-
Notifications
You must be signed in to change notification settings - Fork 1.4k
/
DBN.cpp
538 lines (421 loc) · 11.9 KB
/
DBN.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
#include <iostream>
#include <math.h>
#include "utils.h"
#include "HiddenLayer.h"
#include "RBM.h"
#include "LogisticRegression.h"
#include "DBN.h"
using namespace std;
using namespace utils;
// DBN
DBN::DBN(int size, int n_i, int *hls, int n_o, int n_l) {
int input_size;
N = size;
n_ins = n_i;
hidden_layer_sizes = hls;
n_outs = n_o;
n_layers = n_l;
sigmoid_layers = new HiddenLayer*[n_layers];
rbm_layers = new RBM*[n_layers];
// construct multi-layer
for(int i=0; i<n_layers; i++) {
if(i == 0) {
input_size = n_ins;
} else {
input_size = hidden_layer_sizes[i-1];
}
// construct sigmoid_layer
sigmoid_layers[i] = new HiddenLayer(N, input_size, hidden_layer_sizes[i], NULL, NULL);
// construct rbm_layer
rbm_layers[i] = new RBM(N, input_size, hidden_layer_sizes[i],\
sigmoid_layers[i]->W, sigmoid_layers[i]->b, NULL);
}
// layer for output using LogisticRegression
log_layer = new LogisticRegression(N, hidden_layer_sizes[n_layers-1], n_outs);
}
DBN::~DBN() {
delete log_layer;
for(int i=0; i<n_layers; i++) {
delete sigmoid_layers[i];
delete rbm_layers[i];
}
delete[] sigmoid_layers;
delete[] rbm_layers;
}
void DBN::pretrain(int *input, double lr, int k, int epochs) {
int *layer_input;
int prev_layer_input_size;
int *prev_layer_input;
int *train_X = new int[n_ins];
for(int i=0; i<n_layers; i++) { // layer-wise
for(int epoch=0; epoch<epochs; epoch++) { // training epochs
for(int n=0; n<N; n++) { // input x1...xN
// initial input
for(int m=0; m<n_ins; m++) train_X[m] = input[n * n_ins + m];
// layer input
for(int l=0; l<=i; l++) {
if(l == 0) {
layer_input = new int[n_ins];
for(int j=0; j<n_ins; j++) layer_input[j] = train_X[j];
} else {
if(l == 1) prev_layer_input_size = n_ins;
else prev_layer_input_size = hidden_layer_sizes[l-2];
prev_layer_input = new int[prev_layer_input_size];
for(int j=0; j<prev_layer_input_size; j++) prev_layer_input[j] = layer_input[j];
delete[] layer_input;
layer_input = new int[hidden_layer_sizes[l-1]];
sigmoid_layers[l-1]->sample_h_given_v(prev_layer_input, layer_input);
delete[] prev_layer_input;
}
}
rbm_layers[i]->contrastive_divergence(layer_input, lr, k);
}
}
}
delete[] train_X;
delete[] layer_input;
}
void DBN::finetune(int *input, int *label, double lr, int epochs) {
int *layer_input;
// int prev_layer_input_size;
int *prev_layer_input;
int *train_X = new int[n_ins];
int *train_Y = new int[n_outs];
for(int epoch=0; epoch<epochs; epoch++) {
for(int n=0; n<N; n++) { // input x1...xN
// initial input
for(int m=0; m<n_ins; m++) train_X[m] = input[n * n_ins + m];
for(int m=0; m<n_outs; m++) train_Y[m] = label[n * n_outs + m];
// layer input
for(int i=0; i<n_layers; i++) {
if(i == 0) {
prev_layer_input = new int[n_ins];
for(int j=0; j<n_ins; j++) prev_layer_input[j] = train_X[j];
} else {
prev_layer_input = new int[hidden_layer_sizes[i-1]];
for(int j=0; j<hidden_layer_sizes[i-1]; j++) prev_layer_input[j] = layer_input[j];
delete[] layer_input;
}
layer_input = new int[hidden_layer_sizes[i]];
sigmoid_layers[i]->sample_h_given_v(prev_layer_input, layer_input);
delete[] prev_layer_input;
}
log_layer->train(layer_input, train_Y, lr);
}
// lr *= 0.95;
}
delete[] layer_input;
delete[] train_X;
delete[] train_Y;
}
void DBN::predict(int *x, double *y) {
double *layer_input;
// int prev_layer_input_size;
double *prev_layer_input;
double linear_output;
prev_layer_input = new double[n_ins];
for(int j=0; j<n_ins; j++) prev_layer_input[j] = x[j];
// layer activation
for(int i=0; i<n_layers; i++) {
layer_input = new double[sigmoid_layers[i]->n_out];
for(int k=0; k<sigmoid_layers[i]->n_out; k++) {
linear_output = 0.0;
for(int j=0; j<sigmoid_layers[i]->n_in; j++) {
linear_output += sigmoid_layers[i]->W[k][j] * prev_layer_input[j];
}
linear_output += sigmoid_layers[i]->b[k];
layer_input[k] = sigmoid(linear_output);
}
delete[] prev_layer_input;
if(i < n_layers-1) {
prev_layer_input = new double[sigmoid_layers[i]->n_out];
for(int j=0; j<sigmoid_layers[i]->n_out; j++) prev_layer_input[j] = layer_input[j];
delete[] layer_input;
}
}
for(int i=0; i<log_layer->n_out; i++) {
y[i] = 0;
for(int j=0; j<log_layer->n_in; j++) {
y[i] += log_layer->W[i][j] * layer_input[j];
}
y[i] += log_layer->b[i];
}
log_layer->softmax(y);
delete[] layer_input;
}
// HiddenLayer
HiddenLayer::HiddenLayer(int size, int in, int out, double **w, double *bp) {
N = size;
n_in = in;
n_out = out;
if(w == NULL) {
W = new double*[n_out];
for(int i=0; i<n_out; i++) W[i] = new double[n_in];
double a = 1.0 / n_in;
for(int i=0; i<n_out; i++) {
for(int j=0; j<n_in; j++) {
W[i][j] = uniform(-a, a);
}
}
} else {
W = w;
}
if(bp == NULL) {
b = new double[n_out];
} else {
b = bp;
}
}
HiddenLayer::~HiddenLayer() {
for(int i=0; i<n_out; i++) delete W[i];
delete[] W;
delete[] b;
}
double HiddenLayer::output(int *input, double *w, double b) {
double linear_output = 0.0;
for(int j=0; j<n_in; j++) {
linear_output += w[j] * input[j];
}
linear_output += b;
return sigmoid(linear_output);
}
void HiddenLayer::sample_h_given_v(int *input, int *sample) {
for(int i=0; i<n_out; i++) {
sample[i] = binomial(1, output(input, W[i], b[i]));
}
}
// RBM
RBM::RBM(int size, int n_v, int n_h, double **w, double *hb, double *vb) {
N = size;
n_visible = n_v;
n_hidden = n_h;
if(w == NULL) {
W = new double*[n_hidden];
for(int i=0; i<n_hidden; i++) W[i] = new double[n_visible];
double a = 1.0 / n_visible;
for(int i=0; i<n_hidden; i++) {
for(int j=0; j<n_visible; j++) {
W[i][j] = uniform(-a, a);
}
}
} else {
W = w;
}
if(hb == NULL) {
hbias = new double[n_hidden];
for(int i=0; i<n_hidden; i++) hbias[i] = 0;
} else {
hbias = hb;
}
if(vb == NULL) {
vbias = new double[n_visible];
for(int i=0; i<n_visible; i++) vbias[i] = 0;
} else {
vbias = vb;
}
}
RBM::~RBM() {
// for(int i=0; i<n_hidden; i++) delete[] W[i];
// delete[] W;
// delete[] hbias;
delete[] vbias;
}
void RBM::contrastive_divergence(int *input, double lr, int k) {
double *ph_mean = new double[n_hidden];
int *ph_sample = new int[n_hidden];
double *nv_means = new double[n_visible];
int *nv_samples = new int[n_visible];
double *nh_means = new double[n_hidden];
int *nh_samples = new int[n_hidden];
/* CD-k */
sample_h_given_v(input, ph_mean, ph_sample);
for(int step=0; step<k; step++) {
if(step == 0) {
gibbs_hvh(ph_sample, nv_means, nv_samples, nh_means, nh_samples);
} else {
gibbs_hvh(nh_samples, nv_means, nv_samples, nh_means, nh_samples);
}
}
for(int i=0; i<n_hidden; i++) {
for(int j=0; j<n_visible; j++) {
// W[i][j] += lr * (ph_sample[i] * input[j] - nh_means[i] * nv_samples[j]) / N;
W[i][j] += lr * (ph_mean[i] * input[j] - nh_means[i] * nv_samples[j]) / N;
}
hbias[i] += lr * (ph_sample[i] - nh_means[i]) / N;
}
for(int i=0; i<n_visible; i++) {
vbias[i] += lr * (input[i] - nv_samples[i]) / N;
}
delete[] ph_mean;
delete[] ph_sample;
delete[] nv_means;
delete[] nv_samples;
delete[] nh_means;
delete[] nh_samples;
}
void RBM::sample_h_given_v(int *v0_sample, double *mean, int *sample) {
for(int i=0; i<n_hidden; i++) {
mean[i] = propup(v0_sample, W[i], hbias[i]);
sample[i] = binomial(1, mean[i]);
}
}
void RBM::sample_v_given_h(int *h0_sample, double *mean, int *sample) {
for(int i=0; i<n_visible; i++) {
mean[i] = propdown(h0_sample, i, vbias[i]);
sample[i] = binomial(1, mean[i]);
}
}
double RBM::propup(int *v, double *w, double b) {
double pre_sigmoid_activation = 0.0;
for(int j=0; j<n_visible; j++) {
pre_sigmoid_activation += w[j] * v[j];
}
pre_sigmoid_activation += b;
return sigmoid(pre_sigmoid_activation);
}
double RBM::propdown(int *h, int i, double b) {
double pre_sigmoid_activation = 0.0;
for(int j=0; j<n_hidden; j++) {
pre_sigmoid_activation += W[j][i] * h[j];
}
pre_sigmoid_activation += b;
return sigmoid(pre_sigmoid_activation);
}
void RBM::gibbs_hvh(int *h0_sample, double *nv_means, int *nv_samples, \
double *nh_means, int *nh_samples) {
sample_v_given_h(h0_sample, nv_means, nv_samples);
sample_h_given_v(nv_samples, nh_means, nh_samples);
}
void RBM::reconstruct(int *v, double *reconstructed_v) {
double *h = new double[n_hidden];
double pre_sigmoid_activation;
for(int i=0; i<n_hidden; i++) {
h[i] = propup(v, W[i], hbias[i]);
}
for(int i=0; i<n_visible; i++) {
pre_sigmoid_activation = 0.0;
for(int j=0; j<n_hidden; j++) {
pre_sigmoid_activation += W[j][i] * h[j];
}
pre_sigmoid_activation += vbias[i];
reconstructed_v[i] = sigmoid(pre_sigmoid_activation);
}
delete[] h;
}
// LogisticRegression
LogisticRegression::LogisticRegression(int size, int in, int out) {
N = size;
n_in = in;
n_out = out;
W = new double*[n_out];
for(int i=0; i<n_out; i++) W[i] = new double[n_in];
b = new double[n_out];
for(int i=0; i<n_out; i++) {
for(int j=0; j<n_in; j++) {
W[i][j] = 0;
}
b[i] = 0;
}
}
LogisticRegression::~LogisticRegression() {
for(int i=0; i<n_out; i++) delete[] W[i];
delete[] W;
delete[] b;
}
void LogisticRegression::train(int *x, int *y, double lr) {
double *p_y_given_x = new double[n_out];
double *dy = new double[n_out];
for(int i=0; i<n_out; i++) {
p_y_given_x[i] = 0;
for(int j=0; j<n_in; j++) {
p_y_given_x[i] += W[i][j] * x[j];
}
p_y_given_x[i] += b[i];
}
softmax(p_y_given_x);
for(int i=0; i<n_out; i++) {
dy[i] = y[i] - p_y_given_x[i];
for(int j=0; j<n_in; j++) {
W[i][j] += lr * dy[i] * x[j] / N;
}
b[i] += lr * dy[i] / N;
}
delete[] p_y_given_x;
delete[] dy;
}
void LogisticRegression::softmax(double *x) {
double max = 0.0;
double sum = 0.0;
for(int i=0; i<n_out; i++) if(max < x[i]) max = x[i];
for(int i=0; i<n_out; i++) {
x[i] = exp(x[i] - max);
sum += x[i];
}
for(int i=0; i<n_out; i++) x[i] /= sum;
}
void LogisticRegression::predict(int *x, double *y) {
for(int i=0; i<n_out; i++) {
y[i] = 0;
for(int j=0; j<n_in; j++) {
y[i] += W[i][j] * x[j];
}
y[i] += b[i];
}
softmax(y);
}
void test_dbn() {
srand(0);
double pretrain_lr = 0.1;
int pretraining_epochs = 1000;
int k = 1;
double finetune_lr = 0.1;
int finetune_epochs = 500;
int train_N = 6;
int test_N = 3;
int n_ins = 6;
int n_outs = 2;
int hidden_layer_sizes[] = {3, 3};
int n_layers = sizeof(hidden_layer_sizes) / sizeof(hidden_layer_sizes[0]);
// training data
int train_X[6][6] = {
{1, 1, 1, 0, 0, 0},
{1, 0, 1, 0, 0, 0},
{1, 1, 1, 0, 0, 0},
{0, 0, 1, 1, 1, 0},
{0, 0, 1, 1, 0, 0},
{0, 0, 1, 1, 1, 0}
};
int train_Y[6][2] = {
{1, 0},
{1, 0},
{1, 0},
{0, 1},
{0, 1},
{0, 1}
};
// construct DBN
DBN dbn(train_N, n_ins, hidden_layer_sizes, n_outs, n_layers);
// pretrain
dbn.pretrain(*train_X, pretrain_lr, k, pretraining_epochs);
// finetune
dbn.finetune(*train_X, *train_Y, finetune_lr, finetune_epochs);
// test data
int test_X[3][6] = {
{1, 1, 0, 0, 0, 0},
{0, 0, 0, 1, 1, 0},
{1, 1, 1, 1, 1, 0}
};
double test_Y[3][2];
// test
for(int i=0; i<test_N; i++) {
dbn.predict(test_X[i], test_Y[i]);
for(int j=0; j<n_outs; j++) {
cout << test_Y[i][j] << " ";
}
cout << endl;
}
}
int main() {
test_dbn();
return 0;
}