-
Notifications
You must be signed in to change notification settings - Fork 53
/
Copy pathMurmurHash3.java
301 lines (248 loc) · 8.6 KB
/
MurmurHash3.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
package util.hash;
/**
* The MurmurHash3 algorithm was created by Austin Appleby and placed in the public domain.
* This java port was authored by Yonik Seeley and also placed into the public domain.
* The author hereby disclaims copyright to this source code.
* <p>
* This produces exactly the same hash values as the final C++
* version of MurmurHash3 and is thus suitable for producing the same hash values across
* platforms.
* <p>
* The 32 bit x86 version of this hash should be the fastest variant for relatively short keys like ids.
* murmurhash3_x64_128 is a good choice for longer strings or if you need more than 32 bits of hash.
* <p>
* Note - The x86 and x64 versions do _not_ produce the same results, as the
* algorithms are optimized for their respective platforms.
* <p>
* See http://github.com/yonik/java_util for future updates to this file.
*/
public final class MurmurHash3 {
/** 128 bits of state */
public static final class LongPair {
public long val1;
public long val2;
}
public static final int fmix32(int h) {
h ^= h >>> 16;
h *= 0x85ebca6b;
h ^= h >>> 13;
h *= 0xc2b2ae35;
h ^= h >>> 16;
return h;
}
public static final long fmix64(long k) {
k ^= k >>> 33;
k *= 0xff51afd7ed558ccdL;
k ^= k >>> 33;
k *= 0xc4ceb9fe1a85ec53L;
k ^= k >>> 33;
return k;
}
/** Gets a long from a byte buffer in little endian byte order. */
public static final long getLongLittleEndian(byte[] buf, int offset) {
return ((long)buf[offset+7] << 56) // no mask needed
| ((buf[offset+6] & 0xffL) << 48)
| ((buf[offset+5] & 0xffL) << 40)
| ((buf[offset+4] & 0xffL) << 32)
| ((buf[offset+3] & 0xffL) << 24)
| ((buf[offset+2] & 0xffL) << 16)
| ((buf[offset+1] & 0xffL) << 8)
| ((buf[offset ] & 0xffL)); // no shift needed
}
/** Returns the MurmurHash3_x86_32 hash. */
@SuppressWarnings("fallthrough")
public static int murmurhash3_x86_32(byte[] data, int offset, int len, int seed) {
final int c1 = 0xcc9e2d51;
final int c2 = 0x1b873593;
int h1 = seed;
int roundedEnd = offset + (len & 0xfffffffc); // round down to 4 byte block
for (int i=offset; i<roundedEnd; i+=4) {
// little endian load order
int k1 = (data[i] & 0xff) | ((data[i+1] & 0xff) << 8) | ((data[i+2] & 0xff) << 16) | (data[i+3] << 24);
k1 *= c1;
k1 = (k1 << 15) | (k1 >>> 17); // ROTL32(k1,15);
k1 *= c2;
h1 ^= k1;
h1 = (h1 << 13) | (h1 >>> 19); // ROTL32(h1,13);
h1 = h1*5+0xe6546b64;
}
// tail
int k1 = 0;
switch(len & 0x03) {
case 3:
k1 = (data[roundedEnd + 2] & 0xff) << 16;
// fallthrough
case 2:
k1 |= (data[roundedEnd + 1] & 0xff) << 8;
// fallthrough
case 1:
k1 |= (data[roundedEnd] & 0xff);
k1 *= c1;
k1 = (k1 << 15) | (k1 >>> 17); // ROTL32(k1,15);
k1 *= c2;
h1 ^= k1;
}
// finalization
h1 ^= len;
// fmix(h1);
h1 ^= h1 >>> 16;
h1 *= 0x85ebca6b;
h1 ^= h1 >>> 13;
h1 *= 0xc2b2ae35;
h1 ^= h1 >>> 16;
return h1;
}
/** Returns the MurmurHash3_x86_32 hash of the UTF-8 bytes of the String without actually encoding
* the string to a temporary buffer. This is more than 2x faster than hashing the result
* of String.getBytes().
*/
public static int murmurhash3_x86_32(CharSequence data, int offset, int len, int seed) {
final int c1 = 0xcc9e2d51;
final int c2 = 0x1b873593;
int h1 = seed;
int pos = offset;
int end = offset + len;
int k1 = 0;
int k2 = 0;
int shift = 0;
int bits = 0;
int nBytes = 0; // length in UTF8 bytes
while (pos < end) {
int code = data.charAt(pos++);
if (code < 0x80) {
k2 = code;
bits = 8;
/***
// optimized ascii implementation (currently slower!!! code size?)
if (shift == 24) {
k1 = k1 | (code << 24);
k1 *= c1;
k1 = (k1 << 15) | (k1 >>> 17); // ROTL32(k1,15);
k1 *= c2;
h1 ^= k1;
h1 = (h1 << 13) | (h1 >>> 19); // ROTL32(h1,13);
h1 = h1*5+0xe6546b64;
shift = 0;
nBytes += 4;
k1 = 0;
} else {
k1 |= code << shift;
shift += 8;
}
continue;
***/
}
else if (code < 0x800) {
k2 = (0xC0 | (code >> 6))
| ((0x80 | (code & 0x3F)) << 8);
bits = 16;
}
else if (code < 0xD800 || code > 0xDFFF || pos>=end) {
// we check for pos>=end to encode an unpaired surrogate as 3 bytes.
k2 = (0xE0 | (code >> 12))
| ((0x80 | ((code >> 6) & 0x3F)) << 8)
| ((0x80 | (code & 0x3F)) << 16);
bits = 24;
} else {
// surrogate pair
// int utf32 = pos < end ? (int) data.charAt(pos++) : 0;
int utf32 = (int) data.charAt(pos++);
utf32 = ((code - 0xD7C0) << 10) + (utf32 & 0x3FF);
k2 = (0xff & (0xF0 | (utf32 >> 18)))
| ((0x80 | ((utf32 >> 12) & 0x3F))) << 8
| ((0x80 | ((utf32 >> 6) & 0x3F))) << 16
| (0x80 | (utf32 & 0x3F)) << 24;
bits = 32;
}
k1 |= k2 << shift;
// int used_bits = 32 - shift; // how many bits of k2 were used in k1.
// int unused_bits = bits - used_bits; // (bits-(32-shift)) == bits+shift-32 == bits-newshift
shift += bits;
if (shift >= 32) {
// mix after we have a complete word
k1 *= c1;
k1 = (k1 << 15) | (k1 >>> 17); // ROTL32(k1,15);
k1 *= c2;
h1 ^= k1;
h1 = (h1 << 13) | (h1 >>> 19); // ROTL32(h1,13);
h1 = h1*5+0xe6546b64;
shift -= 32;
// unfortunately, java won't let you shift 32 bits off, so we need to check for 0
if (shift != 0) {
k1 = k2 >>> (bits-shift); // bits used == bits - newshift
} else {
k1 = 0;
}
nBytes += 4;
}
} // inner
// handle tail
if (shift > 0) {
nBytes += shift >> 3;
k1 *= c1;
k1 = (k1 << 15) | (k1 >>> 17); // ROTL32(k1,15);
k1 *= c2;
h1 ^= k1;
}
// finalization
h1 ^= nBytes;
// fmix(h1);
h1 ^= h1 >>> 16;
h1 *= 0x85ebca6b;
h1 ^= h1 >>> 13;
h1 *= 0xc2b2ae35;
h1 ^= h1 >>> 16;
return h1;
}
/** Returns the MurmurHash3_x64_128 hash, placing the result in "out". */
@SuppressWarnings("fallthrough")
public static void murmurhash3_x64_128(byte[] key, int offset, int len, int seed, LongPair out) {
// The original algorithm does have a 32 bit unsigned seed.
// We have to mask to match the behavior of the unsigned types and prevent sign extension.
long h1 = seed & 0x00000000FFFFFFFFL;
long h2 = seed & 0x00000000FFFFFFFFL;
final long c1 = 0x87c37b91114253d5L;
final long c2 = 0x4cf5ad432745937fL;
int roundedEnd = offset + (len & 0xFFFFFFF0); // round down to 16 byte block
for (int i=offset; i<roundedEnd; i+=16) {
long k1 = getLongLittleEndian(key, i);
long k2 = getLongLittleEndian(key, i+8);
k1 *= c1; k1 = Long.rotateLeft(k1,31); k1 *= c2; h1 ^= k1;
h1 = Long.rotateLeft(h1,27); h1 += h2; h1 = h1*5+0x52dce729;
k2 *= c2; k2 = Long.rotateLeft(k2,33); k2 *= c1; h2 ^= k2;
h2 = Long.rotateLeft(h2,31); h2 += h1; h2 = h2*5+0x38495ab5;
}
long k1 = 0;
long k2 = 0;
switch (len & 15) {
case 15: k2 = (key[roundedEnd+14] & 0xffL) << 48;
case 14: k2 |= (key[roundedEnd+13] & 0xffL) << 40;
case 13: k2 |= (key[roundedEnd+12] & 0xffL) << 32;
case 12: k2 |= (key[roundedEnd+11] & 0xffL) << 24;
case 11: k2 |= (key[roundedEnd+10] & 0xffL) << 16;
case 10: k2 |= (key[roundedEnd+ 9] & 0xffL) << 8;
case 9: k2 |= (key[roundedEnd+ 8] & 0xffL);
k2 *= c2; k2 = Long.rotateLeft(k2, 33); k2 *= c1; h2 ^= k2;
case 8: k1 = ((long)key[roundedEnd+7]) << 56;
case 7: k1 |= (key[roundedEnd+6] & 0xffL) << 48;
case 6: k1 |= (key[roundedEnd+5] & 0xffL) << 40;
case 5: k1 |= (key[roundedEnd+4] & 0xffL) << 32;
case 4: k1 |= (key[roundedEnd+3] & 0xffL) << 24;
case 3: k1 |= (key[roundedEnd+2] & 0xffL) << 16;
case 2: k1 |= (key[roundedEnd+1] & 0xffL) << 8;
case 1: k1 |= (key[roundedEnd ] & 0xffL);
k1 *= c1; k1 = Long.rotateLeft(k1,31); k1 *= c2; h1 ^= k1;
}
//----------
// finalization
h1 ^= len; h2 ^= len;
h1 += h2;
h2 += h1;
h1 = fmix64(h1);
h2 = fmix64(h2);
h1 += h2;
h2 += h1;
out.val1 = h1;
out.val2 = h2;
}
}