Skip to content

Latest commit

 

History

History
 
 

kubeflow

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 

Kubeflow Pipeline Components for AIF360

Kubeflow pipeline components are implementations of Kubeflow pipeline tasks. Each task takes one or more artifacts as input and may produce one or more artifacts as output.

Example: AIF360 Components

Each task usually includes two parts:

Each component has a component.yaml which will describe the functionality exposed by it, for e.g.

name: 'PyTorch - Model Fairness Check'
description: |
  Perform a fairness check on a certain attribute using AIF360 to make sure the model is fair and ethical
metadata:
  annotations: {platform: 'OpenSource'}
inputs:
  - {name: model_id,                     description: 'Required. Training model ID', default: 'training-dummy'}
  - {name: model_class_file,             description: 'Required. pytorch model class file', default: 'PyTorchModel.py'}
  - {name: model_class_name,             description: 'Required. pytorch model class name', default: 'PyTorchModel'}
  - {name: feature_testset_path,         description: 'Required. Feature test dataset path in the data bucket'}
  - {name: label_testset_path,           description: 'Required. Label test dataset path in the data bucket'}
  - {name: protected_label_testset_path, description: 'Required. Protected label test dataset path in the data bucket'}
  - {name: favorable_label,              description: 'Required. Favorable label for this model predictions'}
  - {name: unfavorable_label,            description: 'Required. Unfavorable label for this model predictions'}
  - {name: privileged_groups,            description: 'Required. Privileged feature groups within this model'}
  - {name: unprivileged_groups,          description: 'Required. Unprivileged feature groups within this model'}
  - {name: data_bucket_name,             description: 'Optional. Bucket that has the processed data', default: 'training-data'}
  - {name: result_bucket_name,           description: 'Optional. Bucket that has the training results', default: 'training-result'}
outputs:
  - {name: metric_path,                  description: 'Path for fairness check output'}
implementation:
  container:
    image: aipipeline/bias-detector:pytorch
    command: ['python']
    args: [
      -u, fairness_check.py,
      --model_id, {inputValue: model_id},
      --model_class_file, {inputValue: model_class_file},
      --model_class_name, {inputValue: model_class_name},
      --feature_testset_path, {inputValue: feature_testset_path},
      --label_testset_path, {inputValue: label_testset_path},
      --protected_label_testset_path, {inputValue: protected_label_testset_path},
      --favorable_label, {inputValue: favorable_label},
      --unfavorable_label, {inputValue: unfavorable_label},
      --privileged_groups, {inputValue: privileged_groups},
      --unprivileged_groups, {inputValue: unprivileged_groups},
      --metric_path, {outputPath: metric_path},
      --data_bucket_name, {inputValue: data_bucket_name},
      --result_bucket_name, {inputValue: result_bucket_name}
    ]

See how to use the Kubeflow Pipelines SDK and build your own components.