-
Notifications
You must be signed in to change notification settings - Fork 0
/
modules.py
123 lines (102 loc) · 4.14 KB
/
modules.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
from typing import Tuple, Optional
import torch
import numpy as np
from torch import nn
from math import sqrt
class DeterministicActor(nn.Module):
def __init__(self,
state_dim: int,
action_dim: int,
hidden_dim: int = 256,
edac_init: bool = False,
max_action: float = 1.0) -> None:
super().__init__()
self.action_dim = action_dim
self.max_action = max_action
self.trunk = nn.Sequential(
nn.Linear(state_dim, hidden_dim),
nn.ReLU(),
nn.Linear(hidden_dim, hidden_dim),
nn.ReLU(),
nn.Linear(hidden_dim, hidden_dim),
nn.ReLU(),
nn.Linear(hidden_dim, action_dim)
)
if edac_init:
# init as in the EDAC paper
for layer in self.trunk[::2]:
nn.init.constant_(layer.bias, 0.1)
def forward(self, state: torch.Tensor) -> torch.Tensor:
out = self.trunk(state)
out = torch.tanh(out)
return self.max_action * out
@torch.no_grad()
def act(self, state: np.ndarray, device: str) -> np.ndarray:
state = torch.tensor(state, device=device, dtype=torch.float32)
action = self(state).cpu().numpy()
return action
class EnsembledLinear(nn.Module):
def __init__(self,
in_features: int,
out_features: int,
ensemble_size: int) -> None:
super().__init__()
self.in_features = in_features
self.out_features = out_features
self.ensemble_size = ensemble_size
self.weight = nn.Parameter(torch.empty(ensemble_size, in_features, out_features))
self.bias = nn.Parameter(torch.empty(ensemble_size, 1, out_features))
self.reset_parameters()
def reset_parameters(self):
for layer in range(self.ensemble_size):
nn.init.kaiming_uniform_(self.weight[layer], a=sqrt(5))
fan_in, _ = nn.init._calculate_fan_in_and_fan_out(self.weight[0])
bound = 0
if fan_in > 0:
bound = 1 / sqrt(fan_in)
nn.init.uniform_(self.bias, -bound, bound)
def forward(self, x: torch.Tensor) -> torch.Tensor:
out = x @ self.weight + self.bias
return out
class EnsembledCritic(nn.Module):
'''
Although ReBRAC is an ensemble-free method, this class
is realised for convenience in using 2 separate Critics
in a TD3 manner:
- https://arxiv.org/abs/1802.09477
- https://arxiv.org/abs/2106.06860
'''
def __init__(self,
state_dim: int,
action_dim: int,
hidden_dim: int = 256,
num_critics: int = 2,
layer_norm: bool = True,
edac_init: bool = True) -> None:
super().__init__()
#block = nn.LayerNorm(hidden_dim) if layer_norm else nn.Identity()
self.num_critics = num_critics
self.critic = nn.Sequential(
EnsembledLinear(state_dim + action_dim, hidden_dim, num_critics),
nn.LayerNorm(hidden_dim) if layer_norm else nn.Identity(),
nn.ReLU(),
EnsembledLinear(hidden_dim, hidden_dim, num_critics),
nn.LayerNorm(hidden_dim) if layer_norm else nn.Identity(),
nn.ReLU(),
EnsembledLinear(hidden_dim, hidden_dim, num_critics),
nn.LayerNorm(hidden_dim) if layer_norm else nn.Identity(),
nn.ReLU(),
EnsembledLinear(hidden_dim, 1, num_critics)
)
if edac_init:
# init as in the EDAC paper
for layer in self.critic[::3]:
nn.init.constant_(layer.bias, 0.1)
nn.init.uniform_(self.critic[-1].weight, -3e-3, 3e-3)
nn.init.uniform_(self.critic[-1].bias, -3e-3, 3e-3)
def forward(self, state: torch.Tensor, action: torch.Tensor) -> torch.Tensor:
concat = torch.cat([state, action], dim=-1)
concat = concat.unsqueeze(0)
concat = concat.repeat_interleave(self.num_critics, dim=0)
q_values = self.critic(concat).squeeze(-1)
return q_values