Open
Description
I'm trying to use a native pytorch version of fused_leaky_relu
and upfirdn2d
#66 #70
However there is a dimensionality bug in the upfirdn2d_native
so I fixed it like this,
import torch.nn.functional as F
def upfirdn2d(input, kernel, up=1, down=1, pad=(0, 0)):
# out = UpFirDn2d.apply(
# input, kernel, (up, up), (down, down), (pad[0], pad[1], pad[0], pad[1])
# )
out = upfirdn2d_native(input, kernel, up, up, down, down, pad[0], pad[1], pad[0], pad[1])
return out
def upfirdn2d_native(
input, kernel, up_x, up_y, down_x, down_y, pad_x0, pad_x1, pad_y0, pad_y1
):
input = input.permute(0, 2, 3, 1)
_, in_h, in_w, minor = input.shape
kernel_h, kernel_w = kernel.shape
out = input.view(-1, in_h, 1, in_w, 1, minor)
out = F.pad(out, [0, 0, 0, up_x - 1, 0, 0, 0, up_y - 1])
out = out.view(-1, in_h * up_y, in_w * up_x, minor)
out = F.pad(
out, [0, 0, max(pad_x0, 0), max(pad_x1, 0), max(pad_y0, 0), max(pad_y1, 0)]
)
out = out[
:,
max(-pad_y0, 0) : out.shape[1] - max(-pad_y1, 0),
max(-pad_x0, 0) : out.shape[2] - max(-pad_x1, 0),
:,
]
out = out.permute(0, 3, 1, 2)
out = out.reshape(
[-1, 1, in_h * up_y + pad_y0 + pad_y1, in_w * up_x + pad_x0 + pad_x1]
)
w = torch.flip(kernel, [0, 1]).view(1, 1, kernel_h, kernel_w)
out = F.conv2d(out, w)
out = out.reshape(
-1,
minor,
in_h * up_y + pad_y0 + pad_y1 - kernel_h + 1,
in_w * up_x + pad_x0 + pad_x1 - kernel_w + 1,
)
# out = out.permute(0, 2, 3, 1)
return out[:, :, ::down_y, ::down_x]
For fused_leaky_relu
, I used
import torch.nn.functional as F
def fused_leaky_relu(input, bias, negative_slope=0.2, scale=2 ** 0.5):
return scale * F.leaky_relu(input + bias.view((1, -1)+(1,)*(len(input.shape)-2)), negative_slope=negative_slope)
For those having a hard time compiling cuda code, this could be an easy way to do a demo
Metadata
Metadata
Assignees
Labels
No labels