/*- * Copyright 2009 Colin Percival * Copyright 2012-2019 Alexander Peslyak * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * This file was originally written by Colin Percival as part of the Tarsnap * online backup system. * * This is a proof-of-work focused fork of yescrypt, including optimized and * cut-down implementation of the obsolete yescrypt 0.5 (based off its first * submission to PHC back in 2014) and a new proof-of-work specific variation * known as yespower 1.0. The former is intended as an upgrade for * cryptocurrencies that already use yescrypt 0.5 and the latter may be used * as a further upgrade (hard fork) by those and other cryptocurrencies. The * version of algorithm to use is requested through parameters, allowing for * both algorithms to co-exist in client and miner implementations (such as in * preparation for a hard-fork). */ #ifndef _YESPOWER_OPT_C_PASS_ #define _YESPOWER_OPT_C_PASS_ 1 #endif #if _YESPOWER_OPT_C_PASS_ == 1 /* * AVX and especially XOP speed up Salsa20 a lot, but needlessly result in * extra instruction prefixes for pwxform (which we make more use of). While * no slowdown from the prefixes is generally observed on AMD CPUs supporting * XOP, some slowdown is sometimes observed on Intel CPUs with AVX. */ #ifdef __GNUC__ #ifdef __XOP__ #warning "Note: XOP is enabled. That's great." #elif defined(__AVX__) #warning "Note: AVX is enabled. That's OK." #elif defined(__SSE2__) #warning "Note: AVX and XOP are not enabled. That's OK." #elif defined(__x86_64__) || defined(__i386__) #warning "SSE2 not enabled. Expect poor performance." #else #warning "Note: building generic code for non-x86. That's OK." #endif #endif /* * The SSE4 code version has fewer instructions than the generic SSE2 version, * but all of the instructions are SIMD, thereby wasting the scalar execution * units. Thus, the generic SSE2 version below actually runs faster on some * CPUs due to its balanced mix of SIMD and scalar instructions. */ #undef USE_SSE4_FOR_32BIT #ifdef __SSE2__ /* * GCC before 4.9 would by default unnecessarily use store/load (without * SSE4.1) or (V)PEXTR (with SSE4.1 or AVX) instead of simply (V)MOV. * This was tracked as GCC bug 54349. * "-mtune=corei7" works around this, but is only supported for GCC 4.6+. * We use inline asm for pre-4.6 GCC, further down this file. */ #if __GNUC__ == 4 && __GNUC_MINOR__ >= 6 && __GNUC_MINOR__ < 9 && \ !defined(__clang__) && !defined(__ICC) #pragma GCC target ("tune=corei7") #endif #include #ifdef __XOP__ #include #endif #elif defined(__SSE__) #include #endif #include #include #include #include #include "insecure_memzero.h" #include "sha256.h" #include "sysendian.h" #include "yespower.h" #include "yespower-platform.c" #if __STDC_VERSION__ >= 199901L /* Have restrict */ #elif defined(__GNUC__) #define restrict __restrict #else #define restrict #endif #ifdef __GNUC__ #define unlikely(exp) __builtin_expect(exp, 0) #else #define unlikely(exp) (exp) #endif #ifdef __SSE__ #define PREFETCH(x, hint) _mm_prefetch((const char *)(x), (hint)); #else #undef PREFETCH #endif typedef union { uint32_t w[16]; uint64_t d[8]; #ifdef __SSE2__ __m128i q[4]; #endif } salsa20_blk_t; static inline void salsa20_simd_shuffle(const salsa20_blk_t *Bin, salsa20_blk_t *Bout) { #define COMBINE(out, in1, in2) \ Bout->d[out] = Bin->w[in1 * 2] | ((uint64_t)Bin->w[in2 * 2 + 1] << 32); COMBINE(0, 0, 2) COMBINE(1, 5, 7) COMBINE(2, 2, 4) COMBINE(3, 7, 1) COMBINE(4, 4, 6) COMBINE(5, 1, 3) COMBINE(6, 6, 0) COMBINE(7, 3, 5) #undef COMBINE } static inline void salsa20_simd_unshuffle(const salsa20_blk_t *Bin, salsa20_blk_t *Bout) { #define UNCOMBINE(out, in1, in2) \ Bout->w[out * 2] = Bin->d[in1]; \ Bout->w[out * 2 + 1] = Bin->d[in2] >> 32; UNCOMBINE(0, 0, 6) UNCOMBINE(1, 5, 3) UNCOMBINE(2, 2, 0) UNCOMBINE(3, 7, 5) UNCOMBINE(4, 4, 2) UNCOMBINE(5, 1, 7) UNCOMBINE(6, 6, 4) UNCOMBINE(7, 3, 1) #undef UNCOMBINE } #ifdef __SSE2__ #define DECL_X \ __m128i X0, X1, X2, X3; #define DECL_Y \ __m128i Y0, Y1, Y2, Y3; #define READ_X(in) \ X0 = (in).q[0]; X1 = (in).q[1]; X2 = (in).q[2]; X3 = (in).q[3]; #define WRITE_X(out) \ (out).q[0] = X0; (out).q[1] = X1; (out).q[2] = X2; (out).q[3] = X3; #ifdef __XOP__ #define ARX(out, in1, in2, s) \ out = _mm_xor_si128(out, _mm_roti_epi32(_mm_add_epi32(in1, in2), s)); #else #define ARX(out, in1, in2, s) { \ __m128i tmp = _mm_add_epi32(in1, in2); \ out = _mm_xor_si128(out, _mm_slli_epi32(tmp, s)); \ out = _mm_xor_si128(out, _mm_srli_epi32(tmp, 32 - s)); \ } #endif #define SALSA20_2ROUNDS \ /* Operate on "columns" */ \ ARX(X1, X0, X3, 7) \ ARX(X2, X1, X0, 9) \ ARX(X3, X2, X1, 13) \ ARX(X0, X3, X2, 18) \ /* Rearrange data */ \ X1 = _mm_shuffle_epi32(X1, 0x93); \ X2 = _mm_shuffle_epi32(X2, 0x4E); \ X3 = _mm_shuffle_epi32(X3, 0x39); \ /* Operate on "rows" */ \ ARX(X3, X0, X1, 7) \ ARX(X2, X3, X0, 9) \ ARX(X1, X2, X3, 13) \ ARX(X0, X1, X2, 18) \ /* Rearrange data */ \ X1 = _mm_shuffle_epi32(X1, 0x39); \ X2 = _mm_shuffle_epi32(X2, 0x4E); \ X3 = _mm_shuffle_epi32(X3, 0x93); /** * Apply the Salsa20 core to the block provided in (X0 ... X3). */ #define SALSA20_wrapper(out, rounds) { \ __m128i Z0 = X0, Z1 = X1, Z2 = X2, Z3 = X3; \ rounds \ (out).q[0] = X0 = _mm_add_epi32(X0, Z0); \ (out).q[1] = X1 = _mm_add_epi32(X1, Z1); \ (out).q[2] = X2 = _mm_add_epi32(X2, Z2); \ (out).q[3] = X3 = _mm_add_epi32(X3, Z3); \ } /** * Apply the Salsa20/2 core to the block provided in X. */ #define SALSA20_2(out) \ SALSA20_wrapper(out, SALSA20_2ROUNDS) #define SALSA20_8ROUNDS \ SALSA20_2ROUNDS SALSA20_2ROUNDS SALSA20_2ROUNDS SALSA20_2ROUNDS /** * Apply the Salsa20/8 core to the block provided in X. */ #define SALSA20_8(out) \ SALSA20_wrapper(out, SALSA20_8ROUNDS) #define XOR_X(in) \ X0 = _mm_xor_si128(X0, (in).q[0]); \ X1 = _mm_xor_si128(X1, (in).q[1]); \ X2 = _mm_xor_si128(X2, (in).q[2]); \ X3 = _mm_xor_si128(X3, (in).q[3]); #define XOR_X_2(in1, in2) \ X0 = _mm_xor_si128((in1).q[0], (in2).q[0]); \ X1 = _mm_xor_si128((in1).q[1], (in2).q[1]); \ X2 = _mm_xor_si128((in1).q[2], (in2).q[2]); \ X3 = _mm_xor_si128((in1).q[3], (in2).q[3]); #define XOR_X_WRITE_XOR_Y_2(out, in) \ (out).q[0] = Y0 = _mm_xor_si128((out).q[0], (in).q[0]); \ (out).q[1] = Y1 = _mm_xor_si128((out).q[1], (in).q[1]); \ (out).q[2] = Y2 = _mm_xor_si128((out).q[2], (in).q[2]); \ (out).q[3] = Y3 = _mm_xor_si128((out).q[3], (in).q[3]); \ X0 = _mm_xor_si128(X0, Y0); \ X1 = _mm_xor_si128(X1, Y1); \ X2 = _mm_xor_si128(X2, Y2); \ X3 = _mm_xor_si128(X3, Y3); #define INTEGERIFY _mm_cvtsi128_si32(X0) #else /* !defined(__SSE2__) */ #define DECL_X \ salsa20_blk_t X; #define DECL_Y \ salsa20_blk_t Y; #define COPY(out, in) \ (out).d[0] = (in).d[0]; \ (out).d[1] = (in).d[1]; \ (out).d[2] = (in).d[2]; \ (out).d[3] = (in).d[3]; \ (out).d[4] = (in).d[4]; \ (out).d[5] = (in).d[5]; \ (out).d[6] = (in).d[6]; \ (out).d[7] = (in).d[7]; #define READ_X(in) COPY(X, in) #define WRITE_X(out) COPY(out, X) /** * salsa20(B): * Apply the Salsa20 core to the provided block. */ static inline void salsa20(salsa20_blk_t *restrict B, salsa20_blk_t *restrict Bout, uint32_t doublerounds) { salsa20_blk_t X; #define x X.w salsa20_simd_unshuffle(B, &X); do { #define R(a,b) (((a) << (b)) | ((a) >> (32 - (b)))) /* Operate on columns */ x[ 4] ^= R(x[ 0]+x[12], 7); x[ 8] ^= R(x[ 4]+x[ 0], 9); x[12] ^= R(x[ 8]+x[ 4],13); x[ 0] ^= R(x[12]+x[ 8],18); x[ 9] ^= R(x[ 5]+x[ 1], 7); x[13] ^= R(x[ 9]+x[ 5], 9); x[ 1] ^= R(x[13]+x[ 9],13); x[ 5] ^= R(x[ 1]+x[13],18); x[14] ^= R(x[10]+x[ 6], 7); x[ 2] ^= R(x[14]+x[10], 9); x[ 6] ^= R(x[ 2]+x[14],13); x[10] ^= R(x[ 6]+x[ 2],18); x[ 3] ^= R(x[15]+x[11], 7); x[ 7] ^= R(x[ 3]+x[15], 9); x[11] ^= R(x[ 7]+x[ 3],13); x[15] ^= R(x[11]+x[ 7],18); /* Operate on rows */ x[ 1] ^= R(x[ 0]+x[ 3], 7); x[ 2] ^= R(x[ 1]+x[ 0], 9); x[ 3] ^= R(x[ 2]+x[ 1],13); x[ 0] ^= R(x[ 3]+x[ 2],18); x[ 6] ^= R(x[ 5]+x[ 4], 7); x[ 7] ^= R(x[ 6]+x[ 5], 9); x[ 4] ^= R(x[ 7]+x[ 6],13); x[ 5] ^= R(x[ 4]+x[ 7],18); x[11] ^= R(x[10]+x[ 9], 7); x[ 8] ^= R(x[11]+x[10], 9); x[ 9] ^= R(x[ 8]+x[11],13); x[10] ^= R(x[ 9]+x[ 8],18); x[12] ^= R(x[15]+x[14], 7); x[13] ^= R(x[12]+x[15], 9); x[14] ^= R(x[13]+x[12],13); x[15] ^= R(x[14]+x[13],18); #undef R } while (--doublerounds); #undef x { uint32_t i; salsa20_simd_shuffle(&X, Bout); for (i = 0; i < 16; i += 4) { B->w[i] = Bout->w[i] += B->w[i]; B->w[i + 1] = Bout->w[i + 1] += B->w[i + 1]; B->w[i + 2] = Bout->w[i + 2] += B->w[i + 2]; B->w[i + 3] = Bout->w[i + 3] += B->w[i + 3]; } } } /** * Apply the Salsa20/2 core to the block provided in X. */ #define SALSA20_2(out) \ salsa20(&X, &out, 1); /** * Apply the Salsa20/8 core to the block provided in X. */ #define SALSA20_8(out) \ salsa20(&X, &out, 4); #define XOR(out, in1, in2) \ (out).d[0] = (in1).d[0] ^ (in2).d[0]; \ (out).d[1] = (in1).d[1] ^ (in2).d[1]; \ (out).d[2] = (in1).d[2] ^ (in2).d[2]; \ (out).d[3] = (in1).d[3] ^ (in2).d[3]; \ (out).d[4] = (in1).d[4] ^ (in2).d[4]; \ (out).d[5] = (in1).d[5] ^ (in2).d[5]; \ (out).d[6] = (in1).d[6] ^ (in2).d[6]; \ (out).d[7] = (in1).d[7] ^ (in2).d[7]; #define XOR_X(in) XOR(X, X, in) #define XOR_X_2(in1, in2) XOR(X, in1, in2) #define XOR_X_WRITE_XOR_Y_2(out, in) \ XOR(Y, out, in) \ COPY(out, Y) \ XOR(X, X, Y) #define INTEGERIFY (uint32_t)X.d[0] #endif /** * Apply the Salsa20 core to the block provided in X ^ in. */ #define SALSA20_XOR_MEM(in, out) \ XOR_X(in) \ SALSA20(out) #define SALSA20 SALSA20_8 #else /* pass 2 */ #undef SALSA20 #define SALSA20 SALSA20_2 #endif /** * blockmix_salsa(Bin, Bout): * Compute Bout = BlockMix_{salsa20, 1}(Bin). The input Bin must be 128 * bytes in length; the output Bout must also be the same size. */ static inline void blockmix_salsa(const salsa20_blk_t *restrict Bin, salsa20_blk_t *restrict Bout) { DECL_X READ_X(Bin[1]) SALSA20_XOR_MEM(Bin[0], Bout[0]) SALSA20_XOR_MEM(Bin[1], Bout[1]) } static inline uint32_t blockmix_salsa_xor(const salsa20_blk_t *restrict Bin1, const salsa20_blk_t *restrict Bin2, salsa20_blk_t *restrict Bout) { DECL_X XOR_X_2(Bin1[1], Bin2[1]) XOR_X(Bin1[0]) SALSA20_XOR_MEM(Bin2[0], Bout[0]) XOR_X(Bin1[1]) SALSA20_XOR_MEM(Bin2[1], Bout[1]) return INTEGERIFY; } #if _YESPOWER_OPT_C_PASS_ == 1 /* This is tunable, but it is part of what defines a yespower version */ /* Version 0.5 */ #define Swidth_0_5 8 /* Version 1.0 */ #define Swidth_1_0 11 /* Not tunable in this implementation, hard-coded in a few places */ #define PWXsimple 2 #define PWXgather 4 /* Derived value. Not tunable on its own. */ #define PWXbytes (PWXgather * PWXsimple * 8) /* (Maybe-)runtime derived values. Not tunable on their own. */ #define Swidth_to_Sbytes1(Swidth) ((1 << (Swidth)) * PWXsimple * 8) #define Swidth_to_Smask(Swidth) (((1 << (Swidth)) - 1) * PWXsimple * 8) #define Smask_to_Smask2(Smask) (((uint64_t)(Smask) << 32) | (Smask)) /* These should be compile-time derived */ #define Smask2_0_5 Smask_to_Smask2(Swidth_to_Smask(Swidth_0_5)) #define Smask2_1_0 Smask_to_Smask2(Swidth_to_Smask(Swidth_1_0)) typedef struct { uint8_t *S0, *S1, *S2; size_t w; uint32_t Sbytes; } pwxform_ctx_t; #define DECL_SMASK2REG /* empty */ #define MAYBE_MEMORY_BARRIER /* empty */ #ifdef __SSE2__ /* * (V)PSRLDQ and (V)PSHUFD have higher throughput than (V)PSRLQ on some CPUs * starting with Sandy Bridge. Additionally, PSHUFD uses separate source and * destination registers, whereas the shifts would require an extra move * instruction for our code when building without AVX. Unfortunately, PSHUFD * is much slower on Conroe (4 cycles latency vs. 1 cycle latency for PSRLQ) * and somewhat slower on some non-Intel CPUs (luckily not including AMD * Bulldozer and Piledriver). */ #ifdef __AVX__ #define HI32(X) \ _mm_srli_si128((X), 4) #elif 1 /* As an option, check for __SSE4_1__ here not to hurt Conroe */ #define HI32(X) \ _mm_shuffle_epi32((X), _MM_SHUFFLE(2,3,0,1)) #else #define HI32(X) \ _mm_srli_epi64((X), 32) #endif #if defined(__x86_64__) && \ __GNUC__ == 4 && __GNUC_MINOR__ < 6 && !defined(__ICC) #ifdef __AVX__ #define MOVQ "vmovq" #else /* "movq" would be more correct, but "movd" is supported by older binutils * due to an error in AMD's spec for x86-64. */ #define MOVQ "movd" #endif #define EXTRACT64(X) ({ \ uint64_t result; \ __asm__(MOVQ " %1, %0" : "=r" (result) : "x" (X)); \ result; \ }) #elif defined(__x86_64__) && !defined(_MSC_VER) && !defined(__OPEN64__) /* MSVC and Open64 had bugs */ #define EXTRACT64(X) _mm_cvtsi128_si64(X) #elif defined(__x86_64__) && defined(__SSE4_1__) /* No known bugs for this intrinsic */ #include #define EXTRACT64(X) _mm_extract_epi64((X), 0) #elif defined(USE_SSE4_FOR_32BIT) && defined(__SSE4_1__) /* 32-bit */ #include #if 0 /* This is currently unused by the code below, which instead uses these two * intrinsics explicitly when (!defined(__x86_64__) && defined(__SSE4_1__)) */ #define EXTRACT64(X) \ ((uint64_t)(uint32_t)_mm_cvtsi128_si32(X) | \ ((uint64_t)(uint32_t)_mm_extract_epi32((X), 1) << 32)) #endif #else /* 32-bit or compilers with known past bugs in _mm_cvtsi128_si64() */ #define EXTRACT64(X) \ ((uint64_t)(uint32_t)_mm_cvtsi128_si32(X) | \ ((uint64_t)(uint32_t)_mm_cvtsi128_si32(HI32(X)) << 32)) #endif #if defined(__x86_64__) && (defined(__AVX__) || !defined(__GNUC__)) /* 64-bit with AVX */ /* Force use of 64-bit AND instead of two 32-bit ANDs */ #undef DECL_SMASK2REG #if defined(__GNUC__) && !defined(__ICC) #define DECL_SMASK2REG uint64_t Smask2reg = Smask2; /* Force use of lower-numbered registers to reduce number of prefixes, relying * on out-of-order execution and register renaming. */ #define FORCE_REGALLOC_1 \ __asm__("" : "=a" (x), "+d" (Smask2reg), "+S" (S0), "+D" (S1)); #define FORCE_REGALLOC_2 \ __asm__("" : : "c" (lo)); #else static volatile uint64_t Smask2var = Smask2; #define DECL_SMASK2REG uint64_t Smask2reg = Smask2var; #define FORCE_REGALLOC_1 /* empty */ #define FORCE_REGALLOC_2 /* empty */ #endif #define PWXFORM_SIMD(X) { \ uint64_t x; \ FORCE_REGALLOC_1 \ uint32_t lo = x = EXTRACT64(X) & Smask2reg; \ FORCE_REGALLOC_2 \ uint32_t hi = x >> 32; \ X = _mm_mul_epu32(HI32(X), X); \ X = _mm_add_epi64(X, *(__m128i *)(S0 + lo)); \ X = _mm_xor_si128(X, *(__m128i *)(S1 + hi)); \ } #elif defined(__x86_64__) /* 64-bit without AVX. This relies on out-of-order execution and register * renaming. It may actually be fastest on CPUs with AVX(2) as well - e.g., * it runs great on Haswell. */ #warning "Note: using x86-64 inline assembly for pwxform. That's great." #undef MAYBE_MEMORY_BARRIER #define MAYBE_MEMORY_BARRIER \ __asm__("" : : : "memory"); #ifdef __ILP32__ /* x32 */ #define REGISTER_PREFIX "e" #else #define REGISTER_PREFIX "r" #endif #define PWXFORM_SIMD(X) { \ __m128i H; \ __asm__( \ "movd %0, %%rax\n\t" \ "pshufd $0xb1, %0, %1\n\t" \ "andq %2, %%rax\n\t" \ "pmuludq %1, %0\n\t" \ "movl %%eax, %%ecx\n\t" \ "shrq $0x20, %%rax\n\t" \ "paddq (%3,%%" REGISTER_PREFIX "cx), %0\n\t" \ "pxor (%4,%%" REGISTER_PREFIX "ax), %0\n\t" \ : "+x" (X), "=x" (H) \ : "d" (Smask2), "S" (S0), "D" (S1) \ : "cc", "ax", "cx"); \ } #elif defined(USE_SSE4_FOR_32BIT) && defined(__SSE4_1__) /* 32-bit with SSE4.1 */ #define PWXFORM_SIMD(X) { \ __m128i x = _mm_and_si128(X, _mm_set1_epi64x(Smask2)); \ __m128i s0 = *(__m128i *)(S0 + (uint32_t)_mm_cvtsi128_si32(x)); \ __m128i s1 = *(__m128i *)(S1 + (uint32_t)_mm_extract_epi32(x, 1)); \ X = _mm_mul_epu32(HI32(X), X); \ X = _mm_add_epi64(X, s0); \ X = _mm_xor_si128(X, s1); \ } #else /* 32-bit without SSE4.1 */ #define PWXFORM_SIMD(X) { \ uint64_t x = EXTRACT64(X) & Smask2; \ __m128i s0 = *(__m128i *)(S0 + (uint32_t)x); \ __m128i s1 = *(__m128i *)(S1 + (x >> 32)); \ X = _mm_mul_epu32(HI32(X), X); \ X = _mm_add_epi64(X, s0); \ X = _mm_xor_si128(X, s1); \ } #endif #define PWXFORM_SIMD_WRITE(X, Sw) \ PWXFORM_SIMD(X) \ MAYBE_MEMORY_BARRIER \ *(__m128i *)(Sw + w) = X; \ MAYBE_MEMORY_BARRIER #define PWXFORM_ROUND \ PWXFORM_SIMD(X0) \ PWXFORM_SIMD(X1) \ PWXFORM_SIMD(X2) \ PWXFORM_SIMD(X3) #define PWXFORM_ROUND_WRITE4 \ PWXFORM_SIMD_WRITE(X0, S0) \ PWXFORM_SIMD_WRITE(X1, S1) \ w += 16; \ PWXFORM_SIMD_WRITE(X2, S0) \ PWXFORM_SIMD_WRITE(X3, S1) \ w += 16; #define PWXFORM_ROUND_WRITE2 \ PWXFORM_SIMD_WRITE(X0, S0) \ PWXFORM_SIMD_WRITE(X1, S1) \ w += 16; \ PWXFORM_SIMD(X2) \ PWXFORM_SIMD(X3) #else /* !defined(__SSE2__) */ #define PWXFORM_SIMD(x0, x1) { \ uint64_t x = x0 & Smask2; \ uint64_t *p0 = (uint64_t *)(S0 + (uint32_t)x); \ uint64_t *p1 = (uint64_t *)(S1 + (x >> 32)); \ x0 = ((x0 >> 32) * (uint32_t)x0 + p0[0]) ^ p1[0]; \ x1 = ((x1 >> 32) * (uint32_t)x1 + p0[1]) ^ p1[1]; \ } #define PWXFORM_SIMD_WRITE(x0, x1, Sw) \ PWXFORM_SIMD(x0, x1) \ ((uint64_t *)(Sw + w))[0] = x0; \ ((uint64_t *)(Sw + w))[1] = x1; #define PWXFORM_ROUND \ PWXFORM_SIMD(X.d[0], X.d[1]) \ PWXFORM_SIMD(X.d[2], X.d[3]) \ PWXFORM_SIMD(X.d[4], X.d[5]) \ PWXFORM_SIMD(X.d[6], X.d[7]) #define PWXFORM_ROUND_WRITE4 \ PWXFORM_SIMD_WRITE(X.d[0], X.d[1], S0) \ PWXFORM_SIMD_WRITE(X.d[2], X.d[3], S1) \ w += 16; \ PWXFORM_SIMD_WRITE(X.d[4], X.d[5], S0) \ PWXFORM_SIMD_WRITE(X.d[6], X.d[7], S1) \ w += 16; #define PWXFORM_ROUND_WRITE2 \ PWXFORM_SIMD_WRITE(X.d[0], X.d[1], S0) \ PWXFORM_SIMD_WRITE(X.d[2], X.d[3], S1) \ w += 16; \ PWXFORM_SIMD(X.d[4], X.d[5]) \ PWXFORM_SIMD(X.d[6], X.d[7]) #endif #define PWXFORM \ PWXFORM_ROUND PWXFORM_ROUND PWXFORM_ROUND \ PWXFORM_ROUND PWXFORM_ROUND PWXFORM_ROUND #define Smask2 Smask2_0_5 #else /* pass 2 */ #undef PWXFORM #define PWXFORM \ PWXFORM_ROUND_WRITE4 PWXFORM_ROUND_WRITE2 PWXFORM_ROUND_WRITE2 \ w &= Smask2; \ { \ uint8_t *Stmp = S2; \ S2 = S1; \ S1 = S0; \ S0 = Stmp; \ } #undef Smask2 #define Smask2 Smask2_1_0 #endif /** * blockmix_pwxform(Bin, Bout, r, S): * Compute Bout = BlockMix_pwxform{salsa20, r, S}(Bin). The input Bin must * be 128r bytes in length; the output Bout must also be the same size. */ static void blockmix(const salsa20_blk_t *restrict Bin, salsa20_blk_t *restrict Bout, size_t r, pwxform_ctx_t *restrict ctx) { if (unlikely(!ctx)) { blockmix_salsa(Bin, Bout); return; } uint8_t *S0 = ctx->S0, *S1 = ctx->S1; #if _YESPOWER_OPT_C_PASS_ > 1 uint8_t *S2 = ctx->S2; size_t w = ctx->w; #endif size_t i; DECL_X /* Convert count of 128-byte blocks to max index of 64-byte block */ r = r * 2 - 1; READ_X(Bin[r]) DECL_SMASK2REG i = 0; do { XOR_X(Bin[i]) PWXFORM if (unlikely(i >= r)) break; WRITE_X(Bout[i]) i++; } while (1); #if _YESPOWER_OPT_C_PASS_ > 1 ctx->S0 = S0; ctx->S1 = S1; ctx->S2 = S2; ctx->w = w; #endif SALSA20(Bout[i]) } static uint32_t blockmix_xor(const salsa20_blk_t *restrict Bin1, const salsa20_blk_t *restrict Bin2, salsa20_blk_t *restrict Bout, size_t r, pwxform_ctx_t *restrict ctx) { if (unlikely(!ctx)) return blockmix_salsa_xor(Bin1, Bin2, Bout); uint8_t *S0 = ctx->S0, *S1 = ctx->S1; #if _YESPOWER_OPT_C_PASS_ > 1 uint8_t *S2 = ctx->S2; size_t w = ctx->w; #endif size_t i; DECL_X /* Convert count of 128-byte blocks to max index of 64-byte block */ r = r * 2 - 1; #ifdef PREFETCH PREFETCH(&Bin2[r], _MM_HINT_T0) for (i = 0; i < r; i++) { PREFETCH(&Bin2[i], _MM_HINT_T0) } #endif XOR_X_2(Bin1[r], Bin2[r]) DECL_SMASK2REG i = 0; r--; do { XOR_X(Bin1[i]) XOR_X(Bin2[i]) PWXFORM WRITE_X(Bout[i]) XOR_X(Bin1[i + 1]) XOR_X(Bin2[i + 1]) PWXFORM if (unlikely(i >= r)) break; WRITE_X(Bout[i + 1]) i += 2; } while (1); i++; #if _YESPOWER_OPT_C_PASS_ > 1 ctx->S0 = S0; ctx->S1 = S1; ctx->S2 = S2; ctx->w = w; #endif SALSA20(Bout[i]) return INTEGERIFY; } static uint32_t blockmix_xor_save(salsa20_blk_t *restrict Bin1out, salsa20_blk_t *restrict Bin2, size_t r, pwxform_ctx_t *restrict ctx) { uint8_t *S0 = ctx->S0, *S1 = ctx->S1; #if _YESPOWER_OPT_C_PASS_ > 1 uint8_t *S2 = ctx->S2; size_t w = ctx->w; #endif size_t i; DECL_X DECL_Y /* Convert count of 128-byte blocks to max index of 64-byte block */ r = r * 2 - 1; #ifdef PREFETCH PREFETCH(&Bin2[r], _MM_HINT_T0) for (i = 0; i < r; i++) { PREFETCH(&Bin2[i], _MM_HINT_T0) } #endif XOR_X_2(Bin1out[r], Bin2[r]) DECL_SMASK2REG i = 0; r--; do { XOR_X_WRITE_XOR_Y_2(Bin2[i], Bin1out[i]) PWXFORM WRITE_X(Bin1out[i]) XOR_X_WRITE_XOR_Y_2(Bin2[i + 1], Bin1out[i + 1]) PWXFORM if (unlikely(i >= r)) break; WRITE_X(Bin1out[i + 1]) i += 2; } while (1); i++; #if _YESPOWER_OPT_C_PASS_ > 1 ctx->S0 = S0; ctx->S1 = S1; ctx->S2 = S2; ctx->w = w; #endif SALSA20(Bin1out[i]) return INTEGERIFY; } #if _YESPOWER_OPT_C_PASS_ == 1 /** * integerify(B, r): * Return the result of parsing B_{2r-1} as a little-endian integer. */ static inline uint32_t integerify(const salsa20_blk_t *B, size_t r) { /* * Our 64-bit words are in host byte order, which is why we don't just read * w[0] here (would be wrong on big-endian). Also, our 32-bit words are * SIMD-shuffled, but we only care about the least significant 32 bits anyway. */ return (uint32_t)B[2 * r - 1].d[0]; } #endif /** * smix1(B, r, N, V, XY, S): * Compute first loop of B = SMix_r(B, N). The input B must be 128r bytes in * length; the temporary storage V must be 128rN bytes in length; the temporary * storage XY must be 128r+64 bytes in length. N must be even and at least 4. * The array V must be aligned to a multiple of 64 bytes, and arrays B and XY * to a multiple of at least 16 bytes. */ static void smix1(uint8_t *B, size_t r, uint32_t N, salsa20_blk_t *V, salsa20_blk_t *XY, pwxform_ctx_t *ctx) { size_t s = 2 * r; salsa20_blk_t *X = V, *Y = &V[s], *V_j; uint32_t i, j, n; #if _YESPOWER_OPT_C_PASS_ == 1 for (i = 0; i < 2 * r; i++) { #else for (i = 0; i < 2; i++) { #endif const salsa20_blk_t *src = (salsa20_blk_t *)&B[i * 64]; salsa20_blk_t *tmp = Y; salsa20_blk_t *dst = &X[i]; size_t k; for (k = 0; k < 16; k++) tmp->w[k] = le32dec(&src->w[k]); salsa20_simd_shuffle(tmp, dst); } #if _YESPOWER_OPT_C_PASS_ > 1 for (i = 1; i < r; i++) blockmix(&X[(i - 1) * 2], &X[i * 2], 1, ctx); #endif blockmix(X, Y, r, ctx); X = Y + s; blockmix(Y, X, r, ctx); j = integerify(X, r); for (n = 2; n < N; n <<= 1) { uint32_t m = (n < N / 2) ? n : (N - 1 - n); for (i = 1; i < m; i += 2) { Y = X + s; j &= n - 1; j += i - 1; V_j = &V[j * s]; j = blockmix_xor(X, V_j, Y, r, ctx); j &= n - 1; j += i; V_j = &V[j * s]; X = Y + s; j = blockmix_xor(Y, V_j, X, r, ctx); } } n >>= 1; j &= n - 1; j += N - 2 - n; V_j = &V[j * s]; Y = X + s; j = blockmix_xor(X, V_j, Y, r, ctx); j &= n - 1; j += N - 1 - n; V_j = &V[j * s]; blockmix_xor(Y, V_j, XY, r, ctx); for (i = 0; i < 2 * r; i++) { const salsa20_blk_t *src = &XY[i]; salsa20_blk_t *tmp = &XY[s]; salsa20_blk_t *dst = (salsa20_blk_t *)&B[i * 64]; size_t k; for (k = 0; k < 16; k++) le32enc(&tmp->w[k], src->w[k]); salsa20_simd_unshuffle(tmp, dst); } } /** * smix2(B, r, N, Nloop, V, XY, S): * Compute second loop of B = SMix_r(B, N). The input B must be 128r bytes in * length; the temporary storage V must be 128rN bytes in length; the temporary * storage XY must be 256r bytes in length. N must be a power of 2 and at * least 2. Nloop must be even. The array V must be aligned to a multiple of * 64 bytes, and arrays B and XY to a multiple of at least 16 bytes. */ static void smix2(uint8_t *B, size_t r, uint32_t N, uint32_t Nloop, salsa20_blk_t *V, salsa20_blk_t *XY, pwxform_ctx_t *ctx) { size_t s = 2 * r; salsa20_blk_t *X = XY, *Y = &XY[s]; uint32_t i, j; for (i = 0; i < 2 * r; i++) { const salsa20_blk_t *src = (salsa20_blk_t *)&B[i * 64]; salsa20_blk_t *tmp = Y; salsa20_blk_t *dst = &X[i]; size_t k; for (k = 0; k < 16; k++) tmp->w[k] = le32dec(&src->w[k]); salsa20_simd_shuffle(tmp, dst); } j = integerify(X, r) & (N - 1); #if _YESPOWER_OPT_C_PASS_ == 1 if (Nloop > 2) { #endif do { salsa20_blk_t *V_j = &V[j * s]; j = blockmix_xor_save(X, V_j, r, ctx) & (N - 1); V_j = &V[j * s]; j = blockmix_xor_save(X, V_j, r, ctx) & (N - 1); } while (Nloop -= 2); #if _YESPOWER_OPT_C_PASS_ == 1 } else { const salsa20_blk_t * V_j = &V[j * s]; j = blockmix_xor(X, V_j, Y, r, ctx) & (N - 1); V_j = &V[j * s]; blockmix_xor(Y, V_j, X, r, ctx); } #endif for (i = 0; i < 2 * r; i++) { const salsa20_blk_t *src = &X[i]; salsa20_blk_t *tmp = Y; salsa20_blk_t *dst = (salsa20_blk_t *)&B[i * 64]; size_t k; for (k = 0; k < 16; k++) le32enc(&tmp->w[k], src->w[k]); salsa20_simd_unshuffle(tmp, dst); } } /** * smix(B, r, N, V, XY, S): * Compute B = SMix_r(B, N). The input B must be 128rp bytes in length; the * temporary storage V must be 128rN bytes in length; the temporary storage * XY must be 256r bytes in length. N must be a power of 2 and at least 16. * The array V must be aligned to a multiple of 64 bytes, and arrays B and XY * to a multiple of at least 16 bytes (aligning them to 64 bytes as well saves * cache lines, but it might also result in cache bank conflicts). */ static void smix(uint8_t *B, size_t r, uint32_t N, salsa20_blk_t *V, salsa20_blk_t *XY, pwxform_ctx_t *ctx) { #if _YESPOWER_OPT_C_PASS_ == 1 uint32_t Nloop_all = (N + 2) / 3; /* 1/3, round up */ uint32_t Nloop_rw = Nloop_all; Nloop_all++; Nloop_all &= ~(uint32_t)1; /* round up to even */ Nloop_rw &= ~(uint32_t)1; /* round down to even */ #else uint32_t Nloop_rw = (N + 2) / 3; /* 1/3, round up */ Nloop_rw++; Nloop_rw &= ~(uint32_t)1; /* round up to even */ #endif smix1(B, 1, ctx->Sbytes / 128, (salsa20_blk_t *)ctx->S0, XY, NULL); smix1(B, r, N, V, XY, ctx); smix2(B, r, N, Nloop_rw /* must be > 2 */, V, XY, ctx); #if _YESPOWER_OPT_C_PASS_ == 1 if (Nloop_all > Nloop_rw) smix2(B, r, N, 2, V, XY, ctx); #endif } #if _YESPOWER_OPT_C_PASS_ == 1 #undef _YESPOWER_OPT_C_PASS_ #define _YESPOWER_OPT_C_PASS_ 2 #define blockmix_salsa blockmix_salsa_1_0 #define blockmix_salsa_xor blockmix_salsa_xor_1_0 #define blockmix blockmix_1_0 #define blockmix_xor blockmix_xor_1_0 #define blockmix_xor_save blockmix_xor_save_1_0 #define smix1 smix1_1_0 #define smix2 smix2_1_0 #define smix smix_1_0 #include "yespower-opt.c" #undef smix /** * yespower(local, src, srclen, params, dst): * Compute yespower(src[0 .. srclen - 1], N, r), to be checked for "< target". * local is the thread-local data structure, allowing to preserve and reuse a * memory allocation across calls, thereby reducing its overhead. * * Return 0 on success; or -1 on error. */ int yespower(yespower_local_t *local, const uint8_t *src, size_t srclen, const yespower_params_t *params, yespower_binary_t *dst) { yespower_version_t version = params->version; uint32_t N = params->N; uint32_t r = params->r; const uint8_t *pers = params->pers; size_t perslen = params->perslen; uint32_t Swidth; size_t B_size, V_size, XY_size, need; uint8_t *B, *S; salsa20_blk_t *V, *XY; pwxform_ctx_t ctx; uint8_t sha256[32]; /* Sanity-check parameters */ if ((version != YESPOWER_0_5 && version != YESPOWER_1_0) || N < 1024 || N > 512 * 1024 || r < 8 || r > 32 || (N & (N - 1)) != 0 || (!pers && perslen)) { errno = EINVAL; goto fail; } /* Allocate memory */ B_size = (size_t)128 * r; V_size = B_size * N; if (version == YESPOWER_0_5) { XY_size = B_size * 2; Swidth = Swidth_0_5; ctx.Sbytes = 2 * Swidth_to_Sbytes1(Swidth); } else { XY_size = B_size + 64; Swidth = Swidth_1_0; ctx.Sbytes = 3 * Swidth_to_Sbytes1(Swidth); } need = B_size + V_size + XY_size + ctx.Sbytes; if (local->aligned_size < need) { if (free_region(local)) goto fail; if (!alloc_region(local, need)) goto fail; } B = (uint8_t *)local->aligned; V = (salsa20_blk_t *)((uint8_t *)B + B_size); XY = (salsa20_blk_t *)((uint8_t *)V + V_size); S = (uint8_t *)XY + XY_size; ctx.S0 = S; ctx.S1 = S + Swidth_to_Sbytes1(Swidth); SHA256_Buf(src, srclen, sha256); if (version == YESPOWER_0_5) { PBKDF2_SHA256(sha256, sizeof(sha256), src, srclen, 1, B, B_size); memcpy(sha256, B, sizeof(sha256)); smix(B, r, N, V, XY, &ctx); PBKDF2_SHA256(sha256, sizeof(sha256), B, B_size, 1, (uint8_t *)dst, sizeof(*dst)); if (pers) { HMAC_SHA256_Buf(dst, sizeof(*dst), pers, perslen, sha256); SHA256_Buf(sha256, sizeof(sha256), (uint8_t *)dst); } } else { ctx.S2 = S + 2 * Swidth_to_Sbytes1(Swidth); ctx.w = 0; if (pers) { src = pers; srclen = perslen; } else { srclen = 0; } PBKDF2_SHA256(sha256, sizeof(sha256), src, srclen, 1, B, 128); memcpy(sha256, B, sizeof(sha256)); smix_1_0(B, r, N, V, XY, &ctx); HMAC_SHA256_Buf(B + B_size - 64, 64, sha256, sizeof(sha256), (uint8_t *)dst); } /* Success! */ return 0; fail: memset(dst, 0xff, sizeof(*dst)); return -1; } /** * yespower_tls(src, srclen, params, dst): * Compute yespower(src[0 .. srclen - 1], N, r), to be checked for "< target". * The memory allocation is maintained internally using thread-local storage. * * Return 0 on success; or -1 on error. */ int yespower_tls(const uint8_t *src, size_t srclen, const yespower_params_t *params, yespower_binary_t *dst) { #ifdef _MSC_VER static __declspec(thread) int initialized = 0; static __declspec(thread) yespower_local_t local; #else static __thread int initialized = 0; static __thread yespower_local_t local; #endif if (!initialized) { init_region(&local); initialized = 1; } return yespower(&local, src, srclen, params, dst); } int yespower_init_local(yespower_local_t *local) { init_region(local); return 0; } int yespower_free_local(yespower_local_t *local) { return free_region(local); } #endif