-
Notifications
You must be signed in to change notification settings - Fork 38
/
tfutil.py
executable file
·791 lines (690 loc) · 38.8 KB
/
tfutil.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# This work is licensed under the Creative Commons Attribution-NonCommercial
# 4.0 International License. To view a copy of this license, visit
# http://creativecommons.org/licenses/by-nc/4.0/ or send a letter to
# Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.
import inspect
import importlib
import imp
import numpy as np
from collections import OrderedDict
import tensorflow as tf
#----------------------------------------------------------------------------
# Convenience.
def run(*args, **kwargs): # Run the specified ops in the default session.
return tf.get_default_session().run(*args, **kwargs)
def is_tf_expression(x):
return isinstance(x, tf.Tensor) or isinstance(x, tf.Variable) or isinstance(x, tf.Operation)
def shape_to_list(shape):
return [dim.value for dim in shape]
def flatten(x):
with tf.name_scope('Flatten'):
return tf.reshape(x, [-1])
def log2(x):
with tf.name_scope('Log2'):
return tf.log(x) * np.float32(1.0 / np.log(2.0))
def exp2(x):
with tf.name_scope('Exp2'):
return tf.exp(x * np.float32(np.log(2.0)))
def lerp(a, b, t):
with tf.name_scope('Lerp'):
return a + (b - a) * t
def lerp_clip(a, b, t):
with tf.name_scope('LerpClip'):
return a + (b - a) * tf.clip_by_value(t, 0.0, 1.0)
def absolute_name_scope(scope): # Forcefully enter the specified name scope, ignoring any surrounding scopes.
return tf.name_scope(scope + '/')
#----------------------------------------------------------------------------
# Initialize TensorFlow graph and session using good default settings.
def init_tf(config_dict=dict()):
if tf.get_default_session() is None:
tf.set_random_seed(np.random.randint(1 << 31))
create_session(config_dict, force_as_default=True)
#----------------------------------------------------------------------------
# Create tf.Session based on config dict of the form
# {'gpu_options.allow_growth': True}
def create_session(config_dict=dict(), force_as_default=False):
config = tf.ConfigProto()
for key, value in config_dict.items():
fields = key.split('.')
obj = config
for field in fields[:-1]:
obj = getattr(obj, field)
setattr(obj, fields[-1], value)
session = tf.Session(config=config)
if force_as_default:
session._default_session = session.as_default()
session._default_session.enforce_nesting = False
session._default_session.__enter__()
return session
#----------------------------------------------------------------------------
# Initialize all tf.Variables that have not already been initialized.
# Equivalent to the following, but more efficient and does not bloat the tf graph:
# tf.variables_initializer(tf.report_unitialized_variables()).run()
def init_uninited_vars(vars=None):
if vars is None: vars = tf.global_variables()
test_vars = []; test_ops = []
with tf.control_dependencies(None): # ignore surrounding control_dependencies
for var in vars:
assert is_tf_expression(var)
try:
tf.get_default_graph().get_tensor_by_name(var.name.replace(':0', '/IsVariableInitialized:0'))
except KeyError:
# Op does not exist => variable may be uninitialized.
test_vars.append(var)
with absolute_name_scope(var.name.split(':')[0]):
test_ops.append(tf.is_variable_initialized(var))
init_vars = [var for var, inited in zip(test_vars, run(test_ops)) if not inited]
run([var.initializer for var in init_vars])
#----------------------------------------------------------------------------
# Set the values of given tf.Variables.
# Equivalent to the following, but more efficient and does not bloat the tf graph:
# tfutil.run([tf.assign(var, value) for var, value in var_to_value_dict.items()]
def set_vars(var_to_value_dict):
ops = []
feed_dict = {}
for var, value in var_to_value_dict.items():
assert is_tf_expression(var)
try:
setter = tf.get_default_graph().get_tensor_by_name(var.name.replace(':0', '/setter:0')) # look for existing op
except KeyError:
with absolute_name_scope(var.name.split(':')[0]):
with tf.control_dependencies(None): # ignore surrounding control_dependencies
setter = tf.assign(var, tf.placeholder(var.dtype, var.shape, 'new_value'), name='setter') # create new setter
ops.append(setter)
feed_dict[setter.op.inputs[1]] = value
run(ops, feed_dict)
#----------------------------------------------------------------------------
# Autosummary creates an identity op that internally keeps track of the input
# values and automatically shows up in TensorBoard. The reported value
# represents an average over input components. The average is accumulated
# constantly over time and flushed when save_summaries() is called.
#
# Notes:
# - The output tensor must be used as an input for something else in the
# graph. Otherwise, the autosummary op will not get executed, and the average
# value will not get accumulated.
# - It is perfectly fine to include autosummaries with the same name in
# several places throughout the graph, even if they are executed concurrently.
# - It is ok to also pass in a python scalar or numpy array. In this case, it
# is added to the average immediately.
_autosummary_vars = OrderedDict() # name => [var, ...]
_autosummary_immediate = OrderedDict() # name => update_op, update_value
_autosummary_finalized = False
def autosummary(name, value):
id = name.replace('/', '_')
if is_tf_expression(value):
with tf.name_scope('summary_' + id), tf.device(value.device):
update_op = _create_autosummary_var(name, value)
with tf.control_dependencies([update_op]):
return tf.identity(value)
else: # python scalar or numpy array
if name not in _autosummary_immediate:
with absolute_name_scope('Autosummary/' + id), tf.device(None), tf.control_dependencies(None):
update_value = tf.placeholder(tf.float32)
update_op = _create_autosummary_var(name, update_value)
_autosummary_immediate[name] = update_op, update_value
update_op, update_value = _autosummary_immediate[name]
run(update_op, {update_value: np.float32(value)})
return value
# Create the necessary ops to include autosummaries in TensorBoard report.
# Note: This should be done only once per graph.
def finalize_autosummaries():
global _autosummary_finalized
if _autosummary_finalized:
return
_autosummary_finalized = True
init_uninited_vars([var for vars in _autosummary_vars.values() for var in vars])
with tf.device(None), tf.control_dependencies(None):
for name, vars in _autosummary_vars.items():
id = name.replace('/', '_')
with absolute_name_scope('Autosummary/' + id):
sum = tf.add_n(vars)
avg = sum[0] / sum[1]
with tf.control_dependencies([avg]): # read before resetting
reset_ops = [tf.assign(var, tf.zeros(2)) for var in vars]
with tf.name_scope(None), tf.control_dependencies(reset_ops): # reset before reporting
tf.summary.scalar(name, avg)
# Internal helper for creating autosummary accumulators.
def _create_autosummary_var(name, value_expr):
assert not _autosummary_finalized
v = tf.cast(value_expr, tf.float32)
if v.shape.ndims is 0:
v = [v, np.float32(1.0)]
elif v.shape.ndims is 1:
v = [tf.reduce_sum(v), tf.cast(tf.shape(v)[0], tf.float32)]
else:
v = [tf.reduce_sum(v), tf.reduce_prod(tf.cast(tf.shape(v), tf.float32))]
v = tf.cond(tf.is_finite(v[0]), lambda: tf.stack(v), lambda: tf.zeros(2))
with tf.control_dependencies(None):
var = tf.Variable(tf.zeros(2)) # [numerator, denominator]
update_op = tf.cond(tf.is_variable_initialized(var), lambda: tf.assign_add(var, v), lambda: tf.assign(var, v))
if name in _autosummary_vars:
_autosummary_vars[name].append(var)
else:
_autosummary_vars[name] = [var]
return update_op
#----------------------------------------------------------------------------
# Call filewriter.add_summary() with all summaries in the default graph,
# automatically finalizing and merging them on the first call.
_summary_merge_op = None
def save_summaries(filewriter, global_step=None):
global _summary_merge_op
if _summary_merge_op is None:
finalize_autosummaries()
with tf.device(None), tf.control_dependencies(None):
_summary_merge_op = tf.summary.merge_all()
filewriter.add_summary(_summary_merge_op.eval(), global_step)
#----------------------------------------------------------------------------
# Utilities for importing modules and objects by name.
def import_module(module_or_obj_name):
parts = module_or_obj_name.split('.')
parts[0] = {'np': 'numpy', 'tf': 'tensorflow'}.get(parts[0], parts[0])
for i in range(len(parts), 0, -1):
try:
module = importlib.import_module('.'.join(parts[:i]))
relative_obj_name = '.'.join(parts[i:])
return module, relative_obj_name
except ImportError:
pass
raise ImportError(module_or_obj_name)
def find_obj_in_module(module, relative_obj_name):
obj = module
for part in relative_obj_name.split('.'):
obj = getattr(obj, part)
return obj
def import_obj(obj_name):
module, relative_obj_name = import_module(obj_name)
return find_obj_in_module(module, relative_obj_name)
def call_func_by_name(*args, func=None, **kwargs):
assert func is not None
return import_obj(func)(*args, **kwargs)
#----------------------------------------------------------------------------
# Wrapper for tf.train.Optimizer that automatically takes care of:
# - Gradient averaging for multi-GPU training.
# - Dynamic loss scaling and typecasts for FP16 training.
# - Ignoring corrupted gradients that contain NaNs/Infs.
# - Reporting statistics.
# - Well-chosen default settings.
class Optimizer:
def __init__(
self,
name = 'Train',
tf_optimizer = 'tf.train.AdamOptimizer',
learning_rate = 0.001,
use_loss_scaling = False,
loss_scaling_init = 64.0,
loss_scaling_inc = 0.0005,
loss_scaling_dec = 1.0,
**kwargs):
# Init fields.
self.name = name
self.learning_rate = tf.convert_to_tensor(learning_rate)
self.id = self.name.replace('/', '.')
self.scope = tf.get_default_graph().unique_name(self.id)
self.optimizer_class = import_obj(tf_optimizer)
self.optimizer_kwargs = dict(kwargs)
self.use_loss_scaling = use_loss_scaling
self.loss_scaling_init = loss_scaling_init
self.loss_scaling_inc = loss_scaling_inc
self.loss_scaling_dec = loss_scaling_dec
self._grad_shapes = None # [shape, ...]
self._dev_opt = OrderedDict() # device => optimizer
self._dev_grads = OrderedDict() # device => [[(grad, var), ...], ...]
self._dev_ls_var = OrderedDict() # device => variable (log2 of loss scaling factor)
self._updates_applied = False
# Register the gradients of the given loss function with respect to the given variables.
# Intended to be called once per GPU.
def register_gradients(self, loss, vars):
assert not self._updates_applied
# Validate arguments.
if isinstance(vars, dict):
vars = list(vars.values()) # allow passing in Network.trainables as vars
assert isinstance(vars, list) and len(vars) >= 1
assert all(is_tf_expression(expr) for expr in vars + [loss])
if self._grad_shapes is None:
self._grad_shapes = [shape_to_list(var.shape) for var in vars]
assert len(vars) == len(self._grad_shapes)
assert all(shape_to_list(var.shape) == var_shape for var, var_shape in zip(vars, self._grad_shapes))
dev = loss.device
assert all(var.device == dev for var in vars)
# Register device and compute gradients.
with tf.name_scope(self.id + '_grad'), tf.device(dev):
if dev not in self._dev_opt:
opt_name = self.scope.replace('/', '_') + '_opt%d' % len(self._dev_opt)
self._dev_opt[dev] = self.optimizer_class(name=opt_name, learning_rate=self.learning_rate, **self.optimizer_kwargs)
self._dev_grads[dev] = []
loss = self.apply_loss_scaling(tf.cast(loss, tf.float32))
grads = self._dev_opt[dev].compute_gradients(loss, vars, gate_gradients=tf.train.Optimizer.GATE_NONE) # disable gating to reduce memory usage
grads = [(g, v) if g is not None else (tf.zeros_like(v), v) for g, v in grads] # replace disconnected gradients with zeros
self._dev_grads[dev].append(grads)
# Construct training op to update the registered variables based on their gradients.
def apply_updates(self):
assert not self._updates_applied
self._updates_applied = True
devices = list(self._dev_grads.keys())
total_grads = sum(len(grads) for grads in self._dev_grads.values())
assert len(devices) >= 1 and total_grads >= 1
ops = []
with absolute_name_scope(self.scope):
# Cast gradients to FP32 and calculate partial sum within each device.
dev_grads = OrderedDict() # device => [(grad, var), ...]
for dev_idx, dev in enumerate(devices):
with tf.name_scope('ProcessGrads%d' % dev_idx), tf.device(dev):
sums = []
for gv in zip(*self._dev_grads[dev]):
assert all(v is gv[0][1] for g, v in gv)
g = [tf.cast(g, tf.float32) for g, v in gv]
g = g[0] if len(g) == 1 else tf.add_n(g)
sums.append((g, gv[0][1]))
dev_grads[dev] = sums
# Sum gradients across devices.
if len(devices) > 1:
with tf.name_scope('SumAcrossGPUs'), tf.device(None):
for var_idx, grad_shape in enumerate(self._grad_shapes):
g = [dev_grads[dev][var_idx][0] for dev in devices]
if np.prod(grad_shape): # nccl does not support zero-sized tensors
g = tf.contrib.nccl.all_sum(g)
for dev, gg in zip(devices, g):
dev_grads[dev][var_idx] = (gg, dev_grads[dev][var_idx][1])
# Apply updates separately on each device.
for dev_idx, (dev, grads) in enumerate(dev_grads.items()):
with tf.name_scope('ApplyGrads%d' % dev_idx), tf.device(dev):
# Scale gradients as needed.
if self.use_loss_scaling or total_grads > 1:
with tf.name_scope('Scale'):
coef = tf.constant(np.float32(1.0 / total_grads), name='coef')
coef = self.undo_loss_scaling(coef)
grads = [(g * coef, v) for g, v in grads]
# Check for overflows.
with tf.name_scope('CheckOverflow'):
grad_ok = tf.reduce_all(tf.stack([tf.reduce_all(tf.is_finite(g)) for g, v in grads]))
# Update weights and adjust loss scaling.
with tf.name_scope('UpdateWeights'):
opt = self._dev_opt[dev]
ls_var = self.get_loss_scaling_var(dev)
if not self.use_loss_scaling:
ops.append(tf.cond(grad_ok, lambda: opt.apply_gradients(grads), tf.no_op))
else:
ops.append(tf.cond(grad_ok,
lambda: tf.group(tf.assign_add(ls_var, self.loss_scaling_inc), opt.apply_gradients(grads)),
lambda: tf.group(tf.assign_sub(ls_var, self.loss_scaling_dec))))
# Report statistics on the last device.
if dev == devices[-1]:
with tf.name_scope('Statistics'):
ops.append(autosummary(self.id + '/learning_rate', self.learning_rate))
ops.append(autosummary(self.id + '/overflow_frequency', tf.where(grad_ok, 0, 1)))
if self.use_loss_scaling:
ops.append(autosummary(self.id + '/loss_scaling_log2', ls_var))
# Initialize variables and group everything into a single op.
self.reset_optimizer_state()
init_uninited_vars(list(self._dev_ls_var.values()))
return tf.group(*ops, name='TrainingOp')
# Reset internal state of the underlying optimizer.
def reset_optimizer_state(self):
run([var.initializer for opt in self._dev_opt.values() for var in opt.variables()])
# Get or create variable representing log2 of the current dynamic loss scaling factor.
def get_loss_scaling_var(self, device):
if not self.use_loss_scaling:
return None
if device not in self._dev_ls_var:
with absolute_name_scope(self.scope + '/LossScalingVars'), tf.control_dependencies(None):
self._dev_ls_var[device] = tf.Variable(np.float32(self.loss_scaling_init), name='loss_scaling_var')
return self._dev_ls_var[device]
# Apply dynamic loss scaling for the given expression.
def apply_loss_scaling(self, value):
assert is_tf_expression(value)
if not self.use_loss_scaling:
return value
return value * exp2(self.get_loss_scaling_var(value.device))
# Undo the effect of dynamic loss scaling for the given expression.
def undo_loss_scaling(self, value):
assert is_tf_expression(value)
if not self.use_loss_scaling:
return value
return value * exp2(-self.get_loss_scaling_var(value.device))
#----------------------------------------------------------------------------
# Generic network abstraction.
#
# Acts as a convenience wrapper for a parameterized network construction
# function, providing several utility methods and convenient access to
# the inputs/outputs/weights.
#
# Network objects can be safely pickled and unpickled for long-term
# archival purposes. The pickling works reliably as long as the underlying
# network construction function is defined in a standalone Python module
# that has no side effects or application-specific imports.
network_import_handlers = [] # Custom import handlers for dealing with legacy data in pickle import.
_network_import_modules = [] # Temporary modules create during pickle import.
class Network:
def __init__(self,
name=None, # Network name. Used to select TensorFlow name and variable scopes.
func=None, # Fully qualified name of the underlying network construction function.
**static_kwargs): # Keyword arguments to be passed in to the network construction function.
self._init_fields()
self.name = name
self.static_kwargs = dict(static_kwargs)
# Init build func.
module, self._build_func_name = import_module(func)
self._build_module_src = inspect.getsource(module)
self._build_func = find_obj_in_module(module, self._build_func_name)
# Init graph.
self._init_graph()
self.reset_vars()
def _init_fields(self):
self.name = None # User-specified name, defaults to build func name if None.
self.scope = None # Unique TF graph scope, derived from the user-specified name.
self.static_kwargs = dict() # Arguments passed to the user-supplied build func.
self.num_inputs = 0 # Number of input tensors.
self.num_outputs = 0 # Number of output tensors.
self.input_shapes = [[]] # Input tensor shapes (NC or NCHW), including minibatch dimension.
self.output_shapes = [[]] # Output tensor shapes (NC or NCHW), including minibatch dimension.
self.input_shape = [] # Short-hand for input_shapes[0].
self.output_shape = [] # Short-hand for output_shapes[0].
self.input_templates = [] # Input placeholders in the template graph.
self.output_templates = [] # Output tensors in the template graph.
self.input_names = [] # Name string for each input.
self.output_names = [] # Name string for each output.
self.vars = OrderedDict() # All variables (localname => var).
self.trainables = OrderedDict() # Trainable variables (localname => var).
self._build_func = None # User-supplied build function that constructs the network.
self._build_func_name = None # Name of the build function.
self._build_module_src = None # Full source code of the module containing the build function.
self._run_cache = dict() # Cached graph data for Network.run().
def _init_graph(self):
# Collect inputs.
self.input_names = []
for param in inspect.signature(self._build_func).parameters.values():
if param.kind == param.POSITIONAL_OR_KEYWORD and param.default is param.empty:
self.input_names.append(param.name)
self.num_inputs = len(self.input_names)
assert self.num_inputs >= 1
# Choose name and scope.
if self.name is None:
self.name = self._build_func_name
self.scope = tf.get_default_graph().unique_name(self.name.replace('/', '_'), mark_as_used=False)
# Build template graph.
with tf.variable_scope(self.scope, reuse=tf.AUTO_REUSE):
assert tf.get_variable_scope().name == self.scope
with absolute_name_scope(self.scope): # ignore surrounding name_scope
with tf.control_dependencies(None): # ignore surrounding control_dependencies
self.input_templates = [tf.placeholder(tf.float32, name=name) for name in self.input_names]
out_expr = self._build_func(*self.input_templates, is_template_graph=True, **self.static_kwargs)
# Collect outputs.
assert is_tf_expression(out_expr) or isinstance(out_expr, tuple)
self.output_templates = [out_expr] if is_tf_expression(out_expr) else list(out_expr)
self.output_names = [t.name.split('/')[-1].split(':')[0] for t in self.output_templates]
self.num_outputs = len(self.output_templates)
assert self.num_outputs >= 1
# Populate remaining fields.
self.input_shapes = [shape_to_list(t.shape) for t in self.input_templates]
self.output_shapes = [shape_to_list(t.shape) for t in self.output_templates]
self.input_shape = self.input_shapes[0]
self.output_shape = self.output_shapes[0]
self.vars = OrderedDict([(self.get_var_localname(var), var) for var in tf.global_variables(self.scope + '/')])
self.trainables = OrderedDict([(self.get_var_localname(var), var) for var in tf.trainable_variables(self.scope + '/')])
# Run initializers for all variables defined by this network.
def reset_vars(self):
run([var.initializer for var in self.vars.values()])
# Run initializers for all trainable variables defined by this network.
def reset_trainables(self):
run([var.initializer for var in self.trainables.values()])
# Get TensorFlow expression(s) for the output(s) of this network, given the inputs.
def get_output_for(self, *in_expr, return_as_list=False, **dynamic_kwargs):
assert len(in_expr) == self.num_inputs
all_kwargs = dict(self.static_kwargs)
all_kwargs.update(dynamic_kwargs)
with tf.variable_scope(self.scope, reuse=True):
assert tf.get_variable_scope().name == self.scope
named_inputs = [tf.identity(expr, name=name) for expr, name in zip(in_expr, self.input_names)]
out_expr = self._build_func(*named_inputs, **all_kwargs)
assert is_tf_expression(out_expr) or isinstance(out_expr, tuple)
if return_as_list:
out_expr = [out_expr] if is_tf_expression(out_expr) else list(out_expr)
return out_expr
# Get the local name of a given variable, excluding any surrounding name scopes.
def get_var_localname(self, var_or_globalname):
assert is_tf_expression(var_or_globalname) or isinstance(var_or_globalname, str)
globalname = var_or_globalname if isinstance(var_or_globalname, str) else var_or_globalname.name
assert globalname.startswith(self.scope + '/')
localname = globalname[len(self.scope) + 1:]
localname = localname.split(':')[0]
return localname
# Find variable by local or global name.
def find_var(self, var_or_localname):
assert is_tf_expression(var_or_localname) or isinstance(var_or_localname, str)
return self.vars[var_or_localname] if isinstance(var_or_localname, str) else var_or_localname
# Get the value of a given variable as NumPy array.
# Note: This method is very inefficient -- prefer to use tfutil.run(list_of_vars) whenever possible.
def get_var(self, var_or_localname):
return self.find_var(var_or_localname).eval()
# Set the value of a given variable based on the given NumPy array.
# Note: This method is very inefficient -- prefer to use tfutil.set_vars() whenever possible.
def set_var(self, var_or_localname, new_value):
return set_vars({self.find_var(var_or_localname): new_value})
# Pickle export.
def __getstate__(self):
return {
'version': 2,
'name': self.name,
'static_kwargs': self.static_kwargs,
'build_module_src': self._build_module_src,
'build_func_name': self._build_func_name,
'variables': list(zip(self.vars.keys(), run(list(self.vars.values()))))}
# Pickle import.
def __setstate__(self, state):
self._init_fields()
# Execute custom import handlers.
for handler in network_import_handlers:
state = handler(state)
# Set basic fields.
assert state['version'] == 2
self.name = state['name']
self.static_kwargs = state['static_kwargs']
self._build_module_src = state['build_module_src']
self._build_func_name = state['build_func_name']
# Parse imported module.
module = imp.new_module('_tfutil_network_import_module_%d' % len(_network_import_modules))
exec(self._build_module_src, module.__dict__)
self._build_func = find_obj_in_module(module, self._build_func_name)
_network_import_modules.append(module) # avoid gc
# Init graph.
self._init_graph()
self.reset_vars()
set_vars({self.find_var(name): value for name, value in state['variables']})
# Create a clone of this network with its own copy of the variables.
def clone(self, name=None):
net = object.__new__(Network)
net._init_fields()
net.name = name if name is not None else self.name
net.static_kwargs = dict(self.static_kwargs)
net._build_module_src = self._build_module_src
net._build_func_name = self._build_func_name
net._build_func = self._build_func
net._init_graph()
net.copy_vars_from(self)
return net
# Copy the values of all variables from the given network.
def copy_vars_from(self, src_net):
assert isinstance(src_net, Network)
name_to_value = run({name: src_net.find_var(name) for name in self.vars.keys()})
set_vars({self.find_var(name): value for name, value in name_to_value.items()})
# Copy the values of all trainable variables from the given network.
def copy_trainables_from(self, src_net):
assert isinstance(src_net, Network)
name_to_value = run({name: src_net.find_var(name) for name in self.trainables.keys()})
set_vars({self.find_var(name): value for name, value in name_to_value.items()})
# Create new network with the given parameters, and copy all variables from this network.
def convert(self, name=None, func=None, **static_kwargs):
net = Network(name, func, **static_kwargs)
net.copy_vars_from(self)
return net
# Construct a TensorFlow op that updates the variables of this network
# to be slightly closer to those of the given network.
def setup_as_moving_average_of(self, src_net, beta=0.99, beta_nontrainable=0.0):
assert isinstance(src_net, Network)
with absolute_name_scope(self.scope):
with tf.name_scope('MovingAvg'):
ops = []
for name, var in self.vars.items():
if name in src_net.vars:
cur_beta = beta if name in self.trainables else beta_nontrainable
new_value = lerp(src_net.vars[name], var, cur_beta)
ops.append(var.assign(new_value))
return tf.group(*ops)
# Run this network for the given NumPy array(s), and return the output(s) as NumPy array(s).
def fit(self, *in_arrays,
return_as_list = False, # True = return a list of NumPy arrays, False = return a single NumPy array, or a tuple if there are multiple outputs.
print_progress = False, # Print progress to the console? Useful for very large input arrays.
minibatch_size = None, # Maximum minibatch size to use, None = disable batching.
num_gpus = 1, # Number of GPUs to use.
out_mul = 1.0, # Multiplicative constant to apply to the output(s).
out_add = 0.0, # Additive constant to apply to the output(s).
out_shrink = 1, # Shrink the spatial dimensions of the output(s) by the given factor.
out_dtype = None, # Convert the output to the specified data type.
**dynamic_kwargs): # Additional keyword arguments to pass into the network construction function.
assert len(in_arrays) == self.num_inputs
num_items = in_arrays[0].shape[0]
if minibatch_size is None:
minibatch_size = num_items
key = str([list(sorted(dynamic_kwargs.items())), num_gpus, out_mul, out_add, out_shrink, out_dtype])
# Build graph.
if key not in self._run_cache:
with absolute_name_scope(self.scope + '/Fit'), tf.control_dependencies(None):
in_split = list(zip(*[tf.split(x, num_gpus) for x in in_arrays]))
out_split = []
for gpu in range(num_gpus):
with tf.device('/gpu:%d' % gpu):
out_expr = self.get_output_for(*in_split[gpu], return_as_list=True, **dynamic_kwargs)
if out_mul != 1.0:
out_expr = [x * out_mul for x in out_expr]
if out_add != 0.0:
out_expr = [x + out_add for x in out_expr]
if out_shrink > 1:
ksize = [1, 1, out_shrink, out_shrink]
out_expr = [tf.nn.avg_pool(x, ksize=ksize, strides=ksize, padding='VALID', data_format='NCHW') for x in out_expr]
if out_dtype is not None:
if tf.as_dtype(out_dtype).is_integer:
out_expr = [tf.round(x) for x in out_expr]
out_expr = [tf.saturate_cast(x, out_dtype) for x in out_expr]
out_split.append(out_expr)
self._run_cache[key] = [tf.concat(outputs, axis=0) for outputs in zip(*out_split)]
# Run minibatches.
out_expr = self._run_cache[key]
return out_expr
# Run this network for the given NumPy array(s), and return the output(s) as NumPy array(s).
def run(self, *in_arrays,
return_as_list = False, # True = return a list of NumPy arrays, False = return a single NumPy array, or a tuple if there are multiple outputs.
print_progress = False, # Print progress to the console? Useful for very large input arrays.
minibatch_size = None, # Maximum minibatch size to use, None = disable batching.
num_gpus = 1, # Number of GPUs to use.
out_mul = 1.0, # Multiplicative constant to apply to the output(s).
out_add = 0.0, # Additive constant to apply to the output(s).
out_shrink = 1, # Shrink the spatial dimensions of the output(s) by the given factor.
out_dtype = None, # Convert the output to the specified data type.
**dynamic_kwargs): # Additional keyword arguments to pass into the network construction function.
assert len(in_arrays) == self.num_inputs
num_items = in_arrays[0].shape[0]
if minibatch_size is None:
minibatch_size = num_items
key = str([list(sorted(dynamic_kwargs.items())), num_gpus, out_mul, out_add, out_shrink, out_dtype])
# Build graph.
if key not in self._run_cache:
with absolute_name_scope(self.scope + '/Run'), tf.control_dependencies(None):
in_split = list(zip(*[tf.split(x, num_gpus) for x in self.input_templates]))
out_split = []
for gpu in range(num_gpus):
with tf.device('/gpu:%d' % gpu):
out_expr = self.get_output_for(*in_split[gpu], return_as_list=True, **dynamic_kwargs)
if out_mul != 1.0:
out_expr = [x * out_mul for x in out_expr]
if out_add != 0.0:
out_expr = [x + out_add for x in out_expr]
if out_shrink > 1:
ksize = [1, 1, out_shrink, out_shrink]
out_expr = [tf.nn.avg_pool(x, ksize=ksize, strides=ksize, padding='VALID', data_format='NCHW') for x in out_expr]
if out_dtype is not None:
if tf.as_dtype(out_dtype).is_integer:
out_expr = [tf.round(x) for x in out_expr]
out_expr = [tf.saturate_cast(x, out_dtype) for x in out_expr]
out_split.append(out_expr)
self._run_cache[key] = [tf.concat(outputs, axis=0) for outputs in zip(*out_split)]
# Run minibatches.
out_expr = self._run_cache[key]
out_arrays = [np.empty([num_items] + shape_to_list(expr.shape)[1:], expr.dtype.name) for expr in out_expr]
for mb_begin in range(0, num_items, minibatch_size):
if print_progress:
print('\r%d / %d' % (mb_begin, num_items), end='')
mb_end = min(mb_begin + minibatch_size, num_items)
mb_in = [src[mb_begin : mb_end] for src in in_arrays]
mb_out = tf.get_default_session().run(out_expr, dict(zip(self.input_templates, mb_in)))
for dst, src in zip(out_arrays, mb_out):
dst[mb_begin : mb_end] = src
# Done.
if print_progress:
print('\r%d / %d' % (num_items, num_items))
if not return_as_list:
out_arrays = out_arrays[0] if len(out_arrays) == 1 else tuple(out_arrays)
return out_arrays
# Returns a list of (name, output_expr, trainable_vars) tuples corresponding to
# individual layers of the network. Mainly intended to be used for reporting.
def list_layers(self):
patterns_to_ignore = ['/Setter', '/new_value', '/Shape', '/strided_slice', '/Cast', '/concat']
all_ops = tf.get_default_graph().get_operations()
all_ops = [op for op in all_ops if not any(p in op.name for p in patterns_to_ignore)]
layers = []
def recurse(scope, parent_ops, level):
prefix = scope + '/'
ops = [op for op in parent_ops if op.name == scope or op.name.startswith(prefix)]
# Does not contain leaf nodes => expand immediate children.
if level == 0 or all('/' in op.name[len(prefix):] for op in ops):
visited = set()
for op in ops:
suffix = op.name[len(prefix):]
if '/' in suffix:
suffix = suffix[:suffix.index('/')]
if suffix not in visited:
recurse(prefix + suffix, ops, level + 1)
visited.add(suffix)
# Otherwise => interpret as a layer.
else:
layer_name = scope[len(self.scope)+1:]
layer_output = ops[-1].outputs[0]
layer_trainables = [op.outputs[0] for op in ops if op.type.startswith('Variable') and self.get_var_localname(op.name) in self.trainables]
layers.append((layer_name, layer_output, layer_trainables))
recurse(self.scope, all_ops, 0)
return layers
# Print a summary table of the network structure.
def print_layers(self, title=None, hide_layers_with_no_params=False):
if title is None: title = self.name
print()
print('%-28s%-12s%-24s%-24s' % (title, 'Params', 'OutputShape', 'WeightShape'))
print('%-28s%-12s%-24s%-24s' % (('---',) * 4))
total_params = 0
for layer_name, layer_output, layer_trainables in self.list_layers():
weights = [var for var in layer_trainables if var.name.endswith('/weight:0')]
num_params = sum(np.prod(shape_to_list(var.shape)) for var in layer_trainables)
total_params += num_params
if hide_layers_with_no_params and num_params == 0:
continue
print('%-28s%-12s%-24s%-24s' % (
layer_name,
num_params if num_params else '-',
layer_output.shape,
weights[0].shape if len(weights) == 1 else '-'))
print('%-28s%-12s%-24s%-24s' % (('---',) * 4))
print('%-28s%-12s%-24s%-24s' % ('Total', total_params, '', ''))
print()
# Construct summary ops to include histograms of all trainable parameters in TensorBoard.
def setup_weight_histograms(self, title=None):
if title is None: title = self.name
with tf.name_scope(None), tf.device(None), tf.control_dependencies(None):
for localname, var in self.trainables.items():
if '/' in localname:
p = localname.split('/')
name = title + '_' + p[-1] + '/' + '_'.join(p[:-1])
else:
name = title + '_toplevel/' + localname
tf.summary.histogram(name, var)
#----------------------------------------------------------------------------