|
| 1 | +# -*- coding: UTF-8 -*- |
| 2 | +import argparse |
| 3 | +import torch |
| 4 | +from deep_keyphrase.base_trainer import BaseTrainer |
| 5 | +from deep_keyphrase.copy_transformer.model import CopyTransformer |
| 6 | +from deep_keyphrase.dataloader import (TARGET, TOKENS) |
| 7 | +from deep_keyphrase.utils.vocab_loader import load_vocab |
| 8 | + |
| 9 | + |
| 10 | +class CopyTransformerTrainer(BaseTrainer): |
| 11 | + def __init__(self): |
| 12 | + args = self.parse_args() |
| 13 | + vocab2id = load_vocab(args.vocab_path, vocab_size=args.vocab_size) |
| 14 | + model = CopyTransformer(args, vocab2id) |
| 15 | + super().__init__(args, model) |
| 16 | + |
| 17 | + def train_batch(self, batch): |
| 18 | + torch.autograd.set_detect_anomaly(True) |
| 19 | + loss = 0 |
| 20 | + self.optimizer.zero_grad() |
| 21 | + targets = batch[TARGET] |
| 22 | + if torch.cuda.is_available(): |
| 23 | + targets = targets.cuda() |
| 24 | + batch_size = len(batch[TOKENS]) |
| 25 | + encoder_output = encoder_mask = None |
| 26 | + prev_copy_state = None |
| 27 | + prev_decoder_state = torch.zeros(batch_size, self.args.input_dim) |
| 28 | + for target_index in range(self.args.max_target_len): |
| 29 | + prev_output_tokens = targets[:, :target_index + 1].clone() |
| 30 | + true_indices = targets[:, target_index + 1].clone() |
| 31 | + output = self.model(src_dict=batch, |
| 32 | + prev_output_tokens=prev_output_tokens, |
| 33 | + encoder_output=encoder_output, |
| 34 | + encoder_mask=encoder_mask, |
| 35 | + prev_decoder_state=prev_decoder_state, |
| 36 | + position=target_index, |
| 37 | + prev_copy_state=prev_copy_state) |
| 38 | + probs, prev_decoder_state, prev_copy_state, encoder_output, encoder_mask = output |
| 39 | + loss += self.loss_func(probs, true_indices) |
| 40 | + |
| 41 | + loss.backward() |
| 42 | + self.optimizer.step() |
| 43 | + # torch.cuda.empty_cache() |
| 44 | + return loss |
| 45 | + |
| 46 | + def evaluate(self, step): |
| 47 | + pass |
| 48 | + |
| 49 | + def parse_args(self): |
| 50 | + parser = argparse.ArgumentParser() |
| 51 | + # train and evaluation parameter |
| 52 | + parser.add_argument("-exp_name", required=True, type=str, help='') |
| 53 | + parser.add_argument("-train_filename", required=True, type=str, help='') |
| 54 | + parser.add_argument("-valid_filename", required=True, type=str, help='') |
| 55 | + parser.add_argument("-test_filename", required=True, type=str, help='') |
| 56 | + parser.add_argument("-dest_base_dir", required=True, type=str, help='') |
| 57 | + parser.add_argument("-vocab_path", required=True, type=str, help='') |
| 58 | + parser.add_argument("-vocab_size", type=int, default=500000, help='') |
| 59 | + parser.add_argument("-epochs", type=int, default=10, help='') |
| 60 | + parser.add_argument("-batch_size", type=int, default=12, help='') |
| 61 | + parser.add_argument("-learning_rate", type=float, default=1e-4, help='') |
| 62 | + parser.add_argument("-eval_batch_size", type=int, default=1, help='') |
| 63 | + parser.add_argument("-dropout", type=float, default=0.0, help='') |
| 64 | + parser.add_argument("-grad_norm", type=float, default=0.0, help='') |
| 65 | + parser.add_argument("-max_grad", type=float, default=5.0, help='') |
| 66 | + parser.add_argument("-shuffle_in_batch", action='store_true', help='') |
| 67 | + parser.add_argument("-teacher_forcing", action='store_true', help='') |
| 68 | + parser.add_argument("-beam_size", type=float, default=50, help='') |
| 69 | + parser.add_argument('-tensorboard_dir', type=str, default='', help='') |
| 70 | + parser.add_argument('-logfile', type=str, default='train_log.log', help='') |
| 71 | + parser.add_argument('-save_model_step', type=int, default=5000, help='') |
| 72 | + parser.add_argument('-early_stop_tolerance', type=int, default=50, help='') |
| 73 | + parser.add_argument('-train_parallel', action='store_true', help='') |
| 74 | + |
| 75 | + # model specific parameter |
| 76 | + parser.add_argument("-input_dim", type=int, default=256, help='') |
| 77 | + parser.add_argument("-src_head_size", type=int, default=4, help='') |
| 78 | + parser.add_argument("-target_head_size", type=int, default=4, help='') |
| 79 | + parser.add_argument("-feed_forward_dim", type=int, default=1024, help='') |
| 80 | + parser.add_argument("-src_dropout", type=int, default=0.1, help='') |
| 81 | + parser.add_argument("-target_dropout", type=int, default=0.1, help='') |
| 82 | + parser.add_argument("-src_layers", type=int, default=6, help='') |
| 83 | + parser.add_argument("-target_layers", type=int, default=6, help='') |
| 84 | + parser.add_argument("-max_src_len", type=int, default=1000, help='') |
| 85 | + parser.add_argument("-max_target_len", type=int, default=8, help='') |
| 86 | + parser.add_argument("-max_oov_count", type=int, default=100, help='') |
| 87 | + parser.add_argument("-copy_net", action='store_true', help='') |
| 88 | + |
| 89 | + args = parser.parse_args() |
| 90 | + return args |
| 91 | + |
| 92 | + |
| 93 | +if __name__ == '__main__': |
| 94 | + CopyTransformerTrainer().train() |
0 commit comments