p>A hydroxypropyl methylcellulose (HPMC K4M, HPMC K15M, and HPMC K100M) matrix tablet containi... more p>A hydroxypropyl methylcellulose (HPMC K4M, HPMC K15M, and HPMC K100M) matrix tablet containing Indomethacin along with mannitol was formulated as a function of HPMC viscosity, and was compared with the commercial products. The release characteristics of the matrix tablet were investigated in the intestinal fluid, 6.8 pH phosphate buffer for 12 hours. The formulated products and two marketed products as reference sample were studied for its different physicochemical parameters and in vitro dissolution studies. It was found that the drug release profile decreases with increase in viscosity of polymer and, with increase polymer level in the formulations. Matrix tablets formulated employing Drug:HPMC K15M:mannitol::1:0.25:1 and Drug:HPMC K15M:mannitol::1:0.25:2 gave slow release of indomethacin spread over 12 hours and their dissolution profiles were compared with the Indian marketed product. The dissolution profiles of both the formulations were similar to the dissolution profile ...
The objective of this study was to develop a novel combination product containing mosapride and p... more The objective of this study was to develop a novel combination product containing mosapride and probiotics for the treatment of irritable bowel syndrome. Enteric-coated hard gelatin capsules containing probiotics were prepared to protect acid-labile probiotics from the stomach by spray coating with hydroxypropylmethylcellulose phthalate, and then coated with various hydrophilic polymer solutions containing mosapride. The influence of different hydrophilic polymers on the aqueous solubility and dissolution of sparingly soluble mosapride from the capsule was investigated to select the one which imparted highest solubility to mosapride in an aqueous solution. The physicochemical properties of the hydrophilic polymer coating were assessed using SEM and DSC. In addition, the bioavailability of the mosapride-coated capsule in beagle dog was evaluated and compared to that of conventional mosapride tablet (CMT). Based on DSC studies, the mosapride in polymer coating underwent amorphization ...
We aimed to develop an immediate-release flurbiprofen (FLU) and esomeprazole (ESO) combination fo... more We aimed to develop an immediate-release flurbiprofen (FLU) and esomeprazole (ESO) combination formulation with enhanced gastric aqueous solubility and dissolution rate. Aqueous solubility can be enhanced by formulating solid dispersions (SDs) with a polyvinylpyrrolidone (PVP)-K30 hydrophilic carrier, using spray-drying technique. Aqueous and gastric pH dissolution can be achieved by macro-environmental pH modulation using sodium bicarbonate (NaHCO3) and magnesium hydroxide (Mg(OH)2) as the alkaline buffer. FLU/ESO-loaded SDs (FLU/ESO-SDs) significantly improved aqueous solubility of both drugs, compared to each drug powder. Dissolution studies in gastric pH and water were compared with the microenvironmental pH modulated formulations. The optimized FLU/ESO-SD powder formulation consisted of FLU/ESO/PVP-K30/sodium carbonate (Na2CO3) in a weight ratio 1:0.22:1.5:0.3, filled in the inner capsule. The outer capsule consisted of NaHCO3 and Mg(OH)2, which created the macro-environmental pH modulation. Increased aqueous and gastric pH dissolution of FLU and ESO from the SD was attributed to the alkaline buffer effects and most importantly, to drug transformation from crystalline to amorphous SD powder, clearly revealed by scanning electron microscopy, differential scanning calorimetry, and powder X-ray diffraction studies. Thus, the combined FLU and ESO SD powder can be effectively delivered as an immediate-release formulation using the macro-environmental pH modulation concept.
Journal of Nanoscience and Nanotechnology, Aug 1, 2013
In the present study, we developed novel docetaxel (DTX)-loaded polylactic acid-co-glycolic acid ... more In the present study, we developed novel docetaxel (DTX)-loaded polylactic acid-co-glycolic acid (PLGA) nanoparticles (NPs) using the combination of sodium lauryl sulfate (SLS) and poloxamer 407, the anionic and non-ionic surfactants respectively for stabilization. The NPs were prepared by emulsification/solvent evaporation method. The combination of these surfactants at weight ratio of 1:0.5 was able to produce uniformly distributed small sized NPs and demonstrated the better stability of NP dispersion with high encapsulation efficiency (85.9 +/- 0.6%). The drug/polymer ratio and phase ratio were 2:10 and 1:10, respectively. The optimized formulation of DTX-loaded PLGA NPs had a particle size and polydispersity index of 104.2 +/- 1.5 nm and 0.152 +/- 0.006, respectively, which was further supported by TEM image. In vitro release study was carried out with dialysis membrane and showed 32% drug release in 192 h. When in vitro release data were fitted to Korsmeyer-Peppas model, the n value was 0.481, which suggested the drug was released by anomalous or non-Fickian diffusion. In addition, DTX-loaded PLGA NPs in 72 h, displayed approximately 75% cell viability reduction at 10 microg/ml DTX concentration, in MCF-7 cell lines, indicating sustained release from NPs. Therefore, our results demonstrated that incorporation of DTX into PLGA NPs could provide a novel effective nanocarrier for the treatment of cancer.
In this study, the enteric-coated delayed-release pellets of duloxetine hydrochloride (DLX) were ... more In this study, the enteric-coated delayed-release pellets of duloxetine hydrochloride (DLX) were formulated using a fluidized bed coater. Three separate layers, the drug layer, the barrier layer, and the enteric layer, were coated onto inert core pellets. Among the three formulations (F1-F3), the dissolution profiles of formulation F2 were most similar to those of the marketed product, with similarity and difference factors of 83.99 and 3.77, respectively. In addition, pharmacokinetic parameters of AUC, Cmax, Tmax, t1/2, Kel, and MRT of DLX for the developed formulation (F2) did not differ significantly from those for the marketed product in beagle dogs, suggesting that they were bioequivalent. Our results demonstrated that the in vitro dissolution data resembled the in vivo performance of the drug. Therefore, this study has a positive scope for further scale up and development of the formulation for achievement of the generic product.
To prepare, optimize and characterize imatinib-loaded nanostructured lipid carriers (IMT-NLC), an... more To prepare, optimize and characterize imatinib-loaded nanostructured lipid carriers (IMT-NLC), and evaluate their pharmacokinetic and cytotoxicity characteristics. IMT-NLC was prepared by hot homogenization method, and optimized by an approach involving Plackett-Burman design (PBD) and central composite design (CCD). An in vivo pharmacokinetic study was conducted in rats after both oral and intravenous administration. The in vitro cytotoxicity was evaluated by MTT assay on NCI-H727 cell-lines. PBD screening, followed by optimization by CCD and desirability function, yielded an optimized condition of 0.054, 6% w/w, 2.5% w/w and 1.25% w/v for organic-to-aqueous phase ratio (O/A), drug-to-lipid ratio (D/L), amount of lecithin (Lec) and amount of Tween® 20 (Tw20) respectively. The optimized IMT-NLC exhibited a particle size (Sz) of 148.80 ± 1.37 nm, polydispersity index (PDI) 0.191 ± 0.017 of and ζ-potential of -23.0 ± 1.5 mV, with a drug loading (DL) of 5.48 ± 0.01% and encapsulation efficiency (EE) of 97.93 ± 0.03%. IMT-NLC displayed sustained IMT release in vitro, significantly enhanced in vivo bioavailability of IMT after intravenous and oral administration, and greater in vitro cytotoxicity on NCI-H727 cells, compared with free IMT. A combined DoE approach enabled accurate optimization and successful preparation of IMT-NLC with enhanced in vivo pharmacokinetic and in vitro cytotoxicity characteristics.
International journal of pharmaceutics, Jan 2, 2014
In this study, once-daily, sustained-release matrix tablets of tolterodine l-tartrate (TOL) for t... more In this study, once-daily, sustained-release matrix tablets of tolterodine l-tartrate (TOL) for treatment of overactive bladder (OAB) were prepared by direct compression using various amounts of hydrophilic polymers such as HPMC 2910 and HPMC 2208 along with other tablet excipients; the tablets were then coated. In vitro dissolution studies were carried out under different pH conditions. The dissolution data were fitted into zero-order, first-order, Higuchi and Korsemeyer-Peppas models to identify the pharmacokinetics and mechanism of drug release. Among the four formulations (F1-F4), the dissolution profiles of formulation F2 were most similar to the marketed product with similarity and difference factors of 70.25 and 1.59 respectively. Furthermore, pharmacokinetic studies were carried out in healthy human volunteers after oral administration of the prepared TOL sustained-release matrix-coated tablet and the marketed product. The results revealed that the pharmacokinetic parameters...
Multiple-drug combination therapy is becoming more common in the treatment of advanced cancers be... more Multiple-drug combination therapy is becoming more common in the treatment of advanced cancers because this approach can decrease side effects and delay or prevent drug resistance. In the present study, we developed hyaluronic acid (HA)-decorated poly(lactic-co-glycolic acid) (PLGA) nanoparticles (HA-PLGA NPs) for co-delivery of docetaxel (DTX) and tanespimycin (17-AAG). DTX and 17-AAG were simultaneously loaded into HA-PLGA NPs using an oil-in-water emulsification/solvent evaporation method. Several formulations were tested. HA-PLGA NPs loaded with DTX and 17-AAG at a molar ratio of 2:1 produced the smallest particle size (173.3±2.2nm), polydispersity index (0.151±0.026), and zeta potential (-12.4±0.4mV). Approximately 60% and 40% of DTX and 17-AAG, respectively, were released over 168h in vitro. Cytotoxicity assays performed in vitro using MCF-7, MDA-MB-231, and SCC-7 cells showed that dual drug-loaded HA-PLGA NPs at a DTX:17-AAG molar ratio of 2:1 exhibited the highest synergistic effect, with combination index values of 0.051, 0.036, and 0.032, respectively, at the median effective dose. Furthermore, synergistic antitumor activity was demonstrated in vivo in a CD44 and RHAMM (CD168) - overexpressing squamous cell carcinoma (SCC-7) xenograft in nude mice. These findings indicated that nanosystem-based co-delivery of DTX and 17-AAG could provide a promising combined therapeutic strategy for enhanced antitumor therapy.
The purpose of this study was to improve the gastric solubility and bioavailability of rebamipide... more The purpose of this study was to improve the gastric solubility and bioavailability of rebamipide (RBM) by preparing the RBM solid dispersion tablet (RBM-SDT) from solid dispersion powder prepared by spray-drying technique. For preparation of rebamipide solid dispersions (RBM-SDs), solubility study was performed in various hydrophilic carriers and alkalizers, among which sodium alginate and sodium carbonate were selected as the hydrophilic polymer and alkalizer, respectively. Different combinations of drug-polymer-alkalizer were dissolved in aqueous solution and spray-dried in order to obtain solid dispersions. Noticeable improvement in aqueous solubility (approximately 200 times) and in vitro dissolution rate was observed by RBM-SDs, compared to RBM powder. The optimized formulation of RBM-SD powder consisted of RBM powder/sodium alginate/sodium carbonate at the weight ratio of 1/2/2. The transformation of crystalline RBM to amorphous RBM-SD powder was clearly demonstrated by powder X-ray diffraction, differential scanning calorimetry (DSC) and scanning electron microscopy. The optimized RBM-SD was formulated in tablet dosage form, containing approximately 2 % sodium lauryl sulphate and poloxamer F68 as wetting agents. The RBM-SDT exhibited enhanced dissolution in hydrochloric acid buffer (pH 1.2) and distilled water. Moreover, pharmacokinetic study in rats showed higher AUC and Cmax for RBM-SDT than those for RBM powder and commercial product. Thus, the developed RBM-SDT formulation can be more efficacious for improving oral bioavailability of RBM.
Doxorubicin (DOX)-loaded water-in-oil-in-water (W/O/W) microemulsions were produced using a shira... more Doxorubicin (DOX)-loaded water-in-oil-in-water (W/O/W) microemulsions were produced using a shirasu-porous-glass (SPG) membrane emulsification technique. Soybean oil was used as the oil phase; polyglycerol polyricinoleate (PGPR) or tetraglycerol polyricinoleate (TGPR) was used as the surfactant to stabilize the feed W/O emulsions, while Tween 20 was used in the external water phase to stabilize oil droplets containing water droplets. Increasing the feed pressure from 50 to 90 kPa increased the particle size of W/O/W emulsions, whereas it was decreased by increasing the agitator speed. The smallest particle sizes of multiple emulsions were obtained at the feed pressure of 50 kPa and agitator speed of 350 rpm. Under this set of conditions, the increase in the concentration of PGPR or TGPR showed a decrease in the particle size of DOX-loaded W/O/W emulsions. The optimized formulation comprising of 5% w/v PGPR and 3% w/v Tween 20 in the oil phase and external water phase, respectively, ...
In the present study, we developed the novel 17-allyamino-17-demethoxygeldanamycin (17-AAG)-loade... more In the present study, we developed the novel 17-allyamino-17-demethoxygeldanamycin (17-AAG)-loaded poly(lactic acid-co-glycolic acid) (PLGA) nanoparticles (NPs) using the combination of sodium lauryl sulfate and poloxamer 407 as the anionic and non-ionic surfactant for stabilization. The PLGA NPs were prepared by emulsification/solvent evaporation method. Both the drug/polymer ratio and phase ratio were 1:10 (w/w). The optimized formulation of 17-AAG-loaded PLGA NPs had a particle size and polydispersity index of 151.6 ± 2.0 and 0.152 ± 0.010 nm, respectively, which was further supported by TEM image. The encapsulation efficiency and drug loading capacity were 69.9 and 7.0 %, respectively. In vitro release study showed sustained release. When in vitro release data were fitted to Korsmeyer-Peppas model, the n value was 0.468, which suggested that the drug was released by anomalous or non-Fickian diffusion. In addition, 17-AAG-loaded PLGA NPs in 72 h, displayed approximately 60 % cell viability reduction at 10 µg/ml 17-AAG concentration, in MCF-7 cell lines, indicating sustained release from NPs. Therefore, our results demonstrated that incorporation of 17-AAG into PLGA NPs could provide a novel effective nanocarrier for the treatment of cancer.
In the present study, we developed novel docetaxel (DTX)-loaded polylactic acid-co-glycolic acid ... more In the present study, we developed novel docetaxel (DTX)-loaded polylactic acid-co-glycolic acid (PLGA) nanoparticles (NPs) using the combination of sodium lauryl sulfate (SLS) and poloxamer 407, the anionic and non-ionic surfactants respectively for stabilization. The NPs were prepared by emulsification/solvent evaporation method. The combination of these surfactants at weight ratio of 1:0.5 was able to produce uniformly distributed small sized NPs and demonstrated the better stability of NP dispersion with high encapsulation efficiency (85.9 +/- 0.6%). The drug/polymer ratio and phase ratio were 2:10 and 1:10, respectively. The optimized formulation of DTX-loaded PLGA NPs had a particle size and polydispersity index of 104.2 +/- 1.5 nm and 0.152 +/- 0.006, respectively, which was further supported by TEM image. In vitro release study was carried out with dialysis membrane and showed 32% drug release in 192 h. When in vitro release data were fitted to Korsmeyer-Peppas model, the n value was 0.481, which suggested the drug was released by anomalous or non-Fickian diffusion. In addition, DTX-loaded PLGA NPs in 72 h, displayed approximately 75% cell viability reduction at 10 microg/ml DTX concentration, in MCF-7 cell lines, indicating sustained release from NPs. Therefore, our results demonstrated that incorporation of DTX into PLGA NPs could provide a novel effective nanocarrier for the treatment of cancer.
Fenofibrate-loaded microemulsions composed of Labrafil M 1944 CS, Capryol PGMC and fenofibrate as... more Fenofibrate-loaded microemulsions composed of Labrafil M 1944 CS, Capryol PGMC and fenofibrate as the dispersed phase and Labrasol in demineralised water as the continuous phase were prepared by utilising a Shirasu-porous-glass (SPG) membrane emulsification technique. The process parameters were optimised by adjusting the feed pressure (15-45 kPa), agitator speed (250-800 rpm) and temperature of the continuous phase (25-45°C). As a result, narrowly distributed microemulsions were obtained via SPG membrane emulsification at an agitator speed of 250 rpm, a feed pressure of 30 kPa and a continuous phase temperature of 25°C. Furthermore, TEM images clearly showed that the microemulsion prepared by SPG membrane emulsification had a uniform, spherical morphology with a narrow size distribution. Our results indicated that the SPG membrane emulsification technique is highly efficient for the preparation of narrowly distributed microemulsions with relatively smaller particle sizes compared with the common stirring method.
p>A hydroxypropyl methylcellulose (HPMC K4M, HPMC K15M, and HPMC K100M) matrix tablet containi... more p>A hydroxypropyl methylcellulose (HPMC K4M, HPMC K15M, and HPMC K100M) matrix tablet containing Indomethacin along with mannitol was formulated as a function of HPMC viscosity, and was compared with the commercial products. The release characteristics of the matrix tablet were investigated in the intestinal fluid, 6.8 pH phosphate buffer for 12 hours. The formulated products and two marketed products as reference sample were studied for its different physicochemical parameters and in vitro dissolution studies. It was found that the drug release profile decreases with increase in viscosity of polymer and, with increase polymer level in the formulations. Matrix tablets formulated employing Drug:HPMC K15M:mannitol::1:0.25:1 and Drug:HPMC K15M:mannitol::1:0.25:2 gave slow release of indomethacin spread over 12 hours and their dissolution profiles were compared with the Indian marketed product. The dissolution profiles of both the formulations were similar to the dissolution profile ...
The objective of this study was to develop a novel combination product containing mosapride and p... more The objective of this study was to develop a novel combination product containing mosapride and probiotics for the treatment of irritable bowel syndrome. Enteric-coated hard gelatin capsules containing probiotics were prepared to protect acid-labile probiotics from the stomach by spray coating with hydroxypropylmethylcellulose phthalate, and then coated with various hydrophilic polymer solutions containing mosapride. The influence of different hydrophilic polymers on the aqueous solubility and dissolution of sparingly soluble mosapride from the capsule was investigated to select the one which imparted highest solubility to mosapride in an aqueous solution. The physicochemical properties of the hydrophilic polymer coating were assessed using SEM and DSC. In addition, the bioavailability of the mosapride-coated capsule in beagle dog was evaluated and compared to that of conventional mosapride tablet (CMT). Based on DSC studies, the mosapride in polymer coating underwent amorphization ...
We aimed to develop an immediate-release flurbiprofen (FLU) and esomeprazole (ESO) combination fo... more We aimed to develop an immediate-release flurbiprofen (FLU) and esomeprazole (ESO) combination formulation with enhanced gastric aqueous solubility and dissolution rate. Aqueous solubility can be enhanced by formulating solid dispersions (SDs) with a polyvinylpyrrolidone (PVP)-K30 hydrophilic carrier, using spray-drying technique. Aqueous and gastric pH dissolution can be achieved by macro-environmental pH modulation using sodium bicarbonate (NaHCO3) and magnesium hydroxide (Mg(OH)2) as the alkaline buffer. FLU/ESO-loaded SDs (FLU/ESO-SDs) significantly improved aqueous solubility of both drugs, compared to each drug powder. Dissolution studies in gastric pH and water were compared with the microenvironmental pH modulated formulations. The optimized FLU/ESO-SD powder formulation consisted of FLU/ESO/PVP-K30/sodium carbonate (Na2CO3) in a weight ratio 1:0.22:1.5:0.3, filled in the inner capsule. The outer capsule consisted of NaHCO3 and Mg(OH)2, which created the macro-environmental pH modulation. Increased aqueous and gastric pH dissolution of FLU and ESO from the SD was attributed to the alkaline buffer effects and most importantly, to drug transformation from crystalline to amorphous SD powder, clearly revealed by scanning electron microscopy, differential scanning calorimetry, and powder X-ray diffraction studies. Thus, the combined FLU and ESO SD powder can be effectively delivered as an immediate-release formulation using the macro-environmental pH modulation concept.
Journal of Nanoscience and Nanotechnology, Aug 1, 2013
In the present study, we developed novel docetaxel (DTX)-loaded polylactic acid-co-glycolic acid ... more In the present study, we developed novel docetaxel (DTX)-loaded polylactic acid-co-glycolic acid (PLGA) nanoparticles (NPs) using the combination of sodium lauryl sulfate (SLS) and poloxamer 407, the anionic and non-ionic surfactants respectively for stabilization. The NPs were prepared by emulsification/solvent evaporation method. The combination of these surfactants at weight ratio of 1:0.5 was able to produce uniformly distributed small sized NPs and demonstrated the better stability of NP dispersion with high encapsulation efficiency (85.9 +/- 0.6%). The drug/polymer ratio and phase ratio were 2:10 and 1:10, respectively. The optimized formulation of DTX-loaded PLGA NPs had a particle size and polydispersity index of 104.2 +/- 1.5 nm and 0.152 +/- 0.006, respectively, which was further supported by TEM image. In vitro release study was carried out with dialysis membrane and showed 32% drug release in 192 h. When in vitro release data were fitted to Korsmeyer-Peppas model, the n value was 0.481, which suggested the drug was released by anomalous or non-Fickian diffusion. In addition, DTX-loaded PLGA NPs in 72 h, displayed approximately 75% cell viability reduction at 10 microg/ml DTX concentration, in MCF-7 cell lines, indicating sustained release from NPs. Therefore, our results demonstrated that incorporation of DTX into PLGA NPs could provide a novel effective nanocarrier for the treatment of cancer.
In this study, the enteric-coated delayed-release pellets of duloxetine hydrochloride (DLX) were ... more In this study, the enteric-coated delayed-release pellets of duloxetine hydrochloride (DLX) were formulated using a fluidized bed coater. Three separate layers, the drug layer, the barrier layer, and the enteric layer, were coated onto inert core pellets. Among the three formulations (F1-F3), the dissolution profiles of formulation F2 were most similar to those of the marketed product, with similarity and difference factors of 83.99 and 3.77, respectively. In addition, pharmacokinetic parameters of AUC, Cmax, Tmax, t1/2, Kel, and MRT of DLX for the developed formulation (F2) did not differ significantly from those for the marketed product in beagle dogs, suggesting that they were bioequivalent. Our results demonstrated that the in vitro dissolution data resembled the in vivo performance of the drug. Therefore, this study has a positive scope for further scale up and development of the formulation for achievement of the generic product.
To prepare, optimize and characterize imatinib-loaded nanostructured lipid carriers (IMT-NLC), an... more To prepare, optimize and characterize imatinib-loaded nanostructured lipid carriers (IMT-NLC), and evaluate their pharmacokinetic and cytotoxicity characteristics. IMT-NLC was prepared by hot homogenization method, and optimized by an approach involving Plackett-Burman design (PBD) and central composite design (CCD). An in vivo pharmacokinetic study was conducted in rats after both oral and intravenous administration. The in vitro cytotoxicity was evaluated by MTT assay on NCI-H727 cell-lines. PBD screening, followed by optimization by CCD and desirability function, yielded an optimized condition of 0.054, 6% w/w, 2.5% w/w and 1.25% w/v for organic-to-aqueous phase ratio (O/A), drug-to-lipid ratio (D/L), amount of lecithin (Lec) and amount of Tween® 20 (Tw20) respectively. The optimized IMT-NLC exhibited a particle size (Sz) of 148.80 ± 1.37 nm, polydispersity index (PDI) 0.191 ± 0.017 of and ζ-potential of -23.0 ± 1.5 mV, with a drug loading (DL) of 5.48 ± 0.01% and encapsulation efficiency (EE) of 97.93 ± 0.03%. IMT-NLC displayed sustained IMT release in vitro, significantly enhanced in vivo bioavailability of IMT after intravenous and oral administration, and greater in vitro cytotoxicity on NCI-H727 cells, compared with free IMT. A combined DoE approach enabled accurate optimization and successful preparation of IMT-NLC with enhanced in vivo pharmacokinetic and in vitro cytotoxicity characteristics.
International journal of pharmaceutics, Jan 2, 2014
In this study, once-daily, sustained-release matrix tablets of tolterodine l-tartrate (TOL) for t... more In this study, once-daily, sustained-release matrix tablets of tolterodine l-tartrate (TOL) for treatment of overactive bladder (OAB) were prepared by direct compression using various amounts of hydrophilic polymers such as HPMC 2910 and HPMC 2208 along with other tablet excipients; the tablets were then coated. In vitro dissolution studies were carried out under different pH conditions. The dissolution data were fitted into zero-order, first-order, Higuchi and Korsemeyer-Peppas models to identify the pharmacokinetics and mechanism of drug release. Among the four formulations (F1-F4), the dissolution profiles of formulation F2 were most similar to the marketed product with similarity and difference factors of 70.25 and 1.59 respectively. Furthermore, pharmacokinetic studies were carried out in healthy human volunteers after oral administration of the prepared TOL sustained-release matrix-coated tablet and the marketed product. The results revealed that the pharmacokinetic parameters...
Multiple-drug combination therapy is becoming more common in the treatment of advanced cancers be... more Multiple-drug combination therapy is becoming more common in the treatment of advanced cancers because this approach can decrease side effects and delay or prevent drug resistance. In the present study, we developed hyaluronic acid (HA)-decorated poly(lactic-co-glycolic acid) (PLGA) nanoparticles (HA-PLGA NPs) for co-delivery of docetaxel (DTX) and tanespimycin (17-AAG). DTX and 17-AAG were simultaneously loaded into HA-PLGA NPs using an oil-in-water emulsification/solvent evaporation method. Several formulations were tested. HA-PLGA NPs loaded with DTX and 17-AAG at a molar ratio of 2:1 produced the smallest particle size (173.3±2.2nm), polydispersity index (0.151±0.026), and zeta potential (-12.4±0.4mV). Approximately 60% and 40% of DTX and 17-AAG, respectively, were released over 168h in vitro. Cytotoxicity assays performed in vitro using MCF-7, MDA-MB-231, and SCC-7 cells showed that dual drug-loaded HA-PLGA NPs at a DTX:17-AAG molar ratio of 2:1 exhibited the highest synergistic effect, with combination index values of 0.051, 0.036, and 0.032, respectively, at the median effective dose. Furthermore, synergistic antitumor activity was demonstrated in vivo in a CD44 and RHAMM (CD168) - overexpressing squamous cell carcinoma (SCC-7) xenograft in nude mice. These findings indicated that nanosystem-based co-delivery of DTX and 17-AAG could provide a promising combined therapeutic strategy for enhanced antitumor therapy.
The purpose of this study was to improve the gastric solubility and bioavailability of rebamipide... more The purpose of this study was to improve the gastric solubility and bioavailability of rebamipide (RBM) by preparing the RBM solid dispersion tablet (RBM-SDT) from solid dispersion powder prepared by spray-drying technique. For preparation of rebamipide solid dispersions (RBM-SDs), solubility study was performed in various hydrophilic carriers and alkalizers, among which sodium alginate and sodium carbonate were selected as the hydrophilic polymer and alkalizer, respectively. Different combinations of drug-polymer-alkalizer were dissolved in aqueous solution and spray-dried in order to obtain solid dispersions. Noticeable improvement in aqueous solubility (approximately 200 times) and in vitro dissolution rate was observed by RBM-SDs, compared to RBM powder. The optimized formulation of RBM-SD powder consisted of RBM powder/sodium alginate/sodium carbonate at the weight ratio of 1/2/2. The transformation of crystalline RBM to amorphous RBM-SD powder was clearly demonstrated by powder X-ray diffraction, differential scanning calorimetry (DSC) and scanning electron microscopy. The optimized RBM-SD was formulated in tablet dosage form, containing approximately 2 % sodium lauryl sulphate and poloxamer F68 as wetting agents. The RBM-SDT exhibited enhanced dissolution in hydrochloric acid buffer (pH 1.2) and distilled water. Moreover, pharmacokinetic study in rats showed higher AUC and Cmax for RBM-SDT than those for RBM powder and commercial product. Thus, the developed RBM-SDT formulation can be more efficacious for improving oral bioavailability of RBM.
Doxorubicin (DOX)-loaded water-in-oil-in-water (W/O/W) microemulsions were produced using a shira... more Doxorubicin (DOX)-loaded water-in-oil-in-water (W/O/W) microemulsions were produced using a shirasu-porous-glass (SPG) membrane emulsification technique. Soybean oil was used as the oil phase; polyglycerol polyricinoleate (PGPR) or tetraglycerol polyricinoleate (TGPR) was used as the surfactant to stabilize the feed W/O emulsions, while Tween 20 was used in the external water phase to stabilize oil droplets containing water droplets. Increasing the feed pressure from 50 to 90 kPa increased the particle size of W/O/W emulsions, whereas it was decreased by increasing the agitator speed. The smallest particle sizes of multiple emulsions were obtained at the feed pressure of 50 kPa and agitator speed of 350 rpm. Under this set of conditions, the increase in the concentration of PGPR or TGPR showed a decrease in the particle size of DOX-loaded W/O/W emulsions. The optimized formulation comprising of 5% w/v PGPR and 3% w/v Tween 20 in the oil phase and external water phase, respectively, ...
In the present study, we developed the novel 17-allyamino-17-demethoxygeldanamycin (17-AAG)-loade... more In the present study, we developed the novel 17-allyamino-17-demethoxygeldanamycin (17-AAG)-loaded poly(lactic acid-co-glycolic acid) (PLGA) nanoparticles (NPs) using the combination of sodium lauryl sulfate and poloxamer 407 as the anionic and non-ionic surfactant for stabilization. The PLGA NPs were prepared by emulsification/solvent evaporation method. Both the drug/polymer ratio and phase ratio were 1:10 (w/w). The optimized formulation of 17-AAG-loaded PLGA NPs had a particle size and polydispersity index of 151.6 ± 2.0 and 0.152 ± 0.010 nm, respectively, which was further supported by TEM image. The encapsulation efficiency and drug loading capacity were 69.9 and 7.0 %, respectively. In vitro release study showed sustained release. When in vitro release data were fitted to Korsmeyer-Peppas model, the n value was 0.468, which suggested that the drug was released by anomalous or non-Fickian diffusion. In addition, 17-AAG-loaded PLGA NPs in 72 h, displayed approximately 60 % cell viability reduction at 10 µg/ml 17-AAG concentration, in MCF-7 cell lines, indicating sustained release from NPs. Therefore, our results demonstrated that incorporation of 17-AAG into PLGA NPs could provide a novel effective nanocarrier for the treatment of cancer.
In the present study, we developed novel docetaxel (DTX)-loaded polylactic acid-co-glycolic acid ... more In the present study, we developed novel docetaxel (DTX)-loaded polylactic acid-co-glycolic acid (PLGA) nanoparticles (NPs) using the combination of sodium lauryl sulfate (SLS) and poloxamer 407, the anionic and non-ionic surfactants respectively for stabilization. The NPs were prepared by emulsification/solvent evaporation method. The combination of these surfactants at weight ratio of 1:0.5 was able to produce uniformly distributed small sized NPs and demonstrated the better stability of NP dispersion with high encapsulation efficiency (85.9 +/- 0.6%). The drug/polymer ratio and phase ratio were 2:10 and 1:10, respectively. The optimized formulation of DTX-loaded PLGA NPs had a particle size and polydispersity index of 104.2 +/- 1.5 nm and 0.152 +/- 0.006, respectively, which was further supported by TEM image. In vitro release study was carried out with dialysis membrane and showed 32% drug release in 192 h. When in vitro release data were fitted to Korsmeyer-Peppas model, the n value was 0.481, which suggested the drug was released by anomalous or non-Fickian diffusion. In addition, DTX-loaded PLGA NPs in 72 h, displayed approximately 75% cell viability reduction at 10 microg/ml DTX concentration, in MCF-7 cell lines, indicating sustained release from NPs. Therefore, our results demonstrated that incorporation of DTX into PLGA NPs could provide a novel effective nanocarrier for the treatment of cancer.
Fenofibrate-loaded microemulsions composed of Labrafil M 1944 CS, Capryol PGMC and fenofibrate as... more Fenofibrate-loaded microemulsions composed of Labrafil M 1944 CS, Capryol PGMC and fenofibrate as the dispersed phase and Labrasol in demineralised water as the continuous phase were prepared by utilising a Shirasu-porous-glass (SPG) membrane emulsification technique. The process parameters were optimised by adjusting the feed pressure (15-45 kPa), agitator speed (250-800 rpm) and temperature of the continuous phase (25-45°C). As a result, narrowly distributed microemulsions were obtained via SPG membrane emulsification at an agitator speed of 250 rpm, a feed pressure of 30 kPa and a continuous phase temperature of 25°C. Furthermore, TEM images clearly showed that the microemulsion prepared by SPG membrane emulsification had a uniform, spherical morphology with a narrow size distribution. Our results indicated that the SPG membrane emulsification technique is highly efficient for the preparation of narrowly distributed microemulsions with relatively smaller particle sizes compared with the common stirring method.
Uploads
Papers by Roshan Pradhan