æãéè¦ãªã®ã¯
ãab=0âa=0ã¾ãã¯b=0ã
ã§ãããã¶ããåç¥ã§ããã
æ¹ç¨å¼ã«å¯¾ãã¦æªç¥æ°ã両辺ã«æãããæªç¥æ°ã両辺ã§å²ãã両辺ã~ä¹ãããªã©ã®æä½ã®åå¤æ§ã¯ãå
¨é¨ããã§èª¬æã§ãã¾ãã
ä¾ãã°æ¹ç¨å¼f(x)=0ã®ä¸¡è¾ºã«æªç¥æ°xãæããã
xf(x)=xÃ0
âxf(x)=0
âx=0ã¾ãã¯f(x)=0
ããã§ãf(0)=0ãæãç«ã¤ã¨ãã¯ã
x=0ã¾ãã¯f(x)=0(ãã¤f(0)=0)
âf(x)=0
ã¨ãªãã¾ã
æ¹ç¨å¼f(x)=0ã®ä¸¡è¾ºã«å¼g(x)ãæããã(g(x)ã®å®ç¾©åã¯G)
f(x)g(x)=0âf(x)=0ã¾ãã¯g(x)=0$
ããã§ã{xâGâ£g(x)=0}â{xâGâ£f(x)=0}ãæãç«ã¤ã¨ãã¯ã
f(x)=0ã¾ãã¯g(x)=0
âf(x)=0ãã¤xâG
ã¨ãªãã¾ã
æ¹ç¨å¼f(x)=g(x)ã®ä¸¡è¾ºã«å¼h(x)ãæããã(h(x)ã®å®ç¾©åã¯H)
f(x)h(x)=g(x)h(x)
â(f(x)âg(x))h(x)=0
âf(x)âg(x)=0ã¾ãã¯h(x)=0
âf(x)=g(x)ã¾ãã¯h(x)=0
ã»ã¼ãªãã§ããã{xâHâ£h(x)=0}â{xâHâ£f(x)=g(x)}ãæãç«ã¤ã¨ãã¯ã
f(x)=g(x)ã¾ãã¯h(x)=0
âf(x)=g(x)ãã¤xâH
ã¨ãªãã¾ã
æ¹ç¨å¼f(x)=0ã®ä¸¡è¾ºãnä¹ããã
f(x)n=0
âf(x)nâ1=0ã¾ãã¯f(x)=0
â¯
âf(x)=0
ã¨ãªãã¾ã
æ¹ç¨å¼f(x)=g(x)ã®ä¸¡è¾ºãnä¹ããã
f(x)n=g(x)n
âf(x)nâg(x)n=0
â(f(x)âg(x))(fnâ1(x)+â¯+gnâ1(x))=0
âf(x)=g(x)ã¾ãã¯fnâ1(x)+â¯+gnâ1(x)=0
ãã¾ããªãã§ããã{xâ£fnâ1(x)+â¯+gnâ1(x)=0}â{xâ£f(x)=g(x)}ãæãç«ã¤ã¨ãã¯ã
f(x)=g(x)ã¾ãã¯fnâ1(x)+â¯+gnâ1(x)=0
âf(x)=g(x)
ã¨ãªãã¾ã
ã°ã©ãf(x,y)=0ã®ä¸¡è¾ºã«æªç¥æ°xãæããã
xf(x,y)=0
âx=0ã¾ãã¯f(x,y)=0
ããã§ã°ã©ãx=0ãã°ã©ãf(x,y)=0ã«å«ã¾ããã¨ãã¯
x=0ã¾ãã¯f(x,y)=0
âf(x,y)=0
ã¨ãªãã¾ã
ã°ã©ãf(x,y)=0ã®ä¸¡è¾ºã«ã°ã©ãg(x,y)ãæããã(g(x,y)ã®å®ç¾©åã¯G2)
f(x,y)g(x,y)=0
âf(x,y)=0ã¾ãã¯g(x,y)=0
ããã§ã°ã©ãg(x,y)=0((x,y)âG2)ãã°ã©ãf(x,y)=0((x,y)inG2)ã«å«ã¾ããã¨ãã¯
f(x,y)=0ã¾ãã¯g(x,y)=0
âf(x,y)=0ãã¤(x,y)âG2
ã¨ãªãã¾ã
ã°ã©ãy=f(x)ã«ã°ã©ãy=g(x)ãæãåãããã(g(x)ã®å®ç¾©åã¯G)
表ç¾çã«æ£ããããããã¾ãããããããããã¨ã§ãã
y(yâg(x))=f(x)(yâg(x))
â(yâf(x))(yâg(x))=0
ây=f(x)ã¾ãã¯y=g(x)
ã»ã¼ãªãã§ãããxâGã«ããã¦f(x)=g(x)ã§ããã¨ãã¯ã
y=f(x)ã¾ãã¯y=g(x)
ây=f(x)
ã¨ãªãã¾ã
ã ããããããªæãã§ã