Open
Description
While rebasing PR #871 i noticed that our concatenate
operator has strange default values for dims
:
Here's backend/numpy_backend.py
:
@classmethod
def concatenate(cls, arrays, dim=1):
return cls._np.stack(arrays, axis=dim)
Here's backend/tensorflow_backend.py
:
@staticmethod
def concatenate(arrays, dim=1):
return tf.stack(arrays, axis=dim)
Here's backend/torch_backend.py
:
@staticmethod
def concatenate(arrays, dim=2):
return torch.stack(arrays, dim=dim)
I'm a bit confused by this dim=2
default value. And not too happy that the kwargs is called dim
instead of axis
, which would be more compliant with the Python Array API.
Our decision here will affect the semantics of #902
@eickenberg thoughts?
Activity