-
Notifications
You must be signed in to change notification settings - Fork 0
/
modules.py
195 lines (157 loc) · 7.04 KB
/
modules.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
from typing import Tuple, Optional
import torch
import numpy as np
from torch import nn
from math import sqrt
class DeterministicActor(nn.Module):
def __init__(self,
state_dim: int,
action_dim: int,
hidden_dim: int = 256,
edac_init: bool = False,
max_action: float = 1.0) -> None:
super().__init__()
self.action_dim = action_dim
self.max_action = max_action
self.trunk = nn.Sequential(
nn.Linear(state_dim, hidden_dim),
nn.ReLU(),
nn.Linear(hidden_dim, hidden_dim),
nn.ReLU(),
nn.Linear(hidden_dim, hidden_dim),
nn.ReLU(),
nn.Linear(hidden_dim, action_dim)
)
if edac_init:
# init as in the EDAC paper
for layer in self.trunk[::2]:
nn.init.constant_(layer.bias, 0.1)
def forward(self, state: torch.Tensor) -> torch.Tensor:
out = self.trunk(state)
out = torch.tanh(out)
return self.max_action * out
@torch.no_grad()
def act(self, state: np.ndarray, device: str) -> np.ndarray:
state = torch.tensor(state, device=device, dtype=torch.float32)
action = self(state).cpu().numpy()
return action
class EnsembledLinear(nn.Module):
def __init__(self,
in_features: int,
out_features: int,
ensemble_size: int) -> None:
super().__init__()
self.in_features = in_features
self.out_features = out_features
self.ensemble_size = ensemble_size
self.weight = nn.Parameter(torch.empty(ensemble_size, in_features, out_features))
self.bias = nn.Parameter(torch.empty(ensemble_size, 1, out_features))
self.reset_parameters()
def reset_parameters(self):
for layer in range(self.ensemble_size):
nn.init.kaiming_uniform_(self.weight[layer], a=sqrt(5))
fan_in, _ = nn.init._calculate_fan_in_and_fan_out(self.weight[0])
bound = 0
if fan_in > 0:
bound = 1 / sqrt(fan_in)
nn.init.uniform_(self.bias, -bound, bound)
def forward(self, x: torch.Tensor) -> torch.Tensor:
out = x @ self.weight + self.bias
return out
class EnsembledCritic(nn.Module):
def __init__(self,
state_dim: int,
action_dim: int,
hidden_dim: int = 256,
num_critics: int = 2,
layer_norm: bool = True,
edac_init: bool = True) -> None:
super().__init__()
#block = nn.LayerNorm(hidden_dim) if layer_norm else nn.Identity()
self.num_critics = num_critics
self.critic = nn.Sequential(
EnsembledLinear(state_dim + action_dim, hidden_dim, num_critics),
nn.LayerNorm(hidden_dim) if layer_norm else nn.Identity(),
nn.ReLU(),
EnsembledLinear(hidden_dim, hidden_dim, num_critics),
nn.LayerNorm(hidden_dim) if layer_norm else nn.Identity(),
nn.ReLU(),
EnsembledLinear(hidden_dim, hidden_dim, num_critics),
nn.LayerNorm(hidden_dim) if layer_norm else nn.Identity(),
nn.ReLU(),
EnsembledLinear(hidden_dim, 1, num_critics)
)
if edac_init:
# init as in the EDAC paper
for layer in self.critic[::3]:
nn.init.constant_(layer.bias, 0.1)
nn.init.uniform_(self.critic[-1].weight, -3e-3, 3e-3)
nn.init.uniform_(self.critic[-1].bias, -3e-3, 3e-3)
def forward(self, state: torch.Tensor, action: torch.Tensor) -> torch.Tensor:
concat = torch.cat([state, action], dim=-1)
concat = concat.unsqueeze(0)
concat = concat.repeat_interleave(self.num_critics, dim=0)
q_values = self.critic(concat).squeeze(-1)
return q_values
class Distance(nn.Module):
# state_conditioned distance function
def __init__(self,
state_dim: int,
action_dim: int,
hidden_dim: int,
num_negative_samples: int,
num_in_policy_negative_samples: int = 10,
max_action: float = 1.0) -> None:
super().__init__()
self.action_dim = action_dim
self.state_dim = state_dim
self.energy_scale = torch.tensor(100.0)
self.hidden_dim = hidden_dim
self.num_negative_samples = num_negative_samples
self.num_in_policy_negative_samples = int(num_negative_samples / 2 + num_in_policy_negative_samples)
self.max_action = max_action
self.action_range = 2 * max_action
self.noise_action_range = self.action_range * 1.5 # taken from original implementation
self.action_shift = 0.5
self.net = nn.Sequential(
nn.Linear(state_dim + action_dim, hidden_dim),
nn.ReLU(),
nn.Linear(hidden_dim, hidden_dim),
nn.ReLU(),
nn.Linear(hidden_dim, hidden_dim),
nn.ReLU(),
nn.Linear(hidden_dim, 1)
)
def value(self,
state: torch.Tensor,
action: torch.Tensor) -> torch.Tensor:
concat = torch.cat([state, action], dim=-1)
return self.net(concat)
def linear_distance(self,
state: torch.Tensor,
action: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
'''
returns tuple of tensors for a supervised learning in a manner (model_output, label (a.k.a desired output))
'''
batch_size = state.shape[0]
states = state.unsqueeze(0).repeat(self.num_negative_samples, 1, 1)
states = states.view(batch_size * self.num_negative_samples, self.state_dim)
actions = action.unsqueeze(0).repeat(self.num_negative_samples, 1, 1)
actions = actions.view(batch_size * self.num_negative_samples, self.action_dim)
noise_actions = torch.rand([batch_size * self.num_negative_samples, self.action_dim]) - self.action_shift
noise_actions = noise_actions.to(state.device) * self.noise_action_range
difference = noise_actions - actions
diff_norm = torch.norm(difference, dim=1, keepdim=True)
output = self.value(states, noise_actions)
return output, diff_norm
def forward(self,
state: torch.Tensor,
action: torch.Tensor) -> torch.Tensor:
batch_size = state.shape[0]
positive_energy = (-self.value(state, action)).exp()
states = state.unsqueeze(0).repeat(self.num_negative_samples, 1, 1)
states = states.view(batch_size * self.num_negative_samples, self.state_dim)
noise_actions = torch.rand([batch_size * self.num_negative_samples, self.action_dim]) - self.action_shift
noise_actions = noise_actions.to(state.device) * self.noise_action_range
negative_energy = (-self.value(states, noise_actions)).exp().view(self.num_negative_samples, batch_size, 1).sum(0)
return positive_energy / (positive_energy + negative_energy)