-
Notifications
You must be signed in to change notification settings - Fork 44
/
fake.py
421 lines (322 loc) · 13.8 KB
/
fake.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
# Copyright 2020 DeepMind Technologies Limited. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Utilities to patch JAX functions with faked implementations.
This module provides fake implementations of jax.jit and jax.pmap, which can be
patched over existing implementations for easier debugging.
See https://www.martinfowler.com/articles/mocksArentStubs.html
"""
import contextlib
import functools
import inspect
import os
import re
from typing import Any, Callable, Iterable, Optional, Union
from unittest import mock
from absl import flags
import jax
import jax.numpy as jnp
FLAGS = flags.FLAGS
flags.DEFINE_integer('chex_n_cpu_devices', 1,
'Number of CPU threads to use as devices in tests.')
flags.DEFINE_bool('chex_assert_multiple_cpu_devices', False,
'Whether to fail if a number of CPU devices is less than 2.')
_xla_device_count_flag_regexp = (
r'[-]{0,2}xla_force_host_platform_device_count=(\d+)?(\s|$)')
def get_n_cpu_devices_from_xla_flags() -> int:
"""Parses number of CPUs from the XLA environment flags."""
m = re.match(_xla_device_count_flag_regexp, os.getenv('XLA_FLAGS', ''))
# At least one CPU device must be available.
n_devices = int(m.group(1)) if m else 1
return n_devices
def set_n_cpu_devices(n: Optional[int] = None) -> None:
"""Forces XLA to use `n` CPU threads as host devices.
This allows `jax.pmap` to be tested on a single-CPU platform.
This utility only takes effect before XLA backends are initialized, i.e.
before any JAX operation is executed (including `jax.devices()` etc.).
See https://github.com/google/jax/issues/1408.
Args:
n: A required number of CPU devices (``FLAGS.chex_n_cpu_devices`` is used by
default).
Raises:
RuntimeError: If XLA backends were already initialized.
"""
n = n or FLAGS['chex_n_cpu_devices'].value
n_devices = get_n_cpu_devices_from_xla_flags()
cpu_backend = (jax._src.xla_bridge._backends or {}).get('cpu', None) # pylint: disable=protected-access
if cpu_backend is not None and n_devices != n:
raise RuntimeError(
f'Attempted to set {n} devices, but {n_devices} CPUs already available:'
' ensure that `set_n_cpu_devices` is executed before any JAX operation.'
)
xla_flags = os.getenv('XLA_FLAGS', '')
xla_flags = re.sub(_xla_device_count_flag_regexp, '', xla_flags)
os.environ['XLA_FLAGS'] = ' '.join(
[f'--xla_force_host_platform_device_count={n}'] + xla_flags.split())
def convert_to_varargs(sig, *args, **kwargs):
"""Converts varargs+kwargs function arguments into varargs only."""
bound_args = sig.bind(*args, **kwargs)
return bound_args.args
def _ignore_axis_index_groups(fn):
"""Wrapper that forces axis_index_groups to be None.
This is to avoid problems within fake_pmap where parallel operations are
performed with vmap, rather than pmap. Parallel operations where
`axis_index_groups` is not `None` are not currently supported under vmap.
Args:
fn: the function to wrap
Returns:
a wrapped function that forces any keyword argument named
`axis_index_groups` to be None
"""
@functools.wraps(fn)
def _fake(*args, axis_index_groups=None, **kwargs):
del axis_index_groups
return fn(*args, axis_index_groups=None, **kwargs)
return _fake
_fake_all_gather = _ignore_axis_index_groups(jax.lax.all_gather)
_fake_all_to_all = _ignore_axis_index_groups(jax.lax.all_to_all)
_fake_psum = _ignore_axis_index_groups(jax.lax.psum)
_fake_pmean = _ignore_axis_index_groups(jax.lax.pmean)
_fake_pmax = _ignore_axis_index_groups(jax.lax.pmax)
_fake_pmin = _ignore_axis_index_groups(jax.lax.pmin)
_fake_pswapaxes = _ignore_axis_index_groups(jax.lax.pswapaxes)
@functools.wraps(jax.pmap)
def _fake_pmap(fn,
axis_name: Optional[Any] = None,
*,
in_axes=0,
static_broadcasted_argnums: Union[int, Iterable[int]] = (),
jit_result: bool = False,
fake_parallel_axis: bool = False,
**unused_kwargs):
"""Fake implementation of pmap using vmap."""
if isinstance(static_broadcasted_argnums, int):
static_broadcasted_argnums = (static_broadcasted_argnums,)
if static_broadcasted_argnums and isinstance(in_axes, dict):
raise NotImplementedError(
'static_broadcasted_argnums with dict in_axes not supported.')
fn_signature = inspect.signature(
fn,
# Disable 'follow wrapped' because we want the exact signature of fn,
# not the signature of any function it might wrap.
follow_wrapped=False)
@functools.wraps(fn)
def wrapped_fn(*args, **kwargs):
# Convert kwargs to varargs
# This is a workaround for vmapped functions not working with kwargs
call_args = convert_to_varargs(fn_signature, *args, **kwargs)
if static_broadcasted_argnums:
# Make sure vmap does not try to map over `static_broadcasted_argnums`.
if isinstance(in_axes, int):
vmap_in_axes = [in_axes] * len(call_args)
else:
vmap_in_axes = list(in_axes)
for argnum in static_broadcasted_argnums:
vmap_in_axes[argnum] = None
# To protect the arguments from `static_broadcasted_argnums`,
# from turning into tracers (because of vmap), we capture the original
# `call_args` and replace the passed in tracers with original values.
original_call_args = call_args
# A function passed to vmap, that will simply replace the static args
# with their original values.
def fn_without_statics(*args):
args_with_original_statics = [
orig_arg if i in static_broadcasted_argnums else arg
for i, (arg, orig_arg) in enumerate(zip(args, original_call_args))
]
return fn(*args_with_original_statics)
# Make sure to avoid turning static args into tracers: Some python objects
# might not survive vmap. Just replace with an unused constant.
call_args = [
1 if i in static_broadcasted_argnums else arg
for i, arg in enumerate(call_args)
]
else:
vmap_in_axes = in_axes
fn_without_statics = fn
vmapped_fn = jax.vmap(
fn_without_statics, in_axes=vmap_in_axes, axis_name=axis_name
)
if jit_result:
vmapped_fn = jax.jit(vmapped_fn)
if fake_parallel_axis:
call_args = jax.tree_util.tree_map(
lambda x: jnp.expand_dims(x, axis=0), call_args)
output = vmapped_fn(*call_args)
if fake_parallel_axis:
output = jax.tree_util.tree_map(lambda x: jnp.squeeze(x, axis=0), output)
return output
return wrapped_fn
# pylint:disable=unnecessary-dunder-call
class FakeContext(contextlib.ExitStack):
def start(self):
self.__enter__()
def stop(self):
self.__exit__(None, None, None)
# pylint:enable=unnecessary-dunder-call
def fake_jit(enable_patching: bool = True) -> FakeContext:
"""Context manager for patching `jax.jit` with the identity function.
This is intended to be used as a debugging tool to programmatically enable or
disable JIT compilation.
Can be used either as a context managed scope:
.. code-block:: python
with chex.fake_jit():
@jax.jit
def foo(x):
...
or by calling `start` and `stop`:
.. code-block:: python
fake_jit_context = chex.fake_jit()
fake_jit_context.start()
@jax.jit
def foo(x):
...
fake_jit_context.stop()
Args:
enable_patching: Whether to patch `jax.jit`.
Returns:
Context where `jax.jit` is patched with the identity function jax is
configured to avoid jitting internally whenever possible in functions
such as `jax.lax.scan`, etc.
"""
stack = FakeContext()
stack.enter_context(jax.disable_jit(disable=enable_patching))
return stack
def fake_pmap(
enable_patching: bool = True,
jit_result: bool = False,
ignore_axis_index_groups: bool = False,
fake_parallel_axis: bool = False,
) -> FakeContext:
"""Context manager for patching `jax.pmap` with `jax.vmap`.
This is intended to be used as a debugging tool to programmatically replace
pmap transformations with a non-parallel vmap transformation.
Can be used either as a context managed scope:
.. code-block:: python
with chex.fake_pmap():
@jax.pmap
def foo(x):
...
or by calling `start` and `stop`:
.. code-block:: python
fake_pmap_context = chex.fake_pmap()
fake_pmap_context.start()
@jax.pmap
def foo(x):
...
fake_pmap_context.stop()
Args:
enable_patching: Whether to patch `jax.pmap`.
jit_result: Whether the transformed function should be jitted despite not
being pmapped.
ignore_axis_index_groups: Whether to force any parallel operation within the
context to set `axis_index_groups` to be None. This is a compatibility
option to allow users of the axis_index_groups parameter to run under the
fake_pmap context. This feature is not currently supported in vmap, and
will fail, so we force the parameter to be `None`.
*Warning*: This will produce different results to running under `jax.pmap`
fake_parallel_axis: Fake a parallel axis
Returns:
Context where `jax.pmap` is patched with `jax.vmap`.
"""
stack = FakeContext()
if enable_patching:
patched_pmap = functools.partial(
_fake_pmap,
jit_result=jit_result,
fake_parallel_axis=fake_parallel_axis)
stack.enter_context(mock.patch('jax.pmap', patched_pmap))
if ignore_axis_index_groups:
stack.enter_context(mock.patch('jax.lax.all_gather', _fake_all_gather))
stack.enter_context(mock.patch('jax.lax.all_to_all', _fake_all_to_all))
stack.enter_context(mock.patch('jax.lax.psum', _fake_psum))
stack.enter_context(mock.patch('jax.lax.pmean', _fake_pmean))
stack.enter_context(mock.patch('jax.lax.pmax', _fake_pmax))
stack.enter_context(mock.patch('jax.lax.pmin', _fake_pmin))
stack.enter_context(mock.patch('jax.lax.pswapaxes', _fake_pswapaxes))
else:
# Use default implementations
pass
return stack
def fake_pmap_and_jit(enable_pmap_patching: bool = True,
enable_jit_patching: bool = True) -> FakeContext:
"""Context manager for patching `jax.jit` and `jax.pmap`.
This is a convenience function, equivalent to nested `chex.fake_pmap` and
`chex.fake_jit` contexts.
Note that calling (the true implementation of) `jax.pmap` will compile the
function, so faking `jax.jit` in this case will not stop the function from
being compiled.
Args:
enable_pmap_patching: Whether to patch `jax.pmap`.
enable_jit_patching: Whether to patch `jax.jit`.
Returns:
Context where jax.pmap and jax.jit are patched with jax.vmap and the
identity function
"""
stack = FakeContext()
stack.enter_context(fake_pmap(enable_pmap_patching))
stack.enter_context(fake_jit(enable_jit_patching))
return stack
class OnCallOfTransformedFunction():
"""Injects a callback into any transformed function.
A typical use-case is jax.jit or jax.pmap which is often hidden deep inside
the code. This context manager allows to inject a callback function into
functions which are transformed by the user-specified transformation.
The callback will receive the transformed function and its arguments.
The function can be useful to debug, profile and check the calls of any
transformed function in a program
For instance:
with chex.OnCallOfTransformedFunction('jax.jit', print):
[...]
would print all calls to any function which was jit-compiled within this
context.
We can also automatically create profiles on the first call of all the
jit compiled functions in the program:
class profile_once():
def __init__(self):
self._first_call = True
def __call__(self, fn, *args, **kwargs):
if self._first_call:
self._first_call = False
print(profile_from_HLO(fn.lower(*args, **kwargs))
with chex.OnCallOfTransformedFunction('jax.jit', profile_once()):
[...]
"""
def __init__(self, fn_transformation: str, callback_fn: Callable[..., Any]):
"""Creates a new OnCallOfTransformedFunction context manager.
Args:
fn_transformation: identifier of the function transformation e.g.
'jax.jit', 'jax.pmap', ...
callback_fn: A callback function which receives the transformed function
and its arguments on every call.
"""
self._fn_transformation = fn_transformation
self._callback_fn = callback_fn
self._patch: mock._patch[Callable[[Any], Any]] = None # pylint: disable=unsubscriptable-object
self._original_fn_transformation = None
def __enter__(self):
def _new_fn_transformation(fn, *args, **kwargs):
"""Returns a transformed version of the given function."""
transformed_fn = self._original_fn_transformation(fn, *args, **kwargs)
@functools.wraps(transformed_fn)
def _new_transformed_fn(*args, **kwargs):
"""Returns result of the returned function and calls the callback."""
self._callback_fn(transformed_fn, *args, **kwargs)
return transformed_fn(*args, **kwargs)
return _new_transformed_fn
self._patch = mock.patch(self._fn_transformation, _new_fn_transformation)
self._original_fn_transformation, unused_local = self._patch.get_original()
self._patch.start()
def __exit__(self, *unused_args):
self._patch.stop()