-
-
Notifications
You must be signed in to change notification settings - Fork 611
/
Easy.txt
1420 lines (1100 loc) · 51.9 KB
/
Easy.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1)**Hamming Distance**
The Hamming distance between two integers is the number of positions at which the corresponding bits are different.
Given two integers x and y, calculate the Hamming distance.
2)**Single Number**
Given an array of integers, every element appears twice except for one. Find that single one.
Note:Your algorithm should have a linear runtime complexity. Could you implement it without using extra memory?
3)**Delete Node in a Linked List**
Write a function to delete a node (except the tail) in a singly linked list, given only access to that node.
Supposed the linked list is 1 -> 2 -> 3 -> 4 and you are given the third node with value 3, the linked list should become 1 -> 2 -> 4 after calling your function.
4)**Maximum Depth of Binary Tree**
Given a binary tree, find its maximum depth.
The maximum depth is the number of nodes along the longest path from the root node down to the farthest leaf node.
5)**Minimum Depth of Binary Tree**
Given a binary tree, find its minimum depth.
The minimum depth is the number of nodes along the shortest path from the root node down to the nearest leaf node.
6)**Binary Tree Level Order Traversal I**
Given a binary tree, return the level order traversal of its nodes' values. (ie, from left to right, level by level).
For example:Given binary tree [3,9,20,null,null,15,7],
[
[3],
[9,20],
[15,7]
]
7)**Binary Tree Level Order Traversal II**
Given a binary tree, return the bottom-up level order traversal of its nodes' values. (ie, from left to right, level by level from leaf to root).
For example:Given binary tree [3,9,20,null,null,15,7],
[
[15,7],
[9,20],
[3]
]
8)** Invert a binary tree.**
9) **Same Tree**
Given two binary trees, write a function to check if they are equal or not.
Two binary trees are considered equal if they are structurally identical and the nodes have the same value.
10)**Path Sum**
Given a binary tree and a sum, determine if the tree has a root-to-leaf path such that adding up all the values along the path equals the given sum.
11)**Ransom Note**
Given an arbitrary ransom note string and another string containing letters from all the magazines, write a function that will return true if the ransom note can be constructed from the magazines ; otherwise, it will return false.
Each letter in the magazine string can only be used once in your ransom note.
12)**Third Maximum Number**
Given a non-empty array of integers, return the third maximum number in this array. If it does not exist, return the maximum number. The time complexity must be in O(n).
Input: [2, 2, 3, 1]
Output: 1
Explanation: Note that the third maximum here means the third maximum distinct number.
Both numbers with value 2 are both considered as second maximum.
Input: [1, 2]
Output: 2
Explanation: The third maximum does not exist, so the maximum (2) is returned instead.
Input: [3, 2, 1]
Output: 1
Explanation: The third maximum is 1.
13)**Two Sum**
Given an array of integers, return indices of the two numbers such that they add up to a specific target.
You may assume that each input would have exactly one solution.
14)**Contains Duplicate II**
Given an array of integers and an integer k, find out whether there are two distinct indices i and j in the array such that nums[i] = nums[j] and the difference between i and j is at most k.
15)**Best Time to Buy and Sell Stock**
Say you have an array for which the ith element is the price of a given stock on day i.
If you were only permitted to complete at most one transaction (ie, buy one and sell one share of the stock), design an algorithm to find the maximum profit.
Input: [7, 1, 5, 3, 6, 4]
Output: 5
16) **Remove Element**
Given an array and a value, remove all instances of that value in place and return the new length.
Do not allocate extra space for another array, you must do this in place with constant memory.
The order of elements can be changed. It doesn't matter what you leave beyond the new length.
17) **Move Zeroes**
Given an array nums, write a function to move all 0's to the end of it while maintaining the relative order of the non-zero elements.
For example, given nums = [0, 1, 0, 3, 12], after calling your function, nums should be [1, 3, 12, 0, 0].
You must do this in-place without making a copy of the array.
Minimize the total number of operations.
18)**Merge Sorted Arrays**
Given two sorted integer arrays nums1 and nums2, merge nums2 into nums1 as one sorted array.
Note:
You may assume that nums1 has enough space (size that is greater or equal to m + n) to hold additional elements from nums2. The number of elements initialized in nums1 and nums2 are m and n respectively.
19)**Reverse Array**
20)**Two Sum II - Input array is sorted**
Given an array of integers that is already sorted in ascending order, find two numbers such that they add up to a specific target number.
The function twoSum should return indices of the two numbers such that they add up to the target, where index1 must be less than index2. Please note that your returned answers (both index1 and index2) are not zero-based.
21) **Intersection of Two Arrays**
Given two arrays, write a function to compute their intersection.
Each element in the result must be unique. The result can be in any order.
22)**Intersection of Two Arrays II**
Given two arrays, write a function to compute their intersection.
Example:
Given nums1 = [1, 2, 2, 1], nums2 = [2, 2], return [2, 2].
Note:
Each element in the result should appear as many times as it shows in both arrays.
The result can be in any order.
Follow up:
What if the given array is already sorted? How would you optimize your algorithm?
What if nums1's size is small compared to nums2's size? Which algorithm is better?
What if elements of nums2 are stored on disk, and the memory is limited such that you cannot load all elements into the memory at once?
23)**Intersection of Two Arrays II**
Given two arrays, write a function to compute their intersection.
Example:
Given nums1 = [1, 2, 2, 1], nums2 = [2, 2], return [2, 2].
Note:
Each element in the result should appear as many times as it shows in both arrays.
The result can be in any order.
Follow up:
What if the given array is already sorted? How would you optimize your algorithm?
What if nums1's size is small compared to nums2's size? Which algorithm is better?
What if elements of nums2 are stored on disk, and the memory is limited such that you cannot load all elements into the memory at once?
24)**Valid Anagram**
Given two strings s and t, write a function to determine if t is an anagram of s.
For example,
s = "anagram", t = "nagaram", return true.
s = "rat", t = "car", return false.
25)**Count Primes**
Description:
Count the number of prime numbers less than a non-negative number, n.
26)**Ugly Number**
Write a program to check whether a given number is an ugly number.
Ugly numbers are positive numbers whose prime factors only include 2, 3, 5. For example, 6, 8 are ugly while 14 is not ugly since it includes another prime factor 7.
Note that 1 is typically treated as an ugly number.
27)**Longest Palindrome**
Given a string which consists of lowercase or uppercase letters, find the length of the longest palindromes that can be built with those letters.
This is case sensitive, for example "Aa" is not considered a palindrome here.
28) **Isomorphic Strings**
Given two strings s and t, determine if they are isomorphic.
Two strings are isomorphic if the characters in s can be replaced to get t.
All occurrences of a character must be replaced with another character while preserving the order of characters. No two characters may map to the same character but a character may map to itself.
For example,
Given "egg", "add", return true.
Given "foo", "bar", return false.
Given "paper", "title", return true.
29)**Linked List Cycle**
Given a linked list, determine if it has a cycle in it.
Can you solve it without using extra space?
30)**Merge Two Sorted Lists**
Merge two sorted linked lists and return it as a new list. The new list should be made by splicing together the nodes of the first two lists.
31)**Intersection of Two Linked Lists**
Write a program to find the node at which the intersection of two singly linked lists begins.
32)**Remove Duplicates from Sorted List**
Given a sorted linked list, delete all duplicates such that each element appear only once.
For example,
Given 1->1->2, return 1->2.
Given 1->1->2->3->3, return 1->2->3.
33)**Remove Linked List Elements**
Remove all elements from a linked list of integers that have value val.
Example
Given: 1 --> 2 --> 6 --> 3 --> 4 --> 5 --> 6, val = 6
Return: 1 --> 2 --> 3 --> 4 --> 5
34)** Palindrome Linked List**
Given a singly linked list, determine if it is a palindrome.
Follow up:
Could you do it in O(n) time and O(1) space?
35) **Valid Palindrome**
Given a string, determine if it is a palindrome, considering only alphanumeric characters and ignoring cases.
For example,
"A man, a plan, a canal: Panama" is a palindrome.
"race a car" is not a palindrome.
36)**First Bad Version**
You are a product manager and currently leading a team to develop a new product. Unfortunately, the latest version of your product fails the quality check. Since each version is developed based on the previous version, all the versions after a bad version are also bad.
Suppose you have n versions [1, 2, ..., n] and you want to find out the first bad one, which causes all the following ones to be bad.
You are given an API bool isBadVersion(version) which will return whether version is bad. Implement a function to find the first bad version. You should minimize the number of calls to the API.
37)**Guess Number Higher or Lower**
We are playing the Guess Game. The game is as follows:
I pick a number from 1 to n. You have to guess which number I picked.
Every time you guess wrong, I'll tell you whether the number is higher or lower.
You call a pre-defined API guess(int num) which returns 3 possible results (-1, 1, or 0):
-1 : My number is lower
1 : My number is higher
0 : Congrats! You got it!
38) **Arranging Coins**
You have a total of n coins that you want to form in a staircase shape, where every k-th row must have exactly k coins.
Given n, find the total number of full staircase rows that can be formed.
n is a non-negative integer and fits within the range of a 32-bit signed integer.
39)**Range Sum Query - Immutable**
Given an integer array nums, find the sum of the elements between indices i and j (i ≤ j), inclusive.
Example:
Given nums = [-2, 0, 3, -5, 2, -1]
sumRange(0, 2) -> 1
sumRange(2, 5) -> -1
sumRange(0, 5) -> -3
Note:
You may assume that the array does not change.
There are many calls to sumRange function.
40)**House Robber**
You are a professional robber planning to rob houses along a street. Each house has a certain amount of money stashed, the only constraint stopping you from robbing each of them is that adjacent houses have security system connected and it will automatically contact the police if two adjacent houses were broken into on the same night.
Given a list of non-negative integers representing the amount of money of each house, determine the maximum amount of money you can rob tonight without alerting the police.
41)** Climbing Stairs**
You are climbing a stair case. It takes n steps to reach to the top.
Each time you can either climb 1 or 2 steps. In how many distinct ways can you climb to the top?
42)**Implement Queue using Stacks**
Implement the following operations of a queue using stacks.
push(x) -- Push element x to the back of queue.
pop() -- Removes the element from in front of queue.
peek() -- Get the front element.
empty() -- Return whether the queue is empty.
Notes:
You must use only standard operations of a stack -- which means only push to top, peek/pop from top, size, and is empty operations are valid.
Depending on your language, stack may not be supported natively. You may simulate a stack by using a list or deque (double-ended queue), as long as you use only standard operations of a stack.
You may assume that all operations are valid (for example, no pop or peek operations will be called on an empty queue).
43)Sum of Left Leaves
Find the sum of all left leaves in a given binary tree.
44) Binary Tree Paths
Given a binary tree, return all root-to-leaf paths.
For example, given the following binary tree:
1
/ \
2 3
\
5
All root-to-leaf paths are:
["1->2->5", "1->3"]
44)** Balanced Binary Tree**
Given a binary tree, determine if it is height-balanced.
For this problem, a height-balanced binary tree is defined as a binary tree in which the depth of the two subtrees of every node never differ by more than 1.
45)**Find All Numbers Disappeared in an Array**
Given an array of integers where 1 ≤ a[i] ≤ n (n = size of array), some elements appear twice and others appear once.
Find all the elements of [1, n] inclusive that do not appear in this array.
Could yu do it without extra space and in O(n) runtime? You may assume the returned list does not count as extra space.
Example:
Input:
[4,3,2,7,8,2,3,1]
Output:
[5,6]
46)**Reverse String**
47)**Island Perimeter**
You are given a map in form of a two-dimensional integer grid where 1 represents land and 0 represents water. Grid cells are connected horizontally/vertically (not diagonally). The grid is completely surrounded by water, and there is exactly one island (i.e., one or more connected land cells). The island doesn't have "lakes" (water inside that isn't connected to the water around the island). One cell is a square with side length 1. The grid is rectangular, width and height don't exceed 100. Determine the perimeter of the island.
[[0,1,0,0],
[1,1,1,0],
[0,1,0,0],
[1,1,0,0]]
Answer: 16
48)**Find the Difference**
Given two strings s and t which consist of only lowercase letters.
String t is generated by random shuffling string s and then add one more letter at a random position.
Find the letter that was added in t.
49) **Add Digit**
Given a non-negative integer num, repeatedly add all its digits until the result has only one digit.
For example:
Given num = 38, the process is like: 3 + 8 = 11, 1 + 1 = 2. Since 2 has only one digit, return it.
Follow up:
Could you do it without any loop/recursion in O(1) runtime?
50)**Majority Element**
Given an array of size n, find the majority element. The majority element is the element that appears more than ⌊ n/2 ⌋ times.
You may assume that the array is non-empty and the majority element always exist in the array.
51)**Contains Duplicate**
Given an array of integers, find if the array contains any duplicates. Your function should return true if any value appears at least twice in the array, and it should return false if every element is distinct.
52)First Unique Character in a String
Given a string, find the first non-repeating character in it and return it's index. If it doesn't exist, return -1.
Examples:
s = "leetcode"
return 0.
s = "loveleetcode",
return 2.
Note: You may assume the string contain only lowercase letters.
53) ** Power of Two**
Given an integer, write a function to determine if it is a power of two.
54) **Power of Four**
Given an integer (signed 32 bits), write a function to check whether it is a power of 4.
Example:
Given num = 16, return true. Given num = 5, return false.
Follow up: Could you solve it without loops/recursion?
55)**Reverse Integer**
Reverse digits of an integer.
Example1: x = 123, return 321
Example2: x = -123, return -321
101
56)**Minimum Moves to Equal Array Elements**
Given a non-empty integer array of size n, find the minimum number of moves required to make all array elements equal, where a move is incrementing n - 1 elements by 1.
Example:
Input:
[1,2,3]
Output:
3
Explanation:
Only three moves are needed (remember each move increments two elements):
[1,2,3] => [2,3,3] => [3,4,3] => [4,4,4]
57)**Reverse Bits**
Reverse bits of a given 32 bits unsigned integer.
For example, given input 43261596 (represented in binary as 00000010100101000001111010011100), return 964176192 (represented in binary as 00111001011110000010100101000000).
Follow up:
If this function is called many times, how would you optimize it?
58)**Assign Cookies**
Assume you are an awesome parent and want to give your children some cookies. But, you should give each child at most one cookie. Each child i has a greed factor gi, which is the minimum size of a cookie that the child will be content with; and each cookie j has a size sj. If sj >= gi, we can assign the cookie j to the child i, and the child i will be content. Your goal is to maximize the number of your content children and output the maximum number.
Note:
You may assume the greed factor is always positive.
You cannot assign more than one cookie to one child.
Example 1:
Input: [1,2,3], [1,1]
Output: 1
Explanation: You have 3 children and 2 cookies. The greed factors of 3 children are 1, 2, 3.
And even though you have 2 cookies, since their size is both 1, you could only make the child whose greed factor is 1 content.
You need to output 1.
59) **Swap Nodes in Pairs**
Given a linked list, swap every two adjacent nodes and return its head.
For example,
Given 1->2->3->4, you should return the list as 2->1->4->3.
Your algorithm should use only constant space. You may not modify the values in the list, only nodes itself can be changed.
60) **NumberComplement**
Given a positive integer, output its complement number. The complement strategy is to flip the bits of its binary representation.
Note:
The given integer is guaranteed to fit within the range of a 32-bit signed integer.
You could assume no leading zero bit in the integer’s binary representation.
Example 1:
Input: 5
Output: 2
Explanation: The binary representation of 5 is 101 (no leading zero bits), and its complement is 010. So you need to output 2.
61)**Repeated Substring Pattern**
Given a non-empty string check if it can be constructed by taking a substring of it and appending multiple copies of the substring together. You may assume the given string consists of lowercase English letters only and its length will not exceed 10000.
Example 1:
Input: "abab"
Output: True
Explanation: It's the substring "ab" twice.
62)**Add Strings**
Given two non-negative integers num1 and num2 represented as string, return the sum of num1 and num2.
Note:
The length of both num1 and num2 is < 5100.
Both num1 and num2 contains only digits 0-9.
Both num1 and num2 does not contain any leading zero.
You must not use any built-in BigInteger library or convert the inputs to integer directly.
63)**Search Insert Position**
Given a sorted array and a target value, return the index if the target is found. If not, return the index where it would be if it were inserted in order.
You may assume no duplicates in the array.
Here are few examples.
[1,3,5,6], 5 → 2
[1,3,5,6], 2 → 1
[1,3,5,6], 7 → 4
[1,3,5,6], 0 → 0
64)**Palindrome Number**
Determine if given integer is palindrome, don't use extra space
65)**Lowest Common Ancestor of a Binary Search Tree**
Given a binary search tree (BST), find the lowest common ancestor (LCA) of two given nodes in the BST.
According to the definition of LCA on Wikipedia: “The lowest common ancestor is defined between two nodes v and w as the lowest node in T that has both v and w as descendants (where we allow a node to be a descendant of itself).”
_______6______
/ \
___2__ ___8__
/ \ / \
0 _4 7 9
/ \
3 5
For example, the lowest common ancestor (LCA) of nodes 2 and 8 is 6. Another example is LCA of nodes 2 and 4 is 2, since a node can be a descendant of itself according to the LCA definition.
66)**Number of Segments in a String**
Count the number of segments in a string, where a segment is defined to be a contiguous sequence of non-space characters.
Please note that the string does not contain any non-printable characters.
Example:
Input: "Hello, my name is John"
Output: 5
67) **Largest Difference in an Array**
You have an array of integers, find the largest difference between a[i] and a[j] where i<j
68)**Happy Number**
Write an algorithm to determine if a number is "happy".
A happy number is a number defined by the following process: Starting with any positive integer, replace the number by the sum of the squares of its digits, and repeat the process until the number equals 1 (where it will stay), or it loops endlessly in a cycle which does not include 1. Those numbers for which this process ends in 1 are happy numbers.
Example: 19 is a happy number
1^2 + 9^2 = 82
8^2 + 2^2 = 68
6^2 + 8^2 = 100
1^2 + 0^2 + 0^2 = 1
69)**Max Consecutive Ones**
Given a binary array, find the maximum number of consecutive 1s in this array.
Example 1:
Input: [1,1,0,1,1,1]
Output: 3
Explanation: The first two digits or the last three digits are consecutive 1s.
The maximum number of consecutive 1s is 3.
70)Count and Say
The count-and-say sequence is the sequence of integers beginning as follows:
1, 11, 21, 1211, 111221, ...
1 is read off as "one 1" or 11.
11 is read off as "two 1s" or 21.
21 is read off as "one 2, then one 1" or 1211.
Given an integer n, generate the nth sequence.
Note: The sequence of integers will be represented as a string.
71)Construct the Rectangle
For a web developer, it is very important to know how to design a web page's size. So, given a specific rectangular web page’s area, your job by now is to design a rectangular web page, whose length L and width W satisfy the following requirements:
1. The area of the rectangular web page you designed must equal to the given target area.
2. The width W should not be larger than the length L, which means L >= W.
3. The difference between length L and width W should be as small as possible.
72)Length of Last Word
Given a string s consists of upper/lower-case alphabets and empty space characters ' ', return the length of last word in the string.
If the last word does not exist, return 0.
Note: A word is defined as a character sequence consists of non-space characters only.
For example,
Given s = "Hello World",
return 5.
73)Best Time to Buy and Sell Stock II
Say you have an array for which the ith element is the price of a given stock on day i.
Design an algorithm to find the maximum profit. You may complete as many transactions as you like (ie, buy one and sell one share of the stock multiple times). However, you may not engage in multiple transactions at the same time (ie, you must sell the stock before you buy again).
74)Longest Common Prefix
Write a function to find the longest common prefix string amongst an array of strings.
75)Add Binary
Given two binary strings, return their sum (also a binary string).
For example,
a = "11"
b = "1"
Return "100".
76)
Given numRows, generate the first numRows of Pascal's triangle.
For example, given numRows = 5,
Return
[
[1],
[1,1],
[1,2,1],
[1,3,3,1],
[1,4,6,4,1]
]
77)
Given an index k, return the kth row of the Pascal's triangle.
For example, given k = 3,
Return [1,3,3,1].
Note:
Could you optimize your algorithm to use only O(k) extra space?
78)Minimum Absolute Difference in BST
Given a binary search tree with non-negative values, find the minimum absolute difference between values of any two nodes.
Example:
Input:
1
\
3
/
2
Output:
1
Explanation:
The minimum absolute difference is 1, which is the difference between 2 and 1 (or between 2 and 3).
Note: There are at least two nodes in this BST.
79)Minimum Time Difference
Given a list of 24-hour clock time points in "Hour:Minutes" format, find the minimum minutes difference between any two time points in the list.
80) Reverse String II
Given a string and an integer k, you need to reverse the first k characters for every 2k characters counting from the start of the string. If there are less than k characters left, reverse all of them. If there are less than 2k but greater than or equal to k characters, then reverse the first k characters and left the other as original.
Example:
Input: s = "abcdefg", k = 2
Output: "bacdfeg"
Restrictions:
The string consists of lower English letters only.
Length of the given string and k will in the range [1, 10000]
81)Diameter of Binary Tree
Given a binary tree, you need to compute the length of the diameter of the tree. The diameter of a binary tree is the length of the longest path between any two nodes in a tree. This path may or may not pass through the root.
Example:
Given a binary tree
1
/ \
2 3
/ \
4 5
Return 3, which is the length of the path [4,2,1,3] or [5,2,1,3].
Note: The length of path between two nodes is represented by the number of edges between them.
82)Single Element in a Sorted Array
Given a sorted array consisting of only integers where every element appears twice except for one element which appears once. Find this single element that appears only once.
Example 1:
Input: [1,1,2,3,3,4,4,8,8]
Output: 2
Example 2:
Input: [3,3,7,7,10,11,11]
Output: 10
Note: Your solution should run in O(log n) time and O(1) space.
83)Perfect Number
We define the Perfect Number is a positive integer that is equal to the sum of all its positive divisors except itself.
Now, given an integer n, write a function that returns true when it is a perfect number and false when it is not.
Example:
Input: 28
Output: True
Explanation: 28 = 1 + 2 + 4 + 7 + 14
Note: The input number n will not exceed 100,000,000. (1e8)
84)Add Digits
Given a non-negative integer num, repeatedly add all its digits until the result has only one digit.
For example:
Given num = 38, the process is like: 3 + 8 = 11, 1 + 1 = 2. Since 2 has only one digit, return it.
Follow up:
Could you do it without any loop/recursion in O(1) runtime?
85)Reverse Words in a String III
Given a string, you need to reverse the order of characters in each word within a sentence while still preserving whitespace and initial word order.
Example 1:
Input: "Let's take LeetCode contest"
Output: "s'teL ekat edoCteeL tsetnoc"
Note: In the string, each word is separated by single space and there will not be any extra space in the string.
86)Shortest Word Distance
Given a list of words and two words word1 and word2, return the shortest distance between these two words in the list.
For example,
Assume that words = ["practice", "makes", "perfect", "coding", "makes"].
Given word1 = “coding”, word2 = “practice”, return 3.
Given word1 = "makes", word2 = "coding", return 1.
Note:
You may assume that word1 does not equal to word2, and word1 and word2 are both in the list.
87)Binary Tree Tilt
Given a binary tree, return the tilt of the whole tree.
The tilt of a tree node is defined as the absolute difference between the sum of all left subtree node values and the sum of all right subtree node values. Null node has tilt 0.
The tilt of the whole tree is defined as the sum of all nodes' tilt.
Example:
Input:
1
/ \
2 3
Output: 1
Explanation:
Tilt of node 2 : 0
Tilt of node 3 : 0
Tilt of node 1 : |2-3| = 1
Tilt of binary tree : 0 + 0 + 1 = 1
88)Palindrome Permutation
Given a string, determine if a permutation of the string could form a palindrome.
For example,
"code" -> False, "aab" -> True, "carerac" -> True.
88)Triple Step
A child is running up a staircase with n steps and can hop either 1 step, 2 steps, or 3
steps at a time. Implement a method to count how many possible ways the child can run up the
stairs.
89) Paint Fill
Implement the "paint fill" function that one might see on many image editing programs.
That is, given a screen (represented by a two-dimensional array of colors), a point, and a new color,
fill in the surrounding area until the color changes from the original color.
90)Find sum of all left leaves in a given Binary Tree
Given a Binary Tree, find sum of all left leaves in it.
91) Range Addition II
Given an m * n matrix M initialized with all 0's and several update operations.
Operations are represented by a 2D array, and each operation is represented by an array with two positive integers a and b, which means M[i][j] should be added by one for all 0 <= i < a and 0 <= j < b.
You need to count and return the number of maximum integers in the matrix after performing all the operations.
Example 1:
Input:
m = 3, n = 3
operations = [[2,2],[3,3]]
Output: 4
Explanation:
Initially, M =
[[0, 0, 0],
[0, 0, 0],
[0, 0, 0]]
After performing [2,2], M =
[[1, 1, 0],
[1, 1, 0],
[0, 0, 0]]
After performing [3,3], M =
[[2, 2, 1],
[2, 2, 1],
[1, 1, 1]]
92)Can Place Flowers
Suppose you have a long flowerbed in which some of the plots are planted and some are not. However, flowers cannot be planted in adjacent plots - they would compete for water and both would die.
Given a flowerbed (represented as an array containing 0 and 1, where 0 means empty and 1 means not empty), and a number n, return if n new flowers can be planted in it without violating the no-adjacent-flowers rule.
Example 1:
Input: flowerbed = [1,0,0,0,1], n = 1
Output: True
Example 2:
Input: flowerbed = [1,0,0,0,1], n = 2
Output: False
Note:
The input array won't violate no-adjacent-flowers rule.
The input array size is in the range of [1, 20000].
n is a non-negative integer which won't exceed the input array size.
93)Construct String from Binary Tree
You need to construct a string consists of parenthesis and integers from a binary tree with the preorder traversing way.
The null node needs to be represented by empty parenthesis pair "()". And you need to omit all the empty parenthesis pairs that don't affect the one-to-one mapping relationship between the string and the original binary tree.
Example 1:
Input: Binary tree: [1,2,3,4]
1
/ \
2 3
/
4
Output: "1(2(4))(3)"
Explanation: Originallay it needs to be "1(2(4)())(3()())",
but you need to omit all the unnecessary empty parenthesis pairs.
And it will be "1(2(4))(3)".
Example 2:
Input: Binary tree: [1,2,3,null,4]
1
/ \
2 3
\
4
Output: "1(2()(4))(3)"
Explanation: Almost the same as the first example,
except we can't omit the first parenthesis pair to break the one-to-one mapping relationship between the input and the output.
94) Image Smoother
Given a 2D integer matrix M representing the gray scale of an image, you need to design a smoother to make the gray scale of each cell becomes the average gray scale (rounding down) of all the 8 surrounding cells and itself. If a cell has less than 8 surrounding cells, then use as many as you can.
Example 1:
Input:
[[1,1,1],
[1,0,1],
[1,1,1]]
Output:
[[0, 0, 0],
[0, 0, 0],
[0, 0, 0]]
Explanation:
For the point (0,0), (0,2), (2,0), (2,2): floor(3/4) = floor(0.75) = 0
For the point (0,1), (1,0), (1,2), (2,1): floor(5/6) = floor(0.83333333) = 0
For the point (1,1): floor(8/9) = floor(0.88888889) = 0
Note:
The value in the given matrix is in the range of [0, 255].
The length and width of the given matrix are in the range of [1, 150].
95) Judge Route Circle
Initially, there is a Robot at position (0, 0). Given a sequence of its moves, judge if this robot makes a circle, which means it moves back to the original place.
The move sequence is represented by a string. And each move is represent by a character. The valid robot moves are R (Right), L (Left), U (Up) and D (down). The output should be true or false representing whether the robot makes a circle.
Example 1:
Input: "UD"
Output: true
Example 2:
Input: "LL"
Output: false
96)Trim a Binary Search Tree
Given a binary search tree and the lowest and highest boundaries as L and R, trim the tree so that all its elements lies in [L, R] (R >= L). You might need to change the root of the tree, so the result should return the new root of the trimmed binary search tree.
Example 1:
Input:
1
/ \
0 2
L = 1
R = 2
Output:
1
\
2
Example 2:
Input:
3
/ \
0 4
\
2
/
1
L = 1
R = 3
Output:
3
/
2
/
1
97)Second Minimum Node In a Binary Tree
Given a non-empty special binary tree consisting of nodes with the non-negative value, where each node in this tree has exactly two or zero sub-node. If the node has two sub-nodes, then this node's value is the smaller value among its two sub-nodes.
Given such a binary tree, you need to output the second minimum value in the set made of all the nodes' value in the whole tree.
If no such second minimum value exists, output -1 instead.
Example 1:
Input:
2
/ \
2 5
/ \
5 7
Output: 5
Explanation: The smallest value is 2, the second smallest value is 5.
Example 2:
Input:
2
/ \
2 2
Output: -1
Explanation: The smallest value is 2, but there isn't any second smallest value.
98)Longest Continuous Increasing Subsequence
Given an unsorted array of integers, find the length of longest continuous increasing subsequence.
Example 1:
Input: [1,3,5,4,7]
Output: 3
Explanation: The longest continuous increasing subsequence is [1,3,5], its length is 3.
Even though [1,3,5,7] is also an increasing subsequence, it's not a continuous one where 5 and 7 are separated by 4.
Example 2:
Input: [2,2,2,2,2]
Output: 1
Explanation: The longest continuous increasing subsequence is [2], its length is 1.
Note: Length of the array will not exceed 10,000.
99) Valid Palindrome II
Given a non-empty string s, you may delete at most one character. Judge whether you can make it a palindrome.
Example 1:
Input: "aba"
Output: True
Example 2:
Input: "abca"
Output: True
Explanation: You could delete the character 'c'.
100) Two Sum IV - Input is a BST
Given a Binary Search Tree and a target number, return true if there exist two elements in the BST such that their sum is equal to the given target.
Example 1:
Input:
5
/ \
3 6
/ \ \
2 4 7
Target = 9
Output: True
Example 2:
Input:
5
/ \
3 6
/ \ \
2 4 7
Target = 28
Output: False
101) Baseball Game
You're now a baseball game point recorder.
Given a list of strings, each string can be one of the 4 following types:
Integer (one round's score): Directly represents the number of points you get in this round.
"+" (one round's score): Represents that the points you get in this round are the sum of the last two valid round's points.
"D" (one round's score): Represents that the points you get in this round are the doubled data of the last valid round's points.
"C" (an operation, which isn't a round's score): Represents the last valid round's points you get were invalid and should be removed.
Each round's operation is permanent and could have an impact on the round before and the round after.
You need to return the sum of the points you could get in all the rounds.
Example 1:
Input: ["5","2","C","D","+"]
Output: 30
Explanation:
Round 1: You could get 5 points. The sum is: 5.
Round 2: You could get 2 points. The sum is: 7.
Operation 1: The round 2's data was invalid. The sum is: 5.
Round 3: You could get 10 points (the round 2's data has been removed). The sum is: 15.
Round 4: You could get 5 + 10 = 15 points. The sum is: 30.
Example 2:
Input: ["5","-2","4","C","D","9","+","+"]
Output: 27
Explanation:
Round 1: You could get 5 points. The sum is: 5.
Round 2: You could get -2 points. The sum is: 3.
Round 3: You could get 4 points. The sum is: 7.
Operation 1: The round 3's data is invalid. The sum is: 3.
Round 4: You could get -4 points (the round 3's data has been removed). The sum is: -1.
Round 5: You could get 9 points. The sum is: 8.
Round 6: You could get -4 + 9 = 5 points. The sum is 13.
Round 7: You could get 9 + 5 = 14 points. The sum is 27.
Note:
The size of the input list will be between 1 and 1000.
Every integer represented in the list will be between -30000 and 30000.
102) Alternating Bits
Given a positive integer, check whether it has alternating bits: namely, if two adjacent bits will always have different values.
Example 1:
Input: 5
Output: True
Explanation:
The binary representation of 5 is: 101
Example 2:
Input: 7
Output: False
Explanation:
The binary representation of 7 is: 111.
103) Max Area of Island
Given a non-empty 2D array grid of 0's and 1's, an island is a group of 1's (representing land) connected 4-directionally (horizontal or vertical.) You may assume all four edges of the grid are surrounded by water.
Find the maximum area of an island in the given 2D array. (If there is no island, the maximum area is 0.)
Example 1:
[[0,0,1,0,0,0,0,1,0,0,0,0,0],
[0,0,0,0,0,0,0,1,1,1,0,0,0],
[0,1,1,0,1,0,0,0,0,0,0,0,0],
[0,1,0,0,1,1,0,0,1,0,1,0,0],
[0,1,0,0,1,1,0,0,1,1,1,0,0],
[0,0,0,0,0,0,0,0,0,0,1,0,0],
[0,0,0,0,0,0,0,1,1,1,0,0,0],
[0,0,0,0,0,0,0,1,1,0,0,0,0]]
Given the above grid, return 6. Note the answer is not 11, because the island must be connected 4-directionally.
Example 2:
[[0,0,0,0,0,0,0,0]]
Given the above grid, return 0.
Note: The length of each dimension in the given grid does not exceed 50.
104)Degree of an Array
Given a non-empty array of non-negative integers nums, the degree of this array is defined as the maximum frequency of any one of its elements.
Your task is to find the smallest possible length of a (contiguous) subarray of nums, that has the same degree as nums.
Example 1:
Input: [1, 2, 2, 3, 1]
Output: 2
Explanation:
The input array has a degree of 2 because both elements 1 and 2 appear twice.
Of the subarrays that have the same degree:
[1, 2, 2, 3, 1], [1, 2, 2, 3], [2, 2, 3, 1], [1, 2, 2], [2, 2, 3], [2, 2]
The shortest length is 2. So return 2.
Example 2:
Input: [1,2,2,3,1,4,2]
Output: 6
Note:
nums.length will be between 1 and 50,000.
nums[i] will be an integer between 0 and 49,999.
105)Find Pivot Element
Given an array of integers nums, write a method that returns the "pivot" index of this array.
We define the pivot index as the index where the sum of the numbers to the left of the index is equal to the sum of the numbers to the right of the index.
If no such index exists, we should return -1. If there are multiple pivot indexes, you should return the left-most pivot index.
Example 1:
Input:
nums = [1, 7, 3, 6, 5, 6]
Output: 3
Explanation:
The sum of the numbers to the left of index 3 (nums[3] = 6) is equal to the sum of numbers to the right of index 3.
Also, 3 is the first index where this occurs.
Example 2:
Input:
nums = [1, 2, 3]
Output: -1
Explanation:
There is no index that satisfies the conditions in the problem statement.
106) Check whether the given string is Pangram
Given a string, check whether it contains all alphabets from A to Z.
Example 1:
Input: The quick brown fox jumps over the lazy dog
Output: True
Explanation: The above sentence contains all alphabets from A to Z. Upper Case or Lower Case don't matter. Also, repeatition don't matter.
Example 2:
Input: Hello GitHub
Output: False
Explanation: Only 9 alphabets are present in the string - "b, e, g, h, i, l, o, t, u". Hence, the string is not a Pangram.
107) 744. Find Smallest Letter Greater Than Target
Given a list of sorted characters letters containing only lowercase letters, and given a target letter target, find the smallest element in the list that is larger than the given target.
Letters also wrap around. For example, if the target is target = 'z' and letters = ['a', 'b'], the answer is 'a'.
Examples:
Input:
letters = ["c", "f", "j"]
target = "a"
Output: "c"
Input:
letters = ["c", "f", "j"]
target = "c"
Output: "f"
Input: