-
Notifications
You must be signed in to change notification settings - Fork 182
/
Copy pathcell.go
710 lines (641 loc) · 24.9 KB
/
cell.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
// Copyright 2014 Google Inc. All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package s2
import (
"io"
"math"
"github.com/golang/geo/r1"
"github.com/golang/geo/r2"
"github.com/golang/geo/r3"
"github.com/golang/geo/s1"
)
// Cell is an S2 region object that represents a cell. Unlike CellIDs,
// it supports efficient containment and intersection tests. However, it is
// also a more expensive representation.
type Cell struct {
face int8
level int8
orientation int8
id CellID
uv r2.Rect
}
// CellFromCellID constructs a Cell corresponding to the given CellID.
func CellFromCellID(id CellID) Cell {
c := Cell{}
c.id = id
f, i, j, o := c.id.faceIJOrientation()
c.face = int8(f)
c.level = int8(c.id.Level())
c.orientation = int8(o)
c.uv = ijLevelToBoundUV(i, j, int(c.level))
return c
}
// CellFromPoint constructs a cell for the given Point.
func CellFromPoint(p Point) Cell {
return CellFromCellID(cellIDFromPoint(p))
}
// CellFromLatLng constructs a cell for the given LatLng.
func CellFromLatLng(ll LatLng) Cell {
return CellFromCellID(CellIDFromLatLng(ll))
}
// Face returns the face this cell is on.
func (c Cell) Face() int {
return int(c.face)
}
// oppositeFace returns the face opposite the given face.
func oppositeFace(face int) int {
return (face + 3) % 6
}
// Level returns the level of this cell.
func (c Cell) Level() int {
return int(c.level)
}
// ID returns the CellID this cell represents.
func (c Cell) ID() CellID {
return c.id
}
// IsLeaf returns whether this Cell is a leaf or not.
func (c Cell) IsLeaf() bool {
return c.level == MaxLevel
}
// SizeIJ returns the edge length of this cell in (i,j)-space.
func (c Cell) SizeIJ() int {
return sizeIJ(int(c.level))
}
// SizeST returns the edge length of this cell in (s,t)-space.
func (c Cell) SizeST() float64 {
return c.id.sizeST(int(c.level))
}
// Vertex returns the k-th vertex of the cell (k = 0,1,2,3) in CCW order
// (lower left, lower right, upper right, upper left in the UV plane).
func (c Cell) Vertex(k int) Point {
return Point{faceUVToXYZ(int(c.face), c.uv.Vertices()[k].X, c.uv.Vertices()[k].Y).Normalize()}
}
// Edge returns the inward-facing normal of the great circle passing through
// the CCW ordered edge from vertex k to vertex k+1 (mod 4) (for k = 0,1,2,3).
func (c Cell) Edge(k int) Point {
switch k {
case 0:
return Point{vNorm(int(c.face), c.uv.Y.Lo).Normalize()} // Bottom
case 1:
return Point{uNorm(int(c.face), c.uv.X.Hi).Normalize()} // Right
case 2:
return Point{vNorm(int(c.face), c.uv.Y.Hi).Mul(-1.0).Normalize()} // Top
default:
return Point{uNorm(int(c.face), c.uv.X.Lo).Mul(-1.0).Normalize()} // Left
}
}
// BoundUV returns the bounds of this cell in (u,v)-space.
func (c Cell) BoundUV() r2.Rect {
return c.uv
}
// Center returns the direction vector corresponding to the center in
// (s,t)-space of the given cell. This is the point at which the cell is
// divided into four subcells; it is not necessarily the centroid of the
// cell in (u,v)-space or (x,y,z)-space
func (c Cell) Center() Point {
return Point{c.id.rawPoint().Normalize()}
}
// Children returns the four direct children of this cell in traversal order
// and returns true. If this is a leaf cell, or the children could not be created,
// false is returned.
// The C++ method is called Subdivide.
func (c Cell) Children() ([4]Cell, bool) {
var children [4]Cell
if c.id.IsLeaf() {
return children, false
}
// Compute the cell midpoint in uv-space.
uvMid := c.id.centerUV()
// Create four children with the appropriate bounds.
cid := c.id.ChildBegin()
for pos := 0; pos < 4; pos++ {
children[pos] = Cell{
face: c.face,
level: c.level + 1,
orientation: c.orientation ^ int8(posToOrientation[pos]),
id: cid,
}
// We want to split the cell in half in u and v. To decide which
// side to set equal to the midpoint value, we look at cell's (i,j)
// position within its parent. The index for i is in bit 1 of ij.
ij := posToIJ[c.orientation][pos]
i := ij >> 1
j := ij & 1
if i == 1 {
children[pos].uv.X.Hi = c.uv.X.Hi
children[pos].uv.X.Lo = uvMid.X
} else {
children[pos].uv.X.Lo = c.uv.X.Lo
children[pos].uv.X.Hi = uvMid.X
}
if j == 1 {
children[pos].uv.Y.Hi = c.uv.Y.Hi
children[pos].uv.Y.Lo = uvMid.Y
} else {
children[pos].uv.Y.Lo = c.uv.Y.Lo
children[pos].uv.Y.Hi = uvMid.Y
}
cid = cid.Next()
}
return children, true
}
// ExactArea returns the area of this cell as accurately as possible.
func (c Cell) ExactArea() float64 {
v0, v1, v2, v3 := c.Vertex(0), c.Vertex(1), c.Vertex(2), c.Vertex(3)
return PointArea(v0, v1, v2) + PointArea(v0, v2, v3)
}
// ApproxArea returns the approximate area of this cell. This method is accurate
// to within 3% percent for all cell sizes and accurate to within 0.1% for cells
// at level 5 or higher (i.e. squares 350km to a side or smaller on the Earth's
// surface). It is moderately cheap to compute.
func (c Cell) ApproxArea() float64 {
// All cells at the first two levels have the same area.
if c.level < 2 {
return c.AverageArea()
}
// First, compute the approximate area of the cell when projected
// perpendicular to its normal. The cross product of its diagonals gives
// the normal, and the length of the normal is twice the projected area.
flatArea := 0.5 * (c.Vertex(2).Sub(c.Vertex(0).Vector).
Cross(c.Vertex(3).Sub(c.Vertex(1).Vector)).Norm())
// Now, compensate for the curvature of the cell surface by pretending
// that the cell is shaped like a spherical cap. The ratio of the
// area of a spherical cap to the area of its projected disc turns out
// to be 2 / (1 + sqrt(1 - r*r)) where r is the radius of the disc.
// For example, when r=0 the ratio is 1, and when r=1 the ratio is 2.
// Here we set Pi*r*r == flatArea to find the equivalent disc.
return flatArea * 2 / (1 + math.Sqrt(1-math.Min(1/math.Pi*flatArea, 1)))
}
// AverageArea returns the average area of cells at the level of this cell.
// This is accurate to within a factor of 1.7.
func (c Cell) AverageArea() float64 {
return AvgAreaMetric.Value(int(c.level))
}
// IntersectsCell reports whether the intersection of this cell and the other cell is not nil.
func (c Cell) IntersectsCell(oc Cell) bool {
return c.id.Intersects(oc.id)
}
// ContainsCell reports whether this cell contains the other cell.
func (c Cell) ContainsCell(oc Cell) bool {
return c.id.Contains(oc.id)
}
// CellUnionBound computes a covering of the Cell.
func (c Cell) CellUnionBound() []CellID {
return c.CapBound().CellUnionBound()
}
// latitude returns the latitude of the cell vertex in radians given by (i,j),
// where i and j indicate the Hi (1) or Lo (0) corner.
func (c Cell) latitude(i, j int) float64 {
var u, v float64
switch {
case i == 0 && j == 0:
u = c.uv.X.Lo
v = c.uv.Y.Lo
case i == 0 && j == 1:
u = c.uv.X.Lo
v = c.uv.Y.Hi
case i == 1 && j == 0:
u = c.uv.X.Hi
v = c.uv.Y.Lo
case i == 1 && j == 1:
u = c.uv.X.Hi
v = c.uv.Y.Hi
default:
panic("i and/or j is out of bounds")
}
return latitude(Point{faceUVToXYZ(int(c.face), u, v)}).Radians()
}
// longitude returns the longitude of the cell vertex in radians given by (i,j),
// where i and j indicate the Hi (1) or Lo (0) corner.
func (c Cell) longitude(i, j int) float64 {
var u, v float64
switch {
case i == 0 && j == 0:
u = c.uv.X.Lo
v = c.uv.Y.Lo
case i == 0 && j == 1:
u = c.uv.X.Lo
v = c.uv.Y.Hi
case i == 1 && j == 0:
u = c.uv.X.Hi
v = c.uv.Y.Lo
case i == 1 && j == 1:
u = c.uv.X.Hi
v = c.uv.Y.Hi
default:
panic("i and/or j is out of bounds")
}
return longitude(Point{faceUVToXYZ(int(c.face), u, v)}).Radians()
}
var (
poleMinLat = math.Asin(math.Sqrt(1.0/3)) - 0.5*dblEpsilon
)
// RectBound returns the bounding rectangle of this cell.
func (c Cell) RectBound() Rect {
if c.level > 0 {
// Except for cells at level 0, the latitude and longitude extremes are
// attained at the vertices. Furthermore, the latitude range is
// determined by one pair of diagonally opposite vertices and the
// longitude range is determined by the other pair.
//
// We first determine which corner (i,j) of the cell has the largest
// absolute latitude. To maximize latitude, we want to find the point in
// the cell that has the largest absolute z-coordinate and the smallest
// absolute x- and y-coordinates. To do this we look at each coordinate
// (u and v), and determine whether we want to minimize or maximize that
// coordinate based on the axis direction and the cell's (u,v) quadrant.
u := c.uv.X.Lo + c.uv.X.Hi
v := c.uv.Y.Lo + c.uv.Y.Hi
var i, j int
if uAxis(int(c.face)).Z == 0 {
if u < 0 {
i = 1
}
} else if u > 0 {
i = 1
}
if vAxis(int(c.face)).Z == 0 {
if v < 0 {
j = 1
}
} else if v > 0 {
j = 1
}
lat := r1.IntervalFromPoint(c.latitude(i, j)).AddPoint(c.latitude(1-i, 1-j))
lng := s1.EmptyInterval().AddPoint(c.longitude(i, 1-j)).AddPoint(c.longitude(1-i, j))
// We grow the bounds slightly to make sure that the bounding rectangle
// contains LatLngFromPoint(P) for any point P inside the loop L defined by the
// four *normalized* vertices. Note that normalization of a vector can
// change its direction by up to 0.5 * dblEpsilon radians, and it is not
// enough just to add Normalize calls to the code above because the
// latitude/longitude ranges are not necessarily determined by diagonally
// opposite vertex pairs after normalization.
//
// We would like to bound the amount by which the latitude/longitude of a
// contained point P can exceed the bounds computed above. In the case of
// longitude, the normalization error can change the direction of rounding
// leading to a maximum difference in longitude of 2 * dblEpsilon. In
// the case of latitude, the normalization error can shift the latitude by
// up to 0.5 * dblEpsilon and the other sources of error can cause the
// two latitudes to differ by up to another 1.5 * dblEpsilon, which also
// leads to a maximum difference of 2 * dblEpsilon.
return Rect{lat, lng}.expanded(LatLng{s1.Angle(2 * dblEpsilon), s1.Angle(2 * dblEpsilon)}).PolarClosure()
}
// The 4 cells around the equator extend to +/-45 degrees latitude at the
// midpoints of their top and bottom edges. The two cells covering the
// poles extend down to +/-35.26 degrees at their vertices. The maximum
// error in this calculation is 0.5 * dblEpsilon.
var bound Rect
switch c.face {
case 0:
bound = Rect{r1.Interval{-math.Pi / 4, math.Pi / 4}, s1.Interval{-math.Pi / 4, math.Pi / 4}}
case 1:
bound = Rect{r1.Interval{-math.Pi / 4, math.Pi / 4}, s1.Interval{math.Pi / 4, 3 * math.Pi / 4}}
case 2:
bound = Rect{r1.Interval{poleMinLat, math.Pi / 2}, s1.FullInterval()}
case 3:
bound = Rect{r1.Interval{-math.Pi / 4, math.Pi / 4}, s1.Interval{3 * math.Pi / 4, -3 * math.Pi / 4}}
case 4:
bound = Rect{r1.Interval{-math.Pi / 4, math.Pi / 4}, s1.Interval{-3 * math.Pi / 4, -math.Pi / 4}}
default:
bound = Rect{r1.Interval{-math.Pi / 2, -poleMinLat}, s1.FullInterval()}
}
// Finally, we expand the bound to account for the error when a point P is
// converted to an LatLng to test for containment. (The bound should be
// large enough so that it contains the computed LatLng of any contained
// point, not just the infinite-precision version.) We don't need to expand
// longitude because longitude is calculated via a single call to math.Atan2,
// which is guaranteed to be semi-monotonic.
return bound.expanded(LatLng{s1.Angle(dblEpsilon), s1.Angle(0)})
}
// CapBound returns the bounding cap of this cell.
func (c Cell) CapBound() Cap {
// We use the cell center in (u,v)-space as the cap axis. This vector is very close
// to GetCenter() and faster to compute. Neither one of these vectors yields the
// bounding cap with minimal surface area, but they are both pretty close.
cap := CapFromPoint(Point{faceUVToXYZ(int(c.face), c.uv.Center().X, c.uv.Center().Y).Normalize()})
for k := 0; k < 4; k++ {
cap = cap.AddPoint(c.Vertex(k))
}
return cap
}
// ContainsPoint reports whether this cell contains the given point. Note that
// unlike Loop/Polygon, a Cell is considered to be a closed set. This means
// that a point on a Cell's edge or vertex belong to the Cell and the relevant
// adjacent Cells too.
//
// If you want every point to be contained by exactly one Cell,
// you will need to convert the Cell to a Loop.
func (c Cell) ContainsPoint(p Point) bool {
// We can't just call XYZtoFaceUV, because for points that lie on the
// boundary between two faces (i.e. u or v is +1/-1) we need to return
// true for both adjacent cells.
//
// We can get away with not checking the face if the point matches the face of
// the cell here because, for the 4 faces adjacent to c.face, p will be
// projected outside the range of ([-1,1]x[-1,1]) and thus can't intersect the
// cell bounds (except on the face boundary which we want).
//
// For the face opposite c.face, the sign of the UV coordinates of P will be
// flipped so it will automatically fall outside the cell boundary as no cells
// cross the origin.
var uv r2.Point
var ok bool
if uv.X, uv.Y, ok = faceXYZToUV(int(c.face), p); !ok {
return false
}
// Expand the (u,v) bound to ensure that
//
// CellFromPoint(p).ContainsPoint(p)
//
// is always true. To do this, we need to account for the error when
// converting from (u,v) coordinates to (s,t) coordinates. In the
// normal case the total error is at most dblEpsilon.
return c.uv.ExpandedByMargin(dblEpsilon).ContainsPoint(uv)
}
// Encode encodes the Cell.
func (c Cell) Encode(w io.Writer) error {
e := &encoder{w: w}
c.encode(e)
return e.err
}
func (c Cell) encode(e *encoder) {
c.id.encode(e)
}
// Decode decodes the Cell.
func (c *Cell) Decode(r io.Reader) error {
d := &decoder{r: asByteReader(r)}
c.decode(d)
return d.err
}
func (c *Cell) decode(d *decoder) {
c.id.decode(d)
*c = CellFromCellID(c.id)
}
// vertexChordDist2 returns the squared chord distance from point P to the
// given corner vertex specified by the Hi or Lo values of each.
func (c Cell) vertexChordDist2(p Point, xHi, yHi bool) s1.ChordAngle {
x := c.uv.X.Lo
y := c.uv.Y.Lo
if xHi {
x = c.uv.X.Hi
}
if yHi {
y = c.uv.Y.Hi
}
return ChordAngleBetweenPoints(p, PointFromCoords(x, y, 1))
}
// uEdgeIsClosest reports whether a point P is closer to the interior of the specified
// Cell edge (either the lower or upper edge of the Cell) or to the endpoints.
func (c Cell) uEdgeIsClosest(p Point, vHi bool) bool {
u0 := c.uv.X.Lo
u1 := c.uv.X.Hi
v := c.uv.Y.Lo
if vHi {
v = c.uv.Y.Hi
}
// These are the normals to the planes that are perpendicular to the edge
// and pass through one of its two endpoints.
dir0 := r3.Vector{v*v + 1, -u0 * v, -u0}
dir1 := r3.Vector{v*v + 1, -u1 * v, -u1}
return p.Dot(dir0) > 0 && p.Dot(dir1) < 0
}
// vEdgeIsClosest reports whether a point P is closer to the interior of the specified
// Cell edge (either the right or left edge of the Cell) or to the endpoints.
func (c Cell) vEdgeIsClosest(p Point, uHi bool) bool {
v0 := c.uv.Y.Lo
v1 := c.uv.Y.Hi
u := c.uv.X.Lo
if uHi {
u = c.uv.X.Hi
}
dir0 := r3.Vector{-u * v0, u*u + 1, -v0}
dir1 := r3.Vector{-u * v1, u*u + 1, -v1}
return p.Dot(dir0) > 0 && p.Dot(dir1) < 0
}
// edgeDistance reports the distance from a Point P to a given Cell edge. The point
// P is given by its dot product, and the uv edge by its normal in the
// given coordinate value.
func edgeDistance(ij, uv float64) s1.ChordAngle {
// Let P by the target point and let R be the closest point on the given
// edge AB. The desired distance PR can be expressed as PR^2 = PQ^2 + QR^2
// where Q is the point P projected onto the plane through the great circle
// through AB. We can compute the distance PQ^2 perpendicular to the plane
// from "dirIJ" (the dot product of the target point P with the edge
// normal) and the squared length the edge normal (1 + uv**2).
pq2 := (ij * ij) / (1 + uv*uv)
// We can compute the distance QR as (1 - OQ) where O is the sphere origin,
// and we can compute OQ^2 = 1 - PQ^2 using the Pythagorean theorem.
// (This calculation loses accuracy as angle POQ approaches Pi/2.)
qr := 1 - math.Sqrt(1-pq2)
return s1.ChordAngleFromSquaredLength(pq2 + qr*qr)
}
// distanceInternal reports the distance from the given point to the interior of
// the cell if toInterior is true or to the boundary of the cell otherwise.
func (c Cell) distanceInternal(targetXYZ Point, toInterior bool) s1.ChordAngle {
// All calculations are done in the (u,v,w) coordinates of this cell's face.
target := faceXYZtoUVW(int(c.face), targetXYZ)
// Compute dot products with all four upward or rightward-facing edge
// normals. dirIJ is the dot product for the edge corresponding to axis
// I, endpoint J. For example, dir01 is the right edge of the Cell
// (corresponding to the upper endpoint of the u-axis).
dir00 := target.X - target.Z*c.uv.X.Lo
dir01 := target.X - target.Z*c.uv.X.Hi
dir10 := target.Y - target.Z*c.uv.Y.Lo
dir11 := target.Y - target.Z*c.uv.Y.Hi
inside := true
if dir00 < 0 {
inside = false // Target is to the left of the cell
if c.vEdgeIsClosest(target, false) {
return edgeDistance(-dir00, c.uv.X.Lo)
}
}
if dir01 > 0 {
inside = false // Target is to the right of the cell
if c.vEdgeIsClosest(target, true) {
return edgeDistance(dir01, c.uv.X.Hi)
}
}
if dir10 < 0 {
inside = false // Target is below the cell
if c.uEdgeIsClosest(target, false) {
return edgeDistance(-dir10, c.uv.Y.Lo)
}
}
if dir11 > 0 {
inside = false // Target is above the cell
if c.uEdgeIsClosest(target, true) {
return edgeDistance(dir11, c.uv.Y.Hi)
}
}
if inside {
if toInterior {
return s1.ChordAngle(0)
}
// Although you might think of Cells as rectangles, they are actually
// arbitrary quadrilaterals after they are projected onto the sphere.
// Therefore the simplest approach is just to find the minimum distance to
// any of the four edges.
return minChordAngle(edgeDistance(-dir00, c.uv.X.Lo),
edgeDistance(dir01, c.uv.X.Hi),
edgeDistance(-dir10, c.uv.Y.Lo),
edgeDistance(dir11, c.uv.Y.Hi))
}
// Otherwise, the closest point is one of the four cell vertices. Note that
// it is *not* trivial to narrow down the candidates based on the edge sign
// tests above, because (1) the edges don't meet at right angles and (2)
// there are points on the far side of the sphere that are both above *and*
// below the cell, etc.
return minChordAngle(c.vertexChordDist2(target, false, false),
c.vertexChordDist2(target, true, false),
c.vertexChordDist2(target, false, true),
c.vertexChordDist2(target, true, true))
}
// Distance reports the distance from the cell to the given point. Returns zero if
// the point is inside the cell.
func (c Cell) Distance(target Point) s1.ChordAngle {
return c.distanceInternal(target, true)
}
// MaxDistance reports the maximum distance from the cell (including its interior) to the
// given point.
func (c Cell) MaxDistance(target Point) s1.ChordAngle {
// First check the 4 cell vertices. If all are within the hemisphere
// centered around target, the max distance will be to one of these vertices.
targetUVW := faceXYZtoUVW(int(c.face), target)
maxDist := maxChordAngle(c.vertexChordDist2(targetUVW, false, false),
c.vertexChordDist2(targetUVW, true, false),
c.vertexChordDist2(targetUVW, false, true),
c.vertexChordDist2(targetUVW, true, true))
if maxDist <= s1.RightChordAngle {
return maxDist
}
// Otherwise, find the minimum distance dMin to the antipodal point and the
// maximum distance will be pi - dMin.
return s1.StraightChordAngle - c.Distance(Point{target.Mul(-1)})
}
// BoundaryDistance reports the distance from the cell boundary to the given point.
func (c Cell) BoundaryDistance(target Point) s1.ChordAngle {
return c.distanceInternal(target, false)
}
// DistanceToEdge returns the minimum distance from the cell to the given edge AB. Returns
// zero if the edge intersects the cell interior.
func (c Cell) DistanceToEdge(a, b Point) s1.ChordAngle {
// Possible optimizations:
// - Currently the (cell vertex, edge endpoint) distances are computed
// twice each, and the length of AB is computed 4 times.
// - To fix this, refactor GetDistance(target) so that it skips calculating
// the distance to each cell vertex. Instead, compute the cell vertices
// and distances in this function, and add a low-level UpdateMinDistance
// that allows the XA, XB, and AB distances to be passed in.
// - It might also be more efficient to do all calculations in UVW-space,
// since this would involve transforming 2 points rather than 4.
// First, check the minimum distance to the edge endpoints A and B.
// (This also detects whether either endpoint is inside the cell.)
minDist := minChordAngle(c.Distance(a), c.Distance(b))
if minDist == 0 {
return minDist
}
// Otherwise, check whether the edge crosses the cell boundary.
crosser := NewChainEdgeCrosser(a, b, c.Vertex(3))
for i := 0; i < 4; i++ {
if crosser.ChainCrossingSign(c.Vertex(i)) != DoNotCross {
return 0
}
}
// Finally, check whether the minimum distance occurs between a cell vertex
// and the interior of the edge AB. (Some of this work is redundant, since
// it also checks the distance to the endpoints A and B again.)
//
// Note that we don't need to check the distance from the interior of AB to
// the interior of a cell edge, because the only way that this distance can
// be minimal is if the two edges cross (already checked above).
for i := 0; i < 4; i++ {
minDist, _ = UpdateMinDistance(c.Vertex(i), a, b, minDist)
}
return minDist
}
// MaxDistanceToEdge returns the maximum distance from the cell (including its interior)
// to the given edge AB.
func (c Cell) MaxDistanceToEdge(a, b Point) s1.ChordAngle {
// If the maximum distance from both endpoints to the cell is less than π/2
// then the maximum distance from the edge to the cell is the maximum of the
// two endpoint distances.
maxDist := maxChordAngle(c.MaxDistance(a), c.MaxDistance(b))
if maxDist <= s1.RightChordAngle {
return maxDist
}
return s1.StraightChordAngle - c.DistanceToEdge(Point{a.Mul(-1)}, Point{b.Mul(-1)})
}
// DistanceToCell returns the minimum distance from this cell to the given cell.
// It returns zero if one cell contains the other.
func (c Cell) DistanceToCell(target Cell) s1.ChordAngle {
// If the cells intersect, the distance is zero. We use the (u,v) ranges
// rather than CellID intersects so that cells that share a partial edge or
// corner are considered to intersect.
if c.face == target.face && c.uv.Intersects(target.uv) {
return 0
}
// Otherwise, the minimum distance always occurs between a vertex of one
// cell and an edge of the other cell (including the edge endpoints). This
// represents a total of 32 possible (vertex, edge) pairs.
//
// TODO(roberts): This could be optimized to be at least 5x faster by pruning
// the set of possible closest vertex/edge pairs using the faces and (u,v)
// ranges of both cells.
var va, vb [4]Point
for i := 0; i < 4; i++ {
va[i] = c.Vertex(i)
vb[i] = target.Vertex(i)
}
minDist := s1.InfChordAngle()
for i := 0; i < 4; i++ {
for j := 0; j < 4; j++ {
minDist, _ = UpdateMinDistance(va[i], vb[j], vb[(j+1)&3], minDist)
minDist, _ = UpdateMinDistance(vb[i], va[j], va[(j+1)&3], minDist)
}
}
return minDist
}
// MaxDistanceToCell returns the maximum distance from the cell (including its
// interior) to the given target cell.
func (c Cell) MaxDistanceToCell(target Cell) s1.ChordAngle {
// Need to check the antipodal target for intersection with the cell. If it
// intersects, the distance is the straight ChordAngle.
// antipodalUV is the transpose of the original UV, interpreted within the opposite face.
antipodalUV := r2.Rect{target.uv.Y, target.uv.X}
if int(c.face) == oppositeFace(int(target.face)) && c.uv.Intersects(antipodalUV) {
return s1.StraightChordAngle
}
// Otherwise, the maximum distance always occurs between a vertex of one
// cell and an edge of the other cell (including the edge endpoints). This
// represents a total of 32 possible (vertex, edge) pairs.
//
// TODO(roberts): When the maximum distance is at most π/2, the maximum is
// always attained between a pair of vertices, and this could be made much
// faster by testing each vertex pair once rather than the current 4 times.
var va, vb [4]Point
for i := 0; i < 4; i++ {
va[i] = c.Vertex(i)
vb[i] = target.Vertex(i)
}
maxDist := s1.NegativeChordAngle
for i := 0; i < 4; i++ {
for j := 0; j < 4; j++ {
maxDist, _ = UpdateMaxDistance(va[i], vb[j], vb[(j+1)&3], maxDist)
maxDist, _ = UpdateMaxDistance(vb[i], va[j], va[(j+1)&3], maxDist)
}
}
return maxDist
}