Abstract
Odors emitted by human skin are of great interest to biologists in many fields; applications range from forensic studies to diagnostic tools, the design of perfumes and deodorants, and the ecology of blood-sucking insect vectors of human disease. Numerous studies have investigated the chemical composition of skin odors, and various sampling methods have been used for this purpose. The literature shows that the chemical profile of skin volatiles varies greatly among studies, and the use of different sampling procedures is probably responsible for some of these variations. To our knowledge, this is the first review focused on human skin volatile compounds. We detail the different sampling techniques, each with its own set of advantages and disadvantages, which have been used for the collection of skin odors from different parts of the human body. We present the main skin volatile compounds found in these studies, with particular emphasis on the most frequently studied body regions, axillae, hands, and feet. We propose future directions for promising experimental studies on odors from human skin, particularly in relation to the chemical ecology of blood-sucking insects.
Similar content being viewed by others
References
Adams, R. P. 2007. Identification of Essential Oil Components by Gas Chromatography/Mass Spectroscopy, 4th ed. Allured Publishing, Carol Stream.
Agelopoulos, N. and Pickett, J. 1998. Headspace analysis in chemical ecology: the effects of different sampling methods on the ratios of volatile compounds present in headspace samples. J. Chem. Ecol. 24:1161–1172.
Ara, K., Hama, M., Akiba, S., Koike, K., Okisaka, K., Hagura, T., Kamiya, T., and Tomita, F. 2006. Foot odor due to microbial metabolism and its control. Can. J. Microbiol. 52:357–364.
Barzantny, H., Brune, I., and Tauch, A. 2012a. Molecular basis of human body odour formation: insights deduced from corynebacterial genome sequences. Int. J. Cosmet. Sci. 34:2–11.
Barzantny, H., Schröder, J., Strotmeier, J., Fredrich, E., Brune, I., and Tauch, A. 2012b. The transcriptional regulatory network of Corynebacterium jeikeium K411 and its interaction with metabolic routes contributing to human body odor formation. J. Biotechnol. 159:235–248.
Behan, J. M., Macmaster, A. P., Perring, K. D., and Tuck, K. M. 1996. Insight into how skin changes perfume. Int. J. Cosmet. Sci. 18:237–246.
Bernier, U. R., Kline, D. L., Barnard, D. R., Schreck, C. E., and Yost, R. A. 2000. Analysis of human skin emanations by gas chromatography ⁄ mass spectrometry. 2. Identification of volatile compounds that are candidate attractants for the yellow fever mosquito Aedes aegypti. Anal. Chem. 72:747–756.
Brooksbank, B. W. L., Brown, R., and Gustafsson, J. A. 1974. The detection of 5-α-androst-16-en-3-α-ol in human male axillary sweat. Experientia 30:864–865.
Bruce, T. J. A. and Pickett, J. A. 2011. Perception of plant volatile blends by herbivorous insects—finding the right mix. Phytochemistry 72:1605–1611.
Carlson, J. R. and Carey, A. F. 2011. Scent of a human. Decoding how a mosquito sniffs out human targets could lead to better traps and repellents that cut malaria’s spread. Sci. Am. 305:76–79.
Caroprese, A., Gabbanini, S., Beltramini, C., Lucchi, E., and Valgimigli, L. 2009. HS-SPME-GC-MS analysis of body odor to test the efficacy of foot deodorant formulations. Skin Res. Technol. 15:503–510.
Charpentier, M. J. E., Barthes, N., Proffit, M., Bessière, J.-M., and Grison, C. 2012. Critical thinking in the chemical ecology of mammalian communication: roadmap for future studies. Funct. Ecol. 26:769–774.
Constantini, C., Birkett, M. A., Gibson, G., Ziesmann, J., Sagnon, N. F., Mohammed, H. A., Coluzzi, M., and Pickett, J. A. 2001. Electroantennogram and behavioural responses of the malaria vector Anopheles gambiae to human-specific sweat components. Med. Vet. Entomol. 15:259–266.
Cork, A. and Park, K. C. 1996. Identification of electrophysiologically-active compounds for the malaria mosquito, Anopheles gambiae, in human sweat extracts. Med. Vet. Entomol. 10:269–276.
Cornet, S., Nicot, A., Rivero, A., and Gandon, S. 2012. Malaria infection increases bird attractiveness to uninfected mosquitoes. Ecol. Lett.. doi:10.1111/ele.12041.
Curran, A. M., Rabin, S. I., Prada, P. A., and Furton, K. G. 2005. Comparison of the volatile organic compounds present in human odor using SPME-GC/MS. J. Chem. Ecol. 31:1613–1625.
Curran, A. M., Rabin, S. I., Prada, P. A., and Furton, K. G. 2006. On the definition and measurement of human scent: response by Curran et al. J. Chem. Ecol. 32:1617–1623.
Curran, A. M., Prada, P. A., and Furton, K. G. 2010a. Canine human scent identifications with post-blast debris collected from improvised explosive devices. Forensic Sci. Int. 199:103–108.
Curran, A. M., Prada, P. A., and Furton, K. G. 2010b. The differentiation of the volatile organic signatures of individuals through SPME-GC/MS of characteristic human scent compounds. J. Forensic Sci. 55:50–57.
D’Alessandro, M., Brunner, V., Von Mérey, G., and Turlings, T. C. J. 2009. Strong attraction of the parasitoid Cotesia marginiventris towards minor volatile compounds of maize. J. Chem. Ecol. 35:999–1008.
Degreef, L. E. and Furton, K. G. 2011. Collection and identification of human remains volatiles by non-contact, dynamic airflow sampling and SPME-GC-MS using various sorbent materials. Anal. Bioanal. Chem. 401:1295–1307.
Degreef, L. E., Curran, A. M., and Furton, K. G. 2011. Evaluation of selected sorbent materials for the collection of volatile organic compounds related to human scent using non-contact sampling mode. Forensic Sci. Int. 209:133–142.
de Jong, R. and Knols, B. G. J. 1995. Selection of biting sites on man by two malaria mosquito species. Experientia 51:80–84.
Dekker, T., Takken, W., Knols, B. G. J., Bouman, E., Laak, S. V. D., Bever, A. D., and Huisman, P. W. T. 1998. Selection of biting sites on a human host by Anopheles gambiae s.s., An. arabiensis and An. quadriannulatus. Entomol. Exp. Appl. 87:295–300.
Dekker, T., Geier, M., and Cardé, R. T. 2005. Carbon dioxide instantly sensitizes female yellow fever mosquitoes to human skin odors. J. Exp. Biol. 208:2963–2972.
Dormont, L., Bessière, J.-M., Mc Key, D., and Cohuet, A. 2013. New methods for field collection of human skin volatiles and perspectives for their application in the chemical ecology of human/pathogen/vector interactions. J. Exp. Biol. doi:10.1242/jeb.085936.
Duan, C., Shen, Z., Wu, D., and Guan, Y. 2011. Recent developments in solid-phase microextraction for on-site sampling and sample preparation. Trends Anal. Chem. 30:1568–1574.
Dudareva, N., Pichersky, E., and Gershenzon, J. 2004. Biochemistry of plant volatiles. Plant Physiol. 135:1893–1902.
Fierer, N., Hamady, M., Lauber, C. L., and Knight, R. 2008. The influence of sex, handedness, and washing on the diversity of hand surface bacteria. Proc. Natl. Acad. Sci. U. S. A. 105:17994–17999.
Friedman, M. I., Preti, G., Deems, R. O., Friedman, L. S., Munoz, S. J., and Maddrey, W. C. 1994. Limonene in expired lung air of patients with liver disease. Dig. Dis. Sci. 39:1672–1676.
Gallagher, M., Wysocki, C. J., Leyden, J. J., Spielman, A. I., Sun, X., and Preti, G. 2008. Analyses of volatile organic compounds from human skin. Br. J. Dermatol. 159:780–791.
Goetz, N., Kaba, G., Good, D., Hussler, G., and Bore, P. 1988. Detection and identification of volatile compounds evolved from human hair and scalp using headspace gas chromatography. J. Soc. Cosmet. Chem. 39:1–13.
Grice, E. A., Kong, H. H., Conlan, S., Deming, C. B., Davis, J., Young, A. C., Bouffard, G. G., Blakesley, R. W., Murray, P. R., Green, E. D., Turner, M. L., and Segre, J. A. 2009. Topographical and temporal diversity of the human skin microbiome. Science 324:1190–1192.
Harraca, V., Ryne, C., Birgersson, G., and Ignell, R. 2012. Smelling your way to food: can bed bugs use our odour? J. Exp. Biol. 215:623–629.
Havlicek, J. and Lenochova, P. 2006. The effect of meat consumption on body odor attractiveness. Chem. Senses 31:747–752.
Hawkes, F., Young, S., and Gibson, G. 2012. Modification of spontaneous activity patterns in the malaria vector Anopheles gambiae sensu stricto when presented with host-associated stimuli. Physiol. Entomol. 37:233–240.
Haze, S., Gozu, Y., Nakamura, S., Kohno, Y., Sawano, K., Ohta, H., and Yamazaki, K. 2001. 2-nonenal newly found in human body odor tends to increase with aging. J. Investig. Dermatol. 116:520–524.
James, A. G., Casey, J., Hyliands, D., and Mycock, G. 2004a. Fatty acid metabolism by cutaneous bacteria and its role in axillary malodour. World J. Microbiol. Biotechnol. 20:787–793.
James, A. G., Hyliands, D., and Johnston, H. 2004b. Generation of volatile fatty acids by axillary bacteria. Int. J. Cosmet. Sci. 26:149–156.
Jawara, M., Smallegange, R. C., Jeffries, D., Nwakanma, D. C., Awolola, T. S., Knols, B. G., Takken, W., and Conway, D. J. 2009. Optimizing odor-baited trap methods for collecting mosquitoes during the malaria season in the Gambia. PLoS One 4:e8167.
Kanda, F., Yagi, E., Fukuda, M., Nakajima, K., Ohta, T., and Nakata, O. 1990. Elucidation of chemical compounds responsible for foot malodour. Brit. J. Dermatol. 22:771–776.
Kim, K.-H., Jahan, S. A., and Kabir, E. 2012. A review of breath analysis for diagnosis of human health. Trends Anal. Chem. 33:1–8.
Knudsen, J. T., Eriksson, R., and Gershenzon, J. 2006. Diversity and distribution of floral scent. Bot. Rev. 72:1–120.
Kusano, M., Mendez, E., and Furton, K. G. 2011. Development of headspace SPME method for analysis of volatile organic compounds present in human biological specimens. Anal. Bioanal. Chem. 400:1817–1826.
Kusano, M., Mendez, E., and Furton, K. G. 2012. Comparison of the volatile organic compounds from different biological specimens for profiling potential. J. Forensic Sci.. doi:10.1111/j.1556-4029.2012.02215.x.
Lacey, E. S. and Cardé, R. T. 2011. Activation, orientation and landing of female Culex quinquefasciatus in response to carbon dioxide and odour from human feet: 3-D flight analysis in a wind tunnel. Med. Vet. Entomol. 25:94–103.
Lacroix, R., Mukabana, W. R., Gouagna, L. C., and Koella, J. C. 2005. Malaria infection increases attractiveness of humans to mosquitoes. PLoS Biol. 3:e298.
Lefèvre, T., Koella, J., Renaud, F., Hurd, H., Biron, D. G., and Thomas, F. 2006. New prospects for research on manipulation of insect vectors by pathogens. PLoS Pathog. 2:633–635.
Lefèvre, T., Gouagna, L., Dabire, K. R., Elguero, E., Fontenille, D., Costantini, C., and Thomas, F. 2010. Beer consumption increases human attractiveness to malaria mosquitoes. PLoS One 5:e9546.
Logan, J. G., Birkett, M. A., Clark, S. J., Powers, S., Seal, N. J., Wadhams, L. J., Mordue, A. J., and Pickett, J. A. 2008. Identification of human-derived volatile chemicals that interfere with attraction of Aedes aegypti mosquitoes. J. Chem. Ecol. 34:308–322.
Logan, J. G., Stanczyk, N. M., Hassanali, A., Kemei, J., Santana, A. E. G., Ribeiro, K. A. L., Pickett, J. A., and Mordue (Luntz), J. A. 2010. Arm-in-cage testing of natural human-derived mosquito repellents. Malar. J. 9:239–248.
Marshall, J., Holland, K. T., and Gribbon, E. M. 1988. A comparative study of the cutaneous microflora of normal feet with low and high levels of odour. J. Appl. Bacteriol. 65:61–68.
Martínez Lozano, P. and De La Mora, J. F. 2009. On-line detection of human skin vapors. J. Am. Soc. Mass Spectrom. 20:1060–1063.
Mebazaa, R., Mahmoudi, A., Rega, B., Ben Cheikh, R., and Camel, V. 2010. Analysis of human male armpit sweat after fenugreek ingestion: instrumental and sensory optimization of the extraction method. Food Chem. 120:771–782.
Mebazaa, R., Rega, B., and Camel, V. 2011. Analysis of human male armpit sweat after fenugreek ingestion: characterisation of odour active compounds by gas chromatography coupled to mass spectrometry and olfactometry. Food Chem. 128:227–235.
Meijerink, J., Braks, M. A. H., Brack, A., Adam, W., Dekker, T., Posthumus, M. A., van Beek, T. A., and van Loon, J. J. A. 2000. Identification of olfactory stimulants for Anopheles gambiae from human sweat samples. J. Chem. Ecol. 26:1367–1382.
Mostafa, T., El Khouly, G., and Hassan, A. 2012. Pheromones in sex and reproduction: do they have a role in humans? J. Adv. Res. 3:1–9.
Musteata, F. M. and Pawliszyn, J. 2007. In vivo sampling with solid phase microextraction. J. Biochem. Biophys. Methods 70:181–193.
Natsch, A., Gfeller, H., Gygax, P., and Schmid, J. 2005. Isolation of a bacterial enzyme releasing axillary malodor and its use as a screening target for novel deodorant formulations. Int. J. Cosmet. Sci. 27:115–122.
Natsch, A., Derrer, S., Flachsmann, F., and Schmidt, J. 2006. A broad diversity of volatile carboxylic acids, released by a bacterial amynoacylase from axilla secretions, as candidate molecules for the determination of human-body odor type. Chem. Biodivers. 3:1–20.
Njiru, B. N., Mukabana, W. R., Takken, W., and Knols, B. G. 2006. Trapping of the malaria vector Anopheles gambiae with odour-baited MM-X traps in semi-field conditions in western Kenya. Malar. J. 5:39–46.
Noël, F., Piérard-Franchimont, C., Piérard, G. E., and Quatresooz, P. 2012. Sweaty skin, background and assessments. Int. J. Dermatol. 516:647–655.
Ohge, H., Furne, J. K., Springfield, J., Ringwala, S., and Levitt, M. D. 2005. Effectiveness of devices purported to reduce flatus odor. Am. J. Gastroenterol. 100:397–400.
Ostrovskaya, A., Landa, P. A., Sokolinsky, M., Rosalia, A. D., and Maes, D. 2001. Study and identification of volatile compounds from human skin. J. Cosmet. Sci. 53:147–148.
Pandey, S. K. and Kim, K.-H. 2011. Human body odor components and their determination. Trends Anal. Chem. 30:784–796.
Parshikov, I. A., Netrusov, A. I., and Sutherland, J. B. 2012. Microbial transformation of antimalarial terpenoids. Biotechnol. Adv. 30:1516–1523.
Pavlou, A. K. and Turner, A. P. 2000. Sniffing out the truth: clinical diagnosis using the electronic nose. Clin. Chem. Lab. Med. 38:99–112.
Penn, D. J., Oberzaucher, E., Grammer, K., Fischer, G., Soini, H. A., Wiesler, D., Novotny, M. V., Dixon, S. J., Xu, Y., and Brereton, R. G. 2006. Individual and gender fingerprints in human body odour. J. R. Soc. Interface. 4:331–340.
Prada, P. A. and Furton, K. G. 2008. Human scent detection: a review of its developments and forensic applications. Rev. Cienc. Foren. 1:81–87.
Prada, P. A., Curran, A. M., and Furton, K. G. 2010. Comparison of extraction methods for the removal of volatile organic compounds (VOCs) present in sorbents used for human scent evidence collection. Anal. Methods 2:470–478.
Prada, P. A., Curran, A. M., and Furton, K. G. 2011. The evaluation of human hand odor volatiles on various textiles: a comparison between contact and noncontact sampling methods. J. Forensic Sci. 56 doi:10.1111/j.1556-4029.2011.01762.x.
Prada, P. A. and Furton, K. G. 2012. Recent advances in solid phase microextraction for forensic applications, pp. 877–891, in J. Pawliszyn (ed.), Comprehensive Sampling and Sample Preparation. Analytical Techniques for Scientists. Elsevier, Oxford.
Preti, G., Willse, A., Labows, J. N., Leyden, J. J., Wahl, J., and Kwak, J. 2006. On the definition and measurement of human scent: comments on Curran et al. J. Chem. Ecol. 32:1613–1616.
Prugnolle, F., Lefèvre, T., Renaud, F., Møller, A. P., Misse, D., and Thomas, F. 2009. Infection and body odours: evolutionary and medical perspectives. Infect. Genet. Evol. 9:1006–1009.
Qiu, Y. T., Smallegange, R. C., Hoppe, S., van Loon, J. J., Bakker, E. J., and Takken, W. 2004. Behavioural and electrophysiological responses of the malaria mosquito Anopheles gambiae Giles sensu stricto (Diptera: Culicidae) to human skin emanations. Med. Vet. Entomol. 18:429–438.
Raguso, R. A. and Pellmyr, O. 1998. Dynamic headspace analysis of floral volatiles: a comparison of methods. Oikos 81:238–254.
Santonico, M., Lucantoni, G., Pennazza, G., Capuano, R., Galluccio, G., Roscioni, C., la Delfa, G., Consoli, D., Martinelli, E., Paolesse, R., di Natale, C., and D’Amico, A. 2012. In situ detection of lung cancer volatile fingerprints using bronchoscopic air-sampling. Lung Cancer 77:46–50.
Sastry, S. D., Buck, K. T., Janák, J., Dressler, M., and Preti, G. 1980. Volatiles emitted by humans, pp. 1085–1129, in G. R. Waller and O. C. Dermer (eds.), Biochemical Applications of Mass Spectrometry. Wiley, New York.
Schmied, W. H., Takken, W., Killeen, G. F., Knols, B. G., and Smallegange, R. C. 2008. Evaluation of two counterflow traps for testing behaviour-mediating compounds for the malaria vector Anopheles gambiae s.s. under semi-field conditions in Tanzania. Malar. J. 7:230–238.
Shelley, W. B. and Hurley, H. J. 1953. The physiology of the human axillary apocrine sweat gland. J. Investig. Dermatol. 20:285–297.
Smallegange, R. C., Verhulst, N. O., and Takken, W. 2011. Sweaty skin: an invitation to bite? Trends Parasitol. 27:143–148.
Suarez, F. L., Springfield, J., and Levitt, M. D. 1998. Identification of gases responsible for the odour of human flatus and evaluation of a device purported to reduce this odour. Gut 43:100–104.
Syed, Z. and Leal, W. S. 2009. Acute olfactory response of Culex mosquitoes to a human- and bird-derived attractant. Proc. Natl. Acad. Sci. U. S. A. 106:18803–18808.
Takken, W. and Knols, B. G. J. 1999. Odor-mediated behavior of Afrotropical malaria mosquitoes. Annu. Rev. Entomol. 44:131–157.
Taylor, D., Daulby, A., Grimshaw, S., James, G., Mercer, J., and Vaziri, S. 2003. Characterization of the microflora of the human axilla. Int. J. Cosmet. Sci. 25:137–145.
Tholl, D., Boland, W., Hansel, A., Loreto, F., Röse, U. S. R., and Schnitzler, J. P. 2006. Practical approaches to plant volatile analysis. Plant J. 45:540–560.
Verhulst, N. O., andriessen, R., Groenhagen, U., Bukovinszkine-Kiss, G., Schulz, S., Takken, W., van Loon, J. J. A., Schraa, G., and Smallegange, R. C. 2010a. Differential attraction of malaria mosquitoes to volatile blends produced by human skin bacteria. PLoS One 5:e15829.
Verhulst, N. O., Takken, W., Dicke, M., Schraa, G., and Smallegange, R. C. 2010b. Chemical ecology of interactions between human skin microbiota and mosquitoes. FEMS Microbiol. Ecol. 74:1–9.
Verhulst, N. O., Mukabana, W. R., Takken, W., and Smallegange, R. C. 2011a. Human skin microbiota and their volatiles as odour baits for the malaria mosquito Anopheles gambiae s.s. Entomol. Exp. Appl. 139:170–179.
Verhulst, N. O., Qiu, Y. T., Beijleveld, H., Maliepaard, C. A., Knights, D., Schulz, S., Berg-Lyons, D., Lauber, C. L., Verduijn, W., Haasnoot, G. W., Mumm, R., Bouwmeester, H. J., Claas, F. H. J., Dicke, M., van Loon, J. J. A., Takken, W., Knight, R., and Smallegange, R. C. 2011b. Composition of human skin microbiota affects attractiveness to malaria mosquitoes. PLoS One 6:e28991.
Xu, Y., Dixon, S., Brereton, R., Soini, H., Novotny, M., Trebesius, K., Bergmaier, I., Oberzaucher, E., Grammer, K., and Penn, D. J. 2007. Comparison of human axillary odour profiles obtained by gas chromatography/mass spectrometry and skin microbial profiles obtained by denaturing gradient gel electrophoresis using multivariate pattern recognition. Metabolomics 3:427–437.
Yamazaki, S., Hoshino, K., and Kusuhara, M. 2010. Odor associated with aging. Anti-Aging Med. 7:60–65.
Zeng, X. N., Leyden, J. J., Spielman, A. I., and Preti, G. 1996. Analysis of characteristic human female axillary odors: qualitative comparison to males. J. Chem. Ecol. 22:237–257.
Zhang, Z. M., Cai, J. J., Ruan, G. H., and Li, G. K. 2005. The study of fingerprint characteristics of the emanations from human arm skin using original sampling system by SPME-GC/MS. J. Chromatogr. B 822:244–252.
Acknowledgments
We thank Doyle McKey, Université Montpellier II and CEFE-CNRS, for reviewing the manuscript and for useful discussions.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Dormont, L., Bessière, JM. & Cohuet, A. Human Skin Volatiles: A Review. J Chem Ecol 39, 569–578 (2013). https://doi.org/10.1007/s10886-013-0286-z
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10886-013-0286-z