forked from danny-avila/rag_api
-
Notifications
You must be signed in to change notification settings - Fork 0
/
config.py
327 lines (270 loc) · 10.2 KB
/
config.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
# config.py
import os
import json
import boto3
import logging
from enum import Enum
from datetime import datetime
from dotenv import find_dotenv, load_dotenv
from starlette.middleware.base import BaseHTTPMiddleware
from store_factory import get_vector_store
load_dotenv(find_dotenv())
class VectorDBType(Enum):
PGVECTOR = "pgvector"
ATLAS_MONGO = "atlas-mongo"
class EmbeddingsProvider(Enum):
OPENAI = "openai"
AZURE = "azure"
HUGGINGFACE = "huggingface"
HUGGINGFACETEI = "huggingfacetei"
OLLAMA = "ollama"
BEDROCK = "bedrock"
def get_env_variable(
var_name: str, default_value: str = None, required: bool = False
) -> str:
value = os.getenv(var_name)
if value is None:
if default_value is None and required:
raise ValueError(f"Environment variable '{var_name}' not found.")
return default_value
return value
RAG_HOST = os.getenv("RAG_HOST", "0.0.0.0")
RAG_PORT = int(os.getenv("RAG_PORT", 8000))
RAG_UPLOAD_DIR = get_env_variable("RAG_UPLOAD_DIR", "./uploads/")
if not os.path.exists(RAG_UPLOAD_DIR):
os.makedirs(RAG_UPLOAD_DIR, exist_ok=True)
VECTOR_DB_TYPE = VectorDBType(
get_env_variable("VECTOR_DB_TYPE", VectorDBType.PGVECTOR.value)
)
POSTGRES_DB = get_env_variable("POSTGRES_DB", "mydatabase")
POSTGRES_USER = get_env_variable("POSTGRES_USER", "myuser")
POSTGRES_PASSWORD = get_env_variable("POSTGRES_PASSWORD", "mypassword")
DB_HOST = get_env_variable("DB_HOST", "db")
DB_PORT = get_env_variable("DB_PORT", "5432")
COLLECTION_NAME = get_env_variable("COLLECTION_NAME", "testcollection")
ATLAS_MONGO_DB_URI = get_env_variable(
"ATLAS_MONGO_DB_URI", "mongodb://127.0.0.1:27018/LibreChat"
)
ATLAS_SEARCH_INDEX = get_env_variable("ATLAS_SEARCH_INDEX", "vector_index")
MONGO_VECTOR_COLLECTION = get_env_variable(
"MONGO_VECTOR_COLLECTION", None
) # Deprecated, backwards compatability
CHUNK_SIZE = int(get_env_variable("CHUNK_SIZE", "1500"))
CHUNK_OVERLAP = int(get_env_variable("CHUNK_OVERLAP", "100"))
env_value = get_env_variable("PDF_EXTRACT_IMAGES", "False").lower()
PDF_EXTRACT_IMAGES = True if env_value == "true" else False
CONNECTION_STRING = f"postgresql+psycopg2://{POSTGRES_USER}:{POSTGRES_PASSWORD}@{DB_HOST}:{DB_PORT}/{POSTGRES_DB}"
DSN = f"postgresql://{POSTGRES_USER}:{POSTGRES_PASSWORD}@{DB_HOST}:{DB_PORT}/{POSTGRES_DB}"
## Logging
HTTP_RES = "http_res"
HTTP_REQ = "http_req"
logger = logging.getLogger()
debug_mode = get_env_variable("DEBUG_RAG_API", "False").lower() == "true"
console_json = get_env_variable("CONSOLE_JSON", "False").lower() == "true"
if debug_mode:
logger.setLevel(logging.DEBUG)
else:
logger.setLevel(logging.INFO)
if console_json:
class JsonFormatter(logging.Formatter):
def __init__(self):
super(JsonFormatter, self).__init__()
def format(self, record):
json_record = {}
json_record["message"] = record.getMessage()
if HTTP_REQ in record.__dict__:
json_record[HTTP_REQ] = record.__dict__[HTTP_REQ]
if HTTP_RES in record.__dict__:
json_record[HTTP_RES] = record.__dict__[HTTP_RES]
if record.levelno == logging.ERROR and record.exc_info:
json_record["exception"] = self.formatException(record.exc_info)
timestamp = datetime.fromtimestamp(record.created)
json_record["timestamp"] = timestamp.isoformat()
# add level
json_record["level"] = record.levelname
json_record["filename"] = record.filename
json_record["lineno"] = record.lineno
json_record["funcName"] = record.funcName
json_record["module"] = record.module
json_record["threadName"] = record.threadName
return json.dumps(json_record)
formatter = JsonFormatter()
else:
formatter = logging.Formatter(
"%(asctime)s - %(name)s - %(levelname)s - %(message)s"
)
handler = logging.StreamHandler() # or logging.FileHandler("app.log")
handler.setFormatter(formatter)
logger.addHandler(handler)
class LogMiddleware(BaseHTTPMiddleware):
async def dispatch(self, request, call_next):
response = await call_next(request)
logger_method = logger.info
if str(request.url).endswith("/health"):
logger_method = logger.debug
logger_method(
f"Request {request.method} {request.url} - {response.status_code}",
extra={
HTTP_REQ: {"method": request.method, "url": str(request.url)},
HTTP_RES: {"status_code": response.status_code},
},
)
return response
logging.getLogger("uvicorn.access").disabled = True
## Credentials
OPENAI_API_KEY = get_env_variable("OPENAI_API_KEY", "")
RAG_OPENAI_API_KEY = get_env_variable("RAG_OPENAI_API_KEY", OPENAI_API_KEY)
RAG_OPENAI_BASEURL = get_env_variable("RAG_OPENAI_BASEURL", None)
RAG_OPENAI_PROXY = get_env_variable("RAG_OPENAI_PROXY", None)
AZURE_OPENAI_API_KEY = get_env_variable("AZURE_OPENAI_API_KEY", "")
RAG_AZURE_OPENAI_API_VERSION = get_env_variable("RAG_AZURE_OPENAI_API_VERSION", None)
RAG_AZURE_OPENAI_API_KEY = get_env_variable(
"RAG_AZURE_OPENAI_API_KEY", AZURE_OPENAI_API_KEY
)
AZURE_OPENAI_ENDPOINT = get_env_variable("AZURE_OPENAI_ENDPOINT", "")
RAG_AZURE_OPENAI_ENDPOINT = get_env_variable(
"RAG_AZURE_OPENAI_ENDPOINT", AZURE_OPENAI_ENDPOINT
).rstrip("/")
HF_TOKEN = get_env_variable("HF_TOKEN", "")
OLLAMA_BASE_URL = get_env_variable("OLLAMA_BASE_URL", "http://ollama:11434")
AWS_ACCESS_KEY_ID = get_env_variable("AWS_ACCESS_KEY_ID", "")
AWS_SECRET_ACCESS_KEY = get_env_variable("AWS_SECRET_ACCESS_KEY", "")
## Embeddings
def init_embeddings(provider, model):
if provider == EmbeddingsProvider.OPENAI:
from langchain_openai import OpenAIEmbeddings
return OpenAIEmbeddings(
model=model,
api_key=RAG_OPENAI_API_KEY,
openai_api_base=RAG_OPENAI_BASEURL,
openai_proxy=RAG_OPENAI_PROXY,
)
elif provider == EmbeddingsProvider.AZURE:
from langchain_openai import AzureOpenAIEmbeddings
return AzureOpenAIEmbeddings(
azure_deployment=model,
api_key=RAG_AZURE_OPENAI_API_KEY,
azure_endpoint=RAG_AZURE_OPENAI_ENDPOINT,
api_version=RAG_AZURE_OPENAI_API_VERSION,
)
elif provider == EmbeddingsProvider.HUGGINGFACE:
from langchain_huggingface import HuggingFaceEmbeddings
return HuggingFaceEmbeddings(
model_name=model, encode_kwargs={"normalize_embeddings": True}
)
elif provider == EmbeddingsProvider.HUGGINGFACETEI:
from langchain_huggingface import HuggingFaceEndpointEmbeddings
return HuggingFaceEndpointEmbeddings(model=model)
elif provider == EmbeddingsProvider.OLLAMA:
from langchain_ollama import OllamaEmbeddings
return OllamaEmbeddings(model=model, base_url=OLLAMA_BASE_URL)
elif provider == EmbeddingsProvider.BEDROCK:
from langchain_aws import BedrockEmbeddings
session = boto3.Session(
aws_access_key_id=AWS_ACCESS_KEY_ID,
aws_secret_access_key=AWS_SECRET_ACCESS_KEY,
region_name=AWS_DEFAULT_REGION,
)
return BedrockEmbeddings(
client=session.client("bedrock-runtime"),
model_id=model,
region_name=AWS_DEFAULT_REGION,
)
else:
raise ValueError(f"Unsupported embeddings provider: {provider}")
EMBEDDINGS_PROVIDER = EmbeddingsProvider(
get_env_variable("EMBEDDINGS_PROVIDER", EmbeddingsProvider.OPENAI.value).lower()
)
if EMBEDDINGS_PROVIDER == EmbeddingsProvider.OPENAI:
EMBEDDINGS_MODEL = get_env_variable("EMBEDDINGS_MODEL", "text-embedding-3-small")
elif EMBEDDINGS_PROVIDER == EmbeddingsProvider.AZURE:
EMBEDDINGS_MODEL = get_env_variable("EMBEDDINGS_MODEL", "text-embedding-3-small")
elif EMBEDDINGS_PROVIDER == EmbeddingsProvider.HUGGINGFACE:
EMBEDDINGS_MODEL = get_env_variable(
"EMBEDDINGS_MODEL", "sentence-transformers/all-MiniLM-L6-v2"
)
elif EMBEDDINGS_PROVIDER == EmbeddingsProvider.HUGGINGFACETEI:
EMBEDDINGS_MODEL = get_env_variable(
"EMBEDDINGS_MODEL", "http://huggingfacetei:3000"
)
elif EMBEDDINGS_PROVIDER == EmbeddingsProvider.OLLAMA:
EMBEDDINGS_MODEL = get_env_variable("EMBEDDINGS_MODEL", "nomic-embed-text")
elif EMBEDDINGS_PROVIDER == EmbeddingsProvider.BEDROCK:
EMBEDDINGS_MODEL = get_env_variable(
"EMBEDDINGS_MODEL", "amazon.titan-embed-text-v1"
)
AWS_DEFAULT_REGION = get_env_variable("AWS_DEFAULT_REGION", "us-east-1")
else:
raise ValueError(f"Unsupported embeddings provider: {EMBEDDINGS_PROVIDER}")
embeddings = init_embeddings(EMBEDDINGS_PROVIDER, EMBEDDINGS_MODEL)
logger.info(f"Initialized embeddings of type: {type(embeddings)}")
# Vector store
if VECTOR_DB_TYPE == VectorDBType.PGVECTOR:
vector_store = get_vector_store(
connection_string=CONNECTION_STRING,
embeddings=embeddings,
collection_name=COLLECTION_NAME,
mode="async",
)
elif VECTOR_DB_TYPE == VectorDBType.ATLAS_MONGO:
# Backward compatability check
if MONGO_VECTOR_COLLECTION:
logger.info(
f"DEPRECATED: Please remove env var MONGO_VECTOR_COLLECTION and instead use COLLECTION_NAME and ATLAS_SEARCH_INDEX. You can set both as same, but not neccessary. See README for more information."
)
ATLAS_SEARCH_INDEX = MONGO_VECTOR_COLLECTION
COLLECTION_NAME = MONGO_VECTOR_COLLECTION
vector_store = get_vector_store(
connection_string=ATLAS_MONGO_DB_URI,
embeddings=embeddings,
collection_name=COLLECTION_NAME,
mode="atlas-mongo",
search_index=ATLAS_SEARCH_INDEX,
)
else:
raise ValueError(f"Unsupported vector store type: {VECTOR_DB_TYPE}")
retriever = vector_store.as_retriever()
known_source_ext = [
"go",
"py",
"java",
"sh",
"bat",
"ps1",
"cmd",
"js",
"ts",
"css",
"cpp",
"hpp",
"h",
"c",
"cs",
"sql",
"log",
"ini",
"pl",
"pm",
"r",
"dart",
"dockerfile",
"env",
"php",
"hs",
"hsc",
"lua",
"nginxconf",
"conf",
"m",
"mm",
"plsql",
"perl",
"rb",
"rs",
"db2",
"scala",
"bash",
"swift",
"vue",
"svelte",
]