Package provides java implementation of algorithms in the field of adaptive resonance theory (ART)
Add the following dependency to your POM file:
<dependency>
<groupId>com.github.chen0040</groupId>
<artifactId>java-adaptive-resonance-theory</artifactId>
<version>1.0.6</version>
</dependency>
Algorithms included:
- ART1
- FuzzyART
- ARTMAP
Applications included:
- Clustering (FuzzyART, ART1)
- Multi-class Classification (ARTMAP)
- Reinforcement Learning (FuzzyART)
To create and train a ARTMAP classifier:
ARTMAPClassifier classifier = new ARTMAPClassifier();
clasifier.fit(trainingData);
The "trainingData" is a data frame which holds data rows with labeled output (Please refers to this link to find out how to store data into a data frame)
To predict using the trained ARTMAP classifier:
String predicted_label = classifier.transform(dataRow);
The detail on how to use this can be found in the unit testing codes. Below is a complete sample codes of classifying on the libsvm-formatted heart-scale data:
InputStream inputStream = new FileInputStream("heart_scale");
DataFrame dataFrame = DataQuery.libsvm().from(inputStream).build();
// as the dataFrame obtained thus far has numeric output instead of labeled categorical output, the code below performs the categorical output conversion
dataFrame.unlock();
for(int i=0; i < dataFrame.rowCount(); ++i){
DataRow row = dataFrame.row(i);
row.setCategoricalTargetCell("category-label", "" + row.target());
}
dataFrame.lock();
double alpha = 9.89;
double beta = 0.3;
double rho = 0.01;
classifier.setAlpha(alpha);
classifier.setBeta(beta);
classifier.setRho0(rho);
classifier.fit(dataFrame);
for(int i = 0; i < dataFrame.rowCount(); ++i){
DataRow tuple = dataFrame.row(i);
String predicted_label = classifier.transform(tuple);
System.out.println("predicted: "+predicted_label+"\tactual: "+tuple.categoricalTarget());
}
The following sample code shows how to do clustering using ART1:
DataQuery.DataFrameQueryBuilder schema = DataQuery.blank()
.newInput("c1")
.newInput("c2")
.newOutput("designed")
.end();
Sampler.DataSampleBuilder negativeSampler = new Sampler()
.forColumn("c1").generate((name, index) -> randn() * 0.3 + (index % 2 == 0 ? 2 : 4))
.forColumn("c2").generate((name, index) -> randn() * 0.3 + (index % 2 == 0 ? 2 : 4))
.forColumn("designed").generate((name, index) -> 0.0)
.end();
Sampler.DataSampleBuilder positiveSampler = new Sampler()
.forColumn("c1").generate((name, index) -> rand(-4, -2))
.forColumn("c2").generate((name, index) -> rand(-2, -4))
.forColumn("designed").generate((name, index) -> 1.0)
.end();
DataFrame data = schema.build();
data = negativeSampler.sample(data, 200);
data = positiveSampler.sample(data, 200);
System.out.println(data.head(10));
ART1Clustering algorithm = new ART1Clustering();
DataFrame learnedData = algorithm.fitAndTransform(data);
for(int i = 0; i < learnedData.rowCount(); ++i){
DataRow tuple = learnedData.row(i);
String clusterId = tuple.getCategoricalTargetCell("cluster");
System.out.println("learned: " + clusterId +"\tknown: "+tuple.target());
}
The following sample code shows how to use FuzzyART to perform image segmentation:
BufferedImage img= ImageIO.read(FileUtils.getResource("1.jpg"));
DataFrame dataFrame = ImageDataFrameFactory.dataFrame(img);
FuzzyARTClustering cluster = new FuzzyARTClustering();
DataFrame learnedData = cluster.fitAndTransform(dataFrame);
for(int i=0; i <learnedData.rowCount(); ++i) {
ImageDataRow row = (ImageDataRow)learnedData.row(i);
int x = row.getPixelX();
int y = row.getPixelY();
String clusterId = row.getCategoricalTargetCell("cluster");
System.out.println("cluster id for pixel (" + x + "," + y + ") is " + clusterId);
}
The segmented image can be generated using the trained KMeans from above as illustrated by the following sample code:
List<Integer> classColors = new ArrayList<Integer>();
for(int i=0; i < 5; ++i){
for(int j=0; j < 5; ++j){
classColors.add(ImageDataFrameFactory.get_rgb(255, rand.nextInt(255), rand.nextInt(255), rand.nextInt(255)));
}
}
BufferedImage segmented_image = new BufferedImage(img.getWidth(), img.getHeight(), img.getType());
for(int x=0; x < img.getWidth(); x++)
{
for(int y=0; y < img.getHeight(); y++)
{
int rgb = img.getRGB(x, y);
DataRow tuple = ImageDataFrameFactory.getPixelTuple(x, y, rgb);
int clusterIndex = cluster.transform(tuple);
rgb = classColors.get(clusterIndex % classColors.size());
segmented_image.setRGB(x, y, rgb);
}
}
There is also an example of reinforcement learning (TD-learning using Q-Learning and SARSA) based on FuzzyART. It is known as "FALCON A Fusion Architecture for Learning Cognition and Navigation", and the sample codes can be found in the src/test/java/com/github/chen0040/art/falcon/simulation/minefield The reinforcement learning objective is to navigate a tank (the agent) to a target flag in a mine field, sensors are available to the tank when making decision to turn and move forward, immediate reward and delayed rewards were given to the tank during the Q-Learning and SARSA reinforcement learning process. To launch the reinforcement learning, right-click MineFieldSimulatorGUI.java and select "Run in main()" in the IntelliJ editor popup menu (or something similar in eclipse or other editors), in the GUI launched, select "File->Start Simulation" (slow training mode) or "File->Start Simulation (No GUI)" (fast training mode)