(* Content-type: application/vnd.wolfram.mathematica *) (*** Wolfram Notebook File ***) (* http://www.wolfram.com/nb *) (* CreatedBy='Mathematica 11.1' *) (*CacheID: 234*) (* Internal cache information: NotebookFileLineBreakTest NotebookFileLineBreakTest NotebookDataPosition[ 158, 7] NotebookDataLength[ 1581518, 33196] NotebookOptionsPosition[ 1541000, 32456] NotebookOutlinePosition[ 1541422, 32473] CellTagsIndexPosition[ 1541379, 32470] WindowFrame->Normal*) (* Beginning of Notebook Content *) Notebook[{ Cell[CellGroupData[{ Cell["Cubical Graph", "Title",ExpressionUUID->"c0194492-3219-4f4d-a5f0-ecc30b4b82c0"], Cell[CellGroupData[{ Cell["Author", "Subsection",ExpressionUUID->"6d9db90c-5e3c-4fd7-bca9-7ac8c724314c"], Cell["\<\ Eric W. Weisstein September 25, 2024\ \>", "Text",ExpressionUUID->"d1b353de-d984-4d26-a32e-322147995075"], Cell[TextData[{ "This notebook downloaded from ", ButtonBox["http://mathworld.wolfram.com/notebooks/GraphTheory/CubicalGraph.\ nb", BaseStyle->"Hyperlink", ButtonData:>{ URL["http://mathworld.wolfram.com/notebooks/GraphTheory/CubicalGraph.nb"], None}], "." }], "Text",ExpressionUUID->"b8b1ef2f-5d4f-4ab2-a51f-a0b94e6fba57"], Cell[TextData[{ "For more information, see Eric's ", StyleBox["MathWorld", FontSlant->"Italic"], " entry ", ButtonBox["http://mathworld.wolfram.com/CubicalGraph.html", BaseStyle->"Hyperlink", ButtonData:>{ URL["http://mathworld.wolfram.com/CubicalGraph.html"], None}], "." }], "Text",ExpressionUUID->"f3b1d5f3-5c62-4219-9c2d-cf06db5e6dcd"], Cell["\<\ \[Copyright]2024 Wolfram Research, Inc. except for portions noted otherwise\ \>", "Text",ExpressionUUID->"3e9fb402-c7b5-4512-882c-2889cb92043b"] }, Open ]], Cell[CellGroupData[{ Cell["Embeddings", "Section",ExpressionUUID->"31509f6a-4190-4920-9eff-e22b2e160a78"], Cell[BoxData[ RowBox[{"<<", "MathWorld`Graphs`"}]], "Input", InitializationCell->True, CellLabel->"In[1]:=",ExpressionUUID->"7c363d93-966a-46d5-a348-1eefb2169bb1"], Cell[CellGroupData[{ Cell["Names", "Subsubsection",ExpressionUUID->"ac82b721-068e-44e8-aa54-0f8d389c9dc6"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"GraphData", "[", RowBox[{"\"\\"", ",", "\"\\""}], "]"}]], "Input", CellLabel->"In[23]:=",ExpressionUUID->"b8bfdb5c-9c71-424c-b264-6ee45e6b03c6"], Cell[BoxData["\<\"CubicalGraph\"\>"], "Output", CellLabel->"Out[23]=",ExpressionUUID->"aade6e8d-5fe6-443b-be6c-53128166a724"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"GraphData", "[", RowBox[{"\"\\"", ",", "\"\\""}], "]"}]], "Input", CellLabel-> "In[139]:=",ExpressionUUID->"d8a86a51-24dd-47e5-abc6-259e8eb0f09e"], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"8", ",", "5358"}], "}"}], ",", RowBox[{"{", RowBox[{"\<\"ArcTransitive\"\>", ",", RowBox[{"{", RowBox[{"8", ",", "4"}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{"\<\"BipartiteKneser\"\>", ",", RowBox[{"{", RowBox[{"4", ",", "1"}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{"\<\"CircularLadder\"\>", ",", "4"}], "}"}], ",", "\<\"Cp1\"\>", ",", RowBox[{"{", RowBox[{"\<\"CrossedPrism\"\>", ",", "4"}], "}"}], ",", RowBox[{"{", RowBox[{"\<\"Crown\"\>", ",", "4"}], "}"}], ",", "\<\"Ct5\"\>", ",", "\<\"CubeGraph\"\>", ",", RowBox[{"{", RowBox[{"\<\"Cubic\"\>", ",", RowBox[{"{", RowBox[{"8", ",", "4"}], "}"}]}], "}"}], ",", "\<\"CubicalGraph\"\>", ",", RowBox[{"{", RowBox[{"\<\"CubicPolyhedral\"\>", ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{"\<\"CubicTransitive\"\>", ",", "5"}], "}"}], ",", RowBox[{"{", RowBox[{"\<\"EdgeTransitive\"\>", ",", RowBox[{"{", RowBox[{"8", ",", "11"}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{"\<\"EdgeTransitiveConnected\"\>", ",", RowBox[{"{", RowBox[{"8", ",", "2"}], "}"}]}], "}"}], ",", "\<\"F008A\"\>", ",", "\<\"Foster008A\"\>", ",", RowBox[{"{", RowBox[{"\<\"GeneralizedPetersen\"\>", ",", RowBox[{"{", RowBox[{"4", ",", "1"}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{"\<\"GeneralizedPrism\"\>", ",", RowBox[{"{", RowBox[{"4", ",", "2"}], "}"}]}], "}"}], ",", "\<\"Gp4,1\"\>", ",", "\<\"GP4,1\"\>", ",", RowBox[{"{", RowBox[{"\<\"Grid\"\>", ",", RowBox[{"{", RowBox[{"2", ",", "2", ",", "2"}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{"\<\"Haar\"\>", ",", "11"}], "}"}], ",", RowBox[{"{", RowBox[{"\<\"Haar\"\>", ",", "13"}], "}"}], ",", RowBox[{"{", RowBox[{"\<\"Haar\"\>", ",", "14"}], "}"}], ",", RowBox[{"{", RowBox[{"\<\"HamiltonLaceable\"\>", ",", RowBox[{"{", RowBox[{"8", ",", "6"}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{"\<\"Hamming\"\>", ",", RowBox[{"{", RowBox[{"3", ",", "2"}], "}"}]}], "}"}], ",", "\<\"HexahedralGraph\"\>", ",", RowBox[{"{", RowBox[{"\<\"HoneycombToroidal\"\>", ",", RowBox[{"{", RowBox[{"1", ",", "8", ",", "3"}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{"\<\"HoneycombToroidal\"\>", ",", RowBox[{"{", RowBox[{"1", ",", "8", ",", "5"}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{"\<\"HoneycombToroidal\"\>", ",", RowBox[{"{", RowBox[{"2", ",", "4", ",", "2"}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{"\<\"HoneycombToroidal\"\>", ",", RowBox[{"{", RowBox[{"2", ",", "4", ",", "4"}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{"\<\"HouseOfGraphs\"\>", ",", "1022"}], "}"}], ",", RowBox[{"{", RowBox[{"\<\"Hypercube\"\>", ",", "3"}], "}"}], ",", RowBox[{"{", RowBox[{"\<\"IGraph\"\>", ",", RowBox[{"{", RowBox[{"4", ",", "1", ",", "1"}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{"\<\"KCyclic\"\>", ",", RowBox[{"{", RowBox[{"16", ",", "3244"}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{"\<\"Knoedel\"\>", ",", RowBox[{"{", RowBox[{"3", ",", "8"}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{"\<\"Octahedral\"\>", ",", "207"}], "}"}], ",", RowBox[{"{", RowBox[{"\<\"PolygonalBigraph\"\>", ",", "2"}], "}"}], ",", RowBox[{"{", RowBox[{"\<\"Polyhedral\"\>", ",", RowBox[{"{", RowBox[{"8", ",", "207"}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{"\<\"Prism\"\>", ",", "4"}], "}"}], ",", RowBox[{"{", RowBox[{"\<\"Prism\"\>", ",", RowBox[{"{", RowBox[{"4", ",", "2"}], "}"}]}], "}"}], ",", "\<\"Q3\"\>", ",", "\<\"RollingTetrahedronGraph\"\>", ",", RowBox[{"{", RowBox[{"\<\"RookComplement\"\>", ",", RowBox[{"{", RowBox[{"2", ",", "4"}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{"\<\"RookComplement\"\>", ",", RowBox[{"{", RowBox[{"4", ",", "2"}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{"\<\"StackedPrism\"\>", ",", RowBox[{"{", RowBox[{"4", ",", "2"}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{"\<\"Trapezohedron\"\>", ",", "3"}], "}"}], ",", RowBox[{"{", RowBox[{"\<\"UniformSkeleton\"\>", ",", "6"}], "}"}], ",", RowBox[{"{", RowBox[{"\<\"VertexTransitive\"\>", ",", RowBox[{"{", RowBox[{"8", ",", "6"}], "}"}]}], "}"}], ",", "\<\"Y4\"\>", ",", RowBox[{"{", RowBox[{"\<\"ZeroTwoBipartite\"\>", ",", RowBox[{"{", RowBox[{"3", ",", "1"}], "}"}]}], "}"}]}], "}"}]], "Output", CellLabel-> "Out[139]=",ExpressionUUID->"1f63cd2a-0127-4fbd-9ca1-4162e738b337"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["Primary", "Subsubsection",ExpressionUUID->"8b66dd08-5a10-4b7b-ae0a-5bee0519b438"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"GraphData", "[", "\"\\"", "]"}], "//", RowBox[{ RowBox[{"StyleGraphs", "[", RowBox[{"#", ",", RowBox[{"ImageSize", "->", "Small"}]}], "]"}], "&"}]}]], "Input", CellLabel->"In[25]:=",ExpressionUUID->"7197c5a1-34f3-43f5-937e-f814e1fd8628"], Cell[BoxData[ GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, {1}, {4}, {6}, { 1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, {7}, {2}, {5}, {8}, {3}, { 5}, {8}, {4}, {6}, {7}}}, Pattern}]}, {EdgeStyle -> { GrayLevel[0]}, ImageSize -> Small, VertexCoordinates -> {{ Rational[-1, 3], Rational[-1, 3]}, {-1, -1}, { Rational[-1, 3], Rational[1, 3]}, {-1, 1}, { Rational[1, 3], Rational[-1, 3]}, {1, -1}, { Rational[1, 3], Rational[1, 3]}, {1, 1}}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> { RGBColor[1, 0, 0]}}]]}, TagBox[ GraphicsGroupBox[ GraphicsComplexBox[{{-0.3333333333333333, -0.3333333333333333}, {-1., \ -1.}, {-0.3333333333333333, 0.3333333333333333}, {-1., 1.}, { 0.3333333333333333, -0.3333333333333333}, {1., -1.}, { 0.3333333333333333, 0.3333333333333333}, {1., 1.}}, { {GrayLevel[0], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.042426406871192854`]}, {RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.042426406871192854], DiskBox[2, 0.042426406871192854], DiskBox[3, 0.042426406871192854], DiskBox[4, 0.042426406871192854], DiskBox[5, 0.042426406871192854], DiskBox[6, 0.042426406871192854], DiskBox[7, 0.042426406871192854], DiskBox[8, 0.042426406871192854]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None, ImageSize->Small]], "Output", CellLabel->"Out[25]=",ExpressionUUID->"517835da-be00-46ce-9099-c112080bd64b"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["Read and Wilson", "Subsubsection",ExpressionUUID->"050dadec-4ceb-4094-8e5a-812a3ced8826"], Cell[BoxData[ GraphicsBox[ TagBox[RasterBox[CompressedData[" 1:eJysvef3bUtVruu95364H+9fYGgqSJAgHDKSQZCc81aQnARRQNANKEpQiZJh k5GcQeImKQZAECTDVhRzznlentHOu9qzX3qNORfnrNbG+o05Qo2qXr2//e29 atT4jrs96Jb3/L+/5Vu+5cf+36//d8sffti1HvKQH37Erf6/r/+4zQN/7D73 euA9fuSGD3zoPe51j4dc6W7/4+sH7/x/fcu33Ojr2//z9f3/+q//OrD953/+ 57blt4/3Nf/+7/9++Ld/+7czf9n+4z/+48y1/OU3m+/z8ancvsfX9vU515uf les5nrr+67/+64Wu5/x///d/j2VP+7l/klNkw9bX9DMsx6nueZ5l/C//8i/b Rh18X87luPsndXH704Z+frbct9p8nZ9DHfj9vOc973C5y13u8Bu/8RtnZOa6 tQ64vL7WfWJZ+Jpuh+vZetDt5L7Wv8h0quOeTh/TxZSbZ1ovfL3rnnp2WyxH 1xm5RBcmObhOtt3ul0kPrd+5t/WnbczPX21tI92Hrleu2Suv2zPpVevgVB9v vr/7orFy0sO2q9Yj19nX7elX28RKJ6d67eGwn91ycdl9nfs/+jfJdOqvfoZ1 NHJvX+P7o/e+LltjX2Nk+x6Xbzts3Zn0vvEwcmh/wnXPfvazD5e//OUPv/3b v32m3Rz/53/+529o54QrjUetO/ELLYupLyeM6jq3LCi7+9hynTBwxQVWmNfy 9vPaz7bN5e+kEyvsa3m2L5jssdsavGlb8DU5N2Hc1L9tP213/utrrQup02R/ K5/qek7+qPt3wqzWkcZxt2myx8lH9n3BAOt5Y1jrQvxUY9QK36b2dh81hrue zadp18rfusy2ueZ/k95M2Jwy/umf/ulC/KD7O79XHLfbYN1rLjjJeWrvVN+0 E5yET/76r//6hXS/9X7Cx/Z1lsOK+05xCe0Bl5sDuO5pc9eh/Y1lZUw+Zl+T L7fOtr1Ght3X7bN8/eTjrMdTTOg6tL40LnaZK1xtHLJ+TrJv32QM3qt/x2bW 6Sk29e+JD7XcmutNPmbCtFwzYUHXZ49bdZmRn2OFiZ+03CednLjeJKNJp92/ Ey93vOFr7ctWdrLyWVP/2Ceu7GPi5St+s+r/6brmUHsY2c+27NKG5z73uRuf /MhHPnJGTta1lqX72Rgxydt40vyqdaUxMpw2+YvGycij9cBtPMaJbQ8to8nP dDuD7+mPld2ufKXrvMILt7f9nHMyafPUX61DHZdajraF5v8r3z/xlPb57Yv2 8CjY2jobHdizp7bJ9FHHdVNMb72c6jbpxmRrxsvoLnUIF1jh5FSv1pPGmdYp y6l9feu62zvp5uQ321Zd5mRT/t11br/ScZaf13bW8pz0fCXDSY/dL8acPOPp T3/64dKXvvQWdxsXu88m/exrJtttfmBeNulFc56WN3WHs0dO//iP/3ghvE4d OgfcPr2x2nzA/nDine1ruuzJB0/9kzq6zh3TTPJ2X3Zu0/0+6V5jaOO0+3/q x0mOPtZxaPuePe7WeBxs6jZOm8+n7egHuhJZZT+6Yz/sfmj97GvMqVvvLHv3 qevS/WL7zLmpXnle923Xq3XD1wRDV+3o8uJjWj9bTtabloM5T8vHvyOjxORt x/7rehhDXV5wYg+H0/7ua3CFLXUBJy972csefvM3f3PTUcvCPC766zLd71Pf THwxdfn7v//7rR5ur3XZWGLZWU453nmI7rtu00rHJr4x4Ufk0PxginH2+Kh9 duuZsXFlV2mb2/EP//APF9KzxuYVFnbZE6+dbGAvppg286/pOY2vEyYaU+wD g8F/8id/sm1f+9rXzuyz/fmf//nhT//0T7eN/b/4i784/Nmf/dl2ro/z1/tc x/5f/dVfbdtf//Vfn9nv376WfV/H9pd/+ZeHv/mbvzlzT/bz1xvnKYstx7g/ +11nznnLvWz8Tnn8/du//dszdUm9ck1+u20+z71/93d/d+Z45GU5UC7Xua1u G/dzPtekfPazcQ1YwcZ+foMd+Y3OB9ewyVzLX87ZLwaL89d4yN/c6z7h+DOe 8YzDFa94xS3uDn6xcV9szmXbP+ba4AXXpG6xX44hh7QtZaaNaZt9ifEvnNH+ qLlQxwaNW+YQkz9vjmUMMacJV7bPMG44Fmi/N+HBCjd9rLHTuTCeFT2YfOMk q8gj8nUbO3aY4q2J97Zvak6ea6JDPm68O8aBO0cw+STqfIMb3OBwvetd7/AD P/ADh5vc5Cbbdotb3OJw+9vf/nDLW97ycPOb3/xwm9vc5nDOOecc7nKXuxxu etObbudvdrObHW5729se7njHOx5ufetbb9flN9vd7na3wwMe8IBtu//973+4 173udbj73e++Hb/HPe6x7T/oQQ86PPjBD97O3fOe9zzc7373267lPPvcy1+u u/e9771dxz7bQx7ykO38fe5znzMbZXDdj/7oj27n2H/gAx94ePjDH3542MMe dnjoQx96+Imf+InDIx/5yMOjHvWo7a83znHtT//0Tx8e85jHHB772Mcefuqn furwsz/7s4fHPe5xh0c84hHb8V/8xV88/NzP/dx2/vGPf/zh53/+5w8/8zM/ s/190pOedHjCE56w7fOX30996lMPT3va0w5PfvKTD7/0S7+03UN5+U15XMfv X/7lX96OcT33UQa/n/KUp2y/X/CCFxye//znb5yNazieMhg/eeELX3h40Yte tF3Ddt555x1e9rKXHV7xildsf1/zmtccXv/61x9+5Vd+Zfv7pje96fDqV7/6 8LrXvW7b+P3GN75xu+6Vr3zldu4Nb3jD4S1vecvhrW996+Htb3/7dv7Nb37z mXu5ln3O85f+g09Sr3e84x2Ht73tbdtx/r773e8+fPCDHzy8973vPbzzne88 fOhDHzp8+MMfPrzvfe87nH/++YcPfOAD27n3vOc92z7XcO5d73rXdu+v/dqv bfH8Jz/5ycPv/M7vbFj8W7/1W9vGPCSOfexjH9t+85djjCd99KMf3e75xCc+ sW2/+7u/e/jUpz617XMPvz//+c8fPve5z535+3u/93uHL37xi4ff//3fP3zp S1/ajn/hC1/Yfl9wwQXbMf5+9atfvdDGef7+4R/+4eGP//iPt33K+cpXvnL4 oz/6o+1YfCjcAP/N3+yvOEf8JX/DZSbOED8avhAfnP34E37H38TnZD/H49vi q4Kh8Vf2ScGrYL5xz3gef2E/YWxtf+D4espprXxA+4vOMzRvba5uzAx+gU9g Flhyhzvc4XDRi170cM1rXnM7Bi6BIeAHOMI+OMVxrufYj//4j2/XgktgFvjG NZznOJh117vedcNQMPeHfuiHtudiUz/8wz98uPOd77xtd7rTnTaMZuP4j/zI j2zHwWjuA2dvd7vbbcf4zV9wHKwGp/nLvRwH5291q1udOc51/Abj8Qf8ZQPj cz/nuY/j+IQb3/jGhx/8wR/c/Mj1r3/9ww1veMMz93Ocfa7B3/CbulEW113n Otc5XPva196Opyx80vd///cfrnGNaxyue93rbmVyjOuQ91WvetVt4xrOXf3q V99+X+1qV9v22a51rWtt97Dx/Bvd6EbbtdSBMtm4njJSB8pmn43zPJ+NdrFx L2VQ9lWucpXtOdzPPn85z708k2vY5y+88UpXutK2zz3sM4ZzqUtd6nDJS17y 8H3f933bb45TFvvc8z//5//cNo5RD/5yDefY5+9lLnOZrQzuucIVrrBdn/Jo H/fxTK5l45orX/nK2zk2yuMY9ed4ykee+U0ZXMsz2dAFNu5DtugDesuGPqJ/ 3Md4PvVAZmyUx33YETrLtdgRz+Ze9BzZ0Q/YB3Zy3/ved3sGx9If6X/kiy5x LnwjHAC741pkzrO5jvPYGuVynrKpS65n4ze6jd1RB/5SV+rNddyLHWPP2BA6 G/3GdjiGPNinHPMqjmG7tBXbxjbZYtvYLzLgHDLkuezzl+NwHOqT+/lNG/gb vkT7IzuOUefgEJgEj4EPsQ+/4S/XIJef/Mmf3M6BRWkj5/jLtZyHS+BHOnfK llgn2M558kr0A1zG4wpsnktjPt08PPGZYyXHhfil+LX4w8SU+E78quPnxE3x g4k1uSe+GB8a39wxdcfJyR2w4eO5J7E5v9ni25Nv4BhcAV7Axj7cgHM5zm+u +/KXv3z4zGc+s3EQfv/BH/zBxkXgKWyf/exnD5/+9Ke3v/AauAu/2YfbhO/A dcJ54Efwovz++Mc/vt2Xe+FL8CiugWfBveBTbPA2eBgbfI4NfgZ3e//7379t 8Dfu4dpwuHBIruU3PC+8j78cgzOycR3XwzX5Cz+Fi4bDep9zcNRcy7lXvepV G+eFx8J3w4tf/OIXH17+8pdv59hHn1/ykpds+y996Uu3ee2MsfOXjfs4xz73 cw28mn2uy1/497Oe9ayNw8PP4eZwemIF4gb+wonD8zn/xCc+cYsvzj333C2e II549KMffSZOwWY4D6fA9ohbOI8t8pdjbNguNh7bxnY5FjxjS/yT+AjcCDaw BQOxfc4lduNYsDU4QfmJzbgWfhSMYj/XUy51Bo84H/wCo4L//Ab3wl3AtmBk +AvnwFWOg+Pga/gLOMhxjoHR4SGJafH77IPTXAPvyHF+J54FL6kvdeUZ4RuU H5lxDzKh/viecI74mfCGi1zkIlv9iA/CiydsSyzPb+wN/0h86PGmnpfQeZWp zL7WmDvlD5LvcW7V1yb/5DmFUx7Wed0ej01M4NzYxNcb+10f19fjI53Pdx4u ecLk01bjFT0W7Of2fACPN0/jT87d9LiU7488nQuLnHr8t+eurPo8z+i8fcrs ORk9JuLjnadvveo56R1zTfmnzu05Xkxc6PZGNpbl9Ky0YZoDdWxu1d4x18n7 HvuYxjMt19YT39vjYj32Fyyw7Kb5Op5vlnPmYZnvGPtxHtn66Nyz8+PmWvAk eE84V3L4yVMk/9DjEOFaGXchDwbOw2Vs3z3XwHPO4TLEM/hR6+Y0R8m6Epzt +U2Wr/Pj05yKaUwqx2g7/AOuhNzSlik33PfbvqYc/fTczh3bPtrm2ranXH7u t71NY3ytf52TT/t8vK/330nOxq1JNp5TZ9zutjvn5L7oZ03jmpzzfMT89viO 9xuHJ9xc6Zx9jOeCuS+MaR4TmHB8wnLPLTIuuFzrTGPnNE7h+rhcl+N8n7Gm OYjr1z59wu3mCJ1nXHEm3z+NO3e5fX/2V2Mr0/s7tsGOe22/5gFu9zOf+cyN txID+l7X33MeOUZcRw6GmKPbPL37NOlf+5fOwXaZzQds49EZ8ubEP8SK+JWJ 43bZnRvofrONWg/6Xvvq9sO2IZfX2GtuO+Fkc/v4gpZH63H7nAkjG9cs98m/ pNweg+R3645x0n1gvTDe2e56vt7Ef7i3fUX76T4++ZpJN1oHJizu9vm49brb MPljc/i2/7THfdjPtV+Y+tx6ufJX7Q8aE60nE5b3OxueDz7xoJb9hK/tF3zP hL1TPzYWd11SpuOq6AdYRw6AnFi/q9R8OeWBk+SoGYONvrcszQc8b62xpt8z ss71tT2mFflhJ3BJ2kBeDl5tmUS+2W9uMPmvKSaafH2ONc6bF01cs/lacK/n +Pn8MX6yssMcsw1wLvGNsbXx3LGmbTf+POObzl1Yby0Xl5H5JRkrTb4h7W8e aRn6WY7RfXzyta3PqzxR9KR5qn2L7cE+srm357pbFyi7dcC+qP2x6zlhU7ej cSPPMYds2+r7GlPbb/m5jRsrrLa9Wy6JE4zB3lo2xoCJ2/Db70d3HdqGzT+N 76kvsTNjU4wXmANM8Unqw/gB44rkqKk7euqy/fzkC6LLU7+239nbJvk5X5Fc mWP8yQ/6+c3JOJ5+61ix628db1/c+m/e5XKCA54f6HGu5pQTbzcXsP60nNru p5yU55PbVqxjPp88UOY1dj2yH0zzGJ3ngmYcrzHHOG+ek3xu5p9mnorl65ij OWr3nXE8cmuf6va0D92LT+3rWp/SFvd954Z8bcdnrX99nzf3t+vdmDZtbnP7 I/vfye+0DbsN7cPdhsbv5k+rupq/mIdN7W1cdFuTd2VMj3EqxnFsL7aJlJny GUdlDgZ80pyi5elYbJr72jFet3vCAcef1r32e35O41tk6H6a9LJl2eW2/a3w susyYX84VvB+WttiZYd9rmPV1rXGSef8st/cbfJl9lGeOzflx7J5vh15cvNJ z2U3njT2myNn/CvPtz64D9tvTRjZuSHjnO3I7Zpw6Zh/b52yf8y4RMcdrSuN 86t6TFjX7bJ9NA7ZNo0dPb7Zeti42jFq66D1PvrmZ9lvtk1PttT60jrQON58 rfWOORCM7TNnpXEosVXHYuAk88yYAxHOGB11zsg663Z2XnKKTVoG9mEd57U/ 8ta4Hdl7bDnvoKx8qDdjXeOv25n+9++9GCe47TG85p0dh1tfjWfmTO4D2130 KTL0OzjR1ehtx/WWda4LD2pfkr7Ncygvc7Yam9MXjfPmsl2uOVLPY7Z8O6aa uL7j7I5D3K4pRrC+HVuDwdcEJz1XOxymMWA1r8S6NXG4Feeayp8w1n4psu45 5Svsnfxrzx00n44t5lmT/25uueJek+1PvGHiMdYR+CjjOMx3Je7mXPeR592n /syxY84t84LSRs+9d/wQeSb3wDN73SPrS8b42TdGOp8VfY59ewzANtPjxn39 9L5el5OYki3tcFxkO+r3qV1nv4/X7/z5ecarxsXpvb7mUR2b9TzVyLnfk7Dv 8dyLbM4lIgvPIWucbRzNs1OW3+dwXyYet67YvpJPbewzp01c0zFNt9N6kX7u dxV5dvrZfsllTXnh9lX2NZavn+/3PJ2nW63fYN3ruGIPn/dikR4rbc7ieKV1 uLmv1+fz/e1DU16wwvbpLbJx/02+sNf8aW7bW/OIiQvwl3fbmCvvcRxzvszv jg5zH3ONWe+Fd+/CJ5Mncv4peOm8VeO2c6320fHrtvfMOfc7yp2bMk/02EB+ c31wI7bld53TR77ef92PzUVcr5Ttd8YiH9czeBHbMdak74zXPV8sZSSGdTm9 /kRzF4+Z5Jkdh7ovo8eOj42pKdcY2nnP8MnkIy2PtMM40Vxnii+sc3628cfv 1e35p563mnZG1pZDl+E5fs3ljZ/tv/rdc4+XtY7Zf065xo6vbPcdw7rs9vvB lsbEnqto/tfxSsfezTndj62r5gXoReY4JmbpeN/8oHPMrsfEo8wh2ocFs3jv l3Ec5gUlzs4z+et5z8mb8L4t74vBJ42TXlfBPCR931y/+WT3Xceixt3olnHS MbQ3c8LgpO0j9plzwbyU3frhPJI5xoS1eWZwcppTbvttzpyybev+m3oag6PT 6QuPn0dueY/XY8zO6Vn2eU7q4/o2V7cety93fNU47VxI12XK94Wfdlm2E/5G PtYhjxcZT3suZurb40W26diasc+8v+PExtzc0z7cWBhdsqw6d9Q4lvtsT8a3 tL1zg1M81fbVsYbzHc1HpxjJ/K+f3+XaPrGhjBlHxxqzPVeuMds4aDl0LNU8 mWO8L8X7P4m7bRvRwx5b4L01+GRwsm3duOF1W4KVGYNyXNXxcfwBv4M31q3U MTbQftZjIj3GGl+SY37P0W3xGH1zIm9t8+kj65nX6/F7AY3z9gPpPz/Ddes5 NeYnPm5ZhONm7Z5cb9tp+3Fuwvc7D9F1M7ea4nm3x/3pMWtjnjmlMadlmXgj fWz7cX+l/eYz1pdc1363+7Lb7FxTxwaOHy3DYEF0uXmy5Zvn2AfbX1qH83z7 +M4Bp05pk9thHbId2Vcbl4MpxrCWfezU2NUxTutQcxbzPeu6scbtnvJxlmPa 7TIcG3Ef75SCk8z1cU7R8nE7E3czf5J3VXm+dWbKa4UfOKfruUk95tsxd+of m3eeKXLocZaOncPnzPkc79kfOK7sGMd60u+hp/3RE/v7zrs0P7XP7LjW+tb9 4f50bGaddj80P+w8x+SrjbW2cbc/78bbfvxM50SNQf7r9/itM+YG5gLBCtvR lGvxc9s3BpcsF/NS193lTvzHWNCY1nhrHZ583oRTtsvWu/bHaa/Lt7+ccuhu W9e5fXP7EOuKuaA5jJ+V9lnu7W8ar9Nnxqn0ffsTy8p8PX3e+Jp4sn+n7ryr z/s48MnwfuuTZch57Ic1EuCTmReUMl2n9EVwzjxrb7zb/RiscWzo3Jnl6fy1 c/vBweBPx0aOw2wztq3giblV2ty+xXm+5k3GyQnTOtdobLJ8HR+4nxwnmA97 jKxl6ZjYOR3H3Zaj8wiJg1zH5hzpG9fZGGT7sz8L1+vxh8jNGN98q8u2XMwZ jReOQZy36v22444xcn37gub9lrVzNs1nm8+t/HPrkLHYvillmk+6z2zr0Tn7 28Y6t8c67fih+WNzqM7Z5X7nrrzmm32dOU7nPhwPeX1ay7lzd/4b/kr94ZPg JOvfOdaJ7qSMPIdz4CT5SdZLCZ/s/jJWGz+Q1TTmbRmGl2U+iXW+xw3y3HAP 56/28oy+3/zFutM4GfwxPjoW43h4Wepgvth6MGG17cA217zR+f+0L3ILpnlc wP7dMb2xa8qLR4Zpt/lZx27NC1yuyzY+NHfLnHPjpONsx1Ip0/gROdqvTPmY xjVv6T/LwTrjvpnya9035g/OK3h8xbjnsia7N5bF7n3OfWTMMR72WMnEWa2v 1tnOFQUnjYHRjZ63FA7je92m1iuOZz2KjOMkF+eYYPJvlpvttfNQqYtxPn4i 9swaT6yryLvRngPoWCQyoU4cz7wgxso7l9o47fHcHsPsHL3z5o552+5tE223 wWKe1Xwy+tnjCY7np/ye9cy4a3/YuOS8i3HD/r3jBLfJdmieYzs0RtsXRQ+9 Brrj0uYbKdtYxnNdhm2n7d/+xnjZsmrcMsdtvsRx5wAaKx2fJEfeOdPYT/iM 55c5fki5zvlMc6s7HjRXbcxxLiH1MmeIjNM+45sxvLmrx298fcp3DNrjQNY1 xzKTLVlGxiFzzfbbzv9Z7palcaV5gsexIpfUJXJwDsz3Txy3fYvtPzZu/TTG BvPS9+eee+72fjfrEjoej754jCN8kvUne555+7PI0TZFuT23yrrY/tqYNXE4 55OMK7F123D6NOesI/avfqbxp2MX1yXttN1NnNf95f51m3r+UF/nWC/PTjyR eCo4GYy0rBzXO4fRvMrcecrHuExjadtW4+hko5Fbt9e+0jqS642dqWuXZX6S fndMnHMudxr3N6a7L2J7rU/W/fYZ5l9pk31YMKRz/WlLfELkbo4UORgrXCf7 K+tz61nHTcbnbotl3P7E4xLm5qlH8yn7nmCifYzjScusuWljZOtCx5rBAI8r YItcB0YROzN/krVczZfTvm4P58FU1lVjTpG5tjHDfi11nObO2tcYUyLj5pL2 j35edN580njSfDZluy97zonbZI4+xULGSI9JmWM31+nYt+f3GIP87I6ZjH2p b/xa1t7zOecNe3w7XKrHcYwH5rD2J66vbd24aB1re2r+ZI5rbm3cc17Gvso4 YA4bfYpMO49jfTCXTP2bd9mfG8+CZdbnFeY535s42rzGuRPrT+PelLd3bORY t32Sf+d8cND6ax/puMe5CtfDHD3nmtO674K17nfjj3lc6tv43n6scahzHbZd 24Lzk8ztYf1f1rs2ntlXB3u5j3s83m09iv20XcUme85kv+9pXOn4NDKPvjuP 2vPxe92SyMi5ZfPK6Jj7cspxNyY73mj/sprT2jy58xSxF+emnWPqfJO5/KR3 5k8ep059rEeOAzsv5/5s7uE5OcHljp+CZ+7Lzie03drvmNt1LOp4w/FD8zv3 o9tsDhT9d73ty6IPbot9mG23/VHns4ypzdGde8uxzte4zY3Bxn3Xy7jnsnOt +8W6kd/NK3OPMaP9Seur47HmfJGXx2LjS8hRmkfYZszbO4fR/Lfzx+bkHcOi z5wDJ+GTjOPEFmzf1pfE63x3ifWCgpP2G/at1sUVliU+dh5nisVaDzw+67mt veaQsb7HqcyVuq3hd37/p/OSzQ3Svz0nuvMykUfbe+t2801zySlXbSxuDtvx luNQ+ybbtDGxcweWW9ud+YJzECv+uNrsBy3HlNfxsG3P/sTnjV+Jr81tfV/7 v6ms/I5d+vl5hv1FsMRY6/ygOWiXZ11wXOyYsjmu9arjteaK7s9c33Lr/Jfz FP3+8Yprm4M6b2JbCDezPnksNu13rNVj1s2bu28sd/vmyWeznjk4yXrm8Vnu j45h2QcnMy+oc+CTblmOxg6OU0fWVef7MXx/zrmwiWtEl/lrnOx3AcwNzQEm Pme7M1b2PVP+uLmuxxacwza2eRzDuNFya1vNvnMLtsfm2s3XjGfpk65Tjllf W34TPtveOv7xNrVx4vTGa79La9y1bkyxW8cRxmn7Csda5ojNiV1v21HrR/uq yNd83f0ZrGy8spwtq26Pj3Uut+3IuGCf3M+ZYp6Oc1NOcMG60/W0/jhGmPjK FGvkGvMY26A3x+nmn3m283m24Uk3oyN8zwicZLw7bbaO287j1xnvJu5mjd/Y q/GvfaffwXF5wUi+y8l3tNg3B2l8cBuoW/jj3mYfN8Xdje3OL/q316/r+LTf /+fftO6d22As8nyZxC2t8/3cfv+z32N1e2zjXfeeB+T7zQ9X+QT7iKkO3Jt5 Pi2vxuhJd+wTnKe0DXYOxj6z8115vnMk5gKNd+4ft7/12+9Gt+zMj7tf2pf7 euPFZMvZop/2Jz1u0tgXTtR66S31cL+lzPY7ky6tym1dcnntw5yjjM/LsZaN 8dTxY/uLxpW2y7YVjvENOL6RBlY5X5Ct141j47t+rD/J96KNk71Wgce0G794 PjFGvlPIdwt5Xr+TOa134r+NR52b7HWKs7m+Ey/tzc/s3Or0Xquvsw25Tj03 yhiTfK7PreroOai2kZaB5TmNo6WenZub/IGvbWxyX8XeKKfbYJl2nbovu2xj k+vX8yla5t1v0xoDPaZn/FnVZdIB+xDLsv1b4oKOmWzPHVvYDuxPWm72Dd2/ vr+xwbbSOm8f0b676+U6TfmoXNf17HN9jTF08vvuE9e17+v729ayz/c1g5Pt q9k3DuVexru/93u/9/ALv/ALF9Ih66Lf4V7hmH2WyzDv7Diae1pP88x+Z3yF Dcfwpm2q29j92JjjZ7pfuz3tQ1b73c7e3ObWx9VzWqdWHKvjhVPaMGFI481q PM84d2xrfzhhxNTX3YeWweQHT5HthJMdE9g/uyxzo86BuJ7By87p2PdP+r/y z8bOxsjJTuyLJz828RT3qXFg6s+W/eSDJhyb9HB6Tt/f/GVlF2x8u4Hv2YKT ExY39vCX+ZOXuMQlznyXdsKIVRzc2Nm/W4+mtSpX9jr1UT+/uUVzCc7bTrsf 2g9MdhTsnGx2it0sZ/uk7j/7xMlup2NtH5OdTLo5Yd1UTvfP1I7mo42DtnM/ p7n/1NY927UPmfRg4qIr3Znk1pylcdDXtY66TOf0Jj/VXHCyfbdzpZf2U66X dX+V1zmGjZNdHPPvU/+0HbotLruPTfo3vfNnzFi1r2XPPjh5t7vdbcsP2mes yuAYfJLxbvKTk39cyaXbsMc3I7OpX3xf4+X0fOvHJN/2T5MfW+mKz+3Z/56u 7Z1vHtt6v+JMbe8rW92r02QLKw61589b/is57dnhqXX2M1tfTrm/5TS1dcJQ 77du7vWzv1Xd8Xk2j610/Lkno6n/us9W8XPbxcq3Wi/arlbtP7Uv9mLRlvcK I1oPW19XdsS+85M/+ZM/uX0fh7HmVT92/TKO8/SnP/0b2t71a564h5PH+nyS sXVykllj/p792Z6P2duEocbdlW7u6crKT06ym+q30oWW1VT+9Oy9vK+fuYdZ lskUQzQ/6L+T/k3xW/dJy+EU7Jj8w/R70r9jfeljU54kOUrPfQgudrw9YVe3 aa/PvDme99/O563isJWPXsl4T1dWsp10YMK4VX+uMGWyLd/nnAn5yeBk5+NX tsm3Xy972csenvKUpyx5v22i275X76kfPaa32va4dmNV61bjzin+aTo2YfP0 7FXfrWTl6/dsfqVLq36Z/O3k/62P0Z09/Z/qbx05NZ5Y2VS22Lh1dQ+vJps8 pqdT3if90M+dZBa5rfyf2zKNr3g8esqbORZf9cleHMy9nl/kPKXnNbnPXabl 0fbVccLUfys7PIZrk862DbaPnO6bdME2nGPkGBnHYf7isbxEjjHefbnLXe7w 3Oc+9yhH2rP5lZ87Zs+rtp3iQ1o+E3ZOfq9/d7yyJ/NV3SZc6vq03nE+XKNt tv3VVB9fP+nYqfrJX+OmfdlKD1oPnTPvtnf/HPM7p/T96ro9H5ZrPQfHWNX4 OMUce5uvizyD/R4n7H52X/Y429S+VXuDtc6X5xlTfnjVxyv/2v276p+z8ZUr W13pyCQf13l1f+7Fjzz84Q8/3PGOdxxxctIZzjOOw7wgcHIaR5naPcWLE2c9 lWtMNnSKjKfxrJU9Tlxg6pvWF/+OP53asrKXPcye7PIUjFg9c3VuL7+wZ4vG jkmXXO5qDK7tbMUXUs/IYDVWsuIcvubYmOmELz4+6YPb3rk/t8G6E8xq/n7M JluPp3i5fdOejz5bnZru2YufVrqzN0fhWJ1s46s6tB62Tnqz/PkWWMZxmjt3 PdIO3u+GTzJ/MmWtcPKbxb+WxbGYas8fuU1TvnblVybu7natdMDymnLv07Wr nNue7E6NU6ZY6FjdJ1nsySXt9dxR33M2z5zqnvZ2fRoD9jD81Gce062Vbexh wmTzq+vPRk4rbLO8HXfv4dBKFqfWYYVrKxn2HJBpnH+Fk5OPynYMa/fwonWc Y+j0ueeeu+Ek84JWOOlcPOfz3mLmma/ilcnOVxgxnZvmwrSetZ5OdWleuMd1 9/B8knnnf32dc0yJa1pvW86nbKforq+1XI7hZbdlpT8rPW0Z7+m7r1vZ7bG2 t6yPYcAx+fW9PU9mT39WOc5j8cHUd6f07Uom7Uftn6dc6rQdiysnXzTh9dSX rStTH9iep23PH06+fPJLq9igj9P/vLd4r3vda3snZuJVxqz8/o3f+I1tnjnr qk1zC0/hkr11u5s7rOKIPV9jjOx5J3v3nGpD0+brLZuVDp0NJqxi98mnTX7R urGKvRzDTjLZ400tJ9ub6+pn7+HkhE2TXzrWV9OxzgOt+thcx36v27SHySuO tMLds9G/7vOpLu2jpmPNkafr9o5bN1aYt+fzJz3o+q+wcrrulJzOit/5mpTD +pP3uc99NpycbGfCzI9//ONn5k9Ovmpl3ys5dd32bGDV/yuuscpFul8nPV7p 5yq/03rhezreOYYtx+xh0otV3/f5PZ07Zqd73GXlkyfc6fiqrz8bLE6ZU7un +42TK9s/ZnurcZPGmwmfTpHpdH71vKlP/azJ1o71cz93ZX+Tbe/Zq3+fwiuP tX2lIyvc2uvf/J64K/2deUHByb6v7YDtox/96IXyk8dweZLnFM9OurnyAafo yF7ZqRP7/a5mz1Ob+NceZ29MmHC57z8lzljp3aqvJ1tdYfEKW1pee/bQ2Dfh o2UxjXOveMDU3myreNtyWPll6+dKHpOOpU0rjOW6ztvvyc9lr/yh7dD3TW1Z yWvPNiYdmWzQ+aM9PJxkZp0+ZqN7HLO56IQpq+fsta/1MMd5H4d5QcyfXMUP vTHPnLjb6wUd8+dTuyYbm+xsD/sbU/f6u/HG9jvxeev6hAErXJieM62xsNKB FR6s9HFlc5McjunRyidMsp3k1bbQx06138mn78Wue+VNW18z6fEx3Pe+25by 93KmaeMeTh5rY8upue7qnlO2VW6V/azZ03WYZDzJrXMZ7tf2k+2/Jj3c89t7 5VhnG1f6ON8Ry/vdti3/7X7jvcVLXepSW35yhR8T1h/j6C0r54M61uH3tL5J 64fLnfya+2y1pk/jR57jtre+Tvrb9jTZ/N42YZ3rsdLZU3DM5U8Yt8LGPmb/ 1bGb7cQ4NMUxpzx3ZYMTrk++q3V75adbNqs85Z5+2t9OnCo+ObJZ4eCKG/S1 K9+w8jfH5Gtb7n5b+esJL6d+mHRyqtt0booTjI2tf3uY2z4zZdGHP/ETP7GN d3/ta19byrefxzjOZS5zmTNx9xRPTbjIvz2c7P6csMh9PeWKjvVT7jcWdnl7 2NHPOsZHu89aniv9PMaHuozY7GR/jXdTXRs3Ttkm3d/TR8vafet85YSZe+Wu 8LTbPfFjP8PjV3vx9NRvXX70wu/QTPLtNk595GtaP+3bu6xeP832eUwPVv3q +u/h8Sk60/Y4ra228gF79VrJddLPqbyJd8Kfwcl73OMe2zqQU7snff3whz98 +J7v+Z7tvcWJh033nU0uuW1owsKcn/KJx/zHdN793sfcl6dgwlTOxCemPjx1 28thtS9ojGodn/RoeuYxzkHZfo+w69TcqGOvlQ7xd7W2zwov92yrz+21eQ8n O/b2Ozt7nGiqR7e59X+FbV3XFaee8H2SVfenn7uSf/dryz3XNwatbGGyiZXv 6PLCx6fyVnJZYU+4Bzr90Ic+9HDPe97zDE52G9rfU1bWC8r8yT0dnvyOsSS/ p5zlFOeu8oXWWz9jJXf32ZQzsaxWdtl94esbY8MtVjh8it/dw4Wp/q0/vZ5p X9P7Xb89ee7ZjfHExz2ndMVPXP/kxVb2s9LfVT2OxQITTzOGrXC3ZTQ9q2W9 Z7fNG7t90/O6zJUM+t6ejzf1pfXD/tPYstcvk/7vjW1PfnRlj+1fpzhi6sO9 56OnP/7jP77NCwInEy9P9m89/chHPrJ9v9vfpc0aaN3+Sf9XedcVfkx9tsr5 TPes4mnHJpkL3uul+NsfE8742PSNgW7PJJ8Jc4+1P/0R/PWax167vnEidV7x FO+v1mZszD9F3l1+x6MTxjS+Ox9oOwiHbZ21DHq9z8kXr3KI1pm9/ckHts/1 s9o+V5xqJZt+L3vicml71mZr7G8s6TY0389mHWhe3XVNuVNs6Ocm97mHzY37 3T/H+MZe/DJhLHViLRBw8iEPecj23YXJt094B07y/e7nP//52z35/vjKh0y+ v9+zaQzs9VGsX86PTzrhayeMmewefMl3h/iei78XmPLcP41L/czW8xXnb1ub 9GPiIpPt5Xug+UZkf2PKuGmdcVm2Jz9r9e6l9a/9zsTl2jbdp25j70+/3f7J F/ibCenLiS+k3NarSXf2MGRVX+tMfyOGstz+9ME0puzv9Uz1a5n0GGh0Mfrg eu21udtuH70aq2o94/p8k8f42FgZvJzGZ7q/jRduZ3Pi1q+p/5tLG9uTn2S8 m/mTjQsrLvCBD3xgG+9+8pOfvD0/30jci1EnXPe6et32XDf5zMjL8x1XMmwb nsrIN9P4Vi/rgTD2T59Gp/yM/s6S+Wf7F+PJZNONJ1Pf711jjPe3q/wdPN/b upz2+xnto1zPLmPiDBNP2+MIjfUrG+3YsXHJ2OO+7W8Wtn/teMCxRePHMa61 hyuJu/z9qdhMy38lj/ZFbRdpc3/TqO3Y93rNyca9xsD2R77O/qjXgetvN67i wFMwY09PzEtdR387Mc+eeMrEC9m4l3V6Ge82Tk59HPlw7H3ve9/h4he/+PZd WmSQbz/6O4Hd9uaU/sYc8vN3placwfPBrQvuJ38v3P06fYspesLz//Iv//Lw 5je/+cB31X7sx37s8KIXvejwuc997hu+wZxy8i36+MjmxhMu2/8Yk1Z62fYw 2RLn/N35fGPZ36ZrnEw7/E3AcMgJn3tNsRWHmzBkinXsg6fz7VvMFZondP+3 zbeeRUf9ja72EV4v122b8oaTP5nyN2z9Xdf+7p/1qHV/8p2rbeK+5njGmf7m pbdeQ71t0/fCMf74j/94m4fNd1OJacwnHOeYE6/q2n5pFQe0XrROmQdN7Zli P/P3yJ31gh74wAdubWx84fr2Mxx797vffbjYxS62jeNwLP2OfZrLNB/onJK/ xWm+0njYdejvifS3kq1j/sazv3NtXfzyl7+85R++/du/fdsucpGLbH7gRje6 0eFtb3vbheqU59JWchX0vdc37e9d97eMp291Rt55RvOalf33t43Z0Fe2/g6s bY6/wVawnuvpw7YV/+66Rz/bNo2D6c/JnzefbazJuSmPkjxW180+or9n729x tz82niEXZIJsosMTh+m2pBzHz43jwcjgtfvenMt1nfyv8b3l0H5gymc0pq98 mp/Tfto8/Xd/93e3dSJueMMbHq52tatt4x1vfetbz3xPHRtBx/ibY429jZEd j7ef6nGOCSMjE3+nvPMvzmWs8gFc89jHPnbLT+IDJp9vDE554ORFL3rR7X0c zqNXwcj0v/lH26p1It8j93rK9v/hST6f+/vb68Ho1Dff+qR/4IvhfykvdWY8 ivF7sJF1kNhnwxfc8pa33Mb3KS91pSy2v/iLv9j+xqb8HfnYLPoR220+a06b 9nAf9WXLd9j728P5ne+5+7v13OP8ZH8L2mWkfsHJXJ+y/D1p86LYPM9Ju7wZ pzo/0fiefp1i0v4uzMTTYwdpO/2RPFDqYR5p7KK89JnrF322Xnad7XM7RjF2 O86J/qS/bCOTf8352L7b72dPmGzdiq9tv9tlGEtSd8cTORY95RgYed/73nez F+YKfvd3f/f2rh7jvHyPNbqVtocTdYzfnGrvHdPGyY6Tmyf1937ty1I3f4Pc XC515f3u+93vfhufnOKbtmnq8cEPfvDMumoccz2m+Nt+IjoROzOudJ4t5RoL Ux/jbF/bHCs6HwwJblLWF7/4xcOtb33rjUNe8pKX3PqYb0nyXQvWIuY7QM96 1rMOX/rSl7Y1Orn+85///OH3fu/3Dp/61KcOX/jCF7acJufgpZzPX+L2bBy7 4IILto1r+UseFLnzm3iFZ3z2s5/drucvv7/yla9sf5M3zbX85dm5xs/lb57B Rk7lT//0T7dn8T4B91NeNq7heOKm3Eu5PJNzzIfAL7C5HI6HVyNT9rmPOnCO 53IP9sJffvs4Gz4617CF4+Z6yswzgiP2o7mea7ieeuTanItfC1cMVnE9MkhZ aUeuR2eMxbF3rst4n31R89jOh1CXjHuah3IsbU8ux/7A3NBxS3/nO9c4N2Ub 9ndwYm/xm8FK+ybnmozlkQXfQ8Bm4BTwjGzf9m3ftnFLOIY5SXhU8n7TN9LM C6fc5Soeb26d/dS5Yzmea+xZ5bu4/2EPe9g2fxJbCq65Po37HGccBwz55V/+ 5QvlXRqr2qd2f5kPtf+PruSa8CtzFnQqehVZOFcaHE6/+hrsgGfRj9///d+/ 9S34SH/Dlel73jlivOqqV73qgTXf73SnO23bHe5wh8Ptb3/7w21ve9vDrW51 q+1vzjMmxvvy/GV9EdasY//ud7/74f73v//h3ve+93ac38zvZ5/riVU4xu9z zjlnO/eABzxgO87GPhu+mzmvlEW5/M458qrkUPB75BG47sEPfvB2nH5+xCMe se1zjBiCazjOWB5x07nnnnt41KMetflO3vv/qZ/6qcOjH/3obf9xj3vc4QlP eMKWp+FdV67hPFwcP4LPZCPGeNCDHrTVi+t5F4HxPnSFvxzjHq7lLznuJz7x iYdnPvOZh5e85CWH5z3veds6+c95znMOz3jGM7aN3zzjBS94weE1r3nN4fWv f/3hV37lVw6veMUrDi9/+cu37aUvfenhvPPO2+ZgkFvm96te9arDq1/96m0/ 17/4xS/e/rK98pWv3Mp73eted3jDG96wbW984xsPb3rTm7a/3MM+8dPb3/72 Mxu5mF/91V/dtne+852Hd7zjHYf3vOc9h/e+972H97///YcPfehDWw6fc+96 17sO559//sYtsBvWuOZ7AJ/4xCc2X/vpT396Wy+Bd9zY+PbUZz7zmc1Xco79 +Mr4T/w0fznHPufwS/Gn8ZvxofHR/OU8/o0tx1IG/pHz+I74M3Ah98RfxqfS jh/8wR88XOEKVzgTf2E7/GXDnpBxfAD2iM0Fz2KX8SfhVxM+Tnxrygc4Nguu BzuCScbnKV9sf0SZ3I+9YZvJT3as7Fgi9QxO8r1FzttX2Nc4/nLs4pxh8Ctx iWM9xyuOqafjjttSdjiky0vMSL/xm7jh2te+9paXJG4AL/lLH8OZwcu73vWu 2/pz4AV/sW1wA5wAV8hd8BucAT/4zV+wh/OMDQV/uAZcygau0Qf8BUPBF/wW f8Gz+DEwNOfBRPCXfuNejjEWxzVgKhhLncFbruMY+3e5y12269hud7vbbfgO tt/mNrfZNo5zDX4A3McXcPzmN7/55g84xj1sd77znc/85rqcp9yb3exmhxvf +MbbObCcZ5C/uOlNb7rlfCmP7XrXu96W0+Lam9zkJtsx9nOejfPYIvdSDu3g 2XnmLW5xi+15P/ADP7Bdx/3sX+c619n+5vcNbnCDbeM3ZXEfdaJ8+p95bte8 5jUP17jGNQ5XvvKVNy7EMe7hGup6/etffyuXazjHPu3Bj3JvyuLeq1zlKls5 bJzn2tzLPWzsX/e61z1c61rX2uKWPJd7qRvX8xzaTdvw59T/Sle60rbP9azb BU5xX+qRvqcviH8TG/E3vp/ncR/H6TfqgM5zjnsol/iKY9gAz6R8ZM1v7IRn UQ7XUjZYye/EZNgUPg7bSy4o+YTYcI+/OV8zYaRxssdCnbuK7QcDnYMyPjR+ OA6ASwVHsUXsDJxMG4yLPRbIPr4RmeDrk7czvplXun6pf+RlXA3+Oy/meMU5 K3POxsjOkxmHzSfpt/ga8O+7vuu7Nr0AG7OhC+gqHCF5TucKHCelLGK/+N34 5cSBxnDHeYkN6QPiXHw4+/wlJqU8fD/H7Oc5zm+uCT/gfvbzl2spnzpwHVue kzg+PCR1TzwOF4FrZAtH4S8xP1yEjeucf/D14Tb4I/gRHApe5GvgRuQwknNg S17jk5/85LYfvhMOlLwG91Au18HRWPMPfsYGN2MLVyN24Bt4XMd51lHlejge a/TzPi4cAA4IH2TjHMfyG84IT8wGV4Rvcg/nwj3hnN4P5+QYG/uMdXAcXgqn hSfDb8ODOc/GOeZisMGd4cScf+1rX7v9ftnLXnbmnhe+8IXbxjXwazg4HJ2/ bPByOP6zn/3sjXv7b3g+G7YNDyIGeNrTnrYdIybgODEFcQF8AN8RTgHGgpHY EbYDJsPRYxvOgTtHau7jWHQv7u5cZMY1zBmdvzPG5DkeA8g1vi/xK3b6oz/6 o2fyk8n/eUwtuJmcB3Wjj5EJMud46mBM6zHa5FSNV84tOpfSYzzmzJ2fzPHG 3TzbvNO5LP5m7gK2gF/H/4H/9C/+8Tu/8zs3v48dOnfTOQPnZoPBzonujeFk y3hC4hOPF4F1yQOyJcdm3xjsDZbbd2c81c+PnwlOp7y0IbnC5PbY4v/tM/yc 5HI8rulcWPSkdazHIj2XJPXaGxePjURfOtftscLOUTlui5wmPpJ5YMmp5hke x7e9do4+bfJYULDA4ysps8c+e46Dx2eCDx7r7rG/Ke9vDtfjVZZlz/W0rYGX 4GTsJpyUfD/cE5+U57UNe5wv9myc9Dh4z88yThpbokOtR7FB9735Z+tGYvLY Ot9bJP6L/WXcp+dzpFyO4zfJP4RP2kckX5lcRM/ziHw7L9zxtHP2Hqdybrbj 7rQ5mzm+dTR2kDw8x8Ah/CaxDPhI/o5YGbwkjoHTeE5f7Knn5Vkn0kfBFM83 cX95zDH+K9d7rD74k9/tJ9O39jvRrc5RG0PCic21Pe5lvG9u3n4wbe45xR7L tU/0WIfn4XRs1vNypnHgaWzb453Rh2kOZ8/rTUzW48Ltm8xR7P89ZpF6uK32 LSk3fdG8wBgcHc61Gd9PfdK/1vnU1/Mo7ANSV88hsM+PHDyezgafJ9dD/M1G /J0xb+J++EV8co9ZGF8cS5rbcd3evP6ewxTZhBtYtj2unPFkx8FdVngj++Ak nJL4zfxgNa+BfeIG/Ab83XKwP2xfNc0N6TkIxsieq5H+tl9s+43PD6ZYPsEw c8voY/SVGJEcHTkm+pgYlZiFPBL6QIxne4x+eQzR4/ge4/QcIo/FNRdpXA8u mmfGlpzXiIw8Dut5Jc1NbLuRlzlsdKG5oH9bVzx+GH+QOvBc8yj7vIz1hu+Z f9mn5rgxrt/Rb5y0vrc8Mg/Tc/P83M792wdaDiv/a/0zHtivT/GEdd/82VzX vte6Zn1P26c5I46DPE8uGGif5rF5+zDyHIzXkVdm/I3YnxwqeUzG5MhxuO+N kx7HdfxnP5p7J4zs+dg9p4lrfG6lR42TPhe+l34FJxkXIO62vgbXOl/I/eRi yENknrlt1hjYOdrmT44Duu889mJdT3ndz+ZCidX8bPurXOO28htOyVgJuXvy f9wHPjF2Q46e8WGwtOfBpW2O8XoukrEtOtAYZn8wxcB5nvmy7TVzADJnzfFA 55nzLMdWHW+6D5sHOJfUfqLfY7UeO/dk7mKu6vZ4zsYqT+V4N3VqnzPZ0PRO vXlJ2haZeQ5g55psL+aEjuuio44BnTdwzqBzAsEb59Q8L8S8u3N21hXn3zpv 1DKz7ZuHkycm3mJMiZxn9Jv5FYy9oX/tl+0j43Nafzov6XcJ+30+20/0yzmL xBppj+MCxyCRu7m4MTRjvry3SPvgk50Pso65jeSm4dbMAaFc5xBdvrmD41Xb WduGc38571ym+9rx5vTMzk02FwhehLPhKxgbJleZeVLBB/wl+UtyLowNOJY0 Tppn5nzrtONhz/niXI9zuQ2xBcdojsUTj4eP2PaDBcFG32fubvsxLtv27Zvc d26v+VCw0H1jrhef0zbTfMN5xJ5X6Oe3b+953at5d8aQ5jaU79y2cTD67xy4 86Fuj/XYNpy4eIo5Yjvp99TBumdOY3tLf3eONj7NNuE5Ls7rpQzuY7yO+cbE 2Mz5SbuoN/yS+Du247g3PsK4bv/buerEwT3m3XOBPB/b824cQzav6D6JXFy+ c7LIm7l7zC+BSznP13GWMYG4m7wd418Z7+740787/55+6Jyj/ZnLMh+wD/a9 7Y/y27jrnFGPT3EtOVrm2cAnGfc19yJupr3MmWDeDOOknZOObKecqP39NC/M 72R4S/2tSxk7My/uOQ72mz3HP9gb/TEPce7SOO35z26z+a/jc+eCzBk7F+Jc YPs+613jpDm48bn1dor3p7l5lN15GfulyNtzdnO9Y2DP2TUvbNyPrjhflPf7 Erc5F+u8QscXKSt1CvfO/GePM0YvHNOlnR3bmMcgO2Jt4i3mJDFGDjZaLsRb xOHkq3psyrGS83NtQ8bJKQedOpnfRoc8pt45+M6Ppu88b7BxKvXiGubawaHC J5tzN8/jfuYxEHcz7pF+mHIjjR1TztV+0/LqvF1sx1wsbW4MNo7GP3b8P82/ ot+ZI8VcB3yixz+4Fl1grgT+lHmJ5DBdvu0ieui8d/vHfr+g42LnKlyP6V3f 3tL2ad0G83r3mceRV/7dMu5YPv3q2Mn8pHMv1of0T+ew3Wf97q39y2SD7YOj O72ehfmTuWDXccp3GEscS5gfpPzezKnDEe3LOyfnnLI5fY8p2Ud1ntc66Hql z7pP0zbmYjGXF9tgvlHWNUi74RHk7zgPljTXn7Cxxx3ME4zb7sPOwZkzxtdE fi7P1zv+dAzttlsfOc+cIDa4VLiF8c3yTz6XeWTMkcp6QcHx3B8bc/zc2JT+ bp9lLGje2Dn81diX33vy39iV8xyNk8wnZf4y+74n9add5GSYo8uYD7F6Y5Bz JxNGZet3sHx/9v1u64Srq/b3e7C9fvsUf3YdHYfx27lxy3SKh3rextT+LqNz Uqu5c9O6B1Ou31vzeL8fbO7TnHMaX2//bH42ySFlT+f9277VuN59nus6brON Nee2rzEOWmdaj3IN81yJOYmpGbPp5yUnAU4yBkpsGrmaT7pNkUvH4851uf2W ve/pfE+4pOPE9pvG0OCn9dj477bxLltw0tx01e/Mx2X+DHFo6pPn93ij5dP9 1xjoc/ahnc9rW227OmW/bS58kbF/xmzwiW1nuRcMJV9J/AEfZz509Gpl26vn 9rwHc55uc/OgFZZMWDDlv3sso+XYdVx9I3Nq61RG17ev67b1c/bKbB/ZvN33 Nm5a9tarSZ4dYzQeN17b/3XbJz1w+yd5drvNz9uWVnox+XP2+xthbOTieY+M GIr58vAe539i/3Al4m7Gcdh3vxkbp3q032h7bV5jPjiNz7S+N5Z0HGY/a+x2 3oZxnKwX1OO3rrNly/sp5CeZZ56+ik54/xh3aS4yyWfaWr9XOrTS90m3eT79 y5gW43jg5KTDOYYceY+YeRCJwScdDY8LZq2w0vNSJj6zwr4JxybsmdqS+kw2 u7d+VWPPVC/7nz3fNMXC3f8Tpu71ZfOi5oRTG3ztHoY3r+tYdvIvKz1afad7 2hrDpvjFGLCHlSsMtg+hXcyPxB54b5J3S9qfBKOCk1zL+6DYhuW4qkv3VeOi fY1xzPmgxLitC9abjhuMi607iXOd/wATwUn4ZPKT5pR+Ztb849m8v8L8e97d TP+4j123trO2xRV2+LnHvmG7ko9l3DrSth0+yZx7+nrCybYb7sFXkJOBh/Ke YOOzcWNq+9SWjttbBnvy7Of5/pWvmGQz1aOxb4Ultukej5jsZdXP/o7xCjda zsaOU7FnwtsJ4/zt2gn7Jx2ccHLapu+97umHsWXlN6b2H6tX7uUdVMZsmBPJ u4f0o6/puAdsBEt4px8ccbvsj32PcTf9NfEl7xunzSOntnV/5DltJ9Z1z/nw mCxrNMCX4ZM9T2DCBX6ff/7527wAxrz8jJWdrn4f0+O2n8m+vLV/nXzGSj+C k5kDRh4i99sO8pzoCvJinhR5GWJw3tPqcvfauOczJrm1Pk/4aF/c8d6EE132 Xh/09S3TyCn7qcex57Sv63Orek0ybc6150vzd+JgXWfb/F5/tr50+1b4tdff K72x7qzKaixeYWPaz7vvxFToNO/FZ0xl0svYG7jC+968uwa3zDXOxU+62z7o mHzaf3ee232+0omV3qY8z3EIV2YMh7kwnj/ZfLbryrpRxJvEnat2t066P3tb 2e10/TFbmXRrxWN8HefBSbg1OsL4Xde/+ypxAGOV55133rbGC+vjsOaDc7tT n0ztnNrV+nnMr6zu2bt36hPLe/qu04RnjfN7HO1UzNvj0au293PNQ6Z6x6/0 WOEKnya9OFa/PR/UOnqsjS2T1fdLpzrZNzSHgBuRjySPFB45+bmWGxt8kvd8 mTPHfuvAZJ+TTbWeTJw//biS96TzxuEpN+b7ep4fXCjrFMKfjJGNycZg8pOs x8S6ftbD5DTzvObUezrUbfH1baN7ejdhROc/Jn/LcfwGuVrW4UIeLfNp3Db3 IkvedwdjwVrilvCUKY7Ys+/u42OycxsnfDzVZk/Frr3rJ3/Zub9jONd9f2r9 rTu2U8doPebhGNd8g2OreQkr7O9zxpLG51P8+//JfmldmXwCazKxhh/rp4GR Gefg3inX6/gfbMR2GAMNx1hh4gojO3+3p+un6tHKN9k/Tfc4/wyvJB8HThJ3 e97XxCVTP9bBYJ051m6a8HnC87Ppz1POta9o7jPZzKpeaRu8kPmTvI+T75nH 37QNdIyf86zBxVqArP3HvACOeV6lc8hTntp17nho1Rb31SrnNv1ueU5zlk7p s94m7Gh5+7c5y6pf+7jL6munurn9k01NdZv0ZNLpvRz7qo/2+mOP26/qcirX nmTPb8Yheb+CtTl5N5vyemwl9ezxwsTdrLdKTBWOsbK5KV++0tnGLvufKW5Y YcbUZ1Mfd99gC/gAODbvG+EDpvdFXHbwEyxgXtB5X481ud73dRu7/isd2NPj 6b49PZg4hbFpsoXkJxmPYS01+rr7tZ/d+p0yWAeb9xLASt7b8dy5lVz2dHsv fp10rdt5bGtb3/NvK/3a2475/1VsNsngm6nDCu+O5QJyboXB3YbYAv3t/piw c093T2nHCnuaM0z39Xxq8miswcoazXCg5COt41OcY30DS1irmvVisIE9jF71 Xz+ned8xPrbyad3fbU8TrzJ/RkbEiGADOLmK27IFJ1nTlDWXWQ80/LTj2qmM FfZNtrCyz1MwZW8es/1R6wF8knXF8avMH1+1pZ/pfuS5+FbWPWXcnDiGNdmm Pj4FY/bwqnMRK1vce+ZkA+1T/ncwcmqD9XLPnlbHpnZP22RTEwdZxV57Mms5 W/ewh8aRqQ79jLPByT37WNkfZfu9K/b5dgQ8iXwk/Md1m8Y8ulzrPOv3MpZJ /sr3rOS9kvHKBx3za3u61Ho+8Y7ezzOJuxnDYSPunvrO5QUnM8+cudaWZ7ez 7e1sYoNT2267m/TjGDa5fcwfZ949fJK4u3W6bar73rE0Phn5kJ9g/hlYaV/j uu1xlQkz9jCx72k5TeMiU9smu1jZ57F8ydnml5s7HoslLEPb7op7THY/xXTT vVPMOMn0bHJIqzzCJONTsCV1WvmIcBtiHTgkY7nE2lzj92ys4yv7i6zhk3wH he9xwCcn2a1sdOrnPR1d2cOenI19nS8/5ifJR5J75ftSWQtpkoPbxl+++0Cu lzXn+zmTr+y+3+vzs8VJY3j6dtKRFXa4HGSAb828oD18nbCkc5aUx/eqrnGN a5xZ63fqpz1cPAV7uj57fnPCpB4LPttxgpVMpuOTjre+NU9rrJj4xSonvYfD lpHHenpcfLLbvbKP9V/bzCS36Tmn+JuJq+W89ZNvgGH7jE8Td+edQetv28dq Tk3yTYwJk2vKvKAVd5/0ceUDO891DFvORk8nPZmOwyfBBcZy4FK9dkJkazmz T9zNWIVxcuJdjQFTeyLnvbZOPmV65qSfe7mQxgpkALcmF81+y27qz8mv2I7R GWJw3vsipifOcTtWOaTJz+7ZzKRDjRnH9MJ+8ZjO7sXgkx+zb+jrVtytt5Vf 2GvfKTYy6ZXrNunLsTz5ChtXejrZ/Equx9oyPdP9wFwM5oSzjgH5yPR7fI3L Wdmb9SXvsmVeUONk68IpvmTCiPgy2+yeb987NtnsygeBk+QmwUn8Qb9L38+I DTH3lHebM3+ycepUn959ciyGa71d8aCV/fg5rnfamzX0eKeAfO1U1726Zb/1 EpmyxjNz888555xNT6nD5E8aG1YxYs/RWOnfKm+1Z7uWywqnmr+tcNd183zS VTy3KifPTzl9r/Vnirf2OHWuaT41zftY+bcJF1r/+vxKl8ybrdvWVc9NW41v 5F7nvtA9/DXfWCQunPBv0i2X18eCk4x3M1/E60rstX/Pn6zG/iZ5r/p+hZO2 oWPYxAYuslYSYzkZx2nbbblxH+8t8r1M5k9O7T3mM1zmqj1tO8dy95N8J1ub zqWvwUl0CO5HzNx91f2zOt/P4lryN295y1u2MSLmovPOQ8eYK+xYteeYvCf+ NclzwsiJBxzzD6nLHla2D3Es2G2dntvX7OnElLNs21j1WdpiTD7WH36GfVn4 xwpTp7Jb34yLjWkTTlo/cw/8Bg7Ae7bwSK8TP/XNCnf7uuAk30YIn3S9pvHU PZzc0+9TsHalK6s1JFbxYeqOnOCStA+MaJzsPsxzmGfOeDdxd8vU8lvxhVPb 2OWu5JpzGT9Z9cNKz8P58BX4Q9YsRx4T73G/9Rz6xn/bGhv5YL4ziq6SP+fd h2lcx23v5+5h856erPxRX2Ps6nezG1sn/Z1+Tzbf1054dUqf5/cqZ79X3p59 THp8Cv431+c+v3/hfmzdmfRtwoa2j8mXOM+KTZAbZ2003oPg+7eeG9TvFppr rezWep1xHPgkaw3yzsWqzhM+df9M/qLtdaUz0WH7lAlPVmNjU//SHvJxYCX8 Ket/WPYdA3AOnGRsgu8KTzg5+aIVHk58wPVfxWkTRlivfXwv3xOdoO3IAG6N TyQPsSprkmf3d9fR2MNav8gP2fOtka77HsZZZ1byXMUeK5yc5Nl6Nun1Xh/u 9fupOtEyz/6xcdG24xXn8vNsWy2HyWYn/bMN5poVfzomm2O2M/kKP9M+nDWn mcfBO3R859tr+frePT+6wrs8Cw5JzhP/n/zk1Gbb6p4vOKYfezjSfqhxuPt9 wsbGSeaZI0PmBfUapW6DdYh5QfDJzAuaMGRlt6mbMWHiTo0LjU8rnZrku5KR 5YnPzThOvoW0wj3rh/u282899yC8FR6PryEGJ8Ynj+Hyj+UYVvoxyWDClRVP 8/FVzH5Mh4+N263s8NTxym7PapzrWN+vsH6yI9tOy2Iag+54f7LFY315ttuU Y0CnP/KRj2x5Hr7vwhh38/5et3Eqb2VT1vuMd/v97rOxz2+23Xt6Ns2B6L7c s6McByeJM3ue+crvRZbkf/lODGsbT7qxavcU56zwZPV7pd97z+n8V653/gR9 wVcwL5x3afr97qlfVzxlaltvYOUb3/jGDSd5Ju/WOtaZ9HHqywkXJ1zZ0/Mp ztzzSXt6ebbPn3RiZQenbpMsVvMUen91/2QXbsMxW5/045hcVr6qOU/0xjkT 9It5KYwbMh+Y3HjneFZycLmrMR3fwzXgJN8CuM1tbrPNOW8usYoJT/WPZ4uT U52n/O6qTy2H4CSxZvKTp/T1+eefv/FJ3s/bk/MKx1ZYsme7zsWc4qMaJ91f xjnjHdhIDifrYLTvWeU0Jp6fvupcVerDX+TP+pXE4OR2+OZtXx+938OtCSf7 mZOed93bLo7Jdk/mK93p3z1uO3GbU23jm9329GjK0033rOxw0pdj/HfPdtv+ o3Nei5E6XHDBBVtsxDxn7JTceO73t3tOedbqmONM4i/4FuPowcn07x5O2qa/ 2b6e5Dnpcucjuu0T1+R35k+SV0g+boVpbidjZfBJ4u49GUxt3IvLJhxqWfoZ 05jaCtP6XUbbM/ejY8iA8X984rT+5EqmxibP02hs7G9DRaf5fuV1rnOdzffz DYnGmpW9reTWmJh2tI5MWLjCjFV8u8LuPfv3+rt7XDCb+73xZsKW/1P4aRkm 5mgcdx1X5/ZwsOt8NhjZ/Zjn8z0b5nszP5Ix7rSl7egUfFphue0m33t56lOf uvl7z8NexR3Hyl/p/2o7lndpneq+aT7ke8FJ3lkCJ/1O5tQ/5ktZL8g42Rg8 8etjbbEtr2S3x3Em+facBLfJ1xCn5Jtx6FfWhtrDSctkymPt1d/6Sj6HMbHE 4IyD97qxp3KsU3Wv9WvK5Uw+Z2Uz/YwJH1oHT9H/CUf2cPKbxcgJpyY+leOr fp1kvMK3vb6Y6rXyax67/vjHP76tl4uvx//2etuuh2Oss5Fd4zbPznuL5EHN J7sde3oZO9rLl+7pdPvWlR2eko+1nGgb63sQd/u9xZV95zzfyuC7tHx30PI+ hZdM+jM9w7Jr/Z3k0M/L2EzmCU19bN3hemSQ7y3mvcVpLL95Wh+bZNjtaq6C P8bv8C44Y2us9dscZo9r5Jq9sY2W697W7Wn8+Gb8Vcdgq+dOttz13rOTVV0c dxyzu1Py7SvZuc/Tho5ljsWRx57jZ2S+Bt+zwZbhkowTdj5rkmMf34v9Jp0O p8y3SnmXrcdAW3Z7urxnP5PO7Ol2l9122vJoe85vcJ/5TsytznzBqa7s2/fA J/mOGO/jRE6r8Yo9nDyG/bax6fvX8aFtUy3b9I3f4e13eSkLDsk3QfDFxOCN i/1s279t72xxMn+py3nnnXe4+MUvvtWBfGWesdIv16XbbGzoWL+/D+5vXXdu Ynr/ZYoZ9nTY+ncMB/ZsZ4XnE042R56wdeVnrZt7WLGy42P638fbFiYfPLU5 fcX7sMQirNfDuj+2jYmjreq1ih2mnJhtKt9MYWydXGjXe7KFPbns+dLeVjm2 1G/KyfkZjYuNYXAY4u7Mn/S1rm+ekWfDJ5mL9cpXvnLX50862Tq0p08c2/ve Zt87tXPSuy7LOImesR5ay8PXTjnIrndjpp8/6XzKow7wSr6rAS8gv9TjA3s2 nvp5veXJ5iZ/Nslt0uWWy9Qvxt+VrXt8asVXVra00rGWu22pn9n2uzq2wslj Or3HgVY6PGGuZWFfn3PMK+M7V4zbfOxjHzszZuNvd05lTj4vMczEedz/7ufM qYNPZl5QY1TKneajTjrXOOR6e+xvZYNd3tRHKcMcod8FZUOe8HTyCn5Pb8JL 9Cy/wUns+DWvec2Frkt993RrT8f7XmOzsWSFsatjvVm2eQZ9zTeCiHlZ24e+ zvOmXGFvzZVc3+x3/DzhVN5t4J1QcDLz3vy938arVftybjV2tvKfe/jQvKev 7fa0Trd+rbB/hVOnxIX2Py2P9lN7bV3p54TLe/e2bK0fXYe98oI1xNj5fioY CYdDV/K+dtvR1L97mMyW9Ybbr1i2kWf4ZGJ+sKSxpu9tn7bCtbbjqQ+munlr /jjxhun+XIucWVuJdT7Cn/YwLbb65je/+fA93/M9h/O+HiO23Fa++ZjPnuzb suwYaMJE27F/r3DEuodeZP4kcxvod/f1xEPb5pMfmL7FEr3r72qY47Q+k//l +7/E4FlnyPGznz356WMYYAybYo/VvSv5227aP/t78qt6Ts/ra1eY2fd4PHCy n8me9tp7Ck6udGxPfo0X7cesp732GXPIGXfEr7Pf+upndyzlejrOiT5OnMD9 7GvpW+zF73d3/Sf5rXLEp2Ch69D3+Pw0/+mYH2s50LZzzjlnmxvU73fbF+W+ 8HG+wwqf5B2oya7ORvem+vt3bM51mXyL9W7lfya8DO9O7ECuFp/IOI6xz98z 77h2wu/ur5X9+JzzkGzw/Xe+852Ha13rWttYOHwhfe/3piadn7B8JQPbom3m bDCj8WLilc1fJz41bbHvtLnteo+L7PXNSi+6rGNy2NOxYz6rsaj7sNsRnHzT m960fbOLcVjmATnX3nK274gfn2yp69MyS19MdYJn8T4O7y16nvkpcpuweNWH xoFjZXT/7enI3rNpz33uc59tzqDnT9puI3N/ew2cvMIVrrDF3b5u4pPdxmPz 5iYdaz1qXWq9Mv41F7Q+GSOZFwSfZK4sazKTJzR2dO5ileOc9Nub59pNdm7M yvtgzBOGUzIW/slPfvIb1pJ1+Z23mbZJj/ZwYWqHxwm6X/pey2wa81thiuV1 DOunMnJPjxWu8HKq0wonJ3yZ8NcyXY3zrZ7ZeoL8mMsHdyTuIc7lHeJV3n3y w+0Tp363LPbyMra1vI+D7fR6QX19tz31MPdrP+v6dY5r5Z9XOmXZGvMmW+Iv eTBwMvPMe62d1p3gDuPdrD/56le/+htkucK1PZ3bs+cpv9p4N9V14h/xpYmB EwfzF5zkmzi8n5R1MFKO+3KFic0xc8660Jg6YZY5XZ5JfoS5Bbx3Dt9lDUHb Rfd16jPlBaecTPsx61zX2zF1x9eRrcvn/nwHuevp/u/+PZY7mvS+/cbZ4NqK 9/XvyacbU9p3dNm9P/Fw96PfneEv88XAR/xm3tfO9zx77G7FPdyPXcfJDqe6 Gbs9L4icldfBaB/aXMznp7HHY/Jb+bA93+a+8jNab/M9NfgT4wTkJ2nb9D2w 5IvBDa7hN3zy0pe+9PbdIOND+n3iX5PuNXbT37Ep60f4XtbpmOb0dJ6t82TR o2y2x1yTeeZ3vvOdz4xr5Zm2YfdjyutcXG+RLfu0Md8Apl3R8+Zcxib2WbOS dyrBS9bqj2/1/cZtyy4yXfGN1ifLZ6WHeU5jhXXQfrDLNv52/7lOLnfC0Slf 0O2KHHs8zHi1st+uz8TTvNaW72/8mex4wnvraHSKvAtzMeA2rDPVvr9l0xjQ nLNtp2XS8pj8QMrL3ONzzjnnQnH3Hu62rHq/+8+8w30yxaSTv289mfzfVBa2 Sk6Bb1KGK0efUhbXcA45gJXoA7kR5k+yRnfwbcKeqT6Wje81fhib+EusAVZz jn3bvXGQY1w34YZ9lrEr97KRk0QH4ZOZK9v22PFudDjfQ0dHqAMbv9OWcNa0 we0wVjbWpz/4yz28t8O38YhvmANinJ74kMvq/NQpMVbrd8/xs29I+8LTm883 t7D8u188N8XXRI7uf/el9W/ie80DGu8aR07BScthwv3JHszPXLdpDIw2824N PhwsgkdmTCfymOTW8l71a2Or99OXeziZtVupHzg5zQuaON4kB2P+xHNdhxW2 TNdbzpNeT7odWYB/zLnKvCDjTuqB3mP7nGfjN+vcgJPn/a/vd0/91Dy9Y7rm 7eGtPMvYGexD9pwLZhoP0yZ+06aU0fJ0nRIPUi4b5X7ta1/b+DXvFCQ/uerX 7gfqz3PZqAM+hS31dDuCoVybdnEsmDrFuukzrmftjMtc5jJnvnk7cd1JX9z2 lste+5qHWY/Sd/FT8XWJCzqu6HLz19hnvMy+8dH+pnWhcxHGnimOmdrZGLu6 b8J+80v7+2zm4daf9tn2/eAi+RbGSPCNjrGdP5r6dYUN1oPu1wm/uyzHBsnt U0fmKNEfe76hdduxVOJG42Tzwinf1Hhi3x359HdtOt6dMJL9rBfk/GTHNOgj 14GR/KVcxmAZ72ZdNa4N17NvM4/vtlrekXMwgy1l8Dc44vbmOV5vNHrO+WAQ dTLu2wfa3oK/fIuW95Myz3yV7zBfiC5zf+raeNncMc9Mm7mGv9aP1fum6Vd8 FXP9WRudsZ3G07aJiVu07lt3Jl7lmCfPcy4kcg/uh097XdO2U45HHtEj4yVl BHdTZuTofp7ml062OcVz5tr2Vc2fzDsbL7pd1tHmDh0zNBdNnMI53j8kdoCn 8Z4NekIuMD7IfKk5TuP85N8bE1aby2ic8Dxz5h/THxNXm96DMb9I3zaf7Pzo JO8p7otuYV/wnvAW6+wks5YV94ALzHtKftKYHM5lDOA44zj57gPXmpPFNjpv lTZ3v3Bd20mez2/qZew0TtqHTjiYHKB5huXnWJ6/4CTzLMAefzPO+QQ/Lzhh bpO+NmanfHMkj7M7n+D+nmw9OTDqx3wD1hkin8q3mJuXdJsnfbBe2U9bbt1/ vjY4GDmY+1senlfVzw3mebNMgzf+6xxH5MY25RxbB9vnWaeaB5vrdk58whHz pNznPIT9kHWhy+UYY3fMjWTeHmPc5IXgbYlJ/H2bxmDr0SpXZzm1z2g/OeGu 4wlwkribGIe+ybXNM9wn8a0Z+whWpg/at7pO7Ws6xomNh6tQv2DUKm7zWE7G WfjNfcSZXgfDfpItsXDwivIZxyHufuELX7j9ThsTA5nn2XdEdzxGw7Wxq/AC c4mcaz9vLmPf71xn/JQxKuXHplNf6oUe4g+Zf5N5Uu6L3hwLOtZ0Psd8qnOi sc/Uc5VXnXg5ZXAP3wfHlnjfMnmryN843jZrfHNcYgwyvrs/E++lPcnNxn6d T3A8MOUTjE/B1Tw3Zdl/po/NXdk3Z7O8cn3nCtvOOr/aPpVnNKZ1nOwYyvru vLv7xdzbuoMtsq4uPJL1Boi1uQ5bZ2te1HJ126b8gnG6+XL8hu2q+UHPG6He 4ZOs34qsGkd6vMo+Mjk956Q6lzBh49RGj2fEZyOvjK/YzqZcTHM4/tI28gnB yeYPwVJwMNyO+jOWAE7CJ7mHezlnXuQ+pCzbbMdWHvcwnnis3XjX+m78jf6F 4+bezhWZA6VPeG+Rfva8oPY3wajmgo4HO/fkujon2rE3+1MsZP2yvqQeYOWV r3zlLV/wiU984ow8gl/pP+Nx+qHHyOJ/4/ts35Z78zvbe9qYshIPWB7WicbD 9Ef0wvlb+7+cd9y9kpd9gO8z5uV881frSecP7SsdY1vPXP/oaMpL7j94z3ns 66Y3venm+5gHFFmEqxhHUgf/9ta5hMiic7Gus3MQU7k99sgWnKTO4ZPmZ+3z nZ+I7rUOGD8a512f9t8ZCwi/Cw5zrNs+8R9zMa7hPtb4OPfcc7fyesya+rVO ci++LuuqUU7ssHOmzp0a84zrnXdy/6a99IGf0bnJjm97jCR21LjauTTmT8In M888/in95THkVdxs27I/DIelTpRN/MTf+Jjmvq2b3b/mcdyPbTGnNesO8pzo R/xpZG4/El3KluOdW207S9tWGGT8jw9t7tW5WsfRaZvxPX0cnmCu2nKxHJ0T cP3c950zsA+z3sXHhz/39Z0fSv/4nHUnsg4H471+vonI+8Rf+MIXzvid8MnI 0v7EMYDjAG9tV8aTtCF1tkzS3s6vdCxFLMY4DrEYeh0ebj3pnFVsgjaFJ6f+ xufIyVyzYyPX1ZjrfgoPy5ZymjNbjyg/3zngfRzq6by7uUZsKbyMeUGXvOQl z+Ck4yXzNsfQzkFZX5qLOEcfu42tWS/NCawjHhOPDrYPbr2KjOGTrJ9EjjLr FjdHcf6jdSf1b36cuC44GexyvsJ1MTdp3xlO2rZPX8IrwXjylbynEdtyzEGd +B29zGb+3dia59k20q6Onc2Xjbdum/GxebXz+ZZljqeObldwzOM9OdbYbd1p /O3ztrHYaXTOPNe4nec69xMfFL7YMT0bfpN1ExivYbyAuMA+JLyIdnf7et6E 6+RrHUO4r6MLbTfmsJZVj1OCi8znZEwY3UMX4yNic8512E9GjtY3Y+FkM8Yb j/laFmm3+aR10PjiGMJ9E1nAn8hPwpdpa5dtnkMd6UvqxDeoL3WpSx3OO++8 M5w7emDfbhu3D/CYh/O47Z/jZzJWlTp13sG8yPrCOcZmuL911b4g/X3BBRds euoci31g8K5jrR7DyWZ+zn63K/hhu2zek2Phz8HJyC5ySFl885bv2NOvn/3s Z7drI7/Gxdap8H3jZGwmumCe2bFY9DT3+v7gmdvXvi2ycCzRPjB1STuiDx4L zH0TP3QdzKPdxuYL3RfmlcZzlx9diDzo7/Y5wVL69Pzzz9++G0/cyvsE0ZGM P6TN1veOC8wf3WZzq/QxWMZG+fADbDu/nQflHJvxIDqXeIiNb98y95hcOTbn mMK55eZP7VcdF04cyPprnAwPdlxkW0t7c446064cj1y9pX1f/epXN/xnPI22 +drooPU1sTk4yZwU1kkEA3Iu13fOJH7EMZExIXVvuwhGxm7bvvNM46b1uTl3 6mb5u1/wG1nrlN+ps/MQwTzzFPMdxyjmkl0X24vv7/jBbfRYr/1wMDK28o53 vONwtatdbcuzYn/cZxlGx829Y9PWMz+n+81xX9pnO7KPaz+Xazwm0bG0fbV1 ozE95y23xi/PvUp/Gxcjj2zhbI2Bjetto42TjsUse+soz3rOc56zrXVCrM3a zOEk8fG5z7xv5W8i++CX5WdbS5vbT4Rf2i92TOkyUqcvf/nLG7/AdiLn5vvT GGv0IHko27jbY1815dha77zffK9tJtc6tjMfoG7gPzlK25Hl1nyWdr7+9a/f 1sHg/W4wMG2LPJpHepwwemd/YSxoTtI827Zgm8mz46vMT3o+QMbYU350Hp9I 7ECOMnzS8wWmMYHmF1N+NpzTubr4j3Ax514iK/MZ89cpbo1dJlcE12csAD+Y 8dLIlPPGmOavjpX35O42G8M8FyPPsawd5wb/PW7jeMscr2NHY1aP29sm2xe7 3NhpcCX2aplOMXr3fduxddxjY7mPuiWvzDw0Yu3f+q3fulDdHC+aX7pu9gHN DZpzRw5pb+N3j92lD+w/02eO2dEn8B2Owbgwx7i3xyJ6jkV8c3QyuN15mPaR 9kH2C82pUj/roY87Dp/4WmQK78SOeHfRXLJx27ZD+8BH+ORrX/vazabdT87x Z/zCNm6797wA+0rnyaNbwSdzL9tb8Cd9YDtM29w/1t/g6B/+4R+emQPGvT3e 3WOcjnMa36YxBMvXcbTzmy7Hdp7jOWZ7bKxkH278hCc8YVu/Eh/Pt8mClYml wIToS8e/kVmP/fbzg1E93mA+E9vM8zr+9niH42pjZHO0tqPOe0TvOvZsjI+/ NNfo/E377ek690djZmw3so7+v+td79o4GHN/eK8KOZg7dhxo+077zdnsPxyj R79jJ+GqwSbPV+mxJsdtzUtTV8pjbRbnJyPb3OP+M790rNx5lOaNzdGDr25L x5zmcG0vnXd3fsN5OtoH/ud7i6l/z4no3BE+ED7JvKDIMnXx3MHOSZiDeQzO OYocD36YNzi2cW6mZdyYFFvu8dCO0eGTYAocm7KaR3ZecjUP0X87h2j8SJ0c x8d/xIeYa07jApFd2uz4mH3enWIcnDU1mauMPvMuD+/m4+c+/elPn8E147m5 RdqbccrWYW9c2znE9N/EM41bzh30M2y/9lNT/qRzGOmP9v3Na9v/Rl/DVZyz 8BwM25vrnnryPizjMmBh7uVdtqtf/erbOn5f+tKXzuTDnKvoeDjHXG/LuPMx nUPpexw/Rycz/pu+tq0ZeynLeksbeK+S8W5wq2MI52qj48jHnLC5ljdzvs4j B+OSX7WdBUvjo1Ov5JI859I83P4HzkG7+OZu9NO+JGM0KT9yZFyV9cyf+9zn npk/mTKn8e7Wa49L0CcdyyUm7XFy+4KOF5tfGEfTT65T4gJ0L76IMTtibuY3 pH7G18Ysj1kFE50bs97aD6efLRPXNTKcYlq3M3Kc/Gb6hLbhz1hjiDlD+EXi cfKXvMvDtyXJj2HLjsed7+ZZnQtwnsr5pOhm5j7ZvwcjjTFpu/u05eb2Orbp cXnnfm1DzUWbk05xbse1tr1wvei751HwLK5hn3FBxtXgWNe97nW3+a3kuB7z mMdssTZ/wc/Ii3LBGLh+MHGKjyeZOs9rHbHvab8dzDNmRvdiJ51XNu9IXpb7 aCu6RU48Y8LcZ39l/+O5zrYP5zE7d9W2ZJ2Jrjsn6zxssNLY7XjPvsA2wHFs AzthnjnnglEec3EeNWXDJ4nnwMvE3bH7ngNgzO35q56vFFn6WmOlcdTcwbGg uU+X1/MTMv5s/Wdci3VBiINod7iTc63NnSZeueJbPcbQ8bhzvMZz67s5jzGg Y5LwkuASMTjvBlzucpfbYgH+XuxiFzt8x3d8x+Ga17zmNteLutseguv2f8Zt +2brbsem9u2pl2Nfy2CKp41rbp/5VsqwXIKTjhObo7m9bo/jGPuNvq85f+pL /Z761KduMr/IRS6yyZp9/n7Xd33Xtk4j8xHi01I/bJnNXM/92DjQeXbXN3Jr OzBW9riA+Zxj0c6BWLZcQyyG7cAp07/mkj030xy/8zCOA3JP60jHMfbbxtP0 l/O6nePuPIJ9DNfBJ/meAPOCMn/SbfIWuwXX3va2t212xnh35k/aH/T7zz1n OmX53ZMeCzGuOhfYsbtlnufZzzjn51xA5xT4m3V6e/6k5066ryesbA5sfep8 SHOdYLL9i/O57V9dVudBna/m2NOe9rTte7esM8Q7AtjrRS960S0u+NZv/dat 3dSj53CF1/r9hSkmcr3MpTu/YR7uMjvX47kjydtFx9KunkfvuMY8MZv5WOIx Y164WbDS+G48XeUyc4z64ncuf/nLH77zO79zkzsYieyRN76JcZu0zWMQPd/a OSnjtbmdf9sPmKvFto2JK25m7mk5Tc/NOBgcg1gsfJJnedzS9uY8i/vScwAd F3Q+yHkE+ynntHNN39f+t/1zxzTUGT7JGmKM4zjvYV3tsQ90+g1veMPW56zD YIyLnfeYR3Ou1KHn2vhan+t6GJvaRo191MfvyfV7nOah3Mc4DnkIfGLq5/cI pnfV4jt63Sf7bvO9xPHm1i7LvsPjVmlz51jNYTpPxrnwEWIGeMwVr3jFzX4v cYlLbHiJ/fLOwFWvetXD4x73uMOTnvSkbf3lZz/72dv3Jp73vOdt67gRm/Ne AXlNtuc///nb+/385ThrNvD7xS9+8XaM67mXmINcHDkazjEOz8Y3jTnOMfwt uQGu5TjfXeIY57iGcUNyqRwnt8q8NP4yL5t3w5h/gU5ynGPscw+/WYsAv86Y CRv7YBjX8Pt973vf9v4S6/Lw7UL+8j1R8rr8ZY0ejnEd13Mt6+VyLXP5+W4w G+smc92v//qvb+f41jNyRb7InL/MOQ5WMk8Xm+t5tcZe23ljVOzU+mtOFrv3 uehZY0W2zhsZYxx/R688TkfOinc0wMrEpuZlnbN3/OOY1flP+9xum+OOzjtF 95uHtK9LXBLf2jFgyoArg/8exwnvzjP6fTBsGD1jXTXib8+VCbb6XdEcd244 ZXt9jH7XstdUMsfynBrH0s2FHMOv3kuyDiEPcBIdRkbOHaRdbluO9zs7zuMZ x6N/zW177m2/v93tiQy9Nae13YCT8Be4DTF3MBKek433w4kF8ZuM+bCOFHrP 3Gfeo4Njk4/I/FJyUeQ8WTOYNda55kY3utG2kYvjG1fcS06OY9e73vW2a7ie 3+TnbnKTm2zXcT3nyAGRO2WfMrmHa7mOZ3Edf9FZjnMt8RB/mVvPPWyUyXO4 j+toD2NzXJeN6/hLeykj3x+izqkrdUQmuZ4y2adN1JVruY/ruJ7n5TfxFv4I uYKTwUryVcif96bgacntmOclfogue46BsdK5C/tcx9Ypq8dnHQu1D+73B9of N16xT16VedjoSDik4+6UbzswhzA2de6/58xYt80DnQ9wvGaO1Vzaz8/1Ps8x sBR7YJ1ezy3ws4wN1BscACfhH/hyn/P4TGw++OK1JDKOPK3hfmydHB833+t3 Z4KtPfbua9331BOfiI5jU7Tda01N65L0+4S+xtiec6lDroucprUIwqm7jOCp OWgwv31axjy4Dn6G3YKPxNvYKnwHjCR/xnwo5gqTeyCGwmeg+3Bs9vPbG8c4 n+uRH/PoGPtkn2OcY4ydPD/H+M2Wsjn3xS9+cbuPferA72wczzHed85f5jkx Vk+Oj3Fk1uBknujHP/7xw6c+9altY4yEMX7WUWJjnzmKrEHHdTnH/WxwQTgh HBJOyDn+hlPyl3n77MMluR4uyTXwTc7DNeGx+BjmziFzvpECj0TeyB1ez7sr zsXFJp0nSt96DTrnB/0OROKPxiBjba8dE59qG/F6L9Y3c45wRc8zBUvg0PDJ jHPlfDChbbF5buptXtXrA9kmzE07ZjWn6HEQc2fHorYt80n0FFyAT3qs0Phm u84zf/VXf3Wb0xA+2VjoNUEmvJvWAJzWxOq1mLyOXurV+NU8dMLeac1FjoVf h0/2GpD9fci9tQ17nd2Wid+FbD3w+cZ9zyHod4WMtY5x+Av+8R4/uTHiPvgO 9stv2su6NLFD+9LY6d76g702kvHe+ZP2L932qc20o/vLvKd/u2zbo2OQYIrr atn2XDbHAZ0vcf7HvA5sh3vjk4KT8EkwknlaYKnzTW6Lnx35u71uZ+u/5xk7 T2m/2+9P5Jn5PcV3jlWcN4+uoF+M44D/wcZwvcShXpeJrZ/R+bGOJ9tmJz3y +Z7/3DrafsPPsTzBe94D5vs4tNW643qlP4Kf8Enes6KvLdfJvo0h/Ft9m/5s N7dphavTOuormbHPfAziBrhV7NP4Zvzb26bv7U51bHwMr2zMty0nH2zbMt/1 +FnHW3Cpc889d4tFsVvi00c+8pEbN/K4uWM65wGmvnVf2IYneTfWTRy8y518 4dls1pMp5litPWgf1nzLbfF4VtodGZDfJNdN7I1vQubE6+Rg812RyGyyb9fH OtHPb64WjHIO0VjVXKb1vP2In2csjk8FCzMGCp9MDBNfa71uX9s+0HWbvkV5 rC8nPhSMcJ+2LU56kHogQ3CSeVy0adJX91mOk+MmH8N7xOnryTekvsewpbFt +uaZyzsbTGo+mX4OP3fMS1+Th6Cv6X/LuMuffk/1mOo1fbu89WfCmdR9mucU 3e75UP6bGIfxEGLCJz/5yZstpfweTzdGWv7Wo8bH4HfbXfO9Va7CspjyLZMf dP1cH2PIhDvTcycu03Y64Xg2cxw2eCVyBiPJ8WZ90Ma/xrCuw+QDKKPz8I5H k2eLr1xhSduhffYeRwlWEmeTM2HOPBw6c8kT38Z/TDbf+tR9vcKIVRvcZ8bG fkbL1r/tu/hNe/ABj33sYzefsOdnXCfG/MibM3bY9Zp4XGPgKZgx+RR/O/IY j5u+ge72R1c5F1vK+knoc8fdk19r3bY/mTC/+7VtdWqry43tew6W5wfYlzWf iv3QVvJpjL3mPQHz0smvr/z7Si4dPx3zg1N5LQdz6j1+2bGU/aBlvMJEtyN5 iGDM1Gd93LKIHMmhMkeVOQDWP875OwgtwwlbVrzZvtI5meaiK+7QHGnSI+Na 9pPfJGeV97vhk92Glcz8jGMYMuGfOXV8fJdvDPO9x3xGrk/cHT7ZNr7S2fPP P3/DSeJvt9G+YeqHCQP2ZOP627b6W8tTPSd9dqwdzDFPY2yB/Ao5eOzDMo1O r+q3wsm9bZLPxKW7/s5RmvdNOOx+yX2MP4CTzPeZ9Gqluyve3tjSdelYYK+N K/uwbjU/6Lp3nmp6zh7WNQY3X53uW9WHY4w3kZOMX3LZq/bvbZZp/7U+xQ4c dyYPOdmIj6dukz1P/pi58dgO8ViwpPt85V9Xspz87SSLxvfp/Mou98qP/oCT zIV49KMfvbUtMvRmn5xyyLvkHY6282mfzfbTONl2s8JY99+eP2y8nvS/Y0F+ J8eS93HaXtyPzblWfb7qg67jdM7Pd5vTh85RTjoSfpEy0o+M94KTzJF0jDzx lG7fSs+a20z37+lny2i6/2zq536fdGTyyVN9J27VGLCnbxz73Oc+t70jmu9J uc8n/zL5qPbBfobHy/rbaZ0jWcnNsoputexyrvGLY8xxAieJxTLPevIbbfP9 Dcau8zH96b5PebFvxyCR/co+G29TD/IKzIHJ+93Ov7fPybPZByfp98wLmvSm +9lbxxpu3zE/OnGm1tE9W17dS9vpa8ZwwEr39V5Oy3Vf5Q+m+xp/u56OKTw2 OHFY+562ZceduZd1YJnH5zhw6i/XNWV3PVovm3us+nbPBlpXfM8kY1/XvmXy X3s55JXNWBaWwUq/jEvMWSIf/IxnPGOTUWTZ/mBqywo/jJ+ec+B2p08mnzFx xEm3Jr3znIHwDLAk+Ukwdq+PJxnbT0Tvex6N29cY6zxaY4vlPI1J9vV+Hvtw JjABPhmcbI7j8hLf8V7CDW5wgy0/aX3Y0/s9/Ojze/dPbdp77qQXvsfy4P0k /GFihz29mnRrb0xp8n+uj/2fbWLPB0yY0GXbL2efeYa8J3De/1qPvjnGJNMV 1vCXf8asPazz74k3NSYd8zf93FPx95jtrtq9h7mNlWkfc65Yd4T3lszfV/ax soNj8lqVN9U7x5yPmTCx721syUZsCseAUwYn97hS49FkXxOntm/aw5xjx1sW jQ22K8a7wYTwyeb9rot9E+M48EnmUU66vfIhe3026ZzPGydPsZcVbkw+MvIA J8lN4hfhcCtdmXRmwpXux84tOF8aGTsG8zn35bSFN05262exz5grdss7gZ43 17xl4mSn9HePp024aNx2n6xkO8l9r9+PYWtf21xtyqEfK6/1LDL8zGc+s+Xz s/6/y53kdGw+2V779mRhmR2Le/ZseYWTzJ/EfhyzW7YTH17Jzvd2vRtj93xb t6efdQpuMd4Nf2K8G5yc9LK5JX+Dk5kXNNVxr84rfrSaVzONjU4YtbKDrsdq ridxN+teMR87ONnznRyjHtO1bqOPHZsX5PypcwMdexhzG0eMw76f90yIu3n/ uuOyY/a56lfbkNt9bN7Wno1P4/9ns+3Nf5jsznXYe95kfz03zr7YfNLjKHvb KbLq/p76Mb/DMY7JbE8Ppjrm+XAu1hAAJz0P6BgWtMwnnzmNXRzTx6kNzuO3 zKa8a+4DJ1lPOePdU9s6juAY88vBSeZRTv2y0r+pfqt+mrC+dXO6fyp7qqN5 U+THe3Xka5OLdj0sm/8dfZ18kXGur11xKt/X48uTD/B1zDcnX8a4gtccCT63 z5/wI9c6r9Tyn/QodjDp5dS+5tSTvpyCJW7bSkem/ksdOvfa+NPY6C38HXnb R094vIebkw51nfk7+T7j5Eqvpv5d2VLrIByD3CR5vI7dbTuur/OQLbtVf3e9 2+4bw7oc2/2e/VqO5CdZ04D3uzOveqpD9nOe9VmucY1rbHxyqvtUhvtg8pd7 ucsVLp6aC1wd6/iIOWDM/8p3xCZd6/HEY+3umHM63zZ8rMw9LGj9tb80n6T/ WA9oyl+u+q/7boUte9jV2B29nvrJmHAsRpye03qy1zbj95R/2tOnLtu2yMa7 5qyHwLwg5zmO2cIKJyYs71hk4iP+23i70qHui363JsfBSTCSLW2c8Hevr6On xrtTsLGxZcrfTXwhsppkkrambayHwrtrYOaE6dabnGPNKvxjcHKlX3u2M9Vt pTOnxCQtW2+pt8dmjQs5z3uL9DP5SfvkVb+aR6Ucx1VTv+3l/Ve25r7Y87mT Dlk/EsezVgNr7+DvjI3mbsaNVf9Nethttm5aTs2fV7bR5VlGxifzuUmHpue6 Lyau2b5mwuOpfuEi8UusscE8Otae67l3K/zoMbzu1zz7mH+a9MQYseL1K59k H2Tehe0QmzIfG47RurGyy44V7NPy2zrcXGKKwyZ5dpttG3neajyA3Cvvn/7s z/7smfeLVnGO28w6gcRtrPU39cWeTk16tacz0/FjuaO0sX3fVL9cy1/8BhjJ epxZL8j9vMKlrk/rReeGprz9lINtzDSmN8asxl0mHGZcgXmzrME4vTu4wkTj 3gpv+vk+v/Iz3Z5V247lKPe406p9xuhj7V+1o204uhecZF7QVa5ylS0fPL33 5Db25vdM9sajT/Gd7MfGJ1yZ8H61GcepG1hCbp/N7Zvk2XLker9/2Tq2p8sT rk/ynGS08iPWp+Ak9sI6GODk5Gca49lYIxU+kvzk9Kw9btj6u6f/Z5PnXun+ nryMg4x34xP5Pk58ojFqD/u7H7seluVKJiufuYdbezretpKyeD+EtTBYG/fY nPBjGL7S1T1ZrWx46qtT9Kox2X5p9fzJD63GTqc62i+tdCob8r72ta+9rTsc 7HAf9317MsxxP6/7aOLBzhflHtvfsT5e2Vmek3lBrEHpNWQah6f9cNLJb7Qu rzDEz3F829yvN/dhlxM/RduIu/M+jvl0j6ta98BJ1i1lvvkKMyYdbpx2H+7Z wgojpzxE64Pba1/uOkSGWc+c93G8bsBkE5PsV/HkdNx60DrT9rLSNf9urMq5 yQZ5H4d18chPrnLpe1jXenbs+mk8YtKVyUama/ds+hQ/2v5o8kvTcdfP73as 7M84ydpM8Ut72LiS58rnrbDr1Fz32W6tYykv4zjMn8y6tZP9tN31ZnvdG79b 6Rqb29/vqrWM92KJ3E9OAZxkvBs+OfEm22PKYd1J1lVj/uQk98mmzkbXJxw4 Rf+7vPip1dhWyxI+yTgOfrHfBUiZqzHNSSe7Hafoastu8v8reU9Y1djOX9ZR I7/MfD6v1WgMsH71XKgVdk/4srJfy7a5g69pm59085hNr9bza/97DFNsVxPu NjdJnVlbGDvj2xXGyckOVrqwd3zyQ1P9Jw7R17msVSzV8qBNvI/ziEc8Yptj aJxrvnVM96e6reR0LFe1pz+T3Kb28Zd5QeTi+N5J8pN7ZaYO8EnW1Et+8mz8 U+P1ns/rtk457b0+dN2muKhxEr/BWDexN+P/vrZxcs9nT7Z0TIdd/+D7nh/0 72x7OXm3kzW4wUnGFbz2Wtq0mku2wuKu44oPTv218jU+tuJ1K1uf6nfKfdPv FV5N9mtdsc4xf5J5dJlnviqrZWR5enxqZSvTmEZvza9WZU445fyQ9S2xaXL7 e7Fuy8z97Pbb5la42Of9vL14pOu0N2bLhg9grcXHP/7xZ9bBaDxyv3MPdQUf ids8z7x16xTsP6brk46zrXzwpM+NTxNepR6sg5Hvd2deUOeiG19XNrXa9vzH yqZtJ20X5nzOgee+aY4L73czDpf36Lye5eR/2xc0H5za4mvMY6br9zBqZReT nqTtkYWxf9omPJraONn43jHzU8rgGxOZPzm9h5z6TOvATX6kf0+41NfkeVMO duL0k++yvC1D/oIlYCSc8tgciWN4bz1pzGsdmbhP+/rpmZ277Ha6bNrGePe5 5557Jj856UZkkfwsOMl8sLzf3Xizp+eNmdapttFj2Orn7I2P+Lzv71iL+ZPw SeJur//cOGmekzr1Wvl7ODkdS3lt942V2TcOuI+4Pnjncl0nxl+ZpwJOZq3V fIcpa/lO7Z7iZtfVMm1ba/0/ZgPdj3mH3M+YfOMK56wDEwc0P5owpvWo//q6 joHJBzNf9aUvfek3PCN2NY1pt69Z+aHW6cTMq3lSLavUwd8tmNbLX+Eq15Cf 5L3FfAtglWPp3/0eU2OObWzicRNGrr4HsVcX+5C2c941YtzC88x9n3XedWY+ CXwy+cmJg+z5Ctd71XcTx5jwt/2J623e528edu4tvxnH4V0c+rrnBU1t8DbN 99jDx8adnrvosnptu8Zqj8V0f0w2B58kv8y4Avf426f+Bnvbs/XJ7e3vFhzL R0ztOMZhJjyaONmeL7JOTM+b6r7iaHs63rrBN89Yf/I8rTsSWeUb2fk+Q9ai b3lNfmDSrbaJtq8J+y0Xfq/s2W3KmulZK5qcFbFYOEZz+mn9n7Yl69DkTyfO YAztbzzn+f1tjtZrlzvpKzkFvpt1rvik5WJ9MLaRnwQn+TayscbP99h8tv7W 0mrNJ7bVuI3rt8c1Uwee4ef6W2nu9+Ak64J4bsPkAyf8advodrVv63dgG4M4 7+/weZzFc9PSztRjFUvYFrBbvr3K9x+4Nt9SQTbmNF7rfA/HW66TPlhnG0/b Z7T+uv6dT03Zk+0Y0yZ7a/tf4fiEUV2/qU3ZWJ8Jv0R+sn2fv8flMQLj3DSv Y8LL7ue2j6lf9nz45Gc4lzX1g+/oDmtcwycf/OAHn/kepDmydXbyb5ONud79 zcZgSI4ht3zjkTrlG2zhAfmeLFu+59i4ZtywHPEBfNeI7y3m26xejz6+Jfmr nGN9XuZPsr6aOWrzI69xn7ZGz/0N29xzypjWilf2ceupv5Ge72P5uZFZvo+T 8e7oiLmMdXDyhfYRxjz71sYa2711a8odTjbRGDbxt3AAyuP9bsYVWC+IctGh fGuq4z/X3b7Za6rnm8f+3vseblhf2pdOdu/2uA65JzmS9jMrnuc6+JtC7p9p bHbCycagiffzfnfexzGm53tf+T5hvqEw+c9V3GWcdh7GfZf6Tu9RNxdqf9P9 knoHe8jdsZGzYg0M8pP5vuz0/dzmHea5rTfZbAPpbzCR52edM65Bh8FrcgD5 XkfqyrnkloxnxiXLLPvBSb7LTtyd7y22TZqvpJ28t8g4APF3zhsvkBN18rd7 mx+nvpNv3vP5ky8Mnk6+L7blbwU3t899yJj8JH4x4zjTt2fMBxvvouvGsRWf nzhgyu5vn/Z7Cs0XXI7l01yTje/j8H4I65lTPjrk75ibh+ebffkeVb5tHFmm jsFKrsVu8Ov+Jryv97fKfH9/kz7+LTmB/l5u83P74HyPNfaa72r1t54pN/Xl npw3T3FdHduljm6XbSzlwN/JTwYnu67xMZ0TSp7IsXp/68O+Jn2WOiaPkvZ3 /Jmyptgmz57ylLnXWHnBBRdsc+rIW/E7WGm/2Tl820/XJ/LJ98j+f9berFe3 rare/x6WSF3XAS8050ox1hoDqMihEKmkUsCDoAcJoFiLoIDFtrjwAsUCoyiB LZHiQrFApTDIUdSYWHyG/feZoa08u9H7fNfx91/JzLved8455hh99N56632M OQZ9k5gnMnNfch26l350nxknOzZL/sAc2DaILNjT4tu+7duu8pNTji2HfSXz wFjn1e8tNl5E75sj8H/vvT75j7b5KX+xxSY9LhRZTXFNrgufJMfyfd/3fVc4 2Zwn5aXu5nzmyO2H7Q8mbG19ioyi55NPNm82Vriu+R695ZP3A1hXjfFXnmNf 6+d7T/hglPeI7/3pE4vhz+EX6Kx5fK7LXqY8N3m5lJvzOUdZPvgte0JHJu1b KIP7eT73JBabcJLfsGuuwx7yjMjdtpZ6Y6/xAdkjm99T/9wTnGIch/gLnLTu GCcTD7r/gveOGVMH4595vHE47fM+3t5/OM9NvsQxbfoq7bH+RZ9cF/aVfPKT n3zMqUsf2U9aT/I8jxnYH0a/3L78HxnQZ5TvXCht9O/xG9wTv+2cas6n/PZ5 qSd8kraxDkb4wuQ7nBPC5nm/m7w061AaZ2KvedaW12oe3eMrHRPbDhxLOM6c 4u70q8dz7fONexyf+tSnDp9411133bbvgzHO2Nb7gU4+1NwudWuMNEdwebFP Y7x5TeNEx5EdqyTGI1/CfAXiAu5Df6IjtgPv421+Z8wzZkbXY5Oxo94XPPaQ eD/ffRgjg6XBJ+u7dcL4xD3gHkfis3BS+448J9fzrgFxBfZmXMnzg73mzXwG G9JPGZ+hvYybwd/Zt605dWRi/Ehf5Rk8L8/IM2P3sVtjmOWRuqf+3B+ZR5ap tzErXDHtSp+n3tTV/cGahLyPwxzKvj/6kPrne3TKY4jGxfjqYHp0LnnI+L/Y dtqY784JpXznKCN/64btJnqPThB3Z70g654xJH2b/CfjpMFJ7L7zcemf3ufK GGm9aA5kv+ZcVP7v3MuUQzIuNxYFt7k/fcK19DVxQ3LRxkX7IcdbHSM7J5/z eV6PidkHTVhpvJziPud7LbeUG1yLvkRX3v/+9x92m/ykOWLuTRsdB9kXeG9o t9/cIfYYvmh8sH0ELx2jhwMk35SyYmvRV8eU0avofDCix5Md0yXuDt90ffO/ Oa4xt3HePCnX8wzGcZA3+xFFTqlDysm9zbmNH/4teODPyKXHATo3b9/rfo+e R87BonC0yDQ6brzFdsjtZw8+rot8UreUlXxcnmV8c/mWq31s6hY/ZL+da6Jv 9hX4QccUySt126KD6T/iTMZx2PfBcjSvtA2nL3mf/4lPfOLV/t0dDzoHabs3 j+qxb1/XcWnnZHqMv/OUzlU69jbHdX4iMQd7tTNPCp+YsQHnYya+53EFxxF9 /ZSD9b2dc7Itpz/sX91P5tppn8vNPdEf/NvjHve4ox+Nkx6fyT2RmfvD+tR5 NtuueaV5tnXXfM6xfWJa85FwEmzEfr3zhR5DNk4GQ5yzCu4mRrSdOmbNuG7s 1jF3cDV9ES6VMnn/6QlPeMKBk5Ff88aMD9jXTrG/sanzFfbl0Q9zJXM151Ss R+0T7L+CRc3t+Y7tkNsHJzPebD8WfLNPsK+0TgfrMg/D8bv9RcoK5jU3jE2Z uxhDgoWej+V8U8oITr7mNa+5jQOZUxqTowvMl6Xfe101597S551vNjY0fnac 3jjR/KrzmNM4YMe4KbtxmPs/85nPHPIgR5n5pH6e2+I6G+ccB3beuut1Fnd3 njDXOc/UvNJjAcYj57Y4D5+k/zJ/0vGGdc65L8uvuWZs37gRO48dOW9nezPX i37ncJwY2/EYkfmqY6HoebA7dWpfYNxJOcaUHM57OY+Qe4yTxqZc++d//ue3 HvOYx1zhpPHPdTUn7jg354zhzWs6/ulcpnN+aVPGNtIv7d8cC7fPjc9CLp/+ 9KePvQCwHb6bL0Qm8VX9e9racXbnrz1W7fZHXsZ1c2THPpFT9DjnzOmcewif JO4On+ycT3DBnCFxN+9hZf5kj986R9kx4YRZjkcdw9leO0c+xbQe18jcDo7G 5h77oKzgJOsVsOZJ4m7rcvIO09h79KLHcnruiOvdMbfHWoJ70Rnn2vO8qT2p r+3CMQ7f3/e+99161KMedayvbdszl3M+0TylfZR9cLCtx2ScE0r/Zw4H4z3k yWMPxlhjaWwg81AczwW/4v87529bsOy5hvuTw0x98zznUl2vzscGD53X4n7K pXzWRX784x9/9Z5o9AhZpI3GcI/tGD877+M8Xsp1fczLnHfr3LNzBZb1xEM7 /o1csB3mYsMne2wovjjXpr7m5OZpja0cKS/6k3xyOGXyNOGG1tXIM/iVOsUv OG5qneZ/8pPf8i3fcsyfNF+1Xw4fSh9i78RrjAN4/cme5zJxqpyLDdvum5c5 19446Zi7x1mm+cQd1zp/Z15G7JD3cZB751SNSdFzx++uq/mz62g+22NTzsV2 7G3uNvFM46b5SHMf/v+zP/uzw8857nZ87HipY/yOc63XwZmOA9ueOy9l27R9 OgYNRmZMurmnMcFziJxzdCwW3+G8ng/Ht3m+eUTHZxNe0S7uYZ8N8vnIOzLs fKpxMvbbONU83zkYx/HtH8wHHV/7ufGxlmNzFPNbzgeXaCfzgu68885jvDvz gsy54pMSk2c83/jp/mle7jiqx4iChynLfD36HXvo8Vhfbzmk7/kffYMrM44T n2y+H57lcvkk/w9OZh2MiU+mT6bcpWNAx9tpa/xt5+imHGXPO+p3c84w2LyV 5332s5894gb2jWusc0zbeQZz6OSZ7Bt8uI4p27G58wj2bfbNHmcJL3eOJLpu TujYg/mTvB/CvAXu93iB8c8xe+zE9mXebB5rfto4aXsOBuV/5xzdllxjHDMe eEzW9YjueN5O53o9NpRcWOdEYzO2p5aP2+b8JNeQn8w6vZwPP0oexTm7HOZu zeU6J+lnd67WOO743f1oju341bI233N/pQziAsa7sR9wJc+PvgZXPVeB3xIf 2DdN41bm88Fmj2Gf8WePvRg/IgfH/K131J24h3wc+7C2jhqHjBPIk3l3zDNn 38XmbrH/zj+ah01xc+co/Uzzz67bNre852umjMa1+Fp+Y51A8hD4xHB0jxtb 1h4fSjsiuwkjp3dze55Rc2Prs/E32JbxOPsTx0QdP+V/5gURB5I/iR7Z90/z E8yfPD7YOR3bsvXdvN12HJzDVnJ9YtYcHt82Bpuv2pda57km5TvXFezLuRwZ R3Usb1x2vs581ef9nkpwEr+E3aTN0WNztea6zn2a31sXndt2DseySv0cizgn EvnFf025WGNPxj9yHf+Tn2RNHcZy+N02nnaaY8dHec6SY3D3T+riONd5V9cp 5Uy5kY6VHa/YD6Ze8X+Ju4OTlln0z+MJlI99/9Zv/datO+644yo/eWnsxPMI Jw7l/J65prlIx9y2Z+Nkj3O7bPPUzoVSFjmWpz71qUd+MjF2nhUfE/9rPO84 ucejgjnT2gOOMYKFKcucwL4wc0I7j23u4f8tR/4HJx/96EdfrRcUf+GcsfvR 3Kl5nflVzqevtvjcsfSUd8wYeOwwOSowLPMbwyc6np7GPDwGHznZRvNMz0t0 G9Me+6wuwz4i7Ul+4MMf/vCBk/DJxNTBndho7NTy8lhGY7bj4M7LpK7GuPSV xyimHLRzhva1qSPtQv6MbeDDklsmZ+V3NDzuGt/XY+SWn/lkY2fnDzqf0mNx xkPblsfV02aX4XxT/B3faeu3fuu3Xo13p3znPTwvJjbB+/ys0wuf3NbwmfJ6 /d6fMSYYb1zs3MuUm+yxIM8z93M6/xccin6ET5KLZs/FcOdpjD7t6hyM49X8 PmG5uW+PrwWHe5zdeU7PJ+++bdtxTJH6EHeTn8x4t/2+6zvNXbY/9/hDY7Hn Api3uz7GInPQzOfOEZwLz4yN2jYaN/ws+zRz8s4RdF7PeGSuanswv7RP8rhS 3scJTjYe9hjLxBGMZ+535wxzdLntNzvXaJ7p3EqwKvMe85s5eLCMdzSYU8c7 3jzLua1gr3Fvij3M41J324Z9nmOazi+ljLYHc4nm5u5nx/B8Z32cb/7mb77C SeOt9d1jKtSd/CTzZhnHse177mJzrcSensto2+8cYs+/cexs3DCHnNYqMG9s Htjj+OSieT+J+bLJTxpzmjdOsUXHUY5h82zX0XlN586svx43jwz9POfnG7s7 B8In+z6w3hNxQc5PeYJprydjQ56zzeW3r0zb7BfNz6J3icM9x3niHZ7TYt9u nEm7W/49R8FyzPe25cRWjova99s3xGYpk/1x0Kt3vvOdV7o8+XfnpZwnCfds n+jxmca81u8NV9MfzSmMrz3G5ZghciEWY6yDNa65x3bt8UfLqPlcY6Rx0vF4 18Fldkxu++x4w/mZ5ofRA87RNvYDY16QcdL+0zFYxrt5T5W4jfmT27pgsSvj nbnelEecfrf+GHONOdOaa7nHvOgsP8j/5Fi+6Zu+6WovpOC954j3OHaPyzjm ntphDIpMI9cpfzD5gebK3Z7GPOs/55mnwnpBWWfZ9t/ytL8x/zUOGcu7/3oe Vcf1fXisMTjROdjk0Dx33DneCfMnfbNOtS9u32d79Dil+9s+xzyd8W72EfN+ RMHpxrUcbbP2g40lnU/2mKv1NVhgfWu7ss6k/eZc5jHx8VwLxyA/ybtsto9e a8s63zGduX7n7FJexwb+vWPUnlPi3ycfbv5jXSC3AFdmH7Hkxsy9+L/Xr+OT ffrgI3m/2/rY8XePRZ+tlbatk9bjM9fBEuNhP396D5zv4CTjWlkvaMJc61Jj 76XnTf7EOYRLZXRZ29ofHeM31jHvmfwy+8HZzn3v9A5oyvc44aR/E+ZObfD1 1l3KTZzWsaZjuMT823jZhAVTvGGM6VjF42qbL+vYpfPTvLdI3M16nxMuuZ7t j7t/wjUTf4SbWieb76a+xujmP+1LjRmNRcak1Iu5IuAktpM+sXw3WTa+nXEk y818rP3z9NukfxOmWA/ClfN+N/t357e0rfOObjM4yTyHmzdvjs9zPVy3s7Uk Jy6y4cyGGxNOWy/bLhrjyU8yjsP8SXTR17v+U13afqY69j5Mm3+ZsP+S/IyJ vrfXAeeTuJv1EFkHo7nHJWxLXt6xd49Z2R7O5OXrmss41nJM7hzWZFuWVe8D eaY7k1/dfpt00/U3t+U7OPmkJz3pir+bH13H9+d6x8EedzP/c3xxSTdT385H bL6/OatxizEr8vrskdO4M9na5mcmX22dmjCzbXOyrS5z8+ntO+IDiDNf//rX 34aTG+6lDcy7c35y0pmUtdWz+2LCpA1zzvio9yDdcGny31xHLpp8LfPAMraT +y/Z1oRZrQcbVgTPGtva5r0vzFSPTU6t65nPZz55xv8iq8RZzuV0PNr8cONj Z77S9uA8lueUe0x1w8nNj0577lzyUe2LGt/PfDXrBT3zmc887MUYeSaPrpPz Ap0H77jb/KzzU+ZcwdTm2md6PXFRfmMdDGIxsNKx8Zk9b7ZwZuMuY9pTts+3 /bdNNl+f9JfxfeYFveENb7ga3238mmyP/D84yXvCGzZsv23tbg5y3dj8OtdN dtJ2yfe8t8g6GPTxJv9+9tleUtt+tO2vJ92ZsHJr19S+9q3Rhw984APH+yEd d2/ta6zsGKzHNC5h4oZLrQOps7mSY8H2P1OsNelht2+zu+zHtclxiwe7LfBJ 5pUg781nTPX3efsNj42H35zpV/pn6uvJj28+og/zP/KT4CR7pkzPmWzB90/2 0nxwwqNJn6a+3vB1knv7QeZWOO6e8M3lpgxwkritcXLqo27D1lbfO+2TeB28 3eLGM2zy/8wBI8fyyle+8ujnyRdtvsDHJd7/fzm2/vczz54R+XDdzZs3j3WW ibtjf5f8mmVg39t2P90b3Zlwfuun1lfb1jRuZFwNlnRuzJh+hpuNoVvbrE/N RTwvF/7+tV/7tce+UlNecsL5qf/6OZN8Wq9dbsYtotuXdDnynsZ5Iuf4q8wV 4V02P7/nTDivuLV9OrZ4fNKrS1jRWNm/t12RUyAfl7jbOtUY6fuZd8f8ybzf feYzzuq0Hb5+K/NMny/hcGNZ+oB5eeQm3/SmN91mSxNW3puj2zLxlm7nhr0u b7KpfobbG11nPXPiAdal3/xZH1MfbvbZcpr2kb3EDya/tmGLxy6a6xnPm+e0 rrc+TXmOM//feb48E/6e+arm4tzXcbFlPenLGV8+68OJP53lBC2vxqypD8nh wbkYx5n8yYQJfHa+bSr/LB84YUbbtvMPjYWbnK3PzJ8kPxk+OcXmk44wbsd4 KfY24eol3L6EmdfB1Q2/tv6c/Fb0NHrC2vXZf9I6YL91xtejX213HZ+3Pk73 XBd3ryMjxwL8zryg4GT6eePtk+w2XNlwcsP+ts2J27ReTf3YcaTl2lzTY7Td ju7LtttLbWn8yvOZ18/8O/bfc1ze2BF9nLDN10y6fcnfXMc2pr7uHHBjZuob nOR9nNaDrS8v6ccm203e0/M2OW31msb+yE+yP45x8qy+OTIvKO8tTnp3ZsfX xcnr6MEl/Jz0PM+3n+J81jNnnlT3wdaGxIGTrZ61tfXxTA4bz5w493Q0f2C8 m3VMyJ/YT0/Pbn2bzl+y0U3+1733Up73Ong76UfbqM+1/p3Vf+ofl8k4zjd+ 4zfeeve73z3GBWd63v5pwrnr2sU0/6vb2Pyov+e33Jv/yVmBkxnvvjd4dcYz 2g+eycV1vbd+5EyHsk6v4+5LmMUf8QN21jjZ48fXwbJNprbvyWc0jjQ+Tn2z 4Wb+z7pqzLs379jq3+NOE5+/Dha07TW3mc5HPhOWT23O9dgK817Jm5hPbvjT mGIZ93PPsKp919kY+IaJOZc5DbH91odLduDDdWl+2rp9XUyiDs6jkp9k3Iw4 LPH2hLmNzROmTnz9OnhpnZqOCSct18ja+V3rIGOgjAnzPk76ZOrrbnPbk+fd t+2dYZr/n3Jb3Z4z22z5Z53eN77xjVfjOGc6H10BJ4kjbn5u/uR1sdt9vene JQzdcObe4NOGN8QO5Cd/9md/9rbnXUcHp+dv8jiLw9PPLYstfm/f0c+xDiaH z/7d2C3v0V2yf+uM/4+9THz3ko+e6nkdH+P2uBznizwO31g88WbXq8fwOy92 pj9TPXPvX/3VX12N43R9tnEN1+mM/022t/XnlJdteV7XF7TuwTGITV/+8pef 9nfb94ZNE+fvNl4qo33Opp+X/CtxN+M4jFt4XtBkd+534rWv+7qvu8LJjRec YcpUx27XVI/Nhrrd27VnGApOMncycXfXc2vP2XHp2u18z+2b7pvk1NfYZp0v +4Zv+Iar90O23MSmOxPPuWRPW5/n6L7e/IKvd8xlnDMedL2v42snubY9bu2O 7wgucfDeIvNV45eax/X3xraNT7TNbPbf9jXx+c12z+Tjc/d8brz7Va961UUM m+YwXML9DT+n+na/dW5savPUD6krfJJxi5/6qZ+67R1FH732GPfynirjAMm3 dOxzHT1zPR3rJD4w9+4+OfNVZ/LbbCS/4xOf9rSnHT7Ruul2XBdTNs4/nbsu 1m5YObXb9XWduQ+cJEZK3H2GI5seTvxns03HD60THVt0P1teG85tsUfHqlPf 5/lTO8/m3GzysX9Nu5A3eSrGcTq2v4R5zYs3W2p5bDq44cR2XWPT1P/8zhgo Y8LMC+p5R4075mPNzfK/427nPqZ86dQHE5+8xGN7DlQ+Ge8m7n7zm9/8eWsx TLaZ3AHrFpLfYh3DlDfFX5s9T7K2/kQOZzz1zP+ccb8zzGYc58d//Mev1tGx bvjYcO7e4ORZfsCc8iymt96dYZr1h9/Y94FxOPjNhmHXyd+0TCds6fL7HcfI 8zo8e5LtZusbjp+1oe1oion7+Vs/Wnc+8pGPHPKGv7du5/9e02TC6g3Htj6b vhsLznBv0t+2T19PfhKOwViHZbJh7KbT+a37YsK+MxufZOU5Qo3TW5zGtcTd vH/C+zi8C9aYO/kqPulv1h1lPyrrvu2h+691+4xv5vuEFRumXLKZM31KO+GT 5Ca9vsdUr7Pxm0v2s2FB6+h18GLzlS1T+yCOrBeU97un/r4Ojk/nJ39oLN98 eWPuZItbfdInGyfdbC7/T7Gwy73k9y/hJOv0En8h7437tu3kuvZhze/O+uIs X2Gs2jjHpPuuh2NZ+CRxN2s0uu6XMDzldH2m9k686VL7N/zrOk3/B9uIu8m9 5r3FSU7NDbifePurvuqrDjxJO7d36Te9PuuPS313HZve2nD2DPgka+jhE6d8 hvt143BnmHamw5PtbFg9HWc+rtuOf2Mch/ldzZuvY2td760ursf2Drn1iqPf g7yER5vO9vnofHObrE/U7yT5/vbD7Z8mObs++CXeX8s6GGc6P/m6blvz8jO7 mMqY5H6mi1t/mY+Bk8x9Yv5k9/+Zf7Mf7XHyyX6vYwuXjukZU/vTRt5bfMpT njK+tzjJNOsl3bhx47CziXddx791LLbZxFaXzQ/4+ZN83S/dDxz/+I//eOvr v/7rj/xk+8RLucMNH6+je5s9mCNNPHK7d6qT5cH7ptgt/q7zRWe4vMVSvtdj znx3vWPfyd+kXY01Lqfrs+m0Y6rrjA9PeDQ9K3Vxvjz3Te+2T3OKiLuZf/ee 97xnjG1a9v5/6veu6/b7pfZvWDbJoOtjrOY7cTd88q677hqxscvp+VaWnTGi sbzrP8UB/bycm9b6tAyau+dgfJf5Pa997WuPtUfc9omfexyHuDvvd1/CQuvE Wf9tHNvt7/zIpi+u0ybTtDf6n/WC2KfXGDlh2oSLKbuxNGVtODph7+Q33P4N OzasNYZgr/Qf+3acybr1zW1pmXcZ1jnH3Y0lreO2jy5z0kmX37a32Zb73ra+ 1cVcx/rX+YSWX8pjHhZ6Fb/U7ylu+OF1gM78l3Hba8h6vTz7nilHMXEX+z73 q3/3ekHkJ+/+3LtsLav4w9aJyUfm+5mseqyl+23yHa1Tl7Aj8mccB678oz/6 o1drl28Yyz1ZY5p9H5jnwHjA9IxL/Tmdm3R6stket9h8yNlz287yrKxnzjoY PdYw4VJjWGzP/TK1oes7+d8z+Uz52Km/Yztt43m/+13veteaF5t8mjn+mb9r uW59svG+qc1nuj7p+5kPmXzxpCtnvtX4M5VvucInwcmsh9D8ffIlm+5NMvT1 7SsaWzw3dLov125rhvQzcv6ee+65WvPbGDrt7dT+dJs/Gttyf1ya18r3ftey bb37tH1iX5P3Fn/sx37sav7kJmee/Td/8zeHjb31rW89+p15Ya3jHS9PPrP1 t8+djW1OHK/L3/LtrqPvc46FPAS56DMcaPl3eWe+oNttnjlds2F96+0mP/d3 dIx919lXOOtgbM/s4ywemGygMdIx5uYnup1TjqPLbVtxexrHtn7asNLtnuzr DM9jz9gJepX1ELoeXOc9HDpm2nyR59i2TCbfF/vpGI/zvW9GcMb7L1ieLYeM d4Ml6edpfPc6enbm37bYuH1YY80kC9+XZ7n9kVP2W6Rt4ZPBxKmvyGGCJazP +NVf/dVHPDHhpHVk0q3u70kW5tuTHk62ONlL+nTDcuMkfJJ5UsZJ2+pkC132 hCObbfnZl7Bqaqvxb9qnxv3tet68efOY15VxnDM5W6bbePt0f+ttx3ktq7P+ 6/o45prGSs/sYsP/S/3VMYPfR5rs2/bMPhu8j8N+Uq3bzY8ax7oftzZsODL5 h5zrGH/Clymn0byU65grAp989atffVv7279Ost90/zo2NGHH5ANdhnNtkyxa 19gfB1xgvDvjOMFJ+w0/g/vYr539Phg3bfu0L2v9nLDmUl+eYZWPLTeV+mx+ 2liVXDTvFEx43M+dciPdN3l+ZNqYPslim3viGKTr1T7Jutw6wLxX+CTr0m96 dQnXNv11XaZ+6jad6XNf33gxlWV86T5sXXEdU+60hlfr6PR7/29dIz+VdZG7 b7o9/XzvbxW+d8km3Oepa/iL27zN2Zxw37Ziv5z6EHfzzgpxd4+lbv6v/c/m z6b48kxPNr2b+n/SkZyLHPM+zk/+5E9erRc0xeipY77zfjfvLWJvn/jEJ441 +e2P7HOCoZNet4wm2Uy+yL6391y1D2uZbjmX6KnnBTUmbXhsOU/YOmGy/fBU 10lPJ/x1ueaROZzPt14Td7MeIvnJxvvr+J1JHm2b1pk+39i2YeqEwRNubfwq +LDhd8vPfdN7900232VOMSHPv/m//J33cab5qlM/Gj/92c/ZuMfUjxOunMk2 fde+tr9HHuGTcK7G1cZJ+wM/bxrf3HDV5Xc53Rctv0lXco1zH7FRcIG4++d+ 7ueufNXkI9tPvf3tbz/sjHlh3v86dcqeR9mPL+Vu/NvynJ6/2WfvGW299jhm P2fSK34D85kXdPfdd1/VeeLh8cXeH6btx3KLTHqP5SnO6WPymZN/3nAmcsqe 7PzPeMIdd9xxrPc02ZPb2vVojrHp3LRHaLch5Z3FXpdw8NK5CfONYW5r1vv2 vgoTX9k4Ss//S/uwE+T9u7/7uyOHaRu3DLO3ZfYFsh1nr6Jeg6hlOWH45J8t p+bWwZDsNRG8iA4zV4QxYWxn8r2bn+v/bUuTX9rKMIZvNrXZkmWdPSytu+Ak +wq/7nWvO/qix8C6fbn/He94xzFeSl6aa7yP7eSHbdvdf7bHtveWR+t8/H72 AHb/5X7PR7CeGydzjv0WmedG7GBsbXugvdnTuJ/X9pTvxslez6Y5xVRey80y iRzcD95PJnsVpr70G/Mns35NP3/jdFO7+r7gcu9Nvemn/e/EISf7sn2f5Uyn vuv/jR8dh6ZuPb9m4nyOi/1sDuTNe4tZD+FMdsae6Fp83LYPcMeQG/+aZNrP dnnd5uwdbr0PRjP3mDV1fuInfmK0m/bFU19veZiNWzUebjprDG7e49jBsnaf ZxyHeUHZj2jqgz4Y78Y/Mn+SZ1l+2X+98x6pe+etu7+mNrWcvTak+VL2RGk9 cdnNIXyOHAvjkuCkfVvXwXuj97jJZAPGdOPHxHHaxhsfJj8TzhFfET6U56R/ skcheWX8XPa18nOad0y4PfVdxznhY/HPPR/F+JL6Tlg5HW1D03h08wTvmeN2 Wqfad6VM72Ht2CD3ZE/I8L3oTsq7+b9xN3wE/t6xoO108qPpP45p39mJP0zn jfct93Boj224fmkf8wL/53/+52pPYNvixz/+8QNL7v5fPhmZW1c3LG7bnzB/ woeJX22+3vY3rZuXNpgzm7eDk+ACPsDrAW2cL/f99E//9OEfwcnohO0xey4b c43XzMHkcLw+8aWpre677GccX2v8cW7Ucxsii85D8Iy/+7u/O9YbY8zO9uVx rfRF2mLbs31NMY+x0jGabW/KI0w8gSP3BSOd529cz37b/E/czTxzcLL5/yRz 19954G6Xj45hNp1t7Ok8YduL+7Uxt/Fr4n1THtJzs11n+zFjaXNKc/bwDbeP 99YYxyHujg+ZYjf7jpajY+z2y40LW1mJmY27loHj6hyd33Y9/F4VsRhjwryz MvlJy3ni4e6ztMn6ZJm2D53m9Tautk5NnI3PYFjwkIPcKz6ANXIiP3POln3q +zM/8zMHn7z5ufUnW08S47l/LX/znolbTj7CcnUfumyXFx+Y9rY9mg+mb/CJ vJ/EeLc5Qt7XNOaZwzqnMnG/4KrrmzKbM5zhZPvb1CWYnft7LpxthDYxfsN+ i6wXFJm27jhmb45jveq6TO3psTbH5bbN9FdkENnabsw93X4f1jXbqfvbPin3 pL/Try4r+hxfY5t3DrHjY+rO+0/k87PfYsrqcpw/SV0YI4VTpGznBR07mTdy eM/zcJd8j191G12XtNl2bFm5P8MT/uEf/uHAkuTwqHPuTZnedzzlp13uA+dj LcvJHqx/UwwSfWzf3e8rmctFNnke82DIvWadXu+dHnxpf8LB+PgTn/jEg5dQ ftoML09fuI+8N7txzfre8VZz9Oi1fV3017qdunYO0fm7yN59z3M/9rGP3XrS k55064d+6IeuMMJjUfbTjr0nf945oMYEx6KTrtp+zK8tK9u7ZWw7TznOuzDu +oQnPOHAScuj84rTuFP3VXMiruu6WDebr0QfrB/m6uZv1uHYn3MOud9xRvMx x5rWGdtp40Iwy5w88uBaMIF4FP3/7//+76tnh1sSb7M+E+tgBCfbr6XOkVna Y5zku/H3LM/APdSFelFGjmBmyrMPMU7kGtdp6ifKpP7EYmAJOSt+NwaGoyGf YESOYIX70Ofy/kvr/oSPE1ZGJ81v7ZMdN7gfnKcCJ+FPtM3yi2wsN8d24CTj AMyfTb9Htu7XzkFbb81tpzxebDLt91hNyuJZsf3YjW2n2zv5bPOTv/3bvz36 mjXNGeNqTGuc7Pykj36/uzlM+zHHMVPOLlhpncn/zY2MbfEX9Af9QpuJ/5g/ yfp4sfW0xxjUHNB8zvg46WV8Z3Mh62zjqP1m2mQZOy6KbTX/apwzFje+pR/c PvuTxtSU3XzKMk6O0n3Beqbkg3mfPm0wF7FuWOdcp5TbHL7zCI65YrORS/uV YKXjQduN+8342WU5P8maOo0J5rTmTinDdtq6bN7XWDmNSXWMbf2w3Lt95iz2 iRzkFMDJ7CM2xcSWW/CXNRrBScbxuAZbiA9I7tF8srmF84lT+52fjU7HroLF 9k08j//Tf1NcFX0yJlluPJf3Mnkfk/WC/uu//us2W3Mup/mf425jmXMqbYe5 33F4x4uNR+7LxtTOX+XZjieRFb+Bj9gteGldt0ya13ab44c7T+I8QHNJy914 1LhjPY7eRCcTt/AZXOXe8JXgie0j+hG7iCzaTpxLMU5GjrGD9r3O8bSv5hrm G8Pfs+5I2mEeZYw1P3D+p3lFdM6caYpxUy/nk9Oetsv2B+5zY4x1inPZA+ju z82pa91Jue6fKR6ccqX2zY4xOz834Uf0cYon7POcZ+p8De/p0TbnJ9228Gq3 BRkz7oOdkZ+mHGMXPD8cwvFtY7D10DnE9hPhS9bT1jH3t/M3ts8ePzDvCk7+ 9V//9TF/nhxLsCZySxlt686fdB+6X1OfCSMdC7S+mD8mnvI1zoXb9zS3MNbw viL5yeTLprJazzvW7Rjc7bUeNj9uDJ3wcYo/Hb8lVsnzg5POsViuxJ8c8eXo 6H/+539eydJcecuJxKadT4tOBJcypmEfxXnkjL1kvNtt6vxRyuxxujw3frDz UsHecJTmkdZP66Lt0boS3++8Lu3psQeex31wDPYSYRxniu/cl9bv+LH+Pfw2 demxC4+rOYfW7fQ560TjneUS2VEvrgEnwyfbb+dw3BQ7Yj8d3g9OvzeXDba2 3dk/RDeCGW5bj7M75+X4xnhjnLR8bKOx6fSDuU74JHkkj3d3jrLzk62DqW/H x5ZF12/Li5hn2fY6hkk5tvG2h+SpuJ59Wng/JOsFdZzTz+zcSfp2G2tNPYNn 1mdjof1jx1+ODx0jW59Sh+TIgw+xseRlzH8S7zh31rYyxRyN444jYu+UF4wz r+G9buaH8B4UvznOaru17B3Tmys3FoSjBv+TK3WMnHo5B5S2NIc3TpqjpZ0p M2VwLfPMn/WsZx1xN3LvXEfnux3fTTbqONLxi3Op1nHnXG2vtnfneY3btmNz MuTI9eQnmVfNOI55tJ+XayOPjrttZ83b057GUOcK3GbH351bsB93XXu8yLjj XHLLoevBc9ln+Y477jh8Ynhy7Kw5nOt/ndyjcWfCwI7p22fl2rQrOYfmii7T +BOM5DrmA/F+vv1c7rF+OyeSeqdvzCM75nHc6RxT9CCcx3aU89aRKS4zxqSN sV/rrfNFwcbUx+Mj6Dc5ltTHPt05I3PAYLxzFamXdT7PIz/JuGfWwbCumCc7 r+/+o5zkmYJRHisMn6Yd8Oasf9h20fFl81pzeWOZ+7X5ZGyX8W5iU9Yz9zhW 56PtG61v+b3j8cjZ+RzzC+fgk19JX9pfp79t97aZxiquxedwL3ySONNxd7h7 5IXseXbagcx+8Rd/8eBd2R/HPMM4a55jnbWuO8ZxDt+66rkMxuLOfTrPE7k4 p2Te2bna4CTrasKvk3Ow3Xasbv2zHprn556O4WyTxra0ObhmnzNxsu5z45L1 xDhBXhKdZr6KxzQ6b9i81z58iuOmnJTzXBNOehwlOBg7d9+nfuYNHS87h+4+ tt1arxKDo+Ph28aWPMsxS/QuGGA/njjNuIB8WL+O+Cv5ydxnjjX5Y9fVfrHz MfGfyXsl92W9774x9+h41GPr5i25xnwx3JN3ftGpV7ziFbdxevuDxkljnPvO cm15GNM6brJPjJwsF/NJ53KCQdEb2oe/QS+4jneNWB8t84LM1WKDxomUxfxJ j+M0Njln3lyz7dvtde46ehafH9uyzneej2eG/5pLmns6Xk9bqS/P/Mu//Msj D/HGN77xtrivMcTxunHJOj/hun/vfopuxI+F4xizJu7pMqaxD3PvYEFwkvxy 4sDmUpZR13mLpXPOftP91fzOOGreG70ONrgPuv9ddq4Nv4y+c8RPpF2Rjedn tE+2DvsZqZd5AN+Dt/aTYAz8HZwkTxm8Mac0DicOthxtky17+6TYSvq5Y7vW Y/vYzld0Hrb1OvdxHeeZU8dckR/+4R++jS91bBAb7BjDMWviPfdL5z7MWxrj 0n7jQo62Y+eqgrfpy+AkPoD5gszzCc43FkRfUxbnyE9yH3ZGPRMTRP+jk51P at/hcYCO28z92uZtf/Zx6YPIKniNnSRvY/l7Hhdy/uAHP3jwSeZPTvPONpxL XY3Nrpv9gjHWXD96HvxofPX1tpEtlnJOLhyNg2tYT41xHPKUlGU99vPMRaOv 9vvGo/gx88DEibkmttM5ouaKvs6xlGOrXJe+5d0y/t/4WMbHLS/j3zYm3vFr dMt+220LdhgT2CeF+Cv83XL2eFvH+vahHpOzzF2P4GTHltZT82L7A4/Xts6k bXme+X44M2vRsrcguX3brm3DemIZ2Lad87Wvdv2cX27eYl9qHd1wxDFf+6bI kdwrvIJ8Y+dtUi9zeJ7L3mPgCHk8+GRwkuvCVfnf+SNzbOvxNgfK8WfniMwf bGOOuZsTp37WH+exuY9nsu40ebvMlbVu2a66b4zrxhGPn+VIzNRjO/YhU5s9 btDvXTsmah21vScuBB/pv+zX0jGqY8fmPI2lwQXbT3OzlN+41+edPzIfTO7H 7Uifoo/gZHJJ7hN/mjP02LyfH84xYUzamroEVz2mFi5knIRPgiGM46AXnrOw 5afN753DSfyT9kc27WMmnPJhDsD9yDF2a50J3+i5fp6bR72ZKwJ3uvtz73fb vxoju7wtvjSXsI75SF91HB9cSP9ONmV9dJ6//QflM38SrhycNCewv7D+8T+y YPyO9Uc9L4J7o7fO1dhfpg0eq4y9W3+NSeZm7nPbs8913sF4GJmkLZEV1330 ox898rVZ88Tyd27eNuGxBOt2z30zRvb7385ZxWY7bk3uvtcG8PilbducqmN8 4m78gd+nCp91rG/MmfIXbqdtKz4ydTCvnvLpzq+Ai9GRYILtLTLJ787HhUNE juaP27y7aayL63tsKjqaa+2LrXPG+JRFvM06GMlzpE+7Tp5T5Fyw+W/wPHzE PsNzGtrerfupc+enOt/VOOD7ogecT9ydd9liW87Dpb9SH+dV8mxzgc59m/Mb s1uOnmccXhp/m3szdyDtdLxoG4odMd7N/jjkGxNTNKdp7OY34nT8Y97vjl46 R+MxJ+dm7Z/NKftdRZdpHx85O743ThsH84y8w+V8V8buIjfkyjgO60Owt2bH Pebbzk913OvcS8cLyTX0GiqNwc6RGeOMlY2TzrmZr/PJb+kTzvG+Inwy79G1 rONfEguboxhPzDctm57j6TjKsWxkHLuJ7UROqXv6NW0z57LfMsed8nKRX2zJ dQpGh1O177aeWubmWKlPbCD5Kvg7+9OR1+Fe63T4gn1frx/m2Dy6DB9JDttY lL5xbNX8wj7LturY3lhoX2lsdawMxyA2Ze5x1nzIM6ecVOdI4yv8Tk3blnHS 7eV8ZOixsfYt4W/Oa3hcy7zQZcMn8XPwJ+OX43TLJOfZT4f1T3hv0WMvka2f 4fxox5/9jmbPl3R9O7613CeMsR+O/7XvMs9J3P3hD3/4wA9y0ZZzj79Zz50v dL+7L2K/trVeL8rxQeduzMt7vq3fE4zuO05PuZEL9WB+Cvmy7P9nuZovpg49 tmFf4Lxa88UpB+HzaVv8fcbgLHOuyXvT0XHHR8ENc6LYVHMmrrf/CO/pcaP0 ledAOicU/A6vRbeiD3wmDxDMZ/4Vc7Dhk9x/xlv7PdCeR+x427lsyrMM7bcS lzsX1/zQvCByNQdsbLB/DMdgjWs4lOdxBKPs43Jfyrf/NxY4HxFZO253nObc vXO6HTfm+tbd9ifxIfyWsXzWkzSnmXIalhHjwcxTzrpq1k2/e+/2O+do/O8Y 1Lk240bHvuYPxolgSttZdCVcKbrO7+g03//iL/7iGP/HJzputU9zzjs5EOca nS9w/s65hhxpj6/r/J+5d8eMjhubV3Xsn3KoA+8t4ueynrkx3vGDfWzH7o4F nRN1Hooyetxkygn1uFvqHx4MJmQOQPQ8/QqvCk467xw9TLnm2V0f59VT5/ig zp+b/+c51MExZWMT+cmsg8G9qVtixh7LbJxMXRJDRgeNPfwWOaW9sQnjf8+r tb5FRzIukRjMftL9HzlSN/gk73f//M///G05m87nNL9LnwbXuv2e85R+4r70 e/Ck56l5np1zNsnNpO7BjM4rRYf5nXEc1p/8lV/5las8nrHXnDn6yXXE6eS3 sg5GbMw6Ey5tH2x+1vLwfDBzN2OOOanrNOUz0+7YWviIc4i5JnM5wMnkou37 jLud40xbPA9xigvTP9O4fvorOfluc+ow5XI7Pna9gsWWJd+Ju7Fb+I3fJ7Fs HU86F+sYvzE9fNH5DfMQxwjhA5GVx5HTr9Gp2KvtKTLzvDjHvvHZqUf3k9tq 3x4Z2R9Na6bHfqNbsdmJoyFv5pshb75n7kWe5TlxxoreCyaxkbm6cc92O9XF PK/H+zqf7Zyi49HW5dSfcRxyC+Bkr5PVOT37SuejnHfw/HmPNf37v//71ZhT MNx2Zbyxvgb/w1k8Vzu67Bx58JhzxN0Zt+B7zgerg+ORTWTJvHTyeMRtyUk6 /xfZBlebq/aYY8cezpVPOcIeS700R8Xj3Y7TgwXUnbJ5lx95wJcjt443Ovdt PmUfnufGVp0f6/W3rRPOJwcfnWt1DrdzubbN6Ilj4vQJ66qFT2ZcYeMVnutg ju72uk+co7QdxFYSpzrGdvwbWbmP4j8sG8e8yalY/h7rSLujh+5H5yYd8zve bgzzu5mObSNDj4VnHIf4izwl5WNfXGM8zjvLfk8l7XEOJXK3fWVul/PwzgW6 f9N+59Tir3oeYo+hGXPNF7kvc4/BksSYrrPr4f61rjafDgdLTOEYwXlYl+Fy PAbkWM1xufHTuaNgIf8TdzMew/snwYse+7EOxh8xL5285oc+9KHb+EfHTc4p mu90zrb5kWNFxwqeE+eyO28bnYl9BSfdR7Z16sUz8InkIcBJz00wDrW/Nk93 rOq8V+fqtnFXxyvmpY6jp9yV+9q2FTt2vXk+79GRh818vs5DtU061rO+pa2W QXTZYwqx1/SFxzkdJ5hnGFM9fyIYmMPPi80k1nPs6PHxaSxg8t+2X/sl5+Lt k2ODkXvKZX4B80PIC3MN7eHTOakcLt/jWs5tBSvs19oHBUcd5/Y8puaHxknL Of1u/bLv5b6PfOQjRyzG2EV8t3Mb1pvOneXZ01gO55EXe2h37JA+MB/tnK5l E5/fvsKyiR567gVrxsEr2EuS+3ocsjl52kKuFpwkTg0XMi6a33u8xPGkc3XT uH5wYZsvmDI8j6LnoblPndNxHB29pmzmNsAn2S/ItuL5CdbNYIjjm+Cv+8A4 6fi54+jWVY8LWY96TMHtmHLU6VfK4z5wkvepMq7g+eDxY81THRNPviZ4af8R 3MphvO38cnypc/Xmim6jxxmy9gN2lNjXeZngSnymsbLHd+yDrWN+P9A45r51 zB5MC24yzxw7y/vdaXvKNg9qDtTjBZ4/6nkIkZ3HcsLp3I/Bb2Ofsco59r4+ zzUXDE6CBYxV8Q4KbYxOBG88Pti+1vptrIxe+N3S6LKxj2s6l9x52M4hJI7w 3CpzihyU/clPfvIYt8j73cER5++dN8yzmW/JPjLBydi+8arzE84JTON6nc9O W8/G/6b5Z65r5Ox5YLHZYEmu5V7WZGaPD/bp7Zxpj8k7PjJfC2ecxjmcJ5ti uS7fz3Edeg+QtjVjqO0//oD1EIkjPvCBD1z5XGNCj1mkjO4/j7ebaznf4pyL 7TO+pu3TcYJx1G1zbtf3uP6e92OOb3z2eOnE5c3zHNPk/tah1DMxdOpDfpL3 FplnHpsw73DsYpy1j+v8b+fDHLNlHNzjG57L5ByHOZ7bGv9rHU5/Ob8fvOd9 HMYs4JNc75jC/sTxgsd32v4dP9rfOR+cXIk5l3N3nuvh8XvjonmtfX/kQh14 v5uxfHxA+4+U7eenDuAIvIv3V2JPvqbtNHY0jeed7ZnpsXD+vF9Qc8xp38rI 2WMHjmGt39wDn8QnMk4Vfd7qa7uJv0qOqvUttuocQj5dfte/fULkd7bHW89l mfwc7y0yjsO+0ukrX9fXp/9674nuP8cGHT9ZF6YxKfeHMc65wvYn7Vfb7+S5 HRMZa91XHi/rsicf5r7sfg3O8J28JO/DZr5q88et7c5lxbc75nCs0/Gc6xT5 Tdhj/27bbd7Th/0b17IXAL4XzsXvnZfo+RtpX863rcX+evzWR2Ri/e395vw8 18GxrX2C/UDkyzxzxqje/OY3X8nO+XyOaW9ccJKcLXOmIv/eJ7G5hw/jQOOi Y8qJQzWebN8jZ+dIgmPxncYD7iE/ST4Bv9F50zMe5fLD1c2lHJOaf0Ru09E8 2fXpeSptp1OMbo7zG7/xGwdO8j6V4/3GmMbc7ehx2Sk/0Hw8NmYu0PtE5mg/ 29d4Pvbkl/t6Y7Vzw8aaXNMycbnGC8veOW1+ZxwHXpF9nDsmsexdn847NyY0 t+g4ZML6YELnH4OTlvekg42/KZsxYTgXOJkY088IT7Bsg5MciTfbb5m7m3On Xm030cUuy/o2xWDWi/Z5tI1xC3AvOOu2tMxTN9ZVg3eBK5Fdc5zGmLb17uep rcaEfleveZ770f488YFjFOcoo+vcyxwwYgfmkzru77o1b+LTORvnLx3r8czm ptM7jM1hXIeNlzfvb56V9pJbYI3Ahz/84cd8+n/6p3+6zd6bUzR36ufme3N9 c1njrv+3jjWWNt+ynU/XBh9977Svd/MkY+TmZ6b3Y2JTroO5aOycOJE8FeuO kO+Y5vs5VzXx4eBDy79jD9fP/miaJ9EcreOsyceYI6R9kTnrT5KLw3b47vmI HsvzvAPHws5RNq+c4o3G6caJ6bB/7jkNLUPHG7QNP/eOd7zj6pnxYynDnD7y Z/9u3gtn/e+ej9t76U523P2c/6PX03w13z9hReNn8wfn4KYYgutpD3ySOWAb JjVvynnHlJ3rcC4usuo25//WTz9nkl/XacIx7qce5Mme9rSnHWOv4CRjC3fe eecRFzrvb9xsjtb4ZJucZG+8dB2NX1PM0ngZHZ/io2CMnzfxrua4Ld8pVjVe T7zdNmiZUS/WiXnJS15yxNzI+4477rj1gz/4g4c/dp56shFzk5Z76063y/hv /+f+9BxYjzs3Xlj2tpXGTuZif8d3fMett7/97Vc46VjK40bhx54TsHHEyc9O tm8Z9Zw799Hm6yebi9xYpxe8gx9u+m69Sxnk7/AdwUm3zftWT5g3xcjb9VMb tnL6cF3c7knnwifJseA34NfmFFO/tdxbpzfOH+494e+GceZTk51s/sRcgjlc T37yk4/xBPZafNzjHnfsbcUne6fx7nHbUnO95mHmVc1X2ldb9v2M7pd+lsfE PFe5c3bmqc2P3WdtV/70PCyP9zXPzPVdZnwytsE7HA9+8INvPfaxj7316Ec/ +sDKhzzkIbde+tKXHrFc+/XW+YnbbdzJHMhzA6Z5IT0G5vzthCMbz7FtMNbx jGc849Yv/dIvHd/dZ57XnDjf87Emf7bVoe36jItNOb3mZ23f0/VZLwj+ZD/h vmt+ykEcQS4CXGmca7zbjgkvNzzdfvf9tj/LqWNat8t2yu+ZP0m+1lzC17T+ Tjg8cb/pnpa3dbljy0kHuv19BJ+YN8MektgpOBmsxHYf9ahHHbac/Lv7vLlT czjHmjk34dPG2bb2dszffsfxTePdJIPmB63jvj5tN0a3n9q4Xu4DA1ib7373 u9+thz3sYYeMOcBLDv7/5V/+5c/LdzT+XQcnJx5sGfV4vOfEpR9zreOdjJva Xnuv5bSX/5n7Qs4bbJhsLWMpfm6ebb2Z9HzDjQ3rzKeMp46pLa+zWJjzGe/+ hV/4hc/zJc6HNnYzf5JYgvdX7i1OTtecYfwljJxwsP3BxFvjex1LZF21t73t bbdxvsjW9TWONtebnj/ZaXNk257LnuTbXGLCCX5DL1nD9oUvfOGtBzzgAbce //jHHwc4+ZjHPOb4H7wkBn/Zy15261WvetURG7I+FtjKuqs/8AM/cOuVr3zl sUcUv3MNuc1853quAxuYi4t+cHDNa17zmuM9Br5zPdfwnU/OsTYTn3ffffdx cD8HexTlN64lhgFb+OQ7ZfHuB/NQKJu8GP4eO+WT3BBxAbpNvATP4X/Oc+AL 3/KWtxxxIu/tUjbjW8wF4DvlcR+/8T487zBxkKPgfW2uY99KzjM/koPfOMd9 5G/gjnB2cpPsj8PnIx/5yFv3v//9jzbbD1tXpve12nYnX9xlGYc9v6d9lfOz XdakrxN2M1eENiPTjmXah57FYRtfvQ4+btzS9tW+fuMiPpg/ybg1uBAst732 M1IPxoPBSXCl82v3hkc2Zrrft1zlhscT/4yuTLLgcP9xjnev8InYSHPdDbcn nbbMNkw8Oyau2XI+8xV9/Md//MeBk/e9730Pu028DU5ywHHInT3nOc85cAmM Aqte8IIXHJjE8cxnPvPgnMzB/+7v/u4Dn/j/2c9+9hXuPf3pT7/17d/+7Qfe glPcw3zU7/qu7zquI39F7P+d3/mdx7VPfepTj5if3/jOeX4jXuV3cjvsc8fB NZTDJwfrAfI78RC+nu+MLTJ/I79TBmsz8Btl8j/PAf/5pB7Ul+P5z3/+cZ4D e+cTmRFLEmNQL9rC7ymb52A/XI9/5ZNrOYeMwyWR8SMe8YhbD33oQw9Of5/7 3OfW93//99/mNxvnNr/ncR3nAZp/TnGFx4ubZxuz84wpd2KMzXWcAyeZF0S/ 8z12NcX6HcdZbz0WZjxqHmhb7lyd7d1tCz/K/5FncxLLj3Lhk/Q1vrTxvZ9v e8Uvox/MLf3/Cycn/mfbT52ui5PTs85iM84zFsy8+6zTGzm3H23/3vVrPnmd tk6c2ucnnLTuNLdwvci3gf3YLfwRXoMds6c0B995R8f5uOh0r5XgfFbyeJ5T 4zlpntvi9xf8vnFy+l5nwfPC+31Jv0edMYLMafaaGX7Pwu8uel2yvMcD387B OgtZa4EDH8ORvSX+7d/+7ZhP99nPfvbq/L/+67/euueee448FkfmFDzoQQ86 5B2MhF9yPPCBDzx48cShjAOtL8aJzpO5jEnHXW7j32RvjTFdx+Bf3vFiLjVr PsDVE8d0PsLvo7VP6Hx+5xG6LM/xucQnLYf81uNbG28PTuJnb9y4cVu+IDmH fn7+J1bBR3scp+35ElZeh1c3vzp7xnXwdzuXPiA/Cf67rzOXZ8JJ92/r3ll7 Lo3lu08vtWOKk/x78gvEhfBG4j+4JHE3XAecJE4EP5p3p33tT3xN8jvTc31/ j4V0e6L7m81OOOB65nrnzqwzfPe7Ox1ntvzdvh6/ybM2DOE7WAlPJfdLXgOs hEvyPzrGWqd+3jQPb8Kr1q+WV8rqGHeLqRo/Ghv7+gmHeDY5OPgksalxqPlJ 88SW8RR/Gc+3NjQntq76d+Ot8+vdXn9nXhD8Cdzb8Lv7ggM+SfyxjeNEXydc mGzeMm97O8O2iXu2TU/cbfKbfBJ3M38yueg8w/Ls/ol+Wx+mem/c0PKbbGLj me1DGrPDN/jkfTliRWJHuDJzVYg7if3IscGLXKfJNvit50i2jkx8Nv9P87an 51gu7Qcbv6ecynTthh/t86Y69e9ua8cQLpPn8L4TssbGyGuQHyBnAZ6Qt4CL brm5DVsm+bau2YbPfEpzTvfR9LxJLpEBnAnbgSenDu3bfM/EN/w54emGk1P/ +F73ucdhJl7gOuY8OIlvI8fd/WH7dZ3QQ3K15I7AybNc2RnWnXG/luV2zXVw cpr/7HalT/k/OEmOJbrmupxxYuPqpF9+3r3NL7otxsaJU7qPOff3f//3B0aS d2XuD2VkDRZi15Zllz3VcfN1m4+zztqXb/xhOzqOnMbRJhua7LLPN+5u/rt1 dPJ57gNift5bY80g1tRhXv+LX/ziIyZnvCjzzief0RjgcjuOcX0n3N36w/f3 OOVmN83J+D9rXIdjtO1MfK3HuLc6+7xxdbq+ccG/TfJrHfAz8jtxNzbk/ORk C60zjOOQtyZOdQy86fe9yVtGxj3ndSp/un8rc8LsPCvyInZgfMq56M79bRjY cruEMa7v2Xc/44yXNxaFRzKm8LznPe/IqfG7c5DTvHfriGVzCb+mOtqfnNXb tr351p6zMZVru5/82Rkv3Gyu44P2eRMeN2c1VnAPeVPG6LO3J7lSy9r16XI6 hm6cnDhby2jCLPd519vxSfvD/M+YLmtQgZOtE2e6MGGidc990jadOnfZk55k HMv2vOm3+5Tz5JyJn3kfp8e72+58L31MDIFsXL/rjk1fwsmJW/y/4PB0bdsJ /xM70C7ydZHRxOkmm5v6vO20dfISPm6YsvVp9BoMBCMZz2XeDZyy4w3nFCbb b9s6658N19qHbvzkOsdZjnvCg37+5us2vjbpffN1Y1FzXetVP4ffGfthXgF9 RE6P/HDO9TOMERMG+LrpmqnuGxfvek7tN8YkbmEch7WIe62t7u/JV/XvZ/26 lb35WffDlt/o/u/xJN41In5OftLY6OfYb/BJjgueQtzt9pi33xs8O7u2ceSM MxjLznA1+GCfze/wSeQBTm45lPhW+6XGjDOM247G30kntzlOzr2BkezHQZzA PBvmJLju/dzYS2PahBm2uUlnJ7966Wjstey2fpxsb8Le6XmTLTY+tA1PcX7b ROOLdSLxUfsmxtqZB0pOhLmXxOg9T78xcpLtpRi7+3Hy05Z95zMn39BtJrfA +wvEYtZJ4/KWszz7PuVZt3yDv0+cZurfDfttK8yfZM4X4zLb2EHzAe5nvW9y EVl/0jJO3ZoLX+J2my1M9Zju8/WXMLKvi87AJ5mDF78xrWu4+e2pnRNmbD60 +23iYe0j8+l3i9jLAYxknIa8Std5kmP7urbJtqfUz/bffKqxYmrPGaZN/TZh Ustxsrm2vZbHhtX5rf1xY1DLqdsyzdtKW5jvxLzUrEmW/SCmOTluf+fT0o9d n5bp1sbwwim+O7Mbv/OL3mE7jbVTX299vtmwsaz7r3XhTJ+n4wwrOA+fZP4k c0Y2HtB2TT3xgYz/kJ+8pMsbx5vscOqfiVOe4eB2T/dLc0A+swfxr/7qr96W k2kuNpXdttNybB622ZX796yPbfeZ7wtGkjdm7h5r1Z9hVetI48Tk585kmGsa D7qdkxzaBpsHTBjtZ7afnnSy9Xj6/ZIOTVjqMiZ9aL7SsSyfxODM2WdePjhD vtK+cNLVCQMbg6a2TDjZ1+aYrrVOuW7MMydnRQ7vDCetN1s+5gy3Lv12ZltT X5qnTn2XcRzmijA35Kz/I5/wB/oU3rXNC9p46VSH+OtLmNe2eZ3Y2rLovm7s 4Tv8ODjJd4/FXcf3WE7XscVNh6brXM/+ZMyUNWDxed/zPd9z6GzqYf1ofWxb 8bHJdtOT67Rryg9t+r/hwKQXUxu2Ok4cfcKMya+7j6fxnXzfOO/U/vzG3Cxi VnIlYE3mDFkH2zedtXPTwa0tZzm/cM2+17iPzsGdiE3P9ORMxzsu2eq/9cuG h5MOGX82HUsb4JO87xU+aa5v2/Lz4C28p8Y8c2TTPqbb0/bp36+Dj9P1mw77 2ROuWM8abzjIRZNP4N3fyKPbtcnWdjDpxNYPxlXrxWRrres5z5gN70Iwr5mx OY/tTTjlnOQkh8bJLWfpe90n7aPP7Pu6OtC6cF18vi7mNn+acLd5oX0nn35H o3FzqwvlZG4uMTfvxDNunLWzpzmfLceJt21Ybo7gdRhTTvTDben8lMvJJ3lw 1gjIvrTbPImzfrCMp9y475+4buvU2XXTnJqtnuQn4U+80+Y5In29ZcN1xN2M d2w4uWHh1I//F35ydr5xfdIp+4Dua3Q0fb3pfOrb82o2LNv6wVgzzVHYfGSu Zx4kPJJ97uCRzIed8swtn8bm6XmXchvW1857TzqzPWcru/2EcbrlEX/g/jnT D9d7ioVd57N6tI1nvtXUppaR9d9+h/cimYPOe3LMK4FXXlonbqr/5mO7TW5X 26tlNM3Vth5lfxzmGMY22hbO+nzCyskW2k9Zdh3LbZhwdrS/SNxN/Mx819ip /UvrWmT0ute97riPHJj95dQnXUd+Sz4tz+q1laZxp8bgS3jZeuJ3Dfwct5V5 5vgN9/WUN75uHzSn3XS0PzesMJ8h1mbuMmtCvOhFLzrGoFp3bM+X6r/p8lSf rpv1c7Pbvr/9wlldgttndd780mYPPd7kdkxzZibfsOHxJfvfMDPy4P1yuAix Hj4b7JzW2plw8jo4cDbG0n09xeR+dvwJ493ENMxxyrlLdbEtn12z2YSPiXt0 DD9hxNQ22xmfySncuHFjvL7L5Rre4WBdLfCE++Mr04fdl+0bOO894bKmcu93 mrUX8q6CMXIbP+n59PnfcVViUq/PwHeuwycij+Bkt2PSzz7X+pff7IPbBie9 bflTf8v35s2bR5wD7yB/kn5oHzTh/KaXzRt6TsaZv970vznwhJlbf3UfOw/U v6f8jiPPsKrnyU0Y6bI8r2DDkPbjXd/U03nHiXtjI9hZ5vNm79PuyynvvOH2 2XWNNWmf9+ns+ru+7LXE2gHkC6KLkct1x2vy7B7rbyzx7+kTY0xjfJc3YenE 19PXeSczfDLP6bjM2Mo8BtYiZB4D8w3PdH773XuCBh/TXu+H5v0nJr5w3XEc c+Xs+dX7HHMtfJJ2oZeT/kwY1n1pfu32my/Y74TnWg8bh6wPyIW1fcgPv+IV r7h1zz33nPpYH41zjRfeXyr7/PW+Z7bVSznitv22k8QSXk92iht8vXXfOJW+ 9R4sbQNdv867bbya+1tXrYd9X89VsIwbWzeuzjXoJ/wMXgm/hGeGa7RdO982 Yc+GS1N/+v/NtxhL+IRjYDsZA20b2ey0+9o8tO3hDDMnPjjhsfMG9s2uY9oV ncz+gtgd57w+XOdnzCdZm5W4m3xY1611ecr/ZC82r73k/s56XN5jLu0wp7iU 089znZcO1nhf+lwHTsIns19Qr9N31j+t7x1Xdn9bptapSX6xAer827/928da CrxnQ97Efd06Ya5x5mesg9nTx+uodW6q49UNLyZ/63PePyV9bf1t+7R+eM+h 6LTXXfM7ao1X/tz6pf1IdLL3mjjz05td2I/5OtczsgAbyVcyRsf7wn7H0WVa j1svL80N2A4/w+vbGmc6P8laEV2HCaMnnGxs7rHb1uVJ7zbO0Ef3h8tqnWNe D2MArMkcnPSegb23Bp+cZ/1q+AxrR00+xxhgf9U2kjU+u/08x3Gx9ymcZDJx y4lPZuwjaxOGLznHAk5mvyCvVTqVu9nVtLbQdM+EHZFzr3FKvd/73vcePpt1 FDKHfDq6npfOG9uNk73vjW1limW6XZMeGAezvmX2unGOc5Jv46u5aGSUPbF6 X4i2iQnjt76xb3d+yHrZ9tc47GfZP7qPwmMSU0UXyE+ypjzvu7BnI76A3z1G 32t0n7V104e+J33stdBTL/cr1/IOGO8tel5Q41jjw2RXbdfG9y3O2OyrscI2 OeFS1y9lgZPJx0XPsgda9rlOrjDxDJ+sdc3a0sxBaZyc+MrE82xjXVfnEL13 ca+LuWGEnxPb9jqx3v/N3PnmzZu3vuIrvuJW9i4JL8latb1/cNph/GhdjczS homjWR8tb6+HS24EDs9+AbzvNvk/18f3d9xpm/ZeAMECc21jf2Ly4FriZM8v 8thsDttX2pw+ydq55rB+bmMddch6vKkjR3Ql+NW5xkt2OPlU81fngryHavTM axRved2WTa8z137E+9bQJ8yvZKyEtTOQme3afWmu52PCz9hIv1dl+ccGvNd3 zuV/9pbEdm7cuHFVdvue9idT35gXbz59u3fDobNrptjNvJz/wUlsj30/+L39 e/TS+/vyeffddx/jB6yvMNXD9Ukf2EYnHtJ9F94QfDNHm/zEFB+5PfRx1sjO Xm/JjYcXvO9977tat5b7k6PrPTW95k5iPeIheGqwNdiYveXy/OT+om/BzV7D O2t+gwe8+8v+A6wXybpctvPIuPMV8XX2MZGT93b1s9uPZIzLZQYne18A90vq 0rJ3zBr5pT/iD6f9Bvw/1yFn5EJ97Hu89nqvvzr5YuuM8Su46/Z7j+H2hcES 42THqT2nw7GC/3eu2D6Vc6yhzj5E7D/BujzMTQ+2+BkTRncc4LYaj5sH+zrn OuwDg5Pw3cTdEx5P+GZf1LlqY4bLtP+8Dga2HrgMjxk0DqdviJt5z81xd/Qh eh07yz3oKflJ3uNhXtDGW7f433zS+tLYb0657e87PTv9ntjMGBUcCgakj/MJ n2T9pF/7tV+72k/A99iW/QzvuZnvwbp85jeuyT4FiRGNQckJ8BtrRJKPZMyT PV0Sa7ufHZfH36e+eX7qbC4Xztp7Mbid0Qfje9qZnIV1OPL3eFDqkfY5dg2f DD/0u82NlR6Dy74NXO+4u+dKOI63Lva4jH1G6h5/5T2uYxNTHBCcTHm2JY// GIctE9ebz/aXyTOAleSm2beDtXl459HPcZu6nnm2ccbxjscmLDvXOTKI3LmX 8+95z3uOPS4yL6j9w4T79gmO2WLzacd0r32OOVnnrHp/R+Oyy2xf5ecw3s1a JTc+Ny8oumtZeL8T7qdv6SfG4Jin3j6/cx1TvG3/4X6xPqcPgi2dw+q8R+QU XxT/Zx5gXXKcx/+U+/73v//WHXfccYzjOOcT3hiu6PEgxyKOT4yn5iTeG8Y4 FZvJXi7cx9w53g9KrL3Fkmm7x0SiA7a56N1kV+aNfb/3lQlW9jiY/VSembqk 3Z5jEExo7jrhZHiLuaTnKkSvm5smTnA8Fbv0nLA8MzgQfDKeR7bGSccuwbrG 7MYuY6r3BYpc87t9c/Q4eSKu5Z04xk0YB4++WK8cM3S8n+/en6j3Q3L8Ec5q n2s/Spm8ExacRBe8l1JkZ79tnDJe2jc4JvL/KaNjh8a37s/Gx44TjM0pi+sY o/rKr/zKq3lB5hZui+M2yuPdKnAy490TxzvLqTqu8DjKxgutz82fmy93zG5O 7HjKMVR4DD6R/A980vFM615kmD7rvbF8XcdFPV+0dRZbgUeib8yPRNbE2uFO 0dvmBolhw08iL2Nl/N8UR5ojd3uNoeGJuc/xgnGyccb72/M98kid07a0q/2m 87fgJO+pBKst12CL+VuPiwRzg0HmPtYN205y946vzPOa7ziX0Zy15xTEF9Eu 54emXEjq8M///M/H+obE4KxjyViP8wS24Ymb+BrjsPdyM2+MzHosi98o+0// 9E+PPZdYxyMcw77AeJe8zeZTzKs7Pmvu43ED55Cdt564amSc611eZJT6sD4O 4zi//uu/frTVMoqMbffJJ5MnYw2lT3ziE7fNecr/uc++11w/9XfevnMX4U32 cVMsEW7ZY0C21fhH583Mk+Nr6GvG7MixmJ9vY8DNecMJPI7eh/vKeBo7JK4i 90Suh/wG9sC1lMvnlB83t7U+pfzmDa5z7HzKs005u8mGOt6xHjonEV4aOYZj Bicji/bPLjtc0PmJtD1c3HPOOm5zXs18pLGieXb0ybww9h/dzHWTjzcvs27a Pwb3HcM7h5HcBNdTHvs/wivhLIwz4ztSdnQxmBF9br7VeaQppx+5OK8euSYW g2OQC8C/h6e0P/Jhn5Lr4kOn/IPtL21snTbPaztNPzpf4Nyi7Sa6lrKYJ46M 2cfdbTMmU4ZzO/TVc5/73OP9buLuYFnnQ2Mv0f3mi9YrY6WfZbttXElbon/O 1cafWY7OV9tv5DfuZ98n5kl5rmzkYvxz/dxfjqGwY9tqjw8kXrE8+B19Z4++ pz3tabf+5V/+5TY/Hjn32EbudR429QmHCx9NPexP03eUFbz281Lv6G34YOei nfszPhovHbs5JnNOZRrna/l1XM9ntzPYfzY2ah9ujpW+Czbnme1/gv/Jcff4 d/TMPi1lNWcMN3GuN88xl02dqDPPJg9Gfgb/nn5tn+FcQb4HL+yTHDeYOzqX Ys4VOTGOA59EfxN3GucmnHS8ndx8MC7+JL41v095I8c9eWbrtWPY9hfNg8wJ OJhnzrg146npP+fhzC3Mg3i/mzW8+v1uc/vkktz3Hr8yZzBPdO6482XhFj1/ ssfUnKuKfM1Tot/m3dzHHDD0LeNakZdzkPaBHc9O+cDYqXP3tu88n3EJ8pHw WXgk79kYZyZf1DJLvTq/0r7X+TTzfduJ87C2L9c/9enxt/DE8J/OSaTfaVvm CbiNxq7O04dLcrS9Nt5M+ZhtjDRjD9G39gNpv/2t8ct+3pgb3fDvxnj7atuD +UXydtHXjk+Yi84+h8xFZ81DYpL0s3Ozbk/7N7cz9Q4fNdfsOCM4mbnH5Kwo K5y2+9964PxVuEWw0vFwZOg223aCdZ7P6P7Pc3x9j2217N1PtI33tGmbxwGc 3zHvos7odeYmJO5uv2/bdLxsm5pylM5NdXxiHjeNY7QPtl9J3NH5ybSTa7j3 Ax/4wDGOk33V4iM8PuJcVurn3IdzzI73bVedz0TPiVfYSwPZMi81+mp8m/IM zYmcs0//97wmvifebazp3KLzB/nd95m3Rb88Fyoytp/N9/jS8LHOS3Z+25jB PR3jNpZMGOlYwLkgY4TzKz33IjjhPJnxLuVFbyJHy8h80v7VfizPNz+PL7FP DEbjV3lvB7skp00sMuVOjJuRT8/jS12679qWcz2f2A7zJxnrSD+1LrVvST0c fzR/dfzh3FnjZMcCjtU63+W8fnNA5yBST3AS/vSbv/mbV+M4qVueFT1IOegn 7xVnnd5t3pL1xPmZXJN5dunrtNd5a8vCvKJjKHMPc730d57fMnPemN9Zo4x9 6MkPhkfGr04xQftJ87+OCax7uS//kx9+xCMecevZz372gZHJAyfvlmfzO+3t dR7dNnOwjvOtf/g7DuewHP94fDy6ZD8aGdo3B0+DxYlLOpaJ/vEZPtm2sOG/ 81B+fnTTsmps7PcPOl+QPjWXtr7YLrcc5SR7x5h5Tni5+b0x3nlU5wYnnpu6 4ft4b4d3kfH13GPba27Zx8RPjBvGAucEuJc5daxJCOdyzGjda54WG/X4lXNs E5903NPjOM4vti9wbBycN6/qHGAwnd9Zv5t9WMHJ5KZSr5TX99M+9hVgniHz zGMD9tOWhfPTzQnNP6MvHmOxHXR8N+WbIg/zOvugxnznZrg/+3czzzz27pxx 85TU17kGz6m23TfO8D9zffD96DXvWgSfgrc93tTzobwnSsvdMYjHMZwTbExo +3V8GRlM41Q91hOf4bmYzlMGJzO2n/h8ihs655l5P/bn0XOv39G5XM+3SD3N L1KG+y04ZD/XttT+0rmrzuc5l2Uf7XsdKxu3uixjSGQXP8y62/BK1huCVwYP 0k63f4o1M57iONmcJbaT89z7J3/yJ8e8oMRiHpu2PZsDNQbHv7mufr7zZ5Zh 5OpctfHTmNt2aay0T/czsj6O18Ewx0/+yn6I8+SNeb8bnGyfHfzwfCnbbDhR v09ju7P9dT6p5yF1OeYezSmcv/X54PAHP/jBI+4mHx6fkL4I5idGdy7WvjVY 2jJxfpSDsUnmCTNvgPkDn/70p2+Liy23xo9tbr/H6NvnOP/S+QLH6K0r1m/b c8dwk2yNIc2jY4+Oz+2Huo0ez3AsFwztHEX0bIp3miOaP9geJz7pvrBe5f60 rfmB83nmIsEm58A7F+BnN744nomPYO45e5LxLgjj4YyLN++Yym3cdR7Q5/2d 5yEjxnGYY8hYB/X2OwbmlB2zmqebDzR+OodnX2P52g85fsoz+zmt4+0Hglnw SbgM++PwnJRprtFjq5zHrsmleT+/5ridE+v8ut9v915QnW+fxmy2scvotuPw nvve2OvnsO+D5923ztt3OEdiTt25NeNk+hIeSazNXiiMiSXWzvyYzn15XK3x cuLYjVu2u+4vj4P1mFhjvO2986O+N89oHTSvyHfHd8bIzR8Y740j+b3xYCrH MUyPWTovmeel/fYNjt08Lmkc7PEH88POheR/5x0a0zvHYcyxjVEnsBHdYn9w 3ptA59IW52KNZ65P52E73jMGUSZxN7EYc2eSyzZGTpzUsW3anT5q39T8u31l dN3cJf3s/Jtt1TGB6xYMjN/KWkisQZJcZGQXDty2QFnE3eAr88yTi3BMM7Ut /Wy99VoZxrnIq3GyeeR0TNf1eIDXbbDOwyeZZ45P5LrIMf1iXTYuGo+bu/TY NPpMjM24Nr6euDPP6HggdhqsDped8KPx33K2jJtftT/a1ivZ1mLq/yfOa67q 3KPr0XmEKT/TuUvrXr/rPtW34xdzSPsUt3nrR3OeXNtxuvNlts8eU3Fu3Tbe vspYm7xF8jOOpYNzPP8tb3nLodPsIUFeJ/UOTjrecNxvHJl8mP0n/7M2AjrN XJHMHZhycpG7ddxxSZ7ZeR376Y6TW+dcXmTSednmWK6H4wg+mT/JfMHsI+Z8 b+NV6sK9rNNL/iPrBTWedQznPm9c6zVNL8XYzS8bA3vdpQmzjOvGOfg1fDL7 0jrnNuWTJ07Xtu/riLXRV/ayQX+Jj1J+z5F0TsXjuFseYqpL71F0xslbXmfv n3YZvQbRJHNjuc/1HmW2ja3vrtPf1uOJ3zteNp+ZcP4Mc7tuKdt5B+Ov69L/ T/zX8nO9oxceAzWvCleBV5Jvf97znnfMHcIvd6zRmBUd6xxYtzHYx7W888t6 5ox1RPZbTDgdlo2xqn1Jypz0oH17x0buT/tD+0DrQa5hHQzmXGWe+eTv2g6R P+PdzE8PTrqewQb70MmWJ9277u8bplp2qcOU42yumXYyf5JxrfhEx9eObRyb NTY1dqQu6CvzI1mPiPfNsjaac0Wej2WM9HjqZsf3Rk5n113nnv4+7T3QeNtY Yk44nWu93vzpWVsmbJzwrPPJra9nz+r4JDzBOdmMOTcmTvy/ZTz5huTIPHfX sZ99L3wT3SNfybsLzANnHlrrcA7LYJJJY0/KyL4PicXO7Lnbuflvn+/+87lL PnzaE/7Mz7WfZV4P79XcuHHj8/zdxE95Jn3O3APGH7Z11YzH9Ef3uTGqdaD5 z2R/ZzY+7c+84VjwMfkA3lskFw2/jp702Frwquu88dfEzuwbwpgZ49vk2ztu 4frmkH6XpnNnW992nc4wcMO+bsdkw9uzpmPCn9iz9ax1+bqYv9nfhNvGg47D Wu+3so0PE5exn/PYS8d+/p72Nrds3u22THM4fHgMmf+zrgrroicW3eLp5nBt i24r53iXjfUIGBNuvD3rk8bi1uMz3nRJH870v7He2Gvb5HfWC2KeOVzZ/TfV Od/DJ8HJrINhXm5MPNPnrY2OFSecjM5s2NR9vunzhC30NVjGepzJbVhmPUbk eSXNL1M26xPgyzOnzev+tA6Gg3sc0/PfJj+w4eR2nGGcdaT708f2e/s+2/7m 86wbUxu2derPbGHy3c2TPJ7YcfkZjzx7vvHLcwQSF7c9Tjxo4kfmvj1nqefR 9XiZfSvzr+AAz3/+8w/MZO7qludo3jvhpHNWH/rQhw4MZg/QnL+OzU/6sOHp lo+Z9M/3NmfcuGv3ca5lHIe2Md494QefjUnIn3lZjNVmzdjr6Fm3e+ILZ8dk L/3s5sAt+/6/8ZzYgbjbeYi244mTNH7nHPEOOaFnPetZx1wjuGHjg/HJbZj0 84wntY+Knrbs7Ic2zG0+1Zyz8c3XTDjpfbYnnep+nfzfJew8w+6pHdabs7zg 1v/bM4yTfn+mfV3bbrf37HD9et6S525lLDrP5X+wkTV9nvOc59x661vfelts s9lRt2/qB3CS3D4cI3qwYU/r6ZZrme6dMLt19cxe7Ksm3elrkS/jFox3k1PY yrZt8T/9AU4+85nPvJrD2jp8hofbfqONtWf63vXs/cQm39T5XfdVfiMXTdyN 34gOtq27P/q5xkl0lxiE/THe9KY3Xb0b0fOizvDPPMJjca0rLbuO5ba4OPa6 6enkT872GL0Uf/c9qfvm187iP5c7/T7tQTX148Yv2i47Ru22t913DnKqd2Nj Y8ZWN9tIxqKCldOciZ43A36ypunjHve4W+985zs/b8ykx+f9TH833hOLgZNw jAknJ92YMKt1t/ty0lPLun1ix51nfeBcgsdnmGfOWtm8r8ffhs+2f+5nHzHG cbzfX9tk5xgv2Y+vu6QvW3sn3zfpoO3QvpNxHOOk5xP7WRsfTPmMaxPXsC8i Ppt4JzF87m0+k/7xOwSeD9b3tS1vmNVyyPfOjbVcN3921o/tM876u8cKt36b ZD3pxJk+bbjWfq9xMzg05RM9d2jrh+15Z35jqntfm/6zfuZ743ljS/qb/A9r /DJvJbzSvmtqy9QvxsnMqYvtTH53kkv7mvYN1+3DCRscO7Xv28qwTDMviHEc fEru3+4NfnEf69kQS8InrR+TfVzSlUkHGtumORWt280p8rtl3/zAPoTreZef dR95RzVtNW73+Ll5Sn4j1oY/vuQlLznWBEAfzU27bc0/Otd/CQ+mPu89PCdu 0zK91FfTHsCRwSXb3/q95460vrvtW066rzUfaHszD9t8dR9TXqd9zIQHrveE v2fjjdfB1MlXRqeNlZON5Bx5sze+8Y1HbHjjxo2rvclSRsuk+93ng5PBkjxj wtxJh3PNhM9twxt+Tvo64eR1fJNxjXXVwEm4smVzhtPkXJhnznws5v+dYf5k R5u9nWF9t2fiKo2VW72s844xOEeOhbmyWX+SaxybThjpc+zrxLg270Cwlkb2 WjYW204mG5lwvm1vsqEzm7KMjK1nvvX/emy60Fhjffh/fabL2LhoY1XLbPNh U7w/cSrLccLbqU4dY7asNrt2vafYNUfjj3M2wTF0lPd20Pvf+Z3fuXrfrOO5 1s2Ul3OMdTAm/K53vevznj/ZpOXkek79OuHK5k/OcHLDggnPjYcf+9jHjvUs st/i2bhtyiN+BCfh67yTnL7K/T0e1Ri2+cmzNk4+sXXuTE79vPaPKZN3Ch77 2MfeYlw6/ew+7Xp47gBz0l70ohcda5WSl+z1FLrfO96d6jiN7U22Os2XbSy8 ji/b9LDjaZe58a+2lfze/5v3nGHvhm+p/6Qbjdsbl+g+PcuFTjjZctpwccqx XcLTtp2p/cZC93XboPM7XqeAOZZZa4C5vWDn1Jdn9YRPMtbBvnftiye7cX2m uCb/T3NzJ1vu+pzxycbvs/7lO/MnWW83Y/k9l6r7mO/I96UvfelxX+aZBwc2 3TnD/0u/n/mBM3ydbGDTzegW493E3Zln3npivcxcXz5Zh/NlL3vZMVbOPN68 H2Y8mPR7s4f2ZxvX2Ozf7er5Pdt418RHJv0567cNi2ynbXdn+rq1acKNbktz zA0fu2+3c1u/XQfTu5zJ953hd+us5dl+Z+pTPzPXOM7hd/w8c3vhTcyv5L2d +DHzUMdG+U75rIMBTv7BH/zBqQxch0n+3ffbPOBN7m1rE052Hba+z7XkJ9mX lrg79j/Zo8ti3gE4yVok7N2SXHLOT3nEyQ9cavNZPGHba3ubruVcv2va8uC+ rDWad6+2az2fEk7NuBaxNu+HMWYzybp9ZuN0863JNuKTWi5dTnx06jj5krbV S9jXMp7003bTttI2ZltPu1r/prit6931t23dG0zc9HCSzcZhLtV9soHu7w1X psNjOa2bk2+ebNr1ZB105kbzztiNGzcOrPS6DNatfkfgve9978ETfv/3f/+4 tufUbZhyxoFa9i3HjhUn+W3PiQ/Y3kuy7Bnv5v1u4sRprKR9d+ZWgwsvfOEL Dx80YWLf27Y1+eOuX89dP8P76/j3SaftW/nkfZwv//IvP9bySR08n6LbhB6x ti7zKxjnm9aosT33WMpU57af6GbjT8euZ+9OTOMfZzzuzGdNfDRtmnx/2/8Z fk3XXuIRE8fb7Mj6N5Xf9064apl0X/X4ieU8+bz+PfMd2m9ufbuVP3E240hj hQ/GHxjbwQ7e8IY3HN9z3cRFg4fwSfA1Yx3bOI5lMOnllPNwvmLzPdN4Wdv+ pDMTntqu+GQ9c3CS/K3v67a5Htz7Iz/yIwc+4H8m7D7Dtkn3zs65XWf2fMnW J7+fIzhJfpK+zrrF2zoBXAuPJNbm/R1wlbHCaYx10+2NJ0396zk0PR7eWNpt m661Pm65hba3M9lObfP3vn7yl80FtrHtDTunNsev97qWZ7h91jbbR9v8pXKu 45P6Gd1nk+5M/n/Dk8nuGp84eIeM2Ju1H7J2hvGx7+eTWAwsefe7333btWf1 2HRp8seXfKzPneHp5E+77PY5jFF5nd6tTdZZ4u4Xv/jFx/xpcHLD1eYbWyw+ /Tblbje7uC7naFvz84N9xA68y5/1k7wenON2MJK5Uaz7w/ie12zp3E3k47mr Gwdo7pnnej6lx4YmXDrjGNNcwA2bJz/c1/nZuabXoblOXNN6sM2n3zDMHMBH jyumTo1ZGw9Ovfp3t6tl3jr5f/XxrZ89F/wMe876ddLBCceJFeFDrMdNzj3z 26a+5PqbN28e84LgXOmPbZ5b22tj22arrufU7k2ffF/r7oanxrWPfOQjR04h 491n9+aAhxNzP/nJTz7ykx6zMs5d8iFTvS75jNTNa9G5/c1dtrJaDokdWLs+ a0Pxu9d/zTXM/WEeBfPsmT/kWMk6kbUQeg3f9isbJ3O877XpjJ9nvsf90vbQ fqtxabKxzW4777u9y2FcN5ZOcVn7ip6HceZffEy8a9LDXGs93nxv+s9lXrL1 TbfPsHGzQT9zmg9y1r6Jn7qejWVwope//OXHnCGwclrXLzYXjpF55tb5zYc0 Tk54aD/WmN7Xua2TbU1ynOwnR2wHnIQrZ85T8w7rhHHyBS94wYGT99xzz234 OPX9vfGZrX+bLUxxSPuqrf1dh9gG//vdK+71mn6Uz/wA3otlTJA1fbf9GBof PE9zqrP9buPb1P/GqslfN6dKOyb86/v8+1SvCWPNUaf6TGVMfCFcaBpfjSza rtzPlsmElfYHrYPxiducIOuh+2fi9Zc4QGP5JW5iHbqOLzizkaltwSHjS/qB 9yaYC8x6Drw/kTnTkXNk9p73vOeYK5J5Qa2/0/Nyzm078/3ptwkLm8NPvu0S f2xemjayzwHrYHjOU/dP9wFrfIGTjHdP73efxS9beyZftulS50g2n2C97Ws6 NkmfZswOv8H5rPHMOeZA8R4i7eY9z40LTbhu/jW1y3jQ/Mw64Tobd5pbdvw/ 6dxko1Odz2K0XNdrKbWsXfduQ2P6lJfYuMDESSaM2HzvZBvTeKbb3PJy3V3/ jnV8r8vvdk923M/afFbrhv/f2j3J076A+8mvgZVPf/rTj7Ed3ssNRoZjYjvw zt/7vd+7sqmW0+Qbp37ZclONk7a/DXsmuTSuneEkx4c//OFjL0nPC2q8774E N8hPZl5Qy33yGVv924667ZuubDbocjef3GVzfd69/qM/+qMjdmAfDH6PryTW ZgyQebiM2fT+AK2vjjnafia9zz2J4Z2X7Do3P8y95qE5N82PSZ8275v8VvPQ Td4t0+7vSZdti8bbjQu2/5s4t+VtWU+41fXvcTLLKv/3ewKb/3afuE59tI80 b4wtur4+N+Ht5IsaA7vebr/9bOqYdSoZp+T9EvZPJi/l/Ti5B9t5whOecHCu 8BDvGdE2YH1NW3Nf54ta74LRk25OZU+y6H60fBpXiR3xAZfW1vRn5pnfeeed h59xXSY8jKyT32s/f2+P1qvG3cmuJl7iciJv8pPh1/mddzuZU8+8StbJcN2b 9575y9bLSU+bj5gnGgMnW2te5z5pztWyc7nGE2N9j2W1/pm/Os/Xfsoc2O1z 2z3vs+cJ25aMHd2v9iGTzPr65i959qRHE9dpfGo/OvmB5lOTbvb1fU9zyz7f +tf+om2g4wj3F1jJ+Hfe24E/JJeE7fAumvOTk4/ajrOYecKwiTNN9zSOtdwn jmCb5PvNmzePnEKPd299xwGfZByHedXgZOND22X73O7Tzv80zky6NH1vP2kf 5ba1LMKRyUGwXtxjHvOYY3185ssyn5L1PshHsoaQ89iWZX5r7NvyddZx74fU +tnzN/3d+3J1+fYXl3IhW59bTj3W2nnA1GnqA+O4sarH4tw/k2/pOlk3LesJ JzYONXGN1vkeY86ztnva7iee6HKayzQ2Tnq+4aTbO5XTPML2YD1qHmbZEUMy Do5NsNdT9i8hVwWfZO0heNHEu1r3Jl7TutlYMvXRpOeXsPas78wP+Mz+gtM7 mVNfcx8+hTwdc6uyXlDf4+/mI+bhGx+cvk/PaPw/41qNWbk2dWLdyac85Sm3 HvrQhx44SWxxxx13HD6EOBw/4n2Tc2/vJbrhYmNo8HHaC8q62piS+npfT48d Nx88k+OERc07zCW8n8C0d7yx/OxZXa71oe29+9Ht6P5O37Suu02Nf2e80PVs jJvsbfIP1rPm6a771hcT7k7tmvrv3vxuubu9rVfhjsyv5L0d+CP8ktwkYxYP e9jDjv2qWW8rey07Pj7D8MbN7rMNCxpX2/9MPLHvn65xPVkfh/mTvN/tsY3J p2a+Lu/Mk59k3Jc5Vo6h2udG7tGL3hu4Y3aP/3d8MPmPtpvGkPAt62TrPXup Meb/gAc84MDIRz/60cdaGOgAOMnekryv3XqTMZ4eE7f9N65aFsiBcllzgM/e B8fXe6/pXOdrt/1EXbf2EZGR+8SyayzzPtHe98X7UMZ3BO+nHKo//cy0d9IN 60H3c88pbX2032q5RlctI6+b2Hg8+eLGFeN2t80+z+uMRo7tbyYuOeFM50Os j5ZhZNfj+ml3rvc+3Z636+/0OXPR73vf+9568IMffOtRj3rUYTd8PuQhDzl4 FOsepN4dZ7btNhaEn8VH91hl+6gzjrjh43S+/Ti/8z4O73d7jMr9kvtTV2SH XfMuDmNf+JXN/7rv+MSumdfPp2PMfl7k1DmFiZf53uZn2Yfc+223flMOXBps pK8f+chHHv0Mn+RdRD6f8YxnHOv0ZT/k7HEXrMoeyv49e2173+/sK+s9lrMf HjLNnumuf+wq13B4f/fYdK4/izuti2cxXMvW2Np7cE+cxpyL66bcR3Cz9bzj tOZ9ZzFUc86zmM46M/0+8YzmM831Jpl3TGE55x0hY7t9Wa6NvJ3jN14Hv/xO RK/xnPKDx/Fl0a/WSfw2ehz9tG+MHtNmYm3shgN7wY74DN9gbJxymu9M8WD3 o/mS/br1cYoXptjBGDjx8dbBjm8yXxCcNJ/02FNkGfkgw+c+97lHDi/jOK0X ln3+R96Rf+9P3rHi1kbLZso12zd7Hy5z28g8esL4NfiIDwQX6V8O+hrM5D1X 9l3iHUXG+5h3y/HqV7/6WF8FvnnXXXfduvvuu4/fOEeeEx157Wtfe1zDutF8 Mj+d//l8/etff6y9z+988n4P5xhX5158NWtdMWeNcxzkhdiTjN/Y//ttb3vb Mded68irky9ibWDWOyL24Rz78rzjHe84rmVtTA7uZd4w63bwmWu4l3VWGc/k N77ziYx4R4lrqBdlEIOwNgy/oz+8q8C8CT7JU3BwPXXgGsqgDnxSN+rAPi3M LeAdDq5J3fmfa1IvfiM//Md//MdHzpi5etzDbzwHX0e988lvlMuYAnXiWu7h 4BrGHCiH63jPjrwLa0Xx7h3vrjJex7Wc417axP/El9z3h3/4h0cZvNOcz9yf 3ziYP8Y4ML9RLr/xLPJdHMxf5j7OczBewHWUQx2wTz55b47xRD75zkE+nX1b OCiH8ogP+Z3rOFi/4aMf/ehxjb/zSXmsg8P/zHvh3pSXa/i/PznHQXnoLrF2 +AV2k8/73//+x7s8cIwtx2E8c15hyqvmXPukLVexcYSNP3Qs5hgFeSc/6Xvt 64M98SngHbkI5p1m/qT54xR3xh/ab/X/9oEdO/t3x9KOM+IvqSdr9oSjJVbo ODj3YAfkn+lf+ht8JOZmj00++f3OO+883lFk3We4NGM7rDXJEW7Ne5z4Dsa3 yHGTp2HuFHyU+7mHI2XxP/dwnk/W8+R64hXGEymLc5THuz8clMnYO3t1cA05 E34jl0p9meNFnpV6ci/PoH48k7JZk5lreYedeaKsg8UnB/6APS94PvVHLyiL e4g5OMhP8Du+lfK5lvkSPBd9SH15B4HvPIdyKZ/5AuQxkC9yhncQp3E/bfqa r/ma41p+w864Br/FZ77zHPatpN7kksmVcGCrD3zgA48Y8Iu/+ItvfemXfumt Bz3oQcfvOXg+ueYv+7IvO/qbuj384Q8/nk+beDblIlPaSd9zH+VQHuXyDPwp ZfBJXSmD/6kPvOo+97nPcf2XfMmXHL9Tb37nO+doEzrFwe/cxzM4n3ojI+7l //hv6oscuI4jbafNX/iFX3jcS/lf8AVfcHynjny/3/3ud2AWn5RFe9MXkQPX 075cRzt5NmV80Rd90VEO3+kz9Ae58JncFOWEVyRvxfX0FbF3bNf4ELs/y4dO +dSN35tHhuOZW3euwRjpXIj3oOaA1+Hb0OGsg+EcS54bnu64En6VcRznt9LG PGPK/3uvTu8PZ159Nsbre4yBuT5YHlz3mIPzP3lm9lJDN9AZsAJdwqbQA8bv mFcL7pKP5X0EPmk7B+cY8+MzB+c5+J+5Exxcw8H9+FjGDXmf6TOf+cxtZfI/ n+Q0uJ9PDn7nHj7h8dz3qU996siXUx7fUx7nfaQMDr5TPp8pi/soh/fWOdj3 iDL5PZ+5J/XmO8/K9fzPOY7UhXs5lzpy5Bn5n/P+5OB6vnN88pOfvO2gzXxi fxzsjZxzfP/4xz9+HHxPGTl8D4evZS96l8Mn58hfw7vQE/ZxZm1rfuNcl8Vn zoe7US6/wd/4je9cy7tdnOeT8sMf4Wk8h8Mcju9cSzk5R94MLsjBdXyHk2LX 8EPKhGvmunBYvud5XMdn+Cj/w3HDc+HPfPI7Rzgz12Ib2ApYCTaCn3yCmeAt /hq97vHb4IDxKLkAX2u7Nbe6lK8033NuYdvn3Dwt4w6uF7ICJ4lfqL/zXmlT cC3cLOPd4ZPJ7ed5ybEFV1NmsDZ5veQ/jHeOlY2NbotzLPmMDPPZ7fSexvEf ybXQHuI9+BK4iM/kE45BTI3NO5/s9mUsJc9MeW5f6ulcJHw3Yzf8z7Wua3Kc zn9yHfnd/J7DOVA/q69J+ZZj9k5NfahbcJ3/eZ5/p76pHwfncg314nyenTqn nb6W8/yWZ/E7z/D9uS/tzf/87jL4n+f42twf2VgWLiM54fjVjFO2jroP0r+5 13m/9AOfXafIMfLL89MOZJA9OXPE1t2fXOMxO+freszQXK3HD/reKX+/zePI c7ANcAAOCa9Ibh+eDH6SAzE3il1bXsEJ666/Gz9tg86xhkd2LGsO5f3UgzHp q/RzzkUnYpf4BuIM+GTGA4ynwZOMs9L3vO+JnyBWRE7Wm9gK37k2vNE42eMg wVHrmcfELS/H8cZQ57Btx+mH2IF5ftpGGZxnviRtAh+JNcmlJa9g2Yeveow3 vxvfGqPT5tiH8cT1b/9gnTJPdn+nndGdPKv1Mde7zumT4E1jROpJv3JEL/Kc YE7uzbP4LTycc8EnY5ux0P4ndY4+RBbxQ9GxPMdjabnXuGJszLM5ohMec7Ne Ou6xT49OxW/Yl0dnrev2YX3OPMTYnX5q3xeZ2aZTH/dZ9NH+2riUelqvfLT8 PTYfefOdXC374sAliduJ0ckHkLskfoqOR2+idxMeuA3W1c4ZTnPiPI+k5w7k uc0XcphXTTwXfm6cjP65Te6P4OX3fu/3HpySGKsxwX1n2aafU050NP7Ldc45 64nHfqbxO4+tR0ecU+1Y3Lwt9ha/Hp7g8X7PF+w5MpPM2zd0HSzT/B8O4TEs 41nkZ9uO7XhukfvYWGsf5DalX5tbOUdjTpN6Ziw+WGSfx2/YSXho+DD1bJmk 3inHZdr27YOMD+YEvs68j/IyZ8CYZx/Q/Wrekmc4lnF/ONYwNvX80OTq2ybC V60jndNvzuX2te3ZZ1kv7Psi647vjJPGG8ch5mdwJ/IFjOsRk4ML5srx2dY3 c4bOB+Z68wf3sWXjcQnn2az/ucZ20DG3+UwwI76fuJt4M2tr2pbDvTyvJfEE 4zhwL/JIk11Gx93HxoX8ZizynMS0OZyv2+xru93tF6y/jUv2zbEZznUOOc9z OR3zp92UaZy0vcYWbWcc9o8e64tNWd9yrbHSMa4xLbI2D0486nGycDX7dNvI 5HdjO8kl2C/GNsHFxJPNUVPnxB2THdmOJ37m+Kg5uuVgDhsemT4wl2qcM6ey ffre9EnnvzpubG5j/pB2pLy24y7POt78N791zsK+wHhpm+gyOx40hkZnHFs1 D26Omn6LfiQ3Ybmnvrm+c1oT5tvXWkbmBCnH7ZiutW0mfiLnm3Ec7NL6ZZy1 H+FecJJxHOLu1q/gT/TfOtH97/l+jZP2kY1JrWOOFdM2xzSRb+dB7Pet653X Sb8bX6I7yUuHQ5nP2I67X3y4D90+c6bwMPeH22hO6OemzbbFiQO7nDzH42mx A9clfQ1ntH9oW+24tw9jievZONmxufMFxsnOA+U54ZPBdvhuOK77ofNV7pf2 Lelz+7rEAeaTzvs1d0ieyr7UfeR2G3PMyV1X63zbZ8cGHf+n/Y4r3Kd+fmQQ /2z+7THVyN88vTlvrosvS594LMH6kHqie/BZ+vM6Pqb1vetkO+Va8InxK+Ju 8q30n3lwyg8eRxfQK8a7eR+H8VPnA87m9piPpA79HoT7Ixy6cwW5zrk9c0zj TJ7RvsT8zrwp9/c8BA7nRZoruG3OodhvtZ05z9PxWc9D7T503R2/dSx7FudP cnebzG353/gVThrfEF+e+kR3zNU8/pK6mIu4/ebh5iHBk4z/GK/NU8y9bSvm m4nDMzY25W0dW0WXHP/w3NQl+YjgpPljj5F0jEybyOUmzjMWmYO2jeVex6nW lc41O05vfTAPdFzZXDu/e567c5D2C85NpM3xW10Px6v4Lz7DpdwnnQeg/6IL jlWbj9j391hu6phr7XvpS/gkc8XASb63bzJ3ir1xf8a7yUMk3nKMZjvt3Im5 YTAD3TPON+c3zkYXwgtaj9z3lnN8bGTg2L7fIfJ7A+a7PcfKPiltDga5zo1B joM9jmPd2+Zz2d+ZVxsfeixp8lNpZ+dz3S+28c5pdLxu/tO67xiheVv62XNg bevRlealzbvse5wLsu2Y6yc/FntoH+iYMvbvPIzt1zl9Y4fjqcjGbXSdHPM4 zmg9sL+NTlsn2qd2PG4M7dyhOYhjINusZeG8kPvC9uT4O7Lq61PvqU+ieynD +Y3IwLo7jYG6feEhzVNdH+Mn15NzZXw3fNJ6EXtzO4K1vI/DfGJw0nWOr+z8 yMR7InePX0fmsQP7BueEOEfMH87gGDTyDGb1WEjnODjn9/KSM+01NPM+gHE5 /tG2Zx/Qvq1zHz0vyJzBvGEay7FdWGadc+rYfOL+7rP0lfMcE845T5KyJ6xx fdy2cMyOX+wT7GOjN+YiOTqv5LH3HOajiemsL7nGuBbZWh6T7zDP8VhN+tTx zZQzMfez/I2tzl3Z1jpWjOxSb/OOnlvQuZzuz/bvzW8iAz8j9hSb9jn3bY7W wcaMxi7HudZBy7f5VcvTfeL6+XueRTuYF8ScecZxYmuO/T2fK3WG5zIviHc8 wKqODVynzp+2/K2Ttq3Iu3Pf9ivUzzkt65u5gN8tCneauI3Ht+Ivp7XwHA+b F6QPPB/NumV+1fbSMuyclnEi90emsXv7fsdLnEsezvzBMa5tJu3qsRPPf4x+ h79l/mPq1FyhMTe6nboHKyee7jZ1fOI8Q8easX/7F+OJeXjKDc4Zf5wfNQ9H D5wf4F7HHv0ure24fYll7WdGn/zuhW1mih36GS6//ULrru2t827myN2vLrPj Ysch7qP0meP99q3Nt8xrPA+o/fAUxzW/tF0aC3wuB3ySd8EYx+F7534nH4tN 8E4dcTfvZ7hP2u86NvE5lzfdn/k/jUuWedpknTQnz3X2b9P7UR2TJ27udTem 9U2sT85f+X1Uvw/QPjr1cxv8LLepcxbmqbH/PCs6tuWmmkPGR0Rvm/8amy37 8LPESZa9uYDnQDcPdVznNtruco/5tHlM59LMkZzfncZJzKOtYyln8uUTF3Xe pP2ysd/1Sj90fmuKh9uPNi81N+k5uJGT+695Vu5zO9u3THnI1Nn97xjIfNR5 Gvsn20WPWVrmqXfnPRxbu/9ST9fHduHYOeVPvhY+yfrd4GTy0uFykYH7CBvm /uc973kHp2Qcx/xpW4+j1/gIBvT7AH7/stdxd/41be/1YoI19utdr2mdtsjQ WDetceJ1/72eTfS816zpulkPc3S7PXeyOYTbHtuLfjrmm2K71DHXdMzmfrf+ GT/cxtTBOta+z3zIviP1sx03bwx2+d2Q+LTmRB23ui15z8z3NS6Ya7kujdPO cXSuxXrjtVucMzFe2Afl/ike63linftuTmzc7XjWOO14J3hinxy98PsF5jH2 edbD6Fh+t244vrTPsx9LfrJjcutxx2upa8vWcdmUw+v4tefep028w8l4N+u9 5H0c97ljjPQV17D+JGM5wcleY8p5Pa/Z77ERrzXZ77B3GY57HcvGDqZ9Fjxe vdXBGNYYOq1XMq2RaTtL7NVrR/l6jyW37+g1FmMj9j2pe/gVcui56c0njI+9 DkD0w/6s5/EbVxrzPKbb7eOz1yJrv5Ey7QON2+ZmKTv4bEzsdrYv82F97jxj 5+Sc97cNJS5OPtvjO5alOYrravtOP/d7d/27uaIxzXg95eOcD4zv6nfaOMe4 Me/8Z2zRMggmWlecI3XObuLf5oORReSSdWs83t9YmL7u8Yx+jvNW1rPOc5gr N+e0z+Q3+CRrv7BGFnplX5Pn2X75nbawBg1jOcxb8tyZs2Nbz8/YZAzqdda8 1pvz4tbTaR0R74lhfOx12xoPtzXke58K67H56LTeurmB4/qzZ2+yMA7kul7r 0WVb7pNfmXDbPsQY3c+0D7Lc2wcZP2LzjhnMw/LpPLHltR2+znmQ2Fzzfcsj mGm/0DmbxuTOtbTeNHfnXutlx17dRvuujsFcR99jbDf3y7VT2c79dz6ofYo5 Y/Mxt8d5BeN2xx7O8wSjbNfBsK7P5D+aSzq26jm59hvWS2Mw//M+DutZsd5m 4qjOXTSmUT4YyZG9Mc6wsbFrWoM3+tH7A27jKOmjyLmxacME18M2GflvzzzD rxwTDzDvMs/ocrp+1z0skw3LpsP40HXp/ETjbZfROD7hlevYc1M3X9BlTbrR McKZj3GfR9c6Zul7Nt2Z6jrpfL4n9o9tWj8m+fX/xrO+vmU6HV3HS3233Wvc Mj7186Pj7Rsb54x34XTm/FMZ7RMmvuI8VY9LmV+5/tFT+5OcAydZ84H1T10H 16vrQj/zfjdrKMInN5xsXWn9a+5je+Dgz3vtNU+Kn3a7I9tL+j/pvG1yO7oe +XTslv5prLzETzf+Pd0/ydK6bEyZMGnKhZ7ZTtq45Z2nvOyZn5raOMnK+nDW F76n9WWS23X8+nRuyie1D2/cSHmJ/exHLcuWQ+rvfplwcsK1TVY55/5zm92m rc8mWbXf3PrVupb/zZXbZiYd8n3dl8ZUx8SNwS3Hye+knlzP2sfMg+S9nPZb KdP14HfyELyLE5zsvOKk461PjY3dn9233f/th8KdJxlfkrnr0Ngx2XS3Jb+H MziuaF+14eTkC4xtLbsz/+NrutxJt1p3J38y3T/pveVnTjDhTOz1zBanOm42 tdnvpD+Tvl2qR/8+8YDm4R2r259POr09o/V1a5efbVs2zk5+bbKtzRdPdey2 T/5yakf75v+vszPr2aYqvv4H+UdP5MSBRKPIPIMikhBn45BHxQFFRBRnZRRE QFREBERAJaIIiLMx0ScaOTBOCDKj4HDkl+g3q5P15MdyVV837510+rp72L13 7apVq2rv3p3YPfm4qexmEyyb8xGa7VAnqfNa21NrcWvdoMarmvyUOxBGahxH OMmYl3a5xQF26W7yySavxPXE3aZbW/3d7MFxHWXSxryzHzg/oOFOtqv5cdZ5 +r5aXp/xQMos7SPll+W5TTlWQ17Zxoeo875mssktXMty0tdvYVuWM9n/pIt5 X+LAdO3kN6YtbTz1tulz+pBpSx/N66lXrZ/Th+3FjzQsa21oNmh9TL/Y+O2W P89rWl6i6VvaKu/X2sZaz0LjOVs+ms9XPlTjONr8vcUJ8/aCS7u2KQ5oesy4 e9czW79TDxtGt3o12e+y5SmW3NoSN5qOJW9tW+pNYlP7nz6g5Zha+RmXu4xJ X6b6bul3w43JHr0RGxqv28JKlpe+LWWZ97WyW/zb/Fna7S7Zbcmi9fvkf/aC R/nMZ9K3KWfO7+CYwTOxLV+zVe8tH5NcQL+1Fry+TaL55pzb7bISM/W/4m5x UMXeGsdJHtHqwzKmWDztM69ruj7hXR5P3tPyMomBTfcne0r7aXi6V98xHad9 U0aTrCe5pH40Hd9qZ+JC8qica904WfMvWzZJveG1zX+xv1NOU78kfmz5sl39 ljIhD23tsy02jsLzDcso92zTFu41vGtjASmT7Pes04T5eWxLv+hXKMeWb5lw Mcvj+Zw7kHrMvtE1KkN5Sa0/qe/IZX0aN9Ex4aTWntQ3qrTGSc7L9vWUe26U QfN5iacZg7e+TB7Y9JZlJ/6n3JoNZhsalrd4erp+KmN6Zhufaf3c8KzZdOu3 yT+Trze8oY6kfba6NKxN3zT5v9bfzbYTA7LezdZSPlv+Jzk8OVHiQmLHxMnz fN7b5LcXvzbpwIT5k78i9rCvpz7aS/0m3SS+Ng7JeKXpcdaFcdHES3m9+0Dx tr7Xp29hZryUbfMxzQfVO4v+RlD6berfhAX0dxMmbeFEltHsuOEl+58+kBwo 83Rbtsrj1O1J71qfNHm3uhOTmj5t6eskA+JNyjOvYXu3eF+THX16a7/nbTCm SezciqVy7HHqh8kmd+FCwxvtySeyzi3fnDxzK2/GcrT3fBf2wRR/EmPyuq3n Ucem69ju5CntnvSnDW/30letH1psyGdv5ZfYF+kP6au01/s4+r6p+KT1zedT 9u4zvcOkcRzF3cJJjzUTJ7ewbst/pN3uwsm96HP2SfM/KaNmE5P9b7WbPi/n v9Fnce4m69RwcrK/rNvWlvY6yXF6TuYdmz6mDCacTHtp9sy5bLvamrrRuPuW TJq9T3x0ktWu+GDq00nulHfDg5S1x2QSz5pOUQ/YrvQDWaeUc/rrZiNbOJk6 lr550vXUZepLm3Mx2TL11JvjbvFJxd36/rqu43tmTZ76rbnsirk1z1xx92Rn /79x96SDz3TsY+q3fJb1ivMnGs42HWt1n56zVcZesH+rnKk+07PSBvO61MOJ Y0761njFFr6lvaXfSt+/q0y2tfGFXRi5qw+eiW7s8mN71Wc+N/sm8YSyaffm 9eRGWfdd+rSFY+QBideJk+2ZrY+yLluYR25CzGl9rd/tvVPtlZ9U3K1xHGEQ +cKE5ZoXpO8+nHPOOev7oO3Ze8E6tpMYOunQLpxsutFsntjA/tqq91b9La8p /nom9pZtb3iza9uLXNpz9xKb7ZIPcanpdT57F6bod84PZr6kxVxZ5wnf87kN l/PavIZ6lLy65YRaP+xFVxI/0r6z3dkH2c+p/01/prHShl9TDE6szLkOWUbr r61titcnPWh6nfWecE/fO9fYtXhlyj5l53KNk36/e1dOju2ZbIz4k/nCLfve wp6tft66t+kfZTuNIVn3tjh0bry/+Y9JD6f+bzJwv3GO5C5fsCXfdp62x7pk W6ibLR7Ovkosavre7MOynexn8gHNr2w9J+0q8ZF1mTAscT+f5edxzZetdpFH Zc6eetdwcsuWtvJKU85k+t3ktFd/QTlOsWzmZqcymz41m9a3JDUec++99x6w qam+LtNxt/KTHu/e8kNZ3mSHiQ0pC/slcoitchquuhzqSvpp69VkU62fc75C u55t3/KPzW4n3zv5SOZm0obbM1i3xC/iLfM++S4u8xe5Nk/2Zfoj3pMyzP71 O7ypd7vwg3XIuSEtP5M4QB9pW3Qd8v5deeRmG6lTKavEv8TTlF/r4104lfXY akvjy1lnXt/wuF03cYGJZ6aPaef4fB/LfHcr2zateeZ6b1Hj3ZlDSOzzvRrH 0bs4esdbcfczyU/uwnT2Z9Zly3b2uk360+qeOu3fTbf2YqvNPlrfTP6kzSVo +rWLK03bJAfaCLEwbcOcp62NwPtSpo3bbPVbw/nknE327f/J7o0PWZd8vn5n fDHJO/Gp2XSbV93a3tq35WcoL9av+c6Jg2b7G7bShrfsrR3PvNuWLSVXn/Ia rc+yvikjnvc6icJJrU2+f//+/2l38i6Xp3lBwlZ9c1Frm084NunmhA1buPFM bHsXHk79lnIl92j+e9LDreck9hB/pnzL1K5mY+w/xtmTziW32qXX2a851zbb krrU/ETjNlmPlHce4/OZa8i27PJrrku2lb6C7clnTvfrN8fsfcy+xX3H+RCN 71E+1M/0S6nTE9dLHUg/6zpl3NB0z2s3cn5dq3fKZSsXN+ku55HlmgOuU+ou ZZr6m3ri/x0vaB0M4aTmBVFOiVuUpeJuzTPX3CC9j9PGyZpNPRNcy3rTZ6c+ EHumrdl+Ww+A10/cLG2i6VbaVj675SbymokXTlhmDpy6nD4qcZ9tnd5LbGs3 Nl+dOOF22NaaDU7xCPXO9W25IW3WzXynjNeyrC1/0J4/6SxzCrwu60jdTfxu +J56yb6Y8IyY2O5t+DitSekyJn7Q4m3Kv+n95A+b72z6kHVr+JD2QP1Mv9x4 YGubrlFe8vWvf/2BcZyt+luWWqf3bW9727qmufhk2uSELxNOtnxY8z1po7v8 TsprC6eJuy3e2rVtYXxiW9taea3/KJfkpW2+VWvfVt8wbzPVM8cuiRmpC9Tr rXfzUk7E0ORUk526Dg1Dmo01+U8Y0+btZjuTj7f6bmFDk/mWrrU6NKxp5RAj vfZFi0dSFxJnpno0W0g5TH4g791LGY2nTHVr7z6mDnuzjJSX1DxzzTdPmTYO p/PCRsXd55133oqZzVel3ewV0xr+7RVjU/daOXvBuXZur/rafDHtdwtLt/A7 deCZYvj03kjDjgkTiLMTfiVvY9nmGxkrsd+mWLPVfet9tSwvbSnln31HrHA5 fh+m1aXZetaBfdDGRVpucqrv5E+ph5Z5+rMmb9Yt+5PbLplbP9oYWYvZqVdT v/DYXmQ++XjWK9/74DW5zqqeq3mTmj8pnGx1TDnpmMZu3vjGN675Sf3O+Tvt mYkNW32/C5O2MMXPSgydZJ/l7fWYZc610yYuP+FbG9ua2uj7p/Fy6iB1tOUW mo41H5/1b3jY5uW2d46avfB6yjDfJUnsol1RxxoWTv092U+L6SxfjlE1XsW6 ZRubP8p+n3gW25nf9Gw4kTbYfFnr4wn7qddNT/OeyW6ncWLHbynbSUbZ19TD 7LctntPsK397r/dwhJNa13zSW9qijolD6v3uNi8o+5ay5jXJVSceP+k68SB1 ImXI52Qf5L0uT7/57R0foywZl/Acn5k2PeWwml6wTq4H9SrPm+v4Oyf5/cgJ G9r7Eom/lKu/Tex15PlN0FwniDpFPMt5RontPEb9Slmn7WRdE5NSbsxrpgxs f/y+YONcDWOMqf7WQH43seHaVOZkJ02PJh1yWTkfge1NTGq+Yy843OqdvjIx hTjasID8g/3DdV6zzIavTXZsa9bT5Qgn9V1a88lJvjpm3dV49759+5YPfvCD 629yuKk+2Z+7sDH1O/smMTjblfelr0qfTd+fPi2fy7pkv7M/G8ZPdctvARjH +J1S1os2Tv5lm+d3Rcl5G3ejzVgGyVcoX5Xn71rzu6qsQ5bnOvJ/bjyXvq+N w7f6T3wj+7rhZJvrlDbZ7ms44vv9XVZ+S5X8MvV4soU21p6y2MI04gufP+E0 dWV6T5zPZh+kPaY+pI/exc3JURr2UV+Sj7C+tguuKd74U/pIl61x7le84hUr TrJebVzQm9ZV0/zJzE8m102spA3Shzc5Nd/VMJTv8GTOi7LwN6Kn70NMHDwx Pvlc2nzaKO81FuSYeuNU5DL5jVTqb+OKOm+c5Dfn85vQ1DPyoMSq5tOMA/x+ Hr8PmniTYwZuH7+L1zCK7aKNN+454WLjyywjy8k60BbSvnTP9P2V/C554g15 TNpB6nKz5/QZ6bMbrmZ70g9SJ9oYD2WS9pnchd8sdEzgfuT3cF0Wc1CJB7T1 ZpfZ7smv5LFWXspVv3/3u9+t3xHTeM6ETYkh/j6O3u/WvKCcV9z0qK314nPk u7wvc1TZ1q12Jk/09yr9PeiUBW2ptTv1jO1M/9d0LTEgbbbxoMQDP9dl5rcd 874275gYzDpyS7ymPrNv/Hx/89PXELfI+fjdO35HtOFcymuLL7h/G9baH+c3 ZrNfiFduL79bnffTr9CX8T4/m8cbh/aWts26N3lOWOdjlAd1u3Hl7APWnXkV 4t4Wrrqf85t6rlf6jvxm0BZPYh2zz9n+PN50ilhC2eTvX/7ylwfGuy3/Lc6u 88JGzQsSTjpP5dxY6jL9beqZz6Vvz+9K0i6Zp5vwrGEQfVvDH9aNnCfzG8lN 0g8n1qSNtetcP9qlz7Xva6ZMMg60XKnP5i6UrZ/Db9I1vHQOkt9Hcz38XWrG lsRCyp2bbY+5P/ZD1iF9W/YVvw/tdvic28bveOU3jVMHeYw+PvXKYyuZo6Xe Ofa2DFkX8tRmN5nfZD3T1tO3sp7JnYm36RfJK5xXcfucy0k9SZ1M3cp+oR7R nzeuMfk+6klivfWdNpY2R3kQG5OvqW9+8YtfrHH3/v37n1YGuSl5oTZho+Lu D3/4w+tvyU4yTF/GeI86Yn2iXqXPcRv53Vl+X32LT1Le5Bu0mcSrtB3iMfEu 8Z7lpE2Sb3EN2uRUbqf1kXrm+Jm+iFiSzyMWka9QlrZbt9N27jidOGic9L3Z FuZP3c8uixzLx7zpO9bM3VkW7l9iTcaa9C22XZWnzbIidhrH+VzKmzidMQx1 svEZ+gvWnXZmubjtlpV+k+/bL1KO7PfGf+g7kmuTc7B/3PcNw8iR9T6JNo4J pn56YxmUZfpK9gvHGYmTUwyQeXbiLflE4hZ9ZuIm/VrDD5//2c9+to7j6HuL jF1a3G+5a42gffv2LR/60IfWcRz7F7bBsmgyJX7QJp3Pse20b++mHrd4O+Nn 1Yl9TF6VcrTepA+lfZF7pQ/WNbqWuKX7rW/UC8ZkbiNjPo8DKAeszWM55Bm+ n3GR6k3ccHk+bnulLKjHKQfb1YSXlBX7Tce0FoCx4d///vc6r+Lmm29evva1 ry133HHH8tBDD633y98+8MAD6z1TDoEyYfsefvjhNW/0z3/+c32eNtqz66h8 kTZiVWIl/QN9EmM62pLbSWxjX/q4+t96ndw349TGxXw968OcLbEzOYPjXPZb 8vHEIOpS0zXrkNvE+iU2JwdIXs9YyHrK87R/1pnnLIfElcQeHyN/cjnpf+gf 9T6O5kL6e4tsp/WJ/k7nHHeLTwonLS/Xl7ZM/kUfnXkXcsiUQcqK+rqXsfCM X4npiTvJ89jn9IcZN7CPLDf6zYwJMz4lr6TdGhdUJuWbsQuxO3klrzFmG3Mb TiansS7zONuYY96qI+Xw2GOPLbfddtty5plnru8nvO51r1vfe9V6flqr6oIL Llj3H//4x5d//etfT+MQjbfbb2mtq/PPP3+9V+/e6pt40ke1T+eT5xrzeYw+ 0LyNsSn7K88l1+Z4mzkWOTR9ZOIFeRb7semmdTfnpUyxlevJ57l+1EvqCnWH e44PMm5oOYW2UVeZd6FvTp/A+Jl8h5yC+Y8tjpXcxvdRri23qXEcfZeW8yfJ B4yT1FPxSc2fdH5SemZO2fJRiZPEn1Y/+xTmdOgHyXe9Nc7MmMTPMi5b/uyb vIYcmtcQk1gf9yNjSepHy8Ux/mBsYJ9H3pvclfeQE/hZxGryL84V0kZbJ/7m uITbYvugnrBc8vF//OMfKw6ecMIJy8tf/vLl2muvXX3zo48+uvz1r39drrvu unX+7gtf+MJVp5588sn/sQ36NLblvvvuW7H1pJNOWo4//vhVh8UXhZXi38Zp YiS3zL0RJ+m7tZEnWH8Zw9IOrT+tf6lv1G9yZeZZGn4kLtIGpvHM5GDuN/JM /zZfz3gwuRrbQB7NWIl8nbaXOGe9yXISt2hf5OJsC+Xa+Hvib+OdaW/SLb3f rXXNrZMqT3LSuzbyzcQAPUc+X2M/Xi+I9fZz7XMcG7utHPNyXyVW0k+7nYz/ sszMaWdenPLV8xIjHRc5Xs4cL32fy8h53OTJ5mo57k5uRps3x2FfMwa0DGyv 5jm0UfIcy8514Lws36fY1LkA22XqDPGWdUuuwf9p04qztfbec5/73FVf/vzn P691VJt9rf4XXgpDTzvttDWG9nHmlYktwkLhoK7R+ONRRx21HH300Sv+Stb0 B+T4aT/OCxgTEpczT0/c5MbcrvvCuWXVU/VlLoZ6x/rQB5AnZZ9kvMTcGrkB +QNlSGxpz2EdXU/VSbKSDzIvmsau6KspE2KeYxvbf8PUzE0nRyd3ZJ6UHMzt pJ6TbxE7pnyP/tc4juYFcZ1e+g72u+sk/VfsdNZZZx3gk5QXMZU2nGNRtJX0 f8aR5Eu+Nn2m5cSYiDE9daRhsrGKdWk4SX7i67m5TfkMtyf9Gf08uQNj3Yxp Hdcy30X/Sj7APIWxWrZrzqVNeOnnUR+ZNyCvT+zKuMHnfvrTny7HHnvs8qIX vWi59NJLnxbzul7WY+UrpVPKUTabYiyi+1V/PUvjj4cccsi6KTZSO6l7tg3G 16kjan/GhDke0vDSeT+Pd6SPdV8wN82YkzZGe2afMs6lL+SW+aYcWzCfbFzL NtXyT80PkndmroH2xpiHWJl8gnpLX5A515Yjy1iBeMkxiGZjxOLM5bHPtRcu /vznP1+/IyZe6fg04zDipv4XNnr+pN5bdN6cOOD6pz/JOkw4SmxnP2Z+JseY UsZbY2iMAcjjmM/OnCl5ja/ntdZB1pE8jnjnOrD9to3MNfr/rTxu5lOpv64P 7VG44fEF6jG5NzGy6RvHt83Z9FzFIp/5zGeW5z3vecvhhx++3HPPPesz9MzU B/XT448/vo7vPPjggyveKZ/5/e9//8A4ofDzrrvuWm655ZZVV3VcddJ7Eocd dtjy4he/eB0X0v/XXHPNcv31169rF8inu55qq2Ih3f/Nb35zueGGG5a77757 HUtKPs38I3UmccpYmHEexyQYq7g/Msdimee1E9Zw43sWWT/rP+Na1jf7gnmX bHPLjTEWYT7A3CVx1LpLXfVzGIdnXou2at0mLycXZR0z38C6pK23vLg2zwtS TCTdFG4Sk4jPlItyToqTNJYjnCRGpr1njoM+jtw2ZcfYyzjTcoIc46YvpG5n HMBcHuNb5kQ4b5L46D7h/BNifmKJ26hrOb6QOUVydmMP57kkX6Ovp+/wszjv O/MI5mTE7fQFxEIf4/20O+uFn6l6/OEPf1jjaGGY8o5/+9vfnqYjOefP/SOf e+ONN67YKuxTOTqueEflPOc5z1m/y6TvISueVdx96qmnrpxVOdAXvOAFy//9 3/8tz372s5eDDjpoueSSS1a/LtlrPEnfdTrxxBPXsk4++eTl4IMPXnVZ61Vb vpyDm/rZbMl9q/qo/h7TZD+k/3YfMN/H/BLPsW9cRnv3IeOphn+uU/psl9Vy LdRRxkG+hjZAfpL8j7pEnkf/T51K/pc613ghuUfGIJwHkrrfci6+V7LW+92v ec1r1rFC+gLLwTGIfYM2+ejXvva1B9afdFzD+Ij8qflR2hz9DLk98ddlZHzB ezMOJH4Y51medbzlGql/lq/bQ4zM3Aj5HX2wY0DZk+vBseeMcXzOz826Mw9A /Ga8RD1PzHP87bxJ9gOxkDE46+D43ntjpdor/qhYWFil+WMa+3Ney7LP+FfP k9z/8pe/LKeccsqKYfLflu1NN920nH766Wu+R+UJl8QZhY/aPv3pT6/XC1M1 F0N4eeSRR67xv6697LLL1rnCmkOk8SJxVK1R8NKXvnSto+ZxTPm29DXMLziv aJx0n6a8bAOek5tzz637aTfUqZa3S9tm7Jj+dwsjGaM33kaeQswiP6Ld2OaM Tczd5Pw/yp24Sn6fPqrl2phX51yk1H/yW9tPYoZlqv5SnPKGN7xhXdc882yc j0JMUOwiH64cvWwt88HMbzUZp41kXJP2yXYlt6cPM27Sj/v65PVTnJo5FmM+ cym+lm2mnlPeqX/WAd/DXKfLSP+ZvKOdtz5kLjH5PDHQ/Wv/lr4ndYvchjhJ Pqnnqa3K5xx33HHrOPbHPvaxNe7gNanrbpPufeKJJ9axRWHcH//4xwPX/eQn P1nn/wjTxCd1j8YfhZEax9FcYPefYulXv/rVy/Of//wVPzWHSBircXHF2z/4 wQ+WW2+9dZ2bpHEm4bLGk9R+8jbm040DOY/CPs1zN52rzPgjx7YzX83j1ImM jYiVOR/I9fPa9sQrzlFiPOyNMTr1i3qQ/JZ6kfyCGJLzJ/PZLceVttBiT8q5 cYfEkUnelnViJHFSMYj0qOVerAfGHT1bvlhz088999z/yYHbThNjk7tPORTL gO11vq7lSriGY+ZOGAc670a8Sx/E/jAHzP5oeSTyrXzHhLpNvWLMkjx00hli e/Ohvo75mparoJz4TMaE9OHGMbbN7U3b03UqQ7xOca242tlnn7385z//eZqs KHPzMfNMzRkSxh166KFr3G1fJR6otVeU9xTu6l7prfBYsbR8vbFL5eg68VmN U1599dXrNcJtYeoxxxyzxva6V+PlyiFpPJ75GfqPzP3lb8vCeRXmNxhnTn2d 8Srlw/4jn/U9yQmJoe7nfBeIfs747n5hfpq2T6zKWMB1JsYw7qavyFwT9TJ1 k9yAsstcGDmZyyQvar/NdR3jsf4cz1Td5PeVn1TcnXGx6545feGk5qxpLEex iudp2Jd6n3kA9l3GDcll2T+WS/rzNq+cOQ7mbCnffG+OebPMs+RYEPmD4yvL 3m1mXJ44xvEV5n1zvIT6QRkmt0xuZ7xh3EhOwTYzV8P4JG2T9utz1H2PBdHP Cev07WJxQuV1hGcqi3W3jprT6pyuuf/++9d3H3Sv8obutzvvvHOdq37RRRet +QKVIY4p7NO1+ha97veYtsbQFftLV4WDuubCCy88MPboONlzgxgHu98yr5v5 Mfot5l6Yt+Jx4or1mTFVPjN9ZuubnP/BGJWYYB/le53fyTx45sgYN/n4lIsg 98ncROZpydnS/nmdz/N39gvHTBn/uq7kV80e0xdlztfrmXvuWct7ML+gssUN dI/yRBrXtM55nljO551wiDE0ZcB+pQ+2XqVPbz6M/oe5FOZp/Nu6Yp/ienIN NcrQeXvO9fC8Pto+54JlTsfn2FfmJJab3/kzHvE9Zs6TzvebyfvIh6d7GS8m XrPdmV9wGX4uYwqVJQ53xBFHrHGxcovpG/xszsfTOY35CCfF84STPi5M1LoC iuPln1WW4qGXvOQlKwZqHNt5dNX3y1/+8sonVZa4pbij3t3ROKTq6TlRaoty 7k899dTT8IL6Q95LDuI2MY7JMpjHzXwN8YG4QXvI+LLl0ZlXZK4q47PMhWb9 iNPT+FUby8r8E5+b7yO5rb6Pvt/6w7pPOphxOcc32H7Lhf6DucGM/dM/aVMs o3lrwsmUQebAzBmko+IIH/nIRw7oOd+Zt8/KXB7bzG97cV4N41+3k3w0t5wv xvwo5wrYd9p3UOa6hnkl+yDyVGIxyybvY1s5FkV+QWzxtcQs45zqYo7OOb6e t+zrOKfa5ZMj2Nfa/7ivbBf67XLNC4mVvt9xDMeUrBOMvV2mNn+jTvH3GWec seKQcUznxQn93ozGZcQ5hWHCSeGhxqGVn7Tt33777eu7Yxp78TiOxruVc9Qm Pum66znKSz7rWc9arrzyynVcSbkixfKaPyR5So8tW80T0jWWO3Nq7h+3i3J3 nkEyUh0tT8qS/qDFsZl/YvxC7GMeLsciGDO4ntQV+khzjowNdG/WJ3PsxA7y tsw/GY9Zn8YbmI9NvUo5EVeTH/he39fyldZl1j/H2xpm6h7lkaTDjlnYd24D sVJ1U55deW/l09UPmXdijsHtMM7lWr45p7txdMsn4+4WI9OezXEYfzCHTB9l XTYXmXL35vbJeS1z5jpYD+sIdYJ5BfY37Yv25pwG3xkkTjkvpn3mnGxDxFXP ZTEPtp60PMCkV9lG8hOd07p9ygtqHqXGTKRvHF/XteKBymFefvnl6xi0YvZ9 +/at8bTi5EceeWS9z3N69I74n/70pxXnNM9cXFKb1nJR36guOv+qV71qfY9c +KxrNQauOFzXimvqWRoH0jwjPU9zN9mH7CvGCOw/zvNyDGB5Mn/NXAt5IfOM mU/KHFLm5TgWQjxyXYnnPuZyGNdwHm0bk8mcXYvPLas2rpLv0BtPWE/Wmz6K OaccAyAf8HVsj/lArmHTuAnjMXM9YqH4pHI+motBns95DsYZP19jjeIJH/3o R9fzHL9hPpXjHSqTuMjxOc5LpR4Qf7P/yCFzXJK8LmMf5pSIk9Yz+p2WS+Vc Tfpm5y39XpfbkTpiTpcxO3WGtpj3cqyAvtjYSXz2XD7rrP5XnoR8KXUt9Ycx EPkk+znnO1nn/PuHP/zhmqPR2LPwSPG4uJ7yjNr0HfirrrpqHUcRn1ReR3N4 NPdSPFFYJ4yUngrjNDZ0xRVXrHlG+WzF4Tqu9x6Ef8pLai6GeKfySvYZitGF neKVmtemOEq/lbsUnjumMAejb02OYtkTDzmmzH6hnedGP9zyjA0n/VzLnLwt 10tin7CPGHPzHVbGbrn2bMZ7zCcyZ5TcMnP5zD/Rv/p/4w713Hrmc25Hvt+Q nDLjI2K65cVcIfkLsV84qbkW8r/kbvQx5oYu2/Mn5Z9Vb/ad+4lcaBqD4RwG zyljvE2ZugzyR/Zj0y3ml8wXOb7CeDLHfVgv1tXP4LgJ/bJwUhttiXru/6e5 CdQvP4O5A9ue+9z4nPaY+mn/LZxUn5GvUi/JJa07zBvQLxs7+XxjKXMeaqdi aWGfYhDhojBKecNPfOIT67sOtlPHwsJMzRHXNYrB9W6OYuyLL754fddG5bnf XLau0xw34Z7+l04nXxH/VPyu9yh1rfBa19mPqO8kj8Ql5lnYR5aVZUx+QR2k z6PdWp/b2hWZVyR/YHmuq48x10Mdoc+jPpkDM4eYfGRrTghzhdQN1z91hjqa uUSPhzJuYn7MvIt9kTmAtAP3z9Ru91XWmVxWflRzMDwe6WsZaxD/VUet86f8 pPmk68w2GTen+MI4Z3/E8Tnm9TjGmOP2WV7ms7Ncxj45pmXZmWfmGlVcm4Xc OnHEeaG0Ceb2U5coM2J18jf6XOpe5kLZVxxPtk9mXchD3P7MOSVvYK6Z12Ye 1nkA9qvxys8jL03u47qwrzj2S3nQt1iOtjXmbD1Wof+9pqflyxjR7TZHYEzi PlH57mvbuu2P84N4PN8d4Fht5nqcl3A7yG2pW26D5Uo9J3a4TRwfsc7SH3Mc O22LuUvbBPuXusBxHJafcSNj8eSl7POMxVq8mX6AWMy8rO3DfcHYjuP/7h/F IoqhlS/P+Q++x7J2nyjuli/+5Cc/ucqYY0j0v8zFkk8yXubYkZ/bbDFzirYh 9hffpZ6w1vqcMbT1TL+zzPx+EcvLHI05NfNZzLMQf6Y8uPuafIK5lxybZ99Q juaKtlliZ3KU5CDWyRynpU5yLLbxLeZ4zGk8h4x4SVkZv/TbNsLcR84Jcazg MS/yfOOX5UN80fF8z9C6y7F/19994TrrXucwXNeMTfzsxrmZ22lrodknM15n /jjjTeZuWL7LoM6knROX2vzMxk2IpfYDxBy2PfOMxAjGRYzfJV/bo+vK/HrL UbEccgXrAfXIdWZZtAXqvPb+frfnT6avtmyZG1MOSe9/KYZyfjKxm//rfHI0 6zx9KfuIPseybL5Mf209DMZKKb/EKXJ/zlWa1j0ld3Qukn3MXDDzQcw/02aY E2nYQoxN3mmfw2PuP+YYrTPkOvZF5KS2RftW5rnp9zgXhrKmnhE7XV7Gj3kN cYa8v9knuVrmmMgz2RbaZtov+5W5P9qFeaTic/M894P5WeZjKBPGif7NOWj5 zcEc9yZfZ36PPMj2xrwSMZT4Zh0ln8k5ycRVbxOnIrem3XljXJJ6zfiac81Y X7eZc+baOE3GSxznZL6IMb71h2NA7j/NSVOuyO/j+Dm2KftK47nuUdytdxyU JxfuUz+p/7RF8sfka60/yLOICYld1i3mEtMHt3kAGSuSIzWczFwN4x/fZ7lx 3nX6Vuq59Yl4Sn3N/JTxk5yEc2fzGcx7MC7NmMJ1Z6xJnpr+m8/OuJttsQ3z PNud+SzbAXPFOZ/BfJ4c3mVmzrWNUdtWGS9aZk1HON8scTn9ip/DsZQsk7rt Z044ydjF15LDu72WL3NqTScZj2vjOJ6xhnaW45icS2ddJGak/qYfJSYyD+Tn uq0cW2Hbyb24ZT6cvp8+vsmRfs1lZC5XstA7sXofR/N5GTcYJ3Uvc0O6RnPX FKuLTzqG4lwV2oD1PmPdzBXn2lDEyxy7sa/leHliZeZVMoag3DPOSAzmc/xs cgK2m/rjtvpc5gzcX9wyr0r/zbpnnXNOMp9hOTNHbbyw7tMfNa5IzEvOTw7I 9mfuNeOCnDvAGMYyyHeu2Be028zjkj96bMVzEVyH5EjENPpA+iKf43oXviZt x3yIeTr6G/qC5AvJoeg7GSekfyJXoSzsuxn7Gqdov81m+L4F5e3yKXfXh/E4 8Zt+MTHCmMb3HjJGYr+SMzLHyHjK897cfo4VZ2xOn0FdVvs1jqOxa+EkdZ8x VuYnhJPKT2och3MomHNhWZaj9aH5zQnfWr/l3KLklYmX+azkr6kTzEm2Z01z NxNLM+/N3ICxjhw5x9WnMf18NnOzzN+1ucJ+dsNt60Wb/0Sb9HWJ3VOcbD1w m5mDybFU5pZZntvW+iF9K3GOOE6fzbbT7zSem7k881VzBMuG+s6x48blfcxt bLZgzpsxUPqcrHfG9uRzzDX4f+bGJh3kOBMxznM8OAcjcYj6Qz1jXOZYOufp 2D+wLOavKMvMGXEeB8tjPpdzLInRzN+oPI93Kz9pXWduyzhpndJeczf0XoTe x/FcPPMMYhv7zrxtwsmGc4lrE0Zmmf69dV/OUUrOyLU1tvKVU30a7m21M4+7 /q2NrU5ua3JE94H7hv40+XzzUbbT5C9p35R1ypBYz631lXHOz2Lc0PIutF/G PDmuy7FQ4m76MMvH8iLHZO7ZeMl4jX7EZaRvy/pMfdniF8Yt6YPTH9Nvsu22 R+IZ803Zj5OeMV+T8/9yfIG5ydSBzCFwjgZz7oz3qdfMgSZHneaXExfJ8f18 z2Eg99PafHo/zOv8uS2OI/QMy9sy83i3vuHk+CLHuujTmftqcfIuvGi2wePM 72dfk3slR3U5k/1Netvi8azPlOOccDh5M3ngLp+RdWDecLLDVjc+l/zKftUx AeePNT7cnpEck+NxzFsz3refJh43/8r6k0u3eqW8La/UffobcsSMH22TjIXJ Vymv1MOUE+ObqY0ZM0y+Z5ffzniHubCtOIn+mPLL+rCfW3lZF8YUzOuTe2Yu ijneFt8wt8T2eqyO8634XOZR9b/qqPFuvU+mtfcoM26JPXoPQrG63oPw2H2O sTOnbV+zV31v2JM21/znFrfZKrfxnoYpjRMmJlMfEldbHXb57l2ymTjzFv/a wv/kC5mD5XhFGx9N/9FwaepPXePxQusTfevEzVN2rR8mO234Qb0iZ2jjgjm+ kLyJZaXO+hr6N/rGxEX2y66cTcNMyiL7xfiT5yafn9jHPpz0MY+l7jMf6/63 n0wu2nxPw3PmVvTbsTK/K89cEvHXMb3K0ni3Ymi9k5AxDnNJlIf4pMa7PS+I 804ci/B9TeYtJ5zcwqnm05I/bNnBFi5ONr2FL1vx5Na9k85s6eN0fZMD609c 3oUN1O1m1zmmyXnDtK20G+1p0w07vJHTMA4zFqest3SCz9jqY9ZzS87mJ8wN cq5Cs7cpDmbMs4V1XKcq87RZbsMH2y+Pt3jL7cux1V06SzzJfieOWRaTnmd9 yfVy7nv2fzvGtqavc509rpdzg80pc76YyvjRj360zp/UvKD0c3y+9paJ1jPX /EmtVcU5tqwb+SjbsCue3oVLu2LyyQZaeXmO/LnF/9r013x09nvTgy282pWf bT6mlUM8ybiP+a0Wj+R4QtMxjuswRsjn2zaIV/6f9pN2SUziPO/GX5ptpO0Q i9IHp3/OmNackbza4+fkAY6Z6A8mnNmak5HcKH0g+8nn0sYSS7M/nkkcZzxs ZRn3c24DMbHF4pNduC057pT8nHbdfH3TAR9jXM85nG2OOef3qV1ap1fvIHrd 6JR7YrM28UnF3eeff/5aTvqL5FrZB23MZQv7nglOTtjS7m8Y1+o5bb6vYQzL 5PhCbpbPNFbP9jNWZx0bXjf+krg6+ZbEmZxvZLvIfPOu5yRWNZzPvE/aGJ/T bCFtKa9JrCLG5lgQ7+OYMvNizJu1PF3j6c2eE6PbmAevIz5lbqJxZsq8caCW D3D/Zz2bv2rcquFhw0m2K2Waz5/K2cLMKXfJ/DLjca7R5fEZfSdE8yeFk1le 8hPXTXxS9zg/2ThFw7m98siGuXm+XbsLAxIDd8m6cZctf7BVx6mPsyzKql2/ F5ntuo77xOAsJ3PWqf8sN/khMW3ypTw2+YnJZ07YMNlN2lrr24ZvW/q01c9T mbu25IP2eS1G28LdfB79dvOfae9b/CzbmnoyybjpbN6bMeiW7Kk7qRNbtsx4 wTl3zs2hL9R9yk9qrSnjZJMR9V7HhZMaI9d6QeKnzS7S9rfGJVuOkW1t/b4L Z5vtt/qkL8t5oCmL5GhTHmyqe/Z50wduzfez3s0e2P4pF5tyJtY3X2ZukTGw rs25NNPzppgs5bLVt5OfpZ1RZyc8ZD0mLjj1nzlJ46/Nbrf6uOHIpONbOJx9 mddO+jL5D5+b+DVll1ixhU98RqsLy7Mupe40jGlYz75gmfT5xsuJe/q6/fv3 H/iG0pRvz7Fv4aTGcTQvSDjZsGKrLdnnrT9zXkuTeep6js0nzk+65ja2uRuJ kznWSOyaxqBZ/i77mHCVmJmya2MlTS+bD2f90r8kPjWZOGfZxqVdbtO/tFv2 +ZTDmHCmxWW0rdbWpq9pK83Xpc9I7uM6bM0bo5+bMGWXr5z8op+5NQ9gwsnW T+157mv6Vv7f+FXjSJTblD9q9pz1S/tuGDTZfMb62e9un9Yx1Rp/XldtsjFi hNZR1XuLWruP74GlbU++penfhJepM5Ms8/6Ja1EftvwR/097zrJbvLMX+06M pP1kme0ZaZ95TeN/xIkW66Q8pjGjfM4W/jU7bP4k6zn5OfbJFIukLBkzZLmt Hg0n3c4sZ8KtZp+J7xMupPxbPbe2redP127JMe2hYeguO9rlxydsa33TdLzx fvpq1rnpa+PE1lW/363vPuS42VSe1unVGLnGcYSTnKPbsHiXD2t+jPlpYn/D 2C3OP81x5P/kS8mLiCPEA8o1c/mp+3vFSsYH7p9su8+nDeyKp6gzfAe7caem u8mhG2ak7bj+mZMnTk5jJ81GLKPEyaZf7JfsnyYzyoBYzvqzv+kPdQ+fwTLb mET6gaa/Ex9IvCeOua6JIynLCZfTT7Y4hueIU82npI+a+qz5tHZNjuHxXQfa ZfOPaTNNzxvO+xrhpPikvvvQdM1yIGf0eLfe79Y4TuofdTDnKXPMlJiSfehn ey4SdS/fC8uYgnwp16BI7pTynsbcyNG9Z06u4W/qVmIRdaFxv6x/3kP7Tv1M X5G8sGEQ5bjFXy2z1gbOp0uZT/ZBDNjCv6bntGv2T2IE9bL5Bt/LNlMXfI3v y/P8n/rZcDHtbIvPN5ue/N+UC9iKvxNj0qekrSQ3aP4ncSp1p/mF1OnEn1ZO ltX0NfUksZR9l3ji48ZJzTP3OA772c+nvum3+OTpp5++rtlvPuln+lriCdcE 4by7ZgPN/7RzxC2X5f/5/vGWT+Px1PVm/3xXuvUhbT0xKG3LPoNzllvbcl2f tFvyOrYv+X3iYbM3tqXVhbbfZMn+pz4SDxJDmv/fhQvUY+ZNm00lH0qdyvKJ tbnmEt/TbPOBOG8o31XK9rEPiLXNzlMurGOWQW7X+r7xvMbp2Wetjya/kHba cn4N2ybcbn2b9aa+NlufynXdm7xdttdQ0ni3MC/X6W3tdn2Vn9ScS8+fnNrp 8rg2HucOU4ZZxxxzTv81+Y7EucSXXFuEdeE8VHJXvovCtWGyf1iHxCPXQ2Xx valcE5+2yTrxPf5cm7HlU7Pfms3kMV475QPZnqZX1GlyEd3HeRg574J92Oql LWPMLa7mY+kT+H/6ErbD/j2xMuuWes71Qumr0/f6eXvR6eavuaUNkV+nDIix zeYaR0j+nTw9+y3r0/jfFj6yrObXaUvkXHwu+zaf27hS6jHx1nwyv4+Tdp/+ Qev0Clv13Qd/+5TzafI+YwPXwGv60TC/xWPJaVq8kVtyQq4p5fr7mhZzkwNy LSpeZxxo4+ZuR87R4jsBfDeeGzkn13tJf8q2p26zHi1nzDwu7WsrZ5OyJia0 dQy47gtlnjrK59DvbW0tD5McqT0j22wdYD8l58h73Gb6AL731PCh4S3b086z /9IuEvdYx1ZO86HNx1GGxNjkdYkXac+pS5lbyJiFesz/J1xlH+zyM2yDfuc6 ftmPHsc57bTT1nEc1ou2nXjheUGOu3OdYOOBfaqOef31XKOD9U0+kD43dZ04 xTxoe1ci9ZjrIZNbMhZutpO+nH54ymly7aiUF9+X5ncJvIaefQvrRb/EHANt MuvBeCAxNPs5+WHa5OSnfYzzdhMzvL4A60/Mb3LMHFLaweTfs/22gVzPgtf6 /d7khS3vmOW7PVy7vPnLidsTI9t4X8p7am/yCZbbeFSrX+tj+psm39Qt+qv2 rMT5Fo/k+SmOJw5u8cbEfHKnXG/U9qnnKO7WmIzXwTD2a+97vLaFv5+k7+OI g+p9HK0dxLUvvH6w1u7UOm5eK8gY4fN8R8j/cx0a86z89gfXiuYa2MQav9/O b17oGVo308/0u7le65jv7HJNU2JWWy+V+Mr4uK2hxLplOeTbxhLXO79jzPX1 ydtazoz+IX02OV5yBa7t1zB34t4uc8sH8VjWmfmR9L0Z1zB/S0xK3pC8u7XL tqffXNMtZUnMTJm5jVxXwXFh428+xnHL5vvSD6QfZk6UvokyyjUaLR/3CZ+X cslnsX9bH/M7DpSXn+/7M79EHcpYRHLLeRrJT3L8gH3N/vDGfqMtUGZ+b/+e e+5Zx7s1z5xYTVvQd+O/8pWvLF/4wheWr371q8uFF164HHLIIet8oi996UvL 17/+9eWGG25Yr9P/+tb8TTfdtNx8883LHXfcsX7nXu9Hfve7313uvPPOdfv2 t7+93HLLLcutt976tOO6ztd/73vfWzed115l3XXXXev24x//eH033ZvaoXt0 XGvF6ZvQKkfHtdaHNp3Xd6BVlp7129/+dr1O92ivcrWuu3IQmlcqH6KyfvOb 3yy//vWv1015XG36lrS+VSkerjEw3aN79b/2ukbH9L82rVt3//33r3vNLZC8 77vvvvU7l/qt/e9///u1LPksHdPex3Rem+5VuTqm71brGpX70EMPLY8++ujy 8MMPH/hfv/U8HX/kkUfWTce06djjjz++PPbYY+vvBx98cPV/f//739dj2uu4 jj311FNrrsXbE088sTzwwAPrM1SGrtFxje/p2ieffHK938e16ZjiEP3m9cp1 a/6E9vpfm/yZNq2br3Pyxd58nfY6/9///veAX9ZvfQNRe1+v397kt32Nv89o v63/eZxr1ui3vxvGNbB9DbmzzxM3uG5lfteKdmufz3W96auJdcRa+lmPq5LX E7eJY22NWD+LuE/+7ft8jOWzbckFiHuMzYjn5Oot5ieO5zqR6ScyliQ2Em+T dxMnXWfVRXhx6qmnrrZMDkkfeOKJJy5HHXXUctJJJy2vfOUrl+OOO2456KCD loMPPng5+eST13cYX/ayl62bylIcr/WEdJ2u1/+699hjj11OOeWUFV9POOGE 5cgjj1z3Oqa9zvt/laO93qnUXE0955hjjln3ivmVH1U5Klu/VYfjjz9+vd/X Hn300esx/a+66H8d1zH91jHVQXvVT+1UfVWufru9+q1rtPd9KuOII45Yj6mu uk71VRu06RptrrPqKflILqyrnqHz2lwvXaP/9Vv10/7www9fDjvssAMytIws N7dL5Wmverm8N7/5zcu+ffvWe3Re7dM9OifZ6X0snX/Pe96znHHGGcs73/nO 1Xdq0/FDDz103VSe7n33u9+9Xqe96qm66bzWMT3zzDPX+9/1rnet53WP6i2/ qmeqPyU3Xa//da/q8fa3v339np30zO3WddprzFBl6pzuV9naVPdzzjlnef/7 37+cddZZ6/NUjp6n8lW2dOd973vf2m7VT2sBnnvuuete792effbZ6/06pt/a 9FvlaS3qt7zlLev59773vQc2nfvABz6wykv/SyaKyVQ39bPk9ta3vnWt35ve 9Kb1Wdpbl3W99mqX2qxzepZ+qxwd13scerbqrPPa1I/aND/F8ld73/GOd6zX 6Zjqoza4L7VX+1VfndMx9RH7Scdcnq51+1SOjmmvNuicZCN5SO46rmv1v87p f8lU3xdUTk6/XY42Hdf9eo9PY8C6RjGp5heqvPPOO299d0XjHjqmvTjZxRdf vFxwwQXrPTqmay655JID9+uYzus6nbvqqqtWTnfFFVesnO2LX/zi8rnPfW65 9NJL12OXXXbZWu7ll1++Htem68QBr7/++uXaa689cJ/24n6Sg/RKz7nxxhuX q6++er1O14sjfuc731l5jHDUPEXfipCtS8733nvvAY4kfiSeoev0v3iV7hXn 0f3mRuZe4nPiXSpD/O1Xv/rVytn279+/7sXjdI/u1f/ifNrret2r37pP3E7/ 6z79L54njql6ig/qt9ZtFz/Ub533b+11TmXrWt/vY3qGrtNvbfotniruKa7q 61SOOKv2KkPXmcN60z06r5yw/JN4svmt9jqmva4Rx7377rvXa9QHt9122wH+ ret1TuXrnttvv33l2t/61rfWa/W/9vr/G9/4xgG+r9+6X/9fd911q14oBlC/ Sx+06bg2xQ86d80116x6J13SXrpj/dE10rvPf/7zy5VXXrnqjq7Xb53T9Z/9 7GfXe73X9dJ36amuk87qnHVc57Ren/RfdqD/L7roolWndY3OyYa0130qR7or W/nUpz61bvoeiWxOm46rDF2jc7rPtqhNtqxn6Ziep3ts68ZfnTcey+6FGdp0 zDih6/VbWKRz+l/2IVxQvVWmrjO26rf9ja6TrxIGCg/lm4Sz3hMnhZ/CWf0W PgqThas6plyYcFbHhLk6LvzV/8Zinfde53VOZepeYbx8r47pfz1DbRSm6llq i+oujBfmS85qs8qxn5JvEGeQDHRe9wortFe/CfvFA3SNN5Uteel5OmcuYb5g fqG66X/t9XxxAXMr+zvJQXv3v3yKOZeepboS1735WvWv/YhkqPrqmH2R2q+6 qm9cJ92nzXlG5xoVW0mm0jPnzhgfcC18jyM5J8o5NebE5u7JucmFzXWdZ/c9 yfv5vSLnmnIum37nd0rNtTl3KXO/zEe6HOdPOUcj8/Ucf3I72vhiywUxjsic D/PzOf5F+baN5xhvZE6IOU7HYbzf8VnmJ7nnOF0+N/NRmZfLXGTOKcr8qstq Y25t3Jnyc0xmfXH82cp1zEmZWTczv808YMqEesmxAcakPmdbYe6UcuGawezH zKXbRl0n2w3XEG95Vq496no4Z+FNcbdzFzk+ybFc5wicv3c5/OYXvy3mcp1X 0V65Ge2VE3GuxjkX/lZ+xjkYX+t8j3I42js3o+uUH3KuyXkn56G09znnkZSn Ui7L33awnHVOOCk/7fXK3ecco2bel7bRctntXM5Zcb47x6hYBnWd3zZiDn8a J6AtZP7B5TJ/ze+2WT+NsRwnpa4Te9LOias6zhxP6irxyjbOZzDHwm+Ase58 Nsd5p3nvzPkTr3yd/285LdosfRntkd+XcXkcr2P9+T1mykSbc4ecW5XfZcjx V7fP19r35bgrxwuYn2NbjUPsf6/T7fUQ3D7Kqc3hzPm+HE/n83MuWfs+ZvZb 5tfYhuzTHBNLn0L55Bw2jmuSE7GMHEvKjXbIcul32D/UK8uBv5mXpd4m53P5 lLvbZoz3MfoY3SMMFndXvM9v3xgDXGb7XjBxi3NOJi6W711xbmD2c2JPzs3g dRxTJN9LH07sSj5GXSd2Wwen+SDZn76fz/G5HPvkcT+jzfW1nBIbmeum/yBn nMaZU8ZuZ85rcz1TDikv8qyGY8T6Nt/V5eS8A2JXm0vFeSUpL8/LYBzke3Ks wM9K3ppYlDZK/aFdUQ+bDrhsfg/bvI7yyXkVxPuMUThum+MXicnJN3yc/ct6 sv7EyYwpm92Q9+f7GsYkx4O01+QzGYMQJzPezTpmrEle7mvJQf4fYxDU1A== "], {{0, 348.}, {330., 0}}, {0, 255}, ColorFunction->RGBColor], BoxForm`ImageTag["Byte", ColorSpace -> "RGB", Interleaving -> True], Selectable->False], DefaultBaseStyle->"ImageGraphics", ImageSizeRaw->{330., 348.}, PlotRange->{{0, 330.}, {0, 348.}}]], "Input",ExpressionUUID->"54b95ee1-241b-\ 4d63-9ae9-dd50d1c56305"], Cell[BoxData[ GraphicsBox[ TagBox[RasterBox[CompressedData[" 1:eJy0ved3VEe6PnrWvffD/Xj/hfvt91v3rBPmeMY20WB7HCb52DOeGccxYJwz zsZkmywESAgRRc4ZBAgRBEJCImcQQihnqXP3Tv3ceivsXb21uyV8zmGtolvd u3eoeup9nzfUW//vuE9enPh//NM//dMX/zf778W3vh7z+edvffvS/8P++MvH X7z3zsdvT3ju40lvv/P254+N+z/ZhxWs5bP2f7Fm22lQcxzwVyug8e8t9mqp V4c1WzTbZr91WBPn4I0dk6bfmTYsS3xPx9kO+5ve0/Fpdj12LPvavTa/Pp1b 3o9Dr/zattf4ubzrefefdt/bFjuvKe7XPZcD3/EYtLnny3K8/n2uY3N9n+0c /uPS6czfUD9R859L9YvJ+94ZcE71O33Mh3LvQdf2zmnxRuOivrOsNG+2amw8 aEz4Z2zM6TNLO9520hwLXpPXYb8xDdZMxx1TdV4GJ6QlTgKfx4GHY3ZSS2LQ dsT1Mr7nxztuE/dmu/gfDAuDYehhfpMNf78EQ8HXzn1cNmxka348+L/zz9Wg 65qmxZoJU+GHjTeXH9QMm7+3JQY4tkx5XYUh25HYcDhW6DwGO2fKYOdkv+cY 4o1kA7sX3pQsY/doOR5WZTN9zaBz0vltiUE6h5Q1rryxJNYGtMw+CuoPb+4E 9+XDNP08/vMOFTv++9BlymD36MmndNZrie+CP9Nbrj7zfyfGSn9eW8gnNvDU bK5H0hJLhClL6jJLe+/hzTAMhiGDndOWcoT6QWCJMCquQb8zxTkULkwh8zKx l87EIWuOSfpS4JFe1Xsdh/w6pqP1aS5ZPHQMqePUuGZrdK1fct6ge6NrqaZj Kdc9PAzec8mhwfQhx5H7udJVaYEhNsamZfLGuYztyQ476Jp0Xhr7FPtdkv2G vdopgSlbyS9DXUdiiDXLVv0gP7eEHhIyKu01My2xIt7brk6U12bXcWxH4t2W stQK7IehYCjXuAwFQ4Odw/+9fj4dLzp+Bvs86LigNti5g3Dr/73+Oeep7G/H IN3lcB2hxpzLDtNxm2FIucK4DPsJ0y9S1/D5zj5jv6dms5amcSZdaIjze9hz pJy0JVZtGA7pKcG3OWd2xHdKvhE2RBN4cTjnklhzxKvJz+d4WLedQLxkyvvc ei3XPKQ+zHW8Pla57sM/Rkp3DbUZhuW+qveDYcmPRfVb9fuhYFS/lsMG36H5 yuSG4D/g8sJMOW4zZEuRjDEFZpKGajYSKeI/7H3C4scJDk6/MbksMJkSokZy h7iXa1cpfe8IXsz1Dbc/HBdjvL+Jt1mO23Qbkr4jjm1ynu3JVDUXMvU9MnTM YPJ7MPtkqLJ/qMfn+lsf12zfB+EjmxwaiizKJrPobx13KdvhssSSvIjLE9OR OCNOxHDA+DFhzOW/Gfes3ZcheKzLh+kzPu70agm5Ywl5x/WaIfQT8Zs0b2mk SY6ZltBH0ndgO5l+hrTUYSSPFJb4d5Y8n7QduR4dhAv4P8uGpWyYGKqtH4S/ wXhLNr2Y6ze5zjNUfeuXidlksWoG6SS3efzaNBUeDM57SVZx/mwoLNmwJHfl uoVjiOSQweSU4FHEy8lGM12sSTufcGJDygq4OBKvaan7NAxpOOHYMdOu78hW z8tlkNSVliP5vTdn6R4F5pSuVpw7LT6zkRND/x12f9A4PCwOch3zMDZ9rnNk sz2yHd/b0YW+rj6EeqPo6wmjvy+GUCiOUH8c4XACoXAc0WgS0UgCEfk+zN6H YylE4gZrJm8h9nk/Hc++i8VTvCWYLovGLURiNjvGRizhIJq0EUqyV5NaGjE2 hvSq3idZS1mkI9kr15uZTehSsO+AJHvPG/3GFi3JcJckfW0Kfe33G2T6A5DR HnbeP+yY5Zrzg10rl+zQ8ZjrPL/0fnPNK3r/5p/+hPF/fhnj//Iq3njpVbz5 8j/w2stv4ZWXx+ONV97FuDc/wtsTPsOb4z/A6+Pew8QPJ2HCB1/g3U++wYSP vsLbH3+NDyZNxiffTMNn307Dl9/PxJffzcF3kxdjxs9rMG3WOkyZuREz5u/E guVHMb/4KPLWlWPl3iqsPngOJaVV2HDkLLYdP4e9FRdw5Ow1nKy9jTO1d3Du Yh0uX3uAm7eacfduG2vtuHWnHXfvd7LWhbsPelDf0ocH7SE0d0fQ3BNFC2tt fXF0hZMIxZOIx5JIsJZkmKaWiNGrgRTnbjZvxPksaT8YHH+qMQ7o2hFpV56a mvxSstXwN+7Xks0W80Jvrr9La548TLv8IqiZ8veG5IcD723g2Hvv/Tb44Hj3 Ph+IH/q+fP8BnDx0BMcPluEYa2UHyrBzy0589fnXKC5ciT079mHfnv3Ys3sH du7cyl63Y/v2Tdi4oQSrVhZhxfJCrF5RhNUrl6NoaT6W5i1AYf4S5M9fjPy5 7HVuIeb/vASzZi7ErNmLMXXWAsycl4cFBUswZ/E8TJ8/BdPnTcas+d9j7oLJ mD9nChbM+BF5037A/MmTsGjqF1g66xssmf4jFk6egoXfs+9/YN9PnY55U6Zh 3rTpmMPez50xE7Oms/c/z8LC+bMxb84MLFowCwV5P6MwbzZ7nc1e56BoSR6K ly5mbSlWFBRiVeFyrC1eg3Wr1mH9us1YvXYT1q7fgs3b92D7noPYsb8Uew+X Y9+R4zh49BSOn6rBiYoanKq4jFOnbqCi4iZOnb6D01X1qKx5gLMXmnH2Shtq bnfj3K1uVN/uQU19Hy429uJaWz9udUXQyPDdHjPREU2hh72G4kwmx8Fkt2jR BBBJsleD/W2I95GUbPQ3k5kh1sIMb1E2lglbyGwmepnsZ3I4ZXEcC5nt48Tc XmKcNyWxlAWnnA8bEkOWsH0tzk8kh7HhnjMRU3OSzQ+mZ4xECl3tbVi2JB/X Lp9HItIHKxGCGe+FEe9hr90wol1IhVuRCrHW3wozRK0dqd5mJDobkehqQbyz BdH2RkTbGtn7RoQ77qO75S7aGm+gveUaulqvoL2xBs31Z9By/zRa7p1AW/1J tN0+iaZLZWg+fxR1Z3ahrnIb7pzejmvlO3Dh4C5cLt2Nmn1bcG7/FlTsWo9j 29bgwPoV2F1SjK2ri7B97XJsX7cc61fmYcOqPGxenY8NKxZhdcF8LM9nOFo4 G0vnz8HSefOwZO58LJo9F3Om/YQZ30/DFCZDv/lqKr78ajK+/m4qvvphKiYx vH7xPZOzX3+DjyZ9hUnffo8vvv4OX33Jvvt8Jr74/Cd8+eVcfPd9Pr5hbdK3 i9jxi/H19CJMmroMk6Yvx5c/rcCXPxfgh0VFmFFYjLw1a7Bsw1oUb1iNInbP a0tWYdOG9di8fgO2lGzAzk07sGvbbuzYugs7t+/F7u0HsHfXEezdexQHD5bj ZEUVw2stzpw/x+T1WVRfqML52ipcZuN15fIFXL92GbeuX8edmzdx785d1N2u Q0NdA+5Tu9eM+nttuFffivoH7bjf3IH7LR1oaO1AY1snmjt70NzRjRbW2jr7 0N7Zj/aOEDq7Q+jqYa89EXR0x9HRk0R3bxI9fUnJi73YAfHm9rZWLMqbjxtX LsJMRNnnKWGf8cbs9BT7nZFgv0kx/mowjpvizTZYY5zaIRuOdECS8XEjyewt +pt8jin+W4P9NpWKwEhG4SQTSKeoxZi9xZrDPjPD7D4iMJNh9rs4O1+K2WsG O4ad2zD5efj1zARvFp2TYd9M0r2RHUnfyXtk3zn8vtgzJFNIMf2WYscaCcb7 k8wuZa8p9mqweWTG2HyNsHkUYZ8xfZckXRiPMNnQz7hhJ/pDLYwTtiIaZq+h JvT33Gdcsh59nffR39WA3tZ76HxwG61119Fy9zoe3LyM+muXcOfKBVxmY3zx /Fmcrz6Bc2cOoOrUdlSWr8fpwytwYu9SnNy7GOU789h8mIUDq2dg/4pp2FX4 IzYv/A5rfvoKxdMnIf+7TzH7i/cx/9tPkT/tS8z54WP8+MV4fPPZm/hw4p95 e3/8S5jw2gt4542/YsKrf8V7b76B8X97DRNfHYdxf/0H3vz7OPz1lbfwl1fH 4+9vvYO/j3sHfxs3Aa9MmIh/vP8h3v70c0z4+FPGUz7FB198gw8/n4IPP2Xz 5ZsZ+HbybEyeko/J01bgx+mbMP2nbZi9YJuwv0yBI5O/Mgy1tyJ/0ULcvnmd 9XGMybSU5g8wuY+HbC/DEu/J/uJxN+17/pml7EJhC5FsNEjWkZ+Jx9Ms1763 ZRyOx/Zt4QtI8XOS7LWlXUh+ppTra6JrpcgONGzhwzIUV2B/0/eW5C1ynlCs RMSA0/xYxWXUb+geyL/g0D2ZKjfBlNdMsBZn54mz49irEWHvCeth9j7E5kqY YTzCjNsImxfsfTLCWlTMjWSMyfI4m4/U2NxI9LO/e2DFOmFGW2GEGmGEm9hr M5Pl7LX3AVI99xBvv4NYex0iLXUINdeht+Euuu7dRhe9Ntah7cEdNN27gYa7 13D3xkXcuX4BNy7X4sr5alyuqcYl1q6cr8X5s9W4cPYcak6fQ1XFGZw8cQyn Th5DxaljKC8vxZGje3H0yB6UHtiJQ/u3Y9+uzdiyfiU2rirCmqIi5M+bj4Xz fkLewp+xOH8eky9z2Xsmv3+egW8mfTYAQzQmDxruY8H8ebh75zbDUJzPbR7D 4H5IS/gNOQZMjh2ygZLsd6mUeG9xP6LwJQp/shyrlMCQzTEhbGuOW0va3MTb VLxP2urcv0D+Ke43EPiheBzXxUynG8zGIxniYpfHT9jftuP6KpSOJ35MjXNl 9vsUYU36uK20F/c3Xfzb4v5tj7da3H5T/kvpD1f81BTxGf5e8lblK8t8L+M/ Wkxb8HtHxqYV/1B+E4c/v4gjid+Y0n+XYmPDnz0l4gg0fkkmZ1N8PNhrMsn7 LcVkMPldzBTJ7QjDPJsDqTA7Xx8bjz42b0IM7/1IJ3qRjlHrgRPuhhXqQqK/ DXHGV+IM4/FwI2KhekT7biHccx03Lh3NxBCbf3Emv+vq7mEe4wv37tYJuU/x L+ofU8xPy7C92BjhhrVkwuD44L5Dfj7xrGnbi+EKDNHzGuz+1e8FRxP+m3RG TE7EN0T8y3LjsNKGYn3NugNJ0j8J9l0yxeUU6TEl32yem6S4oGg8R0HF0bR4 C29MIBppNiY262uK50mZ6PqoJIZMS8psiQVH+Ty1+J44v+dbF/kRlnxG5aO3 3eb5ZoVdJ2JIadfnoM4vxsHifl/blHPasFw8km+M/ubxQnkMP07i21L5X7bi 2V5c1OQxdhUHN0UMg8kCajb5CYmz8Di7KfqayeMHTCYSjjmXlvGMBMPM7dt3 MHv2bNy7d9+LoWhxTtfXQj4cxiUScVPw8oTj2sl6TFSMkSnsZUPy91Sax0d4 DM6S/j73dyqu5kDFYtUYGFxGWPzYFJNBybicm4bMYeHyyHbH2LIM19duJFOC L7l+I4XXtJtzYmhyQ8e0jhP3nqR9oudbib6yNR+okFeOJcYibYtxVk3NR35P tu7b8/zyPC5oO25sWccm19eq30x1D2kt30ueQ/cTKTkq8yT0XBlbxh29+WVC xMdtOUYiFkb4TrI+vVdfJ3zVKSlLOR5SuHrlKqZPm4Z7dfV8zEVMk90b3bsj Xy0Rw0gyuZKQ/hYzKeMYpoifWhTnspUPw+Z4ibHjogw/ETb+iaTtnV/zTavc FTd3xBbXMkiPWSLWL+S4IfmQKeS7jLeYLjZt6U8XY6RkppJlLs5dH6PUq8p/ rmSL8qHbcPM5PQylNX2n4jpaTEvpO1vlYmbmSynZwuWLjruMpsZT9SXpaVvq a0fmcHn5FK7OtBWO4DbXXy+va6l8Hjcu4LhyUfWfuj7nIyoPjMsQCw31d0UM kvQYx5DJ/XCXL17GzOkz8OB+o5gjkjMYMpeV40LyXpJbSW4PWVpfsHFmxybY MSlHyBySF329YTQ3t6OptQv90QSiUXa9pMACz6W0hO4jmcH1lyV5ji18dnF2 nkQy7cbzUpzriubpm7SWo+T1o6U4Pecc4hjPf5t2uZvtKE4Gl9eofs+MWXiy UvW76GfJy2TOpftqp10u5XEqFX9Ju+fi5xvgQ1fyLO3KI1POC3fekd6xZJzR 9jCszuVo+PHH7LLFDk1XBit967g2PLc5GM96UHfb43+c81qIRaK4evkK49yz 0djwgONKyU9L+SltT64nuR4TnM5ivCQRScJknzkyLtHL/j5ZeRnf/zgHn330 MaZ9+Rmmf/4xvvroE0yeOh/zF61mNkIVEtGUwKAhYl2cK7JXimP0Rg3s3H8S U2YuwfSZizFlylwszCtCQ2M7zxkQsk7KM2n7mQmJFUuNnyP0Ns89EGPg5s46 Il/Ktj1Z4PW5/73MU9Jkj5fz52i482SK4+ol6YdWzZVjKtdX8nrbkcf5/MpK dkkd5Eg7UueQLhaczN+5z2DJ/HQ3n8bJkEHqXkxdzjmW1G06vqkPU6i7d0vD qpBtyXiCYegy5s+Zg5bGJsnJvLiTN29EE/aEJW0HNk4MP0bC5rZzKJzA3n1H 8c13UzF/fh5OHD2Cm8zuvM3aqdLDWLJwMd575yMcPniUcWOT+0/j7JVwQXKH +FKCnet+/QOmWyfjvXdfxYfvvYIPJr6K/Pk/o7WxhXFzmbMkx4LbbaTfUl4e gdJnlIuSMvS8NNXf6r2Xp+RoY+42JRd8Okef25QjLvLEffkD2ji6NqimC8U9 pN3xz8RT2vWPeOfx8rHU3PZyy731Du6aCsfDvit//c3liB5f4jlkrv2h+LYj 9aDB7K5bGfi2JIauXLyIhXPnoq2pWeDTtDK4pz+/RM9HUjwhxmTT+YtX8eEH n2DWtBmou3kDqWgMRjzGfZGpWBQt9bexbNFcHD10ENFQCv19SVTX3EBzRy+X PwbDRrg/xr4/hI0lS3GxdjeuXdyJ6xf3oamuBkYkBJvzacVlyL5gcpDsKimX HJXLpuxhQ+A9g2/o/exIucLlk5PBRTNkgdvnHoa8XOSAHGZ1nGa7efaZ71iO RU9OuPdkKx+aaiS7LI03epjR8STuSWEoMw9C5cy48lOTdY4//902JceWnIXx jPrbtwXPljqO5jPFJy+ev4ifZ/2E5sZmwXUGySEZkL/Ezt/V1Y0FC+bhnYnj cKL8OJJhpquYTLESKe73tjnXMXD7xnWcP1eFzo5+7NxZiolvf4qKyosMT3Eu 065cuY4vv/kBk6fPwf4jp3DnXgOTTVH2LAnpx5Rjy7mYtOFtL/8xKF7t1/8q rysoryNbTFLHymC/G2ouyGC/0eOn3hoPL08sOP9+6NfMOIeLec+eELxO5qSS n5bxnFts/JRNbUmemoglcL6mFjOmTWec+gHnEEEY8ufDuXgifcb0y82bd/Dt t9/hyy++wI1r5O82uK4jvafkFj1/KBRCb28Xbl67hpk/TsUrL72IRbOn4mx5 Kfo721Bx7DA+ePsfePmll/DKa+Px+aQp2Lu3nGE0wrm6aTvuuRzNl+PymF+w jmKwsX/YXKH/Tgyp72i9mf/+h4Khwa6tf+9oOllhiDcZVyAM3bh+VcoNHUNx 1FSfw6wZM9H0oDEjx9bfgtYacH3I9EtV5TmMf2s8pjJcNDGdmKS1HqbJ48rk K+Y5saZYG5Iy4ujtaMHmtSvw/vhXcObIdrTfv8Z0Xy/aH9QxHB3AqmV5+Oqz T/D3v77GzvsRDhw4yew6g2PWUXzCyZTHg8mSoXzvH4egcfP6PDhX9mHGcSi4 zPb7oWIjV1NrIXNhyFHckI3fzevXMucj2UFxIYeW5C9Gd2eX59MdYqPzED5P HS/Hm2+8gqlTp6OlpZ3HvihvhnxCnNdSzMsUPpO0ZXB+tGvHVnz80Xu4e+uO 8I/LGFyC4S8Wj6KvrQ1VFSeYvnsbX38zGS3Nna5/1pIcUvAVi/sWTa67Hw4b uTAQJLuyYeh/Wm4N9VyDYWzQe9MwZKl1EzZk3r2Nq1cu+c7vcF/upYsXULBk MXq7ezLsxWy5cn4MEYeqrT2P8RMmsrH+AfX3mkSuPnGXpFjrkTa9nFXCUTya wI7tO/HBh++ijmIsKeFr5utCeC42xUeiCPW0Yu2aYnzBdGQ9+UCTSbEOTsOQ 5a67NLP6Pvx9mu39UOb9w+LkvxtD2X43VPmac34NgqFLF85n/ob6l3FtwlDR skL09fS6fmP/vQXdr4slhouG+vv48YcpmDDhPZw8cZbb7DyWJvNClI9C5JsA sYiB7dt24uMP38e9OzdETI0dD8n/LSPJ7P0UkoxPnzpRxvjaFNy/V89jF8K3 4eUAKv+Y6cN2Lgw91Nx0MFDmP8TYeb/5ZdceqszJ/nxD029+DOl8yJG67Mql 8xl9YUsM1ZyrzsCQPwcy27MI/FhIp9hY9/Xi4O5d+Ptf/oYF85egta0fTMTx tURJvgbW5DZpnPKtIyluh23exHTZBx8wbNzm8pDHVlMibk3rT8jeTyZMnD5x EgWLFqG7vUv42ugZTbi+K55jKu3sh82JHmyMhiJb/L8Jugc/hh4WO78UQ/p9 /GIMKTnExppy3vznoPl/rqoaxUXLEerrH+iXGgxDZB9S3JhhoLejFUUF8/Ha a6/ip9lLcKO+C23hOHoSSfQxuXO/vhv795Th3q06RPtC2LV5G959+x2cu3gd XX2UK5fAudtNaOjs57ka5DOM9MewbeNG7Nm+GcloWPhLZb6PI33GliNjQ9bQ 7PRfiqFc46bbHG7f+v7O1p+DXe+/gvGHvrbyuToap3YUZzBdDHn+0zSf/5Wn z6CocBn6e/vcON5gczbjczo/z1mMMy50FSVrl2PmtB9QvGwRdu9Yg7LD23Hy eBmOHT2OC7WXEeplMioaRUXpQXw84VUUF+ah6sxpXLxwGTNmz0X+kiUoLzuC S7XncL66EocP7Eb9nas8F0z4ENMiDq7iDkrHWN46e7/ueVjsDOW4bBhSc8vz aQx9HIP6Ptv7h8W6v28Cm+vnzMSQIzFUW1OVKa+cNLfLKk6ewsriFVwO2do4 DDb3MmS3qfJ1DMQj3Wi5V4urZ7ai8mARasvXo+HGSfR23md6LYEk2WyJBHoa 61C6cRlO7lmBtrqL6G6+hwNb1iFvzlTkL/gJe3ZswpWLlejrJo4eZtdIcAyp XC0vPum49YqG2u9DkQPZ+j5bfwStSfb72h4GQzqPydX/D4uhnC0LhkT9BBPn 2JwWcgmuP4VirseOlmHNqtUI94cyfPG5ZGqmzgeXBRQ3Iv8xrUtN85wmkk0x du040naKf5a2RH4Tt/Fp/SPlSsfZ95QHTbk/qQTDS5TZcwnOxdMpk69htDj/ IbzInMl0Wtpl7LpajsbDyFA/b8nVt7nklH4uXQbpfrWh6JihXGOomHgYuZVx fACG+NyRcojWAmTMX/Ybyh86Xl7O7OfVCPVHMvo11z0GYUjJOHd9tSnzEC3B d9Nc31B/ZsZ1LWn3O26dLFPmN8CrG2NBxqAc8Xupw3S5mgtDfn0TNO5B9lyQ T8P726tnoDCj11RQPn/d95/tvrw+z44hv493KHjKhsvsskvy4QBdYxgpnDt7 JpN3U45O3MCxY0wOrVmFUCiaEz+5+jeo6XNQ/d7tI7/cyMhzcQKPyXzOoXEV hXc1liIf2Rqga4KwlMsvpusr/Tzq/NTIb6ZjKaj+gjrPYP0ZGKccwlzX+3yg jArCrIoBZPYn5cCljCSqT58egCGynQlD69evQzgcE3x1CJh+mGemvz0e98v1 xlDlsf87P37olcZXjXEuWRP0eRB/zjXOuWScH0NBssaTA9YA3A9FFtE/6n9/ jcfg5mFIz2GjdTMpxjfOnfHJITvNc6OPlZdh48YNHENu3tVDjvHD4oyO9T/X w2JpKLxAl0N6LZ2gsRiqfA06Vs/VyFXPJej32TAUZOfpejG7HyqzBfdxUH/6 5JDGeVISQ1UVFRofEtdXcmjbtq2IRuJe3tt/Qbf69ffDyJChfB4sl4eGIV3H 6H6wh23qvLlklqfLvb/99+3Xm0F60v95Nv37MJw7aDzF5zkwxHTZmRMnPO4p 1zPFokkcPHgAO3ZsRzyadHlr8DVzc9ChYGiw58n12WByL9d11JgEyYYg+aCf Z6jyabBxzXa+oOfw9NnAc+XC0X8nhnRdpjBUwewvL7dVzI9oJIl9+/di69Yt iIbjMpaQDUPB/ZVt/LPhLEi2PiyGvM8HymP9M/+89vd/tny7IHzkinf5nzeo bx4Wk6INlEG58JNrHuX63vtc5Vmnuazhub5swGh9Bumy8sOHRe6vwhs7LhZN Yd++vdjJ5VAipxwa6rwXGMn9PDqWBpNRD4OzXPeYS07o+AuWeYPr2iBZNpT+ y/V9EM8O0m1DtfkHw5grhySG3HiGTRwggbJDBzX5pDCUwN49u3kjXSbWsQ3k Q0E+2qHe6/8EhnL91j/P/Z/58ePXb0F9nQ0XQ5GVueTMYGNMr0PFkH7MYH2Z vY9tH4bkGhmGoXg8hsP79w3AUJRhaP++PTh4YB+veyF8wcGceihYztYPvxRD g839INzkku9+XqF/psuhILmSC0O5MDKU7/3nHkyOqs/+pzGk8l3jqSTHUNmh QwMxxGyxvXt24SDDF+XnizW9uTE0GJaGMt+G/kwDOVTQebPxhVzjNxTb4GHn zC/htzqGsmHPP0/0534YTuSfwwP71cvbUGuIqD+TpskwFMeRAwcGYCgSimL7 1q1MFu3la17dNbw5+mlg0/SwLeeyLdZf8JqKav3ugLUxEE2tr1LX1WLC/LgB /lQHivt5Y5dZRzloXPRxdudxIIZ8YyDvRT2X+4wB+UqZ/m/ftR2tuX7ezBhN oJ3oridzvDrddlqzj7R8Hd96rsw8Hv8zBI2vbywVH2IYikWjOLh3X6ZNZIuY 646t21BWeoTLIT23fag4cnMm02keV+d1I0wLoVAKjS19aGwLIxwT600d21u3 TvYj1dSweR0XUSeAX0vFUR1p26r1647DbQT+altarpPtYkifp/4+1PGm1paa sq6HvnbQXXdmqxhfGmrvJMf9bbCc8eRhWq7DEmPO97Jw97BR81zhKLcMNGXd CtOtPWBKPx6g6omIGCM7r6zhLPpC1Al3MSd9iBk1SwIwJJ7fdx88fzmKA8yG 999fJBTGru07cPzoMY4hXU4ORYd5GFKYYOeMGqg4fQFz84rw6TdT8eXkWVi6 Yj2qzl9HPOnIWtbSx+fAW4Ns6S3t1fZxn41szbR7jFsXQ9ufRu2D5fnB/LJd z+FNSxtCnMvJmNNqrLWmrqmtNVVrTEVzRF/wehP0jErOqLrbltdstX5Zu09t PaNa46jyxS2+btQSuS9KLlkePhVWeE6wW89H1hy3xVpx9exuf2SJRSoMZehR dp5ohGGF2e+evhHHUL7H1k2bUX6kjHNqf/5QtliEfh9qHS/NPcJIZe0djH// O4x4+o8Y+fTz+O0f/oTfv/Qyx9PNO418jyGqE+Q4ch8sNX5W2hs7Gg8r7cog t4YANcOR+0SovvIwZJveGKSdNFRdI9Xf+p4M7tp4U9RJSbv6Vs5vfh96TQRV fyHt1RHRdbIcAzFmllzTn9b0rpBlXt0FW6vtnoOzSQy5Oem2yv8Vslk8G9Mp KRt90RTau2Po7o/zGs+8RrMVsDY5S/xAyXtdL3L5alJthjB2bN+mjbvop2g4 gs0bNuJ42TGej8bldxoDWlY5ZKl6dA6XrY1NPZjycz5GPPsCHh3zHIY98STG PPU0fv/7P+GPL7yEhYuWoL2zh+ehGbJ+WYp4kwNR69RJ83plKVvW5NVrCvDa v6Lmk+pHVXOXfm86nm6i70SOkZInsn6Tu75RPofuZ1RrPFUOuvTnu2NswV0n rOqp6Ov1M2ORTLc4Kf6asbZZr6vGMWSKnCiVj6k1t4aw4jZyPHldFF6HxZTz N42EAVyv70LxpiP4YfZK/JS/Dscqr6GXaq0YYn1WUstZCNKdwRhSOtrinHr/ /v0ZcpP6knTZFoahyopTSCWSrowaSizUlQspUU/fYvd48+ZtfPDJF3jy2T9i 2KgnMWr0WIx5YjSefeYZPPf87/HGu59g05FK1DR040ZnFHe6I7jfF0NLOIHO SBI97Jl7wzZ6Q2xOhRz0R8H+Zi0CNsdEY1MM4aRoVHc3wsYmRI3dW9gRNXgj 7DWelo39bTgCc2qttdhbTdQOc2vPqLpEpiZvMvQhtCZq5rjNUXWfZA0306sd pPa0UDUEPQyp5slaPe/Cq0Ot2ex2Wto9dI0U50GRWALVtVfw3sdfM3n/CkY/ 93s89af/xF/GTcS6HfvQ1dPPMWRInq/26gn2uXr1oPTaAoShKONDO3fuzJD9 dO+U/7pp3TrUnD3L8/OVT8kv43JhyNt7xcCtm9fw4YcfYOzYsRg5agRGjByJ p54ai6efepK1p5leexHvfDUZ38xZhGl5BZietxgLCpdgUVE+li1fjGUFi7GC /V28JA/L8uaiKJ+9LmLfLVqKlQXFWLVsFdYUrcH6VRtQsnI9Nq7fjM0btzLb cju279yF7cxu2LFvD/Ye2o9DRw/h2PHDOHbiMCoqjuFMRTnOVpxE9ZnTPIeh prIStZXVuFBViwvnLqGWtZqaqzhXex3VF2+g5spNXLh+Bxdu3sXl23W4wtrV O3dxra4ON+7V43b9fdy534i7D5pR96AN9x504e79bty51437DSE8aAzjQUsE TV0JNPcl0RJJsZZEe9xAd4LNE6b3+R4CVN8rQev0GNaZPKH1MAwW7HP2yt5H U6JudYJhL8ka7RvAdRT5/Rhe79Q3Y9rMeRg95gmMGP0YRo15FGOfGY1hY0bh tbfGsz44gSg7Ia/NQ/v1qBpmqcz9gwbEfaQcEmMrMLRt2zZeR484l61haKPE EOXnZ/CFLLaCnw/x+WIK2dza2oiff5qK3z49imHoMQwbORxPPPkknnr6t3hq zBh88fH7OHPiEK6dr2TtDK7VnMblqqO4UlWKi2f2oPbEFpw/uRE15atwYu9C HNs6Dye25eHwurnYt3I2dhTOxNYls7Bp0SyUzJuKkvnTUTzrByxnbdG0Sfjp +48w49v38OOk8Zjy1duYytrkL8bj20/ewicTX8VHE17Dh+Nex3tvvIp3X6fX 8Xj71XF4829v4tW/voG/vvwG/vPPr+PFv/8DL74+Di+9OR4vjXsbf3v7bbw6 cQJefXscXp3Ajn9nIt75+DN88PnXeP/Tb/H+J1Pw8ec/sTYXn3y+EJMmFeLr b1fimx9XY+bibfipeCfmlOzCzyXbkb95F9bsO4Ith8qx49BxlB6l2q3nUXHq Ik6fvoTKs9dw+ux1VLBWWXMLtZfv4eL1B7h1n+G0pQf323oYLnvQ1tON5o4e bNm2D39++TWMHjsSY58ejrFPjcCTY0fjiZHD8CTDUd7CPHR39/J8BZ5Dpe0N pfJJ9Dw5d+w1GUwYikQiEkOmwJC0R3o6u7B25SrUVlVzPuTf724o9plrT5NP PNyPU6W72bi8gCdH/QbDhz+Kx5gsGjHmSfzhj7/D7t3b0NfdBjMRZvovxl8t 9molQ7BT/Uwf9sGMdyEVaUeSNaqtnuxrQrK3GbHuJkQ6mhDtakW8uwOxng5E ezoRYe9DXW285kMfa11tzehiWO5pb0J36wN0Njegq6kBbfX1rN1H670HaL5z H423G9B49wHqb9bj7rW7uMXkzs3L13Dt4kXcvHoZl84zGVVTgUsXz+DyhQpc PHcC58+WofrUIZwp34vTZXtx/NAulO7egl0b12Hr2jXYuGIla6uxfjWTlWtX Yu2qAqxZtRCFBVOwZNHXWLzgU+TP/RCF8z5B4exPsODHt7Hg+/cw56uPMPOL D/HjRxMx+eN38P3H72LSe+Px6Ttv4dN338IXH0zA5x9OwCT2/WcfTsTH77+J 9yb+Ge9O+BtefvGPGDtqFIY9/ggeH/4feHzEf2D4yEcxbMSv8MxzoxmGFqCr q8vjg5ZXl1bHkC6TBvB6hqFwOIzNmze7NfVVXdxeiaELNbWcD9nS55+NRwfZ 9kLvQ+TjM30Ybm/Fvs1r8eWH4/Cff3gSf37xeXz+6Tv4+vP32LVWovFBO6/l YEobQ9UtM+V+xaSTed3RZJrXWUwmklzuEv6phqSlauNZWh1f6ZPR94VVa2B5 zU1aa0vPTWu4k5Trnxa+FJXznbR4zXSLXcuKU43pOGyGb6o9zYAMJ9GPdJxa H5x4L2vdSEepdcEOd7BnbkCsqxGJnmbEe1oRC7UxW7gFsXAT4v13Ge6vItpx EZHWGoSbqhFurGKvNei+V4mO25VovnYWDRcrcafmJG5Ul+Mqw+qF00dQW1GK mopDOH/mCKpOHsSZY3tRUbYP5aXbUbqnBLs3rcCCWVPw0h+fw+OP/xvDjcDP 8BGPY9jwR/DHP/wWq1Ys5+tPqf6pYUisyDqV7p5kEkdKHuk+TIWh/v5+rF+/ 3sWbJWsp9nR0omTValysOS9qCmfxMWb3L6bdvaws6fOyqO4n4+rXWZ/M+vEz rFw6C/VXT+N6ZRmmffU14y770dMbZ3aY4/oa+X4QyidI/g6qaZZKu3jhtUmT cr8WrRak2lPK26/a0fx4yjep/HCeX0a3p934pesftGTtQ8fjvKbt+pHcv1k/ 0p4Aab5Xl8nX2BmphNwbwBS1u1VNMFmf1+b+QaoBl+L1jKluHdWa4H9TrSaq W8qIUTKZ4nWn+Ribcpz5+FNtC6q/TuteGMcJx5kMvYHvvvocw4b9K8PQv+Ox YY9g5HCm00YMx7jX/o7Tx8t53XGeM2aq2t7BeysOiP/bHh/q6+tDSUmJiyFV H62/uwfr16zFlYuXZM3boekvHUNC/4k6C7wGhy3uq6u9C2uKi3G89BCS/X1M P4Vw4+oVXj+0ZE0Jerp6OVbcPYmtzDi6KX1mliZr+Hcprza/iwuFGc3vo+It ov6uk1EzbEAtTzeGIO+Fj68mJ20Za9DuUclCy0zLMRD7D6Vk/TV3j26FT8uz 1TzOKZ7VkVizJF6SOj+xZc14wzsfYZyw1cfm4q4dBzGBcee/vvQsnn/6MabX HsHzT47CW4xPHD24FZG+Lr7/hGOp2tViDbE/T9KQtpvam8jWZDn1dz/D0Lq1 JeKe1Bw2aJw7sJrp8MsMQ7yeZ47YX9a6cXzsxLov8h3ysWfnbmlqw4plxThZ dhwpZmRQv0ZC/YxTnEbBwoXYvWMv2tt75Zy3vHu25f43tuX5g12dJ+SEYaja 5XrswdF8X8pPI17d2JXmd8nwT8jxVPatqo+dke+l4lUuhtKy9r83lxOkb2X9 aYvvN+DlP/trSrj7YLvxEFkTma8hkONpynrsykcu51WKyeX+/gRKS09gxtSZ KF62GMcP70bhopl4+x9/RkHeHJwo249+plfNZELMbYWfgDxbpc/UvkNqn03T 5QMmXwe9vmSdd8+ynn9rcwvTlytx/eo1hiEvtpINQwPsevdYMQaOrCtF+Gxv acXKomKcPnmKx3N5bUTaGyDch3OnT+PnmbOxa9cB9IfiojaVO6eVPz+4BklQ bDyXHRDE7YJycXQZGLTnrv+ZXR2oHa9ytTkOkpn8IrMfg/KXbFdmku3u1cKW tXGkjCAfayiU4PVVvvnqG2zbtI71dR2T8324zOzcPGav3r11FfFo2Kvx7suH 9K9JCOLTOobI79PT1Y21zFZw+0PKojY2zrTWnuoLc/8QOz49BF2WK9eAX590 GeNaaxnXqjlbxWvr0ed8D1eat6yvr1yoxY/ffoPdew+jtz/B+048q+LWIi46 mD71c/6HjfcNtEEGNh1HfhyqtUf+tSP6WjZ/f+mfC65jueOiYjZcLjm2K29F Lg8Qi1rYu+cAJn3xMQ7s345ofw8cqr0TN3D9cg0W5/+Ehvt1PO/QNK0BMido /gR/lnb1P2GDxnP5siLveImh9lamb5YXSzmU8uKdWeZ2rv73Y4jwuYb8BtXn 3LrXSvfx2tj9ISaPTmH+7DnYs+8wOvvi0m40pNxGBoYGu7YfQ9lwNdjx/jVE 2fimfnzQPuG51iAp3CmcEf/hdQjkPiWCS6nchLTEGrOjexM4sO8oZs+aiX17 NqOzrZFzcbIzUzE2Ly/VYvGSeWhuapK15AfqLX2+5Jw/toch8ucThqgugxez FuPY0tTM68Zcu3JV+BhVLf4sYzOUcVR9ROdeyfApMGS457UUh2J/x8JhnDxa yutB7i8tR1dPRMqjoeX2uWuiAvIxBpNN2c7t5wiB/jdNh+tyajD86HKN9hyg PXcEhiyxJ6JhS+5s8DoDjtwHhplt6OwMYc+eg5jy/feMK+9BX3crs4GTXLZb fE8lC5cvX8DSpYt43UF3jyGd0/nuI7f89fwuhKFuhiHiPe73ch+gB/cbuHy6 ef2GqCNl2ANi90PVA36+QXJoFcPQpdrzsn6ZvB8eH/f2Po9Ewjh7qhxfff4p DpaeRH/E4PNRrV/y66vM6wm73WtDx5DiSv6aq+qafn2kr4kNGoMgDAVxNxF/ ctz1tsSfaf+TZELotBS3b0WtCuHDAkIRExs272Y2/CRUnjoi9rukeclrzAl+ Tvvx1NbWYtGiPDQ1tgl/mjHQThq6Hs/EENlfK6QuM6UMIp5bd+ceFi/Kx60b t2Q9YNuXtxOMD13eZJPvtHdD4ZKl3G+gfE/esR7Poz4Mdfegovwo5s6ejdKy E4jEpR3h9r0+73WspLXzZVsPOThPCsKCjqEgfqPHhfzcW9dV2XSGe06KHSRt sZ+Xqe3vbolcoPa2EEpKtmDO7J9xhs21WKhX+Jm4PUfnN/hrgvVZ7bkLWFaw lM3fdo6hIJ0yGI7cZ7JEroHSZWQjFTPuLOwFm2OW9lu+ef0W8hbk4dbNWxxT 9LkVILeHwqczMMT3mLmPZUsLcPXSZd5PbjyXfs/rl6WF3Ur3lDAR6u3F0UN7 +X58ZyrPMdsjpnGotGsDB+XZeXuxDLzHwXhQtvmRDU/+vsnGw3VZ5NdjGY2O SWbW9E+y1xizVeubOrC2ZCPjP9NRU3kcyVhEzi2ZS22neKP5Q3LsHOMNhQWL 0NnezvcetGVt1WzyIGh8MzBkeZy6jdnwyxmGeF8wDNE6+1gkyXjQdSxkGLp+ /SZisQRf90rrp1W9fK+PM8clSEbr90DXITlE1yQ5RLpMYEjGa2yxh7eSk9R/ 5JeN9HTjeOl+zJw+DdU1lxFPWHD325G+H2Ub5ZIpQ8F5Lj0dNN7q72x6yt8v fp+A/vmAOBX53uV+k5z/sNcmxn8KV6/D5B8m4UptBcxYSO4NIHNJ+DyUuW6W wzFUXXUGS5fMRweTGQ4/H4aMIZ0j8s+1mKuLoYJCrjeSHD8pRENJZo/dQv6i Aly5fAPhUBwxJpsSCZNzPSWHg3DjxkwstaZmIIZoX0byG5DNp/xDXm6K5PXc HyT2H+Y5eux9rK8Px0oPY8rUGdi/vxTRSCLDJ5yrNkk2vZQNE0H4D5It3j6E Xssml7LJpszjNCxJTk37Ett832IHDY09yF+6HD//PB23b5xHPNrLayo7st+8 OGPazechvXK64jiWLJ6HjrYOsU+BEZx/kXVO2R5u/BiiPYE4hpIWlz/RcJJj 6PKl61icX4hrDEt9fVGEwnHGcRMcQ9n27giS025zPAzduXUbhUyX3WZ6ku8N a9reHHL3dxX+YM6xlY3FftvV1oZd27Zi/rwFOHL4OLq7+tw8YdvdD3ZwjjOY vZRNTwdhzf9d0NprP6/IhqeMviQbjewyPjYm67cGrFi+Fvnz5+PcmeNIxPpA e3MLma0wJH3bKp+c8o5ihKFTKGB2WXt7l+arHZoO82PIxaclfIxNpFcYhkgG JaIGs6lTCPfFceH8FeQtXIKrDEOdbJx6+yIIM4zFY8kMn+sAXZmFS6tGc/TW jdtYungJfyUMKU5DWDAMFdsUe+F5+z/J/jcMhHs6cfxIGb77djLKjp5g8tGS +fx2xhzJ5fvRdYd4VfaulRVDQbZVdvmU/TP3Nyou4Ds+45oMG1Emf27dbWHc YimmffsVbl+sRTISYt+R/W8I/3VKi5HI+IXYB47JoZiFilNnUFi4FB2d3SIP whlcn2d8Zunn9zBENvv9e/WMrxe6XCgSTiDUH0Xt+YvIy1+CS5evor2jBz09 YfZ5nNdyoGPVObLJaX4fWn0ItU6HdOaN67exZEkhbt64y7Fryj3GdB3gx6fX 78JHYjIOefbkcUyb8iPKyk8zey3F+87m+917e52LfWSVzSbXBtlqzY9a+yBs GPJhWjQmhvd8rm+c6n2xc1NN7STtN0zzwVJ7v1qyFr8lz6fLOG/fRr53o6n2 PrS4X17Ud06L/d3VOiZD+BD53oKEn9stmPzjLPw8ayram+4wvRbj+OC5KXKP ddPU4h5cn6ZkHkaa75FaVlaGgoIC9Pb0Z1m34bdn/U2zb7V5ShhuaGhg+Czk 1yXuRRjp642gpvYCFi5ajMtXrqGjo5d9FmW8KMG/p+NU3m0uDPnvQWDI5Ppx yeJlzOarkxgStkeQbAvkI+SnTTGskzwqO4L8BQtx6kQl+vqTUo6bMp9BxVu9 9TNujU9L7m8vdaabmy65mL4mxIsj2lJeCg7G800sD6OqKZtKPJfAi/KvubJI 3hP/Dd8PWHJBlb/D5lUsYuPChTtM/ixAAePDF85XMjxEeD6IsK3k/qlS97t7 tXO+Izgr5yjMJjpy5DAf5x6GoQFrJIfUPLvX3YfPpjzdJO7du4dly4RdRtiI M91JHJpjKC8f12/cYtgN88+CMJTNbvH+VvLK49wKQ7dv1ol9qJMehjL9Btlt BrFPOZObjGcfP7gPc2bORuUZZq/RuWw5r03pF3XX28h952XcSe1xLnRoWuQT GzIfRD2HPI7vlZ1w+D57ZNPwGrcyZ09xVzff3nLcHAphl6u8IxWDF754gwmh lJXi4+0QhgyxHyXdR5T1S82F2/jp5zzMmzsN9XcvMG4dg9q7l+fNGWIfeVpr SvPGkDLUNDy+F4sJn/eRI0dQXFyM/v5IVjmUu2lrFPV6eYkEbt26haVLl0o7 UvQn4YgwNJ/8Q7fucvxE+hPo64nwmjJi3xaPa6j+HmgHQsOQx7lJ/hBfv33r HseQ2pc7m20UyIup0VjS3uSRfpw8vB/Tf/gO1eeu8vVUSdIpyu9gCr7urvGR v+N7oJIfj3yo5CtIOjw2IPY+F3vbq1wHji033zwt1vnx/UNsue8JyQOZE8/z JiH1nJOxlkfoHKXTTI517oOmfUPZ93F27/3MNq69dhff/DgFRUWL0NR0X8Q+ yKefErpa9BPcvFVai2iakgsYaY8XsPuLRuM4dOgQVq5cif6+sOdbG6JvbCBP 8uQQ6cwbN24wbrKE23o0ntRC/TGcPnMW8+cvBO2hSjyJ9oMO9cU4hnhfBsQ8 B15zoA+CnkvJoXt1D3gOoruPeYDNnd2+EvhIc9sgie72RpTu3Y5Z02eiuuYK Iglai0ZryxyZFylzUOR+nHyPIcr9SyZ4s/jerxbfY13Zg3rMS+RvWCL+oHII lXwxBHdV+8qrWgF873DFkSxL8h2H48uw4GKK+3YIA+zakZCJynPXMX36T9hY sgIN9deYPooLvm+kZO6jknlK13q8TtkVLq8gPpRI4fDhw1i3roTJg6iLoeyc aKAvJIOfaHyIdNm1a9ewePFiLnviDB8J9trPbPkTJ05xDD1oaBKygs3ReDjJ jzM4D/DHKIP9KX580TOSz4nkUEN9E8eQrdknfp9N1nkieZEXGzHR092KzetX Yu7Pc1FbexOhsIn+qIOWrjAaWrvR1h1ClHSF4g+myCGl9ViGSXvzSXtT+juV 71PltsXZWCQoF5XyUvXcPsvR1izocV7payaObGrrvC3hR+W2JP9O5MJGQkmc PXsFs2bOw8qCJehqrGNyJ85zDW3D5OczLCHjRP6mxXWYWI8r9KSwwZW/VYwT yTCSQ+vWreO6jOdM+/o5iMMG+bAULtW+8KTLLl++jEWLFnFZQ/ghGdTd3Y/K yiqm4wrRSHu5yj2i40zGKgzZVnZ5F4Qd1eheLl28xjF0n2GIeKmOoWx27oDz WWl3nNR6eNOifKhWbNtYginf/Yjy4xdx4MhFfD+zCB99+zNm5q1ExfnbaO9j z0E8wvJytYVNr+x8wau53KT9HU1hi9Er1z98vjvSHlJrDxw3F1JfT6D22aZ9 r1WuP99jkMkc2i+ZeA9hOsr6+EzNZXw7eQo2rl6G3rZm1ucpkZttiNgEtwFs uVbXTsv10aa0Rz3bW9VmVXYocerdu3fznGfCEMXfsvlXXc7vw1BGbFCuQyMf TywWk/HcRcK2Z/iIMO5DcujMmWpufzc3tXIOTXuGc50m+XRQXZNsdpn+N/l/ Ll64yjC0jMm4FmHbGGK/8KFgyD2n/zMVo2Z6rbWpDiuLF+ONcf/AH//yZzz9 xxcw5tk/4snnXsBbEz/Cjt2l6GHPGKfYTUrIHS6TXNvY0Wxy28tVt2TMkPyi lF8p91rmuf9uDqKQjSpflu9rmxRYIp7UFTaw//BpTJ+Zj8++noXpC1dj25Ea bGeffTtlCrZsWoOu1gaex086UnFt4lvCBkvLNdYGb5yzmcrGt30YEpiIxeLY u3cPw9BabpcpDOnjE5ST4o+7cNud8globU1K2Nh07kuXLnO7TGBIyCLiPISh wsLlaG5p43Ey+pzbUCkHmXUJ1HjbA/AcJIfo2udrLzM+VMTzEAhDwgbOjGPn lHEqF9/l67aoycBsXer3RDyBsvKjeOHPL2Dk2McxcswwjBg5Ao8PG46xY3+L d9/7GFcYJ4tQDDBpSbksfFT8fji/0dZaSVtD7F3quGs70tzGc9x961V+WNry bDDCX8oQ+T9tXX3YvGs/Xn5jIn77+5cx5rkXMfK5v+CZlyfg9Xc/xeqS1eho vs85vqk4FnF1eU+WzL/n/izCj2lJO0w20/LWoPowtGfPbmzatAF9jFOnAvLj 9dixLp/8+Xbcv5wSORXEs4iv016ZhRRzpc/jtI+rzfc6rDxbg+XFK9HCMETH kp/B9tUlyOQoA+NQAzka+LjUnLuUgSFb+qSDbINATMm4iMCQrWEozfP2YjEb G7bswVNPP4+Ro0Zh9BPDeXv88d/g8eHD8dvnfo/NW3ehqyeMaMziNUniCdrD mNkZtHaNcEPrlGPsszizUxPsnOzzOK1LZs+eIJuW9lZKs8+Y7KG1ygkrzetJ mJIb8XiCIV7J7xSOJXH67Dm8/o/XMHz0cIx6+kkMGz0Cw0YNx2Os0edV56qY 3RJhGFL7mQi9yn0fSZHHz/mbJTiQye7J5OuiDNcu89Yxexiimgp79u7G5i2b uI+R+4g1GaD77XXfvb62LCNvU/o/6HPiWlVV1ZxT8zynuM37jt5XnK5C0fKV 3Dcu5JfweXJ/hNSHfnmYy69vS65H919ddQFLlyxHa3OHrPdiunX6/M8VFHcQ dVhs6dtLS9kga+2we4pGYljF7Ngnn34CI9l4PT78EYx64hEMH8Xa6McwfMwT ePHvr+OL76di8qyFmDG/ADPmFeCnhUWYv2Qt8pZuQt7i7Vi4eBeWrjiKwjUn sWxdJYp31KLkwBVsLL+GLaeuYVf1Tey/cAelV+pQdq0ep2404NydFty434Gb rN1t6MSde22oq2/Hlev3UVBUgmee/z3DzjA8OvLXGMbaY4/9C0YO+xe89Kfn cWDfAR6b5LYhl4mmsPlJz3PfD9n3hpBLVK/JEH5Fsq+FX1ryHLdGlpAptIZw LZNxZJcRTyHd6sW+MmVOUAxxQD6C5lsj+XL2bBX3gXNZzteQ2jzP4/jxUygo LEJHRxe3R1KazNfX9Wfj8YF8huYqO8/ZSsplWY621k5pU1gu/xsyhhwZN5S1 MlS9JpqLyVgU+/dsx3++8CzGPPE4Ro1+hMmhX7H2Hxg+/N/w7HNjMHnKD1hc sBRLipajYMVKLGavi5cVoYDNm6VFK1GwbA0Kl61DYdEG5C8pwcL8tVjIXhez vwvXbMGytZsYrjZiWcl61kpYW4vCVSuwbEUxVq9djbVrVvE10auKlmBFQR4W zZ2Bzz58G2N/OxaPjnocw554FI8O+zc89vj/hzEj/xUvvfAcr+NM++sY0o4j 2cPXJCY1nKQsKSc9ezGZkusWU8pPLX2nEgv9fSGsX78WGzeuR7g/7vngffgJ 2vtGb944K5+q4EdVVVWMDxW6/ijCNtWjPna0nGFrGTqZHNJlmV9PBuXB+OWQ Pv50rrNn2DUZ12pv78zgT0PxcQVxLB1bnFelErh57SI+/2ginmF86Kkxv8GY sQxHo/4dTwz/d7w37hXUXb+IaF8nsyG6mE7vYfq7D/29ray/W5i8f4BQbyNi 4VbE+psR6rqPUGc9Qq11CLfVIdr1QKzxb2OftdTxz/ta7qK78SY67l9BR/1l dDZcQlt9LRpvVqDuShlu1OzDptU/4U8vPM3l0LCRj+A3j/0z06//zO/rLy/+ DkcOH2T3EeP80Jbch8ZIz6/2eImZoWt4brfk+nrdBWr9vSFsZlxo6+ZN7Lki Iv7iGy9/TqYa56B10l69RzGe1UwHFy5b6skwiaGyI8dQwGx7kkOqLoS+v46X 82sG8qCg8RZ5iYaLoba2Dvc3uXI1cuUl+DHEdSL5emJh1FSewnsTXsdYNudH j/oNnnlyJD77YCKqThzjNSSMOJvzibjw3ZG/mP1NLZmKI56KMS6cYNwjyRrl KSXYeVVL8n38HKZbyHdD66Jpz2vHXfdMec8G34PUNMgfE2Ln7UVjww1M/X4S nhz1KJ4Y9u8Y+ej/xohf/2+MHfYrzJjyNR7UC7+9XseN53W5+4h4c58w5c/D sSS3FvgRuo50YR/jQBs3rMdWxoc43zIG+t78uTBqHHUdp2w+x1Z8S+iy6uqz KCoq9M5nOjwv7OjhMsZ7C9Da2s6PEzi1uR3DG/k2ouRzTIm1l1lyQTPGmHgY w1Dl6bP/DRjKzHH1ahTKdexMFoV7O1FbVYHpU77FxPFvorhgMV9z1NPagmSY 8JJ0bULSA+SLsVNivIgHp6S/kfuYpe9a+IJlrFTyZ7UXn6U104RmHxv8/BGG 25rTRzHjm/fwl98Nw1PD/hdefPZRTGV/X6quQCzUw3RU0vVBc1+kYbn975cN aj6742xY0k8iYq1CD6bQ293H9zLcumUzk7sxmZ81EEN+veLPtQrCED3bqYqT zP5a5ukdum8mJ/0YEjJKxPZVI38jf5/MtAkHw1DFydMoXLoM7W2dges9c9ln 3nfBGCL7kDDBayEQB01EUVZ6APkL5qDx3h0kQv1IRJhsIOwnDE8/0Dyg56Dx SgpuaMmcFBeX0qbXdbltq3W4en0emc+RkvlQNO/pXCRPIl24d/0M1hTMwjuv /QkbV+Wh4XYtzGg/+z7GZaJXb1OMaRCG/OvbRC6zyqNJSx1hcL5EGFqzehWv mRjha4cH6gs/PwnKsRN8WuX4CblPspAwtHq1tzZI5DRYnA8VFhRxPqTun/oj Lv1H1JTPMZXM1KE6hjMwIDF0/NgJLMlfivbWDlcW54xrBMolz3b1MCT8DuK9 zXFEY1J2uJTXUOtsaeL6KxmLs/uPZ3AKwlCC4YqvP6B8lITAEcdZ0syIC3v9 LH0LXC5Jf7Fem1Xav8R36bz8PISjeILXMlq6cD46m5thUV0P8iMlRU67yGcS MRwlh/Rx1XmE8tnwuej6itIZOCNdtrK4GLt2bkdUYsifJ+Tn0EHcxK01qNXl VnJo5ariDAzR85YePIyiZcW8Tpa3Fk/Y/QpDSh4lEpm8KMhXyL8zxLqj8rLj Qg4xDAWtkfHz8aFybSVnlaxVcaRjR49g9fIi9HR0CFuH54Ub3E8di6f4e77e QMacFSflz8bzyA3hy3BzjmSOkbsuTvgaMu7FEXEUlRctcsNFjI7HB2pqeT5w F7MreA0lih2kFC4z41T+3DzFhbx8MzkXEilZPygtPxPj0t3Zg+KiZdi3dzez ExLCT2Nlru3WMePnRRl+bJlravEcZYfjt6zsKFasWO6NucTQvj37Ubx8BXp7 +z0MGbab70gtxdc+mdx3ru/jF8R/TRkjoFrXJOOKGB/qbO9yf6fXSA7yLQ7G lfR6zv6+KT96FOuZrO3v7pZ8gT0jw0iC7j/prYkyXZ+04COGqcZC4EDU1hBN rUNxaxHx+1X53Gm3To7HXQzuH0wZhN0ELl28hJUrVvM5KnBmy3oeVkbd+yC/ n75faIYPUK5NVPUtFIZIl61etRKlhw7weIPi1EExVX0O+2UT5/eJzPoThOWj bI6uXbta8wE7fJwP7j+EVStXo68vlCkrLLh+xpSMu+Vax+DJiDR/PsXXVyxf yZ9N3asfF37f0KAYCvAtqWcvZ/Nkw9qVzK7tlr5IGTM31ZxTviVb8BeV/+jW iRDzTtQTljmRlimb49Y08mrTpN3a3Op4nt9hCG5tsDl3+8ZtbF6/GeG+qOtr ETE5WRNGq/Hv9/v5+ZBrf3MeqHyAXswu1BdGCePUZUcP8/V6ar+WXP68IB+O 4jLCzyD0LcVzDzOuULJujabDbW7b7965h8mhlVwO+WWbe+5UJqcLwpDHxURc jM596EApl0OqVlUQFxoqN8r2G083O1wOlaxajr7eToEh10cr84h4LfmUwJGV Yx7wllmL3JND8LW0K4/c+iyck5t8Lfyd6zexqWQ9Qj19wlev+sn2OMVA+ZAp Nwb4kA3LW89henKM/EMripfj6JFSpsstN+ch93Nm6jjFh3i8VdoSiu8fZucl /6X7G/Z9NBzDrh27mY5bxTEUhNkgW9A/5hnjKTFEMu7woSNcDpGeTvliyP7f 63jJvc9iGp69r8bN5rbtoQMHUEK6rEfoDUPGjFWtJYEhk+cQZeQDuflkA5se A7QCjnFrWvlwJWqbkBy6iQ0MQzS+IidM1tySe6+kVT11rU/0Pbn8Y8H7UNqN mRgSnJr4EMkhXrfSlbNDn6MKQyr2q/qXMHSo9CDHkM57CUMkh9asKeEY8vsS dZvPH1/1ywX3fizPLjuw7yCzE1YNwJDulxAtnYGfbPvtKQy5e7I4YkxI/1CO 1IG9+7BmxQr0Md0p1lZA6mSRu+HIWLwpbVdL1qZTe2Pk1qWZ19Wv7+5Vk3H/ Qs/Q2paSNRvQTz4/en7a34bvcSP2gKC9RdJuHfFMne6XSR5f0NaVyXg0NcLQ qpUrUH6sTNbqSQfO+SDZntnfcNfwqecmvXbw4H5s3OTV0iOdF4lEec4S1foM hUJezN9QOfPi+vo6jGA/YNrDhC3mRoLxoT279mJZQRG6OrqFfz6HTB2SPeZi yNc3ZAez+97D5gPVuCX+ZUi+bLpxNk/XiibilW79RnvgdQdiyJOB+r6xQfvm Ub/TM1NtsHVr17N76pW+AXnfag+owN9m9kOQ7aR8OMo2oLlA/hmKiVI+LNk/ vLZmFrmfTR+o/ZR0DHH/EOMm+/buwZZNUpdJPk8YoprVGzbQ3vaRjBiKLi9y ceigZ6djCbeEoeKiFZwPGbIGRTac5MJQ0HcZ92MKDr9n1x5sWsfmA9Mb3P4i vW44bl3DTK6X6cPNhd2hzN0Bv7dErsaF2vPYtGEjryXP/ZeD6JRszxroC5Tr PU1ZB4hq9eTn5wsMcX+cZ78OJoN0DAlZgIx92+J8v8292LZ1k8BxSsmhGLZu 3crlENVA130Tfgz5P8tln9N3xOOJa5EuIxlrBfhMB8Nkts/06/O+lXbg9i3b sbFkXQaGTI2zKtvG7ycZDEMPgylPp9t8bei5qmqOIdqfiee+PCR+dAz57XT+ /IaId1AfdLS18/yeY8eOSV+Kk6M2QXYMiTmQdjm5whDJoe3bRI1z7mNLWRxD mzZt4vm3CkNB9pYepwiyD/1joDC0fesOrF1dwm1Oy7ADz59r7Pw4HdB/0o9C 56b9IFcx24DkUJS95zFJU8ghTweImIBu6wT5FXLxsSFjiGJMiSSqz1Zh4/oN v0gO6dfUbX79nkneUI4hzSGqz7poYR7Ky45pYzZ4jDLThhmIIWrcl8gwtHvX DnEfKYFrwtDGjZs4jnQ55Pcf6HwoaA5nw9CObTs5hrhNYuixp8Hnuo6XIAyp +1C5EPSMm9ZvwmY2XoQnNzciwx9suXawX2/nGr9cGMo6Luw4wlBV5Vls2bwF IZJDGqfMib8scijDLyB5vLCPbLe2Zn7eIhw/Vs73FrDMTFt6aNf1dJm4tuDr FH/bvm07du3cIf3Q4p76+8NMj21knGg7w3LMxW3QWD0shmhukBxat2Yds7X7 3XXSfnxmk2t+DOnnznjV/FGb2XwgXUa6k3xsPCZlqbx+hSFvfZYfQ0HXHgw/ 2eeAzfO9K09XYufOXYxvRgfYokGyNtt8ypjH0jfp3qvU58SHluQvxqkTJ2Vt TRED8scpsz2baP59FoTfIBqOs/7djJ3bd0ifocPjkGTPl5SsZ5xoG9/Pw9+n uTh1Ll8Rfc651uZtAkNdfZxT+3PEH2as9HPr8V6xnxdhKMbrb9O+EWTbUy0e 7ifLsH9lPmAye8xmsJYNQ0H3SD6V0wxDe/bs43MqCKv+2HVmn3jzRdcRal/X DFvTEDVUSQ4Rhmj/HuWLDPId+3113j1Zni6zPV0W7qfx3IKdO3ZI216su+jr i2D16rXYsmUr35vKs30z15EE2WoDMOTDBc27zRu3MLnAbL6eEPcPJXjNjsH9 pv6xCv5evqdzSQxtYTqZ9vOjvSHVPnRkk/FmyHXqZmbMOvBZnIHPn80/lu15 6DPC6smTFdixQ8ghfdz8cQ2/zA+6L+94041vmErWMFnc9KCJ86EzFafdmmHZ 4qv+6wRhSPc99fdGsK5kLdNnWyROhC+bajSQf5FsMyWHeNxa7iej8jNVXos/ Luhe23Qy/BAcQ6EI45KbOEeJ9Ue5HOI+ixwYGhq/9GFKYigRi2Pb5s3Yy/Q1 vbdUjoolcWRYPj4dnM+nrqXHUXPVYcwloxWGdu3ag1AoEogh3ScXtAeUf9z9 9+PmgTAMUf3LhfMX4OyZSlGf1cy8z6B8j4FjIWWitsZW+cBXrijGju1bB2Bo 1ao1nA8RhjhelA4IwFC2ealjiOtA2guA2WIb1m3k8cYIk3e89mlA/tpQMeRh Ca6cVPqWMET74mzZvFFgiLidu95Q+oGk/5yPQ9KUvrlgHAX1uS6XgmSGH1dK lxGGSJf19PRlxLTVMaqP/XFVPcYdJDPd+06JNUXUv1S7cP7ceYyDneE2DckD FefVY7i5dbhXe8jvA6dY3J7dO8VzmiIeTxiiWNmOHTv5uhK6LsVrRX6l4bag fLqM/vPLIQ1DO7fu5HJI5RJmx082DpRZU0SvDyHmi8itTsYJQxuwnz0jvbek HU0xBeWbV2u1TSPt+eZ8z+KX+7q8CFrb5x8P3eYjPyvVM9i37wC3X4LqWwbJ Bv16+jgQ1ry9EEVePmGI2w+sf+vu3MWCefO5HKJr6+vSg+aKPncHYEiTS9TI tqYcySOHD7hyiDDU0x3C8qIVHEORcETk4SXMARgKkj8Z+trKxBD9He6PYOum bUwu7EU8HBPxshx+xmw+fz+GlE0jbFD5jJbN+dDmjRtwcO9enr+YwQU07mmr 9cY8h2gg3wvifAIXlqyX6/nugmoHuD4rkkOUh3fsBA7sP8j7V9XvU3naStYH yZig+TtAt6pcxoSoE3339l1eJ7rmXI04r9z7V9eBg2Mo2E9N4ynySo64GKJr 93T389wMssHJpyLyQS13jbVff/lxFCQ7lByk8+1iMujQ3oN83ylD5dHawfef NW5Ez2Hpz+TZxSqmTDwwxuzADevWo3T/AabL4oF8Urdh+PzVxiQIQ65utgTe VE6eqmWhOEOQHlO5NZSHV3rwEKKRKLw1+iKflq6r8l/1Z1ZcKhcXdceD5+Xb vN4G1RqfN3c+amrOuxiyrHQG/pR/Lpuf0Y+ptHzfx3TxGmbzHj18RPaHw/ui o70bixctycAQ4ZnbxVr/qufx71uRKRu0e7AEbjesWY8Du/cjGUkE6rKh8B9e F8+hfEy5D5WMB7p51fI+aIxKVq9humwPw1AiIy8nA/uGyJ0WubAD13Zms3n5 2gs5XoZbX3CgTNXHmrhBWVk5jhwp476OQN4kay368Uu/V7rLb7/pWBK6TNSL vnPrLuPUC3nupFqzbMg1qvp8CqrFmDF++jyWNkxvdw/fk4MwRH+n+BrXFNpa u3jOPOV/xCJxzu25vEiaA2SnnwuoPgzkMRJD61evw8E9B2DGDdfW9uMuFxcS 36v6gI6HoYw97sT40rrpNStXM925i88H7tNMBdSCJT0RFxjSa+kNGBvTixNw bBhyXzrDhr52NBu/IVuQcHOo9AiOMhzRe1N7dn1tmcKQbuepc+kcagAPM4VO Tsp6QFR/d0n+ErEHlNR1dL/6ehFq6fQQ7Rmtj2k/WNpf6tjRMlcOUcyss6OX YasYhw6WMi6dkOsuxZhkyMtsPMhOZ2DarW9FnJpxsJKVazmGUjG5H5GVqScG 49Oqrz0dlpmzI3INBceJhhNYvWI19u/ZyzEkbBUPQ+7endKXwmvZmMH8WZe1 fl+RKbl6Nu6t8w6OoUOHcYLZZhHSr0oGuHlxWvOdz++bG/CZ6WToMWqEoYIl Bez1ZobOGxjXya0HgvYMpP3vaM8gisUJ21bEzKhueFFRMQ4fPuphNQuG/GMf 5PtTWKDnI1/xquWrOB8y4mI/IuXvy6YHc80F8TfhxtKa9Peb4LUkVyxfzbhH KechtP7KSNpSF6g99bw1h37Zo8cSguy0TB4onl1xYj3nSv9NNBLnGKqoOMPx RMdwTBq2JydTlrsWSf1W1dnQ9Zj6jPSjqOtiudgx+NomC9euXGOceqG7F51e g9evo4fEI2Sje+ru7OJ86OTxE24NZeJDpMtorf1RJp/ovpTd79ZG9413Lg6U gSF2DOWBUR7sof2HkIoLOaTvZ+rnrKqp87mcXdNbnu3n6VHV5z29NB+W4yDj rzReogZXmvMBXn9CyiKvZa6dCNIh/rU6+j26XNvIrL/iznfWyC+2d88+vmac 8CT2CXZkDELINNPnc/bfl3pP+KF4CT0bxxHnrl69KHpP2CE/Ne0jZsnz+udH Lh6UDV9iPHtA+99VnDzlrlklPtTa0snr6JWXl4NqTQgMOW693Fz+HP/1/fZt V1cP15OUU52UckjnhdnuX29iLPw4gpuXYJpCt9Ge3d29PVhSUIBSxj9ovyFu QyW8PJcMfWYN1A9BfCNIj+v3rTihN980vcauGe2PYt+ufaiqrOY8XtVpVLak aWViWpf7Oo5ULQeFIb6Xilw/p2o2E8ejnEnaR4z2tiAM2VYwZxgqhvTPFKc+ fapC1POUNiphiOTQyZMneU57pj9kYG5ENhzpGDKlXFAYItuW711mOwOODZJn Sv54+9Jp+cu249aVV7XLKS5P+zS1d/Vj4eICHDpyDFFeO8/hew6J+knKJ6P0 X3DcKht3zYYhP7fIqA3AbEbai2Dv7gOoqT7P5UZGTTleS9bk9R+TqdQA/ATF BzJqfyj9Sr5oXv/K5Bii9ZDka+R1rnzjFJQXFaRPghrpMsIQ5bKkEsLPQfKo pbmDy6FTDFuDYchve/r5kR9DlNtLuozWugoMBcfplQ/Lnwsh3tu8lqXtsDlM LW2wfqD9hUx+PGEonkyjrTOBYycu4aPPfsCiguW4dbcBIarRnlJ1O4UfyV1T oT3PUDCU7ZmDZaas/8Xed3aHsHnbblScrkaUdI6b463W0NL9GbJl6pyg2IR+ X0rmWbJmJvEjqv1bVFTE69mr+vm55ms2XhT0fJSbVLh0KarPnuV+cbVfB9Xa zMvLZ5zvtIsh5SPNpsf8fev/Xq0bJgxRLvXxYye43M2GP/9nmedk74lHc/8Q a2nxalvCZo3F2Ny7UY8F+Svwtzfex9hn/xO/e+EvmPTtZBwuO4n2zn4+Vl5O 58BrZpsbQ5FJvMnzm6pmg5HmOrS+qR27S4/h6ykzsaiwGNXnrzJ9G2H3A1G3 2vT85DrP17GdncsIf4fCrcIc1f6lfRbq6+sDx+9heLRfN1BeyZLF+ag5VyV4 GGtkx9Tfa3QxpK/rVhwzSIcFYUjxTJdjsEZ1q2it/cnjp8T+bto4qX7Rf5NV tnH5pHMh8DXQ9Ayd3f1YzOTOE08/g8dHjcKvR45gbRSe+O1zmPDuRzh+6qyY +2aAH9DwYq5WAK68v1V8UZMLmh2l9vxQa/dp/4SGB62YNX8RnvnTSxg29rcY +/wLGP/eJzhQehyRGOkv8TtVP8i/r4bO1fxzVby33fmgGt3bhQsXeB17wpBf //5XMETnov0M8/MW4lx1NbcDSY/Rfhwkh+bPW4QTx0+7dfHddegBHCAXhnT9 Q3K0rbWd87vjzBYUc8LK+G3m+b21NuT/4s0R/FP0parr58h7ZBhiOL964zYm vPMBnhg7FiNGPoJRYx7Bo6MfwfAxI/DM757Hz3Pm8f20qFZDSvoIeY3KpGi0 Dj9Ge6QnZb0x2QxZlyNFNUFSYK9Us1XGacmvlBL3QGvIEyQPeT0Lk//d2RXG suL1+MOfXsSI4cMxcvQoDB89GsNGjcHLf30dFy9c4/0vcEx12NO8+WWe3ybP vs+PkLHEf4gPFS9fjqYHjRn7izwUhjLqnwn9T+dubmzi+4jVnqvh/m++DyfD DNUenztnIU6drHT3mlL1GbLpqqx6x1I+ZJvbsFTrg/a6OnWygvevym3y15XN 1i+8H1P6mnPPr0Utzmy9s5WVePONVzF2DBurUY9gxKj/wIgRv2J4+jVGjxqG 1159FSuKVmPLhu3YtnkPtm3dj+07DmHnnqPYursU2/YfxY7Scuw5fAKl5adx 9EQljp2qwvGKapyqrMWZqss4e+4aKquvoqLyGqrO3UPNpSbUXmtHzdV2nLva htobHbh0rw+XG8K41BDCvvILeOudz9i9jMajw36NR0c9Ktqwx/DUU09jLa1X lHXuOO+k53TrQ2T3WQXlzno6wuH9e+nCRc6pSWaoPW+C1l7mxFQGhoTMo3MT hijP9nxNrcwbEH7qhvvNmDc3DxVM5vN9OGWtGKp5RvrsofhQAIbIN15JPD6p bCLHi2PJmpB+/aHb1a7Phe/DIetXSgzFIglUnT6Fca+9hCdG/web748y/DyK 4Y/+K0YP/xVGPvYrPP/0Uxj/+lsY9+p4jHvlHbz1+gd44/X3GXeaiD/89RXe /vPVN/Dym+Pw+tvv4I0Jb+O1f4zDK2/8A6+/9TbeHP8u3hz3Pnv9kH32EV4f 9y3efG863vroZ/zj4zkY9/FcvDcpD5/+WIBPZxbhw+mL8fLETzHyqd/iNyMf Y3r113hk1K/w6BOPMF1L9UaHYc6cubxOLnEKzoeZXWaZSXgx/dx+hWB+LDBE 40vz9sH9B64cyrV30OAY8mRcw/0G7nu6UHvBvT+SDYShhQsW43RFldgzKCz2 nKJ6sYofDUVPO5KziLWRQn60NIn88LOVVS6GRB0W6SMxPDnjcYuAXB5DymRe L0zllLHPmK3c0fgAP3z7GdNlTO6M/jWeHPMoxrKxevbJ4fjbi7/DmqJ8dLc2 8X2rwr0h9Pb0oKerA10dzehoq0dX2110td5Be9NNtDRcRdO9C2i6ex73b1Sj 4WYt6q5U4Wr1SVxmrfrUUZw6VopTZYdw6ugBHC/dhSMHtuDY4S2oKNuKvVvy sWnVVMyYMhFPP/84fv3YP2P4iH/D8OH/gseH/TN+/fi/YPio32BR/gLuayE9 mYpZvK6VGU/wOiHZ6sVk0wkex5By6OIlrF29hufmp91aX7lz8Afj0mq/tPq6 ezxX+zLt7xyAocoz51w5FOeyKOnWJ/XzuexcL52BoeZGgaFzpD9Tnl0tcugd N76b8tWkGcCVeM6PyMlMpGg/DREbiDOs19Xdx3fff4vnnxmBp5/4NZ5l8/3Z kf+Gv/x+JBbM+h43LlazcaJam3F2jQSv4Ul78yTjEdYoxzvEXvuQiPYgGe39 /4v78v8orivff+i9l89k8mK821knk0wyS8YeJ35J7MRLjB0TwDab2EEgMAIE GBBIbGLVAggQAsQmQAIJJCRAQmgBtO9L711V/X333KXqdnVVt8Ce9364n96q q6vrfu/Z7jnny44dRjTAxtQQ4oExmHTM1Bh7bwLhcXbMxChi7DE6PoToJJMl UwPsOnrZ6EZgtB1TQw/R0nAJq5YzXP9kBu+T/SbD9ptMHr36yg/xq1/9AqdO neC8UCHZI5zsPNNIlb1e8siZ81R7iO7v3cYG7NtTyP3wdBjy0md+NovCEOVI 0nySzWXHf5hsIHuIbGqSQ0HJJRQKiDw0PdfDC0dePi6vYTdEzz3C0Na8Lai7 Vc/vk/JF+V5hJG73ruMj6oMffm8MyTctbCAapIcfM985v2AvFiyYh625a7Bq 0RzM/uhdzPnwHezatBJP2prZ3E8J3iHe/07YZIJLUeaz8L7QBn/ksWzVI4fi klHHV4/JvXHqJ8R50Pg1x6F4G+y+m+z90PgEbl45j5kf/wE//tEL+PmPZuAX b/wQ/8weP/jz79HA5mBkVGIoJuzpmOmtx/XX6WxHhaHGhtu8X3Z/bw//3zp3 lBd+lD+d5K+mDNGrtK31IcdQ890me34IJ20PO7lNXVtTL/ZA5P4L4Uhxk7t1 lu6L63glXcZ5nw2R79f9pI/HNQlDvIbOVPkKlszfidm1he69Bgez9BgTMozu RYSdP5xAT88IcrduZzLoC9xruIEw5YKPj2JqtBdT4/3s+if5PIu+HgnOhcHt S8lpFpc8m2qoXu6K+9qUPB7iOwmeAyf89zhU//G44jFj12QS92JI8CRQr9DQ xBQ6m2uxcdUXmPn+b/H5n/8Nqxb8BXM//R02bctD19M+dr8Jy4LbxTD8eQjc tqd3DFDYLHW3anFg/16MDA9KXgsrCUN++xq6bNBz8tSg15QLQLpMxxDJIcIQ ySHCEO+7KPvm8Z6TWn20W/647TyFISE3FYZ62W9uws3aW9xvduwhRw7FtRww b/tRxBj598ivDllob2XybUs+1q9ZjtvMTgkx/WLxfuf03xnuTeLxjXJ+Ks75 Zd9HlWtkyd6vzj6V4rdWHNfOEHm2KmeF751TT07ZX4z8fYNwHSWcmpx7zODy iK3HqVH0PW7Fw3t30HK3jtlad1FffRY5K7Owf/9B9A5Och1vxJ0eoZninPqc J2NBYOhm7Q3e43x0ZIj/R8snv8sLU2p+k/oHGU6/C8oroXzFe0337WuhtUj8 hps2buX8PmRPkyyiuo5IxHufzEvW2ddj29Qi/vqki2q/N+F2fYPkbxA92bhs ljpM5YipuGNKbNVQPHDgsd8H9x+z/7Ed67NXMZv3NozgBOfeMWUfE9EvxtT4 mgQHZoxdXIzPkeS34FiRuLZMu5+daf9nuZeq9UuMqTiVzAMQ7xmCa1juoSo+ V45N0pey9yxxU4bJzhwbRXPtVeSuzcbR4jL0Uk8d5pfxnuk+MU5vG9obQ/V1 N3H0yCFmszsYSmc368Mth/j8KhyxeRE881vR8qBVw4PF7aFtW3cyPXpP1nO4 5Wb6OLUfhrit1f6E4/ZuY7PMxXfqsN32s5cva2OIyXuK/fb0DmEDw3v28mVo a7wFKxSEFTE4h5Ah+W14bYDsScX9uAQ7pxXnPJ0q3qxy7Cz3/zOcYbni4jY3 Nc0r74XIrpPhLsLkXdRgPhX155MxHtWbivigLdJxpLNC1PvS5DkwoclxNNy8 iiVZX+FgyQleJ2rFjKQ99nT7n977WsIvo30IqiEcGx0RPAJmcq5KOnnktsd0 DBGmKFd7a942nm9rSp5awszD1g6mF3Zw3lXhH6Ti3+u11z6gmAdwrBCG2tu6 eJ5t890HWk82r30owxNHqlccxZMfPnyMLXlb2TpYj7YHjdzXIm7vhCE4Lg25 L8/vh/IPjYSti0Q/xbitr5JlncK3hiN93oyE9JucPvsq3z9q5/5IjOr78ja3 nuKSMvhr2r8PTI7hVs1lZkesxZFi5qcF4nbvSK94juHCUKptLGRf9dXL2L9v D4YG+9PKIff+vR+GFAcpYeh+8wOOobbWR1x/kP8QmAoz+dTGZMUW3GtuFfVs RrLt5hWP1n2GFH0tMUT20MPWduQyXXa38Z7o06XyIrTYqsV1CO3HGjY2o7aN RLmkESYj72Nb3jfYtX07OloYfkKTfN5UvYd9XrWPbTpzSXginFmSD1X0hDUk p2ZC4tTBUOr6d3Jvuc3kysGISY56EctTNQKib6OzN0/fEXxRaq8lzp4HJkZw 89olbNiQi9Pnr2BgdJJfP7fhtdhgEt+nYWn6NjlOTee/fKmK20Njo8N2H1I9 J8LPttbnOkk3KFnEHpuZHUTr+NHDdrEvSLx440Hca2S29tcbuZzivWgN75x/ fah6g+TcUdXbTcZxmE3V0vKI3Z+NDAPNwnY0dIyq2kKD53GYPL9Dys2YyLEM BJmfUd+MlctXYlPOWnQ9fIgY01/xiMhnS1mrHnh34pSq58j0ejT4yXz9Put1 Nqlzo+qMlW1gwskpFH1FzTjTa1NjqGbzvigrCxUXLnHuL5MTuSbk+mDnsaBx xpp2PagXhi5Wnee1voQhU5Pv0/l/ejzO7hWi2WZNTfc4N1B7W4eweSgeymy8 ViZ/tm/Ziq72LpmrFbfxkA5D7vijylUxZY4e+WHk85Euu9/cgqQ+0LKPqrCh NLvHjlUnMMFke+WFq5g7ew62bNiA3sePGX5CIr/TxeXpnl93LpK+try+47cu vf677pNmmh8v3Nm2HtevBt/nCDP76HxFOVYsy8L5i1cwFZb922KJpP7XTv6l 17wIm/rSxQscQ7Zvr+fETWN9xBVGPWQg6TLK5XnS9VTkGdMaYnKn5V4r0xNb 0MGwxfduPHK03PfVO04t8cO5bA0eB2x98Ij59puZnmzRdJmaX8d+EPyI4INk 5NBoEGcvVCN79VocPrCP2T/3OXcL8dKb0ibxshO98OGORaSzVb3+qx9OHfyl l2nuNW7jnMdMRf90IxbB2EAPrlw4w+T216i6egOjkxF5T8nmk8epegIz1UYV +XhxLoeETT3sxIcy+GYp/82w7D61pnb9dxubeC7P484nDoYiwtamfd72tnY4 3LKp+Tz6fdPjp8nxo4SMMUp7qKWd+4KtD9pcfZIVH7vqYS+xx/wryvW7eKUG C+YvwrFDBzHY283lD++nSr0MTUfOpps7N36eBUOZYv/JGEr/Hd1vdse9uHxR PFeREKbGhnCi9DAWL1mCi9dvYSoUFvIqLmWWtOHihkumabrswvlKlBQfxeTE mI2h6fhlScOuxUr+74QhqokmOSRq4kR8uIn53bTP+6Triezz5tRU+d03zz17 PiA5SGK8huF+s6iXa33wUMo457yW1PFxyf9FY4r5wJeu1CJr3gKcYPdhamxY 1LfI2hnVE9QvbuKebz3elO6+ZYqbeGHI6xoynVvJcD3GYdemkF3F1khgbAQn Sw5hwVdzcOduM8/lVRw+gsdHxHCVbeXMi8nj58TTQRgKTE1I3tx0/9FnDcmh v8dt6rv3eF9Ewd9j8J63EWbT3G0gbH3DMaT2I9LNjy6bk37DsOz/SromFIww GfeQy7iORx1QvLXq3llK/pgiJ3SQ6a/yU+ewavlynCsvw0jvU7Y2IzLf3OES 0+Vjpvn22iOYDob8cZEeN17f9bNbvX5L9JOIYri3i92DYrb+NuJWfSO3jxg8 5F6kipu7dYXA0NmK07y3SzAwKeND3lhW+k89pgwPDN2uu8Pz4ykfQ/QcEfxF hCHa0yL5FLdtaq++EN5zY9uL+jzxPi4RGU9gttajThtDKk7t1NImMB4Io+Rk BRYvysK5k6UIjw/BioRhyZ4Wca0GVMkWN69wOr3jxpCX/ZxRvpuJtOea7vBd m6aMQ1COK7OPAuweFB86wGzCdTwHLsJzbBN2LEL/rrJNiSeA5BDxTpEcEvGh ZHx7yYBM18p1Bpu/htuNvE6HMMRrsnjv5BiXT1T/2tvdm2RTp1vfnjXgUpeJ 3CBxboqN63JI5ACLHNeEjP+NMduxvPIyFi1agMrTZYhO0d5XSPD0mAl731z9 jvptPb7spWO85MW3nef/Dgzp7/O4EK+jFnt14yPDOFC4h8nmNXjU2YtwxJK6 wr22hRwibvszp8txqvwE0wNTthxK+g3XPZvOf+F9PySGqNd4X0+/jKmKfUGy h6gvUW9vn/S/VY6Pv1/iGWPkn0nuAsoVYLqsmZ172+Y8tD98xGWcXhtP+pzq wY6WnEQWkz/XLldhfKifr0HTEPEFU9roetxWx6+XzHHnSXyX8uLbYsjPNhCf WVBxTnu9MJ+n78ljlBw+iK1sLd5raeN536amoxzdYHC+PZJBOob0eOTz/heF ofqaOhTmFzI/Z0D608JHJl1G+SZ9fX1QNVjC9/S/j25fx7GH5H4m7TUGw2hm 5/5Gxg0UhjinEXve2zeEw0dLsXLZMlyqOIXIxDjDj/Td6f4ZCakfnX1npZfV 8Ort5J2vlX4+vT5LkeUpvvR3o8PsQb65Zdry3JBrzWI2zijz+4mTLXdjLrOz 7yFEfRZT1nWc90KkXom6LnNjyMvWzajLTJFzShja9U0+Brr7HQyxe95wuwF7 9xSgv38g+R4p/iRXnNwdG9J1jMqPIGxSD6m7t+/iG4pfdnQJDBkifjg8FsTh 4hOY9+UcVJ+vQIT5X4mY5Hqm3yA7m+bNsmRtWWrelKrldtel+9tAyTkQfvfQ 7z09jpHu2OngxjPWSXypKvYq+0YmiFNIxo/6ex9j5/Y85KzLQceTXuGvxZ15 IjlEfdaO2RiatPsK+8kfP/82ZZ/dEDmnt67XomDnLgwyXSbeN7jfXFd7k/dz HiIM+fS5c9ZmIsWuTYrB0P81Db4XRL2H6m7dwTfb89HJ7HXas46EEujtn0J+ /gGsWrIU9devIjI+wvATRkLlPpgiLho3RW4f7ZPH+TpV60jun8v6pZjicZa8 4zw/QOaGiX13VV+t+oVYknMseR8zWfZYSUPtZ6o9XT+dlIopdS7tWNkzRuWU q8E/43xUKqc4YV8L7fFFIkH0dHdh29Y8rFq9mu+Vh6luKa74SizeP+rQ4f04 eVL1zqF8y/SYcdcY69ep83YQHm/euI6ivXswNjQo3qf4QjiCuppaG0Nmmrid ui9ue8jWabL3Pz1OTMXQ0NyF7YVHMXfBcpSdvoSWzhHUNz3BrsKDWMvuwY1L VQiOjzH9FeX5Y3rehRnXhv0+tJ49ptgLV/2mY84+usrxsf1nXpsvcWQpPGky 1kzO8+B7VHHlZ6s5NyU+VX6aZX/XkPkF7p4SNn6tZP9RxYEdvqsEkutwHN2m ZID6/Vg0wmzLFiaPtmLr1u1oefiY9xXg56I6l/Eg9u3fwzB0kufGx2U/xLjh F8/zlqG2b6RkN71m36+pvsp06u4kDFHfy1s3ajiGBvv6+XG6HHbj1m23KllE n3FuFeL8ZDZffUMn5i7cgJ/+5g94/Z/+DW/94VMsXpuPOUvW47PPP2O4vYzA 5ITgJJVyIir5bbkMYWvKYiPBFZrgGTQ5X52wtQyOGeoNJ4bYExf1QxxDJA+5 DlT3Q8wpj9+rtc/lEv2+k/PBez5SHC8mHi25/8IxxeWbIf1l066fVHngug2Q CUMpcVtTyR4xd5wTz1L7ZOK1yGchHvUg2h7ex+LFi5DPfLbewVGm14TOopq1 HbsKUHr8DMZGRX0O1XFSHUPsGXyMVAwluN1z4+oVhqEChqEhcSyP4YR5D9p9 e/byng4qr8adK51suyXbsLZcYvMbCBpoaurEBx/8HS+/9AZmvDgDP5jxAn74 0qv48U9/iY8+/ARXq6sxGQyw/x238wpIZ0XoegyZa8hkusgtlPv5psMp7/Bt yLpX2btJDXqtOO5MxW+XZu5sPk67F4jo+0h1tmI/JrkfOvcLLMvOfYybhl2v ZOtHCzaHp34P7dfyd+P0Xy2+RS/7nKrcW7lfb4pc61hMi8nFRf5Rz5N2rF+z EnmbtuFJzyAmqL6/bwwrNn6DHUWl6Oyb4PvWoZDBfLS4zCPV+4YmbL5HnbdS yG7ImIDKqUnwWGL1pYs4uG8PxodHbBlJnDbUj4jqkYYHh22OGT8OWbcPnbR/ zf7nBJOfB9j1//Mv/xUvvfIyXnzlBfzvl/+R13rOmDEDf/r9+7hyuYb3c0nK teSyI2H7Yg4neJzn/JiGnuNsSbkgctN4jVZE1mNERa2FuNeGzYNiqp4NtgxS sV5Tw5DyreWwhG4mjnriGKfHuKHl6JlW0r0yDO03tL5tXutQ5K6xe8BzIYW9 F9d0nJ3zIXORhHyypG0r/k+U+fHN9XXYsSkP69dvwtb8Q8jKzsO///5P+N37 M7EyZyeqrjZhbCzM99b1XAynJt2bNzcdho4dKsLU2Lj4z8SVyfzvS1UXUcDk H/Gtql7Lbgy5bXl3DIa/T/sVAyNYk70Gr7/xCl554yW88CrDzisMQy9+Hy+8 8EP88p/+FYX5B9HV1o3ujm70dPWi92k/8zmGMNA/hr6+EfSxx4GBCQwOTmJk ZIqP0dEAk80hjI+FMMruychYBMOjUQyOsDEWw+BEHIOBGIZDcYxS7382xtj1 TbD7PcVGgEZE1MRHIpbW31zo4AjXw+KRD3pO+dvsMcD+1xQbQfYfo5Y4Lqrw bnPJqNyDhI1XEb+BPV9edkDyflfCrkm1TB2bCRkns+y6TrUuYoEImm/W4aMP PsHrb/4KL77xC7z2o9fx8utv4tU3fo0583Nwu6EFUeJ+SdrzcY90GBL/hWLG Vy9eQMmRQwgQh5b8LyQTr16u5pwaxJVpxj3kvUc8SMVmFIbUe0P9fViXvQxv vD4DrzDszJjxv/CD7/8PvPDDHzCZ9DJee/0N/Ppnv8Sf3/4j/vK79/HBHz5i 42N88N5M/PWjOfjrzC/x4V+/wKezsvD5F8uZPb4GM2cvxVcLcrAoaxOyFm/F /KxvsGj5HixefRBL1h3D8k1lWL3jFFbvKsfGwxdQWFGD/edrUFRVg2NXbqLs Si1OX69H1c1GXL3ZhJpbD1Bf/wgNzGZrvNOFhiY27j3BvbYeND/q5uN+Zy9a uwfwqG8I7WxddLB70z48hq6hMYZZhu1JhmnmA41Nhpj/EMQUcQvwHsDUc4p6 FkTtfFm7jjcm5aLs46lySWOypo3blBT3pTxLkn/2EPvSVIdGcWrKKzfka9JT T7sHsXDRUrz48ktsvc5gOGL3+s0ZeOn11/GLX/0G+QX7MD4+5WtTe9pIGg+w snfpei9fOM/lEGFIzXswEMa5s+dx8MAhJvMmknq++/2eim/ockjEa2KYYn56 ackB/MuvfobXXnsBr73K/tOLLzCb6IdMLr2CDz/4I8oOHUZN1TXUXLqJ65dq UH3xBsP3DVy+eA0Xq66gsrIKlecu4Nz5C7hQVYXTFRWoZONcxVlUnjmLM+Wn cPrUGZw+fRYnTpzC8RPlKDtejuLS48yWPIHjJ9nrslKUlBajuPgYDh88hAN7 93FevEP7DqCI2X409jP9XZi/E/n5W9jYiILdm7Erfz3yd2Rj1/bVKNixCvlb lmFn3lLs3rIcBXkrsGvDEuxauxi7c9h7OcuwdeVC5K1YgK3ZS7F59VJsyVmF zWtXYiOzUzatWYMNK7KxbulqfL0qB5tzcrGRjdx1m5C3+RtsytuKvG+2Y9uu XSg4cACFh9i1lR7G4RMlOFhaiqKSMpSdPYfSigsoq7iI8rNXcaqyBhXn6nHq 7C2Un7uDM1VNKNh/Cv/5zrt4+VV2j1/7B7z66vfY+AFeYff+DSaTPp81F309 w7Bzgz3iVl4YUjn+yuegOq4LZytQfPggJkfHbLkxNRnk83GAySHiMZsOfvww xHtKhcPo6mjDwnmz8PMfMTv6tZfx6ksv4tWXf4C3f/tPKDuyB6OD/TBIn0Qs uwecWJNUu0r1zCEmNym2MQkjOsXOSxxS7Jpjo+w1uxfRAfZ95kOG+2DRCPXB CPTAnGLPpwZhTTK/kz2aEwMwx5mfMDKMyPAgoqMjCI8OIzg6gMnhbowOdGBk oA3DA/fZc2Y3DLLRdxsjT2sx8uQGRjqrMdBShZ6mCvQ1nUVv41k8rTuDzuun 0F5djtYrJ9FYWYLbFcW4dbYM104X43J5CS6eLEFV+XGcP3ECp48U48SBYyjZ dxgHdhZiO7N/t+RuxebN27BhYx5yNuRiafZqLF61CguXL8XS1Ssxj/lbX2Ut YjJ4Ab5cuAhfsMc58+Zj7pcLMfeLRZg9JwuffTYfn36Whb9+PB9/+dNn+PlP 3sQrL30PL1F9/wv/E6+/9H12z/8Rr7J1/NknM9H7eCCpZiSdX58cI5N9wU1w DJ2vOMN12eSYgyHqLUr9L4uKpBzSMOQXc/XSbSpubJCfxM7Z2nAd2Vlz8Na/ /Ay//skb+Oh3v8Hxom0YH3oiZLzdG1HlGce5f+O8Fj2iRCxO2tayXsygOh+T +rVR/SH11zO478Z9dcI0txUoV1nsm5jyupR9zft68r51UVHPyHBvRCLsmCjz mxmGmc9II055t+x1LDiJSIBq2BieY5QLF2aPYf6c9vb4oN+i3h0Rdq4o5atE RfyB+qaoumqq2QtGeY0Z1RCT3y0eQ5icCDAZHkR4MsK5caZGRzE5MsjuVy97 7OX3bXzwCcN4B4a7W9Hf2YS+h43obr6NmoqTmPmn3+LNGd/DKz/4Hmaw8Trv m/N9/PynL2J51kKM9A1rtu70MCRsbtELnTBE8crK0+UcQ2RTK1lCPUZPMTl0 5Mgxzq3l5897+WOp/XaFr0T3jPKD+x6340FjPZqY79De2sKwO8RshSmb390d O3VqAR1b0o7hGqlyUI/RJd8by/a1HI68hPR3LC1mZ8pHy44pkv8uerBGuG1D Pl4kKuvweexJ6ztiOLaCypO34/aGleTvCz/RtHuSO324rKRaTYPHK6jGL8L7 SsQilD/ORoTdt2iQYZo9smExOW3Rc4bv4Oggyov34L/+9cf42asv4M3XXsSP 3ngBP3r9H/Dhe/+GaxcrOX6fBUPO3pDstWYIOXTuzGnOyRScmLTjzYShk8ye KD5WksQl4Zfflg5DwkcXfonovR1i6y7IcwN4XaisGXTnvrjPb792Y8j2mxNy HyP5fSV7k3xtO+4n5BmXU2rIPSmdI47890iM+jhQbC7Ma8d4XSv50hSXiabu Eyq/xdBqRnTfy9Dum6Fq/ONqn8a05W2U11+LQTY1cW3ajzJOYdfO86F6UkYw 1NeJsoM7sODz9/D+Oz/HH9/+Meb9/V1UntzHc0HVvlq6fcLkoTCgci2YPc9k 6MmyYpw8XsJkacD+/8SLdOrkaRw9LOSQjh+vfUN3XMjL91evicMqHIzYvq6h Xbce5/KKP/nhK5Od5r4/0z3WbefptcJ2L9+Yw3Xo9lG9ZLTOF6sPu/ZPyy/Q f1fVGumxJe/cY1Pu37E5ZniPjfeju6UG1ysKUHu+EE9bryAaGBS6W8abphOj 1nWZiLGKHBzKmy4rPYryk6VMBwfsayN+juOlJ1ByzOE8dsepvXSalz3kPjYq ezJ4cXQ+Cxa+qzEdTLnnUmEoHX+bV78SN268cOR1Lr977zmkTDJkXJZsQyPC dEmI2SrhMSQiE8xOi8Dey/H5/5kwpGJEoUCE6atDOH+ugsmGoD2XxLNDnFOl xWXMRwto8+voeve8u2W1H97+f2PIT2773UOFIfd/0zHknu90Q8dluuElwzPN r9qXtiR3GsWQKG8kagibzeD7jaZW/2n42if+fpmDIdKDZP8ThqouVPI9MnWf ApI7nGQRPU+u/0rNm/SKtXrhQccQ6XF3fvd/N3b88JJpuP+f13w7vzM9DE9H NqXYV57zmYwh2oe2YsJ2oZ4mYYaTqGWKPBlZa833amk/j/uv08+bE7/p7CES hsgeUnKI9sjUceRTUoz65PFyBJl9nSk+5Nb5fr2TdTtC3w953jn1mpPMayhT 7mnm302xzV37X9OVqcnxEu/f8DpPMqeXOw6ofFLCTUzwCCTiXKclZL4Lt0Xp HB748dwnk0PpIpvjS9rUHEOVZ/nembou4g7fW7iPY4jkkMKH3/1xyyAdQ+59 Dyc35LuVL5nW/XeBoXQYfh4Mua/JX6+mvvbb0zJlXxg7J4q9Thhqo5byHzVf xuP33PutyfdHvx4xr4Shg0V7mS47xzGk/jvZQPv3HsDp8jNJcsjvPvnZQu5j dL8k09w9j87JhCE/fTZ9OZ4Zd8k+sP93vO3V6ftIfnvrlFcgRsLOjSL9lnDH 1CxvDLnlUdL7ZkLmD0GzhyIoOrAXVy5d5PuvKqd1fGyCy6Ezpyp4rMiNhUw2 opd/rzCkeEj/X2LID0eZsJIOQ89mQ6T/Xjr98SwY4nxKVvJwrkMb9F7i2X/b ztvTMES9wPfu2c0xxDm0ZC6CwtD5yguCC32atpCfL6Y/d+eGZJrj7wJHzzL3 6Y59VvxkOt+3GX5zr+OEyyMmiAw2qN9bjI24kj+J5HOlw5L9H2ROpY6hqYkQ 9hTm4+qVS8LflvM8OjKO3fkFnJNFlxl++t4dJ0s3h7rPNh2sPO+8TFf3ZJJ9 zzq3yd/1Ok+yHfO8WE8773rOLflPCTFEbr8TQ/fiWsh0H5P4c9nzyfEgCnbv wPVrV3lerJpbkkNUt0gcdbT/mg5DbpvIbUO7ZZNXrwR1rc8TI3pWHLpl5HR9 5+eVO+5rEf894ck596zY9cxXTbGD5HPJmaNsbZ6b/Zx8HW4M7dyxDdeqr3B7 iPv+xNk7KjBEcoh6LCTNqzbf7nvjZUvrg+e3adxV7vNk0pl+fvXzyBevc3r7 0c+mSzKu4yQ5pN539vT8ZGY6/CSSbJuEjSNL1hx4/X6m+6djUud3c65fYJF0 WWH+dtRcq5YYSggMMV1GGLpefcPmv9Mx5HVvlC7z8nn1Y9x5jl5Y8sKTHpOb LoYy4Svdd7yO8dIh30ZeOfdKzIni1poeZh0s6lhyy1T1vt9/zizjFMbFeW3+ r4SolQxMhlDAMFRXW8NzDPj3md00wXQZ9Wug2g4/DLmvRceQ33rmcWpt/zBd PCWdL5gunpgJE+m+4/eeG0Nev/OsvlUyhqDNTeq5vDGbes1eGHJjLN298JZr XnKM4YdqXLgcErrs1s1abg9xLDAsUS0H9eUgjtdYzOHKVPkxXvOSSSeo4eaC nc539PUq1mlmPKT7PNN3prNOkz/3jvdlwpD3OdLHjtPJSyVvnO8kr4NUGebv syRjMSHlkRom3yuhmDfVrhUW7MSd23Wizo4+Z/JkdHiUY6j2Rg3PfbJ85JD7 f3jJCDcW/DDkt+791s3z6BD3d6Zr12bG1fPps+kO33ii65rEMcJ2UWvN3h+1 a34S2ueWj/z0/z8KQ7y+3CC7ZxI7tm/B7fo6npvHfQaOrTGOoZs1tbz23oil 9jxwz7fbpnbLXPW5bg8lx4mmL1++zZp3/54fRtLJpm+LZT+MTCtG4ymf9eNM F44s+z3bL9M+d7CWHkNCfqg50jE0gU0b1zM5VA+774BhYmhgkPOt3qq9yTEk +velyjk3flJqyzyOUxhKvf+ZddCz6phMcsYtk54nXqzOn/r62Wwktw3ifj/5 tXNv3Z/reHFjxj2cz9PUJerntqCdV+zLkf+1edPXnB/NzpNjeKH6aMLQ7bp6 LoMSprcN5MZHOn5IN4YyrffpYGg62Egvi74dVrzO/Sx498OK8x2nLt+NIfc6 0WWIe00qe8aROcnv6bZ8WplLjzbuHAxtzF3HMHTH5k+l3PihgQEmnzbiTv1t LodMw0x7j/T9MDeG3P75dPM+vg2GvHSUl5x6VvxMF7vPi9fU45UeStUz+v/0 Hsn62h1PUlhMllfJ53Zfu6FxSisMjQ6PcQw1320U9QOG6DPV20N8wGvQdLeB 17MoDHnpG4UNt63jlo/qOPeeq9f8+r033c/cMZFnncPpfPZtZVomWeTYv94x h0y/66WXPGPalttO8pNvsGulTd7fxOS2M9XSE4Za7t+TNSwJLof6ens4b82D +828Hso0NL5VTaboMkjf5/CbXyWH3HrOzxZ6lnWeKocyz2smmeV9vN9cevuU mc6TfqTqsulgSJczqfdC/56DIS/bKAVzWq00YYh8+MH+IYaVbBtDthxiGFrH MHS/uYlhKCrqTcgOt5x4vNtPEzhSvX21+Cv/ryLOyXsla5waunwSNbv+st0L Q17xav/7m/peJizq99prPXj5n+kxlPC8Dn/5kcp1qMv46ayRdEPHmZDbyXLI MyYvHxOW8OEH+pjdw+RQe1urxInwt3u6e7F2TQ7uNTVzXWYZos8PcQ/yulMz Wd6I+yn4EOM2f6T0MXlenci/pc+oV76q0Uv6n1p+1HTuhx9e/OaRX+c0METv uznB/GqV3L61329nig9/18M998l7HW4Mectl93n0+8e/S3hjMmOgpxe569bw Pmyks2gvl3L/n3b2IHvlWrQ0tXA+WzMm5YSqJ5T9mlQvHqqXs/s5afWe/DcN S/aWk3WInC9VyjO7r09qzciz6i99Xv0wMl0MecmVdHLqvxsT05E1aXWQBc97 mUnfe9mz9neNZAx1MDnEeSQN0ReOeuOvX0O8hI8QJ/7WmKxXigteS4cbTukx U/Y6kbWaikOC9o1lnQqvAY7JvlIRw65TVn2pBNdqcmwp0z6+kr3p7Gd//ZQ+ TpEOz+45eb4599NfzyZj/M7nLWP091Nljt/veWFI1Acz27mbuHnX4XHnIxmL Fr7Vo0ePkJ2dzWzqFu5HcX/ddPrLqX7llqxnEj06LM6hbMQYZqKQnN8iFTzG +76J3m/ETURYU33heJ9EOXRZqdvpfrGmdDkCz4KndOd26wGv4zPZWvp709kr zoQhP+zo77l1mVtOPSuGUq5XYujp4yfMpl6DJ487BB837xdg4lFbB9Ywe6i1 tU2r6xW9Vnm/Vf48AocPWvHVCG6pcDjO+5XTsPfySX6RrCJOxojsu0H1umQf RQWfqm6vu/NrvXL+9fpi1Yvab4/fywfIlG/ixvB09ofd8+n3Hffc6zr4eeRa Jjn7PPIzVeapHEjYfXW7Oh4jZ202up92Cbs5LvbtO9o7kbtxIx61t8t+g4Zt K9t4icc07m3BxR1R/TBIplGvLrKT4qLHKvfrqaaDek0QXyMfcaEr46bkWUit z9PzSdw5tzq23P3w3VhL7UeS+r5Xzbz7973ko19NoXsteMk9dyyWPveTVWpk wvH0R/o14cZcEoboe0wOEP/mmuxVeNzVKe0hi3NktzH5s27dOjxsa0OE+vHw /q6G7Ifh9J5UPVHjsr+K3c+CY8YQvVFNgSO7PpH6SJIuk32mDe1RnSceS53D eNyCW/6451b/LFP9spp7r7pVv+/qn0+3RtqrXsErju8nI9Pp8en8XrrjvHoC eNkIznvJGCJ5Q1zSa9esZvZQp+gJSdxlgSCzpVuxPudrZhd18LoO6t/POVao t3rE5L0eeP/lKPX/jPG+vXHeM0fy0SleTMnZbPc6iFmcM1YN0XNH2Ni8p71m L6nemorHm46nz3ittYtXRp9XlWvrHu458KtByTQvmfZpvObC7xgvmeLWb15Y SHet7jWkH5sqE/2vXX/f+Y7aK1c884IDavWqFejs7BD6IBxDOBBGy70HDFtr 0cGwFQiHEYpGuSwhe8YgfUUYisRF/7CIwFI0ZPAh+A3E+6r/t8IIYYNwEI4I nnEalCdJnGbUm5/6gxFvtMCKOJ5e0wgGonyEguIY296KSnxFDG6Hic9jSVjl Q/YYVr0WyFfQe7gk9deWdZReutE99H4g7ufpZJX7d730pFr7z4JLN3a81o7+ W+l0YurvJmOI1j9xYX69PofZQ094vmJXXwgdPQGcu9qIuYvXorqxFU8nQ+gJ RDBE/XnZ3FJ/7MlADIGQiVA4gVAkgWAogamAGIEg9SkVIxITg44JsDHOjhsJ Wuw8FgLUn5eNIMNZiOGRjzDZxULeRMIOPggXhB+Frah9jOFgSL5WmFMYdD4T vSJojgk/vhgi/MjjVE2ujgl3DxndFtNxl06nuDGr5Gc6PNm2gJvLwgOT6ljl Z+jX44V3PzynXndcPia4niGdQLyqublf8z1WOt+81YewKOcwPv5yI3761meY s2Yn1u87gbwjZ1B48iIOnrmK0spqnKi4jDPnqnHh8i1cuFSHqsv1OH+xDper G3CjphnXrt/F1Wt3cauuBXeaOlBPo7kTtx88RWNbL+49HsDD3iE8GhjB46Ex dA9NoHdkAoPDExgfHcfUxBRCUyEmE6k3YRiBySDP/Q5R30LqX0hYYbgKBYg3 1OCDY4f3mTY5t2CYsMdeh7jcU++x51RrGxWD+vFSzIE+SxnUe5rJOY5x9lyN sCEf6XVMjIjshxaNC7tN9MlLHpxzIi76V0dl/2u6hgCT6WQrROVeU0yzLfWc T9331HHkrW8tKeNjKbrdjXk/DLltTHG8OleC57cG2Nw03G7Cupy16Ol+yuVQ yaESHD96HMeKjmJPfgF25e9CYUEB9uwpwN49hdhbuBtFe7bjYGEu9u5Yg/y8 5di5aTG2rZuPbTnzsWP9QmxftwCbl89BbtbnyFs2B5uXfoG18/+OZbNnYumc z5A161Ms/Hwm5v3tE8xnz+ex519++jF/vWjOp5g/+0N8NesDzPv7x/jiM/Y4 ayYWzJ6FhbNn46vP/465n87Cl3+bw45dyN7LQtaXK5D11QosyVqDRYuzsWTl OqxcvwlLmD23evNWbNixG2u3bMfX23cjr2A/tu89wEYRCoqKsf/QSTYqUHTo AoqOXMXBY9dxpPQWjp1qQOn5Bzh8/j6OXWpF6bV2nK5/jMq73bj0oAeXH3Tj GlsLdZ0DuNM1gAc9w+joY+uhfxx9Q0H09gcwNBTG4FAEwyNRDI3H+BiYjGMw GOc910fYGAqKR+q5PslwHmDYIdyG2TyFSF7GhI7mel/6MDzGRsdEhD63dVJc xFg4r40peLk5F4OM3ZE8FtyTpuCpiSv+Uw3nMREDJI6UaNy0OS+ET2XyEVNc 31JmNzc0Y/3aHPR393IbOzE5jMTEMMyJIcTHaQwiOkZjAJHRAYTG+hAe7WaD 2dojbQgOtyA0fB9TAw2Y6L2NiSd1GOusxXDbDQw8qMbA/Wr037uGp3euoO3G OTyoPofGi6dRf74cdefPoL6qErUXKnD59HFcOFmMqlMlOH/qCM6dPIwzpUUo KdrNxl6cOHoY5ceKUXboKI7uP4wDu/Zj38692L2lENtz87FxbR5y129Bzrpc rF63nvflzVq5HCvWrWGv12LRsiVYsCQLS1YsxaKlC5C1eB6WLlmIxQsWYNmi ZVj4xTJ8OWcZvpi7ErNmLcUXX67EVwuy8fmXyzFrHntv4XLMXboCX6xYgdlL F2HOkgX4avl8LF69EEvZWJWdhTWrFiNn5WLkrl6J3JWrsHHFKmxYlo0ta3Ox ZX0e1mdvQO7XW5G3ZQe2frMdO/K3o2BfAQ4eKcKxY4d4/5Wyo0dwqqwMleWn cO7UaVysqGTPK1B5pgpV56+iquoaLl2uRdWVWpy/XINL1+pw7WYjqusacbPx HhoetKHx/iM0P+hAc0sn7j98gta2Hjx42Iv7bQNo6RhBa9c4Wh6z8XQCbX0B tA0E0D4cxOOxCLrHo+ifimE4aGCM2SoTzO6gQfZJKAyGb4CZFPyRqXsmQxOo r7uHDey+D/cPIUHcanHinTX43png4RF2seBXEvupnMsppvZXSbaRvR1i2AyL XqXREEzizYxGYFB/3nAQFj2PMLs5yPQT01FRsqGZDKfYEK2LMLugILvISDjC e1mTf0i2eyws+vBSXDISInufdBfx6MV5L94Iex2eDLMR5P0kiTM5MDHGdOEw JhnuA2P9CI8PsNGPqaEnmBzoxGj3A4x1N2Oi5x4GO+5gpLMJA2130fuwET2t jWhvqsWjphvoaqrGo/oLaK2rxP2bp9F08yQaa0tx62oRbl7ah5oLu3G9cjuu lG9GVXEuzhZtQHnhWhzfmY2y7dk4tHE5ijYsx4H1y1GYsxiblszB+oWzsD5r FlYt+CuWz/sAS7/6AItmv4evPv0/WPC39/H5e+/gk3ffwsfvvI2Zv/s9Pnnn Xfz+17/Ff/z6bfznv7+L3/7Hu3j77ffw1u/ex1vv/hnvvPcR/uv9j/DW+x/i 3Y9n4i+zZuOjv83Gx5+yx5lz8Mnn8/EZWxufzlnJ1sN6zFm4FXOX7MLni/Px 92WF+DKnCHO/3osFWw4gu7AYuUWl2Ha4DAdOnOE91E+euYjyUxdxvvIaqi7c QNWlG7h0tRZXGHav1zC75UYDivYfxabcTRgdHuI9jnh/XxWfsTlRXHYV51GF 4IOSvXfjUuYp2edwZipfwJGpsbDoY67Hh4SMlTHOmDov5H6IZlcYytdU8SL1 viXinXERl+I5BtQfmj0nHkbiraRhEmcwfwxzfmGT4T3BjkvQe7wfdZi/J9ZB kD0PsMcAuxdT7HyT7PxsxMbZ9Y8gHh5hx4+y58P8eTw0wtbIKGJTo4hOssGw HJkcR3B8VIyJcYZvNibH2OsRhu8hTI0O8kH9lSdHBjAxPIjRoX7OAzY2NMzW 9gD6e3o5125vbz962PPenh72+il6nnah+0kHervb0fu0DT1PmP/TdR9d7Q3o aruNjtbbaL9fj5aGWob/a7hTfRl1ly/i1qVLqK2qQvXZSlRVnMXpM6dQdqIU x08cQWnZfiYPd6DkaB6KD61HycE1OLp3OUoOrEDx3qUoLlyMkp2LULJtHorW zcKe7FkoyJmHG1UnmD06Jvic4iq+I+PGkjsirnjkSf7wfYoEm4ME78sm4o7S DjNMm3OLY0jqZdE3l9mukTiXI7wXPuccs+yevoYdh5Q45Dam8jEhnwtfV+3P Gpxbh/CqftsSOt5IvhaOO0NgWPCkiL0bw1R1CM4esVgjKu/AEvyFpv5cnFvY HZb9mu/VqH1oudYU1vmeobKlDUv2vrbsWJrq4W5o1837FsdMGXM1ZK4y/UaM 905PGBGO70ScDUMOhnMwjCdiY2xdjAHRcTHCbATlCE2w15P80QqyNcF7tY8h FmBrIDCE6FQfIhNPGf672Fp4xJ63svEAkfF7iI42ITp0F9G+RoS7GzD5mNkw T+8jPNHP1mtI9BixY1/i3hN+qEcsjwVJTHEMyWFExX+jnGva9zLiyXFPJZPi 0ufgtpmMK4l+jKrOXPDO0T2KUB9vbv9T3a0l5YqMY8g5Er6B0K38GFPxT6n/ oPiDLc57FrUszsMn+ojSb4oe+oZlcL5Uw94DguzZnNB6WyuOxYTcYxYcUIaU x6bkOyZuPose4wl7L9qS3HVO/2zLXp+ix3Zq/IdzABvCb+Pty4hzT+MIUhzT dj87zpdmcBlg87pRzpY+4oIngOdrGJbd/13pB7sXu2HZPbstuadqSY5o0Wdb csbFDbm/Ke97nOo2RJ9Q4edKn5d6d8u4HcVZjLizpkluEGZCzL4h3utYLHkv zckLkf3/5LqLRUR8kvZc+b1W91vig66L6v5VHkpSP3PF3yS5MC2ei6LyxJ08 E8WZaUo+Bkc2JAT3ocYjp7jpHH46MdcJhSH790X/DMTFoJ6ZlJdgyBwXIVM1 PjS1T2DXYjk8egnTdHg2JQaT+yo4OS3p+6klnLwsm99NcAnZrfO08yfFekyh +2PST4/L9cLXlFpfplijdkyK9g5IPhLGpVy2LNXb07R7PZKMp70NisPwPYiY iElxnSPnWPRlT8j+/wY7Psa5qmJyr0Lx2qoh9lDigieW8wXIvh/aMXFNZhlx B6923ptao5JHzpFzxNstcaTNuc3vGlc87nJ/QnFoEg+h+k3TtHPqxP1TQ/Wf txwscTkj1rMRN+1h96lX8V2OSYv3+1G8iobiYpR5oErPGoYLH/I3lbxw80mI vRBLyl/LPndcDcOyecxFL6sEFO+jYctplWthatySsuew3XdYYIhzmcrcsGhM nF/1AzUt1ffRsZFJV1EfexpK3yi5JX7fyfGIyf0sivdRHJn4LuNKXqlhY19c P+koJz6m5lDyRJvCfhJrKOEaKuctIWW3sp0Nwc9qWs69N1UOt/quvIa4doyV gM2VaDq6QOgBYdeIeZEY0+wVIdfkb8sez4qTWu8XbhiOHeVgyOFhdN6zknLO hb4RmFXyUNliNh+wzfdowOE01HvPWFpfRsu2CZSesPWFiiuRvRU1bL4moWvd +y5CHnCd7ZKdSmdznoio2lcyk3Cgc5KqXDRuGxLXKtlMTHaF+f6Ako+WbWMr e4hsZb7fEFHyStrKZvK9N7Xf4cOSa9ke0o6Rc24Zcbl+pA43kvWEKWW64CIU xwguXcX77Awhj9W8SZ/AdT2mBcfGZnKGavZUf0y19u3f13iAnf52YgisS656 bViu55aZjAUlHwXGmG61hJ5VXMWWlD3iO2qfVH4vLriLbXvGkHnMlLcTUXND WGCmeTTB+UxjUc1W0mwLy1B63JH/hLH/C+5zqMs= "], {{0, 194.}, {145., 0}}, {0, 255}, ColorFunction->RGBColor], BoxForm`ImageTag["Byte", ColorSpace -> "RGB", Interleaving -> True], Selectable->False], DefaultBaseStyle->"ImageGraphics", ImageSizeRaw->{145., 194.}, PlotRange->{{0, 145.}, {0, 194.}}]], "Input",ExpressionUUID->"284eb6cf-18bd-\ 4606-ba40-e08bb1b8848a"] }, Closed]], Cell[CellGroupData[{ Cell["All", "Subsubsection",ExpressionUUID->"b4e77dad-c64a-44d9-9e78-80e8ad066ce0"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"GraphData", "[", RowBox[{"\"\\"", ",", "\"\\"", ",", "\"\\""}], "]"}], "//", "StyleGraphs"}]], "Input", CellLabel->"In[2]:=",ExpressionUUID->"49d74b14-800f-49db-be17-a002adde1d13"], Cell[BoxData[ RowBox[{"{", RowBox[{ GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, {1}, {4}, { 6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, {7}, {2}, {5}, {8}, { 3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, {EdgeStyle -> { GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> { RGBColor[1, 0, 0]}, VertexCoordinates -> {{ Rational[-1, 3], Rational[-1, 3]}, {-1, -1}, { Rational[-1, 3], Rational[1, 3]}, {-1, 1}, { Rational[1, 3], Rational[-1, 3]}, {1, -1}, { Rational[1, 3], Rational[1, 3]}, {1, 1}}}]]}, TagBox[ GraphicsGroupBox[ GraphicsComplexBox[{{-0.3333333333333333, -0.3333333333333333}, {-1., \ -1.}, {-0.3333333333333333, 0.3333333333333333}, {-1., 1.}, { 0.3333333333333333, -0.3333333333333333}, {1., -1.}, { 0.3333333333333333, 0.3333333333333333}, {1., 1.}}, { {GrayLevel[0], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, { 4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.042426406871192854`]}, {RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.042426406871192854], DiskBox[2, 0.042426406871192854], DiskBox[3, 0.042426406871192854], DiskBox[4, 0.042426406871192854], DiskBox[5, 0.042426406871192854], DiskBox[6, 0.042426406871192854], DiskBox[7, 0.042426406871192854], DiskBox[8, 0.042426406871192854]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, {1}, {4}, { 6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, {7}, {2}, {5}, {8}, { 3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, {EdgeStyle -> { GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> { RGBColor[1, 0, 0]}, VertexCoordinates -> {{-1, -1}, {-1, 1}, {1, -1}, {1, 1}, { Rational[-1, 2], Rational[1, 2]}, { Rational[-1, 2], Rational[-1, 2]}, { Rational[1, 2], Rational[1, 2]}, { Rational[1, 2], Rational[-1, 2]}}}]]}, TagBox[ GraphicsGroupBox[ GraphicsComplexBox[{{-1., -1.}, {-1., 1.}, {1., -1.}, {1., 1.}, {-0.5, 0.5}, {-0.5, -0.5}, {0.5, 0.5}, {0.5, -0.5}}, { {GrayLevel[0], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, { 4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.042426406871192854`]}, {RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.042426406871192854], DiskBox[2, 0.042426406871192854], DiskBox[3, 0.042426406871192854], DiskBox[4, 0.042426406871192854], DiskBox[5, 0.042426406871192854], DiskBox[6, 0.042426406871192854], DiskBox[7, 0.042426406871192854], DiskBox[8, 0.042426406871192854]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, {1}, {4}, { 6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, {7}, {2}, {5}, {8}, { 3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, {EdgeStyle -> { GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> { RGBColor[1, 0, 0]}, VertexCoordinates -> {{ Rational[1, 2], Rational[-1, 2] Cot[Rational[1, 8] Pi]}, { Rational[1, 2], Rational[1, 2] Cot[Rational[1, 8] Pi]}, { Rational[1, 2] Cot[Rational[1, 8] Pi], Rational[-1, 2]}, {Rational[1, 2] Cot[Rational[1, 8] Pi], Rational[1, 2]}, { Rational[-1, 2], Rational[-1, 2] Cot[Rational[1, 8] Pi]}, { Rational[-1, 2], Rational[1, 2] Cot[Rational[1, 8] Pi]}, { Rational[-1, 2] Cot[Rational[1, 8] Pi], Rational[-1, 2]}, {Rational[-1, 2] Cot[Rational[1, 8] Pi], Rational[1, 2]}}}]]}, TagBox[ GraphicsGroupBox[ GraphicsComplexBox[{{0.5, -1.2071067811865475`}, {0.5, 1.2071067811865475`}, {1.2071067811865475`, -0.5}, { 1.2071067811865475`, 0.5}, {-0.5, -1.2071067811865475`}, {-0.5, 1.2071067811865475`}, {-1.2071067811865475`, -0.5}, \ {-1.2071067811865475`, 0.5}}, { {GrayLevel[0], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, { 4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.05121320343559642]}, {RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.05121320343559642], DiskBox[2, 0.05121320343559642], DiskBox[3, 0.05121320343559642], DiskBox[4, 0.05121320343559642], DiskBox[5, 0.05121320343559642], DiskBox[6, 0.05121320343559642], DiskBox[7, 0.05121320343559642], DiskBox[8, 0.05121320343559642]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, {1}, {4}, { 6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, {7}, {2}, {5}, {8}, { 3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, {EdgeStyle -> { GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> { RGBColor[1, 0, 0]}, VertexCoordinates -> {{ Sin[Rational[1, 8] Pi], -Cos[Rational[1, 8] Pi]}, {- Cos[Rational[1, 8] Pi], Sin[Rational[1, 8] Pi]}, { Sin[Rational[1, 8] Pi], Cos[Rational[1, 8] Pi]}, { Cos[Rational[1, 8] Pi], Sin[Rational[1, 8] Pi]}, { Cos[Rational[1, 8] Pi], -Sin[Rational[1, 8] Pi]}, {- Sin[Rational[1, 8] Pi], Cos[Rational[1, 8] Pi]}, {-Cos[Rational[1, 8] Pi], - Sin[Rational[1, 8] Pi]}, {-Sin[Rational[1, 8] Pi], - Cos[Rational[1, 8] Pi]}}}]]}, TagBox[ GraphicsGroupBox[ GraphicsComplexBox[{{ 0.3826834323650898, -0.9238795325112867}, {-0.9238795325112867, 0.3826834323650898}, {0.3826834323650898, 0.9238795325112867}, { 0.9238795325112867, 0.3826834323650898}, { 0.9238795325112867, -0.3826834323650898}, {-0.3826834323650898, 0.9238795325112867}, {-0.9238795325112867, -0.3826834323650898}, \ {-0.3826834323650898, -0.9238795325112867}}, { {GrayLevel[0], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, { 4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.039196888946291294`]}, {RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.039196888946291294], DiskBox[2, 0.039196888946291294], DiskBox[3, 0.039196888946291294], DiskBox[4, 0.039196888946291294], DiskBox[5, 0.039196888946291294], DiskBox[6, 0.039196888946291294], DiskBox[7, 0.039196888946291294], DiskBox[8, 0.039196888946291294]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, {1}, {4}, { 6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, {7}, {2}, {5}, {8}, { 3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, {EdgeStyle -> { GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> { RGBColor[1, 0, 0]}, VertexCoordinates -> {{ Rational[-1, 2], Rational[1, 2]}, {0, Rational[1, 2] (1 + 3^Rational[1, 2])}, { Rational[-1, 2], Rational[-1, 2]}, {0, Rational[1, 2]}, {0, Rational[-1, 2]}, { Rational[1, 2], Rational[1, 2]}, {0, Rational[1, 2] (-1 - 3^Rational[1, 2])}, { Rational[1, 2], Rational[-1, 2]}}}]]}, TagBox[ GraphicsGroupBox[ GraphicsComplexBox[{{-0.5, 0.5}, {0., 1.3660254037844386`}, {-0.5, -0.5}, {0., 0.5}, {0., -0.5}, {0.5, 0.5}, {0., -1.3660254037844386`}, {0.5, -0.5}}, { {GrayLevel[0], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, { 4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.04363969366764614]}, {RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.04363969366764614], DiskBox[2, 0.04363969366764614], DiskBox[3, 0.04363969366764614], DiskBox[4, 0.04363969366764614], DiskBox[5, 0.04363969366764614], DiskBox[6, 0.04363969366764614], DiskBox[7, 0.04363969366764614], DiskBox[8, 0.04363969366764614]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, {1}, {4}, { 6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, {7}, {2}, {5}, {8}, { 3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, {EdgeStyle -> { GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> { RGBColor[1, 0, 0]}, VertexCoordinates -> {{Rational[1, 2] 3^Rational[-1, 2], Rational[1, 2]}, {Rational[1, 2] 3^Rational[-1, 2], Rational[-1, 2]}, {0, Rational[1, 6] (3 - 33^Rational[1, 2])}, { 0, Rational[1, 6] (-3 - 33^Rational[1, 2])}, { 0, Rational[1, 6] (3 + 33^Rational[1, 2])}, { 0, Rational[1, 6] (-3 + 33^Rational[1, 2])}, { Rational[-1, 2] 3^Rational[-1, 2], Rational[1, 2]}, {Rational[-1, 2] 3^Rational[-1, 2], Rational[-1, 2]}}}]]}, TagBox[ GraphicsGroupBox[ GraphicsComplexBox[{{0.2886751345948129, 0.5}, { 0.2886751345948129, -0.5}, {0., -0.4574271077563381}, { 0., -1.457427107756338}, {0., 1.457427107756338}, {0., 0.4574271077563381}, {-0.2886751345948129, 0.5}, {-0.2886751345948129, -0.5}}, { {GrayLevel[0], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, { 4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.04457223796244366]}, {RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.04457223796244366], DiskBox[2, 0.04457223796244366], DiskBox[3, 0.04457223796244366], DiskBox[4, 0.04457223796244366], DiskBox[5, 0.04457223796244366], DiskBox[6, 0.04457223796244366], DiskBox[7, 0.04457223796244366], DiskBox[8, 0.04457223796244366]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, {1}, {4}, { 6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, {7}, {2}, {5}, {8}, { 3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, {EdgeStyle -> { GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> { RGBColor[1, 0, 0]}, VertexCoordinates -> {{2^Rational[-1, 2], 2^Rational[-1, 2]}, {0, 1}, {-2^Rational[-1, 2], 2^Rational[-1, 2]}, {-1, 0}, { 2^Rational[-1, 2], -2^Rational[-1, 2]}, {1, 0}, {-2^Rational[-1, 2], -2^Rational[-1, 2]}, {0, -1}}}]]}, TagBox[ GraphicsGroupBox[ GraphicsComplexBox[{{0.7071067811865475, 0.7071067811865475}, {0., 1.}, {-0.7071067811865475, 0.7071067811865475}, {-1., 0.}, { 0.7071067811865475, -0.7071067811865475}, {1., 0.}, {-0.7071067811865475, -0.7071067811865475}, {0., -1.}}, { {GrayLevel[0], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, { 4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.042426406871192854`]}, {RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.042426406871192854], DiskBox[2, 0.042426406871192854], DiskBox[3, 0.042426406871192854], DiskBox[4, 0.042426406871192854], DiskBox[5, 0.042426406871192854], DiskBox[6, 0.042426406871192854], DiskBox[7, 0.042426406871192854], DiskBox[8, 0.042426406871192854]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, {1}, {4}, { 6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, {7}, {2}, {5}, {8}, { 3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, {EdgeStyle -> { GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> { RGBColor[1, 0, 0]}, VertexCoordinates -> {{ Rational[-1, 2], Rational[-1, 2]}, { Rational[-1, 2], Rational[-1, 2]}, { Rational[-1, 2], Rational[1, 2]}, { Rational[-1, 2], Rational[1, 2]}, { Rational[1, 2], Rational[-1, 2]}, { Rational[1, 2], Rational[-1, 2]}, { Rational[1, 2], Rational[1, 2]}, { Rational[1, 2], Rational[1, 2]}}}]]}, TagBox[ GraphicsGroupBox[ GraphicsComplexBox[{{-0.5, -0.5}, {-0.5, -0.5}, {-0.5, 0.5}, {-0.5, 0.5}, {0.5, -0.5}, {0.5, -0.5}, {0.5, 0.5}, {0.5, 0.5}}, { {GrayLevel[0], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, { 4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.021213203435596427`]}, {RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.021213203435596427], DiskBox[2, 0.021213203435596427], DiskBox[3, 0.021213203435596427], DiskBox[4, 0.021213203435596427], DiskBox[5, 0.021213203435596427], DiskBox[6, 0.021213203435596427], DiskBox[7, 0.021213203435596427], DiskBox[8, 0.021213203435596427]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, {1}, {4}, { 6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, {7}, {2}, {5}, {8}, { 3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, {EdgeStyle -> { GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> { RGBColor[1, 0, 0]}, VertexCoordinates -> {{0, Rational[-1, 2]}, {-2^Rational[-1, 2], Rational[-1, 2]}, {0, Rational[1, 2]}, {-2^Rational[-1, 2], Rational[1, 2]}, {2^Rational[-1, 2], Rational[-1, 2]}, {0, Rational[-1, 2]}, {2^Rational[-1, 2], Rational[1, 2]}, {0, Rational[1, 2]}}}]]}, TagBox[ GraphicsGroupBox[ GraphicsComplexBox[{{0., -0.5}, {-0.7071067811865475, -0.5}, {0., 0.5}, {-0.7071067811865475, 0.5}, {0.7071067811865475, -0.5}, { 0., -0.5}, {0.7071067811865475, 0.5}, {0., 0.5}}, { {GrayLevel[0], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, { 4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.025980762113533156`]}, {RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.025980762113533156], DiskBox[2, 0.025980762113533156], DiskBox[3, 0.025980762113533156], DiskBox[4, 0.025980762113533156], DiskBox[5, 0.025980762113533156], DiskBox[6, 0.025980762113533156], DiskBox[7, 0.025980762113533156], DiskBox[8, 0.025980762113533156]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, {1}, {4}, { 6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, {7}, {2}, {5}, {8}, { 3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, {EdgeStyle -> { GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> { RGBColor[1, 0, 0]}, VertexCoordinates -> {{Rational[-1, 2] 5^Rational[-1, 2], Rational[-1, 2]}, {Rational[-3, 2] 5^Rational[-1, 2], Rational[-1, 2]}, {Rational[-1, 2] 5^Rational[-1, 2], Rational[1, 2]}, {Rational[-3, 2] 5^Rational[-1, 2], Rational[1, 2]}, {Rational[3, 2] 5^Rational[-1, 2], Rational[-1, 2]}, {Rational[1, 2] 5^Rational[-1, 2], Rational[-1, 2]}, {Rational[3, 2] 5^Rational[-1, 2], Rational[1, 2]}, {Rational[1, 2] 5^Rational[-1, 2], Rational[1, 2]}}}]]}, TagBox[ GraphicsGroupBox[ GraphicsComplexBox[{{-0.22360679774997896`, -0.5}, \ {-0.6708203932499369, -0.5}, {-0.22360679774997896`, 0.5}, {-0.6708203932499369, 0.5}, {0.6708203932499369, -0.5}, { 0.22360679774997896`, -0.5}, {0.6708203932499369, 0.5}, { 0.22360679774997896`, 0.5}}, { {GrayLevel[0], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, { 4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.025099800796022267`]}, {RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.025099800796022267], DiskBox[2, 0.025099800796022267], DiskBox[3, 0.025099800796022267], DiskBox[4, 0.025099800796022267], DiskBox[5, 0.025099800796022267], DiskBox[6, 0.025099800796022267], DiskBox[7, 0.025099800796022267], DiskBox[8, 0.025099800796022267]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, {1}, {4}, { 6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, {7}, {2}, {5}, {8}, { 3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, {EdgeStyle -> { GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> { RGBColor[1, 0, 0]}, VertexCoordinates -> {{0, 0}, {-6^Rational[-1, 2], -2^Rational[-1, 2]}, {-6^Rational[-1, 2], 2^Rational[-1, 2]}, {-Rational[2, 3]^Rational[1, 2], 0}, { Rational[2, 3]^Rational[1, 2], 0}, { 6^Rational[-1, 2], -2^Rational[-1, 2]}, { 6^Rational[-1, 2], 2^Rational[-1, 2]}, {0, 0}}}]]}, TagBox[ GraphicsGroupBox[ GraphicsComplexBox[{{0., 0.}, {-0.4082482904638631, -0.7071067811865475}, \ {-0.4082482904638631, 0.7071067811865475}, {-0.816496580927726, 0.}, { 0.816496580927726, 0.}, {0.4082482904638631, -0.7071067811865475}, { 0.4082482904638631, 0.7071067811865475}, {0., 0.}}, { {GrayLevel[0], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, { 4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.0324037034920393]}, {RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.0324037034920393], DiskBox[2, 0.0324037034920393], DiskBox[3, 0.0324037034920393], DiskBox[4, 0.0324037034920393], DiskBox[5, 0.0324037034920393], DiskBox[6, 0.0324037034920393], DiskBox[7, 0.0324037034920393], DiskBox[8, 0.0324037034920393]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, {1}, {4}, { 6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, {7}, {2}, {5}, {8}, { 3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, {EdgeStyle -> { GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> { RGBColor[1, 0, 0]}, VertexCoordinates -> {{Rational[-1, 3] 2^Rational[-1, 2], 0}, { Rational[-1, 3] 2^Rational[1, 2], -2^Rational[-1, 2]}, { Rational[-1, 3] 2^Rational[1, 2], 2^ Rational[-1, 2]}, {-2^Rational[-1, 2], 0}, { 2^Rational[-1, 2], 0}, { Rational[1, 3] 2^Rational[1, 2], -2^Rational[-1, 2]}, { Rational[1, 3] 2^Rational[1, 2], 2^Rational[-1, 2]}, { Rational[1, 3] 2^Rational[-1, 2], 0}}}]]}, TagBox[ GraphicsGroupBox[ GraphicsComplexBox[{{-0.2357022603955158, 0.}, {-0.4714045207910317, -0.7071067811865475}, \ {-0.4714045207910317, 0.7071067811865475}, {-0.7071067811865475, 0.}, { 0.7071067811865475, 0.}, {0.4714045207910317, -0.7071067811865475}, { 0.4714045207910317, 0.7071067811865475}, {0.2357022603955158, 0.}}, { {GrayLevel[0], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, { 4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.029999999999999995`]}, {RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.029999999999999995], DiskBox[2, 0.029999999999999995], DiskBox[3, 0.029999999999999995], DiskBox[4, 0.029999999999999995], DiskBox[5, 0.029999999999999995], DiskBox[6, 0.029999999999999995], DiskBox[7, 0.029999999999999995], DiskBox[8, 0.029999999999999995]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, {1}, {4}, { 6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, {7}, {2}, {5}, {8}, { 3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, {EdgeStyle -> { GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> { RGBColor[1, 0, 0]}, VertexCoordinates -> {{Rational[1, 2] 3^Rational[-1, 2], 0}, { Rational[-1, 2] 3^Rational[-1, 2], -2^Rational[-1, 2]}, { Rational[-1, 2] 3^Rational[-1, 2], 2^Rational[-1, 2]}, { Rational[-1, 2] 3^Rational[1, 2], 0}, { Rational[1, 2] 3^Rational[1, 2], 0}, { Rational[1, 2] 3^Rational[-1, 2], -2^Rational[-1, 2]}, { Rational[1, 2] 3^Rational[-1, 2], 2^Rational[-1, 2]}, { Rational[-1, 2] 3^Rational[-1, 2], 0}}}]]}, TagBox[ GraphicsGroupBox[ GraphicsComplexBox[{{0.2886751345948129, 0.}, {-0.2886751345948129, -0.7071067811865475}, \ {-0.2886751345948129, 0.7071067811865475}, {-0.8660254037844386, 0.}, { 0.8660254037844386, 0.}, {0.2886751345948129, -0.7071067811865475}, { 0.2886751345948129, 0.7071067811865475}, {-0.2886751345948129, 0.}}, { {GrayLevel[0], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, { 4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.03354101966249684]}, {RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.03354101966249684], DiskBox[2, 0.03354101966249684], DiskBox[3, 0.03354101966249684], DiskBox[4, 0.03354101966249684], DiskBox[5, 0.03354101966249684], DiskBox[6, 0.03354101966249684], DiskBox[7, 0.03354101966249684], DiskBox[8, 0.03354101966249684]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, {1}, {4}, { 6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, {7}, {2}, {5}, {8}, { 3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, {EdgeStyle -> { GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> { RGBColor[1, 0, 0]}, VertexCoordinates -> {{0, 1}, {0, 0}, { Rational[-1, 2], Rational[3, 2]}, { Rational[-1, 2], Rational[1, 2]}, {1, 1}, {1, 0}, { Rational[1, 2], Rational[3, 2]}, { Rational[1, 2], Rational[1, 2]}}}]]}, TagBox[ GraphicsGroupBox[ GraphicsComplexBox[{{0., 1.}, {0., 0.}, {-0.5, 1.5}, {-0.5, 0.5}, {1., 1.}, {1., 0.}, {0.5, 1.5}, {0.5, 0.5}}, { {GrayLevel[0], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, { 4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.03181980515339464]}, {RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.03181980515339464], DiskBox[2, 0.03181980515339464], DiskBox[3, 0.03181980515339464], DiskBox[4, 0.03181980515339464], DiskBox[5, 0.03181980515339464], DiskBox[6, 0.03181980515339464], DiskBox[7, 0.03181980515339464], DiskBox[8, 0.03181980515339464]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, {1}, {4}, { 6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, {7}, {2}, {5}, {8}, { 3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, {EdgeStyle -> { GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> { RGBColor[1, 0, 0]}, VertexCoordinates -> {{0, 1}, {0, 0}, {-2^Rational[-1, 2], 1 + 2^Rational[-1, 2]}, {-2^Rational[-1, 2], 2^Rational[-1, 2]}, {1, 1}, {1, 0}, {1 - 2^Rational[-1, 2], 1 + 2^Rational[-1, 2]}, { 1 - 2^Rational[-1, 2], 2^Rational[-1, 2]}}}]]}, TagBox[ GraphicsGroupBox[ GraphicsComplexBox[{{0., 1.}, {0., 0.}, {-0.7071067811865475, 1.7071067811865475`}, {-0.7071067811865475, 0.7071067811865475}, {1., 1.}, {1., 0.}, {0.29289321881345254`, 1.7071067811865475`}, { 0.29289321881345254`, 0.7071067811865475}}, { {GrayLevel[0], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, { 4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.03621320343559642]}, {RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.03621320343559642], DiskBox[2, 0.03621320343559642], DiskBox[3, 0.03621320343559642], DiskBox[4, 0.03621320343559642], DiskBox[5, 0.03621320343559642], DiskBox[6, 0.03621320343559642], DiskBox[7, 0.03621320343559642], DiskBox[8, 0.03621320343559642]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, {1}, {4}, { 6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, {7}, {2}, {5}, {8}, { 3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, {EdgeStyle -> { GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> { RGBColor[1, 0, 0]}, VertexCoordinates -> {{0, 1}, { Rational[-1, 2], Rational[3, 2]}, { Rational[-1, 2], Rational[1, 2]}, {0, 0}, {1, 1}, { Rational[1, 2], Rational[3, 2]}, { Rational[1, 2], Rational[1, 2]}, {1, 0}}}]]}, TagBox[ GraphicsGroupBox[ GraphicsComplexBox[{{0., 1.}, {-0.5, 1.5}, {-0.5, 0.5}, {0., 0.}, {1., 1.}, {0.5, 1.5}, {0.5, 0.5}, {1., 0.}}, { {GrayLevel[0], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, { 4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.03181980515339464]}, {RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.03181980515339464], DiskBox[2, 0.03181980515339464], DiskBox[3, 0.03181980515339464], DiskBox[4, 0.03181980515339464], DiskBox[5, 0.03181980515339464], DiskBox[6, 0.03181980515339464], DiskBox[7, 0.03181980515339464], DiskBox[8, 0.03181980515339464]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, {1}, {4}, { 6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, {7}, {2}, {5}, {8}, { 3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, {EdgeStyle -> { GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> { RGBColor[1, 0, 0]}, VertexCoordinates -> {{-1, 1}, {-1, -1}, {1, 1}, {1, -1}, { Rational[1, 8] (-3 - 7^Rational[1, 2]), Rational[1, 8] (3 - 7^Rational[1, 2])}, { Rational[1, 8] (-3 + 7^Rational[1, 2]), Rational[1, 8] (-3 - 7^Rational[1, 2])}, { Rational[1, 8] (3 - 7^Rational[1, 2]), Rational[1, 8] (3 + 7^Rational[1, 2])}, { Rational[1, 8] (3 + 7^Rational[1, 2]), Rational[1, 8] (-3 + 7^Rational[1, 2])}}}]]}, TagBox[ GraphicsGroupBox[ GraphicsComplexBox[{{-1., 1.}, {-1., -1.}, {1., 1.}, { 1., -1.}, {-0.7057189138830738, 0.04428108611692616}, {-0.04428108611692616, -0.7057189138830738}, { 0.04428108611692616, 0.7057189138830738}, { 0.7057189138830738, -0.04428108611692616}}, { {GrayLevel[0], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, { 4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.042426406871192854`]}, {RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.042426406871192854], DiskBox[2, 0.042426406871192854], DiskBox[3, 0.042426406871192854], DiskBox[4, 0.042426406871192854], DiskBox[5, 0.042426406871192854], DiskBox[6, 0.042426406871192854], DiskBox[7, 0.042426406871192854], DiskBox[8, 0.042426406871192854]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, {1}, {4}, { 6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, {7}, {2}, {5}, {8}, { 3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, {EdgeStyle -> { GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> { RGBColor[1, 0, 0]}, VertexCoordinates -> {{0, 1}, {1, 4}, {1, 3}, {0, 2}, {1, 2}, {0, 3}, {0, 4}, {1, 1}}}]]}, TagBox[ GraphicsGroupBox[ GraphicsComplexBox[{{0., 1.}, {1., 4.}, {1., 3.}, {0., 2.}, {1., 2.}, {0., 3.}, {0., 4.}, {1., 1.}}, { {GrayLevel[0], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, { 4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.047434164902525694`]}, {RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.047434164902525694], DiskBox[2, 0.047434164902525694], DiskBox[3, 0.047434164902525694], DiskBox[4, 0.047434164902525694], DiskBox[5, 0.047434164902525694], DiskBox[6, 0.047434164902525694], DiskBox[7, 0.047434164902525694], DiskBox[8, 0.047434164902525694]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, {1}, {4}, { 6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, {7}, {2}, {5}, {8}, { 3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, {EdgeStyle -> { GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> { RGBColor[1, 0, 0]}, VertexCoordinates -> {{1, 0}, { Rational[1, 2], Rational[1, 2] 3^Rational[1, 2]}, { Rational[1, 2], Rational[-1, 2] 3^Rational[1, 2]}, { Rational[-1, 2], Rational[-1, 2] 3^Rational[1, 2]}, { Rational[5, 8], Rational[1, 8] 3^Rational[1, 2]}, { Rational[-1, 2], Rational[1, 2] 3^Rational[1, 2]}, { Rational[-5, 8], Rational[-1, 8] 3^Rational[1, 2]}, {-1, 0}}}]]}, TagBox[ GraphicsGroupBox[ GraphicsComplexBox[{{1., 0.}, {0.5, 0.8660254037844386}, { 0.5, -0.8660254037844386}, {-0.5, -0.8660254037844386}, {0.625, 0.21650635094610965`}, {-0.5, 0.8660254037844386}, {-0.625, -0.21650635094610965`}, {-1., 0.}}, { {GrayLevel[0], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, { 4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.03968626966596886]}, {RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.03968626966596886], DiskBox[2, 0.03968626966596886], DiskBox[3, 0.03968626966596886], DiskBox[4, 0.03968626966596886], DiskBox[5, 0.03968626966596886], DiskBox[6, 0.03968626966596886], DiskBox[7, 0.03968626966596886], DiskBox[8, 0.03968626966596886]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, {1}, {4}, { 6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, {7}, {2}, {5}, {8}, { 3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, {EdgeStyle -> { GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> { RGBColor[1, 0, 0]}, VertexCoordinates -> {{ Rational[-4, 5], -1}, { Rational[-4, 5], 1}, { Rational[4, 5], -1}, { Rational[4, 5], 1}, {1, Rational[4, 5]}, {1, Rational[-4, 5]}, {-1, Rational[4, 5]}, {-1, Rational[-4, 5]}}}]]}, TagBox[ GraphicsGroupBox[ GraphicsComplexBox[{{-0.8, -1.}, {-0.8, 1.}, {0.8, -1.}, {0.8, 1.}, { 1., 0.8}, {1., -0.8}, {-1., 0.8}, {-1., -0.8}}, { {GrayLevel[0], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, { 4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.042426406871192854`]}, {RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.042426406871192854], DiskBox[2, 0.042426406871192854], DiskBox[3, 0.042426406871192854], DiskBox[4, 0.042426406871192854], DiskBox[5, 0.042426406871192854], DiskBox[6, 0.042426406871192854], DiskBox[7, 0.042426406871192854], DiskBox[8, 0.042426406871192854]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, {1}, {4}, { 6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, {7}, {2}, {5}, {8}, { 3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, {EdgeStyle -> { GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> { RGBColor[1, 0, 0]}, VertexCoordinates -> {{1, 1}, {1, 2}, {2, 1}, {2, 2}, {4, 1}, {4, 2}, {3, 1}, {3, 2}}}]]}, TagBox[ GraphicsGroupBox[ GraphicsComplexBox[{{1., 1.}, {1., 2.}, {2., 1.}, {2., 2.}, {4., 1.}, {4., 2.}, {3., 1.}, {3., 2.}}, { {GrayLevel[0], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, { 4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.047434164902525694`]}, {RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.047434164902525694], DiskBox[2, 0.047434164902525694], DiskBox[3, 0.047434164902525694], DiskBox[4, 0.047434164902525694], DiskBox[5, 0.047434164902525694], DiskBox[6, 0.047434164902525694], DiskBox[7, 0.047434164902525694], DiskBox[8, 0.047434164902525694]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, {1}, {4}, { 6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, {7}, {2}, {5}, {8}, { 3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, {EdgeStyle -> { GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> { RGBColor[1, 0, 0]}, VertexCoordinates -> {{0, 0}, {0, Rational[1, 2]}, {-1, 1}, { Rational[-1, 2], 1}, {1, 1}, { Rational[1, 2], 1}, {0, 2}, {0, 1}}}]]}, TagBox[ GraphicsGroupBox[ GraphicsComplexBox[{{0., 0.}, {0., 0.5}, {-1., 1.}, {-0.5, 1.}, {1., 1.}, {0.5, 1.}, {0., 2.}, {0., 1.}}, { {GrayLevel[0], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, { 4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.042426406871192854`]}, {RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.042426406871192854], DiskBox[2, 0.042426406871192854], DiskBox[3, 0.042426406871192854], DiskBox[4, 0.042426406871192854], DiskBox[5, 0.042426406871192854], DiskBox[6, 0.042426406871192854], DiskBox[7, 0.042426406871192854], DiskBox[8, 0.042426406871192854]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, {1}, {4}, { 6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, {7}, {2}, {5}, {8}, { 3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, {EdgeStyle -> { GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> { RGBColor[1, 0, 0]}, VertexCoordinates -> {{ Rational[1, 2], Rational[-1, 2] 3^Rational[1, 2]}, { Rational[1, 2], 0}, {1, 0}, { Rational[1, 2], Rational[1, 2] 3^Rational[1, 2]}, { Rational[-1, 2], Rational[-1, 2] 3^Rational[1, 2]}, {-1, 0}, { Rational[-1, 2], 0}, { Rational[-1, 2], Rational[1, 2] 3^Rational[1, 2]}}}]]}, TagBox[ GraphicsGroupBox[ GraphicsComplexBox[{{0.5, -0.8660254037844386}, {0.5, 0.}, {1., 0.}, { 0.5, 0.8660254037844386}, {-0.5, -0.8660254037844386}, {-1., 0.}, {-0.5, 0.}, {-0.5, 0.8660254037844386}}, { {GrayLevel[0], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, { 4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.03968626966596886]}, {RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.03968626966596886], DiskBox[2, 0.03968626966596886], DiskBox[3, 0.03968626966596886], DiskBox[4, 0.03968626966596886], DiskBox[5, 0.03968626966596886], DiskBox[6, 0.03968626966596886], DiskBox[7, 0.03968626966596886], DiskBox[8, 0.03968626966596886]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None]}], "}"}]], "Output", CellLabel->"Out[2]=",ExpressionUUID->"8853cc90-a3ab-46bc-851f-9d037ff52dab"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["Inexact", "Subsubsection",ExpressionUUID->"76740042-3a21-4a30-8e8c-ab7156a7a059"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"Select", "[", RowBox[{ RowBox[{"GraphData", "[", RowBox[{ "\"\\"", ",", "\"\\"", ",", "\"\\""}], "]"}], ",", RowBox[{"(", RowBox[{ RowBox[{"!", RowBox[{"FreeQ", "[", RowBox[{ RowBox[{"GraphEmbedding", "[", "#", "]"}], ",", RowBox[{"_", "?", "InexactNumberQ"}]}], "]"}]}], "&"}], ")"}]}], "]"}], "//", "StyleGraphs"}]], "Input", CellLabel->"In[3]:=",ExpressionUUID->"a2624aaa-9d8b-4453-a3dc-044578e2db91"], Cell[BoxData[ RowBox[{"{", "}"}]], "Output", CellLabel->"Out[3]=",ExpressionUUID->"3df3396c-62ac-4381-abc9-43ce6bc3bd98"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["Embedding types", "Subsubsection",ExpressionUUID->"6461ee1a-ba9c-444c-a61b-de85c31472d1"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"GraphDataEmbeddings", "[", RowBox[{"GraphData", "[", RowBox[{"\"\\"", ",", "\"\\""}], "]"}], "]"}]], "Input", CellLabel->"In[28]:=",ExpressionUUID->"e29f209d-1de2-4a57-b03b-77a7e1b3097b"], Cell[BoxData[ GraphicsBox[{{}, {{InsetBox[ FormBox[ GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 5, 4, 6, 7, 8}, { Null, {{1, 2}, {1, 3}, {1, 4}, {2, 5}, {2, 6}, {3, 5}, {3, 7}, {5, 8}, {4, 6}, {4, 7}, {6, 8}, {7, 8}}}, { GraphLayout -> "SpringElectricalEmbedding", PlotLabel -> "SpringElectricalEmbedding"}]]}, TagBox[GraphicsGroupBox[ GraphicsComplexBox[{{0.8225677529694657, 0.811706989068648}, { 1.546937122130772, 0.0007851730986064842}, {0., 0.811252260256027}, {1.5451911325783592`, 1.6241570777183132`}, { 0.6441079984267437, 0.}, {2.1885410842499944`, 0.8131501467516216}, {0.6425399336635611, 1.623803338064587}, { 1.3661160335776938`, 0.8120725502962206}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 4}, {2, 5}, {2, 6}, {3, 5}, {3, 7}, {4, 6}, {4, 7}, {5, 8}, {6, 8}, {7, 8}}, 0.024123118705809826`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.024123118705809826], DiskBox[2, 0.024123118705809826], DiskBox[3, 0.024123118705809826], DiskBox[4, 0.024123118705809826], DiskBox[5, 0.024123118705809826], DiskBox[6, 0.024123118705809826], DiskBox[7, 0.024123118705809826], DiskBox[8, 0.024123118705809826]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None, PlotLabel->FormBox["\"SpringElectricalEmbedding\"", TraditionalForm]], TraditionalForm], {194.4, -232.2}, {Center, Center}, {360.00000000000006, 432.}, BaseStyle->{Graphics3DBoxOptions -> {SphericalRegion -> False}}], InsetBox[ FormBox[ GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 5, 4, 6, 7, 8}, { Null, {{1, 2}, {1, 3}, {1, 4}, {2, 5}, {2, 6}, {3, 5}, {3, 7}, {5, 8}, {4, 6}, {4, 7}, {6, 8}, {7, 8}}}, { GraphLayout -> "SpringEmbedding", PlotLabel -> "SpringEmbedding"}]]}, TagBox[GraphicsGroupBox[ GraphicsComplexBox[{{1.3188368612771046`, 1.6898260697644587`}, { 1.814554109466083, 1.0902268712552823`}, {1.1565365645389551`, 0.5432226273280842}, {0.24779678968853547`, 1.6426173315171204`}, {1.5667572849269311`, 0.04721722846412835}, {0.6580077360649966, 1.1466043308249256`}, {0., 0.5996079431701982}, { 0.49571380034583545`, 0.}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 4}, {2, 5}, {2, 6}, {3, 5}, {3, 7}, {4, 6}, {4, 7}, {5, 8}, {6, 8}, {7, 8}}, 0.021088786317119107`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.021088786317119107], DiskBox[2, 0.021088786317119107], DiskBox[3, 0.021088786317119107], DiskBox[4, 0.021088786317119107], DiskBox[5, 0.021088786317119107], DiskBox[6, 0.021088786317119107], DiskBox[7, 0.021088786317119107], DiskBox[8, 0.021088786317119107]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None, PlotLabel->FormBox["\"SpringEmbedding\"", TraditionalForm]], TraditionalForm], {583.2, -232.2}, {Center, Center}, {360.00000000000006, 432.}, BaseStyle->{Graphics3DBoxOptions -> {SphericalRegion -> False}}], InsetBox[ FormBox[ GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 5, 4, 6, 7, 8}, { Null, {{1, 2}, {1, 3}, {1, 4}, {2, 5}, {2, 6}, {3, 5}, {3, 7}, {5, 8}, {4, 6}, {4, 7}, {6, 8}, {7, 8}}}, { GraphLayout -> "LayeredEmbedding", PlotLabel -> "LayeredEmbedding"}]]}, TagBox[ GraphicsGroupBox[ GraphicsComplexBox[{{1.1126071799346366`, 1.907326594173663}, { 0.3178877656956105, 1.271551062782442}, {1.271551062782442, 1.271551062782442}, {1.907326594173663, 1.271551062782442}, {0., 0.635775531391221}, {0.635775531391221, 0.635775531391221}, { 1.271551062782442, 0.635775531391221}, {0., 0.}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 4}, {2, 5}, {2, 6}, {3, 5}, {3, 7}, {4, 6}, {4, 7}, {5, 8}, {6, 8}, {7, 8}}, 0.021855055513055277`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.021855055513055277], DiskBox[2, 0.021855055513055277], DiskBox[3, 0.021855055513055277], DiskBox[4, 0.021855055513055277], DiskBox[5, 0.021855055513055277], DiskBox[6, 0.021855055513055277], DiskBox[7, 0.021855055513055277], DiskBox[8, 0.021855055513055277]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None, PlotLabel->FormBox["\"LayeredEmbedding\"", TraditionalForm]], TraditionalForm], {972., -232.2}, {Center, Center}, {360., 432.}, BaseStyle->{Graphics3DBoxOptions -> {SphericalRegion -> False}}], InsetBox[ FormBox[ GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 5, 4, 6, 7, 8}, { Null, {{1, 2}, {1, 3}, {1, 4}, {2, 5}, {2, 6}, {3, 5}, {3, 7}, {5, 8}, {4, 6}, {4, 7}, {6, 8}, {7, 8}}}, { GraphLayout -> "LayeredDigraphEmbedding", PlotLabel -> "LayeredDigraphEmbedding"}]]}, TagBox[GraphicsGroupBox[ GraphicsComplexBox[{{0., 3.}, {-1., 2.}, {0., 2.}, {1., 2.}, {-1., 1.}, {0., 1.}, {1., 1.}, {0., 0.}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{1, 2}, 0.030239520958083826`], ArrowBox[{1, 3}, 0.030239520958083826`], ArrowBox[{1, 4}, 0.030239520958083826`], ArrowBox[{2, 5}, 0.030239520958083826`], ArrowBox[{2, 6}, 0.030239520958083826`], ArrowBox[{3, 5}, 0.030239520958083826`], ArrowBox[{3, 7}, 0.030239520958083826`], ArrowBox[{4, 6}, 0.030239520958083826`], ArrowBox[{4, 7}, 0.030239520958083826`], ArrowBox[{5, 8}, 0.030239520958083826`], ArrowBox[{6, 8}, 0.030239520958083826`], ArrowBox[{7, 8}, 0.030239520958083826`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.030239520958083826], DiskBox[2, 0.030239520958083826], DiskBox[3, 0.030239520958083826], DiskBox[4, 0.030239520958083826], DiskBox[5, 0.030239520958083826], DiskBox[6, 0.030239520958083826], DiskBox[7, 0.030239520958083826], DiskBox[8, 0.030239520958083826]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None, PlotLabel->FormBox["\"LayeredDigraphEmbedding\"", TraditionalForm]], TraditionalForm], {1360.8000000000002, -232.2}, {Center, Center}, {359.9999999999998, 432.}, BaseStyle->{Graphics3DBoxOptions -> {SphericalRegion -> False}}]}, { InsetBox[ FormBox[ GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 5, 4, 6, 7, 8}, { Null, {{1, 2}, {1, 3}, {1, 4}, {2, 5}, {2, 6}, {3, 5}, {3, 7}, {5, 8}, {4, 6}, {4, 7}, {6, 8}, {7, 8}}}, { GraphLayout -> "RadialEmbedding", PlotLabel -> "RadialEmbedding"}]]}, TagBox[GraphicsGroupBox[ GraphicsComplexBox[{{0.876165174218102, 0.5841101161454015}, { 0.4631369501320268, 0.5841101161454015}, {1.1682202322908026`, 0.29205505807270077`}, {1.1682202322908029`, 0.8761651742181022}, {0.2920550580727007, 1.1682202322908029`}, { 0.2920550580727005, 2.220446049250313*^-16}, { 1.4602752903635032`, 0.}, {0., 1.4602752903635037`}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 4}, {2, 5}, {2, 6}, {3, 5}, {3, 7}, {4, 6}, {4, 7}, {5, 8}, {6, 8}, {7, 8}}, 0.018076274230238887`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.018076274230238887], DiskBox[2, 0.018076274230238887], DiskBox[3, 0.018076274230238887], DiskBox[4, 0.018076274230238887], DiskBox[5, 0.018076274230238887], DiskBox[6, 0.018076274230238887], DiskBox[7, 0.018076274230238887], DiskBox[8, 0.018076274230238887]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None, PlotLabel->FormBox["\"RadialEmbedding\"", TraditionalForm]], TraditionalForm], {194.4, -696.5999999999999}, {Center, Center}, {360.00000000000006, 431.99999999999994}, BaseStyle->{Graphics3DBoxOptions -> {SphericalRegion -> False}}], InsetBox[ FormBox[ GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 5, 4, 6, 7, 8}, { Null, {{1, 2}, {1, 3}, {1, 4}, {2, 5}, {2, 6}, {3, 5}, {3, 7}, {5, 8}, {4, 6}, {4, 7}, {6, 8}, {7, 8}}}, { GraphLayout -> "HighDimensionalEmbedding", PlotLabel -> "HighDimensionalEmbedding"}]]}, TagBox[GraphicsGroupBox[ GraphicsComplexBox[{{1.5854498186329598`, 1.6490014317838864`}, { 1.0928753515616432`, 1.13797877910141}, {0.4925744670713167, 1.6237757765897483`}, {1.8364355957965752`, 0.5362483078766145}, {0., 1.1127531239072719`}, { 1.3438611287252584`, 0.025225655194138108`}, {0.743560244234932, 0.5110226526824764}, {0.2509857771636155, 0.}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 4}, {2, 5}, {2, 6}, {3, 5}, {3, 7}, {4, 6}, {4, 7}, {5, 8}, {6, 8}, {7, 8}}, 0.021270344625178655`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.021270344625178655], DiskBox[2, 0.021270344625178655], DiskBox[3, 0.021270344625178655], DiskBox[4, 0.021270344625178655], DiskBox[5, 0.021270344625178655], DiskBox[6, 0.021270344625178655], DiskBox[7, 0.021270344625178655], DiskBox[8, 0.021270344625178655]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None, PlotLabel->FormBox["\"HighDimensionalEmbedding\"", TraditionalForm]], TraditionalForm], {583.2, -696.5999999999999}, {Center, Center}, {360.00000000000006, 431.99999999999994}, BaseStyle->{Graphics3DBoxOptions -> {SphericalRegion -> False}}], InsetBox[ FormBox[ GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 5, 4, 6, 7, 8}, { Null, {{1, 2}, {1, 3}, {1, 4}, {2, 5}, {2, 6}, {3, 5}, {3, 7}, {5, 8}, {4, 6}, {4, 7}, {6, 8}, {7, 8}}}, { GraphLayout -> "CircularEmbedding", PlotLabel -> "CircularEmbedding"}]]}, TagBox[GraphicsGroupBox[ GraphicsComplexBox[{{-0.707106781186548, 0.7071067811865482}, {-7.044813998280222*^-16, 1.}, { 0.707106781186547, 0.7071067811865467}, {-1., 1.0106430996148606`*^-15}, { 0.7071067811865481, -0.7071067811865483}, { 1., -1.133107779529596*^-15}, {-0.707106781186547, \ -0.7071067811865468}, {6.049014748177263*^-16, -1.}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 4}, {2, 5}, {2, 6}, {3, 5}, {3, 7}, {4, 6}, {4, 7}, {5, 8}, {6, 8}, {7, 8}}, 0.02261146496815286]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.02261146496815286], DiskBox[2, 0.02261146496815286], DiskBox[3, 0.02261146496815286], DiskBox[4, 0.02261146496815286], DiskBox[5, 0.02261146496815286], DiskBox[6, 0.02261146496815286], DiskBox[7, 0.02261146496815286], DiskBox[8, 0.02261146496815286]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None, PlotLabel->FormBox["\"CircularEmbedding\"", TraditionalForm]], TraditionalForm], {972., -696.5999999999999}, {Center, Center}, {360., 431.99999999999994}, BaseStyle->{Graphics3DBoxOptions -> {SphericalRegion -> False}}], InsetBox[ FormBox[ GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 5, 4, 6, 7, 8}, { Null, {{1, 2}, {1, 3}, {1, 4}, {2, 5}, {2, 6}, {3, 5}, {3, 7}, {5, 8}, {4, 6}, {4, 7}, {6, 8}, {7, 8}}}, { GraphLayout -> "SpiralEmbedding", PlotLabel -> "SpiralEmbedding"}]]}, TagBox[GraphicsGroupBox[ GraphicsComplexBox[{{0.7920086693275731, 0.}, {0.7920086693275731, 1.632663379678274}, {1.0134679523803423`, 1.399425754009949}, { 1.3458627264398197`, 0.23323762566832484`}, {0.4161573980742485, 0.9329505026732994}, {1.380986909528536, 1.1661881283416242`}, { 0.7288155641500527, 0.4664752513366497}, {0., 0.6997128770049745}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 4}, {2, 5}, {2, 6}, {3, 5}, {3, 7}, {4, 6}, {4, 7}, {5, 8}, {6, 8}, {7, 8}}, 0.01955951810363385]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.01955951810363385], DiskBox[2, 0.01955951810363385], DiskBox[3, 0.01955951810363385], DiskBox[4, 0.01955951810363385], DiskBox[5, 0.01955951810363385], DiskBox[6, 0.01955951810363385], DiskBox[7, 0.01955951810363385], DiskBox[8, 0.01955951810363385]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None, PlotLabel->FormBox["\"SpiralEmbedding\"", TraditionalForm]], TraditionalForm], {1360.8000000000002, -696.5999999999999}, { Center, Center}, {359.9999999999998, 431.99999999999994}, BaseStyle->{Graphics3DBoxOptions -> {SphericalRegion -> False}}]}, { InsetBox[ FormBox[ GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 5, 4, 6, 7, 8}, { Null, {{1, 2}, {1, 3}, {1, 4}, {2, 5}, {2, 6}, {3, 5}, {3, 7}, {5, 8}, {4, 6}, {4, 7}, {6, 8}, {7, 8}}}, { GraphLayout -> "LinearEmbedding", PlotLabel -> "LinearEmbedding"}]]}, TagBox[GraphicsGroupBox[{ {Hue[0.6, 0.7, 0.5], Opacity[0.7], {Arrowheads[0.], ArrowBox[BezierCurveBox[{{5., 0.}, {3.5, 1.5}, {2., 0.}}], 0.05338164251207729]}, {Arrowheads[0.], ArrowBox[BezierCurveBox[{{5., 0.}, {4., 1.}, {3., 0.}}], 0.05338164251207729]}, {Arrowheads[0.], ArrowBox[BezierCurveBox[{{5., 0.}, {3., 2.}, {1., 0.}}], 0.05338164251207729]}, {Arrowheads[0.], ArrowBox[BezierCurveBox[{{2., 0.}, {5., 3.}, {8., 0.}}], 0.05338164251207729]}, {Arrowheads[0.], ArrowBox[BezierCurveBox[{{2., 0.}, {4., 2.}, {6., 0.}}], 0.05338164251207729]}, {Arrowheads[0.], ArrowBox[BezierCurveBox[{{3., 0.}, {5.5, 2.5}, {8., 0.}}], 0.05338164251207729]}, {Arrowheads[0.], ArrowBox[BezierCurveBox[{{3., 0.}, {5., 2.}, {7., 0.}}], 0.05338164251207729]}, {Arrowheads[0.], ArrowBox[BezierCurveBox[{{1., 0.}, {3.5, 2.5}, {6., 0.}}], 0.05338164251207729]}, {Arrowheads[0.], ArrowBox[BezierCurveBox[{{1., 0.}, {4., 3.}, {7., 0.}}], 0.05338164251207729]}, {Arrowheads[0.], ArrowBox[BezierCurveBox[{{8., 0.}, {6., 2.}, {4., 0.}}], 0.05338164251207729]}, {Arrowheads[0.], ArrowBox[BezierCurveBox[{{6., 0.}, {5., 1.}, {4., 0.}}], 0.05338164251207729]}, {Arrowheads[0.], ArrowBox[BezierCurveBox[{{7., 0.}, {5.5, 1.5}, {4., 0.}}], 0.05338164251207729]}}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[{5., 0.}, 0.05338164251207729], DiskBox[{2., 0.}, 0.05338164251207729], DiskBox[{3., 0.}, 0.05338164251207729], DiskBox[{1., 0.}, 0.05338164251207729], DiskBox[{8., 0.}, 0.05338164251207729], DiskBox[{6., 0.}, 0.05338164251207729], DiskBox[{7., 0.}, 0.05338164251207729], DiskBox[{4., 0.}, 0.05338164251207729]}}], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None, PlotLabel->FormBox["\"LinearEmbedding\"", TraditionalForm]], TraditionalForm], {194.4, -1161.}, {Center, Center}, {360.00000000000006, 431.9999999999998}, BaseStyle->{Graphics3DBoxOptions -> {SphericalRegion -> False}}], InsetBox[ FormBox[ GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 5, 4, 6, 7, 8}, { Null, {{1, 2}, {1, 3}, {1, 4}, {2, 5}, {2, 6}, {3, 5}, {3, 7}, {5, 8}, {4, 6}, {4, 7}, {6, 8}, {7, 8}}}, { GraphLayout -> "RandomEmbedding", PlotLabel -> "RandomEmbedding"}]]}, TagBox[GraphicsGroupBox[ GraphicsComplexBox[{{0.3560466344262776, 0.6049053520808048}, { 0.9699245564479908, 0.8250087075420964}, {0.35729914971563703`, 0.10263578016847275`}, {0.7148762910680098, 0.557183036741697}, { 0.5201994714219909, 0.9124632681468101}, {0.793592022145347, 0.5674947691901204}, {0.7754158524593096, 0.2125432597543655}, { 0.826134087539202, 0.507250713469457}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 4}, {2, 5}, {2, 6}, {3, 5}, {3, 7}, {4, 6}, {4, 7}, {5, 8}, {6, 8}, {7, 8}}, 0.010309103921964234`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.010309103921964234], DiskBox[2, 0.010309103921964234], DiskBox[3, 0.010309103921964234], DiskBox[4, 0.010309103921964234], DiskBox[5, 0.010309103921964234], DiskBox[6, 0.010309103921964234], DiskBox[7, 0.010309103921964234], DiskBox[8, 0.010309103921964234]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None, PlotLabel->FormBox["\"RandomEmbedding\"", TraditionalForm]], TraditionalForm], {583.2, -1161.}, {Center, Center}, {360.00000000000006, 431.9999999999998}, BaseStyle->{Graphics3DBoxOptions -> {SphericalRegion -> False}}], TagBox[ InsetBox["", {972., -1161.}, {Center, Center}, {360., 431.9999999999998}, BaseStyle->{Graphics3DBoxOptions -> {SphericalRegion -> False}}], "InsetString"], TagBox[ InsetBox["", {1360.8000000000002, -1161.}, {Center, Center}, {359.9999999999998, 431.9999999999998}, BaseStyle->{Graphics3DBoxOptions -> {SphericalRegion -> False}}], "InsetString"]}}, {}}, ImageSize->800, PlotRangePadding->{6, 5}]], "Output", CellLabel->"Out[28]=",ExpressionUUID->"dde8997b-adea-44a7-9be2-81844ed402d2"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Default embedding", "Subsubsection",ExpressionUUID->"ca72f84e-1035-4148-80cc-9df86047b08c"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"GraphPlot", "@", RowBox[{"GraphData", "[", RowBox[{"\"\\"", ",", "\"\\""}], "]"}]}]], "Input", CellLabel->"In[29]:=",ExpressionUUID->"731c0730-7fe3-4e2a-a41c-4969c504ea63"], Cell[BoxData[ GraphicsBox[ GraphicsComplexBox[{{0.8225677529694657, 0.811706989068648}, { 1.546937122130772, 0.0007851730986064842}, {0., 0.811252260256027}, { 1.5451911325783592`, 1.6241570777183132`}, {0.6441079984267437, 0.}, { 2.1885410842499944`, 0.8131501467516216}, {0.6425399336635611, 1.623803338064587}, {1.3661160335776938`, 0.8120725502962206}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 4}, {2, 5}, {2, 6}, {3, 5}, {3, 7}, {4, 6}, {4, 7}, {5, 8}, {6, 8}, {7, 8}}, 0.024123118705809826`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.024123118705809826], DiskBox[2, 0.024123118705809826], DiskBox[3, 0.024123118705809826], DiskBox[4, 0.024123118705809826], DiskBox[5, 0.024123118705809826], DiskBox[6, 0.024123118705809826], DiskBox[7, 0.024123118705809826], DiskBox[8, 0.024123118705809826]}}], FormatType->TraditionalForm, FrameTicks->None]], "Output", CellLabel->"Out[29]=",ExpressionUUID->"7a1b3f36-aed1-4d2a-be5c-6a4096fb68a1"] }, Open ]], Cell[BoxData[{ RowBox[{ RowBox[{"v", "=", RowBox[{"{", "}"}]}], ";"}], "\[IndentingNewLine]", RowBox[{"g", "=", RowBox[{"Graph", "[", RowBox[{ RowBox[{"Range", "[", RowBox[{"Length", "[", "v", "]"}], "]"}], ",", RowBox[{"UndirectedEdge", "@@@", RowBox[{"{", "}"}]}], ",", RowBox[{"VertexCoordinates", "\[Rule]", "v"}], ",", RowBox[{"VertexLabels", "\[Rule]", "Automatic"}]}], "]"}]}]}], "Input",Exp\ ressionUUID->"0847f331-04b7-4be1-8c10-53abfa8663f7"], Cell[BoxData[ RowBox[{"RecognizeGraph", "[", "g", "]"}]], "Input", CellLabel-> "In[175]:=",ExpressionUUID->"79f5781a-10c6-45d5-81de-c83a749984ff"] }, Closed]], Cell[CellGroupData[{ Cell["CVT construction", "Subsubsection",ExpressionUUID->"8fe137a7-4f03-44ce-87cd-c1b25312fd34"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"g", "=", RowBox[{"CubicVertexTransitiveGraph", "[", "8", "]"}]}]], "Input", CellLabel->"In[91]:=",ExpressionUUID->"ecd005c5-5e22-4564-8b8b-9def7968b048"], Cell[BoxData[ GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8}, { Null, {{1, 2}, {3, 4}, {5, 6}, {7, 8}, {1, 4}, {3, 6}, {5, 8}, {7, 2}, { 2, 5}, {4, 7}, {6, 1}, {8, 3}}}, {VertexCoordinates -> {{ Sin[Rational[1, 8] Pi], -Cos[Rational[1, 8] Pi]}, { Cos[Rational[1, 8] Pi], -Sin[Rational[1, 8] Pi]}, { Cos[Rational[1, 8] Pi], Sin[Rational[1, 8] Pi]}, { Sin[Rational[1, 8] Pi], Cos[Rational[1, 8] Pi]}, {-Sin[Rational[1, 8] Pi], Cos[Rational[1, 8] Pi]}, {-Cos[Rational[1, 8] Pi], Sin[Rational[1, 8] Pi]}, {-Cos[Rational[1, 8] Pi], - Sin[Rational[1, 8] Pi]}, {-Sin[Rational[1, 8] Pi], - Cos[Rational[1, 8] Pi]}}}]]}, TagBox[ GraphicsGroupBox[ GraphicsComplexBox[{{0.3826834323650898, -0.9238795325112867}, { 0.9238795325112867, -0.3826834323650898}, {0.9238795325112867, 0.3826834323650898}, {0.3826834323650898, 0.9238795325112867}, {-0.3826834323650898, 0.9238795325112867}, {-0.9238795325112867, 0.3826834323650898}, {-0.9238795325112867, -0.3826834323650898}, \ {-0.3826834323650898, -0.9238795325112867}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 4}, {1, 6}, {2, 5}, {2, 7}, {3, 4}, {3, 6}, {3, 8}, {4, 7}, {5, 6}, {5, 8}, {7, 8}}, 0.02136409873372988]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.02136409873372988], DiskBox[2, 0.02136409873372988], DiskBox[3, 0.02136409873372988], DiskBox[4, 0.02136409873372988], DiskBox[5, 0.02136409873372988], DiskBox[6, 0.02136409873372988], DiskBox[7, 0.02136409873372988], DiskBox[8, 0.02136409873372988]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None]], "Output", CellLabel->"Out[91]=",ExpressionUUID->"cc7f1d9a-0bb2-40da-af2d-d608767929c4"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"RecognizeGraph", "@", "g"}]], "Input", CellLabel->"In[92]:=",ExpressionUUID->"deb08aed-6aa9-475c-bb72-556f2c2483e5"], Cell[BoxData["\<\"CubicalGraph\"\>"], "Output", CellLabel->"Out[92]=",ExpressionUUID->"dd3abded-f2f6-4882-9514-5f046302a78e"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Degenerate", "Subsubsection",ExpressionUUID->"0b4d38e4-b14a-460d-bed6-3ef3f3b30822"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"GraphData", "[", RowBox[{ "\"\\"", ",", "\"\\"", ",", "\"\\""}], "]"}], "//", "StyleGraphs"}]], "Input", CellLabel->"In[4]:=",ExpressionUUID->"d1e1d85b-4eed-4885-915d-ec6e063f9d32"], Cell[BoxData[ RowBox[{"{", RowBox[{ GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, {1}, {4}, { 6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, {7}, {2}, {5}, {8}, { 3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, {EdgeStyle -> { GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> { RGBColor[1, 0, 0]}, VertexCoordinates -> {{ Rational[-1, 2], Rational[-1, 2]}, { Rational[-1, 2], Rational[-1, 2]}, { Rational[-1, 2], Rational[1, 2]}, { Rational[-1, 2], Rational[1, 2]}, { Rational[1, 2], Rational[-1, 2]}, { Rational[1, 2], Rational[-1, 2]}, { Rational[1, 2], Rational[1, 2]}, { Rational[1, 2], Rational[1, 2]}}}]]}, TagBox[ GraphicsGroupBox[ GraphicsComplexBox[{{-0.5, -0.5}, {-0.5, -0.5}, {-0.5, 0.5}, {-0.5, 0.5}, {0.5, -0.5}, {0.5, -0.5}, {0.5, 0.5}, {0.5, 0.5}}, { {GrayLevel[0], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, { 4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.021213203435596427`]}, {RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.021213203435596427], DiskBox[2, 0.021213203435596427], DiskBox[3, 0.021213203435596427], DiskBox[4, 0.021213203435596427], DiskBox[5, 0.021213203435596427], DiskBox[6, 0.021213203435596427], DiskBox[7, 0.021213203435596427], DiskBox[8, 0.021213203435596427]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, {1}, {4}, { 6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, {7}, {2}, {5}, {8}, { 3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, {EdgeStyle -> { GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> { RGBColor[1, 0, 0]}, VertexCoordinates -> {{0, Rational[-1, 2]}, {-2^Rational[-1, 2], Rational[-1, 2]}, {0, Rational[1, 2]}, {-2^Rational[-1, 2], Rational[1, 2]}, {2^Rational[-1, 2], Rational[-1, 2]}, {0, Rational[-1, 2]}, {2^Rational[-1, 2], Rational[1, 2]}, {0, Rational[1, 2]}}}]]}, TagBox[ GraphicsGroupBox[ GraphicsComplexBox[{{0., -0.5}, {-0.7071067811865475, -0.5}, {0., 0.5}, {-0.7071067811865475, 0.5}, {0.7071067811865475, -0.5}, { 0., -0.5}, {0.7071067811865475, 0.5}, {0., 0.5}}, { {GrayLevel[0], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, { 4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.025980762113533156`]}, {RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.025980762113533156], DiskBox[2, 0.025980762113533156], DiskBox[3, 0.025980762113533156], DiskBox[4, 0.025980762113533156], DiskBox[5, 0.025980762113533156], DiskBox[6, 0.025980762113533156], DiskBox[7, 0.025980762113533156], DiskBox[8, 0.025980762113533156]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, {1}, {4}, { 6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, {7}, {2}, {5}, {8}, { 3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, {EdgeStyle -> { GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> { RGBColor[1, 0, 0]}, VertexCoordinates -> {{Rational[-1, 2] 5^Rational[-1, 2], Rational[-1, 2]}, {Rational[-3, 2] 5^Rational[-1, 2], Rational[-1, 2]}, {Rational[-1, 2] 5^Rational[-1, 2], Rational[1, 2]}, {Rational[-3, 2] 5^Rational[-1, 2], Rational[1, 2]}, {Rational[3, 2] 5^Rational[-1, 2], Rational[-1, 2]}, {Rational[1, 2] 5^Rational[-1, 2], Rational[-1, 2]}, {Rational[3, 2] 5^Rational[-1, 2], Rational[1, 2]}, {Rational[1, 2] 5^Rational[-1, 2], Rational[1, 2]}}}]]}, TagBox[ GraphicsGroupBox[ GraphicsComplexBox[{{-0.22360679774997896`, -0.5}, \ {-0.6708203932499369, -0.5}, {-0.22360679774997896`, 0.5}, {-0.6708203932499369, 0.5}, {0.6708203932499369, -0.5}, { 0.22360679774997896`, -0.5}, {0.6708203932499369, 0.5}, { 0.22360679774997896`, 0.5}}, { {GrayLevel[0], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, { 4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.025099800796022267`]}, {RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.025099800796022267], DiskBox[2, 0.025099800796022267], DiskBox[3, 0.025099800796022267], DiskBox[4, 0.025099800796022267], DiskBox[5, 0.025099800796022267], DiskBox[6, 0.025099800796022267], DiskBox[7, 0.025099800796022267], DiskBox[8, 0.025099800796022267]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, {1}, {4}, { 6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, {7}, {2}, {5}, {8}, { 3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, {EdgeStyle -> { GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> { RGBColor[1, 0, 0]}, VertexCoordinates -> {{0, 0}, {-6^Rational[-1, 2], -2^Rational[-1, 2]}, {-6^Rational[-1, 2], 2^Rational[-1, 2]}, {-Rational[2, 3]^Rational[1, 2], 0}, { Rational[2, 3]^Rational[1, 2], 0}, { 6^Rational[-1, 2], -2^Rational[-1, 2]}, { 6^Rational[-1, 2], 2^Rational[-1, 2]}, {0, 0}}}]]}, TagBox[ GraphicsGroupBox[ GraphicsComplexBox[{{0., 0.}, {-0.4082482904638631, -0.7071067811865475}, \ {-0.4082482904638631, 0.7071067811865475}, {-0.816496580927726, 0.}, { 0.816496580927726, 0.}, {0.4082482904638631, -0.7071067811865475}, { 0.4082482904638631, 0.7071067811865475}, {0., 0.}}, { {GrayLevel[0], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, { 4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.0324037034920393]}, {RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.0324037034920393], DiskBox[2, 0.0324037034920393], DiskBox[3, 0.0324037034920393], DiskBox[4, 0.0324037034920393], DiskBox[5, 0.0324037034920393], DiskBox[6, 0.0324037034920393], DiskBox[7, 0.0324037034920393], DiskBox[8, 0.0324037034920393]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, {1}, {4}, { 6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, {7}, {2}, {5}, {8}, { 3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, {EdgeStyle -> { GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> { RGBColor[1, 0, 0]}, VertexCoordinates -> {{Rational[-1, 3] 2^Rational[-1, 2], 0}, { Rational[-1, 3] 2^Rational[1, 2], -2^Rational[-1, 2]}, { Rational[-1, 3] 2^Rational[1, 2], 2^ Rational[-1, 2]}, {-2^Rational[-1, 2], 0}, { 2^Rational[-1, 2], 0}, { Rational[1, 3] 2^Rational[1, 2], -2^Rational[-1, 2]}, { Rational[1, 3] 2^Rational[1, 2], 2^Rational[-1, 2]}, { Rational[1, 3] 2^Rational[-1, 2], 0}}}]]}, TagBox[ GraphicsGroupBox[ GraphicsComplexBox[{{-0.2357022603955158, 0.}, {-0.4714045207910317, -0.7071067811865475}, \ {-0.4714045207910317, 0.7071067811865475}, {-0.7071067811865475, 0.}, { 0.7071067811865475, 0.}, {0.4714045207910317, -0.7071067811865475}, { 0.4714045207910317, 0.7071067811865475}, {0.2357022603955158, 0.}}, { {GrayLevel[0], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, { 4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.029999999999999995`]}, {RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.029999999999999995], DiskBox[2, 0.029999999999999995], DiskBox[3, 0.029999999999999995], DiskBox[4, 0.029999999999999995], DiskBox[5, 0.029999999999999995], DiskBox[6, 0.029999999999999995], DiskBox[7, 0.029999999999999995], DiskBox[8, 0.029999999999999995]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, {1}, {4}, { 6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, {7}, {2}, {5}, {8}, { 3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, {EdgeStyle -> { GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> { RGBColor[1, 0, 0]}, VertexCoordinates -> {{1, 1}, {1, 2}, {2, 1}, {2, 2}, {4, 1}, {4, 2}, {3, 1}, {3, 2}}}]]}, TagBox[ GraphicsGroupBox[ GraphicsComplexBox[{{1., 1.}, {1., 2.}, {2., 1.}, {2., 2.}, {4., 1.}, {4., 2.}, {3., 1.}, {3., 2.}}, { {GrayLevel[0], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, { 4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.047434164902525694`]}, {RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.047434164902525694], DiskBox[2, 0.047434164902525694], DiskBox[3, 0.047434164902525694], DiskBox[4, 0.047434164902525694], DiskBox[5, 0.047434164902525694], DiskBox[6, 0.047434164902525694], DiskBox[7, 0.047434164902525694], DiskBox[8, 0.047434164902525694]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, {1}, {4}, { 6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, {7}, {2}, {5}, {8}, { 3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, {EdgeStyle -> { GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> { RGBColor[1, 0, 0]}, VertexCoordinates -> {{ Rational[1, 2], Rational[-1, 2] 3^Rational[1, 2]}, { Rational[1, 2], 0}, {1, 0}, { Rational[1, 2], Rational[1, 2] 3^Rational[1, 2]}, { Rational[-1, 2], Rational[-1, 2] 3^Rational[1, 2]}, {-1, 0}, { Rational[-1, 2], 0}, { Rational[-1, 2], Rational[1, 2] 3^Rational[1, 2]}}}]]}, TagBox[ GraphicsGroupBox[ GraphicsComplexBox[{{0.5, -0.8660254037844386}, {0.5, 0.}, {1., 0.}, { 0.5, 0.8660254037844386}, {-0.5, -0.8660254037844386}, {-1., 0.}, {-0.5, 0.}, {-0.5, 0.8660254037844386}}, { {GrayLevel[0], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, { 4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.03968626966596886]}, {RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.03968626966596886], DiskBox[2, 0.03968626966596886], DiskBox[3, 0.03968626966596886], DiskBox[4, 0.03968626966596886], DiskBox[5, 0.03968626966596886], DiskBox[6, 0.03968626966596886], DiskBox[7, 0.03968626966596886], DiskBox[8, 0.03968626966596886]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None]}], "}"}]], "Output", CellLabel->"Out[4]=",ExpressionUUID->"31949e7f-df72-48e7-893c-decd1485b031"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"DegenerateGraphEmbeddingTypes", "/@", RowBox[{"GraphData", "[", RowBox[{ "\"\\"", ",", "\"\\"", ",", "\"\\""}], "]"}]}]], "Input", CellLabel->"In[31]:=",ExpressionUUID->"454cfcbc-9f97-441b-a22a-d01fd95c99d2"], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"\<\"DegenerateEdgeEdge\"\>", ",", "\<\"DegenerateVertexVertex\"\>"}], "}"}], ",", RowBox[{"{", RowBox[{"\<\"DegenerateEdgeEdge\"\>", ",", "\<\"DegenerateVertexVertex\"\>"}], "}"}], ",", RowBox[{"{", RowBox[{"\<\"DegenerateEdgeEdge\"\>", ",", "\<\"DegenerateEdgeVertex\"\>"}], "}"}], ",", RowBox[{"{", "\<\"DegenerateVertexVertex\"\>", "}"}], ",", RowBox[{"{", RowBox[{"\<\"DegenerateEdgeEdge\"\>", ",", "\<\"DegenerateEdgeVertex\"\>"}], "}"}], ",", RowBox[{"{", RowBox[{"\<\"DegenerateEdgeEdge\"\>", ",", "\<\"DegenerateEdgeVertex\"\>"}], "}"}], ",", RowBox[{"{", RowBox[{"\<\"DegenerateEdgeEdge\"\>", ",", "\<\"DegenerateEdgeVertex\"\>"}], "}"}]}], "}"}]], "Output", CellLabel->"Out[31]=",ExpressionUUID->"c94088b1-1a68-4dbd-b048-16962d7f4fcd"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["HoneycombToroidal construction", "Subsubsection",ExpressionUUID->"2e40e595-1f12-4988-9871-ae4173311c39"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"GraphData", "[", "\[InvisibleSpace]\[InvisibleSpace]\[InvisibleSpace]\[InvisibleSpace]\ \[InvisibleSpace]\[InvisibleSpace]\[InvisibleSpace]\[InvisibleSpace]\ \[InvisibleSpace]\[InvisibleSpace]\[InvisibleSpace]\[InvisibleSpace]\ \[InvisibleSpace]\[InvisibleSpace]\[InvisibleSpace]\[InvisibleSpace]\ \[InvisibleSpace]\[InvisibleSpace]\[InvisibleSpace]\[InvisibleSpace]\ \[InvisibleSpace]\[InvisibleSpace]\[InvisibleSpace]\[InvisibleSpace]\ \[InvisibleSpace]\[InvisibleSpace]\[InvisibleSpace]\[InvisibleSpace]\ \[InvisibleSpace]\[InvisibleSpace]\[InvisibleSpace]\[InvisibleSpace]\ \[InvisibleSpace]\[InvisibleSpace]\[InvisibleSpace]\[InvisibleSpace]\ \[InvisibleSpace]\[InvisibleSpace]\[InvisibleSpace]\[InvisibleSpace]\ \[InvisibleSpace]\[InvisibleSpace]\[InvisibleSpace]\[InvisibleSpace]\ \[InvisibleSpace]\[InvisibleSpace]\[InvisibleSpace]\[InvisibleSpace]\ \[InvisibleSpace]\[InvisibleSpace]\[InvisibleSpace]\[InvisibleSpace]\ \[InvisibleSpace]\[InvisibleSpace]\[InvisibleSpace]\[InvisibleSpace]\ \[InvisibleSpace]\[InvisibleSpace]\[InvisibleSpace]\[InvisibleSpace]\ \[InvisibleSpace]\[InvisibleSpace]\[InvisibleSpace]\[InvisibleSpace]\ \[InvisibleSpace]\[InvisibleSpace]\[InvisibleSpace]\[InvisibleSpace]\ \[InvisibleSpace]\[InvisibleSpace]\[InvisibleSpace]\[InvisibleSpace]\ \[InvisibleSpace]\[InvisibleSpace]\[InvisibleSpace]\[InvisibleSpace]\ \[InvisibleSpace]\[InvisibleSpace]\[InvisibleSpace]\[InvisibleSpace]", RowBox[{ "\"\\"", ",", "\"\\"", ",", "\"\\""}], "]"}]], "Input", CellLabel-> "In[109]:=",ExpressionUUID->"20692704-75af-4dab-85bf-5323a7fe40dc"], Cell[BoxData[ RowBox[{"{", RowBox[{"1", ",", "8", ",", "3"}], "}"}]], "Output", CellLabel-> "Out[109]=",ExpressionUUID->"395d19c0-de78-42d3-a6d5-f32d56497a73"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"HoneycombToroidalGraph", "[", RowBox[{"1", ",", "8", ",", "3"}], "]"}]], "Input", CellLabel-> "In[110]:=",ExpressionUUID->"0a3da5fc-88a7-4efb-9819-fcdb44184a02"], Cell[BoxData[ GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8}, { Null, {{1, 2}, {1, 6}, {1, 8}, {2, 3}, {2, 5}, {3, 4}, {3, 8}, {4, 5}, { 4, 7}, {5, 6}, {6, 7}, {7, 8}}}]]}, TagBox[ GraphicsGroupBox[ GraphicsComplexBox[{{0., 0.8123804804083388}, {0.8220580260168422, 0.8136110341437411}, {1.5438789511362425`, 1.625709087400402}, { 2.1869495202793963`, 0.8134307150111223}, {1.544403895314514, 0.0007999709283520451}, {0.6424562106811801, 0.}, {1.3645985565480894`, 0.8124636099245314}, {0.6412662495487771, 1.6252758339565512`}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 6}, {1, 8}, {2, 3}, {2, 5}, {3, 4}, {3, 8}, {4, 5}, {4, 7}, {5, 6}, {6, 7}, {7, 8}}, 0.024110508285619142`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.024110508285619142], DiskBox[2, 0.024110508285619142], DiskBox[3, 0.024110508285619142], DiskBox[4, 0.024110508285619142], DiskBox[5, 0.024110508285619142], DiskBox[6, 0.024110508285619142], DiskBox[7, 0.024110508285619142], DiskBox[8, 0.024110508285619142]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None]], "Output", CellLabel-> "Out[110]=",ExpressionUUID->"16ef1b6a-8a7a-4c0d-b67c-6b8fee46321a"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"RecognizeGraph", "[", "%", "]"}]], "Input", CellLabel-> "In[111]:=",ExpressionUUID->"8c3c5e03-82e1-474e-89d6-b8b4e44047de"], Cell[BoxData["\<\"CubicalGraph\"\>"], "Output", CellLabel-> "Out[111]=",ExpressionUUID->"1121129c-e200-4e3f-b7d5-452073da0396"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["GeneralizedHoneycombGraph construction", "Subsubsection",ExpressionUUID->"249ac1f6-c96b-44ed-b873-2898fb455fdc"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"With", "[", RowBox[{ RowBox[{"{", RowBox[{"n", "=", "8"}], "}"}], ",", RowBox[{"Cases", "[", RowBox[{ RowBox[{"Table", "[", RowBox[{ RowBox[{"{", RowBox[{"k", ",", RowBox[{"g", "=", RowBox[{"GeneralizedHoneycombGraph", "[", RowBox[{"n", ",", "k"}], "]"}]}], ",", RowBox[{"RecognizeGraph", "@", "g"}]}], "}"}], ",", RowBox[{"{", RowBox[{"k", ",", RowBox[{"n", "-", "1"}]}], "}"}]}], "]"}], ",", RowBox[{"{", RowBox[{ "__", ",", "\[InvisibleSpace]\[InvisibleSpace]\[InvisibleSpace]\[InvisibleSpace]\ \[InvisibleSpace]\[InvisibleSpace]\[InvisibleSpace]\[InvisibleSpace]\ \[InvisibleSpace]\[InvisibleSpace]\[InvisibleSpace]\[InvisibleSpace]\ \[InvisibleSpace]\[InvisibleSpace]\[InvisibleSpace]\[InvisibleSpace]\ \[InvisibleSpace]\[InvisibleSpace]\[InvisibleSpace]\[InvisibleSpace]\ \[InvisibleSpace]\[InvisibleSpace]\[InvisibleSpace]\[InvisibleSpace]\ \[InvisibleSpace]\[InvisibleSpace]\[InvisibleSpace]\[InvisibleSpace]\ \[InvisibleSpace]\[InvisibleSpace]\[InvisibleSpace]\[InvisibleSpace]\ \[InvisibleSpace]\[InvisibleSpace]\[InvisibleSpace]\[InvisibleSpace]\ \[InvisibleSpace]\[InvisibleSpace]\[InvisibleSpace]\[InvisibleSpace]\ \[InvisibleSpace]\[InvisibleSpace]\[InvisibleSpace]\[InvisibleSpace]\ \[InvisibleSpace]\[InvisibleSpace]\[InvisibleSpace]\[InvisibleSpace]\ \[InvisibleSpace]\[InvisibleSpace]\[InvisibleSpace]\[InvisibleSpace]\ \[InvisibleSpace]\[InvisibleSpace]\[InvisibleSpace]\[InvisibleSpace]\ \[InvisibleSpace]\[InvisibleSpace]\[InvisibleSpace]\[InvisibleSpace]\ \[InvisibleSpace]\[InvisibleSpace]\[InvisibleSpace]\[InvisibleSpace]\ \[InvisibleSpace]\[InvisibleSpace]\[InvisibleSpace]\[InvisibleSpace]\ \[InvisibleSpace]\[InvisibleSpace]\[InvisibleSpace]\[InvisibleSpace]\ \[InvisibleSpace]\[InvisibleSpace]\[InvisibleSpace]\[InvisibleSpace]\ \[InvisibleSpace]\[InvisibleSpace]\[InvisibleSpace]\[InvisibleSpace]", "\"\\""}], "}"}]}], "]"}]}], "]"}], "//", "Timing"}]], "Input", CellLabel-> "In[114]:=",ExpressionUUID->"6e8de219-6a48-405a-bf0c-7c3208c00351"], Cell[BoxData[ RowBox[{"{", RowBox[{"0.004782`", ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"3", ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {4}, {6}, {1}, { 5}, {7}, {4}, {6}, {8}, {1}, {3}, {7}, {2}, {6}, {8}, {1}, { 3}, {5}, {2}, {4}, {8}, {3}, {5}, {7}}}, Pattern}]}, { VertexCoordinates -> {{ Sin[Rational[1, 8] Pi], -Cos[Rational[1, 8] Pi]}, { Cos[Rational[1, 8] Pi], -Sin[Rational[1, 8] Pi]}, { Cos[Rational[1, 8] Pi], Sin[Rational[1, 8] Pi]}, { Sin[Rational[1, 8] Pi], Cos[Rational[1, 8] Pi]}, {-Sin[Rational[1, 8] Pi], Cos[Rational[1, 8] Pi]}, {-Cos[Rational[1, 8] Pi], Sin[Rational[1, 8] Pi]}, {-Cos[Rational[1, 8] Pi], - Sin[Rational[1, 8] Pi]}, {-Sin[Rational[1, 8] Pi], - Cos[Rational[1, 8] Pi]}}}]]}, TagBox[GraphicsGroupBox[ GraphicsComplexBox[{{0.3826834323650898, -0.9238795325112867}, { 0.9238795325112867, -0.3826834323650898}, {0.9238795325112867, 0.3826834323650898}, {0.3826834323650898, 0.9238795325112867}, {-0.3826834323650898, 0.9238795325112867}, {-0.9238795325112867, 0.3826834323650898}, {-0.9238795325112867, -0.3826834323650898}, \ {-0.3826834323650898, -0.9238795325112867}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 4}, {1, 6}, {2, 5}, {2, 7}, {3, 4}, {3, 6}, {3, 8}, {4, 7}, {5, 6}, {5, 8}, {7, 8}}, 0.02136409873372988]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.02136409873372988], DiskBox[2, 0.02136409873372988], DiskBox[3, 0.02136409873372988], DiskBox[4, 0.02136409873372988], DiskBox[5, 0.02136409873372988], DiskBox[6, 0.02136409873372988], DiskBox[7, 0.02136409873372988], DiskBox[8, 0.02136409873372988]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], ",", "\<\"CubicalGraph\"\>"}], "}"}], ",", RowBox[{"{", RowBox[{"5", ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {4}, {6}, {1}, { 5}, {7}, {4}, {6}, {8}, {1}, {3}, {7}, {2}, {6}, {8}, {1}, { 3}, {5}, {2}, {4}, {8}, {3}, {5}, {7}}}, Pattern}]}, { VertexCoordinates -> {{ Sin[Rational[1, 8] Pi], -Cos[Rational[1, 8] Pi]}, { Cos[Rational[1, 8] Pi], -Sin[Rational[1, 8] Pi]}, { Cos[Rational[1, 8] Pi], Sin[Rational[1, 8] Pi]}, { Sin[Rational[1, 8] Pi], Cos[Rational[1, 8] Pi]}, {-Sin[Rational[1, 8] Pi], Cos[Rational[1, 8] Pi]}, {-Cos[Rational[1, 8] Pi], Sin[Rational[1, 8] Pi]}, {-Cos[Rational[1, 8] Pi], - Sin[Rational[1, 8] Pi]}, {-Sin[Rational[1, 8] Pi], - Cos[Rational[1, 8] Pi]}}}]]}, TagBox[GraphicsGroupBox[ GraphicsComplexBox[{{0.3826834323650898, -0.9238795325112867}, { 0.9238795325112867, -0.3826834323650898}, {0.9238795325112867, 0.3826834323650898}, {0.3826834323650898, 0.9238795325112867}, {-0.3826834323650898, 0.9238795325112867}, {-0.9238795325112867, 0.3826834323650898}, {-0.9238795325112867, -0.3826834323650898}, \ {-0.3826834323650898, -0.9238795325112867}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 4}, {1, 6}, {2, 5}, {2, 7}, {3, 4}, {3, 6}, {3, 8}, {4, 7}, {5, 6}, {5, 8}, {7, 8}}, 0.02136409873372988]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.02136409873372988], DiskBox[2, 0.02136409873372988], DiskBox[3, 0.02136409873372988], DiskBox[4, 0.02136409873372988], DiskBox[5, 0.02136409873372988], DiskBox[6, 0.02136409873372988], DiskBox[7, 0.02136409873372988], DiskBox[8, 0.02136409873372988]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], ",", "\<\"CubicalGraph\"\>"}], "}"}]}], "}"}]}], "}"}]], "Output", CellLabel-> "Out[114]=",ExpressionUUID->"d17640e7-4bed-451c-8194-d2fae3fa2a8e"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"g", "=", RowBox[{"GeneralizedHoneycombGraph", "[", RowBox[{"8", ",", "3"}], "]"}]}]], "Input", CellLabel-> "In[115]:=",ExpressionUUID->"55692bbc-927f-4c0f-a96e-429fd75f0dc7"], Cell[BoxData[ GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {4}, {6}, {1}, {5}, {7}, { 4}, {6}, {8}, {1}, {3}, {7}, {2}, {6}, {8}, {1}, {3}, {5}, {2}, { 4}, {8}, {3}, {5}, {7}}}, Pattern}]}, {VertexCoordinates -> {{ Sin[Rational[1, 8] Pi], -Cos[Rational[1, 8] Pi]}, { Cos[Rational[1, 8] Pi], -Sin[Rational[1, 8] Pi]}, { Cos[Rational[1, 8] Pi], Sin[Rational[1, 8] Pi]}, { Sin[Rational[1, 8] Pi], Cos[Rational[1, 8] Pi]}, {-Sin[Rational[1, 8] Pi], Cos[Rational[1, 8] Pi]}, {-Cos[Rational[1, 8] Pi], Sin[Rational[1, 8] Pi]}, {-Cos[Rational[1, 8] Pi], - Sin[Rational[1, 8] Pi]}, {-Sin[Rational[1, 8] Pi], - Cos[Rational[1, 8] Pi]}}}]]}, TagBox[ GraphicsGroupBox[ GraphicsComplexBox[{{0.3826834323650898, -0.9238795325112867}, { 0.9238795325112867, -0.3826834323650898}, {0.9238795325112867, 0.3826834323650898}, {0.3826834323650898, 0.9238795325112867}, {-0.3826834323650898, 0.9238795325112867}, {-0.9238795325112867, 0.3826834323650898}, {-0.9238795325112867, -0.3826834323650898}, \ {-0.3826834323650898, -0.9238795325112867}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 4}, {1, 6}, {2, 5}, {2, 7}, {3, 4}, {3, 6}, {3, 8}, {4, 7}, {5, 6}, {5, 8}, {7, 8}}, 0.02136409873372988]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.02136409873372988], DiskBox[2, 0.02136409873372988], DiskBox[3, 0.02136409873372988], DiskBox[4, 0.02136409873372988], DiskBox[5, 0.02136409873372988], DiskBox[6, 0.02136409873372988], DiskBox[7, 0.02136409873372988], DiskBox[8, 0.02136409873372988]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None]], "Output", CellLabel-> "Out[115]=",ExpressionUUID->"a971bded-3f82-422d-8415-be9c5f951864"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"RecognizeGraph", "@", "g"}]], "Input", CellLabel-> "In[116]:=",ExpressionUUID->"175e446d-8665-4a85-9e5e-2cd757435aaf"], Cell[BoxData["\<\"CubicalGraph\"\>"], "Output", CellLabel-> "Out[116]=",ExpressionUUID->"11d19be0-04b9-4468-aaf4-57f4c35f634e"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Bilateral", "Subsubsection",ExpressionUUID->"1bfacea2-25fe-4a4d-8140-fcfe09fc936b"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"GraphData", "[", RowBox[{ "\"\\"", ",", "\"\\"", ",", "\"\\""}], "]"}], "//", "StyleGraphs"}]], "Input", CellLabel->"In[3]:=",ExpressionUUID->"8415c4fb-3d05-4428-b957-9e255e330520"], Cell[BoxData[ RowBox[{"{", RowBox[{ GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, {1}, {4}, { 6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, {7}, {2}, {5}, {8}, { 3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, {EdgeStyle -> { GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> { RGBColor[1, 0, 0]}, VertexCoordinates -> {{ Rational[-1, 3], Rational[-1, 3]}, {-1, -1}, { Rational[-1, 3], Rational[1, 3]}, {-1, 1}, { Rational[1, 3], Rational[-1, 3]}, {1, -1}, { Rational[1, 3], Rational[1, 3]}, {1, 1}}}]]}, TagBox[ GraphicsGroupBox[ GraphicsComplexBox[{{-0.3333333333333333, -0.3333333333333333}, {-1., \ -1.}, {-0.3333333333333333, 0.3333333333333333}, {-1., 1.}, { 0.3333333333333333, -0.3333333333333333}, {1., -1.}, { 0.3333333333333333, 0.3333333333333333}, {1., 1.}}, { {GrayLevel[0], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, { 4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.042426406871192854`]}, {RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.042426406871192854], DiskBox[2, 0.042426406871192854], DiskBox[3, 0.042426406871192854], DiskBox[4, 0.042426406871192854], DiskBox[5, 0.042426406871192854], DiskBox[6, 0.042426406871192854], DiskBox[7, 0.042426406871192854], DiskBox[8, 0.042426406871192854]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, {1}, {4}, { 6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, {7}, {2}, {5}, {8}, { 3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, {EdgeStyle -> { GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> { RGBColor[1, 0, 0]}, VertexCoordinates -> {{-1, -1}, {-1, 1}, {1, -1}, {1, 1}, { Rational[-1, 2], Rational[1, 2]}, { Rational[-1, 2], Rational[-1, 2]}, { Rational[1, 2], Rational[1, 2]}, { Rational[1, 2], Rational[-1, 2]}}}]]}, TagBox[ GraphicsGroupBox[ GraphicsComplexBox[{{-1., -1.}, {-1., 1.}, {1., -1.}, {1., 1.}, {-0.5, 0.5}, {-0.5, -0.5}, {0.5, 0.5}, {0.5, -0.5}}, { {GrayLevel[0], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, { 4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.042426406871192854`]}, {RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.042426406871192854], DiskBox[2, 0.042426406871192854], DiskBox[3, 0.042426406871192854], DiskBox[4, 0.042426406871192854], DiskBox[5, 0.042426406871192854], DiskBox[6, 0.042426406871192854], DiskBox[7, 0.042426406871192854], DiskBox[8, 0.042426406871192854]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, {1}, {4}, { 6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, {7}, {2}, {5}, {8}, { 3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, {EdgeStyle -> { GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> { RGBColor[1, 0, 0]}, VertexCoordinates -> {{ Rational[1, 2], Rational[-1, 2] Cot[Rational[1, 8] Pi]}, { Rational[1, 2], Rational[1, 2] Cot[Rational[1, 8] Pi]}, { Rational[1, 2] Cot[Rational[1, 8] Pi], Rational[-1, 2]}, {Rational[1, 2] Cot[Rational[1, 8] Pi], Rational[1, 2]}, { Rational[-1, 2], Rational[-1, 2] Cot[Rational[1, 8] Pi]}, { Rational[-1, 2], Rational[1, 2] Cot[Rational[1, 8] Pi]}, { Rational[-1, 2] Cot[Rational[1, 8] Pi], Rational[-1, 2]}, {Rational[-1, 2] Cot[Rational[1, 8] Pi], Rational[1, 2]}}}]]}, TagBox[ GraphicsGroupBox[ GraphicsComplexBox[{{0.5, -1.2071067811865475`}, {0.5, 1.2071067811865475`}, {1.2071067811865475`, -0.5}, { 1.2071067811865475`, 0.5}, {-0.5, -1.2071067811865475`}, {-0.5, 1.2071067811865475`}, {-1.2071067811865475`, -0.5}, \ {-1.2071067811865475`, 0.5}}, { {GrayLevel[0], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, { 4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.05121320343559642]}, {RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.05121320343559642], DiskBox[2, 0.05121320343559642], DiskBox[3, 0.05121320343559642], DiskBox[4, 0.05121320343559642], DiskBox[5, 0.05121320343559642], DiskBox[6, 0.05121320343559642], DiskBox[7, 0.05121320343559642], DiskBox[8, 0.05121320343559642]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, {1}, {4}, { 6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, {7}, {2}, {5}, {8}, { 3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, {EdgeStyle -> { GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> { RGBColor[1, 0, 0]}, VertexCoordinates -> {{ Sin[Rational[1, 8] Pi], -Cos[Rational[1, 8] Pi]}, {- Cos[Rational[1, 8] Pi], Sin[Rational[1, 8] Pi]}, { Sin[Rational[1, 8] Pi], Cos[Rational[1, 8] Pi]}, { Cos[Rational[1, 8] Pi], Sin[Rational[1, 8] Pi]}, { Cos[Rational[1, 8] Pi], -Sin[Rational[1, 8] Pi]}, {- Sin[Rational[1, 8] Pi], Cos[Rational[1, 8] Pi]}, {-Cos[Rational[1, 8] Pi], - Sin[Rational[1, 8] Pi]}, {-Sin[Rational[1, 8] Pi], - Cos[Rational[1, 8] Pi]}}}]]}, TagBox[ GraphicsGroupBox[ GraphicsComplexBox[{{ 0.3826834323650898, -0.9238795325112867}, {-0.9238795325112867, 0.3826834323650898}, {0.3826834323650898, 0.9238795325112867}, { 0.9238795325112867, 0.3826834323650898}, { 0.9238795325112867, -0.3826834323650898}, {-0.3826834323650898, 0.9238795325112867}, {-0.9238795325112867, -0.3826834323650898}, \ {-0.3826834323650898, -0.9238795325112867}}, { {GrayLevel[0], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, { 4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.039196888946291294`]}, {RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.039196888946291294], DiskBox[2, 0.039196888946291294], DiskBox[3, 0.039196888946291294], DiskBox[4, 0.039196888946291294], DiskBox[5, 0.039196888946291294], DiskBox[6, 0.039196888946291294], DiskBox[7, 0.039196888946291294], DiskBox[8, 0.039196888946291294]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, {1}, {4}, { 6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, {7}, {2}, {5}, {8}, { 3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, {EdgeStyle -> { GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> { RGBColor[1, 0, 0]}, VertexCoordinates -> {{ Rational[-1, 2], Rational[1, 2]}, {0, Rational[1, 2] (1 + 3^Rational[1, 2])}, { Rational[-1, 2], Rational[-1, 2]}, {0, Rational[1, 2]}, {0, Rational[-1, 2]}, { Rational[1, 2], Rational[1, 2]}, {0, Rational[1, 2] (-1 - 3^Rational[1, 2])}, { Rational[1, 2], Rational[-1, 2]}}}]]}, TagBox[ GraphicsGroupBox[ GraphicsComplexBox[{{-0.5, 0.5}, {0., 1.3660254037844386`}, {-0.5, -0.5}, {0., 0.5}, {0., -0.5}, {0.5, 0.5}, {0., -1.3660254037844386`}, {0.5, -0.5}}, { {GrayLevel[0], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, { 4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.04363969366764614]}, {RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.04363969366764614], DiskBox[2, 0.04363969366764614], DiskBox[3, 0.04363969366764614], DiskBox[4, 0.04363969366764614], DiskBox[5, 0.04363969366764614], DiskBox[6, 0.04363969366764614], DiskBox[7, 0.04363969366764614], DiskBox[8, 0.04363969366764614]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, {1}, {4}, { 6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, {7}, {2}, {5}, {8}, { 3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, {EdgeStyle -> { GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> { RGBColor[1, 0, 0]}, VertexCoordinates -> {{Rational[1, 2] 3^Rational[-1, 2], Rational[1, 2]}, {Rational[1, 2] 3^Rational[-1, 2], Rational[-1, 2]}, {0, Rational[1, 6] (3 - 33^Rational[1, 2])}, { 0, Rational[1, 6] (-3 - 33^Rational[1, 2])}, { 0, Rational[1, 6] (3 + 33^Rational[1, 2])}, { 0, Rational[1, 6] (-3 + 33^Rational[1, 2])}, { Rational[-1, 2] 3^Rational[-1, 2], Rational[1, 2]}, {Rational[-1, 2] 3^Rational[-1, 2], Rational[-1, 2]}}}]]}, TagBox[ GraphicsGroupBox[ GraphicsComplexBox[{{0.2886751345948129, 0.5}, { 0.2886751345948129, -0.5}, {0., -0.4574271077563381}, { 0., -1.457427107756338}, {0., 1.457427107756338}, {0., 0.4574271077563381}, {-0.2886751345948129, 0.5}, {-0.2886751345948129, -0.5}}, { {GrayLevel[0], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, { 4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.04457223796244366]}, {RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.04457223796244366], DiskBox[2, 0.04457223796244366], DiskBox[3, 0.04457223796244366], DiskBox[4, 0.04457223796244366], DiskBox[5, 0.04457223796244366], DiskBox[6, 0.04457223796244366], DiskBox[7, 0.04457223796244366], DiskBox[8, 0.04457223796244366]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, {1}, {4}, { 6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, {7}, {2}, {5}, {8}, { 3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, {EdgeStyle -> { GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> { RGBColor[1, 0, 0]}, VertexCoordinates -> {{ Rational[-1, 2], Rational[-1, 2]}, { Rational[-1, 2], Rational[-1, 2]}, { Rational[-1, 2], Rational[1, 2]}, { Rational[-1, 2], Rational[1, 2]}, { Rational[1, 2], Rational[-1, 2]}, { Rational[1, 2], Rational[-1, 2]}, { Rational[1, 2], Rational[1, 2]}, { Rational[1, 2], Rational[1, 2]}}}]]}, TagBox[ GraphicsGroupBox[ GraphicsComplexBox[{{-0.5, -0.5}, {-0.5, -0.5}, {-0.5, 0.5}, {-0.5, 0.5}, {0.5, -0.5}, {0.5, -0.5}, {0.5, 0.5}, {0.5, 0.5}}, { {GrayLevel[0], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, { 4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.021213203435596427`]}, {RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.021213203435596427], DiskBox[2, 0.021213203435596427], DiskBox[3, 0.021213203435596427], DiskBox[4, 0.021213203435596427], DiskBox[5, 0.021213203435596427], DiskBox[6, 0.021213203435596427], DiskBox[7, 0.021213203435596427], DiskBox[8, 0.021213203435596427]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, {1}, {4}, { 6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, {7}, {2}, {5}, {8}, { 3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, {EdgeStyle -> { GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> { RGBColor[1, 0, 0]}, VertexCoordinates -> {{0, Rational[-1, 2]}, {-2^Rational[-1, 2], Rational[-1, 2]}, {0, Rational[1, 2]}, {-2^Rational[-1, 2], Rational[1, 2]}, {2^Rational[-1, 2], Rational[-1, 2]}, {0, Rational[-1, 2]}, {2^Rational[-1, 2], Rational[1, 2]}, {0, Rational[1, 2]}}}]]}, TagBox[ GraphicsGroupBox[ GraphicsComplexBox[{{0., -0.5}, {-0.7071067811865475, -0.5}, {0., 0.5}, {-0.7071067811865475, 0.5}, {0.7071067811865475, -0.5}, { 0., -0.5}, {0.7071067811865475, 0.5}, {0., 0.5}}, { {GrayLevel[0], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, { 4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.025980762113533156`]}, {RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.025980762113533156], DiskBox[2, 0.025980762113533156], DiskBox[3, 0.025980762113533156], DiskBox[4, 0.025980762113533156], DiskBox[5, 0.025980762113533156], DiskBox[6, 0.025980762113533156], DiskBox[7, 0.025980762113533156], DiskBox[8, 0.025980762113533156]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, {1}, {4}, { 6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, {7}, {2}, {5}, {8}, { 3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, {EdgeStyle -> { GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> { RGBColor[1, 0, 0]}, VertexCoordinates -> {{Rational[-1, 2] 5^Rational[-1, 2], Rational[-1, 2]}, {Rational[-3, 2] 5^Rational[-1, 2], Rational[-1, 2]}, {Rational[-1, 2] 5^Rational[-1, 2], Rational[1, 2]}, {Rational[-3, 2] 5^Rational[-1, 2], Rational[1, 2]}, {Rational[3, 2] 5^Rational[-1, 2], Rational[-1, 2]}, {Rational[1, 2] 5^Rational[-1, 2], Rational[-1, 2]}, {Rational[3, 2] 5^Rational[-1, 2], Rational[1, 2]}, {Rational[1, 2] 5^Rational[-1, 2], Rational[1, 2]}}}]]}, TagBox[ GraphicsGroupBox[ GraphicsComplexBox[{{-0.22360679774997896`, -0.5}, \ {-0.6708203932499369, -0.5}, {-0.22360679774997896`, 0.5}, {-0.6708203932499369, 0.5}, {0.6708203932499369, -0.5}, { 0.22360679774997896`, -0.5}, {0.6708203932499369, 0.5}, { 0.22360679774997896`, 0.5}}, { {GrayLevel[0], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, { 4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.025099800796022267`]}, {RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.025099800796022267], DiskBox[2, 0.025099800796022267], DiskBox[3, 0.025099800796022267], DiskBox[4, 0.025099800796022267], DiskBox[5, 0.025099800796022267], DiskBox[6, 0.025099800796022267], DiskBox[7, 0.025099800796022267], DiskBox[8, 0.025099800796022267]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, {1}, {4}, { 6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, {7}, {2}, {5}, {8}, { 3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, {EdgeStyle -> { GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> { RGBColor[1, 0, 0]}, VertexCoordinates -> {{0, 0}, {-6^Rational[-1, 2], -2^Rational[-1, 2]}, {-6^Rational[-1, 2], 2^Rational[-1, 2]}, {-Rational[2, 3]^Rational[1, 2], 0}, { Rational[2, 3]^Rational[1, 2], 0}, { 6^Rational[-1, 2], -2^Rational[-1, 2]}, { 6^Rational[-1, 2], 2^Rational[-1, 2]}, {0, 0}}}]]}, TagBox[ GraphicsGroupBox[ GraphicsComplexBox[{{0., 0.}, {-0.4082482904638631, -0.7071067811865475}, \ {-0.4082482904638631, 0.7071067811865475}, {-0.816496580927726, 0.}, { 0.816496580927726, 0.}, {0.4082482904638631, -0.7071067811865475}, { 0.4082482904638631, 0.7071067811865475}, {0., 0.}}, { {GrayLevel[0], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, { 4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.0324037034920393]}, {RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.0324037034920393], DiskBox[2, 0.0324037034920393], DiskBox[3, 0.0324037034920393], DiskBox[4, 0.0324037034920393], DiskBox[5, 0.0324037034920393], DiskBox[6, 0.0324037034920393], DiskBox[7, 0.0324037034920393], DiskBox[8, 0.0324037034920393]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, {1}, {4}, { 6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, {7}, {2}, {5}, {8}, { 3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, {EdgeStyle -> { GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> { RGBColor[1, 0, 0]}, VertexCoordinates -> {{Rational[-1, 3] 2^Rational[-1, 2], 0}, { Rational[-1, 3] 2^Rational[1, 2], -2^Rational[-1, 2]}, { Rational[-1, 3] 2^Rational[1, 2], 2^ Rational[-1, 2]}, {-2^Rational[-1, 2], 0}, { 2^Rational[-1, 2], 0}, { Rational[1, 3] 2^Rational[1, 2], -2^Rational[-1, 2]}, { Rational[1, 3] 2^Rational[1, 2], 2^Rational[-1, 2]}, { Rational[1, 3] 2^Rational[-1, 2], 0}}}]]}, TagBox[ GraphicsGroupBox[ GraphicsComplexBox[{{-0.2357022603955158, 0.}, {-0.4714045207910317, -0.7071067811865475}, \ {-0.4714045207910317, 0.7071067811865475}, {-0.7071067811865475, 0.}, { 0.7071067811865475, 0.}, {0.4714045207910317, -0.7071067811865475}, { 0.4714045207910317, 0.7071067811865475}, {0.2357022603955158, 0.}}, { {GrayLevel[0], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, { 4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.029999999999999995`]}, {RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.029999999999999995], DiskBox[2, 0.029999999999999995], DiskBox[3, 0.029999999999999995], DiskBox[4, 0.029999999999999995], DiskBox[5, 0.029999999999999995], DiskBox[6, 0.029999999999999995], DiskBox[7, 0.029999999999999995], DiskBox[8, 0.029999999999999995]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, {1}, {4}, { 6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, {7}, {2}, {5}, {8}, { 3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, {EdgeStyle -> { GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> { RGBColor[1, 0, 0]}, VertexCoordinates -> {{Rational[1, 2] 3^Rational[-1, 2], 0}, { Rational[-1, 2] 3^Rational[-1, 2], -2^Rational[-1, 2]}, { Rational[-1, 2] 3^Rational[-1, 2], 2^Rational[-1, 2]}, { Rational[-1, 2] 3^Rational[1, 2], 0}, { Rational[1, 2] 3^Rational[1, 2], 0}, { Rational[1, 2] 3^Rational[-1, 2], -2^Rational[-1, 2]}, { Rational[1, 2] 3^Rational[-1, 2], 2^Rational[-1, 2]}, { Rational[-1, 2] 3^Rational[-1, 2], 0}}}]]}, TagBox[ GraphicsGroupBox[ GraphicsComplexBox[{{0.2886751345948129, 0.}, {-0.2886751345948129, -0.7071067811865475}, \ {-0.2886751345948129, 0.7071067811865475}, {-0.8660254037844386, 0.}, { 0.8660254037844386, 0.}, {0.2886751345948129, -0.7071067811865475}, { 0.2886751345948129, 0.7071067811865475}, {-0.2886751345948129, 0.}}, { {GrayLevel[0], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, { 4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.03354101966249684]}, {RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.03354101966249684], DiskBox[2, 0.03354101966249684], DiskBox[3, 0.03354101966249684], DiskBox[4, 0.03354101966249684], DiskBox[5, 0.03354101966249684], DiskBox[6, 0.03354101966249684], DiskBox[7, 0.03354101966249684], DiskBox[8, 0.03354101966249684]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, {1}, {4}, { 6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, {7}, {2}, {5}, {8}, { 3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, {EdgeStyle -> { GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> { RGBColor[1, 0, 0]}, VertexCoordinates -> {{0, 1}, {1, 4}, {1, 3}, {0, 2}, {1, 2}, {0, 3}, {0, 4}, {1, 1}}}]]}, TagBox[ GraphicsGroupBox[ GraphicsComplexBox[{{0., 1.}, {1., 4.}, {1., 3.}, {0., 2.}, {1., 2.}, {0., 3.}, {0., 4.}, {1., 1.}}, { {GrayLevel[0], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, { 4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.047434164902525694`]}, {RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.047434164902525694], DiskBox[2, 0.047434164902525694], DiskBox[3, 0.047434164902525694], DiskBox[4, 0.047434164902525694], DiskBox[5, 0.047434164902525694], DiskBox[6, 0.047434164902525694], DiskBox[7, 0.047434164902525694], DiskBox[8, 0.047434164902525694]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, {1}, {4}, { 6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, {7}, {2}, {5}, {8}, { 3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, {EdgeStyle -> { GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> { RGBColor[1, 0, 0]}, VertexCoordinates -> {{ Rational[-4, 5], -1}, { Rational[-4, 5], 1}, { Rational[4, 5], -1}, { Rational[4, 5], 1}, {1, Rational[4, 5]}, {1, Rational[-4, 5]}, {-1, Rational[4, 5]}, {-1, Rational[-4, 5]}}}]]}, TagBox[ GraphicsGroupBox[ GraphicsComplexBox[{{-0.8, -1.}, {-0.8, 1.}, {0.8, -1.}, {0.8, 1.}, { 1., 0.8}, {1., -0.8}, {-1., 0.8}, {-1., -0.8}}, { {GrayLevel[0], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, { 4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.042426406871192854`]}, {RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.042426406871192854], DiskBox[2, 0.042426406871192854], DiskBox[3, 0.042426406871192854], DiskBox[4, 0.042426406871192854], DiskBox[5, 0.042426406871192854], DiskBox[6, 0.042426406871192854], DiskBox[7, 0.042426406871192854], DiskBox[8, 0.042426406871192854]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, {1}, {4}, { 6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, {7}, {2}, {5}, {8}, { 3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, {EdgeStyle -> { GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> { RGBColor[1, 0, 0]}, VertexCoordinates -> {{1, 1}, {1, 2}, {2, 1}, {2, 2}, {4, 1}, {4, 2}, {3, 1}, {3, 2}}}]]}, TagBox[ GraphicsGroupBox[ GraphicsComplexBox[{{1., 1.}, {1., 2.}, {2., 1.}, {2., 2.}, {4., 1.}, {4., 2.}, {3., 1.}, {3., 2.}}, { {GrayLevel[0], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, { 4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.047434164902525694`]}, {RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.047434164902525694], DiskBox[2, 0.047434164902525694], DiskBox[3, 0.047434164902525694], DiskBox[4, 0.047434164902525694], DiskBox[5, 0.047434164902525694], DiskBox[6, 0.047434164902525694], DiskBox[7, 0.047434164902525694], DiskBox[8, 0.047434164902525694]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, {1}, {4}, { 6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, {7}, {2}, {5}, {8}, { 3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, {EdgeStyle -> { GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> { RGBColor[1, 0, 0]}, VertexCoordinates -> {{0, 0}, {0, Rational[1, 2]}, {-1, 1}, { Rational[-1, 2], 1}, {1, 1}, { Rational[1, 2], 1}, {0, 2}, {0, 1}}}]]}, TagBox[ GraphicsGroupBox[ GraphicsComplexBox[{{0., 0.}, {0., 0.5}, {-1., 1.}, {-0.5, 1.}, {1., 1.}, {0.5, 1.}, {0., 2.}, {0., 1.}}, { {GrayLevel[0], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, { 4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.042426406871192854`]}, {RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.042426406871192854], DiskBox[2, 0.042426406871192854], DiskBox[3, 0.042426406871192854], DiskBox[4, 0.042426406871192854], DiskBox[5, 0.042426406871192854], DiskBox[6, 0.042426406871192854], DiskBox[7, 0.042426406871192854], DiskBox[8, 0.042426406871192854]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, {1}, {4}, { 6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, {7}, {2}, {5}, {8}, { 3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, {EdgeStyle -> { GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> { RGBColor[1, 0, 0]}, VertexCoordinates -> {{ Rational[1, 2], Rational[-1, 2] 3^Rational[1, 2]}, { Rational[1, 2], 0}, {1, 0}, { Rational[1, 2], Rational[1, 2] 3^Rational[1, 2]}, { Rational[-1, 2], Rational[-1, 2] 3^Rational[1, 2]}, {-1, 0}, { Rational[-1, 2], 0}, { Rational[-1, 2], Rational[1, 2] 3^Rational[1, 2]}}}]]}, TagBox[ GraphicsGroupBox[ GraphicsComplexBox[{{0.5, -0.8660254037844386}, {0.5, 0.}, {1., 0.}, { 0.5, 0.8660254037844386}, {-0.5, -0.8660254037844386}, {-1., 0.}, {-0.5, 0.}, {-0.5, 0.8660254037844386}}, { {GrayLevel[0], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, { 4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.03968626966596886]}, {RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.03968626966596886], DiskBox[2, 0.03968626966596886], DiskBox[3, 0.03968626966596886], DiskBox[4, 0.03968626966596886], DiskBox[5, 0.03968626966596886], DiskBox[6, 0.03968626966596886], DiskBox[7, 0.03968626966596886], DiskBox[8, 0.03968626966596886]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None]}], "}"}]], "Output", CellLabel->"Out[3]=",ExpressionUUID->"25f00d01-f278-4069-8591-642bf91e0f41"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Grid", "[", RowBox[{ RowBox[{"DeleteCases", "[", RowBox[{ RowBox[{"Monitor", "[", RowBox[{ RowBox[{ RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"g", "=", "#"}], ",", RowBox[{"BilateralGraphEmbeddingTypes", "[", "#", "]"}], ",", RowBox[{"GraphSymmetryGroup", "[", "#", "]"}]}], "}"}], "&"}], "/@", RowBox[{"GraphData", "[", RowBox[{ "\"\\"", ",", "\"\\"", ",", "\"\\""}], "]"}]}], ",", "g"}], "]"}], ",", RowBox[{"{", RowBox[{"_", ",", "_", ",", RowBox[{"TransformationGroup", "[", RowBox[{"{", "}"}], "]"}]}], "}"}]}], "]"}], ",", RowBox[{"Dividers", "\[Rule]", "All"}], ",", RowBox[{"Alignment", "\[Rule]", RowBox[{"{", RowBox[{"{", RowBox[{"Center", ",", RowBox[{"{", "Left", "}"}]}], "}"}], "}"}]}]}], "]"}]], "Input", CellLabel->"In[4]:=",ExpressionUUID->"89149297-8694-4fc1-bd45-17071b2bfe99"], Cell[BoxData[ TemplateBox[{ "MeshRegion", "dgcellr", "\"Degenerate cells including \\!\\(\\*RowBox[{\\\"Line\\\", \\\"[\\\", \ RowBox[{\\\"{\\\", RowBox[{\\\"1\\\", \\\",\\\", \\\"2\\\"}], \\\"}\\\"}], \\\ \"]\\\"}]\\) have been removed.\"", 2, 4, 1, 21885326497208151469, "Local"}, "MessageTemplate", BaseStyle->"MSG"]], "Message", CellLabel-> "During evaluation of \ In[4]:=",ExpressionUUID->"c610fe02-ad7c-4965-b50d-717fe3bfa484"], Cell[BoxData[ TagBox[GridBox[{ { GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, {1}, {4}, { 6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, {7}, {2}, {5}, { 8}, {3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { VertexCoordinates -> {{ Rational[-1, 3], Rational[-1, 3]}, {-1, -1}, { Rational[-1, 3], Rational[1, 3]}, {-1, 1}, { Rational[1, 3], Rational[-1, 3]}, {1, -1}, { Rational[1, 3], Rational[1, 3]}, {1, 1}}}]]}, TagBox[ GraphicsGroupBox[ GraphicsComplexBox[{{-0.3333333333333333, -0.3333333333333333}, \ {-1., -1.}, {-0.3333333333333333, 0.3333333333333333}, {-1., 1.}, { 0.3333333333333333, -0.3333333333333333}, {1., -1.}, { 0.3333333333333333, 0.3333333333333333}, {1., 1.}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.02261146496815286]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.02261146496815286], DiskBox[2, 0.02261146496815286], DiskBox[3, 0.02261146496815286], DiskBox[4, 0.02261146496815286], DiskBox[5, 0.02261146496815286], DiskBox[6, 0.02261146496815286], DiskBox[7, 0.02261146496815286], DiskBox[8, 0.02261146496815286]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], RowBox[{"{", RowBox[{"\<\"X\"\>", ",", "\<\"Y\"\>"}], "}"}], RowBox[{"TransformationGroup", "[", RowBox[{"{", RowBox[{ RowBox[{"Reflection", "[", RowBox[{"InfiniteLine", "[", RowBox[{ RowBox[{"{", RowBox[{"2.7755575615628914`*^-17", ",", "0.`"}], "}"}], ",", RowBox[{"{", RowBox[{"6.123233995736766`*^-17", ",", RowBox[{"-", "1.`"}]}], "}"}]}], "]"}], "]"}], ",", RowBox[{"Rotation", "[", RowBox[{ RowBox[{"{", RowBox[{"2.7755575615628914`*^-17", ",", "0.`"}], "}"}], ",", FractionBox["\[Pi]", "2"]}], "]"}]}], "}"}], "]"}]}, { GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, {1}, {4}, { 6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, {7}, {2}, {5}, { 8}, {3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { VertexCoordinates -> {{-1, -1}, {-1, 1}, {1, -1}, {1, 1}, { Rational[-1, 2], Rational[1, 2]}, { Rational[-1, 2], Rational[-1, 2]}, { Rational[1, 2], Rational[1, 2]}, { Rational[1, 2], Rational[-1, 2]}}}]]}, TagBox[ GraphicsGroupBox[ GraphicsComplexBox[{{-1., -1.}, {-1., 1.}, {1., -1.}, {1., 1.}, {-0.5, 0.5}, {-0.5, -0.5}, {0.5, 0.5}, {0.5, -0.5}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.02261146496815286]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.02261146496815286], DiskBox[2, 0.02261146496815286], DiskBox[3, 0.02261146496815286], DiskBox[4, 0.02261146496815286], DiskBox[5, 0.02261146496815286], DiskBox[6, 0.02261146496815286], DiskBox[7, 0.02261146496815286], DiskBox[8, 0.02261146496815286]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], RowBox[{"{", RowBox[{"\<\"X\"\>", ",", "\<\"Y\"\>"}], "}"}], RowBox[{"TransformationGroup", "[", RowBox[{"{", RowBox[{ RowBox[{"Reflection", "[", RowBox[{"InfiniteLine", "[", RowBox[{ RowBox[{"{", RowBox[{"0.`", ",", "0.`"}], "}"}], ",", RowBox[{"{", RowBox[{"6.123233995736766`*^-17", ",", RowBox[{"-", "1.`"}]}], "}"}]}], "]"}], "]"}], ",", RowBox[{"Rotation", "[", RowBox[{ RowBox[{"{", RowBox[{"0.`", ",", "0.`"}], "}"}], ",", "\[Pi]"}], "]"}]}], "}"}], "]"}]}, { GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, {1}, {4}, { 6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, {7}, {2}, {5}, { 8}, {3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { VertexCoordinates -> {{ Rational[1, 2], Rational[-1, 2] Cot[Rational[1, 8] Pi]}, { Rational[1, 2], Rational[1, 2] Cot[Rational[1, 8] Pi]}, { Rational[1, 2] Cot[Rational[1, 8] Pi], Rational[-1, 2]}, {Rational[1, 2] Cot[Rational[1, 8] Pi], Rational[1, 2]}, { Rational[-1, 2], Rational[-1, 2] Cot[Rational[1, 8] Pi]}, { Rational[-1, 2], Rational[1, 2] Cot[Rational[1, 8] Pi]}, { Rational[-1, 2] Cot[Rational[1, 8] Pi], Rational[-1, 2]}, {Rational[-1, 2] Cot[Rational[1, 8] Pi], Rational[1, 2]}}}]]}, TagBox[ GraphicsGroupBox[ GraphicsComplexBox[{{0.5, -1.2071067811865475`}, {0.5, 1.2071067811865475`}, {1.2071067811865475`, -0.5}, { 1.2071067811865475`, 0.5}, {-0.5, -1.2071067811865475`}, {-0.5, 1.2071067811865475`}, {-1.2071067811865475`, -0.5}, \ {-1.2071067811865475`, 0.5}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.025885969100594097`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.025885969100594097], DiskBox[2, 0.025885969100594097], DiskBox[3, 0.025885969100594097], DiskBox[4, 0.025885969100594097], DiskBox[5, 0.025885969100594097], DiskBox[6, 0.025885969100594097], DiskBox[7, 0.025885969100594097], DiskBox[8, 0.025885969100594097]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], RowBox[{"{", RowBox[{"\<\"X\"\>", ",", "\<\"Y\"\>"}], "}"}], RowBox[{"TransformationGroup", "[", RowBox[{"{", RowBox[{ RowBox[{"Reflection", "[", RowBox[{"InfiniteLine", "[", RowBox[{ RowBox[{"{", RowBox[{"0.`", ",", "0.`"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.7071067811865475`"}], ",", RowBox[{"-", "0.7071067811865476`"}]}], "}"}]}], "]"}], "]"}], ",", RowBox[{"Rotation", "[", RowBox[{ RowBox[{"{", RowBox[{"0.`", ",", "0.`"}], "}"}], ",", FractionBox["\[Pi]", "2"]}], "]"}]}], "}"}], "]"}]}, { GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, {1}, {4}, { 6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, {7}, {2}, {5}, { 8}, {3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { VertexCoordinates -> {{ Sin[Rational[1, 8] Pi], -Cos[Rational[1, 8] Pi]}, {- Cos[Rational[1, 8] Pi], Sin[Rational[1, 8] Pi]}, { Sin[Rational[1, 8] Pi], Cos[Rational[1, 8] Pi]}, { Cos[Rational[1, 8] Pi], Sin[Rational[1, 8] Pi]}, { Cos[Rational[1, 8] Pi], -Sin[Rational[1, 8] Pi]}, {- Sin[Rational[1, 8] Pi], Cos[Rational[1, 8] Pi]}, {-Cos[Rational[1, 8] Pi], - Sin[Rational[1, 8] Pi]}, {-Sin[Rational[1, 8] Pi], - Cos[Rational[1, 8] Pi]}}}]]}, TagBox[ GraphicsGroupBox[ GraphicsComplexBox[{{ 0.3826834323650898, -0.9238795325112867}, {-0.9238795325112867, 0.3826834323650898}, {0.3826834323650898, 0.9238795325112867}, { 0.9238795325112867, 0.3826834323650898}, { 0.9238795325112867, -0.3826834323650898}, {-0.3826834323650898, 0.9238795325112867}, {-0.9238795325112867, -0.3826834323650898}, \ {-0.3826834323650898, -0.9238795325112867}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.02136409873372988]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.02136409873372988], DiskBox[2, 0.02136409873372988], DiskBox[3, 0.02136409873372988], DiskBox[4, 0.02136409873372988], DiskBox[5, 0.02136409873372988], DiskBox[6, 0.02136409873372988], DiskBox[7, 0.02136409873372988], DiskBox[8, 0.02136409873372988]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], RowBox[{"{", RowBox[{"\<\"X\"\>", ",", "\<\"Y\"\>"}], "}"}], RowBox[{"TransformationGroup", "[", RowBox[{"{", RowBox[{ RowBox[{"Reflection", "[", RowBox[{"InfiniteLine", "[", RowBox[{ RowBox[{"{", RowBox[{"6.938893903907228`*^-18", ",", "0.`"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.7071067811865475`"}], ",", RowBox[{"-", "0.7071067811865476`"}]}], "}"}]}], "]"}], "]"}], ",", RowBox[{"Rotation", "[", RowBox[{ RowBox[{"{", RowBox[{"6.938893903907228`*^-18", ",", "0.`"}], "}"}], ",", FractionBox["\[Pi]", "2"]}], "]"}]}], "}"}], "]"}]}, { GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, {1}, {4}, { 6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, {7}, {2}, {5}, { 8}, {3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { VertexCoordinates -> {{ Rational[-1, 2], Rational[1, 2]}, {0, Rational[1, 2] (1 + 3^Rational[1, 2])}, { Rational[-1, 2], Rational[-1, 2]}, {0, Rational[1, 2]}, {0, Rational[-1, 2]}, { Rational[1, 2], Rational[1, 2]}, {0, Rational[1, 2] (-1 - 3^Rational[1, 2])}, { Rational[1, 2], Rational[-1, 2]}}}]]}, TagBox[ GraphicsGroupBox[ GraphicsComplexBox[{{-0.5, 0.5}, {0., 1.3660254037844386`}, {-0.5, -0.5}, {0., 0.5}, {0., -0.5}, {0.5, 0.5}, {0., -1.3660254037844386`}, {0.5, -0.5}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.028286647027724224`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.028286647027724224], DiskBox[2, 0.028286647027724224], DiskBox[3, 0.028286647027724224], DiskBox[4, 0.028286647027724224], DiskBox[5, 0.028286647027724224], DiskBox[6, 0.028286647027724224], DiskBox[7, 0.028286647027724224], DiskBox[8, 0.028286647027724224]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], RowBox[{"{", RowBox[{"\<\"X\"\>", ",", "\<\"Y\"\>"}], "}"}], RowBox[{"TransformationGroup", "[", RowBox[{"{", RowBox[{ RowBox[{"Reflection", "[", RowBox[{"InfiniteLine", "[", RowBox[{ RowBox[{"{", RowBox[{"0.`", ",", "0.`"}], "}"}], ",", RowBox[{"{", RowBox[{"6.123233995736766`*^-17", ",", RowBox[{"-", "1.`"}]}], "}"}]}], "]"}], "]"}], ",", RowBox[{"Rotation", "[", RowBox[{ RowBox[{"{", RowBox[{"0.`", ",", "0.`"}], "}"}], ",", "\[Pi]"}], "]"}]}], "}"}], "]"}]}, { GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, {1}, {4}, { 6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, {7}, {2}, {5}, { 8}, {3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { VertexCoordinates -> {{Rational[1, 2] 3^Rational[-1, 2], Rational[1, 2]}, {Rational[1, 2] 3^Rational[-1, 2], Rational[-1, 2]}, {0, Rational[1, 6] (3 - 33^Rational[1, 2])}, { 0, Rational[1, 6] (-3 - 33^Rational[1, 2])}, { 0, Rational[1, 6] (3 + 33^Rational[1, 2])}, { 0, Rational[1, 6] (-3 + 33^Rational[1, 2])}, { Rational[-1, 2] 3^Rational[-1, 2], Rational[1, 2]}, {Rational[-1, 2] 3^Rational[-1, 2], Rational[-1, 2]}}}]]}, TagBox[ GraphicsGroupBox[ GraphicsComplexBox[{{0.2886751345948129, 0.5}, { 0.2886751345948129, -0.5}, {0., -0.4574271077563381}, { 0., -1.457427107756338}, {0., 1.457427107756338}, {0., 0.4574271077563381}, {-0.2886751345948129, 0.5}, {-0.2886751345948129, -0.5}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.02962578701818075]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.02962578701818075], DiskBox[2, 0.02962578701818075], DiskBox[3, 0.02962578701818075], DiskBox[4, 0.02962578701818075], DiskBox[5, 0.02962578701818075], DiskBox[6, 0.02962578701818075], DiskBox[7, 0.02962578701818075], DiskBox[8, 0.02962578701818075]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], RowBox[{"{", RowBox[{"\<\"X\"\>", ",", "\<\"Y\"\>"}], "}"}], RowBox[{"TransformationGroup", "[", RowBox[{"{", RowBox[{ RowBox[{"Reflection", "[", RowBox[{"InfiniteLine", "[", RowBox[{ RowBox[{"{", RowBox[{"0.`", ",", "0.`"}], "}"}], ",", RowBox[{"{", RowBox[{"6.123233995736766`*^-17", ",", RowBox[{"-", "1.`"}]}], "}"}]}], "]"}], "]"}], ",", RowBox[{"Rotation", "[", RowBox[{ RowBox[{"{", RowBox[{"0.`", ",", "0.`"}], "}"}], ",", "\[Pi]"}], "]"}]}], "}"}], "]"}]}, { GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, {1}, {4}, { 6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, {7}, {2}, {5}, { 8}, {3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { VertexCoordinates -> {{2^Rational[-1, 2], 2^Rational[-1, 2]}, {0, 1}, {-2^Rational[-1, 2], 2^Rational[-1, 2]}, {-1, 0}, { 2^Rational[-1, 2], -2^Rational[-1, 2]}, {1, 0}, {-2^Rational[-1, 2], -2^Rational[-1, 2]}, {0, -1}}}]]}, TagBox[ GraphicsGroupBox[ GraphicsComplexBox[{{0.7071067811865475, 0.7071067811865475}, {0., 1.}, {-0.7071067811865475, 0.7071067811865475}, {-1., 0.}, { 0.7071067811865475, -0.7071067811865475}, {1., 0.}, {-0.7071067811865475, -0.7071067811865475}, {0., -1.}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.02261146496815286]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.02261146496815286], DiskBox[2, 0.02261146496815286], DiskBox[3, 0.02261146496815286], DiskBox[4, 0.02261146496815286], DiskBox[5, 0.02261146496815286], DiskBox[6, 0.02261146496815286], DiskBox[7, 0.02261146496815286], DiskBox[8, 0.02261146496815286]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], RowBox[{"{", "}"}], RowBox[{"TransformationGroup", "[", RowBox[{"{", RowBox[{ RowBox[{"Reflection", "[", RowBox[{"InfiniteLine", "[", RowBox[{ RowBox[{"{", RowBox[{"0.`", ",", "0.`"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.3826834323650897`"}], ",", RowBox[{"-", "0.9238795325112867`"}]}], "}"}]}], "]"}], "]"}], ",", RowBox[{"Rotation", "[", RowBox[{ RowBox[{"{", RowBox[{"0.`", ",", "0.`"}], "}"}], ",", FractionBox["\[Pi]", "2"]}], "]"}]}], "}"}], "]"}]}, { GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, {1}, {4}, { 6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, {7}, {2}, {5}, { 8}, {3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { VertexCoordinates -> {{ Rational[-1, 2], Rational[-1, 2]}, { Rational[-1, 2], Rational[-1, 2]}, { Rational[-1, 2], Rational[1, 2]}, { Rational[-1, 2], Rational[1, 2]}, { Rational[1, 2], Rational[-1, 2]}, { Rational[1, 2], Rational[-1, 2]}, { Rational[1, 2], Rational[1, 2]}, { Rational[1, 2], Rational[1, 2]}}}]]}, TagBox[ GraphicsGroupBox[ GraphicsComplexBox[{{-0.5, -0.5}, {-0.5, -0.5}, {-0.5, 0.5}, {-0.5, 0.5}, {0.5, -0.5}, {0.5, -0.5}, {0.5, 0.5}, {0.5, 0.5}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.01273]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.01273], DiskBox[2, 0.01273], DiskBox[3, 0.01273], DiskBox[4, 0.01273], DiskBox[5, 0.01273], DiskBox[6, 0.01273], DiskBox[7, 0.01273], DiskBox[8, 0.01273]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], RowBox[{"{", RowBox[{"\<\"X\"\>", ",", "\<\"Y\"\>"}], "}"}], RowBox[{"TransformationGroup", "[", RowBox[{"{", RowBox[{ RowBox[{"Reflection", "[", RowBox[{"InfiniteLine", "[", RowBox[{ RowBox[{"{", RowBox[{"0.`", ",", "0.`"}], "}"}], ",", RowBox[{"{", RowBox[{"6.123233995736766`*^-17", ",", RowBox[{"-", "1.`"}]}], "}"}]}], "]"}], "]"}], ",", RowBox[{"Rotation", "[", RowBox[{ RowBox[{"{", RowBox[{"0.`", ",", "0.`"}], "}"}], ",", FractionBox["\[Pi]", "2"]}], "]"}]}], "}"}], "]"}]}, { GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, {1}, {4}, { 6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, {7}, {2}, {5}, { 8}, {3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { VertexCoordinates -> {{0, Rational[-1, 2]}, {-2^Rational[-1, 2], Rational[-1, 2]}, {0, Rational[1, 2]}, {-2^Rational[-1, 2], Rational[1, 2]}, {2^Rational[-1, 2], Rational[-1, 2]}, {0, Rational[-1, 2]}, {2^Rational[-1, 2], Rational[1, 2]}, {0, Rational[1, 2]}}}]]}, TagBox[ GraphicsGroupBox[ GraphicsComplexBox[{{0., -0.5}, {-0.7071067811865475, -0.5}, {0., 0.5}, {-0.7071067811865475, 0.5}, {0.7071067811865475, -0.5}, { 0., -0.5}, {0.7071067811865475, 0.5}, {0., 0.5}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.017674226532102905`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.017674226532102905], DiskBox[2, 0.017674226532102905], DiskBox[3, 0.017674226532102905], DiskBox[4, 0.017674226532102905], DiskBox[5, 0.017674226532102905], DiskBox[6, 0.017674226532102905], DiskBox[7, 0.017674226532102905], DiskBox[8, 0.017674226532102905]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], RowBox[{"{", RowBox[{"\<\"X\"\>", ",", "\<\"Y\"\>"}], "}"}], RowBox[{"TransformationGroup", "[", RowBox[{"{", RowBox[{ RowBox[{"Reflection", "[", RowBox[{"InfiniteLine", "[", RowBox[{ RowBox[{"{", RowBox[{"0.`", ",", "0.`"}], "}"}], ",", RowBox[{"{", RowBox[{"1.`", ",", "0.`"}], "}"}]}], "]"}], "]"}], ",", RowBox[{"Rotation", "[", RowBox[{ RowBox[{"{", RowBox[{"0.`", ",", "0.`"}], "}"}], ",", "\[Pi]"}], "]"}]}], "}"}], "]"}]}, { GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, {1}, {4}, { 6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, {7}, {2}, {5}, { 8}, {3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { VertexCoordinates -> {{Rational[-1, 2] 5^Rational[-1, 2], Rational[-1, 2]}, {Rational[-3, 2] 5^Rational[-1, 2], Rational[-1, 2]}, {Rational[-1, 2] 5^Rational[-1, 2], Rational[1, 2]}, {Rational[-3, 2] 5^Rational[-1, 2], Rational[1, 2]}, {Rational[3, 2] 5^Rational[-1, 2], Rational[-1, 2]}, {Rational[1, 2] 5^Rational[-1, 2], Rational[-1, 2]}, {Rational[3, 2] 5^Rational[-1, 2], Rational[1, 2]}, {Rational[1, 2] 5^Rational[-1, 2], Rational[1, 2]}}}]]}, TagBox[ GraphicsGroupBox[ GraphicsComplexBox[{{-0.22360679774997896`, -0.5}, \ {-0.6708203932499369, -0.5}, {-0.22360679774997896`, 0.5}, {-0.6708203932499369, 0.5}, {0.6708203932499369, -0.5}, { 0.22360679774997896`, -0.5}, {0.6708203932499369, 0.5}, { 0.22360679774997896`, 0.5}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.01703578230673916]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.01703578230673916], DiskBox[2, 0.01703578230673916], DiskBox[3, 0.01703578230673916], DiskBox[4, 0.01703578230673916], DiskBox[5, 0.01703578230673916], DiskBox[6, 0.01703578230673916], DiskBox[7, 0.01703578230673916], DiskBox[8, 0.01703578230673916]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], RowBox[{"{", RowBox[{"\<\"X\"\>", ",", "\<\"Y\"\>"}], "}"}], RowBox[{"TransformationGroup", "[", RowBox[{"{", RowBox[{ RowBox[{"Reflection", "[", RowBox[{"InfiniteLine", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"-", "1.0408340855860843`*^-17"}], ",", "0.`"}], "}"}], ",", RowBox[{"{", RowBox[{"6.123233995736766`*^-17", ",", RowBox[{"-", "1.`"}]}], "}"}]}], "]"}], "]"}], ",", RowBox[{"Rotation", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"-", "1.0408340855860843`*^-17"}], ",", "0.`"}], "}"}], ",", "\[Pi]"}], "]"}]}], "}"}], "]"}]}, { GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, {1}, {4}, { 6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, {7}, {2}, {5}, { 8}, {3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { VertexCoordinates -> {{0, 0}, {-6^Rational[-1, 2], -2^Rational[-1, 2]}, {-6^ Rational[-1, 2], 2^Rational[-1, 2]}, {- Rational[2, 3]^Rational[1, 2], 0}, { Rational[2, 3]^Rational[1, 2], 0}, { 6^Rational[-1, 2], -2^Rational[-1, 2]}, { 6^Rational[-1, 2], 2^Rational[-1, 2]}, {0, 0}}}]]}, TagBox[ GraphicsGroupBox[ GraphicsComplexBox[{{0., 0.}, {-0.4082482904638631, -0.7071067811865475}, \ {-0.4082482904638631, 0.7071067811865475}, {-0.816496580927726, 0.}, { 0.816496580927726, 0.}, { 0.4082482904638631, -0.7071067811865475}, {0.4082482904638631, 0.7071067811865475}, {0., 0.}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.019562323618881772`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.019562323618881772], DiskBox[2, 0.019562323618881772], DiskBox[3, 0.019562323618881772], DiskBox[4, 0.019562323618881772], DiskBox[5, 0.019562323618881772], DiskBox[6, 0.019562323618881772], DiskBox[7, 0.019562323618881772], DiskBox[8, 0.019562323618881772]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], RowBox[{"{", RowBox[{"\<\"X\"\>", ",", "\<\"Y\"\>"}], "}"}], RowBox[{"TransformationGroup", "[", RowBox[{"{", RowBox[{ RowBox[{"Reflection", "[", RowBox[{"InfiniteLine", "[", RowBox[{ RowBox[{"{", RowBox[{"1.586032892321652`*^-17", ",", "0.`"}], "}"}], ",", RowBox[{"{", RowBox[{"6.123233995736766`*^-17", ",", RowBox[{"-", "1.`"}]}], "}"}]}], "]"}], "]"}], ",", RowBox[{"Rotation", "[", RowBox[{ RowBox[{"{", RowBox[{"1.586032892321652`*^-17", ",", "0.`"}], "}"}], ",", FractionBox["\[Pi]", "3"]}], "]"}]}], "}"}], "]"}]}, { GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, {1}, {4}, { 6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, {7}, {2}, {5}, { 8}, {3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { VertexCoordinates -> {{Rational[-1, 3] 2^Rational[-1, 2], 0}, { Rational[-1, 3] 2^Rational[1, 2], -2^Rational[-1, 2]}, { Rational[-1, 3] 2^Rational[1, 2], 2^ Rational[-1, 2]}, {-2^Rational[-1, 2], 0}, { 2^Rational[-1, 2], 0}, { Rational[1, 3] 2^Rational[1, 2], -2^Rational[-1, 2]}, { Rational[1, 3] 2^Rational[1, 2], 2^Rational[-1, 2]}, { Rational[1, 3] 2^Rational[-1, 2], 0}}}]]}, TagBox[ GraphicsGroupBox[ GraphicsComplexBox[{{-0.2357022603955158, 0.}, {-0.4714045207910317, -0.7071067811865475}, \ {-0.4714045207910317, 0.7071067811865475}, {-0.7071067811865475, 0.}, { 0.7071067811865475, 0.}, { 0.4714045207910317, -0.7071067811865475}, {0.4714045207910317, 0.7071067811865475}, {0.2357022603955158, 0.}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.017674226532102905`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.017674226532102905], DiskBox[2, 0.017674226532102905], DiskBox[3, 0.017674226532102905], DiskBox[4, 0.017674226532102905], DiskBox[5, 0.017674226532102905], DiskBox[6, 0.017674226532102905], DiskBox[7, 0.017674226532102905], DiskBox[8, 0.017674226532102905]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], RowBox[{"{", RowBox[{"\<\"X\"\>", ",", "\<\"Y\"\>"}], "}"}], RowBox[{"TransformationGroup", "[", RowBox[{"{", RowBox[{ RowBox[{"Reflection", "[", RowBox[{"InfiniteLine", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"-", "1.0408340855860843`*^-17"}], ",", "0.`"}], "}"}], ",", RowBox[{"{", RowBox[{"6.123233995736766`*^-17", ",", "1.`"}], "}"}]}], "]"}], "]"}], ",", RowBox[{"Rotation", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"-", "1.0408340855860843`*^-17"}], ",", "0.`"}], "}"}], ",", "\[Pi]"}], "]"}]}], "}"}], "]"}]}, { GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, {1}, {4}, { 6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, {7}, {2}, {5}, { 8}, {3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { VertexCoordinates -> {{Rational[1, 2] 3^Rational[-1, 2], 0}, { Rational[-1, 2] 3^Rational[-1, 2], -2^Rational[-1, 2]}, { Rational[-1, 2] 3^Rational[-1, 2], 2^Rational[-1, 2]}, { Rational[-1, 2] 3^Rational[1, 2], 0}, { Rational[1, 2] 3^Rational[1, 2], 0}, { Rational[1, 2] 3^Rational[-1, 2], -2^Rational[-1, 2]}, { Rational[1, 2] 3^Rational[-1, 2], 2^Rational[-1, 2]}, { Rational[-1, 2] 3^Rational[-1, 2], 0}}}]]}, TagBox[ GraphicsGroupBox[ GraphicsComplexBox[{{0.2886751345948129, 0.}, {-0.2886751345948129, -0.7071067811865475}, \ {-0.2886751345948129, 0.7071067811865475}, {-0.8660254037844386, 0.}, { 0.8660254037844386, 0.}, { 0.2886751345948129, -0.7071067811865475}, {0.2886751345948129, 0.7071067811865475}, {-0.2886751345948129, 0.}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.020399597244776385`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.020399597244776385], DiskBox[2, 0.020399597244776385], DiskBox[3, 0.020399597244776385], DiskBox[4, 0.020399597244776385], DiskBox[5, 0.020399597244776385], DiskBox[6, 0.020399597244776385], DiskBox[7, 0.020399597244776385], DiskBox[8, 0.020399597244776385]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], RowBox[{"{", RowBox[{"\<\"X\"\>", ",", "\<\"Y\"\>"}], "}"}], RowBox[{"TransformationGroup", "[", RowBox[{"{", RowBox[{ RowBox[{"Reflection", "[", RowBox[{"InfiniteLine", "[", RowBox[{ RowBox[{"{", RowBox[{"6.938893903907228`*^-18", ",", "0.`"}], "}"}], ",", RowBox[{"{", RowBox[{"6.123233995736766`*^-17", ",", "1.`"}], "}"}]}], "]"}], "]"}], ",", RowBox[{"Rotation", "[", RowBox[{ RowBox[{"{", RowBox[{"6.938893903907228`*^-18", ",", "0.`"}], "}"}], ",", "\[Pi]"}], "]"}]}], "}"}], "]"}]}, { GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, {1}, {4}, { 6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, {7}, {2}, {5}, { 8}, {3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { VertexCoordinates -> {{0, 1}, {0, 0}, { Rational[-1, 2], Rational[3, 2]}, { Rational[-1, 2], Rational[1, 2]}, {1, 1}, {1, 0}, { Rational[1, 2], Rational[3, 2]}, { Rational[1, 2], Rational[1, 2]}}}]]}, TagBox[ GraphicsGroupBox[ GraphicsComplexBox[{{0., 1.}, {0., 0.}, {-0.5, 1.5}, {-0.5, 0.5}, { 1., 1.}, {1., 0.}, {0.5, 1.5}, {0.5, 0.5}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.01842105263157895]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.01842105263157895], DiskBox[2, 0.01842105263157895], DiskBox[3, 0.01842105263157895], DiskBox[4, 0.01842105263157895], DiskBox[5, 0.01842105263157895], DiskBox[6, 0.01842105263157895], DiskBox[7, 0.01842105263157895], DiskBox[8, 0.01842105263157895]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], RowBox[{"{", "}"}], RowBox[{"TransformationGroup", "[", RowBox[{"{", RowBox[{ RowBox[{"Reflection", "[", RowBox[{"InfiniteLine", "[", RowBox[{ RowBox[{"{", RowBox[{"0.25`", ",", "0.75`"}], "}"}], ",", RowBox[{"{", RowBox[{"0.7071067811865476`", ",", "0.7071067811865475`"}], "}"}]}], "]"}], "]"}], ",", RowBox[{"Rotation", "[", RowBox[{ RowBox[{"{", RowBox[{"0.25`", ",", "0.75`"}], "}"}], ",", "\[Pi]"}], "]"}]}], "}"}], "]"}]}, { GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, {1}, {4}, { 6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, {7}, {2}, {5}, { 8}, {3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { VertexCoordinates -> {{0, 1}, {0, 0}, {-2^Rational[-1, 2], 1 + 2^Rational[-1, 2]}, {-2^Rational[-1, 2], 2^Rational[-1, 2]}, {1, 1}, {1, 0}, {1 - 2^Rational[-1, 2], 1 + 2^Rational[-1, 2]}, { 1 - 2^Rational[-1, 2], 2^Rational[-1, 2]}}}]]}, TagBox[ GraphicsGroupBox[ GraphicsComplexBox[{{0., 1.}, {0., 0.}, {-0.7071067811865475, 1.7071067811865475`}, {-0.7071067811865475, 0.7071067811865475}, { 1., 1.}, {1., 0.}, {0.29289321881345254`, 1.7071067811865475`}, { 0.29289321881345254`, 0.7071067811865475}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.02018977486141793]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.02018977486141793], DiskBox[2, 0.02018977486141793], DiskBox[3, 0.02018977486141793], DiskBox[4, 0.02018977486141793], DiskBox[5, 0.02018977486141793], DiskBox[6, 0.02018977486141793], DiskBox[7, 0.02018977486141793], DiskBox[8, 0.02018977486141793]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], RowBox[{"{", "}"}], RowBox[{"TransformationGroup", "[", RowBox[{"{", RowBox[{ RowBox[{"Reflection", "[", RowBox[{"InfiniteLine", "[", RowBox[{ RowBox[{"{", RowBox[{"0.14644660940672627`", ",", "0.8535533905932737`"}], "}"}], ",", RowBox[{"{", RowBox[{"0.7071067811865476`", ",", "0.7071067811865475`"}], "}"}]}], "]"}], "]"}], ",", RowBox[{"Rotation", "[", RowBox[{ RowBox[{"{", RowBox[{"0.14644660940672627`", ",", "0.8535533905932737`"}], "}"}], ",", "\[Pi]"}], "]"}]}], "}"}], "]"}]}, { GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, {1}, {4}, { 6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, {7}, {2}, {5}, { 8}, {3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { VertexCoordinates -> {{0, 1}, { Rational[-1, 2], Rational[3, 2]}, { Rational[-1, 2], Rational[1, 2]}, {0, 0}, {1, 1}, { Rational[1, 2], Rational[3, 2]}, { Rational[1, 2], Rational[1, 2]}, {1, 0}}}]]}, TagBox[ GraphicsGroupBox[ GraphicsComplexBox[{{0., 1.}, {-0.5, 1.5}, {-0.5, 0.5}, {0., 0.}, { 1., 1.}, {0.5, 1.5}, {0.5, 0.5}, {1., 0.}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.01842105263157895]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.01842105263157895], DiskBox[2, 0.01842105263157895], DiskBox[3, 0.01842105263157895], DiskBox[4, 0.01842105263157895], DiskBox[5, 0.01842105263157895], DiskBox[6, 0.01842105263157895], DiskBox[7, 0.01842105263157895], DiskBox[8, 0.01842105263157895]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], RowBox[{"{", "}"}], RowBox[{"TransformationGroup", "[", RowBox[{"{", RowBox[{"Rotation", "[", RowBox[{ RowBox[{"{", RowBox[{"0.25`", ",", "0.75`"}], "}"}], ",", "\[Pi]"}], "]"}], "}"}], "]"}]}, { GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, {1}, {4}, { 6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, {7}, {2}, {5}, { 8}, {3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { VertexCoordinates -> {{-1, 1}, {-1, -1}, {1, 1}, {1, -1}, { Rational[1, 8] (-3 - 7^Rational[1, 2]), Rational[1, 8] (3 - 7^Rational[1, 2])}, { Rational[1, 8] (-3 + 7^Rational[1, 2]), Rational[1, 8] (-3 - 7^Rational[1, 2])}, { Rational[1, 8] (3 - 7^Rational[1, 2]), Rational[1, 8] (3 + 7^Rational[1, 2])}, { Rational[1, 8] (3 + 7^Rational[1, 2]), Rational[1, 8] (-3 + 7^Rational[1, 2])}}}]]}, TagBox[ GraphicsGroupBox[ GraphicsComplexBox[{{-1., 1.}, {-1., -1.}, {1., 1.}, { 1., -1.}, {-0.7057189138830738, 0.04428108611692616}, {-0.04428108611692616, -0.7057189138830738}, \ {0.04428108611692616, 0.7057189138830738}, { 0.7057189138830738, -0.04428108611692616}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.02261146496815286]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.02261146496815286], DiskBox[2, 0.02261146496815286], DiskBox[3, 0.02261146496815286], DiskBox[4, 0.02261146496815286], DiskBox[5, 0.02261146496815286], DiskBox[6, 0.02261146496815286], DiskBox[7, 0.02261146496815286], DiskBox[8, 0.02261146496815286]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], RowBox[{"{", "}"}], RowBox[{"TransformationGroup", "[", RowBox[{"{", RowBox[{"Rotation", "[", RowBox[{ RowBox[{"{", RowBox[{"0.`", ",", "0.`"}], "}"}], ",", FractionBox["\[Pi]", "2"]}], "]"}], "}"}], "]"}]}, { GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, {1}, {4}, { 6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, {7}, {2}, {5}, { 8}, {3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { VertexCoordinates -> {{0, 1}, {1, 4}, {1, 3}, {0, 2}, {1, 2}, {0, 3}, {0, 4}, {1, 1}}}]]}, TagBox[ GraphicsGroupBox[ GraphicsComplexBox[{{0., 1.}, {1., 4.}, {1., 3.}, {0., 2.}, {1., 2.}, {0., 3.}, {0., 4.}, {1., 1.}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.030239520958083826`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.030239520958083826], DiskBox[2, 0.030239520958083826], DiskBox[3, 0.030239520958083826], DiskBox[4, 0.030239520958083826], DiskBox[5, 0.030239520958083826], DiskBox[6, 0.030239520958083826], DiskBox[7, 0.030239520958083826], DiskBox[8, 0.030239520958083826]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], RowBox[{"{", RowBox[{"\<\"X\"\>", ",", "\<\"Y\"\>"}], "}"}], RowBox[{"TransformationGroup", "[", RowBox[{"{", RowBox[{ RowBox[{"Reflection", "[", RowBox[{"InfiniteLine", "[", RowBox[{ RowBox[{"{", RowBox[{"0.5`", ",", "2.5`"}], "}"}], ",", RowBox[{"{", RowBox[{"6.123233995736766`*^-17", ",", RowBox[{"-", "1.`"}]}], "}"}]}], "]"}], "]"}], ",", RowBox[{"Rotation", "[", RowBox[{ RowBox[{"{", RowBox[{"0.5`", ",", "2.5`"}], "}"}], ",", "\[Pi]"}], "]"}]}], "}"}], "]"}]}, { GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, {1}, {4}, { 6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, {7}, {2}, {5}, { 8}, {3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { VertexCoordinates -> {{1, 0}, { Rational[1, 2], Rational[1, 2] 3^Rational[1, 2]}, { Rational[1, 2], Rational[-1, 2] 3^Rational[1, 2]}, { Rational[-1, 2], Rational[-1, 2] 3^Rational[1, 2]}, { Rational[5, 8], Rational[1, 8] 3^Rational[1, 2]}, { Rational[-1, 2], Rational[1, 2] 3^Rational[1, 2]}, { Rational[-5, 8], Rational[-1, 8] 3^Rational[1, 2]}, {-1, 0}}}]]}, TagBox[ GraphicsGroupBox[ GraphicsComplexBox[{{1., 0.}, {0.5, 0.8660254037844386}, { 0.5, -0.8660254037844386}, {-0.5, -0.8660254037844386}, {0.625, 0.21650635094610965`}, {-0.5, 0.8660254037844386}, {-0.625, -0.21650635094610965`}, {-1., 0.}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.02261146496815286]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.02261146496815286], DiskBox[2, 0.02261146496815286], DiskBox[3, 0.02261146496815286], DiskBox[4, 0.02261146496815286], DiskBox[5, 0.02261146496815286], DiskBox[6, 0.02261146496815286], DiskBox[7, 0.02261146496815286], DiskBox[8, 0.02261146496815286]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], RowBox[{"{", "}"}], RowBox[{"TransformationGroup", "[", RowBox[{"{", RowBox[{"Rotation", "[", RowBox[{ RowBox[{"{", RowBox[{"0.`", ",", RowBox[{"-", "6.938893903907228`*^-18"}]}], "}"}], ",", "\[Pi]"}], "]"}], "}"}], "]"}]}, { GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, {1}, {4}, { 6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, {7}, {2}, {5}, { 8}, {3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { VertexCoordinates -> {{ Rational[-4, 5], -1}, { Rational[-4, 5], 1}, { Rational[4, 5], -1}, { Rational[4, 5], 1}, {1, Rational[4, 5]}, {1, Rational[-4, 5]}, {-1, Rational[4, 5]}, {-1, Rational[-4, 5]}}}]]}, TagBox[ GraphicsGroupBox[ GraphicsComplexBox[{{-0.8, -1.}, {-0.8, 1.}, {0.8, -1.}, {0.8, 1.}, {1., 0.8}, {1., -0.8}, {-1., 0.8}, {-1., -0.8}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.02261146496815286]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.02261146496815286], DiskBox[2, 0.02261146496815286], DiskBox[3, 0.02261146496815286], DiskBox[4, 0.02261146496815286], DiskBox[5, 0.02261146496815286], DiskBox[6, 0.02261146496815286], DiskBox[7, 0.02261146496815286], DiskBox[8, 0.02261146496815286]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], RowBox[{"{", RowBox[{"\<\"X\"\>", ",", "\<\"Y\"\>"}], "}"}], RowBox[{"TransformationGroup", "[", RowBox[{"{", RowBox[{ RowBox[{"Reflection", "[", RowBox[{"InfiniteLine", "[", RowBox[{ RowBox[{"{", RowBox[{"0.`", ",", "0.`"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.7071067811865475`"}], ",", RowBox[{"-", "0.7071067811865476`"}]}], "}"}]}], "]"}], "]"}], ",", RowBox[{"Rotation", "[", RowBox[{ RowBox[{"{", RowBox[{"0.`", ",", "0.`"}], "}"}], ",", FractionBox["\[Pi]", "2"]}], "]"}]}], "}"}], "]"}]}, { GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, {1}, {4}, { 6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, {7}, {2}, {5}, { 8}, {3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { VertexCoordinates -> {{1, 1}, {1, 2}, {2, 1}, {2, 2}, {4, 1}, {4, 2}, {3, 1}, {3, 2}}}]]}, TagBox[ GraphicsGroupBox[ GraphicsComplexBox[{{1., 1.}, {1., 2.}, {2., 1.}, {2., 2.}, {4., 1.}, {4., 2.}, {3., 1.}, {3., 2.}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.030239520958083826`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.030239520958083826], DiskBox[2, 0.030239520958083826], DiskBox[3, 0.030239520958083826], DiskBox[4, 0.030239520958083826], DiskBox[5, 0.030239520958083826], DiskBox[6, 0.030239520958083826], DiskBox[7, 0.030239520958083826], DiskBox[8, 0.030239520958083826]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], RowBox[{"{", RowBox[{"\<\"X\"\>", ",", "\<\"Y\"\>"}], "}"}], RowBox[{"TransformationGroup", "[", RowBox[{"{", RowBox[{ RowBox[{"Reflection", "[", RowBox[{"InfiniteLine", "[", RowBox[{ RowBox[{"{", RowBox[{"2.5`", ",", "1.5`"}], "}"}], ",", RowBox[{"{", RowBox[{"6.123233995736766`*^-17", ",", RowBox[{"-", "1.`"}]}], "}"}]}], "]"}], "]"}], ",", RowBox[{"Rotation", "[", RowBox[{ RowBox[{"{", RowBox[{"2.5`", ",", "1.5`"}], "}"}], ",", "\[Pi]"}], "]"}]}], "}"}], "]"}]}, { GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, {1}, {4}, { 6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, {7}, {2}, {5}, { 8}, {3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { VertexCoordinates -> {{0, 0}, {0, Rational[1, 2]}, {-1, 1}, { Rational[-1, 2], 1}, {1, 1}, { Rational[1, 2], 1}, {0, 2}, {0, 1}}}]]}, TagBox[ GraphicsGroupBox[ GraphicsComplexBox[{{0., 0.}, {0., 0.5}, {-1., 1.}, {-0.5, 1.}, {1., 1.}, {0.5, 1.}, {0., 2.}, {0., 1.}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.02261146496815286]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.02261146496815286], DiskBox[2, 0.02261146496815286], DiskBox[3, 0.02261146496815286], DiskBox[4, 0.02261146496815286], DiskBox[5, 0.02261146496815286], DiskBox[6, 0.02261146496815286], DiskBox[7, 0.02261146496815286], DiskBox[8, 0.02261146496815286]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], RowBox[{"{", "\<\"Y\"\>", "}"}], RowBox[{"TransformationGroup", "[", RowBox[{"{", RowBox[{"Reflection", "[", RowBox[{"InfiniteLine", "[", RowBox[{ RowBox[{"{", RowBox[{"0.`", ",", "0.9375`"}], "}"}], ",", RowBox[{"{", RowBox[{"6.123233995736766`*^-17", ",", RowBox[{"-", "1.`"}]}], "}"}]}], "]"}], "]"}], "}"}], "]"}]}, { GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, {1}, {4}, { 6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, {7}, {2}, {5}, { 8}, {3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { VertexCoordinates -> {{ Rational[1, 2], Rational[-1, 2] 3^Rational[1, 2]}, { Rational[1, 2], 0}, {1, 0}, { Rational[1, 2], Rational[1, 2] 3^Rational[1, 2]}, { Rational[-1, 2], Rational[-1, 2] 3^Rational[1, 2]}, {-1, 0}, { Rational[-1, 2], 0}, { Rational[-1, 2], Rational[1, 2] 3^Rational[1, 2]}}}]]}, TagBox[ GraphicsGroupBox[ GraphicsComplexBox[{{0.5, -0.8660254037844386}, {0.5, 0.}, {1., 0.}, {0.5, 0.8660254037844386}, {-0.5, -0.8660254037844386}, {-1., 0.}, {-0.5, 0.}, {-0.5, 0.8660254037844386}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.02261146496815286]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.02261146496815286], DiskBox[2, 0.02261146496815286], DiskBox[3, 0.02261146496815286], DiskBox[4, 0.02261146496815286], DiskBox[5, 0.02261146496815286], DiskBox[6, 0.02261146496815286], DiskBox[7, 0.02261146496815286], DiskBox[8, 0.02261146496815286]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], RowBox[{"{", RowBox[{"\<\"X\"\>", ",", "\<\"Y\"\>"}], "}"}], RowBox[{"TransformationGroup", "[", RowBox[{"{", RowBox[{ RowBox[{"Reflection", "[", RowBox[{"InfiniteLine", "[", RowBox[{ RowBox[{"{", RowBox[{"0.`", ",", "0.`"}], "}"}], ",", RowBox[{"{", RowBox[{"6.123233995736766`*^-17", ",", RowBox[{"-", "1.`"}]}], "}"}]}], "]"}], "]"}], ",", RowBox[{"Rotation", "[", RowBox[{ RowBox[{"{", RowBox[{"0.`", ",", "0.`"}], "}"}], ",", "\[Pi]"}], "]"}]}], "}"}], "]"}]} }, AutoDelete->False, GridBoxAlignment->{"Columns" -> {Center, {Left}}}, GridBoxDividers->{"Columns" -> {{True}}, "Rows" -> {{True}}}, GridBoxItemSize->{"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Grid"]], "Output", CellLabel->"Out[4]=",ExpressionUUID->"e1ea6194-5bcf-437a-8146-6cf225176cc3"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["Circular", "Subsubsection",ExpressionUUID->"21ee2dd1-7482-4648-a900-c0d2d651ab53"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"GraphData", "[", RowBox[{ "\"\\"", ",", "\"\\"", ",", "\"\\""}], "]"}], "//", "StyleGraphs"}]], "Input", CellLabel->"In[4]:=",ExpressionUUID->"bbded7ad-4b7e-4292-aaac-4cba5ac405b1"], Cell[BoxData[ RowBox[{"{", RowBox[{ GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, {1}, {4}, { 6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, {7}, {2}, {5}, {8}, { 3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, {EdgeStyle -> { GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> { RGBColor[1, 0, 0]}, VertexCoordinates -> {{ Rational[1, 2], Rational[-1, 2] Cot[Rational[1, 8] Pi]}, { Rational[1, 2], Rational[1, 2] Cot[Rational[1, 8] Pi]}, { Rational[1, 2] Cot[Rational[1, 8] Pi], Rational[-1, 2]}, {Rational[1, 2] Cot[Rational[1, 8] Pi], Rational[1, 2]}, { Rational[-1, 2], Rational[-1, 2] Cot[Rational[1, 8] Pi]}, { Rational[-1, 2], Rational[1, 2] Cot[Rational[1, 8] Pi]}, { Rational[-1, 2] Cot[Rational[1, 8] Pi], Rational[-1, 2]}, {Rational[-1, 2] Cot[Rational[1, 8] Pi], Rational[1, 2]}}}]]}, TagBox[ GraphicsGroupBox[ GraphicsComplexBox[{{0.5, -1.2071067811865475`}, {0.5, 1.2071067811865475`}, {1.2071067811865475`, -0.5}, { 1.2071067811865475`, 0.5}, {-0.5, -1.2071067811865475`}, {-0.5, 1.2071067811865475`}, {-1.2071067811865475`, -0.5}, \ {-1.2071067811865475`, 0.5}}, { {GrayLevel[0], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, { 4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.05121320343559642]}, {RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.05121320343559642], DiskBox[2, 0.05121320343559642], DiskBox[3, 0.05121320343559642], DiskBox[4, 0.05121320343559642], DiskBox[5, 0.05121320343559642], DiskBox[6, 0.05121320343559642], DiskBox[7, 0.05121320343559642], DiskBox[8, 0.05121320343559642]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, {1}, {4}, { 6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, {7}, {2}, {5}, {8}, { 3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, {EdgeStyle -> { GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> { RGBColor[1, 0, 0]}, VertexCoordinates -> {{ Sin[Rational[1, 8] Pi], -Cos[Rational[1, 8] Pi]}, {- Cos[Rational[1, 8] Pi], Sin[Rational[1, 8] Pi]}, { Sin[Rational[1, 8] Pi], Cos[Rational[1, 8] Pi]}, { Cos[Rational[1, 8] Pi], Sin[Rational[1, 8] Pi]}, { Cos[Rational[1, 8] Pi], -Sin[Rational[1, 8] Pi]}, {- Sin[Rational[1, 8] Pi], Cos[Rational[1, 8] Pi]}, {-Cos[Rational[1, 8] Pi], - Sin[Rational[1, 8] Pi]}, {-Sin[Rational[1, 8] Pi], - Cos[Rational[1, 8] Pi]}}}]]}, TagBox[ GraphicsGroupBox[ GraphicsComplexBox[{{ 0.3826834323650898, -0.9238795325112867}, {-0.9238795325112867, 0.3826834323650898}, {0.3826834323650898, 0.9238795325112867}, { 0.9238795325112867, 0.3826834323650898}, { 0.9238795325112867, -0.3826834323650898}, {-0.3826834323650898, 0.9238795325112867}, {-0.9238795325112867, -0.3826834323650898}, \ {-0.3826834323650898, -0.9238795325112867}}, { {GrayLevel[0], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, { 4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.039196888946291294`]}, {RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.039196888946291294], DiskBox[2, 0.039196888946291294], DiskBox[3, 0.039196888946291294], DiskBox[4, 0.039196888946291294], DiskBox[5, 0.039196888946291294], DiskBox[6, 0.039196888946291294], DiskBox[7, 0.039196888946291294], DiskBox[8, 0.039196888946291294]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, {1}, {4}, { 6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, {7}, {2}, {5}, {8}, { 3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, {EdgeStyle -> { GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> { RGBColor[1, 0, 0]}, VertexCoordinates -> {{2^Rational[-1, 2], 2^Rational[-1, 2]}, {0, 1}, {-2^Rational[-1, 2], 2^Rational[-1, 2]}, {-1, 0}, { 2^Rational[-1, 2], -2^Rational[-1, 2]}, {1, 0}, {-2^Rational[-1, 2], -2^Rational[-1, 2]}, {0, -1}}}]]}, TagBox[ GraphicsGroupBox[ GraphicsComplexBox[{{0.7071067811865475, 0.7071067811865475}, {0., 1.}, {-0.7071067811865475, 0.7071067811865475}, {-1., 0.}, { 0.7071067811865475, -0.7071067811865475}, {1., 0.}, {-0.7071067811865475, -0.7071067811865475}, {0., -1.}}, { {GrayLevel[0], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, { 4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.042426406871192854`]}, {RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.042426406871192854], DiskBox[2, 0.042426406871192854], DiskBox[3, 0.042426406871192854], DiskBox[4, 0.042426406871192854], DiskBox[5, 0.042426406871192854], DiskBox[6, 0.042426406871192854], DiskBox[7, 0.042426406871192854], DiskBox[8, 0.042426406871192854]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, {1}, {4}, { 6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, {7}, {2}, {5}, {8}, { 3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, {EdgeStyle -> { GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> { RGBColor[1, 0, 0]}, VertexCoordinates -> {{ Rational[-1, 2], Rational[-1, 2]}, { Rational[-1, 2], Rational[-1, 2]}, { Rational[-1, 2], Rational[1, 2]}, { Rational[-1, 2], Rational[1, 2]}, { Rational[1, 2], Rational[-1, 2]}, { Rational[1, 2], Rational[-1, 2]}, { Rational[1, 2], Rational[1, 2]}, { Rational[1, 2], Rational[1, 2]}}}]]}, TagBox[ GraphicsGroupBox[ GraphicsComplexBox[{{-0.5, -0.5}, {-0.5, -0.5}, {-0.5, 0.5}, {-0.5, 0.5}, {0.5, -0.5}, {0.5, -0.5}, {0.5, 0.5}, {0.5, 0.5}}, { {GrayLevel[0], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, { 4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.021213203435596427`]}, {RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.021213203435596427], DiskBox[2, 0.021213203435596427], DiskBox[3, 0.021213203435596427], DiskBox[4, 0.021213203435596427], DiskBox[5, 0.021213203435596427], DiskBox[6, 0.021213203435596427], DiskBox[7, 0.021213203435596427], DiskBox[8, 0.021213203435596427]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, {1}, {4}, { 6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, {7}, {2}, {5}, {8}, { 3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, {EdgeStyle -> { GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> { RGBColor[1, 0, 0]}, VertexCoordinates -> {{ Rational[-4, 5], -1}, { Rational[-4, 5], 1}, { Rational[4, 5], -1}, { Rational[4, 5], 1}, {1, Rational[4, 5]}, {1, Rational[-4, 5]}, {-1, Rational[4, 5]}, {-1, Rational[-4, 5]}}}]]}, TagBox[ GraphicsGroupBox[ GraphicsComplexBox[{{-0.8, -1.}, {-0.8, 1.}, {0.8, -1.}, {0.8, 1.}, { 1., 0.8}, {1., -0.8}, {-1., 0.8}, {-1., -0.8}}, { {GrayLevel[0], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, { 4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.042426406871192854`]}, {RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.042426406871192854], DiskBox[2, 0.042426406871192854], DiskBox[3, 0.042426406871192854], DiskBox[4, 0.042426406871192854], DiskBox[5, 0.042426406871192854], DiskBox[6, 0.042426406871192854], DiskBox[7, 0.042426406871192854], DiskBox[8, 0.042426406871192854]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None]}], "}"}]], "Output", CellLabel->"Out[4]=",ExpressionUUID->"ed3e92a2-8bb6-41ad-b60f-3248a36d649b"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["Planar", "Subsubsection",ExpressionUUID->"895c2f9a-a9e2-426f-a7de-1ed23e827786"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"GraphData", "[", RowBox[{"\"\\"", ",", "\"\\""}], "]"}]], "Input", CellLabel->"In[34]:=",ExpressionUUID->"f31bfbfc-ee8e-47ac-b43f-0437395f132a"], Cell[BoxData["True"], "Output", CellLabel->"Out[34]=",ExpressionUUID->"8e32426e-b4b3-4442-bfd4-067a25482deb"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"GraphData", "[", RowBox[{ "\"\\"", ",", "\"\\"", ",", "\"\\""}], "]"}], "//", "StyleGraphs"}]], "Input", CellLabel->"In[6]:=",ExpressionUUID->"868d07f0-3960-4684-a170-d14c490a03c7"], Cell[BoxData[ RowBox[{"{", RowBox[{ GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, {1}, {4}, { 6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, {7}, {2}, {5}, {8}, { 3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, {EdgeStyle -> { GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> { RGBColor[1, 0, 0]}, VertexCoordinates -> {{ Rational[-1, 3], Rational[-1, 3]}, {-1, -1}, { Rational[-1, 3], Rational[1, 3]}, {-1, 1}, { Rational[1, 3], Rational[-1, 3]}, {1, -1}, { Rational[1, 3], Rational[1, 3]}, {1, 1}}}]]}, TagBox[ GraphicsGroupBox[ GraphicsComplexBox[{{-0.3333333333333333, -0.3333333333333333}, {-1., \ -1.}, {-0.3333333333333333, 0.3333333333333333}, {-1., 1.}, { 0.3333333333333333, -0.3333333333333333}, {1., -1.}, { 0.3333333333333333, 0.3333333333333333}, {1., 1.}}, { {GrayLevel[0], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, { 4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.042426406871192854`]}, {RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.042426406871192854], DiskBox[2, 0.042426406871192854], DiskBox[3, 0.042426406871192854], DiskBox[4, 0.042426406871192854], DiskBox[5, 0.042426406871192854], DiskBox[6, 0.042426406871192854], DiskBox[7, 0.042426406871192854], DiskBox[8, 0.042426406871192854]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, {1}, {4}, { 6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, {7}, {2}, {5}, {8}, { 3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, {EdgeStyle -> { GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> { RGBColor[1, 0, 0]}, VertexCoordinates -> {{-1, 1}, {-1, -1}, {1, 1}, {1, -1}, { Rational[1, 8] (-3 - 7^Rational[1, 2]), Rational[1, 8] (3 - 7^Rational[1, 2])}, { Rational[1, 8] (-3 + 7^Rational[1, 2]), Rational[1, 8] (-3 - 7^Rational[1, 2])}, { Rational[1, 8] (3 - 7^Rational[1, 2]), Rational[1, 8] (3 + 7^Rational[1, 2])}, { Rational[1, 8] (3 + 7^Rational[1, 2]), Rational[1, 8] (-3 + 7^Rational[1, 2])}}}]]}, TagBox[ GraphicsGroupBox[ GraphicsComplexBox[{{-1., 1.}, {-1., -1.}, {1., 1.}, { 1., -1.}, {-0.7057189138830738, 0.04428108611692616}, {-0.04428108611692616, -0.7057189138830738}, { 0.04428108611692616, 0.7057189138830738}, { 0.7057189138830738, -0.04428108611692616}}, { {GrayLevel[0], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, { 4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.042426406871192854`]}, {RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.042426406871192854], DiskBox[2, 0.042426406871192854], DiskBox[3, 0.042426406871192854], DiskBox[4, 0.042426406871192854], DiskBox[5, 0.042426406871192854], DiskBox[6, 0.042426406871192854], DiskBox[7, 0.042426406871192854], DiskBox[8, 0.042426406871192854]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, {1}, {4}, { 6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, {7}, {2}, {5}, {8}, { 3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, {EdgeStyle -> { GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> { RGBColor[1, 0, 0]}, VertexCoordinates -> {{0, 0}, {0, Rational[1, 2]}, {-1, 1}, { Rational[-1, 2], 1}, {1, 1}, { Rational[1, 2], 1}, {0, 2}, {0, 1}}}]]}, TagBox[ GraphicsGroupBox[ GraphicsComplexBox[{{0., 0.}, {0., 0.5}, {-1., 1.}, {-0.5, 1.}, {1., 1.}, {0.5, 1.}, {0., 2.}, {0., 1.}}, { {GrayLevel[0], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, { 4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.042426406871192854`]}, {RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.042426406871192854], DiskBox[2, 0.042426406871192854], DiskBox[3, 0.042426406871192854], DiskBox[4, 0.042426406871192854], DiskBox[5, 0.042426406871192854], DiskBox[6, 0.042426406871192854], DiskBox[7, 0.042426406871192854], DiskBox[8, 0.042426406871192854]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None]}], "}"}]], "Output", CellLabel->"Out[6]=",ExpressionUUID->"17c2ce2e-872c-4c38-adaa-763a745459ef"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["IntegerCoordinates", "Subsubsection",ExpressionUUID->"52d0799d-7d1c-430b-a6fe-72766ce1b275"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"GraphData", "[", RowBox[{ "\"\\"", ",", "\"\\"", ",", "\"\\""}], "]"}], "//", "StyleGraphs"}]], "Input", CellLabel->"In[5]:=",ExpressionUUID->"3c5ed6c6-f27c-4e8c-92cc-a5472e66e312"], Cell[BoxData[ RowBox[{"{", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, {1}, {4}, { 6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, {7}, {2}, {5}, {8}, { 3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, {EdgeStyle -> { GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> { RGBColor[1, 0, 0]}, VertexCoordinates -> {{1, 1}, {1, 2}, {2, 1}, {2, 2}, {4, 1}, {4, 2}, {3, 1}, {3, 2}}}]]}, TagBox[ GraphicsGroupBox[ GraphicsComplexBox[{{1., 1.}, {1., 2.}, {2., 1.}, {2., 2.}, {4., 1.}, { 4., 2.}, {3., 1.}, {3., 2.}}, { {GrayLevel[0], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, { 4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.047434164902525694`]}, {RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.047434164902525694], DiskBox[2, 0.047434164902525694], DiskBox[3, 0.047434164902525694], DiskBox[4, 0.047434164902525694], DiskBox[5, 0.047434164902525694], DiskBox[6, 0.047434164902525694], DiskBox[7, 0.047434164902525694], DiskBox[8, 0.047434164902525694]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->{ "NetworkGraphics", FrontEnd`GraphicsHighlightColor -> Hue[0.8, 1., 0.6]}, FormatType->TraditionalForm, FrameTicks->None], "}"}]], "Output", CellLabel->"Out[5]=",ExpressionUUID->"05576335-0156-4108-a1c5-4b41f79f4d35"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["Integral", "Subsubsection",ExpressionUUID->"7f5467c1-c872-4e6b-b7bf-63481c2cfb33"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"IntegralDrawing", "/@", RowBox[{"GraphData", "[", RowBox[{ "\"\\"", ",", "\"\\"", ",", "\"\\""}], "]"}]}], "//", "StyleGraphs"}]], "Input", CellLabel->"In[6]:=",ExpressionUUID->"a6142edc-289d-485f-9334-5107fb55ed0d"], Cell[BoxData[ RowBox[{"{", RowBox[{ GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, {1}, {4}, { 6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, {7}, {2}, {5}, {8}, { 3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { EdgeLabels -> { UndirectedEdge[1, 5] -> Text[1, Background -> GrayLevel[1]], UndirectedEdge[3, 4] -> Text[1, Background -> GrayLevel[1]], UndirectedEdge[2, 4] -> Text[1, Background -> GrayLevel[1]], UndirectedEdge[5, 6] -> Text[1, Background -> GrayLevel[1]], UndirectedEdge[6, 8] -> Text[1, Background -> GrayLevel[1]], UndirectedEdge[1, 2] -> Text[1, Background -> GrayLevel[1]], UndirectedEdge[4, 8] -> Text[1, Background -> GrayLevel[1]], UndirectedEdge[3, 7] -> Text[1, Background -> GrayLevel[1]], UndirectedEdge[2, 6] -> Text[1, Background -> GrayLevel[1]], UndirectedEdge[7, 8] -> Text[1, Background -> GrayLevel[1]], UndirectedEdge[5, 7] -> Text[1, Background -> GrayLevel[1]], UndirectedEdge[1, 3] -> Text[1, Background -> GrayLevel[1]]}, EdgeStyle -> { GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> { RGBColor[1, 0, 0]}, VertexCoordinates -> {{0, 1}, {0, 0}, {-2^Rational[-1, 2], 1 + 2^Rational[-1, 2]}, {-2^Rational[-1, 2], 2^Rational[-1, 2]}, {1, 1}, {1, 0}, {1 - 2^Rational[-1, 2], 1 + 2^Rational[-1, 2]}, { 1 - 2^Rational[-1, 2], 2^Rational[-1, 2]}}}]]}, TagBox[GraphicsGroupBox[{ {GrayLevel[0], Opacity[0.7], { {Arrowheads[0.], ArrowBox[{{0., 1.}, {0., 0.}}, 0.03621320343559642]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["1", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "5a06e0da-ec9f-4c65-8c29-38e117bbd6d5"], Text[1, Background -> GrayLevel[1]]], {0., 0.5}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}, { {Arrowheads[0.], ArrowBox[{{0., 1.}, {-0.7071067811865475, 1.7071067811865475`}}, 0.03621320343559642]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["1", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "112bb6e8-9a86-469f-98d9-2169f3693e71"], Text[1, Background -> GrayLevel[1]]], {-0.35355339059327373, 1.3535533905932737}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}, { {Arrowheads[0.], ArrowBox[{{0., 1.}, {1., 1.}}, 0.03621320343559642]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["1", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "c044eee9-8059-4dca-a6db-1835abdb2b44"], Text[1, Background -> GrayLevel[1]]], {0.5, 1.}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}, { {Arrowheads[0.], ArrowBox[{{0., 0.}, {-0.7071067811865475, 0.7071067811865475}}, 0.03621320343559642]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["1", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "30b328d4-2c4e-4f6b-a3bd-df0eed23852b"], Text[1, Background -> GrayLevel[1]]], {-0.35355339059327373, 0.35355339059327373}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}, { {Arrowheads[0.], ArrowBox[{{0., 0.}, {1., 0.}}, 0.03621320343559642]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["1", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "a7133473-5aa3-4f75-9b60-3d0b0aaabf91"], Text[1, Background -> GrayLevel[1]]], {0.5, 0.}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}, { {Arrowheads[0.], ArrowBox[{{-0.7071067811865475, 1.7071067811865475`}, {-0.7071067811865475, 0.7071067811865475}}, 0.03621320343559642]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["1", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "9c5005d3-5fda-48f4-861a-b6382e42c4a1"], Text[1, Background -> GrayLevel[1]]], {-0.7071067811865475, 1.2071067811865475}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}, { {Arrowheads[0.], ArrowBox[{{-0.7071067811865475, 1.7071067811865475`}, { 0.29289321881345254`, 1.7071067811865475`}}, 0.03621320343559642]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["1", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "9fb0e614-266b-40f7-81b2-40973946608b"], Text[1, Background -> GrayLevel[1]]], {-0.20710678118654746, 1.7071067811865475}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}, { {Arrowheads[0.], ArrowBox[{{-0.7071067811865475, 0.7071067811865475}, { 0.29289321881345254`, 0.7071067811865475}}, 0.03621320343559642]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["1", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "767ca230-666d-4c22-81a6-32631b5f11b3"], Text[1, Background -> GrayLevel[1]]], {-0.20710678118654746, 0.7071067811865475}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}, { {Arrowheads[0.], ArrowBox[{{1., 1.}, {1., 0.}}, 0.03621320343559642]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["1", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "ed1b007d-a89c-4602-8510-0ede816f1ea5"], Text[1, Background -> GrayLevel[1]]], {1., 0.5}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}, { {Arrowheads[0.], ArrowBox[{{1., 1.}, {0.29289321881345254`, 1.7071067811865475`}}, 0.03621320343559642]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["1", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "eba652a2-8425-4f02-971b-5cc8b4b5d407"], Text[1, Background -> GrayLevel[1]]], {0.6464466094067263, 1.3535533905932737}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}, { {Arrowheads[0.], ArrowBox[{{1., 0.}, {0.29289321881345254`, 0.7071067811865475}}, 0.03621320343559642]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["1", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "5dffa378-cc9d-4581-b431-68676a5d15bc"], Text[1, Background -> GrayLevel[1]]], {0.6464466094067263, 0.35355339059327373}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}, { {Arrowheads[0.], ArrowBox[{{0.29289321881345254`, 1.7071067811865475`}, { 0.29289321881345254`, 0.7071067811865475}}, 0.03621320343559642]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["1", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "914c610e-22d7-4753-b92c-7cecd15f0094"], Text[1, Background -> GrayLevel[1]]], {0.29289321881345254, 1.2071067811865475}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}}, {RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[{0., 1.}, 0.03621320343559642], DiskBox[{0., 0.}, 0.03621320343559642], DiskBox[{-0.7071067811865475, 1.7071067811865475`}, 0.03621320343559642], DiskBox[{-0.7071067811865475, 0.7071067811865475}, 0.03621320343559642], DiskBox[{1., 1.}, 0.03621320343559642], DiskBox[{1., 0.}, 0.03621320343559642], DiskBox[{0.29289321881345254`, 1.7071067811865475`}, 0.03621320343559642], DiskBox[{0.29289321881345254`, 0.7071067811865475}, 0.03621320343559642]}}], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->{ "NetworkGraphics", FrontEnd`GraphicsHighlightColor -> Hue[0.8, 1., 0.6]}, FormatType->TraditionalForm, FrameTicks->None], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, {1}, {4}, { 6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, {7}, {2}, {5}, {8}, { 3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { EdgeLabels -> { UndirectedEdge[1, 5] -> Text[1, Background -> GrayLevel[1]], UndirectedEdge[3, 4] -> Text[2, Background -> GrayLevel[1]], UndirectedEdge[2, 4] -> Text[2, Background -> GrayLevel[1]], UndirectedEdge[5, 6] -> Text[1, Background -> GrayLevel[1]], UndirectedEdge[6, 8] -> Text[1, Background -> GrayLevel[1]], UndirectedEdge[1, 2] -> Text[2, Background -> GrayLevel[1]], UndirectedEdge[4, 8] -> Text[1, Background -> GrayLevel[1]], UndirectedEdge[3, 7] -> Text[1, Background -> GrayLevel[1]], UndirectedEdge[2, 6] -> Text[1, Background -> GrayLevel[1]], UndirectedEdge[7, 8] -> Text[1, Background -> GrayLevel[1]], UndirectedEdge[5, 7] -> Text[1, Background -> GrayLevel[1]], UndirectedEdge[1, 3] -> Text[2, Background -> GrayLevel[1]]}, EdgeStyle -> { GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> { RGBColor[1, 0, 0]}, VertexCoordinates -> {{-1, 1}, {-1, -1}, {1, 1}, {1, -1}, { Rational[1, 8] (-3 - 7^Rational[1, 2]), Rational[1, 8] (3 - 7^Rational[1, 2])}, { Rational[1, 8] (-3 + 7^Rational[1, 2]), Rational[1, 8] (-3 - 7^Rational[1, 2])}, { Rational[1, 8] (3 - 7^Rational[1, 2]), Rational[1, 8] (3 + 7^Rational[1, 2])}, { Rational[1, 8] (3 + 7^Rational[1, 2]), Rational[1, 8] (-3 + 7^Rational[1, 2])}}}]]}, TagBox[GraphicsGroupBox[{ {GrayLevel[0], Opacity[0.7], { {Arrowheads[0.], ArrowBox[{{-1., 1.}, {-1., -1.}}, 0.042426406871192854`]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["2", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "6fb69ddd-b116-44c5-8719-2a56ac4e8fb3"], Text[2, Background -> GrayLevel[1]]], {-1., 0.}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}, { {Arrowheads[0.], ArrowBox[{{-1., 1.}, {1., 1.}}, 0.042426406871192854`]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["2", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "c3e34c4d-a9a7-48a2-a27b-66ef31db7e1f"], Text[2, Background -> GrayLevel[1]]], {0., 1.}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}, { {Arrowheads[0.], ArrowBox[{{-1., 1.}, {-0.7057189138830738, 0.04428108611692616}}, 0.042426406871192854`]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["1", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "23cebb54-bdc7-45f3-ab94-d8261c064a83"], Text[1, Background -> GrayLevel[1]]], {-0.8528594569415369, 0.5221405430584631}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}, { {Arrowheads[0.], ArrowBox[{{-1., -1.}, {1., -1.}}, 0.042426406871192854`]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["2", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "9e1521d7-c20f-4947-adff-51cae45b2cd3"], Text[2, Background -> GrayLevel[1]]], {0., -1.}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}, { {Arrowheads[0.], ArrowBox[{{-1., -1.}, {-0.04428108611692616, \ -0.7057189138830738}}, 0.042426406871192854`]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["1", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "01129a0e-f82c-4f44-a08e-219521051a64"], Text[1, Background -> GrayLevel[1]]], {-0.5221405430584631, -0.8528594569415369}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}, { {Arrowheads[0.], ArrowBox[{{1., 1.}, {1., -1.}}, 0.042426406871192854`]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["2", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "18cd15c7-06ce-482b-996a-b05ba8372a10"], Text[2, Background -> GrayLevel[1]]], {1., 0.}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}, { {Arrowheads[0.], ArrowBox[{{1., 1.}, {0.04428108611692616, 0.7057189138830738}}, 0.042426406871192854`]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["1", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "f702ec1e-3efd-4c3c-bda8-b6d039e4dbfd"], Text[1, Background -> GrayLevel[1]]], {0.5221405430584631, 0.8528594569415369}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}, { {Arrowheads[0.], ArrowBox[{{1., -1.}, {0.7057189138830738, -0.04428108611692616}}, 0.042426406871192854`]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["1", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "146fd3f5-eedd-4ca7-92a0-a7fe3fdce88f"], Text[1, Background -> GrayLevel[1]]], {0.8528594569415369, -0.5221405430584631}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}, { {Arrowheads[0.], ArrowBox[{{-0.7057189138830738, 0.04428108611692616}, {-0.04428108611692616, \ -0.7057189138830738}}, 0.042426406871192854`]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["1", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "70274bdc-269e-41c9-9ff9-a2e8fdf2323f"], Text[1, Background -> GrayLevel[1]]], {-0.375, -0.33071891388307384}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}, { {Arrowheads[0.], ArrowBox[{{-0.7057189138830738, 0.04428108611692616}, { 0.04428108611692616, 0.7057189138830738}}, 0.042426406871192854`]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["1", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "74bf02c7-675b-4e2b-aad0-3c109b5498ac"], Text[1, Background -> GrayLevel[1]]], {-0.33071891388307384, 0.375}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}, { {Arrowheads[0.], ArrowBox[{{-0.04428108611692616, -0.7057189138830738}, { 0.7057189138830738, -0.04428108611692616}}, 0.042426406871192854`]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["1", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "8785454b-6fb8-4ad4-a564-0a251322390c"], Text[1, Background -> GrayLevel[1]]], {0.33071891388307384, -0.375}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}, { {Arrowheads[0.], ArrowBox[{{0.04428108611692616, 0.7057189138830738}, { 0.7057189138830738, -0.04428108611692616}}, 0.042426406871192854`]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["1", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "670e5f36-d8fa-4059-a959-ad3bbb2131a6"], Text[1, Background -> GrayLevel[1]]], {0.375, 0.33071891388307384}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}}, {RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[{-1., 1.}, 0.042426406871192854], DiskBox[{-1., -1.}, 0.042426406871192854], DiskBox[{1., 1.}, 0.042426406871192854], DiskBox[{1., -1.}, 0.042426406871192854], DiskBox[{-0.7057189138830738, 0.04428108611692616}, 0.042426406871192854], DiskBox[{-0.04428108611692616, -0.7057189138830738}, 0.042426406871192854], DiskBox[{0.04428108611692616, 0.7057189138830738}, 0.042426406871192854], DiskBox[{0.7057189138830738, -0.04428108611692616}, 0.042426406871192854]}}], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->{ "NetworkGraphics", FrontEnd`GraphicsHighlightColor -> Hue[0.8, 1., 0.6]}, FormatType->TraditionalForm, FrameTicks->None], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, {1}, {4}, { 6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, {7}, {2}, {5}, {8}, { 3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { EdgeLabels -> { UndirectedEdge[1, 5] -> Text[3, Background -> GrayLevel[1]], UndirectedEdge[3, 4] -> Text[1, Background -> GrayLevel[1]], UndirectedEdge[2, 4] -> Text[1, Background -> GrayLevel[1]], UndirectedEdge[5, 6] -> Text[1, Background -> GrayLevel[1]], UndirectedEdge[6, 8] -> Text[1, Background -> GrayLevel[1]], UndirectedEdge[1, 2] -> Text[1, Background -> GrayLevel[1]], UndirectedEdge[4, 8] -> Text[1, Background -> GrayLevel[1]], UndirectedEdge[3, 7] -> Text[1, Background -> GrayLevel[1]], UndirectedEdge[2, 6] -> Text[3, Background -> GrayLevel[1]], UndirectedEdge[7, 8] -> Text[1, Background -> GrayLevel[1]], UndirectedEdge[5, 7] -> Text[1, Background -> GrayLevel[1]], UndirectedEdge[1, 3] -> Text[1, Background -> GrayLevel[1]]}, EdgeStyle -> { GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> { RGBColor[1, 0, 0]}, VertexCoordinates -> {{1, 1}, {1, 2}, {2, 1}, {2, 2}, {4, 1}, {4, 2}, {3, 1}, {3, 2}}}]]}, TagBox[GraphicsGroupBox[{ {GrayLevel[0], Opacity[0.7], { {Arrowheads[0.], ArrowBox[{{1., 1.}, {1., 2.}}, 0.047434164902525694`]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["1", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "c052b0a4-257b-4223-bdbe-c8154dc28515"], Text[1, Background -> GrayLevel[1]]], {1., 1.5}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}, { {Arrowheads[0.], ArrowBox[{{1., 1.}, {2., 1.}}, 0.047434164902525694`]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["1", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "e4a28092-4842-4bc2-9236-273c209f7306"], Text[1, Background -> GrayLevel[1]]], {1.5, 1.}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}, { {Arrowheads[0.], ArrowBox[{{1., 1.}, {4., 1.}}, 0.047434164902525694`]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["3", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "e3a3c88d-4919-4883-9097-85059bf7b11d"], Text[3, Background -> GrayLevel[1]]], {2.5, 1.}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}, { {Arrowheads[0.], ArrowBox[{{1., 2.}, {2., 2.}}, 0.047434164902525694`]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["1", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "1efb8890-0e9a-432a-9727-563ec32886ea"], Text[1, Background -> GrayLevel[1]]], {1.5, 2.}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}, { {Arrowheads[0.], ArrowBox[{{1., 2.}, {4., 2.}}, 0.047434164902525694`]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["3", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "108ff028-456e-4bb0-b05f-966a413f5f27"], Text[3, Background -> GrayLevel[1]]], {2.5, 2.}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}, { {Arrowheads[0.], ArrowBox[{{2., 1.}, {2., 2.}}, 0.047434164902525694`]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["1", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "15d1fbba-7a80-4a00-b01d-498f50cc838a"], Text[1, Background -> GrayLevel[1]]], {2., 1.5}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}, { {Arrowheads[0.], ArrowBox[{{2., 1.}, {3., 1.}}, 0.047434164902525694`]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["1", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "103da6b5-9dcb-4115-93f1-ae850de8de61"], Text[1, Background -> GrayLevel[1]]], {2.5, 1.}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}, { {Arrowheads[0.], ArrowBox[{{2., 2.}, {3., 2.}}, 0.047434164902525694`]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["1", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "bf030402-1315-44a7-a67a-0d07aeea5634"], Text[1, Background -> GrayLevel[1]]], {2.5, 2.}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}, { {Arrowheads[0.], ArrowBox[{{4., 1.}, {4., 2.}}, 0.047434164902525694`]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["1", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "bda59458-8cae-4867-ae92-9bed8a4547e6"], Text[1, Background -> GrayLevel[1]]], {4., 1.5}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}, { {Arrowheads[0.], ArrowBox[{{4., 1.}, {3., 1.}}, 0.047434164902525694`]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["1", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "5d6dfcf3-9646-442a-bd48-f373acebe722"], Text[1, Background -> GrayLevel[1]]], {3.5, 1.}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}, { {Arrowheads[0.], ArrowBox[{{4., 2.}, {3., 2.}}, 0.047434164902525694`]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["1", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "9f604ebe-922f-4f83-b3e0-63a1c710aa66"], Text[1, Background -> GrayLevel[1]]], {3.5, 2.}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}, { {Arrowheads[0.], ArrowBox[{{3., 1.}, {3., 2.}}, 0.047434164902525694`]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["1", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "7dbe7e55-f1d1-40be-bf22-65030e56cd55"], Text[1, Background -> GrayLevel[1]]], {3., 1.5}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}}, {RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[{1., 1.}, 0.047434164902525694], DiskBox[{1., 2.}, 0.047434164902525694], DiskBox[{2., 1.}, 0.047434164902525694], DiskBox[{2., 2.}, 0.047434164902525694], DiskBox[{4., 1.}, 0.047434164902525694], DiskBox[{4., 2.}, 0.047434164902525694], DiskBox[{3., 1.}, 0.047434164902525694], DiskBox[{3., 2.}, 0.047434164902525694]}}], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->{ "NetworkGraphics", FrontEnd`GraphicsHighlightColor -> Hue[0.8, 1., 0.6]}, FormatType->TraditionalForm, FrameTicks->None]}], "}"}]], "Output", CellLabel->"Out[6]=",ExpressionUUID->"5cc41682-af7a-49aa-a937-6bab61fdf968"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["MinimalIntegral", "Subsubsection",ExpressionUUID->"95e3193e-a2e3-432d-ab1c-572779836def"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"IntegralDrawing", "/@", RowBox[{"GraphData", "[", RowBox[{ "\"\\"", ",", "\"\\"", ",", "\"\\""}], "]"}]}], "//", "StyleGraphs"}]], "Input", CellLabel->"In[7]:=",ExpressionUUID->"fd7ed78e-c441-4e27-b85e-8827863e55ac"], Cell[BoxData[ RowBox[{"{", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, {1}, {4}, { 6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, {7}, {2}, {5}, {8}, { 3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { EdgeLabels -> { UndirectedEdge[1, 5] -> Text[1, Background -> GrayLevel[1]], UndirectedEdge[3, 4] -> Text[1, Background -> GrayLevel[1]], UndirectedEdge[2, 4] -> Text[1, Background -> GrayLevel[1]], UndirectedEdge[5, 6] -> Text[1, Background -> GrayLevel[1]], UndirectedEdge[6, 8] -> Text[1, Background -> GrayLevel[1]], UndirectedEdge[1, 2] -> Text[1, Background -> GrayLevel[1]], UndirectedEdge[4, 8] -> Text[1, Background -> GrayLevel[1]], UndirectedEdge[3, 7] -> Text[1, Background -> GrayLevel[1]], UndirectedEdge[2, 6] -> Text[1, Background -> GrayLevel[1]], UndirectedEdge[7, 8] -> Text[1, Background -> GrayLevel[1]], UndirectedEdge[5, 7] -> Text[1, Background -> GrayLevel[1]], UndirectedEdge[1, 3] -> Text[1, Background -> GrayLevel[1]]}, EdgeStyle -> { GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> { RGBColor[1, 0, 0]}, VertexCoordinates -> {{0, 1}, {0, 0}, {-2^Rational[-1, 2], 1 + 2^Rational[-1, 2]}, {-2^Rational[-1, 2], 2^Rational[-1, 2]}, {1, 1}, {1, 0}, {1 - 2^Rational[-1, 2], 1 + 2^Rational[-1, 2]}, { 1 - 2^Rational[-1, 2], 2^Rational[-1, 2]}}}]]}, TagBox[GraphicsGroupBox[{ {GrayLevel[0], Opacity[0.7], { {Arrowheads[0.], ArrowBox[{{0., 1.}, {0., 0.}}, 0.03621320343559642]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["1", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "402e888a-15bf-408e-8520-9eecf3663392"], Text[1, Background -> GrayLevel[1]]], {0., 0.5}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}, { {Arrowheads[0.], ArrowBox[{{0., 1.}, {-0.7071067811865475, 1.7071067811865475`}}, 0.03621320343559642]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["1", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "8e5a44e7-13b5-43ae-9e3e-ee0333da515b"], Text[1, Background -> GrayLevel[1]]], {-0.35355339059327373, 1.3535533905932737}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}, { {Arrowheads[0.], ArrowBox[{{0., 1.}, {1., 1.}}, 0.03621320343559642]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["1", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "43192076-3036-4064-802c-2cb66aeef306"], Text[1, Background -> GrayLevel[1]]], {0.5, 1.}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}, { {Arrowheads[0.], ArrowBox[{{0., 0.}, {-0.7071067811865475, 0.7071067811865475}}, 0.03621320343559642]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["1", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "fc55a68e-8794-4c48-9268-9faa7d674acb"], Text[1, Background -> GrayLevel[1]]], {-0.35355339059327373, 0.35355339059327373}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}, { {Arrowheads[0.], ArrowBox[{{0., 0.}, {1., 0.}}, 0.03621320343559642]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["1", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "bcda52da-2910-40ba-95b2-ce954da37ff3"], Text[1, Background -> GrayLevel[1]]], {0.5, 0.}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}, { {Arrowheads[0.], ArrowBox[{{-0.7071067811865475, 1.7071067811865475`}, {-0.7071067811865475, 0.7071067811865475}}, 0.03621320343559642]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["1", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "484c5229-037c-41ca-8ddb-4567caab0d80"], Text[1, Background -> GrayLevel[1]]], {-0.7071067811865475, 1.2071067811865475}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}, { {Arrowheads[0.], ArrowBox[{{-0.7071067811865475, 1.7071067811865475`}, { 0.29289321881345254`, 1.7071067811865475`}}, 0.03621320343559642]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["1", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "16294f86-d50d-41a7-909e-e74635b88747"], Text[1, Background -> GrayLevel[1]]], {-0.20710678118654746, 1.7071067811865475}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}, { {Arrowheads[0.], ArrowBox[{{-0.7071067811865475, 0.7071067811865475}, { 0.29289321881345254`, 0.7071067811865475}}, 0.03621320343559642]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["1", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "dc41cfc3-d3d2-4a00-9567-e1e64de89c4e"], Text[1, Background -> GrayLevel[1]]], {-0.20710678118654746, 0.7071067811865475}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}, { {Arrowheads[0.], ArrowBox[{{1., 1.}, {1., 0.}}, 0.03621320343559642]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["1", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "14769b6c-4b52-40d2-8eb5-6beb10888113"], Text[1, Background -> GrayLevel[1]]], {1., 0.5}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}, { {Arrowheads[0.], ArrowBox[{{1., 1.}, {0.29289321881345254`, 1.7071067811865475`}}, 0.03621320343559642]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["1", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "8a0524f8-846d-43de-b7ec-6ce59a1553f1"], Text[1, Background -> GrayLevel[1]]], {0.6464466094067263, 1.3535533905932737}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}, { {Arrowheads[0.], ArrowBox[{{1., 0.}, {0.29289321881345254`, 0.7071067811865475}}, 0.03621320343559642]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["1", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "d46ccf89-4410-4903-8b46-676c236c718b"], Text[1, Background -> GrayLevel[1]]], {0.6464466094067263, 0.35355339059327373}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}, { {Arrowheads[0.], ArrowBox[{{0.29289321881345254`, 1.7071067811865475`}, { 0.29289321881345254`, 0.7071067811865475}}, 0.03621320343559642]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["1", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "090a4939-6cc0-40e5-8471-fb13392f756e"], Text[1, Background -> GrayLevel[1]]], {0.29289321881345254, 1.2071067811865475}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}}, {RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[{0., 1.}, 0.03621320343559642], DiskBox[{0., 0.}, 0.03621320343559642], DiskBox[{-0.7071067811865475, 1.7071067811865475`}, 0.03621320343559642], DiskBox[{-0.7071067811865475, 0.7071067811865475}, 0.03621320343559642], DiskBox[{1., 1.}, 0.03621320343559642], DiskBox[{1., 0.}, 0.03621320343559642], DiskBox[{0.29289321881345254`, 1.7071067811865475`}, 0.03621320343559642], DiskBox[{0.29289321881345254`, 0.7071067811865475}, 0.03621320343559642]}}], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->{ "NetworkGraphics", FrontEnd`GraphicsHighlightColor -> Hue[0.8, 1., 0.6]}, FormatType->TraditionalForm, FrameTicks->None], "}"}]], "Output", CellLabel->"Out[7]=",ExpressionUUID->"69d41278-72b8-4a36-9e0d-7f47e56856ec"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["MinimalPlanarIntegral", "Subsubsection",ExpressionUUID->"b555dac8-b3ab-41e5-87fb-2ac8949fb373"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"IntegralDrawing", "/@", RowBox[{"GraphData", "[", RowBox[{ "\"\\"", ",", "\"\\"", ",", "\"\\""}], "]"}]}], "//", "StyleGraphs"}]], "Input", CellLabel->"In[6]:=",ExpressionUUID->"f1ca3f81-ef32-49c4-aec7-375ee2e83f7d"], Cell[BoxData[ RowBox[{"{", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, {1}, {4}, { 6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, {7}, {2}, {5}, {8}, { 3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { EdgeLabels -> { UndirectedEdge[1, 5] -> Text[1, Background -> GrayLevel[1]], UndirectedEdge[3, 4] -> Text[2, Background -> GrayLevel[1]], UndirectedEdge[2, 4] -> Text[2, Background -> GrayLevel[1]], UndirectedEdge[5, 6] -> Text[1, Background -> GrayLevel[1]], UndirectedEdge[6, 8] -> Text[1, Background -> GrayLevel[1]], UndirectedEdge[1, 2] -> Text[2, Background -> GrayLevel[1]], UndirectedEdge[4, 8] -> Text[1, Background -> GrayLevel[1]], UndirectedEdge[3, 7] -> Text[1, Background -> GrayLevel[1]], UndirectedEdge[2, 6] -> Text[1, Background -> GrayLevel[1]], UndirectedEdge[7, 8] -> Text[1, Background -> GrayLevel[1]], UndirectedEdge[5, 7] -> Text[1, Background -> GrayLevel[1]], UndirectedEdge[1, 3] -> Text[2, Background -> GrayLevel[1]]}, EdgeStyle -> { GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> { RGBColor[1, 0, 0]}, VertexCoordinates -> {{-1, 1}, {-1, -1}, {1, 1}, {1, -1}, { Rational[1, 8] (-3 - 7^Rational[1, 2]), Rational[1, 8] (3 - 7^Rational[1, 2])}, { Rational[1, 8] (-3 + 7^Rational[1, 2]), Rational[1, 8] (-3 - 7^Rational[1, 2])}, { Rational[1, 8] (3 - 7^Rational[1, 2]), Rational[1, 8] (3 + 7^Rational[1, 2])}, { Rational[1, 8] (3 + 7^Rational[1, 2]), Rational[1, 8] (-3 + 7^Rational[1, 2])}}}]]}, TagBox[GraphicsGroupBox[{ {GrayLevel[0], Opacity[0.7], { {Arrowheads[0.], ArrowBox[{{-1., 1.}, {-1., -1.}}, 0.042426406871192854`]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["2", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "a651f40d-b794-40b7-9fca-f6f6d0ec7f3f"], Text[2, Background -> GrayLevel[1]]], {-1., 0.}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}, { {Arrowheads[0.], ArrowBox[{{-1., 1.}, {1., 1.}}, 0.042426406871192854`]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["2", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "54166418-8fd8-4c6a-b48c-c07fc189cc1b"], Text[2, Background -> GrayLevel[1]]], {0., 1.}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}, { {Arrowheads[0.], ArrowBox[{{-1., 1.}, {-0.7057189138830738, 0.04428108611692616}}, 0.042426406871192854`]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["1", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "112b40fa-1559-456d-b2e4-31d159cbfc1c"], Text[1, Background -> GrayLevel[1]]], {-0.8528594569415369, 0.5221405430584631}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}, { {Arrowheads[0.], ArrowBox[{{-1., -1.}, {1., -1.}}, 0.042426406871192854`]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["2", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "93fbeda9-56cd-4d37-9edb-4c2403a96a87"], Text[2, Background -> GrayLevel[1]]], {0., -1.}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}, { {Arrowheads[0.], ArrowBox[{{-1., -1.}, {-0.04428108611692616, -0.7057189138830738}}, 0.042426406871192854`]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["1", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "36506d6e-e56e-422a-ab62-2e44abfd15e3"], Text[1, Background -> GrayLevel[1]]], {-0.5221405430584631, -0.8528594569415369}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}, { {Arrowheads[0.], ArrowBox[{{1., 1.}, {1., -1.}}, 0.042426406871192854`]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["2", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "8be21f90-1b70-4601-a1f2-c6906ddab6c0"], Text[2, Background -> GrayLevel[1]]], {1., 0.}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}, { {Arrowheads[0.], ArrowBox[{{1., 1.}, {0.04428108611692616, 0.7057189138830738}}, 0.042426406871192854`]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["1", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "1159c0b7-14ef-4ee0-9625-de2c0be05177"], Text[1, Background -> GrayLevel[1]]], {0.5221405430584631, 0.8528594569415369}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}, { {Arrowheads[0.], ArrowBox[{{1., -1.}, {0.7057189138830738, -0.04428108611692616}}, 0.042426406871192854`]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["1", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "8f7d346a-1144-43d9-b0a5-74103e9c0142"], Text[1, Background -> GrayLevel[1]]], {0.8528594569415369, -0.5221405430584631}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}, { {Arrowheads[0.], ArrowBox[{{-0.7057189138830738, 0.04428108611692616}, {-0.04428108611692616, \ -0.7057189138830738}}, 0.042426406871192854`]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["1", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "99b388cb-faf9-49ca-bd6a-a162443c2c15"], Text[1, Background -> GrayLevel[1]]], {-0.375, -0.33071891388307384}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}, { {Arrowheads[0.], ArrowBox[{{-0.7057189138830738, 0.04428108611692616}, { 0.04428108611692616, 0.7057189138830738}}, 0.042426406871192854`]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["1", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "6d0d69a4-94be-4b6c-8019-06df446d303d"], Text[1, Background -> GrayLevel[1]]], {-0.33071891388307384, 0.375}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}, { {Arrowheads[0.], ArrowBox[{{-0.04428108611692616, -0.7057189138830738}, { 0.7057189138830738, -0.04428108611692616}}, 0.042426406871192854`]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["1", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "66dd7afa-41c2-4e2f-9d14-1d7e18c212b3"], Text[1, Background -> GrayLevel[1]]], {0.33071891388307384, -0.375}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}, { {Arrowheads[0.], ArrowBox[{{0.04428108611692616, 0.7057189138830738}, { 0.7057189138830738, -0.04428108611692616}}, 0.042426406871192854`]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["1", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "839e3c97-7d15-4b62-b0d0-940fb45327f3"], Text[1, Background -> GrayLevel[1]]], {0.375, 0.33071891388307384}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}}, {RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[{-1., 1.}, 0.042426406871192854], DiskBox[{-1., -1.}, 0.042426406871192854], DiskBox[{1., 1.}, 0.042426406871192854], DiskBox[{1., -1.}, 0.042426406871192854], DiskBox[{-0.7057189138830738, 0.04428108611692616}, 0.042426406871192854], DiskBox[{-0.04428108611692616, -0.7057189138830738}, 0.042426406871192854], DiskBox[{0.04428108611692616, 0.7057189138830738}, 0.042426406871192854], DiskBox[{0.7057189138830738, -0.04428108611692616}, 0.042426406871192854]}}], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->{ "NetworkGraphics", FrontEnd`GraphicsHighlightColor -> Hue[0.8, 1., 0.6]}, FormatType->TraditionalForm, FrameTicks->None], "}"}]], "Output", CellLabel->"Out[6]=",ExpressionUUID->"0db9fe86-3c56-42d4-ba19-bf5aadfc4955"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["MinimalCrossing", "Subsubsection",ExpressionUUID->"d1ad7ae9-7032-4d01-ba4e-553597d416f0"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"GraphData", "[", RowBox[{"\"\\"", ",", RowBox[{"{", RowBox[{"\"\\"", ",", "\"\\""}], "}"}]}], "]"}]], "Input", CellLabel-> "In[105]:=",ExpressionUUID->"e94ddbd8-a697-42c2-a8aa-c0d32d353352"], Cell[BoxData[ RowBox[{"{", RowBox[{"0", ",", "0"}], "}"}]], "Output", CellLabel-> "Out[105]=",ExpressionUUID->"306875f0-504b-44ad-95f1-aec3b7b5b52a"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"GraphData", "[", RowBox[{ "\"\\"", ",", "\"\\"", ",", "\"\\""}], "]"}], "//", "StyleGraphs"}]], "Input", CellLabel->"In[7]:=",ExpressionUUID->"b749d470-756c-49b6-883a-35c3ccd19da4"], Cell[BoxData[ RowBox[{"{", RowBox[{ GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, {1}, {4}, { 6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, {7}, {2}, {5}, {8}, { 3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, {EdgeStyle -> { GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> { RGBColor[1, 0, 0]}, VertexCoordinates -> {{ Rational[-1, 3], Rational[-1, 3]}, {-1, -1}, { Rational[-1, 3], Rational[1, 3]}, {-1, 1}, { Rational[1, 3], Rational[-1, 3]}, {1, -1}, { Rational[1, 3], Rational[1, 3]}, {1, 1}}}]]}, TagBox[ GraphicsGroupBox[ GraphicsComplexBox[{{-0.3333333333333333, -0.3333333333333333}, {-1., \ -1.}, {-0.3333333333333333, 0.3333333333333333}, {-1., 1.}, { 0.3333333333333333, -0.3333333333333333}, {1., -1.}, { 0.3333333333333333, 0.3333333333333333}, {1., 1.}}, { {GrayLevel[0], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, { 4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.042426406871192854`]}, {RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.042426406871192854], DiskBox[2, 0.042426406871192854], DiskBox[3, 0.042426406871192854], DiskBox[4, 0.042426406871192854], DiskBox[5, 0.042426406871192854], DiskBox[6, 0.042426406871192854], DiskBox[7, 0.042426406871192854], DiskBox[8, 0.042426406871192854]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, {1}, {4}, { 6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, {7}, {2}, {5}, {8}, { 3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, {EdgeStyle -> { GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> { RGBColor[1, 0, 0]}, VertexCoordinates -> {{0, 0}, {-6^Rational[-1, 2], -2^Rational[-1, 2]}, {-6^Rational[-1, 2], 2^Rational[-1, 2]}, {-Rational[2, 3]^Rational[1, 2], 0}, { Rational[2, 3]^Rational[1, 2], 0}, { 6^Rational[-1, 2], -2^Rational[-1, 2]}, { 6^Rational[-1, 2], 2^Rational[-1, 2]}, {0, 0}}}]]}, TagBox[ GraphicsGroupBox[ GraphicsComplexBox[{{0., 0.}, {-0.4082482904638631, -0.7071067811865475}, \ {-0.4082482904638631, 0.7071067811865475}, {-0.816496580927726, 0.}, { 0.816496580927726, 0.}, {0.4082482904638631, -0.7071067811865475}, { 0.4082482904638631, 0.7071067811865475}, {0., 0.}}, { {GrayLevel[0], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, { 4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.0324037034920393]}, {RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.0324037034920393], DiskBox[2, 0.0324037034920393], DiskBox[3, 0.0324037034920393], DiskBox[4, 0.0324037034920393], DiskBox[5, 0.0324037034920393], DiskBox[6, 0.0324037034920393], DiskBox[7, 0.0324037034920393], DiskBox[8, 0.0324037034920393]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, {1}, {4}, { 6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, {7}, {2}, {5}, {8}, { 3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, {EdgeStyle -> { GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> { RGBColor[1, 0, 0]}, VertexCoordinates -> {{-1, 1}, {-1, -1}, {1, 1}, {1, -1}, { Rational[1, 8] (-3 - 7^Rational[1, 2]), Rational[1, 8] (3 - 7^Rational[1, 2])}, { Rational[1, 8] (-3 + 7^Rational[1, 2]), Rational[1, 8] (-3 - 7^Rational[1, 2])}, { Rational[1, 8] (3 - 7^Rational[1, 2]), Rational[1, 8] (3 + 7^Rational[1, 2])}, { Rational[1, 8] (3 + 7^Rational[1, 2]), Rational[1, 8] (-3 + 7^Rational[1, 2])}}}]]}, TagBox[ GraphicsGroupBox[ GraphicsComplexBox[{{-1., 1.}, {-1., -1.}, {1., 1.}, { 1., -1.}, {-0.7057189138830738, 0.04428108611692616}, {-0.04428108611692616, -0.7057189138830738}, { 0.04428108611692616, 0.7057189138830738}, { 0.7057189138830738, -0.04428108611692616}}, { {GrayLevel[0], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, { 4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.042426406871192854`]}, {RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.042426406871192854], DiskBox[2, 0.042426406871192854], DiskBox[3, 0.042426406871192854], DiskBox[4, 0.042426406871192854], DiskBox[5, 0.042426406871192854], DiskBox[6, 0.042426406871192854], DiskBox[7, 0.042426406871192854], DiskBox[8, 0.042426406871192854]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, {1}, {4}, { 6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, {7}, {2}, {5}, {8}, { 3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, {EdgeStyle -> { GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> { RGBColor[1, 0, 0]}, VertexCoordinates -> {{0, 0}, {0, Rational[1, 2]}, {-1, 1}, { Rational[-1, 2], 1}, {1, 1}, { Rational[1, 2], 1}, {0, 2}, {0, 1}}}]]}, TagBox[ GraphicsGroupBox[ GraphicsComplexBox[{{0., 0.}, {0., 0.5}, {-1., 1.}, {-0.5, 1.}, {1., 1.}, {0.5, 1.}, {0., 2.}, {0., 1.}}, { {GrayLevel[0], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, { 4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.042426406871192854`]}, {RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.042426406871192854], DiskBox[2, 0.042426406871192854], DiskBox[3, 0.042426406871192854], DiskBox[4, 0.042426406871192854], DiskBox[5, 0.042426406871192854], DiskBox[6, 0.042426406871192854], DiskBox[7, 0.042426406871192854], DiskBox[8, 0.042426406871192854]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None]}], "}"}]], "Output", CellLabel->"Out[7]=",ExpressionUUID->"54a38f05-cdb0-42cc-aac5-69dc4fa18956"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["Circulant", "Subsubsection",ExpressionUUID->"2f8e3f21-802d-4bb9-aba7-4710770292f7"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"GraphData", "[", RowBox[{"\"\\"", ",", "\"\\""}], "]"}]], "Input",\ CellLabel-> "In[107]:=",ExpressionUUID->"de6be45d-b41c-4f84-83a7-dc68579ffbe4"], Cell[BoxData["False"], "Output", CellLabel-> "Out[107]=",ExpressionUUID->"4946a345-a1ef-488e-93e3-9ecb2697eec2"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"GraphData", "[", RowBox[{ "\"\\"", ",", "\"\\"", ",", "\"\\""}], "]"}], "//", "StyleGraphs"}]], "Input", CellLabel-> "In[108]:=",ExpressionUUID->"5cdcf012-4af0-4ee0-b648-365e6ee8903a"], Cell[BoxData[ RowBox[{"{", "}"}]], "Output", CellLabel-> "Out[108]=",ExpressionUUID->"3abeb7da-2fa1-4eb0-88df-3b5e0f6294e9"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["Line graph", "Subsubsection",ExpressionUUID->"f3722eea-cec8-4c08-88b7-a8ad7dee49fa"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"GraphData", "[", RowBox[{"\"\\"", ",", "\"\\""}], "]"}]], "Input", CellLabel-> "In[109]:=",ExpressionUUID->"dcd1b3d2-76bf-46f5-be95-22a3bf9e4eae"], Cell[BoxData["False"], "Output", CellLabel-> "Out[109]=",ExpressionUUID->"ad86f130-628a-4094-bea0-931ee3601f1d"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"LineGraphQ", "[", RowBox[{"GraphData", "[", "\"\\"", "]"}], "]"}], "//", "Timing"}]], "Input", CellLabel-> "In[110]:=",ExpressionUUID->"a16d1276-658b-4fd5-9427-b95e8a927267"], Cell[BoxData[ RowBox[{"{", RowBox[{"0.001827`", ",", "False"}], "}"}]], "Output", CellLabel-> "Out[110]=",ExpressionUUID->"cb91a79f-fcfd-4a88-8782-501b1b600989"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["RootGraph", "Subsubsection",ExpressionUUID->"1ee3025c-86ae-4d8c-bfae-c8b5710adc2d"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Select", "[", RowBox[{ RowBox[{"GraphData", "[", "All", "]"}], ",", RowBox[{ RowBox[{ RowBox[{"GraphData", "[", RowBox[{"#", ",", "\"\\"", ",", "\"\\""}], "]"}], "===", " ", "\"\\""}], "&"}]}], "]"}]], "Input", CellLabel-> "In[111]:=",ExpressionUUID->"06cacaa2-84af-42d8-ab63-d36200221d15"], Cell[BoxData[ RowBox[{"{", "}"}]], "Output", CellLabel-> "Out[111]=",ExpressionUUID->"db05f7c2-eef9-4592-a18b-775362b33829"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"RootGraph", "[", RowBox[{"GraphData", "[", "\"\\"", "]"}], "]"}]], "Input", CellLabel-> "In[112]:=",ExpressionUUID->"3803e338-3f10-421b-94c2-9a664ef82e91"], Cell[BoxData[ RowBox[{"Failure", "[", RowBox[{ GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, {1}, {4}, { 6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, {7}, {2}, {5}, {8}, { 3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, {VertexCoordinates -> {{ Rational[-1, 3], Rational[-1, 3]}, {-1, -1}, { Rational[-1, 3], Rational[1, 3]}, {-1, 1}, { Rational[1, 3], Rational[-1, 3]}, {1, -1}, { Rational[1, 3], Rational[1, 3]}, {1, 1}}}]]}, TagBox[ GraphicsGroupBox[ GraphicsComplexBox[{{-0.3333333333333333, -0.3333333333333333}, {-1., \ -1.}, {-0.3333333333333333, 0.3333333333333333}, {-1., 1.}, { 0.3333333333333333, -0.3333333333333333}, {1., -1.}, { 0.3333333333333333, 0.3333333333333333}, {1., 1.}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, { 4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.02261146496815286]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.02261146496815286], DiskBox[2, 0.02261146496815286], DiskBox[3, 0.02261146496815286], DiskBox[4, 0.02261146496815286], DiskBox[5, 0.02261146496815286], DiskBox[6, 0.02261146496815286], DiskBox[7, 0.02261146496815286], DiskBox[8, 0.02261146496815286]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], ",", RowBox[{"\[LeftAssociation]", RowBox[{"\<\"MessageTemplate\"\>", "\[Rule]", "\<\"Graph is not a line graph\"\>"}], "\[RightAssociation]"}]}], "]"}]], "Output", CellLabel-> "Out[112]=",ExpressionUUID->"b282e17a-fc27-4608-8b01-55bbbb4d83ac"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["Halin", "Subsubsection",ExpressionUUID->"65304660-7dd0-44ac-895b-ca3708edbba4"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"GraphData", "[", RowBox[{"\"\\"", ",", "\"\\""}], "]"}]], "Input", CellLabel-> "In[113]:=",ExpressionUUID->"c035bdc9-4ef6-4cdd-8ee9-32862d9edfab"], Cell[BoxData["False"], "Output", CellLabel-> "Out[113]=",ExpressionUUID->"3b49347f-e46f-4101-9903-03011afb0702"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"GraphData", "[", RowBox[{ "\"\\"", ",", "\"\\"", ",", "\"\\""}], "]"}], "//", "StyleGraphs"}]], "Input", CellLabel-> "In[114]:=",ExpressionUUID->"43e72d0f-56e2-4723-82f5-45df5885a8a7"], Cell[BoxData[ RowBox[{"{", "}"}]], "Output", CellLabel-> "Out[114]=",ExpressionUUID->"da5284f6-07c5-48e6-a55d-5b93e9ee1a3c"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["Rigid", "Subsubsection",ExpressionUUID->"3004eab0-9213-4dc7-ab1a-029c2f0b6205"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"GraphData", "[", RowBox[{"\"\\"", ",", "\"\\""}], "]"}]], "Input", CellLabel->"In[5]:=",ExpressionUUID->"8c61e6dd-6d54-49ad-ae33-85f14b30fde5"], Cell[BoxData["False"], "Output", CellLabel->"Out[5]=",ExpressionUUID->"b5d0110b-d164-466e-86f3-fe6a7a327063"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"GraphData", "[", RowBox[{ "\"\\"", ",", "\"\\"", ",", "\"\\""}], "]"}], "//", "StyleGraphs"}]], "Input", CellLabel-> "In[116]:=",ExpressionUUID->"b8b2842f-2a41-49d5-b217-83d8062e78fe"], Cell[BoxData[ RowBox[{"{", "}"}]], "Output", CellLabel-> "Out[116]=",ExpressionUUID->"88bb583e-ce65-4444-a869-69cf730f8652"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["Flexible", "Subsubsection",ExpressionUUID->"0babd98f-38b8-4831-8809-a15aef5dda97"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"GraphData", "[", RowBox[{"\"\\"", ",", "\"\\""}], "]"}]], "Input", CellLabel->"In[6]:=",ExpressionUUID->"5555dc51-a2a1-4499-b194-81d5b00af31c"], Cell[BoxData["True"], "Output", CellLabel->"Out[6]=",ExpressionUUID->"6710485d-6a99-4418-bfd9-38242195cd17"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"GraphData", "[", RowBox[{ "\"\\"", ",", "\"\\"", ",", "\"\\""}], "]"}], "//", "StyleGraphs"}]], "Input", CellLabel-> "In[184]:=",ExpressionUUID->"a011e424-f66c-422f-9675-d3247f1ed6e9"], Cell[BoxData[ RowBox[{"{", RowBox[{ GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, {1}, {4}, { 6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, {7}, {2}, {5}, {8}, { 3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, {EdgeStyle -> { GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> { RGBColor[1, 0, 0]}, VertexCoordinates -> {{ Rational[-1, 3], Rational[-1, 3]}, {-1, -1}, { Rational[-1, 3], Rational[1, 3]}, {-1, 1}, { Rational[1, 3], Rational[-1, 3]}, {1, -1}, { Rational[1, 3], Rational[1, 3]}, {1, 1}}}]]}, TagBox[ GraphicsGroupBox[ GraphicsComplexBox[{{-0.3333333333333333, -0.3333333333333333}, {-1., \ -1.}, {-0.3333333333333333, 0.3333333333333333}, {-1., 1.}, { 0.3333333333333333, -0.3333333333333333}, {1., -1.}, { 0.3333333333333333, 0.3333333333333333}, {1., 1.}}, { {GrayLevel[0], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, { 4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.042426406871192854`]}, {RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.042426406871192854], DiskBox[2, 0.042426406871192854], DiskBox[3, 0.042426406871192854], DiskBox[4, 0.042426406871192854], DiskBox[5, 0.042426406871192854], DiskBox[6, 0.042426406871192854], DiskBox[7, 0.042426406871192854], DiskBox[8, 0.042426406871192854]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, {1}, {4}, { 6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, {7}, {2}, {5}, {8}, { 3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, {EdgeStyle -> { GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> { RGBColor[1, 0, 0]}, VertexCoordinates -> {{-1, -1}, {-1, 1}, {1, -1}, {1, 1}, { Rational[-1, 2], Rational[1, 2]}, { Rational[-1, 2], Rational[-1, 2]}, { Rational[1, 2], Rational[1, 2]}, { Rational[1, 2], Rational[-1, 2]}}}]]}, TagBox[ GraphicsGroupBox[ GraphicsComplexBox[{{-1., -1.}, {-1., 1.}, {1., -1.}, {1., 1.}, {-0.5, 0.5}, {-0.5, -0.5}, {0.5, 0.5}, {0.5, -0.5}}, { {GrayLevel[0], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, { 4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.042426406871192854`]}, {RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.042426406871192854], DiskBox[2, 0.042426406871192854], DiskBox[3, 0.042426406871192854], DiskBox[4, 0.042426406871192854], DiskBox[5, 0.042426406871192854], DiskBox[6, 0.042426406871192854], DiskBox[7, 0.042426406871192854], DiskBox[8, 0.042426406871192854]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, {1}, {4}, { 6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, {7}, {2}, {5}, {8}, { 3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, {EdgeStyle -> { GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> { RGBColor[1, 0, 0]}, VertexCoordinates -> {{ Rational[1, 2], Rational[-1, 2] Cot[Rational[1, 8] Pi]}, { Rational[1, 2], Rational[1, 2] Cot[Rational[1, 8] Pi]}, { Rational[1, 2] Cot[Rational[1, 8] Pi], Rational[-1, 2]}, {Rational[1, 2] Cot[Rational[1, 8] Pi], Rational[1, 2]}, { Rational[-1, 2], Rational[-1, 2] Cot[Rational[1, 8] Pi]}, { Rational[-1, 2], Rational[1, 2] Cot[Rational[1, 8] Pi]}, { Rational[-1, 2] Cot[Rational[1, 8] Pi], Rational[-1, 2]}, {Rational[-1, 2] Cot[Rational[1, 8] Pi], Rational[1, 2]}}}]]}, TagBox[ GraphicsGroupBox[ GraphicsComplexBox[{{0.5, -1.2071067811865475`}, {0.5, 1.2071067811865475`}, {1.2071067811865475`, -0.5}, { 1.2071067811865475`, 0.5}, {-0.5, -1.2071067811865475`}, {-0.5, 1.2071067811865475`}, {-1.2071067811865475`, -0.5}, \ {-1.2071067811865475`, 0.5}}, { {GrayLevel[0], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, { 4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.05121320343559642]}, {RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.05121320343559642], DiskBox[2, 0.05121320343559642], DiskBox[3, 0.05121320343559642], DiskBox[4, 0.05121320343559642], DiskBox[5, 0.05121320343559642], DiskBox[6, 0.05121320343559642], DiskBox[7, 0.05121320343559642], DiskBox[8, 0.05121320343559642]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, {1}, {4}, { 6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, {7}, {2}, {5}, {8}, { 3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, {EdgeStyle -> { GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> { RGBColor[1, 0, 0]}, VertexCoordinates -> {{ Sin[Rational[1, 8] Pi], -Cos[Rational[1, 8] Pi]}, {- Cos[Rational[1, 8] Pi], Sin[Rational[1, 8] Pi]}, { Sin[Rational[1, 8] Pi], Cos[Rational[1, 8] Pi]}, { Cos[Rational[1, 8] Pi], Sin[Rational[1, 8] Pi]}, { Cos[Rational[1, 8] Pi], -Sin[Rational[1, 8] Pi]}, {- Sin[Rational[1, 8] Pi], Cos[Rational[1, 8] Pi]}, {-Cos[Rational[1, 8] Pi], - Sin[Rational[1, 8] Pi]}, {-Sin[Rational[1, 8] Pi], - Cos[Rational[1, 8] Pi]}}}]]}, TagBox[ GraphicsGroupBox[ GraphicsComplexBox[{{ 0.3826834323650898, -0.9238795325112867}, {-0.9238795325112867, 0.3826834323650898}, {0.3826834323650898, 0.9238795325112867}, { 0.9238795325112867, 0.3826834323650898}, { 0.9238795325112867, -0.3826834323650898}, {-0.3826834323650898, 0.9238795325112867}, {-0.9238795325112867, -0.3826834323650898}, \ {-0.3826834323650898, -0.9238795325112867}}, { {GrayLevel[0], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, { 4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.039196888946291294`]}, {RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.039196888946291294], DiskBox[2, 0.039196888946291294], DiskBox[3, 0.039196888946291294], DiskBox[4, 0.039196888946291294], DiskBox[5, 0.039196888946291294], DiskBox[6, 0.039196888946291294], DiskBox[7, 0.039196888946291294], DiskBox[8, 0.039196888946291294]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, {1}, {4}, { 6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, {7}, {2}, {5}, {8}, { 3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, {EdgeStyle -> { GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> { RGBColor[1, 0, 0]}, VertexCoordinates -> {{ Rational[-1, 2], Rational[1, 2]}, {0, Rational[1, 2] (1 + 3^Rational[1, 2])}, { Rational[-1, 2], Rational[-1, 2]}, {0, Rational[1, 2]}, {0, Rational[-1, 2]}, { Rational[1, 2], Rational[1, 2]}, {0, Rational[1, 2] (-1 - 3^Rational[1, 2])}, { Rational[1, 2], Rational[-1, 2]}}}]]}, TagBox[ GraphicsGroupBox[ GraphicsComplexBox[{{-0.5, 0.5}, {0., 1.3660254037844386`}, {-0.5, -0.5}, {0., 0.5}, {0., -0.5}, {0.5, 0.5}, {0., -1.3660254037844386`}, {0.5, -0.5}}, { {GrayLevel[0], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, { 4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.04363969366764614]}, {RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.04363969366764614], DiskBox[2, 0.04363969366764614], DiskBox[3, 0.04363969366764614], DiskBox[4, 0.04363969366764614], DiskBox[5, 0.04363969366764614], DiskBox[6, 0.04363969366764614], DiskBox[7, 0.04363969366764614], DiskBox[8, 0.04363969366764614]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, {1}, {4}, { 6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, {7}, {2}, {5}, {8}, { 3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, {EdgeStyle -> { GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> { RGBColor[1, 0, 0]}, VertexCoordinates -> {{Rational[1, 2] 3^Rational[-1, 2], Rational[1, 2]}, {Rational[1, 2] 3^Rational[-1, 2], Rational[-1, 2]}, {0, Rational[1, 6] (3 - 33^Rational[1, 2])}, { 0, Rational[1, 6] (-3 - 33^Rational[1, 2])}, { 0, Rational[1, 6] (3 + 33^Rational[1, 2])}, { 0, Rational[1, 6] (-3 + 33^Rational[1, 2])}, { Rational[-1, 2] 3^Rational[-1, 2], Rational[1, 2]}, {Rational[-1, 2] 3^Rational[-1, 2], Rational[-1, 2]}}}]]}, TagBox[ GraphicsGroupBox[ GraphicsComplexBox[{{0.2886751345948129, 0.5}, { 0.2886751345948129, -0.5}, {0., -0.4574271077563381}, { 0., -1.457427107756338}, {0., 1.457427107756338}, {0., 0.4574271077563381}, {-0.2886751345948129, 0.5}, {-0.2886751345948129, -0.5}}, { {GrayLevel[0], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, { 4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.04457223796244366]}, {RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.04457223796244366], DiskBox[2, 0.04457223796244366], DiskBox[3, 0.04457223796244366], DiskBox[4, 0.04457223796244366], DiskBox[5, 0.04457223796244366], DiskBox[6, 0.04457223796244366], DiskBox[7, 0.04457223796244366], DiskBox[8, 0.04457223796244366]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, {1}, {4}, { 6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, {7}, {2}, {5}, {8}, { 3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, {EdgeStyle -> { GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> { RGBColor[1, 0, 0]}, VertexCoordinates -> {{2^Rational[-1, 2], 2^Rational[-1, 2]}, {0, 1}, {-2^Rational[-1, 2], 2^Rational[-1, 2]}, {-1, 0}, { 2^Rational[-1, 2], -2^Rational[-1, 2]}, {1, 0}, {-2^Rational[-1, 2], -2^Rational[-1, 2]}, {0, -1}}}]]}, TagBox[ GraphicsGroupBox[ GraphicsComplexBox[{{0.7071067811865475, 0.7071067811865475}, {0., 1.}, {-0.7071067811865475, 0.7071067811865475}, {-1., 0.}, { 0.7071067811865475, -0.7071067811865475}, {1., 0.}, {-0.7071067811865475, -0.7071067811865475}, {0., -1.}}, { {GrayLevel[0], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, { 4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.042426406871192854`]}, {RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.042426406871192854], DiskBox[2, 0.042426406871192854], DiskBox[3, 0.042426406871192854], DiskBox[4, 0.042426406871192854], DiskBox[5, 0.042426406871192854], DiskBox[6, 0.042426406871192854], DiskBox[7, 0.042426406871192854], DiskBox[8, 0.042426406871192854]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, {1}, {4}, { 6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, {7}, {2}, {5}, {8}, { 3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, {EdgeStyle -> { GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> { RGBColor[1, 0, 0]}, VertexCoordinates -> {{ Rational[-1, 2], Rational[-1, 2]}, { Rational[-1, 2], Rational[-1, 2]}, { Rational[-1, 2], Rational[1, 2]}, { Rational[-1, 2], Rational[1, 2]}, { Rational[1, 2], Rational[-1, 2]}, { Rational[1, 2], Rational[-1, 2]}, { Rational[1, 2], Rational[1, 2]}, { Rational[1, 2], Rational[1, 2]}}}]]}, TagBox[ GraphicsGroupBox[ GraphicsComplexBox[{{-0.5, -0.5}, {-0.5, -0.5}, {-0.5, 0.5}, {-0.5, 0.5}, {0.5, -0.5}, {0.5, -0.5}, {0.5, 0.5}, {0.5, 0.5}}, { {GrayLevel[0], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, { 4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.021213203435596427`]}, {RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.021213203435596427], DiskBox[2, 0.021213203435596427], DiskBox[3, 0.021213203435596427], DiskBox[4, 0.021213203435596427], DiskBox[5, 0.021213203435596427], DiskBox[6, 0.021213203435596427], DiskBox[7, 0.021213203435596427], DiskBox[8, 0.021213203435596427]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, {1}, {4}, { 6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, {7}, {2}, {5}, {8}, { 3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, {EdgeStyle -> { GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> { RGBColor[1, 0, 0]}, VertexCoordinates -> {{0, Rational[-1, 2]}, {-2^Rational[-1, 2], Rational[-1, 2]}, {0, Rational[1, 2]}, {-2^Rational[-1, 2], Rational[1, 2]}, {2^Rational[-1, 2], Rational[-1, 2]}, {0, Rational[-1, 2]}, {2^Rational[-1, 2], Rational[1, 2]}, {0, Rational[1, 2]}}}]]}, TagBox[ GraphicsGroupBox[ GraphicsComplexBox[{{0., -0.5}, {-0.7071067811865475, -0.5}, {0., 0.5}, {-0.7071067811865475, 0.5}, {0.7071067811865475, -0.5}, { 0., -0.5}, {0.7071067811865475, 0.5}, {0., 0.5}}, { {GrayLevel[0], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, { 4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.025980762113533156`]}, {RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.025980762113533156], DiskBox[2, 0.025980762113533156], DiskBox[3, 0.025980762113533156], DiskBox[4, 0.025980762113533156], DiskBox[5, 0.025980762113533156], DiskBox[6, 0.025980762113533156], DiskBox[7, 0.025980762113533156], DiskBox[8, 0.025980762113533156]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, {1}, {4}, { 6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, {7}, {2}, {5}, {8}, { 3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, {EdgeStyle -> { GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> { RGBColor[1, 0, 0]}, VertexCoordinates -> {{Rational[-1, 2] 5^Rational[-1, 2], Rational[-1, 2]}, {Rational[-3, 2] 5^Rational[-1, 2], Rational[-1, 2]}, {Rational[-1, 2] 5^Rational[-1, 2], Rational[1, 2]}, {Rational[-3, 2] 5^Rational[-1, 2], Rational[1, 2]}, {Rational[3, 2] 5^Rational[-1, 2], Rational[-1, 2]}, {Rational[1, 2] 5^Rational[-1, 2], Rational[-1, 2]}, {Rational[3, 2] 5^Rational[-1, 2], Rational[1, 2]}, {Rational[1, 2] 5^Rational[-1, 2], Rational[1, 2]}}}]]}, TagBox[ GraphicsGroupBox[ GraphicsComplexBox[{{-0.22360679774997896`, -0.5}, \ {-0.6708203932499369, -0.5}, {-0.22360679774997896`, 0.5}, {-0.6708203932499369, 0.5}, {0.6708203932499369, -0.5}, { 0.22360679774997896`, -0.5}, {0.6708203932499369, 0.5}, { 0.22360679774997896`, 0.5}}, { {GrayLevel[0], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, { 4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.025099800796022267`]}, {RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.025099800796022267], DiskBox[2, 0.025099800796022267], DiskBox[3, 0.025099800796022267], DiskBox[4, 0.025099800796022267], DiskBox[5, 0.025099800796022267], DiskBox[6, 0.025099800796022267], DiskBox[7, 0.025099800796022267], DiskBox[8, 0.025099800796022267]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, {1}, {4}, { 6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, {7}, {2}, {5}, {8}, { 3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, {EdgeStyle -> { GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> { RGBColor[1, 0, 0]}, VertexCoordinates -> {{0, 0}, {-6^Rational[-1, 2], -2^Rational[-1, 2]}, {-6^Rational[-1, 2], 2^Rational[-1, 2]}, {-Rational[2, 3]^Rational[1, 2], 0}, { Rational[2, 3]^Rational[1, 2], 0}, { 6^Rational[-1, 2], -2^Rational[-1, 2]}, { 6^Rational[-1, 2], 2^Rational[-1, 2]}, {0, 0}}}]]}, TagBox[ GraphicsGroupBox[ GraphicsComplexBox[{{0., 0.}, {-0.4082482904638631, -0.7071067811865475}, \ {-0.4082482904638631, 0.7071067811865475}, {-0.816496580927726, 0.}, { 0.816496580927726, 0.}, {0.4082482904638631, -0.7071067811865475}, { 0.4082482904638631, 0.7071067811865475}, {0., 0.}}, { {GrayLevel[0], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, { 4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.0324037034920393]}, {RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.0324037034920393], DiskBox[2, 0.0324037034920393], DiskBox[3, 0.0324037034920393], DiskBox[4, 0.0324037034920393], DiskBox[5, 0.0324037034920393], DiskBox[6, 0.0324037034920393], DiskBox[7, 0.0324037034920393], DiskBox[8, 0.0324037034920393]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, {1}, {4}, { 6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, {7}, {2}, {5}, {8}, { 3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, {EdgeStyle -> { GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> { RGBColor[1, 0, 0]}, VertexCoordinates -> {{Rational[-1, 3] 2^Rational[-1, 2], 0}, { Rational[-1, 3] 2^Rational[1, 2], -2^Rational[-1, 2]}, { Rational[-1, 3] 2^Rational[1, 2], 2^ Rational[-1, 2]}, {-2^Rational[-1, 2], 0}, { 2^Rational[-1, 2], 0}, { Rational[1, 3] 2^Rational[1, 2], -2^Rational[-1, 2]}, { Rational[1, 3] 2^Rational[1, 2], 2^Rational[-1, 2]}, { Rational[1, 3] 2^Rational[-1, 2], 0}}}]]}, TagBox[ GraphicsGroupBox[ GraphicsComplexBox[{{-0.2357022603955158, 0.}, {-0.4714045207910317, -0.7071067811865475}, \ {-0.4714045207910317, 0.7071067811865475}, {-0.7071067811865475, 0.}, { 0.7071067811865475, 0.}, {0.4714045207910317, -0.7071067811865475}, { 0.4714045207910317, 0.7071067811865475}, {0.2357022603955158, 0.}}, { {GrayLevel[0], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, { 4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.029999999999999995`]}, {RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.029999999999999995], DiskBox[2, 0.029999999999999995], DiskBox[3, 0.029999999999999995], DiskBox[4, 0.029999999999999995], DiskBox[5, 0.029999999999999995], DiskBox[6, 0.029999999999999995], DiskBox[7, 0.029999999999999995], DiskBox[8, 0.029999999999999995]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, {1}, {4}, { 6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, {7}, {2}, {5}, {8}, { 3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, {EdgeStyle -> { GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> { RGBColor[1, 0, 0]}, VertexCoordinates -> {{Rational[1, 2] 3^Rational[-1, 2], 0}, { Rational[-1, 2] 3^Rational[-1, 2], -2^Rational[-1, 2]}, { Rational[-1, 2] 3^Rational[-1, 2], 2^Rational[-1, 2]}, { Rational[-1, 2] 3^Rational[1, 2], 0}, { Rational[1, 2] 3^Rational[1, 2], 0}, { Rational[1, 2] 3^Rational[-1, 2], -2^Rational[-1, 2]}, { Rational[1, 2] 3^Rational[-1, 2], 2^Rational[-1, 2]}, { Rational[-1, 2] 3^Rational[-1, 2], 0}}}]]}, TagBox[ GraphicsGroupBox[ GraphicsComplexBox[{{0.2886751345948129, 0.}, {-0.2886751345948129, -0.7071067811865475}, \ {-0.2886751345948129, 0.7071067811865475}, {-0.8660254037844386, 0.}, { 0.8660254037844386, 0.}, {0.2886751345948129, -0.7071067811865475}, { 0.2886751345948129, 0.7071067811865475}, {-0.2886751345948129, 0.}}, { {GrayLevel[0], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, { 4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.03354101966249684]}, {RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.03354101966249684], DiskBox[2, 0.03354101966249684], DiskBox[3, 0.03354101966249684], DiskBox[4, 0.03354101966249684], DiskBox[5, 0.03354101966249684], DiskBox[6, 0.03354101966249684], DiskBox[7, 0.03354101966249684], DiskBox[8, 0.03354101966249684]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, {1}, {4}, { 6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, {7}, {2}, {5}, {8}, { 3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, {EdgeStyle -> { GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> { RGBColor[1, 0, 0]}, VertexCoordinates -> {{0, 1}, {0, 0}, { Rational[-1, 2], Rational[3, 2]}, { Rational[-1, 2], Rational[1, 2]}, {1, 1}, {1, 0}, { Rational[1, 2], Rational[3, 2]}, { Rational[1, 2], Rational[1, 2]}}}]]}, TagBox[ GraphicsGroupBox[ GraphicsComplexBox[{{0., 1.}, {0., 0.}, {-0.5, 1.5}, {-0.5, 0.5}, {1., 1.}, {1., 0.}, {0.5, 1.5}, {0.5, 0.5}}, { {GrayLevel[0], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, { 4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.03181980515339464]}, {RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.03181980515339464], DiskBox[2, 0.03181980515339464], DiskBox[3, 0.03181980515339464], DiskBox[4, 0.03181980515339464], DiskBox[5, 0.03181980515339464], DiskBox[6, 0.03181980515339464], DiskBox[7, 0.03181980515339464], DiskBox[8, 0.03181980515339464]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, {1}, {4}, { 6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, {7}, {2}, {5}, {8}, { 3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, {EdgeStyle -> { GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> { RGBColor[1, 0, 0]}, VertexCoordinates -> {{0, 1}, {0, 0}, {-2^Rational[-1, 2], 1 + 2^Rational[-1, 2]}, {-2^Rational[-1, 2], 2^Rational[-1, 2]}, {1, 1}, {1, 0}, {1 - 2^Rational[-1, 2], 1 + 2^Rational[-1, 2]}, { 1 - 2^Rational[-1, 2], 2^Rational[-1, 2]}}}]]}, TagBox[ GraphicsGroupBox[ GraphicsComplexBox[{{0., 1.}, {0., 0.}, {-0.7071067811865475, 1.7071067811865475`}, {-0.7071067811865475, 0.7071067811865475}, {1., 1.}, {1., 0.}, {0.29289321881345254`, 1.7071067811865475`}, { 0.29289321881345254`, 0.7071067811865475}}, { {GrayLevel[0], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, { 4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.03621320343559642]}, {RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.03621320343559642], DiskBox[2, 0.03621320343559642], DiskBox[3, 0.03621320343559642], DiskBox[4, 0.03621320343559642], DiskBox[5, 0.03621320343559642], DiskBox[6, 0.03621320343559642], DiskBox[7, 0.03621320343559642], DiskBox[8, 0.03621320343559642]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, {1}, {4}, { 6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, {7}, {2}, {5}, {8}, { 3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, {EdgeStyle -> { GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> { RGBColor[1, 0, 0]}, VertexCoordinates -> {{0, 1}, { Rational[-1, 2], Rational[3, 2]}, { Rational[-1, 2], Rational[1, 2]}, {0, 0}, {1, 1}, { Rational[1, 2], Rational[3, 2]}, { Rational[1, 2], Rational[1, 2]}, {1, 0}}}]]}, TagBox[ GraphicsGroupBox[ GraphicsComplexBox[{{0., 1.}, {-0.5, 1.5}, {-0.5, 0.5}, {0., 0.}, {1., 1.}, {0.5, 1.5}, {0.5, 0.5}, {1., 0.}}, { {GrayLevel[0], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, { 4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.03181980515339464]}, {RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.03181980515339464], DiskBox[2, 0.03181980515339464], DiskBox[3, 0.03181980515339464], DiskBox[4, 0.03181980515339464], DiskBox[5, 0.03181980515339464], DiskBox[6, 0.03181980515339464], DiskBox[7, 0.03181980515339464], DiskBox[8, 0.03181980515339464]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, {1}, {4}, { 6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, {7}, {2}, {5}, {8}, { 3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, {EdgeStyle -> { GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> { RGBColor[1, 0, 0]}, VertexCoordinates -> {{-1, 1}, {-1, -1}, {1, 1}, {1, -1}, { Rational[1, 8] (-3 - 7^Rational[1, 2]), Rational[1, 8] (3 - 7^Rational[1, 2])}, { Rational[1, 8] (-3 + 7^Rational[1, 2]), Rational[1, 8] (-3 - 7^Rational[1, 2])}, { Rational[1, 8] (3 - 7^Rational[1, 2]), Rational[1, 8] (3 + 7^Rational[1, 2])}, { Rational[1, 8] (3 + 7^Rational[1, 2]), Rational[1, 8] (-3 + 7^Rational[1, 2])}}}]]}, TagBox[ GraphicsGroupBox[ GraphicsComplexBox[{{-1., 1.}, {-1., -1.}, {1., 1.}, { 1., -1.}, {-0.7057189138830738, 0.04428108611692616}, {-0.04428108611692616, -0.7057189138830738}, { 0.04428108611692616, 0.7057189138830738}, { 0.7057189138830738, -0.04428108611692616}}, { {GrayLevel[0], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, { 4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.042426406871192854`]}, {RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.042426406871192854], DiskBox[2, 0.042426406871192854], DiskBox[3, 0.042426406871192854], DiskBox[4, 0.042426406871192854], DiskBox[5, 0.042426406871192854], DiskBox[6, 0.042426406871192854], DiskBox[7, 0.042426406871192854], DiskBox[8, 0.042426406871192854]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, {1}, {4}, { 6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, {7}, {2}, {5}, {8}, { 3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, {EdgeStyle -> { GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> { RGBColor[1, 0, 0]}, VertexCoordinates -> {{0, 1}, {1, 4}, {1, 3}, {0, 2}, {1, 2}, {0, 3}, {0, 4}, {1, 1}}}]]}, TagBox[ GraphicsGroupBox[ GraphicsComplexBox[{{0., 1.}, {1., 4.}, {1., 3.}, {0., 2.}, {1., 2.}, {0., 3.}, {0., 4.}, {1., 1.}}, { {GrayLevel[0], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, { 4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.047434164902525694`]}, {RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.047434164902525694], DiskBox[2, 0.047434164902525694], DiskBox[3, 0.047434164902525694], DiskBox[4, 0.047434164902525694], DiskBox[5, 0.047434164902525694], DiskBox[6, 0.047434164902525694], DiskBox[7, 0.047434164902525694], DiskBox[8, 0.047434164902525694]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, {1}, {4}, { 6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, {7}, {2}, {5}, {8}, { 3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, {EdgeStyle -> { GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> { RGBColor[1, 0, 0]}, VertexCoordinates -> {{1, 0}, { Rational[1, 2], Rational[1, 2] 3^Rational[1, 2]}, { Rational[1, 2], Rational[-1, 2] 3^Rational[1, 2]}, { Rational[-1, 2], Rational[-1, 2] 3^Rational[1, 2]}, { Rational[5, 8], Rational[1, 8] 3^Rational[1, 2]}, { Rational[-1, 2], Rational[1, 2] 3^Rational[1, 2]}, { Rational[-5, 8], Rational[-1, 8] 3^Rational[1, 2]}, {-1, 0}}}]]}, TagBox[ GraphicsGroupBox[ GraphicsComplexBox[{{1., 0.}, {0.5, 0.8660254037844386}, { 0.5, -0.8660254037844386}, {-0.5, -0.8660254037844386}, {0.625, 0.21650635094610965`}, {-0.5, 0.8660254037844386}, {-0.625, -0.21650635094610965`}, {-1., 0.}}, { {GrayLevel[0], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, { 4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.03968626966596886]}, {RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.03968626966596886], DiskBox[2, 0.03968626966596886], DiskBox[3, 0.03968626966596886], DiskBox[4, 0.03968626966596886], DiskBox[5, 0.03968626966596886], DiskBox[6, 0.03968626966596886], DiskBox[7, 0.03968626966596886], DiskBox[8, 0.03968626966596886]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, {1}, {4}, { 6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, {7}, {2}, {5}, {8}, { 3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, {EdgeStyle -> { GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> { RGBColor[1, 0, 0]}, VertexCoordinates -> {{ Rational[-4, 5], -1}, { Rational[-4, 5], 1}, { Rational[4, 5], -1}, { Rational[4, 5], 1}, {1, Rational[4, 5]}, {1, Rational[-4, 5]}, {-1, Rational[4, 5]}, {-1, Rational[-4, 5]}}}]]}, TagBox[ GraphicsGroupBox[ GraphicsComplexBox[{{-0.8, -1.}, {-0.8, 1.}, {0.8, -1.}, {0.8, 1.}, { 1., 0.8}, {1., -0.8}, {-1., 0.8}, {-1., -0.8}}, { {GrayLevel[0], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, { 4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.042426406871192854`]}, {RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.042426406871192854], DiskBox[2, 0.042426406871192854], DiskBox[3, 0.042426406871192854], DiskBox[4, 0.042426406871192854], DiskBox[5, 0.042426406871192854], DiskBox[6, 0.042426406871192854], DiskBox[7, 0.042426406871192854], DiskBox[8, 0.042426406871192854]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, {1}, {4}, { 6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, {7}, {2}, {5}, {8}, { 3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, {EdgeStyle -> { GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> { RGBColor[1, 0, 0]}, VertexCoordinates -> {{1, 1}, {1, 2}, {2, 1}, {2, 2}, {4, 1}, {4, 2}, {3, 1}, {3, 2}}}]]}, TagBox[ GraphicsGroupBox[ GraphicsComplexBox[{{1., 1.}, {1., 2.}, {2., 1.}, {2., 2.}, {4., 1.}, {4., 2.}, {3., 1.}, {3., 2.}}, { {GrayLevel[0], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, { 4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.047434164902525694`]}, {RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.047434164902525694], DiskBox[2, 0.047434164902525694], DiskBox[3, 0.047434164902525694], DiskBox[4, 0.047434164902525694], DiskBox[5, 0.047434164902525694], DiskBox[6, 0.047434164902525694], DiskBox[7, 0.047434164902525694], DiskBox[8, 0.047434164902525694]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, {1}, {4}, { 6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, {7}, {2}, {5}, {8}, { 3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, {EdgeStyle -> { GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> { RGBColor[1, 0, 0]}, VertexCoordinates -> {{0, 0}, {0, Rational[1, 2]}, {-1, 1}, { Rational[-1, 2], 1}, {1, 1}, { Rational[1, 2], 1}, {0, 2}, {0, 1}}}]]}, TagBox[ GraphicsGroupBox[ GraphicsComplexBox[{{0., 0.}, {0., 0.5}, {-1., 1.}, {-0.5, 1.}, {1., 1.}, {0.5, 1.}, {0., 2.}, {0., 1.}}, { {GrayLevel[0], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, { 4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.042426406871192854`]}, {RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.042426406871192854], DiskBox[2, 0.042426406871192854], DiskBox[3, 0.042426406871192854], DiskBox[4, 0.042426406871192854], DiskBox[5, 0.042426406871192854], DiskBox[6, 0.042426406871192854], DiskBox[7, 0.042426406871192854], DiskBox[8, 0.042426406871192854]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, {1}, {4}, { 6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, {7}, {2}, {5}, {8}, { 3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, {EdgeStyle -> { GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> { RGBColor[1, 0, 0]}, VertexCoordinates -> {{ Rational[1, 2], Rational[-1, 2] 3^Rational[1, 2]}, { Rational[1, 2], 0}, {1, 0}, { Rational[1, 2], Rational[1, 2] 3^Rational[1, 2]}, { Rational[-1, 2], Rational[-1, 2] 3^Rational[1, 2]}, {-1, 0}, { Rational[-1, 2], 0}, { Rational[-1, 2], Rational[1, 2] 3^Rational[1, 2]}}}]]}, TagBox[ GraphicsGroupBox[ GraphicsComplexBox[{{0.5, -0.8660254037844386}, {0.5, 0.}, {1., 0.}, { 0.5, 0.8660254037844386}, {-0.5, -0.8660254037844386}, {-1., 0.}, {-0.5, 0.}, {-0.5, 0.8660254037844386}}, { {GrayLevel[0], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, { 4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.03968626966596886]}, {RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.03968626966596886], DiskBox[2, 0.03968626966596886], DiskBox[3, 0.03968626966596886], DiskBox[4, 0.03968626966596886], DiskBox[5, 0.03968626966596886], DiskBox[6, 0.03968626966596886], DiskBox[7, 0.03968626966596886], DiskBox[8, 0.03968626966596886]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None]}], "}"}]], "Output", CellLabel-> "Out[184]=",ExpressionUUID->"ccd31ffe-f0fd-4c69-b01e-156c75fcf6af"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["LCF", "Subsubsection",ExpressionUUID->"4232e127-0e55-4203-9b41-bf64b0f10990"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"GraphData", "[", RowBox[{"\"\\"", ",", "\"\\""}], "]"}]], "Input", CellLabel-> "In[119]:=",ExpressionUUID->"2cb6cc43-c8ac-4835-84b4-c55415861160"], Cell[BoxData["True"], "Output", CellLabel-> "Out[119]=",ExpressionUUID->"cdb17a51-4ed5-45d8-8133-8523ac5d9f9d"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"GraphData", "[", RowBox[{"\"\\"", ",", "\"\\""}], "]"}]], "Input", CellLabel-> "In[120]:=",ExpressionUUID->"e8fae50b-5cdb-4053-a69c-9ea9f1c61544"], Cell[BoxData["6"], "Output", CellLabel-> "Out[120]=",ExpressionUUID->"5dcf8b23-90bb-4239-807c-083cf6ce15c0"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"GraphData", "[", RowBox[{"\"\\"", ",", "\"\\""}], "]"}]], "Input", CellLabel-> "In[121]:=",ExpressionUUID->"ef71612a-0008-4395-94fc-74236ee0b273"], Cell[BoxData[ RowBox[{"{", RowBox[{"{", RowBox[{"4", ",", "1"}], "}"}], "}"}]], "Output", CellLabel-> "Out[121]=",ExpressionUUID->"abf0a4d4-fb20-423d-9535-ce3c33e1ddda"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"GraphData", "[", RowBox[{"\"\\"", ",", "\"\\""}], "]"}]], "Input", CellLabel-> "In[122]:=",ExpressionUUID->"906aaab4-b847-465f-9de4-d8d545731dbd"], Cell[BoxData[ RowBox[{"{", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"-", "3"}], ",", "3"}], "}"}], ",", "4"}], "}"}], "}"}]], "Output", CellLabel-> "Out[122]=",ExpressionUUID->"9cf4f8dd-ae15-4682-98cc-13454dff72bd"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"GraphData", "[", RowBox[{"\"\\"", ",", "\"\\"", ",", "\"\\""}], "]"}], "//", "StyleGraphs"}]], "Input", CellLabel-> "In[123]:=",ExpressionUUID->"b0bac74d-16c7-49b9-b9b6-65b8bffcd24e"], Cell[BoxData[ RowBox[{"{", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, {1}, {4}, { 6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, {7}, {2}, {5}, {8}, { 3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, {EdgeStyle -> { GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> { RGBColor[1, 0, 0]}, VertexCoordinates -> {{ Rational[1, 2], Rational[-1, 2] Cot[Rational[1, 8] Pi]}, { Rational[1, 2], Rational[1, 2] Cot[Rational[1, 8] Pi]}, { Rational[1, 2] Cot[Rational[1, 8] Pi], Rational[-1, 2]}, {Rational[1, 2] Cot[Rational[1, 8] Pi], Rational[1, 2]}, { Rational[-1, 2], Rational[-1, 2] Cot[Rational[1, 8] Pi]}, { Rational[-1, 2], Rational[1, 2] Cot[Rational[1, 8] Pi]}, { Rational[-1, 2] Cot[Rational[1, 8] Pi], Rational[-1, 2]}, {Rational[-1, 2] Cot[Rational[1, 8] Pi], Rational[1, 2]}}}]]}, TagBox[ GraphicsGroupBox[ GraphicsComplexBox[{{0.5, -1.2071067811865475`}, {0.5, 1.2071067811865475`}, {1.2071067811865475`, -0.5}, { 1.2071067811865475`, 0.5}, {-0.5, -1.2071067811865475`}, {-0.5, 1.2071067811865475`}, {-1.2071067811865475`, -0.5}, \ {-1.2071067811865475`, 0.5}}, { {GrayLevel[0], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, { 4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.05121320343559642]}, {RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.05121320343559642], DiskBox[2, 0.05121320343559642], DiskBox[3, 0.05121320343559642], DiskBox[4, 0.05121320343559642], DiskBox[5, 0.05121320343559642], DiskBox[6, 0.05121320343559642], DiskBox[7, 0.05121320343559642], DiskBox[8, 0.05121320343559642]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], "}"}]], "Output", CellLabel-> "Out[123]=",ExpressionUUID->"c949dcd8-d1d2-4901-be6d-c34077db3f7b"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Tally", "[", RowBox[{ RowBox[{ RowBox[{ RowBox[{"LCFNotation", "[", "#", "]"}], "[", RowBox[{"[", "2", "]"}], "]"}], "&"}], "/@", "%"}], "]"}]], "Input", CellLabel-> "In[124]:=",ExpressionUUID->"eef63843-54f1-435c-b49c-f05c3de5b6cf"], Cell[BoxData[ RowBox[{"{", RowBox[{"{", RowBox[{"4", ",", "1"}], "}"}], "}"}]], "Output", CellLabel-> "Out[124]=",ExpressionUUID->"cf52c69c-8dc7-4fb6-b2b0-f8ebe9e0249b"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["LCF compute all", "Subsubsection",ExpressionUUID->"d057ce06-8785-49ef-82bd-e50132f086e5"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"Length", "[", RowBox[{ RowBox[{"FindHamiltonianCycle", "[", RowBox[{ RowBox[{"GraphData", "[", "\"\\"", "]"}], ",", "All"}], "]"}], "[", RowBox[{"[", RowBox[{"All", ",", "All", ",", "1"}], "]"}], "]"}], "]"}], "//", "Timing"}]], "Input", CellLabel-> "In[125]:=",ExpressionUUID->"14a5f39a-3b0f-47d9-85a1-2e927731f7ba"], Cell[BoxData[ RowBox[{"{", RowBox[{"0.000984`", ",", "6"}], "}"}]], "Output", CellLabel-> "Out[125]=",ExpressionUUID->"ebff4900-93e7-4291-b8bf-89401c2c8a3a"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"Tally", "[", RowBox[{ RowBox[{"(", RowBox[{"lcf", "=", RowBox[{"LCF", "[", RowBox[{ RowBox[{"GraphData", "[", "\"\\"", "]"}], ",", "All"}], "]"}]}], ")"}], "[", RowBox[{"[", RowBox[{"All", ",", "2"}], "]"}], "]"}], "]"}], "//", "Timing"}]], "Input", CellLabel-> "In[126]:=",ExpressionUUID->"2f957b84-a35a-4897-b21d-fe8e4f1161d8"], Cell[BoxData[ RowBox[{"{", RowBox[{"0.001346`", ",", RowBox[{"{", RowBox[{"{", RowBox[{"4", ",", "1"}], "}"}], "}"}]}], "}"}]], "Output", CellLabel-> "Out[126]=",ExpressionUUID->"acdcb11e-9fff-45ac-b5e8-27d67edb3f2e"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData["lcf"], "Input", CellLabel-> "In[127]:=",ExpressionUUID->"0c3ad959-62cc-4f36-b527-f7b924d8e370"], Cell[BoxData[ RowBox[{"{", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"-", "3"}], ",", "3"}], "}"}], ",", "4"}], "}"}], "}"}]], "Output", CellLabel-> "Out[127]=",ExpressionUUID->"67220710-07a6-4449-a086-8141aebc6ce9"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"LCFGraph", "@@@", "lcf"}], "//", "StyleGraphs"}]], "Input", CellLabel-> "In[128]:=",ExpressionUUID->"568b9835-25af-4b6f-b522-c2a6baa76cd3"], Cell[BoxData[ RowBox[{"{", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8}, { Null, {{1, 2}, {1, 6}, {1, 8}, {2, 3}, {2, 5}, {3, 4}, {3, 8}, {4, 5}, {4, 7}, {5, 6}, {6, 7}, {7, 8}}}, {EdgeStyle -> { GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> { RGBColor[1, 0, 0]}, VertexCoordinates -> {{ Sin[Rational[1, 8] Pi], -Cos[Rational[1, 8] Pi]}, { Cos[Rational[1, 8] Pi], -Sin[Rational[1, 8] Pi]}, { Cos[Rational[1, 8] Pi], Sin[Rational[1, 8] Pi]}, { Sin[Rational[1, 8] Pi], Cos[Rational[1, 8] Pi]}, {-Sin[Rational[1, 8] Pi], Cos[Rational[1, 8] Pi]}, {-Cos[Rational[1, 8] Pi], Sin[Rational[1, 8] Pi]}, {-Cos[Rational[1, 8] Pi], - Sin[Rational[1, 8] Pi]}, {-Sin[Rational[1, 8] Pi], - Cos[Rational[1, 8] Pi]}}}]]}, TagBox[ GraphicsGroupBox[ GraphicsComplexBox[{{0.3826834323650898, -0.9238795325112867}, { 0.9238795325112867, -0.3826834323650898}, {0.9238795325112867, 0.3826834323650898}, {0.3826834323650898, 0.9238795325112867}, {-0.3826834323650898, 0.9238795325112867}, {-0.9238795325112867, 0.3826834323650898}, {-0.9238795325112867, -0.3826834323650898}, \ {-0.3826834323650898, -0.9238795325112867}}, { {GrayLevel[0], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 6}, {1, 8}, {2, 3}, {2, 5}, {3, 4}, {3, 8}, { 4, 5}, {4, 7}, {5, 6}, {6, 7}, {7, 8}}, 0.039196888946291294`]}, {RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.039196888946291294], DiskBox[2, 0.039196888946291294], DiskBox[3, 0.039196888946291294], DiskBox[4, 0.039196888946291294], DiskBox[5, 0.039196888946291294], DiskBox[6, 0.039196888946291294], DiskBox[7, 0.039196888946291294], DiskBox[8, 0.039196888946291294]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], "}"}]], "Output", CellLabel-> "Out[128]=",ExpressionUUID->"59d9ad51-bb7c-4e3f-934d-13da538b2eaa"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"(", RowBox[{"gs", "=", RowBox[{"Flatten", "[", RowBox[{"{", "\[IndentingNewLine]", RowBox[{"(*", " ", RowBox[{ RowBox[{ RowBox[{"all", " ", RowBox[{"LCF", "'"}], "s", " ", "with", " ", "order"}], " ", ">", "1"}], ",", " ", RowBox[{ "sorted", " ", "by", " ", "order", " ", "and", " ", "with", " ", "bilateral", " ", "graphs", " ", "first"}]}], " ", "*)"}], "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{ RowBox[{"Join", "[", RowBox[{ RowBox[{ RowBox[{"DeleteCases", "[", RowBox[{"#", ",", RowBox[{"{", RowBox[{"_Missing", ",", "_"}], "}"}]}], "]"}], "[", RowBox[{"[", RowBox[{"All", ",", "1"}], "]"}], "]"}], ",", RowBox[{ RowBox[{"Cases", "[", RowBox[{"#", ",", RowBox[{"{", RowBox[{"_Missing", ",", "_"}], "}"}]}], "]"}], "[", RowBox[{"[", RowBox[{"All", ",", "2"}], "]"}], "]"}]}], "]"}], "&"}], "/@", RowBox[{"Map", "[", RowBox[{ RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"BilateralLCFGraph", "@", "#"}], ",", "#"}], "}"}], "&"}], ",", RowBox[{"Map", "[", RowBox[{ RowBox[{ RowBox[{"LCFGraph", "@@", "#"}], "&"}], ",", RowBox[{"SplitBy", "[", RowBox[{ RowBox[{"DeleteCases", "[", RowBox[{"lcf", ",", RowBox[{"{", RowBox[{"_", ",", "1"}], "}"}]}], "]"}], ",", "Last"}], "]"}], ",", RowBox[{"{", "2", "}"}]}], "]"}], ",", RowBox[{"{", "2", "}"}]}], "]"}]}], ",", "\[IndentingNewLine]", RowBox[{"(*", " ", RowBox[{"order", "-", RowBox[{"1", " ", "bilateral", " ", "only"}]}], " ", "*)"}], "\[IndentingNewLine]", RowBox[{"DeleteMissing", "[", RowBox[{"BilateralLCFGraph", "@@@", RowBox[{"Cases", "[", RowBox[{"lcf", ",", RowBox[{"{", RowBox[{"_", ",", "1"}], "}"}]}], "]"}]}], "]"}]}], "}"}], "]"}]}], ")"}], "//", "Timing"}]], "Input", CellLabel-> "In[129]:=",ExpressionUUID->"03b08d02-21d4-4434-9ac8-b1762fb2d208"], Cell[BoxData[ RowBox[{"{", RowBox[{"0.004187`", ",", RowBox[{"{", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8}, { Null, {{1, 2}, {1, 6}, {1, 8}, {2, 3}, {2, 5}, {3, 4}, {3, 8}, {4, 5}, {4, 7}, {5, 6}, {6, 7}, {7, 8}}}, {VertexCoordinates -> {{ Cos[Rational[1, 8] Pi], Sin[Rational[1, 8] Pi]}, { Sin[Rational[1, 8] Pi], Cos[Rational[1, 8] Pi]}, {-Sin[Rational[1, 8] Pi], Cos[Rational[1, 8] Pi]}, {-Cos[Rational[1, 8] Pi], Sin[Rational[1, 8] Pi]}, {-Cos[Rational[1, 8] Pi], - Sin[Rational[1, 8] Pi]}, {-Sin[Rational[1, 8] Pi], - Cos[Rational[1, 8] Pi]}, { Sin[Rational[1, 8] Pi], -Cos[Rational[1, 8] Pi]}, { Cos[Rational[1, 8] Pi], -Sin[Rational[1, 8] Pi]}}}]]}, TagBox[ GraphicsGroupBox[ GraphicsComplexBox[{{0.9238795325112867, 0.3826834323650898}, { 0.3826834323650898, 0.9238795325112867}, {-0.3826834323650898, 0.9238795325112867}, {-0.9238795325112867, 0.3826834323650898}, {-0.9238795325112867, -0.3826834323650898}, \ {-0.3826834323650898, -0.9238795325112867}, { 0.3826834323650898, -0.9238795325112867}, { 0.9238795325112867, -0.3826834323650898}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 6}, {1, 8}, {2, 3}, {2, 5}, {3, 4}, {3, 8}, {4, 5}, {4, 7}, {5, 6}, {6, 7}, {7, 8}}, 0.02136409873372988]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.02136409873372988], DiskBox[2, 0.02136409873372988], DiskBox[3, 0.02136409873372988], DiskBox[4, 0.02136409873372988], DiskBox[5, 0.02136409873372988], DiskBox[6, 0.02136409873372988], DiskBox[7, 0.02136409873372988], DiskBox[8, 0.02136409873372988]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], "}"}]}], "}"}]], "Output", CellLabel-> "Out[129]=",ExpressionUUID->"3b230dad-7bb0-485a-ae77-9224cc06e04d"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["UnitDistance", "Subsubsection",ExpressionUUID->"47559f10-730e-43db-b453-3fd8e22a4dc7"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"GraphData", "[", RowBox[{"\"\\"", ",", "\"\\""}], "]"}]], "Input", CellLabel-> "In[130]:=",ExpressionUUID->"cf9eca9e-54f4-4e76-aed0-af0e3bdc5e03"], Cell[BoxData["True"], "Output", CellLabel-> "Out[130]=",ExpressionUUID->"8cd89ec0-5a7f-425d-b644-de8c32d09bdd"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"UnitDistanceGraphQ", "[", RowBox[{ RowBox[{"GraphData", "[", "\"\\"", "]"}], ",", RowBox[{"Debug", "->", "True"}]}], "]"}], "//", "Timing"}]], "Input", CellLabel-> "In[131]:=",ExpressionUUID->"c07bffc1-c845-44a0-816b-650d91306025"], Cell[CellGroupData[{ Cell[BoxData["\<\"Skipping computation and checking of blocks\"\>"], "Print", CellLabel-> "During evaluation of \ In[131]:=",ExpressionUUID->"066e722e-86c9-41bd-af76-bda76de81840"], Cell[BoxData["\<\"Checking presence of unit-distance forbidden \ graphs...\"\>"], "Print", CellLabel-> "During evaluation of \ In[131]:=",ExpressionUUID->"703501f9-8af7-418b-a2e9-a616018c7fd1"], Cell[BoxData[ InterpretationBox[ RowBox[{"\<\"Original graph contains no forbidden subgraph and forbidden \ subgraphs are all known up to size \"\>", "\[InvisibleSpace]", "8", "\[InvisibleSpace]", "\<\", so graph is UD\"\>"}], SequenceForm[ "Original graph contains no forbidden subgraph and forbidden subgraphs are \ all known up to size ", 8, ", so graph is UD"], Editable->False]], "Print", CellLabel-> "During evaluation of \ In[131]:=",ExpressionUUID->"32b5686c-eb38-4de0-bcec-1b8017b47de0"] }, Open ]], Cell[BoxData[ RowBox[{"{", RowBox[{"0.021201`", ",", "True"}], "}"}]], "Output", CellLabel-> "Out[131]=",ExpressionUUID->"e8c728c7-a898-4607-89eb-cbfe21476b51"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"GraphData", "[", RowBox[{ "\"\\"", ",", "\"\\"", ",", "\"\\""}], "]"}], "//", "StyleGraphs"}]], "Input", CellLabel->"In[9]:=",ExpressionUUID->"bece5b3d-003e-4db6-9c93-03f5bf076ebc"], Cell[BoxData[ RowBox[{"{", RowBox[{ GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, {1}, {4}, { 6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, {7}, {2}, {5}, {8}, { 3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, {EdgeStyle -> { GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> { RGBColor[1, 0, 0]}, VertexCoordinates -> {{Rational[1, 2] 3^Rational[-1, 2], Rational[1, 2]}, {Rational[1, 2] 3^Rational[-1, 2], Rational[-1, 2]}, {0, Rational[1, 6] (3 - 33^Rational[1, 2])}, { 0, Rational[1, 6] (-3 - 33^Rational[1, 2])}, { 0, Rational[1, 6] (3 + 33^Rational[1, 2])}, { 0, Rational[1, 6] (-3 + 33^Rational[1, 2])}, { Rational[-1, 2] 3^Rational[-1, 2], Rational[1, 2]}, {Rational[-1, 2] 3^Rational[-1, 2], Rational[-1, 2]}}}]]}, TagBox[ GraphicsGroupBox[ GraphicsComplexBox[{{0.2886751345948129, 0.5}, { 0.2886751345948129, -0.5}, {0., -0.4574271077563381}, { 0., -1.457427107756338}, {0., 1.457427107756338}, {0., 0.4574271077563381}, {-0.2886751345948129, 0.5}, {-0.2886751345948129, -0.5}}, { {GrayLevel[0], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, { 4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.04457223796244366]}, {RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.04457223796244366], DiskBox[2, 0.04457223796244366], DiskBox[3, 0.04457223796244366], DiskBox[4, 0.04457223796244366], DiskBox[5, 0.04457223796244366], DiskBox[6, 0.04457223796244366], DiskBox[7, 0.04457223796244366], DiskBox[8, 0.04457223796244366]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, {1}, {4}, { 6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, {7}, {2}, {5}, {8}, { 3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, {EdgeStyle -> { GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> { RGBColor[1, 0, 0]}, VertexCoordinates -> {{0, 1}, {0, 0}, {-2^Rational[-1, 2], 1 + 2^Rational[-1, 2]}, {-2^Rational[-1, 2], 2^Rational[-1, 2]}, {1, 1}, {1, 0}, {1 - 2^Rational[-1, 2], 1 + 2^Rational[-1, 2]}, { 1 - 2^Rational[-1, 2], 2^Rational[-1, 2]}}}]]}, TagBox[ GraphicsGroupBox[ GraphicsComplexBox[{{0., 1.}, {0., 0.}, {-0.7071067811865475, 1.7071067811865475`}, {-0.7071067811865475, 0.7071067811865475}, {1., 1.}, {1., 0.}, {0.29289321881345254`, 1.7071067811865475`}, { 0.29289321881345254`, 0.7071067811865475}}, { {GrayLevel[0], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, { 4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.03621320343559642]}, {RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.03621320343559642], DiskBox[2, 0.03621320343559642], DiskBox[3, 0.03621320343559642], DiskBox[4, 0.03621320343559642], DiskBox[5, 0.03621320343559642], DiskBox[6, 0.03621320343559642], DiskBox[7, 0.03621320343559642], DiskBox[8, 0.03621320343559642]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None]}], "}"}]], "Output", CellLabel->"Out[9]=",ExpressionUUID->"e3e64b82-ee44-426f-bcc2-13c09528e05f"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Select", "[", RowBox[{"%", ",", RowBox[{ RowBox[{"!", RowBox[{"FreeQ", "[", RowBox[{ RowBox[{"GraphEmbedding", "[", "#", "]"}], ",", RowBox[{"_", "?", "InexactNumberQ"}]}], "]"}]}], "&"}]}], "]"}]], "Input", CellLabel->"In[10]:=",ExpressionUUID->"47fa2eb7-0531-4323-b190-f85da7856336"], Cell[BoxData[ RowBox[{"{", "}"}]], "Output", CellLabel->"Out[10]=",ExpressionUUID->"d5db80e8-7500-40a7-8398-3b4916adcd19"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["UnitDistance by refinement", "Subsubsection",ExpressionUUID->"098aeecb-c801-4b93-8107-6cf8b7396773"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"UnitDistanceEmbeddingRefine", "[", RowBox[{ RowBox[{"Graph", "[", RowBox[{ RowBox[{"GraphData", "[", RowBox[{"\"\\"", ",", "\"\\""}], "]"}], ",", RowBox[{"GraphData", "[", RowBox[{"\"\\"", ",", "\"\\""}], "]"}]}], "]"}], ",", RowBox[{"MaxIterations", "\[Rule]", "500"}]}], "]"}]], "Input", CellLabel-> "In[134]:=",ExpressionUUID->"a3943e45-2b06-4446-9769-e9171a2899bf"], Cell[BoxData[ GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8}, { Null, {{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, { 5, 6}, {5, 7}, {6, 8}, {7, 8}}}, { VertexCoordinates -> {{0.3819061507896919, 1.2691085410061114`}, { 1.3649315496741428`, 1.452578062039079}, {1.158327919474051, 0.6388948969828708}, {2.141353318358502, 0.8223644180158385}, {-0.39384963973981985`, 0.6380752982526631}, { 0.5891757591446308, 0.8215448192856308}, {0.3825721289445392, 0.007861654229422728}, {1.3655975278289898`, 0.19133117526239035`}}}]]}, TagBox[ GraphicsGroupBox[ GraphicsComplexBox[{{0.3819061507896919, 1.2691085410061114`}, { 1.3649315496741428`, 1.452578062039079}, {1.158327919474051, 0.6388948969828708}, {2.141353318358502, 0.8223644180158385}, {-0.39384963973981985`, 0.6380752982526631}, { 0.5891757591446308, 0.8215448192856308}, {0.3825721289445392, 0.007861654229422728}, {1.3655975278289898`, 0.19133117526239035`}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.02681090250846692]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.02681090250846692], DiskBox[2, 0.02681090250846692], DiskBox[3, 0.02681090250846692], DiskBox[4, 0.02681090250846692], DiskBox[5, 0.02681090250846692], DiskBox[6, 0.02681090250846692], DiskBox[7, 0.02681090250846692], DiskBox[8, 0.02681090250846692]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None]], "Output", CellLabel-> "Out[134]=",ExpressionUUID->"0f4fe1c2-6e11-4b1d-9dc4-9b57bf465892"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"UnitDistanceGraphEmbeddingQ", "[", "%", "]"}]], "Input", CellLabel-> "In[135]:=",ExpressionUUID->"7c0adaf9-71a8-4d90-b1b2-90684d1184e8"], Cell[BoxData["True"], "Output", CellLabel-> "Out[135]=",ExpressionUUID->"6b78ae05-b327-4e1e-a0ff-4208b69bec5f"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{"UnitDistanceEmbeddingRefine", "[", RowBox[{ RowBox[{"Annotate", "[", RowBox[{"#", ",", RowBox[{"VertexCoordinates", "\[Rule]", RowBox[{"N", "[", RowBox[{"GraphEmbedding", "[", "#", "]"}], "]"}]}]}], "]"}], ",", RowBox[{"MaxIterations", "\[Rule]", "500"}]}], "]"}], "&"}], "/@", RowBox[{"Complement", "@@", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"GraphData", "[", RowBox[{"\"\\"", ",", "\"\\"", ",", "#"}], "]"}], "&"}], "/@", RowBox[{"{", RowBox[{"\"\\"", ",", "\"\\""}], "}"}]}], ")"}]}]}]], "Input", CellLabel-> "In[136]:=",ExpressionUUID->"c3a94b59-8b51-4f57-b84e-496e0ec0bdd8"], Cell[BoxData[ TemplateBox[{ "FindMinimum", "fmgz", "\"Encountered a gradient that is effectively zero. The result returned \ may not be a minimum; it may be a maximum or a saddle point.\"", 2, 136, 1, 21623849619095209567, "Local"}, "MessageTemplate"]], "Message", "MSG", CellLabel-> "During evaluation of \ In[136]:=",ExpressionUUID->"81d4ebbe-0354-4310-a638-45a5a0fd9ef0"], Cell[BoxData[ RowBox[{"{", RowBox[{ GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8}, { Null, {{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}}, { VertexCoordinates -> {{-0.5278117281803235, -0.48238520635344684`}, \ {-0.4085908252658585, 0.5104825473319368}, { 0.408649604294355, -0.8331560329336368}, {0.52787050720882, 0.15971172075174686`}, {-0.40884889030095034`, 0.5105135010702692}, {-0.5278117281800039, -0.4823852063534852}, { 0.5276124421737282, 0.1597426744900792}, { 0.40864960429467456`, -0.8331560329336751}}}]]}, TagBox[ GraphicsGroupBox[ GraphicsComplexBox[{{-0.5278117281803235, -0.48238520635344684`}, \ {-0.4085908252658585, 0.5104825473319368}, { 0.408649604294355, -0.8331560329336368}, {0.52787050720882, 0.15971172075174686`}, {-0.40884889030095034`, 0.5105135010702692}, {-0.5278117281800039, -0.4823852063534852}, { 0.5276124421737282, 0.1597426744900792}, { 0.40864960429467456`, -0.8331560329336751}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, { 4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.01705371349195739]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.01705371349195739], DiskBox[2, 0.01705371349195739], DiskBox[3, 0.01705371349195739], DiskBox[4, 0.01705371349195739], DiskBox[5, 0.01705371349195739], DiskBox[6, 0.01705371349195739], DiskBox[7, 0.01705371349195739], DiskBox[8, 0.01705371349195739]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8}, { Null, {{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}}, { VertexCoordinates -> {{-0.4516353542151419, 0.480682894721361}, {-0.5477864459585193, -0.5146838555554186}, { 0.5477864459585192, 0.5146838555554191}, { 0.4516353542151418, -0.4806828947213606}, {-0.5477864459585196, \ -0.514683855555419}, { 0.4516353542151416, -0.48068289472136133`}, {-0.4516353542151418, 0.4806828947213617}, {0.5477864459585193, 0.5146838555554194}}}]]}, TagBox[ GraphicsGroupBox[ GraphicsComplexBox[{{-0.4516353542151419, 0.480682894721361}, {-0.5477864459585193, -0.5146838555554186}, { 0.5477864459585192, 0.5146838555554191}, { 0.4516353542151418, -0.4806828947213606}, {-0.5477864459585196, \ -0.514683855555419}, { 0.4516353542151416, -0.48068289472136133`}, {-0.4516353542151418, 0.4806828947213617}, {0.5477864459585193, 0.5146838555554194}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, { 4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.014824429941971418`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.014824429941971418], DiskBox[2, 0.014824429941971418], DiskBox[3, 0.014824429941971418], DiskBox[4, 0.014824429941971418], DiskBox[5, 0.014824429941971418], DiskBox[6, 0.014824429941971418], DiskBox[7, 0.014824429941971418], DiskBox[8, 0.014824429941971418]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8}, { Null, {{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}}, { VertexCoordinates -> {{ 0.9548745950531521, -0.0070692763586871574`}, {-0.04323091095723778, 0.05445631889938831}, {1.8731905777115287`, 0.38877887128672106`}, {0.8750850717011389, 0.4503044665447965}, { 1.8731905777115345`, 0.388778871286774}, { 0.9548745950531123, -0.007069276358383059}, {0.8750850717011787, 0.4503044665444924}, {-0.04323091095724358, 0.05445631889933534}}}]]}, TagBox[ GraphicsGroupBox[ GraphicsComplexBox[{{ 0.9548745950531521, -0.0070692763586871574`}, {-0.04323091095723778, 0.05445631889938831}, {1.8731905777115287`, 0.38877887128672106`}, { 0.8750850717011389, 0.4503044665447965}, {1.8731905777115345`, 0.388778871286774}, {0.9548745950531123, -0.007069276358383059}, { 0.8750850717011787, 0.4503044665444924}, {-0.04323091095724358, 0.05445631889933534}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, { 4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.021929686231177026`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.021929686231177026], DiskBox[2, 0.021929686231177026], DiskBox[3, 0.021929686231177026], DiskBox[4, 0.021929686231177026], DiskBox[5, 0.021929686231177026], DiskBox[6, 0.021929686231177026], DiskBox[7, 0.021929686231177026], DiskBox[8, 0.021929686231177026]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8}, { Null, {{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}}, { VertexCoordinates -> {{-0.5, -0.5}, {-0.5, -0.5}, {-0.5, 0.5}, {-0.5, 0.5}, {0.5, -0.5}, {0.5, -0.5}, {0.5, 0.5}, {0.5, 0.5}}}]]}, TagBox[ GraphicsGroupBox[ GraphicsComplexBox[{{-0.5, -0.5}, {-0.5, -0.5}, {-0.5, 0.5}, {-0.5, 0.5}, {0.5, -0.5}, {0.5, -0.5}, {0.5, 0.5}, {0.5, 0.5}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, { 4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.01273]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.01273], DiskBox[2, 0.01273], DiskBox[3, 0.01273], DiskBox[4, 0.01273], DiskBox[5, 0.01273], DiskBox[6, 0.01273], DiskBox[7, 0.01273], DiskBox[8, 0.01273]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8}, { Null, {{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}}, { VertexCoordinates -> {{-0.03907977296842609, 0.37811209332422335`}, {-0.4751853042049059, -0.5217834370708041}, \ {-0.47584588292042546`, -0.5214630092644366}, {-0.039079772968499585`, 0.378112093324259}, {0.9434758356290347, 0.5640811122861825}, { 0.5073703043925549, -0.33581441810884494`}, { 0.5067097256770353, -0.33549399030247745`}, {0.9434758356289612, 0.5640811122862182}}}]]}, TagBox[ GraphicsGroupBox[ GraphicsComplexBox[{{-0.03907977296842609, 0.37811209332422335`}, {-0.4751853042049059, -0.5217834370708041}, \ {-0.47584588292042546`, -0.5214630092644366}, {-0.039079772968499585`, 0.378112093324259}, {0.9434758356290347, 0.5640811122861825}, { 0.5073703043925549, -0.33581441810884494`}, { 0.5067097256770353, -0.33549399030247745`}, {0.9434758356289612, 0.5640811122862182}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, { 4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.01771893361153512]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.01771893361153512], DiskBox[2, 0.01771893361153512], DiskBox[3, 0.01771893361153512], DiskBox[4, 0.01771893361153512], DiskBox[5, 0.01771893361153512], DiskBox[6, 0.01771893361153512], DiskBox[7, 0.01771893361153512], DiskBox[8, 0.01771893361153512]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8}, { Null, {{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}}, { VertexCoordinates -> {{ 0.14490033787889176`, -0.4198184439473078}, {-0.8550368941681156, \ -0.4086143390669787}, {-0.09640757590898277, 0.5506301588871462}, {-1.09634480795599, 0.5618342637674753}, { 1.1345699730171634`, -0.2764517348224896}, { 0.13463274097015607`, -0.26524762994216017`}, {0.8932620592292888, 0.6939968680119643}, {-0.10667517281771854`, 0.7052009728922938}}}]]}, TagBox[ GraphicsGroupBox[ GraphicsComplexBox[{{ 0.14490033787889176`, -0.4198184439473078}, {-0.8550368941681156, \ -0.4086143390669787}, {-0.09640757590898277, 0.5506301588871462}, {-1.09634480795599, 0.5618342637674753}, { 1.1345699730171634`, -0.2764517348224896}, { 0.13463274097015607`, -0.26524762994216017`}, {0.8932620592292888, 0.6939968680119643}, {-0.10667517281771854`, 0.7052009728922938}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, { 4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.024457931167350788`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.024457931167350788], DiskBox[2, 0.024457931167350788], DiskBox[3, 0.024457931167350788], DiskBox[4, 0.024457931167350788], DiskBox[5, 0.024457931167350788], DiskBox[6, 0.024457931167350788], DiskBox[7, 0.024457931167350788], DiskBox[8, 0.024457931167350788]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8}, { Null, {{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}}, { VertexCoordinates -> {{3.8343453144953485`*^-16, 0.08010972416135358}, {0.01590892635722373, 1.0799831691844977`}, {-0.27967788344131916`, 1.0402036161915986`}, {-0.26376895708409603`, 2.0400770612147427`}, {0.01590892635722373, 1.0799831691844977`}, {-0.07448946068361353, 2.0758888532835025`}, {-0.26376895708409603`, 2.0400770612147427`}, {0.015908926357223768`, 1.0799831691844977`}}}]]}, TagBox[ GraphicsGroupBox[ GraphicsComplexBox[{{3.8343453144953485`*^-16, 0.08010972416135358}, { 0.01590892635722373, 1.0799831691844977`}, {-0.27967788344131916`, 1.0402036161915986`}, {-0.26376895708409603`, 2.0400770612147427`}, { 0.01590892635722373, 1.0799831691844977`}, {-0.07448946068361353, 2.0758888532835025`}, {-0.26376895708409603`, 2.0400770612147427`}, { 0.015908926357223768`, 1.0799831691844977`}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, { 4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.022577207952093642`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.022577207952093642], DiskBox[2, 0.022577207952093642], DiskBox[3, 0.022577207952093642], DiskBox[4, 0.022577207952093642], DiskBox[5, 0.022577207952093642], DiskBox[6, 0.022577207952093642], DiskBox[7, 0.022577207952093642], DiskBox[8, 0.022577207952093642]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8}, { Null, {{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}}, { VertexCoordinates -> {{-0.17002968662516924`, -0.34805444015154563`}, \ {-0.7602712048371227, -1.1552811432398715`}, {-0.37586871156282103`, 0.6305314251728606}, {-0.9661102297747743, -0.1766952779154654}, { 0.8009647799336633, -0.10895248300328605`}, { 0.21072326172170988`, -0.916179186091612}, {0.5951257549960115, 0.8696333823211202}, {0.0048842367840581736`, 0.062406679232794256`}}}]]}, TagBox[ GraphicsGroupBox[ GraphicsComplexBox[{{-0.17002968662516924`, -0.34805444015154563`}, \ {-0.7602712048371227, -1.1552811432398715`}, {-0.37586871156282103`, 0.6305314251728606}, {-0.9661102297747743, -0.1766952779154654}, { 0.8009647799336633, -0.10895248300328605`}, { 0.21072326172170988`, -0.916179186091612}, {0.5951257549960115, 0.8696333823211202}, {0.0048842367840581736`, 0.062406679232794256`}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, { 4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.02281329912801866]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.02281329912801866], DiskBox[2, 0.02281329912801866], DiskBox[3, 0.02281329912801866], DiskBox[4, 0.02281329912801866], DiskBox[5, 0.02281329912801866], DiskBox[6, 0.02281329912801866], DiskBox[7, 0.02281329912801866], DiskBox[8, 0.02281329912801866]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8}, { Null, {{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}}, { VertexCoordinates -> {{0.260986057327851, 0.3591678565026234}, {-0.5162547960775217, 0.9883710476878625}, {-0.7378168760173996, 0.40808309278870075`}, { 0.260986057327851, 0.3591678565026234}, {1.259660407871913, 0.4106415543044718}, {0.4824195544665404, 1.039844745489711}, { 0.2608574745266623, 0.45955679059054916`}, {1.259660407871913, 0.4106415543044718}}}]]}, TagBox[ GraphicsGroupBox[ GraphicsComplexBox[{{0.260986057327851, 0.3591678565026234}, {-0.5162547960775217, 0.9883710476878625}, {-0.7378168760173996, 0.40808309278870075`}, { 0.260986057327851, 0.3591678565026234}, {1.259660407871913, 0.4106415543044718}, {0.4824195544665404, 1.039844745489711}, { 0.2608574745266623, 0.45955679059054916`}, {1.259660407871913, 0.4106415543044718}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, { 4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.022590992563330747`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.022590992563330747], DiskBox[2, 0.022590992563330747], DiskBox[3, 0.022590992563330747], DiskBox[4, 0.022590992563330747], DiskBox[5, 0.022590992563330747], DiskBox[6, 0.022590992563330747], DiskBox[7, 0.022590992563330747], DiskBox[8, 0.022590992563330747]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8}, { Null, {{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}}, { VertexCoordinates -> {{0.02346473408278815, 0.8177400247798952}, {-0.005223820175965643, \ -0.18184837393956893`}, {-0.7237087064493941, 1.4823691316984091`}, {-0.7523972607081479, 0.482780732978945}, { 1.010051964703752, 0.9809749364123544}, { 0.9813634104449984, -0.018613462307109675`}, {0.26287852417156976`, 1.6456040433308685`}, {0.23418996991281607`, 0.6460156446114043}}}]]}, TagBox[ GraphicsGroupBox[ GraphicsComplexBox[{{0.02346473408278815, 0.8177400247798952}, {-0.005223820175965643, -0.18184837393956893`}, \ {-0.7237087064493941, 1.4823691316984091`}, {-0.7523972607081479, 0.482780732978945}, {1.010051964703752, 0.9809749364123544}, { 0.9813634104449984, -0.018613462307109675`}, {0.26287852417156976`, 1.6456040433308685`}, {0.23418996991281607`, 0.6460156446114043}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, { 4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.021195869982155197`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.021195869982155197], DiskBox[2, 0.021195869982155197], DiskBox[3, 0.021195869982155197], DiskBox[4, 0.021195869982155197], DiskBox[5, 0.021195869982155197], DiskBox[6, 0.021195869982155197], DiskBox[7, 0.021195869982155197], DiskBox[8, 0.021195869982155197]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8}, { Null, {{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}}, { VertexCoordinates -> {{0.8136823252418693, 2.4591160846249545`}, { 1.0000007542284914`, 3.441605495774153}, {1.6547790166403098`, 3.000000874316473}, {0.8136823252418693, 2.4591160846249545`}, { 1.6547800536219475`, 1.918232907483461}, {0.8136823252418693, 2.4591160846249545`}, {0.8136823252418693, 2.4591160846249545`}, { 0.9999966310098073, 1.476625891554683}}}]]}, TagBox[ GraphicsGroupBox[ GraphicsComplexBox[{{0.8136823252418693, 2.4591160846249545`}, { 1.0000007542284914`, 3.441605495774153}, {1.6547790166403098`, 3.000000874316473}, {0.8136823252418693, 2.4591160846249545`}, { 1.6547800536219475`, 1.918232907483461}, {0.8136823252418693, 2.4591160846249545`}, {0.8136823252418693, 2.4591160846249545`}, { 0.9999966310098073, 1.476625891554683}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, { 4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.022326677050936827`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.022326677050936827], DiskBox[2, 0.022326677050936827], DiskBox[3, 0.022326677050936827], DiskBox[4, 0.022326677050936827], DiskBox[5, 0.022326677050936827], DiskBox[6, 0.022326677050936827], DiskBox[7, 0.022326677050936827], DiskBox[8, 0.022326677050936827]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8}, { Null, {{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}}, { VertexCoordinates -> {{0.4993910058609316, -1.120634355839158}, { 0.2864941042002514, -0.14355968660282842`}, { 0.6645189609771516, -0.1343622035205722}, {0.45162205931647154`, 0.8427124657157573}, {-0.4516220575249656, -0.8114836591403289}, \ {-0.6645189591856457, 0.16559101009600058`}, {-0.2864941024087456, 0.17478849317825687`}, {-0.4993910040694257, 1.1518631624145863`}}}]]}, TagBox[ GraphicsGroupBox[ GraphicsComplexBox[{{0.4993910058609316, -1.120634355839158}, { 0.2864941042002514, -0.14355968660282842`}, { 0.6645189609771516, -0.1343622035205722}, {0.45162205931647154`, 0.8427124657157573}, {-0.4516220575249656, -0.8114836591403289}, \ {-0.6645189591856457, 0.16559101009600058`}, {-0.2864941024087456, 0.17478849317825687`}, {-0.4993910040694257, 1.1518631624145863`}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, { 4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.024784766896075366`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.024784766896075366], DiskBox[2, 0.024784766896075366], DiskBox[3, 0.024784766896075366], DiskBox[4, 0.024784766896075366], DiskBox[5, 0.024784766896075366], DiskBox[6, 0.024784766896075366], DiskBox[7, 0.024784766896075366], DiskBox[8, 0.024784766896075366]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8}, { Null, {{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}}, { VertexCoordinates -> {{-0.008200619826421366, 0.004794073781117877}, { 0.7793334952573115, 0.6210651323091667}, { 0.6008578820745006, -0.7883312260689157}, {-0.008200619826421372, 0.004794073781117856}, {-0.7957348204051226, -0.6114768754927111}, \ {-0.0082006198264214, 0.004794073781117797}, {-0.008200619826421346, 0.0047940737811178885`}, {-0.6172597808612925, 0.7979188674671424}}}]]}, TagBox[ GraphicsGroupBox[ GraphicsComplexBox[{{-0.008200619826421366, 0.004794073781117877}, { 0.7793334952573115, 0.6210651323091667}, { 0.6008578820745006, -0.7883312260689157}, {-0.008200619826421372, 0.004794073781117856}, {-0.7957348204051226, -0.6114768754927111}, \ {-0.0082006198264214, 0.004794073781117797}, {-0.008200619826421346, 0.0047940737811178885`}, {-0.6172597808612925, 0.7979188674671424}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, { 4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.019163464697877747`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.019163464697877747], DiskBox[2, 0.019163464697877747], DiskBox[3, 0.019163464697877747], DiskBox[4, 0.019163464697877747], DiskBox[5, 0.019163464697877747], DiskBox[6, 0.019163464697877747], DiskBox[7, 0.019163464697877747], DiskBox[8, 0.019163464697877747]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8}, { Null, {{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}}, { VertexCoordinates -> {{1.0624698298028457`, -0.059708473809475075`}, { 0.10812977205710529`, 0.23901389592851022`}, { 0.14078618678637805`, -0.4476508177162633}, {-0.8135538709593623, \ -0.14892844797827798`}, {0.10812977205704799`, 0.23901389592837793`}, {-0.7139309061684859, 0.8084137917094054}, {-0.8135538709594196, -0.14892844797841023`}, \ {-1.6356145491849534`, 0.4204714478026172}}}]]}, TagBox[ GraphicsGroupBox[ GraphicsComplexBox[{{1.0624698298028457`, -0.059708473809475075`}, { 0.10812977205710529`, 0.23901389592851022`}, { 0.14078618678637805`, -0.4476508177162633}, {-0.8135538709593623, \ -0.14892844797827798`}, {0.10812977205704799`, 0.23901389592837793`}, {-0.7139309061684859, 0.8084137917094054}, {-0.8135538709594196, -0.14892844797841023`}, \ {-1.6356145491849534`, 0.4204714478026172}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, { 4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.028034534170176414`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.028034534170176414], DiskBox[2, 0.028034534170176414], DiskBox[3, 0.028034534170176414], DiskBox[4, 0.028034534170176414], DiskBox[5, 0.028034534170176414], DiskBox[6, 0.028034534170176414], DiskBox[7, 0.028034534170176414], DiskBox[8, 0.028034534170176414]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8}, { Null, {{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}}, { VertexCoordinates -> {{2.1321000607261413`, 1.5195623351233556`}, { 1.8393761454807784`, 2.47575933859276}, {2.2564842903723066`, 2.5117964624419784`}, {1.9637603751269437`, 3.4679934659113827`}, { 2.7138929831815184`, 0.7062253844191251}, {2.4211690679361553`, 1.6624223878885296`}, {2.8382772128276836`, 1.698459511737748}, { 2.5455532975823205`, 2.654656515207152}}}]]}, TagBox[ GraphicsGroupBox[ GraphicsComplexBox[{{2.1321000607261413`, 1.5195623351233556`}, { 1.8393761454807784`, 2.47575933859276}, {2.2564842903723066`, 2.5117964624419784`}, {1.9637603751269437`, 3.4679934659113827`}, { 2.7138929831815184`, 0.7062253844191251}, {2.4211690679361553`, 1.6624223878885296`}, {2.8382772128276836`, 1.698459511737748}, { 2.5455532975823205`, 2.654656515207152}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, { 4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.02850636759677272]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.02850636759677272], DiskBox[2, 0.02850636759677272], DiskBox[3, 0.02850636759677272], DiskBox[4, 0.02850636759677272], DiskBox[5, 0.02850636759677272], DiskBox[6, 0.02850636759677272], DiskBox[7, 0.02850636759677272], DiskBox[8, 0.02850636759677272]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8}, { Null, {{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}}, { VertexCoordinates -> {{-0.4647306464033067, 0.06482090608620508}, {-0.4893255250121808, -0.9348765941338439}, \ {-0.5315405388266637, 1.0625866292268527`}, {-0.5561354174355375, 0.06288912900680363}, {0.4574091530916796, -0.3220359022904169}, { 0.4328142744828055, -1.321733402510466}, {0.3905992606683226, 0.6757298208502307}, { 0.3660043820594488, -0.32396767936981835`}}}]]}, TagBox[ GraphicsGroupBox[ GraphicsComplexBox[{{-0.4647306464033067, 0.06482090608620508}, {-0.4893255250121808, -0.9348765941338439}, \ {-0.5315405388266637, 1.0625866292268527`}, {-0.5561354174355375, 0.06288912900680363}, {0.4574091530916796, -0.3220359022904169}, { 0.4328142744828055, -1.321733402510466}, {0.3905992606683226, 0.6757298208502307}, {0.3660043820594488, -0.32396767936981835`}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, { 4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.02565529683234151]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.02565529683234151], DiskBox[2, 0.02565529683234151], DiskBox[3, 0.02565529683234151], DiskBox[4, 0.02565529683234151], DiskBox[5, 0.02565529683234151], DiskBox[6, 0.02565529683234151], DiskBox[7, 0.02565529683234151], DiskBox[8, 0.02565529683234151]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8}, { Null, {{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}}, { VertexCoordinates -> {{0.41238829974891555`, 0.5108993746343009}, {-0.5869202049488719, 0.4737172224820212}, {-0.5869202049488738, 0.4737172224820196}, {-0.4121913959817151, -0.510899374634299}, { 0.5871171087160743, -0.4737172224820193}, {0.41238829974891555`, 0.5108993746342992}, {-0.4121913959817151, -0.5108993746343007}, { 0.5871171087160723, -0.47371722248202097`}}}]]}, TagBox[ GraphicsGroupBox[ GraphicsComplexBox[{{0.41238829974891555`, 0.5108993746343009}, {-0.5869202049488719, 0.4737172224820212}, {-0.5869202049488738, 0.4737172224820196}, {-0.4121913959817151, -0.510899374634299}, { 0.5871171087160743, -0.4737172224820193}, {0.41238829974891555`, 0.5108993746342992}, {-0.4121913959817151, -0.5108993746343007}, { 0.5871171087160723, -0.47371722248202097`}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, { 4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.015537516289368364`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.015537516289368364], DiskBox[2, 0.015537516289368364], DiskBox[3, 0.015537516289368364], DiskBox[4, 0.015537516289368364], DiskBox[5, 0.015537516289368364], DiskBox[6, 0.015537516289368364], DiskBox[7, 0.015537516289368364], DiskBox[8, 0.015537516289368364]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8}, { Null, {{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}}, { VertexCoordinates -> {{ 0.19749607398687907`, -0.39988281512688273`}, {-0.7973529203222806, \ -0.5012508501381909}, {-0.09456207736901237, 0.5565177475175457}, {-1.089411071678172, 0.4551497125062375}, { 1.1582888033583056`, -0.6771504316763177}, { 0.16343980904914612`, -0.7785184666876258}, {0.8662306520024143, 0.27925013096811074`}, {-0.12861834230674532`, 0.17788209595680257`}}}]]}, TagBox[ GraphicsGroupBox[ GraphicsComplexBox[{{ 0.19749607398687907`, -0.39988281512688273`}, {-0.7973529203222806, \ -0.5012508501381909}, {-0.09456207736901237, 0.5565177475175457}, {-1.089411071678172, 0.4551497125062375}, { 1.1582888033583056`, -0.6771504316763177}, { 0.16343980904914612`, -0.7785184666876258}, {0.8662306520024143, 0.27925013096811074`}, {-0.12861834230674532`, 0.17788209595680257`}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, { 4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.024590065296458602`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.024590065296458602], DiskBox[2, 0.024590065296458602], DiskBox[3, 0.024590065296458602], DiskBox[4, 0.024590065296458602], DiskBox[5, 0.024590065296458602], DiskBox[6, 0.024590065296458602], DiskBox[7, 0.024590065296458602], DiskBox[8, 0.024590065296458602]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8}, { Null, {{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}}, { VertexCoordinates -> {{ 0.06589913471577775, -0.501693479287703}, {-0.9337779479591093, \ -0.4762822539212041}, {-0.025571444343691248`, 0.49411429993804973`}, {-1.0252485270185785`, 0.5195255253045487}, { 1.0658827242321625`, -0.4959645441400068}, { 0.06589913471577777, -0.5016934792877029}, {0.9744121451726935, 0.4998432350857459}, {-0.025571444343691324`, 0.4941142999380499}}}]]}, TagBox[ GraphicsGroupBox[ GraphicsComplexBox[{{ 0.06589913471577775, -0.501693479287703}, {-0.9337779479591093, \ -0.4762822539212041}, {-0.025571444343691248`, 0.49411429993804973`}, {-1.0252485270185785`, 0.5195255253045487}, { 1.0658827242321625`, -0.4959645441400068}, { 0.06589913471577777, -0.5016934792877029}, {0.9744121451726935, 0.4998432350857459}, {-0.025571444343691324`, 0.4941142999380499}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, { 4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.023346629308676675`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.023346629308676675], DiskBox[2, 0.023346629308676675], DiskBox[3, 0.023346629308676675], DiskBox[4, 0.023346629308676675], DiskBox[5, 0.023346629308676675], DiskBox[6, 0.023346629308676675], DiskBox[7, 0.023346629308676675], DiskBox[8, 0.023346629308676675]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8}, { Null, {{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}}, { VertexCoordinates -> {{0.13291256202075083`, 0.15331786100770214`}, {-0.343615910000632, -0.725841177706549}, \ {-0.6539694816999977, 0.7704212958303079}, {-1.1304979537213804`, -0.10873774288394322`}, \ {1.1316520225653692`, 0.10312333988194007`}, { 0.6551235505439864, -0.7760356988323112}, {0.34476997884462074`, 0.7202267747045459}, {-0.13175849317676203`, \ -0.15893226400970528`}}}]]}, TagBox[ GraphicsGroupBox[ GraphicsComplexBox[{{0.13291256202075083`, 0.15331786100770214`}, {-0.343615910000632, -0.725841177706549}, \ {-0.6539694816999977, 0.7704212958303079}, {-1.1304979537213804`, -0.10873774288394322`}, { 1.1316520225653692`, 0.10312333988194007`}, { 0.6551235505439864, -0.7760356988323112}, {0.34476997884462074`, 0.7202267747045459}, {-0.13175849317676203`, \ -0.15893226400970528`}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, { 4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.02470359550742318]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.02470359550742318], DiskBox[2, 0.02470359550742318], DiskBox[3, 0.02470359550742318], DiskBox[4, 0.02470359550742318], DiskBox[5, 0.02470359550742318], DiskBox[6, 0.02470359550742318], DiskBox[7, 0.02470359550742318], DiskBox[8, 0.02470359550742318]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None]}], "}"}]], "Output", CellLabel-> "Out[136]=",ExpressionUUID->"86dc0ea2-69e9-4fd6-ad30-0319b801f90a"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Select", "[", RowBox[{"%", ",", "UnitDistanceGraphEmbeddingQ"}], "]"}]], "Input", CellLabel-> "In[137]:=",ExpressionUUID->"1b0454c9-0407-4101-833e-cbbf9acea6a7"], Cell[BoxData[ RowBox[{"{", RowBox[{ GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8}, { Null, {{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}}, { VertexCoordinates -> {{ 0.14490033787889176`, -0.4198184439473078}, {-0.8550368941681156, \ -0.4086143390669787}, {-0.09640757590898277, 0.5506301588871462}, {-1.09634480795599, 0.5618342637674753}, { 1.1345699730171634`, -0.2764517348224896}, { 0.13463274097015607`, -0.26524762994216017`}, {0.8932620592292888, 0.6939968680119643}, {-0.10667517281771854`, 0.7052009728922938}}}]]}, TagBox[ GraphicsGroupBox[ GraphicsComplexBox[{{ 0.14490033787889176`, -0.4198184439473078}, {-0.8550368941681156, \ -0.4086143390669787}, {-0.09640757590898277, 0.5506301588871462}, {-1.09634480795599, 0.5618342637674753}, { 1.1345699730171634`, -0.2764517348224896}, { 0.13463274097015607`, -0.26524762994216017`}, {0.8932620592292888, 0.6939968680119643}, {-0.10667517281771854`, 0.7052009728922938}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, { 4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.024457931167350788`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.024457931167350788], DiskBox[2, 0.024457931167350788], DiskBox[3, 0.024457931167350788], DiskBox[4, 0.024457931167350788], DiskBox[5, 0.024457931167350788], DiskBox[6, 0.024457931167350788], DiskBox[7, 0.024457931167350788], DiskBox[8, 0.024457931167350788]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8}, { Null, {{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}}, { VertexCoordinates -> {{-0.17002968662516924`, -0.34805444015154563`}, \ {-0.7602712048371227, -1.1552811432398715`}, {-0.37586871156282103`, 0.6305314251728606}, {-0.9661102297747743, -0.1766952779154654}, { 0.8009647799336633, -0.10895248300328605`}, { 0.21072326172170988`, -0.916179186091612}, {0.5951257549960115, 0.8696333823211202}, {0.0048842367840581736`, 0.062406679232794256`}}}]]}, TagBox[ GraphicsGroupBox[ GraphicsComplexBox[{{-0.17002968662516924`, -0.34805444015154563`}, \ {-0.7602712048371227, -1.1552811432398715`}, {-0.37586871156282103`, 0.6305314251728606}, {-0.9661102297747743, -0.1766952779154654}, { 0.8009647799336633, -0.10895248300328605`}, { 0.21072326172170988`, -0.916179186091612}, {0.5951257549960115, 0.8696333823211202}, {0.0048842367840581736`, 0.062406679232794256`}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, { 4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.02281329912801866]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.02281329912801866], DiskBox[2, 0.02281329912801866], DiskBox[3, 0.02281329912801866], DiskBox[4, 0.02281329912801866], DiskBox[5, 0.02281329912801866], DiskBox[6, 0.02281329912801866], DiskBox[7, 0.02281329912801866], DiskBox[8, 0.02281329912801866]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8}, { Null, {{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}}, { VertexCoordinates -> {{0.02346473408278815, 0.8177400247798952}, {-0.005223820175965643, \ -0.18184837393956893`}, {-0.7237087064493941, 1.4823691316984091`}, {-0.7523972607081479, 0.482780732978945}, { 1.010051964703752, 0.9809749364123544}, { 0.9813634104449984, -0.018613462307109675`}, {0.26287852417156976`, 1.6456040433308685`}, {0.23418996991281607`, 0.6460156446114043}}}]]}, TagBox[ GraphicsGroupBox[ GraphicsComplexBox[{{0.02346473408278815, 0.8177400247798952}, {-0.005223820175965643, -0.18184837393956893`}, \ {-0.7237087064493941, 1.4823691316984091`}, {-0.7523972607081479, 0.482780732978945}, {1.010051964703752, 0.9809749364123544}, { 0.9813634104449984, -0.018613462307109675`}, {0.26287852417156976`, 1.6456040433308685`}, {0.23418996991281607`, 0.6460156446114043}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, { 4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.021195869982155197`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.021195869982155197], DiskBox[2, 0.021195869982155197], DiskBox[3, 0.021195869982155197], DiskBox[4, 0.021195869982155197], DiskBox[5, 0.021195869982155197], DiskBox[6, 0.021195869982155197], DiskBox[7, 0.021195869982155197], DiskBox[8, 0.021195869982155197]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8}, { Null, {{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}}, { VertexCoordinates -> {{0.4993910058609316, -1.120634355839158}, { 0.2864941042002514, -0.14355968660282842`}, { 0.6645189609771516, -0.1343622035205722}, {0.45162205931647154`, 0.8427124657157573}, {-0.4516220575249656, -0.8114836591403289}, \ {-0.6645189591856457, 0.16559101009600058`}, {-0.2864941024087456, 0.17478849317825687`}, {-0.4993910040694257, 1.1518631624145863`}}}]]}, TagBox[ GraphicsGroupBox[ GraphicsComplexBox[{{0.4993910058609316, -1.120634355839158}, { 0.2864941042002514, -0.14355968660282842`}, { 0.6645189609771516, -0.1343622035205722}, {0.45162205931647154`, 0.8427124657157573}, {-0.4516220575249656, -0.8114836591403289}, \ {-0.6645189591856457, 0.16559101009600058`}, {-0.2864941024087456, 0.17478849317825687`}, {-0.4993910040694257, 1.1518631624145863`}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, { 4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.024784766896075366`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.024784766896075366], DiskBox[2, 0.024784766896075366], DiskBox[3, 0.024784766896075366], DiskBox[4, 0.024784766896075366], DiskBox[5, 0.024784766896075366], DiskBox[6, 0.024784766896075366], DiskBox[7, 0.024784766896075366], DiskBox[8, 0.024784766896075366]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8}, { Null, {{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}}, { VertexCoordinates -> {{2.1321000607261413`, 1.5195623351233556`}, { 1.8393761454807784`, 2.47575933859276}, {2.2564842903723066`, 2.5117964624419784`}, {1.9637603751269437`, 3.4679934659113827`}, { 2.7138929831815184`, 0.7062253844191251}, {2.4211690679361553`, 1.6624223878885296`}, {2.8382772128276836`, 1.698459511737748}, { 2.5455532975823205`, 2.654656515207152}}}]]}, TagBox[ GraphicsGroupBox[ GraphicsComplexBox[{{2.1321000607261413`, 1.5195623351233556`}, { 1.8393761454807784`, 2.47575933859276}, {2.2564842903723066`, 2.5117964624419784`}, {1.9637603751269437`, 3.4679934659113827`}, { 2.7138929831815184`, 0.7062253844191251}, {2.4211690679361553`, 1.6624223878885296`}, {2.8382772128276836`, 1.698459511737748}, { 2.5455532975823205`, 2.654656515207152}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, { 4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.02850636759677272]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.02850636759677272], DiskBox[2, 0.02850636759677272], DiskBox[3, 0.02850636759677272], DiskBox[4, 0.02850636759677272], DiskBox[5, 0.02850636759677272], DiskBox[6, 0.02850636759677272], DiskBox[7, 0.02850636759677272], DiskBox[8, 0.02850636759677272]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8}, { Null, {{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}}, { VertexCoordinates -> {{-0.4647306464033067, 0.06482090608620508}, {-0.4893255250121808, -0.9348765941338439}, \ {-0.5315405388266637, 1.0625866292268527`}, {-0.5561354174355375, 0.06288912900680363}, {0.4574091530916796, -0.3220359022904169}, { 0.4328142744828055, -1.321733402510466}, {0.3905992606683226, 0.6757298208502307}, { 0.3660043820594488, -0.32396767936981835`}}}]]}, TagBox[ GraphicsGroupBox[ GraphicsComplexBox[{{-0.4647306464033067, 0.06482090608620508}, {-0.4893255250121808, -0.9348765941338439}, \ {-0.5315405388266637, 1.0625866292268527`}, {-0.5561354174355375, 0.06288912900680363}, {0.4574091530916796, -0.3220359022904169}, { 0.4328142744828055, -1.321733402510466}, {0.3905992606683226, 0.6757298208502307}, {0.3660043820594488, -0.32396767936981835`}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, { 4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.02565529683234151]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.02565529683234151], DiskBox[2, 0.02565529683234151], DiskBox[3, 0.02565529683234151], DiskBox[4, 0.02565529683234151], DiskBox[5, 0.02565529683234151], DiskBox[6, 0.02565529683234151], DiskBox[7, 0.02565529683234151], DiskBox[8, 0.02565529683234151]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8}, { Null, {{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}}, { VertexCoordinates -> {{ 0.19749607398687907`, -0.39988281512688273`}, {-0.7973529203222806, \ -0.5012508501381909}, {-0.09456207736901237, 0.5565177475175457}, {-1.089411071678172, 0.4551497125062375}, { 1.1582888033583056`, -0.6771504316763177}, { 0.16343980904914612`, -0.7785184666876258}, {0.8662306520024143, 0.27925013096811074`}, {-0.12861834230674532`, 0.17788209595680257`}}}]]}, TagBox[ GraphicsGroupBox[ GraphicsComplexBox[{{ 0.19749607398687907`, -0.39988281512688273`}, {-0.7973529203222806, \ -0.5012508501381909}, {-0.09456207736901237, 0.5565177475175457}, {-1.089411071678172, 0.4551497125062375}, { 1.1582888033583056`, -0.6771504316763177}, { 0.16343980904914612`, -0.7785184666876258}, {0.8662306520024143, 0.27925013096811074`}, {-0.12861834230674532`, 0.17788209595680257`}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, { 4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.024590065296458602`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.024590065296458602], DiskBox[2, 0.024590065296458602], DiskBox[3, 0.024590065296458602], DiskBox[4, 0.024590065296458602], DiskBox[5, 0.024590065296458602], DiskBox[6, 0.024590065296458602], DiskBox[7, 0.024590065296458602], DiskBox[8, 0.024590065296458602]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8}, { Null, {{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}}, { VertexCoordinates -> {{0.13291256202075083`, 0.15331786100770214`}, {-0.343615910000632, -0.725841177706549}, \ {-0.6539694816999977, 0.7704212958303079}, {-1.1304979537213804`, -0.10873774288394322`}, \ {1.1316520225653692`, 0.10312333988194007`}, { 0.6551235505439864, -0.7760356988323112}, {0.34476997884462074`, 0.7202267747045459}, {-0.13175849317676203`, \ -0.15893226400970528`}}}]]}, TagBox[ GraphicsGroupBox[ GraphicsComplexBox[{{0.13291256202075083`, 0.15331786100770214`}, {-0.343615910000632, -0.725841177706549}, \ {-0.6539694816999977, 0.7704212958303079}, {-1.1304979537213804`, -0.10873774288394322`}, { 1.1316520225653692`, 0.10312333988194007`}, { 0.6551235505439864, -0.7760356988323112}, {0.34476997884462074`, 0.7202267747045459}, {-0.13175849317676203`, \ -0.15893226400970528`}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, { 4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.02470359550742318]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.02470359550742318], DiskBox[2, 0.02470359550742318], DiskBox[3, 0.02470359550742318], DiskBox[4, 0.02470359550742318], DiskBox[5, 0.02470359550742318], DiskBox[6, 0.02470359550742318], DiskBox[7, 0.02470359550742318], DiskBox[8, 0.02470359550742318]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None]}], "}"}]], "Output", CellLabel-> "Out[137]=",ExpressionUUID->"5ac80162-1f50-4a72-afed-2a591ea4ca18"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["UnitDistance by FindUnitDistanceEmbedding", "Subsubsection",ExpressionUUID->"63fb15a1-6377-4193-9cf1-a4ba4e171153"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"FindUnitDistanceEmbedding", "[", RowBox[{ RowBox[{"GraphData", "[", "\"\\"", "]"}], ",", RowBox[{"MaxIterations", "->", "5000"}], ",", RowBox[{"\"\\"", "->", "True"}]}], "]"}], "//", "Timing"}]], "Input", CellLabel-> "In[138]:=",ExpressionUUID->"bc574272-ce25-49cd-bfa0-a33171c04bca"], Cell[BoxData[ RowBox[{"{", RowBox[{"1.136688`", ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8}, { Null, {{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}}, { VertexCoordinates -> {{1.262963606765261, -0.004240083031319171}, { 0.26329678684976193`, 0.021571719695985894`}, {2.1706073440511737`, 0.4155013208897871}, {1.1709405241356745`, 0.4413131236170922}, { 0.8548172399554641, 0.9086764209601262}, {-0.1448495799600349, 0.9344882236874313}, {1.7624609772413766`, 1.3284178248812324`}, { 0.7627941573258777, 1.3542296276085375`}}}]]}, TagBox[ GraphicsGroupBox[ GraphicsComplexBox[{{1.262963606765261, -0.004240083031319171}, { 0.26329678684976193`, 0.021571719695985894`}, {2.1706073440511737`, 0.4155013208897871}, {1.1709405241356745`, 0.4413131236170922}, { 0.8548172399554641, 0.9086764209601262}, {-0.1448495799600349, 0.9344882236874313}, {1.7624609772413766`, 1.3284178248812324`}, { 0.7627941573258777, 1.3542296276085375`}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, { 4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.025120640672980366`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.025120640672980366], DiskBox[2, 0.025120640672980366], DiskBox[3, 0.025120640672980366], DiskBox[4, 0.025120640672980366], DiskBox[5, 0.025120640672980366], DiskBox[6, 0.025120640672980366], DiskBox[7, 0.025120640672980366], DiskBox[8, 0.025120640672980366]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None]}], "}"}]], "Output", CellLabel-> "Out[138]=",ExpressionUUID->"25c69115-bc79-447a-91e3-43ae658a838c"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{"FindUnitDistanceEmbedding", "[", RowBox[{ RowBox[{"GraphData", "[", "\"\\"", "]"}], ",", RowBox[{"MaxIterations", "->", "5000"}], ",", RowBox[{"\"\\"", "\[Rule]", "False"}]}], "]"}], "//", "Quiet"}], "//", "Timing"}]], "Input", CellLabel-> "In[139]:=",ExpressionUUID->"fe98f5e4-cd76-4762-ae00-a412be9a51a7"], Cell[BoxData[ RowBox[{"{", RowBox[{"1.522123`", ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8}, { Null, {{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}}, { VertexCoordinates -> {{1.248064677971646, 1.7028115331979936`}, { 0.7464600709111798, 0.8377145339107951}, {0.7679271635254886, 0.8256183006537235}, {0.266322556465021, -0.03947869863347426}, { 0.6650469768763381, 0.8903520817731597}, {0.16344236981587174`, 0.0252550824859612}, {0.1849094624301813, 0.013158849228889177`}, {-0.31669514463028725`, \ -0.8519381500583081}}}]]}, TagBox[ GraphicsGroupBox[ GraphicsComplexBox[{{1.248064677971646, 1.7028115331979936`}, { 0.7464600709111798, 0.8377145339107951}, {0.7679271635254886, 0.8256183006537235}, {0.266322556465021, -0.03947869863347426}, { 0.6650469768763381, 0.8903520817731597}, {0.16344236981587174`, 0.0252550824859612}, {0.1849094624301813, 0.013158849228889177`}, {-0.31669514463028725`, \ -0.8519381500583081}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, { 4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.02695904034374881]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.02695904034374881], DiskBox[2, 0.02695904034374881], DiskBox[3, 0.02695904034374881], DiskBox[4, 0.02695904034374881], DiskBox[5, 0.02695904034374881], DiskBox[6, 0.02695904034374881], DiskBox[7, 0.02695904034374881], DiskBox[8, 0.02695904034374881]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None]}], "}"}]], "Output", CellLabel-> "Out[139]=",ExpressionUUID->"4f39b4b6-5cb7-46f8-84d7-0057a143e773"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["UnitDistance by FindSubgraphUnitDistanceEmbedding", "Subsubsection",ExpressionUUID->"36e3e269-3e3e-41d5-953a-4f0e7e43858f"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"{", RowBox[{"\"\\"", ",", RowBox[{"l", "=", RowBox[{ RowBox[{"FindSubgraphUnitDistanceEmbedding", "[", RowBox[{ RowBox[{"GraphData", "[", "\"\\"", "]"}], ",", RowBox[{"TimeConstraint", "->", "300"}], ",", RowBox[{"\"\\"", "->", "All"}]}], "]"}], "//", "Timing"}]}]}], "}"}]], "Input", CellLabel-> "(byblis65 V13.4.0) \ In[3]:=",ExpressionUUID->"49204eaa-6984-458c-854d-8b89446ab671"], Cell[CellGroupData[{ Cell[BoxData["\<\"Reading CanonicalForms from raw GraphData file cache (first \ time only)...\"\>"], "Print", CellLabel-> "During evaluation of (byblis65 V13.4.0) \ In[3]:=",ExpressionUUID->"d94e62fd-68ce-4675-90a5-8e09bb115399"], Cell[BoxData["\<\"Reading GraphData standard names from raw GraphData file \ cache (first time only)...\"\>"], "Print", CellLabel-> "During evaluation of (byblis65 V13.4.0) \ In[3]:=",ExpressionUUID->"3c187c54-221e-43f9-9f1d-64cb80a9d8c7"], Cell[BoxData[ InterpretationBox[ RowBox[{"\<\"Building default Association of length \"\>", "\[InvisibleSpace]", "12433", "\[InvisibleSpace]", "\<\"...\"\>"}], SequenceForm["Building default Association of length ", 12433, "..."], Editable->False]], "Print", CellLabel-> "During evaluation of (byblis65 V13.4.0) \ In[3]:=",ExpressionUUID->"fb19c45c-0e81-4bd7-9064-9018d100bc08"] }, Open ]], Cell[BoxData[ RowBox[{"{", RowBox[{"\<\"CubicalGraph\"\>", ",", RowBox[{"{", RowBox[{"83.299538`", ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"\<\"Antelope\"\>", ",", RowBox[{"{", RowBox[{"12", ",", "12"}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.022671`", ",", RowBox[{"{", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{4, 44, 49, 89, 55, 95, 100, 140}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, { 1}, {4}, {6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, { 7}, {2}, {5}, {8}, {3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 2}, VertexCoordinates -> {{ Rational[4, 5], Rational[1, 5]}, { Rational[8, 5], Rational[4, 5]}, { Rational[1, 5], 1}, {1, Rational[8, 5]}, { Rational[7, 5], 1}, { Rational[11, 5], Rational[8, 5]}, { Rational[4, 5], Rational[9, 5]}, { Rational[8, 5], Rational[12, 5]}}}]]}, TagBox[GraphicsGroupBox[ GraphicsComplexBox[{{0.8, 0.2}, {1.6, 0.8}, {0.2, 1.}, {1., 1.6}, {1.4, 1.}, {2.2, 1.6}, {0.8, 1.8}, {1.6, 2.4}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.024213836477987416`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[ 0.7]}], DiskBox[1, 0.024213836477987416], DiskBox[2, 0.024213836477987416], DiskBox[3, 0.024213836477987416], DiskBox[4, 0.024213836477987416], DiskBox[5, 0.024213836477987416], DiskBox[6, 0.024213836477987416], DiskBox[7, 0.024213836477987416], DiskBox[8, 0.024213836477987416]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], "}"}]}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"\<\"Antelope\"\>", ",", RowBox[{"{", RowBox[{"13", ",", "13"}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.019836`", ",", RowBox[{"{", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{4, 47, 53, 96, 59, 102, 108, 151}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, { 1}, {4}, {6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, { 7}, {2}, {5}, {8}, {3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 2}, VertexCoordinates -> {{ Rational[4, 5], Rational[1, 5]}, { Rational[8, 5], Rational[4, 5]}, { Rational[1, 5], 1}, {1, Rational[8, 5]}, { Rational[7, 5], 1}, { Rational[11, 5], Rational[8, 5]}, { Rational[4, 5], Rational[9, 5]}, { Rational[8, 5], Rational[12, 5]}}}]]}, TagBox[GraphicsGroupBox[ GraphicsComplexBox[{{0.8, 0.2}, {1.6, 0.8}, {0.2, 1.}, {1., 1.6}, {1.4, 1.}, {2.2, 1.6}, {0.8, 1.8}, {1.6, 2.4}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.024213836477987416`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[ 0.7]}], DiskBox[1, 0.024213836477987416], DiskBox[2, 0.024213836477987416], DiskBox[3, 0.024213836477987416], DiskBox[4, 0.024213836477987416], DiskBox[5, 0.024213836477987416], DiskBox[6, 0.024213836477987416], DiskBox[7, 0.024213836477987416], DiskBox[8, 0.024213836477987416]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], "}"}]}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"\<\"Antelope\"\>", ",", RowBox[{"{", RowBox[{"14", ",", "14"}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.032136`", ",", RowBox[{"{", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{4, 50, 57, 103, 63, 109, 116, 162}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, { 1}, {4}, {6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, { 7}, {2}, {5}, {8}, {3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 2}, VertexCoordinates -> {{ Rational[4, 5], Rational[1, 5]}, { Rational[8, 5], Rational[4, 5]}, { Rational[1, 5], 1}, {1, Rational[8, 5]}, { Rational[7, 5], 1}, { Rational[11, 5], Rational[8, 5]}, { Rational[4, 5], Rational[9, 5]}, { Rational[8, 5], Rational[12, 5]}}}]]}, TagBox[GraphicsGroupBox[ GraphicsComplexBox[{{0.8, 0.2}, {1.6, 0.8}, {0.2, 1.}, {1., 1.6}, {1.4, 1.}, {2.2, 1.6}, {0.8, 1.8}, {1.6, 2.4}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.024213836477987416`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[ 0.7]}], DiskBox[1, 0.024213836477987416], DiskBox[2, 0.024213836477987416], DiskBox[3, 0.024213836477987416], DiskBox[4, 0.024213836477987416], DiskBox[5, 0.024213836477987416], DiskBox[6, 0.024213836477987416], DiskBox[7, 0.024213836477987416], DiskBox[8, 0.024213836477987416]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], "}"}]}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"\<\"Antelope\"\>", ",", RowBox[{"{", RowBox[{"15", ",", "15"}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.022816`", ",", RowBox[{"{", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{4, 53, 61, 110, 67, 116, 124, 173}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, { 1}, {4}, {6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, { 7}, {2}, {5}, {8}, {3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 2}, VertexCoordinates -> {{ Rational[4, 5], Rational[1, 5]}, { Rational[8, 5], Rational[4, 5]}, { Rational[1, 5], 1}, {1, Rational[8, 5]}, { Rational[7, 5], 1}, { Rational[11, 5], Rational[8, 5]}, { Rational[4, 5], Rational[9, 5]}, { Rational[8, 5], Rational[12, 5]}}}]]}, TagBox[GraphicsGroupBox[ GraphicsComplexBox[{{0.8, 0.2}, {1.6, 0.8}, {0.2, 1.}, {1., 1.6}, {1.4, 1.}, {2.2, 1.6}, {0.8, 1.8}, {1.6, 2.4}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.024213836477987416`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[ 0.7]}], DiskBox[1, 0.024213836477987416], DiskBox[2, 0.024213836477987416], DiskBox[3, 0.024213836477987416], DiskBox[4, 0.024213836477987416], DiskBox[5, 0.024213836477987416], DiskBox[6, 0.024213836477987416], DiskBox[7, 0.024213836477987416], DiskBox[8, 0.024213836477987416]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], "}"}]}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{"\<\"AugmentedTriangularPrismDualGraph\"\>", ",", RowBox[{"{", RowBox[{"0.007871`", ",", RowBox[{"{", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 6, 4, 7, 5, 8}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, { 1}, {4}, {6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, { 7}, {2}, {5}, {8}, {3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 2}, VertexCoordinates -> {{0, 0}, {0, 1}, { Rational[1, 2], Rational[1, 2] 3^Rational[1, 2]}, { Rational[1, 2], Rational[1, 2] (2 + 3^Rational[1, 2])}, { Rational[1, 2], Rational[-1, 2] 3^Rational[1, 2]}, { Rational[1, 2], 1 + Rational[-1, 2] 3^Rational[1, 2]}, {1, 0}, {1, 1}}}]]}, TagBox[GraphicsGroupBox[ GraphicsComplexBox[{{0., 0.}, {0., 1.}, {0.5, 0.8660254037844386}, {0.5, 1.8660254037844386`}, { 0.5, -0.8660254037844386}, {0.5, 0.1339745962155614}, {1., 0.}, {1., 1.}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.028286647027724224`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[ 0.7]}], DiskBox[1, 0.028286647027724224], DiskBox[2, 0.028286647027724224], DiskBox[3, 0.028286647027724224], DiskBox[4, 0.028286647027724224], DiskBox[5, 0.028286647027724224], DiskBox[6, 0.028286647027724224], DiskBox[7, 0.028286647027724224], DiskBox[8, 0.028286647027724224]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], "}"}]}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"\<\"BracedSquare\"\>", ",", RowBox[{"{", RowBox[{"68", ",", "1"}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.010115`", ",", RowBox[{"{", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 7, 17, 25, 28, 14, 8, 5}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, { 1}, {4}, {6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, { 7}, {2}, {5}, {8}, {3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 2}, VertexCoordinates -> {{ Rational[-1, 2], Rational[-1, 2]}, { Rational[1, 4] (-1 - 7^Rational[1, 2]), Rational[1, 4] (-1 + 7^Rational[1, 2])}, { Rational[1, 4] (-2 + 7^Rational[1, 2]), Rational[1, 4]}, { Rational[-1, 4], Rational[1, 4] (2 + 7^Rational[1, 2])}, { Rational[1, 4], Rational[1, 4] (-2 - 7^Rational[1, 2])}, { Rational[1, 4] (2 - 7^Rational[1, 2]), Rational[-1, 4]}, { Rational[1, 4] (1 + 7^Rational[1, 2]), Rational[1, 4] (1 - 7^Rational[1, 2])}, { Rational[1, 2], Rational[1, 2]}}}]]}, TagBox[GraphicsGroupBox[ GraphicsComplexBox[{{-0.5, -0.5}, {-0.9114378277661477, 0.4114378277661477}, {0.16143782776614768`, 0.25}, {-0.25, 1.1614378277661477`}, { 0.25, -1.1614378277661477`}, {-0.16143782776614768`, \ -0.25}, {0.9114378277661477, -0.4114378277661477}, {0.5, 0.5}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.025178460908204678`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[ 0.7]}], DiskBox[1, 0.025178460908204678], DiskBox[2, 0.025178460908204678], DiskBox[3, 0.025178460908204678], DiskBox[4, 0.025178460908204678], DiskBox[5, 0.025178460908204678], DiskBox[6, 0.025178460908204678], DiskBox[7, 0.025178460908204678], DiskBox[8, 0.025178460908204678]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], "}"}]}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"\<\"Circulant\"\>", ",", RowBox[{"{", RowBox[{"12", ",", RowBox[{"{", RowBox[{"3", ",", "4"}], "}"}]}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.014043`", ",", RowBox[{"{", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 4, 5, 8, 10, 7, 2, 11}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, { 1}, {4}, {6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, { 7}, {2}, {5}, {8}, {3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 2}, VertexCoordinates -> {{ Rational[1, 2] (-1 - 3^Rational[1, 2]), Rational[1, 6] (-3 - 3^Rational[1, 2])}, { Rational[-1, 2], Rational[-1, 2] 3^Rational[-1, 2]}, { Rational[-1, 2] 3^Rational[1, 2], Rational[1, 6] (-3 + 2 3^Rational[1, 2])}, { 0, 3^Rational[-1, 2]}, { Rational[-1, 2], Rational[1, 6] (-6 - 3^Rational[1, 2])}, { Rational[1, 2] (-1 + 3^Rational[1, 2]), Rational[1, 6] (-3 - 3^Rational[1, 2])}, { 0, Rational[1, 3] (-3 + 3^Rational[1, 2])}, { Rational[1, 2] 3^Rational[1, 2], Rational[1, 6] (-3 + 2 3^Rational[1, 2])}}}]]}, TagBox[GraphicsGroupBox[ GraphicsComplexBox[{{-1.3660254037844386`, \ -0.7886751345948128}, {-0.5, -0.2886751345948129}, {-0.8660254037844386, 0.07735026918962573}, {0., 0.5773502691896258}, {-0.5, -1.2886751345948126`}, { 0.3660254037844386, -0.7886751345948128}, { 0., -0.42264973081037427`}, {0.8660254037844386, 0.07735026918962573}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.024466882879267765`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[ 0.7]}], DiskBox[1, 0.024466882879267765], DiskBox[2, 0.024466882879267765], DiskBox[3, 0.024466882879267765], DiskBox[4, 0.024466882879267765], DiskBox[5, 0.024466882879267765], DiskBox[6, 0.024466882879267765], DiskBox[7, 0.024466882879267765], DiskBox[8, 0.024466882879267765]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], "}"}]}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"\<\"Circulant\"\>", ",", RowBox[{"{", RowBox[{"20", ",", RowBox[{"{", RowBox[{"4", ",", "5"}], "}"}]}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.015594`", ",", RowBox[{"{", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 5, 6, 10, 16, 20, 11, 15}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, { 1}, {4}, {6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, { 7}, {2}, {5}, {8}, {3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 2}, VertexCoordinates -> {{ Rational[-1, 2], Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, { Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[1 - 20 #^2 + 80 #^4& , 3, 0]}, { Rational[-1, 2] + Cos[Rational[1, 15] Pi], Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2] + Sin[Rational[1, 15] Pi]}, { Rational[-1, 4] + Rational[-1, 4] 5^Rational[1, 2] + Cos[Rational[1, 15] Pi], Root[1 - 20 #^2 + 80 #^4& , 3, 0] + Sin[Rational[1, 15] Pi]}, { Rational[1, 2] (-1 + 3^Rational[1, 2]), Rational[1, 2] (1 - (1 + 2 5^Rational[-1, 2])^ Rational[1, 2])}, { Rational[1, 4] (-1 + 2 3^Rational[1, 2] - 5^ Rational[1, 2]), Rational[1, 20] ( 10 + (50 - 10 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 2] (-1 + 3^Rational[1, 2]) + Cos[Rational[1, 15] Pi], Rational[1, 8] (4 + 3^Rational[1, 2] - 15^ Rational[1, 2] - (2 + 2 5^Rational[-1, 2])^ Rational[1, 2])}, { Rational[1, 4] (-1 + 2 3^Rational[1, 2] - 5^ Rational[1, 2]) + Cos[Rational[1, 15] Pi], Rational[1, 2] + Root[1 - 20 #^2 + 80 #^4& , 3, 0] + Sin[Rational[1, 15] Pi]}}}]]}, TagBox[GraphicsGroupBox[ GraphicsComplexBox[{{-0.5, -0.6881909602355868}, \ {-0.8090169943749475, 0.2628655560595668}, { 0.4781476007338057, -0.4802792694178275}, { 0.16913060635885824`, 0.47077724687732614`}, { 0.3660254037844386, -0.1881909602355868}, { 0.057008409409491145`, 0.7628655560595669}, { 1.3441730045182443`, 0.019720730582172497`}, { 1.0351560101432968`, 0.970777246877326}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.023842425395795258`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[ 0.7]}], DiskBox[1, 0.023842425395795258], DiskBox[2, 0.023842425395795258], DiskBox[3, 0.023842425395795258], DiskBox[4, 0.023842425395795258], DiskBox[5, 0.023842425395795258], DiskBox[6, 0.023842425395795258], DiskBox[7, 0.023842425395795258], DiskBox[8, 0.023842425395795258]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], "}"}]}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"\<\"Circulant\"\>", ",", RowBox[{"{", RowBox[{"28", ",", RowBox[{"{", RowBox[{"4", ",", "7"}], "}"}]}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.020283`", ",", RowBox[{"{", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 4, 3, 5, 6, 8, 7}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, { 1}, {4}, {6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, { 7}, {2}, {5}, {8}, {3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 2}, VertexCoordinates -> {{ Rational[-1, 2], Rational[-1, 2] Cot[Rational[1, 7] Pi]}, { Rational[-1, 2] + Cos[Rational[1, 15] Pi], Rational[-1, 2] Cot[Rational[1, 7] Pi] + Sin[Rational[1, 15] Pi]}, { Rational[-1, 2] + 2^Rational[-1, 2], 2^Rational[-1, 2] + Rational[-1, 2] Cot[Rational[1, 7] Pi]}, { Rational[-1, 2] + 2^Rational[-1, 2] + Cos[Rational[1, 15] Pi], 2^Rational[-1, 2] + Rational[-1, 2] Cot[Rational[1, 7] Pi] + Sin[Rational[1, 15] Pi]}, { Rational[1, 2], Rational[-1, 2] Cot[Rational[1, 7] Pi]}, { Rational[1, 2] + Cos[Rational[1, 15] Pi], Rational[-1, 2] Cot[Rational[1, 7] Pi] + Sin[Rational[1, 15] Pi]}, { Rational[1, 2] + 2^Rational[-1, 2], 2^Rational[-1, 2] + Rational[-1, 2] Cot[Rational[1, 7] Pi]}, { Rational[1, 2] + 2^Rational[-1, 2] + Cos[Rational[1, 15] Pi], 2^Rational[-1, 2] + Rational[-1, 2] Cot[Rational[1, 7] Pi] + Sin[Rational[1, 15] Pi]}}}]]}, TagBox[GraphicsGroupBox[ GraphicsComplexBox[{{-0.5, -1.0382606982861684`}, { 0.4781476007338057, -0.8303490074684091}, { 0.20710678118654746`, -0.33115391709962094`}, { 1.1852543819203532`, -0.12324222628186163`}, { 0.5, -1.0382606982861684`}, { 1.4781476007338057`, -0.8303490074684091}, { 1.2071067811865475`, -0.33115391709962094`}, { 2.185254381920353, -0.12324222628186163`}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.027939032658118534`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[ 0.7]}], DiskBox[1, 0.027939032658118534], DiskBox[2, 0.027939032658118534], DiskBox[3, 0.027939032658118534], DiskBox[4, 0.027939032658118534], DiskBox[5, 0.027939032658118534], DiskBox[6, 0.027939032658118534], DiskBox[7, 0.027939032658118534], DiskBox[8, 0.027939032658118534]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], "}"}]}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"\<\"Circulant\"\>", ",", RowBox[{"{", RowBox[{"36", ",", RowBox[{"{", RowBox[{"4", ",", "9"}], "}"}]}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.01735`", ",", RowBox[{"{", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 4, 3, 5, 6, 8, 7}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, { 1}, {4}, {6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, { 7}, {2}, {5}, {8}, {3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 2}, VertexCoordinates -> {{ Rational[-1, 2], Rational[-1, 2] Cot[Rational[1, 9] Pi]}, { Rational[-1, 2] + Cos[Rational[1, 15] Pi], Rational[-1, 2] Cot[Rational[1, 9] Pi] + Sin[Rational[1, 15] Pi]}, { Rational[-1, 2] + 2^Rational[-1, 2], 2^Rational[-1, 2] + Rational[-1, 2] Cot[Rational[1, 9] Pi]}, { Rational[-1, 2] + 2^Rational[-1, 2] + Cos[Rational[1, 15] Pi], 2^Rational[-1, 2] + Rational[-1, 2] Cot[Rational[1, 9] Pi] + Sin[Rational[1, 15] Pi]}, { Rational[1, 2], Rational[-1, 2] Cot[Rational[1, 9] Pi]}, { Rational[1, 2] + Cos[Rational[1, 15] Pi], Rational[-1, 2] Cot[Rational[1, 9] Pi] + Sin[Rational[1, 15] Pi]}, { Rational[1, 2] + 2^Rational[-1, 2], 2^Rational[-1, 2] + Rational[-1, 2] Cot[Rational[1, 9] Pi]}, { Rational[1, 2] + 2^Rational[-1, 2] + Cos[Rational[1, 15] Pi], 2^Rational[-1, 2] + Rational[-1, 2] Cot[Rational[1, 9] Pi] + Sin[Rational[1, 15] Pi]}}}]]}, TagBox[GraphicsGroupBox[ GraphicsComplexBox[{{-0.5, -1.3737387097273113`}, { 0.4781476007338057, -1.1658270189095519`}, { 0.20710678118654746`, -0.6666319285407638}, { 1.1852543819203532`, -0.4587202377230045}, { 0.5, -1.3737387097273113`}, { 1.4781476007338057`, -1.1658270189095519`}, { 1.2071067811865475`, -0.6666319285407638}, { 2.185254381920353, -0.4587202377230045}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.027939032658118534`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[ 0.7]}], DiskBox[1, 0.027939032658118534], DiskBox[2, 0.027939032658118534], DiskBox[3, 0.027939032658118534], DiskBox[4, 0.027939032658118534], DiskBox[5, 0.027939032658118534], DiskBox[6, 0.027939032658118534], DiskBox[7, 0.027939032658118534], DiskBox[8, 0.027939032658118534]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], "}"}]}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{"\<\"DeGreyGraph\"\>", ",", RowBox[{"{", RowBox[{"0.350573`", ",", RowBox[{"{", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 39, 270, 217, 320, 200}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, { 1}, {4}, {6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, { 7}, {2}, {5}, {8}, {3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 2}, VertexCoordinates -> {{2 + Rational[-3, 4] 7^Rational[1, 2], Rational[1, 4]}, {2 + Rational[-3, 8] 7^Rational[1, 2], Rational[1, 8]}, { 2 + Rational[1, 16] (-3^Rational[1, 2] - 9 7^Rational[1, 2]), Rational[-3, 16] (-1 + 21^Rational[1, 2])}, { 2 + Rational[1, 16] (-3^Rational[1, 2] - 3 7^Rational[1, 2]), Rational[1, 16] (1 - 3 21^Rational[1, 2])}, { 2 + Rational[1, 96] (5 3^Rational[1, 2] - 87 7^Rational[1, 2] + 11^Rational[1, 2] + 3 231^Rational[1, 2]), Rational[1, 96] (29 + 15 21^Rational[1, 2] - 33^ Rational[1, 2] + 3 77^Rational[1, 2])}, { 2 + Rational[1, 96] (5 3^Rational[1, 2] - 51 7^Rational[1, 2] + 11^Rational[1, 2] + 3 231^Rational[1, 2]), Rational[1, 96] (17 + 15 21^Rational[1, 2] - 33^ Rational[1, 2] + 3 77^Rational[1, 2])}, { 2 + Rational[1, 96] (-3^Rational[1, 2] - 69 7^Rational[1, 2] + 11^Rational[1, 2] + 3 231^Rational[1, 2]), Rational[1, 96] (23 - 3 21^Rational[1, 2] - 33^ Rational[1, 2] + 3 77^Rational[1, 2])}, { 2 + Rational[1, 96] (-3^Rational[1, 2] - 33 7^Rational[1, 2] + 11^Rational[1, 2] + 3 231^Rational[1, 2]), Rational[1, 96] (11 - 3 21^Rational[1, 2] - 33^ Rational[1, 2] + 3 77^Rational[1, 2])}}}]]}, TagBox[GraphicsGroupBox[ GraphicsComplexBox[{{0.015686516701556963`, 0.25}, { 1.0078432583507784`, 0.125}, { 0.40351171205311287`, -0.67173294280422}, { 1.3956684537023345`, -0.79673294280422}, { 0.20200590860721235`, 1.232489228541416}, { 1.194162650256434, 1.107489228541416}, {0.5898311039587685, 0.310756285737196}, {1.5819878456079897`, 0.185756285737196}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.0228481308094525]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[ 0.7]}], DiskBox[1, 0.0228481308094525], DiskBox[2, 0.0228481308094525], DiskBox[3, 0.0228481308094525], DiskBox[4, 0.0228481308094525], DiskBox[5, 0.0228481308094525], DiskBox[6, 0.0228481308094525], DiskBox[7, 0.0228481308094525], DiskBox[8, 0.0228481308094525]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], "}"}]}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{"\<\"DejterGraph\"\>", ",", RowBox[{"{", RowBox[{"0.009283`", ",", RowBox[{"{", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 13, 5, 17, 16, 26}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, { 1}, {4}, {6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, { 7}, {2}, {5}, {8}, {3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 2}, VertexCoordinates -> {{1.2454640770396117`, 2.934729109336561}, {2.2119947482996336`, 3.1912801988170996`}, {1.5227782906181269`, 1.9739498282593044`}, {2.489308961878149, 2.230500917739843}, {0.24807579372028268`, 2.8625029901183585`}, {1.2146064649803048`, 3.119054079598897}, {0.525390007298798, 1.901723709041102}, {1.49192067855882, 2.1582747985216404`}}}]]}, TagBox[GraphicsGroupBox[ GraphicsComplexBox[{{1.2454640770396117`, 2.934729109336561}, {2.2119947482996336`, 3.1912801988170996`}, {1.5227782906181269`, 1.9739498282593044`}, {2.489308961878149, 2.230500917739843}, {0.24807579372028268`, 2.8625029901183585`}, {1.2146064649803048`, 3.119054079598897}, {0.525390007298798, 1.901723709041102}, {1.49192067855882, 2.1582747985216404`}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.02453919161066284]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[ 0.7]}], DiskBox[1, 0.02453919161066284], DiskBox[2, 0.02453919161066284], DiskBox[3, 0.02453919161066284], DiskBox[4, 0.02453919161066284], DiskBox[5, 0.02453919161066284], DiskBox[6, 0.02453919161066284], DiskBox[7, 0.02453919161066284], DiskBox[8, 0.02453919161066284]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], "}"}]}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{"\<\"ExooIsmailescuGraph49\"\>", ",", RowBox[{"{", RowBox[{"0.008947`", ",", RowBox[{"{", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 3, 4, 2, 31, 9, 19, 7}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, { 1}, {4}, {6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, { 7}, {2}, {5}, {8}, {3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 2}, VertexCoordinates -> {{0, 0}, { Rational[-1, 2] 3^Rational[-1, 2], Rational[1, 2] Rational[11, 3]^Rational[1, 2]}, { Rational[1, 2] 3^Rational[-1, 2], Rational[1, 2] Rational[11, 3]^Rational[1, 2]}, { 0, Rational[11, 3]^Rational[1, 2]}, { Rational[1, 36] ((-3) 3^Rational[1, 2] - 9 11^Rational[1, 2]), Rational[1, 36] (9 - 3 33^Rational[1, 2])}, { Rational[1, 36] ((-9) 3^Rational[1, 2] - 9 11^Rational[1, 2]), Rational[1, 36] (9 + 3 33^Rational[1, 2])}, { Rational[1, 36] (3 3^Rational[1, 2] - 9 11^Rational[1, 2]), Rational[1, 36] (9 + 3 33^Rational[1, 2])}, { Rational[1, 36] ((-3) 3^Rational[1, 2] - 9 11^Rational[1, 2]), Rational[1, 36] (9 + 9 33^Rational[1, 2])}}}]]}, TagBox[GraphicsGroupBox[ GraphicsComplexBox[{{0., 0.}, {-0.2886751345948129, 0.9574271077563381}, {0.2886751345948129, 0.9574271077563381}, {0., 1.9148542155126762`}, {-0.9734937648862563, \ -0.22871355387816905`}, {-1.2621688994810691`, 0.728713553878169}, {-0.6848186302914434, 0.728713553878169}, {-0.9734937648862563, 1.6861406616345072`}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.023765806470438938`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[ 0.7]}], DiskBox[1, 0.023765806470438938], DiskBox[2, 0.023765806470438938], DiskBox[3, 0.023765806470438938], DiskBox[4, 0.023765806470438938], DiskBox[5, 0.023765806470438938], DiskBox[6, 0.023765806470438938], DiskBox[7, 0.023765806470438938], DiskBox[8, 0.023765806470438938]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], "}"}]}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{"\<\"ExooIsmailescuGraph51\"\>", ",", RowBox[{"{", RowBox[{"0.009548`", ",", RowBox[{"{", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 4, 14, 46, 41, 42, 31, 32}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, { 1}, {4}, {6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, { 7}, {2}, {5}, {8}, {3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 2}, VertexCoordinates -> {{0, Rational[1, 3]}, {0, Rational[-2, 3]}, { Rational[-1, 2] 3^Rational[-1, 2], Rational[1, 36] (12 + 6 33^Rational[1, 2])}, { Rational[-1, 2] 3^Rational[-1, 2], Rational[1, 36] (-24 + 6 33^Rational[1, 2])}, { Rational[1, 36] (3 3^Rational[1, 2] + 9 11^Rational[1, 2]), Rational[1, 36] (21 - 3 33^Rational[1, 2])}, { Rational[1, 36] (3 3^Rational[1, 2] + 9 11^Rational[1, 2]), Rational[1, 36] (-15 - 3 33^Rational[1, 2])}, { Rational[1, 36] ((-3) 3^Rational[1, 2] + 9 11^Rational[1, 2]), Rational[1, 36] (21 + 3 33^Rational[1, 2])}, { Rational[1, 36] ((-3) 3^Rational[1, 2] + 9 11^Rational[1, 2]), Rational[1, 36] (-15 + 3 33^Rational[1, 2])}}}]]}, TagBox[GraphicsGroupBox[ GraphicsComplexBox[{{0., 0.3333333333333333}, { 0., -0.6666666666666666}, {-0.2886751345948129, 1.2907604410896714`}, {-0.2886751345948129, 0.2907604410896714}, {0.9734937648862563, 0.10461977945516428`}, { 0.9734937648862563, -0.8953802205448357}, { 0.6848186302914434, 1.0620468872115023`}, { 0.6848186302914434, 0.06204688721150238}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.024104098496996296`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[ 0.7]}], DiskBox[1, 0.024104098496996296], DiskBox[2, 0.024104098496996296], DiskBox[3, 0.024104098496996296], DiskBox[4, 0.024104098496996296], DiskBox[5, 0.024104098496996296], DiskBox[6, 0.024104098496996296], DiskBox[7, 0.024104098496996296], DiskBox[8, 0.024104098496996296]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], "}"}]}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{"\<\"ExooIsmailescuGraph627\"\>", ",", RowBox[{"{", RowBox[{"0.081942`", ",", RowBox[{"{", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 4, 13, 248, 14, 46, 9, 8}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, { 1}, {4}, {6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, { 7}, {2}, {5}, {8}, {3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 2}, VertexCoordinates -> {{0, Rational[1, 3]}, {0, Rational[-2, 3]}, { Rational[-1, 2] 3^Rational[-1, 2], Rational[1, 36] (12 - 6 33^Rational[1, 2])}, { Rational[-1, 2] 3^Rational[-1, 2], Rational[1, 36] (-24 - 6 33^Rational[1, 2])}, { Rational[-1, 2] 3^Rational[-1, 2], Rational[1, 36] (12 + 6 33^Rational[1, 2])}, { Rational[-1, 2] 3^Rational[-1, 2], Rational[1, 36] (-24 + 6 33^Rational[1, 2])}, {-3^ Rational[-1, 2], Rational[1, 3]}, {-3^Rational[-1, 2], Rational[-2, 3]}}}]]}, TagBox[GraphicsGroupBox[ GraphicsComplexBox[{{0., 0.3333333333333333}, { 0., -0.6666666666666666}, {-0.2886751345948129, \ -0.6240937744230047}, {-0.2886751345948129, -1.6240937744230046`}, \ {-0.2886751345948129, 1.2907604410896714`}, {-0.2886751345948129, 0.2907604410896714}, {-0.5773502691896258, 0.3333333333333333}, {-0.5773502691896258, \ -0.6666666666666666}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.02962578701818075]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[ 0.7]}], DiskBox[1, 0.02962578701818075], DiskBox[2, 0.02962578701818075], DiskBox[3, 0.02962578701818075], DiskBox[4, 0.02962578701818075], DiskBox[5, 0.02962578701818075], DiskBox[6, 0.02962578701818075], DiskBox[7, 0.02962578701818075], DiskBox[8, 0.02962578701818075]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], "}"}]}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"\<\"FibonacciCube\"\>", ",", "5"}], "}"}], ",", RowBox[{"{", RowBox[{"0.004844`", ",", RowBox[{"{", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 4, 5, 9, 10, 12, 13}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, { 1}, {4}, {6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, { 7}, {2}, {5}, {8}, {3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 2}, VertexCoordinates -> {{ Rational[-1, 2], -1 + Rational[-1, 2] 3^Rational[1, 2]}, { Rational[-1, 2], Rational[-1, 2] 3^Rational[1, 2]}, { 0, -1}, {0, 0}, { Rational[1, 2], -1 + Rational[-1, 2] 3^Rational[1, 2]}, { Rational[1, 2], Rational[-1, 2] 3^Rational[1, 2]}, { 1, -1}, {1, 0}}}]]}, TagBox[GraphicsGroupBox[ GraphicsComplexBox[{{-0.5, -1.8660254037844386`}, {-0.5, \ -0.8660254037844386}, {0., -1.}, {0., 0.}, {0.5, -1.8660254037844386`}, { 0.5, -0.8660254037844386}, {1., -1.}, {1., 0.}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.021515049724012608`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[ 0.7]}], DiskBox[1, 0.021515049724012608], DiskBox[2, 0.021515049724012608], DiskBox[3, 0.021515049724012608], DiskBox[4, 0.021515049724012608], DiskBox[5, 0.021515049724012608], DiskBox[6, 0.021515049724012608], DiskBox[7, 0.021515049724012608], DiskBox[8, 0.021515049724012608]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], "}"}]}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"\<\"FibonacciCube\"\>", ",", "6"}], "}"}], ",", RowBox[{"{", RowBox[{"0.009108`", ",", RowBox[{"{", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 4, 5, 9, 10, 12, 13}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, { 1}, {4}, {6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, { 7}, {2}, {5}, {8}, {3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 2}, VertexCoordinates -> {{1, 1}, { Rational[1, 2], 1 + Rational[-1, 2] 3^Rational[1, 2]}, {0, 1}, { Rational[-1, 2], 1 + Rational[-1, 2] 3^Rational[1, 2]}, { 1, 0}, { Rational[1, 2], Rational[-1, 2] 3^Rational[1, 2]}, {0, 0}, { Rational[-1, 2], Rational[-1, 2] 3^Rational[1, 2]}}}]]}, TagBox[GraphicsGroupBox[ GraphicsComplexBox[{{1., 1.}, {0.5, 0.1339745962155614}, {0., 1.}, {-0.5, 0.1339745962155614}, {1., 0.}, { 0.5, -0.8660254037844386}, {0., 0.}, {-0.5, -0.8660254037844386}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.021515049724012608`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[ 0.7]}], DiskBox[1, 0.021515049724012608], DiskBox[2, 0.021515049724012608], DiskBox[3, 0.021515049724012608], DiskBox[4, 0.021515049724012608], DiskBox[5, 0.021515049724012608], DiskBox[6, 0.021515049724012608], DiskBox[7, 0.021515049724012608], DiskBox[8, 0.021515049724012608]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], "}"}]}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"\<\"FibonacciCube\"\>", ",", "7"}], "}"}], ",", RowBox[{"{", RowBox[{"0.031321`", ",", RowBox[{"{", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 4, 5, 9, 10, 12, 13}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, { 1}, {4}, {6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, { 7}, {2}, {5}, {8}, {3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 2}, VertexCoordinates -> {{ 6 17^Rational[-1, 2], 6 17^Rational[-1, 2]}, { 10 17^Rational[-1, 2], 5 17^Rational[-1, 2]}, { 5 17^Rational[-1, 2], 10 17^Rational[-1, 2]}, { 9 17^Rational[-1, 2], 9 17^Rational[-1, 2]}, { 5 17^Rational[-1, 2], 2 17^Rational[-1, 2]}, { 9 17^Rational[-1, 2], 17^Rational[-1, 2]}, { 4 17^Rational[-1, 2], 6 17^Rational[-1, 2]}, { 8 17^Rational[-1, 2], 5 17^Rational[-1, 2]}}}]]}, TagBox[GraphicsGroupBox[ GraphicsComplexBox[{{1.4552137502179978`, 1.4552137502179978`}, {2.42535625036333, 1.212678125181665}, {1.212678125181665, 2.42535625036333}, { 2.182820625326997, 2.182820625326997}, {1.212678125181665, 0.48507125007266594`}, {2.182820625326997, 0.24253562503633297`}, {0.9701425001453319, 1.4552137502179978`}, {1.9402850002906638`, 1.212678125181665}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.024077782077903176`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[ 0.7]}], DiskBox[1, 0.024077782077903176], DiskBox[2, 0.024077782077903176], DiskBox[3, 0.024077782077903176], DiskBox[4, 0.024077782077903176], DiskBox[5, 0.024077782077903176], DiskBox[6, 0.024077782077903176], DiskBox[7, 0.024077782077903176], DiskBox[8, 0.024077782077903176]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], "}"}]}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"\<\"FibonacciCube\"\>", ",", "8"}], "}"}], ",", RowBox[{"{", RowBox[{"0.034112`", ",", RowBox[{"{", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 4, 5, 9, 10, 12, 13}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, { 1}, {4}, {6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, { 7}, {2}, {5}, {8}, {3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 2}, VertexCoordinates -> {{ Rational[1, 2] 7^Rational[-1, 2], Rational[1, 2] 21^Rational[1, 2]}, { Rational[-3, 2] 7^Rational[-1, 2], Rational[5, 2] Rational[3, 7]^Rational[1, 2]}, { 3 7^Rational[-1, 2], 4 Rational[3, 7]^Rational[1, 2]}, { 7^Rational[-1, 2], 3 Rational[3, 7]^Rational[1, 2]}, { 7^Rational[-1, 2], 2 Rational[3, 7]^Rational[1, 2]}, {-7^Rational[-1, 2], Rational[3, 7]^Rational[1, 2]}, { Rational[1, 2] 7^Rational[1, 2], Rational[5, 2] Rational[3, 7]^Rational[1, 2]}, { Rational[3, 2] 7^Rational[-1, 2], Rational[3, 2] Rational[3, 7]^Rational[1, 2]}}}]]}, TagBox[GraphicsGroupBox[ GraphicsComplexBox[{{0.1889822365046136, 2.29128784747792}, {-0.5669467095138407, 1.6366341767699426`}, {1.1338934190276815`, 2.6186146828319083`}, {0.3779644730092272, 1.9639610121239313`}, {0.3779644730092272, 1.3093073414159542`}, {-0.3779644730092272, 0.6546536707079771}, {1.3228756555322954`, 1.6366341767699426`}, {0.5669467095138407, 0.9819805060619656}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.022318374742378577`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[ 0.7]}], DiskBox[1, 0.022318374742378577], DiskBox[2, 0.022318374742378577], DiskBox[3, 0.022318374742378577], DiskBox[4, 0.022318374742378577], DiskBox[5, 0.022318374742378577], DiskBox[6, 0.022318374742378577], DiskBox[7, 0.022318374742378577], DiskBox[8, 0.022318374742378577]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], "}"}]}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"\<\"FibonacciCube\"\>", ",", "9"}], "}"}], ",", RowBox[{"{", RowBox[{"0.014254`", ",", RowBox[{"{", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 4, 5, 9, 10, 12, 13}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, { 1}, {4}, {6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, { 7}, {2}, {5}, {8}, {3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 2}, VertexCoordinates -> {{0, 1}, { Rational[1, 2] 3^Rational[1, 2], Rational[1, 2]}, { Rational[-1, 4] (7 + 5^Rational[1, 2] - (6 (5 + 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 - 5^ Rational[1, 2] - (30 - 6 5^Rational[1, 2])^ Rational[1, 2])}, { Rational[ 1, 4] (13 - 5 5^Rational[1, 2] + (150 - 66 5^Rational[1, 2])^ Rational[1, 2])^Rational[1, 2], Root[1 + 6 # - 4 #^2 - 24 #^3 + 16 #^4& , 1, 0]}, { Rational[-1, 4] (7 + 5^Rational[1, 2] + (6 (5 + 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 - 5^ Rational[1, 2] + (30 - 6 5^Rational[1, 2])^ Rational[1, 2])}, { Root[1 - 68 #^2 + 464 #^4 - 832 #^6 + 256 #^8& , 4, 0], Rational[1, 8] (3 - 5^ Rational[1, 2] + (30 - 6 5^Rational[1, 2])^ Rational[1, 2])}, { Rational[-1, 2] (Rational[3, 2] (3 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])}, { Root[9 - 36 #^2 + 16 #^4& , 2, 0], Rational[1, 4] (1 - 5^Rational[1, 2])}}}]]}, TagBox[GraphicsGroupBox[ GraphicsComplexBox[{{0., 1.}, {0.8660254037844386, 0.5}, {-0.4067366430758002, 0.08645454235739913}, { 0.4592887607086384, -0.41354545764260087`}, \ {-0.9945218953682734, 1.1045284632676533`}, {-0.12849649158383467`, 0.6045284632676534}, {-1.4012585384440737`, 0.19098300562505255`}, {-0.5352331346596348, \ -0.30901699437494745`}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.024743882100660808`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[ 0.7]}], DiskBox[1, 0.024743882100660808], DiskBox[2, 0.024743882100660808], DiskBox[3, 0.024743882100660808], DiskBox[4, 0.024743882100660808], DiskBox[5, 0.024743882100660808], DiskBox[6, 0.024743882100660808], DiskBox[7, 0.024743882100660808], DiskBox[8, 0.024743882100660808]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], "}"}]}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"\<\"FibonacciCube\"\>", ",", "10"}], "}"}], ",", RowBox[{"{", RowBox[{"0.029664`", ",", RowBox[{"{", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 4, 5, 9, 10, 12, 13}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, { 1}, {4}, {6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, { 7}, {2}, {5}, {8}, {3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 2}, VertexCoordinates -> {{0, 1}, { Rational[1, 2] 3^Rational[1, 2], Rational[1, 2]}, { Root[5 - 20 #^2 + 16 #^4& , 3, 0], Rational[1, 4] (3 - 5^Rational[1, 2])}, { Root[1 - 152 #^2 + 1904 #^4 - 1408 #^6 + 256 #^8& , 7, 0], Rational[1, 4] (1 - 5^Rational[1, 2])}, { Root[5 - 20 #^2 + 16 #^4& , 2, 0], Rational[1, 4] (3 - 5^Rational[1, 2])}, { Root[1 - 152 #^2 + 1904 #^4 - 1408 #^6 + 256 #^8& , 6, 0], Rational[1, 4] (1 - 5^Rational[1, 2])}, { 0, Rational[1, 2] (1 - 5^Rational[1, 2])}, { Rational[1, 2] 3^Rational[1, 2], Rational[-1, 2] 5^Rational[1, 2]}}}]]}, TagBox[GraphicsGroupBox[ GraphicsComplexBox[{{0., 1.}, {0.8660254037844386, 0.5}, { 0.5877852522924731, 0.19098300562505255`}, { 1.4538106560769117`, -0.30901699437494745`}, \ {-0.5877852522924731, 0.19098300562505255`}, { 0.27824015149196557`, -0.30901699437494745`}, { 0., -0.6180339887498949}, { 0.8660254037844386, -1.118033988749895}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.023562036759913363`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[ 0.7]}], DiskBox[1, 0.023562036759913363], DiskBox[2, 0.023562036759913363], DiskBox[3, 0.023562036759913363], DiskBox[4, 0.023562036759913363], DiskBox[5, 0.023562036759913363], DiskBox[6, 0.023562036759913363], DiskBox[7, 0.023562036759913363], DiskBox[8, 0.023562036759913363]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], "}"}]}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"\<\"Fiveleaper\"\>", ",", RowBox[{"{", RowBox[{"9", ",", "10"}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.017567`", ",", RowBox[{"{", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 6, 35, 40, 51, 56, 85, 90}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, { 1}, {4}, {6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, { 7}, {2}, {5}, {8}, {3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 2}, VertexCoordinates -> {{ Rational[1, 5], Rational[1, 5]}, { Rational[1, 5], Rational[6, 5]}, { Rational[4, 5], 1}, { Rational[4, 5], 2}, { Rational[6, 5], Rational[1, 5]}, { Rational[6, 5], Rational[6, 5]}, { Rational[9, 5], 1}, { Rational[9, 5], 2}}}]]}, TagBox[GraphicsGroupBox[ GraphicsComplexBox[{{0.2, 0.2}, {0.2, 1.2}, {0.8, 1.}, {0.8, 2.}, {1.2, 0.2}, {1.2, 1.2}, {1.8, 1.}, {1.8, 2.}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.02096774193548387]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[ 0.7]}], DiskBox[1, 0.02096774193548387], DiskBox[2, 0.02096774193548387], DiskBox[3, 0.02096774193548387], DiskBox[4, 0.02096774193548387], DiskBox[5, 0.02096774193548387], DiskBox[6, 0.02096774193548387], DiskBox[7, 0.02096774193548387], DiskBox[8, 0.02096774193548387]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], "}"}]}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"\<\"Fiveleaper\"\>", ",", RowBox[{"{", RowBox[{"10", ",", "10"}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.017762`", ",", RowBox[{"{", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 6, 35, 40, 51, 56, 85, 90}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, { 1}, {4}, {6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, { 7}, {2}, {5}, {8}, {3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 2}, VertexCoordinates -> {{ Rational[1, 5], Rational[1, 5]}, { Rational[6, 5], Rational[1, 5]}, {1, Rational[4, 5]}, {2, Rational[4, 5]}, { Rational[1, 5], Rational[6, 5]}, { Rational[6, 5], Rational[6, 5]}, {1, Rational[9, 5]}, {2, Rational[9, 5]}}}]]}, TagBox[GraphicsGroupBox[ GraphicsComplexBox[{{0.2, 0.2}, {1.2, 0.2}, {1., 0.8}, {2., 0.8}, {0.2, 1.2}, {1.2, 1.2}, {1., 1.8}, {2., 1.8}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.02096774193548387]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[ 0.7]}], DiskBox[1, 0.02096774193548387], DiskBox[2, 0.02096774193548387], DiskBox[3, 0.02096774193548387], DiskBox[4, 0.02096774193548387], DiskBox[5, 0.02096774193548387], DiskBox[6, 0.02096774193548387], DiskBox[7, 0.02096774193548387], DiskBox[8, 0.02096774193548387]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], "}"}]}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"\<\"Giraffe\"\>", ",", RowBox[{"{", RowBox[{"7", ",", "10"}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.008865`", ",", RowBox[{"{", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{5, 11, 19, 25, 46, 52, 60, 66}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, { 1}, {4}, {6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, { 7}, {2}, {5}, {8}, {3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 2}, VertexCoordinates -> {{ 17^Rational[-1, 2], 5 17^Rational[-1, 2]}, { 2 17^Rational[-1, 2], 17^Rational[-1, 2]}, { 2 17^Rational[-1, 2], 9 17^Rational[-1, 2]}, { 3 17^Rational[-1, 2], 5 17^Rational[-1, 2]}, { 5 17^Rational[-1, 2], 6 17^Rational[-1, 2]}, { 6 17^Rational[-1, 2], 2 17^Rational[-1, 2]}, { 6 17^Rational[-1, 2], 10 17^Rational[-1, 2]}, { 7 17^Rational[-1, 2], 6 17^Rational[-1, 2]}}}]]}, TagBox[GraphicsGroupBox[ GraphicsComplexBox[{{0.24253562503633297`, 1.212678125181665}, {0.48507125007266594`, 0.24253562503633297`}, {0.48507125007266594`, 2.182820625326997}, {0.7276068751089989, 1.212678125181665}, {1.212678125181665, 1.4552137502179978`}, {1.4552137502179978`, 0.48507125007266594`}, {1.4552137502179978`, 2.42535625036333}, {1.6977493752543307`, 1.4552137502179978`}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.024077782077903176`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[ 0.7]}], DiskBox[1, 0.024077782077903176], DiskBox[2, 0.024077782077903176], DiskBox[3, 0.024077782077903176], DiskBox[4, 0.024077782077903176], DiskBox[5, 0.024077782077903176], DiskBox[6, 0.024077782077903176], DiskBox[7, 0.024077782077903176], DiskBox[8, 0.024077782077903176]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], "}"}]}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"\<\"Giraffe\"\>", ",", RowBox[{"{", RowBox[{"8", ",", "10"}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.00836`", ",", RowBox[{"{", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{5, 11, 19, 25, 46, 52, 60, 66}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, { 1}, {4}, {6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, { 7}, {2}, {5}, {8}, {3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 2}, VertexCoordinates -> {{ 17^Rational[-1, 2], 5 17^Rational[-1, 2]}, { 2 17^Rational[-1, 2], 17^Rational[-1, 2]}, { 2 17^Rational[-1, 2], 9 17^Rational[-1, 2]}, { 3 17^Rational[-1, 2], 5 17^Rational[-1, 2]}, { 5 17^Rational[-1, 2], 6 17^Rational[-1, 2]}, { 6 17^Rational[-1, 2], 2 17^Rational[-1, 2]}, { 6 17^Rational[-1, 2], 10 17^Rational[-1, 2]}, { 7 17^Rational[-1, 2], 6 17^Rational[-1, 2]}}}]]}, TagBox[GraphicsGroupBox[ GraphicsComplexBox[{{0.24253562503633297`, 1.212678125181665}, {0.48507125007266594`, 0.24253562503633297`}, {0.48507125007266594`, 2.182820625326997}, {0.7276068751089989, 1.212678125181665}, {1.212678125181665, 1.4552137502179978`}, {1.4552137502179978`, 0.48507125007266594`}, {1.4552137502179978`, 2.42535625036333}, {1.6977493752543307`, 1.4552137502179978`}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.024077782077903176`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[ 0.7]}], DiskBox[1, 0.024077782077903176], DiskBox[2, 0.024077782077903176], DiskBox[3, 0.024077782077903176], DiskBox[4, 0.024077782077903176], DiskBox[5, 0.024077782077903176], DiskBox[6, 0.024077782077903176], DiskBox[7, 0.024077782077903176], DiskBox[8, 0.024077782077903176]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], "}"}]}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"\<\"Giraffe\"\>", ",", RowBox[{"{", RowBox[{"9", ",", "10"}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.016361`", ",", RowBox[{"{", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{5, 11, 19, 25, 46, 52, 60, 66}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, { 1}, {4}, {6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, { 7}, {2}, {5}, {8}, {3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 2}, VertexCoordinates -> {{ 17^Rational[-1, 2], 5 17^Rational[-1, 2]}, { 2 17^Rational[-1, 2], 17^Rational[-1, 2]}, { 2 17^Rational[-1, 2], 9 17^Rational[-1, 2]}, { 3 17^Rational[-1, 2], 5 17^Rational[-1, 2]}, { 5 17^Rational[-1, 2], 6 17^Rational[-1, 2]}, { 6 17^Rational[-1, 2], 2 17^Rational[-1, 2]}, { 6 17^Rational[-1, 2], 10 17^Rational[-1, 2]}, { 7 17^Rational[-1, 2], 6 17^Rational[-1, 2]}}}]]}, TagBox[GraphicsGroupBox[ GraphicsComplexBox[{{0.24253562503633297`, 1.212678125181665}, {0.48507125007266594`, 0.24253562503633297`}, {0.48507125007266594`, 2.182820625326997}, {0.7276068751089989, 1.212678125181665}, {1.212678125181665, 1.4552137502179978`}, {1.4552137502179978`, 0.48507125007266594`}, {1.4552137502179978`, 2.42535625036333}, {1.6977493752543307`, 1.4552137502179978`}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.024077782077903176`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[ 0.7]}], DiskBox[1, 0.024077782077903176], DiskBox[2, 0.024077782077903176], DiskBox[3, 0.024077782077903176], DiskBox[4, 0.024077782077903176], DiskBox[5, 0.024077782077903176], DiskBox[6, 0.024077782077903176], DiskBox[7, 0.024077782077903176], DiskBox[8, 0.024077782077903176]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], "}"}]}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"\<\"Giraffe\"\>", ",", RowBox[{"{", RowBox[{"10", ",", "10"}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.017166`", ",", RowBox[{"{", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{2, 16, 41, 55, 43, 57, 82, 96}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, { 1}, {4}, {6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, { 7}, {2}, {5}, {8}, {3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 2}, VertexCoordinates -> {{ 2 17^Rational[-1, 2], 17^Rational[-1, 2]}, { 6 17^Rational[-1, 2], 2 17^Rational[-1, 2]}, { 17^Rational[-1, 2], 5 17^Rational[-1, 2]}, { 5 17^Rational[-1, 2], 6 17^Rational[-1, 2]}, { 3 17^Rational[-1, 2], 5 17^Rational[-1, 2]}, { 7 17^Rational[-1, 2], 6 17^Rational[-1, 2]}, { 2 17^Rational[-1, 2], 9 17^Rational[-1, 2]}, { 6 17^Rational[-1, 2], 10 17^Rational[-1, 2]}}}]]}, TagBox[GraphicsGroupBox[ GraphicsComplexBox[{{0.48507125007266594`, 0.24253562503633297`}, {1.4552137502179978`, 0.48507125007266594`}, {0.24253562503633297`, 1.212678125181665}, {1.212678125181665, 1.4552137502179978`}, {0.7276068751089989, 1.212678125181665}, {1.6977493752543307`, 1.4552137502179978`}, {0.48507125007266594`, 2.182820625326997}, {1.4552137502179978`, 2.42535625036333}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.024077782077903176`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[ 0.7]}], DiskBox[1, 0.024077782077903176], DiskBox[2, 0.024077782077903176], DiskBox[3, 0.024077782077903176], DiskBox[4, 0.024077782077903176], DiskBox[5, 0.024077782077903176], DiskBox[6, 0.024077782077903176], DiskBox[7, 0.024077782077903176], DiskBox[8, 0.024077782077903176]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], "}"}]}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"\<\"Giraffe\"\>", ",", RowBox[{"{", RowBox[{"11", ",", "11"}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.01161`", ",", RowBox[{"{", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{2, 17, 45, 60, 47, 62, 90, 105}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, { 1}, {4}, {6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, { 7}, {2}, {5}, {8}, {3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 2}, VertexCoordinates -> {{ 2 17^Rational[-1, 2], 17^Rational[-1, 2]}, { 6 17^Rational[-1, 2], 2 17^Rational[-1, 2]}, { 17^Rational[-1, 2], 5 17^Rational[-1, 2]}, { 5 17^Rational[-1, 2], 6 17^Rational[-1, 2]}, { 3 17^Rational[-1, 2], 5 17^Rational[-1, 2]}, { 7 17^Rational[-1, 2], 6 17^Rational[-1, 2]}, { 2 17^Rational[-1, 2], 9 17^Rational[-1, 2]}, { 6 17^Rational[-1, 2], 10 17^Rational[-1, 2]}}}]]}, TagBox[GraphicsGroupBox[ GraphicsComplexBox[{{0.48507125007266594`, 0.24253562503633297`}, {1.4552137502179978`, 0.48507125007266594`}, {0.24253562503633297`, 1.212678125181665}, {1.212678125181665, 1.4552137502179978`}, {0.7276068751089989, 1.212678125181665}, {1.6977493752543307`, 1.4552137502179978`}, {0.48507125007266594`, 2.182820625326997}, {1.4552137502179978`, 2.42535625036333}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.024077782077903176`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[ 0.7]}], DiskBox[1, 0.024077782077903176], DiskBox[2, 0.024077782077903176], DiskBox[3, 0.024077782077903176], DiskBox[4, 0.024077782077903176], DiskBox[5, 0.024077782077903176], DiskBox[6, 0.024077782077903176], DiskBox[7, 0.024077782077903176], DiskBox[8, 0.024077782077903176]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], "}"}]}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"\<\"Giraffe\"\>", ",", RowBox[{"{", RowBox[{"12", ",", "12"}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.020816`", ",", RowBox[{"{", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{2, 18, 49, 65, 51, 67, 98, 114}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, { 1}, {4}, {6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, { 7}, {2}, {5}, {8}, {3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 2}, VertexCoordinates -> {{ 2 17^Rational[-1, 2], 17^Rational[-1, 2]}, { 6 17^Rational[-1, 2], 2 17^Rational[-1, 2]}, { 17^Rational[-1, 2], 5 17^Rational[-1, 2]}, { 5 17^Rational[-1, 2], 6 17^Rational[-1, 2]}, { 3 17^Rational[-1, 2], 5 17^Rational[-1, 2]}, { 7 17^Rational[-1, 2], 6 17^Rational[-1, 2]}, { 2 17^Rational[-1, 2], 9 17^Rational[-1, 2]}, { 6 17^Rational[-1, 2], 10 17^Rational[-1, 2]}}}]]}, TagBox[GraphicsGroupBox[ GraphicsComplexBox[{{0.48507125007266594`, 0.24253562503633297`}, {1.4552137502179978`, 0.48507125007266594`}, {0.24253562503633297`, 1.212678125181665}, {1.212678125181665, 1.4552137502179978`}, {0.7276068751089989, 1.212678125181665}, {1.6977493752543307`, 1.4552137502179978`}, {0.48507125007266594`, 2.182820625326997}, {1.4552137502179978`, 2.42535625036333}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.024077782077903176`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[ 0.7]}], DiskBox[1, 0.024077782077903176], DiskBox[2, 0.024077782077903176], DiskBox[3, 0.024077782077903176], DiskBox[4, 0.024077782077903176], DiskBox[5, 0.024077782077903176], DiskBox[6, 0.024077782077903176], DiskBox[7, 0.024077782077903176], DiskBox[8, 0.024077782077903176]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], "}"}]}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"\<\"Giraffe\"\>", ",", RowBox[{"{", RowBox[{"13", ",", "13"}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.014762`", ",", RowBox[{"{", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{2, 19, 53, 70, 55, 72, 106, 123}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, { 1}, {4}, {6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, { 7}, {2}, {5}, {8}, {3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 2}, VertexCoordinates -> {{ 2 17^Rational[-1, 2], 17^Rational[-1, 2]}, { 6 17^Rational[-1, 2], 2 17^Rational[-1, 2]}, { 17^Rational[-1, 2], 5 17^Rational[-1, 2]}, { 5 17^Rational[-1, 2], 6 17^Rational[-1, 2]}, { 3 17^Rational[-1, 2], 5 17^Rational[-1, 2]}, { 7 17^Rational[-1, 2], 6 17^Rational[-1, 2]}, { 2 17^Rational[-1, 2], 9 17^Rational[-1, 2]}, { 6 17^Rational[-1, 2], 10 17^Rational[-1, 2]}}}]]}, TagBox[GraphicsGroupBox[ GraphicsComplexBox[{{0.48507125007266594`, 0.24253562503633297`}, {1.4552137502179978`, 0.48507125007266594`}, {0.24253562503633297`, 1.212678125181665}, {1.212678125181665, 1.4552137502179978`}, {0.7276068751089989, 1.212678125181665}, {1.6977493752543307`, 1.4552137502179978`}, {0.48507125007266594`, 2.182820625326997}, {1.4552137502179978`, 2.42535625036333}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.024077782077903176`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[ 0.7]}], DiskBox[1, 0.024077782077903176], DiskBox[2, 0.024077782077903176], DiskBox[3, 0.024077782077903176], DiskBox[4, 0.024077782077903176], DiskBox[5, 0.024077782077903176], DiskBox[6, 0.024077782077903176], DiskBox[7, 0.024077782077903176], DiskBox[8, 0.024077782077903176]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], "}"}]}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"\<\"Giraffe\"\>", ",", RowBox[{"{", RowBox[{"14", ",", "14"}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.031195`", ",", RowBox[{"{", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{2, 20, 57, 75, 59, 77, 114, 132}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, { 1}, {4}, {6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, { 7}, {2}, {5}, {8}, {3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 2}, VertexCoordinates -> {{ 2 17^Rational[-1, 2], 17^Rational[-1, 2]}, { 6 17^Rational[-1, 2], 2 17^Rational[-1, 2]}, { 17^Rational[-1, 2], 5 17^Rational[-1, 2]}, { 5 17^Rational[-1, 2], 6 17^Rational[-1, 2]}, { 3 17^Rational[-1, 2], 5 17^Rational[-1, 2]}, { 7 17^Rational[-1, 2], 6 17^Rational[-1, 2]}, { 2 17^Rational[-1, 2], 9 17^Rational[-1, 2]}, { 6 17^Rational[-1, 2], 10 17^Rational[-1, 2]}}}]]}, TagBox[GraphicsGroupBox[ GraphicsComplexBox[{{0.48507125007266594`, 0.24253562503633297`}, {1.4552137502179978`, 0.48507125007266594`}, {0.24253562503633297`, 1.212678125181665}, {1.212678125181665, 1.4552137502179978`}, {0.7276068751089989, 1.212678125181665}, {1.6977493752543307`, 1.4552137502179978`}, {0.48507125007266594`, 2.182820625326997}, {1.4552137502179978`, 2.42535625036333}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.024077782077903176`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[ 0.7]}], DiskBox[1, 0.024077782077903176], DiskBox[2, 0.024077782077903176], DiskBox[3, 0.024077782077903176], DiskBox[4, 0.024077782077903176], DiskBox[5, 0.024077782077903176], DiskBox[6, 0.024077782077903176], DiskBox[7, 0.024077782077903176], DiskBox[8, 0.024077782077903176]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], "}"}]}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"\<\"Giraffe\"\>", ",", RowBox[{"{", RowBox[{"15", ",", "15"}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.019714`", ",", RowBox[{"{", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{2, 21, 61, 80, 63, 82, 122, 141}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, { 1}, {4}, {6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, { 7}, {2}, {5}, {8}, {3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 2}, VertexCoordinates -> {{ 2 17^Rational[-1, 2], 17^Rational[-1, 2]}, { 6 17^Rational[-1, 2], 2 17^Rational[-1, 2]}, { 17^Rational[-1, 2], 5 17^Rational[-1, 2]}, { 5 17^Rational[-1, 2], 6 17^Rational[-1, 2]}, { 3 17^Rational[-1, 2], 5 17^Rational[-1, 2]}, { 7 17^Rational[-1, 2], 6 17^Rational[-1, 2]}, { 2 17^Rational[-1, 2], 9 17^Rational[-1, 2]}, { 6 17^Rational[-1, 2], 10 17^Rational[-1, 2]}}}]]}, TagBox[GraphicsGroupBox[ GraphicsComplexBox[{{0.48507125007266594`, 0.24253562503633297`}, {1.4552137502179978`, 0.48507125007266594`}, {0.24253562503633297`, 1.212678125181665}, {1.212678125181665, 1.4552137502179978`}, {0.7276068751089989, 1.212678125181665}, {1.6977493752543307`, 1.4552137502179978`}, {0.48507125007266594`, 2.182820625326997}, {1.4552137502179978`, 2.42535625036333}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.024077782077903176`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[ 0.7]}], DiskBox[1, 0.024077782077903176], DiskBox[2, 0.024077782077903176], DiskBox[3, 0.024077782077903176], DiskBox[4, 0.024077782077903176], DiskBox[5, 0.024077782077903176], DiskBox[6, 0.024077782077903176], DiskBox[7, 0.024077782077903176], DiskBox[8, 0.024077782077903176]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], "}"}]}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"\<\"Giraffe\"\>", ",", RowBox[{"{", RowBox[{"16", ",", "16"}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.035775`", ",", RowBox[{"{", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{2, 22, 65, 85, 67, 87, 130, 150}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, { 1}, {4}, {6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, { 7}, {2}, {5}, {8}, {3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 2}, VertexCoordinates -> {{ 2 17^Rational[-1, 2], 17^Rational[-1, 2]}, { 6 17^Rational[-1, 2], 2 17^Rational[-1, 2]}, { 17^Rational[-1, 2], 5 17^Rational[-1, 2]}, { 5 17^Rational[-1, 2], 6 17^Rational[-1, 2]}, { 3 17^Rational[-1, 2], 5 17^Rational[-1, 2]}, { 7 17^Rational[-1, 2], 6 17^Rational[-1, 2]}, { 2 17^Rational[-1, 2], 9 17^Rational[-1, 2]}, { 6 17^Rational[-1, 2], 10 17^Rational[-1, 2]}}}]]}, TagBox[GraphicsGroupBox[ GraphicsComplexBox[{{0.48507125007266594`, 0.24253562503633297`}, {1.4552137502179978`, 0.48507125007266594`}, {0.24253562503633297`, 1.212678125181665}, {1.212678125181665, 1.4552137502179978`}, {0.7276068751089989, 1.212678125181665}, {1.6977493752543307`, 1.4552137502179978`}, {0.48507125007266594`, 2.182820625326997}, {1.4552137502179978`, 2.42535625036333}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.024077782077903176`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[ 0.7]}], DiskBox[1, 0.024077782077903176], DiskBox[2, 0.024077782077903176], DiskBox[3, 0.024077782077903176], DiskBox[4, 0.024077782077903176], DiskBox[5, 0.024077782077903176], DiskBox[6, 0.024077782077903176], DiskBox[7, 0.024077782077903176], DiskBox[8, 0.024077782077903176]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], "}"}]}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"\<\"Giraffe\"\>", ",", RowBox[{"{", RowBox[{"17", ",", "17"}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.023693`", ",", RowBox[{"{", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{2, 23, 69, 90, 71, 92, 138, 159}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, { 1}, {4}, {6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, { 7}, {2}, {5}, {8}, {3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 2}, VertexCoordinates -> {{ 2 17^Rational[-1, 2], 17^Rational[-1, 2]}, { 6 17^Rational[-1, 2], 2 17^Rational[-1, 2]}, { 17^Rational[-1, 2], 5 17^Rational[-1, 2]}, { 5 17^Rational[-1, 2], 6 17^Rational[-1, 2]}, { 3 17^Rational[-1, 2], 5 17^Rational[-1, 2]}, { 7 17^Rational[-1, 2], 6 17^Rational[-1, 2]}, { 2 17^Rational[-1, 2], 9 17^Rational[-1, 2]}, { 6 17^Rational[-1, 2], 10 17^Rational[-1, 2]}}}]]}, TagBox[ GraphicsGroupBox[ GraphicsComplexBox[{{0.48507125007266594`, 0.24253562503633297`}, {1.4552137502179978`, 0.48507125007266594`}, {0.24253562503633297`, 1.212678125181665}, {1.212678125181665, 1.4552137502179978`}, {0.7276068751089989, 1.212678125181665}, {1.6977493752543307`, 1.4552137502179978`}, {0.48507125007266594`, 2.182820625326997}, {1.4552137502179978`, 2.42535625036333}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.024077782077903176`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[ 0.7]}], DiskBox[1, 0.024077782077903176], DiskBox[2, 0.024077782077903176], DiskBox[3, 0.024077782077903176], DiskBox[4, 0.024077782077903176], DiskBox[5, 0.024077782077903176], DiskBox[6, 0.024077782077903176], DiskBox[7, 0.024077782077903176], DiskBox[8, 0.024077782077903176]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], "}"}]}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"\<\"Giraffe\"\>", ",", RowBox[{"{", RowBox[{"18", ",", "18"}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.044952`", ",", RowBox[{"{", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{2, 24, 73, 95, 75, 97, 146, 168}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, { 1}, {4}, {6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, { 7}, {2}, {5}, {8}, {3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 2}, VertexCoordinates -> {{ 2 17^Rational[-1, 2], 17^Rational[-1, 2]}, { 6 17^Rational[-1, 2], 2 17^Rational[-1, 2]}, { 17^Rational[-1, 2], 5 17^Rational[-1, 2]}, { 5 17^Rational[-1, 2], 6 17^Rational[-1, 2]}, { 3 17^Rational[-1, 2], 5 17^Rational[-1, 2]}, { 7 17^Rational[-1, 2], 6 17^Rational[-1, 2]}, { 2 17^Rational[-1, 2], 9 17^Rational[-1, 2]}, { 6 17^Rational[-1, 2], 10 17^Rational[-1, 2]}}}]]}, TagBox[GraphicsGroupBox[ GraphicsComplexBox[{{0.48507125007266594`, 0.24253562503633297`}, {1.4552137502179978`, 0.48507125007266594`}, {0.24253562503633297`, 1.212678125181665}, {1.212678125181665, 1.4552137502179978`}, {0.7276068751089989, 1.212678125181665}, {1.6977493752543307`, 1.4552137502179978`}, {0.48507125007266594`, 2.182820625326997}, {1.4552137502179978`, 2.42535625036333}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.024077782077903176`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[ 0.7]}], DiskBox[1, 0.024077782077903176], DiskBox[2, 0.024077782077903176], DiskBox[3, 0.024077782077903176], DiskBox[4, 0.024077782077903176], DiskBox[5, 0.024077782077903176], DiskBox[6, 0.024077782077903176], DiskBox[7, 0.024077782077903176], DiskBox[8, 0.024077782077903176]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], "}"}]}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"\<\"Giraffe\"\>", ",", RowBox[{"{", RowBox[{"19", ",", "19"}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.030106`", ",", RowBox[{"{", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{2, 25, 77, 100, 79, 102, 154, 177}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, { 1}, {4}, {6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, { 7}, {2}, {5}, {8}, {3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 2}, VertexCoordinates -> {{ 2 17^Rational[-1, 2], 17^Rational[-1, 2]}, { 6 17^Rational[-1, 2], 2 17^Rational[-1, 2]}, { 17^Rational[-1, 2], 5 17^Rational[-1, 2]}, { 5 17^Rational[-1, 2], 6 17^Rational[-1, 2]}, { 3 17^Rational[-1, 2], 5 17^Rational[-1, 2]}, { 7 17^Rational[-1, 2], 6 17^Rational[-1, 2]}, { 2 17^Rational[-1, 2], 9 17^Rational[-1, 2]}, { 6 17^Rational[-1, 2], 10 17^Rational[-1, 2]}}}]]}, TagBox[GraphicsGroupBox[ GraphicsComplexBox[{{0.48507125007266594`, 0.24253562503633297`}, {1.4552137502179978`, 0.48507125007266594`}, {0.24253562503633297`, 1.212678125181665}, {1.212678125181665, 1.4552137502179978`}, {0.7276068751089989, 1.212678125181665}, {1.6977493752543307`, 1.4552137502179978`}, {0.48507125007266594`, 2.182820625326997}, {1.4552137502179978`, 2.42535625036333}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.024077782077903176`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[ 0.7]}], DiskBox[1, 0.024077782077903176], DiskBox[2, 0.024077782077903176], DiskBox[3, 0.024077782077903176], DiskBox[4, 0.024077782077903176], DiskBox[5, 0.024077782077903176], DiskBox[6, 0.024077782077903176], DiskBox[7, 0.024077782077903176], DiskBox[8, 0.024077782077903176]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], "}"}]}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"\<\"Giraffe\"\>", ",", RowBox[{"{", RowBox[{"20", ",", "20"}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.031901`", ",", RowBox[{"{", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{2, 26, 81, 105, 83, 107, 162, 186}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, { 1}, {4}, {6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, { 7}, {2}, {5}, {8}, {3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 2}, VertexCoordinates -> {{ 2 17^Rational[-1, 2], 17^Rational[-1, 2]}, { 6 17^Rational[-1, 2], 2 17^Rational[-1, 2]}, { 17^Rational[-1, 2], 5 17^Rational[-1, 2]}, { 5 17^Rational[-1, 2], 6 17^Rational[-1, 2]}, { 3 17^Rational[-1, 2], 5 17^Rational[-1, 2]}, { 7 17^Rational[-1, 2], 6 17^Rational[-1, 2]}, { 2 17^Rational[-1, 2], 9 17^Rational[-1, 2]}, { 6 17^Rational[-1, 2], 10 17^Rational[-1, 2]}}}]]}, TagBox[GraphicsGroupBox[ GraphicsComplexBox[{{0.48507125007266594`, 0.24253562503633297`}, {1.4552137502179978`, 0.48507125007266594`}, {0.24253562503633297`, 1.212678125181665}, {1.212678125181665, 1.4552137502179978`}, {0.7276068751089989, 1.212678125181665}, {1.6977493752543307`, 1.4552137502179978`}, {0.48507125007266594`, 2.182820625326997}, {1.4552137502179978`, 2.42535625036333}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.024077782077903176`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[ 0.7]}], DiskBox[1, 0.024077782077903176], DiskBox[2, 0.024077782077903176], DiskBox[3, 0.024077782077903176], DiskBox[4, 0.024077782077903176], DiskBox[5, 0.024077782077903176], DiskBox[6, 0.024077782077903176], DiskBox[7, 0.024077782077903176], DiskBox[8, 0.024077782077903176]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], "}"}]}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"\<\"Grid\"\>", ",", RowBox[{"{", RowBox[{"2", ",", "2", ",", "3"}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.02339`", ",", RowBox[{"{", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, { 1}, {4}, {6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, { 7}, {2}, {5}, {8}, {3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 2}, VertexCoordinates -> {{1, 1}, {1, 2}, {2, 1}, {2, 2}, { Rational[1, 4] (3 - 5^Rational[1, 2]), 1 + (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2]), 2 + (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[1, 4] (7 - 5^Rational[1, 2]), 1 + (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[1, 4] (7 - 5^Rational[1, 2]), 2 + (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^ Rational[1, 2]}}}]]}, TagBox[GraphicsGroupBox[ GraphicsComplexBox[{{1., 1.}, {1., 2.}, {2., 1.}, {2., 2.}, { 0.19098300562505255`, 1.5877852522924731`}, { 0.19098300562505255`, 2.5877852522924734`}, { 1.1909830056250525`, 1.5877852522924731`}, { 1.1909830056250525`, 2.5877852522924734`}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.021042761722074865`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[ 0.7]}], DiskBox[1, 0.021042761722074865], DiskBox[2, 0.021042761722074865], DiskBox[3, 0.021042761722074865], DiskBox[4, 0.021042761722074865], DiskBox[5, 0.021042761722074865], DiskBox[6, 0.021042761722074865], DiskBox[7, 0.021042761722074865], DiskBox[8, 0.021042761722074865]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], "}"}]}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"\<\"Grid\"\>", ",", RowBox[{"{", RowBox[{"2", ",", "2", ",", "4"}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.021587`", ",", RowBox[{"{", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, { 1}, {4}, {6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, { 7}, {2}, {5}, {8}, {3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 2}, VertexCoordinates -> {{1, 1}, {1, 2}, {2, 1}, {2, 2}, { Rational[1, 4] (3 - 5^Rational[1, 2]), 1 + (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2]), 2 + (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[1, 4] (7 - 5^Rational[1, 2]), 1 + (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[1, 4] (7 - 5^Rational[1, 2]), 2 + (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^ Rational[1, 2]}}}]]}, TagBox[GraphicsGroupBox[ GraphicsComplexBox[{{1., 1.}, {1., 2.}, {2., 1.}, {2., 2.}, { 0.19098300562505255`, 1.5877852522924731`}, { 0.19098300562505255`, 2.5877852522924734`}, { 1.1909830056250525`, 1.5877852522924731`}, { 1.1909830056250525`, 2.5877852522924734`}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.021042761722074865`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[ 0.7]}], DiskBox[1, 0.021042761722074865], DiskBox[2, 0.021042761722074865], DiskBox[3, 0.021042761722074865], DiskBox[4, 0.021042761722074865], DiskBox[5, 0.021042761722074865], DiskBox[6, 0.021042761722074865], DiskBox[7, 0.021042761722074865], DiskBox[8, 0.021042761722074865]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], "}"}]}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"\<\"Grid\"\>", ",", RowBox[{"{", RowBox[{"2", ",", "2", ",", "5"}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.03005`", ",", RowBox[{"{", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, { 1}, {4}, {6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, { 7}, {2}, {5}, {8}, {3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 2}, VertexCoordinates -> {{1, 1}, {1, 2}, {2, 1}, {2, 2}, { Rational[1, 4] (3 - 5^Rational[1, 2]), 1 + (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2]), 2 + (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[1, 4] (7 - 5^Rational[1, 2]), 1 + (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[1, 4] (7 - 5^Rational[1, 2]), 2 + (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^ Rational[1, 2]}}}]]}, TagBox[GraphicsGroupBox[ GraphicsComplexBox[{{1., 1.}, {1., 2.}, {2., 1.}, {2., 2.}, { 0.19098300562505255`, 1.5877852522924731`}, { 0.19098300562505255`, 2.5877852522924734`}, { 1.1909830056250525`, 1.5877852522924731`}, { 1.1909830056250525`, 2.5877852522924734`}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.021042761722074865`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[ 0.7]}], DiskBox[1, 0.021042761722074865], DiskBox[2, 0.021042761722074865], DiskBox[3, 0.021042761722074865], DiskBox[4, 0.021042761722074865], DiskBox[5, 0.021042761722074865], DiskBox[6, 0.021042761722074865], DiskBox[7, 0.021042761722074865], DiskBox[8, 0.021042761722074865]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], "}"}]}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"\<\"Grid\"\>", ",", RowBox[{"{", RowBox[{"2", ",", "3", ",", "3"}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.007293`", ",", RowBox[{"{", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 7, 8, 9, 10}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, { 1}, {4}, {6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, { 7}, {2}, {5}, {8}, {3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 2}, VertexCoordinates -> {{1, 1}, {2, 1}, {1, 2}, {2, 2}, { Rational[1, 4] (3 - 5^Rational[1, 2]), 1 + (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[1, 4] (7 - 5^Rational[1, 2]), 1 + (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2]), 2 + (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[1, 4] (7 - 5^Rational[1, 2]), 2 + (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^ Rational[1, 2]}}}]]}, TagBox[GraphicsGroupBox[ GraphicsComplexBox[{{1., 1.}, {2., 1.}, {1., 2.}, {2., 2.}, { 0.19098300562505255`, 1.5877852522924731`}, { 1.1909830056250525`, 1.5877852522924731`}, { 0.19098300562505255`, 2.5877852522924734`}, { 1.1909830056250525`, 2.5877852522924734`}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.021042761722074865`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[ 0.7]}], DiskBox[1, 0.021042761722074865], DiskBox[2, 0.021042761722074865], DiskBox[3, 0.021042761722074865], DiskBox[4, 0.021042761722074865], DiskBox[5, 0.021042761722074865], DiskBox[6, 0.021042761722074865], DiskBox[7, 0.021042761722074865], DiskBox[8, 0.021042761722074865]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], "}"}]}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"\<\"Grid\"\>", ",", RowBox[{"{", RowBox[{"2", ",", "3", ",", "4"}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.007161`", ",", RowBox[{"{", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 7, 8, 9, 10}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, { 1}, {4}, {6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, { 7}, {2}, {5}, {8}, {3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 2}, VertexCoordinates -> {{1, 1}, {2, 1}, {1, 2}, {2, 2}, { Rational[1, 4] (3 - 5^Rational[1, 2]), 1 + (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[1, 4] (7 - 5^Rational[1, 2]), 1 + (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2]), 2 + (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[1, 4] (7 - 5^Rational[1, 2]), 2 + (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^ Rational[1, 2]}}}]]}, TagBox[GraphicsGroupBox[ GraphicsComplexBox[{{1., 1.}, {2., 1.}, {1., 2.}, {2., 2.}, { 0.19098300562505255`, 1.5877852522924731`}, { 1.1909830056250525`, 1.5877852522924731`}, { 0.19098300562505255`, 2.5877852522924734`}, { 1.1909830056250525`, 2.5877852522924734`}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.021042761722074865`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[ 0.7]}], DiskBox[1, 0.021042761722074865], DiskBox[2, 0.021042761722074865], DiskBox[3, 0.021042761722074865], DiskBox[4, 0.021042761722074865], DiskBox[5, 0.021042761722074865], DiskBox[6, 0.021042761722074865], DiskBox[7, 0.021042761722074865], DiskBox[8, 0.021042761722074865]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], "}"}]}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"\<\"Grid\"\>", ",", RowBox[{"{", RowBox[{"2", ",", "3", ",", "5"}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.054102`", ",", RowBox[{"{", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 7, 8, 9, 10}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, { 1}, {4}, {6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, { 7}, {2}, {5}, {8}, {3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 2}, VertexCoordinates -> {{1, 1}, {2, 1}, {1, 2}, {2, 2}, { Rational[1, 4] (3 - 5^Rational[1, 2]), 1 + (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[1, 4] (7 - 5^Rational[1, 2]), 1 + (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2]), 2 + (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[1, 4] (7 - 5^Rational[1, 2]), 2 + (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^ Rational[1, 2]}}}]]}, TagBox[GraphicsGroupBox[ GraphicsComplexBox[{{1., 1.}, {2., 1.}, {1., 2.}, {2., 2.}, { 0.19098300562505255`, 1.5877852522924731`}, { 1.1909830056250525`, 1.5877852522924731`}, { 0.19098300562505255`, 2.5877852522924734`}, { 1.1909830056250525`, 2.5877852522924734`}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.021042761722074865`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[ 0.7]}], DiskBox[1, 0.021042761722074865], DiskBox[2, 0.021042761722074865], DiskBox[3, 0.021042761722074865], DiskBox[4, 0.021042761722074865], DiskBox[5, 0.021042761722074865], DiskBox[6, 0.021042761722074865], DiskBox[7, 0.021042761722074865], DiskBox[8, 0.021042761722074865]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], "}"}]}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"\<\"Grid\"\>", ",", RowBox[{"{", RowBox[{"2", ",", "4", ",", "4"}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.037751`", ",", RowBox[{"{", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 9, 10, 11, 12}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, { 1}, {4}, {6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, { 7}, {2}, {5}, {8}, {3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 2}, VertexCoordinates -> {{1, 1}, {2, 1}, {1, 2}, {2, 2}, { Rational[1, 4] (3 - 5^Rational[1, 2]), 1 + (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[1, 4] (7 - 5^Rational[1, 2]), 1 + (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2]), 2 + (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[1, 4] (7 - 5^Rational[1, 2]), 2 + (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^ Rational[1, 2]}}}]]}, TagBox[GraphicsGroupBox[ GraphicsComplexBox[{{1., 1.}, {2., 1.}, {1., 2.}, {2., 2.}, { 0.19098300562505255`, 1.5877852522924731`}, { 1.1909830056250525`, 1.5877852522924731`}, { 0.19098300562505255`, 2.5877852522924734`}, { 1.1909830056250525`, 2.5877852522924734`}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.021042761722074865`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[ 0.7]}], DiskBox[1, 0.021042761722074865], DiskBox[2, 0.021042761722074865], DiskBox[3, 0.021042761722074865], DiskBox[4, 0.021042761722074865], DiskBox[5, 0.021042761722074865], DiskBox[6, 0.021042761722074865], DiskBox[7, 0.021042761722074865], DiskBox[8, 0.021042761722074865]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], "}"}]}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"\<\"Grid\"\>", ",", RowBox[{"{", RowBox[{"2", ",", "4", ",", "5"}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.009426`", ",", RowBox[{"{", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 9, 10, 11, 12}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, { 1}, {4}, {6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, { 7}, {2}, {5}, {8}, {3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 2}, VertexCoordinates -> {{1, 1}, {2, 1}, {1, 2}, {2, 2}, { Rational[1, 4] (3 - 5^Rational[1, 2]), 1 + (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[1, 4] (7 - 5^Rational[1, 2]), 1 + (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2]), 2 + (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[1, 4] (7 - 5^Rational[1, 2]), 2 + (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^ Rational[1, 2]}}}]]}, TagBox[GraphicsGroupBox[ GraphicsComplexBox[{{1., 1.}, {2., 1.}, {1., 2.}, {2., 2.}, { 0.19098300562505255`, 1.5877852522924731`}, { 1.1909830056250525`, 1.5877852522924731`}, { 0.19098300562505255`, 2.5877852522924734`}, { 1.1909830056250525`, 2.5877852522924734`}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.021042761722074865`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[ 0.7]}], DiskBox[1, 0.021042761722074865], DiskBox[2, 0.021042761722074865], DiskBox[3, 0.021042761722074865], DiskBox[4, 0.021042761722074865], DiskBox[5, 0.021042761722074865], DiskBox[6, 0.021042761722074865], DiskBox[7, 0.021042761722074865], DiskBox[8, 0.021042761722074865]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], "}"}]}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"\<\"Grid\"\>", ",", RowBox[{"{", RowBox[{"2", ",", "5", ",", "5"}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.010838`", ",", RowBox[{"{", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 11, 12, 13, 14}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, { 1}, {4}, {6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, { 7}, {2}, {5}, {8}, {3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 2}, VertexCoordinates -> {{1, 1}, {2, 1}, {1, 2}, {2, 2}, { Rational[1, 4] (3 - 5^Rational[1, 2]), 1 + (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[1, 4] (7 - 5^Rational[1, 2]), 1 + (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2]), 2 + (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[1, 4] (7 - 5^Rational[1, 2]), 2 + (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^ Rational[1, 2]}}}]]}, TagBox[GraphicsGroupBox[ GraphicsComplexBox[{{1., 1.}, {2., 1.}, {1., 2.}, {2., 2.}, { 0.19098300562505255`, 1.5877852522924731`}, { 1.1909830056250525`, 1.5877852522924731`}, { 0.19098300562505255`, 2.5877852522924734`}, { 1.1909830056250525`, 2.5877852522924734`}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.021042761722074865`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[ 0.7]}], DiskBox[1, 0.021042761722074865], DiskBox[2, 0.021042761722074865], DiskBox[3, 0.021042761722074865], DiskBox[4, 0.021042761722074865], DiskBox[5, 0.021042761722074865], DiskBox[6, 0.021042761722074865], DiskBox[7, 0.021042761722074865], DiskBox[8, 0.021042761722074865]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], "}"}]}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"\<\"Grid\"\>", ",", RowBox[{"{", RowBox[{"3", ",", "3", ",", "3"}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.005072`", ",", RowBox[{"{", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 4, 5, 10, 11, 13, 14}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, { 1}, {4}, {6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, { 7}, {2}, {5}, {8}, {3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 2}, VertexCoordinates -> {{1, 1}, {1, 2}, {2, 1}, {2, 2}, { Rational[1, 4] (3 - 5^Rational[1, 2]), 1 + (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2]), 2 + (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[1, 4] (7 - 5^Rational[1, 2]), 1 + (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[1, 4] (7 - 5^Rational[1, 2]), 2 + (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^ Rational[1, 2]}}}]]}, TagBox[GraphicsGroupBox[ GraphicsComplexBox[{{1., 1.}, {1., 2.}, {2., 1.}, {2., 2.}, { 0.19098300562505255`, 1.5877852522924731`}, { 0.19098300562505255`, 2.5877852522924734`}, { 1.1909830056250525`, 1.5877852522924731`}, { 1.1909830056250525`, 2.5877852522924734`}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.021042761722074865`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[ 0.7]}], DiskBox[1, 0.021042761722074865], DiskBox[2, 0.021042761722074865], DiskBox[3, 0.021042761722074865], DiskBox[4, 0.021042761722074865], DiskBox[5, 0.021042761722074865], DiskBox[6, 0.021042761722074865], DiskBox[7, 0.021042761722074865], DiskBox[8, 0.021042761722074865]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], "}"}]}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"\<\"Grid\"\>", ",", RowBox[{"{", RowBox[{"3", ",", "3", ",", "4"}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.008582`", ",", RowBox[{"{", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 4, 5, 10, 11, 13, 14}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, { 1}, {4}, {6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, { 7}, {2}, {5}, {8}, {3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 2}, VertexCoordinates -> {{1, 1}, {1, 2}, {2, 1}, {2, 2}, { Rational[1, 4] (3 - 5^Rational[1, 2]), 1 + (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2]), 2 + (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[1, 4] (7 - 5^Rational[1, 2]), 1 + (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[1, 4] (7 - 5^Rational[1, 2]), 2 + (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^ Rational[1, 2]}}}]]}, TagBox[GraphicsGroupBox[ GraphicsComplexBox[{{1., 1.}, {1., 2.}, {2., 1.}, {2., 2.}, { 0.19098300562505255`, 1.5877852522924731`}, { 0.19098300562505255`, 2.5877852522924734`}, { 1.1909830056250525`, 1.5877852522924731`}, { 1.1909830056250525`, 2.5877852522924734`}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.021042761722074865`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[ 0.7]}], DiskBox[1, 0.021042761722074865], DiskBox[2, 0.021042761722074865], DiskBox[3, 0.021042761722074865], DiskBox[4, 0.021042761722074865], DiskBox[5, 0.021042761722074865], DiskBox[6, 0.021042761722074865], DiskBox[7, 0.021042761722074865], DiskBox[8, 0.021042761722074865]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], "}"}]}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"\<\"Grid\"\>", ",", RowBox[{"{", RowBox[{"3", ",", "3", ",", "5"}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.007106`", ",", RowBox[{"{", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 4, 5, 10, 11, 13, 14}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, { 1}, {4}, {6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, { 7}, {2}, {5}, {8}, {3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 2}, VertexCoordinates -> {{1, 1}, {1, 2}, {2, 1}, {2, 2}, { Rational[1, 4] (3 - 5^Rational[1, 2]), 1 + (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2]), 2 + (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[1, 4] (7 - 5^Rational[1, 2]), 1 + (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[1, 4] (7 - 5^Rational[1, 2]), 2 + (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^ Rational[1, 2]}}}]]}, TagBox[GraphicsGroupBox[ GraphicsComplexBox[{{1., 1.}, {1., 2.}, {2., 1.}, {2., 2.}, { 0.19098300562505255`, 1.5877852522924731`}, { 0.19098300562505255`, 2.5877852522924734`}, { 1.1909830056250525`, 1.5877852522924731`}, { 1.1909830056250525`, 2.5877852522924734`}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.021042761722074865`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[ 0.7]}], DiskBox[1, 0.021042761722074865], DiskBox[2, 0.021042761722074865], DiskBox[3, 0.021042761722074865], DiskBox[4, 0.021042761722074865], DiskBox[5, 0.021042761722074865], DiskBox[6, 0.021042761722074865], DiskBox[7, 0.021042761722074865], DiskBox[8, 0.021042761722074865]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], "}"}]}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"\<\"Grid\"\>", ",", RowBox[{"{", RowBox[{"3", ",", "4", ",", "4"}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.010921`", ",", RowBox[{"{", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 4, 5, 13, 14, 16, 17}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, { 1}, {4}, {6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, { 7}, {2}, {5}, {8}, {3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 2}, VertexCoordinates -> {{1, 1}, {2, 1}, {1, 2}, {2, 2}, { Rational[1, 4] (3 - 5^Rational[1, 2]), 1 + (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[1, 4] (7 - 5^Rational[1, 2]), 1 + (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2]), 2 + (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[1, 4] (7 - 5^Rational[1, 2]), 2 + (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^ Rational[1, 2]}}}]]}, TagBox[GraphicsGroupBox[ GraphicsComplexBox[{{1., 1.}, {2., 1.}, {1., 2.}, {2., 2.}, { 0.19098300562505255`, 1.5877852522924731`}, { 1.1909830056250525`, 1.5877852522924731`}, { 0.19098300562505255`, 2.5877852522924734`}, { 1.1909830056250525`, 2.5877852522924734`}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.021042761722074865`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[ 0.7]}], DiskBox[1, 0.021042761722074865], DiskBox[2, 0.021042761722074865], DiskBox[3, 0.021042761722074865], DiskBox[4, 0.021042761722074865], DiskBox[5, 0.021042761722074865], DiskBox[6, 0.021042761722074865], DiskBox[7, 0.021042761722074865], DiskBox[8, 0.021042761722074865]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], "}"}]}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"\<\"Grid\"\>", ",", RowBox[{"{", RowBox[{"3", ",", "4", ",", "5"}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.012335`", ",", RowBox[{"{", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 4, 5, 13, 14, 16, 17}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, { 1}, {4}, {6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, { 7}, {2}, {5}, {8}, {3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 2}, VertexCoordinates -> {{1, 1}, {2, 1}, {1, 2}, {2, 2}, { Rational[1, 4] (3 - 5^Rational[1, 2]), 1 + (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[1, 4] (7 - 5^Rational[1, 2]), 1 + (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2]), 2 + (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[1, 4] (7 - 5^Rational[1, 2]), 2 + (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^ Rational[1, 2]}}}]]}, TagBox[GraphicsGroupBox[ GraphicsComplexBox[{{1., 1.}, {2., 1.}, {1., 2.}, {2., 2.}, { 0.19098300562505255`, 1.5877852522924731`}, { 1.1909830056250525`, 1.5877852522924731`}, { 0.19098300562505255`, 2.5877852522924734`}, { 1.1909830056250525`, 2.5877852522924734`}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.021042761722074865`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[ 0.7]}], DiskBox[1, 0.021042761722074865], DiskBox[2, 0.021042761722074865], DiskBox[3, 0.021042761722074865], DiskBox[4, 0.021042761722074865], DiskBox[5, 0.021042761722074865], DiskBox[6, 0.021042761722074865], DiskBox[7, 0.021042761722074865], DiskBox[8, 0.021042761722074865]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], "}"}]}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"\<\"Grid\"\>", ",", RowBox[{"{", RowBox[{"3", ",", "5", ",", "5"}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.009888`", ",", RowBox[{"{", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 4, 5, 16, 17, 19, 20}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, { 1}, {4}, {6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, { 7}, {2}, {5}, {8}, {3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 2}, VertexCoordinates -> {{1, 1}, {2, 1}, {1, 2}, {2, 2}, { Rational[1, 4] (3 - 5^Rational[1, 2]), 1 + (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[1, 4] (7 - 5^Rational[1, 2]), 1 + (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2]), 2 + (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[1, 4] (7 - 5^Rational[1, 2]), 2 + (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^ Rational[1, 2]}}}]]}, TagBox[GraphicsGroupBox[ GraphicsComplexBox[{{1., 1.}, {2., 1.}, {1., 2.}, {2., 2.}, { 0.19098300562505255`, 1.5877852522924731`}, { 1.1909830056250525`, 1.5877852522924731`}, { 0.19098300562505255`, 2.5877852522924734`}, { 1.1909830056250525`, 2.5877852522924734`}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.021042761722074865`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[ 0.7]}], DiskBox[1, 0.021042761722074865], DiskBox[2, 0.021042761722074865], DiskBox[3, 0.021042761722074865], DiskBox[4, 0.021042761722074865], DiskBox[5, 0.021042761722074865], DiskBox[6, 0.021042761722074865], DiskBox[7, 0.021042761722074865], DiskBox[8, 0.021042761722074865]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], "}"}]}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"\<\"Grid\"\>", ",", RowBox[{"{", RowBox[{"4", ",", "4", ",", "4"}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.012857`", ",", RowBox[{"{", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 5, 6, 17, 18, 21, 22}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, { 1}, {4}, {6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, { 7}, {2}, {5}, {8}, {3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 2}, VertexCoordinates -> {{1, 1}, {1, 2}, {2, 1}, {2, 2}, { Rational[1, 4] (3 - 5^Rational[1, 2]), 1 + (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2]), 2 + (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[1, 4] (7 - 5^Rational[1, 2]), 1 + (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[1, 4] (7 - 5^Rational[1, 2]), 2 + (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^ Rational[1, 2]}}}]]}, TagBox[GraphicsGroupBox[ GraphicsComplexBox[{{1., 1.}, {1., 2.}, {2., 1.}, {2., 2.}, { 0.19098300562505255`, 1.5877852522924731`}, { 0.19098300562505255`, 2.5877852522924734`}, { 1.1909830056250525`, 1.5877852522924731`}, { 1.1909830056250525`, 2.5877852522924734`}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.021042761722074865`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[ 0.7]}], DiskBox[1, 0.021042761722074865], DiskBox[2, 0.021042761722074865], DiskBox[3, 0.021042761722074865], DiskBox[4, 0.021042761722074865], DiskBox[5, 0.021042761722074865], DiskBox[6, 0.021042761722074865], DiskBox[7, 0.021042761722074865], DiskBox[8, 0.021042761722074865]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], "}"}]}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"\<\"Grid\"\>", ",", RowBox[{"{", RowBox[{"4", ",", "4", ",", "5"}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.015188`", ",", RowBox[{"{", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 5, 6, 17, 18, 21, 22}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, { 1}, {4}, {6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, { 7}, {2}, {5}, {8}, {3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 2}, VertexCoordinates -> {{1, 1}, {1, 2}, {2, 1}, {2, 2}, { Rational[1, 4] (3 - 5^Rational[1, 2]), 1 + (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2]), 2 + (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[1, 4] (7 - 5^Rational[1, 2]), 1 + (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[1, 4] (7 - 5^Rational[1, 2]), 2 + (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^ Rational[1, 2]}}}]]}, TagBox[GraphicsGroupBox[ GraphicsComplexBox[{{1., 1.}, {1., 2.}, {2., 1.}, {2., 2.}, { 0.19098300562505255`, 1.5877852522924731`}, { 0.19098300562505255`, 2.5877852522924734`}, { 1.1909830056250525`, 1.5877852522924731`}, { 1.1909830056250525`, 2.5877852522924734`}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.021042761722074865`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[ 0.7]}], DiskBox[1, 0.021042761722074865], DiskBox[2, 0.021042761722074865], DiskBox[3, 0.021042761722074865], DiskBox[4, 0.021042761722074865], DiskBox[5, 0.021042761722074865], DiskBox[6, 0.021042761722074865], DiskBox[7, 0.021042761722074865], DiskBox[8, 0.021042761722074865]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], "}"}]}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"\<\"Grid\"\>", ",", RowBox[{"{", RowBox[{"4", ",", "5", ",", "5"}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.019168`", ",", RowBox[{"{", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 5, 6, 21, 22, 25, 26}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, { 1}, {4}, {6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, { 7}, {2}, {5}, {8}, {3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 2}, VertexCoordinates -> {{1, 1}, {2, 1}, {1, 2}, {2, 2}, { Rational[1, 4] (3 - 5^Rational[1, 2]), 1 + (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[1, 4] (7 - 5^Rational[1, 2]), 1 + (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2]), 2 + (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[1, 4] (7 - 5^Rational[1, 2]), 2 + (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^ Rational[1, 2]}}}]]}, TagBox[GraphicsGroupBox[ GraphicsComplexBox[{{1., 1.}, {2., 1.}, {1., 2.}, {2., 2.}, { 0.19098300562505255`, 1.5877852522924731`}, { 1.1909830056250525`, 1.5877852522924731`}, { 0.19098300562505255`, 2.5877852522924734`}, { 1.1909830056250525`, 2.5877852522924734`}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.021042761722074865`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[ 0.7]}], DiskBox[1, 0.021042761722074865], DiskBox[2, 0.021042761722074865], DiskBox[3, 0.021042761722074865], DiskBox[4, 0.021042761722074865], DiskBox[5, 0.021042761722074865], DiskBox[6, 0.021042761722074865], DiskBox[7, 0.021042761722074865], DiskBox[8, 0.021042761722074865]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], "}"}]}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"\<\"Grid\"\>", ",", RowBox[{"{", RowBox[{"5", ",", "5", ",", "5"}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.014694`", ",", RowBox[{"{", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 6, 7, 26, 27, 31, 32}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, { 1}, {4}, {6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, { 7}, {2}, {5}, {8}, {3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 2}, VertexCoordinates -> {{1, 1}, {1, 2}, {2, 1}, {2, 2}, { Rational[1, 4] (3 - 5^Rational[1, 2]), 1 + (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2]), 2 + (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[1, 4] (7 - 5^Rational[1, 2]), 1 + (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[1, 4] (7 - 5^Rational[1, 2]), 2 + (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^ Rational[1, 2]}}}]]}, TagBox[GraphicsGroupBox[ GraphicsComplexBox[{{1., 1.}, {1., 2.}, {2., 1.}, {2., 2.}, { 0.19098300562505255`, 1.5877852522924731`}, { 0.19098300562505255`, 2.5877852522924734`}, { 1.1909830056250525`, 1.5877852522924731`}, { 1.1909830056250525`, 2.5877852522924734`}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.021042761722074865`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[ 0.7]}], DiskBox[1, 0.021042761722074865], DiskBox[2, 0.021042761722074865], DiskBox[3, 0.021042761722074865], DiskBox[4, 0.021042761722074865], DiskBox[5, 0.021042761722074865], DiskBox[6, 0.021042761722074865], DiskBox[7, 0.021042761722074865], DiskBox[8, 0.021042761722074865]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], "}"}]}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"\<\"Grid\"\>", ",", RowBox[{"{", RowBox[{"6", ",", "6", ",", "6"}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.036695`", ",", RowBox[{"{", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 7, 8, 37, 38, 43, 44}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, { 1}, {4}, {6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, { 7}, {2}, {5}, {8}, {3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 2}, VertexCoordinates -> {{1, 1}, {1, 2}, {2, 1}, {2, 2}, { Rational[1, 4] (3 - 5^Rational[1, 2]), 1 + (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2]), 2 + (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[1, 4] (7 - 5^Rational[1, 2]), 1 + (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[1, 4] (7 - 5^Rational[1, 2]), 2 + (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^ Rational[1, 2]}}}]]}, TagBox[GraphicsGroupBox[ GraphicsComplexBox[{{1., 1.}, {1., 2.}, {2., 1.}, {2., 2.}, { 0.19098300562505255`, 1.5877852522924731`}, { 0.19098300562505255`, 2.5877852522924734`}, { 1.1909830056250525`, 1.5877852522924731`}, { 1.1909830056250525`, 2.5877852522924734`}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.021042761722074865`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[ 0.7]}], DiskBox[1, 0.021042761722074865], DiskBox[2, 0.021042761722074865], DiskBox[3, 0.021042761722074865], DiskBox[4, 0.021042761722074865], DiskBox[5, 0.021042761722074865], DiskBox[6, 0.021042761722074865], DiskBox[7, 0.021042761722074865], DiskBox[8, 0.021042761722074865]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], "}"}]}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"\<\"Grid\"\>", ",", RowBox[{"{", RowBox[{"7", ",", "7", ",", "7"}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.034856`", ",", RowBox[{"{", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 8, 9, 50, 51, 57, 58}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, { 1}, {4}, {6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, { 7}, {2}, {5}, {8}, {3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 2}, VertexCoordinates -> {{1, 1}, {1, 2}, {2, 1}, {2, 2}, { Rational[1, 4] (3 - 5^Rational[1, 2]), 1 + (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2]), 2 + (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[1, 4] (7 - 5^Rational[1, 2]), 1 + (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[1, 4] (7 - 5^Rational[1, 2]), 2 + (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^ Rational[1, 2]}}}]]}, TagBox[GraphicsGroupBox[ GraphicsComplexBox[{{1., 1.}, {1., 2.}, {2., 1.}, {2., 2.}, { 0.19098300562505255`, 1.5877852522924731`}, { 0.19098300562505255`, 2.5877852522924734`}, { 1.1909830056250525`, 1.5877852522924731`}, { 1.1909830056250525`, 2.5877852522924734`}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.021042761722074865`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[ 0.7]}], DiskBox[1, 0.021042761722074865], DiskBox[2, 0.021042761722074865], DiskBox[3, 0.021042761722074865], DiskBox[4, 0.021042761722074865], DiskBox[5, 0.021042761722074865], DiskBox[6, 0.021042761722074865], DiskBox[7, 0.021042761722074865], DiskBox[8, 0.021042761722074865]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], "}"}]}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"\<\"Grid\"\>", ",", RowBox[{"{", RowBox[{"8", ",", "8", ",", "8"}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.051804`", ",", RowBox[{"{", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 9, 10, 65, 66, 73, 74}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, { 1}, {4}, {6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, { 7}, {2}, {5}, {8}, {3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 2}, VertexCoordinates -> {{1, 1}, {1, 2}, {2, 1}, {2, 2}, { Rational[1, 4] (3 - 5^Rational[1, 2]), 1 + (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2]), 2 + (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[1, 4] (7 - 5^Rational[1, 2]), 1 + (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[1, 4] (7 - 5^Rational[1, 2]), 2 + (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^ Rational[1, 2]}}}]]}, TagBox[GraphicsGroupBox[ GraphicsComplexBox[{{1., 1.}, {1., 2.}, {2., 1.}, {2., 2.}, { 0.19098300562505255`, 1.5877852522924731`}, { 0.19098300562505255`, 2.5877852522924734`}, { 1.1909830056250525`, 1.5877852522924731`}, { 1.1909830056250525`, 2.5877852522924734`}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.021042761722074865`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[ 0.7]}], DiskBox[1, 0.021042761722074865], DiskBox[2, 0.021042761722074865], DiskBox[3, 0.021042761722074865], DiskBox[4, 0.021042761722074865], DiskBox[5, 0.021042761722074865], DiskBox[6, 0.021042761722074865], DiskBox[7, 0.021042761722074865], DiskBox[8, 0.021042761722074865]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], "}"}]}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"\<\"Grid\"\>", ",", RowBox[{"{", RowBox[{"9", ",", "9", ",", "9"}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.050108`", ",", RowBox[{"{", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 10, 11, 82, 83, 91, 92}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, { 1}, {4}, {6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, { 7}, {2}, {5}, {8}, {3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 2}, VertexCoordinates -> {{1, 1}, {1, 2}, {2, 1}, {2, 2}, { Rational[1, 4] (3 - 5^Rational[1, 2]), 1 + (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2]), 2 + (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[1, 4] (7 - 5^Rational[1, 2]), 1 + (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[1, 4] (7 - 5^Rational[1, 2]), 2 + (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^ Rational[1, 2]}}}]]}, TagBox[GraphicsGroupBox[ GraphicsComplexBox[{{1., 1.}, {1., 2.}, {2., 1.}, {2., 2.}, { 0.19098300562505255`, 1.5877852522924731`}, { 0.19098300562505255`, 2.5877852522924734`}, { 1.1909830056250525`, 1.5877852522924731`}, { 1.1909830056250525`, 2.5877852522924734`}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.021042761722074865`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[ 0.7]}], DiskBox[1, 0.021042761722074865], DiskBox[2, 0.021042761722074865], DiskBox[3, 0.021042761722074865], DiskBox[4, 0.021042761722074865], DiskBox[5, 0.021042761722074865], DiskBox[6, 0.021042761722074865], DiskBox[7, 0.021042761722074865], DiskBox[8, 0.021042761722074865]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], "}"}]}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"\<\"Grid\"\>", ",", RowBox[{"{", RowBox[{"10", ",", "10", ",", "10"}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.124518`", ",", RowBox[{"{", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 11, 12, 101, 102, 111, 112}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, { 1}, {4}, {6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, { 7}, {2}, {5}, {8}, {3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 2}, VertexCoordinates -> {{1, 1}, {1, 2}, {2, 1}, {2, 2}, { Rational[1, 4] (3 - 5^Rational[1, 2]), 1 + (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2]), 2 + (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[1, 4] (7 - 5^Rational[1, 2]), 1 + (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[1, 4] (7 - 5^Rational[1, 2]), 2 + (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^ Rational[1, 2]}}}]]}, TagBox[GraphicsGroupBox[ GraphicsComplexBox[{{1., 1.}, {1., 2.}, {2., 1.}, {2., 2.}, { 0.19098300562505255`, 1.5877852522924731`}, { 0.19098300562505255`, 2.5877852522924734`}, { 1.1909830056250525`, 1.5877852522924731`}, { 1.1909830056250525`, 2.5877852522924734`}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.021042761722074865`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[ 0.7]}], DiskBox[1, 0.021042761722074865], DiskBox[2, 0.021042761722074865], DiskBox[3, 0.021042761722074865], DiskBox[4, 0.021042761722074865], DiskBox[5, 0.021042761722074865], DiskBox[6, 0.021042761722074865], DiskBox[7, 0.021042761722074865], DiskBox[8, 0.021042761722074865]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], "}"}]}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"\<\"Hamming\"\>", ",", RowBox[{"{", RowBox[{"3", ",", "3"}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.00858`", ",", RowBox[{"{", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 4, 5, 10, 11, 13, 14}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, { 1}, {4}, {6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, { 7}, {2}, {5}, {8}, {3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 2}, VertexCoordinates -> {{ Root[3 - 12 #^2 + 8 #^3& , 1, 0], Root[-1 + 24 #^2 - 144 #^4 + 192 #^6& , 4, 0]}, { Root[-1 + 12 #^2 + 8 #^3& , 1, 0], Root[-1 + 24 #^2 - 144 #^4 + 192 #^6& , 4, 0]}, { Rational[1, 2], Root[-1 + 132 #^2 - 432 #^4 + 192 #^6& , 3, 0]}, { Rational[-1, 2], Root[-1 + 132 #^2 - 432 #^4 + 192 #^6& , 3, 0]}, { Rational[1, 2], Root[-1 + 132 #^2 - 432 #^4 + 192 #^6& , 5, 0]}, { Rational[-1, 2], Root[-1 + 132 #^2 - 432 #^4 + 192 #^6& , 5, 0]}, { Root[1 - 12 #^2 + 8 #^3& , 3, 0], Root[-1 + 24 #^2 - 144 #^4 + 192 #^6& , 4, 0]}, { Root[-3 + 12 #^2 + 8 #^3& , 3, 0], Root[-1 + 24 #^2 - 144 #^4 + 192 #^6& , 4, 0]}}}]]}, TagBox[GraphicsGroupBox[ GraphicsComplexBox[{{-0.43969262078590843`, 0.2538566529714362}, {-1.4396926207859084`, 0.2538566529714362}, { 0.5, -0.08816349035423249}, {-0.5, -0.08816349035423249}, { 0.5, 0.595876796297105}, {-0.5, 0.595876796297105}, { 1.4396926207859084`, 0.2538566529714362}, { 0.4396926207859084, 0.2538566529714362}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.029368265417639275`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[ 0.7]}], DiskBox[1, 0.029368265417639275], DiskBox[2, 0.029368265417639275], DiskBox[3, 0.029368265417639275], DiskBox[4, 0.029368265417639275], DiskBox[5, 0.029368265417639275], DiskBox[6, 0.029368265417639275], DiskBox[7, 0.029368265417639275], DiskBox[8, 0.029368265417639275]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], "}"}]}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"\<\"Hamming\"\>", ",", RowBox[{"{", RowBox[{"4", ",", "3"}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.017989`", ",", RowBox[{"{", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 4, 5, 10, 11, 13, 14}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, { 1}, {4}, {6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, { 7}, {2}, {5}, {8}, {3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 2}, VertexCoordinates -> {{ Rational[1, 4] (-1 + 5^Rational[1, 2]), Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 8] (-1 + 5^Rational[1, 2] - (6 (5 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[-1, 4] (7 - 5^ Rational[1, 2] + (30 - 6 5^Rational[1, 2])^ Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2], Rational[-1, 2] (5 - 2 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[1, 8] (-3 - 5^ Rational[1, 2] - (6 (5 + 5^Rational[1, 2]))^ Rational[1, 2]), Root[ 1 - 52 #^2 + 464 #^4 - 1088 #^6 + 256 #^8& , 4, 0]}, { Rational[1, 2] (-1 + 5^Rational[1, 2]), 0}, { Rational[1, 8] (-3 + 3 5^Rational[1, 2] - (6 (5 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[ 1, 4] (7 - 5^Rational[1, 2] - (30 - 6 5^Rational[1, 2])^ Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (-3 + 5^Rational[1, 2]), Root[5 - 20 #^2 + 16 #^4& , 3, 0]}, { Rational[1, 8] (-5 + 5^Rational[1, 2] - (6 (5 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[ 1, 4] (17 + 5^Rational[1, 2] - (30 (5 - 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2]}}}]]}, TagBox[GraphicsGroupBox[ GraphicsComplexBox[{{ 0.30901699437494745`, -0.9510565162951535}, \ {-0.6691306063588582, -0.7431448254773941}, {-0.5, -0.3632712640026804}, \ {-1.4781476007338057`, -0.15535957318492108`}, {0.6180339887498949, 0.}, {-0.3601136119839108, 0.20791169081775937`}, {-0.19098300562505255`, 0.5877852522924731}, {-1.1691306063588582`, 0.7956969431102324}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.02338712278849092]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[ 0.7]}], DiskBox[1, 0.02338712278849092], DiskBox[2, 0.02338712278849092], DiskBox[3, 0.02338712278849092], DiskBox[4, 0.02338712278849092], DiskBox[5, 0.02338712278849092], DiskBox[6, 0.02338712278849092], DiskBox[7, 0.02338712278849092], DiskBox[8, 0.02338712278849092]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], "}"}]}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"\<\"Hamming\"\>", ",", RowBox[{"{", RowBox[{"5", ",", "3"}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.022377`", ",", RowBox[{"{", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 4, 5, 10, 11, 13, 14}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, { 1}, {4}, {6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, { 7}, {2}, {5}, {8}, {3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 2}, VertexCoordinates -> {{4.227843738349391, 1.1912203004021256`}, {3.557591228750894, 1.9333534241588528`}, {3.7288636338644134`, 2.0578337409441936`}, {3.058611124265917, 2.799966864700921}, {4.319294468318, 2.1870299026796935`}, {3.6490419587195033`, 2.929163026436421}, {3.820314363833022, 3.0536433432217622`}, {3.150061854234526, 3.7957764669784892`}}}]]}, TagBox[GraphicsGroupBox[ GraphicsComplexBox[{{4.227843738349391, 1.1912203004021256`}, {3.557591228750894, 1.9333534241588528`}, {3.7288636338644134`, 2.0578337409441936`}, {3.058611124265917, 2.799966864700921}, {4.319294468318, 2.1870299026796935`}, { 3.6490419587195033`, 2.929163026436421}, {3.820314363833022, 3.0536433432217622`}, {3.150061854234526, 3.7957764669784892`}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.02733490077455074]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[ 0.7]}], DiskBox[1, 0.02733490077455074], DiskBox[2, 0.02733490077455074], DiskBox[3, 0.02733490077455074], DiskBox[4, 0.02733490077455074], DiskBox[5, 0.02733490077455074], DiskBox[6, 0.02733490077455074], DiskBox[7, 0.02733490077455074], DiskBox[8, 0.02733490077455074]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], "}"}]}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"\<\"Hamming\"\>", ",", RowBox[{"{", RowBox[{"6", ",", "3"}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.072996`", ",", RowBox[{"{", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 4, 5, 10, 11, 13, 14}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, { 1}, {4}, {6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, { 7}, {2}, {5}, {8}, {3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 2}, VertexCoordinates -> {{1.397921275697655, 3.671462330291832}, {0.7179259364087637, 2.938245896661635}, {0.41673022359070455`, 3.478423165184706}, {-0.26326511569818656`, 2.7452067315545086`}, {1.3188094268955657`, 4.668328076207056}, {0.6388140876066742, 3.9351116425768584`}, {0.3376183747886152, 4.47528891109993}, {-0.342376964500276, 3.7420724774697325`}}}]]}, TagBox[GraphicsGroupBox[ GraphicsComplexBox[{{1.397921275697655, 3.671462330291832}, { 0.7179259364087637, 2.938245896661635}, { 0.41673022359070455`, 3.478423165184706}, {-0.26326511569818656`, 2.7452067315545086`}, {1.3188094268955657`, 4.668328076207056}, {0.6388140876066742, 3.9351116425768584`}, {0.3376183747886152, 4.47528891109993}, {-0.342376964500276, 3.7420724774697325`}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.021984608204777434`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[ 0.7]}], DiskBox[1, 0.021984608204777434], DiskBox[2, 0.021984608204777434], DiskBox[3, 0.021984608204777434], DiskBox[4, 0.021984608204777434], DiskBox[5, 0.021984608204777434], DiskBox[6, 0.021984608204777434], DiskBox[7, 0.021984608204777434], DiskBox[8, 0.021984608204777434]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], "}"}]}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{"\<\"HeuleGraph510\"\>", ",", RowBox[{"{", RowBox[{"0.074356`", ",", RowBox[{"{", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 7, 28, 351, 125, 297}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, { 1}, {4}, {6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, { 7}, {2}, {5}, {8}, {3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 2}, VertexCoordinates -> {{0, 0}, {1, 0}, { Rational[-1, 2], Rational[1, 2] 3^Rational[1, 2]}, { Rational[1, 2], Rational[1, 2] 3^Rational[1, 2]}, { Rational[1, 2] Rational[11, 3]^Rational[1, 2], Rational[-1, 2] 3^Rational[-1, 2]}, { Rational[1, 6] (6 + 33^Rational[1, 2]), Rational[-1, 2] 3^Rational[-1, 2]}, { Rational[1, 6] (-3 + 33^Rational[1, 2]), 3^ Rational[-1, 2]}, { Rational[1, 6] (3 + 33^Rational[1, 2]), 3^ Rational[-1, 2]}}}]]}, TagBox[GraphicsGroupBox[ GraphicsComplexBox[{{0., 0.}, {1., 0.}, {-0.5, 0.8660254037844386}, {0.5, 0.8660254037844386}, { 0.9574271077563381, -0.2886751345948129}, { 1.957427107756338, -0.2886751345948129}, { 0.4574271077563381, 0.5773502691896258}, {1.457427107756338, 0.5773502691896258}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.026217915967579733`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[ 0.7]}], DiskBox[1, 0.026217915967579733], DiskBox[2, 0.026217915967579733], DiskBox[3, 0.026217915967579733], DiskBox[4, 0.026217915967579733], DiskBox[5, 0.026217915967579733], DiskBox[6, 0.026217915967579733], DiskBox[7, 0.026217915967579733], DiskBox[8, 0.026217915967579733]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], "}"}]}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{"\<\"HeuleGraph517\"\>", ",", RowBox[{"{", RowBox[{"0.074086`", ",", RowBox[{"{", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 7, 60, 251, 124, 188}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, { 1}, {4}, {6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, { 7}, {2}, {5}, {8}, {3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 2}, VertexCoordinates -> {{0, 0}, {1, 0}, { Rational[-1, 2], Rational[1, 2] 3^Rational[1, 2]}, { Rational[1, 2], Rational[1, 2] 3^Rational[1, 2]}, { Rational[1, 12] (-3 + 33^Rational[1, 2]), Rational[1, 12] (-3^Rational[1, 2] - 3 11^Rational[1, 2])}, { Rational[1, 12] (9 + 33^Rational[1, 2]), Rational[1, 12] (-3^Rational[1, 2] - 3 11^Rational[1, 2])}, { Rational[1, 12] (-9 + 33^Rational[1, 2]), Rational[1, 12] (5 3^Rational[1, 2] - 3 11^Rational[1, 2])}, { Rational[1, 12] (3 + 33^Rational[1, 2]), Rational[1, 12] (5 3^Rational[1, 2] - 3 11^Rational[1, 2])}}}]]}, TagBox[GraphicsGroupBox[ GraphicsComplexBox[{{0., 0.}, {1., 0.}, {-0.5, 0.8660254037844386}, {0.5, 0.8660254037844386}, { 0.22871355387816905`, -0.9734937648862563}, { 1.228713553878169, -0.9734937648862563}, \ {-0.27128644612183095`, -0.10746836110181782`}, { 0.728713553878169, -0.10746836110181782`}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.021295888998147994`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[ 0.7]}], DiskBox[1, 0.021295888998147994], DiskBox[2, 0.021295888998147994], DiskBox[3, 0.021295888998147994], DiskBox[4, 0.021295888998147994], DiskBox[5, 0.021295888998147994], DiskBox[6, 0.021295888998147994], DiskBox[7, 0.021295888998147994], DiskBox[8, 0.021295888998147994]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], "}"}]}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{"\<\"HeuleGraph529\"\>", ",", RowBox[{"{", RowBox[{"0.075808`", ",", RowBox[{"{", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 7, 20, 69, 306, 265}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, { 1}, {4}, {6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, { 7}, {2}, {5}, {8}, {3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 2}, VertexCoordinates -> {{0, 0}, {1, 0}, { Rational[-1, 2], Rational[1, 2] 3^Rational[1, 2]}, { Rational[1, 2], Rational[1, 2] 3^Rational[1, 2]}, { Rational[1, 12] (3 - 33^Rational[1, 2]), Rational[1, 12] (3^Rational[1, 2] + 3 11^Rational[1, 2])}, { Rational[1, 12] (15 - 33^Rational[1, 2]), Rational[1, 4] 3^Rational[-1, 2] (1 + 33^Rational[1, 2])}, { Rational[1, 12] (-3 - 33^Rational[1, 2]), Rational[1, 4] 3^Rational[-1, 2] (7 + 33^Rational[1, 2])}, { Rational[1, 12] (9 - 33^Rational[1, 2]), Rational[1, 4] 3^Rational[-1, 2] (7 + 33^Rational[1, 2])}}}]]}, TagBox[GraphicsGroupBox[ GraphicsComplexBox[{{0., 0.}, {1., 0.}, {-0.5, 0.8660254037844386}, {0.5, 0.8660254037844386}, {-0.22871355387816905`, 0.9734937648862563}, {0.771286446121831, 0.9734937648862565}, {-0.728713553878169, 1.8395191686706953`}, {0.27128644612183095`, 1.8395191686706953`}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.021295888998147994`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[ 0.7]}], DiskBox[1, 0.021295888998147994], DiskBox[2, 0.021295888998147994], DiskBox[3, 0.021295888998147994], DiskBox[4, 0.021295888998147994], DiskBox[5, 0.021295888998147994], DiskBox[6, 0.021295888998147994], DiskBox[7, 0.021295888998147994], DiskBox[8, 0.021295888998147994]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], "}"}]}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{"\<\"HeuleGraph553\"\>", ",", RowBox[{"{", RowBox[{"0.084056`", ",", RowBox[{"{", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 7, 8, 489, 170, 413}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, { 1}, {4}, {6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, { 7}, {2}, {5}, {8}, {3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 2}, VertexCoordinates -> {{0, 0}, {1, 0}, { Rational[-1, 2], Rational[1, 2] 3^Rational[1, 2]}, { Rational[1, 2], Rational[1, 2] 3^Rational[1, 2]}, { Rational[1, 2] Rational[11, 3]^Rational[1, 2], Rational[-1, 2] 3^Rational[-1, 2]}, { Rational[1, 6] (6 + 33^Rational[1, 2]), Rational[-1, 2] 3^Rational[-1, 2]}, { Rational[1, 6] (-3 + 33^Rational[1, 2]), 3^ Rational[-1, 2]}, { Rational[1, 6] (3 + 33^Rational[1, 2]), 3^ Rational[-1, 2]}}}]]}, TagBox[GraphicsGroupBox[ GraphicsComplexBox[{{0., 0.}, {1., 0.}, {-0.5, 0.8660254037844386}, {0.5, 0.8660254037844386}, { 0.9574271077563381, -0.2886751345948129}, { 1.957427107756338, -0.2886751345948129}, { 0.4574271077563381, 0.5773502691896258}, {1.457427107756338, 0.5773502691896258}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.026217915967579733`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[ 0.7]}], DiskBox[1, 0.026217915967579733], DiskBox[2, 0.026217915967579733], DiskBox[3, 0.026217915967579733], DiskBox[4, 0.026217915967579733], DiskBox[5, 0.026217915967579733], DiskBox[6, 0.026217915967579733], DiskBox[7, 0.026217915967579733], DiskBox[8, 0.026217915967579733]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], "}"}]}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{"\<\"HeuleGraph610\"\>", ",", RowBox[{"{", RowBox[{"0.090819`", ",", RowBox[{"{", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 7, 8, 134, 52, 135}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, { 1}, {4}, {6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, { 7}, {2}, {5}, {8}, {3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 2}, VertexCoordinates -> {{0, 0}, {1, 0}, { Rational[-1, 2], Rational[1, 2] 3^Rational[1, 2]}, { Rational[1, 2], Rational[1, 2] 3^Rational[1, 2]}, { Rational[1, 2] Rational[11, 3]^Rational[1, 2], Rational[1, 2] 3^Rational[-1, 2]}, { Rational[1, 6] (6 + 33^Rational[1, 2]), Rational[1, 2] 3^Rational[-1, 2]}, { Rational[1, 6] (-3 + 33^Rational[1, 2]), 2 3^Rational[-1, 2]}, { Rational[1, 6] (3 + 33^Rational[1, 2]), 2 3^Rational[-1, 2]}}}]]}, TagBox[GraphicsGroupBox[ GraphicsComplexBox[{{0., 0.}, {1., 0.}, {-0.5, 0.8660254037844386}, {0.5, 0.8660254037844386}, { 0.9574271077563381, 0.2886751345948129}, {1.957427107756338, 0.2886751345948129}, {0.4574271077563381, 1.1547005383792517`}, {1.457427107756338, 1.1547005383792517`}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.026217915967579733`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[ 0.7]}], DiskBox[1, 0.026217915967579733], DiskBox[2, 0.026217915967579733], DiskBox[3, 0.026217915967579733], DiskBox[4, 0.026217915967579733], DiskBox[5, 0.026217915967579733], DiskBox[6, 0.026217915967579733], DiskBox[7, 0.026217915967579733], DiskBox[8, 0.026217915967579733]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], "}"}]}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{"\<\"HeuleGraph633\"\>", ",", RowBox[{"{", RowBox[{"0.091907`", ",", RowBox[{"{", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 7, 11, 377, 140, 394}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, { 1}, {4}, {6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, { 7}, {2}, {5}, {8}, {3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 2}, VertexCoordinates -> {{0, 0}, {1, 0}, { Rational[-1, 2], Rational[1, 2] 3^Rational[1, 2]}, { Rational[1, 2], Rational[1, 2] 3^Rational[1, 2]}, { Rational[1, 2] Rational[11, 3]^Rational[1, 2], Rational[1, 2] 3^Rational[-1, 2]}, { Rational[1, 6] (6 + 33^Rational[1, 2]), Rational[1, 2] 3^Rational[-1, 2]}, { Rational[1, 6] (-3 + 33^Rational[1, 2]), 2 3^Rational[-1, 2]}, { Rational[1, 6] (3 + 33^Rational[1, 2]), 2 3^Rational[-1, 2]}}}]]}, TagBox[GraphicsGroupBox[ GraphicsComplexBox[{{0., 0.}, {1., 0.}, {-0.5, 0.8660254037844386}, {0.5, 0.8660254037844386}, { 0.9574271077563381, 0.2886751345948129}, {1.957427107756338, 0.2886751345948129}, {0.4574271077563381, 1.1547005383792517`}, {1.457427107756338, 1.1547005383792517`}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.026217915967579733`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[ 0.7]}], DiskBox[1, 0.026217915967579733], DiskBox[2, 0.026217915967579733], DiskBox[3, 0.026217915967579733], DiskBox[4, 0.026217915967579733], DiskBox[5, 0.026217915967579733], DiskBox[6, 0.026217915967579733], DiskBox[7, 0.026217915967579733], DiskBox[8, 0.026217915967579733]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], "}"}]}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{"\<\"HeuleGraph803\"\>", ",", RowBox[{"{", RowBox[{"0.132253`", ",", RowBox[{"{", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 19, 20, 144, 108}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, { 1}, {4}, {6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, { 7}, {2}, {5}, {8}, {3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 2}, VertexCoordinates -> {{0, 0}, {1, 0}, { Rational[-1, 2], Rational[1, 2] 3^Rational[1, 2]}, { Rational[1, 2], Rational[1, 2] 3^Rational[1, 2]}, { Rational[1, 12] (5 - 33^Rational[1, 2]), Rational[1, 12] ((-5) 3^Rational[1, 2] - 11^ Rational[1, 2])}, { Rational[1, 12] (17 - 33^Rational[1, 2]), Rational[1, 12] ((-5) 3^Rational[1, 2] - 11^ Rational[1, 2])}, { Rational[1, 12] (-1 - 33^Rational[1, 2]), Rational[1, 12] (3^Rational[1, 2] - 11^Rational[1, 2])}, { Rational[1, 12] (11 - 33^Rational[1, 2]), Rational[1, 12] (3^Rational[1, 2] - 11^ Rational[1, 2])}}}]]}, TagBox[GraphicsGroupBox[ GraphicsComplexBox[{{0., 0.}, {1., 0.}, {-0.5, 0.8660254037844386}, {0.5, 0.8660254037844386}, {-0.06204688721150238, \ -0.9980732356833154}, { 0.9379531127884976, -0.9980732356833154}, \ {-0.5620468872115023, -0.13204783189887687`}, { 0.4379531127884976, -0.13204783189887687`}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.02149914387407184]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[ 0.7]}], DiskBox[1, 0.02149914387407184], DiskBox[2, 0.02149914387407184], DiskBox[3, 0.02149914387407184], DiskBox[4, 0.02149914387407184], DiskBox[5, 0.02149914387407184], DiskBox[6, 0.02149914387407184], DiskBox[7, 0.02149914387407184], DiskBox[8, 0.02149914387407184]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], "}"}]}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{"\<\"HeuleGraph826\"\>", ",", RowBox[{"{", RowBox[{"0.129824`", ",", RowBox[{"{", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 4, 6, 59, 189, 46, 295}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, { 1}, {4}, {6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, { 7}, {2}, {5}, {8}, {3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 2}, VertexCoordinates -> {{0, 0}, {1, 0}, { Rational[1, 2], Rational[1, 2] 3^Rational[1, 2]}, { Rational[3, 2], Rational[1, 2] 3^Rational[1, 2]}, { Rational[1, 2] Rational[11, 3]^Rational[1, 2], Rational[-1, 2] 3^Rational[-1, 2]}, { Rational[1, 6] (6 + 33^Rational[1, 2]), Rational[-1, 2] 3^Rational[-1, 2]}, { Rational[1, 6] (3 + 33^Rational[1, 2]), 3^ Rational[-1, 2]}, { Rational[1, 6] (9 + 33^Rational[1, 2]), 3^ Rational[-1, 2]}}}]]}, TagBox[GraphicsGroupBox[ GraphicsComplexBox[{{0., 0.}, {1., 0.}, {0.5, 0.8660254037844386}, {1.5, 0.8660254037844386}, { 0.9574271077563381, -0.2886751345948129}, { 1.957427107756338, -0.2886751345948129}, {1.457427107756338, 0.5773502691896258}, {2.457427107756338, 0.5773502691896258}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.026217915967579733`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[ 0.7]}], DiskBox[1, 0.026217915967579733], DiskBox[2, 0.026217915967579733], DiskBox[3, 0.026217915967579733], DiskBox[4, 0.026217915967579733], DiskBox[5, 0.026217915967579733], DiskBox[6, 0.026217915967579733], DiskBox[7, 0.026217915967579733], DiskBox[8, 0.026217915967579733]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], "}"}]}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{"\<\"HeuleGraph874\"\>", ",", RowBox[{"{", RowBox[{"0.135788`", ",", RowBox[{"{", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 7, 16, 141, 223, 202}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, { 1}, {4}, {6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, { 7}, {2}, {5}, {8}, {3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 2}, VertexCoordinates -> {{0, 0}, {1, 0}, { Rational[-1, 2], Rational[1, 2] 3^Rational[1, 2]}, { Rational[1, 2], Rational[1, 2] 3^Rational[1, 2]}, { Rational[1, 12] (3 + 33^Rational[1, 2]), Rational[1, 12] (-3^Rational[1, 2] + 3 11^Rational[1, 2])}, { Rational[1, 12] (15 + 33^Rational[1, 2]), Rational[1, 12] (-3^Rational[1, 2] + 3 11^Rational[1, 2])}, { Rational[1, 12] (-3 + 33^Rational[1, 2]), Rational[1, 12] (5 3^Rational[1, 2] + 3 11^Rational[1, 2])}, { Rational[1, 12] (9 + 33^Rational[1, 2]), Rational[1, 12] (5 3^Rational[1, 2] + 3 11^Rational[1, 2])}}}]]}, TagBox[GraphicsGroupBox[ GraphicsComplexBox[{{0., 0.}, {1., 0.}, {-0.5, 0.8660254037844386}, {0.5, 0.8660254037844386}, { 0.728713553878169, 0.6848186302914435}, {1.728713553878169, 0.6848186302914435}, {0.22871355387816905`, 1.5508440340758818`}, {1.228713553878169, 1.5508440340758818`}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.024440582208030248`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[ 0.7]}], DiskBox[1, 0.024440582208030248], DiskBox[2, 0.024440582208030248], DiskBox[3, 0.024440582208030248], DiskBox[4, 0.024440582208030248], DiskBox[5, 0.024440582208030248], DiskBox[6, 0.024440582208030248], DiskBox[7, 0.024440582208030248], DiskBox[8, 0.024440582208030248]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], "}"}]}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"\<\"Hypercube\"\>", ",", "5"}], "}"}], ",", RowBox[{"{", RowBox[{"0.032309`", ",", RowBox[{"{", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 4, 3, 5, 6, 8, 7}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, { 1}, {4}, {6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, { 7}, {2}, {5}, {8}, {3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 2}, VertexCoordinates -> {{ Rational[-1, 2], Rational[-1, 2] + 2^Rational[-1, 2]}, { Rational[-1, 2], Rational[1, 2] + 2^Rational[-1, 2]}, { Rational[-1, 2] + 2^Rational[-1, 2], Rational[-1, 2]}, {Rational[-1, 2] + 2^Rational[-1, 2], Rational[1, 2]}, { Rational[1, 2], Rational[-1, 2] + 2^Rational[-1, 2]}, { Rational[1, 2], Rational[1, 2] + 2^Rational[-1, 2]}, { Rational[1, 2] + 2^Rational[-1, 2], Rational[-1, 2]}, {Rational[1, 2] + 2^Rational[-1, 2], Rational[1, 2]}}}]]}, TagBox[GraphicsGroupBox[ GraphicsComplexBox[{{-0.5, 0.20710678118654746`}, {-0.5, 1.2071067811865475`}, {0.20710678118654746`, -0.5}, { 0.20710678118654746`, 0.5}, {0.5, 0.20710678118654746`}, { 0.5, 1.2071067811865475`}, {1.2071067811865475`, -0.5}, { 1.2071067811865475`, 0.5}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.02018977486141793]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[ 0.7]}], DiskBox[1, 0.02018977486141793], DiskBox[2, 0.02018977486141793], DiskBox[3, 0.02018977486141793], DiskBox[4, 0.02018977486141793], DiskBox[5, 0.02018977486141793], DiskBox[6, 0.02018977486141793], DiskBox[7, 0.02018977486141793], DiskBox[8, 0.02018977486141793]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], "}"}]}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"\<\"Hypercube\"\>", ",", "6"}], "}"}], ",", RowBox[{"{", RowBox[{"0.024407`", ",", RowBox[{"{", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 7, 8, 5, 6}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, { 1}, {4}, {6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, { 7}, {2}, {5}, {8}, {3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 2}, VertexCoordinates -> {{-0.8322904977340934, \ -2.2465783182061125`}, {-0.9124657934267884, -1.2497975389168103`}, \ {-0.04883903245238424, -1.6251253420703933`}, {-0.1290143281450792, \ -0.6283445627810909}, {0.14041246027886653`, -2.478632095320035}, { 0.06023716458617153, -1.4818513160307325`}, { 0.9238639255605756, -1.8571791191843157`}, { 0.8436886298678806, -0.8603983398950132}}}]]}, TagBox[GraphicsGroupBox[ GraphicsComplexBox[{{-0.8322904977340934, \ -2.2465783182061125`}, {-0.9124657934267884, -1.2497975389168103`}, \ {-0.04883903245238424, -1.6251253420703933`}, {-0.1290143281450792, \ -0.6283445627810909}, {0.14041246027886653`, -2.478632095320035}, { 0.06023716458617153, -1.4818513160307325`}, { 0.9238639255605756, -1.8571791191843157`}, { 0.8436886298678806, -0.8603983398950132}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.021385014854869766`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[ 0.7]}], DiskBox[1, 0.021385014854869766], DiskBox[2, 0.021385014854869766], DiskBox[3, 0.021385014854869766], DiskBox[4, 0.021385014854869766], DiskBox[5, 0.021385014854869766], DiskBox[6, 0.021385014854869766], DiskBox[7, 0.021385014854869766], DiskBox[8, 0.021385014854869766]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], "}"}]}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"\<\"Hypercube\"\>", ",", "7"}], "}"}], ",", RowBox[{"{", RowBox[{"0.086663`", ",", RowBox[{"{", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 7, 8, 5, 6}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, { 1}, {4}, {6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, { 7}, {2}, {5}, {8}, {3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 2}, VertexCoordinates -> {{-0.2313558784264869, \ -2.6582889259108504`}, {-1.1529394878985137`, -2.2701090053166615`}, \ {-1.1174047359311616`, -2.194697055711792}, {-2.0389883454031885`, \ -1.8065171351176033`}, {-0.47798570549875763`, -1.6891791651518837`}, \ {-1.3995693149707844`, -1.300999244557695}, {-1.3640345630034323`, \ -1.2255872949528255`}, {-2.285618172475459, -0.8374073743586365}}}]]}, TagBox[GraphicsGroupBox[ GraphicsComplexBox[{{-0.2313558784264869, \ -2.6582889259108504`}, {-1.1529394878985137`, -2.2701090053166615`}, \ {-1.1174047359311616`, -2.194697055711792}, {-2.0389883454031885`, \ -1.8065171351176033`}, {-0.47798570549875763`, -1.6891791651518837`}, \ {-1.3995693149707844`, -1.300999244557695}, {-1.3640345630034323`, \ -1.2255872949528255`}, {-2.285618172475459, -0.8374073743586365}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.02305022839720766]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[ 0.7]}], DiskBox[1, 0.02305022839720766], DiskBox[2, 0.02305022839720766], DiskBox[3, 0.02305022839720766], DiskBox[4, 0.02305022839720766], DiskBox[5, 0.02305022839720766], DiskBox[6, 0.02305022839720766], DiskBox[7, 0.02305022839720766], DiskBox[8, 0.02305022839720766]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], "}"}]}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"\<\"Hypercube\"\>", ",", "8"}], "}"}], ",", RowBox[{"{", RowBox[{"0.056075`", ",", RowBox[{"{", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 4, 3, 5, 6, 8, 7}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, { 1}, {4}, {6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, { 7}, {2}, {5}, {8}, {3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 2}, VertexCoordinates -> {{ 0.28956591620240857`, -2.8263849402962524`}, \ {-0.6880879973195518, -2.6161640436774927`}, {-0.6380378097821787, \ -2.452819246556168}, {-1.615691723304139, -2.242598349937408}, \ {-0.4218732015614798, -2.1236372033981956`}, {-1.39952711508344, \ -1.9134163067794359`}, {-1.349476927546067, -1.750071509658111}, \ {-2.3271308410680276`, -1.5398506130393514`}}}]]}, TagBox[GraphicsGroupBox[ GraphicsComplexBox[{{ 0.28956591620240857`, -2.8263849402962524`}, \ {-0.6880879973195518, -2.6161640436774927`}, {-0.6380378097821787, \ -2.452819246556168}, {-1.615691723304139, -2.242598349937408}, \ {-0.4218732015614798, -2.1236372033981956`}, {-1.39952711508344, \ -1.9134163067794359`}, {-1.349476927546067, -1.750071509658111}, \ {-2.3271308410680276`, -1.5398506130393514`}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.027426170887876855`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[ 0.7]}], DiskBox[1, 0.027426170887876855], DiskBox[2, 0.027426170887876855], DiskBox[3, 0.027426170887876855], DiskBox[4, 0.027426170887876855], DiskBox[5, 0.027426170887876855], DiskBox[6, 0.027426170887876855], DiskBox[7, 0.027426170887876855], DiskBox[8, 0.027426170887876855]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], "}"}]}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"\<\"Hypercube\"\>", ",", "9"}], "}"}], ",", RowBox[{"{", RowBox[{"0.129365`", ",", RowBox[{"{", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 4, 3, 5, 6, 8, 7}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, { 1}, {4}, {6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, { 7}, {2}, {5}, {8}, {3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 2}, VertexCoordinates -> {{ 0.3929259440625773, -3.235266221475213}, \ {-0.5928111514855368, -3.0669736831368533`}, {-0.502246399212786, \ -2.7895460448678544`}, {-1.4879834947609, -2.621253506529494}, \ {-0.22742681512466517`, -2.4509432942514993`}, {-1.2131639106727792`, \ -2.2826507559131395`}, {-1.1225991584000286`, -2.00522311764414}, \ {-2.1083362539481425`, -1.8369305793057804`}}}]]}, TagBox[GraphicsGroupBox[ GraphicsComplexBox[{{ 0.3929259440625773, -3.235266221475213}, \ {-0.5928111514855368, -3.0669736831368533`}, {-0.502246399212786, \ -2.7895460448678544`}, {-1.4879834947609, -2.621253506529494}, \ {-0.22742681512466517`, -2.4509432942514993`}, {-1.2131639106727792`, \ -2.2826507559131395`}, {-1.1225991584000286`, -2.00522311764414}, \ {-2.1083362539481425`, -1.8369305793057804`}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.026552828072520726`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[ 0.7]}], DiskBox[1, 0.026552828072520726], DiskBox[2, 0.026552828072520726], DiskBox[3, 0.026552828072520726], DiskBox[4, 0.026552828072520726], DiskBox[5, 0.026552828072520726], DiskBox[6, 0.026552828072520726], DiskBox[7, 0.026552828072520726], DiskBox[8, 0.026552828072520726]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], "}"}]}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"\<\"Hypercube\"\>", ",", "10"}], "}"}], ",", RowBox[{"{", RowBox[{"0.283032`", ",", RowBox[{"{", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 4, 3, 5, 6, 8, 7}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, { 1}, {4}, {6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, { 7}, {2}, {5}, {8}, {3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 2}, VertexCoordinates -> {{ 0.3132471255383947, -3.464223522249755}, \ {-0.6670381263535523, -3.2666360101870184`}, {-0.6402723426885051, \ -3.1628921038541775`}, {-1.620557594580452, -2.9653045917914413`}, \ {-0.4910634550659903, -2.8700143924580317`}, {-1.4713487069579374`, \ -2.672426880395295}, {-1.4445829232928902`, -2.568682974062454}, \ {-2.424868175184837, -2.371095461999718}}}]]}, TagBox[GraphicsGroupBox[ GraphicsComplexBox[{{ 0.3132471255383947, -3.464223522249755}, \ {-0.6670381263535523, -3.2666360101870184`}, {-0.6402723426885051, \ -3.1628921038541775`}, {-1.620557594580452, -2.9653045917914413`}, \ {-0.4910634550659903, -2.8700143924580317`}, {-1.4713487069579374`, \ -2.672426880395295}, {-1.4445829232928902`, -2.568682974062454}, \ {-2.424868175184837, -2.371095461999718}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.028331550581592188`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[ 0.7]}], DiskBox[1, 0.028331550581592188], DiskBox[2, 0.028331550581592188], DiskBox[3, 0.028331550581592188], DiskBox[4, 0.028331550581592188], DiskBox[5, 0.028331550581592188], DiskBox[6, 0.028331550581592188], DiskBox[7, 0.028331550581592188], DiskBox[8, 0.028331550581592188]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], "}"}]}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"\<\"Knight\"\>", ",", RowBox[{"{", RowBox[{"5", ",", "6"}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.006478`", ",", RowBox[{"{", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{3, 7, 11, 15, 16, 20, 24, 28}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, { 1}, {4}, {6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, { 7}, {2}, {5}, {8}, {3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 2}, VertexCoordinates -> {{ 5^Rational[-1, 2], 3 5^Rational[-1, 2]}, { 2 5^Rational[-1, 2], 5^Rational[-1, 2]}, { 2 5^Rational[-1, 2], 5^Rational[1, 2]}, { 3 5^Rational[-1, 2], 3 5^Rational[-1, 2]}, { 3 5^Rational[-1, 2], 4 5^Rational[-1, 2]}, { 4 5^Rational[-1, 2], 2 5^Rational[-1, 2]}, { 4 5^Rational[-1, 2], 6 5^Rational[-1, 2]}, { 5^Rational[1, 2], 4 5^Rational[-1, 2]}}}]]}, TagBox[GraphicsGroupBox[ GraphicsComplexBox[{{0.4472135954999579, 1.3416407864998738`}, {0.8944271909999159, 0.4472135954999579}, {0.8944271909999159, 2.23606797749979}, {1.3416407864998738`, 1.3416407864998738`}, {1.3416407864998738`, 1.7888543819998317`}, {1.7888543819998317`, 0.8944271909999159}, {1.7888543819998317`, 2.6832815729997477`}, {2.23606797749979, 1.7888543819998317`}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.024498527314026908`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[ 0.7]}], DiskBox[1, 0.024498527314026908], DiskBox[2, 0.024498527314026908], DiskBox[3, 0.024498527314026908], DiskBox[4, 0.024498527314026908], DiskBox[5, 0.024498527314026908], DiskBox[6, 0.024498527314026908], DiskBox[7, 0.024498527314026908], DiskBox[8, 0.024498527314026908]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], "}"}]}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"\<\"Knight\"\>", ",", RowBox[{"{", RowBox[{"5", ",", "7"}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.005557`", ",", RowBox[{"{", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{3, 8, 12, 17, 18, 23, 27, 32}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, { 1}, {4}, {6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, { 7}, {2}, {5}, {8}, {3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 2}, VertexCoordinates -> {{ 5^Rational[-1, 2], 3 5^Rational[-1, 2]}, { 2 5^Rational[-1, 2], 5^Rational[-1, 2]}, { 2 5^Rational[-1, 2], 5^Rational[1, 2]}, { 3 5^Rational[-1, 2], 3 5^Rational[-1, 2]}, { 3 5^Rational[-1, 2], 4 5^Rational[-1, 2]}, { 4 5^Rational[-1, 2], 2 5^Rational[-1, 2]}, { 4 5^Rational[-1, 2], 6 5^Rational[-1, 2]}, { 5^Rational[1, 2], 4 5^Rational[-1, 2]}}}]]}, TagBox[GraphicsGroupBox[ GraphicsComplexBox[{{0.4472135954999579, 1.3416407864998738`}, {0.8944271909999159, 0.4472135954999579}, {0.8944271909999159, 2.23606797749979}, {1.3416407864998738`, 1.3416407864998738`}, {1.3416407864998738`, 1.7888543819998317`}, {1.7888543819998317`, 0.8944271909999159}, {1.7888543819998317`, 2.6832815729997477`}, {2.23606797749979, 1.7888543819998317`}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.024498527314026908`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[ 0.7]}], DiskBox[1, 0.024498527314026908], DiskBox[2, 0.024498527314026908], DiskBox[3, 0.024498527314026908], DiskBox[4, 0.024498527314026908], DiskBox[5, 0.024498527314026908], DiskBox[6, 0.024498527314026908], DiskBox[7, 0.024498527314026908], DiskBox[8, 0.024498527314026908]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], "}"}]}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"\<\"Knight\"\>", ",", RowBox[{"{", RowBox[{"5", ",", "8"}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.007077`", ",", RowBox[{"{", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{3, 9, 13, 19, 20, 26, 30, 36}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, { 1}, {4}, {6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, { 7}, {2}, {5}, {8}, {3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 2}, VertexCoordinates -> {{ 5^Rational[-1, 2], 3 5^Rational[-1, 2]}, { 2 5^Rational[-1, 2], 5^Rational[-1, 2]}, { 2 5^Rational[-1, 2], 5^Rational[1, 2]}, { 3 5^Rational[-1, 2], 3 5^Rational[-1, 2]}, { 3 5^Rational[-1, 2], 4 5^Rational[-1, 2]}, { 4 5^Rational[-1, 2], 2 5^Rational[-1, 2]}, { 4 5^Rational[-1, 2], 6 5^Rational[-1, 2]}, { 5^Rational[1, 2], 4 5^Rational[-1, 2]}}}]]}, TagBox[GraphicsGroupBox[ GraphicsComplexBox[{{0.4472135954999579, 1.3416407864998738`}, {0.8944271909999159, 0.4472135954999579}, {0.8944271909999159, 2.23606797749979}, {1.3416407864998738`, 1.3416407864998738`}, {1.3416407864998738`, 1.7888543819998317`}, {1.7888543819998317`, 0.8944271909999159}, {1.7888543819998317`, 2.6832815729997477`}, {2.23606797749979, 1.7888543819998317`}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.024498527314026908`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[ 0.7]}], DiskBox[1, 0.024498527314026908], DiskBox[2, 0.024498527314026908], DiskBox[3, 0.024498527314026908], DiskBox[4, 0.024498527314026908], DiskBox[5, 0.024498527314026908], DiskBox[6, 0.024498527314026908], DiskBox[7, 0.024498527314026908], DiskBox[8, 0.024498527314026908]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], "}"}]}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"\<\"Knight\"\>", ",", RowBox[{"{", RowBox[{"5", ",", "9"}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.006392`", ",", RowBox[{"{", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{3, 10, 14, 21, 22, 29, 33, 40}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, { 1}, {4}, {6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, { 7}, {2}, {5}, {8}, {3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 2}, VertexCoordinates -> {{ 5^Rational[-1, 2], 3 5^Rational[-1, 2]}, { 2 5^Rational[-1, 2], 5^Rational[-1, 2]}, { 2 5^Rational[-1, 2], 5^Rational[1, 2]}, { 3 5^Rational[-1, 2], 3 5^Rational[-1, 2]}, { 3 5^Rational[-1, 2], 4 5^Rational[-1, 2]}, { 4 5^Rational[-1, 2], 2 5^Rational[-1, 2]}, { 4 5^Rational[-1, 2], 6 5^Rational[-1, 2]}, { 5^Rational[1, 2], 4 5^Rational[-1, 2]}}}]]}, TagBox[GraphicsGroupBox[ GraphicsComplexBox[{{0.4472135954999579, 1.3416407864998738`}, {0.8944271909999159, 0.4472135954999579}, {0.8944271909999159, 2.23606797749979}, {1.3416407864998738`, 1.3416407864998738`}, {1.3416407864998738`, 1.7888543819998317`}, {1.7888543819998317`, 0.8944271909999159}, {1.7888543819998317`, 2.6832815729997477`}, {2.23606797749979, 1.7888543819998317`}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.024498527314026908`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[ 0.7]}], DiskBox[1, 0.024498527314026908], DiskBox[2, 0.024498527314026908], DiskBox[3, 0.024498527314026908], DiskBox[4, 0.024498527314026908], DiskBox[5, 0.024498527314026908], DiskBox[6, 0.024498527314026908], DiskBox[7, 0.024498527314026908], DiskBox[8, 0.024498527314026908]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], "}"}]}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"\<\"Knight\"\>", ",", RowBox[{"{", RowBox[{"5", ",", "10"}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.008387`", ",", RowBox[{"{", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{3, 11, 15, 23, 24, 32, 36, 44}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, { 1}, {4}, {6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, { 7}, {2}, {5}, {8}, {3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 2}, VertexCoordinates -> {{ 5^Rational[-1, 2], 3 5^Rational[-1, 2]}, { 2 5^Rational[-1, 2], 5^Rational[-1, 2]}, { 2 5^Rational[-1, 2], 5^Rational[1, 2]}, { 3 5^Rational[-1, 2], 3 5^Rational[-1, 2]}, { 3 5^Rational[-1, 2], 4 5^Rational[-1, 2]}, { 4 5^Rational[-1, 2], 2 5^Rational[-1, 2]}, { 4 5^Rational[-1, 2], 6 5^Rational[-1, 2]}, { 5^Rational[1, 2], 4 5^Rational[-1, 2]}}}]]}, TagBox[GraphicsGroupBox[ GraphicsComplexBox[{{0.4472135954999579, 1.3416407864998738`}, {0.8944271909999159, 0.4472135954999579}, {0.8944271909999159, 2.23606797749979}, {1.3416407864998738`, 1.3416407864998738`}, {1.3416407864998738`, 1.7888543819998317`}, {1.7888543819998317`, 0.8944271909999159}, {1.7888543819998317`, 2.6832815729997477`}, {2.23606797749979, 1.7888543819998317`}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.024498527314026908`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[ 0.7]}], DiskBox[1, 0.024498527314026908], DiskBox[2, 0.024498527314026908], DiskBox[3, 0.024498527314026908], DiskBox[4, 0.024498527314026908], DiskBox[5, 0.024498527314026908], DiskBox[6, 0.024498527314026908], DiskBox[7, 0.024498527314026908], DiskBox[8, 0.024498527314026908]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], "}"}]}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"\<\"Knight\"\>", ",", RowBox[{"{", RowBox[{"6", ",", "6"}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.006654`", ",", RowBox[{"{", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{2, 10, 13, 21, 15, 23, 26, 34}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, { 1}, {4}, {6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, { 7}, {2}, {5}, {8}, {3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 2}, VertexCoordinates -> {{ 2 5^Rational[-1, 2], 5^Rational[-1, 2]}, { 4 5^Rational[-1, 2], 2 5^Rational[-1, 2]}, { 5^Rational[-1, 2], 3 5^Rational[-1, 2]}, { 3 5^Rational[-1, 2], 4 5^Rational[-1, 2]}, { 3 5^Rational[-1, 2], 3 5^Rational[-1, 2]}, { 5^Rational[1, 2], 4 5^Rational[-1, 2]}, { 2 5^Rational[-1, 2], 5^Rational[1, 2]}, { 4 5^Rational[-1, 2], 6 5^Rational[-1, 2]}}}]]}, TagBox[GraphicsGroupBox[ GraphicsComplexBox[{{0.8944271909999159, 0.4472135954999579}, {1.7888543819998317`, 0.8944271909999159}, {0.4472135954999579, 1.3416407864998738`}, {1.3416407864998738`, 1.7888543819998317`}, {1.3416407864998738`, 1.3416407864998738`}, {2.23606797749979, 1.7888543819998317`}, {0.8944271909999159, 2.23606797749979}, {1.7888543819998317`, 2.6832815729997477`}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.024498527314026908`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[ 0.7]}], DiskBox[1, 0.024498527314026908], DiskBox[2, 0.024498527314026908], DiskBox[3, 0.024498527314026908], DiskBox[4, 0.024498527314026908], DiskBox[5, 0.024498527314026908], DiskBox[6, 0.024498527314026908], DiskBox[7, 0.024498527314026908], DiskBox[8, 0.024498527314026908]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], "}"}]}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"\<\"Knight\"\>", ",", RowBox[{"{", RowBox[{"6", ",", "7"}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.007158`", ",", RowBox[{"{", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{2, 11, 15, 24, 17, 26, 30, 39}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, { 1}, {4}, {6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, { 7}, {2}, {5}, {8}, {3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 2}, VertexCoordinates -> {{ 5^Rational[-1, 2], 2 5^Rational[-1, 2]}, { 2 5^Rational[-1, 2], 4 5^Rational[-1, 2]}, { 3 5^Rational[-1, 2], 5^Rational[-1, 2]}, { 4 5^Rational[-1, 2], 3 5^Rational[-1, 2]}, { 3 5^Rational[-1, 2], 3 5^Rational[-1, 2]}, { 4 5^Rational[-1, 2], 5^Rational[1, 2]}, { 5^Rational[1, 2], 2 5^Rational[-1, 2]}, { 6 5^Rational[-1, 2], 4 5^Rational[-1, 2]}}}]]}, TagBox[GraphicsGroupBox[ GraphicsComplexBox[{{0.4472135954999579, 0.8944271909999159}, {0.8944271909999159, 1.7888543819998317`}, {1.3416407864998738`, 0.4472135954999579}, {1.7888543819998317`, 1.3416407864998738`}, {1.3416407864998738`, 1.3416407864998738`}, {1.7888543819998317`, 2.23606797749979}, {2.23606797749979, 0.8944271909999159}, { 2.6832815729997477`, 1.7888543819998317`}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.024498527314026908`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[ 0.7]}], DiskBox[1, 0.024498527314026908], DiskBox[2, 0.024498527314026908], DiskBox[3, 0.024498527314026908], DiskBox[4, 0.024498527314026908], DiskBox[5, 0.024498527314026908], DiskBox[6, 0.024498527314026908], DiskBox[7, 0.024498527314026908], DiskBox[8, 0.024498527314026908]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], "}"}]}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"\<\"Knight\"\>", ",", RowBox[{"{", RowBox[{"6", ",", "8"}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.007923`", ",", RowBox[{"{", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{2, 12, 17, 27, 19, 29, 34, 44}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, { 1}, {4}, {6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, { 7}, {2}, {5}, {8}, {3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 2}, VertexCoordinates -> {{ 5^Rational[-1, 2], 2 5^Rational[-1, 2]}, { 2 5^Rational[-1, 2], 4 5^Rational[-1, 2]}, { 3 5^Rational[-1, 2], 5^Rational[-1, 2]}, { 4 5^Rational[-1, 2], 3 5^Rational[-1, 2]}, { 3 5^Rational[-1, 2], 3 5^Rational[-1, 2]}, { 4 5^Rational[-1, 2], 5^Rational[1, 2]}, { 5^Rational[1, 2], 2 5^Rational[-1, 2]}, { 6 5^Rational[-1, 2], 4 5^Rational[-1, 2]}}}]]}, TagBox[GraphicsGroupBox[ GraphicsComplexBox[{{0.4472135954999579, 0.8944271909999159}, {0.8944271909999159, 1.7888543819998317`}, {1.3416407864998738`, 0.4472135954999579}, {1.7888543819998317`, 1.3416407864998738`}, {1.3416407864998738`, 1.3416407864998738`}, {1.7888543819998317`, 2.23606797749979}, {2.23606797749979, 0.8944271909999159}, { 2.6832815729997477`, 1.7888543819998317`}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.024498527314026908`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[ 0.7]}], DiskBox[1, 0.024498527314026908], DiskBox[2, 0.024498527314026908], DiskBox[3, 0.024498527314026908], DiskBox[4, 0.024498527314026908], DiskBox[5, 0.024498527314026908], DiskBox[6, 0.024498527314026908], DiskBox[7, 0.024498527314026908], DiskBox[8, 0.024498527314026908]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], "}"}]}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"\<\"Knight\"\>", ",", RowBox[{"{", RowBox[{"6", ",", "9"}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.008601`", ",", RowBox[{"{", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{2, 13, 19, 30, 21, 32, 38, 49}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, { 1}, {4}, {6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, { 7}, {2}, {5}, {8}, {3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 2}, VertexCoordinates -> {{ 5^Rational[-1, 2], 2 5^Rational[-1, 2]}, { 2 5^Rational[-1, 2], 4 5^Rational[-1, 2]}, { 3 5^Rational[-1, 2], 5^Rational[-1, 2]}, { 4 5^Rational[-1, 2], 3 5^Rational[-1, 2]}, { 3 5^Rational[-1, 2], 3 5^Rational[-1, 2]}, { 4 5^Rational[-1, 2], 5^Rational[1, 2]}, { 5^Rational[1, 2], 2 5^Rational[-1, 2]}, { 6 5^Rational[-1, 2], 4 5^Rational[-1, 2]}}}]]}, TagBox[GraphicsGroupBox[ GraphicsComplexBox[{{0.4472135954999579, 0.8944271909999159}, {0.8944271909999159, 1.7888543819998317`}, {1.3416407864998738`, 0.4472135954999579}, {1.7888543819998317`, 1.3416407864998738`}, {1.3416407864998738`, 1.3416407864998738`}, {1.7888543819998317`, 2.23606797749979}, {2.23606797749979, 0.8944271909999159}, { 2.6832815729997477`, 1.7888543819998317`}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.024498527314026908`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[ 0.7]}], DiskBox[1, 0.024498527314026908], DiskBox[2, 0.024498527314026908], DiskBox[3, 0.024498527314026908], DiskBox[4, 0.024498527314026908], DiskBox[5, 0.024498527314026908], DiskBox[6, 0.024498527314026908], DiskBox[7, 0.024498527314026908], DiskBox[8, 0.024498527314026908]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], "}"}]}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"\<\"Knight\"\>", ",", RowBox[{"{", RowBox[{"6", ",", "10"}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.009698`", ",", RowBox[{"{", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{2, 14, 21, 33, 23, 35, 42, 54}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, { 1}, {4}, {6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, { 7}, {2}, {5}, {8}, {3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 2}, VertexCoordinates -> {{ 5^Rational[-1, 2], 2 5^Rational[-1, 2]}, { 2 5^Rational[-1, 2], 4 5^Rational[-1, 2]}, { 3 5^Rational[-1, 2], 5^Rational[-1, 2]}, { 4 5^Rational[-1, 2], 3 5^Rational[-1, 2]}, { 3 5^Rational[-1, 2], 3 5^Rational[-1, 2]}, { 4 5^Rational[-1, 2], 5^Rational[1, 2]}, { 5^Rational[1, 2], 2 5^Rational[-1, 2]}, { 6 5^Rational[-1, 2], 4 5^Rational[-1, 2]}}}]]}, TagBox[GraphicsGroupBox[ GraphicsComplexBox[{{0.4472135954999579, 0.8944271909999159}, {0.8944271909999159, 1.7888543819998317`}, {1.3416407864998738`, 0.4472135954999579}, {1.7888543819998317`, 1.3416407864998738`}, {1.3416407864998738`, 1.3416407864998738`}, {1.7888543819998317`, 2.23606797749979}, {2.23606797749979, 0.8944271909999159}, { 2.6832815729997477`, 1.7888543819998317`}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.024498527314026908`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[ 0.7]}], DiskBox[1, 0.024498527314026908], DiskBox[2, 0.024498527314026908], DiskBox[3, 0.024498527314026908], DiskBox[4, 0.024498527314026908], DiskBox[5, 0.024498527314026908], DiskBox[6, 0.024498527314026908], DiskBox[7, 0.024498527314026908], DiskBox[8, 0.024498527314026908]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], "}"}]}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"\<\"Knight\"\>", ",", RowBox[{"{", RowBox[{"7", ",", "7"}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.005477`", ",", RowBox[{"{", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{2, 11, 15, 24, 17, 26, 30, 39}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, { 1}, {4}, {6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, { 7}, {2}, {5}, {8}, {3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 2}, VertexCoordinates -> {{ 2 5^Rational[-1, 2], 5^Rational[-1, 2]}, { 4 5^Rational[-1, 2], 2 5^Rational[-1, 2]}, { 5^Rational[-1, 2], 3 5^Rational[-1, 2]}, { 3 5^Rational[-1, 2], 4 5^Rational[-1, 2]}, { 3 5^Rational[-1, 2], 3 5^Rational[-1, 2]}, { 5^Rational[1, 2], 4 5^Rational[-1, 2]}, { 2 5^Rational[-1, 2], 5^Rational[1, 2]}, { 4 5^Rational[-1, 2], 6 5^Rational[-1, 2]}}}]]}, TagBox[GraphicsGroupBox[ GraphicsComplexBox[{{0.8944271909999159, 0.4472135954999579}, {1.7888543819998317`, 0.8944271909999159}, {0.4472135954999579, 1.3416407864998738`}, {1.3416407864998738`, 1.7888543819998317`}, {1.3416407864998738`, 1.3416407864998738`}, {2.23606797749979, 1.7888543819998317`}, {0.8944271909999159, 2.23606797749979}, {1.7888543819998317`, 2.6832815729997477`}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.024498527314026908`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[ 0.7]}], DiskBox[1, 0.024498527314026908], DiskBox[2, 0.024498527314026908], DiskBox[3, 0.024498527314026908], DiskBox[4, 0.024498527314026908], DiskBox[5, 0.024498527314026908], DiskBox[6, 0.024498527314026908], DiskBox[7, 0.024498527314026908], DiskBox[8, 0.024498527314026908]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], "}"}]}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"\<\"Knight\"\>", ",", RowBox[{"{", RowBox[{"7", ",", "8"}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.008888`", ",", RowBox[{"{", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{2, 12, 17, 27, 19, 29, 34, 44}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, { 1}, {4}, {6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, { 7}, {2}, {5}, {8}, {3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 2}, VertexCoordinates -> {{ 5^Rational[-1, 2], 2 5^Rational[-1, 2]}, { 2 5^Rational[-1, 2], 4 5^Rational[-1, 2]}, { 3 5^Rational[-1, 2], 5^Rational[-1, 2]}, { 4 5^Rational[-1, 2], 3 5^Rational[-1, 2]}, { 3 5^Rational[-1, 2], 3 5^Rational[-1, 2]}, { 4 5^Rational[-1, 2], 5^Rational[1, 2]}, { 5^Rational[1, 2], 2 5^Rational[-1, 2]}, { 6 5^Rational[-1, 2], 4 5^Rational[-1, 2]}}}]]}, TagBox[GraphicsGroupBox[ GraphicsComplexBox[{{0.4472135954999579, 0.8944271909999159}, {0.8944271909999159, 1.7888543819998317`}, {1.3416407864998738`, 0.4472135954999579}, {1.7888543819998317`, 1.3416407864998738`}, {1.3416407864998738`, 1.3416407864998738`}, {1.7888543819998317`, 2.23606797749979}, {2.23606797749979, 0.8944271909999159}, { 2.6832815729997477`, 1.7888543819998317`}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.024498527314026908`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[ 0.7]}], DiskBox[1, 0.024498527314026908], DiskBox[2, 0.024498527314026908], DiskBox[3, 0.024498527314026908], DiskBox[4, 0.024498527314026908], DiskBox[5, 0.024498527314026908], DiskBox[6, 0.024498527314026908], DiskBox[7, 0.024498527314026908], DiskBox[8, 0.024498527314026908]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], "}"}]}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"\<\"Knight\"\>", ",", RowBox[{"{", RowBox[{"7", ",", "9"}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.006363`", ",", RowBox[{"{", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{2, 13, 19, 30, 21, 32, 38, 49}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, { 1}, {4}, {6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, { 7}, {2}, {5}, {8}, {3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 2}, VertexCoordinates -> {{ 5^Rational[-1, 2], 2 5^Rational[-1, 2]}, { 2 5^Rational[-1, 2], 4 5^Rational[-1, 2]}, { 3 5^Rational[-1, 2], 5^Rational[-1, 2]}, { 4 5^Rational[-1, 2], 3 5^Rational[-1, 2]}, { 3 5^Rational[-1, 2], 3 5^Rational[-1, 2]}, { 4 5^Rational[-1, 2], 5^Rational[1, 2]}, { 5^Rational[1, 2], 2 5^Rational[-1, 2]}, { 6 5^Rational[-1, 2], 4 5^Rational[-1, 2]}}}]]}, TagBox[GraphicsGroupBox[ GraphicsComplexBox[{{0.4472135954999579, 0.8944271909999159}, {0.8944271909999159, 1.7888543819998317`}, {1.3416407864998738`, 0.4472135954999579}, {1.7888543819998317`, 1.3416407864998738`}, {1.3416407864998738`, 1.3416407864998738`}, {1.7888543819998317`, 2.23606797749979}, {2.23606797749979, 0.8944271909999159}, { 2.6832815729997477`, 1.7888543819998317`}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.024498527314026908`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[ 0.7]}], DiskBox[1, 0.024498527314026908], DiskBox[2, 0.024498527314026908], DiskBox[3, 0.024498527314026908], DiskBox[4, 0.024498527314026908], DiskBox[5, 0.024498527314026908], DiskBox[6, 0.024498527314026908], DiskBox[7, 0.024498527314026908], DiskBox[8, 0.024498527314026908]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], "}"}]}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"\<\"Knight\"\>", ",", RowBox[{"{", RowBox[{"7", ",", "10"}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.010688`", ",", RowBox[{"{", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{2, 14, 21, 33, 23, 35, 42, 54}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, { 1}, {4}, {6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, { 7}, {2}, {5}, {8}, {3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 2}, VertexCoordinates -> {{ 5^Rational[-1, 2], 2 5^Rational[-1, 2]}, { 2 5^Rational[-1, 2], 4 5^Rational[-1, 2]}, { 3 5^Rational[-1, 2], 5^Rational[-1, 2]}, { 4 5^Rational[-1, 2], 3 5^Rational[-1, 2]}, { 3 5^Rational[-1, 2], 3 5^Rational[-1, 2]}, { 4 5^Rational[-1, 2], 5^Rational[1, 2]}, { 5^Rational[1, 2], 2 5^Rational[-1, 2]}, { 6 5^Rational[-1, 2], 4 5^Rational[-1, 2]}}}]]}, TagBox[GraphicsGroupBox[ GraphicsComplexBox[{{0.4472135954999579, 0.8944271909999159}, {0.8944271909999159, 1.7888543819998317`}, {1.3416407864998738`, 0.4472135954999579}, {1.7888543819998317`, 1.3416407864998738`}, {1.3416407864998738`, 1.3416407864998738`}, {1.7888543819998317`, 2.23606797749979}, {2.23606797749979, 0.8944271909999159}, { 2.6832815729997477`, 1.7888543819998317`}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.024498527314026908`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[ 0.7]}], DiskBox[1, 0.024498527314026908], DiskBox[2, 0.024498527314026908], DiskBox[3, 0.024498527314026908], DiskBox[4, 0.024498527314026908], DiskBox[5, 0.024498527314026908], DiskBox[6, 0.024498527314026908], DiskBox[7, 0.024498527314026908], DiskBox[8, 0.024498527314026908]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], "}"}]}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"\<\"Knight\"\>", ",", RowBox[{"{", RowBox[{"8", ",", "8"}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.009799`", ",", RowBox[{"{", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{2, 12, 17, 27, 19, 29, 34, 44}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, { 1}, {4}, {6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, { 7}, {2}, {5}, {8}, {3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 2}, VertexCoordinates -> {{ 2 5^Rational[-1, 2], 5^Rational[-1, 2]}, { 4 5^Rational[-1, 2], 2 5^Rational[-1, 2]}, { 5^Rational[-1, 2], 3 5^Rational[-1, 2]}, { 3 5^Rational[-1, 2], 4 5^Rational[-1, 2]}, { 3 5^Rational[-1, 2], 3 5^Rational[-1, 2]}, { 5^Rational[1, 2], 4 5^Rational[-1, 2]}, { 2 5^Rational[-1, 2], 5^Rational[1, 2]}, { 4 5^Rational[-1, 2], 6 5^Rational[-1, 2]}}}]]}, TagBox[GraphicsGroupBox[ GraphicsComplexBox[{{0.8944271909999159, 0.4472135954999579}, {1.7888543819998317`, 0.8944271909999159}, {0.4472135954999579, 1.3416407864998738`}, {1.3416407864998738`, 1.7888543819998317`}, {1.3416407864998738`, 1.3416407864998738`}, {2.23606797749979, 1.7888543819998317`}, {0.8944271909999159, 2.23606797749979}, {1.7888543819998317`, 2.6832815729997477`}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.024498527314026908`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[ 0.7]}], DiskBox[1, 0.024498527314026908], DiskBox[2, 0.024498527314026908], DiskBox[3, 0.024498527314026908], DiskBox[4, 0.024498527314026908], DiskBox[5, 0.024498527314026908], DiskBox[6, 0.024498527314026908], DiskBox[7, 0.024498527314026908], DiskBox[8, 0.024498527314026908]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], "}"}]}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"\<\"Knight\"\>", ",", RowBox[{"{", RowBox[{"8", ",", "9"}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.010774`", ",", RowBox[{"{", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{2, 13, 19, 30, 21, 32, 38, 49}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, { 1}, {4}, {6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, { 7}, {2}, {5}, {8}, {3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 2}, VertexCoordinates -> {{ 5^Rational[-1, 2], 2 5^Rational[-1, 2]}, { 2 5^Rational[-1, 2], 4 5^Rational[-1, 2]}, { 3 5^Rational[-1, 2], 5^Rational[-1, 2]}, { 4 5^Rational[-1, 2], 3 5^Rational[-1, 2]}, { 3 5^Rational[-1, 2], 3 5^Rational[-1, 2]}, { 4 5^Rational[-1, 2], 5^Rational[1, 2]}, { 5^Rational[1, 2], 2 5^Rational[-1, 2]}, { 6 5^Rational[-1, 2], 4 5^Rational[-1, 2]}}}]]}, TagBox[GraphicsGroupBox[ GraphicsComplexBox[{{0.4472135954999579, 0.8944271909999159}, {0.8944271909999159, 1.7888543819998317`}, {1.3416407864998738`, 0.4472135954999579}, {1.7888543819998317`, 1.3416407864998738`}, {1.3416407864998738`, 1.3416407864998738`}, {1.7888543819998317`, 2.23606797749979}, {2.23606797749979, 0.8944271909999159}, { 2.6832815729997477`, 1.7888543819998317`}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.024498527314026908`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[ 0.7]}], DiskBox[1, 0.024498527314026908], DiskBox[2, 0.024498527314026908], DiskBox[3, 0.024498527314026908], DiskBox[4, 0.024498527314026908], DiskBox[5, 0.024498527314026908], DiskBox[6, 0.024498527314026908], DiskBox[7, 0.024498527314026908], DiskBox[8, 0.024498527314026908]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], "}"}]}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"\<\"Knight\"\>", ",", RowBox[{"{", RowBox[{"8", ",", "10"}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.011691`", ",", RowBox[{"{", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{2, 14, 21, 33, 23, 35, 42, 54}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, { 1}, {4}, {6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, { 7}, {2}, {5}, {8}, {3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 2}, VertexCoordinates -> {{ 5^Rational[-1, 2], 2 5^Rational[-1, 2]}, { 2 5^Rational[-1, 2], 4 5^Rational[-1, 2]}, { 3 5^Rational[-1, 2], 5^Rational[-1, 2]}, { 4 5^Rational[-1, 2], 3 5^Rational[-1, 2]}, { 3 5^Rational[-1, 2], 3 5^Rational[-1, 2]}, { 4 5^Rational[-1, 2], 5^Rational[1, 2]}, { 5^Rational[1, 2], 2 5^Rational[-1, 2]}, { 6 5^Rational[-1, 2], 4 5^Rational[-1, 2]}}}]]}, TagBox[GraphicsGroupBox[ GraphicsComplexBox[{{0.4472135954999579, 0.8944271909999159}, {0.8944271909999159, 1.7888543819998317`}, {1.3416407864998738`, 0.4472135954999579}, {1.7888543819998317`, 1.3416407864998738`}, {1.3416407864998738`, 1.3416407864998738`}, {1.7888543819998317`, 2.23606797749979}, {2.23606797749979, 0.8944271909999159}, { 2.6832815729997477`, 1.7888543819998317`}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.024498527314026908`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[ 0.7]}], DiskBox[1, 0.024498527314026908], DiskBox[2, 0.024498527314026908], DiskBox[3, 0.024498527314026908], DiskBox[4, 0.024498527314026908], DiskBox[5, 0.024498527314026908], DiskBox[6, 0.024498527314026908], DiskBox[7, 0.024498527314026908], DiskBox[8, 0.024498527314026908]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], "}"}]}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"\<\"Knight\"\>", ",", RowBox[{"{", RowBox[{"9", ",", "9"}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.007755`", ",", RowBox[{"{", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{2, 13, 19, 30, 21, 32, 38, 49}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, { 1}, {4}, {6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, { 7}, {2}, {5}, {8}, {3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 2}, VertexCoordinates -> {{ 2 5^Rational[-1, 2], 5^Rational[-1, 2]}, { 4 5^Rational[-1, 2], 2 5^Rational[-1, 2]}, { 5^Rational[-1, 2], 3 5^Rational[-1, 2]}, { 3 5^Rational[-1, 2], 4 5^Rational[-1, 2]}, { 3 5^Rational[-1, 2], 3 5^Rational[-1, 2]}, { 5^Rational[1, 2], 4 5^Rational[-1, 2]}, { 2 5^Rational[-1, 2], 5^Rational[1, 2]}, { 4 5^Rational[-1, 2], 6 5^Rational[-1, 2]}}}]]}, TagBox[GraphicsGroupBox[ GraphicsComplexBox[{{0.8944271909999159, 0.4472135954999579}, {1.7888543819998317`, 0.8944271909999159}, {0.4472135954999579, 1.3416407864998738`}, {1.3416407864998738`, 1.7888543819998317`}, {1.3416407864998738`, 1.3416407864998738`}, {2.23606797749979, 1.7888543819998317`}, {0.8944271909999159, 2.23606797749979}, {1.7888543819998317`, 2.6832815729997477`}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.024498527314026908`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[ 0.7]}], DiskBox[1, 0.024498527314026908], DiskBox[2, 0.024498527314026908], DiskBox[3, 0.024498527314026908], DiskBox[4, 0.024498527314026908], DiskBox[5, 0.024498527314026908], DiskBox[6, 0.024498527314026908], DiskBox[7, 0.024498527314026908], DiskBox[8, 0.024498527314026908]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], "}"}]}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"\<\"Knight\"\>", ",", RowBox[{"{", RowBox[{"9", ",", "10"}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.017031`", ",", RowBox[{"{", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{2, 14, 21, 33, 23, 35, 42, 54}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, { 1}, {4}, {6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, { 7}, {2}, {5}, {8}, {3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 2}, VertexCoordinates -> {{ 5^Rational[-1, 2], 2 5^Rational[-1, 2]}, { 2 5^Rational[-1, 2], 4 5^Rational[-1, 2]}, { 3 5^Rational[-1, 2], 5^Rational[-1, 2]}, { 4 5^Rational[-1, 2], 3 5^Rational[-1, 2]}, { 3 5^Rational[-1, 2], 3 5^Rational[-1, 2]}, { 4 5^Rational[-1, 2], 5^Rational[1, 2]}, { 5^Rational[1, 2], 2 5^Rational[-1, 2]}, { 6 5^Rational[-1, 2], 4 5^Rational[-1, 2]}}}]]}, TagBox[GraphicsGroupBox[ GraphicsComplexBox[{{0.4472135954999579, 0.8944271909999159}, {0.8944271909999159, 1.7888543819998317`}, {1.3416407864998738`, 0.4472135954999579}, {1.7888543819998317`, 1.3416407864998738`}, {1.3416407864998738`, 1.3416407864998738`}, {1.7888543819998317`, 2.23606797749979}, {2.23606797749979, 0.8944271909999159}, { 2.6832815729997477`, 1.7888543819998317`}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.024498527314026908`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[ 0.7]}], DiskBox[1, 0.024498527314026908], DiskBox[2, 0.024498527314026908], DiskBox[3, 0.024498527314026908], DiskBox[4, 0.024498527314026908], DiskBox[5, 0.024498527314026908], DiskBox[6, 0.024498527314026908], DiskBox[7, 0.024498527314026908], DiskBox[8, 0.024498527314026908]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], "}"}]}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"\<\"Knight\"\>", ",", RowBox[{"{", RowBox[{"10", ",", "10"}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.021555`", ",", RowBox[{"{", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{2, 14, 21, 33, 23, 35, 42, 54}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, { 1}, {4}, {6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, { 7}, {2}, {5}, {8}, {3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 2}, VertexCoordinates -> {{ 2 5^Rational[-1, 2], 5^Rational[-1, 2]}, { 4 5^Rational[-1, 2], 2 5^Rational[-1, 2]}, { 5^Rational[-1, 2], 3 5^Rational[-1, 2]}, { 3 5^Rational[-1, 2], 4 5^Rational[-1, 2]}, { 3 5^Rational[-1, 2], 3 5^Rational[-1, 2]}, { 5^Rational[1, 2], 4 5^Rational[-1, 2]}, { 2 5^Rational[-1, 2], 5^Rational[1, 2]}, { 4 5^Rational[-1, 2], 6 5^Rational[-1, 2]}}}]]}, TagBox[GraphicsGroupBox[ GraphicsComplexBox[{{0.8944271909999159, 0.4472135954999579}, {1.7888543819998317`, 0.8944271909999159}, {0.4472135954999579, 1.3416407864998738`}, {1.3416407864998738`, 1.7888543819998317`}, {1.3416407864998738`, 1.3416407864998738`}, {2.23606797749979, 1.7888543819998317`}, {0.8944271909999159, 2.23606797749979}, {1.7888543819998317`, 2.6832815729997477`}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.024498527314026908`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[ 0.7]}], DiskBox[1, 0.024498527314026908], DiskBox[2, 0.024498527314026908], DiskBox[3, 0.024498527314026908], DiskBox[4, 0.024498527314026908], DiskBox[5, 0.024498527314026908], DiskBox[6, 0.024498527314026908], DiskBox[7, 0.024498527314026908], DiskBox[8, 0.024498527314026908]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], "}"}]}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"\<\"Knight\"\>", ",", RowBox[{"{", RowBox[{"11", ",", "11"}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.016789`", ",", RowBox[{"{", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{2, 15, 23, 36, 25, 38, 46, 59}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, { 1}, {4}, {6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, { 7}, {2}, {5}, {8}, {3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 2}, VertexCoordinates -> {{ 5^Rational[-1, 2], 2 5^Rational[-1, 2]}, { 2 5^Rational[-1, 2], 4 5^Rational[-1, 2]}, { 3 5^Rational[-1, 2], 5^Rational[-1, 2]}, { 4 5^Rational[-1, 2], 3 5^Rational[-1, 2]}, { 3 5^Rational[-1, 2], 3 5^Rational[-1, 2]}, { 4 5^Rational[-1, 2], 5^Rational[1, 2]}, { 5^Rational[1, 2], 2 5^Rational[-1, 2]}, { 6 5^Rational[-1, 2], 4 5^Rational[-1, 2]}}}]]}, TagBox[GraphicsGroupBox[ GraphicsComplexBox[{{0.4472135954999579, 0.8944271909999159}, {0.8944271909999159, 1.7888543819998317`}, {1.3416407864998738`, 0.4472135954999579}, {1.7888543819998317`, 1.3416407864998738`}, {1.3416407864998738`, 1.3416407864998738`}, {1.7888543819998317`, 2.23606797749979}, {2.23606797749979, 0.8944271909999159}, { 2.6832815729997477`, 1.7888543819998317`}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.024498527314026908`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[ 0.7]}], DiskBox[1, 0.024498527314026908], DiskBox[2, 0.024498527314026908], DiskBox[3, 0.024498527314026908], DiskBox[4, 0.024498527314026908], DiskBox[5, 0.024498527314026908], DiskBox[6, 0.024498527314026908], DiskBox[7, 0.024498527314026908], DiskBox[8, 0.024498527314026908]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], "}"}]}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"\<\"Knight\"\>", ",", RowBox[{"{", RowBox[{"12", ",", "12"}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.025987`", ",", RowBox[{"{", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{2, 16, 25, 39, 27, 41, 50, 64}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, { 1}, {4}, {6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, { 7}, {2}, {5}, {8}, {3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 2}, VertexCoordinates -> {{ 5^Rational[-1, 2], 2 5^Rational[-1, 2]}, { 2 5^Rational[-1, 2], 4 5^Rational[-1, 2]}, { 3 5^Rational[-1, 2], 5^Rational[-1, 2]}, { 4 5^Rational[-1, 2], 3 5^Rational[-1, 2]}, { 3 5^Rational[-1, 2], 3 5^Rational[-1, 2]}, { 4 5^Rational[-1, 2], 5^Rational[1, 2]}, { 5^Rational[1, 2], 2 5^Rational[-1, 2]}, { 6 5^Rational[-1, 2], 4 5^Rational[-1, 2]}}}]]}, TagBox[GraphicsGroupBox[ GraphicsComplexBox[{{0.4472135954999579, 0.8944271909999159}, {0.8944271909999159, 1.7888543819998317`}, {1.3416407864998738`, 0.4472135954999579}, {1.7888543819998317`, 1.3416407864998738`}, {1.3416407864998738`, 1.3416407864998738`}, {1.7888543819998317`, 2.23606797749979}, {2.23606797749979, 0.8944271909999159}, { 2.6832815729997477`, 1.7888543819998317`}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.024498527314026908`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[ 0.7]}], DiskBox[1, 0.024498527314026908], DiskBox[2, 0.024498527314026908], DiskBox[3, 0.024498527314026908], DiskBox[4, 0.024498527314026908], DiskBox[5, 0.024498527314026908], DiskBox[6, 0.024498527314026908], DiskBox[7, 0.024498527314026908], DiskBox[8, 0.024498527314026908]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], "}"}]}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"\<\"Knight\"\>", ",", RowBox[{"{", RowBox[{"13", ",", "13"}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.017704`", ",", RowBox[{"{", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{2, 17, 27, 42, 29, 44, 54, 69}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, { 1}, {4}, {6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, { 7}, {2}, {5}, {8}, {3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 2}, VertexCoordinates -> {{ 5^Rational[-1, 2], 2 5^Rational[-1, 2]}, { 2 5^Rational[-1, 2], 4 5^Rational[-1, 2]}, { 3 5^Rational[-1, 2], 5^Rational[-1, 2]}, { 4 5^Rational[-1, 2], 3 5^Rational[-1, 2]}, { 3 5^Rational[-1, 2], 3 5^Rational[-1, 2]}, { 4 5^Rational[-1, 2], 5^Rational[1, 2]}, { 5^Rational[1, 2], 2 5^Rational[-1, 2]}, { 6 5^Rational[-1, 2], 4 5^Rational[-1, 2]}}}]]}, TagBox[GraphicsGroupBox[ GraphicsComplexBox[{{0.4472135954999579, 0.8944271909999159}, {0.8944271909999159, 1.7888543819998317`}, {1.3416407864998738`, 0.4472135954999579}, {1.7888543819998317`, 1.3416407864998738`}, {1.3416407864998738`, 1.3416407864998738`}, {1.7888543819998317`, 2.23606797749979}, {2.23606797749979, 0.8944271909999159}, { 2.6832815729997477`, 1.7888543819998317`}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.024498527314026908`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[ 0.7]}], DiskBox[1, 0.024498527314026908], DiskBox[2, 0.024498527314026908], DiskBox[3, 0.024498527314026908], DiskBox[4, 0.024498527314026908], DiskBox[5, 0.024498527314026908], DiskBox[6, 0.024498527314026908], DiskBox[7, 0.024498527314026908], DiskBox[8, 0.024498527314026908]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], "}"}]}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"\<\"Knight\"\>", ",", RowBox[{"{", RowBox[{"14", ",", "14"}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.032773`", ",", RowBox[{"{", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{2, 18, 29, 45, 31, 47, 58, 74}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, { 1}, {4}, {6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, { 7}, {2}, {5}, {8}, {3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 2}, VertexCoordinates -> {{ 5^Rational[-1, 2], 2 5^Rational[-1, 2]}, { 2 5^Rational[-1, 2], 4 5^Rational[-1, 2]}, { 3 5^Rational[-1, 2], 5^Rational[-1, 2]}, { 4 5^Rational[-1, 2], 3 5^Rational[-1, 2]}, { 3 5^Rational[-1, 2], 3 5^Rational[-1, 2]}, { 4 5^Rational[-1, 2], 5^Rational[1, 2]}, { 5^Rational[1, 2], 2 5^Rational[-1, 2]}, { 6 5^Rational[-1, 2], 4 5^Rational[-1, 2]}}}]]}, TagBox[GraphicsGroupBox[ GraphicsComplexBox[{{0.4472135954999579, 0.8944271909999159}, {0.8944271909999159, 1.7888543819998317`}, {1.3416407864998738`, 0.4472135954999579}, {1.7888543819998317`, 1.3416407864998738`}, {1.3416407864998738`, 1.3416407864998738`}, {1.7888543819998317`, 2.23606797749979}, {2.23606797749979, 0.8944271909999159}, { 2.6832815729997477`, 1.7888543819998317`}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.024498527314026908`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[ 0.7]}], DiskBox[1, 0.024498527314026908], DiskBox[2, 0.024498527314026908], DiskBox[3, 0.024498527314026908], DiskBox[4, 0.024498527314026908], DiskBox[5, 0.024498527314026908], DiskBox[6, 0.024498527314026908], DiskBox[7, 0.024498527314026908], DiskBox[8, 0.024498527314026908]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], "}"}]}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"\<\"Knight\"\>", ",", RowBox[{"{", RowBox[{"15", ",", "15"}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.022472`", ",", RowBox[{"{", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{2, 19, 31, 48, 33, 50, 62, 79}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, { 1}, {4}, {6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, { 7}, {2}, {5}, {8}, {3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 2}, VertexCoordinates -> {{ 5^Rational[-1, 2], 2 5^Rational[-1, 2]}, { 2 5^Rational[-1, 2], 4 5^Rational[-1, 2]}, { 3 5^Rational[-1, 2], 5^Rational[-1, 2]}, { 4 5^Rational[-1, 2], 3 5^Rational[-1, 2]}, { 3 5^Rational[-1, 2], 3 5^Rational[-1, 2]}, { 4 5^Rational[-1, 2], 5^Rational[1, 2]}, { 5^Rational[1, 2], 2 5^Rational[-1, 2]}, { 6 5^Rational[-1, 2], 4 5^Rational[-1, 2]}}}]]}, TagBox[GraphicsGroupBox[ GraphicsComplexBox[{{0.4472135954999579, 0.8944271909999159}, {0.8944271909999159, 1.7888543819998317`}, {1.3416407864998738`, 0.4472135954999579}, {1.7888543819998317`, 1.3416407864998738`}, {1.3416407864998738`, 1.3416407864998738`}, {1.7888543819998317`, 2.23606797749979}, {2.23606797749979, 0.8944271909999159}, { 2.6832815729997477`, 1.7888543819998317`}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.024498527314026908`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[ 0.7]}], DiskBox[1, 0.024498527314026908], DiskBox[2, 0.024498527314026908], DiskBox[3, 0.024498527314026908], DiskBox[4, 0.024498527314026908], DiskBox[5, 0.024498527314026908], DiskBox[6, 0.024498527314026908], DiskBox[7, 0.024498527314026908], DiskBox[8, 0.024498527314026908]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], "}"}]}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"\<\"Knight\"\>", ",", RowBox[{"{", RowBox[{"16", ",", "16"}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.042233`", ",", RowBox[{"{", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{2, 20, 33, 51, 35, 53, 66, 84}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, { 1}, {4}, {6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, { 7}, {2}, {5}, {8}, {3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 2}, VertexCoordinates -> {{ 5^Rational[-1, 2], 2 5^Rational[-1, 2]}, { 2 5^Rational[-1, 2], 4 5^Rational[-1, 2]}, { 3 5^Rational[-1, 2], 5^Rational[-1, 2]}, { 4 5^Rational[-1, 2], 3 5^Rational[-1, 2]}, { 3 5^Rational[-1, 2], 3 5^Rational[-1, 2]}, { 4 5^Rational[-1, 2], 5^Rational[1, 2]}, { 5^Rational[1, 2], 2 5^Rational[-1, 2]}, { 6 5^Rational[-1, 2], 4 5^Rational[-1, 2]}}}]]}, TagBox[GraphicsGroupBox[ GraphicsComplexBox[{{0.4472135954999579, 0.8944271909999159}, {0.8944271909999159, 1.7888543819998317`}, {1.3416407864998738`, 0.4472135954999579}, {1.7888543819998317`, 1.3416407864998738`}, {1.3416407864998738`, 1.3416407864998738`}, {1.7888543819998317`, 2.23606797749979}, {2.23606797749979, 0.8944271909999159}, { 2.6832815729997477`, 1.7888543819998317`}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.024498527314026908`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[ 0.7]}], DiskBox[1, 0.024498527314026908], DiskBox[2, 0.024498527314026908], DiskBox[3, 0.024498527314026908], DiskBox[4, 0.024498527314026908], DiskBox[5, 0.024498527314026908], DiskBox[6, 0.024498527314026908], DiskBox[7, 0.024498527314026908], DiskBox[8, 0.024498527314026908]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], "}"}]}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"\<\"Knight\"\>", ",", RowBox[{"{", RowBox[{"17", ",", "17"}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.028368`", ",", RowBox[{"{", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{2, 21, 35, 54, 37, 56, 70, 89}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, { 1}, {4}, {6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, { 7}, {2}, {5}, {8}, {3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 2}, VertexCoordinates -> {{ 5^Rational[-1, 2], 2 5^Rational[-1, 2]}, { 2 5^Rational[-1, 2], 4 5^Rational[-1, 2]}, { 3 5^Rational[-1, 2], 5^Rational[-1, 2]}, { 4 5^Rational[-1, 2], 3 5^Rational[-1, 2]}, { 3 5^Rational[-1, 2], 3 5^Rational[-1, 2]}, { 4 5^Rational[-1, 2], 5^Rational[1, 2]}, { 5^Rational[1, 2], 2 5^Rational[-1, 2]}, { 6 5^Rational[-1, 2], 4 5^Rational[-1, 2]}}}]]}, TagBox[GraphicsGroupBox[ GraphicsComplexBox[{{0.4472135954999579, 0.8944271909999159}, {0.8944271909999159, 1.7888543819998317`}, {1.3416407864998738`, 0.4472135954999579}, {1.7888543819998317`, 1.3416407864998738`}, {1.3416407864998738`, 1.3416407864998738`}, {1.7888543819998317`, 2.23606797749979}, {2.23606797749979, 0.8944271909999159}, { 2.6832815729997477`, 1.7888543819998317`}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.024498527314026908`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[ 0.7]}], DiskBox[1, 0.024498527314026908], DiskBox[2, 0.024498527314026908], DiskBox[3, 0.024498527314026908], DiskBox[4, 0.024498527314026908], DiskBox[5, 0.024498527314026908], DiskBox[6, 0.024498527314026908], DiskBox[7, 0.024498527314026908], DiskBox[8, 0.024498527314026908]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], "}"}]}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"\<\"Knight\"\>", ",", RowBox[{"{", RowBox[{"18", ",", "18"}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.055877`", ",", RowBox[{"{", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{2, 22, 37, 57, 39, 59, 74, 94}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, { 1}, {4}, {6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, { 7}, {2}, {5}, {8}, {3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 2}, VertexCoordinates -> {{ 5^Rational[-1, 2], 2 5^Rational[-1, 2]}, { 2 5^Rational[-1, 2], 4 5^Rational[-1, 2]}, { 3 5^Rational[-1, 2], 5^Rational[-1, 2]}, { 4 5^Rational[-1, 2], 3 5^Rational[-1, 2]}, { 3 5^Rational[-1, 2], 3 5^Rational[-1, 2]}, { 4 5^Rational[-1, 2], 5^Rational[1, 2]}, { 5^Rational[1, 2], 2 5^Rational[-1, 2]}, { 6 5^Rational[-1, 2], 4 5^Rational[-1, 2]}}}]]}, TagBox[GraphicsGroupBox[ GraphicsComplexBox[{{0.4472135954999579, 0.8944271909999159}, {0.8944271909999159, 1.7888543819998317`}, {1.3416407864998738`, 0.4472135954999579}, {1.7888543819998317`, 1.3416407864998738`}, {1.3416407864998738`, 1.3416407864998738`}, {1.7888543819998317`, 2.23606797749979}, {2.23606797749979, 0.8944271909999159}, { 2.6832815729997477`, 1.7888543819998317`}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.024498527314026908`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[ 0.7]}], DiskBox[1, 0.024498527314026908], DiskBox[2, 0.024498527314026908], DiskBox[3, 0.024498527314026908], DiskBox[4, 0.024498527314026908], DiskBox[5, 0.024498527314026908], DiskBox[6, 0.024498527314026908], DiskBox[7, 0.024498527314026908], DiskBox[8, 0.024498527314026908]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], "}"}]}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"\<\"Knight\"\>", ",", RowBox[{"{", RowBox[{"19", ",", "19"}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.035889`", ",", RowBox[{"{", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{2, 23, 39, 60, 41, 62, 78, 99}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, { 1}, {4}, {6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, { 7}, {2}, {5}, {8}, {3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 2}, VertexCoordinates -> {{ 5^Rational[-1, 2], 2 5^Rational[-1, 2]}, { 2 5^Rational[-1, 2], 4 5^Rational[-1, 2]}, { 3 5^Rational[-1, 2], 5^Rational[-1, 2]}, { 4 5^Rational[-1, 2], 3 5^Rational[-1, 2]}, { 3 5^Rational[-1, 2], 3 5^Rational[-1, 2]}, { 4 5^Rational[-1, 2], 5^Rational[1, 2]}, { 5^Rational[1, 2], 2 5^Rational[-1, 2]}, { 6 5^Rational[-1, 2], 4 5^Rational[-1, 2]}}}]]}, TagBox[GraphicsGroupBox[ GraphicsComplexBox[{{0.4472135954999579, 0.8944271909999159}, {0.8944271909999159, 1.7888543819998317`}, {1.3416407864998738`, 0.4472135954999579}, {1.7888543819998317`, 1.3416407864998738`}, {1.3416407864998738`, 1.3416407864998738`}, {1.7888543819998317`, 2.23606797749979}, {2.23606797749979, 0.8944271909999159}, { 2.6832815729997477`, 1.7888543819998317`}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.024498527314026908`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[ 0.7]}], DiskBox[1, 0.024498527314026908], DiskBox[2, 0.024498527314026908], DiskBox[3, 0.024498527314026908], DiskBox[4, 0.024498527314026908], DiskBox[5, 0.024498527314026908], DiskBox[6, 0.024498527314026908], DiskBox[7, 0.024498527314026908], DiskBox[8, 0.024498527314026908]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], "}"}]}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"\<\"Knight\"\>", ",", RowBox[{"{", RowBox[{"20", ",", "20"}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.038`", ",", RowBox[{"{", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{2, 24, 41, 63, 43, 65, 82, 104}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, { 1}, {4}, {6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, { 7}, {2}, {5}, {8}, {3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 2}, VertexCoordinates -> {{ 5^Rational[-1, 2], 2 5^Rational[-1, 2]}, { 2 5^Rational[-1, 2], 4 5^Rational[-1, 2]}, { 3 5^Rational[-1, 2], 5^Rational[-1, 2]}, { 4 5^Rational[-1, 2], 3 5^Rational[-1, 2]}, { 3 5^Rational[-1, 2], 3 5^Rational[-1, 2]}, { 4 5^Rational[-1, 2], 5^Rational[1, 2]}, { 5^Rational[1, 2], 2 5^Rational[-1, 2]}, { 6 5^Rational[-1, 2], 4 5^Rational[-1, 2]}}}]]}, TagBox[GraphicsGroupBox[ GraphicsComplexBox[{{0.4472135954999579, 0.8944271909999159}, {0.8944271909999159, 1.7888543819998317`}, {1.3416407864998738`, 0.4472135954999579}, {1.7888543819998317`, 1.3416407864998738`}, {1.3416407864998738`, 1.3416407864998738`}, {1.7888543819998317`, 2.23606797749979}, {2.23606797749979, 0.8944271909999159}, { 2.6832815729997477`, 1.7888543819998317`}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.024498527314026908`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[ 0.7]}], DiskBox[1, 0.024498527314026908], DiskBox[2, 0.024498527314026908], DiskBox[3, 0.024498527314026908], DiskBox[4, 0.024498527314026908], DiskBox[5, 0.024498527314026908], DiskBox[6, 0.024498527314026908], DiskBox[7, 0.024498527314026908], DiskBox[8, 0.024498527314026908]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], "}"}]}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{"\<\"MixonGraph1577\"\>", ",", RowBox[{"{", RowBox[{"0.389985`", ",", RowBox[{"{", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 23, 27, 142, 1062, 878, 1270, 794}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, { 1}, {4}, {6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, { 7}, {2}, {5}, {8}, {3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 2}, VertexCoordinates -> {{2, 0}, {3, 0}, { Rational[5, 2], Rational[1, 2] 3^Rational[1, 2]}, { Rational[7, 2], Rational[1, 2] 3^Rational[1, 2]}, { Rational[1, 12] (19 + 33^Rational[1, 2]), Rational[-1, 12] (86 + 10 33^Rational[1, 2])^ Rational[1, 2]}, { Rational[1, 12] (31 + 33^Rational[1, 2]), Rational[-1, 12] (86 + 10 33^Rational[1, 2])^ Rational[1, 2]}, { Rational[1, 12] (25 + 33^Rational[1, 2]), Rational[1, 12] (3^Rational[1, 2] - 11^Rational[1, 2])}, { Rational[1, 12] (37 + 33^Rational[1, 2]), Rational[1, 12] (3^Rational[1, 2] - 11^ Rational[1, 2])}}}]]}, TagBox[GraphicsGroupBox[ GraphicsComplexBox[{{2., 0.}, {3., 0.}, {2.5, 0.8660254037844386}, {3.5, 0.8660254037844386}, { 2.062046887211502, -0.9980732356833155}, { 3.062046887211502, -0.9980732356833155}, { 2.562046887211502, -0.13204783189887687`}, { 3.562046887211502, -0.13204783189887687`}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.02149914387407184]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[ 0.7]}], DiskBox[1, 0.02149914387407184], DiskBox[2, 0.02149914387407184], DiskBox[3, 0.02149914387407184], DiskBox[4, 0.02149914387407184], DiskBox[5, 0.02149914387407184], DiskBox[6, 0.02149914387407184], DiskBox[7, 0.02149914387407184], DiskBox[8, 0.02149914387407184]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], "}"}]}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{"\<\"MixonGraph1585\"\>", ",", RowBox[{"{", RowBox[{"0.318791`", ",", RowBox[{"{", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 27, 31, 146, 1070, 882, 1278, 798}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, { 1}, {4}, {6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, { 7}, {2}, {5}, {8}, {3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 2}, VertexCoordinates -> {{2, 0}, {3, 0}, { Rational[5, 2], Rational[1, 2] 3^Rational[1, 2]}, { Rational[7, 2], Rational[1, 2] 3^Rational[1, 2]}, { Rational[1, 12] (19 + 33^Rational[1, 2]), Rational[-1, 12] (86 + 10 33^Rational[1, 2])^ Rational[1, 2]}, { Rational[1, 12] (31 + 33^Rational[1, 2]), Rational[-1, 12] (86 + 10 33^Rational[1, 2])^ Rational[1, 2]}, { Rational[1, 12] (25 + 33^Rational[1, 2]), Rational[1, 12] (3^Rational[1, 2] - 11^Rational[1, 2])}, { Rational[1, 12] (37 + 33^Rational[1, 2]), Rational[1, 12] (3^Rational[1, 2] - 11^ Rational[1, 2])}}}]]}, TagBox[GraphicsGroupBox[ GraphicsComplexBox[{{2., 0.}, {3., 0.}, {2.5, 0.8660254037844386}, {3.5, 0.8660254037844386}, { 2.062046887211502, -0.9980732356833155}, { 3.062046887211502, -0.9980732356833155}, { 2.562046887211502, -0.13204783189887687`}, { 3.562046887211502, -0.13204783189887687`}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.02149914387407184]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[ 0.7]}], DiskBox[1, 0.02149914387407184], DiskBox[2, 0.02149914387407184], DiskBox[3, 0.02149914387407184], DiskBox[4, 0.02149914387407184], DiskBox[5, 0.02149914387407184], DiskBox[6, 0.02149914387407184], DiskBox[7, 0.02149914387407184], DiskBox[8, 0.02149914387407184]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], "}"}]}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{"\<\"PartsGraph509\"\>", ",", RowBox[{"{", RowBox[{"0.084914`", ",", RowBox[{"{", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 149, 154, 264, 158, 130, 342, 336}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, { 1}, {4}, {6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, { 7}, {2}, {5}, {8}, {3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 2}, VertexCoordinates -> {{0, 0}, { Rational[1, 12] (-5 + 33^Rational[1, 2]), Rational[1, 12] (5 3^Rational[1, 2] + 11^Rational[1, 2])}, {1, 0}, { Rational[1, 12] (7 + 33^Rational[1, 2]), Rational[1, 12] (5 3^Rational[1, 2] + 11^Rational[1, 2])}, { Rational[1, 12] (3 + 33^Rational[1, 2]), Rational[1, 12] (3^Rational[1, 2] - 3 11^Rational[1, 2])}, { Rational[1, 6] (-1 + 33^Rational[1, 2]), Rational[1, 6] (3 3^Rational[1, 2] - 11^ Rational[1, 2])}, { Rational[1, 12] (15 + 33^Rational[1, 2]), Rational[1, 12] (3^Rational[1, 2] - 3 11^Rational[1, 2])}, { Rational[1, 6] (5 + 33^Rational[1, 2]), Rational[1, 6] (3 3^Rational[1, 2] - 11^ Rational[1, 2])}}}]]}, TagBox[GraphicsGroupBox[ GraphicsComplexBox[{{0., 0.}, {0.06204688721150238, 0.9980732356833154}, {1., 0.}, {1.0620468872115023`, 0.9980732356833154}, { 0.728713553878169, -0.6848186302914435}, { 0.7907604410896714, 0.313254605391872}, { 1.728713553878169, -0.6848186302914435}, { 1.7907604410896714`, 0.313254605391872}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.020890779855135794`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[ 0.7]}], DiskBox[1, 0.020890779855135794], DiskBox[2, 0.020890779855135794], DiskBox[3, 0.020890779855135794], DiskBox[4, 0.020890779855135794], DiskBox[5, 0.020890779855135794], DiskBox[6, 0.020890779855135794], DiskBox[7, 0.020890779855135794], DiskBox[8, 0.020890779855135794]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], "}"}]}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{"\<\"PartsGraph510\"\>", ",", RowBox[{"{", RowBox[{"0.086082`", ",", RowBox[{"{", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 154, 158, 335, 168, 22, 60, 120}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, { 1}, {4}, {6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, { 7}, {2}, {5}, {8}, {3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 2}, VertexCoordinates -> {{0, 0}, { Rational[1, 12] (-3 + 33^Rational[1, 2]), Rational[1, 12] (3^Rational[1, 2] + 3 11^Rational[1, 2])}, { Rational[1, 12] (5 + 33^Rational[1, 2]), Rational[1, 12] (5 3^Rational[1, 2] - 11^ Rational[1, 2])}, { Rational[1, 6] (1 + 33^Rational[1, 2]), Rational[1, 6] (3 3^Rational[1, 2] + 11^Rational[1, 2])}, { Rational[-1, 2], Rational[-1, 2] 3^Rational[1, 2]}, { Rational[1, 12] (-9 + 33^Rational[1, 2]), Rational[1, 12] ((-5) 3^Rational[1, 2] + 3 11^Rational[1, 2])}, { Rational[1, 12] (-1 + 33^Rational[1, 2]), Rational[1, 12] (-3^Rational[1, 2] - 11^ Rational[1, 2])}, { Rational[1, 6] (-2 + 33^Rational[1, 2]), Rational[1, 6] 11^Rational[1, 2]}}}]]}, TagBox[GraphicsGroupBox[ GraphicsComplexBox[{{0., 0.}, {0.22871355387816905`, 0.9734937648862563}, {0.8953802205448357, 0.4453024372907488}, {1.1240937744230046`, 1.4187962021770053`}, {-0.5, -0.8660254037844386}, \ {-0.27128644612183095`, 0.10746836110181782`}, { 0.3953802205448357, -0.4207229664936897}, { 0.6240937744230047, 0.5527707983925666}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.02488130619774248]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[ 0.7]}], DiskBox[1, 0.02488130619774248], DiskBox[2, 0.02488130619774248], DiskBox[3, 0.02488130619774248], DiskBox[4, 0.02488130619774248], DiskBox[5, 0.02488130619774248], DiskBox[6, 0.02488130619774248], DiskBox[7, 0.02488130619774248], DiskBox[8, 0.02488130619774248]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], "}"}]}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{"\<\"PartsGraph525\"\>", ",", RowBox[{"{", RowBox[{"0.095026`", ",", RowBox[{"{", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 150, 154, 342, 164, 23, 63, 117}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, { 1}, {4}, {6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, { 7}, {2}, {5}, {8}, {3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 2}, VertexCoordinates -> {{0, 0}, { Rational[1, 12] (-3 + 33^Rational[1, 2]), Rational[1, 12] (3^Rational[1, 2] + 3 11^Rational[1, 2])}, { Rational[1, 12] (5 + 33^Rational[1, 2]), Rational[1, 12] (5 3^Rational[1, 2] - 11^ Rational[1, 2])}, { Rational[1, 6] (1 + 33^Rational[1, 2]), Rational[1, 6] (3 3^Rational[1, 2] + 11^Rational[1, 2])}, { Rational[-1, 2], Rational[-1, 2] 3^Rational[1, 2]}, { Rational[1, 12] (-9 + 33^Rational[1, 2]), Rational[1, 12] ((-5) 3^Rational[1, 2] + 3 11^Rational[1, 2])}, { Rational[1, 12] (-1 + 33^Rational[1, 2]), Rational[1, 12] (-3^Rational[1, 2] - 11^ Rational[1, 2])}, { Rational[1, 6] (-2 + 33^Rational[1, 2]), Rational[1, 6] 11^Rational[1, 2]}}}]]}, TagBox[GraphicsGroupBox[ GraphicsComplexBox[{{0., 0.}, {0.22871355387816905`, 0.9734937648862563}, {0.8953802205448357, 0.4453024372907488}, {1.1240937744230046`, 1.4187962021770053`}, {-0.5, -0.8660254037844386}, \ {-0.27128644612183095`, 0.10746836110181782`}, { 0.3953802205448357, -0.4207229664936897}, { 0.6240937744230047, 0.5527707983925666}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.02488130619774248]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[ 0.7]}], DiskBox[1, 0.02488130619774248], DiskBox[2, 0.02488130619774248], DiskBox[3, 0.02488130619774248], DiskBox[4, 0.02488130619774248], DiskBox[5, 0.02488130619774248], DiskBox[6, 0.02488130619774248], DiskBox[7, 0.02488130619774248], DiskBox[8, 0.02488130619774248]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], "}"}]}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{"\<\"PartsGraph529\"\>", ",", RowBox[{"{", RowBox[{"0.104731`", ",", RowBox[{"{", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 156, 160, 349, 170, 20, 60, 117}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, { 1}, {4}, {6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, { 7}, {2}, {5}, {8}, {3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 2}, VertexCoordinates -> {{0, 0}, { Rational[1, 12] (-3 + 33^Rational[1, 2]), Rational[1, 12] (3^Rational[1, 2] + 3 11^Rational[1, 2])}, { Rational[1, 12] (5 + 33^Rational[1, 2]), Rational[1, 12] (5 3^Rational[1, 2] - 11^ Rational[1, 2])}, { Rational[1, 6] (1 + 33^Rational[1, 2]), Rational[1, 6] (3 3^Rational[1, 2] + 11^Rational[1, 2])}, { Rational[-1, 2], Rational[-1, 2] 3^Rational[1, 2]}, { Rational[1, 12] (-9 + 33^Rational[1, 2]), Rational[1, 12] ((-5) 3^Rational[1, 2] + 3 11^Rational[1, 2])}, { Rational[1, 12] (-1 + 33^Rational[1, 2]), Rational[1, 12] (-3^Rational[1, 2] - 11^ Rational[1, 2])}, { Rational[1, 6] (-2 + 33^Rational[1, 2]), Rational[1, 6] 11^Rational[1, 2]}}}]]}, TagBox[GraphicsGroupBox[ GraphicsComplexBox[{{0., 0.}, {0.22871355387816905`, 0.9734937648862563}, {0.8953802205448357, 0.4453024372907488}, {1.1240937744230046`, 1.4187962021770053`}, {-0.5, -0.8660254037844386}, \ {-0.27128644612183095`, 0.10746836110181782`}, { 0.3953802205448357, -0.4207229664936897}, { 0.6240937744230047, 0.5527707983925666}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.02488130619774248]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[ 0.7]}], DiskBox[1, 0.02488130619774248], DiskBox[2, 0.02488130619774248], DiskBox[3, 0.02488130619774248], DiskBox[4, 0.02488130619774248], DiskBox[5, 0.02488130619774248], DiskBox[6, 0.02488130619774248], DiskBox[7, 0.02488130619774248], DiskBox[8, 0.02488130619774248]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], "}"}]}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{"\<\"PartsGraph553\"\>", ",", RowBox[{"{", RowBox[{"0.129522`", ",", RowBox[{"{", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 158, 164, 297, 169, 78, 343, 318}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, { 1}, {4}, {6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, { 7}, {2}, {5}, {8}, {3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 2}, VertexCoordinates -> {{0, 0}, { Rational[1, 12] (-5 + 33^Rational[1, 2]), Rational[1, 12] (5 3^Rational[1, 2] + 11^Rational[1, 2])}, {1, 0}, { Rational[1, 12] (7 + 33^Rational[1, 2]), Rational[1, 12] (5 3^Rational[1, 2] + 11^Rational[1, 2])}, { Rational[1, 2], Rational[-1, 2] 3^Rational[1, 2]}, { Rational[1, 12] (1 + 33^Rational[1, 2]), Rational[1, 12] (-3^Rational[1, 2] + 11^Rational[1, 2])}, { Rational[3, 2], Rational[-1, 2] 3^Rational[1, 2]}, { Rational[1, 12] (13 + 33^Rational[1, 2]), Rational[1, 12] (-3^Rational[1, 2] + 11^Rational[1, 2])}}}]]}, TagBox[GraphicsGroupBox[ GraphicsComplexBox[{{0., 0.}, {0.06204688721150238, 0.9980732356833154}, {1., 0.}, {1.0620468872115023`, 0.9980732356833154}, {0.5, -0.8660254037844386}, { 0.5620468872115023, 0.13204783189887687`}, { 1.5, -0.8660254037844386}, {1.5620468872115023`, 0.13204783189887687`}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.02149914387407184]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[ 0.7]}], DiskBox[1, 0.02149914387407184], DiskBox[2, 0.02149914387407184], DiskBox[3, 0.02149914387407184], DiskBox[4, 0.02149914387407184], DiskBox[5, 0.02149914387407184], DiskBox[6, 0.02149914387407184], DiskBox[7, 0.02149914387407184], DiskBox[8, 0.02149914387407184]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], "}"}]}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"\<\"SelfComplementary\"\>", ",", RowBox[{"{", RowBox[{"8", ",", "10"}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.012884`", ",", RowBox[{"{", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 4, 5, 8, 7, 2, 3, 6}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, { 1}, {4}, {6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, { 7}, {2}, {5}, {8}, {3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 2}, VertexCoordinates -> {{1, 0}, { Rational[1, 2], Rational[1, 2] 3^Rational[1, 2]}, {1, 1}, { Rational[1, 2], Rational[1, 2] (2 + 3^Rational[1, 2])}, { 0, 0}, { Rational[-1, 2], Rational[1, 2] 3^Rational[1, 2]}, {0, 1}, { Rational[-1, 2], Rational[1, 2] (2 + 3^Rational[1, 2])}}}]]}, TagBox[GraphicsGroupBox[ GraphicsComplexBox[{{1., 0.}, {0.5, 0.8660254037844386}, {1., 1.}, {0.5, 1.8660254037844386`}, {0., 0.}, {-0.5, 0.8660254037844386}, {0., 1.}, {-0.5, 1.8660254037844386`}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.021515049724012608`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[ 0.7]}], DiskBox[1, 0.021515049724012608], DiskBox[2, 0.021515049724012608], DiskBox[3, 0.021515049724012608], DiskBox[4, 0.021515049724012608], DiskBox[5, 0.021515049724012608], DiskBox[6, 0.021515049724012608], DiskBox[7, 0.021515049724012608], DiskBox[8, 0.021515049724012608]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], "}"}]}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{"\<\"TesseractGraph\"\>", ",", RowBox[{"{", RowBox[{"0.011008`", ",", RowBox[{"{", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 4, 3, 5, 6, 8, 7}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, { 1}, {4}, {6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, { 7}, {2}, {5}, {8}, {3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 2}, VertexCoordinates -> {{ Rational[-1, 2], Rational[-1, 2] + 2^Rational[-1, 2]}, { Rational[-1, 2], Rational[1, 2] + 2^Rational[-1, 2]}, { Rational[-1, 2] + 2^Rational[-1, 2], Rational[-1, 2]}, {Rational[-1, 2] + 2^Rational[-1, 2], Rational[1, 2]}, { Rational[1, 2], Rational[-1, 2] + 2^Rational[-1, 2]}, { Rational[1, 2], Rational[1, 2] + 2^Rational[-1, 2]}, { Rational[1, 2] + 2^Rational[-1, 2], Rational[-1, 2]}, {Rational[1, 2] + 2^Rational[-1, 2], Rational[1, 2]}}}]]}, TagBox[GraphicsGroupBox[ GraphicsComplexBox[{{-0.5, 0.20710678118654746`}, {-0.5, 1.2071067811865475`}, {0.20710678118654746`, -0.5}, { 0.20710678118654746`, 0.5}, {0.5, 0.20710678118654746`}, { 0.5, 1.2071067811865475`}, {1.2071067811865475`, -0.5}, { 1.2071067811865475`, 0.5}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.02018977486141793]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[ 0.7]}], DiskBox[1, 0.02018977486141793], DiskBox[2, 0.02018977486141793], DiskBox[3, 0.02018977486141793], DiskBox[4, 0.02018977486141793], DiskBox[5, 0.02018977486141793], DiskBox[6, 0.02018977486141793], DiskBox[7, 0.02018977486141793], DiskBox[8, 0.02018977486141793]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], "}"}]}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"\<\"TorusGrid\"\>", ",", RowBox[{"{", RowBox[{"4", ",", "6"}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.014079`", ",", RowBox[{"{", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 4, 3, 5, 6, 8, 7}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, { 1}, {4}, {6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, { 7}, {2}, {5}, {8}, {3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 2}, VertexCoordinates -> {{ Rational[-1, 2], Rational[-1, 2] 3^Rational[1, 2]}, { Rational[-1, 2] + Cos[Rational[1, 15] Pi], Rational[-1, 2] 3^Rational[1, 2] + Sin[Rational[1, 15] Pi]}, { Rational[1, 2] (-1 + 3^Rational[1, 2]), Rational[1, 2] (1 - 3^Rational[1, 2])}, { Rational[1, 2] (-1 + 3^Rational[1, 2] + 2 Cos[Rational[1, 15] Pi]), Rational[1, 2] + Rational[-1, 2] 3^Rational[1, 2] + Sin[Rational[1, 15] Pi]}, { Rational[1, 2], Rational[-1, 2] 3^Rational[1, 2]}, { Rational[1, 2] + Cos[Rational[1, 15] Pi], Rational[-1, 2] 3^Rational[1, 2] + Sin[Rational[1, 15] Pi]}, { Rational[1, 2] (1 + 3^Rational[1, 2]), Rational[1, 2] (1 - 3^Rational[1, 2])}, { Rational[1, 2] (1 + 3^Rational[1, 2] + 2 Cos[Rational[1, 15] Pi]), Rational[1, 2] + Rational[-1, 2] 3^Rational[1, 2] + Sin[Rational[1, 15] Pi]}}}]]}, TagBox[GraphicsGroupBox[ GraphicsComplexBox[{{-0.5, -0.8660254037844386}, { 0.4781476007338057, -0.6581137129666793}, { 0.3660254037844386, -0.3660254037844386}, { 1.3441730045182443`, -0.15811371296667928`}, { 0.5, -0.8660254037844386}, { 1.4781476007338057`, -0.6581137129666793}, { 1.3660254037844386`, -0.3660254037844386}, { 2.344173004518244, -0.15811371296667928`}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.029111515610130728`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[ 0.7]}], DiskBox[1, 0.029111515610130728], DiskBox[2, 0.029111515610130728], DiskBox[3, 0.029111515610130728], DiskBox[4, 0.029111515610130728], DiskBox[5, 0.029111515610130728], DiskBox[6, 0.029111515610130728], DiskBox[7, 0.029111515610130728], DiskBox[8, 0.029111515610130728]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], "}"}]}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"\<\"TorusGrid\"\>", ",", RowBox[{"{", RowBox[{"4", ",", "8"}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.019008`", ",", RowBox[{"{", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 4, 3, 5, 6, 8, 7}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, { 1}, {4}, {6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, { 7}, {2}, {5}, {8}, {3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 2}, VertexCoordinates -> {{ Rational[-1, 2], Rational[-1, 2] Cot[Rational[1, 8] Pi]}, { Rational[-1, 2] + Cos[Rational[1, 15] Pi], Rational[-1, 2] Cot[Rational[1, 8] Pi] + Sin[Rational[1, 15] Pi]}, { Rational[1, 2] (-1 + 3^Rational[1, 2]), Rational[1, 2] (1 - Cot[Rational[1, 8] Pi])}, { Rational[1, 2] (-1 + 3^Rational[1, 2] + 2 Cos[Rational[1, 15] Pi]), Rational[1, 2] + Rational[-1, 2] Cot[Rational[1, 8] Pi] + Sin[Rational[1, 15] Pi]}, { Rational[1, 2], Rational[-1, 2] Cot[Rational[1, 8] Pi]}, { Rational[1, 2] + Cos[Rational[1, 15] Pi], Rational[-1, 2] Cot[Rational[1, 8] Pi] + Sin[Rational[1, 15] Pi]}, { Rational[1, 2] (1 + 3^Rational[1, 2]), Rational[1, 2] (1 - Cot[Rational[1, 8] Pi])}, { Rational[1, 2] (1 + 3^Rational[1, 2] + 2 Cos[Rational[1, 15] Pi]), Rational[1, 2] + Rational[-1, 2] Cot[Rational[1, 8] Pi] + Sin[Rational[1, 15] Pi]}}}]]}, TagBox[GraphicsGroupBox[ GraphicsComplexBox[{{-0.5, -1.2071067811865475`}, { 0.4781476007338057, -0.9991950903687882}, { 0.3660254037844386, -0.7071067811865475}, { 1.3441730045182443`, -0.4991950903687882}, { 0.5, -1.2071067811865475`}, { 1.4781476007338057`, -0.9991950903687882}, { 1.3660254037844386`, -0.7071067811865475}, { 2.344173004518244, -0.4991950903687882}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.029111515610130728`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[ 0.7]}], DiskBox[1, 0.029111515610130728], DiskBox[2, 0.029111515610130728], DiskBox[3, 0.029111515610130728], DiskBox[4, 0.029111515610130728], DiskBox[5, 0.029111515610130728], DiskBox[6, 0.029111515610130728], DiskBox[7, 0.029111515610130728], DiskBox[8, 0.029111515610130728]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], "}"}]}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"\<\"TorusGrid\"\>", ",", RowBox[{"{", RowBox[{"4", ",", "10"}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.022301`", ",", RowBox[{"{", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 4, 3, 5, 6, 8, 7}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, { 1}, {4}, {6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, { 7}, {2}, {5}, {8}, {3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 2}, VertexCoordinates -> {{ Rational[-1, 2], Rational[-1, 4] (1 + 5^Rational[1, 2]) (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[-1, 2] + Cos[Rational[1, 15] Pi], Rational[-1, 4] (1 + 5^Rational[1, 2]) (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2] + Sin[Rational[1, 15] Pi]}, { Rational[-1, 2] + 2^Rational[-1, 2], Rational[1, 4] 2^Rational[-1, 2] ( 4 - (1 + 5^Rational[1, 2]) (5 + 5^Rational[1, 2])^ Rational[1, 2])}, { Rational[-1, 2] + 2^Rational[-1, 2] + Cos[Rational[1, 15] Pi], 2^Rational[-1, 2] + Rational[-1, 4] (1 + 5^Rational[1, 2]) (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2] + Sin[Rational[1, 15] Pi]}, { Rational[1, 2], Rational[-1, 4] (1 + 5^Rational[1, 2]) (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 2] + Cos[Rational[1, 15] Pi], Rational[-1, 4] (1 + 5^Rational[1, 2]) (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2] + Sin[Rational[1, 15] Pi]}, { Rational[1, 2] + 2^Rational[-1, 2], Rational[1, 4] 2^Rational[-1, 2] ( 4 - (1 + 5^Rational[1, 2]) (5 + 5^Rational[1, 2])^ Rational[1, 2])}, { Rational[1, 2] + 2^Rational[-1, 2] + Cos[Rational[1, 15] Pi], 2^Rational[-1, 2] + Rational[-1, 4] (1 + 5^Rational[1, 2]) (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2] + Sin[Rational[1, 15] Pi]}}}]]}, TagBox[GraphicsGroupBox[ GraphicsComplexBox[{{-0.5, -1.5388417685876268`}, { 0.4781476007338057, -1.3309300777698674`}, { 0.20710678118654746`, -0.8317349874010791}, { 1.1852543819203532`, -0.62382329658332}, { 0.5, -1.5388417685876268`}, { 1.4781476007338057`, -1.3309300777698674`}, { 1.2071067811865475`, -0.8317349874010791}, { 2.185254381920353, -0.62382329658332}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.027939032658118534`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[ 0.7]}], DiskBox[1, 0.027939032658118534], DiskBox[2, 0.027939032658118534], DiskBox[3, 0.027939032658118534], DiskBox[4, 0.027939032658118534], DiskBox[5, 0.027939032658118534], DiskBox[6, 0.027939032658118534], DiskBox[7, 0.027939032658118534], DiskBox[8, 0.027939032658118534]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], "}"}]}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"\<\"TriangularHoneycombObtuseKnight\"\>", ",", "10"}], "}"}], ",", RowBox[{"{", RowBox[{"0.012607`", ",", RowBox[{"{", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{2, 10, 12, 26, 13, 27, 32, 52}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, { 1}, {4}, {6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, { 7}, {2}, {5}, {8}, {3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 2}, VertexCoordinates -> {{ 0, 4 Rational[3, 7]^Rational[1, 2]}, { 2 7^Rational[-1, 2], 3 Rational[3, 7]^Rational[1, 2]}, { Rational[-1, 2] 7^Rational[-1, 2], Rational[5, 2] Rational[3, 7]^Rational[1, 2]}, { Rational[3, 2] 7^Rational[-1, 2], Rational[3, 2] Rational[3, 7]^Rational[1, 2]}, { Rational[1, 2] 7^Rational[-1, 2], Rational[5, 2] Rational[3, 7]^Rational[1, 2]}, { Rational[5, 2] 7^Rational[-1, 2], Rational[3, 2] Rational[3, 7]^Rational[1, 2]}, { 0, Rational[3, 7]^Rational[1, 2]}, { 2 7^Rational[-1, 2], 0}}}]]}, TagBox[GraphicsGroupBox[ GraphicsComplexBox[{{0., 2.6186146828319083`}, { 0.7559289460184544, 1.9639610121239313`}, {-0.1889822365046136, 1.6366341767699426`}, {0.5669467095138407, 0.9819805060619656}, {0.1889822365046136, 1.6366341767699426`}, {0.944911182523068, 0.9819805060619656}, {0., 0.6546536707079771}, { 0.7559289460184544, 0.}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.027440576980832104`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[ 0.7]}], DiskBox[1, 0.027440576980832104], DiskBox[2, 0.027440576980832104], DiskBox[3, 0.027440576980832104], DiskBox[4, 0.027440576980832104], DiskBox[5, 0.027440576980832104], DiskBox[6, 0.027440576980832104], DiskBox[7, 0.027440576980832104], DiskBox[8, 0.027440576980832104]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], "}"}]}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"\<\"TriangularHoneycombObtuseKnight\"\>", ",", "11"}], "}"}], ",", RowBox[{"{", RowBox[{"0.014348`", ",", RowBox[{"{", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{2, 10, 12, 26, 13, 27, 32, 52}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, { 1}, {4}, {6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, { 7}, {2}, {5}, {8}, {3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 2}, VertexCoordinates -> {{ 0, Rational[9, 2] Rational[3, 7]^Rational[1, 2]}, { 2 7^Rational[-1, 2], Rational[1, 2] 21^Rational[1, 2]}, { Rational[-1, 2] 7^Rational[-1, 2], 3 Rational[3, 7]^Rational[1, 2]}, { Rational[3, 2] 7^Rational[-1, 2], 2 Rational[3, 7]^Rational[1, 2]}, { Rational[1, 2] 7^Rational[-1, 2], 3 Rational[3, 7]^Rational[1, 2]}, { Rational[5, 2] 7^Rational[-1, 2], 2 Rational[3, 7]^Rational[1, 2]}, { 0, Rational[3, 2] Rational[3, 7]^Rational[1, 2]}, { 2 7^Rational[-1, 2], Rational[1, 2] Rational[3, 7]^Rational[1, 2]}}}]]}, TagBox[GraphicsGroupBox[ GraphicsComplexBox[{{0., 2.945941518185897}, { 0.7559289460184544, 2.29128784747792}, {-0.1889822365046136, 1.9639610121239313`}, {0.5669467095138407, 1.3093073414159542`}, {0.1889822365046136, 1.9639610121239313`}, {0.944911182523068, 1.3093073414159542`}, {0., 0.9819805060619656}, { 0.7559289460184544, 0.32732683535398854`}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.027440576980832104`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[ 0.7]}], DiskBox[1, 0.027440576980832104], DiskBox[2, 0.027440576980832104], DiskBox[3, 0.027440576980832104], DiskBox[4, 0.027440576980832104], DiskBox[5, 0.027440576980832104], DiskBox[6, 0.027440576980832104], DiskBox[7, 0.027440576980832104], DiskBox[8, 0.027440576980832104]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], "}"}]}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"\<\"TriangularHoneycombObtuseKnight\"\>", ",", "12"}], "}"}], ",", RowBox[{"{", RowBox[{"0.01665`", ",", RowBox[{"{", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{2, 10, 12, 26, 13, 27, 32, 52}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, { 1}, {4}, {6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, { 7}, {2}, {5}, {8}, {3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 2}, VertexCoordinates -> {{ 0, 5 Rational[3, 7]^Rational[1, 2]}, { 2 7^Rational[-1, 2], 4 Rational[3, 7]^Rational[1, 2]}, { Rational[-1, 2] 7^Rational[-1, 2], Rational[1, 2] 21^Rational[1, 2]}, { Rational[3, 2] 7^Rational[-1, 2], Rational[5, 2] Rational[3, 7]^Rational[1, 2]}, { Rational[1, 2] 7^Rational[-1, 2], Rational[1, 2] 21^Rational[1, 2]}, { Rational[5, 2] 7^Rational[-1, 2], Rational[5, 2] Rational[3, 7]^Rational[1, 2]}, { 0, 2 Rational[3, 7]^Rational[1, 2]}, { 2 7^Rational[-1, 2], Rational[3, 7]^Rational[1, 2]}}}]]}, TagBox[GraphicsGroupBox[ GraphicsComplexBox[{{0., 3.273268353539885}, { 0.7559289460184544, 2.6186146828319083`}, {-0.1889822365046136, 2.29128784747792}, {0.5669467095138407, 1.6366341767699426`}, {0.1889822365046136, 2.29128784747792}, {0.944911182523068, 1.6366341767699426`}, {0., 1.3093073414159542`}, { 0.7559289460184544, 0.6546536707079771}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.027440576980832104`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[ 0.7]}], DiskBox[1, 0.027440576980832104], DiskBox[2, 0.027440576980832104], DiskBox[3, 0.027440576980832104], DiskBox[4, 0.027440576980832104], DiskBox[5, 0.027440576980832104], DiskBox[6, 0.027440576980832104], DiskBox[7, 0.027440576980832104], DiskBox[8, 0.027440576980832104]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], "}"}]}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"\<\"TriangularHoneycombObtuseKnight\"\>", ",", "13"}], "}"}], ",", RowBox[{"{", RowBox[{"0.019006`", ",", RowBox[{"{", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{2, 10, 12, 26, 13, 27, 32, 52}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, { 1}, {4}, {6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, { 7}, {2}, {5}, {8}, {3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 2}, VertexCoordinates -> {{ 0, Rational[11, 2] Rational[3, 7]^Rational[1, 2]}, { 2 7^Rational[-1, 2], Rational[9, 2] Rational[3, 7]^Rational[1, 2]}, { Rational[-1, 2] 7^Rational[-1, 2], 4 Rational[3, 7]^Rational[1, 2]}, { Rational[3, 2] 7^Rational[-1, 2], 3 Rational[3, 7]^Rational[1, 2]}, { Rational[1, 2] 7^Rational[-1, 2], 4 Rational[3, 7]^Rational[1, 2]}, { Rational[5, 2] 7^Rational[-1, 2], 3 Rational[3, 7]^Rational[1, 2]}, { 0, Rational[5, 2] Rational[3, 7]^Rational[1, 2]}, { 2 7^Rational[-1, 2], Rational[3, 2] Rational[3, 7]^Rational[1, 2]}}}]]}, TagBox[GraphicsGroupBox[ GraphicsComplexBox[{{0., 3.600595188893874}, { 0.7559289460184544, 2.945941518185897}, {-0.1889822365046136, 2.6186146828319083`}, {0.5669467095138407, 1.9639610121239313`}, {0.1889822365046136, 2.6186146828319083`}, {0.944911182523068, 1.9639610121239313`}, {0., 1.6366341767699426`}, { 0.7559289460184544, 0.9819805060619656}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.027440576980832104`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[ 0.7]}], DiskBox[1, 0.027440576980832104], DiskBox[2, 0.027440576980832104], DiskBox[3, 0.027440576980832104], DiskBox[4, 0.027440576980832104], DiskBox[5, 0.027440576980832104], DiskBox[6, 0.027440576980832104], DiskBox[7, 0.027440576980832104], DiskBox[8, 0.027440576980832104]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], "}"}]}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"\<\"TriangularHoneycombObtuseKnight\"\>", ",", "14"}], "}"}], ",", RowBox[{"{", RowBox[{"0.021961`", ",", RowBox[{"{", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{2, 10, 12, 26, 13, 27, 32, 52}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, { 1}, {4}, {6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, { 7}, {2}, {5}, {8}, {3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 2}, VertexCoordinates -> {{ 0, 6 Rational[3, 7]^Rational[1, 2]}, { 2 7^Rational[-1, 2], 5 Rational[3, 7]^Rational[1, 2]}, { Rational[-1, 2] 7^Rational[-1, 2], Rational[9, 2] Rational[3, 7]^Rational[1, 2]}, { Rational[3, 2] 7^Rational[-1, 2], Rational[1, 2] 21^Rational[1, 2]}, { Rational[1, 2] 7^Rational[-1, 2], Rational[9, 2] Rational[3, 7]^Rational[1, 2]}, { Rational[5, 2] 7^Rational[-1, 2], Rational[1, 2] 21^Rational[1, 2]}, { 0, 3 Rational[3, 7]^Rational[1, 2]}, { 2 7^Rational[-1, 2], 2 Rational[3, 7]^Rational[1, 2]}}}]]}, TagBox[GraphicsGroupBox[ GraphicsComplexBox[{{0., 3.9279220242478625`}, { 0.7559289460184544, 3.273268353539885}, {-0.1889822365046136, 2.945941518185897}, {0.5669467095138407, 2.29128784747792}, {0.1889822365046136, 2.945941518185897}, {0.944911182523068, 2.29128784747792}, { 0., 1.9639610121239313`}, {0.7559289460184544, 1.3093073414159542`}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.027440576980832104`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[ 0.7]}], DiskBox[1, 0.027440576980832104], DiskBox[2, 0.027440576980832104], DiskBox[3, 0.027440576980832104], DiskBox[4, 0.027440576980832104], DiskBox[5, 0.027440576980832104], DiskBox[6, 0.027440576980832104], DiskBox[7, 0.027440576980832104], DiskBox[8, 0.027440576980832104]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], "}"}]}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"\<\"TriangularHoneycombObtuseKnight\"\>", ",", "15"}], "}"}], ",", RowBox[{"{", RowBox[{"0.024336`", ",", RowBox[{"{", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{2, 10, 12, 26, 13, 27, 32, 52}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, { 1}, {4}, {6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, { 7}, {2}, {5}, {8}, {3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 2}, VertexCoordinates -> {{ 0, Rational[13, 2] Rational[3, 7]^Rational[1, 2]}, { 2 7^Rational[-1, 2], Rational[11, 2] Rational[3, 7]^Rational[1, 2]}, { Rational[-1, 2] 7^Rational[-1, 2], 5 Rational[3, 7]^Rational[1, 2]}, { Rational[3, 2] 7^Rational[-1, 2], 4 Rational[3, 7]^Rational[1, 2]}, { Rational[1, 2] 7^Rational[-1, 2], 5 Rational[3, 7]^Rational[1, 2]}, { Rational[5, 2] 7^Rational[-1, 2], 4 Rational[3, 7]^Rational[1, 2]}, { 0, Rational[1, 2] 21^Rational[1, 2]}, { 2 7^Rational[-1, 2], Rational[5, 2] Rational[3, 7]^Rational[1, 2]}}}]]}, TagBox[GraphicsGroupBox[ GraphicsComplexBox[{{0., 4.255248859601851}, { 0.7559289460184544, 3.600595188893874}, {-0.1889822365046136, 3.273268353539885}, {0.5669467095138407, 2.6186146828319083`}, {0.1889822365046136, 3.273268353539885}, {0.944911182523068, 2.6186146828319083`}, {0., 2.29128784747792}, { 0.7559289460184544, 1.6366341767699426`}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.027440576980832104`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[ 0.7]}], DiskBox[1, 0.027440576980832104], DiskBox[2, 0.027440576980832104], DiskBox[3, 0.027440576980832104], DiskBox[4, 0.027440576980832104], DiskBox[5, 0.027440576980832104], DiskBox[6, 0.027440576980832104], DiskBox[7, 0.027440576980832104], DiskBox[8, 0.027440576980832104]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], "}"}]}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"\<\"TriangularHoneycombObtuseKnight\"\>", ",", "16"}], "}"}], ",", RowBox[{"{", RowBox[{"0.028047`", ",", RowBox[{"{", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{2, 10, 12, 26, 13, 27, 32, 52}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, { 1}, {4}, {6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, { 7}, {2}, {5}, {8}, {3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 2}, VertexCoordinates -> {{0, 21^Rational[1, 2]}, { 2 7^Rational[-1, 2], 6 Rational[3, 7]^Rational[1, 2]}, { Rational[-1, 2] 7^Rational[-1, 2], Rational[11, 2] Rational[3, 7]^Rational[1, 2]}, { Rational[3, 2] 7^Rational[-1, 2], Rational[9, 2] Rational[3, 7]^Rational[1, 2]}, { Rational[1, 2] 7^Rational[-1, 2], Rational[11, 2] Rational[3, 7]^Rational[1, 2]}, { Rational[5, 2] 7^Rational[-1, 2], Rational[9, 2] Rational[3, 7]^Rational[1, 2]}, { 0, 4 Rational[3, 7]^Rational[1, 2]}, { 2 7^Rational[-1, 2], 3 Rational[3, 7]^Rational[1, 2]}}}]]}, TagBox[GraphicsGroupBox[ GraphicsComplexBox[{{0., 4.58257569495584}, { 0.7559289460184544, 3.9279220242478625`}, {-0.1889822365046136, 3.600595188893874}, {0.5669467095138407, 2.945941518185897}, {0.1889822365046136, 3.600595188893874}, {0.944911182523068, 2.945941518185897}, {0., 2.6186146828319083`}, { 0.7559289460184544, 1.9639610121239313`}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.027440576980832104`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[ 0.7]}], DiskBox[1, 0.027440576980832104], DiskBox[2, 0.027440576980832104], DiskBox[3, 0.027440576980832104], DiskBox[4, 0.027440576980832104], DiskBox[5, 0.027440576980832104], DiskBox[6, 0.027440576980832104], DiskBox[7, 0.027440576980832104], DiskBox[8, 0.027440576980832104]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], "}"}]}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"\<\"TriangularHoneycombObtuseKnight\"\>", ",", "17"}], "}"}], ",", RowBox[{"{", RowBox[{"0.03104`", ",", RowBox[{"{", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{2, 10, 12, 26, 13, 27, 32, 52}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, { 1}, {4}, {6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, { 7}, {2}, {5}, {8}, {3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 2}, VertexCoordinates -> {{ 0, Rational[15, 2] Rational[3, 7]^Rational[1, 2]}, { 2 7^Rational[-1, 2], Rational[13, 2] Rational[3, 7]^Rational[1, 2]}, { Rational[-1, 2] 7^Rational[-1, 2], 6 Rational[3, 7]^Rational[1, 2]}, { Rational[3, 2] 7^Rational[-1, 2], 5 Rational[3, 7]^Rational[1, 2]}, { Rational[1, 2] 7^Rational[-1, 2], 6 Rational[3, 7]^Rational[1, 2]}, { Rational[5, 2] 7^Rational[-1, 2], 5 Rational[3, 7]^Rational[1, 2]}, { 0, Rational[9, 2] Rational[3, 7]^Rational[1, 2]}, { 2 7^Rational[-1, 2], Rational[1, 2] 21^Rational[1, 2]}}}]]}, TagBox[GraphicsGroupBox[ GraphicsComplexBox[{{0., 4.909902530309828}, { 0.7559289460184544, 4.255248859601851}, {-0.1889822365046136, 3.9279220242478625`}, {0.5669467095138407, 3.273268353539885}, {0.1889822365046136, 3.9279220242478625`}, {0.944911182523068, 3.273268353539885}, {0., 2.945941518185897}, { 0.7559289460184544, 2.29128784747792}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.027440576980832104`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[ 0.7]}], DiskBox[1, 0.027440576980832104], DiskBox[2, 0.027440576980832104], DiskBox[3, 0.027440576980832104], DiskBox[4, 0.027440576980832104], DiskBox[5, 0.027440576980832104], DiskBox[6, 0.027440576980832104], DiskBox[7, 0.027440576980832104], DiskBox[8, 0.027440576980832104]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], "}"}]}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"\<\"TriangularHoneycombObtuseKnight\"\>", ",", "18"}], "}"}], ",", RowBox[{"{", RowBox[{"0.042769`", ",", RowBox[{"{", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{2, 10, 12, 26, 13, 27, 32, 52}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, { 1}, {4}, {6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, { 7}, {2}, {5}, {8}, {3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 2}, VertexCoordinates -> {{ 0, 8 Rational[3, 7]^Rational[1, 2]}, { 2 7^Rational[-1, 2], 21^Rational[1, 2]}, { Rational[-1, 2] 7^Rational[-1, 2], Rational[13, 2] Rational[3, 7]^Rational[1, 2]}, { Rational[3, 2] 7^Rational[-1, 2], Rational[11, 2] Rational[3, 7]^Rational[1, 2]}, { Rational[1, 2] 7^Rational[-1, 2], Rational[13, 2] Rational[3, 7]^Rational[1, 2]}, { Rational[5, 2] 7^Rational[-1, 2], Rational[11, 2] Rational[3, 7]^Rational[1, 2]}, { 0, 5 Rational[3, 7]^Rational[1, 2]}, { 2 7^Rational[-1, 2], 4 Rational[3, 7]^Rational[1, 2]}}}]]}, TagBox[GraphicsGroupBox[ GraphicsComplexBox[{{0., 5.237229365663817}, { 0.7559289460184544, 4.58257569495584}, {-0.1889822365046136, 4.255248859601851}, {0.5669467095138407, 3.600595188893874}, {0.1889822365046136, 4.255248859601851}, {0.944911182523068, 3.600595188893874}, {0., 3.273268353539885}, { 0.7559289460184544, 2.6186146828319083`}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.027440576980832104`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[ 0.7]}], DiskBox[1, 0.027440576980832104], DiskBox[2, 0.027440576980832104], DiskBox[3, 0.027440576980832104], DiskBox[4, 0.027440576980832104], DiskBox[5, 0.027440576980832104], DiskBox[6, 0.027440576980832104], DiskBox[7, 0.027440576980832104], DiskBox[8, 0.027440576980832104]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], "}"}]}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"\<\"TriangularHoneycombObtuseKnight\"\>", ",", "19"}], "}"}], ",", RowBox[{"{", RowBox[{"0.041785`", ",", RowBox[{"{", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{2, 10, 12, 26, 13, 27, 32, 52}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, { 1}, {4}, {6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, { 7}, {2}, {5}, {8}, {3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 2}, VertexCoordinates -> {{ 0, Rational[17, 2] Rational[3, 7]^Rational[1, 2]}, { 2 7^Rational[-1, 2], Rational[15, 2] Rational[3, 7]^Rational[1, 2]}, { Rational[-1, 2] 7^Rational[-1, 2], 21^Rational[1, 2]}, { Rational[3, 2] 7^Rational[-1, 2], 6 Rational[3, 7]^Rational[1, 2]}, { Rational[1, 2] 7^Rational[-1, 2], 21^Rational[1, 2]}, { Rational[5, 2] 7^Rational[-1, 2], 6 Rational[3, 7]^Rational[1, 2]}, { 0, Rational[11, 2] Rational[3, 7]^Rational[1, 2]}, { 2 7^Rational[-1, 2], Rational[9, 2] Rational[3, 7]^Rational[1, 2]}}}]]}, TagBox[GraphicsGroupBox[ GraphicsComplexBox[{{0., 5.564556201017806}, { 0.7559289460184544, 4.909902530309828}, {-0.1889822365046136, 4.58257569495584}, {0.5669467095138407, 3.9279220242478625`}, {0.1889822365046136, 4.58257569495584}, {0.944911182523068, 3.9279220242478625`}, {0., 3.600595188893874}, { 0.7559289460184544, 2.945941518185897}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.027440576980832104`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[ 0.7]}], DiskBox[1, 0.027440576980832104], DiskBox[2, 0.027440576980832104], DiskBox[3, 0.027440576980832104], DiskBox[4, 0.027440576980832104], DiskBox[5, 0.027440576980832104], DiskBox[6, 0.027440576980832104], DiskBox[7, 0.027440576980832104], DiskBox[8, 0.027440576980832104]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], "}"}]}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"\<\"TriangularHoneycombObtuseKnight\"\>", ",", "20"}], "}"}], ",", RowBox[{"{", RowBox[{"0.04442`", ",", RowBox[{"{", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{2, 10, 12, 26, 13, 27, 32, 52}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, { 1}, {4}, {6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, { 7}, {2}, {5}, {8}, {3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 2}, VertexCoordinates -> {{ 0, 9 Rational[3, 7]^Rational[1, 2]}, { 2 7^Rational[-1, 2], 8 Rational[3, 7]^Rational[1, 2]}, { Rational[-1, 2] 7^Rational[-1, 2], Rational[15, 2] Rational[3, 7]^Rational[1, 2]}, { Rational[3, 2] 7^Rational[-1, 2], Rational[13, 2] Rational[3, 7]^Rational[1, 2]}, { Rational[1, 2] 7^Rational[-1, 2], Rational[15, 2] Rational[3, 7]^Rational[1, 2]}, { Rational[5, 2] 7^Rational[-1, 2], Rational[13, 2] Rational[3, 7]^Rational[1, 2]}, { 0, 6 Rational[3, 7]^Rational[1, 2]}, { 2 7^Rational[-1, 2], 5 Rational[3, 7]^Rational[1, 2]}}}]]}, TagBox[GraphicsGroupBox[ GraphicsComplexBox[{{0., 5.891883036371794}, { 0.7559289460184544, 5.237229365663817}, {-0.1889822365046136, 4.909902530309828}, {0.5669467095138407, 4.255248859601851}, {0.1889822365046136, 4.909902530309828}, {0.944911182523068, 4.255248859601851}, {0., 3.9279220242478625`}, { 0.7559289460184544, 3.273268353539885}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.027440576980832104`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[ 0.7]}], DiskBox[1, 0.027440576980832104], DiskBox[2, 0.027440576980832104], DiskBox[3, 0.027440576980832104], DiskBox[4, 0.027440576980832104], DiskBox[5, 0.027440576980832104], DiskBox[6, 0.027440576980832104], DiskBox[7, 0.027440576980832104], DiskBox[8, 0.027440576980832104]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], "}"}]}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"\<\"UnitDistance\"\>", ",", RowBox[{"{", RowBox[{"12", ",", "1"}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.00449`", ",", RowBox[{"{", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 4, 8, 5, 9, 11, 12}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, { 1}, {4}, {6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, { 7}, {2}, {5}, {8}, {3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 2}, VertexCoordinates -> {{ Rational[1, 2] (-1 - 3^Rational[1, 2]), Rational[1, 6] (-3 - 3^Rational[1, 2])}, { Rational[1, 2] (1 - 3^Rational[1, 2]), Rational[1, 6] (-3 - 3^Rational[1, 2])}, { Rational[-1, 2], Rational[1, 6] (-6 - 3^Rational[1, 2])}, { Rational[1, 2], Rational[1, 6] (-6 - 3^Rational[1, 2])}, { Rational[-1, 2], Rational[-1, 2] 3^Rational[-1, 2]}, { Rational[1, 2], Rational[-1, 2] 3^Rational[-1, 2]}, { Rational[1, 2] (-1 + 3^Rational[1, 2]), Rational[1, 6] (-3 - 3^Rational[1, 2])}, { Rational[1, 2] (1 + 3^Rational[1, 2]), Rational[1, 6] (-3 - 3^Rational[1, 2])}}}]]}, TagBox[GraphicsGroupBox[ GraphicsComplexBox[{{-1.3660254037844386`, \ -0.7886751345948128}, {-0.3660254037844386, -0.7886751345948128}, {-0.5, \ -1.2886751345948126`}, { 0.5, -1.2886751345948126`}, {-0.5, -0.2886751345948129}, { 0.5, -0.2886751345948129}, { 0.3660254037844386, -0.7886751345948128}, { 1.3660254037844386`, -0.7886751345948128}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.028286647027724224`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[ 0.7]}], DiskBox[1, 0.028286647027724224], DiskBox[2, 0.028286647027724224], DiskBox[3, 0.028286647027724224], DiskBox[4, 0.028286647027724224], DiskBox[5, 0.028286647027724224], DiskBox[6, 0.028286647027724224], DiskBox[7, 0.028286647027724224], DiskBox[8, 0.028286647027724224]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], "}"}]}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"\<\"UnitDistance\"\>", ",", RowBox[{"{", RowBox[{"12", ",", "4"}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.007137`", ",", RowBox[{"{", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 10, 11, 12, 9, 3, 4}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, { 1}, {4}, {6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, { 7}, {2}, {5}, {8}, {3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 2}, VertexCoordinates -> {{ Rational[-1, 2], Rational[-1, 2]}, { Rational[-1, 2], Rational[1, 2]}, { 0, Rational[1, 2] (-1 - 3^Rational[1, 2])}, { 0, Rational[1, 2] (1 - 3^Rational[1, 2])}, { 0, Rational[1, 2] (-1 + 3^Rational[1, 2])}, { 0, Rational[1, 2] (1 + 3^Rational[1, 2])}, { Rational[1, 2], Rational[-1, 2]}, { Rational[1, 2], Rational[1, 2]}}}]]}, TagBox[GraphicsGroupBox[ GraphicsComplexBox[{{-0.5, -0.5}, {-0.5, 0.5}, { 0., -1.3660254037844386`}, {0., -0.3660254037844386}, {0., 0.3660254037844386}, {0., 1.3660254037844386`}, { 0.5, -0.5}, {0.5, 0.5}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.028286647027724224`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[ 0.7]}], DiskBox[1, 0.028286647027724224], DiskBox[2, 0.028286647027724224], DiskBox[3, 0.028286647027724224], DiskBox[4, 0.028286647027724224], DiskBox[5, 0.028286647027724224], DiskBox[6, 0.028286647027724224], DiskBox[7, 0.028286647027724224], DiskBox[8, 0.028286647027724224]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], "}"}]}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"\<\"UnitDistance\"\>", ",", RowBox[{"{", RowBox[{"14", ",", "1"}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.008969`", ",", RowBox[{"{", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 5, 6, 9, 10, 11, 12}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, { 1}, {4}, {6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, { 7}, {2}, {5}, {8}, {3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 2}, VertexCoordinates -> {{ Rational[-1, 2], Rational[-1, 2] + 2^Rational[-1, 2]}, { Rational[1, 2], Rational[-1, 2] + 2^Rational[-1, 2]}, { Rational[-1, 2] + 2^Rational[-1, 2], Rational[-1, 2]}, {Rational[1, 2] + 2^Rational[-1, 2], Rational[-1, 2]}, {Rational[-1, 2] - 2^Rational[-1, 2], Rational[-1, 2]}, {Rational[1, 2] - 2^Rational[-1, 2], Rational[-1, 2]}, { Rational[-1, 2], Rational[-1, 2] - 2^Rational[-1, 2]}, { Rational[1, 2], Rational[-1, 2] - 2^Rational[-1, 2]}}}]]}, TagBox[GraphicsGroupBox[ GraphicsComplexBox[{{-0.5, 0.20710678118654746`}, {0.5, 0.20710678118654746`}, {0.20710678118654746`, -0.5}, { 1.2071067811865475`, -0.5}, {-1.2071067811865475`, -0.5}, \ {-0.20710678118654746`, -0.5}, {-0.5, -1.2071067811865475`}, { 0.5, -1.2071067811865475`}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.025885969100594097`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[ 0.7]}], DiskBox[1, 0.025885969100594097], DiskBox[2, 0.025885969100594097], DiskBox[3, 0.025885969100594097], DiskBox[4, 0.025885969100594097], DiskBox[5, 0.025885969100594097], DiskBox[6, 0.025885969100594097], DiskBox[7, 0.025885969100594097], DiskBox[8, 0.025885969100594097]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], "}"}]}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"\<\"UnitDistance\"\>", ",", RowBox[{"{", RowBox[{"16", ",", "1"}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.004966`", ",", RowBox[{"{", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 10, 11, 8, 13, 5, 3, 9}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, { 1}, {4}, {6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, { 7}, {2}, {5}, {8}, {3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 2}, VertexCoordinates -> {{0, Rational[-1, 2]}, { Root[16 - 51 #^2 + 36 #^4& , 2, 0], Rational[1, 12] (-3 + 33^Rational[1, 2])}, { Root[16 - 51 #^2 + 36 #^4& , 3, 0], Rational[1, 12] (-3 + 33^Rational[1, 2])}, { 0, Rational[1, 2] Rational[11, 3]^Rational[1, 2]}, { Root[16 - 51 #^2 + 36 #^4& , 1, 0], Rational[1, 12] (-3 - 33^Rational[1, 2])}, { Rational[-1, 2] 11^Rational[1, 2], 0}, { Rational[-1, 2] 3^Rational[-1, 2], 0}, { Root[16 - 51 #^2 + 36 #^4& , 1, 0], Rational[1, 12] (3 + 33^Rational[1, 2])}}}]]}, TagBox[GraphicsGroupBox[ GraphicsComplexBox[{{0., -0.5}, {-0.6848186302914435, 0.22871355387816905`}, {0.6848186302914434, 0.22871355387816905`}, {0., 0.9574271077563381}, {-0.9734937648862566, \ -0.728713553878169}, {-1.6583123951777, 0.}, {-0.2886751345948129, 0.}, {-0.9734937648862566, 0.728713553878169}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.025336055236043625`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[ 0.7]}], DiskBox[1, 0.025336055236043625], DiskBox[2, 0.025336055236043625], DiskBox[3, 0.025336055236043625], DiskBox[4, 0.025336055236043625], DiskBox[5, 0.025336055236043625], DiskBox[6, 0.025336055236043625], DiskBox[7, 0.025336055236043625], DiskBox[8, 0.025336055236043625]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], "}"}]}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"\<\"UnitDistance\"\>", ",", RowBox[{"{", RowBox[{"16", ",", "2"}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.011842`", ",", RowBox[{"{", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 13, 8, 14, 7, 5, 6}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, { 1}, {4}, {6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, { 7}, {2}, {5}, {8}, {3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 2}, VertexCoordinates -> {{ Rational[1, 2], Rational[1, 2]}, { Rational[1, 2], Rational[-1, 2]}, { 0, Rational[1, 2] (1 - 3^Rational[1, 2])}, { 0, Rational[1, 2] (-1 - 3^Rational[1, 2])}, { 0, Rational[1, 2] (1 + 3^Rational[1, 2])}, { 0, Rational[1, 2] (-1 + 3^Rational[1, 2])}, { Rational[-1, 2], Rational[1, 2]}, { Rational[-1, 2], Rational[-1, 2]}}}]]}, TagBox[GraphicsGroupBox[ GraphicsComplexBox[{{0.5, 0.5}, {0.5, -0.5}, { 0., -0.3660254037844386}, {0., -1.3660254037844386`}, {0., 1.3660254037844386`}, {0., 0.3660254037844386}, {-0.5, 0.5}, {-0.5, -0.5}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.028286647027724224`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[ 0.7]}], DiskBox[1, 0.028286647027724224], DiskBox[2, 0.028286647027724224], DiskBox[3, 0.028286647027724224], DiskBox[4, 0.028286647027724224], DiskBox[5, 0.028286647027724224], DiskBox[6, 0.028286647027724224], DiskBox[7, 0.028286647027724224], DiskBox[8, 0.028286647027724224]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], "}"}]}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"\<\"UnitDistance\"\>", ",", RowBox[{"{", RowBox[{"21", ",", "1"}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.005457`", ",", RowBox[{"{", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 4, 8, 5, 9, 11, 12}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, { 1}, {4}, {6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, { 7}, {2}, {5}, {8}, {3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 2}, VertexCoordinates -> {{ Rational[1, 2] (-1 - 3^Rational[1, 2]), Rational[1, 6] (-3 - 3^Rational[1, 2])}, { Rational[1, 2] (1 - 3^Rational[1, 2]), Rational[1, 6] (-3 - 3^Rational[1, 2])}, { Rational[-1, 2], Rational[1, 6] (-6 - 3^Rational[1, 2])}, { Rational[1, 2], Rational[1, 6] (-6 - 3^Rational[1, 2])}, { Rational[-1, 2], Rational[-1, 2] 3^Rational[-1, 2]}, { Rational[1, 2], Rational[-1, 2] 3^Rational[-1, 2]}, { Rational[1, 2] (-1 + 3^Rational[1, 2]), Rational[1, 6] (-3 - 3^Rational[1, 2])}, { Rational[1, 2] (1 + 3^Rational[1, 2]), Rational[1, 6] (-3 - 3^Rational[1, 2])}}}]]}, TagBox[GraphicsGroupBox[ GraphicsComplexBox[{{-1.3660254037844386`, \ -0.7886751345948128}, {-0.3660254037844386, -0.7886751345948128}, {-0.5, \ -1.2886751345948126`}, { 0.5, -1.2886751345948126`}, {-0.5, -0.2886751345948129}, { 0.5, -0.2886751345948129}, { 0.3660254037844386, -0.7886751345948128}, { 1.3660254037844386`, -0.7886751345948128}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.028286647027724224`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[ 0.7]}], DiskBox[1, 0.028286647027724224], DiskBox[2, 0.028286647027724224], DiskBox[3, 0.028286647027724224], DiskBox[4, 0.028286647027724224], DiskBox[5, 0.028286647027724224], DiskBox[6, 0.028286647027724224], DiskBox[7, 0.028286647027724224], DiskBox[8, 0.028286647027724224]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], "}"}]}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"\<\"UnitDistance\"\>", ",", RowBox[{"{", RowBox[{"24", ",", "1"}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.006222`", ",", RowBox[{"{", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 5, 6, 9, 10, 11, 12}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, { 1}, {4}, {6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, { 7}, {2}, {5}, {8}, {3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 2}, VertexCoordinates -> {{ Rational[-1, 2], Rational[-1, 2] - 2^Rational[-1, 2]}, { Rational[-1, 2], Rational[1, 2] - 2^Rational[-1, 2]}, { Rational[1, 2], Rational[-1, 2] - 2^Rational[-1, 2]}, { Rational[1, 2], Rational[1, 2] - 2^Rational[-1, 2]}, { Rational[-1, 2] - 2^Rational[-1, 2], Rational[-1, 2]}, {Rational[-1, 2] - 2^Rational[-1, 2], Rational[1, 2]}, {Rational[1, 2] - 2^Rational[-1, 2], Rational[-1, 2]}, {Rational[1, 2] - 2^Rational[-1, 2], Rational[1, 2]}}}]]}, TagBox[GraphicsGroupBox[ GraphicsComplexBox[{{-0.5, -1.2071067811865475`}, {-0.5, \ -0.20710678118654746`}, {0.5, -1.2071067811865475`}, { 0.5, -0.20710678118654746`}, {-1.2071067811865475`, -0.5}, \ {-1.2071067811865475`, 0.5}, {-0.20710678118654746`, -0.5}, {-0.20710678118654746`, 0.5}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.02018977486141793]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[ 0.7]}], DiskBox[1, 0.02018977486141793], DiskBox[2, 0.02018977486141793], DiskBox[3, 0.02018977486141793], DiskBox[4, 0.02018977486141793], DiskBox[5, 0.02018977486141793], DiskBox[6, 0.02018977486141793], DiskBox[7, 0.02018977486141793], DiskBox[8, 0.02018977486141793]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], "}"}]}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"\<\"UnitDistance\"\>", ",", RowBox[{"{", RowBox[{"27", ",", "1"}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.004895`", ",", RowBox[{"{", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 3, 15, 8, 17, 27, 23, 9}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, { 1}, {4}, {6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, { 7}, {2}, {5}, {8}, {3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 2}, VertexCoordinates -> {{0, 0}, { Rational[1, 2], Rational[1, 2] 3^Rational[1, 2]}, { Rational[-5, 12] + Rational[1, 4] Rational[11, 3]^Rational[1, 2], Rational[-5, 4] 3^Rational[-1, 2] + Rational[-1, 12] 11^Rational[1, 2]}, { Rational[1, 12] + Rational[1, 4] Rational[11, 3]^Rational[1, 2], Rational[1, 4] 3^Rational[-1, 2] + Rational[-1, 12] 11^Rational[1, 2]}, { Rational[5, 6], Rational[1, 6] 11^Rational[1, 2]}, { Rational[4, 3], Rational[1, 2] 3^Rational[1, 2] + Rational[1, 6] 11^Rational[1, 2]}, { Rational[5, 12] + Rational[1, 4] Rational[11, 3]^Rational[1, 2], Rational[-5, 4] 3^Rational[-1, 2] + Rational[1, 12] 11^Rational[1, 2]}, { Rational[11, 12] + Rational[1, 4] Rational[11, 3]^Rational[1, 2], Rational[1, 4] 3^Rational[-1, 2] + Rational[1, 12] 11^Rational[1, 2]}}}]]}, TagBox[GraphicsGroupBox[ GraphicsComplexBox[{{0., 0.}, {0.5, 0.8660254037844386}, { 0.062046887211502366`, -0.9980732356833155}, { 0.5620468872115024, -0.13204783189887684`}, { 0.8333333333333334, 0.5527707983925666}, { 1.3333333333333333`, 1.4187962021770053`}, { 0.8953802205448358, -0.445302437290749}, { 1.3953802205448356`, 0.4207229664936898}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.025906421671334168`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[ 0.7]}], DiskBox[1, 0.025906421671334168], DiskBox[2, 0.025906421671334168], DiskBox[3, 0.025906421671334168], DiskBox[4, 0.025906421671334168], DiskBox[5, 0.025906421671334168], DiskBox[6, 0.025906421671334168], DiskBox[7, 0.025906421671334168], DiskBox[8, 0.025906421671334168]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], "}"}]}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"\<\"UnitDistance\"\>", ",", RowBox[{"{", RowBox[{"118", ",", "1"}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.016699`", ",", RowBox[{"{", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 21, 28, 40, 8, 57}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, { 1}, {4}, {6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, { 7}, {2}, {5}, {8}, {3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 2}, VertexCoordinates -> {{0, 0}, { Rational[-1, 2], Rational[1, 2] 3^Rational[1, 2]}, { Rational[1, 2], Rational[1, 2] 3^Rational[1, 2]}, { 0, 3^Rational[1, 2]}, { Rational[1, 12] (-5 + 33^Rational[1, 2]), Rational[1, 12] 3^Rational[-1, 2] (-15 - 33^Rational[1, 2])}, { Rational[1, 12] (-11 + 33^Rational[1, 2]), Rational[1, 12] (3^Rational[1, 2] - 11^Rational[1, 2])}, { Rational[1, 12] (1 + 33^Rational[1, 2]), Rational[1, 12] (3^Rational[1, 2] - 11^Rational[1, 2])}, { Rational[1, 12] (-5 + 33^Rational[1, 2]), Rational[1, 12] (7 3^Rational[1, 2] - 11^ Rational[1, 2])}}}]]}, TagBox[GraphicsGroupBox[ GraphicsComplexBox[{{0., 0.}, {-0.5, 0.8660254037844386}, { 0.5, 0.8660254037844386}, {0., 1.7320508075688772`}, { 0.06204688721150238, -0.9980732356833155}, \ {-0.4379531127884976, -0.13204783189887687`}, { 0.5620468872115023, -0.13204783189887687`}, { 0.06204688721150238, 0.7339775718855617}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.02827237367563304]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[ 0.7]}], DiskBox[1, 0.02827237367563304], DiskBox[2, 0.02827237367563304], DiskBox[3, 0.02827237367563304], DiskBox[4, 0.02827237367563304], DiskBox[5, 0.02827237367563304], DiskBox[6, 0.02827237367563304], DiskBox[7, 0.02827237367563304], DiskBox[8, 0.02827237367563304]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], "}"}]}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"\<\"UnitDistance\"\>", ",", RowBox[{"{", RowBox[{"126", ",", "1"}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.025737`", ",", RowBox[{"{", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 12, 13, 48, 14, 38, 49, 78}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, { 1}, {4}, {6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, { 7}, {2}, {5}, {8}, {3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 2}, VertexCoordinates -> {{0, 0}, { Rational[ 1, 4] (-2 + (2 (3 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 2] (Rational[1, 2] (3 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (-1 + 5^Rational[1, 2]) (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[ 1, 2] (-1 + (2 (3 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 4] (1 + 5^Rational[1, 2]) (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {1, 0}, { Rational[1, 4] ( 2 + (2 (3 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 4] ( 4 + (2 (3 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 4] (-1 + 5^Rational[1, 2]) (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 2] ( 1 + (2 (3 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 4] (1 + 5^Rational[1, 2]) (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}}}]]}, TagBox[GraphicsGroupBox[ GraphicsComplexBox[{{0., 0.}, {0.30901699437494745`, 0.9510565162951535}, {0.8090169943749475, 0.5877852522924731}, {1.118033988749895, 1.5388417685876268`}, {1., 0.}, {1.3090169943749475`, 0.9510565162951535}, {1.8090169943749475`, 0.5877852522924731}, {2.118033988749895, 1.5388417685876268`}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.023562036759913363`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[ 0.7]}], DiskBox[1, 0.023562036759913363], DiskBox[2, 0.023562036759913363], DiskBox[3, 0.023562036759913363], DiskBox[4, 0.023562036759913363], DiskBox[5, 0.023562036759913363], DiskBox[6, 0.023562036759913363], DiskBox[7, 0.023562036759913363], DiskBox[8, 0.023562036759913363]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], "}"}]}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"\<\"UnitDistance\"\>", ",", RowBox[{"{", RowBox[{"210", ",", "1"}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.042594`", ",", RowBox[{"{", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{9, 16, 17, 26, 36, 55, 62, 90}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, { 1}, {4}, {6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, { 7}, {2}, {5}, {8}, {3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 2}, VertexCoordinates -> {{ Rational[ 1, 4] (-1 + (15 - 6 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 8] (-1 + 5^Rational[1, 2]) (7 + 5^Rational[1, 2] + (6 (5 + 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] ( 1 + (15 - 6 5^Rational[1, 2])^Rational[1, 2]), Root[1 - 28 #^2 + 224 #^4 - 512 #^6 + 256 #^8& , 5, 0]}, { Rational[1, 8] (-3 + 5^Rational[1, 2] - (30 - 6 5^Rational[1, 2])^ Rational[1, 2]), Root[1 - 68 #^2 + 464 #^4 - 832 #^6 + 256 #^8& , 5, 0]}, { Rational[1, 8] (1 + 5^Rational[1, 2] - (30 - 6 5^Rational[1, 2])^ Rational[1, 2]), Rational[ 1, 4] (7 + 5^Rational[1, 2] + (6 (5 + 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2]}, { Root[1 - 8 # - 16 #^2 + 8 #^3 + 16 #^4& , 1, 0], Rational[-1, 4] (7 + 5^Rational[1, 2] - (6 (5 + 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2]}, { Root[1 + 6 # - 4 #^2 - 24 #^3 + 16 #^4& , 1, 0], Rational[ 1, 4] (13 - 5 5^Rational[1, 2] + (150 - 66 5^Rational[1, 2])^ Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (-1 - (15 + 6 5^Rational[1, 2])^ Rational[1, 2]), Rational[1, 2] Root[1 - 7 #^2 + 14 #^4 - 8 #^6 + #^8& , 6, 0]}, { Rational[1, 4] (1 - (15 + 6 5^Rational[1, 2])^ Rational[1, 2]), Rational[ 1, 2] (Rational[1, 2] (4 + 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^ Rational[1, 2]))^Rational[1, 2]}}}]]}, TagBox[GraphicsGroupBox[ GraphicsComplexBox[{{ 0.06460214309120466, -0.6146483338935597}, { 0.5646021430912047, 0.25137706989087905`}, {-0.6045284632676534, 0.1284964915838347}, {-0.10452846326765342`, 0.9945218953682734}, {-0.9135454576426009, \ -0.4067366430758002}, {-0.41354545764260087`, 0.4592887607086384}, {-1.5826760640014592`, 0.336408182401594}, {-1.0826760640014592`, 1.2024335861860327`}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.023795362593882347`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[ 0.7]}], DiskBox[1, 0.023795362593882347], DiskBox[2, 0.023795362593882347], DiskBox[3, 0.023795362593882347], DiskBox[4, 0.023795362593882347], DiskBox[5, 0.023795362593882347], DiskBox[6, 0.023795362593882347], DiskBox[7, 0.023795362593882347], DiskBox[8, 0.023795362593882347]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], "}"}]}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"\<\"UnitDistance\"\>", ",", RowBox[{"{", RowBox[{"391", ",", "1"}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.064108`", ",", RowBox[{"{", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 6, 26, 391, 37, 332, 282, 13}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, { 1}, {4}, {6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, { 7}, {2}, {5}, {8}, {3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 2}, VertexCoordinates -> {{0, 1}, { Rational[1, 2] 3^Rational[1, 2], Rational[1, 2]}, {Rational[-1, 2] 3^Rational[1, 2], Rational[1, 2]}, {0, 0}, { Root[5 - 20 #^2 + 16 #^4& , 3, 0], Rational[1, 4] (3 - 5^Rational[1, 2])}, { Root[1 - 152 #^2 + 1904 #^4 - 1408 #^6 + 256 #^8& , 7, 0], Rational[1, 4] (1 - 5^Rational[1, 2])}, { Root[1 - 152 #^2 + 1904 #^4 - 1408 #^6 + 256 #^8& , 3, 0], Rational[1, 4] (1 - 5^Rational[1, 2])}, { Root[5 - 20 #^2 + 16 #^4& , 3, 0], Rational[1, 4] (-1 - 5^Rational[1, 2])}}}]]}, TagBox[GraphicsGroupBox[ GraphicsComplexBox[{{0., 1.}, {0.8660254037844386, 0.5}, {-0.8660254037844386, 0.5}, {0., 0.}, { 0.5877852522924731, 0.19098300562505255`}, { 1.4538106560769117`, -0.30901699437494745`}, \ {-0.2782401514919655, -0.30901699437494745`}, { 0.5877852522924731, -0.8090169943749475}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.02515477733189049]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[ 0.7]}], DiskBox[1, 0.02515477733189049], DiskBox[2, 0.02515477733189049], DiskBox[3, 0.02515477733189049], DiskBox[4, 0.02515477733189049], DiskBox[5, 0.02515477733189049], DiskBox[6, 0.02515477733189049], DiskBox[7, 0.02515477733189049], DiskBox[8, 0.02515477733189049]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], "}"}]}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"\<\"Web\"\>", ",", "4"}], "}"}], ",", RowBox[{"{", RowBox[{"0.0045`", ",", RowBox[{"{", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 4, 3, 5, 6, 8, 7}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, { 1}, {4}, {6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, { 7}, {2}, {5}, {8}, {3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 2}, VertexCoordinates -> {{ Rational[-1, 2], Rational[-1, 2]}, { Rational[1, 2], Rational[-1, 2]}, { Rational[-1, 2], Rational[1, 2]}, { Rational[1, 2], Rational[1, 2]}, { Rational[-1, 2] + Cos[Rational[1, 15] Pi], Rational[-1, 2] + Sin[Rational[1, 15] Pi]}, { Rational[1, 2] + Cos[Rational[1, 15] Pi], Rational[-1, 2] + Sin[Rational[1, 15] Pi]}, { Rational[-1, 2] + Cos[Rational[1, 15] Pi], Rational[1, 2] + Sin[Rational[1, 15] Pi]}, { Rational[1, 2] + Cos[Rational[1, 15] Pi], Rational[1, 2] + Sin[Rational[1, 15] Pi]}}}]]}, TagBox[GraphicsGroupBox[ GraphicsComplexBox[{{-0.5, -0.5}, {0.5, -0.5}, {-0.5, 0.5}, { 0.5, 0.5}, {0.4781476007338057, -0.2920883091822407}, { 1.4781476007338057`, -0.2920883091822407}, { 0.4781476007338057, 0.7079116908177593}, { 1.4781476007338057`, 0.7079116908177593}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.02243390922621552]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[ 0.7]}], DiskBox[1, 0.02243390922621552], DiskBox[2, 0.02243390922621552], DiskBox[3, 0.02243390922621552], DiskBox[4, 0.02243390922621552], DiskBox[5, 0.02243390922621552], DiskBox[6, 0.02243390922621552], DiskBox[7, 0.02243390922621552], DiskBox[8, 0.02243390922621552]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], "}"}]}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"\<\"Zebra\"\>", ",", RowBox[{"{", RowBox[{"8", ",", "9"}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.008265`", ",", RowBox[{"{", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{4, 19, 25, 40, 33, 48, 54, 69}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, { 1}, {4}, {6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, { 7}, {2}, {5}, {8}, {3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 2}, VertexCoordinates -> {{ 13^Rational[-1, 2], 4 13^Rational[-1, 2]}, { 3 13^Rational[-1, 2], 13^Rational[-1, 2]}, { 3 13^Rational[-1, 2], 7 13^Rational[-1, 2]}, { 5 13^Rational[-1, 2], 4 13^Rational[-1, 2]}, { 4 13^Rational[-1, 2], 6 13^Rational[-1, 2]}, { 6 13^Rational[-1, 2], 3 13^Rational[-1, 2]}, { 6 13^Rational[-1, 2], 9 13^Rational[-1, 2]}, { 8 13^Rational[-1, 2], 6 13^Rational[-1, 2]}}}]]}, TagBox[GraphicsGroupBox[ GraphicsComplexBox[{{0.2773500981126146, 1.1094003924504583`}, {0.8320502943378437, 0.2773500981126146}, {0.8320502943378437, 1.941450686788302}, {1.386750490563073, 1.1094003924504583`}, {1.1094003924504583`, 1.6641005886756874`}, {1.6641005886756874`, 0.8320502943378437}, {1.6641005886756874`, 2.4961508830135313`}, {2.2188007849009166`, 1.6641005886756874`}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.024362395319563718`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[ 0.7]}], DiskBox[1, 0.024362395319563718], DiskBox[2, 0.024362395319563718], DiskBox[3, 0.024362395319563718], DiskBox[4, 0.024362395319563718], DiskBox[5, 0.024362395319563718], DiskBox[6, 0.024362395319563718], DiskBox[7, 0.024362395319563718], DiskBox[8, 0.024362395319563718]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], "}"}]}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"\<\"Zebra\"\>", ",", RowBox[{"{", RowBox[{"8", ",", "10"}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.008558`", ",", RowBox[{"{", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{4, 21, 27, 44, 36, 53, 59, 76}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, { 1}, {4}, {6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, { 7}, {2}, {5}, {8}, {3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 2}, VertexCoordinates -> {{ 13^Rational[-1, 2], 4 13^Rational[-1, 2]}, { 3 13^Rational[-1, 2], 13^Rational[-1, 2]}, { 3 13^Rational[-1, 2], 7 13^Rational[-1, 2]}, { 5 13^Rational[-1, 2], 4 13^Rational[-1, 2]}, { 4 13^Rational[-1, 2], 6 13^Rational[-1, 2]}, { 6 13^Rational[-1, 2], 3 13^Rational[-1, 2]}, { 6 13^Rational[-1, 2], 9 13^Rational[-1, 2]}, { 8 13^Rational[-1, 2], 6 13^Rational[-1, 2]}}}]]}, TagBox[GraphicsGroupBox[ GraphicsComplexBox[{{0.2773500981126146, 1.1094003924504583`}, {0.8320502943378437, 0.2773500981126146}, {0.8320502943378437, 1.941450686788302}, {1.386750490563073, 1.1094003924504583`}, {1.1094003924504583`, 1.6641005886756874`}, {1.6641005886756874`, 0.8320502943378437}, {1.6641005886756874`, 2.4961508830135313`}, {2.2188007849009166`, 1.6641005886756874`}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.024362395319563718`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[ 0.7]}], DiskBox[1, 0.024362395319563718], DiskBox[2, 0.024362395319563718], DiskBox[3, 0.024362395319563718], DiskBox[4, 0.024362395319563718], DiskBox[5, 0.024362395319563718], DiskBox[6, 0.024362395319563718], DiskBox[7, 0.024362395319563718], DiskBox[8, 0.024362395319563718]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], "}"}]}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"\<\"Zebra\"\>", ",", RowBox[{"{", RowBox[{"9", ",", "9"}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.008769`", ",", RowBox[{"{", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{3, 24, 28, 49, 32, 53, 57, 78}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, { 1}, {4}, {6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, { 7}, {2}, {5}, {8}, {3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 2}, VertexCoordinates -> {{ 3 13^Rational[-1, 2], 13^Rational[-1, 2]}, { 6 13^Rational[-1, 2], 3 13^Rational[-1, 2]}, { 13^Rational[-1, 2], 4 13^Rational[-1, 2]}, { 4 13^Rational[-1, 2], 6 13^Rational[-1, 2]}, { 5 13^Rational[-1, 2], 4 13^Rational[-1, 2]}, { 8 13^Rational[-1, 2], 6 13^Rational[-1, 2]}, { 3 13^Rational[-1, 2], 7 13^Rational[-1, 2]}, { 6 13^Rational[-1, 2], 9 13^Rational[-1, 2]}}}]]}, TagBox[GraphicsGroupBox[ GraphicsComplexBox[{{0.8320502943378437, 0.2773500981126146}, {1.6641005886756874`, 0.8320502943378437}, {0.2773500981126146, 1.1094003924504583`}, {1.1094003924504583`, 1.6641005886756874`}, {1.386750490563073, 1.1094003924504583`}, {2.2188007849009166`, 1.6641005886756874`}, {0.8320502943378437, 1.941450686788302}, {1.6641005886756874`, 2.4961508830135313`}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.024362395319563718`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[ 0.7]}], DiskBox[1, 0.024362395319563718], DiskBox[2, 0.024362395319563718], DiskBox[3, 0.024362395319563718], DiskBox[4, 0.024362395319563718], DiskBox[5, 0.024362395319563718], DiskBox[6, 0.024362395319563718], DiskBox[7, 0.024362395319563718], DiskBox[8, 0.024362395319563718]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], "}"}]}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"\<\"Zebra\"\>", ",", RowBox[{"{", RowBox[{"9", ",", "10"}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.009186`", ",", RowBox[{"{", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{3, 26, 31, 54, 35, 58, 63, 86}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, { 1}, {4}, {6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, { 7}, {2}, {5}, {8}, {3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 2}, VertexCoordinates -> {{ 13^Rational[-1, 2], 3 13^Rational[-1, 2]}, { 3 13^Rational[-1, 2], 6 13^Rational[-1, 2]}, { 4 13^Rational[-1, 2], 13^Rational[-1, 2]}, { 6 13^Rational[-1, 2], 4 13^Rational[-1, 2]}, { 4 13^Rational[-1, 2], 5 13^Rational[-1, 2]}, { 6 13^Rational[-1, 2], 8 13^Rational[-1, 2]}, { 7 13^Rational[-1, 2], 3 13^Rational[-1, 2]}, { 9 13^Rational[-1, 2], 6 13^Rational[-1, 2]}}}]]}, TagBox[GraphicsGroupBox[ GraphicsComplexBox[{{0.2773500981126146, 0.8320502943378437}, {0.8320502943378437, 1.6641005886756874`}, {1.1094003924504583`, 0.2773500981126146}, {1.6641005886756874`, 1.1094003924504583`}, {1.1094003924504583`, 1.386750490563073}, {1.6641005886756874`, 2.2188007849009166`}, {1.941450686788302, 0.8320502943378437}, {2.4961508830135313`, 1.6641005886756874`}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.024362395319563718`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[ 0.7]}], DiskBox[1, 0.024362395319563718], DiskBox[2, 0.024362395319563718], DiskBox[3, 0.024362395319563718], DiskBox[4, 0.024362395319563718], DiskBox[5, 0.024362395319563718], DiskBox[6, 0.024362395319563718], DiskBox[7, 0.024362395319563718], DiskBox[8, 0.024362395319563718]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], "}"}]}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"\<\"Zebra\"\>", ",", RowBox[{"{", RowBox[{"10", ",", "10"}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.015555`", ",", RowBox[{"{", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{3, 26, 31, 54, 35, 58, 63, 86}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, { 1}, {4}, {6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, { 7}, {2}, {5}, {8}, {3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 2}, VertexCoordinates -> {{ 3 13^Rational[-1, 2], 13^Rational[-1, 2]}, { 6 13^Rational[-1, 2], 3 13^Rational[-1, 2]}, { 13^Rational[-1, 2], 4 13^Rational[-1, 2]}, { 4 13^Rational[-1, 2], 6 13^Rational[-1, 2]}, { 5 13^Rational[-1, 2], 4 13^Rational[-1, 2]}, { 8 13^Rational[-1, 2], 6 13^Rational[-1, 2]}, { 3 13^Rational[-1, 2], 7 13^Rational[-1, 2]}, { 6 13^Rational[-1, 2], 9 13^Rational[-1, 2]}}}]]}, TagBox[GraphicsGroupBox[ GraphicsComplexBox[{{0.8320502943378437, 0.2773500981126146}, {1.6641005886756874`, 0.8320502943378437}, {0.2773500981126146, 1.1094003924504583`}, {1.1094003924504583`, 1.6641005886756874`}, {1.386750490563073, 1.1094003924504583`}, {2.2188007849009166`, 1.6641005886756874`}, {0.8320502943378437, 1.941450686788302}, {1.6641005886756874`, 2.4961508830135313`}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.024362395319563718`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[ 0.7]}], DiskBox[1, 0.024362395319563718], DiskBox[2, 0.024362395319563718], DiskBox[3, 0.024362395319563718], DiskBox[4, 0.024362395319563718], DiskBox[5, 0.024362395319563718], DiskBox[6, 0.024362395319563718], DiskBox[7, 0.024362395319563718], DiskBox[8, 0.024362395319563718]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], "}"}]}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"\<\"Zebra\"\>", ",", RowBox[{"{", RowBox[{"11", ",", "11"}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.011361`", ",", RowBox[{"{", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{3, 28, 34, 59, 38, 63, 69, 94}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, { 1}, {4}, {6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, { 7}, {2}, {5}, {8}, {3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 2}, VertexCoordinates -> {{ 3 13^Rational[-1, 2], 13^Rational[-1, 2]}, { 6 13^Rational[-1, 2], 3 13^Rational[-1, 2]}, { 13^Rational[-1, 2], 4 13^Rational[-1, 2]}, { 4 13^Rational[-1, 2], 6 13^Rational[-1, 2]}, { 5 13^Rational[-1, 2], 4 13^Rational[-1, 2]}, { 8 13^Rational[-1, 2], 6 13^Rational[-1, 2]}, { 3 13^Rational[-1, 2], 7 13^Rational[-1, 2]}, { 6 13^Rational[-1, 2], 9 13^Rational[-1, 2]}}}]]}, TagBox[GraphicsGroupBox[ GraphicsComplexBox[{{0.8320502943378437, 0.2773500981126146}, {1.6641005886756874`, 0.8320502943378437}, {0.2773500981126146, 1.1094003924504583`}, {1.1094003924504583`, 1.6641005886756874`}, {1.386750490563073, 1.1094003924504583`}, {2.2188007849009166`, 1.6641005886756874`}, {0.8320502943378437, 1.941450686788302}, {1.6641005886756874`, 2.4961508830135313`}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.024362395319563718`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[ 0.7]}], DiskBox[1, 0.024362395319563718], DiskBox[2, 0.024362395319563718], DiskBox[3, 0.024362395319563718], DiskBox[4, 0.024362395319563718], DiskBox[5, 0.024362395319563718], DiskBox[6, 0.024362395319563718], DiskBox[7, 0.024362395319563718], DiskBox[8, 0.024362395319563718]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], "}"}]}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"\<\"Zebra\"\>", ",", RowBox[{"{", RowBox[{"12", ",", "12"}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.013316`", ",", RowBox[{"{", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{3, 30, 37, 64, 41, 68, 75, 102}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, { 1}, {4}, {6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, { 7}, {2}, {5}, {8}, {3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 2}, VertexCoordinates -> {{ 3 13^Rational[-1, 2], 13^Rational[-1, 2]}, { 6 13^Rational[-1, 2], 3 13^Rational[-1, 2]}, { 13^Rational[-1, 2], 4 13^Rational[-1, 2]}, { 4 13^Rational[-1, 2], 6 13^Rational[-1, 2]}, { 5 13^Rational[-1, 2], 4 13^Rational[-1, 2]}, { 8 13^Rational[-1, 2], 6 13^Rational[-1, 2]}, { 3 13^Rational[-1, 2], 7 13^Rational[-1, 2]}, { 6 13^Rational[-1, 2], 9 13^Rational[-1, 2]}}}]]}, TagBox[GraphicsGroupBox[ GraphicsComplexBox[{{0.8320502943378437, 0.2773500981126146}, {1.6641005886756874`, 0.8320502943378437}, {0.2773500981126146, 1.1094003924504583`}, {1.1094003924504583`, 1.6641005886756874`}, {1.386750490563073, 1.1094003924504583`}, {2.2188007849009166`, 1.6641005886756874`}, {0.8320502943378437, 1.941450686788302}, {1.6641005886756874`, 2.4961508830135313`}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.024362395319563718`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[ 0.7]}], DiskBox[1, 0.024362395319563718], DiskBox[2, 0.024362395319563718], DiskBox[3, 0.024362395319563718], DiskBox[4, 0.024362395319563718], DiskBox[5, 0.024362395319563718], DiskBox[6, 0.024362395319563718], DiskBox[7, 0.024362395319563718], DiskBox[8, 0.024362395319563718]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], "}"}]}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"\<\"Zebra\"\>", ",", RowBox[{"{", RowBox[{"13", ",", "13"}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.015388`", ",", RowBox[{"{", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{3, 32, 40, 69, 44, 73, 81, 110}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, { 1}, {4}, {6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, { 7}, {2}, {5}, {8}, {3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 2}, VertexCoordinates -> {{ 3 13^Rational[-1, 2], 13^Rational[-1, 2]}, { 6 13^Rational[-1, 2], 3 13^Rational[-1, 2]}, { 13^Rational[-1, 2], 4 13^Rational[-1, 2]}, { 4 13^Rational[-1, 2], 6 13^Rational[-1, 2]}, { 5 13^Rational[-1, 2], 4 13^Rational[-1, 2]}, { 8 13^Rational[-1, 2], 6 13^Rational[-1, 2]}, { 3 13^Rational[-1, 2], 7 13^Rational[-1, 2]}, { 6 13^Rational[-1, 2], 9 13^Rational[-1, 2]}}}]]}, TagBox[GraphicsGroupBox[ GraphicsComplexBox[{{0.8320502943378437, 0.2773500981126146}, {1.6641005886756874`, 0.8320502943378437}, {0.2773500981126146, 1.1094003924504583`}, {1.1094003924504583`, 1.6641005886756874`}, {1.386750490563073, 1.1094003924504583`}, {2.2188007849009166`, 1.6641005886756874`}, {0.8320502943378437, 1.941450686788302}, {1.6641005886756874`, 2.4961508830135313`}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.024362395319563718`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[ 0.7]}], DiskBox[1, 0.024362395319563718], DiskBox[2, 0.024362395319563718], DiskBox[3, 0.024362395319563718], DiskBox[4, 0.024362395319563718], DiskBox[5, 0.024362395319563718], DiskBox[6, 0.024362395319563718], DiskBox[7, 0.024362395319563718], DiskBox[8, 0.024362395319563718]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], "}"}]}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"\<\"Zebra\"\>", ",", RowBox[{"{", RowBox[{"14", ",", "14"}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.028204`", ",", RowBox[{"{", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{3, 34, 43, 74, 47, 78, 87, 118}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, { 1}, {4}, {6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, { 7}, {2}, {5}, {8}, {3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 2}, VertexCoordinates -> {{ 3 13^Rational[-1, 2], 13^Rational[-1, 2]}, { 6 13^Rational[-1, 2], 3 13^Rational[-1, 2]}, { 13^Rational[-1, 2], 4 13^Rational[-1, 2]}, { 4 13^Rational[-1, 2], 6 13^Rational[-1, 2]}, { 5 13^Rational[-1, 2], 4 13^Rational[-1, 2]}, { 8 13^Rational[-1, 2], 6 13^Rational[-1, 2]}, { 3 13^Rational[-1, 2], 7 13^Rational[-1, 2]}, { 6 13^Rational[-1, 2], 9 13^Rational[-1, 2]}}}]]}, TagBox[GraphicsGroupBox[ GraphicsComplexBox[{{0.8320502943378437, 0.2773500981126146}, {1.6641005886756874`, 0.8320502943378437}, {0.2773500981126146, 1.1094003924504583`}, {1.1094003924504583`, 1.6641005886756874`}, {1.386750490563073, 1.1094003924504583`}, {2.2188007849009166`, 1.6641005886756874`}, {0.8320502943378437, 1.941450686788302}, {1.6641005886756874`, 2.4961508830135313`}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.024362395319563718`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[ 0.7]}], DiskBox[1, 0.024362395319563718], DiskBox[2, 0.024362395319563718], DiskBox[3, 0.024362395319563718], DiskBox[4, 0.024362395319563718], DiskBox[5, 0.024362395319563718], DiskBox[6, 0.024362395319563718], DiskBox[7, 0.024362395319563718], DiskBox[8, 0.024362395319563718]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], "}"}]}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"\<\"Zebra\"\>", ",", RowBox[{"{", RowBox[{"15", ",", "15"}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.019006`", ",", RowBox[{"{", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{3, 36, 46, 79, 50, 83, 93, 126}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, { 1}, {4}, {6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, { 7}, {2}, {5}, {8}, {3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 2}, VertexCoordinates -> {{ 3 13^Rational[-1, 2], 13^Rational[-1, 2]}, { 6 13^Rational[-1, 2], 3 13^Rational[-1, 2]}, { 13^Rational[-1, 2], 4 13^Rational[-1, 2]}, { 4 13^Rational[-1, 2], 6 13^Rational[-1, 2]}, { 5 13^Rational[-1, 2], 4 13^Rational[-1, 2]}, { 8 13^Rational[-1, 2], 6 13^Rational[-1, 2]}, { 3 13^Rational[-1, 2], 7 13^Rational[-1, 2]}, { 6 13^Rational[-1, 2], 9 13^Rational[-1, 2]}}}]]}, TagBox[GraphicsGroupBox[ GraphicsComplexBox[{{0.8320502943378437, 0.2773500981126146}, {1.6641005886756874`, 0.8320502943378437}, {0.2773500981126146, 1.1094003924504583`}, {1.1094003924504583`, 1.6641005886756874`}, {1.386750490563073, 1.1094003924504583`}, {2.2188007849009166`, 1.6641005886756874`}, {0.8320502943378437, 1.941450686788302}, {1.6641005886756874`, 2.4961508830135313`}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.024362395319563718`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[ 0.7]}], DiskBox[1, 0.024362395319563718], DiskBox[2, 0.024362395319563718], DiskBox[3, 0.024362395319563718], DiskBox[4, 0.024362395319563718], DiskBox[5, 0.024362395319563718], DiskBox[6, 0.024362395319563718], DiskBox[7, 0.024362395319563718], DiskBox[8, 0.024362395319563718]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], "}"}]}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"\<\"Zebra\"\>", ",", RowBox[{"{", RowBox[{"16", ",", "16"}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.035079`", ",", RowBox[{"{", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{3, 38, 49, 84, 53, 88, 99, 134}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, { 1}, {4}, {6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, { 7}, {2}, {5}, {8}, {3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 2}, VertexCoordinates -> {{ 3 13^Rational[-1, 2], 13^Rational[-1, 2]}, { 6 13^Rational[-1, 2], 3 13^Rational[-1, 2]}, { 13^Rational[-1, 2], 4 13^Rational[-1, 2]}, { 4 13^Rational[-1, 2], 6 13^Rational[-1, 2]}, { 5 13^Rational[-1, 2], 4 13^Rational[-1, 2]}, { 8 13^Rational[-1, 2], 6 13^Rational[-1, 2]}, { 3 13^Rational[-1, 2], 7 13^Rational[-1, 2]}, { 6 13^Rational[-1, 2], 9 13^Rational[-1, 2]}}}]]}, TagBox[GraphicsGroupBox[ GraphicsComplexBox[{{0.8320502943378437, 0.2773500981126146}, {1.6641005886756874`, 0.8320502943378437}, {0.2773500981126146, 1.1094003924504583`}, {1.1094003924504583`, 1.6641005886756874`}, {1.386750490563073, 1.1094003924504583`}, {2.2188007849009166`, 1.6641005886756874`}, {0.8320502943378437, 1.941450686788302}, {1.6641005886756874`, 2.4961508830135313`}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.024362395319563718`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[ 0.7]}], DiskBox[1, 0.024362395319563718], DiskBox[2, 0.024362395319563718], DiskBox[3, 0.024362395319563718], DiskBox[4, 0.024362395319563718], DiskBox[5, 0.024362395319563718], DiskBox[6, 0.024362395319563718], DiskBox[7, 0.024362395319563718], DiskBox[8, 0.024362395319563718]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], "}"}]}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"\<\"Zebra\"\>", ",", RowBox[{"{", RowBox[{"17", ",", "17"}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.023326`", ",", RowBox[{"{", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{3, 40, 52, 89, 56, 93, 105, 142}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, { 1}, {4}, {6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, { 7}, {2}, {5}, {8}, {3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 2}, VertexCoordinates -> {{ 3 13^Rational[-1, 2], 13^Rational[-1, 2]}, { 6 13^Rational[-1, 2], 3 13^Rational[-1, 2]}, { 13^Rational[-1, 2], 4 13^Rational[-1, 2]}, { 4 13^Rational[-1, 2], 6 13^Rational[-1, 2]}, { 5 13^Rational[-1, 2], 4 13^Rational[-1, 2]}, { 8 13^Rational[-1, 2], 6 13^Rational[-1, 2]}, { 3 13^Rational[-1, 2], 7 13^Rational[-1, 2]}, { 6 13^Rational[-1, 2], 9 13^Rational[-1, 2]}}}]]}, TagBox[GraphicsGroupBox[ GraphicsComplexBox[{{0.8320502943378437, 0.2773500981126146}, {1.6641005886756874`, 0.8320502943378437}, {0.2773500981126146, 1.1094003924504583`}, {1.1094003924504583`, 1.6641005886756874`}, {1.386750490563073, 1.1094003924504583`}, {2.2188007849009166`, 1.6641005886756874`}, {0.8320502943378437, 1.941450686788302}, {1.6641005886756874`, 2.4961508830135313`}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.024362395319563718`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[ 0.7]}], DiskBox[1, 0.024362395319563718], DiskBox[2, 0.024362395319563718], DiskBox[3, 0.024362395319563718], DiskBox[4, 0.024362395319563718], DiskBox[5, 0.024362395319563718], DiskBox[6, 0.024362395319563718], DiskBox[7, 0.024362395319563718], DiskBox[8, 0.024362395319563718]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], "}"}]}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"\<\"Zebra\"\>", ",", RowBox[{"{", RowBox[{"18", ",", "18"}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.043877`", ",", RowBox[{"{", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{3, 42, 55, 94, 59, 98, 111, 150}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, { 1}, {4}, {6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, { 7}, {2}, {5}, {8}, {3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 2}, VertexCoordinates -> {{ 3 13^Rational[-1, 2], 13^Rational[-1, 2]}, { 6 13^Rational[-1, 2], 3 13^Rational[-1, 2]}, { 13^Rational[-1, 2], 4 13^Rational[-1, 2]}, { 4 13^Rational[-1, 2], 6 13^Rational[-1, 2]}, { 5 13^Rational[-1, 2], 4 13^Rational[-1, 2]}, { 8 13^Rational[-1, 2], 6 13^Rational[-1, 2]}, { 3 13^Rational[-1, 2], 7 13^Rational[-1, 2]}, { 6 13^Rational[-1, 2], 9 13^Rational[-1, 2]}}}]]}, TagBox[GraphicsGroupBox[ GraphicsComplexBox[{{0.8320502943378437, 0.2773500981126146}, {1.6641005886756874`, 0.8320502943378437}, {0.2773500981126146, 1.1094003924504583`}, {1.1094003924504583`, 1.6641005886756874`}, {1.386750490563073, 1.1094003924504583`}, {2.2188007849009166`, 1.6641005886756874`}, {0.8320502943378437, 1.941450686788302}, {1.6641005886756874`, 2.4961508830135313`}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.024362395319563718`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[ 0.7]}], DiskBox[1, 0.024362395319563718], DiskBox[2, 0.024362395319563718], DiskBox[3, 0.024362395319563718], DiskBox[4, 0.024362395319563718], DiskBox[5, 0.024362395319563718], DiskBox[6, 0.024362395319563718], DiskBox[7, 0.024362395319563718], DiskBox[8, 0.024362395319563718]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], "}"}]}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"\<\"Zebra\"\>", ",", RowBox[{"{", RowBox[{"19", ",", "19"}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.028931`", ",", RowBox[{"{", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{3, 44, 58, 99, 62, 103, 117, 158}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, { 1}, {4}, {6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, { 7}, {2}, {5}, {8}, {3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 2}, VertexCoordinates -> {{ 3 13^Rational[-1, 2], 13^Rational[-1, 2]}, { 6 13^Rational[-1, 2], 3 13^Rational[-1, 2]}, { 13^Rational[-1, 2], 4 13^Rational[-1, 2]}, { 4 13^Rational[-1, 2], 6 13^Rational[-1, 2]}, { 5 13^Rational[-1, 2], 4 13^Rational[-1, 2]}, { 8 13^Rational[-1, 2], 6 13^Rational[-1, 2]}, { 3 13^Rational[-1, 2], 7 13^Rational[-1, 2]}, { 6 13^Rational[-1, 2], 9 13^Rational[-1, 2]}}}]]}, TagBox[ GraphicsGroupBox[ GraphicsComplexBox[{{0.8320502943378437, 0.2773500981126146}, {1.6641005886756874`, 0.8320502943378437}, {0.2773500981126146, 1.1094003924504583`}, {1.1094003924504583`, 1.6641005886756874`}, {1.386750490563073, 1.1094003924504583`}, {2.2188007849009166`, 1.6641005886756874`}, {0.8320502943378437, 1.941450686788302}, {1.6641005886756874`, 2.4961508830135313`}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.024362395319563718`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[ 0.7]}], DiskBox[1, 0.024362395319563718], DiskBox[2, 0.024362395319563718], DiskBox[3, 0.024362395319563718], DiskBox[4, 0.024362395319563718], DiskBox[5, 0.024362395319563718], DiskBox[6, 0.024362395319563718], DiskBox[7, 0.024362395319563718], DiskBox[8, 0.024362395319563718]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], "}"}]}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"\<\"Zebra\"\>", ",", RowBox[{"{", RowBox[{"20", ",", "20"}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.030731`", ",", RowBox[{"{", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{3, 46, 61, 104, 65, 108, 123, 166}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, { 1}, {4}, {6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, { 7}, {2}, {5}, {8}, {3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 2}, VertexCoordinates -> {{ 3 13^Rational[-1, 2], 13^Rational[-1, 2]}, { 6 13^Rational[-1, 2], 3 13^Rational[-1, 2]}, { 13^Rational[-1, 2], 4 13^Rational[-1, 2]}, { 4 13^Rational[-1, 2], 6 13^Rational[-1, 2]}, { 5 13^Rational[-1, 2], 4 13^Rational[-1, 2]}, { 8 13^Rational[-1, 2], 6 13^Rational[-1, 2]}, { 3 13^Rational[-1, 2], 7 13^Rational[-1, 2]}, { 6 13^Rational[-1, 2], 9 13^Rational[-1, 2]}}}]]}, TagBox[GraphicsGroupBox[ GraphicsComplexBox[{{0.8320502943378437, 0.2773500981126146}, {1.6641005886756874`, 0.8320502943378437}, {0.2773500981126146, 1.1094003924504583`}, {1.1094003924504583`, 1.6641005886756874`}, {1.386750490563073, 1.1094003924504583`}, {2.2188007849009166`, 1.6641005886756874`}, {0.8320502943378437, 1.941450686788302}, {1.6641005886756874`, 2.4961508830135313`}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.024362395319563718`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[ 0.7]}], DiskBox[1, 0.024362395319563718], DiskBox[2, 0.024362395319563718], DiskBox[3, 0.024362395319563718], DiskBox[4, 0.024362395319563718], DiskBox[5, 0.024362395319563718], DiskBox[6, 0.024362395319563718], DiskBox[7, 0.024362395319563718], DiskBox[8, 0.024362395319563718]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], "}"}]}], "}"}]}], "}"}]}], "}"}]}], "}"}]}], "}"}]], "Output", CellLabel-> "(byblis65 V13.4.0) \ Out[3]=",ExpressionUUID->"3e76c642-ecbd-48a0-aed5-6717b8acd700"] }, Closed]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"gs", "=", RowBox[{"SortBy", "[", RowBox[{ RowBox[{"UniqueEmbeddings", "[", "l", "]"}], ",", RowBox[{ RowBox[{"Replace", "[", RowBox[{ RowBox[{"RectilinearCrossingCount", "[", "#", "]"}], ",", RowBox[{"Infinity", "->", "0"}]}], "]"}], "&"}]}], "]"}]}]], "Input", CellLabel-> "(byblis65 V13.4.0) \ In[4]:=",ExpressionUUID->"4aaac3a9-71dd-46ef-b127-c59b8923267f"], Cell[BoxData[ RowBox[{"{", RowBox[{ GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{9, 16, 17, 26, 36, 55, 62, 90}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, {1}, {4}, { 6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, {7}, {2}, {5}, {8}, { 3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 2}, ImageSize -> Tiny, VertexCoordinates -> {{ Rational[1, 4] (-1 + (15 - 6 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 8] (-1 + 5^Rational[1, 2]) (7 + 5^Rational[1, 2] + (6 (5 + 5^Rational[1, 2]))^Rational[1, 2])^ Rational[1, 2]}, { Rational[1, 4] (1 + (15 - 6 5^Rational[1, 2])^Rational[1, 2]), Root[1 - 28 #^2 + 224 #^4 - 512 #^6 + 256 #^8& , 5, 0]}, { Rational[1, 8] (-3 + 5^Rational[1, 2] - (30 - 6 5^Rational[1, 2])^ Rational[1, 2]), Root[1 - 68 #^2 + 464 #^4 - 832 #^6 + 256 #^8& , 5, 0]}, { Rational[1, 8] (1 + 5^Rational[1, 2] - (30 - 6 5^Rational[1, 2])^ Rational[1, 2]), Rational[ 1, 4] (7 + 5^Rational[1, 2] + (6 (5 + 5^Rational[1, 2]))^Rational[1, 2])^ Rational[1, 2]}, { Root[1 - 8 # - 16 #^2 + 8 #^3 + 16 #^4& , 1, 0], Rational[-1, 4] (7 + 5^Rational[1, 2] - (6 (5 + 5^Rational[1, 2]))^Rational[1, 2])^ Rational[1, 2]}, { Root[1 + 6 # - 4 #^2 - 24 #^3 + 16 #^4& , 1, 0], Rational[ 1, 4] (13 - 5 5^Rational[1, 2] + (150 - 66 5^Rational[1, 2])^Rational[1, 2])^ Rational[1, 2]}, { Rational[1, 4] (-1 - (15 + 6 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 2] Root[1 - 7 #^2 + 14 #^4 - 8 #^6 + #^8& , 6, 0]}, { Rational[1, 4] (1 - (15 + 6 5^Rational[1, 2])^Rational[1, 2]), Rational[ 1, 2] (Rational[1, 2] (4 + 5^Rational[1, 2] + (15 + 6 5^Rational[1, 2])^Rational[1, 2]))^ Rational[1, 2]}}}]]}, TagBox[ GraphicsGroupBox[ GraphicsComplexBox[{{0.06460214309120466, -0.6146483338935597}, { 0.5646021430912047, 0.25137706989087905`}, {-0.6045284632676534, 0.1284964915838347}, {-0.10452846326765342`, 0.9945218953682734}, {-0.9135454576426009, -0.4067366430758002}, \ {-0.41354545764260087`, 0.4592887607086384}, {-1.5826760640014592`, 0.33640818240159404`}, {-1.0826760640014592`, 1.2024335861860327`}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, { 4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.023795362593882347`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.023795362593882347], DiskBox[2, 0.023795362593882347], DiskBox[3, 0.023795362593882347], DiskBox[4, 0.023795362593882347], DiskBox[5, 0.023795362593882347], DiskBox[6, 0.023795362593882347], DiskBox[7, 0.023795362593882347], DiskBox[8, 0.023795362593882347]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None, ImageSize->Tiny], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, {1}, {4}, { 6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, {7}, {2}, {5}, {8}, { 3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 2}, ImageSize -> Tiny, VertexCoordinates -> {{1, 1}, {1, 2}, {2, 1}, {2, 2}, { Rational[1, 4] (3 - 5^Rational[1, 2]), 1 + (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2]), 2 + (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[1, 4] (7 - 5^Rational[1, 2]), 1 + (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[1, 4] (7 - 5^Rational[1, 2]), 2 + (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^ Rational[1, 2]}}}]]}, TagBox[ GraphicsGroupBox[ GraphicsComplexBox[{{1., 1.}, {1., 2.}, {2., 1.}, {2., 2.}, { 0.19098300562505255`, 1.5877852522924731`}, {0.19098300562505255`, 2.5877852522924734`}, {1.1909830056250525`, 1.5877852522924731`}, { 1.1909830056250525`, 2.5877852522924734`}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, { 4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.021042761722074865`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.021042761722074865], DiskBox[2, 0.021042761722074865], DiskBox[3, 0.021042761722074865], DiskBox[4, 0.021042761722074865], DiskBox[5, 0.021042761722074865], DiskBox[6, 0.021042761722074865], DiskBox[7, 0.021042761722074865], DiskBox[8, 0.021042761722074865]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None, ImageSize->Tiny], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 7, 8, 5, 6}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, {1}, {4}, { 6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, {7}, {2}, {5}, {8}, { 3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 2}, ImageSize -> Tiny, VertexCoordinates -> {{-0.8322904977340934, -2.2465783182061125`}, \ {-0.9124657934267884, -1.2497975389168103`}, {-0.04883903245238424, \ -1.6251253420703933`}, {-0.1290143281450792, -0.6283445627810909}, { 0.14041246027886653`, -2.478632095320035}, { 0.06023716458617153, -1.4818513160307325`}, { 0.9238639255605756, -1.8571791191843157`}, { 0.8436886298678806, -0.8603983398950132}}}]]}, TagBox[ GraphicsGroupBox[ GraphicsComplexBox[{{-0.8322904977340934, -2.2465783182061125`}, \ {-0.9124657934267884, -1.2497975389168103`}, {-0.04883903245238424, \ -1.6251253420703933`}, {-0.1290143281450792, -0.6283445627810909}, { 0.14041246027886653`, -2.478632095320035}, { 0.06023716458617153, -1.4818513160307325`}, { 0.9238639255605756, -1.8571791191843157`}, { 0.8436886298678806, -0.8603983398950132}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, { 4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.021385014854869766`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.021385014854869766], DiskBox[2, 0.021385014854869766], DiskBox[3, 0.021385014854869766], DiskBox[4, 0.021385014854869766], DiskBox[5, 0.021385014854869766], DiskBox[6, 0.021385014854869766], DiskBox[7, 0.021385014854869766], DiskBox[8, 0.021385014854869766]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None, ImageSize->Tiny], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 7, 8, 5, 6}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, {1}, {4}, { 6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, {7}, {2}, {5}, {8}, { 3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 2}, ImageSize -> Tiny, VertexCoordinates -> {{-0.2313558784264869, -2.6582889259108504`}, \ {-1.1529394878985137`, -2.2701090053166615`}, {-1.1174047359311616`, \ -2.194697055711792}, {-2.0389883454031885`, -1.8065171351176033`}, \ {-0.47798570549875763`, -1.6891791651518837`}, {-1.3995693149707844`, \ -1.300999244557695}, {-1.3640345630034323`, -1.2255872949528255`}, \ {-2.285618172475459, -0.8374073743586365}}}]]}, TagBox[ GraphicsGroupBox[ GraphicsComplexBox[{{-0.2313558784264869, -2.6582889259108504`}, \ {-1.1529394878985137`, -2.2701090053166615`}, {-1.1174047359311616`, \ -2.194697055711792}, {-2.0389883454031885`, -1.8065171351176033`}, \ {-0.47798570549875763`, -1.6891791651518837`}, {-1.3995693149707844`, \ -1.300999244557695}, {-1.3640345630034323`, -1.2255872949528255`}, \ {-2.285618172475459, -0.8374073743586365}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, { 4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.02305022839720766]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.02305022839720766], DiskBox[2, 0.02305022839720766], DiskBox[3, 0.02305022839720766], DiskBox[4, 0.02305022839720766], DiskBox[5, 0.02305022839720766], DiskBox[6, 0.02305022839720766], DiskBox[7, 0.02305022839720766], DiskBox[8, 0.02305022839720766]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None, ImageSize->Tiny], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 19, 20, 144, 108}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, {1}, {4}, { 6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, {7}, {2}, {5}, {8}, { 3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 2}, ImageSize -> Tiny, VertexCoordinates -> {{0, 0}, {1, 0}, { Rational[-1, 2], Rational[1, 2] 3^Rational[1, 2]}, { Rational[1, 2], Rational[1, 2] 3^Rational[1, 2]}, { Rational[1, 12] (5 - 33^Rational[1, 2]), Rational[1, 12] ((-5) 3^Rational[1, 2] - 11^Rational[1, 2])}, { Rational[1, 12] (17 - 33^Rational[1, 2]), Rational[1, 12] ((-5) 3^Rational[1, 2] - 11^Rational[1, 2])}, { Rational[1, 12] (-1 - 33^Rational[1, 2]), Rational[1, 12] (3^Rational[1, 2] - 11^Rational[1, 2])}, { Rational[1, 12] (11 - 33^Rational[1, 2]), Rational[1, 12] (3^Rational[1, 2] - 11^Rational[1, 2])}}}]]}, TagBox[ GraphicsGroupBox[ GraphicsComplexBox[{{0., 0.}, {1., 0.}, {-0.5, 0.8660254037844386}, { 0.5, 0.8660254037844386}, {-0.06204688721150238, \ -0.9980732356833154}, { 0.9379531127884976, -0.9980732356833154}, {-0.5620468872115023, \ -0.13204783189887687`}, {0.4379531127884976, -0.13204783189887687`}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, { 4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.02149914387407184]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.02149914387407184], DiskBox[2, 0.02149914387407184], DiskBox[3, 0.02149914387407184], DiskBox[4, 0.02149914387407184], DiskBox[5, 0.02149914387407184], DiskBox[6, 0.02149914387407184], DiskBox[7, 0.02149914387407184], DiskBox[8, 0.02149914387407184]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None, ImageSize->Tiny], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 6, 4, 7, 5, 8}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, {1}, {4}, { 6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, {7}, {2}, {5}, {8}, { 3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 2}, ImageSize -> Tiny, VertexCoordinates -> {{0, 0}, {0, 1}, { Rational[1, 2], Rational[1, 2] 3^Rational[1, 2]}, { Rational[1, 2], Rational[1, 2] (2 + 3^Rational[1, 2])}, { Rational[1, 2], Rational[-1, 2] 3^Rational[1, 2]}, { Rational[1, 2], 1 + Rational[-1, 2] 3^Rational[1, 2]}, {1, 0}, {1, 1}}}]]}, TagBox[ GraphicsGroupBox[ GraphicsComplexBox[{{0., 0.}, {0., 1.}, {0.5, 0.8660254037844386}, { 0.5, 1.8660254037844386`}, {0.5, -0.8660254037844386}, {0.5, 0.1339745962155614}, {1., 0.}, {1., 1.}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, { 4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.028286647027724224`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.028286647027724224], DiskBox[2, 0.028286647027724224], DiskBox[3, 0.028286647027724224], DiskBox[4, 0.028286647027724224], DiskBox[5, 0.028286647027724224], DiskBox[6, 0.028286647027724224], DiskBox[7, 0.028286647027724224], DiskBox[8, 0.028286647027724224]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None, ImageSize->Tiny], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 7, 8, 134, 52, 135}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, {1}, {4}, { 6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, {7}, {2}, {5}, {8}, { 3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 2}, ImageSize -> Tiny, VertexCoordinates -> {{0, 0}, {1, 0}, { Rational[-1, 2], Rational[1, 2] 3^Rational[1, 2]}, { Rational[1, 2], Rational[1, 2] 3^Rational[1, 2]}, { Rational[1, 2] Rational[11, 3]^Rational[1, 2], Rational[1, 2] 3^Rational[-1, 2]}, { Rational[1, 6] (6 + 33^Rational[1, 2]), Rational[1, 2] 3^Rational[-1, 2]}, { Rational[1, 6] (-3 + 33^Rational[1, 2]), 2 3^Rational[-1, 2]}, { Rational[1, 6] (3 + 33^Rational[1, 2]), 2 3^Rational[-1, 2]}}}]]}, TagBox[ GraphicsGroupBox[ GraphicsComplexBox[{{0., 0.}, {1., 0.}, {-0.5, 0.8660254037844386}, { 0.5, 0.8660254037844386}, {0.9574271077563381, 0.2886751345948129}, { 1.957427107756338, 0.2886751345948129}, {0.4574271077563381, 1.1547005383792517`}, {1.457427107756338, 1.1547005383792517`}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, { 4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.026217915967579733`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.026217915967579733], DiskBox[2, 0.026217915967579733], DiskBox[3, 0.026217915967579733], DiskBox[4, 0.026217915967579733], DiskBox[5, 0.026217915967579733], DiskBox[6, 0.026217915967579733], DiskBox[7, 0.026217915967579733], DiskBox[8, 0.026217915967579733]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None, ImageSize->Tiny], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 7, 16, 141, 223, 202}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, {1}, {4}, { 6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, {7}, {2}, {5}, {8}, { 3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 2}, ImageSize -> Tiny, VertexCoordinates -> {{0, 0}, {1, 0}, { Rational[-1, 2], Rational[1, 2] 3^Rational[1, 2]}, { Rational[1, 2], Rational[1, 2] 3^Rational[1, 2]}, { Rational[1, 12] (3 + 33^Rational[1, 2]), Rational[1, 12] (-3^Rational[1, 2] + 3 11^Rational[1, 2])}, { Rational[1, 12] (15 + 33^Rational[1, 2]), Rational[1, 12] (-3^Rational[1, 2] + 3 11^Rational[1, 2])}, { Rational[1, 12] (-3 + 33^Rational[1, 2]), Rational[1, 12] (5 3^Rational[1, 2] + 3 11^Rational[1, 2])}, { Rational[1, 12] (9 + 33^Rational[1, 2]), Rational[1, 12] (5 3^Rational[1, 2] + 3 11^Rational[1, 2])}}}]]}, TagBox[ GraphicsGroupBox[ GraphicsComplexBox[{{0., 0.}, {1., 0.}, {-0.5, 0.8660254037844386}, { 0.5, 0.8660254037844386}, {0.728713553878169, 0.6848186302914435}, { 1.728713553878169, 0.6848186302914435}, {0.22871355387816905`, 1.5508440340758818`}, {1.228713553878169, 1.5508440340758818`}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, { 4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.024440582208030248`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.024440582208030248], DiskBox[2, 0.024440582208030248], DiskBox[3, 0.024440582208030248], DiskBox[4, 0.024440582208030248], DiskBox[5, 0.024440582208030248], DiskBox[6, 0.024440582208030248], DiskBox[7, 0.024440582208030248], DiskBox[8, 0.024440582208030248]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None, ImageSize->Tiny], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 7, 28, 351, 125, 297}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, {1}, {4}, { 6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, {7}, {2}, {5}, {8}, { 3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 2}, ImageSize -> Tiny, VertexCoordinates -> {{0, 0}, {1, 0}, { Rational[-1, 2], Rational[1, 2] 3^Rational[1, 2]}, { Rational[1, 2], Rational[1, 2] 3^Rational[1, 2]}, { Rational[1, 2] Rational[11, 3]^Rational[1, 2], Rational[-1, 2] 3^Rational[-1, 2]}, { Rational[1, 6] (6 + 33^Rational[1, 2]), Rational[-1, 2] 3^Rational[-1, 2]}, { Rational[1, 6] (-3 + 33^Rational[1, 2]), 3^Rational[-1, 2]}, { Rational[1, 6] (3 + 33^Rational[1, 2]), 3^Rational[-1, 2]}}}]]}, TagBox[ GraphicsGroupBox[ GraphicsComplexBox[{{0., 0.}, {1., 0.}, {-0.5, 0.8660254037844386}, { 0.5, 0.8660254037844386}, { 0.9574271077563381, -0.2886751345948129}, { 1.957427107756338, -0.2886751345948129}, {0.4574271077563381, 0.5773502691896258}, {1.457427107756338, 0.5773502691896258}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, { 4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.026217915967579733`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.026217915967579733], DiskBox[2, 0.026217915967579733], DiskBox[3, 0.026217915967579733], DiskBox[4, 0.026217915967579733], DiskBox[5, 0.026217915967579733], DiskBox[6, 0.026217915967579733], DiskBox[7, 0.026217915967579733], DiskBox[8, 0.026217915967579733]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None, ImageSize->Tiny], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 7, 60, 251, 124, 188}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, {1}, {4}, { 6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, {7}, {2}, {5}, {8}, { 3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 2}, ImageSize -> Tiny, VertexCoordinates -> {{0, 0}, {1, 0}, { Rational[-1, 2], Rational[1, 2] 3^Rational[1, 2]}, { Rational[1, 2], Rational[1, 2] 3^Rational[1, 2]}, { Rational[1, 12] (-3 + 33^Rational[1, 2]), Rational[1, 12] (-3^Rational[1, 2] - 3 11^Rational[1, 2])}, { Rational[1, 12] (9 + 33^Rational[1, 2]), Rational[1, 12] (-3^Rational[1, 2] - 3 11^Rational[1, 2])}, { Rational[1, 12] (-9 + 33^Rational[1, 2]), Rational[1, 12] (5 3^Rational[1, 2] - 3 11^Rational[1, 2])}, { Rational[1, 12] (3 + 33^Rational[1, 2]), Rational[1, 12] (5 3^Rational[1, 2] - 3 11^Rational[1, 2])}}}]]}, TagBox[ GraphicsGroupBox[ GraphicsComplexBox[{{0., 0.}, {1., 0.}, {-0.5, 0.8660254037844386}, { 0.5, 0.8660254037844386}, { 0.22871355387816905`, -0.9734937648862563}, { 1.228713553878169, -0.9734937648862563}, {-0.27128644612183095`, \ -0.10746836110181782`}, {0.728713553878169, -0.10746836110181782`}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, { 4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.021295888998147994`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.021295888998147994], DiskBox[2, 0.021295888998147994], DiskBox[3, 0.021295888998147994], DiskBox[4, 0.021295888998147994], DiskBox[5, 0.021295888998147994], DiskBox[6, 0.021295888998147994], DiskBox[7, 0.021295888998147994], DiskBox[8, 0.021295888998147994]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None, ImageSize->Tiny], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 13, 5, 17, 16, 26}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, {1}, {4}, { 6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, {7}, {2}, {5}, {8}, { 3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 2}, ImageSize -> Tiny, VertexCoordinates -> {{1.2454640770396117`, 2.934729109336561}, { 2.2119947482996336`, 3.1912801988170996`}, {1.5227782906181269`, 1.9739498282593044`}, {2.489308961878149, 2.230500917739843}, { 0.24807579372028268`, 2.8625029901183585`}, {1.2146064649803048`, 3.119054079598897}, {0.525390007298798, 1.901723709041102}, { 1.49192067855882, 2.1582747985216404`}}}]]}, TagBox[ GraphicsGroupBox[ GraphicsComplexBox[{{1.2454640770396117`, 2.934729109336561}, { 2.2119947482996336`, 3.1912801988170996`}, {1.5227782906181269`, 1.9739498282593044`}, {2.489308961878149, 2.230500917739843}, { 0.24807579372028268`, 2.8625029901183585`}, {1.2146064649803048`, 3.119054079598897}, {0.525390007298798, 1.901723709041102}, { 1.49192067855882, 2.1582747985216404`}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, { 4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.02453919161066284]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.02453919161066284], DiskBox[2, 0.02453919161066284], DiskBox[3, 0.02453919161066284], DiskBox[4, 0.02453919161066284], DiskBox[5, 0.02453919161066284], DiskBox[6, 0.02453919161066284], DiskBox[7, 0.02453919161066284], DiskBox[8, 0.02453919161066284]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None, ImageSize->Tiny], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 21, 28, 40, 8, 57}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, {1}, {4}, { 6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, {7}, {2}, {5}, {8}, { 3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 2}, ImageSize -> Tiny, VertexCoordinates -> {{0, 0}, { Rational[-1, 2], Rational[1, 2] 3^Rational[1, 2]}, { Rational[1, 2], Rational[1, 2] 3^Rational[1, 2]}, { 0, 3^Rational[1, 2]}, { Rational[1, 12] (-5 + 33^Rational[1, 2]), Rational[1, 12] 3^Rational[-1, 2] (-15 - 33^Rational[1, 2])}, { Rational[1, 12] (-11 + 33^Rational[1, 2]), Rational[1, 12] (3^Rational[1, 2] - 11^Rational[1, 2])}, { Rational[1, 12] (1 + 33^Rational[1, 2]), Rational[1, 12] (3^Rational[1, 2] - 11^Rational[1, 2])}, { Rational[1, 12] (-5 + 33^Rational[1, 2]), Rational[1, 12] (7 3^Rational[1, 2] - 11^Rational[1, 2])}}}]]}, TagBox[ GraphicsGroupBox[ GraphicsComplexBox[{{0., 0.}, {-0.5, 0.8660254037844386}, {0.5, 0.8660254037844386}, {0., 1.7320508075688772`}, { 0.06204688721150238, -0.9980732356833155}, {-0.4379531127884976, \ -0.13204783189887687`}, {0.5620468872115023, -0.13204783189887687`}, { 0.06204688721150238, 0.7339775718855617}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, { 4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.02827237367563304]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.02827237367563304], DiskBox[2, 0.02827237367563304], DiskBox[3, 0.02827237367563304], DiskBox[4, 0.02827237367563304], DiskBox[5, 0.02827237367563304], DiskBox[6, 0.02827237367563304], DiskBox[7, 0.02827237367563304], DiskBox[8, 0.02827237367563304]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None, ImageSize->Tiny], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 39, 270, 217, 320, 200}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, {1}, {4}, { 6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, {7}, {2}, {5}, {8}, { 3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 2}, ImageSize -> Tiny, VertexCoordinates -> {{2 + Rational[-3, 4] 7^Rational[1, 2], Rational[1, 4]}, {2 + Rational[-3, 8] 7^Rational[1, 2], Rational[1, 8]}, { 2 + Rational[1, 16] (-3^Rational[1, 2] - 9 7^Rational[1, 2]), Rational[-3, 16] (-1 + 21^Rational[1, 2])}, { 2 + Rational[1, 16] (-3^Rational[1, 2] - 3 7^Rational[1, 2]), Rational[1, 16] (1 - 3 21^Rational[1, 2])}, { 2 + Rational[1, 96] (5 3^Rational[1, 2] - 87 7^Rational[1, 2] + 11^Rational[1, 2] + 3 231^Rational[1, 2]), Rational[1, 96] (29 + 15 21^Rational[1, 2] - 33^Rational[1, 2] + 3 77^Rational[1, 2])}, { 2 + Rational[1, 96] (5 3^Rational[1, 2] - 51 7^Rational[1, 2] + 11^Rational[1, 2] + 3 231^Rational[1, 2]), Rational[1, 96] (17 + 15 21^Rational[1, 2] - 33^Rational[1, 2] + 3 77^Rational[1, 2])}, { 2 + Rational[1, 96] (-3^Rational[1, 2] - 69 7^Rational[1, 2] + 11^Rational[1, 2] + 3 231^Rational[1, 2]), Rational[1, 96] (23 - 3 21^Rational[1, 2] - 33^Rational[1, 2] + 3 77^Rational[1, 2])}, { 2 + Rational[1, 96] (-3^Rational[1, 2] - 33 7^Rational[1, 2] + 11^Rational[1, 2] + 3 231^Rational[1, 2]), Rational[1, 96] (11 - 3 21^Rational[1, 2] - 33^Rational[1, 2] + 3 77^Rational[1, 2])}}}]]}, TagBox[ GraphicsGroupBox[ GraphicsComplexBox[{{0.015686516701556963`, 0.25}, { 1.0078432583507784`, 0.125}, { 0.40351171205311287`, -0.67173294280422}, { 1.3956684537023345`, -0.79673294280422}, {0.20200590860721235`, 1.232489228541416}, {1.194162650256434, 1.107489228541416}, { 0.5898311039587685, 0.310756285737196}, {1.5819878456079897`, 0.185756285737196}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, { 4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.0228481308094525]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.0228481308094525], DiskBox[2, 0.0228481308094525], DiskBox[3, 0.0228481308094525], DiskBox[4, 0.0228481308094525], DiskBox[5, 0.0228481308094525], DiskBox[6, 0.0228481308094525], DiskBox[7, 0.0228481308094525], DiskBox[8, 0.0228481308094525]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None, ImageSize->Tiny], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 4, 3, 5, 6, 8, 7}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, {1}, {4}, { 6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, {7}, {2}, {5}, {8}, { 3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 2}, ImageSize -> Tiny, VertexCoordinates -> {{ Rational[-1, 2], Rational[-1, 2]}, { Rational[1, 2], Rational[-1, 2]}, { Rational[-1, 2], Rational[1, 2]}, { Rational[1, 2], Rational[1, 2]}, { Rational[-1, 2] + Cos[Rational[1, 15] Pi], Rational[-1, 2] + Sin[Rational[1, 15] Pi]}, { Rational[1, 2] + Cos[Rational[1, 15] Pi], Rational[-1, 2] + Sin[Rational[1, 15] Pi]}, { Rational[-1, 2] + Cos[Rational[1, 15] Pi], Rational[1, 2] + Sin[Rational[1, 15] Pi]}, { Rational[1, 2] + Cos[Rational[1, 15] Pi], Rational[1, 2] + Sin[Rational[1, 15] Pi]}}}]]}, TagBox[ GraphicsGroupBox[ GraphicsComplexBox[{{-0.5, -0.5}, {0.5, -0.5}, {-0.5, 0.5}, {0.5, 0.5}, {0.4781476007338057, -0.2920883091822407}, { 1.4781476007338057`, -0.2920883091822407}, {0.4781476007338057, 0.7079116908177593}, {1.4781476007338057`, 0.7079116908177593}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, { 4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.02243390922621552]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.02243390922621552], DiskBox[2, 0.02243390922621552], DiskBox[3, 0.02243390922621552], DiskBox[4, 0.02243390922621552], DiskBox[5, 0.02243390922621552], DiskBox[6, 0.02243390922621552], DiskBox[7, 0.02243390922621552], DiskBox[8, 0.02243390922621552]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None, ImageSize->Tiny], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 4, 3, 5, 6, 8, 7}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, {1}, {4}, { 6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, {7}, {2}, {5}, {8}, { 3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 2}, ImageSize -> Tiny, VertexCoordinates -> {{ Rational[-1, 2], Rational[-1, 2] 3^Rational[1, 2]}, { Rational[-1, 2] + Cos[Rational[1, 15] Pi], Rational[-1, 2] 3^Rational[1, 2] + Sin[Rational[1, 15] Pi]}, { Rational[1, 2] (-1 + 3^Rational[1, 2]), Rational[1, 2] (1 - 3^Rational[1, 2])}, { Rational[1, 2] (-1 + 3^Rational[1, 2] + 2 Cos[Rational[1, 15] Pi]), Rational[1, 2] + Rational[-1, 2] 3^Rational[1, 2] + Sin[Rational[1, 15] Pi]}, { Rational[1, 2], Rational[-1, 2] 3^Rational[1, 2]}, { Rational[1, 2] + Cos[Rational[1, 15] Pi], Rational[-1, 2] 3^Rational[1, 2] + Sin[Rational[1, 15] Pi]}, { Rational[1, 2] (1 + 3^Rational[1, 2]), Rational[1, 2] (1 - 3^Rational[1, 2])}, { Rational[1, 2] (1 + 3^Rational[1, 2] + 2 Cos[Rational[1, 15] Pi]), Rational[1, 2] + Rational[-1, 2] 3^Rational[1, 2] + Sin[Rational[1, 15] Pi]}}}]]}, TagBox[ GraphicsGroupBox[ GraphicsComplexBox[{{-0.5, -0.8660254037844386}, { 0.4781476007338057, -0.6581137129666793}, { 0.3660254037844386, -0.3660254037844386}, { 1.3441730045182443`, -0.15811371296667928`}, { 0.5, -0.8660254037844386}, { 1.4781476007338057`, -0.6581137129666793}, { 1.3660254037844386`, -0.3660254037844386}, { 2.344173004518244, -0.15811371296667928`}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, { 4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.029111515610130728`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.029111515610130728], DiskBox[2, 0.029111515610130728], DiskBox[3, 0.029111515610130728], DiskBox[4, 0.029111515610130728], DiskBox[5, 0.029111515610130728], DiskBox[6, 0.029111515610130728], DiskBox[7, 0.029111515610130728], DiskBox[8, 0.029111515610130728]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None, ImageSize->Tiny], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 4, 3, 5, 6, 8, 7}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, {1}, {4}, { 6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, {7}, {2}, {5}, {8}, { 3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 2}, ImageSize -> Tiny, VertexCoordinates -> {{ Rational[-1, 2], Rational[-1, 2] + 2^Rational[-1, 2]}, { Rational[-1, 2], Rational[1, 2] + 2^Rational[-1, 2]}, { Rational[-1, 2] + 2^Rational[-1, 2], Rational[-1, 2]}, {Rational[-1, 2] + 2^Rational[-1, 2], Rational[1, 2]}, { Rational[1, 2], Rational[-1, 2] + 2^Rational[-1, 2]}, { Rational[1, 2], Rational[1, 2] + 2^Rational[-1, 2]}, { Rational[1, 2] + 2^Rational[-1, 2], Rational[-1, 2]}, {Rational[1, 2] + 2^Rational[-1, 2], Rational[1, 2]}}}]]}, TagBox[ GraphicsGroupBox[ GraphicsComplexBox[{{-0.5, 0.20710678118654746`}, {-0.5, 1.2071067811865475`}, {0.20710678118654746`, -0.5}, { 0.20710678118654746`, 0.5}, {0.5, 0.20710678118654746`}, {0.5, 1.2071067811865475`}, {1.2071067811865475`, -0.5}, { 1.2071067811865475`, 0.5}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, { 4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.02018977486141793]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.02018977486141793], DiskBox[2, 0.02018977486141793], DiskBox[3, 0.02018977486141793], DiskBox[4, 0.02018977486141793], DiskBox[5, 0.02018977486141793], DiskBox[6, 0.02018977486141793], DiskBox[7, 0.02018977486141793], DiskBox[8, 0.02018977486141793]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None, ImageSize->Tiny], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 4, 3, 5, 6, 8, 7}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, {1}, {4}, { 6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, {7}, {2}, {5}, {8}, { 3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 2}, ImageSize -> Tiny, VertexCoordinates -> {{ Rational[-1, 2], Rational[-1, 2] Cot[Rational[1, 7] Pi]}, { Rational[-1, 2] + Cos[Rational[1, 15] Pi], Rational[-1, 2] Cot[Rational[1, 7] Pi] + Sin[Rational[1, 15] Pi]}, { Rational[-1, 2] + 2^Rational[-1, 2], 2^Rational[-1, 2] + Rational[-1, 2] Cot[Rational[1, 7] Pi]}, { Rational[-1, 2] + 2^Rational[-1, 2] + Cos[Rational[1, 15] Pi], 2^Rational[-1, 2] + Rational[-1, 2] Cot[Rational[1, 7] Pi] + Sin[Rational[1, 15] Pi]}, { Rational[1, 2], Rational[-1, 2] Cot[Rational[1, 7] Pi]}, { Rational[1, 2] + Cos[Rational[1, 15] Pi], Rational[-1, 2] Cot[Rational[1, 7] Pi] + Sin[Rational[1, 15] Pi]}, { Rational[1, 2] + 2^Rational[-1, 2], 2^Rational[-1, 2] + Rational[-1, 2] Cot[Rational[1, 7] Pi]}, { Rational[1, 2] + 2^Rational[-1, 2] + Cos[Rational[1, 15] Pi], 2^Rational[-1, 2] + Rational[-1, 2] Cot[Rational[1, 7] Pi] + Sin[Rational[1, 15] Pi]}}}]]}, TagBox[ GraphicsGroupBox[ GraphicsComplexBox[{{-0.5, -1.0382606982861684`}, { 0.4781476007338057, -0.8303490074684091}, { 0.20710678118654746`, -0.33115391709962094`}, { 1.1852543819203532`, -0.12324222628186163`}, { 0.5, -1.0382606982861684`}, { 1.4781476007338057`, -0.8303490074684091}, { 1.2071067811865475`, -0.33115391709962094`}, { 2.185254381920353, -0.12324222628186163`}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, { 4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.027939032658118534`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.027939032658118534], DiskBox[2, 0.027939032658118534], DiskBox[3, 0.027939032658118534], DiskBox[4, 0.027939032658118534], DiskBox[5, 0.027939032658118534], DiskBox[6, 0.027939032658118534], DiskBox[7, 0.027939032658118534], DiskBox[8, 0.027939032658118534]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None, ImageSize->Tiny], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 4, 3, 5, 6, 8, 7}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, {1}, {4}, { 6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, {7}, {2}, {5}, {8}, { 3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 2}, ImageSize -> Tiny, VertexCoordinates -> {{ 0.28956591620240857`, -2.8263849402962524`}, {-0.6880879973195518, \ -2.6161640436774927`}, {-0.6380378097821787, -2.452819246556168}, \ {-1.615691723304139, -2.242598349937408}, {-0.4218732015614798, \ -2.1236372033981956`}, {-1.39952711508344, -1.9134163067794359`}, \ {-1.349476927546067, -1.750071509658111}, {-2.3271308410680276`, \ -1.5398506130393514`}}}]]}, TagBox[ GraphicsGroupBox[ GraphicsComplexBox[{{ 0.28956591620240857`, -2.8263849402962524`}, {-0.6880879973195518, \ -2.6161640436774927`}, {-0.6380378097821787, -2.452819246556168}, \ {-1.615691723304139, -2.242598349937408}, {-0.4218732015614798, \ -2.1236372033981956`}, {-1.39952711508344, -1.9134163067794359`}, \ {-1.349476927546067, -1.750071509658111}, {-2.3271308410680276`, \ -1.5398506130393514`}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, { 4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.027426170887876855`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.027426170887876855], DiskBox[2, 0.027426170887876855], DiskBox[3, 0.027426170887876855], DiskBox[4, 0.027426170887876855], DiskBox[5, 0.027426170887876855], DiskBox[6, 0.027426170887876855], DiskBox[7, 0.027426170887876855], DiskBox[8, 0.027426170887876855]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None, ImageSize->Tiny], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 4, 3, 5, 6, 8, 7}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, {1}, {4}, { 6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, {7}, {2}, {5}, {8}, { 3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 2}, ImageSize -> Tiny, VertexCoordinates -> {{ 0.3132471255383947, -3.464223522249755}, {-0.6670381263535523, \ -3.2666360101870184`}, {-0.6402723426885051, -3.1628921038541775`}, \ {-1.620557594580452, -2.9653045917914413`}, {-0.4910634550659903, \ -2.8700143924580317`}, {-1.4713487069579374`, -2.672426880395295}, \ {-1.4445829232928902`, -2.568682974062454}, {-2.424868175184837, \ -2.371095461999718}}}]]}, TagBox[ GraphicsGroupBox[ GraphicsComplexBox[{{ 0.3132471255383947, -3.464223522249755}, {-0.6670381263535523, \ -3.2666360101870184`}, {-0.6402723426885051, -3.1628921038541775`}, \ {-1.620557594580452, -2.9653045917914413`}, {-0.4910634550659903, \ -2.8700143924580317`}, {-1.4713487069579374`, -2.672426880395295}, \ {-1.4445829232928902`, -2.568682974062454}, {-2.424868175184837, \ -2.371095461999718}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, { 4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.028331550581592188`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.028331550581592188], DiskBox[2, 0.028331550581592188], DiskBox[3, 0.028331550581592188], DiskBox[4, 0.028331550581592188], DiskBox[5, 0.028331550581592188], DiskBox[6, 0.028331550581592188], DiskBox[7, 0.028331550581592188], DiskBox[8, 0.028331550581592188]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None, ImageSize->Tiny], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 4, 3, 5, 6, 8, 7}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, {1}, {4}, { 6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, {7}, {2}, {5}, {8}, { 3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 2}, ImageSize -> Tiny, VertexCoordinates -> {{ 0.3929259440625773, -3.235266221475213}, {-0.5928111514855368, \ -3.0669736831368533`}, {-0.502246399212786, -2.7895460448678544`}, \ {-1.4879834947609, -2.621253506529494}, {-0.22742681512466517`, \ -2.4509432942514993`}, {-1.2131639106727792`, -2.2826507559131395`}, \ {-1.1225991584000286`, -2.00522311764414}, {-2.1083362539481425`, \ -1.8369305793057804`}}}]]}, TagBox[ GraphicsGroupBox[ GraphicsComplexBox[{{ 0.3929259440625773, -3.235266221475213}, {-0.5928111514855368, \ -3.0669736831368533`}, {-0.502246399212786, -2.7895460448678544`}, \ {-1.4879834947609, -2.621253506529494}, {-0.22742681512466517`, \ -2.4509432942514993`}, {-1.2131639106727792`, -2.2826507559131395`}, \ {-1.1225991584000286`, -2.00522311764414}, {-2.1083362539481425`, \ -1.8369305793057804`}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, { 4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.026552828072520726`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.026552828072520726], DiskBox[2, 0.026552828072520726], DiskBox[3, 0.026552828072520726], DiskBox[4, 0.026552828072520726], DiskBox[5, 0.026552828072520726], DiskBox[6, 0.026552828072520726], DiskBox[7, 0.026552828072520726], DiskBox[8, 0.026552828072520726]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None, ImageSize->Tiny], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 4, 5, 9, 10, 12, 13}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, {1}, {4}, { 6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, {7}, {2}, {5}, {8}, { 3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 2}, ImageSize -> Tiny, VertexCoordinates -> {{ Rational[-1, 2], -1 + Rational[-1, 2] 3^Rational[1, 2]}, { Rational[-1, 2], Rational[-1, 2] 3^Rational[1, 2]}, {0, -1}, {0, 0}, { Rational[1, 2], -1 + Rational[-1, 2] 3^Rational[1, 2]}, { Rational[1, 2], Rational[-1, 2] 3^Rational[1, 2]}, {1, -1}, {1, 0}}}]]}, TagBox[ GraphicsGroupBox[ GraphicsComplexBox[{{-0.5, -1.8660254037844386`}, {-0.5, \ -0.8660254037844386}, {0., -1.}, {0., 0.}, {0.5, -1.8660254037844386`}, { 0.5, -0.8660254037844386}, {1., -1.}, {1., 0.}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, { 4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.021515049724012608`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.021515049724012608], DiskBox[2, 0.021515049724012608], DiskBox[3, 0.021515049724012608], DiskBox[4, 0.021515049724012608], DiskBox[5, 0.021515049724012608], DiskBox[6, 0.021515049724012608], DiskBox[7, 0.021515049724012608], DiskBox[8, 0.021515049724012608]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None, ImageSize->Tiny], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 4, 5, 9, 10, 12, 13}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, {1}, {4}, { 6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, {7}, {2}, {5}, {8}, { 3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 2}, ImageSize -> Tiny, VertexCoordinates -> {{0, 1}, {Rational[1, 2] 3^Rational[1, 2], Rational[1, 2]}, { Rational[-1, 4] (7 + 5^Rational[1, 2] - (6 (5 + 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2], Rational[1, 8] (7 - 5^Rational[1, 2] - (30 - 6 5^Rational[1, 2])^ Rational[1, 2])}, { Rational[ 1, 4] (13 - 5 5^Rational[1, 2] + (150 - 66 5^Rational[1, 2])^Rational[1, 2])^ Rational[1, 2], Root[1 + 6 # - 4 #^2 - 24 #^3 + 16 #^4& , 1, 0]}, { Rational[-1, 4] (7 + 5^Rational[1, 2] + (6 (5 + 5^Rational[1, 2]))^Rational[1, 2])^ Rational[1, 2], Rational[1, 8] (7 - 5^ Rational[1, 2] + (30 - 6 5^Rational[1, 2])^Rational[1, 2])}, { Root[1 - 68 #^2 + 464 #^4 - 832 #^6 + 256 #^8& , 4, 0], Rational[1, 8] (3 - 5^ Rational[1, 2] + (30 - 6 5^Rational[1, 2])^Rational[1, 2])}, { Rational[-1, 2] (Rational[3, 2] (3 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (3 - 5^Rational[1, 2])}, { Root[9 - 36 #^2 + 16 #^4& , 2, 0], Rational[1, 4] (1 - 5^Rational[1, 2])}}}]]}, TagBox[ GraphicsGroupBox[ GraphicsComplexBox[{{0., 1.}, {0.8660254037844386, 0.5}, {-0.4067366430758002, 0.08645454235739913}, { 0.4592887607086384, -0.41354545764260087`}, {-0.9945218953682734, 1.1045284632676533`}, {-0.12849649158383467`, 0.6045284632676534}, {-1.4012585384440737`, 0.19098300562505255`}, {-0.5352331346596348, \ -0.30901699437494745`}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, { 4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.024743882100660808`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.024743882100660808], DiskBox[2, 0.024743882100660808], DiskBox[3, 0.024743882100660808], DiskBox[4, 0.024743882100660808], DiskBox[5, 0.024743882100660808], DiskBox[6, 0.024743882100660808], DiskBox[7, 0.024743882100660808], DiskBox[8, 0.024743882100660808]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None, ImageSize->Tiny], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 4, 5, 9, 10, 12, 13}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, {1}, {4}, { 6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, {7}, {2}, {5}, {8}, { 3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 2}, ImageSize -> Tiny, VertexCoordinates -> {{0, 1}, {Rational[1, 2] 3^Rational[1, 2], Rational[1, 2]}, { Root[5 - 20 #^2 + 16 #^4& , 3, 0], Rational[1, 4] (3 - 5^Rational[1, 2])}, { Root[1 - 152 #^2 + 1904 #^4 - 1408 #^6 + 256 #^8& , 7, 0], Rational[1, 4] (1 - 5^Rational[1, 2])}, { Root[5 - 20 #^2 + 16 #^4& , 2, 0], Rational[1, 4] (3 - 5^Rational[1, 2])}, { Root[1 - 152 #^2 + 1904 #^4 - 1408 #^6 + 256 #^8& , 6, 0], Rational[1, 4] (1 - 5^Rational[1, 2])}, { 0, Rational[1, 2] (1 - 5^Rational[1, 2])}, { Rational[1, 2] 3^Rational[1, 2], Rational[-1, 2] 5^Rational[1, 2]}}}]]}, TagBox[ GraphicsGroupBox[ GraphicsComplexBox[{{0., 1.}, {0.8660254037844386, 0.5}, { 0.5877852522924731, 0.19098300562505255`}, { 1.4538106560769117`, -0.30901699437494745`}, {-0.5877852522924731, 0.19098300562505255`}, { 0.27824015149196557`, -0.30901699437494745`}, { 0., -0.6180339887498949}, {0.8660254037844386, -1.118033988749895}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, { 4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.023562036759913363`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.023562036759913363], DiskBox[2, 0.023562036759913363], DiskBox[3, 0.023562036759913363], DiskBox[4, 0.023562036759913363], DiskBox[5, 0.023562036759913363], DiskBox[6, 0.023562036759913363], DiskBox[7, 0.023562036759913363], DiskBox[8, 0.023562036759913363]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None, ImageSize->Tiny], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 4, 5, 9, 10, 12, 13}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, {1}, {4}, { 6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, {7}, {2}, {5}, {8}, { 3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 2}, ImageSize -> Tiny, VertexCoordinates -> {{ Rational[1, 2] 7^Rational[-1, 2], Rational[1, 2] 21^Rational[1, 2]}, { Rational[-3, 2] 7^Rational[-1, 2], Rational[5, 2] Rational[3, 7]^Rational[1, 2]}, { 3 7^Rational[-1, 2], 4 Rational[3, 7]^Rational[1, 2]}, { 7^Rational[-1, 2], 3 Rational[3, 7]^Rational[1, 2]}, { 7^Rational[-1, 2], 2 Rational[3, 7]^Rational[1, 2]}, {-7^Rational[-1, 2], Rational[3, 7]^Rational[1, 2]}, { Rational[1, 2] 7^Rational[1, 2], Rational[5, 2] Rational[3, 7]^Rational[1, 2]}, { Rational[3, 2] 7^Rational[-1, 2], Rational[3, 2] Rational[3, 7]^Rational[1, 2]}}}]]}, TagBox[ GraphicsGroupBox[ GraphicsComplexBox[{{0.1889822365046136, 2.29128784747792}, {-0.5669467095138407, 1.6366341767699426`}, { 1.1338934190276815`, 2.6186146828319083`}, {0.3779644730092272, 1.9639610121239313`}, {0.3779644730092272, 1.3093073414159542`}, {-0.3779644730092272, 0.6546536707079771}, { 1.3228756555322954`, 1.6366341767699426`}, {0.5669467095138407, 0.9819805060619656}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, { 4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.022318374742378577`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.022318374742378577], DiskBox[2, 0.022318374742378577], DiskBox[3, 0.022318374742378577], DiskBox[4, 0.022318374742378577], DiskBox[5, 0.022318374742378577], DiskBox[6, 0.022318374742378577], DiskBox[7, 0.022318374742378577], DiskBox[8, 0.022318374742378577]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None, ImageSize->Tiny], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 4, 5, 9, 10, 12, 13}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, {1}, {4}, { 6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, {7}, {2}, {5}, {8}, { 3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 2}, ImageSize -> Tiny, VertexCoordinates -> {{6 17^Rational[-1, 2], 6 17^Rational[-1, 2]}, { 10 17^Rational[-1, 2], 5 17^Rational[-1, 2]}, { 5 17^Rational[-1, 2], 10 17^Rational[-1, 2]}, { 9 17^Rational[-1, 2], 9 17^Rational[-1, 2]}, { 5 17^Rational[-1, 2], 2 17^Rational[-1, 2]}, { 9 17^Rational[-1, 2], 17^Rational[-1, 2]}, { 4 17^Rational[-1, 2], 6 17^Rational[-1, 2]}, { 8 17^Rational[-1, 2], 5 17^Rational[-1, 2]}}}]]}, TagBox[ GraphicsGroupBox[ GraphicsComplexBox[{{1.4552137502179978`, 1.4552137502179978`}, { 2.42535625036333, 1.212678125181665}, {1.212678125181665, 2.42535625036333}, {2.182820625326997, 2.182820625326997}, { 1.212678125181665, 0.48507125007266594`}, {2.182820625326997, 0.24253562503633297`}, {0.9701425001453319, 1.4552137502179978`}, { 1.9402850002906638`, 1.212678125181665}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, { 4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.024077782077903176`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.024077782077903176], DiskBox[2, 0.024077782077903176], DiskBox[3, 0.024077782077903176], DiskBox[4, 0.024077782077903176], DiskBox[5, 0.024077782077903176], DiskBox[6, 0.024077782077903176], DiskBox[7, 0.024077782077903176], DiskBox[8, 0.024077782077903176]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None, ImageSize->Tiny], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 4, 5, 10, 11, 13, 14}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, {1}, {4}, { 6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, {7}, {2}, {5}, {8}, { 3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 2}, ImageSize -> Tiny, VertexCoordinates -> {{1.397921275697655, 3.671462330291832}, { 0.7179259364087637, 2.938245896661635}, {0.41673022359070455`, 3.478423165184706}, {-0.26326511569818656`, 2.7452067315545086`}, { 1.3188094268955657`, 4.668328076207056}, {0.6388140876066742, 3.9351116425768584`}, {0.3376183747886152, 4.47528891109993}, {-0.342376964500276, 3.7420724774697325`}}}]]}, TagBox[ GraphicsGroupBox[ GraphicsComplexBox[{{1.397921275697655, 3.671462330291832}, { 0.7179259364087637, 2.938245896661635}, {0.41673022359070455`, 3.478423165184706}, {-0.26326511569818656`, 2.7452067315545086`}, { 1.3188094268955657`, 4.668328076207056}, {0.6388140876066742, 3.9351116425768584`}, {0.3376183747886152, 4.47528891109993}, {-0.342376964500276, 3.7420724774697325`}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, { 4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.021984608204777434`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.021984608204777434], DiskBox[2, 0.021984608204777434], DiskBox[3, 0.021984608204777434], DiskBox[4, 0.021984608204777434], DiskBox[5, 0.021984608204777434], DiskBox[6, 0.021984608204777434], DiskBox[7, 0.021984608204777434], DiskBox[8, 0.021984608204777434]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None, ImageSize->Tiny], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 4, 5, 10, 11, 13, 14}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, {1}, {4}, { 6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, {7}, {2}, {5}, {8}, { 3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 2}, ImageSize -> Tiny, VertexCoordinates -> {{4.227843738349391, 1.1912203004021256`}, { 3.557591228750894, 1.9333534241588528`}, {3.7288636338644134`, 2.0578337409441936`}, {3.058611124265917, 2.799966864700921}, { 4.319294468318, 2.1870299026796935`}, {3.6490419587195033`, 2.929163026436421}, {3.820314363833022, 3.0536433432217622`}, { 3.150061854234526, 3.7957764669784892`}}}]]}, TagBox[ GraphicsGroupBox[ GraphicsComplexBox[{{4.227843738349391, 1.1912203004021256`}, { 3.557591228750894, 1.9333534241588528`}, {3.7288636338644134`, 2.0578337409441936`}, {3.058611124265917, 2.799966864700921}, { 4.319294468318, 2.1870299026796935`}, {3.6490419587195033`, 2.929163026436421}, {3.820314363833022, 3.0536433432217622`}, { 3.150061854234526, 3.7957764669784892`}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, { 4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.02733490077455074]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.02733490077455074], DiskBox[2, 0.02733490077455074], DiskBox[3, 0.02733490077455074], DiskBox[4, 0.02733490077455074], DiskBox[5, 0.02733490077455074], DiskBox[6, 0.02733490077455074], DiskBox[7, 0.02733490077455074], DiskBox[8, 0.02733490077455074]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None, ImageSize->Tiny], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 4, 5, 10, 11, 13, 14}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, {1}, {4}, { 6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, {7}, {2}, {5}, {8}, { 3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 2}, ImageSize -> Tiny, VertexCoordinates -> {{ Rational[1, 4] (-1 + 5^Rational[1, 2]), Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 8] (-1 + 5^Rational[1, 2] - (6 (5 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[-1, 4] (7 - 5^ Rational[1, 2] + (30 - 6 5^Rational[1, 2])^Rational[1, 2])^ Rational[1, 2]}, { Rational[-1, 2], Rational[-1, 2] (5 - 2 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 8] (-3 - 5^Rational[1, 2] - (6 (5 + 5^Rational[1, 2]))^ Rational[1, 2]), Root[1 - 52 #^2 + 464 #^4 - 1088 #^6 + 256 #^8& , 4, 0]}, { Rational[1, 2] (-1 + 5^Rational[1, 2]), 0}, { Rational[1, 8] (-3 + 3 5^Rational[1, 2] - (6 (5 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[ 1, 4] (7 - 5^Rational[1, 2] - (30 - 6 5^Rational[1, 2])^ Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (-3 + 5^Rational[1, 2]), Root[5 - 20 #^2 + 16 #^4& , 3, 0]}, { Rational[1, 8] (-5 + 5^Rational[1, 2] - (6 (5 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[ 1, 4] (17 + 5^Rational[1, 2] - (30 (5 - 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2]}}}]]}, TagBox[ GraphicsGroupBox[ GraphicsComplexBox[{{ 0.30901699437494745`, -0.9510565162951535}, {-0.6691306063588582, \ -0.7431448254773941}, {-0.5, -0.3632712640026804}, {-1.4781476007338057`, \ -0.15535957318492108`}, {0.6180339887498949, 0.}, {-0.3601136119839108, 0.20791169081775937`}, {-0.19098300562505255`, 0.5877852522924731}, {-1.1691306063588582`, 0.7956969431102324}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, { 4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.02338712278849092]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.02338712278849092], DiskBox[2, 0.02338712278849092], DiskBox[3, 0.02338712278849092], DiskBox[4, 0.02338712278849092], DiskBox[5, 0.02338712278849092], DiskBox[6, 0.02338712278849092], DiskBox[7, 0.02338712278849092], DiskBox[8, 0.02338712278849092]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None, ImageSize->Tiny], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 4, 5, 10, 11, 13, 14}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, {1}, {4}, { 6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, {7}, {2}, {5}, {8}, { 3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 2}, ImageSize -> Tiny, VertexCoordinates -> {{ Root[3 - 12 #^2 + 8 #^3& , 1, 0], Root[-1 + 24 #^2 - 144 #^4 + 192 #^6& , 4, 0]}, { Root[-1 + 12 #^2 + 8 #^3& , 1, 0], Root[-1 + 24 #^2 - 144 #^4 + 192 #^6& , 4, 0]}, { Rational[1, 2], Root[-1 + 132 #^2 - 432 #^4 + 192 #^6& , 3, 0]}, { Rational[-1, 2], Root[-1 + 132 #^2 - 432 #^4 + 192 #^6& , 3, 0]}, { Rational[1, 2], Root[-1 + 132 #^2 - 432 #^4 + 192 #^6& , 5, 0]}, { Rational[-1, 2], Root[-1 + 132 #^2 - 432 #^4 + 192 #^6& , 5, 0]}, { Root[1 - 12 #^2 + 8 #^3& , 3, 0], Root[-1 + 24 #^2 - 144 #^4 + 192 #^6& , 4, 0]}, { Root[-3 + 12 #^2 + 8 #^3& , 3, 0], Root[-1 + 24 #^2 - 144 #^4 + 192 #^6& , 4, 0]}}}]]}, TagBox[ GraphicsGroupBox[ GraphicsComplexBox[{{-0.43969262078590843`, 0.2538566529714362}, {-1.4396926207859084`, 0.2538566529714362}, { 0.5, -0.08816349035423249}, {-0.5, -0.08816349035423249}, {0.5, 0.595876796297105}, {-0.5, 0.595876796297105}, {1.4396926207859084`, 0.2538566529714362}, {0.4396926207859084, 0.2538566529714362}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, { 4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.029368265417639275`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.029368265417639275], DiskBox[2, 0.029368265417639275], DiskBox[3, 0.029368265417639275], DiskBox[4, 0.029368265417639275], DiskBox[5, 0.029368265417639275], DiskBox[6, 0.029368265417639275], DiskBox[7, 0.029368265417639275], DiskBox[8, 0.029368265417639275]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None, ImageSize->Tiny], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 4, 6, 59, 189, 46, 295}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, {1}, {4}, { 6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, {7}, {2}, {5}, {8}, { 3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 2}, ImageSize -> Tiny, VertexCoordinates -> {{0, 0}, {1, 0}, { Rational[1, 2], Rational[1, 2] 3^Rational[1, 2]}, { Rational[3, 2], Rational[1, 2] 3^Rational[1, 2]}, { Rational[1, 2] Rational[11, 3]^Rational[1, 2], Rational[-1, 2] 3^Rational[-1, 2]}, { Rational[1, 6] (6 + 33^Rational[1, 2]), Rational[-1, 2] 3^Rational[-1, 2]}, { Rational[1, 6] (3 + 33^Rational[1, 2]), 3^Rational[-1, 2]}, { Rational[1, 6] (9 + 33^Rational[1, 2]), 3^Rational[-1, 2]}}}]]}, TagBox[ GraphicsGroupBox[ GraphicsComplexBox[{{0., 0.}, {1., 0.}, {0.5, 0.8660254037844386}, { 1.5, 0.8660254037844386}, { 0.9574271077563381, -0.2886751345948129}, { 1.957427107756338, -0.2886751345948129}, {1.457427107756338, 0.5773502691896258}, {2.457427107756338, 0.5773502691896258}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, { 4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.026217915967579733`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.026217915967579733], DiskBox[2, 0.026217915967579733], DiskBox[3, 0.026217915967579733], DiskBox[4, 0.026217915967579733], DiskBox[5, 0.026217915967579733], DiskBox[6, 0.026217915967579733], DiskBox[7, 0.026217915967579733], DiskBox[8, 0.026217915967579733]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None, ImageSize->Tiny], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 4, 8, 5, 9, 11, 12}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, {1}, {4}, { 6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, {7}, {2}, {5}, {8}, { 3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 2}, ImageSize -> Tiny, VertexCoordinates -> {{ Rational[1, 2] (-1 - 3^Rational[1, 2]), Rational[1, 6] (-3 - 3^Rational[1, 2])}, { Rational[1, 2] (1 - 3^Rational[1, 2]), Rational[1, 6] (-3 - 3^Rational[1, 2])}, { Rational[-1, 2], Rational[1, 6] (-6 - 3^Rational[1, 2])}, { Rational[1, 2], Rational[1, 6] (-6 - 3^Rational[1, 2])}, { Rational[-1, 2], Rational[-1, 2] 3^Rational[-1, 2]}, { Rational[1, 2], Rational[-1, 2] 3^Rational[-1, 2]}, { Rational[1, 2] (-1 + 3^Rational[1, 2]), Rational[1, 6] (-3 - 3^Rational[1, 2])}, { Rational[1, 2] (1 + 3^Rational[1, 2]), Rational[1, 6] (-3 - 3^Rational[1, 2])}}}]]}, TagBox[ GraphicsGroupBox[ GraphicsComplexBox[{{-1.3660254037844386`, -0.7886751345948128}, \ {-0.3660254037844386, -0.7886751345948128}, {-0.5, -1.2886751345948126`}, { 0.5, -1.2886751345948126`}, {-0.5, -0.2886751345948129}, { 0.5, -0.2886751345948129}, { 0.3660254037844386, -0.7886751345948128}, { 1.3660254037844386`, -0.7886751345948128}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, { 4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.028286647027724224`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.028286647027724224], DiskBox[2, 0.028286647027724224], DiskBox[3, 0.028286647027724224], DiskBox[4, 0.028286647027724224], DiskBox[5, 0.028286647027724224], DiskBox[6, 0.028286647027724224], DiskBox[7, 0.028286647027724224], DiskBox[8, 0.028286647027724224]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None, ImageSize->Tiny], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 5, 6, 9, 10, 11, 12}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, {1}, {4}, { 6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, {7}, {2}, {5}, {8}, { 3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 2}, ImageSize -> Tiny, VertexCoordinates -> {{ Rational[-1, 2], Rational[-1, 2] + 2^Rational[-1, 2]}, { Rational[1, 2], Rational[-1, 2] + 2^Rational[-1, 2]}, { Rational[-1, 2] + 2^Rational[-1, 2], Rational[-1, 2]}, {Rational[1, 2] + 2^Rational[-1, 2], Rational[-1, 2]}, {Rational[-1, 2] - 2^Rational[-1, 2], Rational[-1, 2]}, {Rational[1, 2] - 2^Rational[-1, 2], Rational[-1, 2]}, { Rational[-1, 2], Rational[-1, 2] - 2^Rational[-1, 2]}, { Rational[1, 2], Rational[-1, 2] - 2^Rational[-1, 2]}}}]]}, TagBox[ GraphicsGroupBox[ GraphicsComplexBox[{{-0.5, 0.20710678118654746`}, {0.5, 0.20710678118654746`}, {0.20710678118654746`, -0.5}, { 1.2071067811865475`, -0.5}, {-1.2071067811865475`, -0.5}, \ {-0.20710678118654746`, -0.5}, {-0.5, -1.2071067811865475`}, { 0.5, -1.2071067811865475`}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, { 4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.025885969100594097`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.025885969100594097], DiskBox[2, 0.025885969100594097], DiskBox[3, 0.025885969100594097], DiskBox[4, 0.025885969100594097], DiskBox[5, 0.025885969100594097], DiskBox[6, 0.025885969100594097], DiskBox[7, 0.025885969100594097], DiskBox[8, 0.025885969100594097]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None, ImageSize->Tiny], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 3, 4, 2, 31, 9, 19, 7}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, {1}, {4}, { 6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, {7}, {2}, {5}, {8}, { 3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 2}, ImageSize -> Tiny, VertexCoordinates -> {{0, 0}, { Rational[-1, 2] 3^Rational[-1, 2], Rational[1, 2] Rational[11, 3]^Rational[1, 2]}, { Rational[1, 2] 3^Rational[-1, 2], Rational[1, 2] Rational[11, 3]^Rational[1, 2]}, { 0, Rational[11, 3]^Rational[1, 2]}, { Rational[1, 36] ((-3) 3^Rational[1, 2] - 9 11^Rational[1, 2]), Rational[1, 36] (9 - 3 33^Rational[1, 2])}, { Rational[1, 36] ((-9) 3^Rational[1, 2] - 9 11^Rational[1, 2]), Rational[1, 36] (9 + 3 33^Rational[1, 2])}, { Rational[1, 36] (3 3^Rational[1, 2] - 9 11^Rational[1, 2]), Rational[1, 36] (9 + 3 33^Rational[1, 2])}, { Rational[1, 36] ((-3) 3^Rational[1, 2] - 9 11^Rational[1, 2]), Rational[1, 36] (9 + 9 33^Rational[1, 2])}}}]]}, TagBox[ GraphicsGroupBox[ GraphicsComplexBox[{{0., 0.}, {-0.2886751345948129, 0.9574271077563381}, {0.2886751345948129, 0.9574271077563381}, {0., 1.9148542155126762`}, {-0.9734937648862563, -0.22871355387816905`}, \ {-1.2621688994810691`, 0.728713553878169}, {-0.6848186302914434, 0.728713553878169}, {-0.9734937648862563, 1.6861406616345072`}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, { 4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.023765806470438938`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.023765806470438938], DiskBox[2, 0.023765806470438938], DiskBox[3, 0.023765806470438938], DiskBox[4, 0.023765806470438938], DiskBox[5, 0.023765806470438938], DiskBox[6, 0.023765806470438938], DiskBox[7, 0.023765806470438938], DiskBox[8, 0.023765806470438938]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None, ImageSize->Tiny], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 3, 15, 8, 17, 27, 23, 9}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, {1}, {4}, { 6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, {7}, {2}, {5}, {8}, { 3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 2}, ImageSize -> Tiny, VertexCoordinates -> {{0, 0}, { Rational[1, 2], Rational[1, 2] 3^Rational[1, 2]}, { Rational[-5, 12] + Rational[1, 4] Rational[11, 3]^Rational[1, 2], Rational[-5, 4] 3^Rational[-1, 2] + Rational[-1, 12] 11^Rational[1, 2]}, { Rational[1, 12] + Rational[1, 4] Rational[11, 3]^Rational[1, 2], Rational[1, 4] 3^Rational[-1, 2] + Rational[-1, 12] 11^Rational[1, 2]}, { Rational[5, 6], Rational[1, 6] 11^Rational[1, 2]}, { Rational[4, 3], Rational[1, 2] 3^Rational[1, 2] + Rational[1, 6] 11^Rational[1, 2]}, { Rational[5, 12] + Rational[1, 4] Rational[11, 3]^Rational[1, 2], Rational[-5, 4] 3^Rational[-1, 2] + Rational[1, 12] 11^Rational[1, 2]}, { Rational[11, 12] + Rational[1, 4] Rational[11, 3]^Rational[1, 2], Rational[1, 4] 3^Rational[-1, 2] + Rational[1, 12] 11^Rational[1, 2]}}}]]}, TagBox[ GraphicsGroupBox[ GraphicsComplexBox[{{0., 0.}, {0.5, 0.8660254037844386}, { 0.062046887211502366`, -0.9980732356833155}, { 0.5620468872115024, -0.13204783189887684`}, {0.8333333333333334, 0.5527707983925666}, {1.3333333333333333`, 1.4187962021770053`}, { 0.8953802205448358, -0.445302437290749}, {1.3953802205448356`, 0.4207229664936898}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, { 4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.025906421671334168`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.025906421671334168], DiskBox[2, 0.025906421671334168], DiskBox[3, 0.025906421671334168], DiskBox[4, 0.025906421671334168], DiskBox[5, 0.025906421671334168], DiskBox[6, 0.025906421671334168], DiskBox[7, 0.025906421671334168], DiskBox[8, 0.025906421671334168]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None, ImageSize->Tiny], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 4, 5, 8, 7, 2, 3, 6}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, {1}, {4}, { 6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, {7}, {2}, {5}, {8}, { 3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 2}, ImageSize -> Tiny, VertexCoordinates -> {{1, 0}, { Rational[1, 2], Rational[1, 2] 3^Rational[1, 2]}, {1, 1}, { Rational[1, 2], Rational[1, 2] (2 + 3^Rational[1, 2])}, {0, 0}, { Rational[-1, 2], Rational[1, 2] 3^Rational[1, 2]}, {0, 1}, { Rational[-1, 2], Rational[1, 2] (2 + 3^Rational[1, 2])}}}]]}, TagBox[ GraphicsGroupBox[ GraphicsComplexBox[{{1., 0.}, {0.5, 0.8660254037844386}, {1., 1.}, { 0.5, 1.8660254037844386`}, {0., 0.}, {-0.5, 0.8660254037844386}, {0., 1.}, {-0.5, 1.8660254037844386`}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, { 4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.021515049724012608`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.021515049724012608], DiskBox[2, 0.021515049724012608], DiskBox[3, 0.021515049724012608], DiskBox[4, 0.021515049724012608], DiskBox[5, 0.021515049724012608], DiskBox[6, 0.021515049724012608], DiskBox[7, 0.021515049724012608], DiskBox[8, 0.021515049724012608]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None, ImageSize->Tiny], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 4, 5, 8, 10, 7, 2, 11}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, {1}, {4}, { 6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, {7}, {2}, {5}, {8}, { 3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 2}, ImageSize -> Tiny, VertexCoordinates -> {{ Rational[1, 2] (-1 - 3^Rational[1, 2]), Rational[1, 6] (-3 - 3^Rational[1, 2])}, { Rational[-1, 2], Rational[-1, 2] 3^Rational[-1, 2]}, { Rational[-1, 2] 3^Rational[1, 2], Rational[1, 6] (-3 + 2 3^Rational[1, 2])}, { 0, 3^Rational[-1, 2]}, { Rational[-1, 2], Rational[1, 6] (-6 - 3^Rational[1, 2])}, { Rational[1, 2] (-1 + 3^Rational[1, 2]), Rational[1, 6] (-3 - 3^Rational[1, 2])}, { 0, Rational[1, 3] (-3 + 3^Rational[1, 2])}, { Rational[1, 2] 3^Rational[1, 2], Rational[1, 6] (-3 + 2 3^Rational[1, 2])}}}]]}, TagBox[ GraphicsGroupBox[ GraphicsComplexBox[{{-1.3660254037844386`, -0.7886751345948128}, \ {-0.5, -0.2886751345948129}, {-0.8660254037844386, 0.07735026918962573}, {0., 0.5773502691896258}, {-0.5, -1.2886751345948126`}, { 0.3660254037844386, -0.7886751345948128}, { 0., -0.42264973081037427`}, {0.8660254037844386, 0.07735026918962573}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, { 4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.024466882879267765`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.024466882879267765], DiskBox[2, 0.024466882879267765], DiskBox[3, 0.024466882879267765], DiskBox[4, 0.024466882879267765], DiskBox[5, 0.024466882879267765], DiskBox[6, 0.024466882879267765], DiskBox[7, 0.024466882879267765], DiskBox[8, 0.024466882879267765]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None, ImageSize->Tiny], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 4, 13, 248, 14, 46, 9, 8}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, {1}, {4}, { 6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, {7}, {2}, {5}, {8}, { 3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 2}, ImageSize -> Tiny, VertexCoordinates -> {{0, Rational[1, 3]}, {0, Rational[-2, 3]}, { Rational[-1, 2] 3^Rational[-1, 2], Rational[1, 36] (12 - 6 33^Rational[1, 2])}, { Rational[-1, 2] 3^Rational[-1, 2], Rational[1, 36] (-24 - 6 33^Rational[1, 2])}, { Rational[-1, 2] 3^Rational[-1, 2], Rational[1, 36] (12 + 6 33^Rational[1, 2])}, { Rational[-1, 2] 3^Rational[-1, 2], Rational[1, 36] (-24 + 6 33^Rational[1, 2])}, {-3^Rational[-1, 2], Rational[1, 3]}, {-3^Rational[-1, 2], Rational[-2, 3]}}}]]}, TagBox[ GraphicsGroupBox[ GraphicsComplexBox[{{0., 0.3333333333333333}, { 0., -0.6666666666666666}, {-0.2886751345948129, \ -0.6240937744230047}, {-0.2886751345948129, -1.6240937744230046`}, \ {-0.2886751345948129, 1.2907604410896714`}, {-0.2886751345948129, 0.2907604410896714}, {-0.5773502691896258, 0.3333333333333333}, {-0.5773502691896258, -0.6666666666666666}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, { 4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.02962578701818075]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.02962578701818075], DiskBox[2, 0.02962578701818075], DiskBox[3, 0.02962578701818075], DiskBox[4, 0.02962578701818075], DiskBox[5, 0.02962578701818075], DiskBox[6, 0.02962578701818075], DiskBox[7, 0.02962578701818075], DiskBox[8, 0.02962578701818075]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None, ImageSize->Tiny], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 4, 14, 46, 41, 42, 31, 32}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, {1}, {4}, { 6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, {7}, {2}, {5}, {8}, { 3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 2}, ImageSize -> Tiny, VertexCoordinates -> {{0, Rational[1, 3]}, {0, Rational[-2, 3]}, { Rational[-1, 2] 3^Rational[-1, 2], Rational[1, 36] (12 + 6 33^Rational[1, 2])}, { Rational[-1, 2] 3^Rational[-1, 2], Rational[1, 36] (-24 + 6 33^Rational[1, 2])}, { Rational[1, 36] (3 3^Rational[1, 2] + 9 11^Rational[1, 2]), Rational[1, 36] (21 - 3 33^Rational[1, 2])}, { Rational[1, 36] (3 3^Rational[1, 2] + 9 11^Rational[1, 2]), Rational[1, 36] (-15 - 3 33^Rational[1, 2])}, { Rational[1, 36] ((-3) 3^Rational[1, 2] + 9 11^Rational[1, 2]), Rational[1, 36] (21 + 3 33^Rational[1, 2])}, { Rational[1, 36] ((-3) 3^Rational[1, 2] + 9 11^Rational[1, 2]), Rational[1, 36] (-15 + 3 33^Rational[1, 2])}}}]]}, TagBox[ GraphicsGroupBox[ GraphicsComplexBox[{{0., 0.3333333333333333}, { 0., -0.6666666666666666}, {-0.2886751345948129, 1.2907604410896714`}, {-0.2886751345948129, 0.2907604410896714}, { 0.9734937648862563, 0.10461977945516428`}, { 0.9734937648862563, -0.8953802205448357}, {0.6848186302914434, 1.0620468872115023`}, {0.6848186302914434, 0.06204688721150238}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, { 4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.024104098496996296`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.024104098496996296], DiskBox[2, 0.024104098496996296], DiskBox[3, 0.024104098496996296], DiskBox[4, 0.024104098496996296], DiskBox[5, 0.024104098496996296], DiskBox[6, 0.024104098496996296], DiskBox[7, 0.024104098496996296], DiskBox[8, 0.024104098496996296]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None, ImageSize->Tiny], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 5, 6, 10, 16, 20, 11, 15}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, {1}, {4}, { 6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, {7}, {2}, {5}, {8}, { 3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 2}, ImageSize -> Tiny, VertexCoordinates -> {{ Rational[-1, 2], Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[1 - 20 #^2 + 80 #^4& , 3, 0]}, { Rational[-1, 2] + Cos[Rational[1, 15] Pi], Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2] + Sin[Rational[1, 15] Pi]}, { Rational[-1, 4] + Rational[-1, 4] 5^Rational[1, 2] + Cos[Rational[1, 15] Pi], Root[1 - 20 #^2 + 80 #^4& , 3, 0] + Sin[Rational[1, 15] Pi]}, { Rational[1, 2] (-1 + 3^Rational[1, 2]), Rational[1, 2] (1 - (1 + 2 5^Rational[-1, 2])^Rational[1, 2])}, { Rational[1, 4] (-1 + 2 3^Rational[1, 2] - 5^Rational[1, 2]), Rational[1, 20] ( 10 + (50 - 10 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 2] (-1 + 3^Rational[1, 2]) + Cos[Rational[1, 15] Pi], Rational[1, 8] (4 + 3^Rational[1, 2] - 15^ Rational[1, 2] - (2 + 2 5^Rational[-1, 2])^Rational[1, 2])}, { Rational[1, 4] (-1 + 2 3^Rational[1, 2] - 5^Rational[1, 2]) + Cos[Rational[1, 15] Pi], Rational[1, 2] + Root[1 - 20 #^2 + 80 #^4& , 3, 0] + Sin[Rational[1, 15] Pi]}}}]]}, TagBox[ GraphicsGroupBox[ GraphicsComplexBox[{{-0.5, -0.6881909602355868}, {-0.8090169943749475, 0.2628655560595668}, {0.4781476007338057, -0.4802792694178275}, { 0.16913060635885824`, 0.47077724687732614`}, { 0.3660254037844386, -0.1881909602355868}, {0.057008409409491145`, 0.7628655560595669}, {1.3441730045182443`, 0.019720730582172497`}, { 1.0351560101432968`, 0.970777246877326}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, { 4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.023842425395795258`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.023842425395795258], DiskBox[2, 0.023842425395795258], DiskBox[3, 0.023842425395795258], DiskBox[4, 0.023842425395795258], DiskBox[5, 0.023842425395795258], DiskBox[6, 0.023842425395795258], DiskBox[7, 0.023842425395795258], DiskBox[8, 0.023842425395795258]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None, ImageSize->Tiny], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 6, 26, 391, 37, 332, 282, 13}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, {1}, {4}, { 6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, {7}, {2}, {5}, {8}, { 3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 2}, ImageSize -> Tiny, VertexCoordinates -> {{0, 1}, {Rational[1, 2] 3^Rational[1, 2], Rational[1, 2]}, {Rational[-1, 2] 3^Rational[1, 2], Rational[1, 2]}, {0, 0}, { Root[5 - 20 #^2 + 16 #^4& , 3, 0], Rational[1, 4] (3 - 5^Rational[1, 2])}, { Root[1 - 152 #^2 + 1904 #^4 - 1408 #^6 + 256 #^8& , 7, 0], Rational[1, 4] (1 - 5^Rational[1, 2])}, { Root[1 - 152 #^2 + 1904 #^4 - 1408 #^6 + 256 #^8& , 3, 0], Rational[1, 4] (1 - 5^Rational[1, 2])}, { Root[5 - 20 #^2 + 16 #^4& , 3, 0], Rational[1, 4] (-1 - 5^Rational[1, 2])}}}]]}, TagBox[ GraphicsGroupBox[ GraphicsComplexBox[{{0., 1.}, {0.8660254037844386, 0.5}, {-0.8660254037844386, 0.5}, {0., 0.}, {0.5877852522924731, 0.19098300562505255`}, { 1.4538106560769117`, -0.30901699437494745`}, {-0.2782401514919655, \ -0.30901699437494745`}, {0.5877852522924731, -0.8090169943749475}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, { 4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.02515477733189049]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.02515477733189049], DiskBox[2, 0.02515477733189049], DiskBox[3, 0.02515477733189049], DiskBox[4, 0.02515477733189049], DiskBox[5, 0.02515477733189049], DiskBox[6, 0.02515477733189049], DiskBox[7, 0.02515477733189049], DiskBox[8, 0.02515477733189049]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None, ImageSize->Tiny], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 6, 35, 40, 51, 56, 85, 90}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, {1}, {4}, { 6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, {7}, {2}, {5}, {8}, { 3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 2}, ImageSize -> Tiny, VertexCoordinates -> {{ Rational[1, 5], Rational[1, 5]}, { Rational[1, 5], Rational[6, 5]}, { Rational[4, 5], 1}, { Rational[4, 5], 2}, { Rational[6, 5], Rational[1, 5]}, { Rational[6, 5], Rational[6, 5]}, { Rational[9, 5], 1}, { Rational[9, 5], 2}}}]]}, TagBox[ GraphicsGroupBox[ GraphicsComplexBox[{{0.2, 0.2}, {0.2, 1.2}, {0.8, 1.}, {0.8, 2.}, { 1.2, 0.2}, {1.2, 1.2}, {1.8, 1.}, {1.8, 2.}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, { 4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.02096774193548387]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.02096774193548387], DiskBox[2, 0.02096774193548387], DiskBox[3, 0.02096774193548387], DiskBox[4, 0.02096774193548387], DiskBox[5, 0.02096774193548387], DiskBox[6, 0.02096774193548387], DiskBox[7, 0.02096774193548387], DiskBox[8, 0.02096774193548387]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None, ImageSize->Tiny], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 6, 35, 40, 51, 56, 85, 90}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, {1}, {4}, { 6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, {7}, {2}, {5}, {8}, { 3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 2}, ImageSize -> Tiny, VertexCoordinates -> {{ Rational[1, 5], Rational[1, 5]}, { Rational[6, 5], Rational[1, 5]}, {1, Rational[4, 5]}, {2, Rational[4, 5]}, { Rational[1, 5], Rational[6, 5]}, { Rational[6, 5], Rational[6, 5]}, {1, Rational[9, 5]}, {2, Rational[9, 5]}}}]]}, TagBox[ GraphicsGroupBox[ GraphicsComplexBox[{{0.2, 0.2}, {1.2, 0.2}, {1., 0.8}, {2., 0.8}, { 0.2, 1.2}, {1.2, 1.2}, {1., 1.8}, {2., 1.8}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, { 4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.02096774193548387]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.02096774193548387], DiskBox[2, 0.02096774193548387], DiskBox[3, 0.02096774193548387], DiskBox[4, 0.02096774193548387], DiskBox[5, 0.02096774193548387], DiskBox[6, 0.02096774193548387], DiskBox[7, 0.02096774193548387], DiskBox[8, 0.02096774193548387]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None, ImageSize->Tiny], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 7, 17, 25, 28, 14, 8, 5}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, {1}, {4}, { 6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, {7}, {2}, {5}, {8}, { 3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 2}, ImageSize -> Tiny, VertexCoordinates -> {{ Rational[-1, 2], Rational[-1, 2]}, { Rational[1, 4] (-1 - 7^Rational[1, 2]), Rational[1, 4] (-1 + 7^Rational[1, 2])}, { Rational[1, 4] (-2 + 7^Rational[1, 2]), Rational[1, 4]}, { Rational[-1, 4], Rational[1, 4] (2 + 7^Rational[1, 2])}, { Rational[1, 4], Rational[1, 4] (-2 - 7^Rational[1, 2])}, { Rational[1, 4] (2 - 7^Rational[1, 2]), Rational[-1, 4]}, { Rational[1, 4] (1 + 7^Rational[1, 2]), Rational[1, 4] (1 - 7^Rational[1, 2])}, { Rational[1, 2], Rational[1, 2]}}}]]}, TagBox[ GraphicsGroupBox[ GraphicsComplexBox[{{-0.5, -0.5}, {-0.9114378277661477, 0.4114378277661477}, {0.16143782776614768`, 0.25}, {-0.25, 1.1614378277661477`}, { 0.25, -1.1614378277661477`}, {-0.16143782776614768`, -0.25}, { 0.9114378277661477, -0.4114378277661477}, {0.5, 0.5}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, { 4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.025178460908204678`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.025178460908204678], DiskBox[2, 0.025178460908204678], DiskBox[3, 0.025178460908204678], DiskBox[4, 0.025178460908204678], DiskBox[5, 0.025178460908204678], DiskBox[6, 0.025178460908204678], DiskBox[7, 0.025178460908204678], DiskBox[8, 0.025178460908204678]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None, ImageSize->Tiny], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 10, 11, 8, 13, 5, 3, 9}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, {1}, {4}, { 6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, {7}, {2}, {5}, {8}, { 3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 2}, ImageSize -> Tiny, VertexCoordinates -> {{0, Rational[-1, 2]}, { Root[16 - 51 #^2 + 36 #^4& , 2, 0], Rational[1, 12] (-3 + 33^Rational[1, 2])}, { Root[16 - 51 #^2 + 36 #^4& , 3, 0], Rational[1, 12] (-3 + 33^Rational[1, 2])}, { 0, Rational[1, 2] Rational[11, 3]^Rational[1, 2]}, { Root[16 - 51 #^2 + 36 #^4& , 1, 0], Rational[1, 12] (-3 - 33^Rational[1, 2])}, { Rational[-1, 2] 11^Rational[1, 2], 0}, { Rational[-1, 2] 3^Rational[-1, 2], 0}, { Root[16 - 51 #^2 + 36 #^4& , 1, 0], Rational[1, 12] (3 + 33^Rational[1, 2])}}}]]}, TagBox[ GraphicsGroupBox[ GraphicsComplexBox[{{0., -0.5}, {-0.6848186302914435, 0.22871355387816905`}, {0.6848186302914434, 0.22871355387816905`}, { 0., 0.9574271077563381}, {-0.9734937648862566, -0.728713553878169}, \ {-1.6583123951777, 0.}, {-0.2886751345948129, 0.}, {-0.9734937648862566, 0.728713553878169}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, { 4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.025336055236043625`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.025336055236043625], DiskBox[2, 0.025336055236043625], DiskBox[3, 0.025336055236043625], DiskBox[4, 0.025336055236043625], DiskBox[5, 0.025336055236043625], DiskBox[6, 0.025336055236043625], DiskBox[7, 0.025336055236043625], DiskBox[8, 0.025336055236043625]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None, ImageSize->Tiny], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 12, 13, 48, 14, 38, 49, 78}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, {1}, {4}, { 6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, {7}, {2}, {5}, {8}, { 3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 2}, ImageSize -> Tiny, VertexCoordinates -> {{0, 0}, { Rational[1, 4] (-2 + (2 (3 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 2] (Rational[1, 2] (3 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (-1 + 5^Rational[1, 2]) (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 2] (-1 + (2 (3 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 4] (1 + 5^Rational[1, 2]) (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {1, 0}, { Rational[1, 4] (2 + (2 (3 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 4] (4 + (2 (3 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 4] (-1 + 5^Rational[1, 2]) (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 2] (1 + (2 (3 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 4] (1 + 5^Rational[1, 2]) (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}}}]]}, TagBox[ GraphicsGroupBox[ GraphicsComplexBox[{{0., 0.}, {0.30901699437494745`, 0.9510565162951535}, {0.8090169943749475, 0.5877852522924731}, { 1.118033988749895, 1.5388417685876268`}, {1., 0.}, { 1.3090169943749475`, 0.9510565162951535}, {1.8090169943749475`, 0.5877852522924731}, {2.118033988749895, 1.5388417685876268`}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, { 4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.023562036759913363`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.023562036759913363], DiskBox[2, 0.023562036759913363], DiskBox[3, 0.023562036759913363], DiskBox[4, 0.023562036759913363], DiskBox[5, 0.023562036759913363], DiskBox[6, 0.023562036759913363], DiskBox[7, 0.023562036759913363], DiskBox[8, 0.023562036759913363]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None, ImageSize->Tiny], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 23, 27, 142, 1062, 878, 1270, 794}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, {1}, {4}, { 6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, {7}, {2}, {5}, {8}, { 3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 2}, ImageSize -> Tiny, VertexCoordinates -> {{2, 0}, {3, 0}, { Rational[5, 2], Rational[1, 2] 3^Rational[1, 2]}, { Rational[7, 2], Rational[1, 2] 3^Rational[1, 2]}, { Rational[1, 12] (19 + 33^Rational[1, 2]), Rational[-1, 12] (86 + 10 33^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 12] (31 + 33^Rational[1, 2]), Rational[-1, 12] (86 + 10 33^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 12] (25 + 33^Rational[1, 2]), Rational[1, 12] (3^Rational[1, 2] - 11^Rational[1, 2])}, { Rational[1, 12] (37 + 33^Rational[1, 2]), Rational[1, 12] (3^Rational[1, 2] - 11^Rational[1, 2])}}}]]}, TagBox[ GraphicsGroupBox[ GraphicsComplexBox[{{2., 0.}, {3., 0.}, {2.5, 0.8660254037844386}, { 3.5, 0.8660254037844386}, {2.062046887211502, -0.9980732356833155}, { 3.062046887211502, -0.9980732356833155}, { 2.562046887211502, -0.13204783189887687`}, { 3.562046887211502, -0.13204783189887687`}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, { 4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.02149914387407184]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.02149914387407184], DiskBox[2, 0.02149914387407184], DiskBox[3, 0.02149914387407184], DiskBox[4, 0.02149914387407184], DiskBox[5, 0.02149914387407184], DiskBox[6, 0.02149914387407184], DiskBox[7, 0.02149914387407184], DiskBox[8, 0.02149914387407184]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None, ImageSize->Tiny], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 149, 154, 264, 158, 130, 342, 336}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, {1}, {4}, { 6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, {7}, {2}, {5}, {8}, { 3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 2}, ImageSize -> Tiny, VertexCoordinates -> {{0, 0}, { Rational[1, 12] (-5 + 33^Rational[1, 2]), Rational[1, 12] (5 3^Rational[1, 2] + 11^Rational[1, 2])}, {1, 0}, {Rational[1, 12] (7 + 33^Rational[1, 2]), Rational[1, 12] (5 3^Rational[1, 2] + 11^Rational[1, 2])}, { Rational[1, 12] (3 + 33^Rational[1, 2]), Rational[1, 12] (3^Rational[1, 2] - 3 11^Rational[1, 2])}, { Rational[1, 6] (-1 + 33^Rational[1, 2]), Rational[1, 6] (3 3^Rational[1, 2] - 11^Rational[1, 2])}, { Rational[1, 12] (15 + 33^Rational[1, 2]), Rational[1, 12] (3^Rational[1, 2] - 3 11^Rational[1, 2])}, { Rational[1, 6] (5 + 33^Rational[1, 2]), Rational[1, 6] (3 3^Rational[1, 2] - 11^Rational[1, 2])}}}]]}, TagBox[ GraphicsGroupBox[ GraphicsComplexBox[{{0., 0.}, {0.06204688721150238, 0.9980732356833154}, {1., 0.}, {1.0620468872115023`, 0.9980732356833154}, {0.728713553878169, -0.6848186302914435}, { 0.7907604410896714, 0.313254605391872}, { 1.728713553878169, -0.6848186302914435}, {1.7907604410896714`, 0.313254605391872}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, { 4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.020890779855135794`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.020890779855135794], DiskBox[2, 0.020890779855135794], DiskBox[3, 0.020890779855135794], DiskBox[4, 0.020890779855135794], DiskBox[5, 0.020890779855135794], DiskBox[6, 0.020890779855135794], DiskBox[7, 0.020890779855135794], DiskBox[8, 0.020890779855135794]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None, ImageSize->Tiny], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 154, 158, 335, 168, 22, 60, 120}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, {1}, {4}, { 6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, {7}, {2}, {5}, {8}, { 3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 2}, ImageSize -> Tiny, VertexCoordinates -> {{0, 0}, { Rational[1, 12] (-3 + 33^Rational[1, 2]), Rational[1, 12] (3^Rational[1, 2] + 3 11^Rational[1, 2])}, { Rational[1, 12] (5 + 33^Rational[1, 2]), Rational[1, 12] (5 3^Rational[1, 2] - 11^Rational[1, 2])}, { Rational[1, 6] (1 + 33^Rational[1, 2]), Rational[1, 6] (3 3^Rational[1, 2] + 11^Rational[1, 2])}, { Rational[-1, 2], Rational[-1, 2] 3^Rational[1, 2]}, { Rational[1, 12] (-9 + 33^Rational[1, 2]), Rational[1, 12] ((-5) 3^Rational[1, 2] + 3 11^Rational[1, 2])}, { Rational[1, 12] (-1 + 33^Rational[1, 2]), Rational[1, 12] (-3^Rational[1, 2] - 11^Rational[1, 2])}, { Rational[1, 6] (-2 + 33^Rational[1, 2]), Rational[1, 6] 11^Rational[1, 2]}}}]]}, TagBox[ GraphicsGroupBox[ GraphicsComplexBox[{{0., 0.}, {0.22871355387816905`, 0.9734937648862563}, {0.8953802205448357, 0.4453024372907488}, { 1.1240937744230046`, 1.4187962021770053`}, {-0.5, -0.8660254037844386}, \ {-0.27128644612183095`, 0.10746836110181782`}, { 0.3953802205448357, -0.4207229664936897}, {0.6240937744230047, 0.5527707983925666}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, { 4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.02488130619774248]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.02488130619774248], DiskBox[2, 0.02488130619774248], DiskBox[3, 0.02488130619774248], DiskBox[4, 0.02488130619774248], DiskBox[5, 0.02488130619774248], DiskBox[6, 0.02488130619774248], DiskBox[7, 0.02488130619774248], DiskBox[8, 0.02488130619774248]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None, ImageSize->Tiny], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{2, 10, 12, 26, 13, 27, 32, 52}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, {1}, {4}, { 6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, {7}, {2}, {5}, {8}, { 3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 2}, ImageSize -> Tiny, VertexCoordinates -> {{0, 4 Rational[3, 7]^Rational[1, 2]}, { 2 7^Rational[-1, 2], 3 Rational[3, 7]^Rational[1, 2]}, { Rational[-1, 2] 7^Rational[-1, 2], Rational[5, 2] Rational[3, 7]^Rational[1, 2]}, { Rational[3, 2] 7^Rational[-1, 2], Rational[3, 2] Rational[3, 7]^Rational[1, 2]}, { Rational[1, 2] 7^Rational[-1, 2], Rational[5, 2] Rational[3, 7]^Rational[1, 2]}, { Rational[5, 2] 7^Rational[-1, 2], Rational[3, 2] Rational[3, 7]^Rational[1, 2]}, { 0, Rational[3, 7]^Rational[1, 2]}, {2 7^Rational[-1, 2], 0}}}]]}, TagBox[ GraphicsGroupBox[ GraphicsComplexBox[{{0., 2.6186146828319083`}, {0.7559289460184544, 1.9639610121239313`}, {-0.1889822365046136, 1.6366341767699426`}, { 0.5669467095138407, 0.9819805060619656}, {0.1889822365046136, 1.6366341767699426`}, {0.944911182523068, 0.9819805060619656}, {0., 0.6546536707079771}, {0.7559289460184544, 0.}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, { 4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.027440576980832104`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.027440576980832104], DiskBox[2, 0.027440576980832104], DiskBox[3, 0.027440576980832104], DiskBox[4, 0.027440576980832104], DiskBox[5, 0.027440576980832104], DiskBox[6, 0.027440576980832104], DiskBox[7, 0.027440576980832104], DiskBox[8, 0.027440576980832104]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None, ImageSize->Tiny], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{2, 11, 15, 24, 17, 26, 30, 39}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, {1}, {4}, { 6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, {7}, {2}, {5}, {8}, { 3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 2}, ImageSize -> Tiny, VertexCoordinates -> {{5^Rational[-1, 2], 2 5^Rational[-1, 2]}, { 2 5^Rational[-1, 2], 4 5^Rational[-1, 2]}, { 3 5^Rational[-1, 2], 5^Rational[-1, 2]}, { 4 5^Rational[-1, 2], 3 5^Rational[-1, 2]}, { 3 5^Rational[-1, 2], 3 5^Rational[-1, 2]}, { 4 5^Rational[-1, 2], 5^Rational[1, 2]}, { 5^Rational[1, 2], 2 5^Rational[-1, 2]}, { 6 5^Rational[-1, 2], 4 5^Rational[-1, 2]}}}]]}, TagBox[ GraphicsGroupBox[ GraphicsComplexBox[{{0.4472135954999579, 0.8944271909999159}, { 0.8944271909999159, 1.7888543819998317`}, {1.3416407864998738`, 0.4472135954999579}, {1.7888543819998317`, 1.3416407864998738`}, { 1.3416407864998738`, 1.3416407864998738`}, {1.7888543819998317`, 2.23606797749979}, {2.23606797749979, 0.8944271909999159}, { 2.6832815729997477`, 1.7888543819998317`}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, { 4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.024498527314026908`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.024498527314026908], DiskBox[2, 0.024498527314026908], DiskBox[3, 0.024498527314026908], DiskBox[4, 0.024498527314026908], DiskBox[5, 0.024498527314026908], DiskBox[6, 0.024498527314026908], DiskBox[7, 0.024498527314026908], DiskBox[8, 0.024498527314026908]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None, ImageSize->Tiny], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{3, 7, 11, 15, 16, 20, 24, 28}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, {1}, {4}, { 6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, {7}, {2}, {5}, {8}, { 3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 2}, ImageSize -> Tiny, VertexCoordinates -> {{5^Rational[-1, 2], 3 5^Rational[-1, 2]}, { 2 5^Rational[-1, 2], 5^Rational[-1, 2]}, { 2 5^Rational[-1, 2], 5^Rational[1, 2]}, { 3 5^Rational[-1, 2], 3 5^Rational[-1, 2]}, { 3 5^Rational[-1, 2], 4 5^Rational[-1, 2]}, { 4 5^Rational[-1, 2], 2 5^Rational[-1, 2]}, { 4 5^Rational[-1, 2], 6 5^Rational[-1, 2]}, { 5^Rational[1, 2], 4 5^Rational[-1, 2]}}}]]}, TagBox[ GraphicsGroupBox[ GraphicsComplexBox[{{0.4472135954999579, 1.3416407864998738`}, { 0.8944271909999159, 0.4472135954999579}, {0.8944271909999159, 2.23606797749979}, {1.3416407864998738`, 1.3416407864998738`}, { 1.3416407864998738`, 1.7888543819998317`}, {1.7888543819998317`, 0.8944271909999159}, {1.7888543819998317`, 2.6832815729997477`}, { 2.23606797749979, 1.7888543819998317`}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, { 4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.024498527314026908`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.024498527314026908], DiskBox[2, 0.024498527314026908], DiskBox[3, 0.024498527314026908], DiskBox[4, 0.024498527314026908], DiskBox[5, 0.024498527314026908], DiskBox[6, 0.024498527314026908], DiskBox[7, 0.024498527314026908], DiskBox[8, 0.024498527314026908]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None, ImageSize->Tiny], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{3, 26, 31, 54, 35, 58, 63, 86}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, {1}, {4}, { 6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, {7}, {2}, {5}, {8}, { 3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 2}, ImageSize -> Tiny, VertexCoordinates -> {{13^Rational[-1, 2], 3 13^Rational[-1, 2]}, { 3 13^Rational[-1, 2], 6 13^Rational[-1, 2]}, { 4 13^Rational[-1, 2], 13^Rational[-1, 2]}, { 6 13^Rational[-1, 2], 4 13^Rational[-1, 2]}, { 4 13^Rational[-1, 2], 5 13^Rational[-1, 2]}, { 6 13^Rational[-1, 2], 8 13^Rational[-1, 2]}, { 7 13^Rational[-1, 2], 3 13^Rational[-1, 2]}, { 9 13^Rational[-1, 2], 6 13^Rational[-1, 2]}}}]]}, TagBox[ GraphicsGroupBox[ GraphicsComplexBox[{{0.2773500981126146, 0.8320502943378437}, { 0.8320502943378437, 1.6641005886756874`}, {1.1094003924504583`, 0.2773500981126146}, {1.6641005886756874`, 1.1094003924504583`}, { 1.1094003924504583`, 1.386750490563073}, {1.6641005886756874`, 2.2188007849009166`}, {1.941450686788302, 0.8320502943378437}, { 2.4961508830135313`, 1.6641005886756874`}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, { 4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.024362395319563718`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.024362395319563718], DiskBox[2, 0.024362395319563718], DiskBox[3, 0.024362395319563718], DiskBox[4, 0.024362395319563718], DiskBox[5, 0.024362395319563718], DiskBox[6, 0.024362395319563718], DiskBox[7, 0.024362395319563718], DiskBox[8, 0.024362395319563718]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None, ImageSize->Tiny], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{4, 19, 25, 40, 33, 48, 54, 69}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, {1}, {4}, { 6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, {7}, {2}, {5}, {8}, { 3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 2}, ImageSize -> Tiny, VertexCoordinates -> {{13^Rational[-1, 2], 4 13^Rational[-1, 2]}, { 3 13^Rational[-1, 2], 13^Rational[-1, 2]}, { 3 13^Rational[-1, 2], 7 13^Rational[-1, 2]}, { 5 13^Rational[-1, 2], 4 13^Rational[-1, 2]}, { 4 13^Rational[-1, 2], 6 13^Rational[-1, 2]}, { 6 13^Rational[-1, 2], 3 13^Rational[-1, 2]}, { 6 13^Rational[-1, 2], 9 13^Rational[-1, 2]}, { 8 13^Rational[-1, 2], 6 13^Rational[-1, 2]}}}]]}, TagBox[ GraphicsGroupBox[ GraphicsComplexBox[{{0.2773500981126146, 1.1094003924504583`}, { 0.8320502943378437, 0.2773500981126146}, {0.8320502943378437, 1.941450686788302}, {1.386750490563073, 1.1094003924504583`}, { 1.1094003924504583`, 1.6641005886756874`}, {1.6641005886756874`, 0.8320502943378437}, {1.6641005886756874`, 2.4961508830135313`}, { 2.2188007849009166`, 1.6641005886756874`}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, { 4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.024362395319563718`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.024362395319563718], DiskBox[2, 0.024362395319563718], DiskBox[3, 0.024362395319563718], DiskBox[4, 0.024362395319563718], DiskBox[5, 0.024362395319563718], DiskBox[6, 0.024362395319563718], DiskBox[7, 0.024362395319563718], DiskBox[8, 0.024362395319563718]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None, ImageSize->Tiny], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{4, 44, 49, 89, 55, 95, 100, 140}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, {1}, {4}, { 6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, {7}, {2}, {5}, {8}, { 3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 2}, ImageSize -> Tiny, VertexCoordinates -> {{ Rational[4, 5], Rational[1, 5]}, { Rational[8, 5], Rational[4, 5]}, { Rational[1, 5], 1}, {1, Rational[8, 5]}, { Rational[7, 5], 1}, { Rational[11, 5], Rational[8, 5]}, { Rational[4, 5], Rational[9, 5]}, { Rational[8, 5], Rational[12, 5]}}}]]}, TagBox[ GraphicsGroupBox[ GraphicsComplexBox[{{0.8, 0.2}, {1.6, 0.8}, {0.2, 1.}, {1., 1.6}, { 1.4, 1.}, {2.2, 1.6}, {0.8, 1.8}, {1.6, 2.4}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, { 4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.024213836477987416`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.024213836477987416], DiskBox[2, 0.024213836477987416], DiskBox[3, 0.024213836477987416], DiskBox[4, 0.024213836477987416], DiskBox[5, 0.024213836477987416], DiskBox[6, 0.024213836477987416], DiskBox[7, 0.024213836477987416], DiskBox[8, 0.024213836477987416]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None, ImageSize->Tiny], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{5, 11, 19, 25, 46, 52, 60, 66}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, {1}, {4}, { 6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, {7}, {2}, {5}, {8}, { 3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 2}, ImageSize -> Tiny, VertexCoordinates -> {{17^Rational[-1, 2], 5 17^Rational[-1, 2]}, { 2 17^Rational[-1, 2], 17^Rational[-1, 2]}, { 2 17^Rational[-1, 2], 9 17^Rational[-1, 2]}, { 3 17^Rational[-1, 2], 5 17^Rational[-1, 2]}, { 5 17^Rational[-1, 2], 6 17^Rational[-1, 2]}, { 6 17^Rational[-1, 2], 2 17^Rational[-1, 2]}, { 6 17^Rational[-1, 2], 10 17^Rational[-1, 2]}, { 7 17^Rational[-1, 2], 6 17^Rational[-1, 2]}}}]]}, TagBox[ GraphicsGroupBox[ GraphicsComplexBox[{{0.24253562503633297`, 1.212678125181665}, { 0.48507125007266594`, 0.24253562503633297`}, {0.48507125007266594`, 2.182820625326997}, {0.7276068751089989, 1.212678125181665}, { 1.212678125181665, 1.4552137502179978`}, {1.4552137502179978`, 0.48507125007266594`}, {1.4552137502179978`, 2.42535625036333}, { 1.6977493752543307`, 1.4552137502179978`}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, { 4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.024077782077903176`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.024077782077903176], DiskBox[2, 0.024077782077903176], DiskBox[3, 0.024077782077903176], DiskBox[4, 0.024077782077903176], DiskBox[5, 0.024077782077903176], DiskBox[6, 0.024077782077903176], DiskBox[7, 0.024077782077903176], DiskBox[8, 0.024077782077903176]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None, ImageSize->Tiny]}], "}"}]], "Output", CellLabel-> "(byblis65 V13.4.0) \ Out[4]=",ExpressionUUID->"209521a5-fd40-4664-9579-1608f02c1a9d"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["UnitDistance construction", "Subsubsection",ExpressionUUID->"e9c1b996-80bc-4c65-9a68-76837c33b535"], Cell[CellGroupData[{ Cell[BoxData[{ RowBox[{ RowBox[{"s", "=", RowBox[{"Sqrt", "[", "3", "]"}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"v", "=", RowBox[{"Join", "[", RowBox[{ RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"-", "1"}], ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{"1", ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "1"}], ",", RowBox[{"-", "1"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", RowBox[{"-", "1"}]}], "}"}], ",", RowBox[{"{", RowBox[{"1", ",", RowBox[{"-", "1"}]}], "}"}]}], "}"}], "/", "2"}], ",", RowBox[{ RowBox[{ RowBox[{ RowBox[{"{", RowBox[{"0", ",", RowBox[{"#", RowBox[{"(", RowBox[{"s", "+", "1"}], ")"}]}]}], "}"}], "/", "2"}], "&"}], "/@", RowBox[{"{", RowBox[{ RowBox[{"-", "1"}], ",", "1"}], "}"}]}]}], "]"}]}], ";"}], "\[IndentingNewLine]", RowBox[{"g", "=", RowBox[{"Graph", "[", RowBox[{ RowBox[{"Range", "@", RowBox[{"Length", "@", "v"}]}], ",", RowBox[{"UndirectedEdge", "@@@", RowBox[{"{", RowBox[{ RowBox[{"e", "[", RowBox[{ "4", ",", "7", ",", "6", ",", "3", ",", "8", ",", "1", ",", "4", ",", "2", ",", "6"}], "]"}], ",", RowBox[{"e", "[", RowBox[{"1", ",", "5", ",", "3"}], "]"}], ",", RowBox[{"{", RowBox[{"2", ",", "8"}], "}"}], ",", RowBox[{"{", RowBox[{"7", ",", "5"}], "}"}]}], "}"}]}], ",", RowBox[{"VertexCoordinates", "\[Rule]", "v"}], ",", RowBox[{"VertexLabels", "\[Rule]", "Automatic"}]}], "]"}]}]}], "Input", CellLabel-> "In[227]:=",ExpressionUUID->"3a65272b-1850-49cc-93e7-8a37e602c638"], Cell[BoxData[ GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8}, { Null, {{4, 7}, {7, 6}, {6, 3}, {3, 8}, {8, 1}, {1, 4}, {4, 2}, {2, 6}, { 1, 5}, {5, 3}, {2, 8}, {7, 5}}}, { VertexLabels -> {Automatic}, VertexCoordinates -> {{ Rational[-1, 2], Rational[1, 2]}, {0, Rational[1, 2]}, { Rational[1, 2], Rational[1, 2]}, { Rational[-1, 2], Rational[-1, 2]}, {0, Rational[-1, 2]}, { Rational[1, 2], Rational[-1, 2]}, {0, Rational[1, 2] (-1 - 3^Rational[1, 2])}, { 0, Rational[1, 2] (1 + 3^Rational[1, 2])}}}]]}, TagBox[GraphicsGroupBox[{ {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[CompressedData[" 1:eJxTTMoPSmVmYGDgAWImKIaAB/uhtD0aH522Z0ABuOVD1XRKbG9/RVePw3wM eXv88ujmo+vD6S8c5mPqRzMfw71QeXT34ZDH9A9MHgCsvEDJ "], 0.028286647027724224`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[ 0.7]}], {DiskBox[{-0.5, 0.5}, 0.028286647027724224], InsetBox["1", Offset[{2, 2}, {-0.4717133529722758, 0.5282866470277242}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, {DiskBox[{0., 0.5}, 0.028286647027724224], InsetBox["2", Offset[{2, 2}, {0.028286647027724224, 0.5282866470277242}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, {DiskBox[{0.5, 0.5}, 0.028286647027724224], InsetBox["3", Offset[{2, 2}, {0.5282866470277242, 0.5282866470277242}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{-0.5, -0.5}, 0.028286647027724224], InsetBox["4", Offset[{2, 2}, {-0.4717133529722758, -0.4717133529722758}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, {DiskBox[{0., -0.5}, 0.028286647027724224], InsetBox["5", Offset[{2, 2}, {0.028286647027724224, -0.4717133529722758}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{0.5, -0.5}, 0.028286647027724224], InsetBox["6", Offset[{2, 2}, {0.5282866470277242, -0.4717133529722758}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{0., -1.3660254037844386`}, 0.028286647027724224], InsetBox["7", Offset[{2, 2}, {0.028286647027724224, -1.3377387567567143}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{0., 1.3660254037844386`}, 0.028286647027724224], InsetBox["8", Offset[{2, 2}, {0.028286647027724224, 1.394312050812163}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}}}], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None]], "Output", CellLabel-> "Out[229]=",ExpressionUUID->"2a599b2d-cbcd-4aff-87b9-6b8c45df9943"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"RecognizeGraph", "@", "g"}]], "Input", CellLabel-> "In[177]:=",ExpressionUUID->"ac883be3-bceb-4112-a373-1c758f7b996c"], Cell[BoxData["\<\"CubicalGraph\"\>"], "Output", CellLabel-> "Out[177]=",ExpressionUUID->"4a521f71-5136-4405-9144-b8939a01b757"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"g", "=", RowBox[{"CenterGraph", "@", RowBox[{"IndexGraph", "@", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 4, 13, 248, 14, 46, 9, 8}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, {1}, {4}, { 6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, {7}, {2}, {5}, {8}, { 3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 2}, ImageSize -> Tiny, VertexCoordinates -> {{0, Rational[1, 3]}, {0, Rational[-2, 3]}, { Rational[-1, 2] 3^Rational[-1, 2], Rational[1, 36] (12 - 6 33^Rational[1, 2])}, { Rational[-1, 2] 3^Rational[-1, 2], Rational[1, 36] (-24 - 6 33^Rational[1, 2])}, { Rational[-1, 2] 3^Rational[-1, 2], Rational[1, 36] (12 + 6 33^Rational[1, 2])}, { Rational[-1, 2] 3^Rational[-1, 2], Rational[1, 36] (-24 + 6 33^Rational[1, 2])}, {-3^ Rational[-1, 2], Rational[1, 3]}, {-3^Rational[-1, 2], Rational[-2, 3]}}}]]}, TagBox[ GraphicsGroupBox[ GraphicsComplexBox[{{0., 0.3333333333333333}, { 0., -0.6666666666666666}, {-0.2886751345948129, \ -0.6240937744230047}, {-0.2886751345948129, -1.6240937744230046`}, \ {-0.2886751345948129, 1.2907604410896714`}, {-0.2886751345948129, 0.2907604410896714}, {-0.5773502691896258, 0.3333333333333333}, {-0.5773502691896258, -0.6666666666666666}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.02962578701818075]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.02962578701818075], DiskBox[2, 0.02962578701818075], DiskBox[3, 0.02962578701818075], DiskBox[4, 0.02962578701818075], DiskBox[5, 0.02962578701818075], DiskBox[6, 0.02962578701818075], DiskBox[7, 0.02962578701818075], DiskBox[8, 0.02962578701818075]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None, ImageSize->Tiny]}]}]}]], "Input", CellLabel-> "In[222]:=",ExpressionUUID->"5dbf0d5d-1daa-4a98-9dab-34d2d3bbefab"], Cell[BoxData[ GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, {1}, {4}, {6}, { 1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, {7}, {2}, {5}, {8}, {3}, { 5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 2}, ImageSize -> Tiny, VertexCoordinates -> {{ Rational[1, 2] 3^Rational[-1, 2], Rational[1, 3] + Rational[1, 8] (Rational[2, 3] + Rational[1, 36] (-12 - 6 33^Rational[1, 2]) + Rational[1, 36] (24 - 6 33^Rational[1, 2]) + Rational[1, 36] (-12 + 6 33^Rational[1, 2]) + Rational[1, 36] (24 + 6 33^Rational[1, 2]))}, { Rational[1, 2] 3^Rational[-1, 2], Rational[-2, 3] + Rational[1, 8] (Rational[2, 3] + Rational[1, 36] (-12 - 6 33^Rational[1, 2]) + Rational[1, 36] (24 - 6 33^Rational[1, 2]) + Rational[1, 36] (-12 + 6 33^Rational[1, 2]) + Rational[1, 36] (24 + 6 33^Rational[1, 2]))}, { 0, Rational[1, 36] (12 - 6 33^Rational[1, 2]) + Rational[1, 8] (Rational[2, 3] + Rational[1, 36] (-12 - 6 33^Rational[1, 2]) + Rational[1, 36] (24 - 6 33^Rational[1, 2]) + Rational[1, 36] (-12 + 6 33^Rational[1, 2]) + Rational[1, 36] (24 + 6 33^Rational[1, 2]))}, { 0, Rational[1, 36] (-24 - 6 33^Rational[1, 2]) + Rational[1, 8] (Rational[2, 3] + Rational[1, 36] (-12 - 6 33^Rational[1, 2]) + Rational[1, 36] (24 - 6 33^Rational[1, 2]) + Rational[1, 36] (-12 + 6 33^Rational[1, 2]) + Rational[1, 36] (24 + 6 33^Rational[1, 2]))}, { 0, Rational[1, 36] (12 + 6 33^Rational[1, 2]) + Rational[1, 8] (Rational[2, 3] + Rational[1, 36] (-12 - 6 33^Rational[1, 2]) + Rational[1, 36] (24 - 6 33^Rational[1, 2]) + Rational[1, 36] (-12 + 6 33^Rational[1, 2]) + Rational[1, 36] (24 + 6 33^Rational[1, 2]))}, { 0, Rational[1, 36] (-24 + 6 33^Rational[1, 2]) + Rational[1, 8] (Rational[2, 3] + Rational[1, 36] (-12 - 6 33^Rational[1, 2]) + Rational[1, 36] (24 - 6 33^Rational[1, 2]) + Rational[1, 36] (-12 + 6 33^Rational[1, 2]) + Rational[1, 36] (24 + 6 33^Rational[1, 2]))}, { Rational[-1, 2] 3^Rational[-1, 2], Rational[1, 3] + Rational[1, 8] (Rational[2, 3] + Rational[1, 36] (-12 - 6 33^Rational[1, 2]) + Rational[1, 36] (24 - 6 33^Rational[1, 2]) + Rational[1, 36] (-12 + 6 33^Rational[1, 2]) + Rational[1, 36] (24 + 6 33^Rational[1, 2]))}, { Rational[-1, 2] 3^Rational[-1, 2], Rational[-2, 3] + Rational[1, 8] (Rational[2, 3] + Rational[1, 36] (-12 - 6 33^Rational[1, 2]) + Rational[1, 36] (24 - 6 33^Rational[1, 2]) + Rational[1, 36] (-12 + 6 33^Rational[1, 2]) + Rational[1, 36] (24 + 6 33^Rational[1, 2]))}}}]]}, TagBox[ GraphicsGroupBox[ GraphicsComplexBox[{{0.2886751345948129, 0.49999999999999994`}, { 0.2886751345948129, -0.5}, {0., -0.4574271077563381}, { 0., -1.457427107756338}, {0., 1.457427107756338}, {0., 0.45742710775633805`}, {-0.2886751345948129, 0.49999999999999994`}, {-0.2886751345948129, -0.5}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.02962578701818075]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.02962578701818075], DiskBox[2, 0.02962578701818075], DiskBox[3, 0.02962578701818075], DiskBox[4, 0.02962578701818075], DiskBox[5, 0.02962578701818075], DiskBox[6, 0.02962578701818075], DiskBox[7, 0.02962578701818075], DiskBox[8, 0.02962578701818075]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None, ImageSize->Tiny]], "Output", CellLabel-> "Out[222]=",ExpressionUUID->"789fb659-eec3-408d-921a-e61547e5f2fb"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"BilateralGraphEmbeddingQ", "@", "g"}]], "Input", CellLabel-> "In[223]:=",ExpressionUUID->"d055b4db-ef32-40bc-be20-34d5ee5bf830"], Cell[BoxData["True"], "Output", CellLabel-> "Out[223]=",ExpressionUUID->"a51cf2b3-378a-46b3-9432-d537134d273c"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"UnitDistanceGraphEmbeddingQ", "@", "g"}]], "Input", CellLabel-> "In[224]:=",ExpressionUUID->"2b3073ed-0b1e-44fa-b9cc-6b4bb3a69e07"], Cell[BoxData["True"], "Output", CellLabel-> "Out[224]=",ExpressionUUID->"6a917d34-7f68-435c-b957-7a24221d95f3"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"gs", "=", RowBox[{"UnlabelGraph", "/@", RowBox[{"{", RowBox[{ GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8}, { Null, {{4, 7}, {7, 6}, {6, 3}, {3, 8}, {8, 1}, {1, 4}, {4, 2}, {2, 6}, {1, 5}, {5, 3}, {2, 8}, {7, 5}}}, { VertexLabels -> {Automatic}, VertexCoordinates -> {{ Rational[-1, 2], Rational[1, 2]}, {0, Rational[1, 2]}, { Rational[1, 2], Rational[1, 2]}, { Rational[-1, 2], Rational[-1, 2]}, {0, Rational[-1, 2]}, { Rational[1, 2], Rational[-1, 2]}, {0, Rational[1, 2] (-1 - 3^Rational[1, 2])}, { 0, Rational[1, 2] (1 + 3^Rational[1, 2])}}}]]}, TagBox[GraphicsGroupBox[{ {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[CompressedData[" 1:eJxTTMoPSmVmYGDgAWImKIaAB/uhtD0aH522Z0ABuOVD1XRKbG9/RVePw3wM eXv88ujmo+vD6S8c5mPqRzMfw71QeXT34ZDH9A9MHgCsvEDJ "], 0.028286647027724224`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[ 0.7]}], {DiskBox[{-0.5, 0.5}, 0.028286647027724224], InsetBox["1", Offset[{2, 2}, {-0.4717133529722758, 0.5282866470277242}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{0., 0.5}, 0.028286647027724224], InsetBox["2", Offset[{2, 2}, {0.028286647027724224, 0.5282866470277242}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{0.5, 0.5}, 0.028286647027724224], InsetBox["3", Offset[{2, 2}, {0.5282866470277242, 0.5282866470277242}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{-0.5, -0.5}, 0.028286647027724224], InsetBox["4", Offset[{2, 2}, {-0.4717133529722758, -0.4717133529722758}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{0., -0.5}, 0.028286647027724224], InsetBox["5", Offset[{2, 2}, {0.028286647027724224, -0.4717133529722758}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{0.5, -0.5}, 0.028286647027724224], InsetBox["6", Offset[{2, 2}, {0.5282866470277242, -0.4717133529722758}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{0., -1.3660254037844386`}, 0.028286647027724224], InsetBox["7", Offset[{2, 2}, {0.028286647027724224, -1.3377387567567143}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{0., 1.3660254037844386`}, 0.028286647027724224], InsetBox["8", Offset[{2, 2}, {0.028286647027724224, 1.394312050812163}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}}}], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, {1}, {4}, { 6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, {7}, {2}, {5}, { 8}, {3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 2}, ImageSize -> Tiny, VertexCoordinates -> {{ Rational[1, 2] 3^Rational[-1, 2], Rational[1, 3] + Rational[1, 8] (Rational[2, 3] + Rational[1, 36] (-12 - 6 33^Rational[1, 2]) + Rational[1, 36] (24 - 6 33^Rational[1, 2]) + Rational[1, 36] (-12 + 6 33^Rational[1, 2]) + Rational[1, 36] (24 + 6 33^Rational[1, 2]))}, { Rational[1, 2] 3^Rational[-1, 2], Rational[-2, 3] + Rational[1, 8] (Rational[2, 3] + Rational[1, 36] (-12 - 6 33^Rational[1, 2]) + Rational[1, 36] (24 - 6 33^Rational[1, 2]) + Rational[1, 36] (-12 + 6 33^Rational[1, 2]) + Rational[1, 36] (24 + 6 33^Rational[1, 2]))}, { 0, Rational[1, 36] (12 - 6 33^Rational[1, 2]) + Rational[1, 8] (Rational[2, 3] + Rational[1, 36] (-12 - 6 33^Rational[1, 2]) + Rational[1, 36] (24 - 6 33^Rational[1, 2]) + Rational[1, 36] (-12 + 6 33^Rational[1, 2]) + Rational[1, 36] (24 + 6 33^Rational[1, 2]))}, { 0, Rational[1, 36] (-24 - 6 33^Rational[1, 2]) + Rational[1, 8] (Rational[2, 3] + Rational[1, 36] (-12 - 6 33^Rational[1, 2]) + Rational[1, 36] (24 - 6 33^Rational[1, 2]) + Rational[1, 36] (-12 + 6 33^Rational[1, 2]) + Rational[1, 36] (24 + 6 33^Rational[1, 2]))}, { 0, Rational[1, 36] (12 + 6 33^Rational[1, 2]) + Rational[1, 8] (Rational[2, 3] + Rational[1, 36] (-12 - 6 33^Rational[1, 2]) + Rational[1, 36] (24 - 6 33^Rational[1, 2]) + Rational[1, 36] (-12 + 6 33^Rational[1, 2]) + Rational[1, 36] (24 + 6 33^Rational[1, 2]))}, { 0, Rational[1, 36] (-24 + 6 33^Rational[1, 2]) + Rational[1, 8] (Rational[2, 3] + Rational[1, 36] (-12 - 6 33^Rational[1, 2]) + Rational[1, 36] (24 - 6 33^Rational[1, 2]) + Rational[1, 36] (-12 + 6 33^Rational[1, 2]) + Rational[1, 36] (24 + 6 33^Rational[1, 2]))}, { Rational[-1, 2] 3^Rational[-1, 2], Rational[1, 3] + Rational[1, 8] (Rational[2, 3] + Rational[1, 36] (-12 - 6 33^Rational[1, 2]) + Rational[1, 36] (24 - 6 33^Rational[1, 2]) + Rational[1, 36] (-12 + 6 33^Rational[1, 2]) + Rational[1, 36] (24 + 6 33^Rational[1, 2]))}, { Rational[-1, 2] 3^Rational[-1, 2], Rational[-2, 3] + Rational[1, 8] (Rational[2, 3] + Rational[1, 36] (-12 - 6 33^Rational[1, 2]) + Rational[1, 36] (24 - 6 33^Rational[1, 2]) + Rational[1, 36] (-12 + 6 33^Rational[1, 2]) + Rational[1, 36] (24 + 6 33^Rational[1, 2]))}}}]]}, TagBox[ GraphicsGroupBox[ GraphicsComplexBox[{{0.2886751345948129, 0.49999999999999994`}, { 0.2886751345948129, -0.5}, {0., -0.4574271077563381}, { 0., -1.457427107756338}, {0., 1.457427107756338}, {0., 0.45742710775633805`}, {-0.2886751345948129, 0.49999999999999994`}, {-0.2886751345948129, -0.5}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.02962578701818075]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.02962578701818075], DiskBox[2, 0.02962578701818075], DiskBox[3, 0.02962578701818075], DiskBox[4, 0.02962578701818075], DiskBox[5, 0.02962578701818075], DiskBox[6, 0.02962578701818075], DiskBox[7, 0.02962578701818075], DiskBox[8, 0.02962578701818075]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None, ImageSize->Tiny]}], "}"}]}]}]], "Input", CellLabel-> "In[232]:=",ExpressionUUID->"d4210425-f6a1-4c54-bfa5-3ab57b2b0f77"], Cell[BoxData[ RowBox[{"{", RowBox[{ GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8}, { Null, {{4, 7}, {7, 6}, {6, 3}, {3, 8}, {8, 1}, {1, 4}, {4, 2}, {2, 6}, {1, 5}, {5, 3}, {2, 8}, {7, 5}}}, { FormatType -> TraditionalForm, VertexCoordinates -> {{ Rational[-1, 2], Rational[1, 2]}, {0, Rational[1, 2]}, { Rational[1, 2], Rational[1, 2]}, { Rational[-1, 2], Rational[-1, 2]}, {0, Rational[-1, 2]}, { Rational[1, 2], Rational[-1, 2]}, {0, Rational[1, 2] (-1 - 3^Rational[1, 2])}, { 0, Rational[1, 2] (1 + 3^Rational[1, 2])}}, VertexLabels -> {None}}]]}, TagBox[ GraphicsGroupBox[ GraphicsComplexBox[{{-0.5, 0.5}, {0., 0.5}, {0.5, 0.5}, {-0.5, -0.5}, {0., -0.5}, {0.5, -0.5}, { 0., -1.3660254037844386`}, {0., 1.3660254037844386`}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 4}, {1, 5}, {1, 8}, {2, 4}, {2, 6}, {2, 8}, {3, 5}, { 3, 6}, {3, 8}, {4, 7}, {5, 7}, {6, 7}}, 0.028286647027724224`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.028286647027724224], DiskBox[2, 0.028286647027724224], DiskBox[3, 0.028286647027724224], DiskBox[4, 0.028286647027724224], DiskBox[5, 0.028286647027724224], DiskBox[6, 0.028286647027724224], DiskBox[7, 0.028286647027724224], DiskBox[8, 0.028286647027724224]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, {1}, {4}, { 6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, {7}, {2}, {5}, {8}, { 3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { FormatType -> TraditionalForm, GraphLayout -> {"Dimension" -> 2}, ImageSize -> Tiny, VertexCoordinates -> {{ Rational[1, 2] 3^Rational[-1, 2], Rational[1, 3] + Rational[1, 8] (Rational[2, 3] + Rational[1, 36] (-12 - 6 33^Rational[1, 2]) + Rational[1, 36] (24 - 6 33^Rational[1, 2]) + Rational[1, 36] (-12 + 6 33^Rational[1, 2]) + Rational[1, 36] (24 + 6 33^Rational[1, 2]))}, { Rational[1, 2] 3^Rational[-1, 2], Rational[-2, 3] + Rational[1, 8] (Rational[2, 3] + Rational[1, 36] (-12 - 6 33^Rational[1, 2]) + Rational[1, 36] (24 - 6 33^Rational[1, 2]) + Rational[1, 36] (-12 + 6 33^Rational[1, 2]) + Rational[1, 36] (24 + 6 33^Rational[1, 2]))}, { 0, Rational[1, 36] (12 - 6 33^Rational[1, 2]) + Rational[1, 8] (Rational[2, 3] + Rational[1, 36] (-12 - 6 33^Rational[1, 2]) + Rational[1, 36] (24 - 6 33^Rational[1, 2]) + Rational[1, 36] (-12 + 6 33^Rational[1, 2]) + Rational[1, 36] (24 + 6 33^Rational[1, 2]))}, { 0, Rational[1, 36] (-24 - 6 33^Rational[1, 2]) + Rational[1, 8] (Rational[2, 3] + Rational[1, 36] (-12 - 6 33^Rational[1, 2]) + Rational[1, 36] (24 - 6 33^Rational[1, 2]) + Rational[1, 36] (-12 + 6 33^Rational[1, 2]) + Rational[1, 36] (24 + 6 33^Rational[1, 2]))}, { 0, Rational[1, 36] (12 + 6 33^Rational[1, 2]) + Rational[1, 8] (Rational[2, 3] + Rational[1, 36] (-12 - 6 33^Rational[1, 2]) + Rational[1, 36] (24 - 6 33^Rational[1, 2]) + Rational[1, 36] (-12 + 6 33^Rational[1, 2]) + Rational[1, 36] (24 + 6 33^Rational[1, 2]))}, { 0, Rational[1, 36] (-24 + 6 33^Rational[1, 2]) + Rational[1, 8] (Rational[2, 3] + Rational[1, 36] (-12 - 6 33^Rational[1, 2]) + Rational[1, 36] (24 - 6 33^Rational[1, 2]) + Rational[1, 36] (-12 + 6 33^Rational[1, 2]) + Rational[1, 36] (24 + 6 33^Rational[1, 2]))}, { Rational[-1, 2] 3^Rational[-1, 2], Rational[1, 3] + Rational[1, 8] (Rational[2, 3] + Rational[1, 36] (-12 - 6 33^Rational[1, 2]) + Rational[1, 36] (24 - 6 33^Rational[1, 2]) + Rational[1, 36] (-12 + 6 33^Rational[1, 2]) + Rational[1, 36] (24 + 6 33^Rational[1, 2]))}, { Rational[-1, 2] 3^Rational[-1, 2], Rational[-2, 3] + Rational[1, 8] (Rational[2, 3] + Rational[1, 36] (-12 - 6 33^Rational[1, 2]) + Rational[1, 36] (24 - 6 33^Rational[1, 2]) + Rational[1, 36] (-12 + 6 33^Rational[1, 2]) + Rational[1, 36] (24 + 6 33^Rational[1, 2]))}}, VertexLabels -> {None}}]]}, TagBox[ GraphicsGroupBox[ GraphicsComplexBox[{{0.2886751345948129, 0.49999999999999994`}, { 0.2886751345948129, -0.5}, {0., -0.4574271077563381}, { 0., -1.457427107756338}, {0., 1.457427107756338}, {0., 0.45742710775633805`}, {-0.2886751345948129, 0.49999999999999994`}, {-0.2886751345948129, -0.5}}, { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, { 4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}, 0.02962578701818075]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.02962578701818075], DiskBox[2, 0.02962578701818075], DiskBox[3, 0.02962578701818075], DiskBox[4, 0.02962578701818075], DiskBox[5, 0.02962578701818075], DiskBox[6, 0.02962578701818075], DiskBox[7, 0.02962578701818075], DiskBox[8, 0.02962578701818075]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None, ImageSize->Tiny]}], "}"}]], "Output", CellLabel-> "Out[232]=",ExpressionUUID->"9bcf09a4-325c-4579-8adc-f7febdf88cf6"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"GraphEmbedding", "/@", "%"}], "//", "FullSimplify"}]], "Input", CellLabel-> "In[233]:=",ExpressionUUID->"acb3d113-6d97-4d09-b96f-b19244648c6c"], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], ",", FractionBox["1", "2"]}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", FractionBox["1", "2"]}], "}"}], ",", RowBox[{"{", RowBox[{ FractionBox["1", "2"], ",", FractionBox["1", "2"]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], ",", RowBox[{"-", FractionBox["1", "2"]}]}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", RowBox[{"-", FractionBox["1", "2"]}]}], "}"}], ",", RowBox[{"{", RowBox[{ FractionBox["1", "2"], ",", RowBox[{"-", FractionBox["1", "2"]}]}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", RowBox[{ FractionBox["1", "2"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "-", SqrtBox["3"]}], ")"}]}]}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", RowBox[{ FractionBox["1", "2"], " ", RowBox[{"(", RowBox[{"1", "+", SqrtBox["3"]}], ")"}]}]}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ FractionBox["1", RowBox[{"2", " ", SqrtBox["3"]}]], ",", FractionBox["1", "2"]}], "}"}], ",", RowBox[{"{", RowBox[{ FractionBox["1", RowBox[{"2", " ", SqrtBox["3"]}]], ",", RowBox[{"-", FractionBox["1", "2"]}]}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", RowBox[{ FractionBox["1", "6"], " ", RowBox[{"(", RowBox[{"3", "-", SqrtBox["33"]}], ")"}]}]}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", RowBox[{ FractionBox["1", "6"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "3"}], "-", SqrtBox["33"]}], ")"}]}]}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", RowBox[{ FractionBox["1", "6"], " ", RowBox[{"(", RowBox[{"3", "+", SqrtBox["33"]}], ")"}]}]}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", RowBox[{ FractionBox["1", "6"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "3"}], "+", SqrtBox["33"]}], ")"}]}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", FractionBox["1", RowBox[{"2", " ", SqrtBox["3"]}]]}], ",", FractionBox["1", "2"]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", FractionBox["1", RowBox[{"2", " ", SqrtBox["3"]}]]}], ",", RowBox[{"-", FractionBox["1", "2"]}]}], "}"}]}], "}"}]}], "}"}]], "Output", CellLabel-> "Out[233]=",ExpressionUUID->"4823b2cb-ffff-448f-8479-c046466a5f37"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["Matchstick", "Subsubsection",ExpressionUUID->"44e66967-7dca-4c74-9faa-ddb6d233e435"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"GraphData", "[", RowBox[{"\"\\"", ",", "\"\\""}], "]"}]], "Input",\ CellLabel-> "In[140]:=",ExpressionUUID->"13012323-1400-4a27-90ff-1486073d725a"], Cell[BoxData["False"], "Output", CellLabel-> "Out[140]=",ExpressionUUID->"be014091-55df-452e-9dce-f4483a347d9a"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"GraphData", "[", RowBox[{ "\"\\"", ",", "\"\\"", ",", "\"\\""}], "]"}], "//", "StyleGraphs"}]], "Input", CellLabel-> "In[141]:=",ExpressionUUID->"429e2074-6d11-415f-b81b-eac8336a4dc5"], Cell[BoxData[ RowBox[{"{", "}"}]], "Output", CellLabel-> "Out[141]=",ExpressionUUID->"b5ab8dd1-58af-4e4f-b813-c02225c51297"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["3D default", "Subsubsection",ExpressionUUID->"a3eb8da8-db7e-4567-83ab-e6c19a41427b"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Graph3D", "[", RowBox[{"GraphData", "[", RowBox[{"\"\\"", ",", "\"\\""}], "]"}], "]"}]], "Input", CellLabel-> "In[142]:=",ExpressionUUID->"36a21cfe-8b62-4b22-860e-4b8fee1ce045"], Cell[BoxData[ Graphics3DBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 5, 4, 6, 7, 8}, { Null, {{1, 2}, {1, 3}, {1, 4}, {2, 5}, {2, 6}, {3, 5}, {3, 7}, {5, 8}, { 4, 6}, {4, 7}, {6, 8}, {7, 8}}}, { GraphLayout -> {"Dimension" -> 3}}]]}, TagBox[ GraphicsGroup3DBox[ GraphicsComplex3DBox[{{0.6648935397594595, 1.6878362699969225`, 0.7026871589415863}, {1.3811394310823417`, 1.306054815219862, 1.2875158336342465`}, {0.8797689307332008, 1.009504573157285, 0.}, {0., 1.0579855413021066`, 1.1057301848713124`}, {1.5960648063241674`, 0.6292068234523337, 0.5846358833883267}, {0.7164312585814794, 0.6769393188309722, 1.690744625639343}, {0.21511047739442823`, 0.38005438870696495`, 0.40247727171635994`}, {0.9313323374869034, 0., 0.9874880410694674}}, { {Hue[0.6, 0.2, 0.8], Arrowheads[0.], Arrow3DBox[TubeBox[{{1, 2}, {1, 3}, {1, 4}, {2, 5}, {2, 6}, {3, 5}, { 3, 7}, {4, 6}, {4, 7}, {5, 8}, {6, 8}, {7, 8}}], 0.040103542921735846`]}, {Hue[0.6, 0.6, 1], SphereBox[1, 0.040103542921735846`], SphereBox[2, 0.040103542921735846`], SphereBox[3, 0.040103542921735846`], SphereBox[4, 0.040103542921735846`], SphereBox[5, 0.040103542921735846`], SphereBox[6, 0.040103542921735846`], SphereBox[7, 0.040103542921735846`], SphereBox[8, 0.040103542921735846`]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], BaseStyle->{Graphics3DBoxOptions -> {Method -> {"ShrinkWrap" -> True}}}, Boxed->False, DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, Lighting->{{"Directional", GrayLevel[0.7], ImageScaled[{1, 1, 0}]}, {"Point", GrayLevel[0.9], ImageScaled[{0, 0, 0}], {0, 0, 0.07}}}]], "Output", CellLabel-> "Out[142]=",ExpressionUUID->"aacb6134-4eef-4714-859e-076dd3ee16f6"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["3D construction", "Subsubsection",ExpressionUUID->"56094897-5f13-4996-9a0c-42470d88a8d7"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"g", "=", RowBox[{"CubicVertexTransitiveGraph", "[", RowBox[{"8", ",", RowBox[{"GraphLayout", "\[Rule]", "\"\<3DEmbedding\>\""}]}], "]"}]}]], "Input", CellLabel->"In[26]:=",ExpressionUUID->"068d4815-5eef-483c-b796-7ad3e692aeb3"], Cell[BoxData[ Graphics3DBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8}, { Null, {{1, 2}, {2, 3}, {3, 4}, {4, 1}, {5, 6}, {6, 7}, {7, 8}, {8, 5}, { 1, 6}, {3, 8}, {2, 5}, {4, 7}}}, { VertexCoordinates -> {{2^Rational[-1, 2], -2^Rational[-1, 2], Rational[-1, 2]}, {2^Rational[-1, 2], 2^Rational[-1, 2], Rational[-1, 2]}, {-2^Rational[-1, 2], 2^Rational[-1, 2], Rational[-1, 2]}, {-2^Rational[-1, 2], -2^Rational[-1, 2], Rational[-1, 2]}, {2^Rational[-1, 2], -2^Rational[-1, 2], Rational[1, 2]}, {2^Rational[-1, 2], 2^Rational[-1, 2], Rational[1, 2]}, {-2^Rational[-1, 2], 2^Rational[-1, 2], Rational[1, 2]}, {-2^Rational[-1, 2], -2^Rational[-1, 2], Rational[1, 2]}}}]]}, TagBox[ GraphicsGroup3DBox[ GraphicsComplex3DBox[{{0.7071067811865475, -0.7071067811865475, -0.5}, { 0.7071067811865475, 0.7071067811865475, -0.5}, {-0.7071067811865475, 0.7071067811865475, -0.5}, {-0.7071067811865475, -0.7071067811865475, \ -0.5}, {0.7071067811865475, -0.7071067811865475, 0.5}, {0.7071067811865475, 0.7071067811865475, 0.5}, {-0.7071067811865475, 0.7071067811865475, 0.5}, {-0.7071067811865475, -0.7071067811865475, 0.5}}, { {Hue[0.6, 0.2, 0.8], Arrowheads[0.], Arrow3DBox[TubeBox[{{1, 2}, {1, 4}, {1, 6}, {2, 3}, {2, 5}, {3, 4}, { 3, 8}, {4, 7}, {5, 6}, {5, 8}, {6, 7}, {7, 8}}], 0.03534845306420581]}, {Hue[0.6, 0.6, 1], SphereBox[1, 0.03534845306420581], SphereBox[2, 0.03534845306420581], SphereBox[3, 0.03534845306420581], SphereBox[4, 0.03534845306420581], SphereBox[5, 0.03534845306420581], SphereBox[6, 0.03534845306420581], SphereBox[7, 0.03534845306420581], SphereBox[8, 0.03534845306420581]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], BaseStyle->{Graphics3DBoxOptions -> {Method -> {"ShrinkWrap" -> True}}}, Boxed->False, DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, Lighting->{{"Directional", GrayLevel[0.7], ImageScaled[{1, 1, 0}]}, {"Point", GrayLevel[0.9], ImageScaled[{0, 0, 0}], {0, 0, 0.07}}}, ViewAngle->0.422730912241677, ViewPoint->{1.3594089300250076`, -2.691725616057188, 1.5351288443742495`}, ViewVertical->{0.09005960430279153, -0.08607391839485193, 0.9922099315391784}]], "Output", CellLabel->"Out[26]=",ExpressionUUID->"b3f4ecd0-94fe-42af-8a2a-6f75b8a2b31c"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"RecognizeGraph", "@", "g"}]], "Input", CellLabel-> "In[305]:=",ExpressionUUID->"4a957c87-fd59-4c6a-87b0-f168df64bd7e"], Cell[BoxData["\<\"CubicalGraph\"\>"], "Output", CellLabel-> "Out[305]=",ExpressionUUID->"7fa682c1-b2fe-483c-be85-3296b167de3a"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["3D All", "Subsubsection",ExpressionUUID->"8606457e-2cba-4ef1-80ff-d33e4af33a97"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"GraphData", "[", RowBox[{"\"\\"", ",", "\"\\"", ",", RowBox[{"{", RowBox[{"\"\<3D\>\"", ",", "\"\\""}], "}"}]}], "]"}]], "Input", CellLabel->"In[8]:=",ExpressionUUID->"1ab750c2-2180-40e5-9308-12454467d041"], Cell[BoxData[ RowBox[{"{", RowBox[{ Graphics3DBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, {1}, {4}, { 6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, {7}, {2}, {5}, {8}, { 3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 3}, VertexCoordinates -> {{-2^Rational[-1, 2], -2^Rational[-1, 2], -2^ Rational[-1, 2]}, {-2^Rational[-1, 2], -2^Rational[-1, 2], 2^ Rational[-1, 2]}, {-2^Rational[-1, 2], 2^ Rational[-1, 2], -2^Rational[-1, 2]}, {-2^Rational[-1, 2], 2^ Rational[-1, 2], 2^Rational[-1, 2]}, { 2^Rational[-1, 2], -2^Rational[-1, 2], -2^Rational[-1, 2]}, { 2^Rational[-1, 2], -2^Rational[-1, 2], 2^Rational[-1, 2]}, { 2^Rational[-1, 2], 2^Rational[-1, 2], -2^Rational[-1, 2]}, { 2^Rational[-1, 2], 2^Rational[-1, 2], 2^Rational[-1, 2]}}}]]}, TagBox[ GraphicsGroup3DBox[ GraphicsComplex3DBox[{{-0.7071067811865475, -0.7071067811865475, \ -0.7071067811865475}, {-0.7071067811865475, -0.7071067811865475, 0.7071067811865475}, {-0.7071067811865475, 0.7071067811865475, -0.7071067811865475}, {-0.7071067811865475, 0.7071067811865475, 0.7071067811865475}, { 0.7071067811865475, -0.7071067811865475, -0.7071067811865475}, { 0.7071067811865475, -0.7071067811865475, 0.7071067811865475}, { 0.7071067811865475, 0.7071067811865475, -0.7071067811865475}, { 0.7071067811865475, 0.7071067811865475, 0.7071067811865475}}, { {Hue[0.6, 0.2, 0.8], Arrowheads[0.], Arrow3DBox[TubeBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}], 0.03534845306420581]}, {Hue[0.6, 0.6, 1], SphereBox[1, 0.03534845306420581], SphereBox[2, 0.03534845306420581], SphereBox[3, 0.03534845306420581], SphereBox[4, 0.03534845306420581], SphereBox[5, 0.03534845306420581], SphereBox[6, 0.03534845306420581], SphereBox[7, 0.03534845306420581], SphereBox[8, 0.03534845306420581]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], BaseStyle->{Graphics3DBoxOptions -> {Method -> {"ShrinkWrap" -> True}}}, Boxed->False, DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, Lighting->{{"Directional", GrayLevel[0.7], ImageScaled[{1, 1, 0}]}, {"Point", GrayLevel[0.9], ImageScaled[{0, 0, 0}], {0, 0, 0.07}}}], ",", Graphics3DBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, {1}, {4}, { 6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, {7}, {2}, {5}, {8}, { 3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 3}, VertexCoordinates -> {{0, 0, 0}, {0, 0, 1}, {0, 1, 0}, {0, 1, 1}, {1, 0, 0}, {1, 0, 1}, {1, 1, 0}, {1, 1, 1}}}]]}, TagBox[ GraphicsGroup3DBox[ GraphicsComplex3DBox[{{0., 0., 0.}, {0., 0., 1.}, {0., 1., 0.}, {0., 1., 1.}, {1., 0., 0.}, {1., 0., 1.}, {1., 1., 0.}, {1., 1., 1.}}, { {Hue[0.6, 0.2, 0.8], Arrowheads[0.], Arrow3DBox[TubeBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}], 0.02546]}, {Hue[0.6, 0.6, 1], SphereBox[1, 0.02546], SphereBox[2, 0.02546], SphereBox[3, 0.02546], SphereBox[4, 0.02546], SphereBox[5, 0.02546], SphereBox[6, 0.02546], SphereBox[7, 0.02546], SphereBox[8, 0.02546]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], BaseStyle->{Graphics3DBoxOptions -> {Method -> {"ShrinkWrap" -> True}}}, Boxed->False, DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, Lighting->{{"Directional", GrayLevel[0.7], ImageScaled[{1, 1, 0}]}, {"Point", GrayLevel[0.9], ImageScaled[{0, 0, 0}], {0, 0, 0.07}}}], ",", Graphics3DBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, {1}, {4}, { 6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, {7}, {2}, {5}, {8}, { 3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 3}, VertexCoordinates -> {{0, 0, 0}, {0, 1, 0}, {1, 0, 0}, {1, 1, 0}, {1, 0, 1}, {1, 1, 1}, {0, 0, 1}, {0, 1, 1}}}]]}, TagBox[ GraphicsGroup3DBox[ GraphicsComplex3DBox[{{0., 0., 0.}, {0., 1., 0.}, {1., 0., 0.}, {1., 1., 0.}, {1., 0., 1.}, {1., 1., 1.}, {0., 0., 1.}, {0., 1., 1.}}, { {Hue[0.6, 0.2, 0.8], Arrowheads[0.], Arrow3DBox[TubeBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}], 0.02546]}, {Hue[0.6, 0.6, 1], SphereBox[1, 0.02546], SphereBox[2, 0.02546], SphereBox[3, 0.02546], SphereBox[4, 0.02546], SphereBox[5, 0.02546], SphereBox[6, 0.02546], SphereBox[7, 0.02546], SphereBox[8, 0.02546]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], BaseStyle->{Graphics3DBoxOptions -> {Method -> {"ShrinkWrap" -> True}}}, Boxed->False, DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, Lighting->{{"Directional", GrayLevel[0.7], ImageScaled[{1, 1, 0}]}, {"Point", GrayLevel[0.9], ImageScaled[{0, 0, 0}], {0, 0, 0.07}}}], ",", Graphics3DBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, {1}, {4}, { 6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, {7}, {2}, {5}, {8}, { 3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 3}, VertexCoordinates -> {{ Rational[-1, 2] - 5^Rational[-1, 2], Rational[1, 20] (-5 - 3 5^Rational[1, 2]), Root[1 - 20 #^2 + 80 #^4& , 1, 0]}, { Rational[-1, 2], Rational[1, 4] (1 - 5^Rational[1, 2]), Rational[1, 2] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[-1, 2], Rational[1, 4] (-1 + 5^Rational[1, 2]), Root[1 - 20 #^2 + 80 #^4& , 1, 0]}, { Rational[-1, 2] + 5^Rational[-1, 2], Rational[1, 20] (5 + 3 5^Rational[1, 2]), Rational[1, 2] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 2] - 5^Rational[-1, 2], Rational[1, 20] (-5 - 3 5^Rational[1, 2]), Root[1 - 20 #^2 + 80 #^4& , 1, 0]}, { Rational[1, 2], Rational[1, 4] (1 - 5^Rational[1, 2]), Rational[1, 2] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 2], Rational[1, 4] (-1 + 5^Rational[1, 2]), Root[1 - 20 #^2 + 80 #^4& , 1, 0]}, { Rational[1, 2] + 5^Rational[-1, 2], Rational[1, 20] (5 + 3 5^Rational[1, 2]), Rational[1, 2] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}}}]]}, TagBox[ GraphicsGroup3DBox[ GraphicsComplex3DBox[{{-0.9472135954999579, -0.5854101966249685, \ -0.42532540417602}, {-0.5, -0.30901699437494745`, 0.42532540417602}, {-0.5, 0.30901699437494745`, -0.42532540417602}, {-0.05278640450004207, 0.5854101966249685, 0.42532540417602}, { 0.05278640450004207, -0.5854101966249685, -0.42532540417602}, { 0.5, -0.30901699437494745`, 0.42532540417602}, {0.5, 0.30901699437494745`, -0.42532540417602}, {0.9472135954999579, 0.5854101966249685, 0.42532540417602}}, { {Hue[0.6, 0.2, 0.8], Arrowheads[0.], Arrow3DBox[TubeBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}], 0.04349811307538509]}, {Hue[0.6, 0.6, 1], SphereBox[1, 0.04349811307538509], SphereBox[2, 0.04349811307538509], SphereBox[3, 0.04349811307538509], SphereBox[4, 0.04349811307538509], SphereBox[5, 0.04349811307538509], SphereBox[6, 0.04349811307538509], SphereBox[7, 0.04349811307538509], SphereBox[8, 0.04349811307538509]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], BaseStyle->{Graphics3DBoxOptions -> {Method -> {"ShrinkWrap" -> True}}}, Boxed->False, DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, Lighting->{{"Directional", GrayLevel[0.7], ImageScaled[{1, 1, 0}]}, {"Point", GrayLevel[0.9], ImageScaled[{0, 0, 0}], {0, 0, 0.07}}}], ",", Graphics3DBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, {1}, {4}, { 6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, {7}, {2}, {5}, {8}, { 3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 3}, VertexCoordinates -> {{ Rational[-1, 2] - 5^Rational[-1, 2], Rational[1, 20] (-5 + 3 5^Rational[1, 2]), Root[1 - 20 #^2 + 80 #^4& , 3, 0]}, { Rational[-1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[1 - 20 #^2 + 80 #^4& , 3, 0]}, { Rational[-1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), Root[1 - 20 #^2 + 80 #^4& , 2, 0]}, { Rational[-1, 2] + 5^Rational[-1, 2], Rational[1, 20] (5 - 3 5^Rational[1, 2]), Root[1 - 20 #^2 + 80 #^4& , 2, 0]}, { Rational[1, 2] - 5^Rational[-1, 2], Rational[1, 20] (-5 + 3 5^Rational[1, 2]), Root[1 - 20 #^2 + 80 #^4& , 3, 0]}, { Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[1 - 20 #^2 + 80 #^4& , 3, 0]}, { Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), Root[1 - 20 #^2 + 80 #^4& , 2, 0]}, { Rational[1, 2] + 5^Rational[-1, 2], Rational[1, 20] (5 - 3 5^Rational[1, 2]), Root[1 - 20 #^2 + 80 #^4& , 2, 0]}}}]]}, TagBox[ GraphicsGroup3DBox[ GraphicsComplex3DBox[{{-0.9472135954999579, 0.08541019662496847, 0.2628655560595668}, {-0.5, -0.8090169943749475, 0.2628655560595668}, {-0.5, 0.8090169943749475, -0.2628655560595668}, {-0.05278640450004207, \ -0.08541019662496847, -0.2628655560595668}, {0.05278640450004207, 0.08541019662496847, 0.2628655560595668}, {0.5, -0.8090169943749475, 0.2628655560595668}, {0.5, 0.8090169943749475, -0.2628655560595668}, { 0.9472135954999579, -0.08541019662496847, -0.2628655560595668}}, { {Hue[0.6, 0.2, 0.8], Arrowheads[0.], Arrow3DBox[TubeBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}], 0.04349811307538509]}, {Hue[0.6, 0.6, 1], SphereBox[1, 0.04349811307538509], SphereBox[2, 0.04349811307538509], SphereBox[3, 0.04349811307538509], SphereBox[4, 0.04349811307538509], SphereBox[5, 0.04349811307538509], SphereBox[6, 0.04349811307538509], SphereBox[7, 0.04349811307538509], SphereBox[8, 0.04349811307538509]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], BaseStyle->{Graphics3DBoxOptions -> {Method -> {"ShrinkWrap" -> True}}}, Boxed->False, DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, Lighting->{{"Directional", GrayLevel[0.7], ImageScaled[{1, 1, 0}]}, {"Point", GrayLevel[0.9], ImageScaled[{0, 0, 0}], {0, 0, 0.07}}}]}], "}"}]], "Output", CellLabel->"Out[8]=",ExpressionUUID->"6785d5d5-4df7-4717-9a1a-45d341469031"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["3D UnitDistance", "Subsubsection",ExpressionUUID->"75e08323-694d-47c6-856a-4165f77888ce"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"GraphData", "[", RowBox[{"\"\\"", ",", "\"\\"", ",", RowBox[{"{", RowBox[{"\"\<3D\>\"", ",", "\"\\""}], "}"}]}], "]"}]], "Input", CellLabel-> "In[144]:=",ExpressionUUID->"80d3b65d-5bb3-4541-a622-beed9245320c"], Cell[BoxData[ RowBox[{"{", RowBox[{ Graphics3DBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, {1}, {4}, { 6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, {7}, {2}, {5}, {8}, { 3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 3}, VertexCoordinates -> {{0, 0, 0}, {0, 0, 1}, {0, 1, 0}, {0, 1, 1}, {1, 0, 0}, {1, 0, 1}, {1, 1, 0}, {1, 1, 1}}}]]}, TagBox[ GraphicsGroup3DBox[ GraphicsComplex3DBox[{{0., 0., 0.}, {0., 0., 1.}, {0., 1., 0.}, {0., 1., 1.}, {1., 0., 0.}, {1., 0., 1.}, {1., 1., 0.}, {1., 1., 1.}}, { {Hue[0.6, 0.2, 0.8], Arrowheads[0.], Arrow3DBox[TubeBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}], 0.02546]}, {Hue[0.6, 0.6, 1], SphereBox[1, 0.02546], SphereBox[2, 0.02546], SphereBox[3, 0.02546], SphereBox[4, 0.02546], SphereBox[5, 0.02546], SphereBox[6, 0.02546], SphereBox[7, 0.02546], SphereBox[8, 0.02546]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], BaseStyle->{Graphics3DBoxOptions -> {Method -> {"ShrinkWrap" -> True}}}, Boxed->False, DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, Lighting->{{"Directional", GrayLevel[0.7], ImageScaled[{1, 1, 0}]}, {"Point", GrayLevel[0.9], ImageScaled[{0, 0, 0}], {0, 0, 0.07}}}], ",", Graphics3DBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, {1}, {4}, { 6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, {7}, {2}, {5}, {8}, { 3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 3}, VertexCoordinates -> {{ Rational[-1, 2] - 5^Rational[-1, 2], Rational[1, 20] (-5 - 3 5^Rational[1, 2]), Root[1 - 20 #^2 + 80 #^4& , 1, 0]}, { Rational[-1, 2], Rational[1, 4] (1 - 5^Rational[1, 2]), Rational[1, 2] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[-1, 2], Rational[1, 4] (-1 + 5^Rational[1, 2]), Root[1 - 20 #^2 + 80 #^4& , 1, 0]}, { Rational[-1, 2] + 5^Rational[-1, 2], Rational[1, 20] (5 + 3 5^Rational[1, 2]), Rational[1, 2] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 2] - 5^Rational[-1, 2], Rational[1, 20] (-5 - 3 5^Rational[1, 2]), Root[1 - 20 #^2 + 80 #^4& , 1, 0]}, { Rational[1, 2], Rational[1, 4] (1 - 5^Rational[1, 2]), Rational[1, 2] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 2], Rational[1, 4] (-1 + 5^Rational[1, 2]), Root[1 - 20 #^2 + 80 #^4& , 1, 0]}, { Rational[1, 2] + 5^Rational[-1, 2], Rational[1, 20] (5 + 3 5^Rational[1, 2]), Rational[1, 2] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}}}]]}, TagBox[ GraphicsGroup3DBox[ GraphicsComplex3DBox[{{-0.9472135954999579, -0.5854101966249685, \ -0.42532540417602}, {-0.5, -0.30901699437494745`, 0.42532540417602}, {-0.5, 0.30901699437494745`, -0.42532540417602}, {-0.05278640450004207, 0.5854101966249685, 0.42532540417602}, { 0.05278640450004207, -0.5854101966249685, -0.42532540417602}, { 0.5, -0.30901699437494745`, 0.42532540417602}, {0.5, 0.30901699437494745`, -0.42532540417602}, {0.9472135954999579, 0.5854101966249685, 0.42532540417602}}, { {Hue[0.6, 0.2, 0.8], Arrowheads[0.], Arrow3DBox[TubeBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}], 0.04349811307538509]}, {Hue[0.6, 0.6, 1], SphereBox[1, 0.04349811307538509], SphereBox[2, 0.04349811307538509], SphereBox[3, 0.04349811307538509], SphereBox[4, 0.04349811307538509], SphereBox[5, 0.04349811307538509], SphereBox[6, 0.04349811307538509], SphereBox[7, 0.04349811307538509], SphereBox[8, 0.04349811307538509]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], BaseStyle->{Graphics3DBoxOptions -> {Method -> {"ShrinkWrap" -> True}}}, Boxed->False, DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, Lighting->{{"Directional", GrayLevel[0.7], ImageScaled[{1, 1, 0}]}, {"Point", GrayLevel[0.9], ImageScaled[{0, 0, 0}], {0, 0, 0.07}}}], ",", Graphics3DBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, {1}, {4}, { 6}, {1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, {7}, {2}, {5}, {8}, { 3}, {5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 3}, VertexCoordinates -> {{ Rational[-1, 2] - 5^Rational[-1, 2], Rational[1, 20] (-5 + 3 5^Rational[1, 2]), Root[1 - 20 #^2 + 80 #^4& , 3, 0]}, { Rational[-1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[1 - 20 #^2 + 80 #^4& , 3, 0]}, { Rational[-1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), Root[1 - 20 #^2 + 80 #^4& , 2, 0]}, { Rational[-1, 2] + 5^Rational[-1, 2], Rational[1, 20] (5 - 3 5^Rational[1, 2]), Root[1 - 20 #^2 + 80 #^4& , 2, 0]}, { Rational[1, 2] - 5^Rational[-1, 2], Rational[1, 20] (-5 + 3 5^Rational[1, 2]), Root[1 - 20 #^2 + 80 #^4& , 3, 0]}, { Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[1 - 20 #^2 + 80 #^4& , 3, 0]}, { Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), Root[1 - 20 #^2 + 80 #^4& , 2, 0]}, { Rational[1, 2] + 5^Rational[-1, 2], Rational[1, 20] (5 - 3 5^Rational[1, 2]), Root[1 - 20 #^2 + 80 #^4& , 2, 0]}}}]]}, TagBox[ GraphicsGroup3DBox[ GraphicsComplex3DBox[{{-0.9472135954999579, 0.08541019662496847, 0.2628655560595668}, {-0.5, -0.8090169943749475, 0.2628655560595668}, {-0.5, 0.8090169943749475, -0.2628655560595668}, {-0.05278640450004207, \ -0.08541019662496847, -0.2628655560595668}, {0.05278640450004207, 0.08541019662496847, 0.2628655560595668}, {0.5, -0.8090169943749475, 0.2628655560595668}, {0.5, 0.8090169943749475, -0.2628655560595668}, { 0.9472135954999579, -0.08541019662496847, -0.2628655560595668}}, { {Hue[0.6, 0.2, 0.8], Arrowheads[0.], Arrow3DBox[TubeBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}], 0.04349811307538509]}, {Hue[0.6, 0.6, 1], SphereBox[1, 0.04349811307538509], SphereBox[2, 0.04349811307538509], SphereBox[3, 0.04349811307538509], SphereBox[4, 0.04349811307538509], SphereBox[5, 0.04349811307538509], SphereBox[6, 0.04349811307538509], SphereBox[7, 0.04349811307538509], SphereBox[8, 0.04349811307538509]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], BaseStyle->{Graphics3DBoxOptions -> {Method -> {"ShrinkWrap" -> True}}}, Boxed->False, DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, Lighting->{{"Directional", GrayLevel[0.7], ImageScaled[{1, 1, 0}]}, {"Point", GrayLevel[0.9], ImageScaled[{0, 0, 0}], {0, 0, 0.07}}}]}], "}"}]], "Output", CellLabel-> "Out[144]=",ExpressionUUID->"3a62c627-6b67-4b29-ae6e-2f40d980c648"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["3D Polyhedron", "Subsubsection",ExpressionUUID->"fee28905-8458-43ae-9ba4-ef9c408eb3b5"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"GraphData", "[", RowBox[{"\"\\"", ",", "\"\\""}], "]"}]], "Input",\ CellLabel-> "In[145]:=",ExpressionUUID->"52f4e4cf-0aac-4526-8777-a79fab25442d"], Cell[BoxData["True"], "Output", CellLabel-> "Out[145]=",ExpressionUUID->"0671489f-a90c-48ef-b00f-a42e1bce9f67"] }, Open ]] }, Closed]] }, Open ]], Cell[CellGroupData[{ Cell["Stereoscopic projections", "Section",ExpressionUUID->"58ab1ae9-5cff-4f6d-a20f-9cd7df68c2c8"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"PolyhedronData", "[", RowBox[{"poly", ",", "\"\\""}], "]"}]], "Input",ExpressionUUI\ D->"3ae6e946-51b4-40a1-a588-6b546e0bccab"], Cell[BoxData[ RowBox[{"{", RowBox[{"\<\"C2\"\>", ",", "\<\"C3\"\>", ",", "\<\"C4\"\>"}], "}"}]], "Output",ExpressionUUID->"d1e918a4-aa02-4bd3-b27a-081999dc633e"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{"Quiet", "@", RowBox[{"GraphPlot", "[", RowBox[{ RowBox[{"SkeletonGraph", "[", RowBox[{ RowBox[{ RowBox[{"PolyhedronData", "[", RowBox[{ RowBox[{"{", RowBox[{"poly", ",", "\"\\""}], "}"}], ",", "\"\\""}], "]"}], "//", "Normal"}], ",", "#"}], "]"}], ",", RowBox[{"Method", "\[Rule]", "None"}]}], "]"}]}], "&"}], "/@", RowBox[{"Range", "[", RowBox[{".2", ",", "1.5", ",", ".1"}], "]"}]}]], "Input",ExpressionUUID->\ "032074ab-d666-4525-8c35-64f17f40518f"], Cell[BoxData[ RowBox[{"{", RowBox[{ GraphicsBox[ TagBox[ GraphicsComplexBox[{{0., -0.11024060460577122`}, {0., 0.19719712634490166`}, {0., 0.11024060460577122`}, { 0., -0.19719712634490166`}, {-0.7071067811865475, -0.5}, \ {-0.7071067811865475, 0.5}, {0.7071067811865475, -0.5}, {0.7071067811865475, 0.5}}, { {GrayLevel[0], LineBox[{{1, 3}, {1, 5}, {1, 7}, {2, 4}, {2, 5}, {2, 7}, {3, 6}, {3, 8}, {4, 6}, {4, 8}, {5, 6}, {7, 8}}]}, {RGBColor[1, 0, 0], AbsolutePointSize[5], TagBox[ TooltipBox[PointBox[1], "1"], Annotation[#, 1, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[2], "2"], Annotation[#, 2, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[3], "3"], Annotation[#, 3, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[4], "4"], Annotation[#, 4, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[5], "5"], Annotation[#, 5, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[6], "6"], Annotation[#, 6, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[7], "7"], Annotation[#, 7, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[8], "8"], Annotation[#, 8, "Tooltip"]& ]}}], Annotation[#, VertexCoordinateRules -> {{0., -0.11024060460577122`}, {0., 0.19719712634490166`}, {0., 0.11024060460577122`}, { 0., -0.19719712634490166`}, {-0.7071067811865475, -0.5}, \ {-0.7071067811865475, 0.5}, {0.7071067811865475, -0.5}, {0.7071067811865475, 0.5}}]& ], AspectRatio->Automatic, FrameTicks->None, PlotRange->All, PlotRangePadding->Scaled[0.1]], ",", GraphicsBox[ TagBox[ GraphicsComplexBox[{{0., -0.14894150531215156`}, {0., 0.3684537004341029}, {0., 0.14894150531215156`}, { 0., -0.3684537004341029}, {-0.7071067811865475, -0.5}, \ {-0.7071067811865475, 0.5}, {0.7071067811865475, -0.5}, {0.7071067811865475, 0.5}}, { {GrayLevel[0], LineBox[{{1, 3}, {1, 5}, {1, 7}, {2, 4}, {2, 5}, {2, 7}, {3, 6}, {3, 8}, {4, 6}, {4, 8}, {5, 6}, {7, 8}}]}, {RGBColor[1, 0, 0], AbsolutePointSize[5], TagBox[ TooltipBox[PointBox[1], "1"], Annotation[#, 1, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[2], "2"], Annotation[#, 2, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[3], "3"], Annotation[#, 3, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[4], "4"], Annotation[#, 4, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[5], "5"], Annotation[#, 5, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[6], "6"], Annotation[#, 6, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[7], "7"], Annotation[#, 7, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[8], "8"], Annotation[#, 8, "Tooltip"]& ]}}], Annotation[#, VertexCoordinateRules -> {{0., -0.14894150531215156`}, {0., 0.3684537004341029}, {0., 0.14894150531215156`}, { 0., -0.3684537004341029}, {-0.7071067811865475, -0.5}, \ {-0.7071067811865475, 0.5}, {0.7071067811865475, -0.5}, {0.7071067811865475, 0.5}}]& ], AspectRatio->Automatic, FrameTicks->None, PlotRange->All, PlotRangePadding->Scaled[0.1]], ",", GraphicsBox[ TagBox[ GraphicsComplexBox[{{0., -0.1806510477567927}, {0., 0.6512392830509106}, {0., 0.1806510477567927}, { 0., -0.6512392830509106}, {-0.7071067811865475, -0.5}, \ {-0.7071067811865475, 0.5}, {0.7071067811865475, -0.5}, {0.7071067811865475, 0.5}}, { {GrayLevel[0], LineBox[{{1, 3}, {1, 5}, {1, 7}, {2, 4}, {2, 5}, {2, 7}, {3, 6}, {3, 8}, {4, 6}, {4, 8}, {5, 6}, {7, 8}}]}, {RGBColor[1, 0, 0], AbsolutePointSize[5], TagBox[ TooltipBox[PointBox[1], "1"], Annotation[#, 1, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[2], "2"], Annotation[#, 2, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[3], "3"], Annotation[#, 3, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[4], "4"], Annotation[#, 4, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[5], "5"], Annotation[#, 5, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[6], "6"], Annotation[#, 6, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[7], "7"], Annotation[#, 7, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[8], "8"], Annotation[#, 8, "Tooltip"]& ]}}], Annotation[#, VertexCoordinateRules -> {{0., -0.1806510477567927}, {0., 0.6512392830509106}, {0., 0.1806510477567927}, { 0., -0.6512392830509106}, {-0.7071067811865475, -0.5}, \ {-0.7071067811865475, 0.5}, {0.7071067811865475, -0.5}, {0.7071067811865475, 0.5}}]& ], AspectRatio->Automatic, FrameTicks->None, PlotRange->All, PlotRangePadding->Scaled[0.1]], ",", GraphicsBox[ TagBox[ GraphicsComplexBox[{{0., -0.20710678118654754`}, {0., 1.207106781186548}, {0., 0.20710678118654754`}, { 0., -1.207106781186548}, {-0.7071067811865475, -0.5}, \ {-0.7071067811865475, 0.5}, {0.7071067811865475, -0.5}, {0.7071067811865475, 0.5}}, { {GrayLevel[0], LineBox[{{1, 3}, {1, 5}, {1, 7}, {2, 4}, {2, 5}, {2, 7}, {3, 6}, {3, 8}, {4, 6}, {4, 8}, {5, 6}, {7, 8}}]}, {RGBColor[1, 0, 0], AbsolutePointSize[5], TagBox[ TooltipBox[PointBox[1], "1"], Annotation[#, 1, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[2], "2"], Annotation[#, 2, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[3], "3"], Annotation[#, 3, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[4], "4"], Annotation[#, 4, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[5], "5"], Annotation[#, 5, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[6], "6"], Annotation[#, 6, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[7], "7"], Annotation[#, 7, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[8], "8"], Annotation[#, 8, "Tooltip"]& ]}}], Annotation[#, VertexCoordinateRules -> {{0., -0.20710678118654754`}, {0., 1.207106781186548}, {0., 0.20710678118654754`}, { 0., -1.207106781186548}, {-0.7071067811865475, -0.5}, \ {-0.7071067811865475, 0.5}, {0.7071067811865475, -0.5}, {0.7071067811865475, 0.5}}]& ], AspectRatio->Automatic, FrameTicks->None, PlotRange->All, PlotRangePadding->Scaled[0.1]], ",", GraphicsBox[ TagBox[ GraphicsComplexBox[{{0., -0.22951453111403045`}, {0., 2.800943102542606}, {0., 0.22951453111403045`}, { 0., -2.800943102542606}, {-0.7071067811865475, -0.5}, \ {-0.7071067811865475, 0.5}, {0.7071067811865475, -0.5}, {0.7071067811865475, 0.5}}, { {GrayLevel[0], LineBox[{{1, 3}, {1, 5}, {1, 7}, {2, 4}, {2, 5}, {2, 7}, {3, 6}, {3, 8}, {4, 6}, {4, 8}, {5, 6}, {7, 8}}]}, {RGBColor[1, 0, 0], AbsolutePointSize[5], TagBox[ TooltipBox[PointBox[1], "1"], Annotation[#, 1, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[2], "2"], Annotation[#, 2, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[3], "3"], Annotation[#, 3, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[4], "4"], Annotation[#, 4, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[5], "5"], Annotation[#, 5, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[6], "6"], Annotation[#, 6, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[7], "7"], Annotation[#, 7, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[8], "8"], Annotation[#, 8, "Tooltip"]& ]}}], Annotation[#, VertexCoordinateRules -> {{0., -0.22951453111403045`}, {0., 2.800943102542606}, {0., 0.22951453111403045`}, { 0., -2.800943102542606}, {-0.7071067811865475, -0.5}, \ {-0.7071067811865475, 0.5}, {0.7071067811865475, -0.5}, {0.7071067811865475, 0.5}}]& ], AspectRatio->Automatic, FrameTicks->None, PlotRange->All, PlotRangePadding->Scaled[0.1]], ",", GraphicsBox[ TagBox[ GraphicsComplexBox[{{0., -0.24873734152916335`}, {0., 49.24873734152929}, {0., 0.24873734152916335`}, { 0., -49.24873734152929}, {-0.7071067811865475, -0.5}, \ {-0.7071067811865475, 0.5}, {0.7071067811865475, -0.5}, {0.7071067811865475, 0.5}}, { {GrayLevel[0], LineBox[{{1, 3}, {1, 5}, {1, 7}, {2, 4}, {2, 5}, {2, 7}, {3, 6}, {3, 8}, {4, 6}, {4, 8}, {5, 6}, {7, 8}}]}, {RGBColor[1, 0, 0], AbsolutePointSize[5], TagBox[ TooltipBox[PointBox[1], "1"], Annotation[#, 1, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[2], "2"], Annotation[#, 2, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[3], "3"], Annotation[#, 3, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[4], "4"], Annotation[#, 4, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[5], "5"], Annotation[#, 5, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[6], "6"], Annotation[#, 6, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[7], "7"], Annotation[#, 7, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[8], "8"], Annotation[#, 8, "Tooltip"]& ]}}], Annotation[#, VertexCoordinateRules -> {{0., -0.24873734152916335`}, {0., 49.24873734152929}, {0., 0.24873734152916335`}, { 0., -49.24873734152929}, {-0.7071067811865475, -0.5}, \ {-0.7071067811865475, 0.5}, {0.7071067811865475, -0.5}, {0.7071067811865475, 0.5}}]& ], AspectRatio->Automatic, FrameTicks->None, PlotRange->All, PlotRangePadding->Scaled[0.1]], ",", GraphicsBox[ TagBox[ GraphicsComplexBox[{{0., -0.26540919660986423`}, { 0., -4.306019374818702}, {0., 0.26540919660986423`}, {0., 4.306019374818702}, {-0.7071067811865475, -0.5}, {-0.7071067811865475, 0.5}, {0.7071067811865475, -0.5}, {0.7071067811865475, 0.5}}, { {GrayLevel[0], LineBox[{{1, 3}, {1, 5}, {1, 7}, {2, 4}, {2, 5}, {2, 7}, {3, 6}, {3, 8}, {4, 6}, {4, 8}, {5, 6}, {7, 8}}]}, {RGBColor[1, 0, 0], AbsolutePointSize[5], TagBox[ TooltipBox[PointBox[1], "1"], Annotation[#, 1, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[2], "2"], Annotation[#, 2, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[3], "3"], Annotation[#, 3, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[4], "4"], Annotation[#, 4, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[5], "5"], Annotation[#, 5, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[6], "6"], Annotation[#, 6, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[7], "7"], Annotation[#, 7, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[8], "8"], Annotation[#, 8, "Tooltip"]& ]}}], Annotation[#, VertexCoordinateRules -> {{0., -0.26540919660986423`}, { 0., -4.306019374818702}, {0., 0.26540919660986423`}, {0., 4.306019374818702}, {-0.7071067811865475, -0.5}, {-0.7071067811865475, 0.5}, {0.7071067811865475, -0.5}, {0.7071067811865475, 0.5}}]& ], AspectRatio->Automatic, FrameTicks->None, PlotRange->All, PlotRangePadding->Scaled[0.1]], ",", GraphicsBox[ TagBox[ GraphicsComplexBox[{{0., -0.2800062853743665}, { 0., -2.332896940432083}, {0., 0.2800062853743665}, {0., 2.332896940432083}, {-0.7071067811865475, -0.5}, {-0.7071067811865475, 0.5}, {0.7071067811865475, -0.5}, {0.7071067811865475, 0.5}}, { {GrayLevel[0], LineBox[{{1, 3}, {1, 5}, {1, 7}, {2, 4}, {2, 5}, {2, 7}, {3, 6}, {3, 8}, {4, 6}, {4, 8}, {5, 6}, {7, 8}}]}, {RGBColor[1, 0, 0], AbsolutePointSize[5], TagBox[ TooltipBox[PointBox[1], "1"], Annotation[#, 1, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[2], "2"], Annotation[#, 2, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[3], "3"], Annotation[#, 3, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[4], "4"], Annotation[#, 4, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[5], "5"], Annotation[#, 5, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[6], "6"], Annotation[#, 6, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[7], "7"], Annotation[#, 7, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[8], "8"], Annotation[#, 8, "Tooltip"]& ]}}], Annotation[#, VertexCoordinateRules -> {{0., -0.2800062853743665}, { 0., -2.332896940432083}, {0., 0.2800062853743665}, {0., 2.332896940432083}, {-0.7071067811865475, -0.5}, {-0.7071067811865475, 0.5}, {0.7071067811865475, -0.5}, {0.7071067811865475, 0.5}}]& ], AspectRatio->Automatic, FrameTicks->None, PlotRange->All, PlotRangePadding->Scaled[0.1]], ",", GraphicsBox[ TagBox[ GraphicsComplexBox[{{0., -0.2928932188134525}, { 0., -1.7071067811865472`}, {0., 0.2928932188134525}, {0., 1.7071067811865472`}, {-0.7071067811865475, -0.5}, {-0.7071067811865475, 0.5}, {0.7071067811865475, -0.5}, {0.7071067811865475, 0.5}}, { {GrayLevel[0], LineBox[{{1, 3}, {1, 5}, {1, 7}, {2, 4}, {2, 5}, {2, 7}, {3, 6}, {3, 8}, {4, 6}, {4, 8}, {5, 6}, {7, 8}}]}, {RGBColor[1, 0, 0], AbsolutePointSize[5], TagBox[ TooltipBox[PointBox[1], "1"], Annotation[#, 1, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[2], "2"], Annotation[#, 2, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[3], "3"], Annotation[#, 3, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[4], "4"], Annotation[#, 4, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[5], "5"], Annotation[#, 5, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[6], "6"], Annotation[#, 6, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[7], "7"], Annotation[#, 7, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[8], "8"], Annotation[#, 8, "Tooltip"]& ]}}], Annotation[#, VertexCoordinateRules -> {{0., -0.2928932188134525}, { 0., -1.7071067811865472`}, {0., 0.2928932188134525}, {0., 1.7071067811865472`}, {-0.7071067811865475, -0.5}, \ {-0.7071067811865475, 0.5}, {0.7071067811865475, -0.5}, {0.7071067811865475, 0.5}}]& ], AspectRatio->Automatic, FrameTicks->None, PlotRange->All, PlotRangePadding->Scaled[0.1]], ",", GraphicsBox[ TagBox[ GraphicsComplexBox[{{0., -0.30435390189774486`}, { 0., -1.3998714502149308`}, {0., 0.30435390189774486`}, {0., 1.3998714502149308`}, {-0.7071067811865475, -0.5}, {-0.7071067811865475, 0.5}, {0.7071067811865475, -0.5}, {0.7071067811865475, 0.5}}, { {GrayLevel[0], LineBox[{{1, 3}, {1, 5}, {1, 7}, {2, 4}, {2, 5}, {2, 7}, {3, 6}, {3, 8}, {4, 6}, {4, 8}, {5, 6}, {7, 8}}]}, {RGBColor[1, 0, 0], AbsolutePointSize[5], TagBox[ TooltipBox[PointBox[1], "1"], Annotation[#, 1, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[2], "2"], Annotation[#, 2, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[3], "3"], Annotation[#, 3, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[4], "4"], Annotation[#, 4, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[5], "5"], Annotation[#, 5, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[6], "6"], Annotation[#, 6, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[7], "7"], Annotation[#, 7, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[8], "8"], Annotation[#, 8, "Tooltip"]& ]}}], Annotation[#, VertexCoordinateRules -> {{0., -0.30435390189774486`}, { 0., -1.3998714502149308`}, {0., 0.30435390189774486`}, {0., 1.3998714502149308`}, {-0.7071067811865475, -0.5}, \ {-0.7071067811865475, 0.5}, {0.7071067811865475, -0.5}, {0.7071067811865475, 0.5}}]& ], AspectRatio->Automatic, FrameTicks->None, PlotRange->All, PlotRangePadding->Scaled[0.1]], ",", GraphicsBox[ TagBox[ GraphicsComplexBox[{{0., -0.3146126928596505}, { 0., -1.2173022007573708`}, {0., 0.3146126928596505}, {0., 1.2173022007573708`}, {-0.7071067811865475, -0.5}, {-0.7071067811865475, 0.5}, {0.7071067811865475, -0.5}, {0.7071067811865475, 0.5}}, { {GrayLevel[0], LineBox[{{1, 3}, {1, 5}, {1, 7}, {2, 4}, {2, 5}, {2, 7}, {3, 6}, {3, 8}, {4, 6}, {4, 8}, {5, 6}, {7, 8}}]}, {RGBColor[1, 0, 0], AbsolutePointSize[5], TagBox[ TooltipBox[PointBox[1], "1"], Annotation[#, 1, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[2], "2"], Annotation[#, 2, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[3], "3"], Annotation[#, 3, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[4], "4"], Annotation[#, 4, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[5], "5"], Annotation[#, 5, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[6], "6"], Annotation[#, 6, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[7], "7"], Annotation[#, 7, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[8], "8"], Annotation[#, 8, "Tooltip"]& ]}}], Annotation[#, VertexCoordinateRules -> {{0., -0.3146126928596505}, { 0., -1.2173022007573708`}, {0., 0.3146126928596505}, {0., 1.2173022007573708`}, {-0.7071067811865475, -0.5}, \ {-0.7071067811865475, 0.5}, {0.7071067811865475, -0.5}, {0.7071067811865475, 0.5}}]& ], AspectRatio->Automatic, FrameTicks->None, PlotRange->All, PlotRangePadding->Scaled[0.1]], ",", GraphicsBox[ TagBox[ GraphicsComplexBox[{{0., -0.32384923716701186`}, { 0., -1.0963188300598787`}, {0., 0.32384923716701186`}, {0., 1.0963188300598787`}, {-0.7071067811865475, -0.5}, {-0.7071067811865475, 0.5}, {0.7071067811865475, -0.5}, {0.7071067811865475, 0.5}}, { {GrayLevel[0], LineBox[{{1, 3}, {1, 5}, {1, 7}, {2, 4}, {2, 5}, {2, 7}, {3, 6}, {3, 8}, {4, 6}, {4, 8}, {5, 6}, {7, 8}}]}, {RGBColor[1, 0, 0], AbsolutePointSize[5], TagBox[ TooltipBox[PointBox[1], "1"], Annotation[#, 1, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[2], "2"], Annotation[#, 2, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[3], "3"], Annotation[#, 3, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[4], "4"], Annotation[#, 4, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[5], "5"], Annotation[#, 5, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[6], "6"], Annotation[#, 6, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[7], "7"], Annotation[#, 7, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[8], "8"], Annotation[#, 8, "Tooltip"]& ]}}], Annotation[#, VertexCoordinateRules -> {{0., -0.32384923716701186`}, { 0., -1.0963188300598787`}, {0., 0.32384923716701186`}, {0., 1.0963188300598787`}, {-0.7071067811865475, -0.5}, \ {-0.7071067811865475, 0.5}, {0.7071067811865475, -0.5}, {0.7071067811865475, 0.5}}]& ], AspectRatio->Automatic, FrameTicks->None, PlotRange->All, PlotRangePadding->Scaled[0.1]], ",", GraphicsBox[ TagBox[ GraphicsComplexBox[{{0., -0.3322090775132992}, { 0., -1.0102566759113583`}, {0., 0.3322090775132992}, {0., 1.0102566759113583`}, {-0.7071067811865475, -0.5}, {-0.7071067811865475, 0.5}, {0.7071067811865475, -0.5}, {0.7071067811865475, 0.5}}, { {GrayLevel[0], LineBox[{{1, 3}, {1, 5}, {1, 7}, {2, 4}, {2, 5}, {2, 7}, {3, 6}, {3, 8}, {4, 6}, {4, 8}, {5, 6}, {7, 8}}]}, {RGBColor[1, 0, 0], AbsolutePointSize[5], TagBox[ TooltipBox[PointBox[1], "1"], Annotation[#, 1, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[2], "2"], Annotation[#, 2, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[3], "3"], Annotation[#, 3, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[4], "4"], Annotation[#, 4, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[5], "5"], Annotation[#, 5, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[6], "6"], Annotation[#, 6, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[7], "7"], Annotation[#, 7, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[8], "8"], Annotation[#, 8, "Tooltip"]& ]}}], Annotation[#, VertexCoordinateRules -> {{0., -0.3322090775132992}, { 0., -1.0102566759113583`}, {0., 0.3322090775132992}, {0., 1.0102566759113583`}, {-0.7071067811865475, -0.5}, \ {-0.7071067811865475, 0.5}, {0.7071067811865475, -0.5}, {0.7071067811865475, 0.5}}]& ], AspectRatio->Automatic, FrameTicks->None, PlotRange->All, PlotRangePadding->Scaled[0.1]], ",", GraphicsBox[ TagBox[ GraphicsComplexBox[{{0., -0.33981137949147966`}, { 0., -0.9459029062228059}, {0., 0.33981137949147966`}, {0., 0.9459029062228059}, {-0.7071067811865475, -0.5}, {-0.7071067811865475, 0.5}, {0.7071067811865475, -0.5}, {0.7071067811865475, 0.5}}, { {GrayLevel[0], LineBox[{{1, 3}, {1, 5}, {1, 7}, {2, 4}, {2, 5}, {2, 7}, {3, 6}, {3, 8}, {4, 6}, {4, 8}, {5, 6}, {7, 8}}]}, {RGBColor[1, 0, 0], AbsolutePointSize[5], TagBox[ TooltipBox[PointBox[1], "1"], Annotation[#, 1, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[2], "2"], Annotation[#, 2, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[3], "3"], Annotation[#, 3, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[4], "4"], Annotation[#, 4, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[5], "5"], Annotation[#, 5, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[6], "6"], Annotation[#, 6, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[7], "7"], Annotation[#, 7, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[8], "8"], Annotation[#, 8, "Tooltip"]& ]}}], Annotation[#, VertexCoordinateRules -> {{0., -0.33981137949147966`}, { 0., -0.9459029062228059}, {0., 0.33981137949147966`}, {0., 0.9459029062228059}, {-0.7071067811865475, -0.5}, {-0.7071067811865475, 0.5}, {0.7071067811865475, -0.5}, {0.7071067811865475, 0.5}}]& ], AspectRatio->Automatic, FrameTicks->None, PlotRange->All, PlotRangePadding->Scaled[0.1]]}], "}"}]], "Output",ExpressionUUID->\ "0c6bd688-5d39-4ee7-9b94-725b1bc74556"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{"GraphPlot", "[", RowBox[{ RowBox[{"SkeletonGraph", "[", RowBox[{ RowBox[{ RowBox[{"PolyhedronData", "[", RowBox[{ RowBox[{"{", RowBox[{"poly", ",", "\"\\""}], "}"}], ",", "\"\\""}], "]"}], "//", "Normal"}], ",", "#"}], "]"}], ",", RowBox[{"Method", "\[Rule]", "None"}]}], "]"}], "&"}], "/@", RowBox[{"Range", "[", RowBox[{".2", ",", "2", ",", ".1"}], "]"}]}]], "Input",ExpressionUUID->\ "74a8e5ca-699f-4cc2-b0ff-47137c4a6993"], Cell[BoxData[ RowBox[{"{", RowBox[{ GraphicsBox[ TagBox[ GraphicsComplexBox[{{0., 0.}, {0., 0.}, {0., 1.841545738066435}, {0., 0.3341674348152491}, {-0.28939748766748613`, -0.16708371740762454`}, { 1.5948253913964965`, -0.9207728690332176}, { 0.28939748766748613`, -0.16708371740762454`}, {-1.5948253913964965`, \ -0.9207728690332176}}, { {GrayLevel[0], LineBox[{{1, 4}, {1, 5}, {1, 7}, {2, 3}, {2, 6}, {2, 8}, {3, 5}, {3, 7}, {4, 6}, {4, 8}, {5, 6}, {7, 8}}]}, {RGBColor[1, 0, 0], AbsolutePointSize[5], TagBox[ TooltipBox[PointBox[1], "1"], Annotation[#, 1, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[2], "2"], Annotation[#, 2, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[3], "3"], Annotation[#, 3, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[4], "4"], Annotation[#, 4, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[5], "5"], Annotation[#, 5, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[6], "6"], Annotation[#, 6, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[7], "7"], Annotation[#, 7, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[8], "8"], Annotation[#, 8, "Tooltip"]& ]}}], Annotation[#, VertexCoordinateRules -> {{0., 0.}, {0., 0.}, {0., 1.841545738066435}, { 0., 0.3341674348152491}, {-0.28939748766748613`, \ -0.16708371740762454`}, {1.5948253913964965`, -0.9207728690332176}, { 0.28939748766748613`, -0.16708371740762454`}, {-1.5948253913964965`, \ -0.9207728690332176}}]& ], AspectRatio->Automatic, FrameTicks->None, PlotRange->All, PlotRangePadding->Scaled[0.1]], ",", GraphicsBox[ TagBox[ GraphicsComplexBox[{{0., 0.}, {0., 0.}, {0., -21.629305560322507`}, {0., 0.41610212472608854`}, {-0.3603550105814737, -0.2080510623630443}, \ {-18.731528081455302`, 10.814652780161255`}, { 0.3603550105814737, -0.2080510623630443}, {18.731528081455302`, 10.814652780161255`}}, { {GrayLevel[0], LineBox[{{1, 4}, {1, 5}, {1, 7}, {2, 3}, {2, 6}, {2, 8}, {3, 5}, {3, 7}, {4, 6}, {4, 8}, {5, 6}, {7, 8}}]}, {RGBColor[1, 0, 0], AbsolutePointSize[5], TagBox[ TooltipBox[PointBox[1], "1"], Annotation[#, 1, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[2], "2"], Annotation[#, 2, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[3], "3"], Annotation[#, 3, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[4], "4"], Annotation[#, 4, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[5], "5"], Annotation[#, 5, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[6], "6"], Annotation[#, 6, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[7], "7"], Annotation[#, 7, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[8], "8"], Annotation[#, 8, "Tooltip"]& ]}}], Annotation[#, VertexCoordinateRules -> {{0., 0.}, {0., 0.}, { 0., -21.629305560322507`}, {0., 0.41610212472608854`}, {-0.3603550105814737, -0.2080510623630443}, \ {-18.731528081455302`, 10.814652780161255`}, { 0.3603550105814737, -0.2080510623630443}, {18.731528081455302`, 10.814652780161255`}}]& ], AspectRatio->Automatic, FrameTicks->None, PlotRange->All, PlotRangePadding->Scaled[0.1]], ",", GraphicsBox[ TagBox[ GraphicsComplexBox[{{0., 0.}, {0., 0.}, {0., -2.9337437883475115`}, {0., 0.4742419407421281}, {-0.41070556822271725`, -0.23712097037106408`}, \ {-2.5406966489037424`, 1.466871894173756}, { 0.41070556822271725`, -0.23712097037106408`}, {2.5406966489037424`, 1.466871894173756}}, { {GrayLevel[0], LineBox[{{1, 4}, {1, 5}, {1, 7}, {2, 3}, {2, 6}, {2, 8}, {3, 5}, {3, 7}, {4, 6}, {4, 8}, {5, 6}, {7, 8}}]}, {RGBColor[1, 0, 0], AbsolutePointSize[5], TagBox[ TooltipBox[PointBox[1], "1"], Annotation[#, 1, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[2], "2"], Annotation[#, 2, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[3], "3"], Annotation[#, 3, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[4], "4"], Annotation[#, 4, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[5], "5"], Annotation[#, 5, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[6], "6"], Annotation[#, 6, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[7], "7"], Annotation[#, 7, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[8], "8"], Annotation[#, 8, "Tooltip"]& ]}}], Annotation[#, VertexCoordinateRules -> {{0., 0.}, {0., 0.}, { 0., -2.9337437883475115`}, {0., 0.4742419407421281}, {-0.41070556822271725`, -0.23712097037106408`}, \ {-2.5406966489037424`, 1.466871894173756}, { 0.41070556822271725`, -0.23712097037106408`}, {2.5406966489037424`, 1.466871894173756}}]& ], AspectRatio->Automatic, FrameTicks->None, PlotRange->All, PlotRangePadding->Scaled[0.1]], ",", GraphicsBox[ TagBox[ GraphicsComplexBox[{{0., 0.}, {0., 0.}, {0., -1.931851652578137}, {0., 0.5176380902050416}, {-0.4482877360840268, -0.2588190451025208}, \ {-1.673032607475616, 0.9659258262890686}, { 0.4482877360840268, -0.2588190451025208}, {1.673032607475616, 0.9659258262890686}}, { {GrayLevel[0], LineBox[{{1, 4}, {1, 5}, {1, 7}, {2, 3}, {2, 6}, {2, 8}, {3, 5}, {3, 7}, {4, 6}, {4, 8}, {5, 6}, {7, 8}}]}, {RGBColor[1, 0, 0], AbsolutePointSize[5], TagBox[ TooltipBox[PointBox[1], "1"], Annotation[#, 1, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[2], "2"], Annotation[#, 2, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[3], "3"], Annotation[#, 3, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[4], "4"], Annotation[#, 4, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[5], "5"], Annotation[#, 5, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[6], "6"], Annotation[#, 6, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[7], "7"], Annotation[#, 7, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[8], "8"], Annotation[#, 8, "Tooltip"]& ]}}], Annotation[#, VertexCoordinateRules -> {{0., 0.}, {0., 0.}, { 0., -1.931851652578137}, {0., 0.5176380902050416}, {-0.4482877360840268, -0.2588190451025208}, \ {-1.673032607475616, 0.9659258262890686}, { 0.4482877360840268, -0.2588190451025208}, {1.673032607475616, 0.9659258262890686}}]& ], AspectRatio->Automatic, FrameTicks->None, PlotRange->All, PlotRangePadding->Scaled[0.1]], ",", GraphicsBox[ TagBox[ GraphicsComplexBox[{{0., 0.}, {0., 0.}, {0., -1.5735908145950273`}, {0., 0.5512677574578503}, {-0.4774118822457767, -0.27563387872892514`}, \ {-1.362769620601142, 0.7867954072975137}, { 0.4774118822457767, -0.27563387872892514`}, {1.362769620601142, 0.7867954072975137}}, { {GrayLevel[0], LineBox[{{1, 4}, {1, 5}, {1, 7}, {2, 3}, {2, 6}, {2, 8}, {3, 5}, {3, 7}, {4, 6}, {4, 8}, {5, 6}, {7, 8}}]}, {RGBColor[1, 0, 0], AbsolutePointSize[5], TagBox[ TooltipBox[PointBox[1], "1"], Annotation[#, 1, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[2], "2"], Annotation[#, 2, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[3], "3"], Annotation[#, 3, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[4], "4"], Annotation[#, 4, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[5], "5"], Annotation[#, 5, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[6], "6"], Annotation[#, 6, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[7], "7"], Annotation[#, 7, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[8], "8"], Annotation[#, 8, "Tooltip"]& ]}}], Annotation[#, VertexCoordinateRules -> {{0., 0.}, {0., 0.}, { 0., -1.5735908145950273`}, {0., 0.5512677574578503}, {-0.4774118822457767, -0.27563387872892514`}, \ {-1.362769620601142, 0.7867954072975137}, { 0.4774118822457767, -0.27563387872892514`}, {1.362769620601142, 0.7867954072975137}}]& ], AspectRatio->Automatic, FrameTicks->None, PlotRange->All, PlotRangePadding->Scaled[0.1]], ",", GraphicsBox[ TagBox[ GraphicsComplexBox[{{0., 0.}, {0., 0.}, {0., -1.3895284596674924`}, {0., 0.5780944484698147}, {-0.5006444781616136, -0.2890472242349074}, \ {-1.2033669453535092`, 0.6947642298337463}, { 0.5006444781616136, -0.2890472242349074}, {1.2033669453535092`, 0.6947642298337463}}, { {GrayLevel[0], LineBox[{{1, 4}, {1, 5}, {1, 7}, {2, 3}, {2, 6}, {2, 8}, {3, 5}, {3, 7}, {4, 6}, {4, 8}, {5, 6}, {7, 8}}]}, {RGBColor[1, 0, 0], AbsolutePointSize[5], TagBox[ TooltipBox[PointBox[1], "1"], Annotation[#, 1, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[2], "2"], Annotation[#, 2, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[3], "3"], Annotation[#, 3, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[4], "4"], Annotation[#, 4, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[5], "5"], Annotation[#, 5, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[6], "6"], Annotation[#, 6, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[7], "7"], Annotation[#, 7, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[8], "8"], Annotation[#, 8, "Tooltip"]& ]}}], Annotation[#, VertexCoordinateRules -> {{0., 0.}, {0., 0.}, { 0., -1.3895284596674924`}, {0., 0.5780944484698147}, {-0.5006444781616136, -0.2890472242349074}, \ {-1.2033669453535092`, 0.6947642298337463}, { 0.5006444781616136, -0.2890472242349074}, {1.2033669453535092`, 0.6947642298337463}}]& ], AspectRatio->Automatic, FrameTicks->None, PlotRange->All, PlotRangePadding->Scaled[0.1]], ",", GraphicsBox[ TagBox[ GraphicsComplexBox[{{0., 0.}, {0., 0.}, {0., -1.2774603954074681`}, {0., 0.5999928206179618}, {-0.5196090247434345, -0.2999964103089809}, \ {-1.1063131547513811`, 0.6387301977037342}, { 0.5196090247434345, -0.2999964103089809}, {1.1063131547513811`, 0.6387301977037342}}, { {GrayLevel[0], LineBox[{{1, 4}, {1, 5}, {1, 7}, {2, 3}, {2, 6}, {2, 8}, {3, 5}, {3, 7}, {4, 6}, {4, 8}, {5, 6}, {7, 8}}]}, {RGBColor[1, 0, 0], AbsolutePointSize[5], TagBox[ TooltipBox[PointBox[1], "1"], Annotation[#, 1, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[2], "2"], Annotation[#, 2, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[3], "3"], Annotation[#, 3, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[4], "4"], Annotation[#, 4, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[5], "5"], Annotation[#, 5, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[6], "6"], Annotation[#, 6, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[7], "7"], Annotation[#, 7, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[8], "8"], Annotation[#, 8, "Tooltip"]& ]}}], Annotation[#, VertexCoordinateRules -> {{0., 0.}, {0., 0.}, { 0., -1.2774603954074681`}, {0., 0.5999928206179618}, {-0.5196090247434345, -0.2999964103089809}, \ {-1.1063131547513811`, 0.6387301977037342}, { 0.5196090247434345, -0.2999964103089809}, {1.1063131547513811`, 0.6387301977037342}}]& ], AspectRatio->Automatic, FrameTicks->None, PlotRange->All, PlotRangePadding->Scaled[0.1]], ",", GraphicsBox[ TagBox[ GraphicsComplexBox[{{0., 0.}, {0., 0.}, {0., -1.2020563278542509`}, {0., 0.6182066920121475}, {-0.5353827000720621, -0.3091033460060738}, \ {-1.041011316701617, 0.6010281639271254}, { 0.5353827000720621, -0.3091033460060738}, {1.041011316701617, 0.6010281639271254}}, { {GrayLevel[0], LineBox[{{1, 4}, {1, 5}, {1, 7}, {2, 3}, {2, 6}, {2, 8}, {3, 5}, {3, 7}, {4, 6}, {4, 8}, {5, 6}, {7, 8}}]}, {RGBColor[1, 0, 0], AbsolutePointSize[5], TagBox[ TooltipBox[PointBox[1], "1"], Annotation[#, 1, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[2], "2"], Annotation[#, 2, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[3], "3"], Annotation[#, 3, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[4], "4"], Annotation[#, 4, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[5], "5"], Annotation[#, 5, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[6], "6"], Annotation[#, 6, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[7], "7"], Annotation[#, 7, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[8], "8"], Annotation[#, 8, "Tooltip"]& ]}}], Annotation[#, VertexCoordinateRules -> {{0., 0.}, {0., 0.}, { 0., -1.2020563278542509`}, {0., 0.6182066920121475}, {-0.5353827000720621, -0.3091033460060738}, \ {-1.041011316701617, 0.6010281639271254}, { 0.5353827000720621, -0.3091033460060738}, {1.041011316701617, 0.6010281639271254}}]& ], AspectRatio->Automatic, FrameTicks->None, PlotRange->All, PlotRangePadding->Scaled[0.1]], ",", GraphicsBox[ TagBox[ GraphicsComplexBox[{{0., 0.}, {0., 0.}, {0., -1.1478532814435365`}, {0., 0.6335938042169565}, {-0.5487083301323084, -0.31679690210847833`}, \ {-0.9940701015474316, 0.5739266407217684}, { 0.5487083301323084, -0.31679690210847833`}, {0.9940701015474316, 0.5739266407217684}}, { {GrayLevel[0], LineBox[{{1, 4}, {1, 5}, {1, 7}, {2, 3}, {2, 6}, {2, 8}, {3, 5}, {3, 7}, {4, 6}, {4, 8}, {5, 6}, {7, 8}}]}, {RGBColor[1, 0, 0], AbsolutePointSize[5], TagBox[ TooltipBox[PointBox[1], "1"], Annotation[#, 1, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[2], "2"], Annotation[#, 2, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[3], "3"], Annotation[#, 3, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[4], "4"], Annotation[#, 4, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[5], "5"], Annotation[#, 5, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[6], "6"], Annotation[#, 6, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[7], "7"], Annotation[#, 7, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[8], "8"], Annotation[#, 8, "Tooltip"]& ]}}], Annotation[#, VertexCoordinateRules -> {{0., 0.}, {0., 0.}, { 0., -1.1478532814435365`}, {0., 0.6335938042169565}, {-0.5487083301323084, -0.31679690210847833`}, \ {-0.9940701015474316, 0.5739266407217684}, { 0.5487083301323084, -0.31679690210847833`}, {0.9940701015474316, 0.5739266407217684}}]& ], AspectRatio->Automatic, FrameTicks->None, PlotRange->All, PlotRangePadding->Scaled[0.1]], ",", GraphicsBox[ TagBox[ GraphicsComplexBox[{{0., 0.}, {0., 0.}, {0., -1.1070118485422624`}, {0., 0.6467648312019063}, {-0.5601147740952052, -0.3233824156009532}, \ {-0.9587003831279707, 0.5535059242711313}, { 0.5601147740952052, -0.3233824156009532}, {0.9587003831279707, 0.5535059242711313}}, { {GrayLevel[0], LineBox[{{1, 4}, {1, 5}, {1, 7}, {2, 3}, {2, 6}, {2, 8}, {3, 5}, {3, 7}, {4, 6}, {4, 8}, {5, 6}, {7, 8}}]}, {RGBColor[1, 0, 0], AbsolutePointSize[5], TagBox[ TooltipBox[PointBox[1], "1"], Annotation[#, 1, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[2], "2"], Annotation[#, 2, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[3], "3"], Annotation[#, 3, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[4], "4"], Annotation[#, 4, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[5], "5"], Annotation[#, 5, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[6], "6"], Annotation[#, 6, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[7], "7"], Annotation[#, 7, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[8], "8"], Annotation[#, 8, "Tooltip"]& ]}}], Annotation[#, VertexCoordinateRules -> {{0., 0.}, {0., 0.}, { 0., -1.1070118485422624`}, {0., 0.6467648312019063}, {-0.5601147740952052, -0.3233824156009532}, \ {-0.9587003831279707, 0.5535059242711313}, { 0.5601147740952052, -0.3233824156009532}, {0.9587003831279707, 0.5535059242711313}}]& ], AspectRatio->Automatic, FrameTicks->None, PlotRange->All, PlotRangePadding->Scaled[0.1]], ",", GraphicsBox[ TagBox[ GraphicsComplexBox[{{0., 0.}, {0., 0.}, {0., -1.0751335054131779`}, {0., 0.6581663617159508}, {-0.5699887891623912, -0.32908318085797544`}, \ {-0.9310929281476262, 0.5375667527065889}, { 0.5699887891623912, -0.32908318085797544`}, {0.9310929281476262, 0.5375667527065889}}, { {GrayLevel[0], LineBox[{{1, 4}, {1, 5}, {1, 7}, {2, 3}, {2, 6}, {2, 8}, {3, 5}, {3, 7}, {4, 6}, {4, 8}, {5, 6}, {7, 8}}]}, {RGBColor[1, 0, 0], AbsolutePointSize[5], TagBox[ TooltipBox[PointBox[1], "1"], Annotation[#, 1, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[2], "2"], Annotation[#, 2, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[3], "3"], Annotation[#, 3, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[4], "4"], Annotation[#, 4, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[5], "5"], Annotation[#, 5, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[6], "6"], Annotation[#, 6, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[7], "7"], Annotation[#, 7, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[8], "8"], Annotation[#, 8, "Tooltip"]& ]}}], Annotation[#, VertexCoordinateRules -> {{0., 0.}, {0., 0.}, { 0., -1.0751335054131779`}, {0., 0.6581663617159508}, {-0.5699887891623912, -0.32908318085797544`}, \ {-0.9310929281476262, 0.5375667527065889}, { 0.5699887891623912, -0.32908318085797544`}, {0.9310929281476262, 0.5375667527065889}}]& ], AspectRatio->Automatic, FrameTicks->None, PlotRange->All, PlotRangePadding->Scaled[0.1]], ",", GraphicsBox[ TagBox[ GraphicsComplexBox[{{0., 0.}, {0., 0.}, {0., -1.0495594358601832`}, {0., 0.6681325414442032}, {-0.5786197539857392, -0.3340662707221016}, \ {-0.9089451342365826, 0.5247797179300916}, { 0.5786197539857392, -0.3340662707221016}, {0.9089451342365826, 0.5247797179300916}}, { {GrayLevel[0], LineBox[{{1, 4}, {1, 5}, {1, 7}, {2, 3}, {2, 6}, {2, 8}, {3, 5}, {3, 7}, {4, 6}, {4, 8}, {5, 6}, {7, 8}}]}, {RGBColor[1, 0, 0], AbsolutePointSize[5], TagBox[ TooltipBox[PointBox[1], "1"], Annotation[#, 1, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[2], "2"], Annotation[#, 2, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[3], "3"], Annotation[#, 3, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[4], "4"], Annotation[#, 4, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[5], "5"], Annotation[#, 5, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[6], "6"], Annotation[#, 6, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[7], "7"], Annotation[#, 7, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[8], "8"], Annotation[#, 8, "Tooltip"]& ]}}], Annotation[#, VertexCoordinateRules -> {{0., 0.}, {0., 0.}, { 0., -1.0495594358601832`}, {0., 0.6681325414442032}, {-0.5786197539857392, -0.3340662707221016}, \ {-0.9089451342365826, 0.5247797179300916}, { 0.5786197539857392, -0.3340662707221016}, {0.9089451342365826, 0.5247797179300916}}]& ], AspectRatio->Automatic, FrameTicks->None, PlotRange->All, PlotRangePadding->Scaled[0.1]], ",", GraphicsBox[ TagBox[ GraphicsComplexBox[{{0., 0.}, {0., 0.}, {0., -1.0285878134131785`}, {0., 0.6769183662866541}, {-0.5862285014925022, -0.3384591831433271}, \ {-0.8907831764389006, 0.5142939067065893}, { 0.5862285014925022, -0.3384591831433271}, {0.8907831764389006, 0.5142939067065893}}, { {GrayLevel[0], LineBox[{{1, 4}, {1, 5}, {1, 7}, {2, 3}, {2, 6}, {2, 8}, {3, 5}, {3, 7}, {4, 6}, {4, 8}, {5, 6}, {7, 8}}]}, {RGBColor[1, 0, 0], AbsolutePointSize[5], TagBox[ TooltipBox[PointBox[1], "1"], Annotation[#, 1, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[2], "2"], Annotation[#, 2, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[3], "3"], Annotation[#, 3, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[4], "4"], Annotation[#, 4, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[5], "5"], Annotation[#, 5, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[6], "6"], Annotation[#, 6, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[7], "7"], Annotation[#, 7, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[8], "8"], Annotation[#, 8, "Tooltip"]& ]}}], Annotation[#, VertexCoordinateRules -> {{0., 0.}, {0., 0.}, { 0., -1.0285878134131785`}, {0., 0.6769183662866541}, {-0.5862285014925022, -0.3384591831433271}, \ {-0.8907831764389006, 0.5142939067065893}, { 0.5862285014925022, -0.3384591831433271}, {0.8907831764389006, 0.5142939067065893}}]& ], AspectRatio->Automatic, FrameTicks->None, PlotRange->All, PlotRangePadding->Scaled[0.1]], ",", GraphicsBox[ TagBox[ GraphicsComplexBox[{{0., 0.}, {0., 0.}, {0., -1.0110787835449189`}, {0., 0.684721807612666}, {-0.5929864799177698, -0.34236090380633305`}, \ {-0.8756199117773673, 0.5055393917724594}, { 0.5929864799177698, -0.34236090380633305`}, {0.8756199117773673, 0.5055393917724594}}, { {GrayLevel[0], LineBox[{{1, 4}, {1, 5}, {1, 7}, {2, 3}, {2, 6}, {2, 8}, {3, 5}, {3, 7}, {4, 6}, {4, 8}, {5, 6}, {7, 8}}]}, {RGBColor[1, 0, 0], AbsolutePointSize[5], TagBox[ TooltipBox[PointBox[1], "1"], Annotation[#, 1, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[2], "2"], Annotation[#, 2, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[3], "3"], Annotation[#, 3, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[4], "4"], Annotation[#, 4, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[5], "5"], Annotation[#, 5, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[6], "6"], Annotation[#, 6, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[7], "7"], Annotation[#, 7, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[8], "8"], Annotation[#, 8, "Tooltip"]& ]}}], Annotation[#, VertexCoordinateRules -> {{0., 0.}, {0., 0.}, { 0., -1.0110787835449189`}, {0., 0.684721807612666}, {-0.5929864799177698, -0.34236090380633305`}, \ {-0.8756199117773673, 0.5055393917724594}, { 0.5929864799177698, -0.34236090380633305`}, {0.8756199117773673, 0.5055393917724594}}]& ], AspectRatio->Automatic, FrameTicks->None, PlotRange->All, PlotRangePadding->Scaled[0.1]], ",", GraphicsBox[ TagBox[ GraphicsComplexBox[{{0., 0.}, {0., 0.}, {0., -0.9962401872709841}, {0., 0.6916989086980431}, {-0.5990288267024783, -0.3458494543490216}, \ {-0.8627693104476387, 0.4981200936354921}, { 0.5990288267024783, -0.3458494543490216}, {0.8627693104476387, 0.4981200936354921}}, { {GrayLevel[0], LineBox[{{1, 4}, {1, 5}, {1, 7}, {2, 3}, {2, 6}, {2, 8}, {3, 5}, {3, 7}, {4, 6}, {4, 8}, {5, 6}, {7, 8}}]}, {RGBColor[1, 0, 0], AbsolutePointSize[5], TagBox[ TooltipBox[PointBox[1], "1"], Annotation[#, 1, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[2], "2"], Annotation[#, 2, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[3], "3"], Annotation[#, 3, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[4], "4"], Annotation[#, 4, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[5], "5"], Annotation[#, 5, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[6], "6"], Annotation[#, 6, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[7], "7"], Annotation[#, 7, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[8], "8"], Annotation[#, 8, "Tooltip"]& ]}}], Annotation[#, VertexCoordinateRules -> {{0., 0.}, {0., 0.}, { 0., -0.9962401872709841}, {0., 0.6916989086980431}, {-0.5990288267024783, -0.3458494543490216}, \ {-0.8627693104476387, 0.4981200936354921}, { 0.5990288267024783, -0.3458494543490216}, {0.8627693104476387, 0.4981200936354921}}]& ], AspectRatio->Automatic, FrameTicks->None, PlotRange->All, PlotRangePadding->Scaled[0.1]], ",", GraphicsBox[ TagBox[ GraphicsComplexBox[{{0., 0.}, {0., 0.}, {0., -0.9835043806010114}, {0., 0.6979743264401727}, {-0.6044634978865221, -0.3489871632200864}, \ {-0.851739778333755, 0.49175219030050576`}, { 0.6044634978865221, -0.3489871632200864}, {0.851739778333755, 0.49175219030050576`}}, { {GrayLevel[0], LineBox[{{1, 4}, {1, 5}, {1, 7}, {2, 3}, {2, 6}, {2, 8}, {3, 5}, {3, 7}, {4, 6}, {4, 8}, {5, 6}, {7, 8}}]}, {RGBColor[1, 0, 0], AbsolutePointSize[5], TagBox[ TooltipBox[PointBox[1], "1"], Annotation[#, 1, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[2], "2"], Annotation[#, 2, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[3], "3"], Annotation[#, 3, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[4], "4"], Annotation[#, 4, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[5], "5"], Annotation[#, 5, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[6], "6"], Annotation[#, 6, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[7], "7"], Annotation[#, 7, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[8], "8"], Annotation[#, 8, "Tooltip"]& ]}}], Annotation[#, VertexCoordinateRules -> {{0., 0.}, {0., 0.}, { 0., -0.9835043806010114}, {0., 0.6979743264401727}, {-0.6044634978865221, -0.3489871632200864}, \ {-0.851739778333755, 0.49175219030050576`}, { 0.6044634978865221, -0.3489871632200864}, {0.851739778333755, 0.49175219030050576`}}]& ], AspectRatio->Automatic, FrameTicks->None, PlotRange->All, PlotRangePadding->Scaled[0.1]], ",", GraphicsBox[ TagBox[ GraphicsComplexBox[{{0., 0.}, {0., 0.}, {0., -0.9724539569961226}, {0., 0.7036488448238343}, {-0.6093777749610149, -0.3518244224119172}, \ {-0.8421698307693422, 0.4862269784980614}, { 0.6093777749610149, -0.3518244224119172}, {0.8421698307693422, 0.4862269784980614}}, { {GrayLevel[0], LineBox[{{1, 4}, {1, 5}, {1, 7}, {2, 3}, {2, 6}, {2, 8}, {3, 5}, {3, 7}, {4, 6}, {4, 8}, {5, 6}, {7, 8}}]}, {RGBColor[1, 0, 0], AbsolutePointSize[5], TagBox[ TooltipBox[PointBox[1], "1"], Annotation[#, 1, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[2], "2"], Annotation[#, 2, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[3], "3"], Annotation[#, 3, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[4], "4"], Annotation[#, 4, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[5], "5"], Annotation[#, 5, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[6], "6"], Annotation[#, 6, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[7], "7"], Annotation[#, 7, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[8], "8"], Annotation[#, 8, "Tooltip"]& ]}}], Annotation[#, VertexCoordinateRules -> {{0., 0.}, {0., 0.}, { 0., -0.9724539569961226}, {0., 0.7036488448238343}, {-0.6093777749610149, -0.3518244224119172}, \ {-0.8421698307693422, 0.4862269784980614}, { 0.6093777749610149, -0.3518244224119172}, {0.8421698307693422, 0.4862269784980614}}]& ], AspectRatio->Automatic, FrameTicks->None, PlotRange->All, PlotRangePadding->Scaled[0.1]], ",", GraphicsBox[ TagBox[ GraphicsComplexBox[{{0., 0.}, {0., 0.}, {0., -0.9627751281381582}, {0., 0.7088048286571677}, {-0.6138429879421834, -0.3544024143285838}, \ {-0.8337877190994631, 0.4813875640690792}, { 0.6138429879421834, -0.3544024143285838}, {0.8337877190994631, 0.4813875640690792}}, { {GrayLevel[0], LineBox[{{1, 4}, {1, 5}, {1, 7}, {2, 3}, {2, 6}, {2, 8}, {3, 5}, {3, 7}, {4, 6}, {4, 8}, {5, 6}, {7, 8}}]}, {RGBColor[1, 0, 0], AbsolutePointSize[5], TagBox[ TooltipBox[PointBox[1], "1"], Annotation[#, 1, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[2], "2"], Annotation[#, 2, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[3], "3"], Annotation[#, 3, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[4], "4"], Annotation[#, 4, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[5], "5"], Annotation[#, 5, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[6], "6"], Annotation[#, 6, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[7], "7"], Annotation[#, 7, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[8], "8"], Annotation[#, 8, "Tooltip"]& ]}}], Annotation[#, VertexCoordinateRules -> {{0., 0.}, {0., 0.}, { 0., -0.9627751281381582}, {0., 0.7088048286571677}, {-0.6138429879421834, -0.3544024143285838}, \ {-0.8337877190994631, 0.4813875640690792}, { 0.6138429879421834, -0.3544024143285838}, {0.8337877190994631, 0.4813875640690792}}]& ], AspectRatio->Automatic, FrameTicks->None, PlotRange->All, PlotRangePadding->Scaled[0.1]], ",", GraphicsBox[ TagBox[ GraphicsComplexBox[{{0., 0.}, {0., 0.}, {0., -0.9542274496600688}, {0., 0.7135102475540099}, {-0.6179180002422962, -0.356755123777005}, \ {-0.826385212394056, 0.47711372483003445`}, { 0.6179180002422962, -0.356755123777005}, {0.826385212394056, 0.47711372483003445`}}, { {GrayLevel[0], LineBox[{{1, 4}, {1, 5}, {1, 7}, {2, 3}, {2, 6}, {2, 8}, {3, 5}, {3, 7}, {4, 6}, {4, 8}, {5, 6}, {7, 8}}]}, {RGBColor[1, 0, 0], AbsolutePointSize[5], TagBox[ TooltipBox[PointBox[1], "1"], Annotation[#, 1, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[2], "2"], Annotation[#, 2, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[3], "3"], Annotation[#, 3, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[4], "4"], Annotation[#, 4, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[5], "5"], Annotation[#, 5, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[6], "6"], Annotation[#, 6, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[7], "7"], Annotation[#, 7, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[8], "8"], Annotation[#, 8, "Tooltip"]& ]}}], Annotation[#, VertexCoordinateRules -> {{0., 0.}, {0., 0.}, { 0., -0.9542274496600688}, {0., 0.7135102475540099}, {-0.6179180002422962, -0.356755123777005}, \ {-0.826385212394056, 0.47711372483003445`}, { 0.6179180002422962, -0.356755123777005}, {0.826385212394056, 0.47711372483003445`}}]& ], AspectRatio->Automatic, FrameTicks->None, PlotRange->All, PlotRangePadding->Scaled[0.1]]}], "}"}]], "Output",ExpressionUUID->\ "7baa5584-bf4e-4b8e-9a71-b59c41da2000"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{"Quiet", "@", RowBox[{"GraphPlot", "[", RowBox[{ RowBox[{"SkeletonGraph", "[", RowBox[{ RowBox[{ RowBox[{"PolyhedronData", "[", RowBox[{ RowBox[{"{", RowBox[{"poly", ",", "\"\\""}], "}"}], ",", "\"\\""}], "]"}], "//", "Normal"}], ",", "#"}], "]"}], ",", RowBox[{"Method", "\[Rule]", "None"}]}], "]"}]}], "&"}], "/@", RowBox[{"Range", "[", RowBox[{".2", ",", "1.5", ",", ".1"}], "]"}]}]], "Input",ExpressionUUID->\ "d7889390-2427-4642-a958-337ea53a4419"], Cell[BoxData[ RowBox[{"{", RowBox[{ GraphicsBox[ TagBox[ GraphicsComplexBox[{{-0.14285714285714288`, -0.14285714285714288`}, { 0.33333333333333337`, 0.33333333333333337`}, {-0.14285714285714288`, 0.14285714285714288`}, {0.33333333333333337`, -0.33333333333333337`}, { 0.14285714285714288`, -0.14285714285714288`}, {-0.33333333333333337`, 0.33333333333333337`}, {0.14285714285714288`, 0.14285714285714288`}, {-0.33333333333333337`, -0.33333333333333337`}}, { {GrayLevel[0], LineBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}]}, {RGBColor[1, 0, 0], AbsolutePointSize[5], TagBox[ TooltipBox[PointBox[1], "1"], Annotation[#, 1, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[2], "2"], Annotation[#, 2, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[3], "3"], Annotation[#, 3, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[4], "4"], Annotation[#, 4, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[5], "5"], Annotation[#, 5, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[6], "6"], Annotation[#, 6, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[7], "7"], Annotation[#, 7, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[8], "8"], Annotation[#, 8, "Tooltip"]& ]}}], Annotation[#, VertexCoordinateRules -> {{-0.14285714285714288`, \ -0.14285714285714288`}, {0.33333333333333337`, 0.33333333333333337`}, {-0.14285714285714288`, 0.14285714285714288`}, { 0.33333333333333337`, -0.33333333333333337`}, { 0.14285714285714288`, -0.14285714285714288`}, {-0.33333333333333337`, 0.33333333333333337`}, {0.14285714285714288`, 0.14285714285714288`}, {-0.33333333333333337`, \ -0.33333333333333337`}}]& ], AspectRatio->Automatic, FrameTicks->None, PlotRange->All, PlotRangePadding->Scaled[0.1]], ",", GraphicsBox[ TagBox[ GraphicsComplexBox[{{-0.18750000000000003`, -0.18750000000000003`}, { 0.7500000000000002, 0.7500000000000002}, {-0.18750000000000003`, 0.18750000000000003`}, {0.7500000000000002, -0.7500000000000002}, { 0.18750000000000003`, -0.18750000000000003`}, {-0.7500000000000002, 0.7500000000000002}, {0.18750000000000003`, 0.18750000000000003`}, {-0.7500000000000002, -0.7500000000000002}}, { {GrayLevel[0], LineBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}]}, {RGBColor[1, 0, 0], AbsolutePointSize[5], TagBox[ TooltipBox[PointBox[1], "1"], Annotation[#, 1, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[2], "2"], Annotation[#, 2, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[3], "3"], Annotation[#, 3, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[4], "4"], Annotation[#, 4, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[5], "5"], Annotation[#, 5, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[6], "6"], Annotation[#, 6, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[7], "7"], Annotation[#, 7, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[8], "8"], Annotation[#, 8, "Tooltip"]& ]}}], Annotation[#, VertexCoordinateRules -> {{-0.18750000000000003`, \ -0.18750000000000003`}, {0.7500000000000002, 0.7500000000000002}, {-0.18750000000000003`, 0.18750000000000003`}, { 0.7500000000000002, -0.7500000000000002}, { 0.18750000000000003`, -0.18750000000000003`}, {-0.7500000000000002, 0.7500000000000002}, {0.18750000000000003`, 0.18750000000000003`}, {-0.7500000000000002, -0.7500000000000002}}]& ], AspectRatio->Automatic, FrameTicks->None, PlotRange->All, PlotRangePadding->Scaled[0.1]], ",", GraphicsBox[ TagBox[ GraphicsComplexBox[{{-0.22222222222222224`, -0.22222222222222224`}, { 2.0000000000000004`, 2.0000000000000004`}, {-0.22222222222222224`, 0.22222222222222224`}, {2.0000000000000004`, -2.0000000000000004`}, { 0.22222222222222224`, -0.22222222222222224`}, {-2.0000000000000004`, 2.0000000000000004`}, {0.22222222222222224`, 0.22222222222222224`}, {-2.0000000000000004`, -2.0000000000000004`}}, { {GrayLevel[0], LineBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}]}, {RGBColor[1, 0, 0], AbsolutePointSize[5], TagBox[ TooltipBox[PointBox[1], "1"], Annotation[#, 1, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[2], "2"], Annotation[#, 2, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[3], "3"], Annotation[#, 3, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[4], "4"], Annotation[#, 4, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[5], "5"], Annotation[#, 5, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[6], "6"], Annotation[#, 6, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[7], "7"], Annotation[#, 7, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[8], "8"], Annotation[#, 8, "Tooltip"]& ]}}], Annotation[#, VertexCoordinateRules -> {{-0.22222222222222224`, \ -0.22222222222222224`}, {2.0000000000000004`, 2.0000000000000004`}, {-0.22222222222222224`, 0.22222222222222224`}, { 2.0000000000000004`, -2.0000000000000004`}, { 0.22222222222222224`, -0.22222222222222224`}, {-2.0000000000000004`, 2.0000000000000004`}, {0.22222222222222224`, 0.22222222222222224`}, {-2.0000000000000004`, -2.0000000000000004`}}]& \ ], AspectRatio->Automatic, FrameTicks->None, PlotRange->All, PlotRangePadding->Scaled[0.1]], ",", RowBox[{"GraphPlot", "[", RowBox[{ InterpretationBox[ StyleBox[ RowBox[{"\[SkeletonIndicator]", RowBox[{"Graph", ":", "<"}], "12", ",", "8", ",", "Undirected", RowBox[{">", "\[SkeletonIndicator]"}]}], ShowAutoStyles->False, AutoSpacing->False], Combinatorica`Graph[{{{1, 2}}, {{1, 3}}, {{1, 5}}, {{2, 4}}, {{2, 6}}, {{3, 4}}, {{3, 7}}, {{4, 8}}, {{5, 6}}, {{5, 7}}, {{6, 8}}, {{7, 8}}}, {{{-0.25, -0.25}}, {{ DirectedInfinity[], DirectedInfinity[]}}, {{-0.25, 0.25}}, {{ DirectedInfinity[], DirectedInfinity[]}}, {{0.25, -0.25}}, {{ DirectedInfinity[], DirectedInfinity[]}}, {{0.25, 0.25}}, {{ DirectedInfinity[], DirectedInfinity[]}}}], Editable->False], ",", RowBox[{"Method", "\[Rule]", "None"}]}], "]"}], ",", GraphicsBox[ TagBox[ GraphicsComplexBox[{{-0.27272727272727276`, -0.27272727272727276`}, \ {-2.999999999999998, -2.999999999999998}, {-0.27272727272727276`, 0.27272727272727276`}, {-2.999999999999998, 2.999999999999998}, { 0.27272727272727276`, -0.27272727272727276`}, { 2.999999999999998, -2.999999999999998}, {0.27272727272727276`, 0.27272727272727276`}, {2.999999999999998, 2.999999999999998}}, { {GrayLevel[0], LineBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}]}, {RGBColor[1, 0, 0], AbsolutePointSize[5], TagBox[ TooltipBox[PointBox[1], "1"], Annotation[#, 1, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[2], "2"], Annotation[#, 2, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[3], "3"], Annotation[#, 3, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[4], "4"], Annotation[#, 4, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[5], "5"], Annotation[#, 5, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[6], "6"], Annotation[#, 6, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[7], "7"], Annotation[#, 7, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[8], "8"], Annotation[#, 8, "Tooltip"]& ]}}], Annotation[#, VertexCoordinateRules -> {{-0.27272727272727276`, \ -0.27272727272727276`}, {-2.999999999999998, -2.999999999999998}, \ {-0.27272727272727276`, 0.27272727272727276`}, {-2.999999999999998, 2.999999999999998}, {0.27272727272727276`, -0.27272727272727276`}, { 2.999999999999998, -2.999999999999998}, {0.27272727272727276`, 0.27272727272727276`}, {2.999999999999998, 2.999999999999998}}]& ], AspectRatio->Automatic, FrameTicks->None, PlotRange->All, PlotRangePadding->Scaled[0.1]], ",", GraphicsBox[ TagBox[ GraphicsComplexBox[{{-0.2916666666666667, -0.2916666666666667}, \ {-1.7500000000000002`, -1.7500000000000002`}, {-0.2916666666666667, 0.2916666666666667}, {-1.7500000000000002`, 1.7500000000000002`}, { 0.2916666666666667, -0.2916666666666667}, { 1.7500000000000002`, -1.7500000000000002`}, {0.2916666666666667, 0.2916666666666667}, {1.7500000000000002`, 1.7500000000000002`}}, { {GrayLevel[0], LineBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}]}, {RGBColor[1, 0, 0], AbsolutePointSize[5], TagBox[ TooltipBox[PointBox[1], "1"], Annotation[#, 1, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[2], "2"], Annotation[#, 2, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[3], "3"], Annotation[#, 3, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[4], "4"], Annotation[#, 4, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[5], "5"], Annotation[#, 5, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[6], "6"], Annotation[#, 6, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[7], "7"], Annotation[#, 7, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[8], "8"], Annotation[#, 8, "Tooltip"]& ]}}], Annotation[#, VertexCoordinateRules -> {{-0.2916666666666667, -0.2916666666666667}, \ {-1.7500000000000002`, -1.7500000000000002`}, {-0.2916666666666667, 0.2916666666666667}, {-1.7500000000000002`, 1.7500000000000002`}, { 0.2916666666666667, -0.2916666666666667}, { 1.7500000000000002`, -1.7500000000000002`}, {0.2916666666666667, 0.2916666666666667}, {1.7500000000000002`, 1.7500000000000002`}}]& ], AspectRatio->Automatic, FrameTicks->None, PlotRange->All, PlotRangePadding->Scaled[0.1]], ",", GraphicsBox[ TagBox[ GraphicsComplexBox[{{-0.3076923076923077, -0.3076923076923077}, \ {-1.3333333333333333`, -1.3333333333333333`}, {-0.3076923076923077, 0.3076923076923077}, {-1.3333333333333333`, 1.3333333333333333`}, { 0.3076923076923077, -0.3076923076923077}, { 1.3333333333333333`, -1.3333333333333333`}, {0.3076923076923077, 0.3076923076923077}, {1.3333333333333333`, 1.3333333333333333`}}, { {GrayLevel[0], LineBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}]}, {RGBColor[1, 0, 0], AbsolutePointSize[5], TagBox[ TooltipBox[PointBox[1], "1"], Annotation[#, 1, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[2], "2"], Annotation[#, 2, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[3], "3"], Annotation[#, 3, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[4], "4"], Annotation[#, 4, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[5], "5"], Annotation[#, 5, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[6], "6"], Annotation[#, 6, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[7], "7"], Annotation[#, 7, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[8], "8"], Annotation[#, 8, "Tooltip"]& ]}}], Annotation[#, VertexCoordinateRules -> {{-0.3076923076923077, -0.3076923076923077}, \ {-1.3333333333333333`, -1.3333333333333333`}, {-0.3076923076923077, 0.3076923076923077}, {-1.3333333333333333`, 1.3333333333333333`}, { 0.3076923076923077, -0.3076923076923077}, { 1.3333333333333333`, -1.3333333333333333`}, {0.3076923076923077, 0.3076923076923077}, {1.3333333333333333`, 1.3333333333333333`}}]& ], AspectRatio->Automatic, FrameTicks->None, PlotRange->All, PlotRangePadding->Scaled[0.1]], ",", GraphicsBox[ TagBox[ GraphicsComplexBox[{{-0.32142857142857145`, -0.32142857142857145`}, \ {-1.1249999999999998`, -1.1249999999999998`}, {-0.32142857142857145`, 0.32142857142857145`}, {-1.1249999999999998`, 1.1249999999999998`}, { 0.32142857142857145`, -0.32142857142857145`}, { 1.1249999999999998`, -1.1249999999999998`}, {0.32142857142857145`, 0.32142857142857145`}, {1.1249999999999998`, 1.1249999999999998`}}, { {GrayLevel[0], LineBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}]}, {RGBColor[1, 0, 0], AbsolutePointSize[5], TagBox[ TooltipBox[PointBox[1], "1"], Annotation[#, 1, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[2], "2"], Annotation[#, 2, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[3], "3"], Annotation[#, 3, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[4], "4"], Annotation[#, 4, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[5], "5"], Annotation[#, 5, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[6], "6"], Annotation[#, 6, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[7], "7"], Annotation[#, 7, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[8], "8"], Annotation[#, 8, "Tooltip"]& ]}}], Annotation[#, VertexCoordinateRules -> {{-0.32142857142857145`, \ -0.32142857142857145`}, {-1.1249999999999998`, -1.1249999999999998`}, \ {-0.32142857142857145`, 0.32142857142857145`}, {-1.1249999999999998`, 1.1249999999999998`}, {0.32142857142857145`, -0.32142857142857145`}, { 1.1249999999999998`, -1.1249999999999998`}, {0.32142857142857145`, 0.32142857142857145`}, {1.1249999999999998`, 1.1249999999999998`}}]& ], AspectRatio->Automatic, FrameTicks->None, PlotRange->All, PlotRangePadding->Scaled[0.1]], ",", GraphicsBox[ TagBox[ GraphicsComplexBox[{{-0.3333333333333333, -0.3333333333333333}, {-1., \ -1.}, {-0.3333333333333333, 0.3333333333333333}, {-1., 1.}, { 0.3333333333333333, -0.3333333333333333}, {1., -1.}, { 0.3333333333333333, 0.3333333333333333}, {1., 1.}}, { {GrayLevel[0], LineBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}]}, {RGBColor[1, 0, 0], AbsolutePointSize[5], TagBox[ TooltipBox[PointBox[1], "1"], Annotation[#, 1, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[2], "2"], Annotation[#, 2, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[3], "3"], Annotation[#, 3, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[4], "4"], Annotation[#, 4, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[5], "5"], Annotation[#, 5, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[6], "6"], Annotation[#, 6, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[7], "7"], Annotation[#, 7, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[8], "8"], Annotation[#, 8, "Tooltip"]& ]}}], Annotation[#, VertexCoordinateRules -> {{-0.3333333333333333, -0.3333333333333333}, \ {-1., -1.}, {-0.3333333333333333, 0.3333333333333333}, {-1., 1.}, { 0.3333333333333333, -0.3333333333333333}, {1., -1.}, { 0.3333333333333333, 0.3333333333333333}, {1., 1.}}]& ], AspectRatio->Automatic, FrameTicks->None, PlotRange->All, PlotRangePadding->Scaled[0.1]], ",", GraphicsBox[ TagBox[ GraphicsComplexBox[{{-0.34375, -0.34375}, {-0.9166666666666666, \ -0.9166666666666666}, {-0.34375, 0.34375}, {-0.9166666666666666, 0.9166666666666666}, {0.34375, -0.34375}, { 0.9166666666666666, -0.9166666666666666}, {0.34375, 0.34375}, { 0.9166666666666666, 0.9166666666666666}}, { {GrayLevel[0], LineBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}]}, {RGBColor[1, 0, 0], AbsolutePointSize[5], TagBox[ TooltipBox[PointBox[1], "1"], Annotation[#, 1, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[2], "2"], Annotation[#, 2, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[3], "3"], Annotation[#, 3, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[4], "4"], Annotation[#, 4, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[5], "5"], Annotation[#, 5, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[6], "6"], Annotation[#, 6, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[7], "7"], Annotation[#, 7, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[8], "8"], Annotation[#, 8, "Tooltip"]& ]}}], Annotation[#, VertexCoordinateRules -> {{-0.34375, -0.34375}, {-0.9166666666666666, \ -0.9166666666666666}, {-0.34375, 0.34375}, {-0.9166666666666666, 0.9166666666666666}, {0.34375, -0.34375}, { 0.9166666666666666, -0.9166666666666666}, {0.34375, 0.34375}, { 0.9166666666666666, 0.9166666666666666}}]& ], AspectRatio->Automatic, FrameTicks->None, PlotRange->All, PlotRangePadding->Scaled[0.1]], ",", GraphicsBox[ TagBox[ GraphicsComplexBox[{{-0.35294117647058826`, -0.35294117647058826`}, \ {-0.8571428571428571, -0.8571428571428571}, {-0.35294117647058826`, 0.35294117647058826`}, {-0.8571428571428571, 0.8571428571428571}, { 0.35294117647058826`, -0.35294117647058826`}, { 0.8571428571428571, -0.8571428571428571}, {0.35294117647058826`, 0.35294117647058826`}, {0.8571428571428571, 0.8571428571428571}}, { {GrayLevel[0], LineBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}]}, {RGBColor[1, 0, 0], AbsolutePointSize[5], TagBox[ TooltipBox[PointBox[1], "1"], Annotation[#, 1, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[2], "2"], Annotation[#, 2, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[3], "3"], Annotation[#, 3, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[4], "4"], Annotation[#, 4, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[5], "5"], Annotation[#, 5, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[6], "6"], Annotation[#, 6, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[7], "7"], Annotation[#, 7, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[8], "8"], Annotation[#, 8, "Tooltip"]& ]}}], Annotation[#, VertexCoordinateRules -> {{-0.35294117647058826`, \ -0.35294117647058826`}, {-0.8571428571428571, -0.8571428571428571}, \ {-0.35294117647058826`, 0.35294117647058826`}, {-0.8571428571428571, 0.8571428571428571}, {0.35294117647058826`, -0.35294117647058826`}, { 0.8571428571428571, -0.8571428571428571}, {0.35294117647058826`, 0.35294117647058826`}, {0.8571428571428571, 0.8571428571428571}}]& ], AspectRatio->Automatic, FrameTicks->None, PlotRange->All, PlotRangePadding->Scaled[0.1]], ",", GraphicsBox[ TagBox[ GraphicsComplexBox[{{-0.36111111111111116`, -0.36111111111111116`}, \ {-0.8125, -0.8125}, {-0.36111111111111116`, 0.36111111111111116`}, {-0.8125, 0.8125}, {0.36111111111111116`, -0.36111111111111116`}, { 0.8125, -0.8125}, {0.36111111111111116`, 0.36111111111111116`}, {0.8125, 0.8125}}, { {GrayLevel[0], LineBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}]}, {RGBColor[1, 0, 0], AbsolutePointSize[5], TagBox[ TooltipBox[PointBox[1], "1"], Annotation[#, 1, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[2], "2"], Annotation[#, 2, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[3], "3"], Annotation[#, 3, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[4], "4"], Annotation[#, 4, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[5], "5"], Annotation[#, 5, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[6], "6"], Annotation[#, 6, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[7], "7"], Annotation[#, 7, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[8], "8"], Annotation[#, 8, "Tooltip"]& ]}}], Annotation[#, VertexCoordinateRules -> {{-0.36111111111111116`, \ -0.36111111111111116`}, {-0.8125, -0.8125}, {-0.36111111111111116`, 0.36111111111111116`}, {-0.8125, 0.8125}, { 0.36111111111111116`, -0.36111111111111116`}, {0.8125, -0.8125}, { 0.36111111111111116`, 0.36111111111111116`}, {0.8125, 0.8125}}]& ], AspectRatio->Automatic, FrameTicks->None, PlotRange->All, PlotRangePadding->Scaled[0.1]], ",", GraphicsBox[ TagBox[ GraphicsComplexBox[{{-0.368421052631579, -0.368421052631579}, \ {-0.7777777777777777, -0.7777777777777777}, {-0.368421052631579, 0.368421052631579}, {-0.7777777777777777, 0.7777777777777777}, { 0.368421052631579, -0.368421052631579}, { 0.7777777777777777, -0.7777777777777777}, {0.368421052631579, 0.368421052631579}, {0.7777777777777777, 0.7777777777777777}}, { {GrayLevel[0], LineBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}]}, {RGBColor[1, 0, 0], AbsolutePointSize[5], TagBox[ TooltipBox[PointBox[1], "1"], Annotation[#, 1, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[2], "2"], Annotation[#, 2, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[3], "3"], Annotation[#, 3, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[4], "4"], Annotation[#, 4, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[5], "5"], Annotation[#, 5, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[6], "6"], Annotation[#, 6, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[7], "7"], Annotation[#, 7, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[8], "8"], Annotation[#, 8, "Tooltip"]& ]}}], Annotation[#, VertexCoordinateRules -> {{-0.368421052631579, -0.368421052631579}, \ {-0.7777777777777777, -0.7777777777777777}, {-0.368421052631579, 0.368421052631579}, {-0.7777777777777777, 0.7777777777777777}, { 0.368421052631579, -0.368421052631579}, { 0.7777777777777777, -0.7777777777777777}, {0.368421052631579, 0.368421052631579}, {0.7777777777777777, 0.7777777777777777}}]& ], AspectRatio->Automatic, FrameTicks->None, PlotRange->All, PlotRangePadding->Scaled[0.1]], ",", GraphicsBox[ TagBox[ GraphicsComplexBox[{{-0.375, -0.375}, {-0.75, -0.75}, {-0.375, 0.375}, {-0.75, 0.75}, {0.375, -0.375}, {0.75, -0.75}, {0.375, 0.375}, { 0.75, 0.75}}, { {GrayLevel[0], LineBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}]}, {RGBColor[1, 0, 0], AbsolutePointSize[5], TagBox[ TooltipBox[PointBox[1], "1"], Annotation[#, 1, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[2], "2"], Annotation[#, 2, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[3], "3"], Annotation[#, 3, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[4], "4"], Annotation[#, 4, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[5], "5"], Annotation[#, 5, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[6], "6"], Annotation[#, 6, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[7], "7"], Annotation[#, 7, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[8], "8"], Annotation[#, 8, "Tooltip"]& ]}}], Annotation[#, VertexCoordinateRules -> {{-0.375, -0.375}, {-0.75, -0.75}, {-0.375, 0.375}, {-0.75, 0.75}, {0.375, -0.375}, {0.75, -0.75}, {0.375, 0.375}, {0.75, 0.75}}]& ], AspectRatio->Automatic, FrameTicks->None, PlotRange->All, PlotRangePadding->Scaled[0.1]]}], "}"}]], "Output",ExpressionUUID->\ "2d9fbe37-8d3e-455c-84c2-ff68a2ff1e6d"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Projections", "Section",ExpressionUUID->"2427574b-7472-40b7-beec-867f84e6f6f2"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Manipulate", "[", RowBox[{ RowBox[{"PolyhedronProjectionGraph", "[", RowBox[{ RowBox[{"PolyhedronData", "[", RowBox[{"\"\\"", ",", "\"\\""}], "]"}], ",", RowBox[{"{", RowBox[{"a", ",", "b", ",", "c"}], "}"}]}], "]"}], ",", RowBox[{"{", RowBox[{"a", ",", RowBox[{"-", "1"}], ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{"b", ",", RowBox[{"-", "1"}], ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{"c", ",", RowBox[{"-", "1"}], ",", "1"}], "}"}]}], "]"}]], "Input", CellLabel->"In[91]:=",ExpressionUUID->"dc7fd89b-b71c-40c1-a865-fbbe7f4aa24c"], Cell[BoxData[ TagBox[ StyleBox[ DynamicModuleBox[{$CellContext`a$$ = 0.5, $CellContext`b$$ = 1., $CellContext`c$$ = 0.4950000000000001, Typeset`show$$ = True, Typeset`bookmarkList$$ = {}, Typeset`bookmarkMode$$ = "Menu", Typeset`animator$$, Typeset`animvar$$ = 1, Typeset`name$$ = "\"untitled\"", Typeset`specs$$ = {{ Hold[$CellContext`a$$], -1, 1}, { Hold[$CellContext`b$$], -1, 1}, { Hold[$CellContext`c$$], -1, 1}}, Typeset`size$$ = {360., {164., 168.}}, Typeset`update$$ = 0, Typeset`initDone$$, Typeset`skipInitDone$$ = True}, DynamicBox[Manipulate`ManipulateBoxes[ 1, StandardForm, "Variables" :> {$CellContext`a$$ = -1, $CellContext`b$$ = -1, \ $CellContext`c$$ = -1}, "ControllerVariables" :> {}, "OtherVariables" :> { Typeset`show$$, Typeset`bookmarkList$$, Typeset`bookmarkMode$$, Typeset`animator$$, Typeset`animvar$$, Typeset`name$$, Typeset`specs$$, Typeset`size$$, Typeset`update$$, Typeset`initDone$$, Typeset`skipInitDone$$}, "Body" :> MathWorld`Graphs`PolyhedronProjectionGraph[ PolyhedronData[ "Cube", "Polyhedron"], {$CellContext`a$$, $CellContext`b$$, \ $CellContext`c$$}], "Specifications" :> {{$CellContext`a$$, -1, 1}, {$CellContext`b$$, -1, 1}, {$CellContext`c$$, -1, 1}}, "Options" :> {}, "DefaultOptions" :> {}], ImageSizeCache->{403.1, {232.90445861816409`, 238.63639221191409`}}, SingleEvaluation->True], Deinitialization:>None, DynamicModuleValues:>{}, SynchronousInitialization->True, UndoTrackedVariables:>{Typeset`show$$, Typeset`bookmarkMode$$}, UnsavedVariables:>{Typeset`initDone$$}, UntrackedVariables:>{Typeset`size$$}], "Manipulate", Deployed->True, StripOnInput->False], Manipulate`InterpretManipulate[1]]], "Output", CellLabel->"Out[91]=",ExpressionUUID->"85d33a67-372f-4f8c-9b2e-abf7b3c87b98"] }, Open ]], Cell[CellGroupData[{ Cell["{0, 0, 1}", "Subsection",ExpressionUUID->"b9ce524e-703c-4fd1-8384-4fa1e5699400"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"PolyhedronProjectionGraph", "[", RowBox[{ RowBox[{"PolyhedronData", "[", RowBox[{"\"\\"", ",", "\"\\""}], "]"}], ",", RowBox[{"{", RowBox[{"0", ",", "0", ",", "1"}], "}"}], ",", RowBox[{"VertexLabels", "\[Rule]", "\"\\""}]}], "]"}]], "Input", CellLabel->"In[89]:=",ExpressionUUID->"be4588e6-277c-4a77-90a2-fca451fde6eb"], Cell[BoxData[ GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8}, { Null, {{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, { 5, 6}, {5, 7}, {6, 8}, {7, 8}}}, { VertexLabels -> {"Name"}, VertexCoordinates -> {{ Rational[-1, 2], Rational[-1, 2]}, { Rational[-1, 2], Rational[-1, 2]}, { Rational[-1, 2], Rational[1, 2]}, { Rational[-1, 2], Rational[1, 2]}, { Rational[1, 2], Rational[-1, 2]}, { Rational[1, 2], Rational[-1, 2]}, { Rational[1, 2], Rational[1, 2]}, { Rational[1, 2], Rational[1, 2]}}}]]}, TagBox[GraphicsGroupBox[{ {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[CompressedData[" 1:eJxTTMoPSmVmYGDgAWImKIaAB/vJpO1JFKdUP7o4Lj46TUieWHOpZQ+cBgBf OkON "], 0.01273]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[ 0.7]}], {DiskBox[{-0.5, -0.5}, 0.01273], InsetBox["1", Offset[{2, 2}, {-0.48727, -0.48727}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, {DiskBox[{-0.5, -0.5}, 0.01273], InsetBox["2", Offset[{2, 2}, {-0.48727, -0.48727}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, {DiskBox[{-0.5, 0.5}, 0.01273], InsetBox["3", Offset[{2, 2}, {-0.48727, 0.51273}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, {DiskBox[{-0.5, 0.5}, 0.01273], InsetBox["4", Offset[{2, 2}, {-0.48727, 0.51273}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, {DiskBox[{0.5, -0.5}, 0.01273], InsetBox["5", Offset[{2, 2}, {0.51273, -0.48727}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, {DiskBox[{0.5, -0.5}, 0.01273], InsetBox["6", Offset[{2, 2}, {0.51273, -0.48727}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, {DiskBox[{0.5, 0.5}, 0.01273], InsetBox["7", Offset[{2, 2}, {0.51273, 0.51273}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, {DiskBox[{0.5, 0.5}, 0.01273], InsetBox["8", Offset[{2, 2}, {0.51273, 0.51273}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}}}], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->{ "NetworkGraphics", FrontEnd`GraphicsHighlightColor -> Hue[0.8, 1., 0.6]}, FormatType->TraditionalForm, FrameTicks->None]], "Output", CellLabel->"Out[89]=",ExpressionUUID->"37e50d32-cd70-4489-b756-e574f30e335d"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["{1, 1, 1}", "Subsection",ExpressionUUID->"2a132812-f6ee-4c96-b0b1-dd37e4d54490"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"PolyhedronProjectionGraph", "[", RowBox[{ RowBox[{"PolyhedronData", "[", RowBox[{"\"\\"", ",", "\"\\""}], "]"}], ",", RowBox[{"{", RowBox[{"1", ",", "1", ",", "1"}], "}"}], ",", RowBox[{"VertexLabels", "\[Rule]", "\"\\""}]}], "]"}]], "Input", CellLabel->"In[92]:=",ExpressionUUID->"68c0bc77-4971-4837-9bc9-61fa59181503"], Cell[BoxData[ GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8}, { Null, {{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, { 5, 6}, {5, 7}, {6, 8}, {7, 8}}}, { VertexLabels -> {"Name"}, VertexCoordinates -> {{0, 0}, {-6^Rational[-1, 2], -2^Rational[-1, 2]}, {-6^Rational[-1, 2], 2^ Rational[-1, 2]}, {-Rational[2, 3]^Rational[1, 2], 0}, { Rational[2, 3]^Rational[1, 2], 0}, { 6^Rational[-1, 2], -2^Rational[-1, 2]}, { 6^Rational[-1, 2], 2^Rational[-1, 2]}, {0, 0}}}]]}, TagBox[GraphicsGroupBox[{ {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[CompressedData[" 1:eJxTTMoPSmVmYGDgAWImKEYH9jo8BXsVbu0/Y12fNm/Bs/0E5O3R5e3A8q/s cajfD5Xfj0seyrdH48PtI6DfHk0/hnoi3WuP5l5c8uj24Qove1zhBQAKoHDV "], 0.019562323618881772`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[ 0.7]}], {DiskBox[{0., 0.}, 0.019562323618881772], InsetBox["1", Offset[{2, 2}, {0.019562323618881772, 0.019562323618881772}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{-0.4082482904638631, -0.7071067811865475}, 0.019562323618881772], InsetBox["2", Offset[{2, 2}, {-0.3886859668449813, -0.6875444575676657}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{-0.4082482904638631, 0.7071067811865475}, 0.019562323618881772], InsetBox["3", Offset[{2, 2}, {-0.3886859668449813, 0.7266691048054292}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{-0.816496580927726, 0.}, 0.019562323618881772], InsetBox["4", Offset[{2, 2}, {-0.7969342573088443, 0.019562323618881772}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{0.816496580927726, 0.}, 0.019562323618881772], InsetBox["5", Offset[{2, 2}, {0.8360589045466078, 0.019562323618881772}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{0.4082482904638631, -0.7071067811865475}, 0.019562323618881772], InsetBox["6", Offset[{2, 2}, {0.42781061408274484, -0.6875444575676657}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{0.4082482904638631, 0.7071067811865475}, 0.019562323618881772], InsetBox["7", Offset[{2, 2}, {0.42781061408274484, 0.7266691048054292}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, {DiskBox[{0., 0.}, 0.019562323618881772], InsetBox["8", Offset[{2, 2}, {0.019562323618881772, 0.019562323618881772}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}}}], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->{ "NetworkGraphics", FrontEnd`GraphicsHighlightColor -> Hue[0.8, 1., 0.6]}, FormatType->TraditionalForm, FrameTicks->None]], "Output", CellLabel->"Out[92]=",ExpressionUUID->"acfb3580-765c-402b-a6c9-c138288bd2c0"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["{1, 0, 1}", "Subsection",ExpressionUUID->"3ecf929c-93be-494e-a68e-979751d8bb4a"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"PolyhedronProjectionGraph", "[", RowBox[{ RowBox[{"PolyhedronData", "[", RowBox[{"\"\\"", ",", "\"\\""}], "]"}], ",", RowBox[{"{", RowBox[{"1", ",", "0", ",", "1"}], "}"}], ",", RowBox[{"VertexLabels", "\[Rule]", "\"\\""}]}], "]"}]], "Input", CellLabel->"In[96]:=",ExpressionUUID->"3adc3e85-40ac-46e0-a76a-dc2e4f55a675"], Cell[BoxData[ GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8}, { Null, {{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, { 5, 6}, {5, 7}, {6, 8}, {7, 8}}}, { VertexLabels -> {"Name"}, VertexCoordinates -> {{0, Rational[-1, 2]}, {-2^Rational[-1, 2], Rational[-1, 2]}, {0, Rational[1, 2]}, {-2^Rational[-1, 2], Rational[1, 2]}, {2^Rational[-1, 2], Rational[-1, 2]}, {0, Rational[-1, 2]}, {2^Rational[-1, 2], Rational[1, 2]}, {0, Rational[1, 2]}}}]]}, TagBox[GraphicsGroupBox[{ {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[CompressedData[" 1:eJxTTMoPSmVmYGDgAWImKEYFD/afsa5Pm7fg2X4YH10ejW+PQ789LvPQ+Pak 2oeuH4e8PZnqMezH4R+4+US6F5d6ewC0c1lZ "], 0.017674226532102905`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[ 0.7]}], {DiskBox[{0., -0.5}, 0.017674226532102905], InsetBox["1", Offset[{2, 2}, {0.017674226532102905, -0.48232577346789707}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{-0.7071067811865475, -0.5}, 0.017674226532102905], InsetBox["2", Offset[{2, 2}, {-0.6894325546544445, -0.48232577346789707}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, {DiskBox[{0., 0.5}, 0.017674226532102905], InsetBox["3", Offset[{2, 2}, {0.017674226532102905, 0.5176742265321029}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{-0.7071067811865475, 0.5}, 0.017674226532102905], InsetBox["4", Offset[{2, 2}, {-0.6894325546544445, 0.5176742265321029}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{0.7071067811865475, -0.5}, 0.017674226532102905], InsetBox["5", Offset[{2, 2}, {0.7247810077186504, -0.48232577346789707}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, {DiskBox[{0., -0.5}, 0.017674226532102905], InsetBox["6", Offset[{2, 2}, {0.017674226532102905, -0.48232577346789707}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{0.7071067811865475, 0.5}, 0.017674226532102905], InsetBox["7", Offset[{2, 2}, {0.7247810077186504, 0.5176742265321029}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, {DiskBox[{0., 0.5}, 0.017674226532102905], InsetBox["8", Offset[{2, 2}, {0.017674226532102905, 0.5176742265321029}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}}}], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->{ "NetworkGraphics", FrontEnd`GraphicsHighlightColor -> Hue[0.8, 1., 0.6]}, FormatType->TraditionalForm, FrameTicks->None]], "Output", CellLabel->"Out[96]=",ExpressionUUID->"1c614ede-d5c9-4c81-babc-767d08966380"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["{1, 0, 2}", "Subsection",ExpressionUUID->"d1886490-3c46-45f8-9a57-3cd246c278ed"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"PolyhedronProjectionGraph", "[", RowBox[{ RowBox[{"PolyhedronData", "[", RowBox[{"\"\\"", ",", "\"\\""}], "]"}], ",", RowBox[{"{", RowBox[{"1", ",", "0", ",", "2"}], "}"}], ",", RowBox[{"VertexLabels", "\[Rule]", "\"\\""}]}], "]"}]], "Input", CellLabel-> "In[149]:=",ExpressionUUID->"0a65d88a-bf28-4a16-a10a-ee614ddac1ee"], Cell[BoxData[ GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8}, { Null, {{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, { 5, 6}, {5, 7}, {6, 8}, {7, 8}}}, { VertexLabels -> {"Name"}, VertexCoordinates -> {{Rational[-1, 2] 5^Rational[-1, 2], Rational[-1, 2]}, {Rational[-3, 2] 5^Rational[-1, 2], Rational[-1, 2]}, {Rational[-1, 2] 5^Rational[-1, 2], Rational[1, 2]}, {Rational[-3, 2] 5^Rational[-1, 2], Rational[1, 2]}, {Rational[3, 2] 5^Rational[-1, 2], Rational[-1, 2]}, {Rational[1, 2] 5^Rational[-1, 2], Rational[-1, 2]}, {Rational[3, 2] 5^Rational[-1, 2], Rational[1, 2]}, {Rational[1, 2] 5^Rational[-1, 2], Rational[1, 2]}}}]]}, TagBox[GraphicsGroupBox[{ {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[CompressedData[" 1:eJxTTMoPSmVmYGDgAWImKL75dv9R1fln9jOAwYP9yZ/8Q2LKn8L56PJofHsc +u1xmYfGt8dhnz0u+9D145C3J6AeXR7dPnT34+Kjm4euH8M96PIAgYOVBQ== "], 0.01703578230673916]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[ 0.7]}], {DiskBox[{-0.22360679774997896`, -0.5}, 0.01703578230673916], InsetBox["1", Offset[{2, 2}, {-0.2065710154432398, -0.4829642176932608}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{-0.6708203932499369, -0.5}, 0.01703578230673916], InsetBox["2", Offset[{2, 2}, {-0.6537846109431977, -0.4829642176932608}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{-0.22360679774997896`, 0.5}, 0.01703578230673916], InsetBox["3", Offset[{2, 2}, {-0.2065710154432398, 0.5170357823067392}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{-0.6708203932499369, 0.5}, 0.01703578230673916], InsetBox["4", Offset[{2, 2}, {-0.6537846109431977, 0.5170357823067392}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{0.6708203932499369, -0.5}, 0.01703578230673916], InsetBox["5", Offset[{2, 2}, {0.6878561755566761, -0.4829642176932608}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{0.22360679774997896`, -0.5}, 0.01703578230673916], InsetBox["6", Offset[{2, 2}, {0.24064258005671813, -0.4829642176932608}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{0.6708203932499369, 0.5}, 0.01703578230673916], InsetBox["7", Offset[{2, 2}, {0.6878561755566761, 0.5170357823067392}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{0.22360679774997896`, 0.5}, 0.01703578230673916], InsetBox["8", Offset[{2, 2}, {0.24064258005671813, 0.5170357823067392}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}}}], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->{ "NetworkGraphics", FrontEnd`GraphicsHighlightColor -> Hue[0.8, 1., 0.6]}, FormatType->TraditionalForm, FrameTicks->None]], "Output", CellLabel-> "Out[149]=",ExpressionUUID->"06a1bd2f-6740-4a8a-9389-b6d1d82fae4d"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["{1, 2, 1}", "Subsection",ExpressionUUID->"0f2c12d0-3d0f-4c3b-a13b-911fe9a1f9ed"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"PolyhedronProjectionGraph", "[", RowBox[{ RowBox[{"PolyhedronData", "[", RowBox[{"\"\\"", ",", "\"\\""}], "]"}], ",", RowBox[{"{", RowBox[{"1", ",", "2", ",", "1"}], "}"}], ",", RowBox[{"VertexLabels", "\[Rule]", "\"\\""}]}], "]"}]], "Input", CellLabel-> "In[158]:=",ExpressionUUID->"fef5fd9c-8a51-4c3f-8386-cf67ef376dd8"], Cell[BoxData[ GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8}, { Null, {{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, { 5, 6}, {5, 7}, {6, 8}, {7, 8}}}, { VertexLabels -> {"Name"}, VertexCoordinates -> {{ Rational[1, 2] Rational[3, 10]^Rational[1, 2] + Rational[-1, 2] Rational[5, 6]^Rational[1, 2], Rational[1, 2] 5^Rational[-1, 2]}, { Rational[-1, 2] Rational[5, 6]^Rational[1, 2] + Rational[1, 2] 30^Rational[-1, 2], Rational[-3, 2] 5^Rational[-1, 2]}, { Rational[-1, 2] Rational[5, 6]^Rational[1, 2] + Rational[-1, 2] 30^Rational[-1, 2], Rational[3, 2] 5^Rational[-1, 2]}, { Rational[-1, 2] Rational[3, 10]^Rational[1, 2] + Rational[-1, 2] Rational[5, 6]^Rational[1, 2], Rational[-1, 2] 5^Rational[-1, 2]}, { Rational[1, 2] Rational[3, 10]^Rational[1, 2] + Rational[1, 2] Rational[5, 6]^Rational[1, 2], Rational[1, 2] 5^Rational[-1, 2]}, { Rational[1, 2] Rational[5, 6]^Rational[1, 2] + Rational[1, 2] 30^Rational[-1, 2], Rational[-3, 2] 5^Rational[-1, 2]}, { Rational[1, 2] Rational[5, 6]^Rational[1, 2] + Rational[-1, 2] 30^Rational[-1, 2], Rational[3, 2] 5^Rational[-1, 2]}, { Rational[-1, 2] Rational[3, 10]^Rational[1, 2] + Rational[1, 2] Rational[5, 6]^Rational[1, 2], Rational[-1, 2] 5^Rational[-1, 2]}}}]]}, TagBox[GraphicsGroupBox[{ {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[CompressedData[" 1:eJxTTMoPSmVmYGDgAWImKJ61YYHb9Ljj+2++3X9Udf4Z+5lg/vX9yZ/8Q2LK n+5Hly9q+VHyse0hTN4eXX4GmP/cHpd5UHmY+v3o8lDz7dH4cPvQ9aPLQ82z x6Ue6l6Y+/ajuxfdfhz+gZuPrh7dfHT16PIAbn7kBw== "], 0.0180790430956988]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[ 0.7]}], { DiskBox[{-0.1825741858350554, 0.22360679774997896`}, 0.0180790430956988], InsetBox["1", Offset[{2, 2}, {-0.16449514273935661, 0.24168584084567776}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{-0.36514837167011077`, -0.6708203932499369}, 0.0180790430956988], InsetBox["2", Offset[{2, 2}, {-0.347069328574412, -0.6527413501542381}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{-0.5477225575051661, 0.6708203932499369}, 0.0180790430956988], InsetBox["3", Offset[{2, 2}, {-0.5296435144094673, 0.6888994363456358}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{-0.7302967433402214, -0.22360679774997896`}, 0.0180790430956988], InsetBox["4", Offset[{2, 2}, {-0.7122177002445227, -0.20552775465428016}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{0.7302967433402214, 0.22360679774997896`}, 0.0180790430956988], InsetBox["5", Offset[{2, 2}, {0.7483757864359202, 0.24168584084567776}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{0.5477225575051661, -0.6708203932499369}, 0.0180790430956988], InsetBox["6", Offset[{2, 2}, {0.5658016006008648, -0.6527413501542381}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{0.36514837167011077`, 0.6708203932499369}, 0.0180790430956988], InsetBox["7", Offset[{2, 2}, {0.38322741476580957, 0.6888994363456358}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{0.1825741858350554, -0.22360679774997896`}, 0.0180790430956988], InsetBox["8", Offset[{2, 2}, {0.2006532289307542, -0.20552775465428016}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}}}], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->{ "NetworkGraphics", FrontEnd`GraphicsHighlightColor -> Hue[0.8, 1., 0.6]}, FormatType->TraditionalForm, FrameTicks->None]], "Output", CellLabel-> "Out[158]=",ExpressionUUID->"4326a006-4605-4226-a894-50d68083a6d4"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["{1, 2, 2}", "Subsection",ExpressionUUID->"25ad7db4-a485-423a-8e1a-1906ff4ae6da"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"PolyhedronProjectionGraph", "[", RowBox[{ RowBox[{"PolyhedronData", "[", RowBox[{"\"\\"", ",", "\"\\""}], "]"}], ",", RowBox[{"{", RowBox[{"1", ",", "2", ",", "2"}], "}"}], ",", RowBox[{"VertexLabels", "\[Rule]", "\"\\""}]}], "]"}]], "Input", CellLabel-> "In[108]:=",ExpressionUUID->"3607a8af-10f9-4931-9c4d-cf4de00440ff"], Cell[BoxData[ GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8}, { Null, {{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, { 5, 6}, {5, 7}, {6, 8}, {7, 8}}}, { VertexLabels -> {"Name"}, VertexCoordinates -> {{ Rational[1, 3] 2^Rational[-1, 2] + Rational[-1, 3] 2^Rational[1, 2], 0}, {Rational[-1, 3] 2^Rational[1, 2], -2^Rational[-1, 2]}, { Rational[-1, 3] 2^Rational[1, 2], 2^Rational[-1, 2]}, { Rational[-1, 3] 2^Rational[-1, 2] + Rational[-1, 3] 2^Rational[1, 2], 0}, {Rational[1, 3] 2^Rational[-1, 2] + Rational[1, 3] 2^Rational[1, 2], 0}, { Rational[1, 3] 2^Rational[1, 2], -2^Rational[-1, 2]}, { Rational[1, 3] 2^Rational[1, 2], 2^Rational[-1, 2]}, { Rational[-1, 3] 2^Rational[-1, 2] + Rational[1, 3] 2^Rational[1, 2], 0}}}]]}, TagBox[GraphicsGroupBox[{ {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[CompressedData[" 1:eJxTTMoPSmVmYGDgAWImKE7/9e9urfa5/QxQkAbm39t/xro+bd6CZ/sJyNuj y8PEcZkHo3HJQ/n2aHy4fQT026Ppx1APda89Affao7kXlzy6ffvRzUdXjy4P AP8tsfE= "], 0.017674226532102905`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[ 0.7]}], {DiskBox[{-0.23570226039551587`, 0.}, 0.017674226532102905], InsetBox["1", Offset[{2, 2}, {-0.21802803386341296, 0.017674226532102905}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{-0.4714045207910317, -0.7071067811865475}, 0.017674226532102905], InsetBox["2", Offset[{2, 2}, {-0.45373029425892875, -0.6894325546544445}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{-0.4714045207910317, 0.7071067811865475}, 0.017674226532102905], InsetBox["3", Offset[{2, 2}, {-0.45373029425892875, 0.7247810077186504}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{-0.7071067811865475, 0.}, 0.017674226532102905], InsetBox["4", Offset[{2, 2}, {-0.6894325546544445, 0.017674226532102905}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{0.7071067811865475, 0.}, 0.017674226532102905], InsetBox["5", Offset[{2, 2}, {0.7247810077186504, 0.017674226532102905}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{0.4714045207910317, -0.7071067811865475}, 0.017674226532102905], InsetBox["6", Offset[{2, 2}, {0.4890787473231346, -0.6894325546544445}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{0.4714045207910317, 0.7071067811865475}, 0.017674226532102905], InsetBox["7", Offset[{2, 2}, {0.4890787473231346, 0.7247810077186504}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{0.23570226039551587`, 0.}, 0.017674226532102905], InsetBox["8", Offset[{2, 2}, {0.25337648692761877, 0.017674226532102905}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}}}], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->{ "NetworkGraphics", FrontEnd`GraphicsHighlightColor -> Hue[0.8, 1., 0.6]}, FormatType->TraditionalForm, FrameTicks->None]], "Output", CellLabel-> "Out[108]=",ExpressionUUID->"4f986148-a71f-44fa-9957-015096792d73"] }, Open ]], Cell[BoxData[ RowBox[{ RowBox[{"v", "=", RowBox[{"GraphEmbedding", "[", "%", "]"}]}], ";"}]], "Input", CellLabel-> "In[109]:=",ExpressionUUID->"5bad6a6c-584f-4ad3-9207-7af6557545af"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{"SquaredEuclideanDistance", "@@", RowBox[{"v", "[", RowBox[{"[", RowBox[{"{", RowBox[{"1", ",", "4"}], "}"}], "]"}], "]"}]}], ",", RowBox[{"SquaredEuclideanDistance", "@@", RowBox[{"v", "[", RowBox[{"[", RowBox[{"{", RowBox[{"1", ",", "8"}], "}"}], "]"}], "]"}]}]}], "}"}]], "Input", CellLabel-> "In[110]:=",ExpressionUUID->"fe2d69b3-6795-4ccd-aa86-d3e789b3a582"], Cell[BoxData[ RowBox[{"{", RowBox[{ FractionBox["2", "9"], ",", FractionBox["2", "9"]}], "}"}]], "Output", CellLabel-> "Out[110]=",ExpressionUUID->"454711c8-e360-4eac-8fb5-89bcc2654c54"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"PolyhedronProjectionGraph", "[", RowBox[{ RowBox[{"PolyhedronData", "[", RowBox[{"\"\\"", ",", "\"\\""}], "]"}], ",", RowBox[{"{", RowBox[{"x", ",", "1", ",", "1"}], "}"}], ",", RowBox[{"VertexLabels", "\[Rule]", "\"\\""}]}], "]"}]], "Input", CellLabel-> "In[102]:=",ExpressionUUID->"6443d300-d35a-4656-a7cc-b94f2a94ba00"], Cell[BoxData[ TagBox[ DynamicModuleBox[{Typeset`sgraph$$ = Graph[{1, 2, 3, 4, 5, 6, 7, 8}, { Null, {{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}}, { VertexLabels -> {"Name"}, VertexCoordinates -> {{($CellContext`x/(2 + Abs[$CellContext`x]^2)) ( 2 Abs[$CellContext`x/(2 + Abs[$CellContext`x]^2)]^2 + Abs[1 - $CellContext`x^2/(2 + Abs[$CellContext`x]^2)]^2)^ Rational[-1, 2] + ( Rational[-1, 2] (1 - $CellContext`x^2/(2 + Abs[$CellContext`x]^2))) ( 2 Abs[$CellContext`x/(2 + Abs[$CellContext`x]^2)]^2 + Abs[1 - $CellContext`x^2/(2 + Abs[$CellContext`x]^2)]^2)^ Rational[-1, 2], 0}, {(Rational[-1, 2] (1 - $CellContext`x^2/(2 + Abs[$CellContext`x]^2))) ( 2 Abs[$CellContext`x/(2 + Abs[$CellContext`x]^2)]^2 + Abs[1 - $CellContext`x^2/(2 + Abs[$CellContext`x]^2)]^2)^ Rational[-1, 2], (-(2 + Abs[$CellContext`x]^2)^Rational[-1, 2]) ( 2 Abs[$CellContext`x/(2 + Abs[$CellContext`x]^2)]^2 + Abs[1 - $CellContext`x^2/(2 + Abs[$CellContext`x]^2)]^2)^ Rational[-1, 2]}, {( Rational[-1, 2] (1 - $CellContext`x^2/(2 + Abs[$CellContext`x]^2))) ( 2 Abs[$CellContext`x/(2 + Abs[$CellContext`x]^2)]^2 + Abs[1 - $CellContext`x^2/(2 + Abs[$CellContext`x]^2)]^2)^ Rational[-1, 2], (2 + Abs[$CellContext`x]^2)^ Rational[-1, 2] (2 Abs[$CellContext`x/(2 + Abs[$CellContext`x]^2)]^2 + Abs[1 - $CellContext`x^2/(2 + Abs[$CellContext`x]^2)]^2)^ Rational[-1, 2]}, {((-$CellContext`x)/(2 + Abs[$CellContext`x]^2)) ( 2 Abs[$CellContext`x/(2 + Abs[$CellContext`x]^2)]^2 + Abs[1 - $CellContext`x^2/(2 + Abs[$CellContext`x]^2)]^2)^ Rational[-1, 2] + ( Rational[-1, 2] (1 - $CellContext`x^2/(2 + Abs[$CellContext`x]^2))) ( 2 Abs[$CellContext`x/(2 + Abs[$CellContext`x]^2)]^2 + Abs[1 - $CellContext`x^2/(2 + Abs[$CellContext`x]^2)]^2)^ Rational[-1, 2], 0}, {($CellContext`x/(2 + Abs[$CellContext`x]^2)) ( 2 Abs[$CellContext`x/(2 + Abs[$CellContext`x]^2)]^2 + Abs[1 - $CellContext`x^2/(2 + Abs[$CellContext`x]^2)]^2)^ Rational[-1, 2] + ( Rational[1, 2] (1 - $CellContext`x^2/(2 + Abs[$CellContext`x]^2))) ( 2 Abs[$CellContext`x/(2 + Abs[$CellContext`x]^2)]^2 + Abs[1 - $CellContext`x^2/(2 + Abs[$CellContext`x]^2)]^2)^ Rational[-1, 2], 0}, {(Rational[1, 2] (1 - $CellContext`x^2/(2 + Abs[$CellContext`x]^2))) ( 2 Abs[$CellContext`x/(2 + Abs[$CellContext`x]^2)]^2 + Abs[1 - $CellContext`x^2/(2 + Abs[$CellContext`x]^2)]^2)^ Rational[-1, 2], (-(2 + Abs[$CellContext`x]^2)^Rational[-1, 2]) ( 2 Abs[$CellContext`x/(2 + Abs[$CellContext`x]^2)]^2 + Abs[1 - $CellContext`x^2/(2 + Abs[$CellContext`x]^2)]^2)^ Rational[-1, 2]}, {( Rational[1, 2] (1 - $CellContext`x^2/(2 + Abs[$CellContext`x]^2))) ( 2 Abs[$CellContext`x/(2 + Abs[$CellContext`x]^2)]^2 + Abs[1 - $CellContext`x^2/(2 + Abs[$CellContext`x]^2)]^2)^ Rational[-1, 2], (2 + Abs[$CellContext`x]^2)^ Rational[-1, 2] (2 Abs[$CellContext`x/(2 + Abs[$CellContext`x]^2)]^2 + Abs[1 - $CellContext`x^2/(2 + Abs[$CellContext`x]^2)]^2)^ Rational[-1, 2]}, {((-$CellContext`x)/(2 + Abs[$CellContext`x]^2)) ( 2 Abs[$CellContext`x/(2 + Abs[$CellContext`x]^2)]^2 + Abs[1 - $CellContext`x^2/(2 + Abs[$CellContext`x]^2)]^2)^ Rational[-1, 2] + ( Rational[1, 2] (1 - $CellContext`x^2/(2 + Abs[$CellContext`x]^2))) ( 2 Abs[$CellContext`x/(2 + Abs[$CellContext`x]^2)]^2 + Abs[1 - $CellContext`x^2/(2 + Abs[$CellContext`x]^2)]^2)^ Rational[-1, 2], 0}}}]}, InterpretationBox[ RowBox[{ TagBox["Graph", "SummaryHead"], "[", DynamicModuleBox[{Typeset`open$$ = False, Typeset`embedState$$ = "Ready"}, TemplateBox[{ PaneSelectorBox[{False -> GridBox[{{ PaneBox[ ButtonBox[ DynamicBox[ FEPrivate`FrontEndResource["FEBitmaps", "SummaryBoxOpener"]], ButtonFunction :> (Typeset`open$$ = True), Appearance -> None, BaseStyle -> {}, Evaluator -> Automatic, Method -> "Preemptive"], Alignment -> {Center, Center}, ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], GraphicsBox[ GraphicsComplexBox[{{ 0.1, -3.31951456589972}, {-0.14816751450286603`, \ -2.625037331552915}, {0.6310524421714278, -1.3}, { 0.9405108616213151, -2.8841601437046225`}, { 0.4967448863824806, -2.092358403567382}, {-0.846735323402297, \ -1.466588600696043}, {0.8846460183439665, -0.5107506168284197}, { 1.8939086566530445`, -2.50980168725566}, { 1.756629266633539, -3.4622764737192444`}, { 2.119361963550152, -2.99}, {-0.5709741939515942, \ -4.632295267644082}, { 0.20977925607671288`, -4.647162049737781}, \ {-1.0861820131541373`, -4.047493574735101}, {-1.2223073729506904`, \ -2.2040562174063485`}}, { Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 4}, {1, 11}, {1, 12}, {1, 13}, {2, 3}, {2, 4}, {2, 5}, {2, 6}, {2, 14}, {3, 4}, {3, 7}, {4, 5}, {4, 8}, {4, 9}, {8, 10}, {9, 10}}, 0.0378698213750627], Hue[0.6, 0.2, 0.8], EdgeForm[{ GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.05], DiskBox[2, 0.05], DiskBox[3, 0.05], DiskBox[4, 0.05], DiskBox[5, 0.05], DiskBox[6, 0.05], DiskBox[7, 0.05], DiskBox[8, 0.05], DiskBox[9, 0.05], DiskBox[10, 0.05], DiskBox[11, 0.05], DiskBox[12, 0.05], DiskBox[13, 0.05], DiskBox[14, 0.05]}], AspectRatio -> 1, Background -> GrayLevel[0.93], ImagePadding -> 0, FrameStyle -> Directive[ Opacity[0.5], Thickness[Tiny], RGBColor[0.368417, 0.506779, 0.709798]], Frame -> True, FrameTicks -> None, ImageSize -> Dynamic[{ Automatic, (3.5 CurrentValue["FontCapHeight"])/ AbsoluteCurrentValue[Magnification]}], PlotRange -> {{-1.1, 2.4}, {-4.4, -0.7}}], GridBox[{{ RowBox[{ TagBox["\"Vertex count: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["8", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Edge count: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["12", "SummaryItem"]}]}}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> { "Columns" -> {{2}}, "Rows" -> {{Automatic}}}, BaseStyle -> { ShowStringCharacters -> False, NumberMarks -> False, PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, BaselinePosition -> {1, 1}], True -> GridBox[{{ PaneBox[ ButtonBox[ DynamicBox[ FEPrivate`FrontEndResource["FEBitmaps", "SummaryBoxCloser"]], ButtonFunction :> (Typeset`open$$ = False), Appearance -> None, BaseStyle -> {}, Evaluator -> Automatic, Method -> "Preemptive"], Alignment -> {Center, Center}, ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], GraphicsBox[ GraphicsComplexBox[{{ 0.1, -3.31951456589972}, {-0.14816751450286603`, \ -2.625037331552915}, {0.6310524421714278, -1.3}, { 0.9405108616213151, -2.8841601437046225`}, { 0.4967448863824806, -2.092358403567382}, {-0.846735323402297, \ -1.466588600696043}, {0.8846460183439665, -0.5107506168284197}, { 1.8939086566530445`, -2.50980168725566}, { 1.756629266633539, -3.4622764737192444`}, { 2.119361963550152, -2.99}, {-0.5709741939515942, \ -4.632295267644082}, { 0.20977925607671288`, -4.647162049737781}, \ {-1.0861820131541373`, -4.047493574735101}, {-1.2223073729506904`, \ -2.2040562174063485`}}, { Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 4}, {1, 11}, {1, 12}, {1, 13}, {2, 3}, {2, 4}, {2, 5}, {2, 6}, {2, 14}, {3, 4}, {3, 7}, {4, 5}, {4, 8}, {4, 9}, {8, 10}, {9, 10}}, 0.0378698213750627], Hue[0.6, 0.2, 0.8], EdgeForm[{ GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.05], DiskBox[2, 0.05], DiskBox[3, 0.05], DiskBox[4, 0.05], DiskBox[5, 0.05], DiskBox[6, 0.05], DiskBox[7, 0.05], DiskBox[8, 0.05], DiskBox[9, 0.05], DiskBox[10, 0.05], DiskBox[11, 0.05], DiskBox[12, 0.05], DiskBox[13, 0.05], DiskBox[14, 0.05]}], AspectRatio -> 1, Background -> GrayLevel[0.93], ImagePadding -> 0, FrameStyle -> Directive[ Opacity[0.5], Thickness[Tiny], RGBColor[0.368417, 0.506779, 0.709798]], Frame -> True, FrameTicks -> None, ImageSize -> Dynamic[{ Automatic, (3.5 CurrentValue["FontCapHeight"])/ AbsoluteCurrentValue[Magnification]}], PlotRange -> {{-1.1, 2.4}, {-4.4, -0.7}}], GridBox[{{ RowBox[{ TagBox["\"Vertex count: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["8", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Edge count: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["12", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Type: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["\"undirected graph\"", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Connected graph: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ ConnectedGraphQ[Typeset`sgraph$$], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}, { RowBox[{ TagBox["\"Acyclic graph: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ AcyclicGraphQ[Typeset`sgraph$$], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> { "Columns" -> {{2}}, "Rows" -> {{Automatic}}}, BaseStyle -> { ShowStringCharacters -> False, NumberMarks -> False, PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, BaselinePosition -> {1, 1}]}, Dynamic[Typeset`open$$], ImageSize -> Automatic]}, "SummaryPanel"], DynamicModuleValues:>{}], "]"}], Typeset`sgraph$$, Editable->False, SelectWithContents->True, Selectable->False], DynamicModuleValues:>{}], Setting[#, {0}]& ]], "Output", CellLabel-> "Out[102]=",ExpressionUUID->"7b8aab9b-7afb-40d0-8406-fc30a498ab59"] }, Open ]], Cell[BoxData[ RowBox[{ RowBox[{"v", "=", RowBox[{"Lookup", "[", RowBox[{ RowBox[{"Options", "[", "%", "]"}], ",", "VertexCoordinates"}], "]"}]}], ";"}]], "Input", CellLabel-> "In[103]:=",ExpressionUUID->"e6e6e8c7-0f36-4c6a-9f71-3e0e02720720"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"FullSimplify", "[", RowBox[{ RowBox[{ RowBox[{"SquaredEuclideanDistance", "@@", RowBox[{"v", "[", RowBox[{"[", RowBox[{"{", RowBox[{"1", ",", "4"}], "}"}], "]"}], "]"}]}], "-", RowBox[{"SquaredEuclideanDistance", "@@", RowBox[{"v", "[", RowBox[{"[", RowBox[{"{", RowBox[{"1", ",", "8"}], "}"}], "]"}], "]"}]}]}], ",", RowBox[{"x", ">", "0"}]}], "]"}]], "Input", CellLabel-> "In[106]:=",ExpressionUUID->"91e11121-7342-4c5d-be36-0eb21f526efc"], Cell[BoxData[ FractionBox[ RowBox[{ RowBox[{"-", "2"}], "+", RowBox[{"4", " ", "x"}]}], RowBox[{"2", "+", SuperscriptBox["x", "2"]}]]], "Output", CellLabel-> "Out[106]=",ExpressionUUID->"a20af45f-f3fa-4104-80ea-e5fff07827f4"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Solve", "[", RowBox[{ RowBox[{ FractionBox[ RowBox[{ RowBox[{"-", "2"}], "+", RowBox[{"4", " ", "x"}]}], RowBox[{"2", "+", SuperscriptBox["x", "2"]}]], "\[Equal]", "0"}], ",", "x"}], "]"}]], "Input", CellLabel-> "In[107]:=",ExpressionUUID->"661743e1-8080-4f9c-a744-e6dd427d9c96"], Cell[BoxData[ RowBox[{"{", RowBox[{"{", RowBox[{"x", "\[Rule]", FractionBox["1", "2"]}], "}"}], "}"}]], "Output", CellLabel-> "Out[107]=",ExpressionUUID->"8d3bc0b0-b1e8-4aa8-b3fe-e71d1ebd6f4f"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["{2, 1, 1}", "Subsection",ExpressionUUID->"15c40c32-b446-4d62-8593-a1df64806629"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"PolyhedronProjectionGraph", "[", RowBox[{ RowBox[{"PolyhedronData", "[", RowBox[{"\"\\"", ",", "\"\\""}], "]"}], ",", RowBox[{"{", RowBox[{"2", ",", "1", ",", "1"}], "}"}], ",", RowBox[{"VertexLabels", "\[Rule]", "\"\\""}]}], "]"}]], "Input", CellLabel-> "In[142]:=",ExpressionUUID->"f39e5b46-eed6-4f71-b18c-307df3b91e6d"], Cell[BoxData[ GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8}, { Null, {{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, { 5, 6}, {5, 7}, {6, 8}, {7, 8}}}, { VertexLabels -> {"Name"}, VertexCoordinates -> {{Rational[1, 2] 3^Rational[-1, 2], 0}, { Rational[-1, 2] 3^Rational[-1, 2], -2^Rational[-1, 2]}, { Rational[-1, 2] 3^Rational[-1, 2], 2^Rational[-1, 2]}, { Rational[-1, 2] 3^Rational[1, 2], 0}, { Rational[1, 2] 3^Rational[1, 2], 0}, { Rational[1, 2] 3^Rational[-1, 2], -2^Rational[-1, 2]}, { Rational[1, 2] 3^Rational[-1, 2], 2^Rational[-1, 2]}, { Rational[-1, 2] 3^Rational[-1, 2], 0}}}]]}, TagBox[GraphicsGroupBox[{ {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[CompressedData[" 1:eJxTTMoPSmVmYGDgAWImKJY1nuC6vPKSPQMUQPn7z1jXp81b8Gw/AXl7dPlV PhEvqra9xmkeVH4/IfvQ+HD7COi3R9OPUz0B99qjuReXPLp9+9HNx6EeLg8A PhCV3Q== "], 0.020399597244776385`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[ 0.7]}], {DiskBox[{0.2886751345948129, 0.}, 0.020399597244776385], InsetBox["1", Offset[{2, 2}, {0.30907473183958933, 0.020399597244776385}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{-0.2886751345948129, -0.7071067811865475}, 0.020399597244776385], InsetBox["2", Offset[{2, 2}, {-0.2682755373500365, -0.6867071839417711}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{-0.2886751345948129, 0.7071067811865475}, 0.020399597244776385], InsetBox["3", Offset[{2, 2}, {-0.2682755373500365, 0.7275063784313238}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{-0.8660254037844386, 0.}, 0.020399597244776385], InsetBox["4", Offset[{2, 2}, {-0.8456258065396622, 0.020399597244776385}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{0.8660254037844386, 0.}, 0.020399597244776385], InsetBox["5", Offset[{2, 2}, {0.886425001029215, 0.020399597244776385}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{0.2886751345948129, -0.7071067811865475}, 0.020399597244776385], InsetBox["6", Offset[{2, 2}, {0.30907473183958933, -0.6867071839417711}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{0.2886751345948129, 0.7071067811865475}, 0.020399597244776385], InsetBox["7", Offset[{2, 2}, {0.30907473183958933, 0.7275063784313238}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{-0.2886751345948129, 0.}, 0.020399597244776385], InsetBox["8", Offset[{2, 2}, {-0.2682755373500365, 0.020399597244776385}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}}}], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->{ "NetworkGraphics", FrontEnd`GraphicsHighlightColor -> Hue[0.8, 1., 0.6]}, FormatType->TraditionalForm, FrameTicks->None]], "Output", CellLabel-> "Out[142]=",ExpressionUUID->"c51a3cb6-a2f5-4d02-af49-66f5cd657d45"] }, Open ]] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["Embedding constructions", "Section",ExpressionUUID->"df2d6f43-d4ae-4b6f-9347-8a3c3e4b265f"], Cell[CellGroupData[{ Cell["MinimalPlanarIntegral", "Subsection",ExpressionUUID->"ff518a5c-ec4b-46d6-b514-c04011394359"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"ShowLabeledGraph", "[", RowBox[{"g", "=", RowBox[{"Graph", "[", RowBox[{ RowBox[{"List", "/@", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"1", ",", "4"}], "}"}], ",", RowBox[{"{", RowBox[{"4", ",", "3"}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "2"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{"6", ",", "5"}], "}"}], ",", RowBox[{"{", RowBox[{"5", ",", "8"}], "}"}], ",", RowBox[{"{", RowBox[{"8", ",", "7"}], "}"}], ",", RowBox[{"{", RowBox[{"7", ",", "6"}], "}"}], ",", RowBox[{"{", RowBox[{"5", ",", "4"}], "}"}], ",", RowBox[{"{", RowBox[{"1", ",", "6"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", "7"}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "8"}], "}"}]}], "}"}]}], ",", RowBox[{"List", "/@", RowBox[{"(", RowBox[{ FractionBox["1", "2"], RowBox[{"Csc", "[", FractionBox["\[Pi]", "4"], "]"}], RowBox[{"Join", "[", "\[IndentingNewLine]", RowBox[{ RowBox[{"2", RowBox[{"Table", "[", RowBox[{ RowBox[{"Through", "[", RowBox[{ RowBox[{"{", RowBox[{"Cos", ",", "Sin"}], "}"}], "[", RowBox[{"2", "\[Pi]", " ", RowBox[{ RowBox[{"(", RowBox[{"k", "+", RowBox[{"1", "/", "2"}]}], ")"}], "/", "4"}]}], "]"}], "]"}], ",", RowBox[{"{", RowBox[{"k", ",", "4"}], "}"}]}], "]"}]}], ",", "\[IndentingNewLine]", RowBox[{"Table", "[", RowBox[{ RowBox[{"Through", "[", RowBox[{ RowBox[{"{", RowBox[{"Cos", ",", "Sin"}], "}"}], "[", RowBox[{"2", "\[Pi]", RowBox[{ RowBox[{"(", " ", RowBox[{"k", "-", ".04"}], ")"}], "/", "4"}]}], "]"}], "]"}], ",", RowBox[{"{", RowBox[{"k", ",", "4"}], "}"}]}], "]"}]}], "]"}]}], ")"}]}]}], "]"}]}], "]"}]], "Input",ExpressionUUID->"878eab9a-67d2-4fa8-9342-\ 05501f4c028f"], Cell[BoxData[ GraphicsBox[{{ {GrayLevel[0], Thickness[0.005], LineBox[{{0., 1.}, {1., 1.}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{1., 1.}, {1., 0.}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{1., 0.}, {0., 0.}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0., 0.}, {0., 1.}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.14714426626147215`, 0.5221998010767019}, {0.5221998010767019, 0.8528557337385279}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.5221998010767019, 0.8528557337385279}, {0.8528557337385279, 0.4778001989232981}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.8528557337385279, 0.4778001989232981}, {0.47780019892329817`, 0.14714426626147215`}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.47780019892329817`, 0.14714426626147215`}, { 0.14714426626147215`, 0.5221998010767019}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.5221998010767019, 0.8528557337385279}, {1., 1.}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0., 1.}, {0.14714426626147215`, 0.5221998010767019}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0., 0.}, {0.47780019892329817`, 0.14714426626147215`}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{1., 0.}, {0.8528557337385279, 0.4778001989232981}}], {GrayLevel[0]}}}, { {RGBColor[1, 0, 0], {PointSize[0.05], PointBox[{0., 1.}]}, {GrayLevel[0], InsetBox["1", Scaled[{-0.02, -0.02}, {0., 1.}], {1, 0}]}, {GrayLevel[0]}}, {RGBColor[1, 0, 0], {PointSize[0.05], PointBox[{0., 0.}]}, {GrayLevel[0], InsetBox["2", Scaled[{-0.02, -0.02}, {0., 0.}], {1, 0}]}, {GrayLevel[0]}}, {RGBColor[1, 0, 0], {PointSize[0.05], PointBox[{1., 0.}]}, {GrayLevel[0], InsetBox["3", Scaled[{-0.02, -0.02}, {1., 0.}], {1, 0}]}, {GrayLevel[0]}}, {RGBColor[1, 0, 0], {PointSize[0.05], PointBox[{1., 1.}]}, {GrayLevel[0], InsetBox["4", Scaled[{-0.02, -0.02}, {1., 1.}], {1, 0}]}, {GrayLevel[0]}}, {RGBColor[1, 0, 0], {PointSize[0.05], PointBox[{0.5221998010767019, 0.8528557337385279}]}, {GrayLevel[0], InsetBox["5", Scaled[{-0.02, -0.02}, {0.5221998010767019, 0.8528557337385279}], \ {1, 0}]}, {GrayLevel[0]}}, {RGBColor[1, 0, 0], {PointSize[0.05], PointBox[{0.14714426626147215`, 0.5221998010767019}]}, {GrayLevel[0], InsetBox["6", Scaled[{-0.02, -0.02}, {0.14714426626147215, 0.5221998010767019}], \ {1, 0}]}, {GrayLevel[0]}}, {RGBColor[1, 0, 0], {PointSize[0.05], PointBox[{0.47780019892329817`, 0.14714426626147215`}]}, {GrayLevel[0], InsetBox["7", Scaled[{-0.02, -0.02}, {0.47780019892329817, 0.14714426626147215}], \ {1, 0}]}, {GrayLevel[0]}}, {RGBColor[1, 0, 0], {PointSize[0.05], PointBox[{0.8528557337385279, 0.4778001989232981}]}, {GrayLevel[0], InsetBox["8", Scaled[{-0.02, -0.02}, {0.8528557337385279, 0.4778001989232981}], \ {1, 0}]}, {GrayLevel[0]}}}}, AlignmentPoint->Center, AspectRatio->Automatic, Axes->False, AxesLabel->None, AxesOrigin->Automatic, AxesStyle->{}, Background->None, BaseStyle->{}, BaselinePosition->Automatic, ColorOutput->Automatic, ContentSelectable->Automatic, CoordinatesToolOptions:>Automatic, DisplayFunction:>$DisplayFunction, Epilog->{}, FormatType:>TraditionalForm, Frame->False, FrameLabel->None, FrameStyle->{}, FrameTicks->Automatic, FrameTicksStyle->{}, GridLines->None, GridLinesStyle->{}, ImageMargins->0., ImagePadding->All, ImageSize->Automatic, ImageSizeRaw->Automatic, LabelStyle->{}, Method->Automatic, PlotLabel->None, PlotRange->All, PlotRangeClipping->False, PlotRangePadding->Automatic, PlotRegion->Automatic, PreserveImageOptions->Automatic, Prolog->{}, RotateLabel->True, Ticks->Automatic, TicksStyle->{}]], "Output",ExpressionUUID->"a35e2233-0a9c-4fe1-81a3-\ 2c50200071b6"] }, Closed]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"Solve", "[", RowBox[{ RowBox[{ RowBox[{"Norm", "[", RowBox[{ FractionBox["1", "2"], RowBox[{"Csc", "[", FractionBox["\[Pi]", "4"], "]"}], RowBox[{"(", RowBox[{ RowBox[{"2", RowBox[{"Through", "[", RowBox[{ RowBox[{"{", RowBox[{"Cos", ",", "Sin"}], "}"}], "[", RowBox[{"2", "\[Pi]", RowBox[{ RowBox[{"(", RowBox[{"4", "+", RowBox[{"1", "/", "2"}]}], ")"}], "/", "4"}]}], "]"}], "]"}]}], "-", RowBox[{"Through", "[", RowBox[{ RowBox[{"{", RowBox[{"Cos", ",", "Sin"}], "}"}], "[", RowBox[{"2", "\[Pi]", " ", RowBox[{ RowBox[{"(", RowBox[{"4", "-", "x"}], ")"}], "/", "4"}]}], "]"}], "]"}]}], ")"}]}], "]"}], "\[Equal]", "1"}], ",", "x"}], "]"}], "//", "FullSimplify"}]], "Input",ExpressionUUID->"de9b7b4f-c5e3-45d5-9ffc-\ 4d34aa3c2f5a"], Cell[BoxData[ RowBox[{ RowBox[{"Solve", "::", "\<\"ifun\"\>"}], ":", " ", "\<\"\\!\\(\\*StyleBox[\\\"\\\\\\\"Inverse functions are being used by \ \\\\\\\"\\\", \\\"MT\\\"]\\)\[NoBreak]\\!\\(\\*StyleBox[\\!\\(Solve\\), \ \\\"MT\\\"]\\)\[NoBreak]\\!\\(\\*StyleBox[\\\"\\\\\\\", so some solutions may \ not be found; use Reduce for complete solution information.\\\\\\\"\\\", \ \\\"MT\\\"]\\) \\!\\(\\*ButtonBox[\\\"\[RightSkeleton]\\\", \ ButtonStyle->\\\"Link\\\", ButtonFrame->None, \ ButtonData:>\\\"paclet:ref/message/Solve/ifun\\\", ButtonNote -> \ \\\"Solve::ifun\\\"]\\)\"\>"}]], "Message", \ "MSG",ExpressionUUID->"e83667b9-0f2e-41be-82ba-07f81a9c251e"], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"x", "\[Rule]", RowBox[{"-", FractionBox[ RowBox[{"2", " ", RowBox[{"ArcCos", "[", RowBox[{"-", FractionBox[ RowBox[{ RowBox[{"-", "3"}], "+", SqrtBox["7"]}], RowBox[{"4", " ", SqrtBox["2"]}]]}], "]"}]}], "\[Pi]"]}]}], "}"}], ",", RowBox[{"{", RowBox[{"x", "\[Rule]", RowBox[{"-", FractionBox[ RowBox[{"2", " ", RowBox[{"ArcCos", "[", FractionBox[ RowBox[{"3", "+", SqrtBox["7"]}], RowBox[{"4", " ", SqrtBox["2"]}]], "]"}]}], "\[Pi]"]}]}], "}"}]}], "}"}]], "Output",E\ xpressionUUID->"22b55929-2f9e-4220-a1b5-215414ddb90f"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{"FullSimplify", "[", RowBox[{"Norm", "[", RowBox[{"Subtract", "@@", RowBox[{ RowBox[{"Vertices", "[", "g", "]"}], "[", RowBox[{"[", "#", "]"}], "]"}]}], "]"}], "]"}], "&"}], "/@", RowBox[{"Edges", "[", "g", "]"}]}]], "Input",ExpressionUUID->"cb8941d1-f8fe-\ 4668-9e9d-95a60ab7fe5e"], Cell[BoxData[ RowBox[{"{", RowBox[{ "2", ",", "2", ",", "2", ",", "2", ",", "0.9999999999999999`", ",", "0.9999999999999999`", ",", "0.9999999999999999`", ",", "1.0000000000000004`", ",", "0.9998889242006238`", ",", "0.9998889242006237`", ",", "0.999888924200624`", ",", "0.9998889242006239`"}], "}"}]], "Output",ExpressionUUID->"e27edf18-438f-\ 487c-b0e6-f3a575d13cf5"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"ShowLabeledGraph", "[", RowBox[{"g", "=", RowBox[{"Graph", "[", RowBox[{ RowBox[{"List", "/@", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"1", ",", "4"}], "}"}], ",", RowBox[{"{", RowBox[{"4", ",", "3"}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "2"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{"6", ",", "5"}], "}"}], ",", RowBox[{"{", RowBox[{"5", ",", "8"}], "}"}], ",", RowBox[{"{", RowBox[{"8", ",", "7"}], "}"}], ",", RowBox[{"{", RowBox[{"7", ",", "6"}], "}"}], ",", RowBox[{"{", RowBox[{"5", ",", "4"}], "}"}], ",", RowBox[{"{", RowBox[{"1", ",", "6"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", "7"}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "8"}], "}"}]}], "}"}]}], ",", RowBox[{"FullSimplify", "[", RowBox[{"List", "/@", RowBox[{"(", RowBox[{ FractionBox["1", "2"], RowBox[{"Csc", "[", FractionBox["\[Pi]", "4"], "]"}], RowBox[{"Join", "[", "\[IndentingNewLine]", RowBox[{ RowBox[{"2", RowBox[{"Table", "[", RowBox[{ RowBox[{"Through", "[", RowBox[{ RowBox[{"{", RowBox[{"Cos", ",", "Sin"}], "}"}], "[", RowBox[{"2", "\[Pi]", " ", RowBox[{ RowBox[{"(", RowBox[{"k", "+", RowBox[{"1", "/", "2"}]}], ")"}], "/", "4"}]}], "]"}], "]"}], ",", RowBox[{"{", RowBox[{"k", ",", "4"}], "}"}]}], "]"}]}], ",", "\[IndentingNewLine]", RowBox[{"Table", "[", RowBox[{ RowBox[{"Through", "[", RowBox[{ RowBox[{"{", RowBox[{"Cos", ",", "Sin"}], "}"}], "[", RowBox[{"2", "\[Pi]", RowBox[{ RowBox[{"(", " ", RowBox[{"k", "-", FractionBox[ RowBox[{"2", " ", RowBox[{"ArcCos", "[", FractionBox[ RowBox[{"3", "+", SqrtBox["7"]}], RowBox[{"4", " ", SqrtBox["2"]}]], "]"}]}], "\[Pi]"]}], ")"}], "/", "4"}]}], "]"}], "]"}], ",", RowBox[{"{", RowBox[{"k", ",", "4"}], "}"}]}], "]"}]}], "]"}]}], ")"}]}], "]"}]}], "]"}]}], "]"}]], "Input",ExpressionUUID->"218f292f-a043-41e8-\ 90a5-4ce914925fd3"], Cell[BoxData[ GraphicsBox[{{ {GrayLevel[0], Thickness[0.005], LineBox[{{0., 1.}, {1., 1.}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{1., 1.}, {1., 0.}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{1., 0.}, {0., 0.}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0., 0.}, {0., 1.}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.14714054305846308`, 0.5221405430584631}, {0.5221405430584631, 0.8528594569415369}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.5221405430584631, 0.8528594569415369}, {0.8528594569415369, 0.4778594569415369}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.8528594569415369, 0.4778594569415369}, {0.4778594569415369, 0.14714054305846308`}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.4778594569415369, 0.14714054305846308`}, { 0.14714054305846308`, 0.5221405430584631}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.5221405430584631, 0.8528594569415369}, {1., 1.}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0., 1.}, {0.14714054305846308`, 0.5221405430584631}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0., 0.}, {0.4778594569415369, 0.14714054305846308`}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{1., 0.}, {0.8528594569415369, 0.4778594569415369}}], {GrayLevel[0]}}}, { {RGBColor[1, 0, 0], {PointSize[0.05], PointBox[{0., 1.}]}, {GrayLevel[0], InsetBox["1", Scaled[{-0.02, -0.02}, {0., 1.}], {1, 0}]}, {GrayLevel[0]}}, {RGBColor[1, 0, 0], {PointSize[0.05], PointBox[{0., 0.}]}, {GrayLevel[0], InsetBox["2", Scaled[{-0.02, -0.02}, {0., 0.}], {1, 0}]}, {GrayLevel[0]}}, {RGBColor[1, 0, 0], {PointSize[0.05], PointBox[{1., 0.}]}, {GrayLevel[0], InsetBox["3", Scaled[{-0.02, -0.02}, {1., 0.}], {1, 0}]}, {GrayLevel[0]}}, {RGBColor[1, 0, 0], {PointSize[0.05], PointBox[{1., 1.}]}, {GrayLevel[0], InsetBox["4", Scaled[{-0.02, -0.02}, {1., 1.}], {1, 0}]}, {GrayLevel[0]}}, {RGBColor[1, 0, 0], {PointSize[0.05], PointBox[{0.5221405430584631, 0.8528594569415369}]}, {GrayLevel[0], InsetBox["5", Scaled[{-0.02, -0.02}, {0.5221405430584631, 0.8528594569415369}], \ {1, 0}]}, {GrayLevel[0]}}, {RGBColor[1, 0, 0], {PointSize[0.05], PointBox[{0.14714054305846308`, 0.5221405430584631}]}, {GrayLevel[0], InsetBox["6", Scaled[{-0.02, -0.02}, {0.14714054305846308, 0.5221405430584631}], \ {1, 0}]}, {GrayLevel[0]}}, {RGBColor[1, 0, 0], {PointSize[0.05], PointBox[{0.4778594569415369, 0.14714054305846308`}]}, {GrayLevel[0], InsetBox["7", Scaled[{-0.02, -0.02}, {0.4778594569415369, 0.14714054305846308}], \ {1, 0}]}, {GrayLevel[0]}}, {RGBColor[1, 0, 0], {PointSize[0.05], PointBox[{0.8528594569415369, 0.4778594569415369}]}, {GrayLevel[0], InsetBox["8", Scaled[{-0.02, -0.02}, {0.8528594569415369, 0.4778594569415369}], \ {1, 0}]}, {GrayLevel[0]}}}}, AlignmentPoint->Center, AspectRatio->Automatic, Axes->False, AxesLabel->None, AxesOrigin->Automatic, AxesStyle->{}, Background->None, BaseStyle->{}, BaselinePosition->Automatic, ColorOutput->Automatic, ContentSelectable->Automatic, CoordinatesToolOptions:>Automatic, DisplayFunction:>$DisplayFunction, Epilog->{}, FormatType:>TraditionalForm, Frame->False, FrameLabel->None, FrameStyle->{}, FrameTicks->Automatic, FrameTicksStyle->{}, GridLines->None, GridLinesStyle->{}, ImageMargins->0., ImagePadding->All, ImageSize->Automatic, ImageSizeRaw->Automatic, LabelStyle->{}, Method->Automatic, PlotLabel->None, PlotRange->All, PlotRangeClipping->False, PlotRangePadding->Automatic, PlotRegion->Automatic, PreserveImageOptions->Automatic, Prolog->{}, RotateLabel->True, Ticks->Automatic, TicksStyle->{}]], "Output",ExpressionUUID->"2a0be097-70d7-48ad-9370-\ 2e1012ebbfdf"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{"FullSimplify", "[", RowBox[{"Norm", "[", RowBox[{"Subtract", "@@", RowBox[{ RowBox[{"Vertices", "[", "g", "]"}], "[", RowBox[{"[", "#", "]"}], "]"}]}], "]"}], "]"}], "&"}], "/@", RowBox[{"Edges", "[", "g", "]"}]}]], "Input",ExpressionUUID->"a83c0212-cad4-\ 46ae-beb9-2499e97a44d3"], Cell[BoxData[ RowBox[{"{", RowBox[{ "2", ",", "2", ",", "2", ",", "2", ",", "1", ",", "1", ",", "1", ",", "1", ",", "1", ",", "1", ",", "1", ",", "1"}], "}"}]], "Output",ExpressionUUID->\ "e0523f47-5898-4a2f-a486-55fb2807ce55"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Vertices", "[", "g", "]"}]], "Input",ExpressionUUID->"f141c7b3-ae97-4534-8a50-34d92e5d8466"], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"-", "1"}], ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "1"}], ",", RowBox[{"-", "1"}]}], "}"}], ",", RowBox[{"{", RowBox[{"1", ",", RowBox[{"-", "1"}]}], "}"}], ",", RowBox[{"{", RowBox[{"1", ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ FractionBox["1", "8"], " ", RowBox[{"(", RowBox[{"3", "-", SqrtBox["7"]}], ")"}]}], ",", RowBox[{ FractionBox["1", "8"], " ", RowBox[{"(", RowBox[{"3", "+", SqrtBox["7"]}], ")"}]}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ FractionBox["1", "8"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "3"}], "-", SqrtBox["7"]}], ")"}]}], ",", RowBox[{ FractionBox["1", "8"], " ", RowBox[{"(", RowBox[{"3", "-", SqrtBox["7"]}], ")"}]}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ FractionBox["1", "8"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "3"}], "+", SqrtBox["7"]}], ")"}]}], ",", RowBox[{ FractionBox["1", "8"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "3"}], "-", SqrtBox["7"]}], ")"}]}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ FractionBox["1", "8"], " ", RowBox[{"(", RowBox[{"3", "+", SqrtBox["7"]}], ")"}]}], ",", RowBox[{ FractionBox["1", "8"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "3"}], "+", SqrtBox["7"]}], ")"}]}]}], "}"}]}], "}"}]], "Output",ExpressionUUID->\ "5c15f0d2-3fc9-4d1c-b215-55412cd7fde5"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"RecognizeGraph", "[", "g", "]"}]], "Input",ExpressionUUID->"28033e5a-3f89-49c0-8634-552a0481f691"], Cell[BoxData[ InterpretationBox[ RowBox[{"\<\"Getting index for \"\>", "\[InvisibleSpace]", "\<\"CanonicalForm\"\>", "\[InvisibleSpace]", "\<\" (first time only)...\"\>"}], SequenceForm["Getting index for ", "CanonicalForm", " (first time only)..."], Editable->False]], "Print",ExpressionUUID->"dc6e0e9d-ff02-42e7-885a-\ 08f35481d518"], Cell[BoxData["\<\"CubicalGraph\"\>"], "Output",ExpressionUUID->"2d48bc6d-1f17-4f3c-b3a7-f1ec33729958"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"IntegralDrawing", "[", "g", "]"}]], "Input",ExpressionUUID->"8606a1f5-518b-4a46-ac2d-31ae10264fd3"], Cell[BoxData[ GraphicsBox[{ TagBox[ GraphicsComplexBox[{{-1., 1.}, {-1., -1.}, {1., -1.}, {1., 1.}, { 0.04428108611692616, 0.7057189138830738}, {-0.7057189138830738, 0.04428108611692616}, {-0.04428108611692616, -0.7057189138830738}, { 0.7057189138830738, -0.04428108611692616}}, { {GrayLevel[0], LineBox[{{1, 2}, {1, 4}, {1, 6}, {2, 3}, {2, 7}, {3, 4}, {3, 8}, {4, 5}, {5, 6}, {5, 8}, {6, 7}, {7, 8}}]}, {RGBColor[1, 0, 0], AbsolutePointSize[5], TagBox[ TooltipBox[PointBox[1], "1"], Annotation[#, 1, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[2], "2"], Annotation[#, 2, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[3], "3"], Annotation[#, 3, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[4], "4"], Annotation[#, 4, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[5], "5"], Annotation[#, 5, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[6], "6"], Annotation[#, 6, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[7], "7"], Annotation[#, 7, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[8], "8"], Annotation[#, 8, "Tooltip"]& ]}}], Annotation[#, VertexCoordinateRules -> {{-1., 1.}, {-1., -1.}, {1., -1.}, {1., 1.}, { 0.04428108611692616, 0.7057189138830738}, {-0.7057189138830738, 0.04428108611692616}, {-0.04428108611692616, -0.7057189138830738}, { 0.7057189138830738, -0.04428108611692616}}]& ], { InsetBox["\<\" 2 \"\>", {0, 1}, Background->GrayLevel[1]], InsetBox["\<\" 2 \"\>", {1, 0}, Background->GrayLevel[1]], InsetBox["\<\" 2 \"\>", {0, -1}, Background->GrayLevel[1]], InsetBox["\<\" 2 \"\>", {-1, 0}, Background->GrayLevel[1]], InsetBox["\<\" 1 \"\>", NCache[{Rational[1, 2] (Rational[1, 8] (-3 - 7^Rational[1, 2]) + Rational[1, 8] (3 - 7^Rational[1, 2])), Rational[1, 2] (Rational[1, 8] (3 - 7^Rational[1, 2]) + Rational[1, 8] (3 + 7^Rational[1, 2]))}, {-0.33071891388307384`, 0.375}], Background->GrayLevel[1]], InsetBox["\<\" 1 \"\>", NCache[{Rational[1, 2] (Rational[1, 8] (3 - 7^Rational[1, 2]) + Rational[1, 8] (3 + 7^Rational[1, 2])), Rational[1, 2] (Rational[1, 8] (-3 + 7^Rational[1, 2]) + Rational[1, 8] (3 + 7^Rational[1, 2]))}, {0.375, 0.33071891388307384`}], Background->GrayLevel[1]], InsetBox["\<\" 1 \"\>", NCache[{Rational[1, 2] (Rational[1, 8] (-3 + 7^Rational[1, 2]) + Rational[1, 8] (3 + 7^Rational[1, 2])), Rational[1, 2] (Rational[1, 8] (-3 - 7^Rational[1, 2]) + Rational[1, 8] (-3 + 7^Rational[1, 2]))}, { 0.33071891388307384`, -0.375}], Background->GrayLevel[1]], InsetBox["\<\" 1 \"\>", NCache[{Rational[1, 2] (Rational[1, 8] (-3 - 7^Rational[1, 2]) + Rational[1, 8] (-3 + 7^Rational[1, 2])), Rational[1, 2] (Rational[1, 8] (-3 - 7^Rational[1, 2]) + Rational[1, 8] (3 - 7^ Rational[1, 2]))}, {-0.375, -0.33071891388307384`}], Background->GrayLevel[1]], InsetBox["\<\" 1 \"\>", NCache[{Rational[1, 2] (1 + Rational[1, 8] (3 - 7^Rational[1, 2])), Rational[1, 2] (1 + Rational[1, 8] (3 + 7^Rational[1, 2]))}, { 0.5221405430584631, 0.8528594569415369}], Background->GrayLevel[1]], InsetBox["\<\" 1 \"\>", NCache[{Rational[1, 2] (-1 + Rational[1, 8] (-3 - 7^Rational[1, 2])), Rational[1, 2] (1 + Rational[1, 8] (3 - 7^Rational[1, 2]))}, {-0.8528594569415369, 0.5221405430584631}], Background->GrayLevel[1]], InsetBox["\<\" 1 \"\>", NCache[{Rational[1, 2] (-1 + Rational[1, 8] (-3 + 7^Rational[1, 2])), Rational[1, 2] (-1 + Rational[1, 8] (-3 - 7^ Rational[1, 2]))}, {-0.5221405430584631, -0.8528594569415369}], Background->GrayLevel[1]], InsetBox["\<\" 1 \"\>", NCache[{Rational[1, 2] (1 + Rational[1, 8] (3 + 7^Rational[1, 2])), Rational[1, 2] (-1 + Rational[1, 8] (-3 + 7^Rational[1, 2]))}, { 0.8528594569415369, -0.5221405430584631}], Background->GrayLevel[1]]}}, AspectRatio->Automatic, FrameTicks->None, ImageSize->{176., Automatic}, PlotRange->All, PlotRangePadding->Scaled[0.1]]], "Output",ExpressionUUID->"9340d378-25ab-\ 48a6-a068-72156002f845"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Insert", "[", RowBox[{ RowBox[{"GraphData", "[", RowBox[{"\"\\"", ",", "\"\\""}], "]"}], ",", RowBox[{"ToCommonEdges", "[", RowBox[{"g", ",", "\"\\""}], "]"}], ",", "8"}], "]"}]], "Input",ExpressionUUID->"2e35a3c3-61a2-4476-831f-faa181f2a878"], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"-", "0.333`"}], ",", RowBox[{"-", "0.333`"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "1.`"}], ",", RowBox[{"-", "1.`"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.333`"}], ",", "0.333`"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "1.`"}], ",", "1.`"}], "}"}], ",", RowBox[{"{", RowBox[{"0.333`", ",", RowBox[{"-", "0.333`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"1.`", ",", RowBox[{"-", "1.`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.333`", ",", "0.333`"}], "}"}], ",", RowBox[{"{", RowBox[{"1.`", ",", "1.`"}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"1", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", RowBox[{"-", "1"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "1"}], ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", "2"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "2"}], ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", RowBox[{"-", "2"}]}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"0.707`", ",", "0.707`"}], "}"}], ",", RowBox[{"{", RowBox[{"0.`", ",", "1.`"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "1.`"}], ",", "0.`"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.707`"}], ",", "0.707`"}], "}"}], ",", RowBox[{"{", RowBox[{"1.`", ",", "0.`"}], "}"}], ",", RowBox[{"{", RowBox[{"0.707`", ",", RowBox[{"-", "0.707`"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.707`"}], ",", RowBox[{"-", "0.707`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.`", ",", RowBox[{"-", "1.`"}]}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"0.707`", ",", "0.707`"}], "}"}], ",", RowBox[{"{", RowBox[{"0.`", ",", "1.`"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.707`"}], ",", "0.707`"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "1.`"}], ",", "0.`"}], "}"}], ",", RowBox[{"{", RowBox[{"0.707`", ",", RowBox[{"-", "0.707`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"1.`", ",", "0.`"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.707`"}], ",", RowBox[{"-", "0.707`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.`", ",", RowBox[{"-", "1.`"}]}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"0.`", ",", "1.`"}], "}"}], ",", RowBox[{"{", RowBox[{"0.`", ",", "0.`"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.5`"}], ",", "1.5`"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.5`"}], ",", "0.5`"}], "}"}], ",", RowBox[{"{", RowBox[{"1.`", ",", "1.`"}], "}"}], ",", RowBox[{"{", RowBox[{"1.`", ",", "0.`"}], "}"}], ",", RowBox[{"{", RowBox[{"0.5`", ",", "1.5`"}], "}"}], ",", RowBox[{"{", RowBox[{"0.5`", ",", "0.5`"}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"0", ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", FractionBox["1", SqrtBox["2"]]}], ",", RowBox[{"1", "+", FractionBox["1", SqrtBox["2"]]}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", FractionBox["1", SqrtBox["2"]]}], ",", FractionBox["1", SqrtBox["2"]]}], "}"}], ",", RowBox[{"{", RowBox[{"1", ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{"1", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"1", "-", FractionBox["1", SqrtBox["2"]]}], ",", RowBox[{"1", "+", FractionBox["1", SqrtBox["2"]]}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"1", "-", FractionBox["1", SqrtBox["2"]]}], ",", FractionBox["1", SqrtBox["2"]]}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"-", "1.`"}], ",", "0.`"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.413`"}], ",", "0.743`"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.248`"}], ",", "0.`"}], "}"}], ",", RowBox[{"{", RowBox[{"0.411`", ",", "0.743`"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.412`"}], ",", RowBox[{"-", "0.742`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.247`", ",", "0.001`"}], "}"}], ",", RowBox[{"{", RowBox[{"0.411`", ",", RowBox[{"-", "0.742`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.998`", ",", "0.001`"}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"-", "1"}], ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "1"}], ",", RowBox[{"-", "1"}]}], "}"}], ",", RowBox[{"{", RowBox[{"1", ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{"1", ",", RowBox[{"-", "1"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ FractionBox["1", "8"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "3"}], "-", SqrtBox["7"]}], ")"}]}], ",", RowBox[{ FractionBox["1", "8"], " ", RowBox[{"(", RowBox[{"3", "-", SqrtBox["7"]}], ")"}]}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ FractionBox["1", "8"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "3"}], "+", SqrtBox["7"]}], ")"}]}], ",", RowBox[{ FractionBox["1", "8"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "3"}], "-", SqrtBox["7"]}], ")"}]}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ FractionBox["1", "8"], " ", RowBox[{"(", RowBox[{"3", "-", SqrtBox["7"]}], ")"}]}], ",", RowBox[{ FractionBox["1", "8"], " ", RowBox[{"(", RowBox[{"3", "+", SqrtBox["7"]}], ")"}]}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ FractionBox["1", "8"], " ", RowBox[{"(", RowBox[{"3", "+", SqrtBox["7"]}], ")"}]}], ",", RowBox[{ FractionBox["1", "8"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "3"}], "+", SqrtBox["7"]}], ")"}]}]}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"1.`", ",", RowBox[{"-", "1.5`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"2.`", ",", RowBox[{"-", "0.5`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"2.`", ",", "0.5`"}], "}"}], ",", RowBox[{"{", RowBox[{"1.`", ",", "1.5`"}], "}"}], ",", RowBox[{"{", RowBox[{"2.`", ",", "1.5`"}], "}"}], ",", RowBox[{"{", RowBox[{"1.`", ",", "0.5`"}], "}"}], ",", RowBox[{"{", RowBox[{"1.`", ",", RowBox[{"-", "0.5`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"2.`", ",", RowBox[{"-", "1.5`"}]}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"1.`", ",", "0.`"}], "}"}], ",", RowBox[{"{", RowBox[{"0.5`", ",", "0.866`"}], "}"}], ",", RowBox[{"{", RowBox[{"0.5`", ",", RowBox[{"-", "0.866`"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.5`"}], ",", RowBox[{"-", "0.866`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.3484`", ",", "0.3587`"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.5`"}], ",", "0.866`"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.3484`"}], ",", RowBox[{"-", "0.3587`"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "1.`"}], ",", "0.`"}], "}"}]}], "}"}]}], "}"}]], "Output",\ ExpressionUUID->"03c42e72-3150-4a1c-914a-1ca3f61a564c"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"GetGraphData", "[", RowBox[{"\"\\"", ",", "\"\\""}], "]"}]], "Input",Expre\ ssionUUID->"f2c8ba97-bc80-4162-b095-89b4c8fe592b"], Cell[BoxData["\<\"Reading file database...\"\>"], "Print",ExpressionUUID->"4fd7ed50-75bc-4c57-9462-b2a202428ce0"], Cell[BoxData["27"], "Output",ExpressionUUID->"8f1bd00e-9ff7-495b-9ca4-44dcb02d5557"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["UnitDistance", "Subsection",ExpressionUUID->"7ca66538-f244-46b0-8d52-e7a079d9c5a2"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"With", "[", RowBox[{ RowBox[{"{", RowBox[{"x", "=", RowBox[{"1", "/", SqrtBox["2"]}]}], "}"}], ",", RowBox[{"ShowLabeledGraph", "[", RowBox[{"g", "=", RowBox[{"ChangeVertices", "[", RowBox[{ RowBox[{ RowBox[{"GraphData", "[", RowBox[{"\"\\"", ",", "\"\\""}], "]"}], "[", RowBox[{"[", "5", "]"}], "]"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"0", ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "x"}], ",", RowBox[{"1", "+", "x"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "x"}], ",", "x"}], "}"}], ",", RowBox[{"{", RowBox[{"1", ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{"1", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"1", "-", "x"}], ",", RowBox[{"1", "+", "x"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"1", "-", "x"}], ",", "x"}], "}"}]}], "}"}]}], "]"}]}], "]"}]}], "]"}]], "Input",ExpressionUUID->"4b6bcd26-7edf-401d-a1f1-\ d3f2804404f9"], Cell[BoxData[ GraphicsBox[{{ {GrayLevel[0], Thickness[0.005], LineBox[{{0.2928932188134525, 0.7071067811865476}, {0.2928932188134525, 0.2928932188134525}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.2928932188134525, 0.7071067811865476}, {0., 1.}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.2928932188134525, 0.7071067811865476}, {0.7071067811865476, 0.7071067811865476}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.2928932188134525, 0.2928932188134525}, {0., 0.5857864376269051}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.2928932188134525, 0.2928932188134525}, {0.7071067811865476, 0.2928932188134525}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0., 1.}, {0., 0.5857864376269051}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0., 1.}, {0.4142135623730951, 1.}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0., 0.5857864376269051}, {0.4142135623730951, 0.5857864376269051}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.7071067811865476, 0.7071067811865476}, {0.7071067811865476, 0.2928932188134525}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.7071067811865476, 0.7071067811865476}, {0.4142135623730951, 1.}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.7071067811865476, 0.2928932188134525}, {0.4142135623730951, 0.5857864376269051}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.4142135623730951, 1.}, {0.4142135623730951, 0.5857864376269051}}], {GrayLevel[0]}}}, { {RGBColor[1, 0, 0], {PointSize[0.05], PointBox[{0.2928932188134525, 0.7071067811865476}]}, {GrayLevel[0], InsetBox["1", Scaled[{-0.02, -0.02}, {0.2928932188134525, 0.7071067811865476}], \ {1, 0}]}, {GrayLevel[0]}}, {RGBColor[1, 0, 0], {PointSize[0.05], PointBox[{0.2928932188134525, 0.2928932188134525}]}, {GrayLevel[0], InsetBox["2", Scaled[{-0.02, -0.02}, {0.2928932188134525, 0.2928932188134525}], \ {1, 0}]}, {GrayLevel[0]}}, {RGBColor[1, 0, 0], {PointSize[0.05], PointBox[{0., 1.}]}, {GrayLevel[0], InsetBox["3", Scaled[{-0.02, -0.02}, {0., 1.}], {1, 0}]}, {GrayLevel[0]}}, {RGBColor[1, 0, 0], {PointSize[0.05], PointBox[{0., 0.5857864376269051}]}, {GrayLevel[0], InsetBox["4", Scaled[{-0.02, -0.02}, {0., 0.5857864376269051}], {1, 0}]}, {GrayLevel[0]}}, {RGBColor[1, 0, 0], {PointSize[0.05], PointBox[{0.7071067811865476, 0.7071067811865476}]}, {GrayLevel[0], InsetBox["5", Scaled[{-0.02, -0.02}, {0.7071067811865476, 0.7071067811865476}], \ {1, 0}]}, {GrayLevel[0]}}, {RGBColor[1, 0, 0], {PointSize[0.05], PointBox[{0.7071067811865476, 0.2928932188134525}]}, {GrayLevel[0], InsetBox["6", Scaled[{-0.02, -0.02}, {0.7071067811865476, 0.2928932188134525}], \ {1, 0}]}, {GrayLevel[0]}}, {RGBColor[1, 0, 0], {PointSize[0.05], PointBox[{0.4142135623730951, 1.}]}, {GrayLevel[0], InsetBox["7", Scaled[{-0.02, -0.02}, {0.4142135623730951, 1.}], {1, 0}]}, {GrayLevel[0]}}, {RGBColor[1, 0, 0], {PointSize[0.05], PointBox[{0.4142135623730951, 0.5857864376269051}]}, {GrayLevel[0], InsetBox["8", Scaled[{-0.02, -0.02}, {0.4142135623730951, 0.5857864376269051}], \ {1, 0}]}, {GrayLevel[0]}}}}, AlignmentPoint->Center, AspectRatio->Automatic, Axes->False, AxesLabel->None, AxesOrigin->Automatic, AxesStyle->{}, Background->None, BaseStyle->{}, BaselinePosition->Automatic, ColorOutput->Automatic, ContentSelectable->Automatic, CoordinatesToolOptions:>Automatic, DisplayFunction:>$DisplayFunction, Epilog->{}, FormatType:>TraditionalForm, Frame->False, FrameLabel->None, FrameStyle->{}, FrameTicks->Automatic, FrameTicksStyle->{}, GridLines->None, GridLinesStyle->{}, ImageMargins->0., ImagePadding->All, ImageSize->Automatic, ImageSizeRaw->Automatic, LabelStyle->{}, Method->Automatic, PlotLabel->None, PlotRange->All, PlotRangeClipping->False, PlotRangePadding->Automatic, PlotRegion->Automatic, PreserveImageOptions->Automatic, Prolog->{}, RotateLabel->True, Ticks->Automatic, TicksStyle->{}]], "Output",ExpressionUUID->"4a966917-3255-4737-a32f-\ a83d75f80d69"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Norm", "/@", RowBox[{"Subtract", "@@@", RowBox[{"(", RowBox[{ RowBox[{"Edges", "[", "g", "]"}], "/.", RowBox[{"Thread", "[", RowBox[{ RowBox[{"Range", "[", "8", "]"}], "\[Rule]", RowBox[{"Vertices", "[", "g", "]"}]}], "]"}]}], ")"}]}]}]], "Input",Exp\ ressionUUID->"dc65dc93-73ae-4320-9967-7c5f74de0612"], Cell[BoxData[ RowBox[{"{", RowBox[{ "1", ",", "1", ",", "1", ",", "1", ",", "1", ",", "1", ",", "1", ",", "1", ",", "1", ",", "1", ",", "1", ",", "1"}], "}"}]], "Output",ExpressionUUID->\ "07f20a24-0aff-45dc-aff1-5997637d1343"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"GraphPlot", "[", RowBox[{ RowBox[{"With", "[", RowBox[{ RowBox[{"{", RowBox[{"x", "=", RowBox[{"1", "/", SqrtBox["2"]}]}], "}"}], ",", RowBox[{"g", "=", RowBox[{"ChangeVertices", "[", RowBox[{ RowBox[{ RowBox[{"GraphData", "[", RowBox[{"\"\\"", ",", "\"\\""}], "]"}], "[", RowBox[{"[", "5", "]"}], "]"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"0", ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "x"}], ",", RowBox[{"1", "+", "x"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "x"}], ",", "x"}], "}"}], ",", RowBox[{"{", RowBox[{"1", ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{"1", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"1", "-", "x"}], ",", RowBox[{"1", "+", "x"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"1", "-", "x"}], ",", "x"}], "}"}]}], "}"}]}], "]"}]}]}], "]"}], ",", RowBox[{"Method", "\[Rule]", "None"}], ",", RowBox[{"ImageSize", "\[Rule]", "175"}]}], "]"}]], "Input",ExpressionUUID->\ "8377d618-d791-4198-ac46-532a777e5bac"], Cell[BoxData[ GraphicsBox[ TagBox[GraphicsComplexBox[{{0., 1.}, {0., 0.}, {-0.7071067811865475, 1.7071067811865475`}, {-0.7071067811865475, 0.7071067811865475}, {1., 1.}, {1., 0.}, {0.29289321881345254`, 1.7071067811865475`}, { 0.29289321881345254`, 0.7071067811865475}}, { {GrayLevel[0], LineBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}]}, {RGBColor[1, 0, 0], AbsolutePointSize[5], TagBox[ TooltipBox[PointBox[1], "1"], Annotation[#, 1, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[2], "2"], Annotation[#, 2, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[3], "3"], Annotation[#, 3, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[4], "4"], Annotation[#, 4, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[5], "5"], Annotation[#, 5, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[6], "6"], Annotation[#, 6, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[7], "7"], Annotation[#, 7, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[8], "8"], Annotation[#, 8, "Tooltip"]& ]}}], Annotation[#, VertexCoordinateRules -> {{0., 1.}, {0., 0.}, {-0.7071067811865475, 1.7071067811865475`}, {-0.7071067811865475, 0.7071067811865475}, {1., 1.}, {1., 0.}, {0.29289321881345254`, 1.7071067811865475`}, { 0.29289321881345254`, 0.7071067811865475}}]& ], AspectRatio->Automatic, FrameTicks->None, ImageSize->175, PlotRange->All, PlotRangePadding->Scaled[0.1]]], "Output",ExpressionUUID->"2fec1eb8-3a53-\ 4398-9f4f-0c79daa40c6a"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[{ RowBox[{ RowBox[{"v", "=", RowBox[{"Vertices", "[", "g", "]"}]}], ";"}], "\[IndentingNewLine]", RowBox[{"Show", "[", RowBox[{"{", RowBox[{ RowBox[{"GraphPlot", "[", RowBox[{"g", ",", RowBox[{"Method", "\[Rule]", "None"}]}], "]"}], ",", RowBox[{"Graphics", "[", RowBox[{ RowBox[{ RowBox[{"Text", "[", RowBox[{ RowBox[{"\"\< \>\"", "<>", RowBox[{"ToString", "[", RowBox[{"Norm", "[", RowBox[{"Subtract", "@@", RowBox[{"v", "[", RowBox[{"[", "#", "]"}], "]"}]}], "]"}], "]"}], "<>", "\"\< \>\""}], ",", RowBox[{"Mean", "[", RowBox[{"v", "[", RowBox[{"[", "#1", "]"}], "]"}], "]"}], ",", RowBox[{"Background", "\[Rule]", "White"}]}], "]"}], "&"}], "/@", RowBox[{"Edges", "[", "g", "]"}]}], "]"}]}], "}"}], "]"}]}], "Input",Exp\ ressionUUID->"87c7244b-7762-41ff-9943-06516201499b"], Cell[BoxData[ GraphicsBox[{ TagBox[ GraphicsComplexBox[{{0., 1.}, {0., 0.}, {-0.7071067811865475, 1.7071067811865475`}, {-0.7071067811865475, 0.7071067811865475}, {1., 1.}, {1., 0.}, {0.29289321881345254`, 1.7071067811865475`}, { 0.29289321881345254`, 0.7071067811865475}}, { {GrayLevel[0], LineBox[{{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}}]}, {RGBColor[1, 0, 0], AbsolutePointSize[5], TagBox[ TooltipBox[PointBox[1], "1"], Annotation[#, 1, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[2], "2"], Annotation[#, 2, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[3], "3"], Annotation[#, 3, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[4], "4"], Annotation[#, 4, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[5], "5"], Annotation[#, 5, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[6], "6"], Annotation[#, 6, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[7], "7"], Annotation[#, 7, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[8], "8"], Annotation[#, 8, "Tooltip"]& ]}}], Annotation[#, VertexCoordinateRules -> {{0., 1.}, {0., 0.}, {-0.7071067811865475, 1.7071067811865475`}, {-0.7071067811865475, 0.7071067811865475}, {1., 1.}, {1., 0.}, {0.29289321881345254`, 1.7071067811865475`}, { 0.29289321881345254`, 0.7071067811865475}}]& ], { InsetBox["\<\" 1 \"\>", NCache[{0, Rational[1, 2]}, {0, 0.5}], Background->GrayLevel[1]], InsetBox["\<\" 1 \"\>", NCache[{Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 2] (2 + 2^Rational[-1, 2])}, {-0.35355339059327373`, 1.3535533905932737`}], Background->GrayLevel[1]], InsetBox["\<\" 1 \"\>", NCache[{Rational[1, 2], 1}, {0.5, 1}], Background->GrayLevel[1]], InsetBox["\<\" 1 \"\>", NCache[{Rational[-1, 2] 2^Rational[-1, 2], Rational[1, 2] 2^Rational[-1, 2]}, {-0.35355339059327373`, 0.35355339059327373`}], Background->GrayLevel[1]], InsetBox["\<\" 1 \"\>", NCache[{Rational[1, 2], 0}, {0.5, 0}], Background->GrayLevel[1]], InsetBox["\<\" 1 \"\>", NCache[{-2^Rational[-1, 2], Rational[1, 2] (1 + 2^Rational[1, 2])}, {-0.7071067811865475, 1.2071067811865475`}], Background->GrayLevel[1]], InsetBox["\<\" 1 \"\>", NCache[{Rational[1, 2] (1 - 2^Rational[1, 2]), Rational[1, 2] (2 + 2^Rational[1, 2])}, {-0.20710678118654757`, 1.7071067811865475`}], Background->GrayLevel[1]], InsetBox["\<\" 1 \"\>", NCache[{Rational[1, 2] (1 - 2^Rational[1, 2]), 2^ Rational[-1, 2]}, {-0.20710678118654757`, 0.7071067811865475}], Background->GrayLevel[1]], InsetBox["\<\" 1 \"\>", NCache[{1, Rational[1, 2]}, {1, 0.5}], Background->GrayLevel[1]], InsetBox["\<\" 1 \"\>", NCache[{Rational[1, 2] (2 - 2^Rational[-1, 2]), Rational[1, 2] (2 + 2^Rational[-1, 2])}, {0.6464466094067263, 1.3535533905932737`}], Background->GrayLevel[1]], InsetBox["\<\" 1 \"\>", NCache[{Rational[1, 2] (2 - 2^Rational[-1, 2]), Rational[1, 2] 2^Rational[-1, 2]}, {0.6464466094067263, 0.35355339059327373`}], Background->GrayLevel[1]], InsetBox["\<\" 1 \"\>", NCache[{Rational[1, 2] (2 - 2^Rational[1, 2]), Rational[1, 2] (1 + 2^Rational[1, 2])}, {0.2928932188134524, 1.2071067811865475`}], Background->GrayLevel[1]]}}, AspectRatio->Automatic, FrameTicks->None, PlotRange->All, PlotRangePadding->Scaled[0.1]]], "Output",ExpressionUUID->"32c69f7f-2207-\ 4e3a-8f12-01cc49178977"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"e", "=", RowBox[{ RowBox[{"ToCommonEdges", "[", RowBox[{"g", ",", "\"\\""}], "]"}], "//", "FullSimplify"}]}]], "Input",ExpressionUUID->"70784cb4-f98d-4f0d-9dfd-\ f2afda49f7c4"], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"0", ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", FractionBox["1", SqrtBox["2"]]}], ",", RowBox[{"1", "+", FractionBox["1", SqrtBox["2"]]}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", FractionBox["1", SqrtBox["2"]]}], ",", FractionBox["1", SqrtBox["2"]]}], "}"}], ",", RowBox[{"{", RowBox[{"1", ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{"1", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"1", "-", FractionBox["1", SqrtBox["2"]]}], ",", RowBox[{"1", "+", FractionBox["1", SqrtBox["2"]]}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"1", "-", FractionBox["1", SqrtBox["2"]]}], ",", FractionBox["1", SqrtBox["2"]]}], "}"}]}], "}"}]], "Output",ExpressionUUID->"c37953d5-\ dac4-473c-a03f-b0eca1a40559"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Insert", "[", RowBox[{ RowBox[{"GraphData", "[", RowBox[{"\"\\"", ",", "\"\\""}], "]"}], ",", "e", ",", "6"}], "]"}]], "Input",ExpressionUUID->"f3cbdc1e-051f-4713-ab18-\ 171aea66b463"], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"-", "0.333`"}], ",", RowBox[{"-", "0.333`"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "1.`"}], ",", RowBox[{"-", "1.`"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.333`"}], ",", "0.333`"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "1.`"}], ",", "1.`"}], "}"}], ",", RowBox[{"{", RowBox[{"0.333`", ",", RowBox[{"-", "0.333`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"1.`", ",", RowBox[{"-", "1.`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.333`", ",", "0.333`"}], "}"}], ",", RowBox[{"{", RowBox[{"1.`", ",", "1.`"}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"1", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", RowBox[{"-", "1"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "1"}], ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", "2"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "2"}], ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", RowBox[{"-", "2"}]}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"0.707`", ",", "0.707`"}], "}"}], ",", RowBox[{"{", RowBox[{"0.`", ",", "1.`"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "1.`"}], ",", "0.`"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.707`"}], ",", "0.707`"}], "}"}], ",", RowBox[{"{", RowBox[{"1.`", ",", "0.`"}], "}"}], ",", RowBox[{"{", RowBox[{"0.707`", ",", RowBox[{"-", "0.707`"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.707`"}], ",", RowBox[{"-", "0.707`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.`", ",", RowBox[{"-", "1.`"}]}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"0.707`", ",", "0.707`"}], "}"}], ",", RowBox[{"{", RowBox[{"0.`", ",", "1.`"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.707`"}], ",", "0.707`"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "1.`"}], ",", "0.`"}], "}"}], ",", RowBox[{"{", RowBox[{"0.707`", ",", RowBox[{"-", "0.707`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"1.`", ",", "0.`"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.707`"}], ",", RowBox[{"-", "0.707`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.`", ",", RowBox[{"-", "1.`"}]}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"0.`", ",", "1.`"}], "}"}], ",", RowBox[{"{", RowBox[{"0.`", ",", "0.`"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.5`"}], ",", "1.5`"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.5`"}], ",", "0.5`"}], "}"}], ",", RowBox[{"{", RowBox[{"1.`", ",", "1.`"}], "}"}], ",", RowBox[{"{", RowBox[{"1.`", ",", "0.`"}], "}"}], ",", RowBox[{"{", RowBox[{"0.5`", ",", "1.5`"}], "}"}], ",", RowBox[{"{", RowBox[{"0.5`", ",", "0.5`"}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"0", ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", FractionBox["1", SqrtBox["2"]]}], ",", RowBox[{"1", "+", FractionBox["1", SqrtBox["2"]]}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", FractionBox["1", SqrtBox["2"]]}], ",", FractionBox["1", SqrtBox["2"]]}], "}"}], ",", RowBox[{"{", RowBox[{"1", ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{"1", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"1", "-", FractionBox["1", SqrtBox["2"]]}], ",", RowBox[{"1", "+", FractionBox["1", SqrtBox["2"]]}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"1", "-", FractionBox["1", SqrtBox["2"]]}], ",", FractionBox["1", SqrtBox["2"]]}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"-", "1.`"}], ",", "0.`"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.413`"}], ",", "0.743`"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.248`"}], ",", "0.`"}], "}"}], ",", RowBox[{"{", RowBox[{"0.411`", ",", "0.743`"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.412`"}], ",", RowBox[{"-", "0.742`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.247`", ",", "0.001`"}], "}"}], ",", RowBox[{"{", RowBox[{"0.411`", ",", RowBox[{"-", "0.742`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.998`", ",", "0.001`"}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"1.`", ",", RowBox[{"-", "1.5`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"2.`", ",", RowBox[{"-", "0.5`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"2.`", ",", "0.5`"}], "}"}], ",", RowBox[{"{", RowBox[{"1.`", ",", "1.5`"}], "}"}], ",", RowBox[{"{", RowBox[{"2.`", ",", "1.5`"}], "}"}], ",", RowBox[{"{", RowBox[{"1.`", ",", "0.5`"}], "}"}], ",", RowBox[{"{", RowBox[{"1.`", ",", RowBox[{"-", "0.5`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"2.`", ",", RowBox[{"-", "1.5`"}]}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"1.`", ",", "0.`"}], "}"}], ",", RowBox[{"{", RowBox[{"0.5`", ",", "0.866`"}], "}"}], ",", RowBox[{"{", RowBox[{"0.5`", ",", RowBox[{"-", "0.866`"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.5`"}], ",", RowBox[{"-", "0.866`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.3484`", ",", "0.3587`"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.5`"}], ",", "0.866`"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.3484`"}], ",", RowBox[{"-", "0.3587`"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "1.`"}], ",", "0.`"}], "}"}]}], "}"}]}], "}"}]], "Output",\ ExpressionUUID->"418d7fbb-1e4e-458b-8c24-c2eb528e7aa3"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["3D", "Subsection",ExpressionUUID->"e3562054-bfad-4a4f-b8f4-1cf817b9d6ff"], Cell["Old", "Text",ExpressionUUID->"077ccaff-a28a-47b5-87da-bcf0fd241e42"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"GraphData", "[", RowBox[{"\"\\"", ",", "\"\\""}], "]"}]], "Input",ExpressionUUID->"c0c00714-f3ed-4290-8f72-8259d77d2494"], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], "-", FractionBox["1", SqrtBox["5"]]}], ",", RowBox[{ FractionBox["1", "20"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "5"}], "-", RowBox[{"3", " ", SqrtBox["5"]}]}], ")"}]}], ",", RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"20", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"80", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "1"}], "]"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], ",", RowBox[{ FractionBox["1", "4"], " ", RowBox[{"(", RowBox[{"1", "-", SqrtBox["5"]}], ")"}]}], ",", RowBox[{ FractionBox["1", "2"], " ", SqrtBox[ RowBox[{ FractionBox["1", "10"], " ", RowBox[{"(", RowBox[{"5", "+", SqrtBox["5"]}], ")"}]}]]}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], ",", RowBox[{ FractionBox["1", "4"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", SqrtBox["5"]}], ")"}]}], ",", RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"20", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"80", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "1"}], "]"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], "+", FractionBox["1", SqrtBox["5"]]}], ",", RowBox[{ FractionBox["1", "20"], " ", RowBox[{"(", RowBox[{"5", "+", RowBox[{"3", " ", SqrtBox["5"]}]}], ")"}]}], ",", RowBox[{ FractionBox["1", "2"], " ", SqrtBox[ RowBox[{ FractionBox["1", "10"], " ", RowBox[{"(", RowBox[{"5", "+", SqrtBox["5"]}], ")"}]}]]}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ FractionBox["1", "2"], "-", FractionBox["1", SqrtBox["5"]]}], ",", RowBox[{ FractionBox["1", "20"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "5"}], "-", RowBox[{"3", " ", SqrtBox["5"]}]}], ")"}]}], ",", RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"20", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"80", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "1"}], "]"}]}], "}"}], ",", RowBox[{"{", RowBox[{ FractionBox["1", "2"], ",", RowBox[{ FractionBox["1", "4"], " ", RowBox[{"(", RowBox[{"1", "-", SqrtBox["5"]}], ")"}]}], ",", RowBox[{ FractionBox["1", "2"], " ", SqrtBox[ RowBox[{ FractionBox["1", "10"], " ", RowBox[{"(", RowBox[{"5", "+", SqrtBox["5"]}], ")"}]}]]}]}], "}"}], ",", RowBox[{"{", RowBox[{ FractionBox["1", "2"], ",", RowBox[{ FractionBox["1", "4"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", SqrtBox["5"]}], ")"}]}], ",", RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"20", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"80", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "1"}], "]"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ FractionBox["1", "2"], "+", FractionBox["1", SqrtBox["5"]]}], ",", RowBox[{ FractionBox["1", "20"], " ", RowBox[{"(", RowBox[{"5", "+", RowBox[{"3", " ", SqrtBox["5"]}]}], ")"}]}], ",", RowBox[{ FractionBox["1", "2"], " ", SqrtBox[ RowBox[{ FractionBox["1", "10"], " ", RowBox[{"(", RowBox[{"5", "+", SqrtBox["5"]}], ")"}]}]]}]}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], ",", RowBox[{"-", FractionBox["1", "2"]}], ",", RowBox[{"-", FractionBox["1", "2"]}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], ",", RowBox[{"-", FractionBox["1", "2"]}], ",", FractionBox["1", "2"]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], ",", FractionBox["1", "2"], ",", RowBox[{"-", FractionBox["1", "2"]}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], ",", FractionBox["1", "2"], ",", FractionBox["1", "2"]}], "}"}], ",", RowBox[{"{", RowBox[{ FractionBox["1", "2"], ",", RowBox[{"-", FractionBox["1", "2"]}], ",", RowBox[{"-", FractionBox["1", "2"]}]}], "}"}], ",", RowBox[{"{", RowBox[{ FractionBox["1", "2"], ",", RowBox[{"-", FractionBox["1", "2"]}], ",", FractionBox["1", "2"]}], "}"}], ",", RowBox[{"{", RowBox[{ FractionBox["1", "2"], ",", FractionBox["1", "2"], ",", RowBox[{"-", FractionBox["1", "2"]}]}], "}"}], ",", RowBox[{"{", RowBox[{ FractionBox["1", "2"], ",", FractionBox["1", "2"], ",", FractionBox["1", "2"]}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], "-", FractionBox["1", SqrtBox["5"]]}], ",", RowBox[{ FractionBox["1", "20"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "5"}], "+", RowBox[{"3", " ", SqrtBox["5"]}]}], ")"}]}], ",", RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"20", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"80", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "3"}], "]"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], ",", RowBox[{ FractionBox["1", "4"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "-", SqrtBox["5"]}], ")"}]}], ",", RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"20", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"80", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "3"}], "]"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], ",", RowBox[{ FractionBox["1", "4"], " ", RowBox[{"(", RowBox[{"1", "+", SqrtBox["5"]}], ")"}]}], ",", RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"20", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"80", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "2"}], "]"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], "+", FractionBox["1", SqrtBox["5"]]}], ",", RowBox[{ FractionBox["1", "20"], " ", RowBox[{"(", RowBox[{"5", "-", RowBox[{"3", " ", SqrtBox["5"]}]}], ")"}]}], ",", RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"20", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"80", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "2"}], "]"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ FractionBox["1", "2"], "-", FractionBox["1", SqrtBox["5"]]}], ",", RowBox[{ FractionBox["1", "20"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "5"}], "+", RowBox[{"3", " ", SqrtBox["5"]}]}], ")"}]}], ",", RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"20", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"80", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "3"}], "]"}]}], "}"}], ",", RowBox[{"{", RowBox[{ FractionBox["1", "2"], ",", RowBox[{ FractionBox["1", "4"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "-", SqrtBox["5"]}], ")"}]}], ",", RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"20", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"80", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "3"}], "]"}]}], "}"}], ",", RowBox[{"{", RowBox[{ FractionBox["1", "2"], ",", RowBox[{ FractionBox["1", "4"], " ", RowBox[{"(", RowBox[{"1", "+", SqrtBox["5"]}], ")"}]}], ",", RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"20", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"80", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "2"}], "]"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ FractionBox["1", "2"], "+", FractionBox["1", SqrtBox["5"]]}], ",", RowBox[{ FractionBox["1", "20"], " ", RowBox[{"(", RowBox[{"5", "-", RowBox[{"3", " ", SqrtBox["5"]}]}], ")"}]}], ",", RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"20", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"80", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "2"}], "]"}]}], "}"}]}], "}"}]}], "}"}]], "Output",ExpressionUUID->"71733de3-caf5-4a12-\ 9bb5-5e4c04e0fd90"] }, Open ]], Cell["New", "Text",ExpressionUUID->"34b403b2-070b-41bd-8d27-e6dc396e9b2b"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"v", "=", RowBox[{"Flatten", "[", RowBox[{ RowBox[{"Outer", "[", RowBox[{"List", ",", RowBox[{"{", RowBox[{"0", ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", "1"}], "}"}]}], "]"}], ",", "2"}], "]"}]}]], "Input",\ ExpressionUUID->"4ff247a0-ac3e-4df4-a3ac-e0901b37e6e0"], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"0", ",", "0", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", "0", ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", "1", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", "1", ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{"1", ",", "0", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"1", ",", "0", ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{"1", ",", "1", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"1", ",", "1", ",", "1"}], "}"}]}], "}"}]], "Output",ExpressionUUI\ D->"b651f4a7-8b36-4655-a7ad-fa76f8dd18ca"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"e", "=", RowBox[{ RowBox[{"Select", "[", RowBox[{ RowBox[{"Subsets", "[", RowBox[{"v", ",", RowBox[{"{", "2", "}"}]}], "]"}], ",", RowBox[{ RowBox[{ RowBox[{"Norm", "[", RowBox[{ RowBox[{"#", "[", RowBox[{"[", "1", "]"}], "]"}], "-", RowBox[{"#", "[", RowBox[{"[", "2", "]"}], "]"}]}], "]"}], "\[Equal]", "1"}], "&"}]}], "]"}], "/.", RowBox[{"Thread", "[", RowBox[{"v", "\[Rule]", RowBox[{"Range", "[", RowBox[{"Length", "[", "v", "]"}], "]"}]}], "]"}]}]}]], "Input",Expressi\ onUUID->"064e8f22-89b7-4af5-b85d-a0b5de99d21c"], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"1", ",", "2"}], "}"}], ",", RowBox[{"{", RowBox[{"1", ",", "3"}], "}"}], ",", RowBox[{"{", RowBox[{"1", ",", "5"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", "4"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", "6"}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "4"}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "7"}], "}"}], ",", RowBox[{"{", RowBox[{"4", ",", "8"}], "}"}], ",", RowBox[{"{", RowBox[{"5", ",", "6"}], "}"}], ",", RowBox[{"{", RowBox[{"5", ",", "7"}], "}"}], ",", RowBox[{"{", RowBox[{"6", ",", "8"}], "}"}], ",", RowBox[{"{", RowBox[{"7", ",", "8"}], "}"}]}], "}"}]], "Output",ExpressionUUID->\ "222156b0-2532-4465-9b3c-01fd91cd2598"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"ToCommonEdges", "[", RowBox[{ RowBox[{"Graph", "[", RowBox[{ RowBox[{"List", "/@", "e"}], ",", RowBox[{"List", "/@", "v"}]}], "]"}], ",", RowBox[{"Graph", "[", "\"\\"", "]"}]}], "]"}]], "Input",Expr\ essionUUID->"abea9fea-247f-4ac3-875a-94f4f67e8993"], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"0", ",", "0", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", "0", ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", "1", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", "1", ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{"1", ",", "0", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"1", ",", "0", ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{"1", ",", "1", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"1", ",", "1", ",", "1"}], "}"}]}], "}"}]], "Output",ExpressionUUI\ D->"143ea1cc-34c8-4b25-9f38-4f756f20c7cc"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Knuth, V4f0, p. 14 \"Crossed\" cube", "Subsection",ExpressionUUID->"2bd01f3d-cb67-4206-b895-a8df7e8c731c"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"GetGraphData", "[", RowBox[{"\"\\"", ",", "\"\\""}], "]"}]], "Input",Expre\ ssionUUID->"40aa80d1-53ab-4534-9d05-85161e67714e"], Cell[BoxData["27"], "Output",ExpressionUUID->"491b6579-9c2b-4a3a-95b6-1c7798c5b926"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"ShowLabeledGraph", "[", RowBox[{"g", "=", RowBox[{"AddEdges", "[", RowBox[{ RowBox[{"DeleteEdges", "[", RowBox[{ RowBox[{ RowBox[{"GraphData", "[", RowBox[{"\"\\"", ",", "\"\\""}], "]"}], "[", RowBox[{"[", "5", "]"}], "]"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"1", ",", "2"}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "4"}], "}"}], ",", RowBox[{"{", RowBox[{"7", ",", "8"}], "}"}], ",", RowBox[{"{", RowBox[{"5", ",", "6"}], "}"}]}], "}"}]}], "]"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"2", ",", "3"}], "}"}], ",", RowBox[{"{", RowBox[{"1", ",", "4"}], "}"}], ",", RowBox[{"{", RowBox[{"6", ",", "7"}], "}"}], ",", RowBox[{"{", RowBox[{"5", ",", "8"}], "}"}]}], "}"}]}], "]"}]}], "]"}]], "Input",Ex\ pressionUUID->"a06d8ea8-ff6a-4303-9f01-3bbf107f9599"], Cell[BoxData[ GraphicsBox[{{ {GrayLevel[0], Thickness[0.005], LineBox[{{0.25, 0.75}, {0., 1.}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.25, 0.75}, {0.75, 0.75}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.25, 0.25}, {0., 0.5}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.25, 0.25}, {0.75, 0.25}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0., 1.}, {0.5, 1.}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0., 0.5}, {0.5, 0.5}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.75, 0.75}, {0.5, 1.}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.75, 0.25}, {0.5, 0.5}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.25, 0.25}, {0., 1.}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.25, 0.75}, {0., 0.5}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.75, 0.25}, {0.5, 1.}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.75, 0.75}, {0.5, 0.5}}], {GrayLevel[0]}}}, { {RGBColor[1, 0, 0], {PointSize[0.05], PointBox[{0.25, 0.75}]}, {GrayLevel[0], InsetBox["1", Scaled[{-0.02, -0.02}, {0.25, 0.75}], {1, 0}]}, {GrayLevel[0]}}, {RGBColor[1, 0, 0], {PointSize[0.05], PointBox[{0.25, 0.25}]}, {GrayLevel[0], InsetBox["2", Scaled[{-0.02, -0.02}, {0.25, 0.25}], {1, 0}]}, {GrayLevel[0]}}, {RGBColor[1, 0, 0], {PointSize[0.05], PointBox[{0., 1.}]}, {GrayLevel[0], InsetBox["3", Scaled[{-0.02, -0.02}, {0., 1.}], {1, 0}]}, {GrayLevel[0]}}, {RGBColor[1, 0, 0], {PointSize[0.05], PointBox[{0., 0.5}]}, {GrayLevel[0], InsetBox["4", Scaled[{-0.02, -0.02}, {0., 0.5}], {1, 0}]}, {GrayLevel[0]}}, {RGBColor[1, 0, 0], {PointSize[0.05], PointBox[{0.75, 0.75}]}, {GrayLevel[0], InsetBox["5", Scaled[{-0.02, -0.02}, {0.75, 0.75}], {1, 0}]}, {GrayLevel[0]}}, {RGBColor[1, 0, 0], {PointSize[0.05], PointBox[{0.75, 0.25}]}, {GrayLevel[0], InsetBox["6", Scaled[{-0.02, -0.02}, {0.75, 0.25}], {1, 0}]}, {GrayLevel[0]}}, {RGBColor[1, 0, 0], {PointSize[0.05], PointBox[{0.5, 1.}]}, {GrayLevel[0], InsetBox["7", Scaled[{-0.02, -0.02}, {0.5, 1.}], {1, 0}]}, {GrayLevel[0]}}, {RGBColor[1, 0, 0], {PointSize[0.05], PointBox[{0.5, 0.5}]}, {GrayLevel[0], InsetBox["8", Scaled[{-0.02, -0.02}, {0.5, 0.5}], {1, 0}]}, {GrayLevel[0]}}}}, AlignmentPoint->Center, AspectRatio->Automatic, Axes->False, AxesLabel->None, AxesOrigin->Automatic, AxesStyle->{}, Background->None, BaseStyle->{}, BaselinePosition->Automatic, ColorOutput->Automatic, ContentSelectable->Automatic, CoordinatesToolOptions:>Automatic, DisplayFunction:>$DisplayFunction, Epilog->{}, FormatType:>TraditionalForm, Frame->False, FrameLabel->None, FrameStyle->{}, FrameTicks->Automatic, FrameTicksStyle->{}, GridLines->None, GridLinesStyle->{}, ImageMargins->0., ImagePadding->All, ImageSize->Automatic, ImageSizeRaw->Automatic, LabelStyle->{}, Method->Automatic, PlotLabel->None, PlotRange->All, PlotRangeClipping->False, PlotRangePadding->Automatic, PlotRegion->Automatic, PreserveImageOptions->Automatic, Prolog->{}, RotateLabel->True, Ticks->Automatic, TicksStyle->{}]], "Output",ExpressionUUID->"60979d1b-2e80-4e6b-b4d4-\ 5234f515bec3"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"RecognizeGraph", "[", "g", "]"}]], "Input",ExpressionUUID->"2a17adfd-8e0e-4a6f-b874-873656b5356f"], Cell[BoxData["\<\"CubicalGraph\"\>"], "Output",ExpressionUUID->"17aaf582-c7cd-40ce-b21b-8837d5e3377b"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Degenerate", "Subsection",ExpressionUUID->"5a81520a-5202-43a5-8eec-9d67f20b2619"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"ShowLabeledGraph", "[", RowBox[{"g1", "=", RowBox[{"AddEdges", "[", RowBox[{ RowBox[{"ChangeVertices", "[", RowBox[{ RowBox[{"gg", "=", RowBox[{"Graph", "[", RowBox[{"{", RowBox[{"\"\\"", ",", RowBox[{"{", RowBox[{"2", ",", "4"}], "}"}]}], "}"}], "]"}]}], ",", RowBox[{"Reverse", "/@", RowBox[{"Vertices", "[", "gg", "]"}]}]}], "]"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"2", ",", "8"}], "}"}], ",", RowBox[{"{", RowBox[{"1", ",", "7"}], "}"}]}], "}"}]}], "]"}]}], "]"}]], "Input",Ex\ pressionUUID->"0874d1d7-917c-4348-9fb0-0d361e22b361"], Cell[BoxData[ GraphicsBox[{{ {GrayLevel[0], Thickness[0.005], LineBox[{{0., 0.}, {0., 0.3333333333333333}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0., 0.}, {0.3333333333333333, 0.}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0., 0.3333333333333333}, {0.3333333333333333, 0.3333333333333333}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.3333333333333333, 0.}, {0.3333333333333333, 0.3333333333333333}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.3333333333333333, 0.}, {0.6666666666666666, 0.}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.3333333333333333, 0.3333333333333333}, {0.6666666666666666, 0.3333333333333333}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.6666666666666666, 0.}, {0.6666666666666666, 0.3333333333333333}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.6666666666666666, 0.}, {1., 0.}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.6666666666666666, 0.3333333333333333}, {1., 0.3333333333333333}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{1., 0.}, {1., 0.3333333333333333}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0., 0.3333333333333333}, {1., 0.3333333333333333}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0., 0.}, {1., 0.}}], {GrayLevel[0]}}}, { {RGBColor[1, 0, 0], {PointSize[0.05], PointBox[{0., 0.}]}, {GrayLevel[0], InsetBox["1", Scaled[{-0.02, -0.02}, {0., 0.}], {1, 0}]}, {GrayLevel[0]}}, {RGBColor[1, 0, 0], {PointSize[0.05], PointBox[{0., 0.3333333333333333}]}, {GrayLevel[0], InsetBox["2", Scaled[{-0.02, -0.02}, {0., 0.3333333333333333}], {1, 0}]}, {GrayLevel[0]}}, {RGBColor[1, 0, 0], {PointSize[0.05], PointBox[{0.3333333333333333, 0.}]}, {GrayLevel[0], InsetBox["3", Scaled[{-0.02, -0.02}, {0.3333333333333333, 0.}], {1, 0}]}, {GrayLevel[0]}}, {RGBColor[1, 0, 0], {PointSize[0.05], PointBox[{0.3333333333333333, 0.3333333333333333}]}, {GrayLevel[0], InsetBox["4", Scaled[{-0.02, -0.02}, {0.3333333333333333, 0.3333333333333333}], \ {1, 0}]}, {GrayLevel[0]}}, {RGBColor[1, 0, 0], {PointSize[0.05], PointBox[{0.6666666666666666, 0.}]}, {GrayLevel[0], InsetBox["5", Scaled[{-0.02, -0.02}, {0.6666666666666666, 0.}], {1, 0}]}, {GrayLevel[0]}}, {RGBColor[1, 0, 0], {PointSize[0.05], PointBox[{0.6666666666666666, 0.3333333333333333}]}, {GrayLevel[0], InsetBox["6", Scaled[{-0.02, -0.02}, {0.6666666666666666, 0.3333333333333333}], \ {1, 0}]}, {GrayLevel[0]}}, {RGBColor[1, 0, 0], {PointSize[0.05], PointBox[{1., 0.}]}, {GrayLevel[0], InsetBox["7", Scaled[{-0.02, -0.02}, {1., 0.}], {1, 0}]}, {GrayLevel[0]}}, {RGBColor[1, 0, 0], {PointSize[0.05], PointBox[{1., 0.3333333333333333}]}, {GrayLevel[0], InsetBox["8", Scaled[{-0.02, -0.02}, {1., 0.3333333333333333}], {1, 0}]}, {GrayLevel[0]}}}}, AlignmentPoint->Center, AspectRatio->Automatic, Axes->False, AxesLabel->None, AxesOrigin->Automatic, AxesStyle->{}, Background->None, BaseStyle->{}, BaselinePosition->Automatic, ColorOutput->Automatic, ContentSelectable->Automatic, CoordinatesToolOptions:>Automatic, DisplayFunction:>$DisplayFunction, Epilog->{}, FormatType:>TraditionalForm, Frame->False, FrameLabel->None, FrameStyle->{}, FrameTicks->Automatic, FrameTicksStyle->{}, GridLines->None, GridLinesStyle->{}, ImageMargins->0., ImagePadding->All, ImageSize->Automatic, ImageSizeRaw->Automatic, LabelStyle->{}, Method->Automatic, PlotLabel->None, PlotRange->All, PlotRangeClipping->False, PlotRangePadding->Automatic, PlotRegion->Automatic, PreserveImageOptions->Automatic, Prolog->{}, RotateLabel->True, Ticks->Automatic, TicksStyle->{}]], "Output",ExpressionUUID->"ef80b84e-073f-4312-b354-\ 324ce40fbea3"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"RecognizeGraph", "[", "g1", "]"}]], "Input",ExpressionUUID->"f830d765-f090-429a-b315-a6713c446edd"], Cell[BoxData["\<\"CubicalGraph\"\>"], "Output",ExpressionUUID->"185dab69-f053-45b2-bafe-14ec06192a98"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Append", "[", RowBox[{ RowBox[{"Insert", "[", RowBox[{ RowBox[{"GraphData", "[", RowBox[{"\"\\"", ",", "\"\\""}], "]"}], ",", RowBox[{"ToCommonEdges", "[", RowBox[{"g", ",", "\"\\""}], "]"}], ",", "7"}], "]"}], ",", RowBox[{"ToCommonEdges", "[", RowBox[{"g1", ",", "\"\\""}], "]"}]}], "]"}]], "Input",Expr\ essionUUID->"efaaec6d-8628-4f23-b247-ad624c790ad4"], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"-", "0.333`"}], ",", RowBox[{"-", "0.333`"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "1.`"}], ",", RowBox[{"-", "1.`"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.333`"}], ",", "0.333`"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "1.`"}], ",", "1.`"}], "}"}], ",", RowBox[{"{", RowBox[{"0.333`", ",", RowBox[{"-", "0.333`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"1.`", ",", RowBox[{"-", "1.`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.333`", ",", "0.333`"}], "}"}], ",", RowBox[{"{", RowBox[{"1.`", ",", "1.`"}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"1", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", RowBox[{"-", "1"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "1"}], ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", "2"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "2"}], ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", RowBox[{"-", "2"}]}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"0.707`", ",", "0.707`"}], "}"}], ",", RowBox[{"{", RowBox[{"0.`", ",", "1.`"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "1.`"}], ",", "0.`"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.707`"}], ",", "0.707`"}], "}"}], ",", RowBox[{"{", RowBox[{"1.`", ",", "0.`"}], "}"}], ",", RowBox[{"{", RowBox[{"0.707`", ",", RowBox[{"-", "0.707`"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.707`"}], ",", RowBox[{"-", "0.707`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.`", ",", RowBox[{"-", "1.`"}]}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"0.707`", ",", "0.707`"}], "}"}], ",", RowBox[{"{", RowBox[{"0.`", ",", "1.`"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.707`"}], ",", "0.707`"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "1.`"}], ",", "0.`"}], "}"}], ",", RowBox[{"{", RowBox[{"0.707`", ",", RowBox[{"-", "0.707`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"1.`", ",", "0.`"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.707`"}], ",", RowBox[{"-", "0.707`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.`", ",", RowBox[{"-", "1.`"}]}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"0.`", ",", "1.`"}], "}"}], ",", RowBox[{"{", RowBox[{"0.`", ",", "0.`"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.5`"}], ",", "1.5`"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.5`"}], ",", "0.5`"}], "}"}], ",", RowBox[{"{", RowBox[{"1.`", ",", "1.`"}], "}"}], ",", RowBox[{"{", RowBox[{"1.`", ",", "0.`"}], "}"}], ",", RowBox[{"{", RowBox[{"0.5`", ",", "1.5`"}], "}"}], ",", RowBox[{"{", RowBox[{"0.5`", ",", "0.5`"}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"0", ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", FractionBox["1", SqrtBox["2"]]}], ",", RowBox[{"1", "+", FractionBox["1", SqrtBox["2"]]}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", FractionBox["1", SqrtBox["2"]]}], ",", FractionBox["1", SqrtBox["2"]]}], "}"}], ",", RowBox[{"{", RowBox[{"1", ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{"1", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"1", "-", FractionBox["1", SqrtBox["2"]]}], ",", RowBox[{"1", "+", FractionBox["1", SqrtBox["2"]]}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"1", "-", FractionBox["1", SqrtBox["2"]]}], ",", FractionBox["1", SqrtBox["2"]]}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"0.`", ",", "1.`"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.5`"}], ",", "1.5`"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.5`"}], ",", "0.5`"}], "}"}], ",", RowBox[{"{", RowBox[{"0.`", ",", "0.`"}], "}"}], ",", RowBox[{"{", RowBox[{"1.`", ",", "1.`"}], "}"}], ",", RowBox[{"{", RowBox[{"0.5`", ",", "1.5`"}], "}"}], ",", RowBox[{"{", RowBox[{"0.5`", ",", "0.5`"}], "}"}], ",", RowBox[{"{", RowBox[{"1.`", ",", "0.`"}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"-", "1.`"}], ",", "0.`"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.413`"}], ",", "0.743`"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.248`"}], ",", "0.`"}], "}"}], ",", RowBox[{"{", RowBox[{"0.411`", ",", "0.743`"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.412`"}], ",", RowBox[{"-", "0.742`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.247`", ",", "0.001`"}], "}"}], ",", RowBox[{"{", RowBox[{"0.411`", ",", RowBox[{"-", "0.742`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.998`", ",", "0.001`"}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"-", "1"}], ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "1"}], ",", RowBox[{"-", "1"}]}], "}"}], ",", RowBox[{"{", RowBox[{"1", ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{"1", ",", RowBox[{"-", "1"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ FractionBox["1", "8"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "3"}], "-", SqrtBox["7"]}], ")"}]}], ",", RowBox[{ FractionBox["1", "8"], " ", RowBox[{"(", RowBox[{"3", "-", SqrtBox["7"]}], ")"}]}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ FractionBox["1", "8"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "3"}], "+", SqrtBox["7"]}], ")"}]}], ",", RowBox[{ FractionBox["1", "8"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "3"}], "-", SqrtBox["7"]}], ")"}]}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ FractionBox["1", "8"], " ", RowBox[{"(", RowBox[{"3", "-", SqrtBox["7"]}], ")"}]}], ",", RowBox[{ FractionBox["1", "8"], " ", RowBox[{"(", RowBox[{"3", "+", SqrtBox["7"]}], ")"}]}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ FractionBox["1", "8"], " ", RowBox[{"(", RowBox[{"3", "+", SqrtBox["7"]}], ")"}]}], ",", RowBox[{ FractionBox["1", "8"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "3"}], "+", SqrtBox["7"]}], ")"}]}]}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"1.`", ",", RowBox[{"-", "1.5`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"2.`", ",", RowBox[{"-", "0.5`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"2.`", ",", "0.5`"}], "}"}], ",", RowBox[{"{", RowBox[{"1.`", ",", "1.5`"}], "}"}], ",", RowBox[{"{", RowBox[{"2.`", ",", "1.5`"}], "}"}], ",", RowBox[{"{", RowBox[{"1.`", ",", "0.5`"}], "}"}], ",", RowBox[{"{", RowBox[{"1.`", ",", RowBox[{"-", "0.5`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"2.`", ",", RowBox[{"-", "1.5`"}]}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"1.`", ",", "0.`"}], "}"}], ",", RowBox[{"{", RowBox[{"0.5`", ",", "0.866`"}], "}"}], ",", RowBox[{"{", RowBox[{"0.5`", ",", RowBox[{"-", "0.866`"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.5`"}], ",", RowBox[{"-", "0.866`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.3484`", ",", "0.3587`"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.5`"}], ",", "0.866`"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.3484`"}], ",", RowBox[{"-", "0.3587`"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "1.`"}], ",", "0.`"}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"1", ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{"1", ",", "2"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", "2"}], "}"}], ",", RowBox[{"{", RowBox[{"4", ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{"4", ",", "2"}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "2"}], "}"}]}], "}"}]}], "}"}]], "Output",ExpressionUU\ ID->"b3edad65-e36c-4f5e-8f6f-7f219e83ae9c"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Double X", "Subsection",ExpressionUUID->"dc7d6525-09cb-4cec-ac15-dccbea28e209"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"GraphData", "[", RowBox[{"\"\\"", ",", "\"\\"", ",", RowBox[{"{", RowBox[{"\"\\"", ",", "\"\\""}], "}"}]}], "]"}], "[", RowBox[{"[", RowBox[{"-", "2"}], "]"}], "]"}]], "Input", CellLabel-> "In[112]:=",ExpressionUUID->"e55f4218-7bde-4bf1-aa48-33695ffe764d"], Cell[BoxData[ GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8}, {Null, SparseArray[ Automatic, {8, 8}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{2}, {3}, {5}, {1}, {4}, {6}, { 1}, {4}, {7}, {2}, {3}, {8}, {1}, {6}, {7}, {2}, {5}, {8}, {3}, { 5}, {8}, {4}, {6}, {7}}}, Pattern}]}, { VertexLabels -> {"Name"}, VertexCoordinates -> {{ Rational[-4, 5], -1}, { Rational[-4, 5], 1}, { Rational[4, 5], -1}, { Rational[4, 5], 1}, {1, Rational[4, 5]}, {1, Rational[-4, 5]}, {-1, Rational[4, 5]}, {-1, Rational[-4, 5]}}}]]}, TagBox[GraphicsGroupBox[{ {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[CompressedData[" 1:eJxTTMoPSmVmYGDgAWImKJ41EwRe7mcAgw/70fj2OOTtcahH14eu3x5NP4Y8 ujgO+9DV2aPZvx/Nfns083H5E6e7iHQHrnDEGW4Aj8KcDQ== "], 0.02261146496815286]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[ 0.7]}], {DiskBox[{-0.8, -1.}, 0.02261146496815286], InsetBox["1", Offset[{2, 2}, {-0.7773885350318472, -0.9773885350318472}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, {DiskBox[{-0.8, 1.}, 0.02261146496815286], InsetBox["2", Offset[{2, 2}, {-0.7773885350318472, 1.0226114649681528}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, {DiskBox[{0.8, -1.}, 0.02261146496815286], InsetBox["3", Offset[{2, 2}, {0.8226114649681529, -0.9773885350318472}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, {DiskBox[{0.8, 1.}, 0.02261146496815286], InsetBox["4", Offset[{2, 2}, {0.8226114649681529, 1.0226114649681528}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, {DiskBox[{1., 0.8}, 0.02261146496815286], InsetBox["5", Offset[{2, 2}, {1.0226114649681528, 0.8226114649681529}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, {DiskBox[{1., -0.8}, 0.02261146496815286], InsetBox["6", Offset[{2, 2}, {1.0226114649681528, -0.7773885350318472}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, {DiskBox[{-1., 0.8}, 0.02261146496815286], InsetBox["7", Offset[{2, 2}, {-0.9773885350318472, 0.8226114649681529}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, {DiskBox[{-1., -0.8}, 0.02261146496815286], InsetBox["8", Offset[{2, 2}, {-0.9773885350318472, -0.7773885350318472}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}}}], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->{ "NetworkGraphics", FrontEnd`GraphicsHighlightColor -> Hue[0.8, 1., 0.6]}, FormatType->TraditionalForm, FrameTicks->None]], "Output", CellLabel-> "Out[112]=",ExpressionUUID->"fbccf101-c051-4b34-aa6e-0f7097a8c1e0"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"g", "=", RowBox[{"Graph", "[", RowBox[{ RowBox[{"Range", "[", "8", "]"}], ",", RowBox[{"UndirectedEdge", "@@@", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"1", ",", "8"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", "3"}], "}"}], ",", RowBox[{"{", RowBox[{"4", ",", "5"}], "}"}], ",", RowBox[{"{", RowBox[{"6", ",", "7"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", "7"}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "6"}], "}"}], ",", RowBox[{"{", RowBox[{"5", ",", "8"}], "}"}], ",", RowBox[{"{", RowBox[{"1", ",", "4"}], "}"}], ",", RowBox[{"{", RowBox[{"1", ",", "6"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", "5"}], "}"}], ",", RowBox[{"{", RowBox[{"4", ",", "7"}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "8"}], "}"}]}], "}"}]}], ",", RowBox[{"VertexCoordinates", "\[Rule]", RowBox[{"CirclePoints", "[", "8", "]"}]}], ",", RowBox[{"VertexLabels", "\[Rule]", "\"\\""}]}], "]"}]}]], "Input", CellLabel-> "In[118]:=",ExpressionUUID->"a6b8866e-3f8f-496e-9a23-1a2248fa6395"], Cell[BoxData[ GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8}, { Null, {{1, 8}, {2, 3}, {4, 5}, {6, 7}, {2, 7}, {3, 6}, {5, 8}, {1, 4}, { 1, 6}, {2, 5}, {4, 7}, {3, 8}}}, { VertexLabels -> {"Name"}, VertexCoordinates -> {{ Sin[Rational[1, 8] Pi], -Cos[Rational[1, 8] Pi]}, { Cos[Rational[1, 8] Pi], -Sin[Rational[1, 8] Pi]}, { Cos[Rational[1, 8] Pi], Sin[Rational[1, 8] Pi]}, { Sin[Rational[1, 8] Pi], Cos[Rational[1, 8] Pi]}, {-Sin[Rational[1, 8] Pi], Cos[Rational[1, 8] Pi]}, {-Cos[Rational[1, 8] Pi], Sin[Rational[1, 8] Pi]}, {-Cos[Rational[1, 8] Pi], - Sin[Rational[1, 8] Pi]}, {-Sin[Rational[1, 8] Pi], - Cos[Rational[1, 8] Pi]}}}]]}, TagBox[GraphicsGroupBox[{ {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[CompressedData[" 1:eJxTTMoPSmVmYGDgAWImKE5euW7Zo9ob9m69RuezJ7zdj8a3R5dHV4dD/340 9fZo4uj64PLo6nDox1BHrD9wmIPLHgx3otuPQz26/9HtgesDANVX4VU= "], 0.02136409873372988]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[ 0.7]}], { DiskBox[{0.3826834323650898, -0.9238795325112867}, 0.02136409873372988], InsetBox["1", Offset[{2, 2}, {0.40404753109881963, -0.9025154337775568}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{0.9238795325112867, -0.3826834323650898}, 0.02136409873372988], InsetBox["2", Offset[{2, 2}, {0.9452436312450166, -0.36131933363135993}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{0.9238795325112867, 0.3826834323650898}, 0.02136409873372988], InsetBox["3", Offset[{2, 2}, {0.9452436312450166, 0.40404753109881963}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{0.3826834323650898, 0.9238795325112867}, 0.02136409873372988], InsetBox["4", Offset[{2, 2}, {0.40404753109881963, 0.9452436312450166}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{-0.3826834323650898, 0.9238795325112867}, 0.02136409873372988], InsetBox["5", Offset[{2, 2}, {-0.36131933363135993, 0.9452436312450166}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{-0.9238795325112867, 0.3826834323650898}, 0.02136409873372988], InsetBox["6", Offset[{2, 2}, {-0.9025154337775568, 0.40404753109881963}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{-0.9238795325112867, -0.3826834323650898}, 0.02136409873372988], InsetBox["7", Offset[{2, 2}, {-0.9025154337775568, -0.36131933363135993}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{-0.3826834323650898, -0.9238795325112867}, 0.02136409873372988], InsetBox["8", Offset[{2, 2}, {-0.36131933363135993, -0.9025154337775568}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}}}], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->{ "NetworkGraphics", FrontEnd`GraphicsHighlightColor -> Hue[0.8, 1., 0.6]}, FormatType->TraditionalForm, FrameTicks->None]], "Output", CellLabel-> "Out[118]=",ExpressionUUID->"6494df68-f3ac-45ef-883d-9295f9ae9907"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"RecognizeGraph", "[", "g", "]"}]], "Input", CellLabel-> "In[119]:=",ExpressionUUID->"66e41c88-10af-4f4e-b534-97e7ff5a8c97"], Cell[BoxData["\<\"CubicalGraph\"\>"], "Output", CellLabel-> "Out[119]=",ExpressionUUID->"3e72b453-5e37-48bf-af46-862315311ad5"] }, Open ]] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["Properties", "Section",ExpressionUUID->"13fa58cc-fd8d-4e96-a15a-bc62f101e987"], Cell[CellGroupData[{ Cell["Classes", "Subsection",ExpressionUUID->"ca401609-463f-4f06-b709-f7c0c5da48ed"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"GraphData", "[", RowBox[{"g", ",", "\"\\""}], "]"}]], "Input",ExpressionUUID->\ "6cecff7a-3093-450a-abdf-8194f97e1a5f"], Cell[BoxData[ RowBox[{"{", RowBox[{"\<\"Bicolorable\"\>", ",", "\<\"Biconnected\"\>", ",", "\<\"Bicubic\"\>", ",", "\<\"Bipartite\"\>", ",", "\<\"Bridgeless\"\>", ",", "\<\"CayleyGraph\"\>", ",", "\<\"Class1\"\>", ",", "\<\"CompletelyRegular\"\>", ",", "\<\"Connected\"\>", ",", "\<\"CrossedPrism\"\>", ",", "\<\"Crown\"\>", ",", "\<\"Cubic\"\>", ",", "\<\"DeterminedBySpectrum\"\>", ",", "\<\"DistanceRegular\"\>", ",", "\<\"EdgeTransitive\"\>", ",", "\<\"GeneralizedPetersen\"\>", ",", "\<\"Grid\"\>", ",", "\<\"Hamiltonian\"\>", ",", "\<\"Hypercube\"\>", ",", "\<\"Integral\"\>", ",", "\<\"LCF\"\>", ",", "\<\"Noneulerian\"\>", ",", "\<\"Perfect\"\>", ",", "\<\"Planar\"\>", ",", "\<\"Platonic\"\>", ",", "\<\"Polyhedral\"\>", ",", "\<\"Prism\"\>", ",", "\<\"Regular\"\>", ",", "\<\"Symmetric\"\>", ",", "\<\"Traceable\"\>", ",", "\<\"TriangleFree\"\>", ",", "\<\"Unitransitive\"\>", ",", "\<\"VertexTransitive\"\>", ",", "\<\"WeaklyRegular\"\>"}], "}"}]], "Output",ExpressionUUID->"e70f46c0-da19-4c93-8105-73bcfa3c6a46"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["Matrices", "Subsection",ExpressionUUID->"ed24e5d5-b126-442c-821c-0f6c9fca91ac"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"GraphicsRow", "[", RowBox[{"GraphMatrixPlot", "[", RowBox[{"GraphData", "[", "\"\\"", "]"}], "]"}], "]"}]], "Input", CellLabel-> "In[135]:=",ExpressionUUID->"6653afff-6758-495e-877a-1ea0c0253e96"], Cell[BoxData[ GraphicsBox[{{}, {InsetBox[ GraphicsBox[ RasterBox[SparseArray[ Automatic, {8, 8}, 1., { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{4}, {6}, {7}, {3}, {5}, {8}, { 2}, {5}, {8}, {1}, {6}, {7}, {2}, {3}, {8}, {1}, {4}, {7}, {1}, { 4}, {6}, {2}, {3}, {5}}}, {0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.}}], {{0, 0}, { 8, 8}}, {0, 1}], DisplayFunction->Identity, Frame->Automatic, FrameLabel->{None, None}, FrameTicks->{{None, None}, {None, None}}, GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], ImagePadding->{{0.5, 1.5}, {1.5, 16.500000000000014`}}, LabelStyle->Directive[12, GrayLevel[0], Italic, FontFamily -> "Times New Roman"], Method->{ "DefaultBoundaryStyle" -> Automatic, "DefaultGraphicsInteraction" -> { "Version" -> 1.2, "TrackMousePosition" -> {True, False}, "Effects" -> { "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, "Droplines" -> { "freeformCursorMode" -> True, "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultPlotStyle" -> Automatic}, PlotLabel->FormBox["\"adjacency matrix\"", TraditionalForm]], {89.63777380299076, -94.87765161036492}, ImageScaled[{0.5, 0.5}], {164.98010456800384, 180.71933640069508}], InsetBox[ GraphicsBox[ RasterBox[SparseArray[ Automatic, {8, 12}, 1., { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24}, {{8}, {11}, {12}, {7}, {10}, { 12}, {5}, {9}, {11}, {3}, {9}, {10}, {4}, {6}, {8}, {2}, {6}, {7}, { 1}, {4}, {5}, {1}, {2}, {3}}}, {0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.}}], {{0, 0}, {12, 8}}, {0, 1}], DisplayFunction->Identity, Frame->Automatic, FrameLabel->{None, None}, FrameTicks->{{None, None}, {None, None}}, GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], ImagePadding->{{0.5, 1.5000000000000568`}, {1.5, 16.500000000000014`}}, LabelStyle->Directive[12, GrayLevel[0], Italic, FontFamily -> "Times New Roman"], Method->{ "DefaultBoundaryStyle" -> Automatic, "DefaultGraphicsInteraction" -> { "Version" -> 1.2, "TrackMousePosition" -> {True, False}, "Effects" -> { "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, "Droplines" -> { "freeformCursorMode" -> True, "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultPlotStyle" -> Automatic}, PlotLabel->FormBox["\"incidence matrix\"", TraditionalForm]], {307.3520253165204, -94.87765161036492}, ImageScaled[{0.5, 0.5}], {241.85751238310007, 180.71933640069508}], InsetBox[ GraphicsBox[RasterBox[CompressedData[" 1:eJxTTMoPSmVmYGDggGIQ+0PgDrnW1w/tGVDABzh/D1A2cMc7e0LiEP49DHWk qsdvDqa5uMzH5S9quROXevzqKLeX1PiiVniSF1/Epx/8/iI+PKnlHmqlT1rn r4FKn/TJX5SnT1LVkxdftEuftM5fAKv4SUc= "], {{0, 0}, {8, 8}}, {0, 1}], DisplayFunction->Identity, Frame->Automatic, FrameLabel->{None, None}, FrameTicks->{{None, None}, {None, None}}, GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], ImagePadding->{{0.5, 1.5}, {1.5, 16.500000000000014`}}, LabelStyle->Directive[12, GrayLevel[0], Italic, FontFamily -> "Times New Roman"], Method->{ "DefaultBoundaryStyle" -> Automatic, "DefaultGraphicsInteraction" -> { "Version" -> 1.2, "TrackMousePosition" -> {True, False}, "Effects" -> { "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, "Droplines" -> { "freeformCursorMode" -> True, "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultPlotStyle" -> Automatic}, PlotLabel->FormBox["\"distance matrix\"", TraditionalForm]], {525.06627683005, -94.87765161036492}, ImageScaled[{0.5, 0.5}], {164.98010456800384, 180.71933640069508}]}, {}}, ImageSize->{ UpTo[600], UpTo[360]}, PlotRange->{{0, 614.7040506330408}, {-189.75530322072984`, 0}}, PlotRangePadding->{6, 5}]], "Output", CellLabel-> "Out[135]=",ExpressionUUID->"2e390241-6498-46f6-9e3d-88eb7200228e"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["Properties", "Subsection",ExpressionUUID->"4f23a18d-732f-4ed3-a0e0-0d332d1fad53"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"TableForm", "[", RowBox[{ RowBox[{"GraphDataTable", "[", RowBox[{"g", ",", "x"}], "]"}], ",", RowBox[{"TableDepth", "->", "2"}]}], "]"}], "//", "TraditionalForm"}]], "Input",ExpressionUUID->"006aa84b-d3d5-4e43-bdb2-\ 8b35a3409b5a"], Cell[BoxData[ FormBox[ TagBox[GridBox[{ {"\<\"automorphism group order\"\>", "48"}, {"\<\"characteristic polynomial\"\>", RowBox[{ RowBox[{"(", RowBox[{"x", "-", "3"}], ")"}], " ", SuperscriptBox[ RowBox[{"(", RowBox[{"x", "-", "1"}], ")"}], "3"], " ", SuperscriptBox[ RowBox[{"(", RowBox[{"x", "+", "1"}], ")"}], "3"], " ", RowBox[{"(", RowBox[{"x", "+", "3"}], ")"}]}]}, {"\<\"chromatic number\"\>", "2"}, {"\<\"chromatic polynomial\"\>", RowBox[{ RowBox[{"(", RowBox[{"x", "-", "1"}], ")"}], " ", "x", " ", RowBox[{"(", RowBox[{ SuperscriptBox["x", "6"], "-", RowBox[{"11", " ", SuperscriptBox["x", "5"]}], "+", RowBox[{"55", " ", SuperscriptBox["x", "4"]}], "-", RowBox[{"159", " ", SuperscriptBox["x", "3"]}], "+", RowBox[{"282", " ", SuperscriptBox["x", "2"]}], "-", RowBox[{"290", " ", "x"}], "+", "133"}], ")"}]}]}, {"\<\"claw-free\"\>", "\<\"N\"\>"}, {"\<\"clique number\"\>", "2"}, {"\<\"graph complement name\"\>", RowBox[{"{", "\<\"8-quartic graph 2\"\>", "}"}]}, {"\<\"cospectral graph names\"\>", "\<\"---\"\>"}, {"\<\"determined by spectrum\"\>", "\<\"Y\"\>"}, {"\<\"diameter\"\>", "3"}, {"\<\"distance-regular graph\"\>", "\<\"Y\"\>"}, {"\<\"dual graph name\"\>", RowBox[{"{", "\<\"octahedral graph\"\>", "}"}]}, {"\<\"edge chromatic number\"\>", "3"}, {"\<\"edge connectivity\"\>", "3"}, {"\<\"edge count\"\>", "12"}, {"\<\"Eulerian\"\>", "\<\"N\"\>"}, {"\<\"girth\"\>", "4"}, {"\<\"Hamiltonian\"\>", "\<\"Y\"\>"}, {"\<\"Hamiltonian cycle count\"\>", "12"}, {"\<\"Hamiltonian path count\"\>", "144"}, {"\<\"integral graph\"\>", "\<\"Y\"\>"}, {"\<\"independence number\"\>", "4"}, {"\<\"line graph\"\>", "\<\"N\"\>"}, {"\<\"line graph name\"\>", RowBox[{"{", "\<\"cuboctahedral graph\"\>", "}"}]}, {"\<\"perfect matching graph\"\>", "\<\"N\"\>"}, {"\<\"planar\"\>", "\<\"Y\"\>"}, {"\<\"polyhedral graph\"\>", "\<\"Y\"\>"}, {"\<\"polyhedron embedding names\"\>", RowBox[{"{", "\<\"cube\"\>", "}"}]}, {"\<\"radius\"\>", "3"}, {"\<\"regular\"\>", "\<\"Y\"\>"}, {"\<\"spectrum\"\>", TagBox[ RowBox[{ TagBox[ SuperscriptBox[ RowBox[{"(", RowBox[{"-", "3"}], ")"}], "1"], HoldForm], " ", TagBox[ SuperscriptBox[ RowBox[{"(", RowBox[{"-", "1"}], ")"}], "3"], HoldForm], " ", TagBox[ SuperscriptBox["1", "3"], HoldForm], " ", TagBox[ SuperscriptBox["3", "1"], HoldForm]}], HoldForm]}, {"\<\"square-free\"\>", "\<\"N\"\>"}, {"\<\"traceable\"\>", "\<\"Y\"\>"}, {"\<\"triangle-free\"\>", "\<\"Y\"\>"}, {"\<\"vertex connectivity\"\>", "3"}, {"\<\"vertex count\"\>", "8"} }, GridBoxAlignment->{ "Columns" -> {{Left}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}}, "RowsIndexed" -> {}}, GridBoxSpacings->{"Columns" -> { Offset[0.27999999999999997`], { Offset[0.7]}, Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> { Offset[0.2], { Offset[0.4]}, Offset[0.2]}, "RowsIndexed" -> {}}], Function[BoxForm`e$, TableForm[BoxForm`e$, TableDepth -> 2]]], TraditionalForm]], "Output",Expr\ essionUUID->"a180a1d6-cf36-49e7-8885-69436979713a"] }, Open ]] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["GraphData", "Section",ExpressionUUID->"5e7d495a-b81a-459e-8be0-d47b71f378ad"], Cell[CellGroupData[{ Cell["GraphClassString", "Subsection",ExpressionUUID->"d43cd638-0f91-47ce-a26f-a5a1ffe21b6a"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"GraphClassString", "[", "g", "]"}]], "Input",ExpressionUUID->"de40a4b3-b5bd-44a0-b942-8212422609c9"], Cell[BoxData["\<\"\\\\subj{Mathematics:Discrete Mathematics:Graph \ Theory:Simple Graphs:Bicolorable Graphs}\\n\\\\subj{Mathematics:Discrete \ Mathematics:Graph Theory:Simple Graphs:Biconnected \ Graphs}\\n\\\\subj{Mathematics:Discrete Mathematics:Graph Theory:Simple \ Graphs:Bicubic Graphs}\\n\\\\subj{Mathematics:Discrete Mathematics:Graph \ Theory:Simple Graphs:Bipartite Graphs}\\n\\\\subj{Mathematics:Discrete \ Mathematics:Graph Theory:Simple Graphs:Bridgeless \ Graphs}\\n\\\\subj{Mathematics:Discrete Mathematics:Graph Theory:Simple \ Graphs:Cayley Graphs}\\n\\\\subj{Mathematics:Discrete Mathematics:Graph \ Theory:Simple Graphs:Class 1 Graphs}\\n\\\\subj{Mathematics:Discrete \ Mathematics:Graph Theory:Simple Graphs:Completely Regular \ Graphs}\\n\\\\subj{Mathematics:Discrete Mathematics:Graph Theory:Simple \ Graphs:Connected Graphs}\\n\\\\subj{Mathematics:Discrete Mathematics:Graph \ Theory:Simple Graphs:Crossed Prism Graphs}\\n\\\\subj{Mathematics:Discrete \ Mathematics:Graph Theory:Simple Graphs:Crown \ Graphs}\\n\\\\subj{Mathematics:Discrete Mathematics:Graph Theory:Simple \ Graphs:Cubic Graphs}\\n\\\\subj{Mathematics:Discrete Mathematics:Graph \ Theory:Simple Graphs:Determined by Spectrum \ Graphs}\\n\\\\subj{Mathematics:Discrete Mathematics:Graph Theory:Simple \ Graphs:Distance-Regular Graphs}\\n\\\\subj{Mathematics:Discrete \ Mathematics:Graph Theory:Simple Graphs:Edge-Transitive \ Graphs}\\n\\\\subj{Mathematics:Discrete Mathematics:Graph Theory:Simple \ Graphs:Generalized Petersen Graphs}\\n\\\\subj{Mathematics:Discrete \ Mathematics:Graph Theory:Simple Graphs:Grid \ Graphs}\\n\\\\subj{Mathematics:Discrete Mathematics:Graph Theory:Simple \ Graphs:Hamiltonian Graphs}\\n\\\\subj{Mathematics:Discrete Mathematics:Graph \ Theory:Simple Graphs:Hypercube Graphs}\\n\\\\subj{Mathematics:Discrete \ Mathematics:Graph Theory:Simple Graphs:Integral \ Graphs}\\n\\\\subj{Mathematics:Discrete Mathematics:Graph Theory:Simple \ Graphs:LCF Graphs}\\n\\\\subj{Mathematics:Discrete Mathematics:Graph \ Theory:Simple Graphs:Noneulerian Graphs}\\n\\\\subj{Mathematics:Discrete \ Mathematics:Graph Theory:Simple Graphs:Perfect \ Graphs}\\n\\\\subj{Mathematics:Discrete Mathematics:Graph Theory:Simple \ Graphs:Planar Graphs}\\n\\\\subj{Mathematics:Discrete Mathematics:Graph \ Theory:Simple Graphs:Platonic Graphs}\\n\\\\subj{Mathematics:Discrete \ Mathematics:Graph Theory:Simple Graphs:Polyhedral \ Graphs}\\n\\\\subj{Mathematics:Discrete Mathematics:Graph Theory:Simple \ Graphs:Prism Graphs}\\n\\\\subj{Mathematics:Discrete Mathematics:Graph \ Theory:Simple Graphs:Regular Graphs}\\n\\\\subj{Mathematics:Discrete \ Mathematics:Graph Theory:Simple Graphs:Symmetric \ Graphs}\\n\\\\subj{Mathematics:Discrete Mathematics:Graph Theory:Simple \ Graphs:Traceable Graphs}\\n\\\\subj{Mathematics:Discrete Mathematics:Graph \ Theory:Simple Graphs:Triangle-Free Graphs}\\n\\\\subj{Mathematics:Discrete \ Mathematics:Graph Theory:Simple Graphs:Unitransitive \ Graphs}\\n\\\\subj{Mathematics:Discrete Mathematics:Graph Theory:Simple \ Graphs:Vertex-Transitive Graphs}\\n\\\\subj{Mathematics:Discrete \ Mathematics:Graph Theory:Simple Graphs:Weakly Regular Graphs}\"\>"], "Output",\ ExpressionUUID->"6085e87e-daf4-42a1-ae20-348865eb5eb3"] }, Open ]] }, Open ]] }, Closed]] }, Open ]] }, WindowSize->{1274, 736}, WindowMargins->{{144, Automatic}, {102, Automatic}}, ShowSelection->True, FrontEndVersion->"14.2 for Mac OS X ARM (64-bit) (September 21, 2024)", StyleDefinitions->"Default.nb", ExpressionUUID->"ba4c2bc3-37f7-4ee4-92fb-19e10bbf05f7" ] (* End of Notebook Content *) (* Internal cache information *) (*CellTagsOutline CellTagsIndex->{} *) (*CellTagsIndex CellTagsIndex->{} *) (*NotebookFileOutline Notebook[{ Cell[CellGroupData[{ Cell[580, 22, 85, 0, 96, "Title",ExpressionUUID->"c0194492-3219-4f4d-a5f0-ecc30b4b82c0"], Cell[CellGroupData[{ Cell[690, 26, 83, 0, 53, "Subsection",ExpressionUUID->"6d9db90c-5e3c-4fd7-bca9-7ac8c724314c"], Cell[776, 28, 115, 3, 55, "Text",ExpressionUUID->"d1b353de-d984-4d26-a32e-322147995075"], Cell[894, 33, 339, 9, 33, "Text",ExpressionUUID->"b8b1ef2f-5d4f-4ab2-a51f-a0b94e6fba57"], Cell[1236, 44, 354, 10, 33, "Text",ExpressionUUID->"f3b1d5f3-5c62-4219-9c2d-cf06db5e6dcd"], Cell[1593, 56, 154, 2, 33, "Text",ExpressionUUID->"3e9fb402-c7b5-4512-882c-2889cb92043b"] }, Open ]], Cell[CellGroupData[{ Cell[1784, 63, 84, 0, 66, "Section",ExpressionUUID->"31509f6a-4190-4920-9eff-e22b2e160a78"], Cell[1871, 65, 166, 3, 45, "Input",ExpressionUUID->"7c363d93-966a-46d5-a348-1eefb2169bb1", InitializationCell->True], Cell[CellGroupData[{ Cell[2062, 72, 85, 0, 43, "Subsubsection",ExpressionUUID->"ac82b721-068e-44e8-aa54-0f8d389c9dc6"], Cell[CellGroupData[{ Cell[2172, 76, 205, 4, 29, "Input",ExpressionUUID->"b8bfdb5c-9c71-424c-b264-6ee45e6b03c6"], Cell[2380, 82, 126, 1, 33, "Output",ExpressionUUID->"aade6e8d-5fe6-443b-be6c-53128166a724"] }, Open ]], Cell[CellGroupData[{ Cell[2543, 88, 210, 5, 29, "Input",ExpressionUUID->"d8a86a51-24dd-47e5-abc6-259e8eb0f09e"], Cell[2756, 95, 4906, 139, 176, "Output",ExpressionUUID->"1f63cd2a-0127-4fbd-9ca1-4162e738b337"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[7711, 240, 87, 0, 43, "Subsubsection",ExpressionUUID->"8b66dd08-5a10-4b7b-ae0a-5bee0519b438"], Cell[CellGroupData[{ Cell[7823, 244, 305, 7, 29, "Input",ExpressionUUID->"7197c5a1-34f3-43f5-937e-f814e1fd8628"], Cell[8131, 253, 2036, 42, 196, "Output",ExpressionUUID->"517835da-be00-46ce-9099-c112080bd64b"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[10216, 301, 95, 0, 43, "Subsubsection",ExpressionUUID->"050dadec-4ceb-4094-8e5a-812a3ced8826"], Cell[10314, 303, 110754, 1820, 361, "Input",ExpressionUUID->"54b95ee1-241b-4d63-9ae9-dd50d1c56305"], Cell[121071, 2125, 51502, 848, 207, "Input",ExpressionUUID->"284eb6cf-18bd-4606-ba40-e08bb1b8848a"] }, Closed]], Cell[CellGroupData[{ Cell[172610, 2978, 83, 0, 35, "Subsubsection",ExpressionUUID->"b4e77dad-c64a-44d9-9e78-80e8ad066ce0"], Cell[CellGroupData[{ Cell[172718, 2982, 253, 5, 29, "Input",ExpressionUUID->"49d74b14-800f-49db-be17-a002adde1d13"], Cell[172974, 2989, 46232, 896, 906, "Output",ExpressionUUID->"8853cc90-a3ab-46bc-851f-9d037ff52dab"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[219255, 3891, 87, 0, 43, "Subsubsection",ExpressionUUID->"76740042-3a21-4a30-8e8c-ab7156a7a059"], Cell[CellGroupData[{ Cell[219367, 3895, 551, 16, 29, "Input",ExpressionUUID->"a2624aaa-9d8b-4453-a3dc-044578e2db91"], Cell[219921, 3913, 123, 2, 33, "Output",ExpressionUUID->"3df3396c-62ac-4381-abc9-43ce6bc3bd98"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[220093, 3921, 95, 0, 43, "Subsubsection",ExpressionUUID->"6461ee1a-ba9c-444c-a61b-de85c31472d1"], Cell[CellGroupData[{ Cell[220213, 3925, 248, 5, 30, "Input",ExpressionUUID->"e29f209d-1de2-4a57-b03b-77a7e1b3097b"], Cell[220464, 3932, 22798, 455, 730, "Output",ExpressionUUID->"dde8997b-adea-44a7-9be2-81844ed402d2"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[243311, 4393, 97, 0, 35, "Subsubsection",ExpressionUUID->"ca72f84e-1035-4148-80cc-9df86047b08c"], Cell[CellGroupData[{ Cell[243433, 4397, 227, 4, 29, "Input",ExpressionUUID->"731c0730-7fe3-4e2a-a41c-4969c504ea63"], Cell[243663, 4403, 1082, 17, 289, "Output",ExpressionUUID->"7a1b3f36-aed1-4d2a-be5c-6a4096fb68a1"] }, Open ]], Cell[244760, 4423, 499, 13, 49, "Input",ExpressionUUID->"0847f331-04b7-4be1-8c10-53abfa8663f7"], Cell[245262, 4438, 150, 3, 29, "Input",ExpressionUUID->"79f5781a-10c6-45d5-81de-c83a749984ff"] }, Closed]], Cell[CellGroupData[{ Cell[245449, 4446, 96, 0, 35, "Subsubsection",ExpressionUUID->"8fe137a7-4f03-44ce-87cd-c1b25312fd34"], Cell[CellGroupData[{ Cell[245570, 4450, 181, 3, 29, "Input",ExpressionUUID->"ecd005c5-5e22-4564-8b8b-9def7968b048"], Cell[245754, 4455, 2127, 40, 376, "Output",ExpressionUUID->"cc7f1d9a-0bb2-40da-af2d-d608767929c4"] }, Open ]], Cell[CellGroupData[{ Cell[247918, 4500, 141, 2, 29, "Input",ExpressionUUID->"deb08aed-6aa9-475c-bb72-556f2c2483e5"], Cell[248062, 4504, 126, 1, 33, "Output",ExpressionUUID->"dd3abded-f2f6-4882-9514-5f046302a78e"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[248237, 4511, 90, 0, 35, "Subsubsection",ExpressionUUID->"0b4d38e4-b14a-460d-bed6-3ef3f3b30822"], Cell[CellGroupData[{ Cell[248352, 4515, 264, 6, 29, "Input",ExpressionUUID->"d1e1d85b-4eed-4885-915d-ec6e063f9d32"], Cell[248619, 4523, 14284, 278, 409, "Output",ExpressionUUID->"31949e7f-df72-48e7-893c-decd1485b031"] }, Open ]], Cell[CellGroupData[{ Cell[262940, 4806, 283, 6, 29, "Input",ExpressionUUID->"454cfcbc-9f97-441b-a22a-d01fd95c99d2"], Cell[263226, 4814, 901, 22, 74, "Output",ExpressionUUID->"c94088b1-1a68-4dbd-b048-16962d7f4fcd"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[264176, 4842, 110, 0, 35, "Subsubsection",ExpressionUUID->"2e40e595-1f12-4988-9871-ae4173311c39"], Cell[CellGroupData[{ Cell[264311, 4846, 1653, 26, 29, "Input",ExpressionUUID->"20692704-75af-4dab-85bf-5323a7fe40dc"], Cell[265967, 4874, 166, 4, 33, "Output",ExpressionUUID->"395d19c0-de78-42d3-a6d5-f32d56497a73"] }, Open ]], Cell[CellGroupData[{ Cell[266170, 4883, 191, 4, 29, "Input",ExpressionUUID->"0a3da5fc-88a7-4efb-9819-fcdb44184a02"], Cell[266364, 4889, 1557, 29, 289, "Output",ExpressionUUID->"16ef1b6a-8a7a-4c0d-b67c-6b8fee46321a"] }, Open ]], Cell[CellGroupData[{ Cell[267958, 4923, 150, 3, 29, "Input",ExpressionUUID->"8c3c5e03-82e1-474e-89d6-b8b4e44047de"], Cell[268111, 4928, 130, 2, 33, "Output",ExpressionUUID->"1121129c-e200-4e3f-b7d5-452073da0396"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[268290, 4936, 118, 0, 35, "Subsubsection",ExpressionUUID->"249ac1f6-c96b-44ed-b873-2898fb455fdc"], Cell[CellGroupData[{ Cell[268433, 4940, 2202, 45, 49, "Input",ExpressionUUID->"6e8de219-6a48-405a-bf0c-7c3208c00351"], Cell[270638, 4987, 5356, 105, 196, "Output",ExpressionUUID->"d17640e7-4bed-451c-8194-d2fae3fa2a8e"] }, Open ]], Cell[CellGroupData[{ Cell[276031, 5097, 208, 5, 29, "Input",ExpressionUUID->"55692bbc-927f-4c0f-a96e-429fd75f0dc7"], Cell[276242, 5104, 2272, 44, 376, "Output",ExpressionUUID->"a971bded-3f82-422d-8415-be9c5f951864"] }, Open ]], Cell[CellGroupData[{ Cell[278551, 5153, 145, 3, 29, "Input",ExpressionUUID->"175e446d-8665-4a85-9e5e-2cd757435aaf"], Cell[278699, 5158, 130, 2, 33, "Output",ExpressionUUID->"11d19be0-04b9-4468-aaf4-57f4c35f634e"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[278878, 5166, 89, 0, 35, "Subsubsection",ExpressionUUID->"1bfacea2-25fe-4a4d-8140-fcfe09fc936b"], Cell[CellGroupData[{ Cell[278992, 5170, 263, 6, 29, "Input",ExpressionUUID->"8415c4fb-3d05-4428-b957-9e255e330520"], Cell[279258, 5178, 34432, 670, 694, "Output",ExpressionUUID->"25f00d01-f278-4069-8591-642bf91e0f41"] }, Open ]], Cell[CellGroupData[{ Cell[313727, 5853, 1042, 28, 49, "Input",ExpressionUUID->"89149297-8694-4fc1-bd45-17071b2bfe99"], Cell[314772, 5883, 447, 10, 26, "Message",ExpressionUUID->"c610fe02-ad7c-4965-b50d-717fe3bfa484"], Cell[315222, 5895, 60173, 1328, 4100, "Output",ExpressionUUID->"e1ea6194-5bcf-437a-8146-6cf225176cc3"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[375444, 7229, 88, 0, 43, "Subsubsection",ExpressionUUID->"21ee2dd1-7482-4648-a900-c0d2d651ab53"], Cell[CellGroupData[{ Cell[375557, 7233, 262, 6, 29, "Input",ExpressionUUID->"bbded7ad-4b7e-4292-aaac-4cba5ac405b1"], Cell[375822, 7241, 10706, 212, 196, "Output",ExpressionUUID->"ed3e92a2-8bb6-41ad-b60f-3248a36d649b"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[386577, 7459, 86, 0, 43, "Subsubsection",ExpressionUUID->"895c2f9a-a9e2-426f-a7de-1ed23e827786"], Cell[CellGroupData[{ Cell[386688, 7463, 196, 3, 29, "Input",ExpressionUUID->"f31bfbfc-ee8e-47ac-b43f-0437395f132a"], Cell[386887, 7468, 110, 1, 33, "Output",ExpressionUUID->"8e32426e-b4b3-4442-bfd4-067a25482deb"] }, Open ]], Cell[CellGroupData[{ Cell[387034, 7474, 260, 6, 29, "Input",ExpressionUUID->"868d07f0-3960-4684-a170-d14c490a03c7"], Cell[387297, 7482, 6001, 118, 196, "Output",ExpressionUUID->"17c2ce2e-872c-4c38-adaa-763a745459ef"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[393347, 7606, 98, 0, 43, "Subsubsection",ExpressionUUID->"52d0799d-7d1c-430b-a6fe-72766ce1b275"], Cell[CellGroupData[{ Cell[393470, 7610, 273, 6, 29, "Input",ExpressionUUID->"3c5ed6c6-f27c-4e8c-92cc-a5472e66e312"], Cell[393746, 7618, 1772, 34, 85, "Output",ExpressionUUID->"05576335-0156-4108-a1c5-4b41f79f4d35"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[395567, 7658, 88, 0, 43, "Subsubsection",ExpressionUUID->"7f5467c1-c872-4e6b-b7bf-63481c2cfb33"], Cell[CellGroupData[{ Cell[395680, 7662, 304, 7, 29, "Input",ExpressionUUID->"a6142edc-289d-485f-9334-5107fb55ed0d"], Cell[395987, 7671, 25913, 487, 196, "Output",ExpressionUUID->"5cc41682-af7a-49aa-a937-6bab61fdf968"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[421949, 8164, 95, 0, 43, "Subsubsection",ExpressionUUID->"95e3193e-a2e3-432d-ab1c-572779836def"], Cell[CellGroupData[{ Cell[422069, 8168, 312, 7, 29, "Input",ExpressionUUID->"fd7ed78e-c441-4e27-b85e-8827863e55ac"], Cell[422384, 8177, 8882, 168, 196, "Output",ExpressionUUID->"69d41278-72b8-4a36-9e0d-7f47e56856ec"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[431315, 8351, 101, 0, 43, "Subsubsection",ExpressionUUID->"b555dac8-b3ab-41e5-87fb-2ac8949fb373"], Cell[CellGroupData[{ Cell[431441, 8355, 321, 8, 29, "Input",ExpressionUUID->"f1ca3f81-ef32-49c4-aec7-375ee2e83f7d"], Cell[431765, 8365, 9076, 173, 196, "Output",ExpressionUUID->"0db9fe86-3c56-42d4-ba19-bf5aadfc4955"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[440890, 8544, 95, 0, 43, "Subsubsection",ExpressionUUID->"d1ad7ae9-7032-4d01-ba4e-553597d416f0"], Cell[CellGroupData[{ Cell[441010, 8548, 255, 6, 29, "Input",ExpressionUUID->"e94ddbd8-a697-42c2-a8aa-c0d32d353352"], Cell[441268, 8556, 156, 4, 33, "Output",ExpressionUUID->"306875f0-504b-44ad-95f1-aec3b7b5b52a"] }, Open ]], Cell[CellGroupData[{ Cell[441461, 8565, 270, 6, 29, "Input",ExpressionUUID->"b749d470-756c-49b6-883a-35c3ccd19da4"], Cell[441734, 8573, 8026, 156, 196, "Output",ExpressionUUID->"54a38f05-cdb0-42cc-aac5-69dc4fa18956"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[449809, 8735, 89, 0, 43, "Subsubsection",ExpressionUUID->"2f8e3f21-802d-4bb9-aba7-4710770292f7"], Cell[CellGroupData[{ Cell[449923, 8739, 205, 5, 29, "Input",ExpressionUUID->"de6be45d-b41c-4f84-83a7-dc68579ffbe4"], Cell[450131, 8746, 115, 2, 33, "Output",ExpressionUUID->"4946a345-a1ef-488e-93e3-9ecb2697eec2"] }, Open ]], Cell[CellGroupData[{ Cell[450283, 8753, 268, 7, 29, "Input",ExpressionUUID->"5cdcf012-4af0-4ee0-b648-365e6ee8903a"], Cell[450554, 8762, 128, 3, 33, "Output",ExpressionUUID->"3abeb7da-2fa1-4eb0-88df-3b5e0f6294e9"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[450731, 8771, 90, 0, 43, "Subsubsection",ExpressionUUID->"f3722eea-cec8-4c08-88b7-a8ad7dee49fa"], Cell[CellGroupData[{ Cell[450846, 8775, 198, 4, 29, "Input",ExpressionUUID->"dcd1b3d2-76bf-46f5-be95-22a3bf9e4eae"], Cell[451047, 8781, 115, 2, 33, "Output",ExpressionUUID->"ad86f130-628a-4094-bea0-931ee3601f1d"] }, Open ]], Cell[CellGroupData[{ Cell[451199, 8788, 234, 6, 29, "Input",ExpressionUUID->"a16d1276-658b-4fd5-9427-b95e8a927267"], Cell[451436, 8796, 168, 4, 33, "Output",ExpressionUUID->"cb91a79f-fcfd-4a88-8782-501b1b600989"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[451653, 8806, 89, 0, 43, "Subsubsection",ExpressionUUID->"1ee3025c-86ae-4d8c-bfae-c8b5710adc2d"], Cell[CellGroupData[{ Cell[451767, 8810, 383, 10, 29, "Input",ExpressionUUID->"06cacaa2-84af-42d8-ab63-d36200221d15"], Cell[452153, 8822, 128, 3, 33, "Output",ExpressionUUID->"db05f7c2-eef9-4592-a18b-775362b33829"] }, Open ]], Cell[CellGroupData[{ Cell[452318, 8830, 200, 4, 29, "Input",ExpressionUUID->"3803e338-3f10-421b-94c2-9a664ef82e91"], Cell[452521, 8836, 2153, 45, 106, "Output",ExpressionUUID->"b282e17a-fc27-4608-8b01-55bbbb4d83ac"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[454723, 8887, 85, 0, 43, "Subsubsection",ExpressionUUID->"65304660-7dd0-44ac-895b-ca3708edbba4"], Cell[CellGroupData[{ Cell[454833, 8891, 199, 4, 29, "Input",ExpressionUUID->"c035bdc9-4ef6-4cdd-8ee9-32862d9edfab"], Cell[455035, 8897, 115, 2, 33, "Output",ExpressionUUID->"3b49347f-e46f-4101-9903-03011afb0702"] }, Open ]], Cell[CellGroupData[{ Cell[455187, 8904, 264, 7, 29, "Input",ExpressionUUID->"43e72d0f-56e2-4723-82f5-45df5885a8a7"], Cell[455454, 8913, 128, 3, 33, "Output",ExpressionUUID->"da5284f6-07c5-48e6-a55d-5b93e9ee1a3c"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[455631, 8922, 85, 0, 43, "Subsubsection",ExpressionUUID->"3004eab0-9213-4dc7-ab1a-029c2f0b6205"], Cell[CellGroupData[{ Cell[455741, 8926, 194, 3, 29, "Input",ExpressionUUID->"8c61e6dd-6d54-49ad-ae33-85f14b30fde5"], Cell[455938, 8931, 110, 1, 33, "Output",ExpressionUUID->"b5d0110b-d164-466e-86f3-fe6a7a327063"] }, Open ]], Cell[CellGroupData[{ Cell[456085, 8937, 264, 7, 29, "Input",ExpressionUUID->"b8b2842f-2a41-49d5-b217-83d8062e78fe"], Cell[456352, 8946, 128, 3, 33, "Output",ExpressionUUID->"88bb583e-ce65-4444-a869-69cf730f8652"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[456529, 8955, 88, 0, 43, "Subsubsection",ExpressionUUID->"0babd98f-38b8-4831-8809-a15aef5dda97"], Cell[CellGroupData[{ Cell[456642, 8959, 197, 3, 29, "Input",ExpressionUUID->"5555dc51-a2a1-4499-b194-81d5b00af31c"], Cell[456842, 8964, 109, 1, 33, "Output",ExpressionUUID->"6710485d-6a99-4418-bfd9-38242195cd17"] }, Open ]], Cell[CellGroupData[{ Cell[456988, 8970, 267, 7, 29, "Input",ExpressionUUID->"a011e424-f66c-422f-9675-d3247f1ed6e9"], Cell[457258, 8979, 46237, 897, 906, "Output",ExpressionUUID->"ccd31ffe-f0fd-4c69-b01e-156c75fcf6af"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[503544, 9882, 83, 0, 45, "Subsubsection",ExpressionUUID->"4232e127-0e55-4203-9b41-bf64b0f10990"], Cell[CellGroupData[{ Cell[503652, 9886, 197, 4, 30, "Input",ExpressionUUID->"2cb6cc43-c8ac-4835-84b4-c55415861160"], Cell[503852, 9892, 114, 2, 34, "Output",ExpressionUUID->"cdb17a51-4ed5-45d8-8133-8523ac5d9f9d"] }, Open ]], Cell[CellGroupData[{ Cell[504003, 9899, 218, 5, 30, "Input",ExpressionUUID->"e8fae50b-5cdb-4053-a69c-9ea9f1c61544"], Cell[504224, 9906, 111, 2, 34, "Output",ExpressionUUID->"5dcf8b23-90bb-4239-807c-083cf6ce15c0"] }, Open ]], Cell[CellGroupData[{ Cell[504372, 9913, 209, 5, 30, "Input",ExpressionUUID->"ef71612a-0008-4395-94fc-74236ee0b273"], Cell[504584, 9920, 180, 5, 34, "Output",ExpressionUUID->"abf0a4d4-fb20-423d-9535-ce3c33e1ddda"] }, Open ]], Cell[CellGroupData[{ Cell[504801, 9930, 209, 5, 30, "Input",ExpressionUUID->"906aaab4-b847-465f-9de4-d8d545731dbd"], Cell[505013, 9937, 256, 9, 34, "Output",ExpressionUUID->"9cf4f8dd-ae15-4682-98cc-13454dff72bd"] }, Open ]], Cell[CellGroupData[{ Cell[505306, 9951, 258, 6, 30, "Input",ExpressionUUID->"b0bac74d-16c7-49b9-b9b6-65b8bffcd24e"], Cell[505567, 9959, 2366, 44, 200, "Output",ExpressionUUID->"c949dcd8-d1d2-4901-be6d-c34077db3f7b"] }, Open ]], Cell[CellGroupData[{ Cell[507970, 10008, 281, 8, 30, "Input",ExpressionUUID->"eef63843-54f1-435c-b49c-f05c3de5b6cf"], Cell[508254, 10018, 180, 5, 34, "Output",ExpressionUUID->"cf52c69c-8dc7-4fb6-b2b0-f8ebe9e0249b"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[508483, 10029, 95, 0, 45, "Subsubsection",ExpressionUUID->"d057ce06-8785-49ef-82bd-e50132f086e5"], Cell[CellGroupData[{ Cell[508603, 10033, 410, 12, 30, "Input",ExpressionUUID->"14a5f39a-3b0f-47d9-85a1-2e927731f7ba"], Cell[509016, 10047, 164, 4, 34, "Output",ExpressionUUID->"ebff4900-93e7-4291-b8bf-89401c2c8a3a"] }, Open ]], Cell[CellGroupData[{ Cell[509217, 10056, 441, 14, 30, "Input",ExpressionUUID->"2f957b84-a35a-4897-b21d-fe8e4f1161d8"], Cell[509661, 10072, 239, 7, 34, "Output",ExpressionUUID->"acdcb11e-9fff-45ac-b5e8-27d67edb3f2e"] }, Open ]], Cell[CellGroupData[{ Cell[509937, 10084, 112, 2, 30, "Input",ExpressionUUID->"0c3ad959-62cc-4f36-b527-f7b924d8e370"], Cell[510052, 10088, 256, 9, 34, "Output",ExpressionUUID->"67220710-07a6-4449-a086-8141aebc6ce9"] }, Open ]], Cell[CellGroupData[{ Cell[510345, 10102, 177, 4, 30, "Input",ExpressionUUID->"568b9835-25af-4b6f-b522-c2a6baa76cd3"], Cell[510525, 10108, 2319, 44, 200, "Output",ExpressionUUID->"59d9ad51-bb7c-4e3f-934d-13da538b2eaa"] }, Open ]], Cell[CellGroupData[{ Cell[512881, 10157, 2448, 67, 136, "Input",ExpressionUUID->"03b08d02-21d4-4434-9ac8-b1762fb2d208"], Cell[515332, 10226, 2340, 45, 200, "Output",ExpressionUUID->"3b230dad-7bb0-485a-ae77-9224cc06e04d"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[517721, 10277, 92, 0, 45, "Subsubsection",ExpressionUUID->"47559f10-730e-43db-b453-3fd8e22a4dc7"], Cell[CellGroupData[{ Cell[517838, 10281, 209, 5, 30, "Input",ExpressionUUID->"cf9eca9e-54f4-4e76-aed0-af0e3bdc5e03"], Cell[518050, 10288, 114, 2, 34, "Output",ExpressionUUID->"8cd89ec0-5a7f-425d-b644-de8c32d09bdd"] }, Open ]], Cell[CellGroupData[{ Cell[518201, 10295, 297, 7, 30, "Input",ExpressionUUID->"c07bffc1-c845-44a0-816b-650d91306025"], Cell[CellGroupData[{ Cell[518523, 10306, 183, 3, 24, "Print",ExpressionUUID->"066e722e-86c9-41bd-af76-bda76de81840"], Cell[518709, 10311, 196, 4, 24, "Print",ExpressionUUID->"703501f9-8af7-418b-a2e9-a616018c7fd1"], Cell[518908, 10317, 512, 11, 24, "Print",ExpressionUUID->"32b5686c-eb38-4de0-bcec-1b8017b47de0"] }, Open ]], Cell[519435, 10331, 167, 4, 34, "Output",ExpressionUUID->"e8c728c7-a898-4607-89eb-cbfe21476b51"] }, Open ]], Cell[CellGroupData[{ Cell[519639, 10340, 267, 6, 30, "Input",ExpressionUUID->"bece5b3d-003e-4db6-9c93-03f5bf076ebc"], Cell[519909, 10348, 4284, 80, 236, "Output",ExpressionUUID->"e3e64b82-ee44-426f-bcc2-13c09528e05f"] }, Open ]], Cell[CellGroupData[{ Cell[524230, 10433, 352, 10, 30, "Input",ExpressionUUID->"47fa2eb7-0531-4323-b190-f85da7856336"], Cell[524585, 10445, 124, 2, 34, "Output",ExpressionUUID->"d5db80e8-7500-40a7-8398-3b4916adcd19"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[524758, 10453, 106, 0, 45, "Subsubsection",ExpressionUUID->"098aeecb-c801-4b93-8107-6cf8b7396773"], Cell[CellGroupData[{ Cell[524889, 10457, 495, 12, 52, "Input",ExpressionUUID->"a3943e45-2b06-4446-9769-e9171a2899bf"], Cell[525387, 10471, 2014, 37, 231, "Output",ExpressionUUID->"0f4fe1c2-6e11-4b1d-9dc4-9b57bf465892"] }, Open ]], Cell[CellGroupData[{ Cell[527438, 10513, 163, 3, 30, "Input",ExpressionUUID->"7c0adaf9-71a8-4d90-b1b2-90684d1184e8"], Cell[527604, 10518, 114, 2, 34, "Output",ExpressionUUID->"6b78ae05-b327-4e1e-a0ff-4208b69bec5f"] }, Open ]], Cell[CellGroupData[{ Cell[527755, 10525, 782, 22, 52, "Input",ExpressionUUID->"c3a94b59-8b51-4f57-b84e-496e0ec0bdd8"], Cell[528540, 10549, 390, 9, 28, "Message",ExpressionUUID->"81d4ebbe-0354-4310-a638-45a5a0fd9ef0"], Cell[528933, 10560, 39784, 729, 1232, "Output",ExpressionUUID->"86dc0ea2-69e9-4fd6-ad30-0319b801f90a"] }, Open ]], Cell[CellGroupData[{ Cell[568754, 11294, 191, 4, 30, "Input",ExpressionUUID->"1b0454c9-0407-4101-833e-cbbf9acea6a7"], Cell[568948, 11300, 16253, 299, 485, "Output",ExpressionUUID->"5ac80162-1f50-4a72-afed-2a591ea4ca18"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[585250, 11605, 121, 0, 37, "Subsubsection",ExpressionUUID->"63fb15a1-6377-4193-9cf1-a4ba4e171153"], Cell[CellGroupData[{ Cell[585396, 11609, 378, 9, 30, "Input",ExpressionUUID->"bc574272-ce25-49cd-bfa0-a33171c04bca"], Cell[585777, 11620, 2164, 39, 130, "Output",ExpressionUUID->"25c69115-bc79-447a-91e3-43ae658a838c"] }, Open ]], Cell[CellGroupData[{ Cell[587978, 11664, 418, 10, 30, "Input",ExpressionUUID->"fe98f5e4-cd76-4762-ae00-a412be9a51a7"], Cell[588399, 11676, 2140, 40, 236, "Output",ExpressionUUID->"4f39b4b6-5cb7-46f8-84d7-0057a143e773"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[590588, 11722, 129, 0, 37, "Subsubsection",ExpressionUUID->"36e3e269-3e3e-41d5-953a-4f0e7e43858f"], Cell[CellGroupData[{ Cell[590742, 11726, 503, 13, 66, "Input",ExpressionUUID->"49204eaa-6984-458c-854d-8b89446ab671"], Cell[CellGroupData[{ Cell[591270, 11743, 232, 4, 24, "Print",ExpressionUUID->"d94e62fd-68ce-4675-90a5-8e09bb115399"], Cell[591505, 11749, 242, 4, 24, "Print",ExpressionUUID->"3c187c54-221e-43f9-9f1d-64cb80a9d8c7"], Cell[591750, 11755, 392, 8, 24, "Print",ExpressionUUID->"fb19c45c-0e81-4bd7-9064-9018d100bc08"] }, Open ]], Cell[592157, 11766, 500698, 9453, 24203, "Output",ExpressionUUID->"3e76c642-ecbd-48a0-aed5-6717b8acd700"] }, Closed]], Cell[CellGroupData[{ Cell[1092892, 21224, 430, 12, 40, "Input",ExpressionUUID->"4aaac3a9-71dd-46ef-b127-c59b8923267f"], Cell[1093325, 21238, 132735, 2517, 886, "Output",ExpressionUUID->"209521a5-fd40-4664-9579-1608f02c1a9d"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[1226109, 23761, 105, 0, 45, "Subsubsection",ExpressionUUID->"e9c1b996-80bc-4c65-9a68-76837c33b535"], Cell[CellGroupData[{ Cell[1226239, 23765, 1956, 61, 94, "Input",ExpressionUUID->"3a65272b-1850-49cc-93e7-8a37e602c638"], Cell[1228198, 23828, 3070, 69, 449, "Output",ExpressionUUID->"2a599b2d-cbcd-4aff-87b9-6b8c45df9943"] }, Open ]], Cell[CellGroupData[{ Cell[1231305, 23902, 145, 3, 30, "Input",ExpressionUUID->"ac883be3-bceb-4112-a373-1c758f7b996c"], Cell[1231453, 23907, 130, 2, 34, "Output",ExpressionUUID->"4a521f71-5136-4405-9144-b8939a01b757"] }, Open ]], Cell[CellGroupData[{ Cell[1231620, 23914, 2631, 53, 115, "Input",ExpressionUUID->"5dbf0d5d-1daa-4a98-9dab-34d2d3bbefab"], Cell[1234254, 23969, 4462, 83, 117, "Output",ExpressionUUID->"789fb659-eec3-408d-921a-e61547e5f2fb"] }, Open ]], Cell[CellGroupData[{ Cell[1238753, 24057, 155, 3, 30, "Input",ExpressionUUID->"d055b4db-ef32-40bc-be20-34d5ee5bf830"], Cell[1238911, 24062, 114, 2, 34, "Output",ExpressionUUID->"a51cf2b3-378a-46b3-9432-d537134d273c"] }, Open ]], Cell[CellGroupData[{ Cell[1239062, 24069, 158, 3, 30, "Input",ExpressionUUID->"2b3073ed-0b1e-44fa-b9cc-6b4bb3a69e07"], Cell[1239223, 24074, 114, 2, 34, "Output",ExpressionUUID->"6a917d34-7f68-435c-b957-7a24221d95f3"] }, Open ]], Cell[CellGroupData[{ Cell[1239374, 24081, 8186, 159, 124, "Input",ExpressionUUID->"d4210425-f6a1-4c54-bfa5-3ab57b2b0f77"], Cell[1247563, 24242, 6574, 126, 236, "Output",ExpressionUUID->"9bcf09a4-325c-4579-8adc-f7febdf88cf6"] }, Open ]], Cell[CellGroupData[{ Cell[1254174, 24373, 181, 4, 30, "Input",ExpressionUUID->"acb3d113-6d97-4d09-b96f-b19244648c6c"], Cell[1254358, 24379, 2988, 108, 102, "Output",ExpressionUUID->"4823b2cb-ffff-448f-8479-c046466a5f37"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[1257395, 24493, 90, 0, 45, "Subsubsection",ExpressionUUID->"44e66967-7dca-4c74-9faa-ddb6d233e435"], Cell[CellGroupData[{ Cell[1257510, 24497, 206, 5, 30, "Input",ExpressionUUID->"13012323-1400-4a27-90ff-1486073d725a"], Cell[1257719, 24504, 115, 2, 34, "Output",ExpressionUUID->"be014091-55df-452e-9dce-f4483a347d9a"] }, Open ]], Cell[CellGroupData[{ Cell[1257871, 24511, 269, 7, 30, "Input",ExpressionUUID->"429e2074-6d11-415f-b81b-eac8336a4dc5"], Cell[1258143, 24520, 128, 3, 34, "Output",ExpressionUUID->"b5ab8dd1-58af-4e4f-b813-c02225c51297"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[1258320, 24529, 90, 0, 37, "Subsubsection",ExpressionUUID->"a3eb8da8-db7e-4567-83ab-e6c19a41427b"], Cell[CellGroupData[{ Cell[1258435, 24533, 237, 6, 30, "Input",ExpressionUUID->"36a21cfe-8b62-4b22-860e-4b8fee1ce045"], Cell[1258675, 24541, 2020, 42, 330, "Output",ExpressionUUID->"aacb6134-4eef-4714-859e-076dd3ee16f6"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[1260744, 24589, 95, 0, 45, "Subsubsection",ExpressionUUID->"56094897-5f13-4996-9a0c-42470d88a8d7"], Cell[CellGroupData[{ Cell[1260864, 24593, 268, 6, 30, "Input",ExpressionUUID->"068d4815-5eef-483c-b796-7ad3e692aeb3"], Cell[1261135, 24601, 2617, 49, 334, "Output",ExpressionUUID->"b3f4ecd0-94fe-42af-8a2a-6f75b8a2b31c"] }, Open ]], Cell[CellGroupData[{ Cell[1263789, 24655, 145, 3, 30, "Input",ExpressionUUID->"4a957c87-fd59-4c6a-87b0-f168df64bd7e"], Cell[1263937, 24660, 130, 2, 34, "Output",ExpressionUUID->"7fa682c1-b2fe-483c-be85-3296b167de3a"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[1264116, 24668, 86, 0, 45, "Subsubsection",ExpressionUUID->"8606457e-2cba-4ef1-80ff-d33e4af33a97"], Cell[CellGroupData[{ Cell[1264227, 24672, 272, 5, 30, "Input",ExpressionUUID->"1ab750c2-2180-40e5-9308-12454467d041"], Cell[1264502, 24679, 12988, 257, 446, "Output",ExpressionUUID->"6785d5d5-4df7-4717-9a1a-45d341469031"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[1277539, 24942, 95, 0, 37, "Subsubsection",ExpressionUUID->"75e08323-694d-47c6-856a-4165f77888ce"], Cell[CellGroupData[{ Cell[1277659, 24946, 289, 7, 30, "Input",ExpressionUUID->"80d3b65d-5bb3-4541-a622-beed9245320c"], Cell[1277951, 24955, 8508, 171, 216, "Output",ExpressionUUID->"3a62c627-6b67-4b29-ae6e-2f40d980c648"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[1286508, 25132, 93, 0, 37, "Subsubsection",ExpressionUUID->"fee28905-8458-43ae-9ba4-ef9c408eb3b5"], Cell[CellGroupData[{ Cell[1286626, 25136, 206, 5, 30, "Input",ExpressionUUID->"52f4e4cf-0aac-4526-8777-a79fab25442d"], Cell[1286835, 25143, 114, 2, 34, "Output",ExpressionUUID->"0671489f-a90c-48ef-b00f-a42e1bce9f67"] }, Open ]] }, Closed]] }, Open ]], Cell[CellGroupData[{ Cell[1287010, 25152, 98, 0, 67, "Section",ExpressionUUID->"58ab1ae9-5cff-4f6d-a20f-9cd7df68c2c8"], Cell[CellGroupData[{ Cell[1287133, 25156, 169, 3, 30, "Input",ExpressionUUID->"3ae6e946-51b4-40a1-a588-6b546e0bccab"], Cell[1287305, 25161, 168, 3, 34, "Output",ExpressionUUID->"d1e918a4-aa02-4bd3-b27a-081999dc633e"] }, Open ]], Cell[CellGroupData[{ Cell[1287510, 25169, 615, 17, 52, "Input",ExpressionUUID->"032074ab-d666-4525-8c35-64f17f40518f"], Cell[1288128, 25188, 24920, 734, 734, "Output",ExpressionUUID->"0c6bd688-5d39-4ee7-9b94-725b1bc74556"] }, Open ]], Cell[CellGroupData[{ Cell[1313085, 25927, 573, 16, 52, "Input",ExpressionUUID->"74a8e5ca-699f-4cc2-b0ff-47137c4a6993"], Cell[1313661, 25945, 34966, 1028, 1028, "Output",ExpressionUUID->"7baa5584-bf4e-4b8e-9a71-b59c41da2000"] }, Open ]], Cell[CellGroupData[{ Cell[1348664, 26978, 615, 17, 52, "Input",ExpressionUUID->"d7889390-2427-4642-a958-337ea53a4419"], Cell[1349282, 26997, 26629, 733, 840, "Output",ExpressionUUID->"2d9fbe37-8d3e-455c-84c2-ff68a2ff1e6d"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[1375960, 27736, 85, 0, 53, "Section",ExpressionUUID->"2427574b-7472-40b7-beec-867f84e6f6f2"], Cell[CellGroupData[{ Cell[1376070, 27740, 665, 18, 30, "Input",ExpressionUUID->"dc7fd89b-b71c-40c1-a865-fbbe7f4aa24c"], Cell[1376738, 27760, 1936, 40, 498, "Output",ExpressionUUID->"85d33a67-372f-4f8c-9b2e-abf7b3c87b98"] }, Open ]], Cell[CellGroupData[{ Cell[1378711, 27805, 86, 0, 54, "Subsection",ExpressionUUID->"b9ce524e-703c-4fd1-8384-4fa1e5699400"], Cell[CellGroupData[{ Cell[1378822, 27809, 396, 8, 30, "Input",ExpressionUUID->"be4588e6-277c-4a77-90a2-fca451fde6eb"], Cell[1379221, 27819, 2602, 54, 384, "Output",ExpressionUUID->"37e50d32-cd70-4489-b756-e574f30e335d"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[1381872, 27879, 86, 0, 54, "Subsection",ExpressionUUID->"2a132812-f6ee-4c96-b0b1-dd37e4d54490"], Cell[CellGroupData[{ Cell[1381983, 27883, 396, 8, 30, "Input",ExpressionUUID->"68c0bc77-4971-4837-9bc9-61fa59181503"], Cell[1382382, 27893, 3239, 71, 339, "Output",ExpressionUUID->"acfb3580-765c-402b-a6c9-c138288bd2c0"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[1385670, 27970, 86, 0, 54, "Subsection",ExpressionUUID->"3ecf929c-93be-494e-a68e-979751d8bb4a"], Cell[CellGroupData[{ Cell[1385781, 27974, 396, 8, 30, "Input",ExpressionUUID->"3adc3e85-40ac-46e0-a76a-dc2e4f55a675"], Cell[1386180, 27984, 3078, 66, 285, "Output",ExpressionUUID->"1c614ede-d5c9-4c81-babc-767d08966380"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[1389307, 28056, 86, 0, 54, "Subsection",ExpressionUUID->"d1886490-3c46-45f8-9a57-3cd246c278ed"], Cell[CellGroupData[{ Cell[1389418, 28060, 400, 9, 30, "Input",ExpressionUUID->"0a65d88a-bf28-4a16-a10a-ee614ddac1ee"], Cell[1389821, 28071, 3387, 72, 298, "Output",ExpressionUUID->"06a1bd2f-6740-4a8a-9389-b6d1d82fae4d"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[1393257, 28149, 86, 0, 54, "Subsection",ExpressionUUID->"0f2c12d0-3d0f-4c3b-a13b-911fe9a1f9ed"], Cell[CellGroupData[{ Cell[1393368, 28153, 400, 9, 30, "Input",ExpressionUUID->"fef5fd9c-8a51-4c3f-8386-cf67ef376dd8"], Cell[1393771, 28164, 4395, 97, 356, "Output",ExpressionUUID->"4326a006-4605-4226-a894-50d68083a6d4"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[1398215, 28267, 86, 0, 54, "Subsection",ExpressionUUID->"25ad7db4-a485-423a-8e1a-1906ff4ae6da"], Cell[CellGroupData[{ Cell[1398326, 28271, 400, 9, 30, "Input",ExpressionUUID->"3607a8af-10f9-4931-9c4d-cf4de00440ff"], Cell[1398729, 28282, 3615, 78, 384, "Output",ExpressionUUID->"4f986148-a71f-44fa-9957-015096792d73"] }, Open ]], Cell[1402359, 28363, 192, 5, 30, "Input",ExpressionUUID->"5bad6a6c-584f-4ad3-9207-7af6557545af"], Cell[CellGroupData[{ Cell[1402576, 28372, 473, 14, 30, "Input",ExpressionUUID->"fe2d69b3-6795-4ccd-aa86-d3e789b3a582"], Cell[1403052, 28388, 200, 6, 49, "Output",ExpressionUUID->"454711c8-e360-4eac-8fb5-89bcc2654c54"] }, Open ]], Cell[CellGroupData[{ Cell[1403289, 28399, 400, 9, 30, "Input",ExpressionUUID->"6443d300-d35a-4656-a7cc-b94f2a94ba00"], Cell[1403692, 28410, 14015, 287, 61, "Output",ExpressionUUID->"7b8aab9b-7afb-40d0-8406-fc30a498ab59"] }, Open ]], Cell[1417722, 28700, 265, 8, 30, "Input",ExpressionUUID->"e6e6e8c7-0f36-4c6a-9f71-3e0e02720720"], Cell[CellGroupData[{ Cell[1418012, 28712, 547, 16, 30, "Input",ExpressionUUID->"91e11121-7342-4c5d-be36-0eb21f526efc"], Cell[1418562, 28730, 245, 8, 51, "Output",ExpressionUUID->"a20af45f-f3fa-4104-80ea-e5fff07827f4"] }, Open ]], Cell[CellGroupData[{ Cell[1418844, 28743, 350, 12, 48, "Input",ExpressionUUID->"661743e1-8080-4f9c-a744-e6dd427d9c96"], Cell[1419197, 28757, 209, 6, 49, "Output",ExpressionUUID->"8d3bc0b0-b1e8-4aa8-b3fe-e71d1ebd6f4f"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[1419455, 28769, 86, 0, 54, "Subsection",ExpressionUUID->"15c40c32-b446-4d62-8593-a1df64806629"], Cell[CellGroupData[{ Cell[1419566, 28773, 400, 9, 30, "Input",ExpressionUUID->"f39e5b46-eed6-4f71-b18c-307df3b91e6d"], Cell[1419969, 28784, 3439, 75, 322, "Output",ExpressionUUID->"c51a3cb6-a2f5-4d02-af49-66f5cd657d45"] }, Open ]] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[1423469, 28866, 97, 0, 67, "Section",ExpressionUUID->"df2d6f43-d4ae-4b6f-9347-8a3c3e4b265f"], Cell[CellGroupData[{ Cell[1423591, 28870, 98, 0, 54, "Subsection",ExpressionUUID->"ff518a5c-ec4b-46d6-b514-c04011394359"], Cell[CellGroupData[{ Cell[1423714, 28874, 2421, 70, 180, "Input",ExpressionUUID->"878eab9a-67d2-4fa8-9342-05501f4c028f"], Cell[1426138, 28946, 4310, 126, 70, "Output",ExpressionUUID->"a35e2233-0a9c-4fe1-81a3-2c50200071b6"] }, Closed]], Cell[CellGroupData[{ Cell[1430485, 29077, 1083, 33, 66, "Input",ExpressionUUID->"de9b7b4f-c5e3-45d5-9ffc-4d34aa3c2f5a"], Cell[1431571, 29112, 666, 11, 24, "Message",ExpressionUUID->"e83667b9-0f2e-41be-82ba-07f81a9c251e"], Cell[1432240, 29125, 796, 27, 73, "Output",ExpressionUUID->"22b55929-2f9e-4220-a1b5-215414ddb90f"] }, Open ]], Cell[CellGroupData[{ Cell[1433073, 29157, 364, 10, 30, "Input",ExpressionUUID->"cb8941d1-f8fe-4668-9e9d-95a60ab7fe5e"], Cell[1433440, 29169, 392, 8, 34, "Output",ExpressionUUID->"e27edf18-438f-487c-b0e6-f3a575d13cf5"] }, Open ]], Cell[CellGroupData[{ Cell[1433869, 29182, 2817, 79, 303, "Input",ExpressionUUID->"218f292f-a043-41e8-90a5-4ce914925fd3"], Cell[1436689, 29263, 4301, 126, 377, "Output",ExpressionUUID->"2a0be097-70d7-48ad-9370-2e1012ebbfdf"] }, Open ]], Cell[CellGroupData[{ Cell[1441027, 29394, 364, 10, 30, "Input",ExpressionUUID->"a83c0212-cad4-46ae-beb9-2499e97a44d3"], Cell[1441394, 29406, 237, 5, 34, "Output",ExpressionUUID->"e0523f47-5898-4a2f-a486-55fb2807ce55"] }, Open ]], Cell[CellGroupData[{ Cell[1441668, 29416, 116, 1, 30, "Input",ExpressionUUID->"f141c7b3-ae97-4534-8a50-34d92e5d8466"], Cell[1441787, 29419, 1754, 67, 90, "Output",ExpressionUUID->"5c15f0d2-3fc9-4d1c-b215-55412cd7fde5"] }, Open ]], Cell[CellGroupData[{ Cell[1443578, 29491, 122, 1, 30, "Input",ExpressionUUID->"28033e5a-3f89-49c0-8634-552a0481f691"], Cell[1443703, 29494, 350, 7, 24, "Print",ExpressionUUID->"dc6e0e9d-ff02-42e7-885a-08f35481d518"], Cell[1444056, 29503, 102, 0, 34, "Output",ExpressionUUID->"2d48bc6d-1f17-4f3c-b3a7-f1ec33729958"] }, Open ]], Cell[CellGroupData[{ Cell[1444195, 29508, 123, 1, 30, "Input",ExpressionUUID->"8606a1f5-518b-4a46-ac2d-31ae10264fd3"], Cell[1444321, 29511, 4484, 108, 193, "Output",ExpressionUUID->"9340d378-25ab-48a6-a068-72156002f845"] }, Open ]], Cell[CellGroupData[{ Cell[1448842, 29624, 333, 7, 30, "Input",ExpressionUUID->"2e35a3c3-61a2-4476-831f-faa181f2a878"], Cell[1449178, 29633, 8702, 296, 348, "Output",ExpressionUUID->"03c42e72-3150-4a1c-914a-1ca3f61a564c"] }, Open ]], Cell[CellGroupData[{ Cell[1457917, 29934, 175, 3, 30, "Input",ExpressionUUID->"f2c8ba97-bc80-4162-b095-89b4c8fe592b"], Cell[1458095, 29939, 113, 0, 24, "Print",ExpressionUUID->"4fd7ed50-75bc-4c57-9462-b2a202428ce0"], Cell[1458211, 29941, 84, 0, 34, "Output",ExpressionUUID->"8f1bd00e-9ff7-495b-9ca4-44dcb02d5557"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[1458344, 29947, 89, 0, 38, "Subsection",ExpressionUUID->"7ca66538-f244-46b0-8d52-e7a079d9c5a2"], Cell[CellGroupData[{ Cell[1458458, 29951, 1335, 41, 108, "Input",ExpressionUUID->"4b6bcd26-7edf-401d-a1f1-d3f2804404f9"], Cell[1459796, 29994, 4674, 137, 377, "Output",ExpressionUUID->"4a966917-3255-4737-a32f-a83d75f80d69"] }, Open ]], Cell[CellGroupData[{ Cell[1464507, 30136, 373, 10, 30, "Input",ExpressionUUID->"dc65dc93-73ae-4320-9967-7c5f74de0612"], Cell[1464883, 30148, 237, 5, 34, "Output",ExpressionUUID->"07f20a24-0aff-45dc-aff1-5997637d1343"] }, Open ]], Cell[CellGroupData[{ Cell[1465157, 30158, 1471, 43, 70, "Input",ExpressionUUID->"8377d618-d791-4198-ac46-532a777e5bac"], Cell[1466631, 30203, 1747, 52, 70, "Output",ExpressionUUID->"2fec1eb8-3a53-4398-9f4f-0c79daa40c6a"] }, Open ]], Cell[CellGroupData[{ Cell[1468415, 30260, 992, 27, 70, "Input",ExpressionUUID->"87c7244b-7762-41ff-9943-06516201499b"], Cell[1469410, 30289, 3827, 97, 70, "Output",ExpressionUUID->"32c69f7f-2207-4e3a-8f12-01cc49178977"] }, Open ]], Cell[CellGroupData[{ Cell[1473274, 30391, 230, 6, 70, "Input",ExpressionUUID->"70784cb4-f98d-4f0d-9dfd-f2afda49f7c4"], Cell[1473507, 30399, 1060, 41, 70, "Output",ExpressionUUID->"c37953d5-dac4-473c-a03f-b0eca1a40559"] }, Open ]], Cell[CellGroupData[{ Cell[1474604, 30445, 251, 6, 70, "Input",ExpressionUUID->"f3cbdc1e-051f-4713-ab18-171aea66b463"], Cell[1474858, 30453, 6891, 230, 70, "Output",ExpressionUUID->"418d7fbb-1e4e-458b-8c24-c2eb528e7aa3"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[1481798, 30689, 79, 0, 38, "Subsection",ExpressionUUID->"e3562054-bfad-4a4f-b8f4-1cf817b9d6ff"], Cell[1481880, 30691, 74, 0, 35, "Text",ExpressionUUID->"077ccaff-a28a-47b5-87da-bcf0fd241e42"], Cell[CellGroupData[{ Cell[1481979, 30695, 181, 3, 30, "Input",ExpressionUUID->"c0c00714-f3ed-4290-8f72-8259d77d2494"], Cell[1482163, 30700, 10868, 377, 415, "Output",ExpressionUUID->"71733de3-caf5-4a12-9bb5-5e4c04e0fd90"] }, Open ]], Cell[1493046, 31080, 74, 0, 35, "Text",ExpressionUUID->"34b403b2-070b-41bd-8d27-e6dc396e9b2b"], Cell[CellGroupData[{ Cell[1493145, 31084, 412, 12, 30, "Input",ExpressionUUID->"4ff247a0-ac3e-4df4-a3ac-e0901b37e6e0"], Cell[1493560, 31098, 662, 19, 34, "Output",ExpressionUUID->"b651f4a7-8b36-4655-a7ad-fa76f8dd18ca"] }, Open ]], Cell[CellGroupData[{ Cell[1494259, 31122, 675, 21, 30, "Input",ExpressionUUID->"064e8f22-89b7-4af5-b85d-a0b5de99d21c"], Cell[1494937, 31145, 818, 27, 34, "Output",ExpressionUUID->"222156b0-2532-4465-9b3c-01fd91cd2598"] }, Open ]], Cell[CellGroupData[{ Cell[1495792, 31177, 316, 8, 30, "Input",ExpressionUUID->"abea9fea-247f-4ac3-875a-94f4f67e8993"], Cell[1496111, 31187, 662, 19, 34, "Output",ExpressionUUID->"143ea1cc-34c8-4b25-9f38-4f756f20c7cc"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[1496822, 31212, 112, 0, 38, "Subsection",ExpressionUUID->"2bd01f3d-cb67-4206-b895-a8df7e8c731c"], Cell[CellGroupData[{ Cell[1496959, 31216, 175, 3, 30, "Input",ExpressionUUID->"40aa80d1-53ab-4534-9d05-85161e67714e"], Cell[1497137, 31221, 84, 0, 34, "Output",ExpressionUUID->"491b6579-9c2b-4a3a-95b6-1c7798c5b926"] }, Open ]], Cell[CellGroupData[{ Cell[1497258, 31226, 1075, 32, 73, "Input",ExpressionUUID->"a06d8ea8-ff6a-4303-9f01-3bbf107f9599"], Cell[1498336, 31260, 3599, 102, 377, "Output",ExpressionUUID->"60979d1b-2e80-4e6b-b4d4-5234f515bec3"] }, Open ]], Cell[CellGroupData[{ Cell[1501972, 31367, 122, 1, 30, "Input",ExpressionUUID->"2a17adfd-8e0e-4a6f-b874-873656b5356f"], Cell[1502097, 31370, 102, 0, 34, "Output",ExpressionUUID->"17aaf582-c7cd-40ce-b21b-8837d5e3377b"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[1502248, 31376, 87, 0, 38, "Subsection",ExpressionUUID->"5a81520a-5202-43a5-8eec-9d67f20b2619"], Cell[CellGroupData[{ Cell[1502360, 31380, 730, 21, 52, "Input",ExpressionUUID->"0874d1d7-917c-4348-9fb0-0d361e22b361"], Cell[1503093, 31403, 4306, 128, 148, "Output",ExpressionUUID->"ef80b84e-073f-4312-b354-324ce40fbea3"] }, Open ]], Cell[CellGroupData[{ Cell[1507436, 31536, 123, 1, 30, "Input",ExpressionUUID->"f830d765-f090-429a-b315-a6713c446edd"], Cell[1507562, 31539, 102, 0, 34, "Output",ExpressionUUID->"185dab69-f053-45b2-bafe-14ec06192a98"] }, Open ]], Cell[CellGroupData[{ Cell[1507701, 31544, 489, 12, 52, "Input",ExpressionUUID->"efaaec6d-8628-4f23-b247-ad624c790ad4"], Cell[1508193, 31558, 9874, 334, 390, "Output",ExpressionUUID->"b3edad65-e36c-4f5e-8f6f-7f219e83ae9c"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[1518116, 31898, 85, 0, 38, "Subsection",ExpressionUUID->"dc7d6525-09cb-4cec-ac15-dccbea28e209"], Cell[CellGroupData[{ Cell[1518226, 31902, 355, 9, 30, "Input",ExpressionUUID->"e55f4218-7bde-4bf1-aa48-33695ffe764d"], Cell[1518584, 31913, 3051, 66, 384, "Output",ExpressionUUID->"fbccf101-c051-4b34-aa6e-0f7097a8c1e0"] }, Open ]], Cell[CellGroupData[{ Cell[1521672, 31984, 1261, 36, 94, "Input",ExpressionUUID->"a6b8866e-3f8f-496e-9a23-1a2248fa6395"], Cell[1522936, 32022, 3596, 81, 384, "Output",ExpressionUUID->"6494df68-f3ac-45ef-883d-9295f9ae9907"] }, Open ]], Cell[CellGroupData[{ Cell[1526569, 32108, 150, 3, 30, "Input",ExpressionUUID->"66e41c88-10af-4f4e-b534-97e7ff5a8c97"], Cell[1526722, 32113, 130, 2, 34, "Output",ExpressionUUID->"3e72b453-5e37-48bf-af46-862315311ad5"] }, Open ]] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[1526913, 32122, 84, 0, 67, "Section",ExpressionUUID->"13fa58cc-fd8d-4e96-a15a-bc62f101e987"], Cell[CellGroupData[{ Cell[1527022, 32126, 84, 0, 54, "Subsection",ExpressionUUID->"ca401609-463f-4f06-b709-f7c0c5da48ed"], Cell[CellGroupData[{ Cell[1527131, 32130, 156, 3, 30, "Input",ExpressionUUID->"6cecff7a-3093-450a-abdf-8194f97e1a5f"], Cell[1527290, 32135, 1087, 17, 98, "Output",ExpressionUUID->"e70f46c0-da19-4c93-8105-73bcfa3c6a46"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[1528426, 32158, 85, 0, 54, "Subsection",ExpressionUUID->"ed24e5d5-b126-442c-821c-0f6c9fca91ac"], Cell[CellGroupData[{ Cell[1528536, 32162, 248, 6, 30, "Input",ExpressionUUID->"6653afff-6758-495e-877a-1ea0c0253e96"], Cell[1528787, 32170, 4393, 94, 208, "Output",ExpressionUUID->"2e390241-6498-46f6-9e3d-88eb7200228e"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[1533229, 32270, 87, 0, 54, "Subsection",ExpressionUUID->"4f23a18d-732f-4ed3-a0e0-0d332d1fad53"], Cell[CellGroupData[{ Cell[1533341, 32274, 288, 8, 30, "Input",ExpressionUUID->"006aa84b-d3d5-4e43-bdb2-8b35a3409b5a"], Cell[1533632, 32284, 3653, 101, 638, "Output",ExpressionUUID->"a180a1d6-cf36-49e7-8885-69436979713a"] }, Open ]] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[1537346, 32392, 83, 0, 67, "Section",ExpressionUUID->"5e7d495a-b81a-459e-8be0-d47b71f378ad"], Cell[CellGroupData[{ Cell[1537454, 32396, 93, 0, 54, "Subsection",ExpressionUUID->"d43cd638-0f91-47ce-a26f-a5a1ffe21b6a"], Cell[CellGroupData[{ Cell[1537572, 32400, 124, 1, 30, "Input",ExpressionUUID->"de40a4b3-b5bd-44a0-b942-8212422609c9"], Cell[1537699, 32403, 3249, 47, 728, "Output",ExpressionUUID->"6085e87e-daf4-42a1-ae20-348865eb5eb3"] }, Open ]] }, Open ]] }, Closed]] }, Open ]] } ] *)