-
Notifications
You must be signed in to change notification settings - Fork 181
/
edge_query.go
801 lines (722 loc) · 29.6 KB
/
edge_query.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
// Copyright 2019 Google Inc. All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package s2
import (
"sort"
"github.com/golang/geo/s1"
)
// EdgeQueryOptions holds the options for controlling how EdgeQuery operates.
//
// Options can be chained together builder-style:
//
// opts = NewClosestEdgeQueryOptions().
// MaxResults(1).
// DistanceLimit(s1.ChordAngleFromAngle(3 * s1.Degree)).
// MaxError(s1.ChordAngleFromAngle(0.001 * s1.Degree))
// query = NewClosestEdgeQuery(index, opts)
//
// or set individually:
//
// opts = NewClosestEdgeQueryOptions()
// opts.IncludeInteriors(true)
//
// or just inline:
//
// query = NewClosestEdgeQuery(index, NewClosestEdgeQueryOptions().MaxResults(3))
//
// If you pass a nil as the options you get the default values for the options.
type EdgeQueryOptions struct {
common *queryOptions
}
// DistanceLimit specifies that only edges whose distance to the target is
// within, this distance should be returned. Edges whose distance is equal
// are not returned. To include values that are equal, specify the limit with
// the next largest representable distance. i.e. limit.Successor().
func (e *EdgeQueryOptions) DistanceLimit(limit s1.ChordAngle) *EdgeQueryOptions {
e.common = e.common.DistanceLimit(limit)
return e
}
// IncludeInteriors specifies whether polygon interiors should be
// included when measuring distances.
func (e *EdgeQueryOptions) IncludeInteriors(x bool) *EdgeQueryOptions {
e.common = e.common.IncludeInteriors(x)
return e
}
// UseBruteForce sets or disables the use of brute force in a query.
func (e *EdgeQueryOptions) UseBruteForce(x bool) *EdgeQueryOptions {
e.common = e.common.UseBruteForce(x)
return e
}
// MaxError specifies that edges up to dist away than the true
// matching edges may be substituted in the result set, as long as such
// edges satisfy all the remaining search criteria (such as DistanceLimit).
// This option only has an effect if MaxResults is also specified;
// otherwise all edges closer than MaxDistance will always be returned.
func (e *EdgeQueryOptions) MaxError(dist s1.ChordAngle) *EdgeQueryOptions {
e.common = e.common.MaxError(dist)
return e
}
// MaxResults specifies that at most MaxResults edges should be returned.
// This must be at least 1.
func (e *EdgeQueryOptions) MaxResults(n int) *EdgeQueryOptions {
e.common = e.common.MaxResults(n)
return e
}
// NewClosestEdgeQueryOptions returns a set of edge query options suitable
// for performing closest edge queries.
func NewClosestEdgeQueryOptions() *EdgeQueryOptions {
return &EdgeQueryOptions{
common: newQueryOptions(minDistance(0)),
}
}
// NewFurthestEdgeQueryOptions returns a set of edge query options suitable
// for performing furthest edge queries.
func NewFurthestEdgeQueryOptions() *EdgeQueryOptions {
return &EdgeQueryOptions{
common: newQueryOptions(maxDistance(0)),
}
}
// EdgeQueryResult represents an edge that meets the target criteria for the
// query. Note the following special cases:
//
// - ShapeID >= 0 && EdgeID < 0 represents the interior of a shape.
// Such results may be returned when the option IncludeInteriors is true.
//
// - ShapeID < 0 && EdgeID < 0 is returned to indicate that no edge
// satisfies the requested query options.
type EdgeQueryResult struct {
distance distance
shapeID int32
edgeID int32
}
// Distance reports the distance between the edge in this shape that satisfied
// the query's parameters.
func (e EdgeQueryResult) Distance() s1.ChordAngle { return e.distance.chordAngle() }
// ShapeID reports the ID of the Shape this result is for.
func (e EdgeQueryResult) ShapeID() int32 { return e.shapeID }
// EdgeID reports the ID of the edge in the results Shape.
func (e EdgeQueryResult) EdgeID() int32 { return e.edgeID }
// newEdgeQueryResult returns a result instance with default values.
func newEdgeQueryResult(target distanceTarget) EdgeQueryResult {
return EdgeQueryResult{
distance: target.distance().infinity(),
shapeID: -1,
edgeID: -1,
}
}
// IsInterior reports if this result represents the interior of a Shape.
func (e EdgeQueryResult) IsInterior() bool {
return e.shapeID >= 0 && e.edgeID < 0
}
// IsEmpty reports if this has no edge that satisfies the given edge query options.
// This result is only returned in one special case, namely when FindEdge() does
// not find any suitable edges.
func (e EdgeQueryResult) IsEmpty() bool {
return e.shapeID < 0
}
// Less reports if this results is less that the other first by distance,
// then by (shapeID, edgeID). This is used for sorting.
func (e EdgeQueryResult) Less(other EdgeQueryResult) bool {
if e.distance.chordAngle() != other.distance.chordAngle() {
return e.distance.less(other.distance)
}
if e.shapeID != other.shapeID {
return e.shapeID < other.shapeID
}
return e.edgeID < other.edgeID
}
// EdgeQuery is used to find the edge(s) between two geometries that match a
// given set of options. It is flexible enough so that it can be adapted to
// compute maximum distances and even potentially Hausdorff distances.
//
// By using the appropriate options, this type can answer questions such as:
//
// - Find the minimum distance between two geometries A and B.
// - Find all edges of geometry A that are within a distance D of geometry B.
// - Find the k edges of geometry A that are closest to a given point P.
//
// You can also specify whether polygons should include their interiors (i.e.,
// if a point is contained by a polygon, should the distance be zero or should
// it be measured to the polygon boundary?)
//
// The input geometries may consist of any number of points, polylines, and
// polygons (collectively referred to as "shapes"). Shapes do not need to be
// disjoint; they may overlap or intersect arbitrarily. The implementation is
// designed to be fast for both simple and complex geometries.
type EdgeQuery struct {
index *ShapeIndex
opts *queryOptions
target distanceTarget
// True if opts.maxError must be subtracted from ShapeIndex cell distances
// in order to ensure that such distances are measured conservatively. This
// is true only if the target takes advantage of maxError in order to
// return faster results, and 0 < maxError < distanceLimit.
useConservativeCellDistance bool
// The decision about whether to use the brute force algorithm is based on
// counting the total number of edges in the index. However if the index
// contains a large number of shapes, this in itself might take too long.
// So instead we only count edges up to (maxBruteForceIndexSize() + 1)
// for the current target type (stored as indexNumEdgesLimit).
indexNumEdges int
indexNumEdgesLimit int
// The distance beyond which we can safely ignore further candidate edges.
// (Candidates that are exactly at the limit are ignored; this is more
// efficient for UpdateMinDistance and should not affect clients since
// distance measurements have a small amount of error anyway.)
//
// Initially this is the same as the maximum distance specified by the user,
// but it can also be updated by the algorithm (see maybeAddResult).
distanceLimit distance
// The current set of results of the query.
results []EdgeQueryResult
// This field is true when duplicates must be avoided explicitly. This
// is achieved by maintaining a separate set keyed by (shapeID, edgeID)
// only, and checking whether each edge is in that set before computing the
// distance to it.
avoidDuplicates bool
// testedEdges tracks the set of shape and edges that have already been tested.
testedEdges map[ShapeEdgeID]uint32
// For the optimized algorihm we precompute the top-level CellIDs that
// will be added to the priority queue. There can be at most 6 of these
// cells. Essentially this is just a covering of the indexed edges, except
// that we also store pointers to the corresponding ShapeIndexCells to
// reduce the number of index seeks required.
indexCovering []CellID
indexCells []*ShapeIndexCell
// The algorithm maintains a priority queue of unprocessed CellIDs, sorted
// in increasing order of distance from the target.
queue *queryQueue
iter *ShapeIndexIterator
maxDistanceCovering []CellID
initialCells []CellID
}
// NewClosestEdgeQuery returns an EdgeQuery that is used for finding the
// closest edge(s) to a given Point, Edge, Cell, or geometry collection.
//
// You can find either the k closest edges, or all edges within a given
// radius, or both (i.e., the k closest edges up to a given maximum radius).
// E.g. to find all the edges within 5 kilometers, set the DistanceLimit in
// the options.
//
// By default *all* edges are returned, so you should always specify either
// MaxResults or DistanceLimit options or both.
//
// Note that by default, distances are measured to the boundary and interior
// of polygons. For example, if a point is inside a polygon then its distance
// is zero. To change this behavior, set the IncludeInteriors option to false.
//
// If you only need to test whether the distance is above or below a given
// threshold (e.g., 10 km), you can use the IsDistanceLess() method. This is
// much faster than actually calculating the distance with FindEdge,
// since the implementation can stop as soon as it can prove that the minimum
// distance is either above or below the threshold.
func NewClosestEdgeQuery(index *ShapeIndex, opts *EdgeQueryOptions) *EdgeQuery {
if opts == nil {
opts = NewClosestEdgeQueryOptions()
}
e := &EdgeQuery{
testedEdges: make(map[ShapeEdgeID]uint32),
index: index,
opts: opts.common,
queue: newQueryQueue(),
}
return e
}
// NewFurthestEdgeQuery returns an EdgeQuery that is used for finding the
// furthest edge(s) to a given Point, Edge, Cell, or geometry collection.
//
// The furthest edge is defined as the one which maximizes the
// distance from any point on that edge to any point on the target geometry.
//
// Similar to the example in NewClosestEdgeQuery, to find the 5 furthest edges
// from a given Point:
func NewFurthestEdgeQuery(index *ShapeIndex, opts *EdgeQueryOptions) *EdgeQuery {
if opts == nil {
opts = NewFurthestEdgeQueryOptions()
}
e := &EdgeQuery{
testedEdges: make(map[ShapeEdgeID]uint32),
index: index,
opts: opts.common,
queue: newQueryQueue(),
}
return e
}
// Reset resets the state of this EdgeQuery.
func (e *EdgeQuery) Reset() {
e.indexNumEdges = 0
e.indexNumEdgesLimit = 0
e.indexCovering = nil
e.indexCells = nil
}
// FindEdges returns the edges for the given target that satisfy the current options.
//
// Note that if opts.IncludeInteriors is true, the results may include some
// entries with edge_id == -1. This indicates that the target intersects
// the indexed polygon with the given ShapeID.
func (e *EdgeQuery) FindEdges(target distanceTarget) []EdgeQueryResult {
return e.findEdges(target, e.opts)
}
// Distance reports the distance to the target. If the index or target is empty,
// returns the EdgeQuery's maximal sentinel.
//
// Use IsDistanceLess()/IsDistanceGreater() if you only want to compare the
// distance against a threshold value, since it is often much faster.
func (e *EdgeQuery) Distance(target distanceTarget) s1.ChordAngle {
return e.findEdge(target, e.opts).Distance()
}
// IsDistanceLess reports if the distance to target is less than the given limit.
//
// This method is usually much faster than Distance(), since it is much
// less work to determine whether the minimum distance is above or below a
// threshold than it is to calculate the actual minimum distance.
//
// If you wish to check if the distance is less than or equal to the limit, use:
//
// query.IsDistanceLess(target, limit.Successor())
func (e *EdgeQuery) IsDistanceLess(target distanceTarget, limit s1.ChordAngle) bool {
opts := e.opts
opts = opts.MaxResults(1).
DistanceLimit(limit).
MaxError(s1.StraightChordAngle)
return !e.findEdge(target, opts).IsEmpty()
}
// IsDistanceGreater reports if the distance to target is greater than limit.
//
// This method is usually much faster than Distance, since it is much
// less work to determine whether the maximum distance is above or below a
// threshold than it is to calculate the actual maximum distance.
// If you wish to check if the distance is less than or equal to the limit, use:
//
// query.IsDistanceGreater(target, limit.Predecessor())
func (e *EdgeQuery) IsDistanceGreater(target distanceTarget, limit s1.ChordAngle) bool {
return e.IsDistanceLess(target, limit)
}
// IsConservativeDistanceLessOrEqual reports if the distance to target is less
// or equal to the limit, where the limit has been expanded by the maximum error
// for the distance calculation.
//
// For example, suppose that we want to test whether two geometries might
// intersect each other after they are snapped together using Builder
// (using the IdentitySnapFunction with a given "snap radius"). Since
// Builder uses exact distance predicates (s2predicates), we need to
// measure the distance between the two geometries conservatively. If the
// distance is definitely greater than "snap radius", then the geometries
// are guaranteed to not intersect after snapping.
func (e *EdgeQuery) IsConservativeDistanceLessOrEqual(target distanceTarget, limit s1.ChordAngle) bool {
return e.IsDistanceLess(target, limit.Expanded(minUpdateDistanceMaxError(limit)))
}
// IsConservativeDistanceGreaterOrEqual reports if the distance to the target is greater
// than or equal to the given limit with some small tolerance.
func (e *EdgeQuery) IsConservativeDistanceGreaterOrEqual(target distanceTarget, limit s1.ChordAngle) bool {
return e.IsDistanceGreater(target, limit.Expanded(-minUpdateDistanceMaxError(limit)))
}
// findEdges returns the closest edges to the given target that satisfy the given options.
//
// Note that if opts.includeInteriors is true, the results may include some
// entries with edgeID == -1. This indicates that the target intersects the
// indexed polygon with the given shapeID.
func (e *EdgeQuery) findEdges(target distanceTarget, opts *queryOptions) []EdgeQueryResult {
e.findEdgesInternal(target, opts)
// TODO(roberts): Revisit this if there is a heap or other sorted and
// uniquing datastructure we can use instead of just a slice.
e.results = sortAndUniqueResults(e.results)
if len(e.results) > e.opts.maxResults {
e.results = e.results[:e.opts.maxResults]
}
return e.results
}
func sortAndUniqueResults(results []EdgeQueryResult) []EdgeQueryResult {
if len(results) <= 1 {
return results
}
sort.Slice(results, func(i, j int) bool { return results[i].Less(results[j]) })
j := 0
for i := 1; i < len(results); i++ {
if results[j] == results[i] {
continue
}
j++
results[j] = results[i]
}
return results[:j+1]
}
// findEdge is a convenience method that returns exactly one edge, and if no
// edges satisfy the given search criteria, then a default Result is returned.
//
// This is primarily to ease the usage of a number of the methods in the DistanceTargets
// and in EdgeQuery.
func (e *EdgeQuery) findEdge(target distanceTarget, opts *queryOptions) EdgeQueryResult {
opts.MaxResults(1)
e.findEdges(target, opts)
if len(e.results) > 0 {
return e.results[0]
}
return newEdgeQueryResult(target)
}
// findEdgesInternal does the actual work for find edges that match the given options.
func (e *EdgeQuery) findEdgesInternal(target distanceTarget, opts *queryOptions) {
e.target = target
e.opts = opts
e.testedEdges = make(map[ShapeEdgeID]uint32)
e.distanceLimit = target.distance().fromChordAngle(opts.distanceLimit)
e.results = make([]EdgeQueryResult, 0)
if e.distanceLimit == target.distance().zero() {
return
}
if opts.includeInteriors {
shapeIDs := map[int32]struct{}{}
e.target.visitContainingShapes(e.index, func(containingShape Shape, targetPoint Point) bool {
shapeIDs[e.index.idForShape(containingShape)] = struct{}{}
return len(shapeIDs) < opts.maxResults
})
for shapeID := range shapeIDs {
e.addResult(EdgeQueryResult{target.distance().zero(), shapeID, -1})
}
if e.distanceLimit == target.distance().zero() {
return
}
}
// If maxError > 0 and the target takes advantage of this, then we may
// need to adjust the distance estimates to ShapeIndex cells to ensure
// that they are always a lower bound on the true distance. For example,
// suppose max_distance == 100, maxError == 30, and we compute the distance
// to the target from some cell C0 as d(C0) == 80. Then because the target
// takes advantage of maxError, the true distance could be as low as 50.
// In order not to miss edges contained by such cells, we need to subtract
// maxError from the distance estimates. This behavior is controlled by
// the useConservativeCellDistance flag.
//
// However there is one important case where this adjustment is not
// necessary, namely when distanceLimit < maxError, This is because
// maxError only affects the algorithm once at least maxEdges edges
// have been found that satisfy the given distance limit. At that point,
// maxError is subtracted from distanceLimit in order to ensure that
// any further matches are closer by at least that amount. But when
// distanceLimit < maxError, this reduces the distance limit to 0,
// i.e. all remaining candidate cells and edges can safely be discarded.
// (This is how IsDistanceLess() and friends are implemented.)
targetUsesMaxError := opts.maxError != target.distance().zero().chordAngle() &&
e.target.setMaxError(opts.maxError)
// Note that we can't compare maxError and distanceLimit directly
// because one is a Delta and one is a Distance. Instead we subtract them.
e.useConservativeCellDistance = targetUsesMaxError &&
(e.distanceLimit == target.distance().infinity() ||
target.distance().zero().less(e.distanceLimit.sub(target.distance().fromChordAngle(opts.maxError))))
// Use the brute force algorithm if the index is small enough. To avoid
// spending too much time counting edges when there are many shapes, we stop
// counting once there are too many edges. We may need to recount the edges
// if we later see a target with a larger brute force edge threshold.
minOptimizedEdges := e.target.maxBruteForceIndexSize() + 1
if minOptimizedEdges > e.indexNumEdgesLimit && e.indexNumEdges >= e.indexNumEdgesLimit {
e.indexNumEdges = e.index.NumEdgesUpTo(minOptimizedEdges)
e.indexNumEdgesLimit = minOptimizedEdges
}
if opts.useBruteForce || e.indexNumEdges < minOptimizedEdges {
// The brute force algorithm already considers each edge exactly once.
e.avoidDuplicates = false
e.findEdgesBruteForce()
} else {
// If the target takes advantage of maxError then we need to avoid
// duplicate edges explicitly. (Otherwise it happens automatically.)
e.avoidDuplicates = targetUsesMaxError && opts.maxResults > 1
e.findEdgesOptimized()
}
}
func (e *EdgeQuery) addResult(r EdgeQueryResult) {
e.results = append(e.results, r)
if e.opts.maxResults == 1 {
// Optimization for the common case where only the closest edge is wanted.
e.distanceLimit = r.distance.sub(e.target.distance().fromChordAngle(e.opts.maxError))
}
// TODO(roberts): Add the other if/else cases when a different data structure
// is used for the results.
}
func (e *EdgeQuery) maybeAddResult(shape Shape, edgeID int32) {
if _, ok := e.testedEdges[ShapeEdgeID{e.index.idForShape(shape), edgeID}]; e.avoidDuplicates && !ok {
return
}
edge := shape.Edge(int(edgeID))
dist := e.distanceLimit
if dist, ok := e.target.updateDistanceToEdge(edge, dist); ok {
e.addResult(EdgeQueryResult{dist, e.index.idForShape(shape), edgeID})
}
}
func (e *EdgeQuery) findEdgesBruteForce() {
// Range over all shapes in the index. Does order matter here? if so
// switch to for i = 0 .. n?
for _, shape := range e.index.shapes {
// TODO(roberts): can this happen if we are only ranging over current entries?
if shape == nil {
continue
}
for edgeID := int32(0); edgeID < int32(shape.NumEdges()); edgeID++ {
e.maybeAddResult(shape, edgeID)
}
}
}
func (e *EdgeQuery) findEdgesOptimized() {
e.initQueue()
// Repeatedly find the closest Cell to "target" and either split it into
// its four children or process all of its edges.
for e.queue.size() > 0 {
// We need to copy the top entry before removing it, and we need to
// remove it before adding any new entries to the queue.
entry := e.queue.pop()
if !entry.distance.less(e.distanceLimit) {
e.queue.reset() // Clear any remaining entries.
break
}
// If this is already known to be an index cell, just process it.
if entry.indexCell != nil {
e.processEdges(entry)
continue
}
// Otherwise split the cell into its four children. Before adding a
// child back to the queue, we first check whether it is empty. We do
// this in two seek operations rather than four by seeking to the key
// between children 0 and 1 and to the key between children 2 and 3.
id := entry.id
ch := id.Children()
e.iter.seek(ch[1].RangeMin())
if !e.iter.Done() && e.iter.CellID() <= ch[1].RangeMax() {
e.processOrEnqueueCell(ch[1])
}
if e.iter.Prev() && e.iter.CellID() >= id.RangeMin() {
e.processOrEnqueueCell(ch[0])
}
e.iter.seek(ch[3].RangeMin())
if !e.iter.Done() && e.iter.CellID() <= id.RangeMax() {
e.processOrEnqueueCell(ch[3])
}
if e.iter.Prev() && e.iter.CellID() >= ch[2].RangeMin() {
e.processOrEnqueueCell(ch[2])
}
}
}
func (e *EdgeQuery) processOrEnqueueCell(id CellID) {
if e.iter.CellID() == id {
e.processOrEnqueue(id, e.iter.IndexCell())
} else {
e.processOrEnqueue(id, nil)
}
}
func (e *EdgeQuery) initQueue() {
if len(e.indexCovering) == 0 {
// We delay iterator initialization until now to make queries on very
// small indexes a bit faster (i.e., where brute force is used).
e.iter = NewShapeIndexIterator(e.index)
}
// Optimization: if the user is searching for just the closest edge, and the
// center of the target's bounding cap happens to intersect an index cell,
// then we try to limit the search region to a small disc by first
// processing the edges in that cell. This sets distance_limit_ based on
// the closest edge in that cell, which we can then use to limit the search
// area. This means that the cell containing "target" will be processed
// twice, but in general this is still faster.
//
// TODO(roberts): Even if the cap center is not contained, we could still
// process one or both of the adjacent index cells in CellID order,
// provided that those cells are closer than distanceLimit.
cb := e.target.capBound()
if cb.IsEmpty() {
return // Empty target.
}
if e.opts.maxResults == 1 && e.iter.LocatePoint(cb.Center()) {
e.processEdges(&queryQueueEntry{
distance: e.target.distance().zero(),
id: e.iter.CellID(),
indexCell: e.iter.IndexCell(),
})
// Skip the rest of the algorithm if we found an intersecting edge.
if e.distanceLimit == e.target.distance().zero() {
return
}
}
if len(e.indexCovering) == 0 {
e.initCovering()
}
if e.distanceLimit == e.target.distance().infinity() {
// Start with the precomputed index covering.
for i := range e.indexCovering {
e.processOrEnqueue(e.indexCovering[i], e.indexCells[i])
}
} else {
// Compute a covering of the search disc and intersect it with the
// precomputed index covering.
coverer := &RegionCoverer{MaxCells: 4, LevelMod: 1, MaxLevel: MaxLevel}
radius := cb.Radius() + e.distanceLimit.chordAngleBound().Angle()
searchCB := CapFromCenterAngle(cb.Center(), radius)
maxDistCover := coverer.FastCovering(searchCB)
e.initialCells = CellUnionFromIntersection(e.indexCovering, maxDistCover)
// Now we need to clean up the initial cells to ensure that they all
// contain at least one cell of the ShapeIndex. (Some may not intersect
// the index at all, while other may be descendants of an index cell.)
i, j := 0, 0
for i < len(e.initialCells) {
idI := e.initialCells[i]
// Find the top-level cell that contains this initial cell.
for e.indexCovering[j].RangeMax() < idI {
j++
}
idJ := e.indexCovering[j]
if idI == idJ {
// This initial cell is one of the top-level cells. Use the
// precomputed ShapeIndexCell pointer to avoid an index seek.
e.processOrEnqueue(idJ, e.indexCells[j])
i++
j++
} else {
// This initial cell is a proper descendant of a top-level cell.
// Check how it is related to the cells of the ShapeIndex.
r := e.iter.LocateCellID(idI)
if r == Indexed {
// This cell is a descendant of an index cell.
// Enqueue it and skip any other initial cells
// that are also descendants of this cell.
e.processOrEnqueue(e.iter.CellID(), e.iter.IndexCell())
lastID := e.iter.CellID().RangeMax()
for i < len(e.initialCells) && e.initialCells[i] <= lastID {
i++
}
} else {
// Enqueue the cell only if it contains at least one index cell.
if r == Subdivided {
e.processOrEnqueue(idI, nil)
}
i++
}
}
}
}
}
func (e *EdgeQuery) initCovering() {
// Find the range of Cells spanned by the index and choose a level such
// that the entire index can be covered with just a few cells. These are
// the "top-level" cells. There are two cases:
//
// - If the index spans more than one face, then there is one top-level cell
// per spanned face, just big enough to cover the index cells on that face.
//
// - If the index spans only one face, then we find the smallest cell "C"
// that covers the index cells on that face (just like the case above).
// Then for each of the 4 children of "C", if the child contains any index
// cells then we create a top-level cell that is big enough to just fit
// those index cells (i.e., shrinking the child as much as possible to fit
// its contents). This essentially replicates what would happen if we
// started with "C" as the top-level cell, since "C" would immediately be
// split, except that we take the time to prune the children further since
// this will save work on every subsequent query.
e.indexCovering = make([]CellID, 0, 6)
// TODO(roberts): Use a single iterator below and save position
// information using pair {CellID, ShapeIndexCell}.
next := NewShapeIndexIterator(e.index, IteratorBegin)
last := NewShapeIndexIterator(e.index, IteratorEnd)
last.Prev()
if next.CellID() != last.CellID() {
// The index has at least two cells. Choose a level such that the entire
// index can be spanned with at most 6 cells (if the index spans multiple
// faces) or 4 cells (it the index spans a single face).
level, ok := next.CellID().CommonAncestorLevel(last.CellID())
if !ok {
level = 0
} else {
level++
}
// Visit each potential top-level cell except the last (handled below).
lastID := last.CellID().Parent(level)
for id := next.CellID().Parent(level); id != lastID; id = id.Next() {
// Skip any top-level cells that don't contain any index cells.
if id.RangeMax() < next.CellID() {
continue
}
// Find the range of index cells contained by this top-level cell and
// then shrink the cell if necessary so that it just covers them.
cellFirst := next.clone()
next.seek(id.RangeMax().Next())
cellLast := next.clone()
cellLast.Prev()
e.addInitialRange(cellFirst, cellLast)
break
}
}
e.addInitialRange(next, last)
}
// addInitialRange adds an entry to the indexCovering and indexCells that covers the given
// inclusive range of cells.
//
// This requires that first and last cells have a common ancestor.
func (e *EdgeQuery) addInitialRange(first, last *ShapeIndexIterator) {
if first.CellID() == last.CellID() {
// The range consists of a single index cell.
e.indexCovering = append(e.indexCovering, first.CellID())
e.indexCells = append(e.indexCells, first.IndexCell())
} else {
// Add the lowest common ancestor of the given range.
level, _ := first.CellID().CommonAncestorLevel(last.CellID())
e.indexCovering = append(e.indexCovering, first.CellID().Parent(level))
e.indexCells = append(e.indexCells, nil)
}
}
// processEdges processes all the edges of the given index cell.
func (e *EdgeQuery) processEdges(entry *queryQueueEntry) {
for _, clipped := range entry.indexCell.shapes {
shape := e.index.Shape(clipped.shapeID)
for j := 0; j < clipped.numEdges(); j++ {
e.maybeAddResult(shape, int32(clipped.edges[j]))
}
}
}
// processOrEnqueue the given cell id and indexCell.
func (e *EdgeQuery) processOrEnqueue(id CellID, indexCell *ShapeIndexCell) {
if indexCell != nil {
// If this index cell has only a few edges, then it is faster to check
// them directly rather than computing the minimum distance to the Cell
// and inserting it into the queue.
const minEdgesToEnqueue = 10
numEdges := indexCell.numEdges()
if numEdges == 0 {
return
}
if numEdges < minEdgesToEnqueue {
// Set "distance" to zero to avoid the expense of computing it.
e.processEdges(&queryQueueEntry{
distance: e.target.distance().zero(),
id: id,
indexCell: indexCell,
})
return
}
}
// Otherwise compute the minimum distance to any point in the cell and add
// it to the priority queue.
cell := CellFromCellID(id)
dist := e.distanceLimit
var ok bool
if dist, ok = e.target.updateDistanceToCell(cell, dist); !ok {
return
}
if e.useConservativeCellDistance {
// Ensure that "distance" is a lower bound on the true distance to the cell.
dist = dist.sub(e.target.distance().fromChordAngle(e.opts.maxError))
}
e.queue.push(&queryQueueEntry{
distance: dist,
id: id,
indexCell: indexCell,
})
}
// TODO(roberts): Remaining pieces
// GetEdge
// Project