#!/usr/bin/python # -*- coding: utf-8 -*- # This script converts .seq files into .jpg files, .vbb files into .pkl files # from Caltech Pedestrian Dataset # Based on Python 2.7 # Author: Peng Zhang # E-mail: [email protected] # Caltech Pedestrian Dataset: # http://www.vision.caltech.edu/Image_Datasets/CaltechPedestrians/ import struct import os import cPickle import time from scipy.io import loadmat from collections import defaultdict def read_seq(path): def read_header(ifile): feed = ifile.read(4) norpix = ifile.read(24) version = struct.unpack('@i', ifile.read(4)) length = struct.unpack('@i', ifile.read(4)) assert(length != 1024) descr = ifile.read(512) params = [struct.unpack('@i', ifile.read(4))[0] for i in range(9)] fps = struct.unpack('@d', ifile.read(8)) ifile.read(432) image_ext = {100: 'raw', 102: 'jpg', 201: 'jpg', 1: 'png', 2: 'png'} return {'w': params[0], 'h': params[1], 'bdepth': params[2], 'ext': image_ext[params[5]], 'format': params[5], 'size': params[4], 'true_size': params[8], 'num_frames': params[6]} assert path[-3:] == 'seq', path ifile = open(path, 'rb') params = read_header(ifile) bytes = open(path, 'rb').read() imgs = [] extra = 8 s = 1024 for i in range(params['num_frames']): tmp = struct.unpack_from('@I', bytes[s:s + 4])[0] I = bytes[s + 4:s + tmp] s += tmp + extra if i == 0: val = struct.unpack_from('@B', bytes[s:s + 1])[0] if val != 0: s -= 4 else: extra += 8 s += 8 imgs.append(I) return imgs def read_vbb(path): assert path[-3:] == 'vbb' vbb = loadmat(path) nFrame = int(vbb['A'][0][0][0][0][0]) objLists = vbb['A'][0][0][1][0] maxObj = int(vbb['A'][0][0][2][0][0]) objInit = vbb['A'][0][0][3][0] objLbl = [str(v[0]) for v in vbb['A'][0][0][4][0]] objStr = vbb['A'][0][0][5][0] objEnd = vbb['A'][0][0][6][0] objHide = vbb['A'][0][0][7][0] altered = int(vbb['A'][0][0][8][0][0]) log = vbb['A'][0][0][9][0] logLen = int(vbb['A'][0][0][10][0][0]) data = {} data['nFrame'] = nFrame data['maxObj'] = maxObj data['log'] = log.tolist() data['logLen'] = logLen data['altered'] = altered data['frames'] = defaultdict(list) for frame_id, obj in enumerate(objLists): if len(obj) > 0: for id, pos, occl, lock, posv in zip(obj['id'][0], obj['pos'][0], obj['occl'][0], obj['lock'][0], obj['posv'][0]): keys = obj.dtype.names id = int(id[0][0]) - 1 # MATLAB is 1-origin p = pos[0].tolist() pos = [p[0] - 1, p[1] - 1, p[2], p[3]] # MATLAB is 1-origin occl = int(occl[0][0]) lock = int(lock[0][0]) posv = posv[0].tolist() datum = dict(zip(keys, [id, pos, occl, lock, posv])) datum['lbl'] = str(objLbl[datum['id']]) # MATLAB is 1-origin datum['str'] = int(objStr[datum['id']]) - 1 # MATLAB is 1-origin datum['end'] = int(objEnd[datum['id']]) - 1 datum['hide'] = int(objHide[datum['id']]) datum['init'] = int(objInit[datum['id']]) data['frames'][frame_id].append(datum) return data if __name__ == '__main__': # directory to store data dir_path = './' # phase can be 'train_', 'test_' or 'val_' phase = '' # num ranges from 0~11 num = [0, 11] time_flag = time.time() img_save_path = os.path.join(dir_path, phase + 'images') anno_save_path = os.path.join(dir_path, phase + 'annotations.pkl') if os.path.exists(img_save_path): raise KeyError('Already exists : {}'.format(img_save_path)) else: os.mkdir(img_save_path) print 'Images will be saved to {}'.format(img_save_path) print 'Annotations will be saved to {}'.format(anno_save_path) # convert .seq file into .jpg for i in range(num[0], num[1]): img_set_path = os.path.join(dir_path, 'set{:02}'.format(i)) assert os.path.exists( img_set_path), 'Not exists: '.format(img_set_path) print 'Extracting images from set{:02} ...'.format(i) for j in sorted(os.listdir(img_set_path)): imgs_path = os.path.join(img_set_path, j) imgs = read_seq(imgs_path) for ix, img in enumerate(imgs): img_name = 'img{:02}{}{:04}.jpg'.format(i, j[2:4], ix) img_path = os.path.join(img_save_path, img_name) open(img_path, 'wb+').write(img) print 'Images have been saved.' # convert .vbb file into .pkl # example: anno['00']['00']['frames'][0][0]['pos'] anno = defaultdict(dict) for i in range(num[0], num[1]): anno['{:02}'.format(i)] = defaultdict(dict) anno_set_path = os.path.join(dir_path, 'annotations', 'set{:02}'.format(i)) assert os.path.exists(anno_set_path), \ 'Not exists: '.format(anno_set_path) print 'Extracting annotations from set{:02} ...'.format(i) for j in sorted(os.listdir(anno_set_path)): anno_path = os.path.join(anno_set_path, j) anno['{:02}'.format(i)][j[2:4]] = read_vbb(anno_path) with open(anno_save_path, 'wb') as f: cPickle.dump(anno, f) print 'Annotations have been saved.' print 'Done, time spends: {}s'.format(int(time.time() - time_flag))