-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathpose.py
120 lines (96 loc) · 2.86 KB
/
pose.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
import numpy as np
from numpy import sin, cos
from math import pi as π
from my3d import camera_pose
from my.config import BaseConf
import random
def get_K(H, W, FoV_x):
FoV_x = FoV_x / 180 * π # to rad
f = 1 / np.tan(FoV_x / 2) * (W / 2)
K = np.array([
[f, 0, -(W/2 - 0.5)],
[0, -f, -(H/2 - 0.5)],
[0, 0, -1]
])
return K
SIDEVIEW_PROMPTS = [
"front view of", "side view of", "backside view of", "side view of"
]
TOPVIEW_PROMPT = "overhead view of"
def train_eye_with_prompts(r, n):
hs = np.random.rand(n) * 360
vs = np.random.rand(n) * np.deg2rad(100)
vs = np.clip(vs, 1e-2, π-1e-2)
prompts = []
v_thresh = np.deg2rad(30)
for i in range(n):
_p = ""
if vs[i] < v_thresh:
_p = TOPVIEW_PROMPT
else:
_a = hs[i]
_a = (_a + 45) % 360
_quad = int(_a // 90)
_p = SIDEVIEW_PROMPTS[_quad]
prompts.append(_p)
θ = np.deg2rad(hs)
# φ = v
φ = np.arccos(1 - 2 * (vs / π))
eyes = np.zeros((n, 3))
eyes[:, 0] = r * sin(φ) * cos(π-θ) # x
eyes[:, 2] = r * sin(φ) * sin(π-θ) # z
eyes[:, 1] = r * cos(φ) # y
return eyes, prompts
def spiral_poses(
radius, height,
num_steps=20, num_rounds=1,
center=np.array([0, 0, 0]), up=np.array([0, 1, 0]),
):
eyes = []
for i in range(num_steps):
ratio = (i + 1) / num_steps
Δy = height * (1 - ratio)
θ = ratio * (360 * num_rounds)
θ = θ / 180 * π
# _r = max(radius * ratio, 0.5)
_r = max(radius * sin(ratio * π / 2), 0.5)
Δx, Δz = _r * np.array([np.cos(θ), np.sin(θ)])
eyes.append(center + [Δx, Δy, Δz])
poses = [
camera_pose(e, center - e, up) for e in eyes
]
return poses
class PoseConfig(BaseConf):
rend_hw: int = 64
FoV: float = 60.0
R: float = 1.5
def make(self):
cfgs = self.dict()
hw = cfgs.pop("rend_hw")
cfgs["H"] = hw
cfgs["W"] = hw
return Poser(**cfgs)
class Poser():
def __init__(self, H, W, FoV, R):
self.H, self.W = H, W
self.R = R
self.K = get_K(H, W, FoV)
def sample_train(self, n):
eyes, prompts = train_eye_with_prompts(r=self.R, n=n)
up = np.array([0, 1, 0])
poses = [
camera_pose(e, -e, up) for e in eyes
]
poses = np.stack(poses, 0)
# FoV during training: [40,70]
random_Ks = [
get_K(self.H, self.W, random.random() * 30 + 40)
for i in range(len(poses))
# self.K for i in range(len(poses))
]
# return self.K, poses, prompts
return random_Ks, poses, prompts
def sample_test(self, n):
poses = spiral_poses(self.R, self.R, n, num_rounds=3)
poses = np.stack(poses, axis=0)
return self.K, poses