-
Notifications
You must be signed in to change notification settings - Fork 0
/
modules.py
195 lines (154 loc) · 6.3 KB
/
modules.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
from math import sqrt
import torch
from torch import nn
from typing import Tuple, Optional
import numpy as np
from torch.distributions import Normal
class Actor(nn.Module):
def __init__(self,
state_dim: int,
action_dim: int,
hidden_dim: int = 256,
edac_init: bool = True,
max_action: float = 1.0) -> None:
super().__init__()
self.action_dim = action_dim
self.max_action = max_action
self.trunk = nn.Sequential(
nn.Linear(state_dim, hidden_dim),
nn.ReLU(),
nn.Linear(hidden_dim, hidden_dim),
nn.ReLU(),
nn.Linear(hidden_dim, hidden_dim),
nn.ReLU()
)
self.mu = nn.Linear(hidden_dim, action_dim)
self.log_std = nn.Linear(hidden_dim, action_dim)
if edac_init:
# init as in the EDAC paper
for layer in self.trunk[::2]:
nn.init.constant_(layer.bias, 0.1)
nn.init.uniform_(self.mu.weight, -1e-3, 1e-3)
nn.init.uniform_(self.mu.bias, -1e-3, 1e-3)
nn.init.uniform_(self.log_std.weight, -1e-3, 1e-3)
nn.init.uniform_(self.log_std.bias, -1e-3, 1e-3)
def forward(self,
state: torch.Tensor,
deterministic: bool = False,
need_log_prob: bool = False) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
hidden = self.trunk(state)
mu, log_std = self.mu(hidden), self.log_std(hidden)
log_std = torch.clip(log_std, -5, 2)
policy_distribution = Normal(mu, torch.exp(log_std))
if deterministic:
action = mu
else:
action = policy_distribution.rsample()
tanh_action, log_prob = torch.tanh(action), None
if need_log_prob:
log_prob = policy_distribution.log_prob(action).sum(-1)
log_prob = log_prob - torch.log(1 - tanh_action.pow(2) + 1e-6).sum(-1)
# shape [batch_size,]
return tanh_action * self.max_action, log_prob
@torch.no_grad()
def act(self, state: np.ndarray, device: str) -> np.ndarray:
deterministic = not self.training
state = torch.tensor(state, device=device, dtype=torch.float32)
action = self(state, deterministic=deterministic)[0].cpu().numpy()
return action
class EnsembledLinear(nn.Module):
def __init__(self,
in_features: int,
out_features: int,
ensemble_size: int) -> None:
super().__init__()
self.in_features = in_features
self.out_features = out_features
self.ensemble_size = ensemble_size
self.weight = nn.Parameter(torch.empty(ensemble_size, in_features, out_features))
self.bias = nn.Parameter(torch.empty(ensemble_size, 1, out_features))
self.reset_parameters()
def reset_parameters(self) -> None:
scale_factor = sqrt(5)
# default pytorch init
for layer in range(self.ensemble_size):
nn.init.kaiming_normal_(self.weight[layer], a=scale_factor)
fan_in, _ = nn.init._calculate_fan_in_and_fan_out(self.weight[0])
bound = 1 / sqrt(fan_in) if fan_in > 0 else 0
nn.init.uniform_(self.bias, -bound, bound)
def forward(self, x: torch.Tensor) -> torch.Tensor:
'''
x: [ensemble_size, batch_size, input_size]
weight: [ensemble_size, input_size, out_size]
bias: [ensemble_size, batch_size, out_size]
'''
# print((x @ self.weight + self.bias).shape)
return x @ self.weight + self.bias
class EnsembledCritic(nn.Module):
def __init__(self,
state_dim: int,
action_dim: int,
hidden_dim: int = 2048,
num_critics: int = 2) -> None:
super().__init__()
# self.critic = nn.Sequential(
# EnsembledLinear(state_dim + action_dim, hidden_dim, num_critics),
# nn.BatchNorm1d(num_critics),
# nn.ReLU(),
# EnsembledLinear(hidden_dim, hidden_dim, num_critics),
# nn.BatchNorm1d(num_critics),
# nn.ReLU(),
# EnsembledLinear(hidden_dim, hidden_dim, num_critics),
# nn.BatchNorm1d(num_critics),
# nn.ReLU(),
# EnsembledLinear(hidden_dim, 1, num_critics)
# )
self.reset_parameters()
self.num_critics = num_critics
def reset_parameters(self):
for layer in self.critic[::3]:
nn.init.constant_(layer.bias, 0.1)
nn.init.uniform_(self.critic[-1].weight, -3e-3, 3e-3)
nn.init.uniform_(self.critic[-1].bias, -3e-3, 3e-3)
def forward(self, state: torch.Tensor, action: torch.Tensor) -> torch.Tensor:
# [batch_size, state_dim + action_dim]
concat = torch.cat([state, action], dim=-1)
concat = concat.unsqueeze(0).repeat_interleave(self.num_critics, dim=0)
# [num_critics, batch_size]
# q_values = self.critic(concat).squeeze(-1)
q_values = self.critic(concat)
return q_values
class Critic(nn.Module):
def __init__(self,
state_dim: int,
action_dim: int,
hidden_dim: int = 2048) -> None:
super().__init__()
self.critic = nn.Sequential(
nn.Linear(state_dim + action_dim, hidden_dim),
nn.BatchNorm1d(hidden_dim),
nn.ReLU(),
nn.Linear(hidden_dim, hidden_dim),
nn.BatchNorm1d(hidden_dim),
nn.ReLU(),
nn.Linear(hidden_dim, hidden_dim),
nn.BatchNorm1d(hidden_dim),
nn.ReLU(),
nn.Linear(hidden_dim, 1)
)
def forward(self, state: torch.Tensor, action: torch.Tensor) -> torch.Tensor:
concat = torch.cat([state, action], dim=-1)
return self.critic(concat)
if __name__ == "__main__":
critic1 = Critic(17, 6)
critic2 = Critic(17, 6)
action = torch.rand(16, 6)
state = torch.rand(16, 17)
# print(critic1(state, action).shape)
c1 = critic1(state, action)
c2 = critic2(state, action)
combined = torch.cat([c1, c2], dim=0)
print(combined.shape)
print(torch.chunk(combined, 2, dim=0))
combined.chunk()
# print(torch.min(c1, c2).shape)