-
Notifications
You must be signed in to change notification settings - Fork 0
/
trainer.py
198 lines (153 loc) · 7.5 KB
/
trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
from tqdm import trange
from typing import Tuple
import numpy as np
import torch
from torch.optim import Adam
import gym
from dataset import ReplayBuffer
from rnd_modules import RND
from modules import Actor, EnsembledCritic
from sac_rnd import SAC_RND
from config import rnd_config
from utils import seed_everything, make_dir
import wandb
import d4rl
class SACRNDTrainer:
def __init__(self,
cfg=rnd_config) -> None:
make_dir("weights")
self.device = cfg.device
self.batch_size = cfg.batch_size
self.cfg = cfg
self.eval_env = gym.make(cfg.dataset_name)
self.eval_env.seed(cfg.eval_seed)
d4rl_dataset = d4rl.qlearning_dataset(self.eval_env)
self.state_dim = self.eval_env.observation_space.shape[0]
self.action_dim = self.eval_env.action_space.shape[0]
self.buffer = ReplayBuffer(self.state_dim, self.action_dim)
self.buffer.from_d4rl(d4rl_dataset)
# self.buffer.from_json(cfg.dataset_name)
seed_everything(cfg.train_seed)
def train_rnd(self) -> RND:
(self.state_mean, self.state_std), (self.action_mean, self.action_std) = self.buffer.get_moments()
rnd = RND(self.state_dim,
self.action_dim,
self.cfg.rnd_embedding_dim,
self.state_mean,
self.state_std,
self.action_mean,
self.action_std,
hidden_dim=self.cfg.rnd_hidden_dim).to(self.device)
rnd_optim = Adam(rnd.predictor.parameters(), lr=self.cfg.rnd_learning_rate)
for epoch in trange(self.cfg.rnd_num_epochs, desc="RND Epochs"):
for _ in trange(self.cfg.num_updates_on_epoch, desc="RND Iterations"):
states, actions, _, _, _, = self.buffer.sample(self.batch_size)
loss, update_info = rnd.update_rnd(states, actions)
rnd_optim.zero_grad()
loss.backward()
rnd_optim.step()
wandb.log(update_info)
return rnd
def train(self):
'''
- setup rnd and wandb
- train rnd
- setup sac rnd
- train sac rnd
'''
run_name = f"sac_rnd_" + str(self.cfg.train_seed)
print(f"Training starts on {self.cfg.device} 🚀")
with wandb.init(project=self.cfg.project, group=self.cfg.group, name=run_name, job_type="offline_training"):
wandb.config.update({k: v for k, v in self.cfg.__dict__.items() if not k.startswith("__")})
rnd = self.train_rnd()
rnd.eval()
actor = Actor(self.state_dim, self.action_dim, self.cfg.hidden_dim)
actor_optim = Adam(actor.parameters(), lr=self.cfg.actor_lr)
critic = EnsembledCritic(self.state_dim, self.action_dim, self.cfg.hidden_dim, layer_norm=self.cfg.critic_layernorm)
critic_optim = Adam(critic.parameters(), lr=self.cfg.critic_lr)
self.sac_rnd = SAC_RND(actor,
actor_optim,
critic,
critic_optim,
rnd,
self.cfg.actor_alpha,
self.cfg.critic_alpha,
self.cfg.beta_lr,
self.cfg.gamma,
self.cfg.tau,
self.device)
for epoch in trange(self.cfg.num_epochs, desc="Offline SAC Epochs"):
update_info_total = {
"sac_offline/actor_loss": 0,
"sac_offline/actor_batch_entropy": 0,
"sac_offline/rnd_policy": 0,
"sac_offline/rnd_random": 0,
"sac_offline/critic_loss": 0,
"sac_offline/q_mean": 0
}
for _ in range(self.cfg.num_updates_on_epoch):
state, action, reward, next_state, done = self.buffer.sample(self.batch_size)
update_info = self.sac_rnd.train_offline_step(state,
action,
reward,
next_state,
done)
for k, v in update_info.items():
update_info_total[k] += v
for k, v in update_info_total.items():
update_info_total[k] /= self.cfg.num_updates_on_epoch
wandb.log(update_info)
# if epoch % self.cfg.eval_period == 0 or epoch == self.cfg.num_epochs - 1:
# eval_returns = self.eval_actor()
# normalized_score = self.eval_env.get_normalized_score(eval_returns) * 100.0
# wandb.log({
# "eval/return_mean": np.mean(eval_returns),
# "eval/return_std": np.std(eval_returns),
# "eval/normalized_score_mean": np.mean(normalized_score),
# "eval/normalized_score_std": np.std(normalized_score)
# })
wandb.finish()
@torch.no_grad()
def eval_actor(self) -> np.ndarray:
self.eval_env.seed(self.cfg.eval_seed)
self.sac_rnd.actor.eval()
episode_rewards = []
for _ in range(self.cfg.eval_episodes):
state, done = self.eval_env.reset(), False
episode_reward = 0.0
while not done:
action = self.sac_rnd.actor.act(state, self.device)
state, reward, done, _ = self.eval_env.step(action)
episode_reward += reward
episode_rewards.append(episode_reward)
self.sac_rnd.actor.train()
return np.array(episode_rewards)
def save(self):
state_dict = self.sac_rnd.state_dict()
torch.save(state_dict, self.cfg.checkpoint_path)
def load(self, map_location: str = "cpu"):
state_dict = torch.load(self.cfg.checkpoint_path, map_location=map_location)
actor = Actor(self.state_dim, self.action_dim, self.cfg.hidden_dim)
actor_optim = Adam(actor.parameters(), lr=self.cfg.actor_lr)
critic = EnsembledCritic(self.state_dim, self.action_dim, self.cfg.hidden_dim, layer_norm=self.cfg.critic_layernorm)
critic_optim = Adam(critic.parameters(), lr=self.cfg.critic_lr)
rnd = RND(self.state_dim,
self.action_dim,
self.cfg.rnd_embedding_dim,
self.state_mean,
self.state_std,
self.action_mean,
self.action_std,
hidden_dim=self.cfg.rnd_hidden_dim)
self.sac_rnd = SAC_RND(actor,
actor_optim,
critic,
critic_optim,
rnd,
self.cfg.actor_alpha,
self.cfg.critic_alpha,
self.cfg.beta_lr,
self.cfg.gamma,
self.cfg.tau,
self.device)
self.sac_rnd.load_state_dict(state_dict)