-
Notifications
You must be signed in to change notification settings - Fork 148
/
index.html
executable file
·358 lines (231 loc) · 12.4 KB
/
index.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
<!--
-->
<!DOCTYPE html>
<html>
<head>
<title>Introduction to geospatial data analysis with GeoPandas and the PyData stack</title>
<meta charset="utf-8">
<link rel="stylesheet" type="text/css" href="img/slides.css">
<!-- <style>
@import url(https://fonts.googleapis.com/css?family=Yanone+Kaffeesatz);
@import url(https://fonts.googleapis.com/css?family=Droid+Serif:400,700,400italic);
@import url(https://fonts.googleapis.com/css?family=Ubuntu+Mono:400,700,400italic);
body { font-family: 'Droid Serif'; }
h1, h2, h3 {
font-family: 'Yanone Kaffeesatz';
font-weight: normal;
}
.remark-code, .remark-inline-code { font-family: 'Ubuntu Mono'; }
#slideshow .slide .content .cols.two .col { width: 48%; }
</style>
-->
</head>
<body>
<textarea id="source">
class: center, middle
# Introduction to geospatial data analysis with GeoPandas and the PyData stack
Joris Van den Bossche, GeoPython conference, June 24, 2019
https://github.com/jorisvandenbossche/geopandas-tutorial
---
# About me
Joris Van den Bossche
- Background: PhD bio-science engineer, air quality research
- Open source enthusiast: pandas core dev, geopandas maintainer, scikit-learn contributor
- Currently freelance open source software developer and teacher + working for Ursa Labs on Apache Arrow
https://github.com/jorisvandenbossche Twitter: [@jorisvdbossche](https://twitter.com/jorisvdbossche)
<div style="margin-bottom:-20px"></div>
<!-- .affiliations[
![:scale 65%](img/logoUPSayPlusCDS_990.png)
![:scale 25%](img/inria-logo.png)
] -->
---
# Raster vs vector data
![:scale 49%](img/raster_example.png)
![:scale 49%](img/vector_example.png)
--
count: false
.right[
### -> in this tutorial: focus on vector data
]
--
count: false
.right[
### -> simple features (points, linestrings, polygons) with attributes
]
???
Two major families of geospatial data
raster: grid based (topology lacking, difficult to link to tabular data)
vector: coordinate based objects, topological
here: vector
vector -> common abstraction model in many software
Open Geospatial consortium standard
Attributes : each vector feature can have a record in attribute table
and that is where geopandas comes into play
but before talking about geopandas, first a bit more general about open source geospatial software
# geospatial software
This presentation: in python
but everything I will present -> builds upon widely used open source libraries
---
class: middle, center
# Open source geospatial software
.center[
![:scale 70%](img/Open_Source_Geospatial_Foundation.svg)
]
???
Open Source Geospatial Foundation
OSGeo was created to support the collaborative development of open source geospatial software, and promote its widespread use.
---
# GDAL / OGR
### Geospatial Data Abstraction Library.
<img style="position: absolute; top: 12px; right: 20px; height:35%" src="img/GDALLogoColor.svg">
* The swiss army knife for geospatial.
* Read and write Raster (GDAL) and Vector (OGR) datasets
* More than 200 (mainly) geospatial formats and protocols.
.center[
![:scale 100%](img/gdal_formats)
]
.credits[
Slide from "GDAL 2.2 What's new?" by Even Rouault (CC BY-SA)
]
???
GDAL is a translator library for raster and vector geospatial data formats. As a library, it presents a single raster abstract data model and single vector abstract data model to the calling application for all supported formats. It also comes with a variety of useful command line utilities for data translation and processing.
<!--
# GDAL / OGR
### Widely used (FOSS & proprietary)
.center[
![:scale 100%](img/gdal_users)
]
.credits[
Slide from "GDAL 2.2 What's new?" by Even Rouault (CC BY-SA)
] -->
---
# GEOS
<img style="position: absolute; top: 20px; right: 20px; width:40%" src="img/geos.gif">
## Geometry Engine Open Source
* C/C++ port of a subset of Java Topology Suite (JTS)
* Most widely used geospatial C++ geometry library
* Implements geometry objects (simple features), spatial predicate functions and spatial operations
Used under the hood by many applications (QGIS, PostGIS, MapServer, GRASS, GeoDjango, ...)
[geos.osgeo.org](http://geos.osgeo.org)
<!-- ---
# PROJ.4
C library for performing conversions between cartographic projections.
[http://proj4.org/](http://proj4.org/) -->
---
# Python geospatial packages
--
count:false
Interfaces to widely used libraries:
- Python bindings to GDAL/OGR (`from osgeo import gdal, ogr`)
- [`pyproj`](https://jswhit.github.io/pyproj/): python interface to PROJ.4.
- Pythonic binding to GDAL/OGR:
- [`rasterio`](https://mapbox.github.io/rasterio/) for GDAL
- [`fiona`](http://toblerity.org/fiona/README.html) for OGR
- [`shapely`](https://shapely.readthedocs.io/en/latest/): python package based on GEOS.
---
# Shapely
Python package for the manipulation and analysis of geometric objects
<div style="margin-bottom:-10px"></div>
Pythonic interface to GEOS
--
count:false
.mmedium[
```python
>>> from shapely.geometry import Point, LineString, Polygon
>>> point = Point(1, 1)
>>> line = LineString([(0, 0), (1, 2), (2, 2)])
>>> poly = line.buffer(1)
```
]
<svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" width="100.0" height="100.0" viewBox="-0.12 -0.12 3.24 2.24" preserveAspectRatio="xMinYMin meet"><g transform="matrix(1,0,0,-1,0,2.0)"><polyline fill="none" stroke="#66cc99" stroke-width="0.06480000000000001" points="0.0,0.0 1.0,2.0 3.0,2.0" opacity="0.8" /></g></svg>
<svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" width="100.0" height="100.0" viewBox="-1.199614564286579 -1.1996145642865792 5.399599739836063 4.399599739836063" preserveAspectRatio="xMinYMin meet"><g transform="matrix(1,0,0,-1,0,2.0003706112629045)"><path fill-rule="evenodd" fill="#66cc99" stroke="#555555" stroke-width="0.10799199479672125" opacity="0.6" d="M 0.10557280900008414,2.447213595499958 L 0.155035474356646,2.53482235406189 L 0.2130507437626893,2.6170177210644305 L 0.2790313953728045,2.692967727345159 L 0.35230958293898673,2.7619036183450834 L 0.4321435956500752,2.823127635326852 L 0.5177253656172087,2.8760200779839153 L 0.6081886470156581,2.920045576953979 L 0.7026177840949897,2.9547585127472944 L 0.8000569793090774,2.979807526240225 L 0.8995199677553422,2.994939075079531 L 1.0,3.0 L 3.0,3.0 L 3.098017140329562,2.9951847266721967 L 3.1950903220161297,2.9807852804032304 L 3.290284677254464,2.9569403357322086 L 3.382683432365091,2.923879532511286 L 3.471396736825999,2.8819212643483545 L 3.555570233019603,2.831469612302545 L 3.634393284163646,2.7730104533627364 L 3.707106781186548,2.707106781186547 L 3.7730104533627373,2.634393284163645 L 3.831469612302546,2.5555702330196017 L 3.8819212643483554,2.471396736825997 L 3.923879532511287,2.382683432365089 L 3.956940335732209,2.290284677254462 L 3.9807852804032304,2.195090322016128 L 3.995184726672197,2.0980171403295604 L 4.0,2.0 L 3.995184726672197,1.9019828596704396 L 3.9807852804032304,1.804909677983872 L 3.956940335732209,1.709715322745538 L 3.923879532511287,1.6173165676349106 L 3.8819212643483554,1.528603263174003 L 3.8314696123025453,1.4444297669803983 L 3.7730104533627373,1.3656067158363547 L 3.707106781186548,1.2928932188134525 L 3.6343932841636457,1.2269895466372631 L 3.555570233019602,1.1685303876974547 L 3.4713967368259975,1.118078735651645 L 3.3826834323650896,1.076120467488713 L 3.290284677254462,1.043059664267791 L 3.195090322016128,1.0192147195967696 L 3.09801714032956,1.004815273327803 L 3.0,1.0 L 1.6180339887498947,1.0 L 0.8944271909999159,-0.4472135954999579 L 0.8462856818560246,-0.5327293352965308 L 0.7899939789690481,-0.6131146003747189 L 0.7260942022099621,-0.6875952366887649 L 0.6552017413601281,-0.7554539549957071 L 0.5779993295712907,-0.816037238742901 L 0.4952304682721081,-0.8687616377896693 L 0.4076922668429532,-0.9131193873511033 L 0.3162277660168373,-0.948683298050514 L 0.22171781893629816,-0.9751108699866549 L 0.12507260805611378,-0.9921475911950004 L 0.02722287958870663,-0.9996293887370953 L -0.0708890200906795,-0.9974842088126424 L -0.16831821975471215,-0.985732710676989 L -0.26412642295040845,-0.9644880676812035 L -0.3573909443069025,-0.9339548773508389 L -0.4472135954999579,-0.8944271909999159 L -0.5327293352965292,-0.8462856818560256 L -0.6131146003747172,-0.7899939789690493 L -0.6875952366887635,-0.7260942022099635 L -0.755453954995706,-0.6552017413601293 L -0.8160372387428999,-0.5779993295712923 L -0.8687616377896683,-0.49523046827210987 L -0.9131193873511024,-0.40769226684295523 L -0.9486832980505132,-0.31622776601683966 L -0.9751108699866542,-0.22171781893630083 L -0.9921475911950001,-0.1250726080561167 L -0.9996293887370952,-0.0272228795887098 L -0.9974842088126427,0.07088902009067612 L -0.9857327106769895,0.1683182197547086 L -0.9644880676812047,0.2641264229504048 L -0.9339548773508404,0.35739094430689866 L -0.8944271909999179,0.4472135954999539 L 0.10557280900008414,2.447213595499958 z" /></g></svg>
<div style="margin-bottom:-45px"></div>
.mmedium[
```python
>>> poly.contains(point)
True
```
]
--
count: false
Nice interface to GEOS, but: single objects, no attributes
???
# Shapely
typical predicates and operations
(images from shapely docs)
---
![:scale 100%](img/pandas_logo.svg)
One of the packages driving the growing popularity of Python for data science, machine learning and academic research
* High-performance, easy-to-use data structures and tools
* Suited for tabular data (e.g. columnar data, spread-sheets, database tables)
```python
import pandas as pd
df = pd.read_csv("myfile.csv")
subset = df[df['value'] > 0]
subset.groupby('key').mean()
```
---
# GeoPandas
Make working with geospatial data in python easier
* Started by Kelsey Jordahl in 2013
* Extends the pandas data analysis library to work with geographic objects and spatial operations
* Combines the power of whole ecosystem of (geo) tools (pandas, geos, shapely, gdal, fiona, pyproj, rtree, ...)
Documentation: http://geopandas.readthedocs.io/
???
make working with geospatial data like working with any other kind of data in python
(data stack, numpy, pandas and other tools around those)
analysis for which you otherwise would need desktop GIS applications (QGIS, ArcGIS) or geospatial databases (PostGIS)
makes pandas objects geometry aware
---
# Summary
* Read and write variety of formats (fiona, GDAL/OGR)
* Familiar manipulation of the attributes (pandas dataframe)
* Element-wise spatial predicates (intersects, within, ...) and operations (intersection, union, difference, ..) (shapely)
* Re-project your data (pyproj)
* Quickly visualize the geometries (matplotlib, descartes)
* More advanced spatial operations: spatial joins and overlays (rtree)
--
count:false
**-> Interactive exploration and analysis of geospatial data**
---
# Ecosystem
[geoplot](http://www.residentmar.io/geoplot/index.html) (high-level geospatial visualization), [cartopy](http://scitools.org.uk/cartopy/) (projection aware cartographic library)
[folium](https://github.com/python-visualization/folium) (Leaflet.js maps)
[OSMnx](http://geoffboeing.com/2016/11/osmnx-python-street-networks/) (python for street networks)
[PySAL](http://pysal.readthedocs.io/en/latest/index.html) (Python Spatial Analysis Library)
[rasterio](https://mapbox.github.io/rasterio/) (working with geospatial raster data)
...
---
class: middle
http://geopandas.readthedocs.io
# Thanks for listening!
## Thanks to all contributors!
## Those slides:
- https://github.com/jorisvandenbossche/talks/
- [jorisvandenbossche.github.io/talks/2018_FOSDEM_geopandas](
http://jorisvandenbossche.github.io/talks/2018_FOSDEM_geopandas)
http://geopandas.readthedocs.io
</textarea>
<!-- <script src="https://gnab.github.io/remark/downloads/remark-latest.min.js">
</script>-->
<script src="img/remark.min.js" type="text/javascript">
</script>
<script>
remark.macros.scale = function (percentage) {
var url = this;
return '<img src="' + url + '" style="width: ' + percentage + '" />';
};
remark.macros.scaleH = function (percentage) {
var url = this;
return '<img src="' + url + '" style="height: ' + percentage + '" />';
};
config_remark = {
highlightStyle: 'github',
highlightSpans: true,
highlightLines: true,
// ratio: "16:9"
};
var slideshow = remark.create(config_remark);
</script>
</body>
</html>