ã«ã¼ã¯ã»ã¹ã¿ã¼ãï¼Kirk Sturtzï¼ã¨ãã人ãããªã«ããåè«ãã¼ã¹ã®ç¢ºçè«ããã£ã¦ãã¾ããã¹ã¿ã¼ãã®arXivè«æãªã¹ãããã©ã£ã¦ãã¢ãã¹ãã©ã¯ãã¨ç¬¬1ç¯ãæ¾ãèªã¿ãã¦ã¿ãã¨ããã確çå¤æ°ãã¨ããè¨èã¯ä½¿ããªããã¨ããè¨è¿°ãããã¾ãã*1ã
ãªãã»ã©ãå ±æã»åæãã¾ãã
è¬ãããã確çå¤æ°ã
åã確çãå«ãã£ã¦ããçç±ã®ã²ã¨ã¤ã¯ããã®ã確çå¤æ°ãã¨ããè¨èã®å°å¸¸ãããªãè¬ããããã§ããã¾ã£ããæå³ä¸æã§ãããæ°ã失ãã¾ããã
åãæ®éã®ç¢ºçè«ãªã¼ãã«ãç¥ããããé«æ ¡ã®æç§æ¸ã«ç¢ºçããã£ãã®ã§ãããã確çå¤æ°ãã®å®ç¾©ããã¾ãã«æå³ä¸æã§ããã以æ¥æ¯å«ããã¦ããã®ã§ããã
ããªãã·ãã«ãªããå 容ã®æç§æ¸ã§ããã確çå¤æ°ã¨ã¯ãå¤ãããããªã¨ã¯æ±ºãããã¨ãã§ããªãå¤æ°ã§ããã¿ãããªâå®ç¾©âããå§ã¾ãã¾ãã
ã確çå¤æ°ãã使ããªããªãä½ã¨å¼ã¹ã°ããã®ãï¼ ãå¯æ¸¬ååãã§ããå¯æ¸¬ååãå®ç¾©ããã«ã¯ãå¯æ¸¬ç©ºéã®æ¦å¿µãå¿ è¦ã§ãããé¢æ£å¯æ¸¬ç©ºéã ãèãããªããä»»æã®ååãå¯æ¸¬ååã«ãªãã®ã§ãå¯æ¸¬ååã®ä»£ããã«ãååãã§ããã¾ãã¾ãããé¢æ£å¯æ¸¬ç©ºéï¼åãªãéåï¼ãªãã¦å½¹ã«ç«ããªãã®ã§ã¯ãªããï¼ ããã§ãããã¾ãããå ¥éã®ç´ æã¯ååã«æä¾å¯è½ã§ãã
å¯æ¸¬ååã«ã¯ãææ§ãªç¹ããã¹ããªã¢ã¹ãªç¹ãããã¾ãããããã£ã¦ãã©ã¤ã§ããã確çå¤æ°ããæ©æ¢°çã«ãå¯æ¸¬ååãã«ç½®ãæãã¦ãããã§æå³ãããããªããã¨ããããã°ãä½è¨ã«ã¯ã±ããããªããªãã¨ããããã¾ãããå¯æ¸¬ååãã«ç½®æãã¦ä¸é©åãªã¨ããã¯ããªã«ãå¥ãªæå³ã§ã確çå¤æ°ãã使ã£ã¦ãããã¨ã«ãªãã¾ãã
ã確çå¤æ°ããå¯æ¸¬åå以å¤ã®æå³ã§ä½¿ã£ãããæèã«ä¾åãããã¥ã¢ã³ã¹ãæããããã¨ãã¦ããããã§ãããã¨ãã¨ãæå³ä¸æãªè¨èã«ãããã«å¤ç¾©æ§ãæèä¾åæ§ãæããã¦ä½¿ãããã®ã§ã¯ããã¾ã£ãããããããã¾ããã
ãã¥ã¢ã³ã¹ãææ§æ§
å¯æ¸¬ååã¯ãéåAãBã«å¯¾ãã x:AâB ã®ãããªååã§ããxã«æ¡ä»¶ãä»ãã¾ãããååã§ãããã¨ã¯ééãããã¾ãããç¹ã«ç¢ºçå¤æ°ã¨å¼ã³ããã®ã¯ãBãå®æ°ã§ãããã¨ã強調ãããã®ããããã¾ããããããªãã°ãx:AâR ã¨æ¸ãã°ããããRå¤å¯æ¸¬ååã¨å¼ã¹ã°ããã ãã§ããå¤ã®ç©ºéãä»ã®ç¹å¥ãªéåã®ã¨ããåãã§ããx:Aâ{0, 1} ã¨ãæ示çã«æ¸ãã°ãããããã®ã»ããäºæ ãããããªãã¾ãã
å¤ã®ç©ºéããªãã¨ãªãã確çå¤æ°ãã¨å¼ãã§ããä¾ãããã¾ããæ°æã¡ã®ä¸ã§ã¯ããªã«ãAããã£ã¦ãx:AâR ãèããããã©ãå®ã¯Aããªãã¦ãRã ãã®ã¨ããããã¾ãã確çå¤æ°xã®åå¸ã¨ã¯ãåã«Rä¸ã®åå¸ã ã£ãããã¾ãã
ä»åºã¦ãããåå¸ããåä»ãªè¨èã§ããã¹ã¿ã¼ãã®ç¨æ³ãè¦ãã¨ããåå¸ããç¦æ¢ã¯ãã¦ã¾ããããåå¸ã¨æ¸¬åº¦ãå義èªã¨ãã¦ä½¿ã£ã¦ããããã§ãããåå¸ããã測度ãã«ç½®æããã»ããããããããªããã¨åã¯æãã¾ããããã§å¤ã ã£ãããæé»ã®ï¼ä¼éã¨ç解ãå°é£ãªï¼ãã¥ã¢ã³ã¹ãæã¡è¾¼ãã§ããã¯ãã§ãã
ãåå¸ãã®ãããã使ç¨ä¾ã¯ãAä¸ã®æ¸¬åº¦Î¼ããå¯æ¸¬åå x:AâB ã«ããåéããã測度 x*(μ) ããåå¸ãã¨å¼ã¶ä¾ã§ãããã®ç¶æ³ãªããå測度ï¼image measureï¼ãã¾ãã¯ãåéã測度ï¼pushforward measureï¼ãã¨å¼ã¹ã°æå³ãããããªãã¾ãããåãããåéãããä»ããããªããã¢ãã¯ãã ãã ãAããã§ã¼ãã¢ã¦ãããã¦Bä¸ã®è°è«ãããããã£ã¦ã®ãããããç¥ãã¾ããããããªãããAã¯ããèããªããã¨ããããªã¨å®£è¨ããã»ããã¹ãããªãã¾ãã
ãå¤ãããããªã¨ã¯æ±ºãããã¨ãã§ããªãå¤æ°ããªãã¦âå®ç¾©âãæ¡ç¨ããã®ã¯ãã§ããã ãæºåãå°ãªããã¦ãå®ä¾ãè¨ç®æ³ãæ©ã説æããããã®æ¹ä¾¿ã§ããããããããµããããã¨ããããã§ãããããä¼çµ±ã»ç¿æ £ã¨ãã¦å®çãéãã§ãããã¢ã³ãä¼çµ±ã¨ãã¦ãã確çå¤æ°ãã¨ããè¨èãç¦æ¢ãããã¤ãã§ã«ãåå¸ããç¦æ¢ããï¼ã測度ãã使ãï¼ãããã®è©¦ã¿ããã£ãã»ããããã¨æãã¾ããã
*1:https://arxiv.org/pdf/1312.1445.pdf ã® "1 Introduction" p.5 ã« we avoid the use of the terminology of 'random variables' ã¨æ¸ãã¦ããã¾ãã