{ "cells": [ { "cell_type": "markdown", "id": "f3ff45d6-f5c4-44fb-aef7-a9edc0596a90", "metadata": {}, "source": [ "# PublicDatasets (Analyser)" ] }, { "cell_type": "markdown", "id": "df4b8014-f228-46f3-a745-bfb4e63cbc60", "metadata": {}, "source": [ "## 1. Re-reading" ] }, { "cell_type": "code", "execution_count": 1, "id": "17433dfb-a29b-4374-9112-0ad4afa2224a", "metadata": {}, "outputs": [], "source": [ "special_separator = '___'" ] }, { "cell_type": "code", "execution_count": 2, "id": "ba056aa2-a5a2-4c12-923c-814b78cfa6a2", "metadata": {}, "outputs": [], "source": [ "import pandas as pd\n", "import re" ] }, { "cell_type": "code", "execution_count": 3, "id": "a553a422-2566-4a43-824b-6baaff9027d2", "metadata": {}, "outputs": [], "source": [ "research_paper_table = pd.read_csv('data/ResearchPapers.csv',index_col=0)" ] }, { "cell_type": "code", "execution_count": 4, "id": "b5f4b519-9ce8-43f3-ba33-e5c5e491e5b5", "metadata": {}, "outputs": [], "source": [ "#Drop ignored\n", "research_paper_table\n", "research_paper_table = research_paper_table[research_paper_table.included] " ] }, { "cell_type": "code", "execution_count": 5, "id": "bd1b100a-f80d-4f13-ac61-88717d87a31c", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", " | Venue | \n", "Title | \n", "included | \n", "
---|---|---|---|
1 | \n", "CHIL 2022 | \n", "Data Augmentation for Electrocardiograms | \n", "True | \n", "
2 | \n", "CHIL 2022 | \n", "MedMCQA: A Large-scale Multi-Subject Multi-Cho... | \n", "True | \n", "
3 | \n", "CHIL 2022 | \n", "Disability prediction in multiple sclerosis us... | \n", "True | \n", "
4 | \n", "CHIL 2022 | \n", "Lead-agnostic Self-supervised Learning for Loc... | \n", "True | \n", "
5 | \n", "CHIL 2022 | \n", "Context-Sensitive Spelling Correction of Clini... | \n", "True | \n", "
\n", " | Venue | \n", "Paper Title | \n", "Mention Style | \n", "Mention | \n", "Notes | \n", "
---|---|---|---|---|---|
0 | \n", "CHIL 2022 | \n", "Data Augmentation for Electrocardiograms | \n", "Inline Citation | \n", "wagner et al., 2020 | \n", "data and code availability we use three\\ndatas... | \n", "
1 | \n", "CHIL 2022 | \n", "Data Augmentation for Electrocardiograms | \n", "Inline Citation | \n", "goldberger et al., 2000 | \n", "\n", " |
2 | \n", "CHIL 2022 | \n", "Data Augmentation for Electrocardiograms | \n", "URL | \n", "https://github.com/aniruddhraghu/ecg_aug | \n", "\n", " |
3 | \n", "CHIL 2022 | \n", "Lead-agnostic Self-supervised Learning for Loc... | \n", "Inline Citation | \n", "reyna et al., 2021 | \n", "data and code availability this paper uses\\nth... | \n", "
4 | \n", "CHIL 2022 | \n", "Lead-agnostic Self-supervised Learning for Loc... | \n", "Inline Citation | \n", "wagner et al., 2020 | \n", "\n", " |
... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "
72 | \n", "CHIL 2022 | \n", "Identification of Subgroups With Similar Benef... | \n", "Inline Citation | \n", "jiang and li (2016) | \n", "\n", " |
73 | \n", "CHIL 2022 | \n", "Identification of Subgroups With Similar Benef... | \n", "Inline Citation | \n", "thomas and brunskill (2016) | \n", "\n", " |
74 | \n", "CHIL 2022 | \n", "Identification of Subgroups With Similar Benef... | \n", "Inline Citation | \n", "kallus and uehara (2020) | \n", "\n", " |
75 | \n", "CHIL 2022 | \n", "Identification of Subgroups With Similar Benef... | \n", "Inline Citation | \n", "komorowski et al. (2018) | \n", "\n", " |
76 | \n", "CHIL 2022 | \n", "Identification of Subgroups With Similar Benef... | \n", "Footnote | \n", "6 | \n", "\n", " |
77 rows à 5 columns
\n", "