[1]
A ( 1 , tan ⡠θ ) \mathrm{A}(1,\tan\theta) A ( 1 , tan θ ) ãã r 1 = tan ⡠θ r_1=\tan\theta r 1 â = tan θ ã§ããã
ç·å O B \mathrm{OB} OB 㨠y y y 軸æ£ã®åãããªãè§ã¯ Ï â 2 θ 2 \dfrac{\pi-2\theta}{2} 2 Ï â 2 θ â ã ããã α = Ï 2 â Ï â 2 θ 2 = θ + Ï 4 \alpha=\dfrac{\pi}{2}-\dfrac{\pi-2\theta}{2}=\theta+\dfrac{\pi}{4} α = 2 Ï â â 2 Ï â 2 θ â = θ + 4 Ï â ã¨ãªãã
(1)
θ = Ï 6 \theta=\dfrac{\pi}{6} θ = 6 Ï â ã®ã¨ãã r 1 = tan â¡ Ï 6 = 3 3 r_1=\tan\dfrac{\pi}{6}=\dfrac{\sqrt{3}}{3} r 1 â = tan 6 Ï â = 3 3 â â ã§ããã
ãã®ã¨ã tan ⡠α = tan â¡ ( Ï 6 + Ï 4 ) = 2 + 3 \tan\alpha=\tan(\frac{\pi}{6}+\frac{\pi}{4})=2+\sqrt3 tan α = tan ( 6 Ï â + 4 Ï â ) = 2 + 3 â ã¨ãªããããç´ç· O B \mathrm{OB} OB ã®æ¹ç¨å¼ã¯ y = ( 2 + 3 ) x y=(2+\sqrt3)x y = ( 2 + 3 â ) x ã¨ãªãã
ã¾ãã r 2 = 3 3 r_2=\dfrac{\sqrt3}{3} r 2 â = 3 3 â â ã¨ããã¨ãç¹ B \mathrm{B} B ã® x x x 座æ¨ã 3 3 \dfrac{\sqrt3}{3} 3 3 â â ã ããã B ( 3 3 , 2 3 3 + 1 ) \mathrm{B}\left(\dfrac{\sqrt3}{3},\dfrac{2\sqrt3}{3}+1\right) B ( 3 3 â â , 3 2 3 â â + 1 ) ã§ããã
(2)
C 1 C_1 C 1 â 㨠C 2 C_2 C 2 â ãç¹ T \mathrm{T} T ã§å¤æ¥ããã¨ããç¹ T \mathrm{T} T ã«ããã¦ç´ç· l l l ã¨æ¥ããããã O T = r 1 = 1 \mathrm{OT}=r_1=1 OT = r 1 â = 1 ã§ããã â B O T = Ï 4 â θ \angle\mathrm{BOT}=\dfrac{\pi}{4}-\theta â BOT = 4 Ï â â θ ã§ããã â B T O = Ï 2 \angle\mathrm{BTO}=\dfrac{\pi}{2} â BTO = 2 Ï â ã§ãããã¨ã«æ³¨æããã¨ã B T = O T tan â¡ ( Ï 4 â θ ) = 1 â tan ⡠θ 1 + tan ⡠θ \mathrm{BT=OT}\tan\left(\dfrac{\pi}{4}-\theta\right)=\dfrac{1-\tan\theta}{1+\tan\theta} BT = OT tan ( 4 Ï â â θ ) = 1 + tan θ 1 â tan θ â ãå¾ãããããã£ã¦ã
A B = A T + B T = r 1 + r 2 = tan ⡠θ + 1 â tan ⡠θ 1 + tan ⡠θ = t + 2 t â 2 \begin{aligned}\mathrm{AB}&=\mathrm{AT+BT}=r_1+r_2 \\&=\tan\theta+\dfrac{1-\tan\theta}{1+\tan\theta} \\&=t+\dfrac{2}{t}-2\end{aligned} AB â = AT + BT = r 1 â + r 2 â = tan θ + 1 + tan θ 1 â tan θ â = t + t 2 â â 2 â
ã¨ãªãã 0 < θ < Ï 4 â
â ⺠â
â 1 < t < 2 0<\theta<\dfrac{\pi}{4} \iff 1<t<2 0 < θ < 4 Ï â ⺠1 < t < 2 ã ãããç¸å å¹³åã¨ç¸ä¹å¹³åã®å¤§å°é¢ä¿ã«ãã t + 2 t â 2 ⧠2 t â
2 t â 2 = 2 2 â 2 t+\dfrac{2}{t}-2\geqq2\sqrt{t\cdot\dfrac{2}{t}}-2=2\sqrt2-2 t + t 2 â â 2 ⧠2 t â
t 2 â â â 2 = 2 2 â â 2 ã§ãããçå·æç«ã¯ t = 2 t â
â ⺠â
â t = 2 t=\dfrac{2}{t}\iff t=\sqrt2 t = t 2 â ⺠t = 2 â ããªãã¡ tan ⡠θ = 2 â 1 \tan\theta=\sqrt2-1 tan θ = 2 â â 1 ã®ã¨ãã§ããã
[2]
åæç¶æ
ã«ãããé£å¡©ã®éã¯ã 500 à 0.1 = 50  [ g ] 500\times0.1=50\ [\mathrm{g}] 500 à 0.1 = 50  [ g ] ã§ããããã®ãã¡ 100  [ g ] 100\ \mathrm{[g]} 100  [ g ] ããªãã¡å
¨ä½ã® 1 5 \dfrac{1}{5} 5 1 â ã«ãããéã®é£å¡©æ°´ãåãåºããã¤ã¾ããæ®ã£ãé£å¡©ã®é㯠50 à 4 5 = 40  [ g ] 50\times\dfrac{4}{5}=40\ \mathrm{[g]} 50 à 5 4 â = 40  [ g ] ã§ããã
æ¿åº¦ã 1 % 1 \% 1% 以ä¸ã¨ãªãã¨ãã®é£å¡©ã®é㯠5  [ g ] 5\ \mathrm{[g]} 5  [ g ] ã ããã n n n åã®æä½ã«ãã£ã¦é¡æã®æ¡ä»¶ãæºããããã¨ãã
( 4 5 ) n à 50 ⦠5 â
â ⺠â
â 2 2 n + 1 < 5 n â 1 \left(\dfrac{4}{5}\right)^n\times50\leqq5 \iff 2^{2n+1}<5^{n-1} ( 5 4 â ) n à 50 ⦠5 ⺠2 2 n + 1 < 5 n â 1 ã§ããã両辺ã®å¸¸ç¨å¯¾æ°ãã¨ãã¨
( 2 n + 1 ) log â¡ 10 2 ⦠( n â 1 ) log â¡ 10 5 â
â ⺠â
â 3 n log â¡ 10 2 ⦠n â 1 â
â ⺠â
â n ⧠10.3 ⯠\begin{aligned}(2n+1)\log_{10}2\leqq (n-1)\log_{10}5 &\iff 3n\log_{10}2 \leqq n-1 \\&\iff n\geqq 10.3\cdots\end{aligned} ( 2 n + 1 ) log 10 â 2 ⦠( n â 1 ) log 10 â 5 â ⺠3 n log 10 â 2 ⦠n â 1 ⺠n ⧠10.3 ⯠â ã¨ãªã£ã¦ãæ±ããåæ°ã¯ 11 11 11 åã§ããã