forked from danny-avila/rag_api
-
Notifications
You must be signed in to change notification settings - Fork 0
/
main.py
627 lines (521 loc) · 19.3 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
import os
from dotenv import find_dotenv, load_dotenv
load_dotenv(find_dotenv())
import hashlib
import aiofiles
import aiofiles.os
from typing import Iterable, List
from shutil import copyfileobj
import uvicorn
from langchain.schema import Document
from contextlib import asynccontextmanager
from fastapi.middleware.cors import CORSMiddleware
from langchain_core.runnables.config import run_in_executor
from langchain.text_splitter import RecursiveCharacterTextSplitter
from fastapi import (
File,
Form,
Body,
Query,
status,
FastAPI,
Request,
UploadFile,
HTTPException,
)
from langchain_community.document_loaders import (
WebBaseLoader,
TextLoader,
PyPDFLoader,
CSVLoader,
Docx2txtLoader,
UnstructuredEPubLoader,
UnstructuredMarkdownLoader,
UnstructuredXMLLoader,
UnstructuredRSTLoader,
UnstructuredExcelLoader,
UnstructuredPowerPointLoader,
)
from models import (
StoreDocument,
QueryRequestBody,
DocumentResponse,
QueryMultipleBody,
)
from psql import PSQLDatabase, ensure_custom_id_index_on_embedding, pg_health_check
from pgvector_routes import router as pgvector_router
from parsers import process_documents, clean_text
from middleware import security_middleware
from mongo import mongo_health_check
from constants import ERROR_MESSAGES
from store import AsyncPgVector
from config import (
logger,
debug_mode,
CHUNK_SIZE,
CHUNK_OVERLAP,
vector_store,
RAG_UPLOAD_DIR,
known_source_ext,
PDF_EXTRACT_IMAGES,
LogMiddleware,
RAG_HOST,
RAG_PORT,
VectorDBType,
# RAG_EMBEDDING_MODEL,
# RAG_EMBEDDING_MODEL_DEVICE_TYPE,
# RAG_TEMPLATE,
VECTOR_DB_TYPE,
)
import json
#### Intelequia ####
from IntelequiaScripts.metadataEmbedding import getFileMetadata
from IntelequiaScripts.tokensCalculator import (
tokensCalculator,
dataCalculator)
####
#### Azure Application Insights telemetry ####
from azure.monitor.events.extension import track_event
from azure.monitor.opentelemetry import configure_azure_monitor
from opentelemetry import trace
from opentelemetry.trace import (
SpanKind,
get_tracer_provider,
set_tracer_provider,
)
from opentelemetry.propagate import extract
# import logging
# from logging import getLogger, INFO
configure_azure_monitor( connection_string=os.getenv("APPLICATIONINSIGHTS_CONNECTION_STRING"))
# # Configurar el registrador específico de azure.core.pipeline.policies.http_logging_policy
# http_logging_logger = logging.getLogger('azure.core.pipeline.policies.http_logging_policy')
# http_logging_logger.setLevel(logging.WARNING) # Para deshabilitar los logs de INFO y mostrar solo WARNING y superiores
# # Configurar logging para azure.monitor también si es necesario
# monitor_exporter_logger = logging.getLogger('azure.monitor.opentelemetry.exporter.export._base')
# monitor_exporter_logger.setLevel(logging.WARNING)
# tracer = trace.get_tracer(__name__, tracer_provider=get_tracer_provider())
# logger = logging.getLogger(__name__)
####
@asynccontextmanager
async def lifespan(app: FastAPI):
# Startup logic goes here
if VECTOR_DB_TYPE == "pgvector":
await PSQLDatabase.get_pool() # Initialize the pool
await ensure_custom_id_index_on_embedding()
yield
app = FastAPI(lifespan=lifespan)
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
app.add_middleware(LogMiddleware)
app.middleware("http")(security_middleware)
app.state.CHUNK_SIZE = CHUNK_SIZE
app.state.CHUNK_OVERLAP = CHUNK_OVERLAP
app.state.PDF_EXTRACT_IMAGES = PDF_EXTRACT_IMAGES
@app.get("/ids")
async def get_all_ids():
try:
if isinstance(vector_store, AsyncPgVector):
ids = await vector_store.get_all_ids()
else:
ids = vector_store.get_all_ids()
return list(set(ids))
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
def isHealthOK():
if VECTOR_DB_TYPE == VectorDBType.PGVECTOR:
return pg_health_check()
if VECTOR_DB_TYPE == VectorDBType.ATLAS_MONGO:
return mongo_health_check()
else:
return True
@app.get("/health")
async def health_check():
if await isHealthOK():
return {"status": "UP"}
else:
return {"status": "DOWN"}, 503
@app.get("/documents", response_model=list[DocumentResponse])
async def get_documents_by_ids(ids: list[str] = Query(...)):
try:
if isinstance(vector_store, AsyncPgVector):
existing_ids = await vector_store.get_all_ids()
documents = await vector_store.get_documents_by_ids(ids)
else:
existing_ids = vector_store.get_all_ids()
documents = vector_store.get_documents_by_ids(ids)
# Ensure all requested ids exist
if not all(id in existing_ids for id in ids):
raise HTTPException(status_code=404, detail="One or more IDs not found")
# Ensure documents list is not empty
if not documents:
raise HTTPException(
status_code=404, detail="No documents found for the given IDs"
)
return documents
except HTTPException as http_exc:
raise http_exc
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@app.delete("/documents")
async def delete_documents(document_ids: List[str] = Body(...)):
try:
if isinstance(vector_store, AsyncPgVector):
existing_ids = await vector_store.get_all_ids()
await vector_store.delete(ids=document_ids)
else:
existing_ids = vector_store.get_all_ids()
vector_store.delete(ids=document_ids)
if not all(id in existing_ids for id in document_ids):
raise HTTPException(status_code=404, detail="One or more IDs not found")
file_count = len(document_ids)
return {
"message": f"Documents for {file_count} file{'s' if file_count > 1 else ''} deleted successfully"
}
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@app.post("/query")
async def query_embeddings_by_file_id(body: QueryRequestBody, request: Request):
user_authorized = (
"public" if not hasattr(request.state, "user") else request.state.user.get("id")
)
authorized_documents = []
try:
embedding = vector_store.embedding_function.embed_query(body.query)
if isinstance(vector_store, AsyncPgVector):
documents = await run_in_executor(
None,
vector_store.similarity_search_with_score_by_vector,
embedding,
k=body.k,
filter={"file_id": body.file_id},
)
else:
documents = vector_store.similarity_search_with_score_by_vector(
embedding, k=body.k, filter={"file_id": body.file_id}
)
if not documents:
return authorized_documents
document, score = documents[0]
doc_metadata = document.metadata
doc_user_id = doc_metadata.get("user_id")
if doc_user_id is None or doc_user_id == user_authorized:
authorized_documents = documents
else:
logger.warn(
f"Unauthorized access attempt by user {user_authorized} to a document with user_id {doc_user_id}"
)
return authorized_documents
except Exception as e:
logger.error(e)
raise HTTPException(status_code=500, detail=str(e))
def generate_digest(page_content: str):
hash_obj = hashlib.md5(page_content.encode())
return hash_obj.hexdigest()
async def store_data_in_vector_db(
data: Iterable[Document],
file_id: str,
user_id: str = "",
clean_content: bool = False,
) -> bool:
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=app.state.CHUNK_SIZE, chunk_overlap=app.state.CHUNK_OVERLAP
)
documents = text_splitter.split_documents(data)
# If `clean_content` is True, clean the page_content of each document (remove null bytes)
if clean_content:
for doc in documents:
doc.page_content = clean_text(doc.page_content)
# Preparing documents with page content and metadata for insertion.
docs = [
Document(
page_content=doc.page_content,
metadata={
"file_id": file_id,
"user_id": user_id,
"digest": generate_digest(doc.page_content),
**(doc.metadata or {}),
},
)
for doc in documents
]
try:
if isinstance(vector_store, AsyncPgVector):
ids = await vector_store.aadd_documents(
docs, ids=[file_id] * len(documents)
)
else:
ids = vector_store.add_documents(docs, ids=[file_id] * len(documents))
return {"message": "Documents added successfully", "ids": ids}
except Exception as e:
logger.error(e)
return {"message": "An error occurred while adding documents.", "error": str(e)}
def get_loader(filename: str, file_content_type: str, filepath: str):
file_ext = filename.split(".")[-1].lower()
known_type = True
if file_ext == "pdf":
loader = PyPDFLoader(filepath, extract_images=app.state.PDF_EXTRACT_IMAGES)
elif file_ext == "csv":
loader = CSVLoader(filepath)
elif file_ext == "rst":
loader = UnstructuredRSTLoader(filepath, mode="elements")
elif file_ext == "xml":
loader = UnstructuredXMLLoader(filepath)
elif file_ext == "pptx":
loader = UnstructuredPowerPointLoader(filepath)
elif file_ext == "md":
loader = UnstructuredMarkdownLoader(filepath)
elif file_content_type == "application/epub+zip":
loader = UnstructuredEPubLoader(filepath)
elif (
file_content_type
== "application/vnd.openxmlformats-officedocument.wordprocessingml.document"
or file_ext in ["doc", "docx"]
):
loader = Docx2txtLoader(filepath)
elif file_content_type in [
"application/vnd.ms-excel",
"application/vnd.openxmlformats-officedocument.spreadsheetml.sheet",
] or file_ext in ["xls", "xlsx"]:
loader = UnstructuredExcelLoader(filepath)
elif file_content_type == "application/json" or file_ext == "json":
loader = TextLoader(filepath, autodetect_encoding=True)
elif file_ext in known_source_ext or (
file_content_type and file_content_type.find("text/") >= 0
):
loader = TextLoader(filepath, autodetect_encoding=True)
else:
loader = TextLoader(filepath, autodetect_encoding=True)
known_type = False
return loader, known_type, file_ext
@app.post("/local/embed")
async def embed_local_file(document: StoreDocument, request: Request):
# Check if the file exists
if not os.path.exists(document.filepath):
raise HTTPException(
status_code=status.HTTP_404_NOT_FOUND,
detail=ERROR_MESSAGES.FILE_NOT_FOUND,
)
if not hasattr(request.state, "user"):
user_id = "public"
else:
user_id = request.state.user.get("id")
try:
loader, known_type = get_loader(
document.filename, document.file_content_type, document.filepath
)
data = loader.load()
result = await store_data_in_vector_db(data, document.file_id, user_id)
if result:
return {
"status": True,
"file_id": document.file_id,
"filename": document.filename,
"known_type": known_type,
}
else:
raise HTTPException(
status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
detail=ERROR_MESSAGES.DEFAULT(),
)
except Exception as e:
logger.error(e)
if "No pandoc was found" in str(e):
raise HTTPException(
status_code=status.HTTP_400_BAD_REQUEST,
detail=ERROR_MESSAGES.PANDOC_NOT_INSTALLED,
)
else:
raise HTTPException(
status_code=status.HTTP_400_BAD_REQUEST,
detail=ERROR_MESSAGES.DEFAULT(e),
)
@app.post("/embed")
async def embed_file(
request: Request, file_id: str = Form(...), file: UploadFile = File(...)
):
response_status = True
response_message = "File processed successfully."
known_type = None
if not hasattr(request.state, "user"):
user_id = "public"
user_email = "public"
else:
user_id = request.state.user.get("id")
user_email = request.state.user.get("email")
temp_base_path = os.path.join(RAG_UPLOAD_DIR, user_id)
os.makedirs(temp_base_path, exist_ok=True)
temp_file_path = os.path.join(RAG_UPLOAD_DIR, user_id, file.filename)
try:
async with aiofiles.open(temp_file_path, "wb") as temp_file:
chunk_size = 64 * 1024 # 64 KB
while content := await file.read(chunk_size):
await temp_file.write(content)
except Exception as e:
raise HTTPException(
status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
detail=f"Failed to save the uploaded file. Error: {str(e)}",
)
try:
loader, known_type, file_ext = get_loader(
file.filename, file.content_type, temp_file_path
)
data = loader.load()
# @Organization Intelequia
# @Author Enrique M. Pedroza Castillo
data = getFileMetadata(temp_file_path, data)
# @Organization Intelequia
# @Author Enrique M. Pedroza Castillo
dataTokens = tokensCalculator(data)
contentLength = dataCalculator(data)
track_event("RAG Embedding", {
"file_id": file_id,
"user_email": user_email,
"file_name": file.filename,
"file_ext": file_ext,
"known_type": str(known_type),
"data_tokens": str(dataTokens),
"content_length": str(contentLength)
})
result = await store_data_in_vector_db(
data=data, file_id=file_id, user_id=user_id, clean_content=file_ext == "pdf"
)
if not result:
response_status = False
response_message = "Failed to process/store the file data."
raise HTTPException(
status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
detail="Failed to process/store the file data.",
)
elif "error" in result:
response_status = False
response_message = "Failed to process/store the file data."
if isinstance(result["error"], str):
response_message = result["error"]
else:
raise HTTPException(
status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
detail="An unspecified error occurred.",
)
except Exception as e:
response_status = False
response_message = f"Error during file processing: {str(e)}"
raise HTTPException(
status_code=status.HTTP_400_BAD_REQUEST,
detail=f"Error during file processing: {str(e)}",
)
finally:
try:
await aiofiles.os.remove(temp_file_path)
except Exception as e:
logger.info(f"Failed to remove temporary file: {str(e)}")
return {
"status": response_status,
"message": response_message,
"file_id": file_id,
"filename": file.filename,
"known_type": known_type,
}
@app.get("/documents/{id}/context")
async def load_document_context(id: str):
ids = [id]
try:
if isinstance(vector_store, AsyncPgVector):
existing_ids = await vector_store.get_all_ids()
documents = await vector_store.get_documents_by_ids(ids)
else:
existing_ids = vector_store.get_all_ids()
documents = vector_store.get_documents_by_ids(ids)
# Ensure the requested id exists
if not all(id in existing_ids for id in ids):
raise HTTPException(
status_code=404, detail="The specified file_id was not found"
)
# Ensure documents list is not empty
if not documents:
raise HTTPException(
status_code=404, detail="No document found for the given ID"
)
return process_documents(documents)
except Exception as e:
logger.error(e)
raise HTTPException(
status_code=status.HTTP_400_BAD_REQUEST,
detail=ERROR_MESSAGES.DEFAULT(e),
)
@app.post("/embed-upload")
async def embed_file_upload(
request: Request, file_id: str = Form(...), uploaded_file: UploadFile = File(...)
):
temp_file_path = os.path.join(RAG_UPLOAD_DIR, uploaded_file.filename)
if not hasattr(request.state, "user"):
user_id = "public"
else:
user_id = request.state.user.get("id")
try:
with open(temp_file_path, "wb") as temp_file:
copyfileobj(uploaded_file.file, temp_file)
except Exception as e:
raise HTTPException(
status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
detail=f"Failed to save the uploaded file. Error: {str(e)}",
)
try:
loader, known_type = get_loader(
uploaded_file.filename, uploaded_file.content_type, temp_file_path
)
data = loader.load()
result = await store_data_in_vector_db(data, file_id, user_id)
if not result:
raise HTTPException(
status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
detail="Failed to process/store the file data.",
)
except Exception as e:
raise HTTPException(
status_code=status.HTTP_400_BAD_REQUEST,
detail=f"Error during file processing: {str(e)}",
)
finally:
os.remove(temp_file_path)
return {
"status": True,
"message": "File processed successfully.",
"file_id": file_id,
"filename": uploaded_file.filename,
"known_type": known_type,
}
@app.post("/query_multiple")
async def query_embeddings_by_file_ids(body: QueryMultipleBody):
try:
# Get the embedding of the query text
embedding = vector_store.embedding_function.embed_query(body.query)
# Perform similarity search with the query embedding and filter by the file_ids in metadata
if isinstance(vector_store, AsyncPgVector):
documents = await run_in_executor(
None,
vector_store.similarity_search_with_score_by_vector,
embedding,
k=body.k,
filter={"file_id": {"$in": body.file_ids}},
)
else:
documents = vector_store.similarity_search_with_score_by_vector(
embedding, k=body.k, filter={"file_id": {"$in": body.file_ids}}
)
# Ensure documents list is not empty
if not documents:
raise HTTPException(
status_code=404, detail="No documents found for the given query"
)
return documents
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
if debug_mode:
app.include_router(router=pgvector_router)
if __name__ == "__main__":
uvicorn.run(app, host=RAG_HOST, port=RAG_PORT, log_config=None)