Skip to content

harryjfowen/rxp-pipeline

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

25 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Credit to @PhilWilkes for the original version of this code.

LiDAR Point Cloud Processing Tool

A Python tool for processing and analyzing LiDAR point cloud data. Forked from [https://github.com/philwilkes/rxp-pipeline], with additional features for enhanced point cloud processing.

Height normalised TLS point cloud with ground points in black

Compile PDAL with python bindings and rxp support

Download the rivlib-2_5_10-x86_64-linux-gcc9.zip (make sure to get the gcc9 version) and the the rdblib-2.4.0-x86_64-linux.tar.gz from the memebers area of the RIEGL website. Place the zipped folder into this directory alongside the install_pdal.sh script.

cd rxp-pipeline
bash install_pdal.sh

Added Features

  • Ground classification using Cloth Simulation Filter (CSF)
  • Precise cropping using scan position convex hull
  • Full plot output capabilities
  • Point cloud downsampling procedures
  • Global matrix transformation to GNSS coordinate system

Usage

python3 convert.py --project ~/Desktop/SPA19_2021-09-29.PROJ/ --plot-code SPA19 --deviation 15 --reflectance -20 0  --tile 5 --res 0.01 --buffer 1.0 --plot --classify-ground --verbose

See python convert.py --help for all available options.

Requirements

  • Python 3.x
  • PDAL
  • NumPy
  • Pandas
  • SciPy

Credits

Based on https://github.com/philwilkes/rxp-pipeline with extensions for ground classification, spatial processing, and coordinate transformation.

About

UCL processing pipeline

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 86.5%
  • Shell 13.5%