(* Content-type: application/vnd.wolfram.mathematica *) (*** Wolfram Notebook File ***) (* http://www.wolfram.com/nb *) (* CreatedBy='Mathematica 11.1' *) (*CacheID: 234*) (* Internal cache information: NotebookFileLineBreakTest NotebookFileLineBreakTest NotebookDataPosition[ 158, 7] NotebookDataLength[ 230209, 7075] NotebookOptionsPosition[ 211811, 6735] NotebookOutlinePosition[ 212736, 6762] CellTagsIndexPosition[ 212693, 6759] WindowFrame->Normal*) (* Beginning of Notebook Content *) Notebook[{ Cell[CellGroupData[{ Cell["Line Graph", "Title",ExpressionUUID->"41a81e70-a178-4af8-b105-76e09ac708fa"], Cell[CellGroupData[{ Cell["Author", "Subsection",ExpressionUUID->"9a5eca86-5906-4d70-8e24-db66bb59ad14"], Cell["\<\ Eric W. Weisstein April 9, 2024\ \>", "Text",ExpressionUUID->"72cf9f80-9d17-4506-97a7-cc8fbfe2a08f"], Cell[TextData[{ "This notebook downloaded from ", ButtonBox["http://mathworld.wolfram.com/notebooks/GraphTheory/LineGraph.nb", BaseStyle->"Hyperlink", ButtonData:>{ URL["http://mathworld.wolfram.com/notebooks/GraphTheory/LineGraph.nb"], None}], "." }], "Text",ExpressionUUID->"c8fb0090-1ffb-48ce-9702-8a0579ba0b0b"], Cell[TextData[{ "For more information, see Eric's ", StyleBox["MathWorld", FontSlant->"Italic"], " entry ", ButtonBox["http://mathworld.wolfram.com/LineGraph.html", BaseStyle->"Hyperlink", ButtonData:>{ URL["http://mathworld.wolfram.com/LineGraph.html"], None}], "." }], "Text",ExpressionUUID->"495bf839-01aa-4682-9b56-03ef4cddc00e"], Cell["\<\ \[Copyright]2024 Wolfram Research, Inc. except for portions noted otherwise\ \>", "Text",ExpressionUUID->"de7a905a-2f3b-4fa5-b875-856f9472a686"] }, Open ]], Cell[CellGroupData[{ Cell["Sources", "Section",ExpressionUUID->"1cfe3910-aa09-44ed-9cc9-2d63e748b49f"], Cell["\<\ https://mathematica.stackexchange.com/questions/282322/test-whether-a-graph-\ is-a-line-graph\ \>", "Text",ExpressionUUID->"14e0ff2d-7334-49ec-8705-68e3ead114cb"] }, Open ]], Cell[CellGroupData[{ Cell["Counts", "Section",ExpressionUUID->"c7cfa0d8-3106-49e9-8419-e9e5c7731e02"], Cell[CellGroupData[{ Cell["All", "Subsubsection",ExpressionUUID->"1f021c9e-73df-4123-a1e3-2ef8cc589a81"], Cell[TextData[ButtonBox["A132220", BaseStyle->"Hyperlink", ButtonData->{ URL["https://oeis.org/A132220"], None}, ButtonNote->"https://oeis.org/A132220"]], "Text",ExpressionUUID->"f0d09bc5-\ 80d4-4913-abbb-e6073a42b553"], Cell["\<\ 1,2,4,10,24,63,166,471,1408,4436,14719,51468,188754,725010,2907576,12141462,\ 52654529,236584104,1098926868,5266708497,25997964452,131975740172,\ 688019138485,3678898458587\ \>", "Text",ExpressionUUID->"d527573f-08b1-41c2-9d61-e80adfce2da4"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{"Total", "[", RowBox[{"Boole", "[", RowBox[{"Get", "[", "#", "]"}], "]"}], "]"}], "&"}], "/@", RowBox[{"FileNames", "[", RowBox[{"\"\<*.m\>\"", ",", RowBox[{"FileNameJoin", "[", RowBox[{"{", RowBox[{ "$GraphDataDirectory", ",", "\"\\"", ",", "\"\\""}], "}"}], "]"}]}], "]"}]}]], "Input",ExpressionUUID->"b79e41f4-b304-41cb-\ bcc0-b8cce11898ba"], Cell[BoxData[ RowBox[{"{", RowBox[{ "1", ",", "2", ",", "4", ",", "10", ",", "24", ",", "63", ",", "166", ",", "471", ",", "1408", ",", "4436"}], "}"}]], "Output",ExpressionUUID->\ "915e169c-5d32-4d91-8237-d3e155970cd7"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Length", "/@", RowBox[{"Table", "[", RowBox[{ RowBox[{"GraphData", "[", RowBox[{"\"\\"", ",", "n"}], "]"}], ",", RowBox[{"{", RowBox[{"n", ",", "7"}], "}"}]}], "]"}]}]], "Input",ExpressionUUID->\ "57ebd02f-b908-480f-b8c9-6cac08dedb4f"], Cell[BoxData[ RowBox[{"{", RowBox[{ "1", ",", "2", ",", "4", ",", "10", ",", "24", ",", "63", ",", "166"}], "}"}]], "Output",ExpressionUUID->"1e73f999-c265-492a-be39-81671e3c028f"] }, Open ]], Cell[BoxData[ RowBox[{ RowBox[{"all", "=", RowBox[{"{", RowBox[{ "1", ",", "2", ",", "4", ",", "10", ",", "24", ",", "63", ",", "166", ",", "471", ",", "1408", ",", "4436", ",", "14719", ",", "51468", ",", "188754", ",", "725010", ",", "2907576", ",", "12141462", ",", "52654529", ",", "236584104", ",", "1098926868", ",", "5266708497", ",", "25997964452", ",", "131975740172", ",", "688019138485", ",", "3678898458587"}], "}"}]}], ";"}]], "Input",ExpressionUUID->"f2957151-\ cc7c-495b-b069-dd3effe7098b"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"EulerTransform", "[", "connected", "]"}], "\[Equal]", "all"}]], "Input",ExpressionUUID->"7b67e3a3-be97-4cb9-85ab-baae31401282"], Cell[BoxData["True"], "Output",ExpressionUUID->"97b21d9e-0928-44b1-a323-e2b40b3478a5"] }, Open ]], Cell["\<\ Using the number of graphs (with no isolated points) on n edges\ \>", "Text",ExpressionUUID->"11efe965-f7a5-4202-ac90-ad7fe4e60066"], Cell[TextData[ButtonBox["A000664", BaseStyle->"Hyperlink", ButtonData->{ URL["https://oeis.org/A000664"], None}, ButtonNote->"https://oeis.org/A000664"]], "Text",ExpressionUUID->"87f553a1-\ 1952-4576-b237-1e0affe8b91d"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"e", "=", RowBox[{"Table", "[", RowBox[{ RowBox[{"NumberOfGraphs", "[", RowBox[{ RowBox[{"2", "n"}], ",", "n"}], "]"}], ",", RowBox[{"{", RowBox[{"n", ",", "12"}], "}"}]}], "]"}]}]], "Input",ExpressionUUID->\ "2c43838c-6734-42f8-bdad-890795da991d"], Cell[BoxData[ RowBox[{"{", RowBox[{ "1", ",", "2", ",", "5", ",", "11", ",", "26", ",", "68", ",", "177", ",", "497", ",", "1476", ",", "4613", ",", "15216", ",", "52944"}], "}"}]], "Output",ExpressionUUID->"f30126dc-7d9b-48e4-88da-c8e61b0d832b"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"e", "=", RowBox[{"Table", "[", RowBox[{ RowBox[{"Coefficient", "[", RowBox[{ RowBox[{"GraphPolynomial", "[", RowBox[{ RowBox[{"2", "n"}], ",", "x"}], "]"}], ",", "x", ",", "n"}], "]"}], ",", RowBox[{"{", RowBox[{"n", ",", "12"}], "}"}]}], "]"}]}]], "Input",ExpressionUUID->\ "0517aefc-fa70-47a1-a5ca-7388590fc7fd"], Cell[BoxData[ RowBox[{"{", RowBox[{ "1", ",", "2", ",", "5", ",", "11", ",", "26", ",", "68", ",", "177", ",", "497", ",", "1476", ",", "4613", ",", "15216", ",", "52944"}], "}"}]], "Output",ExpressionUUID->"29e81a9a-b7db-4d0d-b2fa-835e2bca293b"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"e", "-", RowBox[{"Join", "[", RowBox[{ RowBox[{"{", RowBox[{"0", ",", "0", ",", "1"}], "}"}], ",", RowBox[{"Drop", "[", RowBox[{"e", ",", RowBox[{"-", "3"}]}], "]"}]}], "]"}]}]], "Input",ExpressionUUID->\ "fa3f86aa-ef3f-41d0-ab2c-50b0cdf4bcd4"], Cell[BoxData[ RowBox[{"{", RowBox[{ "1", ",", "2", ",", "4", ",", "10", ",", "24", ",", "63", ",", "166", ",", "471", ",", "1408", ",", "4436", ",", "14719", ",", "51468"}], "}"}]], "Output",ExpressionUUID->"f80457c9-8835-43d1-a681-83a4ee2d1361"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["Connected", "Subsubsection",ExpressionUUID->"3a66b181-1666-4c8b-b29d-2e20a31e4a1f"], Cell[TextData[ButtonBox["A003089", BaseStyle->"Hyperlink", ButtonData->{ URL["https://oeis.org/A003089"], None}, ButtonNote->"https://oeis.org/A003089"]], "Text",ExpressionUUID->"4be024fe-\ cc4c-4253-ab4c-90e6be9b3f51"], Cell["\<\ 1,1,2,5,12,30,79,227,710,2322,8071,29503,112822,450141,1867871,8037472,\ 35787667,164551477,779945969,3804967442,19079312775,98211456209,518397621443,\ 2802993986619\ \>", "Text",ExpressionUUID->"d06aeb31-d9ea-404e-8395-5a8b7d5db2da"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Table", "[", RowBox[{ RowBox[{"Total", "[", RowBox[{"Boole", "[", RowBox[{ RowBox[{"Get", "[", RowBox[{"FileNameJoin", "[", RowBox[{"{", RowBox[{ "$GraphDataDirectory", ",", "\"\\"", ",", "\"\\"", ",", RowBox[{"\"\\"", "<>", RowBox[{"If", "[", RowBox[{ RowBox[{"n", "<", "10"}], ",", "\"\<0\>\"", ",", "\"\<\>\""}], "]"}], "<>", RowBox[{"ToString", "[", "n", "]"}], "<>", "\"\<.m\>\""}]}], "}"}], "]"}], "]"}], "[", RowBox[{"[", RowBox[{"ConnectedGraphIndices", "[", "n", "]"}], "]"}], "]"}], "]"}], "]"}], ",", RowBox[{"{", RowBox[{"n", ",", "10"}], "}"}]}], "]"}]], "Input",ExpressionUUID->\ "61af2a79-c8f1-48e4-a729-f5fbb6d5fdc7"], Cell[BoxData[ RowBox[{"{", RowBox[{ "1", ",", "1", ",", "2", ",", "5", ",", "12", ",", "30", ",", "79", ",", "227", ",", "710", ",", "2322"}], "}"}]], "Output",ExpressionUUID->\ "5543e36c-0bc2-4b88-8567-a0bffda8de72"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Length", "/@", RowBox[{"Table", "[", RowBox[{ RowBox[{"GraphData", "[", RowBox[{ RowBox[{"{", RowBox[{"\"\\"", ",", "\"\\""}], "}"}], ",", "n"}], "]"}], ",", RowBox[{"{", RowBox[{"n", ",", "7"}], "}"}]}], "]"}]}]], "Input",ExpressionUUID->\ "f66e30eb-c3e2-4d9a-9802-9b7d0eaf18ca"], Cell[BoxData[ RowBox[{"{", RowBox[{ "1", ",", "1", ",", "2", ",", "5", ",", "12", ",", "30", ",", "79"}], "}"}]], "Output",ExpressionUUID->"7923500d-e31f-4c2f-b0ba-6d009dc94a06"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"connected", "=", RowBox[{"{", RowBox[{ "1", ",", "1", ",", "2", ",", "5", ",", "12", ",", "30", ",", "79", ",", "227", ",", "710", ",", "2322", ",", "8071", ",", "29503", ",", "112822", ",", "450141", ",", "1867871", ",", "8037472", ",", "35787667", ",", "164551477", ",", "779945969", ",", "3804967442", ",", "19079312775", ",", "98211456209", ",", "518397621443", ",", "2802993986619"}], "}"}]}]], "Input",ExpressionUUID->"d403cac9-2c46-4b0a-9cdf-8acc92e88a97"], Cell[BoxData[ RowBox[{"{", RowBox[{ "1", ",", "1", ",", "2", ",", "5", ",", "12", ",", "30", ",", "79", ",", "227", ",", "710", ",", "2322", ",", "8071", ",", "29503", ",", "112822", ",", "450141", ",", "1867871", ",", "8037472", ",", "35787667", ",", "164551477", ",", "779945969", ",", "3804967442", ",", "19079312775", ",", "98211456209", ",", "518397621443", ",", "2802993986619"}], "}"}]], "Output",ExpressionUUID->"b4392b58-e0dc-4bba-986a-fb8d66d751fe"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"InverseEulerTransform", "[", "all", "]"}], "\[Equal]", "connected"}]], "Input",ExpressionUUID->"36ad3c91-73cc-41f2-a65f-\ 3f763d6f67a5"], Cell[BoxData["True"], "Output",ExpressionUUID->"d1f6c981-cd71-4b6c-a089-92b6c9c908cd"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["Disconnected", "Subsubsection",ExpressionUUID->"59f89cad-0b18-4e85-a12a-6fa671a7a7f3"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Table", "[", RowBox[{ RowBox[{"Total", "[", RowBox[{"Boole", "[", RowBox[{ RowBox[{"Get", "[", RowBox[{"FileNameJoin", "[", RowBox[{"{", RowBox[{ "$GraphDataDirectory", ",", "\"\\"", ",", "\"\\"", ",", RowBox[{"\"\\"", "<>", RowBox[{"If", "[", RowBox[{ RowBox[{"n", "<", "10"}], ",", "\"\<0\>\"", ",", "\"\<\>\""}], "]"}], "<>", RowBox[{"ToString", "[", "n", "]"}], "<>", "\"\<.m\>\""}]}], "}"}], "]"}], "]"}], "[", RowBox[{"[", RowBox[{"DisconnectedGraphIndices", "[", "n", "]"}], "]"}], "]"}], "]"}], "]"}], ",", RowBox[{"{", RowBox[{"n", ",", "10"}], "}"}]}], "]"}]], "Input",ExpressionUUID->\ "fd526327-0191-41a4-9b8b-db5e1b00a287"], Cell[BoxData[ RowBox[{"{", RowBox[{ "0", ",", "1", ",", "2", ",", "5", ",", "12", ",", "33", ",", "87", ",", "244", ",", "698", ",", "2114"}], "}"}]], "Output",ExpressionUUID->\ "2cde5149-f5fa-4b32-adc6-cf581e7f9e26"] }, Open ]] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Diagram", "Section",ExpressionUUID->"45cc4709-5b44-4ee0-84d8-b9e7a2acc61c"], Cell[CellGroupData[{ Cell["Undirected", "Subsection",ExpressionUUID->"1cf9ab05-316c-4e5d-b7f1-c46fb29fe38f"], Cell[CellGroupData[{ Cell["V7", "Subsubsection",ExpressionUUID->"01acd8a9-ebf4-40f2-a63a-f65c2b9ca4b8"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"GraphicsGrid", "[", RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"GraphPlot", "[", RowBox[{"#", ",", RowBox[{"Method", "\[Rule]", "None"}]}], "]"}], "&"}], "/@", RowBox[{"{", RowBox[{ RowBox[{"g", "=", RowBox[{"AddEdge", "[", RowBox[{ RowBox[{"Graph", "[", "\"\\"", "]"}], ",", RowBox[{"{", RowBox[{"2", ",", "4"}], "}"}]}], "]"}]}], ",", RowBox[{"LineGraph", "[", "g", "]"}]}], "}"}]}], "}"}], "]"}]], "Input",\ ExpressionUUID->"520aa1f0-7146-44bd-8fdc-74a29e8b99ce"], Cell[BoxData[ GraphicsBox[{{}, {InsetBox[ GraphicsBox[ TagBox[GraphicsComplexBox[{{1., 2.}, {1., 1.}, {2., 1.}, {2., 2.}}, { {GrayLevel[0], LineBox[{{1, 2}, {1, 4}, {2, 3}, {2, 4}, {3, 4}}]}, {RGBColor[1, 0, 0], AbsolutePointSize[5], TagBox[ TooltipBox[PointBox[1], "1"], Annotation[#, 1, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[2], "2"], Annotation[#, 2, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[3], "3"], Annotation[#, 3, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[4], "4"], Annotation[#, 4, "Tooltip"]& ]}}], Annotation[#, VertexCoordinateRules -> {{1., 2.}, {1., 1.}, {2., 1.}, {2., 2.}}]& ], AspectRatio->Automatic, FrameTicks->None, PlotRange->All, PlotRangePadding->Scaled[0.1]], {192., -189.}, ImageScaled[{0.5, 0.5}], {360., 360.}], InsetBox[ GraphicsBox[ TagBox[ GraphicsComplexBox[{{1., 1.5}, {1.5, 2.}, {1.5, 1.}, {1.5, 1.5}, {2., 1.5}}, { {GrayLevel[0], LineBox[{{1, 2}, {1, 3}, {1, 4}, {2, 4}, {2, 5}, {3, 4}, {3, 5}, {4, 5}}]}, {RGBColor[1, 0, 0], AbsolutePointSize[5], TagBox[ TooltipBox[PointBox[1], "1"], Annotation[#, 1, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[2], "2"], Annotation[#, 2, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[3], "3"], Annotation[#, 3, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[4], "4"], Annotation[#, 4, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[5], "5"], Annotation[#, 5, "Tooltip"]& ]}}], Annotation[#, VertexCoordinateRules -> {{1., 1.5}, {1.5, 2.}, {1.5, 1.}, {1.5, 1.5}, {2., 1.5}}]& ], AspectRatio->Automatic, FrameTicks->None, PlotRange->All, PlotRangePadding->Scaled[0.1]], {576., -189.}, ImageScaled[{0.5, 0.5}], {360., 360.}]}, {}}, ContentSelectable->True, PlotRangePadding->{6, 5}]], "Output",ExpressionUUID->"a0443095-273b-449f-\ a43c-19af573437e1"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["Attempt to use V8, but it's too painful", "Subsubsection",ExpressionUUID->"cfabe37e-fe84-4ca4-a3c4-edb698b08210"], Cell[BoxData[ RowBox[{ RowBox[{"a", "=", RowBox[{"AdjacencyMatrix", "[", RowBox[{"EdgeAdd", "[", RowBox[{ RowBox[{"GraphData", "[", "\"\\"", "]"}], ",", RowBox[{"{", RowBox[{"2", "\[UndirectedEdge]", "4"}], "}"}]}], "]"}], "]"}]}], ";"}]], "Input",ExpressionUUID->"1b520f96-3eed-4803-aa1a-9944f3fecd0f"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"AdjacencyGraph", "[", RowBox[{"a", ",", RowBox[{"VertexLabels", "\[Rule]", "\"\\""}], ",", RowBox[{"EdgeLabels", "\[Rule]", RowBox[{"CharacterRange", "[", RowBox[{"\"\\"", ",", "\"\\""}], "]"}]}]}], "]"}]], "Input",Expre\ ssionUUID->"b12078f2-e138-4544-90ae-50d81e411487"], Cell[BoxData[ GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4}, {Null, SparseArray[ Automatic, {4, 4}, 0, { 1, {{0, 2, 5, 7, 10}, {{2}, {4}, {1}, {3}, {4}, {2}, {4}, {1}, {2}, { 3}}}, Pattern}]}, {EdgeLabels -> {"e"}, VertexLabels -> {"Name"}}]], Typeset`boxes = GraphicsGroupBox[{{ Directive[ Hue[0.6, 0.2, 0.8], EdgeForm[ Directive[ GrayLevel[0], Opacity[0.7]]]], TagBox[{ TagBox[ DiskBox[{1.867535537518732, 0.4340935090459442}, 0.02152751344746409], "DynamicName", BoxID -> "VertexID$1"], InsetBox[ FormBox["1", TraditionalForm], Offset[{2, 2}, DynamicLocation["VertexID$1", Automatic, {Right, Top}]], ImageScaled[{0, 0}], BaseStyle -> "Graphics"]}, "DynamicName", BoxID -> "VertexLabelID$1"], TagBox[{ TagBox[ DiskBox[{0.933504522189055, 0.}, 0.02152751344746409], "DynamicName", BoxID -> "VertexID$2"], InsetBox[ FormBox["2", TraditionalForm], Offset[{2, 2}, DynamicLocation["VertexID$2", Automatic, {Right, Top}]], ImageScaled[{0, 0}], BaseStyle -> "Graphics"]}, "DynamicName", BoxID -> "VertexLabelID$2"], TagBox[{ TagBox[ DiskBox[{0., 0.43474650277495547`}, 0.02152751344746409], "DynamicName", BoxID -> "VertexID$3"], InsetBox[ FormBox["3", TraditionalForm], Offset[{2, 2}, DynamicLocation["VertexID$3", Automatic, {Right, Top}]], ImageScaled[{0, 0}], BaseStyle -> "Graphics"]}, "DynamicName", BoxID -> "VertexLabelID$3"], TagBox[{ TagBox[ DiskBox[{0.934906558473912, 0.869570399177328}, 0.02152751344746409], "DynamicName", BoxID -> "VertexID$4"], InsetBox[ FormBox["4", TraditionalForm], Offset[{2, 2}, DynamicLocation["VertexID$4", Automatic, {Right, Top}]], ImageScaled[{0, 0}], BaseStyle -> "Graphics"]}, "DynamicName", BoxID -> "VertexLabelID$4"]}, { Directive[ Opacity[0.7], Hue[0.6, 0.7, 0.5]], { TagBox[ LineBox[{ DynamicLocation["VertexID$1", Automatic, Center], DynamicLocation["VertexID$2", Automatic, Center]}], "DynamicName", BoxID -> "EdgeLabelID$1"], InsetBox[ FormBox["\"e\"", TraditionalForm], DynamicLocation["EdgeLabelID$1", Automatic, Scaled[0.5]], ImageScaled[{0.5, 0.5}], BaseStyle -> "Graphics"]}, { TagBox[ LineBox[{ DynamicLocation["VertexID$1", Automatic, Center], DynamicLocation["VertexID$4", Automatic, Center]}], "DynamicName", BoxID -> "EdgeLabelID$2"], InsetBox[ FormBox["\"e\"", TraditionalForm], DynamicLocation["EdgeLabelID$2", Automatic, Scaled[0.5]], ImageScaled[{0.5, 0.5}], BaseStyle -> "Graphics"]}, { TagBox[ LineBox[{ DynamicLocation["VertexID$2", Automatic, Center], DynamicLocation["VertexID$3", Automatic, Center]}], "DynamicName", BoxID -> "EdgeLabelID$3"], InsetBox[ FormBox["\"e\"", TraditionalForm], DynamicLocation["EdgeLabelID$3", Automatic, Scaled[0.5]], ImageScaled[{0.5, 0.5}], BaseStyle -> "Graphics"]}, { TagBox[ LineBox[{ DynamicLocation["VertexID$2", Automatic, Center], DynamicLocation["VertexID$4", Automatic, Center]}], "DynamicName", BoxID -> "EdgeLabelID$4"], InsetBox[ FormBox["\"e\"", TraditionalForm], DynamicLocation["EdgeLabelID$4", Automatic, Scaled[0.5]], ImageScaled[{0.5, 0.5}], BaseStyle -> "Graphics"]}, { TagBox[ LineBox[{ DynamicLocation["VertexID$3", Automatic, Center], DynamicLocation["VertexID$4", Automatic, Center]}], "DynamicName", BoxID -> "EdgeLabelID$5"], InsetBox[ FormBox["\"e\"", TraditionalForm], DynamicLocation["EdgeLabelID$5", Automatic, Scaled[0.5]], ImageScaled[{0.5, 0.5}], BaseStyle -> "Graphics"]}}}]}, DynamicBox[GraphComputation`NetworkGraphicsBox[ 1, Typeset`graph, Typeset`boxes], { CachedValue :> Typeset`boxes, SingleEvaluation -> True, SynchronousUpdating -> False, TrackedSymbols :> {}}, ImageSizeCache->{{6.68, 359.0977082156317}, {-95.81791666826302, 82.193183074513}}]]], DefaultBaseStyle->{ "NetworkGraphics", FrontEnd`GraphicsHighlightColor -> Hue[0.8, 1., 0.6]}, FrameTicks->None]], "Output",ExpressionUUID->"2978c3ad-1187-42b4-98a2-\ 66281314adbd"] }, Open ]] }, Closed]] }, Open ]], Cell[CellGroupData[{ Cell["Directed", "Subsection",ExpressionUUID->"1b5ec43c-846e-41fb-8114-00d5c73254ff"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"ShowLabeledGraph", "[", RowBox[{"g", "=", RowBox[{"DeleteEdges", "[", RowBox[{ RowBox[{"AddEdge", "[", RowBox[{ RowBox[{"MakeDirected", "[", RowBox[{"Graph", "[", "\"\\"", "]"}], "]"}], ",", RowBox[{"{", RowBox[{"3", ",", "1"}], "}"}]}], "]"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"2", ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{"4", ",", "1"}], "}"}]}], "}"}]}], "]"}]}], "]"}]], "Input",Ex\ pressionUUID->"1c3ca1e8-26af-4320-b4d2-d08bcf37f990"], Cell[BoxData[ GraphicsBox[{{ {GrayLevel[0], Thickness[0.005], ArrowBox[{{1., 0.}, {0., 0.}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], ArrowBox[{{1., 1.}, {1., 0.}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], ArrowBox[{{0., 1.}, {0., 0.}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], ArrowBox[{{0., 1.}, {1., 1.}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], ArrowBox[{{0., 0.}, {1., 0.}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], ArrowBox[{{1., 0.}, {1., 1.}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], ArrowBox[{{1., 0.}, {0., 1.}}], {GrayLevel[0]}}}, { {RGBColor[1, 0, 0], {PointSize[0.05], PointBox[{0., 1.}]}, {GrayLevel[0], InsetBox["1", Scaled[{-0.02, -0.02}, {0., 1.}], {1, 0}]}, {GrayLevel[0]}}, {RGBColor[1, 0, 0], {PointSize[0.05], PointBox[{0., 0.}]}, {GrayLevel[0], InsetBox["2", Scaled[{-0.02, -0.02}, {0., 0.}], {1, 0}]}, {GrayLevel[0]}}, {RGBColor[1, 0, 0], {PointSize[0.05], PointBox[{1., 0.}]}, {GrayLevel[0], InsetBox["3", Scaled[{-0.02, -0.02}, {1., 0.}], {1, 0}]}, {GrayLevel[0]}}, {RGBColor[1, 0, 0], {PointSize[0.05], PointBox[{1., 1.}]}, {GrayLevel[0], InsetBox["4", Scaled[{-0.02, -0.02}, {1., 1.}], {1, 0}]}, {GrayLevel[0]}}}}, AlignmentPoint->Center, AspectRatio->Automatic, Axes->False, AxesLabel->None, AxesOrigin->Automatic, AxesStyle->{}, Background->None, BaseStyle->{}, BaselinePosition->Automatic, ColorOutput->Automatic, ContentSelectable->Automatic, CoordinatesToolOptions:>Automatic, DisplayFunction:>$DisplayFunction, Epilog->{}, FormatType:>TraditionalForm, Frame->False, FrameLabel->None, FrameStyle->{}, FrameTicks->Automatic, FrameTicksStyle->{}, GridLines->None, GridLinesStyle->{}, ImageMargins->0., ImagePadding->All, ImageSize->{158., Automatic}, ImageSizeRaw->Automatic, LabelStyle->{}, Method->Automatic, PlotLabel->None, PlotRange->All, PlotRangeClipping->False, PlotRangePadding->Automatic, PlotRegion->Automatic, PreserveImageOptions->Automatic, Prolog->{}, RotateLabel->True, Ticks->Automatic, TicksStyle->{}]], "Output",ExpressionUUID->"0f4ccd85-a0ea-4aba-b5be-\ bf323310f8d7"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"System`EdgeList", "[", "g", "]"}]], "Input",ExpressionUUID->"5d8177d7-6f79-49de-bcfc-d434dbe6188a"], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"1", ",", "2"}], "}"}], ",", RowBox[{"{", RowBox[{"1", ",", "4"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", "3"}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "2"}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "4"}], "}"}], ",", RowBox[{"{", RowBox[{"4", ",", "3"}], "}"}]}], "}"}]], "Output",ExpressionUUID->\ "abdf3608-9d9c-420c-931e-cf5bd9d93228"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"GraphicsGrid", "[", RowBox[{"{", RowBox[{"{", "\[IndentingNewLine]", RowBox[{ RowBox[{"GraphPlot", "[", RowBox[{ RowBox[{"newg", "=", RowBox[{"AdjacencyGraph", "[", RowBox[{ RowBox[{"AdjacencyMatrix", "[", "g", "]"}], ",", RowBox[{"VertexCoordinates", "\[Rule]", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"0", ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{"1", ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{"1", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", "0"}], "}"}]}], "}"}]}]}], "]"}]}], ",", RowBox[{"MultiedgeStyle", "\[Rule]", "All"}]}], "]"}], ",", "\[IndentingNewLine]", RowBox[{"GraphPlot", "[", RowBox[{ RowBox[{"LineGraph", "[", RowBox[{"newg", ",", RowBox[{"VertexLabels", "\[Rule]", "\"\\""}]}], "]"}], ",", RowBox[{"MultiedgeStyle", "\[Rule]", "All"}]}], "]"}]}], "\[IndentingNewLine]", "}"}], "}"}], "]"}]], "Input",ExpressionUUID->\ "af0abcd9-e5a6-4503-96b7-28d6b46e8e68"], Cell[BoxData[ GraphicsBox[{{}, {InsetBox[ GraphicsBox[ TagBox[GraphicsComplexBox[CompressedData[" 1:eJx9kV9IU3EUx68WRT0U1SyJwJKih/4gCAaXyVlbBUFg9lJBUmk5iiCjUvpj DFZttEEOemgKMbBYUlCZWNyyO2lR2WqoUBrUw1hrrXH7PYqsqK3vOSBBBy6X A4ff+X7OZ1Xz8V2HyzVN2/LnK/5nlqL///+tWaH7laePKMp1nNN3D+RprKzy 1COvosE7kbaO0e9k6593/WdYkf1ez+t0Pke2qnG/466ix5+DVmZOjrL1ieBZ Q9HY4pPTL6q+kV6o3hiNK3Kd72oZ2ZSlFfpm+/MRRUaqP21v+EpvE8VS1Nxa rIz0taUal3mv3l13+eCovJda8OzE+5VJ2XdzoHZp1vOGliDPwkuJrYfSLyXv L2do8tiOuPBUNHbWVxsxKgfvFcfq9duaDJr+dONdxYYfNIh+XyG5LDRl0TrM f+jJJ2cnLLK5/r43ObzXuhC1aA321Vx0Z+YHLHqCPIG5Ru+DdoumkPdVoNN3 5qhFV8FTwm61iMDLvRv34PkY7hXEe9txT943gXt/RJ4h+JhAXid8NYHnKXwW wKvgm73HSvzdJnt36JrXao+Y7L3LWVf2kHpN9t6Walm+yH/LZO/akC/c2BA1 2ftO3/74l2u3Tfbuca31u/f0mew9Ei5Wn8neuWfvPM/eHXiPvfM+9n4Aedi7 B3nZew142LuHedGDX7yDX7yDX7yDX7wjj3gHv3gHj3gHr3jnPjbzXuId/OKd 97F38It38It38It38NNvXRUH+g== "], { {GrayLevel[0], Arrowheads[{{0.041582132564841494`, 0.8}}], ArrowBox[{1, 2}], ArrowBox[{1, 4}], ArrowBox[{2, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 3}], ArrowBox[{3, 1}], ArrowBox[{3, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 2}], ArrowBox[{3, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 4}], ArrowBox[{4, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 3}]}, {RGBColor[1, 0, 0], AbsolutePointSize[5], TagBox[ TooltipBox[PointBox[1], "1"], Annotation[#, 1, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[2], "2"], Annotation[#, 2, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[3], "3"], Annotation[#, 3, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[4], "4"], Annotation[#, 4, "Tooltip"]& ]}}], Annotation[#, VertexCoordinateRules -> {{0., 1.}, {1., 1.}, {1., 0.}, {0., 0.}}]& ], AspectRatio->Automatic, FrameTicks->None, PlotRange->All, PlotRangePadding->Scaled[0.1]], {192., -189.}, ImageScaled[{0.5, 0.5}], {360., 360.}], InsetBox[ GraphicsBox[ TagBox[GraphicsComplexBox[CompressedData[" 1:eJxdUllQUwcAjFYCCpVSVOJR5VQqUpRBBUUXoRTUmKJQQxVjajlURKQhHtwB tDKMUhIVxtrRaUHGSuoBSFG8GEBERQXkiBQhFwEjeS8HeUlUmv52Z3Z29mt3 ZtdtT+q2hKk0Gi3Cyv/0/xhzKMm18N5hwGuJwffoP6CN9/s5ubKREiDw/9p+ Elrf55InWe8gXP+pYPKyEbQC7yLLy0YIR0nTUnsNmhfKjKHpFmRXCfosFQZ0 DDfvaj5owfL0HlZKgxScosgu2XYNuEVpYX/FSBFKLCdyBzS445M8poyUIYB1 OXbjSgIHS0OymYFynBggW47kEUjtZoyL3BXwNBvFNc8J7C/pf8yzVaL3Q1qQ 3J3EVLnvtxVKJWYevhitOUaiJd/m+Jv7I/hsH+9mQzeJxKrCqGGhCubKG2ft 1BPIq45N3D9Jgt3ObeJvMoKeEl4gTtDiqR3LfW+1EWufDT4StmnxU+Y22kMn CgEHe/0tS3TYNIVzjptBQSd6Jmkr0GH/Dykui5UUeD1XjYOvdTg02NmgiTGh c9G1t27L9bhF63h4vtWEHR6OzCN5etgNvfFclEzgsfBu1rBgAoRf0pGiAQKu fQqP+BVWv4dv57SZBHc2S2AZMGDvL7QVolskVqlP2zcVGiBfcDR4fKEWzPi8 5C5vA5oV3/GmFGrRaz7FYz7WY9yF6yVWaCFJFM/ZnKgHP6O8pjNMh7gRM2d8 Uge/BLbYh01hokziGFyqBtt8RiS+QeG0bGiuw723uK5vTku1MyFTxuiqko/h wNwXs7bvNCGbtf7HaJsxzGh1y43404QQx4qOGNdRKNXPiKUGE/gPQoZ0K1Wo zojWqNaa0XJxmXPGNyMw1FHM5Bwz/Onlmf7blCjm0js68s0Ir/484HqfDvN8 hfdpIWYwXp8dEnF0sGVP222kTFjn7eMyrNSitu1vsk1sQiP9PudumhZzrt6c fopjzb8yeGiLdb/4qsCcOHsTdDkBX9WVkFjmZx+/tZaC8FqkyMWDhE/wapuf v6cQ+kWR+FwDgQ2TlFtgqA7qk4rBIOt/5JKNhnaZFoO2DpU1axRIvRB3tk+g BT+if/5ouhyPvoytz12ghcBGFc64JQPxB9NtqIbEtNsWQ9ZHKV6Erbs0L5KE zUo0RrGkaG/t/RDVTyDy98Du9sphFFQMGCqTCAT+etTZ1WYYD8qZi+2bTGh6 wmdf+UQBSWRL16UoE2Zt8JpeUaFA3+z60LlSCmdaY1j8LUpwVT7zyg5TUDG6 glQfrH131s4MnknhrjdxrKVuBHRRT6/3FSMuW7r3daWr8Jr71Cs7wohLHuc8 etaMIuajqIw9OoEL7hZhie0Yzju/+u3jKxLXlhW7Mu5okZZTVp+VSUJGPzn/ uqcOjMKk/tueJNR09fo9pdbf7I5b1f2SwIGt/Ycdpuhx7+aMp9J8AjPSFj8s 5ukhLebsmFxN4BAjNrBRpUfQ+xv1+VIN2rylC49xDag6nvQ+e5cGpfzqsQsS A/4Fa+pSLw== "], { {GrayLevel[0], Arrowheads[{{0.03420933826562826, 0.8}}], ArrowBox[{1, 2}], ArrowBox[{2, 5}], ArrowBox[{2, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 6}], ArrowBox[{2, 7}], ArrowBox[{3, 4}], ArrowBox[{4, 5}], ArrowBox[{4, 6}], ArrowBox[{4, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 7}], ArrowBox[{5, 1}], ArrowBox[{5, 3}], ArrowBox[{6, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 2}], ArrowBox[{7, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 4}]}, {RGBColor[1, 0, 0], AbsolutePointSize[5], TagBox[ TooltipBox[PointBox[1], "1"], Annotation[#, 1, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[2], "2"], Annotation[#, 2, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[3], "3"], Annotation[#, 3, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[4], "4"], Annotation[#, 4, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[5], "5"], Annotation[#, 5, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[6], "6"], Annotation[#, 6, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[7], "7"], Annotation[#, 7, "Tooltip"]& ]}}], Annotation[#, VertexCoordinateRules -> {{0., 0.}, {0.9204080096609719, 0.46046017590250954`}, {0.0014114539948469895`, 1.9402505848732077`}, {0.9214839242571868, 1.4782710114558637`}, { 0.1125790796145445, 0.9701132661569309}, {1.7158841784566201`, 1.35277924130284}, {1.7145427382330243`, 0.585135129909423}}]& ], AspectRatio->Automatic, FrameTicks->None, PlotRange->All, PlotRangePadding->Scaled[0.1]], {576., -189.}, ImageScaled[{0.5, 0.5}], {360., 360.}]}, {}}, ContentSelectable->True, PlotRangePadding->{6, 5}]], "Output",ExpressionUUID->"8b3a3123-8295-416a-\ a6c8-3346959585ef"] }, Open ]] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["Algorithms", "Section",ExpressionUUID->"f2533e55-8241-480f-a4c5-7070ee305ce6"], Cell[CellGroupData[{ Cell["\"ForbiddenInducedSubgraphs\"", "Subsection",ExpressionUUID->"81f7942d-b118-4577-bdd9-15b33e765cfe"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"LineGraphQ", "[", RowBox[{ RowBox[{"PetersenGraph", "[", "]"}], ",", RowBox[{"Method", "->", "\"\\""}]}], "]"}]], "Input", CellLabel->"In[94]:=",ExpressionUUID->"3a1e5ce5-ea7f-499f-83fe-a688ad6383e2"], Cell[BoxData["False"], "Output", CellLabel->"Out[94]=",ExpressionUUID->"7d6d1420-a734-48a1-ab32-bc30c780bf56"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["\"Sage\"", "Subsection",ExpressionUUID->"22d0ff18-bfdc-4357-8a26-4c1a62361988"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"LineGraphQ", "[", RowBox[{ RowBox[{"PetersenGraph", "[", "]"}], ",", RowBox[{"Method", "->", "\"\\""}]}], "]"}]], "Input", CellLabel-> "In[103]:=",ExpressionUUID->"dec52e59-f0ca-4db4-ac1e-af4bc67f0242"], Cell[BoxData["False"], "Output", CellLabel-> "Out[103]=",ExpressionUUID->"fac46df2-5099-44a6-ad0e-ec280a8bfb84"] }, Open ]] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["Named families", "Section",ExpressionUUID->"d95c1285-09e5-431a-84cd-de157331863f"], Cell[CellGroupData[{ Cell["Platonic", "Subsection",ExpressionUUID->"58794a1d-3399-4cb5-9e88-3e7f3df22dc4"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"TextGrid", "[", RowBox[{ RowBox[{ RowBox[{ RowBox[{"{", RowBox[{"#", ",", RowBox[{"RecognizeGraph", "[", RowBox[{"LineGraph", "[", RowBox[{"GraphData", "[", "#", "]"}], "]"}], "]"}]}], "}"}], "&"}], "/@", RowBox[{"GraphData", "[", "\"\\"", "]"}]}], ",", RowBox[{"Dividers", "\[Rule]", "All"}]}], "]"}]], "Input", CellLabel->"In[95]:=",ExpressionUUID->"4e3d91a9-7bca-432c-b0bd-4589f88e0ccc"], Cell[BoxData[ TagBox[GridBox[{ {Cell[ "CubicalGraph",ExpressionUUID->"e56912b1-31f4-414c-a9df-fcffebe90255"], Cell["CuboctahedralGraph",ExpressionUUID-> "7d7b6a9c-fb2f-43f5-8b68-4640830af24d"]}, {Cell[ "DodecahedralGraph",ExpressionUUID-> "96e38c52-8889-4753-b348-2f9b7128763f"], Cell[ "IcosidodecahedralGraph",ExpressionUUID-> "80a08d3f-7e3a-434a-ace9-cc0bf34e44c1"]}, {Cell[ "IcosahedralGraph",ExpressionUUID-> "b089846a-1f11-454d-966a-6b5c4ec2bd4f"], Cell[ "IcosahedralLineGraph",ExpressionUUID-> "5e91ea1d-1241-4e74-b714-499eff9babe5"]}, {Cell[ "OctahedralGraph",ExpressionUUID-> "f7adf9ff-2a6a-4975-908c-53a618f77aa2"], Cell[ "OctahedralLineGraph",ExpressionUUID-> "233790f8-5d7a-4f61-ba80-2b03cd513392"]}, {Cell[ "TetrahedralGraph",ExpressionUUID-> "1a6474a2-064d-4fc8-9f5b-f379c7eb628a"], Cell[ "OctahedralGraph",ExpressionUUID->"61190abe-c5e6-44ae-8967-77c9638be998"]} }, AutoDelete->False, GridBoxDividers->{"Columns" -> {{True}}, "Rows" -> {{True}}}, GridBoxItemSize->{"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "TextGrid"]], "Output", CellLabel->"Out[95]=",ExpressionUUID->"4076e997-5d99-438f-a685-1745885327ac"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["Archimedean", "Subsection",ExpressionUUID->"0c39d9ae-6bc5-4d1f-89fa-9d629ada6a1e"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"TextGrid", "[", RowBox[{ RowBox[{ RowBox[{ RowBox[{"{", RowBox[{"#", ",", RowBox[{"RecognizeGraph", "[", RowBox[{"LineGraph", "[", RowBox[{"GraphData", "[", "#", "]"}], "]"}], "]"}]}], "}"}], "&"}], "/@", RowBox[{"GraphData", "[", "\"\\"", "]"}]}], ",", RowBox[{"Dividers", "\[Rule]", "All"}]}], "]"}]], "Input", CellLabel->"In[96]:=",ExpressionUUID->"bcc8d80d-1d0c-4127-b872-f58a38bca4ab"], Cell[BoxData[ TagBox[GridBox[{ {Cell[ "CuboctahedralGraph",ExpressionUUID-> "3932a409-e127-432a-b3d0-7369b5b6b7eb"], Cell[ "CuboctahedralLineGraph",ExpressionUUID-> "e97334d2-4e1d-413f-a213-d4a30b9fce61"]}, {Cell[ "GreatRhombicosidodecahedralGraph",ExpressionUUID-> "7535f733-8e08-46e3-8c5c-c74297fe846c"], Cell[ "GreatRhombicosidodecahedralLineGraph",ExpressionUUID-> "d0e05ace-2392-4882-9ce3-c8cf3d349d77"]}, {Cell[ "GreatRhombicuboctahedralGraph",ExpressionUUID-> "a1b7c88e-b122-4b51-a5e0-303dd90a54d4"], Cell[ "GreatRhombicuboctahedralLineGraph",ExpressionUUID-> "11af3d33-bdda-42ec-bf7a-1f71689f63e4"]}, {Cell[ "IcosidodecahedralGraph",ExpressionUUID-> "349d6bf2-17ea-4e00-8b63-6b436f5da897"], Cell[ "IcosidodecahedralLineGraph",ExpressionUUID-> "8c3f4300-ecae-4de2-a38c-771a052660f9"]}, {Cell[ "SmallRhombicosidodecahedralGraph",ExpressionUUID-> "f7205d8a-0723-4c98-9f3a-79c372d03ef5"], Cell[ "SmallRhombicosidodecahedralLineGraph",ExpressionUUID-> "5d5b0594-013c-42bf-aefd-5449e9ef8d81"]}, {Cell[ "SmallRhombicuboctahedralGraph",ExpressionUUID-> "2d5ccb34-360d-481f-9907-e6b9b9e23a0d"], Cell[ "SmallRhombicuboctahedralLineGraph",ExpressionUUID-> "743c94fc-aab4-4e8e-b2c3-86a474ad192c"]}, {Cell[ "SnubCubicalGraph",ExpressionUUID-> "383d0e55-7117-48fe-8148-955e84cd224c"], Cell[ "SnubCubicalLineGraph",ExpressionUUID-> "de9f3a4e-08c6-482b-8592-57f6c5e19862"]}, {Cell[ "SnubDodecahedralGraph",ExpressionUUID-> "65ff6985-a226-4797-a020-f39717562f46"], Cell[ "SnubDodecahedralLineGraph",ExpressionUUID-> "efec0697-c6af-4ecc-a430-89a31e04ba29"]}, {Cell[ "TruncatedCubicalGraph",ExpressionUUID-> "32820c2a-a3a1-4f5b-af24-c5116f8950e5"], Cell[ "TruncatedCubicalLineGraph",ExpressionUUID-> "4edcb527-3341-4658-af7f-30618f0de3a8"]}, {Cell[ "TruncatedDodecahedralGraph",ExpressionUUID-> "47668b2e-acce-4b2e-a6ba-68ee57cba735"], Cell[ "TruncatedDodecahedralLineGraph",ExpressionUUID-> "e3b994a2-fea5-4712-8ab6-3dc756cfd44a"]}, {Cell[ "TruncatedIcosahedralGraph",ExpressionUUID-> "ea95425a-5c14-4613-a769-d6e8f4bb46a4"], Cell[ "TruncatedIcosahedralLineGraph",ExpressionUUID-> "7f3a35f7-377c-4130-9677-e6c9a04b794d"]}, {Cell[ "TruncatedOctahedralGraph",ExpressionUUID-> "c711747d-d328-49e2-811c-a43079877f64"], Cell[ "TruncatedOctahedralLineGraph",ExpressionUUID-> "aaadf6fd-fe89-45a2-b05c-4ffab18be5c2"]}, {Cell[ "TruncatedTetrahedralGraph",ExpressionUUID-> "2c274bc4-2b2d-478f-99d3-396e4752ce21"], Cell[ "TruncatedTetrahedralLineGraph",ExpressionUUID-> "8db7fac9-d855-4518-893f-52ba661b5c98"]} }, AutoDelete->False, GridBoxDividers->{"Columns" -> {{True}}, "Rows" -> {{True}}}, GridBoxItemSize->{"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "TextGrid"]], "Output", CellLabel->"Out[96]=",ExpressionUUID->"2c454dea-252f-4e8b-b797-3603c79fa95e"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["ArchimedeanDual", "Subsection",ExpressionUUID->"cf11a749-613a-41b8-a1ab-d38f427fda2d"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"TextGrid", "[", RowBox[{ RowBox[{ RowBox[{ RowBox[{"{", RowBox[{"#", ",", RowBox[{"RecognizeGraph", "[", RowBox[{"LineGraph", "[", RowBox[{"GraphData", "[", "#", "]"}], "]"}], "]"}]}], "}"}], "&"}], "/@", RowBox[{"GraphData", "[", "\"\\"", "]"}]}], ",", RowBox[{"Dividers", "\[Rule]", "All"}]}], "]"}]], "Input", CellLabel->"In[97]:=",ExpressionUUID->"7e637618-8c42-45ce-bb5d-68026927b14d"], Cell[BoxData[ TagBox[GridBox[{ {Cell[ "DeltoidalHexecontahedralGraph",ExpressionUUID-> "c481bab4-b2bc-486d-ac14-83d236afe1ca"], RowBox[{"{", "}"}]}, {Cell[ "DeltoidalIcositetrahedralGraph",ExpressionUUID-> "8ece484a-ea76-4ed8-9b34-f1613e04db52"], RowBox[{"{", "}"}]}, {Cell[ "DisdyakisDodecahedralGraph",ExpressionUUID-> "d4d0078a-da86-43c6-b0f2-b7477a903349"], RowBox[{"{", "}"}]}, {Cell[ "DisdyakisTriacontahedralGraph",ExpressionUUID-> "392cf7e9-d8b6-440f-99a5-3bb7746b5efc"], RowBox[{"{", "}"}]}, {Cell[ "PentagonalHexecontahedralGraph",ExpressionUUID-> "6644e7ff-fb15-4371-bd25-d74243995c88"], RowBox[{"{", "}"}]}, {Cell[ "PentagonalIcositetrahedralGraph",ExpressionUUID-> "87622d09-0e90-40ad-b789-9776af6ea927"], RowBox[{"{", "}"}]}, {Cell[ "PentakisDodecahedralGraph",ExpressionUUID-> "3a916930-e45e-46cd-975c-fb66778d029c"], RowBox[{"{", "}"}]}, {Cell[ "RhombicDodecahedralGraph",ExpressionUUID-> "a4d1ea68-4562-40bd-a163-d0bb22360ce9"], RowBox[{"{", "}"}]}, {Cell[ "RhombicTriacontahedralGraph",ExpressionUUID-> "3acf89f6-a975-402c-8997-af6381de3e92"], RowBox[{"{", "}"}]}, {Cell[ "SmallTriakisOctahedralGraph",ExpressionUUID-> "12e48c9a-f501-4186-9b55-f2f6a5de6b93"], RowBox[{"{", "}"}]}, {Cell[ "TetrakisHexahedralGraph",ExpressionUUID-> "2a97d658-8c35-47f5-b852-76a95656e38b"], RowBox[{"{", "}"}]}, {Cell[ "TriakisIcosahedralGraph",ExpressionUUID-> "c9ab58b3-4def-49b4-8838-2bcbee171681"], RowBox[{"{", "}"}]}, {Cell[ "TriakisTetrahedralGraph",ExpressionUUID-> "c33b3806-dcc3-4306-bfb5-1d4227c048a2"], RowBox[{"{", "}"}]} }, AutoDelete->False, GridBoxDividers->{"Columns" -> {{True}}, "Rows" -> {{True}}}, GridBoxItemSize->{"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "TextGrid"]], "Output", CellLabel->"Out[97]=",ExpressionUUID->"b8165d56-e1c8-47a5-ada3-dd9e24efd8b9"] }, Open ]] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["Root graph", "Section",ExpressionUUID->"e9364f49-a456-461f-bc91-d30861ac2254"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"PetersenComplement", "=", RowBox[{"GraphComplement", "[", RowBox[{"PetersenGraph", "[", "]"}], "]"}]}]], "Input", CellLabel-> "In[128]:=",ExpressionUUID->"e2a81a1e-b0d5-49fc-8290-75ff1d2ed9f0"], Cell[BoxData[ GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, {Null, SparseArray[ Automatic, {10, 10}, 0, { 1, {{0, 6, 12, 18, 24, 30, 36, 42, 48, 54, 60}, {{2}, {5}, {7}, {8}, { 9}, {10}, {1}, {3}, {6}, {8}, {9}, {10}, {2}, {4}, {6}, {7}, {9}, { 10}, {3}, {5}, {6}, {7}, {8}, {10}, {1}, {4}, {6}, {7}, {8}, {9}, { 2}, {3}, {4}, {5}, {8}, {9}, {1}, {3}, {4}, {5}, {9}, {10}, {1}, { 2}, {4}, {5}, {6}, {10}, {1}, {2}, {3}, {5}, {6}, {7}, {1}, {2}, { 3}, {4}, {7}, {8}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 2}, VertexCoordinates -> {{0.9510565162951535, 0.30901699437494745`}, { 0.5877852522924732, -0.8090169943749473}, {-0.587785252292473, \ -0.8090169943749475}, {-0.9510565162951536, 0.30901699437494723`}, {-2.4492935982947064`*^-16, 1.}, { 1.902113032590307, 0.6180339887498949}, { 1.1755705045849465`, -1.6180339887498947`}, {-1.175570504584946, \ -1.618033988749895}, {-1.9021130325903073`, 0.6180339887498945}, {-4.898587196589413*^-16, 2.}}}]]}, TagBox[ GraphicsGroupBox[ GraphicsComplexBox[{{0.9510565162951535, 0.30901699437494745`}, { 0.5877852522924732, -0.8090169943749473}, {-0.587785252292473, \ -0.8090169943749475}, {-0.9510565162951536, 0.30901699437494723`}, {-2.4492935982947064`*^-16, 1.}, { 1.902113032590307, 0.6180339887498949}, { 1.1755705045849465`, -1.6180339887498947`}, {-1.175570504584946, \ -1.618033988749895}, {-1.9021130325903073`, 0.6180339887498945}, {-4.898587196589413*^-16, 2.}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 5}, {1, 7}, {1, 8}, {1, 9}, {1, 10}, {2, 3}, { 2, 6}, {2, 8}, {2, 9}, {2, 10}, {3, 4}, {3, 6}, {3, 7}, {3, 9}, {3, 10}, {4, 5}, {4, 6}, {4, 7}, {4, 8}, {4, 10}, {5, 6}, {5, 7}, {5, 8}, {5, 9}, {6, 8}, {6, 9}, {7, 9}, {7, 10}, {8, 10}}, 0.03574187784409402]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.03574187784409402], DiskBox[2, 0.03574187784409402], DiskBox[3, 0.03574187784409402], DiskBox[4, 0.03574187784409402], DiskBox[5, 0.03574187784409402], DiskBox[6, 0.03574187784409402], DiskBox[7, 0.03574187784409402], DiskBox[8, 0.03574187784409402], DiskBox[9, 0.03574187784409402], DiskBox[10, 0.03574187784409402]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None]], "Output", CellLabel-> "Out[128]=",ExpressionUUID->"0da4867c-9574-4921-a497-bbec6f77b3ac"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"LineGraphQ", "[", "PetersenComplement", "]"}]], "Input", CellLabel-> "In[129]:=",ExpressionUUID->"56c5dd3b-8aa0-453e-9d76-ac8b88734200"], Cell[BoxData["True"], "Output", CellLabel-> "Out[129]=",ExpressionUUID->"d576bd8e-d47c-4695-a91e-05fa8b06978d"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"PetersenComplementRootGraph", "=", RowBox[{"LineGraphRootGraph", "[", RowBox[{"GraphComplement", "[", RowBox[{"PetersenGraph", "[", "]"}], "]"}], "]"}]}]], "Input", CellLabel-> "In[136]:=",ExpressionUUID->"f8dd749b-c804-4909-95e5-f882b308435a"], Cell[BoxData[ GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{0, 1, 3, 4, 2}, { Null, {{1, 2}, {1, 3}, {1, 4}, {2, 4}, {2, 5}, {5, 3}, {5, 4}, {2, 3}, { 1, 5}, {3, 4}}}]]}, TagBox[ GraphicsGroupBox[ GraphicsComplexBox[{{-0.9510565162951538, 0.3090169943749484}, {-7.044813998280222*^-16, 1.}, { 0.9510565162951533, 0.30901699437494634`}, { 0.5877852522924738, -0.8090169943749481}, {-0.5877852522924726, \ -0.8090169943749468}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 4}, {1, 5}, {2, 3}, {2, 4}, {2, 5}, {3, 4}, {3, 5}, {4, 5}}, 0.021812234931106983`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.021812234931106983], DiskBox[2, 0.021812234931106983], DiskBox[3, 0.021812234931106983], DiskBox[4, 0.021812234931106983], DiskBox[5, 0.021812234931106983]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None]], "Output", CellLabel-> "Out[136]=",ExpressionUUID->"efc810b1-c234-40ea-bb4b-20c24633f315"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"RecognizeGraph", "[", "PetersenComplementRootGraph", "]"}]], "Input",\ CellLabel-> "In[137]:=",ExpressionUUID->"2afa14d1-feae-4bc1-8816-404923387a72"], Cell[BoxData["\<\"PentatopeGraph\"\>"], "Output", CellLabel-> "Out[137]=",ExpressionUUID->"183fe2ab-cd20-42ab-bc6f-68d527fc44b0"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["Isomorphic to Its Own Line Graph", "Section",ExpressionUUID->"ab1852af-e708-49cc-8e8c-c0bc1d55030a"], Cell[CellGroupData[{ Cell["Enumeration", "Subsection",ExpressionUUID->"1e4775b0-e6da-4eb7-b72f-85ca32800650"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Table", "[", RowBox[{ RowBox[{"Count", "[", RowBox[{ RowBox[{"IntegerPartitions", "[", "n", "]"}], ",", RowBox[{"_", "?", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"Min", "[", "#", "]"}], ">", "2"}], "&"}], ")"}]}]}], "]"}], ",", RowBox[{"{", RowBox[{"n", ",", "20"}], "}"}]}], "]"}]], "Input",ExpressionUUID->\ "8e3b2e83-06ac-43b1-8740-21eb8b571234"], Cell[BoxData[ RowBox[{"{", RowBox[{ "0", ",", "0", ",", "1", ",", "1", ",", "1", ",", "2", ",", "2", ",", "3", ",", "4", ",", "5", ",", "6", ",", "9", ",", "10", ",", "13", ",", "17", ",", "21", ",", "25", ",", "33", ",", "39", ",", "49"}], "}"}]], "Output",E\ xpressionUUID->"a99a0037-ae1d-4772-927d-f34932bbaf1b"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"(", RowBox[{"i", "=", RowBox[{"Table", "[", RowBox[{ RowBox[{"Select", "[", RowBox[{ RowBox[{"IntegerPartitions", "[", "n", "]"}], ",", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"Min", "[", "#", "]"}], ">", "2"}], "&"}], ")"}]}], "]"}], ",", RowBox[{"{", RowBox[{"n", ",", "10"}], "}"}]}], "]"}]}], ")"}], "//", "Column"}]], "Input",ExpressionUUID->"d653ab1a-277c-45e4-b7ce-afd2e0a4ff36"], Cell[BoxData[ TagBox[GridBox[{ { RowBox[{"{", "}"}]}, { RowBox[{"{", "}"}]}, { RowBox[{"{", RowBox[{"{", "3", "}"}], "}"}]}, { RowBox[{"{", RowBox[{"{", "4", "}"}], "}"}]}, { RowBox[{"{", RowBox[{"{", "5", "}"}], "}"}]}, { RowBox[{"{", RowBox[{ RowBox[{"{", "6", "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "3"}], "}"}]}], "}"}]}, { RowBox[{"{", RowBox[{ RowBox[{"{", "7", "}"}], ",", RowBox[{"{", RowBox[{"4", ",", "3"}], "}"}]}], "}"}]}, { RowBox[{"{", RowBox[{ RowBox[{"{", "8", "}"}], ",", RowBox[{"{", RowBox[{"5", ",", "3"}], "}"}], ",", RowBox[{"{", RowBox[{"4", ",", "4"}], "}"}]}], "}"}]}, { RowBox[{"{", RowBox[{ RowBox[{"{", "9", "}"}], ",", RowBox[{"{", RowBox[{"6", ",", "3"}], "}"}], ",", RowBox[{"{", RowBox[{"5", ",", "4"}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "3", ",", "3"}], "}"}]}], "}"}]}, { RowBox[{"{", RowBox[{ RowBox[{"{", "10", "}"}], ",", RowBox[{"{", RowBox[{"7", ",", "3"}], "}"}], ",", RowBox[{"{", RowBox[{"6", ",", "4"}], "}"}], ",", RowBox[{"{", RowBox[{"5", ",", "5"}], "}"}], ",", RowBox[{"{", RowBox[{"4", ",", "3", ",", "3"}], "}"}]}], "}"}]} }, GridBoxAlignment->{"Columns" -> {{Left}}}, GridBoxItemSize->{"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Column"]], "Output",ExpressionUUID->"39a87faf-ecd4-41f3-8d6e-e855b84402b3"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["Graphics", "Subsection",ExpressionUUID->"c33919dc-9975-450b-bc7a-efb125b978d4"], Cell[CellGroupData[{ Cell["V8", "Subsubsection",ExpressionUUID->"54bc6451-a887-42b2-8161-70697db1bd45"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Select", "[", RowBox[{ RowBox[{"GraphData", "[", "All", "]"}], ",", RowBox[{"Function", "[", RowBox[{"g", ",", RowBox[{ RowBox[{"Nest", "[", RowBox[{ RowBox[{ RowBox[{"GraphData", "[", RowBox[{"#", ",", "\"\\""}], "]"}], "&"}], ",", "g", ",", "2"}], "]"}], "===", "g"}]}], "]"}]}], "]"}]], "Input",Expressio\ nUUID->"fee6458e-c016-49a0-a955-2342c3c6e35f"], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"\<\"Cycle\"\>", ",", "5"}], "}"}], ",", RowBox[{"{", RowBox[{"\<\"Cycle\"\>", ",", "6"}], "}"}], ",", RowBox[{"{", RowBox[{"\<\"Cycle\"\>", ",", "7"}], "}"}], ",", RowBox[{"{", RowBox[{"\<\"Cycle\"\>", ",", "8"}], "}"}], ",", RowBox[{"{", RowBox[{"\<\"Cycle\"\>", ",", "9"}], "}"}], ",", RowBox[{"{", RowBox[{"\<\"Cycle\"\>", ",", "10"}], "}"}], ",", RowBox[{"{", RowBox[{"\<\"Cycle\"\>", ",", "11"}], "}"}], ",", RowBox[{"{", RowBox[{"\<\"Cycle\"\>", ",", "12"}], "}"}], ",", RowBox[{"{", RowBox[{"\<\"Cycle\"\>", ",", "13"}], "}"}], ",", RowBox[{"{", RowBox[{"\<\"Cycle\"\>", ",", "14"}], "}"}], ",", RowBox[{"{", RowBox[{"\<\"Cycle\"\>", ",", "15"}], "}"}], ",", RowBox[{"{", RowBox[{"\<\"Cycle\"\>", ",", "16"}], "}"}], ",", RowBox[{"{", RowBox[{"\<\"Cycle\"\>", ",", "17"}], "}"}], ",", RowBox[{"{", RowBox[{"\<\"Cycle\"\>", ",", "18"}], "}"}], ",", RowBox[{"{", RowBox[{"\<\"Cycle\"\>", ",", "19"}], "}"}], ",", RowBox[{"{", RowBox[{"\<\"Cycle\"\>", ",", "20"}], "}"}], ",", "\<\"FiveSquares\"\>", ",", "\<\"FiveTriangles\"\>", ",", "\<\"FourSquares\"\>", ",", "\<\"FourTriangles\"\>", ",", "\<\"SquareGraph\"\>", ",", "\<\"ThreeHexagons\"\>", ",", "\<\"ThreePentagons\"\>", ",", "\<\"ThreeSquares\"\>", ",", "\<\"ThreeTriangles\"\>", ",", "\<\"TriangleGraph\"\>", ",", "\<\"TwoDecagons\"\>", ",", "\<\"TwoHeptagons\"\>", ",", "\<\"TwoHexagons\"\>", ",", "\<\"TwoOctagons\"\>", ",", "\<\"TwoPentagons\"\>", ",", "\<\"TwoSquares\"\>", ",", "\<\"TwoTriangles\"\>"}], "}"}]], "Output",\ ExpressionUUID->"6bef2170-f0ce-4c44-a2dd-0f0d29656184"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"SortBy", "[", RowBox[{ RowBox[{"Select", "[", RowBox[{ RowBox[{"GraphData", "[", "All", "]"}], ",", RowBox[{ RowBox[{ RowBox[{"GraphData", "[", RowBox[{"#", ",", "\"\\""}], "]"}], "===", "#"}], "&"}]}], "]"}], ",", RowBox[{ RowBox[{"GraphData", "[", RowBox[{"#", ",", "\"\\""}], "]"}], "&"}]}], "]"}]], "Input",Expressi\ onUUID->"8dde1eca-396d-43ec-a165-ee7a13d9ef5e"], Cell[BoxData[ RowBox[{"{", RowBox[{"\<\"TriangleGraph\"\>", ",", "\<\"SquareGraph\"\>", ",", RowBox[{"{", RowBox[{"\<\"Cycle\"\>", ",", "5"}], "}"}], ",", "\<\"TwoTriangles\"\>", ",", RowBox[{"{", RowBox[{"\<\"Cycle\"\>", ",", "6"}], "}"}], ",", "\<\"TriangleSquare\"\>", ",", RowBox[{"{", RowBox[{"\<\"Cycle\"\>", ",", "7"}], "}"}], ",", "\<\"TrianglePentagon\"\>", ",", "\<\"TwoSquares\"\>", ",", RowBox[{"{", RowBox[{"\<\"Cycle\"\>", ",", "8"}], "}"}], ",", "\<\"ThreeTriangles\"\>", ",", RowBox[{"{", RowBox[{"\<\"Cycle\"\>", ",", "9"}], "}"}], ",", "\<\"TwoPentagons\"\>", ",", RowBox[{"{", RowBox[{"\<\"Cycle\"\>", ",", "10"}], "}"}], ",", RowBox[{"{", RowBox[{"\<\"Cycle\"\>", ",", "11"}], "}"}], ",", "\<\"FourTriangles\"\>", ",", "\<\"ThreeSquares\"\>", ",", "\<\"TwoHexagons\"\>", ",", RowBox[{"{", RowBox[{"\<\"Cycle\"\>", ",", "12"}], "}"}], ",", RowBox[{"{", RowBox[{"\<\"Cycle\"\>", ",", "13"}], "}"}], ",", "\<\"TwoHeptagons\"\>", ",", RowBox[{"{", RowBox[{"\<\"Cycle\"\>", ",", "14"}], "}"}], ",", "\<\"FiveTriangles\"\>", ",", "\<\"ThreePentagons\"\>", ",", RowBox[{"{", RowBox[{"\<\"Cycle\"\>", ",", "15"}], "}"}], ",", "\<\"FourSquares\"\>", ",", "\<\"TwoOctagons\"\>", ",", RowBox[{"{", RowBox[{"\<\"Cycle\"\>", ",", "16"}], "}"}], ",", RowBox[{"{", RowBox[{"\<\"Cycle\"\>", ",", "17"}], "}"}], ",", "\<\"ThreeHexagons\"\>", ",", RowBox[{"{", RowBox[{"\<\"Cycle\"\>", ",", "18"}], "}"}], ",", RowBox[{"{", RowBox[{"\<\"Cycle\"\>", ",", "19"}], "}"}], ",", "\<\"FiveSquares\"\>", ",", "\<\"TwoDecagons\"\>", ",", RowBox[{"{", RowBox[{"\<\"Cycle\"\>", ",", "20"}], "}"}]}], "}"}]], "Output",Expression\ UUID->"5cda5092-10be-403f-8319-a6ce46c314ee"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"l", "=", RowBox[{"Table", "[", RowBox[{ RowBox[{"Select", "[", RowBox[{ RowBox[{"GraphData", "[", "n", "]"}], ",", RowBox[{ RowBox[{ RowBox[{"GraphData", "[", RowBox[{"#", ",", "\"\\""}], "]"}], "===", "#"}], "&"}]}], "]"}], ",", RowBox[{"{", RowBox[{"n", ",", "10"}], "}"}]}], "]"}]}]], "Input",ExpressionUUID->\ "f757d91a-4349-4717-9669-e9e0a4dd94c1"], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{"{", "}"}], ",", RowBox[{"{", "}"}], ",", RowBox[{"{", "\<\"TriangleGraph\"\>", "}"}], ",", RowBox[{"{", "\<\"SquareGraph\"\>", "}"}], ",", RowBox[{"{", RowBox[{"{", RowBox[{"\<\"Cycle\"\>", ",", "5"}], "}"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"\<\"Cycle\"\>", ",", "6"}], "}"}], ",", "\<\"TwoTriangles\"\>"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"\<\"Cycle\"\>", ",", "7"}], "}"}], ",", "\<\"TriangleSquare\"\>"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"\<\"Cycle\"\>", ",", "8"}], "}"}], ",", "\<\"TrianglePentagon\"\>", ",", "\<\"TwoSquares\"\>"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"\<\"Cycle\"\>", ",", "9"}], "}"}], ",", "\<\"ThreeTriangles\"\>"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"\<\"Cycle\"\>", ",", "10"}], "}"}], ",", "\<\"TwoPentagons\"\>"}], "}"}]}], "}"}]], "Output",ExpressionUUID->\ "931e97fb-a3a2-4d03-948c-61d39e6315b9"] }, Open ]], Cell[BoxData[ RowBox[{ RowBox[{"g", "=", RowBox[{"Map", "[", RowBox[{ RowBox[{ RowBox[{"GraphData", "[", RowBox[{"#", ",", "\"\\""}], "]"}], "&"}], ",", RowBox[{"DeleteCases", "[", RowBox[{"l", ",", RowBox[{"{", "}"}]}], "]"}], ",", RowBox[{"{", "2", "}"}]}], "]"}]}], ";"}]], "Input",ExpressionUUID->\ "0ec293f5-7b41-4c6d-93bf-e8c8669e018e"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Grid", "[", RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"GraphicsGrid", "[", RowBox[{"#", ",", RowBox[{"Dividers", "\[Rule]", "All"}]}], "]"}], "&"}], "/@", RowBox[{"Partition", "[", RowBox[{"g", ",", "4"}], "]"}]}], "}"}], "]"}]], "Input",ExpressionUUID->\ "a6da8ddd-f190-451e-80b4-c2b7e8dca8b0"], Cell[BoxData[ TagBox[GridBox[{ { GraphicsBox[{{}, {{InsetBox[ GraphicsBox[ TagBox[GraphicsComplexBox[{{0., 1.}, {-0.866, -0.5}, { 0.866, -0.5}}, { {GrayLevel[0], LineBox[{{1, 2}, {1, 3}, {2, 3}}]}, {RGBColor[1, 0, 0], AbsolutePointSize[5], PointBox[{1, 2, 3}]}}], Annotation[#, VertexCoordinateRules -> {{0., 1.}, {-0.866, -0.5}, { 0.866, -0.5}}]& ], AspectRatio->Automatic, FrameTicks->None, PlotRange->All, PlotRangePadding->Scaled[0.1]], {192., -194.4}, ImageScaled[{0.5, 0.5}], {360., 360.00000000000006}], TagBox[InsetBox["", {576., -194.4}, {Center, Center}, {360., 360.00000000000006}], "InsetString"]}, {InsetBox[ GraphicsBox[ TagBox[GraphicsComplexBox[{{1., 2.}, {1., 1.}, {2., 1.}, {2., 2.}}, { {GrayLevel[0], LineBox[{{1, 2}, {1, 4}, {2, 3}, {3, 4}}]}, {RGBColor[1, 0, 0], AbsolutePointSize[5], PointBox[{1, 2, 3, 4}]}}], Annotation[#, VertexCoordinateRules -> {{1., 2.}, {1., 1.}, {2., 1.}, {2., 2.}}]& ], AspectRatio->Automatic, FrameTicks->None, PlotRange->All, PlotRangePadding->Scaled[0.1]], {192., -583.2}, ImageScaled[{0.5, 0.5}], {360., 360.00000000000006}], TagBox[InsetBox["", {576., -583.2}, {Center, Center}, {360., 360.00000000000006}], "InsetString"]}, {InsetBox[ GraphicsBox[ TagBox[GraphicsComplexBox[{{0., 0.8506508083520399}, {-0.8090169943749473, 0.26286555605956685`}, {-0.5000000000000001, \ -0.6881909602355867}, {0.4999999999999998, -0.6881909602355868}, { 0.8090169943749475, 0.2628655560595666}}, { {GrayLevel[0], LineBox[{{1, 2}, {1, 5}, {2, 3}, {3, 4}, {4, 5}}]}, {RGBColor[1, 0, 0], AbsolutePointSize[5], PointBox[{1, 2, 3, 4, 5}]}}], Annotation[#, VertexCoordinateRules -> {{0., 0.8506508083520399}, {-0.8090169943749473, 0.26286555605956685`}, {-0.5000000000000001, \ -0.6881909602355867}, {0.4999999999999998, -0.6881909602355868}, { 0.8090169943749475, 0.2628655560595666}}]& ], AspectRatio->Automatic, FrameTicks->None, PlotRange->All, PlotRangePadding->Scaled[0.1]], {192., -972.}, ImageScaled[{0.5, 0.5}], {360., 360.}], TagBox[InsetBox["", {576., -972.}, {Center, Center}, {360., 360.}], "InsetString"]}, {InsetBox[ GraphicsBox[ TagBox[GraphicsComplexBox[{{1., 0.}, {0.5000000000000001, 0.8660254037844386}, {-0.4999999999999998, 0.8660254037844388}, {-1., 0.}, {-0.5000000000000004, -0.8660254037844384}, { 0.5, -0.8660254037844386}}, { {GrayLevel[0], LineBox[{{1, 2}, {1, 6}, {2, 3}, {3, 4}, {4, 5}, {5, 6}}]}, {RGBColor[1, 0, 0], AbsolutePointSize[5], PointBox[{1, 2, 3, 4, 5, 6}]}}], Annotation[#, VertexCoordinateRules -> {{1., 0.}, {0.5000000000000001, 0.8660254037844386}, {-0.4999999999999998, 0.8660254037844388}, {-1., 0.}, {-0.5000000000000004, -0.8660254037844384}, { 0.5, -0.8660254037844386}}]& ], AspectRatio->Automatic, FrameTicks->None, PlotRange->All, PlotRangePadding->Scaled[0.1]], {192., -1360.8000000000002}, ImageScaled[{0.5, 0.5}], {360., 359.9999999999998}], InsetBox[ GraphicsBox[ TagBox[GraphicsComplexBox[{{0.196, 0.928}, {2., 0.928}, {0.196, 0.}, {2., 0.}, {1., 0.464}, {2.804, 0.464}}, { {GrayLevel[0], LineBox[{{1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 5}, {4, 6}}]}, {RGBColor[1, 0, 0], AbsolutePointSize[5], PointBox[{1, 2, 3, 4, 5, 6}]}}], Annotation[#, VertexCoordinateRules -> {{0.196, 0.928}, {2., 0.928}, {0.196, 0.}, {2., 0.}, {1., 0.464}, {2.804, 0.464}}]& ], AspectRatio->Automatic, FrameTicks->None, PlotRange->All, PlotRangePadding->Scaled[0.1]], {576., -1360.8000000000002}, ImageScaled[{0.5, 0.5}], {360., 359.9999999999998}]}}, StyleBox[{{}, {LineBox[{{0, 0}, {0, -388.8}}], LineBox[{{0, -388.8}, {0, -777.6}}], LineBox[{{0, -777.6}, {0, -1166.4}}], LineBox[{{0, -1166.4}, {0, -1555.2}}], LineBox[{{384., 0}, {384., -388.8}}], LineBox[{{384., -388.8}, {384., -777.6}}], LineBox[{{384., -777.6}, {384., -1166.4}}], LineBox[{{384., -1166.4}, {384., -1555.2}}], LineBox[{{768., 0}, {768., -388.8}}], LineBox[{{768., -388.8}, {768., -777.6}}], LineBox[{{768., -777.6}, {768., -1166.4}}], LineBox[{{768., -1166.4}, {768., -1555.2}}], LineBox[{{0, 0}, {384., 0}}], LineBox[{{384., 0}, {768., 0}}], LineBox[{{0, -388.8}, {384., -388.8}}], LineBox[{{384., -388.8}, {768., -388.8}}], LineBox[{{0, -777.6}, {384., -777.6}}], LineBox[{{384., -777.6}, {768., -777.6}}], LineBox[{{0, -1166.4}, {384., -1166.4}}], LineBox[{{384., -1166.4}, {768., -1166.4}}], LineBox[{{0, -1555.2}, {384., -1555.2}}], LineBox[{{384., -1555.2}, {768., -1555.2}}]}}, Antialiasing->False]}, ContentSelectable->True, PlotRangePadding->{6, 5}], GraphicsBox[{{}, {{InsetBox[ GraphicsBox[ TagBox[GraphicsComplexBox[{{0., 1.1523824354812433`}, {-0.900968867902419, 0.7184986963636852}, {-1.1234898018587336`, \ -0.2564292158181383}, {-0.5000000000000002, -1.0382606982861682`}, { 0.49999999999999983`, -1.0382606982861684`}, { 1.1234898018587334`, -0.25642921581813877`}, {0.9009688679024193, 0.718498696363685}}, { {GrayLevel[0], LineBox[{{1, 2}, {1, 7}, {2, 3}, {3, 4}, {4, 5}, {5, 6}, {6, 7}}]}, {RGBColor[1, 0, 0], AbsolutePointSize[5], PointBox[{1, 2, 3, 4, 5, 6, 7}]}}], Annotation[#, VertexCoordinateRules -> {{0., 1.1523824354812433`}, {-0.900968867902419, 0.7184986963636852}, {-1.1234898018587336`, \ -0.2564292158181383}, {-0.5000000000000002, -1.0382606982861682`}, { 0.49999999999999983`, -1.0382606982861684`}, { 1.1234898018587334`, -0.25642921581813877`}, { 0.9009688679024193, 0.718498696363685}}]& ], AspectRatio->Automatic, FrameTicks->None, PlotRange->All, PlotRangePadding->Scaled[0.1]], {193.5, -194.4}, ImageScaled[{0.5, 0.5}], {360., 360.00000000000006}], InsetBox[ GraphicsBox[ TagBox[GraphicsComplexBox[{{0.746778, -2.61333}, { 1.26073, -0.258398}, {0.243711, -1.24362}, { 0.243711, -1.74909}, {1.2437, -1.74554}, {1.24374, -1.25812}, { 0.260889, -0.243711}}, { {GrayLevel[0], LineBox[{{1, 4}, {1, 5}, {2, 6}, {2, 7}, {3, 6}, {3, 7}, {4, 5}}]}, {RGBColor[1, 0, 0], AbsolutePointSize[5], PointBox[{1, 2, 3, 4, 5, 6, 7}]}}], Annotation[#, VertexCoordinateRules -> {{0.746778, -2.61333}, { 1.26073, -0.258398}, {0.243711, -1.24362}, { 0.243711, -1.74909}, {1.2437, -1.74554}, {1.24374, -1.25812}, { 0.260889, -0.243711}}]& ], AspectRatio->Automatic, FrameTicks->None, PlotRange->All, PlotRangePadding->Scaled[0.1]], {580.5, -194.4}, ImageScaled[{0.5, 0.5}], {360., 360.00000000000006}], TagBox[InsetBox["", {967.5, -194.4}, {Center, Center}, {360., 360.00000000000006}], "InsetString"]}, {InsetBox[ GraphicsBox[ TagBox[GraphicsComplexBox[{{0.9238795325112868, 0.9238795325112867}, {0., 1.3065629648763766`}, {-0.9238795325112867, 0.9238795325112868}, {-1.3065629648763766`, 0.}, {-0.923879532511287, -0.9238795325112867}, { 0., -1.3065629648763766`}, { 0.9238795325112867, -0.923879532511287}, {1.3065629648763766`, 0.}}, { {GrayLevel[0], LineBox[{{1, 2}, {1, 8}, {2, 3}, {3, 4}, {4, 5}, {5, 6}, {6, 7}, {7, 8}}]}, {RGBColor[1, 0, 0], AbsolutePointSize[5], PointBox[{1, 2, 3, 4, 5, 6, 7, 8}]}}], Annotation[#, VertexCoordinateRules -> {{0.9238795325112868, 0.9238795325112867}, {0., 1.3065629648763766`}, {-0.9238795325112867, 0.9238795325112868}, {-1.3065629648763766`, 0.}, {-0.923879532511287, -0.9238795325112867}, { 0., -1.3065629648763766`}, { 0.9238795325112867, -0.923879532511287}, {1.3065629648763766`, 0.}}]& ], AspectRatio->Automatic, FrameTicks->None, PlotRange->All, PlotRangePadding->Scaled[0.1]], {193.5, -583.2}, ImageScaled[{0.5, 0.5}], {360., 360.00000000000006}], InsetBox[ GraphicsBox[ TagBox[GraphicsComplexBox[{{0.81761, -3.35834}, { 0.314542, -1.28814}, {1.93235, -1.25944}, {0.314542, -2.49409}, { 0.607164, -0.331472}, {1.31454, -2.49054}, {1.13314, -1.86146}, { 1.60741, -0.314542}}, { {GrayLevel[0], LineBox[{{1, 4}, {1, 6}, {2, 5}, {2, 7}, {3, 7}, {3, 8}, {4, 6}, {5, 8}}]}, {RGBColor[1, 0, 0], AbsolutePointSize[5], PointBox[{1, 2, 3, 4, 5, 6, 7, 8}]}}], Annotation[#, VertexCoordinateRules -> {{0.81761, -3.35834}, { 0.314542, -1.28814}, {1.93235, -1.25944}, { 0.314542, -2.49409}, {0.607164, -0.331472}, { 1.31454, -2.49054}, {1.13314, -1.86146}, { 1.60741, -0.314542}}]& ], AspectRatio->Automatic, FrameTicks->None, PlotRange->All, PlotRangePadding->Scaled[0.1]], {580.5, -583.2}, ImageScaled[{0.5, 0.5}], {360., 360.00000000000006}], InsetBox[ GraphicsBox[ TagBox[GraphicsComplexBox[{{1.27096, -0.268626}, { 0.253938, -1.25385}, {1.27096, -1.79091}, {0.253938, -2.77613}, { 1.25396, -1.26835}, {0.271117, -0.253938}, {1.25396, -2.79063}, { 0.271117, -1.77622}}, { {GrayLevel[0], LineBox[{{1, 5}, {1, 6}, {2, 5}, {2, 6}, {3, 7}, {3, 8}, {4, 7}, {4, 8}}]}, {RGBColor[1, 0, 0], AbsolutePointSize[5], PointBox[{1, 2, 3, 4, 5, 6, 7, 8}]}}], Annotation[#, VertexCoordinateRules -> {{1.27096, -0.268626}, { 0.253938, -1.25385}, {1.27096, -1.79091}, { 0.253938, -2.77613}, {1.25396, -1.26835}, { 0.271117, -0.253938}, {1.25396, -2.79063}, { 0.271117, -1.77622}}]& ], AspectRatio->Automatic, FrameTicks->None, PlotRange->All, PlotRangePadding->Scaled[0.1]], {967.5, -583.2}, ImageScaled[{0.5, 0.5}], {360., 360.00000000000006}]}, {InsetBox[ GraphicsBox[ TagBox[GraphicsComplexBox[{{0., 1.4619022000815438`}, {-0.9396926207859084, 1.1198820567558752`}, {-1.4396926207859086`, 0.2538566529714361}, {-1.2660444431189783`, \ -0.7309511000407716}, {-0.4999999999999997, -1.3737387097273113`}, { 0.4999999999999993, -1.3737387097273115`}, { 1.266044443118978, -0.7309511000407726}, {1.4396926207859086`, 0.25385665297143567`}, {0.9396926207859091, 1.1198820567558747`}}, { {GrayLevel[0], LineBox[{{1, 2}, {1, 9}, {2, 3}, {3, 4}, {4, 5}, {5, 6}, {6, 7}, {7, 8}, {8, 9}}]}, {RGBColor[1, 0, 0], AbsolutePointSize[5], PointBox[{1, 2, 3, 4, 5, 6, 7, 8, 9}]}}], Annotation[#, VertexCoordinateRules -> {{0., 1.4619022000815438`}, {-0.9396926207859084, 1.1198820567558752`}, {-1.4396926207859086`, 0.2538566529714361}, {-1.2660444431189783`, \ -0.7309511000407716}, {-0.4999999999999997, -1.3737387097273113`}, { 0.4999999999999993, -1.3737387097273115`}, { 1.266044443118978, -0.7309511000407726}, {1.4396926207859086`, 0.25385665297143567`}, {0.9396926207859091, 1.1198820567558747`}}]& ], AspectRatio->Automatic, FrameTicks->None, PlotRange->All, PlotRangePadding->Scaled[0.1]], {193.5, -972.}, ImageScaled[{0.5, 0.5}], {360., 360.}], InsetBox[ GraphicsBox[ TagBox[GraphicsComplexBox[{{0.736551, -1.10128}, { 0.233483, -0.237029}, {1.23348, -0.233483}, { 0.736551, -2.43604}, {0.233483, -1.57179}, {1.23348, -1.56824}, { 2.20351, -1.10128}, {1.70044, -0.237029}, {2.70044, -0.233483}}, { {GrayLevel[0], LineBox[{{1, 2}, {1, 3}, {2, 3}, {4, 5}, {4, 6}, {5, 6}, {7, 8}, {7, 9}, {8, 9}}]}, {RGBColor[1, 0, 0], AbsolutePointSize[5], PointBox[{1, 2, 3, 4, 5, 6, 7, 8, 9}]}}], Annotation[#, VertexCoordinateRules -> {{0.736551, -1.10128}, { 0.233483, -0.237029}, {1.23348, -0.233483}, { 0.736551, -2.43604}, {0.233483, -1.57179}, { 1.23348, -1.56824}, {2.20351, -1.10128}, {1.70044, -0.237029}, { 2.70044, -0.233483}}]& ], AspectRatio->Automatic, FrameTicks->None, PlotRange->All, PlotRangePadding->Scaled[0.1]], {580.5, -972.}, ImageScaled[{0.5, 0.5}], {360., 360.}], TagBox[InsetBox["", {967.5, -972.}, {Center, Center}, {360., 360.}], "InsetString"]}, {InsetBox[ GraphicsBox[ TagBox[GraphicsComplexBox[{{1.618033988749895, 0.}, { 1.3090169943749475`, 0.9510565162951536}, {0.5000000000000001, 1.5388417685876268`}, {-0.4999999999999999, 1.5388417685876268`}, {-1.3090169943749472`, 0.9510565162951538}, {-1.618033988749895, 0.}, {-1.3090169943749475`, -0.9510565162951534}, \ {-0.5000000000000002, -1.5388417685876268`}, { 0.4999999999999997, -1.5388417685876268`}, { 1.3090169943749472`, -0.9510565162951538}}, { {GrayLevel[0], LineBox[{{1, 2}, {1, 10}, {2, 3}, {3, 4}, {4, 5}, {5, 6}, {6, 7}, {7, 8}, {8, 9}, {9, 10}}]}, {RGBColor[1, 0, 0], AbsolutePointSize[5], PointBox[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}]}}], Annotation[#, VertexCoordinateRules -> {{1.618033988749895, 0.}, { 1.3090169943749475`, 0.9510565162951536}, {0.5000000000000001, 1.5388417685876268`}, {-0.4999999999999999, 1.5388417685876268`}, {-1.3090169943749472`, 0.9510565162951538}, {-1.618033988749895, 0.}, {-1.3090169943749475`, -0.9510565162951534}, \ {-0.5000000000000002, -1.5388417685876268`}, { 0.4999999999999997, -1.5388417685876268`}, { 1.3090169943749472`, -0.9510565162951538}}]& ], AspectRatio->Automatic, FrameTicks->None, PlotRange->All, PlotRangePadding->Scaled[0.1]], {193.5, -1360.8000000000002}, ImageScaled[{0.5, 0.5}], {360., 359.9999999999998}], InsetBox[ GraphicsBox[ TagBox[GraphicsComplexBox[{{0.396985, -1.40742}, { 1.23198, -1.95677}, {0.662018, -0.442513}, {2.013, -1.33268}, { 1.66159, -0.396985}, {0.396985, -3.76118}, {1.23198, -4.31053}, { 0.662018, -2.79627}, {2.013, -3.68644}, {1.66159, -2.75074}}, { {GrayLevel[0], LineBox[{{1, 2}, {1, 3}, {2, 4}, {3, 5}, {4, 5}, {6, 7}, {6, 8}, {7, 9}, {8, 10}, {9, 10}}]}, {RGBColor[1, 0, 0], AbsolutePointSize[5], PointBox[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}]}}], Annotation[#, VertexCoordinateRules -> {{0.396985, -1.40742}, { 1.23198, -1.95677}, {0.662018, -0.442513}, {2.013, -1.33268}, { 1.66159, -0.396985}, {0.396985, -3.76118}, { 1.23198, -4.31053}, {0.662018, -2.79627}, {2.013, -3.68644}, { 1.66159, -2.75074}}]& ], AspectRatio->Automatic, FrameTicks->None, PlotRange->All, PlotRangePadding->Scaled[0.1]], {580.5, -1360.8000000000002}, ImageScaled[{0.5, 0.5}], {360., 359.9999999999998}], TagBox[InsetBox["", {967.5, -1360.8000000000002}, {Center, Center}, {360., 359.9999999999998}], "InsetString"]}}, StyleBox[{{}, {LineBox[{{0, 0}, {0, -388.8}}], LineBox[{{0, -388.8}, {0, -777.6}}], LineBox[{{0, -777.6}, {0, -1166.4}}], LineBox[{{0, -1166.4}, {0, -1555.2}}], LineBox[{{387., 0}, {387., -388.8}}], LineBox[{{387., -388.8}, {387., -777.6}}], LineBox[{{387., -777.6}, {387., -1166.4}}], LineBox[{{387., -1166.4}, {387., -1555.2}}], LineBox[{{774., 0}, {774., -388.8}}], LineBox[{{774., -388.8}, {774., -777.6}}], LineBox[{{774., -777.6}, {774., -1166.4}}], LineBox[{{774., -1166.4}, {774., -1555.2}}], LineBox[{{1161., 0}, {1161., -388.8}}], LineBox[{{1161., -388.8}, {1161., -777.6}}], LineBox[{{1161., -777.6}, {1161., -1166.4}}], LineBox[{{1161., -1166.4}, {1161., -1555.2}}], LineBox[{{0, 0}, {387., 0}}], LineBox[{{387., 0}, {774., 0}}], LineBox[{{774., 0}, {1161., 0}}], LineBox[{{0, -388.8}, {387., -388.8}}], LineBox[{{387., -388.8}, {774., -388.8}}], LineBox[{{774., -388.8}, {1161., -388.8}}], LineBox[{{0, -777.6}, {387., -777.6}}], LineBox[{{387., -777.6}, {774., -777.6}}], LineBox[{{774., -777.6}, {1161., -777.6}}], LineBox[{{0, -1166.4}, {387., -1166.4}}], LineBox[{{387., -1166.4}, {774., -1166.4}}], LineBox[{{774., -1166.4}, {1161., -1166.4}}], LineBox[{{0, -1555.2}, {387., -1555.2}}], LineBox[{{387., -1555.2}, {774., -1555.2}}], LineBox[{{774., -1555.2}, {1161., -1555.2}}]}}, Antialiasing->False]}, ContentSelectable->True, PlotRangePadding->{6, 5}]} }, AutoDelete->False, GridBoxItemSize->{"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Grid"]], "Output",ExpressionUUID->"52ebe1ac-1e57-4d6e-9c92-31df21e32296"] }, Open ]], Cell[BoxData[{ RowBox[{ RowBox[{"graphDisjointUnion", "[", "g_System`Graph`", "]"}], ":=", "g"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"graphDisjointUnion", "[", "g__", "]"}], ":=", RowBox[{"GraphDisjointUnion", "[", "g", "]"}]}]}], "Input",ExpressionUUID->\ "c4800483-6ee0-436b-a78c-2c61ecfde8ba"], Cell[BoxData[ RowBox[{ RowBox[{"g", "=", RowBox[{"Map", "[", RowBox[{ RowBox[{ RowBox[{"GraphPlot", "[", "#", "]"}], "&"}], ",", RowBox[{"Map", "[", RowBox[{ RowBox[{ RowBox[{"graphDisjointUnion", "@@", "#"}], "&"}], ",", RowBox[{"Map", "[", RowBox[{"CycleGraph", ",", RowBox[{"DeleteCases", "[", RowBox[{"i", ",", RowBox[{"{", "}"}]}], "]"}], ",", RowBox[{"{", "3", "}"}]}], "]"}], ",", RowBox[{"{", "2", "}"}]}], "]"}], ",", RowBox[{"{", "2", "}"}]}], "]"}]}], ";"}]], "Input",ExpressionUUID->\ "811eb8cc-f5fe-4000-88d7-e48e4477d328"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Grid", "[", RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"GraphicsGrid", "[", RowBox[{"#", ",", RowBox[{"Dividers", "\[Rule]", "All"}]}], "]"}], "&"}], "/@", RowBox[{"Partition", "[", RowBox[{"g", ",", "4"}], "]"}]}], "}"}], "]"}]], "Input",ExpressionUUID->\ "51ca07b1-b778-4ceb-8814-0a9e6e3186d6"], Cell[BoxData[ TagBox[GridBox[{ { GraphicsBox[{{}, {{InsetBox[ GraphicsBox[ TagBox[GraphicsComplexBox[{{ 0.8660254037844388, -0.4999999999999998}, {-0.8660254037844384, \ -0.5000000000000004}, {-2.4492935982947064`*^-16, 1.}}, { {GrayLevel[0], LineBox[{{1, 2}, {1, 3}, {2, 3}}]}, {RGBColor[1, 0, 0], AbsolutePointSize[5], TagBox[ TooltipBox[PointBox[1], "1"], Annotation[#, 1, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[2], "2"], Annotation[#, 2, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[3], "3"], Annotation[#, 3, "Tooltip"]& ]}}], Annotation[#, VertexCoordinateRules -> {{ 0.8660254037844388, -0.4999999999999998}, {-0.8660254037844384, \ -0.5000000000000004}, {-2.4492935982947064`*^-16, 1.}}]& ], AspectRatio->Automatic, FrameTicks->None, PlotRange->All, PlotRangePadding->Scaled[0.1]], {192., -194.4}, ImageScaled[{0.5, 0.5}], {360., 360.00000000000006}], TagBox[InsetBox["", {576., -194.4}, {Center, Center}, {360., 360.00000000000006}], "InsetString"]}, {InsetBox[ GraphicsBox[ TagBox[GraphicsComplexBox[{{1., 6.123233995736766*^-17}, { 1.2246467991473532`*^-16, -1.}, {-1., \ -1.8369701987210297`*^-16}, {-2.4492935982947064`*^-16, 1.}}, { {GrayLevel[0], LineBox[{{1, 2}, {1, 4}, {2, 3}, {3, 4}}]}, {RGBColor[1, 0, 0], AbsolutePointSize[5], TagBox[ TooltipBox[PointBox[1], "1"], Annotation[#, 1, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[2], "2"], Annotation[#, 2, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[3], "3"], Annotation[#, 3, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[4], "4"], Annotation[#, 4, "Tooltip"]& ]}}], Annotation[#, VertexCoordinateRules -> {{1., 6.123233995736766*^-17}, { 1.2246467991473532`*^-16, -1.}, {-1., \ -1.8369701987210297`*^-16}, {-2.4492935982947064`*^-16, 1.}}]& ], AspectRatio->Automatic, FrameTicks->None, PlotRange->All, PlotRangePadding->Scaled[0.1]], {192., -583.2}, ImageScaled[{0.5, 0.5}], {360., 360.00000000000006}], TagBox[InsetBox["", {576., -583.2}, {Center, Center}, {360., 360.00000000000006}], "InsetString"]}, {InsetBox[ GraphicsBox[ TagBox[GraphicsComplexBox[{{0.9510565162951535, 0.30901699437494745`}, { 0.5877852522924732, -0.8090169943749473}, {-0.587785252292473, \ -0.8090169943749475}, {-0.9510565162951536, 0.30901699437494723`}, {-2.4492935982947064`*^-16, 1.}}, { {GrayLevel[0], LineBox[{{1, 2}, {1, 5}, {2, 3}, {3, 4}, {4, 5}}]}, {RGBColor[1, 0, 0], AbsolutePointSize[5], TagBox[ TooltipBox[PointBox[1], "1"], Annotation[#, 1, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[2], "2"], Annotation[#, 2, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[3], "3"], Annotation[#, 3, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[4], "4"], Annotation[#, 4, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[5], "5"], Annotation[#, 5, "Tooltip"]& ]}}], Annotation[#, VertexCoordinateRules -> {{0.9510565162951535, 0.30901699437494745`}, { 0.5877852522924732, -0.8090169943749473}, {-0.587785252292473, \ -0.8090169943749475}, {-0.9510565162951536, 0.30901699437494723`}, {-2.4492935982947064`*^-16, 1.}}]& ], AspectRatio->Automatic, FrameTicks->None, PlotRange->All, PlotRangePadding->Scaled[0.1]], {192., -972.}, ImageScaled[{0.5, 0.5}], {360., 360.}], TagBox[InsetBox["", {576., -972.}, {Center, Center}, {360., 360.}], "InsetString"]}, {InsetBox[ GraphicsBox[ TagBox[GraphicsComplexBox[{{0.8660254037844386, 0.5000000000000001}, {0.8660254037844388, -0.4999999999999998}, { 1.2246467991473532`*^-16, -1.}, {-0.8660254037844384, \ -0.5000000000000004}, {-0.866025403784439, 0.4999999999999993}, {-2.4492935982947064`*^-16, 1.}}, { {GrayLevel[0], LineBox[{{1, 2}, {1, 6}, {2, 3}, {3, 4}, {4, 5}, {5, 6}}]}, {RGBColor[1, 0, 0], AbsolutePointSize[5], TagBox[ TooltipBox[PointBox[1], "1"], Annotation[#, 1, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[2], "2"], Annotation[#, 2, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[3], "3"], Annotation[#, 3, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[4], "4"], Annotation[#, 4, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[5], "5"], Annotation[#, 5, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[6], "6"], Annotation[#, 6, "Tooltip"]& ]}}], Annotation[#, VertexCoordinateRules -> {{0.8660254037844386, 0.5000000000000001}, { 0.8660254037844388, -0.4999999999999998}, { 1.2246467991473532`*^-16, -1.}, {-0.8660254037844384, \ -0.5000000000000004}, {-0.866025403784439, 0.4999999999999993}, {-2.4492935982947064`*^-16, 1.}}]& ], AspectRatio->Automatic, FrameTicks->None, PlotRange->All, PlotRangePadding->Scaled[0.1]], {192., -1360.8000000000002}, ImageScaled[{0.5, 0.5}], {360., 359.9999999999998}], InsetBox[ GraphicsBox[ TagBox[GraphicsComplexBox[{{ 0.7304051159162894, -1.1012790830126788`}, { 1.2334772912098584`, -0.23703456984951965`}, { 0.23348363742225375`, -0.23348363742225364`}, { 0.7304051159162894, -2.4360418034476115`}, { 1.2334772912098584`, -1.5717972902844521`}, { 0.23348363742225375`, -1.5682463578571864`}}, { {GrayLevel[0], LineBox[{{1, 2}, {1, 3}, {2, 3}, {4, 5}, {4, 6}, {5, 6}}]}, {RGBColor[1, 0, 0], AbsolutePointSize[5], TagBox[ TooltipBox[PointBox[1], "1"], Annotation[#, 1, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[2], "2"], Annotation[#, 2, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[3], "3"], Annotation[#, 3, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[4], "4"], Annotation[#, 4, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[5], "5"], Annotation[#, 5, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[6], "6"], Annotation[#, 6, "Tooltip"]& ]}}], Annotation[#, VertexCoordinateRules -> {{ 0.7304051159162894, -1.1012790830126788`}, { 1.2334772912098584`, -0.23703456984951965`}, { 0.23348363742225375`, -0.23348363742225364`}, { 0.7304051159162894, -2.4360418034476115`}, { 1.2334772912098584`, -1.5717972902844521`}, { 0.23348363742225375`, -1.5682463578571864`}}]& ], AspectRatio->Automatic, FrameTicks->None, PlotRange->All, PlotRangePadding->Scaled[0.1]], {576., -1360.8000000000002}, ImageScaled[{0.5, 0.5}], {360., 359.9999999999998}]}}, StyleBox[{{}, {LineBox[{{0, 0}, {0, -388.8}}], LineBox[{{0, -388.8}, {0, -777.6}}], LineBox[{{0, -777.6}, {0, -1166.4}}], LineBox[{{0, -1166.4}, {0, -1555.2}}], LineBox[{{384., 0}, {384., -388.8}}], LineBox[{{384., -388.8}, {384., -777.6}}], LineBox[{{384., -777.6}, {384., -1166.4}}], LineBox[{{384., -1166.4}, {384., -1555.2}}], LineBox[{{768., 0}, {768., -388.8}}], LineBox[{{768., -388.8}, {768., -777.6}}], LineBox[{{768., -777.6}, {768., -1166.4}}], LineBox[{{768., -1166.4}, {768., -1555.2}}], LineBox[{{0, 0}, {384., 0}}], LineBox[{{384., 0}, {768., 0}}], LineBox[{{0, -388.8}, {384., -388.8}}], LineBox[{{384., -388.8}, {768., -388.8}}], LineBox[{{0, -777.6}, {384., -777.6}}], LineBox[{{384., -777.6}, {768., -777.6}}], LineBox[{{0, -1166.4}, {384., -1166.4}}], LineBox[{{384., -1166.4}, {768., -1166.4}}], LineBox[{{0, -1555.2}, {384., -1555.2}}], LineBox[{{384., -1555.2}, {768., -1555.2}}]}}, Antialiasing->False]}, ContentSelectable->True, PlotRangePadding->{6, 5}], GraphicsBox[{{}, {{InsetBox[ GraphicsBox[ TagBox[GraphicsComplexBox[{{0.7818314824680297, 0.6234898018587336}, { 0.9749279121818236, -0.22252093395631434`}, { 0.43388373911755823`, -0.900968867902419}, {-0.433883739117558, \ -0.9009688679024191}, {-0.9749279121818235, -0.2225209339563146}, \ {-0.7818314824680299, 0.6234898018587334}, {-2.4492935982947064`*^-16, 1.}}, { {GrayLevel[0], LineBox[{{1, 2}, {1, 7}, {2, 3}, {3, 4}, {4, 5}, {5, 6}, {6, 7}}]}, {RGBColor[1, 0, 0], AbsolutePointSize[5], TagBox[ TooltipBox[PointBox[1], "1"], Annotation[#, 1, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[2], "2"], Annotation[#, 2, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[3], "3"], Annotation[#, 3, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[4], "4"], Annotation[#, 4, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[5], "5"], Annotation[#, 5, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[6], "6"], Annotation[#, 6, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[7], "7"], Annotation[#, 7, "Tooltip"]& ]}}], Annotation[#, VertexCoordinateRules -> {{0.7818314824680297, 0.6234898018587336}, { 0.9749279121818236, -0.22252093395631434`}, { 0.43388373911755823`, -0.900968867902419}, {-0.433883739117558, \ -0.9009688679024191}, {-0.9749279121818235, -0.2225209339563146}, \ {-0.7818314824680299, 0.6234898018587334}, {-2.4492935982947064`*^-16, 1.}}]& ], AspectRatio->Automatic, FrameTicks->None, PlotRange->All, PlotRangePadding->Scaled[0.1]], {195., -194.4}, ImageScaled[{0.5, 0.5}], {360., 360.00000000000006}], InsetBox[ GraphicsBox[ TagBox[GraphicsComplexBox[{{ 0.24515173811488777`, -0.271214512899816}, { 1.2445448617610904`, -0.24515173811488777`}, { 1.273814437708812, -1.244536579965403}, { 0.27387587448524064`, -1.270967748981138}, { 0.7420732166089234, -2.629066670801339}, { 1.2451453919024924`, -1.7648221576381795`}, { 0.24515173811488777`, -1.7612712252109137`}}, { {GrayLevel[0], LineBox[{{1, 2}, {1, 4}, {2, 3}, {3, 4}, {5, 6}, {5, 7}, {6, 7}}]}, {RGBColor[1, 0, 0], AbsolutePointSize[5], TagBox[ TooltipBox[PointBox[1], "1"], Annotation[#, 1, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[2], "2"], Annotation[#, 2, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[3], "3"], Annotation[#, 3, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[4], "4"], Annotation[#, 4, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[5], "5"], Annotation[#, 5, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[6], "6"], Annotation[#, 6, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[7], "7"], Annotation[#, 7, "Tooltip"]& ]}}], Annotation[#, VertexCoordinateRules -> {{ 0.24515173811488777`, -0.271214512899816}, { 1.2445448617610904`, -0.24515173811488777`}, { 1.273814437708812, -1.244536579965403}, { 0.27387587448524064`, -1.270967748981138}, { 0.7420732166089234, -2.629066670801339}, { 1.2451453919024924`, -1.7648221576381795`}, { 0.24515173811488777`, -1.7612712252109137`}}]& ], AspectRatio->Automatic, FrameTicks->None, PlotRange->All, PlotRangePadding->Scaled[0.1]], {585., -194.4}, ImageScaled[{0.5, 0.5}], {360., 360.00000000000006}], TagBox[InsetBox["", {975., -194.4}, {Center, Center}, {360., 360.00000000000006}], "InsetString"], TagBox[InsetBox["", {1365., -194.4}, {Center, Center}, {360., 360.00000000000006}], "InsetString"], TagBox[InsetBox["", {1755., -194.4}, {Center, Center}, {360., 360.00000000000006}], "InsetString"]}, {InsetBox[ GraphicsBox[ TagBox[GraphicsComplexBox[{{0.7071067811865475, 0.7071067811865476}, {1., 6.123233995736766*^-17}, { 0.7071067811865476, -0.7071067811865475}, { 1.2246467991473532`*^-16, -1.}, {-0.7071067811865475, \ -0.7071067811865477}, {-1., -1.8369701987210297`*^-16}, {-0.7071067811865477, 0.7071067811865475}, {-2.4492935982947064`*^-16, 1.}}, { {GrayLevel[0], LineBox[{{1, 2}, {1, 8}, {2, 3}, {3, 4}, {4, 5}, {5, 6}, {6, 7}, {7, 8}}]}, {RGBColor[1, 0, 0], AbsolutePointSize[5], TagBox[ TooltipBox[PointBox[1], "1"], Annotation[#, 1, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[2], "2"], Annotation[#, 2, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[3], "3"], Annotation[#, 3, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[4], "4"], Annotation[#, 4, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[5], "5"], Annotation[#, 5, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[6], "6"], Annotation[#, 6, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[7], "7"], Annotation[#, 7, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[8], "8"], Annotation[#, 8, "Tooltip"]& ]}}], Annotation[#, VertexCoordinateRules -> {{0.7071067811865475, 0.7071067811865476}, {1., 6.123233995736766*^-17}, { 0.7071067811865476, -0.7071067811865475}, { 1.2246467991473532`*^-16, -1.}, {-0.7071067811865475, \ -0.7071067811865477}, {-1., -1.8369701987210297`*^-16}, {-0.7071067811865477, 0.7071067811865475}, {-2.4492935982947064`*^-16, 1.}}]& ], AspectRatio->Automatic, FrameTicks->None, PlotRange->All, PlotRangePadding->Scaled[0.1]], {195., -583.2}, ImageScaled[{0.5, 0.5}], {360., 360.00000000000006}], InsetBox[ GraphicsBox[ TagBox[GraphicsComplexBox[{{ 0.6509795294228651, -1.8670667357218629`}, { 1.6509418695519091`, -1.8385403968554779`}, { 1.9325388712071465`, -0.8788844955549684}, { 1.1065008473595517`, -0.31486415035039106`}, { 0.31486415035039117`, -0.9262856957869056}, { 0.8117856288444267, -3.3645904820130705`}, { 1.3148578041379957`, -2.5003459688499112`}, { 0.31486415035039106`, -2.4967950364226454`}}, { {GrayLevel[0], LineBox[{{1, 2}, {1, 5}, {2, 3}, {3, 4}, {4, 5}, {6, 7}, {6, 8}, {7, 8}}]}, {RGBColor[1, 0, 0], AbsolutePointSize[5], TagBox[ TooltipBox[PointBox[1], "1"], Annotation[#, 1, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[2], "2"], Annotation[#, 2, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[3], "3"], Annotation[#, 3, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[4], "4"], Annotation[#, 4, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[5], "5"], Annotation[#, 5, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[6], "6"], Annotation[#, 6, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[7], "7"], Annotation[#, 7, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[8], "8"], Annotation[#, 8, "Tooltip"]& ]}}], Annotation[#, VertexCoordinateRules -> {{ 0.6509795294228651, -1.8670667357218629`}, { 1.6509418695519091`, -1.8385403968554779`}, { 1.9325388712071465`, -0.8788844955549684}, { 1.1065008473595517`, -0.31486415035039106`}, { 0.31486415035039117`, -0.9262856957869056}, { 0.8117856288444267, -3.3645904820130705`}, { 1.3148578041379957`, -2.5003459688499112`}, { 0.31486415035039106`, -2.4967950364226454`}}]& ], AspectRatio->Automatic, FrameTicks->None, PlotRange->All, PlotRangePadding->Scaled[0.1]], {585., -583.2}, ImageScaled[{0.5, 0.5}], {360., 360.00000000000006}], InsetBox[ GraphicsBox[ TagBox[GraphicsComplexBox[{{ 0.2568198388075218, -0.28288261359245004`}, { 1.2562129624537244`, -0.2568198388075218}, { 1.285482538401446, -1.256204680658037}, { 0.28554397517787466`, -1.282635849673772}, { 0.2568198388075218, -1.8223383020737438`}, { 1.2562129624537244`, -1.7962755272888156`}, { 1.285482538401446, -2.795660369139331}, { 0.28554397517787466`, -2.8220915381550657`}}, { {GrayLevel[0], LineBox[{{1, 2}, {1, 4}, {2, 3}, {3, 4}, {5, 6}, {5, 8}, {6, 7}, {7, 8}}]}, {RGBColor[1, 0, 0], AbsolutePointSize[5], TagBox[ TooltipBox[PointBox[1], "1"], Annotation[#, 1, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[2], "2"], Annotation[#, 2, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[3], "3"], Annotation[#, 3, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[4], "4"], Annotation[#, 4, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[5], "5"], Annotation[#, 5, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[6], "6"], Annotation[#, 6, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[7], "7"], Annotation[#, 7, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[8], "8"], Annotation[#, 8, "Tooltip"]& ]}}], Annotation[#, VertexCoordinateRules -> {{ 0.2568198388075218, -0.28288261359245004`}, { 1.2562129624537244`, -0.2568198388075218}, { 1.285482538401446, -1.256204680658037}, { 0.28554397517787466`, -1.282635849673772}, { 0.2568198388075218, -1.8223383020737438`}, { 1.2562129624537244`, -1.7962755272888156`}, { 1.285482538401446, -2.795660369139331}, { 0.28554397517787466`, -2.8220915381550657`}}]& ], AspectRatio->Automatic, FrameTicks->None, PlotRange->All, PlotRangePadding->Scaled[0.1]], {975., -583.2}, ImageScaled[{0.5, 0.5}], {360., 360.00000000000006}], TagBox[InsetBox["", {1365., -583.2}, {Center, Center}, {360., 360.00000000000006}], "InsetString"], TagBox[InsetBox["", {1755., -583.2}, {Center, Center}, {360., 360.00000000000006}], "InsetString"]}, {InsetBox[ GraphicsBox[ TagBox[GraphicsComplexBox[{{0.6427876096865393, 0.7660444431189781}, {0.984807753012208, 0.17364817766693041`}, { 0.8660254037844388, -0.4999999999999998}, { 0.3420201433256689, -0.9396926207859083}, \ {-0.34202014332566866`, -0.9396926207859084}, {-0.8660254037844384, \ -0.5000000000000004}, {-0.9848077530122081, 0.17364817766692997`}, {-0.6427876096865396, 0.7660444431189779}, {-2.4492935982947064`*^-16, 1.}}, { {GrayLevel[0], LineBox[{{1, 2}, {1, 9}, {2, 3}, {3, 4}, {4, 5}, {5, 6}, {6, 7}, {7, 8}, {8, 9}}]}, {RGBColor[1, 0, 0], AbsolutePointSize[5], TagBox[ TooltipBox[PointBox[1], "1"], Annotation[#, 1, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[2], "2"], Annotation[#, 2, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[3], "3"], Annotation[#, 3, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[4], "4"], Annotation[#, 4, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[5], "5"], Annotation[#, 5, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[6], "6"], Annotation[#, 6, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[7], "7"], Annotation[#, 7, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[8], "8"], Annotation[#, 8, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[9], "9"], Annotation[#, 9, "Tooltip"]& ]}}], Annotation[#, VertexCoordinateRules -> {{0.6427876096865393, 0.7660444431189781}, {0.984807753012208, 0.17364817766693041`}, { 0.8660254037844388, -0.4999999999999998}, { 0.3420201433256689, -0.9396926207859083}, \ {-0.34202014332566866`, -0.9396926207859084}, {-0.8660254037844384, \ -0.5000000000000004}, {-0.9848077530122081, 0.17364817766692997`}, {-0.6427876096865396, 0.7660444431189779}, {-2.4492935982947064`*^-16, 1.}}]& ], AspectRatio->Automatic, FrameTicks->None, PlotRange->All, PlotRangePadding->Scaled[0.1]], {195., -972.}, ImageScaled[{0.5, 0.5}], {360., 360.}], InsetBox[ GraphicsBox[ TagBox[GraphicsComplexBox[{{ 0.8396948468912854, -0.3641328631171401}, { 1.8390413474105285`, -0.35082282650598495`}, { 2.3498019205752843`, -1.2103278184782678`}, { 1.8615243651312579`, -2.0832809270290484`}, { 0.8621172021582892, -2.097059857154417}, { 0.35082282650598495`, -1.2377311020275341`}, { 0.8477443050000208, -3.666500955756812}, { 1.3508164802935898`, -2.8022564425936527`}, { 0.3508228265059852, -2.798705510166387}}, { {GrayLevel[0], LineBox[{{1, 2}, {1, 6}, {2, 3}, {3, 4}, {4, 5}, {5, 6}, {7, 8}, {7, 9}, {8, 9}}]}, {RGBColor[1, 0, 0], AbsolutePointSize[5], TagBox[ TooltipBox[PointBox[1], "1"], Annotation[#, 1, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[2], "2"], Annotation[#, 2, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[3], "3"], Annotation[#, 3, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[4], "4"], Annotation[#, 4, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[5], "5"], Annotation[#, 5, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[6], "6"], Annotation[#, 6, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[7], "7"], Annotation[#, 7, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[8], "8"], Annotation[#, 8, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[9], "9"], Annotation[#, 9, "Tooltip"]& ]}}], Annotation[#, VertexCoordinateRules -> {{ 0.8396948468912854, -0.3641328631171401}, { 1.8390413474105285`, -0.35082282650598495`}, { 2.3498019205752843`, -1.2103278184782678`}, { 1.8615243651312579`, -2.0832809270290484`}, { 0.8621172021582892, -2.097059857154417}, { 0.35082282650598495`, -1.2377311020275341`}, { 0.8477443050000208, -3.666500955756812}, { 1.3508164802935898`, -2.8022564425936527`}, { 0.3508228265059852, -2.798705510166387}}]& ], AspectRatio->Automatic, FrameTicks->None, PlotRange->All, PlotRangePadding->Scaled[0.1]], {585., -972.}, ImageScaled[{0.5, 0.5}], {360., 360.}], InsetBox[ GraphicsBox[ TagBox[GraphicsComplexBox[{{ 0.6626476301154991, -1.878734836414497}, { 1.6626099702445432`, -1.850208497548112}, { 1.9442069718997805`, -0.8905525962476024}, { 1.1181689480521857`, -0.3265322510430251}, { 0.3265322510430252, -0.9379537964795396}, { 0.3265322510430251, -2.5578621132854753`}, { 1.3259253746892274`, -2.531799338500547}, { 1.3551949506369494`, -3.5311841803510626`}, { 0.35525638741337795`, -3.5576153493667975`}}, { {GrayLevel[0], LineBox[{{1, 2}, {1, 5}, {2, 3}, {3, 4}, {4, 5}, {6, 7}, {6, 9}, {7, 8}, {8, 9}}]}, {RGBColor[1, 0, 0], AbsolutePointSize[5], TagBox[ TooltipBox[PointBox[1], "1"], Annotation[#, 1, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[2], "2"], Annotation[#, 2, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[3], "3"], Annotation[#, 3, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[4], "4"], Annotation[#, 4, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[5], "5"], Annotation[#, 5, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[6], "6"], Annotation[#, 6, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[7], "7"], Annotation[#, 7, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[8], "8"], Annotation[#, 8, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[9], "9"], Annotation[#, 9, "Tooltip"]& ]}}], Annotation[#, VertexCoordinateRules -> {{ 0.6626476301154991, -1.878734836414497}, { 1.6626099702445432`, -1.850208497548112}, { 1.9442069718997805`, -0.8905525962476024}, { 1.1181689480521857`, -0.3265322510430251}, { 0.3265322510430252, -0.9379537964795396}, { 0.3265322510430251, -2.5578621132854753`}, { 1.3259253746892274`, -2.531799338500547}, { 1.3551949506369494`, -3.5311841803510626`}, { 0.35525638741337795`, -3.5576153493667975`}}]& ], AspectRatio->Automatic, FrameTicks->None, PlotRange->All, PlotRangePadding->Scaled[0.1]], {975., -972.}, ImageScaled[{0.5, 0.5}], {360., 360.}], InsetBox[ GraphicsBox[ TagBox[GraphicsComplexBox[{{ 0.7304051159162894, -1.101279083012679}, { 1.2334772912098584`, -0.23703456984951987`}, { 0.23348363742225375`, -0.23348363742225386`}, { 0.7304051159162894, -2.436041803447612}, { 1.2334772912098584`, -1.5717972902844526`}, { 0.23348363742225375`, -1.5682463578571868`}, { 2.197366044548402, -1.101279083012679}, { 2.7004382198419705`, -0.23703456984951987`}, { 1.7004445660543661`, -0.23348363742225386`}}, { {GrayLevel[0], LineBox[{{1, 2}, {1, 3}, {2, 3}, {4, 5}, {4, 6}, {5, 6}, {7, 8}, {7, 9}, {8, 9}}]}, {RGBColor[1, 0, 0], AbsolutePointSize[5], TagBox[ TooltipBox[PointBox[1], "1"], Annotation[#, 1, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[2], "2"], Annotation[#, 2, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[3], "3"], Annotation[#, 3, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[4], "4"], Annotation[#, 4, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[5], "5"], Annotation[#, 5, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[6], "6"], Annotation[#, 6, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[7], "7"], Annotation[#, 7, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[8], "8"], Annotation[#, 8, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[9], "9"], Annotation[#, 9, "Tooltip"]& ]}}], Annotation[#, VertexCoordinateRules -> {{ 0.7304051159162894, -1.101279083012679}, { 1.2334772912098584`, -0.23703456984951987`}, { 0.23348363742225375`, -0.23348363742225386`}, { 0.7304051159162894, -2.436041803447612}, { 1.2334772912098584`, -1.5717972902844526`}, { 0.23348363742225375`, -1.5682463578571868`}, { 2.197366044548402, -1.101279083012679}, { 2.7004382198419705`, -0.23703456984951987`}, { 1.7004445660543661`, -0.23348363742225386`}}]& ], AspectRatio->Automatic, FrameTicks->None, PlotRange->All, PlotRangePadding->Scaled[0.1]], {1365., -972.}, ImageScaled[{0.5, 0.5}], {360., 360.}], TagBox[InsetBox["", {1755., -972.}, {Center, Center}, {360., 360.}], "InsetString"]}, {InsetBox[ GraphicsBox[ TagBox[GraphicsComplexBox[{{0.5877852522924731, 0.8090169943749475}, {0.9510565162951535, 0.30901699437494745`}, { 0.9510565162951536, -0.30901699437494734`}, { 0.5877852522924732, -0.8090169943749473}, { 1.2246467991473532`*^-16, -1.}, {-0.587785252292473, \ -0.8090169943749476}, {-0.9510565162951535, -0.30901699437494756`}, \ {-0.9510565162951536, 0.30901699437494723`}, {-0.5877852522924734, 0.8090169943749473}, {-2.4492935982947064`*^-16, 1.}}, { {GrayLevel[0], LineBox[{{1, 2}, {1, 10}, {2, 3}, {3, 4}, {4, 5}, {5, 6}, {6, 7}, {7, 8}, {8, 9}, {9, 10}}]}, {RGBColor[1, 0, 0], AbsolutePointSize[5], TagBox[ TooltipBox[PointBox[1], "1"], Annotation[#, 1, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[2], "2"], Annotation[#, 2, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[3], "3"], Annotation[#, 3, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[4], "4"], Annotation[#, 4, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[5], "5"], Annotation[#, 5, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[6], "6"], Annotation[#, 6, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[7], "7"], Annotation[#, 7, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[8], "8"], Annotation[#, 8, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[9], "9"], Annotation[#, 9, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[10], "10"], Annotation[#, 10, "Tooltip"]& ]}}], Annotation[#, VertexCoordinateRules -> {{0.5877852522924731, 0.8090169943749475}, {0.9510565162951535, 0.30901699437494745`}, { 0.9510565162951536, -0.30901699437494734`}, { 0.5877852522924732, -0.8090169943749473}, { 1.2246467991473532`*^-16, -1.}, {-0.587785252292473, \ -0.8090169943749476}, {-0.9510565162951535, -0.30901699437494756`}, \ {-0.9510565162951536, 0.30901699437494723`}, {-0.5877852522924734, 0.8090169943749473}, {-2.4492935982947064`*^-16, 1.}}]& ], AspectRatio->Automatic, FrameTicks->None, PlotRange->All, PlotRangePadding->Scaled[0.1]], {195., -1360.8000000000002}, ImageScaled[{0.5, 0.5}], {360., 359.9999999999998}], InsetBox[ GraphicsBox[ TagBox[GraphicsComplexBox[{{ 2.4108055666565367`, -0.8198989955144054}, { 2.641290935873312, -1.7928898256103418`}, { 2.024115228373062, -2.580466960280523}, { 1.024018536399476, -2.5896253699832137`}, { 0.39438141140191973`, -1.813265160606206}, { 0.6096026334548564, -0.8361107916167205}, { 1.5070823841523702`, -0.39438141140191973`}, { 0.8913028898959554, -4.246183638377478}, { 1.3943750651895244`, -3.381939125214319}, { 0.39438141140191973`, -3.378388192787053}}, { {GrayLevel[0], LineBox[{{1, 2}, {1, 7}, {2, 3}, {3, 4}, {4, 5}, {5, 6}, {6, 7}, {8, 9}, {8, 10}, {9, 10}}]}, {RGBColor[1, 0, 0], AbsolutePointSize[5], TagBox[ TooltipBox[PointBox[1], "1"], Annotation[#, 1, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[2], "2"], Annotation[#, 2, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[3], "3"], Annotation[#, 3, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[4], "4"], Annotation[#, 4, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[5], "5"], Annotation[#, 5, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[6], "6"], Annotation[#, 6, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[7], "7"], Annotation[#, 7, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[8], "8"], Annotation[#, 8, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[9], "9"], Annotation[#, 9, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[10], "10"], Annotation[#, 10, "Tooltip"]& ]}}], Annotation[#, VertexCoordinateRules -> {{ 2.4108055666565367`, -0.8198989955144054}, { 2.641290935873312, -1.7928898256103418`}, { 2.024115228373062, -2.580466960280523}, { 1.024018536399476, -2.5896253699832137`}, { 0.39438141140191973`, -1.813265160606206}, { 0.6096026334548564, -0.8361107916167205}, { 1.5070823841523702`, -0.39438141140191973`}, { 0.8913028898959554, -4.246183638377478}, { 1.3943750651895244`, -3.381939125214319}, { 0.39438141140191973`, -3.378388192787053}}]& ], AspectRatio->Automatic, FrameTicks->None, PlotRange->All, PlotRangePadding->Scaled[0.1]], {585., -1360.8000000000002}, ImageScaled[{0.5, 0.5}], {360., 359.9999999999998}], InsetBox[ GraphicsBox[ TagBox[GraphicsComplexBox[{{ 0.8513629475839194, -0.3758009638097741}, { 1.8507094481031625`, -0.362490927198619}, { 2.3614700212679183`, -1.2219959191709018`}, { 1.8731924658238919`, -2.0949490277216825`}, { 0.8737853028509233, -2.108727957847051}, { 0.362490927198619, -1.2493992027201681`}, { 0.3624909271986192, -2.8597725870292177`}, { 1.3618840508448216`, -2.8337098122442894`}, { 1.3911536267925435`, -3.8330946540948045`}, { 0.39121506356897207`, -3.8595258231105394`}}, { {GrayLevel[0], LineBox[{{1, 2}, {1, 6}, {2, 3}, {3, 4}, {4, 5}, {5, 6}, {7, 8}, {7, 10}, {8, 9}, {9, 10}}]}, {RGBColor[1, 0, 0], AbsolutePointSize[5], TagBox[ TooltipBox[PointBox[1], "1"], Annotation[#, 1, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[2], "2"], Annotation[#, 2, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[3], "3"], Annotation[#, 3, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[4], "4"], Annotation[#, 4, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[5], "5"], Annotation[#, 5, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[6], "6"], Annotation[#, 6, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[7], "7"], Annotation[#, 7, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[8], "8"], Annotation[#, 8, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[9], "9"], Annotation[#, 9, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[10], "10"], Annotation[#, 10, "Tooltip"]& ]}}], Annotation[#, VertexCoordinateRules -> {{ 0.8513629475839194, -0.3758009638097741}, { 1.8507094481031625`, -0.362490927198619}, { 2.3614700212679183`, -1.2219959191709018`}, { 1.8731924658238919`, -2.0949490277216825`}, { 0.8737853028509233, -2.108727957847051}, { 0.362490927198619, -1.2493992027201681`}, { 0.3624909271986192, -2.8597725870292177`}, { 1.3618840508448216`, -2.8337098122442894`}, { 1.3911536267925435`, -3.8330946540948045`}, { 0.39121506356897207`, -3.8595258231105394`}}]& ], AspectRatio->Automatic, FrameTicks->None, PlotRange->All, PlotRangePadding->Scaled[0.1]], {975., -1360.8000000000002}, ImageScaled[{0.5, 0.5}], {360., 359.9999999999998}], InsetBox[ GraphicsBox[ TagBox[GraphicsComplexBox[{{ 0.7323600423510024, -1.9484472486500004`}, { 1.7323223824800462`, -1.9199209097836154`}, { 2.013919384135284, -0.9602650084831059}, { 1.187881360287689, -0.3962446632785286}, { 0.3962446632785285, -1.007666208715043}, { 0.7323600423510024, -4.293139160578529}, { 1.7323223824800462`, -4.264612821712144}, { 2.013919384135284, -3.3049569204116347`}, { 1.187881360287689, -2.7409365752070576`}, { 0.3962446632785285, -3.3523581206435717`}}, { {GrayLevel[0], LineBox[{{1, 2}, {1, 5}, {2, 3}, {3, 4}, {4, 5}, {6, 7}, {6, 10}, {7, 8}, {8, 9}, {9, 10}}]}, {RGBColor[1, 0, 0], AbsolutePointSize[5], TagBox[ TooltipBox[PointBox[1], "1"], Annotation[#, 1, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[2], "2"], Annotation[#, 2, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[3], "3"], Annotation[#, 3, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[4], "4"], Annotation[#, 4, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[5], "5"], Annotation[#, 5, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[6], "6"], Annotation[#, 6, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[7], "7"], Annotation[#, 7, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[8], "8"], Annotation[#, 8, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[9], "9"], Annotation[#, 9, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[10], "10"], Annotation[#, 10, "Tooltip"]& ]}}], Annotation[#, VertexCoordinateRules -> {{ 0.7323600423510024, -1.9484472486500004`}, { 1.7323223824800462`, -1.9199209097836154`}, { 2.013919384135284, -0.9602650084831059}, { 1.187881360287689, -0.3962446632785286}, { 0.3962446632785285, -1.007666208715043}, { 0.7323600423510024, -4.293139160578529}, { 1.7323223824800462`, -4.264612821712144}, { 2.013919384135284, -3.3049569204116347`}, { 1.187881360287689, -2.7409365752070576`}, { 0.3962446632785285, -3.3523581206435717`}}]& ], AspectRatio->Automatic, FrameTicks->None, PlotRange->All, PlotRangePadding->Scaled[0.1]], {1365., -1360.8000000000002}, ImageScaled[{0.5, 0.5}], {360., 359.9999999999998}], InsetBox[ GraphicsBox[ TagBox[GraphicsComplexBox[{{ 0.24126237121734317`, -0.2673251460022714}, { 1.2406554948635455`, -0.24126237121734317`}, { 1.2699250708112675`, -1.2406472130678585`}, { 0.26998650758769605`, -1.2670783820835934`}, { 0.7381838497113788, -2.617398570108705}, { 1.2412560250049478`, -1.7531540569455455`}, { 0.24126237121734317`, -1.7496031245182797`}, { 2.2493712917399895`, -1.1090578168077683`}, { 2.752443467033559, -0.24481330364460907`}, { 1.752449813245954, -0.24126237121734306`}}, { {GrayLevel[0], LineBox[{{1, 2}, {1, 4}, {2, 3}, {3, 4}, {5, 6}, {5, 7}, {6, 7}, {8, 9}, {8, 10}, {9, 10}}]}, {RGBColor[1, 0, 0], AbsolutePointSize[5], TagBox[ TooltipBox[PointBox[1], "1"], Annotation[#, 1, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[2], "2"], Annotation[#, 2, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[3], "3"], Annotation[#, 3, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[4], "4"], Annotation[#, 4, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[5], "5"], Annotation[#, 5, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[6], "6"], Annotation[#, 6, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[7], "7"], Annotation[#, 7, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[8], "8"], Annotation[#, 8, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[9], "9"], Annotation[#, 9, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[10], "10"], Annotation[#, 10, "Tooltip"]& ]}}], Annotation[#, VertexCoordinateRules -> {{ 0.24126237121734317`, -0.2673251460022714}, { 1.2406554948635455`, -0.24126237121734317`}, { 1.2699250708112675`, -1.2406472130678585`}, { 0.26998650758769605`, -1.2670783820835934`}, { 0.7381838497113788, -2.617398570108705}, { 1.2412560250049478`, -1.7531540569455455`}, { 0.24126237121734317`, -1.7496031245182797`}, { 2.2493712917399895`, -1.1090578168077683`}, { 2.752443467033559, -0.24481330364460907`}, { 1.752449813245954, -0.24126237121734306`}}]& ], AspectRatio->Automatic, FrameTicks->None, PlotRange->All, PlotRangePadding->Scaled[0.1]], {1755., -1360.8000000000002}, ImageScaled[{0.5, 0.5}], {360., 359.9999999999998}]}}, StyleBox[{{}, {LineBox[{{0, 0}, {0, -388.8}}], LineBox[{{0, -388.8}, {0, -777.6}}], LineBox[{{0, -777.6}, {0, -1166.4}}], LineBox[{{0, -1166.4}, {0, -1555.2}}], LineBox[{{390., 0}, {390., -388.8}}], LineBox[{{390., -388.8}, {390., -777.6}}], LineBox[{{390., -777.6}, {390., -1166.4}}], LineBox[{{390., -1166.4}, {390., -1555.2}}], LineBox[{{780., 0}, {780., -388.8}}], LineBox[{{780., -388.8}, {780., -777.6}}], LineBox[{{780., -777.6}, {780., -1166.4}}], LineBox[{{780., -1166.4}, {780., -1555.2}}], LineBox[{{1170., 0}, {1170., -388.8}}], LineBox[{{1170., -388.8}, {1170., -777.6}}], LineBox[{{1170., -777.6}, {1170., -1166.4}}], LineBox[{{1170., -1166.4}, {1170., -1555.2}}], LineBox[{{1560., 0}, {1560., -388.8}}], LineBox[{{1560., -388.8}, {1560., -777.6}}], LineBox[{{1560., -777.6}, {1560., -1166.4}}], LineBox[{{1560., -1166.4}, {1560., -1555.2}}], LineBox[{{1950., 0}, {1950., -388.8}}], LineBox[{{1950., -388.8}, {1950., -777.6}}], LineBox[{{1950., -777.6}, {1950., -1166.4}}], LineBox[{{1950., -1166.4}, {1950., -1555.2}}], LineBox[{{0, 0}, {390., 0}}], LineBox[{{390., 0}, {780., 0}}], LineBox[{{780., 0}, {1170., 0}}], LineBox[{{1170., 0}, {1560., 0}}], LineBox[{{1560., 0}, {1950., 0}}], LineBox[{{0, -388.8}, {390., -388.8}}], LineBox[{{390., -388.8}, {780., -388.8}}], LineBox[{{780., -388.8}, {1170., -388.8}}], LineBox[{{1170., -388.8}, {1560., -388.8}}], LineBox[{{1560., -388.8}, {1950., -388.8}}], LineBox[{{0, -777.6}, {390., -777.6}}], LineBox[{{390., -777.6}, {780., -777.6}}], LineBox[{{780., -777.6}, {1170., -777.6}}], LineBox[{{1170., -777.6}, {1560., -777.6}}], LineBox[{{1560., -777.6}, {1950., -777.6}}], LineBox[{{0, -1166.4}, {390., -1166.4}}], LineBox[{{390., -1166.4}, {780., -1166.4}}], LineBox[{{780., -1166.4}, {1170., -1166.4}}], LineBox[{{1170., -1166.4}, {1560., -1166.4}}], LineBox[{{1560., -1166.4}, {1950., -1166.4}}], LineBox[{{0, -1555.2}, {390., -1555.2}}], LineBox[{{390., -1555.2}, {780., -1555.2}}], LineBox[{{780., -1555.2}, {1170., -1555.2}}], LineBox[{{1170., -1555.2}, {1560., -1555.2}}], LineBox[{{1560., -1555.2}, {1950., -1555.2}}]}}, Antialiasing->False]}, ContentSelectable->True, ImageSize->{269., Automatic}, PlotRangePadding->{6, 5}]} }, AutoDelete->False, GridBoxItemSize->{"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Grid"]], "Output",ExpressionUUID->"59d389e4-e2d0-4fe3-99ce-e961e2ef4d5d"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["V6", "Subsubsection",ExpressionUUID->"0f3b90a9-68ce-4499-92f2-9929a7c64655"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"SortBy", "[", RowBox[{ RowBox[{"Select", "[", RowBox[{ RowBox[{"GraphData", "[", "All", "]"}], ",", RowBox[{ RowBox[{ RowBox[{"GraphData", "[", RowBox[{"#", ",", "\"\\""}], "]"}], "===", "#"}], "&"}]}], "]"}], ",", RowBox[{ RowBox[{"GraphData", "[", RowBox[{"#", ",", "\"\\""}], "]"}], "&"}]}], "]"}]], "Input",Expressi\ onUUID->"e535a85d-477b-4527-b919-501cef18d82a"], Cell[BoxData[ RowBox[{"{", RowBox[{"\<\"TriangleGraph\"\>", ",", "\<\"SquareGraph\"\>", ",", RowBox[{"{", RowBox[{"\<\"Cycle\"\>", ",", "5"}], "}"}], ",", "\<\"TwoTriangles\"\>", ",", RowBox[{"{", RowBox[{"\<\"Cycle\"\>", ",", "6"}], "}"}], ",", RowBox[{"{", RowBox[{"\<\"Cycle\"\>", ",", "7"}], "}"}], ",", "\<\"TwoSquares\"\>", ",", RowBox[{"{", RowBox[{"\<\"Cycle\"\>", ",", "8"}], "}"}], ",", "\<\"ThreeTriangles\"\>", ",", RowBox[{"{", RowBox[{"\<\"Cycle\"\>", ",", "9"}], "}"}], ",", "\<\"TwoPentagons\"\>", ",", RowBox[{"{", RowBox[{"\<\"Cycle\"\>", ",", "10"}], "}"}], ",", RowBox[{"{", RowBox[{"\<\"Cycle\"\>", ",", "11"}], "}"}], ",", "\<\"FourTriangles\"\>", ",", "\<\"ThreeSquares\"\>", ",", "\<\"TwoHexagons\"\>", ",", RowBox[{"{", RowBox[{"\<\"Cycle\"\>", ",", "12"}], "}"}], ",", RowBox[{"{", RowBox[{"\<\"Cycle\"\>", ",", "13"}], "}"}], ",", "\<\"TwoHeptagons\"\>", ",", RowBox[{"{", RowBox[{"\<\"Cycle\"\>", ",", "14"}], "}"}], ",", "\<\"FiveTriangles\"\>", ",", "\<\"ThreePentagons\"\>", ",", RowBox[{"{", RowBox[{"\<\"Cycle\"\>", ",", "15"}], "}"}], ",", "\<\"FourSquares\"\>", ",", "\<\"TwoOctagons\"\>", ",", RowBox[{"{", RowBox[{"\<\"Cycle\"\>", ",", "16"}], "}"}], ",", RowBox[{"{", RowBox[{"\<\"Cycle\"\>", ",", "17"}], "}"}], ",", "\<\"ThreeHexagons\"\>", ",", RowBox[{"{", RowBox[{"\<\"Cycle\"\>", ",", "18"}], "}"}], ",", RowBox[{"{", RowBox[{"\<\"Cycle\"\>", ",", "19"}], "}"}], ",", "\<\"FiveSquares\"\>", ",", "\<\"TwoDecagons\"\>", ",", RowBox[{"{", RowBox[{"\<\"Cycle\"\>", ",", "20"}], "}"}]}], "}"}]], "Output",Expression\ UUID->"235314b9-86f4-498c-ad50-9310fbe63410"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"ShowGraphArray", "[", RowBox[{ RowBox[{"DeleteCases", "[", RowBox[{ RowBox[{"l", "=", RowBox[{"Map", "[", RowBox[{"RecognizeGraph", ",", RowBox[{"Table", "[", RowBox[{ RowBox[{"Select", "[", RowBox[{ RowBox[{"Graphs", "[", "n", "]"}], ",", RowBox[{ RowBox[{"IsomorphicQ", "@@", RowBox[{"(", RowBox[{"{", RowBox[{"#", ",", RowBox[{"LineGraph", "[", "#", "]"}]}], "}"}], ")"}]}], "&"}]}], "]"}], ",", RowBox[{"{", RowBox[{"n", ",", "9"}], "}"}]}], "]"}], ",", RowBox[{"{", "2", "}"}]}], "]"}]}], ",", RowBox[{"{", "}"}]}], "]"}], ",", RowBox[{"AspectRatio", "\[Rule]", "Automatic"}], ",", RowBox[{"VertexStyle", "->", RowBox[{"Disk", "[", ".08", "]"}]}]}], "]"}], "//", "Timing"}]], "Input",\ ExpressionUUID->"794a07fa-ae64-4020-b729-fac9473dd058"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: 2.04087 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.0238095 0.238095 0.048592 0.238095 [ [ 0 0 0 0 ] [ 1 2.04087 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 2.04087 L 0 2.04087 L closepath clip newpath % Start of sub-graphic p 0.0238095 0.048592 0.245293 0.30434 MathSubStart %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.00165818 0.974532 0.0241768 0.974532 [ [ -0.01619 -0.01582 0 0 ] [ 1.01619 1.03125 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 g .005 w [ ] 0 setdash .86132 .82332 m .02381 .33978 L s .86132 .82332 m .2397 .0825 L s .57046 .99125 m .57046 .02418 L s .57046 .99125 m .86132 .19211 L s .2397 .93293 m .57046 .02418 L s .2397 .93293 m .97619 .50771 L s .02381 .67564 m .86132 .19211 L s .02381 .67564 m .97619 .50771 L s .02381 .33978 m .2397 .0825 L s 1 0 0 r .08 w .86132 .82332 Mdot .57046 .99125 Mdot .2397 .93293 Mdot .02381 .67564 Mdot .02381 .33978 Mdot .2397 .0825 Mdot .57046 .02418 Mdot .86132 .19211 Mdot .97619 .50771 Mdot 0 0 m 1 0 L 1 1.01543 L 0 1.01543 L closepath clip newpath MathSubEnd P % End of sub-graphic % Start of sub-graphic p 0.267442 0.048592 0.488926 0.30434 MathSubStart %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.00165818 0.974532 0.0241768 0.974532 [ [ -0.01619 -0.01582 0 0 ] [ 1.01619 1.03125 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 g .005 w [ ] 0 setdash .86132 .82332 m .02381 .33978 L s .86132 .82332 m .2397 .0825 L s .57046 .99125 m .2397 .0825 L s .57046 .99125 m .57046 .02418 L s .2397 .93293 m .86132 .19211 L s .2397 .93293 m .97619 .50771 L s .02381 .67564 m .86132 .19211 L s .02381 .67564 m .97619 .50771 L s .02381 .33978 m .57046 .02418 L s 1 0 0 r .08 w .86132 .82332 Mdot .57046 .99125 Mdot .2397 .93293 Mdot .02381 .67564 Mdot .02381 .33978 Mdot .2397 .0825 Mdot .57046 .02418 Mdot .86132 .19211 Mdot .97619 .50771 Mdot 0 0 m 1 0 L 1 1.01543 L 0 1.01543 L closepath clip newpath MathSubEnd P % End of sub-graphic % Start of sub-graphic p 0.511074 0.048592 0.732558 0.30434 MathSubStart %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.00165818 0.974532 0.0241768 0.974532 [ [ -0.01619 -0.01582 0 0 ] [ 1.01619 1.03125 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 g .005 w [ ] 0 setdash .86132 .82332 m .57046 .99125 L s .86132 .82332 m .97619 .50771 L s .57046 .99125 m .2397 .93293 L s .2397 .93293 m .02381 .67564 L s .02381 .67564 m .02381 .33978 L s .02381 .33978 m .2397 .0825 L s .2397 .0825 m .57046 .02418 L s .57046 .02418 m .86132 .19211 L s .86132 .19211 m .97619 .50771 L s 1 0 0 r .08 w .86132 .82332 Mdot .57046 .99125 Mdot .2397 .93293 Mdot .02381 .67564 Mdot .02381 .33978 Mdot .2397 .0825 Mdot .57046 .02418 Mdot .86132 .19211 Mdot .97619 .50771 Mdot 0 0 m 1 0 L 1 1.01543 L 0 1.01543 L closepath clip newpath MathSubEnd P % End of sub-graphic % Start of sub-graphic p 0.754707 0.048592 0.97619 0.30434 MathSubStart %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.00165818 0.974532 0.0241768 0.974532 [ [ -0.01619 -0.01582 0 0 ] [ 1.01619 1.03125 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 g .005 w [ ] 0 setdash .86132 .82332 m .02381 .67564 L s .86132 .82332 m .57046 .02418 L s .57046 .99125 m .02381 .33978 L s .57046 .99125 m .86132 .19211 L s .2397 .93293 m .2397 .0825 L s .2397 .93293 m .97619 .50771 L s .02381 .67564 m .57046 .02418 L s .02381 .33978 m .86132 .19211 L s .2397 .0825 m .97619 .50771 L s 1 0 0 r .08 w .86132 .82332 Mdot .57046 .99125 Mdot .2397 .93293 Mdot .02381 .67564 Mdot .02381 .33978 Mdot .2397 .0825 Mdot .57046 .02418 Mdot .86132 .19211 Mdot .97619 .50771 Mdot 0 0 m 1 0 L 1 1.01543 L 0 1.01543 L closepath clip newpath MathSubEnd P % End of sub-graphic % Start of sub-graphic p 0.0238095 0.329914 0.245293 0.585662 MathSubStart %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.0238095 0.952381 0.0238095 0.952381 [ [ -0.01619 -0.01619 0 0 ] [ 1.01619 1.01619 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 g .005 w [ ] 0 setdash .83672 .83672 m .5 .97619 L s .83672 .83672 m .97619 .5 L s .5 .97619 m .16328 .83672 L s .16328 .83672 m .02381 .5 L s .02381 .5 m .16328 .16328 L s .16328 .16328 m .5 .02381 L s .5 .02381 m .83672 .16328 L s .83672 .16328 m .97619 .5 L s 1 0 0 r .08 w .83672 .83672 Mdot .5 .97619 Mdot .16328 .83672 Mdot .02381 .5 Mdot .16328 .16328 Mdot .5 .02381 Mdot .83672 .16328 Mdot .97619 .5 Mdot 0 0 m 1 0 L 1 1 L 0 1 L closepath clip newpath MathSubEnd P % End of sub-graphic % Start of sub-graphic p 0.267442 0.329914 0.488926 0.585662 MathSubStart %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.0238095 0.952381 0.0238095 0.952381 [ [ -0.01619 -0.01619 0 0 ] [ 1.01619 1.01619 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 g .005 w [ ] 0 setdash .83672 .83672 m .16328 .83672 L s .83672 .83672 m .83672 .16328 L s .5 .97619 m .02381 .5 L s .5 .97619 m .97619 .5 L s .16328 .83672 m .16328 .16328 L s .02381 .5 m .5 .02381 L s .16328 .16328 m .83672 .16328 L s .5 .02381 m .97619 .5 L s 1 0 0 r .08 w .83672 .83672 Mdot .5 .97619 Mdot .16328 .83672 Mdot .02381 .5 Mdot .16328 .16328 Mdot .5 .02381 Mdot .83672 .16328 Mdot .97619 .5 Mdot 0 0 m 1 0 L 1 1 L 0 1 L closepath clip newpath MathSubEnd P % End of sub-graphic % Start of sub-graphic p 0.511074 0.329914 0.732558 0.585662 MathSubStart %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.0238095 0.952381 0.0238095 0.952381 [ [ -0.01619 -0.01619 0 0 ] [ 1.01619 1.01619 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 g .005 w [ ] 0 setdash .83672 .83672 m .02381 .5 L s .83672 .83672 m .5 .02381 L s .5 .97619 m .16328 .16328 L s .5 .97619 m .83672 .16328 L s .16328 .83672 m .83672 .16328 L s .16328 .83672 m .97619 .5 L s .02381 .5 m .5 .02381 L s .16328 .16328 m .97619 .5 L s 1 0 0 r .08 w .83672 .83672 Mdot .5 .97619 Mdot .16328 .83672 Mdot .02381 .5 Mdot .16328 .16328 Mdot .5 .02381 Mdot .83672 .16328 Mdot .97619 .5 Mdot 0 0 m 1 0 L 1 1 L 0 1 L closepath clip newpath MathSubEnd P % End of sub-graphic % Start of sub-graphic p 0.0238095 0.611237 0.245293 0.866984 MathSubStart %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations -0.0132438 0.989434 0.0244218 0.989434 [ [ -0.01619 -0.01558 0 0 ] [ 1.01619 1.0413 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 g .005 w [ ] 0 setdash .78756 .90455 m .02381 .29548 L s .78756 .90455 m .36371 .02442 L s .36371 1.0013 m .78756 .12116 L s .36371 1.0013 m .97619 .51286 L s .02381 .73023 m .78756 .12116 L s .02381 .73023 m .97619 .51286 L s .02381 .29548 m .36371 .02442 L s 1 0 0 r .08 w .78756 .90455 Mdot .36371 1.0013 Mdot .02381 .73023 Mdot .02381 .29548 Mdot .36371 .02442 Mdot .78756 .12116 Mdot .97619 .51286 Mdot 0 0 m 1 0 L 1 1.02572 L 0 1.02572 L closepath clip newpath MathSubEnd P % End of sub-graphic % Start of sub-graphic p 0.267442 0.611237 0.488926 0.866984 MathSubStart %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations -0.0132438 0.989434 0.0244218 0.989434 [ [ -0.01619 -0.01558 0 0 ] [ 1.01619 1.0413 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 g .005 w [ ] 0 setdash .78756 .90455 m .36371 1.0013 L s .78756 .90455 m .97619 .51286 L s .36371 1.0013 m .02381 .73023 L s .02381 .73023 m .02381 .29548 L s .02381 .29548 m .36371 .02442 L s .36371 .02442 m .78756 .12116 L s .78756 .12116 m .97619 .51286 L s 1 0 0 r .08 w .78756 .90455 Mdot .36371 1.0013 Mdot .02381 .73023 Mdot .02381 .29548 Mdot .36371 .02442 Mdot .78756 .12116 Mdot .97619 .51286 Mdot 0 0 m 1 0 L 1 1.02572 L 0 1.02572 L closepath clip newpath MathSubEnd P % End of sub-graphic % Start of sub-graphic p 0.0238095 0.892559 0.245293 1.14831 MathSubStart %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.0238095 0.952381 -0.0431778 0.952381 [ [ -0.01619 -0.01938 0 0 ] [ 1.01619 .88541 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 g .005 w [ ] 0 setdash .7381 .84541 m .2619 .84541 L s .7381 .84541 m .97619 .43301 L s .2619 .84541 m .02381 .43301 L s .02381 .43301 m .2619 .02062 L s .2619 .02062 m .7381 .02062 L s .7381 .02062 m .97619 .43301 L s 1 0 0 r .08 w .7381 .84541 Mdot .2619 .84541 Mdot .02381 .43301 Mdot .2619 .02062 Mdot .7381 .02062 Mdot .97619 .43301 Mdot 0 0 m 1 0 L 1 .86603 L 0 .86603 L closepath clip newpath MathSubEnd P % End of sub-graphic % Start of sub-graphic p 0.267442 0.892559 0.488926 1.14831 MathSubStart %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.0238095 0.952381 -0.0431778 0.952381 [ [ -0.01619 -0.01938 0 0 ] [ 1.01619 .88541 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 g .005 w [ ] 0 setdash .7381 .84541 m .02381 .43301 L s .7381 .84541 m .7381 .02062 L s .2619 .84541 m .2619 .02062 L s .2619 .84541 m .97619 .43301 L s .02381 .43301 m .7381 .02062 L s .2619 .02062 m .97619 .43301 L s 1 0 0 r .08 w .7381 .84541 Mdot .2619 .84541 Mdot .02381 .43301 Mdot .2619 .02062 Mdot .7381 .02062 Mdot .97619 .43301 Mdot 0 0 m 1 0 L 1 .86603 L 0 .86603 L closepath clip newpath MathSubEnd P % End of sub-graphic % Start of sub-graphic p 0.0238095 1.17388 0.245293 1.42963 MathSubStart %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations -0.0509691 1.02716 0.0250348 1.02716 [ [ -0.01619 -0.01497 0 0 ] [ 1.01619 1.06643 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 g .005 w [ ] 0 setdash .61241 1.02643 m .02381 .83518 L s .61241 1.02643 m .97619 .52573 L s .02381 .83518 m .02381 .21628 L s .02381 .21628 m .61241 .02503 L s .61241 .02503 m .97619 .52573 L s 1 0 0 r .08 w .61241 1.02643 Mdot .02381 .83518 Mdot .02381 .21628 Mdot .61241 .02503 Mdot .97619 .52573 Mdot 0 0 m 1 0 L 1 1.05146 L 0 1.05146 L closepath clip newpath MathSubEnd P % End of sub-graphic % Start of sub-graphic p 0.0238095 1.4552 0.245293 1.71095 MathSubStart %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.0238095 0.952381 0.0238095 0.952381 [ [ -0.01619 -0.01619 0 0 ] [ 1.01619 1.01619 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 g .005 w [ ] 0 setdash .5 .97619 m .02381 .5 L s .5 .97619 m .97619 .5 L s .02381 .5 m .5 .02381 L s .5 .02381 m .97619 .5 L s 1 0 0 r .08 w .5 .97619 Mdot .02381 .5 Mdot .5 .02381 Mdot .97619 .5 Mdot 0 0 m 1 0 L 1 1 L 0 1 L closepath clip newpath MathSubEnd P % End of sub-graphic % Start of sub-graphic p 0.0238095 1.73653 0.245293 1.99227 MathSubStart %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations -0.208588 1.18478 0.0274929 1.18478 [ [ -0.01619 -0.01251 0 0 ] [ 1.01619 1.16721 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 g .005 w [ ] 0 setdash .02381 1.12721 m .02381 .02749 L s .02381 1.12721 m .97619 .57735 L s .02381 .02749 m .97619 .57735 L s 1 0 0 r .08 w .02381 1.12721 Mdot .02381 .02749 Mdot .97619 .57735 Mdot 0 0 m 1 0 L 1 1.1547 L 0 1.1547 L closepath clip newpath MathSubEnd P % End of sub-graphic % End of Graphics MathPictureEnd \ \>"], "Graphics", ImageSize->{212.75, 434.125}, ImageMargins->{{98, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}},ImageCache->GraphicsData["CompressedBitmap", "\<\ eJzNnVmPXEcVx6+nu2e8xPs63mbGDiEike288sASB3hh+QxWhJQ8mATHBJB4 AAmQ+BbsS8gOMYtYxRrEY75PM11VXf+6dX+nuqq7bRGpPbfrnltnqbNX3c7n 7tx/4Yt379x/8fk7u5+5d+flF158/pXdT790b39odKDrug+67sC7u93serr/ NfzzwXT/v/2bj+rP1dmf0ezqVv+qG88Imn2df56JABfyZ2/yE0/NhieOsfF0 6h+afzZmwzfzKY/Hgcfi1V68OuyARh6Nf2B/nv1/r0WQ/bvhhkPrYDfj3Y18 gv1vVwAlU+NIFqqDcWwM0+6mJKU3jsfHhPlIKr85YCUZm3Fss0jGmQh3KZFH F/joJj3kgYAeBcnMs1tHYOxDQAHJ3KQ0GzsXab5YIJJmG8HYWf/AscJUuYZF pjaCOoVB9+0Q4NiBsW0YO29JaiMqcXaXlCxwdLRSAFvAnVtGpwzn/RUs7ezb oQh3Cu5Kpc5ZpOcSnLpFMIhMrMIrfQZED04CrsyIMgaJDFrIVfiVSeYS70sj 5ZJkbj495PJQf9KzYnWSsjq/Rpa3+nOcBJDLRb6NFcjt08eDLrjjNQrhIA9L GKOC8NBFDUBJGchznTapBps/aKlKEMsg7hk6611twUmazoXYKgrZUmny9idg bK9SZuzGDC7IKwQRkriOFMRF08s/E6IT8e5WYV5a5bLfJzO0pTfOsU4iReT5 KHQGidE6HwUcprDA8mfflP/YKlxjNx3nXSSu6zDmlmsTRHIk0kfU+2DkFUBe EqnpDGNRmkmRjQSQyze69QzuWJw5u/E4AG+lwHMBdPNHS67kWGSZiFgkIXPp l5SLuVSSxocXsV8RxE54eEPbB0w7qqTqG/Fp4vxo/zGKgsx+ycTcfE/CXZVD uXbOFvdkgMnYn//1lQBGpMcywQV9IsrJC1IIIvPRoteYijXzE5XYFDYpOm0k IpHfcIIYt/B+Oj5LNEh5aD4aI1qJY1JGsmkvwUFscUA+Jvg/sm0MZ5ZHVJm3 lSEKOkQT0UqfgTEyfuKbgkkux4g3sdPEyidRKJM4Rvxe6D8hD2YmAbWMkV0q vTgL7NBye5qDK+AYUHbHpOOXgpSz2QRv2nROtsW8Xw/TdakMELrAqdNv08Ls YrMQOfQ53TR516VtHuemSZpP+El7hkfTk+IoAPjgkUTopFpMCZLAKNxsRkpP 1U/kJD+RRc2l5ht6FSwbirmwLtUncJ/ZLypwVHnH68BVzMk+0Z8qm4Dq4I0o hqRJMmiWlsWRp0uWfSrKTAq4glSOWXJU1jGxlE6OwFQ/kbHZt0jqZS1r7CQT RejUzshLJ2UmVzzi0F0533tQDy0OL7W81nj1ScpqZNmvop8gMztNsCF2p+l/ 6URmXiVz2ZKSR7tPpihX1NQjoIyFREGipZwvzdbM2pNKQm5gzUnPyidSeVk5 +U8qzHO9C7PXprJmYqdUdgRYg7qojJFxlo14IxKnx2iDoKKFsmTdcirwCEo8 X3OxVSGtg1FGuYfreqxS6WXm70ZUPBlnK1eqSQQeeCRFMdvTJBKgEpurLcPH q8Ysd0DMlLa2PJftGK1sJUCZNpMggucnI81XfCBibQT1WvgESgUYNWGc7BJr Yf0ttFkIkTYmPXWb6YKk19eZ+MxISbTkh67BGBfN00HKUxsxC1xTykarMw2L vFe4R/5/ZK1rWyubG7TEa6GbTdNrrQz1lcvegcfzdACEKye/pATGgVDScSed TTk45Nvcpkjcz4DvXk9Bn1I9aniawzwT5S7a2zcLkpGIy+92HSTmBRnY5sPb NyMSQHAOhkfTNmr7vuA4skshxqjOeuwW2gaZyWvf9iLcpUxOnJFoLzJ1xKYh OVriwSY3CRU75d08EKH6zO7uwlTqOPX4yeRJXqhw7CCnOQozG3s8IiBmyHmo VXM5IzcoKcm0cORDyQqVEw7R3mIQnblR5SM7985h8TGarGmzB2NC5EjRjZ14 o/bEUD2iaajgxvAEdRgGh8B0gOxmnMJ9LRwc0zPPwNVy4A/jmJzOezzIB4im L3ig7b4c3NUNG1znUxRun45AmVreyJ8+4wfk0Douoyi8OyxDbQozS9uV6tNJ L3IVH3H/slWE6dU0k9lTLkl5ATFIfuCzHpVcvcOynbKtj4o7ClfmLtFo8bMk IQWsT+REXoZpL0d10phZoHOFU4vK3v/G8N57djTtOKsnWgd0EZYrMEZRk2RM zUx7v4drAuo8yU6fXZ1wkhallgRn1lmOl5ptvk5M0P7zTiVx5F24F2cxwb5C UanhPNhS/JS2Feq2HLo5lW6IyjijQrvt/5KmUZZ0nGe5wMPaZNVO9ajAFanZ J5chsC8YyspFmktNkq1zJu05f0FqfR3GdF7lcryi/QEd8SDf8OwSSKlKQuNg PkUQmcvtNoKU9V2NV7WWmZ/7Cn8d0Kf8AIU7ShKoQLgKY7WeLz91Ep4fRfpu t9F3mOe7ysPmLhnOWhZ01yM7RELydtQvLR3iv1q4RwGL4j5pGZ3KUJPpY35I Lecn45XSJTI0shKdFDab+LyFNxzLD6EN0r+P/h8QztvswzFlTlVUFxWkgvDx /JH5h9tXdQvRO/ESGahV+N7iiZeSrmuLpPaNEWqvqM/68TaK6d0Sw62o4jLP jC9Qom4eNNxQiNu1PlD74uSZz8ZpjTSGnJ379lwbGbQ9rgi+Hcno+t16h95p QAhN7XkCpewXIz51hEhnGsNyHkFm/FyKCMRuwmTUwvG04/wy5CorJpL5e0uR NApaRCSJh8aWIpdt/DyzUnp9bBRFWXv4fCl6V6t/6B0yFXhqsJMzCta/SllH q8Yt6+EYtcrlmrYiE6TIayCdFpBWxG4fgyezT/LVd9ZDhrdKy4BERl6T0J/J yA1GW3vYUUZPsgi8lftL9htPQH32rHlqi5YxyzQGxGXg24CP2m4c54Zjhbbb MKNSdM2wmW/sEbPZs6XDBSImUFfb7iWtKLV7P+8vavvUJMmns7HZtIua5wY1 N+2pksxisDz02C17qqptgvUBPcQfCjgDWLPV+W4OeSuVf/qZO55v+ydOG3Az Qd7I1aALZ22VAX3TD9c2M56CMb2y8Q0/mTYlqFbQCzsUl8NxrrkJv+pnpJhT nvsC3D0b74ZpqQNBfrG3YaiPWm8X8pkpkJATorqGXm/PU8fZt1f8AxQDzXeB m866U00ekCqNJxn6pak/Y0419D3/AAmNtKG21qNm/46NnrShNserRU9p75c9 erUPjN2ViuOgdHRuMH2+/J1hvDptSVHt5XxaetrciKia29SHkeVvao8TBgS5 Zi98I9/CQUy85Ocgk63pck4NTWtET85J3sHec1nsMeg49Zc80tpub6vvKKAs H+vNX5cLSMj7Ukfqroc/ybNQp75xZqWSainp3K/ZOHN3DeJCHkbq5+abTOdx t2r62j1MnalV3tHbddSnCq96TWSL1HccWz6H3ElhTSosx8mQjJnGCspr+ojB e1+G1NVrJaoLmM3kYf6uWtWi176zUyBEL8O6dR5rxQf2Vuu0yAsVPKX5RvE4 Gnmih+y0qPdQQClJ5y/EVb3QUohsebSvEmJjwKeZp2namb5DMx0kCA2pEGib mdwqGcrspoCPMu4yFmp4FTJbQpAfJK+KTtTwCjjyAwMRByUVbojqJqoDeghY 8eX2dYK2UMdsF6Yi30mU0lhv+oENqYND1ajK8VDX5Qi6uXsdWeJ2Sch42vUL WklEIZ1kczg+rUZemEJNm0GZP50mkfZbHlysZJA6DOnAv5ODq2XxvYW3HvUv MMqwT0UJq9ljeoGvDZ/uLULuKrouTToWTUE66W5Q6DT6oH0EFY7GtHQ1e81M +KseFZXV5G/IULIXSczkLKCiMEzTkj0bGQCF6jVgU3ZHqWJAQHkNWTNJM3v1 yKyO14Cq9hWFgo7UbriY+1b16li7b0XWkJVNFPJWxDJzCbltzsa+7i9qtzf1 BrzKvcYp9Psb2h0IzNXuo3tGBiZlpImvtk3ec5xMvZEw3veImk7HmS0M89Uv 90RIZ9oO0IAhVyAluJD7LziARH5wMb6ev9Tnbg1K4pNw6JWsqmlNJ2fKS4E3 IFj24NDU8G/2jzhixVOLXjpZ/0ML8ydC4lqr/rKz+nPk+9++4rHUWjO9t0bN 40YPJO8njxgyoCZX6oZ09HcZb2wdVB0Mh8nbIgh7uvKpqDXEXnm67Mcn1o+q thVTQL9KkqNWUSEjfOgIVkk51yDAVdA3qkpb1bCC+rdVQo1G3FTHbUQnMwyr UBd2g8JU/a+qSnQA/sjq692I+R0/sMNch7vhoFLXwRv4AUTnQyh/ecsDuWUd R83IgN70QMp7SQXf8EDH4kwUAAOQztKQ4r7ugfQLJ+QofumBlPbsANBrSwHt AtAvPFDt/wrg5zY4hcGfrQ2cXkX9qQ1OmcFP1gZOrfEf2+CUY/3IBqd9jB+u DZxyyx8sAHfa80iA6Aja99fGzMOVbOMyNypRo4o22ksjeKPxFjxJlXcyj4FQ Jjl8ZnB8kPxu8Jbh568NDx6cszrxFAuCm9fPu1EOFQLGuTgTxacApHceSLgh iF2JQJThhXA4iMKLBx7x7zg8SFg2ziK+50EoC6Wk710PXpsfB7Zp9alUf9uD U/lCFWualmS3qPoLa0sHZKjwCPpC25qU2QRFJR2mreag/HSLMAaDqk22g9nW FgHBfdSWJ8E51VZrwfXVFq/BD9fW78HL1/YSQgypbYCECFXb7AnhktpsK91q xN/IXaPsGlemcd0btapRZxstotHeGq250Vc0eqJGP9foRRt9dGMEaIwvjdGr dDoixMPFQXUwsJ5oLifw34UDruHxHz9aOur0fgrSl4ja2v+ygbR3/A8bSF2p v9lA5Mf+YoPrpFkBSL38P9lA+qWIP9hAZEy/s8F1EKwApA76b2wgNdffs4H0 WsOvbCAynLdtcP2aVwFIr+6+aQNdiUCv20A7MLaoZ+LmLABdi0CFmkk/11eo 8pap/ddSp3vEg+5d4YnG6vh6ZH9RGeqACn2pnQj0mg1Ep+sK4Hoh/A0b6GIE essG0vGtd2wgCkUFcP2A269tIP1vCB7YQHrN4rc2kA7H/94GoqSnAK4TF3+0 gdTs/7MNpBMif7WBKK4XwLWR/HcbSLsf/0yBeN/i3zaIAqbZBnk/v28F4rVW 8d2B/wGOR0yJ\ \>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 211.75}, {433.125, \ 0.}} -> {-0.100021, -0.213757, 0.0198349, 0.0198349}, {{5., 51.9375}, \ {422.312, 368.188}} -> {-0.131169, -0.358657, 0.0225698, 0.0225698}, \ {{56.625, 103.5}, {422.312, 368.188}} -> {-1.29804, -0.359796, 0.0225999, \ 0.0225999}, {{108.188, 155.062}, {422.312, 368.188}} -> {-2.46335, -0.359796, \ 0.0225999, 0.0225999}, {{159.75, 206.688}, {422.312, 368.188}} -> {-3.62385, \ -0.358657, 0.0225698, 0.0225698}, {{5., 51.9375}, {362.75, 308.625}} -> \ {-0.157479, -1.75029, 0.0230947, 0.0230947}, {{56.625, 103.5}, {362.75, \ 308.625}} -> {-1.35149, -1.7533, 0.0231255, 0.0231255}, {{108.188, 155.062}, \ {362.75, 308.625}} -> {-2.5439, -1.7533, 0.0231255, 0.0231255}, {{5., \ 51.9375}, {303.188, 249.}} -> {-0.114132, -2.99713, 0.0222299, 0.0222299}, \ {{56.625, 103.5}, {303.188, 249.}} -> {-1.26343, -3.00179, 0.0222595, \ 0.0222595}, {{5., 51.9375}, {243.625, 189.438}} -> {-0.157479, -4.50218, \ 0.0230947, 0.0230947}, {{56.625, 103.5}, {243.625, 189.438}} -> {-1.35149, \ -4.50885, 0.0231255, 0.0231255}, {{5., 51.9375}, {184.062, 129.875}} -> \ {-0.0732126, -5.42599, 0.0214134, 0.0214134}, {{5., 51.9375}, {124.5, \ 70.3125}} -> {-0.157479, -7.25334, 0.0230947, 0.0230947}, {{5., 51.9375}, \ {64.875, 10.75}} -> {0.0695638, -6.87473, 0.0185646, \ 0.0185646}},ExpressionUUID->"5b4877c4-0566-45e8-a8be-bdb350311378"], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{"1255.6424369999997`", " ", "Second"}], ",", TagBox[ RowBox[{"\[SkeletonIndicator]", "GraphicsArray", "\[SkeletonIndicator]"}], False, Editable->False]}], "}"}]], "Output",ExpressionUUID->"0f94749a-4cf7-4648-\ b1a5-b9a7374f66a1"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Length", "/@", "l"}]], "Input",ExpressionUUID->"395336e5-7eab-4e1e-9c0c-283193cdc3ba"], Cell[BoxData[ RowBox[{"{", RowBox[{ "0", ",", "0", ",", "1", ",", "1", ",", "1", ",", "2", ",", "2", ",", "3", ",", "4"}], "}"}]], "Output",ExpressionUUID->"22cdf2d7-7327-4caa-9620-\ 2c3c0e74909b"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Show", "[", RowBox[{ RowBox[{"GraphicsArray", "[", RowBox[{"Block", "[", RowBox[{ RowBox[{"{", RowBox[{"$DisplayFunction", "=", "Identity"}], "}"}], ",", RowBox[{ RowBox[{ RowBox[{ RowBox[{"Drop", "[", RowBox[{"#", ",", "2"}], "]"}], "&"}], "/@", RowBox[{"Map", "[", RowBox[{ RowBox[{ RowBox[{"ShowGraph", "[", RowBox[{"#", ",", RowBox[{"AspectRatio", "\[Rule]", "Automatic"}], ",", RowBox[{"VertexStyle", "->", RowBox[{"Disk", "[", ".08", "]"}]}]}], "]"}], "&"}], ",", RowBox[{"Transpose", "[", RowBox[{ RowBox[{ RowBox[{"PadRight", "[", RowBox[{"#", ",", "4", ",", RowBox[{"{", RowBox[{"{", "}"}], "}"}]}], "]"}], "&"}], "/@", "l"}], "]"}], ",", RowBox[{"{", "2", "}"}]}], "]"}]}], "/.", RowBox[{ RowBox[{"ShowGraph", "[", RowBox[{ RowBox[{"{", "}"}], ",", "___"}], "]"}], "\[RuleDelayed]", RowBox[{"Graphics", "[", RowBox[{"{", "}"}], "]"}]}]}]}], "]"}], "]"}], ",", RowBox[{"ImageSize", "\[Rule]", "400"}]}], "]"}]], "Input",ExpressionUUID->\ "e985b28a-bd1f-451d-b9cb-31bed73df765"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: .65332 %%ImageSize: 400 261.327 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.0238095 0.136054 0.0155552 0.136054 [ [ 0 0 0 0 ] [ 1 .65332 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 .65332 L 0 .65332 L closepath clip newpath % Start of sub-graphic p 0.0238095 0.0155552 0.149123 0.160254 MathSubStart %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.0238095 0.952381 0.0147151 0.588604 [ [ 0 0 0 0 ] [ 1 .61803 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 .61803 L 0 .61803 L closepath clip newpath MathSubEnd P % End of sub-graphic % Start of sub-graphic p 0.161654 0.0155552 0.286967 0.160254 MathSubStart %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.0238095 0.952381 0.0147151 0.588604 [ [ 0 0 0 0 ] [ 1 .61803 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 .61803 L 0 .61803 L closepath clip newpath MathSubEnd P % End of sub-graphic % Start of sub-graphic p 0.299499 0.0155552 0.424812 0.160254 MathSubStart %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.0238095 0.952381 0.0147151 0.588604 [ [ 0 0 0 0 ] [ 1 .61803 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 .61803 L 0 .61803 L closepath clip newpath MathSubEnd P % End of sub-graphic % Start of sub-graphic p 0.437343 0.0155552 0.562657 0.160254 MathSubStart %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.0238095 0.952381 0.0147151 0.588604 [ [ 0 0 0 0 ] [ 1 .61803 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 .61803 L 0 .61803 L closepath clip newpath MathSubEnd P % End of sub-graphic % Start of sub-graphic p 0.575188 0.0155552 0.700501 0.160254 MathSubStart %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.0238095 0.952381 0.0147151 0.588604 [ [ 0 0 0 0 ] [ 1 .61803 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 .61803 L 0 .61803 L closepath clip newpath MathSubEnd P % End of sub-graphic % Start of sub-graphic p 0.713033 0.0155552 0.838346 0.160254 MathSubStart %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.0238095 0.952381 0.0147151 0.588604 [ [ 0 0 0 0 ] [ 1 .61803 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 .61803 L 0 .61803 L closepath clip newpath MathSubEnd P % End of sub-graphic % Start of sub-graphic p 0.850877 0.0155552 0.97619 0.160254 MathSubStart %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.00165818 0.974532 0.0241768 0.974532 [ [ -0.01619 -0.01582 0 0 ] [ 1.01619 1.03125 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 g .005 w [ ] 0 setdash .86132 .82332 m .02381 .67564 L s .86132 .82332 m .57046 .02418 L s .57046 .99125 m .02381 .33978 L s .57046 .99125 m .86132 .19211 L s .2397 .93293 m .2397 .0825 L s .2397 .93293 m .97619 .50771 L s .02381 .67564 m .57046 .02418 L s .02381 .33978 m .86132 .19211 L s .2397 .0825 m .97619 .50771 L s 1 0 0 r .08 w .86132 .82332 Mdot .57046 .99125 Mdot .2397 .93293 Mdot .02381 .67564 Mdot .02381 .33978 Mdot .2397 .0825 Mdot .57046 .02418 Mdot .86132 .19211 Mdot .97619 .50771 Mdot 0 0 m 1 0 L 1 1.01543 L 0 1.01543 L closepath clip newpath MathSubEnd P % End of sub-graphic % Start of sub-graphic p 0.0238095 0.174724 0.149123 0.319424 MathSubStart %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.0238095 0.952381 0.0147151 0.588604 [ [ 0 0 0 0 ] [ 1 .61803 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 .61803 L 0 .61803 L closepath clip newpath MathSubEnd P % End of sub-graphic % Start of sub-graphic p 0.161654 0.174724 0.286967 0.319424 MathSubStart %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.0238095 0.952381 0.0147151 0.588604 [ [ 0 0 0 0 ] [ 1 .61803 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 .61803 L 0 .61803 L closepath clip newpath MathSubEnd P % End of sub-graphic % Start of sub-graphic p 0.299499 0.174724 0.424812 0.319424 MathSubStart %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.0238095 0.952381 0.0147151 0.588604 [ [ 0 0 0 0 ] [ 1 .61803 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 .61803 L 0 .61803 L closepath clip newpath MathSubEnd P % End of sub-graphic % Start of sub-graphic p 0.437343 0.174724 0.562657 0.319424 MathSubStart %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.0238095 0.952381 0.0147151 0.588604 [ [ 0 0 0 0 ] [ 1 .61803 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 .61803 L 0 .61803 L closepath clip newpath MathSubEnd P % End of sub-graphic % Start of sub-graphic p 0.575188 0.174724 0.700501 0.319424 MathSubStart %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.0238095 0.952381 0.0147151 0.588604 [ [ 0 0 0 0 ] [ 1 .61803 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 .61803 L 0 .61803 L closepath clip newpath MathSubEnd P % End of sub-graphic % Start of sub-graphic p 0.713033 0.174724 0.838346 0.319424 MathSubStart %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.0238095 0.952381 0.0238095 0.952381 [ [ -0.01619 -0.01619 0 0 ] [ 1.01619 1.01619 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 g .005 w [ ] 0 setdash .83672 .83672 m .02381 .5 L s .83672 .83672 m .5 .02381 L s .5 .97619 m .16328 .16328 L s .5 .97619 m .83672 .16328 L s .16328 .83672 m .83672 .16328 L s .16328 .83672 m .97619 .5 L s .02381 .5 m .5 .02381 L s .16328 .16328 m .97619 .5 L s 1 0 0 r .08 w .83672 .83672 Mdot .5 .97619 Mdot .16328 .83672 Mdot .02381 .5 Mdot .16328 .16328 Mdot .5 .02381 Mdot .83672 .16328 Mdot .97619 .5 Mdot 0 0 m 1 0 L 1 1 L 0 1 L closepath clip newpath MathSubEnd P % End of sub-graphic % Start of sub-graphic p 0.850877 0.174724 0.97619 0.319424 MathSubStart %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.00165818 0.974532 0.0241768 0.974532 [ [ -0.01619 -0.01582 0 0 ] [ 1.01619 1.03125 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 g .005 w [ ] 0 setdash .86132 .82332 m .57046 .99125 L s .86132 .82332 m .97619 .50771 L s .57046 .99125 m .2397 .93293 L s .2397 .93293 m .02381 .67564 L s .02381 .67564 m .02381 .33978 L s .02381 .33978 m .2397 .0825 L s .2397 .0825 m .57046 .02418 L s .57046 .02418 m .86132 .19211 L s .86132 .19211 m .97619 .50771 L s 1 0 0 r .08 w .86132 .82332 Mdot .57046 .99125 Mdot .2397 .93293 Mdot .02381 .67564 Mdot .02381 .33978 Mdot .2397 .0825 Mdot .57046 .02418 Mdot .86132 .19211 Mdot .97619 .50771 Mdot 0 0 m 1 0 L 1 1.01543 L 0 1.01543 L closepath clip newpath MathSubEnd P % End of sub-graphic % Start of sub-graphic p 0.0238095 0.333894 0.149123 0.478593 MathSubStart %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.0238095 0.952381 0.0147151 0.588604 [ [ 0 0 0 0 ] [ 1 .61803 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 .61803 L 0 .61803 L closepath clip newpath MathSubEnd P % End of sub-graphic % Start of sub-graphic p 0.161654 0.333894 0.286967 0.478593 MathSubStart %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.0238095 0.952381 0.0147151 0.588604 [ [ 0 0 0 0 ] [ 1 .61803 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 .61803 L 0 .61803 L closepath clip newpath MathSubEnd P % End of sub-graphic % Start of sub-graphic p 0.299499 0.333894 0.424812 0.478593 MathSubStart %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.0238095 0.952381 0.0147151 0.588604 [ [ 0 0 0 0 ] [ 1 .61803 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 .61803 L 0 .61803 L closepath clip newpath MathSubEnd P % End of sub-graphic % Start of sub-graphic p 0.437343 0.333894 0.562657 0.478593 MathSubStart %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.0238095 0.952381 -0.0431778 0.952381 [ [ -0.01619 -0.01938 0 0 ] [ 1.01619 .88541 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 g .005 w [ ] 0 setdash .7381 .84541 m .02381 .43301 L s .7381 .84541 m .7381 .02062 L s .2619 .84541 m .2619 .02062 L s .2619 .84541 m .97619 .43301 L s .02381 .43301 m .7381 .02062 L s .2619 .02062 m .97619 .43301 L s 1 0 0 r .08 w .7381 .84541 Mdot .2619 .84541 Mdot .02381 .43301 Mdot .2619 .02062 Mdot .7381 .02062 Mdot .97619 .43301 Mdot 0 0 m 1 0 L 1 .86603 L 0 .86603 L closepath clip newpath MathSubEnd P % End of sub-graphic % Start of sub-graphic p 0.575188 0.333894 0.700501 0.478593 MathSubStart %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations -0.0132438 0.989434 0.0244218 0.989434 [ [ -0.01619 -0.01558 0 0 ] [ 1.01619 1.0413 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 g .005 w [ ] 0 setdash .78756 .90455 m .36371 1.0013 L s .78756 .90455 m .97619 .51286 L s .36371 1.0013 m .02381 .73023 L s .02381 .73023 m .02381 .29548 L s .02381 .29548 m .36371 .02442 L s .36371 .02442 m .78756 .12116 L s .78756 .12116 m .97619 .51286 L s 1 0 0 r .08 w .78756 .90455 Mdot .36371 1.0013 Mdot .02381 .73023 Mdot .02381 .29548 Mdot .36371 .02442 Mdot .78756 .12116 Mdot .97619 .51286 Mdot 0 0 m 1 0 L 1 1.02572 L 0 1.02572 L closepath clip newpath MathSubEnd P % End of sub-graphic % Start of sub-graphic p 0.713033 0.333894 0.838346 0.478593 MathSubStart %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.0238095 0.952381 0.0238095 0.952381 [ [ -0.01619 -0.01619 0 0 ] [ 1.01619 1.01619 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 g .005 w [ ] 0 setdash .83672 .83672 m .16328 .83672 L s .83672 .83672 m .83672 .16328 L s .5 .97619 m .02381 .5 L s .5 .97619 m .97619 .5 L s .16328 .83672 m .16328 .16328 L s .02381 .5 m .5 .02381 L s .16328 .16328 m .83672 .16328 L s .5 .02381 m .97619 .5 L s 1 0 0 r .08 w .83672 .83672 Mdot .5 .97619 Mdot .16328 .83672 Mdot .02381 .5 Mdot .16328 .16328 Mdot .5 .02381 Mdot .83672 .16328 Mdot .97619 .5 Mdot 0 0 m 1 0 L 1 1 L 0 1 L closepath clip newpath MathSubEnd P % End of sub-graphic % Start of sub-graphic p 0.850877 0.333894 0.97619 0.478593 MathSubStart %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.00165818 0.974532 0.0241768 0.974532 [ [ -0.01619 -0.01582 0 0 ] [ 1.01619 1.03125 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 g .005 w [ ] 0 setdash .86132 .82332 m .02381 .33978 L s .86132 .82332 m .2397 .0825 L s .57046 .99125 m .2397 .0825 L s .57046 .99125 m .57046 .02418 L s .2397 .93293 m .86132 .19211 L s .2397 .93293 m .97619 .50771 L s .02381 .67564 m .86132 .19211 L s .02381 .67564 m .97619 .50771 L s .02381 .33978 m .57046 .02418 L s 1 0 0 r .08 w .86132 .82332 Mdot .57046 .99125 Mdot .2397 .93293 Mdot .02381 .67564 Mdot .02381 .33978 Mdot .2397 .0825 Mdot .57046 .02418 Mdot .86132 .19211 Mdot .97619 .50771 Mdot 0 0 m 1 0 L 1 1.01543 L 0 1.01543 L closepath clip newpath MathSubEnd P % End of sub-graphic % Start of sub-graphic p 0.0238095 0.493063 0.149123 0.637762 MathSubStart %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations -0.208588 1.18478 0.0274929 1.18478 [ [ -0.01619 -0.01251 0 0 ] [ 1.01619 1.16721 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 g .005 w [ ] 0 setdash .02381 1.12721 m .02381 .02749 L s .02381 1.12721 m .97619 .57735 L s .02381 .02749 m .97619 .57735 L s 1 0 0 r .08 w .02381 1.12721 Mdot .02381 .02749 Mdot .97619 .57735 Mdot 0 0 m 1 0 L 1 1.1547 L 0 1.1547 L closepath clip newpath MathSubEnd P % End of sub-graphic % Start of sub-graphic p 0.161654 0.493063 0.286967 0.637762 MathSubStart %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.0238095 0.952381 0.0238095 0.952381 [ [ -0.01619 -0.01619 0 0 ] [ 1.01619 1.01619 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 g .005 w [ ] 0 setdash .5 .97619 m .02381 .5 L s .5 .97619 m .97619 .5 L s .02381 .5 m .5 .02381 L s .5 .02381 m .97619 .5 L s 1 0 0 r .08 w .5 .97619 Mdot .02381 .5 Mdot .5 .02381 Mdot .97619 .5 Mdot 0 0 m 1 0 L 1 1 L 0 1 L closepath clip newpath MathSubEnd P % End of sub-graphic % Start of sub-graphic p 0.299499 0.493063 0.424812 0.637762 MathSubStart %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations -0.0509691 1.02716 0.0250348 1.02716 [ [ -0.01619 -0.01497 0 0 ] [ 1.01619 1.06643 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 g .005 w [ ] 0 setdash .61241 1.02643 m .02381 .83518 L s .61241 1.02643 m .97619 .52573 L s .02381 .83518 m .02381 .21628 L s .02381 .21628 m .61241 .02503 L s .61241 .02503 m .97619 .52573 L s 1 0 0 r .08 w .61241 1.02643 Mdot .02381 .83518 Mdot .02381 .21628 Mdot .61241 .02503 Mdot .97619 .52573 Mdot 0 0 m 1 0 L 1 1.05146 L 0 1.05146 L closepath clip newpath MathSubEnd P % End of sub-graphic % Start of sub-graphic p 0.437343 0.493063 0.562657 0.637762 MathSubStart %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.0238095 0.952381 -0.0431778 0.952381 [ [ -0.01619 -0.01938 0 0 ] [ 1.01619 .88541 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 g .005 w [ ] 0 setdash .7381 .84541 m .2619 .84541 L s .7381 .84541 m .97619 .43301 L s .2619 .84541 m .02381 .43301 L s .02381 .43301 m .2619 .02062 L s .2619 .02062 m .7381 .02062 L s .7381 .02062 m .97619 .43301 L s 1 0 0 r .08 w .7381 .84541 Mdot .2619 .84541 Mdot .02381 .43301 Mdot .2619 .02062 Mdot .7381 .02062 Mdot .97619 .43301 Mdot 0 0 m 1 0 L 1 .86603 L 0 .86603 L closepath clip newpath MathSubEnd P % End of sub-graphic % Start of sub-graphic p 0.575188 0.493063 0.700501 0.637762 MathSubStart %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations -0.0132438 0.989434 0.0244218 0.989434 [ [ -0.01619 -0.01558 0 0 ] [ 1.01619 1.0413 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 g .005 w [ ] 0 setdash .78756 .90455 m .02381 .29548 L s .78756 .90455 m .36371 .02442 L s .36371 1.0013 m .78756 .12116 L s .36371 1.0013 m .97619 .51286 L s .02381 .73023 m .78756 .12116 L s .02381 .73023 m .97619 .51286 L s .02381 .29548 m .36371 .02442 L s 1 0 0 r .08 w .78756 .90455 Mdot .36371 1.0013 Mdot .02381 .73023 Mdot .02381 .29548 Mdot .36371 .02442 Mdot .78756 .12116 Mdot .97619 .51286 Mdot 0 0 m 1 0 L 1 1.02572 L 0 1.02572 L closepath clip newpath MathSubEnd P % End of sub-graphic % Start of sub-graphic p 0.713033 0.493063 0.838346 0.637762 MathSubStart %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.0238095 0.952381 0.0238095 0.952381 [ [ -0.01619 -0.01619 0 0 ] [ 1.01619 1.01619 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 g .005 w [ ] 0 setdash .83672 .83672 m .5 .97619 L s .83672 .83672 m .97619 .5 L s .5 .97619 m .16328 .83672 L s .16328 .83672 m .02381 .5 L s .02381 .5 m .16328 .16328 L s .16328 .16328 m .5 .02381 L s .5 .02381 m .83672 .16328 L s .83672 .16328 m .97619 .5 L s 1 0 0 r .08 w .83672 .83672 Mdot .5 .97619 Mdot .16328 .83672 Mdot .02381 .5 Mdot .16328 .16328 Mdot .5 .02381 Mdot .83672 .16328 Mdot .97619 .5 Mdot 0 0 m 1 0 L 1 1 L 0 1 L closepath clip newpath MathSubEnd P % End of sub-graphic % Start of sub-graphic p 0.850877 0.493063 0.97619 0.637762 MathSubStart %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.00165818 0.974532 0.0241768 0.974532 [ [ -0.01619 -0.01582 0 0 ] [ 1.01619 1.03125 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 g .005 w [ ] 0 setdash .86132 .82332 m .02381 .33978 L s .86132 .82332 m .2397 .0825 L s .57046 .99125 m .57046 .02418 L s .57046 .99125 m .86132 .19211 L s .2397 .93293 m .57046 .02418 L s .2397 .93293 m .97619 .50771 L s .02381 .67564 m .86132 .19211 L s .02381 .67564 m .97619 .50771 L s .02381 .33978 m .2397 .0825 L s 1 0 0 r .08 w .86132 .82332 Mdot .57046 .99125 Mdot .2397 .93293 Mdot .02381 .67564 Mdot .02381 .33978 Mdot .2397 .0825 Mdot .57046 .02418 Mdot .86132 .19211 Mdot .97619 .50771 Mdot 0 0 m 1 0 L 1 1.01543 L 0 1.01543 L closepath clip newpath MathSubEnd P % End of sub-graphic % End of Graphics MathPictureEnd \ \>"], "Graphics", ImageSize->{400, 261.312},ImageCache->GraphicsData["CompressedBitmap", "\<\ eJzNnVuPHUcRxyc+u+v1JXF8WTuO4z2bOInjJM79LoFAgkQ88IYEhAhjRUjJ AwoK4QugfAD4JDwQLiEfC4LE0+Dp06f+PT2/6qmzu7KxZO9sd0931b+rq6uq q8c/vvvFJ7/+zd0vPv347sEHn9/97Seffvy7g/c/+/xe0eKhrnvoj/f+bh90 w3Pfdet/0p8/Df/kXx7U82fDP4vh1+UhS+9Y6cOpdNGvGRw45ZZnU+mWtcyt ufGJoepUqtoevUFj/Ap6vvcn9bFT0bf6bVr2xKS/+XdOQNnWIfreMmqjPe4a UOdn+t6xvnehdttq450VQGfRrjEe5mfb2An1vO3Bm4hbob8ebtWM2JkbhaDc GX7jisgAE6nbMUTcGZ3r+c7wz7b39qkVqPeKTkLthaKfn6xa9rmfnQrK3hHr s0Y8EeoNYPTwen3UqCasudNTgPC95wtVB50D1MWi059CPYntRWiXftsrOvsZ NNJKugS1J6raVc3PoSWhc4lxUKclfB8iB+FOpYsenelUw1/mrkh6Hi46/UV6 3qlfW/+8Yv3v2lP5+kdWSpO/N3672IHCb7eUn/6WnYY5mkCzooN6421NXWnC ShUSmbBtonO1ksuls5mU1kNutHT2Ko6zwr9cdLDRQl5481vyJ32z0NRMhPn8 GPBgf33W4yse6z7zEhsTHu8+CfaOLYt6pzRoG7rW2cO2TZuvbYOQBEx7nldD 20A1t9t8PKJxYaBVg9JmGrMnGoZn4o5ID9lDrp1zwvqOG1eFRT2uPbkaKtDP wvqJWjWtvhk2AitmU0+WLCE3Z/rfMYKJk0N3diaVznsyeiPgLR3djft/cEYj z28Y9W8NT3JYltjo1eGpckDSO9ex+XP2RH7GyaKLfjLdj9c9TqfsZtl9+e6j xkvZy+vpmUVFXcm8eax49zWgkKh+BspkUZTb7avQkpbjDRcbfyd72gOGNAnp hdNjOGglTqyZ0aAZ19526MCiP9Uc9LrVlgrP5XQBGxHpaA1KVtY+DnoTWkqD n4Za2dnE2jI8Comcu/2Q8UZMPgVl5wpC0iqerj5tpBGp8gYn8Z4OPu7nlKFJ orVgcmnwp6HskWLwW1B/2gb3A1ehwUlVlIM/ZwOl0oXWUt07UpJfmq6MZ2fG reVuGEA2esCg1MjPQ23paK5IYY183pimMc6FxyCYaRmdE4sCucSAAhgkIKWj SQJGSp5ivQsDoA7LREamdUWr5WyuoSlwtU3tXUUIIi1DiuMMDtrTqpKD/gi8 RIJxpiDoSagnw5ZUay2SA1rZnOk6ZGGOGm1vgeHbAefTJVr6S1vuLRu1nCqX FtraaA6pTCbFoQjZWuO8/ku4uJZGGa7qsoUbJ+Np64LecU8R5KwWEbbNpOJZ I9kN48+IxliTnDsEDbeMg0UGmXQFybyrvOaGfMGGrFn0hnLjw3Nq6fbwT1or Zw0lwvX8Ifp+2XrUyQJJS3wzeyk9j8N4fblNktlLohPfo29XQ+aet5ocUVl8 yBehngRhtVvvGLPVju3HnTYziF6Aepn7lX4JjDdn+BE82d0eiZJ/hrSZiU1i 7BpeK2GaRJhcSSCCNnU48rxGndf2oS+ZccsVC73nWwr4GTtg+G0U3WWzcW68 s8Gh2s6r3PRjHYo8WApIlOdxqwAO7xztkMmVYC+0iC9ZL1eLXt6sWg5vK/wj +zY9XdvgxT6HxshKKvtRfIwUg2yT8nyjL2y5oXQf+3s7lU4svyU2fseeyvr/ h6DkzPN/PPze9nn7Nv3YrpERXm/67/47/SiG6vKRYpqa1OcrHkkp5jiJqv6r 7rHPG2Ai5cWS1uKPiXnq6nSj1cHq4Z/W+JI97cPQF2xoN7JFW4qOytzTu/2a kGp5pbLr8OJle4NcaNL6T9kbMrlpxwCSpo0crdjlQwhQVqmWdlqyQqidzpDJ jshUf9N8UaEpmourVvu4EUx7Y5EgMu+J7tgb6j7ilszwpC28PZmPQRmJkxjb N7G7mkeqrAzyLuS7nvdpFqW0Yoj6K1C2hLILNjwJE/mVW/aGpqXyCmiXCvEp N5oE4jKUHUAZGSyubxRoV2PZbSCI0mFzvCf8tzzeyTIiW5dToaZl5DxQOx1Z rTjmTcE9oZ46dxd9BEiOpYFIPqNRf0IlasC77YpTggmXbgTJ1WIXfFyksWT/ 0zaVs/WmupfM4AuZJprOK406sd5KHHRP8V0l1pALyYAfwPWQqM94xPpkzmql nYvJy9xtsE5y3zf2zkstxrscf3bFRpySq12v8oG+a1D2sPWyEcyUSePI5h5z 2a0BTkW0nMls1JHRdXsSC7TxBDSdYlykh0r6ddhaHFQHqQ4YFGdKTjJICSiO g/autJHGzGkCXxuz9aZqM1K9SAtJ51pLe/KXC5oRXRcJKWZP/R/ALLDQ942z JOKjPuLp1hwRLq4dvZXJJ6VATOUckL9ZpySV7bxkOpvyI8dOXhJv0YUEsXQ5 58Wue9B1X9m7BIdrtaU3yGsiTudztrhO8Zx6R8+rr+bLBLciIGcF/QWqolyT /iGDgoK51I5UNymeqEXkxm5dKc6g/Hn4Ec0dImRG8qi/pOiet7G2vVGJUsJl YR1oZUwPDXdL2tavdsXRxNkaBJor4lq58FFGCc82ZzmKM1XHOnp+hMGfsLWR tT7ybO/jTEqVa98Xqwnxk0ZVZvEr6DGaU+9mwj2ANU1bNNFHeVYJLTdBOh81 /dXAjcIj3yB6lN2KUS4bdVrCCjYkKk9aWXkv4+9WQEjSdZx1e4ouHH1vltym nW7X07jSx9mx+rpqNGBRXwHKmix6Hu3fIh2XyVzX5QdNeKVvXNMcN6ZVrFUJ sK5BHjVf3bhIIfOT+d7y1kOZmZtch4XR52YVEKVkyNJqT+tv16SD1q5snDIR +RtgrCuj6dUsbeTzuJ6aEC+UxXZJsw1IRFzxae9Ls9E1S0gRRjy3gZS2G60p bnkFRFMpLa6SjJ4XH2ccJMLcZMb8a3rIoeRST2TL3JdIVx1e7boyLVAEVlLZ YI+sG9edHPFYDuDzeDhzntotG7hUp0npxQbT2lLJ3nlQcW06q1QiTIW4ksIb wbqNJpdCFpQ0Smwf5SjDNRFdHSneGxHaat0GbEtlYRxAbdSCJmOR2j2RAaEt wkkAzil7ffPMRhpZUk7jX4Uymgqdxuks8TrT58ReHbIPsztS4k296/X90U52 64nJGwhdLwlx1q2DfpNiglun6y5LpLNopevC2bXVEyz8roP0CbT0Jk728eQx pJ0DVTGSVmV2KLy7ZcJJe1E7qYPcuEIP4PCkItKLaYO6nfmlvUo5LbptnQf6 1gMtcfc6AHTT70x5Q+ntt+zXScaPWr53xEaJrgeQI6WT/FT6Zaz0hEH5h1VV K1L7pb12x55+X/PvnlKlod635nky1iKrHoVt1cubkaFkCv7Amr9eDpXLfplb Vyv63ZL98m+fzYYQEQqffd/pb4CzShav+viwMRHCLgc8i64VOFN+1GRhENHa K78LtaQ+btlQtOMvbXipjCW0I0P3NaOlIj3ODm0R70EZaeRnbQBy8UvGRuaA 6xgp2iyVLQdbV05DjJ2xRu9CLe2CWRA6jsFoeM0TJb21GdP+umdP5IzXJ0Zd m1kh8hbU0rrZt+Ep2crdsQOmIXkMcr+VdnXNnlZhnNj1mRkgFBWr98C+5yt0 jxsQZB66aY2BMoKd5lWGnGSMPEvSLQ0rjZglB/NlKCNFJbHXcgwY2JSJSKLk K6eJNUyARZ0u51s7E/ucyFH4+iWoJS9Wpjj5x7R63C8YuEfm2pBoi5CdLaxI vZFCdNLDRhe9m4DpXJquCpEwyoekOArJEgFGASWaHjdnL7C6l0GONgDWCYw2 IdbBAQVJaaajF49okZI6pL2fyqIXNQlsWj00oX5ouZHu5sYQGrCTJJIjS3qc pCQ6AbMpV3MzLR/DT1Wax570kJ9318gqcilpYC8T4kaQBRJHetf90slmiDO/ 0TR9wpv241WZE1qbX2aNr6kR6LLWDqCWdjJan7RESEppDHnjXfs4zxZ2QDJI Cly7shqDkXYGb0Arp4hWN9lUtPwomEWaJrqc5XgROyS4hKWyf2hJ6hhu4e1/ DdyW1gXZAIQlLSPCjfSFfzcXyhYebiSDRIEisoWwD0JHpEUcg94WCmJJUkH7 zxLKKLuRbp0SWiQz8uFGSVvr6rgmbQNLqMmP1nEaRUgaSD5lXdDeTzhTL3SQ fxTpJSZoVyBQSGZd+oo0qMnBSPTaUQNdfXEkeqGfOCdTmaQ4qlPbN1uIbRJX wlRroU4ZK3ciGsHPYURgFcujZUpAkLYmYKPirQ3H/3IOW1ak/qN3GHwPoHN2 pAaIR2GfFgLlrUVhjyZLODfdCFP3ko5Ef2FPbqpPAz99UYdWLQ3vptweEt2L jAZFIaMIKXpDn2pp/2cJez5WSizWgfQL9tRORaY3FKvRwfq5Eg39VSbzi/ZU X7UcD+1H4qidl6XtLjkFo44Hi1oK8v5FW0SScH0XmaCZzbsvlB7/3w6LGRCc rxMcFxzR/Cwxo+vAE4OiK78RQZ6BPjVG4y7GY1SractmY+KcrcdtwKgMA9oD 74fSJo7JzayVdv65LUGa34SITnlllMRCZYmGwkcxiss8dBr+hjUipu+HwSFm q1WYYFTqWPSemu66Nm+ejf25hVRm4zOOc/5GYO8/im3sGoyH9DxYM/S8J0TX Ik0T6Yjif7lpfd2T6xob8sHwb5qtaBT1uB0/QirBvyWW57W4ezk/QKlMB32o ibVGT/qrvHFA4CgtgIyvpUdQQHKjsQmt8VMG7KJiJjPkf4J5XufT7CqhQbuc a9BXFvljPqbRmGM0nhZFl/QWLWExO2sruVGX2QjbZEcjI0kJ4woOXfWBVcR8 GYT4uMO6dELQZ6GVINP63Dy8K88hYCLVxnD+2ZBSnfmQ3Nzf44ckjOcB2650 fYmmNoS0mmqbp1uLK2mSxuakjHX3q4IBlR89M1s28UNjhbdbWUBROElyZcop 668yWRubDoXBSclFj3qP5+DRTRAig5zAI4URAK87SRO1/tnCUQEGCtDcj0wF 96PzbgZA1JIj4LQPV7PhGmIL7V8z+Ue3oZZkjVAl+olPQpBk17nLEY16L6GM 5LX+RkPjkL287BTNgts8o+soCUokiSR/+P+RboIktauuATp5SHOJRzqZoP8C qJ1AmMpJvxFWUc1ffWxNmaVV9huNQdgfBRwdhdXfxh1+ozf2CnD6rAqid5j8 ZCReJErgc+8QXavgYlvb+WpICCK5M+9ALcV6lgZMNDOK2rWAIftVE1MswaGx TFIlNpOdS7eV9n1cKF4SzWC/YQiR4t8MoUaK7BPjYXA1E5wznMu/+w7Ukjt9 094ga7VMDl7P0jMVb3kylZ++tC6rDyzQKqFjoQaD2py+B7Wkg543fEk0RZdU axXDVu5xKtOie9Jq5QkufdIJ/dGlneLPgMIrRnhjJY8I18m+ru0ogHFjM3J1 SvBDe/GNcbfVGx9ZO12sKqnpq/FYIX5gjd+2svTrHeh+cieOer73/CNr9649 hfpzXS7dUPtv3TI1aN6KS8/HfCuve+h/PwL/ww==\ \>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 399.}, {260.312, 0.}} -> \ {-0.18015, -0.114355, 0.0184469, 0.0184469}, {{9.75, 59.6875}, {254.062, \ 196.438}} -> {-0.230014, -0.692885, 0.0210265, 0.0340216}, {{64.6875, \ 114.562}, {254.062, 196.438}} -> {-1.38686, -0.69438, 0.0210528, 0.0340642}, \ {{119.562, 169.5}, {254.062, 196.438}} -> {-2.53899, -0.692885, 0.0210265, \ 0.0340216}, {{174.5, 224.438}, {254.062, 196.438}} -> {-3.69413, -0.692885, \ 0.0210265, 0.0340216}, {{229.438, 279.375}, {254.062, 196.438}} -> {-4.84927, \ -0.692885, 0.0210265, 0.0340216}, {{284.375, 334.312}, {254.062, 196.438}} -> \ {-6.00441, -0.692885, 0.0210265, 0.0340216}, {{339.25, 389.188}, {254.062, \ 196.438}} -> {-7.21514, -0.247638, 0.0212139, 0.0212139}, {{9.75, 59.6875}, \ {190.688, 133.}} -> {-0.230014, -2.85006, 0.0210265, 0.0340216}, {{64.6875, \ 114.562}, {190.688, 133.}} -> {-1.38686, -2.85426, 0.0210528, 0.0340642}, \ {{119.562, 169.5}, {190.688, 133.}} -> {-2.53899, -2.85006, 0.0210265, \ 0.0340216}, {{174.5, 224.438}, {190.688, 133.}} -> {-3.69413, -2.85006, \ 0.0210265, 0.0340216}, {{229.438, 279.375}, {190.688, 133.}} -> {-4.84927, \ -2.85006, 0.0210265, 0.0340216}, {{284.375, 334.312}, {190.688, 133.}} -> \ {-6.21503, -1.63749, 0.0217073, 0.0217073}, {{339.25, 389.188}, {190.688, \ 133.}} -> {-7.21514, -1.59273, 0.0212139, 0.0212139}, {{9.75, 59.6875}, \ {127.25, 69.5625}} -> {-0.230014, -5.00831, 0.0210265, 0.0340216}, {{64.6875, \ 114.562}, {127.25, 69.5625}} -> {-1.38686, -5.01521, 0.0210528, 0.0340642}, \ {{119.562, 169.5}, {127.25, 69.5625}} -> {-2.53899, -5.00831, 0.0210265, \ 0.0340216}, {{174.5, 224.438}, {127.25, 69.5625}} -> {-3.82993, -3.01455, \ 0.0217073, 0.0217073}, {{229.438, 279.375}, {127.25, 69.5625}} -> {-4.79695, \ -2.88928, 0.0208944, 0.0208944}, {{284.375, 334.312}, {127.25, 69.5625}} -> \ {-6.21503, -3.01455, 0.0217073, 0.0217073}, {{339.25, 389.188}, {127.25, \ 69.5625}} -> {-7.21514, -2.93849, 0.0212139, 0.0212139}, {{9.75, 59.6875}, \ {63.8125, 6.1875}} -> {-0.00774425, -3.46746, 0.0174494, 0.0174494}, \ {{64.6875, 114.562}, {63.8125, 6.1875}} -> {-1.44796, -4.39706, 0.0217345, \ 0.0217345}, {{119.562, 169.5}, {63.8125, 6.1875}} -> {-2.37258, -4.04741, \ 0.020127, 0.020127}, {{174.5, 224.438}, {63.8125, 6.1875}} -> {-3.82993, \ -4.39093, 0.0217073, 0.0217073}, {{229.438, 279.375}, {63.8125, 6.1875}} -> \ {-4.79695, -4.21412, 0.0208944, 0.0208944}, {{284.375, 334.312}, {63.8125, \ 6.1875}} -> {-6.21503, -4.39093, 0.0217073, 0.0217073}, {{339.25, 389.188}, \ {63.8125, 6.1875}} -> {-7.21514, -4.28359, 0.0212139, \ 0.0212139}},ExpressionUUID->"647b4258-1155-4115-b6ed-a2f23b01a988"], Cell[BoxData[ TagBox[ RowBox[{"\[SkeletonIndicator]", "GraphicsArray", "\[SkeletonIndicator]"}], False, Editable->False]], "Output",ExpressionUUID->"30da7797-9896-421e-9151-\ 5808e68e59a6"] }, Open ]] }, Closed]] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["Checks", "Section",ExpressionUUID->"154dbce7-fb21-489f-b1c3-0b8483d3582d"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"(", RowBox[{"bad", "=", RowBox[{"DeleteCases", "[", "\[IndentingNewLine]", RowBox[{ RowBox[{"Monitor", "[", RowBox[{ RowBox[{ RowBox[{ RowBox[{"{", "\[IndentingNewLine]", RowBox[{ RowBox[{"gn", "=", "#"}], ",", "\[IndentingNewLine]", RowBox[{"GraphData", "[", RowBox[{"#", ",", "\"\\""}], "]"}], ",", "\[IndentingNewLine]", RowBox[{"LineGraphQ", "[", RowBox[{"GraphData", "[", "#", "]"}], "]"}]}], "\[IndentingNewLine]", "}"}], "&"}], "/@", RowBox[{"GraphData", "[", "All", "]"}]}], ",", "gn"}], "]"}], ",", "\[IndentingNewLine]", RowBox[{"{", RowBox[{"_", ",", "x_", ",", "x_"}], "}"}]}], "]"}]}], ")"}], "//", "Timing"}]], "Input", CellLabel-> "In[131]:=",ExpressionUUID->"fc501abc-d8b7-4b95-af93-8063312ae62f"], Cell[BoxData[ RowBox[{"{", RowBox[{"200.459298`", ",", RowBox[{"{", "}"}]}], "}"}]], "Output", CellLabel-> "Out[131]=",ExpressionUUID->"dbe58c89-7035-443c-bf8f-c394c8f3ebbe"] }, Open ]], Cell[BoxData[ RowBox[{"l", "=", RowBox[{ RowBox[{ RowBox[{"{", RowBox[{"#", ",", RowBox[{"{", RowBox[{"0", ",", "#3"}], "}"}]}], "}"}], "&"}], "@@@", "bad"}]}]], "Input", CellLabel->"In[3]:=",ExpressionUUID->"3ce4516e-3583-48be-a45f-4f851ddef80c"], Cell[BoxData[ RowBox[{"MissingFillin", "[", RowBox[{"l", ",", "\"\\""}], "]"}]], "Input", CellLabel->"In[66]:=",ExpressionUUID->"dc21387a-e53f-4ad5-b161-a41090a184f2"], Cell[BoxData[ RowBox[{"RenameGraphFiles", "[", "]"}]], "Input", CellLabel->"In[67]:=",ExpressionUUID->"3331848a-a118-4bce-9652-02d2d174706c"] }, Open ]], Cell["Line Graph of Eulerian is Hamiltonian and Eulerian", "Section",ExpressionUUID->"41db4280-99a5-4be0-9f88-fe05e749fa54"], Cell[CellGroupData[{ Cell["Distance-regular line graphs", "Section",ExpressionUUID->"e5f3d324-70de-46a5-a670-5ced1eb25305"], Cell[CellGroupData[{ Cell["Line graph of Petersen graph", "Subsection",ExpressionUUID->"c470c32f-13c1-4a1e-be35-1092c22028b3"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"RecognizeGraph", "/@", RowBox[{"{", "\[IndentingNewLine]", RowBox[{ RowBox[{ "DistanceRegularGraph", "[", "\"\\"", "]"}], ",", "\[IndentingNewLine]", RowBox[{"LineGraph", "[", RowBox[{"GraphData", "[", "\"\

\"", "]"}], "]"}]}], "\[IndentingNewLine]", "}"}]}]], "Input",ExpressionUUID->"2923df6a-1738-\ 4675-aebd-7dce5993abf3"], Cell[BoxData[ RowBox[{"{", RowBox[{"\<\"PetersenLineGraph\"\>", ",", "\<\"PetersenLineGraph\"\>"}], "}"}]], "Output", CellLabel-> "Out[185]=",ExpressionUUID->"2b16e54d-974c-4c98-a383-2a7bb7f54a8d"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["Line graph of Heawood graph", "Subsection",ExpressionUUID->"0ad8e9ed-0c59-4a53-aada-54b1c1ec5992"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"RecognizeGraph", "/@", RowBox[{"{", "\[IndentingNewLine]", RowBox[{ RowBox[{ "DistanceRegularGraph", "[", "\"\\"", "]"}], ",", "\[IndentingNewLine]", RowBox[{"LineGraph", "[", RowBox[{"GraphData", "[", "\"\\"", "]"}], "]"}]}], "\[IndentingNewLine]", "}"}]}]], "Input",ExpressionUUID->"7dfd202f-6e48-\ 4173-be2e-b9ab40af99ee"], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"\<\"GeneralizedHexagon\"\>", ",", RowBox[{"{", RowBox[{"2", ",", "1"}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{"\<\"GeneralizedHexagon\"\>", ",", RowBox[{"{", RowBox[{"2", ",", "1"}], "}"}]}], "}"}]}], "}"}]], "Output", CellLabel-> "Out[186]=",ExpressionUUID->"9eb1ef4f-bfaa-4a8b-a4e7-79d02d0a61d1"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["Line graph of Tutte's 8-cage", "Subsection",ExpressionUUID->"d429068b-509b-4885-9051-6350b1ba4ebd"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"RecognizeGraph", "/@", RowBox[{"{", "\[IndentingNewLine]", RowBox[{ RowBox[{ "DistanceRegularGraph", "[", "\"\\"", "]"}], ",", "\[IndentingNewLine]", RowBox[{"LineGraph", "[", RowBox[{"GraphData", "[", "\"\\"", "]"}], "]"}]}], "\[IndentingNewLine]", "}"}]}]], "Input",ExpressionUUID->"e4e36555-8c0f-\ 4384-9e40-f4786cb01cfd"], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"\<\"GeneralizedOctagon\"\>", ",", RowBox[{"{", RowBox[{"2", ",", "1"}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{"\<\"GeneralizedOctagon\"\>", ",", RowBox[{"{", RowBox[{"2", ",", "1"}], "}"}]}], "}"}]}], "}"}]], "Output", CellLabel-> "Out[189]=",ExpressionUUID->"1ea55707-9c11-40b4-82c2-34899aafcf51"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["Flag graph of\[NonBreakingSpace]PG(2,3)", "Subsection",ExpressionUUID->"f80daca0-765d-4865-be56-a86cae0d747f"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"RecognizeGraph", "/@", RowBox[{"{", "\[IndentingNewLine]", RowBox[{ RowBox[{ "DistanceRegularGraph", "[", "\"\\"", "]"}], ",", "\[IndentingNewLine]", RowBox[{"LineGraph", "[", RowBox[{"GraphData", "[", RowBox[{"{", RowBox[{"\"\\"", ",", RowBox[{"{", RowBox[{"4", ",", "6"}], "}"}]}], "}"}], "]"}], "]"}]}], "\[IndentingNewLine]", "}"}]}]], "Input",ExpressionUUID->"e42cd3ef-b491-\ 4b99-8354-cc034af5411e"], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"\<\"GeneralizedHexagon\"\>", ",", RowBox[{"{", RowBox[{"3", ",", "1"}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{"\<\"GeneralizedHexagon\"\>", ",", RowBox[{"{", RowBox[{"3", ",", "1"}], "}"}]}], "}"}]}], "}"}]], "Output", CellLabel-> "Out[192]=",ExpressionUUID->"bf574c44-c1ee-4654-ba0a-df39ed9c9ce6"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["Flag graph of\[NonBreakingSpace]PG(2,4)", "Subsection",ExpressionUUID->"153454f4-5b38-4bcb-bb24-517eb3d25dfd"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"RecognizeGraph", "/@", RowBox[{"{", "\[IndentingNewLine]", RowBox[{ RowBox[{ "DistanceRegularGraph", "[", "\"\\"", "]"}], ",", "\[IndentingNewLine]", RowBox[{"LineGraph", "[", RowBox[{"GraphData", "[", RowBox[{"{", RowBox[{"\"\\"", ",", RowBox[{"{", RowBox[{"5", ",", "6"}], "}"}]}], "}"}], "]"}], "]"}]}], "\[IndentingNewLine]", "}"}]}]], "Input",ExpressionUUID->"9f0592c0-53cb-\ 4da3-a4a9-2345d80eb87a"], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"\<\"GeneralizedHexagon\"\>", ",", RowBox[{"{", RowBox[{"4", ",", "1"}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{"\<\"GeneralizedHexagon\"\>", ",", RowBox[{"{", RowBox[{"4", ",", "1"}], "}"}]}], "}"}]}], "}"}]], "Output", CellLabel-> "Out[196]=",ExpressionUUID->"b0cd2abf-5421-4c28-9636-be797b5319fa"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Select", "[", RowBox[{ RowBox[{"GraphData", "[", "All", "]"}], ",", RowBox[{ RowBox[{ RowBox[{"GraphData", "[", RowBox[{"#", ",", "\"\\"", ",", "\"\\""}], "]"}], "===", RowBox[{"{", RowBox[{"\"\\"", ",", RowBox[{"{", RowBox[{"4", ",", "1"}], "}"}]}], "}"}]}], "&"}]}], "]"}]], "Input", CellLabel-> "In[194]:=",ExpressionUUID->"faa2a191-c005-4b5d-bf76-238864cac255"], Cell[BoxData[ RowBox[{"{", RowBox[{"{", RowBox[{"\<\"Cage\"\>", ",", RowBox[{"{", RowBox[{"5", ",", "6"}], "}"}]}], "}"}], "}"}]], "Output", CellLabel-> "Out[194]=",ExpressionUUID->"973291c8-090c-4f46-a0c3-bac1f642a38f"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["Line graph of Hoffman-Singleton", "Subsection",ExpressionUUID->"ec41544e-27ba-4ec6-92f3-3981869faa84"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"RecognizeGraph", "/@", RowBox[{"{", "\[IndentingNewLine]", RowBox[{ RowBox[{ "DistanceRegularGraph", "[", "\"\\ \"", "]"}], ",", "\[IndentingNewLine]", RowBox[{"LineGraph", "[", RowBox[{"GraphData", "[", "\"\\"", "]"}], "]"}]}], "\[IndentingNewLine]", "}"}]}]], "Input",ExpressionUUID->\ "f135a532-f123-4ee6-8be7-1521546dcf90"], Cell[BoxData[ RowBox[{"{", RowBox[{"\<\"HoffmanSingletonLineGraph\"\>", ",", "\<\"HoffmanSingletonLineGraph\"\>"}], "}"}]], "Output", CellLabel-> "Out[200]=",ExpressionUUID->"e03c7ca4-4356-4e94-b2f8-e22a1efa9076"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["Line graph of Tutte's 12-cage", "Subsection",ExpressionUUID->"ec1b0128-4451-468a-89ca-8164a1c198c8"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"RecognizeGraph", "/@", RowBox[{"{", "\[IndentingNewLine]", RowBox[{ RowBox[{ "DistanceRegularGraph", "[", "\"\\"", "]"}], ",", "\[IndentingNewLine]", RowBox[{"LineGraph", "[", RowBox[{"GraphData", "[", "\"\\"", "]"}], "]"}]}], "\[IndentingNewLine]", "}"}]}]], "Input",ExpressionUUID->"642dc608-a30e-\ 40c5-a8fa-cc5d384b7343"], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"\<\"GeneralizedDodecagon\"\>", ",", RowBox[{"{", RowBox[{"2", ",", "1"}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{"\<\"GeneralizedDodecagon\"\>", ",", RowBox[{"{", RowBox[{"2", ",", "1"}], "}"}]}], "}"}]}], "}"}]], "Output", CellLabel-> "Out[204]=",ExpressionUUID->"e702e963-d23c-486b-a233-2dee1789ea7c"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Select", "[", RowBox[{ RowBox[{"GraphData", "[", "All", "]"}], ",", RowBox[{ RowBox[{ RowBox[{"GraphData", "[", RowBox[{"#", ",", "\"\\"", ",", "\"\\""}], "]"}], "===", RowBox[{"{", RowBox[{"\"\\"", ",", RowBox[{"{", RowBox[{"2", ",", "1"}], "}"}]}], "}"}]}], "&"}]}], "]"}]], "Input", CellLabel-> "In[203]:=",ExpressionUUID->"5cc0e49c-ea58-4299-aabf-907a7c424a16"], Cell[BoxData[ RowBox[{"{", "\<\"Tutte12Cage\"\>", "}"}]], "Output", CellLabel-> "Out[203]=",ExpressionUUID->"d3f293f5-c956-4a48-9de3-ca8994c43b92"] }, Open ]] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["GraphData", "Section",ExpressionUUID->"eb69ac86-c5a1-423d-84d4-5bed7537e5a2"], Cell[BoxData[ RowBox[{"Print", "[", RowBox[{"GraphDataString", "[", RowBox[{ RowBox[{"LineGraph", "[", RowBox[{"Graph", "[", "\"\\"", "]"}], "]"}], ",", "\[IndentingNewLine]", RowBox[{ "\"\\"", "\[Rule]", "\"\\""}], ",", "\[IndentingNewLine]", RowBox[{ "\"\\"", "\[Rule]", "\"\\""}], ",", "\[IndentingNewLine]", RowBox[{"Debug", "\[Rule]", "True"}], ",", "\[IndentingNewLine]", RowBox[{"TimeConstraint", "\[Rule]", "120"}]}], "]"}], "]"}]], "Input",Exp\ ressionUUID->"ffd77e39-33ff-441a-9ed7-38628a8250d5"], Cell[BoxData[ RowBox[{ RowBox[{"LineGraph", "[", RowBox[{"Graph", "[", "\"\\"", "]"}], "]"}], "//", "ShowGraph"}]], "Input",ExpressionUUID->"85d60c15-bacd-46b9-8de7-\ c6be70d1ce7f"], Cell[BoxData[ GraphicsBox[{{ {GrayLevel[0], Thickness[0.005], LineBox[{{0.2671428571428571, 0.44571428571428573`}, { 0.07142857142857141, 0.25}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.2671428571428571, 0.44571428571428573`}, {0.2671428571428571, 0.5542857142857143}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.2671428571428571, 0.44571428571428573`}, { 0.07142857142857141, 0.7499999999999999}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.2671428571428571, 0.44571428571428573`}, {0.3914285714285714, 0.5}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.2671428571428571, 0.44571428571428573`}, { 0.44571428571428573`, 0.2671428571428571}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.2671428571428571, 0.44571428571428573`}, {0.5, 0.3914285714285714}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.07142857142857141, 0.25}, {0.2671428571428571, 0.5542857142857143}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.07142857142857141, 0.25}, {0.07142857142857141, 0.7499999999999999}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.07142857142857141, 0.25}, {0., 0.5}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.07142857142857141, 0.25}, {0.25, 0.07142857142857141}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.07142857142857141, 0.25}, {0.5, 0.}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.2671428571428571, 0.5542857142857143}, {0.07142857142857141, 0.7499999999999999}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.2671428571428571, 0.5542857142857143}, {0.3914285714285714, 0.5}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.2671428571428571, 0.5542857142857143}, {0.44571428571428573`, 0.7328571428571429}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.2671428571428571, 0.5542857142857143}, {0.5, 0.6085714285714285}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.07142857142857141, 0.7499999999999999}, {0., 0.5}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.07142857142857141, 0.7499999999999999}, {0.25, 0.9285714285714285}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.07142857142857141, 0.7499999999999999}, {0.5, 1.}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.3914285714285714, 0.5}, {0.44571428571428573`, 0.2671428571428571}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.3914285714285714, 0.5}, {0.5, 0.3914285714285714}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.3914285714285714, 0.5}, {0.44571428571428573`, 0.7328571428571429}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.3914285714285714, 0.5}, {0.5, 0.6085714285714285}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.44571428571428573`, 0.2671428571428571}, {0.5, 0.3914285714285714}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.44571428571428573`, 0.2671428571428571}, {0.25, 0.07142857142857141}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.44571428571428573`, 0.2671428571428571}, {0.5542857142857143, 0.2671428571428571}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.44571428571428573`, 0.2671428571428571}, {0.7499999999999999, 0.07142857142857141}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.5, 0.3914285714285714}, {0.5542857142857143, 0.2671428571428571}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.5, 0.3914285714285714}, {0.6085714285714285, 0.5}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.5, 0.3914285714285714}, {0.7328571428571429, 0.44571428571428573`}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0., 0.5}, {0.25, 0.07142857142857141}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0., 0.5}, {0.5, 0.}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0., 0.5}, {0.25, 0.9285714285714285}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0., 0.5}, {0.5, 1.}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.25, 0.07142857142857141}, {0.5, 0.}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.25, 0.07142857142857141}, {0.5542857142857143, 0.2671428571428571}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.25, 0.07142857142857141}, {0.7499999999999999, 0.07142857142857141}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.5, 0.}, {0.7499999999999999, 0.07142857142857141}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.5, 0.}, {1., 0.5}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.5, 0.}, {0.9285714285714285, 0.25}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.44571428571428573`, 0.7328571428571429}, {0.5, 0.6085714285714285}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.44571428571428573`, 0.7328571428571429}, {0.25, 0.9285714285714285}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.44571428571428573`, 0.7328571428571429}, {0.5542857142857143, 0.7328571428571429}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.44571428571428573`, 0.7328571428571429}, {0.7499999999999999, 0.9285714285714285}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.5, 0.6085714285714285}, {0.5542857142857143, 0.7328571428571429}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.5, 0.6085714285714285}, {0.6085714285714285, 0.5}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.5, 0.6085714285714285}, {0.7328571428571429, 0.5542857142857143}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.25, 0.9285714285714285}, {0.5, 1.}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.25, 0.9285714285714285}, {0.5542857142857143, 0.7328571428571429}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.25, 0.9285714285714285}, {0.7499999999999999, 0.9285714285714285}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.5, 1.}, {0.7499999999999999, 0.9285714285714285}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.5, 1.}, {1., 0.5}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.5, 1.}, {0.9285714285714285, 0.7499999999999999}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.5542857142857143, 0.2671428571428571}, {0.7499999999999999, 0.07142857142857141}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.5542857142857143, 0.2671428571428571}, {0.6085714285714285, 0.5}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.5542857142857143, 0.2671428571428571}, {0.7328571428571429, 0.44571428571428573`}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.7499999999999999, 0.07142857142857141}, {1., 0.5}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.7499999999999999, 0.07142857142857141}, {0.9285714285714285, 0.25}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.5542857142857143, 0.7328571428571429}, {0.7499999999999999, 0.9285714285714285}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.5542857142857143, 0.7328571428571429}, {0.6085714285714285, 0.5}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.5542857142857143, 0.7328571428571429}, {0.7328571428571429, 0.5542857142857143}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.7499999999999999, 0.9285714285714285}, {1., 0.5}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.7499999999999999, 0.9285714285714285}, {0.9285714285714285, 0.7499999999999999}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.6085714285714285, 0.5}, {0.7328571428571429, 0.44571428571428573`}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.6085714285714285, 0.5}, {0.7328571428571429, 0.5542857142857143}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.7328571428571429, 0.44571428571428573`}, {0.9285714285714285, 0.25}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.7328571428571429, 0.44571428571428573`}, {0.7328571428571429, 0.5542857142857143}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.7328571428571429, 0.44571428571428573`}, {0.9285714285714285, 0.7499999999999999}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{1., 0.5}, {0.9285714285714285, 0.25}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{1., 0.5}, {0.9285714285714285, 0.7499999999999999}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.9285714285714285, 0.25}, {0.7328571428571429, 0.5542857142857143}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.9285714285714285, 0.25}, {0.9285714285714285, 0.7499999999999999}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.7328571428571429, 0.5542857142857143}, {0.9285714285714285, 0.7499999999999999}}], {GrayLevel[0]}}}, { {RGBColor[1, 0, 0], {PointSize[0.05], PointBox[{0.2671428571428571, 0.44571428571428573`}]}, {GrayLevel[0]}, {GrayLevel[0]}}, {RGBColor[1, 0, 0], {PointSize[0.05], PointBox[{0.07142857142857141, 0.25}]}, {GrayLevel[0]}, {GrayLevel[0]}}, {RGBColor[1, 0, 0], {PointSize[0.05], PointBox[{0.2671428571428571, 0.5542857142857143}]}, {GrayLevel[0]}, {GrayLevel[0]}}, {RGBColor[1, 0, 0], {PointSize[0.05], PointBox[{0.07142857142857141, 0.7499999999999999}]}, {GrayLevel[0]}, {GrayLevel[0]}}, {RGBColor[1, 0, 0], {PointSize[0.05], PointBox[{0.3914285714285714, 0.5}]}, {GrayLevel[0]}, {GrayLevel[0]}}, {RGBColor[1, 0, 0], {PointSize[0.05], PointBox[{0.44571428571428573`, 0.2671428571428571}]}, {GrayLevel[0]}, {GrayLevel[0]}}, {RGBColor[1, 0, 0], {PointSize[0.05], PointBox[{0.5, 0.3914285714285714}]}, {GrayLevel[0]}, {GrayLevel[0]}}, {RGBColor[1, 0, 0], {PointSize[0.05], PointBox[{0., 0.5}]}, {GrayLevel[0]}, {GrayLevel[0]}}, {RGBColor[1, 0, 0], {PointSize[0.05], PointBox[{0.25, 0.07142857142857141}]}, {GrayLevel[0]}, {GrayLevel[0]}}, {RGBColor[1, 0, 0], {PointSize[0.05], PointBox[{0.5, 0.}]}, {GrayLevel[0]}, {GrayLevel[0]}}, {RGBColor[1, 0, 0], {PointSize[0.05], PointBox[{0.44571428571428573`, 0.7328571428571429}]}, {GrayLevel[0]}, {GrayLevel[0]}}, {RGBColor[1, 0, 0], {PointSize[0.05], PointBox[{0.5, 0.6085714285714285}]}, {GrayLevel[0]}, {GrayLevel[0]}}, {RGBColor[1, 0, 0], {PointSize[0.05], PointBox[{0.25, 0.9285714285714285}]}, {GrayLevel[0]}, {GrayLevel[0]}}, {RGBColor[1, 0, 0], {PointSize[0.05], PointBox[{0.5, 1.}]}, {GrayLevel[0]}, {GrayLevel[0]}}, {RGBColor[1, 0, 0], {PointSize[0.05], PointBox[{0.5542857142857143, 0.2671428571428571}]}, {GrayLevel[0]}, {GrayLevel[0]}}, {RGBColor[1, 0, 0], {PointSize[0.05], PointBox[{0.7499999999999999, 0.07142857142857141}]}, {GrayLevel[0]}, {GrayLevel[0]}}, {RGBColor[1, 0, 0], {PointSize[0.05], PointBox[{0.5542857142857143, 0.7328571428571429}]}, {GrayLevel[0]}, {GrayLevel[0]}}, {RGBColor[1, 0, 0], {PointSize[0.05], PointBox[{0.7499999999999999, 0.9285714285714285}]}, {GrayLevel[0]}, {GrayLevel[0]}}, {RGBColor[1, 0, 0], {PointSize[0.05], PointBox[{0.6085714285714285, 0.5}]}, {GrayLevel[0]}, {GrayLevel[0]}}, {RGBColor[1, 0, 0], {PointSize[0.05], PointBox[{0.7328571428571429, 0.44571428571428573`}]}, {GrayLevel[0]}, {GrayLevel[0]}}, {RGBColor[1, 0, 0], {PointSize[0.05], PointBox[{1., 0.5}]}, {GrayLevel[0]}, {GrayLevel[0]}}, {RGBColor[1, 0, 0], {PointSize[0.05], PointBox[{0.9285714285714285, 0.25}]}, {GrayLevel[0]}, {GrayLevel[0]}}, {RGBColor[1, 0, 0], {PointSize[0.05], PointBox[{0.7328571428571429, 0.5542857142857143}]}, {GrayLevel[0]}, {GrayLevel[0]}}, {RGBColor[1, 0, 0], {PointSize[0.05], PointBox[{0.9285714285714285, 0.7499999999999999}]}, {GrayLevel[0]}, {GrayLevel[0]}}}}, AlignmentPoint->Center, AspectRatio->Automatic, Axes->False, AxesLabel->None, AxesOrigin->Automatic, AxesStyle->{}, Background->None, BaseStyle->{}, BaselinePosition->Automatic, ColorOutput->Automatic, ContentSelectable->Automatic, DisplayFunction:>$DisplayFunction, Epilog->{}, FormatType:>TraditionalForm, Frame->False, FrameLabel->None, FrameStyle->{}, FrameTicks->Automatic, FrameTicksStyle->{}, GridLines->None, GridLinesStyle->{}, ImageMargins->0., ImagePadding->All, ImageSize->Automatic, LabelStyle->{}, Method->Automatic, PlotLabel->None, PlotRange->All, PlotRangeClipping->False, PlotRangePadding->Automatic, PlotRegion->Automatic, PreserveImageOptions->Automatic, Prolog->{}, RotateLabel->True, Ticks->Automatic, TicksStyle->{}]], "Input",ExpressionUUID->"a2888c05-92fb-4ab7-955f-\ 3f2e34ab9216"], Cell[BoxData[ RowBox[{"Off", "[", RowBox[{"General", "::", "\"\\""}], "]"}]], "Input",ExpressionUUID->\ "dfde32c0-7a63-4ee6-94b2-508139cabfb0"], Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{"Print", "[", RowBox[{"GraphDataString", "[", RowBox[{ RowBox[{"LineGraph", "[", RowBox[{"Graph", "[", "#", "]"}], "]"}], ",", "\[IndentingNewLine]", RowBox[{"\"\\"", "\[Rule]", RowBox[{ RowBox[{"StringReplace", "[", RowBox[{"#", ",", RowBox[{"\"\\"", "\[Rule]", "\"\<\>\""}]}], "]"}], "<>", "\"\\""}]}], ",", "\[IndentingNewLine]", RowBox[{"\"\\"", "\[Rule]", RowBox[{"\"\\"", "<>", RowBox[{"GraphData", "[", RowBox[{"#", ",", "\"\\""}], "]"}]}]}], ",", "\[IndentingNewLine]", RowBox[{"\"\\"", "\[Rule]", RowBox[{"{", "\"\\"", "}"}]}], ",", "\[IndentingNewLine]", RowBox[{"TimeConstraint", "\[Rule]", "60"}], ",", "\[IndentingNewLine]", RowBox[{"MemoryConstraint", "\[Rule]", "1*^9"}], ",", "\[IndentingNewLine]", RowBox[{"Debug", "\[Rule]", "True"}]}], "\[IndentingNewLine]", "]"}], "]"}], "&"}], "/@", RowBox[{"GraphData", "[", "\"\\"", "]"}]}]], "Input",Expressio\ nUUID->"f172e22d-e631-47e4-a2a6-847143b95a97"] }, Open ]] }, Open ]] }, WindowSize->{1096, 968}, WindowMargins->{{Automatic, 252}, {Automatic, 0}}, ShowSelection->True, TaggingRules->{ "DocuToolsSettings" -> {"$PaletteMode" -> "Internal"}, "DocuToolsSettingsInternal" -> { "$ApplicationName" -> "Pubs", "$LinkBase" -> "Pubs", "$ApplicationDirectory" -> "/Users/eww/Data/Development/Pubs/", "$DocumentationDirectory" -> "/Users/eww/Data/Development/Pubs/Documentation/English/", "$UseNewPageDialog" -> "", "$PacletVersion" -> "0.10.2193", "CloseOpenPageDialogAutomatically" -> True}, "SaveDialogDataSavesBlog" -> False, "TryRealOnly" -> False}, FrontEndVersion->"14.1 for Mac OS X ARM (64-bit) (April 4, 2024)", StyleDefinitions->"Default.nb", ExpressionUUID->"1299573e-18ff-47be-8ffd-2a0c46622e96" ] (* End of Notebook Content *) (* Internal cache information *) (*CellTagsOutline CellTagsIndex->{} *) (*CellTagsIndex CellTagsIndex->{} *) (*NotebookFileOutline Notebook[{ Cell[CellGroupData[{ Cell[580, 22, 82, 0, 96, "Title",ExpressionUUID->"41a81e70-a178-4af8-b105-76e09ac708fa"], Cell[CellGroupData[{ Cell[687, 26, 83, 0, 53, "Subsection",ExpressionUUID->"9a5eca86-5906-4d70-8e24-db66bb59ad14"], Cell[773, 28, 110, 3, 55, "Text",ExpressionUUID->"72cf9f80-9d17-4506-97a7-cc8fbfe2a08f"], Cell[886, 33, 331, 8, 33, "Text",ExpressionUUID->"c8fb0090-1ffb-48ce-9702-8a0579ba0b0b"], Cell[1220, 43, 348, 10, 33, "Text",ExpressionUUID->"495bf839-01aa-4682-9b56-03ef4cddc00e"], Cell[1571, 55, 154, 2, 33, "Text",ExpressionUUID->"de7a905a-2f3b-4fa5-b875-856f9472a686"] }, Open ]], Cell[CellGroupData[{ Cell[1762, 62, 81, 0, 66, "Section",ExpressionUUID->"1cfe3910-aa09-44ed-9cc9-2d63e748b49f"], Cell[1846, 64, 172, 3, 33, "Text",ExpressionUUID->"14e0ff2d-7334-49ec-8705-68e3ead114cb"] }, Open ]], Cell[CellGroupData[{ Cell[2055, 72, 80, 0, 66, "Section",ExpressionUUID->"c7cfa0d8-3106-49e9-8419-e9e5c7731e02"], Cell[CellGroupData[{ Cell[2160, 76, 83, 0, 45, "Subsubsection",ExpressionUUID->"1f021c9e-73df-4123-a1e3-2ef8cc589a81"], Cell[2246, 78, 225, 5, 35, "Text",ExpressionUUID->"f0d09bc5-80d4-4913-abbb-e6073a42b553"], Cell[2474, 85, 251, 4, 58, "Text",ExpressionUUID->"d527573f-08b1-41c2-9d61-e80adfce2da4"], Cell[CellGroupData[{ Cell[2750, 93, 454, 13, 30, "Input",ExpressionUUID->"b79e41f4-b304-41cb-bcc0-b8cce11898ba"], Cell[3207, 108, 230, 5, 34, "Output",ExpressionUUID->"915e169c-5d32-4d91-8237-d3e155970cd7"] }, Open ]], Cell[CellGroupData[{ Cell[3474, 118, 294, 8, 30, "Input",ExpressionUUID->"57ebd02f-b908-480f-b8c9-6cac08dedb4f"], Cell[3771, 128, 189, 4, 34, "Output",ExpressionUUID->"1e73f999-c265-492a-be39-81671e3c028f"] }, Open ]], Cell[3975, 135, 551, 11, 52, "Input",ExpressionUUID->"f2957151-cc7c-495b-b069-dd3effe7098b"], Cell[CellGroupData[{ Cell[4551, 150, 165, 3, 30, "Input",ExpressionUUID->"7b67e3a3-be97-4cb9-85ab-baae31401282"], Cell[4719, 155, 86, 0, 34, "Output",ExpressionUUID->"97b21d9e-0928-44b1-a323-e2b40b3478a5"] }, Open ]], Cell[4820, 158, 142, 2, 35, "Text",ExpressionUUID->"11efe965-f7a5-4202-ac90-ad7fe4e60066"], Cell[4965, 162, 225, 5, 35, "Text",ExpressionUUID->"87f553a1-1952-4576-b237-1e0affe8b91d"], Cell[CellGroupData[{ Cell[5215, 171, 305, 9, 30, "Input",ExpressionUUID->"2c43838c-6734-42f8-bdad-890795da991d"], Cell[5523, 182, 259, 5, 34, "Output",ExpressionUUID->"f30126dc-7d9b-48e4-88da-c8e61b0d832b"] }, Open ]], Cell[CellGroupData[{ Cell[5819, 192, 393, 12, 30, "Input",ExpressionUUID->"0517aefc-fa70-47a1-a5ca-7388590fc7fd"], Cell[6215, 206, 259, 5, 34, "Output",ExpressionUUID->"29e81a9a-b7db-4d0d-b2fa-835e2bca293b"] }, Open ]], Cell[CellGroupData[{ Cell[6511, 216, 303, 9, 30, "Input",ExpressionUUID->"fa3f86aa-ef3f-41d0-ab2c-50b0cdf4bcd4"], Cell[6817, 227, 259, 5, 34, "Output",ExpressionUUID->"f80457c9-8835-43d1-a681-83a4ee2d1361"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[7125, 238, 89, 0, 45, "Subsubsection",ExpressionUUID->"3a66b181-1666-4c8b-b29d-2e20a31e4a1f"], Cell[7217, 240, 225, 5, 35, "Text",ExpressionUUID->"4be024fe-cc4c-4253-ab4c-90e6be9b3f51"], Cell[7445, 247, 244, 4, 58, "Text",ExpressionUUID->"d06aeb31-d9ea-404e-8395-5a8b7d5db2da"], Cell[CellGroupData[{ Cell[7714, 255, 862, 24, 115, "Input",ExpressionUUID->"61af2a79-c8f1-48e4-a729-f5fbb6d5fdc7"], Cell[8579, 281, 227, 5, 34, "Output",ExpressionUUID->"5543e36c-0bc2-4b88-8567-a0bffda8de72"] }, Open ]], Cell[CellGroupData[{ Cell[8843, 291, 371, 11, 30, "Input",ExpressionUUID->"f66e30eb-c3e2-4d9a-9802-9b7d0eaf18ca"], Cell[9217, 304, 187, 4, 34, "Output",ExpressionUUID->"7923500d-e31f-4c2f-b0ba-6d009dc94a06"] }, Open ]], Cell[CellGroupData[{ Cell[9441, 313, 521, 9, 52, "Input",ExpressionUUID->"d403cac9-2c46-4b0a-9cdf-8acc92e88a97"], Cell[9965, 324, 484, 8, 56, "Output",ExpressionUUID->"b4392b58-e0dc-4bba-986a-fb8d66d751fe"] }, Open ]], Cell[CellGroupData[{ Cell[10486, 337, 174, 4, 30, "Input",ExpressionUUID->"36ad3c91-73cc-41f2-a65f-3f763d6f67a5"], Cell[10663, 343, 86, 0, 34, "Output",ExpressionUUID->"d1f6c981-cd71-4b6c-a089-92b6c9c908cd"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[10798, 349, 92, 0, 45, "Subsubsection",ExpressionUUID->"59f89cad-0b18-4e85-a12a-6fa671a7a7f3"], Cell[CellGroupData[{ Cell[10915, 353, 866, 24, 115, "Input",ExpressionUUID->"fd526327-0191-41a4-9b8b-db5e1b00a287"], Cell[11784, 379, 227, 5, 34, "Output",ExpressionUUID->"2cde5149-f5fa-4b32-adc6-cf581e7f9e26"] }, Open ]] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[12072, 391, 81, 0, 52, "Section",ExpressionUUID->"45cc4709-5b44-4ee0-84d8-b9e7a2acc61c"], Cell[CellGroupData[{ Cell[12178, 395, 87, 0, 53, "Subsection",ExpressionUUID->"1cf9ab05-316c-4e5d-b7f1-c46fb29fe38f"], Cell[CellGroupData[{ Cell[12290, 399, 82, 0, 43, "Subsubsection",ExpressionUUID->"01acd8a9-ebf4-40f2-a63a-f65c2b9ca4b8"], Cell[CellGroupData[{ Cell[12397, 403, 593, 17, 29, "Input",ExpressionUUID->"520aa1f0-7146-44bd-8fdc-74a29e8b99ce"], Cell[12993, 422, 2332, 68, 205, "Output",ExpressionUUID->"a0443095-273b-449f-a43c-19af573437e1"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[15374, 496, 119, 0, 43, "Subsubsection",ExpressionUUID->"cfabe37e-fe84-4ca4-a3c4-edb698b08210"], Cell[15496, 498, 350, 9, 70, "Input",ExpressionUUID->"1b520f96-3eed-4803-aa1a-9944f3fecd0f"], Cell[CellGroupData[{ Cell[15871, 511, 333, 7, 70, "Input",ExpressionUUID->"b12078f2-e138-4544-90ae-50d81e411487"], Cell[16207, 520, 4926, 120, 70, "Output",ExpressionUUID->"2978c3ad-1187-42b4-98a2-66281314adbd"] }, Open ]] }, Closed]] }, Open ]], Cell[CellGroupData[{ Cell[21194, 647, 85, 0, 53, "Subsection",ExpressionUUID->"1b5ec43c-846e-41fb-8114-00d5c73254ff"], Cell[CellGroupData[{ Cell[21304, 651, 592, 17, 29, "Input",ExpressionUUID->"1c3ca1e8-26af-4320-b4d2-d08bcf37f990"], Cell[21899, 670, 2352, 74, 175, "Output",ExpressionUUID->"0f4ccd85-a0ea-4aba-b5be-bf323310f8d7"] }, Open ]], Cell[CellGroupData[{ Cell[24288, 749, 123, 1, 29, "Input",ExpressionUUID->"5d8177d7-6f79-49de-bcfc-d434dbe6188a"], Cell[24414, 752, 523, 17, 33, "Output",ExpressionUUID->"abdf3608-9d9c-420c-931e-cf5bd9d93228"] }, Open ]], Cell[CellGroupData[{ Cell[24974, 774, 1207, 31, 111, "Input",ExpressionUUID->"af0abcd9-e5a6-4503-96b7-28d6b46e8e68"], Cell[26184, 807, 6050, 135, 205, "Output",ExpressionUUID->"8b3a3123-8295-416a-a6c8-3346959585ef"] }, Open ]] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[32295, 949, 84, 0, 66, "Section",ExpressionUUID->"f2533e55-8241-480f-a4c5-7070ee305ce6"], Cell[CellGroupData[{ Cell[32404, 953, 106, 0, 53, "Subsection",ExpressionUUID->"81f7942d-b118-4577-bdd9-15b33e765cfe"], Cell[CellGroupData[{ Cell[32535, 957, 266, 6, 29, "Input",ExpressionUUID->"3a1e5ce5-ea7f-499f-83fe-a688ad6383e2"], Cell[32804, 965, 111, 1, 33, "Output",ExpressionUUID->"7d6d1420-a734-48a1-ab32-bc30c780bf56"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[32964, 972, 85, 0, 53, "Subsection",ExpressionUUID->"22d0ff18-bfdc-4357-8a26-4c1a62361988"], Cell[CellGroupData[{ Cell[33074, 976, 246, 6, 29, "Input",ExpressionUUID->"dec52e59-f0ca-4db4-ac1e-af4bc67f0242"], Cell[33323, 984, 115, 2, 33, "Output",ExpressionUUID->"fac46df2-5099-44a6-ad0e-ec280a8bfb84"] }, Open ]] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[33499, 993, 88, 0, 66, "Section",ExpressionUUID->"d95c1285-09e5-431a-84cd-de157331863f"], Cell[CellGroupData[{ Cell[33612, 997, 85, 0, 53, "Subsection",ExpressionUUID->"58794a1d-3399-4cb5-9e88-3e7f3df22dc4"], Cell[CellGroupData[{ Cell[33722, 1001, 484, 12, 29, "Input",ExpressionUUID->"4e3d91a9-7bca-432c-b0bd-4589f88e0ccc"], Cell[34209, 1015, 1270, 30, 121, "Output",ExpressionUUID->"4076e997-5d99-438f-a685-1745885327ac"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[35528, 1051, 88, 0, 53, "Subsection",ExpressionUUID->"0c39d9ae-6bc5-4d1f-89fa-9d629ada6a1e"], Cell[CellGroupData[{ Cell[35641, 1055, 487, 12, 29, "Input",ExpressionUUID->"bcc8d80d-1d0c-4127-b872-f58a38bca4ab"], Cell[36131, 1069, 3102, 72, 287, "Output",ExpressionUUID->"2c454dea-252f-4e8b-b797-3603c79fa95e"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[39282, 1147, 92, 0, 53, "Subsection",ExpressionUUID->"cf11a749-613a-41b8-a1ab-d38f427fda2d"], Cell[CellGroupData[{ Cell[39399, 1151, 491, 12, 29, "Input",ExpressionUUID->"7e637618-8c42-45ce-bb5d-68026927b14d"], Cell[39893, 1165, 2081, 59, 287, "Output",ExpressionUUID->"b8165d56-e1c8-47a5-ada3-dd9e24efd8b9"] }, Open ]] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[42035, 1231, 84, 0, 66, "Section",ExpressionUUID->"e9364f49-a456-461f-bc91-d30861ac2254"], Cell[CellGroupData[{ Cell[42144, 1235, 227, 5, 29, "Input",ExpressionUUID->"e2a81a1e-b0d5-49fc-8290-75ff1d2ed9f0"], Cell[42374, 1242, 2825, 50, 359, "Output",ExpressionUUID->"0da4867c-9574-4921-a497-bbec6f77b3ac"] }, Open ]], Cell[CellGroupData[{ Cell[45236, 1297, 163, 3, 29, "Input",ExpressionUUID->"56c5dd3b-8aa0-453e-9d76-ac8b88734200"], Cell[45402, 1302, 114, 2, 33, "Output",ExpressionUUID->"d576bd8e-d47c-4695-a91e-05fa8b06978d"] }, Open ]], Cell[CellGroupData[{ Cell[45553, 1309, 283, 6, 29, "Input",ExpressionUUID->"f8dd749b-c804-4909-95e5-f882b308435a"], Cell[45839, 1317, 1284, 27, 359, "Output",ExpressionUUID->"efc810b1-c234-40ea-bb4b-20c24633f315"] }, Open ]], Cell[CellGroupData[{ Cell[47160, 1349, 178, 4, 29, "Input",ExpressionUUID->"2afa14d1-feae-4bc1-8816-404923387a72"], Cell[47341, 1355, 132, 2, 33, "Output",ExpressionUUID->"183fe2ab-cd20-42ab-bc6f-68d527fc44b0"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[47522, 1363, 106, 0, 66, "Section",ExpressionUUID->"ab1852af-e708-49cc-8e8c-c0bc1d55030a"], Cell[CellGroupData[{ Cell[47653, 1367, 88, 0, 53, "Subsection",ExpressionUUID->"1e4775b0-e6da-4eb7-b72f-85ca32800650"], Cell[CellGroupData[{ Cell[47766, 1371, 439, 14, 29, "Input",ExpressionUUID->"8e3b2e83-06ac-43b1-8740-21eb8b571234"], Cell[48208, 1387, 329, 6, 33, "Output",ExpressionUUID->"a99a0037-ae1d-4772-927d-f34932bbaf1b"] }, Open ]], Cell[CellGroupData[{ Cell[48574, 1398, 522, 16, 29, "Input",ExpressionUUID->"d653ab1a-277c-45e4-b7ce-afd2e0a4ff36"], Cell[49099, 1416, 1661, 60, 183, "Output",ExpressionUUID->"39a87faf-ecd4-41f3-8d6e-e855b84402b3"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[50809, 1482, 85, 0, 53, "Subsection",ExpressionUUID->"c33919dc-9975-450b-bc7a-efb125b978d4"], Cell[CellGroupData[{ Cell[50919, 1486, 82, 0, 43, "Subsubsection",ExpressionUUID->"54bc6451-a887-42b2-8161-70697db1bd45"], Cell[CellGroupData[{ Cell[51026, 1490, 467, 13, 29, "Input",ExpressionUUID->"fee6458e-c016-49a0-a955-2342c3c6e35f"], Cell[51496, 1505, 1782, 43, 94, "Output",ExpressionUUID->"6bef2170-f0ce-4c44-a2dd-0f0d29656184"] }, Open ]], Cell[CellGroupData[{ Cell[53315, 1553, 477, 14, 29, "Input",ExpressionUUID->"8dde1eca-396d-43ec-a165-ee7a13d9ef5e"], Cell[53795, 1569, 1858, 46, 94, "Output",ExpressionUUID->"5cda5092-10be-403f-8319-a6ce46c314ee"] }, Open ]], Cell[CellGroupData[{ Cell[55690, 1620, 467, 14, 29, "Input",ExpressionUUID->"f757d91a-4349-4717-9669-e9e0a4dd94c1"], Cell[56160, 1636, 1152, 35, 53, "Output",ExpressionUUID->"931e97fb-a3a2-4d03-948c-61d39e6315b9"] }, Open ]], Cell[57327, 1674, 408, 12, 29, "Input",ExpressionUUID->"0ec293f5-7b41-4c6d-93bf-e8c8669e018e"], Cell[CellGroupData[{ Cell[57760, 1690, 358, 10, 29, "Input",ExpressionUUID->"a6da8ddd-f190-451e-80b4-c2b7e8dca8b0"], Cell[58121, 1702, 19733, 407, 233, "Output",ExpressionUUID->"52ebe1ac-1e57-4d6e-9c92-31df21e32296"] }, Open ]], Cell[77869, 2112, 314, 7, 49, "Input",ExpressionUUID->"c4800483-6ee0-436b-a78c-2c61ecfde8ba"], Cell[78186, 2121, 661, 19, 29, "Input",ExpressionUUID->"811eb8cc-f5fe-4000-88d7-e48e4477d328"], Cell[CellGroupData[{ Cell[78872, 2144, 358, 10, 29, "Input",ExpressionUUID->"51ca07b1-b778-4ceb-8814-0a9e6e3186d6"], Cell[79233, 2156, 52525, 1241, 233, "Output",ExpressionUUID->"59d389e4-e2d0-4fe3-99ce-e961e2ef4d5d"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[131807, 3403, 82, 0, 43, "Subsubsection",ExpressionUUID->"0f3b90a9-68ce-4499-92f2-9929a7c64655"], Cell[CellGroupData[{ Cell[131914, 3407, 477, 14, 70, "Input",ExpressionUUID->"e535a85d-477b-4527-b919-501cef18d82a"], Cell[132394, 3423, 1790, 45, 70, "Output",ExpressionUUID->"235314b9-86f4-498c-ad50-9310fbe63410"] }, Open ]], Cell[CellGroupData[{ Cell[134221, 3473, 1047, 28, 70, "Input",ExpressionUUID->"794a07fa-ae64-4020-b729-fac9473dd058"], Cell[135271, 3503, 19213, 972, 70, 12405, 862, "GraphicsData", "PostScript", "Graphics",ExpressionUUID->"5b4877c4-0566-45e8-a8be-bdb350311378"], Cell[154487, 4477, 301, 9, 70, "Output",ExpressionUUID->"0f94749a-4cf7-4648-b1a5-b9a7374f66a1"] }, Open ]], Cell[CellGroupData[{ Cell[154825, 4491, 110, 1, 70, "Input",ExpressionUUID->"395336e5-7eab-4e1e-9c0c-283193cdc3ba"], Cell[154938, 4494, 207, 5, 70, "Output",ExpressionUUID->"22cdf2d7-7327-4caa-9620-2c3c0e74909b"] }, Open ]], Cell[CellGroupData[{ Cell[155182, 4504, 1356, 37, 70, "Input",ExpressionUUID->"e985b28a-bd1f-451d-b9cb-31bed73df765"], Cell[156541, 4543, 26877, 1356, 70, 18490, 1227, "GraphicsData", "PostScript", "Graphics",ExpressionUUID->"647b4258-1155-4115-b6ed-a2f23b01a988"], Cell[183421, 5901, 196, 5, 70, "Output",ExpressionUUID->"30da7797-9896-421e-9151-5808e68e59a6"] }, Open ]] }, Closed]] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[183690, 5914, 80, 0, 66, "Section",ExpressionUUID->"154dbce7-fb21-489f-b1c3-0b8483d3582d"], Cell[CellGroupData[{ Cell[183795, 5918, 952, 25, 151, "Input",ExpressionUUID->"fc501abc-d8b7-4b95-af93-8063312ae62f"], Cell[184750, 5945, 185, 5, 33, "Output",ExpressionUUID->"dbe58c89-7035-443c-bf8f-c394c8f3ebbe"] }, Open ]], Cell[184950, 5953, 284, 9, 29, "Input",ExpressionUUID->"3ce4516e-3583-48be-a45f-4f851ddef80c"], Cell[185237, 5964, 179, 3, 29, "Input",ExpressionUUID->"dc21387a-e53f-4ad5-b161-a41090a184f2"], Cell[185419, 5969, 143, 2, 29, "Input",ExpressionUUID->"3331848a-a118-4bce-9652-02d2d174706c"] }, Open ]], Cell[185577, 5974, 124, 0, 66, "Section",ExpressionUUID->"41db4280-99a5-4be0-9f88-fe05e749fa54"], Cell[CellGroupData[{ Cell[185726, 5978, 102, 0, 52, "Section",ExpressionUUID->"e5f3d324-70de-46a5-a670-5ced1eb25305"], Cell[CellGroupData[{ Cell[185853, 5982, 105, 0, 53, "Subsection",ExpressionUUID->"c470c32f-13c1-4a1e-be35-1092c22028b3"], Cell[CellGroupData[{ Cell[185983, 5986, 455, 11, 90, "Input",ExpressionUUID->"2923df6a-1738-4675-aebd-7dce5993abf3"], Cell[186441, 5999, 207, 5, 33, "Output",ExpressionUUID->"2b16e54d-974c-4c98-a383-2a7bb7f54a8d"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[186697, 6010, 104, 0, 53, "Subsection",ExpressionUUID->"0ad8e9ed-0c59-4a53-aada-54b1c1ec5992"], Cell[CellGroupData[{ Cell[186826, 6014, 465, 11, 90, "Input",ExpressionUUID->"7dfd202f-6e48-4173-be2e-b9ab40af99ee"], Cell[187294, 6027, 410, 12, 33, "Output",ExpressionUUID->"9eb1ef4f-bfaa-4a8b-a4e7-79d02d0a61d1"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[187753, 6045, 105, 0, 53, "Subsection",ExpressionUUID->"d429068b-509b-4885-9051-6350b1ba4ebd"], Cell[CellGroupData[{ Cell[187883, 6049, 460, 11, 90, "Input",ExpressionUUID->"e4e36555-8c0f-4384-9e40-f4786cb01cfd"], Cell[188346, 6062, 410, 12, 33, "Output",ExpressionUUID->"1ea55707-9c11-40b4-82c2-34899aafcf51"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[188805, 6080, 116, 0, 53, "Subsection",ExpressionUUID->"f80daca0-765d-4865-be56-a86cae0d747f"], Cell[CellGroupData[{ Cell[188946, 6084, 567, 15, 90, "Input",ExpressionUUID->"e42cd3ef-b491-4b99-8354-cc034af5411e"], Cell[189516, 6101, 410, 12, 33, "Output",ExpressionUUID->"bf574c44-c1ee-4654-ba0a-df39ed9c9ce6"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[189975, 6119, 116, 0, 53, "Subsection",ExpressionUUID->"153454f4-5b38-4bcb-bb24-517eb3d25dfd"], Cell[CellGroupData[{ Cell[190116, 6123, 567, 15, 90, "Input",ExpressionUUID->"9f0592c0-53cb-4da3-a4a9-2345d80eb87a"], Cell[190686, 6140, 410, 12, 33, "Output",ExpressionUUID->"b0cd2abf-5421-4c28-9636-be797b5319fa"] }, Open ]], Cell[CellGroupData[{ Cell[191133, 6157, 488, 13, 29, "Input",ExpressionUUID->"faa2a191-c005-4b5d-bf76-238864cac255"], Cell[191624, 6172, 242, 7, 33, "Output",ExpressionUUID->"973291c8-090c-4f46-a0c3-bac1f642a38f"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[191915, 6185, 108, 0, 53, "Subsection",ExpressionUUID->"ec41544e-27ba-4ec6-92f3-3981869faa84"], Cell[CellGroupData[{ Cell[192048, 6189, 481, 11, 90, "Input",ExpressionUUID->"f135a532-f123-4ee6-8be7-1521546dcf90"], Cell[192532, 6202, 224, 5, 33, "Output",ExpressionUUID->"e03c7ca4-4356-4e94-b2f8-e22a1efa9076"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[192805, 6213, 106, 0, 53, "Subsection",ExpressionUUID->"ec1b0128-4451-468a-89ca-8164a1c198c8"], Cell[CellGroupData[{ Cell[192936, 6217, 464, 11, 90, "Input",ExpressionUUID->"642dc608-a30e-40c5-a8fa-cc5d384b7343"], Cell[193403, 6230, 414, 12, 33, "Output",ExpressionUUID->"e702e963-d23c-486b-a233-2dee1789ea7c"] }, Open ]], Cell[CellGroupData[{ Cell[193854, 6247, 490, 13, 29, "Input",ExpressionUUID->"5cc0e49c-ea58-4299-aabf-907a7c424a16"], Cell[194347, 6262, 151, 3, 33, "Output",ExpressionUUID->"d3f293f5-c956-4a48-9de3-ca8994c43b92"] }, Open ]] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[194559, 6272, 83, 0, 66, "Section",ExpressionUUID->"eb69ac86-c5a1-423d-84d4-5bed7537e5a2"], Cell[194645, 6274, 675, 16, 111, "Input",ExpressionUUID->"ffd77e39-33ff-441a-9ed7-38628a8250d5"], Cell[195323, 6292, 212, 5, 29, "Input",ExpressionUUID->"85d60c15-bacd-46b9-8de7-c6be70d1ce7f"], Cell[195538, 6299, 14841, 397, 372, "Input",ExpressionUUID->"a2888c05-92fb-4ab7-955f-3f2e34ab9216"], Cell[210382, 6698, 154, 3, 29, "Input",ExpressionUUID->"dfde32c0-7a63-4ee6-94b2-508139cabfb0"], Cell[210539, 6703, 1244, 28, 172, "Input",ExpressionUUID->"f172e22d-e631-47e4-a2a6-847143b95a97"] }, Open ]] }, Open ]] } ] *)