-
Notifications
You must be signed in to change notification settings - Fork 44
/
variants_test.py
943 lines (740 loc) · 31.6 KB
/
variants_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
# Copyright 2020 DeepMind Technologies Limited. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for `variants.py`.
To run tests in multi-cpu regime, one need to set the flag `--n_cpu_devices=N`.
"""
import inspect
import itertools
import unittest
from absl import flags
from absl.testing import absltest
from absl.testing import parameterized
from chex._src import asserts
from chex._src import fake
from chex._src import pytypes
from chex._src import variants
import jax
import jax.numpy as jnp
import numpy as np
FLAGS = flags.FLAGS
ArrayBatched = pytypes.ArrayBatched
DEFAULT_FN = lambda arg_0, arg_1: arg_1 - arg_0
DEFAULT_PARAMS = ((1, 2, 1), (4, 6, 2))
DEFAULT_NDARRAY_PARAMS_SHAPE = (5, 7)
DEFAULT_NAMED_PARAMS = (('case_0', 1, 2, 1), ('case_1', 4, 6, 2))
# Set `FLAGS.chex_n_cpu_devices` CPU devices for all tests.
def setUpModule():
fake.set_n_cpu_devices()
asserts.assert_devices_available(
FLAGS['chex_n_cpu_devices'].value, 'cpu', backend='cpu')
def _scalar_to_ndarray(x, shape=None):
return np.broadcast_to(x, shape or DEFAULT_NDARRAY_PARAMS_SHAPE)
def _variant_default_tests_generator(fn, is_jit_context, which_variants,
**var_kwargs):
"""Returns a generator with standard tests.
For internal usage. Allows to dynamically generate common tests.
See tests' names and comments for more information.
Args:
fn: a separate function to be tested (without `self` argument).
is_jit_context: is a function is supposed to be JIT-ted.
which_variants: chex variants to use in tests generation.
**var_kwargs: kwargs for variants wrappers.
Returns:
A generator with tests.
"""
# All generated tests use default arguments (defined at the top of this file).
arg_0, arg_1, expected = DEFAULT_PARAMS[0]
varg_0, varg_1, vexpected = (
_scalar_to_ndarray(a) for a in (arg_0, arg_1, expected))
# We test whether the function has been jitted by introducing a counter
# variable as a side-effect. When the function is repeatedly called, jitted
# code will only execute the side-effect once
python_execution_count = 0
def fn_with_counter(*args, **kwargs):
nonlocal python_execution_count
python_execution_count += 1
return fn(*args, **kwargs)
def exec_with_tracing_counter_checks(self, var_fn, arg_0, arg_1):
self.assertEqual(python_execution_count, 0)
_ = var_fn(arg_0, arg_1)
# In jit context, JAX can omit retracing a function from the previous
# test, hence `python_execution_count` will be equal to 0.
# In non-jit context, `python_execution_count` must always increase.
if not is_jit_context:
self.assertEqual(python_execution_count, 1)
actual = var_fn(arg_0, arg_1)
if is_jit_context:
# Either 1 (initial tracing) or 0 (function reuse).
self.assertLess(python_execution_count, 2)
else:
self.assertEqual(python_execution_count, 2)
return actual
# Here, various tests follow. Tests' names intended to be self-descriptive.
@variants.variants(**which_variants)
def test_with_scalar_args(self):
nonlocal python_execution_count
python_execution_count = 0
var_fn = self.variant(fn_with_counter, **var_kwargs)
actual = exec_with_tracing_counter_checks(self, var_fn, arg_0, arg_1)
self.assertEqual(actual, expected)
@variants.variants(**which_variants)
def test_called_variant(self):
nonlocal python_execution_count
python_execution_count = 0
var_fn = self.variant(**var_kwargs)(fn_with_counter)
actual = exec_with_tracing_counter_checks(self, var_fn, arg_0, arg_1)
self.assertEqual(actual, expected)
@variants.variants(**which_variants)
def test_with_kwargs(self):
nonlocal python_execution_count
python_execution_count = 0
var_fn = self.variant(fn_with_counter, **var_kwargs)
actual = exec_with_tracing_counter_checks(
self, var_fn, arg_1=arg_1, arg_0=arg_0)
self.assertEqual(actual, expected)
@variants.variants(**which_variants)
@parameterized.parameters(*DEFAULT_PARAMS)
def test_scalar_parameters(self, arg_0, arg_1, expected):
nonlocal python_execution_count
python_execution_count = 0
var_fn = self.variant(fn_with_counter, **var_kwargs)
actual = exec_with_tracing_counter_checks(self, var_fn, arg_0, arg_1)
self.assertEqual(actual, expected)
@variants.variants(**which_variants)
@parameterized.named_parameters(*DEFAULT_NAMED_PARAMS)
def test_named_scalar_parameters(self, arg_0, arg_1, expected):
nonlocal python_execution_count
python_execution_count = 0
var_fn = self.variant(fn_with_counter, **var_kwargs)
actual = exec_with_tracing_counter_checks(self, var_fn, arg_0, arg_1)
self.assertEqual(actual, expected)
@variants.variants(**which_variants)
def test_with_ndarray_args(self):
nonlocal python_execution_count
python_execution_count = 0
var_fn = self.variant(fn_with_counter, **var_kwargs)
actual = exec_with_tracing_counter_checks(self, var_fn, varg_0, varg_1)
vexpected_ = vexpected
# pmap variant case.
if len(actual.shape) == len(DEFAULT_NDARRAY_PARAMS_SHAPE) + 1:
vexpected_ = jnp.broadcast_to(vexpected_, actual.shape)
np.testing.assert_array_equal(actual, vexpected_)
@variants.variants(**which_variants)
@parameterized.parameters(*DEFAULT_PARAMS)
def test_ndarray_parameters(self, arg_0, arg_1, expected):
nonlocal python_execution_count
python_execution_count = 0
varg_0, varg_1, vexpected = (
_scalar_to_ndarray(a) for a in (arg_0, arg_1, expected))
var_fn = self.variant(fn_with_counter, **var_kwargs)
actual = exec_with_tracing_counter_checks(self, var_fn, varg_0, varg_1)
# pmap variant case.
if len(actual.shape) == len(DEFAULT_NDARRAY_PARAMS_SHAPE) + 1:
vexpected = jnp.broadcast_to(vexpected, actual.shape)
np.testing.assert_array_equal(actual, vexpected)
@variants.variants(**which_variants)
@parameterized.named_parameters(*DEFAULT_NAMED_PARAMS)
def test_ndarray_named_parameters(self, arg_0, arg_1, expected):
nonlocal python_execution_count
python_execution_count = 0
varg_0, varg_1, vexpected = (
_scalar_to_ndarray(a) for a in (arg_0, arg_1, expected))
var_fn = self.variant(fn_with_counter, **var_kwargs)
actual = exec_with_tracing_counter_checks(self, var_fn, varg_0, varg_1)
# pmap variant case.
if len(actual.shape) == len(DEFAULT_NDARRAY_PARAMS_SHAPE) + 1:
vexpected = jnp.broadcast_to(vexpected, actual.shape)
np.testing.assert_array_equal(actual, vexpected)
all_tests = (test_with_scalar_args, test_called_variant, test_with_kwargs,
test_scalar_parameters, test_named_scalar_parameters,
test_with_ndarray_args, test_ndarray_parameters,
test_ndarray_named_parameters)
# Each test is a generator itself, hence we use chaining from itertools.
return itertools.chain(*all_tests)
class ParamsProductTest(absltest.TestCase):
def test_product(self):
l1 = (
('x1', 1, 10),
('x2', 2, 20),
)
l2 = (
('y1', 3),
('y2', 4),
)
l3 = (
('z1', 5, 50),
('z2', 6, 60),
)
l4 = (('aux', 'AUX'),)
expected = [('x1', 1, 10, 'y1', 3, 'z1', 5, 50, 'aux', 'AUX'),
('x1', 1, 10, 'y1', 3, 'z2', 6, 60, 'aux', 'AUX'),
('x1', 1, 10, 'y2', 4, 'z1', 5, 50, 'aux', 'AUX'),
('x1', 1, 10, 'y2', 4, 'z2', 6, 60, 'aux', 'AUX'),
('x2', 2, 20, 'y1', 3, 'z1', 5, 50, 'aux', 'AUX'),
('x2', 2, 20, 'y1', 3, 'z2', 6, 60, 'aux', 'AUX'),
('x2', 2, 20, 'y2', 4, 'z1', 5, 50, 'aux', 'AUX'),
('x2', 2, 20, 'y2', 4, 'z2', 6, 60, 'aux', 'AUX')]
product = list(variants.params_product(l1, l2, l3, l4, named=False))
self.assertEqual(product, expected)
named_expected = [('x1_y1_z1_aux', 1, 10, 3, 5, 50, 'AUX'),
('x1_y1_z2_aux', 1, 10, 3, 6, 60, 'AUX'),
('x1_y2_z1_aux', 1, 10, 4, 5, 50, 'AUX'),
('x1_y2_z2_aux', 1, 10, 4, 6, 60, 'AUX'),
('x2_y1_z1_aux', 2, 20, 3, 5, 50, 'AUX'),
('x2_y1_z2_aux', 2, 20, 3, 6, 60, 'AUX'),
('x2_y2_z1_aux', 2, 20, 4, 5, 50, 'AUX'),
('x2_y2_z2_aux', 2, 20, 4, 6, 60, 'AUX')]
named_product = list(variants.params_product(l1, l2, l3, l4, named=True))
self.assertEqual(named_product, named_expected)
class FailedTestsTest(absltest.TestCase):
# Inner class prevents FailedTest being run by `absltest.main()`.
class FailedTest(variants.TestCase):
@variants.variants(without_jit=True)
def test_failure(self):
self.assertEqual('meaning of life', 1337)
@variants.variants(without_jit=True)
def test_error(self):
raise ValueError('this message does not specify the Chex variant')
def setUp(self):
super().setUp()
self.chex_info = str(variants.ChexVariantType.WITHOUT_JIT)
self.res = unittest.TestResult()
ts = unittest.makeSuite(self.FailedTest) # pytype: disable=module-attr
ts.run(self.res)
def test_useful_failures(self):
self.assertIsNotNone(self.res.failures)
for test_method, _ in self.res.failures:
self.assertIn(self.chex_info, test_method._testMethodName)
def test_useful_errors(self):
self.assertIsNotNone(self.res.errors)
for test_method, msg in self.res.errors:
self.assertIn(self.chex_info, test_method._testMethodName)
self.assertIn('this message does not specify the Chex variant', msg)
class OneFailedVariantTest(variants.TestCase):
# Inner class prevents MaybeFailedTest being run by `absltest.main()`.
class MaybeFailedTest(variants.TestCase):
@variants.variants(with_device=True, without_device=True)
def test_failure(self):
@self.variant
def fails_for_without_device_variant(x):
self.assertIsInstance(x, jax.Array)
fails_for_without_device_variant(42)
def test_useful_failure(self):
expected_info = str(variants.ChexVariantType.WITHOUT_DEVICE)
unexpected_info = str(variants.ChexVariantType.WITH_DEVICE)
res = unittest.TestResult()
ts = unittest.makeSuite(self.MaybeFailedTest) # pytype: disable=module-attr
ts.run(res)
self.assertLen(res.failures, 1)
for test_method, _ in res.failures:
self.assertIn(expected_info, test_method._testMethodName)
self.assertNotIn(unexpected_info, test_method._testMethodName)
class WrongBaseClassTest(variants.TestCase):
# Inner class prevents InnerTest being run by `absltest.main()`.
class InnerTest(absltest.TestCase):
@variants.all_variants
def test_failure(self):
pass
def test_wrong_base_class(self):
res = unittest.TestResult()
ts = unittest.makeSuite(self.InnerTest) # pytype: disable=module-attr
ts.run(res)
self.assertLen(res.errors, 1)
for _, msg in res.errors:
self.assertRegex(msg,
'RuntimeError.+make sure.+inherit from `chex.TestCase`')
class BaseClassesTest(parameterized.TestCase):
"""Tests different combinations of base classes for a variants test."""
def generate_test_class(self, base_1, base_2):
"""Returns a test class derived from the specified bases."""
class InnerBaseClassTest(base_1, base_2):
@variants.all_variants(with_pmap=False)
@parameterized.parameters(*DEFAULT_PARAMS)
def test_should_pass(self, arg_0, arg_1, expected):
actual = self.variant(DEFAULT_FN)(arg_0, arg_1)
self.assertEqual(actual, expected)
return InnerBaseClassTest
@parameterized.named_parameters(
('parameterized', (parameterized.TestCase, object)),
('variants', (variants.TestCase, object)),
('variants_and_parameterized',
(variants.TestCase, parameterized.TestCase)),
)
def test_inheritance(self, base_classes):
res = unittest.TestResult()
test_class = self.generate_test_class(*base_classes)
for base_class in base_classes:
self.assertTrue(issubclass(test_class, base_class))
ts = unittest.makeSuite(test_class) # pytype: disable=module-attr
ts.run(res)
self.assertEqual(res.testsRun, 8)
self.assertEmpty(res.errors or res.failures)
class VariantsTestCaseWithParameterizedTest(absltest.TestCase):
# Inner class prevents InnerTest being run by `absltest.main()`.
class InnerTest(variants.TestCase):
@variants.all_variants(with_pmap=False)
@parameterized.parameters(*DEFAULT_PARAMS)
def test_should_pass(self, arg_0, arg_1, expected):
actual = self.variant(DEFAULT_FN)(arg_0, arg_1)
self.assertEqual(actual, expected)
def test_should_pass(self):
res = unittest.TestResult()
ts = unittest.makeSuite(self.InnerTest) # pytype: disable=module-attr
ts.run(res)
self.assertEqual(res.testsRun, 8)
self.assertEmpty(res.errors or res.failures)
class WrongWrappersOrderTest(parameterized.TestCase):
def setUp(self):
super().setUp()
self._error_msg = ('A test wrapper attempts to access __name__ of '
'VariantsTestCaseGenerator')
def test_incorrect_wrapping_order_named_all_variants(self):
with self.assertRaisesRegex(RuntimeError, self._error_msg):
@parameterized.named_parameters(*DEFAULT_NAMED_PARAMS)
@variants.all_variants()
def _(*unused_args):
pass
def test_incorrect_wrapping_order_named_some_variants(self):
with self.assertRaisesRegex(RuntimeError, self._error_msg):
@parameterized.named_parameters(*DEFAULT_NAMED_PARAMS)
@variants.variants(with_jit=True, with_device=True)
def _(*unused_args):
pass
def test_incorrect_wrapping_order_all_variants(self):
with self.assertRaisesRegex(RuntimeError, self._error_msg):
@parameterized.parameters(*DEFAULT_PARAMS)
@variants.all_variants()
def _(*unused_args):
pass
def test_incorrect_wrapping_order_some_variants(self):
with self.assertRaisesRegex(RuntimeError, self._error_msg):
@parameterized.parameters(*DEFAULT_PARAMS)
@variants.variants(without_jit=True, without_device=True)
def _(*unused_args):
pass
class UnusedVariantTest(absltest.TestCase):
# Inner class prevents InnerTest being run by `absltest.main()`.
class InnerTest(variants.TestCase):
@variants.all_variants(with_pmap=False)
def test_noop(self):
pass
def test_unused_variant(self):
res = unittest.TestResult()
ts = unittest.makeSuite(self.InnerTest) # pytype: disable=module-attr
ts.run(res)
self.assertLen(res.errors, 4)
for _, msg in res.errors:
self.assertRegex(
msg, 'RuntimeError: Test is wrapped .+ but never calls self.variant')
class NoVariantsTest(absltest.TestCase):
"""Checks that Chex raises ValueError when no variants are selected."""
def test_no_variants(self):
with self.assertRaisesRegex(ValueError, 'No variants selected'):
class InnerTest(variants.TestCase): # pylint:disable=unused-variable
@variants.variants()
def test_noop(self):
pass
class UnknownVariantArgumentsTest(absltest.TestCase):
# Inner class prevents InnerTest being run by `absltest.main()`.
class InnerTest(variants.TestCase):
@variants.all_variants(with_pmap=False)
def test_arg(self):
self.variant(lambda: None, some_unknown_arg=16)
def test_unknown_argument(self):
res = unittest.TestResult()
ts = unittest.makeSuite(self.InnerTest) # pytype: disable=module-attr
ts.run(res)
self.assertLen(res.errors, 4)
for _, msg in res.errors:
self.assertRegex(msg, 'Unknown arguments in .+some_unknown_arg')
class VariantTypesTest(absltest.TestCase):
# Inner class prevents InnerTest being run by `absltest.main()`.
class InnerTest(variants.TestCase):
var_types = set()
@variants.all_variants()
def test_var_type(self):
self.variant(lambda: None)
self.var_types.add(self.variant.type)
def test_var_type_fetch(self):
ts = unittest.makeSuite(self.InnerTest) # pytype: disable=module-attr
ts.run(unittest.TestResult())
expected_types = set(variants.ChexVariantType)
if jax.device_count() == 1:
expected_types.remove(variants.ChexVariantType.WITH_PMAP)
self.assertSetEqual(self.InnerTest.var_types, expected_types)
def test_consistency(self):
self.assertLen(variants._variant_decorators, len(variants.ChexVariantType))
for arg in inspect.getfullargspec(variants.variants).args:
if arg == 'test_method':
continue
self.assertTrue(hasattr(variants.ChexVariantType, arg.upper()))
class CountVariantsTest(absltest.TestCase):
# Inner class prevents InnerTest being run by `absltest.main()`.
class InnerTest(variants.TestCase):
test_1_count = 0
test_2_count = 0
test_3_count = 0
test_4_count = 0
@variants.all_variants
def test_1(self):
type(self).test_1_count += 1
@variants.all_variants(with_pmap=False)
def test_2(self):
type(self).test_2_count += 1
@variants.variants(with_jit=True)
def test_3(self):
type(self).test_3_count += 1
@variants.variants(with_jit=True)
@variants.variants(without_jit=False)
@variants.variants(with_device=True)
@variants.variants(without_device=False)
def test_4(self):
type(self).test_4_count += 1
def test_counters(self):
res = unittest.TestResult()
ts = unittest.makeSuite(self.InnerTest) # pytype: disable=module-attr
ts.run(res)
active_pmap = int(jax.device_count() > 1)
self.assertEqual(self.InnerTest.test_1_count, 4 + active_pmap)
self.assertEqual(self.InnerTest.test_2_count, 4)
self.assertEqual(self.InnerTest.test_3_count, 1)
self.assertEqual(self.InnerTest.test_4_count, 2)
# Test methods do not use `self.variant`.
self.assertLen(res.errors, 1 + 2 + 4 + 4 + active_pmap)
for _, msg in res.errors:
self.assertRegex(
msg, 'RuntimeError: Test is wrapped .+ but never calls self.variant')
class MultipleVariantsTest(parameterized.TestCase):
@variants.all_variants()
def test_all_variants(self):
# self.variant must be used at least once.
self.variant(lambda x: x)(0)
self.assertNotEqual('meaning of life', 1337)
@variants.all_variants
def test_all_variants_no_parens(self):
# self.variant must be used at least once.
self.variant(lambda x: x)(0)
self.assertNotEqual('meaning of life', 1337)
@variants.variants(
with_jit=True, without_jit=True, with_device=True, without_device=True)
@parameterized.named_parameters(*DEFAULT_NAMED_PARAMS)
def test_many_variants(self, arg_0, arg_1, expected):
@self.variant
def fn(arg_0, arg_1):
return arg_1 - arg_0
actual = fn(arg_0, arg_1)
self.assertEqual(actual, expected)
class VmappedFunctionTest(parameterized.TestCase):
@variants.all_variants(with_pmap=True)
@parameterized.named_parameters(*DEFAULT_NAMED_PARAMS)
def test_vmapped_fn_named_params(self, arg_0, arg_1, expected):
varg_0, varg_1, vexpected = (
_scalar_to_ndarray(x) for x in (arg_0, arg_1, expected))
vmapped_fn = jax.vmap(DEFAULT_FN)
actual = self.variant(vmapped_fn)(varg_0, varg_1)
# pmap variant.
if len(actual.shape) == len(DEFAULT_NDARRAY_PARAMS_SHAPE) + 1:
vexpected = jnp.broadcast_to(vexpected, actual.shape)
np.testing.assert_array_equal(actual, vexpected)
class WithoutJitTest(parameterized.TestCase):
tests = _variant_default_tests_generator(
fn=DEFAULT_FN,
is_jit_context=False,
which_variants=dict(without_jit=True))
class WithJitTest(parameterized.TestCase):
tests = _variant_default_tests_generator(
fn=DEFAULT_FN, is_jit_context=True, which_variants=dict(with_jit=True))
@variants.variants(with_jit=True)
@parameterized.parameters(*DEFAULT_PARAMS)
def test_different_jit_kwargs(self, arg_0, arg_1, expected):
kwarg_0 = arg_0
kwarg_1 = arg_1
arg_0_type = type(arg_0)
arg_1_type = type(arg_1)
kwarg_0_type = type(kwarg_0)
kwarg_1_type = type(kwarg_1)
@self.variant(static_argnums=(0,), static_argnames=('kwarg_1',))
def fn_0(arg_0, arg_1, kwarg_0, kwarg_1):
self.assertIsInstance(arg_0, arg_0_type)
self.assertNotIsInstance(arg_1, arg_1_type)
self.assertNotIsInstance(kwarg_0, kwarg_0_type)
self.assertIsInstance(kwarg_1, kwarg_1_type)
return DEFAULT_FN(arg_0 + kwarg_0, arg_1 + kwarg_1)
actual_0 = fn_0(arg_0, arg_1, kwarg_0=kwarg_0, kwarg_1=kwarg_1)
self.assertEqual(actual_0, 2 * expected)
@self.variant(static_argnums=(1, 3), static_argnames=('kwarg_1',))
def fn_1(arg_0, arg_1, kwarg_0, kwarg_1):
self.assertNotIsInstance(arg_0, arg_0_type)
self.assertIsInstance(arg_1, arg_1_type)
self.assertNotIsInstance(kwarg_0, kwarg_0_type)
self.assertIsInstance(kwarg_1, kwarg_1_type)
return DEFAULT_FN(arg_0 + kwarg_0, arg_1 + kwarg_1)
actual_1 = fn_1(arg_0, arg_1, kwarg_0=kwarg_0, kwarg_1=kwarg_1)
self.assertEqual(actual_1, 2 * expected)
@self.variant(static_argnums=(), static_argnames=('kwarg_0',))
def fn_2(arg_0, arg_1, kwarg_0, kwarg_1):
self.assertNotIsInstance(arg_0, arg_0_type)
self.assertNotIsInstance(arg_1, arg_1_type)
self.assertIsInstance(kwarg_0, kwarg_0_type)
self.assertNotIsInstance(kwarg_1, kwarg_1_type)
return DEFAULT_FN(arg_0 + kwarg_0, arg_1 + kwarg_1)
actual_2 = fn_2(arg_0, arg_1, kwarg_0=kwarg_0, kwarg_1=kwarg_1)
self.assertEqual(actual_2, 2 * expected)
def fn_3(arg_0, arg_1):
self.assertIsInstance(arg_0, arg_0_type)
self.assertNotIsInstance(arg_1, arg_1_type)
return DEFAULT_FN(arg_0, arg_1)
fn_3_v0 = self.variant(static_argnums=0, static_argnames='arg_0')(fn_3)
fn_3_v1 = self.variant(static_argnums=0)(fn_3)
fn_3_v2 = self.variant(static_argnums=(), static_argnames='arg_0')(fn_3)
self.assertEqual(fn_3_v0(arg_0, arg_1), expected)
self.assertEqual(fn_3_v1(arg_0=arg_0, arg_1=arg_1), expected)
self.assertEqual(fn_3_v1(arg_0, arg_1=arg_1), expected)
self.assertEqual(fn_3_v2(arg_0=arg_0, arg_1=arg_1), expected)
def _test_fn_without_device(arg_0, arg_1):
tc = unittest.TestCase()
tc.assertNotIsInstance(arg_0, jax.Array)
tc.assertNotIsInstance(arg_1, jax.Array)
return DEFAULT_FN(arg_0, arg_1)
class WithoutDeviceTest(parameterized.TestCase):
tests = _variant_default_tests_generator(
fn=_test_fn_without_device,
is_jit_context=False,
which_variants=dict(without_device=True))
@variants.variants(without_device=True)
@parameterized.named_parameters(*DEFAULT_NAMED_PARAMS)
def test_emplace(self, arg_0, arg_1, expected):
(arg_0, arg_1) = self.variant(lambda x: x)((arg_0, arg_1))
actual = _test_fn_without_device(arg_0, arg_1)
self.assertEqual(actual, expected)
def _test_fn_with_device(arg_0, arg_1):
tc = unittest.TestCase()
tc.assertIsInstance(arg_0, jax.Array)
tc.assertIsInstance(arg_1, jax.Array)
return DEFAULT_FN(arg_0, arg_1)
class WithDeviceTest(parameterized.TestCase):
tests = _variant_default_tests_generator(
fn=_test_fn_with_device,
is_jit_context=False,
which_variants=dict(with_device=True))
@variants.variants(with_device=True)
@parameterized.named_parameters(*DEFAULT_NAMED_PARAMS)
def test_emplace(self, arg_0, arg_1, expected):
(arg_0, arg_1) = self.variant(lambda x: x)((arg_0, arg_1))
actual = _test_fn_with_device(arg_0, arg_1)
self.assertEqual(actual, expected)
@variants.variants(with_device=True)
@parameterized.named_parameters(*DEFAULT_NAMED_PARAMS)
def test_ignore_argnums(self, arg_0, arg_1, expected):
static_type = type(arg_0)
@self.variant(ignore_argnums=(0, 2))
def fn(arg_0, arg_1, float_arg):
self.assertIsInstance(arg_0, static_type)
self.assertIsInstance(arg_1, jax.Array)
self.assertIsInstance(float_arg, float)
return DEFAULT_FN(arg_0, arg_1)
actual = fn(arg_0, arg_1, 5.3)
self.assertEqual(actual, expected)
def _test_fn_single_device(arg_0, arg_1):
tc = unittest.TestCase()
tc.assertIn(np.shape(arg_0), {(), DEFAULT_NDARRAY_PARAMS_SHAPE})
tc.assertIn(np.shape(arg_1), {(), DEFAULT_NDARRAY_PARAMS_SHAPE})
res = DEFAULT_FN(arg_0, arg_1)
psum_res = jax.lax.psum(res, axis_name='i')
return psum_res
class WithPmapSingleDeviceTest(parameterized.TestCase):
tests_single_device = _variant_default_tests_generator(
fn=_test_fn_single_device,
is_jit_context=True,
which_variants=dict(with_pmap=True),
n_devices=1)
class WithPmapAllAvailableDeviceTest(parameterized.TestCase):
def setUp(self):
super().setUp()
# Choose devices and a backend.
n_tpu = asserts._ai.num_devices_available('tpu')
n_gpu = asserts._ai.num_devices_available('gpu')
if n_tpu > 1:
self.n_devices, self.backend = n_tpu, 'tpu'
elif n_gpu > 1:
self.n_devices, self.backend = n_gpu, 'gpu'
else:
self.n_devices, self.backend = FLAGS['chex_n_cpu_devices'].value, 'cpu'
@variants.variants(with_pmap=True)
@parameterized.parameters(*DEFAULT_PARAMS)
def test_pmap(self, arg_0, arg_1, expected):
n_devices, backend = self.n_devices, self.backend
n_copies = 3
arg_0_type = type(arg_0)
arg_1_type = type(arg_1)
@self.variant(reduce_fn=None, n_devices=n_devices, backend=backend)
def fn(arg_0, arg_1):
self.assertNotIsInstance(arg_0, arg_0_type)
self.assertNotIsInstance(arg_1, arg_1_type)
asserts.assert_shape(arg_0, [n_copies])
asserts.assert_shape(arg_1, [n_copies])
res = arg_1 - arg_0
psum_res = jax.lax.psum(res, axis_name='i')
return psum_res
arg_0 = jnp.zeros((n_copies,)) + arg_0
arg_1 = jnp.zeros((n_copies,)) + arg_1
actual = fn(arg_0, arg_1)
self.assertEqual(actual.shape, (n_devices, n_copies))
# Exponents of `n_devices`:
# +1: psum() inside fn()
# +1: jnp.sum() to aggregate results
self.assertEqual(jnp.sum(actual), n_copies * n_devices**2 * expected)
@variants.variants(with_pmap=True)
@parameterized.parameters(*DEFAULT_PARAMS)
def test_pmap_vmapped_fn(self, arg_0, arg_1, expected):
n_devices, backend = self.n_devices, self.backend
n_copies = 7
actual_shape = (n_copies,) + DEFAULT_NDARRAY_PARAMS_SHAPE
varg_0 = _scalar_to_ndarray(arg_0, actual_shape)
varg_1 = _scalar_to_ndarray(arg_1, actual_shape)
vexpected = _scalar_to_ndarray(expected)
arg_0_type = type(varg_0)
arg_1_type = type(varg_1)
@self.variant(reduce_fn=None, n_devices=n_devices, backend=backend)
def fn(arg_0, arg_1):
self.assertNotIsInstance(arg_0, arg_0_type)
self.assertNotIsInstance(arg_1, arg_1_type)
@jax.vmap
def vmapped_fn(arg_0, arg_1):
self.assertIsInstance(arg_0, ArrayBatched)
self.assertIsInstance(arg_1, ArrayBatched)
asserts.assert_shape(arg_0, actual_shape[1:])
asserts.assert_shape(arg_1, actual_shape[1:])
return arg_1 - arg_0
res = vmapped_fn(arg_0, arg_1)
psum_res = jax.lax.psum(res, axis_name='i')
return psum_res
actual = fn(varg_0, varg_1)
self.assertEqual(actual.shape, (n_devices,) + actual_shape)
# Sum over `n_devices` and `n_copies` axes.
actual = actual.sum(axis=0).sum(axis=0)
# Exponents of `n_devices`:
# +1: psum() inside fn()
# +1: jnp.sum() to aggregate results
np.testing.assert_array_equal(actual, n_copies * n_devices**2 * vexpected)
@variants.variants(with_pmap=True)
@parameterized.parameters(*DEFAULT_PARAMS)
def test_pmap_static_argnums(self, arg_0, arg_1, expected):
n_devices, backend = self.n_devices, self.backend
n_copies = 5
actual_shape = (n_copies,)
varg_0 = _scalar_to_ndarray(arg_0, actual_shape)
arg_0_type = type(varg_0)
arg_1_type = type(arg_1)
@self.variant(
reduce_fn=None,
n_devices=n_devices,
backend=backend,
static_argnums=(1,),
axis_name='j',
)
def fn_static(arg_0, arg_1):
self.assertNotIsInstance(arg_0, arg_0_type)
self.assertIsInstance(arg_1, arg_1_type)
asserts.assert_shape(arg_0, [n_copies])
arg_1 = _scalar_to_ndarray(arg_1, actual_shape)
asserts.assert_shape(arg_1, [n_copies])
arg_1 = np.array(arg_1) # don't stage out operations on arg_1
psum_arg_1 = np.sum(jax.lax.psum(arg_1, axis_name='j'))
self.assertEqual(psum_arg_1, arg_1[0] * (n_copies * n_devices))
res = arg_1 - arg_0
psum_res = jax.lax.psum(res, axis_name='j')
return psum_res
actual = fn_static(varg_0, arg_1)
self.assertEqual(actual.shape, (n_devices, n_copies))
# Exponents of `n_devices`:
# +1: psum() inside fn()
# +1: jnp.sum() to aggregate results
self.assertEqual(jnp.sum(actual), n_copies * n_devices**2 * expected)
@variants.variants(with_pmap=True)
def test_pmap_static_argnums_zero(self):
n_devices, backend = self.n_devices, self.backend
n_copies = 5
varg_0 = 10
varg_1 = jnp.zeros(n_copies) + 20
arg_0_type = type(varg_0)
arg_1_type = type(varg_1)
@self.variant(
reduce_fn=None,
n_devices=n_devices,
backend=backend,
static_argnums=0,
)
def fn_static(arg_0, arg_1):
self.assertIsInstance(arg_0, arg_0_type)
self.assertNotIsInstance(arg_1, arg_1_type)
arg_0 = jnp.zeros(n_copies) + arg_0
asserts.assert_shape(arg_0, [n_copies])
asserts.assert_shape(arg_1, [n_copies])
res = arg_1 - arg_0
return jax.lax.psum(res, axis_name='i')
actual = fn_static(varg_0, varg_1)
self.assertEqual(actual.shape, (n_devices, n_copies))
# Exponents of `n_devices`:
# +1: psum() inside fn()
# +1: jnp.sum() to aggregate results
self.assertEqual(jnp.sum(actual), n_copies * n_devices**2 * 10)
@variants.variants(with_pmap=True)
def test_pmap_in_axes(self):
n_devices, backend = self.n_devices, self.backend
n_copies = 7
varg_0 = jnp.zeros((n_devices, n_copies)) + 1
varg_1 = jnp.zeros((n_devices, n_copies)) + 2
arg_0_type = type(varg_0)
arg_1_type = type(varg_1)
@self.variant(
broadcast_args_to_devices=False,
reduce_fn=None,
n_devices=n_devices,
backend=backend,
# Only 0 or None are supported (06/2020).
in_axes=(0, None),
)
def fn(arg_0, arg_1):
self.assertNotIsInstance(arg_0, arg_0_type)
self.assertNotIsInstance(arg_1, arg_1_type)
asserts.assert_shape(arg_0, [n_copies])
asserts.assert_shape(arg_1, [n_devices, n_copies])
res = arg_1 - arg_0
psum_res = jax.lax.psum(res, axis_name='i')
return psum_res
actual = fn(varg_0, varg_1)
self.assertEqual(actual.shape, (n_devices, n_devices, n_copies))
self.assertEqual(jnp.sum(actual), n_copies * n_devices**3)
@variants.variants(with_pmap=True)
def test_pmap_wrong_axis_size(self):
n_devices, backend = self.n_devices, self.backend
@self.variant(
broadcast_args_to_devices=False,
n_devices=n_devices,
backend=backend,
# Only 0 or None are supported (06/2020).
in_axes=(None, 0),
)
def fn(arg_0, arg_1):
raise RuntimeError('This line should not be executed.')
varg_0 = jnp.zeros(n_devices + 1)
varg_1 = jnp.zeros(n_devices + 2)
with self.assertRaisesRegex(
ValueError, 'Pmappable.* axes size must be equal to number of devices.*'
f'expected the first dim to be {n_devices}'):
fn(varg_0, varg_1)
if __name__ == '__main__':
absltest.main()