Based on the scripts run_ner.py
for Pytorch and
run_tf_ner.py
for Tensorflow 2.
The following examples are covered in this section:
- NER on the GermEval 2014 (German NER) dataset
- Emerging and Rare Entities task: WNUT’17 (English NER) dataset
Details and results for the fine-tuning provided by @stefan-it.
Data can be obtained from the GermEval 2014 shared task page.
Here are the commands for downloading and pre-processing train, dev and test datasets. The original data format has four (tab-separated) columns, in a pre-processing step only the two relevant columns (token and outer span NER annotation) are extracted:
curl -L 'https://drive.google.com/uc?export=download&id=1Jjhbal535VVz2ap4v4r_rN1UEHTdLK5P' \
| grep -v "^#" | cut -f 2,3 | tr '\t' ' ' > train.txt.tmp
curl -L 'https://drive.google.com/uc?export=download&id=1ZfRcQThdtAR5PPRjIDtrVP7BtXSCUBbm' \
| grep -v "^#" | cut -f 2,3 | tr '\t' ' ' > dev.txt.tmp
curl -L 'https://drive.google.com/uc?export=download&id=1u9mb7kNJHWQCWyweMDRMuTFoOHOfeBTH' \
| grep -v "^#" | cut -f 2,3 | tr '\t' ' ' > test.txt.tmp
The GermEval 2014 dataset contains some strange "control character" tokens like '\x96', '\u200e', '\x95', '\xad' or '\x80'
.
One problem with these tokens is, that BertTokenizer
returns an empty token for them, resulting in misaligned InputExample
s.
The preprocess.py
script located in the scripts
folder a) filters these tokens and b) splits longer sentences into smaller ones (once the max. subtoken length is reached).
Let's define some variables that we need for further pre-processing steps and training the model:
export MAX_LENGTH=128
export BERT_MODEL=bert-base-multilingual-cased
Run the pre-processing script on training, dev and test datasets:
python3 scripts/preprocess.py train.txt.tmp $BERT_MODEL $MAX_LENGTH > train.txt
python3 scripts/preprocess.py dev.txt.tmp $BERT_MODEL $MAX_LENGTH > dev.txt
python3 scripts/preprocess.py test.txt.tmp $BERT_MODEL $MAX_LENGTH > test.txt
The GermEval 2014 dataset has much more labels than CoNLL-2002/2003 datasets, so an own set of labels must be used:
cat train.txt dev.txt test.txt | cut -d " " -f 2 | grep -v "^$"| sort | uniq > labels.txt
Additional environment variables must be set:
export OUTPUT_DIR=germeval-model
export BATCH_SIZE=32
export NUM_EPOCHS=3
export SAVE_STEPS=750
export SEED=1
To start training, just run:
python3 run_ner.py --data_dir ./ \
--labels ./labels.txt \
--model_name_or_path $BERT_MODEL \
--output_dir $OUTPUT_DIR \
--max_seq_length $MAX_LENGTH \
--num_train_epochs $NUM_EPOCHS \
--per_device_train_batch_size $BATCH_SIZE \
--save_steps $SAVE_STEPS \
--seed $SEED \
--do_train \
--do_eval \
--do_predict
If your GPU supports half-precision training, just add the --fp16
flag. After training, the model will be both evaluated on development and test datasets.
Instead of passing all parameters via commandline arguments, the run_ner.py
script also supports reading parameters from a json-based configuration file:
{
"data_dir": ".",
"labels": "./labels.txt",
"model_name_or_path": "bert-base-multilingual-cased",
"output_dir": "germeval-model",
"max_seq_length": 128,
"num_train_epochs": 3,
"per_device_train_batch_size": 32,
"save_steps": 750,
"seed": 1,
"do_train": true,
"do_eval": true,
"do_predict": true
}
It must be saved with a .json
extension and can be used by running python3 run_ner.py config.json
.
Evaluation on development dataset outputs the following for our example:
10/04/2019 00:42:06 - INFO - __main__ - ***** Eval results *****
10/04/2019 00:42:06 - INFO - __main__ - f1 = 0.8623348017621146
10/04/2019 00:42:06 - INFO - __main__ - loss = 0.07183869666975543
10/04/2019 00:42:06 - INFO - __main__ - precision = 0.8467916366258111
10/04/2019 00:42:06 - INFO - __main__ - recall = 0.8784592370979806
On the test dataset the following results could be achieved:
10/04/2019 00:42:42 - INFO - __main__ - ***** Eval results *****
10/04/2019 00:42:42 - INFO - __main__ - f1 = 0.8614389652384803
10/04/2019 00:42:42 - INFO - __main__ - loss = 0.07064602487454782
10/04/2019 00:42:42 - INFO - __main__ - precision = 0.8604651162790697
10/04/2019 00:42:42 - INFO - __main__ - recall = 0.8624150210424085
Run bash run_pl.sh
from the ner
directory. This would also install pytorch-lightning
and the examples/requirements.txt
. It is a shell pipeline which would automatically download, pre-process the data and run the models in germeval-model
directory. Logs are saved in lightning_logs
directory.
Pass --gpus
flag to change the number of GPUs. Default uses 1. At the end, the expected results are: TEST RESULTS {'val_loss': tensor(0.0707), 'precision': 0.852427800698191, 'recall': 0.869537067011978, 'f1': 0.8608974358974358}
To start training, just run:
python3 run_tf_ner.py --data_dir ./ \
--labels ./labels.txt \
--model_name_or_path $BERT_MODEL \
--output_dir $OUTPUT_DIR \
--max_seq_length $MAX_LENGTH \
--num_train_epochs $NUM_EPOCHS \
--per_device_train_batch_size $BATCH_SIZE \
--save_steps $SAVE_STEPS \
--seed $SEED \
--do_train \
--do_eval \
--do_predict
Such as the Pytorch version, if your GPU supports half-precision training, just add the --fp16
flag. After training, the model will be both evaluated on development and test datasets.
Evaluation on development dataset outputs the following for our example:
precision recall f1-score support
LOCderiv 0.7619 0.6154 0.6809 52
PERpart 0.8724 0.8997 0.8858 4057
OTHpart 0.9360 0.9466 0.9413 711
ORGpart 0.7015 0.6989 0.7002 269
LOCpart 0.7668 0.8488 0.8057 496
LOC 0.8745 0.9191 0.8963 235
ORGderiv 0.7723 0.8571 0.8125 91
OTHderiv 0.4800 0.6667 0.5581 18
OTH 0.5789 0.6875 0.6286 16
PERderiv 0.5385 0.3889 0.4516 18
PER 0.5000 0.5000 0.5000 2
ORG 0.0000 0.0000 0.0000 3
micro avg 0.8574 0.8862 0.8715 5968
macro avg 0.8575 0.8862 0.8713 5968
On the test dataset the following results could be achieved:
precision recall f1-score support
PERpart 0.8847 0.8944 0.8896 9397
OTHpart 0.9376 0.9353 0.9365 1639
ORGpart 0.7307 0.7044 0.7173 697
LOC 0.9133 0.9394 0.9262 561
LOCpart 0.8058 0.8157 0.8107 1150
ORG 0.0000 0.0000 0.0000 8
OTHderiv 0.5882 0.4762 0.5263 42
PERderiv 0.6571 0.5227 0.5823 44
OTH 0.4906 0.6667 0.5652 39
ORGderiv 0.7016 0.7791 0.7383 172
LOCderiv 0.8256 0.6514 0.7282 109
PER 0.0000 0.0000 0.0000 11
micro avg 0.8722 0.8774 0.8748 13869
macro avg 0.8712 0.8774 0.8740 13869
Description of the WNUT’17 task from the shared task website:
The WNUT’17 shared task focuses on identifying unusual, previously-unseen entities in the context of emerging discussions. Named entities form the basis of many modern approaches to other tasks (like event clustering and summarization), but recall on them is a real problem in noisy text - even among annotators. This drop tends to be due to novel entities and surface forms.
Six labels are available in the dataset. An overview can be found on this page.
The dataset can be downloaded from the official GitHub repository.
The following commands show how to prepare the dataset for fine-tuning:
mkdir -p data_wnut_17
curl -L 'https://github.com/leondz/emerging_entities_17/raw/master/wnut17train.conll' | tr '\t' ' ' > data_wnut_17/train.txt.tmp
curl -L 'https://github.com/leondz/emerging_entities_17/raw/master/emerging.dev.conll' | tr '\t' ' ' > data_wnut_17/dev.txt.tmp
curl -L 'https://raw.githubusercontent.com/leondz/emerging_entities_17/master/emerging.test.annotated' | tr '\t' ' ' > data_wnut_17/test.txt.tmp
Let's define some variables that we need for further pre-processing steps:
export MAX_LENGTH=128
export BERT_MODEL=bert-large-cased
Here we use the English BERT large model for fine-tuning.
The preprocess.py
scripts splits longer sentences into smaller ones (once the max. subtoken length is reached):
python3 scripts/preprocess.py data_wnut_17/train.txt.tmp $BERT_MODEL $MAX_LENGTH > data_wnut_17/train.txt
python3 scripts/preprocess.py data_wnut_17/dev.txt.tmp $BERT_MODEL $MAX_LENGTH > data_wnut_17/dev.txt
python3 scripts/preprocess.py data_wnut_17/test.txt.tmp $BERT_MODEL $MAX_LENGTH > data_wnut_17/test.txt
In the last pre-processing step, the labels.txt
file needs to be generated. This file contains all available labels:
cat data_wnut_17/train.txt data_wnut_17/dev.txt data_wnut_17/test.txt | cut -d " " -f 2 | grep -v "^$"| sort | uniq > data_wnut_17/labels.txt
Fine-tuning with the PyTorch version can be started using the run_ner.py
script. In this example we use a JSON-based configuration file.
This configuration file looks like:
{
"data_dir": "./data_wnut_17",
"labels": "./data_wnut_17/labels.txt",
"model_name_or_path": "bert-large-cased",
"output_dir": "wnut-17-model-1",
"max_seq_length": 128,
"num_train_epochs": 3,
"per_device_train_batch_size": 32,
"save_steps": 425,
"seed": 1,
"do_train": true,
"do_eval": true,
"do_predict": true,
"fp16": false
}
If your GPU supports half-precision training, please set fp16
to true
.
Save this JSON-based configuration under wnut_17.json
. The fine-tuning can be started with python3 run_ner.py wnut_17.json
.
Evaluation on development dataset outputs the following:
05/29/2020 23:33:44 - INFO - __main__ - ***** Eval results *****
05/29/2020 23:33:44 - INFO - __main__ - eval_loss = 0.26505235286212275
05/29/2020 23:33:44 - INFO - __main__ - eval_precision = 0.7008264462809918
05/29/2020 23:33:44 - INFO - __main__ - eval_recall = 0.507177033492823
05/29/2020 23:33:44 - INFO - __main__ - eval_f1 = 0.5884802220680084
05/29/2020 23:33:44 - INFO - __main__ - epoch = 3.0
On the test dataset the following results could be achieved:
05/29/2020 23:33:44 - INFO - transformers.trainer - ***** Running Prediction *****
05/29/2020 23:34:02 - INFO - __main__ - eval_loss = 0.30948806500973547
05/29/2020 23:34:02 - INFO - __main__ - eval_precision = 0.5840108401084011
05/29/2020 23:34:02 - INFO - __main__ - eval_recall = 0.3994439295644115
05/29/2020 23:34:02 - INFO - __main__ - eval_f1 = 0.47440836543753434
WNUT’17 is a very difficult task. Current state-of-the-art results on this dataset can be found here.