-91b2-240606a842ea"],
Cell[CellGroupData[{
Cell["Platonic", "Subsubsection",ExpressionUUID->"d0996749-5ae4-4671-8f70-b3277ad1415c"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"(",
RowBox[{"h", "=",
RowBox[{"VertexSubsetHulls", "[",
RowBox[{"p", ",", "\"\\"", ",",
RowBox[{"\"\\"", "\[Rule]",
RowBox[{"{", "}"}]}]}], "]"}]}], ")"}], "//", "Timing"}]], "Input",
CellLabel->
"In[209]:=",ExpressionUUID->"a7fbf87a-98b9-4e63-84de-37c672c5201d"],
Cell[CellGroupData[{
Cell[BoxData["\<\"Finding equilateral triangles...\"\>"], "Print",
CellLabel->
"During evaluation of \
In[209]:=",ExpressionUUID->"4a5eb1f1-6674-4429-8d49-5919fadabb83"],
Cell[BoxData["\<\"Finding potential tetrahedra from equilateral \
triangles...\"\>"], "Print",
CellLabel->
"During evaluation of \
In[209]:=",ExpressionUUID->"b22ec49b-01b4-421b-95d8-0ed7833ac764"],
Cell[BoxData["\<\"Finding tetrahedra from potential candidates...\"\>"], \
"Print",
CellLabel->
"During evaluation of \
In[209]:=",ExpressionUUID->"aaf83206-d833-447e-815e-d1d6de6930e5"],
Cell[BoxData["\<\"Finding cubes from tetrahedra...\"\>"], "Print",
CellLabel->
"During evaluation of \
In[209]:=",ExpressionUUID->"7bc954b2-3562-4de2-8240-e6bda0d47e8f"],
Cell[BoxData["\<\"Finding dodecahedron from cubes...\"\>"], "Print",
CellLabel->
"During evaluation of \
In[209]:=",ExpressionUUID->"cb1c7653-2b2e-4b02-ba1f-a6d7b1401eaa"],
Cell[BoxData["\<\"Finding octahedra by building up from equilateral \
triangles...\"\>"], "Print",
CellLabel->
"During evaluation of \
In[209]:=",ExpressionUUID->"704b8077-54ac-4a51-82d8-9bec24cee55b"],
Cell[BoxData["\<\"Finding dodecahedra from octahedra...\"\>"], "Print",
CellLabel->
"During evaluation of \
In[209]:=",ExpressionUUID->"05730684-984c-45f4-b4e2-011e19d84303"],
Cell[BoxData["\<\"Finding icosahedra by building up from equilateral \
triangles...\"\>"], "Print",
CellLabel->
"During evaluation of \
In[209]:=",ExpressionUUID->"b0ab6de8-eb25-4bfc-8e1f-5f30a79aff56"]
}, Open ]],
Cell[BoxData[
RowBox[{"{",
RowBox[{"0.006014`", ",",
RowBox[{"{",
RowBox[{"\<\"Tetrahedron\"\>", "\[Rule]",
RowBox[{"{",
RowBox[{"{",
RowBox[{"1", ",", "3", ",", "5", ",", "7"}], "}"}], "}"}]}], "}"}]}],
"}"}]], "Output",
CellLabel->
"Out[209]=",ExpressionUUID->"77311c64-faef-4b11-a763-ffc0c6234fd1"]
}, Open ]]
}, Open ]]
}, Closed]],
Cell[CellGroupData[{
Cell["Volume", "Subsection",ExpressionUUID->"0d9f456a-0d5c-4f96-8906-7242a7a059a7"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"PolyhedronData", "[",
RowBox[{"pname", ",", "\"\\""}], "]"}]], "Input",
CellLabel->
"In[210]:=",ExpressionUUID->"b4d88419-0040-4a75-9cd4-c4a61e965e60"],
Cell[BoxData[
RowBox[{
FractionBox["1", "12"], " ",
RowBox[{"(",
RowBox[{
SqrtBox["2"], "+",
RowBox[{"3", " ",
SqrtBox["3"]}]}], ")"}]}]], "Output",
CellLabel->
"Out[210]=",ExpressionUUID->"3e36c7f1-4c1d-49dc-b93a-0f8ae9a3c896"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"Volume", "[", "p", "]"}], "//", "FullSimplify"}]], "Input",
CellLabel->
"In[211]:=",ExpressionUUID->"a0239d19-e99c-4280-96bb-6c53d35daa22"],
Cell[BoxData[
RowBox[{
FractionBox["1", "12"], " ",
RowBox[{"(",
RowBox[{
SqrtBox["2"], "+",
RowBox[{"3", " ",
SqrtBox["3"]}]}], ")"}]}]], "Output",
CellLabel->
"Out[211]=",ExpressionUUID->"32dd02be-713b-43fc-b5ab-7a85d0aa73a4"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"PolyhedronVolume", "[",
RowBox[{"p", ",",
RowBox[{"Method", "\[Rule]", "\"\\""}]}], "]"}], "//",
"FullSimplify"}]], "Input",
CellLabel->
"In[212]:=",ExpressionUUID->"e2c3bdbf-88dd-419f-a51f-3939c4305933"],
Cell[BoxData[
RowBox[{
FractionBox["1", "12"], " ",
RowBox[{"(",
RowBox[{
SqrtBox["2"], "+",
RowBox[{"3", " ",
SqrtBox["3"]}]}], ")"}]}]], "Output",
CellLabel->
"Out[212]=",ExpressionUUID->"25f321e1-22fc-409e-891d-7677b8c1b4a8"]
}, Open ]]
}, Closed]]
}, Open ]],
Cell[CellGroupData[{
Cell["Perspective projections", "Section",ExpressionUUID->"bb1395a2-ec3d-4f1a-ad4a-c4d305685331"],
Cell[BoxData[
RowBox[{"Manipulate", "[",
RowBox[{
RowBox[{"PolyhedronProjectionGraph", "[",
RowBox[{
RowBox[{"PolyhedronData", "[",
RowBox[{
"\"\\"", ",", "\"\\""}],
"]"}], ",",
RowBox[{"{",
RowBox[{"a", ",", "b", ",", "c"}], "}"}]}], "]"}], ",",
RowBox[{"{",
RowBox[{"a", ",",
RowBox[{"-", "1"}], ",", "1"}], "}"}], ",",
RowBox[{"{",
RowBox[{"b", ",",
RowBox[{"-", "1"}], ",", "1"}], "}"}], ",",
RowBox[{"{",
RowBox[{"c", ",",
RowBox[{"-", "1"}], ",", "1"}], "}"}]}], "]"}]], "Input",ExpressionUUID->\
"ed5a90ad-4a8e-44e0-90fb-69c0c7b94077"],
Cell[CellGroupData[{
Cell["XXX", "Subsection",ExpressionUUID->"1a393170-cbdd-40e8-bdf9-406bbbd5024d"],
Cell[BoxData[
RowBox[{"PolyhedronProjectionGraph", "[",
RowBox[{
RowBox[{"PolyhedronData", "[",
RowBox[{"\"\\"", ",", "\"\\""}],
"]"}], ","}], "]"}]], "Input",ExpressionUUID->"1eead764-2578-4aeb-8575-\
bcbff80e8309"]
}, Open ]]
}, Open ]]
}, Open ]]
},
InitializationCellEvaluation->Automatic,
WindowSize->{869, 716},
WindowMargins->{{90, Automatic}, {Automatic, 53}},
FrontEndVersion->"13.2 for Mac OS X ARM (64-bit) (September 28, 2022)",
StyleDefinitions->"Default.nb",
ExpressionUUID->"589de72d-0cef-4d97-98cd-24821ef2254c"
]
(* End of Notebook Content *)
(* Internal cache information *)
(*CellTagsOutline
CellTagsIndex->{}
*)
(*CellTagsIndex
CellTagsIndex->{}
*)
(*NotebookFileOutline
Notebook[{
Cell[CellGroupData[{
Cell[580, 22, 100, 0, 98, "Title",ExpressionUUID->"b83a0b4b-6670-4c18-9113-6056bc7dedde"],
Cell[CellGroupData[{
Cell[705, 26, 83, 0, 54, "Subsection",ExpressionUUID->"df43b363-6c76-4d43-9f48-06e9084602e6"],
Cell[791, 28, 112, 3, 58, "Text",ExpressionUUID->"2503fb3e-da7c-4d5b-b9b2-633e5d2f9cd1"],
Cell[906, 33, 360, 9, 58, "Text",ExpressionUUID->"1f29cd08-8a9b-4aae-aa1b-d7af717f479f"],
Cell[1269, 44, 387, 11, 35, "Text",ExpressionUUID->"159b673d-c771-44dd-95bc-a5bfcd9f43c3"],
Cell[1659, 57, 154, 2, 35, "Text",ExpressionUUID->"0053175e-5821-48c9-b8d5-268cfa6dacc8"]
}, Open ]],
Cell[CellGroupData[{
Cell[1850, 64, 79, 0, 67, "Section",ExpressionUUID->"1247822e-5b0a-433f-9b29-d396bdcaa85f"],
Cell[CellGroupData[{
Cell[1954, 68, 228, 5, 30, "Input",ExpressionUUID->"eb281f6c-d8c4-4d33-8d34-cbe7b8d70802"],
Cell[2185, 75, 142, 3, 34, "Output",ExpressionUUID->"3c426287-501d-4f68-bfc3-0b412a3b33dc"]
}, Open ]],
Cell[CellGroupData[{
Cell[2364, 83, 186, 4, 30, "Input",ExpressionUUID->"fa7ae304-7f20-4743-83da-4526acaa8997"],
Cell[2553, 89, 870, 16, 449, "Output",ExpressionUUID->"2d9c6440-52af-493e-b7b4-2e104b57a0f6"]
}, Open ]],
Cell[CellGroupData[{
Cell[3460, 110, 80, 0, 54, "Subsection",ExpressionUUID->"8279c2a7-d767-4d57-a5d0-f37c3c43d05e"],
Cell[CellGroupData[{
Cell[3565, 114, 219, 5, 30, "Input",ExpressionUUID->"ebd939a2-fc1a-4e2a-8df2-c9e178898fe2"],
Cell[3787, 121, 1195, 23, 346, "Output",ExpressionUUID->"4826b570-4755-4d48-9bd2-3e4e7058012c"]
}, Open ]],
Cell[CellGroupData[{
Cell[5019, 149, 247, 6, 30, "Input",ExpressionUUID->"5d2b55a3-71f4-45b4-bef5-3843b9ddb3ce"],
Cell[5269, 157, 1249, 26, 346, "Output",ExpressionUUID->"59021604-b183-4ce3-8999-613a4c7beb7b"]
}, Open ]],
Cell[6533, 186, 303, 6, 52, "Input",ExpressionUUID->"e6cb4c30-b094-46f5-ac1d-4d50c933a9b4"]
}, Open ]]
}, Closed]],
Cell[CellGroupData[{
Cell[6885, 198, 84, 0, 53, "Section",ExpressionUUID->"a7f1fd83-f10c-4383-bf49-48d5e68d7627"],
Cell[6972, 200, 142, 2, 30, "Input",ExpressionUUID->"6243c8ec-2373-45be-872e-b94f38c0df8e"],
Cell[CellGroupData[{
Cell[7139, 206, 276, 6, 30, "Input",ExpressionUUID->"159b602b-645e-48ac-9d88-ebbf567cae17"],
Cell[7418, 214, 10237, 203, 61, "Output",ExpressionUUID->"a143fe7d-a5a0-4703-86bb-29de185620c0"]
}, Open ]],
Cell[CellGroupData[{
Cell[17692, 422, 235, 6, 44, "Input",ExpressionUUID->"c476d211-744c-4074-94bb-628fc9a0fbf4"],
Cell[17930, 430, 275, 10, 63, "Output",ExpressionUUID->"1dc5da08-590d-4bde-9b8b-aa8e4f981d63"]
}, Open ]],
Cell[CellGroupData[{
Cell[18242, 445, 85, 0, 54, "Subsection",ExpressionUUID->"23071e18-9ec8-49cc-a04b-4237121c7e58"],
Cell[CellGroupData[{
Cell[18352, 449, 192, 4, 30, "Input",ExpressionUUID->"4f8c044f-a2d9-4b05-977e-ac4ac62600a3"],
Cell[18547, 455, 310, 10, 50, "Output",ExpressionUUID->"59437994-706d-4deb-8b87-2653b63dd72e"]
}, Open ]],
Cell[CellGroupData[{
Cell[18894, 470, 187, 5, 30, "Input",ExpressionUUID->"8c0bd1e5-e982-458e-80c8-ab19aa3ffdb0"],
Cell[19084, 477, 310, 10, 50, "Output",ExpressionUUID->"5c110597-99c2-494c-8a6b-6eec2198be6f"]
}, Open ]],
Cell[CellGroupData[{
Cell[19431, 492, 154, 3, 30, "Input",ExpressionUUID->"68a280b0-4b32-410a-9120-549d1989a839"],
Cell[19588, 497, 310, 10, 50, "Output",ExpressionUUID->"72f2bea9-ce63-4810-b722-2dc3d758e086"]
}, Open ]]
}, Closed]],
Cell[CellGroupData[{
Cell[19947, 513, 89, 0, 38, "Subsection",ExpressionUUID->"127204a7-78ab-4a84-8a03-e69493a06319"],
Cell[CellGroupData[{
Cell[20061, 517, 196, 4, 30, "Input",ExpressionUUID->"77012c8c-fe33-4b7f-9c5a-4eeff8139b1a"],
Cell[20260, 523, 164, 3, 34, "Output",ExpressionUUID->"68606911-a56c-4a43-84da-e11136d70af5"]
}, Open ]],
Cell[CellGroupData[{
Cell[20461, 531, 148, 3, 30, "Input",ExpressionUUID->"0e9473e5-50bc-4df0-bc7f-a6348941c711"],
Cell[20612, 536, 10179, 148, 49, "Message",ExpressionUUID->"2c76f7c2-6f32-4e00-8f8e-26260e6374b5"],
Cell[30794, 686, 10765, 216, 61, "Output",ExpressionUUID->"f5dfb295-46b2-4f79-9854-92b5f1f51379"]
}, Open ]],
Cell[CellGroupData[{
Cell[41596, 907, 150, 3, 30, "Input",ExpressionUUID->"a9367c59-ba86-430f-80ce-0920872c3951"],
Cell[41749, 912, 128, 3, 34, "Output",ExpressionUUID->"efdc1214-e769-4821-b7b2-d959b680ab3e"]
}, Open ]]
}, Closed]],
Cell[CellGroupData[{
Cell[41926, 921, 91, 0, 38, "Subsection",ExpressionUUID->"4e59addc-6190-4338-aba0-f923c0945478"],
Cell[CellGroupData[{
Cell[42042, 925, 230, 6, 30, "Input",ExpressionUUID->"eaed75d5-757f-43d8-a523-d32ea07b3290"],
Cell[42275, 933, 596, 20, 58, "Output",ExpressionUUID->"ad8b15ed-e065-4de3-b6d4-c0daf89e1149"]
}, Open ]],
Cell[CellGroupData[{
Cell[42908, 958, 217, 6, 30, "Input",ExpressionUUID->"72d88485-92bc-43f7-9ddd-58a04dcc614d"],
Cell[43128, 966, 596, 20, 58, "Output",ExpressionUUID->"0a18f031-6ff1-43fd-9027-0ca2f24a4e26"]
}, Open ]]
}, Closed]],
Cell[CellGroupData[{
Cell[43773, 992, 88, 0, 38, "Subsection",ExpressionUUID->"34b41a70-f3de-4ed6-a601-65dc61807638"],
Cell[CellGroupData[{
Cell[43886, 996, 195, 4, 30, "Input",ExpressionUUID->"c12005e0-5640-4d25-86d1-9bdeee9f6c8a"],
Cell[44084, 1002, 133, 3, 34, "Output",ExpressionUUID->"d4118716-4ce9-4de3-a9e3-0ee6575f6726"]
}, Open ]],
Cell[CellGroupData[{
Cell[44254, 1010, 401, 11, 30, "Input",ExpressionUUID->"e02e26ab-ae0b-47b6-877f-a5b8a8af9b65"],
Cell[44658, 1023, 133, 3, 34, "Output",ExpressionUUID->"c7bd9582-3ad8-4d82-85c3-e160148755f0"]
}, Open ]]
}, Closed]],
Cell[44818, 1030, 82, 0, 38, "Subsection",ExpressionUUID->"682ce05c-ceaf-4226-ba36-f114876cbda7"],
Cell[CellGroupData[{
Cell[44925, 1034, 96, 0, 38, "Subsection",ExpressionUUID->"251ba3de-7d56-47e9-8148-c912e1d6d7cc"],
Cell[CellGroupData[{
Cell[45046, 1038, 203, 4, 30, "Input",ExpressionUUID->"439346ca-46ce-40ad-862e-d62f37fcbbc9"],
Cell[45252, 1044, 231, 8, 54, "Output",ExpressionUUID->"6b2876d4-46c1-4135-b20b-e2beb77d44e3"]
}, Open ]],
Cell[CellGroupData[{
Cell[45520, 1057, 193, 5, 30, "Input",ExpressionUUID->"8b10adaf-30bd-4f6b-b645-805cb63132d1"],
Cell[45716, 1064, 231, 8, 54, "Output",ExpressionUUID->"5502bfb1-fdbb-4cae-982f-18fd73d1ad5b"]
}, Open ]]
}, Closed]],
Cell[CellGroupData[{
Cell[45996, 1078, 85, 0, 38, "Subsection",ExpressionUUID->"085df129-cd25-4b7c-8e95-84f032f3d1a9"],
Cell[CellGroupData[{
Cell[46106, 1082, 192, 4, 30, "Input",ExpressionUUID->"b5bf2097-94af-4a63-9188-5672d9b45dae"],
Cell[46301, 1088, 164, 3, 34, "Output",ExpressionUUID->"c6a0846d-61ee-47e2-88d7-9be54494fc7c"]
}, Open ]],
Cell[CellGroupData[{
Cell[46502, 1096, 144, 3, 30, "Input",ExpressionUUID->"74fc9162-d402-4666-8620-ba68f8404146"],
Cell[46649, 1101, 10171, 148, 49, "Message",ExpressionUUID->"a22b9453-8610-450b-a614-2305f200b215"],
Cell[56823, 1251, 10761, 216, 61, "Output",ExpressionUUID->"74526d21-a99a-4db0-8706-b2d6693895ea"]
}, Open ]],
Cell[CellGroupData[{
Cell[67621, 1472, 146, 3, 30, "Input",ExpressionUUID->"ab55edd5-5fa3-4558-9057-00adf8684292"],
Cell[67770, 1477, 128, 3, 34, "Output",ExpressionUUID->"60d90fab-47c3-4a48-9126-8c6d5919ad21"]
}, Open ]]
}, Closed]],
Cell[CellGroupData[{
Cell[67947, 1486, 90, 0, 38, "Subsection",ExpressionUUID->"537e0b8b-ce29-4a76-bb9e-dc7bfddc5666"],
Cell[CellGroupData[{
Cell[68062, 1490, 197, 4, 30, "Input",ExpressionUUID->"a4471f11-764f-4186-94b7-bba37ff69416"],
Cell[68262, 1496, 710, 24, 58, "Output",ExpressionUUID->"49e12fb2-f96c-4c91-9b83-e6d50011822e"]
}, Open ]],
Cell[CellGroupData[{
Cell[69009, 1525, 366, 11, 51, "Input",ExpressionUUID->"c813954c-ebca-4daa-937d-fa520c3e026f"],
Cell[69378, 1538, 807, 26, 58, "Output",ExpressionUUID->"080a49bc-8a3e-4c44-a53d-e3a0ef3c12b9"]
}, Open ]],
Cell[CellGroupData[{
Cell[70222, 1569, 191, 5, 30, "Input",ExpressionUUID->"80ad87e9-e68f-4b9e-9b59-d15e1a3b8010"],
Cell[70416, 1576, 807, 26, 58, "Output",ExpressionUUID->"e27d014b-6294-493a-ae07-c3da0138ad8c"]
}, Open ]]
}, Closed]],
Cell[CellGroupData[{
Cell[71272, 1608, 98, 0, 38, "Subsection",ExpressionUUID->"61da4e9d-30b6-4caf-a838-47a746cf0ef4"],
Cell[CellGroupData[{
Cell[71395, 1612, 200, 3, 30, "Input",ExpressionUUID->"5cfa1736-0be0-4638-9506-f9442f4a1f29"],
Cell[71598, 1617, 660, 24, 56, "Output",ExpressionUUID->"8f28f6d2-8e08-4069-b785-3593b3a61cdd"]
}, Open ]],
Cell[CellGroupData[{
Cell[72295, 1646, 132, 2, 30, "Input",ExpressionUUID->"46cd4039-6173-469f-a17b-9e1e5a527688"],
Cell[72430, 1650, 124, 1, 34, "Output",ExpressionUUID->"0f3add32-45e5-450c-950d-7bb817debe02"]
}, Open ]],
Cell[CellGroupData[{
Cell[72591, 1656, 105, 0, 45, "Subsubsection",ExpressionUUID->"b78c4201-9bd1-49b1-b568-3c4bd56f9804"],
Cell[CellGroupData[{
Cell[72721, 1660, 361, 11, 59, "Input",ExpressionUUID->"b157896b-5500-4f78-a4a9-7eca118910d3"],
Cell[73085, 1673, 444, 10, 46, "Message",ExpressionUUID->"4738aeb0-ad7e-406d-b5c2-135185f15a4b"],
Cell[73532, 1685, 129, 2, 34, "Output",ExpressionUUID->"a91c6664-7ac2-46f9-a124-1147a3df92f2"]
}, Open ]],
Cell[73676, 1690, 471, 15, 70, "Input",ExpressionUUID->"1eaf88c5-ea13-45e6-a226-23710bc1a6b5"],
Cell[74150, 1707, 109, 1, 30, "Input",ExpressionUUID->"6ecdcfbe-90a1-4730-a16e-f3b26abaaff0"]
}, Closed]],
Cell[CellGroupData[{
Cell[74296, 1713, 101, 0, 37, "Subsubsection",ExpressionUUID->"61a6a4e4-1b90-43fe-b36b-15b8345112d4"],
Cell[CellGroupData[{
Cell[74422, 1717, 346, 10, 44, "Input",ExpressionUUID->"40c6e8da-ab70-4fed-9163-b5826a9e7399"],
Cell[74771, 1729, 1425, 55, 71, "Output",ExpressionUUID->"e1a396c6-e46f-448a-bc6c-6c804b2ec047"]
}, Open ]],
Cell[CellGroupData[{
Cell[76233, 1789, 788, 23, 70, "Input",ExpressionUUID->"a64f7007-1999-4bb6-a182-2a6f93a40b03"],
Cell[77024, 1814, 1690, 57, 151, "Output",ExpressionUUID->"8af82a31-7e7a-402a-8a9f-e8ac941755df"]
}, Open ]],
Cell[CellGroupData[{
Cell[78751, 1876, 319, 10, 38, "Input",ExpressionUUID->"b800a91e-36af-40ee-b347-c2a3d698972a"],
Cell[79073, 1888, 123, 1, 34, "Output",ExpressionUUID->"3ce4e589-9abf-4b4d-9b94-04e6497da812"]
}, Open ]],
Cell[CellGroupData[{
Cell[79233, 1894, 270, 9, 38, "Input",ExpressionUUID->"97ec1fdf-597d-4837-9ae9-bca1c79c1557"],
Cell[79506, 1905, 124, 1, 34, "Output",ExpressionUUID->"803c07f1-4683-4846-8ec6-ea85ef3c6a2c"]
}, Open ]],
Cell[CellGroupData[{
Cell[79667, 1911, 292, 9, 38, "Input",ExpressionUUID->"18b0976b-b0e2-402a-93b2-3fa913c51773"],
Cell[79962, 1922, 124, 1, 34, "Output",ExpressionUUID->"25e27c36-75ce-429b-ae56-3ce2f2584fea"]
}, Open ]],
Cell[CellGroupData[{
Cell[80123, 1928, 374, 13, 82, "Input",ExpressionUUID->"ec72e3f4-457c-49b0-b082-bcdcba105e21"],
Cell[80500, 1943, 126, 3, 48, "Output",ExpressionUUID->"3aa5de14-6277-4e91-8113-b17441813281"]
}, Open ]],
Cell[CellGroupData[{
Cell[80663, 1951, 263, 9, 53, "Input",ExpressionUUID->"8ebf1025-40fe-429f-99b7-5a01114f3e61"],
Cell[80929, 1962, 186, 6, 49, "Output",ExpressionUUID->"ec532311-fc2b-428a-9816-c9a3099d65ce"]
}, Open ]],
Cell[CellGroupData[{
Cell[81152, 1973, 991, 32, 80, "Input",ExpressionUUID->"566d2d20-7be0-4929-83b0-a7b16fd62bf1"],
Cell[82146, 2007, 143, 4, 48, "Output",ExpressionUUID->"fe711f72-4716-48c2-b445-681472d06f6b"]
}, Open ]],
Cell[CellGroupData[{
Cell[82326, 2016, 1669, 59, 154, "Input",ExpressionUUID->"3e44037c-67d4-4f58-8ced-3a4258f9b7c9"],
Cell[83998, 2077, 1639, 60, 98, "Output",ExpressionUUID->"ffbaa3c9-e28d-4aaa-989a-e1bf025e1d37"]
}, Open ]],
Cell[CellGroupData[{
Cell[85674, 2142, 152, 4, 44, "Input",ExpressionUUID->"d0dda3a2-3130-4d86-82a8-52b0e26ba910"],
Cell[85829, 2148, 144, 3, 48, "Output",ExpressionUUID->"b9e434ad-b818-4754-ae6f-60a4837f56b7"]
}, Open ]]
}, Closed]],
Cell[CellGroupData[{
Cell[86022, 2157, 98, 0, 37, "Subsubsection",ExpressionUUID->"b5a7b7d6-be73-4c08-8b28-b55cb52a371a"],
Cell[CellGroupData[{
Cell[86145, 2161, 325, 10, 44, "Input",ExpressionUUID->"01553d41-fb1c-4732-b357-8ab6a76c59c0"],
Cell[CellGroupData[{
Cell[86495, 2175, 1106, 33, 45, "Print",ExpressionUUID->"e558a588-d1be-4551-b128-89357a8ef1bc"],
Cell[87604, 2210, 2039, 61, 63, "Print",ExpressionUUID->"97a15f3c-cca2-4d95-bdb4-27192564728e"],
Cell[89646, 2273, 828, 24, 48, "Print",ExpressionUUID->"81bb9a97-9ad5-4dc3-89aa-a55143e1dca8"],
Cell[90477, 2299, 343, 8, 24, "Print",ExpressionUUID->"74a67a3d-918b-4fc0-9f90-8e04fba6a4cb"],
Cell[90823, 2309, 994, 30, 45, "Print",ExpressionUUID->"09ce22d3-0394-4dc6-9486-f23efa589805"],
Cell[91820, 2341, 2135, 63, 63, "Print",ExpressionUUID->"b7e7139b-6cc6-47a0-9ed7-f7329dedfb7f"],
Cell[93958, 2406, 832, 24, 48, "Print",ExpressionUUID->"e1fceb0c-6f28-4873-9ab7-c78a4d7d2cc3"],
Cell[94793, 2432, 347, 8, 24, "Print",ExpressionUUID->"db93a359-e53a-4134-afd3-54922af32ae7"],
Cell[95143, 2442, 967, 29, 45, "Print",ExpressionUUID->"bdc194d1-974a-48a6-b759-4f423961ceea"],
Cell[96113, 2473, 2142, 62, 67, "Print",ExpressionUUID->"1a143160-e7d0-4b18-8ded-54fa97ef650e"],
Cell[98258, 2537, 832, 24, 48, "Print",ExpressionUUID->"2bdcfa94-af17-43bd-9e1f-4bb196f6a3b1"],
Cell[99093, 2563, 347, 8, 24, "Print",ExpressionUUID->"cd884753-fbe6-4a0b-8261-348fe26cf904"],
Cell[99443, 2573, 1138, 35, 45, "Print",ExpressionUUID->"aceba3c2-99dc-4b71-8c93-da9ce6edafa9"],
Cell[100584, 2610, 1765, 53, 45, "Print",ExpressionUUID->"a09ac02b-400c-4641-9236-74441506b1ab"],
Cell[102352, 2665, 711, 20, 40, "Print",ExpressionUUID->"09aa0c44-5ace-444a-a230-f06c978ac5b5"],
Cell[103066, 2687, 347, 8, 24, "Print",ExpressionUUID->"1c1df0bd-d960-42f5-91ef-5d4112802fed"],
Cell[103416, 2697, 1113, 34, 45, "Print",ExpressionUUID->"586a1ee6-8084-44e2-82bf-4c98c7de4d72"],
Cell[104532, 2733, 1283, 38, 50, "Print",ExpressionUUID->"d34aba86-cd47-4f89-8b51-3f66c013299c"],
Cell[105818, 2773, 794, 23, 39, "Print",ExpressionUUID->"37e31840-6892-4d19-8d12-754b2a92ffb1"],
Cell[106615, 2798, 347, 8, 24, "Print",ExpressionUUID->"326c5efc-27ba-4754-be96-530494ca29ed"],
Cell[106965, 2808, 884, 27, 45, "Print",ExpressionUUID->"36de9626-a972-47cd-a0f4-7af9b122beb9"],
Cell[107852, 2837, 2170, 60, 99, "Print",ExpressionUUID->"d7919474-f649-487a-8cc7-bba6f5640ee3"],
Cell[110025, 2899, 936, 27, 44, "Print",ExpressionUUID->"d7a36f94-e696-4d2a-9e6d-86d10d79ab75"],
Cell[110964, 2928, 347, 8, 24, "Print",ExpressionUUID->"e961e605-7460-4792-bde8-def1fd232bd6"],
Cell[111314, 2938, 1026, 32, 45, "Print",ExpressionUUID->"4807b279-6e45-40cd-9416-2e9a3d2ddf65"],
Cell[112343, 2972, 2190, 61, 99, "Print",ExpressionUUID->"7a90d4e3-f21c-41be-9db8-89bcdb507635"],
Cell[114536, 3035, 886, 24, 49, "Print",ExpressionUUID->"594a6dcf-d251-4e78-807b-9eb6859a819d"],
Cell[115425, 3061, 347, 8, 24, "Print",ExpressionUUID->"021c7141-67d6-4bab-85c5-41cb0e76b26d"],
Cell[115775, 3071, 974, 30, 45, "Print",ExpressionUUID->"8d6e49cb-fc35-4d04-8fe8-52c058564a8d"],
Cell[116752, 3103, 2248, 63, 99, "Print",ExpressionUUID->"a840ffc2-9134-44ed-8b54-8d01846790a4"],
Cell[119003, 3168, 886, 24, 49, "Print",ExpressionUUID->"d1fdbd88-a74b-4e95-bc83-c4bdda510349"],
Cell[119892, 3194, 347, 8, 24, "Print",ExpressionUUID->"7c0d97d8-973f-440c-9cc3-21f821727e31"],
Cell[120242, 3204, 857, 26, 45, "Print",ExpressionUUID->"3fe7cb65-484e-479f-a0c6-55419d1ed6b9"],
Cell[121102, 3232, 1388, 41, 50, "Print",ExpressionUUID->"91fd5481-6f9d-48ff-a10a-bc87a20c3c57"],
Cell[122493, 3275, 792, 22, 44, "Print",ExpressionUUID->"899e7e42-4389-43f0-a23c-1e86ac4fbed5"],
Cell[123288, 3299, 347, 8, 24, "Print",ExpressionUUID->"594ed01d-6893-4ee1-961d-81fffb01c125"],
Cell[123638, 3309, 999, 31, 45, "Print",ExpressionUUID->"9f115400-e1f2-4144-af8e-aeb3fa0cf53c"],
Cell[124640, 3342, 371, 8, 24, "Print",ExpressionUUID->"9ae73e4e-7061-48f9-bf74-d19e0d133ce1"],
Cell[125014, 3352, 343, 8, 24, "Print",ExpressionUUID->"65d3d19c-14cf-424d-b441-5dcdc4c669a1"]
}, Open ]],
Cell[125372, 3363, 3232, 100, 284, "Output",ExpressionUUID->"e5654e16-bb37-4888-bfed-941f56a816a3"]
}, Closed]],
Cell[CellGroupData[{
Cell[128641, 3468, 158, 4, 40, "Input",ExpressionUUID->"f6268216-1129-41a8-aa73-b8cf90b56e70"],
Cell[128802, 3474, 148, 3, 48, "Output",ExpressionUUID->"fa6b7714-7345-47dc-8610-07ca837f7960"]
}, Open ]],
Cell[CellGroupData[{
Cell[128987, 3482, 169, 4, 44, "Input",ExpressionUUID->"d0573f61-9a32-40e3-b77d-3b72b4383ba7"],
Cell[129159, 3488, 953, 34, 98, "Output",ExpressionUUID->"b5a7c2be-c569-4a22-9dbf-9a2e5f0409ab"]
}, Open ]],
Cell[CellGroupData[{
Cell[130149, 3527, 164, 4, 44, "Input",ExpressionUUID->"707d6120-8118-489c-8993-fb52b9213b6b"],
Cell[130316, 3533, 1140, 42, 98, "Output",ExpressionUUID->"e01e46d9-8945-4890-8bff-c8b58dc87495"]
}, Open ]],
Cell[CellGroupData[{
Cell[131493, 3580, 1001, 32, 80, "Input",ExpressionUUID->"3abc8f6c-9073-467d-b8df-690d3ac9c524"],
Cell[132497, 3614, 867, 29, 76, "Output",ExpressionUUID->"eae5fabb-26ca-4005-b37b-2a347f60018a"]
}, Open ]],
Cell[CellGroupData[{
Cell[133401, 3648, 1003, 32, 80, "Input",ExpressionUUID->"76e66176-ef99-46fe-9e98-2c75cfee49a6"],
Cell[134407, 3682, 676, 22, 52, "Output",ExpressionUUID->"fec58fc2-bd56-46ac-be48-890a5a6b4bd9"]
}, Open ]],
Cell[CellGroupData[{
Cell[135120, 3709, 994, 32, 80, "Input",ExpressionUUID->"7387248d-39a4-4468-b998-bc9902eee51a"],
Cell[136117, 3743, 666, 23, 52, "Output",ExpressionUUID->"b6b255e6-5351-4a72-8d4f-c39d50419716"]
}, Open ]],
Cell[CellGroupData[{
Cell[136820, 3771, 1206, 43, 228, "Input",ExpressionUUID->"6814b3cd-3186-4fdb-849c-b3dbc50f3605"],
Cell[138029, 3816, 149, 3, 48, "Output",ExpressionUUID->"31b1f47b-2558-4070-b501-910546567442"]
}, Open ]],
Cell[CellGroupData[{
Cell[138215, 3824, 1144, 41, 228, "Input",ExpressionUUID->"4483d06d-87de-41ee-a961-c3315488ae1b"],
Cell[139362, 3867, 150, 3, 48, "Output",ExpressionUUID->"f5a877f0-5919-4610-84ab-00918f7a2c15"]
}, Open ]],
Cell[CellGroupData[{
Cell[139549, 3875, 1119, 40, 228, "Input",ExpressionUUID->"27904df8-934a-4fd0-8cf0-06093ab2b416"],
Cell[140671, 3917, 150, 3, 48, "Output",ExpressionUUID->"f3c5d28c-fb90-43a1-a660-867830417a22"]
}, Open ]],
Cell[CellGroupData[{
Cell[140858, 3925, 1130, 40, 228, "Input",ExpressionUUID->"edef1146-6b38-49fe-ad2a-dc16887f24de"],
Cell[141991, 3967, 721, 27, 77, "Output",ExpressionUUID->"7a96abb7-f679-406c-9a7c-82ae40bac813"]
}, Open ]],
Cell[CellGroupData[{
Cell[142749, 3999, 195, 5, 44, "Input",ExpressionUUID->"ac73c5f5-5a3e-4bdc-901d-e0f58749ad98"],
Cell[142947, 4006, 196, 6, 51, "Output",ExpressionUUID->"1df4924d-ac6b-4ea6-9930-619115907aec"]
}, Open ]],
Cell[CellGroupData[{
Cell[143180, 4017, 759, 29, 68, "Input",ExpressionUUID->"a6d1ba1d-9583-4783-8505-af6098b5659a"],
Cell[143942, 4048, 150, 3, 48, "Output",ExpressionUUID->"63c27f5b-07a7-48c6-81ae-a558804e50c1"]
}, Open ]],
Cell[CellGroupData[{
Cell[144129, 4056, 2825, 92, 290, "Input",ExpressionUUID->"e870542f-29c4-40c4-ab92-a0cec952f4ef"],
Cell[146957, 4150, 3306, 49, 126, "Message",ExpressionUUID->"b828997f-0d20-48bd-a941-ca4bdccf2a32"],
Cell[150266, 4201, 151, 3, 48, "Output",ExpressionUUID->"bc762a04-4232-4a51-bf17-cb7911b3c6a7"]
}, Open ]],
Cell[CellGroupData[{
Cell[150454, 4209, 348, 13, 58, "Input",ExpressionUUID->"aa793936-4f9d-4e80-abe5-78c1c3d38fdb"],
Cell[150805, 4224, 132, 3, 48, "Output",ExpressionUUID->"a6144241-ffbe-4885-985d-d08cc43f03e1"]
}, Open ]],
Cell[CellGroupData[{
Cell[150974, 4232, 892, 33, 88, "Input",ExpressionUUID->"234f6ec9-fafe-4fd2-854c-8aedabc0a7f7"],
Cell[151869, 4267, 150, 3, 48, "Output",ExpressionUUID->"1b0a54ae-9ff5-43be-9524-eb8a2e5b3fa0"]
}, Open ]],
Cell[CellGroupData[{
Cell[152056, 4275, 836, 32, 75, "Input",ExpressionUUID->"89311c3a-e5a8-476b-81b9-7d3caebfaf79"],
Cell[152895, 4309, 850, 32, 72, "Output",ExpressionUUID->"a6009f80-0a05-496a-aff3-a7b71f4fb41a"]
}, Open ]],
Cell[CellGroupData[{
Cell[153782, 4346, 903, 33, 88, "Input",ExpressionUUID->"0fc56620-b9ef-44d7-be7d-d074b29e1cd9"],
Cell[154688, 4381, 685, 26, 70, "Output",ExpressionUUID->"4f7d3ccf-fb57-4f02-a225-270f615feedd"]
}, Open ]],
Cell[CellGroupData[{
Cell[155410, 4412, 157, 4, 44, "Input",ExpressionUUID->"2012c3c6-2ba0-47de-b364-bd67ff8581c8"],
Cell[155570, 4418, 149, 3, 48, "Output",ExpressionUUID->"7db7114c-08a1-4fb5-b18d-0346f368a49d"]
}, Open ]]
}, Closed]]
}, Closed]],
Cell[CellGroupData[{
Cell[155780, 4428, 130, 2, 38, "Subsection",ExpressionUUID->"f0639b37-12bd-409a-8a33-de9690dd27b7"],
Cell[CellGroupData[{
Cell[155935, 4434, 199, 3, 30, "Input",ExpressionUUID->"61306949-c449-4c43-870b-bda5a27dea72"],
Cell[156137, 4439, 159, 2, 34, "Output",ExpressionUUID->"e1f20df1-fa2d-4973-94e3-a7deddb0891a"]
}, Open ]],
Cell[CellGroupData[{
Cell[156333, 4446, 105, 0, 45, "Subsubsection",ExpressionUUID->"750fef7f-9e94-4499-9516-9ea679c71667"],
Cell[CellGroupData[{
Cell[156463, 4450, 399, 12, 59, "Input",ExpressionUUID->"d395f455-107e-4322-a280-11676dbb3472"],
Cell[156865, 4464, 129, 2, 34, "Output",ExpressionUUID->"f3ff9d48-42b8-4249-bc07-cfd28f5b7ea4"]
}, Open ]],
Cell[CellGroupData[{
Cell[157031, 4471, 557, 18, 84, "Input",ExpressionUUID->"6ac81459-89c0-4c7b-8eee-c8ef85efb752"],
Cell[157591, 4491, 7569, 157, 128, "Output",ExpressionUUID->"efe080d7-8e63-466d-8602-dc08315c086f"]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell[165209, 4654, 98, 0, 45, "Subsubsection",ExpressionUUID->"11305ed9-efcf-4076-9620-654ebc69c653"],
Cell[CellGroupData[{
Cell[165332, 4658, 323, 10, 44, "Input",ExpressionUUID->"3fbcf048-4ce7-4a54-bb38-60c772f1ef8f"],
Cell[CellGroupData[{
Cell[165680, 4672, 1106, 33, 45, "Print",ExpressionUUID->"3b4054d2-24d4-4311-b75b-d33cbd893c77"],
Cell[166789, 4707, 2944, 83, 117, "Print",ExpressionUUID->"74652ff3-6006-4da7-9978-d5f1511ca2c9"]
}, Open ]],
Cell[169748, 4793, 455, 10, 28, "Message",ExpressionUUID->"d821ce73-efc8-41eb-b230-6dda9137e94b"],
Cell[CellGroupData[{
Cell[170228, 4807, 3407, 91, 176, "Print",ExpressionUUID->"733deedb-4a69-47ad-9c27-715bb51fb9b0"],
Cell[173638, 4900, 347, 8, 24, "Print",ExpressionUUID->"0d141e69-7aac-423c-af9a-d07e95f35d7d"],
Cell[173988, 4910, 994, 30, 45, "Print",ExpressionUUID->"4da09ef8-2b18-4196-9c76-c2eac3ee9f13"],
Cell[174985, 4942, 3071, 85, 160, "Print",ExpressionUUID->"ac6e431a-9c3e-4fb4-8359-a72d5f1bc56e"]
}, Open ]],
Cell[178071, 5030, 455, 10, 28, "Message",ExpressionUUID->"2e948515-e1b9-4dae-b3da-be0f63a44bb5"],
Cell[CellGroupData[{
Cell[178551, 5044, 3535, 93, 212, "Print",ExpressionUUID->"fc8559b3-d489-44d8-9624-f9a942d5bd40"],
Cell[182089, 5139, 351, 8, 24, "Print",ExpressionUUID->"1f6b2cd4-1524-4b26-99e9-d26564ad878a"],
Cell[182443, 5149, 967, 29, 45, "Print",ExpressionUUID->"71237ba1-f067-42c3-92c7-bcd8047a1316"],
Cell[183413, 5180, 2937, 81, 121, "Print",ExpressionUUID->"c75b9920-fac5-4848-8f5b-c1eb7710c2e9"]
}, Open ]]
}, Open ]]
}, Closed]],
Cell[CellGroupData[{
Cell[186411, 5268, 102, 0, 37, "Subsubsection",ExpressionUUID->"f3013242-3293-4cba-9ffa-b9afc43d0869"],
Cell[CellGroupData[{
Cell[186538, 5272, 495, 15, 44, "Input",ExpressionUUID->"6df2f3f9-9261-4ce6-b61a-c72cdee8d065"],
Cell[187036, 5289, 658, 25, 70, "Output",ExpressionUUID->"551423ee-f3e9-4858-bcfa-bec4c57e3d90"]
}, Open ]],
Cell[CellGroupData[{
Cell[187731, 5319, 308, 8, 44, "Input",ExpressionUUID->"0813684b-3215-4ca7-adc3-b5d746260697"],
Cell[188042, 5329, 1430, 55, 71, "Output",ExpressionUUID->"325ce7d6-b450-42c6-9c1e-05d20c4183cc"]
}, Open ]],
Cell[CellGroupData[{
Cell[189509, 5389, 554, 18, 54, "Input",ExpressionUUID->"28de2966-8fb3-47e6-ba24-a6c62bde0d4a"],
Cell[190066, 5409, 40616, 1050, 2193, "Output",ExpressionUUID->"7627d6be-fe78-4df7-9dfe-c65c9fa940d3"]
}, Open ]],
Cell[CellGroupData[{
Cell[230719, 6464, 353, 10, 64, "Input",ExpressionUUID->"4ff54d68-f201-4013-97dc-6de6df9267ae"],
Cell[231075, 6476, 148, 3, 48, "Output",ExpressionUUID->"e4836537-5c5d-421d-b9ff-39dbd41b6624"]
}, Open ]],
Cell[231238, 6482, 452, 14, 65, "Input",ExpressionUUID->"472b4d59-c79a-4a57-8a5e-108e1837609b"]
}, Open ]]
}, Closed]],
Cell[CellGroupData[{
Cell[231739, 6502, 104, 0, 38, "Subsection",ExpressionUUID->"30123a88-ef62-4b99-8324-cb82299d072c"],
Cell[CellGroupData[{
Cell[231868, 6506, 210, 4, 30, "Input",ExpressionUUID->"a73f4293-e91b-4ee8-89f9-2967f501979d"],
Cell[232081, 6512, 240, 7, 50, "Output",ExpressionUUID->"7b54d303-c8ce-4f9e-9bfd-523e1512fb19"]
}, Open ]],
Cell[CellGroupData[{
Cell[232358, 6524, 452, 14, 55, "Input",ExpressionUUID->"81936642-ac47-4e4b-b0d3-081f839d1e11"],
Cell[232813, 6540, 129, 2, 34, "Output",ExpressionUUID->"696ee386-d934-45bc-97fd-e000143f5eb3"]
}, Open ]],
Cell[CellGroupData[{
Cell[232979, 6547, 618, 19, 58, "Input",ExpressionUUID->"4fcfe8ad-dcc7-406d-8009-c181b264e624"],
Cell[233600, 6568, 309, 10, 50, "Output",ExpressionUUID->"c8953bce-a9d3-4321-9cb9-e5b581a71ddc"]
}, Open ]],
Cell[CellGroupData[{
Cell[233946, 6583, 137, 3, 30, "Input",ExpressionUUID->"01105a28-8f44-4675-a63f-8c2ada908141"],
Cell[234086, 6588, 129, 2, 34, "Output",ExpressionUUID->"34efb75b-9502-419d-8468-ce0d224d4258"]
}, Open ]],
Cell[CellGroupData[{
Cell[234252, 6595, 227, 5, 30, "Input",ExpressionUUID->"6a7f6f0c-2946-4e98-8d60-8103d00e70a1"],
Cell[234482, 6602, 304, 9, 50, "Output",ExpressionUUID->"b2beef0e-790a-43fd-aec0-dec835d4c01d"]
}, Open ]]
}, Closed]],
Cell[CellGroupData[{
Cell[234835, 6617, 102, 0, 38, "Subsection",ExpressionUUID->"5a3610c8-9ba1-4a7d-82a9-e97e3a55f58e"],
Cell[CellGroupData[{
Cell[234962, 6621, 207, 4, 30, "Input",ExpressionUUID->"af497dd6-cccf-4b74-8273-323b3c5f7cea"],
Cell[235172, 6627, 195, 5, 54, "Output",ExpressionUUID->"e611bcff-7aad-4d61-b571-48468cab6b45"]
}, Open ]],
Cell[CellGroupData[{
Cell[235404, 6637, 489, 15, 55, "Input",ExpressionUUID->"8ef2d0fe-ba04-4e5e-8924-fd46e3d4ae6c"],
Cell[235896, 6654, 129, 2, 34, "Output",ExpressionUUID->"1f6e3279-356f-4294-a21f-fa663e0d1f2c"]
}, Open ]],
Cell[CellGroupData[{
Cell[236062, 6661, 540, 16, 58, "Input",ExpressionUUID->"b17546dc-7ac4-4ede-95a5-dbecdb2e2bc1"],
Cell[236605, 6679, 260, 8, 58, "Output",ExpressionUUID->"46a965e2-8976-416d-b252-5c0da5f067d3"]
}, Open ]],
Cell[CellGroupData[{
Cell[236902, 6692, 137, 3, 30, "Input",ExpressionUUID->"21883ce9-22e8-4b70-8983-4eb3a5697e3f"],
Cell[237042, 6697, 129, 2, 34, "Output",ExpressionUUID->"e2502318-ee9e-4f16-a5f3-df2fbb37a4d1"]
}, Open ]],
Cell[CellGroupData[{
Cell[237208, 6704, 225, 5, 30, "Input",ExpressionUUID->"be13d11f-2e33-4fec-8a4e-266818ab5bf9"],
Cell[237436, 6711, 255, 7, 58, "Output",ExpressionUUID->"ebf43022-2409-48dd-875c-cc2729d1d4ed"]
}, Open ]]
}, Closed]],
Cell[CellGroupData[{
Cell[237740, 6724, 86, 0, 38, "Subsection",ExpressionUUID->"652c37fb-883a-4082-a698-a08b5c1658ca"],
Cell[CellGroupData[{
Cell[237851, 6728, 193, 4, 30, "Input",ExpressionUUID->"90fa6ac7-edff-41be-b93c-f08362f982fe"],
Cell[238047, 6734, 164, 3, 34, "Output",ExpressionUUID->"d9e6960b-0107-4b2d-b6bf-45d984bd396a"]
}, Open ]],
Cell[CellGroupData[{
Cell[238248, 6742, 145, 3, 30, "Input",ExpressionUUID->"9bcbabc2-32cf-4e72-9997-d2082a6eefa2"],
Cell[238396, 6747, 128, 3, 34, "Output",ExpressionUUID->"58e968ba-cbb5-4311-8dff-7cb7afa7675d"]
}, Open ]]
}, Closed]],
Cell[CellGroupData[{
Cell[238573, 6756, 88, 0, 38, "Subsection",ExpressionUUID->"63b1fafb-eb5a-4972-93f6-95c1268a3bfd"],
Cell[CellGroupData[{
Cell[238686, 6760, 195, 4, 30, "Input",ExpressionUUID->"7dca263e-69f0-4f36-8434-1a17b71b60f3"],
Cell[238884, 6766, 145, 4, 35, "Output",ExpressionUUID->"903f1a9d-6deb-498f-a816-6a2e87782ec4"]
}, Open ]],
Cell[CellGroupData[{
Cell[239066, 6775, 147, 3, 30, "Input",ExpressionUUID->"b72b8970-75b5-43b6-adab-313230b5e139"],
Cell[239216, 6780, 145, 4, 35, "Output",ExpressionUUID->"6bae3fa0-7b6f-472c-91fe-9d16c73e19ff"]
}, Open ]],
Cell[CellGroupData[{
Cell[239398, 6789, 295, 8, 30, "Input",ExpressionUUID->"42632bc5-f81f-4dde-a8a3-d773bb8490c7"],
Cell[239696, 6799, 145, 4, 35, "Output",ExpressionUUID->"44b2d513-aba9-40fa-ba06-0b307591eaff"]
}, Open ]]
}, Closed]],
Cell[CellGroupData[{
Cell[239890, 6809, 94, 0, 38, "Subsection",ExpressionUUID->"48fea836-0d6d-4b21-91b2-240606a842ea"],
Cell[CellGroupData[{
Cell[240009, 6813, 88, 0, 45, "Subsubsection",ExpressionUUID->"d0996749-5ae4-4671-8f70-b3277ad1415c"],
Cell[CellGroupData[{
Cell[240122, 6817, 349, 9, 30, "Input",ExpressionUUID->"a7fbf87a-98b9-4e63-84de-37c672c5201d"],
Cell[CellGroupData[{
Cell[240496, 6830, 172, 3, 24, "Print",ExpressionUUID->"4a5eb1f1-6674-4429-8d49-5919fadabb83"],
Cell[240671, 6835, 200, 4, 24, "Print",ExpressionUUID->"b22ec49b-01b4-421b-95d8-0ed7833ac764"],
Cell[240874, 6841, 189, 4, 24, "Print",ExpressionUUID->"aaf83206-d833-447e-815e-d1d6de6930e5"],
Cell[241066, 6847, 172, 3, 24, "Print",ExpressionUUID->"7bc954b2-3562-4de2-8240-e6bda0d47e8f"],
Cell[241241, 6852, 174, 3, 24, "Print",ExpressionUUID->"cb1c7653-2b2e-4b02-ba1f-a6d7b1401eaa"],
Cell[241418, 6857, 204, 4, 24, "Print",ExpressionUUID->"704b8077-54ac-4a51-82d8-9bec24cee55b"],
Cell[241625, 6863, 177, 3, 24, "Print",ExpressionUUID->"05730684-984c-45f4-b4e2-011e19d84303"],
Cell[241805, 6868, 205, 4, 24, "Print",ExpressionUUID->"b0ab6de8-eb25-4bfc-8e1f-5f30a79aff56"]
}, Open ]],
Cell[242025, 6875, 341, 10, 34, "Output",ExpressionUUID->"77311c64-faef-4b11-a763-ffc0c6234fd1"]
}, Open ]]
}, Open ]]
}, Closed]],
Cell[CellGroupData[{
Cell[242427, 6892, 83, 0, 38, "Subsection",ExpressionUUID->"0d9f456a-0d5c-4f96-8906-7242a7a059a7"],
Cell[CellGroupData[{
Cell[242535, 6896, 190, 4, 30, "Input",ExpressionUUID->"b4d88419-0040-4a75-9cd4-c4a61e965e60"],
Cell[242728, 6902, 256, 9, 49, "Output",ExpressionUUID->"3e36c7f1-4c1d-49dc-b93a-0f8ae9a3c896"]
}, Open ]],
Cell[CellGroupData[{
Cell[243021, 6916, 177, 4, 30, "Input",ExpressionUUID->"a0239d19-e99c-4280-96bb-6c53d35daa22"],
Cell[243201, 6922, 256, 9, 49, "Output",ExpressionUUID->"32dd02be-713b-43fc-b5ab-7a85d0aa73a4"]
}, Open ]],
Cell[CellGroupData[{
Cell[243494, 6936, 265, 7, 30, "Input",ExpressionUUID->"e2c3bdbf-88dd-419f-a51f-3939c4305933"],
Cell[243762, 6945, 256, 9, 49, "Output",ExpressionUUID->"25f321e1-22fc-409e-891d-7677b8c1b4a8"]
}, Open ]]
}, Closed]]
}, Open ]],
Cell[CellGroupData[{
Cell[244079, 6961, 97, 0, 67, "Section",ExpressionUUID->"bb1395a2-ec3d-4f1a-ad4a-c4d305685331"],
Cell[244179, 6963, 679, 20, 52, "Input",ExpressionUUID->"ed5a90ad-4a8e-44e0-90fb-69c0c7b94077"],
Cell[CellGroupData[{
Cell[244883, 6987, 80, 0, 54, "Subsection",ExpressionUUID->"1a393170-cbdd-40e8-bdf9-406bbbd5024d"],
Cell[244966, 6989, 275, 6, 30, "Input",ExpressionUUID->"1eead764-2578-4aeb-8575-bcbff80e8309"]
}, Open ]]
}, Open ]]
}, Open ]]
}
]
*)