forked from Lukeli0425/Galaxy-Deconv
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train.py
executable file
·152 lines (125 loc) · 6.84 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
import argparse
import logging
import os
import torch
from torch.optim import Adam
from models.ResUNet import ResUNet
from models.Tikhonet import Tikhonet
from models.Unrolled_ADMM import Unrolled_ADMM
from utils.utils_data import get_dataloader
from utils.utils_plot import plot_loss
from utils.utils_train import MultiScaleLoss, ShapeConstraint, get_model_name
os.environ["CUDA_VISIBLE_DEVICES"] = '1'
def train(model_name='Unrolled ADMM', n_iters=8, llh='Poisson', PnP=True, remove_SubNet=False, filter='Laplacian',
n_epochs=10, lr=1e-4, loss='MultiScale',
data_path='/mnt/WD6TB/tianaoli/dataset/LSST_23.5_deconv/', train_val_split=0.8, batch_size=32,
model_save_path='./saved_models/', pretrained_epochs=0):
model_name = get_model_name(method=model_name, loss=loss, filter=filter, n_iters=n_iters, llh=llh, PnP=PnP, remove_SubNet=remove_SubNet)
logger = logging.getLogger('Train')
logger.info(' Start training %s on %s data for %s epochs.', model_name, data_path, n_epochs)
if not os.path.exists(model_save_path):
os.mkdir(model_save_path)
train_loader, val_loader = get_dataloader(data_path=data_path, train=True, train_test_split=train_val_split, batch_size=batch_size)
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
if 'ADMM' in model_name:
model = Unrolled_ADMM(n_iters=n_iters, llh=llh, PnP=PnP, SubNet=not remove_SubNet)
elif 'Tikhonet' in model_name:
model = Tikhonet(filter=filter)
elif 'ShapeNet' in model_name:
model = Tikhonet(filter=filter)
elif model_name == 'ResUNet':
model = ResUNet()
model.to(device)
if pretrained_epochs > 0:
try:
pretrained_file = os.path.join(model_save_path, f'{model_name}_{pretrained_epochs}epochs.pth')
model.load_state_dict(torch.load(pretrained_file, map_location=torch.device(device)))
logger.info(' Successfully loaded in %s.', pretrained_file)
except:
raise Exception(' Failed loading in %s!', pretrained_file)
if 'ShapeNet' in model_name or loss == 'Shape':
loss_fn = ShapeConstraint(device=device, fov_pixels=48, n_shearlet=2, gamma=1)
elif loss == 'MSE':
loss_fn = torch.nn.MSELoss()
elif loss == 'MultiScale':
loss_fn = MultiScaleLoss()
optimizer = Adam(params=model.parameters(), lr = lr)
train_loss_list, val_loss_list = [], []
val_loss_min, epoch_min = 1.e9, 0
for epoch in range(n_epochs):
model.train()
train_loss = 0.0
for idx, ((obs, psf, alpha), gt) in enumerate(train_loader):
optimizer.zero_grad()
obs, psf, alpha, gt = obs.to(device), psf.to(device), alpha.to(device), gt.to(device)
rec = model(obs, psf, alpha)
loss = loss_fn(gt, rec)
loss.backward()
optimizer.step()
train_loss = loss.item()
# Evaluate on valid dataset.
if (idx+1) % 25 == 0:
val_loss = 0.0
model.eval()
with torch.no_grad():
for _, ((obs, psf, alpha), gt) in enumerate(val_loader):
obs, psf, alpha, gt = obs.to(device), psf.to(device), alpha.to(device), gt.to(device)
rec = model(obs, psf, alpha)
loss = loss_fn(gt, rec)
val_loss += loss.item()
logger.info(" [{}: {}/{}] train_loss={:.4g} val_loss={:.4g}".format(
epoch+1, idx+1, len(train_loader),
train_loss,
val_loss/len(val_loader)))
# Evaluate on train & valid dataset after every epoch.
train_loss = 0.0
model.eval()
with torch.no_grad():
for _, ((obs, psf, alpha), gt) in enumerate(train_loader):
obs, psf, alpha, gt = obs.to(device), psf.to(device), alpha.to(device), gt.to(device)
rec = model(obs, psf, alpha)
loss = loss_fn(gt, rec)
train_loss += loss.item()
train_loss_list.append(train_loss/len(train_loader))
val_loss = 0.0
model.eval()
with torch.no_grad():
for _, ((obs, psf, alpha), gt) in enumerate(val_loader):
obs, psf, alpha, gt = obs.to(device), psf.to(device), alpha.to(device), gt.to(device)
rec = model(obs, psf, alpha)
loss = loss_fn(gt, rec)
val_loss += loss.item()
val_loss_list.append(val_loss/len(val_loader))
logger.info(" [{}: {}/{}] train_loss={:.4g} val_loss={:.4g}".format(
epoch+1, len(train_loader), len(train_loader),
train_loss/len(train_loader),
val_loss/len(val_loader)))
# Save model.
if val_loss_min > val_loss or (epoch + 1) % 5 == 0:
if val_loss_min > val_loss:
val_loss_min = val_loss
epoch_min = epoch
model_file_name = f'{model_name}_{epoch+1+pretrained_epochs}epochs.pth'
torch.save(model.state_dict(), os.path.join(model_save_path, model_file_name))
logger.info(' Model saved to %s', os.path.join(model_save_path, model_file_name))
# Plot loss curve.
plot_loss(train_loss_list, val_loss_list, epoch_min, model_save_path, model_name)
if __name__ == "__main__":
logging.basicConfig(level=logging.INFO)
parser = argparse.ArgumentParser(description='Arguments for training.')
parser.add_argument('--n_iters', type=int, default=8)
parser.add_argument('--model', type=str, default='Unrolled_ADMM', choices=['Unrolled_ADMM', 'Tikhonet', 'ShapeNet', 'ResUNet'])
parser.add_argument('--llh', type=str, default='Gaussian', choices=['Gaussian', 'Poisson'])
parser.add_argument('--remove_SubNet', action="store_true")
parser.add_argument('--filter', type=str, default='Laplacian', choices=['Identity', 'Laplacian'])
parser.add_argument('--n_epochs', type=int, default=50)
parser.add_argument('--lr', type=float, default=1e-4)
parser.add_argument('--loss', type=str, default='MultiScale', choices=['MultiScale', 'MSE', 'Shape'])
parser.add_argument('--train_val_split', type=float, default=0.9)
parser.add_argument('--batch_size', type=int, default=32)
parser.add_argument('--pretrained_epochs', type=int, default=0)
opt = parser.parse_args()
train(model_name=opt.model, n_iters=opt.n_iters, llh=opt.llh, PnP=True, remove_SubNet=opt.remove_SubNet, filter=opt.filter,
n_epochs=opt.n_epochs, lr=opt.lr, loss=opt.loss,
data_path='/mnt/WD6TB/tianaoli/dataset/LSST_23.5_deconv/', train_val_split=opt.train_val_split, batch_size=opt.batch_size,
model_save_path='./saved_models/', pretrained_epochs=opt.pretrained_epochs)