Skip to content
forked from txWang/BERMUDA

BERMUDA (Batch Effect ReMoval Using Deep Autoencoders): application to tissue-typing pathology in MRI

License

Notifications You must be signed in to change notification settings

garedaba/BERMUDA

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

34 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

BERMUDA: Batch Effect ReMoval Using Deep Autoencoders

Original authors: Tongxin Wang, Travis S Johnson, Wei Shao, Zixiao Lu, Bryan R Helm, Jie Zhang and Kun Huang Original code and data for using BERMUDA, a novel transfer-learning-based method for batch-effect correction in single cell RNA sequencing (scRNA-seq) data.

WIP: Application to paediatric brain tumour MRI data

Using BERMUDA to define a latent space capturing tissue-specific variation in diffusion MRI parameters, corrected for inter-subject variation (cf. batch).

Dependencies

  • Python 3.7.6
  • scikit-learn 0.22.1
  • pyTorch 1.4.0
  • rpy2 2.9.4
  • R libraries: simstudy, clusterGeneration, Matrix

Files

main_synthetic.py: example using synthetic data

todo

  • change data generation to vary number of voxels in each tissue
  • improve plots
  • classifier in latent space, project to discriminative axes?
  • plots for proba classifications
  • implement homogeneity/divergence scores for train/test data?

Cite

Wang, T., Johnson, T.S., Shao, W. et al. BERMUDA: a novel deep transfer learning method for single-cell RNA sequencing batch correction reveals hidden high-resolution cellular subtypes. Genome Biol 20, 165 (2019) doi:10.1186/s13059-019-1764-6

About

BERMUDA (Batch Effect ReMoval Using Deep Autoencoders): application to tissue-typing pathology in MRI

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Python 82.6%
  • R 17.4%