확률변수의 수렴에는 여러 가지의 정의가 존재한다.
분포 수렴(convergence in distribution), 약한 수렴(weak convergence)은 확률변수의 누적 분포 함수가 수렴하는 것을 의미한다. 확률변수 와 각각의 누적 분포 함수 에 대하여, 어떤 확률변수 와 와 확률 분포 함수 가 존재하여,
- 모든 실수 에 대하여
가 성립할 경우, 은 로 분포수렴한다고 정의한다. 기호로는
등이 사용된다. 여기에서 은 확률 분포를 가리키며, 예를 들어 가 표준정규분포라면 와 같이 표기할 수 있다.
분포 수렴은 확률변수들이 같은 확률 공간에 있을 필요가 없으며, 각 확률변수의 분포만이 고려된다. 분포 수렴의 예제로는 중심극한정리가 있다.
확률변수를 다변수 확률변수로 확장할 경우, 위의 정의는 다음과 같이 바꿀 수 있다. 집합 가 일 때(continuity set),
- 에 대하여
가 성립한다면 은 로 분포수렴한다.
- 레비 연속성 정리(Lévy's continuity theorem): 확률변수 가 로 분포수렴하는 것과 의 특성함수가 의 특성함수로 점마다 수렴하는 것은 동치이다.
- 분포수렴은 확률 밀도 함수의 수렴을 보장하지 않는다. 가령, 에 대응하는 확률변수는 균등분포 로 수렴하지만, 은 수렴하지 않는다.
- 확률수렴이나 거의 확실한 수렴은 분포수렴을 포함한다.
- Portmanteau theorem: 분포수렴은 다음 중 하나와 동치이다.
- 모든 유계 연속 함수 에 대해
- 모든 유계 립시츠 연속 함수 에 대해
- 위로 유계이고 위에서 반연속인 함수 에 대해
- 아래로 유계이고 아래에서 반연속인 함수 에 대해
- 모든 닫힌 집합 에 대해
- 모든 열린 집합 에 대해
- 모든 의 continuity set에 대해
확률 수렴(convergence in probability)은 같은 확률 공간에 있는 확률변수들의 수렴을 다루며, 확률변수의 결과물이 수렴 결과물과 거의 동일하다는 것을 의미한다.
확률변수 와 에 대하여, 모든 에 대해
가 성립할 때, 은 로 확률 수렴한다고 정의한다.
확률 수렴의 표기는 다음과 같다.
정의를 확률변수뿐만이 아니라 분해 가능 공간에서 정의되는 확률변수(random element)로 확장하면 다음과 같다. 분해 가능 공간 가 주어졌을 때, 모든 에 대하여
가 성립하는 경우 확률 수렴한다고 정의한다.
- 거의 확실한 수렴은 확률 수렴을 포함한다.
- 이산 확률 공간에서는 확률수렴과 거의 확실한 수렴이 동치이다.
- 확률 수렴은 분포 수렴을 포함한다.
- 상수로 수렴하는 경우, 분포 수렴과 확률 수렴은 동치이다.
- (연속 사상 정리 영어: continuous mapping theorem) 임의의 연속 함수 에 대해, 이 로 확률 수렴한다면 은 로 확률 수렴한다.
거의 확실한 수렴(almost sure convergence)은 거의 어디서나 점마다 수렴(pointwise convergence)하는 것을 의미한다.
확률 공간 위의 확률변수 와 에 대하여,
이 성립할 경우, 은 로 거의 확실하게 수렴한다고 정의한다. 이 조건은 다음과 동치이다.
즉, 각 에 대하여 거의 어디서나 수렴한다는 의미이다.
거의 확실한 수렴은 로 표기한다.
확실한 수렴(sure convergence)은 확률변수가 모든 점마다 수렴하는 것을 의미한다.
확률공간 위의 확률변수 와 에 대하여
가 성립할 경우, 은 로 확실하게 수렴한다고 정의한다.