Vai al contenuto

File:Mplwp universe scale evolution.svg

Contenuti della pagina non supportati in altre lingue.
File proveniente da Wikimedia Commons. Clicca per visitare la pagina originale
Da Wikipedia, l'enciclopedia libera.

File originale (file in formato SVG, dimensioni nominali 600 × 450 pixel, dimensione del file: 57 KB)

Logo di Commons
Logo di Commons
Questo file e la sua pagina di descrizione (discussione · modifica) si trovano su Wikimedia Commons (?)

Dettagli

Descrizione
English: Plot of the evolution of the size of the universe (scale parameter a) over time (in billion years, Gyr). Different models are shown, which are all solutions to the Friedmann equations with different parameters. The evolution is governed by the equation
.

Here is the radiation density, the matter density, the curvature parameter and the dark energy, all normalized such that represents the fact that today's expansion rate is .
Plotted parameter sets:

  • De Sitter universe: Only dark energy:
  • Lambda-CDM model: The model that fits the observations best: ,
  • An empty universe (no relevant contributions of matter, radiation, dark energy) with negative curvature:
  • Einstein–de_Sitter universe: A flat universe dominated by cold matter:
  • A closed Friedmann model: ,
Data
Fonte Opera propria
Autore Geek3
SVG sviluppo
InfoField
 
Il codice sorgente di questo file SVG è valido.
 
Questa grafica vettoriale è stata creata con mplwp, the Matplotlib extension for Wikipedia plots.
Codice sorgente
InfoField

Python code

#!/usr/bin/python
# -*- coding: utf8 -*-

import matplotlib.pyplot as plt
import matplotlib as mpl
import numpy as np
from math import *

code_website = 'http://commons.wikimedia.org/wiki/User:Geek3/mplwp'
try:
    import mplwp
except ImportError, er:
    print 'ImportError:', er
    print 'You need to download mplwp.py from', code_website
    exit(1)

name = 'mplwp_universe_scale_evolution.svg'
fig = mplwp.fig_standard(mpl)
fig.set_size_inches(600 / 72.0, 450 / 72.0)
mplwp.set_bordersize(fig, 58.5, 16.5, 16.5, 44.5)
xlim = -17, 22; fig.gca().set_xlim(xlim)
ylim = 0, 3; fig.gca().set_ylim(ylim)
mplwp.mark_axeszero(fig.gca(), y0=1)

import scipy.optimize as op
from scipy.integrate import odeint

tH = 978. / 68. # Hubble time in Gyr

def Hubble(a, matter, rad, k, darkE):
    # the Friedman equation gives the relative expansion rate
    a = a[0]
    if a <= 0: return 0.
    r = rad / a**4 + matter / a**3 + k / a**2 + darkE
    if r < 0: return 0.
    return sqrt(r) / tH

def scale(t, matter, rad, k, darkE):
    return odeint(lambda a, t: a*Hubble(a, matter, rad, k, darkE), 1., [0, t])

def scaled_closed_matteronly(t, m):
    # analytic solution for matter m > 1, rad=0, darkE=0
    t0 = acos(2./m-1) * 0.5 * m / (m-1)**1.5 - 1. / (m-1)
    try: psi = op.brentq(lambda p: (p - sin(p))*m/2./(m-1)**1.5
                                   - t/tH - t0, 0, 2 * pi)
    except Exception: psi=0
    a = (1.0 - cos(psi)) * m * 0.5 / (m-1.)
    return a

# De Sitter http://en.wikipedia.org/wiki/De_Sitter_universe
matter=0; rad=0; k=0; darkE=1
t = np.linspace(xlim[0], xlim[-1], 5001)
a = [scale(tt, matter, rad, k, darkE)[1,0] for tt in t]
plt.plot(t, a, zorder=-2,
         label=ur'$\Omega_\Lambda=1$,               de Sitter')

# Standard Lambda-CDM https://en.wikipedia.org/wiki/Lambda-CDM_model
matter=0.3; rad=0.; k=0; darkE=0.7
t0 = op.brentq(lambda t: scale(t, matter, rad, k, darkE)[1,0], -20, 0)
t = np.linspace(t0, xlim[-1], 5001)
a = [scale(tt, matter, rad, k, darkE)[1,0] for tt in t]
plt.plot(t, a, zorder=-1,
    label=ur'$\Omega_m=0.\!3,\Omega_\Lambda=0.\!7$, $\Lambda$CDM')

# Empty universe
matter=0; rad=0; k=1; darkE=0
t0 = op.brentq(lambda t: scale(t, matter, rad, k, darkE)[1,0], -20, 0)
t = np.linspace(t0, xlim[-1], 5001)
a = [scale(tt, matter, rad, k, darkE)[1,0] for tt in t]
plt.plot(t, a, label=ur'$\Omega_k=1$,    empty universe', zorder=-3)

'''
# Open Friedmann
matter=0.5; rad=0.; k=0.5; darkE=0
t0 = op.brentq(lambda t: scale(t, matter, rad, k, darkE)[1,0], -20, 0)
t = np.linspace(t0, xlim[-1], 5001)
a = [scale(tt, matter, rad, k, darkE)[1,0] for tt in t]
plt.plot(t, a, label=ur'$\Omega_m=0.\!5, \Omega_k=0.5$')
'''

# Einstein de Sitter http://en.wikipedia.org/wiki/Einstein–de_Sitter_universe
matter=1.; rad=0.; k=0; darkE=0
t0 = op.brentq(lambda t: scale(t, matter, rad, k, darkE)[1,0], -20, 0)
t = np.linspace(t0, xlim[-1], 5001)
a = [scale(tt, matter, rad, k, darkE)[1,0] for tt in t]
plt.plot(t, a, label=ur'$\Omega_m=1$, Einstein de Sitter', zorder=-4)

'''
# Radiation dominated
matter=0; rad=1.; k=0; darkE=0
t0 = op.brentq(lambda t: scale(t, matter, rad, k, darkE)[1,0], -20, 0)
t = np.linspace(t0, xlim[-1], 5001)
a = [scale(tt, matter, rad, k, darkE)[1,0] for tt in t]
plt.plot(t, a, label=ur'$\Omega_r=1$')
'''

# Closed Friedmann
matter=6; rad=0.; k=-5; darkE=0
t0 = op.brentq(lambda t: scaled_closed_matteronly(t, matter)-1e-9, -20, 0)
t1 = op.brentq(lambda t: scaled_closed_matteronly(t, matter)-1e-9, 0, 20)
t = np.linspace(t0, t1, 5001)
a = [scaled_closed_matteronly(tt, matter) for tt in t]
plt.plot(t, a, label=ur'$\Omega_m=6, \Omega_k=\u22125$,    closed', zorder=-5)

plt.xlabel('t [Gyr]')
plt.ylabel(ur'$a/a_0$')
plt.legend(loc='upper left', borderaxespad=0.6, handletextpad=0.5)
plt.savefig(name)
mplwp.postprocess(name)

Licenza

Io, detentore del copyright su quest'opera, dichiaro di pubblicarla con la seguente licenza:
w:it:Creative Commons
attribuzione condividi allo stesso modo
Tu sei libero:
  • di condividere – di copiare, distribuire e trasmettere quest'opera
  • di modificare – di adattare l'opera
Alle seguenti condizioni:
  • attribuzione – Devi fornire i crediti appropriati, un collegamento alla licenza e indicare se sono state apportate modifiche. Puoi farlo in qualsiasi modo ragionevole, ma non in alcun modo che suggerisca che il licenziante approvi te o il tuo uso.
  • condividi allo stesso modo – Se remixi, trasformi o sviluppi il materiale, devi distribuire i tuoi contributi in base alla stessa licenza o compatibile all'originale.

Didascalie

Aggiungi una brevissima spiegazione di ciò che questo file rappresenta

Elementi ritratti in questo file

raffigura

Cronologia del file

Fare clic su un gruppo data/ora per vedere il file come si presentava nel momento indicato.

Data/OraMiniaturaDimensioniUtenteCommento
attuale01:12, 17 apr 2017Miniatura della versione delle 01:12, 17 apr 2017600 × 450 (57 KB)Geek3validator fix
23:33, 16 apr 2017Miniatura della versione delle 23:33, 16 apr 2017600 × 450 (57 KB)Geek3{{Information |Description ={{en|1=Plot of the evolution of the size of the universe (scale parameter ''a'') over time (in billion years, Gyr). Different models are shown, which are all solutions to the {{W|Friedmann equations|Friedmann equations}}...

La seguente pagina usa questo file:

Utilizzo globale del file

Anche i seguenti wiki usano questo file:

Metadati