import os import requests import pandas as pd import datetime import numpy as np from utils import * from cftc import * sina_commodity_code_name = { 'CL': 'WTI_CFD', 'OIL': 'BRENT_CFD', 'DBI': 'DBI_CFD', # 迪æåæ²¹ 'GAS': 'DIESEL_OIL_CFD', # æ´æ²¹ 'FCPO': 'PALM_OIL_CFD', # 马æ¥è¥¿äºæ£æ¦æ²¹ 'GASO': 'GASOLINE_CFD', # 汽油 'NG': 'NATURAL_GAS_CFD', 'GC': 'GOLD_CFD', 'SI': 'SILVER_CFD', 'S': 'SOYBEAN_CFD', 'BO': 'SOYBEAN_OIL_CFD', 'SM': 'SOYBEAN_MEAL_CFD', # è±ç² 'C': 'CORN_CFD', 'W': 'WHEAT_CFD', 'CAD': 'COPPER_CFD', 'AHD': 'ALUMINUM_CFD', 'PBD': 'LEAD_CFD', 'ZSD': 'ZINC_CFD', 'NID': 'NICKLE_CFD', 'SND': 'TIN_CFD', 'RS': 'SUGAR_CFD', 'CT': 'COTTON_CFD', 'FEF': 'IRON_ORE_CFD', 'ES': 'SP500_CFD', } headers = { "Accept": "application/json, text/plain, */*", "Accept-Language": "zh-CN,zh;q=0.8,zh-TW;q=0.7,zh-HK;q=0.5,en-US;q=0.3,en;q=0.2", "Accept-Encoding": "gzip, deflate, br", "Cache-Control": "no-cache", "Content-Type": "application/x-www-form-urlencoded; charset=UTF-8", "Host": "stock2.finance.sina.com.cn", "Proxy-Connection": "keep-alive", 'Sec-Fetch-Site': 'same-site', "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:106.0) Gecko/20100101 Firefox/106.0", } sina_cn_commodity_code_name = { 'SC0': 'SC0', 'AU0': 'AU0', 'AG0': 'AG0', 'CU0': 'CU0', 'AL0': 'AL0', 'ZN0': 'ZN0', } headers2 = { "Accept": "application/json, text/plain, */*", "Accept-Language": "zh-CN,zh;q=0.8,zh-TW;q=0.7,zh-HK;q=0.5,en-US;q=0.3,en;q=0.2", "Accept-Encoding": "gzip, deflate, br", "Cache-Control": "no-cache", "Content-Type": "application/x-www-form-urlencoded; charset=UTF-8", "Host": "gu.sina.cn", "Proxy-Connection": "keep-alive", 'Sec-Fetch-Site': 'same-site', "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:106.0) Gecko/20100101 Firefox/106.0", } # finance.sina.com def update_commodity_cfd_daily_data(): se = requests.session() SINA_COMMODITY_URL = 'https://stock2.finance.sina.com.cn/futures/api/jsonp.php/var%20_data=/GlobalFuturesService.getGlobalFuturesDailyKLine?symbol={}' for code in sina_commodity_code_name: name = sina_commodity_code_name[code] print(name) url = SINA_COMMODITY_URL.format(code) r = se.get(url, verify=False, headers=headers) s = r.text s=s.replace('},', '') s=s.replace('"', '') s=s.replace('}]);', '') z = s.split('{')[1:] datas = [] for i in range(len(z)): data = z[i].split(',')[:7] for k in range(len(data)): data[k] = data[k].split(':')[1] datas.append(data) path = os.path.join(cfd_dir, name+'.csv') df = pd.DataFrame(columns=['time','open','high','low','close','volume','oi'], data=datas) df.to_csv(path, encoding='utf-8', index=False) if os.path.exists(path): old_df = pd.read_csv(path) old_df = pd.concat([old_df, df], axis=0) old_df.drop_duplicates(subset=['time'], keep='last', inplace=True) old_df['time'] = old_df['time'].apply(lambda x:pd.to_datetime(x, format='%Y-%m-%d')) old_df.sort_values(by = 'time', inplace=True) old_df['time'] = old_df['time'].apply(lambda x:datetime.datetime.strftime(x,'%Y-%m-%d')) old_df.to_csv(path, encoding='utf-8', index=False) else: df['time'] = df['time'].apply(lambda x:pd.to_datetime(x, format='%Y-%m-%d')) df.sort_values(by = 'time', inplace=True) df['time'] = df['time'].apply(lambda x:datetime.datetime.strftime(x,'%Y-%m-%d')) df.to_csv(path, encoding='utf-8', index=False) def update_commodity_cfd_intraday_data(): se = requests.session() SINA_COMMODITY_URL = 'https://gu.sina.cn/ft/api/jsonp.php/var%20_data=/GlobalService.getMink?symbol={}&type=5' for code in sina_commodity_code_name: name = sina_commodity_code_name[code] + '_intraday' path = os.path.join(cfd_dir, name+'.csv') if not os.path.exists(path): continue print(name) url = SINA_COMMODITY_URL.format(code) r = se.get(url, verify=False, headers=headers2) s = r.text s=s.replace('},', '') s=s.replace('"', '') s=s.replace('}]);', '') z = s.split('{')[1:] datas = [] for i in range(len(z)): data = z[i].split(',')[:5] data[0] = data[0][2:] for k in range(1, len(data)): data[k] = data[k].split(':')[1] datas.append(data) df = pd.DataFrame(columns=['time','open','high','low','close'], data=datas) old_df = pd.read_csv(path) old_df = pd.concat([old_df, df], axis=0) old_df.drop_duplicates(subset=['time'], keep='last', inplace=True) old_df['time'] = old_df['time'].apply(lambda x:pd.to_datetime(x, format='%Y-%m-%d %H:%M:%S')) old_df.sort_values(by = 'time', inplace=True) old_df['time'] = old_df['time'].apply(lambda x:datetime.datetime.strftime(x,'%Y-%m-%d %H:%M:%S')) old_df.to_csv(path, encoding='utf-8', index=False) def update_cn_commodity_cfd_intraday_data(): se = requests.session() SINA_COMMODITY_URL = 'https://stock2.finance.sina.com.cn/futures/api/jsonp.php/DATA=/InnerFuturesNewService.getFewMinLine?symbol={}&type=5' # https://stock2.finance.sina.com.cn/futures/api/jsonp.php/DATA=/InnerFuturesNewService.getFewMinLine?symbol=ZN0&type=5 for code in sina_cn_commodity_code_name: name = sina_cn_commodity_code_name[code] + '_intraday' path = os.path.join(cfd_dir, name+'.csv') if not os.path.exists(path): continue print(name) url = SINA_COMMODITY_URL.format(code) r = se.get(url, verify=False, headers=headers) s = r.text s=s.replace('},', '') s=s.replace('"', '') s=s.replace('}]);', '') z = s.split('{')[1:] datas = [] for i in range(len(z)): data = z[i].split(',')[:5] data[0] = data[0][2:] for k in range(1, len(data)): data[k] = data[k].split(':')[1] datas.append(data) df = pd.DataFrame(columns=['time','open','high','low','close'], data=datas) old_df = pd.read_csv(path) old_df = pd.concat([old_df, df], axis=0) old_df.drop_duplicates(subset=['time'], keep='last', inplace=True) old_df['time'] = old_df['time'].apply(lambda x:pd.to_datetime(x, format='%Y-%m-%d %H:%M:%S')) old_df.sort_values(by = 'time', inplace=True) old_df['time'] = old_df['time'].apply(lambda x:datetime.datetime.strftime(x,'%Y-%m-%d %H:%M:%S')) old_df.to_csv(path, encoding='utf-8', index=False) def update_usdcny_intraday(): se = requests.session() url = 'https://vip.stock.finance.sina.com.cn/forex/api/jsonp.php/DATA=/NewForexService.getMinKline?symbol=fx_susdcny&scale=5&datalen=1440' print('USDCNY_intraday') path = os.path.join(cfd_dir, 'USDCNY_intraday'+'.csv') r = se.get(url, verify=False, headers=headers2) s = r.text s=s.replace('},', '') s=s.replace('"', '') s=s.replace('}]);', '') z = s.split('{')[1:] datas = [] for i in range(len(z)): data = z[i].split(',')[:5] data[0] = data[0][2:] for k in range(1, len(data)): data[k] = data[k].split(':')[1] datas.append(data) df = pd.DataFrame(columns=['time','open','high','low','close'], data=datas) old_df = pd.read_csv(path) old_df = pd.concat([old_df, df], axis=0) old_df.drop_duplicates(subset=['time'], keep='last', inplace=True) old_df['time'] = old_df['time'].apply(lambda x:pd.to_datetime(x, format='%Y-%m-%d %H:%M:%S')) old_df.sort_values(by = 'time', inplace=True) old_df['time'] = old_df['time'].apply(lambda x:datetime.datetime.strftime(x,'%Y-%m-%d %H:%M:%S')) old_df.to_csv(path, encoding='utf-8', index=False) if __name__=="__main__": update_commodity_cfd_daily_data() # update_commodity_cfd_intraday_data() # update_cn_commodity_cfd_intraday_data() # update_usdcny_intraday() pass