Skip to main content
Apress

Applied Machine Learning for Health and Fitness

A Practical Guide to Machine Learning with Deep Vision, Sensors and IoT

  • Book
  • © 2020

Overview

  • Demonstrates machine learning models with real-world use cases
  • Build your own IoT devices and sensors for athletes
  • Covers examples of data visualization through holograms and VR

This is a preview of subscription content, log in via an institution to check access.

Access this book

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

') var buybox = document.querySelector("[data-id=id_"+ timestamp +"]").parentNode var buyboxMaxSingleColumnWidth = 480 // springerPlus roll out 10% starts here var springerPlusGroup = setLocalStorageSpringerPlus(); var rollOutSpringerPlus = springerPlusGroup === "B" function setLocalStorageSpringerPlus() { var selectUserKey = "springerPlusRollOut"; var springerPlusGroup = "X"; if (!window.localStorage) return springerPlusGroup; try { var selectUserValue = window.localStorage.getItem(selectUserKey) springerPlusGroup = selectUserValue || randomDistributionSpringerPlus(selectUserKey) } catch (err) { console.log(err) } return springerPlusGroup; } function randomDistributionSpringerPlus(selectUserKey) { var randomGroup = Math.random() < 0.7 ? "A" : "B" window.localStorage.setItem(selectUserKey, randomGroup) return randomGroup } if (rollOutSpringerPlus) { revealSpringerPlus(); } function revealSpringerPlus() { if(buybox) { document.querySelectorAll(".c-springer-plus").forEach(function(node) { node.style.display = "block" }) } } //springerPlus ends here ;[].slice.call(buybox.querySelectorAll(".buying-option")).forEach(initCollapsibles) function initCollapsibles(buyingOption, index) { var toggle = buyingOption.querySelector(".buying-option-price") buyingOption.classList.remove("expanded") var form = buyingOption.querySelector(".buying-option-form") var priceInfo = buyingOption.querySelector(".price-info") if (toggle && form && priceInfo) { toggle.setAttribute("role", "button") toggle.setAttribute("tabindex", "0") toggle.addEventListener("click", function (event) { var expandedBuyingOptions = buybox.querySelectorAll(".buying-option.expanded") var buyboxWidth = buybox.offsetWidth ;[].slice.call(expandedBuyingOptions).forEach(function(option) { if (buyboxWidth <= buyboxMaxSingleColumnWidth && option != buyingOption) { hideBuyingOption(option) } }) var expanded = toggle.getAttribute("aria-expanded") === "true" || false toggle.setAttribute("aria-expanded", !expanded) form.hidden = expanded if (!expanded) { buyingOption.classList.add("expanded") } else { buyingOption.classList.remove("expanded") } priceInfo.hidden = expanded }, false) } } function hideBuyingOption(buyingOption) { var toggle = buyingOption.querySelector(".buying-option-price") var form = buyingOption.querySelector(".buying-option-form") var priceInfo = buyingOption.querySelector(".price-info") toggle.setAttribute("aria-expanded", false) form.hidden = true buyingOption.classList.remove("expanded") priceInfo.hidden = true } function initKeyControls() { document.addEventListener("keydown", function (event) { if (document.activeElement.classList.contains("buying-option-price") && (event.code === "Space" || event.code === "Enter")) { if (document.activeElement) { event.preventDefault() document.activeElement.click() } } }, false) } function initialStateOpen() { var buyboxWidth = buybox.offsetWidth var narrowBuyboxArea = buyboxWidth <= buyboxMaxSingleColumnWidth var allOptionsInitiallyCollapsed = buybox.className.indexOf("all-options-initially-collapsed") > -1 ;[].slice.call(buybox.querySelectorAll(".buying-option")).forEach(function (option, index) { var toggle = option.querySelector(".buying-option-price") var form = option.querySelector(".buying-option-form") var priceInfo = option.querySelector(".price-info") if (allOptionsInitiallyCollapsed || narrowBuyboxArea && index > 0) { toggle.setAttribute("aria-expanded", "false") form.hidden = "hidden" priceInfo.hidden = "hidden" } else { toggle.click() } }) } initialStateOpen() if (window.buyboxInitialised) return window.buyboxInitialised = true initKeyControls() })()

Other ways to access

Licence this eBook for your library

Institutional subscriptions

About this book

Explore the world of using machine learning methods with deep computer vision, sensors and data in sports, health and fitness and other industries. Accompanied by practical step-by-step Python code samples and Jupyter notebooks, this comprehensive guide acts as a reference for a data scientist, machine learning practitioner or anyone interested in AI applications. These ML models and methods can be used to create solutions for AI enhanced coaching, judging, athletic performance improvement, movement analysis, simulations, in motion capture, gaming, cinema production and more.

Packed with fun, practical applications for sports, machine learning models used in the book include supervised, unsupervised and cutting-edge reinforcement learning methods and models with popular tools like PyTorch, Tensorflow, Keras, OpenAI Gym and OpenCV. Author Kevin Ashley—who happens to be both a machine learning expert and a professional ski instructor—has written an insightful book that takes you on a journey of modern sport science and AI. 

Filled with thorough, engaging illustrations and dozens of real-life examples, this book is your next step to understanding the implementation of AI within the sports world and beyond. Whether you are a data scientist, a coach, an athlete, or simply a personal fitness enthusiast excited about connecting your findings with AI methods, the author’s practical expertise in both tech and sports is an undeniable asset for your learning process. Today’s data scientists are the future of athletics, and Applied Machine Learning for Health and Fitness hands you the knowledge you need to stay relevant in this rapidly growing space.

What You'll Learn

  • Use multiple data science tools and frameworks
  • Apply deep computer vision and other machine learning methods for classification, semantic segmentation, and action recognition
  • Build and train neural networks, reinforcement learning models andmore
  • Analyze multiple sporting activities with deep learning
  • Use datasets available today for model training
  • Use machine learning in the cloud to train and deploy models
  • Apply best practices in machine learning and data science

  • Who This Book Is For

    Primarily aimed at data scientists, coaches, sports enthusiasts and athletes interested in connecting sports with technology and AI methods. 


    Similar content being viewed by others

    Keywords

    Table of contents (12 chapters)

    1. Getting Started

    2. Applying Machine Learning

    Authors and Affiliations

    • Belmont, USA

      Kevin Ashley

    About the author

    Kevin Ashley is a Microsoft architect, IoT expert, and professional ski instructor. He is an author and developer of top sports and fitness apps and platforms such as Active Fitness and Winter Sports with a multi-million user audience. Kevin often works with sports scientists, Olympic athletes, coaches and teams to advance technology use in sports. 

    Bibliographic Information

    Publish with us

    Navigation