This is a tutorial and gallery demonstrating feedgnuplot
usage. The
documentation provides a complete reference, and application-specific usage
examples. The capabilities of gnuplot itself are demonstrated at its demo page.
First, a trivial plot: let’s plot a sinusoid
seq 100 | \
perl -nE 'say sin($_/5.)' | \
feedgnuplot
This was a trivial plot, and was trivially-easy to make: we gave the tool one column of data with no specific instructions, and we got a plot.
The interpretation of the input data is controlled by two arguments: --domain
and --dataid
. Here we passed neither, so each line of input is interpreted as
y0 y1 y2...
with sequential integers (0, 1, 2, …) used for the x
coordinate. Let’s pass in more than one y
per line to plot a sine and a cosine
together:
seq 100 | \
perl -nE '$th = $_/100.*2.*3.14159;
$s = sin($th);
$c = cos($th);
say "$c $s"' | \
feedgnuplot --lines --points
Here I also passed --lines --points
to make more legible plots.
Note that, the lines may have different numbers of points. To plot the cosine from every line, but the sine from every 5th line:
seq 100 | \
perl -nE '$th = $_/100.*2.*3.14159;
$s = sin($th);
$c = cos($th);
if($.%5) { say "$c"; }
else { say "$c $s"; }' | \
feedgnuplot --lines --points
Each y
is referred to as a “dataset” or “curve” in the code and documentation.
With --domain
, the x
values are read from the data instead of simply
encoding line numbers: each line of input is interpreted as x y0 y1 y2...
.
Let’s plot sin(theta)
vs. cos(theta)
, i.e. a circle:
seq 100 | \
perl -nE '$th = $_/100.*2.*3.14159;
$s = sin($th);
$c = cos($th);
say "$c $s"' | \
feedgnuplot --lines --points --domain
Hmmm. We asked for a circle, but this looks more like an ellipse. Why? Because
gnuplot is autoscaling the x
and y
axes independently to fill the plot window.
We can scale the axes together by passing --square
, and we get a circle:
seq 100 | \
perl -nE '$th = $_/100.*2.*3.14159;
$s = sin($th);
$c = cos($th);
say "$c $s"' | \
feedgnuplot --lines --points --domain --square
Again, we can have multiple y
in each line, and each line may have a different
number of y
. Let’s plot a circle and an ellipse, sampled more coarsely:
seq 100 | \
perl -nE '$th = $_/100.*2.*3.14159;
$s = sin($th);
$c = cos($th);
if($.%5) { say "$c $s"; }
else { $s2 = $s/2;
say "$c $s $s2"; }' | \
feedgnuplot --lines --points --domain --square
We just plotted something where each point is represented by 2 values: x
and
y
. When making 2D plots, this is the most common case, but others are
possible. What if we want to color-code our points using another column of data?
We feed in the new column, and we tell feedgnuplot
that we now have 3 values
per point (the tuple size), and we tell gnuplot
how we want this plot to be
made. Color-coding by the angle, in degrees:
seq 100 | \
perl -nE '$thdeg = $_/100.*360.;
$th = $_/100.*2.*3.14159;
$s = sin($th);
$c = cos($th);
say "$c $s $thdeg";' | \
feedgnuplot --domain --square \
--tuplesizeall 3 \
--styleall 'with linespoints palette'
Here we said that all the datasets have 3 values per point. And that all the
datasets should be plotted with that particular style. The styles are strings
that are passed on to gnuplot
verbatim. So the full power of gnuplot
is
available, and there’s nothing feedgnuplot
-specific to learn. gnuplot
has
plenty of documentation about styling details.
The above --styleall
argument may be identically replaced with a shorthand:
--with 'points palette'
Note that the --lines --points
specify the default style only, so these
options do nothing here, and if we want lines and points, we ask for those in
the style:
--with 'linespoints palette'
The styles and tuple sizes can be different for each dataset. For instance, to apply the colors only to the circle (dataset 0), leaving the ellipse (dataset 1) with the default tuple size and style:
seq 100 | \
perl -nE '$thdeg = $_/100.*360.;
$th = $_/100.*2.*3.14159;
$s=sin($th); $c=cos($th);
if($.%5) { say "$c $s $thdeg" }
else { $s2 = $s/2;
say "$c $s $thdeg $s2"; }' | \
feedgnuplot --lines --points --domain --square \
--tuplesize 0 3 \
--style 0 'with points palette' \
--legend 0 'circle' \
--legend 1 'ellipse'
Here we also asked for dataset labels to make it clear to the viewer what’s what.
The other significant option involved in the interpretation of data is
--dataid
. This labels each dataset in the data, so instead of referring to
dataset 0
, you could refer to dataset circle
. With --domain --dataid
, each
line of input is interpreted as x id0 y0 id1 y1...
, with the number of y
in
each dataset reflecting the tuple size. Naturally, --dataid
without --domain
is identical, except without the leading x
. The previous plot can be
reproduced with --dataid
:
seq 100 | \
perl -nE '$thdeg = $_/100.*360.;
$th = $_/100.*2.*3.14159;
$s=sin($th); $c=cos($th);
if($.%5) { say "$c circle $s $thdeg" }
else { $s2 = $s/2;
say "$c circle $s $thdeg ellipse $s2"; }' | \
feedgnuplot --lines --points --domain --dataid --square \
--tuplesize circle 3 \
--style circle 'with points palette' \
--autolegend
Note that instead of labelling the datasets explicitly, we passed --autolegend
to use the ID as the label for each dataset. This works without --dataid
also,
but the IDs are then the unhelpful sequential integers.
Instead of identifying columns using explicit IDs inside the data stream (as
with --dataid
), it’s possible to read vnlog data, which contains a single
header line identifying the columns. For instance:
( echo '# th';
seq 100 | perl -nE 'say $_/100.*2.*3.14159;' ) | \
vnl-filter -p 'c=cos(th),s=sin(th),th_deg=th*180./3.14159,s2=sin(th)/2' | \
feedgnuplot --lines --points --domain --vnl --square \
--tuplesize s 3 \
--style s 'with points palette' \
--legend s circle \
--legend s2 ellipse
This is a good overview of the syntax and of the data interpretation. Let’s demo some fancy plots to serve as a cookbook.
Since the actual plotting is handled by gnuplot
, its documentation and demos
are the primary reference on how to do stuff.
Most often, we’re plotting lines or points. The most common styling keywords are:
pt
(or equivalentlypointtype
)ps
(or equivalentlypointsize
)lt
(or equivalentlylinetype
)lw
(or equivalentlylinewidth
)lc
(or equivalentlylinecolor
)dt
(or equivalentlydashtype
)
For details about these and all other styles, see the gnuplot
documentation.
For instance, the first little bit of the docs about the different line widths:
gnuplot -e 'help linewidth' | head -n 20
Each terminal has a default set of line and point types, which can be seen by using the command `test`. `set style line` defines a set of line types and widths and point types and sizes so that you can refer to them later by an index instead of repeating all the information at each invocation. Syntax: set style line <index> default set style line <index> {{linetype | lt} <line_type> | <colorspec>} {{linecolor | lc} <colorspec>} {{linewidth | lw} <line_width>} {{pointtype | pt} <point_type>} {{pointsize | ps} <point_size>} {{pointinterval | pi} <interval>} {{pointnumber | pn} <max_symbols>} {{dashtype | dt} <dashtype>} {palette} unset style line show style line `default` sets all line style parameters to those of the linetype with
gnuplot has a test
command, which produces a demo of the various available
styles. This documentation uses the svg
terminal (what gnuplot calls a
backend). So for the svg
terminal, the various styles look like this:
test
So for instance if you plot --with 'linespoints pt 4 dt 2 lc 7'
you’ll get a
red dashed line with square points. By default you’d be using one of the
interactive graphical terminals (x11
or qt
), which would have largely
similar styling.
Let’s make a plot with some variable colors and point sizes:
seq -10 10 | \
perl -nE '$, = " ";
say "parabola", $_*$_, abs($_)/2, $_*50;
say "line", $_*3. + 30.;' | \
feedgnuplot --dataid \
--tuplesize parabola 4 \
--style parabola 'with points pointtype 7 pointsize variable palette' \
--style line 'with lines lw 3 lc "red" dashtype 2' \
--set 'cbrange [-600:600]'
Here we used --set
to set the range of the colorbar. --set
(and --unset
)
map to the gnuplot set
(and --unset
) command.
As before, the gnuplot
documentation has the styling details:
gnuplot -e 'help xerrorbars'
gnuplot -e 'help yerrorbars'
gnuplot -e 'help xyerrorbars'
For brevity, I’m not including the contents of those help pages here. These tell us how to specify errorbars: how many columns to pass in, what they mean, etc. Example:
seq -10 10 | \
perl -nE '$, = " ";
chomp;
$x = $_;
$y = $x*$x * 10 + 20;
say $x+1, "parabola", $y;
say $x+1, "parabola_symmetric_xyerrorbars", $y, $x*$x/80, $x*$x/4;
say $x, "parabola_unsymmetric_xyerrorbars", $y, $x-$x*$x/80, $x+$x*$x/40, $y-$x*$x/4, $y+$x*$x/8;
say $x, "line_unsymmetric_yerrorbars", $x*20+500, 40;' | \
feedgnuplot --domain --dataid \
--tuplesize parabola 2 \
--style parabola "with lines" \
--tuplesize parabola_symmetric_xyerrorbars 4 \
--style parabola_symmetric_xyerrorbars "with xyerrorbars" \
--legend parabola_symmetric_xyerrorbars "using the 'x y xdelta ydelta' style" \
--tuplesize parabola_unsymmetric_xyerrorbars 6 \
--style parabola_unsymmetric_xyerrorbars "with xyerrorbars" \
--legend parabola_unsymmetric_xyerrorbars "using the 'x y xlow xhigh ylow yhigh' style" \
--tuplesize line_unsymmetric_yerrorbars 3 \
--style line_unsymmetric_yerrorbars "with yerrorbars" \
--legend line_unsymmetric_yerrorbars "using the 'x y ydelta' style" \
--xmin -10 --xmax 10 \
--set 'key box opaque'
See
gnuplot -e 'help polar'
Let’s plot a simple rho = theta
spiral:
seq 100 | \
perl -nE '$x = $_/10; \
say "$x $x"' | \
feedgnuplot --domain \
--with 'lines' \
--set 'polar' \
--square
feedgnuplot
can interpret data given as timestamps in an arbitrary format
parseable with strftime()
. Unlike everything else in feedgnuplot
, these
timestamps may contain whitespace. For instance:
seq 5 | gawk '{print strftime("%d %b %Y %T",1382249107+$1,1),$1}' | \
feedgnuplot --domain \
--lines --points \
--timefmt '%d %b %Y %H:%M:%S' \
--xmin '20 Oct 2013 06:05:00' \
--xmax '20 Oct 2013 06:05:20'
--timefmt
controls how to parse the input. The formatting of the output is
auto-selected by gnuplot, and sometimes we want to control it. To show the hour
and minute and seconds on the x axis:
seq 5 | gawk '{print strftime("%d %b %Y %T",1382249107+$1,1),$1}' | \
feedgnuplot --domain \
--lines --points \
--timefmt '%d %b %Y %H:%M:%S' \
--xmin '20 Oct 2013 06:05:00' \
--xmax '20 Oct 2013 06:05:20' \
--set 'format x "%H:%M:%S"'
Docs:
gnuplot -e 'help labels'
gnuplot -e 'help set label'
Basic example:
echo \
"1 1 aaa
2 3 bbb
4 5 ccc" | \
feedgnuplot --domain \
--with 'labels' \
--tuplesizeall 3 \
--xmin 0 --xmax 5 \
--ymin 0 --ymax 6 \
--unset grid
More complex example (varied orientations and colors):
echo \
"1 1 aaa 0 10
2 3 bbb 30 18
4 5 ccc 90 20" | \
feedgnuplot --domain \
--with 'labels rotate variable textcolor palette' \
--tuplesizeall 5 \
--xmin 0 --xmax 5 \
--ymin 0 --ymax 6 \
--unset grid
We can plot in 3D by passing --3d
. When plotting interactively, you can use
the mouse to rotate the plot, and look at it from different directions.
Otherwise, the viewing angle can be set with --set 'view ...'
. See
gnuplot -e 'help set view'
Unlike 2D plots, 3D plots have a 2-dimensional domain, and --domain
is
required. So each line is interpreted x y z0 z1 z2...
.
A double-helix with variable color and variable pointsize
seq 200 | \
perl -nE '$, = " ";
$th = $_/10;
$z = $_/40;
$c = cos($th);
$s = sin($th);
$size = 0.5 + abs($c);
$color = $z;
say $c, $s, 0, $z, $size, $color;
say -$c, -$s, 1, $z, $size, $color;' | \
feedgnuplot --domain --dataid --3d \
--with 'points pointsize variable pointtype 7 palette' \
--tuplesizeall 5 \
--title "Double helix" \
--squarexy
gnuplot
(and feedgnuplot
) has support for histograms. So we can give it
data, and have it bin it for us. Pre-sorting the data is unnecessary. Let’s look
at the central limit theorem: we look at the distribution of sums of 10 uniform
samples in [-1,1]: it should be normal-ish. And let’s draw the expected perfect
PDF on top (as an equation, evaluated by gnuplot
).
N=20000;
Nsum=10;
binwidth=.1;
seq $N | \
perl -nE '$Nsum = '$Nsum';
$var = '$Nsum' / 3.;
$s = 0; for $i (1..$Nsum) { $s += rand()*2-1; }
say $s/sqrt($var);' | \
feedgnuplot --histo 0 --binwidth $binwidth \
--equation-above "($N * sqrt(2.*pi) * erf($binwidth/(2.*sqrt(2.)))) * \
exp(-(x*x)/(2.)) / \
sqrt(2.*pi) title \"Limit gaussian\" with lines lw 2"
If we want multiple histograms drawn on top of one another, the styling should be adjusted so that they both remain visible. Let’s vary the size of the sum, and look at the effects: bigger sums should be more gaussian-like:
N=20000;
binwidth=.1;
for Nsum in 1 2 3; do
seq $N | \
perl -nE '$, = " ";
$Nsum = '$Nsum';
$var = '$Nsum' / 3.;
$s = 0; for $i (1..$Nsum) { $s += rand()*2-1; }
say $Nsum,$s/sqrt($var);';
done | \
feedgnuplot --dataid --histo 1,2,3 --binwidth $binwidth \
--autolegend \
--style 1 'with boxes fill transparent solid 0.3 border lt -1' \
--style 2 'with boxes fill transparent pattern 4 border lt -1' \
--style 3 'with boxes fill transparent pattern 5 border lt -1' \
--equation-above "($N * sqrt(2.*pi) * erf($binwidth/(2.*sqrt(2.)))) * \
exp(-(x*x)/(2.)) / \
sqrt(2.*pi) title \"Limit gaussian\" with lines lw 2"
It is possible to combine time data with histograms. For instance, let’s say we monitored something, and came up with a dataset that contains timestamps when some event occurred. Let’s make a histogram of this data to get a larger sense of when the issue happened:
cat <<EOF | \
feedgnuplot --timefmt '%Y-%m-%d--%H:%M:%S' --histogram 0 --binwidth 120 \
--set 'format x "%H:%M:%S"'
2021-07-21--17:33:22
2021-07-21--17:33:23
2021-07-21--17:33:28
2021-07-21--17:37:13
2021-07-21--17:39:01
2021-07-21--17:44:17
2021-07-21--17:44:22
2021-07-21--17:44:37
2021-07-21--17:44:44
2021-07-21--17:44:49
2021-07-21--17:53:12
2021-07-21--17:53:57
EOF
feedgnuplot
supports bar charts to be drawn with labels appearing in the data.
These aren’t “histograms”, where gnuplot bins the data for us, but rather the
data is given to us, ready to plot. We pass --xticlabels
to indicate that the
x-axis tic labels come from the data. This changes the interpretation of the
input: with --domain
, each line begins with x label ....
. Without
--domain
, each line begins with label ...
. Clearly, the labels may not
contain whitespace. This does not affect the tuple size.
Basic example without --domain
:
echo "# x label a b
5 aaa 2 1
6 bbb 3 2
10 ccc 5 4
11 ddd 2 1" | \
vnl-filter -p label,a,b | \
feedgnuplot --vnl \
--xticlabels \
--style a 'with boxes fill pattern 4 border lt -1' \
--style b 'with boxes fill pattern 5 border lt -1' \
--ymin 0 --unset grid
We can also pass --domain
to read the x
positions from the data also:
echo "# x label a b
5 aaa 2 1
6 bbb 3 2
10 ccc 5 4
11 ddd 2 1" | \
feedgnuplot --vnl --domain \
--xticlabels \
--style a 'with boxes fill pattern 4 border lt -1' \
--style b 'with boxes fill pattern 5 border lt -1' \
--ymin 0 --unset grid
And we can use gnuplot’s clustering capabilities:
echo "# x label a b
5 aaa 2 1
6 bbb 3 2
10 ccc 5 4
11 ddd 2 1" | \
vnl-filter -p label,a,b | \
feedgnuplot --vnl \
--xticlabels \
--set 'style data histogram' \
--set 'style histogram cluster gap 2' \
--set 'style fill solid border lt -1' \
--autolegend \
--ymin 0 --unset grid
Or we can vertically stack the bars in each cluster:
echo "# x label a b
5 aaa 2 1
6 bbb 3 2
10 ccc 5 4
11 ddd 2 1" | \
vnl-filter -p label,a,b | \
feedgnuplot --vnl \
--xticlabels \
--set 'style data histogram' \
--set 'style histogram rowstacked' \
--set 'boxwidth 0.8' \
--set 'style fill solid border lt -1' \
--autolegend \
--ymin 0 --unset grid
Using --xticlabels
to plot bars is probably the most common usage, but
--xticlabels
means only that we read the x-axis tic labels from the data, so
we can plot anything. For instance:
echo "# x label a b
5 aaa 2 1
6 bbb 3 2
10 ccc 5 4
11 ddd 2 1" | \
feedgnuplot --vnl --domain \
--xticlabels \
--tuplesizeall 3 \
--with 'points pt 7 ps 2 palette' \
--xmin 4 --xmax 12 \
--ymin 0 --ymax 6 \
--unset grid
Documentation in gnuplot available like this:
gnuplot -e 'help vectors'
The docs say that in 2D we want 4 columns: x, y, xdelta, ydelta
and in 3D we
want 6 columns: x, y, z, xdelta, ydelta, zdelta
. And we can have a variable
arrowstyle. A vector field in 2D:
perl -E '$, = " ";
for $x (-5..5) { for $y (-5..5) {
$r = sqrt($x*$x + $y*$y);
say $x, $y, $y/sqrt($r+0.1)*0.5, -$x/sqrt($r+0.1)*0.5;
} }' | \
feedgnuplot --domain \
--tuplesizeall 4 \
--with 'vectors filled head' \
--square