Sottogruppo normale
Aspetto
In teoria dei gruppi, il sottogruppo normale (o invariante) è un sottogruppo in cui i laterali sinistro e destro di ogni elemento del gruppo coincidono.
In formule, il sottogruppo è normale se
per ogni elemento . Il fatto che sia normale per si indica con .
I sottogruppi normali sono importanti perché permettono di definire il gruppo quoziente .
Definizioni equivalenti
[modifica | modifica wikitesto]Esistono numerosi modi equivalenti per definire un sottogruppo normale. Tra questi:
- K è un sottogruppo normale se viene mandato in sé da ogni automorfismo interno:
- K è un sottogruppo normale se è chiuso rispetto all'operazione di coniugio
Proprietà
[modifica | modifica wikitesto]- Se , non è detto che . Infatti possono esserci isomorfismi non interni di che sono isomorfismi interni di e che non mandano in sé. Per esempio, nel gruppo alterno ci sono tre sottogruppi di ordine 2, e ognuno di essi è normale nell'unico sottogruppo (abeliano) di ordine 4, che è a sua volta normale in . Ma i tre sottogruppi di ordine due sono permutati ciclicamente dall'automorfismo interno indotto da ogni elemento di di ordine 3, e dunque nessuno di essi è normale in .
Se però si aggiunge l'ipotesi che sia caratteristico, in , cioè mandato in sé da ogni automorfismo di , si ha che effettivamente .
Esempi
[modifica | modifica wikitesto]- In un gruppo abeliano, ogni sottogruppo è normale.
- Il nucleo di un omomorfismo h: G → H è un sottogruppo normale di G.
- I sottogruppi {e} e G (il più piccolo ed il più grande fra i sottogruppi di G) sono sempre normali. Se sono gli unici sottogruppi normali, il gruppo si dice semplice.
- Il gruppo delle traslazioni dello spazio euclideo è un sottogruppo normale del gruppo dei movimenti rigidi dello spazio. Ad esempio, in tre dimensioni: se si ruota, poi si trasla, e infine si ruota nell'altro verso, si ottiene una traslazione (che può essere diversa da quella iniziale).
- L'intersezione di una famiglia di sottogruppi normali è normale.
- L'immagine inversa tramite omomorfismo di un sottogruppo normale è normale. Invece l'immagine di un sottogruppo normale tramite un omomorfismo non è necessariamente normale.
- Prodotto di gruppi normali in un prodotto di gruppi è normale.
- Ogni sottogruppo di indice 2 è normale. Più in generale, se l'indice del sottogruppo del gruppo finito è il più piccolo numero primo che divide l'ordine di , allora è un sottogruppo normale di .
Bibliografia
[modifica | modifica wikitesto]- Michael Reed, Barry Simon, Methods of Modern Mathematical Physics, Vol. 1: Functional Analysis, 2ª ed., San Diego, California, Academic press inc., 1980, ISBN 0-12-585050-6.
- Ralph Grimaldi, Discrete and Combinatorial Mathematics, ISBN 0-201-19912-2.
- Gunther Schmidt, 2010. Relational Mathematics. Cambridge University Press, ISBN 978-0-521-76268-7.
- Antonio Machì, Gruppi: Una introduzione a idee e metodi della Teoria dei Gruppi, Springer, 2010, ISBN 88-470-0622-8.
- J.S. Milne, Group theory (PDF), 2012. URL consultato il 22 febbraio 2013.
Voci correlate
[modifica | modifica wikitesto]Collegamenti esterni
[modifica | modifica wikitesto]- Sottogruppo normale, in Enciclopedia della Matematica, Istituto dell'Enciclopedia Italiana, 2013.
- (EN) Eric W. Weisstein, Normal Subgroup, su MathWorld, Wolfram Research.
- (EN) Normal subgroup, su Encyclopaedia of Mathematics, Springer e European Mathematical Society.