-
Notifications
You must be signed in to change notification settings - Fork 0
/
tqc.py
136 lines (100 loc) · 4.96 KB
/
tqc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
from typing import Dict, Tuple
from copy import deepcopy
import torch
from config import tqc_config
from modules import Actor, TruncatedQuantileEnsembledCritic
class TQC:
def __init__(self,
cfg: tqc_config,
actor: Actor,
critic: TruncatedQuantileEnsembledCritic) -> None:
self.cfg = cfg
self.device = cfg.device
self.tau = cfg.tau
self.discount = cfg.discount
self.batch_size = cfg.batch_size
self.target_entropy = -float(actor.action_dim)
self.log_alpha = torch.tensor([0.0], dtype=torch.float32, device=self.device, requires_grad=True)
self.alpha_optimizer = torch.optim.AdamW([self.log_alpha], lr=cfg.alpha_lr)
self.alpha = self.log_alpha.exp().detach()
self.actor = actor.to(self.device)
self.actor_optim = torch.optim.AdamW(self.actor.parameters(), lr=cfg.actor_lr)
self.critic = critic.to(self.device)
self.critic_target = deepcopy(critic).to(self.device)
self.critic_optim = torch.optim.AdamW(self.critic.parameters(), lr=cfg.critic_lr)
self.quantiles_total = critic.num_critics * critic.num_quantiles
self.quantiles2drop = cfg.quantiles_to_drop_per_critic * cfg.num_critics
self.top = self.quantiles_total - self.quantiles2drop
huber_tau = torch.arange(self.cfg.num_quantiles, device=self.device).float() / self.top + 1 / (2 * self.top)
self.huber_tau = huber_tau[None, None, :, None]
self.total_iterations = 0
def train(self,
states: torch.Tensor,
actions: torch.Tensor,
rewards: torch.Tensor,
next_states: torch.Tensor,
dones: torch.Tensor) -> Dict[str, float]:
self.total_iterations += 1
# critic step
critic_loss = self.critic_loss(states, actions, rewards, next_states, dones)
self.critic_optim.zero_grad()
critic_loss.backward()
self.critic_optim.step()
# actor step
actor_loss, batch_entropy, qz_values = self.actor_loss(states)
self.actor_optim.zero_grad()
actor_loss.backward()
self.actor_optim.step()
# alpha step
alpha_loss = self.alpha_loss(states)
self.alpha_optimizer.zero_grad()
alpha_loss.backward()
self.alpha_optimizer.step()
self.alpha = self.log_alpha.exp().detach()
self.soft_critic_update()
return {
"critic_loss": critic_loss.item(),
"actor_loss": actor_loss.item(),
"actor_batch_entropy": batch_entropy,
"qz_values": qz_values,
"alpha": self.alpha.item(),
"alpha_loss": alpha_loss.item()
}
def actor_loss(self, states: torch.Tensor) -> Tuple[torch.Tensor, float, float]:
actions, log_prob = self.actor(states, need_log_prob=True)
qz_values = self.critic(states, actions).mean(dim=2).mean(dim=1, keepdim=True)
loss = self.alpha * log_prob - qz_values
batch_entropy = -log_prob.mean().item()
return loss.mean(), batch_entropy, qz_values.mean().item()
def critic_loss(self,
states: torch.Tensor,
actions: torch.Tensor,
rewards: torch.Tensor,
next_states: torch.Tensor,
dones: torch.Tensor) -> torch.Tensor:
with torch.no_grad():
next_actions, next_log_prob = self.actor(next_states, need_log_prob=True)
next_z = self.critic_target(next_states, next_actions)
sorted_next_z = torch.sort(next_z.reshape(self.batch_size, -1)).values
sorted_next_z_top = sorted_next_z[:, :self.top]
sorted_next_z_top = sorted_next_z_top - self.alpha * next_log_prob.unsqueeze(-1)
quantiles_target = rewards + self.discount * (1.0 - dones) * sorted_next_z_top
current_z = self.critic(states, actions)
loss = self.quantile_huber_loss(current_z, quantiles_target)
return loss
def quantile_huber_loss(self, quantiles: torch.Tensor, target: torch.Tensor) -> torch.Tensor:
pairwise_diff = target[:, None, None, :] - quantiles[:, :, :, None]
abs_val = pairwise_diff.abs()
huber_loss = torch.where(abs_val > 1.0,
abs_val - 0.5,
pairwise_diff.pow(2) / 2)
loss = torch.abs(self.huber_tau - (pairwise_diff < 0).float()) * huber_loss
return loss.mean()
def alpha_loss(self, state: torch.Tensor) -> torch.Tensor:
with torch.no_grad():
action, log_prob = self.actor(state, need_log_prob=True)
loss = -self.log_alpha * (log_prob + self.target_entropy)
return loss.mean()
def soft_critic_update(self):
for param, tgt_param in zip(self.critic.parameters(), self.critic_target.parameters()):
tgt_param.data.copy_(self.tau * param.data + (1 - self.tau) * tgt_param.data)