f(x)=(x+p)2+qâp2ã®ããf(x)ã®è»¸ã¯x=âp
â£f(an+1â)âmâ£<â£f(anâ)âmâ£ã¯ãf(anâ)ããf(an+1â)ã®æ¹ãmã«è¿ãã
anâããan+1âã®æ¹ã軸ã§ããâpã«è¿ããã¨è¨ãæãããã¨ãã§ããã
ãã®ããâ£an+1ââ(âp)â£<â£anââ(âp)â£ã示ããã°ããã
fâ²(x)=2x+2pãan+1â=ârfâ²(anâ)+anâã®ãã
an+1â=âr(2anâ+2p)+anâã¨ãªãã両辺ã«pã足ã絶対å¤ãã¨ãã¨
â£an+1â+pâ£=â£â2r(anâ+p)+(anâ+p)â£=â£(anâ+p)(1â2r)â£
0<r<1/2ãããã
0<1â2r<1ãã¨ãªããâ£anâ+pâ£=0ã®æ
â£(anâ+p)â£(1â2r)=â£anâ+pâ£ã¨ãªã£ã¦ãã¾ãããâ£anâ+pâ£î =0ã示ãã
(1â2rã¯æ£ã¨ããã£ãã®ã§çµ¶å¯¾å¤ã®å¤ã«åºãã¾ããã)
â£an+1â+pâ£=â£(anâ+p)â£(1â2r)ãã
â£(anâ+p)â£=(1â2r)nâ1â£(a1â+p)â£=â£pâ£(1â2r)nâ1ãã
pî =0ã®æâ£anâ+pâ£î =0ã§ãããã
â£(anâ+p)â£(1â2r)<â£anâ+pâ£ã
ãã£ã¦â£an+1â+pâ£<â£anâ+pâ£ãè¨ããããé¡æã¯ç¤ºãããã
説æãä¸æã§ãããã«ãããã£ãããã¿ã¾ããã