-
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathRandSplayHeap.ml
48 lines (46 loc) · 2.18 KB
/
RandSplayHeap.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
(**
* The function definitions in this file are based on
* Section 7 of
*
* Tobias Nipkow, Hauke Brinkop
* Amortized Complexity Verified
* Journal of Automated Reasoning, Vol. 62, Iss. 3, pp. 367-391
* https://doi.org/10.1007/s10817-018-9459-3
* https://dblp.org/rec/journals/jar/NipkowB19
*)
delete_min ∷ (α ⨯ Tree α) → (Tree α ⨯ α) | [[0 ↦ 3/4, (0 2) ↦ 1/2, (1 0) ↦ 3/4] → [0 ↦ 3/4, (0 2) ↦ 1/2], {[(1 0) ↦ 3/8] → [(1 0) ↦ 3/8]}]
delete_min z t = match t with
| leaf → (leaf, z)
| node tab b tc → match tab with
| leaf → (tc, b)
| node ta a tb → match ta with
| leaf → (node tb b tc, a)
| ta → match ~ 1/2 delete_min z ta with
| (t1, m) → if coin
then ~ 1/2 (node t1 a (node tb b tc), m)
else (node (node t1 a tb) b tc, m)
insert ∷ Ord α ⇒ (α ⨯ Tree α) → Tree α | [[0 ↦ 3/4, (0 2) ↦ 1/2, (1 0) ↦ 3/4, (1 1) ↦ 3/4] → [0 ↦ 3/4, (0 2) ↦ 1/2], {[(1 1) ↦ 3/8] → [(1 0) ↦ 3/8]}]
insert d t = match t with
| node tab ab tbc → if ab <= d
then match tbc with
| leaf → node tab ab (node leaf d leaf)
| node tb b tc → if b <= d
then match ~ 1/2 insert d tc with (* zag zag *)
| node tc1 c tc2 → if coin
then ~ 1/2 node (node (node tab ab tb) b tc1) c tc2
else node tab ab (node tb b (node tc1 c tc2))
else match ~ 1/2 insert d tb with (* zag zig *)
| node tb1 c tb2 → if coin
then ~ 1/2 node (node tab ab tb1) d (node tb2 b tc)
else node tab ab (node (node tb1 c tb2) b tc)
else match tab with
| leaf → node (node leaf d leaf) ab tbc
| node ta a tb → if a <= d
then match ~ 1/2 insert d tb with (* zig zag *)
| node tb1 c tb2 → if coin
then ~ 1/2 node (node ta a tb1) c (node tb2 ab tbc)
else node (node ta a (node tb1 c tb2)) ab tbc
else match ~ 1/2 insert d ta with (* zig zig *)
| node ta1 c ta2 → if coin
then ~ 1/2 node ta1 c (node ta2 a (node tb ab tbc))
else node (node (node ta1 c ta2) a tb) ab tbc