ãæ§é è¨è¿°ã®ããã®ææ¨ã¨åå 1/n åºæ¬ãã§ãææ¨ã使ã£ã¦æ§é ãè¨è¿°ããæ¹æ³ã®åºæ¬ãè¿°ã¹ãã®ã§ãå®éã«ãã®æ¹æ³ã使ã£ã¦æ§é ï¼ä»£æ°ç³»ï¼ãè¨è¿°ãã¦ã¿ã¾ããä¾é¡ã¯å°ããåã§ããå°ããåãææ¨ã§è¨è¿°ããã®ã§ãã¿ã¼ã²ãããæ¨çç°å¢ãã¯éååã§ããéååã«ããã¦ãåã®å½¢å¼çãªè¨è¿°ãå®è¡ãã¾ããããã¯ãåè«ã使ã£ã¦åãå®ç¾©ãããã¨ã«ãªãã¾ãã$`\newcommand{\mrm}[1]{ \mathrm{#1} }
\newcommand{\cat}[1]{ \mathcal{#1} }
%\newcommand{\op}{ \mathrm{op} }
\newcommand{\In}{\text{ in }}
%\newcommand{\Imp}{\Rightarrow}
%\newcommand{\u}[1]{\underline{#1}}
\newcommand{\o}[1]{\overline{#1}}
\newcommand{\twoto}{ \Rightarrow }
\newcommand{\id}{ \mathrm{id} }
\newcommand{\hyp}{\text{ï¼} }
%\newcommand{\dblcat}[1]{\mathbb{#1}}
\newcommand{\NFProd}[3]{ \mathop{_{#1} \!\underset{#2}{ \times }\,\!_{#3} } }
\newcommand{\obj}[1]{ {{#1}\!\downarrow} }
%%
\require{color}
\newcommand{\NN}[1]{ \textcolor{orange}{\text{#1}} } % New Name
\newcommand{\NX}[1]{ \textcolor{orange}{#1} } % New EXpression
\newcommand{\T}[1]{\text{#1} }
\newcommand{\SeeDiag}{\:\langle\!\langle\text{see diagram}\rangle\!\rangle }
%%
`$
å 容ï¼
- æ¸ãæ¹ã®ç´æ
- åã®ææ¨
- å³å¼ã«ããè¨è¿°
- ã¹ãã³
- åã®æ³åã®è¨è¿°
- ããã¦ãããã
ããè¨äºï¼
æ¸ãæ¹ã®ç´æ
ãæ§é è¨è¿°ã®ããã®ææ¨ã¨åå 1/n åºæ¬ãã®æå¾ã«æ¬¡ã®ããã«æ¸ãã¾ããã
å¿ç¨ç·¨ã¨ãã¦ç¶ãã®è¨äºãæ¸ãäºå®ã§ã¯ãã¾ãããããè²ã¯ä»ããªãããªããã ã£ã¦ãè²ä»ããã®æã§ãã£ã¦ãããããã©ããããã ãããè²ãä»ãã¦ãªãã¦ããååã®ç¨®é¡ãç¨æ³ãå¤å¥ã§ããããã«ãªã£ã¦ãã ãããªã
ã¨ããããã§ããã¹ã¦ã®ååãè²åãã¯ãã¾ããããææ¨åã¨æ§æç´ å½¹å²ãåã®æåã®åºç¾ã ãã¯ãªã¬ã³ã¸è²ã«ãã¾ã*1ãååºã§å®£è¨ãããå¾ã¯ãï¼å½è©²ã®ã¹ã³ã¼ãå ã§ã¯ï¼æ¢ç¥åã¨ãã¦æ±ãããç¹ã«è²ã¯ä»ãã¾ããã
ãæ§é è¨è¿°ã®ããã®ææ¨ã¨åå 1/n åºæ¬ãã§ã¯ãå¤æ°ãå°å ¥ãã¦å¤æ°ã«å¤ãæç¸ããã«ã¯æ¬¡ã®ãè¡ã使ã£ã¦ãã¾ããã
$`\quad \T{variable }X\\
\quad \T{let }X := \cdots
`$
ããã¯åé·ãªã®ã§ã以ä¸ã®ä¸è¡ã§æ¸ã¾ãã¾ãã
$`\quad \T{let }X := \cdots
`$
$`\T{let}`$ ã§å°å ¥ãããå¤æ°åã¯ä¸æçã«ä½¿ãã ãã§ãå¤é¨ã«å ¬éãããååã§ã¯ããã¾ããã
åã®ææ¨
å°ããåãå®ç¾©ãã¾ããå°ããåã¯ãéååã®ãªãã§å®ç¾©ããã¾ããã¤ã¾ããå°ããåã®ææ¨ã®ã¿ã¼ã²ãããæ¨çç°å¢ãã¯éååã ã¨ãããã¨ã§ãããåãå®ç¾©ããã®ã«åãåæããã®ãï¼ãã¨æªè¨ã«æãããããã¾ããããåãå®ç¾©ããã®ã«åãåæãã¾ãï¼ ã¹ãã¼ã°ãã¼ãç¾è±¡ï¼ãã¤ã¯ãã³ã¹ã¢åçï¼ãä¾åã¢ã¯ãã´ãªã¼ã«åã㦠// ã¹ãã¼ã°ãã¼ãç¾è±¡ï¼ãã¤ã¯ãã³ã¹ã¢åçãåç §ï¼ã¯é¿ãããããªããã¨ãããã®ã§ãããã¯éãç´ãã¾ã*2ã
éåå $`{\bf Set}`$ ãã¿ã¼ã²ããã¨ããå°ããåãsmall categoryãã®ææ¨ã¯æ¬¡ã®ããã«ãªãã¾ããå¹¾ã¤ãã®æ³¨æäºé ãããå¾ã«æ¸ãã¾ãã
$`\T{signature }\NN{SmallCategory}\T{ within } ({\bf Set} \T{ as CategoryWithFiberedProduct})\\
\{ \\
\:\T{data}\\
\quad \NN{Obj}\\
\quad \NN{Mor}\\
\quad \T{let } \cat{C}_0 := \T{Obj}\\
\quad \T{let } \cat{C}_1 := \T{Mor}\\
\quad \NN{dom} : \cat{C}_1 \to \cat{C}_0\\
\quad \NN{cod} : \cat{C}_1 \to \cat{C}_0\\
\quad \NN{id} : \cat{C}_0 \to \cat{C}_1 \\
\quad \T{define }\NN{MorPair} := \cat{C}_1 \NFProd{\T{cod}}{ \cat{C}_0 }{\T{dom}} \cat{C}_1\\
\quad \T{let }\ \cat{C}_2 := \T{MorPair}\\
\quad \T{define }\NN{fst} := \pi_1^{ \T{cod}, \T{dom} } : \cat{C}_2 \to \cat{C}_1 \\
\quad \T{define }\NN{snd} := \pi_2^{ \T{cod}, \T{dom} } : \cat{C}_2 \to \cat{C}_1 \\
\quad \NN{comp} : \cat{C}_2 \to \cat{C}_0\\
\:\T{laws}\\
\quad \NN{id-dom} \SeeDiag \\
\quad \NN{id-cod} \SeeDiag \\
\quad \NN{comp-dom} \SeeDiag \\
\quad \NN{comp-cod} \SeeDiag \\
\quad \NN{assoc} \SeeDiag \\
\quad \NN{lunit} \SeeDiag \\
\quad \NN{runit} \SeeDiag \\
\}
`$
ãã®ææ¨ã«ãã£ã¦æ°è¦å°å ¥ããå ¬éãããååã¯ä»¥ä¸ã®ãã®ã§ããååºããªã¬ã³ã¸è²ã«ãã¦ããã®ã§ããåããã¾ãã
- $`\T{SmallCategory}`$ ï¼ å°ããåãsmall categoryã
- $`\T{Obj}`$ ï¼ åã®å¯¾è±¡éåãset of objectsã
- $`\T{Mor}`$ ï¼ åã®å°éåãset of morphismsã
- $`\T{dom}`$ ï¼ å°ã«ãåãdomainãã対å¿ãããåå
- $`\T{cod}`$ ï¼ å°ã«ãä½åãcodomainãã対å¿ãããåå
- $`\T{id}`$ ï¼ å¯¾è±¡ã«ãæçå°ãidentityãã対å¿ãããåå
- $`\T{MorPair}`$ ï¼ çµåå¯è½ãcomposableããªå°ã®ãã¢
- $`\T{fst}`$ ï¼ çµåå¯è½ãªå°ã®ãã¢ã®ç¬¬ä¸ãfirstãæå
- $`\T{snd}`$ ï¼ çµåå¯è½ãªå°ã®ãã¢ã®ç¬¬äºãsecondãæå
- $`\T{comp}`$ ï¼ çµåãcompsitionãæ¼ç®
- $`\T{id-dom}`$ ï¼ æçå°ã®åã«é¢ããæ³å
- $`\T{id-cod}`$ ï¼ æçå°ã®ä½åã«é¢ããæ³å
- $`\T{comp-dom}`$ ï¼ çµåçµæã®åã«é¢ããæ³å
- $`\T{comp-cod}`$ ï¼ çµåçµæã®ä½åã«é¢ããæ³å
- $`\T{assoc}`$ ï¼ çµåæ¼ç®ã®çµåæ³åãassociative lawã
- $`\T{lunit}`$ ï¼ çµåæ¼ç®ã¨æçå°ã®å·¦åä½å¾ãleft unit lawã
- $`\T{runit}`$ ï¼ çµåæ¼ç®ã¨æçå°ã®å³åä½å¾ãright unit lawã
ãã®ãªãã§ã$`\T{MorPair}, \T{fst}, \T{snd}`$ ã¯å®ç¾©ãããååã§ãã
å°ããåã®ã¿ã¼ã²ãããæ¨çç°å¢ãã§ããå $`{\bf Set}`$ ã¯ç¹å®ããããã¡ã¤ãã¼ç©ãæã¤åã¨èãã¾ãããã®ãã¨ã
$`\quad \T{ within } ({\bf Set} \T{ as CategoryWithFiberedProduct})`$
ã表ãã¦ãã¾ã*3ã
ãç¹å®ããããã¡ã¤ãã¼ç©ãæã¤ãã¨ã¯ã©ããããã¨ãï¼ èª¬æãã¾ãï¼ ä»¥ä¸ã¯ãä¸ããããã³ã¹ãã³ã«å¯¾ãããã«ããã¯å³å¼ã®ãã¬ã¼ã ï¼ãã³ãã¬ã¼ãï¼ãåè«ã«ããããã¬ã¼ã å å¡«åé¡ãåç §ï¼ã ã¨ãã¾ãã
$`\quad \xymatrix {
? \ar@{.>}[r] \ar@{.>}[d]
\ar@{}[dr]|{?\,\text{p.b.} }
& B \ar[d]^g
\\
A \ar[r]_f
& C
}\\
\quad \In {\bf Set}
`$
éååãªããçå符ã®å¯¾è±¡ã¨ç¹ç·ã®å°ãããã¨åè§å½¢å é¨ãåããçå¼ã2-å°ããåå¨ãã¾ãããããã¬ã¼ã å å¡«åé¡ï¼ããã§ã¯ã極ééãæ±ããåé¡ï¼ã®è§£ãä¸æçã¨ã¯éãã¾ãããå¹¾ã¤ããã解ã®ãªãããã²ã¨ã¤ãé¸ãã§ãç¹å®ãã¦ã次ã®ããã«è¡¨ãã¾ãã
$`\quad \xymatrix {
{A \NFProd{f}{C}{g} B} \ar[r]^-{\pi_1^{f, g}} \ar[d]_{\pi_2^{f, g}}
\ar@{}[dr]|{=\,\text{p.b.} }
& B \ar[d]^g
\\
A \ar[r]_f
& C
}\\
\quad \In {\bf Set}
`$
ãããã£ã¦ã$`({\bf Set} \T{ as CategoryWithFiberedProduct})`$ ã§ã¯ã$`\NFProd{\hyp}{\hyp}{\hyp}`$ 㨠$`\pi_i^{\hyp, \hyp }`$ ã¨ããååï¼è¨å·ãæ¸ãæ¹ï¼ãæ¢ç¥åã¨ãã¦ä½¿ããã¨ãã§ãã¾ããå®éãææ¨å ã§ä½¿ã£ã¦ãã¾ãã
ä¸è¨ã®ææ¨ã§ã¯ã$`\cat{C}_0, \cat{C}_1, \cat{C}_2`$ ã®ãããªå¤æ°åã $`\T{let}`$ ã§å°å ¥ãã¦ãã¾ãã$`\T{define}`$ ã¯å ¬éãããååãå®ç¾©ãã¾ããã$`\T{let}`$ ã¯ä¸æçãªå¤æ°åãå¤ãå³è¾ºãã«æç¸ããã ãã§ãããããã®å¤æ°åã¯ãå¾ã®è¨è¿°ãç°¡æ½ã«ããç®çã ãã§ä½¿ãããä¸æçãªååã§ããå¿ é ã¨ããããã§ã¯ããã¾ããã
$`\cat{C}_0, \cat{C}_1, \cat{C}_2`$ ã®å°å ¥ã¯ãå®ã¯äºéåã®è¨è¿°ã¸ã®æºåã§ããäºéåã§ã¯ãï¼1-åã¨ã¯ç¿æ £ãéãï¼ä¸ä»ãã® 0, 1 ã§å¯¾è±¡ã¨å°ãèå¥ããç¿æ £ã§ããã«ãªã°ã©ãã£ã¼ä½ãã©ã³ãã® $`\cat{C}_0`$ ã ã¨ãç®è¦ã§åã«âè¦ãã¦ãã¾ãâããããã¾ãããã$`\cat{C}_0, \cat{C}_1, \cat{C}_2`$ ã¯éåã§ãã$`\cat{C}_0 := |\cat{C}|, \cat{C}_1 := \mrm{Mor}(\cat{C})`$ ã¨ç´æããã¦ããã¨æã£ã¦ãã ããã
$`\SeeDiag`$ ã¯ãå¥ãªå ´æã§å³å¼ãdiagramãã«ããè¨è¿°ããããã¨ã示ãã¾ããæ³åã¯ãã¹ã¦å³å¼ã«ããè¨è¿°ãã¾ãããããã®å³å¼ã¯æ¬¡ç¯ã«ãã¾ãã
å³å¼ã«ããè¨è¿°
çå¼çæ³åã®å³å¼ã«ããè¨è¿°ã«ã¤ãã¦ã¯ããæ§é è¨è¿°ã®ããã®ææ¨ã¨åå 1/n åºæ¬ // å³å¼ã«ããæ³åã®è¨è¿°ãã§èª¬æãã¦ãã¾ãã
æåã®4ã¤ã®æ³åã®å³å¼éã¯ä»¥ä¸ã§ããæ®ãã®æ³åã«ã¤ãã¦ã¯ã次ç¯ã§ã¹ãã³ã«é¢ããè£è¶³ãããå¾ã«ç¤ºãã¾ãã
$`\quad \xymatrix@C+1pc{
\cat{C}_0 \ar[d]_{\T{id}} \ar@{=}[r]
\ar@{}[dr]|{\underset{\nearrow}{=}\, \T{id-dom}}
& \cat{C}_0 \ar@{=}[d]
\\
\cat{C}_1 \ar[r]_{\T{dom}}
& \cat{C}_0
}\\
\quad \In {\bf Set}
`$
$`\quad \xymatrix@C+1pc{
\cat{C}_0 \ar[d]_{\T{id}} \ar@{=}[r]
\ar@{}[dr]|{\underset{\nearrow}{=}\, \T{id-cod}}
& \cat{C}_0 \ar@{=}[d]
\\
\cat{C}_1 \ar[r]_{\T{cod}}
& \cat{C}_0
}\\
\quad \In {\bf Set}
`$
$`\quad \xymatrix@C+1pc{
\cat{C}_2 \ar[d]_{\T{comp}} \ar[r]^{\T{fst}}
\ar@{}[dr]|{\underset{\nearrow}{=}\, \T{comp-dom}}
& \cat{C}_1 \ar[d]^{\T{dom} }
\\
\cat{C}_1 \ar[r]_{\T{dom}}
& \cat{C}_0
}\\
\quad \In {\bf Set}
`$
$`\quad \xymatrix@C+1pc{
\cat{C}_2 \ar[d]_{\T{comp}} \ar[r]^{\T{snd}}
\ar@{}[dr]|{\underset{\nearrow}{=}\, \T{comp-cod}}
& \cat{C}_1 \ar[d]^{\T{cod} }
\\
\cat{C}_1 \ar[r]_{\T{cod}}
& \cat{C}_0
}\\
\quad \In {\bf Set}
`$
1çªç®ã®ãã¼ã¹ãã£ã³ã°å³ï¼å¯æå³å¼ã¨åããã¨ï¼ãããã¹ãçå¼ã§æ¸ãã¦ã¿ãã¨ï¼
$`\quad \T{id-dom} :: \T{id};\T{dom} \twoto \id_{\cat{C}_0} \In {\bf Set}`$
åå '$`\T{id}`$' ã®ã³ã³ããªã¯ãããããã£ã³ã° | ãã¡åãããçºçãã¦ãã¾ãã¾ãããå³è¾ºã® $`\id_{\cat{C}_0}`$ ã¯éååã®æçå°ã®æå³ã§ããã左辺㮠$`\T{id}`$ ã¯ææ¨ã§å°å ¥ãããæ°è¦åï¼å°ããåã®æçå°ãæãååï¼ã§ããååã使ã£ãè¨è¿°ã§ã¯ã³ã³ããªã¯ãã¯é¿ãããã¾ããã綴ãããã©ã³ãã®å¤æ´ã§å¯¾å¦ãããããªã¼ãã¼ãã¼ããåãååã«è¤æ°ã®æå³ãæãããï¼ã®ç´æã§ãã®ãã ããã¾ããæã ã¯ååã使ã£ãã³ãã¥ãã±ã¼ã·ã§ã³ããã¦ããã®ã§ãããã¯è´ãæ¹ãªããã¨ã宿å½ã§ããã
ããã¯ã¨ããããä¸è¨ã®4ã¤ã®ãã¼ã¹ãã£ã³ã°å³ã¯ãæ³åã§ãã2-å°ãæãããã®ã§ããï¼æ³å以å¤ã®ï¼ãã¼ã¿ã§ãã0-å°ã対象ãã¨1-å°ãå³å¼ã§è¦ãã»ããåãããããã§ãã以ä¸ã®å³ã¯ãå°ããåã®æ§æç´ ã§ãã0-å°ã¨1-å°ããã¹ã¦åæãã¦ãã¾ãã
$`\quad \xymatrix@C+1pc{
\cat{C}_2 \ar[r]|{\T{comp}} \ar@/^1pc/[r]^{\T{fst}}\ar@/_1pc/[r]_{\T{snd}}
& \cat{C}_1 \ar@/^1pc/[r]^{\T{dom}}\ar@/_1pc/[r]_{\T{cod}}
& \cat{C}_0 \ar[l]|{\T{id}}
}\\
\quad \In {\bf Set}
`$
ãã®å³ã¯ãå¯æå³å¼ããã¼ã¹ãã£ã³ã°å³ã§ã¯ãªãã®ã§ã2次å ã®é¢ï¼ãããã¯èï¼ã¯å ¨ãããã¾ãããåã«ããããã0次å ã®é ç¹ãã¨ã¢ãã¼ã1次å ã®ç¢å°ãããå¨ãããã¨ã示ãã¦ããã ãã§ããæ³åã表ç¾ããå³ã¨ã¯åºå¥ãã¦ããã¼ã¿åæå³ãdata enumeration diagramãã¨ãå¼ã¶ã¨èª¤è§£ãé¿ããããã§ãããã
ãã¼ã¿åæå³ã¯ãå¿ ãããã²ã¨ã¤ã«ã¾ã¨ããå¿ è¦ã¯ããã¾ããã次ã®ããã«æãã¦ããã¾ãã¾ããã
$`\quad \xymatrix@C+1pc{
\cat{C}_2 \ar[r]|{\T{comp}} \ar@/^1pc/[r]^{\T{fst}}\ar@/_1pc/[r]_{\T{snd}}
& \cat{C}_1
}\\
\quad \xymatrix@C+1pc{
\cat{C}_1 \ar@/^1pc/[r]^{\T{dom}}\ar@/_1pc/[r]_{\T{cod}}
& \cat{C}_0
}\\
\quad \xymatrix@C+1pc{
\cat{C}_0 \ar[r]^{\T{id}}
& \cat{C}_1
}\\
\quad \In {\bf Set}
`$
ææ¨ã®ãã¼ã¿ãã¼ãããã¼ã¿åæå³ã§æãã¦ãæ³åãã¼ãã¯å¹¾ã¤ãã®æ³åãã¼ã¹ãã£ã³ã°å³ã§æãã°ãããã¹ãè¨è¿°ã¯ã¾ã£ããä¸è¦ã«ãªãã¾ããããã¹ãè¨è¿°ãæ®ãã®ã¯ãããã°âå¾æ¹äºææ§âããã§ã*4ã
ã¹ãã³
éååã«ãããã¹ãã³ã¨ã¯æ¬¡ã®ææ¨ã§è¨è¿°ãããæ§é ã§ãã
$`\T{signature }\NN{Span}\T{ within } ({\bf Set} \T{ as CategoryWithFiberedProduct})\\
\{ \\
\quad \NN{LeftFoot}\\
\quad \NN{RightFoot}\\
\quad \NN{Body}\\
\quad \NN{leftLeg} : \T{Body} \to \T{LeftFoot}\\
\quad \NN{rightLeg} : \T{Body} \to \T{RightFoot}\\
\}
`$
æ³åã¯ããã¾ããã
ã¹ãã³ãä¸æå $`X`$ ã§è¡¨ããã¨ãã¯ã次ã®ç´æããã¾ãã
- ããã£ãbodyã㯠$`\o{X}`$ ã¨æ¸ãã
- å·¦èãleft legã㯠$`l_{X}`$ ã¨æ¸ãã
- å³èãright legã㯠$`r_{X}`$ ã¨æ¸ãã
$`\quad \xymatrix{
{}
& \o{X} \ar[dl]_{l_{X} } \ar[dr]^{ r_{X} }
& {}
\\
A
&{}
& B
}\\
\quad \In {\bf Set}
`$
éååã«ãããã¹ãã³ $`X, Y`$ ããã£ãã¨ãã¾ãã
- $`X = (A \overset{l_X}{\leftarrow} \o{X} \overset{r_X}{\to} B)`$
- $`Y = (B \overset{l_Y}{\leftarrow} \o{Y} \overset{r_Y}{\to} C)`$
($`X`$ ã®å³è¶³) ï¼ ($`Y`$ ã®å·¦è¶³) ã§ãããã®ã¨ãã$`X`$ 㨠$`Y`$ ã®ãã³ã½ã«ç©ãtensor productãï¼ã¨ããããããå¼ã¶ï¼ãå®ç¾©ã§ãã¾ãããã³ã½ã«ç©ã®ããã£ã¯ä»¥ä¸ã®å³ã® $`\o{X\otimes Y}`$ ã§ãå·¦å³ã®èãå³ããèªã¿åããã¨ããã§ãã
$`\quad \xymatrix{
{}
& {}
& {\o{X\otimes Y}} \ar[dl] \ar[dr]
\ar@{}[dd]|{\text{p.b.}}
& {}
& {}
\\
{}
& {\o{X}} \ar[dr]^{l_X} \ar[dl]_{r_Y}
& {}
& {\o{Y}} \ar[dr]^{l_Y} \ar[dl]_{r_Y}
& {}
\\
{A}
& {}
& {B}
& {}
& {C}
}\\
\quad \In {\bf Set}
`$
2ã¤ã®ã¹ãã³ $`X, Y`$ ï¼è¶³ã®æ¡ä»¶ã¯æºããï¼ã«å¯¾ãã¦ãã³ã½ã«ç©ã¹ãã³ $`X\otimes Y`$ ãã¡ããã¨å®ç¾©ã§ããã®ã¯ãéååãç¹å®ããããã¡ã¤ãã¼ç©ï¼ä¸ã®å³ã®ã²ãå½¢é¨åãã決ã¾ãï¼ãæã¤ããã§ãã
ãã¦ã以ä¸ã®ãããªèªæãªã¹ãã³ããè¨å·ã®ä¹±ç¨ã§åã« $`A`$ ã¨ç¥è¨ãããã¨ã«ãã¾ãã
$`\quad \xymatrix{
{}
& A \ar[dl]_{\id_A } \ar[dr]^{ \id_A }
& {}
\\
A
&{}
& A
}\\
\quad \In {\bf Set}
`$
ç¥è¨ã®ç´æã®ãã¨ã§ã以ä¸ã®ãããªæ³åãæç«ãã¾ãã
$`\text{For } X = (A \overset{l_X}{\leftarrow} \o{X} \overset{r_X}{\to} B)\\
\text{For } Y = (B \overset{l_Y}{\leftarrow} \o{Y} \overset{r_Y}{\to} C)\\
\text{For } Z = (C \overset{l_Z}{\leftarrow} \o{Z} \overset{r_Z}{\to} D)\\
\:\\
\quad (X\otimes Y) \otimes Z \cong X\otimes (Y \otimes Z )\\
\quad A\otimes X \cong X\\
\quad X \otimes B \cong X
`$
æ³åã®åå $`\cong`$ ãä¸ããå°ãããããï¼è¨å·ã®ãªã¼ãã¼ãã¼ãããã¦ï¼ä»¥ä¸ã®ããã«è¡¨ãã¾ãã
$`\quad \alpha_{X, Y, Z} : (X\otimes Y) \otimes Z \to X\otimes (Y \otimes Z) \In {\bf Set}\\
\quad \lambda_{X} : A\otimes X \to X\In {\bf Set}\\
\quad \rho_{X} : X \otimes B \to X\In {\bf Set}
`$
ã¹ãã³ã®åãããã³ã¨å®ç¾©ããã°ãããå°ãã¹ãããªããè¨è¿°ãã§ãã¾ãããã¨ããããã¯ããã§ããã¨ãã¾ãããã
åã®æ³åã®è¨è¿°
å°ããåã®æ³åã§ãã $`\T{assoc}, \T{lunit}, \T{runit}`$ ãå³å¼ããã¼ã¹ãã£ã³ã°å³ãã§è¨è¿°ãã¾ãããããããã®æ³åã¯ããæ§é è¨è¿°ã®ããã®ææ¨ã¨åå 1/n åºæ¬ãã§ä¾ã¨ãã¦æããã¢ãã¤ãã®æ³åã¨åãã§ããæ³åã¯åãã§ããã解éããå ´æãã¿ã¼ã²ãã | æ¨çç°å¢ããéãã¾ãã
- ã¢ãã¤ãã®æ³åã解éããå ´æï¼ ãã«ã«ãã»ã¢ãã¤ãåã¨ãã¦ã® $`{\bf Set}`$
- å°ããåã®æ³åã解éããå ´æï¼ ãã«ã«ãã»ã¢ãã¤ãåã¨ãã¦ã® $`\mrm{SPAN}({\bf Set})(\cat{C}_0, \cat{C}_0)`$
$`\mrm{SPAN}({\bf Set})(\cat{C}_0, \cat{C}_0)`$ ãã¡ããã¨å®ç¾©ã説æããã¦ãªãã®ã§ããã次ã®å¯¾å¿é¢ä¿ãèããã°å¤§ä¸å¤«ã§ãã
ã¢ãã¤ãã®æ³å | å°ããåã®æ³å |
---|---|
éåã®ç´ç© | ã¹ãã³ã®ãã³ã½ã«ç© |
åå éå | èªæãªã¹ãã³ |
ç´ç©ã®çµåå¾å | ãã³ã½ã«ç©ã®çµåå¾å |
ç´ç©ã®å·¦åä½å¾å | ãã³ã½ã«ç©ã®å·¦åä½å¾å |
ç´ç©ã®å³åä½å¾å | ãã³ã½ã«ç©ã®å³åä½å¾å |
åå | åå |
åã®ææ¨ã®ä¸é¨ãåãåºãã¨æ¬¡ã®å³å¼ãå¾ããã¾ãã
$`\quad \xymatrix{
{}
& \cat{C}_1 \ar[dl]_{\T{dom} } \ar[dr]^{ \T{cod} }
& {}
\\
\cat{C}_0
&{}
& \cat{C}_0
}\\
\quad \In {\bf Set}
`$
ããã¯éååã®ã¹ãã³ã§ãããã®ã¹ãã³ã $`\widehat{\cat{C}}`$ ã¨æ¸ããã¨ã«ãã¾ãã次ã®é¢ä¿ãæç«ãã¾ãã
$`\quad \o{ \widehat{\cat{C}} } = \cat{C}_1\\
\quad l_{ \widehat{\cat{C}} } = \T{dom}\\
\quad r_{ \widehat{\cat{C}} } = \T{cod}\\
\text{i.e.} \\
\quad \widehat{\cat{C}} = (\cat{C}_0 \overset{\T{dom}}{\leftarrow} \cat{C}_1 \overset{\T{cod}}{\to} \cat{C}_0)
`$
åç¯ã®ã¹ãã³ã«é¢ããè¨æ³ã¨ãä»ç´æãã $`\widehat{\cat{C}}`$ ã使ãã¨ãå°ããåã®æ³åã¯æ¬¡ã®ããã«æãã¾ãã
$`\quad \xymatrix{
(\widehat{\cat{C}}\otimes \widehat{\cat{C}})\otimes \widehat{\cat{C}} \ar[r]^{\alpha_{\widehat{\cat{C}},\widehat{\cat{C}},\widehat{\cat{C}}}} \ar[d]_{\T{comp}\otimes \id_{\widehat{\cat{C}}}}
\ar@{}[ddr]|{\underset{\nearrow}{=}\,\T{assoc}}
& \widehat{\cat{C}}\otimes (\widehat{\cat{C}} \otimes \widehat{\cat{C}}) \ar[d]^{\id_{\widehat{\cat{C}}} \otimes \T{comp}}
\\
\widehat{\cat{C}} \otimes \widehat{\cat{C}} \ar[d]_{\T{comp}}
& \widehat{\cat{C}} \otimes \widehat{\cat{C}} \ar[d]^{\T{comp}}
\\
\widehat{\cat{C}} \ar@{=}[r]
& \widehat{\cat{C}}
}\\
\quad \In \mrm{SPAN}({\bf Set})(\cat{C}_0, \cat{C}_0)
`$
$`\quad \xymatrix @C+1.5pc{
\widehat{\cat{C}} \ar@{=}[r] \ar[d]_{ {\lambda_{\widehat{\cat{C}}}}^{-1} }
\ar@{}[ddr]|{\underset{\nearrow}{=}\, \T{lunit}}
& \widehat{\cat{C}} \ar@{=}[dd]
\\
{ \cat{C}_0 \otimes \widehat{\cat{C}}} \ar[d]_{\T{id} \otimes \id_{\widehat{\cat{C}}}}
& {}
\\
{\widehat{\cat{C}}\otimes \widehat{\cat{C}}} \ar[r]^{\T{comp}}
& \widehat{\cat{C}}
}\\
\quad \In \mrm{SPAN}({\bf Set})(\cat{C}_0, \cat{C}_0)
`$
$`\quad \xymatrix @C+1.5pc{
\widehat{\cat{C}} \ar@{=}[r] \ar[d]_{ {\rho_{\widehat{\cat{C}}}}^{-1} }
\ar@{}[ddr]|{\underset{\nearrow}{=}\, \T{runit}}
& \widehat{\cat{C}} \ar@{=}[dd]
\\
{ \widehat{\cat{C}} \otimes \cat{C}_0} \ar[d]_{\id_{\widehat{\cat{C}}} \otimes \T{id}}
& {}
\\
{\widehat{\cat{C}}\otimes \widehat{\cat{C}}} \ar[r]^{\T{comp}}
& \widehat{\cat{C}}
}\\
\quad \In \mrm{SPAN}({\bf Set})(\cat{C}_0, \cat{C}_0)
`$
解éããå ´æãéãã ããªã®ã§ãã¢ãã¤ãã®æ³åã¨ã©ãã«ã®éãããããã¾ããã
å³å¼ã«åºã¦ãã対象ã¨å°ã¯ãéåã¨ååãªã®ã§ãè¦ç´ ãé¸ãã§è¿½ãããããã¨ãã§ãã¾ããè¦ç´ 追ãããã®å³å¼ã¯ä»¥ä¸ã®ããã«ãªãã¾ãã$`f\otimes g`$ ã¯ã足ã®æ¡ä»¶ $`\T{cod}(f) = \T{dom}(g)`$ ãæºããã㢠$`(f, g)`$ ã®æå³ã§ãï¼ãã¡ããã'$`\otimes`$' ã¯ãªã¼ãã¼ãã¼ãããã¦ãã¾ããï¼ã$`\T{comp}`$ ã¯ä¸ç½®æ¼ç®åè¨å· $`(;)`$ ã§æ¸ãã¦ãã¾ãã
$`\quad \xymatrix{
(f \otimes g)\otimes h \ar@{|->}[r]^{\alpha_{\widehat{\cat{C}},\widehat{\cat{C}},\widehat{\cat{C}}}} \ar@{|->}[d]_{(;)\otimes \id_{\widehat{\cat{C}}}}
\ar@{}[ddr]|{\underset{\nearrow}{=}\,\T{assoc}}
& f \otimes (g \otimes h) \ar@{|->}[d]^{\id_{\widehat{\cat{C}}} \otimes (;)}
\\
(f;g) \otimes h \ar@{|->}[d]_{(;)}
& f \otimes (g;h) \ar@{|->}[d]^{(;)}
\\
(f;g);h \ar@{=}[r]
& f;(g;h)
}
`$
$`\quad \xymatrix @C+1.5pc{
f \ar@{=}[r] \ar@{|->}[d]_{ {\lambda_{\widehat{\cat{C}}}}^{-1} }
\ar@{}[ddr]|{\underset{\nearrow}{=}\, \T{lunit}}
& f \ar@{=}[dd]
\\
{ A \otimes f} \ar@{|->}[d]_{\T{id} \otimes \id_{\widehat{\cat{C}}}}
& {}
\\
{\id_A \otimes f} \ar@{|->}[r]^{(;)}
& \id_A; f
}
`$
$`\quad \xymatrix @C+1.5pc{
f \ar@{=}[r] \ar@{|->}[d]_{ {\rho_{\widehat{\cat{C}}}}^{-1} }
\ar@{}[ddr]|{\underset{\nearrow}{=}\, \T{runit}}
& f \ar@{=}[dd]
\\
{ f \otimes B} \ar@{|->}[d]_{\id_{\widehat{\cat{C}}} \otimes \T{id}}
& {}
\\
{f \otimes \id_B} \ar@{|->}[r]^{(;)}
& f; \id_B
}
`$
ããã¦ãããã
å°ããåãè¨è¿°ã»å®ç¾©ããããã«ããã¡ã¤ãã¼ç©ãã¹ãã³ãªã©ã®åè«çæ¦å¿µã使ãã¾ããã®ã§ããªããå¤ãªæããããããç¥ãã¾ããããåè«ã使ã£ã¦åãå®ç¾©ãããã¨ã¯ãããããã¨ãªã®ã§ããåè«çæ¦å¿µãå½¢å¼çã«å®ç¾©ããããã«ã¯ãäºåã«ã¿ã¼ã²ãããæ¨çç°å¢ãã®åè«çæ§é ã»æ§è³ªããã調ã¹ã¦ããå¿ è¦ãããã¾ãã
äºéåãã¢ã¯ãã´ãªã¼ãä¾åã¢ã¯ãã´ãªã¼ãªã©ãè¨è¿°ã»å®ç¾©ããããã«ã¯ããåè«ã使ã£ã¦åãå®ç¾©ãããææ³ä»¥å¤ã«ããæ¹æ³ãããã¾ããã次åã¯ãåè«ã使ã£ã¦äºéåãå®ç¾©ãããäºå®ã§ãã
*1:ææ¨åã¨æ§æç´ å½¹å²ãåã¯ãã¼ãã³ä½ã使ãã¾ãããLaTeXã® \mathrm{â¦} ã§ã¯ãªãã¦ã\text{â¦} ã使ã£ã¦ãã¾ãã
*2:æ¨çç°å¢ã¨ãã¦ç¹å®åºæã®åãã²ã¨ã¤ã ãåæãããã¨ã«ãããç¡éã«å¤ãã®åéãä½ãåºããã®ã§ã循ç°è«æ³ã§ã¯ãªããæ義ãããã¾ãã
*3:$`\T{as}`$ ã®ä½¿ç¨æ³ã¯ããã¹ã±ããã£ãã¯ç³»ã®ããã«ï¼ éå¤ãªäºåç¥è // ãã¯ããªã³ãã³ã¢ã¼ã¸ã§ã³ãé¢ææå³è«ãã§è¿°ã¹ãã³ã¢ã¼ã¸ã§ã³ã§ãããããã§ã¯éå½¢å¼çãã¤ã³ãã©ã¼ãã«ãã§ãã
*4:åã¯ãããã¹ãè¨è¿°ãå«ããªã®ã§ãå¾æ¹äºææ§ãæ©ããªããªã£ã¦ãããã¨æã£ã¦ãã¾ããããããã«ã¯é·ãæéããããã§ããããããã³ãã¥ãã±ã¼ã·ã§ã³ã®å¤æ¬¡å åãã¨ããé©å½ã«ç«ã¡ä¼ã£ã¦ããã®ã ã¨æããåç §ã