3 åç
æ°å¦ã®è³ªåã§ãã
åçã®åé¡ã®(3)ã(4)ã«å°±ãã¦ã§ããããªãã®åãå¾ãç¯å²ãèããªãã¦è¯ãã®ã§ããããï¼ä¾ãã°(3)ã ã¨ãæºããããæºãããªãå¯è½æ§ããæºããããæºãããªãå¯è½æ§ãããã¨æãã®ã§ããâ¦ï¼ãã®è¨ãåãããããã§ãããï¼ï¼(4)ã ã¨åè ã®å¿é ã¯ãªãããã§ãããå¾è ã®å¿é ã¯æ®ãããã§ãâ¦ä¸å¿ãã®ç¯å²ãèãã¦ãèããªãã¦ãçãèªä½ã¯åãã«ãªãã®ã§ããâ¦
åçå®ãããé¡ãè´ãã¾ãã
ãã¹ãã¢ã³ãµã¼
æ¯åãã質åããã¾ããã
ããæ¬æ¥ã¯tã®ç¯å²ãã¡ããã¨èããæ¹ãããã§ãã
(3)ã®è§£çã¯ãããã次ã®ãããªè«çå¼ã®å¤å½¢ãæ¥æ¬èªã§æ¸ãããã®ã ã¨æãã¾ãã
æ±ããè»è·¡ãã¨ããã座æ¨å¹³é¢ä¸ã®ç¹ãã«å±ããã¨ãã
ãã£ã¦ãã«å±ããç¹ã¯ãã¤ãã¤ãæºããç¹ã§ããã
åçãããã¨ããããã¾ãã
ontama_udonããã®åçã¨è§£çãè¦æ¯ã¹ã¦æ°ä»ããã®ã§ãããç§ã解çãåéããã¦å± ã¾ããã解çã®ï¼ï¼ï¼ã§ã¯ãï¼è¡ç®ã§å¤å½¢å¾ã®å¼ããï½ãæ¶å»ãã¦å± ã¾ãããç§ã¯ãä¸ããããå¼ããç´æ¥ï½ãæ¶å»ãã¦å± ãã¨æãè¾¼ãã§å± ã¾ããããã¤ãè¯ã質åããããã¨è¤ãã¦é ããã®ã«ç³ã訳ãªãã§ãâ¦
ï¼ï¼ï¼ã§æ ã ãæ±ãã¦å± ãªãã®ã¯ããã®ç¯å²ãå¶éãã¦ãä¸å¼ãåå¤ã«å¤å½¢ããå¾ããã®ãã®ç¯å²ã®å¶éã«å ã£ã¦ãé£åãã¦ãç¯å²ãå¶éãããã¨ãããã¨ã§èªåçã«ã®ç¯å²ãã«ãããã¨ãåºæ¥ãããã¨è¨ããã¨ã§åã£ã¦å± ã¾ãã§ããããï¼
ã·ã§ã¢ãããï¼
ãã®ã»ãã®åçï¼2件ï¼
ã®åãå¾ãç¯å²ãèããã®ã¯ãã®å¶éãããã¦ä½ã£ã¦ãã¾ããã¨ã«ãªããã¨ããã¾ããããããããã®ãã¾ãã¹ããªããã¡ããã¡ãåãåã£ã¦ãã®çµæã§ããæ²ç·ãçããªãã¨ãããªãã®ã§ããã¯ãèããªãæ¹ãè¯ãæ°ããã¾ãããããããåãããã¹ã¦ã®å¯è½æ§ãæ½°ããªãã¨ãããã¯çµæãæãã¦ãããã®ã§å¤§ä¸å¤«ã ã¨æãã¾ããï¼
ã¤ã¾ãããã®åãã¨ããã®ã¯ããã©ããåããã®ããã§ã¯ãªãããã©ãåããããã ã¨ãããã¨ã§ããã
ãã©ãåããããèããã®ã«ã®ç¯å²ãèããå¿ è¦ã¯ãªãã®ã§ããï¼
ä¾ãã°ï¼ï¼ï¼ã§ãä»£å ¥ããã¨ããã«å¯¾å¿ããã¯åå¨ãã¾ãããã¯åå¨ããªãã§ãããï¼ããããã¨ã座æ¨å¹³é¢ä¸ã«ã«å¯¾å¿ããç¹ã¯åå¨ããªããã¨ã«ãªãã¾ãããï¼ç§ã¯ããèããã®ã§ããâ¦
試ãã«ç§ã®è§£ãæ¹ã§è§£ãã¦è¦ã¾ããã
ãã
ãã
åæ¹ãæºããã«ã®ã¿ã対å¿ããå¹³é¢ä¸ã®ç¹ãåå¨ããã®ã§ã®ç¯å²ã¯
å ã£ã¦ã
æ¡ä»¶å¼ãããæ¶å»ããå¼ã¯
ããã¨ããããæ±ããæ²ç·ã¯ãã
ãã¿ã¾ããããã¹ã§ãã
äºè¡ç®
ãã
ã§ã¯ãªãã
ãã
ã§ãã
Enigmathematicsãããã¿ã¾ããð¦å¹´æ«ã§å¿ããã¨ã¯æãã¾ãããæ¯éãè¿ä¿¡é ãããå¬ããã§ãã
ãè¿äºé ããªã£ã¦ç³ã訳ãªãã§ãï¼ï¼ããããããèãã¦ã¿ãã¨ã ãã ãã¨ç§ã§ã訳ããããªããªã£ã¦ãã¾ã£ã¦...
ç¾æç¹ã§ã®ç§ã®èããç³ãã¾ãã¨ãããããåçã¯çµæè«ã®ãããªæãã§ç¯å²ã®å¶å®ãè¡ã£ã¦ããããã«è¦ãã¾ããã®å ´åã¯ãã®ä¸èº«ãæ£ã¨ããäºã ãã§çããåºãã¦ãã¾ãããã¶ãããã¯çããç¥ã£ã¦ããªãã¨åºæ¥ããã¨ãããªããã¨æãã¾ãã対ãã¦ãã®å ´åã¯ããæ¡ä»¶ã®å³ããã»ãã§ãè«è¨¼ãã¦ããã®ã§ãã¡ãã¯ããä¸å¯§ãªè§£çãªã®ã§åé¡ã¯ãªãããã§ããçµå±ã®ã¨ãããä¸å¯§ã«ç¯å²ãåºãã¦ãããæ¹ãããå³æ£ãªçããåºããã¨ã¯ééããªãã®ã§ãå人çã«ã¯è§£çã®ã»ãã¯å¤§ç®ã«è¦ã¦ããããããªã¨åæã«æã£ã¦ãã¾ãã確å®ãªãã¨ãè¨ããã«ããããªããðãã¾ãä½ãããã°è£è¶³ãããã§ã
ã®ç¯å²ãæ±ããå¿ ç¶æ§ã«ã¤ãã¦ä¾ãæãã¦è²ã ã¨è©¦ãã¦ã¿ããã¨æãã¾ã
åããã¾ããï¼æ ã ãããã¨ããããã¾ãï¼
ã¾ãä½ãåãã£ããæãã¦ä¸ããï¼
ã¾ãèããã¾ã¨ã¾ãã¾ããã®ã§ãä»åã®åé¡ã«ã¾ã触ãããã¨æãã¾ãã
(åé·ã«ãªãç³ã訳ããã¾ãã)
解çã«ã¯ã®ç¯å²ãç´æ¥ã§åºãã¦ããªãããã«è¦ãã¾ããããã¡ããã¨åºãã¦ããã¨æãã¾ããã§ã¯ã¨ãã¦ãããããã¯éæ¥çã«ã示ãã¦ããã¨ãåãã¾ããããã¨ã®æ¹ã¯ã©ããªã®ãã¨ãªãã¾ãã
ã ãã§è¨è¿°ãã¦ãã¦ãæ¾ã£ã¦ãããã¦ããããã«è¦ãã¾ãããã®æç¹ã§ã®ç¯å²ãèªç¶ã¨æ±ºã¾ã£ã¦ãã¾ãã®ã§ãã®ç¶æ³ã§ãæ¶å»ãã¦ãçç¾ãªãçµè«ãåºããã¨ããèãã§ããã®åããç¯å²ãèããã ãã§ååãã¨ãããã¨ã§ããããã
ã¤ã¾ãåªä»å¤æ°ã«å å ããã¦ããæ¡ä»¶ã¯ç´æ¥åºããªãã¦è¯ããããããã®æ¡ä»¶ãæºãããªãã¯èããå¿ è¦ããªããåå¨ããªãã®ã§å¤§ä¸å¤«ãã ã¨æãã¾ãã
ãªãã ãæåã®ä¸»å¼µã«æ»ã£ããããªæ°ããã¾ã...
æ ã ãããã¨ããããã¾ãã
å®ã¯ãä»ã®åçè ããã®åçãèªãã§å± ãæã«æ°ä»ããã®ã§ãããèªåã解çãåéããã¦å± ãé¨åãããã¾ããâ¦åéãã«æ°ä»ããå¾ã«ããä¸åº¦è§£çãåå³ãã¦è¦ããEnigmathematicsããã¨åãçµè«ã«è³ãã¾ãããï½ï¼ï½ã®ç¯å²ã«ï½ã®ç¯å²ãå«ã¾ãã¦å± ãã®ã§åå¥ã«ï½ã®ç¯å²ãèããå¿ è¦ã¯ãªããã§ãããã
èªåã®ãã¹ã«é·ã ã¨ä»ãåããã¦çµã£ã¦ç³ã訳ãªãã§ãðð¦
ç¹ ãåå¨ããç¯å²ã ãã® ããèããªããããã§ããã¨æãã¾ãã
åçãããã¨ããããã¾ãã
ããå°ã説æã詳ãããé¡ãåºæ¥ã¾ããï¼æ°å¦ãè¦æãªãã®ã§â¦
>>ä¾ãã°(3)ã 㨠ãæºãã ã ãæºãããªãå¯è½æ§ã ãæºãã ã ãæºãããªãå¯è½æ§ãããã¨æãã®ã§ãã
座æ¨ãã¨ããã®ã¯ , 座æ¨ãã¨ããã®ã¯ ãªã®ã§ãç¹ ã å¹³é¢ä¸ã«åå¨ãããã¤ã¾ãæ²ç·ãåå¨ããã®ã¯ ã§ãããã¨ãæ示ããã¦ãã¾ãã
質åè ããã®ã礼ã³ã¡ã³ã
ãããã¨ããããã¾ãï¼