-
Notifications
You must be signed in to change notification settings - Fork 3
/
utils.py
229 lines (181 loc) · 6.95 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
import os
import numpy as np
import torch
import shutil
import torchvision.transforms as transforms
import logging
from torch.autograd import Variable
class AvgrageMeter(object):
def __init__(self):
self.reset()
def reset(self):
self.avg = 0
self.sum = 0
self.cnt = 0
def update(self, val, n=1):
self.sum += val * n
self.cnt += n
self.avg = self.sum / self.cnt
def accuracy(output, target, topk=(1,)):
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].view(-1).float().sum(0)
res.append(correct_k.mul_(100.0/batch_size))
return res
class Cutout(object):
def __init__(self, length):
self.length = length
def __call__(self, img):
h, w = img.size(1), img.size(2)
mask = np.ones((h, w), np.float32)
y = np.random.randint(h)
x = np.random.randint(w)
y1 = np.clip(y - self.length // 2, 0, h)
y2 = np.clip(y + self.length // 2, 0, h)
x1 = np.clip(x - self.length // 2, 0, w)
x2 = np.clip(x + self.length // 2, 0, w)
mask[y1: y2, x1: x2] = 0.
mask = torch.from_numpy(mask)
mask = mask.expand_as(img)
img *= mask
return img
def data_transforms_cifar(args, mean, std):
train_transform = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize(mean, std),
])
if args.cutout:
train_transform.transforms.append(Cutout(args.cutout_length))
valid_transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(mean, std),
])
return train_transform, valid_transform
def data_transforms_cifar10(args):
CIFAR_MEAN = [0.49139968, 0.48215827, 0.44653124]
CIFAR_STD = [0.24703233, 0.24348505, 0.26158768]
return data_transforms_cifar(args, CIFAR_MEAN, CIFAR_STD)
def data_transforms_cifar100(args):
CIFAR_MEAN = [0.5071, 0.4867, 0.4408]
CIFAR_STD = [0.2675, 0.2565, 0.2761]
return data_transforms_cifar(args, CIFAR_MEAN, CIFAR_STD)
def count_parameters(model):
return sum(p.numel() for n, p in model.named_parameters() if p.requires_grad and 'auxiliary' not in n)
def count_parameters_in_MB(model):
return np.sum(np.prod(v.size()) for name, v in model.named_parameters() if "auxiliary" not in name)/1e6
def save_checkpoint(state, is_best, save):
filename = os.path.join(save, 'checkpoint.pth.tar')
torch.save(state, filename)
if is_best:
best_filename = os.path.join(save, 'model_best.pth.tar')
shutil.copyfile(filename, best_filename)
def save(model, model_path):
torch.save(model.state_dict(), model_path)
def load(model, model_path, strict=False):
if not os.path.isfile(model_path):
logging.warning('Failed loading model params from: %s, does not exist' % model_path)
return None
logging.info('Loaded (some) model params from: %s' % model_path)
return model.load_state_dict(torch.load(model_path), strict=strict)
def drop_path(x, drop_prob):
if drop_prob > 0.:
keep_prob = 1.-drop_prob
mask = Variable(torch.cuda.FloatTensor(x.size(0), 1, 1, 1).bernoulli_(keep_prob))
x.div_(keep_prob)
x.mul_(mask)
return x
def create_exp_dir(path, scripts_to_save=None, clean=True):
os.makedirs(path, exist_ok=True)
if clean:
for file in os.listdir(path):
(os.remove if os.path.isfile(path+file) else shutil.rmtree)(path+file)
print('Experiment dir : {}'.format(path))
if scripts_to_save is not None:
os.mkdir(os.path.join(path, 'scripts'))
for script in scripts_to_save:
dst_file = os.path.join(path, 'scripts', os.path.basename(script))
shutil.copyfile(script, dst_file)
class InfIterator:
def __init__(self, loader):
self.loader = loader
self.iterator = None
def __next__(self):
while True:
try:
if self.iterator is None:
self.iterator = iter(self.loader)
return self.iterator.__next__()
except:
del self.iterator
self.iterator = None
def __len__(self):
return len(self.loader)
class DynamicBatchSizeLoader:
def __init__(self, loader, batch_size):
self.iterator = InfIterator(loader)
self.loader_batch_size = loader.batch_size
self.batch_size = batch_size
def set_batch_size(self, batch_size):
d, m = divmod(batch_size, self.loader_batch_size)
self.batch_size = int(d*self.loader_batch_size)
if m % self.loader_batch_size > 0:
logging.warning('batch size %d is not multiple of loader batch size %d, using %d instead' %
(batch_size, self.loader_batch_size, self.batch_size))
def __next__(self):
inputs_, labels = [], []
for _ in range(self.batch_size // self.loader_batch_size):
in_, l_ = self.iterator.__next__()
inputs_.append(in_)
labels.append(l_)
return torch.cat(inputs_, dim=0), torch.cat(labels, dim=0)
def __len__(self):
return int((self.loader_batch_size / self.batch_size) * len(self.iterator))
def yield_steps(self):
""" yields consecutive ints, for one epoch, if __next__() is called each step (fixes changing batch sizes) """
stepped = 0
for step in range(len(self.iterator)):
stepped += self.batch_size / self.loader_batch_size
if stepped > len(self.iterator):
break
yield step
def op_similarity(ops: list) -> float:
"""
for a list of operations, return the average of how similar each operation is with all others
they are not similar, 0, if they are different types of operations, otherwise up to 1 (exact same kwargs)
"""
def similarity(op1, op2):
n1, kw1 = op1
n2, kw2 = op2
# same type of op?
if n1 != n2:
return 0
# op kwargs about the same?
k_sims = [1]
for k in kw1.keys():
s, v1, v2 = 0, kw1[k], kw2[k]
if isinstance(v1, list):
n = min(len(v1), len(v2)) + 1
s += 1/n if len(v1) == len(v2) else 0
for v in range(n-1):
s += 1 / n if v1[v] == v2[v] else 0
else:
s = 1 if v1 == v2 else 0
k_sims.append(s)
return sum(k_sims) / len(k_sims)
sims = []
for i in range(len(ops)):
sims.append(1)
for j in range(i+1, len(ops)):
sm = similarity(ops[i], ops[j])
sims.append(sm) # assume that the similarity measure is commutative
sims.append(sm)
if len(sims) == 0:
return None
return sum(sims) / len(sims)